diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-11 08:27:49 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-11 08:27:49 +0000 |
commit | ace9429bb58fd418f0c81d4c2835699bddf6bde6 (patch) | |
tree | b2d64bc10158fdd5497876388cd68142ca374ed3 /drivers/mtd/nand/raw/rockchip-nand-controller.c | |
parent | Initial commit. (diff) | |
download | linux-ace9429bb58fd418f0c81d4c2835699bddf6bde6.tar.xz linux-ace9429bb58fd418f0c81d4c2835699bddf6bde6.zip |
Adding upstream version 6.6.15.upstream/6.6.15
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to '')
-rw-r--r-- | drivers/mtd/nand/raw/rockchip-nand-controller.c | 1494 |
1 files changed, 1494 insertions, 0 deletions
diff --git a/drivers/mtd/nand/raw/rockchip-nand-controller.c b/drivers/mtd/nand/raw/rockchip-nand-controller.c new file mode 100644 index 0000000000..5bc90ffa72 --- /dev/null +++ b/drivers/mtd/nand/raw/rockchip-nand-controller.c @@ -0,0 +1,1494 @@ +// SPDX-License-Identifier: GPL-2.0 OR MIT +/* + * Rockchip NAND Flash controller driver. + * Copyright (C) 2020 Rockchip Inc. + * Author: Yifeng Zhao <yifeng.zhao@rock-chips.com> + */ + +#include <linux/clk.h> +#include <linux/delay.h> +#include <linux/dma-mapping.h> +#include <linux/dmaengine.h> +#include <linux/interrupt.h> +#include <linux/iopoll.h> +#include <linux/module.h> +#include <linux/mtd/mtd.h> +#include <linux/mtd/rawnand.h> +#include <linux/of.h> +#include <linux/platform_device.h> +#include <linux/slab.h> + +/* + * NFC Page Data Layout: + * 1024 bytes data + 4Bytes sys data + 28Bytes~124Bytes ECC data + + * 1024 bytes data + 4Bytes sys data + 28Bytes~124Bytes ECC data + + * ...... + * NAND Page Data Layout: + * 1024 * n data + m Bytes oob + * Original Bad Block Mask Location: + * First byte of oob(spare). + * nand_chip->oob_poi data layout: + * 4Bytes sys data + .... + 4Bytes sys data + ECC data. + */ + +/* NAND controller register definition */ +#define NFC_READ (0) +#define NFC_WRITE (1) + +#define NFC_FMCTL (0x00) +#define FMCTL_CE_SEL_M 0xFF +#define FMCTL_CE_SEL(x) (1 << (x)) +#define FMCTL_WP BIT(8) +#define FMCTL_RDY BIT(9) + +#define NFC_FMWAIT (0x04) +#define FLCTL_RST BIT(0) +#define FLCTL_WR (1) /* 0: read, 1: write */ +#define FLCTL_XFER_ST BIT(2) +#define FLCTL_XFER_EN BIT(3) +#define FLCTL_ACORRECT BIT(10) /* Auto correct error bits. */ +#define FLCTL_XFER_READY BIT(20) +#define FLCTL_XFER_SECTOR (22) +#define FLCTL_TOG_FIX BIT(29) + +#define BCHCTL_BANK_M (7 << 5) +#define BCHCTL_BANK (5) + +#define DMA_ST BIT(0) +#define DMA_WR (1) /* 0: write, 1: read */ +#define DMA_EN BIT(2) +#define DMA_AHB_SIZE (3) /* 0: 1, 1: 2, 2: 4 */ +#define DMA_BURST_SIZE (6) /* 0: 1, 3: 4, 5: 8, 7: 16 */ +#define DMA_INC_NUM (9) /* 1 - 16 */ + +#define ECC_ERR_CNT(x, e) ((((x) >> (e).low) & (e).low_mask) |\ + (((x) >> (e).high) & (e).high_mask) << (e).low_bn) +#define INT_DMA BIT(0) +#define NFC_BANK (0x800) +#define NFC_BANK_STEP (0x100) +#define BANK_DATA (0x00) +#define BANK_ADDR (0x04) +#define BANK_CMD (0x08) +#define NFC_SRAM0 (0x1000) +#define NFC_SRAM1 (0x1400) +#define NFC_SRAM_SIZE (0x400) +#define NFC_TIMEOUT (500000) +#define NFC_MAX_OOB_PER_STEP 128 +#define NFC_MIN_OOB_PER_STEP 64 +#define MAX_DATA_SIZE 0xFFFC +#define MAX_ADDRESS_CYC 6 +#define NFC_ECC_MAX_MODES 4 +#define NFC_MAX_NSELS (8) /* Some Socs only have 1 or 2 CSs. */ +#define NFC_SYS_DATA_SIZE (4) /* 4 bytes sys data in oob pre 1024 data.*/ +#define RK_DEFAULT_CLOCK_RATE (150 * 1000 * 1000) /* 150 Mhz */ +#define ACCTIMING(csrw, rwpw, rwcs) ((csrw) << 12 | (rwpw) << 5 | (rwcs)) + +enum nfc_type { + NFC_V6, + NFC_V8, + NFC_V9, +}; + +/** + * struct rk_ecc_cnt_status: represent a ecc status data. + * @err_flag_bit: error flag bit index at register. + * @low: ECC count low bit index at register. + * @low_mask: mask bit. + * @low_bn: ECC count low bit number. + * @high: ECC count high bit index at register. + * @high_mask: mask bit + */ +struct ecc_cnt_status { + u8 err_flag_bit; + u8 low; + u8 low_mask; + u8 low_bn; + u8 high; + u8 high_mask; +}; + +/** + * @type: NFC version + * @ecc_strengths: ECC strengths + * @ecc_cfgs: ECC config values + * @flctl_off: FLCTL register offset + * @bchctl_off: BCHCTL register offset + * @dma_data_buf_off: DMA_DATA_BUF register offset + * @dma_oob_buf_off: DMA_OOB_BUF register offset + * @dma_cfg_off: DMA_CFG register offset + * @dma_st_off: DMA_ST register offset + * @bch_st_off: BCG_ST register offset + * @randmz_off: RANDMZ register offset + * @int_en_off: interrupt enable register offset + * @int_clr_off: interrupt clean register offset + * @int_st_off: interrupt status register offset + * @oob0_off: oob0 register offset + * @oob1_off: oob1 register offset + * @ecc0: represent ECC0 status data + * @ecc1: represent ECC1 status data + */ +struct nfc_cfg { + enum nfc_type type; + u8 ecc_strengths[NFC_ECC_MAX_MODES]; + u32 ecc_cfgs[NFC_ECC_MAX_MODES]; + u32 flctl_off; + u32 bchctl_off; + u32 dma_cfg_off; + u32 dma_data_buf_off; + u32 dma_oob_buf_off; + u32 dma_st_off; + u32 bch_st_off; + u32 randmz_off; + u32 int_en_off; + u32 int_clr_off; + u32 int_st_off; + u32 oob0_off; + u32 oob1_off; + struct ecc_cnt_status ecc0; + struct ecc_cnt_status ecc1; +}; + +struct rk_nfc_nand_chip { + struct list_head node; + struct nand_chip chip; + + u16 boot_blks; + u16 metadata_size; + u32 boot_ecc; + u32 timing; + + u8 nsels; + u8 sels[]; + /* Nothing after this field. */ +}; + +struct rk_nfc { + struct nand_controller controller; + const struct nfc_cfg *cfg; + struct device *dev; + + struct clk *nfc_clk; + struct clk *ahb_clk; + void __iomem *regs; + + u32 selected_bank; + u32 band_offset; + u32 cur_ecc; + u32 cur_timing; + + struct completion done; + struct list_head chips; + + u8 *page_buf; + u32 *oob_buf; + u32 page_buf_size; + u32 oob_buf_size; + + unsigned long assigned_cs; +}; + +static inline struct rk_nfc_nand_chip *rk_nfc_to_rknand(struct nand_chip *chip) +{ + return container_of(chip, struct rk_nfc_nand_chip, chip); +} + +static inline u8 *rk_nfc_buf_to_data_ptr(struct nand_chip *chip, const u8 *p, int i) +{ + return (u8 *)p + i * chip->ecc.size; +} + +static inline u8 *rk_nfc_buf_to_oob_ptr(struct nand_chip *chip, int i) +{ + u8 *poi; + + poi = chip->oob_poi + i * NFC_SYS_DATA_SIZE; + + return poi; +} + +static inline u8 *rk_nfc_buf_to_oob_ecc_ptr(struct nand_chip *chip, int i) +{ + struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip); + u8 *poi; + + poi = chip->oob_poi + rknand->metadata_size + chip->ecc.bytes * i; + + return poi; +} + +static inline int rk_nfc_data_len(struct nand_chip *chip) +{ + return chip->ecc.size + chip->ecc.bytes + NFC_SYS_DATA_SIZE; +} + +static inline u8 *rk_nfc_data_ptr(struct nand_chip *chip, int i) +{ + struct rk_nfc *nfc = nand_get_controller_data(chip); + + return nfc->page_buf + i * rk_nfc_data_len(chip); +} + +static inline u8 *rk_nfc_oob_ptr(struct nand_chip *chip, int i) +{ + struct rk_nfc *nfc = nand_get_controller_data(chip); + + return nfc->page_buf + i * rk_nfc_data_len(chip) + chip->ecc.size; +} + +static int rk_nfc_hw_ecc_setup(struct nand_chip *chip, u32 strength) +{ + struct rk_nfc *nfc = nand_get_controller_data(chip); + u32 reg, i; + + for (i = 0; i < NFC_ECC_MAX_MODES; i++) { + if (strength == nfc->cfg->ecc_strengths[i]) { + reg = nfc->cfg->ecc_cfgs[i]; + break; + } + } + + if (i >= NFC_ECC_MAX_MODES) + return -EINVAL; + + writel(reg, nfc->regs + nfc->cfg->bchctl_off); + + /* Save chip ECC setting */ + nfc->cur_ecc = strength; + + return 0; +} + +static void rk_nfc_select_chip(struct nand_chip *chip, int cs) +{ + struct rk_nfc *nfc = nand_get_controller_data(chip); + struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip); + struct nand_ecc_ctrl *ecc = &chip->ecc; + u32 val; + + if (cs < 0) { + nfc->selected_bank = -1; + /* Deselect the currently selected target. */ + val = readl_relaxed(nfc->regs + NFC_FMCTL); + val &= ~FMCTL_CE_SEL_M; + writel(val, nfc->regs + NFC_FMCTL); + return; + } + + nfc->selected_bank = rknand->sels[cs]; + nfc->band_offset = NFC_BANK + nfc->selected_bank * NFC_BANK_STEP; + + val = readl_relaxed(nfc->regs + NFC_FMCTL); + val &= ~FMCTL_CE_SEL_M; + val |= FMCTL_CE_SEL(nfc->selected_bank); + + writel(val, nfc->regs + NFC_FMCTL); + + /* + * Compare current chip timing with selected chip timing and + * change if needed. + */ + if (nfc->cur_timing != rknand->timing) { + writel(rknand->timing, nfc->regs + NFC_FMWAIT); + nfc->cur_timing = rknand->timing; + } + + /* + * Compare current chip ECC setting with selected chip ECC setting and + * change if needed. + */ + if (nfc->cur_ecc != ecc->strength) + rk_nfc_hw_ecc_setup(chip, ecc->strength); +} + +static inline int rk_nfc_wait_ioready(struct rk_nfc *nfc) +{ + int rc; + u32 val; + + rc = readl_relaxed_poll_timeout(nfc->regs + NFC_FMCTL, val, + val & FMCTL_RDY, 10, NFC_TIMEOUT); + + return rc; +} + +static void rk_nfc_read_buf(struct rk_nfc *nfc, u8 *buf, int len) +{ + int i; + + for (i = 0; i < len; i++) + buf[i] = readb_relaxed(nfc->regs + nfc->band_offset + + BANK_DATA); +} + +static void rk_nfc_write_buf(struct rk_nfc *nfc, const u8 *buf, int len) +{ + int i; + + for (i = 0; i < len; i++) + writeb(buf[i], nfc->regs + nfc->band_offset + BANK_DATA); +} + +static int rk_nfc_cmd(struct nand_chip *chip, + const struct nand_subop *subop) +{ + struct rk_nfc *nfc = nand_get_controller_data(chip); + unsigned int i, j, remaining, start; + int reg_offset = nfc->band_offset; + u8 *inbuf = NULL; + const u8 *outbuf; + u32 cnt = 0; + int ret = 0; + + for (i = 0; i < subop->ninstrs; i++) { + const struct nand_op_instr *instr = &subop->instrs[i]; + + switch (instr->type) { + case NAND_OP_CMD_INSTR: + writeb(instr->ctx.cmd.opcode, + nfc->regs + reg_offset + BANK_CMD); + break; + + case NAND_OP_ADDR_INSTR: + remaining = nand_subop_get_num_addr_cyc(subop, i); + start = nand_subop_get_addr_start_off(subop, i); + + for (j = 0; j < 8 && j + start < remaining; j++) + writeb(instr->ctx.addr.addrs[j + start], + nfc->regs + reg_offset + BANK_ADDR); + break; + + case NAND_OP_DATA_IN_INSTR: + case NAND_OP_DATA_OUT_INSTR: + start = nand_subop_get_data_start_off(subop, i); + cnt = nand_subop_get_data_len(subop, i); + + if (instr->type == NAND_OP_DATA_OUT_INSTR) { + outbuf = instr->ctx.data.buf.out + start; + rk_nfc_write_buf(nfc, outbuf, cnt); + } else { + inbuf = instr->ctx.data.buf.in + start; + rk_nfc_read_buf(nfc, inbuf, cnt); + } + break; + + case NAND_OP_WAITRDY_INSTR: + if (rk_nfc_wait_ioready(nfc) < 0) { + ret = -ETIMEDOUT; + dev_err(nfc->dev, "IO not ready\n"); + } + break; + } + } + + return ret; +} + +static const struct nand_op_parser rk_nfc_op_parser = NAND_OP_PARSER( + NAND_OP_PARSER_PATTERN( + rk_nfc_cmd, + NAND_OP_PARSER_PAT_CMD_ELEM(true), + NAND_OP_PARSER_PAT_ADDR_ELEM(true, MAX_ADDRESS_CYC), + NAND_OP_PARSER_PAT_CMD_ELEM(true), + NAND_OP_PARSER_PAT_WAITRDY_ELEM(true), + NAND_OP_PARSER_PAT_DATA_IN_ELEM(true, MAX_DATA_SIZE)), + NAND_OP_PARSER_PATTERN( + rk_nfc_cmd, + NAND_OP_PARSER_PAT_CMD_ELEM(true), + NAND_OP_PARSER_PAT_ADDR_ELEM(true, MAX_ADDRESS_CYC), + NAND_OP_PARSER_PAT_DATA_OUT_ELEM(true, MAX_DATA_SIZE), + NAND_OP_PARSER_PAT_CMD_ELEM(true), + NAND_OP_PARSER_PAT_WAITRDY_ELEM(true)), +); + +static int rk_nfc_exec_op(struct nand_chip *chip, + const struct nand_operation *op, + bool check_only) +{ + if (!check_only) + rk_nfc_select_chip(chip, op->cs); + + return nand_op_parser_exec_op(chip, &rk_nfc_op_parser, op, + check_only); +} + +static int rk_nfc_setup_interface(struct nand_chip *chip, int target, + const struct nand_interface_config *conf) +{ + struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip); + struct rk_nfc *nfc = nand_get_controller_data(chip); + const struct nand_sdr_timings *timings; + u32 rate, tc2rw, trwpw, trw2c; + u32 temp; + + if (target < 0) + return 0; + + timings = nand_get_sdr_timings(conf); + if (IS_ERR(timings)) + return -EOPNOTSUPP; + + if (IS_ERR(nfc->nfc_clk)) + rate = clk_get_rate(nfc->ahb_clk); + else + rate = clk_get_rate(nfc->nfc_clk); + + /* Turn clock rate into kHz. */ + rate /= 1000; + + tc2rw = 1; + trw2c = 1; + + trwpw = max(timings->tWC_min, timings->tRC_min) / 1000; + trwpw = DIV_ROUND_UP(trwpw * rate, 1000000); + + temp = timings->tREA_max / 1000; + temp = DIV_ROUND_UP(temp * rate, 1000000); + + if (trwpw < temp) + trwpw = temp; + + /* + * ACCON: access timing control register + * ------------------------------------- + * 31:18: reserved + * 17:12: csrw, clock cycles from the falling edge of CSn to the + * falling edge of RDn or WRn + * 11:11: reserved + * 10:05: rwpw, the width of RDn or WRn in processor clock cycles + * 04:00: rwcs, clock cycles from the rising edge of RDn or WRn to the + * rising edge of CSn + */ + + /* Save chip timing */ + rknand->timing = ACCTIMING(tc2rw, trwpw, trw2c); + + return 0; +} + +static void rk_nfc_xfer_start(struct rk_nfc *nfc, u8 rw, u8 n_KB, + dma_addr_t dma_data, dma_addr_t dma_oob) +{ + u32 dma_reg, fl_reg, bch_reg; + + dma_reg = DMA_ST | ((!rw) << DMA_WR) | DMA_EN | (2 << DMA_AHB_SIZE) | + (7 << DMA_BURST_SIZE) | (16 << DMA_INC_NUM); + + fl_reg = (rw << FLCTL_WR) | FLCTL_XFER_EN | FLCTL_ACORRECT | + (n_KB << FLCTL_XFER_SECTOR) | FLCTL_TOG_FIX; + + if (nfc->cfg->type == NFC_V6 || nfc->cfg->type == NFC_V8) { + bch_reg = readl_relaxed(nfc->regs + nfc->cfg->bchctl_off); + bch_reg = (bch_reg & (~BCHCTL_BANK_M)) | + (nfc->selected_bank << BCHCTL_BANK); + writel(bch_reg, nfc->regs + nfc->cfg->bchctl_off); + } + + writel(dma_reg, nfc->regs + nfc->cfg->dma_cfg_off); + writel((u32)dma_data, nfc->regs + nfc->cfg->dma_data_buf_off); + writel((u32)dma_oob, nfc->regs + nfc->cfg->dma_oob_buf_off); + writel(fl_reg, nfc->regs + nfc->cfg->flctl_off); + fl_reg |= FLCTL_XFER_ST; + writel(fl_reg, nfc->regs + nfc->cfg->flctl_off); +} + +static int rk_nfc_wait_for_xfer_done(struct rk_nfc *nfc) +{ + void __iomem *ptr; + u32 reg; + + ptr = nfc->regs + nfc->cfg->flctl_off; + + return readl_relaxed_poll_timeout(ptr, reg, + reg & FLCTL_XFER_READY, + 10, NFC_TIMEOUT); +} + +static int rk_nfc_write_page_raw(struct nand_chip *chip, const u8 *buf, + int oob_on, int page) +{ + struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip); + struct rk_nfc *nfc = nand_get_controller_data(chip); + struct mtd_info *mtd = nand_to_mtd(chip); + struct nand_ecc_ctrl *ecc = &chip->ecc; + int i, pages_per_blk; + + pages_per_blk = mtd->erasesize / mtd->writesize; + if ((chip->options & NAND_IS_BOOT_MEDIUM) && + (page < (pages_per_blk * rknand->boot_blks)) && + rknand->boot_ecc != ecc->strength) { + /* + * There's currently no method to notify the MTD framework that + * a different ECC strength is in use for the boot blocks. + */ + return -EIO; + } + + if (!buf) + memset(nfc->page_buf, 0xff, mtd->writesize + mtd->oobsize); + + for (i = 0; i < ecc->steps; i++) { + /* Copy data to the NFC buffer. */ + if (buf) + memcpy(rk_nfc_data_ptr(chip, i), + rk_nfc_buf_to_data_ptr(chip, buf, i), + ecc->size); + /* + * The first four bytes of OOB are reserved for the + * boot ROM. In some debugging cases, such as with a + * read, erase and write back test these 4 bytes stored + * in OOB also need to be written back. + * + * The function nand_block_bad detects bad blocks like: + * + * bad = chip->oob_poi[chip->badblockpos]; + * + * chip->badblockpos == 0 for a large page NAND Flash, + * so chip->oob_poi[0] is the bad block mask (BBM). + * + * The OOB data layout on the NFC is: + * + * PA0 PA1 PA2 PA3 | BBM OOB1 OOB2 OOB3 | ... + * + * or + * + * 0xFF 0xFF 0xFF 0xFF | BBM OOB1 OOB2 OOB3 | ... + * + * The code here just swaps the first 4 bytes with the last + * 4 bytes without losing any data. + * + * The chip->oob_poi data layout: + * + * BBM OOB1 OOB2 OOB3 |......| PA0 PA1 PA2 PA3 + * + * The rk_nfc_ooblayout_free() function already has reserved + * these 4 bytes together with 2 bytes for BBM + * by reducing it's length: + * + * oob_region->length = rknand->metadata_size - NFC_SYS_DATA_SIZE - 2; + */ + if (!i) + memcpy(rk_nfc_oob_ptr(chip, i), + rk_nfc_buf_to_oob_ptr(chip, ecc->steps - 1), + NFC_SYS_DATA_SIZE); + else + memcpy(rk_nfc_oob_ptr(chip, i), + rk_nfc_buf_to_oob_ptr(chip, i - 1), + NFC_SYS_DATA_SIZE); + /* Copy ECC data to the NFC buffer. */ + memcpy(rk_nfc_oob_ptr(chip, i) + NFC_SYS_DATA_SIZE, + rk_nfc_buf_to_oob_ecc_ptr(chip, i), + ecc->bytes); + } + + nand_prog_page_begin_op(chip, page, 0, NULL, 0); + rk_nfc_write_buf(nfc, buf, mtd->writesize + mtd->oobsize); + return nand_prog_page_end_op(chip); +} + +static int rk_nfc_write_page_hwecc(struct nand_chip *chip, const u8 *buf, + int oob_on, int page) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + struct rk_nfc *nfc = nand_get_controller_data(chip); + struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip); + struct nand_ecc_ctrl *ecc = &chip->ecc; + int oob_step = (ecc->bytes > 60) ? NFC_MAX_OOB_PER_STEP : + NFC_MIN_OOB_PER_STEP; + int pages_per_blk = mtd->erasesize / mtd->writesize; + int ret = 0, i, boot_rom_mode = 0; + dma_addr_t dma_data, dma_oob; + u32 tmp; + u8 *oob; + + nand_prog_page_begin_op(chip, page, 0, NULL, 0); + + if (buf) + memcpy(nfc->page_buf, buf, mtd->writesize); + else + memset(nfc->page_buf, 0xFF, mtd->writesize); + + /* + * The first blocks (4, 8 or 16 depending on the device) are used + * by the boot ROM and the first 32 bits of OOB need to link to + * the next page address in the same block. We can't directly copy + * OOB data from the MTD framework, because this page address + * conflicts for example with the bad block marker (BBM), + * so we shift all OOB data including the BBM with 4 byte positions. + * As a consequence the OOB size available to the MTD framework is + * also reduced with 4 bytes. + * + * PA0 PA1 PA2 PA3 | BBM OOB1 OOB2 OOB3 | ... + * + * If a NAND is not a boot medium or the page is not a boot block, + * the first 4 bytes are left untouched by writing 0xFF to them. + * + * 0xFF 0xFF 0xFF 0xFF | BBM OOB1 OOB2 OOB3 | ... + * + * The code here just swaps the first 4 bytes with the last + * 4 bytes without losing any data. + * + * The chip->oob_poi data layout: + * + * BBM OOB1 OOB2 OOB3 |......| PA0 PA1 PA2 PA3 + * + * Configure the ECC algorithm supported by the boot ROM. + */ + if ((page < (pages_per_blk * rknand->boot_blks)) && + (chip->options & NAND_IS_BOOT_MEDIUM)) { + boot_rom_mode = 1; + if (rknand->boot_ecc != ecc->strength) + rk_nfc_hw_ecc_setup(chip, rknand->boot_ecc); + } + + for (i = 0; i < ecc->steps; i++) { + if (!i) + oob = chip->oob_poi + (ecc->steps - 1) * NFC_SYS_DATA_SIZE; + else + oob = chip->oob_poi + (i - 1) * NFC_SYS_DATA_SIZE; + + tmp = oob[0] | oob[1] << 8 | oob[2] << 16 | oob[3] << 24; + + if (nfc->cfg->type == NFC_V9) + nfc->oob_buf[i] = tmp; + else + nfc->oob_buf[i * (oob_step / 4)] = tmp; + } + + dma_data = dma_map_single(nfc->dev, (void *)nfc->page_buf, + mtd->writesize, DMA_TO_DEVICE); + dma_oob = dma_map_single(nfc->dev, nfc->oob_buf, + ecc->steps * oob_step, + DMA_TO_DEVICE); + + reinit_completion(&nfc->done); + writel(INT_DMA, nfc->regs + nfc->cfg->int_en_off); + + rk_nfc_xfer_start(nfc, NFC_WRITE, ecc->steps, dma_data, + dma_oob); + ret = wait_for_completion_timeout(&nfc->done, + msecs_to_jiffies(100)); + if (!ret) + dev_warn(nfc->dev, "write: wait dma done timeout.\n"); + /* + * Whether the DMA transfer is completed or not. The driver + * needs to check the NFC`s status register to see if the data + * transfer was completed. + */ + ret = rk_nfc_wait_for_xfer_done(nfc); + + dma_unmap_single(nfc->dev, dma_data, mtd->writesize, + DMA_TO_DEVICE); + dma_unmap_single(nfc->dev, dma_oob, ecc->steps * oob_step, + DMA_TO_DEVICE); + + if (boot_rom_mode && rknand->boot_ecc != ecc->strength) + rk_nfc_hw_ecc_setup(chip, ecc->strength); + + if (ret) { + dev_err(nfc->dev, "write: wait transfer done timeout.\n"); + return -ETIMEDOUT; + } + + return nand_prog_page_end_op(chip); +} + +static int rk_nfc_write_oob(struct nand_chip *chip, int page) +{ + return rk_nfc_write_page_hwecc(chip, NULL, 1, page); +} + +static int rk_nfc_read_page_raw(struct nand_chip *chip, u8 *buf, int oob_on, + int page) +{ + struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip); + struct rk_nfc *nfc = nand_get_controller_data(chip); + struct mtd_info *mtd = nand_to_mtd(chip); + struct nand_ecc_ctrl *ecc = &chip->ecc; + int i, pages_per_blk; + + pages_per_blk = mtd->erasesize / mtd->writesize; + if ((chip->options & NAND_IS_BOOT_MEDIUM) && + (page < (pages_per_blk * rknand->boot_blks)) && + rknand->boot_ecc != ecc->strength) { + /* + * There's currently no method to notify the MTD framework that + * a different ECC strength is in use for the boot blocks. + */ + return -EIO; + } + + nand_read_page_op(chip, page, 0, NULL, 0); + rk_nfc_read_buf(nfc, nfc->page_buf, mtd->writesize + mtd->oobsize); + for (i = 0; i < ecc->steps; i++) { + /* + * The first four bytes of OOB are reserved for the + * boot ROM. In some debugging cases, such as with a read, + * erase and write back test, these 4 bytes also must be + * saved somewhere, otherwise this information will be + * lost during a write back. + */ + if (!i) + memcpy(rk_nfc_buf_to_oob_ptr(chip, ecc->steps - 1), + rk_nfc_oob_ptr(chip, i), + NFC_SYS_DATA_SIZE); + else + memcpy(rk_nfc_buf_to_oob_ptr(chip, i - 1), + rk_nfc_oob_ptr(chip, i), + NFC_SYS_DATA_SIZE); + + /* Copy ECC data from the NFC buffer. */ + memcpy(rk_nfc_buf_to_oob_ecc_ptr(chip, i), + rk_nfc_oob_ptr(chip, i) + NFC_SYS_DATA_SIZE, + ecc->bytes); + + /* Copy data from the NFC buffer. */ + if (buf) + memcpy(rk_nfc_buf_to_data_ptr(chip, buf, i), + rk_nfc_data_ptr(chip, i), + ecc->size); + } + + return 0; +} + +static int rk_nfc_read_page_hwecc(struct nand_chip *chip, u8 *buf, int oob_on, + int page) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + struct rk_nfc *nfc = nand_get_controller_data(chip); + struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip); + struct nand_ecc_ctrl *ecc = &chip->ecc; + int oob_step = (ecc->bytes > 60) ? NFC_MAX_OOB_PER_STEP : + NFC_MIN_OOB_PER_STEP; + int pages_per_blk = mtd->erasesize / mtd->writesize; + dma_addr_t dma_data, dma_oob; + int ret = 0, i, cnt, boot_rom_mode = 0; + int max_bitflips = 0, bch_st, ecc_fail = 0; + u8 *oob; + u32 tmp; + + nand_read_page_op(chip, page, 0, NULL, 0); + + dma_data = dma_map_single(nfc->dev, nfc->page_buf, + mtd->writesize, + DMA_FROM_DEVICE); + dma_oob = dma_map_single(nfc->dev, nfc->oob_buf, + ecc->steps * oob_step, + DMA_FROM_DEVICE); + + /* + * The first blocks (4, 8 or 16 depending on the device) + * are used by the boot ROM. + * Configure the ECC algorithm supported by the boot ROM. + */ + if ((page < (pages_per_blk * rknand->boot_blks)) && + (chip->options & NAND_IS_BOOT_MEDIUM)) { + boot_rom_mode = 1; + if (rknand->boot_ecc != ecc->strength) + rk_nfc_hw_ecc_setup(chip, rknand->boot_ecc); + } + + reinit_completion(&nfc->done); + writel(INT_DMA, nfc->regs + nfc->cfg->int_en_off); + rk_nfc_xfer_start(nfc, NFC_READ, ecc->steps, dma_data, + dma_oob); + ret = wait_for_completion_timeout(&nfc->done, + msecs_to_jiffies(100)); + if (!ret) + dev_warn(nfc->dev, "read: wait dma done timeout.\n"); + /* + * Whether the DMA transfer is completed or not. The driver + * needs to check the NFC`s status register to see if the data + * transfer was completed. + */ + ret = rk_nfc_wait_for_xfer_done(nfc); + + dma_unmap_single(nfc->dev, dma_data, mtd->writesize, + DMA_FROM_DEVICE); + dma_unmap_single(nfc->dev, dma_oob, ecc->steps * oob_step, + DMA_FROM_DEVICE); + + if (ret) { + ret = -ETIMEDOUT; + dev_err(nfc->dev, "read: wait transfer done timeout.\n"); + goto timeout_err; + } + + for (i = 0; i < ecc->steps; i++) { + if (!i) + oob = chip->oob_poi + (ecc->steps - 1) * NFC_SYS_DATA_SIZE; + else + oob = chip->oob_poi + (i - 1) * NFC_SYS_DATA_SIZE; + + if (nfc->cfg->type == NFC_V9) + tmp = nfc->oob_buf[i]; + else + tmp = nfc->oob_buf[i * (oob_step / 4)]; + + *oob++ = (u8)tmp; + *oob++ = (u8)(tmp >> 8); + *oob++ = (u8)(tmp >> 16); + *oob++ = (u8)(tmp >> 24); + } + + for (i = 0; i < (ecc->steps / 2); i++) { + bch_st = readl_relaxed(nfc->regs + + nfc->cfg->bch_st_off + i * 4); + if (bch_st & BIT(nfc->cfg->ecc0.err_flag_bit) || + bch_st & BIT(nfc->cfg->ecc1.err_flag_bit)) { + mtd->ecc_stats.failed++; + ecc_fail = 1; + } else { + cnt = ECC_ERR_CNT(bch_st, nfc->cfg->ecc0); + mtd->ecc_stats.corrected += cnt; + max_bitflips = max_t(u32, max_bitflips, cnt); + + cnt = ECC_ERR_CNT(bch_st, nfc->cfg->ecc1); + mtd->ecc_stats.corrected += cnt; + max_bitflips = max_t(u32, max_bitflips, cnt); + } + } + + if (buf) + memcpy(buf, nfc->page_buf, mtd->writesize); + +timeout_err: + if (boot_rom_mode && rknand->boot_ecc != ecc->strength) + rk_nfc_hw_ecc_setup(chip, ecc->strength); + + if (ret) + return ret; + + if (ecc_fail) { + dev_err(nfc->dev, "read page: %x ecc error!\n", page); + return 0; + } + + return max_bitflips; +} + +static int rk_nfc_read_oob(struct nand_chip *chip, int page) +{ + return rk_nfc_read_page_hwecc(chip, NULL, 1, page); +} + +static inline void rk_nfc_hw_init(struct rk_nfc *nfc) +{ + /* Disable flash wp. */ + writel(FMCTL_WP, nfc->regs + NFC_FMCTL); + /* Config default timing 40ns at 150 Mhz NFC clock. */ + writel(0x1081, nfc->regs + NFC_FMWAIT); + nfc->cur_timing = 0x1081; + /* Disable randomizer and DMA. */ + writel(0, nfc->regs + nfc->cfg->randmz_off); + writel(0, nfc->regs + nfc->cfg->dma_cfg_off); + writel(FLCTL_RST, nfc->regs + nfc->cfg->flctl_off); +} + +static irqreturn_t rk_nfc_irq(int irq, void *id) +{ + struct rk_nfc *nfc = id; + u32 sta, ien; + + sta = readl_relaxed(nfc->regs + nfc->cfg->int_st_off); + ien = readl_relaxed(nfc->regs + nfc->cfg->int_en_off); + + if (!(sta & ien)) + return IRQ_NONE; + + writel(sta, nfc->regs + nfc->cfg->int_clr_off); + writel(~sta & ien, nfc->regs + nfc->cfg->int_en_off); + + complete(&nfc->done); + + return IRQ_HANDLED; +} + +static int rk_nfc_enable_clks(struct device *dev, struct rk_nfc *nfc) +{ + int ret; + + if (!IS_ERR(nfc->nfc_clk)) { + ret = clk_prepare_enable(nfc->nfc_clk); + if (ret) { + dev_err(dev, "failed to enable NFC clk\n"); + return ret; + } + } + + ret = clk_prepare_enable(nfc->ahb_clk); + if (ret) { + dev_err(dev, "failed to enable ahb clk\n"); + clk_disable_unprepare(nfc->nfc_clk); + return ret; + } + + return 0; +} + +static void rk_nfc_disable_clks(struct rk_nfc *nfc) +{ + clk_disable_unprepare(nfc->nfc_clk); + clk_disable_unprepare(nfc->ahb_clk); +} + +static int rk_nfc_ooblayout_free(struct mtd_info *mtd, int section, + struct mtd_oob_region *oob_region) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip); + + if (section) + return -ERANGE; + + oob_region->length = rknand->metadata_size - NFC_SYS_DATA_SIZE - 2; + oob_region->offset = 2; + + return 0; +} + +static int rk_nfc_ooblayout_ecc(struct mtd_info *mtd, int section, + struct mtd_oob_region *oob_region) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip); + + if (section) + return -ERANGE; + + oob_region->length = mtd->oobsize - rknand->metadata_size; + oob_region->offset = rknand->metadata_size; + + return 0; +} + +static const struct mtd_ooblayout_ops rk_nfc_ooblayout_ops = { + .free = rk_nfc_ooblayout_free, + .ecc = rk_nfc_ooblayout_ecc, +}; + +static int rk_nfc_ecc_init(struct device *dev, struct mtd_info *mtd) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + struct rk_nfc *nfc = nand_get_controller_data(chip); + struct nand_ecc_ctrl *ecc = &chip->ecc; + const u8 *strengths = nfc->cfg->ecc_strengths; + u8 max_strength, nfc_max_strength; + int i; + + nfc_max_strength = nfc->cfg->ecc_strengths[0]; + /* If optional dt settings not present. */ + if (!ecc->size || !ecc->strength || + ecc->strength > nfc_max_strength) { + chip->ecc.size = 1024; + ecc->steps = mtd->writesize / ecc->size; + + /* + * HW ECC always requests the number of ECC bytes per 1024 byte + * blocks. The first 4 OOB bytes are reserved for sys data. + */ + max_strength = ((mtd->oobsize / ecc->steps) - 4) * 8 / + fls(8 * 1024); + if (max_strength > nfc_max_strength) + max_strength = nfc_max_strength; + + for (i = 0; i < 4; i++) { + if (max_strength >= strengths[i]) + break; + } + + if (i >= 4) { + dev_err(nfc->dev, "unsupported ECC strength\n"); + return -EOPNOTSUPP; + } + + ecc->strength = strengths[i]; + } + ecc->steps = mtd->writesize / ecc->size; + ecc->bytes = DIV_ROUND_UP(ecc->strength * fls(8 * chip->ecc.size), 8); + + return 0; +} + +static int rk_nfc_attach_chip(struct nand_chip *chip) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + struct device *dev = mtd->dev.parent; + struct rk_nfc *nfc = nand_get_controller_data(chip); + struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip); + struct nand_ecc_ctrl *ecc = &chip->ecc; + int new_page_len, new_oob_len; + void *buf; + int ret; + + if (chip->options & NAND_BUSWIDTH_16) { + dev_err(dev, "16 bits bus width not supported"); + return -EINVAL; + } + + if (ecc->engine_type != NAND_ECC_ENGINE_TYPE_ON_HOST) + return 0; + + ret = rk_nfc_ecc_init(dev, mtd); + if (ret) + return ret; + + rknand->metadata_size = NFC_SYS_DATA_SIZE * ecc->steps; + + if (rknand->metadata_size < NFC_SYS_DATA_SIZE + 2) { + dev_err(dev, + "driver needs at least %d bytes of meta data\n", + NFC_SYS_DATA_SIZE + 2); + return -EIO; + } + + /* Check buffer first, avoid duplicate alloc buffer. */ + new_page_len = mtd->writesize + mtd->oobsize; + if (nfc->page_buf && new_page_len > nfc->page_buf_size) { + buf = krealloc(nfc->page_buf, new_page_len, + GFP_KERNEL | GFP_DMA); + if (!buf) + return -ENOMEM; + nfc->page_buf = buf; + nfc->page_buf_size = new_page_len; + } + + new_oob_len = ecc->steps * NFC_MAX_OOB_PER_STEP; + if (nfc->oob_buf && new_oob_len > nfc->oob_buf_size) { + buf = krealloc(nfc->oob_buf, new_oob_len, + GFP_KERNEL | GFP_DMA); + if (!buf) { + kfree(nfc->page_buf); + nfc->page_buf = NULL; + return -ENOMEM; + } + nfc->oob_buf = buf; + nfc->oob_buf_size = new_oob_len; + } + + if (!nfc->page_buf) { + nfc->page_buf = kzalloc(new_page_len, GFP_KERNEL | GFP_DMA); + if (!nfc->page_buf) + return -ENOMEM; + nfc->page_buf_size = new_page_len; + } + + if (!nfc->oob_buf) { + nfc->oob_buf = kzalloc(new_oob_len, GFP_KERNEL | GFP_DMA); + if (!nfc->oob_buf) { + kfree(nfc->page_buf); + nfc->page_buf = NULL; + return -ENOMEM; + } + nfc->oob_buf_size = new_oob_len; + } + + chip->ecc.write_page_raw = rk_nfc_write_page_raw; + chip->ecc.write_page = rk_nfc_write_page_hwecc; + chip->ecc.write_oob = rk_nfc_write_oob; + + chip->ecc.read_page_raw = rk_nfc_read_page_raw; + chip->ecc.read_page = rk_nfc_read_page_hwecc; + chip->ecc.read_oob = rk_nfc_read_oob; + + return 0; +} + +static const struct nand_controller_ops rk_nfc_controller_ops = { + .attach_chip = rk_nfc_attach_chip, + .exec_op = rk_nfc_exec_op, + .setup_interface = rk_nfc_setup_interface, +}; + +static int rk_nfc_nand_chip_init(struct device *dev, struct rk_nfc *nfc, + struct device_node *np) +{ + struct rk_nfc_nand_chip *rknand; + struct nand_chip *chip; + struct mtd_info *mtd; + int nsels; + u32 tmp; + int ret; + int i; + + if (!of_get_property(np, "reg", &nsels)) + return -ENODEV; + nsels /= sizeof(u32); + if (!nsels || nsels > NFC_MAX_NSELS) { + dev_err(dev, "invalid reg property size %d\n", nsels); + return -EINVAL; + } + + rknand = devm_kzalloc(dev, sizeof(*rknand) + nsels * sizeof(u8), + GFP_KERNEL); + if (!rknand) + return -ENOMEM; + + rknand->nsels = nsels; + for (i = 0; i < nsels; i++) { + ret = of_property_read_u32_index(np, "reg", i, &tmp); + if (ret) { + dev_err(dev, "reg property failure : %d\n", ret); + return ret; + } + + if (tmp >= NFC_MAX_NSELS) { + dev_err(dev, "invalid CS: %u\n", tmp); + return -EINVAL; + } + + if (test_and_set_bit(tmp, &nfc->assigned_cs)) { + dev_err(dev, "CS %u already assigned\n", tmp); + return -EINVAL; + } + + rknand->sels[i] = tmp; + } + + chip = &rknand->chip; + chip->controller = &nfc->controller; + + nand_set_flash_node(chip, np); + + nand_set_controller_data(chip, nfc); + + chip->options |= NAND_USES_DMA | NAND_NO_SUBPAGE_WRITE; + chip->bbt_options = NAND_BBT_USE_FLASH | NAND_BBT_NO_OOB; + + /* Set default mode in case dt entry is missing. */ + chip->ecc.engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST; + + mtd = nand_to_mtd(chip); + mtd->owner = THIS_MODULE; + mtd->dev.parent = dev; + + if (!mtd->name) { + dev_err(nfc->dev, "NAND label property is mandatory\n"); + return -EINVAL; + } + + mtd_set_ooblayout(mtd, &rk_nfc_ooblayout_ops); + rk_nfc_hw_init(nfc); + ret = nand_scan(chip, nsels); + if (ret) + return ret; + + if (chip->options & NAND_IS_BOOT_MEDIUM) { + ret = of_property_read_u32(np, "rockchip,boot-blks", &tmp); + rknand->boot_blks = ret ? 0 : tmp; + + ret = of_property_read_u32(np, "rockchip,boot-ecc-strength", + &tmp); + rknand->boot_ecc = ret ? chip->ecc.strength : tmp; + } + + ret = mtd_device_register(mtd, NULL, 0); + if (ret) { + dev_err(dev, "MTD parse partition error\n"); + nand_cleanup(chip); + return ret; + } + + list_add_tail(&rknand->node, &nfc->chips); + + return 0; +} + +static void rk_nfc_chips_cleanup(struct rk_nfc *nfc) +{ + struct rk_nfc_nand_chip *rknand, *tmp; + struct nand_chip *chip; + int ret; + + list_for_each_entry_safe(rknand, tmp, &nfc->chips, node) { + chip = &rknand->chip; + ret = mtd_device_unregister(nand_to_mtd(chip)); + WARN_ON(ret); + nand_cleanup(chip); + list_del(&rknand->node); + } +} + +static int rk_nfc_nand_chips_init(struct device *dev, struct rk_nfc *nfc) +{ + struct device_node *np = dev->of_node, *nand_np; + int nchips = of_get_child_count(np); + int ret; + + if (!nchips || nchips > NFC_MAX_NSELS) { + dev_err(nfc->dev, "incorrect number of NAND chips (%d)\n", + nchips); + return -EINVAL; + } + + for_each_child_of_node(np, nand_np) { + ret = rk_nfc_nand_chip_init(dev, nfc, nand_np); + if (ret) { + of_node_put(nand_np); + rk_nfc_chips_cleanup(nfc); + return ret; + } + } + + return 0; +} + +static struct nfc_cfg nfc_v6_cfg = { + .type = NFC_V6, + .ecc_strengths = {60, 40, 24, 16}, + .ecc_cfgs = { + 0x00040011, 0x00040001, 0x00000011, 0x00000001, + }, + .flctl_off = 0x08, + .bchctl_off = 0x0C, + .dma_cfg_off = 0x10, + .dma_data_buf_off = 0x14, + .dma_oob_buf_off = 0x18, + .dma_st_off = 0x1C, + .bch_st_off = 0x20, + .randmz_off = 0x150, + .int_en_off = 0x16C, + .int_clr_off = 0x170, + .int_st_off = 0x174, + .oob0_off = 0x200, + .oob1_off = 0x230, + .ecc0 = { + .err_flag_bit = 2, + .low = 3, + .low_mask = 0x1F, + .low_bn = 5, + .high = 27, + .high_mask = 0x1, + }, + .ecc1 = { + .err_flag_bit = 15, + .low = 16, + .low_mask = 0x1F, + .low_bn = 5, + .high = 29, + .high_mask = 0x1, + }, +}; + +static struct nfc_cfg nfc_v8_cfg = { + .type = NFC_V8, + .ecc_strengths = {16, 16, 16, 16}, + .ecc_cfgs = { + 0x00000001, 0x00000001, 0x00000001, 0x00000001, + }, + .flctl_off = 0x08, + .bchctl_off = 0x0C, + .dma_cfg_off = 0x10, + .dma_data_buf_off = 0x14, + .dma_oob_buf_off = 0x18, + .dma_st_off = 0x1C, + .bch_st_off = 0x20, + .randmz_off = 0x150, + .int_en_off = 0x16C, + .int_clr_off = 0x170, + .int_st_off = 0x174, + .oob0_off = 0x200, + .oob1_off = 0x230, + .ecc0 = { + .err_flag_bit = 2, + .low = 3, + .low_mask = 0x1F, + .low_bn = 5, + .high = 27, + .high_mask = 0x1, + }, + .ecc1 = { + .err_flag_bit = 15, + .low = 16, + .low_mask = 0x1F, + .low_bn = 5, + .high = 29, + .high_mask = 0x1, + }, +}; + +static struct nfc_cfg nfc_v9_cfg = { + .type = NFC_V9, + .ecc_strengths = {70, 60, 40, 16}, + .ecc_cfgs = { + 0x00000001, 0x06000001, 0x04000001, 0x02000001, + }, + .flctl_off = 0x10, + .bchctl_off = 0x20, + .dma_cfg_off = 0x30, + .dma_data_buf_off = 0x34, + .dma_oob_buf_off = 0x38, + .dma_st_off = 0x3C, + .bch_st_off = 0x150, + .randmz_off = 0x208, + .int_en_off = 0x120, + .int_clr_off = 0x124, + .int_st_off = 0x128, + .oob0_off = 0x200, + .oob1_off = 0x204, + .ecc0 = { + .err_flag_bit = 2, + .low = 3, + .low_mask = 0x7F, + .low_bn = 7, + .high = 0, + .high_mask = 0x0, + }, + .ecc1 = { + .err_flag_bit = 18, + .low = 19, + .low_mask = 0x7F, + .low_bn = 7, + .high = 0, + .high_mask = 0x0, + }, +}; + +static const struct of_device_id rk_nfc_id_table[] = { + { + .compatible = "rockchip,px30-nfc", + .data = &nfc_v9_cfg + }, + { + .compatible = "rockchip,rk2928-nfc", + .data = &nfc_v6_cfg + }, + { + .compatible = "rockchip,rv1108-nfc", + .data = &nfc_v8_cfg + }, + { /* sentinel */ } +}; +MODULE_DEVICE_TABLE(of, rk_nfc_id_table); + +static int rk_nfc_probe(struct platform_device *pdev) +{ + struct device *dev = &pdev->dev; + struct rk_nfc *nfc; + int ret, irq; + + nfc = devm_kzalloc(dev, sizeof(*nfc), GFP_KERNEL); + if (!nfc) + return -ENOMEM; + + nand_controller_init(&nfc->controller); + INIT_LIST_HEAD(&nfc->chips); + nfc->controller.ops = &rk_nfc_controller_ops; + + nfc->cfg = of_device_get_match_data(dev); + nfc->dev = dev; + + init_completion(&nfc->done); + + nfc->regs = devm_platform_ioremap_resource(pdev, 0); + if (IS_ERR(nfc->regs)) { + ret = PTR_ERR(nfc->regs); + goto release_nfc; + } + + nfc->nfc_clk = devm_clk_get(dev, "nfc"); + if (IS_ERR(nfc->nfc_clk)) { + dev_dbg(dev, "no NFC clk\n"); + /* Some earlier models, such as rk3066, have no NFC clk. */ + } + + nfc->ahb_clk = devm_clk_get(dev, "ahb"); + if (IS_ERR(nfc->ahb_clk)) { + dev_err(dev, "no ahb clk\n"); + ret = PTR_ERR(nfc->ahb_clk); + goto release_nfc; + } + + ret = rk_nfc_enable_clks(dev, nfc); + if (ret) + goto release_nfc; + + irq = platform_get_irq(pdev, 0); + if (irq < 0) { + ret = -EINVAL; + goto clk_disable; + } + + writel(0, nfc->regs + nfc->cfg->int_en_off); + ret = devm_request_irq(dev, irq, rk_nfc_irq, 0x0, "rk-nand", nfc); + if (ret) { + dev_err(dev, "failed to request NFC irq\n"); + goto clk_disable; + } + + platform_set_drvdata(pdev, nfc); + + ret = rk_nfc_nand_chips_init(dev, nfc); + if (ret) { + dev_err(dev, "failed to init NAND chips\n"); + goto clk_disable; + } + return 0; + +clk_disable: + rk_nfc_disable_clks(nfc); +release_nfc: + return ret; +} + +static void rk_nfc_remove(struct platform_device *pdev) +{ + struct rk_nfc *nfc = platform_get_drvdata(pdev); + + kfree(nfc->page_buf); + kfree(nfc->oob_buf); + rk_nfc_chips_cleanup(nfc); + rk_nfc_disable_clks(nfc); +} + +static int __maybe_unused rk_nfc_suspend(struct device *dev) +{ + struct rk_nfc *nfc = dev_get_drvdata(dev); + + rk_nfc_disable_clks(nfc); + + return 0; +} + +static int __maybe_unused rk_nfc_resume(struct device *dev) +{ + struct rk_nfc *nfc = dev_get_drvdata(dev); + struct rk_nfc_nand_chip *rknand; + struct nand_chip *chip; + int ret; + u32 i; + + ret = rk_nfc_enable_clks(dev, nfc); + if (ret) + return ret; + + /* Reset NAND chip if VCC was powered off. */ + list_for_each_entry(rknand, &nfc->chips, node) { + chip = &rknand->chip; + for (i = 0; i < rknand->nsels; i++) + nand_reset(chip, i); + } + + return 0; +} + +static const struct dev_pm_ops rk_nfc_pm_ops = { + SET_SYSTEM_SLEEP_PM_OPS(rk_nfc_suspend, rk_nfc_resume) +}; + +static struct platform_driver rk_nfc_driver = { + .probe = rk_nfc_probe, + .remove_new = rk_nfc_remove, + .driver = { + .name = "rockchip-nfc", + .of_match_table = rk_nfc_id_table, + .pm = &rk_nfc_pm_ops, + }, +}; + +module_platform_driver(rk_nfc_driver); + +MODULE_LICENSE("Dual MIT/GPL"); +MODULE_AUTHOR("Yifeng Zhao <yifeng.zhao@rock-chips.com>"); +MODULE_DESCRIPTION("Rockchip Nand Flash Controller Driver"); +MODULE_ALIAS("platform:rockchip-nand-controller"); |