diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-11 08:27:49 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-11 08:27:49 +0000 |
commit | ace9429bb58fd418f0c81d4c2835699bddf6bde6 (patch) | |
tree | b2d64bc10158fdd5497876388cd68142ca374ed3 /drivers/net/ethernet/natsemi/natsemi.c | |
parent | Initial commit. (diff) | |
download | linux-ace9429bb58fd418f0c81d4c2835699bddf6bde6.tar.xz linux-ace9429bb58fd418f0c81d4c2835699bddf6bde6.zip |
Adding upstream version 6.6.15.upstream/6.6.15
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'drivers/net/ethernet/natsemi/natsemi.c')
-rw-r--r-- | drivers/net/ethernet/natsemi/natsemi.c | 3383 |
1 files changed, 3383 insertions, 0 deletions
diff --git a/drivers/net/ethernet/natsemi/natsemi.c b/drivers/net/ethernet/natsemi/natsemi.c new file mode 100644 index 0000000000..650a5a1660 --- /dev/null +++ b/drivers/net/ethernet/natsemi/natsemi.c @@ -0,0 +1,3383 @@ +/* natsemi.c: A Linux PCI Ethernet driver for the NatSemi DP8381x series. */ +/* + Written/copyright 1999-2001 by Donald Becker. + Portions copyright (c) 2001,2002 Sun Microsystems (thockin@sun.com) + Portions copyright 2001,2002 Manfred Spraul (manfred@colorfullife.com) + Portions copyright 2004 Harald Welte <laforge@gnumonks.org> + + This software may be used and distributed according to the terms of + the GNU General Public License (GPL), incorporated herein by reference. + Drivers based on or derived from this code fall under the GPL and must + retain the authorship, copyright and license notice. This file is not + a complete program and may only be used when the entire operating + system is licensed under the GPL. License for under other terms may be + available. Contact the original author for details. + + The original author may be reached as becker@scyld.com, or at + Scyld Computing Corporation + 410 Severn Ave., Suite 210 + Annapolis MD 21403 + + Support information and updates available at + http://www.scyld.com/network/netsemi.html + [link no longer provides useful info -jgarzik] + + + TODO: + * big endian support with CFG:BEM instead of cpu_to_le32 +*/ + +#include <linux/module.h> +#include <linux/kernel.h> +#include <linux/string.h> +#include <linux/timer.h> +#include <linux/errno.h> +#include <linux/ioport.h> +#include <linux/slab.h> +#include <linux/interrupt.h> +#include <linux/pci.h> +#include <linux/netdevice.h> +#include <linux/etherdevice.h> +#include <linux/skbuff.h> +#include <linux/init.h> +#include <linux/spinlock.h> +#include <linux/ethtool.h> +#include <linux/delay.h> +#include <linux/rtnetlink.h> +#include <linux/mii.h> +#include <linux/crc32.h> +#include <linux/bitops.h> +#include <linux/prefetch.h> +#include <asm/processor.h> /* Processor type for cache alignment. */ +#include <asm/io.h> +#include <asm/irq.h> +#include <linux/uaccess.h> + +#define DRV_NAME "natsemi" +#define DRV_VERSION "2.1" +#define DRV_RELDATE "Sept 11, 2006" + +#define RX_OFFSET 2 + +/* Updated to recommendations in pci-skeleton v2.03. */ + +/* The user-configurable values. + These may be modified when a driver module is loaded.*/ + +#define NATSEMI_DEF_MSG (NETIF_MSG_DRV | \ + NETIF_MSG_LINK | \ + NETIF_MSG_WOL | \ + NETIF_MSG_RX_ERR | \ + NETIF_MSG_TX_ERR) +static int debug = -1; + +static int mtu; + +/* Maximum number of multicast addresses to filter (vs. rx-all-multicast). + This chip uses a 512 element hash table based on the Ethernet CRC. */ +static const int multicast_filter_limit = 100; + +/* Set the copy breakpoint for the copy-only-tiny-frames scheme. + Setting to > 1518 effectively disables this feature. */ +static int rx_copybreak; + +static int dspcfg_workaround = 1; + +/* Used to pass the media type, etc. + Both 'options[]' and 'full_duplex[]' should exist for driver + interoperability. + The media type is usually passed in 'options[]'. +*/ +#define MAX_UNITS 8 /* More are supported, limit only on options */ +static int options[MAX_UNITS]; +static int full_duplex[MAX_UNITS]; + +/* Operational parameters that are set at compile time. */ + +/* Keep the ring sizes a power of two for compile efficiency. + The compiler will convert <unsigned>'%'<2^N> into a bit mask. + Making the Tx ring too large decreases the effectiveness of channel + bonding and packet priority. + There are no ill effects from too-large receive rings. */ +#define TX_RING_SIZE 16 +#define TX_QUEUE_LEN 10 /* Limit ring entries actually used, min 4. */ +#define RX_RING_SIZE 32 + +/* Operational parameters that usually are not changed. */ +/* Time in jiffies before concluding the transmitter is hung. */ +#define TX_TIMEOUT (2*HZ) + +#define NATSEMI_HW_TIMEOUT 400 +#define NATSEMI_TIMER_FREQ 5*HZ +#define NATSEMI_PG0_NREGS 64 +#define NATSEMI_RFDR_NREGS 8 +#define NATSEMI_PG1_NREGS 4 +#define NATSEMI_NREGS (NATSEMI_PG0_NREGS + NATSEMI_RFDR_NREGS + \ + NATSEMI_PG1_NREGS) +#define NATSEMI_REGS_VER 1 /* v1 added RFDR registers */ +#define NATSEMI_REGS_SIZE (NATSEMI_NREGS * sizeof(u32)) + +/* Buffer sizes: + * The nic writes 32-bit values, even if the upper bytes of + * a 32-bit value are beyond the end of the buffer. + */ +#define NATSEMI_HEADERS 22 /* 2*mac,type,vlan,crc */ +#define NATSEMI_PADDING 16 /* 2 bytes should be sufficient */ +#define NATSEMI_LONGPKT 1518 /* limit for normal packets */ +#define NATSEMI_RX_LIMIT 2046 /* maximum supported by hardware */ + +/* These identify the driver base version and may not be removed. */ +static const char version[] = + KERN_INFO DRV_NAME " dp8381x driver, version " + DRV_VERSION ", " DRV_RELDATE "\n" + " originally by Donald Becker <becker@scyld.com>\n" + " 2.4.x kernel port by Jeff Garzik, Tjeerd Mulder\n"; + +MODULE_AUTHOR("Donald Becker <becker@scyld.com>"); +MODULE_DESCRIPTION("National Semiconductor DP8381x series PCI Ethernet driver"); +MODULE_LICENSE("GPL"); + +module_param(mtu, int, 0); +module_param(debug, int, 0); +module_param(rx_copybreak, int, 0); +module_param(dspcfg_workaround, int, 0); +module_param_array(options, int, NULL, 0); +module_param_array(full_duplex, int, NULL, 0); +MODULE_PARM_DESC(mtu, "DP8381x MTU (all boards)"); +MODULE_PARM_DESC(debug, "DP8381x default debug level"); +MODULE_PARM_DESC(rx_copybreak, + "DP8381x copy breakpoint for copy-only-tiny-frames"); +MODULE_PARM_DESC(dspcfg_workaround, "DP8381x: control DspCfg workaround"); +MODULE_PARM_DESC(options, + "DP8381x: Bits 0-3: media type, bit 17: full duplex"); +MODULE_PARM_DESC(full_duplex, "DP8381x full duplex setting(s) (1)"); + +/* + Theory of Operation + +I. Board Compatibility + +This driver is designed for National Semiconductor DP83815 PCI Ethernet NIC. +It also works with other chips in the DP83810 series. + +II. Board-specific settings + +This driver requires the PCI interrupt line to be valid. +It honors the EEPROM-set values. + +III. Driver operation + +IIIa. Ring buffers + +This driver uses two statically allocated fixed-size descriptor lists +formed into rings by a branch from the final descriptor to the beginning of +the list. The ring sizes are set at compile time by RX/TX_RING_SIZE. +The NatSemi design uses a 'next descriptor' pointer that the driver forms +into a list. + +IIIb/c. Transmit/Receive Structure + +This driver uses a zero-copy receive and transmit scheme. +The driver allocates full frame size skbuffs for the Rx ring buffers at +open() time and passes the skb->data field to the chip as receive data +buffers. When an incoming frame is less than RX_COPYBREAK bytes long, +a fresh skbuff is allocated and the frame is copied to the new skbuff. +When the incoming frame is larger, the skbuff is passed directly up the +protocol stack. Buffers consumed this way are replaced by newly allocated +skbuffs in a later phase of receives. + +The RX_COPYBREAK value is chosen to trade-off the memory wasted by +using a full-sized skbuff for small frames vs. the copying costs of larger +frames. New boards are typically used in generously configured machines +and the underfilled buffers have negligible impact compared to the benefit of +a single allocation size, so the default value of zero results in never +copying packets. When copying is done, the cost is usually mitigated by using +a combined copy/checksum routine. Copying also preloads the cache, which is +most useful with small frames. + +A subtle aspect of the operation is that unaligned buffers are not permitted +by the hardware. Thus the IP header at offset 14 in an ethernet frame isn't +longword aligned for further processing. On copies frames are put into the +skbuff at an offset of "+2", 16-byte aligning the IP header. + +IIId. Synchronization + +Most operations are synchronized on the np->lock irq spinlock, except the +receive and transmit paths which are synchronised using a combination of +hardware descriptor ownership, disabling interrupts and NAPI poll scheduling. + +IVb. References + +http://www.scyld.com/expert/100mbps.html +http://www.scyld.com/expert/NWay.html +Datasheet is available from: +http://www.national.com/pf/DP/DP83815.html + +IVc. Errata + +None characterised. +*/ + + + +/* + * Support for fibre connections on Am79C874: + * This phy needs a special setup when connected to a fibre cable. + * http://www.amd.com/files/connectivitysolutions/networking/archivednetworking/22235.pdf + */ +#define PHYID_AM79C874 0x0022561b + +enum { + MII_MCTRL = 0x15, /* mode control register */ + MII_FX_SEL = 0x0001, /* 100BASE-FX (fiber) */ + MII_EN_SCRM = 0x0004, /* enable scrambler (tp) */ +}; + +enum { + NATSEMI_FLAG_IGNORE_PHY = 0x1, +}; + +/* array of board data directly indexed by pci_tbl[x].driver_data */ +static struct { + const char *name; + unsigned long flags; + unsigned int eeprom_size; +} natsemi_pci_info[] = { + { "Aculab E1/T1 PMXc cPCI carrier card", NATSEMI_FLAG_IGNORE_PHY, 128 }, + { "NatSemi DP8381[56]", 0, 24 }, +}; + +static const struct pci_device_id natsemi_pci_tbl[] = { + { PCI_VENDOR_ID_NS, 0x0020, 0x12d9, 0x000c, 0, 0, 0 }, + { PCI_VENDOR_ID_NS, 0x0020, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 1 }, + { } /* terminate list */ +}; +MODULE_DEVICE_TABLE(pci, natsemi_pci_tbl); + +/* Offsets to the device registers. + Unlike software-only systems, device drivers interact with complex hardware. + It's not useful to define symbolic names for every register bit in the + device. +*/ +enum register_offsets { + ChipCmd = 0x00, + ChipConfig = 0x04, + EECtrl = 0x08, + PCIBusCfg = 0x0C, + IntrStatus = 0x10, + IntrMask = 0x14, + IntrEnable = 0x18, + IntrHoldoff = 0x1C, /* DP83816 only */ + TxRingPtr = 0x20, + TxConfig = 0x24, + RxRingPtr = 0x30, + RxConfig = 0x34, + ClkRun = 0x3C, + WOLCmd = 0x40, + PauseCmd = 0x44, + RxFilterAddr = 0x48, + RxFilterData = 0x4C, + BootRomAddr = 0x50, + BootRomData = 0x54, + SiliconRev = 0x58, + StatsCtrl = 0x5C, + StatsData = 0x60, + RxPktErrs = 0x60, + RxMissed = 0x68, + RxCRCErrs = 0x64, + BasicControl = 0x80, + BasicStatus = 0x84, + AnegAdv = 0x90, + AnegPeer = 0x94, + PhyStatus = 0xC0, + MIntrCtrl = 0xC4, + MIntrStatus = 0xC8, + PhyCtrl = 0xE4, + + /* These are from the spec, around page 78... on a separate table. + * The meaning of these registers depend on the value of PGSEL. */ + PGSEL = 0xCC, + PMDCSR = 0xE4, + TSTDAT = 0xFC, + DSPCFG = 0xF4, + SDCFG = 0xF8 +}; +/* the values for the 'magic' registers above (PGSEL=1) */ +#define PMDCSR_VAL 0x189c /* enable preferred adaptation circuitry */ +#define TSTDAT_VAL 0x0 +#define DSPCFG_VAL 0x5040 +#define SDCFG_VAL 0x008c /* set voltage thresholds for Signal Detect */ +#define DSPCFG_LOCK 0x20 /* coefficient lock bit in DSPCFG */ +#define DSPCFG_COEF 0x1000 /* see coefficient (in TSTDAT) bit in DSPCFG */ +#define TSTDAT_FIXED 0xe8 /* magic number for bad coefficients */ + +/* misc PCI space registers */ +enum pci_register_offsets { + PCIPM = 0x44, +}; + +enum ChipCmd_bits { + ChipReset = 0x100, + RxReset = 0x20, + TxReset = 0x10, + RxOff = 0x08, + RxOn = 0x04, + TxOff = 0x02, + TxOn = 0x01, +}; + +enum ChipConfig_bits { + CfgPhyDis = 0x200, + CfgPhyRst = 0x400, + CfgExtPhy = 0x1000, + CfgAnegEnable = 0x2000, + CfgAneg100 = 0x4000, + CfgAnegFull = 0x8000, + CfgAnegDone = 0x8000000, + CfgFullDuplex = 0x20000000, + CfgSpeed100 = 0x40000000, + CfgLink = 0x80000000, +}; + +enum EECtrl_bits { + EE_ShiftClk = 0x04, + EE_DataIn = 0x01, + EE_ChipSelect = 0x08, + EE_DataOut = 0x02, + MII_Data = 0x10, + MII_Write = 0x20, + MII_ShiftClk = 0x40, +}; + +enum PCIBusCfg_bits { + EepromReload = 0x4, +}; + +/* Bits in the interrupt status/mask registers. */ +enum IntrStatus_bits { + IntrRxDone = 0x0001, + IntrRxIntr = 0x0002, + IntrRxErr = 0x0004, + IntrRxEarly = 0x0008, + IntrRxIdle = 0x0010, + IntrRxOverrun = 0x0020, + IntrTxDone = 0x0040, + IntrTxIntr = 0x0080, + IntrTxErr = 0x0100, + IntrTxIdle = 0x0200, + IntrTxUnderrun = 0x0400, + StatsMax = 0x0800, + SWInt = 0x1000, + WOLPkt = 0x2000, + LinkChange = 0x4000, + IntrHighBits = 0x8000, + RxStatusFIFOOver = 0x10000, + IntrPCIErr = 0xf00000, + RxResetDone = 0x1000000, + TxResetDone = 0x2000000, + IntrAbnormalSummary = 0xCD20, +}; + +/* + * Default Interrupts: + * Rx OK, Rx Packet Error, Rx Overrun, + * Tx OK, Tx Packet Error, Tx Underrun, + * MIB Service, Phy Interrupt, High Bits, + * Rx Status FIFO overrun, + * Received Target Abort, Received Master Abort, + * Signalled System Error, Received Parity Error + */ +#define DEFAULT_INTR 0x00f1cd65 + +enum TxConfig_bits { + TxDrthMask = 0x3f, + TxFlthMask = 0x3f00, + TxMxdmaMask = 0x700000, + TxMxdma_512 = 0x0, + TxMxdma_4 = 0x100000, + TxMxdma_8 = 0x200000, + TxMxdma_16 = 0x300000, + TxMxdma_32 = 0x400000, + TxMxdma_64 = 0x500000, + TxMxdma_128 = 0x600000, + TxMxdma_256 = 0x700000, + TxCollRetry = 0x800000, + TxAutoPad = 0x10000000, + TxMacLoop = 0x20000000, + TxHeartIgn = 0x40000000, + TxCarrierIgn = 0x80000000 +}; + +/* + * Tx Configuration: + * - 256 byte DMA burst length + * - fill threshold 512 bytes (i.e. restart DMA when 512 bytes are free) + * - 64 bytes initial drain threshold (i.e. begin actual transmission + * when 64 byte are in the fifo) + * - on tx underruns, increase drain threshold by 64. + * - at most use a drain threshold of 1472 bytes: The sum of the fill + * threshold and the drain threshold must be less than 2016 bytes. + * + */ +#define TX_FLTH_VAL ((512/32) << 8) +#define TX_DRTH_VAL_START (64/32) +#define TX_DRTH_VAL_INC 2 +#define TX_DRTH_VAL_LIMIT (1472/32) + +enum RxConfig_bits { + RxDrthMask = 0x3e, + RxMxdmaMask = 0x700000, + RxMxdma_512 = 0x0, + RxMxdma_4 = 0x100000, + RxMxdma_8 = 0x200000, + RxMxdma_16 = 0x300000, + RxMxdma_32 = 0x400000, + RxMxdma_64 = 0x500000, + RxMxdma_128 = 0x600000, + RxMxdma_256 = 0x700000, + RxAcceptLong = 0x8000000, + RxAcceptTx = 0x10000000, + RxAcceptRunt = 0x40000000, + RxAcceptErr = 0x80000000 +}; +#define RX_DRTH_VAL (128/8) + +enum ClkRun_bits { + PMEEnable = 0x100, + PMEStatus = 0x8000, +}; + +enum WolCmd_bits { + WakePhy = 0x1, + WakeUnicast = 0x2, + WakeMulticast = 0x4, + WakeBroadcast = 0x8, + WakeArp = 0x10, + WakePMatch0 = 0x20, + WakePMatch1 = 0x40, + WakePMatch2 = 0x80, + WakePMatch3 = 0x100, + WakeMagic = 0x200, + WakeMagicSecure = 0x400, + SecureHack = 0x100000, + WokePhy = 0x400000, + WokeUnicast = 0x800000, + WokeMulticast = 0x1000000, + WokeBroadcast = 0x2000000, + WokeArp = 0x4000000, + WokePMatch0 = 0x8000000, + WokePMatch1 = 0x10000000, + WokePMatch2 = 0x20000000, + WokePMatch3 = 0x40000000, + WokeMagic = 0x80000000, + WakeOptsSummary = 0x7ff +}; + +enum RxFilterAddr_bits { + RFCRAddressMask = 0x3ff, + AcceptMulticast = 0x00200000, + AcceptMyPhys = 0x08000000, + AcceptAllPhys = 0x10000000, + AcceptAllMulticast = 0x20000000, + AcceptBroadcast = 0x40000000, + RxFilterEnable = 0x80000000 +}; + +enum StatsCtrl_bits { + StatsWarn = 0x1, + StatsFreeze = 0x2, + StatsClear = 0x4, + StatsStrobe = 0x8, +}; + +enum MIntrCtrl_bits { + MICRIntEn = 0x2, +}; + +enum PhyCtrl_bits { + PhyAddrMask = 0x1f, +}; + +#define PHY_ADDR_NONE 32 +#define PHY_ADDR_INTERNAL 1 + +/* values we might find in the silicon revision register */ +#define SRR_DP83815_C 0x0302 +#define SRR_DP83815_D 0x0403 +#define SRR_DP83816_A4 0x0504 +#define SRR_DP83816_A5 0x0505 + +/* The Rx and Tx buffer descriptors. */ +/* Note that using only 32 bit fields simplifies conversion to big-endian + architectures. */ +struct netdev_desc { + __le32 next_desc; + __le32 cmd_status; + __le32 addr; + __le32 software_use; +}; + +/* Bits in network_desc.status */ +enum desc_status_bits { + DescOwn=0x80000000, DescMore=0x40000000, DescIntr=0x20000000, + DescNoCRC=0x10000000, DescPktOK=0x08000000, + DescSizeMask=0xfff, + + DescTxAbort=0x04000000, DescTxFIFO=0x02000000, + DescTxCarrier=0x01000000, DescTxDefer=0x00800000, + DescTxExcDefer=0x00400000, DescTxOOWCol=0x00200000, + DescTxExcColl=0x00100000, DescTxCollCount=0x000f0000, + + DescRxAbort=0x04000000, DescRxOver=0x02000000, + DescRxDest=0x01800000, DescRxLong=0x00400000, + DescRxRunt=0x00200000, DescRxInvalid=0x00100000, + DescRxCRC=0x00080000, DescRxAlign=0x00040000, + DescRxLoop=0x00020000, DesRxColl=0x00010000, +}; + +struct netdev_private { + /* Descriptor rings first for alignment */ + dma_addr_t ring_dma; + struct netdev_desc *rx_ring; + struct netdev_desc *tx_ring; + /* The addresses of receive-in-place skbuffs */ + struct sk_buff *rx_skbuff[RX_RING_SIZE]; + dma_addr_t rx_dma[RX_RING_SIZE]; + /* address of a sent-in-place packet/buffer, for later free() */ + struct sk_buff *tx_skbuff[TX_RING_SIZE]; + dma_addr_t tx_dma[TX_RING_SIZE]; + struct net_device *dev; + void __iomem *ioaddr; + struct napi_struct napi; + /* Media monitoring timer */ + struct timer_list timer; + /* Frequently used values: keep some adjacent for cache effect */ + struct pci_dev *pci_dev; + struct netdev_desc *rx_head_desc; + /* Producer/consumer ring indices */ + unsigned int cur_rx, dirty_rx; + unsigned int cur_tx, dirty_tx; + /* Based on MTU+slack. */ + unsigned int rx_buf_sz; + int oom; + /* Interrupt status */ + u32 intr_status; + /* Do not touch the nic registers */ + int hands_off; + /* Don't pay attention to the reported link state. */ + int ignore_phy; + /* external phy that is used: only valid if dev->if_port != PORT_TP */ + int mii; + int phy_addr_external; + unsigned int full_duplex; + /* Rx filter */ + u32 cur_rx_mode; + u32 rx_filter[16]; + /* FIFO and PCI burst thresholds */ + u32 tx_config, rx_config; + /* original contents of ClkRun register */ + u32 SavedClkRun; + /* silicon revision */ + u32 srr; + /* expected DSPCFG value */ + u16 dspcfg; + int dspcfg_workaround; + /* parms saved in ethtool format */ + u16 speed; /* The forced speed, 10Mb, 100Mb, gigabit */ + u8 duplex; /* Duplex, half or full */ + u8 autoneg; /* Autonegotiation enabled */ + /* MII transceiver section */ + u16 advertising; + unsigned int iosize; + spinlock_t lock; + u32 msg_enable; + /* EEPROM data */ + int eeprom_size; +}; + +static void move_int_phy(struct net_device *dev, int addr); +static int eeprom_read(void __iomem *ioaddr, int location); +static int mdio_read(struct net_device *dev, int reg); +static void mdio_write(struct net_device *dev, int reg, u16 data); +static void init_phy_fixup(struct net_device *dev); +static int miiport_read(struct net_device *dev, int phy_id, int reg); +static void miiport_write(struct net_device *dev, int phy_id, int reg, u16 data); +static int find_mii(struct net_device *dev); +static void natsemi_reset(struct net_device *dev); +static void natsemi_reload_eeprom(struct net_device *dev); +static void natsemi_stop_rxtx(struct net_device *dev); +static int netdev_open(struct net_device *dev); +static void do_cable_magic(struct net_device *dev); +static void undo_cable_magic(struct net_device *dev); +static void check_link(struct net_device *dev); +static void netdev_timer(struct timer_list *t); +static void dump_ring(struct net_device *dev); +static void ns_tx_timeout(struct net_device *dev, unsigned int txqueue); +static int alloc_ring(struct net_device *dev); +static void refill_rx(struct net_device *dev); +static void init_ring(struct net_device *dev); +static void drain_tx(struct net_device *dev); +static void drain_ring(struct net_device *dev); +static void free_ring(struct net_device *dev); +static void reinit_ring(struct net_device *dev); +static void init_registers(struct net_device *dev); +static netdev_tx_t start_tx(struct sk_buff *skb, struct net_device *dev); +static irqreturn_t intr_handler(int irq, void *dev_instance); +static void netdev_error(struct net_device *dev, int intr_status); +static int natsemi_poll(struct napi_struct *napi, int budget); +static void netdev_rx(struct net_device *dev, int *work_done, int work_to_do); +static void netdev_tx_done(struct net_device *dev); +static int natsemi_change_mtu(struct net_device *dev, int new_mtu); +#ifdef CONFIG_NET_POLL_CONTROLLER +static void natsemi_poll_controller(struct net_device *dev); +#endif +static void __set_rx_mode(struct net_device *dev); +static void set_rx_mode(struct net_device *dev); +static void __get_stats(struct net_device *dev); +static struct net_device_stats *get_stats(struct net_device *dev); +static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd); +static int netdev_set_wol(struct net_device *dev, u32 newval); +static int netdev_get_wol(struct net_device *dev, u32 *supported, u32 *cur); +static int netdev_set_sopass(struct net_device *dev, u8 *newval); +static int netdev_get_sopass(struct net_device *dev, u8 *data); +static int netdev_get_ecmd(struct net_device *dev, + struct ethtool_link_ksettings *ecmd); +static int netdev_set_ecmd(struct net_device *dev, + const struct ethtool_link_ksettings *ecmd); +static void enable_wol_mode(struct net_device *dev, int enable_intr); +static int netdev_close(struct net_device *dev); +static int netdev_get_regs(struct net_device *dev, u8 *buf); +static int netdev_get_eeprom(struct net_device *dev, u8 *buf); +static const struct ethtool_ops ethtool_ops; + +#define NATSEMI_ATTR(_name) \ +static ssize_t natsemi_show_##_name(struct device *dev, \ + struct device_attribute *attr, char *buf); \ + static ssize_t natsemi_set_##_name(struct device *dev, \ + struct device_attribute *attr, \ + const char *buf, size_t count); \ + static DEVICE_ATTR(_name, 0644, natsemi_show_##_name, natsemi_set_##_name) + +#define NATSEMI_CREATE_FILE(_dev, _name) \ + device_create_file(&_dev->dev, &dev_attr_##_name) +#define NATSEMI_REMOVE_FILE(_dev, _name) \ + device_remove_file(&_dev->dev, &dev_attr_##_name) + +NATSEMI_ATTR(dspcfg_workaround); + +static ssize_t natsemi_show_dspcfg_workaround(struct device *dev, + struct device_attribute *attr, + char *buf) +{ + struct netdev_private *np = netdev_priv(to_net_dev(dev)); + + return sprintf(buf, "%s\n", np->dspcfg_workaround ? "on" : "off"); +} + +static ssize_t natsemi_set_dspcfg_workaround(struct device *dev, + struct device_attribute *attr, + const char *buf, size_t count) +{ + struct netdev_private *np = netdev_priv(to_net_dev(dev)); + int new_setting; + unsigned long flags; + + /* Find out the new setting */ + if (!strncmp("on", buf, count - 1) || !strncmp("1", buf, count - 1)) + new_setting = 1; + else if (!strncmp("off", buf, count - 1) || + !strncmp("0", buf, count - 1)) + new_setting = 0; + else + return count; + + spin_lock_irqsave(&np->lock, flags); + + np->dspcfg_workaround = new_setting; + + spin_unlock_irqrestore(&np->lock, flags); + + return count; +} + +static inline void __iomem *ns_ioaddr(struct net_device *dev) +{ + struct netdev_private *np = netdev_priv(dev); + + return np->ioaddr; +} + +static inline void natsemi_irq_enable(struct net_device *dev) +{ + writel(1, ns_ioaddr(dev) + IntrEnable); + readl(ns_ioaddr(dev) + IntrEnable); +} + +static inline void natsemi_irq_disable(struct net_device *dev) +{ + writel(0, ns_ioaddr(dev) + IntrEnable); + readl(ns_ioaddr(dev) + IntrEnable); +} + +static void move_int_phy(struct net_device *dev, int addr) +{ + struct netdev_private *np = netdev_priv(dev); + void __iomem *ioaddr = ns_ioaddr(dev); + int target = 31; + + /* + * The internal phy is visible on the external mii bus. Therefore we must + * move it away before we can send commands to an external phy. + * There are two addresses we must avoid: + * - the address on the external phy that is used for transmission. + * - the address that we want to access. User space can access phys + * on the mii bus with SIOCGMIIREG/SIOCSMIIREG, independent from the + * phy that is used for transmission. + */ + + if (target == addr) + target--; + if (target == np->phy_addr_external) + target--; + writew(target, ioaddr + PhyCtrl); + readw(ioaddr + PhyCtrl); + udelay(1); +} + +static void natsemi_init_media(struct net_device *dev) +{ + struct netdev_private *np = netdev_priv(dev); + u32 tmp; + + if (np->ignore_phy) + netif_carrier_on(dev); + else + netif_carrier_off(dev); + + /* get the initial settings from hardware */ + tmp = mdio_read(dev, MII_BMCR); + np->speed = (tmp & BMCR_SPEED100)? SPEED_100 : SPEED_10; + np->duplex = (tmp & BMCR_FULLDPLX)? DUPLEX_FULL : DUPLEX_HALF; + np->autoneg = (tmp & BMCR_ANENABLE)? AUTONEG_ENABLE: AUTONEG_DISABLE; + np->advertising= mdio_read(dev, MII_ADVERTISE); + + if ((np->advertising & ADVERTISE_ALL) != ADVERTISE_ALL && + netif_msg_probe(np)) { + printk(KERN_INFO "natsemi %s: Transceiver default autonegotiation %s " + "10%s %s duplex.\n", + pci_name(np->pci_dev), + (mdio_read(dev, MII_BMCR) & BMCR_ANENABLE)? + "enabled, advertise" : "disabled, force", + (np->advertising & + (ADVERTISE_100FULL|ADVERTISE_100HALF))? + "0" : "", + (np->advertising & + (ADVERTISE_100FULL|ADVERTISE_10FULL))? + "full" : "half"); + } + if (netif_msg_probe(np)) + printk(KERN_INFO + "natsemi %s: Transceiver status %#04x advertising %#04x.\n", + pci_name(np->pci_dev), mdio_read(dev, MII_BMSR), + np->advertising); + +} + +static const struct net_device_ops natsemi_netdev_ops = { + .ndo_open = netdev_open, + .ndo_stop = netdev_close, + .ndo_start_xmit = start_tx, + .ndo_get_stats = get_stats, + .ndo_set_rx_mode = set_rx_mode, + .ndo_change_mtu = natsemi_change_mtu, + .ndo_eth_ioctl = netdev_ioctl, + .ndo_tx_timeout = ns_tx_timeout, + .ndo_set_mac_address = eth_mac_addr, + .ndo_validate_addr = eth_validate_addr, +#ifdef CONFIG_NET_POLL_CONTROLLER + .ndo_poll_controller = natsemi_poll_controller, +#endif +}; + +static int natsemi_probe1(struct pci_dev *pdev, const struct pci_device_id *ent) +{ + struct net_device *dev; + struct netdev_private *np; + int i, option, irq, chip_idx = ent->driver_data; + static int find_cnt = -1; + resource_size_t iostart; + unsigned long iosize; + void __iomem *ioaddr; + const int pcibar = 1; /* PCI base address register */ + u8 addr[ETH_ALEN]; + int prev_eedata; + u32 tmp; + +/* when built into the kernel, we only print version if device is found */ +#ifndef MODULE + static int printed_version; + if (!printed_version++) + printk(version); +#endif + + i = pcim_enable_device(pdev); + if (i) return i; + + /* natsemi has a non-standard PM control register + * in PCI config space. Some boards apparently need + * to be brought to D0 in this manner. + */ + pci_read_config_dword(pdev, PCIPM, &tmp); + if (tmp & PCI_PM_CTRL_STATE_MASK) { + /* D0 state, disable PME assertion */ + u32 newtmp = tmp & ~PCI_PM_CTRL_STATE_MASK; + pci_write_config_dword(pdev, PCIPM, newtmp); + } + + find_cnt++; + iostart = pci_resource_start(pdev, pcibar); + iosize = pci_resource_len(pdev, pcibar); + irq = pdev->irq; + + pci_set_master(pdev); + + dev = alloc_etherdev(sizeof (struct netdev_private)); + if (!dev) + return -ENOMEM; + SET_NETDEV_DEV(dev, &pdev->dev); + + i = pci_request_regions(pdev, DRV_NAME); + if (i) + goto err_pci_request_regions; + + ioaddr = ioremap(iostart, iosize); + if (!ioaddr) { + i = -ENOMEM; + goto err_pci_request_regions; + } + + /* Work around the dropped serial bit. */ + prev_eedata = eeprom_read(ioaddr, 6); + for (i = 0; i < 3; i++) { + int eedata = eeprom_read(ioaddr, i + 7); + addr[i*2] = (eedata << 1) + (prev_eedata >> 15); + addr[i*2+1] = eedata >> 7; + prev_eedata = eedata; + } + eth_hw_addr_set(dev, addr); + + np = netdev_priv(dev); + np->ioaddr = ioaddr; + + netif_napi_add(dev, &np->napi, natsemi_poll); + np->dev = dev; + + np->pci_dev = pdev; + pci_set_drvdata(pdev, dev); + np->iosize = iosize; + spin_lock_init(&np->lock); + np->msg_enable = (debug >= 0) ? (1<<debug)-1 : NATSEMI_DEF_MSG; + np->hands_off = 0; + np->intr_status = 0; + np->eeprom_size = natsemi_pci_info[chip_idx].eeprom_size; + if (natsemi_pci_info[chip_idx].flags & NATSEMI_FLAG_IGNORE_PHY) + np->ignore_phy = 1; + else + np->ignore_phy = 0; + np->dspcfg_workaround = dspcfg_workaround; + + /* Initial port: + * - If configured to ignore the PHY set up for external. + * - If the nic was configured to use an external phy and if find_mii + * finds a phy: use external port, first phy that replies. + * - Otherwise: internal port. + * Note that the phy address for the internal phy doesn't matter: + * The address would be used to access a phy over the mii bus, but + * the internal phy is accessed through mapped registers. + */ + if (np->ignore_phy || readl(ioaddr + ChipConfig) & CfgExtPhy) + dev->if_port = PORT_MII; + else + dev->if_port = PORT_TP; + /* Reset the chip to erase previous misconfiguration. */ + natsemi_reload_eeprom(dev); + natsemi_reset(dev); + + if (dev->if_port != PORT_TP) { + np->phy_addr_external = find_mii(dev); + /* If we're ignoring the PHY it doesn't matter if we can't + * find one. */ + if (!np->ignore_phy && np->phy_addr_external == PHY_ADDR_NONE) { + dev->if_port = PORT_TP; + np->phy_addr_external = PHY_ADDR_INTERNAL; + } + } else { + np->phy_addr_external = PHY_ADDR_INTERNAL; + } + + option = find_cnt < MAX_UNITS ? options[find_cnt] : 0; + /* The lower four bits are the media type. */ + if (option) { + if (option & 0x200) + np->full_duplex = 1; + if (option & 15) + printk(KERN_INFO + "natsemi %s: ignoring user supplied media type %d", + pci_name(np->pci_dev), option & 15); + } + if (find_cnt < MAX_UNITS && full_duplex[find_cnt]) + np->full_duplex = 1; + + dev->netdev_ops = &natsemi_netdev_ops; + dev->watchdog_timeo = TX_TIMEOUT; + + dev->ethtool_ops = ðtool_ops; + + /* MTU range: 64 - 2024 */ + dev->min_mtu = ETH_ZLEN + ETH_FCS_LEN; + dev->max_mtu = NATSEMI_RX_LIMIT - NATSEMI_HEADERS; + + if (mtu) + dev->mtu = mtu; + + natsemi_init_media(dev); + + /* save the silicon revision for later querying */ + np->srr = readl(ioaddr + SiliconRev); + if (netif_msg_hw(np)) + printk(KERN_INFO "natsemi %s: silicon revision %#04x.\n", + pci_name(np->pci_dev), np->srr); + + i = register_netdev(dev); + if (i) + goto err_register_netdev; + i = NATSEMI_CREATE_FILE(pdev, dspcfg_workaround); + if (i) + goto err_create_file; + + if (netif_msg_drv(np)) { + printk(KERN_INFO "natsemi %s: %s at %#08llx " + "(%s), %pM, IRQ %d", + dev->name, natsemi_pci_info[chip_idx].name, + (unsigned long long)iostart, pci_name(np->pci_dev), + dev->dev_addr, irq); + if (dev->if_port == PORT_TP) + printk(", port TP.\n"); + else if (np->ignore_phy) + printk(", port MII, ignoring PHY\n"); + else + printk(", port MII, phy ad %d.\n", np->phy_addr_external); + } + return 0; + + err_create_file: + unregister_netdev(dev); + + err_register_netdev: + iounmap(ioaddr); + + err_pci_request_regions: + free_netdev(dev); + return i; +} + + +/* Read the EEPROM and MII Management Data I/O (MDIO) interfaces. + The EEPROM code is for the common 93c06/46 EEPROMs with 6 bit addresses. */ + +/* Delay between EEPROM clock transitions. + No extra delay is needed with 33Mhz PCI, but future 66Mhz access may need + a delay. Note that pre-2.0.34 kernels had a cache-alignment bug that + made udelay() unreliable. +*/ +#define eeprom_delay(ee_addr) readl(ee_addr) + +#define EE_Write0 (EE_ChipSelect) +#define EE_Write1 (EE_ChipSelect | EE_DataIn) + +/* The EEPROM commands include the alway-set leading bit. */ +enum EEPROM_Cmds { + EE_WriteCmd=(5 << 6), EE_ReadCmd=(6 << 6), EE_EraseCmd=(7 << 6), +}; + +static int eeprom_read(void __iomem *addr, int location) +{ + int i; + int retval = 0; + void __iomem *ee_addr = addr + EECtrl; + int read_cmd = location | EE_ReadCmd; + + writel(EE_Write0, ee_addr); + + /* Shift the read command bits out. */ + for (i = 10; i >= 0; i--) { + short dataval = (read_cmd & (1 << i)) ? EE_Write1 : EE_Write0; + writel(dataval, ee_addr); + eeprom_delay(ee_addr); + writel(dataval | EE_ShiftClk, ee_addr); + eeprom_delay(ee_addr); + } + writel(EE_ChipSelect, ee_addr); + eeprom_delay(ee_addr); + + for (i = 0; i < 16; i++) { + writel(EE_ChipSelect | EE_ShiftClk, ee_addr); + eeprom_delay(ee_addr); + retval |= (readl(ee_addr) & EE_DataOut) ? 1 << i : 0; + writel(EE_ChipSelect, ee_addr); + eeprom_delay(ee_addr); + } + + /* Terminate the EEPROM access. */ + writel(EE_Write0, ee_addr); + writel(0, ee_addr); + return retval; +} + +/* MII transceiver control section. + * The 83815 series has an internal transceiver, and we present the + * internal management registers as if they were MII connected. + * External Phy registers are referenced through the MII interface. + */ + +/* clock transitions >= 20ns (25MHz) + * One readl should be good to PCI @ 100MHz + */ +#define mii_delay(ioaddr) readl(ioaddr + EECtrl) + +static int mii_getbit (struct net_device *dev) +{ + int data; + void __iomem *ioaddr = ns_ioaddr(dev); + + writel(MII_ShiftClk, ioaddr + EECtrl); + data = readl(ioaddr + EECtrl); + writel(0, ioaddr + EECtrl); + mii_delay(ioaddr); + return (data & MII_Data)? 1 : 0; +} + +static void mii_send_bits (struct net_device *dev, u32 data, int len) +{ + u32 i; + void __iomem *ioaddr = ns_ioaddr(dev); + + for (i = (1 << (len-1)); i; i >>= 1) + { + u32 mdio_val = MII_Write | ((data & i)? MII_Data : 0); + writel(mdio_val, ioaddr + EECtrl); + mii_delay(ioaddr); + writel(mdio_val | MII_ShiftClk, ioaddr + EECtrl); + mii_delay(ioaddr); + } + writel(0, ioaddr + EECtrl); + mii_delay(ioaddr); +} + +static int miiport_read(struct net_device *dev, int phy_id, int reg) +{ + u32 cmd; + int i; + u32 retval = 0; + + /* Ensure sync */ + mii_send_bits (dev, 0xffffffff, 32); + /* ST(2), OP(2), ADDR(5), REG#(5), TA(2), Data(16) total 32 bits */ + /* ST,OP = 0110'b for read operation */ + cmd = (0x06 << 10) | (phy_id << 5) | reg; + mii_send_bits (dev, cmd, 14); + /* Turnaround */ + if (mii_getbit (dev)) + return 0; + /* Read data */ + for (i = 0; i < 16; i++) { + retval <<= 1; + retval |= mii_getbit (dev); + } + /* End cycle */ + mii_getbit (dev); + return retval; +} + +static void miiport_write(struct net_device *dev, int phy_id, int reg, u16 data) +{ + u32 cmd; + + /* Ensure sync */ + mii_send_bits (dev, 0xffffffff, 32); + /* ST(2), OP(2), ADDR(5), REG#(5), TA(2), Data(16) total 32 bits */ + /* ST,OP,AAAAA,RRRRR,TA = 0101xxxxxxxxxx10'b = 0x5002 for write */ + cmd = (0x5002 << 16) | (phy_id << 23) | (reg << 18) | data; + mii_send_bits (dev, cmd, 32); + /* End cycle */ + mii_getbit (dev); +} + +static int mdio_read(struct net_device *dev, int reg) +{ + struct netdev_private *np = netdev_priv(dev); + void __iomem *ioaddr = ns_ioaddr(dev); + + /* The 83815 series has two ports: + * - an internal transceiver + * - an external mii bus + */ + if (dev->if_port == PORT_TP) + return readw(ioaddr+BasicControl+(reg<<2)); + else + return miiport_read(dev, np->phy_addr_external, reg); +} + +static void mdio_write(struct net_device *dev, int reg, u16 data) +{ + struct netdev_private *np = netdev_priv(dev); + void __iomem *ioaddr = ns_ioaddr(dev); + + /* The 83815 series has an internal transceiver; handle separately */ + if (dev->if_port == PORT_TP) + writew(data, ioaddr+BasicControl+(reg<<2)); + else + miiport_write(dev, np->phy_addr_external, reg, data); +} + +static void init_phy_fixup(struct net_device *dev) +{ + struct netdev_private *np = netdev_priv(dev); + void __iomem *ioaddr = ns_ioaddr(dev); + int i; + u32 cfg; + u16 tmp; + + /* restore stuff lost when power was out */ + tmp = mdio_read(dev, MII_BMCR); + if (np->autoneg == AUTONEG_ENABLE) { + /* renegotiate if something changed */ + if ((tmp & BMCR_ANENABLE) == 0 || + np->advertising != mdio_read(dev, MII_ADVERTISE)) + { + /* turn on autonegotiation and force negotiation */ + tmp |= (BMCR_ANENABLE | BMCR_ANRESTART); + mdio_write(dev, MII_ADVERTISE, np->advertising); + } + } else { + /* turn off auto negotiation, set speed and duplexity */ + tmp &= ~(BMCR_ANENABLE | BMCR_SPEED100 | BMCR_FULLDPLX); + if (np->speed == SPEED_100) + tmp |= BMCR_SPEED100; + if (np->duplex == DUPLEX_FULL) + tmp |= BMCR_FULLDPLX; + /* + * Note: there is no good way to inform the link partner + * that our capabilities changed. The user has to unplug + * and replug the network cable after some changes, e.g. + * after switching from 10HD, autoneg off to 100 HD, + * autoneg off. + */ + } + mdio_write(dev, MII_BMCR, tmp); + readl(ioaddr + ChipConfig); + udelay(1); + + /* find out what phy this is */ + np->mii = (mdio_read(dev, MII_PHYSID1) << 16) + + mdio_read(dev, MII_PHYSID2); + + /* handle external phys here */ + switch (np->mii) { + case PHYID_AM79C874: + /* phy specific configuration for fibre/tp operation */ + tmp = mdio_read(dev, MII_MCTRL); + tmp &= ~(MII_FX_SEL | MII_EN_SCRM); + if (dev->if_port == PORT_FIBRE) + tmp |= MII_FX_SEL; + else + tmp |= MII_EN_SCRM; + mdio_write(dev, MII_MCTRL, tmp); + break; + default: + break; + } + cfg = readl(ioaddr + ChipConfig); + if (cfg & CfgExtPhy) + return; + + /* On page 78 of the spec, they recommend some settings for "optimum + performance" to be done in sequence. These settings optimize some + of the 100Mbit autodetection circuitry. They say we only want to + do this for rev C of the chip, but engineers at NSC (Bradley + Kennedy) recommends always setting them. If you don't, you get + errors on some autonegotiations that make the device unusable. + + It seems that the DSP needs a few usec to reinitialize after + the start of the phy. Just retry writing these values until they + stick. + */ + for (i=0;i<NATSEMI_HW_TIMEOUT;i++) { + + int dspcfg; + writew(1, ioaddr + PGSEL); + writew(PMDCSR_VAL, ioaddr + PMDCSR); + writew(TSTDAT_VAL, ioaddr + TSTDAT); + np->dspcfg = (np->srr <= SRR_DP83815_C)? + DSPCFG_VAL : (DSPCFG_COEF | readw(ioaddr + DSPCFG)); + writew(np->dspcfg, ioaddr + DSPCFG); + writew(SDCFG_VAL, ioaddr + SDCFG); + writew(0, ioaddr + PGSEL); + readl(ioaddr + ChipConfig); + udelay(10); + + writew(1, ioaddr + PGSEL); + dspcfg = readw(ioaddr + DSPCFG); + writew(0, ioaddr + PGSEL); + if (np->dspcfg == dspcfg) + break; + } + + if (netif_msg_link(np)) { + if (i==NATSEMI_HW_TIMEOUT) { + printk(KERN_INFO + "%s: DSPCFG mismatch after retrying for %d usec.\n", + dev->name, i*10); + } else { + printk(KERN_INFO + "%s: DSPCFG accepted after %d usec.\n", + dev->name, i*10); + } + } + /* + * Enable PHY Specific event based interrupts. Link state change + * and Auto-Negotiation Completion are among the affected. + * Read the intr status to clear it (needed for wake events). + */ + readw(ioaddr + MIntrStatus); + writew(MICRIntEn, ioaddr + MIntrCtrl); +} + +static int switch_port_external(struct net_device *dev) +{ + struct netdev_private *np = netdev_priv(dev); + void __iomem *ioaddr = ns_ioaddr(dev); + u32 cfg; + + cfg = readl(ioaddr + ChipConfig); + if (cfg & CfgExtPhy) + return 0; + + if (netif_msg_link(np)) { + printk(KERN_INFO "%s: switching to external transceiver.\n", + dev->name); + } + + /* 1) switch back to external phy */ + writel(cfg | (CfgExtPhy | CfgPhyDis), ioaddr + ChipConfig); + readl(ioaddr + ChipConfig); + udelay(1); + + /* 2) reset the external phy: */ + /* resetting the external PHY has been known to cause a hub supplying + * power over Ethernet to kill the power. We don't want to kill + * power to this computer, so we avoid resetting the phy. + */ + + /* 3) reinit the phy fixup, it got lost during power down. */ + move_int_phy(dev, np->phy_addr_external); + init_phy_fixup(dev); + + return 1; +} + +static int switch_port_internal(struct net_device *dev) +{ + struct netdev_private *np = netdev_priv(dev); + void __iomem *ioaddr = ns_ioaddr(dev); + int i; + u32 cfg; + u16 bmcr; + + cfg = readl(ioaddr + ChipConfig); + if (!(cfg &CfgExtPhy)) + return 0; + + if (netif_msg_link(np)) { + printk(KERN_INFO "%s: switching to internal transceiver.\n", + dev->name); + } + /* 1) switch back to internal phy: */ + cfg = cfg & ~(CfgExtPhy | CfgPhyDis); + writel(cfg, ioaddr + ChipConfig); + readl(ioaddr + ChipConfig); + udelay(1); + + /* 2) reset the internal phy: */ + bmcr = readw(ioaddr+BasicControl+(MII_BMCR<<2)); + writel(bmcr | BMCR_RESET, ioaddr+BasicControl+(MII_BMCR<<2)); + readl(ioaddr + ChipConfig); + udelay(10); + for (i=0;i<NATSEMI_HW_TIMEOUT;i++) { + bmcr = readw(ioaddr+BasicControl+(MII_BMCR<<2)); + if (!(bmcr & BMCR_RESET)) + break; + udelay(10); + } + if (i==NATSEMI_HW_TIMEOUT && netif_msg_link(np)) { + printk(KERN_INFO + "%s: phy reset did not complete in %d usec.\n", + dev->name, i*10); + } + /* 3) reinit the phy fixup, it got lost during power down. */ + init_phy_fixup(dev); + + return 1; +} + +/* Scan for a PHY on the external mii bus. + * There are two tricky points: + * - Do not scan while the internal phy is enabled. The internal phy will + * crash: e.g. reads from the DSPCFG register will return odd values and + * the nasty random phy reset code will reset the nic every few seconds. + * - The internal phy must be moved around, an external phy could + * have the same address as the internal phy. + */ +static int find_mii(struct net_device *dev) +{ + struct netdev_private *np = netdev_priv(dev); + int tmp; + int i; + int did_switch; + + /* Switch to external phy */ + did_switch = switch_port_external(dev); + + /* Scan the possible phy addresses: + * + * PHY address 0 means that the phy is in isolate mode. Not yet + * supported due to lack of test hardware. User space should + * handle it through ethtool. + */ + for (i = 1; i <= 31; i++) { + move_int_phy(dev, i); + tmp = miiport_read(dev, i, MII_BMSR); + if (tmp != 0xffff && tmp != 0x0000) { + /* found something! */ + np->mii = (mdio_read(dev, MII_PHYSID1) << 16) + + mdio_read(dev, MII_PHYSID2); + if (netif_msg_probe(np)) { + printk(KERN_INFO "natsemi %s: found external phy %08x at address %d.\n", + pci_name(np->pci_dev), np->mii, i); + } + break; + } + } + /* And switch back to internal phy: */ + if (did_switch) + switch_port_internal(dev); + return i; +} + +/* CFG bits [13:16] [18:23] */ +#define CFG_RESET_SAVE 0xfde000 +/* WCSR bits [0:4] [9:10] */ +#define WCSR_RESET_SAVE 0x61f +/* RFCR bits [20] [22] [27:31] */ +#define RFCR_RESET_SAVE 0xf8500000 + +static void natsemi_reset(struct net_device *dev) +{ + int i; + u32 cfg; + u32 wcsr; + u32 rfcr; + u16 pmatch[3]; + u16 sopass[3]; + struct netdev_private *np = netdev_priv(dev); + void __iomem *ioaddr = ns_ioaddr(dev); + + /* + * Resetting the chip causes some registers to be lost. + * Natsemi suggests NOT reloading the EEPROM while live, so instead + * we save the state that would have been loaded from EEPROM + * on a normal power-up (see the spec EEPROM map). This assumes + * whoever calls this will follow up with init_registers() eventually. + */ + + /* CFG */ + cfg = readl(ioaddr + ChipConfig) & CFG_RESET_SAVE; + /* WCSR */ + wcsr = readl(ioaddr + WOLCmd) & WCSR_RESET_SAVE; + /* RFCR */ + rfcr = readl(ioaddr + RxFilterAddr) & RFCR_RESET_SAVE; + /* PMATCH */ + for (i = 0; i < 3; i++) { + writel(i*2, ioaddr + RxFilterAddr); + pmatch[i] = readw(ioaddr + RxFilterData); + } + /* SOPAS */ + for (i = 0; i < 3; i++) { + writel(0xa+(i*2), ioaddr + RxFilterAddr); + sopass[i] = readw(ioaddr + RxFilterData); + } + + /* now whack the chip */ + writel(ChipReset, ioaddr + ChipCmd); + for (i=0;i<NATSEMI_HW_TIMEOUT;i++) { + if (!(readl(ioaddr + ChipCmd) & ChipReset)) + break; + udelay(5); + } + if (i==NATSEMI_HW_TIMEOUT) { + printk(KERN_WARNING "%s: reset did not complete in %d usec.\n", + dev->name, i*5); + } else if (netif_msg_hw(np)) { + printk(KERN_DEBUG "%s: reset completed in %d usec.\n", + dev->name, i*5); + } + + /* restore CFG */ + cfg |= readl(ioaddr + ChipConfig) & ~CFG_RESET_SAVE; + /* turn on external phy if it was selected */ + if (dev->if_port == PORT_TP) + cfg &= ~(CfgExtPhy | CfgPhyDis); + else + cfg |= (CfgExtPhy | CfgPhyDis); + writel(cfg, ioaddr + ChipConfig); + /* restore WCSR */ + wcsr |= readl(ioaddr + WOLCmd) & ~WCSR_RESET_SAVE; + writel(wcsr, ioaddr + WOLCmd); + /* read RFCR */ + rfcr |= readl(ioaddr + RxFilterAddr) & ~RFCR_RESET_SAVE; + /* restore PMATCH */ + for (i = 0; i < 3; i++) { + writel(i*2, ioaddr + RxFilterAddr); + writew(pmatch[i], ioaddr + RxFilterData); + } + for (i = 0; i < 3; i++) { + writel(0xa+(i*2), ioaddr + RxFilterAddr); + writew(sopass[i], ioaddr + RxFilterData); + } + /* restore RFCR */ + writel(rfcr, ioaddr + RxFilterAddr); +} + +static void reset_rx(struct net_device *dev) +{ + int i; + struct netdev_private *np = netdev_priv(dev); + void __iomem *ioaddr = ns_ioaddr(dev); + + np->intr_status &= ~RxResetDone; + + writel(RxReset, ioaddr + ChipCmd); + + for (i=0;i<NATSEMI_HW_TIMEOUT;i++) { + np->intr_status |= readl(ioaddr + IntrStatus); + if (np->intr_status & RxResetDone) + break; + udelay(15); + } + if (i==NATSEMI_HW_TIMEOUT) { + printk(KERN_WARNING "%s: RX reset did not complete in %d usec.\n", + dev->name, i*15); + } else if (netif_msg_hw(np)) { + printk(KERN_WARNING "%s: RX reset took %d usec.\n", + dev->name, i*15); + } +} + +static void natsemi_reload_eeprom(struct net_device *dev) +{ + struct netdev_private *np = netdev_priv(dev); + void __iomem *ioaddr = ns_ioaddr(dev); + int i; + + writel(EepromReload, ioaddr + PCIBusCfg); + for (i=0;i<NATSEMI_HW_TIMEOUT;i++) { + udelay(50); + if (!(readl(ioaddr + PCIBusCfg) & EepromReload)) + break; + } + if (i==NATSEMI_HW_TIMEOUT) { + printk(KERN_WARNING "natsemi %s: EEPROM did not reload in %d usec.\n", + pci_name(np->pci_dev), i*50); + } else if (netif_msg_hw(np)) { + printk(KERN_DEBUG "natsemi %s: EEPROM reloaded in %d usec.\n", + pci_name(np->pci_dev), i*50); + } +} + +static void natsemi_stop_rxtx(struct net_device *dev) +{ + void __iomem * ioaddr = ns_ioaddr(dev); + struct netdev_private *np = netdev_priv(dev); + int i; + + writel(RxOff | TxOff, ioaddr + ChipCmd); + for(i=0;i< NATSEMI_HW_TIMEOUT;i++) { + if ((readl(ioaddr + ChipCmd) & (TxOn|RxOn)) == 0) + break; + udelay(5); + } + if (i==NATSEMI_HW_TIMEOUT) { + printk(KERN_WARNING "%s: Tx/Rx process did not stop in %d usec.\n", + dev->name, i*5); + } else if (netif_msg_hw(np)) { + printk(KERN_DEBUG "%s: Tx/Rx process stopped in %d usec.\n", + dev->name, i*5); + } +} + +static int netdev_open(struct net_device *dev) +{ + struct netdev_private *np = netdev_priv(dev); + void __iomem * ioaddr = ns_ioaddr(dev); + const int irq = np->pci_dev->irq; + int i; + + /* Reset the chip, just in case. */ + natsemi_reset(dev); + + i = request_irq(irq, intr_handler, IRQF_SHARED, dev->name, dev); + if (i) return i; + + if (netif_msg_ifup(np)) + printk(KERN_DEBUG "%s: netdev_open() irq %d.\n", + dev->name, irq); + i = alloc_ring(dev); + if (i < 0) { + free_irq(irq, dev); + return i; + } + napi_enable(&np->napi); + + init_ring(dev); + spin_lock_irq(&np->lock); + init_registers(dev); + /* now set the MAC address according to dev->dev_addr */ + for (i = 0; i < 3; i++) { + u16 mac = (dev->dev_addr[2*i+1]<<8) + dev->dev_addr[2*i]; + + writel(i*2, ioaddr + RxFilterAddr); + writew(mac, ioaddr + RxFilterData); + } + writel(np->cur_rx_mode, ioaddr + RxFilterAddr); + spin_unlock_irq(&np->lock); + + netif_start_queue(dev); + + if (netif_msg_ifup(np)) + printk(KERN_DEBUG "%s: Done netdev_open(), status: %#08x.\n", + dev->name, (int)readl(ioaddr + ChipCmd)); + + /* Set the timer to check for link beat. */ + timer_setup(&np->timer, netdev_timer, 0); + np->timer.expires = round_jiffies(jiffies + NATSEMI_TIMER_FREQ); + add_timer(&np->timer); + + return 0; +} + +static void do_cable_magic(struct net_device *dev) +{ + struct netdev_private *np = netdev_priv(dev); + void __iomem *ioaddr = ns_ioaddr(dev); + + if (dev->if_port != PORT_TP) + return; + + if (np->srr >= SRR_DP83816_A5) + return; + + /* + * 100 MBit links with short cables can trip an issue with the chip. + * The problem manifests as lots of CRC errors and/or flickering + * activity LED while idle. This process is based on instructions + * from engineers at National. + */ + if (readl(ioaddr + ChipConfig) & CfgSpeed100) { + u16 data; + + writew(1, ioaddr + PGSEL); + /* + * coefficient visibility should already be enabled via + * DSPCFG | 0x1000 + */ + data = readw(ioaddr + TSTDAT) & 0xff; + /* + * the value must be negative, and within certain values + * (these values all come from National) + */ + if (!(data & 0x80) || ((data >= 0xd8) && (data <= 0xff))) { + np = netdev_priv(dev); + + /* the bug has been triggered - fix the coefficient */ + writew(TSTDAT_FIXED, ioaddr + TSTDAT); + /* lock the value */ + data = readw(ioaddr + DSPCFG); + np->dspcfg = data | DSPCFG_LOCK; + writew(np->dspcfg, ioaddr + DSPCFG); + } + writew(0, ioaddr + PGSEL); + } +} + +static void undo_cable_magic(struct net_device *dev) +{ + u16 data; + struct netdev_private *np = netdev_priv(dev); + void __iomem * ioaddr = ns_ioaddr(dev); + + if (dev->if_port != PORT_TP) + return; + + if (np->srr >= SRR_DP83816_A5) + return; + + writew(1, ioaddr + PGSEL); + /* make sure the lock bit is clear */ + data = readw(ioaddr + DSPCFG); + np->dspcfg = data & ~DSPCFG_LOCK; + writew(np->dspcfg, ioaddr + DSPCFG); + writew(0, ioaddr + PGSEL); +} + +static void check_link(struct net_device *dev) +{ + struct netdev_private *np = netdev_priv(dev); + void __iomem * ioaddr = ns_ioaddr(dev); + int duplex = np->duplex; + u16 bmsr; + + /* If we are ignoring the PHY then don't try reading it. */ + if (np->ignore_phy) + goto propagate_state; + + /* The link status field is latched: it remains low after a temporary + * link failure until it's read. We need the current link status, + * thus read twice. + */ + mdio_read(dev, MII_BMSR); + bmsr = mdio_read(dev, MII_BMSR); + + if (!(bmsr & BMSR_LSTATUS)) { + if (netif_carrier_ok(dev)) { + if (netif_msg_link(np)) + printk(KERN_NOTICE "%s: link down.\n", + dev->name); + netif_carrier_off(dev); + undo_cable_magic(dev); + } + return; + } + if (!netif_carrier_ok(dev)) { + if (netif_msg_link(np)) + printk(KERN_NOTICE "%s: link up.\n", dev->name); + netif_carrier_on(dev); + do_cable_magic(dev); + } + + duplex = np->full_duplex; + if (!duplex) { + if (bmsr & BMSR_ANEGCOMPLETE) { + int tmp = mii_nway_result( + np->advertising & mdio_read(dev, MII_LPA)); + if (tmp == LPA_100FULL || tmp == LPA_10FULL) + duplex = 1; + } else if (mdio_read(dev, MII_BMCR) & BMCR_FULLDPLX) + duplex = 1; + } + +propagate_state: + /* if duplex is set then bit 28 must be set, too */ + if (duplex ^ !!(np->rx_config & RxAcceptTx)) { + if (netif_msg_link(np)) + printk(KERN_INFO + "%s: Setting %s-duplex based on negotiated " + "link capability.\n", dev->name, + duplex ? "full" : "half"); + if (duplex) { + np->rx_config |= RxAcceptTx; + np->tx_config |= TxCarrierIgn | TxHeartIgn; + } else { + np->rx_config &= ~RxAcceptTx; + np->tx_config &= ~(TxCarrierIgn | TxHeartIgn); + } + writel(np->tx_config, ioaddr + TxConfig); + writel(np->rx_config, ioaddr + RxConfig); + } +} + +static void init_registers(struct net_device *dev) +{ + struct netdev_private *np = netdev_priv(dev); + void __iomem * ioaddr = ns_ioaddr(dev); + + init_phy_fixup(dev); + + /* clear any interrupts that are pending, such as wake events */ + readl(ioaddr + IntrStatus); + + writel(np->ring_dma, ioaddr + RxRingPtr); + writel(np->ring_dma + RX_RING_SIZE * sizeof(struct netdev_desc), + ioaddr + TxRingPtr); + + /* Initialize other registers. + * Configure the PCI bus bursts and FIFO thresholds. + * Configure for standard, in-spec Ethernet. + * Start with half-duplex. check_link will update + * to the correct settings. + */ + + /* DRTH: 2: start tx if 64 bytes are in the fifo + * FLTH: 0x10: refill with next packet if 512 bytes are free + * MXDMA: 0: up to 256 byte bursts. + * MXDMA must be <= FLTH + * ECRETRY=1 + * ATP=1 + */ + np->tx_config = TxAutoPad | TxCollRetry | TxMxdma_256 | + TX_FLTH_VAL | TX_DRTH_VAL_START; + writel(np->tx_config, ioaddr + TxConfig); + + /* DRTH 0x10: start copying to memory if 128 bytes are in the fifo + * MXDMA 0: up to 256 byte bursts + */ + np->rx_config = RxMxdma_256 | RX_DRTH_VAL; + /* if receive ring now has bigger buffers than normal, enable jumbo */ + if (np->rx_buf_sz > NATSEMI_LONGPKT) + np->rx_config |= RxAcceptLong; + + writel(np->rx_config, ioaddr + RxConfig); + + /* Disable PME: + * The PME bit is initialized from the EEPROM contents. + * PCI cards probably have PME disabled, but motherboard + * implementations may have PME set to enable WakeOnLan. + * With PME set the chip will scan incoming packets but + * nothing will be written to memory. */ + np->SavedClkRun = readl(ioaddr + ClkRun); + writel(np->SavedClkRun & ~PMEEnable, ioaddr + ClkRun); + if (np->SavedClkRun & PMEStatus && netif_msg_wol(np)) { + printk(KERN_NOTICE "%s: Wake-up event %#08x\n", + dev->name, readl(ioaddr + WOLCmd)); + } + + check_link(dev); + __set_rx_mode(dev); + + /* Enable interrupts by setting the interrupt mask. */ + writel(DEFAULT_INTR, ioaddr + IntrMask); + natsemi_irq_enable(dev); + + writel(RxOn | TxOn, ioaddr + ChipCmd); + writel(StatsClear, ioaddr + StatsCtrl); /* Clear Stats */ +} + +/* + * netdev_timer: + * Purpose: + * 1) check for link changes. Usually they are handled by the MII interrupt + * but it doesn't hurt to check twice. + * 2) check for sudden death of the NIC: + * It seems that a reference set for this chip went out with incorrect info, + * and there exist boards that aren't quite right. An unexpected voltage + * drop can cause the PHY to get itself in a weird state (basically reset). + * NOTE: this only seems to affect revC chips. The user can disable + * this check via dspcfg_workaround sysfs option. + * 3) check of death of the RX path due to OOM + */ +static void netdev_timer(struct timer_list *t) +{ + struct netdev_private *np = from_timer(np, t, timer); + struct net_device *dev = np->dev; + void __iomem * ioaddr = ns_ioaddr(dev); + int next_tick = NATSEMI_TIMER_FREQ; + const int irq = np->pci_dev->irq; + + if (netif_msg_timer(np)) { + /* DO NOT read the IntrStatus register, + * a read clears any pending interrupts. + */ + printk(KERN_DEBUG "%s: Media selection timer tick.\n", + dev->name); + } + + if (dev->if_port == PORT_TP) { + u16 dspcfg; + + spin_lock_irq(&np->lock); + /* check for a nasty random phy-reset - use dspcfg as a flag */ + writew(1, ioaddr+PGSEL); + dspcfg = readw(ioaddr+DSPCFG); + writew(0, ioaddr+PGSEL); + if (np->dspcfg_workaround && dspcfg != np->dspcfg) { + if (!netif_queue_stopped(dev)) { + spin_unlock_irq(&np->lock); + if (netif_msg_drv(np)) + printk(KERN_NOTICE "%s: possible phy reset: " + "re-initializing\n", dev->name); + disable_irq(irq); + spin_lock_irq(&np->lock); + natsemi_stop_rxtx(dev); + dump_ring(dev); + reinit_ring(dev); + init_registers(dev); + spin_unlock_irq(&np->lock); + enable_irq(irq); + } else { + /* hurry back */ + next_tick = HZ; + spin_unlock_irq(&np->lock); + } + } else { + /* init_registers() calls check_link() for the above case */ + check_link(dev); + spin_unlock_irq(&np->lock); + } + } else { + spin_lock_irq(&np->lock); + check_link(dev); + spin_unlock_irq(&np->lock); + } + if (np->oom) { + disable_irq(irq); + np->oom = 0; + refill_rx(dev); + enable_irq(irq); + if (!np->oom) { + writel(RxOn, ioaddr + ChipCmd); + } else { + next_tick = 1; + } + } + + if (next_tick > 1) + mod_timer(&np->timer, round_jiffies(jiffies + next_tick)); + else + mod_timer(&np->timer, jiffies + next_tick); +} + +static void dump_ring(struct net_device *dev) +{ + struct netdev_private *np = netdev_priv(dev); + + if (netif_msg_pktdata(np)) { + int i; + printk(KERN_DEBUG " Tx ring at %p:\n", np->tx_ring); + for (i = 0; i < TX_RING_SIZE; i++) { + printk(KERN_DEBUG " #%d desc. %#08x %#08x %#08x.\n", + i, np->tx_ring[i].next_desc, + np->tx_ring[i].cmd_status, + np->tx_ring[i].addr); + } + printk(KERN_DEBUG " Rx ring %p:\n", np->rx_ring); + for (i = 0; i < RX_RING_SIZE; i++) { + printk(KERN_DEBUG " #%d desc. %#08x %#08x %#08x.\n", + i, np->rx_ring[i].next_desc, + np->rx_ring[i].cmd_status, + np->rx_ring[i].addr); + } + } +} + +static void ns_tx_timeout(struct net_device *dev, unsigned int txqueue) +{ + struct netdev_private *np = netdev_priv(dev); + void __iomem * ioaddr = ns_ioaddr(dev); + const int irq = np->pci_dev->irq; + + disable_irq(irq); + spin_lock_irq(&np->lock); + if (!np->hands_off) { + if (netif_msg_tx_err(np)) + printk(KERN_WARNING + "%s: Transmit timed out, status %#08x," + " resetting...\n", + dev->name, readl(ioaddr + IntrStatus)); + dump_ring(dev); + + natsemi_reset(dev); + reinit_ring(dev); + init_registers(dev); + } else { + printk(KERN_WARNING + "%s: tx_timeout while in hands_off state?\n", + dev->name); + } + spin_unlock_irq(&np->lock); + enable_irq(irq); + + netif_trans_update(dev); /* prevent tx timeout */ + dev->stats.tx_errors++; + netif_wake_queue(dev); +} + +static int alloc_ring(struct net_device *dev) +{ + struct netdev_private *np = netdev_priv(dev); + np->rx_ring = dma_alloc_coherent(&np->pci_dev->dev, + sizeof(struct netdev_desc) * (RX_RING_SIZE + TX_RING_SIZE), + &np->ring_dma, GFP_KERNEL); + if (!np->rx_ring) + return -ENOMEM; + np->tx_ring = &np->rx_ring[RX_RING_SIZE]; + return 0; +} + +static void refill_rx(struct net_device *dev) +{ + struct netdev_private *np = netdev_priv(dev); + + /* Refill the Rx ring buffers. */ + for (; np->cur_rx - np->dirty_rx > 0; np->dirty_rx++) { + struct sk_buff *skb; + int entry = np->dirty_rx % RX_RING_SIZE; + if (np->rx_skbuff[entry] == NULL) { + unsigned int buflen = np->rx_buf_sz+NATSEMI_PADDING; + skb = netdev_alloc_skb(dev, buflen); + np->rx_skbuff[entry] = skb; + if (skb == NULL) + break; /* Better luck next round. */ + np->rx_dma[entry] = dma_map_single(&np->pci_dev->dev, + skb->data, buflen, + DMA_FROM_DEVICE); + if (dma_mapping_error(&np->pci_dev->dev, np->rx_dma[entry])) { + dev_kfree_skb_any(skb); + np->rx_skbuff[entry] = NULL; + break; /* Better luck next round. */ + } + np->rx_ring[entry].addr = cpu_to_le32(np->rx_dma[entry]); + } + np->rx_ring[entry].cmd_status = cpu_to_le32(np->rx_buf_sz); + } + if (np->cur_rx - np->dirty_rx == RX_RING_SIZE) { + if (netif_msg_rx_err(np)) + printk(KERN_WARNING "%s: going OOM.\n", dev->name); + np->oom = 1; + } +} + +static void set_bufsize(struct net_device *dev) +{ + struct netdev_private *np = netdev_priv(dev); + if (dev->mtu <= ETH_DATA_LEN) + np->rx_buf_sz = ETH_DATA_LEN + NATSEMI_HEADERS; + else + np->rx_buf_sz = dev->mtu + NATSEMI_HEADERS; +} + +/* Initialize the Rx and Tx rings, along with various 'dev' bits. */ +static void init_ring(struct net_device *dev) +{ + struct netdev_private *np = netdev_priv(dev); + int i; + + /* 1) TX ring */ + np->dirty_tx = np->cur_tx = 0; + for (i = 0; i < TX_RING_SIZE; i++) { + np->tx_skbuff[i] = NULL; + np->tx_ring[i].next_desc = cpu_to_le32(np->ring_dma + +sizeof(struct netdev_desc) + *((i+1)%TX_RING_SIZE+RX_RING_SIZE)); + np->tx_ring[i].cmd_status = 0; + } + + /* 2) RX ring */ + np->dirty_rx = 0; + np->cur_rx = RX_RING_SIZE; + np->oom = 0; + set_bufsize(dev); + + np->rx_head_desc = &np->rx_ring[0]; + + /* Please be careful before changing this loop - at least gcc-2.95.1 + * miscompiles it otherwise. + */ + /* Initialize all Rx descriptors. */ + for (i = 0; i < RX_RING_SIZE; i++) { + np->rx_ring[i].next_desc = cpu_to_le32(np->ring_dma + +sizeof(struct netdev_desc) + *((i+1)%RX_RING_SIZE)); + np->rx_ring[i].cmd_status = cpu_to_le32(DescOwn); + np->rx_skbuff[i] = NULL; + } + refill_rx(dev); + dump_ring(dev); +} + +static void drain_tx(struct net_device *dev) +{ + struct netdev_private *np = netdev_priv(dev); + int i; + + for (i = 0; i < TX_RING_SIZE; i++) { + if (np->tx_skbuff[i]) { + dma_unmap_single(&np->pci_dev->dev, np->tx_dma[i], + np->tx_skbuff[i]->len, DMA_TO_DEVICE); + dev_kfree_skb(np->tx_skbuff[i]); + dev->stats.tx_dropped++; + } + np->tx_skbuff[i] = NULL; + } +} + +static void drain_rx(struct net_device *dev) +{ + struct netdev_private *np = netdev_priv(dev); + unsigned int buflen = np->rx_buf_sz; + int i; + + /* Free all the skbuffs in the Rx queue. */ + for (i = 0; i < RX_RING_SIZE; i++) { + np->rx_ring[i].cmd_status = 0; + np->rx_ring[i].addr = cpu_to_le32(0xBADF00D0); /* An invalid address. */ + if (np->rx_skbuff[i]) { + dma_unmap_single(&np->pci_dev->dev, np->rx_dma[i], + buflen + NATSEMI_PADDING, + DMA_FROM_DEVICE); + dev_kfree_skb(np->rx_skbuff[i]); + } + np->rx_skbuff[i] = NULL; + } +} + +static void drain_ring(struct net_device *dev) +{ + drain_rx(dev); + drain_tx(dev); +} + +static void free_ring(struct net_device *dev) +{ + struct netdev_private *np = netdev_priv(dev); + dma_free_coherent(&np->pci_dev->dev, + sizeof(struct netdev_desc) * (RX_RING_SIZE + TX_RING_SIZE), + np->rx_ring, np->ring_dma); +} + +static void reinit_rx(struct net_device *dev) +{ + struct netdev_private *np = netdev_priv(dev); + int i; + + /* RX Ring */ + np->dirty_rx = 0; + np->cur_rx = RX_RING_SIZE; + np->rx_head_desc = &np->rx_ring[0]; + /* Initialize all Rx descriptors. */ + for (i = 0; i < RX_RING_SIZE; i++) + np->rx_ring[i].cmd_status = cpu_to_le32(DescOwn); + + refill_rx(dev); +} + +static void reinit_ring(struct net_device *dev) +{ + struct netdev_private *np = netdev_priv(dev); + int i; + + /* drain TX ring */ + drain_tx(dev); + np->dirty_tx = np->cur_tx = 0; + for (i=0;i<TX_RING_SIZE;i++) + np->tx_ring[i].cmd_status = 0; + + reinit_rx(dev); +} + +static netdev_tx_t start_tx(struct sk_buff *skb, struct net_device *dev) +{ + struct netdev_private *np = netdev_priv(dev); + void __iomem * ioaddr = ns_ioaddr(dev); + unsigned entry; + unsigned long flags; + + /* Note: Ordering is important here, set the field with the + "ownership" bit last, and only then increment cur_tx. */ + + /* Calculate the next Tx descriptor entry. */ + entry = np->cur_tx % TX_RING_SIZE; + + np->tx_skbuff[entry] = skb; + np->tx_dma[entry] = dma_map_single(&np->pci_dev->dev, skb->data, + skb->len, DMA_TO_DEVICE); + if (dma_mapping_error(&np->pci_dev->dev, np->tx_dma[entry])) { + np->tx_skbuff[entry] = NULL; + dev_kfree_skb_irq(skb); + dev->stats.tx_dropped++; + return NETDEV_TX_OK; + } + + np->tx_ring[entry].addr = cpu_to_le32(np->tx_dma[entry]); + + spin_lock_irqsave(&np->lock, flags); + + if (!np->hands_off) { + np->tx_ring[entry].cmd_status = cpu_to_le32(DescOwn | skb->len); + /* StrongARM: Explicitly cache flush np->tx_ring and + * skb->data,skb->len. */ + wmb(); + np->cur_tx++; + if (np->cur_tx - np->dirty_tx >= TX_QUEUE_LEN - 1) { + netdev_tx_done(dev); + if (np->cur_tx - np->dirty_tx >= TX_QUEUE_LEN - 1) + netif_stop_queue(dev); + } + /* Wake the potentially-idle transmit channel. */ + writel(TxOn, ioaddr + ChipCmd); + } else { + dev_kfree_skb_irq(skb); + dev->stats.tx_dropped++; + } + spin_unlock_irqrestore(&np->lock, flags); + + if (netif_msg_tx_queued(np)) { + printk(KERN_DEBUG "%s: Transmit frame #%d queued in slot %d.\n", + dev->name, np->cur_tx, entry); + } + return NETDEV_TX_OK; +} + +static void netdev_tx_done(struct net_device *dev) +{ + struct netdev_private *np = netdev_priv(dev); + + for (; np->cur_tx - np->dirty_tx > 0; np->dirty_tx++) { + int entry = np->dirty_tx % TX_RING_SIZE; + if (np->tx_ring[entry].cmd_status & cpu_to_le32(DescOwn)) + break; + if (netif_msg_tx_done(np)) + printk(KERN_DEBUG + "%s: tx frame #%d finished, status %#08x.\n", + dev->name, np->dirty_tx, + le32_to_cpu(np->tx_ring[entry].cmd_status)); + if (np->tx_ring[entry].cmd_status & cpu_to_le32(DescPktOK)) { + dev->stats.tx_packets++; + dev->stats.tx_bytes += np->tx_skbuff[entry]->len; + } else { /* Various Tx errors */ + int tx_status = + le32_to_cpu(np->tx_ring[entry].cmd_status); + if (tx_status & (DescTxAbort|DescTxExcColl)) + dev->stats.tx_aborted_errors++; + if (tx_status & DescTxFIFO) + dev->stats.tx_fifo_errors++; + if (tx_status & DescTxCarrier) + dev->stats.tx_carrier_errors++; + if (tx_status & DescTxOOWCol) + dev->stats.tx_window_errors++; + dev->stats.tx_errors++; + } + dma_unmap_single(&np->pci_dev->dev, np->tx_dma[entry], + np->tx_skbuff[entry]->len, DMA_TO_DEVICE); + /* Free the original skb. */ + dev_consume_skb_irq(np->tx_skbuff[entry]); + np->tx_skbuff[entry] = NULL; + } + if (netif_queue_stopped(dev) && + np->cur_tx - np->dirty_tx < TX_QUEUE_LEN - 4) { + /* The ring is no longer full, wake queue. */ + netif_wake_queue(dev); + } +} + +/* The interrupt handler doesn't actually handle interrupts itself, it + * schedules a NAPI poll if there is anything to do. */ +static irqreturn_t intr_handler(int irq, void *dev_instance) +{ + struct net_device *dev = dev_instance; + struct netdev_private *np = netdev_priv(dev); + void __iomem * ioaddr = ns_ioaddr(dev); + + /* Reading IntrStatus automatically acknowledges so don't do + * that while interrupts are disabled, (for example, while a + * poll is scheduled). */ + if (np->hands_off || !readl(ioaddr + IntrEnable)) + return IRQ_NONE; + + np->intr_status = readl(ioaddr + IntrStatus); + + if (!np->intr_status) + return IRQ_NONE; + + if (netif_msg_intr(np)) + printk(KERN_DEBUG + "%s: Interrupt, status %#08x, mask %#08x.\n", + dev->name, np->intr_status, + readl(ioaddr + IntrMask)); + + prefetch(&np->rx_skbuff[np->cur_rx % RX_RING_SIZE]); + + if (napi_schedule_prep(&np->napi)) { + /* Disable interrupts and register for poll */ + natsemi_irq_disable(dev); + __napi_schedule(&np->napi); + } else + printk(KERN_WARNING + "%s: Ignoring interrupt, status %#08x, mask %#08x.\n", + dev->name, np->intr_status, + readl(ioaddr + IntrMask)); + + return IRQ_HANDLED; +} + +/* This is the NAPI poll routine. As well as the standard RX handling + * it also handles all other interrupts that the chip might raise. + */ +static int natsemi_poll(struct napi_struct *napi, int budget) +{ + struct netdev_private *np = container_of(napi, struct netdev_private, napi); + struct net_device *dev = np->dev; + void __iomem * ioaddr = ns_ioaddr(dev); + int work_done = 0; + + do { + if (netif_msg_intr(np)) + printk(KERN_DEBUG + "%s: Poll, status %#08x, mask %#08x.\n", + dev->name, np->intr_status, + readl(ioaddr + IntrMask)); + + /* netdev_rx() may read IntrStatus again if the RX state + * machine falls over so do it first. */ + if (np->intr_status & + (IntrRxDone | IntrRxIntr | RxStatusFIFOOver | + IntrRxErr | IntrRxOverrun)) { + netdev_rx(dev, &work_done, budget); + } + + if (np->intr_status & + (IntrTxDone | IntrTxIntr | IntrTxIdle | IntrTxErr)) { + spin_lock(&np->lock); + netdev_tx_done(dev); + spin_unlock(&np->lock); + } + + /* Abnormal error summary/uncommon events handlers. */ + if (np->intr_status & IntrAbnormalSummary) + netdev_error(dev, np->intr_status); + + if (work_done >= budget) + return work_done; + + np->intr_status = readl(ioaddr + IntrStatus); + } while (np->intr_status); + + napi_complete_done(napi, work_done); + + /* Reenable interrupts providing nothing is trying to shut + * the chip down. */ + spin_lock(&np->lock); + if (!np->hands_off) + natsemi_irq_enable(dev); + spin_unlock(&np->lock); + + return work_done; +} + +/* This routine is logically part of the interrupt handler, but separated + for clarity and better register allocation. */ +static void netdev_rx(struct net_device *dev, int *work_done, int work_to_do) +{ + struct netdev_private *np = netdev_priv(dev); + int entry = np->cur_rx % RX_RING_SIZE; + int boguscnt = np->dirty_rx + RX_RING_SIZE - np->cur_rx; + s32 desc_status = le32_to_cpu(np->rx_head_desc->cmd_status); + unsigned int buflen = np->rx_buf_sz; + void __iomem * ioaddr = ns_ioaddr(dev); + + /* If the driver owns the next entry it's a new packet. Send it up. */ + while (desc_status < 0) { /* e.g. & DescOwn */ + int pkt_len; + if (netif_msg_rx_status(np)) + printk(KERN_DEBUG + " netdev_rx() entry %d status was %#08x.\n", + entry, desc_status); + if (--boguscnt < 0) + break; + + if (*work_done >= work_to_do) + break; + + (*work_done)++; + + pkt_len = (desc_status & DescSizeMask) - 4; + if ((desc_status&(DescMore|DescPktOK|DescRxLong)) != DescPktOK){ + if (desc_status & DescMore) { + unsigned long flags; + + if (netif_msg_rx_err(np)) + printk(KERN_WARNING + "%s: Oversized(?) Ethernet " + "frame spanned multiple " + "buffers, entry %#08x " + "status %#08x.\n", dev->name, + np->cur_rx, desc_status); + dev->stats.rx_length_errors++; + + /* The RX state machine has probably + * locked up beneath us. Follow the + * reset procedure documented in + * AN-1287. */ + + spin_lock_irqsave(&np->lock, flags); + reset_rx(dev); + reinit_rx(dev); + writel(np->ring_dma, ioaddr + RxRingPtr); + check_link(dev); + spin_unlock_irqrestore(&np->lock, flags); + + /* We'll enable RX on exit from this + * function. */ + break; + + } else { + /* There was an error. */ + dev->stats.rx_errors++; + if (desc_status & (DescRxAbort|DescRxOver)) + dev->stats.rx_over_errors++; + if (desc_status & (DescRxLong|DescRxRunt)) + dev->stats.rx_length_errors++; + if (desc_status & (DescRxInvalid|DescRxAlign)) + dev->stats.rx_frame_errors++; + if (desc_status & DescRxCRC) + dev->stats.rx_crc_errors++; + } + } else if (pkt_len > np->rx_buf_sz) { + /* if this is the tail of a double buffer + * packet, we've already counted the error + * on the first part. Ignore the second half. + */ + } else { + struct sk_buff *skb; + /* Omit CRC size. */ + /* Check if the packet is long enough to accept + * without copying to a minimally-sized skbuff. */ + if (pkt_len < rx_copybreak && + (skb = netdev_alloc_skb(dev, pkt_len + RX_OFFSET)) != NULL) { + /* 16 byte align the IP header */ + skb_reserve(skb, RX_OFFSET); + dma_sync_single_for_cpu(&np->pci_dev->dev, + np->rx_dma[entry], + buflen, + DMA_FROM_DEVICE); + skb_copy_to_linear_data(skb, + np->rx_skbuff[entry]->data, pkt_len); + skb_put(skb, pkt_len); + dma_sync_single_for_device(&np->pci_dev->dev, + np->rx_dma[entry], + buflen, + DMA_FROM_DEVICE); + } else { + dma_unmap_single(&np->pci_dev->dev, + np->rx_dma[entry], + buflen + NATSEMI_PADDING, + DMA_FROM_DEVICE); + skb_put(skb = np->rx_skbuff[entry], pkt_len); + np->rx_skbuff[entry] = NULL; + } + skb->protocol = eth_type_trans(skb, dev); + netif_receive_skb(skb); + dev->stats.rx_packets++; + dev->stats.rx_bytes += pkt_len; + } + entry = (++np->cur_rx) % RX_RING_SIZE; + np->rx_head_desc = &np->rx_ring[entry]; + desc_status = le32_to_cpu(np->rx_head_desc->cmd_status); + } + refill_rx(dev); + + /* Restart Rx engine if stopped. */ + if (np->oom) + mod_timer(&np->timer, jiffies + 1); + else + writel(RxOn, ioaddr + ChipCmd); +} + +static void netdev_error(struct net_device *dev, int intr_status) +{ + struct netdev_private *np = netdev_priv(dev); + void __iomem * ioaddr = ns_ioaddr(dev); + + spin_lock(&np->lock); + if (intr_status & LinkChange) { + u16 lpa = mdio_read(dev, MII_LPA); + if (mdio_read(dev, MII_BMCR) & BMCR_ANENABLE && + netif_msg_link(np)) { + printk(KERN_INFO + "%s: Autonegotiation advertising" + " %#04x partner %#04x.\n", dev->name, + np->advertising, lpa); + } + + /* read MII int status to clear the flag */ + readw(ioaddr + MIntrStatus); + check_link(dev); + } + if (intr_status & StatsMax) { + __get_stats(dev); + } + if (intr_status & IntrTxUnderrun) { + if ((np->tx_config & TxDrthMask) < TX_DRTH_VAL_LIMIT) { + np->tx_config += TX_DRTH_VAL_INC; + if (netif_msg_tx_err(np)) + printk(KERN_NOTICE + "%s: increased tx threshold, txcfg %#08x.\n", + dev->name, np->tx_config); + } else { + if (netif_msg_tx_err(np)) + printk(KERN_NOTICE + "%s: tx underrun with maximum tx threshold, txcfg %#08x.\n", + dev->name, np->tx_config); + } + writel(np->tx_config, ioaddr + TxConfig); + } + if (intr_status & WOLPkt && netif_msg_wol(np)) { + int wol_status = readl(ioaddr + WOLCmd); + printk(KERN_NOTICE "%s: Link wake-up event %#08x\n", + dev->name, wol_status); + } + if (intr_status & RxStatusFIFOOver) { + if (netif_msg_rx_err(np) && netif_msg_intr(np)) { + printk(KERN_NOTICE "%s: Rx status FIFO overrun\n", + dev->name); + } + dev->stats.rx_fifo_errors++; + dev->stats.rx_errors++; + } + /* Hmmmmm, it's not clear how to recover from PCI faults. */ + if (intr_status & IntrPCIErr) { + printk(KERN_NOTICE "%s: PCI error %#08x\n", dev->name, + intr_status & IntrPCIErr); + dev->stats.tx_fifo_errors++; + dev->stats.tx_errors++; + dev->stats.rx_fifo_errors++; + dev->stats.rx_errors++; + } + spin_unlock(&np->lock); +} + +static void __get_stats(struct net_device *dev) +{ + void __iomem * ioaddr = ns_ioaddr(dev); + + /* The chip only need report frame silently dropped. */ + dev->stats.rx_crc_errors += readl(ioaddr + RxCRCErrs); + dev->stats.rx_missed_errors += readl(ioaddr + RxMissed); +} + +static struct net_device_stats *get_stats(struct net_device *dev) +{ + struct netdev_private *np = netdev_priv(dev); + + /* The chip only need report frame silently dropped. */ + spin_lock_irq(&np->lock); + if (netif_running(dev) && !np->hands_off) + __get_stats(dev); + spin_unlock_irq(&np->lock); + + return &dev->stats; +} + +#ifdef CONFIG_NET_POLL_CONTROLLER +static void natsemi_poll_controller(struct net_device *dev) +{ + struct netdev_private *np = netdev_priv(dev); + const int irq = np->pci_dev->irq; + + disable_irq(irq); + intr_handler(irq, dev); + enable_irq(irq); +} +#endif + +#define HASH_TABLE 0x200 +static void __set_rx_mode(struct net_device *dev) +{ + void __iomem * ioaddr = ns_ioaddr(dev); + struct netdev_private *np = netdev_priv(dev); + u8 mc_filter[64]; /* Multicast hash filter */ + u32 rx_mode; + + if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */ + rx_mode = RxFilterEnable | AcceptBroadcast + | AcceptAllMulticast | AcceptAllPhys | AcceptMyPhys; + } else if ((netdev_mc_count(dev) > multicast_filter_limit) || + (dev->flags & IFF_ALLMULTI)) { + rx_mode = RxFilterEnable | AcceptBroadcast + | AcceptAllMulticast | AcceptMyPhys; + } else { + struct netdev_hw_addr *ha; + int i; + + memset(mc_filter, 0, sizeof(mc_filter)); + netdev_for_each_mc_addr(ha, dev) { + int b = (ether_crc(ETH_ALEN, ha->addr) >> 23) & 0x1ff; + mc_filter[b/8] |= (1 << (b & 0x07)); + } + rx_mode = RxFilterEnable | AcceptBroadcast + | AcceptMulticast | AcceptMyPhys; + for (i = 0; i < 64; i += 2) { + writel(HASH_TABLE + i, ioaddr + RxFilterAddr); + writel((mc_filter[i + 1] << 8) + mc_filter[i], + ioaddr + RxFilterData); + } + } + writel(rx_mode, ioaddr + RxFilterAddr); + np->cur_rx_mode = rx_mode; +} + +static int natsemi_change_mtu(struct net_device *dev, int new_mtu) +{ + dev->mtu = new_mtu; + + /* synchronized against open : rtnl_lock() held by caller */ + if (netif_running(dev)) { + struct netdev_private *np = netdev_priv(dev); + void __iomem * ioaddr = ns_ioaddr(dev); + const int irq = np->pci_dev->irq; + + disable_irq(irq); + spin_lock(&np->lock); + /* stop engines */ + natsemi_stop_rxtx(dev); + /* drain rx queue */ + drain_rx(dev); + /* change buffers */ + set_bufsize(dev); + reinit_rx(dev); + writel(np->ring_dma, ioaddr + RxRingPtr); + /* restart engines */ + writel(RxOn | TxOn, ioaddr + ChipCmd); + spin_unlock(&np->lock); + enable_irq(irq); + } + return 0; +} + +static void set_rx_mode(struct net_device *dev) +{ + struct netdev_private *np = netdev_priv(dev); + spin_lock_irq(&np->lock); + if (!np->hands_off) + __set_rx_mode(dev); + spin_unlock_irq(&np->lock); +} + +static void get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info) +{ + struct netdev_private *np = netdev_priv(dev); + strscpy(info->driver, DRV_NAME, sizeof(info->driver)); + strscpy(info->version, DRV_VERSION, sizeof(info->version)); + strscpy(info->bus_info, pci_name(np->pci_dev), sizeof(info->bus_info)); +} + +static int get_regs_len(struct net_device *dev) +{ + return NATSEMI_REGS_SIZE; +} + +static int get_eeprom_len(struct net_device *dev) +{ + struct netdev_private *np = netdev_priv(dev); + return np->eeprom_size; +} + +static int get_link_ksettings(struct net_device *dev, + struct ethtool_link_ksettings *ecmd) +{ + struct netdev_private *np = netdev_priv(dev); + spin_lock_irq(&np->lock); + netdev_get_ecmd(dev, ecmd); + spin_unlock_irq(&np->lock); + return 0; +} + +static int set_link_ksettings(struct net_device *dev, + const struct ethtool_link_ksettings *ecmd) +{ + struct netdev_private *np = netdev_priv(dev); + int res; + spin_lock_irq(&np->lock); + res = netdev_set_ecmd(dev, ecmd); + spin_unlock_irq(&np->lock); + return res; +} + +static void get_wol(struct net_device *dev, struct ethtool_wolinfo *wol) +{ + struct netdev_private *np = netdev_priv(dev); + spin_lock_irq(&np->lock); + netdev_get_wol(dev, &wol->supported, &wol->wolopts); + netdev_get_sopass(dev, wol->sopass); + spin_unlock_irq(&np->lock); +} + +static int set_wol(struct net_device *dev, struct ethtool_wolinfo *wol) +{ + struct netdev_private *np = netdev_priv(dev); + int res; + spin_lock_irq(&np->lock); + netdev_set_wol(dev, wol->wolopts); + res = netdev_set_sopass(dev, wol->sopass); + spin_unlock_irq(&np->lock); + return res; +} + +static void get_regs(struct net_device *dev, struct ethtool_regs *regs, void *buf) +{ + struct netdev_private *np = netdev_priv(dev); + regs->version = NATSEMI_REGS_VER; + spin_lock_irq(&np->lock); + netdev_get_regs(dev, buf); + spin_unlock_irq(&np->lock); +} + +static u32 get_msglevel(struct net_device *dev) +{ + struct netdev_private *np = netdev_priv(dev); + return np->msg_enable; +} + +static void set_msglevel(struct net_device *dev, u32 val) +{ + struct netdev_private *np = netdev_priv(dev); + np->msg_enable = val; +} + +static int nway_reset(struct net_device *dev) +{ + int tmp; + int r = -EINVAL; + /* if autoneg is off, it's an error */ + tmp = mdio_read(dev, MII_BMCR); + if (tmp & BMCR_ANENABLE) { + tmp |= (BMCR_ANRESTART); + mdio_write(dev, MII_BMCR, tmp); + r = 0; + } + return r; +} + +static u32 get_link(struct net_device *dev) +{ + /* LSTATUS is latched low until a read - so read twice */ + mdio_read(dev, MII_BMSR); + return (mdio_read(dev, MII_BMSR)&BMSR_LSTATUS) ? 1:0; +} + +static int get_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom, u8 *data) +{ + struct netdev_private *np = netdev_priv(dev); + u8 *eebuf; + int res; + + eebuf = kmalloc(np->eeprom_size, GFP_KERNEL); + if (!eebuf) + return -ENOMEM; + + eeprom->magic = PCI_VENDOR_ID_NS | (PCI_DEVICE_ID_NS_83815<<16); + spin_lock_irq(&np->lock); + res = netdev_get_eeprom(dev, eebuf); + spin_unlock_irq(&np->lock); + if (!res) + memcpy(data, eebuf+eeprom->offset, eeprom->len); + kfree(eebuf); + return res; +} + +static const struct ethtool_ops ethtool_ops = { + .get_drvinfo = get_drvinfo, + .get_regs_len = get_regs_len, + .get_eeprom_len = get_eeprom_len, + .get_wol = get_wol, + .set_wol = set_wol, + .get_regs = get_regs, + .get_msglevel = get_msglevel, + .set_msglevel = set_msglevel, + .nway_reset = nway_reset, + .get_link = get_link, + .get_eeprom = get_eeprom, + .get_link_ksettings = get_link_ksettings, + .set_link_ksettings = set_link_ksettings, +}; + +static int netdev_set_wol(struct net_device *dev, u32 newval) +{ + struct netdev_private *np = netdev_priv(dev); + void __iomem * ioaddr = ns_ioaddr(dev); + u32 data = readl(ioaddr + WOLCmd) & ~WakeOptsSummary; + + /* translate to bitmasks this chip understands */ + if (newval & WAKE_PHY) + data |= WakePhy; + if (newval & WAKE_UCAST) + data |= WakeUnicast; + if (newval & WAKE_MCAST) + data |= WakeMulticast; + if (newval & WAKE_BCAST) + data |= WakeBroadcast; + if (newval & WAKE_ARP) + data |= WakeArp; + if (newval & WAKE_MAGIC) + data |= WakeMagic; + if (np->srr >= SRR_DP83815_D) { + if (newval & WAKE_MAGICSECURE) { + data |= WakeMagicSecure; + } + } + + writel(data, ioaddr + WOLCmd); + + return 0; +} + +static int netdev_get_wol(struct net_device *dev, u32 *supported, u32 *cur) +{ + struct netdev_private *np = netdev_priv(dev); + void __iomem * ioaddr = ns_ioaddr(dev); + u32 regval = readl(ioaddr + WOLCmd); + + *supported = (WAKE_PHY | WAKE_UCAST | WAKE_MCAST | WAKE_BCAST + | WAKE_ARP | WAKE_MAGIC); + + if (np->srr >= SRR_DP83815_D) { + /* SOPASS works on revD and higher */ + *supported |= WAKE_MAGICSECURE; + } + *cur = 0; + + /* translate from chip bitmasks */ + if (regval & WakePhy) + *cur |= WAKE_PHY; + if (regval & WakeUnicast) + *cur |= WAKE_UCAST; + if (regval & WakeMulticast) + *cur |= WAKE_MCAST; + if (regval & WakeBroadcast) + *cur |= WAKE_BCAST; + if (regval & WakeArp) + *cur |= WAKE_ARP; + if (regval & WakeMagic) + *cur |= WAKE_MAGIC; + if (regval & WakeMagicSecure) { + /* this can be on in revC, but it's broken */ + *cur |= WAKE_MAGICSECURE; + } + + return 0; +} + +static int netdev_set_sopass(struct net_device *dev, u8 *newval) +{ + struct netdev_private *np = netdev_priv(dev); + void __iomem * ioaddr = ns_ioaddr(dev); + u16 *sval = (u16 *)newval; + u32 addr; + + if (np->srr < SRR_DP83815_D) { + return 0; + } + + /* enable writing to these registers by disabling the RX filter */ + addr = readl(ioaddr + RxFilterAddr) & ~RFCRAddressMask; + addr &= ~RxFilterEnable; + writel(addr, ioaddr + RxFilterAddr); + + /* write the three words to (undocumented) RFCR vals 0xa, 0xc, 0xe */ + writel(addr | 0xa, ioaddr + RxFilterAddr); + writew(sval[0], ioaddr + RxFilterData); + + writel(addr | 0xc, ioaddr + RxFilterAddr); + writew(sval[1], ioaddr + RxFilterData); + + writel(addr | 0xe, ioaddr + RxFilterAddr); + writew(sval[2], ioaddr + RxFilterData); + + /* re-enable the RX filter */ + writel(addr | RxFilterEnable, ioaddr + RxFilterAddr); + + return 0; +} + +static int netdev_get_sopass(struct net_device *dev, u8 *data) +{ + struct netdev_private *np = netdev_priv(dev); + void __iomem * ioaddr = ns_ioaddr(dev); + u16 *sval = (u16 *)data; + u32 addr; + + if (np->srr < SRR_DP83815_D) { + sval[0] = sval[1] = sval[2] = 0; + return 0; + } + + /* read the three words from (undocumented) RFCR vals 0xa, 0xc, 0xe */ + addr = readl(ioaddr + RxFilterAddr) & ~RFCRAddressMask; + + writel(addr | 0xa, ioaddr + RxFilterAddr); + sval[0] = readw(ioaddr + RxFilterData); + + writel(addr | 0xc, ioaddr + RxFilterAddr); + sval[1] = readw(ioaddr + RxFilterData); + + writel(addr | 0xe, ioaddr + RxFilterAddr); + sval[2] = readw(ioaddr + RxFilterData); + + writel(addr, ioaddr + RxFilterAddr); + + return 0; +} + +static int netdev_get_ecmd(struct net_device *dev, + struct ethtool_link_ksettings *ecmd) +{ + struct netdev_private *np = netdev_priv(dev); + u32 supported, advertising; + u32 tmp; + + ecmd->base.port = dev->if_port; + ecmd->base.speed = np->speed; + ecmd->base.duplex = np->duplex; + ecmd->base.autoneg = np->autoneg; + advertising = 0; + + if (np->advertising & ADVERTISE_10HALF) + advertising |= ADVERTISED_10baseT_Half; + if (np->advertising & ADVERTISE_10FULL) + advertising |= ADVERTISED_10baseT_Full; + if (np->advertising & ADVERTISE_100HALF) + advertising |= ADVERTISED_100baseT_Half; + if (np->advertising & ADVERTISE_100FULL) + advertising |= ADVERTISED_100baseT_Full; + supported = (SUPPORTED_Autoneg | + SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full | + SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full | + SUPPORTED_TP | SUPPORTED_MII | SUPPORTED_FIBRE); + ecmd->base.phy_address = np->phy_addr_external; + /* + * We intentionally report the phy address of the external + * phy, even if the internal phy is used. This is necessary + * to work around a deficiency of the ethtool interface: + * It's only possible to query the settings of the active + * port. Therefore + * # ethtool -s ethX port mii + * actually sends an ioctl to switch to port mii with the + * settings that are used for the current active port. + * If we would report a different phy address in this + * command, then + * # ethtool -s ethX port tp;ethtool -s ethX port mii + * would unintentionally change the phy address. + * + * Fortunately the phy address doesn't matter with the + * internal phy... + */ + + /* set information based on active port type */ + switch (ecmd->base.port) { + default: + case PORT_TP: + advertising |= ADVERTISED_TP; + break; + case PORT_MII: + advertising |= ADVERTISED_MII; + break; + case PORT_FIBRE: + advertising |= ADVERTISED_FIBRE; + break; + } + + /* if autonegotiation is on, try to return the active speed/duplex */ + if (ecmd->base.autoneg == AUTONEG_ENABLE) { + advertising |= ADVERTISED_Autoneg; + tmp = mii_nway_result( + np->advertising & mdio_read(dev, MII_LPA)); + if (tmp == LPA_100FULL || tmp == LPA_100HALF) + ecmd->base.speed = SPEED_100; + else + ecmd->base.speed = SPEED_10; + if (tmp == LPA_100FULL || tmp == LPA_10FULL) + ecmd->base.duplex = DUPLEX_FULL; + else + ecmd->base.duplex = DUPLEX_HALF; + } + + /* ignore maxtxpkt, maxrxpkt for now */ + + ethtool_convert_legacy_u32_to_link_mode(ecmd->link_modes.supported, + supported); + ethtool_convert_legacy_u32_to_link_mode(ecmd->link_modes.advertising, + advertising); + + return 0; +} + +static int netdev_set_ecmd(struct net_device *dev, + const struct ethtool_link_ksettings *ecmd) +{ + struct netdev_private *np = netdev_priv(dev); + u32 advertising; + + ethtool_convert_link_mode_to_legacy_u32(&advertising, + ecmd->link_modes.advertising); + + if (ecmd->base.port != PORT_TP && + ecmd->base.port != PORT_MII && + ecmd->base.port != PORT_FIBRE) + return -EINVAL; + if (ecmd->base.autoneg == AUTONEG_ENABLE) { + if ((advertising & (ADVERTISED_10baseT_Half | + ADVERTISED_10baseT_Full | + ADVERTISED_100baseT_Half | + ADVERTISED_100baseT_Full)) == 0) { + return -EINVAL; + } + } else if (ecmd->base.autoneg == AUTONEG_DISABLE) { + u32 speed = ecmd->base.speed; + if (speed != SPEED_10 && speed != SPEED_100) + return -EINVAL; + if (ecmd->base.duplex != DUPLEX_HALF && + ecmd->base.duplex != DUPLEX_FULL) + return -EINVAL; + } else { + return -EINVAL; + } + + /* + * If we're ignoring the PHY then autoneg and the internal + * transceiver are really not going to work so don't let the + * user select them. + */ + if (np->ignore_phy && (ecmd->base.autoneg == AUTONEG_ENABLE || + ecmd->base.port == PORT_TP)) + return -EINVAL; + + /* + * maxtxpkt, maxrxpkt: ignored for now. + * + * transceiver: + * PORT_TP is always XCVR_INTERNAL, PORT_MII and PORT_FIBRE are always + * XCVR_EXTERNAL. The implementation thus ignores ecmd->transceiver and + * selects based on ecmd->port. + * + * Actually PORT_FIBRE is nearly identical to PORT_MII: it's for fibre + * phys that are connected to the mii bus. It's used to apply fibre + * specific updates. + */ + + /* WHEW! now lets bang some bits */ + + /* save the parms */ + dev->if_port = ecmd->base.port; + np->autoneg = ecmd->base.autoneg; + np->phy_addr_external = ecmd->base.phy_address & PhyAddrMask; + if (np->autoneg == AUTONEG_ENABLE) { + /* advertise only what has been requested */ + np->advertising &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4); + if (advertising & ADVERTISED_10baseT_Half) + np->advertising |= ADVERTISE_10HALF; + if (advertising & ADVERTISED_10baseT_Full) + np->advertising |= ADVERTISE_10FULL; + if (advertising & ADVERTISED_100baseT_Half) + np->advertising |= ADVERTISE_100HALF; + if (advertising & ADVERTISED_100baseT_Full) + np->advertising |= ADVERTISE_100FULL; + } else { + np->speed = ecmd->base.speed; + np->duplex = ecmd->base.duplex; + /* user overriding the initial full duplex parm? */ + if (np->duplex == DUPLEX_HALF) + np->full_duplex = 0; + } + + /* get the right phy enabled */ + if (ecmd->base.port == PORT_TP) + switch_port_internal(dev); + else + switch_port_external(dev); + + /* set parms and see how this affected our link status */ + init_phy_fixup(dev); + check_link(dev); + return 0; +} + +static int netdev_get_regs(struct net_device *dev, u8 *buf) +{ + int i; + int j; + u32 rfcr; + u32 *rbuf = (u32 *)buf; + void __iomem * ioaddr = ns_ioaddr(dev); + + /* read non-mii page 0 of registers */ + for (i = 0; i < NATSEMI_PG0_NREGS/2; i++) { + rbuf[i] = readl(ioaddr + i*4); + } + + /* read current mii registers */ + for (i = NATSEMI_PG0_NREGS/2; i < NATSEMI_PG0_NREGS; i++) + rbuf[i] = mdio_read(dev, i & 0x1f); + + /* read only the 'magic' registers from page 1 */ + writew(1, ioaddr + PGSEL); + rbuf[i++] = readw(ioaddr + PMDCSR); + rbuf[i++] = readw(ioaddr + TSTDAT); + rbuf[i++] = readw(ioaddr + DSPCFG); + rbuf[i++] = readw(ioaddr + SDCFG); + writew(0, ioaddr + PGSEL); + + /* read RFCR indexed registers */ + rfcr = readl(ioaddr + RxFilterAddr); + for (j = 0; j < NATSEMI_RFDR_NREGS; j++) { + writel(j*2, ioaddr + RxFilterAddr); + rbuf[i++] = readw(ioaddr + RxFilterData); + } + writel(rfcr, ioaddr + RxFilterAddr); + + /* the interrupt status is clear-on-read - see if we missed any */ + if (rbuf[4] & rbuf[5]) { + printk(KERN_WARNING + "%s: shoot, we dropped an interrupt (%#08x)\n", + dev->name, rbuf[4] & rbuf[5]); + } + + return 0; +} + +#define SWAP_BITS(x) ( (((x) & 0x0001) << 15) | (((x) & 0x0002) << 13) \ + | (((x) & 0x0004) << 11) | (((x) & 0x0008) << 9) \ + | (((x) & 0x0010) << 7) | (((x) & 0x0020) << 5) \ + | (((x) & 0x0040) << 3) | (((x) & 0x0080) << 1) \ + | (((x) & 0x0100) >> 1) | (((x) & 0x0200) >> 3) \ + | (((x) & 0x0400) >> 5) | (((x) & 0x0800) >> 7) \ + | (((x) & 0x1000) >> 9) | (((x) & 0x2000) >> 11) \ + | (((x) & 0x4000) >> 13) | (((x) & 0x8000) >> 15) ) + +static int netdev_get_eeprom(struct net_device *dev, u8 *buf) +{ + int i; + u16 *ebuf = (u16 *)buf; + void __iomem * ioaddr = ns_ioaddr(dev); + struct netdev_private *np = netdev_priv(dev); + + /* eeprom_read reads 16 bits, and indexes by 16 bits */ + for (i = 0; i < np->eeprom_size/2; i++) { + ebuf[i] = eeprom_read(ioaddr, i); + /* The EEPROM itself stores data bit-swapped, but eeprom_read + * reads it back "sanely". So we swap it back here in order to + * present it to userland as it is stored. */ + ebuf[i] = SWAP_BITS(ebuf[i]); + } + return 0; +} + +static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) +{ + struct mii_ioctl_data *data = if_mii(rq); + struct netdev_private *np = netdev_priv(dev); + + switch(cmd) { + case SIOCGMIIPHY: /* Get address of MII PHY in use. */ + data->phy_id = np->phy_addr_external; + fallthrough; + + case SIOCGMIIREG: /* Read MII PHY register. */ + /* The phy_id is not enough to uniquely identify + * the intended target. Therefore the command is sent to + * the given mii on the current port. + */ + if (dev->if_port == PORT_TP) { + if ((data->phy_id & 0x1f) == np->phy_addr_external) + data->val_out = mdio_read(dev, + data->reg_num & 0x1f); + else + data->val_out = 0; + } else { + move_int_phy(dev, data->phy_id & 0x1f); + data->val_out = miiport_read(dev, data->phy_id & 0x1f, + data->reg_num & 0x1f); + } + return 0; + + case SIOCSMIIREG: /* Write MII PHY register. */ + if (dev->if_port == PORT_TP) { + if ((data->phy_id & 0x1f) == np->phy_addr_external) { + if ((data->reg_num & 0x1f) == MII_ADVERTISE) + np->advertising = data->val_in; + mdio_write(dev, data->reg_num & 0x1f, + data->val_in); + } + } else { + if ((data->phy_id & 0x1f) == np->phy_addr_external) { + if ((data->reg_num & 0x1f) == MII_ADVERTISE) + np->advertising = data->val_in; + } + move_int_phy(dev, data->phy_id & 0x1f); + miiport_write(dev, data->phy_id & 0x1f, + data->reg_num & 0x1f, + data->val_in); + } + return 0; + default: + return -EOPNOTSUPP; + } +} + +static void enable_wol_mode(struct net_device *dev, int enable_intr) +{ + void __iomem * ioaddr = ns_ioaddr(dev); + struct netdev_private *np = netdev_priv(dev); + + if (netif_msg_wol(np)) + printk(KERN_INFO "%s: remaining active for wake-on-lan\n", + dev->name); + + /* For WOL we must restart the rx process in silent mode. + * Write NULL to the RxRingPtr. Only possible if + * rx process is stopped + */ + writel(0, ioaddr + RxRingPtr); + + /* read WoL status to clear */ + readl(ioaddr + WOLCmd); + + /* PME on, clear status */ + writel(np->SavedClkRun | PMEEnable | PMEStatus, ioaddr + ClkRun); + + /* and restart the rx process */ + writel(RxOn, ioaddr + ChipCmd); + + if (enable_intr) { + /* enable the WOL interrupt. + * Could be used to send a netlink message. + */ + writel(WOLPkt | LinkChange, ioaddr + IntrMask); + natsemi_irq_enable(dev); + } +} + +static int netdev_close(struct net_device *dev) +{ + void __iomem * ioaddr = ns_ioaddr(dev); + struct netdev_private *np = netdev_priv(dev); + const int irq = np->pci_dev->irq; + + if (netif_msg_ifdown(np)) + printk(KERN_DEBUG + "%s: Shutting down ethercard, status was %#04x.\n", + dev->name, (int)readl(ioaddr + ChipCmd)); + if (netif_msg_pktdata(np)) + printk(KERN_DEBUG + "%s: Queue pointers were Tx %d / %d, Rx %d / %d.\n", + dev->name, np->cur_tx, np->dirty_tx, + np->cur_rx, np->dirty_rx); + + napi_disable(&np->napi); + + /* + * FIXME: what if someone tries to close a device + * that is suspended? + * Should we reenable the nic to switch to + * the final WOL settings? + */ + + del_timer_sync(&np->timer); + disable_irq(irq); + spin_lock_irq(&np->lock); + natsemi_irq_disable(dev); + np->hands_off = 1; + spin_unlock_irq(&np->lock); + enable_irq(irq); + + free_irq(irq, dev); + + /* Interrupt disabled, interrupt handler released, + * queue stopped, timer deleted, rtnl_lock held + * All async codepaths that access the driver are disabled. + */ + spin_lock_irq(&np->lock); + np->hands_off = 0; + readl(ioaddr + IntrMask); + readw(ioaddr + MIntrStatus); + + /* Freeze Stats */ + writel(StatsFreeze, ioaddr + StatsCtrl); + + /* Stop the chip's Tx and Rx processes. */ + natsemi_stop_rxtx(dev); + + __get_stats(dev); + spin_unlock_irq(&np->lock); + + /* clear the carrier last - an interrupt could reenable it otherwise */ + netif_carrier_off(dev); + netif_stop_queue(dev); + + dump_ring(dev); + drain_ring(dev); + free_ring(dev); + + { + u32 wol = readl(ioaddr + WOLCmd) & WakeOptsSummary; + if (wol) { + /* restart the NIC in WOL mode. + * The nic must be stopped for this. + */ + enable_wol_mode(dev, 0); + } else { + /* Restore PME enable bit unmolested */ + writel(np->SavedClkRun, ioaddr + ClkRun); + } + } + return 0; +} + + +static void natsemi_remove1(struct pci_dev *pdev) +{ + struct net_device *dev = pci_get_drvdata(pdev); + void __iomem * ioaddr = ns_ioaddr(dev); + + NATSEMI_REMOVE_FILE(pdev, dspcfg_workaround); + unregister_netdev (dev); + iounmap(ioaddr); + free_netdev (dev); +} + +/* + * The ns83815 chip doesn't have explicit RxStop bits. + * Kicking the Rx or Tx process for a new packet reenables the Rx process + * of the nic, thus this function must be very careful: + * + * suspend/resume synchronization: + * entry points: + * netdev_open, netdev_close, netdev_ioctl, set_rx_mode, intr_handler, + * start_tx, ns_tx_timeout + * + * No function accesses the hardware without checking np->hands_off. + * the check occurs under spin_lock_irq(&np->lock); + * exceptions: + * * netdev_ioctl: noncritical access. + * * netdev_open: cannot happen due to the device_detach + * * netdev_close: doesn't hurt. + * * netdev_timer: timer stopped by natsemi_suspend. + * * intr_handler: doesn't acquire the spinlock. suspend calls + * disable_irq() to enforce synchronization. + * * natsemi_poll: checks before reenabling interrupts. suspend + * sets hands_off, disables interrupts and then waits with + * napi_disable(). + * + * Interrupts must be disabled, otherwise hands_off can cause irq storms. + */ + +static int __maybe_unused natsemi_suspend(struct device *dev_d) +{ + struct net_device *dev = dev_get_drvdata(dev_d); + struct netdev_private *np = netdev_priv(dev); + void __iomem * ioaddr = ns_ioaddr(dev); + + rtnl_lock(); + if (netif_running (dev)) { + const int irq = np->pci_dev->irq; + + del_timer_sync(&np->timer); + + disable_irq(irq); + spin_lock_irq(&np->lock); + + natsemi_irq_disable(dev); + np->hands_off = 1; + natsemi_stop_rxtx(dev); + netif_stop_queue(dev); + + spin_unlock_irq(&np->lock); + enable_irq(irq); + + napi_disable(&np->napi); + + /* Update the error counts. */ + __get_stats(dev); + + /* pci_power_off(pdev, -1); */ + drain_ring(dev); + { + u32 wol = readl(ioaddr + WOLCmd) & WakeOptsSummary; + /* Restore PME enable bit */ + if (wol) { + /* restart the NIC in WOL mode. + * The nic must be stopped for this. + * FIXME: use the WOL interrupt + */ + enable_wol_mode(dev, 0); + } else { + /* Restore PME enable bit unmolested */ + writel(np->SavedClkRun, ioaddr + ClkRun); + } + } + } + netif_device_detach(dev); + rtnl_unlock(); + return 0; +} + + +static int __maybe_unused natsemi_resume(struct device *dev_d) +{ + struct net_device *dev = dev_get_drvdata(dev_d); + struct netdev_private *np = netdev_priv(dev); + + rtnl_lock(); + if (netif_device_present(dev)) + goto out; + if (netif_running(dev)) { + const int irq = np->pci_dev->irq; + + BUG_ON(!np->hands_off); + /* pci_power_on(pdev); */ + + napi_enable(&np->napi); + + natsemi_reset(dev); + init_ring(dev); + disable_irq(irq); + spin_lock_irq(&np->lock); + np->hands_off = 0; + init_registers(dev); + netif_device_attach(dev); + spin_unlock_irq(&np->lock); + enable_irq(irq); + + mod_timer(&np->timer, round_jiffies(jiffies + 1*HZ)); + } + netif_device_attach(dev); +out: + rtnl_unlock(); + return 0; +} + +static SIMPLE_DEV_PM_OPS(natsemi_pm_ops, natsemi_suspend, natsemi_resume); + +static struct pci_driver natsemi_driver = { + .name = DRV_NAME, + .id_table = natsemi_pci_tbl, + .probe = natsemi_probe1, + .remove = natsemi_remove1, + .driver.pm = &natsemi_pm_ops, +}; + +static int __init natsemi_init_mod (void) +{ +/* when a module, this is printed whether or not devices are found in probe */ +#ifdef MODULE + printk(version); +#endif + + return pci_register_driver(&natsemi_driver); +} + +static void __exit natsemi_exit_mod (void) +{ + pci_unregister_driver (&natsemi_driver); +} + +module_init(natsemi_init_mod); +module_exit(natsemi_exit_mod); + |