diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-11 08:27:49 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-11 08:27:49 +0000 |
commit | ace9429bb58fd418f0c81d4c2835699bddf6bde6 (patch) | |
tree | b2d64bc10158fdd5497876388cd68142ca374ed3 /drivers/nvme/host/pci.c | |
parent | Initial commit. (diff) | |
download | linux-ace9429bb58fd418f0c81d4c2835699bddf6bde6.tar.xz linux-ace9429bb58fd418f0c81d4c2835699bddf6bde6.zip |
Adding upstream version 6.6.15.upstream/6.6.15
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'drivers/nvme/host/pci.c')
-rw-r--r-- | drivers/nvme/host/pci.c | 3543 |
1 files changed, 3543 insertions, 0 deletions
diff --git a/drivers/nvme/host/pci.c b/drivers/nvme/host/pci.c new file mode 100644 index 0000000000..f8e92404a6 --- /dev/null +++ b/drivers/nvme/host/pci.c @@ -0,0 +1,3543 @@ +// SPDX-License-Identifier: GPL-2.0 +/* + * NVM Express device driver + * Copyright (c) 2011-2014, Intel Corporation. + */ + +#include <linux/acpi.h> +#include <linux/async.h> +#include <linux/blkdev.h> +#include <linux/blk-mq.h> +#include <linux/blk-mq-pci.h> +#include <linux/blk-integrity.h> +#include <linux/dmi.h> +#include <linux/init.h> +#include <linux/interrupt.h> +#include <linux/io.h> +#include <linux/kstrtox.h> +#include <linux/memremap.h> +#include <linux/mm.h> +#include <linux/module.h> +#include <linux/mutex.h> +#include <linux/once.h> +#include <linux/pci.h> +#include <linux/suspend.h> +#include <linux/t10-pi.h> +#include <linux/types.h> +#include <linux/io-64-nonatomic-lo-hi.h> +#include <linux/io-64-nonatomic-hi-lo.h> +#include <linux/sed-opal.h> +#include <linux/pci-p2pdma.h> + +#include "trace.h" +#include "nvme.h" + +#define SQ_SIZE(q) ((q)->q_depth << (q)->sqes) +#define CQ_SIZE(q) ((q)->q_depth * sizeof(struct nvme_completion)) + +#define SGES_PER_PAGE (NVME_CTRL_PAGE_SIZE / sizeof(struct nvme_sgl_desc)) + +/* + * These can be higher, but we need to ensure that any command doesn't + * require an sg allocation that needs more than a page of data. + */ +#define NVME_MAX_KB_SZ 8192 +#define NVME_MAX_SEGS 128 +#define NVME_MAX_NR_ALLOCATIONS 5 + +static int use_threaded_interrupts; +module_param(use_threaded_interrupts, int, 0444); + +static bool use_cmb_sqes = true; +module_param(use_cmb_sqes, bool, 0444); +MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes"); + +static unsigned int max_host_mem_size_mb = 128; +module_param(max_host_mem_size_mb, uint, 0444); +MODULE_PARM_DESC(max_host_mem_size_mb, + "Maximum Host Memory Buffer (HMB) size per controller (in MiB)"); + +static unsigned int sgl_threshold = SZ_32K; +module_param(sgl_threshold, uint, 0644); +MODULE_PARM_DESC(sgl_threshold, + "Use SGLs when average request segment size is larger or equal to " + "this size. Use 0 to disable SGLs."); + +#define NVME_PCI_MIN_QUEUE_SIZE 2 +#define NVME_PCI_MAX_QUEUE_SIZE 4095 +static int io_queue_depth_set(const char *val, const struct kernel_param *kp); +static const struct kernel_param_ops io_queue_depth_ops = { + .set = io_queue_depth_set, + .get = param_get_uint, +}; + +static unsigned int io_queue_depth = 1024; +module_param_cb(io_queue_depth, &io_queue_depth_ops, &io_queue_depth, 0644); +MODULE_PARM_DESC(io_queue_depth, "set io queue depth, should >= 2 and < 4096"); + +static int io_queue_count_set(const char *val, const struct kernel_param *kp) +{ + unsigned int n; + int ret; + + ret = kstrtouint(val, 10, &n); + if (ret != 0 || n > num_possible_cpus()) + return -EINVAL; + return param_set_uint(val, kp); +} + +static const struct kernel_param_ops io_queue_count_ops = { + .set = io_queue_count_set, + .get = param_get_uint, +}; + +static unsigned int write_queues; +module_param_cb(write_queues, &io_queue_count_ops, &write_queues, 0644); +MODULE_PARM_DESC(write_queues, + "Number of queues to use for writes. If not set, reads and writes " + "will share a queue set."); + +static unsigned int poll_queues; +module_param_cb(poll_queues, &io_queue_count_ops, &poll_queues, 0644); +MODULE_PARM_DESC(poll_queues, "Number of queues to use for polled IO."); + +static bool noacpi; +module_param(noacpi, bool, 0444); +MODULE_PARM_DESC(noacpi, "disable acpi bios quirks"); + +struct nvme_dev; +struct nvme_queue; + +static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown); +static void nvme_delete_io_queues(struct nvme_dev *dev); +static void nvme_update_attrs(struct nvme_dev *dev); + +/* + * Represents an NVM Express device. Each nvme_dev is a PCI function. + */ +struct nvme_dev { + struct nvme_queue *queues; + struct blk_mq_tag_set tagset; + struct blk_mq_tag_set admin_tagset; + u32 __iomem *dbs; + struct device *dev; + struct dma_pool *prp_page_pool; + struct dma_pool *prp_small_pool; + unsigned online_queues; + unsigned max_qid; + unsigned io_queues[HCTX_MAX_TYPES]; + unsigned int num_vecs; + u32 q_depth; + int io_sqes; + u32 db_stride; + void __iomem *bar; + unsigned long bar_mapped_size; + struct mutex shutdown_lock; + bool subsystem; + u64 cmb_size; + bool cmb_use_sqes; + u32 cmbsz; + u32 cmbloc; + struct nvme_ctrl ctrl; + u32 last_ps; + bool hmb; + + mempool_t *iod_mempool; + + /* shadow doorbell buffer support: */ + __le32 *dbbuf_dbs; + dma_addr_t dbbuf_dbs_dma_addr; + __le32 *dbbuf_eis; + dma_addr_t dbbuf_eis_dma_addr; + + /* host memory buffer support: */ + u64 host_mem_size; + u32 nr_host_mem_descs; + dma_addr_t host_mem_descs_dma; + struct nvme_host_mem_buf_desc *host_mem_descs; + void **host_mem_desc_bufs; + unsigned int nr_allocated_queues; + unsigned int nr_write_queues; + unsigned int nr_poll_queues; +}; + +static int io_queue_depth_set(const char *val, const struct kernel_param *kp) +{ + return param_set_uint_minmax(val, kp, NVME_PCI_MIN_QUEUE_SIZE, + NVME_PCI_MAX_QUEUE_SIZE); +} + +static inline unsigned int sq_idx(unsigned int qid, u32 stride) +{ + return qid * 2 * stride; +} + +static inline unsigned int cq_idx(unsigned int qid, u32 stride) +{ + return (qid * 2 + 1) * stride; +} + +static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl) +{ + return container_of(ctrl, struct nvme_dev, ctrl); +} + +/* + * An NVM Express queue. Each device has at least two (one for admin + * commands and one for I/O commands). + */ +struct nvme_queue { + struct nvme_dev *dev; + spinlock_t sq_lock; + void *sq_cmds; + /* only used for poll queues: */ + spinlock_t cq_poll_lock ____cacheline_aligned_in_smp; + struct nvme_completion *cqes; + dma_addr_t sq_dma_addr; + dma_addr_t cq_dma_addr; + u32 __iomem *q_db; + u32 q_depth; + u16 cq_vector; + u16 sq_tail; + u16 last_sq_tail; + u16 cq_head; + u16 qid; + u8 cq_phase; + u8 sqes; + unsigned long flags; +#define NVMEQ_ENABLED 0 +#define NVMEQ_SQ_CMB 1 +#define NVMEQ_DELETE_ERROR 2 +#define NVMEQ_POLLED 3 + __le32 *dbbuf_sq_db; + __le32 *dbbuf_cq_db; + __le32 *dbbuf_sq_ei; + __le32 *dbbuf_cq_ei; + struct completion delete_done; +}; + +union nvme_descriptor { + struct nvme_sgl_desc *sg_list; + __le64 *prp_list; +}; + +/* + * The nvme_iod describes the data in an I/O. + * + * The sg pointer contains the list of PRP/SGL chunk allocations in addition + * to the actual struct scatterlist. + */ +struct nvme_iod { + struct nvme_request req; + struct nvme_command cmd; + bool aborted; + s8 nr_allocations; /* PRP list pool allocations. 0 means small + pool in use */ + unsigned int dma_len; /* length of single DMA segment mapping */ + dma_addr_t first_dma; + dma_addr_t meta_dma; + struct sg_table sgt; + union nvme_descriptor list[NVME_MAX_NR_ALLOCATIONS]; +}; + +static inline unsigned int nvme_dbbuf_size(struct nvme_dev *dev) +{ + return dev->nr_allocated_queues * 8 * dev->db_stride; +} + +static void nvme_dbbuf_dma_alloc(struct nvme_dev *dev) +{ + unsigned int mem_size = nvme_dbbuf_size(dev); + + if (!(dev->ctrl.oacs & NVME_CTRL_OACS_DBBUF_SUPP)) + return; + + if (dev->dbbuf_dbs) { + /* + * Clear the dbbuf memory so the driver doesn't observe stale + * values from the previous instantiation. + */ + memset(dev->dbbuf_dbs, 0, mem_size); + memset(dev->dbbuf_eis, 0, mem_size); + return; + } + + dev->dbbuf_dbs = dma_alloc_coherent(dev->dev, mem_size, + &dev->dbbuf_dbs_dma_addr, + GFP_KERNEL); + if (!dev->dbbuf_dbs) + goto fail; + dev->dbbuf_eis = dma_alloc_coherent(dev->dev, mem_size, + &dev->dbbuf_eis_dma_addr, + GFP_KERNEL); + if (!dev->dbbuf_eis) + goto fail_free_dbbuf_dbs; + return; + +fail_free_dbbuf_dbs: + dma_free_coherent(dev->dev, mem_size, dev->dbbuf_dbs, + dev->dbbuf_dbs_dma_addr); + dev->dbbuf_dbs = NULL; +fail: + dev_warn(dev->dev, "unable to allocate dma for dbbuf\n"); +} + +static void nvme_dbbuf_dma_free(struct nvme_dev *dev) +{ + unsigned int mem_size = nvme_dbbuf_size(dev); + + if (dev->dbbuf_dbs) { + dma_free_coherent(dev->dev, mem_size, + dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr); + dev->dbbuf_dbs = NULL; + } + if (dev->dbbuf_eis) { + dma_free_coherent(dev->dev, mem_size, + dev->dbbuf_eis, dev->dbbuf_eis_dma_addr); + dev->dbbuf_eis = NULL; + } +} + +static void nvme_dbbuf_init(struct nvme_dev *dev, + struct nvme_queue *nvmeq, int qid) +{ + if (!dev->dbbuf_dbs || !qid) + return; + + nvmeq->dbbuf_sq_db = &dev->dbbuf_dbs[sq_idx(qid, dev->db_stride)]; + nvmeq->dbbuf_cq_db = &dev->dbbuf_dbs[cq_idx(qid, dev->db_stride)]; + nvmeq->dbbuf_sq_ei = &dev->dbbuf_eis[sq_idx(qid, dev->db_stride)]; + nvmeq->dbbuf_cq_ei = &dev->dbbuf_eis[cq_idx(qid, dev->db_stride)]; +} + +static void nvme_dbbuf_free(struct nvme_queue *nvmeq) +{ + if (!nvmeq->qid) + return; + + nvmeq->dbbuf_sq_db = NULL; + nvmeq->dbbuf_cq_db = NULL; + nvmeq->dbbuf_sq_ei = NULL; + nvmeq->dbbuf_cq_ei = NULL; +} + +static void nvme_dbbuf_set(struct nvme_dev *dev) +{ + struct nvme_command c = { }; + unsigned int i; + + if (!dev->dbbuf_dbs) + return; + + c.dbbuf.opcode = nvme_admin_dbbuf; + c.dbbuf.prp1 = cpu_to_le64(dev->dbbuf_dbs_dma_addr); + c.dbbuf.prp2 = cpu_to_le64(dev->dbbuf_eis_dma_addr); + + if (nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0)) { + dev_warn(dev->ctrl.device, "unable to set dbbuf\n"); + /* Free memory and continue on */ + nvme_dbbuf_dma_free(dev); + + for (i = 1; i <= dev->online_queues; i++) + nvme_dbbuf_free(&dev->queues[i]); + } +} + +static inline int nvme_dbbuf_need_event(u16 event_idx, u16 new_idx, u16 old) +{ + return (u16)(new_idx - event_idx - 1) < (u16)(new_idx - old); +} + +/* Update dbbuf and return true if an MMIO is required */ +static bool nvme_dbbuf_update_and_check_event(u16 value, __le32 *dbbuf_db, + volatile __le32 *dbbuf_ei) +{ + if (dbbuf_db) { + u16 old_value, event_idx; + + /* + * Ensure that the queue is written before updating + * the doorbell in memory + */ + wmb(); + + old_value = le32_to_cpu(*dbbuf_db); + *dbbuf_db = cpu_to_le32(value); + + /* + * Ensure that the doorbell is updated before reading the event + * index from memory. The controller needs to provide similar + * ordering to ensure the envent index is updated before reading + * the doorbell. + */ + mb(); + + event_idx = le32_to_cpu(*dbbuf_ei); + if (!nvme_dbbuf_need_event(event_idx, value, old_value)) + return false; + } + + return true; +} + +/* + * Will slightly overestimate the number of pages needed. This is OK + * as it only leads to a small amount of wasted memory for the lifetime of + * the I/O. + */ +static int nvme_pci_npages_prp(void) +{ + unsigned max_bytes = (NVME_MAX_KB_SZ * 1024) + NVME_CTRL_PAGE_SIZE; + unsigned nprps = DIV_ROUND_UP(max_bytes, NVME_CTRL_PAGE_SIZE); + return DIV_ROUND_UP(8 * nprps, NVME_CTRL_PAGE_SIZE - 8); +} + +static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, + unsigned int hctx_idx) +{ + struct nvme_dev *dev = to_nvme_dev(data); + struct nvme_queue *nvmeq = &dev->queues[0]; + + WARN_ON(hctx_idx != 0); + WARN_ON(dev->admin_tagset.tags[0] != hctx->tags); + + hctx->driver_data = nvmeq; + return 0; +} + +static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, + unsigned int hctx_idx) +{ + struct nvme_dev *dev = to_nvme_dev(data); + struct nvme_queue *nvmeq = &dev->queues[hctx_idx + 1]; + + WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags); + hctx->driver_data = nvmeq; + return 0; +} + +static int nvme_pci_init_request(struct blk_mq_tag_set *set, + struct request *req, unsigned int hctx_idx, + unsigned int numa_node) +{ + struct nvme_iod *iod = blk_mq_rq_to_pdu(req); + + nvme_req(req)->ctrl = set->driver_data; + nvme_req(req)->cmd = &iod->cmd; + return 0; +} + +static int queue_irq_offset(struct nvme_dev *dev) +{ + /* if we have more than 1 vec, admin queue offsets us by 1 */ + if (dev->num_vecs > 1) + return 1; + + return 0; +} + +static void nvme_pci_map_queues(struct blk_mq_tag_set *set) +{ + struct nvme_dev *dev = to_nvme_dev(set->driver_data); + int i, qoff, offset; + + offset = queue_irq_offset(dev); + for (i = 0, qoff = 0; i < set->nr_maps; i++) { + struct blk_mq_queue_map *map = &set->map[i]; + + map->nr_queues = dev->io_queues[i]; + if (!map->nr_queues) { + BUG_ON(i == HCTX_TYPE_DEFAULT); + continue; + } + + /* + * The poll queue(s) doesn't have an IRQ (and hence IRQ + * affinity), so use the regular blk-mq cpu mapping + */ + map->queue_offset = qoff; + if (i != HCTX_TYPE_POLL && offset) + blk_mq_pci_map_queues(map, to_pci_dev(dev->dev), offset); + else + blk_mq_map_queues(map); + qoff += map->nr_queues; + offset += map->nr_queues; + } +} + +/* + * Write sq tail if we are asked to, or if the next command would wrap. + */ +static inline void nvme_write_sq_db(struct nvme_queue *nvmeq, bool write_sq) +{ + if (!write_sq) { + u16 next_tail = nvmeq->sq_tail + 1; + + if (next_tail == nvmeq->q_depth) + next_tail = 0; + if (next_tail != nvmeq->last_sq_tail) + return; + } + + if (nvme_dbbuf_update_and_check_event(nvmeq->sq_tail, + nvmeq->dbbuf_sq_db, nvmeq->dbbuf_sq_ei)) + writel(nvmeq->sq_tail, nvmeq->q_db); + nvmeq->last_sq_tail = nvmeq->sq_tail; +} + +static inline void nvme_sq_copy_cmd(struct nvme_queue *nvmeq, + struct nvme_command *cmd) +{ + memcpy(nvmeq->sq_cmds + (nvmeq->sq_tail << nvmeq->sqes), + absolute_pointer(cmd), sizeof(*cmd)); + if (++nvmeq->sq_tail == nvmeq->q_depth) + nvmeq->sq_tail = 0; +} + +static void nvme_commit_rqs(struct blk_mq_hw_ctx *hctx) +{ + struct nvme_queue *nvmeq = hctx->driver_data; + + spin_lock(&nvmeq->sq_lock); + if (nvmeq->sq_tail != nvmeq->last_sq_tail) + nvme_write_sq_db(nvmeq, true); + spin_unlock(&nvmeq->sq_lock); +} + +static inline bool nvme_pci_use_sgls(struct nvme_dev *dev, struct request *req, + int nseg) +{ + struct nvme_queue *nvmeq = req->mq_hctx->driver_data; + unsigned int avg_seg_size; + + avg_seg_size = DIV_ROUND_UP(blk_rq_payload_bytes(req), nseg); + + if (!nvme_ctrl_sgl_supported(&dev->ctrl)) + return false; + if (!nvmeq->qid) + return false; + if (!sgl_threshold || avg_seg_size < sgl_threshold) + return false; + return true; +} + +static void nvme_free_prps(struct nvme_dev *dev, struct request *req) +{ + const int last_prp = NVME_CTRL_PAGE_SIZE / sizeof(__le64) - 1; + struct nvme_iod *iod = blk_mq_rq_to_pdu(req); + dma_addr_t dma_addr = iod->first_dma; + int i; + + for (i = 0; i < iod->nr_allocations; i++) { + __le64 *prp_list = iod->list[i].prp_list; + dma_addr_t next_dma_addr = le64_to_cpu(prp_list[last_prp]); + + dma_pool_free(dev->prp_page_pool, prp_list, dma_addr); + dma_addr = next_dma_addr; + } +} + +static void nvme_unmap_data(struct nvme_dev *dev, struct request *req) +{ + struct nvme_iod *iod = blk_mq_rq_to_pdu(req); + + if (iod->dma_len) { + dma_unmap_page(dev->dev, iod->first_dma, iod->dma_len, + rq_dma_dir(req)); + return; + } + + WARN_ON_ONCE(!iod->sgt.nents); + + dma_unmap_sgtable(dev->dev, &iod->sgt, rq_dma_dir(req), 0); + + if (iod->nr_allocations == 0) + dma_pool_free(dev->prp_small_pool, iod->list[0].sg_list, + iod->first_dma); + else if (iod->nr_allocations == 1) + dma_pool_free(dev->prp_page_pool, iod->list[0].sg_list, + iod->first_dma); + else + nvme_free_prps(dev, req); + mempool_free(iod->sgt.sgl, dev->iod_mempool); +} + +static void nvme_print_sgl(struct scatterlist *sgl, int nents) +{ + int i; + struct scatterlist *sg; + + for_each_sg(sgl, sg, nents, i) { + dma_addr_t phys = sg_phys(sg); + pr_warn("sg[%d] phys_addr:%pad offset:%d length:%d " + "dma_address:%pad dma_length:%d\n", + i, &phys, sg->offset, sg->length, &sg_dma_address(sg), + sg_dma_len(sg)); + } +} + +static blk_status_t nvme_pci_setup_prps(struct nvme_dev *dev, + struct request *req, struct nvme_rw_command *cmnd) +{ + struct nvme_iod *iod = blk_mq_rq_to_pdu(req); + struct dma_pool *pool; + int length = blk_rq_payload_bytes(req); + struct scatterlist *sg = iod->sgt.sgl; + int dma_len = sg_dma_len(sg); + u64 dma_addr = sg_dma_address(sg); + int offset = dma_addr & (NVME_CTRL_PAGE_SIZE - 1); + __le64 *prp_list; + dma_addr_t prp_dma; + int nprps, i; + + length -= (NVME_CTRL_PAGE_SIZE - offset); + if (length <= 0) { + iod->first_dma = 0; + goto done; + } + + dma_len -= (NVME_CTRL_PAGE_SIZE - offset); + if (dma_len) { + dma_addr += (NVME_CTRL_PAGE_SIZE - offset); + } else { + sg = sg_next(sg); + dma_addr = sg_dma_address(sg); + dma_len = sg_dma_len(sg); + } + + if (length <= NVME_CTRL_PAGE_SIZE) { + iod->first_dma = dma_addr; + goto done; + } + + nprps = DIV_ROUND_UP(length, NVME_CTRL_PAGE_SIZE); + if (nprps <= (256 / 8)) { + pool = dev->prp_small_pool; + iod->nr_allocations = 0; + } else { + pool = dev->prp_page_pool; + iod->nr_allocations = 1; + } + + prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma); + if (!prp_list) { + iod->nr_allocations = -1; + return BLK_STS_RESOURCE; + } + iod->list[0].prp_list = prp_list; + iod->first_dma = prp_dma; + i = 0; + for (;;) { + if (i == NVME_CTRL_PAGE_SIZE >> 3) { + __le64 *old_prp_list = prp_list; + prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma); + if (!prp_list) + goto free_prps; + iod->list[iod->nr_allocations++].prp_list = prp_list; + prp_list[0] = old_prp_list[i - 1]; + old_prp_list[i - 1] = cpu_to_le64(prp_dma); + i = 1; + } + prp_list[i++] = cpu_to_le64(dma_addr); + dma_len -= NVME_CTRL_PAGE_SIZE; + dma_addr += NVME_CTRL_PAGE_SIZE; + length -= NVME_CTRL_PAGE_SIZE; + if (length <= 0) + break; + if (dma_len > 0) + continue; + if (unlikely(dma_len < 0)) + goto bad_sgl; + sg = sg_next(sg); + dma_addr = sg_dma_address(sg); + dma_len = sg_dma_len(sg); + } +done: + cmnd->dptr.prp1 = cpu_to_le64(sg_dma_address(iod->sgt.sgl)); + cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma); + return BLK_STS_OK; +free_prps: + nvme_free_prps(dev, req); + return BLK_STS_RESOURCE; +bad_sgl: + WARN(DO_ONCE(nvme_print_sgl, iod->sgt.sgl, iod->sgt.nents), + "Invalid SGL for payload:%d nents:%d\n", + blk_rq_payload_bytes(req), iod->sgt.nents); + return BLK_STS_IOERR; +} + +static void nvme_pci_sgl_set_data(struct nvme_sgl_desc *sge, + struct scatterlist *sg) +{ + sge->addr = cpu_to_le64(sg_dma_address(sg)); + sge->length = cpu_to_le32(sg_dma_len(sg)); + sge->type = NVME_SGL_FMT_DATA_DESC << 4; +} + +static void nvme_pci_sgl_set_seg(struct nvme_sgl_desc *sge, + dma_addr_t dma_addr, int entries) +{ + sge->addr = cpu_to_le64(dma_addr); + sge->length = cpu_to_le32(entries * sizeof(*sge)); + sge->type = NVME_SGL_FMT_LAST_SEG_DESC << 4; +} + +static blk_status_t nvme_pci_setup_sgls(struct nvme_dev *dev, + struct request *req, struct nvme_rw_command *cmd) +{ + struct nvme_iod *iod = blk_mq_rq_to_pdu(req); + struct dma_pool *pool; + struct nvme_sgl_desc *sg_list; + struct scatterlist *sg = iod->sgt.sgl; + unsigned int entries = iod->sgt.nents; + dma_addr_t sgl_dma; + int i = 0; + + /* setting the transfer type as SGL */ + cmd->flags = NVME_CMD_SGL_METABUF; + + if (entries == 1) { + nvme_pci_sgl_set_data(&cmd->dptr.sgl, sg); + return BLK_STS_OK; + } + + if (entries <= (256 / sizeof(struct nvme_sgl_desc))) { + pool = dev->prp_small_pool; + iod->nr_allocations = 0; + } else { + pool = dev->prp_page_pool; + iod->nr_allocations = 1; + } + + sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma); + if (!sg_list) { + iod->nr_allocations = -1; + return BLK_STS_RESOURCE; + } + + iod->list[0].sg_list = sg_list; + iod->first_dma = sgl_dma; + + nvme_pci_sgl_set_seg(&cmd->dptr.sgl, sgl_dma, entries); + do { + nvme_pci_sgl_set_data(&sg_list[i++], sg); + sg = sg_next(sg); + } while (--entries > 0); + + return BLK_STS_OK; +} + +static blk_status_t nvme_setup_prp_simple(struct nvme_dev *dev, + struct request *req, struct nvme_rw_command *cmnd, + struct bio_vec *bv) +{ + struct nvme_iod *iod = blk_mq_rq_to_pdu(req); + unsigned int offset = bv->bv_offset & (NVME_CTRL_PAGE_SIZE - 1); + unsigned int first_prp_len = NVME_CTRL_PAGE_SIZE - offset; + + iod->first_dma = dma_map_bvec(dev->dev, bv, rq_dma_dir(req), 0); + if (dma_mapping_error(dev->dev, iod->first_dma)) + return BLK_STS_RESOURCE; + iod->dma_len = bv->bv_len; + + cmnd->dptr.prp1 = cpu_to_le64(iod->first_dma); + if (bv->bv_len > first_prp_len) + cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma + first_prp_len); + else + cmnd->dptr.prp2 = 0; + return BLK_STS_OK; +} + +static blk_status_t nvme_setup_sgl_simple(struct nvme_dev *dev, + struct request *req, struct nvme_rw_command *cmnd, + struct bio_vec *bv) +{ + struct nvme_iod *iod = blk_mq_rq_to_pdu(req); + + iod->first_dma = dma_map_bvec(dev->dev, bv, rq_dma_dir(req), 0); + if (dma_mapping_error(dev->dev, iod->first_dma)) + return BLK_STS_RESOURCE; + iod->dma_len = bv->bv_len; + + cmnd->flags = NVME_CMD_SGL_METABUF; + cmnd->dptr.sgl.addr = cpu_to_le64(iod->first_dma); + cmnd->dptr.sgl.length = cpu_to_le32(iod->dma_len); + cmnd->dptr.sgl.type = NVME_SGL_FMT_DATA_DESC << 4; + return BLK_STS_OK; +} + +static blk_status_t nvme_map_data(struct nvme_dev *dev, struct request *req, + struct nvme_command *cmnd) +{ + struct nvme_iod *iod = blk_mq_rq_to_pdu(req); + blk_status_t ret = BLK_STS_RESOURCE; + int rc; + + if (blk_rq_nr_phys_segments(req) == 1) { + struct nvme_queue *nvmeq = req->mq_hctx->driver_data; + struct bio_vec bv = req_bvec(req); + + if (!is_pci_p2pdma_page(bv.bv_page)) { + if (bv.bv_offset + bv.bv_len <= NVME_CTRL_PAGE_SIZE * 2) + return nvme_setup_prp_simple(dev, req, + &cmnd->rw, &bv); + + if (nvmeq->qid && sgl_threshold && + nvme_ctrl_sgl_supported(&dev->ctrl)) + return nvme_setup_sgl_simple(dev, req, + &cmnd->rw, &bv); + } + } + + iod->dma_len = 0; + iod->sgt.sgl = mempool_alloc(dev->iod_mempool, GFP_ATOMIC); + if (!iod->sgt.sgl) + return BLK_STS_RESOURCE; + sg_init_table(iod->sgt.sgl, blk_rq_nr_phys_segments(req)); + iod->sgt.orig_nents = blk_rq_map_sg(req->q, req, iod->sgt.sgl); + if (!iod->sgt.orig_nents) + goto out_free_sg; + + rc = dma_map_sgtable(dev->dev, &iod->sgt, rq_dma_dir(req), + DMA_ATTR_NO_WARN); + if (rc) { + if (rc == -EREMOTEIO) + ret = BLK_STS_TARGET; + goto out_free_sg; + } + + if (nvme_pci_use_sgls(dev, req, iod->sgt.nents)) + ret = nvme_pci_setup_sgls(dev, req, &cmnd->rw); + else + ret = nvme_pci_setup_prps(dev, req, &cmnd->rw); + if (ret != BLK_STS_OK) + goto out_unmap_sg; + return BLK_STS_OK; + +out_unmap_sg: + dma_unmap_sgtable(dev->dev, &iod->sgt, rq_dma_dir(req), 0); +out_free_sg: + mempool_free(iod->sgt.sgl, dev->iod_mempool); + return ret; +} + +static blk_status_t nvme_map_metadata(struct nvme_dev *dev, struct request *req, + struct nvme_command *cmnd) +{ + struct nvme_iod *iod = blk_mq_rq_to_pdu(req); + + iod->meta_dma = dma_map_bvec(dev->dev, rq_integrity_vec(req), + rq_dma_dir(req), 0); + if (dma_mapping_error(dev->dev, iod->meta_dma)) + return BLK_STS_IOERR; + cmnd->rw.metadata = cpu_to_le64(iod->meta_dma); + return BLK_STS_OK; +} + +static blk_status_t nvme_prep_rq(struct nvme_dev *dev, struct request *req) +{ + struct nvme_iod *iod = blk_mq_rq_to_pdu(req); + blk_status_t ret; + + iod->aborted = false; + iod->nr_allocations = -1; + iod->sgt.nents = 0; + + ret = nvme_setup_cmd(req->q->queuedata, req); + if (ret) + return ret; + + if (blk_rq_nr_phys_segments(req)) { + ret = nvme_map_data(dev, req, &iod->cmd); + if (ret) + goto out_free_cmd; + } + + if (blk_integrity_rq(req)) { + ret = nvme_map_metadata(dev, req, &iod->cmd); + if (ret) + goto out_unmap_data; + } + + nvme_start_request(req); + return BLK_STS_OK; +out_unmap_data: + nvme_unmap_data(dev, req); +out_free_cmd: + nvme_cleanup_cmd(req); + return ret; +} + +/* + * NOTE: ns is NULL when called on the admin queue. + */ +static blk_status_t nvme_queue_rq(struct blk_mq_hw_ctx *hctx, + const struct blk_mq_queue_data *bd) +{ + struct nvme_queue *nvmeq = hctx->driver_data; + struct nvme_dev *dev = nvmeq->dev; + struct request *req = bd->rq; + struct nvme_iod *iod = blk_mq_rq_to_pdu(req); + blk_status_t ret; + + /* + * We should not need to do this, but we're still using this to + * ensure we can drain requests on a dying queue. + */ + if (unlikely(!test_bit(NVMEQ_ENABLED, &nvmeq->flags))) + return BLK_STS_IOERR; + + if (unlikely(!nvme_check_ready(&dev->ctrl, req, true))) + return nvme_fail_nonready_command(&dev->ctrl, req); + + ret = nvme_prep_rq(dev, req); + if (unlikely(ret)) + return ret; + spin_lock(&nvmeq->sq_lock); + nvme_sq_copy_cmd(nvmeq, &iod->cmd); + nvme_write_sq_db(nvmeq, bd->last); + spin_unlock(&nvmeq->sq_lock); + return BLK_STS_OK; +} + +static void nvme_submit_cmds(struct nvme_queue *nvmeq, struct request **rqlist) +{ + spin_lock(&nvmeq->sq_lock); + while (!rq_list_empty(*rqlist)) { + struct request *req = rq_list_pop(rqlist); + struct nvme_iod *iod = blk_mq_rq_to_pdu(req); + + nvme_sq_copy_cmd(nvmeq, &iod->cmd); + } + nvme_write_sq_db(nvmeq, true); + spin_unlock(&nvmeq->sq_lock); +} + +static bool nvme_prep_rq_batch(struct nvme_queue *nvmeq, struct request *req) +{ + /* + * We should not need to do this, but we're still using this to + * ensure we can drain requests on a dying queue. + */ + if (unlikely(!test_bit(NVMEQ_ENABLED, &nvmeq->flags))) + return false; + if (unlikely(!nvme_check_ready(&nvmeq->dev->ctrl, req, true))) + return false; + + req->mq_hctx->tags->rqs[req->tag] = req; + return nvme_prep_rq(nvmeq->dev, req) == BLK_STS_OK; +} + +static void nvme_queue_rqs(struct request **rqlist) +{ + struct request *req, *next, *prev = NULL; + struct request *requeue_list = NULL; + + rq_list_for_each_safe(rqlist, req, next) { + struct nvme_queue *nvmeq = req->mq_hctx->driver_data; + + if (!nvme_prep_rq_batch(nvmeq, req)) { + /* detach 'req' and add to remainder list */ + rq_list_move(rqlist, &requeue_list, req, prev); + + req = prev; + if (!req) + continue; + } + + if (!next || req->mq_hctx != next->mq_hctx) { + /* detach rest of list, and submit */ + req->rq_next = NULL; + nvme_submit_cmds(nvmeq, rqlist); + *rqlist = next; + prev = NULL; + } else + prev = req; + } + + *rqlist = requeue_list; +} + +static __always_inline void nvme_pci_unmap_rq(struct request *req) +{ + struct nvme_queue *nvmeq = req->mq_hctx->driver_data; + struct nvme_dev *dev = nvmeq->dev; + + if (blk_integrity_rq(req)) { + struct nvme_iod *iod = blk_mq_rq_to_pdu(req); + + dma_unmap_page(dev->dev, iod->meta_dma, + rq_integrity_vec(req)->bv_len, rq_dma_dir(req)); + } + + if (blk_rq_nr_phys_segments(req)) + nvme_unmap_data(dev, req); +} + +static void nvme_pci_complete_rq(struct request *req) +{ + nvme_pci_unmap_rq(req); + nvme_complete_rq(req); +} + +static void nvme_pci_complete_batch(struct io_comp_batch *iob) +{ + nvme_complete_batch(iob, nvme_pci_unmap_rq); +} + +/* We read the CQE phase first to check if the rest of the entry is valid */ +static inline bool nvme_cqe_pending(struct nvme_queue *nvmeq) +{ + struct nvme_completion *hcqe = &nvmeq->cqes[nvmeq->cq_head]; + + return (le16_to_cpu(READ_ONCE(hcqe->status)) & 1) == nvmeq->cq_phase; +} + +static inline void nvme_ring_cq_doorbell(struct nvme_queue *nvmeq) +{ + u16 head = nvmeq->cq_head; + + if (nvme_dbbuf_update_and_check_event(head, nvmeq->dbbuf_cq_db, + nvmeq->dbbuf_cq_ei)) + writel(head, nvmeq->q_db + nvmeq->dev->db_stride); +} + +static inline struct blk_mq_tags *nvme_queue_tagset(struct nvme_queue *nvmeq) +{ + if (!nvmeq->qid) + return nvmeq->dev->admin_tagset.tags[0]; + return nvmeq->dev->tagset.tags[nvmeq->qid - 1]; +} + +static inline void nvme_handle_cqe(struct nvme_queue *nvmeq, + struct io_comp_batch *iob, u16 idx) +{ + struct nvme_completion *cqe = &nvmeq->cqes[idx]; + __u16 command_id = READ_ONCE(cqe->command_id); + struct request *req; + + /* + * AEN requests are special as they don't time out and can + * survive any kind of queue freeze and often don't respond to + * aborts. We don't even bother to allocate a struct request + * for them but rather special case them here. + */ + if (unlikely(nvme_is_aen_req(nvmeq->qid, command_id))) { + nvme_complete_async_event(&nvmeq->dev->ctrl, + cqe->status, &cqe->result); + return; + } + + req = nvme_find_rq(nvme_queue_tagset(nvmeq), command_id); + if (unlikely(!req)) { + dev_warn(nvmeq->dev->ctrl.device, + "invalid id %d completed on queue %d\n", + command_id, le16_to_cpu(cqe->sq_id)); + return; + } + + trace_nvme_sq(req, cqe->sq_head, nvmeq->sq_tail); + if (!nvme_try_complete_req(req, cqe->status, cqe->result) && + !blk_mq_add_to_batch(req, iob, nvme_req(req)->status, + nvme_pci_complete_batch)) + nvme_pci_complete_rq(req); +} + +static inline void nvme_update_cq_head(struct nvme_queue *nvmeq) +{ + u32 tmp = nvmeq->cq_head + 1; + + if (tmp == nvmeq->q_depth) { + nvmeq->cq_head = 0; + nvmeq->cq_phase ^= 1; + } else { + nvmeq->cq_head = tmp; + } +} + +static inline int nvme_poll_cq(struct nvme_queue *nvmeq, + struct io_comp_batch *iob) +{ + int found = 0; + + while (nvme_cqe_pending(nvmeq)) { + found++; + /* + * load-load control dependency between phase and the rest of + * the cqe requires a full read memory barrier + */ + dma_rmb(); + nvme_handle_cqe(nvmeq, iob, nvmeq->cq_head); + nvme_update_cq_head(nvmeq); + } + + if (found) + nvme_ring_cq_doorbell(nvmeq); + return found; +} + +static irqreturn_t nvme_irq(int irq, void *data) +{ + struct nvme_queue *nvmeq = data; + DEFINE_IO_COMP_BATCH(iob); + + if (nvme_poll_cq(nvmeq, &iob)) { + if (!rq_list_empty(iob.req_list)) + nvme_pci_complete_batch(&iob); + return IRQ_HANDLED; + } + return IRQ_NONE; +} + +static irqreturn_t nvme_irq_check(int irq, void *data) +{ + struct nvme_queue *nvmeq = data; + + if (nvme_cqe_pending(nvmeq)) + return IRQ_WAKE_THREAD; + return IRQ_NONE; +} + +/* + * Poll for completions for any interrupt driven queue + * Can be called from any context. + */ +static void nvme_poll_irqdisable(struct nvme_queue *nvmeq) +{ + struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev); + + WARN_ON_ONCE(test_bit(NVMEQ_POLLED, &nvmeq->flags)); + + disable_irq(pci_irq_vector(pdev, nvmeq->cq_vector)); + nvme_poll_cq(nvmeq, NULL); + enable_irq(pci_irq_vector(pdev, nvmeq->cq_vector)); +} + +static int nvme_poll(struct blk_mq_hw_ctx *hctx, struct io_comp_batch *iob) +{ + struct nvme_queue *nvmeq = hctx->driver_data; + bool found; + + if (!nvme_cqe_pending(nvmeq)) + return 0; + + spin_lock(&nvmeq->cq_poll_lock); + found = nvme_poll_cq(nvmeq, iob); + spin_unlock(&nvmeq->cq_poll_lock); + + return found; +} + +static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl) +{ + struct nvme_dev *dev = to_nvme_dev(ctrl); + struct nvme_queue *nvmeq = &dev->queues[0]; + struct nvme_command c = { }; + + c.common.opcode = nvme_admin_async_event; + c.common.command_id = NVME_AQ_BLK_MQ_DEPTH; + + spin_lock(&nvmeq->sq_lock); + nvme_sq_copy_cmd(nvmeq, &c); + nvme_write_sq_db(nvmeq, true); + spin_unlock(&nvmeq->sq_lock); +} + +static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id) +{ + struct nvme_command c = { }; + + c.delete_queue.opcode = opcode; + c.delete_queue.qid = cpu_to_le16(id); + + return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0); +} + +static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid, + struct nvme_queue *nvmeq, s16 vector) +{ + struct nvme_command c = { }; + int flags = NVME_QUEUE_PHYS_CONTIG; + + if (!test_bit(NVMEQ_POLLED, &nvmeq->flags)) + flags |= NVME_CQ_IRQ_ENABLED; + + /* + * Note: we (ab)use the fact that the prp fields survive if no data + * is attached to the request. + */ + c.create_cq.opcode = nvme_admin_create_cq; + c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr); + c.create_cq.cqid = cpu_to_le16(qid); + c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1); + c.create_cq.cq_flags = cpu_to_le16(flags); + c.create_cq.irq_vector = cpu_to_le16(vector); + + return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0); +} + +static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid, + struct nvme_queue *nvmeq) +{ + struct nvme_ctrl *ctrl = &dev->ctrl; + struct nvme_command c = { }; + int flags = NVME_QUEUE_PHYS_CONTIG; + + /* + * Some drives have a bug that auto-enables WRRU if MEDIUM isn't + * set. Since URGENT priority is zeroes, it makes all queues + * URGENT. + */ + if (ctrl->quirks & NVME_QUIRK_MEDIUM_PRIO_SQ) + flags |= NVME_SQ_PRIO_MEDIUM; + + /* + * Note: we (ab)use the fact that the prp fields survive if no data + * is attached to the request. + */ + c.create_sq.opcode = nvme_admin_create_sq; + c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr); + c.create_sq.sqid = cpu_to_le16(qid); + c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1); + c.create_sq.sq_flags = cpu_to_le16(flags); + c.create_sq.cqid = cpu_to_le16(qid); + + return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0); +} + +static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid) +{ + return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid); +} + +static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid) +{ + return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid); +} + +static enum rq_end_io_ret abort_endio(struct request *req, blk_status_t error) +{ + struct nvme_queue *nvmeq = req->mq_hctx->driver_data; + + dev_warn(nvmeq->dev->ctrl.device, + "Abort status: 0x%x", nvme_req(req)->status); + atomic_inc(&nvmeq->dev->ctrl.abort_limit); + blk_mq_free_request(req); + return RQ_END_IO_NONE; +} + +static bool nvme_should_reset(struct nvme_dev *dev, u32 csts) +{ + /* If true, indicates loss of adapter communication, possibly by a + * NVMe Subsystem reset. + */ + bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO); + + /* If there is a reset/reinit ongoing, we shouldn't reset again. */ + switch (nvme_ctrl_state(&dev->ctrl)) { + case NVME_CTRL_RESETTING: + case NVME_CTRL_CONNECTING: + return false; + default: + break; + } + + /* We shouldn't reset unless the controller is on fatal error state + * _or_ if we lost the communication with it. + */ + if (!(csts & NVME_CSTS_CFS) && !nssro) + return false; + + return true; +} + +static void nvme_warn_reset(struct nvme_dev *dev, u32 csts) +{ + /* Read a config register to help see what died. */ + u16 pci_status; + int result; + + result = pci_read_config_word(to_pci_dev(dev->dev), PCI_STATUS, + &pci_status); + if (result == PCIBIOS_SUCCESSFUL) + dev_warn(dev->ctrl.device, + "controller is down; will reset: CSTS=0x%x, PCI_STATUS=0x%hx\n", + csts, pci_status); + else + dev_warn(dev->ctrl.device, + "controller is down; will reset: CSTS=0x%x, PCI_STATUS read failed (%d)\n", + csts, result); + + if (csts != ~0) + return; + + dev_warn(dev->ctrl.device, + "Does your device have a faulty power saving mode enabled?\n"); + dev_warn(dev->ctrl.device, + "Try \"nvme_core.default_ps_max_latency_us=0 pcie_aspm=off\" and report a bug\n"); +} + +static enum blk_eh_timer_return nvme_timeout(struct request *req) +{ + struct nvme_iod *iod = blk_mq_rq_to_pdu(req); + struct nvme_queue *nvmeq = req->mq_hctx->driver_data; + struct nvme_dev *dev = nvmeq->dev; + struct request *abort_req; + struct nvme_command cmd = { }; + u32 csts = readl(dev->bar + NVME_REG_CSTS); + + /* If PCI error recovery process is happening, we cannot reset or + * the recovery mechanism will surely fail. + */ + mb(); + if (pci_channel_offline(to_pci_dev(dev->dev))) + return BLK_EH_RESET_TIMER; + + /* + * Reset immediately if the controller is failed + */ + if (nvme_should_reset(dev, csts)) { + nvme_warn_reset(dev, csts); + goto disable; + } + + /* + * Did we miss an interrupt? + */ + if (test_bit(NVMEQ_POLLED, &nvmeq->flags)) + nvme_poll(req->mq_hctx, NULL); + else + nvme_poll_irqdisable(nvmeq); + + if (blk_mq_rq_state(req) != MQ_RQ_IN_FLIGHT) { + dev_warn(dev->ctrl.device, + "I/O %d QID %d timeout, completion polled\n", + req->tag, nvmeq->qid); + return BLK_EH_DONE; + } + + /* + * Shutdown immediately if controller times out while starting. The + * reset work will see the pci device disabled when it gets the forced + * cancellation error. All outstanding requests are completed on + * shutdown, so we return BLK_EH_DONE. + */ + switch (nvme_ctrl_state(&dev->ctrl)) { + case NVME_CTRL_CONNECTING: + nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING); + fallthrough; + case NVME_CTRL_DELETING: + dev_warn_ratelimited(dev->ctrl.device, + "I/O %d QID %d timeout, disable controller\n", + req->tag, nvmeq->qid); + nvme_req(req)->flags |= NVME_REQ_CANCELLED; + nvme_dev_disable(dev, true); + return BLK_EH_DONE; + case NVME_CTRL_RESETTING: + return BLK_EH_RESET_TIMER; + default: + break; + } + + /* + * Shutdown the controller immediately and schedule a reset if the + * command was already aborted once before and still hasn't been + * returned to the driver, or if this is the admin queue. + */ + if (!nvmeq->qid || iod->aborted) { + dev_warn(dev->ctrl.device, + "I/O %d QID %d timeout, reset controller\n", + req->tag, nvmeq->qid); + nvme_req(req)->flags |= NVME_REQ_CANCELLED; + goto disable; + } + + if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) { + atomic_inc(&dev->ctrl.abort_limit); + return BLK_EH_RESET_TIMER; + } + iod->aborted = true; + + cmd.abort.opcode = nvme_admin_abort_cmd; + cmd.abort.cid = nvme_cid(req); + cmd.abort.sqid = cpu_to_le16(nvmeq->qid); + + dev_warn(nvmeq->dev->ctrl.device, + "I/O %d (%s) QID %d timeout, aborting\n", + req->tag, + nvme_get_opcode_str(nvme_req(req)->cmd->common.opcode), + nvmeq->qid); + + abort_req = blk_mq_alloc_request(dev->ctrl.admin_q, nvme_req_op(&cmd), + BLK_MQ_REQ_NOWAIT); + if (IS_ERR(abort_req)) { + atomic_inc(&dev->ctrl.abort_limit); + return BLK_EH_RESET_TIMER; + } + nvme_init_request(abort_req, &cmd); + + abort_req->end_io = abort_endio; + abort_req->end_io_data = NULL; + blk_execute_rq_nowait(abort_req, false); + + /* + * The aborted req will be completed on receiving the abort req. + * We enable the timer again. If hit twice, it'll cause a device reset, + * as the device then is in a faulty state. + */ + return BLK_EH_RESET_TIMER; + +disable: + if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_RESETTING)) + return BLK_EH_DONE; + + nvme_dev_disable(dev, false); + if (nvme_try_sched_reset(&dev->ctrl)) + nvme_unquiesce_io_queues(&dev->ctrl); + return BLK_EH_DONE; +} + +static void nvme_free_queue(struct nvme_queue *nvmeq) +{ + dma_free_coherent(nvmeq->dev->dev, CQ_SIZE(nvmeq), + (void *)nvmeq->cqes, nvmeq->cq_dma_addr); + if (!nvmeq->sq_cmds) + return; + + if (test_and_clear_bit(NVMEQ_SQ_CMB, &nvmeq->flags)) { + pci_free_p2pmem(to_pci_dev(nvmeq->dev->dev), + nvmeq->sq_cmds, SQ_SIZE(nvmeq)); + } else { + dma_free_coherent(nvmeq->dev->dev, SQ_SIZE(nvmeq), + nvmeq->sq_cmds, nvmeq->sq_dma_addr); + } +} + +static void nvme_free_queues(struct nvme_dev *dev, int lowest) +{ + int i; + + for (i = dev->ctrl.queue_count - 1; i >= lowest; i--) { + dev->ctrl.queue_count--; + nvme_free_queue(&dev->queues[i]); + } +} + +static void nvme_suspend_queue(struct nvme_dev *dev, unsigned int qid) +{ + struct nvme_queue *nvmeq = &dev->queues[qid]; + + if (!test_and_clear_bit(NVMEQ_ENABLED, &nvmeq->flags)) + return; + + /* ensure that nvme_queue_rq() sees NVMEQ_ENABLED cleared */ + mb(); + + nvmeq->dev->online_queues--; + if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q) + nvme_quiesce_admin_queue(&nvmeq->dev->ctrl); + if (!test_and_clear_bit(NVMEQ_POLLED, &nvmeq->flags)) + pci_free_irq(to_pci_dev(dev->dev), nvmeq->cq_vector, nvmeq); +} + +static void nvme_suspend_io_queues(struct nvme_dev *dev) +{ + int i; + + for (i = dev->ctrl.queue_count - 1; i > 0; i--) + nvme_suspend_queue(dev, i); +} + +/* + * Called only on a device that has been disabled and after all other threads + * that can check this device's completion queues have synced, except + * nvme_poll(). This is the last chance for the driver to see a natural + * completion before nvme_cancel_request() terminates all incomplete requests. + */ +static void nvme_reap_pending_cqes(struct nvme_dev *dev) +{ + int i; + + for (i = dev->ctrl.queue_count - 1; i > 0; i--) { + spin_lock(&dev->queues[i].cq_poll_lock); + nvme_poll_cq(&dev->queues[i], NULL); + spin_unlock(&dev->queues[i].cq_poll_lock); + } +} + +static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues, + int entry_size) +{ + int q_depth = dev->q_depth; + unsigned q_size_aligned = roundup(q_depth * entry_size, + NVME_CTRL_PAGE_SIZE); + + if (q_size_aligned * nr_io_queues > dev->cmb_size) { + u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues); + + mem_per_q = round_down(mem_per_q, NVME_CTRL_PAGE_SIZE); + q_depth = div_u64(mem_per_q, entry_size); + + /* + * Ensure the reduced q_depth is above some threshold where it + * would be better to map queues in system memory with the + * original depth + */ + if (q_depth < 64) + return -ENOMEM; + } + + return q_depth; +} + +static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq, + int qid) +{ + struct pci_dev *pdev = to_pci_dev(dev->dev); + + if (qid && dev->cmb_use_sqes && (dev->cmbsz & NVME_CMBSZ_SQS)) { + nvmeq->sq_cmds = pci_alloc_p2pmem(pdev, SQ_SIZE(nvmeq)); + if (nvmeq->sq_cmds) { + nvmeq->sq_dma_addr = pci_p2pmem_virt_to_bus(pdev, + nvmeq->sq_cmds); + if (nvmeq->sq_dma_addr) { + set_bit(NVMEQ_SQ_CMB, &nvmeq->flags); + return 0; + } + + pci_free_p2pmem(pdev, nvmeq->sq_cmds, SQ_SIZE(nvmeq)); + } + } + + nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(nvmeq), + &nvmeq->sq_dma_addr, GFP_KERNEL); + if (!nvmeq->sq_cmds) + return -ENOMEM; + return 0; +} + +static int nvme_alloc_queue(struct nvme_dev *dev, int qid, int depth) +{ + struct nvme_queue *nvmeq = &dev->queues[qid]; + + if (dev->ctrl.queue_count > qid) + return 0; + + nvmeq->sqes = qid ? dev->io_sqes : NVME_ADM_SQES; + nvmeq->q_depth = depth; + nvmeq->cqes = dma_alloc_coherent(dev->dev, CQ_SIZE(nvmeq), + &nvmeq->cq_dma_addr, GFP_KERNEL); + if (!nvmeq->cqes) + goto free_nvmeq; + + if (nvme_alloc_sq_cmds(dev, nvmeq, qid)) + goto free_cqdma; + + nvmeq->dev = dev; + spin_lock_init(&nvmeq->sq_lock); + spin_lock_init(&nvmeq->cq_poll_lock); + nvmeq->cq_head = 0; + nvmeq->cq_phase = 1; + nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride]; + nvmeq->qid = qid; + dev->ctrl.queue_count++; + + return 0; + + free_cqdma: + dma_free_coherent(dev->dev, CQ_SIZE(nvmeq), (void *)nvmeq->cqes, + nvmeq->cq_dma_addr); + free_nvmeq: + return -ENOMEM; +} + +static int queue_request_irq(struct nvme_queue *nvmeq) +{ + struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev); + int nr = nvmeq->dev->ctrl.instance; + + if (use_threaded_interrupts) { + return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq_check, + nvme_irq, nvmeq, "nvme%dq%d", nr, nvmeq->qid); + } else { + return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq, + NULL, nvmeq, "nvme%dq%d", nr, nvmeq->qid); + } +} + +static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid) +{ + struct nvme_dev *dev = nvmeq->dev; + + nvmeq->sq_tail = 0; + nvmeq->last_sq_tail = 0; + nvmeq->cq_head = 0; + nvmeq->cq_phase = 1; + nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride]; + memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq)); + nvme_dbbuf_init(dev, nvmeq, qid); + dev->online_queues++; + wmb(); /* ensure the first interrupt sees the initialization */ +} + +/* + * Try getting shutdown_lock while setting up IO queues. + */ +static int nvme_setup_io_queues_trylock(struct nvme_dev *dev) +{ + /* + * Give up if the lock is being held by nvme_dev_disable. + */ + if (!mutex_trylock(&dev->shutdown_lock)) + return -ENODEV; + + /* + * Controller is in wrong state, fail early. + */ + if (nvme_ctrl_state(&dev->ctrl) != NVME_CTRL_CONNECTING) { + mutex_unlock(&dev->shutdown_lock); + return -ENODEV; + } + + return 0; +} + +static int nvme_create_queue(struct nvme_queue *nvmeq, int qid, bool polled) +{ + struct nvme_dev *dev = nvmeq->dev; + int result; + u16 vector = 0; + + clear_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags); + + /* + * A queue's vector matches the queue identifier unless the controller + * has only one vector available. + */ + if (!polled) + vector = dev->num_vecs == 1 ? 0 : qid; + else + set_bit(NVMEQ_POLLED, &nvmeq->flags); + + result = adapter_alloc_cq(dev, qid, nvmeq, vector); + if (result) + return result; + + result = adapter_alloc_sq(dev, qid, nvmeq); + if (result < 0) + return result; + if (result) + goto release_cq; + + nvmeq->cq_vector = vector; + + result = nvme_setup_io_queues_trylock(dev); + if (result) + return result; + nvme_init_queue(nvmeq, qid); + if (!polled) { + result = queue_request_irq(nvmeq); + if (result < 0) + goto release_sq; + } + + set_bit(NVMEQ_ENABLED, &nvmeq->flags); + mutex_unlock(&dev->shutdown_lock); + return result; + +release_sq: + dev->online_queues--; + mutex_unlock(&dev->shutdown_lock); + adapter_delete_sq(dev, qid); +release_cq: + adapter_delete_cq(dev, qid); + return result; +} + +static const struct blk_mq_ops nvme_mq_admin_ops = { + .queue_rq = nvme_queue_rq, + .complete = nvme_pci_complete_rq, + .init_hctx = nvme_admin_init_hctx, + .init_request = nvme_pci_init_request, + .timeout = nvme_timeout, +}; + +static const struct blk_mq_ops nvme_mq_ops = { + .queue_rq = nvme_queue_rq, + .queue_rqs = nvme_queue_rqs, + .complete = nvme_pci_complete_rq, + .commit_rqs = nvme_commit_rqs, + .init_hctx = nvme_init_hctx, + .init_request = nvme_pci_init_request, + .map_queues = nvme_pci_map_queues, + .timeout = nvme_timeout, + .poll = nvme_poll, +}; + +static void nvme_dev_remove_admin(struct nvme_dev *dev) +{ + if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) { + /* + * If the controller was reset during removal, it's possible + * user requests may be waiting on a stopped queue. Start the + * queue to flush these to completion. + */ + nvme_unquiesce_admin_queue(&dev->ctrl); + nvme_remove_admin_tag_set(&dev->ctrl); + } +} + +static unsigned long db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues) +{ + return NVME_REG_DBS + ((nr_io_queues + 1) * 8 * dev->db_stride); +} + +static int nvme_remap_bar(struct nvme_dev *dev, unsigned long size) +{ + struct pci_dev *pdev = to_pci_dev(dev->dev); + + if (size <= dev->bar_mapped_size) + return 0; + if (size > pci_resource_len(pdev, 0)) + return -ENOMEM; + if (dev->bar) + iounmap(dev->bar); + dev->bar = ioremap(pci_resource_start(pdev, 0), size); + if (!dev->bar) { + dev->bar_mapped_size = 0; + return -ENOMEM; + } + dev->bar_mapped_size = size; + dev->dbs = dev->bar + NVME_REG_DBS; + + return 0; +} + +static int nvme_pci_configure_admin_queue(struct nvme_dev *dev) +{ + int result; + u32 aqa; + struct nvme_queue *nvmeq; + + result = nvme_remap_bar(dev, db_bar_size(dev, 0)); + if (result < 0) + return result; + + dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1, 0) ? + NVME_CAP_NSSRC(dev->ctrl.cap) : 0; + + if (dev->subsystem && + (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO)) + writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS); + + /* + * If the device has been passed off to us in an enabled state, just + * clear the enabled bit. The spec says we should set the 'shutdown + * notification bits', but doing so may cause the device to complete + * commands to the admin queue ... and we don't know what memory that + * might be pointing at! + */ + result = nvme_disable_ctrl(&dev->ctrl, false); + if (result < 0) + return result; + + result = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH); + if (result) + return result; + + dev->ctrl.numa_node = dev_to_node(dev->dev); + + nvmeq = &dev->queues[0]; + aqa = nvmeq->q_depth - 1; + aqa |= aqa << 16; + + writel(aqa, dev->bar + NVME_REG_AQA); + lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ); + lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ); + + result = nvme_enable_ctrl(&dev->ctrl); + if (result) + return result; + + nvmeq->cq_vector = 0; + nvme_init_queue(nvmeq, 0); + result = queue_request_irq(nvmeq); + if (result) { + dev->online_queues--; + return result; + } + + set_bit(NVMEQ_ENABLED, &nvmeq->flags); + return result; +} + +static int nvme_create_io_queues(struct nvme_dev *dev) +{ + unsigned i, max, rw_queues; + int ret = 0; + + for (i = dev->ctrl.queue_count; i <= dev->max_qid; i++) { + if (nvme_alloc_queue(dev, i, dev->q_depth)) { + ret = -ENOMEM; + break; + } + } + + max = min(dev->max_qid, dev->ctrl.queue_count - 1); + if (max != 1 && dev->io_queues[HCTX_TYPE_POLL]) { + rw_queues = dev->io_queues[HCTX_TYPE_DEFAULT] + + dev->io_queues[HCTX_TYPE_READ]; + } else { + rw_queues = max; + } + + for (i = dev->online_queues; i <= max; i++) { + bool polled = i > rw_queues; + + ret = nvme_create_queue(&dev->queues[i], i, polled); + if (ret) + break; + } + + /* + * Ignore failing Create SQ/CQ commands, we can continue with less + * than the desired amount of queues, and even a controller without + * I/O queues can still be used to issue admin commands. This might + * be useful to upgrade a buggy firmware for example. + */ + return ret >= 0 ? 0 : ret; +} + +static u64 nvme_cmb_size_unit(struct nvme_dev *dev) +{ + u8 szu = (dev->cmbsz >> NVME_CMBSZ_SZU_SHIFT) & NVME_CMBSZ_SZU_MASK; + + return 1ULL << (12 + 4 * szu); +} + +static u32 nvme_cmb_size(struct nvme_dev *dev) +{ + return (dev->cmbsz >> NVME_CMBSZ_SZ_SHIFT) & NVME_CMBSZ_SZ_MASK; +} + +static void nvme_map_cmb(struct nvme_dev *dev) +{ + u64 size, offset; + resource_size_t bar_size; + struct pci_dev *pdev = to_pci_dev(dev->dev); + int bar; + + if (dev->cmb_size) + return; + + if (NVME_CAP_CMBS(dev->ctrl.cap)) + writel(NVME_CMBMSC_CRE, dev->bar + NVME_REG_CMBMSC); + + dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ); + if (!dev->cmbsz) + return; + dev->cmbloc = readl(dev->bar + NVME_REG_CMBLOC); + + size = nvme_cmb_size_unit(dev) * nvme_cmb_size(dev); + offset = nvme_cmb_size_unit(dev) * NVME_CMB_OFST(dev->cmbloc); + bar = NVME_CMB_BIR(dev->cmbloc); + bar_size = pci_resource_len(pdev, bar); + + if (offset > bar_size) + return; + + /* + * Tell the controller about the host side address mapping the CMB, + * and enable CMB decoding for the NVMe 1.4+ scheme: + */ + if (NVME_CAP_CMBS(dev->ctrl.cap)) { + hi_lo_writeq(NVME_CMBMSC_CRE | NVME_CMBMSC_CMSE | + (pci_bus_address(pdev, bar) + offset), + dev->bar + NVME_REG_CMBMSC); + } + + /* + * Controllers may support a CMB size larger than their BAR, + * for example, due to being behind a bridge. Reduce the CMB to + * the reported size of the BAR + */ + if (size > bar_size - offset) + size = bar_size - offset; + + if (pci_p2pdma_add_resource(pdev, bar, size, offset)) { + dev_warn(dev->ctrl.device, + "failed to register the CMB\n"); + return; + } + + dev->cmb_size = size; + dev->cmb_use_sqes = use_cmb_sqes && (dev->cmbsz & NVME_CMBSZ_SQS); + + if ((dev->cmbsz & (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS)) == + (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS)) + pci_p2pmem_publish(pdev, true); + + nvme_update_attrs(dev); +} + +static int nvme_set_host_mem(struct nvme_dev *dev, u32 bits) +{ + u32 host_mem_size = dev->host_mem_size >> NVME_CTRL_PAGE_SHIFT; + u64 dma_addr = dev->host_mem_descs_dma; + struct nvme_command c = { }; + int ret; + + c.features.opcode = nvme_admin_set_features; + c.features.fid = cpu_to_le32(NVME_FEAT_HOST_MEM_BUF); + c.features.dword11 = cpu_to_le32(bits); + c.features.dword12 = cpu_to_le32(host_mem_size); + c.features.dword13 = cpu_to_le32(lower_32_bits(dma_addr)); + c.features.dword14 = cpu_to_le32(upper_32_bits(dma_addr)); + c.features.dword15 = cpu_to_le32(dev->nr_host_mem_descs); + + ret = nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0); + if (ret) { + dev_warn(dev->ctrl.device, + "failed to set host mem (err %d, flags %#x).\n", + ret, bits); + } else + dev->hmb = bits & NVME_HOST_MEM_ENABLE; + + return ret; +} + +static void nvme_free_host_mem(struct nvme_dev *dev) +{ + int i; + + for (i = 0; i < dev->nr_host_mem_descs; i++) { + struct nvme_host_mem_buf_desc *desc = &dev->host_mem_descs[i]; + size_t size = le32_to_cpu(desc->size) * NVME_CTRL_PAGE_SIZE; + + dma_free_attrs(dev->dev, size, dev->host_mem_desc_bufs[i], + le64_to_cpu(desc->addr), + DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN); + } + + kfree(dev->host_mem_desc_bufs); + dev->host_mem_desc_bufs = NULL; + dma_free_coherent(dev->dev, + dev->nr_host_mem_descs * sizeof(*dev->host_mem_descs), + dev->host_mem_descs, dev->host_mem_descs_dma); + dev->host_mem_descs = NULL; + dev->nr_host_mem_descs = 0; +} + +static int __nvme_alloc_host_mem(struct nvme_dev *dev, u64 preferred, + u32 chunk_size) +{ + struct nvme_host_mem_buf_desc *descs; + u32 max_entries, len; + dma_addr_t descs_dma; + int i = 0; + void **bufs; + u64 size, tmp; + + tmp = (preferred + chunk_size - 1); + do_div(tmp, chunk_size); + max_entries = tmp; + + if (dev->ctrl.hmmaxd && dev->ctrl.hmmaxd < max_entries) + max_entries = dev->ctrl.hmmaxd; + + descs = dma_alloc_coherent(dev->dev, max_entries * sizeof(*descs), + &descs_dma, GFP_KERNEL); + if (!descs) + goto out; + + bufs = kcalloc(max_entries, sizeof(*bufs), GFP_KERNEL); + if (!bufs) + goto out_free_descs; + + for (size = 0; size < preferred && i < max_entries; size += len) { + dma_addr_t dma_addr; + + len = min_t(u64, chunk_size, preferred - size); + bufs[i] = dma_alloc_attrs(dev->dev, len, &dma_addr, GFP_KERNEL, + DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN); + if (!bufs[i]) + break; + + descs[i].addr = cpu_to_le64(dma_addr); + descs[i].size = cpu_to_le32(len / NVME_CTRL_PAGE_SIZE); + i++; + } + + if (!size) + goto out_free_bufs; + + dev->nr_host_mem_descs = i; + dev->host_mem_size = size; + dev->host_mem_descs = descs; + dev->host_mem_descs_dma = descs_dma; + dev->host_mem_desc_bufs = bufs; + return 0; + +out_free_bufs: + while (--i >= 0) { + size_t size = le32_to_cpu(descs[i].size) * NVME_CTRL_PAGE_SIZE; + + dma_free_attrs(dev->dev, size, bufs[i], + le64_to_cpu(descs[i].addr), + DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN); + } + + kfree(bufs); +out_free_descs: + dma_free_coherent(dev->dev, max_entries * sizeof(*descs), descs, + descs_dma); +out: + dev->host_mem_descs = NULL; + return -ENOMEM; +} + +static int nvme_alloc_host_mem(struct nvme_dev *dev, u64 min, u64 preferred) +{ + u64 min_chunk = min_t(u64, preferred, PAGE_SIZE * MAX_ORDER_NR_PAGES); + u64 hmminds = max_t(u32, dev->ctrl.hmminds * 4096, PAGE_SIZE * 2); + u64 chunk_size; + + /* start big and work our way down */ + for (chunk_size = min_chunk; chunk_size >= hmminds; chunk_size /= 2) { + if (!__nvme_alloc_host_mem(dev, preferred, chunk_size)) { + if (!min || dev->host_mem_size >= min) + return 0; + nvme_free_host_mem(dev); + } + } + + return -ENOMEM; +} + +static int nvme_setup_host_mem(struct nvme_dev *dev) +{ + u64 max = (u64)max_host_mem_size_mb * SZ_1M; + u64 preferred = (u64)dev->ctrl.hmpre * 4096; + u64 min = (u64)dev->ctrl.hmmin * 4096; + u32 enable_bits = NVME_HOST_MEM_ENABLE; + int ret; + + if (!dev->ctrl.hmpre) + return 0; + + preferred = min(preferred, max); + if (min > max) { + dev_warn(dev->ctrl.device, + "min host memory (%lld MiB) above limit (%d MiB).\n", + min >> ilog2(SZ_1M), max_host_mem_size_mb); + nvme_free_host_mem(dev); + return 0; + } + + /* + * If we already have a buffer allocated check if we can reuse it. + */ + if (dev->host_mem_descs) { + if (dev->host_mem_size >= min) + enable_bits |= NVME_HOST_MEM_RETURN; + else + nvme_free_host_mem(dev); + } + + if (!dev->host_mem_descs) { + if (nvme_alloc_host_mem(dev, min, preferred)) { + dev_warn(dev->ctrl.device, + "failed to allocate host memory buffer.\n"); + return 0; /* controller must work without HMB */ + } + + dev_info(dev->ctrl.device, + "allocated %lld MiB host memory buffer.\n", + dev->host_mem_size >> ilog2(SZ_1M)); + } + + ret = nvme_set_host_mem(dev, enable_bits); + if (ret) + nvme_free_host_mem(dev); + return ret; +} + +static ssize_t cmb_show(struct device *dev, struct device_attribute *attr, + char *buf) +{ + struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev)); + + return sysfs_emit(buf, "cmbloc : x%08x\ncmbsz : x%08x\n", + ndev->cmbloc, ndev->cmbsz); +} +static DEVICE_ATTR_RO(cmb); + +static ssize_t cmbloc_show(struct device *dev, struct device_attribute *attr, + char *buf) +{ + struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev)); + + return sysfs_emit(buf, "%u\n", ndev->cmbloc); +} +static DEVICE_ATTR_RO(cmbloc); + +static ssize_t cmbsz_show(struct device *dev, struct device_attribute *attr, + char *buf) +{ + struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev)); + + return sysfs_emit(buf, "%u\n", ndev->cmbsz); +} +static DEVICE_ATTR_RO(cmbsz); + +static ssize_t hmb_show(struct device *dev, struct device_attribute *attr, + char *buf) +{ + struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev)); + + return sysfs_emit(buf, "%d\n", ndev->hmb); +} + +static ssize_t hmb_store(struct device *dev, struct device_attribute *attr, + const char *buf, size_t count) +{ + struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev)); + bool new; + int ret; + + if (kstrtobool(buf, &new) < 0) + return -EINVAL; + + if (new == ndev->hmb) + return count; + + if (new) { + ret = nvme_setup_host_mem(ndev); + } else { + ret = nvme_set_host_mem(ndev, 0); + if (!ret) + nvme_free_host_mem(ndev); + } + + if (ret < 0) + return ret; + + return count; +} +static DEVICE_ATTR_RW(hmb); + +static umode_t nvme_pci_attrs_are_visible(struct kobject *kobj, + struct attribute *a, int n) +{ + struct nvme_ctrl *ctrl = + dev_get_drvdata(container_of(kobj, struct device, kobj)); + struct nvme_dev *dev = to_nvme_dev(ctrl); + + if (a == &dev_attr_cmb.attr || + a == &dev_attr_cmbloc.attr || + a == &dev_attr_cmbsz.attr) { + if (!dev->cmbsz) + return 0; + } + if (a == &dev_attr_hmb.attr && !ctrl->hmpre) + return 0; + + return a->mode; +} + +static struct attribute *nvme_pci_attrs[] = { + &dev_attr_cmb.attr, + &dev_attr_cmbloc.attr, + &dev_attr_cmbsz.attr, + &dev_attr_hmb.attr, + NULL, +}; + +static const struct attribute_group nvme_pci_dev_attrs_group = { + .attrs = nvme_pci_attrs, + .is_visible = nvme_pci_attrs_are_visible, +}; + +static const struct attribute_group *nvme_pci_dev_attr_groups[] = { + &nvme_dev_attrs_group, + &nvme_pci_dev_attrs_group, + NULL, +}; + +static void nvme_update_attrs(struct nvme_dev *dev) +{ + sysfs_update_group(&dev->ctrl.device->kobj, &nvme_pci_dev_attrs_group); +} + +/* + * nirqs is the number of interrupts available for write and read + * queues. The core already reserved an interrupt for the admin queue. + */ +static void nvme_calc_irq_sets(struct irq_affinity *affd, unsigned int nrirqs) +{ + struct nvme_dev *dev = affd->priv; + unsigned int nr_read_queues, nr_write_queues = dev->nr_write_queues; + + /* + * If there is no interrupt available for queues, ensure that + * the default queue is set to 1. The affinity set size is + * also set to one, but the irq core ignores it for this case. + * + * If only one interrupt is available or 'write_queue' == 0, combine + * write and read queues. + * + * If 'write_queues' > 0, ensure it leaves room for at least one read + * queue. + */ + if (!nrirqs) { + nrirqs = 1; + nr_read_queues = 0; + } else if (nrirqs == 1 || !nr_write_queues) { + nr_read_queues = 0; + } else if (nr_write_queues >= nrirqs) { + nr_read_queues = 1; + } else { + nr_read_queues = nrirqs - nr_write_queues; + } + + dev->io_queues[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues; + affd->set_size[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues; + dev->io_queues[HCTX_TYPE_READ] = nr_read_queues; + affd->set_size[HCTX_TYPE_READ] = nr_read_queues; + affd->nr_sets = nr_read_queues ? 2 : 1; +} + +static int nvme_setup_irqs(struct nvme_dev *dev, unsigned int nr_io_queues) +{ + struct pci_dev *pdev = to_pci_dev(dev->dev); + struct irq_affinity affd = { + .pre_vectors = 1, + .calc_sets = nvme_calc_irq_sets, + .priv = dev, + }; + unsigned int irq_queues, poll_queues; + + /* + * Poll queues don't need interrupts, but we need at least one I/O queue + * left over for non-polled I/O. + */ + poll_queues = min(dev->nr_poll_queues, nr_io_queues - 1); + dev->io_queues[HCTX_TYPE_POLL] = poll_queues; + + /* + * Initialize for the single interrupt case, will be updated in + * nvme_calc_irq_sets(). + */ + dev->io_queues[HCTX_TYPE_DEFAULT] = 1; + dev->io_queues[HCTX_TYPE_READ] = 0; + + /* + * We need interrupts for the admin queue and each non-polled I/O queue, + * but some Apple controllers require all queues to use the first + * vector. + */ + irq_queues = 1; + if (!(dev->ctrl.quirks & NVME_QUIRK_SINGLE_VECTOR)) + irq_queues += (nr_io_queues - poll_queues); + return pci_alloc_irq_vectors_affinity(pdev, 1, irq_queues, + PCI_IRQ_ALL_TYPES | PCI_IRQ_AFFINITY, &affd); +} + +static unsigned int nvme_max_io_queues(struct nvme_dev *dev) +{ + /* + * If tags are shared with admin queue (Apple bug), then + * make sure we only use one IO queue. + */ + if (dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS) + return 1; + return num_possible_cpus() + dev->nr_write_queues + dev->nr_poll_queues; +} + +static int nvme_setup_io_queues(struct nvme_dev *dev) +{ + struct nvme_queue *adminq = &dev->queues[0]; + struct pci_dev *pdev = to_pci_dev(dev->dev); + unsigned int nr_io_queues; + unsigned long size; + int result; + + /* + * Sample the module parameters once at reset time so that we have + * stable values to work with. + */ + dev->nr_write_queues = write_queues; + dev->nr_poll_queues = poll_queues; + + nr_io_queues = dev->nr_allocated_queues - 1; + result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues); + if (result < 0) + return result; + + if (nr_io_queues == 0) + return 0; + + /* + * Free IRQ resources as soon as NVMEQ_ENABLED bit transitions + * from set to unset. If there is a window to it is truely freed, + * pci_free_irq_vectors() jumping into this window will crash. + * And take lock to avoid racing with pci_free_irq_vectors() in + * nvme_dev_disable() path. + */ + result = nvme_setup_io_queues_trylock(dev); + if (result) + return result; + if (test_and_clear_bit(NVMEQ_ENABLED, &adminq->flags)) + pci_free_irq(pdev, 0, adminq); + + if (dev->cmb_use_sqes) { + result = nvme_cmb_qdepth(dev, nr_io_queues, + sizeof(struct nvme_command)); + if (result > 0) { + dev->q_depth = result; + dev->ctrl.sqsize = result - 1; + } else { + dev->cmb_use_sqes = false; + } + } + + do { + size = db_bar_size(dev, nr_io_queues); + result = nvme_remap_bar(dev, size); + if (!result) + break; + if (!--nr_io_queues) { + result = -ENOMEM; + goto out_unlock; + } + } while (1); + adminq->q_db = dev->dbs; + + retry: + /* Deregister the admin queue's interrupt */ + if (test_and_clear_bit(NVMEQ_ENABLED, &adminq->flags)) + pci_free_irq(pdev, 0, adminq); + + /* + * If we enable msix early due to not intx, disable it again before + * setting up the full range we need. + */ + pci_free_irq_vectors(pdev); + + result = nvme_setup_irqs(dev, nr_io_queues); + if (result <= 0) { + result = -EIO; + goto out_unlock; + } + + dev->num_vecs = result; + result = max(result - 1, 1); + dev->max_qid = result + dev->io_queues[HCTX_TYPE_POLL]; + + /* + * Should investigate if there's a performance win from allocating + * more queues than interrupt vectors; it might allow the submission + * path to scale better, even if the receive path is limited by the + * number of interrupts. + */ + result = queue_request_irq(adminq); + if (result) + goto out_unlock; + set_bit(NVMEQ_ENABLED, &adminq->flags); + mutex_unlock(&dev->shutdown_lock); + + result = nvme_create_io_queues(dev); + if (result || dev->online_queues < 2) + return result; + + if (dev->online_queues - 1 < dev->max_qid) { + nr_io_queues = dev->online_queues - 1; + nvme_delete_io_queues(dev); + result = nvme_setup_io_queues_trylock(dev); + if (result) + return result; + nvme_suspend_io_queues(dev); + goto retry; + } + dev_info(dev->ctrl.device, "%d/%d/%d default/read/poll queues\n", + dev->io_queues[HCTX_TYPE_DEFAULT], + dev->io_queues[HCTX_TYPE_READ], + dev->io_queues[HCTX_TYPE_POLL]); + return 0; +out_unlock: + mutex_unlock(&dev->shutdown_lock); + return result; +} + +static enum rq_end_io_ret nvme_del_queue_end(struct request *req, + blk_status_t error) +{ + struct nvme_queue *nvmeq = req->end_io_data; + + blk_mq_free_request(req); + complete(&nvmeq->delete_done); + return RQ_END_IO_NONE; +} + +static enum rq_end_io_ret nvme_del_cq_end(struct request *req, + blk_status_t error) +{ + struct nvme_queue *nvmeq = req->end_io_data; + + if (error) + set_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags); + + return nvme_del_queue_end(req, error); +} + +static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode) +{ + struct request_queue *q = nvmeq->dev->ctrl.admin_q; + struct request *req; + struct nvme_command cmd = { }; + + cmd.delete_queue.opcode = opcode; + cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid); + + req = blk_mq_alloc_request(q, nvme_req_op(&cmd), BLK_MQ_REQ_NOWAIT); + if (IS_ERR(req)) + return PTR_ERR(req); + nvme_init_request(req, &cmd); + + if (opcode == nvme_admin_delete_cq) + req->end_io = nvme_del_cq_end; + else + req->end_io = nvme_del_queue_end; + req->end_io_data = nvmeq; + + init_completion(&nvmeq->delete_done); + blk_execute_rq_nowait(req, false); + return 0; +} + +static bool __nvme_delete_io_queues(struct nvme_dev *dev, u8 opcode) +{ + int nr_queues = dev->online_queues - 1, sent = 0; + unsigned long timeout; + + retry: + timeout = NVME_ADMIN_TIMEOUT; + while (nr_queues > 0) { + if (nvme_delete_queue(&dev->queues[nr_queues], opcode)) + break; + nr_queues--; + sent++; + } + while (sent) { + struct nvme_queue *nvmeq = &dev->queues[nr_queues + sent]; + + timeout = wait_for_completion_io_timeout(&nvmeq->delete_done, + timeout); + if (timeout == 0) + return false; + + sent--; + if (nr_queues) + goto retry; + } + return true; +} + +static void nvme_delete_io_queues(struct nvme_dev *dev) +{ + if (__nvme_delete_io_queues(dev, nvme_admin_delete_sq)) + __nvme_delete_io_queues(dev, nvme_admin_delete_cq); +} + +static unsigned int nvme_pci_nr_maps(struct nvme_dev *dev) +{ + if (dev->io_queues[HCTX_TYPE_POLL]) + return 3; + if (dev->io_queues[HCTX_TYPE_READ]) + return 2; + return 1; +} + +static void nvme_pci_update_nr_queues(struct nvme_dev *dev) +{ + blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1); + /* free previously allocated queues that are no longer usable */ + nvme_free_queues(dev, dev->online_queues); +} + +static int nvme_pci_enable(struct nvme_dev *dev) +{ + int result = -ENOMEM; + struct pci_dev *pdev = to_pci_dev(dev->dev); + + if (pci_enable_device_mem(pdev)) + return result; + + pci_set_master(pdev); + + if (readl(dev->bar + NVME_REG_CSTS) == -1) { + result = -ENODEV; + goto disable; + } + + /* + * Some devices and/or platforms don't advertise or work with INTx + * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll + * adjust this later. + */ + result = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_ALL_TYPES); + if (result < 0) + goto disable; + + dev->ctrl.cap = lo_hi_readq(dev->bar + NVME_REG_CAP); + + dev->q_depth = min_t(u32, NVME_CAP_MQES(dev->ctrl.cap) + 1, + io_queue_depth); + dev->db_stride = 1 << NVME_CAP_STRIDE(dev->ctrl.cap); + dev->dbs = dev->bar + 4096; + + /* + * Some Apple controllers require a non-standard SQE size. + * Interestingly they also seem to ignore the CC:IOSQES register + * so we don't bother updating it here. + */ + if (dev->ctrl.quirks & NVME_QUIRK_128_BYTES_SQES) + dev->io_sqes = 7; + else + dev->io_sqes = NVME_NVM_IOSQES; + + /* + * Temporary fix for the Apple controller found in the MacBook8,1 and + * some MacBook7,1 to avoid controller resets and data loss. + */ + if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) { + dev->q_depth = 2; + dev_warn(dev->ctrl.device, "detected Apple NVMe controller, " + "set queue depth=%u to work around controller resets\n", + dev->q_depth); + } else if (pdev->vendor == PCI_VENDOR_ID_SAMSUNG && + (pdev->device == 0xa821 || pdev->device == 0xa822) && + NVME_CAP_MQES(dev->ctrl.cap) == 0) { + dev->q_depth = 64; + dev_err(dev->ctrl.device, "detected PM1725 NVMe controller, " + "set queue depth=%u\n", dev->q_depth); + } + + /* + * Controllers with the shared tags quirk need the IO queue to be + * big enough so that we get 32 tags for the admin queue + */ + if ((dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS) && + (dev->q_depth < (NVME_AQ_DEPTH + 2))) { + dev->q_depth = NVME_AQ_DEPTH + 2; + dev_warn(dev->ctrl.device, "IO queue depth clamped to %d\n", + dev->q_depth); + } + dev->ctrl.sqsize = dev->q_depth - 1; /* 0's based queue depth */ + + nvme_map_cmb(dev); + + pci_save_state(pdev); + + result = nvme_pci_configure_admin_queue(dev); + if (result) + goto free_irq; + return result; + + free_irq: + pci_free_irq_vectors(pdev); + disable: + pci_disable_device(pdev); + return result; +} + +static void nvme_dev_unmap(struct nvme_dev *dev) +{ + if (dev->bar) + iounmap(dev->bar); + pci_release_mem_regions(to_pci_dev(dev->dev)); +} + +static bool nvme_pci_ctrl_is_dead(struct nvme_dev *dev) +{ + struct pci_dev *pdev = to_pci_dev(dev->dev); + u32 csts; + + if (!pci_is_enabled(pdev) || !pci_device_is_present(pdev)) + return true; + if (pdev->error_state != pci_channel_io_normal) + return true; + + csts = readl(dev->bar + NVME_REG_CSTS); + return (csts & NVME_CSTS_CFS) || !(csts & NVME_CSTS_RDY); +} + +static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown) +{ + enum nvme_ctrl_state state = nvme_ctrl_state(&dev->ctrl); + struct pci_dev *pdev = to_pci_dev(dev->dev); + bool dead; + + mutex_lock(&dev->shutdown_lock); + dead = nvme_pci_ctrl_is_dead(dev); + if (state == NVME_CTRL_LIVE || state == NVME_CTRL_RESETTING) { + if (pci_is_enabled(pdev)) + nvme_start_freeze(&dev->ctrl); + /* + * Give the controller a chance to complete all entered requests + * if doing a safe shutdown. + */ + if (!dead && shutdown) + nvme_wait_freeze_timeout(&dev->ctrl, NVME_IO_TIMEOUT); + } + + nvme_quiesce_io_queues(&dev->ctrl); + + if (!dead && dev->ctrl.queue_count > 0) { + nvme_delete_io_queues(dev); + nvme_disable_ctrl(&dev->ctrl, shutdown); + nvme_poll_irqdisable(&dev->queues[0]); + } + nvme_suspend_io_queues(dev); + nvme_suspend_queue(dev, 0); + pci_free_irq_vectors(pdev); + if (pci_is_enabled(pdev)) + pci_disable_device(pdev); + nvme_reap_pending_cqes(dev); + + nvme_cancel_tagset(&dev->ctrl); + nvme_cancel_admin_tagset(&dev->ctrl); + + /* + * The driver will not be starting up queues again if shutting down so + * must flush all entered requests to their failed completion to avoid + * deadlocking blk-mq hot-cpu notifier. + */ + if (shutdown) { + nvme_unquiesce_io_queues(&dev->ctrl); + if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) + nvme_unquiesce_admin_queue(&dev->ctrl); + } + mutex_unlock(&dev->shutdown_lock); +} + +static int nvme_disable_prepare_reset(struct nvme_dev *dev, bool shutdown) +{ + if (!nvme_wait_reset(&dev->ctrl)) + return -EBUSY; + nvme_dev_disable(dev, shutdown); + return 0; +} + +static int nvme_setup_prp_pools(struct nvme_dev *dev) +{ + dev->prp_page_pool = dma_pool_create("prp list page", dev->dev, + NVME_CTRL_PAGE_SIZE, + NVME_CTRL_PAGE_SIZE, 0); + if (!dev->prp_page_pool) + return -ENOMEM; + + /* Optimisation for I/Os between 4k and 128k */ + dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev, + 256, 256, 0); + if (!dev->prp_small_pool) { + dma_pool_destroy(dev->prp_page_pool); + return -ENOMEM; + } + return 0; +} + +static void nvme_release_prp_pools(struct nvme_dev *dev) +{ + dma_pool_destroy(dev->prp_page_pool); + dma_pool_destroy(dev->prp_small_pool); +} + +static int nvme_pci_alloc_iod_mempool(struct nvme_dev *dev) +{ + size_t alloc_size = sizeof(struct scatterlist) * NVME_MAX_SEGS; + + dev->iod_mempool = mempool_create_node(1, + mempool_kmalloc, mempool_kfree, + (void *)alloc_size, GFP_KERNEL, + dev_to_node(dev->dev)); + if (!dev->iod_mempool) + return -ENOMEM; + return 0; +} + +static void nvme_free_tagset(struct nvme_dev *dev) +{ + if (dev->tagset.tags) + nvme_remove_io_tag_set(&dev->ctrl); + dev->ctrl.tagset = NULL; +} + +/* pairs with nvme_pci_alloc_dev */ +static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl) +{ + struct nvme_dev *dev = to_nvme_dev(ctrl); + + nvme_free_tagset(dev); + put_device(dev->dev); + kfree(dev->queues); + kfree(dev); +} + +static void nvme_reset_work(struct work_struct *work) +{ + struct nvme_dev *dev = + container_of(work, struct nvme_dev, ctrl.reset_work); + bool was_suspend = !!(dev->ctrl.ctrl_config & NVME_CC_SHN_NORMAL); + int result; + + if (nvme_ctrl_state(&dev->ctrl) != NVME_CTRL_RESETTING) { + dev_warn(dev->ctrl.device, "ctrl state %d is not RESETTING\n", + dev->ctrl.state); + result = -ENODEV; + goto out; + } + + /* + * If we're called to reset a live controller first shut it down before + * moving on. + */ + if (dev->ctrl.ctrl_config & NVME_CC_ENABLE) + nvme_dev_disable(dev, false); + nvme_sync_queues(&dev->ctrl); + + mutex_lock(&dev->shutdown_lock); + result = nvme_pci_enable(dev); + if (result) + goto out_unlock; + nvme_unquiesce_admin_queue(&dev->ctrl); + mutex_unlock(&dev->shutdown_lock); + + /* + * Introduce CONNECTING state from nvme-fc/rdma transports to mark the + * initializing procedure here. + */ + if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_CONNECTING)) { + dev_warn(dev->ctrl.device, + "failed to mark controller CONNECTING\n"); + result = -EBUSY; + goto out; + } + + result = nvme_init_ctrl_finish(&dev->ctrl, was_suspend); + if (result) + goto out; + + nvme_dbbuf_dma_alloc(dev); + + result = nvme_setup_host_mem(dev); + if (result < 0) + goto out; + + result = nvme_setup_io_queues(dev); + if (result) + goto out; + + /* + * Freeze and update the number of I/O queues as thos might have + * changed. If there are no I/O queues left after this reset, keep the + * controller around but remove all namespaces. + */ + if (dev->online_queues > 1) { + nvme_unquiesce_io_queues(&dev->ctrl); + nvme_wait_freeze(&dev->ctrl); + nvme_pci_update_nr_queues(dev); + nvme_dbbuf_set(dev); + nvme_unfreeze(&dev->ctrl); + } else { + dev_warn(dev->ctrl.device, "IO queues lost\n"); + nvme_mark_namespaces_dead(&dev->ctrl); + nvme_unquiesce_io_queues(&dev->ctrl); + nvme_remove_namespaces(&dev->ctrl); + nvme_free_tagset(dev); + } + + /* + * If only admin queue live, keep it to do further investigation or + * recovery. + */ + if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) { + dev_warn(dev->ctrl.device, + "failed to mark controller live state\n"); + result = -ENODEV; + goto out; + } + + nvme_start_ctrl(&dev->ctrl); + return; + + out_unlock: + mutex_unlock(&dev->shutdown_lock); + out: + /* + * Set state to deleting now to avoid blocking nvme_wait_reset(), which + * may be holding this pci_dev's device lock. + */ + dev_warn(dev->ctrl.device, "Disabling device after reset failure: %d\n", + result); + nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING); + nvme_dev_disable(dev, true); + nvme_sync_queues(&dev->ctrl); + nvme_mark_namespaces_dead(&dev->ctrl); + nvme_unquiesce_io_queues(&dev->ctrl); + nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD); +} + +static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val) +{ + *val = readl(to_nvme_dev(ctrl)->bar + off); + return 0; +} + +static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val) +{ + writel(val, to_nvme_dev(ctrl)->bar + off); + return 0; +} + +static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val) +{ + *val = lo_hi_readq(to_nvme_dev(ctrl)->bar + off); + return 0; +} + +static int nvme_pci_get_address(struct nvme_ctrl *ctrl, char *buf, int size) +{ + struct pci_dev *pdev = to_pci_dev(to_nvme_dev(ctrl)->dev); + + return snprintf(buf, size, "%s\n", dev_name(&pdev->dev)); +} + +static void nvme_pci_print_device_info(struct nvme_ctrl *ctrl) +{ + struct pci_dev *pdev = to_pci_dev(to_nvme_dev(ctrl)->dev); + struct nvme_subsystem *subsys = ctrl->subsys; + + dev_err(ctrl->device, + "VID:DID %04x:%04x model:%.*s firmware:%.*s\n", + pdev->vendor, pdev->device, + nvme_strlen(subsys->model, sizeof(subsys->model)), + subsys->model, nvme_strlen(subsys->firmware_rev, + sizeof(subsys->firmware_rev)), + subsys->firmware_rev); +} + +static bool nvme_pci_supports_pci_p2pdma(struct nvme_ctrl *ctrl) +{ + struct nvme_dev *dev = to_nvme_dev(ctrl); + + return dma_pci_p2pdma_supported(dev->dev); +} + +static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = { + .name = "pcie", + .module = THIS_MODULE, + .flags = NVME_F_METADATA_SUPPORTED, + .dev_attr_groups = nvme_pci_dev_attr_groups, + .reg_read32 = nvme_pci_reg_read32, + .reg_write32 = nvme_pci_reg_write32, + .reg_read64 = nvme_pci_reg_read64, + .free_ctrl = nvme_pci_free_ctrl, + .submit_async_event = nvme_pci_submit_async_event, + .get_address = nvme_pci_get_address, + .print_device_info = nvme_pci_print_device_info, + .supports_pci_p2pdma = nvme_pci_supports_pci_p2pdma, +}; + +static int nvme_dev_map(struct nvme_dev *dev) +{ + struct pci_dev *pdev = to_pci_dev(dev->dev); + + if (pci_request_mem_regions(pdev, "nvme")) + return -ENODEV; + + if (nvme_remap_bar(dev, NVME_REG_DBS + 4096)) + goto release; + + return 0; + release: + pci_release_mem_regions(pdev); + return -ENODEV; +} + +static unsigned long check_vendor_combination_bug(struct pci_dev *pdev) +{ + if (pdev->vendor == 0x144d && pdev->device == 0xa802) { + /* + * Several Samsung devices seem to drop off the PCIe bus + * randomly when APST is on and uses the deepest sleep state. + * This has been observed on a Samsung "SM951 NVMe SAMSUNG + * 256GB", a "PM951 NVMe SAMSUNG 512GB", and a "Samsung SSD + * 950 PRO 256GB", but it seems to be restricted to two Dell + * laptops. + */ + if (dmi_match(DMI_SYS_VENDOR, "Dell Inc.") && + (dmi_match(DMI_PRODUCT_NAME, "XPS 15 9550") || + dmi_match(DMI_PRODUCT_NAME, "Precision 5510"))) + return NVME_QUIRK_NO_DEEPEST_PS; + } else if (pdev->vendor == 0x144d && pdev->device == 0xa804) { + /* + * Samsung SSD 960 EVO drops off the PCIe bus after system + * suspend on a Ryzen board, ASUS PRIME B350M-A, as well as + * within few minutes after bootup on a Coffee Lake board - + * ASUS PRIME Z370-A + */ + if (dmi_match(DMI_BOARD_VENDOR, "ASUSTeK COMPUTER INC.") && + (dmi_match(DMI_BOARD_NAME, "PRIME B350M-A") || + dmi_match(DMI_BOARD_NAME, "PRIME Z370-A"))) + return NVME_QUIRK_NO_APST; + } else if ((pdev->vendor == 0x144d && (pdev->device == 0xa801 || + pdev->device == 0xa808 || pdev->device == 0xa809)) || + (pdev->vendor == 0x1e0f && pdev->device == 0x0001)) { + /* + * Forcing to use host managed nvme power settings for + * lowest idle power with quick resume latency on + * Samsung and Toshiba SSDs based on suspend behavior + * on Coffee Lake board for LENOVO C640 + */ + if ((dmi_match(DMI_BOARD_VENDOR, "LENOVO")) && + dmi_match(DMI_BOARD_NAME, "LNVNB161216")) + return NVME_QUIRK_SIMPLE_SUSPEND; + } else if (pdev->vendor == 0x2646 && (pdev->device == 0x2263 || + pdev->device == 0x500f)) { + /* + * Exclude some Kingston NV1 and A2000 devices from + * NVME_QUIRK_SIMPLE_SUSPEND. Do a full suspend to save a + * lot fo energy with s2idle sleep on some TUXEDO platforms. + */ + if (dmi_match(DMI_BOARD_NAME, "NS5X_NS7XAU") || + dmi_match(DMI_BOARD_NAME, "NS5x_7xAU") || + dmi_match(DMI_BOARD_NAME, "NS5x_7xPU") || + dmi_match(DMI_BOARD_NAME, "PH4PRX1_PH6PRX1")) + return NVME_QUIRK_FORCE_NO_SIMPLE_SUSPEND; + } + + return 0; +} + +static struct nvme_dev *nvme_pci_alloc_dev(struct pci_dev *pdev, + const struct pci_device_id *id) +{ + unsigned long quirks = id->driver_data; + int node = dev_to_node(&pdev->dev); + struct nvme_dev *dev; + int ret = -ENOMEM; + + dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node); + if (!dev) + return ERR_PTR(-ENOMEM); + INIT_WORK(&dev->ctrl.reset_work, nvme_reset_work); + mutex_init(&dev->shutdown_lock); + + dev->nr_write_queues = write_queues; + dev->nr_poll_queues = poll_queues; + dev->nr_allocated_queues = nvme_max_io_queues(dev) + 1; + dev->queues = kcalloc_node(dev->nr_allocated_queues, + sizeof(struct nvme_queue), GFP_KERNEL, node); + if (!dev->queues) + goto out_free_dev; + + dev->dev = get_device(&pdev->dev); + + quirks |= check_vendor_combination_bug(pdev); + if (!noacpi && + !(quirks & NVME_QUIRK_FORCE_NO_SIMPLE_SUSPEND) && + acpi_storage_d3(&pdev->dev)) { + /* + * Some systems use a bios work around to ask for D3 on + * platforms that support kernel managed suspend. + */ + dev_info(&pdev->dev, + "platform quirk: setting simple suspend\n"); + quirks |= NVME_QUIRK_SIMPLE_SUSPEND; + } + ret = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops, + quirks); + if (ret) + goto out_put_device; + + if (dev->ctrl.quirks & NVME_QUIRK_DMA_ADDRESS_BITS_48) + dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(48)); + else + dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)); + dma_set_min_align_mask(&pdev->dev, NVME_CTRL_PAGE_SIZE - 1); + dma_set_max_seg_size(&pdev->dev, 0xffffffff); + + /* + * Limit the max command size to prevent iod->sg allocations going + * over a single page. + */ + dev->ctrl.max_hw_sectors = min_t(u32, + NVME_MAX_KB_SZ << 1, dma_opt_mapping_size(&pdev->dev) >> 9); + dev->ctrl.max_segments = NVME_MAX_SEGS; + + /* + * There is no support for SGLs for metadata (yet), so we are limited to + * a single integrity segment for the separate metadata pointer. + */ + dev->ctrl.max_integrity_segments = 1; + return dev; + +out_put_device: + put_device(dev->dev); + kfree(dev->queues); +out_free_dev: + kfree(dev); + return ERR_PTR(ret); +} + +static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id) +{ + struct nvme_dev *dev; + int result = -ENOMEM; + + dev = nvme_pci_alloc_dev(pdev, id); + if (IS_ERR(dev)) + return PTR_ERR(dev); + + result = nvme_dev_map(dev); + if (result) + goto out_uninit_ctrl; + + result = nvme_setup_prp_pools(dev); + if (result) + goto out_dev_unmap; + + result = nvme_pci_alloc_iod_mempool(dev); + if (result) + goto out_release_prp_pools; + + dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev)); + + result = nvme_pci_enable(dev); + if (result) + goto out_release_iod_mempool; + + result = nvme_alloc_admin_tag_set(&dev->ctrl, &dev->admin_tagset, + &nvme_mq_admin_ops, sizeof(struct nvme_iod)); + if (result) + goto out_disable; + + /* + * Mark the controller as connecting before sending admin commands to + * allow the timeout handler to do the right thing. + */ + if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_CONNECTING)) { + dev_warn(dev->ctrl.device, + "failed to mark controller CONNECTING\n"); + result = -EBUSY; + goto out_disable; + } + + result = nvme_init_ctrl_finish(&dev->ctrl, false); + if (result) + goto out_disable; + + nvme_dbbuf_dma_alloc(dev); + + result = nvme_setup_host_mem(dev); + if (result < 0) + goto out_disable; + + result = nvme_setup_io_queues(dev); + if (result) + goto out_disable; + + if (dev->online_queues > 1) { + nvme_alloc_io_tag_set(&dev->ctrl, &dev->tagset, &nvme_mq_ops, + nvme_pci_nr_maps(dev), sizeof(struct nvme_iod)); + nvme_dbbuf_set(dev); + } + + if (!dev->ctrl.tagset) + dev_warn(dev->ctrl.device, "IO queues not created\n"); + + if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) { + dev_warn(dev->ctrl.device, + "failed to mark controller live state\n"); + result = -ENODEV; + goto out_disable; + } + + pci_set_drvdata(pdev, dev); + + nvme_start_ctrl(&dev->ctrl); + nvme_put_ctrl(&dev->ctrl); + flush_work(&dev->ctrl.scan_work); + return 0; + +out_disable: + nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING); + nvme_dev_disable(dev, true); + nvme_free_host_mem(dev); + nvme_dev_remove_admin(dev); + nvme_dbbuf_dma_free(dev); + nvme_free_queues(dev, 0); +out_release_iod_mempool: + mempool_destroy(dev->iod_mempool); +out_release_prp_pools: + nvme_release_prp_pools(dev); +out_dev_unmap: + nvme_dev_unmap(dev); +out_uninit_ctrl: + nvme_uninit_ctrl(&dev->ctrl); + nvme_put_ctrl(&dev->ctrl); + return result; +} + +static void nvme_reset_prepare(struct pci_dev *pdev) +{ + struct nvme_dev *dev = pci_get_drvdata(pdev); + + /* + * We don't need to check the return value from waiting for the reset + * state as pci_dev device lock is held, making it impossible to race + * with ->remove(). + */ + nvme_disable_prepare_reset(dev, false); + nvme_sync_queues(&dev->ctrl); +} + +static void nvme_reset_done(struct pci_dev *pdev) +{ + struct nvme_dev *dev = pci_get_drvdata(pdev); + + if (!nvme_try_sched_reset(&dev->ctrl)) + flush_work(&dev->ctrl.reset_work); +} + +static void nvme_shutdown(struct pci_dev *pdev) +{ + struct nvme_dev *dev = pci_get_drvdata(pdev); + + nvme_disable_prepare_reset(dev, true); +} + +/* + * The driver's remove may be called on a device in a partially initialized + * state. This function must not have any dependencies on the device state in + * order to proceed. + */ +static void nvme_remove(struct pci_dev *pdev) +{ + struct nvme_dev *dev = pci_get_drvdata(pdev); + + nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING); + pci_set_drvdata(pdev, NULL); + + if (!pci_device_is_present(pdev)) { + nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD); + nvme_dev_disable(dev, true); + } + + flush_work(&dev->ctrl.reset_work); + nvme_stop_ctrl(&dev->ctrl); + nvme_remove_namespaces(&dev->ctrl); + nvme_dev_disable(dev, true); + nvme_free_host_mem(dev); + nvme_dev_remove_admin(dev); + nvme_dbbuf_dma_free(dev); + nvme_free_queues(dev, 0); + mempool_destroy(dev->iod_mempool); + nvme_release_prp_pools(dev); + nvme_dev_unmap(dev); + nvme_uninit_ctrl(&dev->ctrl); +} + +#ifdef CONFIG_PM_SLEEP +static int nvme_get_power_state(struct nvme_ctrl *ctrl, u32 *ps) +{ + return nvme_get_features(ctrl, NVME_FEAT_POWER_MGMT, 0, NULL, 0, ps); +} + +static int nvme_set_power_state(struct nvme_ctrl *ctrl, u32 ps) +{ + return nvme_set_features(ctrl, NVME_FEAT_POWER_MGMT, ps, NULL, 0, NULL); +} + +static int nvme_resume(struct device *dev) +{ + struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev)); + struct nvme_ctrl *ctrl = &ndev->ctrl; + + if (ndev->last_ps == U32_MAX || + nvme_set_power_state(ctrl, ndev->last_ps) != 0) + goto reset; + if (ctrl->hmpre && nvme_setup_host_mem(ndev)) + goto reset; + + return 0; +reset: + return nvme_try_sched_reset(ctrl); +} + +static int nvme_suspend(struct device *dev) +{ + struct pci_dev *pdev = to_pci_dev(dev); + struct nvme_dev *ndev = pci_get_drvdata(pdev); + struct nvme_ctrl *ctrl = &ndev->ctrl; + int ret = -EBUSY; + + ndev->last_ps = U32_MAX; + + /* + * The platform does not remove power for a kernel managed suspend so + * use host managed nvme power settings for lowest idle power if + * possible. This should have quicker resume latency than a full device + * shutdown. But if the firmware is involved after the suspend or the + * device does not support any non-default power states, shut down the + * device fully. + * + * If ASPM is not enabled for the device, shut down the device and allow + * the PCI bus layer to put it into D3 in order to take the PCIe link + * down, so as to allow the platform to achieve its minimum low-power + * state (which may not be possible if the link is up). + */ + if (pm_suspend_via_firmware() || !ctrl->npss || + !pcie_aspm_enabled(pdev) || + (ndev->ctrl.quirks & NVME_QUIRK_SIMPLE_SUSPEND)) + return nvme_disable_prepare_reset(ndev, true); + + nvme_start_freeze(ctrl); + nvme_wait_freeze(ctrl); + nvme_sync_queues(ctrl); + + if (nvme_ctrl_state(ctrl) != NVME_CTRL_LIVE) + goto unfreeze; + + /* + * Host memory access may not be successful in a system suspend state, + * but the specification allows the controller to access memory in a + * non-operational power state. + */ + if (ndev->hmb) { + ret = nvme_set_host_mem(ndev, 0); + if (ret < 0) + goto unfreeze; + } + + ret = nvme_get_power_state(ctrl, &ndev->last_ps); + if (ret < 0) + goto unfreeze; + + /* + * A saved state prevents pci pm from generically controlling the + * device's power. If we're using protocol specific settings, we don't + * want pci interfering. + */ + pci_save_state(pdev); + + ret = nvme_set_power_state(ctrl, ctrl->npss); + if (ret < 0) + goto unfreeze; + + if (ret) { + /* discard the saved state */ + pci_load_saved_state(pdev, NULL); + + /* + * Clearing npss forces a controller reset on resume. The + * correct value will be rediscovered then. + */ + ret = nvme_disable_prepare_reset(ndev, true); + ctrl->npss = 0; + } +unfreeze: + nvme_unfreeze(ctrl); + return ret; +} + +static int nvme_simple_suspend(struct device *dev) +{ + struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev)); + + return nvme_disable_prepare_reset(ndev, true); +} + +static int nvme_simple_resume(struct device *dev) +{ + struct pci_dev *pdev = to_pci_dev(dev); + struct nvme_dev *ndev = pci_get_drvdata(pdev); + + return nvme_try_sched_reset(&ndev->ctrl); +} + +static const struct dev_pm_ops nvme_dev_pm_ops = { + .suspend = nvme_suspend, + .resume = nvme_resume, + .freeze = nvme_simple_suspend, + .thaw = nvme_simple_resume, + .poweroff = nvme_simple_suspend, + .restore = nvme_simple_resume, +}; +#endif /* CONFIG_PM_SLEEP */ + +static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev, + pci_channel_state_t state) +{ + struct nvme_dev *dev = pci_get_drvdata(pdev); + + /* + * A frozen channel requires a reset. When detected, this method will + * shutdown the controller to quiesce. The controller will be restarted + * after the slot reset through driver's slot_reset callback. + */ + switch (state) { + case pci_channel_io_normal: + return PCI_ERS_RESULT_CAN_RECOVER; + case pci_channel_io_frozen: + dev_warn(dev->ctrl.device, + "frozen state error detected, reset controller\n"); + if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_RESETTING)) { + nvme_dev_disable(dev, true); + return PCI_ERS_RESULT_DISCONNECT; + } + nvme_dev_disable(dev, false); + return PCI_ERS_RESULT_NEED_RESET; + case pci_channel_io_perm_failure: + dev_warn(dev->ctrl.device, + "failure state error detected, request disconnect\n"); + return PCI_ERS_RESULT_DISCONNECT; + } + return PCI_ERS_RESULT_NEED_RESET; +} + +static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev) +{ + struct nvme_dev *dev = pci_get_drvdata(pdev); + + dev_info(dev->ctrl.device, "restart after slot reset\n"); + pci_restore_state(pdev); + if (!nvme_try_sched_reset(&dev->ctrl)) + nvme_unquiesce_io_queues(&dev->ctrl); + return PCI_ERS_RESULT_RECOVERED; +} + +static void nvme_error_resume(struct pci_dev *pdev) +{ + struct nvme_dev *dev = pci_get_drvdata(pdev); + + flush_work(&dev->ctrl.reset_work); +} + +static const struct pci_error_handlers nvme_err_handler = { + .error_detected = nvme_error_detected, + .slot_reset = nvme_slot_reset, + .resume = nvme_error_resume, + .reset_prepare = nvme_reset_prepare, + .reset_done = nvme_reset_done, +}; + +static const struct pci_device_id nvme_id_table[] = { + { PCI_VDEVICE(INTEL, 0x0953), /* Intel 750/P3500/P3600/P3700 */ + .driver_data = NVME_QUIRK_STRIPE_SIZE | + NVME_QUIRK_DEALLOCATE_ZEROES, }, + { PCI_VDEVICE(INTEL, 0x0a53), /* Intel P3520 */ + .driver_data = NVME_QUIRK_STRIPE_SIZE | + NVME_QUIRK_DEALLOCATE_ZEROES, }, + { PCI_VDEVICE(INTEL, 0x0a54), /* Intel P4500/P4600 */ + .driver_data = NVME_QUIRK_STRIPE_SIZE | + NVME_QUIRK_DEALLOCATE_ZEROES | + NVME_QUIRK_IGNORE_DEV_SUBNQN | + NVME_QUIRK_BOGUS_NID, }, + { PCI_VDEVICE(INTEL, 0x0a55), /* Dell Express Flash P4600 */ + .driver_data = NVME_QUIRK_STRIPE_SIZE | + NVME_QUIRK_DEALLOCATE_ZEROES, }, + { PCI_VDEVICE(INTEL, 0xf1a5), /* Intel 600P/P3100 */ + .driver_data = NVME_QUIRK_NO_DEEPEST_PS | + NVME_QUIRK_MEDIUM_PRIO_SQ | + NVME_QUIRK_NO_TEMP_THRESH_CHANGE | + NVME_QUIRK_DISABLE_WRITE_ZEROES, }, + { PCI_VDEVICE(INTEL, 0xf1a6), /* Intel 760p/Pro 7600p */ + .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN, }, + { PCI_VDEVICE(INTEL, 0x5845), /* Qemu emulated controller */ + .driver_data = NVME_QUIRK_IDENTIFY_CNS | + NVME_QUIRK_DISABLE_WRITE_ZEROES | + NVME_QUIRK_BOGUS_NID, }, + { PCI_VDEVICE(REDHAT, 0x0010), /* Qemu emulated controller */ + .driver_data = NVME_QUIRK_BOGUS_NID, }, + { PCI_DEVICE(0x126f, 0x2263), /* Silicon Motion unidentified */ + .driver_data = NVME_QUIRK_NO_NS_DESC_LIST | + NVME_QUIRK_BOGUS_NID, }, + { PCI_DEVICE(0x1bb1, 0x0100), /* Seagate Nytro Flash Storage */ + .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY | + NVME_QUIRK_NO_NS_DESC_LIST, }, + { PCI_DEVICE(0x1c58, 0x0003), /* HGST adapter */ + .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, }, + { PCI_DEVICE(0x1c58, 0x0023), /* WDC SN200 adapter */ + .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, }, + { PCI_DEVICE(0x1c5f, 0x0540), /* Memblaze Pblaze4 adapter */ + .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, }, + { PCI_DEVICE(0x144d, 0xa821), /* Samsung PM1725 */ + .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, }, + { PCI_DEVICE(0x144d, 0xa822), /* Samsung PM1725a */ + .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY | + NVME_QUIRK_DISABLE_WRITE_ZEROES| + NVME_QUIRK_IGNORE_DEV_SUBNQN, }, + { PCI_DEVICE(0x1987, 0x5012), /* Phison E12 */ + .driver_data = NVME_QUIRK_BOGUS_NID, }, + { PCI_DEVICE(0x1987, 0x5016), /* Phison E16 */ + .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN | + NVME_QUIRK_BOGUS_NID, }, + { PCI_DEVICE(0x1987, 0x5019), /* phison E19 */ + .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, + { PCI_DEVICE(0x1987, 0x5021), /* Phison E21 */ + .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, + { PCI_DEVICE(0x1b4b, 0x1092), /* Lexar 256 GB SSD */ + .driver_data = NVME_QUIRK_NO_NS_DESC_LIST | + NVME_QUIRK_IGNORE_DEV_SUBNQN, }, + { PCI_DEVICE(0x1cc1, 0x33f8), /* ADATA IM2P33F8ABR1 1 TB */ + .driver_data = NVME_QUIRK_BOGUS_NID, }, + { PCI_DEVICE(0x10ec, 0x5762), /* ADATA SX6000LNP */ + .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN | + NVME_QUIRK_BOGUS_NID, }, + { PCI_DEVICE(0x10ec, 0x5763), /* ADATA SX6000PNP */ + .driver_data = NVME_QUIRK_BOGUS_NID, }, + { PCI_DEVICE(0x1cc1, 0x8201), /* ADATA SX8200PNP 512GB */ + .driver_data = NVME_QUIRK_NO_DEEPEST_PS | + NVME_QUIRK_IGNORE_DEV_SUBNQN, }, + { PCI_DEVICE(0x1344, 0x5407), /* Micron Technology Inc NVMe SSD */ + .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN }, + { PCI_DEVICE(0x1344, 0x6001), /* Micron Nitro NVMe */ + .driver_data = NVME_QUIRK_BOGUS_NID, }, + { PCI_DEVICE(0x1c5c, 0x1504), /* SK Hynix PC400 */ + .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, + { PCI_DEVICE(0x1c5c, 0x174a), /* SK Hynix P31 SSD */ + .driver_data = NVME_QUIRK_BOGUS_NID, }, + { PCI_DEVICE(0x15b7, 0x2001), /* Sandisk Skyhawk */ + .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, + { PCI_DEVICE(0x1d97, 0x2263), /* SPCC */ + .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, + { PCI_DEVICE(0x144d, 0xa80b), /* Samsung PM9B1 256G and 512G */ + .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES | + NVME_QUIRK_BOGUS_NID, }, + { PCI_DEVICE(0x144d, 0xa809), /* Samsung MZALQ256HBJD 256G */ + .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, + { PCI_DEVICE(0x144d, 0xa802), /* Samsung SM953 */ + .driver_data = NVME_QUIRK_BOGUS_NID, }, + { PCI_DEVICE(0x1cc4, 0x6303), /* UMIS RPJTJ512MGE1QDY 512G */ + .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, + { PCI_DEVICE(0x1cc4, 0x6302), /* UMIS RPJTJ256MGE1QDY 256G */ + .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, + { PCI_DEVICE(0x2646, 0x2262), /* KINGSTON SKC2000 NVMe SSD */ + .driver_data = NVME_QUIRK_NO_DEEPEST_PS, }, + { PCI_DEVICE(0x2646, 0x2263), /* KINGSTON A2000 NVMe SSD */ + .driver_data = NVME_QUIRK_NO_DEEPEST_PS, }, + { PCI_DEVICE(0x2646, 0x5013), /* Kingston KC3000, Kingston FURY Renegade */ + .driver_data = NVME_QUIRK_NO_SECONDARY_TEMP_THRESH, }, + { PCI_DEVICE(0x2646, 0x5018), /* KINGSTON OM8SFP4xxxxP OS21012 NVMe SSD */ + .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, + { PCI_DEVICE(0x2646, 0x5016), /* KINGSTON OM3PGP4xxxxP OS21011 NVMe SSD */ + .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, + { PCI_DEVICE(0x2646, 0x501A), /* KINGSTON OM8PGP4xxxxP OS21005 NVMe SSD */ + .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, + { PCI_DEVICE(0x2646, 0x501B), /* KINGSTON OM8PGP4xxxxQ OS21005 NVMe SSD */ + .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, + { PCI_DEVICE(0x2646, 0x501E), /* KINGSTON OM3PGP4xxxxQ OS21011 NVMe SSD */ + .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, + { PCI_DEVICE(0x1f40, 0x1202), /* Netac Technologies Co. NV3000 NVMe SSD */ + .driver_data = NVME_QUIRK_BOGUS_NID, }, + { PCI_DEVICE(0x1f40, 0x5236), /* Netac Technologies Co. NV7000 NVMe SSD */ + .driver_data = NVME_QUIRK_BOGUS_NID, }, + { PCI_DEVICE(0x1e4B, 0x1001), /* MAXIO MAP1001 */ + .driver_data = NVME_QUIRK_BOGUS_NID, }, + { PCI_DEVICE(0x1e4B, 0x1002), /* MAXIO MAP1002 */ + .driver_data = NVME_QUIRK_BOGUS_NID, }, + { PCI_DEVICE(0x1e4B, 0x1202), /* MAXIO MAP1202 */ + .driver_data = NVME_QUIRK_BOGUS_NID, }, + { PCI_DEVICE(0x1e4B, 0x1602), /* MAXIO MAP1602 */ + .driver_data = NVME_QUIRK_BOGUS_NID, }, + { PCI_DEVICE(0x1cc1, 0x5350), /* ADATA XPG GAMMIX S50 */ + .driver_data = NVME_QUIRK_BOGUS_NID, }, + { PCI_DEVICE(0x1dbe, 0x5236), /* ADATA XPG GAMMIX S70 */ + .driver_data = NVME_QUIRK_BOGUS_NID, }, + { PCI_DEVICE(0x1e49, 0x0021), /* ZHITAI TiPro5000 NVMe SSD */ + .driver_data = NVME_QUIRK_NO_DEEPEST_PS, }, + { PCI_DEVICE(0x1e49, 0x0041), /* ZHITAI TiPro7000 NVMe SSD */ + .driver_data = NVME_QUIRK_NO_DEEPEST_PS, }, + { PCI_DEVICE(0xc0a9, 0x540a), /* Crucial P2 */ + .driver_data = NVME_QUIRK_BOGUS_NID, }, + { PCI_DEVICE(0x1d97, 0x2263), /* Lexar NM610 */ + .driver_data = NVME_QUIRK_BOGUS_NID, }, + { PCI_DEVICE(0x1d97, 0x1d97), /* Lexar NM620 */ + .driver_data = NVME_QUIRK_BOGUS_NID, }, + { PCI_DEVICE(0x1d97, 0x2269), /* Lexar NM760 */ + .driver_data = NVME_QUIRK_BOGUS_NID | + NVME_QUIRK_IGNORE_DEV_SUBNQN, }, + { PCI_DEVICE(0x10ec, 0x5763), /* TEAMGROUP T-FORCE CARDEA ZERO Z330 SSD */ + .driver_data = NVME_QUIRK_BOGUS_NID, }, + { PCI_DEVICE(0x1e4b, 0x1602), /* HS-SSD-FUTURE 2048G */ + .driver_data = NVME_QUIRK_BOGUS_NID, }, + { PCI_DEVICE(0x10ec, 0x5765), /* TEAMGROUP MP33 2TB SSD */ + .driver_data = NVME_QUIRK_BOGUS_NID, }, + { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x0061), + .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, }, + { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x0065), + .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, }, + { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x8061), + .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, }, + { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd00), + .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, }, + { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd01), + .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, }, + { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd02), + .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, }, + { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001), + .driver_data = NVME_QUIRK_SINGLE_VECTOR }, + { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2003) }, + { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2005), + .driver_data = NVME_QUIRK_SINGLE_VECTOR | + NVME_QUIRK_128_BYTES_SQES | + NVME_QUIRK_SHARED_TAGS | + NVME_QUIRK_SKIP_CID_GEN | + NVME_QUIRK_IDENTIFY_CNS }, + { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) }, + { 0, } +}; +MODULE_DEVICE_TABLE(pci, nvme_id_table); + +static struct pci_driver nvme_driver = { + .name = "nvme", + .id_table = nvme_id_table, + .probe = nvme_probe, + .remove = nvme_remove, + .shutdown = nvme_shutdown, + .driver = { + .probe_type = PROBE_PREFER_ASYNCHRONOUS, +#ifdef CONFIG_PM_SLEEP + .pm = &nvme_dev_pm_ops, +#endif + }, + .sriov_configure = pci_sriov_configure_simple, + .err_handler = &nvme_err_handler, +}; + +static int __init nvme_init(void) +{ + BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64); + BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64); + BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64); + BUILD_BUG_ON(IRQ_AFFINITY_MAX_SETS < 2); + BUILD_BUG_ON(NVME_MAX_SEGS > SGES_PER_PAGE); + BUILD_BUG_ON(sizeof(struct scatterlist) * NVME_MAX_SEGS > PAGE_SIZE); + BUILD_BUG_ON(nvme_pci_npages_prp() > NVME_MAX_NR_ALLOCATIONS); + + return pci_register_driver(&nvme_driver); +} + +static void __exit nvme_exit(void) +{ + pci_unregister_driver(&nvme_driver); + flush_workqueue(nvme_wq); +} + +MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>"); +MODULE_LICENSE("GPL"); +MODULE_VERSION("1.0"); +module_init(nvme_init); +module_exit(nvme_exit); |