summaryrefslogtreecommitdiffstats
path: root/drivers/net/ethernet/chelsio/cxgb4/sge.c
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-11 08:27:49 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-11 08:27:49 +0000
commitace9429bb58fd418f0c81d4c2835699bddf6bde6 (patch)
treeb2d64bc10158fdd5497876388cd68142ca374ed3 /drivers/net/ethernet/chelsio/cxgb4/sge.c
parentInitial commit. (diff)
downloadlinux-ace9429bb58fd418f0c81d4c2835699bddf6bde6.tar.xz
linux-ace9429bb58fd418f0c81d4c2835699bddf6bde6.zip
Adding upstream version 6.6.15.upstream/6.6.15
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'drivers/net/ethernet/chelsio/cxgb4/sge.c')
-rw-r--r--drivers/net/ethernet/chelsio/cxgb4/sge.c5234
1 files changed, 5234 insertions, 0 deletions
diff --git a/drivers/net/ethernet/chelsio/cxgb4/sge.c b/drivers/net/ethernet/chelsio/cxgb4/sge.c
new file mode 100644
index 0000000000..98dd78551d
--- /dev/null
+++ b/drivers/net/ethernet/chelsio/cxgb4/sge.c
@@ -0,0 +1,5234 @@
+/*
+ * This file is part of the Chelsio T4 Ethernet driver for Linux.
+ *
+ * Copyright (c) 2003-2014 Chelsio Communications, Inc. All rights reserved.
+ *
+ * This software is available to you under a choice of one of two
+ * licenses. You may choose to be licensed under the terms of the GNU
+ * General Public License (GPL) Version 2, available from the file
+ * COPYING in the main directory of this source tree, or the
+ * OpenIB.org BSD license below:
+ *
+ * Redistribution and use in source and binary forms, with or
+ * without modification, are permitted provided that the following
+ * conditions are met:
+ *
+ * - Redistributions of source code must retain the above
+ * copyright notice, this list of conditions and the following
+ * disclaimer.
+ *
+ * - Redistributions in binary form must reproduce the above
+ * copyright notice, this list of conditions and the following
+ * disclaimer in the documentation and/or other materials
+ * provided with the distribution.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
+ * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
+ * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
+ * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
+ * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
+ * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
+ * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+ * SOFTWARE.
+ */
+
+#include <linux/skbuff.h>
+#include <linux/netdevice.h>
+#include <linux/etherdevice.h>
+#include <linux/if_vlan.h>
+#include <linux/ip.h>
+#include <linux/dma-mapping.h>
+#include <linux/jiffies.h>
+#include <linux/prefetch.h>
+#include <linux/export.h>
+#include <net/xfrm.h>
+#include <net/ipv6.h>
+#include <net/tcp.h>
+#include <net/busy_poll.h>
+#ifdef CONFIG_CHELSIO_T4_FCOE
+#include <scsi/fc/fc_fcoe.h>
+#endif /* CONFIG_CHELSIO_T4_FCOE */
+#include "cxgb4.h"
+#include "t4_regs.h"
+#include "t4_values.h"
+#include "t4_msg.h"
+#include "t4fw_api.h"
+#include "cxgb4_ptp.h"
+#include "cxgb4_uld.h"
+#include "cxgb4_tc_mqprio.h"
+#include "sched.h"
+
+/*
+ * Rx buffer size. We use largish buffers if possible but settle for single
+ * pages under memory shortage.
+ */
+#if PAGE_SHIFT >= 16
+# define FL_PG_ORDER 0
+#else
+# define FL_PG_ORDER (16 - PAGE_SHIFT)
+#endif
+
+/* RX_PULL_LEN should be <= RX_COPY_THRES */
+#define RX_COPY_THRES 256
+#define RX_PULL_LEN 128
+
+/*
+ * Main body length for sk_buffs used for Rx Ethernet packets with fragments.
+ * Should be >= RX_PULL_LEN but possibly bigger to give pskb_may_pull some room.
+ */
+#define RX_PKT_SKB_LEN 512
+
+/*
+ * Max number of Tx descriptors we clean up at a time. Should be modest as
+ * freeing skbs isn't cheap and it happens while holding locks. We just need
+ * to free packets faster than they arrive, we eventually catch up and keep
+ * the amortized cost reasonable. Must be >= 2 * TXQ_STOP_THRES. It should
+ * also match the CIDX Flush Threshold.
+ */
+#define MAX_TX_RECLAIM 32
+
+/*
+ * Max number of Rx buffers we replenish at a time. Again keep this modest,
+ * allocating buffers isn't cheap either.
+ */
+#define MAX_RX_REFILL 16U
+
+/*
+ * Period of the Rx queue check timer. This timer is infrequent as it has
+ * something to do only when the system experiences severe memory shortage.
+ */
+#define RX_QCHECK_PERIOD (HZ / 2)
+
+/*
+ * Period of the Tx queue check timer.
+ */
+#define TX_QCHECK_PERIOD (HZ / 2)
+
+/*
+ * Max number of Tx descriptors to be reclaimed by the Tx timer.
+ */
+#define MAX_TIMER_TX_RECLAIM 100
+
+/*
+ * Timer index used when backing off due to memory shortage.
+ */
+#define NOMEM_TMR_IDX (SGE_NTIMERS - 1)
+
+/*
+ * Suspension threshold for non-Ethernet Tx queues. We require enough room
+ * for a full sized WR.
+ */
+#define TXQ_STOP_THRES (SGE_MAX_WR_LEN / sizeof(struct tx_desc))
+
+/*
+ * Max Tx descriptor space we allow for an Ethernet packet to be inlined
+ * into a WR.
+ */
+#define MAX_IMM_TX_PKT_LEN 256
+
+/*
+ * Max size of a WR sent through a control Tx queue.
+ */
+#define MAX_CTRL_WR_LEN SGE_MAX_WR_LEN
+
+struct rx_sw_desc { /* SW state per Rx descriptor */
+ struct page *page;
+ dma_addr_t dma_addr;
+};
+
+/*
+ * Rx buffer sizes for "useskbs" Free List buffers (one ingress packet pe skb
+ * buffer). We currently only support two sizes for 1500- and 9000-byte MTUs.
+ * We could easily support more but there doesn't seem to be much need for
+ * that ...
+ */
+#define FL_MTU_SMALL 1500
+#define FL_MTU_LARGE 9000
+
+static inline unsigned int fl_mtu_bufsize(struct adapter *adapter,
+ unsigned int mtu)
+{
+ struct sge *s = &adapter->sge;
+
+ return ALIGN(s->pktshift + ETH_HLEN + VLAN_HLEN + mtu, s->fl_align);
+}
+
+#define FL_MTU_SMALL_BUFSIZE(adapter) fl_mtu_bufsize(adapter, FL_MTU_SMALL)
+#define FL_MTU_LARGE_BUFSIZE(adapter) fl_mtu_bufsize(adapter, FL_MTU_LARGE)
+
+/*
+ * Bits 0..3 of rx_sw_desc.dma_addr have special meaning. The hardware uses
+ * these to specify the buffer size as an index into the SGE Free List Buffer
+ * Size register array. We also use bit 4, when the buffer has been unmapped
+ * for DMA, but this is of course never sent to the hardware and is only used
+ * to prevent double unmappings. All of the above requires that the Free List
+ * Buffers which we allocate have the bottom 5 bits free (0) -- i.e. are
+ * 32-byte or or a power of 2 greater in alignment. Since the SGE's minimal
+ * Free List Buffer alignment is 32 bytes, this works out for us ...
+ */
+enum {
+ RX_BUF_FLAGS = 0x1f, /* bottom five bits are special */
+ RX_BUF_SIZE = 0x0f, /* bottom three bits are for buf sizes */
+ RX_UNMAPPED_BUF = 0x10, /* buffer is not mapped */
+
+ /*
+ * XXX We shouldn't depend on being able to use these indices.
+ * XXX Especially when some other Master PF has initialized the
+ * XXX adapter or we use the Firmware Configuration File. We
+ * XXX should really search through the Host Buffer Size register
+ * XXX array for the appropriately sized buffer indices.
+ */
+ RX_SMALL_PG_BUF = 0x0, /* small (PAGE_SIZE) page buffer */
+ RX_LARGE_PG_BUF = 0x1, /* buffer large (FL_PG_ORDER) page buffer */
+
+ RX_SMALL_MTU_BUF = 0x2, /* small MTU buffer */
+ RX_LARGE_MTU_BUF = 0x3, /* large MTU buffer */
+};
+
+static int timer_pkt_quota[] = {1, 1, 2, 3, 4, 5};
+#define MIN_NAPI_WORK 1
+
+static inline dma_addr_t get_buf_addr(const struct rx_sw_desc *d)
+{
+ return d->dma_addr & ~(dma_addr_t)RX_BUF_FLAGS;
+}
+
+static inline bool is_buf_mapped(const struct rx_sw_desc *d)
+{
+ return !(d->dma_addr & RX_UNMAPPED_BUF);
+}
+
+/**
+ * txq_avail - return the number of available slots in a Tx queue
+ * @q: the Tx queue
+ *
+ * Returns the number of descriptors in a Tx queue available to write new
+ * packets.
+ */
+static inline unsigned int txq_avail(const struct sge_txq *q)
+{
+ return q->size - 1 - q->in_use;
+}
+
+/**
+ * fl_cap - return the capacity of a free-buffer list
+ * @fl: the FL
+ *
+ * Returns the capacity of a free-buffer list. The capacity is less than
+ * the size because one descriptor needs to be left unpopulated, otherwise
+ * HW will think the FL is empty.
+ */
+static inline unsigned int fl_cap(const struct sge_fl *fl)
+{
+ return fl->size - 8; /* 1 descriptor = 8 buffers */
+}
+
+/**
+ * fl_starving - return whether a Free List is starving.
+ * @adapter: pointer to the adapter
+ * @fl: the Free List
+ *
+ * Tests specified Free List to see whether the number of buffers
+ * available to the hardware has falled below our "starvation"
+ * threshold.
+ */
+static inline bool fl_starving(const struct adapter *adapter,
+ const struct sge_fl *fl)
+{
+ const struct sge *s = &adapter->sge;
+
+ return fl->avail - fl->pend_cred <= s->fl_starve_thres;
+}
+
+int cxgb4_map_skb(struct device *dev, const struct sk_buff *skb,
+ dma_addr_t *addr)
+{
+ const skb_frag_t *fp, *end;
+ const struct skb_shared_info *si;
+
+ *addr = dma_map_single(dev, skb->data, skb_headlen(skb), DMA_TO_DEVICE);
+ if (dma_mapping_error(dev, *addr))
+ goto out_err;
+
+ si = skb_shinfo(skb);
+ end = &si->frags[si->nr_frags];
+
+ for (fp = si->frags; fp < end; fp++) {
+ *++addr = skb_frag_dma_map(dev, fp, 0, skb_frag_size(fp),
+ DMA_TO_DEVICE);
+ if (dma_mapping_error(dev, *addr))
+ goto unwind;
+ }
+ return 0;
+
+unwind:
+ while (fp-- > si->frags)
+ dma_unmap_page(dev, *--addr, skb_frag_size(fp), DMA_TO_DEVICE);
+
+ dma_unmap_single(dev, addr[-1], skb_headlen(skb), DMA_TO_DEVICE);
+out_err:
+ return -ENOMEM;
+}
+EXPORT_SYMBOL(cxgb4_map_skb);
+
+static void unmap_skb(struct device *dev, const struct sk_buff *skb,
+ const dma_addr_t *addr)
+{
+ const skb_frag_t *fp, *end;
+ const struct skb_shared_info *si;
+
+ dma_unmap_single(dev, *addr++, skb_headlen(skb), DMA_TO_DEVICE);
+
+ si = skb_shinfo(skb);
+ end = &si->frags[si->nr_frags];
+ for (fp = si->frags; fp < end; fp++)
+ dma_unmap_page(dev, *addr++, skb_frag_size(fp), DMA_TO_DEVICE);
+}
+
+#ifdef CONFIG_NEED_DMA_MAP_STATE
+/**
+ * deferred_unmap_destructor - unmap a packet when it is freed
+ * @skb: the packet
+ *
+ * This is the packet destructor used for Tx packets that need to remain
+ * mapped until they are freed rather than until their Tx descriptors are
+ * freed.
+ */
+static void deferred_unmap_destructor(struct sk_buff *skb)
+{
+ unmap_skb(skb->dev->dev.parent, skb, (dma_addr_t *)skb->head);
+}
+#endif
+
+/**
+ * free_tx_desc - reclaims Tx descriptors and their buffers
+ * @adap: the adapter
+ * @q: the Tx queue to reclaim descriptors from
+ * @n: the number of descriptors to reclaim
+ * @unmap: whether the buffers should be unmapped for DMA
+ *
+ * Reclaims Tx descriptors from an SGE Tx queue and frees the associated
+ * Tx buffers. Called with the Tx queue lock held.
+ */
+void free_tx_desc(struct adapter *adap, struct sge_txq *q,
+ unsigned int n, bool unmap)
+{
+ unsigned int cidx = q->cidx;
+ struct tx_sw_desc *d;
+
+ d = &q->sdesc[cidx];
+ while (n--) {
+ if (d->skb) { /* an SGL is present */
+ if (unmap && d->addr[0]) {
+ unmap_skb(adap->pdev_dev, d->skb, d->addr);
+ memset(d->addr, 0, sizeof(d->addr));
+ }
+ dev_consume_skb_any(d->skb);
+ d->skb = NULL;
+ }
+ ++d;
+ if (++cidx == q->size) {
+ cidx = 0;
+ d = q->sdesc;
+ }
+ }
+ q->cidx = cidx;
+}
+
+/*
+ * Return the number of reclaimable descriptors in a Tx queue.
+ */
+static inline int reclaimable(const struct sge_txq *q)
+{
+ int hw_cidx = ntohs(READ_ONCE(q->stat->cidx));
+ hw_cidx -= q->cidx;
+ return hw_cidx < 0 ? hw_cidx + q->size : hw_cidx;
+}
+
+/**
+ * reclaim_completed_tx - reclaims completed TX Descriptors
+ * @adap: the adapter
+ * @q: the Tx queue to reclaim completed descriptors from
+ * @maxreclaim: the maximum number of TX Descriptors to reclaim or -1
+ * @unmap: whether the buffers should be unmapped for DMA
+ *
+ * Reclaims Tx Descriptors that the SGE has indicated it has processed,
+ * and frees the associated buffers if possible. If @max == -1, then
+ * we'll use a defaiult maximum. Called with the TX Queue locked.
+ */
+static inline int reclaim_completed_tx(struct adapter *adap, struct sge_txq *q,
+ int maxreclaim, bool unmap)
+{
+ int reclaim = reclaimable(q);
+
+ if (reclaim) {
+ /*
+ * Limit the amount of clean up work we do at a time to keep
+ * the Tx lock hold time O(1).
+ */
+ if (maxreclaim < 0)
+ maxreclaim = MAX_TX_RECLAIM;
+ if (reclaim > maxreclaim)
+ reclaim = maxreclaim;
+
+ free_tx_desc(adap, q, reclaim, unmap);
+ q->in_use -= reclaim;
+ }
+
+ return reclaim;
+}
+
+/**
+ * cxgb4_reclaim_completed_tx - reclaims completed Tx descriptors
+ * @adap: the adapter
+ * @q: the Tx queue to reclaim completed descriptors from
+ * @unmap: whether the buffers should be unmapped for DMA
+ *
+ * Reclaims Tx descriptors that the SGE has indicated it has processed,
+ * and frees the associated buffers if possible. Called with the Tx
+ * queue locked.
+ */
+void cxgb4_reclaim_completed_tx(struct adapter *adap, struct sge_txq *q,
+ bool unmap)
+{
+ (void)reclaim_completed_tx(adap, q, -1, unmap);
+}
+EXPORT_SYMBOL(cxgb4_reclaim_completed_tx);
+
+static inline int get_buf_size(struct adapter *adapter,
+ const struct rx_sw_desc *d)
+{
+ struct sge *s = &adapter->sge;
+ unsigned int rx_buf_size_idx = d->dma_addr & RX_BUF_SIZE;
+ int buf_size;
+
+ switch (rx_buf_size_idx) {
+ case RX_SMALL_PG_BUF:
+ buf_size = PAGE_SIZE;
+ break;
+
+ case RX_LARGE_PG_BUF:
+ buf_size = PAGE_SIZE << s->fl_pg_order;
+ break;
+
+ case RX_SMALL_MTU_BUF:
+ buf_size = FL_MTU_SMALL_BUFSIZE(adapter);
+ break;
+
+ case RX_LARGE_MTU_BUF:
+ buf_size = FL_MTU_LARGE_BUFSIZE(adapter);
+ break;
+
+ default:
+ BUG();
+ }
+
+ return buf_size;
+}
+
+/**
+ * free_rx_bufs - free the Rx buffers on an SGE free list
+ * @adap: the adapter
+ * @q: the SGE free list to free buffers from
+ * @n: how many buffers to free
+ *
+ * Release the next @n buffers on an SGE free-buffer Rx queue. The
+ * buffers must be made inaccessible to HW before calling this function.
+ */
+static void free_rx_bufs(struct adapter *adap, struct sge_fl *q, int n)
+{
+ while (n--) {
+ struct rx_sw_desc *d = &q->sdesc[q->cidx];
+
+ if (is_buf_mapped(d))
+ dma_unmap_page(adap->pdev_dev, get_buf_addr(d),
+ get_buf_size(adap, d),
+ DMA_FROM_DEVICE);
+ put_page(d->page);
+ d->page = NULL;
+ if (++q->cidx == q->size)
+ q->cidx = 0;
+ q->avail--;
+ }
+}
+
+/**
+ * unmap_rx_buf - unmap the current Rx buffer on an SGE free list
+ * @adap: the adapter
+ * @q: the SGE free list
+ *
+ * Unmap the current buffer on an SGE free-buffer Rx queue. The
+ * buffer must be made inaccessible to HW before calling this function.
+ *
+ * This is similar to @free_rx_bufs above but does not free the buffer.
+ * Do note that the FL still loses any further access to the buffer.
+ */
+static void unmap_rx_buf(struct adapter *adap, struct sge_fl *q)
+{
+ struct rx_sw_desc *d = &q->sdesc[q->cidx];
+
+ if (is_buf_mapped(d))
+ dma_unmap_page(adap->pdev_dev, get_buf_addr(d),
+ get_buf_size(adap, d), DMA_FROM_DEVICE);
+ d->page = NULL;
+ if (++q->cidx == q->size)
+ q->cidx = 0;
+ q->avail--;
+}
+
+static inline void ring_fl_db(struct adapter *adap, struct sge_fl *q)
+{
+ if (q->pend_cred >= 8) {
+ u32 val = adap->params.arch.sge_fl_db;
+
+ if (is_t4(adap->params.chip))
+ val |= PIDX_V(q->pend_cred / 8);
+ else
+ val |= PIDX_T5_V(q->pend_cred / 8);
+
+ /* Make sure all memory writes to the Free List queue are
+ * committed before we tell the hardware about them.
+ */
+ wmb();
+
+ /* If we don't have access to the new User Doorbell (T5+), use
+ * the old doorbell mechanism; otherwise use the new BAR2
+ * mechanism.
+ */
+ if (unlikely(q->bar2_addr == NULL)) {
+ t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
+ val | QID_V(q->cntxt_id));
+ } else {
+ writel(val | QID_V(q->bar2_qid),
+ q->bar2_addr + SGE_UDB_KDOORBELL);
+
+ /* This Write memory Barrier will force the write to
+ * the User Doorbell area to be flushed.
+ */
+ wmb();
+ }
+ q->pend_cred &= 7;
+ }
+}
+
+static inline void set_rx_sw_desc(struct rx_sw_desc *sd, struct page *pg,
+ dma_addr_t mapping)
+{
+ sd->page = pg;
+ sd->dma_addr = mapping; /* includes size low bits */
+}
+
+/**
+ * refill_fl - refill an SGE Rx buffer ring
+ * @adap: the adapter
+ * @q: the ring to refill
+ * @n: the number of new buffers to allocate
+ * @gfp: the gfp flags for the allocations
+ *
+ * (Re)populate an SGE free-buffer queue with up to @n new packet buffers,
+ * allocated with the supplied gfp flags. The caller must assure that
+ * @n does not exceed the queue's capacity. If afterwards the queue is
+ * found critically low mark it as starving in the bitmap of starving FLs.
+ *
+ * Returns the number of buffers allocated.
+ */
+static unsigned int refill_fl(struct adapter *adap, struct sge_fl *q, int n,
+ gfp_t gfp)
+{
+ struct sge *s = &adap->sge;
+ struct page *pg;
+ dma_addr_t mapping;
+ unsigned int cred = q->avail;
+ __be64 *d = &q->desc[q->pidx];
+ struct rx_sw_desc *sd = &q->sdesc[q->pidx];
+ int node;
+
+#ifdef CONFIG_DEBUG_FS
+ if (test_bit(q->cntxt_id - adap->sge.egr_start, adap->sge.blocked_fl))
+ goto out;
+#endif
+
+ gfp |= __GFP_NOWARN;
+ node = dev_to_node(adap->pdev_dev);
+
+ if (s->fl_pg_order == 0)
+ goto alloc_small_pages;
+
+ /*
+ * Prefer large buffers
+ */
+ while (n) {
+ pg = alloc_pages_node(node, gfp | __GFP_COMP, s->fl_pg_order);
+ if (unlikely(!pg)) {
+ q->large_alloc_failed++;
+ break; /* fall back to single pages */
+ }
+
+ mapping = dma_map_page(adap->pdev_dev, pg, 0,
+ PAGE_SIZE << s->fl_pg_order,
+ DMA_FROM_DEVICE);
+ if (unlikely(dma_mapping_error(adap->pdev_dev, mapping))) {
+ __free_pages(pg, s->fl_pg_order);
+ q->mapping_err++;
+ goto out; /* do not try small pages for this error */
+ }
+ mapping |= RX_LARGE_PG_BUF;
+ *d++ = cpu_to_be64(mapping);
+
+ set_rx_sw_desc(sd, pg, mapping);
+ sd++;
+
+ q->avail++;
+ if (++q->pidx == q->size) {
+ q->pidx = 0;
+ sd = q->sdesc;
+ d = q->desc;
+ }
+ n--;
+ }
+
+alloc_small_pages:
+ while (n--) {
+ pg = alloc_pages_node(node, gfp, 0);
+ if (unlikely(!pg)) {
+ q->alloc_failed++;
+ break;
+ }
+
+ mapping = dma_map_page(adap->pdev_dev, pg, 0, PAGE_SIZE,
+ DMA_FROM_DEVICE);
+ if (unlikely(dma_mapping_error(adap->pdev_dev, mapping))) {
+ put_page(pg);
+ q->mapping_err++;
+ goto out;
+ }
+ *d++ = cpu_to_be64(mapping);
+
+ set_rx_sw_desc(sd, pg, mapping);
+ sd++;
+
+ q->avail++;
+ if (++q->pidx == q->size) {
+ q->pidx = 0;
+ sd = q->sdesc;
+ d = q->desc;
+ }
+ }
+
+out: cred = q->avail - cred;
+ q->pend_cred += cred;
+ ring_fl_db(adap, q);
+
+ if (unlikely(fl_starving(adap, q))) {
+ smp_wmb();
+ q->low++;
+ set_bit(q->cntxt_id - adap->sge.egr_start,
+ adap->sge.starving_fl);
+ }
+
+ return cred;
+}
+
+static inline void __refill_fl(struct adapter *adap, struct sge_fl *fl)
+{
+ refill_fl(adap, fl, min(MAX_RX_REFILL, fl_cap(fl) - fl->avail),
+ GFP_ATOMIC);
+}
+
+/**
+ * alloc_ring - allocate resources for an SGE descriptor ring
+ * @dev: the PCI device's core device
+ * @nelem: the number of descriptors
+ * @elem_size: the size of each descriptor
+ * @sw_size: the size of the SW state associated with each ring element
+ * @phys: the physical address of the allocated ring
+ * @metadata: address of the array holding the SW state for the ring
+ * @stat_size: extra space in HW ring for status information
+ * @node: preferred node for memory allocations
+ *
+ * Allocates resources for an SGE descriptor ring, such as Tx queues,
+ * free buffer lists, or response queues. Each SGE ring requires
+ * space for its HW descriptors plus, optionally, space for the SW state
+ * associated with each HW entry (the metadata). The function returns
+ * three values: the virtual address for the HW ring (the return value
+ * of the function), the bus address of the HW ring, and the address
+ * of the SW ring.
+ */
+static void *alloc_ring(struct device *dev, size_t nelem, size_t elem_size,
+ size_t sw_size, dma_addr_t *phys, void *metadata,
+ size_t stat_size, int node)
+{
+ size_t len = nelem * elem_size + stat_size;
+ void *s = NULL;
+ void *p = dma_alloc_coherent(dev, len, phys, GFP_KERNEL);
+
+ if (!p)
+ return NULL;
+ if (sw_size) {
+ s = kcalloc_node(sw_size, nelem, GFP_KERNEL, node);
+
+ if (!s) {
+ dma_free_coherent(dev, len, p, *phys);
+ return NULL;
+ }
+ }
+ if (metadata)
+ *(void **)metadata = s;
+ return p;
+}
+
+/**
+ * sgl_len - calculates the size of an SGL of the given capacity
+ * @n: the number of SGL entries
+ *
+ * Calculates the number of flits needed for a scatter/gather list that
+ * can hold the given number of entries.
+ */
+static inline unsigned int sgl_len(unsigned int n)
+{
+ /* A Direct Scatter Gather List uses 32-bit lengths and 64-bit PCI DMA
+ * addresses. The DSGL Work Request starts off with a 32-bit DSGL
+ * ULPTX header, then Length0, then Address0, then, for 1 <= i <= N,
+ * repeated sequences of { Length[i], Length[i+1], Address[i],
+ * Address[i+1] } (this ensures that all addresses are on 64-bit
+ * boundaries). If N is even, then Length[N+1] should be set to 0 and
+ * Address[N+1] is omitted.
+ *
+ * The following calculation incorporates all of the above. It's
+ * somewhat hard to follow but, briefly: the "+2" accounts for the
+ * first two flits which include the DSGL header, Length0 and
+ * Address0; the "(3*(n-1))/2" covers the main body of list entries (3
+ * flits for every pair of the remaining N) +1 if (n-1) is odd; and
+ * finally the "+((n-1)&1)" adds the one remaining flit needed if
+ * (n-1) is odd ...
+ */
+ n--;
+ return (3 * n) / 2 + (n & 1) + 2;
+}
+
+/**
+ * flits_to_desc - returns the num of Tx descriptors for the given flits
+ * @n: the number of flits
+ *
+ * Returns the number of Tx descriptors needed for the supplied number
+ * of flits.
+ */
+static inline unsigned int flits_to_desc(unsigned int n)
+{
+ BUG_ON(n > SGE_MAX_WR_LEN / 8);
+ return DIV_ROUND_UP(n, 8);
+}
+
+/**
+ * is_eth_imm - can an Ethernet packet be sent as immediate data?
+ * @skb: the packet
+ * @chip_ver: chip version
+ *
+ * Returns whether an Ethernet packet is small enough to fit as
+ * immediate data. Return value corresponds to headroom required.
+ */
+static inline int is_eth_imm(const struct sk_buff *skb, unsigned int chip_ver)
+{
+ int hdrlen = 0;
+
+ if (skb->encapsulation && skb_shinfo(skb)->gso_size &&
+ chip_ver > CHELSIO_T5) {
+ hdrlen = sizeof(struct cpl_tx_tnl_lso);
+ hdrlen += sizeof(struct cpl_tx_pkt_core);
+ } else if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) {
+ return 0;
+ } else {
+ hdrlen = skb_shinfo(skb)->gso_size ?
+ sizeof(struct cpl_tx_pkt_lso_core) : 0;
+ hdrlen += sizeof(struct cpl_tx_pkt);
+ }
+ if (skb->len <= MAX_IMM_TX_PKT_LEN - hdrlen)
+ return hdrlen;
+ return 0;
+}
+
+/**
+ * calc_tx_flits - calculate the number of flits for a packet Tx WR
+ * @skb: the packet
+ * @chip_ver: chip version
+ *
+ * Returns the number of flits needed for a Tx WR for the given Ethernet
+ * packet, including the needed WR and CPL headers.
+ */
+static inline unsigned int calc_tx_flits(const struct sk_buff *skb,
+ unsigned int chip_ver)
+{
+ unsigned int flits;
+ int hdrlen = is_eth_imm(skb, chip_ver);
+
+ /* If the skb is small enough, we can pump it out as a work request
+ * with only immediate data. In that case we just have to have the
+ * TX Packet header plus the skb data in the Work Request.
+ */
+
+ if (hdrlen)
+ return DIV_ROUND_UP(skb->len + hdrlen, sizeof(__be64));
+
+ /* Otherwise, we're going to have to construct a Scatter gather list
+ * of the skb body and fragments. We also include the flits necessary
+ * for the TX Packet Work Request and CPL. We always have a firmware
+ * Write Header (incorporated as part of the cpl_tx_pkt_lso and
+ * cpl_tx_pkt structures), followed by either a TX Packet Write CPL
+ * message or, if we're doing a Large Send Offload, an LSO CPL message
+ * with an embedded TX Packet Write CPL message.
+ */
+ flits = sgl_len(skb_shinfo(skb)->nr_frags + 1);
+ if (skb_shinfo(skb)->gso_size) {
+ if (skb->encapsulation && chip_ver > CHELSIO_T5) {
+ hdrlen = sizeof(struct fw_eth_tx_pkt_wr) +
+ sizeof(struct cpl_tx_tnl_lso);
+ } else if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) {
+ u32 pkt_hdrlen;
+
+ pkt_hdrlen = eth_get_headlen(skb->dev, skb->data,
+ skb_headlen(skb));
+ hdrlen = sizeof(struct fw_eth_tx_eo_wr) +
+ round_up(pkt_hdrlen, 16);
+ } else {
+ hdrlen = sizeof(struct fw_eth_tx_pkt_wr) +
+ sizeof(struct cpl_tx_pkt_lso_core);
+ }
+
+ hdrlen += sizeof(struct cpl_tx_pkt_core);
+ flits += (hdrlen / sizeof(__be64));
+ } else {
+ flits += (sizeof(struct fw_eth_tx_pkt_wr) +
+ sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64);
+ }
+ return flits;
+}
+
+/**
+ * calc_tx_descs - calculate the number of Tx descriptors for a packet
+ * @skb: the packet
+ * @chip_ver: chip version
+ *
+ * Returns the number of Tx descriptors needed for the given Ethernet
+ * packet, including the needed WR and CPL headers.
+ */
+static inline unsigned int calc_tx_descs(const struct sk_buff *skb,
+ unsigned int chip_ver)
+{
+ return flits_to_desc(calc_tx_flits(skb, chip_ver));
+}
+
+/**
+ * cxgb4_write_sgl - populate a scatter/gather list for a packet
+ * @skb: the packet
+ * @q: the Tx queue we are writing into
+ * @sgl: starting location for writing the SGL
+ * @end: points right after the end of the SGL
+ * @start: start offset into skb main-body data to include in the SGL
+ * @addr: the list of bus addresses for the SGL elements
+ *
+ * Generates a gather list for the buffers that make up a packet.
+ * The caller must provide adequate space for the SGL that will be written.
+ * The SGL includes all of the packet's page fragments and the data in its
+ * main body except for the first @start bytes. @sgl must be 16-byte
+ * aligned and within a Tx descriptor with available space. @end points
+ * right after the end of the SGL but does not account for any potential
+ * wrap around, i.e., @end > @sgl.
+ */
+void cxgb4_write_sgl(const struct sk_buff *skb, struct sge_txq *q,
+ struct ulptx_sgl *sgl, u64 *end, unsigned int start,
+ const dma_addr_t *addr)
+{
+ unsigned int i, len;
+ struct ulptx_sge_pair *to;
+ const struct skb_shared_info *si = skb_shinfo(skb);
+ unsigned int nfrags = si->nr_frags;
+ struct ulptx_sge_pair buf[MAX_SKB_FRAGS / 2 + 1];
+
+ len = skb_headlen(skb) - start;
+ if (likely(len)) {
+ sgl->len0 = htonl(len);
+ sgl->addr0 = cpu_to_be64(addr[0] + start);
+ nfrags++;
+ } else {
+ sgl->len0 = htonl(skb_frag_size(&si->frags[0]));
+ sgl->addr0 = cpu_to_be64(addr[1]);
+ }
+
+ sgl->cmd_nsge = htonl(ULPTX_CMD_V(ULP_TX_SC_DSGL) |
+ ULPTX_NSGE_V(nfrags));
+ if (likely(--nfrags == 0))
+ return;
+ /*
+ * Most of the complexity below deals with the possibility we hit the
+ * end of the queue in the middle of writing the SGL. For this case
+ * only we create the SGL in a temporary buffer and then copy it.
+ */
+ to = (u8 *)end > (u8 *)q->stat ? buf : sgl->sge;
+
+ for (i = (nfrags != si->nr_frags); nfrags >= 2; nfrags -= 2, to++) {
+ to->len[0] = cpu_to_be32(skb_frag_size(&si->frags[i]));
+ to->len[1] = cpu_to_be32(skb_frag_size(&si->frags[++i]));
+ to->addr[0] = cpu_to_be64(addr[i]);
+ to->addr[1] = cpu_to_be64(addr[++i]);
+ }
+ if (nfrags) {
+ to->len[0] = cpu_to_be32(skb_frag_size(&si->frags[i]));
+ to->len[1] = cpu_to_be32(0);
+ to->addr[0] = cpu_to_be64(addr[i + 1]);
+ }
+ if (unlikely((u8 *)end > (u8 *)q->stat)) {
+ unsigned int part0 = (u8 *)q->stat - (u8 *)sgl->sge, part1;
+
+ if (likely(part0))
+ memcpy(sgl->sge, buf, part0);
+ part1 = (u8 *)end - (u8 *)q->stat;
+ memcpy(q->desc, (u8 *)buf + part0, part1);
+ end = (void *)q->desc + part1;
+ }
+ if ((uintptr_t)end & 8) /* 0-pad to multiple of 16 */
+ *end = 0;
+}
+EXPORT_SYMBOL(cxgb4_write_sgl);
+
+/* cxgb4_write_partial_sgl - populate SGL for partial packet
+ * @skb: the packet
+ * @q: the Tx queue we are writing into
+ * @sgl: starting location for writing the SGL
+ * @end: points right after the end of the SGL
+ * @addr: the list of bus addresses for the SGL elements
+ * @start: start offset in the SKB where partial data starts
+ * @len: length of data from @start to send out
+ *
+ * This API will handle sending out partial data of a skb if required.
+ * Unlike cxgb4_write_sgl, @start can be any offset into the skb data,
+ * and @len will decide how much data after @start offset to send out.
+ */
+void cxgb4_write_partial_sgl(const struct sk_buff *skb, struct sge_txq *q,
+ struct ulptx_sgl *sgl, u64 *end,
+ const dma_addr_t *addr, u32 start, u32 len)
+{
+ struct ulptx_sge_pair buf[MAX_SKB_FRAGS / 2 + 1] = {0}, *to;
+ u32 frag_size, skb_linear_data_len = skb_headlen(skb);
+ struct skb_shared_info *si = skb_shinfo(skb);
+ u8 i = 0, frag_idx = 0, nfrags = 0;
+ skb_frag_t *frag;
+
+ /* Fill the first SGL either from linear data or from partial
+ * frag based on @start.
+ */
+ if (unlikely(start < skb_linear_data_len)) {
+ frag_size = min(len, skb_linear_data_len - start);
+ sgl->len0 = htonl(frag_size);
+ sgl->addr0 = cpu_to_be64(addr[0] + start);
+ len -= frag_size;
+ nfrags++;
+ } else {
+ start -= skb_linear_data_len;
+ frag = &si->frags[frag_idx];
+ frag_size = skb_frag_size(frag);
+ /* find the first frag */
+ while (start >= frag_size) {
+ start -= frag_size;
+ frag_idx++;
+ frag = &si->frags[frag_idx];
+ frag_size = skb_frag_size(frag);
+ }
+
+ frag_size = min(len, skb_frag_size(frag) - start);
+ sgl->len0 = cpu_to_be32(frag_size);
+ sgl->addr0 = cpu_to_be64(addr[frag_idx + 1] + start);
+ len -= frag_size;
+ nfrags++;
+ frag_idx++;
+ }
+
+ /* If the entire partial data fit in one SGL, then send it out
+ * now.
+ */
+ if (!len)
+ goto done;
+
+ /* Most of the complexity below deals with the possibility we hit the
+ * end of the queue in the middle of writing the SGL. For this case
+ * only we create the SGL in a temporary buffer and then copy it.
+ */
+ to = (u8 *)end > (u8 *)q->stat ? buf : sgl->sge;
+
+ /* If the skb couldn't fit in first SGL completely, fill the
+ * rest of the frags in subsequent SGLs. Note that each SGL
+ * pair can store 2 frags.
+ */
+ while (len) {
+ frag_size = min(len, skb_frag_size(&si->frags[frag_idx]));
+ to->len[i & 1] = cpu_to_be32(frag_size);
+ to->addr[i & 1] = cpu_to_be64(addr[frag_idx + 1]);
+ if (i && (i & 1))
+ to++;
+ nfrags++;
+ frag_idx++;
+ i++;
+ len -= frag_size;
+ }
+
+ /* If we ended in an odd boundary, then set the second SGL's
+ * length in the pair to 0.
+ */
+ if (i & 1)
+ to->len[1] = cpu_to_be32(0);
+
+ /* Copy from temporary buffer to Tx ring, in case we hit the
+ * end of the queue in the middle of writing the SGL.
+ */
+ if (unlikely((u8 *)end > (u8 *)q->stat)) {
+ u32 part0 = (u8 *)q->stat - (u8 *)sgl->sge, part1;
+
+ if (likely(part0))
+ memcpy(sgl->sge, buf, part0);
+ part1 = (u8 *)end - (u8 *)q->stat;
+ memcpy(q->desc, (u8 *)buf + part0, part1);
+ end = (void *)q->desc + part1;
+ }
+
+ /* 0-pad to multiple of 16 */
+ if ((uintptr_t)end & 8)
+ *end = 0;
+done:
+ sgl->cmd_nsge = htonl(ULPTX_CMD_V(ULP_TX_SC_DSGL) |
+ ULPTX_NSGE_V(nfrags));
+}
+EXPORT_SYMBOL(cxgb4_write_partial_sgl);
+
+/* This function copies 64 byte coalesced work request to
+ * memory mapped BAR2 space. For coalesced WR SGE fetches
+ * data from the FIFO instead of from Host.
+ */
+static void cxgb_pio_copy(u64 __iomem *dst, u64 *src)
+{
+ int count = 8;
+
+ while (count) {
+ writeq(*src, dst);
+ src++;
+ dst++;
+ count--;
+ }
+}
+
+/**
+ * cxgb4_ring_tx_db - check and potentially ring a Tx queue's doorbell
+ * @adap: the adapter
+ * @q: the Tx queue
+ * @n: number of new descriptors to give to HW
+ *
+ * Ring the doorbel for a Tx queue.
+ */
+inline void cxgb4_ring_tx_db(struct adapter *adap, struct sge_txq *q, int n)
+{
+ /* Make sure that all writes to the TX Descriptors are committed
+ * before we tell the hardware about them.
+ */
+ wmb();
+
+ /* If we don't have access to the new User Doorbell (T5+), use the old
+ * doorbell mechanism; otherwise use the new BAR2 mechanism.
+ */
+ if (unlikely(q->bar2_addr == NULL)) {
+ u32 val = PIDX_V(n);
+ unsigned long flags;
+
+ /* For T4 we need to participate in the Doorbell Recovery
+ * mechanism.
+ */
+ spin_lock_irqsave(&q->db_lock, flags);
+ if (!q->db_disabled)
+ t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
+ QID_V(q->cntxt_id) | val);
+ else
+ q->db_pidx_inc += n;
+ q->db_pidx = q->pidx;
+ spin_unlock_irqrestore(&q->db_lock, flags);
+ } else {
+ u32 val = PIDX_T5_V(n);
+
+ /* T4 and later chips share the same PIDX field offset within
+ * the doorbell, but T5 and later shrank the field in order to
+ * gain a bit for Doorbell Priority. The field was absurdly
+ * large in the first place (14 bits) so we just use the T5
+ * and later limits and warn if a Queue ID is too large.
+ */
+ WARN_ON(val & DBPRIO_F);
+
+ /* If we're only writing a single TX Descriptor and we can use
+ * Inferred QID registers, we can use the Write Combining
+ * Gather Buffer; otherwise we use the simple doorbell.
+ */
+ if (n == 1 && q->bar2_qid == 0) {
+ int index = (q->pidx
+ ? (q->pidx - 1)
+ : (q->size - 1));
+ u64 *wr = (u64 *)&q->desc[index];
+
+ cxgb_pio_copy((u64 __iomem *)
+ (q->bar2_addr + SGE_UDB_WCDOORBELL),
+ wr);
+ } else {
+ writel(val | QID_V(q->bar2_qid),
+ q->bar2_addr + SGE_UDB_KDOORBELL);
+ }
+
+ /* This Write Memory Barrier will force the write to the User
+ * Doorbell area to be flushed. This is needed to prevent
+ * writes on different CPUs for the same queue from hitting
+ * the adapter out of order. This is required when some Work
+ * Requests take the Write Combine Gather Buffer path (user
+ * doorbell area offset [SGE_UDB_WCDOORBELL..+63]) and some
+ * take the traditional path where we simply increment the
+ * PIDX (User Doorbell area SGE_UDB_KDOORBELL) and have the
+ * hardware DMA read the actual Work Request.
+ */
+ wmb();
+ }
+}
+EXPORT_SYMBOL(cxgb4_ring_tx_db);
+
+/**
+ * cxgb4_inline_tx_skb - inline a packet's data into Tx descriptors
+ * @skb: the packet
+ * @q: the Tx queue where the packet will be inlined
+ * @pos: starting position in the Tx queue where to inline the packet
+ *
+ * Inline a packet's contents directly into Tx descriptors, starting at
+ * the given position within the Tx DMA ring.
+ * Most of the complexity of this operation is dealing with wrap arounds
+ * in the middle of the packet we want to inline.
+ */
+void cxgb4_inline_tx_skb(const struct sk_buff *skb,
+ const struct sge_txq *q, void *pos)
+{
+ int left = (void *)q->stat - pos;
+ u64 *p;
+
+ if (likely(skb->len <= left)) {
+ if (likely(!skb->data_len))
+ skb_copy_from_linear_data(skb, pos, skb->len);
+ else
+ skb_copy_bits(skb, 0, pos, skb->len);
+ pos += skb->len;
+ } else {
+ skb_copy_bits(skb, 0, pos, left);
+ skb_copy_bits(skb, left, q->desc, skb->len - left);
+ pos = (void *)q->desc + (skb->len - left);
+ }
+
+ /* 0-pad to multiple of 16 */
+ p = PTR_ALIGN(pos, 8);
+ if ((uintptr_t)p & 8)
+ *p = 0;
+}
+EXPORT_SYMBOL(cxgb4_inline_tx_skb);
+
+static void *inline_tx_skb_header(const struct sk_buff *skb,
+ const struct sge_txq *q, void *pos,
+ int length)
+{
+ u64 *p;
+ int left = (void *)q->stat - pos;
+
+ if (likely(length <= left)) {
+ memcpy(pos, skb->data, length);
+ pos += length;
+ } else {
+ memcpy(pos, skb->data, left);
+ memcpy(q->desc, skb->data + left, length - left);
+ pos = (void *)q->desc + (length - left);
+ }
+ /* 0-pad to multiple of 16 */
+ p = PTR_ALIGN(pos, 8);
+ if ((uintptr_t)p & 8) {
+ *p = 0;
+ return p + 1;
+ }
+ return p;
+}
+
+/*
+ * Figure out what HW csum a packet wants and return the appropriate control
+ * bits.
+ */
+static u64 hwcsum(enum chip_type chip, const struct sk_buff *skb)
+{
+ int csum_type;
+ bool inner_hdr_csum = false;
+ u16 proto, ver;
+
+ if (skb->encapsulation &&
+ (CHELSIO_CHIP_VERSION(chip) > CHELSIO_T5))
+ inner_hdr_csum = true;
+
+ if (inner_hdr_csum) {
+ ver = inner_ip_hdr(skb)->version;
+ proto = (ver == 4) ? inner_ip_hdr(skb)->protocol :
+ inner_ipv6_hdr(skb)->nexthdr;
+ } else {
+ ver = ip_hdr(skb)->version;
+ proto = (ver == 4) ? ip_hdr(skb)->protocol :
+ ipv6_hdr(skb)->nexthdr;
+ }
+
+ if (ver == 4) {
+ if (proto == IPPROTO_TCP)
+ csum_type = TX_CSUM_TCPIP;
+ else if (proto == IPPROTO_UDP)
+ csum_type = TX_CSUM_UDPIP;
+ else {
+nocsum: /*
+ * unknown protocol, disable HW csum
+ * and hope a bad packet is detected
+ */
+ return TXPKT_L4CSUM_DIS_F;
+ }
+ } else {
+ /*
+ * this doesn't work with extension headers
+ */
+ if (proto == IPPROTO_TCP)
+ csum_type = TX_CSUM_TCPIP6;
+ else if (proto == IPPROTO_UDP)
+ csum_type = TX_CSUM_UDPIP6;
+ else
+ goto nocsum;
+ }
+
+ if (likely(csum_type >= TX_CSUM_TCPIP)) {
+ int eth_hdr_len, l4_len;
+ u64 hdr_len;
+
+ if (inner_hdr_csum) {
+ /* This allows checksum offload for all encapsulated
+ * packets like GRE etc..
+ */
+ l4_len = skb_inner_network_header_len(skb);
+ eth_hdr_len = skb_inner_network_offset(skb) - ETH_HLEN;
+ } else {
+ l4_len = skb_network_header_len(skb);
+ eth_hdr_len = skb_network_offset(skb) - ETH_HLEN;
+ }
+ hdr_len = TXPKT_IPHDR_LEN_V(l4_len);
+
+ if (CHELSIO_CHIP_VERSION(chip) <= CHELSIO_T5)
+ hdr_len |= TXPKT_ETHHDR_LEN_V(eth_hdr_len);
+ else
+ hdr_len |= T6_TXPKT_ETHHDR_LEN_V(eth_hdr_len);
+ return TXPKT_CSUM_TYPE_V(csum_type) | hdr_len;
+ } else {
+ int start = skb_transport_offset(skb);
+
+ return TXPKT_CSUM_TYPE_V(csum_type) |
+ TXPKT_CSUM_START_V(start) |
+ TXPKT_CSUM_LOC_V(start + skb->csum_offset);
+ }
+}
+
+static void eth_txq_stop(struct sge_eth_txq *q)
+{
+ netif_tx_stop_queue(q->txq);
+ q->q.stops++;
+}
+
+static inline void txq_advance(struct sge_txq *q, unsigned int n)
+{
+ q->in_use += n;
+ q->pidx += n;
+ if (q->pidx >= q->size)
+ q->pidx -= q->size;
+}
+
+#ifdef CONFIG_CHELSIO_T4_FCOE
+static inline int
+cxgb_fcoe_offload(struct sk_buff *skb, struct adapter *adap,
+ const struct port_info *pi, u64 *cntrl)
+{
+ const struct cxgb_fcoe *fcoe = &pi->fcoe;
+
+ if (!(fcoe->flags & CXGB_FCOE_ENABLED))
+ return 0;
+
+ if (skb->protocol != htons(ETH_P_FCOE))
+ return 0;
+
+ skb_reset_mac_header(skb);
+ skb->mac_len = sizeof(struct ethhdr);
+
+ skb_set_network_header(skb, skb->mac_len);
+ skb_set_transport_header(skb, skb->mac_len + sizeof(struct fcoe_hdr));
+
+ if (!cxgb_fcoe_sof_eof_supported(adap, skb))
+ return -ENOTSUPP;
+
+ /* FC CRC offload */
+ *cntrl = TXPKT_CSUM_TYPE_V(TX_CSUM_FCOE) |
+ TXPKT_L4CSUM_DIS_F | TXPKT_IPCSUM_DIS_F |
+ TXPKT_CSUM_START_V(CXGB_FCOE_TXPKT_CSUM_START) |
+ TXPKT_CSUM_END_V(CXGB_FCOE_TXPKT_CSUM_END) |
+ TXPKT_CSUM_LOC_V(CXGB_FCOE_TXPKT_CSUM_END);
+ return 0;
+}
+#endif /* CONFIG_CHELSIO_T4_FCOE */
+
+/* Returns tunnel type if hardware supports offloading of the same.
+ * It is called only for T5 and onwards.
+ */
+enum cpl_tx_tnl_lso_type cxgb_encap_offload_supported(struct sk_buff *skb)
+{
+ u8 l4_hdr = 0;
+ enum cpl_tx_tnl_lso_type tnl_type = TX_TNL_TYPE_OPAQUE;
+ struct port_info *pi = netdev_priv(skb->dev);
+ struct adapter *adapter = pi->adapter;
+
+ if (skb->inner_protocol_type != ENCAP_TYPE_ETHER ||
+ skb->inner_protocol != htons(ETH_P_TEB))
+ return tnl_type;
+
+ switch (vlan_get_protocol(skb)) {
+ case htons(ETH_P_IP):
+ l4_hdr = ip_hdr(skb)->protocol;
+ break;
+ case htons(ETH_P_IPV6):
+ l4_hdr = ipv6_hdr(skb)->nexthdr;
+ break;
+ default:
+ return tnl_type;
+ }
+
+ switch (l4_hdr) {
+ case IPPROTO_UDP:
+ if (adapter->vxlan_port == udp_hdr(skb)->dest)
+ tnl_type = TX_TNL_TYPE_VXLAN;
+ else if (adapter->geneve_port == udp_hdr(skb)->dest)
+ tnl_type = TX_TNL_TYPE_GENEVE;
+ break;
+ default:
+ return tnl_type;
+ }
+
+ return tnl_type;
+}
+
+static inline void t6_fill_tnl_lso(struct sk_buff *skb,
+ struct cpl_tx_tnl_lso *tnl_lso,
+ enum cpl_tx_tnl_lso_type tnl_type)
+{
+ u32 val;
+ int in_eth_xtra_len;
+ int l3hdr_len = skb_network_header_len(skb);
+ int eth_xtra_len = skb_network_offset(skb) - ETH_HLEN;
+ const struct skb_shared_info *ssi = skb_shinfo(skb);
+ bool v6 = (ip_hdr(skb)->version == 6);
+
+ val = CPL_TX_TNL_LSO_OPCODE_V(CPL_TX_TNL_LSO) |
+ CPL_TX_TNL_LSO_FIRST_F |
+ CPL_TX_TNL_LSO_LAST_F |
+ (v6 ? CPL_TX_TNL_LSO_IPV6OUT_F : 0) |
+ CPL_TX_TNL_LSO_ETHHDRLENOUT_V(eth_xtra_len / 4) |
+ CPL_TX_TNL_LSO_IPHDRLENOUT_V(l3hdr_len / 4) |
+ (v6 ? 0 : CPL_TX_TNL_LSO_IPHDRCHKOUT_F) |
+ CPL_TX_TNL_LSO_IPLENSETOUT_F |
+ (v6 ? 0 : CPL_TX_TNL_LSO_IPIDINCOUT_F);
+ tnl_lso->op_to_IpIdSplitOut = htonl(val);
+
+ tnl_lso->IpIdOffsetOut = 0;
+
+ /* Get the tunnel header length */
+ val = skb_inner_mac_header(skb) - skb_mac_header(skb);
+ in_eth_xtra_len = skb_inner_network_header(skb) -
+ skb_inner_mac_header(skb) - ETH_HLEN;
+
+ switch (tnl_type) {
+ case TX_TNL_TYPE_VXLAN:
+ case TX_TNL_TYPE_GENEVE:
+ tnl_lso->UdpLenSetOut_to_TnlHdrLen =
+ htons(CPL_TX_TNL_LSO_UDPCHKCLROUT_F |
+ CPL_TX_TNL_LSO_UDPLENSETOUT_F);
+ break;
+ default:
+ tnl_lso->UdpLenSetOut_to_TnlHdrLen = 0;
+ break;
+ }
+
+ tnl_lso->UdpLenSetOut_to_TnlHdrLen |=
+ htons(CPL_TX_TNL_LSO_TNLHDRLEN_V(val) |
+ CPL_TX_TNL_LSO_TNLTYPE_V(tnl_type));
+
+ tnl_lso->r1 = 0;
+
+ val = CPL_TX_TNL_LSO_ETHHDRLEN_V(in_eth_xtra_len / 4) |
+ CPL_TX_TNL_LSO_IPV6_V(inner_ip_hdr(skb)->version == 6) |
+ CPL_TX_TNL_LSO_IPHDRLEN_V(skb_inner_network_header_len(skb) / 4) |
+ CPL_TX_TNL_LSO_TCPHDRLEN_V(inner_tcp_hdrlen(skb) / 4);
+ tnl_lso->Flow_to_TcpHdrLen = htonl(val);
+
+ tnl_lso->IpIdOffset = htons(0);
+
+ tnl_lso->IpIdSplit_to_Mss = htons(CPL_TX_TNL_LSO_MSS_V(ssi->gso_size));
+ tnl_lso->TCPSeqOffset = htonl(0);
+ tnl_lso->EthLenOffset_Size = htonl(CPL_TX_TNL_LSO_SIZE_V(skb->len));
+}
+
+static inline void *write_tso_wr(struct adapter *adap, struct sk_buff *skb,
+ struct cpl_tx_pkt_lso_core *lso)
+{
+ int eth_xtra_len = skb_network_offset(skb) - ETH_HLEN;
+ int l3hdr_len = skb_network_header_len(skb);
+ const struct skb_shared_info *ssi;
+ bool ipv6 = false;
+
+ ssi = skb_shinfo(skb);
+ if (ssi->gso_type & SKB_GSO_TCPV6)
+ ipv6 = true;
+
+ lso->lso_ctrl = htonl(LSO_OPCODE_V(CPL_TX_PKT_LSO) |
+ LSO_FIRST_SLICE_F | LSO_LAST_SLICE_F |
+ LSO_IPV6_V(ipv6) |
+ LSO_ETHHDR_LEN_V(eth_xtra_len / 4) |
+ LSO_IPHDR_LEN_V(l3hdr_len / 4) |
+ LSO_TCPHDR_LEN_V(tcp_hdr(skb)->doff));
+ lso->ipid_ofst = htons(0);
+ lso->mss = htons(ssi->gso_size);
+ lso->seqno_offset = htonl(0);
+ if (is_t4(adap->params.chip))
+ lso->len = htonl(skb->len);
+ else
+ lso->len = htonl(LSO_T5_XFER_SIZE_V(skb->len));
+
+ return (void *)(lso + 1);
+}
+
+/**
+ * t4_sge_eth_txq_egress_update - handle Ethernet TX Queue update
+ * @adap: the adapter
+ * @eq: the Ethernet TX Queue
+ * @maxreclaim: the maximum number of TX Descriptors to reclaim or -1
+ *
+ * We're typically called here to update the state of an Ethernet TX
+ * Queue with respect to the hardware's progress in consuming the TX
+ * Work Requests that we've put on that Egress Queue. This happens
+ * when we get Egress Queue Update messages and also prophylactically
+ * in regular timer-based Ethernet TX Queue maintenance.
+ */
+int t4_sge_eth_txq_egress_update(struct adapter *adap, struct sge_eth_txq *eq,
+ int maxreclaim)
+{
+ unsigned int reclaimed, hw_cidx;
+ struct sge_txq *q = &eq->q;
+ int hw_in_use;
+
+ if (!q->in_use || !__netif_tx_trylock(eq->txq))
+ return 0;
+
+ /* Reclaim pending completed TX Descriptors. */
+ reclaimed = reclaim_completed_tx(adap, &eq->q, maxreclaim, true);
+
+ hw_cidx = ntohs(READ_ONCE(q->stat->cidx));
+ hw_in_use = q->pidx - hw_cidx;
+ if (hw_in_use < 0)
+ hw_in_use += q->size;
+
+ /* If the TX Queue is currently stopped and there's now more than half
+ * the queue available, restart it. Otherwise bail out since the rest
+ * of what we want do here is with the possibility of shipping any
+ * currently buffered Coalesced TX Work Request.
+ */
+ if (netif_tx_queue_stopped(eq->txq) && hw_in_use < (q->size / 2)) {
+ netif_tx_wake_queue(eq->txq);
+ eq->q.restarts++;
+ }
+
+ __netif_tx_unlock(eq->txq);
+ return reclaimed;
+}
+
+static inline int cxgb4_validate_skb(struct sk_buff *skb,
+ struct net_device *dev,
+ u32 min_pkt_len)
+{
+ u32 max_pkt_len;
+
+ /* The chip min packet length is 10 octets but some firmware
+ * commands have a minimum packet length requirement. So, play
+ * safe and reject anything shorter than @min_pkt_len.
+ */
+ if (unlikely(skb->len < min_pkt_len))
+ return -EINVAL;
+
+ /* Discard the packet if the length is greater than mtu */
+ max_pkt_len = ETH_HLEN + dev->mtu;
+
+ if (skb_vlan_tagged(skb))
+ max_pkt_len += VLAN_HLEN;
+
+ if (!skb_shinfo(skb)->gso_size && (unlikely(skb->len > max_pkt_len)))
+ return -EINVAL;
+
+ return 0;
+}
+
+static void *write_eo_udp_wr(struct sk_buff *skb, struct fw_eth_tx_eo_wr *wr,
+ u32 hdr_len)
+{
+ wr->u.udpseg.type = FW_ETH_TX_EO_TYPE_UDPSEG;
+ wr->u.udpseg.ethlen = skb_network_offset(skb);
+ wr->u.udpseg.iplen = cpu_to_be16(skb_network_header_len(skb));
+ wr->u.udpseg.udplen = sizeof(struct udphdr);
+ wr->u.udpseg.rtplen = 0;
+ wr->u.udpseg.r4 = 0;
+ if (skb_shinfo(skb)->gso_size)
+ wr->u.udpseg.mss = cpu_to_be16(skb_shinfo(skb)->gso_size);
+ else
+ wr->u.udpseg.mss = cpu_to_be16(skb->len - hdr_len);
+ wr->u.udpseg.schedpktsize = wr->u.udpseg.mss;
+ wr->u.udpseg.plen = cpu_to_be32(skb->len - hdr_len);
+
+ return (void *)(wr + 1);
+}
+
+/**
+ * cxgb4_eth_xmit - add a packet to an Ethernet Tx queue
+ * @skb: the packet
+ * @dev: the egress net device
+ *
+ * Add a packet to an SGE Ethernet Tx queue. Runs with softirqs disabled.
+ */
+static netdev_tx_t cxgb4_eth_xmit(struct sk_buff *skb, struct net_device *dev)
+{
+ enum cpl_tx_tnl_lso_type tnl_type = TX_TNL_TYPE_OPAQUE;
+ bool ptp_enabled = is_ptp_enabled(skb, dev);
+ unsigned int last_desc, flits, ndesc;
+ u32 wr_mid, ctrl0, op, sgl_off = 0;
+ const struct skb_shared_info *ssi;
+ int len, qidx, credits, ret, left;
+ struct tx_sw_desc *sgl_sdesc;
+ struct fw_eth_tx_eo_wr *eowr;
+ struct fw_eth_tx_pkt_wr *wr;
+ struct cpl_tx_pkt_core *cpl;
+ const struct port_info *pi;
+ bool immediate = false;
+ u64 cntrl, *end, *sgl;
+ struct sge_eth_txq *q;
+ unsigned int chip_ver;
+ struct adapter *adap;
+
+ ret = cxgb4_validate_skb(skb, dev, ETH_HLEN);
+ if (ret)
+ goto out_free;
+
+ pi = netdev_priv(dev);
+ adap = pi->adapter;
+ ssi = skb_shinfo(skb);
+#if IS_ENABLED(CONFIG_CHELSIO_IPSEC_INLINE)
+ if (xfrm_offload(skb) && !ssi->gso_size)
+ return adap->uld[CXGB4_ULD_IPSEC].tx_handler(skb, dev);
+#endif /* CHELSIO_IPSEC_INLINE */
+
+#if IS_ENABLED(CONFIG_CHELSIO_TLS_DEVICE)
+ if (tls_is_skb_tx_device_offloaded(skb) &&
+ (skb->len - skb_tcp_all_headers(skb)))
+ return adap->uld[CXGB4_ULD_KTLS].tx_handler(skb, dev);
+#endif /* CHELSIO_TLS_DEVICE */
+
+ qidx = skb_get_queue_mapping(skb);
+ if (ptp_enabled) {
+ if (!(adap->ptp_tx_skb)) {
+ skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
+ adap->ptp_tx_skb = skb_get(skb);
+ } else {
+ goto out_free;
+ }
+ q = &adap->sge.ptptxq;
+ } else {
+ q = &adap->sge.ethtxq[qidx + pi->first_qset];
+ }
+ skb_tx_timestamp(skb);
+
+ reclaim_completed_tx(adap, &q->q, -1, true);
+ cntrl = TXPKT_L4CSUM_DIS_F | TXPKT_IPCSUM_DIS_F;
+
+#ifdef CONFIG_CHELSIO_T4_FCOE
+ ret = cxgb_fcoe_offload(skb, adap, pi, &cntrl);
+ if (unlikely(ret == -EOPNOTSUPP))
+ goto out_free;
+#endif /* CONFIG_CHELSIO_T4_FCOE */
+
+ chip_ver = CHELSIO_CHIP_VERSION(adap->params.chip);
+ flits = calc_tx_flits(skb, chip_ver);
+ ndesc = flits_to_desc(flits);
+ credits = txq_avail(&q->q) - ndesc;
+
+ if (unlikely(credits < 0)) {
+ eth_txq_stop(q);
+ dev_err(adap->pdev_dev,
+ "%s: Tx ring %u full while queue awake!\n",
+ dev->name, qidx);
+ return NETDEV_TX_BUSY;
+ }
+
+ if (is_eth_imm(skb, chip_ver))
+ immediate = true;
+
+ if (skb->encapsulation && chip_ver > CHELSIO_T5)
+ tnl_type = cxgb_encap_offload_supported(skb);
+
+ last_desc = q->q.pidx + ndesc - 1;
+ if (last_desc >= q->q.size)
+ last_desc -= q->q.size;
+ sgl_sdesc = &q->q.sdesc[last_desc];
+
+ if (!immediate &&
+ unlikely(cxgb4_map_skb(adap->pdev_dev, skb, sgl_sdesc->addr) < 0)) {
+ memset(sgl_sdesc->addr, 0, sizeof(sgl_sdesc->addr));
+ q->mapping_err++;
+ goto out_free;
+ }
+
+ wr_mid = FW_WR_LEN16_V(DIV_ROUND_UP(flits, 2));
+ if (unlikely(credits < ETHTXQ_STOP_THRES)) {
+ /* After we're done injecting the Work Request for this
+ * packet, we'll be below our "stop threshold" so stop the TX
+ * Queue now and schedule a request for an SGE Egress Queue
+ * Update message. The queue will get started later on when
+ * the firmware processes this Work Request and sends us an
+ * Egress Queue Status Update message indicating that space
+ * has opened up.
+ */
+ eth_txq_stop(q);
+ if (chip_ver > CHELSIO_T5)
+ wr_mid |= FW_WR_EQUEQ_F | FW_WR_EQUIQ_F;
+ }
+
+ wr = (void *)&q->q.desc[q->q.pidx];
+ eowr = (void *)&q->q.desc[q->q.pidx];
+ wr->equiq_to_len16 = htonl(wr_mid);
+ wr->r3 = cpu_to_be64(0);
+ if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4)
+ end = (u64 *)eowr + flits;
+ else
+ end = (u64 *)wr + flits;
+
+ len = immediate ? skb->len : 0;
+ len += sizeof(*cpl);
+ if (ssi->gso_size && !(ssi->gso_type & SKB_GSO_UDP_L4)) {
+ struct cpl_tx_pkt_lso_core *lso = (void *)(wr + 1);
+ struct cpl_tx_tnl_lso *tnl_lso = (void *)(wr + 1);
+
+ if (tnl_type)
+ len += sizeof(*tnl_lso);
+ else
+ len += sizeof(*lso);
+
+ wr->op_immdlen = htonl(FW_WR_OP_V(FW_ETH_TX_PKT_WR) |
+ FW_WR_IMMDLEN_V(len));
+ if (tnl_type) {
+ struct iphdr *iph = ip_hdr(skb);
+
+ t6_fill_tnl_lso(skb, tnl_lso, tnl_type);
+ cpl = (void *)(tnl_lso + 1);
+ /* Driver is expected to compute partial checksum that
+ * does not include the IP Total Length.
+ */
+ if (iph->version == 4) {
+ iph->check = 0;
+ iph->tot_len = 0;
+ iph->check = ~ip_fast_csum((u8 *)iph, iph->ihl);
+ }
+ if (skb->ip_summed == CHECKSUM_PARTIAL)
+ cntrl = hwcsum(adap->params.chip, skb);
+ } else {
+ cpl = write_tso_wr(adap, skb, lso);
+ cntrl = hwcsum(adap->params.chip, skb);
+ }
+ sgl = (u64 *)(cpl + 1); /* sgl start here */
+ q->tso++;
+ q->tx_cso += ssi->gso_segs;
+ } else if (ssi->gso_size) {
+ u64 *start;
+ u32 hdrlen;
+
+ hdrlen = eth_get_headlen(dev, skb->data, skb_headlen(skb));
+ len += hdrlen;
+ wr->op_immdlen = cpu_to_be32(FW_WR_OP_V(FW_ETH_TX_EO_WR) |
+ FW_ETH_TX_EO_WR_IMMDLEN_V(len));
+ cpl = write_eo_udp_wr(skb, eowr, hdrlen);
+ cntrl = hwcsum(adap->params.chip, skb);
+
+ start = (u64 *)(cpl + 1);
+ sgl = (u64 *)inline_tx_skb_header(skb, &q->q, (void *)start,
+ hdrlen);
+ if (unlikely(start > sgl)) {
+ left = (u8 *)end - (u8 *)q->q.stat;
+ end = (void *)q->q.desc + left;
+ }
+ sgl_off = hdrlen;
+ q->uso++;
+ q->tx_cso += ssi->gso_segs;
+ } else {
+ if (ptp_enabled)
+ op = FW_PTP_TX_PKT_WR;
+ else
+ op = FW_ETH_TX_PKT_WR;
+ wr->op_immdlen = htonl(FW_WR_OP_V(op) |
+ FW_WR_IMMDLEN_V(len));
+ cpl = (void *)(wr + 1);
+ sgl = (u64 *)(cpl + 1);
+ if (skb->ip_summed == CHECKSUM_PARTIAL) {
+ cntrl = hwcsum(adap->params.chip, skb) |
+ TXPKT_IPCSUM_DIS_F;
+ q->tx_cso++;
+ }
+ }
+
+ if (unlikely((u8 *)sgl >= (u8 *)q->q.stat)) {
+ /* If current position is already at the end of the
+ * txq, reset the current to point to start of the queue
+ * and update the end ptr as well.
+ */
+ left = (u8 *)end - (u8 *)q->q.stat;
+ end = (void *)q->q.desc + left;
+ sgl = (void *)q->q.desc;
+ }
+
+ if (skb_vlan_tag_present(skb)) {
+ q->vlan_ins++;
+ cntrl |= TXPKT_VLAN_VLD_F | TXPKT_VLAN_V(skb_vlan_tag_get(skb));
+#ifdef CONFIG_CHELSIO_T4_FCOE
+ if (skb->protocol == htons(ETH_P_FCOE))
+ cntrl |= TXPKT_VLAN_V(
+ ((skb->priority & 0x7) << VLAN_PRIO_SHIFT));
+#endif /* CONFIG_CHELSIO_T4_FCOE */
+ }
+
+ ctrl0 = TXPKT_OPCODE_V(CPL_TX_PKT_XT) | TXPKT_INTF_V(pi->tx_chan) |
+ TXPKT_PF_V(adap->pf);
+ if (ptp_enabled)
+ ctrl0 |= TXPKT_TSTAMP_F;
+#ifdef CONFIG_CHELSIO_T4_DCB
+ if (is_t4(adap->params.chip))
+ ctrl0 |= TXPKT_OVLAN_IDX_V(q->dcb_prio);
+ else
+ ctrl0 |= TXPKT_T5_OVLAN_IDX_V(q->dcb_prio);
+#endif
+ cpl->ctrl0 = htonl(ctrl0);
+ cpl->pack = htons(0);
+ cpl->len = htons(skb->len);
+ cpl->ctrl1 = cpu_to_be64(cntrl);
+
+ if (immediate) {
+ cxgb4_inline_tx_skb(skb, &q->q, sgl);
+ dev_consume_skb_any(skb);
+ } else {
+ cxgb4_write_sgl(skb, &q->q, (void *)sgl, end, sgl_off,
+ sgl_sdesc->addr);
+ skb_orphan(skb);
+ sgl_sdesc->skb = skb;
+ }
+
+ txq_advance(&q->q, ndesc);
+
+ cxgb4_ring_tx_db(adap, &q->q, ndesc);
+ return NETDEV_TX_OK;
+
+out_free:
+ dev_kfree_skb_any(skb);
+ return NETDEV_TX_OK;
+}
+
+/* Constants ... */
+enum {
+ /* Egress Queue sizes, producer and consumer indices are all in units
+ * of Egress Context Units bytes. Note that as far as the hardware is
+ * concerned, the free list is an Egress Queue (the host produces free
+ * buffers which the hardware consumes) and free list entries are
+ * 64-bit PCI DMA addresses.
+ */
+ EQ_UNIT = SGE_EQ_IDXSIZE,
+ FL_PER_EQ_UNIT = EQ_UNIT / sizeof(__be64),
+ TXD_PER_EQ_UNIT = EQ_UNIT / sizeof(__be64),
+
+ T4VF_ETHTXQ_MAX_HDR = (sizeof(struct fw_eth_tx_pkt_vm_wr) +
+ sizeof(struct cpl_tx_pkt_lso_core) +
+ sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64),
+};
+
+/**
+ * t4vf_is_eth_imm - can an Ethernet packet be sent as immediate data?
+ * @skb: the packet
+ *
+ * Returns whether an Ethernet packet is small enough to fit completely as
+ * immediate data.
+ */
+static inline int t4vf_is_eth_imm(const struct sk_buff *skb)
+{
+ /* The VF Driver uses the FW_ETH_TX_PKT_VM_WR firmware Work Request
+ * which does not accommodate immediate data. We could dike out all
+ * of the support code for immediate data but that would tie our hands
+ * too much if we ever want to enhace the firmware. It would also
+ * create more differences between the PF and VF Drivers.
+ */
+ return false;
+}
+
+/**
+ * t4vf_calc_tx_flits - calculate the number of flits for a packet TX WR
+ * @skb: the packet
+ *
+ * Returns the number of flits needed for a TX Work Request for the
+ * given Ethernet packet, including the needed WR and CPL headers.
+ */
+static inline unsigned int t4vf_calc_tx_flits(const struct sk_buff *skb)
+{
+ unsigned int flits;
+
+ /* If the skb is small enough, we can pump it out as a work request
+ * with only immediate data. In that case we just have to have the
+ * TX Packet header plus the skb data in the Work Request.
+ */
+ if (t4vf_is_eth_imm(skb))
+ return DIV_ROUND_UP(skb->len + sizeof(struct cpl_tx_pkt),
+ sizeof(__be64));
+
+ /* Otherwise, we're going to have to construct a Scatter gather list
+ * of the skb body and fragments. We also include the flits necessary
+ * for the TX Packet Work Request and CPL. We always have a firmware
+ * Write Header (incorporated as part of the cpl_tx_pkt_lso and
+ * cpl_tx_pkt structures), followed by either a TX Packet Write CPL
+ * message or, if we're doing a Large Send Offload, an LSO CPL message
+ * with an embedded TX Packet Write CPL message.
+ */
+ flits = sgl_len(skb_shinfo(skb)->nr_frags + 1);
+ if (skb_shinfo(skb)->gso_size)
+ flits += (sizeof(struct fw_eth_tx_pkt_vm_wr) +
+ sizeof(struct cpl_tx_pkt_lso_core) +
+ sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64);
+ else
+ flits += (sizeof(struct fw_eth_tx_pkt_vm_wr) +
+ sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64);
+ return flits;
+}
+
+/**
+ * cxgb4_vf_eth_xmit - add a packet to an Ethernet TX queue
+ * @skb: the packet
+ * @dev: the egress net device
+ *
+ * Add a packet to an SGE Ethernet TX queue. Runs with softirqs disabled.
+ */
+static netdev_tx_t cxgb4_vf_eth_xmit(struct sk_buff *skb,
+ struct net_device *dev)
+{
+ unsigned int last_desc, flits, ndesc;
+ const struct skb_shared_info *ssi;
+ struct fw_eth_tx_pkt_vm_wr *wr;
+ struct tx_sw_desc *sgl_sdesc;
+ struct cpl_tx_pkt_core *cpl;
+ const struct port_info *pi;
+ struct sge_eth_txq *txq;
+ struct adapter *adapter;
+ int qidx, credits, ret;
+ size_t fw_hdr_copy_len;
+ unsigned int chip_ver;
+ u64 cntrl, *end;
+ u32 wr_mid;
+
+ /* The chip minimum packet length is 10 octets but the firmware
+ * command that we are using requires that we copy the Ethernet header
+ * (including the VLAN tag) into the header so we reject anything
+ * smaller than that ...
+ */
+ BUILD_BUG_ON(sizeof(wr->firmware) !=
+ (sizeof(wr->ethmacdst) + sizeof(wr->ethmacsrc) +
+ sizeof(wr->ethtype) + sizeof(wr->vlantci)));
+ fw_hdr_copy_len = sizeof(wr->firmware);
+ ret = cxgb4_validate_skb(skb, dev, fw_hdr_copy_len);
+ if (ret)
+ goto out_free;
+
+ /* Figure out which TX Queue we're going to use. */
+ pi = netdev_priv(dev);
+ adapter = pi->adapter;
+ qidx = skb_get_queue_mapping(skb);
+ WARN_ON(qidx >= pi->nqsets);
+ txq = &adapter->sge.ethtxq[pi->first_qset + qidx];
+
+ /* Take this opportunity to reclaim any TX Descriptors whose DMA
+ * transfers have completed.
+ */
+ reclaim_completed_tx(adapter, &txq->q, -1, true);
+
+ /* Calculate the number of flits and TX Descriptors we're going to
+ * need along with how many TX Descriptors will be left over after
+ * we inject our Work Request.
+ */
+ flits = t4vf_calc_tx_flits(skb);
+ ndesc = flits_to_desc(flits);
+ credits = txq_avail(&txq->q) - ndesc;
+
+ if (unlikely(credits < 0)) {
+ /* Not enough room for this packet's Work Request. Stop the
+ * TX Queue and return a "busy" condition. The queue will get
+ * started later on when the firmware informs us that space
+ * has opened up.
+ */
+ eth_txq_stop(txq);
+ dev_err(adapter->pdev_dev,
+ "%s: TX ring %u full while queue awake!\n",
+ dev->name, qidx);
+ return NETDEV_TX_BUSY;
+ }
+
+ last_desc = txq->q.pidx + ndesc - 1;
+ if (last_desc >= txq->q.size)
+ last_desc -= txq->q.size;
+ sgl_sdesc = &txq->q.sdesc[last_desc];
+
+ if (!t4vf_is_eth_imm(skb) &&
+ unlikely(cxgb4_map_skb(adapter->pdev_dev, skb,
+ sgl_sdesc->addr) < 0)) {
+ /* We need to map the skb into PCI DMA space (because it can't
+ * be in-lined directly into the Work Request) and the mapping
+ * operation failed. Record the error and drop the packet.
+ */
+ memset(sgl_sdesc->addr, 0, sizeof(sgl_sdesc->addr));
+ txq->mapping_err++;
+ goto out_free;
+ }
+
+ chip_ver = CHELSIO_CHIP_VERSION(adapter->params.chip);
+ wr_mid = FW_WR_LEN16_V(DIV_ROUND_UP(flits, 2));
+ if (unlikely(credits < ETHTXQ_STOP_THRES)) {
+ /* After we're done injecting the Work Request for this
+ * packet, we'll be below our "stop threshold" so stop the TX
+ * Queue now and schedule a request for an SGE Egress Queue
+ * Update message. The queue will get started later on when
+ * the firmware processes this Work Request and sends us an
+ * Egress Queue Status Update message indicating that space
+ * has opened up.
+ */
+ eth_txq_stop(txq);
+ if (chip_ver > CHELSIO_T5)
+ wr_mid |= FW_WR_EQUEQ_F | FW_WR_EQUIQ_F;
+ }
+
+ /* Start filling in our Work Request. Note that we do _not_ handle
+ * the WR Header wrapping around the TX Descriptor Ring. If our
+ * maximum header size ever exceeds one TX Descriptor, we'll need to
+ * do something else here.
+ */
+ WARN_ON(DIV_ROUND_UP(T4VF_ETHTXQ_MAX_HDR, TXD_PER_EQ_UNIT) > 1);
+ wr = (void *)&txq->q.desc[txq->q.pidx];
+ wr->equiq_to_len16 = cpu_to_be32(wr_mid);
+ wr->r3[0] = cpu_to_be32(0);
+ wr->r3[1] = cpu_to_be32(0);
+ skb_copy_from_linear_data(skb, &wr->firmware, fw_hdr_copy_len);
+ end = (u64 *)wr + flits;
+
+ /* If this is a Large Send Offload packet we'll put in an LSO CPL
+ * message with an encapsulated TX Packet CPL message. Otherwise we
+ * just use a TX Packet CPL message.
+ */
+ ssi = skb_shinfo(skb);
+ if (ssi->gso_size) {
+ struct cpl_tx_pkt_lso_core *lso = (void *)(wr + 1);
+ bool v6 = (ssi->gso_type & SKB_GSO_TCPV6) != 0;
+ int l3hdr_len = skb_network_header_len(skb);
+ int eth_xtra_len = skb_network_offset(skb) - ETH_HLEN;
+
+ wr->op_immdlen =
+ cpu_to_be32(FW_WR_OP_V(FW_ETH_TX_PKT_VM_WR) |
+ FW_WR_IMMDLEN_V(sizeof(*lso) +
+ sizeof(*cpl)));
+ /* Fill in the LSO CPL message. */
+ lso->lso_ctrl =
+ cpu_to_be32(LSO_OPCODE_V(CPL_TX_PKT_LSO) |
+ LSO_FIRST_SLICE_F |
+ LSO_LAST_SLICE_F |
+ LSO_IPV6_V(v6) |
+ LSO_ETHHDR_LEN_V(eth_xtra_len / 4) |
+ LSO_IPHDR_LEN_V(l3hdr_len / 4) |
+ LSO_TCPHDR_LEN_V(tcp_hdr(skb)->doff));
+ lso->ipid_ofst = cpu_to_be16(0);
+ lso->mss = cpu_to_be16(ssi->gso_size);
+ lso->seqno_offset = cpu_to_be32(0);
+ if (is_t4(adapter->params.chip))
+ lso->len = cpu_to_be32(skb->len);
+ else
+ lso->len = cpu_to_be32(LSO_T5_XFER_SIZE_V(skb->len));
+
+ /* Set up TX Packet CPL pointer, control word and perform
+ * accounting.
+ */
+ cpl = (void *)(lso + 1);
+
+ if (chip_ver <= CHELSIO_T5)
+ cntrl = TXPKT_ETHHDR_LEN_V(eth_xtra_len);
+ else
+ cntrl = T6_TXPKT_ETHHDR_LEN_V(eth_xtra_len);
+
+ cntrl |= TXPKT_CSUM_TYPE_V(v6 ?
+ TX_CSUM_TCPIP6 : TX_CSUM_TCPIP) |
+ TXPKT_IPHDR_LEN_V(l3hdr_len);
+ txq->tso++;
+ txq->tx_cso += ssi->gso_segs;
+ } else {
+ int len;
+
+ len = (t4vf_is_eth_imm(skb)
+ ? skb->len + sizeof(*cpl)
+ : sizeof(*cpl));
+ wr->op_immdlen =
+ cpu_to_be32(FW_WR_OP_V(FW_ETH_TX_PKT_VM_WR) |
+ FW_WR_IMMDLEN_V(len));
+
+ /* Set up TX Packet CPL pointer, control word and perform
+ * accounting.
+ */
+ cpl = (void *)(wr + 1);
+ if (skb->ip_summed == CHECKSUM_PARTIAL) {
+ cntrl = hwcsum(adapter->params.chip, skb) |
+ TXPKT_IPCSUM_DIS_F;
+ txq->tx_cso++;
+ } else {
+ cntrl = TXPKT_L4CSUM_DIS_F | TXPKT_IPCSUM_DIS_F;
+ }
+ }
+
+ /* If there's a VLAN tag present, add that to the list of things to
+ * do in this Work Request.
+ */
+ if (skb_vlan_tag_present(skb)) {
+ txq->vlan_ins++;
+ cntrl |= TXPKT_VLAN_VLD_F | TXPKT_VLAN_V(skb_vlan_tag_get(skb));
+ }
+
+ /* Fill in the TX Packet CPL message header. */
+ cpl->ctrl0 = cpu_to_be32(TXPKT_OPCODE_V(CPL_TX_PKT_XT) |
+ TXPKT_INTF_V(pi->port_id) |
+ TXPKT_PF_V(0));
+ cpl->pack = cpu_to_be16(0);
+ cpl->len = cpu_to_be16(skb->len);
+ cpl->ctrl1 = cpu_to_be64(cntrl);
+
+ /* Fill in the body of the TX Packet CPL message with either in-lined
+ * data or a Scatter/Gather List.
+ */
+ if (t4vf_is_eth_imm(skb)) {
+ /* In-line the packet's data and free the skb since we don't
+ * need it any longer.
+ */
+ cxgb4_inline_tx_skb(skb, &txq->q, cpl + 1);
+ dev_consume_skb_any(skb);
+ } else {
+ /* Write the skb's Scatter/Gather list into the TX Packet CPL
+ * message and retain a pointer to the skb so we can free it
+ * later when its DMA completes. (We store the skb pointer
+ * in the Software Descriptor corresponding to the last TX
+ * Descriptor used by the Work Request.)
+ *
+ * The retained skb will be freed when the corresponding TX
+ * Descriptors are reclaimed after their DMAs complete.
+ * However, this could take quite a while since, in general,
+ * the hardware is set up to be lazy about sending DMA
+ * completion notifications to us and we mostly perform TX
+ * reclaims in the transmit routine.
+ *
+ * This is good for performamce but means that we rely on new
+ * TX packets arriving to run the destructors of completed
+ * packets, which open up space in their sockets' send queues.
+ * Sometimes we do not get such new packets causing TX to
+ * stall. A single UDP transmitter is a good example of this
+ * situation. We have a clean up timer that periodically
+ * reclaims completed packets but it doesn't run often enough
+ * (nor do we want it to) to prevent lengthy stalls. A
+ * solution to this problem is to run the destructor early,
+ * after the packet is queued but before it's DMAd. A con is
+ * that we lie to socket memory accounting, but the amount of
+ * extra memory is reasonable (limited by the number of TX
+ * descriptors), the packets do actually get freed quickly by
+ * new packets almost always, and for protocols like TCP that
+ * wait for acks to really free up the data the extra memory
+ * is even less. On the positive side we run the destructors
+ * on the sending CPU rather than on a potentially different
+ * completing CPU, usually a good thing.
+ *
+ * Run the destructor before telling the DMA engine about the
+ * packet to make sure it doesn't complete and get freed
+ * prematurely.
+ */
+ struct ulptx_sgl *sgl = (struct ulptx_sgl *)(cpl + 1);
+ struct sge_txq *tq = &txq->q;
+
+ /* If the Work Request header was an exact multiple of our TX
+ * Descriptor length, then it's possible that the starting SGL
+ * pointer lines up exactly with the end of our TX Descriptor
+ * ring. If that's the case, wrap around to the beginning
+ * here ...
+ */
+ if (unlikely((void *)sgl == (void *)tq->stat)) {
+ sgl = (void *)tq->desc;
+ end = (void *)((void *)tq->desc +
+ ((void *)end - (void *)tq->stat));
+ }
+
+ cxgb4_write_sgl(skb, tq, sgl, end, 0, sgl_sdesc->addr);
+ skb_orphan(skb);
+ sgl_sdesc->skb = skb;
+ }
+
+ /* Advance our internal TX Queue state, tell the hardware about
+ * the new TX descriptors and return success.
+ */
+ txq_advance(&txq->q, ndesc);
+
+ cxgb4_ring_tx_db(adapter, &txq->q, ndesc);
+ return NETDEV_TX_OK;
+
+out_free:
+ /* An error of some sort happened. Free the TX skb and tell the
+ * OS that we've "dealt" with the packet ...
+ */
+ dev_kfree_skb_any(skb);
+ return NETDEV_TX_OK;
+}
+
+/**
+ * reclaim_completed_tx_imm - reclaim completed control-queue Tx descs
+ * @q: the SGE control Tx queue
+ *
+ * This is a variant of cxgb4_reclaim_completed_tx() that is used
+ * for Tx queues that send only immediate data (presently just
+ * the control queues) and thus do not have any sk_buffs to release.
+ */
+static inline void reclaim_completed_tx_imm(struct sge_txq *q)
+{
+ int hw_cidx = ntohs(READ_ONCE(q->stat->cidx));
+ int reclaim = hw_cidx - q->cidx;
+
+ if (reclaim < 0)
+ reclaim += q->size;
+
+ q->in_use -= reclaim;
+ q->cidx = hw_cidx;
+}
+
+static inline void eosw_txq_advance_index(u32 *idx, u32 n, u32 max)
+{
+ u32 val = *idx + n;
+
+ if (val >= max)
+ val -= max;
+
+ *idx = val;
+}
+
+void cxgb4_eosw_txq_free_desc(struct adapter *adap,
+ struct sge_eosw_txq *eosw_txq, u32 ndesc)
+{
+ struct tx_sw_desc *d;
+
+ d = &eosw_txq->desc[eosw_txq->last_cidx];
+ while (ndesc--) {
+ if (d->skb) {
+ if (d->addr[0]) {
+ unmap_skb(adap->pdev_dev, d->skb, d->addr);
+ memset(d->addr, 0, sizeof(d->addr));
+ }
+ dev_consume_skb_any(d->skb);
+ d->skb = NULL;
+ }
+ eosw_txq_advance_index(&eosw_txq->last_cidx, 1,
+ eosw_txq->ndesc);
+ d = &eosw_txq->desc[eosw_txq->last_cidx];
+ }
+}
+
+static inline void eosw_txq_advance(struct sge_eosw_txq *eosw_txq, u32 n)
+{
+ eosw_txq_advance_index(&eosw_txq->pidx, n, eosw_txq->ndesc);
+ eosw_txq->inuse += n;
+}
+
+static inline int eosw_txq_enqueue(struct sge_eosw_txq *eosw_txq,
+ struct sk_buff *skb)
+{
+ if (eosw_txq->inuse == eosw_txq->ndesc)
+ return -ENOMEM;
+
+ eosw_txq->desc[eosw_txq->pidx].skb = skb;
+ return 0;
+}
+
+static inline struct sk_buff *eosw_txq_peek(struct sge_eosw_txq *eosw_txq)
+{
+ return eosw_txq->desc[eosw_txq->last_pidx].skb;
+}
+
+static inline u8 ethofld_calc_tx_flits(struct adapter *adap,
+ struct sk_buff *skb, u32 hdr_len)
+{
+ u8 flits, nsgl = 0;
+ u32 wrlen;
+
+ wrlen = sizeof(struct fw_eth_tx_eo_wr) + sizeof(struct cpl_tx_pkt_core);
+ if (skb_shinfo(skb)->gso_size &&
+ !(skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4))
+ wrlen += sizeof(struct cpl_tx_pkt_lso_core);
+
+ wrlen += roundup(hdr_len, 16);
+
+ /* Packet headers + WR + CPLs */
+ flits = DIV_ROUND_UP(wrlen, 8);
+
+ if (skb_shinfo(skb)->nr_frags > 0) {
+ if (skb_headlen(skb) - hdr_len)
+ nsgl = sgl_len(skb_shinfo(skb)->nr_frags + 1);
+ else
+ nsgl = sgl_len(skb_shinfo(skb)->nr_frags);
+ } else if (skb->len - hdr_len) {
+ nsgl = sgl_len(1);
+ }
+
+ return flits + nsgl;
+}
+
+static void *write_eo_wr(struct adapter *adap, struct sge_eosw_txq *eosw_txq,
+ struct sk_buff *skb, struct fw_eth_tx_eo_wr *wr,
+ u32 hdr_len, u32 wrlen)
+{
+ const struct skb_shared_info *ssi = skb_shinfo(skb);
+ struct cpl_tx_pkt_core *cpl;
+ u32 immd_len, wrlen16;
+ bool compl = false;
+ u8 ver, proto;
+
+ ver = ip_hdr(skb)->version;
+ proto = (ver == 6) ? ipv6_hdr(skb)->nexthdr : ip_hdr(skb)->protocol;
+
+ wrlen16 = DIV_ROUND_UP(wrlen, 16);
+ immd_len = sizeof(struct cpl_tx_pkt_core);
+ if (skb_shinfo(skb)->gso_size &&
+ !(skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4))
+ immd_len += sizeof(struct cpl_tx_pkt_lso_core);
+ immd_len += hdr_len;
+
+ if (!eosw_txq->ncompl ||
+ (eosw_txq->last_compl + wrlen16) >=
+ (adap->params.ofldq_wr_cred / 2)) {
+ compl = true;
+ eosw_txq->ncompl++;
+ eosw_txq->last_compl = 0;
+ }
+
+ wr->op_immdlen = cpu_to_be32(FW_WR_OP_V(FW_ETH_TX_EO_WR) |
+ FW_ETH_TX_EO_WR_IMMDLEN_V(immd_len) |
+ FW_WR_COMPL_V(compl));
+ wr->equiq_to_len16 = cpu_to_be32(FW_WR_LEN16_V(wrlen16) |
+ FW_WR_FLOWID_V(eosw_txq->hwtid));
+ wr->r3 = 0;
+ if (proto == IPPROTO_UDP) {
+ cpl = write_eo_udp_wr(skb, wr, hdr_len);
+ } else {
+ wr->u.tcpseg.type = FW_ETH_TX_EO_TYPE_TCPSEG;
+ wr->u.tcpseg.ethlen = skb_network_offset(skb);
+ wr->u.tcpseg.iplen = cpu_to_be16(skb_network_header_len(skb));
+ wr->u.tcpseg.tcplen = tcp_hdrlen(skb);
+ wr->u.tcpseg.tsclk_tsoff = 0;
+ wr->u.tcpseg.r4 = 0;
+ wr->u.tcpseg.r5 = 0;
+ wr->u.tcpseg.plen = cpu_to_be32(skb->len - hdr_len);
+
+ if (ssi->gso_size) {
+ struct cpl_tx_pkt_lso_core *lso = (void *)(wr + 1);
+
+ wr->u.tcpseg.mss = cpu_to_be16(ssi->gso_size);
+ cpl = write_tso_wr(adap, skb, lso);
+ } else {
+ wr->u.tcpseg.mss = cpu_to_be16(0xffff);
+ cpl = (void *)(wr + 1);
+ }
+ }
+
+ eosw_txq->cred -= wrlen16;
+ eosw_txq->last_compl += wrlen16;
+ return cpl;
+}
+
+static int ethofld_hard_xmit(struct net_device *dev,
+ struct sge_eosw_txq *eosw_txq)
+{
+ struct port_info *pi = netdev2pinfo(dev);
+ struct adapter *adap = netdev2adap(dev);
+ u32 wrlen, wrlen16, hdr_len, data_len;
+ enum sge_eosw_state next_state;
+ u64 cntrl, *start, *end, *sgl;
+ struct sge_eohw_txq *eohw_txq;
+ struct cpl_tx_pkt_core *cpl;
+ struct fw_eth_tx_eo_wr *wr;
+ bool skip_eotx_wr = false;
+ struct tx_sw_desc *d;
+ struct sk_buff *skb;
+ int left, ret = 0;
+ u8 flits, ndesc;
+
+ eohw_txq = &adap->sge.eohw_txq[eosw_txq->hwqid];
+ spin_lock(&eohw_txq->lock);
+ reclaim_completed_tx_imm(&eohw_txq->q);
+
+ d = &eosw_txq->desc[eosw_txq->last_pidx];
+ skb = d->skb;
+ skb_tx_timestamp(skb);
+
+ wr = (struct fw_eth_tx_eo_wr *)&eohw_txq->q.desc[eohw_txq->q.pidx];
+ if (unlikely(eosw_txq->state != CXGB4_EO_STATE_ACTIVE &&
+ eosw_txq->last_pidx == eosw_txq->flowc_idx)) {
+ hdr_len = skb->len;
+ data_len = 0;
+ flits = DIV_ROUND_UP(hdr_len, 8);
+ if (eosw_txq->state == CXGB4_EO_STATE_FLOWC_OPEN_SEND)
+ next_state = CXGB4_EO_STATE_FLOWC_OPEN_REPLY;
+ else
+ next_state = CXGB4_EO_STATE_FLOWC_CLOSE_REPLY;
+ skip_eotx_wr = true;
+ } else {
+ hdr_len = eth_get_headlen(dev, skb->data, skb_headlen(skb));
+ data_len = skb->len - hdr_len;
+ flits = ethofld_calc_tx_flits(adap, skb, hdr_len);
+ }
+ ndesc = flits_to_desc(flits);
+ wrlen = flits * 8;
+ wrlen16 = DIV_ROUND_UP(wrlen, 16);
+
+ left = txq_avail(&eohw_txq->q) - ndesc;
+
+ /* If there are no descriptors left in hardware queues or no
+ * CPL credits left in software queues, then wait for them
+ * to come back and retry again. Note that we always request
+ * for credits update via interrupt for every half credits
+ * consumed. So, the interrupt will eventually restore the
+ * credits and invoke the Tx path again.
+ */
+ if (unlikely(left < 0 || wrlen16 > eosw_txq->cred)) {
+ ret = -ENOMEM;
+ goto out_unlock;
+ }
+
+ if (unlikely(skip_eotx_wr)) {
+ start = (u64 *)wr;
+ eosw_txq->state = next_state;
+ eosw_txq->cred -= wrlen16;
+ eosw_txq->ncompl++;
+ eosw_txq->last_compl = 0;
+ goto write_wr_headers;
+ }
+
+ cpl = write_eo_wr(adap, eosw_txq, skb, wr, hdr_len, wrlen);
+ cntrl = hwcsum(adap->params.chip, skb);
+ if (skb_vlan_tag_present(skb))
+ cntrl |= TXPKT_VLAN_VLD_F | TXPKT_VLAN_V(skb_vlan_tag_get(skb));
+
+ cpl->ctrl0 = cpu_to_be32(TXPKT_OPCODE_V(CPL_TX_PKT_XT) |
+ TXPKT_INTF_V(pi->tx_chan) |
+ TXPKT_PF_V(adap->pf));
+ cpl->pack = 0;
+ cpl->len = cpu_to_be16(skb->len);
+ cpl->ctrl1 = cpu_to_be64(cntrl);
+
+ start = (u64 *)(cpl + 1);
+
+write_wr_headers:
+ sgl = (u64 *)inline_tx_skb_header(skb, &eohw_txq->q, (void *)start,
+ hdr_len);
+ if (data_len) {
+ ret = cxgb4_map_skb(adap->pdev_dev, skb, d->addr);
+ if (unlikely(ret)) {
+ memset(d->addr, 0, sizeof(d->addr));
+ eohw_txq->mapping_err++;
+ goto out_unlock;
+ }
+
+ end = (u64 *)wr + flits;
+ if (unlikely(start > sgl)) {
+ left = (u8 *)end - (u8 *)eohw_txq->q.stat;
+ end = (void *)eohw_txq->q.desc + left;
+ }
+
+ if (unlikely((u8 *)sgl >= (u8 *)eohw_txq->q.stat)) {
+ /* If current position is already at the end of the
+ * txq, reset the current to point to start of the queue
+ * and update the end ptr as well.
+ */
+ left = (u8 *)end - (u8 *)eohw_txq->q.stat;
+
+ end = (void *)eohw_txq->q.desc + left;
+ sgl = (void *)eohw_txq->q.desc;
+ }
+
+ cxgb4_write_sgl(skb, &eohw_txq->q, (void *)sgl, end, hdr_len,
+ d->addr);
+ }
+
+ if (skb_shinfo(skb)->gso_size) {
+ if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4)
+ eohw_txq->uso++;
+ else
+ eohw_txq->tso++;
+ eohw_txq->tx_cso += skb_shinfo(skb)->gso_segs;
+ } else if (skb->ip_summed == CHECKSUM_PARTIAL) {
+ eohw_txq->tx_cso++;
+ }
+
+ if (skb_vlan_tag_present(skb))
+ eohw_txq->vlan_ins++;
+
+ txq_advance(&eohw_txq->q, ndesc);
+ cxgb4_ring_tx_db(adap, &eohw_txq->q, ndesc);
+ eosw_txq_advance_index(&eosw_txq->last_pidx, 1, eosw_txq->ndesc);
+
+out_unlock:
+ spin_unlock(&eohw_txq->lock);
+ return ret;
+}
+
+static void ethofld_xmit(struct net_device *dev, struct sge_eosw_txq *eosw_txq)
+{
+ struct sk_buff *skb;
+ int pktcount, ret;
+
+ switch (eosw_txq->state) {
+ case CXGB4_EO_STATE_ACTIVE:
+ case CXGB4_EO_STATE_FLOWC_OPEN_SEND:
+ case CXGB4_EO_STATE_FLOWC_CLOSE_SEND:
+ pktcount = eosw_txq->pidx - eosw_txq->last_pidx;
+ if (pktcount < 0)
+ pktcount += eosw_txq->ndesc;
+ break;
+ case CXGB4_EO_STATE_FLOWC_OPEN_REPLY:
+ case CXGB4_EO_STATE_FLOWC_CLOSE_REPLY:
+ case CXGB4_EO_STATE_CLOSED:
+ default:
+ return;
+ }
+
+ while (pktcount--) {
+ skb = eosw_txq_peek(eosw_txq);
+ if (!skb) {
+ eosw_txq_advance_index(&eosw_txq->last_pidx, 1,
+ eosw_txq->ndesc);
+ continue;
+ }
+
+ ret = ethofld_hard_xmit(dev, eosw_txq);
+ if (ret)
+ break;
+ }
+}
+
+static netdev_tx_t cxgb4_ethofld_xmit(struct sk_buff *skb,
+ struct net_device *dev)
+{
+ struct cxgb4_tc_port_mqprio *tc_port_mqprio;
+ struct port_info *pi = netdev2pinfo(dev);
+ struct adapter *adap = netdev2adap(dev);
+ struct sge_eosw_txq *eosw_txq;
+ u32 qid;
+ int ret;
+
+ ret = cxgb4_validate_skb(skb, dev, ETH_HLEN);
+ if (ret)
+ goto out_free;
+
+ tc_port_mqprio = &adap->tc_mqprio->port_mqprio[pi->port_id];
+ qid = skb_get_queue_mapping(skb) - pi->nqsets;
+ eosw_txq = &tc_port_mqprio->eosw_txq[qid];
+ spin_lock_bh(&eosw_txq->lock);
+ if (eosw_txq->state != CXGB4_EO_STATE_ACTIVE)
+ goto out_unlock;
+
+ ret = eosw_txq_enqueue(eosw_txq, skb);
+ if (ret)
+ goto out_unlock;
+
+ /* SKB is queued for processing until credits are available.
+ * So, call the destructor now and we'll free the skb later
+ * after it has been successfully transmitted.
+ */
+ skb_orphan(skb);
+
+ eosw_txq_advance(eosw_txq, 1);
+ ethofld_xmit(dev, eosw_txq);
+ spin_unlock_bh(&eosw_txq->lock);
+ return NETDEV_TX_OK;
+
+out_unlock:
+ spin_unlock_bh(&eosw_txq->lock);
+out_free:
+ dev_kfree_skb_any(skb);
+ return NETDEV_TX_OK;
+}
+
+netdev_tx_t t4_start_xmit(struct sk_buff *skb, struct net_device *dev)
+{
+ struct port_info *pi = netdev_priv(dev);
+ u16 qid = skb_get_queue_mapping(skb);
+
+ if (unlikely(pi->eth_flags & PRIV_FLAG_PORT_TX_VM))
+ return cxgb4_vf_eth_xmit(skb, dev);
+
+ if (unlikely(qid >= pi->nqsets))
+ return cxgb4_ethofld_xmit(skb, dev);
+
+ if (is_ptp_enabled(skb, dev)) {
+ struct adapter *adap = netdev2adap(dev);
+ netdev_tx_t ret;
+
+ spin_lock(&adap->ptp_lock);
+ ret = cxgb4_eth_xmit(skb, dev);
+ spin_unlock(&adap->ptp_lock);
+ return ret;
+ }
+
+ return cxgb4_eth_xmit(skb, dev);
+}
+
+static void eosw_txq_flush_pending_skbs(struct sge_eosw_txq *eosw_txq)
+{
+ int pktcount = eosw_txq->pidx - eosw_txq->last_pidx;
+ int pidx = eosw_txq->pidx;
+ struct sk_buff *skb;
+
+ if (!pktcount)
+ return;
+
+ if (pktcount < 0)
+ pktcount += eosw_txq->ndesc;
+
+ while (pktcount--) {
+ pidx--;
+ if (pidx < 0)
+ pidx += eosw_txq->ndesc;
+
+ skb = eosw_txq->desc[pidx].skb;
+ if (skb) {
+ dev_consume_skb_any(skb);
+ eosw_txq->desc[pidx].skb = NULL;
+ eosw_txq->inuse--;
+ }
+ }
+
+ eosw_txq->pidx = eosw_txq->last_pidx + 1;
+}
+
+/**
+ * cxgb4_ethofld_send_flowc - Send ETHOFLD flowc request to bind eotid to tc.
+ * @dev: netdevice
+ * @eotid: ETHOFLD tid to bind/unbind
+ * @tc: traffic class. If set to FW_SCHED_CLS_NONE, then unbinds the @eotid
+ *
+ * Send a FLOWC work request to bind an ETHOFLD TID to a traffic class.
+ * If @tc is set to FW_SCHED_CLS_NONE, then the @eotid is unbound from
+ * a traffic class.
+ */
+int cxgb4_ethofld_send_flowc(struct net_device *dev, u32 eotid, u32 tc)
+{
+ struct port_info *pi = netdev2pinfo(dev);
+ struct adapter *adap = netdev2adap(dev);
+ enum sge_eosw_state next_state;
+ struct sge_eosw_txq *eosw_txq;
+ u32 len, len16, nparams = 6;
+ struct fw_flowc_wr *flowc;
+ struct eotid_entry *entry;
+ struct sge_ofld_rxq *rxq;
+ struct sk_buff *skb;
+ int ret = 0;
+
+ len = struct_size(flowc, mnemval, nparams);
+ len16 = DIV_ROUND_UP(len, 16);
+
+ entry = cxgb4_lookup_eotid(&adap->tids, eotid);
+ if (!entry)
+ return -ENOMEM;
+
+ eosw_txq = (struct sge_eosw_txq *)entry->data;
+ if (!eosw_txq)
+ return -ENOMEM;
+
+ if (!(adap->flags & CXGB4_FW_OK)) {
+ /* Don't stall caller when access to FW is lost */
+ complete(&eosw_txq->completion);
+ return -EIO;
+ }
+
+ skb = alloc_skb(len, GFP_KERNEL);
+ if (!skb)
+ return -ENOMEM;
+
+ spin_lock_bh(&eosw_txq->lock);
+ if (tc != FW_SCHED_CLS_NONE) {
+ if (eosw_txq->state != CXGB4_EO_STATE_CLOSED)
+ goto out_free_skb;
+
+ next_state = CXGB4_EO_STATE_FLOWC_OPEN_SEND;
+ } else {
+ if (eosw_txq->state != CXGB4_EO_STATE_ACTIVE)
+ goto out_free_skb;
+
+ next_state = CXGB4_EO_STATE_FLOWC_CLOSE_SEND;
+ }
+
+ flowc = __skb_put(skb, len);
+ memset(flowc, 0, len);
+
+ rxq = &adap->sge.eohw_rxq[eosw_txq->hwqid];
+ flowc->flowid_len16 = cpu_to_be32(FW_WR_LEN16_V(len16) |
+ FW_WR_FLOWID_V(eosw_txq->hwtid));
+ flowc->op_to_nparams = cpu_to_be32(FW_WR_OP_V(FW_FLOWC_WR) |
+ FW_FLOWC_WR_NPARAMS_V(nparams) |
+ FW_WR_COMPL_V(1));
+ flowc->mnemval[0].mnemonic = FW_FLOWC_MNEM_PFNVFN;
+ flowc->mnemval[0].val = cpu_to_be32(FW_PFVF_CMD_PFN_V(adap->pf));
+ flowc->mnemval[1].mnemonic = FW_FLOWC_MNEM_CH;
+ flowc->mnemval[1].val = cpu_to_be32(pi->tx_chan);
+ flowc->mnemval[2].mnemonic = FW_FLOWC_MNEM_PORT;
+ flowc->mnemval[2].val = cpu_to_be32(pi->tx_chan);
+ flowc->mnemval[3].mnemonic = FW_FLOWC_MNEM_IQID;
+ flowc->mnemval[3].val = cpu_to_be32(rxq->rspq.abs_id);
+ flowc->mnemval[4].mnemonic = FW_FLOWC_MNEM_SCHEDCLASS;
+ flowc->mnemval[4].val = cpu_to_be32(tc);
+ flowc->mnemval[5].mnemonic = FW_FLOWC_MNEM_EOSTATE;
+ flowc->mnemval[5].val = cpu_to_be32(tc == FW_SCHED_CLS_NONE ?
+ FW_FLOWC_MNEM_EOSTATE_CLOSING :
+ FW_FLOWC_MNEM_EOSTATE_ESTABLISHED);
+
+ /* Free up any pending skbs to ensure there's room for
+ * termination FLOWC.
+ */
+ if (tc == FW_SCHED_CLS_NONE)
+ eosw_txq_flush_pending_skbs(eosw_txq);
+
+ ret = eosw_txq_enqueue(eosw_txq, skb);
+ if (ret)
+ goto out_free_skb;
+
+ eosw_txq->state = next_state;
+ eosw_txq->flowc_idx = eosw_txq->pidx;
+ eosw_txq_advance(eosw_txq, 1);
+ ethofld_xmit(dev, eosw_txq);
+
+ spin_unlock_bh(&eosw_txq->lock);
+ return 0;
+
+out_free_skb:
+ dev_consume_skb_any(skb);
+ spin_unlock_bh(&eosw_txq->lock);
+ return ret;
+}
+
+/**
+ * is_imm - check whether a packet can be sent as immediate data
+ * @skb: the packet
+ *
+ * Returns true if a packet can be sent as a WR with immediate data.
+ */
+static inline int is_imm(const struct sk_buff *skb)
+{
+ return skb->len <= MAX_CTRL_WR_LEN;
+}
+
+/**
+ * ctrlq_check_stop - check if a control queue is full and should stop
+ * @q: the queue
+ * @wr: most recent WR written to the queue
+ *
+ * Check if a control queue has become full and should be stopped.
+ * We clean up control queue descriptors very lazily, only when we are out.
+ * If the queue is still full after reclaiming any completed descriptors
+ * we suspend it and have the last WR wake it up.
+ */
+static void ctrlq_check_stop(struct sge_ctrl_txq *q, struct fw_wr_hdr *wr)
+{
+ reclaim_completed_tx_imm(&q->q);
+ if (unlikely(txq_avail(&q->q) < TXQ_STOP_THRES)) {
+ wr->lo |= htonl(FW_WR_EQUEQ_F | FW_WR_EQUIQ_F);
+ q->q.stops++;
+ q->full = 1;
+ }
+}
+
+#define CXGB4_SELFTEST_LB_STR "CHELSIO_SELFTEST"
+
+int cxgb4_selftest_lb_pkt(struct net_device *netdev)
+{
+ struct port_info *pi = netdev_priv(netdev);
+ struct adapter *adap = pi->adapter;
+ struct cxgb4_ethtool_lb_test *lb;
+ int ret, i = 0, pkt_len, credits;
+ struct fw_eth_tx_pkt_wr *wr;
+ struct cpl_tx_pkt_core *cpl;
+ u32 ctrl0, ndesc, flits;
+ struct sge_eth_txq *q;
+ u8 *sgl;
+
+ pkt_len = ETH_HLEN + sizeof(CXGB4_SELFTEST_LB_STR);
+
+ flits = DIV_ROUND_UP(pkt_len + sizeof(*cpl) + sizeof(*wr),
+ sizeof(__be64));
+ ndesc = flits_to_desc(flits);
+
+ lb = &pi->ethtool_lb;
+ lb->loopback = 1;
+
+ q = &adap->sge.ethtxq[pi->first_qset];
+ __netif_tx_lock(q->txq, smp_processor_id());
+
+ reclaim_completed_tx(adap, &q->q, -1, true);
+ credits = txq_avail(&q->q) - ndesc;
+ if (unlikely(credits < 0)) {
+ __netif_tx_unlock(q->txq);
+ return -ENOMEM;
+ }
+
+ wr = (void *)&q->q.desc[q->q.pidx];
+ memset(wr, 0, sizeof(struct tx_desc));
+
+ wr->op_immdlen = htonl(FW_WR_OP_V(FW_ETH_TX_PKT_WR) |
+ FW_WR_IMMDLEN_V(pkt_len +
+ sizeof(*cpl)));
+ wr->equiq_to_len16 = htonl(FW_WR_LEN16_V(DIV_ROUND_UP(flits, 2)));
+ wr->r3 = cpu_to_be64(0);
+
+ cpl = (void *)(wr + 1);
+ sgl = (u8 *)(cpl + 1);
+
+ ctrl0 = TXPKT_OPCODE_V(CPL_TX_PKT_XT) | TXPKT_PF_V(adap->pf) |
+ TXPKT_INTF_V(pi->tx_chan + 4);
+
+ cpl->ctrl0 = htonl(ctrl0);
+ cpl->pack = htons(0);
+ cpl->len = htons(pkt_len);
+ cpl->ctrl1 = cpu_to_be64(TXPKT_L4CSUM_DIS_F | TXPKT_IPCSUM_DIS_F);
+
+ eth_broadcast_addr(sgl);
+ i += ETH_ALEN;
+ ether_addr_copy(&sgl[i], netdev->dev_addr);
+ i += ETH_ALEN;
+
+ snprintf(&sgl[i], sizeof(CXGB4_SELFTEST_LB_STR), "%s",
+ CXGB4_SELFTEST_LB_STR);
+
+ init_completion(&lb->completion);
+ txq_advance(&q->q, ndesc);
+ cxgb4_ring_tx_db(adap, &q->q, ndesc);
+ __netif_tx_unlock(q->txq);
+
+ /* wait for the pkt to return */
+ ret = wait_for_completion_timeout(&lb->completion, 10 * HZ);
+ if (!ret)
+ ret = -ETIMEDOUT;
+ else
+ ret = lb->result;
+
+ lb->loopback = 0;
+
+ return ret;
+}
+
+/**
+ * ctrl_xmit - send a packet through an SGE control Tx queue
+ * @q: the control queue
+ * @skb: the packet
+ *
+ * Send a packet through an SGE control Tx queue. Packets sent through
+ * a control queue must fit entirely as immediate data.
+ */
+static int ctrl_xmit(struct sge_ctrl_txq *q, struct sk_buff *skb)
+{
+ unsigned int ndesc;
+ struct fw_wr_hdr *wr;
+
+ if (unlikely(!is_imm(skb))) {
+ WARN_ON(1);
+ dev_kfree_skb(skb);
+ return NET_XMIT_DROP;
+ }
+
+ ndesc = DIV_ROUND_UP(skb->len, sizeof(struct tx_desc));
+ spin_lock(&q->sendq.lock);
+
+ if (unlikely(q->full)) {
+ skb->priority = ndesc; /* save for restart */
+ __skb_queue_tail(&q->sendq, skb);
+ spin_unlock(&q->sendq.lock);
+ return NET_XMIT_CN;
+ }
+
+ wr = (struct fw_wr_hdr *)&q->q.desc[q->q.pidx];
+ cxgb4_inline_tx_skb(skb, &q->q, wr);
+
+ txq_advance(&q->q, ndesc);
+ if (unlikely(txq_avail(&q->q) < TXQ_STOP_THRES))
+ ctrlq_check_stop(q, wr);
+
+ cxgb4_ring_tx_db(q->adap, &q->q, ndesc);
+ spin_unlock(&q->sendq.lock);
+
+ kfree_skb(skb);
+ return NET_XMIT_SUCCESS;
+}
+
+/**
+ * restart_ctrlq - restart a suspended control queue
+ * @t: pointer to the tasklet associated with this handler
+ *
+ * Resumes transmission on a suspended Tx control queue.
+ */
+static void restart_ctrlq(struct tasklet_struct *t)
+{
+ struct sk_buff *skb;
+ unsigned int written = 0;
+ struct sge_ctrl_txq *q = from_tasklet(q, t, qresume_tsk);
+
+ spin_lock(&q->sendq.lock);
+ reclaim_completed_tx_imm(&q->q);
+ BUG_ON(txq_avail(&q->q) < TXQ_STOP_THRES); /* q should be empty */
+
+ while ((skb = __skb_dequeue(&q->sendq)) != NULL) {
+ struct fw_wr_hdr *wr;
+ unsigned int ndesc = skb->priority; /* previously saved */
+
+ written += ndesc;
+ /* Write descriptors and free skbs outside the lock to limit
+ * wait times. q->full is still set so new skbs will be queued.
+ */
+ wr = (struct fw_wr_hdr *)&q->q.desc[q->q.pidx];
+ txq_advance(&q->q, ndesc);
+ spin_unlock(&q->sendq.lock);
+
+ cxgb4_inline_tx_skb(skb, &q->q, wr);
+ kfree_skb(skb);
+
+ if (unlikely(txq_avail(&q->q) < TXQ_STOP_THRES)) {
+ unsigned long old = q->q.stops;
+
+ ctrlq_check_stop(q, wr);
+ if (q->q.stops != old) { /* suspended anew */
+ spin_lock(&q->sendq.lock);
+ goto ringdb;
+ }
+ }
+ if (written > 16) {
+ cxgb4_ring_tx_db(q->adap, &q->q, written);
+ written = 0;
+ }
+ spin_lock(&q->sendq.lock);
+ }
+ q->full = 0;
+ringdb:
+ if (written)
+ cxgb4_ring_tx_db(q->adap, &q->q, written);
+ spin_unlock(&q->sendq.lock);
+}
+
+/**
+ * t4_mgmt_tx - send a management message
+ * @adap: the adapter
+ * @skb: the packet containing the management message
+ *
+ * Send a management message through control queue 0.
+ */
+int t4_mgmt_tx(struct adapter *adap, struct sk_buff *skb)
+{
+ int ret;
+
+ local_bh_disable();
+ ret = ctrl_xmit(&adap->sge.ctrlq[0], skb);
+ local_bh_enable();
+ return ret;
+}
+
+/**
+ * is_ofld_imm - check whether a packet can be sent as immediate data
+ * @skb: the packet
+ *
+ * Returns true if a packet can be sent as an offload WR with immediate
+ * data.
+ * FW_OFLD_TX_DATA_WR limits the payload to 255 bytes due to 8-bit field.
+ * However, FW_ULPTX_WR commands have a 256 byte immediate only
+ * payload limit.
+ */
+static inline int is_ofld_imm(const struct sk_buff *skb)
+{
+ struct work_request_hdr *req = (struct work_request_hdr *)skb->data;
+ unsigned long opcode = FW_WR_OP_G(ntohl(req->wr_hi));
+
+ if (unlikely(opcode == FW_ULPTX_WR))
+ return skb->len <= MAX_IMM_ULPTX_WR_LEN;
+ else if (opcode == FW_CRYPTO_LOOKASIDE_WR)
+ return skb->len <= SGE_MAX_WR_LEN;
+ else
+ return skb->len <= MAX_IMM_OFLD_TX_DATA_WR_LEN;
+}
+
+/**
+ * calc_tx_flits_ofld - calculate # of flits for an offload packet
+ * @skb: the packet
+ *
+ * Returns the number of flits needed for the given offload packet.
+ * These packets are already fully constructed and no additional headers
+ * will be added.
+ */
+static inline unsigned int calc_tx_flits_ofld(const struct sk_buff *skb)
+{
+ unsigned int flits, cnt;
+
+ if (is_ofld_imm(skb))
+ return DIV_ROUND_UP(skb->len, 8);
+
+ flits = skb_transport_offset(skb) / 8U; /* headers */
+ cnt = skb_shinfo(skb)->nr_frags;
+ if (skb_tail_pointer(skb) != skb_transport_header(skb))
+ cnt++;
+ return flits + sgl_len(cnt);
+}
+
+/**
+ * txq_stop_maperr - stop a Tx queue due to I/O MMU exhaustion
+ * @q: the queue to stop
+ *
+ * Mark a Tx queue stopped due to I/O MMU exhaustion and resulting
+ * inability to map packets. A periodic timer attempts to restart
+ * queues so marked.
+ */
+static void txq_stop_maperr(struct sge_uld_txq *q)
+{
+ q->mapping_err++;
+ q->q.stops++;
+ set_bit(q->q.cntxt_id - q->adap->sge.egr_start,
+ q->adap->sge.txq_maperr);
+}
+
+/**
+ * ofldtxq_stop - stop an offload Tx queue that has become full
+ * @q: the queue to stop
+ * @wr: the Work Request causing the queue to become full
+ *
+ * Stops an offload Tx queue that has become full and modifies the packet
+ * being written to request a wakeup.
+ */
+static void ofldtxq_stop(struct sge_uld_txq *q, struct fw_wr_hdr *wr)
+{
+ wr->lo |= htonl(FW_WR_EQUEQ_F | FW_WR_EQUIQ_F);
+ q->q.stops++;
+ q->full = 1;
+}
+
+/**
+ * service_ofldq - service/restart a suspended offload queue
+ * @q: the offload queue
+ *
+ * Services an offload Tx queue by moving packets from its Pending Send
+ * Queue to the Hardware TX ring. The function starts and ends with the
+ * Send Queue locked, but drops the lock while putting the skb at the
+ * head of the Send Queue onto the Hardware TX Ring. Dropping the lock
+ * allows more skbs to be added to the Send Queue by other threads.
+ * The packet being processed at the head of the Pending Send Queue is
+ * left on the queue in case we experience DMA Mapping errors, etc.
+ * and need to give up and restart later.
+ *
+ * service_ofldq() can be thought of as a task which opportunistically
+ * uses other threads execution contexts. We use the Offload Queue
+ * boolean "service_ofldq_running" to make sure that only one instance
+ * is ever running at a time ...
+ */
+static void service_ofldq(struct sge_uld_txq *q)
+ __must_hold(&q->sendq.lock)
+{
+ u64 *pos, *before, *end;
+ int credits;
+ struct sk_buff *skb;
+ struct sge_txq *txq;
+ unsigned int left;
+ unsigned int written = 0;
+ unsigned int flits, ndesc;
+
+ /* If another thread is currently in service_ofldq() processing the
+ * Pending Send Queue then there's nothing to do. Otherwise, flag
+ * that we're doing the work and continue. Examining/modifying
+ * the Offload Queue boolean "service_ofldq_running" must be done
+ * while holding the Pending Send Queue Lock.
+ */
+ if (q->service_ofldq_running)
+ return;
+ q->service_ofldq_running = true;
+
+ while ((skb = skb_peek(&q->sendq)) != NULL && !q->full) {
+ /* We drop the lock while we're working with the skb at the
+ * head of the Pending Send Queue. This allows more skbs to
+ * be added to the Pending Send Queue while we're working on
+ * this one. We don't need to lock to guard the TX Ring
+ * updates because only one thread of execution is ever
+ * allowed into service_ofldq() at a time.
+ */
+ spin_unlock(&q->sendq.lock);
+
+ cxgb4_reclaim_completed_tx(q->adap, &q->q, false);
+
+ flits = skb->priority; /* previously saved */
+ ndesc = flits_to_desc(flits);
+ credits = txq_avail(&q->q) - ndesc;
+ BUG_ON(credits < 0);
+ if (unlikely(credits < TXQ_STOP_THRES))
+ ofldtxq_stop(q, (struct fw_wr_hdr *)skb->data);
+
+ pos = (u64 *)&q->q.desc[q->q.pidx];
+ if (is_ofld_imm(skb))
+ cxgb4_inline_tx_skb(skb, &q->q, pos);
+ else if (cxgb4_map_skb(q->adap->pdev_dev, skb,
+ (dma_addr_t *)skb->head)) {
+ txq_stop_maperr(q);
+ spin_lock(&q->sendq.lock);
+ break;
+ } else {
+ int last_desc, hdr_len = skb_transport_offset(skb);
+
+ /* The WR headers may not fit within one descriptor.
+ * So we need to deal with wrap-around here.
+ */
+ before = (u64 *)pos;
+ end = (u64 *)pos + flits;
+ txq = &q->q;
+ pos = (void *)inline_tx_skb_header(skb, &q->q,
+ (void *)pos,
+ hdr_len);
+ if (before > (u64 *)pos) {
+ left = (u8 *)end - (u8 *)txq->stat;
+ end = (void *)txq->desc + left;
+ }
+
+ /* If current position is already at the end of the
+ * ofld queue, reset the current to point to
+ * start of the queue and update the end ptr as well.
+ */
+ if (pos == (u64 *)txq->stat) {
+ left = (u8 *)end - (u8 *)txq->stat;
+ end = (void *)txq->desc + left;
+ pos = (void *)txq->desc;
+ }
+
+ cxgb4_write_sgl(skb, &q->q, (void *)pos,
+ end, hdr_len,
+ (dma_addr_t *)skb->head);
+#ifdef CONFIG_NEED_DMA_MAP_STATE
+ skb->dev = q->adap->port[0];
+ skb->destructor = deferred_unmap_destructor;
+#endif
+ last_desc = q->q.pidx + ndesc - 1;
+ if (last_desc >= q->q.size)
+ last_desc -= q->q.size;
+ q->q.sdesc[last_desc].skb = skb;
+ }
+
+ txq_advance(&q->q, ndesc);
+ written += ndesc;
+ if (unlikely(written > 32)) {
+ cxgb4_ring_tx_db(q->adap, &q->q, written);
+ written = 0;
+ }
+
+ /* Reacquire the Pending Send Queue Lock so we can unlink the
+ * skb we've just successfully transferred to the TX Ring and
+ * loop for the next skb which may be at the head of the
+ * Pending Send Queue.
+ */
+ spin_lock(&q->sendq.lock);
+ __skb_unlink(skb, &q->sendq);
+ if (is_ofld_imm(skb))
+ kfree_skb(skb);
+ }
+ if (likely(written))
+ cxgb4_ring_tx_db(q->adap, &q->q, written);
+
+ /*Indicate that no thread is processing the Pending Send Queue
+ * currently.
+ */
+ q->service_ofldq_running = false;
+}
+
+/**
+ * ofld_xmit - send a packet through an offload queue
+ * @q: the Tx offload queue
+ * @skb: the packet
+ *
+ * Send an offload packet through an SGE offload queue.
+ */
+static int ofld_xmit(struct sge_uld_txq *q, struct sk_buff *skb)
+{
+ skb->priority = calc_tx_flits_ofld(skb); /* save for restart */
+ spin_lock(&q->sendq.lock);
+
+ /* Queue the new skb onto the Offload Queue's Pending Send Queue. If
+ * that results in this new skb being the only one on the queue, start
+ * servicing it. If there are other skbs already on the list, then
+ * either the queue is currently being processed or it's been stopped
+ * for some reason and it'll be restarted at a later time. Restart
+ * paths are triggered by events like experiencing a DMA Mapping Error
+ * or filling the Hardware TX Ring.
+ */
+ __skb_queue_tail(&q->sendq, skb);
+ if (q->sendq.qlen == 1)
+ service_ofldq(q);
+
+ spin_unlock(&q->sendq.lock);
+ return NET_XMIT_SUCCESS;
+}
+
+/**
+ * restart_ofldq - restart a suspended offload queue
+ * @t: pointer to the tasklet associated with this handler
+ *
+ * Resumes transmission on a suspended Tx offload queue.
+ */
+static void restart_ofldq(struct tasklet_struct *t)
+{
+ struct sge_uld_txq *q = from_tasklet(q, t, qresume_tsk);
+
+ spin_lock(&q->sendq.lock);
+ q->full = 0; /* the queue actually is completely empty now */
+ service_ofldq(q);
+ spin_unlock(&q->sendq.lock);
+}
+
+/**
+ * skb_txq - return the Tx queue an offload packet should use
+ * @skb: the packet
+ *
+ * Returns the Tx queue an offload packet should use as indicated by bits
+ * 1-15 in the packet's queue_mapping.
+ */
+static inline unsigned int skb_txq(const struct sk_buff *skb)
+{
+ return skb->queue_mapping >> 1;
+}
+
+/**
+ * is_ctrl_pkt - return whether an offload packet is a control packet
+ * @skb: the packet
+ *
+ * Returns whether an offload packet should use an OFLD or a CTRL
+ * Tx queue as indicated by bit 0 in the packet's queue_mapping.
+ */
+static inline unsigned int is_ctrl_pkt(const struct sk_buff *skb)
+{
+ return skb->queue_mapping & 1;
+}
+
+static inline int uld_send(struct adapter *adap, struct sk_buff *skb,
+ unsigned int tx_uld_type)
+{
+ struct sge_uld_txq_info *txq_info;
+ struct sge_uld_txq *txq;
+ unsigned int idx = skb_txq(skb);
+
+ if (unlikely(is_ctrl_pkt(skb))) {
+ /* Single ctrl queue is a requirement for LE workaround path */
+ if (adap->tids.nsftids)
+ idx = 0;
+ return ctrl_xmit(&adap->sge.ctrlq[idx], skb);
+ }
+
+ txq_info = adap->sge.uld_txq_info[tx_uld_type];
+ if (unlikely(!txq_info)) {
+ WARN_ON(true);
+ kfree_skb(skb);
+ return NET_XMIT_DROP;
+ }
+
+ txq = &txq_info->uldtxq[idx];
+ return ofld_xmit(txq, skb);
+}
+
+/**
+ * t4_ofld_send - send an offload packet
+ * @adap: the adapter
+ * @skb: the packet
+ *
+ * Sends an offload packet. We use the packet queue_mapping to select the
+ * appropriate Tx queue as follows: bit 0 indicates whether the packet
+ * should be sent as regular or control, bits 1-15 select the queue.
+ */
+int t4_ofld_send(struct adapter *adap, struct sk_buff *skb)
+{
+ int ret;
+
+ local_bh_disable();
+ ret = uld_send(adap, skb, CXGB4_TX_OFLD);
+ local_bh_enable();
+ return ret;
+}
+
+/**
+ * cxgb4_ofld_send - send an offload packet
+ * @dev: the net device
+ * @skb: the packet
+ *
+ * Sends an offload packet. This is an exported version of @t4_ofld_send,
+ * intended for ULDs.
+ */
+int cxgb4_ofld_send(struct net_device *dev, struct sk_buff *skb)
+{
+ return t4_ofld_send(netdev2adap(dev), skb);
+}
+EXPORT_SYMBOL(cxgb4_ofld_send);
+
+static void *inline_tx_header(const void *src,
+ const struct sge_txq *q,
+ void *pos, int length)
+{
+ int left = (void *)q->stat - pos;
+ u64 *p;
+
+ if (likely(length <= left)) {
+ memcpy(pos, src, length);
+ pos += length;
+ } else {
+ memcpy(pos, src, left);
+ memcpy(q->desc, src + left, length - left);
+ pos = (void *)q->desc + (length - left);
+ }
+ /* 0-pad to multiple of 16 */
+ p = PTR_ALIGN(pos, 8);
+ if ((uintptr_t)p & 8) {
+ *p = 0;
+ return p + 1;
+ }
+ return p;
+}
+
+/**
+ * ofld_xmit_direct - copy a WR into offload queue
+ * @q: the Tx offload queue
+ * @src: location of WR
+ * @len: WR length
+ *
+ * Copy an immediate WR into an uncontended SGE offload queue.
+ */
+static int ofld_xmit_direct(struct sge_uld_txq *q, const void *src,
+ unsigned int len)
+{
+ unsigned int ndesc;
+ int credits;
+ u64 *pos;
+
+ /* Use the lower limit as the cut-off */
+ if (len > MAX_IMM_OFLD_TX_DATA_WR_LEN) {
+ WARN_ON(1);
+ return NET_XMIT_DROP;
+ }
+
+ /* Don't return NET_XMIT_CN here as the current
+ * implementation doesn't queue the request
+ * using an skb when the following conditions not met
+ */
+ if (!spin_trylock(&q->sendq.lock))
+ return NET_XMIT_DROP;
+
+ if (q->full || !skb_queue_empty(&q->sendq) ||
+ q->service_ofldq_running) {
+ spin_unlock(&q->sendq.lock);
+ return NET_XMIT_DROP;
+ }
+ ndesc = flits_to_desc(DIV_ROUND_UP(len, 8));
+ credits = txq_avail(&q->q) - ndesc;
+ pos = (u64 *)&q->q.desc[q->q.pidx];
+
+ /* ofldtxq_stop modifies WR header in-situ */
+ inline_tx_header(src, &q->q, pos, len);
+ if (unlikely(credits < TXQ_STOP_THRES))
+ ofldtxq_stop(q, (struct fw_wr_hdr *)pos);
+ txq_advance(&q->q, ndesc);
+ cxgb4_ring_tx_db(q->adap, &q->q, ndesc);
+
+ spin_unlock(&q->sendq.lock);
+ return NET_XMIT_SUCCESS;
+}
+
+int cxgb4_immdata_send(struct net_device *dev, unsigned int idx,
+ const void *src, unsigned int len)
+{
+ struct sge_uld_txq_info *txq_info;
+ struct sge_uld_txq *txq;
+ struct adapter *adap;
+ int ret;
+
+ adap = netdev2adap(dev);
+
+ local_bh_disable();
+ txq_info = adap->sge.uld_txq_info[CXGB4_TX_OFLD];
+ if (unlikely(!txq_info)) {
+ WARN_ON(true);
+ local_bh_enable();
+ return NET_XMIT_DROP;
+ }
+ txq = &txq_info->uldtxq[idx];
+
+ ret = ofld_xmit_direct(txq, src, len);
+ local_bh_enable();
+ return net_xmit_eval(ret);
+}
+EXPORT_SYMBOL(cxgb4_immdata_send);
+
+/**
+ * t4_crypto_send - send crypto packet
+ * @adap: the adapter
+ * @skb: the packet
+ *
+ * Sends crypto packet. We use the packet queue_mapping to select the
+ * appropriate Tx queue as follows: bit 0 indicates whether the packet
+ * should be sent as regular or control, bits 1-15 select the queue.
+ */
+static int t4_crypto_send(struct adapter *adap, struct sk_buff *skb)
+{
+ int ret;
+
+ local_bh_disable();
+ ret = uld_send(adap, skb, CXGB4_TX_CRYPTO);
+ local_bh_enable();
+ return ret;
+}
+
+/**
+ * cxgb4_crypto_send - send crypto packet
+ * @dev: the net device
+ * @skb: the packet
+ *
+ * Sends crypto packet. This is an exported version of @t4_crypto_send,
+ * intended for ULDs.
+ */
+int cxgb4_crypto_send(struct net_device *dev, struct sk_buff *skb)
+{
+ return t4_crypto_send(netdev2adap(dev), skb);
+}
+EXPORT_SYMBOL(cxgb4_crypto_send);
+
+static inline void copy_frags(struct sk_buff *skb,
+ const struct pkt_gl *gl, unsigned int offset)
+{
+ int i;
+
+ /* usually there's just one frag */
+ __skb_fill_page_desc(skb, 0, gl->frags[0].page,
+ gl->frags[0].offset + offset,
+ gl->frags[0].size - offset);
+ skb_shinfo(skb)->nr_frags = gl->nfrags;
+ for (i = 1; i < gl->nfrags; i++)
+ __skb_fill_page_desc(skb, i, gl->frags[i].page,
+ gl->frags[i].offset,
+ gl->frags[i].size);
+
+ /* get a reference to the last page, we don't own it */
+ get_page(gl->frags[gl->nfrags - 1].page);
+}
+
+/**
+ * cxgb4_pktgl_to_skb - build an sk_buff from a packet gather list
+ * @gl: the gather list
+ * @skb_len: size of sk_buff main body if it carries fragments
+ * @pull_len: amount of data to move to the sk_buff's main body
+ *
+ * Builds an sk_buff from the given packet gather list. Returns the
+ * sk_buff or %NULL if sk_buff allocation failed.
+ */
+struct sk_buff *cxgb4_pktgl_to_skb(const struct pkt_gl *gl,
+ unsigned int skb_len, unsigned int pull_len)
+{
+ struct sk_buff *skb;
+
+ /*
+ * Below we rely on RX_COPY_THRES being less than the smallest Rx buffer
+ * size, which is expected since buffers are at least PAGE_SIZEd.
+ * In this case packets up to RX_COPY_THRES have only one fragment.
+ */
+ if (gl->tot_len <= RX_COPY_THRES) {
+ skb = dev_alloc_skb(gl->tot_len);
+ if (unlikely(!skb))
+ goto out;
+ __skb_put(skb, gl->tot_len);
+ skb_copy_to_linear_data(skb, gl->va, gl->tot_len);
+ } else {
+ skb = dev_alloc_skb(skb_len);
+ if (unlikely(!skb))
+ goto out;
+ __skb_put(skb, pull_len);
+ skb_copy_to_linear_data(skb, gl->va, pull_len);
+
+ copy_frags(skb, gl, pull_len);
+ skb->len = gl->tot_len;
+ skb->data_len = skb->len - pull_len;
+ skb->truesize += skb->data_len;
+ }
+out: return skb;
+}
+EXPORT_SYMBOL(cxgb4_pktgl_to_skb);
+
+/**
+ * t4_pktgl_free - free a packet gather list
+ * @gl: the gather list
+ *
+ * Releases the pages of a packet gather list. We do not own the last
+ * page on the list and do not free it.
+ */
+static void t4_pktgl_free(const struct pkt_gl *gl)
+{
+ int n;
+ const struct page_frag *p;
+
+ for (p = gl->frags, n = gl->nfrags - 1; n--; p++)
+ put_page(p->page);
+}
+
+/*
+ * Process an MPS trace packet. Give it an unused protocol number so it won't
+ * be delivered to anyone and send it to the stack for capture.
+ */
+static noinline int handle_trace_pkt(struct adapter *adap,
+ const struct pkt_gl *gl)
+{
+ struct sk_buff *skb;
+
+ skb = cxgb4_pktgl_to_skb(gl, RX_PULL_LEN, RX_PULL_LEN);
+ if (unlikely(!skb)) {
+ t4_pktgl_free(gl);
+ return 0;
+ }
+
+ if (is_t4(adap->params.chip))
+ __skb_pull(skb, sizeof(struct cpl_trace_pkt));
+ else
+ __skb_pull(skb, sizeof(struct cpl_t5_trace_pkt));
+
+ skb_reset_mac_header(skb);
+ skb->protocol = htons(0xffff);
+ skb->dev = adap->port[0];
+ netif_receive_skb(skb);
+ return 0;
+}
+
+/**
+ * cxgb4_sgetim_to_hwtstamp - convert sge time stamp to hw time stamp
+ * @adap: the adapter
+ * @hwtstamps: time stamp structure to update
+ * @sgetstamp: 60bit iqe timestamp
+ *
+ * Every ingress queue entry has the 60-bit timestamp, convert that timestamp
+ * which is in Core Clock ticks into ktime_t and assign it
+ **/
+static void cxgb4_sgetim_to_hwtstamp(struct adapter *adap,
+ struct skb_shared_hwtstamps *hwtstamps,
+ u64 sgetstamp)
+{
+ u64 ns;
+ u64 tmp = (sgetstamp * 1000 * 1000 + adap->params.vpd.cclk / 2);
+
+ ns = div_u64(tmp, adap->params.vpd.cclk);
+
+ memset(hwtstamps, 0, sizeof(*hwtstamps));
+ hwtstamps->hwtstamp = ns_to_ktime(ns);
+}
+
+static void do_gro(struct sge_eth_rxq *rxq, const struct pkt_gl *gl,
+ const struct cpl_rx_pkt *pkt, unsigned long tnl_hdr_len)
+{
+ struct adapter *adapter = rxq->rspq.adap;
+ struct sge *s = &adapter->sge;
+ struct port_info *pi;
+ int ret;
+ struct sk_buff *skb;
+
+ skb = napi_get_frags(&rxq->rspq.napi);
+ if (unlikely(!skb)) {
+ t4_pktgl_free(gl);
+ rxq->stats.rx_drops++;
+ return;
+ }
+
+ copy_frags(skb, gl, s->pktshift);
+ if (tnl_hdr_len)
+ skb->csum_level = 1;
+ skb->len = gl->tot_len - s->pktshift;
+ skb->data_len = skb->len;
+ skb->truesize += skb->data_len;
+ skb->ip_summed = CHECKSUM_UNNECESSARY;
+ skb_record_rx_queue(skb, rxq->rspq.idx);
+ pi = netdev_priv(skb->dev);
+ if (pi->rxtstamp)
+ cxgb4_sgetim_to_hwtstamp(adapter, skb_hwtstamps(skb),
+ gl->sgetstamp);
+ if (rxq->rspq.netdev->features & NETIF_F_RXHASH)
+ skb_set_hash(skb, (__force u32)pkt->rsshdr.hash_val,
+ PKT_HASH_TYPE_L3);
+
+ if (unlikely(pkt->vlan_ex)) {
+ __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), ntohs(pkt->vlan));
+ rxq->stats.vlan_ex++;
+ }
+ ret = napi_gro_frags(&rxq->rspq.napi);
+ if (ret == GRO_HELD)
+ rxq->stats.lro_pkts++;
+ else if (ret == GRO_MERGED || ret == GRO_MERGED_FREE)
+ rxq->stats.lro_merged++;
+ rxq->stats.pkts++;
+ rxq->stats.rx_cso++;
+}
+
+enum {
+ RX_NON_PTP_PKT = 0,
+ RX_PTP_PKT_SUC = 1,
+ RX_PTP_PKT_ERR = 2
+};
+
+/**
+ * t4_systim_to_hwstamp - read hardware time stamp
+ * @adapter: the adapter
+ * @skb: the packet
+ *
+ * Read Time Stamp from MPS packet and insert in skb which
+ * is forwarded to PTP application
+ */
+static noinline int t4_systim_to_hwstamp(struct adapter *adapter,
+ struct sk_buff *skb)
+{
+ struct skb_shared_hwtstamps *hwtstamps;
+ struct cpl_rx_mps_pkt *cpl = NULL;
+ unsigned char *data;
+ int offset;
+
+ cpl = (struct cpl_rx_mps_pkt *)skb->data;
+ if (!(CPL_RX_MPS_PKT_TYPE_G(ntohl(cpl->op_to_r1_hi)) &
+ X_CPL_RX_MPS_PKT_TYPE_PTP))
+ return RX_PTP_PKT_ERR;
+
+ data = skb->data + sizeof(*cpl);
+ skb_pull(skb, 2 * sizeof(u64) + sizeof(struct cpl_rx_mps_pkt));
+ offset = ETH_HLEN + IPV4_HLEN(skb->data) + UDP_HLEN;
+ if (skb->len < offset + OFF_PTP_SEQUENCE_ID + sizeof(short))
+ return RX_PTP_PKT_ERR;
+
+ hwtstamps = skb_hwtstamps(skb);
+ memset(hwtstamps, 0, sizeof(*hwtstamps));
+ hwtstamps->hwtstamp = ns_to_ktime(get_unaligned_be64(data));
+
+ return RX_PTP_PKT_SUC;
+}
+
+/**
+ * t4_rx_hststamp - Recv PTP Event Message
+ * @adapter: the adapter
+ * @rsp: the response queue descriptor holding the RX_PKT message
+ * @rxq: the response queue holding the RX_PKT message
+ * @skb: the packet
+ *
+ * PTP enabled and MPS packet, read HW timestamp
+ */
+static int t4_rx_hststamp(struct adapter *adapter, const __be64 *rsp,
+ struct sge_eth_rxq *rxq, struct sk_buff *skb)
+{
+ int ret;
+
+ if (unlikely((*(u8 *)rsp == CPL_RX_MPS_PKT) &&
+ !is_t4(adapter->params.chip))) {
+ ret = t4_systim_to_hwstamp(adapter, skb);
+ if (ret == RX_PTP_PKT_ERR) {
+ kfree_skb(skb);
+ rxq->stats.rx_drops++;
+ }
+ return ret;
+ }
+ return RX_NON_PTP_PKT;
+}
+
+/**
+ * t4_tx_hststamp - Loopback PTP Transmit Event Message
+ * @adapter: the adapter
+ * @skb: the packet
+ * @dev: the ingress net device
+ *
+ * Read hardware timestamp for the loopback PTP Tx event message
+ */
+static int t4_tx_hststamp(struct adapter *adapter, struct sk_buff *skb,
+ struct net_device *dev)
+{
+ struct port_info *pi = netdev_priv(dev);
+
+ if (!is_t4(adapter->params.chip) && adapter->ptp_tx_skb) {
+ cxgb4_ptp_read_hwstamp(adapter, pi);
+ kfree_skb(skb);
+ return 0;
+ }
+ return 1;
+}
+
+/**
+ * t4_tx_completion_handler - handle CPL_SGE_EGR_UPDATE messages
+ * @rspq: Ethernet RX Response Queue associated with Ethernet TX Queue
+ * @rsp: Response Entry pointer into Response Queue
+ * @gl: Gather List pointer
+ *
+ * For adapters which support the SGE Doorbell Queue Timer facility,
+ * we configure the Ethernet TX Queues to send CIDX Updates to the
+ * Associated Ethernet RX Response Queue with CPL_SGE_EGR_UPDATE
+ * messages. This adds a small load to PCIe Link RX bandwidth and,
+ * potentially, higher CPU Interrupt load, but allows us to respond
+ * much more quickly to the CIDX Updates. This is important for
+ * Upper Layer Software which isn't willing to have a large amount
+ * of TX Data outstanding before receiving DMA Completions.
+ */
+static void t4_tx_completion_handler(struct sge_rspq *rspq,
+ const __be64 *rsp,
+ const struct pkt_gl *gl)
+{
+ u8 opcode = ((const struct rss_header *)rsp)->opcode;
+ struct port_info *pi = netdev_priv(rspq->netdev);
+ struct adapter *adapter = rspq->adap;
+ struct sge *s = &adapter->sge;
+ struct sge_eth_txq *txq;
+
+ /* skip RSS header */
+ rsp++;
+
+ /* FW can send EGR_UPDATEs encapsulated in a CPL_FW4_MSG.
+ */
+ if (unlikely(opcode == CPL_FW4_MSG &&
+ ((const struct cpl_fw4_msg *)rsp)->type ==
+ FW_TYPE_RSSCPL)) {
+ rsp++;
+ opcode = ((const struct rss_header *)rsp)->opcode;
+ rsp++;
+ }
+
+ if (unlikely(opcode != CPL_SGE_EGR_UPDATE)) {
+ pr_info("%s: unexpected FW4/CPL %#x on Rx queue\n",
+ __func__, opcode);
+ return;
+ }
+
+ txq = &s->ethtxq[pi->first_qset + rspq->idx];
+
+ /* We've got the Hardware Consumer Index Update in the Egress Update
+ * message. These Egress Update messages will be our sole CIDX Updates
+ * we get since we don't want to chew up PCIe bandwidth for both Ingress
+ * Messages and Status Page writes. However, The code which manages
+ * reclaiming successfully DMA'ed TX Work Requests uses the CIDX value
+ * stored in the Status Page at the end of the TX Queue. It's easiest
+ * to simply copy the CIDX Update value from the Egress Update message
+ * to the Status Page. Also note that no Endian issues need to be
+ * considered here since both are Big Endian and we're just copying
+ * bytes consistently ...
+ */
+ if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5) {
+ struct cpl_sge_egr_update *egr;
+
+ egr = (struct cpl_sge_egr_update *)rsp;
+ WRITE_ONCE(txq->q.stat->cidx, egr->cidx);
+ }
+
+ t4_sge_eth_txq_egress_update(adapter, txq, -1);
+}
+
+static int cxgb4_validate_lb_pkt(struct port_info *pi, const struct pkt_gl *si)
+{
+ struct adapter *adap = pi->adapter;
+ struct cxgb4_ethtool_lb_test *lb;
+ struct sge *s = &adap->sge;
+ struct net_device *netdev;
+ u8 *data;
+ int i;
+
+ netdev = adap->port[pi->port_id];
+ lb = &pi->ethtool_lb;
+ data = si->va + s->pktshift;
+
+ i = ETH_ALEN;
+ if (!ether_addr_equal(data + i, netdev->dev_addr))
+ return -1;
+
+ i += ETH_ALEN;
+ if (strcmp(&data[i], CXGB4_SELFTEST_LB_STR))
+ lb->result = -EIO;
+
+ complete(&lb->completion);
+ return 0;
+}
+
+/**
+ * t4_ethrx_handler - process an ingress ethernet packet
+ * @q: the response queue that received the packet
+ * @rsp: the response queue descriptor holding the RX_PKT message
+ * @si: the gather list of packet fragments
+ *
+ * Process an ingress ethernet packet and deliver it to the stack.
+ */
+int t4_ethrx_handler(struct sge_rspq *q, const __be64 *rsp,
+ const struct pkt_gl *si)
+{
+ bool csum_ok;
+ struct sk_buff *skb;
+ const struct cpl_rx_pkt *pkt;
+ struct sge_eth_rxq *rxq = container_of(q, struct sge_eth_rxq, rspq);
+ struct adapter *adapter = q->adap;
+ struct sge *s = &q->adap->sge;
+ int cpl_trace_pkt = is_t4(q->adap->params.chip) ?
+ CPL_TRACE_PKT : CPL_TRACE_PKT_T5;
+ u16 err_vec, tnl_hdr_len = 0;
+ struct port_info *pi;
+ int ret = 0;
+
+ pi = netdev_priv(q->netdev);
+ /* If we're looking at TX Queue CIDX Update, handle that separately
+ * and return.
+ */
+ if (unlikely((*(u8 *)rsp == CPL_FW4_MSG) ||
+ (*(u8 *)rsp == CPL_SGE_EGR_UPDATE))) {
+ t4_tx_completion_handler(q, rsp, si);
+ return 0;
+ }
+
+ if (unlikely(*(u8 *)rsp == cpl_trace_pkt))
+ return handle_trace_pkt(q->adap, si);
+
+ pkt = (const struct cpl_rx_pkt *)rsp;
+ /* Compressed error vector is enabled for T6 only */
+ if (q->adap->params.tp.rx_pkt_encap) {
+ err_vec = T6_COMPR_RXERR_VEC_G(be16_to_cpu(pkt->err_vec));
+ tnl_hdr_len = T6_RX_TNLHDR_LEN_G(ntohs(pkt->err_vec));
+ } else {
+ err_vec = be16_to_cpu(pkt->err_vec);
+ }
+
+ csum_ok = pkt->csum_calc && !err_vec &&
+ (q->netdev->features & NETIF_F_RXCSUM);
+
+ if (err_vec)
+ rxq->stats.bad_rx_pkts++;
+
+ if (unlikely(pi->ethtool_lb.loopback && pkt->iff >= NCHAN)) {
+ ret = cxgb4_validate_lb_pkt(pi, si);
+ if (!ret)
+ return 0;
+ }
+
+ if (((pkt->l2info & htonl(RXF_TCP_F)) ||
+ tnl_hdr_len) &&
+ (q->netdev->features & NETIF_F_GRO) && csum_ok && !pkt->ip_frag) {
+ do_gro(rxq, si, pkt, tnl_hdr_len);
+ return 0;
+ }
+
+ skb = cxgb4_pktgl_to_skb(si, RX_PKT_SKB_LEN, RX_PULL_LEN);
+ if (unlikely(!skb)) {
+ t4_pktgl_free(si);
+ rxq->stats.rx_drops++;
+ return 0;
+ }
+
+ /* Handle PTP Event Rx packet */
+ if (unlikely(pi->ptp_enable)) {
+ ret = t4_rx_hststamp(adapter, rsp, rxq, skb);
+ if (ret == RX_PTP_PKT_ERR)
+ return 0;
+ }
+ if (likely(!ret))
+ __skb_pull(skb, s->pktshift); /* remove ethernet header pad */
+
+ /* Handle the PTP Event Tx Loopback packet */
+ if (unlikely(pi->ptp_enable && !ret &&
+ (pkt->l2info & htonl(RXF_UDP_F)) &&
+ cxgb4_ptp_is_ptp_rx(skb))) {
+ if (!t4_tx_hststamp(adapter, skb, q->netdev))
+ return 0;
+ }
+
+ skb->protocol = eth_type_trans(skb, q->netdev);
+ skb_record_rx_queue(skb, q->idx);
+ if (skb->dev->features & NETIF_F_RXHASH)
+ skb_set_hash(skb, (__force u32)pkt->rsshdr.hash_val,
+ PKT_HASH_TYPE_L3);
+
+ rxq->stats.pkts++;
+
+ if (pi->rxtstamp)
+ cxgb4_sgetim_to_hwtstamp(q->adap, skb_hwtstamps(skb),
+ si->sgetstamp);
+ if (csum_ok && (pkt->l2info & htonl(RXF_UDP_F | RXF_TCP_F))) {
+ if (!pkt->ip_frag) {
+ skb->ip_summed = CHECKSUM_UNNECESSARY;
+ rxq->stats.rx_cso++;
+ } else if (pkt->l2info & htonl(RXF_IP_F)) {
+ __sum16 c = (__force __sum16)pkt->csum;
+ skb->csum = csum_unfold(c);
+
+ if (tnl_hdr_len) {
+ skb->ip_summed = CHECKSUM_UNNECESSARY;
+ skb->csum_level = 1;
+ } else {
+ skb->ip_summed = CHECKSUM_COMPLETE;
+ }
+ rxq->stats.rx_cso++;
+ }
+ } else {
+ skb_checksum_none_assert(skb);
+#ifdef CONFIG_CHELSIO_T4_FCOE
+#define CPL_RX_PKT_FLAGS (RXF_PSH_F | RXF_SYN_F | RXF_UDP_F | \
+ RXF_TCP_F | RXF_IP_F | RXF_IP6_F | RXF_LRO_F)
+
+ if (!(pkt->l2info & cpu_to_be32(CPL_RX_PKT_FLAGS))) {
+ if ((pkt->l2info & cpu_to_be32(RXF_FCOE_F)) &&
+ (pi->fcoe.flags & CXGB_FCOE_ENABLED)) {
+ if (q->adap->params.tp.rx_pkt_encap)
+ csum_ok = err_vec &
+ T6_COMPR_RXERR_SUM_F;
+ else
+ csum_ok = err_vec & RXERR_CSUM_F;
+ if (!csum_ok)
+ skb->ip_summed = CHECKSUM_UNNECESSARY;
+ }
+ }
+
+#undef CPL_RX_PKT_FLAGS
+#endif /* CONFIG_CHELSIO_T4_FCOE */
+ }
+
+ if (unlikely(pkt->vlan_ex)) {
+ __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), ntohs(pkt->vlan));
+ rxq->stats.vlan_ex++;
+ }
+ skb_mark_napi_id(skb, &q->napi);
+ netif_receive_skb(skb);
+ return 0;
+}
+
+/**
+ * restore_rx_bufs - put back a packet's Rx buffers
+ * @si: the packet gather list
+ * @q: the SGE free list
+ * @frags: number of FL buffers to restore
+ *
+ * Puts back on an FL the Rx buffers associated with @si. The buffers
+ * have already been unmapped and are left unmapped, we mark them so to
+ * prevent further unmapping attempts.
+ *
+ * This function undoes a series of @unmap_rx_buf calls when we find out
+ * that the current packet can't be processed right away afterall and we
+ * need to come back to it later. This is a very rare event and there's
+ * no effort to make this particularly efficient.
+ */
+static void restore_rx_bufs(const struct pkt_gl *si, struct sge_fl *q,
+ int frags)
+{
+ struct rx_sw_desc *d;
+
+ while (frags--) {
+ if (q->cidx == 0)
+ q->cidx = q->size - 1;
+ else
+ q->cidx--;
+ d = &q->sdesc[q->cidx];
+ d->page = si->frags[frags].page;
+ d->dma_addr |= RX_UNMAPPED_BUF;
+ q->avail++;
+ }
+}
+
+/**
+ * is_new_response - check if a response is newly written
+ * @r: the response descriptor
+ * @q: the response queue
+ *
+ * Returns true if a response descriptor contains a yet unprocessed
+ * response.
+ */
+static inline bool is_new_response(const struct rsp_ctrl *r,
+ const struct sge_rspq *q)
+{
+ return (r->type_gen >> RSPD_GEN_S) == q->gen;
+}
+
+/**
+ * rspq_next - advance to the next entry in a response queue
+ * @q: the queue
+ *
+ * Updates the state of a response queue to advance it to the next entry.
+ */
+static inline void rspq_next(struct sge_rspq *q)
+{
+ q->cur_desc = (void *)q->cur_desc + q->iqe_len;
+ if (unlikely(++q->cidx == q->size)) {
+ q->cidx = 0;
+ q->gen ^= 1;
+ q->cur_desc = q->desc;
+ }
+}
+
+/**
+ * process_responses - process responses from an SGE response queue
+ * @q: the ingress queue to process
+ * @budget: how many responses can be processed in this round
+ *
+ * Process responses from an SGE response queue up to the supplied budget.
+ * Responses include received packets as well as control messages from FW
+ * or HW.
+ *
+ * Additionally choose the interrupt holdoff time for the next interrupt
+ * on this queue. If the system is under memory shortage use a fairly
+ * long delay to help recovery.
+ */
+static int process_responses(struct sge_rspq *q, int budget)
+{
+ int ret, rsp_type;
+ int budget_left = budget;
+ const struct rsp_ctrl *rc;
+ struct sge_eth_rxq *rxq = container_of(q, struct sge_eth_rxq, rspq);
+ struct adapter *adapter = q->adap;
+ struct sge *s = &adapter->sge;
+
+ while (likely(budget_left)) {
+ rc = (void *)q->cur_desc + (q->iqe_len - sizeof(*rc));
+ if (!is_new_response(rc, q)) {
+ if (q->flush_handler)
+ q->flush_handler(q);
+ break;
+ }
+
+ dma_rmb();
+ rsp_type = RSPD_TYPE_G(rc->type_gen);
+ if (likely(rsp_type == RSPD_TYPE_FLBUF_X)) {
+ struct page_frag *fp;
+ struct pkt_gl si;
+ const struct rx_sw_desc *rsd;
+ u32 len = ntohl(rc->pldbuflen_qid), bufsz, frags;
+
+ if (len & RSPD_NEWBUF_F) {
+ if (likely(q->offset > 0)) {
+ free_rx_bufs(q->adap, &rxq->fl, 1);
+ q->offset = 0;
+ }
+ len = RSPD_LEN_G(len);
+ }
+ si.tot_len = len;
+
+ /* gather packet fragments */
+ for (frags = 0, fp = si.frags; ; frags++, fp++) {
+ rsd = &rxq->fl.sdesc[rxq->fl.cidx];
+ bufsz = get_buf_size(adapter, rsd);
+ fp->page = rsd->page;
+ fp->offset = q->offset;
+ fp->size = min(bufsz, len);
+ len -= fp->size;
+ if (!len)
+ break;
+ unmap_rx_buf(q->adap, &rxq->fl);
+ }
+
+ si.sgetstamp = SGE_TIMESTAMP_G(
+ be64_to_cpu(rc->last_flit));
+ /*
+ * Last buffer remains mapped so explicitly make it
+ * coherent for CPU access.
+ */
+ dma_sync_single_for_cpu(q->adap->pdev_dev,
+ get_buf_addr(rsd),
+ fp->size, DMA_FROM_DEVICE);
+
+ si.va = page_address(si.frags[0].page) +
+ si.frags[0].offset;
+ prefetch(si.va);
+
+ si.nfrags = frags + 1;
+ ret = q->handler(q, q->cur_desc, &si);
+ if (likely(ret == 0))
+ q->offset += ALIGN(fp->size, s->fl_align);
+ else
+ restore_rx_bufs(&si, &rxq->fl, frags);
+ } else if (likely(rsp_type == RSPD_TYPE_CPL_X)) {
+ ret = q->handler(q, q->cur_desc, NULL);
+ } else {
+ ret = q->handler(q, (const __be64 *)rc, CXGB4_MSG_AN);
+ }
+
+ if (unlikely(ret)) {
+ /* couldn't process descriptor, back off for recovery */
+ q->next_intr_params = QINTR_TIMER_IDX_V(NOMEM_TMR_IDX);
+ break;
+ }
+
+ rspq_next(q);
+ budget_left--;
+ }
+
+ if (q->offset >= 0 && fl_cap(&rxq->fl) - rxq->fl.avail >= 16)
+ __refill_fl(q->adap, &rxq->fl);
+ return budget - budget_left;
+}
+
+/**
+ * napi_rx_handler - the NAPI handler for Rx processing
+ * @napi: the napi instance
+ * @budget: how many packets we can process in this round
+ *
+ * Handler for new data events when using NAPI. This does not need any
+ * locking or protection from interrupts as data interrupts are off at
+ * this point and other adapter interrupts do not interfere (the latter
+ * in not a concern at all with MSI-X as non-data interrupts then have
+ * a separate handler).
+ */
+static int napi_rx_handler(struct napi_struct *napi, int budget)
+{
+ unsigned int params;
+ struct sge_rspq *q = container_of(napi, struct sge_rspq, napi);
+ int work_done;
+ u32 val;
+
+ work_done = process_responses(q, budget);
+ if (likely(work_done < budget)) {
+ int timer_index;
+
+ napi_complete_done(napi, work_done);
+ timer_index = QINTR_TIMER_IDX_G(q->next_intr_params);
+
+ if (q->adaptive_rx) {
+ if (work_done > max(timer_pkt_quota[timer_index],
+ MIN_NAPI_WORK))
+ timer_index = (timer_index + 1);
+ else
+ timer_index = timer_index - 1;
+
+ timer_index = clamp(timer_index, 0, SGE_TIMERREGS - 1);
+ q->next_intr_params =
+ QINTR_TIMER_IDX_V(timer_index) |
+ QINTR_CNT_EN_V(0);
+ params = q->next_intr_params;
+ } else {
+ params = q->next_intr_params;
+ q->next_intr_params = q->intr_params;
+ }
+ } else
+ params = QINTR_TIMER_IDX_V(7);
+
+ val = CIDXINC_V(work_done) | SEINTARM_V(params);
+
+ /* If we don't have access to the new User GTS (T5+), use the old
+ * doorbell mechanism; otherwise use the new BAR2 mechanism.
+ */
+ if (unlikely(q->bar2_addr == NULL)) {
+ t4_write_reg(q->adap, MYPF_REG(SGE_PF_GTS_A),
+ val | INGRESSQID_V((u32)q->cntxt_id));
+ } else {
+ writel(val | INGRESSQID_V(q->bar2_qid),
+ q->bar2_addr + SGE_UDB_GTS);
+ wmb();
+ }
+ return work_done;
+}
+
+void cxgb4_ethofld_restart(struct tasklet_struct *t)
+{
+ struct sge_eosw_txq *eosw_txq = from_tasklet(eosw_txq, t,
+ qresume_tsk);
+ int pktcount;
+
+ spin_lock(&eosw_txq->lock);
+ pktcount = eosw_txq->cidx - eosw_txq->last_cidx;
+ if (pktcount < 0)
+ pktcount += eosw_txq->ndesc;
+
+ if (pktcount) {
+ cxgb4_eosw_txq_free_desc(netdev2adap(eosw_txq->netdev),
+ eosw_txq, pktcount);
+ eosw_txq->inuse -= pktcount;
+ }
+
+ /* There may be some packets waiting for completions. So,
+ * attempt to send these packets now.
+ */
+ ethofld_xmit(eosw_txq->netdev, eosw_txq);
+ spin_unlock(&eosw_txq->lock);
+}
+
+/* cxgb4_ethofld_rx_handler - Process ETHOFLD Tx completions
+ * @q: the response queue that received the packet
+ * @rsp: the response queue descriptor holding the CPL message
+ * @si: the gather list of packet fragments
+ *
+ * Process a ETHOFLD Tx completion. Increment the cidx here, but
+ * free up the descriptors in a tasklet later.
+ */
+int cxgb4_ethofld_rx_handler(struct sge_rspq *q, const __be64 *rsp,
+ const struct pkt_gl *si)
+{
+ u8 opcode = ((const struct rss_header *)rsp)->opcode;
+
+ /* skip RSS header */
+ rsp++;
+
+ if (opcode == CPL_FW4_ACK) {
+ const struct cpl_fw4_ack *cpl;
+ struct sge_eosw_txq *eosw_txq;
+ struct eotid_entry *entry;
+ struct sk_buff *skb;
+ u32 hdr_len, eotid;
+ u8 flits, wrlen16;
+ int credits;
+
+ cpl = (const struct cpl_fw4_ack *)rsp;
+ eotid = CPL_FW4_ACK_FLOWID_G(ntohl(OPCODE_TID(cpl))) -
+ q->adap->tids.eotid_base;
+ entry = cxgb4_lookup_eotid(&q->adap->tids, eotid);
+ if (!entry)
+ goto out_done;
+
+ eosw_txq = (struct sge_eosw_txq *)entry->data;
+ if (!eosw_txq)
+ goto out_done;
+
+ spin_lock(&eosw_txq->lock);
+ credits = cpl->credits;
+ while (credits > 0) {
+ skb = eosw_txq->desc[eosw_txq->cidx].skb;
+ if (!skb)
+ break;
+
+ if (unlikely((eosw_txq->state ==
+ CXGB4_EO_STATE_FLOWC_OPEN_REPLY ||
+ eosw_txq->state ==
+ CXGB4_EO_STATE_FLOWC_CLOSE_REPLY) &&
+ eosw_txq->cidx == eosw_txq->flowc_idx)) {
+ flits = DIV_ROUND_UP(skb->len, 8);
+ if (eosw_txq->state ==
+ CXGB4_EO_STATE_FLOWC_OPEN_REPLY)
+ eosw_txq->state = CXGB4_EO_STATE_ACTIVE;
+ else
+ eosw_txq->state = CXGB4_EO_STATE_CLOSED;
+ complete(&eosw_txq->completion);
+ } else {
+ hdr_len = eth_get_headlen(eosw_txq->netdev,
+ skb->data,
+ skb_headlen(skb));
+ flits = ethofld_calc_tx_flits(q->adap, skb,
+ hdr_len);
+ }
+ eosw_txq_advance_index(&eosw_txq->cidx, 1,
+ eosw_txq->ndesc);
+ wrlen16 = DIV_ROUND_UP(flits * 8, 16);
+ credits -= wrlen16;
+ }
+
+ eosw_txq->cred += cpl->credits;
+ eosw_txq->ncompl--;
+
+ spin_unlock(&eosw_txq->lock);
+
+ /* Schedule a tasklet to reclaim SKBs and restart ETHOFLD Tx,
+ * if there were packets waiting for completion.
+ */
+ tasklet_schedule(&eosw_txq->qresume_tsk);
+ }
+
+out_done:
+ return 0;
+}
+
+/*
+ * The MSI-X interrupt handler for an SGE response queue.
+ */
+irqreturn_t t4_sge_intr_msix(int irq, void *cookie)
+{
+ struct sge_rspq *q = cookie;
+
+ napi_schedule(&q->napi);
+ return IRQ_HANDLED;
+}
+
+/*
+ * Process the indirect interrupt entries in the interrupt queue and kick off
+ * NAPI for each queue that has generated an entry.
+ */
+static unsigned int process_intrq(struct adapter *adap)
+{
+ unsigned int credits;
+ const struct rsp_ctrl *rc;
+ struct sge_rspq *q = &adap->sge.intrq;
+ u32 val;
+
+ spin_lock(&adap->sge.intrq_lock);
+ for (credits = 0; ; credits++) {
+ rc = (void *)q->cur_desc + (q->iqe_len - sizeof(*rc));
+ if (!is_new_response(rc, q))
+ break;
+
+ dma_rmb();
+ if (RSPD_TYPE_G(rc->type_gen) == RSPD_TYPE_INTR_X) {
+ unsigned int qid = ntohl(rc->pldbuflen_qid);
+
+ qid -= adap->sge.ingr_start;
+ napi_schedule(&adap->sge.ingr_map[qid]->napi);
+ }
+
+ rspq_next(q);
+ }
+
+ val = CIDXINC_V(credits) | SEINTARM_V(q->intr_params);
+
+ /* If we don't have access to the new User GTS (T5+), use the old
+ * doorbell mechanism; otherwise use the new BAR2 mechanism.
+ */
+ if (unlikely(q->bar2_addr == NULL)) {
+ t4_write_reg(adap, MYPF_REG(SGE_PF_GTS_A),
+ val | INGRESSQID_V(q->cntxt_id));
+ } else {
+ writel(val | INGRESSQID_V(q->bar2_qid),
+ q->bar2_addr + SGE_UDB_GTS);
+ wmb();
+ }
+ spin_unlock(&adap->sge.intrq_lock);
+ return credits;
+}
+
+/*
+ * The MSI interrupt handler, which handles data events from SGE response queues
+ * as well as error and other async events as they all use the same MSI vector.
+ */
+static irqreturn_t t4_intr_msi(int irq, void *cookie)
+{
+ struct adapter *adap = cookie;
+
+ if (adap->flags & CXGB4_MASTER_PF)
+ t4_slow_intr_handler(adap);
+ process_intrq(adap);
+ return IRQ_HANDLED;
+}
+
+/*
+ * Interrupt handler for legacy INTx interrupts.
+ * Handles data events from SGE response queues as well as error and other
+ * async events as they all use the same interrupt line.
+ */
+static irqreturn_t t4_intr_intx(int irq, void *cookie)
+{
+ struct adapter *adap = cookie;
+
+ t4_write_reg(adap, MYPF_REG(PCIE_PF_CLI_A), 0);
+ if (((adap->flags & CXGB4_MASTER_PF) && t4_slow_intr_handler(adap)) |
+ process_intrq(adap))
+ return IRQ_HANDLED;
+ return IRQ_NONE; /* probably shared interrupt */
+}
+
+/**
+ * t4_intr_handler - select the top-level interrupt handler
+ * @adap: the adapter
+ *
+ * Selects the top-level interrupt handler based on the type of interrupts
+ * (MSI-X, MSI, or INTx).
+ */
+irq_handler_t t4_intr_handler(struct adapter *adap)
+{
+ if (adap->flags & CXGB4_USING_MSIX)
+ return t4_sge_intr_msix;
+ if (adap->flags & CXGB4_USING_MSI)
+ return t4_intr_msi;
+ return t4_intr_intx;
+}
+
+static void sge_rx_timer_cb(struct timer_list *t)
+{
+ unsigned long m;
+ unsigned int i;
+ struct adapter *adap = from_timer(adap, t, sge.rx_timer);
+ struct sge *s = &adap->sge;
+
+ for (i = 0; i < BITS_TO_LONGS(s->egr_sz); i++)
+ for (m = s->starving_fl[i]; m; m &= m - 1) {
+ struct sge_eth_rxq *rxq;
+ unsigned int id = __ffs(m) + i * BITS_PER_LONG;
+ struct sge_fl *fl = s->egr_map[id];
+
+ clear_bit(id, s->starving_fl);
+ smp_mb__after_atomic();
+
+ if (fl_starving(adap, fl)) {
+ rxq = container_of(fl, struct sge_eth_rxq, fl);
+ if (napi_reschedule(&rxq->rspq.napi))
+ fl->starving++;
+ else
+ set_bit(id, s->starving_fl);
+ }
+ }
+ /* The remainder of the SGE RX Timer Callback routine is dedicated to
+ * global Master PF activities like checking for chip ingress stalls,
+ * etc.
+ */
+ if (!(adap->flags & CXGB4_MASTER_PF))
+ goto done;
+
+ t4_idma_monitor(adap, &s->idma_monitor, HZ, RX_QCHECK_PERIOD);
+
+done:
+ mod_timer(&s->rx_timer, jiffies + RX_QCHECK_PERIOD);
+}
+
+static void sge_tx_timer_cb(struct timer_list *t)
+{
+ struct adapter *adap = from_timer(adap, t, sge.tx_timer);
+ struct sge *s = &adap->sge;
+ unsigned long m, period;
+ unsigned int i, budget;
+
+ for (i = 0; i < BITS_TO_LONGS(s->egr_sz); i++)
+ for (m = s->txq_maperr[i]; m; m &= m - 1) {
+ unsigned long id = __ffs(m) + i * BITS_PER_LONG;
+ struct sge_uld_txq *txq = s->egr_map[id];
+
+ clear_bit(id, s->txq_maperr);
+ tasklet_schedule(&txq->qresume_tsk);
+ }
+
+ if (!is_t4(adap->params.chip)) {
+ struct sge_eth_txq *q = &s->ptptxq;
+ int avail;
+
+ spin_lock(&adap->ptp_lock);
+ avail = reclaimable(&q->q);
+
+ if (avail) {
+ free_tx_desc(adap, &q->q, avail, false);
+ q->q.in_use -= avail;
+ }
+ spin_unlock(&adap->ptp_lock);
+ }
+
+ budget = MAX_TIMER_TX_RECLAIM;
+ i = s->ethtxq_rover;
+ do {
+ budget -= t4_sge_eth_txq_egress_update(adap, &s->ethtxq[i],
+ budget);
+ if (!budget)
+ break;
+
+ if (++i >= s->ethqsets)
+ i = 0;
+ } while (i != s->ethtxq_rover);
+ s->ethtxq_rover = i;
+
+ if (budget == 0) {
+ /* If we found too many reclaimable packets schedule a timer
+ * in the near future to continue where we left off.
+ */
+ period = 2;
+ } else {
+ /* We reclaimed all reclaimable TX Descriptors, so reschedule
+ * at the normal period.
+ */
+ period = TX_QCHECK_PERIOD;
+ }
+
+ mod_timer(&s->tx_timer, jiffies + period);
+}
+
+/**
+ * bar2_address - return the BAR2 address for an SGE Queue's Registers
+ * @adapter: the adapter
+ * @qid: the SGE Queue ID
+ * @qtype: the SGE Queue Type (Egress or Ingress)
+ * @pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues
+ *
+ * Returns the BAR2 address for the SGE Queue Registers associated with
+ * @qid. If BAR2 SGE Registers aren't available, returns NULL. Also
+ * returns the BAR2 Queue ID to be used with writes to the BAR2 SGE
+ * Queue Registers. If the BAR2 Queue ID is 0, then "Inferred Queue ID"
+ * Registers are supported (e.g. the Write Combining Doorbell Buffer).
+ */
+static void __iomem *bar2_address(struct adapter *adapter,
+ unsigned int qid,
+ enum t4_bar2_qtype qtype,
+ unsigned int *pbar2_qid)
+{
+ u64 bar2_qoffset;
+ int ret;
+
+ ret = t4_bar2_sge_qregs(adapter, qid, qtype, 0,
+ &bar2_qoffset, pbar2_qid);
+ if (ret)
+ return NULL;
+
+ return adapter->bar2 + bar2_qoffset;
+}
+
+/* @intr_idx: MSI/MSI-X vector if >=0, -(absolute qid + 1) if < 0
+ * @cong: < 0 -> no congestion feedback, >= 0 -> congestion channel map
+ */
+int t4_sge_alloc_rxq(struct adapter *adap, struct sge_rspq *iq, bool fwevtq,
+ struct net_device *dev, int intr_idx,
+ struct sge_fl *fl, rspq_handler_t hnd,
+ rspq_flush_handler_t flush_hnd, int cong)
+{
+ int ret, flsz = 0;
+ struct fw_iq_cmd c;
+ struct sge *s = &adap->sge;
+ struct port_info *pi = netdev_priv(dev);
+ int relaxed = !(adap->flags & CXGB4_ROOT_NO_RELAXED_ORDERING);
+
+ /* Size needs to be multiple of 16, including status entry. */
+ iq->size = roundup(iq->size, 16);
+
+ iq->desc = alloc_ring(adap->pdev_dev, iq->size, iq->iqe_len, 0,
+ &iq->phys_addr, NULL, 0,
+ dev_to_node(adap->pdev_dev));
+ if (!iq->desc)
+ return -ENOMEM;
+
+ memset(&c, 0, sizeof(c));
+ c.op_to_vfn = htonl(FW_CMD_OP_V(FW_IQ_CMD) | FW_CMD_REQUEST_F |
+ FW_CMD_WRITE_F | FW_CMD_EXEC_F |
+ FW_IQ_CMD_PFN_V(adap->pf) | FW_IQ_CMD_VFN_V(0));
+ c.alloc_to_len16 = htonl(FW_IQ_CMD_ALLOC_F | FW_IQ_CMD_IQSTART_F |
+ FW_LEN16(c));
+ c.type_to_iqandstindex = htonl(FW_IQ_CMD_TYPE_V(FW_IQ_TYPE_FL_INT_CAP) |
+ FW_IQ_CMD_IQASYNCH_V(fwevtq) | FW_IQ_CMD_VIID_V(pi->viid) |
+ FW_IQ_CMD_IQANDST_V(intr_idx < 0) |
+ FW_IQ_CMD_IQANUD_V(UPDATEDELIVERY_INTERRUPT_X) |
+ FW_IQ_CMD_IQANDSTINDEX_V(intr_idx >= 0 ? intr_idx :
+ -intr_idx - 1));
+ c.iqdroprss_to_iqesize = htons(FW_IQ_CMD_IQPCIECH_V(pi->tx_chan) |
+ FW_IQ_CMD_IQGTSMODE_F |
+ FW_IQ_CMD_IQINTCNTTHRESH_V(iq->pktcnt_idx) |
+ FW_IQ_CMD_IQESIZE_V(ilog2(iq->iqe_len) - 4));
+ c.iqsize = htons(iq->size);
+ c.iqaddr = cpu_to_be64(iq->phys_addr);
+ if (cong >= 0)
+ c.iqns_to_fl0congen = htonl(FW_IQ_CMD_IQFLINTCONGEN_F |
+ FW_IQ_CMD_IQTYPE_V(cong ? FW_IQ_IQTYPE_NIC
+ : FW_IQ_IQTYPE_OFLD));
+
+ if (fl) {
+ unsigned int chip_ver =
+ CHELSIO_CHIP_VERSION(adap->params.chip);
+
+ /* Allocate the ring for the hardware free list (with space
+ * for its status page) along with the associated software
+ * descriptor ring. The free list size needs to be a multiple
+ * of the Egress Queue Unit and at least 2 Egress Units larger
+ * than the SGE's Egress Congrestion Threshold
+ * (fl_starve_thres - 1).
+ */
+ if (fl->size < s->fl_starve_thres - 1 + 2 * 8)
+ fl->size = s->fl_starve_thres - 1 + 2 * 8;
+ fl->size = roundup(fl->size, 8);
+ fl->desc = alloc_ring(adap->pdev_dev, fl->size, sizeof(__be64),
+ sizeof(struct rx_sw_desc), &fl->addr,
+ &fl->sdesc, s->stat_len,
+ dev_to_node(adap->pdev_dev));
+ if (!fl->desc)
+ goto fl_nomem;
+
+ flsz = fl->size / 8 + s->stat_len / sizeof(struct tx_desc);
+ c.iqns_to_fl0congen |= htonl(FW_IQ_CMD_FL0PACKEN_F |
+ FW_IQ_CMD_FL0FETCHRO_V(relaxed) |
+ FW_IQ_CMD_FL0DATARO_V(relaxed) |
+ FW_IQ_CMD_FL0PADEN_F);
+ if (cong >= 0)
+ c.iqns_to_fl0congen |=
+ htonl(FW_IQ_CMD_FL0CNGCHMAP_V(cong) |
+ FW_IQ_CMD_FL0CONGCIF_F |
+ FW_IQ_CMD_FL0CONGEN_F);
+ /* In T6, for egress queue type FL there is internal overhead
+ * of 16B for header going into FLM module. Hence the maximum
+ * allowed burst size is 448 bytes. For T4/T5, the hardware
+ * doesn't coalesce fetch requests if more than 64 bytes of
+ * Free List pointers are provided, so we use a 128-byte Fetch
+ * Burst Minimum there (T6 implements coalescing so we can use
+ * the smaller 64-byte value there).
+ */
+ c.fl0dcaen_to_fl0cidxfthresh =
+ htons(FW_IQ_CMD_FL0FBMIN_V(chip_ver <= CHELSIO_T5 ?
+ FETCHBURSTMIN_128B_X :
+ FETCHBURSTMIN_64B_T6_X) |
+ FW_IQ_CMD_FL0FBMAX_V((chip_ver <= CHELSIO_T5) ?
+ FETCHBURSTMAX_512B_X :
+ FETCHBURSTMAX_256B_X));
+ c.fl0size = htons(flsz);
+ c.fl0addr = cpu_to_be64(fl->addr);
+ }
+
+ ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c);
+ if (ret)
+ goto err;
+
+ netif_napi_add(dev, &iq->napi, napi_rx_handler);
+ iq->cur_desc = iq->desc;
+ iq->cidx = 0;
+ iq->gen = 1;
+ iq->next_intr_params = iq->intr_params;
+ iq->cntxt_id = ntohs(c.iqid);
+ iq->abs_id = ntohs(c.physiqid);
+ iq->bar2_addr = bar2_address(adap,
+ iq->cntxt_id,
+ T4_BAR2_QTYPE_INGRESS,
+ &iq->bar2_qid);
+ iq->size--; /* subtract status entry */
+ iq->netdev = dev;
+ iq->handler = hnd;
+ iq->flush_handler = flush_hnd;
+
+ memset(&iq->lro_mgr, 0, sizeof(struct t4_lro_mgr));
+ skb_queue_head_init(&iq->lro_mgr.lroq);
+
+ /* set offset to -1 to distinguish ingress queues without FL */
+ iq->offset = fl ? 0 : -1;
+
+ adap->sge.ingr_map[iq->cntxt_id - adap->sge.ingr_start] = iq;
+
+ if (fl) {
+ fl->cntxt_id = ntohs(c.fl0id);
+ fl->avail = fl->pend_cred = 0;
+ fl->pidx = fl->cidx = 0;
+ fl->alloc_failed = fl->large_alloc_failed = fl->starving = 0;
+ adap->sge.egr_map[fl->cntxt_id - adap->sge.egr_start] = fl;
+
+ /* Note, we must initialize the BAR2 Free List User Doorbell
+ * information before refilling the Free List!
+ */
+ fl->bar2_addr = bar2_address(adap,
+ fl->cntxt_id,
+ T4_BAR2_QTYPE_EGRESS,
+ &fl->bar2_qid);
+ refill_fl(adap, fl, fl_cap(fl), GFP_KERNEL);
+ }
+
+ /* For T5 and later we attempt to set up the Congestion Manager values
+ * of the new RX Ethernet Queue. This should really be handled by
+ * firmware because it's more complex than any host driver wants to
+ * get involved with and it's different per chip and this is almost
+ * certainly wrong. Firmware would be wrong as well, but it would be
+ * a lot easier to fix in one place ... For now we do something very
+ * simple (and hopefully less wrong).
+ */
+ if (!is_t4(adap->params.chip) && cong >= 0) {
+ u32 param, val, ch_map = 0;
+ int i;
+ u16 cng_ch_bits_log = adap->params.arch.cng_ch_bits_log;
+
+ param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) |
+ FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DMAQ_CONM_CTXT) |
+ FW_PARAMS_PARAM_YZ_V(iq->cntxt_id));
+ if (cong == 0) {
+ val = CONMCTXT_CNGTPMODE_V(CONMCTXT_CNGTPMODE_QUEUE_X);
+ } else {
+ val =
+ CONMCTXT_CNGTPMODE_V(CONMCTXT_CNGTPMODE_CHANNEL_X);
+ for (i = 0; i < 4; i++) {
+ if (cong & (1 << i))
+ ch_map |= 1 << (i << cng_ch_bits_log);
+ }
+ val |= CONMCTXT_CNGCHMAP_V(ch_map);
+ }
+ ret = t4_set_params(adap, adap->mbox, adap->pf, 0, 1,
+ &param, &val);
+ if (ret)
+ dev_warn(adap->pdev_dev, "Failed to set Congestion"
+ " Manager Context for Ingress Queue %d: %d\n",
+ iq->cntxt_id, -ret);
+ }
+
+ return 0;
+
+fl_nomem:
+ ret = -ENOMEM;
+err:
+ if (iq->desc) {
+ dma_free_coherent(adap->pdev_dev, iq->size * iq->iqe_len,
+ iq->desc, iq->phys_addr);
+ iq->desc = NULL;
+ }
+ if (fl && fl->desc) {
+ kfree(fl->sdesc);
+ fl->sdesc = NULL;
+ dma_free_coherent(adap->pdev_dev, flsz * sizeof(struct tx_desc),
+ fl->desc, fl->addr);
+ fl->desc = NULL;
+ }
+ return ret;
+}
+
+static void init_txq(struct adapter *adap, struct sge_txq *q, unsigned int id)
+{
+ q->cntxt_id = id;
+ q->bar2_addr = bar2_address(adap,
+ q->cntxt_id,
+ T4_BAR2_QTYPE_EGRESS,
+ &q->bar2_qid);
+ q->in_use = 0;
+ q->cidx = q->pidx = 0;
+ q->stops = q->restarts = 0;
+ q->stat = (void *)&q->desc[q->size];
+ spin_lock_init(&q->db_lock);
+ adap->sge.egr_map[id - adap->sge.egr_start] = q;
+}
+
+/**
+ * t4_sge_alloc_eth_txq - allocate an Ethernet TX Queue
+ * @adap: the adapter
+ * @txq: the SGE Ethernet TX Queue to initialize
+ * @dev: the Linux Network Device
+ * @netdevq: the corresponding Linux TX Queue
+ * @iqid: the Ingress Queue to which to deliver CIDX Update messages
+ * @dbqt: whether this TX Queue will use the SGE Doorbell Queue Timers
+ */
+int t4_sge_alloc_eth_txq(struct adapter *adap, struct sge_eth_txq *txq,
+ struct net_device *dev, struct netdev_queue *netdevq,
+ unsigned int iqid, u8 dbqt)
+{
+ unsigned int chip_ver = CHELSIO_CHIP_VERSION(adap->params.chip);
+ struct port_info *pi = netdev_priv(dev);
+ struct sge *s = &adap->sge;
+ struct fw_eq_eth_cmd c;
+ int ret, nentries;
+
+ /* Add status entries */
+ nentries = txq->q.size + s->stat_len / sizeof(struct tx_desc);
+
+ txq->q.desc = alloc_ring(adap->pdev_dev, txq->q.size,
+ sizeof(struct tx_desc), sizeof(struct tx_sw_desc),
+ &txq->q.phys_addr, &txq->q.sdesc, s->stat_len,
+ netdev_queue_numa_node_read(netdevq));
+ if (!txq->q.desc)
+ return -ENOMEM;
+
+ memset(&c, 0, sizeof(c));
+ c.op_to_vfn = htonl(FW_CMD_OP_V(FW_EQ_ETH_CMD) | FW_CMD_REQUEST_F |
+ FW_CMD_WRITE_F | FW_CMD_EXEC_F |
+ FW_EQ_ETH_CMD_PFN_V(adap->pf) |
+ FW_EQ_ETH_CMD_VFN_V(0));
+ c.alloc_to_len16 = htonl(FW_EQ_ETH_CMD_ALLOC_F |
+ FW_EQ_ETH_CMD_EQSTART_F | FW_LEN16(c));
+
+ /* For TX Ethernet Queues using the SGE Doorbell Queue Timer
+ * mechanism, we use Ingress Queue messages for Hardware Consumer
+ * Index Updates on the TX Queue. Otherwise we have the Hardware
+ * write the CIDX Updates into the Status Page at the end of the
+ * TX Queue.
+ */
+ c.autoequiqe_to_viid = htonl(((chip_ver <= CHELSIO_T5) ?
+ FW_EQ_ETH_CMD_AUTOEQUIQE_F :
+ FW_EQ_ETH_CMD_AUTOEQUEQE_F) |
+ FW_EQ_ETH_CMD_VIID_V(pi->viid));
+
+ c.fetchszm_to_iqid =
+ htonl(FW_EQ_ETH_CMD_HOSTFCMODE_V((chip_ver <= CHELSIO_T5) ?
+ HOSTFCMODE_INGRESS_QUEUE_X :
+ HOSTFCMODE_STATUS_PAGE_X) |
+ FW_EQ_ETH_CMD_PCIECHN_V(pi->tx_chan) |
+ FW_EQ_ETH_CMD_FETCHRO_F | FW_EQ_ETH_CMD_IQID_V(iqid));
+
+ /* Note that the CIDX Flush Threshold should match MAX_TX_RECLAIM. */
+ c.dcaen_to_eqsize =
+ htonl(FW_EQ_ETH_CMD_FBMIN_V(chip_ver <= CHELSIO_T5
+ ? FETCHBURSTMIN_64B_X
+ : FETCHBURSTMIN_64B_T6_X) |
+ FW_EQ_ETH_CMD_FBMAX_V(FETCHBURSTMAX_512B_X) |
+ FW_EQ_ETH_CMD_CIDXFTHRESH_V(CIDXFLUSHTHRESH_32_X) |
+ FW_EQ_ETH_CMD_CIDXFTHRESHO_V(chip_ver == CHELSIO_T5) |
+ FW_EQ_ETH_CMD_EQSIZE_V(nentries));
+
+ c.eqaddr = cpu_to_be64(txq->q.phys_addr);
+
+ /* If we're using the SGE Doorbell Queue Timer mechanism, pass in the
+ * currently configured Timer Index. THis can be changed later via an
+ * ethtool -C tx-usecs {Timer Val} command. Note that the SGE
+ * Doorbell Queue mode is currently automatically enabled in the
+ * Firmware by setting either AUTOEQUEQE or AUTOEQUIQE ...
+ */
+ if (dbqt)
+ c.timeren_timerix =
+ cpu_to_be32(FW_EQ_ETH_CMD_TIMEREN_F |
+ FW_EQ_ETH_CMD_TIMERIX_V(txq->dbqtimerix));
+
+ ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c);
+ if (ret) {
+ kfree(txq->q.sdesc);
+ txq->q.sdesc = NULL;
+ dma_free_coherent(adap->pdev_dev,
+ nentries * sizeof(struct tx_desc),
+ txq->q.desc, txq->q.phys_addr);
+ txq->q.desc = NULL;
+ return ret;
+ }
+
+ txq->q.q_type = CXGB4_TXQ_ETH;
+ init_txq(adap, &txq->q, FW_EQ_ETH_CMD_EQID_G(ntohl(c.eqid_pkd)));
+ txq->txq = netdevq;
+ txq->tso = 0;
+ txq->uso = 0;
+ txq->tx_cso = 0;
+ txq->vlan_ins = 0;
+ txq->mapping_err = 0;
+ txq->dbqt = dbqt;
+
+ return 0;
+}
+
+int t4_sge_alloc_ctrl_txq(struct adapter *adap, struct sge_ctrl_txq *txq,
+ struct net_device *dev, unsigned int iqid,
+ unsigned int cmplqid)
+{
+ unsigned int chip_ver = CHELSIO_CHIP_VERSION(adap->params.chip);
+ struct port_info *pi = netdev_priv(dev);
+ struct sge *s = &adap->sge;
+ struct fw_eq_ctrl_cmd c;
+ int ret, nentries;
+
+ /* Add status entries */
+ nentries = txq->q.size + s->stat_len / sizeof(struct tx_desc);
+
+ txq->q.desc = alloc_ring(adap->pdev_dev, nentries,
+ sizeof(struct tx_desc), 0, &txq->q.phys_addr,
+ NULL, 0, dev_to_node(adap->pdev_dev));
+ if (!txq->q.desc)
+ return -ENOMEM;
+
+ c.op_to_vfn = htonl(FW_CMD_OP_V(FW_EQ_CTRL_CMD) | FW_CMD_REQUEST_F |
+ FW_CMD_WRITE_F | FW_CMD_EXEC_F |
+ FW_EQ_CTRL_CMD_PFN_V(adap->pf) |
+ FW_EQ_CTRL_CMD_VFN_V(0));
+ c.alloc_to_len16 = htonl(FW_EQ_CTRL_CMD_ALLOC_F |
+ FW_EQ_CTRL_CMD_EQSTART_F | FW_LEN16(c));
+ c.cmpliqid_eqid = htonl(FW_EQ_CTRL_CMD_CMPLIQID_V(cmplqid));
+ c.physeqid_pkd = htonl(0);
+ c.fetchszm_to_iqid =
+ htonl(FW_EQ_CTRL_CMD_HOSTFCMODE_V(HOSTFCMODE_STATUS_PAGE_X) |
+ FW_EQ_CTRL_CMD_PCIECHN_V(pi->tx_chan) |
+ FW_EQ_CTRL_CMD_FETCHRO_F | FW_EQ_CTRL_CMD_IQID_V(iqid));
+ c.dcaen_to_eqsize =
+ htonl(FW_EQ_CTRL_CMD_FBMIN_V(chip_ver <= CHELSIO_T5
+ ? FETCHBURSTMIN_64B_X
+ : FETCHBURSTMIN_64B_T6_X) |
+ FW_EQ_CTRL_CMD_FBMAX_V(FETCHBURSTMAX_512B_X) |
+ FW_EQ_CTRL_CMD_CIDXFTHRESH_V(CIDXFLUSHTHRESH_32_X) |
+ FW_EQ_CTRL_CMD_EQSIZE_V(nentries));
+ c.eqaddr = cpu_to_be64(txq->q.phys_addr);
+
+ ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c);
+ if (ret) {
+ dma_free_coherent(adap->pdev_dev,
+ nentries * sizeof(struct tx_desc),
+ txq->q.desc, txq->q.phys_addr);
+ txq->q.desc = NULL;
+ return ret;
+ }
+
+ txq->q.q_type = CXGB4_TXQ_CTRL;
+ init_txq(adap, &txq->q, FW_EQ_CTRL_CMD_EQID_G(ntohl(c.cmpliqid_eqid)));
+ txq->adap = adap;
+ skb_queue_head_init(&txq->sendq);
+ tasklet_setup(&txq->qresume_tsk, restart_ctrlq);
+ txq->full = 0;
+ return 0;
+}
+
+int t4_sge_mod_ctrl_txq(struct adapter *adap, unsigned int eqid,
+ unsigned int cmplqid)
+{
+ u32 param, val;
+
+ param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) |
+ FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DMAQ_EQ_CMPLIQID_CTRL) |
+ FW_PARAMS_PARAM_YZ_V(eqid));
+ val = cmplqid;
+ return t4_set_params(adap, adap->mbox, adap->pf, 0, 1, &param, &val);
+}
+
+static int t4_sge_alloc_ofld_txq(struct adapter *adap, struct sge_txq *q,
+ struct net_device *dev, u32 cmd, u32 iqid)
+{
+ unsigned int chip_ver = CHELSIO_CHIP_VERSION(adap->params.chip);
+ struct port_info *pi = netdev_priv(dev);
+ struct sge *s = &adap->sge;
+ struct fw_eq_ofld_cmd c;
+ u32 fb_min, nentries;
+ int ret;
+
+ /* Add status entries */
+ nentries = q->size + s->stat_len / sizeof(struct tx_desc);
+ q->desc = alloc_ring(adap->pdev_dev, q->size, sizeof(struct tx_desc),
+ sizeof(struct tx_sw_desc), &q->phys_addr,
+ &q->sdesc, s->stat_len, NUMA_NO_NODE);
+ if (!q->desc)
+ return -ENOMEM;
+
+ if (chip_ver <= CHELSIO_T5)
+ fb_min = FETCHBURSTMIN_64B_X;
+ else
+ fb_min = FETCHBURSTMIN_64B_T6_X;
+
+ memset(&c, 0, sizeof(c));
+ c.op_to_vfn = htonl(FW_CMD_OP_V(cmd) | FW_CMD_REQUEST_F |
+ FW_CMD_WRITE_F | FW_CMD_EXEC_F |
+ FW_EQ_OFLD_CMD_PFN_V(adap->pf) |
+ FW_EQ_OFLD_CMD_VFN_V(0));
+ c.alloc_to_len16 = htonl(FW_EQ_OFLD_CMD_ALLOC_F |
+ FW_EQ_OFLD_CMD_EQSTART_F | FW_LEN16(c));
+ c.fetchszm_to_iqid =
+ htonl(FW_EQ_OFLD_CMD_HOSTFCMODE_V(HOSTFCMODE_STATUS_PAGE_X) |
+ FW_EQ_OFLD_CMD_PCIECHN_V(pi->tx_chan) |
+ FW_EQ_OFLD_CMD_FETCHRO_F | FW_EQ_OFLD_CMD_IQID_V(iqid));
+ c.dcaen_to_eqsize =
+ htonl(FW_EQ_OFLD_CMD_FBMIN_V(fb_min) |
+ FW_EQ_OFLD_CMD_FBMAX_V(FETCHBURSTMAX_512B_X) |
+ FW_EQ_OFLD_CMD_CIDXFTHRESH_V(CIDXFLUSHTHRESH_32_X) |
+ FW_EQ_OFLD_CMD_EQSIZE_V(nentries));
+ c.eqaddr = cpu_to_be64(q->phys_addr);
+
+ ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c);
+ if (ret) {
+ kfree(q->sdesc);
+ q->sdesc = NULL;
+ dma_free_coherent(adap->pdev_dev,
+ nentries * sizeof(struct tx_desc),
+ q->desc, q->phys_addr);
+ q->desc = NULL;
+ return ret;
+ }
+
+ init_txq(adap, q, FW_EQ_OFLD_CMD_EQID_G(ntohl(c.eqid_pkd)));
+ return 0;
+}
+
+int t4_sge_alloc_uld_txq(struct adapter *adap, struct sge_uld_txq *txq,
+ struct net_device *dev, unsigned int iqid,
+ unsigned int uld_type)
+{
+ u32 cmd = FW_EQ_OFLD_CMD;
+ int ret;
+
+ if (unlikely(uld_type == CXGB4_TX_CRYPTO))
+ cmd = FW_EQ_CTRL_CMD;
+
+ ret = t4_sge_alloc_ofld_txq(adap, &txq->q, dev, cmd, iqid);
+ if (ret)
+ return ret;
+
+ txq->q.q_type = CXGB4_TXQ_ULD;
+ txq->adap = adap;
+ skb_queue_head_init(&txq->sendq);
+ tasklet_setup(&txq->qresume_tsk, restart_ofldq);
+ txq->full = 0;
+ txq->mapping_err = 0;
+ return 0;
+}
+
+int t4_sge_alloc_ethofld_txq(struct adapter *adap, struct sge_eohw_txq *txq,
+ struct net_device *dev, u32 iqid)
+{
+ int ret;
+
+ ret = t4_sge_alloc_ofld_txq(adap, &txq->q, dev, FW_EQ_OFLD_CMD, iqid);
+ if (ret)
+ return ret;
+
+ txq->q.q_type = CXGB4_TXQ_ULD;
+ spin_lock_init(&txq->lock);
+ txq->adap = adap;
+ txq->tso = 0;
+ txq->uso = 0;
+ txq->tx_cso = 0;
+ txq->vlan_ins = 0;
+ txq->mapping_err = 0;
+ return 0;
+}
+
+void free_txq(struct adapter *adap, struct sge_txq *q)
+{
+ struct sge *s = &adap->sge;
+
+ dma_free_coherent(adap->pdev_dev,
+ q->size * sizeof(struct tx_desc) + s->stat_len,
+ q->desc, q->phys_addr);
+ q->cntxt_id = 0;
+ q->sdesc = NULL;
+ q->desc = NULL;
+}
+
+void free_rspq_fl(struct adapter *adap, struct sge_rspq *rq,
+ struct sge_fl *fl)
+{
+ struct sge *s = &adap->sge;
+ unsigned int fl_id = fl ? fl->cntxt_id : 0xffff;
+
+ adap->sge.ingr_map[rq->cntxt_id - adap->sge.ingr_start] = NULL;
+ t4_iq_free(adap, adap->mbox, adap->pf, 0, FW_IQ_TYPE_FL_INT_CAP,
+ rq->cntxt_id, fl_id, 0xffff);
+ dma_free_coherent(adap->pdev_dev, (rq->size + 1) * rq->iqe_len,
+ rq->desc, rq->phys_addr);
+ netif_napi_del(&rq->napi);
+ rq->netdev = NULL;
+ rq->cntxt_id = rq->abs_id = 0;
+ rq->desc = NULL;
+
+ if (fl) {
+ free_rx_bufs(adap, fl, fl->avail);
+ dma_free_coherent(adap->pdev_dev, fl->size * 8 + s->stat_len,
+ fl->desc, fl->addr);
+ kfree(fl->sdesc);
+ fl->sdesc = NULL;
+ fl->cntxt_id = 0;
+ fl->desc = NULL;
+ }
+}
+
+/**
+ * t4_free_ofld_rxqs - free a block of consecutive Rx queues
+ * @adap: the adapter
+ * @n: number of queues
+ * @q: pointer to first queue
+ *
+ * Release the resources of a consecutive block of offload Rx queues.
+ */
+void t4_free_ofld_rxqs(struct adapter *adap, int n, struct sge_ofld_rxq *q)
+{
+ for ( ; n; n--, q++)
+ if (q->rspq.desc)
+ free_rspq_fl(adap, &q->rspq,
+ q->fl.size ? &q->fl : NULL);
+}
+
+void t4_sge_free_ethofld_txq(struct adapter *adap, struct sge_eohw_txq *txq)
+{
+ if (txq->q.desc) {
+ t4_ofld_eq_free(adap, adap->mbox, adap->pf, 0,
+ txq->q.cntxt_id);
+ free_tx_desc(adap, &txq->q, txq->q.in_use, false);
+ kfree(txq->q.sdesc);
+ free_txq(adap, &txq->q);
+ }
+}
+
+/**
+ * t4_free_sge_resources - free SGE resources
+ * @adap: the adapter
+ *
+ * Frees resources used by the SGE queue sets.
+ */
+void t4_free_sge_resources(struct adapter *adap)
+{
+ int i;
+ struct sge_eth_rxq *eq;
+ struct sge_eth_txq *etq;
+
+ /* stop all Rx queues in order to start them draining */
+ for (i = 0; i < adap->sge.ethqsets; i++) {
+ eq = &adap->sge.ethrxq[i];
+ if (eq->rspq.desc)
+ t4_iq_stop(adap, adap->mbox, adap->pf, 0,
+ FW_IQ_TYPE_FL_INT_CAP,
+ eq->rspq.cntxt_id,
+ eq->fl.size ? eq->fl.cntxt_id : 0xffff,
+ 0xffff);
+ }
+
+ /* clean up Ethernet Tx/Rx queues */
+ for (i = 0; i < adap->sge.ethqsets; i++) {
+ eq = &adap->sge.ethrxq[i];
+ if (eq->rspq.desc)
+ free_rspq_fl(adap, &eq->rspq,
+ eq->fl.size ? &eq->fl : NULL);
+ if (eq->msix) {
+ cxgb4_free_msix_idx_in_bmap(adap, eq->msix->idx);
+ eq->msix = NULL;
+ }
+
+ etq = &adap->sge.ethtxq[i];
+ if (etq->q.desc) {
+ t4_eth_eq_free(adap, adap->mbox, adap->pf, 0,
+ etq->q.cntxt_id);
+ __netif_tx_lock_bh(etq->txq);
+ free_tx_desc(adap, &etq->q, etq->q.in_use, true);
+ __netif_tx_unlock_bh(etq->txq);
+ kfree(etq->q.sdesc);
+ free_txq(adap, &etq->q);
+ }
+ }
+
+ /* clean up control Tx queues */
+ for (i = 0; i < ARRAY_SIZE(adap->sge.ctrlq); i++) {
+ struct sge_ctrl_txq *cq = &adap->sge.ctrlq[i];
+
+ if (cq->q.desc) {
+ tasklet_kill(&cq->qresume_tsk);
+ t4_ctrl_eq_free(adap, adap->mbox, adap->pf, 0,
+ cq->q.cntxt_id);
+ __skb_queue_purge(&cq->sendq);
+ free_txq(adap, &cq->q);
+ }
+ }
+
+ if (adap->sge.fw_evtq.desc) {
+ free_rspq_fl(adap, &adap->sge.fw_evtq, NULL);
+ if (adap->sge.fwevtq_msix_idx >= 0)
+ cxgb4_free_msix_idx_in_bmap(adap,
+ adap->sge.fwevtq_msix_idx);
+ }
+
+ if (adap->sge.nd_msix_idx >= 0)
+ cxgb4_free_msix_idx_in_bmap(adap, adap->sge.nd_msix_idx);
+
+ if (adap->sge.intrq.desc)
+ free_rspq_fl(adap, &adap->sge.intrq, NULL);
+
+ if (!is_t4(adap->params.chip)) {
+ etq = &adap->sge.ptptxq;
+ if (etq->q.desc) {
+ t4_eth_eq_free(adap, adap->mbox, adap->pf, 0,
+ etq->q.cntxt_id);
+ spin_lock_bh(&adap->ptp_lock);
+ free_tx_desc(adap, &etq->q, etq->q.in_use, true);
+ spin_unlock_bh(&adap->ptp_lock);
+ kfree(etq->q.sdesc);
+ free_txq(adap, &etq->q);
+ }
+ }
+
+ /* clear the reverse egress queue map */
+ memset(adap->sge.egr_map, 0,
+ adap->sge.egr_sz * sizeof(*adap->sge.egr_map));
+}
+
+void t4_sge_start(struct adapter *adap)
+{
+ adap->sge.ethtxq_rover = 0;
+ mod_timer(&adap->sge.rx_timer, jiffies + RX_QCHECK_PERIOD);
+ mod_timer(&adap->sge.tx_timer, jiffies + TX_QCHECK_PERIOD);
+}
+
+/**
+ * t4_sge_stop - disable SGE operation
+ * @adap: the adapter
+ *
+ * Stop tasklets and timers associated with the DMA engine. Note that
+ * this is effective only if measures have been taken to disable any HW
+ * events that may restart them.
+ */
+void t4_sge_stop(struct adapter *adap)
+{
+ int i;
+ struct sge *s = &adap->sge;
+
+ if (s->rx_timer.function)
+ del_timer_sync(&s->rx_timer);
+ if (s->tx_timer.function)
+ del_timer_sync(&s->tx_timer);
+
+ if (is_offload(adap)) {
+ struct sge_uld_txq_info *txq_info;
+
+ txq_info = adap->sge.uld_txq_info[CXGB4_TX_OFLD];
+ if (txq_info) {
+ struct sge_uld_txq *txq = txq_info->uldtxq;
+
+ for_each_ofldtxq(&adap->sge, i) {
+ if (txq->q.desc)
+ tasklet_kill(&txq->qresume_tsk);
+ }
+ }
+ }
+
+ if (is_pci_uld(adap)) {
+ struct sge_uld_txq_info *txq_info;
+
+ txq_info = adap->sge.uld_txq_info[CXGB4_TX_CRYPTO];
+ if (txq_info) {
+ struct sge_uld_txq *txq = txq_info->uldtxq;
+
+ for_each_ofldtxq(&adap->sge, i) {
+ if (txq->q.desc)
+ tasklet_kill(&txq->qresume_tsk);
+ }
+ }
+ }
+
+ for (i = 0; i < ARRAY_SIZE(s->ctrlq); i++) {
+ struct sge_ctrl_txq *cq = &s->ctrlq[i];
+
+ if (cq->q.desc)
+ tasklet_kill(&cq->qresume_tsk);
+ }
+}
+
+/**
+ * t4_sge_init_soft - grab core SGE values needed by SGE code
+ * @adap: the adapter
+ *
+ * We need to grab the SGE operating parameters that we need to have
+ * in order to do our job and make sure we can live with them.
+ */
+
+static int t4_sge_init_soft(struct adapter *adap)
+{
+ struct sge *s = &adap->sge;
+ u32 fl_small_pg, fl_large_pg, fl_small_mtu, fl_large_mtu;
+ u32 timer_value_0_and_1, timer_value_2_and_3, timer_value_4_and_5;
+ u32 ingress_rx_threshold;
+
+ /*
+ * Verify that CPL messages are going to the Ingress Queue for
+ * process_responses() and that only packet data is going to the
+ * Free Lists.
+ */
+ if ((t4_read_reg(adap, SGE_CONTROL_A) & RXPKTCPLMODE_F) !=
+ RXPKTCPLMODE_V(RXPKTCPLMODE_SPLIT_X)) {
+ dev_err(adap->pdev_dev, "bad SGE CPL MODE\n");
+ return -EINVAL;
+ }
+
+ /*
+ * Validate the Host Buffer Register Array indices that we want to
+ * use ...
+ *
+ * XXX Note that we should really read through the Host Buffer Size
+ * XXX register array and find the indices of the Buffer Sizes which
+ * XXX meet our needs!
+ */
+ #define READ_FL_BUF(x) \
+ t4_read_reg(adap, SGE_FL_BUFFER_SIZE0_A+(x)*sizeof(u32))
+
+ fl_small_pg = READ_FL_BUF(RX_SMALL_PG_BUF);
+ fl_large_pg = READ_FL_BUF(RX_LARGE_PG_BUF);
+ fl_small_mtu = READ_FL_BUF(RX_SMALL_MTU_BUF);
+ fl_large_mtu = READ_FL_BUF(RX_LARGE_MTU_BUF);
+
+ /* We only bother using the Large Page logic if the Large Page Buffer
+ * is larger than our Page Size Buffer.
+ */
+ if (fl_large_pg <= fl_small_pg)
+ fl_large_pg = 0;
+
+ #undef READ_FL_BUF
+
+ /* The Page Size Buffer must be exactly equal to our Page Size and the
+ * Large Page Size Buffer should be 0 (per above) or a power of 2.
+ */
+ if (fl_small_pg != PAGE_SIZE ||
+ (fl_large_pg & (fl_large_pg-1)) != 0) {
+ dev_err(adap->pdev_dev, "bad SGE FL page buffer sizes [%d, %d]\n",
+ fl_small_pg, fl_large_pg);
+ return -EINVAL;
+ }
+ if (fl_large_pg)
+ s->fl_pg_order = ilog2(fl_large_pg) - PAGE_SHIFT;
+
+ if (fl_small_mtu < FL_MTU_SMALL_BUFSIZE(adap) ||
+ fl_large_mtu < FL_MTU_LARGE_BUFSIZE(adap)) {
+ dev_err(adap->pdev_dev, "bad SGE FL MTU sizes [%d, %d]\n",
+ fl_small_mtu, fl_large_mtu);
+ return -EINVAL;
+ }
+
+ /*
+ * Retrieve our RX interrupt holdoff timer values and counter
+ * threshold values from the SGE parameters.
+ */
+ timer_value_0_and_1 = t4_read_reg(adap, SGE_TIMER_VALUE_0_AND_1_A);
+ timer_value_2_and_3 = t4_read_reg(adap, SGE_TIMER_VALUE_2_AND_3_A);
+ timer_value_4_and_5 = t4_read_reg(adap, SGE_TIMER_VALUE_4_AND_5_A);
+ s->timer_val[0] = core_ticks_to_us(adap,
+ TIMERVALUE0_G(timer_value_0_and_1));
+ s->timer_val[1] = core_ticks_to_us(adap,
+ TIMERVALUE1_G(timer_value_0_and_1));
+ s->timer_val[2] = core_ticks_to_us(adap,
+ TIMERVALUE2_G(timer_value_2_and_3));
+ s->timer_val[3] = core_ticks_to_us(adap,
+ TIMERVALUE3_G(timer_value_2_and_3));
+ s->timer_val[4] = core_ticks_to_us(adap,
+ TIMERVALUE4_G(timer_value_4_and_5));
+ s->timer_val[5] = core_ticks_to_us(adap,
+ TIMERVALUE5_G(timer_value_4_and_5));
+
+ ingress_rx_threshold = t4_read_reg(adap, SGE_INGRESS_RX_THRESHOLD_A);
+ s->counter_val[0] = THRESHOLD_0_G(ingress_rx_threshold);
+ s->counter_val[1] = THRESHOLD_1_G(ingress_rx_threshold);
+ s->counter_val[2] = THRESHOLD_2_G(ingress_rx_threshold);
+ s->counter_val[3] = THRESHOLD_3_G(ingress_rx_threshold);
+
+ return 0;
+}
+
+/**
+ * t4_sge_init - initialize SGE
+ * @adap: the adapter
+ *
+ * Perform low-level SGE code initialization needed every time after a
+ * chip reset.
+ */
+int t4_sge_init(struct adapter *adap)
+{
+ struct sge *s = &adap->sge;
+ u32 sge_control, sge_conm_ctrl;
+ int ret, egress_threshold;
+
+ /*
+ * Ingress Padding Boundary and Egress Status Page Size are set up by
+ * t4_fixup_host_params().
+ */
+ sge_control = t4_read_reg(adap, SGE_CONTROL_A);
+ s->pktshift = PKTSHIFT_G(sge_control);
+ s->stat_len = (sge_control & EGRSTATUSPAGESIZE_F) ? 128 : 64;
+
+ s->fl_align = t4_fl_pkt_align(adap);
+ ret = t4_sge_init_soft(adap);
+ if (ret < 0)
+ return ret;
+
+ /*
+ * A FL with <= fl_starve_thres buffers is starving and a periodic
+ * timer will attempt to refill it. This needs to be larger than the
+ * SGE's Egress Congestion Threshold. If it isn't, then we can get
+ * stuck waiting for new packets while the SGE is waiting for us to
+ * give it more Free List entries. (Note that the SGE's Egress
+ * Congestion Threshold is in units of 2 Free List pointers.) For T4,
+ * there was only a single field to control this. For T5 there's the
+ * original field which now only applies to Unpacked Mode Free List
+ * buffers and a new field which only applies to Packed Mode Free List
+ * buffers.
+ */
+ sge_conm_ctrl = t4_read_reg(adap, SGE_CONM_CTRL_A);
+ switch (CHELSIO_CHIP_VERSION(adap->params.chip)) {
+ case CHELSIO_T4:
+ egress_threshold = EGRTHRESHOLD_G(sge_conm_ctrl);
+ break;
+ case CHELSIO_T5:
+ egress_threshold = EGRTHRESHOLDPACKING_G(sge_conm_ctrl);
+ break;
+ case CHELSIO_T6:
+ egress_threshold = T6_EGRTHRESHOLDPACKING_G(sge_conm_ctrl);
+ break;
+ default:
+ dev_err(adap->pdev_dev, "Unsupported Chip version %d\n",
+ CHELSIO_CHIP_VERSION(adap->params.chip));
+ return -EINVAL;
+ }
+ s->fl_starve_thres = 2*egress_threshold + 1;
+
+ t4_idma_monitor_init(adap, &s->idma_monitor);
+
+ /* Set up timers used for recuring callbacks to process RX and TX
+ * administrative tasks.
+ */
+ timer_setup(&s->rx_timer, sge_rx_timer_cb, 0);
+ timer_setup(&s->tx_timer, sge_tx_timer_cb, 0);
+
+ spin_lock_init(&s->intrq_lock);
+
+ return 0;
+}