summaryrefslogtreecommitdiffstats
path: root/drivers/nvme/host
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-11 08:27:49 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-11 08:27:49 +0000
commitace9429bb58fd418f0c81d4c2835699bddf6bde6 (patch)
treeb2d64bc10158fdd5497876388cd68142ca374ed3 /drivers/nvme/host
parentInitial commit. (diff)
downloadlinux-ace9429bb58fd418f0c81d4c2835699bddf6bde6.tar.xz
linux-ace9429bb58fd418f0c81d4c2835699bddf6bde6.zip
Adding upstream version 6.6.15.upstream/6.6.15
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'drivers/nvme/host')
-rw-r--r--drivers/nvme/host/Kconfig121
-rw-r--r--drivers/nvme/host/Makefile32
-rw-r--r--drivers/nvme/host/apple.c1606
-rw-r--r--drivers/nvme/host/auth.c1043
-rw-r--r--drivers/nvme/host/constants.c203
-rw-r--r--drivers/nvme/host/core.c4803
-rw-r--r--drivers/nvme/host/fabrics.c1428
-rw-r--r--drivers/nvme/host/fabrics.h230
-rw-r--r--drivers/nvme/host/fault_inject.c82
-rw-r--r--drivers/nvme/host/fc.c4006
-rw-r--r--drivers/nvme/host/fc.h227
-rw-r--r--drivers/nvme/host/hwmon.c281
-rw-r--r--drivers/nvme/host/ioctl.c985
-rw-r--r--drivers/nvme/host/multipath.c964
-rw-r--r--drivers/nvme/host/nvme.h1141
-rw-r--r--drivers/nvme/host/pci.c3543
-rw-r--r--drivers/nvme/host/pr.c315
-rw-r--r--drivers/nvme/host/rdma.c2397
-rw-r--r--drivers/nvme/host/sysfs.c668
-rw-r--r--drivers/nvme/host/tcp.c2673
-rw-r--r--drivers/nvme/host/trace.c357
-rw-r--r--drivers/nvme/host/trace.h172
-rw-r--r--drivers/nvme/host/zns.c249
23 files changed, 27526 insertions, 0 deletions
diff --git a/drivers/nvme/host/Kconfig b/drivers/nvme/host/Kconfig
new file mode 100644
index 0000000000..2f6a7f8c94
--- /dev/null
+++ b/drivers/nvme/host/Kconfig
@@ -0,0 +1,121 @@
+# SPDX-License-Identifier: GPL-2.0-only
+config NVME_CORE
+ tristate
+ select BLK_DEV_INTEGRITY_T10 if BLK_DEV_INTEGRITY
+
+config BLK_DEV_NVME
+ tristate "NVM Express block device"
+ depends on PCI && BLOCK
+ select NVME_CORE
+ help
+ The NVM Express driver is for solid state drives directly
+ connected to the PCI or PCI Express bus. If you know you
+ don't have one of these, it is safe to answer N.
+
+ To compile this driver as a module, choose M here: the
+ module will be called nvme.
+
+config NVME_MULTIPATH
+ bool "NVMe multipath support"
+ depends on NVME_CORE
+ help
+ This option enables support for multipath access to NVMe
+ subsystems. If this option is enabled only a single
+ /dev/nvmeXnY device will show up for each NVMe namespace,
+ even if it is accessible through multiple controllers.
+
+config NVME_VERBOSE_ERRORS
+ bool "NVMe verbose error reporting"
+ depends on NVME_CORE
+ help
+ This option enables verbose reporting for NVMe errors. The
+ error translation table will grow the kernel image size by
+ about 4 KB.
+
+config NVME_HWMON
+ bool "NVMe hardware monitoring"
+ depends on (NVME_CORE=y && HWMON=y) || (NVME_CORE=m && HWMON)
+ help
+ This provides support for NVMe hardware monitoring. If enabled,
+ a hardware monitoring device will be created for each NVMe drive
+ in the system.
+
+config NVME_FABRICS
+ select NVME_CORE
+ tristate
+
+config NVME_RDMA
+ tristate "NVM Express over Fabrics RDMA host driver"
+ depends on INFINIBAND && INFINIBAND_ADDR_TRANS && BLOCK
+ select NVME_FABRICS
+ select SG_POOL
+ help
+ This provides support for the NVMe over Fabrics protocol using
+ the RDMA (Infiniband, RoCE, iWarp) transport. This allows you
+ to use remote block devices exported using the NVMe protocol set.
+
+ To configure a NVMe over Fabrics controller use the nvme-cli tool
+ from https://github.com/linux-nvme/nvme-cli.
+
+ If unsure, say N.
+
+config NVME_FC
+ tristate "NVM Express over Fabrics FC host driver"
+ depends on BLOCK
+ depends on HAS_DMA
+ select NVME_FABRICS
+ select SG_POOL
+ help
+ This provides support for the NVMe over Fabrics protocol using
+ the FC transport. This allows you to use remote block devices
+ exported using the NVMe protocol set.
+
+ To configure a NVMe over Fabrics controller use the nvme-cli tool
+ from https://github.com/linux-nvme/nvme-cli.
+
+ If unsure, say N.
+
+config NVME_TCP
+ tristate "NVM Express over Fabrics TCP host driver"
+ depends on INET
+ depends on BLOCK
+ select NVME_FABRICS
+ select CRYPTO
+ select CRYPTO_CRC32C
+ help
+ This provides support for the NVMe over Fabrics protocol using
+ the TCP transport. This allows you to use remote block devices
+ exported using the NVMe protocol set.
+
+ To configure a NVMe over Fabrics controller use the nvme-cli tool
+ from https://github.com/linux-nvme/nvme-cli.
+
+ If unsure, say N.
+
+config NVME_AUTH
+ bool "NVM Express over Fabrics In-Band Authentication"
+ depends on NVME_CORE
+ select NVME_COMMON
+ select CRYPTO
+ select CRYPTO_HMAC
+ select CRYPTO_SHA256
+ select CRYPTO_SHA512
+ select CRYPTO_DH
+ select CRYPTO_DH_RFC7919_GROUPS
+ help
+ This provides support for NVMe over Fabrics In-Band Authentication.
+
+ If unsure, say N.
+
+config NVME_APPLE
+ tristate "Apple ANS2 NVM Express host driver"
+ depends on OF && BLOCK
+ depends on APPLE_RTKIT && APPLE_SART
+ depends on ARCH_APPLE || COMPILE_TEST
+ select NVME_CORE
+ help
+ This provides support for the NVMe controller embedded in Apple SoCs
+ such as the M1.
+
+ To compile this driver as a module, choose M here: the
+ module will be called nvme-apple.
diff --git a/drivers/nvme/host/Makefile b/drivers/nvme/host/Makefile
new file mode 100644
index 0000000000..c7c3cf202d
--- /dev/null
+++ b/drivers/nvme/host/Makefile
@@ -0,0 +1,32 @@
+# SPDX-License-Identifier: GPL-2.0
+
+ccflags-y += -I$(src)
+
+obj-$(CONFIG_NVME_CORE) += nvme-core.o
+obj-$(CONFIG_BLK_DEV_NVME) += nvme.o
+obj-$(CONFIG_NVME_FABRICS) += nvme-fabrics.o
+obj-$(CONFIG_NVME_RDMA) += nvme-rdma.o
+obj-$(CONFIG_NVME_FC) += nvme-fc.o
+obj-$(CONFIG_NVME_TCP) += nvme-tcp.o
+obj-$(CONFIG_NVME_APPLE) += nvme-apple.o
+
+nvme-core-y += core.o ioctl.o sysfs.o pr.o
+nvme-core-$(CONFIG_NVME_VERBOSE_ERRORS) += constants.o
+nvme-core-$(CONFIG_TRACING) += trace.o
+nvme-core-$(CONFIG_NVME_MULTIPATH) += multipath.o
+nvme-core-$(CONFIG_BLK_DEV_ZONED) += zns.o
+nvme-core-$(CONFIG_FAULT_INJECTION_DEBUG_FS) += fault_inject.o
+nvme-core-$(CONFIG_NVME_HWMON) += hwmon.o
+nvme-core-$(CONFIG_NVME_AUTH) += auth.o
+
+nvme-y += pci.o
+
+nvme-fabrics-y += fabrics.o
+
+nvme-rdma-y += rdma.o
+
+nvme-fc-y += fc.o
+
+nvme-tcp-y += tcp.o
+
+nvme-apple-y += apple.o
diff --git a/drivers/nvme/host/apple.c b/drivers/nvme/host/apple.c
new file mode 100644
index 0000000000..596bb11eeb
--- /dev/null
+++ b/drivers/nvme/host/apple.c
@@ -0,0 +1,1606 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * Apple ANS NVM Express device driver
+ * Copyright The Asahi Linux Contributors
+ *
+ * Based on the pci.c NVM Express device driver
+ * Copyright (c) 2011-2014, Intel Corporation.
+ * and on the rdma.c NVMe over Fabrics RDMA host code.
+ * Copyright (c) 2015-2016 HGST, a Western Digital Company.
+ */
+
+#include <linux/async.h>
+#include <linux/blkdev.h>
+#include <linux/blk-mq.h>
+#include <linux/device.h>
+#include <linux/dma-mapping.h>
+#include <linux/dmapool.h>
+#include <linux/interrupt.h>
+#include <linux/io-64-nonatomic-lo-hi.h>
+#include <linux/io.h>
+#include <linux/iopoll.h>
+#include <linux/jiffies.h>
+#include <linux/mempool.h>
+#include <linux/module.h>
+#include <linux/of.h>
+#include <linux/of_platform.h>
+#include <linux/once.h>
+#include <linux/platform_device.h>
+#include <linux/pm_domain.h>
+#include <linux/soc/apple/rtkit.h>
+#include <linux/soc/apple/sart.h>
+#include <linux/reset.h>
+#include <linux/time64.h>
+
+#include "nvme.h"
+
+#define APPLE_ANS_BOOT_TIMEOUT USEC_PER_SEC
+#define APPLE_ANS_MAX_QUEUE_DEPTH 64
+
+#define APPLE_ANS_COPROC_CPU_CONTROL 0x44
+#define APPLE_ANS_COPROC_CPU_CONTROL_RUN BIT(4)
+
+#define APPLE_ANS_ACQ_DB 0x1004
+#define APPLE_ANS_IOCQ_DB 0x100c
+
+#define APPLE_ANS_MAX_PEND_CMDS_CTRL 0x1210
+
+#define APPLE_ANS_BOOT_STATUS 0x1300
+#define APPLE_ANS_BOOT_STATUS_OK 0xde71ce55
+
+#define APPLE_ANS_UNKNOWN_CTRL 0x24008
+#define APPLE_ANS_PRP_NULL_CHECK BIT(11)
+
+#define APPLE_ANS_LINEAR_SQ_CTRL 0x24908
+#define APPLE_ANS_LINEAR_SQ_EN BIT(0)
+
+#define APPLE_ANS_LINEAR_ASQ_DB 0x2490c
+#define APPLE_ANS_LINEAR_IOSQ_DB 0x24910
+
+#define APPLE_NVMMU_NUM_TCBS 0x28100
+#define APPLE_NVMMU_ASQ_TCB_BASE 0x28108
+#define APPLE_NVMMU_IOSQ_TCB_BASE 0x28110
+#define APPLE_NVMMU_TCB_INVAL 0x28118
+#define APPLE_NVMMU_TCB_STAT 0x28120
+
+/*
+ * This controller is a bit weird in the way command tags works: Both the
+ * admin and the IO queue share the same tag space. Additionally, tags
+ * cannot be higher than 0x40 which effectively limits the combined
+ * queue depth to 0x40. Instead of wasting half of that on the admin queue
+ * which gets much less traffic we instead reduce its size here.
+ * The controller also doesn't support async event such that no space must
+ * be reserved for NVME_NR_AEN_COMMANDS.
+ */
+#define APPLE_NVME_AQ_DEPTH 2
+#define APPLE_NVME_AQ_MQ_TAG_DEPTH (APPLE_NVME_AQ_DEPTH - 1)
+
+/*
+ * These can be higher, but we need to ensure that any command doesn't
+ * require an sg allocation that needs more than a page of data.
+ */
+#define NVME_MAX_KB_SZ 4096
+#define NVME_MAX_SEGS 127
+
+/*
+ * This controller comes with an embedded IOMMU known as NVMMU.
+ * The NVMMU is pointed to an array of TCBs indexed by the command tag.
+ * Each command must be configured inside this structure before it's allowed
+ * to execute, including commands that don't require DMA transfers.
+ *
+ * An exception to this are Apple's vendor-specific commands (opcode 0xD8 on the
+ * admin queue): Those commands must still be added to the NVMMU but the DMA
+ * buffers cannot be represented as PRPs and must instead be allowed using SART.
+ *
+ * Programming the PRPs to the same values as those in the submission queue
+ * looks rather silly at first. This hardware is however designed for a kernel
+ * that runs the NVMMU code in a higher exception level than the NVMe driver.
+ * In that setting the NVMe driver first programs the submission queue entry
+ * and then executes a hypercall to the code that is allowed to program the
+ * NVMMU. The NVMMU driver then creates a shadow copy of the PRPs while
+ * verifying that they don't point to kernel text, data, pagetables, or similar
+ * protected areas before programming the TCB to point to this shadow copy.
+ * Since Linux doesn't do any of that we may as well just point both the queue
+ * and the TCB PRP pointer to the same memory.
+ */
+struct apple_nvmmu_tcb {
+ u8 opcode;
+
+#define APPLE_ANS_TCB_DMA_FROM_DEVICE BIT(0)
+#define APPLE_ANS_TCB_DMA_TO_DEVICE BIT(1)
+ u8 dma_flags;
+
+ u8 command_id;
+ u8 _unk0;
+ __le16 length;
+ u8 _unk1[18];
+ __le64 prp1;
+ __le64 prp2;
+ u8 _unk2[16];
+ u8 aes_iv[8];
+ u8 _aes_unk[64];
+};
+
+/*
+ * The Apple NVMe controller only supports a single admin and a single IO queue
+ * which are both limited to 64 entries and share a single interrupt.
+ *
+ * The completion queue works as usual. The submission "queue" instead is
+ * an array indexed by the command tag on this hardware. Commands must also be
+ * present in the NVMMU's tcb array. They are triggered by writing their tag to
+ * a MMIO register.
+ */
+struct apple_nvme_queue {
+ struct nvme_command *sqes;
+ struct nvme_completion *cqes;
+ struct apple_nvmmu_tcb *tcbs;
+
+ dma_addr_t sq_dma_addr;
+ dma_addr_t cq_dma_addr;
+ dma_addr_t tcb_dma_addr;
+
+ u32 __iomem *sq_db;
+ u32 __iomem *cq_db;
+
+ u16 cq_head;
+ u8 cq_phase;
+
+ bool is_adminq;
+ bool enabled;
+};
+
+/*
+ * The apple_nvme_iod describes the data in an I/O.
+ *
+ * The sg pointer contains the list of PRP chunk allocations in addition
+ * to the actual struct scatterlist.
+ */
+struct apple_nvme_iod {
+ struct nvme_request req;
+ struct nvme_command cmd;
+ struct apple_nvme_queue *q;
+ int npages; /* In the PRP list. 0 means small pool in use */
+ int nents; /* Used in scatterlist */
+ dma_addr_t first_dma;
+ unsigned int dma_len; /* length of single DMA segment mapping */
+ struct scatterlist *sg;
+};
+
+struct apple_nvme {
+ struct device *dev;
+
+ void __iomem *mmio_coproc;
+ void __iomem *mmio_nvme;
+
+ struct device **pd_dev;
+ struct device_link **pd_link;
+ int pd_count;
+
+ struct apple_sart *sart;
+ struct apple_rtkit *rtk;
+ struct reset_control *reset;
+
+ struct dma_pool *prp_page_pool;
+ struct dma_pool *prp_small_pool;
+ mempool_t *iod_mempool;
+
+ struct nvme_ctrl ctrl;
+ struct work_struct remove_work;
+
+ struct apple_nvme_queue adminq;
+ struct apple_nvme_queue ioq;
+
+ struct blk_mq_tag_set admin_tagset;
+ struct blk_mq_tag_set tagset;
+
+ int irq;
+ spinlock_t lock;
+};
+
+static_assert(sizeof(struct nvme_command) == 64);
+static_assert(sizeof(struct apple_nvmmu_tcb) == 128);
+
+static inline struct apple_nvme *ctrl_to_apple_nvme(struct nvme_ctrl *ctrl)
+{
+ return container_of(ctrl, struct apple_nvme, ctrl);
+}
+
+static inline struct apple_nvme *queue_to_apple_nvme(struct apple_nvme_queue *q)
+{
+ if (q->is_adminq)
+ return container_of(q, struct apple_nvme, adminq);
+
+ return container_of(q, struct apple_nvme, ioq);
+}
+
+static unsigned int apple_nvme_queue_depth(struct apple_nvme_queue *q)
+{
+ if (q->is_adminq)
+ return APPLE_NVME_AQ_DEPTH;
+
+ return APPLE_ANS_MAX_QUEUE_DEPTH;
+}
+
+static void apple_nvme_rtkit_crashed(void *cookie)
+{
+ struct apple_nvme *anv = cookie;
+
+ dev_warn(anv->dev, "RTKit crashed; unable to recover without a reboot");
+ nvme_reset_ctrl(&anv->ctrl);
+}
+
+static int apple_nvme_sart_dma_setup(void *cookie,
+ struct apple_rtkit_shmem *bfr)
+{
+ struct apple_nvme *anv = cookie;
+ int ret;
+
+ if (bfr->iova)
+ return -EINVAL;
+ if (!bfr->size)
+ return -EINVAL;
+
+ bfr->buffer =
+ dma_alloc_coherent(anv->dev, bfr->size, &bfr->iova, GFP_KERNEL);
+ if (!bfr->buffer)
+ return -ENOMEM;
+
+ ret = apple_sart_add_allowed_region(anv->sart, bfr->iova, bfr->size);
+ if (ret) {
+ dma_free_coherent(anv->dev, bfr->size, bfr->buffer, bfr->iova);
+ bfr->buffer = NULL;
+ return -ENOMEM;
+ }
+
+ return 0;
+}
+
+static void apple_nvme_sart_dma_destroy(void *cookie,
+ struct apple_rtkit_shmem *bfr)
+{
+ struct apple_nvme *anv = cookie;
+
+ apple_sart_remove_allowed_region(anv->sart, bfr->iova, bfr->size);
+ dma_free_coherent(anv->dev, bfr->size, bfr->buffer, bfr->iova);
+}
+
+static const struct apple_rtkit_ops apple_nvme_rtkit_ops = {
+ .crashed = apple_nvme_rtkit_crashed,
+ .shmem_setup = apple_nvme_sart_dma_setup,
+ .shmem_destroy = apple_nvme_sart_dma_destroy,
+};
+
+static void apple_nvmmu_inval(struct apple_nvme_queue *q, unsigned int tag)
+{
+ struct apple_nvme *anv = queue_to_apple_nvme(q);
+
+ writel(tag, anv->mmio_nvme + APPLE_NVMMU_TCB_INVAL);
+ if (readl(anv->mmio_nvme + APPLE_NVMMU_TCB_STAT))
+ dev_warn_ratelimited(anv->dev,
+ "NVMMU TCB invalidation failed\n");
+}
+
+static void apple_nvme_submit_cmd(struct apple_nvme_queue *q,
+ struct nvme_command *cmd)
+{
+ struct apple_nvme *anv = queue_to_apple_nvme(q);
+ u32 tag = nvme_tag_from_cid(cmd->common.command_id);
+ struct apple_nvmmu_tcb *tcb = &q->tcbs[tag];
+
+ tcb->opcode = cmd->common.opcode;
+ tcb->prp1 = cmd->common.dptr.prp1;
+ tcb->prp2 = cmd->common.dptr.prp2;
+ tcb->length = cmd->rw.length;
+ tcb->command_id = tag;
+
+ if (nvme_is_write(cmd))
+ tcb->dma_flags = APPLE_ANS_TCB_DMA_TO_DEVICE;
+ else
+ tcb->dma_flags = APPLE_ANS_TCB_DMA_FROM_DEVICE;
+
+ memcpy(&q->sqes[tag], cmd, sizeof(*cmd));
+
+ /*
+ * This lock here doesn't make much sense at a first glace but
+ * removing it will result in occasional missed completetion
+ * interrupts even though the commands still appear on the CQ.
+ * It's unclear why this happens but our best guess is that
+ * there is a bug in the firmware triggered when a new command
+ * is issued while we're inside the irq handler between the
+ * NVMMU invalidation (and making the tag available again)
+ * and the final CQ update.
+ */
+ spin_lock_irq(&anv->lock);
+ writel(tag, q->sq_db);
+ spin_unlock_irq(&anv->lock);
+}
+
+/*
+ * From pci.c:
+ * Will slightly overestimate the number of pages needed. This is OK
+ * as it only leads to a small amount of wasted memory for the lifetime of
+ * the I/O.
+ */
+static inline size_t apple_nvme_iod_alloc_size(void)
+{
+ const unsigned int nprps = DIV_ROUND_UP(
+ NVME_MAX_KB_SZ + NVME_CTRL_PAGE_SIZE, NVME_CTRL_PAGE_SIZE);
+ const int npages = DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
+ const size_t alloc_size = sizeof(__le64 *) * npages +
+ sizeof(struct scatterlist) * NVME_MAX_SEGS;
+
+ return alloc_size;
+}
+
+static void **apple_nvme_iod_list(struct request *req)
+{
+ struct apple_nvme_iod *iod = blk_mq_rq_to_pdu(req);
+
+ return (void **)(iod->sg + blk_rq_nr_phys_segments(req));
+}
+
+static void apple_nvme_free_prps(struct apple_nvme *anv, struct request *req)
+{
+ const int last_prp = NVME_CTRL_PAGE_SIZE / sizeof(__le64) - 1;
+ struct apple_nvme_iod *iod = blk_mq_rq_to_pdu(req);
+ dma_addr_t dma_addr = iod->first_dma;
+ int i;
+
+ for (i = 0; i < iod->npages; i++) {
+ __le64 *prp_list = apple_nvme_iod_list(req)[i];
+ dma_addr_t next_dma_addr = le64_to_cpu(prp_list[last_prp]);
+
+ dma_pool_free(anv->prp_page_pool, prp_list, dma_addr);
+ dma_addr = next_dma_addr;
+ }
+}
+
+static void apple_nvme_unmap_data(struct apple_nvme *anv, struct request *req)
+{
+ struct apple_nvme_iod *iod = blk_mq_rq_to_pdu(req);
+
+ if (iod->dma_len) {
+ dma_unmap_page(anv->dev, iod->first_dma, iod->dma_len,
+ rq_dma_dir(req));
+ return;
+ }
+
+ WARN_ON_ONCE(!iod->nents);
+
+ dma_unmap_sg(anv->dev, iod->sg, iod->nents, rq_dma_dir(req));
+ if (iod->npages == 0)
+ dma_pool_free(anv->prp_small_pool, apple_nvme_iod_list(req)[0],
+ iod->first_dma);
+ else
+ apple_nvme_free_prps(anv, req);
+ mempool_free(iod->sg, anv->iod_mempool);
+}
+
+static void apple_nvme_print_sgl(struct scatterlist *sgl, int nents)
+{
+ int i;
+ struct scatterlist *sg;
+
+ for_each_sg(sgl, sg, nents, i) {
+ dma_addr_t phys = sg_phys(sg);
+
+ pr_warn("sg[%d] phys_addr:%pad offset:%d length:%d dma_address:%pad dma_length:%d\n",
+ i, &phys, sg->offset, sg->length, &sg_dma_address(sg),
+ sg_dma_len(sg));
+ }
+}
+
+static blk_status_t apple_nvme_setup_prps(struct apple_nvme *anv,
+ struct request *req,
+ struct nvme_rw_command *cmnd)
+{
+ struct apple_nvme_iod *iod = blk_mq_rq_to_pdu(req);
+ struct dma_pool *pool;
+ int length = blk_rq_payload_bytes(req);
+ struct scatterlist *sg = iod->sg;
+ int dma_len = sg_dma_len(sg);
+ u64 dma_addr = sg_dma_address(sg);
+ int offset = dma_addr & (NVME_CTRL_PAGE_SIZE - 1);
+ __le64 *prp_list;
+ void **list = apple_nvme_iod_list(req);
+ dma_addr_t prp_dma;
+ int nprps, i;
+
+ length -= (NVME_CTRL_PAGE_SIZE - offset);
+ if (length <= 0) {
+ iod->first_dma = 0;
+ goto done;
+ }
+
+ dma_len -= (NVME_CTRL_PAGE_SIZE - offset);
+ if (dma_len) {
+ dma_addr += (NVME_CTRL_PAGE_SIZE - offset);
+ } else {
+ sg = sg_next(sg);
+ dma_addr = sg_dma_address(sg);
+ dma_len = sg_dma_len(sg);
+ }
+
+ if (length <= NVME_CTRL_PAGE_SIZE) {
+ iod->first_dma = dma_addr;
+ goto done;
+ }
+
+ nprps = DIV_ROUND_UP(length, NVME_CTRL_PAGE_SIZE);
+ if (nprps <= (256 / 8)) {
+ pool = anv->prp_small_pool;
+ iod->npages = 0;
+ } else {
+ pool = anv->prp_page_pool;
+ iod->npages = 1;
+ }
+
+ prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
+ if (!prp_list) {
+ iod->first_dma = dma_addr;
+ iod->npages = -1;
+ return BLK_STS_RESOURCE;
+ }
+ list[0] = prp_list;
+ iod->first_dma = prp_dma;
+ i = 0;
+ for (;;) {
+ if (i == NVME_CTRL_PAGE_SIZE >> 3) {
+ __le64 *old_prp_list = prp_list;
+
+ prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
+ if (!prp_list)
+ goto free_prps;
+ list[iod->npages++] = prp_list;
+ prp_list[0] = old_prp_list[i - 1];
+ old_prp_list[i - 1] = cpu_to_le64(prp_dma);
+ i = 1;
+ }
+ prp_list[i++] = cpu_to_le64(dma_addr);
+ dma_len -= NVME_CTRL_PAGE_SIZE;
+ dma_addr += NVME_CTRL_PAGE_SIZE;
+ length -= NVME_CTRL_PAGE_SIZE;
+ if (length <= 0)
+ break;
+ if (dma_len > 0)
+ continue;
+ if (unlikely(dma_len < 0))
+ goto bad_sgl;
+ sg = sg_next(sg);
+ dma_addr = sg_dma_address(sg);
+ dma_len = sg_dma_len(sg);
+ }
+done:
+ cmnd->dptr.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
+ cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma);
+ return BLK_STS_OK;
+free_prps:
+ apple_nvme_free_prps(anv, req);
+ return BLK_STS_RESOURCE;
+bad_sgl:
+ WARN(DO_ONCE(apple_nvme_print_sgl, iod->sg, iod->nents),
+ "Invalid SGL for payload:%d nents:%d\n", blk_rq_payload_bytes(req),
+ iod->nents);
+ return BLK_STS_IOERR;
+}
+
+static blk_status_t apple_nvme_setup_prp_simple(struct apple_nvme *anv,
+ struct request *req,
+ struct nvme_rw_command *cmnd,
+ struct bio_vec *bv)
+{
+ struct apple_nvme_iod *iod = blk_mq_rq_to_pdu(req);
+ unsigned int offset = bv->bv_offset & (NVME_CTRL_PAGE_SIZE - 1);
+ unsigned int first_prp_len = NVME_CTRL_PAGE_SIZE - offset;
+
+ iod->first_dma = dma_map_bvec(anv->dev, bv, rq_dma_dir(req), 0);
+ if (dma_mapping_error(anv->dev, iod->first_dma))
+ return BLK_STS_RESOURCE;
+ iod->dma_len = bv->bv_len;
+
+ cmnd->dptr.prp1 = cpu_to_le64(iod->first_dma);
+ if (bv->bv_len > first_prp_len)
+ cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma + first_prp_len);
+ return BLK_STS_OK;
+}
+
+static blk_status_t apple_nvme_map_data(struct apple_nvme *anv,
+ struct request *req,
+ struct nvme_command *cmnd)
+{
+ struct apple_nvme_iod *iod = blk_mq_rq_to_pdu(req);
+ blk_status_t ret = BLK_STS_RESOURCE;
+ int nr_mapped;
+
+ if (blk_rq_nr_phys_segments(req) == 1) {
+ struct bio_vec bv = req_bvec(req);
+
+ if (bv.bv_offset + bv.bv_len <= NVME_CTRL_PAGE_SIZE * 2)
+ return apple_nvme_setup_prp_simple(anv, req, &cmnd->rw,
+ &bv);
+ }
+
+ iod->dma_len = 0;
+ iod->sg = mempool_alloc(anv->iod_mempool, GFP_ATOMIC);
+ if (!iod->sg)
+ return BLK_STS_RESOURCE;
+ sg_init_table(iod->sg, blk_rq_nr_phys_segments(req));
+ iod->nents = blk_rq_map_sg(req->q, req, iod->sg);
+ if (!iod->nents)
+ goto out_free_sg;
+
+ nr_mapped = dma_map_sg_attrs(anv->dev, iod->sg, iod->nents,
+ rq_dma_dir(req), DMA_ATTR_NO_WARN);
+ if (!nr_mapped)
+ goto out_free_sg;
+
+ ret = apple_nvme_setup_prps(anv, req, &cmnd->rw);
+ if (ret != BLK_STS_OK)
+ goto out_unmap_sg;
+ return BLK_STS_OK;
+
+out_unmap_sg:
+ dma_unmap_sg(anv->dev, iod->sg, iod->nents, rq_dma_dir(req));
+out_free_sg:
+ mempool_free(iod->sg, anv->iod_mempool);
+ return ret;
+}
+
+static __always_inline void apple_nvme_unmap_rq(struct request *req)
+{
+ struct apple_nvme_iod *iod = blk_mq_rq_to_pdu(req);
+ struct apple_nvme *anv = queue_to_apple_nvme(iod->q);
+
+ if (blk_rq_nr_phys_segments(req))
+ apple_nvme_unmap_data(anv, req);
+}
+
+static void apple_nvme_complete_rq(struct request *req)
+{
+ apple_nvme_unmap_rq(req);
+ nvme_complete_rq(req);
+}
+
+static void apple_nvme_complete_batch(struct io_comp_batch *iob)
+{
+ nvme_complete_batch(iob, apple_nvme_unmap_rq);
+}
+
+static inline bool apple_nvme_cqe_pending(struct apple_nvme_queue *q)
+{
+ struct nvme_completion *hcqe = &q->cqes[q->cq_head];
+
+ return (le16_to_cpu(READ_ONCE(hcqe->status)) & 1) == q->cq_phase;
+}
+
+static inline struct blk_mq_tags *
+apple_nvme_queue_tagset(struct apple_nvme *anv, struct apple_nvme_queue *q)
+{
+ if (q->is_adminq)
+ return anv->admin_tagset.tags[0];
+ else
+ return anv->tagset.tags[0];
+}
+
+static inline void apple_nvme_handle_cqe(struct apple_nvme_queue *q,
+ struct io_comp_batch *iob, u16 idx)
+{
+ struct apple_nvme *anv = queue_to_apple_nvme(q);
+ struct nvme_completion *cqe = &q->cqes[idx];
+ __u16 command_id = READ_ONCE(cqe->command_id);
+ struct request *req;
+
+ apple_nvmmu_inval(q, command_id);
+
+ req = nvme_find_rq(apple_nvme_queue_tagset(anv, q), command_id);
+ if (unlikely(!req)) {
+ dev_warn(anv->dev, "invalid id %d completed", command_id);
+ return;
+ }
+
+ if (!nvme_try_complete_req(req, cqe->status, cqe->result) &&
+ !blk_mq_add_to_batch(req, iob, nvme_req(req)->status,
+ apple_nvme_complete_batch))
+ apple_nvme_complete_rq(req);
+}
+
+static inline void apple_nvme_update_cq_head(struct apple_nvme_queue *q)
+{
+ u32 tmp = q->cq_head + 1;
+
+ if (tmp == apple_nvme_queue_depth(q)) {
+ q->cq_head = 0;
+ q->cq_phase ^= 1;
+ } else {
+ q->cq_head = tmp;
+ }
+}
+
+static bool apple_nvme_poll_cq(struct apple_nvme_queue *q,
+ struct io_comp_batch *iob)
+{
+ bool found = false;
+
+ while (apple_nvme_cqe_pending(q)) {
+ found = true;
+
+ /*
+ * load-load control dependency between phase and the rest of
+ * the cqe requires a full read memory barrier
+ */
+ dma_rmb();
+ apple_nvme_handle_cqe(q, iob, q->cq_head);
+ apple_nvme_update_cq_head(q);
+ }
+
+ if (found)
+ writel(q->cq_head, q->cq_db);
+
+ return found;
+}
+
+static bool apple_nvme_handle_cq(struct apple_nvme_queue *q, bool force)
+{
+ bool found;
+ DEFINE_IO_COMP_BATCH(iob);
+
+ if (!READ_ONCE(q->enabled) && !force)
+ return false;
+
+ found = apple_nvme_poll_cq(q, &iob);
+
+ if (!rq_list_empty(iob.req_list))
+ apple_nvme_complete_batch(&iob);
+
+ return found;
+}
+
+static irqreturn_t apple_nvme_irq(int irq, void *data)
+{
+ struct apple_nvme *anv = data;
+ bool handled = false;
+ unsigned long flags;
+
+ spin_lock_irqsave(&anv->lock, flags);
+ if (apple_nvme_handle_cq(&anv->ioq, false))
+ handled = true;
+ if (apple_nvme_handle_cq(&anv->adminq, false))
+ handled = true;
+ spin_unlock_irqrestore(&anv->lock, flags);
+
+ if (handled)
+ return IRQ_HANDLED;
+ return IRQ_NONE;
+}
+
+static int apple_nvme_create_cq(struct apple_nvme *anv)
+{
+ struct nvme_command c = {};
+
+ /*
+ * Note: we (ab)use the fact that the prp fields survive if no data
+ * is attached to the request.
+ */
+ c.create_cq.opcode = nvme_admin_create_cq;
+ c.create_cq.prp1 = cpu_to_le64(anv->ioq.cq_dma_addr);
+ c.create_cq.cqid = cpu_to_le16(1);
+ c.create_cq.qsize = cpu_to_le16(APPLE_ANS_MAX_QUEUE_DEPTH - 1);
+ c.create_cq.cq_flags = cpu_to_le16(NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED);
+ c.create_cq.irq_vector = cpu_to_le16(0);
+
+ return nvme_submit_sync_cmd(anv->ctrl.admin_q, &c, NULL, 0);
+}
+
+static int apple_nvme_remove_cq(struct apple_nvme *anv)
+{
+ struct nvme_command c = {};
+
+ c.delete_queue.opcode = nvme_admin_delete_cq;
+ c.delete_queue.qid = cpu_to_le16(1);
+
+ return nvme_submit_sync_cmd(anv->ctrl.admin_q, &c, NULL, 0);
+}
+
+static int apple_nvme_create_sq(struct apple_nvme *anv)
+{
+ struct nvme_command c = {};
+
+ /*
+ * Note: we (ab)use the fact that the prp fields survive if no data
+ * is attached to the request.
+ */
+ c.create_sq.opcode = nvme_admin_create_sq;
+ c.create_sq.prp1 = cpu_to_le64(anv->ioq.sq_dma_addr);
+ c.create_sq.sqid = cpu_to_le16(1);
+ c.create_sq.qsize = cpu_to_le16(APPLE_ANS_MAX_QUEUE_DEPTH - 1);
+ c.create_sq.sq_flags = cpu_to_le16(NVME_QUEUE_PHYS_CONTIG);
+ c.create_sq.cqid = cpu_to_le16(1);
+
+ return nvme_submit_sync_cmd(anv->ctrl.admin_q, &c, NULL, 0);
+}
+
+static int apple_nvme_remove_sq(struct apple_nvme *anv)
+{
+ struct nvme_command c = {};
+
+ c.delete_queue.opcode = nvme_admin_delete_sq;
+ c.delete_queue.qid = cpu_to_le16(1);
+
+ return nvme_submit_sync_cmd(anv->ctrl.admin_q, &c, NULL, 0);
+}
+
+static blk_status_t apple_nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
+ const struct blk_mq_queue_data *bd)
+{
+ struct nvme_ns *ns = hctx->queue->queuedata;
+ struct apple_nvme_queue *q = hctx->driver_data;
+ struct apple_nvme *anv = queue_to_apple_nvme(q);
+ struct request *req = bd->rq;
+ struct apple_nvme_iod *iod = blk_mq_rq_to_pdu(req);
+ struct nvme_command *cmnd = &iod->cmd;
+ blk_status_t ret;
+
+ iod->npages = -1;
+ iod->nents = 0;
+
+ /*
+ * We should not need to do this, but we're still using this to
+ * ensure we can drain requests on a dying queue.
+ */
+ if (unlikely(!READ_ONCE(q->enabled)))
+ return BLK_STS_IOERR;
+
+ if (!nvme_check_ready(&anv->ctrl, req, true))
+ return nvme_fail_nonready_command(&anv->ctrl, req);
+
+ ret = nvme_setup_cmd(ns, req);
+ if (ret)
+ return ret;
+
+ if (blk_rq_nr_phys_segments(req)) {
+ ret = apple_nvme_map_data(anv, req, cmnd);
+ if (ret)
+ goto out_free_cmd;
+ }
+
+ nvme_start_request(req);
+ apple_nvme_submit_cmd(q, cmnd);
+ return BLK_STS_OK;
+
+out_free_cmd:
+ nvme_cleanup_cmd(req);
+ return ret;
+}
+
+static int apple_nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
+ unsigned int hctx_idx)
+{
+ hctx->driver_data = data;
+ return 0;
+}
+
+static int apple_nvme_init_request(struct blk_mq_tag_set *set,
+ struct request *req, unsigned int hctx_idx,
+ unsigned int numa_node)
+{
+ struct apple_nvme_queue *q = set->driver_data;
+ struct apple_nvme *anv = queue_to_apple_nvme(q);
+ struct apple_nvme_iod *iod = blk_mq_rq_to_pdu(req);
+ struct nvme_request *nreq = nvme_req(req);
+
+ iod->q = q;
+ nreq->ctrl = &anv->ctrl;
+ nreq->cmd = &iod->cmd;
+
+ return 0;
+}
+
+static void apple_nvme_disable(struct apple_nvme *anv, bool shutdown)
+{
+ u32 csts = readl(anv->mmio_nvme + NVME_REG_CSTS);
+ bool dead = false, freeze = false;
+ unsigned long flags;
+
+ if (apple_rtkit_is_crashed(anv->rtk))
+ dead = true;
+ if (!(csts & NVME_CSTS_RDY))
+ dead = true;
+ if (csts & NVME_CSTS_CFS)
+ dead = true;
+
+ if (anv->ctrl.state == NVME_CTRL_LIVE ||
+ anv->ctrl.state == NVME_CTRL_RESETTING) {
+ freeze = true;
+ nvme_start_freeze(&anv->ctrl);
+ }
+
+ /*
+ * Give the controller a chance to complete all entered requests if
+ * doing a safe shutdown.
+ */
+ if (!dead && shutdown && freeze)
+ nvme_wait_freeze_timeout(&anv->ctrl, NVME_IO_TIMEOUT);
+
+ nvme_quiesce_io_queues(&anv->ctrl);
+
+ if (!dead) {
+ if (READ_ONCE(anv->ioq.enabled)) {
+ apple_nvme_remove_sq(anv);
+ apple_nvme_remove_cq(anv);
+ }
+
+ /*
+ * Always disable the NVMe controller after shutdown.
+ * We need to do this to bring it back up later anyway, and we
+ * can't do it while the firmware is not running (e.g. in the
+ * resume reset path before RTKit is initialized), so for Apple
+ * controllers it makes sense to unconditionally do it here.
+ * Additionally, this sequence of events is reliable, while
+ * others (like disabling after bringing back the firmware on
+ * resume) seem to run into trouble under some circumstances.
+ *
+ * Both U-Boot and m1n1 also use this convention (i.e. an ANS
+ * NVMe controller is handed off with firmware shut down, in an
+ * NVMe disabled state, after a clean shutdown).
+ */
+ if (shutdown)
+ nvme_disable_ctrl(&anv->ctrl, shutdown);
+ nvme_disable_ctrl(&anv->ctrl, false);
+ }
+
+ WRITE_ONCE(anv->ioq.enabled, false);
+ WRITE_ONCE(anv->adminq.enabled, false);
+ mb(); /* ensure that nvme_queue_rq() sees that enabled is cleared */
+ nvme_quiesce_admin_queue(&anv->ctrl);
+
+ /* last chance to complete any requests before nvme_cancel_request */
+ spin_lock_irqsave(&anv->lock, flags);
+ apple_nvme_handle_cq(&anv->ioq, true);
+ apple_nvme_handle_cq(&anv->adminq, true);
+ spin_unlock_irqrestore(&anv->lock, flags);
+
+ nvme_cancel_tagset(&anv->ctrl);
+ nvme_cancel_admin_tagset(&anv->ctrl);
+
+ /*
+ * The driver will not be starting up queues again if shutting down so
+ * must flush all entered requests to their failed completion to avoid
+ * deadlocking blk-mq hot-cpu notifier.
+ */
+ if (shutdown) {
+ nvme_unquiesce_io_queues(&anv->ctrl);
+ nvme_unquiesce_admin_queue(&anv->ctrl);
+ }
+}
+
+static enum blk_eh_timer_return apple_nvme_timeout(struct request *req)
+{
+ struct apple_nvme_iod *iod = blk_mq_rq_to_pdu(req);
+ struct apple_nvme_queue *q = iod->q;
+ struct apple_nvme *anv = queue_to_apple_nvme(q);
+ unsigned long flags;
+ u32 csts = readl(anv->mmio_nvme + NVME_REG_CSTS);
+
+ if (anv->ctrl.state != NVME_CTRL_LIVE) {
+ /*
+ * From rdma.c:
+ * If we are resetting, connecting or deleting we should
+ * complete immediately because we may block controller
+ * teardown or setup sequence
+ * - ctrl disable/shutdown fabrics requests
+ * - connect requests
+ * - initialization admin requests
+ * - I/O requests that entered after unquiescing and
+ * the controller stopped responding
+ *
+ * All other requests should be cancelled by the error
+ * recovery work, so it's fine that we fail it here.
+ */
+ dev_warn(anv->dev,
+ "I/O %d(aq:%d) timeout while not in live state\n",
+ req->tag, q->is_adminq);
+ if (blk_mq_request_started(req) &&
+ !blk_mq_request_completed(req)) {
+ nvme_req(req)->status = NVME_SC_HOST_ABORTED_CMD;
+ nvme_req(req)->flags |= NVME_REQ_CANCELLED;
+ blk_mq_complete_request(req);
+ }
+ return BLK_EH_DONE;
+ }
+
+ /* check if we just missed an interrupt if we're still alive */
+ if (!apple_rtkit_is_crashed(anv->rtk) && !(csts & NVME_CSTS_CFS)) {
+ spin_lock_irqsave(&anv->lock, flags);
+ apple_nvme_handle_cq(q, false);
+ spin_unlock_irqrestore(&anv->lock, flags);
+ if (blk_mq_request_completed(req)) {
+ dev_warn(anv->dev,
+ "I/O %d(aq:%d) timeout: completion polled\n",
+ req->tag, q->is_adminq);
+ return BLK_EH_DONE;
+ }
+ }
+
+ /*
+ * aborting commands isn't supported which leaves a full reset as our
+ * only option here
+ */
+ dev_warn(anv->dev, "I/O %d(aq:%d) timeout: resetting controller\n",
+ req->tag, q->is_adminq);
+ nvme_req(req)->flags |= NVME_REQ_CANCELLED;
+ apple_nvme_disable(anv, false);
+ nvme_reset_ctrl(&anv->ctrl);
+ return BLK_EH_DONE;
+}
+
+static int apple_nvme_poll(struct blk_mq_hw_ctx *hctx,
+ struct io_comp_batch *iob)
+{
+ struct apple_nvme_queue *q = hctx->driver_data;
+ struct apple_nvme *anv = queue_to_apple_nvme(q);
+ bool found;
+ unsigned long flags;
+
+ spin_lock_irqsave(&anv->lock, flags);
+ found = apple_nvme_poll_cq(q, iob);
+ spin_unlock_irqrestore(&anv->lock, flags);
+
+ return found;
+}
+
+static const struct blk_mq_ops apple_nvme_mq_admin_ops = {
+ .queue_rq = apple_nvme_queue_rq,
+ .complete = apple_nvme_complete_rq,
+ .init_hctx = apple_nvme_init_hctx,
+ .init_request = apple_nvme_init_request,
+ .timeout = apple_nvme_timeout,
+};
+
+static const struct blk_mq_ops apple_nvme_mq_ops = {
+ .queue_rq = apple_nvme_queue_rq,
+ .complete = apple_nvme_complete_rq,
+ .init_hctx = apple_nvme_init_hctx,
+ .init_request = apple_nvme_init_request,
+ .timeout = apple_nvme_timeout,
+ .poll = apple_nvme_poll,
+};
+
+static void apple_nvme_init_queue(struct apple_nvme_queue *q)
+{
+ unsigned int depth = apple_nvme_queue_depth(q);
+
+ q->cq_head = 0;
+ q->cq_phase = 1;
+ memset(q->tcbs, 0,
+ APPLE_ANS_MAX_QUEUE_DEPTH * sizeof(struct apple_nvmmu_tcb));
+ memset(q->cqes, 0, depth * sizeof(struct nvme_completion));
+ WRITE_ONCE(q->enabled, true);
+ wmb(); /* ensure the first interrupt sees the initialization */
+}
+
+static void apple_nvme_reset_work(struct work_struct *work)
+{
+ unsigned int nr_io_queues = 1;
+ int ret;
+ u32 boot_status, aqa;
+ struct apple_nvme *anv =
+ container_of(work, struct apple_nvme, ctrl.reset_work);
+
+ if (anv->ctrl.state != NVME_CTRL_RESETTING) {
+ dev_warn(anv->dev, "ctrl state %d is not RESETTING\n",
+ anv->ctrl.state);
+ ret = -ENODEV;
+ goto out;
+ }
+
+ /* there's unfortunately no known way to recover if RTKit crashed :( */
+ if (apple_rtkit_is_crashed(anv->rtk)) {
+ dev_err(anv->dev,
+ "RTKit has crashed without any way to recover.");
+ ret = -EIO;
+ goto out;
+ }
+
+ /* RTKit must be shut down cleanly for the (soft)-reset to work */
+ if (apple_rtkit_is_running(anv->rtk)) {
+ /* reset the controller if it is enabled */
+ if (anv->ctrl.ctrl_config & NVME_CC_ENABLE)
+ apple_nvme_disable(anv, false);
+ dev_dbg(anv->dev, "Trying to shut down RTKit before reset.");
+ ret = apple_rtkit_shutdown(anv->rtk);
+ if (ret)
+ goto out;
+ }
+
+ writel(0, anv->mmio_coproc + APPLE_ANS_COPROC_CPU_CONTROL);
+
+ ret = reset_control_assert(anv->reset);
+ if (ret)
+ goto out;
+
+ ret = apple_rtkit_reinit(anv->rtk);
+ if (ret)
+ goto out;
+
+ ret = reset_control_deassert(anv->reset);
+ if (ret)
+ goto out;
+
+ writel(APPLE_ANS_COPROC_CPU_CONTROL_RUN,
+ anv->mmio_coproc + APPLE_ANS_COPROC_CPU_CONTROL);
+ ret = apple_rtkit_boot(anv->rtk);
+ if (ret) {
+ dev_err(anv->dev, "ANS did not boot");
+ goto out;
+ }
+
+ ret = readl_poll_timeout(anv->mmio_nvme + APPLE_ANS_BOOT_STATUS,
+ boot_status,
+ boot_status == APPLE_ANS_BOOT_STATUS_OK,
+ USEC_PER_MSEC, APPLE_ANS_BOOT_TIMEOUT);
+ if (ret) {
+ dev_err(anv->dev, "ANS did not initialize");
+ goto out;
+ }
+
+ dev_dbg(anv->dev, "ANS booted successfully.");
+
+ /*
+ * Limit the max command size to prevent iod->sg allocations going
+ * over a single page.
+ */
+ anv->ctrl.max_hw_sectors = min_t(u32, NVME_MAX_KB_SZ << 1,
+ dma_max_mapping_size(anv->dev) >> 9);
+ anv->ctrl.max_segments = NVME_MAX_SEGS;
+
+ dma_set_max_seg_size(anv->dev, 0xffffffff);
+
+ /*
+ * Enable NVMMU and linear submission queues.
+ * While we could keep those disabled and pretend this is slightly
+ * more common NVMe controller we'd still need some quirks (e.g.
+ * sq entries will be 128 bytes) and Apple might drop support for
+ * that mode in the future.
+ */
+ writel(APPLE_ANS_LINEAR_SQ_EN,
+ anv->mmio_nvme + APPLE_ANS_LINEAR_SQ_CTRL);
+
+ /* Allow as many pending command as possible for both queues */
+ writel(APPLE_ANS_MAX_QUEUE_DEPTH | (APPLE_ANS_MAX_QUEUE_DEPTH << 16),
+ anv->mmio_nvme + APPLE_ANS_MAX_PEND_CMDS_CTRL);
+
+ /* Setup the NVMMU for the maximum admin and IO queue depth */
+ writel(APPLE_ANS_MAX_QUEUE_DEPTH - 1,
+ anv->mmio_nvme + APPLE_NVMMU_NUM_TCBS);
+
+ /*
+ * This is probably a chicken bit: without it all commands where any PRP
+ * is set to zero (including those that don't use that field) fail and
+ * the co-processor complains about "completed with err BAD_CMD-" or
+ * a "NULL_PRP_PTR_ERR" in the syslog
+ */
+ writel(readl(anv->mmio_nvme + APPLE_ANS_UNKNOWN_CTRL) &
+ ~APPLE_ANS_PRP_NULL_CHECK,
+ anv->mmio_nvme + APPLE_ANS_UNKNOWN_CTRL);
+
+ /* Setup the admin queue */
+ aqa = APPLE_NVME_AQ_DEPTH - 1;
+ aqa |= aqa << 16;
+ writel(aqa, anv->mmio_nvme + NVME_REG_AQA);
+ writeq(anv->adminq.sq_dma_addr, anv->mmio_nvme + NVME_REG_ASQ);
+ writeq(anv->adminq.cq_dma_addr, anv->mmio_nvme + NVME_REG_ACQ);
+
+ /* Setup NVMMU for both queues */
+ writeq(anv->adminq.tcb_dma_addr,
+ anv->mmio_nvme + APPLE_NVMMU_ASQ_TCB_BASE);
+ writeq(anv->ioq.tcb_dma_addr,
+ anv->mmio_nvme + APPLE_NVMMU_IOSQ_TCB_BASE);
+
+ anv->ctrl.sqsize =
+ APPLE_ANS_MAX_QUEUE_DEPTH - 1; /* 0's based queue depth */
+ anv->ctrl.cap = readq(anv->mmio_nvme + NVME_REG_CAP);
+
+ dev_dbg(anv->dev, "Enabling controller now");
+ ret = nvme_enable_ctrl(&anv->ctrl);
+ if (ret)
+ goto out;
+
+ dev_dbg(anv->dev, "Starting admin queue");
+ apple_nvme_init_queue(&anv->adminq);
+ nvme_unquiesce_admin_queue(&anv->ctrl);
+
+ if (!nvme_change_ctrl_state(&anv->ctrl, NVME_CTRL_CONNECTING)) {
+ dev_warn(anv->ctrl.device,
+ "failed to mark controller CONNECTING\n");
+ ret = -ENODEV;
+ goto out;
+ }
+
+ ret = nvme_init_ctrl_finish(&anv->ctrl, false);
+ if (ret)
+ goto out;
+
+ dev_dbg(anv->dev, "Creating IOCQ");
+ ret = apple_nvme_create_cq(anv);
+ if (ret)
+ goto out;
+ dev_dbg(anv->dev, "Creating IOSQ");
+ ret = apple_nvme_create_sq(anv);
+ if (ret)
+ goto out_remove_cq;
+
+ apple_nvme_init_queue(&anv->ioq);
+ nr_io_queues = 1;
+ ret = nvme_set_queue_count(&anv->ctrl, &nr_io_queues);
+ if (ret)
+ goto out_remove_sq;
+ if (nr_io_queues != 1) {
+ ret = -ENXIO;
+ goto out_remove_sq;
+ }
+
+ anv->ctrl.queue_count = nr_io_queues + 1;
+
+ nvme_unquiesce_io_queues(&anv->ctrl);
+ nvme_wait_freeze(&anv->ctrl);
+ blk_mq_update_nr_hw_queues(&anv->tagset, 1);
+ nvme_unfreeze(&anv->ctrl);
+
+ if (!nvme_change_ctrl_state(&anv->ctrl, NVME_CTRL_LIVE)) {
+ dev_warn(anv->ctrl.device,
+ "failed to mark controller live state\n");
+ ret = -ENODEV;
+ goto out_remove_sq;
+ }
+
+ nvme_start_ctrl(&anv->ctrl);
+
+ dev_dbg(anv->dev, "ANS boot and NVMe init completed.");
+ return;
+
+out_remove_sq:
+ apple_nvme_remove_sq(anv);
+out_remove_cq:
+ apple_nvme_remove_cq(anv);
+out:
+ dev_warn(anv->ctrl.device, "Reset failure status: %d\n", ret);
+ nvme_change_ctrl_state(&anv->ctrl, NVME_CTRL_DELETING);
+ nvme_get_ctrl(&anv->ctrl);
+ apple_nvme_disable(anv, false);
+ nvme_mark_namespaces_dead(&anv->ctrl);
+ if (!queue_work(nvme_wq, &anv->remove_work))
+ nvme_put_ctrl(&anv->ctrl);
+}
+
+static void apple_nvme_remove_dead_ctrl_work(struct work_struct *work)
+{
+ struct apple_nvme *anv =
+ container_of(work, struct apple_nvme, remove_work);
+
+ nvme_put_ctrl(&anv->ctrl);
+ device_release_driver(anv->dev);
+}
+
+static int apple_nvme_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
+{
+ *val = readl(ctrl_to_apple_nvme(ctrl)->mmio_nvme + off);
+ return 0;
+}
+
+static int apple_nvme_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
+{
+ writel(val, ctrl_to_apple_nvme(ctrl)->mmio_nvme + off);
+ return 0;
+}
+
+static int apple_nvme_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
+{
+ *val = readq(ctrl_to_apple_nvme(ctrl)->mmio_nvme + off);
+ return 0;
+}
+
+static int apple_nvme_get_address(struct nvme_ctrl *ctrl, char *buf, int size)
+{
+ struct device *dev = ctrl_to_apple_nvme(ctrl)->dev;
+
+ return snprintf(buf, size, "%s\n", dev_name(dev));
+}
+
+static void apple_nvme_free_ctrl(struct nvme_ctrl *ctrl)
+{
+ struct apple_nvme *anv = ctrl_to_apple_nvme(ctrl);
+
+ if (anv->ctrl.admin_q)
+ blk_put_queue(anv->ctrl.admin_q);
+ put_device(anv->dev);
+}
+
+static const struct nvme_ctrl_ops nvme_ctrl_ops = {
+ .name = "apple-nvme",
+ .module = THIS_MODULE,
+ .flags = 0,
+ .reg_read32 = apple_nvme_reg_read32,
+ .reg_write32 = apple_nvme_reg_write32,
+ .reg_read64 = apple_nvme_reg_read64,
+ .free_ctrl = apple_nvme_free_ctrl,
+ .get_address = apple_nvme_get_address,
+};
+
+static void apple_nvme_async_probe(void *data, async_cookie_t cookie)
+{
+ struct apple_nvme *anv = data;
+
+ flush_work(&anv->ctrl.reset_work);
+ flush_work(&anv->ctrl.scan_work);
+ nvme_put_ctrl(&anv->ctrl);
+}
+
+static void devm_apple_nvme_put_tag_set(void *data)
+{
+ blk_mq_free_tag_set(data);
+}
+
+static int apple_nvme_alloc_tagsets(struct apple_nvme *anv)
+{
+ int ret;
+
+ anv->admin_tagset.ops = &apple_nvme_mq_admin_ops;
+ anv->admin_tagset.nr_hw_queues = 1;
+ anv->admin_tagset.queue_depth = APPLE_NVME_AQ_MQ_TAG_DEPTH;
+ anv->admin_tagset.timeout = NVME_ADMIN_TIMEOUT;
+ anv->admin_tagset.numa_node = NUMA_NO_NODE;
+ anv->admin_tagset.cmd_size = sizeof(struct apple_nvme_iod);
+ anv->admin_tagset.flags = BLK_MQ_F_NO_SCHED;
+ anv->admin_tagset.driver_data = &anv->adminq;
+
+ ret = blk_mq_alloc_tag_set(&anv->admin_tagset);
+ if (ret)
+ return ret;
+ ret = devm_add_action_or_reset(anv->dev, devm_apple_nvme_put_tag_set,
+ &anv->admin_tagset);
+ if (ret)
+ return ret;
+
+ anv->tagset.ops = &apple_nvme_mq_ops;
+ anv->tagset.nr_hw_queues = 1;
+ anv->tagset.nr_maps = 1;
+ /*
+ * Tags are used as an index to the NVMMU and must be unique across
+ * both queues. The admin queue gets the first APPLE_NVME_AQ_DEPTH which
+ * must be marked as reserved in the IO queue.
+ */
+ anv->tagset.reserved_tags = APPLE_NVME_AQ_DEPTH;
+ anv->tagset.queue_depth = APPLE_ANS_MAX_QUEUE_DEPTH - 1;
+ anv->tagset.timeout = NVME_IO_TIMEOUT;
+ anv->tagset.numa_node = NUMA_NO_NODE;
+ anv->tagset.cmd_size = sizeof(struct apple_nvme_iod);
+ anv->tagset.flags = BLK_MQ_F_SHOULD_MERGE;
+ anv->tagset.driver_data = &anv->ioq;
+
+ ret = blk_mq_alloc_tag_set(&anv->tagset);
+ if (ret)
+ return ret;
+ ret = devm_add_action_or_reset(anv->dev, devm_apple_nvme_put_tag_set,
+ &anv->tagset);
+ if (ret)
+ return ret;
+
+ anv->ctrl.admin_tagset = &anv->admin_tagset;
+ anv->ctrl.tagset = &anv->tagset;
+
+ return 0;
+}
+
+static int apple_nvme_queue_alloc(struct apple_nvme *anv,
+ struct apple_nvme_queue *q)
+{
+ unsigned int depth = apple_nvme_queue_depth(q);
+
+ q->cqes = dmam_alloc_coherent(anv->dev,
+ depth * sizeof(struct nvme_completion),
+ &q->cq_dma_addr, GFP_KERNEL);
+ if (!q->cqes)
+ return -ENOMEM;
+
+ q->sqes = dmam_alloc_coherent(anv->dev,
+ depth * sizeof(struct nvme_command),
+ &q->sq_dma_addr, GFP_KERNEL);
+ if (!q->sqes)
+ return -ENOMEM;
+
+ /*
+ * We need the maximum queue depth here because the NVMMU only has a
+ * single depth configuration shared between both queues.
+ */
+ q->tcbs = dmam_alloc_coherent(anv->dev,
+ APPLE_ANS_MAX_QUEUE_DEPTH *
+ sizeof(struct apple_nvmmu_tcb),
+ &q->tcb_dma_addr, GFP_KERNEL);
+ if (!q->tcbs)
+ return -ENOMEM;
+
+ /*
+ * initialize phase to make sure the allocated and empty memory
+ * doesn't look like a full cq already.
+ */
+ q->cq_phase = 1;
+ return 0;
+}
+
+static void apple_nvme_detach_genpd(struct apple_nvme *anv)
+{
+ int i;
+
+ if (anv->pd_count <= 1)
+ return;
+
+ for (i = anv->pd_count - 1; i >= 0; i--) {
+ if (anv->pd_link[i])
+ device_link_del(anv->pd_link[i]);
+ if (!IS_ERR_OR_NULL(anv->pd_dev[i]))
+ dev_pm_domain_detach(anv->pd_dev[i], true);
+ }
+}
+
+static int apple_nvme_attach_genpd(struct apple_nvme *anv)
+{
+ struct device *dev = anv->dev;
+ int i;
+
+ anv->pd_count = of_count_phandle_with_args(
+ dev->of_node, "power-domains", "#power-domain-cells");
+ if (anv->pd_count <= 1)
+ return 0;
+
+ anv->pd_dev = devm_kcalloc(dev, anv->pd_count, sizeof(*anv->pd_dev),
+ GFP_KERNEL);
+ if (!anv->pd_dev)
+ return -ENOMEM;
+
+ anv->pd_link = devm_kcalloc(dev, anv->pd_count, sizeof(*anv->pd_link),
+ GFP_KERNEL);
+ if (!anv->pd_link)
+ return -ENOMEM;
+
+ for (i = 0; i < anv->pd_count; i++) {
+ anv->pd_dev[i] = dev_pm_domain_attach_by_id(dev, i);
+ if (IS_ERR(anv->pd_dev[i])) {
+ apple_nvme_detach_genpd(anv);
+ return PTR_ERR(anv->pd_dev[i]);
+ }
+
+ anv->pd_link[i] = device_link_add(dev, anv->pd_dev[i],
+ DL_FLAG_STATELESS |
+ DL_FLAG_PM_RUNTIME |
+ DL_FLAG_RPM_ACTIVE);
+ if (!anv->pd_link[i]) {
+ apple_nvme_detach_genpd(anv);
+ return -EINVAL;
+ }
+ }
+
+ return 0;
+}
+
+static void devm_apple_nvme_mempool_destroy(void *data)
+{
+ mempool_destroy(data);
+}
+
+static int apple_nvme_probe(struct platform_device *pdev)
+{
+ struct device *dev = &pdev->dev;
+ struct apple_nvme *anv;
+ int ret;
+
+ anv = devm_kzalloc(dev, sizeof(*anv), GFP_KERNEL);
+ if (!anv)
+ return -ENOMEM;
+
+ anv->dev = get_device(dev);
+ anv->adminq.is_adminq = true;
+ platform_set_drvdata(pdev, anv);
+
+ ret = apple_nvme_attach_genpd(anv);
+ if (ret < 0) {
+ dev_err_probe(dev, ret, "Failed to attach power domains");
+ goto put_dev;
+ }
+ if (dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64))) {
+ ret = -ENXIO;
+ goto put_dev;
+ }
+
+ anv->irq = platform_get_irq(pdev, 0);
+ if (anv->irq < 0) {
+ ret = anv->irq;
+ goto put_dev;
+ }
+ if (!anv->irq) {
+ ret = -ENXIO;
+ goto put_dev;
+ }
+
+ anv->mmio_coproc = devm_platform_ioremap_resource_byname(pdev, "ans");
+ if (IS_ERR(anv->mmio_coproc)) {
+ ret = PTR_ERR(anv->mmio_coproc);
+ goto put_dev;
+ }
+ anv->mmio_nvme = devm_platform_ioremap_resource_byname(pdev, "nvme");
+ if (IS_ERR(anv->mmio_nvme)) {
+ ret = PTR_ERR(anv->mmio_nvme);
+ goto put_dev;
+ }
+
+ anv->adminq.sq_db = anv->mmio_nvme + APPLE_ANS_LINEAR_ASQ_DB;
+ anv->adminq.cq_db = anv->mmio_nvme + APPLE_ANS_ACQ_DB;
+ anv->ioq.sq_db = anv->mmio_nvme + APPLE_ANS_LINEAR_IOSQ_DB;
+ anv->ioq.cq_db = anv->mmio_nvme + APPLE_ANS_IOCQ_DB;
+
+ anv->sart = devm_apple_sart_get(dev);
+ if (IS_ERR(anv->sart)) {
+ ret = dev_err_probe(dev, PTR_ERR(anv->sart),
+ "Failed to initialize SART");
+ goto put_dev;
+ }
+
+ anv->reset = devm_reset_control_array_get_exclusive(anv->dev);
+ if (IS_ERR(anv->reset)) {
+ ret = dev_err_probe(dev, PTR_ERR(anv->reset),
+ "Failed to get reset control");
+ goto put_dev;
+ }
+
+ INIT_WORK(&anv->ctrl.reset_work, apple_nvme_reset_work);
+ INIT_WORK(&anv->remove_work, apple_nvme_remove_dead_ctrl_work);
+ spin_lock_init(&anv->lock);
+
+ ret = apple_nvme_queue_alloc(anv, &anv->adminq);
+ if (ret)
+ goto put_dev;
+ ret = apple_nvme_queue_alloc(anv, &anv->ioq);
+ if (ret)
+ goto put_dev;
+
+ anv->prp_page_pool = dmam_pool_create("prp list page", anv->dev,
+ NVME_CTRL_PAGE_SIZE,
+ NVME_CTRL_PAGE_SIZE, 0);
+ if (!anv->prp_page_pool) {
+ ret = -ENOMEM;
+ goto put_dev;
+ }
+
+ anv->prp_small_pool =
+ dmam_pool_create("prp list 256", anv->dev, 256, 256, 0);
+ if (!anv->prp_small_pool) {
+ ret = -ENOMEM;
+ goto put_dev;
+ }
+
+ WARN_ON_ONCE(apple_nvme_iod_alloc_size() > PAGE_SIZE);
+ anv->iod_mempool =
+ mempool_create_kmalloc_pool(1, apple_nvme_iod_alloc_size());
+ if (!anv->iod_mempool) {
+ ret = -ENOMEM;
+ goto put_dev;
+ }
+ ret = devm_add_action_or_reset(anv->dev,
+ devm_apple_nvme_mempool_destroy, anv->iod_mempool);
+ if (ret)
+ goto put_dev;
+
+ ret = apple_nvme_alloc_tagsets(anv);
+ if (ret)
+ goto put_dev;
+
+ ret = devm_request_irq(anv->dev, anv->irq, apple_nvme_irq, 0,
+ "nvme-apple", anv);
+ if (ret) {
+ dev_err_probe(dev, ret, "Failed to request IRQ");
+ goto put_dev;
+ }
+
+ anv->rtk =
+ devm_apple_rtkit_init(dev, anv, NULL, 0, &apple_nvme_rtkit_ops);
+ if (IS_ERR(anv->rtk)) {
+ ret = dev_err_probe(dev, PTR_ERR(anv->rtk),
+ "Failed to initialize RTKit");
+ goto put_dev;
+ }
+
+ ret = nvme_init_ctrl(&anv->ctrl, anv->dev, &nvme_ctrl_ops,
+ NVME_QUIRK_SKIP_CID_GEN | NVME_QUIRK_IDENTIFY_CNS);
+ if (ret) {
+ dev_err_probe(dev, ret, "Failed to initialize nvme_ctrl");
+ goto put_dev;
+ }
+
+ anv->ctrl.admin_q = blk_mq_init_queue(&anv->admin_tagset);
+ if (IS_ERR(anv->ctrl.admin_q)) {
+ ret = -ENOMEM;
+ goto put_dev;
+ }
+
+ nvme_reset_ctrl(&anv->ctrl);
+ async_schedule(apple_nvme_async_probe, anv);
+
+ return 0;
+
+put_dev:
+ put_device(anv->dev);
+ return ret;
+}
+
+static int apple_nvme_remove(struct platform_device *pdev)
+{
+ struct apple_nvme *anv = platform_get_drvdata(pdev);
+
+ nvme_change_ctrl_state(&anv->ctrl, NVME_CTRL_DELETING);
+ flush_work(&anv->ctrl.reset_work);
+ nvme_stop_ctrl(&anv->ctrl);
+ nvme_remove_namespaces(&anv->ctrl);
+ apple_nvme_disable(anv, true);
+ nvme_uninit_ctrl(&anv->ctrl);
+
+ if (apple_rtkit_is_running(anv->rtk))
+ apple_rtkit_shutdown(anv->rtk);
+
+ apple_nvme_detach_genpd(anv);
+
+ return 0;
+}
+
+static void apple_nvme_shutdown(struct platform_device *pdev)
+{
+ struct apple_nvme *anv = platform_get_drvdata(pdev);
+
+ apple_nvme_disable(anv, true);
+ if (apple_rtkit_is_running(anv->rtk))
+ apple_rtkit_shutdown(anv->rtk);
+}
+
+static int apple_nvme_resume(struct device *dev)
+{
+ struct apple_nvme *anv = dev_get_drvdata(dev);
+
+ return nvme_reset_ctrl(&anv->ctrl);
+}
+
+static int apple_nvme_suspend(struct device *dev)
+{
+ struct apple_nvme *anv = dev_get_drvdata(dev);
+ int ret = 0;
+
+ apple_nvme_disable(anv, true);
+
+ if (apple_rtkit_is_running(anv->rtk))
+ ret = apple_rtkit_shutdown(anv->rtk);
+
+ writel(0, anv->mmio_coproc + APPLE_ANS_COPROC_CPU_CONTROL);
+
+ return ret;
+}
+
+static DEFINE_SIMPLE_DEV_PM_OPS(apple_nvme_pm_ops, apple_nvme_suspend,
+ apple_nvme_resume);
+
+static const struct of_device_id apple_nvme_of_match[] = {
+ { .compatible = "apple,nvme-ans2" },
+ {},
+};
+MODULE_DEVICE_TABLE(of, apple_nvme_of_match);
+
+static struct platform_driver apple_nvme_driver = {
+ .driver = {
+ .name = "nvme-apple",
+ .of_match_table = apple_nvme_of_match,
+ .pm = pm_sleep_ptr(&apple_nvme_pm_ops),
+ },
+ .probe = apple_nvme_probe,
+ .remove = apple_nvme_remove,
+ .shutdown = apple_nvme_shutdown,
+};
+module_platform_driver(apple_nvme_driver);
+
+MODULE_AUTHOR("Sven Peter <sven@svenpeter.dev>");
+MODULE_LICENSE("GPL");
diff --git a/drivers/nvme/host/auth.c b/drivers/nvme/host/auth.c
new file mode 100644
index 0000000000..811541ce20
--- /dev/null
+++ b/drivers/nvme/host/auth.c
@@ -0,0 +1,1043 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * Copyright (c) 2020 Hannes Reinecke, SUSE Linux
+ */
+
+#include <linux/crc32.h>
+#include <linux/base64.h>
+#include <linux/prandom.h>
+#include <asm/unaligned.h>
+#include <crypto/hash.h>
+#include <crypto/dh.h>
+#include "nvme.h"
+#include "fabrics.h"
+#include <linux/nvme-auth.h>
+
+#define CHAP_BUF_SIZE 4096
+static struct kmem_cache *nvme_chap_buf_cache;
+static mempool_t *nvme_chap_buf_pool;
+
+struct nvme_dhchap_queue_context {
+ struct list_head entry;
+ struct work_struct auth_work;
+ struct nvme_ctrl *ctrl;
+ struct crypto_shash *shash_tfm;
+ struct crypto_kpp *dh_tfm;
+ void *buf;
+ int qid;
+ int error;
+ u32 s1;
+ u32 s2;
+ u16 transaction;
+ u8 status;
+ u8 dhgroup_id;
+ u8 hash_id;
+ size_t hash_len;
+ u8 c1[64];
+ u8 c2[64];
+ u8 response[64];
+ u8 *host_response;
+ u8 *ctrl_key;
+ u8 *host_key;
+ u8 *sess_key;
+ int ctrl_key_len;
+ int host_key_len;
+ int sess_key_len;
+};
+
+static struct workqueue_struct *nvme_auth_wq;
+
+#define nvme_auth_flags_from_qid(qid) \
+ (qid == 0) ? 0 : BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_RESERVED
+#define nvme_auth_queue_from_qid(ctrl, qid) \
+ (qid == 0) ? (ctrl)->fabrics_q : (ctrl)->connect_q
+
+static inline int ctrl_max_dhchaps(struct nvme_ctrl *ctrl)
+{
+ return ctrl->opts->nr_io_queues + ctrl->opts->nr_write_queues +
+ ctrl->opts->nr_poll_queues + 1;
+}
+
+static int nvme_auth_submit(struct nvme_ctrl *ctrl, int qid,
+ void *data, size_t data_len, bool auth_send)
+{
+ struct nvme_command cmd = {};
+ blk_mq_req_flags_t flags = nvme_auth_flags_from_qid(qid);
+ struct request_queue *q = nvme_auth_queue_from_qid(ctrl, qid);
+ int ret;
+
+ cmd.auth_common.opcode = nvme_fabrics_command;
+ cmd.auth_common.secp = NVME_AUTH_DHCHAP_PROTOCOL_IDENTIFIER;
+ cmd.auth_common.spsp0 = 0x01;
+ cmd.auth_common.spsp1 = 0x01;
+ if (auth_send) {
+ cmd.auth_send.fctype = nvme_fabrics_type_auth_send;
+ cmd.auth_send.tl = cpu_to_le32(data_len);
+ } else {
+ cmd.auth_receive.fctype = nvme_fabrics_type_auth_receive;
+ cmd.auth_receive.al = cpu_to_le32(data_len);
+ }
+
+ ret = __nvme_submit_sync_cmd(q, &cmd, NULL, data, data_len,
+ qid == 0 ? NVME_QID_ANY : qid,
+ 0, flags);
+ if (ret > 0)
+ dev_warn(ctrl->device,
+ "qid %d auth_send failed with status %d\n", qid, ret);
+ else if (ret < 0)
+ dev_err(ctrl->device,
+ "qid %d auth_send failed with error %d\n", qid, ret);
+ return ret;
+}
+
+static int nvme_auth_receive_validate(struct nvme_ctrl *ctrl, int qid,
+ struct nvmf_auth_dhchap_failure_data *data,
+ u16 transaction, u8 expected_msg)
+{
+ dev_dbg(ctrl->device, "%s: qid %d auth_type %d auth_id %x\n",
+ __func__, qid, data->auth_type, data->auth_id);
+
+ if (data->auth_type == NVME_AUTH_COMMON_MESSAGES &&
+ data->auth_id == NVME_AUTH_DHCHAP_MESSAGE_FAILURE1) {
+ return data->rescode_exp;
+ }
+ if (data->auth_type != NVME_AUTH_DHCHAP_MESSAGES ||
+ data->auth_id != expected_msg) {
+ dev_warn(ctrl->device,
+ "qid %d invalid message %02x/%02x\n",
+ qid, data->auth_type, data->auth_id);
+ return NVME_AUTH_DHCHAP_FAILURE_INCORRECT_MESSAGE;
+ }
+ if (le16_to_cpu(data->t_id) != transaction) {
+ dev_warn(ctrl->device,
+ "qid %d invalid transaction ID %d\n",
+ qid, le16_to_cpu(data->t_id));
+ return NVME_AUTH_DHCHAP_FAILURE_INCORRECT_MESSAGE;
+ }
+ return 0;
+}
+
+static int nvme_auth_set_dhchap_negotiate_data(struct nvme_ctrl *ctrl,
+ struct nvme_dhchap_queue_context *chap)
+{
+ struct nvmf_auth_dhchap_negotiate_data *data = chap->buf;
+ size_t size = sizeof(*data) + sizeof(union nvmf_auth_protocol);
+
+ if (size > CHAP_BUF_SIZE) {
+ chap->status = NVME_AUTH_DHCHAP_FAILURE_INCORRECT_PAYLOAD;
+ return -EINVAL;
+ }
+ memset((u8 *)chap->buf, 0, size);
+ data->auth_type = NVME_AUTH_COMMON_MESSAGES;
+ data->auth_id = NVME_AUTH_DHCHAP_MESSAGE_NEGOTIATE;
+ data->t_id = cpu_to_le16(chap->transaction);
+ data->sc_c = 0; /* No secure channel concatenation */
+ data->napd = 1;
+ data->auth_protocol[0].dhchap.authid = NVME_AUTH_DHCHAP_AUTH_ID;
+ data->auth_protocol[0].dhchap.halen = 3;
+ data->auth_protocol[0].dhchap.dhlen = 6;
+ data->auth_protocol[0].dhchap.idlist[0] = NVME_AUTH_HASH_SHA256;
+ data->auth_protocol[0].dhchap.idlist[1] = NVME_AUTH_HASH_SHA384;
+ data->auth_protocol[0].dhchap.idlist[2] = NVME_AUTH_HASH_SHA512;
+ data->auth_protocol[0].dhchap.idlist[30] = NVME_AUTH_DHGROUP_NULL;
+ data->auth_protocol[0].dhchap.idlist[31] = NVME_AUTH_DHGROUP_2048;
+ data->auth_protocol[0].dhchap.idlist[32] = NVME_AUTH_DHGROUP_3072;
+ data->auth_protocol[0].dhchap.idlist[33] = NVME_AUTH_DHGROUP_4096;
+ data->auth_protocol[0].dhchap.idlist[34] = NVME_AUTH_DHGROUP_6144;
+ data->auth_protocol[0].dhchap.idlist[35] = NVME_AUTH_DHGROUP_8192;
+
+ return size;
+}
+
+static int nvme_auth_process_dhchap_challenge(struct nvme_ctrl *ctrl,
+ struct nvme_dhchap_queue_context *chap)
+{
+ struct nvmf_auth_dhchap_challenge_data *data = chap->buf;
+ u16 dhvlen = le16_to_cpu(data->dhvlen);
+ size_t size = sizeof(*data) + data->hl + dhvlen;
+ const char *gid_name = nvme_auth_dhgroup_name(data->dhgid);
+ const char *hmac_name, *kpp_name;
+
+ if (size > CHAP_BUF_SIZE) {
+ chap->status = NVME_AUTH_DHCHAP_FAILURE_INCORRECT_PAYLOAD;
+ return -EINVAL;
+ }
+
+ hmac_name = nvme_auth_hmac_name(data->hashid);
+ if (!hmac_name) {
+ dev_warn(ctrl->device,
+ "qid %d: invalid HASH ID %d\n",
+ chap->qid, data->hashid);
+ chap->status = NVME_AUTH_DHCHAP_FAILURE_HASH_UNUSABLE;
+ return -EPROTO;
+ }
+
+ if (chap->hash_id == data->hashid && chap->shash_tfm &&
+ !strcmp(crypto_shash_alg_name(chap->shash_tfm), hmac_name) &&
+ crypto_shash_digestsize(chap->shash_tfm) == data->hl) {
+ dev_dbg(ctrl->device,
+ "qid %d: reuse existing hash %s\n",
+ chap->qid, hmac_name);
+ goto select_kpp;
+ }
+
+ /* Reset if hash cannot be reused */
+ if (chap->shash_tfm) {
+ crypto_free_shash(chap->shash_tfm);
+ chap->hash_id = 0;
+ chap->hash_len = 0;
+ }
+ chap->shash_tfm = crypto_alloc_shash(hmac_name, 0,
+ CRYPTO_ALG_ALLOCATES_MEMORY);
+ if (IS_ERR(chap->shash_tfm)) {
+ dev_warn(ctrl->device,
+ "qid %d: failed to allocate hash %s, error %ld\n",
+ chap->qid, hmac_name, PTR_ERR(chap->shash_tfm));
+ chap->shash_tfm = NULL;
+ chap->status = NVME_AUTH_DHCHAP_FAILURE_FAILED;
+ return -ENOMEM;
+ }
+
+ if (crypto_shash_digestsize(chap->shash_tfm) != data->hl) {
+ dev_warn(ctrl->device,
+ "qid %d: invalid hash length %d\n",
+ chap->qid, data->hl);
+ crypto_free_shash(chap->shash_tfm);
+ chap->shash_tfm = NULL;
+ chap->status = NVME_AUTH_DHCHAP_FAILURE_HASH_UNUSABLE;
+ return -EPROTO;
+ }
+
+ chap->hash_id = data->hashid;
+ chap->hash_len = data->hl;
+ dev_dbg(ctrl->device, "qid %d: selected hash %s\n",
+ chap->qid, hmac_name);
+
+select_kpp:
+ kpp_name = nvme_auth_dhgroup_kpp(data->dhgid);
+ if (!kpp_name) {
+ dev_warn(ctrl->device,
+ "qid %d: invalid DH group id %d\n",
+ chap->qid, data->dhgid);
+ chap->status = NVME_AUTH_DHCHAP_FAILURE_DHGROUP_UNUSABLE;
+ /* Leave previous dh_tfm intact */
+ return -EPROTO;
+ }
+
+ if (chap->dhgroup_id == data->dhgid &&
+ (data->dhgid == NVME_AUTH_DHGROUP_NULL || chap->dh_tfm)) {
+ dev_dbg(ctrl->device,
+ "qid %d: reuse existing DH group %s\n",
+ chap->qid, gid_name);
+ goto skip_kpp;
+ }
+
+ /* Reset dh_tfm if it can't be reused */
+ if (chap->dh_tfm) {
+ crypto_free_kpp(chap->dh_tfm);
+ chap->dh_tfm = NULL;
+ }
+
+ if (data->dhgid != NVME_AUTH_DHGROUP_NULL) {
+ if (dhvlen == 0) {
+ dev_warn(ctrl->device,
+ "qid %d: empty DH value\n",
+ chap->qid);
+ chap->status = NVME_AUTH_DHCHAP_FAILURE_DHGROUP_UNUSABLE;
+ return -EPROTO;
+ }
+
+ chap->dh_tfm = crypto_alloc_kpp(kpp_name, 0, 0);
+ if (IS_ERR(chap->dh_tfm)) {
+ int ret = PTR_ERR(chap->dh_tfm);
+
+ dev_warn(ctrl->device,
+ "qid %d: error %d initializing DH group %s\n",
+ chap->qid, ret, gid_name);
+ chap->status = NVME_AUTH_DHCHAP_FAILURE_DHGROUP_UNUSABLE;
+ chap->dh_tfm = NULL;
+ return ret;
+ }
+ dev_dbg(ctrl->device, "qid %d: selected DH group %s\n",
+ chap->qid, gid_name);
+ } else if (dhvlen != 0) {
+ dev_warn(ctrl->device,
+ "qid %d: invalid DH value for NULL DH\n",
+ chap->qid);
+ chap->status = NVME_AUTH_DHCHAP_FAILURE_INCORRECT_PAYLOAD;
+ return -EPROTO;
+ }
+ chap->dhgroup_id = data->dhgid;
+
+skip_kpp:
+ chap->s1 = le32_to_cpu(data->seqnum);
+ memcpy(chap->c1, data->cval, chap->hash_len);
+ if (dhvlen) {
+ chap->ctrl_key = kmalloc(dhvlen, GFP_KERNEL);
+ if (!chap->ctrl_key) {
+ chap->status = NVME_AUTH_DHCHAP_FAILURE_FAILED;
+ return -ENOMEM;
+ }
+ chap->ctrl_key_len = dhvlen;
+ memcpy(chap->ctrl_key, data->cval + chap->hash_len,
+ dhvlen);
+ dev_dbg(ctrl->device, "ctrl public key %*ph\n",
+ (int)chap->ctrl_key_len, chap->ctrl_key);
+ }
+
+ return 0;
+}
+
+static int nvme_auth_set_dhchap_reply_data(struct nvme_ctrl *ctrl,
+ struct nvme_dhchap_queue_context *chap)
+{
+ struct nvmf_auth_dhchap_reply_data *data = chap->buf;
+ size_t size = sizeof(*data);
+
+ size += 2 * chap->hash_len;
+
+ if (chap->host_key_len)
+ size += chap->host_key_len;
+
+ if (size > CHAP_BUF_SIZE) {
+ chap->status = NVME_AUTH_DHCHAP_FAILURE_INCORRECT_PAYLOAD;
+ return -EINVAL;
+ }
+
+ memset(chap->buf, 0, size);
+ data->auth_type = NVME_AUTH_DHCHAP_MESSAGES;
+ data->auth_id = NVME_AUTH_DHCHAP_MESSAGE_REPLY;
+ data->t_id = cpu_to_le16(chap->transaction);
+ data->hl = chap->hash_len;
+ data->dhvlen = cpu_to_le16(chap->host_key_len);
+ memcpy(data->rval, chap->response, chap->hash_len);
+ if (ctrl->ctrl_key) {
+ get_random_bytes(chap->c2, chap->hash_len);
+ data->cvalid = 1;
+ chap->s2 = nvme_auth_get_seqnum();
+ memcpy(data->rval + chap->hash_len, chap->c2,
+ chap->hash_len);
+ dev_dbg(ctrl->device, "%s: qid %d ctrl challenge %*ph\n",
+ __func__, chap->qid, (int)chap->hash_len, chap->c2);
+ } else {
+ memset(chap->c2, 0, chap->hash_len);
+ chap->s2 = 0;
+ }
+ data->seqnum = cpu_to_le32(chap->s2);
+ if (chap->host_key_len) {
+ dev_dbg(ctrl->device, "%s: qid %d host public key %*ph\n",
+ __func__, chap->qid,
+ chap->host_key_len, chap->host_key);
+ memcpy(data->rval + 2 * chap->hash_len, chap->host_key,
+ chap->host_key_len);
+ }
+
+ return size;
+}
+
+static int nvme_auth_process_dhchap_success1(struct nvme_ctrl *ctrl,
+ struct nvme_dhchap_queue_context *chap)
+{
+ struct nvmf_auth_dhchap_success1_data *data = chap->buf;
+ size_t size = sizeof(*data);
+
+ if (chap->s2)
+ size += chap->hash_len;
+
+ if (size > CHAP_BUF_SIZE) {
+ chap->status = NVME_AUTH_DHCHAP_FAILURE_INCORRECT_PAYLOAD;
+ return -EINVAL;
+ }
+
+ if (data->hl != chap->hash_len) {
+ dev_warn(ctrl->device,
+ "qid %d: invalid hash length %u\n",
+ chap->qid, data->hl);
+ chap->status = NVME_AUTH_DHCHAP_FAILURE_HASH_UNUSABLE;
+ return -EPROTO;
+ }
+
+ /* Just print out information for the admin queue */
+ if (chap->qid == 0)
+ dev_info(ctrl->device,
+ "qid 0: authenticated with hash %s dhgroup %s\n",
+ nvme_auth_hmac_name(chap->hash_id),
+ nvme_auth_dhgroup_name(chap->dhgroup_id));
+
+ if (!data->rvalid)
+ return 0;
+
+ /* Validate controller response */
+ if (memcmp(chap->response, data->rval, data->hl)) {
+ dev_dbg(ctrl->device, "%s: qid %d ctrl response %*ph\n",
+ __func__, chap->qid, (int)chap->hash_len, data->rval);
+ dev_dbg(ctrl->device, "%s: qid %d host response %*ph\n",
+ __func__, chap->qid, (int)chap->hash_len,
+ chap->response);
+ dev_warn(ctrl->device,
+ "qid %d: controller authentication failed\n",
+ chap->qid);
+ chap->status = NVME_AUTH_DHCHAP_FAILURE_FAILED;
+ return -ECONNREFUSED;
+ }
+
+ /* Just print out information for the admin queue */
+ if (chap->qid == 0)
+ dev_info(ctrl->device,
+ "qid 0: controller authenticated\n");
+ return 0;
+}
+
+static int nvme_auth_set_dhchap_success2_data(struct nvme_ctrl *ctrl,
+ struct nvme_dhchap_queue_context *chap)
+{
+ struct nvmf_auth_dhchap_success2_data *data = chap->buf;
+ size_t size = sizeof(*data);
+
+ memset(chap->buf, 0, size);
+ data->auth_type = NVME_AUTH_DHCHAP_MESSAGES;
+ data->auth_id = NVME_AUTH_DHCHAP_MESSAGE_SUCCESS2;
+ data->t_id = cpu_to_le16(chap->transaction);
+
+ return size;
+}
+
+static int nvme_auth_set_dhchap_failure2_data(struct nvme_ctrl *ctrl,
+ struct nvme_dhchap_queue_context *chap)
+{
+ struct nvmf_auth_dhchap_failure_data *data = chap->buf;
+ size_t size = sizeof(*data);
+
+ memset(chap->buf, 0, size);
+ data->auth_type = NVME_AUTH_COMMON_MESSAGES;
+ data->auth_id = NVME_AUTH_DHCHAP_MESSAGE_FAILURE2;
+ data->t_id = cpu_to_le16(chap->transaction);
+ data->rescode = NVME_AUTH_DHCHAP_FAILURE_REASON_FAILED;
+ data->rescode_exp = chap->status;
+
+ return size;
+}
+
+static int nvme_auth_dhchap_setup_host_response(struct nvme_ctrl *ctrl,
+ struct nvme_dhchap_queue_context *chap)
+{
+ SHASH_DESC_ON_STACK(shash, chap->shash_tfm);
+ u8 buf[4], *challenge = chap->c1;
+ int ret;
+
+ dev_dbg(ctrl->device, "%s: qid %d host response seq %u transaction %d\n",
+ __func__, chap->qid, chap->s1, chap->transaction);
+
+ if (!chap->host_response) {
+ chap->host_response = nvme_auth_transform_key(ctrl->host_key,
+ ctrl->opts->host->nqn);
+ if (IS_ERR(chap->host_response)) {
+ ret = PTR_ERR(chap->host_response);
+ chap->host_response = NULL;
+ return ret;
+ }
+ } else {
+ dev_dbg(ctrl->device, "%s: qid %d re-using host response\n",
+ __func__, chap->qid);
+ }
+
+ ret = crypto_shash_setkey(chap->shash_tfm,
+ chap->host_response, ctrl->host_key->len);
+ if (ret) {
+ dev_warn(ctrl->device, "qid %d: failed to set key, error %d\n",
+ chap->qid, ret);
+ goto out;
+ }
+
+ if (chap->dh_tfm) {
+ challenge = kmalloc(chap->hash_len, GFP_KERNEL);
+ if (!challenge) {
+ ret = -ENOMEM;
+ goto out;
+ }
+ ret = nvme_auth_augmented_challenge(chap->hash_id,
+ chap->sess_key,
+ chap->sess_key_len,
+ chap->c1, challenge,
+ chap->hash_len);
+ if (ret)
+ goto out;
+ }
+
+ shash->tfm = chap->shash_tfm;
+ ret = crypto_shash_init(shash);
+ if (ret)
+ goto out;
+ ret = crypto_shash_update(shash, challenge, chap->hash_len);
+ if (ret)
+ goto out;
+ put_unaligned_le32(chap->s1, buf);
+ ret = crypto_shash_update(shash, buf, 4);
+ if (ret)
+ goto out;
+ put_unaligned_le16(chap->transaction, buf);
+ ret = crypto_shash_update(shash, buf, 2);
+ if (ret)
+ goto out;
+ memset(buf, 0, sizeof(buf));
+ ret = crypto_shash_update(shash, buf, 1);
+ if (ret)
+ goto out;
+ ret = crypto_shash_update(shash, "HostHost", 8);
+ if (ret)
+ goto out;
+ ret = crypto_shash_update(shash, ctrl->opts->host->nqn,
+ strlen(ctrl->opts->host->nqn));
+ if (ret)
+ goto out;
+ ret = crypto_shash_update(shash, buf, 1);
+ if (ret)
+ goto out;
+ ret = crypto_shash_update(shash, ctrl->opts->subsysnqn,
+ strlen(ctrl->opts->subsysnqn));
+ if (ret)
+ goto out;
+ ret = crypto_shash_final(shash, chap->response);
+out:
+ if (challenge != chap->c1)
+ kfree(challenge);
+ return ret;
+}
+
+static int nvme_auth_dhchap_setup_ctrl_response(struct nvme_ctrl *ctrl,
+ struct nvme_dhchap_queue_context *chap)
+{
+ SHASH_DESC_ON_STACK(shash, chap->shash_tfm);
+ u8 *ctrl_response;
+ u8 buf[4], *challenge = chap->c2;
+ int ret;
+
+ ctrl_response = nvme_auth_transform_key(ctrl->ctrl_key,
+ ctrl->opts->subsysnqn);
+ if (IS_ERR(ctrl_response)) {
+ ret = PTR_ERR(ctrl_response);
+ return ret;
+ }
+
+ ret = crypto_shash_setkey(chap->shash_tfm,
+ ctrl_response, ctrl->ctrl_key->len);
+ if (ret) {
+ dev_warn(ctrl->device, "qid %d: failed to set key, error %d\n",
+ chap->qid, ret);
+ goto out;
+ }
+
+ if (chap->dh_tfm) {
+ challenge = kmalloc(chap->hash_len, GFP_KERNEL);
+ if (!challenge) {
+ ret = -ENOMEM;
+ goto out;
+ }
+ ret = nvme_auth_augmented_challenge(chap->hash_id,
+ chap->sess_key,
+ chap->sess_key_len,
+ chap->c2, challenge,
+ chap->hash_len);
+ if (ret)
+ goto out;
+ }
+ dev_dbg(ctrl->device, "%s: qid %d ctrl response seq %u transaction %d\n",
+ __func__, chap->qid, chap->s2, chap->transaction);
+ dev_dbg(ctrl->device, "%s: qid %d challenge %*ph\n",
+ __func__, chap->qid, (int)chap->hash_len, challenge);
+ dev_dbg(ctrl->device, "%s: qid %d subsysnqn %s\n",
+ __func__, chap->qid, ctrl->opts->subsysnqn);
+ dev_dbg(ctrl->device, "%s: qid %d hostnqn %s\n",
+ __func__, chap->qid, ctrl->opts->host->nqn);
+ shash->tfm = chap->shash_tfm;
+ ret = crypto_shash_init(shash);
+ if (ret)
+ goto out;
+ ret = crypto_shash_update(shash, challenge, chap->hash_len);
+ if (ret)
+ goto out;
+ put_unaligned_le32(chap->s2, buf);
+ ret = crypto_shash_update(shash, buf, 4);
+ if (ret)
+ goto out;
+ put_unaligned_le16(chap->transaction, buf);
+ ret = crypto_shash_update(shash, buf, 2);
+ if (ret)
+ goto out;
+ memset(buf, 0, 4);
+ ret = crypto_shash_update(shash, buf, 1);
+ if (ret)
+ goto out;
+ ret = crypto_shash_update(shash, "Controller", 10);
+ if (ret)
+ goto out;
+ ret = crypto_shash_update(shash, ctrl->opts->subsysnqn,
+ strlen(ctrl->opts->subsysnqn));
+ if (ret)
+ goto out;
+ ret = crypto_shash_update(shash, buf, 1);
+ if (ret)
+ goto out;
+ ret = crypto_shash_update(shash, ctrl->opts->host->nqn,
+ strlen(ctrl->opts->host->nqn));
+ if (ret)
+ goto out;
+ ret = crypto_shash_final(shash, chap->response);
+out:
+ if (challenge != chap->c2)
+ kfree(challenge);
+ kfree(ctrl_response);
+ return ret;
+}
+
+static int nvme_auth_dhchap_exponential(struct nvme_ctrl *ctrl,
+ struct nvme_dhchap_queue_context *chap)
+{
+ int ret;
+
+ if (chap->host_key && chap->host_key_len) {
+ dev_dbg(ctrl->device,
+ "qid %d: reusing host key\n", chap->qid);
+ goto gen_sesskey;
+ }
+ ret = nvme_auth_gen_privkey(chap->dh_tfm, chap->dhgroup_id);
+ if (ret < 0) {
+ chap->status = NVME_AUTH_DHCHAP_FAILURE_INCORRECT_PAYLOAD;
+ return ret;
+ }
+
+ chap->host_key_len = crypto_kpp_maxsize(chap->dh_tfm);
+
+ chap->host_key = kzalloc(chap->host_key_len, GFP_KERNEL);
+ if (!chap->host_key) {
+ chap->host_key_len = 0;
+ chap->status = NVME_AUTH_DHCHAP_FAILURE_FAILED;
+ return -ENOMEM;
+ }
+ ret = nvme_auth_gen_pubkey(chap->dh_tfm,
+ chap->host_key, chap->host_key_len);
+ if (ret) {
+ dev_dbg(ctrl->device,
+ "failed to generate public key, error %d\n", ret);
+ chap->status = NVME_AUTH_DHCHAP_FAILURE_INCORRECT_PAYLOAD;
+ return ret;
+ }
+
+gen_sesskey:
+ chap->sess_key_len = chap->host_key_len;
+ chap->sess_key = kmalloc(chap->sess_key_len, GFP_KERNEL);
+ if (!chap->sess_key) {
+ chap->sess_key_len = 0;
+ chap->status = NVME_AUTH_DHCHAP_FAILURE_FAILED;
+ return -ENOMEM;
+ }
+
+ ret = nvme_auth_gen_shared_secret(chap->dh_tfm,
+ chap->ctrl_key, chap->ctrl_key_len,
+ chap->sess_key, chap->sess_key_len);
+ if (ret) {
+ dev_dbg(ctrl->device,
+ "failed to generate shared secret, error %d\n", ret);
+ chap->status = NVME_AUTH_DHCHAP_FAILURE_INCORRECT_PAYLOAD;
+ return ret;
+ }
+ dev_dbg(ctrl->device, "shared secret %*ph\n",
+ (int)chap->sess_key_len, chap->sess_key);
+ return 0;
+}
+
+static void nvme_auth_reset_dhchap(struct nvme_dhchap_queue_context *chap)
+{
+ kfree_sensitive(chap->host_response);
+ chap->host_response = NULL;
+ kfree_sensitive(chap->host_key);
+ chap->host_key = NULL;
+ chap->host_key_len = 0;
+ kfree_sensitive(chap->ctrl_key);
+ chap->ctrl_key = NULL;
+ chap->ctrl_key_len = 0;
+ kfree_sensitive(chap->sess_key);
+ chap->sess_key = NULL;
+ chap->sess_key_len = 0;
+ chap->status = 0;
+ chap->error = 0;
+ chap->s1 = 0;
+ chap->s2 = 0;
+ chap->transaction = 0;
+ memset(chap->c1, 0, sizeof(chap->c1));
+ memset(chap->c2, 0, sizeof(chap->c2));
+ mempool_free(chap->buf, nvme_chap_buf_pool);
+ chap->buf = NULL;
+}
+
+static void nvme_auth_free_dhchap(struct nvme_dhchap_queue_context *chap)
+{
+ nvme_auth_reset_dhchap(chap);
+ if (chap->shash_tfm)
+ crypto_free_shash(chap->shash_tfm);
+ if (chap->dh_tfm)
+ crypto_free_kpp(chap->dh_tfm);
+}
+
+static void nvme_queue_auth_work(struct work_struct *work)
+{
+ struct nvme_dhchap_queue_context *chap =
+ container_of(work, struct nvme_dhchap_queue_context, auth_work);
+ struct nvme_ctrl *ctrl = chap->ctrl;
+ size_t tl;
+ int ret = 0;
+
+ /*
+ * Allocate a large enough buffer for the entire negotiation:
+ * 4k is enough to ffdhe8192.
+ */
+ chap->buf = mempool_alloc(nvme_chap_buf_pool, GFP_KERNEL);
+ if (!chap->buf) {
+ chap->error = -ENOMEM;
+ return;
+ }
+
+ chap->transaction = ctrl->transaction++;
+
+ /* DH-HMAC-CHAP Step 1: send negotiate */
+ dev_dbg(ctrl->device, "%s: qid %d send negotiate\n",
+ __func__, chap->qid);
+ ret = nvme_auth_set_dhchap_negotiate_data(ctrl, chap);
+ if (ret < 0) {
+ chap->error = ret;
+ return;
+ }
+ tl = ret;
+ ret = nvme_auth_submit(ctrl, chap->qid, chap->buf, tl, true);
+ if (ret) {
+ chap->error = ret;
+ return;
+ }
+
+ /* DH-HMAC-CHAP Step 2: receive challenge */
+ dev_dbg(ctrl->device, "%s: qid %d receive challenge\n",
+ __func__, chap->qid);
+
+ memset(chap->buf, 0, CHAP_BUF_SIZE);
+ ret = nvme_auth_submit(ctrl, chap->qid, chap->buf, CHAP_BUF_SIZE,
+ false);
+ if (ret) {
+ dev_warn(ctrl->device,
+ "qid %d failed to receive challenge, %s %d\n",
+ chap->qid, ret < 0 ? "error" : "nvme status", ret);
+ chap->error = ret;
+ return;
+ }
+ ret = nvme_auth_receive_validate(ctrl, chap->qid, chap->buf, chap->transaction,
+ NVME_AUTH_DHCHAP_MESSAGE_CHALLENGE);
+ if (ret) {
+ chap->status = ret;
+ chap->error = -ECONNREFUSED;
+ return;
+ }
+
+ ret = nvme_auth_process_dhchap_challenge(ctrl, chap);
+ if (ret) {
+ /* Invalid challenge parameters */
+ chap->error = ret;
+ goto fail2;
+ }
+
+ if (chap->ctrl_key_len) {
+ dev_dbg(ctrl->device,
+ "%s: qid %d DH exponential\n",
+ __func__, chap->qid);
+ ret = nvme_auth_dhchap_exponential(ctrl, chap);
+ if (ret) {
+ chap->error = ret;
+ goto fail2;
+ }
+ }
+
+ dev_dbg(ctrl->device, "%s: qid %d host response\n",
+ __func__, chap->qid);
+ mutex_lock(&ctrl->dhchap_auth_mutex);
+ ret = nvme_auth_dhchap_setup_host_response(ctrl, chap);
+ if (ret) {
+ mutex_unlock(&ctrl->dhchap_auth_mutex);
+ chap->error = ret;
+ goto fail2;
+ }
+ mutex_unlock(&ctrl->dhchap_auth_mutex);
+
+ /* DH-HMAC-CHAP Step 3: send reply */
+ dev_dbg(ctrl->device, "%s: qid %d send reply\n",
+ __func__, chap->qid);
+ ret = nvme_auth_set_dhchap_reply_data(ctrl, chap);
+ if (ret < 0) {
+ chap->error = ret;
+ goto fail2;
+ }
+
+ tl = ret;
+ ret = nvme_auth_submit(ctrl, chap->qid, chap->buf, tl, true);
+ if (ret) {
+ chap->error = ret;
+ goto fail2;
+ }
+
+ /* DH-HMAC-CHAP Step 4: receive success1 */
+ dev_dbg(ctrl->device, "%s: qid %d receive success1\n",
+ __func__, chap->qid);
+
+ memset(chap->buf, 0, CHAP_BUF_SIZE);
+ ret = nvme_auth_submit(ctrl, chap->qid, chap->buf, CHAP_BUF_SIZE,
+ false);
+ if (ret) {
+ dev_warn(ctrl->device,
+ "qid %d failed to receive success1, %s %d\n",
+ chap->qid, ret < 0 ? "error" : "nvme status", ret);
+ chap->error = ret;
+ return;
+ }
+ ret = nvme_auth_receive_validate(ctrl, chap->qid,
+ chap->buf, chap->transaction,
+ NVME_AUTH_DHCHAP_MESSAGE_SUCCESS1);
+ if (ret) {
+ chap->status = ret;
+ chap->error = -ECONNREFUSED;
+ return;
+ }
+
+ mutex_lock(&ctrl->dhchap_auth_mutex);
+ if (ctrl->ctrl_key) {
+ dev_dbg(ctrl->device,
+ "%s: qid %d controller response\n",
+ __func__, chap->qid);
+ ret = nvme_auth_dhchap_setup_ctrl_response(ctrl, chap);
+ if (ret) {
+ mutex_unlock(&ctrl->dhchap_auth_mutex);
+ chap->error = ret;
+ goto fail2;
+ }
+ }
+ mutex_unlock(&ctrl->dhchap_auth_mutex);
+
+ ret = nvme_auth_process_dhchap_success1(ctrl, chap);
+ if (ret) {
+ /* Controller authentication failed */
+ chap->error = -ECONNREFUSED;
+ goto fail2;
+ }
+
+ if (chap->s2) {
+ /* DH-HMAC-CHAP Step 5: send success2 */
+ dev_dbg(ctrl->device, "%s: qid %d send success2\n",
+ __func__, chap->qid);
+ tl = nvme_auth_set_dhchap_success2_data(ctrl, chap);
+ ret = nvme_auth_submit(ctrl, chap->qid, chap->buf, tl, true);
+ if (ret)
+ chap->error = ret;
+ }
+ if (!ret) {
+ chap->error = 0;
+ return;
+ }
+
+fail2:
+ if (chap->status == 0)
+ chap->status = NVME_AUTH_DHCHAP_FAILURE_FAILED;
+ dev_dbg(ctrl->device, "%s: qid %d send failure2, status %x\n",
+ __func__, chap->qid, chap->status);
+ tl = nvme_auth_set_dhchap_failure2_data(ctrl, chap);
+ ret = nvme_auth_submit(ctrl, chap->qid, chap->buf, tl, true);
+ /*
+ * only update error if send failure2 failed and no other
+ * error had been set during authentication.
+ */
+ if (ret && !chap->error)
+ chap->error = ret;
+}
+
+int nvme_auth_negotiate(struct nvme_ctrl *ctrl, int qid)
+{
+ struct nvme_dhchap_queue_context *chap;
+
+ if (!ctrl->host_key) {
+ dev_warn(ctrl->device, "qid %d: no key\n", qid);
+ return -ENOKEY;
+ }
+
+ if (ctrl->opts->dhchap_ctrl_secret && !ctrl->ctrl_key) {
+ dev_warn(ctrl->device, "qid %d: invalid ctrl key\n", qid);
+ return -ENOKEY;
+ }
+
+ chap = &ctrl->dhchap_ctxs[qid];
+ cancel_work_sync(&chap->auth_work);
+ queue_work(nvme_auth_wq, &chap->auth_work);
+ return 0;
+}
+EXPORT_SYMBOL_GPL(nvme_auth_negotiate);
+
+int nvme_auth_wait(struct nvme_ctrl *ctrl, int qid)
+{
+ struct nvme_dhchap_queue_context *chap;
+ int ret;
+
+ chap = &ctrl->dhchap_ctxs[qid];
+ flush_work(&chap->auth_work);
+ ret = chap->error;
+ /* clear sensitive info */
+ nvme_auth_reset_dhchap(chap);
+ return ret;
+}
+EXPORT_SYMBOL_GPL(nvme_auth_wait);
+
+static void nvme_ctrl_auth_work(struct work_struct *work)
+{
+ struct nvme_ctrl *ctrl =
+ container_of(work, struct nvme_ctrl, dhchap_auth_work);
+ int ret, q;
+
+ /*
+ * If the ctrl is no connected, bail as reconnect will handle
+ * authentication.
+ */
+ if (ctrl->state != NVME_CTRL_LIVE)
+ return;
+
+ /* Authenticate admin queue first */
+ ret = nvme_auth_negotiate(ctrl, 0);
+ if (ret) {
+ dev_warn(ctrl->device,
+ "qid 0: error %d setting up authentication\n", ret);
+ return;
+ }
+ ret = nvme_auth_wait(ctrl, 0);
+ if (ret) {
+ dev_warn(ctrl->device,
+ "qid 0: authentication failed\n");
+ return;
+ }
+
+ for (q = 1; q < ctrl->queue_count; q++) {
+ ret = nvme_auth_negotiate(ctrl, q);
+ if (ret) {
+ dev_warn(ctrl->device,
+ "qid %d: error %d setting up authentication\n",
+ q, ret);
+ break;
+ }
+ }
+
+ /*
+ * Failure is a soft-state; credentials remain valid until
+ * the controller terminates the connection.
+ */
+ for (q = 1; q < ctrl->queue_count; q++) {
+ ret = nvme_auth_wait(ctrl, q);
+ if (ret)
+ dev_warn(ctrl->device,
+ "qid %d: authentication failed\n", q);
+ }
+}
+
+int nvme_auth_init_ctrl(struct nvme_ctrl *ctrl)
+{
+ struct nvme_dhchap_queue_context *chap;
+ int i, ret;
+
+ mutex_init(&ctrl->dhchap_auth_mutex);
+ INIT_WORK(&ctrl->dhchap_auth_work, nvme_ctrl_auth_work);
+ if (!ctrl->opts)
+ return 0;
+ ret = nvme_auth_generate_key(ctrl->opts->dhchap_secret,
+ &ctrl->host_key);
+ if (ret)
+ return ret;
+ ret = nvme_auth_generate_key(ctrl->opts->dhchap_ctrl_secret,
+ &ctrl->ctrl_key);
+ if (ret)
+ goto err_free_dhchap_secret;
+
+ if (!ctrl->opts->dhchap_secret && !ctrl->opts->dhchap_ctrl_secret)
+ return 0;
+
+ ctrl->dhchap_ctxs = kvcalloc(ctrl_max_dhchaps(ctrl),
+ sizeof(*chap), GFP_KERNEL);
+ if (!ctrl->dhchap_ctxs) {
+ ret = -ENOMEM;
+ goto err_free_dhchap_ctrl_secret;
+ }
+
+ for (i = 0; i < ctrl_max_dhchaps(ctrl); i++) {
+ chap = &ctrl->dhchap_ctxs[i];
+ chap->qid = i;
+ chap->ctrl = ctrl;
+ INIT_WORK(&chap->auth_work, nvme_queue_auth_work);
+ }
+
+ return 0;
+err_free_dhchap_ctrl_secret:
+ nvme_auth_free_key(ctrl->ctrl_key);
+ ctrl->ctrl_key = NULL;
+err_free_dhchap_secret:
+ nvme_auth_free_key(ctrl->host_key);
+ ctrl->host_key = NULL;
+ return ret;
+}
+EXPORT_SYMBOL_GPL(nvme_auth_init_ctrl);
+
+void nvme_auth_stop(struct nvme_ctrl *ctrl)
+{
+ cancel_work_sync(&ctrl->dhchap_auth_work);
+}
+EXPORT_SYMBOL_GPL(nvme_auth_stop);
+
+void nvme_auth_free(struct nvme_ctrl *ctrl)
+{
+ int i;
+
+ if (ctrl->dhchap_ctxs) {
+ for (i = 0; i < ctrl_max_dhchaps(ctrl); i++)
+ nvme_auth_free_dhchap(&ctrl->dhchap_ctxs[i]);
+ kfree(ctrl->dhchap_ctxs);
+ }
+ if (ctrl->host_key) {
+ nvme_auth_free_key(ctrl->host_key);
+ ctrl->host_key = NULL;
+ }
+ if (ctrl->ctrl_key) {
+ nvme_auth_free_key(ctrl->ctrl_key);
+ ctrl->ctrl_key = NULL;
+ }
+}
+EXPORT_SYMBOL_GPL(nvme_auth_free);
+
+int __init nvme_init_auth(void)
+{
+ nvme_auth_wq = alloc_workqueue("nvme-auth-wq",
+ WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
+ if (!nvme_auth_wq)
+ return -ENOMEM;
+
+ nvme_chap_buf_cache = kmem_cache_create("nvme-chap-buf-cache",
+ CHAP_BUF_SIZE, 0, SLAB_HWCACHE_ALIGN, NULL);
+ if (!nvme_chap_buf_cache)
+ goto err_destroy_workqueue;
+
+ nvme_chap_buf_pool = mempool_create(16, mempool_alloc_slab,
+ mempool_free_slab, nvme_chap_buf_cache);
+ if (!nvme_chap_buf_pool)
+ goto err_destroy_chap_buf_cache;
+
+ return 0;
+err_destroy_chap_buf_cache:
+ kmem_cache_destroy(nvme_chap_buf_cache);
+err_destroy_workqueue:
+ destroy_workqueue(nvme_auth_wq);
+ return -ENOMEM;
+}
+
+void __exit nvme_exit_auth(void)
+{
+ mempool_destroy(nvme_chap_buf_pool);
+ kmem_cache_destroy(nvme_chap_buf_cache);
+ destroy_workqueue(nvme_auth_wq);
+}
diff --git a/drivers/nvme/host/constants.c b/drivers/nvme/host/constants.c
new file mode 100644
index 0000000000..20f46c2308
--- /dev/null
+++ b/drivers/nvme/host/constants.c
@@ -0,0 +1,203 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * NVM Express device driver verbose errors
+ * Copyright (c) 2022, Oracle and/or its affiliates
+ */
+
+#include "nvme.h"
+
+static const char * const nvme_ops[] = {
+ [nvme_cmd_flush] = "Flush",
+ [nvme_cmd_write] = "Write",
+ [nvme_cmd_read] = "Read",
+ [nvme_cmd_write_uncor] = "Write Uncorrectable",
+ [nvme_cmd_compare] = "Compare",
+ [nvme_cmd_write_zeroes] = "Write Zeroes",
+ [nvme_cmd_dsm] = "Dataset Management",
+ [nvme_cmd_verify] = "Verify",
+ [nvme_cmd_resv_register] = "Reservation Register",
+ [nvme_cmd_resv_report] = "Reservation Report",
+ [nvme_cmd_resv_acquire] = "Reservation Acquire",
+ [nvme_cmd_resv_release] = "Reservation Release",
+ [nvme_cmd_zone_mgmt_send] = "Zone Management Send",
+ [nvme_cmd_zone_mgmt_recv] = "Zone Management Receive",
+ [nvme_cmd_zone_append] = "Zone Append",
+};
+
+static const char * const nvme_admin_ops[] = {
+ [nvme_admin_delete_sq] = "Delete SQ",
+ [nvme_admin_create_sq] = "Create SQ",
+ [nvme_admin_get_log_page] = "Get Log Page",
+ [nvme_admin_delete_cq] = "Delete CQ",
+ [nvme_admin_create_cq] = "Create CQ",
+ [nvme_admin_identify] = "Identify",
+ [nvme_admin_abort_cmd] = "Abort Command",
+ [nvme_admin_set_features] = "Set Features",
+ [nvme_admin_get_features] = "Get Features",
+ [nvme_admin_async_event] = "Async Event",
+ [nvme_admin_ns_mgmt] = "Namespace Management",
+ [nvme_admin_activate_fw] = "Activate Firmware",
+ [nvme_admin_download_fw] = "Download Firmware",
+ [nvme_admin_dev_self_test] = "Device Self Test",
+ [nvme_admin_ns_attach] = "Namespace Attach",
+ [nvme_admin_keep_alive] = "Keep Alive",
+ [nvme_admin_directive_send] = "Directive Send",
+ [nvme_admin_directive_recv] = "Directive Receive",
+ [nvme_admin_virtual_mgmt] = "Virtual Management",
+ [nvme_admin_nvme_mi_send] = "NVMe Send MI",
+ [nvme_admin_nvme_mi_recv] = "NVMe Receive MI",
+ [nvme_admin_dbbuf] = "Doorbell Buffer Config",
+ [nvme_admin_format_nvm] = "Format NVM",
+ [nvme_admin_security_send] = "Security Send",
+ [nvme_admin_security_recv] = "Security Receive",
+ [nvme_admin_sanitize_nvm] = "Sanitize NVM",
+ [nvme_admin_get_lba_status] = "Get LBA Status",
+};
+
+static const char * const nvme_fabrics_ops[] = {
+ [nvme_fabrics_type_property_set] = "Property Set",
+ [nvme_fabrics_type_property_get] = "Property Get",
+ [nvme_fabrics_type_connect] = "Connect",
+ [nvme_fabrics_type_auth_send] = "Authentication Send",
+ [nvme_fabrics_type_auth_receive] = "Authentication Receive",
+};
+
+static const char * const nvme_statuses[] = {
+ [NVME_SC_SUCCESS] = "Success",
+ [NVME_SC_INVALID_OPCODE] = "Invalid Command Opcode",
+ [NVME_SC_INVALID_FIELD] = "Invalid Field in Command",
+ [NVME_SC_CMDID_CONFLICT] = "Command ID Conflict",
+ [NVME_SC_DATA_XFER_ERROR] = "Data Transfer Error",
+ [NVME_SC_POWER_LOSS] = "Commands Aborted due to Power Loss Notification",
+ [NVME_SC_INTERNAL] = "Internal Error",
+ [NVME_SC_ABORT_REQ] = "Command Abort Requested",
+ [NVME_SC_ABORT_QUEUE] = "Command Aborted due to SQ Deletion",
+ [NVME_SC_FUSED_FAIL] = "Command Aborted due to Failed Fused Command",
+ [NVME_SC_FUSED_MISSING] = "Command Aborted due to Missing Fused Command",
+ [NVME_SC_INVALID_NS] = "Invalid Namespace or Format",
+ [NVME_SC_CMD_SEQ_ERROR] = "Command Sequence Error",
+ [NVME_SC_SGL_INVALID_LAST] = "Invalid SGL Segment Descriptor",
+ [NVME_SC_SGL_INVALID_COUNT] = "Invalid Number of SGL Descriptors",
+ [NVME_SC_SGL_INVALID_DATA] = "Data SGL Length Invalid",
+ [NVME_SC_SGL_INVALID_METADATA] = "Metadata SGL Length Invalid",
+ [NVME_SC_SGL_INVALID_TYPE] = "SGL Descriptor Type Invalid",
+ [NVME_SC_CMB_INVALID_USE] = "Invalid Use of Controller Memory Buffer",
+ [NVME_SC_PRP_INVALID_OFFSET] = "PRP Offset Invalid",
+ [NVME_SC_ATOMIC_WU_EXCEEDED] = "Atomic Write Unit Exceeded",
+ [NVME_SC_OP_DENIED] = "Operation Denied",
+ [NVME_SC_SGL_INVALID_OFFSET] = "SGL Offset Invalid",
+ [NVME_SC_RESERVED] = "Reserved",
+ [NVME_SC_HOST_ID_INCONSIST] = "Host Identifier Inconsistent Format",
+ [NVME_SC_KA_TIMEOUT_EXPIRED] = "Keep Alive Timeout Expired",
+ [NVME_SC_KA_TIMEOUT_INVALID] = "Keep Alive Timeout Invalid",
+ [NVME_SC_ABORTED_PREEMPT_ABORT] = "Command Aborted due to Preempt and Abort",
+ [NVME_SC_SANITIZE_FAILED] = "Sanitize Failed",
+ [NVME_SC_SANITIZE_IN_PROGRESS] = "Sanitize In Progress",
+ [NVME_SC_SGL_INVALID_GRANULARITY] = "SGL Data Block Granularity Invalid",
+ [NVME_SC_CMD_NOT_SUP_CMB_QUEUE] = "Command Not Supported for Queue in CMB",
+ [NVME_SC_NS_WRITE_PROTECTED] = "Namespace is Write Protected",
+ [NVME_SC_CMD_INTERRUPTED] = "Command Interrupted",
+ [NVME_SC_TRANSIENT_TR_ERR] = "Transient Transport Error",
+ [NVME_SC_ADMIN_COMMAND_MEDIA_NOT_READY] = "Admin Command Media Not Ready",
+ [NVME_SC_INVALID_IO_CMD_SET] = "Invalid IO Command Set",
+ [NVME_SC_LBA_RANGE] = "LBA Out of Range",
+ [NVME_SC_CAP_EXCEEDED] = "Capacity Exceeded",
+ [NVME_SC_NS_NOT_READY] = "Namespace Not Ready",
+ [NVME_SC_RESERVATION_CONFLICT] = "Reservation Conflict",
+ [NVME_SC_FORMAT_IN_PROGRESS] = "Format In Progress",
+ [NVME_SC_CQ_INVALID] = "Completion Queue Invalid",
+ [NVME_SC_QID_INVALID] = "Invalid Queue Identifier",
+ [NVME_SC_QUEUE_SIZE] = "Invalid Queue Size",
+ [NVME_SC_ABORT_LIMIT] = "Abort Command Limit Exceeded",
+ [NVME_SC_ABORT_MISSING] = "Reserved", /* XXX */
+ [NVME_SC_ASYNC_LIMIT] = "Asynchronous Event Request Limit Exceeded",
+ [NVME_SC_FIRMWARE_SLOT] = "Invalid Firmware Slot",
+ [NVME_SC_FIRMWARE_IMAGE] = "Invalid Firmware Image",
+ [NVME_SC_INVALID_VECTOR] = "Invalid Interrupt Vector",
+ [NVME_SC_INVALID_LOG_PAGE] = "Invalid Log Page",
+ [NVME_SC_INVALID_FORMAT] = "Invalid Format",
+ [NVME_SC_FW_NEEDS_CONV_RESET] = "Firmware Activation Requires Conventional Reset",
+ [NVME_SC_INVALID_QUEUE] = "Invalid Queue Deletion",
+ [NVME_SC_FEATURE_NOT_SAVEABLE] = "Feature Identifier Not Saveable",
+ [NVME_SC_FEATURE_NOT_CHANGEABLE] = "Feature Not Changeable",
+ [NVME_SC_FEATURE_NOT_PER_NS] = "Feature Not Namespace Specific",
+ [NVME_SC_FW_NEEDS_SUBSYS_RESET] = "Firmware Activation Requires NVM Subsystem Reset",
+ [NVME_SC_FW_NEEDS_RESET] = "Firmware Activation Requires Reset",
+ [NVME_SC_FW_NEEDS_MAX_TIME] = "Firmware Activation Requires Maximum Time Violation",
+ [NVME_SC_FW_ACTIVATE_PROHIBITED] = "Firmware Activation Prohibited",
+ [NVME_SC_OVERLAPPING_RANGE] = "Overlapping Range",
+ [NVME_SC_NS_INSUFFICIENT_CAP] = "Namespace Insufficient Capacity",
+ [NVME_SC_NS_ID_UNAVAILABLE] = "Namespace Identifier Unavailable",
+ [NVME_SC_NS_ALREADY_ATTACHED] = "Namespace Already Attached",
+ [NVME_SC_NS_IS_PRIVATE] = "Namespace Is Private",
+ [NVME_SC_NS_NOT_ATTACHED] = "Namespace Not Attached",
+ [NVME_SC_THIN_PROV_NOT_SUPP] = "Thin Provisioning Not Supported",
+ [NVME_SC_CTRL_LIST_INVALID] = "Controller List Invalid",
+ [NVME_SC_SELT_TEST_IN_PROGRESS] = "Device Self-test In Progress",
+ [NVME_SC_BP_WRITE_PROHIBITED] = "Boot Partition Write Prohibited",
+ [NVME_SC_CTRL_ID_INVALID] = "Invalid Controller Identifier",
+ [NVME_SC_SEC_CTRL_STATE_INVALID] = "Invalid Secondary Controller State",
+ [NVME_SC_CTRL_RES_NUM_INVALID] = "Invalid Number of Controller Resources",
+ [NVME_SC_RES_ID_INVALID] = "Invalid Resource Identifier",
+ [NVME_SC_PMR_SAN_PROHIBITED] = "Sanitize Prohibited",
+ [NVME_SC_ANA_GROUP_ID_INVALID] = "ANA Group Identifier Invalid",
+ [NVME_SC_ANA_ATTACH_FAILED] = "ANA Attach Failed",
+ [NVME_SC_BAD_ATTRIBUTES] = "Conflicting Attributes",
+ [NVME_SC_INVALID_PI] = "Invalid Protection Information",
+ [NVME_SC_READ_ONLY] = "Attempted Write to Read Only Range",
+ [NVME_SC_ONCS_NOT_SUPPORTED] = "ONCS Not Supported",
+ [NVME_SC_ZONE_BOUNDARY_ERROR] = "Zoned Boundary Error",
+ [NVME_SC_ZONE_FULL] = "Zone Is Full",
+ [NVME_SC_ZONE_READ_ONLY] = "Zone Is Read Only",
+ [NVME_SC_ZONE_OFFLINE] = "Zone Is Offline",
+ [NVME_SC_ZONE_INVALID_WRITE] = "Zone Invalid Write",
+ [NVME_SC_ZONE_TOO_MANY_ACTIVE] = "Too Many Active Zones",
+ [NVME_SC_ZONE_TOO_MANY_OPEN] = "Too Many Open Zones",
+ [NVME_SC_ZONE_INVALID_TRANSITION] = "Invalid Zone State Transition",
+ [NVME_SC_WRITE_FAULT] = "Write Fault",
+ [NVME_SC_READ_ERROR] = "Unrecovered Read Error",
+ [NVME_SC_GUARD_CHECK] = "End-to-end Guard Check Error",
+ [NVME_SC_APPTAG_CHECK] = "End-to-end Application Tag Check Error",
+ [NVME_SC_REFTAG_CHECK] = "End-to-end Reference Tag Check Error",
+ [NVME_SC_COMPARE_FAILED] = "Compare Failure",
+ [NVME_SC_ACCESS_DENIED] = "Access Denied",
+ [NVME_SC_UNWRITTEN_BLOCK] = "Deallocated or Unwritten Logical Block",
+ [NVME_SC_INTERNAL_PATH_ERROR] = "Internal Pathing Error",
+ [NVME_SC_ANA_PERSISTENT_LOSS] = "Asymmetric Access Persistent Loss",
+ [NVME_SC_ANA_INACCESSIBLE] = "Asymmetric Access Inaccessible",
+ [NVME_SC_ANA_TRANSITION] = "Asymmetric Access Transition",
+ [NVME_SC_CTRL_PATH_ERROR] = "Controller Pathing Error",
+ [NVME_SC_HOST_PATH_ERROR] = "Host Pathing Error",
+ [NVME_SC_HOST_ABORTED_CMD] = "Host Aborted Command",
+};
+
+const unsigned char *nvme_get_error_status_str(u16 status)
+{
+ status &= 0x7ff;
+ if (status < ARRAY_SIZE(nvme_statuses) && nvme_statuses[status])
+ return nvme_statuses[status & 0x7ff];
+ return "Unknown";
+}
+
+const unsigned char *nvme_get_opcode_str(u8 opcode)
+{
+ if (opcode < ARRAY_SIZE(nvme_ops) && nvme_ops[opcode])
+ return nvme_ops[opcode];
+ return "Unknown";
+}
+EXPORT_SYMBOL_GPL(nvme_get_opcode_str);
+
+const unsigned char *nvme_get_admin_opcode_str(u8 opcode)
+{
+ if (opcode < ARRAY_SIZE(nvme_admin_ops) && nvme_admin_ops[opcode])
+ return nvme_admin_ops[opcode];
+ return "Unknown";
+}
+EXPORT_SYMBOL_GPL(nvme_get_admin_opcode_str);
+
+const unsigned char *nvme_get_fabrics_opcode_str(u8 opcode) {
+ if (opcode < ARRAY_SIZE(nvme_fabrics_ops) && nvme_fabrics_ops[opcode])
+ return nvme_fabrics_ops[opcode];
+ return "Unknown";
+}
+EXPORT_SYMBOL_GPL(nvme_get_fabrics_opcode_str);
diff --git a/drivers/nvme/host/core.c b/drivers/nvme/host/core.c
new file mode 100644
index 0000000000..d4564a2517
--- /dev/null
+++ b/drivers/nvme/host/core.c
@@ -0,0 +1,4803 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * NVM Express device driver
+ * Copyright (c) 2011-2014, Intel Corporation.
+ */
+
+#include <linux/blkdev.h>
+#include <linux/blk-mq.h>
+#include <linux/blk-integrity.h>
+#include <linux/compat.h>
+#include <linux/delay.h>
+#include <linux/errno.h>
+#include <linux/hdreg.h>
+#include <linux/kernel.h>
+#include <linux/module.h>
+#include <linux/backing-dev.h>
+#include <linux/slab.h>
+#include <linux/types.h>
+#include <linux/pr.h>
+#include <linux/ptrace.h>
+#include <linux/nvme_ioctl.h>
+#include <linux/pm_qos.h>
+#include <asm/unaligned.h>
+
+#include "nvme.h"
+#include "fabrics.h"
+#include <linux/nvme-auth.h>
+
+#define CREATE_TRACE_POINTS
+#include "trace.h"
+
+#define NVME_MINORS (1U << MINORBITS)
+
+struct nvme_ns_info {
+ struct nvme_ns_ids ids;
+ u32 nsid;
+ __le32 anagrpid;
+ bool is_shared;
+ bool is_readonly;
+ bool is_ready;
+ bool is_removed;
+};
+
+unsigned int admin_timeout = 60;
+module_param(admin_timeout, uint, 0644);
+MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
+EXPORT_SYMBOL_GPL(admin_timeout);
+
+unsigned int nvme_io_timeout = 30;
+module_param_named(io_timeout, nvme_io_timeout, uint, 0644);
+MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
+EXPORT_SYMBOL_GPL(nvme_io_timeout);
+
+static unsigned char shutdown_timeout = 5;
+module_param(shutdown_timeout, byte, 0644);
+MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown");
+
+static u8 nvme_max_retries = 5;
+module_param_named(max_retries, nvme_max_retries, byte, 0644);
+MODULE_PARM_DESC(max_retries, "max number of retries a command may have");
+
+static unsigned long default_ps_max_latency_us = 100000;
+module_param(default_ps_max_latency_us, ulong, 0644);
+MODULE_PARM_DESC(default_ps_max_latency_us,
+ "max power saving latency for new devices; use PM QOS to change per device");
+
+static bool force_apst;
+module_param(force_apst, bool, 0644);
+MODULE_PARM_DESC(force_apst, "allow APST for newly enumerated devices even if quirked off");
+
+static unsigned long apst_primary_timeout_ms = 100;
+module_param(apst_primary_timeout_ms, ulong, 0644);
+MODULE_PARM_DESC(apst_primary_timeout_ms,
+ "primary APST timeout in ms");
+
+static unsigned long apst_secondary_timeout_ms = 2000;
+module_param(apst_secondary_timeout_ms, ulong, 0644);
+MODULE_PARM_DESC(apst_secondary_timeout_ms,
+ "secondary APST timeout in ms");
+
+static unsigned long apst_primary_latency_tol_us = 15000;
+module_param(apst_primary_latency_tol_us, ulong, 0644);
+MODULE_PARM_DESC(apst_primary_latency_tol_us,
+ "primary APST latency tolerance in us");
+
+static unsigned long apst_secondary_latency_tol_us = 100000;
+module_param(apst_secondary_latency_tol_us, ulong, 0644);
+MODULE_PARM_DESC(apst_secondary_latency_tol_us,
+ "secondary APST latency tolerance in us");
+
+/*
+ * nvme_wq - hosts nvme related works that are not reset or delete
+ * nvme_reset_wq - hosts nvme reset works
+ * nvme_delete_wq - hosts nvme delete works
+ *
+ * nvme_wq will host works such as scan, aen handling, fw activation,
+ * keep-alive, periodic reconnects etc. nvme_reset_wq
+ * runs reset works which also flush works hosted on nvme_wq for
+ * serialization purposes. nvme_delete_wq host controller deletion
+ * works which flush reset works for serialization.
+ */
+struct workqueue_struct *nvme_wq;
+EXPORT_SYMBOL_GPL(nvme_wq);
+
+struct workqueue_struct *nvme_reset_wq;
+EXPORT_SYMBOL_GPL(nvme_reset_wq);
+
+struct workqueue_struct *nvme_delete_wq;
+EXPORT_SYMBOL_GPL(nvme_delete_wq);
+
+static LIST_HEAD(nvme_subsystems);
+static DEFINE_MUTEX(nvme_subsystems_lock);
+
+static DEFINE_IDA(nvme_instance_ida);
+static dev_t nvme_ctrl_base_chr_devt;
+static struct class *nvme_class;
+static struct class *nvme_subsys_class;
+
+static DEFINE_IDA(nvme_ns_chr_minor_ida);
+static dev_t nvme_ns_chr_devt;
+static struct class *nvme_ns_chr_class;
+
+static void nvme_put_subsystem(struct nvme_subsystem *subsys);
+static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
+ unsigned nsid);
+static void nvme_update_keep_alive(struct nvme_ctrl *ctrl,
+ struct nvme_command *cmd);
+
+void nvme_queue_scan(struct nvme_ctrl *ctrl)
+{
+ /*
+ * Only new queue scan work when admin and IO queues are both alive
+ */
+ if (nvme_ctrl_state(ctrl) == NVME_CTRL_LIVE && ctrl->tagset)
+ queue_work(nvme_wq, &ctrl->scan_work);
+}
+
+/*
+ * Use this function to proceed with scheduling reset_work for a controller
+ * that had previously been set to the resetting state. This is intended for
+ * code paths that can't be interrupted by other reset attempts. A hot removal
+ * may prevent this from succeeding.
+ */
+int nvme_try_sched_reset(struct nvme_ctrl *ctrl)
+{
+ if (nvme_ctrl_state(ctrl) != NVME_CTRL_RESETTING)
+ return -EBUSY;
+ if (!queue_work(nvme_reset_wq, &ctrl->reset_work))
+ return -EBUSY;
+ return 0;
+}
+EXPORT_SYMBOL_GPL(nvme_try_sched_reset);
+
+static void nvme_failfast_work(struct work_struct *work)
+{
+ struct nvme_ctrl *ctrl = container_of(to_delayed_work(work),
+ struct nvme_ctrl, failfast_work);
+
+ if (nvme_ctrl_state(ctrl) != NVME_CTRL_CONNECTING)
+ return;
+
+ set_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags);
+ dev_info(ctrl->device, "failfast expired\n");
+ nvme_kick_requeue_lists(ctrl);
+}
+
+static inline void nvme_start_failfast_work(struct nvme_ctrl *ctrl)
+{
+ if (!ctrl->opts || ctrl->opts->fast_io_fail_tmo == -1)
+ return;
+
+ schedule_delayed_work(&ctrl->failfast_work,
+ ctrl->opts->fast_io_fail_tmo * HZ);
+}
+
+static inline void nvme_stop_failfast_work(struct nvme_ctrl *ctrl)
+{
+ if (!ctrl->opts)
+ return;
+
+ cancel_delayed_work_sync(&ctrl->failfast_work);
+ clear_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags);
+}
+
+
+int nvme_reset_ctrl(struct nvme_ctrl *ctrl)
+{
+ if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
+ return -EBUSY;
+ if (!queue_work(nvme_reset_wq, &ctrl->reset_work))
+ return -EBUSY;
+ return 0;
+}
+EXPORT_SYMBOL_GPL(nvme_reset_ctrl);
+
+int nvme_reset_ctrl_sync(struct nvme_ctrl *ctrl)
+{
+ int ret;
+
+ ret = nvme_reset_ctrl(ctrl);
+ if (!ret) {
+ flush_work(&ctrl->reset_work);
+ if (nvme_ctrl_state(ctrl) != NVME_CTRL_LIVE)
+ ret = -ENETRESET;
+ }
+
+ return ret;
+}
+
+static void nvme_do_delete_ctrl(struct nvme_ctrl *ctrl)
+{
+ dev_info(ctrl->device,
+ "Removing ctrl: NQN \"%s\"\n", nvmf_ctrl_subsysnqn(ctrl));
+
+ flush_work(&ctrl->reset_work);
+ nvme_stop_ctrl(ctrl);
+ nvme_remove_namespaces(ctrl);
+ ctrl->ops->delete_ctrl(ctrl);
+ nvme_uninit_ctrl(ctrl);
+}
+
+static void nvme_delete_ctrl_work(struct work_struct *work)
+{
+ struct nvme_ctrl *ctrl =
+ container_of(work, struct nvme_ctrl, delete_work);
+
+ nvme_do_delete_ctrl(ctrl);
+}
+
+int nvme_delete_ctrl(struct nvme_ctrl *ctrl)
+{
+ if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING))
+ return -EBUSY;
+ if (!queue_work(nvme_delete_wq, &ctrl->delete_work))
+ return -EBUSY;
+ return 0;
+}
+EXPORT_SYMBOL_GPL(nvme_delete_ctrl);
+
+void nvme_delete_ctrl_sync(struct nvme_ctrl *ctrl)
+{
+ /*
+ * Keep a reference until nvme_do_delete_ctrl() complete,
+ * since ->delete_ctrl can free the controller.
+ */
+ nvme_get_ctrl(ctrl);
+ if (nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING))
+ nvme_do_delete_ctrl(ctrl);
+ nvme_put_ctrl(ctrl);
+}
+
+static blk_status_t nvme_error_status(u16 status)
+{
+ switch (status & 0x7ff) {
+ case NVME_SC_SUCCESS:
+ return BLK_STS_OK;
+ case NVME_SC_CAP_EXCEEDED:
+ return BLK_STS_NOSPC;
+ case NVME_SC_LBA_RANGE:
+ case NVME_SC_CMD_INTERRUPTED:
+ case NVME_SC_NS_NOT_READY:
+ return BLK_STS_TARGET;
+ case NVME_SC_BAD_ATTRIBUTES:
+ case NVME_SC_ONCS_NOT_SUPPORTED:
+ case NVME_SC_INVALID_OPCODE:
+ case NVME_SC_INVALID_FIELD:
+ case NVME_SC_INVALID_NS:
+ return BLK_STS_NOTSUPP;
+ case NVME_SC_WRITE_FAULT:
+ case NVME_SC_READ_ERROR:
+ case NVME_SC_UNWRITTEN_BLOCK:
+ case NVME_SC_ACCESS_DENIED:
+ case NVME_SC_READ_ONLY:
+ case NVME_SC_COMPARE_FAILED:
+ return BLK_STS_MEDIUM;
+ case NVME_SC_GUARD_CHECK:
+ case NVME_SC_APPTAG_CHECK:
+ case NVME_SC_REFTAG_CHECK:
+ case NVME_SC_INVALID_PI:
+ return BLK_STS_PROTECTION;
+ case NVME_SC_RESERVATION_CONFLICT:
+ return BLK_STS_RESV_CONFLICT;
+ case NVME_SC_HOST_PATH_ERROR:
+ return BLK_STS_TRANSPORT;
+ case NVME_SC_ZONE_TOO_MANY_ACTIVE:
+ return BLK_STS_ZONE_ACTIVE_RESOURCE;
+ case NVME_SC_ZONE_TOO_MANY_OPEN:
+ return BLK_STS_ZONE_OPEN_RESOURCE;
+ default:
+ return BLK_STS_IOERR;
+ }
+}
+
+static void nvme_retry_req(struct request *req)
+{
+ unsigned long delay = 0;
+ u16 crd;
+
+ /* The mask and shift result must be <= 3 */
+ crd = (nvme_req(req)->status & NVME_SC_CRD) >> 11;
+ if (crd)
+ delay = nvme_req(req)->ctrl->crdt[crd - 1] * 100;
+
+ nvme_req(req)->retries++;
+ blk_mq_requeue_request(req, false);
+ blk_mq_delay_kick_requeue_list(req->q, delay);
+}
+
+static void nvme_log_error(struct request *req)
+{
+ struct nvme_ns *ns = req->q->queuedata;
+ struct nvme_request *nr = nvme_req(req);
+
+ if (ns) {
+ pr_err_ratelimited("%s: %s(0x%x) @ LBA %llu, %llu blocks, %s (sct 0x%x / sc 0x%x) %s%s\n",
+ ns->disk ? ns->disk->disk_name : "?",
+ nvme_get_opcode_str(nr->cmd->common.opcode),
+ nr->cmd->common.opcode,
+ (unsigned long long)nvme_sect_to_lba(ns, blk_rq_pos(req)),
+ (unsigned long long)blk_rq_bytes(req) >> ns->lba_shift,
+ nvme_get_error_status_str(nr->status),
+ nr->status >> 8 & 7, /* Status Code Type */
+ nr->status & 0xff, /* Status Code */
+ nr->status & NVME_SC_MORE ? "MORE " : "",
+ nr->status & NVME_SC_DNR ? "DNR " : "");
+ return;
+ }
+
+ pr_err_ratelimited("%s: %s(0x%x), %s (sct 0x%x / sc 0x%x) %s%s\n",
+ dev_name(nr->ctrl->device),
+ nvme_get_admin_opcode_str(nr->cmd->common.opcode),
+ nr->cmd->common.opcode,
+ nvme_get_error_status_str(nr->status),
+ nr->status >> 8 & 7, /* Status Code Type */
+ nr->status & 0xff, /* Status Code */
+ nr->status & NVME_SC_MORE ? "MORE " : "",
+ nr->status & NVME_SC_DNR ? "DNR " : "");
+}
+
+enum nvme_disposition {
+ COMPLETE,
+ RETRY,
+ FAILOVER,
+ AUTHENTICATE,
+};
+
+static inline enum nvme_disposition nvme_decide_disposition(struct request *req)
+{
+ if (likely(nvme_req(req)->status == 0))
+ return COMPLETE;
+
+ if ((nvme_req(req)->status & 0x7ff) == NVME_SC_AUTH_REQUIRED)
+ return AUTHENTICATE;
+
+ if (blk_noretry_request(req) ||
+ (nvme_req(req)->status & NVME_SC_DNR) ||
+ nvme_req(req)->retries >= nvme_max_retries)
+ return COMPLETE;
+
+ if (req->cmd_flags & REQ_NVME_MPATH) {
+ if (nvme_is_path_error(nvme_req(req)->status) ||
+ blk_queue_dying(req->q))
+ return FAILOVER;
+ } else {
+ if (blk_queue_dying(req->q))
+ return COMPLETE;
+ }
+
+ return RETRY;
+}
+
+static inline void nvme_end_req_zoned(struct request *req)
+{
+ if (IS_ENABLED(CONFIG_BLK_DEV_ZONED) &&
+ req_op(req) == REQ_OP_ZONE_APPEND)
+ req->__sector = nvme_lba_to_sect(req->q->queuedata,
+ le64_to_cpu(nvme_req(req)->result.u64));
+}
+
+static inline void nvme_end_req(struct request *req)
+{
+ blk_status_t status = nvme_error_status(nvme_req(req)->status);
+
+ if (unlikely(nvme_req(req)->status && !(req->rq_flags & RQF_QUIET)))
+ nvme_log_error(req);
+ nvme_end_req_zoned(req);
+ nvme_trace_bio_complete(req);
+ if (req->cmd_flags & REQ_NVME_MPATH)
+ nvme_mpath_end_request(req);
+ blk_mq_end_request(req, status);
+}
+
+void nvme_complete_rq(struct request *req)
+{
+ struct nvme_ctrl *ctrl = nvme_req(req)->ctrl;
+
+ trace_nvme_complete_rq(req);
+ nvme_cleanup_cmd(req);
+
+ /*
+ * Completions of long-running commands should not be able to
+ * defer sending of periodic keep alives, since the controller
+ * may have completed processing such commands a long time ago
+ * (arbitrarily close to command submission time).
+ * req->deadline - req->timeout is the command submission time
+ * in jiffies.
+ */
+ if (ctrl->kas &&
+ req->deadline - req->timeout >= ctrl->ka_last_check_time)
+ ctrl->comp_seen = true;
+
+ switch (nvme_decide_disposition(req)) {
+ case COMPLETE:
+ nvme_end_req(req);
+ return;
+ case RETRY:
+ nvme_retry_req(req);
+ return;
+ case FAILOVER:
+ nvme_failover_req(req);
+ return;
+ case AUTHENTICATE:
+#ifdef CONFIG_NVME_AUTH
+ queue_work(nvme_wq, &ctrl->dhchap_auth_work);
+ nvme_retry_req(req);
+#else
+ nvme_end_req(req);
+#endif
+ return;
+ }
+}
+EXPORT_SYMBOL_GPL(nvme_complete_rq);
+
+void nvme_complete_batch_req(struct request *req)
+{
+ trace_nvme_complete_rq(req);
+ nvme_cleanup_cmd(req);
+ nvme_end_req_zoned(req);
+}
+EXPORT_SYMBOL_GPL(nvme_complete_batch_req);
+
+/*
+ * Called to unwind from ->queue_rq on a failed command submission so that the
+ * multipathing code gets called to potentially failover to another path.
+ * The caller needs to unwind all transport specific resource allocations and
+ * must return propagate the return value.
+ */
+blk_status_t nvme_host_path_error(struct request *req)
+{
+ nvme_req(req)->status = NVME_SC_HOST_PATH_ERROR;
+ blk_mq_set_request_complete(req);
+ nvme_complete_rq(req);
+ return BLK_STS_OK;
+}
+EXPORT_SYMBOL_GPL(nvme_host_path_error);
+
+bool nvme_cancel_request(struct request *req, void *data)
+{
+ dev_dbg_ratelimited(((struct nvme_ctrl *) data)->device,
+ "Cancelling I/O %d", req->tag);
+
+ /* don't abort one completed or idle request */
+ if (blk_mq_rq_state(req) != MQ_RQ_IN_FLIGHT)
+ return true;
+
+ nvme_req(req)->status = NVME_SC_HOST_ABORTED_CMD;
+ nvme_req(req)->flags |= NVME_REQ_CANCELLED;
+ blk_mq_complete_request(req);
+ return true;
+}
+EXPORT_SYMBOL_GPL(nvme_cancel_request);
+
+void nvme_cancel_tagset(struct nvme_ctrl *ctrl)
+{
+ if (ctrl->tagset) {
+ blk_mq_tagset_busy_iter(ctrl->tagset,
+ nvme_cancel_request, ctrl);
+ blk_mq_tagset_wait_completed_request(ctrl->tagset);
+ }
+}
+EXPORT_SYMBOL_GPL(nvme_cancel_tagset);
+
+void nvme_cancel_admin_tagset(struct nvme_ctrl *ctrl)
+{
+ if (ctrl->admin_tagset) {
+ blk_mq_tagset_busy_iter(ctrl->admin_tagset,
+ nvme_cancel_request, ctrl);
+ blk_mq_tagset_wait_completed_request(ctrl->admin_tagset);
+ }
+}
+EXPORT_SYMBOL_GPL(nvme_cancel_admin_tagset);
+
+bool nvme_change_ctrl_state(struct nvme_ctrl *ctrl,
+ enum nvme_ctrl_state new_state)
+{
+ enum nvme_ctrl_state old_state;
+ unsigned long flags;
+ bool changed = false;
+
+ spin_lock_irqsave(&ctrl->lock, flags);
+
+ old_state = nvme_ctrl_state(ctrl);
+ switch (new_state) {
+ case NVME_CTRL_LIVE:
+ switch (old_state) {
+ case NVME_CTRL_NEW:
+ case NVME_CTRL_RESETTING:
+ case NVME_CTRL_CONNECTING:
+ changed = true;
+ fallthrough;
+ default:
+ break;
+ }
+ break;
+ case NVME_CTRL_RESETTING:
+ switch (old_state) {
+ case NVME_CTRL_NEW:
+ case NVME_CTRL_LIVE:
+ changed = true;
+ fallthrough;
+ default:
+ break;
+ }
+ break;
+ case NVME_CTRL_CONNECTING:
+ switch (old_state) {
+ case NVME_CTRL_NEW:
+ case NVME_CTRL_RESETTING:
+ changed = true;
+ fallthrough;
+ default:
+ break;
+ }
+ break;
+ case NVME_CTRL_DELETING:
+ switch (old_state) {
+ case NVME_CTRL_LIVE:
+ case NVME_CTRL_RESETTING:
+ case NVME_CTRL_CONNECTING:
+ changed = true;
+ fallthrough;
+ default:
+ break;
+ }
+ break;
+ case NVME_CTRL_DELETING_NOIO:
+ switch (old_state) {
+ case NVME_CTRL_DELETING:
+ case NVME_CTRL_DEAD:
+ changed = true;
+ fallthrough;
+ default:
+ break;
+ }
+ break;
+ case NVME_CTRL_DEAD:
+ switch (old_state) {
+ case NVME_CTRL_DELETING:
+ changed = true;
+ fallthrough;
+ default:
+ break;
+ }
+ break;
+ default:
+ break;
+ }
+
+ if (changed) {
+ WRITE_ONCE(ctrl->state, new_state);
+ wake_up_all(&ctrl->state_wq);
+ }
+
+ spin_unlock_irqrestore(&ctrl->lock, flags);
+ if (!changed)
+ return false;
+
+ if (new_state == NVME_CTRL_LIVE) {
+ if (old_state == NVME_CTRL_CONNECTING)
+ nvme_stop_failfast_work(ctrl);
+ nvme_kick_requeue_lists(ctrl);
+ } else if (new_state == NVME_CTRL_CONNECTING &&
+ old_state == NVME_CTRL_RESETTING) {
+ nvme_start_failfast_work(ctrl);
+ }
+ return changed;
+}
+EXPORT_SYMBOL_GPL(nvme_change_ctrl_state);
+
+/*
+ * Returns true for sink states that can't ever transition back to live.
+ */
+static bool nvme_state_terminal(struct nvme_ctrl *ctrl)
+{
+ switch (nvme_ctrl_state(ctrl)) {
+ case NVME_CTRL_NEW:
+ case NVME_CTRL_LIVE:
+ case NVME_CTRL_RESETTING:
+ case NVME_CTRL_CONNECTING:
+ return false;
+ case NVME_CTRL_DELETING:
+ case NVME_CTRL_DELETING_NOIO:
+ case NVME_CTRL_DEAD:
+ return true;
+ default:
+ WARN_ONCE(1, "Unhandled ctrl state:%d", ctrl->state);
+ return true;
+ }
+}
+
+/*
+ * Waits for the controller state to be resetting, or returns false if it is
+ * not possible to ever transition to that state.
+ */
+bool nvme_wait_reset(struct nvme_ctrl *ctrl)
+{
+ wait_event(ctrl->state_wq,
+ nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING) ||
+ nvme_state_terminal(ctrl));
+ return nvme_ctrl_state(ctrl) == NVME_CTRL_RESETTING;
+}
+EXPORT_SYMBOL_GPL(nvme_wait_reset);
+
+static void nvme_free_ns_head(struct kref *ref)
+{
+ struct nvme_ns_head *head =
+ container_of(ref, struct nvme_ns_head, ref);
+
+ nvme_mpath_remove_disk(head);
+ ida_free(&head->subsys->ns_ida, head->instance);
+ cleanup_srcu_struct(&head->srcu);
+ nvme_put_subsystem(head->subsys);
+ kfree(head);
+}
+
+bool nvme_tryget_ns_head(struct nvme_ns_head *head)
+{
+ return kref_get_unless_zero(&head->ref);
+}
+
+void nvme_put_ns_head(struct nvme_ns_head *head)
+{
+ kref_put(&head->ref, nvme_free_ns_head);
+}
+
+static void nvme_free_ns(struct kref *kref)
+{
+ struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref);
+
+ put_disk(ns->disk);
+ nvme_put_ns_head(ns->head);
+ nvme_put_ctrl(ns->ctrl);
+ kfree(ns);
+}
+
+static inline bool nvme_get_ns(struct nvme_ns *ns)
+{
+ return kref_get_unless_zero(&ns->kref);
+}
+
+void nvme_put_ns(struct nvme_ns *ns)
+{
+ kref_put(&ns->kref, nvme_free_ns);
+}
+EXPORT_SYMBOL_NS_GPL(nvme_put_ns, NVME_TARGET_PASSTHRU);
+
+static inline void nvme_clear_nvme_request(struct request *req)
+{
+ nvme_req(req)->status = 0;
+ nvme_req(req)->retries = 0;
+ nvme_req(req)->flags = 0;
+ req->rq_flags |= RQF_DONTPREP;
+}
+
+/* initialize a passthrough request */
+void nvme_init_request(struct request *req, struct nvme_command *cmd)
+{
+ if (req->q->queuedata)
+ req->timeout = NVME_IO_TIMEOUT;
+ else /* no queuedata implies admin queue */
+ req->timeout = NVME_ADMIN_TIMEOUT;
+
+ /* passthru commands should let the driver set the SGL flags */
+ cmd->common.flags &= ~NVME_CMD_SGL_ALL;
+
+ req->cmd_flags |= REQ_FAILFAST_DRIVER;
+ if (req->mq_hctx->type == HCTX_TYPE_POLL)
+ req->cmd_flags |= REQ_POLLED;
+ nvme_clear_nvme_request(req);
+ req->rq_flags |= RQF_QUIET;
+ memcpy(nvme_req(req)->cmd, cmd, sizeof(*cmd));
+}
+EXPORT_SYMBOL_GPL(nvme_init_request);
+
+/*
+ * For something we're not in a state to send to the device the default action
+ * is to busy it and retry it after the controller state is recovered. However,
+ * if the controller is deleting or if anything is marked for failfast or
+ * nvme multipath it is immediately failed.
+ *
+ * Note: commands used to initialize the controller will be marked for failfast.
+ * Note: nvme cli/ioctl commands are marked for failfast.
+ */
+blk_status_t nvme_fail_nonready_command(struct nvme_ctrl *ctrl,
+ struct request *rq)
+{
+ enum nvme_ctrl_state state = nvme_ctrl_state(ctrl);
+
+ if (state != NVME_CTRL_DELETING_NOIO &&
+ state != NVME_CTRL_DELETING &&
+ state != NVME_CTRL_DEAD &&
+ !test_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags) &&
+ !blk_noretry_request(rq) && !(rq->cmd_flags & REQ_NVME_MPATH))
+ return BLK_STS_RESOURCE;
+ return nvme_host_path_error(rq);
+}
+EXPORT_SYMBOL_GPL(nvme_fail_nonready_command);
+
+bool __nvme_check_ready(struct nvme_ctrl *ctrl, struct request *rq,
+ bool queue_live)
+{
+ struct nvme_request *req = nvme_req(rq);
+
+ /*
+ * currently we have a problem sending passthru commands
+ * on the admin_q if the controller is not LIVE because we can't
+ * make sure that they are going out after the admin connect,
+ * controller enable and/or other commands in the initialization
+ * sequence. until the controller will be LIVE, fail with
+ * BLK_STS_RESOURCE so that they will be rescheduled.
+ */
+ if (rq->q == ctrl->admin_q && (req->flags & NVME_REQ_USERCMD))
+ return false;
+
+ if (ctrl->ops->flags & NVME_F_FABRICS) {
+ /*
+ * Only allow commands on a live queue, except for the connect
+ * command, which is require to set the queue live in the
+ * appropinquate states.
+ */
+ switch (nvme_ctrl_state(ctrl)) {
+ case NVME_CTRL_CONNECTING:
+ if (blk_rq_is_passthrough(rq) && nvme_is_fabrics(req->cmd) &&
+ (req->cmd->fabrics.fctype == nvme_fabrics_type_connect ||
+ req->cmd->fabrics.fctype == nvme_fabrics_type_auth_send ||
+ req->cmd->fabrics.fctype == nvme_fabrics_type_auth_receive))
+ return true;
+ break;
+ default:
+ break;
+ case NVME_CTRL_DEAD:
+ return false;
+ }
+ }
+
+ return queue_live;
+}
+EXPORT_SYMBOL_GPL(__nvme_check_ready);
+
+static inline void nvme_setup_flush(struct nvme_ns *ns,
+ struct nvme_command *cmnd)
+{
+ memset(cmnd, 0, sizeof(*cmnd));
+ cmnd->common.opcode = nvme_cmd_flush;
+ cmnd->common.nsid = cpu_to_le32(ns->head->ns_id);
+}
+
+static blk_status_t nvme_setup_discard(struct nvme_ns *ns, struct request *req,
+ struct nvme_command *cmnd)
+{
+ unsigned short segments = blk_rq_nr_discard_segments(req), n = 0;
+ struct nvme_dsm_range *range;
+ struct bio *bio;
+
+ /*
+ * Some devices do not consider the DSM 'Number of Ranges' field when
+ * determining how much data to DMA. Always allocate memory for maximum
+ * number of segments to prevent device reading beyond end of buffer.
+ */
+ static const size_t alloc_size = sizeof(*range) * NVME_DSM_MAX_RANGES;
+
+ range = kzalloc(alloc_size, GFP_ATOMIC | __GFP_NOWARN);
+ if (!range) {
+ /*
+ * If we fail allocation our range, fallback to the controller
+ * discard page. If that's also busy, it's safe to return
+ * busy, as we know we can make progress once that's freed.
+ */
+ if (test_and_set_bit_lock(0, &ns->ctrl->discard_page_busy))
+ return BLK_STS_RESOURCE;
+
+ range = page_address(ns->ctrl->discard_page);
+ }
+
+ if (queue_max_discard_segments(req->q) == 1) {
+ u64 slba = nvme_sect_to_lba(ns, blk_rq_pos(req));
+ u32 nlb = blk_rq_sectors(req) >> (ns->lba_shift - 9);
+
+ range[0].cattr = cpu_to_le32(0);
+ range[0].nlb = cpu_to_le32(nlb);
+ range[0].slba = cpu_to_le64(slba);
+ n = 1;
+ } else {
+ __rq_for_each_bio(bio, req) {
+ u64 slba = nvme_sect_to_lba(ns, bio->bi_iter.bi_sector);
+ u32 nlb = bio->bi_iter.bi_size >> ns->lba_shift;
+
+ if (n < segments) {
+ range[n].cattr = cpu_to_le32(0);
+ range[n].nlb = cpu_to_le32(nlb);
+ range[n].slba = cpu_to_le64(slba);
+ }
+ n++;
+ }
+ }
+
+ if (WARN_ON_ONCE(n != segments)) {
+ if (virt_to_page(range) == ns->ctrl->discard_page)
+ clear_bit_unlock(0, &ns->ctrl->discard_page_busy);
+ else
+ kfree(range);
+ return BLK_STS_IOERR;
+ }
+
+ memset(cmnd, 0, sizeof(*cmnd));
+ cmnd->dsm.opcode = nvme_cmd_dsm;
+ cmnd->dsm.nsid = cpu_to_le32(ns->head->ns_id);
+ cmnd->dsm.nr = cpu_to_le32(segments - 1);
+ cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
+
+ bvec_set_virt(&req->special_vec, range, alloc_size);
+ req->rq_flags |= RQF_SPECIAL_PAYLOAD;
+
+ return BLK_STS_OK;
+}
+
+static void nvme_set_ref_tag(struct nvme_ns *ns, struct nvme_command *cmnd,
+ struct request *req)
+{
+ u32 upper, lower;
+ u64 ref48;
+
+ /* both rw and write zeroes share the same reftag format */
+ switch (ns->guard_type) {
+ case NVME_NVM_NS_16B_GUARD:
+ cmnd->rw.reftag = cpu_to_le32(t10_pi_ref_tag(req));
+ break;
+ case NVME_NVM_NS_64B_GUARD:
+ ref48 = ext_pi_ref_tag(req);
+ lower = lower_32_bits(ref48);
+ upper = upper_32_bits(ref48);
+
+ cmnd->rw.reftag = cpu_to_le32(lower);
+ cmnd->rw.cdw3 = cpu_to_le32(upper);
+ break;
+ default:
+ break;
+ }
+}
+
+static inline blk_status_t nvme_setup_write_zeroes(struct nvme_ns *ns,
+ struct request *req, struct nvme_command *cmnd)
+{
+ memset(cmnd, 0, sizeof(*cmnd));
+
+ if (ns->ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
+ return nvme_setup_discard(ns, req, cmnd);
+
+ cmnd->write_zeroes.opcode = nvme_cmd_write_zeroes;
+ cmnd->write_zeroes.nsid = cpu_to_le32(ns->head->ns_id);
+ cmnd->write_zeroes.slba =
+ cpu_to_le64(nvme_sect_to_lba(ns, blk_rq_pos(req)));
+ cmnd->write_zeroes.length =
+ cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
+
+ if (!(req->cmd_flags & REQ_NOUNMAP) && (ns->features & NVME_NS_DEAC))
+ cmnd->write_zeroes.control |= cpu_to_le16(NVME_WZ_DEAC);
+
+ if (nvme_ns_has_pi(ns)) {
+ cmnd->write_zeroes.control |= cpu_to_le16(NVME_RW_PRINFO_PRACT);
+
+ switch (ns->pi_type) {
+ case NVME_NS_DPS_PI_TYPE1:
+ case NVME_NS_DPS_PI_TYPE2:
+ nvme_set_ref_tag(ns, cmnd, req);
+ break;
+ }
+ }
+
+ return BLK_STS_OK;
+}
+
+static inline blk_status_t nvme_setup_rw(struct nvme_ns *ns,
+ struct request *req, struct nvme_command *cmnd,
+ enum nvme_opcode op)
+{
+ u16 control = 0;
+ u32 dsmgmt = 0;
+
+ if (req->cmd_flags & REQ_FUA)
+ control |= NVME_RW_FUA;
+ if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD))
+ control |= NVME_RW_LR;
+
+ if (req->cmd_flags & REQ_RAHEAD)
+ dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
+
+ cmnd->rw.opcode = op;
+ cmnd->rw.flags = 0;
+ cmnd->rw.nsid = cpu_to_le32(ns->head->ns_id);
+ cmnd->rw.cdw2 = 0;
+ cmnd->rw.cdw3 = 0;
+ cmnd->rw.metadata = 0;
+ cmnd->rw.slba = cpu_to_le64(nvme_sect_to_lba(ns, blk_rq_pos(req)));
+ cmnd->rw.length = cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
+ cmnd->rw.reftag = 0;
+ cmnd->rw.apptag = 0;
+ cmnd->rw.appmask = 0;
+
+ if (ns->ms) {
+ /*
+ * If formated with metadata, the block layer always provides a
+ * metadata buffer if CONFIG_BLK_DEV_INTEGRITY is enabled. Else
+ * we enable the PRACT bit for protection information or set the
+ * namespace capacity to zero to prevent any I/O.
+ */
+ if (!blk_integrity_rq(req)) {
+ if (WARN_ON_ONCE(!nvme_ns_has_pi(ns)))
+ return BLK_STS_NOTSUPP;
+ control |= NVME_RW_PRINFO_PRACT;
+ }
+
+ switch (ns->pi_type) {
+ case NVME_NS_DPS_PI_TYPE3:
+ control |= NVME_RW_PRINFO_PRCHK_GUARD;
+ break;
+ case NVME_NS_DPS_PI_TYPE1:
+ case NVME_NS_DPS_PI_TYPE2:
+ control |= NVME_RW_PRINFO_PRCHK_GUARD |
+ NVME_RW_PRINFO_PRCHK_REF;
+ if (op == nvme_cmd_zone_append)
+ control |= NVME_RW_APPEND_PIREMAP;
+ nvme_set_ref_tag(ns, cmnd, req);
+ break;
+ }
+ }
+
+ cmnd->rw.control = cpu_to_le16(control);
+ cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
+ return 0;
+}
+
+void nvme_cleanup_cmd(struct request *req)
+{
+ if (req->rq_flags & RQF_SPECIAL_PAYLOAD) {
+ struct nvme_ctrl *ctrl = nvme_req(req)->ctrl;
+
+ if (req->special_vec.bv_page == ctrl->discard_page)
+ clear_bit_unlock(0, &ctrl->discard_page_busy);
+ else
+ kfree(bvec_virt(&req->special_vec));
+ }
+}
+EXPORT_SYMBOL_GPL(nvme_cleanup_cmd);
+
+blk_status_t nvme_setup_cmd(struct nvme_ns *ns, struct request *req)
+{
+ struct nvme_command *cmd = nvme_req(req)->cmd;
+ blk_status_t ret = BLK_STS_OK;
+
+ if (!(req->rq_flags & RQF_DONTPREP))
+ nvme_clear_nvme_request(req);
+
+ switch (req_op(req)) {
+ case REQ_OP_DRV_IN:
+ case REQ_OP_DRV_OUT:
+ /* these are setup prior to execution in nvme_init_request() */
+ break;
+ case REQ_OP_FLUSH:
+ nvme_setup_flush(ns, cmd);
+ break;
+ case REQ_OP_ZONE_RESET_ALL:
+ case REQ_OP_ZONE_RESET:
+ ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_RESET);
+ break;
+ case REQ_OP_ZONE_OPEN:
+ ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_OPEN);
+ break;
+ case REQ_OP_ZONE_CLOSE:
+ ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_CLOSE);
+ break;
+ case REQ_OP_ZONE_FINISH:
+ ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_FINISH);
+ break;
+ case REQ_OP_WRITE_ZEROES:
+ ret = nvme_setup_write_zeroes(ns, req, cmd);
+ break;
+ case REQ_OP_DISCARD:
+ ret = nvme_setup_discard(ns, req, cmd);
+ break;
+ case REQ_OP_READ:
+ ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_read);
+ break;
+ case REQ_OP_WRITE:
+ ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_write);
+ break;
+ case REQ_OP_ZONE_APPEND:
+ ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_zone_append);
+ break;
+ default:
+ WARN_ON_ONCE(1);
+ return BLK_STS_IOERR;
+ }
+
+ cmd->common.command_id = nvme_cid(req);
+ trace_nvme_setup_cmd(req, cmd);
+ return ret;
+}
+EXPORT_SYMBOL_GPL(nvme_setup_cmd);
+
+/*
+ * Return values:
+ * 0: success
+ * >0: nvme controller's cqe status response
+ * <0: kernel error in lieu of controller response
+ */
+int nvme_execute_rq(struct request *rq, bool at_head)
+{
+ blk_status_t status;
+
+ status = blk_execute_rq(rq, at_head);
+ if (nvme_req(rq)->flags & NVME_REQ_CANCELLED)
+ return -EINTR;
+ if (nvme_req(rq)->status)
+ return nvme_req(rq)->status;
+ return blk_status_to_errno(status);
+}
+EXPORT_SYMBOL_NS_GPL(nvme_execute_rq, NVME_TARGET_PASSTHRU);
+
+/*
+ * Returns 0 on success. If the result is negative, it's a Linux error code;
+ * if the result is positive, it's an NVM Express status code
+ */
+int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
+ union nvme_result *result, void *buffer, unsigned bufflen,
+ int qid, int at_head, blk_mq_req_flags_t flags)
+{
+ struct request *req;
+ int ret;
+
+ if (qid == NVME_QID_ANY)
+ req = blk_mq_alloc_request(q, nvme_req_op(cmd), flags);
+ else
+ req = blk_mq_alloc_request_hctx(q, nvme_req_op(cmd), flags,
+ qid - 1);
+
+ if (IS_ERR(req))
+ return PTR_ERR(req);
+ nvme_init_request(req, cmd);
+
+ if (buffer && bufflen) {
+ ret = blk_rq_map_kern(q, req, buffer, bufflen, GFP_KERNEL);
+ if (ret)
+ goto out;
+ }
+
+ ret = nvme_execute_rq(req, at_head);
+ if (result && ret >= 0)
+ *result = nvme_req(req)->result;
+ out:
+ blk_mq_free_request(req);
+ return ret;
+}
+EXPORT_SYMBOL_GPL(__nvme_submit_sync_cmd);
+
+int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
+ void *buffer, unsigned bufflen)
+{
+ return __nvme_submit_sync_cmd(q, cmd, NULL, buffer, bufflen,
+ NVME_QID_ANY, 0, 0);
+}
+EXPORT_SYMBOL_GPL(nvme_submit_sync_cmd);
+
+u32 nvme_command_effects(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u8 opcode)
+{
+ u32 effects = 0;
+
+ if (ns) {
+ effects = le32_to_cpu(ns->head->effects->iocs[opcode]);
+ if (effects & ~(NVME_CMD_EFFECTS_CSUPP | NVME_CMD_EFFECTS_LBCC))
+ dev_warn_once(ctrl->device,
+ "IO command:%02x has unusual effects:%08x\n",
+ opcode, effects);
+
+ /*
+ * NVME_CMD_EFFECTS_CSE_MASK causes a freeze all I/O queues,
+ * which would deadlock when done on an I/O command. Note that
+ * We already warn about an unusual effect above.
+ */
+ effects &= ~NVME_CMD_EFFECTS_CSE_MASK;
+ } else {
+ effects = le32_to_cpu(ctrl->effects->acs[opcode]);
+ }
+
+ return effects;
+}
+EXPORT_SYMBOL_NS_GPL(nvme_command_effects, NVME_TARGET_PASSTHRU);
+
+u32 nvme_passthru_start(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u8 opcode)
+{
+ u32 effects = nvme_command_effects(ctrl, ns, opcode);
+
+ /*
+ * For simplicity, IO to all namespaces is quiesced even if the command
+ * effects say only one namespace is affected.
+ */
+ if (effects & NVME_CMD_EFFECTS_CSE_MASK) {
+ mutex_lock(&ctrl->scan_lock);
+ mutex_lock(&ctrl->subsys->lock);
+ nvme_mpath_start_freeze(ctrl->subsys);
+ nvme_mpath_wait_freeze(ctrl->subsys);
+ nvme_start_freeze(ctrl);
+ nvme_wait_freeze(ctrl);
+ }
+ return effects;
+}
+EXPORT_SYMBOL_NS_GPL(nvme_passthru_start, NVME_TARGET_PASSTHRU);
+
+void nvme_passthru_end(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u32 effects,
+ struct nvme_command *cmd, int status)
+{
+ if (effects & NVME_CMD_EFFECTS_CSE_MASK) {
+ nvme_unfreeze(ctrl);
+ nvme_mpath_unfreeze(ctrl->subsys);
+ mutex_unlock(&ctrl->subsys->lock);
+ mutex_unlock(&ctrl->scan_lock);
+ }
+ if (effects & NVME_CMD_EFFECTS_CCC) {
+ if (!test_and_set_bit(NVME_CTRL_DIRTY_CAPABILITY,
+ &ctrl->flags)) {
+ dev_info(ctrl->device,
+"controller capabilities changed, reset may be required to take effect.\n");
+ }
+ }
+ if (effects & (NVME_CMD_EFFECTS_NIC | NVME_CMD_EFFECTS_NCC)) {
+ nvme_queue_scan(ctrl);
+ flush_work(&ctrl->scan_work);
+ }
+ if (ns)
+ return;
+
+ switch (cmd->common.opcode) {
+ case nvme_admin_set_features:
+ switch (le32_to_cpu(cmd->common.cdw10) & 0xFF) {
+ case NVME_FEAT_KATO:
+ /*
+ * Keep alive commands interval on the host should be
+ * updated when KATO is modified by Set Features
+ * commands.
+ */
+ if (!status)
+ nvme_update_keep_alive(ctrl, cmd);
+ break;
+ default:
+ break;
+ }
+ break;
+ default:
+ break;
+ }
+}
+EXPORT_SYMBOL_NS_GPL(nvme_passthru_end, NVME_TARGET_PASSTHRU);
+
+/*
+ * Recommended frequency for KATO commands per NVMe 1.4 section 7.12.1:
+ *
+ * The host should send Keep Alive commands at half of the Keep Alive Timeout
+ * accounting for transport roundtrip times [..].
+ */
+static unsigned long nvme_keep_alive_work_period(struct nvme_ctrl *ctrl)
+{
+ unsigned long delay = ctrl->kato * HZ / 2;
+
+ /*
+ * When using Traffic Based Keep Alive, we need to run
+ * nvme_keep_alive_work at twice the normal frequency, as one
+ * command completion can postpone sending a keep alive command
+ * by up to twice the delay between runs.
+ */
+ if (ctrl->ctratt & NVME_CTRL_ATTR_TBKAS)
+ delay /= 2;
+ return delay;
+}
+
+static void nvme_queue_keep_alive_work(struct nvme_ctrl *ctrl)
+{
+ queue_delayed_work(nvme_wq, &ctrl->ka_work,
+ nvme_keep_alive_work_period(ctrl));
+}
+
+static enum rq_end_io_ret nvme_keep_alive_end_io(struct request *rq,
+ blk_status_t status)
+{
+ struct nvme_ctrl *ctrl = rq->end_io_data;
+ unsigned long flags;
+ bool startka = false;
+ unsigned long rtt = jiffies - (rq->deadline - rq->timeout);
+ unsigned long delay = nvme_keep_alive_work_period(ctrl);
+
+ /*
+ * Subtract off the keepalive RTT so nvme_keep_alive_work runs
+ * at the desired frequency.
+ */
+ if (rtt <= delay) {
+ delay -= rtt;
+ } else {
+ dev_warn(ctrl->device, "long keepalive RTT (%u ms)\n",
+ jiffies_to_msecs(rtt));
+ delay = 0;
+ }
+
+ blk_mq_free_request(rq);
+
+ if (status) {
+ dev_err(ctrl->device,
+ "failed nvme_keep_alive_end_io error=%d\n",
+ status);
+ return RQ_END_IO_NONE;
+ }
+
+ ctrl->ka_last_check_time = jiffies;
+ ctrl->comp_seen = false;
+ spin_lock_irqsave(&ctrl->lock, flags);
+ if (ctrl->state == NVME_CTRL_LIVE ||
+ ctrl->state == NVME_CTRL_CONNECTING)
+ startka = true;
+ spin_unlock_irqrestore(&ctrl->lock, flags);
+ if (startka)
+ queue_delayed_work(nvme_wq, &ctrl->ka_work, delay);
+ return RQ_END_IO_NONE;
+}
+
+static void nvme_keep_alive_work(struct work_struct *work)
+{
+ struct nvme_ctrl *ctrl = container_of(to_delayed_work(work),
+ struct nvme_ctrl, ka_work);
+ bool comp_seen = ctrl->comp_seen;
+ struct request *rq;
+
+ ctrl->ka_last_check_time = jiffies;
+
+ if ((ctrl->ctratt & NVME_CTRL_ATTR_TBKAS) && comp_seen) {
+ dev_dbg(ctrl->device,
+ "reschedule traffic based keep-alive timer\n");
+ ctrl->comp_seen = false;
+ nvme_queue_keep_alive_work(ctrl);
+ return;
+ }
+
+ rq = blk_mq_alloc_request(ctrl->admin_q, nvme_req_op(&ctrl->ka_cmd),
+ BLK_MQ_REQ_RESERVED | BLK_MQ_REQ_NOWAIT);
+ if (IS_ERR(rq)) {
+ /* allocation failure, reset the controller */
+ dev_err(ctrl->device, "keep-alive failed: %ld\n", PTR_ERR(rq));
+ nvme_reset_ctrl(ctrl);
+ return;
+ }
+ nvme_init_request(rq, &ctrl->ka_cmd);
+
+ rq->timeout = ctrl->kato * HZ;
+ rq->end_io = nvme_keep_alive_end_io;
+ rq->end_io_data = ctrl;
+ blk_execute_rq_nowait(rq, false);
+}
+
+static void nvme_start_keep_alive(struct nvme_ctrl *ctrl)
+{
+ if (unlikely(ctrl->kato == 0))
+ return;
+
+ nvme_queue_keep_alive_work(ctrl);
+}
+
+void nvme_stop_keep_alive(struct nvme_ctrl *ctrl)
+{
+ if (unlikely(ctrl->kato == 0))
+ return;
+
+ cancel_delayed_work_sync(&ctrl->ka_work);
+}
+EXPORT_SYMBOL_GPL(nvme_stop_keep_alive);
+
+static void nvme_update_keep_alive(struct nvme_ctrl *ctrl,
+ struct nvme_command *cmd)
+{
+ unsigned int new_kato =
+ DIV_ROUND_UP(le32_to_cpu(cmd->common.cdw11), 1000);
+
+ dev_info(ctrl->device,
+ "keep alive interval updated from %u ms to %u ms\n",
+ ctrl->kato * 1000 / 2, new_kato * 1000 / 2);
+
+ nvme_stop_keep_alive(ctrl);
+ ctrl->kato = new_kato;
+ nvme_start_keep_alive(ctrl);
+}
+
+/*
+ * In NVMe 1.0 the CNS field was just a binary controller or namespace
+ * flag, thus sending any new CNS opcodes has a big chance of not working.
+ * Qemu unfortunately had that bug after reporting a 1.1 version compliance
+ * (but not for any later version).
+ */
+static bool nvme_ctrl_limited_cns(struct nvme_ctrl *ctrl)
+{
+ if (ctrl->quirks & NVME_QUIRK_IDENTIFY_CNS)
+ return ctrl->vs < NVME_VS(1, 2, 0);
+ return ctrl->vs < NVME_VS(1, 1, 0);
+}
+
+static int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id)
+{
+ struct nvme_command c = { };
+ int error;
+
+ /* gcc-4.4.4 (at least) has issues with initializers and anon unions */
+ c.identify.opcode = nvme_admin_identify;
+ c.identify.cns = NVME_ID_CNS_CTRL;
+
+ *id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL);
+ if (!*id)
+ return -ENOMEM;
+
+ error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
+ sizeof(struct nvme_id_ctrl));
+ if (error)
+ kfree(*id);
+ return error;
+}
+
+static int nvme_process_ns_desc(struct nvme_ctrl *ctrl, struct nvme_ns_ids *ids,
+ struct nvme_ns_id_desc *cur, bool *csi_seen)
+{
+ const char *warn_str = "ctrl returned bogus length:";
+ void *data = cur;
+
+ switch (cur->nidt) {
+ case NVME_NIDT_EUI64:
+ if (cur->nidl != NVME_NIDT_EUI64_LEN) {
+ dev_warn(ctrl->device, "%s %d for NVME_NIDT_EUI64\n",
+ warn_str, cur->nidl);
+ return -1;
+ }
+ if (ctrl->quirks & NVME_QUIRK_BOGUS_NID)
+ return NVME_NIDT_EUI64_LEN;
+ memcpy(ids->eui64, data + sizeof(*cur), NVME_NIDT_EUI64_LEN);
+ return NVME_NIDT_EUI64_LEN;
+ case NVME_NIDT_NGUID:
+ if (cur->nidl != NVME_NIDT_NGUID_LEN) {
+ dev_warn(ctrl->device, "%s %d for NVME_NIDT_NGUID\n",
+ warn_str, cur->nidl);
+ return -1;
+ }
+ if (ctrl->quirks & NVME_QUIRK_BOGUS_NID)
+ return NVME_NIDT_NGUID_LEN;
+ memcpy(ids->nguid, data + sizeof(*cur), NVME_NIDT_NGUID_LEN);
+ return NVME_NIDT_NGUID_LEN;
+ case NVME_NIDT_UUID:
+ if (cur->nidl != NVME_NIDT_UUID_LEN) {
+ dev_warn(ctrl->device, "%s %d for NVME_NIDT_UUID\n",
+ warn_str, cur->nidl);
+ return -1;
+ }
+ if (ctrl->quirks & NVME_QUIRK_BOGUS_NID)
+ return NVME_NIDT_UUID_LEN;
+ uuid_copy(&ids->uuid, data + sizeof(*cur));
+ return NVME_NIDT_UUID_LEN;
+ case NVME_NIDT_CSI:
+ if (cur->nidl != NVME_NIDT_CSI_LEN) {
+ dev_warn(ctrl->device, "%s %d for NVME_NIDT_CSI\n",
+ warn_str, cur->nidl);
+ return -1;
+ }
+ memcpy(&ids->csi, data + sizeof(*cur), NVME_NIDT_CSI_LEN);
+ *csi_seen = true;
+ return NVME_NIDT_CSI_LEN;
+ default:
+ /* Skip unknown types */
+ return cur->nidl;
+ }
+}
+
+static int nvme_identify_ns_descs(struct nvme_ctrl *ctrl,
+ struct nvme_ns_info *info)
+{
+ struct nvme_command c = { };
+ bool csi_seen = false;
+ int status, pos, len;
+ void *data;
+
+ if (ctrl->vs < NVME_VS(1, 3, 0) && !nvme_multi_css(ctrl))
+ return 0;
+ if (ctrl->quirks & NVME_QUIRK_NO_NS_DESC_LIST)
+ return 0;
+
+ c.identify.opcode = nvme_admin_identify;
+ c.identify.nsid = cpu_to_le32(info->nsid);
+ c.identify.cns = NVME_ID_CNS_NS_DESC_LIST;
+
+ data = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
+ if (!data)
+ return -ENOMEM;
+
+ status = nvme_submit_sync_cmd(ctrl->admin_q, &c, data,
+ NVME_IDENTIFY_DATA_SIZE);
+ if (status) {
+ dev_warn(ctrl->device,
+ "Identify Descriptors failed (nsid=%u, status=0x%x)\n",
+ info->nsid, status);
+ goto free_data;
+ }
+
+ for (pos = 0; pos < NVME_IDENTIFY_DATA_SIZE; pos += len) {
+ struct nvme_ns_id_desc *cur = data + pos;
+
+ if (cur->nidl == 0)
+ break;
+
+ len = nvme_process_ns_desc(ctrl, &info->ids, cur, &csi_seen);
+ if (len < 0)
+ break;
+
+ len += sizeof(*cur);
+ }
+
+ if (nvme_multi_css(ctrl) && !csi_seen) {
+ dev_warn(ctrl->device, "Command set not reported for nsid:%d\n",
+ info->nsid);
+ status = -EINVAL;
+ }
+
+free_data:
+ kfree(data);
+ return status;
+}
+
+static int nvme_identify_ns(struct nvme_ctrl *ctrl, unsigned nsid,
+ struct nvme_id_ns **id)
+{
+ struct nvme_command c = { };
+ int error;
+
+ /* gcc-4.4.4 (at least) has issues with initializers and anon unions */
+ c.identify.opcode = nvme_admin_identify;
+ c.identify.nsid = cpu_to_le32(nsid);
+ c.identify.cns = NVME_ID_CNS_NS;
+
+ *id = kmalloc(sizeof(**id), GFP_KERNEL);
+ if (!*id)
+ return -ENOMEM;
+
+ error = nvme_submit_sync_cmd(ctrl->admin_q, &c, *id, sizeof(**id));
+ if (error) {
+ dev_warn(ctrl->device, "Identify namespace failed (%d)\n", error);
+ kfree(*id);
+ }
+ return error;
+}
+
+static int nvme_ns_info_from_identify(struct nvme_ctrl *ctrl,
+ struct nvme_ns_info *info)
+{
+ struct nvme_ns_ids *ids = &info->ids;
+ struct nvme_id_ns *id;
+ int ret;
+
+ ret = nvme_identify_ns(ctrl, info->nsid, &id);
+ if (ret)
+ return ret;
+
+ if (id->ncap == 0) {
+ /* namespace not allocated or attached */
+ info->is_removed = true;
+ ret = -ENODEV;
+ goto error;
+ }
+
+ info->anagrpid = id->anagrpid;
+ info->is_shared = id->nmic & NVME_NS_NMIC_SHARED;
+ info->is_readonly = id->nsattr & NVME_NS_ATTR_RO;
+ info->is_ready = true;
+ if (ctrl->quirks & NVME_QUIRK_BOGUS_NID) {
+ dev_info(ctrl->device,
+ "Ignoring bogus Namespace Identifiers\n");
+ } else {
+ if (ctrl->vs >= NVME_VS(1, 1, 0) &&
+ !memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
+ memcpy(ids->eui64, id->eui64, sizeof(ids->eui64));
+ if (ctrl->vs >= NVME_VS(1, 2, 0) &&
+ !memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
+ memcpy(ids->nguid, id->nguid, sizeof(ids->nguid));
+ }
+
+error:
+ kfree(id);
+ return ret;
+}
+
+static int nvme_ns_info_from_id_cs_indep(struct nvme_ctrl *ctrl,
+ struct nvme_ns_info *info)
+{
+ struct nvme_id_ns_cs_indep *id;
+ struct nvme_command c = {
+ .identify.opcode = nvme_admin_identify,
+ .identify.nsid = cpu_to_le32(info->nsid),
+ .identify.cns = NVME_ID_CNS_NS_CS_INDEP,
+ };
+ int ret;
+
+ id = kmalloc(sizeof(*id), GFP_KERNEL);
+ if (!id)
+ return -ENOMEM;
+
+ ret = nvme_submit_sync_cmd(ctrl->admin_q, &c, id, sizeof(*id));
+ if (!ret) {
+ info->anagrpid = id->anagrpid;
+ info->is_shared = id->nmic & NVME_NS_NMIC_SHARED;
+ info->is_readonly = id->nsattr & NVME_NS_ATTR_RO;
+ info->is_ready = id->nstat & NVME_NSTAT_NRDY;
+ }
+ kfree(id);
+ return ret;
+}
+
+static int nvme_features(struct nvme_ctrl *dev, u8 op, unsigned int fid,
+ unsigned int dword11, void *buffer, size_t buflen, u32 *result)
+{
+ union nvme_result res = { 0 };
+ struct nvme_command c = { };
+ int ret;
+
+ c.features.opcode = op;
+ c.features.fid = cpu_to_le32(fid);
+ c.features.dword11 = cpu_to_le32(dword11);
+
+ ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &res,
+ buffer, buflen, NVME_QID_ANY, 0, 0);
+ if (ret >= 0 && result)
+ *result = le32_to_cpu(res.u32);
+ return ret;
+}
+
+int nvme_set_features(struct nvme_ctrl *dev, unsigned int fid,
+ unsigned int dword11, void *buffer, size_t buflen,
+ u32 *result)
+{
+ return nvme_features(dev, nvme_admin_set_features, fid, dword11, buffer,
+ buflen, result);
+}
+EXPORT_SYMBOL_GPL(nvme_set_features);
+
+int nvme_get_features(struct nvme_ctrl *dev, unsigned int fid,
+ unsigned int dword11, void *buffer, size_t buflen,
+ u32 *result)
+{
+ return nvme_features(dev, nvme_admin_get_features, fid, dword11, buffer,
+ buflen, result);
+}
+EXPORT_SYMBOL_GPL(nvme_get_features);
+
+int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count)
+{
+ u32 q_count = (*count - 1) | ((*count - 1) << 16);
+ u32 result;
+ int status, nr_io_queues;
+
+ status = nvme_set_features(ctrl, NVME_FEAT_NUM_QUEUES, q_count, NULL, 0,
+ &result);
+ if (status < 0)
+ return status;
+
+ /*
+ * Degraded controllers might return an error when setting the queue
+ * count. We still want to be able to bring them online and offer
+ * access to the admin queue, as that might be only way to fix them up.
+ */
+ if (status > 0) {
+ dev_err(ctrl->device, "Could not set queue count (%d)\n", status);
+ *count = 0;
+ } else {
+ nr_io_queues = min(result & 0xffff, result >> 16) + 1;
+ *count = min(*count, nr_io_queues);
+ }
+
+ return 0;
+}
+EXPORT_SYMBOL_GPL(nvme_set_queue_count);
+
+#define NVME_AEN_SUPPORTED \
+ (NVME_AEN_CFG_NS_ATTR | NVME_AEN_CFG_FW_ACT | \
+ NVME_AEN_CFG_ANA_CHANGE | NVME_AEN_CFG_DISC_CHANGE)
+
+static void nvme_enable_aen(struct nvme_ctrl *ctrl)
+{
+ u32 result, supported_aens = ctrl->oaes & NVME_AEN_SUPPORTED;
+ int status;
+
+ if (!supported_aens)
+ return;
+
+ status = nvme_set_features(ctrl, NVME_FEAT_ASYNC_EVENT, supported_aens,
+ NULL, 0, &result);
+ if (status)
+ dev_warn(ctrl->device, "Failed to configure AEN (cfg %x)\n",
+ supported_aens);
+
+ queue_work(nvme_wq, &ctrl->async_event_work);
+}
+
+static int nvme_ns_open(struct nvme_ns *ns)
+{
+
+ /* should never be called due to GENHD_FL_HIDDEN */
+ if (WARN_ON_ONCE(nvme_ns_head_multipath(ns->head)))
+ goto fail;
+ if (!nvme_get_ns(ns))
+ goto fail;
+ if (!try_module_get(ns->ctrl->ops->module))
+ goto fail_put_ns;
+
+ return 0;
+
+fail_put_ns:
+ nvme_put_ns(ns);
+fail:
+ return -ENXIO;
+}
+
+static void nvme_ns_release(struct nvme_ns *ns)
+{
+
+ module_put(ns->ctrl->ops->module);
+ nvme_put_ns(ns);
+}
+
+static int nvme_open(struct gendisk *disk, blk_mode_t mode)
+{
+ return nvme_ns_open(disk->private_data);
+}
+
+static void nvme_release(struct gendisk *disk)
+{
+ nvme_ns_release(disk->private_data);
+}
+
+int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo)
+{
+ /* some standard values */
+ geo->heads = 1 << 6;
+ geo->sectors = 1 << 5;
+ geo->cylinders = get_capacity(bdev->bd_disk) >> 11;
+ return 0;
+}
+
+#ifdef CONFIG_BLK_DEV_INTEGRITY
+static void nvme_init_integrity(struct gendisk *disk, struct nvme_ns *ns,
+ u32 max_integrity_segments)
+{
+ struct blk_integrity integrity = { };
+
+ switch (ns->pi_type) {
+ case NVME_NS_DPS_PI_TYPE3:
+ switch (ns->guard_type) {
+ case NVME_NVM_NS_16B_GUARD:
+ integrity.profile = &t10_pi_type3_crc;
+ integrity.tag_size = sizeof(u16) + sizeof(u32);
+ integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
+ break;
+ case NVME_NVM_NS_64B_GUARD:
+ integrity.profile = &ext_pi_type3_crc64;
+ integrity.tag_size = sizeof(u16) + 6;
+ integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
+ break;
+ default:
+ integrity.profile = NULL;
+ break;
+ }
+ break;
+ case NVME_NS_DPS_PI_TYPE1:
+ case NVME_NS_DPS_PI_TYPE2:
+ switch (ns->guard_type) {
+ case NVME_NVM_NS_16B_GUARD:
+ integrity.profile = &t10_pi_type1_crc;
+ integrity.tag_size = sizeof(u16);
+ integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
+ break;
+ case NVME_NVM_NS_64B_GUARD:
+ integrity.profile = &ext_pi_type1_crc64;
+ integrity.tag_size = sizeof(u16);
+ integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
+ break;
+ default:
+ integrity.profile = NULL;
+ break;
+ }
+ break;
+ default:
+ integrity.profile = NULL;
+ break;
+ }
+
+ integrity.tuple_size = ns->ms;
+ blk_integrity_register(disk, &integrity);
+ blk_queue_max_integrity_segments(disk->queue, max_integrity_segments);
+}
+#else
+static void nvme_init_integrity(struct gendisk *disk, struct nvme_ns *ns,
+ u32 max_integrity_segments)
+{
+}
+#endif /* CONFIG_BLK_DEV_INTEGRITY */
+
+static void nvme_config_discard(struct gendisk *disk, struct nvme_ns *ns)
+{
+ struct nvme_ctrl *ctrl = ns->ctrl;
+ struct request_queue *queue = disk->queue;
+ u32 size = queue_logical_block_size(queue);
+
+ if (ctrl->dmrsl && ctrl->dmrsl <= nvme_sect_to_lba(ns, UINT_MAX))
+ ctrl->max_discard_sectors = nvme_lba_to_sect(ns, ctrl->dmrsl);
+
+ if (ctrl->max_discard_sectors == 0) {
+ blk_queue_max_discard_sectors(queue, 0);
+ return;
+ }
+
+ BUILD_BUG_ON(PAGE_SIZE / sizeof(struct nvme_dsm_range) <
+ NVME_DSM_MAX_RANGES);
+
+ queue->limits.discard_granularity = size;
+
+ /* If discard is already enabled, don't reset queue limits */
+ if (queue->limits.max_discard_sectors)
+ return;
+
+ blk_queue_max_discard_sectors(queue, ctrl->max_discard_sectors);
+ blk_queue_max_discard_segments(queue, ctrl->max_discard_segments);
+
+ if (ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
+ blk_queue_max_write_zeroes_sectors(queue, UINT_MAX);
+}
+
+static bool nvme_ns_ids_equal(struct nvme_ns_ids *a, struct nvme_ns_ids *b)
+{
+ return uuid_equal(&a->uuid, &b->uuid) &&
+ memcmp(&a->nguid, &b->nguid, sizeof(a->nguid)) == 0 &&
+ memcmp(&a->eui64, &b->eui64, sizeof(a->eui64)) == 0 &&
+ a->csi == b->csi;
+}
+
+static int nvme_init_ms(struct nvme_ns *ns, struct nvme_id_ns *id)
+{
+ bool first = id->dps & NVME_NS_DPS_PI_FIRST;
+ unsigned lbaf = nvme_lbaf_index(id->flbas);
+ struct nvme_ctrl *ctrl = ns->ctrl;
+ struct nvme_command c = { };
+ struct nvme_id_ns_nvm *nvm;
+ int ret = 0;
+ u32 elbaf;
+
+ ns->pi_size = 0;
+ ns->ms = le16_to_cpu(id->lbaf[lbaf].ms);
+ if (!(ctrl->ctratt & NVME_CTRL_ATTR_ELBAS)) {
+ ns->pi_size = sizeof(struct t10_pi_tuple);
+ ns->guard_type = NVME_NVM_NS_16B_GUARD;
+ goto set_pi;
+ }
+
+ nvm = kzalloc(sizeof(*nvm), GFP_KERNEL);
+ if (!nvm)
+ return -ENOMEM;
+
+ c.identify.opcode = nvme_admin_identify;
+ c.identify.nsid = cpu_to_le32(ns->head->ns_id);
+ c.identify.cns = NVME_ID_CNS_CS_NS;
+ c.identify.csi = NVME_CSI_NVM;
+
+ ret = nvme_submit_sync_cmd(ns->ctrl->admin_q, &c, nvm, sizeof(*nvm));
+ if (ret)
+ goto free_data;
+
+ elbaf = le32_to_cpu(nvm->elbaf[lbaf]);
+
+ /* no support for storage tag formats right now */
+ if (nvme_elbaf_sts(elbaf))
+ goto free_data;
+
+ ns->guard_type = nvme_elbaf_guard_type(elbaf);
+ switch (ns->guard_type) {
+ case NVME_NVM_NS_64B_GUARD:
+ ns->pi_size = sizeof(struct crc64_pi_tuple);
+ break;
+ case NVME_NVM_NS_16B_GUARD:
+ ns->pi_size = sizeof(struct t10_pi_tuple);
+ break;
+ default:
+ break;
+ }
+
+free_data:
+ kfree(nvm);
+set_pi:
+ if (ns->pi_size && (first || ns->ms == ns->pi_size))
+ ns->pi_type = id->dps & NVME_NS_DPS_PI_MASK;
+ else
+ ns->pi_type = 0;
+
+ return ret;
+}
+
+static int nvme_configure_metadata(struct nvme_ns *ns, struct nvme_id_ns *id)
+{
+ struct nvme_ctrl *ctrl = ns->ctrl;
+ int ret;
+
+ ret = nvme_init_ms(ns, id);
+ if (ret)
+ return ret;
+
+ ns->features &= ~(NVME_NS_METADATA_SUPPORTED | NVME_NS_EXT_LBAS);
+ if (!ns->ms || !(ctrl->ops->flags & NVME_F_METADATA_SUPPORTED))
+ return 0;
+
+ if (ctrl->ops->flags & NVME_F_FABRICS) {
+ /*
+ * The NVMe over Fabrics specification only supports metadata as
+ * part of the extended data LBA. We rely on HCA/HBA support to
+ * remap the separate metadata buffer from the block layer.
+ */
+ if (WARN_ON_ONCE(!(id->flbas & NVME_NS_FLBAS_META_EXT)))
+ return 0;
+
+ ns->features |= NVME_NS_EXT_LBAS;
+
+ /*
+ * The current fabrics transport drivers support namespace
+ * metadata formats only if nvme_ns_has_pi() returns true.
+ * Suppress support for all other formats so the namespace will
+ * have a 0 capacity and not be usable through the block stack.
+ *
+ * Note, this check will need to be modified if any drivers
+ * gain the ability to use other metadata formats.
+ */
+ if (ctrl->max_integrity_segments && nvme_ns_has_pi(ns))
+ ns->features |= NVME_NS_METADATA_SUPPORTED;
+ } else {
+ /*
+ * For PCIe controllers, we can't easily remap the separate
+ * metadata buffer from the block layer and thus require a
+ * separate metadata buffer for block layer metadata/PI support.
+ * We allow extended LBAs for the passthrough interface, though.
+ */
+ if (id->flbas & NVME_NS_FLBAS_META_EXT)
+ ns->features |= NVME_NS_EXT_LBAS;
+ else
+ ns->features |= NVME_NS_METADATA_SUPPORTED;
+ }
+ return 0;
+}
+
+static void nvme_set_queue_limits(struct nvme_ctrl *ctrl,
+ struct request_queue *q)
+{
+ bool vwc = ctrl->vwc & NVME_CTRL_VWC_PRESENT;
+
+ if (ctrl->max_hw_sectors) {
+ u32 max_segments =
+ (ctrl->max_hw_sectors / (NVME_CTRL_PAGE_SIZE >> 9)) + 1;
+
+ max_segments = min_not_zero(max_segments, ctrl->max_segments);
+ blk_queue_max_hw_sectors(q, ctrl->max_hw_sectors);
+ blk_queue_max_segments(q, min_t(u32, max_segments, USHRT_MAX));
+ }
+ blk_queue_virt_boundary(q, NVME_CTRL_PAGE_SIZE - 1);
+ blk_queue_dma_alignment(q, 3);
+ blk_queue_write_cache(q, vwc, vwc);
+}
+
+static void nvme_update_disk_info(struct gendisk *disk,
+ struct nvme_ns *ns, struct nvme_id_ns *id)
+{
+ sector_t capacity = nvme_lba_to_sect(ns, le64_to_cpu(id->nsze));
+ u32 bs = 1U << ns->lba_shift;
+ u32 atomic_bs, phys_bs, io_opt = 0;
+
+ /*
+ * The block layer can't support LBA sizes larger than the page size
+ * or smaller than a sector size yet, so catch this early and don't
+ * allow block I/O.
+ */
+ if (ns->lba_shift > PAGE_SHIFT || ns->lba_shift < SECTOR_SHIFT) {
+ capacity = 0;
+ bs = (1 << 9);
+ }
+
+ blk_integrity_unregister(disk);
+
+ atomic_bs = phys_bs = bs;
+ if (id->nabo == 0) {
+ /*
+ * Bit 1 indicates whether NAWUPF is defined for this namespace
+ * and whether it should be used instead of AWUPF. If NAWUPF ==
+ * 0 then AWUPF must be used instead.
+ */
+ if (id->nsfeat & NVME_NS_FEAT_ATOMICS && id->nawupf)
+ atomic_bs = (1 + le16_to_cpu(id->nawupf)) * bs;
+ else
+ atomic_bs = (1 + ns->ctrl->subsys->awupf) * bs;
+ }
+
+ if (id->nsfeat & NVME_NS_FEAT_IO_OPT) {
+ /* NPWG = Namespace Preferred Write Granularity */
+ phys_bs = bs * (1 + le16_to_cpu(id->npwg));
+ /* NOWS = Namespace Optimal Write Size */
+ io_opt = bs * (1 + le16_to_cpu(id->nows));
+ }
+
+ blk_queue_logical_block_size(disk->queue, bs);
+ /*
+ * Linux filesystems assume writing a single physical block is
+ * an atomic operation. Hence limit the physical block size to the
+ * value of the Atomic Write Unit Power Fail parameter.
+ */
+ blk_queue_physical_block_size(disk->queue, min(phys_bs, atomic_bs));
+ blk_queue_io_min(disk->queue, phys_bs);
+ blk_queue_io_opt(disk->queue, io_opt);
+
+ /*
+ * Register a metadata profile for PI, or the plain non-integrity NVMe
+ * metadata masquerading as Type 0 if supported, otherwise reject block
+ * I/O to namespaces with metadata except when the namespace supports
+ * PI, as it can strip/insert in that case.
+ */
+ if (ns->ms) {
+ if (IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY) &&
+ (ns->features & NVME_NS_METADATA_SUPPORTED))
+ nvme_init_integrity(disk, ns,
+ ns->ctrl->max_integrity_segments);
+ else if (!nvme_ns_has_pi(ns))
+ capacity = 0;
+ }
+
+ set_capacity_and_notify(disk, capacity);
+
+ nvme_config_discard(disk, ns);
+ blk_queue_max_write_zeroes_sectors(disk->queue,
+ ns->ctrl->max_zeroes_sectors);
+}
+
+static bool nvme_ns_is_readonly(struct nvme_ns *ns, struct nvme_ns_info *info)
+{
+ return info->is_readonly || test_bit(NVME_NS_FORCE_RO, &ns->flags);
+}
+
+static inline bool nvme_first_scan(struct gendisk *disk)
+{
+ /* nvme_alloc_ns() scans the disk prior to adding it */
+ return !disk_live(disk);
+}
+
+static void nvme_set_chunk_sectors(struct nvme_ns *ns, struct nvme_id_ns *id)
+{
+ struct nvme_ctrl *ctrl = ns->ctrl;
+ u32 iob;
+
+ if ((ctrl->quirks & NVME_QUIRK_STRIPE_SIZE) &&
+ is_power_of_2(ctrl->max_hw_sectors))
+ iob = ctrl->max_hw_sectors;
+ else
+ iob = nvme_lba_to_sect(ns, le16_to_cpu(id->noiob));
+
+ if (!iob)
+ return;
+
+ if (!is_power_of_2(iob)) {
+ if (nvme_first_scan(ns->disk))
+ pr_warn("%s: ignoring unaligned IO boundary:%u\n",
+ ns->disk->disk_name, iob);
+ return;
+ }
+
+ if (blk_queue_is_zoned(ns->disk->queue)) {
+ if (nvme_first_scan(ns->disk))
+ pr_warn("%s: ignoring zoned namespace IO boundary\n",
+ ns->disk->disk_name);
+ return;
+ }
+
+ blk_queue_chunk_sectors(ns->queue, iob);
+}
+
+static int nvme_update_ns_info_generic(struct nvme_ns *ns,
+ struct nvme_ns_info *info)
+{
+ blk_mq_freeze_queue(ns->disk->queue);
+ nvme_set_queue_limits(ns->ctrl, ns->queue);
+ set_disk_ro(ns->disk, nvme_ns_is_readonly(ns, info));
+ blk_mq_unfreeze_queue(ns->disk->queue);
+
+ if (nvme_ns_head_multipath(ns->head)) {
+ blk_mq_freeze_queue(ns->head->disk->queue);
+ set_disk_ro(ns->head->disk, nvme_ns_is_readonly(ns, info));
+ nvme_mpath_revalidate_paths(ns);
+ blk_stack_limits(&ns->head->disk->queue->limits,
+ &ns->queue->limits, 0);
+ ns->head->disk->flags |= GENHD_FL_HIDDEN;
+ blk_mq_unfreeze_queue(ns->head->disk->queue);
+ }
+
+ /* Hide the block-interface for these devices */
+ ns->disk->flags |= GENHD_FL_HIDDEN;
+ set_bit(NVME_NS_READY, &ns->flags);
+
+ return 0;
+}
+
+static int nvme_update_ns_info_block(struct nvme_ns *ns,
+ struct nvme_ns_info *info)
+{
+ struct nvme_id_ns *id;
+ unsigned lbaf;
+ int ret;
+
+ ret = nvme_identify_ns(ns->ctrl, info->nsid, &id);
+ if (ret)
+ return ret;
+
+ if (id->ncap == 0) {
+ /* namespace not allocated or attached */
+ info->is_removed = true;
+ ret = -ENODEV;
+ goto error;
+ }
+
+ blk_mq_freeze_queue(ns->disk->queue);
+ lbaf = nvme_lbaf_index(id->flbas);
+ ns->lba_shift = id->lbaf[lbaf].ds;
+ nvme_set_queue_limits(ns->ctrl, ns->queue);
+
+ ret = nvme_configure_metadata(ns, id);
+ if (ret < 0) {
+ blk_mq_unfreeze_queue(ns->disk->queue);
+ goto out;
+ }
+ nvme_set_chunk_sectors(ns, id);
+ nvme_update_disk_info(ns->disk, ns, id);
+
+ if (ns->head->ids.csi == NVME_CSI_ZNS) {
+ ret = nvme_update_zone_info(ns, lbaf);
+ if (ret) {
+ blk_mq_unfreeze_queue(ns->disk->queue);
+ goto out;
+ }
+ }
+
+ /*
+ * Only set the DEAC bit if the device guarantees that reads from
+ * deallocated data return zeroes. While the DEAC bit does not
+ * require that, it must be a no-op if reads from deallocated data
+ * do not return zeroes.
+ */
+ if ((id->dlfeat & 0x7) == 0x1 && (id->dlfeat & (1 << 3)))
+ ns->features |= NVME_NS_DEAC;
+ set_disk_ro(ns->disk, nvme_ns_is_readonly(ns, info));
+ set_bit(NVME_NS_READY, &ns->flags);
+ blk_mq_unfreeze_queue(ns->disk->queue);
+
+ if (blk_queue_is_zoned(ns->queue)) {
+ ret = nvme_revalidate_zones(ns);
+ if (ret && !nvme_first_scan(ns->disk))
+ goto out;
+ }
+
+ if (nvme_ns_head_multipath(ns->head)) {
+ blk_mq_freeze_queue(ns->head->disk->queue);
+ nvme_update_disk_info(ns->head->disk, ns, id);
+ set_disk_ro(ns->head->disk, nvme_ns_is_readonly(ns, info));
+ nvme_mpath_revalidate_paths(ns);
+ blk_stack_limits(&ns->head->disk->queue->limits,
+ &ns->queue->limits, 0);
+ disk_update_readahead(ns->head->disk);
+ blk_mq_unfreeze_queue(ns->head->disk->queue);
+ }
+
+ ret = 0;
+out:
+ /*
+ * If probing fails due an unsupported feature, hide the block device,
+ * but still allow other access.
+ */
+ if (ret == -ENODEV) {
+ ns->disk->flags |= GENHD_FL_HIDDEN;
+ set_bit(NVME_NS_READY, &ns->flags);
+ ret = 0;
+ }
+
+error:
+ kfree(id);
+ return ret;
+}
+
+static int nvme_update_ns_info(struct nvme_ns *ns, struct nvme_ns_info *info)
+{
+ switch (info->ids.csi) {
+ case NVME_CSI_ZNS:
+ if (!IS_ENABLED(CONFIG_BLK_DEV_ZONED)) {
+ dev_info(ns->ctrl->device,
+ "block device for nsid %u not supported without CONFIG_BLK_DEV_ZONED\n",
+ info->nsid);
+ return nvme_update_ns_info_generic(ns, info);
+ }
+ return nvme_update_ns_info_block(ns, info);
+ case NVME_CSI_NVM:
+ return nvme_update_ns_info_block(ns, info);
+ default:
+ dev_info(ns->ctrl->device,
+ "block device for nsid %u not supported (csi %u)\n",
+ info->nsid, info->ids.csi);
+ return nvme_update_ns_info_generic(ns, info);
+ }
+}
+
+#ifdef CONFIG_BLK_SED_OPAL
+static int nvme_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, size_t len,
+ bool send)
+{
+ struct nvme_ctrl *ctrl = data;
+ struct nvme_command cmd = { };
+
+ if (send)
+ cmd.common.opcode = nvme_admin_security_send;
+ else
+ cmd.common.opcode = nvme_admin_security_recv;
+ cmd.common.nsid = 0;
+ cmd.common.cdw10 = cpu_to_le32(((u32)secp) << 24 | ((u32)spsp) << 8);
+ cmd.common.cdw11 = cpu_to_le32(len);
+
+ return __nvme_submit_sync_cmd(ctrl->admin_q, &cmd, NULL, buffer, len,
+ NVME_QID_ANY, 1, 0);
+}
+
+static void nvme_configure_opal(struct nvme_ctrl *ctrl, bool was_suspended)
+{
+ if (ctrl->oacs & NVME_CTRL_OACS_SEC_SUPP) {
+ if (!ctrl->opal_dev)
+ ctrl->opal_dev = init_opal_dev(ctrl, &nvme_sec_submit);
+ else if (was_suspended)
+ opal_unlock_from_suspend(ctrl->opal_dev);
+ } else {
+ free_opal_dev(ctrl->opal_dev);
+ ctrl->opal_dev = NULL;
+ }
+}
+#else
+static void nvme_configure_opal(struct nvme_ctrl *ctrl, bool was_suspended)
+{
+}
+#endif /* CONFIG_BLK_SED_OPAL */
+
+#ifdef CONFIG_BLK_DEV_ZONED
+static int nvme_report_zones(struct gendisk *disk, sector_t sector,
+ unsigned int nr_zones, report_zones_cb cb, void *data)
+{
+ return nvme_ns_report_zones(disk->private_data, sector, nr_zones, cb,
+ data);
+}
+#else
+#define nvme_report_zones NULL
+#endif /* CONFIG_BLK_DEV_ZONED */
+
+const struct block_device_operations nvme_bdev_ops = {
+ .owner = THIS_MODULE,
+ .ioctl = nvme_ioctl,
+ .compat_ioctl = blkdev_compat_ptr_ioctl,
+ .open = nvme_open,
+ .release = nvme_release,
+ .getgeo = nvme_getgeo,
+ .report_zones = nvme_report_zones,
+ .pr_ops = &nvme_pr_ops,
+};
+
+static int nvme_wait_ready(struct nvme_ctrl *ctrl, u32 mask, u32 val,
+ u32 timeout, const char *op)
+{
+ unsigned long timeout_jiffies = jiffies + timeout * HZ;
+ u32 csts;
+ int ret;
+
+ while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
+ if (csts == ~0)
+ return -ENODEV;
+ if ((csts & mask) == val)
+ break;
+
+ usleep_range(1000, 2000);
+ if (fatal_signal_pending(current))
+ return -EINTR;
+ if (time_after(jiffies, timeout_jiffies)) {
+ dev_err(ctrl->device,
+ "Device not ready; aborting %s, CSTS=0x%x\n",
+ op, csts);
+ return -ENODEV;
+ }
+ }
+
+ return ret;
+}
+
+int nvme_disable_ctrl(struct nvme_ctrl *ctrl, bool shutdown)
+{
+ int ret;
+
+ ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
+ if (shutdown)
+ ctrl->ctrl_config |= NVME_CC_SHN_NORMAL;
+ else
+ ctrl->ctrl_config &= ~NVME_CC_ENABLE;
+
+ ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
+ if (ret)
+ return ret;
+
+ if (shutdown) {
+ return nvme_wait_ready(ctrl, NVME_CSTS_SHST_MASK,
+ NVME_CSTS_SHST_CMPLT,
+ ctrl->shutdown_timeout, "shutdown");
+ }
+ if (ctrl->quirks & NVME_QUIRK_DELAY_BEFORE_CHK_RDY)
+ msleep(NVME_QUIRK_DELAY_AMOUNT);
+ return nvme_wait_ready(ctrl, NVME_CSTS_RDY, 0,
+ (NVME_CAP_TIMEOUT(ctrl->cap) + 1) / 2, "reset");
+}
+EXPORT_SYMBOL_GPL(nvme_disable_ctrl);
+
+int nvme_enable_ctrl(struct nvme_ctrl *ctrl)
+{
+ unsigned dev_page_min;
+ u32 timeout;
+ int ret;
+
+ ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &ctrl->cap);
+ if (ret) {
+ dev_err(ctrl->device, "Reading CAP failed (%d)\n", ret);
+ return ret;
+ }
+ dev_page_min = NVME_CAP_MPSMIN(ctrl->cap) + 12;
+
+ if (NVME_CTRL_PAGE_SHIFT < dev_page_min) {
+ dev_err(ctrl->device,
+ "Minimum device page size %u too large for host (%u)\n",
+ 1 << dev_page_min, 1 << NVME_CTRL_PAGE_SHIFT);
+ return -ENODEV;
+ }
+
+ if (NVME_CAP_CSS(ctrl->cap) & NVME_CAP_CSS_CSI)
+ ctrl->ctrl_config = NVME_CC_CSS_CSI;
+ else
+ ctrl->ctrl_config = NVME_CC_CSS_NVM;
+
+ if (ctrl->cap & NVME_CAP_CRMS_CRWMS && ctrl->cap & NVME_CAP_CRMS_CRIMS)
+ ctrl->ctrl_config |= NVME_CC_CRIME;
+
+ ctrl->ctrl_config |= (NVME_CTRL_PAGE_SHIFT - 12) << NVME_CC_MPS_SHIFT;
+ ctrl->ctrl_config |= NVME_CC_AMS_RR | NVME_CC_SHN_NONE;
+ ctrl->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
+ ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
+ if (ret)
+ return ret;
+
+ /* Flush write to device (required if transport is PCI) */
+ ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CC, &ctrl->ctrl_config);
+ if (ret)
+ return ret;
+
+ /* CAP value may change after initial CC write */
+ ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &ctrl->cap);
+ if (ret)
+ return ret;
+
+ timeout = NVME_CAP_TIMEOUT(ctrl->cap);
+ if (ctrl->cap & NVME_CAP_CRMS_CRWMS) {
+ u32 crto, ready_timeout;
+
+ ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CRTO, &crto);
+ if (ret) {
+ dev_err(ctrl->device, "Reading CRTO failed (%d)\n",
+ ret);
+ return ret;
+ }
+
+ /*
+ * CRTO should always be greater or equal to CAP.TO, but some
+ * devices are known to get this wrong. Use the larger of the
+ * two values.
+ */
+ if (ctrl->ctrl_config & NVME_CC_CRIME)
+ ready_timeout = NVME_CRTO_CRIMT(crto);
+ else
+ ready_timeout = NVME_CRTO_CRWMT(crto);
+
+ if (ready_timeout < timeout)
+ dev_warn_once(ctrl->device, "bad crto:%x cap:%llx\n",
+ crto, ctrl->cap);
+ else
+ timeout = ready_timeout;
+ }
+
+ ctrl->ctrl_config |= NVME_CC_ENABLE;
+ ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
+ if (ret)
+ return ret;
+ return nvme_wait_ready(ctrl, NVME_CSTS_RDY, NVME_CSTS_RDY,
+ (timeout + 1) / 2, "initialisation");
+}
+EXPORT_SYMBOL_GPL(nvme_enable_ctrl);
+
+static int nvme_configure_timestamp(struct nvme_ctrl *ctrl)
+{
+ __le64 ts;
+ int ret;
+
+ if (!(ctrl->oncs & NVME_CTRL_ONCS_TIMESTAMP))
+ return 0;
+
+ ts = cpu_to_le64(ktime_to_ms(ktime_get_real()));
+ ret = nvme_set_features(ctrl, NVME_FEAT_TIMESTAMP, 0, &ts, sizeof(ts),
+ NULL);
+ if (ret)
+ dev_warn_once(ctrl->device,
+ "could not set timestamp (%d)\n", ret);
+ return ret;
+}
+
+static int nvme_configure_host_options(struct nvme_ctrl *ctrl)
+{
+ struct nvme_feat_host_behavior *host;
+ u8 acre = 0, lbafee = 0;
+ int ret;
+
+ /* Don't bother enabling the feature if retry delay is not reported */
+ if (ctrl->crdt[0])
+ acre = NVME_ENABLE_ACRE;
+ if (ctrl->ctratt & NVME_CTRL_ATTR_ELBAS)
+ lbafee = NVME_ENABLE_LBAFEE;
+
+ if (!acre && !lbafee)
+ return 0;
+
+ host = kzalloc(sizeof(*host), GFP_KERNEL);
+ if (!host)
+ return 0;
+
+ host->acre = acre;
+ host->lbafee = lbafee;
+ ret = nvme_set_features(ctrl, NVME_FEAT_HOST_BEHAVIOR, 0,
+ host, sizeof(*host), NULL);
+ kfree(host);
+ return ret;
+}
+
+/*
+ * The function checks whether the given total (exlat + enlat) latency of
+ * a power state allows the latter to be used as an APST transition target.
+ * It does so by comparing the latency to the primary and secondary latency
+ * tolerances defined by module params. If there's a match, the corresponding
+ * timeout value is returned and the matching tolerance index (1 or 2) is
+ * reported.
+ */
+static bool nvme_apst_get_transition_time(u64 total_latency,
+ u64 *transition_time, unsigned *last_index)
+{
+ if (total_latency <= apst_primary_latency_tol_us) {
+ if (*last_index == 1)
+ return false;
+ *last_index = 1;
+ *transition_time = apst_primary_timeout_ms;
+ return true;
+ }
+ if (apst_secondary_timeout_ms &&
+ total_latency <= apst_secondary_latency_tol_us) {
+ if (*last_index <= 2)
+ return false;
+ *last_index = 2;
+ *transition_time = apst_secondary_timeout_ms;
+ return true;
+ }
+ return false;
+}
+
+/*
+ * APST (Autonomous Power State Transition) lets us program a table of power
+ * state transitions that the controller will perform automatically.
+ *
+ * Depending on module params, one of the two supported techniques will be used:
+ *
+ * - If the parameters provide explicit timeouts and tolerances, they will be
+ * used to build a table with up to 2 non-operational states to transition to.
+ * The default parameter values were selected based on the values used by
+ * Microsoft's and Intel's NVMe drivers. Yet, since we don't implement dynamic
+ * regeneration of the APST table in the event of switching between external
+ * and battery power, the timeouts and tolerances reflect a compromise
+ * between values used by Microsoft for AC and battery scenarios.
+ * - If not, we'll configure the table with a simple heuristic: we are willing
+ * to spend at most 2% of the time transitioning between power states.
+ * Therefore, when running in any given state, we will enter the next
+ * lower-power non-operational state after waiting 50 * (enlat + exlat)
+ * microseconds, as long as that state's exit latency is under the requested
+ * maximum latency.
+ *
+ * We will not autonomously enter any non-operational state for which the total
+ * latency exceeds ps_max_latency_us.
+ *
+ * Users can set ps_max_latency_us to zero to turn off APST.
+ */
+static int nvme_configure_apst(struct nvme_ctrl *ctrl)
+{
+ struct nvme_feat_auto_pst *table;
+ unsigned apste = 0;
+ u64 max_lat_us = 0;
+ __le64 target = 0;
+ int max_ps = -1;
+ int state;
+ int ret;
+ unsigned last_lt_index = UINT_MAX;
+
+ /*
+ * If APST isn't supported or if we haven't been initialized yet,
+ * then don't do anything.
+ */
+ if (!ctrl->apsta)
+ return 0;
+
+ if (ctrl->npss > 31) {
+ dev_warn(ctrl->device, "NPSS is invalid; not using APST\n");
+ return 0;
+ }
+
+ table = kzalloc(sizeof(*table), GFP_KERNEL);
+ if (!table)
+ return 0;
+
+ if (!ctrl->apst_enabled || ctrl->ps_max_latency_us == 0) {
+ /* Turn off APST. */
+ dev_dbg(ctrl->device, "APST disabled\n");
+ goto done;
+ }
+
+ /*
+ * Walk through all states from lowest- to highest-power.
+ * According to the spec, lower-numbered states use more power. NPSS,
+ * despite the name, is the index of the lowest-power state, not the
+ * number of states.
+ */
+ for (state = (int)ctrl->npss; state >= 0; state--) {
+ u64 total_latency_us, exit_latency_us, transition_ms;
+
+ if (target)
+ table->entries[state] = target;
+
+ /*
+ * Don't allow transitions to the deepest state if it's quirked
+ * off.
+ */
+ if (state == ctrl->npss &&
+ (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS))
+ continue;
+
+ /*
+ * Is this state a useful non-operational state for higher-power
+ * states to autonomously transition to?
+ */
+ if (!(ctrl->psd[state].flags & NVME_PS_FLAGS_NON_OP_STATE))
+ continue;
+
+ exit_latency_us = (u64)le32_to_cpu(ctrl->psd[state].exit_lat);
+ if (exit_latency_us > ctrl->ps_max_latency_us)
+ continue;
+
+ total_latency_us = exit_latency_us +
+ le32_to_cpu(ctrl->psd[state].entry_lat);
+
+ /*
+ * This state is good. It can be used as the APST idle target
+ * for higher power states.
+ */
+ if (apst_primary_timeout_ms && apst_primary_latency_tol_us) {
+ if (!nvme_apst_get_transition_time(total_latency_us,
+ &transition_ms, &last_lt_index))
+ continue;
+ } else {
+ transition_ms = total_latency_us + 19;
+ do_div(transition_ms, 20);
+ if (transition_ms > (1 << 24) - 1)
+ transition_ms = (1 << 24) - 1;
+ }
+
+ target = cpu_to_le64((state << 3) | (transition_ms << 8));
+ if (max_ps == -1)
+ max_ps = state;
+ if (total_latency_us > max_lat_us)
+ max_lat_us = total_latency_us;
+ }
+
+ if (max_ps == -1)
+ dev_dbg(ctrl->device, "APST enabled but no non-operational states are available\n");
+ else
+ dev_dbg(ctrl->device, "APST enabled: max PS = %d, max round-trip latency = %lluus, table = %*phN\n",
+ max_ps, max_lat_us, (int)sizeof(*table), table);
+ apste = 1;
+
+done:
+ ret = nvme_set_features(ctrl, NVME_FEAT_AUTO_PST, apste,
+ table, sizeof(*table), NULL);
+ if (ret)
+ dev_err(ctrl->device, "failed to set APST feature (%d)\n", ret);
+ kfree(table);
+ return ret;
+}
+
+static void nvme_set_latency_tolerance(struct device *dev, s32 val)
+{
+ struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
+ u64 latency;
+
+ switch (val) {
+ case PM_QOS_LATENCY_TOLERANCE_NO_CONSTRAINT:
+ case PM_QOS_LATENCY_ANY:
+ latency = U64_MAX;
+ break;
+
+ default:
+ latency = val;
+ }
+
+ if (ctrl->ps_max_latency_us != latency) {
+ ctrl->ps_max_latency_us = latency;
+ if (nvme_ctrl_state(ctrl) == NVME_CTRL_LIVE)
+ nvme_configure_apst(ctrl);
+ }
+}
+
+struct nvme_core_quirk_entry {
+ /*
+ * NVMe model and firmware strings are padded with spaces. For
+ * simplicity, strings in the quirk table are padded with NULLs
+ * instead.
+ */
+ u16 vid;
+ const char *mn;
+ const char *fr;
+ unsigned long quirks;
+};
+
+static const struct nvme_core_quirk_entry core_quirks[] = {
+ {
+ /*
+ * This Toshiba device seems to die using any APST states. See:
+ * https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1678184/comments/11
+ */
+ .vid = 0x1179,
+ .mn = "THNSF5256GPUK TOSHIBA",
+ .quirks = NVME_QUIRK_NO_APST,
+ },
+ {
+ /*
+ * This LiteON CL1-3D*-Q11 firmware version has a race
+ * condition associated with actions related to suspend to idle
+ * LiteON has resolved the problem in future firmware
+ */
+ .vid = 0x14a4,
+ .fr = "22301111",
+ .quirks = NVME_QUIRK_SIMPLE_SUSPEND,
+ },
+ {
+ /*
+ * This Kioxia CD6-V Series / HPE PE8030 device times out and
+ * aborts I/O during any load, but more easily reproducible
+ * with discards (fstrim).
+ *
+ * The device is left in a state where it is also not possible
+ * to use "nvme set-feature" to disable APST, but booting with
+ * nvme_core.default_ps_max_latency=0 works.
+ */
+ .vid = 0x1e0f,
+ .mn = "KCD6XVUL6T40",
+ .quirks = NVME_QUIRK_NO_APST,
+ },
+ {
+ /*
+ * The external Samsung X5 SSD fails initialization without a
+ * delay before checking if it is ready and has a whole set of
+ * other problems. To make this even more interesting, it
+ * shares the PCI ID with internal Samsung 970 Evo Plus that
+ * does not need or want these quirks.
+ */
+ .vid = 0x144d,
+ .mn = "Samsung Portable SSD X5",
+ .quirks = NVME_QUIRK_DELAY_BEFORE_CHK_RDY |
+ NVME_QUIRK_NO_DEEPEST_PS |
+ NVME_QUIRK_IGNORE_DEV_SUBNQN,
+ }
+};
+
+/* match is null-terminated but idstr is space-padded. */
+static bool string_matches(const char *idstr, const char *match, size_t len)
+{
+ size_t matchlen;
+
+ if (!match)
+ return true;
+
+ matchlen = strlen(match);
+ WARN_ON_ONCE(matchlen > len);
+
+ if (memcmp(idstr, match, matchlen))
+ return false;
+
+ for (; matchlen < len; matchlen++)
+ if (idstr[matchlen] != ' ')
+ return false;
+
+ return true;
+}
+
+static bool quirk_matches(const struct nvme_id_ctrl *id,
+ const struct nvme_core_quirk_entry *q)
+{
+ return q->vid == le16_to_cpu(id->vid) &&
+ string_matches(id->mn, q->mn, sizeof(id->mn)) &&
+ string_matches(id->fr, q->fr, sizeof(id->fr));
+}
+
+static void nvme_init_subnqn(struct nvme_subsystem *subsys, struct nvme_ctrl *ctrl,
+ struct nvme_id_ctrl *id)
+{
+ size_t nqnlen;
+ int off;
+
+ if(!(ctrl->quirks & NVME_QUIRK_IGNORE_DEV_SUBNQN)) {
+ nqnlen = strnlen(id->subnqn, NVMF_NQN_SIZE);
+ if (nqnlen > 0 && nqnlen < NVMF_NQN_SIZE) {
+ strscpy(subsys->subnqn, id->subnqn, NVMF_NQN_SIZE);
+ return;
+ }
+
+ if (ctrl->vs >= NVME_VS(1, 2, 1))
+ dev_warn(ctrl->device, "missing or invalid SUBNQN field.\n");
+ }
+
+ /*
+ * Generate a "fake" NQN similar to the one in Section 4.5 of the NVMe
+ * Base Specification 2.0. It is slightly different from the format
+ * specified there due to historic reasons, and we can't change it now.
+ */
+ off = snprintf(subsys->subnqn, NVMF_NQN_SIZE,
+ "nqn.2014.08.org.nvmexpress:%04x%04x",
+ le16_to_cpu(id->vid), le16_to_cpu(id->ssvid));
+ memcpy(subsys->subnqn + off, id->sn, sizeof(id->sn));
+ off += sizeof(id->sn);
+ memcpy(subsys->subnqn + off, id->mn, sizeof(id->mn));
+ off += sizeof(id->mn);
+ memset(subsys->subnqn + off, 0, sizeof(subsys->subnqn) - off);
+}
+
+static void nvme_release_subsystem(struct device *dev)
+{
+ struct nvme_subsystem *subsys =
+ container_of(dev, struct nvme_subsystem, dev);
+
+ if (subsys->instance >= 0)
+ ida_free(&nvme_instance_ida, subsys->instance);
+ kfree(subsys);
+}
+
+static void nvme_destroy_subsystem(struct kref *ref)
+{
+ struct nvme_subsystem *subsys =
+ container_of(ref, struct nvme_subsystem, ref);
+
+ mutex_lock(&nvme_subsystems_lock);
+ list_del(&subsys->entry);
+ mutex_unlock(&nvme_subsystems_lock);
+
+ ida_destroy(&subsys->ns_ida);
+ device_del(&subsys->dev);
+ put_device(&subsys->dev);
+}
+
+static void nvme_put_subsystem(struct nvme_subsystem *subsys)
+{
+ kref_put(&subsys->ref, nvme_destroy_subsystem);
+}
+
+static struct nvme_subsystem *__nvme_find_get_subsystem(const char *subsysnqn)
+{
+ struct nvme_subsystem *subsys;
+
+ lockdep_assert_held(&nvme_subsystems_lock);
+
+ /*
+ * Fail matches for discovery subsystems. This results
+ * in each discovery controller bound to a unique subsystem.
+ * This avoids issues with validating controller values
+ * that can only be true when there is a single unique subsystem.
+ * There may be multiple and completely independent entities
+ * that provide discovery controllers.
+ */
+ if (!strcmp(subsysnqn, NVME_DISC_SUBSYS_NAME))
+ return NULL;
+
+ list_for_each_entry(subsys, &nvme_subsystems, entry) {
+ if (strcmp(subsys->subnqn, subsysnqn))
+ continue;
+ if (!kref_get_unless_zero(&subsys->ref))
+ continue;
+ return subsys;
+ }
+
+ return NULL;
+}
+
+static inline bool nvme_discovery_ctrl(struct nvme_ctrl *ctrl)
+{
+ return ctrl->opts && ctrl->opts->discovery_nqn;
+}
+
+static bool nvme_validate_cntlid(struct nvme_subsystem *subsys,
+ struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
+{
+ struct nvme_ctrl *tmp;
+
+ lockdep_assert_held(&nvme_subsystems_lock);
+
+ list_for_each_entry(tmp, &subsys->ctrls, subsys_entry) {
+ if (nvme_state_terminal(tmp))
+ continue;
+
+ if (tmp->cntlid == ctrl->cntlid) {
+ dev_err(ctrl->device,
+ "Duplicate cntlid %u with %s, subsys %s, rejecting\n",
+ ctrl->cntlid, dev_name(tmp->device),
+ subsys->subnqn);
+ return false;
+ }
+
+ if ((id->cmic & NVME_CTRL_CMIC_MULTI_CTRL) ||
+ nvme_discovery_ctrl(ctrl))
+ continue;
+
+ dev_err(ctrl->device,
+ "Subsystem does not support multiple controllers\n");
+ return false;
+ }
+
+ return true;
+}
+
+static int nvme_init_subsystem(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
+{
+ struct nvme_subsystem *subsys, *found;
+ int ret;
+
+ subsys = kzalloc(sizeof(*subsys), GFP_KERNEL);
+ if (!subsys)
+ return -ENOMEM;
+
+ subsys->instance = -1;
+ mutex_init(&subsys->lock);
+ kref_init(&subsys->ref);
+ INIT_LIST_HEAD(&subsys->ctrls);
+ INIT_LIST_HEAD(&subsys->nsheads);
+ nvme_init_subnqn(subsys, ctrl, id);
+ memcpy(subsys->serial, id->sn, sizeof(subsys->serial));
+ memcpy(subsys->model, id->mn, sizeof(subsys->model));
+ subsys->vendor_id = le16_to_cpu(id->vid);
+ subsys->cmic = id->cmic;
+
+ /* Versions prior to 1.4 don't necessarily report a valid type */
+ if (id->cntrltype == NVME_CTRL_DISC ||
+ !strcmp(subsys->subnqn, NVME_DISC_SUBSYS_NAME))
+ subsys->subtype = NVME_NQN_DISC;
+ else
+ subsys->subtype = NVME_NQN_NVME;
+
+ if (nvme_discovery_ctrl(ctrl) && subsys->subtype != NVME_NQN_DISC) {
+ dev_err(ctrl->device,
+ "Subsystem %s is not a discovery controller",
+ subsys->subnqn);
+ kfree(subsys);
+ return -EINVAL;
+ }
+ subsys->awupf = le16_to_cpu(id->awupf);
+ nvme_mpath_default_iopolicy(subsys);
+
+ subsys->dev.class = nvme_subsys_class;
+ subsys->dev.release = nvme_release_subsystem;
+ subsys->dev.groups = nvme_subsys_attrs_groups;
+ dev_set_name(&subsys->dev, "nvme-subsys%d", ctrl->instance);
+ device_initialize(&subsys->dev);
+
+ mutex_lock(&nvme_subsystems_lock);
+ found = __nvme_find_get_subsystem(subsys->subnqn);
+ if (found) {
+ put_device(&subsys->dev);
+ subsys = found;
+
+ if (!nvme_validate_cntlid(subsys, ctrl, id)) {
+ ret = -EINVAL;
+ goto out_put_subsystem;
+ }
+ } else {
+ ret = device_add(&subsys->dev);
+ if (ret) {
+ dev_err(ctrl->device,
+ "failed to register subsystem device.\n");
+ put_device(&subsys->dev);
+ goto out_unlock;
+ }
+ ida_init(&subsys->ns_ida);
+ list_add_tail(&subsys->entry, &nvme_subsystems);
+ }
+
+ ret = sysfs_create_link(&subsys->dev.kobj, &ctrl->device->kobj,
+ dev_name(ctrl->device));
+ if (ret) {
+ dev_err(ctrl->device,
+ "failed to create sysfs link from subsystem.\n");
+ goto out_put_subsystem;
+ }
+
+ if (!found)
+ subsys->instance = ctrl->instance;
+ ctrl->subsys = subsys;
+ list_add_tail(&ctrl->subsys_entry, &subsys->ctrls);
+ mutex_unlock(&nvme_subsystems_lock);
+ return 0;
+
+out_put_subsystem:
+ nvme_put_subsystem(subsys);
+out_unlock:
+ mutex_unlock(&nvme_subsystems_lock);
+ return ret;
+}
+
+int nvme_get_log(struct nvme_ctrl *ctrl, u32 nsid, u8 log_page, u8 lsp, u8 csi,
+ void *log, size_t size, u64 offset)
+{
+ struct nvme_command c = { };
+ u32 dwlen = nvme_bytes_to_numd(size);
+
+ c.get_log_page.opcode = nvme_admin_get_log_page;
+ c.get_log_page.nsid = cpu_to_le32(nsid);
+ c.get_log_page.lid = log_page;
+ c.get_log_page.lsp = lsp;
+ c.get_log_page.numdl = cpu_to_le16(dwlen & ((1 << 16) - 1));
+ c.get_log_page.numdu = cpu_to_le16(dwlen >> 16);
+ c.get_log_page.lpol = cpu_to_le32(lower_32_bits(offset));
+ c.get_log_page.lpou = cpu_to_le32(upper_32_bits(offset));
+ c.get_log_page.csi = csi;
+
+ return nvme_submit_sync_cmd(ctrl->admin_q, &c, log, size);
+}
+
+static int nvme_get_effects_log(struct nvme_ctrl *ctrl, u8 csi,
+ struct nvme_effects_log **log)
+{
+ struct nvme_effects_log *cel = xa_load(&ctrl->cels, csi);
+ int ret;
+
+ if (cel)
+ goto out;
+
+ cel = kzalloc(sizeof(*cel), GFP_KERNEL);
+ if (!cel)
+ return -ENOMEM;
+
+ ret = nvme_get_log(ctrl, 0x00, NVME_LOG_CMD_EFFECTS, 0, csi,
+ cel, sizeof(*cel), 0);
+ if (ret) {
+ kfree(cel);
+ return ret;
+ }
+
+ xa_store(&ctrl->cels, csi, cel, GFP_KERNEL);
+out:
+ *log = cel;
+ return 0;
+}
+
+static inline u32 nvme_mps_to_sectors(struct nvme_ctrl *ctrl, u32 units)
+{
+ u32 page_shift = NVME_CAP_MPSMIN(ctrl->cap) + 12, val;
+
+ if (check_shl_overflow(1U, units + page_shift - 9, &val))
+ return UINT_MAX;
+ return val;
+}
+
+static int nvme_init_non_mdts_limits(struct nvme_ctrl *ctrl)
+{
+ struct nvme_command c = { };
+ struct nvme_id_ctrl_nvm *id;
+ int ret;
+
+ if (ctrl->oncs & NVME_CTRL_ONCS_DSM) {
+ ctrl->max_discard_sectors = UINT_MAX;
+ ctrl->max_discard_segments = NVME_DSM_MAX_RANGES;
+ } else {
+ ctrl->max_discard_sectors = 0;
+ ctrl->max_discard_segments = 0;
+ }
+
+ /*
+ * Even though NVMe spec explicitly states that MDTS is not applicable
+ * to the write-zeroes, we are cautious and limit the size to the
+ * controllers max_hw_sectors value, which is based on the MDTS field
+ * and possibly other limiting factors.
+ */
+ if ((ctrl->oncs & NVME_CTRL_ONCS_WRITE_ZEROES) &&
+ !(ctrl->quirks & NVME_QUIRK_DISABLE_WRITE_ZEROES))
+ ctrl->max_zeroes_sectors = ctrl->max_hw_sectors;
+ else
+ ctrl->max_zeroes_sectors = 0;
+
+ if (ctrl->subsys->subtype != NVME_NQN_NVME ||
+ nvme_ctrl_limited_cns(ctrl) ||
+ test_bit(NVME_CTRL_SKIP_ID_CNS_CS, &ctrl->flags))
+ return 0;
+
+ id = kzalloc(sizeof(*id), GFP_KERNEL);
+ if (!id)
+ return -ENOMEM;
+
+ c.identify.opcode = nvme_admin_identify;
+ c.identify.cns = NVME_ID_CNS_CS_CTRL;
+ c.identify.csi = NVME_CSI_NVM;
+
+ ret = nvme_submit_sync_cmd(ctrl->admin_q, &c, id, sizeof(*id));
+ if (ret)
+ goto free_data;
+
+ if (id->dmrl)
+ ctrl->max_discard_segments = id->dmrl;
+ ctrl->dmrsl = le32_to_cpu(id->dmrsl);
+ if (id->wzsl)
+ ctrl->max_zeroes_sectors = nvme_mps_to_sectors(ctrl, id->wzsl);
+
+free_data:
+ if (ret > 0)
+ set_bit(NVME_CTRL_SKIP_ID_CNS_CS, &ctrl->flags);
+ kfree(id);
+ return ret;
+}
+
+static void nvme_init_known_nvm_effects(struct nvme_ctrl *ctrl)
+{
+ struct nvme_effects_log *log = ctrl->effects;
+
+ log->acs[nvme_admin_format_nvm] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC |
+ NVME_CMD_EFFECTS_NCC |
+ NVME_CMD_EFFECTS_CSE_MASK);
+ log->acs[nvme_admin_sanitize_nvm] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC |
+ NVME_CMD_EFFECTS_CSE_MASK);
+
+ /*
+ * The spec says the result of a security receive command depends on
+ * the previous security send command. As such, many vendors log this
+ * command as one to submitted only when no other commands to the same
+ * namespace are outstanding. The intention is to tell the host to
+ * prevent mixing security send and receive.
+ *
+ * This driver can only enforce such exclusive access against IO
+ * queues, though. We are not readily able to enforce such a rule for
+ * two commands to the admin queue, which is the only queue that
+ * matters for this command.
+ *
+ * Rather than blindly freezing the IO queues for this effect that
+ * doesn't even apply to IO, mask it off.
+ */
+ log->acs[nvme_admin_security_recv] &= cpu_to_le32(~NVME_CMD_EFFECTS_CSE_MASK);
+
+ log->iocs[nvme_cmd_write] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC);
+ log->iocs[nvme_cmd_write_zeroes] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC);
+ log->iocs[nvme_cmd_write_uncor] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC);
+}
+
+static int nvme_init_effects(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
+{
+ int ret = 0;
+
+ if (ctrl->effects)
+ return 0;
+
+ if (id->lpa & NVME_CTRL_LPA_CMD_EFFECTS_LOG) {
+ ret = nvme_get_effects_log(ctrl, NVME_CSI_NVM, &ctrl->effects);
+ if (ret < 0)
+ return ret;
+ }
+
+ if (!ctrl->effects) {
+ ctrl->effects = kzalloc(sizeof(*ctrl->effects), GFP_KERNEL);
+ if (!ctrl->effects)
+ return -ENOMEM;
+ xa_store(&ctrl->cels, NVME_CSI_NVM, ctrl->effects, GFP_KERNEL);
+ }
+
+ nvme_init_known_nvm_effects(ctrl);
+ return 0;
+}
+
+static int nvme_init_identify(struct nvme_ctrl *ctrl)
+{
+ struct nvme_id_ctrl *id;
+ u32 max_hw_sectors;
+ bool prev_apst_enabled;
+ int ret;
+
+ ret = nvme_identify_ctrl(ctrl, &id);
+ if (ret) {
+ dev_err(ctrl->device, "Identify Controller failed (%d)\n", ret);
+ return -EIO;
+ }
+
+ if (!(ctrl->ops->flags & NVME_F_FABRICS))
+ ctrl->cntlid = le16_to_cpu(id->cntlid);
+
+ if (!ctrl->identified) {
+ unsigned int i;
+
+ /*
+ * Check for quirks. Quirk can depend on firmware version,
+ * so, in principle, the set of quirks present can change
+ * across a reset. As a possible future enhancement, we
+ * could re-scan for quirks every time we reinitialize
+ * the device, but we'd have to make sure that the driver
+ * behaves intelligently if the quirks change.
+ */
+ for (i = 0; i < ARRAY_SIZE(core_quirks); i++) {
+ if (quirk_matches(id, &core_quirks[i]))
+ ctrl->quirks |= core_quirks[i].quirks;
+ }
+
+ ret = nvme_init_subsystem(ctrl, id);
+ if (ret)
+ goto out_free;
+
+ ret = nvme_init_effects(ctrl, id);
+ if (ret)
+ goto out_free;
+ }
+ memcpy(ctrl->subsys->firmware_rev, id->fr,
+ sizeof(ctrl->subsys->firmware_rev));
+
+ if (force_apst && (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) {
+ dev_warn(ctrl->device, "forcibly allowing all power states due to nvme_core.force_apst -- use at your own risk\n");
+ ctrl->quirks &= ~NVME_QUIRK_NO_DEEPEST_PS;
+ }
+
+ ctrl->crdt[0] = le16_to_cpu(id->crdt1);
+ ctrl->crdt[1] = le16_to_cpu(id->crdt2);
+ ctrl->crdt[2] = le16_to_cpu(id->crdt3);
+
+ ctrl->oacs = le16_to_cpu(id->oacs);
+ ctrl->oncs = le16_to_cpu(id->oncs);
+ ctrl->mtfa = le16_to_cpu(id->mtfa);
+ ctrl->oaes = le32_to_cpu(id->oaes);
+ ctrl->wctemp = le16_to_cpu(id->wctemp);
+ ctrl->cctemp = le16_to_cpu(id->cctemp);
+
+ atomic_set(&ctrl->abort_limit, id->acl + 1);
+ ctrl->vwc = id->vwc;
+ if (id->mdts)
+ max_hw_sectors = nvme_mps_to_sectors(ctrl, id->mdts);
+ else
+ max_hw_sectors = UINT_MAX;
+ ctrl->max_hw_sectors =
+ min_not_zero(ctrl->max_hw_sectors, max_hw_sectors);
+
+ nvme_set_queue_limits(ctrl, ctrl->admin_q);
+ ctrl->sgls = le32_to_cpu(id->sgls);
+ ctrl->kas = le16_to_cpu(id->kas);
+ ctrl->max_namespaces = le32_to_cpu(id->mnan);
+ ctrl->ctratt = le32_to_cpu(id->ctratt);
+
+ ctrl->cntrltype = id->cntrltype;
+ ctrl->dctype = id->dctype;
+
+ if (id->rtd3e) {
+ /* us -> s */
+ u32 transition_time = le32_to_cpu(id->rtd3e) / USEC_PER_SEC;
+
+ ctrl->shutdown_timeout = clamp_t(unsigned int, transition_time,
+ shutdown_timeout, 60);
+
+ if (ctrl->shutdown_timeout != shutdown_timeout)
+ dev_info(ctrl->device,
+ "Shutdown timeout set to %u seconds\n",
+ ctrl->shutdown_timeout);
+ } else
+ ctrl->shutdown_timeout = shutdown_timeout;
+
+ ctrl->npss = id->npss;
+ ctrl->apsta = id->apsta;
+ prev_apst_enabled = ctrl->apst_enabled;
+ if (ctrl->quirks & NVME_QUIRK_NO_APST) {
+ if (force_apst && id->apsta) {
+ dev_warn(ctrl->device, "forcibly allowing APST due to nvme_core.force_apst -- use at your own risk\n");
+ ctrl->apst_enabled = true;
+ } else {
+ ctrl->apst_enabled = false;
+ }
+ } else {
+ ctrl->apst_enabled = id->apsta;
+ }
+ memcpy(ctrl->psd, id->psd, sizeof(ctrl->psd));
+
+ if (ctrl->ops->flags & NVME_F_FABRICS) {
+ ctrl->icdoff = le16_to_cpu(id->icdoff);
+ ctrl->ioccsz = le32_to_cpu(id->ioccsz);
+ ctrl->iorcsz = le32_to_cpu(id->iorcsz);
+ ctrl->maxcmd = le16_to_cpu(id->maxcmd);
+
+ /*
+ * In fabrics we need to verify the cntlid matches the
+ * admin connect
+ */
+ if (ctrl->cntlid != le16_to_cpu(id->cntlid)) {
+ dev_err(ctrl->device,
+ "Mismatching cntlid: Connect %u vs Identify "
+ "%u, rejecting\n",
+ ctrl->cntlid, le16_to_cpu(id->cntlid));
+ ret = -EINVAL;
+ goto out_free;
+ }
+
+ if (!nvme_discovery_ctrl(ctrl) && !ctrl->kas) {
+ dev_err(ctrl->device,
+ "keep-alive support is mandatory for fabrics\n");
+ ret = -EINVAL;
+ goto out_free;
+ }
+ } else {
+ ctrl->hmpre = le32_to_cpu(id->hmpre);
+ ctrl->hmmin = le32_to_cpu(id->hmmin);
+ ctrl->hmminds = le32_to_cpu(id->hmminds);
+ ctrl->hmmaxd = le16_to_cpu(id->hmmaxd);
+ }
+
+ ret = nvme_mpath_init_identify(ctrl, id);
+ if (ret < 0)
+ goto out_free;
+
+ if (ctrl->apst_enabled && !prev_apst_enabled)
+ dev_pm_qos_expose_latency_tolerance(ctrl->device);
+ else if (!ctrl->apst_enabled && prev_apst_enabled)
+ dev_pm_qos_hide_latency_tolerance(ctrl->device);
+
+out_free:
+ kfree(id);
+ return ret;
+}
+
+/*
+ * Initialize the cached copies of the Identify data and various controller
+ * register in our nvme_ctrl structure. This should be called as soon as
+ * the admin queue is fully up and running.
+ */
+int nvme_init_ctrl_finish(struct nvme_ctrl *ctrl, bool was_suspended)
+{
+ int ret;
+
+ ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs);
+ if (ret) {
+ dev_err(ctrl->device, "Reading VS failed (%d)\n", ret);
+ return ret;
+ }
+
+ ctrl->sqsize = min_t(u16, NVME_CAP_MQES(ctrl->cap), ctrl->sqsize);
+
+ if (ctrl->vs >= NVME_VS(1, 1, 0))
+ ctrl->subsystem = NVME_CAP_NSSRC(ctrl->cap);
+
+ ret = nvme_init_identify(ctrl);
+ if (ret)
+ return ret;
+
+ ret = nvme_configure_apst(ctrl);
+ if (ret < 0)
+ return ret;
+
+ ret = nvme_configure_timestamp(ctrl);
+ if (ret < 0)
+ return ret;
+
+ ret = nvme_configure_host_options(ctrl);
+ if (ret < 0)
+ return ret;
+
+ nvme_configure_opal(ctrl, was_suspended);
+
+ if (!ctrl->identified && !nvme_discovery_ctrl(ctrl)) {
+ /*
+ * Do not return errors unless we are in a controller reset,
+ * the controller works perfectly fine without hwmon.
+ */
+ ret = nvme_hwmon_init(ctrl);
+ if (ret == -EINTR)
+ return ret;
+ }
+
+ clear_bit(NVME_CTRL_DIRTY_CAPABILITY, &ctrl->flags);
+ ctrl->identified = true;
+
+ return 0;
+}
+EXPORT_SYMBOL_GPL(nvme_init_ctrl_finish);
+
+static int nvme_dev_open(struct inode *inode, struct file *file)
+{
+ struct nvme_ctrl *ctrl =
+ container_of(inode->i_cdev, struct nvme_ctrl, cdev);
+
+ switch (nvme_ctrl_state(ctrl)) {
+ case NVME_CTRL_LIVE:
+ break;
+ default:
+ return -EWOULDBLOCK;
+ }
+
+ nvme_get_ctrl(ctrl);
+ if (!try_module_get(ctrl->ops->module)) {
+ nvme_put_ctrl(ctrl);
+ return -EINVAL;
+ }
+
+ file->private_data = ctrl;
+ return 0;
+}
+
+static int nvme_dev_release(struct inode *inode, struct file *file)
+{
+ struct nvme_ctrl *ctrl =
+ container_of(inode->i_cdev, struct nvme_ctrl, cdev);
+
+ module_put(ctrl->ops->module);
+ nvme_put_ctrl(ctrl);
+ return 0;
+}
+
+static const struct file_operations nvme_dev_fops = {
+ .owner = THIS_MODULE,
+ .open = nvme_dev_open,
+ .release = nvme_dev_release,
+ .unlocked_ioctl = nvme_dev_ioctl,
+ .compat_ioctl = compat_ptr_ioctl,
+ .uring_cmd = nvme_dev_uring_cmd,
+};
+
+static struct nvme_ns_head *nvme_find_ns_head(struct nvme_ctrl *ctrl,
+ unsigned nsid)
+{
+ struct nvme_ns_head *h;
+
+ lockdep_assert_held(&ctrl->subsys->lock);
+
+ list_for_each_entry(h, &ctrl->subsys->nsheads, entry) {
+ /*
+ * Private namespaces can share NSIDs under some conditions.
+ * In that case we can't use the same ns_head for namespaces
+ * with the same NSID.
+ */
+ if (h->ns_id != nsid || !nvme_is_unique_nsid(ctrl, h))
+ continue;
+ if (!list_empty(&h->list) && nvme_tryget_ns_head(h))
+ return h;
+ }
+
+ return NULL;
+}
+
+static int nvme_subsys_check_duplicate_ids(struct nvme_subsystem *subsys,
+ struct nvme_ns_ids *ids)
+{
+ bool has_uuid = !uuid_is_null(&ids->uuid);
+ bool has_nguid = memchr_inv(ids->nguid, 0, sizeof(ids->nguid));
+ bool has_eui64 = memchr_inv(ids->eui64, 0, sizeof(ids->eui64));
+ struct nvme_ns_head *h;
+
+ lockdep_assert_held(&subsys->lock);
+
+ list_for_each_entry(h, &subsys->nsheads, entry) {
+ if (has_uuid && uuid_equal(&ids->uuid, &h->ids.uuid))
+ return -EINVAL;
+ if (has_nguid &&
+ memcmp(&ids->nguid, &h->ids.nguid, sizeof(ids->nguid)) == 0)
+ return -EINVAL;
+ if (has_eui64 &&
+ memcmp(&ids->eui64, &h->ids.eui64, sizeof(ids->eui64)) == 0)
+ return -EINVAL;
+ }
+
+ return 0;
+}
+
+static void nvme_cdev_rel(struct device *dev)
+{
+ ida_free(&nvme_ns_chr_minor_ida, MINOR(dev->devt));
+}
+
+void nvme_cdev_del(struct cdev *cdev, struct device *cdev_device)
+{
+ cdev_device_del(cdev, cdev_device);
+ put_device(cdev_device);
+}
+
+int nvme_cdev_add(struct cdev *cdev, struct device *cdev_device,
+ const struct file_operations *fops, struct module *owner)
+{
+ int minor, ret;
+
+ minor = ida_alloc(&nvme_ns_chr_minor_ida, GFP_KERNEL);
+ if (minor < 0)
+ return minor;
+ cdev_device->devt = MKDEV(MAJOR(nvme_ns_chr_devt), minor);
+ cdev_device->class = nvme_ns_chr_class;
+ cdev_device->release = nvme_cdev_rel;
+ device_initialize(cdev_device);
+ cdev_init(cdev, fops);
+ cdev->owner = owner;
+ ret = cdev_device_add(cdev, cdev_device);
+ if (ret)
+ put_device(cdev_device);
+
+ return ret;
+}
+
+static int nvme_ns_chr_open(struct inode *inode, struct file *file)
+{
+ return nvme_ns_open(container_of(inode->i_cdev, struct nvme_ns, cdev));
+}
+
+static int nvme_ns_chr_release(struct inode *inode, struct file *file)
+{
+ nvme_ns_release(container_of(inode->i_cdev, struct nvme_ns, cdev));
+ return 0;
+}
+
+static const struct file_operations nvme_ns_chr_fops = {
+ .owner = THIS_MODULE,
+ .open = nvme_ns_chr_open,
+ .release = nvme_ns_chr_release,
+ .unlocked_ioctl = nvme_ns_chr_ioctl,
+ .compat_ioctl = compat_ptr_ioctl,
+ .uring_cmd = nvme_ns_chr_uring_cmd,
+ .uring_cmd_iopoll = nvme_ns_chr_uring_cmd_iopoll,
+};
+
+static int nvme_add_ns_cdev(struct nvme_ns *ns)
+{
+ int ret;
+
+ ns->cdev_device.parent = ns->ctrl->device;
+ ret = dev_set_name(&ns->cdev_device, "ng%dn%d",
+ ns->ctrl->instance, ns->head->instance);
+ if (ret)
+ return ret;
+
+ return nvme_cdev_add(&ns->cdev, &ns->cdev_device, &nvme_ns_chr_fops,
+ ns->ctrl->ops->module);
+}
+
+static struct nvme_ns_head *nvme_alloc_ns_head(struct nvme_ctrl *ctrl,
+ struct nvme_ns_info *info)
+{
+ struct nvme_ns_head *head;
+ size_t size = sizeof(*head);
+ int ret = -ENOMEM;
+
+#ifdef CONFIG_NVME_MULTIPATH
+ size += num_possible_nodes() * sizeof(struct nvme_ns *);
+#endif
+
+ head = kzalloc(size, GFP_KERNEL);
+ if (!head)
+ goto out;
+ ret = ida_alloc_min(&ctrl->subsys->ns_ida, 1, GFP_KERNEL);
+ if (ret < 0)
+ goto out_free_head;
+ head->instance = ret;
+ INIT_LIST_HEAD(&head->list);
+ ret = init_srcu_struct(&head->srcu);
+ if (ret)
+ goto out_ida_remove;
+ head->subsys = ctrl->subsys;
+ head->ns_id = info->nsid;
+ head->ids = info->ids;
+ head->shared = info->is_shared;
+ kref_init(&head->ref);
+
+ if (head->ids.csi) {
+ ret = nvme_get_effects_log(ctrl, head->ids.csi, &head->effects);
+ if (ret)
+ goto out_cleanup_srcu;
+ } else
+ head->effects = ctrl->effects;
+
+ ret = nvme_mpath_alloc_disk(ctrl, head);
+ if (ret)
+ goto out_cleanup_srcu;
+
+ list_add_tail(&head->entry, &ctrl->subsys->nsheads);
+
+ kref_get(&ctrl->subsys->ref);
+
+ return head;
+out_cleanup_srcu:
+ cleanup_srcu_struct(&head->srcu);
+out_ida_remove:
+ ida_free(&ctrl->subsys->ns_ida, head->instance);
+out_free_head:
+ kfree(head);
+out:
+ if (ret > 0)
+ ret = blk_status_to_errno(nvme_error_status(ret));
+ return ERR_PTR(ret);
+}
+
+static int nvme_global_check_duplicate_ids(struct nvme_subsystem *this,
+ struct nvme_ns_ids *ids)
+{
+ struct nvme_subsystem *s;
+ int ret = 0;
+
+ /*
+ * Note that this check is racy as we try to avoid holding the global
+ * lock over the whole ns_head creation. But it is only intended as
+ * a sanity check anyway.
+ */
+ mutex_lock(&nvme_subsystems_lock);
+ list_for_each_entry(s, &nvme_subsystems, entry) {
+ if (s == this)
+ continue;
+ mutex_lock(&s->lock);
+ ret = nvme_subsys_check_duplicate_ids(s, ids);
+ mutex_unlock(&s->lock);
+ if (ret)
+ break;
+ }
+ mutex_unlock(&nvme_subsystems_lock);
+
+ return ret;
+}
+
+static int nvme_init_ns_head(struct nvme_ns *ns, struct nvme_ns_info *info)
+{
+ struct nvme_ctrl *ctrl = ns->ctrl;
+ struct nvme_ns_head *head = NULL;
+ int ret;
+
+ ret = nvme_global_check_duplicate_ids(ctrl->subsys, &info->ids);
+ if (ret) {
+ /*
+ * We've found two different namespaces on two different
+ * subsystems that report the same ID. This is pretty nasty
+ * for anything that actually requires unique device
+ * identification. In the kernel we need this for multipathing,
+ * and in user space the /dev/disk/by-id/ links rely on it.
+ *
+ * If the device also claims to be multi-path capable back off
+ * here now and refuse the probe the second device as this is a
+ * recipe for data corruption. If not this is probably a
+ * cheap consumer device if on the PCIe bus, so let the user
+ * proceed and use the shiny toy, but warn that with changing
+ * probing order (which due to our async probing could just be
+ * device taking longer to startup) the other device could show
+ * up at any time.
+ */
+ nvme_print_device_info(ctrl);
+ if ((ns->ctrl->ops->flags & NVME_F_FABRICS) || /* !PCIe */
+ ((ns->ctrl->subsys->cmic & NVME_CTRL_CMIC_MULTI_CTRL) &&
+ info->is_shared)) {
+ dev_err(ctrl->device,
+ "ignoring nsid %d because of duplicate IDs\n",
+ info->nsid);
+ return ret;
+ }
+
+ dev_err(ctrl->device,
+ "clearing duplicate IDs for nsid %d\n", info->nsid);
+ dev_err(ctrl->device,
+ "use of /dev/disk/by-id/ may cause data corruption\n");
+ memset(&info->ids.nguid, 0, sizeof(info->ids.nguid));
+ memset(&info->ids.uuid, 0, sizeof(info->ids.uuid));
+ memset(&info->ids.eui64, 0, sizeof(info->ids.eui64));
+ ctrl->quirks |= NVME_QUIRK_BOGUS_NID;
+ }
+
+ mutex_lock(&ctrl->subsys->lock);
+ head = nvme_find_ns_head(ctrl, info->nsid);
+ if (!head) {
+ ret = nvme_subsys_check_duplicate_ids(ctrl->subsys, &info->ids);
+ if (ret) {
+ dev_err(ctrl->device,
+ "duplicate IDs in subsystem for nsid %d\n",
+ info->nsid);
+ goto out_unlock;
+ }
+ head = nvme_alloc_ns_head(ctrl, info);
+ if (IS_ERR(head)) {
+ ret = PTR_ERR(head);
+ goto out_unlock;
+ }
+ } else {
+ ret = -EINVAL;
+ if (!info->is_shared || !head->shared) {
+ dev_err(ctrl->device,
+ "Duplicate unshared namespace %d\n",
+ info->nsid);
+ goto out_put_ns_head;
+ }
+ if (!nvme_ns_ids_equal(&head->ids, &info->ids)) {
+ dev_err(ctrl->device,
+ "IDs don't match for shared namespace %d\n",
+ info->nsid);
+ goto out_put_ns_head;
+ }
+
+ if (!multipath) {
+ dev_warn(ctrl->device,
+ "Found shared namespace %d, but multipathing not supported.\n",
+ info->nsid);
+ dev_warn_once(ctrl->device,
+ "Support for shared namespaces without CONFIG_NVME_MULTIPATH is deprecated and will be removed in Linux 6.0\n.");
+ }
+ }
+
+ list_add_tail_rcu(&ns->siblings, &head->list);
+ ns->head = head;
+ mutex_unlock(&ctrl->subsys->lock);
+ return 0;
+
+out_put_ns_head:
+ nvme_put_ns_head(head);
+out_unlock:
+ mutex_unlock(&ctrl->subsys->lock);
+ return ret;
+}
+
+struct nvme_ns *nvme_find_get_ns(struct nvme_ctrl *ctrl, unsigned nsid)
+{
+ struct nvme_ns *ns, *ret = NULL;
+
+ down_read(&ctrl->namespaces_rwsem);
+ list_for_each_entry(ns, &ctrl->namespaces, list) {
+ if (ns->head->ns_id == nsid) {
+ if (!nvme_get_ns(ns))
+ continue;
+ ret = ns;
+ break;
+ }
+ if (ns->head->ns_id > nsid)
+ break;
+ }
+ up_read(&ctrl->namespaces_rwsem);
+ return ret;
+}
+EXPORT_SYMBOL_NS_GPL(nvme_find_get_ns, NVME_TARGET_PASSTHRU);
+
+/*
+ * Add the namespace to the controller list while keeping the list ordered.
+ */
+static void nvme_ns_add_to_ctrl_list(struct nvme_ns *ns)
+{
+ struct nvme_ns *tmp;
+
+ list_for_each_entry_reverse(tmp, &ns->ctrl->namespaces, list) {
+ if (tmp->head->ns_id < ns->head->ns_id) {
+ list_add(&ns->list, &tmp->list);
+ return;
+ }
+ }
+ list_add(&ns->list, &ns->ctrl->namespaces);
+}
+
+static void nvme_alloc_ns(struct nvme_ctrl *ctrl, struct nvme_ns_info *info)
+{
+ struct nvme_ns *ns;
+ struct gendisk *disk;
+ int node = ctrl->numa_node;
+
+ ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node);
+ if (!ns)
+ return;
+
+ disk = blk_mq_alloc_disk(ctrl->tagset, ns);
+ if (IS_ERR(disk))
+ goto out_free_ns;
+ disk->fops = &nvme_bdev_ops;
+ disk->private_data = ns;
+
+ ns->disk = disk;
+ ns->queue = disk->queue;
+
+ if (ctrl->opts && ctrl->opts->data_digest)
+ blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, ns->queue);
+
+ blk_queue_flag_set(QUEUE_FLAG_NONROT, ns->queue);
+ if (ctrl->ops->supports_pci_p2pdma &&
+ ctrl->ops->supports_pci_p2pdma(ctrl))
+ blk_queue_flag_set(QUEUE_FLAG_PCI_P2PDMA, ns->queue);
+
+ ns->ctrl = ctrl;
+ kref_init(&ns->kref);
+
+ if (nvme_init_ns_head(ns, info))
+ goto out_cleanup_disk;
+
+ /*
+ * If multipathing is enabled, the device name for all disks and not
+ * just those that represent shared namespaces needs to be based on the
+ * subsystem instance. Using the controller instance for private
+ * namespaces could lead to naming collisions between shared and private
+ * namespaces if they don't use a common numbering scheme.
+ *
+ * If multipathing is not enabled, disk names must use the controller
+ * instance as shared namespaces will show up as multiple block
+ * devices.
+ */
+ if (nvme_ns_head_multipath(ns->head)) {
+ sprintf(disk->disk_name, "nvme%dc%dn%d", ctrl->subsys->instance,
+ ctrl->instance, ns->head->instance);
+ disk->flags |= GENHD_FL_HIDDEN;
+ } else if (multipath) {
+ sprintf(disk->disk_name, "nvme%dn%d", ctrl->subsys->instance,
+ ns->head->instance);
+ } else {
+ sprintf(disk->disk_name, "nvme%dn%d", ctrl->instance,
+ ns->head->instance);
+ }
+
+ if (nvme_update_ns_info(ns, info))
+ goto out_unlink_ns;
+
+ down_write(&ctrl->namespaces_rwsem);
+ /*
+ * Ensure that no namespaces are added to the ctrl list after the queues
+ * are frozen, thereby avoiding a deadlock between scan and reset.
+ */
+ if (test_bit(NVME_CTRL_FROZEN, &ctrl->flags)) {
+ up_write(&ctrl->namespaces_rwsem);
+ goto out_unlink_ns;
+ }
+ nvme_ns_add_to_ctrl_list(ns);
+ up_write(&ctrl->namespaces_rwsem);
+ nvme_get_ctrl(ctrl);
+
+ if (device_add_disk(ctrl->device, ns->disk, nvme_ns_id_attr_groups))
+ goto out_cleanup_ns_from_list;
+
+ if (!nvme_ns_head_multipath(ns->head))
+ nvme_add_ns_cdev(ns);
+
+ nvme_mpath_add_disk(ns, info->anagrpid);
+ nvme_fault_inject_init(&ns->fault_inject, ns->disk->disk_name);
+
+ return;
+
+ out_cleanup_ns_from_list:
+ nvme_put_ctrl(ctrl);
+ down_write(&ctrl->namespaces_rwsem);
+ list_del_init(&ns->list);
+ up_write(&ctrl->namespaces_rwsem);
+ out_unlink_ns:
+ mutex_lock(&ctrl->subsys->lock);
+ list_del_rcu(&ns->siblings);
+ if (list_empty(&ns->head->list))
+ list_del_init(&ns->head->entry);
+ mutex_unlock(&ctrl->subsys->lock);
+ nvme_put_ns_head(ns->head);
+ out_cleanup_disk:
+ put_disk(disk);
+ out_free_ns:
+ kfree(ns);
+}
+
+static void nvme_ns_remove(struct nvme_ns *ns)
+{
+ bool last_path = false;
+
+ if (test_and_set_bit(NVME_NS_REMOVING, &ns->flags))
+ return;
+
+ clear_bit(NVME_NS_READY, &ns->flags);
+ set_capacity(ns->disk, 0);
+ nvme_fault_inject_fini(&ns->fault_inject);
+
+ /*
+ * Ensure that !NVME_NS_READY is seen by other threads to prevent
+ * this ns going back into current_path.
+ */
+ synchronize_srcu(&ns->head->srcu);
+
+ /* wait for concurrent submissions */
+ if (nvme_mpath_clear_current_path(ns))
+ synchronize_srcu(&ns->head->srcu);
+
+ mutex_lock(&ns->ctrl->subsys->lock);
+ list_del_rcu(&ns->siblings);
+ if (list_empty(&ns->head->list)) {
+ list_del_init(&ns->head->entry);
+ last_path = true;
+ }
+ mutex_unlock(&ns->ctrl->subsys->lock);
+
+ /* guarantee not available in head->list */
+ synchronize_srcu(&ns->head->srcu);
+
+ if (!nvme_ns_head_multipath(ns->head))
+ nvme_cdev_del(&ns->cdev, &ns->cdev_device);
+ del_gendisk(ns->disk);
+
+ down_write(&ns->ctrl->namespaces_rwsem);
+ list_del_init(&ns->list);
+ up_write(&ns->ctrl->namespaces_rwsem);
+
+ if (last_path)
+ nvme_mpath_shutdown_disk(ns->head);
+ nvme_put_ns(ns);
+}
+
+static void nvme_ns_remove_by_nsid(struct nvme_ctrl *ctrl, u32 nsid)
+{
+ struct nvme_ns *ns = nvme_find_get_ns(ctrl, nsid);
+
+ if (ns) {
+ nvme_ns_remove(ns);
+ nvme_put_ns(ns);
+ }
+}
+
+static void nvme_validate_ns(struct nvme_ns *ns, struct nvme_ns_info *info)
+{
+ int ret = NVME_SC_INVALID_NS | NVME_SC_DNR;
+
+ if (!nvme_ns_ids_equal(&ns->head->ids, &info->ids)) {
+ dev_err(ns->ctrl->device,
+ "identifiers changed for nsid %d\n", ns->head->ns_id);
+ goto out;
+ }
+
+ ret = nvme_update_ns_info(ns, info);
+out:
+ /*
+ * Only remove the namespace if we got a fatal error back from the
+ * device, otherwise ignore the error and just move on.
+ *
+ * TODO: we should probably schedule a delayed retry here.
+ */
+ if (ret > 0 && (ret & NVME_SC_DNR))
+ nvme_ns_remove(ns);
+}
+
+static void nvme_scan_ns(struct nvme_ctrl *ctrl, unsigned nsid)
+{
+ struct nvme_ns_info info = { .nsid = nsid };
+ struct nvme_ns *ns;
+ int ret;
+
+ if (nvme_identify_ns_descs(ctrl, &info))
+ return;
+
+ if (info.ids.csi != NVME_CSI_NVM && !nvme_multi_css(ctrl)) {
+ dev_warn(ctrl->device,
+ "command set not reported for nsid: %d\n", nsid);
+ return;
+ }
+
+ /*
+ * If available try to use the Command Set Idependent Identify Namespace
+ * data structure to find all the generic information that is needed to
+ * set up a namespace. If not fall back to the legacy version.
+ */
+ if ((ctrl->cap & NVME_CAP_CRMS_CRIMS) ||
+ (info.ids.csi != NVME_CSI_NVM && info.ids.csi != NVME_CSI_ZNS))
+ ret = nvme_ns_info_from_id_cs_indep(ctrl, &info);
+ else
+ ret = nvme_ns_info_from_identify(ctrl, &info);
+
+ if (info.is_removed)
+ nvme_ns_remove_by_nsid(ctrl, nsid);
+
+ /*
+ * Ignore the namespace if it is not ready. We will get an AEN once it
+ * becomes ready and restart the scan.
+ */
+ if (ret || !info.is_ready)
+ return;
+
+ ns = nvme_find_get_ns(ctrl, nsid);
+ if (ns) {
+ nvme_validate_ns(ns, &info);
+ nvme_put_ns(ns);
+ } else {
+ nvme_alloc_ns(ctrl, &info);
+ }
+}
+
+static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
+ unsigned nsid)
+{
+ struct nvme_ns *ns, *next;
+ LIST_HEAD(rm_list);
+
+ down_write(&ctrl->namespaces_rwsem);
+ list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) {
+ if (ns->head->ns_id > nsid)
+ list_move_tail(&ns->list, &rm_list);
+ }
+ up_write(&ctrl->namespaces_rwsem);
+
+ list_for_each_entry_safe(ns, next, &rm_list, list)
+ nvme_ns_remove(ns);
+
+}
+
+static int nvme_scan_ns_list(struct nvme_ctrl *ctrl)
+{
+ const int nr_entries = NVME_IDENTIFY_DATA_SIZE / sizeof(__le32);
+ __le32 *ns_list;
+ u32 prev = 0;
+ int ret = 0, i;
+
+ ns_list = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
+ if (!ns_list)
+ return -ENOMEM;
+
+ for (;;) {
+ struct nvme_command cmd = {
+ .identify.opcode = nvme_admin_identify,
+ .identify.cns = NVME_ID_CNS_NS_ACTIVE_LIST,
+ .identify.nsid = cpu_to_le32(prev),
+ };
+
+ ret = nvme_submit_sync_cmd(ctrl->admin_q, &cmd, ns_list,
+ NVME_IDENTIFY_DATA_SIZE);
+ if (ret) {
+ dev_warn(ctrl->device,
+ "Identify NS List failed (status=0x%x)\n", ret);
+ goto free;
+ }
+
+ for (i = 0; i < nr_entries; i++) {
+ u32 nsid = le32_to_cpu(ns_list[i]);
+
+ if (!nsid) /* end of the list? */
+ goto out;
+ nvme_scan_ns(ctrl, nsid);
+ while (++prev < nsid)
+ nvme_ns_remove_by_nsid(ctrl, prev);
+ }
+ }
+ out:
+ nvme_remove_invalid_namespaces(ctrl, prev);
+ free:
+ kfree(ns_list);
+ return ret;
+}
+
+static void nvme_scan_ns_sequential(struct nvme_ctrl *ctrl)
+{
+ struct nvme_id_ctrl *id;
+ u32 nn, i;
+
+ if (nvme_identify_ctrl(ctrl, &id))
+ return;
+ nn = le32_to_cpu(id->nn);
+ kfree(id);
+
+ for (i = 1; i <= nn; i++)
+ nvme_scan_ns(ctrl, i);
+
+ nvme_remove_invalid_namespaces(ctrl, nn);
+}
+
+static void nvme_clear_changed_ns_log(struct nvme_ctrl *ctrl)
+{
+ size_t log_size = NVME_MAX_CHANGED_NAMESPACES * sizeof(__le32);
+ __le32 *log;
+ int error;
+
+ log = kzalloc(log_size, GFP_KERNEL);
+ if (!log)
+ return;
+
+ /*
+ * We need to read the log to clear the AEN, but we don't want to rely
+ * on it for the changed namespace information as userspace could have
+ * raced with us in reading the log page, which could cause us to miss
+ * updates.
+ */
+ error = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_CHANGED_NS, 0,
+ NVME_CSI_NVM, log, log_size, 0);
+ if (error)
+ dev_warn(ctrl->device,
+ "reading changed ns log failed: %d\n", error);
+
+ kfree(log);
+}
+
+static void nvme_scan_work(struct work_struct *work)
+{
+ struct nvme_ctrl *ctrl =
+ container_of(work, struct nvme_ctrl, scan_work);
+ int ret;
+
+ /* No tagset on a live ctrl means IO queues could not created */
+ if (nvme_ctrl_state(ctrl) != NVME_CTRL_LIVE || !ctrl->tagset)
+ return;
+
+ /*
+ * Identify controller limits can change at controller reset due to
+ * new firmware download, even though it is not common we cannot ignore
+ * such scenario. Controller's non-mdts limits are reported in the unit
+ * of logical blocks that is dependent on the format of attached
+ * namespace. Hence re-read the limits at the time of ns allocation.
+ */
+ ret = nvme_init_non_mdts_limits(ctrl);
+ if (ret < 0) {
+ dev_warn(ctrl->device,
+ "reading non-mdts-limits failed: %d\n", ret);
+ return;
+ }
+
+ if (test_and_clear_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events)) {
+ dev_info(ctrl->device, "rescanning namespaces.\n");
+ nvme_clear_changed_ns_log(ctrl);
+ }
+
+ mutex_lock(&ctrl->scan_lock);
+ if (nvme_ctrl_limited_cns(ctrl)) {
+ nvme_scan_ns_sequential(ctrl);
+ } else {
+ /*
+ * Fall back to sequential scan if DNR is set to handle broken
+ * devices which should support Identify NS List (as per the VS
+ * they report) but don't actually support it.
+ */
+ ret = nvme_scan_ns_list(ctrl);
+ if (ret > 0 && ret & NVME_SC_DNR)
+ nvme_scan_ns_sequential(ctrl);
+ }
+ mutex_unlock(&ctrl->scan_lock);
+}
+
+/*
+ * This function iterates the namespace list unlocked to allow recovery from
+ * controller failure. It is up to the caller to ensure the namespace list is
+ * not modified by scan work while this function is executing.
+ */
+void nvme_remove_namespaces(struct nvme_ctrl *ctrl)
+{
+ struct nvme_ns *ns, *next;
+ LIST_HEAD(ns_list);
+
+ /*
+ * make sure to requeue I/O to all namespaces as these
+ * might result from the scan itself and must complete
+ * for the scan_work to make progress
+ */
+ nvme_mpath_clear_ctrl_paths(ctrl);
+
+ /*
+ * Unquiesce io queues so any pending IO won't hang, especially
+ * those submitted from scan work
+ */
+ nvme_unquiesce_io_queues(ctrl);
+
+ /* prevent racing with ns scanning */
+ flush_work(&ctrl->scan_work);
+
+ /*
+ * The dead states indicates the controller was not gracefully
+ * disconnected. In that case, we won't be able to flush any data while
+ * removing the namespaces' disks; fail all the queues now to avoid
+ * potentially having to clean up the failed sync later.
+ */
+ if (nvme_ctrl_state(ctrl) == NVME_CTRL_DEAD)
+ nvme_mark_namespaces_dead(ctrl);
+
+ /* this is a no-op when called from the controller reset handler */
+ nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING_NOIO);
+
+ down_write(&ctrl->namespaces_rwsem);
+ list_splice_init(&ctrl->namespaces, &ns_list);
+ up_write(&ctrl->namespaces_rwsem);
+
+ list_for_each_entry_safe(ns, next, &ns_list, list)
+ nvme_ns_remove(ns);
+}
+EXPORT_SYMBOL_GPL(nvme_remove_namespaces);
+
+static int nvme_class_uevent(const struct device *dev, struct kobj_uevent_env *env)
+{
+ const struct nvme_ctrl *ctrl =
+ container_of(dev, struct nvme_ctrl, ctrl_device);
+ struct nvmf_ctrl_options *opts = ctrl->opts;
+ int ret;
+
+ ret = add_uevent_var(env, "NVME_TRTYPE=%s", ctrl->ops->name);
+ if (ret)
+ return ret;
+
+ if (opts) {
+ ret = add_uevent_var(env, "NVME_TRADDR=%s", opts->traddr);
+ if (ret)
+ return ret;
+
+ ret = add_uevent_var(env, "NVME_TRSVCID=%s",
+ opts->trsvcid ?: "none");
+ if (ret)
+ return ret;
+
+ ret = add_uevent_var(env, "NVME_HOST_TRADDR=%s",
+ opts->host_traddr ?: "none");
+ if (ret)
+ return ret;
+
+ ret = add_uevent_var(env, "NVME_HOST_IFACE=%s",
+ opts->host_iface ?: "none");
+ }
+ return ret;
+}
+
+static void nvme_change_uevent(struct nvme_ctrl *ctrl, char *envdata)
+{
+ char *envp[2] = { envdata, NULL };
+
+ kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp);
+}
+
+static void nvme_aen_uevent(struct nvme_ctrl *ctrl)
+{
+ char *envp[2] = { NULL, NULL };
+ u32 aen_result = ctrl->aen_result;
+
+ ctrl->aen_result = 0;
+ if (!aen_result)
+ return;
+
+ envp[0] = kasprintf(GFP_KERNEL, "NVME_AEN=%#08x", aen_result);
+ if (!envp[0])
+ return;
+ kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp);
+ kfree(envp[0]);
+}
+
+static void nvme_async_event_work(struct work_struct *work)
+{
+ struct nvme_ctrl *ctrl =
+ container_of(work, struct nvme_ctrl, async_event_work);
+
+ nvme_aen_uevent(ctrl);
+
+ /*
+ * The transport drivers must guarantee AER submission here is safe by
+ * flushing ctrl async_event_work after changing the controller state
+ * from LIVE and before freeing the admin queue.
+ */
+ if (nvme_ctrl_state(ctrl) == NVME_CTRL_LIVE)
+ ctrl->ops->submit_async_event(ctrl);
+}
+
+static bool nvme_ctrl_pp_status(struct nvme_ctrl *ctrl)
+{
+
+ u32 csts;
+
+ if (ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts))
+ return false;
+
+ if (csts == ~0)
+ return false;
+
+ return ((ctrl->ctrl_config & NVME_CC_ENABLE) && (csts & NVME_CSTS_PP));
+}
+
+static void nvme_get_fw_slot_info(struct nvme_ctrl *ctrl)
+{
+ struct nvme_fw_slot_info_log *log;
+
+ log = kmalloc(sizeof(*log), GFP_KERNEL);
+ if (!log)
+ return;
+
+ if (nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_FW_SLOT, 0, NVME_CSI_NVM,
+ log, sizeof(*log), 0))
+ dev_warn(ctrl->device, "Get FW SLOT INFO log error\n");
+ kfree(log);
+}
+
+static void nvme_fw_act_work(struct work_struct *work)
+{
+ struct nvme_ctrl *ctrl = container_of(work,
+ struct nvme_ctrl, fw_act_work);
+ unsigned long fw_act_timeout;
+
+ nvme_auth_stop(ctrl);
+
+ if (ctrl->mtfa)
+ fw_act_timeout = jiffies +
+ msecs_to_jiffies(ctrl->mtfa * 100);
+ else
+ fw_act_timeout = jiffies +
+ msecs_to_jiffies(admin_timeout * 1000);
+
+ nvme_quiesce_io_queues(ctrl);
+ while (nvme_ctrl_pp_status(ctrl)) {
+ if (time_after(jiffies, fw_act_timeout)) {
+ dev_warn(ctrl->device,
+ "Fw activation timeout, reset controller\n");
+ nvme_try_sched_reset(ctrl);
+ return;
+ }
+ msleep(100);
+ }
+
+ if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE))
+ return;
+
+ nvme_unquiesce_io_queues(ctrl);
+ /* read FW slot information to clear the AER */
+ nvme_get_fw_slot_info(ctrl);
+
+ queue_work(nvme_wq, &ctrl->async_event_work);
+}
+
+static u32 nvme_aer_type(u32 result)
+{
+ return result & 0x7;
+}
+
+static u32 nvme_aer_subtype(u32 result)
+{
+ return (result & 0xff00) >> 8;
+}
+
+static bool nvme_handle_aen_notice(struct nvme_ctrl *ctrl, u32 result)
+{
+ u32 aer_notice_type = nvme_aer_subtype(result);
+ bool requeue = true;
+
+ switch (aer_notice_type) {
+ case NVME_AER_NOTICE_NS_CHANGED:
+ set_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events);
+ nvme_queue_scan(ctrl);
+ break;
+ case NVME_AER_NOTICE_FW_ACT_STARTING:
+ /*
+ * We are (ab)using the RESETTING state to prevent subsequent
+ * recovery actions from interfering with the controller's
+ * firmware activation.
+ */
+ if (nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING)) {
+ requeue = false;
+ queue_work(nvme_wq, &ctrl->fw_act_work);
+ }
+ break;
+#ifdef CONFIG_NVME_MULTIPATH
+ case NVME_AER_NOTICE_ANA:
+ if (!ctrl->ana_log_buf)
+ break;
+ queue_work(nvme_wq, &ctrl->ana_work);
+ break;
+#endif
+ case NVME_AER_NOTICE_DISC_CHANGED:
+ ctrl->aen_result = result;
+ break;
+ default:
+ dev_warn(ctrl->device, "async event result %08x\n", result);
+ }
+ return requeue;
+}
+
+static void nvme_handle_aer_persistent_error(struct nvme_ctrl *ctrl)
+{
+ dev_warn(ctrl->device, "resetting controller due to AER\n");
+ nvme_reset_ctrl(ctrl);
+}
+
+void nvme_complete_async_event(struct nvme_ctrl *ctrl, __le16 status,
+ volatile union nvme_result *res)
+{
+ u32 result = le32_to_cpu(res->u32);
+ u32 aer_type = nvme_aer_type(result);
+ u32 aer_subtype = nvme_aer_subtype(result);
+ bool requeue = true;
+
+ if (le16_to_cpu(status) >> 1 != NVME_SC_SUCCESS)
+ return;
+
+ trace_nvme_async_event(ctrl, result);
+ switch (aer_type) {
+ case NVME_AER_NOTICE:
+ requeue = nvme_handle_aen_notice(ctrl, result);
+ break;
+ case NVME_AER_ERROR:
+ /*
+ * For a persistent internal error, don't run async_event_work
+ * to submit a new AER. The controller reset will do it.
+ */
+ if (aer_subtype == NVME_AER_ERROR_PERSIST_INT_ERR) {
+ nvme_handle_aer_persistent_error(ctrl);
+ return;
+ }
+ fallthrough;
+ case NVME_AER_SMART:
+ case NVME_AER_CSS:
+ case NVME_AER_VS:
+ ctrl->aen_result = result;
+ break;
+ default:
+ break;
+ }
+
+ if (requeue)
+ queue_work(nvme_wq, &ctrl->async_event_work);
+}
+EXPORT_SYMBOL_GPL(nvme_complete_async_event);
+
+int nvme_alloc_admin_tag_set(struct nvme_ctrl *ctrl, struct blk_mq_tag_set *set,
+ const struct blk_mq_ops *ops, unsigned int cmd_size)
+{
+ int ret;
+
+ memset(set, 0, sizeof(*set));
+ set->ops = ops;
+ set->queue_depth = NVME_AQ_MQ_TAG_DEPTH;
+ if (ctrl->ops->flags & NVME_F_FABRICS)
+ set->reserved_tags = NVMF_RESERVED_TAGS;
+ set->numa_node = ctrl->numa_node;
+ set->flags = BLK_MQ_F_NO_SCHED;
+ if (ctrl->ops->flags & NVME_F_BLOCKING)
+ set->flags |= BLK_MQ_F_BLOCKING;
+ set->cmd_size = cmd_size;
+ set->driver_data = ctrl;
+ set->nr_hw_queues = 1;
+ set->timeout = NVME_ADMIN_TIMEOUT;
+ ret = blk_mq_alloc_tag_set(set);
+ if (ret)
+ return ret;
+
+ ctrl->admin_q = blk_mq_init_queue(set);
+ if (IS_ERR(ctrl->admin_q)) {
+ ret = PTR_ERR(ctrl->admin_q);
+ goto out_free_tagset;
+ }
+
+ if (ctrl->ops->flags & NVME_F_FABRICS) {
+ ctrl->fabrics_q = blk_mq_init_queue(set);
+ if (IS_ERR(ctrl->fabrics_q)) {
+ ret = PTR_ERR(ctrl->fabrics_q);
+ goto out_cleanup_admin_q;
+ }
+ }
+
+ ctrl->admin_tagset = set;
+ return 0;
+
+out_cleanup_admin_q:
+ blk_mq_destroy_queue(ctrl->admin_q);
+ blk_put_queue(ctrl->admin_q);
+out_free_tagset:
+ blk_mq_free_tag_set(set);
+ ctrl->admin_q = NULL;
+ ctrl->fabrics_q = NULL;
+ return ret;
+}
+EXPORT_SYMBOL_GPL(nvme_alloc_admin_tag_set);
+
+void nvme_remove_admin_tag_set(struct nvme_ctrl *ctrl)
+{
+ blk_mq_destroy_queue(ctrl->admin_q);
+ blk_put_queue(ctrl->admin_q);
+ if (ctrl->ops->flags & NVME_F_FABRICS) {
+ blk_mq_destroy_queue(ctrl->fabrics_q);
+ blk_put_queue(ctrl->fabrics_q);
+ }
+ blk_mq_free_tag_set(ctrl->admin_tagset);
+}
+EXPORT_SYMBOL_GPL(nvme_remove_admin_tag_set);
+
+int nvme_alloc_io_tag_set(struct nvme_ctrl *ctrl, struct blk_mq_tag_set *set,
+ const struct blk_mq_ops *ops, unsigned int nr_maps,
+ unsigned int cmd_size)
+{
+ int ret;
+
+ memset(set, 0, sizeof(*set));
+ set->ops = ops;
+ set->queue_depth = min_t(unsigned, ctrl->sqsize, BLK_MQ_MAX_DEPTH - 1);
+ /*
+ * Some Apple controllers requires tags to be unique across admin and
+ * the (only) I/O queue, so reserve the first 32 tags of the I/O queue.
+ */
+ if (ctrl->quirks & NVME_QUIRK_SHARED_TAGS)
+ set->reserved_tags = NVME_AQ_DEPTH;
+ else if (ctrl->ops->flags & NVME_F_FABRICS)
+ set->reserved_tags = NVMF_RESERVED_TAGS;
+ set->numa_node = ctrl->numa_node;
+ set->flags = BLK_MQ_F_SHOULD_MERGE;
+ if (ctrl->ops->flags & NVME_F_BLOCKING)
+ set->flags |= BLK_MQ_F_BLOCKING;
+ set->cmd_size = cmd_size,
+ set->driver_data = ctrl;
+ set->nr_hw_queues = ctrl->queue_count - 1;
+ set->timeout = NVME_IO_TIMEOUT;
+ set->nr_maps = nr_maps;
+ ret = blk_mq_alloc_tag_set(set);
+ if (ret)
+ return ret;
+
+ if (ctrl->ops->flags & NVME_F_FABRICS) {
+ ctrl->connect_q = blk_mq_init_queue(set);
+ if (IS_ERR(ctrl->connect_q)) {
+ ret = PTR_ERR(ctrl->connect_q);
+ goto out_free_tag_set;
+ }
+ blk_queue_flag_set(QUEUE_FLAG_SKIP_TAGSET_QUIESCE,
+ ctrl->connect_q);
+ }
+
+ ctrl->tagset = set;
+ return 0;
+
+out_free_tag_set:
+ blk_mq_free_tag_set(set);
+ ctrl->connect_q = NULL;
+ return ret;
+}
+EXPORT_SYMBOL_GPL(nvme_alloc_io_tag_set);
+
+void nvme_remove_io_tag_set(struct nvme_ctrl *ctrl)
+{
+ if (ctrl->ops->flags & NVME_F_FABRICS) {
+ blk_mq_destroy_queue(ctrl->connect_q);
+ blk_put_queue(ctrl->connect_q);
+ }
+ blk_mq_free_tag_set(ctrl->tagset);
+}
+EXPORT_SYMBOL_GPL(nvme_remove_io_tag_set);
+
+void nvme_stop_ctrl(struct nvme_ctrl *ctrl)
+{
+ nvme_mpath_stop(ctrl);
+ nvme_auth_stop(ctrl);
+ nvme_stop_keep_alive(ctrl);
+ nvme_stop_failfast_work(ctrl);
+ flush_work(&ctrl->async_event_work);
+ cancel_work_sync(&ctrl->fw_act_work);
+ if (ctrl->ops->stop_ctrl)
+ ctrl->ops->stop_ctrl(ctrl);
+}
+EXPORT_SYMBOL_GPL(nvme_stop_ctrl);
+
+void nvme_start_ctrl(struct nvme_ctrl *ctrl)
+{
+ nvme_start_keep_alive(ctrl);
+
+ nvme_enable_aen(ctrl);
+
+ /*
+ * persistent discovery controllers need to send indication to userspace
+ * to re-read the discovery log page to learn about possible changes
+ * that were missed. We identify persistent discovery controllers by
+ * checking that they started once before, hence are reconnecting back.
+ */
+ if (test_bit(NVME_CTRL_STARTED_ONCE, &ctrl->flags) &&
+ nvme_discovery_ctrl(ctrl))
+ nvme_change_uevent(ctrl, "NVME_EVENT=rediscover");
+
+ if (ctrl->queue_count > 1) {
+ nvme_queue_scan(ctrl);
+ nvme_unquiesce_io_queues(ctrl);
+ nvme_mpath_update(ctrl);
+ }
+
+ nvme_change_uevent(ctrl, "NVME_EVENT=connected");
+ set_bit(NVME_CTRL_STARTED_ONCE, &ctrl->flags);
+}
+EXPORT_SYMBOL_GPL(nvme_start_ctrl);
+
+void nvme_uninit_ctrl(struct nvme_ctrl *ctrl)
+{
+ nvme_hwmon_exit(ctrl);
+ nvme_fault_inject_fini(&ctrl->fault_inject);
+ dev_pm_qos_hide_latency_tolerance(ctrl->device);
+ cdev_device_del(&ctrl->cdev, ctrl->device);
+ nvme_put_ctrl(ctrl);
+}
+EXPORT_SYMBOL_GPL(nvme_uninit_ctrl);
+
+static void nvme_free_cels(struct nvme_ctrl *ctrl)
+{
+ struct nvme_effects_log *cel;
+ unsigned long i;
+
+ xa_for_each(&ctrl->cels, i, cel) {
+ xa_erase(&ctrl->cels, i);
+ kfree(cel);
+ }
+
+ xa_destroy(&ctrl->cels);
+}
+
+static void nvme_free_ctrl(struct device *dev)
+{
+ struct nvme_ctrl *ctrl =
+ container_of(dev, struct nvme_ctrl, ctrl_device);
+ struct nvme_subsystem *subsys = ctrl->subsys;
+
+ if (!subsys || ctrl->instance != subsys->instance)
+ ida_free(&nvme_instance_ida, ctrl->instance);
+
+ nvme_free_cels(ctrl);
+ nvme_mpath_uninit(ctrl);
+ nvme_auth_stop(ctrl);
+ nvme_auth_free(ctrl);
+ __free_page(ctrl->discard_page);
+ free_opal_dev(ctrl->opal_dev);
+
+ if (subsys) {
+ mutex_lock(&nvme_subsystems_lock);
+ list_del(&ctrl->subsys_entry);
+ sysfs_remove_link(&subsys->dev.kobj, dev_name(ctrl->device));
+ mutex_unlock(&nvme_subsystems_lock);
+ }
+
+ ctrl->ops->free_ctrl(ctrl);
+
+ if (subsys)
+ nvme_put_subsystem(subsys);
+}
+
+/*
+ * Initialize a NVMe controller structures. This needs to be called during
+ * earliest initialization so that we have the initialized structured around
+ * during probing.
+ */
+int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev,
+ const struct nvme_ctrl_ops *ops, unsigned long quirks)
+{
+ int ret;
+
+ WRITE_ONCE(ctrl->state, NVME_CTRL_NEW);
+ clear_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags);
+ spin_lock_init(&ctrl->lock);
+ mutex_init(&ctrl->scan_lock);
+ INIT_LIST_HEAD(&ctrl->namespaces);
+ xa_init(&ctrl->cels);
+ init_rwsem(&ctrl->namespaces_rwsem);
+ ctrl->dev = dev;
+ ctrl->ops = ops;
+ ctrl->quirks = quirks;
+ ctrl->numa_node = NUMA_NO_NODE;
+ INIT_WORK(&ctrl->scan_work, nvme_scan_work);
+ INIT_WORK(&ctrl->async_event_work, nvme_async_event_work);
+ INIT_WORK(&ctrl->fw_act_work, nvme_fw_act_work);
+ INIT_WORK(&ctrl->delete_work, nvme_delete_ctrl_work);
+ init_waitqueue_head(&ctrl->state_wq);
+
+ INIT_DELAYED_WORK(&ctrl->ka_work, nvme_keep_alive_work);
+ INIT_DELAYED_WORK(&ctrl->failfast_work, nvme_failfast_work);
+ memset(&ctrl->ka_cmd, 0, sizeof(ctrl->ka_cmd));
+ ctrl->ka_cmd.common.opcode = nvme_admin_keep_alive;
+
+ BUILD_BUG_ON(NVME_DSM_MAX_RANGES * sizeof(struct nvme_dsm_range) >
+ PAGE_SIZE);
+ ctrl->discard_page = alloc_page(GFP_KERNEL);
+ if (!ctrl->discard_page) {
+ ret = -ENOMEM;
+ goto out;
+ }
+
+ ret = ida_alloc(&nvme_instance_ida, GFP_KERNEL);
+ if (ret < 0)
+ goto out;
+ ctrl->instance = ret;
+
+ device_initialize(&ctrl->ctrl_device);
+ ctrl->device = &ctrl->ctrl_device;
+ ctrl->device->devt = MKDEV(MAJOR(nvme_ctrl_base_chr_devt),
+ ctrl->instance);
+ ctrl->device->class = nvme_class;
+ ctrl->device->parent = ctrl->dev;
+ if (ops->dev_attr_groups)
+ ctrl->device->groups = ops->dev_attr_groups;
+ else
+ ctrl->device->groups = nvme_dev_attr_groups;
+ ctrl->device->release = nvme_free_ctrl;
+ dev_set_drvdata(ctrl->device, ctrl);
+ ret = dev_set_name(ctrl->device, "nvme%d", ctrl->instance);
+ if (ret)
+ goto out_release_instance;
+
+ nvme_get_ctrl(ctrl);
+ cdev_init(&ctrl->cdev, &nvme_dev_fops);
+ ctrl->cdev.owner = ops->module;
+ ret = cdev_device_add(&ctrl->cdev, ctrl->device);
+ if (ret)
+ goto out_free_name;
+
+ /*
+ * Initialize latency tolerance controls. The sysfs files won't
+ * be visible to userspace unless the device actually supports APST.
+ */
+ ctrl->device->power.set_latency_tolerance = nvme_set_latency_tolerance;
+ dev_pm_qos_update_user_latency_tolerance(ctrl->device,
+ min(default_ps_max_latency_us, (unsigned long)S32_MAX));
+
+ nvme_fault_inject_init(&ctrl->fault_inject, dev_name(ctrl->device));
+ nvme_mpath_init_ctrl(ctrl);
+ ret = nvme_auth_init_ctrl(ctrl);
+ if (ret)
+ goto out_free_cdev;
+
+ return 0;
+out_free_cdev:
+ nvme_fault_inject_fini(&ctrl->fault_inject);
+ dev_pm_qos_hide_latency_tolerance(ctrl->device);
+ cdev_device_del(&ctrl->cdev, ctrl->device);
+out_free_name:
+ nvme_put_ctrl(ctrl);
+ kfree_const(ctrl->device->kobj.name);
+out_release_instance:
+ ida_free(&nvme_instance_ida, ctrl->instance);
+out:
+ if (ctrl->discard_page)
+ __free_page(ctrl->discard_page);
+ return ret;
+}
+EXPORT_SYMBOL_GPL(nvme_init_ctrl);
+
+/* let I/O to all namespaces fail in preparation for surprise removal */
+void nvme_mark_namespaces_dead(struct nvme_ctrl *ctrl)
+{
+ struct nvme_ns *ns;
+
+ down_read(&ctrl->namespaces_rwsem);
+ list_for_each_entry(ns, &ctrl->namespaces, list)
+ blk_mark_disk_dead(ns->disk);
+ up_read(&ctrl->namespaces_rwsem);
+}
+EXPORT_SYMBOL_GPL(nvme_mark_namespaces_dead);
+
+void nvme_unfreeze(struct nvme_ctrl *ctrl)
+{
+ struct nvme_ns *ns;
+
+ down_read(&ctrl->namespaces_rwsem);
+ list_for_each_entry(ns, &ctrl->namespaces, list)
+ blk_mq_unfreeze_queue(ns->queue);
+ up_read(&ctrl->namespaces_rwsem);
+ clear_bit(NVME_CTRL_FROZEN, &ctrl->flags);
+}
+EXPORT_SYMBOL_GPL(nvme_unfreeze);
+
+int nvme_wait_freeze_timeout(struct nvme_ctrl *ctrl, long timeout)
+{
+ struct nvme_ns *ns;
+
+ down_read(&ctrl->namespaces_rwsem);
+ list_for_each_entry(ns, &ctrl->namespaces, list) {
+ timeout = blk_mq_freeze_queue_wait_timeout(ns->queue, timeout);
+ if (timeout <= 0)
+ break;
+ }
+ up_read(&ctrl->namespaces_rwsem);
+ return timeout;
+}
+EXPORT_SYMBOL_GPL(nvme_wait_freeze_timeout);
+
+void nvme_wait_freeze(struct nvme_ctrl *ctrl)
+{
+ struct nvme_ns *ns;
+
+ down_read(&ctrl->namespaces_rwsem);
+ list_for_each_entry(ns, &ctrl->namespaces, list)
+ blk_mq_freeze_queue_wait(ns->queue);
+ up_read(&ctrl->namespaces_rwsem);
+}
+EXPORT_SYMBOL_GPL(nvme_wait_freeze);
+
+void nvme_start_freeze(struct nvme_ctrl *ctrl)
+{
+ struct nvme_ns *ns;
+
+ set_bit(NVME_CTRL_FROZEN, &ctrl->flags);
+ down_read(&ctrl->namespaces_rwsem);
+ list_for_each_entry(ns, &ctrl->namespaces, list)
+ blk_freeze_queue_start(ns->queue);
+ up_read(&ctrl->namespaces_rwsem);
+}
+EXPORT_SYMBOL_GPL(nvme_start_freeze);
+
+void nvme_quiesce_io_queues(struct nvme_ctrl *ctrl)
+{
+ if (!ctrl->tagset)
+ return;
+ if (!test_and_set_bit(NVME_CTRL_STOPPED, &ctrl->flags))
+ blk_mq_quiesce_tagset(ctrl->tagset);
+ else
+ blk_mq_wait_quiesce_done(ctrl->tagset);
+}
+EXPORT_SYMBOL_GPL(nvme_quiesce_io_queues);
+
+void nvme_unquiesce_io_queues(struct nvme_ctrl *ctrl)
+{
+ if (!ctrl->tagset)
+ return;
+ if (test_and_clear_bit(NVME_CTRL_STOPPED, &ctrl->flags))
+ blk_mq_unquiesce_tagset(ctrl->tagset);
+}
+EXPORT_SYMBOL_GPL(nvme_unquiesce_io_queues);
+
+void nvme_quiesce_admin_queue(struct nvme_ctrl *ctrl)
+{
+ if (!test_and_set_bit(NVME_CTRL_ADMIN_Q_STOPPED, &ctrl->flags))
+ blk_mq_quiesce_queue(ctrl->admin_q);
+ else
+ blk_mq_wait_quiesce_done(ctrl->admin_q->tag_set);
+}
+EXPORT_SYMBOL_GPL(nvme_quiesce_admin_queue);
+
+void nvme_unquiesce_admin_queue(struct nvme_ctrl *ctrl)
+{
+ if (test_and_clear_bit(NVME_CTRL_ADMIN_Q_STOPPED, &ctrl->flags))
+ blk_mq_unquiesce_queue(ctrl->admin_q);
+}
+EXPORT_SYMBOL_GPL(nvme_unquiesce_admin_queue);
+
+void nvme_sync_io_queues(struct nvme_ctrl *ctrl)
+{
+ struct nvme_ns *ns;
+
+ down_read(&ctrl->namespaces_rwsem);
+ list_for_each_entry(ns, &ctrl->namespaces, list)
+ blk_sync_queue(ns->queue);
+ up_read(&ctrl->namespaces_rwsem);
+}
+EXPORT_SYMBOL_GPL(nvme_sync_io_queues);
+
+void nvme_sync_queues(struct nvme_ctrl *ctrl)
+{
+ nvme_sync_io_queues(ctrl);
+ if (ctrl->admin_q)
+ blk_sync_queue(ctrl->admin_q);
+}
+EXPORT_SYMBOL_GPL(nvme_sync_queues);
+
+struct nvme_ctrl *nvme_ctrl_from_file(struct file *file)
+{
+ if (file->f_op != &nvme_dev_fops)
+ return NULL;
+ return file->private_data;
+}
+EXPORT_SYMBOL_NS_GPL(nvme_ctrl_from_file, NVME_TARGET_PASSTHRU);
+
+/*
+ * Check we didn't inadvertently grow the command structure sizes:
+ */
+static inline void _nvme_check_size(void)
+{
+ BUILD_BUG_ON(sizeof(struct nvme_common_command) != 64);
+ BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
+ BUILD_BUG_ON(sizeof(struct nvme_identify) != 64);
+ BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
+ BUILD_BUG_ON(sizeof(struct nvme_download_firmware) != 64);
+ BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
+ BUILD_BUG_ON(sizeof(struct nvme_dsm_cmd) != 64);
+ BUILD_BUG_ON(sizeof(struct nvme_write_zeroes_cmd) != 64);
+ BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
+ BUILD_BUG_ON(sizeof(struct nvme_get_log_page_command) != 64);
+ BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
+ BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != NVME_IDENTIFY_DATA_SIZE);
+ BUILD_BUG_ON(sizeof(struct nvme_id_ns) != NVME_IDENTIFY_DATA_SIZE);
+ BUILD_BUG_ON(sizeof(struct nvme_id_ns_cs_indep) !=
+ NVME_IDENTIFY_DATA_SIZE);
+ BUILD_BUG_ON(sizeof(struct nvme_id_ns_zns) != NVME_IDENTIFY_DATA_SIZE);
+ BUILD_BUG_ON(sizeof(struct nvme_id_ns_nvm) != NVME_IDENTIFY_DATA_SIZE);
+ BUILD_BUG_ON(sizeof(struct nvme_id_ctrl_zns) != NVME_IDENTIFY_DATA_SIZE);
+ BUILD_BUG_ON(sizeof(struct nvme_id_ctrl_nvm) != NVME_IDENTIFY_DATA_SIZE);
+ BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
+ BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
+ BUILD_BUG_ON(sizeof(struct nvme_dbbuf) != 64);
+ BUILD_BUG_ON(sizeof(struct nvme_directive_cmd) != 64);
+ BUILD_BUG_ON(sizeof(struct nvme_feat_host_behavior) != 512);
+}
+
+
+static int __init nvme_core_init(void)
+{
+ int result = -ENOMEM;
+
+ _nvme_check_size();
+
+ nvme_wq = alloc_workqueue("nvme-wq",
+ WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
+ if (!nvme_wq)
+ goto out;
+
+ nvme_reset_wq = alloc_workqueue("nvme-reset-wq",
+ WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
+ if (!nvme_reset_wq)
+ goto destroy_wq;
+
+ nvme_delete_wq = alloc_workqueue("nvme-delete-wq",
+ WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
+ if (!nvme_delete_wq)
+ goto destroy_reset_wq;
+
+ result = alloc_chrdev_region(&nvme_ctrl_base_chr_devt, 0,
+ NVME_MINORS, "nvme");
+ if (result < 0)
+ goto destroy_delete_wq;
+
+ nvme_class = class_create("nvme");
+ if (IS_ERR(nvme_class)) {
+ result = PTR_ERR(nvme_class);
+ goto unregister_chrdev;
+ }
+ nvme_class->dev_uevent = nvme_class_uevent;
+
+ nvme_subsys_class = class_create("nvme-subsystem");
+ if (IS_ERR(nvme_subsys_class)) {
+ result = PTR_ERR(nvme_subsys_class);
+ goto destroy_class;
+ }
+
+ result = alloc_chrdev_region(&nvme_ns_chr_devt, 0, NVME_MINORS,
+ "nvme-generic");
+ if (result < 0)
+ goto destroy_subsys_class;
+
+ nvme_ns_chr_class = class_create("nvme-generic");
+ if (IS_ERR(nvme_ns_chr_class)) {
+ result = PTR_ERR(nvme_ns_chr_class);
+ goto unregister_generic_ns;
+ }
+
+ result = nvme_init_auth();
+ if (result)
+ goto destroy_ns_chr;
+ return 0;
+
+destroy_ns_chr:
+ class_destroy(nvme_ns_chr_class);
+unregister_generic_ns:
+ unregister_chrdev_region(nvme_ns_chr_devt, NVME_MINORS);
+destroy_subsys_class:
+ class_destroy(nvme_subsys_class);
+destroy_class:
+ class_destroy(nvme_class);
+unregister_chrdev:
+ unregister_chrdev_region(nvme_ctrl_base_chr_devt, NVME_MINORS);
+destroy_delete_wq:
+ destroy_workqueue(nvme_delete_wq);
+destroy_reset_wq:
+ destroy_workqueue(nvme_reset_wq);
+destroy_wq:
+ destroy_workqueue(nvme_wq);
+out:
+ return result;
+}
+
+static void __exit nvme_core_exit(void)
+{
+ nvme_exit_auth();
+ class_destroy(nvme_ns_chr_class);
+ class_destroy(nvme_subsys_class);
+ class_destroy(nvme_class);
+ unregister_chrdev_region(nvme_ns_chr_devt, NVME_MINORS);
+ unregister_chrdev_region(nvme_ctrl_base_chr_devt, NVME_MINORS);
+ destroy_workqueue(nvme_delete_wq);
+ destroy_workqueue(nvme_reset_wq);
+ destroy_workqueue(nvme_wq);
+ ida_destroy(&nvme_ns_chr_minor_ida);
+ ida_destroy(&nvme_instance_ida);
+}
+
+MODULE_LICENSE("GPL");
+MODULE_VERSION("1.0");
+module_init(nvme_core_init);
+module_exit(nvme_core_exit);
diff --git a/drivers/nvme/host/fabrics.c b/drivers/nvme/host/fabrics.c
new file mode 100644
index 0000000000..92ba315cfe
--- /dev/null
+++ b/drivers/nvme/host/fabrics.c
@@ -0,0 +1,1428 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * NVMe over Fabrics common host code.
+ * Copyright (c) 2015-2016 HGST, a Western Digital Company.
+ */
+#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
+#include <linux/init.h>
+#include <linux/miscdevice.h>
+#include <linux/module.h>
+#include <linux/mutex.h>
+#include <linux/parser.h>
+#include <linux/seq_file.h>
+#include "nvme.h"
+#include "fabrics.h"
+
+static LIST_HEAD(nvmf_transports);
+static DECLARE_RWSEM(nvmf_transports_rwsem);
+
+static LIST_HEAD(nvmf_hosts);
+static DEFINE_MUTEX(nvmf_hosts_mutex);
+
+static struct nvmf_host *nvmf_default_host;
+
+static struct nvmf_host *nvmf_host_alloc(const char *hostnqn, uuid_t *id)
+{
+ struct nvmf_host *host;
+
+ host = kmalloc(sizeof(*host), GFP_KERNEL);
+ if (!host)
+ return NULL;
+
+ kref_init(&host->ref);
+ uuid_copy(&host->id, id);
+ strscpy(host->nqn, hostnqn, NVMF_NQN_SIZE);
+
+ return host;
+}
+
+static struct nvmf_host *nvmf_host_add(const char *hostnqn, uuid_t *id)
+{
+ struct nvmf_host *host;
+
+ mutex_lock(&nvmf_hosts_mutex);
+
+ /*
+ * We have defined a host as how it is perceived by the target.
+ * Therefore, we don't allow different Host NQNs with the same Host ID.
+ * Similarly, we do not allow the usage of the same Host NQN with
+ * different Host IDs. This'll maintain unambiguous host identification.
+ */
+ list_for_each_entry(host, &nvmf_hosts, list) {
+ bool same_hostnqn = !strcmp(host->nqn, hostnqn);
+ bool same_hostid = uuid_equal(&host->id, id);
+
+ if (same_hostnqn && same_hostid) {
+ kref_get(&host->ref);
+ goto out_unlock;
+ }
+ if (same_hostnqn) {
+ pr_err("found same hostnqn %s but different hostid %pUb\n",
+ hostnqn, id);
+ host = ERR_PTR(-EINVAL);
+ goto out_unlock;
+ }
+ if (same_hostid) {
+ pr_err("found same hostid %pUb but different hostnqn %s\n",
+ id, hostnqn);
+ host = ERR_PTR(-EINVAL);
+ goto out_unlock;
+ }
+ }
+
+ host = nvmf_host_alloc(hostnqn, id);
+ if (!host) {
+ host = ERR_PTR(-ENOMEM);
+ goto out_unlock;
+ }
+
+ list_add_tail(&host->list, &nvmf_hosts);
+out_unlock:
+ mutex_unlock(&nvmf_hosts_mutex);
+ return host;
+}
+
+static struct nvmf_host *nvmf_host_default(void)
+{
+ struct nvmf_host *host;
+ char nqn[NVMF_NQN_SIZE];
+ uuid_t id;
+
+ uuid_gen(&id);
+ snprintf(nqn, NVMF_NQN_SIZE,
+ "nqn.2014-08.org.nvmexpress:uuid:%pUb", &id);
+
+ host = nvmf_host_alloc(nqn, &id);
+ if (!host)
+ return NULL;
+
+ mutex_lock(&nvmf_hosts_mutex);
+ list_add_tail(&host->list, &nvmf_hosts);
+ mutex_unlock(&nvmf_hosts_mutex);
+
+ return host;
+}
+
+static void nvmf_host_destroy(struct kref *ref)
+{
+ struct nvmf_host *host = container_of(ref, struct nvmf_host, ref);
+
+ mutex_lock(&nvmf_hosts_mutex);
+ list_del(&host->list);
+ mutex_unlock(&nvmf_hosts_mutex);
+
+ kfree(host);
+}
+
+static void nvmf_host_put(struct nvmf_host *host)
+{
+ if (host)
+ kref_put(&host->ref, nvmf_host_destroy);
+}
+
+/**
+ * nvmf_get_address() - Get address/port
+ * @ctrl: Host NVMe controller instance which we got the address
+ * @buf: OUTPUT parameter that will contain the address/port
+ * @size: buffer size
+ */
+int nvmf_get_address(struct nvme_ctrl *ctrl, char *buf, int size)
+{
+ int len = 0;
+
+ if (ctrl->opts->mask & NVMF_OPT_TRADDR)
+ len += scnprintf(buf, size, "traddr=%s", ctrl->opts->traddr);
+ if (ctrl->opts->mask & NVMF_OPT_TRSVCID)
+ len += scnprintf(buf + len, size - len, "%strsvcid=%s",
+ (len) ? "," : "", ctrl->opts->trsvcid);
+ if (ctrl->opts->mask & NVMF_OPT_HOST_TRADDR)
+ len += scnprintf(buf + len, size - len, "%shost_traddr=%s",
+ (len) ? "," : "", ctrl->opts->host_traddr);
+ if (ctrl->opts->mask & NVMF_OPT_HOST_IFACE)
+ len += scnprintf(buf + len, size - len, "%shost_iface=%s",
+ (len) ? "," : "", ctrl->opts->host_iface);
+ len += scnprintf(buf + len, size - len, "\n");
+
+ return len;
+}
+EXPORT_SYMBOL_GPL(nvmf_get_address);
+
+/**
+ * nvmf_reg_read32() - NVMe Fabrics "Property Get" API function.
+ * @ctrl: Host NVMe controller instance maintaining the admin
+ * queue used to submit the property read command to
+ * the allocated NVMe controller resource on the target system.
+ * @off: Starting offset value of the targeted property
+ * register (see the fabrics section of the NVMe standard).
+ * @val: OUTPUT parameter that will contain the value of
+ * the property after a successful read.
+ *
+ * Used by the host system to retrieve a 32-bit capsule property value
+ * from an NVMe controller on the target system.
+ *
+ * ("Capsule property" is an "PCIe register concept" applied to the
+ * NVMe fabrics space.)
+ *
+ * Return:
+ * 0: successful read
+ * > 0: NVMe error status code
+ * < 0: Linux errno error code
+ */
+int nvmf_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
+{
+ struct nvme_command cmd = { };
+ union nvme_result res;
+ int ret;
+
+ cmd.prop_get.opcode = nvme_fabrics_command;
+ cmd.prop_get.fctype = nvme_fabrics_type_property_get;
+ cmd.prop_get.offset = cpu_to_le32(off);
+
+ ret = __nvme_submit_sync_cmd(ctrl->fabrics_q, &cmd, &res, NULL, 0,
+ NVME_QID_ANY, 0, 0);
+
+ if (ret >= 0)
+ *val = le64_to_cpu(res.u64);
+ if (unlikely(ret != 0))
+ dev_err(ctrl->device,
+ "Property Get error: %d, offset %#x\n",
+ ret > 0 ? ret & ~NVME_SC_DNR : ret, off);
+
+ return ret;
+}
+EXPORT_SYMBOL_GPL(nvmf_reg_read32);
+
+/**
+ * nvmf_reg_read64() - NVMe Fabrics "Property Get" API function.
+ * @ctrl: Host NVMe controller instance maintaining the admin
+ * queue used to submit the property read command to
+ * the allocated controller resource on the target system.
+ * @off: Starting offset value of the targeted property
+ * register (see the fabrics section of the NVMe standard).
+ * @val: OUTPUT parameter that will contain the value of
+ * the property after a successful read.
+ *
+ * Used by the host system to retrieve a 64-bit capsule property value
+ * from an NVMe controller on the target system.
+ *
+ * ("Capsule property" is an "PCIe register concept" applied to the
+ * NVMe fabrics space.)
+ *
+ * Return:
+ * 0: successful read
+ * > 0: NVMe error status code
+ * < 0: Linux errno error code
+ */
+int nvmf_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
+{
+ struct nvme_command cmd = { };
+ union nvme_result res;
+ int ret;
+
+ cmd.prop_get.opcode = nvme_fabrics_command;
+ cmd.prop_get.fctype = nvme_fabrics_type_property_get;
+ cmd.prop_get.attrib = 1;
+ cmd.prop_get.offset = cpu_to_le32(off);
+
+ ret = __nvme_submit_sync_cmd(ctrl->fabrics_q, &cmd, &res, NULL, 0,
+ NVME_QID_ANY, 0, 0);
+
+ if (ret >= 0)
+ *val = le64_to_cpu(res.u64);
+ if (unlikely(ret != 0))
+ dev_err(ctrl->device,
+ "Property Get error: %d, offset %#x\n",
+ ret > 0 ? ret & ~NVME_SC_DNR : ret, off);
+ return ret;
+}
+EXPORT_SYMBOL_GPL(nvmf_reg_read64);
+
+/**
+ * nvmf_reg_write32() - NVMe Fabrics "Property Write" API function.
+ * @ctrl: Host NVMe controller instance maintaining the admin
+ * queue used to submit the property read command to
+ * the allocated NVMe controller resource on the target system.
+ * @off: Starting offset value of the targeted property
+ * register (see the fabrics section of the NVMe standard).
+ * @val: Input parameter that contains the value to be
+ * written to the property.
+ *
+ * Used by the NVMe host system to write a 32-bit capsule property value
+ * to an NVMe controller on the target system.
+ *
+ * ("Capsule property" is an "PCIe register concept" applied to the
+ * NVMe fabrics space.)
+ *
+ * Return:
+ * 0: successful write
+ * > 0: NVMe error status code
+ * < 0: Linux errno error code
+ */
+int nvmf_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
+{
+ struct nvme_command cmd = { };
+ int ret;
+
+ cmd.prop_set.opcode = nvme_fabrics_command;
+ cmd.prop_set.fctype = nvme_fabrics_type_property_set;
+ cmd.prop_set.attrib = 0;
+ cmd.prop_set.offset = cpu_to_le32(off);
+ cmd.prop_set.value = cpu_to_le64(val);
+
+ ret = __nvme_submit_sync_cmd(ctrl->fabrics_q, &cmd, NULL, NULL, 0,
+ NVME_QID_ANY, 0, 0);
+ if (unlikely(ret))
+ dev_err(ctrl->device,
+ "Property Set error: %d, offset %#x\n",
+ ret > 0 ? ret & ~NVME_SC_DNR : ret, off);
+ return ret;
+}
+EXPORT_SYMBOL_GPL(nvmf_reg_write32);
+
+/**
+ * nvmf_log_connect_error() - Error-parsing-diagnostic print out function for
+ * connect() errors.
+ * @ctrl: The specific /dev/nvmeX device that had the error.
+ * @errval: Error code to be decoded in a more human-friendly
+ * printout.
+ * @offset: For use with the NVMe error code
+ * NVME_SC_CONNECT_INVALID_PARAM.
+ * @cmd: This is the SQE portion of a submission capsule.
+ * @data: This is the "Data" portion of a submission capsule.
+ */
+static void nvmf_log_connect_error(struct nvme_ctrl *ctrl,
+ int errval, int offset, struct nvme_command *cmd,
+ struct nvmf_connect_data *data)
+{
+ int err_sctype = errval & ~NVME_SC_DNR;
+
+ if (errval < 0) {
+ dev_err(ctrl->device,
+ "Connect command failed, errno: %d\n", errval);
+ return;
+ }
+
+ switch (err_sctype) {
+ case NVME_SC_CONNECT_INVALID_PARAM:
+ if (offset >> 16) {
+ char *inv_data = "Connect Invalid Data Parameter";
+
+ switch (offset & 0xffff) {
+ case (offsetof(struct nvmf_connect_data, cntlid)):
+ dev_err(ctrl->device,
+ "%s, cntlid: %d\n",
+ inv_data, data->cntlid);
+ break;
+ case (offsetof(struct nvmf_connect_data, hostnqn)):
+ dev_err(ctrl->device,
+ "%s, hostnqn \"%s\"\n",
+ inv_data, data->hostnqn);
+ break;
+ case (offsetof(struct nvmf_connect_data, subsysnqn)):
+ dev_err(ctrl->device,
+ "%s, subsysnqn \"%s\"\n",
+ inv_data, data->subsysnqn);
+ break;
+ default:
+ dev_err(ctrl->device,
+ "%s, starting byte offset: %d\n",
+ inv_data, offset & 0xffff);
+ break;
+ }
+ } else {
+ char *inv_sqe = "Connect Invalid SQE Parameter";
+
+ switch (offset) {
+ case (offsetof(struct nvmf_connect_command, qid)):
+ dev_err(ctrl->device,
+ "%s, qid %d\n",
+ inv_sqe, cmd->connect.qid);
+ break;
+ default:
+ dev_err(ctrl->device,
+ "%s, starting byte offset: %d\n",
+ inv_sqe, offset);
+ }
+ }
+ break;
+ case NVME_SC_CONNECT_INVALID_HOST:
+ dev_err(ctrl->device,
+ "Connect for subsystem %s is not allowed, hostnqn: %s\n",
+ data->subsysnqn, data->hostnqn);
+ break;
+ case NVME_SC_CONNECT_CTRL_BUSY:
+ dev_err(ctrl->device,
+ "Connect command failed: controller is busy or not available\n");
+ break;
+ case NVME_SC_CONNECT_FORMAT:
+ dev_err(ctrl->device,
+ "Connect incompatible format: %d",
+ cmd->connect.recfmt);
+ break;
+ case NVME_SC_HOST_PATH_ERROR:
+ dev_err(ctrl->device,
+ "Connect command failed: host path error\n");
+ break;
+ case NVME_SC_AUTH_REQUIRED:
+ dev_err(ctrl->device,
+ "Connect command failed: authentication required\n");
+ break;
+ default:
+ dev_err(ctrl->device,
+ "Connect command failed, error wo/DNR bit: %d\n",
+ err_sctype);
+ break;
+ }
+}
+
+static struct nvmf_connect_data *nvmf_connect_data_prep(struct nvme_ctrl *ctrl,
+ u16 cntlid)
+{
+ struct nvmf_connect_data *data;
+
+ data = kzalloc(sizeof(*data), GFP_KERNEL);
+ if (!data)
+ return NULL;
+
+ uuid_copy(&data->hostid, &ctrl->opts->host->id);
+ data->cntlid = cpu_to_le16(cntlid);
+ strncpy(data->subsysnqn, ctrl->opts->subsysnqn, NVMF_NQN_SIZE);
+ strncpy(data->hostnqn, ctrl->opts->host->nqn, NVMF_NQN_SIZE);
+
+ return data;
+}
+
+static void nvmf_connect_cmd_prep(struct nvme_ctrl *ctrl, u16 qid,
+ struct nvme_command *cmd)
+{
+ cmd->connect.opcode = nvme_fabrics_command;
+ cmd->connect.fctype = nvme_fabrics_type_connect;
+ cmd->connect.qid = cpu_to_le16(qid);
+
+ if (qid) {
+ cmd->connect.sqsize = cpu_to_le16(ctrl->sqsize);
+ } else {
+ cmd->connect.sqsize = cpu_to_le16(NVME_AQ_DEPTH - 1);
+
+ /*
+ * set keep-alive timeout in seconds granularity (ms * 1000)
+ */
+ cmd->connect.kato = cpu_to_le32(ctrl->kato * 1000);
+ }
+
+ if (ctrl->opts->disable_sqflow)
+ cmd->connect.cattr |= NVME_CONNECT_DISABLE_SQFLOW;
+}
+
+/**
+ * nvmf_connect_admin_queue() - NVMe Fabrics Admin Queue "Connect"
+ * API function.
+ * @ctrl: Host nvme controller instance used to request
+ * a new NVMe controller allocation on the target
+ * system and establish an NVMe Admin connection to
+ * that controller.
+ *
+ * This function enables an NVMe host device to request a new allocation of
+ * an NVMe controller resource on a target system as well establish a
+ * fabrics-protocol connection of the NVMe Admin queue between the
+ * host system device and the allocated NVMe controller on the
+ * target system via a NVMe Fabrics "Connect" command.
+ *
+ * Return:
+ * 0: success
+ * > 0: NVMe error status code
+ * < 0: Linux errno error code
+ *
+ */
+int nvmf_connect_admin_queue(struct nvme_ctrl *ctrl)
+{
+ struct nvme_command cmd = { };
+ union nvme_result res;
+ struct nvmf_connect_data *data;
+ int ret;
+ u32 result;
+
+ nvmf_connect_cmd_prep(ctrl, 0, &cmd);
+
+ data = nvmf_connect_data_prep(ctrl, 0xffff);
+ if (!data)
+ return -ENOMEM;
+
+ ret = __nvme_submit_sync_cmd(ctrl->fabrics_q, &cmd, &res,
+ data, sizeof(*data), NVME_QID_ANY, 1,
+ BLK_MQ_REQ_RESERVED | BLK_MQ_REQ_NOWAIT);
+ if (ret) {
+ nvmf_log_connect_error(ctrl, ret, le32_to_cpu(res.u32),
+ &cmd, data);
+ goto out_free_data;
+ }
+
+ result = le32_to_cpu(res.u32);
+ ctrl->cntlid = result & 0xFFFF;
+ if (result & (NVME_CONNECT_AUTHREQ_ATR | NVME_CONNECT_AUTHREQ_ASCR)) {
+ /* Secure concatenation is not implemented */
+ if (result & NVME_CONNECT_AUTHREQ_ASCR) {
+ dev_warn(ctrl->device,
+ "qid 0: secure concatenation is not supported\n");
+ ret = NVME_SC_AUTH_REQUIRED;
+ goto out_free_data;
+ }
+ /* Authentication required */
+ ret = nvme_auth_negotiate(ctrl, 0);
+ if (ret) {
+ dev_warn(ctrl->device,
+ "qid 0: authentication setup failed\n");
+ ret = NVME_SC_AUTH_REQUIRED;
+ goto out_free_data;
+ }
+ ret = nvme_auth_wait(ctrl, 0);
+ if (ret)
+ dev_warn(ctrl->device,
+ "qid 0: authentication failed\n");
+ else
+ dev_info(ctrl->device,
+ "qid 0: authenticated\n");
+ }
+out_free_data:
+ kfree(data);
+ return ret;
+}
+EXPORT_SYMBOL_GPL(nvmf_connect_admin_queue);
+
+/**
+ * nvmf_connect_io_queue() - NVMe Fabrics I/O Queue "Connect"
+ * API function.
+ * @ctrl: Host nvme controller instance used to establish an
+ * NVMe I/O queue connection to the already allocated NVMe
+ * controller on the target system.
+ * @qid: NVMe I/O queue number for the new I/O connection between
+ * host and target (note qid == 0 is illegal as this is
+ * the Admin queue, per NVMe standard).
+ *
+ * This function issues a fabrics-protocol connection
+ * of a NVMe I/O queue (via NVMe Fabrics "Connect" command)
+ * between the host system device and the allocated NVMe controller
+ * on the target system.
+ *
+ * Return:
+ * 0: success
+ * > 0: NVMe error status code
+ * < 0: Linux errno error code
+ */
+int nvmf_connect_io_queue(struct nvme_ctrl *ctrl, u16 qid)
+{
+ struct nvme_command cmd = { };
+ struct nvmf_connect_data *data;
+ union nvme_result res;
+ int ret;
+ u32 result;
+
+ nvmf_connect_cmd_prep(ctrl, qid, &cmd);
+
+ data = nvmf_connect_data_prep(ctrl, ctrl->cntlid);
+ if (!data)
+ return -ENOMEM;
+
+ ret = __nvme_submit_sync_cmd(ctrl->connect_q, &cmd, &res,
+ data, sizeof(*data), qid, 1,
+ BLK_MQ_REQ_RESERVED | BLK_MQ_REQ_NOWAIT);
+ if (ret) {
+ nvmf_log_connect_error(ctrl, ret, le32_to_cpu(res.u32),
+ &cmd, data);
+ }
+ result = le32_to_cpu(res.u32);
+ if (result & (NVME_CONNECT_AUTHREQ_ATR | NVME_CONNECT_AUTHREQ_ASCR)) {
+ /* Secure concatenation is not implemented */
+ if (result & NVME_CONNECT_AUTHREQ_ASCR) {
+ dev_warn(ctrl->device,
+ "qid 0: secure concatenation is not supported\n");
+ ret = NVME_SC_AUTH_REQUIRED;
+ goto out_free_data;
+ }
+ /* Authentication required */
+ ret = nvme_auth_negotiate(ctrl, qid);
+ if (ret) {
+ dev_warn(ctrl->device,
+ "qid %d: authentication setup failed\n", qid);
+ ret = NVME_SC_AUTH_REQUIRED;
+ } else {
+ ret = nvme_auth_wait(ctrl, qid);
+ if (ret)
+ dev_warn(ctrl->device,
+ "qid %u: authentication failed\n", qid);
+ }
+ }
+out_free_data:
+ kfree(data);
+ return ret;
+}
+EXPORT_SYMBOL_GPL(nvmf_connect_io_queue);
+
+bool nvmf_should_reconnect(struct nvme_ctrl *ctrl)
+{
+ if (ctrl->opts->max_reconnects == -1 ||
+ ctrl->nr_reconnects < ctrl->opts->max_reconnects)
+ return true;
+
+ return false;
+}
+EXPORT_SYMBOL_GPL(nvmf_should_reconnect);
+
+/**
+ * nvmf_register_transport() - NVMe Fabrics Library registration function.
+ * @ops: Transport ops instance to be registered to the
+ * common fabrics library.
+ *
+ * API function that registers the type of specific transport fabric
+ * being implemented to the common NVMe fabrics library. Part of
+ * the overall init sequence of starting up a fabrics driver.
+ */
+int nvmf_register_transport(struct nvmf_transport_ops *ops)
+{
+ if (!ops->create_ctrl)
+ return -EINVAL;
+
+ down_write(&nvmf_transports_rwsem);
+ list_add_tail(&ops->entry, &nvmf_transports);
+ up_write(&nvmf_transports_rwsem);
+
+ return 0;
+}
+EXPORT_SYMBOL_GPL(nvmf_register_transport);
+
+/**
+ * nvmf_unregister_transport() - NVMe Fabrics Library unregistration function.
+ * @ops: Transport ops instance to be unregistered from the
+ * common fabrics library.
+ *
+ * Fabrics API function that unregisters the type of specific transport
+ * fabric being implemented from the common NVMe fabrics library.
+ * Part of the overall exit sequence of unloading the implemented driver.
+ */
+void nvmf_unregister_transport(struct nvmf_transport_ops *ops)
+{
+ down_write(&nvmf_transports_rwsem);
+ list_del(&ops->entry);
+ up_write(&nvmf_transports_rwsem);
+}
+EXPORT_SYMBOL_GPL(nvmf_unregister_transport);
+
+static struct nvmf_transport_ops *nvmf_lookup_transport(
+ struct nvmf_ctrl_options *opts)
+{
+ struct nvmf_transport_ops *ops;
+
+ lockdep_assert_held(&nvmf_transports_rwsem);
+
+ list_for_each_entry(ops, &nvmf_transports, entry) {
+ if (strcmp(ops->name, opts->transport) == 0)
+ return ops;
+ }
+
+ return NULL;
+}
+
+static const match_table_t opt_tokens = {
+ { NVMF_OPT_TRANSPORT, "transport=%s" },
+ { NVMF_OPT_TRADDR, "traddr=%s" },
+ { NVMF_OPT_TRSVCID, "trsvcid=%s" },
+ { NVMF_OPT_NQN, "nqn=%s" },
+ { NVMF_OPT_QUEUE_SIZE, "queue_size=%d" },
+ { NVMF_OPT_NR_IO_QUEUES, "nr_io_queues=%d" },
+ { NVMF_OPT_RECONNECT_DELAY, "reconnect_delay=%d" },
+ { NVMF_OPT_CTRL_LOSS_TMO, "ctrl_loss_tmo=%d" },
+ { NVMF_OPT_KATO, "keep_alive_tmo=%d" },
+ { NVMF_OPT_HOSTNQN, "hostnqn=%s" },
+ { NVMF_OPT_HOST_TRADDR, "host_traddr=%s" },
+ { NVMF_OPT_HOST_IFACE, "host_iface=%s" },
+ { NVMF_OPT_HOST_ID, "hostid=%s" },
+ { NVMF_OPT_DUP_CONNECT, "duplicate_connect" },
+ { NVMF_OPT_DISABLE_SQFLOW, "disable_sqflow" },
+ { NVMF_OPT_HDR_DIGEST, "hdr_digest" },
+ { NVMF_OPT_DATA_DIGEST, "data_digest" },
+ { NVMF_OPT_NR_WRITE_QUEUES, "nr_write_queues=%d" },
+ { NVMF_OPT_NR_POLL_QUEUES, "nr_poll_queues=%d" },
+ { NVMF_OPT_TOS, "tos=%d" },
+ { NVMF_OPT_FAIL_FAST_TMO, "fast_io_fail_tmo=%d" },
+ { NVMF_OPT_DISCOVERY, "discovery" },
+#ifdef CONFIG_NVME_HOST_AUTH
+ { NVMF_OPT_DHCHAP_SECRET, "dhchap_secret=%s" },
+ { NVMF_OPT_DHCHAP_CTRL_SECRET, "dhchap_ctrl_secret=%s" },
+#endif
+ { NVMF_OPT_ERR, NULL }
+};
+
+static int nvmf_parse_options(struct nvmf_ctrl_options *opts,
+ const char *buf)
+{
+ substring_t args[MAX_OPT_ARGS];
+ char *options, *o, *p;
+ int token, ret = 0;
+ size_t nqnlen = 0;
+ int ctrl_loss_tmo = NVMF_DEF_CTRL_LOSS_TMO;
+ uuid_t hostid;
+ char hostnqn[NVMF_NQN_SIZE];
+
+ /* Set defaults */
+ opts->queue_size = NVMF_DEF_QUEUE_SIZE;
+ opts->nr_io_queues = num_online_cpus();
+ opts->reconnect_delay = NVMF_DEF_RECONNECT_DELAY;
+ opts->kato = 0;
+ opts->duplicate_connect = false;
+ opts->fast_io_fail_tmo = NVMF_DEF_FAIL_FAST_TMO;
+ opts->hdr_digest = false;
+ opts->data_digest = false;
+ opts->tos = -1; /* < 0 == use transport default */
+
+ options = o = kstrdup(buf, GFP_KERNEL);
+ if (!options)
+ return -ENOMEM;
+
+ /* use default host if not given by user space */
+ uuid_copy(&hostid, &nvmf_default_host->id);
+ strscpy(hostnqn, nvmf_default_host->nqn, NVMF_NQN_SIZE);
+
+ while ((p = strsep(&o, ",\n")) != NULL) {
+ if (!*p)
+ continue;
+
+ token = match_token(p, opt_tokens, args);
+ opts->mask |= token;
+ switch (token) {
+ case NVMF_OPT_TRANSPORT:
+ p = match_strdup(args);
+ if (!p) {
+ ret = -ENOMEM;
+ goto out;
+ }
+ kfree(opts->transport);
+ opts->transport = p;
+ break;
+ case NVMF_OPT_NQN:
+ p = match_strdup(args);
+ if (!p) {
+ ret = -ENOMEM;
+ goto out;
+ }
+ kfree(opts->subsysnqn);
+ opts->subsysnqn = p;
+ nqnlen = strlen(opts->subsysnqn);
+ if (nqnlen >= NVMF_NQN_SIZE) {
+ pr_err("%s needs to be < %d bytes\n",
+ opts->subsysnqn, NVMF_NQN_SIZE);
+ ret = -EINVAL;
+ goto out;
+ }
+ opts->discovery_nqn =
+ !(strcmp(opts->subsysnqn,
+ NVME_DISC_SUBSYS_NAME));
+ break;
+ case NVMF_OPT_TRADDR:
+ p = match_strdup(args);
+ if (!p) {
+ ret = -ENOMEM;
+ goto out;
+ }
+ kfree(opts->traddr);
+ opts->traddr = p;
+ break;
+ case NVMF_OPT_TRSVCID:
+ p = match_strdup(args);
+ if (!p) {
+ ret = -ENOMEM;
+ goto out;
+ }
+ kfree(opts->trsvcid);
+ opts->trsvcid = p;
+ break;
+ case NVMF_OPT_QUEUE_SIZE:
+ if (match_int(args, &token)) {
+ ret = -EINVAL;
+ goto out;
+ }
+ if (token < NVMF_MIN_QUEUE_SIZE ||
+ token > NVMF_MAX_QUEUE_SIZE) {
+ pr_err("Invalid queue_size %d\n", token);
+ ret = -EINVAL;
+ goto out;
+ }
+ opts->queue_size = token;
+ break;
+ case NVMF_OPT_NR_IO_QUEUES:
+ if (match_int(args, &token)) {
+ ret = -EINVAL;
+ goto out;
+ }
+ if (token <= 0) {
+ pr_err("Invalid number of IOQs %d\n", token);
+ ret = -EINVAL;
+ goto out;
+ }
+ if (opts->discovery_nqn) {
+ pr_debug("Ignoring nr_io_queues value for discovery controller\n");
+ break;
+ }
+
+ opts->nr_io_queues = min_t(unsigned int,
+ num_online_cpus(), token);
+ break;
+ case NVMF_OPT_KATO:
+ if (match_int(args, &token)) {
+ ret = -EINVAL;
+ goto out;
+ }
+
+ if (token < 0) {
+ pr_err("Invalid keep_alive_tmo %d\n", token);
+ ret = -EINVAL;
+ goto out;
+ } else if (token == 0 && !opts->discovery_nqn) {
+ /* Allowed for debug */
+ pr_warn("keep_alive_tmo 0 won't execute keep alives!!!\n");
+ }
+ opts->kato = token;
+ break;
+ case NVMF_OPT_CTRL_LOSS_TMO:
+ if (match_int(args, &token)) {
+ ret = -EINVAL;
+ goto out;
+ }
+
+ if (token < 0)
+ pr_warn("ctrl_loss_tmo < 0 will reconnect forever\n");
+ ctrl_loss_tmo = token;
+ break;
+ case NVMF_OPT_FAIL_FAST_TMO:
+ if (match_int(args, &token)) {
+ ret = -EINVAL;
+ goto out;
+ }
+
+ if (token >= 0)
+ pr_warn("I/O fail on reconnect controller after %d sec\n",
+ token);
+ else
+ token = -1;
+
+ opts->fast_io_fail_tmo = token;
+ break;
+ case NVMF_OPT_HOSTNQN:
+ if (opts->host) {
+ pr_err("hostnqn already user-assigned: %s\n",
+ opts->host->nqn);
+ ret = -EADDRINUSE;
+ goto out;
+ }
+ p = match_strdup(args);
+ if (!p) {
+ ret = -ENOMEM;
+ goto out;
+ }
+ nqnlen = strlen(p);
+ if (nqnlen >= NVMF_NQN_SIZE) {
+ pr_err("%s needs to be < %d bytes\n",
+ p, NVMF_NQN_SIZE);
+ kfree(p);
+ ret = -EINVAL;
+ goto out;
+ }
+ strscpy(hostnqn, p, NVMF_NQN_SIZE);
+ kfree(p);
+ break;
+ case NVMF_OPT_RECONNECT_DELAY:
+ if (match_int(args, &token)) {
+ ret = -EINVAL;
+ goto out;
+ }
+ if (token <= 0) {
+ pr_err("Invalid reconnect_delay %d\n", token);
+ ret = -EINVAL;
+ goto out;
+ }
+ opts->reconnect_delay = token;
+ break;
+ case NVMF_OPT_HOST_TRADDR:
+ p = match_strdup(args);
+ if (!p) {
+ ret = -ENOMEM;
+ goto out;
+ }
+ kfree(opts->host_traddr);
+ opts->host_traddr = p;
+ break;
+ case NVMF_OPT_HOST_IFACE:
+ p = match_strdup(args);
+ if (!p) {
+ ret = -ENOMEM;
+ goto out;
+ }
+ kfree(opts->host_iface);
+ opts->host_iface = p;
+ break;
+ case NVMF_OPT_HOST_ID:
+ p = match_strdup(args);
+ if (!p) {
+ ret = -ENOMEM;
+ goto out;
+ }
+ ret = uuid_parse(p, &hostid);
+ if (ret) {
+ pr_err("Invalid hostid %s\n", p);
+ ret = -EINVAL;
+ kfree(p);
+ goto out;
+ }
+ kfree(p);
+ break;
+ case NVMF_OPT_DUP_CONNECT:
+ opts->duplicate_connect = true;
+ break;
+ case NVMF_OPT_DISABLE_SQFLOW:
+ opts->disable_sqflow = true;
+ break;
+ case NVMF_OPT_HDR_DIGEST:
+ opts->hdr_digest = true;
+ break;
+ case NVMF_OPT_DATA_DIGEST:
+ opts->data_digest = true;
+ break;
+ case NVMF_OPT_NR_WRITE_QUEUES:
+ if (match_int(args, &token)) {
+ ret = -EINVAL;
+ goto out;
+ }
+ if (token <= 0) {
+ pr_err("Invalid nr_write_queues %d\n", token);
+ ret = -EINVAL;
+ goto out;
+ }
+ opts->nr_write_queues = token;
+ break;
+ case NVMF_OPT_NR_POLL_QUEUES:
+ if (match_int(args, &token)) {
+ ret = -EINVAL;
+ goto out;
+ }
+ if (token <= 0) {
+ pr_err("Invalid nr_poll_queues %d\n", token);
+ ret = -EINVAL;
+ goto out;
+ }
+ opts->nr_poll_queues = token;
+ break;
+ case NVMF_OPT_TOS:
+ if (match_int(args, &token)) {
+ ret = -EINVAL;
+ goto out;
+ }
+ if (token < 0) {
+ pr_err("Invalid type of service %d\n", token);
+ ret = -EINVAL;
+ goto out;
+ }
+ if (token > 255) {
+ pr_warn("Clamping type of service to 255\n");
+ token = 255;
+ }
+ opts->tos = token;
+ break;
+ case NVMF_OPT_DISCOVERY:
+ opts->discovery_nqn = true;
+ break;
+ case NVMF_OPT_DHCHAP_SECRET:
+ p = match_strdup(args);
+ if (!p) {
+ ret = -ENOMEM;
+ goto out;
+ }
+ if (strlen(p) < 11 || strncmp(p, "DHHC-1:", 7)) {
+ pr_err("Invalid DH-CHAP secret %s\n", p);
+ ret = -EINVAL;
+ goto out;
+ }
+ kfree(opts->dhchap_secret);
+ opts->dhchap_secret = p;
+ break;
+ case NVMF_OPT_DHCHAP_CTRL_SECRET:
+ p = match_strdup(args);
+ if (!p) {
+ ret = -ENOMEM;
+ goto out;
+ }
+ if (strlen(p) < 11 || strncmp(p, "DHHC-1:", 7)) {
+ pr_err("Invalid DH-CHAP secret %s\n", p);
+ ret = -EINVAL;
+ goto out;
+ }
+ kfree(opts->dhchap_ctrl_secret);
+ opts->dhchap_ctrl_secret = p;
+ break;
+ default:
+ pr_warn("unknown parameter or missing value '%s' in ctrl creation request\n",
+ p);
+ ret = -EINVAL;
+ goto out;
+ }
+ }
+
+ if (opts->discovery_nqn) {
+ opts->nr_io_queues = 0;
+ opts->nr_write_queues = 0;
+ opts->nr_poll_queues = 0;
+ opts->duplicate_connect = true;
+ } else {
+ if (!opts->kato)
+ opts->kato = NVME_DEFAULT_KATO;
+ }
+ if (ctrl_loss_tmo < 0) {
+ opts->max_reconnects = -1;
+ } else {
+ opts->max_reconnects = DIV_ROUND_UP(ctrl_loss_tmo,
+ opts->reconnect_delay);
+ if (ctrl_loss_tmo < opts->fast_io_fail_tmo)
+ pr_warn("failfast tmo (%d) larger than controller loss tmo (%d)\n",
+ opts->fast_io_fail_tmo, ctrl_loss_tmo);
+ }
+
+ opts->host = nvmf_host_add(hostnqn, &hostid);
+ if (IS_ERR(opts->host)) {
+ ret = PTR_ERR(opts->host);
+ opts->host = NULL;
+ goto out;
+ }
+
+out:
+ kfree(options);
+ return ret;
+}
+
+void nvmf_set_io_queues(struct nvmf_ctrl_options *opts, u32 nr_io_queues,
+ u32 io_queues[HCTX_MAX_TYPES])
+{
+ if (opts->nr_write_queues && opts->nr_io_queues < nr_io_queues) {
+ /*
+ * separate read/write queues
+ * hand out dedicated default queues only after we have
+ * sufficient read queues.
+ */
+ io_queues[HCTX_TYPE_READ] = opts->nr_io_queues;
+ nr_io_queues -= io_queues[HCTX_TYPE_READ];
+ io_queues[HCTX_TYPE_DEFAULT] =
+ min(opts->nr_write_queues, nr_io_queues);
+ nr_io_queues -= io_queues[HCTX_TYPE_DEFAULT];
+ } else {
+ /*
+ * shared read/write queues
+ * either no write queues were requested, or we don't have
+ * sufficient queue count to have dedicated default queues.
+ */
+ io_queues[HCTX_TYPE_DEFAULT] =
+ min(opts->nr_io_queues, nr_io_queues);
+ nr_io_queues -= io_queues[HCTX_TYPE_DEFAULT];
+ }
+
+ if (opts->nr_poll_queues && nr_io_queues) {
+ /* map dedicated poll queues only if we have queues left */
+ io_queues[HCTX_TYPE_POLL] =
+ min(opts->nr_poll_queues, nr_io_queues);
+ }
+}
+EXPORT_SYMBOL_GPL(nvmf_set_io_queues);
+
+void nvmf_map_queues(struct blk_mq_tag_set *set, struct nvme_ctrl *ctrl,
+ u32 io_queues[HCTX_MAX_TYPES])
+{
+ struct nvmf_ctrl_options *opts = ctrl->opts;
+
+ if (opts->nr_write_queues && io_queues[HCTX_TYPE_READ]) {
+ /* separate read/write queues */
+ set->map[HCTX_TYPE_DEFAULT].nr_queues =
+ io_queues[HCTX_TYPE_DEFAULT];
+ set->map[HCTX_TYPE_DEFAULT].queue_offset = 0;
+ set->map[HCTX_TYPE_READ].nr_queues =
+ io_queues[HCTX_TYPE_READ];
+ set->map[HCTX_TYPE_READ].queue_offset =
+ io_queues[HCTX_TYPE_DEFAULT];
+ } else {
+ /* shared read/write queues */
+ set->map[HCTX_TYPE_DEFAULT].nr_queues =
+ io_queues[HCTX_TYPE_DEFAULT];
+ set->map[HCTX_TYPE_DEFAULT].queue_offset = 0;
+ set->map[HCTX_TYPE_READ].nr_queues =
+ io_queues[HCTX_TYPE_DEFAULT];
+ set->map[HCTX_TYPE_READ].queue_offset = 0;
+ }
+
+ blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
+ blk_mq_map_queues(&set->map[HCTX_TYPE_READ]);
+ if (opts->nr_poll_queues && io_queues[HCTX_TYPE_POLL]) {
+ /* map dedicated poll queues only if we have queues left */
+ set->map[HCTX_TYPE_POLL].nr_queues = io_queues[HCTX_TYPE_POLL];
+ set->map[HCTX_TYPE_POLL].queue_offset =
+ io_queues[HCTX_TYPE_DEFAULT] +
+ io_queues[HCTX_TYPE_READ];
+ blk_mq_map_queues(&set->map[HCTX_TYPE_POLL]);
+ }
+
+ dev_info(ctrl->device,
+ "mapped %d/%d/%d default/read/poll queues.\n",
+ io_queues[HCTX_TYPE_DEFAULT],
+ io_queues[HCTX_TYPE_READ],
+ io_queues[HCTX_TYPE_POLL]);
+}
+EXPORT_SYMBOL_GPL(nvmf_map_queues);
+
+static int nvmf_check_required_opts(struct nvmf_ctrl_options *opts,
+ unsigned int required_opts)
+{
+ if ((opts->mask & required_opts) != required_opts) {
+ unsigned int i;
+
+ for (i = 0; i < ARRAY_SIZE(opt_tokens); i++) {
+ if ((opt_tokens[i].token & required_opts) &&
+ !(opt_tokens[i].token & opts->mask)) {
+ pr_warn("missing parameter '%s'\n",
+ opt_tokens[i].pattern);
+ }
+ }
+
+ return -EINVAL;
+ }
+
+ return 0;
+}
+
+bool nvmf_ip_options_match(struct nvme_ctrl *ctrl,
+ struct nvmf_ctrl_options *opts)
+{
+ if (!nvmf_ctlr_matches_baseopts(ctrl, opts) ||
+ strcmp(opts->traddr, ctrl->opts->traddr) ||
+ strcmp(opts->trsvcid, ctrl->opts->trsvcid))
+ return false;
+
+ /*
+ * Checking the local address or host interfaces is rough.
+ *
+ * In most cases, none is specified and the host port or
+ * host interface is selected by the stack.
+ *
+ * Assume no match if:
+ * - local address or host interface is specified and address
+ * or host interface is not the same
+ * - local address or host interface is not specified but
+ * remote is, or vice versa (admin using specific
+ * host_traddr/host_iface when it matters).
+ */
+ if ((opts->mask & NVMF_OPT_HOST_TRADDR) &&
+ (ctrl->opts->mask & NVMF_OPT_HOST_TRADDR)) {
+ if (strcmp(opts->host_traddr, ctrl->opts->host_traddr))
+ return false;
+ } else if ((opts->mask & NVMF_OPT_HOST_TRADDR) ||
+ (ctrl->opts->mask & NVMF_OPT_HOST_TRADDR)) {
+ return false;
+ }
+
+ if ((opts->mask & NVMF_OPT_HOST_IFACE) &&
+ (ctrl->opts->mask & NVMF_OPT_HOST_IFACE)) {
+ if (strcmp(opts->host_iface, ctrl->opts->host_iface))
+ return false;
+ } else if ((opts->mask & NVMF_OPT_HOST_IFACE) ||
+ (ctrl->opts->mask & NVMF_OPT_HOST_IFACE)) {
+ return false;
+ }
+
+ return true;
+}
+EXPORT_SYMBOL_GPL(nvmf_ip_options_match);
+
+static int nvmf_check_allowed_opts(struct nvmf_ctrl_options *opts,
+ unsigned int allowed_opts)
+{
+ if (opts->mask & ~allowed_opts) {
+ unsigned int i;
+
+ for (i = 0; i < ARRAY_SIZE(opt_tokens); i++) {
+ if ((opt_tokens[i].token & opts->mask) &&
+ (opt_tokens[i].token & ~allowed_opts)) {
+ pr_warn("invalid parameter '%s'\n",
+ opt_tokens[i].pattern);
+ }
+ }
+
+ return -EINVAL;
+ }
+
+ return 0;
+}
+
+void nvmf_free_options(struct nvmf_ctrl_options *opts)
+{
+ nvmf_host_put(opts->host);
+ kfree(opts->transport);
+ kfree(opts->traddr);
+ kfree(opts->trsvcid);
+ kfree(opts->subsysnqn);
+ kfree(opts->host_traddr);
+ kfree(opts->host_iface);
+ kfree(opts->dhchap_secret);
+ kfree(opts->dhchap_ctrl_secret);
+ kfree(opts);
+}
+EXPORT_SYMBOL_GPL(nvmf_free_options);
+
+#define NVMF_REQUIRED_OPTS (NVMF_OPT_TRANSPORT | NVMF_OPT_NQN)
+#define NVMF_ALLOWED_OPTS (NVMF_OPT_QUEUE_SIZE | NVMF_OPT_NR_IO_QUEUES | \
+ NVMF_OPT_KATO | NVMF_OPT_HOSTNQN | \
+ NVMF_OPT_HOST_ID | NVMF_OPT_DUP_CONNECT |\
+ NVMF_OPT_DISABLE_SQFLOW | NVMF_OPT_DISCOVERY |\
+ NVMF_OPT_FAIL_FAST_TMO | NVMF_OPT_DHCHAP_SECRET |\
+ NVMF_OPT_DHCHAP_CTRL_SECRET)
+
+static struct nvme_ctrl *
+nvmf_create_ctrl(struct device *dev, const char *buf)
+{
+ struct nvmf_ctrl_options *opts;
+ struct nvmf_transport_ops *ops;
+ struct nvme_ctrl *ctrl;
+ int ret;
+
+ opts = kzalloc(sizeof(*opts), GFP_KERNEL);
+ if (!opts)
+ return ERR_PTR(-ENOMEM);
+
+ ret = nvmf_parse_options(opts, buf);
+ if (ret)
+ goto out_free_opts;
+
+
+ request_module("nvme-%s", opts->transport);
+
+ /*
+ * Check the generic options first as we need a valid transport for
+ * the lookup below. Then clear the generic flags so that transport
+ * drivers don't have to care about them.
+ */
+ ret = nvmf_check_required_opts(opts, NVMF_REQUIRED_OPTS);
+ if (ret)
+ goto out_free_opts;
+ opts->mask &= ~NVMF_REQUIRED_OPTS;
+
+ down_read(&nvmf_transports_rwsem);
+ ops = nvmf_lookup_transport(opts);
+ if (!ops) {
+ pr_info("no handler found for transport %s.\n",
+ opts->transport);
+ ret = -EINVAL;
+ goto out_unlock;
+ }
+
+ if (!try_module_get(ops->module)) {
+ ret = -EBUSY;
+ goto out_unlock;
+ }
+ up_read(&nvmf_transports_rwsem);
+
+ ret = nvmf_check_required_opts(opts, ops->required_opts);
+ if (ret)
+ goto out_module_put;
+ ret = nvmf_check_allowed_opts(opts, NVMF_ALLOWED_OPTS |
+ ops->allowed_opts | ops->required_opts);
+ if (ret)
+ goto out_module_put;
+
+ ctrl = ops->create_ctrl(dev, opts);
+ if (IS_ERR(ctrl)) {
+ ret = PTR_ERR(ctrl);
+ goto out_module_put;
+ }
+
+ module_put(ops->module);
+ return ctrl;
+
+out_module_put:
+ module_put(ops->module);
+ goto out_free_opts;
+out_unlock:
+ up_read(&nvmf_transports_rwsem);
+out_free_opts:
+ nvmf_free_options(opts);
+ return ERR_PTR(ret);
+}
+
+static struct class *nvmf_class;
+static struct device *nvmf_device;
+static DEFINE_MUTEX(nvmf_dev_mutex);
+
+static ssize_t nvmf_dev_write(struct file *file, const char __user *ubuf,
+ size_t count, loff_t *pos)
+{
+ struct seq_file *seq_file = file->private_data;
+ struct nvme_ctrl *ctrl;
+ const char *buf;
+ int ret = 0;
+
+ if (count > PAGE_SIZE)
+ return -ENOMEM;
+
+ buf = memdup_user_nul(ubuf, count);
+ if (IS_ERR(buf))
+ return PTR_ERR(buf);
+
+ mutex_lock(&nvmf_dev_mutex);
+ if (seq_file->private) {
+ ret = -EINVAL;
+ goto out_unlock;
+ }
+
+ ctrl = nvmf_create_ctrl(nvmf_device, buf);
+ if (IS_ERR(ctrl)) {
+ ret = PTR_ERR(ctrl);
+ goto out_unlock;
+ }
+
+ seq_file->private = ctrl;
+
+out_unlock:
+ mutex_unlock(&nvmf_dev_mutex);
+ kfree(buf);
+ return ret ? ret : count;
+}
+
+static void __nvmf_concat_opt_tokens(struct seq_file *seq_file)
+{
+ const struct match_token *tok;
+ int idx;
+
+ /*
+ * Add dummy entries for instance and cntlid to
+ * signal an invalid/non-existing controller
+ */
+ seq_puts(seq_file, "instance=-1,cntlid=-1");
+ for (idx = 0; idx < ARRAY_SIZE(opt_tokens); idx++) {
+ tok = &opt_tokens[idx];
+ if (tok->token == NVMF_OPT_ERR)
+ continue;
+ seq_puts(seq_file, ",");
+ seq_puts(seq_file, tok->pattern);
+ }
+ seq_puts(seq_file, "\n");
+}
+
+static int nvmf_dev_show(struct seq_file *seq_file, void *private)
+{
+ struct nvme_ctrl *ctrl;
+
+ mutex_lock(&nvmf_dev_mutex);
+ ctrl = seq_file->private;
+ if (!ctrl) {
+ __nvmf_concat_opt_tokens(seq_file);
+ goto out_unlock;
+ }
+
+ seq_printf(seq_file, "instance=%d,cntlid=%d\n",
+ ctrl->instance, ctrl->cntlid);
+
+out_unlock:
+ mutex_unlock(&nvmf_dev_mutex);
+ return 0;
+}
+
+static int nvmf_dev_open(struct inode *inode, struct file *file)
+{
+ /*
+ * The miscdevice code initializes file->private_data, but doesn't
+ * make use of it later.
+ */
+ file->private_data = NULL;
+ return single_open(file, nvmf_dev_show, NULL);
+}
+
+static int nvmf_dev_release(struct inode *inode, struct file *file)
+{
+ struct seq_file *seq_file = file->private_data;
+ struct nvme_ctrl *ctrl = seq_file->private;
+
+ if (ctrl)
+ nvme_put_ctrl(ctrl);
+ return single_release(inode, file);
+}
+
+static const struct file_operations nvmf_dev_fops = {
+ .owner = THIS_MODULE,
+ .write = nvmf_dev_write,
+ .read = seq_read,
+ .open = nvmf_dev_open,
+ .release = nvmf_dev_release,
+};
+
+static struct miscdevice nvmf_misc = {
+ .minor = MISC_DYNAMIC_MINOR,
+ .name = "nvme-fabrics",
+ .fops = &nvmf_dev_fops,
+};
+
+static int __init nvmf_init(void)
+{
+ int ret;
+
+ nvmf_default_host = nvmf_host_default();
+ if (!nvmf_default_host)
+ return -ENOMEM;
+
+ nvmf_class = class_create("nvme-fabrics");
+ if (IS_ERR(nvmf_class)) {
+ pr_err("couldn't register class nvme-fabrics\n");
+ ret = PTR_ERR(nvmf_class);
+ goto out_free_host;
+ }
+
+ nvmf_device =
+ device_create(nvmf_class, NULL, MKDEV(0, 0), NULL, "ctl");
+ if (IS_ERR(nvmf_device)) {
+ pr_err("couldn't create nvme-fabrics device!\n");
+ ret = PTR_ERR(nvmf_device);
+ goto out_destroy_class;
+ }
+
+ ret = misc_register(&nvmf_misc);
+ if (ret) {
+ pr_err("couldn't register misc device: %d\n", ret);
+ goto out_destroy_device;
+ }
+
+ return 0;
+
+out_destroy_device:
+ device_destroy(nvmf_class, MKDEV(0, 0));
+out_destroy_class:
+ class_destroy(nvmf_class);
+out_free_host:
+ nvmf_host_put(nvmf_default_host);
+ return ret;
+}
+
+static void __exit nvmf_exit(void)
+{
+ misc_deregister(&nvmf_misc);
+ device_destroy(nvmf_class, MKDEV(0, 0));
+ class_destroy(nvmf_class);
+ nvmf_host_put(nvmf_default_host);
+
+ BUILD_BUG_ON(sizeof(struct nvmf_common_command) != 64);
+ BUILD_BUG_ON(sizeof(struct nvmf_connect_command) != 64);
+ BUILD_BUG_ON(sizeof(struct nvmf_property_get_command) != 64);
+ BUILD_BUG_ON(sizeof(struct nvmf_property_set_command) != 64);
+ BUILD_BUG_ON(sizeof(struct nvmf_auth_send_command) != 64);
+ BUILD_BUG_ON(sizeof(struct nvmf_auth_receive_command) != 64);
+ BUILD_BUG_ON(sizeof(struct nvmf_connect_data) != 1024);
+ BUILD_BUG_ON(sizeof(struct nvmf_auth_dhchap_negotiate_data) != 8);
+ BUILD_BUG_ON(sizeof(struct nvmf_auth_dhchap_challenge_data) != 16);
+ BUILD_BUG_ON(sizeof(struct nvmf_auth_dhchap_reply_data) != 16);
+ BUILD_BUG_ON(sizeof(struct nvmf_auth_dhchap_success1_data) != 16);
+ BUILD_BUG_ON(sizeof(struct nvmf_auth_dhchap_success2_data) != 16);
+}
+
+MODULE_LICENSE("GPL v2");
+
+module_init(nvmf_init);
+module_exit(nvmf_exit);
diff --git a/drivers/nvme/host/fabrics.h b/drivers/nvme/host/fabrics.h
new file mode 100644
index 0000000000..82e7a27ffb
--- /dev/null
+++ b/drivers/nvme/host/fabrics.h
@@ -0,0 +1,230 @@
+/* SPDX-License-Identifier: GPL-2.0 */
+/*
+ * NVMe over Fabrics common host code.
+ * Copyright (c) 2015-2016 HGST, a Western Digital Company.
+ */
+#ifndef _NVME_FABRICS_H
+#define _NVME_FABRICS_H 1
+
+#include <linux/in.h>
+#include <linux/inet.h>
+
+#define NVMF_MIN_QUEUE_SIZE 16
+#define NVMF_MAX_QUEUE_SIZE 1024
+#define NVMF_DEF_QUEUE_SIZE 128
+#define NVMF_DEF_RECONNECT_DELAY 10
+/* default to 600 seconds of reconnect attempts before giving up */
+#define NVMF_DEF_CTRL_LOSS_TMO 600
+/* default is -1: the fail fast mechanism is disabled */
+#define NVMF_DEF_FAIL_FAST_TMO -1
+
+/*
+ * Reserved one command for internal usage. This command is used for sending
+ * the connect command, as well as for the keep alive command on the admin
+ * queue once live.
+ */
+#define NVMF_RESERVED_TAGS 1
+
+/*
+ * Define a host as seen by the target. We allocate one at boot, but also
+ * allow the override it when creating controllers. This is both to provide
+ * persistence of the Host NQN over multiple boots, and to allow using
+ * multiple ones, for example in a container scenario. Because we must not
+ * use different Host NQNs with the same Host ID we generate a Host ID and
+ * use this structure to keep track of the relation between the two.
+ */
+struct nvmf_host {
+ struct kref ref;
+ struct list_head list;
+ char nqn[NVMF_NQN_SIZE];
+ uuid_t id;
+};
+
+/**
+ * enum nvmf_parsing_opts - used to define the sysfs parsing options used.
+ */
+enum {
+ NVMF_OPT_ERR = 0,
+ NVMF_OPT_TRANSPORT = 1 << 0,
+ NVMF_OPT_NQN = 1 << 1,
+ NVMF_OPT_TRADDR = 1 << 2,
+ NVMF_OPT_TRSVCID = 1 << 3,
+ NVMF_OPT_QUEUE_SIZE = 1 << 4,
+ NVMF_OPT_NR_IO_QUEUES = 1 << 5,
+ NVMF_OPT_TL_RETRY_COUNT = 1 << 6,
+ NVMF_OPT_KATO = 1 << 7,
+ NVMF_OPT_HOSTNQN = 1 << 8,
+ NVMF_OPT_RECONNECT_DELAY = 1 << 9,
+ NVMF_OPT_HOST_TRADDR = 1 << 10,
+ NVMF_OPT_CTRL_LOSS_TMO = 1 << 11,
+ NVMF_OPT_HOST_ID = 1 << 12,
+ NVMF_OPT_DUP_CONNECT = 1 << 13,
+ NVMF_OPT_DISABLE_SQFLOW = 1 << 14,
+ NVMF_OPT_HDR_DIGEST = 1 << 15,
+ NVMF_OPT_DATA_DIGEST = 1 << 16,
+ NVMF_OPT_NR_WRITE_QUEUES = 1 << 17,
+ NVMF_OPT_NR_POLL_QUEUES = 1 << 18,
+ NVMF_OPT_TOS = 1 << 19,
+ NVMF_OPT_FAIL_FAST_TMO = 1 << 20,
+ NVMF_OPT_HOST_IFACE = 1 << 21,
+ NVMF_OPT_DISCOVERY = 1 << 22,
+ NVMF_OPT_DHCHAP_SECRET = 1 << 23,
+ NVMF_OPT_DHCHAP_CTRL_SECRET = 1 << 24,
+};
+
+/**
+ * struct nvmf_ctrl_options - Used to hold the options specified
+ * with the parsing opts enum.
+ * @mask: Used by the fabrics library to parse through sysfs options
+ * on adding a NVMe controller.
+ * @max_reconnects: maximum number of allowed reconnect attempts before removing
+ * the controller, (-1) means reconnect forever, zero means remove
+ * immediately;
+ * @transport: Holds the fabric transport "technology name" (for a lack of
+ * better description) that will be used by an NVMe controller
+ * being added.
+ * @subsysnqn: Hold the fully qualified NQN subystem name (format defined
+ * in the NVMe specification, "NVMe Qualified Names").
+ * @traddr: The transport-specific TRADDR field for a port on the
+ * subsystem which is adding a controller.
+ * @trsvcid: The transport-specific TRSVCID field for a port on the
+ * subsystem which is adding a controller.
+ * @host_traddr: A transport-specific field identifying the NVME host port
+ * to use for the connection to the controller.
+ * @host_iface: A transport-specific field identifying the NVME host
+ * interface to use for the connection to the controller.
+ * @queue_size: Number of IO queue elements.
+ * @nr_io_queues: Number of controller IO queues that will be established.
+ * @reconnect_delay: Time between two consecutive reconnect attempts.
+ * @discovery_nqn: indicates if the subsysnqn is the well-known discovery NQN.
+ * @kato: Keep-alive timeout.
+ * @host: Virtual NVMe host, contains the NQN and Host ID.
+ * @dhchap_secret: DH-HMAC-CHAP secret
+ * @dhchap_ctrl_secret: DH-HMAC-CHAP controller secret for bi-directional
+ * authentication
+ * @disable_sqflow: disable controller sq flow control
+ * @hdr_digest: generate/verify header digest (TCP)
+ * @data_digest: generate/verify data digest (TCP)
+ * @nr_write_queues: number of queues for write I/O
+ * @nr_poll_queues: number of queues for polling I/O
+ * @tos: type of service
+ * @fast_io_fail_tmo: Fast I/O fail timeout in seconds
+ */
+struct nvmf_ctrl_options {
+ unsigned mask;
+ int max_reconnects;
+ char *transport;
+ char *subsysnqn;
+ char *traddr;
+ char *trsvcid;
+ char *host_traddr;
+ char *host_iface;
+ size_t queue_size;
+ unsigned int nr_io_queues;
+ unsigned int reconnect_delay;
+ bool discovery_nqn;
+ bool duplicate_connect;
+ unsigned int kato;
+ struct nvmf_host *host;
+ char *dhchap_secret;
+ char *dhchap_ctrl_secret;
+ bool disable_sqflow;
+ bool hdr_digest;
+ bool data_digest;
+ unsigned int nr_write_queues;
+ unsigned int nr_poll_queues;
+ int tos;
+ int fast_io_fail_tmo;
+};
+
+/*
+ * struct nvmf_transport_ops - used to register a specific
+ * fabric implementation of NVMe fabrics.
+ * @entry: Used by the fabrics library to add the new
+ * registration entry to its linked-list internal tree.
+ * @module: Transport module reference
+ * @name: Name of the NVMe fabric driver implementation.
+ * @required_opts: sysfs command-line options that must be specified
+ * when adding a new NVMe controller.
+ * @allowed_opts: sysfs command-line options that can be specified
+ * when adding a new NVMe controller.
+ * @create_ctrl(): function pointer that points to a non-NVMe
+ * implementation-specific fabric technology
+ * that would go into starting up that fabric
+ * for the purpose of conneciton to an NVMe controller
+ * using that fabric technology.
+ *
+ * Notes:
+ * 1. At minimum, 'required_opts' and 'allowed_opts' should
+ * be set to the same enum parsing options defined earlier.
+ * 2. create_ctrl() must be defined (even if it does nothing)
+ * 3. struct nvmf_transport_ops must be statically allocated in the
+ * modules .bss section so that a pure module_get on @module
+ * prevents the memory from beeing freed.
+ */
+struct nvmf_transport_ops {
+ struct list_head entry;
+ struct module *module;
+ const char *name;
+ int required_opts;
+ int allowed_opts;
+ struct nvme_ctrl *(*create_ctrl)(struct device *dev,
+ struct nvmf_ctrl_options *opts);
+};
+
+static inline bool
+nvmf_ctlr_matches_baseopts(struct nvme_ctrl *ctrl,
+ struct nvmf_ctrl_options *opts)
+{
+ if (ctrl->state == NVME_CTRL_DELETING ||
+ ctrl->state == NVME_CTRL_DELETING_NOIO ||
+ ctrl->state == NVME_CTRL_DEAD ||
+ strcmp(opts->subsysnqn, ctrl->opts->subsysnqn) ||
+ strcmp(opts->host->nqn, ctrl->opts->host->nqn) ||
+ !uuid_equal(&opts->host->id, &ctrl->opts->host->id))
+ return false;
+
+ return true;
+}
+
+static inline char *nvmf_ctrl_subsysnqn(struct nvme_ctrl *ctrl)
+{
+ if (!ctrl->subsys ||
+ !strcmp(ctrl->opts->subsysnqn, NVME_DISC_SUBSYS_NAME))
+ return ctrl->opts->subsysnqn;
+ return ctrl->subsys->subnqn;
+}
+
+static inline void nvmf_complete_timed_out_request(struct request *rq)
+{
+ if (blk_mq_request_started(rq) && !blk_mq_request_completed(rq)) {
+ nvme_req(rq)->status = NVME_SC_HOST_ABORTED_CMD;
+ blk_mq_complete_request(rq);
+ }
+}
+
+static inline unsigned int nvmf_nr_io_queues(struct nvmf_ctrl_options *opts)
+{
+ return min(opts->nr_io_queues, num_online_cpus()) +
+ min(opts->nr_write_queues, num_online_cpus()) +
+ min(opts->nr_poll_queues, num_online_cpus());
+}
+
+int nvmf_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val);
+int nvmf_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val);
+int nvmf_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val);
+int nvmf_connect_admin_queue(struct nvme_ctrl *ctrl);
+int nvmf_connect_io_queue(struct nvme_ctrl *ctrl, u16 qid);
+int nvmf_register_transport(struct nvmf_transport_ops *ops);
+void nvmf_unregister_transport(struct nvmf_transport_ops *ops);
+void nvmf_free_options(struct nvmf_ctrl_options *opts);
+int nvmf_get_address(struct nvme_ctrl *ctrl, char *buf, int size);
+bool nvmf_should_reconnect(struct nvme_ctrl *ctrl);
+bool nvmf_ip_options_match(struct nvme_ctrl *ctrl,
+ struct nvmf_ctrl_options *opts);
+void nvmf_set_io_queues(struct nvmf_ctrl_options *opts, u32 nr_io_queues,
+ u32 io_queues[HCTX_MAX_TYPES]);
+void nvmf_map_queues(struct blk_mq_tag_set *set, struct nvme_ctrl *ctrl,
+ u32 io_queues[HCTX_MAX_TYPES]);
+
+#endif /* _NVME_FABRICS_H */
diff --git a/drivers/nvme/host/fault_inject.c b/drivers/nvme/host/fault_inject.c
new file mode 100644
index 0000000000..1ba10a5c65
--- /dev/null
+++ b/drivers/nvme/host/fault_inject.c
@@ -0,0 +1,82 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * fault injection support for nvme.
+ *
+ * Copyright (c) 2018, Oracle and/or its affiliates
+ */
+
+#include <linux/moduleparam.h>
+#include "nvme.h"
+
+static DECLARE_FAULT_ATTR(fail_default_attr);
+/* optional fault injection attributes boot time option:
+ * nvme_core.fail_request=<interval>,<probability>,<space>,<times>
+ */
+static char *fail_request;
+module_param(fail_request, charp, 0000);
+
+void nvme_fault_inject_init(struct nvme_fault_inject *fault_inj,
+ const char *dev_name)
+{
+ struct dentry *dir, *parent;
+ struct fault_attr *attr = &fault_inj->attr;
+
+ /* set default fault injection attribute */
+ if (fail_request)
+ setup_fault_attr(&fail_default_attr, fail_request);
+
+ /* create debugfs directory and attribute */
+ parent = debugfs_create_dir(dev_name, NULL);
+ if (IS_ERR(parent)) {
+ pr_warn("%s: failed to create debugfs directory\n", dev_name);
+ return;
+ }
+
+ *attr = fail_default_attr;
+ dir = fault_create_debugfs_attr("fault_inject", parent, attr);
+ if (IS_ERR(dir)) {
+ pr_warn("%s: failed to create debugfs attr\n", dev_name);
+ debugfs_remove_recursive(parent);
+ return;
+ }
+ fault_inj->parent = parent;
+
+ /* create debugfs for status code and dont_retry */
+ fault_inj->status = NVME_SC_INVALID_OPCODE;
+ fault_inj->dont_retry = true;
+ debugfs_create_x16("status", 0600, dir, &fault_inj->status);
+ debugfs_create_bool("dont_retry", 0600, dir, &fault_inj->dont_retry);
+}
+
+void nvme_fault_inject_fini(struct nvme_fault_inject *fault_inject)
+{
+ /* remove debugfs directories */
+ debugfs_remove_recursive(fault_inject->parent);
+}
+
+void nvme_should_fail(struct request *req)
+{
+ struct gendisk *disk = req->q->disk;
+ struct nvme_fault_inject *fault_inject = NULL;
+ u16 status;
+
+ if (disk) {
+ struct nvme_ns *ns = disk->private_data;
+
+ if (ns)
+ fault_inject = &ns->fault_inject;
+ else
+ WARN_ONCE(1, "No namespace found for request\n");
+ } else {
+ fault_inject = &nvme_req(req)->ctrl->fault_inject;
+ }
+
+ if (fault_inject && should_fail(&fault_inject->attr, 1)) {
+ /* inject status code and DNR bit */
+ status = fault_inject->status;
+ if (fault_inject->dont_retry)
+ status |= NVME_SC_DNR;
+ nvme_req(req)->status = status;
+ }
+}
+EXPORT_SYMBOL_GPL(nvme_should_fail);
diff --git a/drivers/nvme/host/fc.c b/drivers/nvme/host/fc.c
new file mode 100644
index 0000000000..46cce0ec35
--- /dev/null
+++ b/drivers/nvme/host/fc.c
@@ -0,0 +1,4006 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * Copyright (c) 2016 Avago Technologies. All rights reserved.
+ */
+#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
+#include <linux/module.h>
+#include <linux/parser.h>
+#include <uapi/scsi/fc/fc_fs.h>
+#include <uapi/scsi/fc/fc_els.h>
+#include <linux/delay.h>
+#include <linux/overflow.h>
+#include <linux/blk-cgroup.h>
+#include "nvme.h"
+#include "fabrics.h"
+#include <linux/nvme-fc-driver.h>
+#include <linux/nvme-fc.h>
+#include "fc.h"
+#include <scsi/scsi_transport_fc.h>
+#include <linux/blk-mq-pci.h>
+
+/* *************************** Data Structures/Defines ****************** */
+
+
+enum nvme_fc_queue_flags {
+ NVME_FC_Q_CONNECTED = 0,
+ NVME_FC_Q_LIVE,
+};
+
+#define NVME_FC_DEFAULT_DEV_LOSS_TMO 60 /* seconds */
+#define NVME_FC_DEFAULT_RECONNECT_TMO 2 /* delay between reconnects
+ * when connected and a
+ * connection failure.
+ */
+
+struct nvme_fc_queue {
+ struct nvme_fc_ctrl *ctrl;
+ struct device *dev;
+ struct blk_mq_hw_ctx *hctx;
+ void *lldd_handle;
+ size_t cmnd_capsule_len;
+ u32 qnum;
+ u32 rqcnt;
+ u32 seqno;
+
+ u64 connection_id;
+ atomic_t csn;
+
+ unsigned long flags;
+} __aligned(sizeof(u64)); /* alignment for other things alloc'd with */
+
+enum nvme_fcop_flags {
+ FCOP_FLAGS_TERMIO = (1 << 0),
+ FCOP_FLAGS_AEN = (1 << 1),
+};
+
+struct nvmefc_ls_req_op {
+ struct nvmefc_ls_req ls_req;
+
+ struct nvme_fc_rport *rport;
+ struct nvme_fc_queue *queue;
+ struct request *rq;
+ u32 flags;
+
+ int ls_error;
+ struct completion ls_done;
+ struct list_head lsreq_list; /* rport->ls_req_list */
+ bool req_queued;
+};
+
+struct nvmefc_ls_rcv_op {
+ struct nvme_fc_rport *rport;
+ struct nvmefc_ls_rsp *lsrsp;
+ union nvmefc_ls_requests *rqstbuf;
+ union nvmefc_ls_responses *rspbuf;
+ u16 rqstdatalen;
+ bool handled;
+ dma_addr_t rspdma;
+ struct list_head lsrcv_list; /* rport->ls_rcv_list */
+} __aligned(sizeof(u64)); /* alignment for other things alloc'd with */
+
+enum nvme_fcpop_state {
+ FCPOP_STATE_UNINIT = 0,
+ FCPOP_STATE_IDLE = 1,
+ FCPOP_STATE_ACTIVE = 2,
+ FCPOP_STATE_ABORTED = 3,
+ FCPOP_STATE_COMPLETE = 4,
+};
+
+struct nvme_fc_fcp_op {
+ struct nvme_request nreq; /*
+ * nvme/host/core.c
+ * requires this to be
+ * the 1st element in the
+ * private structure
+ * associated with the
+ * request.
+ */
+ struct nvmefc_fcp_req fcp_req;
+
+ struct nvme_fc_ctrl *ctrl;
+ struct nvme_fc_queue *queue;
+ struct request *rq;
+
+ atomic_t state;
+ u32 flags;
+ u32 rqno;
+ u32 nents;
+
+ struct nvme_fc_cmd_iu cmd_iu;
+ struct nvme_fc_ersp_iu rsp_iu;
+};
+
+struct nvme_fcp_op_w_sgl {
+ struct nvme_fc_fcp_op op;
+ struct scatterlist sgl[NVME_INLINE_SG_CNT];
+ uint8_t priv[];
+};
+
+struct nvme_fc_lport {
+ struct nvme_fc_local_port localport;
+
+ struct ida endp_cnt;
+ struct list_head port_list; /* nvme_fc_port_list */
+ struct list_head endp_list;
+ struct device *dev; /* physical device for dma */
+ struct nvme_fc_port_template *ops;
+ struct kref ref;
+ atomic_t act_rport_cnt;
+} __aligned(sizeof(u64)); /* alignment for other things alloc'd with */
+
+struct nvme_fc_rport {
+ struct nvme_fc_remote_port remoteport;
+
+ struct list_head endp_list; /* for lport->endp_list */
+ struct list_head ctrl_list;
+ struct list_head ls_req_list;
+ struct list_head ls_rcv_list;
+ struct list_head disc_list;
+ struct device *dev; /* physical device for dma */
+ struct nvme_fc_lport *lport;
+ spinlock_t lock;
+ struct kref ref;
+ atomic_t act_ctrl_cnt;
+ unsigned long dev_loss_end;
+ struct work_struct lsrcv_work;
+} __aligned(sizeof(u64)); /* alignment for other things alloc'd with */
+
+/* fc_ctrl flags values - specified as bit positions */
+#define ASSOC_ACTIVE 0
+#define ASSOC_FAILED 1
+#define FCCTRL_TERMIO 2
+
+struct nvme_fc_ctrl {
+ spinlock_t lock;
+ struct nvme_fc_queue *queues;
+ struct device *dev;
+ struct nvme_fc_lport *lport;
+ struct nvme_fc_rport *rport;
+ u32 cnum;
+
+ bool ioq_live;
+ u64 association_id;
+ struct nvmefc_ls_rcv_op *rcv_disconn;
+
+ struct list_head ctrl_list; /* rport->ctrl_list */
+
+ struct blk_mq_tag_set admin_tag_set;
+ struct blk_mq_tag_set tag_set;
+
+ struct work_struct ioerr_work;
+ struct delayed_work connect_work;
+
+ struct kref ref;
+ unsigned long flags;
+ u32 iocnt;
+ wait_queue_head_t ioabort_wait;
+
+ struct nvme_fc_fcp_op aen_ops[NVME_NR_AEN_COMMANDS];
+
+ struct nvme_ctrl ctrl;
+};
+
+static inline struct nvme_fc_ctrl *
+to_fc_ctrl(struct nvme_ctrl *ctrl)
+{
+ return container_of(ctrl, struct nvme_fc_ctrl, ctrl);
+}
+
+static inline struct nvme_fc_lport *
+localport_to_lport(struct nvme_fc_local_port *portptr)
+{
+ return container_of(portptr, struct nvme_fc_lport, localport);
+}
+
+static inline struct nvme_fc_rport *
+remoteport_to_rport(struct nvme_fc_remote_port *portptr)
+{
+ return container_of(portptr, struct nvme_fc_rport, remoteport);
+}
+
+static inline struct nvmefc_ls_req_op *
+ls_req_to_lsop(struct nvmefc_ls_req *lsreq)
+{
+ return container_of(lsreq, struct nvmefc_ls_req_op, ls_req);
+}
+
+static inline struct nvme_fc_fcp_op *
+fcp_req_to_fcp_op(struct nvmefc_fcp_req *fcpreq)
+{
+ return container_of(fcpreq, struct nvme_fc_fcp_op, fcp_req);
+}
+
+
+
+/* *************************** Globals **************************** */
+
+
+static DEFINE_SPINLOCK(nvme_fc_lock);
+
+static LIST_HEAD(nvme_fc_lport_list);
+static DEFINE_IDA(nvme_fc_local_port_cnt);
+static DEFINE_IDA(nvme_fc_ctrl_cnt);
+
+static struct workqueue_struct *nvme_fc_wq;
+
+static bool nvme_fc_waiting_to_unload;
+static DECLARE_COMPLETION(nvme_fc_unload_proceed);
+
+/*
+ * These items are short-term. They will eventually be moved into
+ * a generic FC class. See comments in module init.
+ */
+static struct device *fc_udev_device;
+
+static void nvme_fc_complete_rq(struct request *rq);
+
+/* *********************** FC-NVME Port Management ************************ */
+
+static void __nvme_fc_delete_hw_queue(struct nvme_fc_ctrl *,
+ struct nvme_fc_queue *, unsigned int);
+
+static void nvme_fc_handle_ls_rqst_work(struct work_struct *work);
+
+
+static void
+nvme_fc_free_lport(struct kref *ref)
+{
+ struct nvme_fc_lport *lport =
+ container_of(ref, struct nvme_fc_lport, ref);
+ unsigned long flags;
+
+ WARN_ON(lport->localport.port_state != FC_OBJSTATE_DELETED);
+ WARN_ON(!list_empty(&lport->endp_list));
+
+ /* remove from transport list */
+ spin_lock_irqsave(&nvme_fc_lock, flags);
+ list_del(&lport->port_list);
+ if (nvme_fc_waiting_to_unload && list_empty(&nvme_fc_lport_list))
+ complete(&nvme_fc_unload_proceed);
+ spin_unlock_irqrestore(&nvme_fc_lock, flags);
+
+ ida_free(&nvme_fc_local_port_cnt, lport->localport.port_num);
+ ida_destroy(&lport->endp_cnt);
+
+ put_device(lport->dev);
+
+ kfree(lport);
+}
+
+static void
+nvme_fc_lport_put(struct nvme_fc_lport *lport)
+{
+ kref_put(&lport->ref, nvme_fc_free_lport);
+}
+
+static int
+nvme_fc_lport_get(struct nvme_fc_lport *lport)
+{
+ return kref_get_unless_zero(&lport->ref);
+}
+
+
+static struct nvme_fc_lport *
+nvme_fc_attach_to_unreg_lport(struct nvme_fc_port_info *pinfo,
+ struct nvme_fc_port_template *ops,
+ struct device *dev)
+{
+ struct nvme_fc_lport *lport;
+ unsigned long flags;
+
+ spin_lock_irqsave(&nvme_fc_lock, flags);
+
+ list_for_each_entry(lport, &nvme_fc_lport_list, port_list) {
+ if (lport->localport.node_name != pinfo->node_name ||
+ lport->localport.port_name != pinfo->port_name)
+ continue;
+
+ if (lport->dev != dev) {
+ lport = ERR_PTR(-EXDEV);
+ goto out_done;
+ }
+
+ if (lport->localport.port_state != FC_OBJSTATE_DELETED) {
+ lport = ERR_PTR(-EEXIST);
+ goto out_done;
+ }
+
+ if (!nvme_fc_lport_get(lport)) {
+ /*
+ * fails if ref cnt already 0. If so,
+ * act as if lport already deleted
+ */
+ lport = NULL;
+ goto out_done;
+ }
+
+ /* resume the lport */
+
+ lport->ops = ops;
+ lport->localport.port_role = pinfo->port_role;
+ lport->localport.port_id = pinfo->port_id;
+ lport->localport.port_state = FC_OBJSTATE_ONLINE;
+
+ spin_unlock_irqrestore(&nvme_fc_lock, flags);
+
+ return lport;
+ }
+
+ lport = NULL;
+
+out_done:
+ spin_unlock_irqrestore(&nvme_fc_lock, flags);
+
+ return lport;
+}
+
+/**
+ * nvme_fc_register_localport - transport entry point called by an
+ * LLDD to register the existence of a NVME
+ * host FC port.
+ * @pinfo: pointer to information about the port to be registered
+ * @template: LLDD entrypoints and operational parameters for the port
+ * @dev: physical hardware device node port corresponds to. Will be
+ * used for DMA mappings
+ * @portptr: pointer to a local port pointer. Upon success, the routine
+ * will allocate a nvme_fc_local_port structure and place its
+ * address in the local port pointer. Upon failure, local port
+ * pointer will be set to 0.
+ *
+ * Returns:
+ * a completion status. Must be 0 upon success; a negative errno
+ * (ex: -ENXIO) upon failure.
+ */
+int
+nvme_fc_register_localport(struct nvme_fc_port_info *pinfo,
+ struct nvme_fc_port_template *template,
+ struct device *dev,
+ struct nvme_fc_local_port **portptr)
+{
+ struct nvme_fc_lport *newrec;
+ unsigned long flags;
+ int ret, idx;
+
+ if (!template->localport_delete || !template->remoteport_delete ||
+ !template->ls_req || !template->fcp_io ||
+ !template->ls_abort || !template->fcp_abort ||
+ !template->max_hw_queues || !template->max_sgl_segments ||
+ !template->max_dif_sgl_segments || !template->dma_boundary) {
+ ret = -EINVAL;
+ goto out_reghost_failed;
+ }
+
+ /*
+ * look to see if there is already a localport that had been
+ * deregistered and in the process of waiting for all the
+ * references to fully be removed. If the references haven't
+ * expired, we can simply re-enable the localport. Remoteports
+ * and controller reconnections should resume naturally.
+ */
+ newrec = nvme_fc_attach_to_unreg_lport(pinfo, template, dev);
+
+ /* found an lport, but something about its state is bad */
+ if (IS_ERR(newrec)) {
+ ret = PTR_ERR(newrec);
+ goto out_reghost_failed;
+
+ /* found existing lport, which was resumed */
+ } else if (newrec) {
+ *portptr = &newrec->localport;
+ return 0;
+ }
+
+ /* nothing found - allocate a new localport struct */
+
+ newrec = kmalloc((sizeof(*newrec) + template->local_priv_sz),
+ GFP_KERNEL);
+ if (!newrec) {
+ ret = -ENOMEM;
+ goto out_reghost_failed;
+ }
+
+ idx = ida_alloc(&nvme_fc_local_port_cnt, GFP_KERNEL);
+ if (idx < 0) {
+ ret = -ENOSPC;
+ goto out_fail_kfree;
+ }
+
+ if (!get_device(dev) && dev) {
+ ret = -ENODEV;
+ goto out_ida_put;
+ }
+
+ INIT_LIST_HEAD(&newrec->port_list);
+ INIT_LIST_HEAD(&newrec->endp_list);
+ kref_init(&newrec->ref);
+ atomic_set(&newrec->act_rport_cnt, 0);
+ newrec->ops = template;
+ newrec->dev = dev;
+ ida_init(&newrec->endp_cnt);
+ if (template->local_priv_sz)
+ newrec->localport.private = &newrec[1];
+ else
+ newrec->localport.private = NULL;
+ newrec->localport.node_name = pinfo->node_name;
+ newrec->localport.port_name = pinfo->port_name;
+ newrec->localport.port_role = pinfo->port_role;
+ newrec->localport.port_id = pinfo->port_id;
+ newrec->localport.port_state = FC_OBJSTATE_ONLINE;
+ newrec->localport.port_num = idx;
+
+ spin_lock_irqsave(&nvme_fc_lock, flags);
+ list_add_tail(&newrec->port_list, &nvme_fc_lport_list);
+ spin_unlock_irqrestore(&nvme_fc_lock, flags);
+
+ if (dev)
+ dma_set_seg_boundary(dev, template->dma_boundary);
+
+ *portptr = &newrec->localport;
+ return 0;
+
+out_ida_put:
+ ida_free(&nvme_fc_local_port_cnt, idx);
+out_fail_kfree:
+ kfree(newrec);
+out_reghost_failed:
+ *portptr = NULL;
+
+ return ret;
+}
+EXPORT_SYMBOL_GPL(nvme_fc_register_localport);
+
+/**
+ * nvme_fc_unregister_localport - transport entry point called by an
+ * LLDD to deregister/remove a previously
+ * registered a NVME host FC port.
+ * @portptr: pointer to the (registered) local port that is to be deregistered.
+ *
+ * Returns:
+ * a completion status. Must be 0 upon success; a negative errno
+ * (ex: -ENXIO) upon failure.
+ */
+int
+nvme_fc_unregister_localport(struct nvme_fc_local_port *portptr)
+{
+ struct nvme_fc_lport *lport = localport_to_lport(portptr);
+ unsigned long flags;
+
+ if (!portptr)
+ return -EINVAL;
+
+ spin_lock_irqsave(&nvme_fc_lock, flags);
+
+ if (portptr->port_state != FC_OBJSTATE_ONLINE) {
+ spin_unlock_irqrestore(&nvme_fc_lock, flags);
+ return -EINVAL;
+ }
+ portptr->port_state = FC_OBJSTATE_DELETED;
+
+ spin_unlock_irqrestore(&nvme_fc_lock, flags);
+
+ if (atomic_read(&lport->act_rport_cnt) == 0)
+ lport->ops->localport_delete(&lport->localport);
+
+ nvme_fc_lport_put(lport);
+
+ return 0;
+}
+EXPORT_SYMBOL_GPL(nvme_fc_unregister_localport);
+
+/*
+ * TRADDR strings, per FC-NVME are fixed format:
+ * "nn-0x<16hexdigits>:pn-0x<16hexdigits>" - 43 characters
+ * udev event will only differ by prefix of what field is
+ * being specified:
+ * "NVMEFC_HOST_TRADDR=" or "NVMEFC_TRADDR=" - 19 max characters
+ * 19 + 43 + null_fudge = 64 characters
+ */
+#define FCNVME_TRADDR_LENGTH 64
+
+static void
+nvme_fc_signal_discovery_scan(struct nvme_fc_lport *lport,
+ struct nvme_fc_rport *rport)
+{
+ char hostaddr[FCNVME_TRADDR_LENGTH]; /* NVMEFC_HOST_TRADDR=...*/
+ char tgtaddr[FCNVME_TRADDR_LENGTH]; /* NVMEFC_TRADDR=...*/
+ char *envp[4] = { "FC_EVENT=nvmediscovery", hostaddr, tgtaddr, NULL };
+
+ if (!(rport->remoteport.port_role & FC_PORT_ROLE_NVME_DISCOVERY))
+ return;
+
+ snprintf(hostaddr, sizeof(hostaddr),
+ "NVMEFC_HOST_TRADDR=nn-0x%016llx:pn-0x%016llx",
+ lport->localport.node_name, lport->localport.port_name);
+ snprintf(tgtaddr, sizeof(tgtaddr),
+ "NVMEFC_TRADDR=nn-0x%016llx:pn-0x%016llx",
+ rport->remoteport.node_name, rport->remoteport.port_name);
+ kobject_uevent_env(&fc_udev_device->kobj, KOBJ_CHANGE, envp);
+}
+
+static void
+nvme_fc_free_rport(struct kref *ref)
+{
+ struct nvme_fc_rport *rport =
+ container_of(ref, struct nvme_fc_rport, ref);
+ struct nvme_fc_lport *lport =
+ localport_to_lport(rport->remoteport.localport);
+ unsigned long flags;
+
+ WARN_ON(rport->remoteport.port_state != FC_OBJSTATE_DELETED);
+ WARN_ON(!list_empty(&rport->ctrl_list));
+
+ /* remove from lport list */
+ spin_lock_irqsave(&nvme_fc_lock, flags);
+ list_del(&rport->endp_list);
+ spin_unlock_irqrestore(&nvme_fc_lock, flags);
+
+ WARN_ON(!list_empty(&rport->disc_list));
+ ida_free(&lport->endp_cnt, rport->remoteport.port_num);
+
+ kfree(rport);
+
+ nvme_fc_lport_put(lport);
+}
+
+static void
+nvme_fc_rport_put(struct nvme_fc_rport *rport)
+{
+ kref_put(&rport->ref, nvme_fc_free_rport);
+}
+
+static int
+nvme_fc_rport_get(struct nvme_fc_rport *rport)
+{
+ return kref_get_unless_zero(&rport->ref);
+}
+
+static void
+nvme_fc_resume_controller(struct nvme_fc_ctrl *ctrl)
+{
+ switch (nvme_ctrl_state(&ctrl->ctrl)) {
+ case NVME_CTRL_NEW:
+ case NVME_CTRL_CONNECTING:
+ /*
+ * As all reconnects were suppressed, schedule a
+ * connect.
+ */
+ dev_info(ctrl->ctrl.device,
+ "NVME-FC{%d}: connectivity re-established. "
+ "Attempting reconnect\n", ctrl->cnum);
+
+ queue_delayed_work(nvme_wq, &ctrl->connect_work, 0);
+ break;
+
+ case NVME_CTRL_RESETTING:
+ /*
+ * Controller is already in the process of terminating the
+ * association. No need to do anything further. The reconnect
+ * step will naturally occur after the reset completes.
+ */
+ break;
+
+ default:
+ /* no action to take - let it delete */
+ break;
+ }
+}
+
+static struct nvme_fc_rport *
+nvme_fc_attach_to_suspended_rport(struct nvme_fc_lport *lport,
+ struct nvme_fc_port_info *pinfo)
+{
+ struct nvme_fc_rport *rport;
+ struct nvme_fc_ctrl *ctrl;
+ unsigned long flags;
+
+ spin_lock_irqsave(&nvme_fc_lock, flags);
+
+ list_for_each_entry(rport, &lport->endp_list, endp_list) {
+ if (rport->remoteport.node_name != pinfo->node_name ||
+ rport->remoteport.port_name != pinfo->port_name)
+ continue;
+
+ if (!nvme_fc_rport_get(rport)) {
+ rport = ERR_PTR(-ENOLCK);
+ goto out_done;
+ }
+
+ spin_unlock_irqrestore(&nvme_fc_lock, flags);
+
+ spin_lock_irqsave(&rport->lock, flags);
+
+ /* has it been unregistered */
+ if (rport->remoteport.port_state != FC_OBJSTATE_DELETED) {
+ /* means lldd called us twice */
+ spin_unlock_irqrestore(&rport->lock, flags);
+ nvme_fc_rport_put(rport);
+ return ERR_PTR(-ESTALE);
+ }
+
+ rport->remoteport.port_role = pinfo->port_role;
+ rport->remoteport.port_id = pinfo->port_id;
+ rport->remoteport.port_state = FC_OBJSTATE_ONLINE;
+ rport->dev_loss_end = 0;
+
+ /*
+ * kick off a reconnect attempt on all associations to the
+ * remote port. A successful reconnects will resume i/o.
+ */
+ list_for_each_entry(ctrl, &rport->ctrl_list, ctrl_list)
+ nvme_fc_resume_controller(ctrl);
+
+ spin_unlock_irqrestore(&rport->lock, flags);
+
+ return rport;
+ }
+
+ rport = NULL;
+
+out_done:
+ spin_unlock_irqrestore(&nvme_fc_lock, flags);
+
+ return rport;
+}
+
+static inline void
+__nvme_fc_set_dev_loss_tmo(struct nvme_fc_rport *rport,
+ struct nvme_fc_port_info *pinfo)
+{
+ if (pinfo->dev_loss_tmo)
+ rport->remoteport.dev_loss_tmo = pinfo->dev_loss_tmo;
+ else
+ rport->remoteport.dev_loss_tmo = NVME_FC_DEFAULT_DEV_LOSS_TMO;
+}
+
+/**
+ * nvme_fc_register_remoteport - transport entry point called by an
+ * LLDD to register the existence of a NVME
+ * subsystem FC port on its fabric.
+ * @localport: pointer to the (registered) local port that the remote
+ * subsystem port is connected to.
+ * @pinfo: pointer to information about the port to be registered
+ * @portptr: pointer to a remote port pointer. Upon success, the routine
+ * will allocate a nvme_fc_remote_port structure and place its
+ * address in the remote port pointer. Upon failure, remote port
+ * pointer will be set to 0.
+ *
+ * Returns:
+ * a completion status. Must be 0 upon success; a negative errno
+ * (ex: -ENXIO) upon failure.
+ */
+int
+nvme_fc_register_remoteport(struct nvme_fc_local_port *localport,
+ struct nvme_fc_port_info *pinfo,
+ struct nvme_fc_remote_port **portptr)
+{
+ struct nvme_fc_lport *lport = localport_to_lport(localport);
+ struct nvme_fc_rport *newrec;
+ unsigned long flags;
+ int ret, idx;
+
+ if (!nvme_fc_lport_get(lport)) {
+ ret = -ESHUTDOWN;
+ goto out_reghost_failed;
+ }
+
+ /*
+ * look to see if there is already a remoteport that is waiting
+ * for a reconnect (within dev_loss_tmo) with the same WWN's.
+ * If so, transition to it and reconnect.
+ */
+ newrec = nvme_fc_attach_to_suspended_rport(lport, pinfo);
+
+ /* found an rport, but something about its state is bad */
+ if (IS_ERR(newrec)) {
+ ret = PTR_ERR(newrec);
+ goto out_lport_put;
+
+ /* found existing rport, which was resumed */
+ } else if (newrec) {
+ nvme_fc_lport_put(lport);
+ __nvme_fc_set_dev_loss_tmo(newrec, pinfo);
+ nvme_fc_signal_discovery_scan(lport, newrec);
+ *portptr = &newrec->remoteport;
+ return 0;
+ }
+
+ /* nothing found - allocate a new remoteport struct */
+
+ newrec = kmalloc((sizeof(*newrec) + lport->ops->remote_priv_sz),
+ GFP_KERNEL);
+ if (!newrec) {
+ ret = -ENOMEM;
+ goto out_lport_put;
+ }
+
+ idx = ida_alloc(&lport->endp_cnt, GFP_KERNEL);
+ if (idx < 0) {
+ ret = -ENOSPC;
+ goto out_kfree_rport;
+ }
+
+ INIT_LIST_HEAD(&newrec->endp_list);
+ INIT_LIST_HEAD(&newrec->ctrl_list);
+ INIT_LIST_HEAD(&newrec->ls_req_list);
+ INIT_LIST_HEAD(&newrec->disc_list);
+ kref_init(&newrec->ref);
+ atomic_set(&newrec->act_ctrl_cnt, 0);
+ spin_lock_init(&newrec->lock);
+ newrec->remoteport.localport = &lport->localport;
+ INIT_LIST_HEAD(&newrec->ls_rcv_list);
+ newrec->dev = lport->dev;
+ newrec->lport = lport;
+ if (lport->ops->remote_priv_sz)
+ newrec->remoteport.private = &newrec[1];
+ else
+ newrec->remoteport.private = NULL;
+ newrec->remoteport.port_role = pinfo->port_role;
+ newrec->remoteport.node_name = pinfo->node_name;
+ newrec->remoteport.port_name = pinfo->port_name;
+ newrec->remoteport.port_id = pinfo->port_id;
+ newrec->remoteport.port_state = FC_OBJSTATE_ONLINE;
+ newrec->remoteport.port_num = idx;
+ __nvme_fc_set_dev_loss_tmo(newrec, pinfo);
+ INIT_WORK(&newrec->lsrcv_work, nvme_fc_handle_ls_rqst_work);
+
+ spin_lock_irqsave(&nvme_fc_lock, flags);
+ list_add_tail(&newrec->endp_list, &lport->endp_list);
+ spin_unlock_irqrestore(&nvme_fc_lock, flags);
+
+ nvme_fc_signal_discovery_scan(lport, newrec);
+
+ *portptr = &newrec->remoteport;
+ return 0;
+
+out_kfree_rport:
+ kfree(newrec);
+out_lport_put:
+ nvme_fc_lport_put(lport);
+out_reghost_failed:
+ *portptr = NULL;
+ return ret;
+}
+EXPORT_SYMBOL_GPL(nvme_fc_register_remoteport);
+
+static int
+nvme_fc_abort_lsops(struct nvme_fc_rport *rport)
+{
+ struct nvmefc_ls_req_op *lsop;
+ unsigned long flags;
+
+restart:
+ spin_lock_irqsave(&rport->lock, flags);
+
+ list_for_each_entry(lsop, &rport->ls_req_list, lsreq_list) {
+ if (!(lsop->flags & FCOP_FLAGS_TERMIO)) {
+ lsop->flags |= FCOP_FLAGS_TERMIO;
+ spin_unlock_irqrestore(&rport->lock, flags);
+ rport->lport->ops->ls_abort(&rport->lport->localport,
+ &rport->remoteport,
+ &lsop->ls_req);
+ goto restart;
+ }
+ }
+ spin_unlock_irqrestore(&rport->lock, flags);
+
+ return 0;
+}
+
+static void
+nvme_fc_ctrl_connectivity_loss(struct nvme_fc_ctrl *ctrl)
+{
+ dev_info(ctrl->ctrl.device,
+ "NVME-FC{%d}: controller connectivity lost. Awaiting "
+ "Reconnect", ctrl->cnum);
+
+ switch (nvme_ctrl_state(&ctrl->ctrl)) {
+ case NVME_CTRL_NEW:
+ case NVME_CTRL_LIVE:
+ /*
+ * Schedule a controller reset. The reset will terminate the
+ * association and schedule the reconnect timer. Reconnects
+ * will be attempted until either the ctlr_loss_tmo
+ * (max_retries * connect_delay) expires or the remoteport's
+ * dev_loss_tmo expires.
+ */
+ if (nvme_reset_ctrl(&ctrl->ctrl)) {
+ dev_warn(ctrl->ctrl.device,
+ "NVME-FC{%d}: Couldn't schedule reset.\n",
+ ctrl->cnum);
+ nvme_delete_ctrl(&ctrl->ctrl);
+ }
+ break;
+
+ case NVME_CTRL_CONNECTING:
+ /*
+ * The association has already been terminated and the
+ * controller is attempting reconnects. No need to do anything
+ * futher. Reconnects will be attempted until either the
+ * ctlr_loss_tmo (max_retries * connect_delay) expires or the
+ * remoteport's dev_loss_tmo expires.
+ */
+ break;
+
+ case NVME_CTRL_RESETTING:
+ /*
+ * Controller is already in the process of terminating the
+ * association. No need to do anything further. The reconnect
+ * step will kick in naturally after the association is
+ * terminated.
+ */
+ break;
+
+ case NVME_CTRL_DELETING:
+ case NVME_CTRL_DELETING_NOIO:
+ default:
+ /* no action to take - let it delete */
+ break;
+ }
+}
+
+/**
+ * nvme_fc_unregister_remoteport - transport entry point called by an
+ * LLDD to deregister/remove a previously
+ * registered a NVME subsystem FC port.
+ * @portptr: pointer to the (registered) remote port that is to be
+ * deregistered.
+ *
+ * Returns:
+ * a completion status. Must be 0 upon success; a negative errno
+ * (ex: -ENXIO) upon failure.
+ */
+int
+nvme_fc_unregister_remoteport(struct nvme_fc_remote_port *portptr)
+{
+ struct nvme_fc_rport *rport = remoteport_to_rport(portptr);
+ struct nvme_fc_ctrl *ctrl;
+ unsigned long flags;
+
+ if (!portptr)
+ return -EINVAL;
+
+ spin_lock_irqsave(&rport->lock, flags);
+
+ if (portptr->port_state != FC_OBJSTATE_ONLINE) {
+ spin_unlock_irqrestore(&rport->lock, flags);
+ return -EINVAL;
+ }
+ portptr->port_state = FC_OBJSTATE_DELETED;
+
+ rport->dev_loss_end = jiffies + (portptr->dev_loss_tmo * HZ);
+
+ list_for_each_entry(ctrl, &rport->ctrl_list, ctrl_list) {
+ /* if dev_loss_tmo==0, dev loss is immediate */
+ if (!portptr->dev_loss_tmo) {
+ dev_warn(ctrl->ctrl.device,
+ "NVME-FC{%d}: controller connectivity lost.\n",
+ ctrl->cnum);
+ nvme_delete_ctrl(&ctrl->ctrl);
+ } else
+ nvme_fc_ctrl_connectivity_loss(ctrl);
+ }
+
+ spin_unlock_irqrestore(&rport->lock, flags);
+
+ nvme_fc_abort_lsops(rport);
+
+ if (atomic_read(&rport->act_ctrl_cnt) == 0)
+ rport->lport->ops->remoteport_delete(portptr);
+
+ /*
+ * release the reference, which will allow, if all controllers
+ * go away, which should only occur after dev_loss_tmo occurs,
+ * for the rport to be torn down.
+ */
+ nvme_fc_rport_put(rport);
+
+ return 0;
+}
+EXPORT_SYMBOL_GPL(nvme_fc_unregister_remoteport);
+
+/**
+ * nvme_fc_rescan_remoteport - transport entry point called by an
+ * LLDD to request a nvme device rescan.
+ * @remoteport: pointer to the (registered) remote port that is to be
+ * rescanned.
+ *
+ * Returns: N/A
+ */
+void
+nvme_fc_rescan_remoteport(struct nvme_fc_remote_port *remoteport)
+{
+ struct nvme_fc_rport *rport = remoteport_to_rport(remoteport);
+
+ nvme_fc_signal_discovery_scan(rport->lport, rport);
+}
+EXPORT_SYMBOL_GPL(nvme_fc_rescan_remoteport);
+
+int
+nvme_fc_set_remoteport_devloss(struct nvme_fc_remote_port *portptr,
+ u32 dev_loss_tmo)
+{
+ struct nvme_fc_rport *rport = remoteport_to_rport(portptr);
+ unsigned long flags;
+
+ spin_lock_irqsave(&rport->lock, flags);
+
+ if (portptr->port_state != FC_OBJSTATE_ONLINE) {
+ spin_unlock_irqrestore(&rport->lock, flags);
+ return -EINVAL;
+ }
+
+ /* a dev_loss_tmo of 0 (immediate) is allowed to be set */
+ rport->remoteport.dev_loss_tmo = dev_loss_tmo;
+
+ spin_unlock_irqrestore(&rport->lock, flags);
+
+ return 0;
+}
+EXPORT_SYMBOL_GPL(nvme_fc_set_remoteport_devloss);
+
+
+/* *********************** FC-NVME DMA Handling **************************** */
+
+/*
+ * The fcloop device passes in a NULL device pointer. Real LLD's will
+ * pass in a valid device pointer. If NULL is passed to the dma mapping
+ * routines, depending on the platform, it may or may not succeed, and
+ * may crash.
+ *
+ * As such:
+ * Wrapper all the dma routines and check the dev pointer.
+ *
+ * If simple mappings (return just a dma address, we'll noop them,
+ * returning a dma address of 0.
+ *
+ * On more complex mappings (dma_map_sg), a pseudo routine fills
+ * in the scatter list, setting all dma addresses to 0.
+ */
+
+static inline dma_addr_t
+fc_dma_map_single(struct device *dev, void *ptr, size_t size,
+ enum dma_data_direction dir)
+{
+ return dev ? dma_map_single(dev, ptr, size, dir) : (dma_addr_t)0L;
+}
+
+static inline int
+fc_dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
+{
+ return dev ? dma_mapping_error(dev, dma_addr) : 0;
+}
+
+static inline void
+fc_dma_unmap_single(struct device *dev, dma_addr_t addr, size_t size,
+ enum dma_data_direction dir)
+{
+ if (dev)
+ dma_unmap_single(dev, addr, size, dir);
+}
+
+static inline void
+fc_dma_sync_single_for_cpu(struct device *dev, dma_addr_t addr, size_t size,
+ enum dma_data_direction dir)
+{
+ if (dev)
+ dma_sync_single_for_cpu(dev, addr, size, dir);
+}
+
+static inline void
+fc_dma_sync_single_for_device(struct device *dev, dma_addr_t addr, size_t size,
+ enum dma_data_direction dir)
+{
+ if (dev)
+ dma_sync_single_for_device(dev, addr, size, dir);
+}
+
+/* pseudo dma_map_sg call */
+static int
+fc_map_sg(struct scatterlist *sg, int nents)
+{
+ struct scatterlist *s;
+ int i;
+
+ WARN_ON(nents == 0 || sg[0].length == 0);
+
+ for_each_sg(sg, s, nents, i) {
+ s->dma_address = 0L;
+#ifdef CONFIG_NEED_SG_DMA_LENGTH
+ s->dma_length = s->length;
+#endif
+ }
+ return nents;
+}
+
+static inline int
+fc_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
+ enum dma_data_direction dir)
+{
+ return dev ? dma_map_sg(dev, sg, nents, dir) : fc_map_sg(sg, nents);
+}
+
+static inline void
+fc_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
+ enum dma_data_direction dir)
+{
+ if (dev)
+ dma_unmap_sg(dev, sg, nents, dir);
+}
+
+/* *********************** FC-NVME LS Handling **************************** */
+
+static void nvme_fc_ctrl_put(struct nvme_fc_ctrl *);
+static int nvme_fc_ctrl_get(struct nvme_fc_ctrl *);
+
+static void nvme_fc_error_recovery(struct nvme_fc_ctrl *ctrl, char *errmsg);
+
+static void
+__nvme_fc_finish_ls_req(struct nvmefc_ls_req_op *lsop)
+{
+ struct nvme_fc_rport *rport = lsop->rport;
+ struct nvmefc_ls_req *lsreq = &lsop->ls_req;
+ unsigned long flags;
+
+ spin_lock_irqsave(&rport->lock, flags);
+
+ if (!lsop->req_queued) {
+ spin_unlock_irqrestore(&rport->lock, flags);
+ return;
+ }
+
+ list_del(&lsop->lsreq_list);
+
+ lsop->req_queued = false;
+
+ spin_unlock_irqrestore(&rport->lock, flags);
+
+ fc_dma_unmap_single(rport->dev, lsreq->rqstdma,
+ (lsreq->rqstlen + lsreq->rsplen),
+ DMA_BIDIRECTIONAL);
+
+ nvme_fc_rport_put(rport);
+}
+
+static int
+__nvme_fc_send_ls_req(struct nvme_fc_rport *rport,
+ struct nvmefc_ls_req_op *lsop,
+ void (*done)(struct nvmefc_ls_req *req, int status))
+{
+ struct nvmefc_ls_req *lsreq = &lsop->ls_req;
+ unsigned long flags;
+ int ret = 0;
+
+ if (rport->remoteport.port_state != FC_OBJSTATE_ONLINE)
+ return -ECONNREFUSED;
+
+ if (!nvme_fc_rport_get(rport))
+ return -ESHUTDOWN;
+
+ lsreq->done = done;
+ lsop->rport = rport;
+ lsop->req_queued = false;
+ INIT_LIST_HEAD(&lsop->lsreq_list);
+ init_completion(&lsop->ls_done);
+
+ lsreq->rqstdma = fc_dma_map_single(rport->dev, lsreq->rqstaddr,
+ lsreq->rqstlen + lsreq->rsplen,
+ DMA_BIDIRECTIONAL);
+ if (fc_dma_mapping_error(rport->dev, lsreq->rqstdma)) {
+ ret = -EFAULT;
+ goto out_putrport;
+ }
+ lsreq->rspdma = lsreq->rqstdma + lsreq->rqstlen;
+
+ spin_lock_irqsave(&rport->lock, flags);
+
+ list_add_tail(&lsop->lsreq_list, &rport->ls_req_list);
+
+ lsop->req_queued = true;
+
+ spin_unlock_irqrestore(&rport->lock, flags);
+
+ ret = rport->lport->ops->ls_req(&rport->lport->localport,
+ &rport->remoteport, lsreq);
+ if (ret)
+ goto out_unlink;
+
+ return 0;
+
+out_unlink:
+ lsop->ls_error = ret;
+ spin_lock_irqsave(&rport->lock, flags);
+ lsop->req_queued = false;
+ list_del(&lsop->lsreq_list);
+ spin_unlock_irqrestore(&rport->lock, flags);
+ fc_dma_unmap_single(rport->dev, lsreq->rqstdma,
+ (lsreq->rqstlen + lsreq->rsplen),
+ DMA_BIDIRECTIONAL);
+out_putrport:
+ nvme_fc_rport_put(rport);
+
+ return ret;
+}
+
+static void
+nvme_fc_send_ls_req_done(struct nvmefc_ls_req *lsreq, int status)
+{
+ struct nvmefc_ls_req_op *lsop = ls_req_to_lsop(lsreq);
+
+ lsop->ls_error = status;
+ complete(&lsop->ls_done);
+}
+
+static int
+nvme_fc_send_ls_req(struct nvme_fc_rport *rport, struct nvmefc_ls_req_op *lsop)
+{
+ struct nvmefc_ls_req *lsreq = &lsop->ls_req;
+ struct fcnvme_ls_rjt *rjt = lsreq->rspaddr;
+ int ret;
+
+ ret = __nvme_fc_send_ls_req(rport, lsop, nvme_fc_send_ls_req_done);
+
+ if (!ret) {
+ /*
+ * No timeout/not interruptible as we need the struct
+ * to exist until the lldd calls us back. Thus mandate
+ * wait until driver calls back. lldd responsible for
+ * the timeout action
+ */
+ wait_for_completion(&lsop->ls_done);
+
+ __nvme_fc_finish_ls_req(lsop);
+
+ ret = lsop->ls_error;
+ }
+
+ if (ret)
+ return ret;
+
+ /* ACC or RJT payload ? */
+ if (rjt->w0.ls_cmd == FCNVME_LS_RJT)
+ return -ENXIO;
+
+ return 0;
+}
+
+static int
+nvme_fc_send_ls_req_async(struct nvme_fc_rport *rport,
+ struct nvmefc_ls_req_op *lsop,
+ void (*done)(struct nvmefc_ls_req *req, int status))
+{
+ /* don't wait for completion */
+
+ return __nvme_fc_send_ls_req(rport, lsop, done);
+}
+
+static int
+nvme_fc_connect_admin_queue(struct nvme_fc_ctrl *ctrl,
+ struct nvme_fc_queue *queue, u16 qsize, u16 ersp_ratio)
+{
+ struct nvmefc_ls_req_op *lsop;
+ struct nvmefc_ls_req *lsreq;
+ struct fcnvme_ls_cr_assoc_rqst *assoc_rqst;
+ struct fcnvme_ls_cr_assoc_acc *assoc_acc;
+ unsigned long flags;
+ int ret, fcret = 0;
+
+ lsop = kzalloc((sizeof(*lsop) +
+ sizeof(*assoc_rqst) + sizeof(*assoc_acc) +
+ ctrl->lport->ops->lsrqst_priv_sz), GFP_KERNEL);
+ if (!lsop) {
+ dev_info(ctrl->ctrl.device,
+ "NVME-FC{%d}: send Create Association failed: ENOMEM\n",
+ ctrl->cnum);
+ ret = -ENOMEM;
+ goto out_no_memory;
+ }
+
+ assoc_rqst = (struct fcnvme_ls_cr_assoc_rqst *)&lsop[1];
+ assoc_acc = (struct fcnvme_ls_cr_assoc_acc *)&assoc_rqst[1];
+ lsreq = &lsop->ls_req;
+ if (ctrl->lport->ops->lsrqst_priv_sz)
+ lsreq->private = &assoc_acc[1];
+ else
+ lsreq->private = NULL;
+
+ assoc_rqst->w0.ls_cmd = FCNVME_LS_CREATE_ASSOCIATION;
+ assoc_rqst->desc_list_len =
+ cpu_to_be32(sizeof(struct fcnvme_lsdesc_cr_assoc_cmd));
+
+ assoc_rqst->assoc_cmd.desc_tag =
+ cpu_to_be32(FCNVME_LSDESC_CREATE_ASSOC_CMD);
+ assoc_rqst->assoc_cmd.desc_len =
+ fcnvme_lsdesc_len(
+ sizeof(struct fcnvme_lsdesc_cr_assoc_cmd));
+
+ assoc_rqst->assoc_cmd.ersp_ratio = cpu_to_be16(ersp_ratio);
+ assoc_rqst->assoc_cmd.sqsize = cpu_to_be16(qsize - 1);
+ /* Linux supports only Dynamic controllers */
+ assoc_rqst->assoc_cmd.cntlid = cpu_to_be16(0xffff);
+ uuid_copy(&assoc_rqst->assoc_cmd.hostid, &ctrl->ctrl.opts->host->id);
+ strncpy(assoc_rqst->assoc_cmd.hostnqn, ctrl->ctrl.opts->host->nqn,
+ min(FCNVME_ASSOC_HOSTNQN_LEN, NVMF_NQN_SIZE));
+ strncpy(assoc_rqst->assoc_cmd.subnqn, ctrl->ctrl.opts->subsysnqn,
+ min(FCNVME_ASSOC_SUBNQN_LEN, NVMF_NQN_SIZE));
+
+ lsop->queue = queue;
+ lsreq->rqstaddr = assoc_rqst;
+ lsreq->rqstlen = sizeof(*assoc_rqst);
+ lsreq->rspaddr = assoc_acc;
+ lsreq->rsplen = sizeof(*assoc_acc);
+ lsreq->timeout = NVME_FC_LS_TIMEOUT_SEC;
+
+ ret = nvme_fc_send_ls_req(ctrl->rport, lsop);
+ if (ret)
+ goto out_free_buffer;
+
+ /* process connect LS completion */
+
+ /* validate the ACC response */
+ if (assoc_acc->hdr.w0.ls_cmd != FCNVME_LS_ACC)
+ fcret = VERR_LSACC;
+ else if (assoc_acc->hdr.desc_list_len !=
+ fcnvme_lsdesc_len(
+ sizeof(struct fcnvme_ls_cr_assoc_acc)))
+ fcret = VERR_CR_ASSOC_ACC_LEN;
+ else if (assoc_acc->hdr.rqst.desc_tag !=
+ cpu_to_be32(FCNVME_LSDESC_RQST))
+ fcret = VERR_LSDESC_RQST;
+ else if (assoc_acc->hdr.rqst.desc_len !=
+ fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_rqst)))
+ fcret = VERR_LSDESC_RQST_LEN;
+ else if (assoc_acc->hdr.rqst.w0.ls_cmd != FCNVME_LS_CREATE_ASSOCIATION)
+ fcret = VERR_CR_ASSOC;
+ else if (assoc_acc->associd.desc_tag !=
+ cpu_to_be32(FCNVME_LSDESC_ASSOC_ID))
+ fcret = VERR_ASSOC_ID;
+ else if (assoc_acc->associd.desc_len !=
+ fcnvme_lsdesc_len(
+ sizeof(struct fcnvme_lsdesc_assoc_id)))
+ fcret = VERR_ASSOC_ID_LEN;
+ else if (assoc_acc->connectid.desc_tag !=
+ cpu_to_be32(FCNVME_LSDESC_CONN_ID))
+ fcret = VERR_CONN_ID;
+ else if (assoc_acc->connectid.desc_len !=
+ fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_conn_id)))
+ fcret = VERR_CONN_ID_LEN;
+
+ if (fcret) {
+ ret = -EBADF;
+ dev_err(ctrl->dev,
+ "q %d Create Association LS failed: %s\n",
+ queue->qnum, validation_errors[fcret]);
+ } else {
+ spin_lock_irqsave(&ctrl->lock, flags);
+ ctrl->association_id =
+ be64_to_cpu(assoc_acc->associd.association_id);
+ queue->connection_id =
+ be64_to_cpu(assoc_acc->connectid.connection_id);
+ set_bit(NVME_FC_Q_CONNECTED, &queue->flags);
+ spin_unlock_irqrestore(&ctrl->lock, flags);
+ }
+
+out_free_buffer:
+ kfree(lsop);
+out_no_memory:
+ if (ret)
+ dev_err(ctrl->dev,
+ "queue %d connect admin queue failed (%d).\n",
+ queue->qnum, ret);
+ return ret;
+}
+
+static int
+nvme_fc_connect_queue(struct nvme_fc_ctrl *ctrl, struct nvme_fc_queue *queue,
+ u16 qsize, u16 ersp_ratio)
+{
+ struct nvmefc_ls_req_op *lsop;
+ struct nvmefc_ls_req *lsreq;
+ struct fcnvme_ls_cr_conn_rqst *conn_rqst;
+ struct fcnvme_ls_cr_conn_acc *conn_acc;
+ int ret, fcret = 0;
+
+ lsop = kzalloc((sizeof(*lsop) +
+ sizeof(*conn_rqst) + sizeof(*conn_acc) +
+ ctrl->lport->ops->lsrqst_priv_sz), GFP_KERNEL);
+ if (!lsop) {
+ dev_info(ctrl->ctrl.device,
+ "NVME-FC{%d}: send Create Connection failed: ENOMEM\n",
+ ctrl->cnum);
+ ret = -ENOMEM;
+ goto out_no_memory;
+ }
+
+ conn_rqst = (struct fcnvme_ls_cr_conn_rqst *)&lsop[1];
+ conn_acc = (struct fcnvme_ls_cr_conn_acc *)&conn_rqst[1];
+ lsreq = &lsop->ls_req;
+ if (ctrl->lport->ops->lsrqst_priv_sz)
+ lsreq->private = (void *)&conn_acc[1];
+ else
+ lsreq->private = NULL;
+
+ conn_rqst->w0.ls_cmd = FCNVME_LS_CREATE_CONNECTION;
+ conn_rqst->desc_list_len = cpu_to_be32(
+ sizeof(struct fcnvme_lsdesc_assoc_id) +
+ sizeof(struct fcnvme_lsdesc_cr_conn_cmd));
+
+ conn_rqst->associd.desc_tag = cpu_to_be32(FCNVME_LSDESC_ASSOC_ID);
+ conn_rqst->associd.desc_len =
+ fcnvme_lsdesc_len(
+ sizeof(struct fcnvme_lsdesc_assoc_id));
+ conn_rqst->associd.association_id = cpu_to_be64(ctrl->association_id);
+ conn_rqst->connect_cmd.desc_tag =
+ cpu_to_be32(FCNVME_LSDESC_CREATE_CONN_CMD);
+ conn_rqst->connect_cmd.desc_len =
+ fcnvme_lsdesc_len(
+ sizeof(struct fcnvme_lsdesc_cr_conn_cmd));
+ conn_rqst->connect_cmd.ersp_ratio = cpu_to_be16(ersp_ratio);
+ conn_rqst->connect_cmd.qid = cpu_to_be16(queue->qnum);
+ conn_rqst->connect_cmd.sqsize = cpu_to_be16(qsize - 1);
+
+ lsop->queue = queue;
+ lsreq->rqstaddr = conn_rqst;
+ lsreq->rqstlen = sizeof(*conn_rqst);
+ lsreq->rspaddr = conn_acc;
+ lsreq->rsplen = sizeof(*conn_acc);
+ lsreq->timeout = NVME_FC_LS_TIMEOUT_SEC;
+
+ ret = nvme_fc_send_ls_req(ctrl->rport, lsop);
+ if (ret)
+ goto out_free_buffer;
+
+ /* process connect LS completion */
+
+ /* validate the ACC response */
+ if (conn_acc->hdr.w0.ls_cmd != FCNVME_LS_ACC)
+ fcret = VERR_LSACC;
+ else if (conn_acc->hdr.desc_list_len !=
+ fcnvme_lsdesc_len(sizeof(struct fcnvme_ls_cr_conn_acc)))
+ fcret = VERR_CR_CONN_ACC_LEN;
+ else if (conn_acc->hdr.rqst.desc_tag != cpu_to_be32(FCNVME_LSDESC_RQST))
+ fcret = VERR_LSDESC_RQST;
+ else if (conn_acc->hdr.rqst.desc_len !=
+ fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_rqst)))
+ fcret = VERR_LSDESC_RQST_LEN;
+ else if (conn_acc->hdr.rqst.w0.ls_cmd != FCNVME_LS_CREATE_CONNECTION)
+ fcret = VERR_CR_CONN;
+ else if (conn_acc->connectid.desc_tag !=
+ cpu_to_be32(FCNVME_LSDESC_CONN_ID))
+ fcret = VERR_CONN_ID;
+ else if (conn_acc->connectid.desc_len !=
+ fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_conn_id)))
+ fcret = VERR_CONN_ID_LEN;
+
+ if (fcret) {
+ ret = -EBADF;
+ dev_err(ctrl->dev,
+ "q %d Create I/O Connection LS failed: %s\n",
+ queue->qnum, validation_errors[fcret]);
+ } else {
+ queue->connection_id =
+ be64_to_cpu(conn_acc->connectid.connection_id);
+ set_bit(NVME_FC_Q_CONNECTED, &queue->flags);
+ }
+
+out_free_buffer:
+ kfree(lsop);
+out_no_memory:
+ if (ret)
+ dev_err(ctrl->dev,
+ "queue %d connect I/O queue failed (%d).\n",
+ queue->qnum, ret);
+ return ret;
+}
+
+static void
+nvme_fc_disconnect_assoc_done(struct nvmefc_ls_req *lsreq, int status)
+{
+ struct nvmefc_ls_req_op *lsop = ls_req_to_lsop(lsreq);
+
+ __nvme_fc_finish_ls_req(lsop);
+
+ /* fc-nvme initiator doesn't care about success or failure of cmd */
+
+ kfree(lsop);
+}
+
+/*
+ * This routine sends a FC-NVME LS to disconnect (aka terminate)
+ * the FC-NVME Association. Terminating the association also
+ * terminates the FC-NVME connections (per queue, both admin and io
+ * queues) that are part of the association. E.g. things are torn
+ * down, and the related FC-NVME Association ID and Connection IDs
+ * become invalid.
+ *
+ * The behavior of the fc-nvme initiator is such that it's
+ * understanding of the association and connections will implicitly
+ * be torn down. The action is implicit as it may be due to a loss of
+ * connectivity with the fc-nvme target, so you may never get a
+ * response even if you tried. As such, the action of this routine
+ * is to asynchronously send the LS, ignore any results of the LS, and
+ * continue on with terminating the association. If the fc-nvme target
+ * is present and receives the LS, it too can tear down.
+ */
+static void
+nvme_fc_xmt_disconnect_assoc(struct nvme_fc_ctrl *ctrl)
+{
+ struct fcnvme_ls_disconnect_assoc_rqst *discon_rqst;
+ struct fcnvme_ls_disconnect_assoc_acc *discon_acc;
+ struct nvmefc_ls_req_op *lsop;
+ struct nvmefc_ls_req *lsreq;
+ int ret;
+
+ lsop = kzalloc((sizeof(*lsop) +
+ sizeof(*discon_rqst) + sizeof(*discon_acc) +
+ ctrl->lport->ops->lsrqst_priv_sz), GFP_KERNEL);
+ if (!lsop) {
+ dev_info(ctrl->ctrl.device,
+ "NVME-FC{%d}: send Disconnect Association "
+ "failed: ENOMEM\n",
+ ctrl->cnum);
+ return;
+ }
+
+ discon_rqst = (struct fcnvme_ls_disconnect_assoc_rqst *)&lsop[1];
+ discon_acc = (struct fcnvme_ls_disconnect_assoc_acc *)&discon_rqst[1];
+ lsreq = &lsop->ls_req;
+ if (ctrl->lport->ops->lsrqst_priv_sz)
+ lsreq->private = (void *)&discon_acc[1];
+ else
+ lsreq->private = NULL;
+
+ nvmefc_fmt_lsreq_discon_assoc(lsreq, discon_rqst, discon_acc,
+ ctrl->association_id);
+
+ ret = nvme_fc_send_ls_req_async(ctrl->rport, lsop,
+ nvme_fc_disconnect_assoc_done);
+ if (ret)
+ kfree(lsop);
+}
+
+static void
+nvme_fc_xmt_ls_rsp_done(struct nvmefc_ls_rsp *lsrsp)
+{
+ struct nvmefc_ls_rcv_op *lsop = lsrsp->nvme_fc_private;
+ struct nvme_fc_rport *rport = lsop->rport;
+ struct nvme_fc_lport *lport = rport->lport;
+ unsigned long flags;
+
+ spin_lock_irqsave(&rport->lock, flags);
+ list_del(&lsop->lsrcv_list);
+ spin_unlock_irqrestore(&rport->lock, flags);
+
+ fc_dma_sync_single_for_cpu(lport->dev, lsop->rspdma,
+ sizeof(*lsop->rspbuf), DMA_TO_DEVICE);
+ fc_dma_unmap_single(lport->dev, lsop->rspdma,
+ sizeof(*lsop->rspbuf), DMA_TO_DEVICE);
+
+ kfree(lsop->rspbuf);
+ kfree(lsop->rqstbuf);
+ kfree(lsop);
+
+ nvme_fc_rport_put(rport);
+}
+
+static void
+nvme_fc_xmt_ls_rsp(struct nvmefc_ls_rcv_op *lsop)
+{
+ struct nvme_fc_rport *rport = lsop->rport;
+ struct nvme_fc_lport *lport = rport->lport;
+ struct fcnvme_ls_rqst_w0 *w0 = &lsop->rqstbuf->w0;
+ int ret;
+
+ fc_dma_sync_single_for_device(lport->dev, lsop->rspdma,
+ sizeof(*lsop->rspbuf), DMA_TO_DEVICE);
+
+ ret = lport->ops->xmt_ls_rsp(&lport->localport, &rport->remoteport,
+ lsop->lsrsp);
+ if (ret) {
+ dev_warn(lport->dev,
+ "LLDD rejected LS RSP xmt: LS %d status %d\n",
+ w0->ls_cmd, ret);
+ nvme_fc_xmt_ls_rsp_done(lsop->lsrsp);
+ return;
+ }
+}
+
+static struct nvme_fc_ctrl *
+nvme_fc_match_disconn_ls(struct nvme_fc_rport *rport,
+ struct nvmefc_ls_rcv_op *lsop)
+{
+ struct fcnvme_ls_disconnect_assoc_rqst *rqst =
+ &lsop->rqstbuf->rq_dis_assoc;
+ struct nvme_fc_ctrl *ctrl, *ret = NULL;
+ struct nvmefc_ls_rcv_op *oldls = NULL;
+ u64 association_id = be64_to_cpu(rqst->associd.association_id);
+ unsigned long flags;
+
+ spin_lock_irqsave(&rport->lock, flags);
+
+ list_for_each_entry(ctrl, &rport->ctrl_list, ctrl_list) {
+ if (!nvme_fc_ctrl_get(ctrl))
+ continue;
+ spin_lock(&ctrl->lock);
+ if (association_id == ctrl->association_id) {
+ oldls = ctrl->rcv_disconn;
+ ctrl->rcv_disconn = lsop;
+ ret = ctrl;
+ }
+ spin_unlock(&ctrl->lock);
+ if (ret)
+ /* leave the ctrl get reference */
+ break;
+ nvme_fc_ctrl_put(ctrl);
+ }
+
+ spin_unlock_irqrestore(&rport->lock, flags);
+
+ /* transmit a response for anything that was pending */
+ if (oldls) {
+ dev_info(rport->lport->dev,
+ "NVME-FC{%d}: Multiple Disconnect Association "
+ "LS's received\n", ctrl->cnum);
+ /* overwrite good response with bogus failure */
+ oldls->lsrsp->rsplen = nvme_fc_format_rjt(oldls->rspbuf,
+ sizeof(*oldls->rspbuf),
+ rqst->w0.ls_cmd,
+ FCNVME_RJT_RC_UNAB,
+ FCNVME_RJT_EXP_NONE, 0);
+ nvme_fc_xmt_ls_rsp(oldls);
+ }
+
+ return ret;
+}
+
+/*
+ * returns true to mean LS handled and ls_rsp can be sent
+ * returns false to defer ls_rsp xmt (will be done as part of
+ * association termination)
+ */
+static bool
+nvme_fc_ls_disconnect_assoc(struct nvmefc_ls_rcv_op *lsop)
+{
+ struct nvme_fc_rport *rport = lsop->rport;
+ struct fcnvme_ls_disconnect_assoc_rqst *rqst =
+ &lsop->rqstbuf->rq_dis_assoc;
+ struct fcnvme_ls_disconnect_assoc_acc *acc =
+ &lsop->rspbuf->rsp_dis_assoc;
+ struct nvme_fc_ctrl *ctrl = NULL;
+ int ret = 0;
+
+ memset(acc, 0, sizeof(*acc));
+
+ ret = nvmefc_vldt_lsreq_discon_assoc(lsop->rqstdatalen, rqst);
+ if (!ret) {
+ /* match an active association */
+ ctrl = nvme_fc_match_disconn_ls(rport, lsop);
+ if (!ctrl)
+ ret = VERR_NO_ASSOC;
+ }
+
+ if (ret) {
+ dev_info(rport->lport->dev,
+ "Disconnect LS failed: %s\n",
+ validation_errors[ret]);
+ lsop->lsrsp->rsplen = nvme_fc_format_rjt(acc,
+ sizeof(*acc), rqst->w0.ls_cmd,
+ (ret == VERR_NO_ASSOC) ?
+ FCNVME_RJT_RC_INV_ASSOC :
+ FCNVME_RJT_RC_LOGIC,
+ FCNVME_RJT_EXP_NONE, 0);
+ return true;
+ }
+
+ /* format an ACCept response */
+
+ lsop->lsrsp->rsplen = sizeof(*acc);
+
+ nvme_fc_format_rsp_hdr(acc, FCNVME_LS_ACC,
+ fcnvme_lsdesc_len(
+ sizeof(struct fcnvme_ls_disconnect_assoc_acc)),
+ FCNVME_LS_DISCONNECT_ASSOC);
+
+ /*
+ * the transmit of the response will occur after the exchanges
+ * for the association have been ABTS'd by
+ * nvme_fc_delete_association().
+ */
+
+ /* fail the association */
+ nvme_fc_error_recovery(ctrl, "Disconnect Association LS received");
+
+ /* release the reference taken by nvme_fc_match_disconn_ls() */
+ nvme_fc_ctrl_put(ctrl);
+
+ return false;
+}
+
+/*
+ * Actual Processing routine for received FC-NVME LS Requests from the LLD
+ * returns true if a response should be sent afterward, false if rsp will
+ * be sent asynchronously.
+ */
+static bool
+nvme_fc_handle_ls_rqst(struct nvmefc_ls_rcv_op *lsop)
+{
+ struct fcnvme_ls_rqst_w0 *w0 = &lsop->rqstbuf->w0;
+ bool ret = true;
+
+ lsop->lsrsp->nvme_fc_private = lsop;
+ lsop->lsrsp->rspbuf = lsop->rspbuf;
+ lsop->lsrsp->rspdma = lsop->rspdma;
+ lsop->lsrsp->done = nvme_fc_xmt_ls_rsp_done;
+ /* Be preventative. handlers will later set to valid length */
+ lsop->lsrsp->rsplen = 0;
+
+ /*
+ * handlers:
+ * parse request input, execute the request, and format the
+ * LS response
+ */
+ switch (w0->ls_cmd) {
+ case FCNVME_LS_DISCONNECT_ASSOC:
+ ret = nvme_fc_ls_disconnect_assoc(lsop);
+ break;
+ case FCNVME_LS_DISCONNECT_CONN:
+ lsop->lsrsp->rsplen = nvme_fc_format_rjt(lsop->rspbuf,
+ sizeof(*lsop->rspbuf), w0->ls_cmd,
+ FCNVME_RJT_RC_UNSUP, FCNVME_RJT_EXP_NONE, 0);
+ break;
+ case FCNVME_LS_CREATE_ASSOCIATION:
+ case FCNVME_LS_CREATE_CONNECTION:
+ lsop->lsrsp->rsplen = nvme_fc_format_rjt(lsop->rspbuf,
+ sizeof(*lsop->rspbuf), w0->ls_cmd,
+ FCNVME_RJT_RC_LOGIC, FCNVME_RJT_EXP_NONE, 0);
+ break;
+ default:
+ lsop->lsrsp->rsplen = nvme_fc_format_rjt(lsop->rspbuf,
+ sizeof(*lsop->rspbuf), w0->ls_cmd,
+ FCNVME_RJT_RC_INVAL, FCNVME_RJT_EXP_NONE, 0);
+ break;
+ }
+
+ return(ret);
+}
+
+static void
+nvme_fc_handle_ls_rqst_work(struct work_struct *work)
+{
+ struct nvme_fc_rport *rport =
+ container_of(work, struct nvme_fc_rport, lsrcv_work);
+ struct fcnvme_ls_rqst_w0 *w0;
+ struct nvmefc_ls_rcv_op *lsop;
+ unsigned long flags;
+ bool sendrsp;
+
+restart:
+ sendrsp = true;
+ spin_lock_irqsave(&rport->lock, flags);
+ list_for_each_entry(lsop, &rport->ls_rcv_list, lsrcv_list) {
+ if (lsop->handled)
+ continue;
+
+ lsop->handled = true;
+ if (rport->remoteport.port_state == FC_OBJSTATE_ONLINE) {
+ spin_unlock_irqrestore(&rport->lock, flags);
+ sendrsp = nvme_fc_handle_ls_rqst(lsop);
+ } else {
+ spin_unlock_irqrestore(&rport->lock, flags);
+ w0 = &lsop->rqstbuf->w0;
+ lsop->lsrsp->rsplen = nvme_fc_format_rjt(
+ lsop->rspbuf,
+ sizeof(*lsop->rspbuf),
+ w0->ls_cmd,
+ FCNVME_RJT_RC_UNAB,
+ FCNVME_RJT_EXP_NONE, 0);
+ }
+ if (sendrsp)
+ nvme_fc_xmt_ls_rsp(lsop);
+ goto restart;
+ }
+ spin_unlock_irqrestore(&rport->lock, flags);
+}
+
+static
+void nvme_fc_rcv_ls_req_err_msg(struct nvme_fc_lport *lport,
+ struct fcnvme_ls_rqst_w0 *w0)
+{
+ dev_info(lport->dev, "RCV %s LS failed: No memory\n",
+ (w0->ls_cmd <= NVME_FC_LAST_LS_CMD_VALUE) ?
+ nvmefc_ls_names[w0->ls_cmd] : "");
+}
+
+/**
+ * nvme_fc_rcv_ls_req - transport entry point called by an LLDD
+ * upon the reception of a NVME LS request.
+ *
+ * The nvme-fc layer will copy payload to an internal structure for
+ * processing. As such, upon completion of the routine, the LLDD may
+ * immediately free/reuse the LS request buffer passed in the call.
+ *
+ * If this routine returns error, the LLDD should abort the exchange.
+ *
+ * @portptr: pointer to the (registered) remote port that the LS
+ * was received from. The remoteport is associated with
+ * a specific localport.
+ * @lsrsp: pointer to a nvmefc_ls_rsp response structure to be
+ * used to reference the exchange corresponding to the LS
+ * when issuing an ls response.
+ * @lsreqbuf: pointer to the buffer containing the LS Request
+ * @lsreqbuf_len: length, in bytes, of the received LS request
+ */
+int
+nvme_fc_rcv_ls_req(struct nvme_fc_remote_port *portptr,
+ struct nvmefc_ls_rsp *lsrsp,
+ void *lsreqbuf, u32 lsreqbuf_len)
+{
+ struct nvme_fc_rport *rport = remoteport_to_rport(portptr);
+ struct nvme_fc_lport *lport = rport->lport;
+ struct fcnvme_ls_rqst_w0 *w0 = (struct fcnvme_ls_rqst_w0 *)lsreqbuf;
+ struct nvmefc_ls_rcv_op *lsop;
+ unsigned long flags;
+ int ret;
+
+ nvme_fc_rport_get(rport);
+
+ /* validate there's a routine to transmit a response */
+ if (!lport->ops->xmt_ls_rsp) {
+ dev_info(lport->dev,
+ "RCV %s LS failed: no LLDD xmt_ls_rsp\n",
+ (w0->ls_cmd <= NVME_FC_LAST_LS_CMD_VALUE) ?
+ nvmefc_ls_names[w0->ls_cmd] : "");
+ ret = -EINVAL;
+ goto out_put;
+ }
+
+ if (lsreqbuf_len > sizeof(union nvmefc_ls_requests)) {
+ dev_info(lport->dev,
+ "RCV %s LS failed: payload too large\n",
+ (w0->ls_cmd <= NVME_FC_LAST_LS_CMD_VALUE) ?
+ nvmefc_ls_names[w0->ls_cmd] : "");
+ ret = -E2BIG;
+ goto out_put;
+ }
+
+ lsop = kzalloc(sizeof(*lsop), GFP_KERNEL);
+ if (!lsop) {
+ nvme_fc_rcv_ls_req_err_msg(lport, w0);
+ ret = -ENOMEM;
+ goto out_put;
+ }
+
+ lsop->rqstbuf = kzalloc(sizeof(*lsop->rqstbuf), GFP_KERNEL);
+ lsop->rspbuf = kzalloc(sizeof(*lsop->rspbuf), GFP_KERNEL);
+ if (!lsop->rqstbuf || !lsop->rspbuf) {
+ nvme_fc_rcv_ls_req_err_msg(lport, w0);
+ ret = -ENOMEM;
+ goto out_free;
+ }
+
+ lsop->rspdma = fc_dma_map_single(lport->dev, lsop->rspbuf,
+ sizeof(*lsop->rspbuf),
+ DMA_TO_DEVICE);
+ if (fc_dma_mapping_error(lport->dev, lsop->rspdma)) {
+ dev_info(lport->dev,
+ "RCV %s LS failed: DMA mapping failure\n",
+ (w0->ls_cmd <= NVME_FC_LAST_LS_CMD_VALUE) ?
+ nvmefc_ls_names[w0->ls_cmd] : "");
+ ret = -EFAULT;
+ goto out_free;
+ }
+
+ lsop->rport = rport;
+ lsop->lsrsp = lsrsp;
+
+ memcpy(lsop->rqstbuf, lsreqbuf, lsreqbuf_len);
+ lsop->rqstdatalen = lsreqbuf_len;
+
+ spin_lock_irqsave(&rport->lock, flags);
+ if (rport->remoteport.port_state != FC_OBJSTATE_ONLINE) {
+ spin_unlock_irqrestore(&rport->lock, flags);
+ ret = -ENOTCONN;
+ goto out_unmap;
+ }
+ list_add_tail(&lsop->lsrcv_list, &rport->ls_rcv_list);
+ spin_unlock_irqrestore(&rport->lock, flags);
+
+ schedule_work(&rport->lsrcv_work);
+
+ return 0;
+
+out_unmap:
+ fc_dma_unmap_single(lport->dev, lsop->rspdma,
+ sizeof(*lsop->rspbuf), DMA_TO_DEVICE);
+out_free:
+ kfree(lsop->rspbuf);
+ kfree(lsop->rqstbuf);
+ kfree(lsop);
+out_put:
+ nvme_fc_rport_put(rport);
+ return ret;
+}
+EXPORT_SYMBOL_GPL(nvme_fc_rcv_ls_req);
+
+
+/* *********************** NVME Ctrl Routines **************************** */
+
+static void
+__nvme_fc_exit_request(struct nvme_fc_ctrl *ctrl,
+ struct nvme_fc_fcp_op *op)
+{
+ fc_dma_unmap_single(ctrl->lport->dev, op->fcp_req.rspdma,
+ sizeof(op->rsp_iu), DMA_FROM_DEVICE);
+ fc_dma_unmap_single(ctrl->lport->dev, op->fcp_req.cmddma,
+ sizeof(op->cmd_iu), DMA_TO_DEVICE);
+
+ atomic_set(&op->state, FCPOP_STATE_UNINIT);
+}
+
+static void
+nvme_fc_exit_request(struct blk_mq_tag_set *set, struct request *rq,
+ unsigned int hctx_idx)
+{
+ struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
+
+ return __nvme_fc_exit_request(to_fc_ctrl(set->driver_data), op);
+}
+
+static int
+__nvme_fc_abort_op(struct nvme_fc_ctrl *ctrl, struct nvme_fc_fcp_op *op)
+{
+ unsigned long flags;
+ int opstate;
+
+ spin_lock_irqsave(&ctrl->lock, flags);
+ opstate = atomic_xchg(&op->state, FCPOP_STATE_ABORTED);
+ if (opstate != FCPOP_STATE_ACTIVE)
+ atomic_set(&op->state, opstate);
+ else if (test_bit(FCCTRL_TERMIO, &ctrl->flags)) {
+ op->flags |= FCOP_FLAGS_TERMIO;
+ ctrl->iocnt++;
+ }
+ spin_unlock_irqrestore(&ctrl->lock, flags);
+
+ if (opstate != FCPOP_STATE_ACTIVE)
+ return -ECANCELED;
+
+ ctrl->lport->ops->fcp_abort(&ctrl->lport->localport,
+ &ctrl->rport->remoteport,
+ op->queue->lldd_handle,
+ &op->fcp_req);
+
+ return 0;
+}
+
+static void
+nvme_fc_abort_aen_ops(struct nvme_fc_ctrl *ctrl)
+{
+ struct nvme_fc_fcp_op *aen_op = ctrl->aen_ops;
+ int i;
+
+ /* ensure we've initialized the ops once */
+ if (!(aen_op->flags & FCOP_FLAGS_AEN))
+ return;
+
+ for (i = 0; i < NVME_NR_AEN_COMMANDS; i++, aen_op++)
+ __nvme_fc_abort_op(ctrl, aen_op);
+}
+
+static inline void
+__nvme_fc_fcpop_chk_teardowns(struct nvme_fc_ctrl *ctrl,
+ struct nvme_fc_fcp_op *op, int opstate)
+{
+ unsigned long flags;
+
+ if (opstate == FCPOP_STATE_ABORTED) {
+ spin_lock_irqsave(&ctrl->lock, flags);
+ if (test_bit(FCCTRL_TERMIO, &ctrl->flags) &&
+ op->flags & FCOP_FLAGS_TERMIO) {
+ if (!--ctrl->iocnt)
+ wake_up(&ctrl->ioabort_wait);
+ }
+ spin_unlock_irqrestore(&ctrl->lock, flags);
+ }
+}
+
+static void
+nvme_fc_ctrl_ioerr_work(struct work_struct *work)
+{
+ struct nvme_fc_ctrl *ctrl =
+ container_of(work, struct nvme_fc_ctrl, ioerr_work);
+
+ nvme_fc_error_recovery(ctrl, "transport detected io error");
+}
+
+/*
+ * nvme_fc_io_getuuid - Routine called to get the appid field
+ * associated with request by the lldd
+ * @req:IO request from nvme fc to driver
+ * Returns: UUID if there is an appid associated with VM or
+ * NULL if the user/libvirt has not set the appid to VM
+ */
+char *nvme_fc_io_getuuid(struct nvmefc_fcp_req *req)
+{
+ struct nvme_fc_fcp_op *op = fcp_req_to_fcp_op(req);
+ struct request *rq = op->rq;
+
+ if (!IS_ENABLED(CONFIG_BLK_CGROUP_FC_APPID) || !rq || !rq->bio)
+ return NULL;
+ return blkcg_get_fc_appid(rq->bio);
+}
+EXPORT_SYMBOL_GPL(nvme_fc_io_getuuid);
+
+static void
+nvme_fc_fcpio_done(struct nvmefc_fcp_req *req)
+{
+ struct nvme_fc_fcp_op *op = fcp_req_to_fcp_op(req);
+ struct request *rq = op->rq;
+ struct nvmefc_fcp_req *freq = &op->fcp_req;
+ struct nvme_fc_ctrl *ctrl = op->ctrl;
+ struct nvme_fc_queue *queue = op->queue;
+ struct nvme_completion *cqe = &op->rsp_iu.cqe;
+ struct nvme_command *sqe = &op->cmd_iu.sqe;
+ __le16 status = cpu_to_le16(NVME_SC_SUCCESS << 1);
+ union nvme_result result;
+ bool terminate_assoc = true;
+ int opstate;
+
+ /*
+ * WARNING:
+ * The current linux implementation of a nvme controller
+ * allocates a single tag set for all io queues and sizes
+ * the io queues to fully hold all possible tags. Thus, the
+ * implementation does not reference or care about the sqhd
+ * value as it never needs to use the sqhd/sqtail pointers
+ * for submission pacing.
+ *
+ * This affects the FC-NVME implementation in two ways:
+ * 1) As the value doesn't matter, we don't need to waste
+ * cycles extracting it from ERSPs and stamping it in the
+ * cases where the transport fabricates CQEs on successful
+ * completions.
+ * 2) The FC-NVME implementation requires that delivery of
+ * ERSP completions are to go back to the nvme layer in order
+ * relative to the rsn, such that the sqhd value will always
+ * be "in order" for the nvme layer. As the nvme layer in
+ * linux doesn't care about sqhd, there's no need to return
+ * them in order.
+ *
+ * Additionally:
+ * As the core nvme layer in linux currently does not look at
+ * every field in the cqe - in cases where the FC transport must
+ * fabricate a CQE, the following fields will not be set as they
+ * are not referenced:
+ * cqe.sqid, cqe.sqhd, cqe.command_id
+ *
+ * Failure or error of an individual i/o, in a transport
+ * detected fashion unrelated to the nvme completion status,
+ * potentially cause the initiator and target sides to get out
+ * of sync on SQ head/tail (aka outstanding io count allowed).
+ * Per FC-NVME spec, failure of an individual command requires
+ * the connection to be terminated, which in turn requires the
+ * association to be terminated.
+ */
+
+ opstate = atomic_xchg(&op->state, FCPOP_STATE_COMPLETE);
+
+ fc_dma_sync_single_for_cpu(ctrl->lport->dev, op->fcp_req.rspdma,
+ sizeof(op->rsp_iu), DMA_FROM_DEVICE);
+
+ if (opstate == FCPOP_STATE_ABORTED)
+ status = cpu_to_le16(NVME_SC_HOST_ABORTED_CMD << 1);
+ else if (freq->status) {
+ status = cpu_to_le16(NVME_SC_HOST_PATH_ERROR << 1);
+ dev_info(ctrl->ctrl.device,
+ "NVME-FC{%d}: io failed due to lldd error %d\n",
+ ctrl->cnum, freq->status);
+ }
+
+ /*
+ * For the linux implementation, if we have an unsuccesful
+ * status, they blk-mq layer can typically be called with the
+ * non-zero status and the content of the cqe isn't important.
+ */
+ if (status)
+ goto done;
+
+ /*
+ * command completed successfully relative to the wire
+ * protocol. However, validate anything received and
+ * extract the status and result from the cqe (create it
+ * where necessary).
+ */
+
+ switch (freq->rcv_rsplen) {
+
+ case 0:
+ case NVME_FC_SIZEOF_ZEROS_RSP:
+ /*
+ * No response payload or 12 bytes of payload (which
+ * should all be zeros) are considered successful and
+ * no payload in the CQE by the transport.
+ */
+ if (freq->transferred_length !=
+ be32_to_cpu(op->cmd_iu.data_len)) {
+ status = cpu_to_le16(NVME_SC_HOST_PATH_ERROR << 1);
+ dev_info(ctrl->ctrl.device,
+ "NVME-FC{%d}: io failed due to bad transfer "
+ "length: %d vs expected %d\n",
+ ctrl->cnum, freq->transferred_length,
+ be32_to_cpu(op->cmd_iu.data_len));
+ goto done;
+ }
+ result.u64 = 0;
+ break;
+
+ case sizeof(struct nvme_fc_ersp_iu):
+ /*
+ * The ERSP IU contains a full completion with CQE.
+ * Validate ERSP IU and look at cqe.
+ */
+ if (unlikely(be16_to_cpu(op->rsp_iu.iu_len) !=
+ (freq->rcv_rsplen / 4) ||
+ be32_to_cpu(op->rsp_iu.xfrd_len) !=
+ freq->transferred_length ||
+ op->rsp_iu.ersp_result ||
+ sqe->common.command_id != cqe->command_id)) {
+ status = cpu_to_le16(NVME_SC_HOST_PATH_ERROR << 1);
+ dev_info(ctrl->ctrl.device,
+ "NVME-FC{%d}: io failed due to bad NVMe_ERSP: "
+ "iu len %d, xfr len %d vs %d, status code "
+ "%d, cmdid %d vs %d\n",
+ ctrl->cnum, be16_to_cpu(op->rsp_iu.iu_len),
+ be32_to_cpu(op->rsp_iu.xfrd_len),
+ freq->transferred_length,
+ op->rsp_iu.ersp_result,
+ sqe->common.command_id,
+ cqe->command_id);
+ goto done;
+ }
+ result = cqe->result;
+ status = cqe->status;
+ break;
+
+ default:
+ status = cpu_to_le16(NVME_SC_HOST_PATH_ERROR << 1);
+ dev_info(ctrl->ctrl.device,
+ "NVME-FC{%d}: io failed due to odd NVMe_xRSP iu "
+ "len %d\n",
+ ctrl->cnum, freq->rcv_rsplen);
+ goto done;
+ }
+
+ terminate_assoc = false;
+
+done:
+ if (op->flags & FCOP_FLAGS_AEN) {
+ nvme_complete_async_event(&queue->ctrl->ctrl, status, &result);
+ __nvme_fc_fcpop_chk_teardowns(ctrl, op, opstate);
+ atomic_set(&op->state, FCPOP_STATE_IDLE);
+ op->flags = FCOP_FLAGS_AEN; /* clear other flags */
+ nvme_fc_ctrl_put(ctrl);
+ goto check_error;
+ }
+
+ __nvme_fc_fcpop_chk_teardowns(ctrl, op, opstate);
+ if (!nvme_try_complete_req(rq, status, result))
+ nvme_fc_complete_rq(rq);
+
+check_error:
+ if (terminate_assoc && ctrl->ctrl.state != NVME_CTRL_RESETTING)
+ queue_work(nvme_reset_wq, &ctrl->ioerr_work);
+}
+
+static int
+__nvme_fc_init_request(struct nvme_fc_ctrl *ctrl,
+ struct nvme_fc_queue *queue, struct nvme_fc_fcp_op *op,
+ struct request *rq, u32 rqno)
+{
+ struct nvme_fcp_op_w_sgl *op_w_sgl =
+ container_of(op, typeof(*op_w_sgl), op);
+ struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu;
+ int ret = 0;
+
+ memset(op, 0, sizeof(*op));
+ op->fcp_req.cmdaddr = &op->cmd_iu;
+ op->fcp_req.cmdlen = sizeof(op->cmd_iu);
+ op->fcp_req.rspaddr = &op->rsp_iu;
+ op->fcp_req.rsplen = sizeof(op->rsp_iu);
+ op->fcp_req.done = nvme_fc_fcpio_done;
+ op->ctrl = ctrl;
+ op->queue = queue;
+ op->rq = rq;
+ op->rqno = rqno;
+
+ cmdiu->format_id = NVME_CMD_FORMAT_ID;
+ cmdiu->fc_id = NVME_CMD_FC_ID;
+ cmdiu->iu_len = cpu_to_be16(sizeof(*cmdiu) / sizeof(u32));
+ if (queue->qnum)
+ cmdiu->rsv_cat = fccmnd_set_cat_css(0,
+ (NVME_CC_CSS_NVM >> NVME_CC_CSS_SHIFT));
+ else
+ cmdiu->rsv_cat = fccmnd_set_cat_admin(0);
+
+ op->fcp_req.cmddma = fc_dma_map_single(ctrl->lport->dev,
+ &op->cmd_iu, sizeof(op->cmd_iu), DMA_TO_DEVICE);
+ if (fc_dma_mapping_error(ctrl->lport->dev, op->fcp_req.cmddma)) {
+ dev_err(ctrl->dev,
+ "FCP Op failed - cmdiu dma mapping failed.\n");
+ ret = -EFAULT;
+ goto out_on_error;
+ }
+
+ op->fcp_req.rspdma = fc_dma_map_single(ctrl->lport->dev,
+ &op->rsp_iu, sizeof(op->rsp_iu),
+ DMA_FROM_DEVICE);
+ if (fc_dma_mapping_error(ctrl->lport->dev, op->fcp_req.rspdma)) {
+ dev_err(ctrl->dev,
+ "FCP Op failed - rspiu dma mapping failed.\n");
+ ret = -EFAULT;
+ }
+
+ atomic_set(&op->state, FCPOP_STATE_IDLE);
+out_on_error:
+ return ret;
+}
+
+static int
+nvme_fc_init_request(struct blk_mq_tag_set *set, struct request *rq,
+ unsigned int hctx_idx, unsigned int numa_node)
+{
+ struct nvme_fc_ctrl *ctrl = to_fc_ctrl(set->driver_data);
+ struct nvme_fcp_op_w_sgl *op = blk_mq_rq_to_pdu(rq);
+ int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0;
+ struct nvme_fc_queue *queue = &ctrl->queues[queue_idx];
+ int res;
+
+ res = __nvme_fc_init_request(ctrl, queue, &op->op, rq, queue->rqcnt++);
+ if (res)
+ return res;
+ op->op.fcp_req.first_sgl = op->sgl;
+ op->op.fcp_req.private = &op->priv[0];
+ nvme_req(rq)->ctrl = &ctrl->ctrl;
+ nvme_req(rq)->cmd = &op->op.cmd_iu.sqe;
+ return res;
+}
+
+static int
+nvme_fc_init_aen_ops(struct nvme_fc_ctrl *ctrl)
+{
+ struct nvme_fc_fcp_op *aen_op;
+ struct nvme_fc_cmd_iu *cmdiu;
+ struct nvme_command *sqe;
+ void *private = NULL;
+ int i, ret;
+
+ aen_op = ctrl->aen_ops;
+ for (i = 0; i < NVME_NR_AEN_COMMANDS; i++, aen_op++) {
+ if (ctrl->lport->ops->fcprqst_priv_sz) {
+ private = kzalloc(ctrl->lport->ops->fcprqst_priv_sz,
+ GFP_KERNEL);
+ if (!private)
+ return -ENOMEM;
+ }
+
+ cmdiu = &aen_op->cmd_iu;
+ sqe = &cmdiu->sqe;
+ ret = __nvme_fc_init_request(ctrl, &ctrl->queues[0],
+ aen_op, (struct request *)NULL,
+ (NVME_AQ_BLK_MQ_DEPTH + i));
+ if (ret) {
+ kfree(private);
+ return ret;
+ }
+
+ aen_op->flags = FCOP_FLAGS_AEN;
+ aen_op->fcp_req.private = private;
+
+ memset(sqe, 0, sizeof(*sqe));
+ sqe->common.opcode = nvme_admin_async_event;
+ /* Note: core layer may overwrite the sqe.command_id value */
+ sqe->common.command_id = NVME_AQ_BLK_MQ_DEPTH + i;
+ }
+ return 0;
+}
+
+static void
+nvme_fc_term_aen_ops(struct nvme_fc_ctrl *ctrl)
+{
+ struct nvme_fc_fcp_op *aen_op;
+ int i;
+
+ cancel_work_sync(&ctrl->ctrl.async_event_work);
+ aen_op = ctrl->aen_ops;
+ for (i = 0; i < NVME_NR_AEN_COMMANDS; i++, aen_op++) {
+ __nvme_fc_exit_request(ctrl, aen_op);
+
+ kfree(aen_op->fcp_req.private);
+ aen_op->fcp_req.private = NULL;
+ }
+}
+
+static inline int
+__nvme_fc_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, unsigned int qidx)
+{
+ struct nvme_fc_ctrl *ctrl = to_fc_ctrl(data);
+ struct nvme_fc_queue *queue = &ctrl->queues[qidx];
+
+ hctx->driver_data = queue;
+ queue->hctx = hctx;
+ return 0;
+}
+
+static int
+nvme_fc_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, unsigned int hctx_idx)
+{
+ return __nvme_fc_init_hctx(hctx, data, hctx_idx + 1);
+}
+
+static int
+nvme_fc_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data,
+ unsigned int hctx_idx)
+{
+ return __nvme_fc_init_hctx(hctx, data, hctx_idx);
+}
+
+static void
+nvme_fc_init_queue(struct nvme_fc_ctrl *ctrl, int idx)
+{
+ struct nvme_fc_queue *queue;
+
+ queue = &ctrl->queues[idx];
+ memset(queue, 0, sizeof(*queue));
+ queue->ctrl = ctrl;
+ queue->qnum = idx;
+ atomic_set(&queue->csn, 0);
+ queue->dev = ctrl->dev;
+
+ if (idx > 0)
+ queue->cmnd_capsule_len = ctrl->ctrl.ioccsz * 16;
+ else
+ queue->cmnd_capsule_len = sizeof(struct nvme_command);
+
+ /*
+ * Considered whether we should allocate buffers for all SQEs
+ * and CQEs and dma map them - mapping their respective entries
+ * into the request structures (kernel vm addr and dma address)
+ * thus the driver could use the buffers/mappings directly.
+ * It only makes sense if the LLDD would use them for its
+ * messaging api. It's very unlikely most adapter api's would use
+ * a native NVME sqe/cqe. More reasonable if FC-NVME IU payload
+ * structures were used instead.
+ */
+}
+
+/*
+ * This routine terminates a queue at the transport level.
+ * The transport has already ensured that all outstanding ios on
+ * the queue have been terminated.
+ * The transport will send a Disconnect LS request to terminate
+ * the queue's connection. Termination of the admin queue will also
+ * terminate the association at the target.
+ */
+static void
+nvme_fc_free_queue(struct nvme_fc_queue *queue)
+{
+ if (!test_and_clear_bit(NVME_FC_Q_CONNECTED, &queue->flags))
+ return;
+
+ clear_bit(NVME_FC_Q_LIVE, &queue->flags);
+ /*
+ * Current implementation never disconnects a single queue.
+ * It always terminates a whole association. So there is never
+ * a disconnect(queue) LS sent to the target.
+ */
+
+ queue->connection_id = 0;
+ atomic_set(&queue->csn, 0);
+}
+
+static void
+__nvme_fc_delete_hw_queue(struct nvme_fc_ctrl *ctrl,
+ struct nvme_fc_queue *queue, unsigned int qidx)
+{
+ if (ctrl->lport->ops->delete_queue)
+ ctrl->lport->ops->delete_queue(&ctrl->lport->localport, qidx,
+ queue->lldd_handle);
+ queue->lldd_handle = NULL;
+}
+
+static void
+nvme_fc_free_io_queues(struct nvme_fc_ctrl *ctrl)
+{
+ int i;
+
+ for (i = 1; i < ctrl->ctrl.queue_count; i++)
+ nvme_fc_free_queue(&ctrl->queues[i]);
+}
+
+static int
+__nvme_fc_create_hw_queue(struct nvme_fc_ctrl *ctrl,
+ struct nvme_fc_queue *queue, unsigned int qidx, u16 qsize)
+{
+ int ret = 0;
+
+ queue->lldd_handle = NULL;
+ if (ctrl->lport->ops->create_queue)
+ ret = ctrl->lport->ops->create_queue(&ctrl->lport->localport,
+ qidx, qsize, &queue->lldd_handle);
+
+ return ret;
+}
+
+static void
+nvme_fc_delete_hw_io_queues(struct nvme_fc_ctrl *ctrl)
+{
+ struct nvme_fc_queue *queue = &ctrl->queues[ctrl->ctrl.queue_count - 1];
+ int i;
+
+ for (i = ctrl->ctrl.queue_count - 1; i >= 1; i--, queue--)
+ __nvme_fc_delete_hw_queue(ctrl, queue, i);
+}
+
+static int
+nvme_fc_create_hw_io_queues(struct nvme_fc_ctrl *ctrl, u16 qsize)
+{
+ struct nvme_fc_queue *queue = &ctrl->queues[1];
+ int i, ret;
+
+ for (i = 1; i < ctrl->ctrl.queue_count; i++, queue++) {
+ ret = __nvme_fc_create_hw_queue(ctrl, queue, i, qsize);
+ if (ret)
+ goto delete_queues;
+ }
+
+ return 0;
+
+delete_queues:
+ for (; i > 0; i--)
+ __nvme_fc_delete_hw_queue(ctrl, &ctrl->queues[i], i);
+ return ret;
+}
+
+static int
+nvme_fc_connect_io_queues(struct nvme_fc_ctrl *ctrl, u16 qsize)
+{
+ int i, ret = 0;
+
+ for (i = 1; i < ctrl->ctrl.queue_count; i++) {
+ ret = nvme_fc_connect_queue(ctrl, &ctrl->queues[i], qsize,
+ (qsize / 5));
+ if (ret)
+ break;
+ ret = nvmf_connect_io_queue(&ctrl->ctrl, i);
+ if (ret)
+ break;
+
+ set_bit(NVME_FC_Q_LIVE, &ctrl->queues[i].flags);
+ }
+
+ return ret;
+}
+
+static void
+nvme_fc_init_io_queues(struct nvme_fc_ctrl *ctrl)
+{
+ int i;
+
+ for (i = 1; i < ctrl->ctrl.queue_count; i++)
+ nvme_fc_init_queue(ctrl, i);
+}
+
+static void
+nvme_fc_ctrl_free(struct kref *ref)
+{
+ struct nvme_fc_ctrl *ctrl =
+ container_of(ref, struct nvme_fc_ctrl, ref);
+ unsigned long flags;
+
+ if (ctrl->ctrl.tagset)
+ nvme_remove_io_tag_set(&ctrl->ctrl);
+
+ /* remove from rport list */
+ spin_lock_irqsave(&ctrl->rport->lock, flags);
+ list_del(&ctrl->ctrl_list);
+ spin_unlock_irqrestore(&ctrl->rport->lock, flags);
+
+ nvme_unquiesce_admin_queue(&ctrl->ctrl);
+ nvme_remove_admin_tag_set(&ctrl->ctrl);
+
+ kfree(ctrl->queues);
+
+ put_device(ctrl->dev);
+ nvme_fc_rport_put(ctrl->rport);
+
+ ida_free(&nvme_fc_ctrl_cnt, ctrl->cnum);
+ if (ctrl->ctrl.opts)
+ nvmf_free_options(ctrl->ctrl.opts);
+ kfree(ctrl);
+}
+
+static void
+nvme_fc_ctrl_put(struct nvme_fc_ctrl *ctrl)
+{
+ kref_put(&ctrl->ref, nvme_fc_ctrl_free);
+}
+
+static int
+nvme_fc_ctrl_get(struct nvme_fc_ctrl *ctrl)
+{
+ return kref_get_unless_zero(&ctrl->ref);
+}
+
+/*
+ * All accesses from nvme core layer done - can now free the
+ * controller. Called after last nvme_put_ctrl() call
+ */
+static void
+nvme_fc_nvme_ctrl_freed(struct nvme_ctrl *nctrl)
+{
+ struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl);
+
+ WARN_ON(nctrl != &ctrl->ctrl);
+
+ nvme_fc_ctrl_put(ctrl);
+}
+
+/*
+ * This routine is used by the transport when it needs to find active
+ * io on a queue that is to be terminated. The transport uses
+ * blk_mq_tagset_busy_itr() to find the busy requests, which then invoke
+ * this routine to kill them on a 1 by 1 basis.
+ *
+ * As FC allocates FC exchange for each io, the transport must contact
+ * the LLDD to terminate the exchange, thus releasing the FC exchange.
+ * After terminating the exchange the LLDD will call the transport's
+ * normal io done path for the request, but it will have an aborted
+ * status. The done path will return the io request back to the block
+ * layer with an error status.
+ */
+static bool nvme_fc_terminate_exchange(struct request *req, void *data)
+{
+ struct nvme_ctrl *nctrl = data;
+ struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl);
+ struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(req);
+
+ op->nreq.flags |= NVME_REQ_CANCELLED;
+ __nvme_fc_abort_op(ctrl, op);
+ return true;
+}
+
+/*
+ * This routine runs through all outstanding commands on the association
+ * and aborts them. This routine is typically be called by the
+ * delete_association routine. It is also called due to an error during
+ * reconnect. In that scenario, it is most likely a command that initializes
+ * the controller, including fabric Connect commands on io queues, that
+ * may have timed out or failed thus the io must be killed for the connect
+ * thread to see the error.
+ */
+static void
+__nvme_fc_abort_outstanding_ios(struct nvme_fc_ctrl *ctrl, bool start_queues)
+{
+ int q;
+
+ /*
+ * if aborting io, the queues are no longer good, mark them
+ * all as not live.
+ */
+ if (ctrl->ctrl.queue_count > 1) {
+ for (q = 1; q < ctrl->ctrl.queue_count; q++)
+ clear_bit(NVME_FC_Q_LIVE, &ctrl->queues[q].flags);
+ }
+ clear_bit(NVME_FC_Q_LIVE, &ctrl->queues[0].flags);
+
+ /*
+ * If io queues are present, stop them and terminate all outstanding
+ * ios on them. As FC allocates FC exchange for each io, the
+ * transport must contact the LLDD to terminate the exchange,
+ * thus releasing the FC exchange. We use blk_mq_tagset_busy_itr()
+ * to tell us what io's are busy and invoke a transport routine
+ * to kill them with the LLDD. After terminating the exchange
+ * the LLDD will call the transport's normal io done path, but it
+ * will have an aborted status. The done path will return the
+ * io requests back to the block layer as part of normal completions
+ * (but with error status).
+ */
+ if (ctrl->ctrl.queue_count > 1) {
+ nvme_quiesce_io_queues(&ctrl->ctrl);
+ nvme_sync_io_queues(&ctrl->ctrl);
+ blk_mq_tagset_busy_iter(&ctrl->tag_set,
+ nvme_fc_terminate_exchange, &ctrl->ctrl);
+ blk_mq_tagset_wait_completed_request(&ctrl->tag_set);
+ if (start_queues)
+ nvme_unquiesce_io_queues(&ctrl->ctrl);
+ }
+
+ /*
+ * Other transports, which don't have link-level contexts bound
+ * to sqe's, would try to gracefully shutdown the controller by
+ * writing the registers for shutdown and polling (call
+ * nvme_disable_ctrl()). Given a bunch of i/o was potentially
+ * just aborted and we will wait on those contexts, and given
+ * there was no indication of how live the controlelr is on the
+ * link, don't send more io to create more contexts for the
+ * shutdown. Let the controller fail via keepalive failure if
+ * its still present.
+ */
+
+ /*
+ * clean up the admin queue. Same thing as above.
+ */
+ nvme_quiesce_admin_queue(&ctrl->ctrl);
+ blk_sync_queue(ctrl->ctrl.admin_q);
+ blk_mq_tagset_busy_iter(&ctrl->admin_tag_set,
+ nvme_fc_terminate_exchange, &ctrl->ctrl);
+ blk_mq_tagset_wait_completed_request(&ctrl->admin_tag_set);
+ if (start_queues)
+ nvme_unquiesce_admin_queue(&ctrl->ctrl);
+}
+
+static void
+nvme_fc_error_recovery(struct nvme_fc_ctrl *ctrl, char *errmsg)
+{
+ /*
+ * if an error (io timeout, etc) while (re)connecting, the remote
+ * port requested terminating of the association (disconnect_ls)
+ * or an error (timeout or abort) occurred on an io while creating
+ * the controller. Abort any ios on the association and let the
+ * create_association error path resolve things.
+ */
+ if (ctrl->ctrl.state == NVME_CTRL_CONNECTING) {
+ __nvme_fc_abort_outstanding_ios(ctrl, true);
+ set_bit(ASSOC_FAILED, &ctrl->flags);
+ dev_warn(ctrl->ctrl.device,
+ "NVME-FC{%d}: transport error during (re)connect\n",
+ ctrl->cnum);
+ return;
+ }
+
+ /* Otherwise, only proceed if in LIVE state - e.g. on first error */
+ if (ctrl->ctrl.state != NVME_CTRL_LIVE)
+ return;
+
+ dev_warn(ctrl->ctrl.device,
+ "NVME-FC{%d}: transport association event: %s\n",
+ ctrl->cnum, errmsg);
+ dev_warn(ctrl->ctrl.device,
+ "NVME-FC{%d}: resetting controller\n", ctrl->cnum);
+
+ nvme_reset_ctrl(&ctrl->ctrl);
+}
+
+static enum blk_eh_timer_return nvme_fc_timeout(struct request *rq)
+{
+ struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
+ struct nvme_fc_ctrl *ctrl = op->ctrl;
+ struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu;
+ struct nvme_command *sqe = &cmdiu->sqe;
+
+ /*
+ * Attempt to abort the offending command. Command completion
+ * will detect the aborted io and will fail the connection.
+ */
+ dev_info(ctrl->ctrl.device,
+ "NVME-FC{%d.%d}: io timeout: opcode %d fctype %d w10/11: "
+ "x%08x/x%08x\n",
+ ctrl->cnum, op->queue->qnum, sqe->common.opcode,
+ sqe->connect.fctype, sqe->common.cdw10, sqe->common.cdw11);
+ if (__nvme_fc_abort_op(ctrl, op))
+ nvme_fc_error_recovery(ctrl, "io timeout abort failed");
+
+ /*
+ * the io abort has been initiated. Have the reset timer
+ * restarted and the abort completion will complete the io
+ * shortly. Avoids a synchronous wait while the abort finishes.
+ */
+ return BLK_EH_RESET_TIMER;
+}
+
+static int
+nvme_fc_map_data(struct nvme_fc_ctrl *ctrl, struct request *rq,
+ struct nvme_fc_fcp_op *op)
+{
+ struct nvmefc_fcp_req *freq = &op->fcp_req;
+ int ret;
+
+ freq->sg_cnt = 0;
+
+ if (!blk_rq_nr_phys_segments(rq))
+ return 0;
+
+ freq->sg_table.sgl = freq->first_sgl;
+ ret = sg_alloc_table_chained(&freq->sg_table,
+ blk_rq_nr_phys_segments(rq), freq->sg_table.sgl,
+ NVME_INLINE_SG_CNT);
+ if (ret)
+ return -ENOMEM;
+
+ op->nents = blk_rq_map_sg(rq->q, rq, freq->sg_table.sgl);
+ WARN_ON(op->nents > blk_rq_nr_phys_segments(rq));
+ freq->sg_cnt = fc_dma_map_sg(ctrl->lport->dev, freq->sg_table.sgl,
+ op->nents, rq_dma_dir(rq));
+ if (unlikely(freq->sg_cnt <= 0)) {
+ sg_free_table_chained(&freq->sg_table, NVME_INLINE_SG_CNT);
+ freq->sg_cnt = 0;
+ return -EFAULT;
+ }
+
+ /*
+ * TODO: blk_integrity_rq(rq) for DIF
+ */
+ return 0;
+}
+
+static void
+nvme_fc_unmap_data(struct nvme_fc_ctrl *ctrl, struct request *rq,
+ struct nvme_fc_fcp_op *op)
+{
+ struct nvmefc_fcp_req *freq = &op->fcp_req;
+
+ if (!freq->sg_cnt)
+ return;
+
+ fc_dma_unmap_sg(ctrl->lport->dev, freq->sg_table.sgl, op->nents,
+ rq_dma_dir(rq));
+
+ sg_free_table_chained(&freq->sg_table, NVME_INLINE_SG_CNT);
+
+ freq->sg_cnt = 0;
+}
+
+/*
+ * In FC, the queue is a logical thing. At transport connect, the target
+ * creates its "queue" and returns a handle that is to be given to the
+ * target whenever it posts something to the corresponding SQ. When an
+ * SQE is sent on a SQ, FC effectively considers the SQE, or rather the
+ * command contained within the SQE, an io, and assigns a FC exchange
+ * to it. The SQE and the associated SQ handle are sent in the initial
+ * CMD IU sents on the exchange. All transfers relative to the io occur
+ * as part of the exchange. The CQE is the last thing for the io,
+ * which is transferred (explicitly or implicitly) with the RSP IU
+ * sent on the exchange. After the CQE is received, the FC exchange is
+ * terminaed and the Exchange may be used on a different io.
+ *
+ * The transport to LLDD api has the transport making a request for a
+ * new fcp io request to the LLDD. The LLDD then allocates a FC exchange
+ * resource and transfers the command. The LLDD will then process all
+ * steps to complete the io. Upon completion, the transport done routine
+ * is called.
+ *
+ * So - while the operation is outstanding to the LLDD, there is a link
+ * level FC exchange resource that is also outstanding. This must be
+ * considered in all cleanup operations.
+ */
+static blk_status_t
+nvme_fc_start_fcp_op(struct nvme_fc_ctrl *ctrl, struct nvme_fc_queue *queue,
+ struct nvme_fc_fcp_op *op, u32 data_len,
+ enum nvmefc_fcp_datadir io_dir)
+{
+ struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu;
+ struct nvme_command *sqe = &cmdiu->sqe;
+ int ret, opstate;
+
+ /*
+ * before attempting to send the io, check to see if we believe
+ * the target device is present
+ */
+ if (ctrl->rport->remoteport.port_state != FC_OBJSTATE_ONLINE)
+ return BLK_STS_RESOURCE;
+
+ if (!nvme_fc_ctrl_get(ctrl))
+ return BLK_STS_IOERR;
+
+ /* format the FC-NVME CMD IU and fcp_req */
+ cmdiu->connection_id = cpu_to_be64(queue->connection_id);
+ cmdiu->data_len = cpu_to_be32(data_len);
+ switch (io_dir) {
+ case NVMEFC_FCP_WRITE:
+ cmdiu->flags = FCNVME_CMD_FLAGS_WRITE;
+ break;
+ case NVMEFC_FCP_READ:
+ cmdiu->flags = FCNVME_CMD_FLAGS_READ;
+ break;
+ case NVMEFC_FCP_NODATA:
+ cmdiu->flags = 0;
+ break;
+ }
+ op->fcp_req.payload_length = data_len;
+ op->fcp_req.io_dir = io_dir;
+ op->fcp_req.transferred_length = 0;
+ op->fcp_req.rcv_rsplen = 0;
+ op->fcp_req.status = NVME_SC_SUCCESS;
+ op->fcp_req.sqid = cpu_to_le16(queue->qnum);
+
+ /*
+ * validate per fabric rules, set fields mandated by fabric spec
+ * as well as those by FC-NVME spec.
+ */
+ WARN_ON_ONCE(sqe->common.metadata);
+ sqe->common.flags |= NVME_CMD_SGL_METABUF;
+
+ /*
+ * format SQE DPTR field per FC-NVME rules:
+ * type=0x5 Transport SGL Data Block Descriptor
+ * subtype=0xA Transport-specific value
+ * address=0
+ * length=length of the data series
+ */
+ sqe->rw.dptr.sgl.type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) |
+ NVME_SGL_FMT_TRANSPORT_A;
+ sqe->rw.dptr.sgl.length = cpu_to_le32(data_len);
+ sqe->rw.dptr.sgl.addr = 0;
+
+ if (!(op->flags & FCOP_FLAGS_AEN)) {
+ ret = nvme_fc_map_data(ctrl, op->rq, op);
+ if (ret < 0) {
+ nvme_cleanup_cmd(op->rq);
+ nvme_fc_ctrl_put(ctrl);
+ if (ret == -ENOMEM || ret == -EAGAIN)
+ return BLK_STS_RESOURCE;
+ return BLK_STS_IOERR;
+ }
+ }
+
+ fc_dma_sync_single_for_device(ctrl->lport->dev, op->fcp_req.cmddma,
+ sizeof(op->cmd_iu), DMA_TO_DEVICE);
+
+ atomic_set(&op->state, FCPOP_STATE_ACTIVE);
+
+ if (!(op->flags & FCOP_FLAGS_AEN))
+ nvme_start_request(op->rq);
+
+ cmdiu->csn = cpu_to_be32(atomic_inc_return(&queue->csn));
+ ret = ctrl->lport->ops->fcp_io(&ctrl->lport->localport,
+ &ctrl->rport->remoteport,
+ queue->lldd_handle, &op->fcp_req);
+
+ if (ret) {
+ /*
+ * If the lld fails to send the command is there an issue with
+ * the csn value? If the command that fails is the Connect,
+ * no - as the connection won't be live. If it is a command
+ * post-connect, it's possible a gap in csn may be created.
+ * Does this matter? As Linux initiators don't send fused
+ * commands, no. The gap would exist, but as there's nothing
+ * that depends on csn order to be delivered on the target
+ * side, it shouldn't hurt. It would be difficult for a
+ * target to even detect the csn gap as it has no idea when the
+ * cmd with the csn was supposed to arrive.
+ */
+ opstate = atomic_xchg(&op->state, FCPOP_STATE_COMPLETE);
+ __nvme_fc_fcpop_chk_teardowns(ctrl, op, opstate);
+
+ if (!(op->flags & FCOP_FLAGS_AEN)) {
+ nvme_fc_unmap_data(ctrl, op->rq, op);
+ nvme_cleanup_cmd(op->rq);
+ }
+
+ nvme_fc_ctrl_put(ctrl);
+
+ if (ctrl->rport->remoteport.port_state == FC_OBJSTATE_ONLINE &&
+ ret != -EBUSY)
+ return BLK_STS_IOERR;
+
+ return BLK_STS_RESOURCE;
+ }
+
+ return BLK_STS_OK;
+}
+
+static blk_status_t
+nvme_fc_queue_rq(struct blk_mq_hw_ctx *hctx,
+ const struct blk_mq_queue_data *bd)
+{
+ struct nvme_ns *ns = hctx->queue->queuedata;
+ struct nvme_fc_queue *queue = hctx->driver_data;
+ struct nvme_fc_ctrl *ctrl = queue->ctrl;
+ struct request *rq = bd->rq;
+ struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
+ enum nvmefc_fcp_datadir io_dir;
+ bool queue_ready = test_bit(NVME_FC_Q_LIVE, &queue->flags);
+ u32 data_len;
+ blk_status_t ret;
+
+ if (ctrl->rport->remoteport.port_state != FC_OBJSTATE_ONLINE ||
+ !nvme_check_ready(&queue->ctrl->ctrl, rq, queue_ready))
+ return nvme_fail_nonready_command(&queue->ctrl->ctrl, rq);
+
+ ret = nvme_setup_cmd(ns, rq);
+ if (ret)
+ return ret;
+
+ /*
+ * nvme core doesn't quite treat the rq opaquely. Commands such
+ * as WRITE ZEROES will return a non-zero rq payload_bytes yet
+ * there is no actual payload to be transferred.
+ * To get it right, key data transmission on there being 1 or
+ * more physical segments in the sg list. If there is no
+ * physical segments, there is no payload.
+ */
+ if (blk_rq_nr_phys_segments(rq)) {
+ data_len = blk_rq_payload_bytes(rq);
+ io_dir = ((rq_data_dir(rq) == WRITE) ?
+ NVMEFC_FCP_WRITE : NVMEFC_FCP_READ);
+ } else {
+ data_len = 0;
+ io_dir = NVMEFC_FCP_NODATA;
+ }
+
+
+ return nvme_fc_start_fcp_op(ctrl, queue, op, data_len, io_dir);
+}
+
+static void
+nvme_fc_submit_async_event(struct nvme_ctrl *arg)
+{
+ struct nvme_fc_ctrl *ctrl = to_fc_ctrl(arg);
+ struct nvme_fc_fcp_op *aen_op;
+ blk_status_t ret;
+
+ if (test_bit(FCCTRL_TERMIO, &ctrl->flags))
+ return;
+
+ aen_op = &ctrl->aen_ops[0];
+
+ ret = nvme_fc_start_fcp_op(ctrl, aen_op->queue, aen_op, 0,
+ NVMEFC_FCP_NODATA);
+ if (ret)
+ dev_err(ctrl->ctrl.device,
+ "failed async event work\n");
+}
+
+static void
+nvme_fc_complete_rq(struct request *rq)
+{
+ struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
+ struct nvme_fc_ctrl *ctrl = op->ctrl;
+
+ atomic_set(&op->state, FCPOP_STATE_IDLE);
+ op->flags &= ~FCOP_FLAGS_TERMIO;
+
+ nvme_fc_unmap_data(ctrl, rq, op);
+ nvme_complete_rq(rq);
+ nvme_fc_ctrl_put(ctrl);
+}
+
+static void nvme_fc_map_queues(struct blk_mq_tag_set *set)
+{
+ struct nvme_fc_ctrl *ctrl = to_fc_ctrl(set->driver_data);
+ int i;
+
+ for (i = 0; i < set->nr_maps; i++) {
+ struct blk_mq_queue_map *map = &set->map[i];
+
+ if (!map->nr_queues) {
+ WARN_ON(i == HCTX_TYPE_DEFAULT);
+ continue;
+ }
+
+ /* Call LLDD map queue functionality if defined */
+ if (ctrl->lport->ops->map_queues)
+ ctrl->lport->ops->map_queues(&ctrl->lport->localport,
+ map);
+ else
+ blk_mq_map_queues(map);
+ }
+}
+
+static const struct blk_mq_ops nvme_fc_mq_ops = {
+ .queue_rq = nvme_fc_queue_rq,
+ .complete = nvme_fc_complete_rq,
+ .init_request = nvme_fc_init_request,
+ .exit_request = nvme_fc_exit_request,
+ .init_hctx = nvme_fc_init_hctx,
+ .timeout = nvme_fc_timeout,
+ .map_queues = nvme_fc_map_queues,
+};
+
+static int
+nvme_fc_create_io_queues(struct nvme_fc_ctrl *ctrl)
+{
+ struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
+ unsigned int nr_io_queues;
+ int ret;
+
+ nr_io_queues = min(min(opts->nr_io_queues, num_online_cpus()),
+ ctrl->lport->ops->max_hw_queues);
+ ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues);
+ if (ret) {
+ dev_info(ctrl->ctrl.device,
+ "set_queue_count failed: %d\n", ret);
+ return ret;
+ }
+
+ ctrl->ctrl.queue_count = nr_io_queues + 1;
+ if (!nr_io_queues)
+ return 0;
+
+ nvme_fc_init_io_queues(ctrl);
+
+ ret = nvme_alloc_io_tag_set(&ctrl->ctrl, &ctrl->tag_set,
+ &nvme_fc_mq_ops, 1,
+ struct_size_t(struct nvme_fcp_op_w_sgl, priv,
+ ctrl->lport->ops->fcprqst_priv_sz));
+ if (ret)
+ return ret;
+
+ ret = nvme_fc_create_hw_io_queues(ctrl, ctrl->ctrl.sqsize + 1);
+ if (ret)
+ goto out_cleanup_tagset;
+
+ ret = nvme_fc_connect_io_queues(ctrl, ctrl->ctrl.sqsize + 1);
+ if (ret)
+ goto out_delete_hw_queues;
+
+ ctrl->ioq_live = true;
+
+ return 0;
+
+out_delete_hw_queues:
+ nvme_fc_delete_hw_io_queues(ctrl);
+out_cleanup_tagset:
+ nvme_remove_io_tag_set(&ctrl->ctrl);
+ nvme_fc_free_io_queues(ctrl);
+
+ /* force put free routine to ignore io queues */
+ ctrl->ctrl.tagset = NULL;
+
+ return ret;
+}
+
+static int
+nvme_fc_recreate_io_queues(struct nvme_fc_ctrl *ctrl)
+{
+ struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
+ u32 prior_ioq_cnt = ctrl->ctrl.queue_count - 1;
+ unsigned int nr_io_queues;
+ int ret;
+
+ nr_io_queues = min(min(opts->nr_io_queues, num_online_cpus()),
+ ctrl->lport->ops->max_hw_queues);
+ ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues);
+ if (ret) {
+ dev_info(ctrl->ctrl.device,
+ "set_queue_count failed: %d\n", ret);
+ return ret;
+ }
+
+ if (!nr_io_queues && prior_ioq_cnt) {
+ dev_info(ctrl->ctrl.device,
+ "Fail Reconnect: At least 1 io queue "
+ "required (was %d)\n", prior_ioq_cnt);
+ return -ENOSPC;
+ }
+
+ ctrl->ctrl.queue_count = nr_io_queues + 1;
+ /* check for io queues existing */
+ if (ctrl->ctrl.queue_count == 1)
+ return 0;
+
+ if (prior_ioq_cnt != nr_io_queues) {
+ dev_info(ctrl->ctrl.device,
+ "reconnect: revising io queue count from %d to %d\n",
+ prior_ioq_cnt, nr_io_queues);
+ blk_mq_update_nr_hw_queues(&ctrl->tag_set, nr_io_queues);
+ }
+
+ ret = nvme_fc_create_hw_io_queues(ctrl, ctrl->ctrl.sqsize + 1);
+ if (ret)
+ goto out_free_io_queues;
+
+ ret = nvme_fc_connect_io_queues(ctrl, ctrl->ctrl.sqsize + 1);
+ if (ret)
+ goto out_delete_hw_queues;
+
+ return 0;
+
+out_delete_hw_queues:
+ nvme_fc_delete_hw_io_queues(ctrl);
+out_free_io_queues:
+ nvme_fc_free_io_queues(ctrl);
+ return ret;
+}
+
+static void
+nvme_fc_rport_active_on_lport(struct nvme_fc_rport *rport)
+{
+ struct nvme_fc_lport *lport = rport->lport;
+
+ atomic_inc(&lport->act_rport_cnt);
+}
+
+static void
+nvme_fc_rport_inactive_on_lport(struct nvme_fc_rport *rport)
+{
+ struct nvme_fc_lport *lport = rport->lport;
+ u32 cnt;
+
+ cnt = atomic_dec_return(&lport->act_rport_cnt);
+ if (cnt == 0 && lport->localport.port_state == FC_OBJSTATE_DELETED)
+ lport->ops->localport_delete(&lport->localport);
+}
+
+static int
+nvme_fc_ctlr_active_on_rport(struct nvme_fc_ctrl *ctrl)
+{
+ struct nvme_fc_rport *rport = ctrl->rport;
+ u32 cnt;
+
+ if (test_and_set_bit(ASSOC_ACTIVE, &ctrl->flags))
+ return 1;
+
+ cnt = atomic_inc_return(&rport->act_ctrl_cnt);
+ if (cnt == 1)
+ nvme_fc_rport_active_on_lport(rport);
+
+ return 0;
+}
+
+static int
+nvme_fc_ctlr_inactive_on_rport(struct nvme_fc_ctrl *ctrl)
+{
+ struct nvme_fc_rport *rport = ctrl->rport;
+ struct nvme_fc_lport *lport = rport->lport;
+ u32 cnt;
+
+ /* clearing of ctrl->flags ASSOC_ACTIVE bit is in association delete */
+
+ cnt = atomic_dec_return(&rport->act_ctrl_cnt);
+ if (cnt == 0) {
+ if (rport->remoteport.port_state == FC_OBJSTATE_DELETED)
+ lport->ops->remoteport_delete(&rport->remoteport);
+ nvme_fc_rport_inactive_on_lport(rport);
+ }
+
+ return 0;
+}
+
+/*
+ * This routine restarts the controller on the host side, and
+ * on the link side, recreates the controller association.
+ */
+static int
+nvme_fc_create_association(struct nvme_fc_ctrl *ctrl)
+{
+ struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
+ struct nvmefc_ls_rcv_op *disls = NULL;
+ unsigned long flags;
+ int ret;
+ bool changed;
+
+ ++ctrl->ctrl.nr_reconnects;
+
+ if (ctrl->rport->remoteport.port_state != FC_OBJSTATE_ONLINE)
+ return -ENODEV;
+
+ if (nvme_fc_ctlr_active_on_rport(ctrl))
+ return -ENOTUNIQ;
+
+ dev_info(ctrl->ctrl.device,
+ "NVME-FC{%d}: create association : host wwpn 0x%016llx "
+ " rport wwpn 0x%016llx: NQN \"%s\"\n",
+ ctrl->cnum, ctrl->lport->localport.port_name,
+ ctrl->rport->remoteport.port_name, ctrl->ctrl.opts->subsysnqn);
+
+ clear_bit(ASSOC_FAILED, &ctrl->flags);
+
+ /*
+ * Create the admin queue
+ */
+
+ ret = __nvme_fc_create_hw_queue(ctrl, &ctrl->queues[0], 0,
+ NVME_AQ_DEPTH);
+ if (ret)
+ goto out_free_queue;
+
+ ret = nvme_fc_connect_admin_queue(ctrl, &ctrl->queues[0],
+ NVME_AQ_DEPTH, (NVME_AQ_DEPTH / 4));
+ if (ret)
+ goto out_delete_hw_queue;
+
+ ret = nvmf_connect_admin_queue(&ctrl->ctrl);
+ if (ret)
+ goto out_disconnect_admin_queue;
+
+ set_bit(NVME_FC_Q_LIVE, &ctrl->queues[0].flags);
+
+ /*
+ * Check controller capabilities
+ *
+ * todo:- add code to check if ctrl attributes changed from
+ * prior connection values
+ */
+
+ ret = nvme_enable_ctrl(&ctrl->ctrl);
+ if (!ret && test_bit(ASSOC_FAILED, &ctrl->flags))
+ ret = -EIO;
+ if (ret)
+ goto out_disconnect_admin_queue;
+
+ ctrl->ctrl.max_segments = ctrl->lport->ops->max_sgl_segments;
+ ctrl->ctrl.max_hw_sectors = ctrl->ctrl.max_segments <<
+ (ilog2(SZ_4K) - 9);
+
+ nvme_unquiesce_admin_queue(&ctrl->ctrl);
+
+ ret = nvme_init_ctrl_finish(&ctrl->ctrl, false);
+ if (!ret && test_bit(ASSOC_FAILED, &ctrl->flags))
+ ret = -EIO;
+ if (ret)
+ goto out_disconnect_admin_queue;
+
+ /* sanity checks */
+
+ /* FC-NVME does not have other data in the capsule */
+ if (ctrl->ctrl.icdoff) {
+ dev_err(ctrl->ctrl.device, "icdoff %d is not supported!\n",
+ ctrl->ctrl.icdoff);
+ ret = NVME_SC_INVALID_FIELD | NVME_SC_DNR;
+ goto out_disconnect_admin_queue;
+ }
+
+ /* FC-NVME supports normal SGL Data Block Descriptors */
+ if (!nvme_ctrl_sgl_supported(&ctrl->ctrl)) {
+ dev_err(ctrl->ctrl.device,
+ "Mandatory sgls are not supported!\n");
+ ret = NVME_SC_INVALID_FIELD | NVME_SC_DNR;
+ goto out_disconnect_admin_queue;
+ }
+
+ if (opts->queue_size > ctrl->ctrl.maxcmd) {
+ /* warn if maxcmd is lower than queue_size */
+ dev_warn(ctrl->ctrl.device,
+ "queue_size %zu > ctrl maxcmd %u, reducing "
+ "to maxcmd\n",
+ opts->queue_size, ctrl->ctrl.maxcmd);
+ opts->queue_size = ctrl->ctrl.maxcmd;
+ ctrl->ctrl.sqsize = opts->queue_size - 1;
+ }
+
+ ret = nvme_fc_init_aen_ops(ctrl);
+ if (ret)
+ goto out_term_aen_ops;
+
+ /*
+ * Create the io queues
+ */
+
+ if (ctrl->ctrl.queue_count > 1) {
+ if (!ctrl->ioq_live)
+ ret = nvme_fc_create_io_queues(ctrl);
+ else
+ ret = nvme_fc_recreate_io_queues(ctrl);
+ }
+ if (!ret && test_bit(ASSOC_FAILED, &ctrl->flags))
+ ret = -EIO;
+ if (ret)
+ goto out_term_aen_ops;
+
+ changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
+
+ ctrl->ctrl.nr_reconnects = 0;
+
+ if (changed)
+ nvme_start_ctrl(&ctrl->ctrl);
+
+ return 0; /* Success */
+
+out_term_aen_ops:
+ nvme_fc_term_aen_ops(ctrl);
+out_disconnect_admin_queue:
+ dev_warn(ctrl->ctrl.device,
+ "NVME-FC{%d}: create_assoc failed, assoc_id %llx ret %d\n",
+ ctrl->cnum, ctrl->association_id, ret);
+ /* send a Disconnect(association) LS to fc-nvme target */
+ nvme_fc_xmt_disconnect_assoc(ctrl);
+ spin_lock_irqsave(&ctrl->lock, flags);
+ ctrl->association_id = 0;
+ disls = ctrl->rcv_disconn;
+ ctrl->rcv_disconn = NULL;
+ spin_unlock_irqrestore(&ctrl->lock, flags);
+ if (disls)
+ nvme_fc_xmt_ls_rsp(disls);
+out_delete_hw_queue:
+ __nvme_fc_delete_hw_queue(ctrl, &ctrl->queues[0], 0);
+out_free_queue:
+ nvme_fc_free_queue(&ctrl->queues[0]);
+ clear_bit(ASSOC_ACTIVE, &ctrl->flags);
+ nvme_fc_ctlr_inactive_on_rport(ctrl);
+
+ return ret;
+}
+
+
+/*
+ * This routine stops operation of the controller on the host side.
+ * On the host os stack side: Admin and IO queues are stopped,
+ * outstanding ios on them terminated via FC ABTS.
+ * On the link side: the association is terminated.
+ */
+static void
+nvme_fc_delete_association(struct nvme_fc_ctrl *ctrl)
+{
+ struct nvmefc_ls_rcv_op *disls = NULL;
+ unsigned long flags;
+
+ if (!test_and_clear_bit(ASSOC_ACTIVE, &ctrl->flags))
+ return;
+
+ spin_lock_irqsave(&ctrl->lock, flags);
+ set_bit(FCCTRL_TERMIO, &ctrl->flags);
+ ctrl->iocnt = 0;
+ spin_unlock_irqrestore(&ctrl->lock, flags);
+
+ __nvme_fc_abort_outstanding_ios(ctrl, false);
+
+ /* kill the aens as they are a separate path */
+ nvme_fc_abort_aen_ops(ctrl);
+
+ /* wait for all io that had to be aborted */
+ spin_lock_irq(&ctrl->lock);
+ wait_event_lock_irq(ctrl->ioabort_wait, ctrl->iocnt == 0, ctrl->lock);
+ clear_bit(FCCTRL_TERMIO, &ctrl->flags);
+ spin_unlock_irq(&ctrl->lock);
+
+ nvme_fc_term_aen_ops(ctrl);
+
+ /*
+ * send a Disconnect(association) LS to fc-nvme target
+ * Note: could have been sent at top of process, but
+ * cleaner on link traffic if after the aborts complete.
+ * Note: if association doesn't exist, association_id will be 0
+ */
+ if (ctrl->association_id)
+ nvme_fc_xmt_disconnect_assoc(ctrl);
+
+ spin_lock_irqsave(&ctrl->lock, flags);
+ ctrl->association_id = 0;
+ disls = ctrl->rcv_disconn;
+ ctrl->rcv_disconn = NULL;
+ spin_unlock_irqrestore(&ctrl->lock, flags);
+ if (disls)
+ /*
+ * if a Disconnect Request was waiting for a response, send
+ * now that all ABTS's have been issued (and are complete).
+ */
+ nvme_fc_xmt_ls_rsp(disls);
+
+ if (ctrl->ctrl.tagset) {
+ nvme_fc_delete_hw_io_queues(ctrl);
+ nvme_fc_free_io_queues(ctrl);
+ }
+
+ __nvme_fc_delete_hw_queue(ctrl, &ctrl->queues[0], 0);
+ nvme_fc_free_queue(&ctrl->queues[0]);
+
+ /* re-enable the admin_q so anything new can fast fail */
+ nvme_unquiesce_admin_queue(&ctrl->ctrl);
+
+ /* resume the io queues so that things will fast fail */
+ nvme_unquiesce_io_queues(&ctrl->ctrl);
+
+ nvme_fc_ctlr_inactive_on_rport(ctrl);
+}
+
+static void
+nvme_fc_delete_ctrl(struct nvme_ctrl *nctrl)
+{
+ struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl);
+
+ cancel_work_sync(&ctrl->ioerr_work);
+ cancel_delayed_work_sync(&ctrl->connect_work);
+ /*
+ * kill the association on the link side. this will block
+ * waiting for io to terminate
+ */
+ nvme_fc_delete_association(ctrl);
+}
+
+static void
+nvme_fc_reconnect_or_delete(struct nvme_fc_ctrl *ctrl, int status)
+{
+ struct nvme_fc_rport *rport = ctrl->rport;
+ struct nvme_fc_remote_port *portptr = &rport->remoteport;
+ unsigned long recon_delay = ctrl->ctrl.opts->reconnect_delay * HZ;
+ bool recon = true;
+
+ if (nvme_ctrl_state(&ctrl->ctrl) != NVME_CTRL_CONNECTING)
+ return;
+
+ if (portptr->port_state == FC_OBJSTATE_ONLINE) {
+ dev_info(ctrl->ctrl.device,
+ "NVME-FC{%d}: reset: Reconnect attempt failed (%d)\n",
+ ctrl->cnum, status);
+ if (status > 0 && (status & NVME_SC_DNR))
+ recon = false;
+ } else if (time_after_eq(jiffies, rport->dev_loss_end))
+ recon = false;
+
+ if (recon && nvmf_should_reconnect(&ctrl->ctrl)) {
+ if (portptr->port_state == FC_OBJSTATE_ONLINE)
+ dev_info(ctrl->ctrl.device,
+ "NVME-FC{%d}: Reconnect attempt in %ld "
+ "seconds\n",
+ ctrl->cnum, recon_delay / HZ);
+ else if (time_after(jiffies + recon_delay, rport->dev_loss_end))
+ recon_delay = rport->dev_loss_end - jiffies;
+
+ queue_delayed_work(nvme_wq, &ctrl->connect_work, recon_delay);
+ } else {
+ if (portptr->port_state == FC_OBJSTATE_ONLINE) {
+ if (status > 0 && (status & NVME_SC_DNR))
+ dev_warn(ctrl->ctrl.device,
+ "NVME-FC{%d}: reconnect failure\n",
+ ctrl->cnum);
+ else
+ dev_warn(ctrl->ctrl.device,
+ "NVME-FC{%d}: Max reconnect attempts "
+ "(%d) reached.\n",
+ ctrl->cnum, ctrl->ctrl.nr_reconnects);
+ } else
+ dev_warn(ctrl->ctrl.device,
+ "NVME-FC{%d}: dev_loss_tmo (%d) expired "
+ "while waiting for remoteport connectivity.\n",
+ ctrl->cnum, min_t(int, portptr->dev_loss_tmo,
+ (ctrl->ctrl.opts->max_reconnects *
+ ctrl->ctrl.opts->reconnect_delay)));
+ WARN_ON(nvme_delete_ctrl(&ctrl->ctrl));
+ }
+}
+
+static void
+nvme_fc_reset_ctrl_work(struct work_struct *work)
+{
+ struct nvme_fc_ctrl *ctrl =
+ container_of(work, struct nvme_fc_ctrl, ctrl.reset_work);
+
+ nvme_stop_ctrl(&ctrl->ctrl);
+
+ /* will block will waiting for io to terminate */
+ nvme_fc_delete_association(ctrl);
+
+ if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING))
+ dev_err(ctrl->ctrl.device,
+ "NVME-FC{%d}: error_recovery: Couldn't change state "
+ "to CONNECTING\n", ctrl->cnum);
+
+ if (ctrl->rport->remoteport.port_state == FC_OBJSTATE_ONLINE) {
+ if (!queue_delayed_work(nvme_wq, &ctrl->connect_work, 0)) {
+ dev_err(ctrl->ctrl.device,
+ "NVME-FC{%d}: failed to schedule connect "
+ "after reset\n", ctrl->cnum);
+ } else {
+ flush_delayed_work(&ctrl->connect_work);
+ }
+ } else {
+ nvme_fc_reconnect_or_delete(ctrl, -ENOTCONN);
+ }
+}
+
+
+static const struct nvme_ctrl_ops nvme_fc_ctrl_ops = {
+ .name = "fc",
+ .module = THIS_MODULE,
+ .flags = NVME_F_FABRICS,
+ .reg_read32 = nvmf_reg_read32,
+ .reg_read64 = nvmf_reg_read64,
+ .reg_write32 = nvmf_reg_write32,
+ .free_ctrl = nvme_fc_nvme_ctrl_freed,
+ .submit_async_event = nvme_fc_submit_async_event,
+ .delete_ctrl = nvme_fc_delete_ctrl,
+ .get_address = nvmf_get_address,
+};
+
+static void
+nvme_fc_connect_ctrl_work(struct work_struct *work)
+{
+ int ret;
+
+ struct nvme_fc_ctrl *ctrl =
+ container_of(to_delayed_work(work),
+ struct nvme_fc_ctrl, connect_work);
+
+ ret = nvme_fc_create_association(ctrl);
+ if (ret)
+ nvme_fc_reconnect_or_delete(ctrl, ret);
+ else
+ dev_info(ctrl->ctrl.device,
+ "NVME-FC{%d}: controller connect complete\n",
+ ctrl->cnum);
+}
+
+
+static const struct blk_mq_ops nvme_fc_admin_mq_ops = {
+ .queue_rq = nvme_fc_queue_rq,
+ .complete = nvme_fc_complete_rq,
+ .init_request = nvme_fc_init_request,
+ .exit_request = nvme_fc_exit_request,
+ .init_hctx = nvme_fc_init_admin_hctx,
+ .timeout = nvme_fc_timeout,
+};
+
+
+/*
+ * Fails a controller request if it matches an existing controller
+ * (association) with the same tuple:
+ * <Host NQN, Host ID, local FC port, remote FC port, SUBSYS NQN>
+ *
+ * The ports don't need to be compared as they are intrinsically
+ * already matched by the port pointers supplied.
+ */
+static bool
+nvme_fc_existing_controller(struct nvme_fc_rport *rport,
+ struct nvmf_ctrl_options *opts)
+{
+ struct nvme_fc_ctrl *ctrl;
+ unsigned long flags;
+ bool found = false;
+
+ spin_lock_irqsave(&rport->lock, flags);
+ list_for_each_entry(ctrl, &rport->ctrl_list, ctrl_list) {
+ found = nvmf_ctlr_matches_baseopts(&ctrl->ctrl, opts);
+ if (found)
+ break;
+ }
+ spin_unlock_irqrestore(&rport->lock, flags);
+
+ return found;
+}
+
+static struct nvme_ctrl *
+nvme_fc_init_ctrl(struct device *dev, struct nvmf_ctrl_options *opts,
+ struct nvme_fc_lport *lport, struct nvme_fc_rport *rport)
+{
+ struct nvme_fc_ctrl *ctrl;
+ unsigned long flags;
+ int ret, idx, ctrl_loss_tmo;
+
+ if (!(rport->remoteport.port_role &
+ (FC_PORT_ROLE_NVME_DISCOVERY | FC_PORT_ROLE_NVME_TARGET))) {
+ ret = -EBADR;
+ goto out_fail;
+ }
+
+ if (!opts->duplicate_connect &&
+ nvme_fc_existing_controller(rport, opts)) {
+ ret = -EALREADY;
+ goto out_fail;
+ }
+
+ ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
+ if (!ctrl) {
+ ret = -ENOMEM;
+ goto out_fail;
+ }
+
+ idx = ida_alloc(&nvme_fc_ctrl_cnt, GFP_KERNEL);
+ if (idx < 0) {
+ ret = -ENOSPC;
+ goto out_free_ctrl;
+ }
+
+ /*
+ * if ctrl_loss_tmo is being enforced and the default reconnect delay
+ * is being used, change to a shorter reconnect delay for FC.
+ */
+ if (opts->max_reconnects != -1 &&
+ opts->reconnect_delay == NVMF_DEF_RECONNECT_DELAY &&
+ opts->reconnect_delay > NVME_FC_DEFAULT_RECONNECT_TMO) {
+ ctrl_loss_tmo = opts->max_reconnects * opts->reconnect_delay;
+ opts->reconnect_delay = NVME_FC_DEFAULT_RECONNECT_TMO;
+ opts->max_reconnects = DIV_ROUND_UP(ctrl_loss_tmo,
+ opts->reconnect_delay);
+ }
+
+ ctrl->ctrl.opts = opts;
+ ctrl->ctrl.nr_reconnects = 0;
+ if (lport->dev)
+ ctrl->ctrl.numa_node = dev_to_node(lport->dev);
+ else
+ ctrl->ctrl.numa_node = NUMA_NO_NODE;
+ INIT_LIST_HEAD(&ctrl->ctrl_list);
+ ctrl->lport = lport;
+ ctrl->rport = rport;
+ ctrl->dev = lport->dev;
+ ctrl->cnum = idx;
+ ctrl->ioq_live = false;
+ init_waitqueue_head(&ctrl->ioabort_wait);
+
+ get_device(ctrl->dev);
+ kref_init(&ctrl->ref);
+
+ INIT_WORK(&ctrl->ctrl.reset_work, nvme_fc_reset_ctrl_work);
+ INIT_DELAYED_WORK(&ctrl->connect_work, nvme_fc_connect_ctrl_work);
+ INIT_WORK(&ctrl->ioerr_work, nvme_fc_ctrl_ioerr_work);
+ spin_lock_init(&ctrl->lock);
+
+ /* io queue count */
+ ctrl->ctrl.queue_count = min_t(unsigned int,
+ opts->nr_io_queues,
+ lport->ops->max_hw_queues);
+ ctrl->ctrl.queue_count++; /* +1 for admin queue */
+
+ ctrl->ctrl.sqsize = opts->queue_size - 1;
+ ctrl->ctrl.kato = opts->kato;
+ ctrl->ctrl.cntlid = 0xffff;
+
+ ret = -ENOMEM;
+ ctrl->queues = kcalloc(ctrl->ctrl.queue_count,
+ sizeof(struct nvme_fc_queue), GFP_KERNEL);
+ if (!ctrl->queues)
+ goto out_free_ida;
+
+ nvme_fc_init_queue(ctrl, 0);
+
+ /*
+ * Would have been nice to init io queues tag set as well.
+ * However, we require interaction from the controller
+ * for max io queue count before we can do so.
+ * Defer this to the connect path.
+ */
+
+ ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_fc_ctrl_ops, 0);
+ if (ret)
+ goto out_free_queues;
+
+ /* at this point, teardown path changes to ref counting on nvme ctrl */
+
+ ret = nvme_alloc_admin_tag_set(&ctrl->ctrl, &ctrl->admin_tag_set,
+ &nvme_fc_admin_mq_ops,
+ struct_size_t(struct nvme_fcp_op_w_sgl, priv,
+ ctrl->lport->ops->fcprqst_priv_sz));
+ if (ret)
+ goto fail_ctrl;
+
+ spin_lock_irqsave(&rport->lock, flags);
+ list_add_tail(&ctrl->ctrl_list, &rport->ctrl_list);
+ spin_unlock_irqrestore(&rport->lock, flags);
+
+ if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RESETTING) ||
+ !nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) {
+ dev_err(ctrl->ctrl.device,
+ "NVME-FC{%d}: failed to init ctrl state\n", ctrl->cnum);
+ goto fail_ctrl;
+ }
+
+ if (!queue_delayed_work(nvme_wq, &ctrl->connect_work, 0)) {
+ dev_err(ctrl->ctrl.device,
+ "NVME-FC{%d}: failed to schedule initial connect\n",
+ ctrl->cnum);
+ goto fail_ctrl;
+ }
+
+ flush_delayed_work(&ctrl->connect_work);
+
+ dev_info(ctrl->ctrl.device,
+ "NVME-FC{%d}: new ctrl: NQN \"%s\"\n",
+ ctrl->cnum, nvmf_ctrl_subsysnqn(&ctrl->ctrl));
+
+ return &ctrl->ctrl;
+
+fail_ctrl:
+ nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_DELETING);
+ cancel_work_sync(&ctrl->ioerr_work);
+ cancel_work_sync(&ctrl->ctrl.reset_work);
+ cancel_delayed_work_sync(&ctrl->connect_work);
+
+ ctrl->ctrl.opts = NULL;
+
+ /* initiate nvme ctrl ref counting teardown */
+ nvme_uninit_ctrl(&ctrl->ctrl);
+
+ /* Remove core ctrl ref. */
+ nvme_put_ctrl(&ctrl->ctrl);
+
+ /* as we're past the point where we transition to the ref
+ * counting teardown path, if we return a bad pointer here,
+ * the calling routine, thinking it's prior to the
+ * transition, will do an rport put. Since the teardown
+ * path also does a rport put, we do an extra get here to
+ * so proper order/teardown happens.
+ */
+ nvme_fc_rport_get(rport);
+
+ return ERR_PTR(-EIO);
+
+out_free_queues:
+ kfree(ctrl->queues);
+out_free_ida:
+ put_device(ctrl->dev);
+ ida_free(&nvme_fc_ctrl_cnt, ctrl->cnum);
+out_free_ctrl:
+ kfree(ctrl);
+out_fail:
+ /* exit via here doesn't follow ctlr ref points */
+ return ERR_PTR(ret);
+}
+
+
+struct nvmet_fc_traddr {
+ u64 nn;
+ u64 pn;
+};
+
+static int
+__nvme_fc_parse_u64(substring_t *sstr, u64 *val)
+{
+ u64 token64;
+
+ if (match_u64(sstr, &token64))
+ return -EINVAL;
+ *val = token64;
+
+ return 0;
+}
+
+/*
+ * This routine validates and extracts the WWN's from the TRADDR string.
+ * As kernel parsers need the 0x to determine number base, universally
+ * build string to parse with 0x prefix before parsing name strings.
+ */
+static int
+nvme_fc_parse_traddr(struct nvmet_fc_traddr *traddr, char *buf, size_t blen)
+{
+ char name[2 + NVME_FC_TRADDR_HEXNAMELEN + 1];
+ substring_t wwn = { name, &name[sizeof(name)-1] };
+ int nnoffset, pnoffset;
+
+ /* validate if string is one of the 2 allowed formats */
+ if (strnlen(buf, blen) == NVME_FC_TRADDR_MAXLENGTH &&
+ !strncmp(buf, "nn-0x", NVME_FC_TRADDR_OXNNLEN) &&
+ !strncmp(&buf[NVME_FC_TRADDR_MAX_PN_OFFSET],
+ "pn-0x", NVME_FC_TRADDR_OXNNLEN)) {
+ nnoffset = NVME_FC_TRADDR_OXNNLEN;
+ pnoffset = NVME_FC_TRADDR_MAX_PN_OFFSET +
+ NVME_FC_TRADDR_OXNNLEN;
+ } else if ((strnlen(buf, blen) == NVME_FC_TRADDR_MINLENGTH &&
+ !strncmp(buf, "nn-", NVME_FC_TRADDR_NNLEN) &&
+ !strncmp(&buf[NVME_FC_TRADDR_MIN_PN_OFFSET],
+ "pn-", NVME_FC_TRADDR_NNLEN))) {
+ nnoffset = NVME_FC_TRADDR_NNLEN;
+ pnoffset = NVME_FC_TRADDR_MIN_PN_OFFSET + NVME_FC_TRADDR_NNLEN;
+ } else
+ goto out_einval;
+
+ name[0] = '0';
+ name[1] = 'x';
+ name[2 + NVME_FC_TRADDR_HEXNAMELEN] = 0;
+
+ memcpy(&name[2], &buf[nnoffset], NVME_FC_TRADDR_HEXNAMELEN);
+ if (__nvme_fc_parse_u64(&wwn, &traddr->nn))
+ goto out_einval;
+
+ memcpy(&name[2], &buf[pnoffset], NVME_FC_TRADDR_HEXNAMELEN);
+ if (__nvme_fc_parse_u64(&wwn, &traddr->pn))
+ goto out_einval;
+
+ return 0;
+
+out_einval:
+ pr_warn("%s: bad traddr string\n", __func__);
+ return -EINVAL;
+}
+
+static struct nvme_ctrl *
+nvme_fc_create_ctrl(struct device *dev, struct nvmf_ctrl_options *opts)
+{
+ struct nvme_fc_lport *lport;
+ struct nvme_fc_rport *rport;
+ struct nvme_ctrl *ctrl;
+ struct nvmet_fc_traddr laddr = { 0L, 0L };
+ struct nvmet_fc_traddr raddr = { 0L, 0L };
+ unsigned long flags;
+ int ret;
+
+ ret = nvme_fc_parse_traddr(&raddr, opts->traddr, NVMF_TRADDR_SIZE);
+ if (ret || !raddr.nn || !raddr.pn)
+ return ERR_PTR(-EINVAL);
+
+ ret = nvme_fc_parse_traddr(&laddr, opts->host_traddr, NVMF_TRADDR_SIZE);
+ if (ret || !laddr.nn || !laddr.pn)
+ return ERR_PTR(-EINVAL);
+
+ /* find the host and remote ports to connect together */
+ spin_lock_irqsave(&nvme_fc_lock, flags);
+ list_for_each_entry(lport, &nvme_fc_lport_list, port_list) {
+ if (lport->localport.node_name != laddr.nn ||
+ lport->localport.port_name != laddr.pn ||
+ lport->localport.port_state != FC_OBJSTATE_ONLINE)
+ continue;
+
+ list_for_each_entry(rport, &lport->endp_list, endp_list) {
+ if (rport->remoteport.node_name != raddr.nn ||
+ rport->remoteport.port_name != raddr.pn ||
+ rport->remoteport.port_state != FC_OBJSTATE_ONLINE)
+ continue;
+
+ /* if fail to get reference fall through. Will error */
+ if (!nvme_fc_rport_get(rport))
+ break;
+
+ spin_unlock_irqrestore(&nvme_fc_lock, flags);
+
+ ctrl = nvme_fc_init_ctrl(dev, opts, lport, rport);
+ if (IS_ERR(ctrl))
+ nvme_fc_rport_put(rport);
+ return ctrl;
+ }
+ }
+ spin_unlock_irqrestore(&nvme_fc_lock, flags);
+
+ pr_warn("%s: %s - %s combination not found\n",
+ __func__, opts->traddr, opts->host_traddr);
+ return ERR_PTR(-ENOENT);
+}
+
+
+static struct nvmf_transport_ops nvme_fc_transport = {
+ .name = "fc",
+ .module = THIS_MODULE,
+ .required_opts = NVMF_OPT_TRADDR | NVMF_OPT_HOST_TRADDR,
+ .allowed_opts = NVMF_OPT_RECONNECT_DELAY | NVMF_OPT_CTRL_LOSS_TMO,
+ .create_ctrl = nvme_fc_create_ctrl,
+};
+
+/* Arbitrary successive failures max. With lots of subsystems could be high */
+#define DISCOVERY_MAX_FAIL 20
+
+static ssize_t nvme_fc_nvme_discovery_store(struct device *dev,
+ struct device_attribute *attr, const char *buf, size_t count)
+{
+ unsigned long flags;
+ LIST_HEAD(local_disc_list);
+ struct nvme_fc_lport *lport;
+ struct nvme_fc_rport *rport;
+ int failcnt = 0;
+
+ spin_lock_irqsave(&nvme_fc_lock, flags);
+restart:
+ list_for_each_entry(lport, &nvme_fc_lport_list, port_list) {
+ list_for_each_entry(rport, &lport->endp_list, endp_list) {
+ if (!nvme_fc_lport_get(lport))
+ continue;
+ if (!nvme_fc_rport_get(rport)) {
+ /*
+ * This is a temporary condition. Upon restart
+ * this rport will be gone from the list.
+ *
+ * Revert the lport put and retry. Anything
+ * added to the list already will be skipped (as
+ * they are no longer list_empty). Loops should
+ * resume at rports that were not yet seen.
+ */
+ nvme_fc_lport_put(lport);
+
+ if (failcnt++ < DISCOVERY_MAX_FAIL)
+ goto restart;
+
+ pr_err("nvme_discovery: too many reference "
+ "failures\n");
+ goto process_local_list;
+ }
+ if (list_empty(&rport->disc_list))
+ list_add_tail(&rport->disc_list,
+ &local_disc_list);
+ }
+ }
+
+process_local_list:
+ while (!list_empty(&local_disc_list)) {
+ rport = list_first_entry(&local_disc_list,
+ struct nvme_fc_rport, disc_list);
+ list_del_init(&rport->disc_list);
+ spin_unlock_irqrestore(&nvme_fc_lock, flags);
+
+ lport = rport->lport;
+ /* signal discovery. Won't hurt if it repeats */
+ nvme_fc_signal_discovery_scan(lport, rport);
+ nvme_fc_rport_put(rport);
+ nvme_fc_lport_put(lport);
+
+ spin_lock_irqsave(&nvme_fc_lock, flags);
+ }
+ spin_unlock_irqrestore(&nvme_fc_lock, flags);
+
+ return count;
+}
+
+static DEVICE_ATTR(nvme_discovery, 0200, NULL, nvme_fc_nvme_discovery_store);
+
+#ifdef CONFIG_BLK_CGROUP_FC_APPID
+/* Parse the cgroup id from a buf and return the length of cgrpid */
+static int fc_parse_cgrpid(const char *buf, u64 *id)
+{
+ char cgrp_id[16+1];
+ int cgrpid_len, j;
+
+ memset(cgrp_id, 0x0, sizeof(cgrp_id));
+ for (cgrpid_len = 0, j = 0; cgrpid_len < 17; cgrpid_len++) {
+ if (buf[cgrpid_len] != ':')
+ cgrp_id[cgrpid_len] = buf[cgrpid_len];
+ else {
+ j = 1;
+ break;
+ }
+ }
+ if (!j)
+ return -EINVAL;
+ if (kstrtou64(cgrp_id, 16, id) < 0)
+ return -EINVAL;
+ return cgrpid_len;
+}
+
+/*
+ * Parse and update the appid in the blkcg associated with the cgroupid.
+ */
+static ssize_t fc_appid_store(struct device *dev,
+ struct device_attribute *attr, const char *buf, size_t count)
+{
+ size_t orig_count = count;
+ u64 cgrp_id;
+ int appid_len = 0;
+ int cgrpid_len = 0;
+ char app_id[FC_APPID_LEN];
+ int ret = 0;
+
+ if (buf[count-1] == '\n')
+ count--;
+
+ if ((count > (16+1+FC_APPID_LEN)) || (!strchr(buf, ':')))
+ return -EINVAL;
+
+ cgrpid_len = fc_parse_cgrpid(buf, &cgrp_id);
+ if (cgrpid_len < 0)
+ return -EINVAL;
+ appid_len = count - cgrpid_len - 1;
+ if (appid_len > FC_APPID_LEN)
+ return -EINVAL;
+
+ memset(app_id, 0x0, sizeof(app_id));
+ memcpy(app_id, &buf[cgrpid_len+1], appid_len);
+ ret = blkcg_set_fc_appid(app_id, cgrp_id, sizeof(app_id));
+ if (ret < 0)
+ return ret;
+ return orig_count;
+}
+static DEVICE_ATTR(appid_store, 0200, NULL, fc_appid_store);
+#endif /* CONFIG_BLK_CGROUP_FC_APPID */
+
+static struct attribute *nvme_fc_attrs[] = {
+ &dev_attr_nvme_discovery.attr,
+#ifdef CONFIG_BLK_CGROUP_FC_APPID
+ &dev_attr_appid_store.attr,
+#endif
+ NULL
+};
+
+static const struct attribute_group nvme_fc_attr_group = {
+ .attrs = nvme_fc_attrs,
+};
+
+static const struct attribute_group *nvme_fc_attr_groups[] = {
+ &nvme_fc_attr_group,
+ NULL
+};
+
+static struct class fc_class = {
+ .name = "fc",
+ .dev_groups = nvme_fc_attr_groups,
+};
+
+static int __init nvme_fc_init_module(void)
+{
+ int ret;
+
+ nvme_fc_wq = alloc_workqueue("nvme_fc_wq", WQ_MEM_RECLAIM, 0);
+ if (!nvme_fc_wq)
+ return -ENOMEM;
+
+ /*
+ * NOTE:
+ * It is expected that in the future the kernel will combine
+ * the FC-isms that are currently under scsi and now being
+ * added to by NVME into a new standalone FC class. The SCSI
+ * and NVME protocols and their devices would be under this
+ * new FC class.
+ *
+ * As we need something to post FC-specific udev events to,
+ * specifically for nvme probe events, start by creating the
+ * new device class. When the new standalone FC class is
+ * put in place, this code will move to a more generic
+ * location for the class.
+ */
+ ret = class_register(&fc_class);
+ if (ret) {
+ pr_err("couldn't register class fc\n");
+ goto out_destroy_wq;
+ }
+
+ /*
+ * Create a device for the FC-centric udev events
+ */
+ fc_udev_device = device_create(&fc_class, NULL, MKDEV(0, 0), NULL,
+ "fc_udev_device");
+ if (IS_ERR(fc_udev_device)) {
+ pr_err("couldn't create fc_udev device!\n");
+ ret = PTR_ERR(fc_udev_device);
+ goto out_destroy_class;
+ }
+
+ ret = nvmf_register_transport(&nvme_fc_transport);
+ if (ret)
+ goto out_destroy_device;
+
+ return 0;
+
+out_destroy_device:
+ device_destroy(&fc_class, MKDEV(0, 0));
+out_destroy_class:
+ class_unregister(&fc_class);
+out_destroy_wq:
+ destroy_workqueue(nvme_fc_wq);
+
+ return ret;
+}
+
+static void
+nvme_fc_delete_controllers(struct nvme_fc_rport *rport)
+{
+ struct nvme_fc_ctrl *ctrl;
+
+ spin_lock(&rport->lock);
+ list_for_each_entry(ctrl, &rport->ctrl_list, ctrl_list) {
+ dev_warn(ctrl->ctrl.device,
+ "NVME-FC{%d}: transport unloading: deleting ctrl\n",
+ ctrl->cnum);
+ nvme_delete_ctrl(&ctrl->ctrl);
+ }
+ spin_unlock(&rport->lock);
+}
+
+static void
+nvme_fc_cleanup_for_unload(void)
+{
+ struct nvme_fc_lport *lport;
+ struct nvme_fc_rport *rport;
+
+ list_for_each_entry(lport, &nvme_fc_lport_list, port_list) {
+ list_for_each_entry(rport, &lport->endp_list, endp_list) {
+ nvme_fc_delete_controllers(rport);
+ }
+ }
+}
+
+static void __exit nvme_fc_exit_module(void)
+{
+ unsigned long flags;
+ bool need_cleanup = false;
+
+ spin_lock_irqsave(&nvme_fc_lock, flags);
+ nvme_fc_waiting_to_unload = true;
+ if (!list_empty(&nvme_fc_lport_list)) {
+ need_cleanup = true;
+ nvme_fc_cleanup_for_unload();
+ }
+ spin_unlock_irqrestore(&nvme_fc_lock, flags);
+ if (need_cleanup) {
+ pr_info("%s: waiting for ctlr deletes\n", __func__);
+ wait_for_completion(&nvme_fc_unload_proceed);
+ pr_info("%s: ctrl deletes complete\n", __func__);
+ }
+
+ nvmf_unregister_transport(&nvme_fc_transport);
+
+ ida_destroy(&nvme_fc_local_port_cnt);
+ ida_destroy(&nvme_fc_ctrl_cnt);
+
+ device_destroy(&fc_class, MKDEV(0, 0));
+ class_unregister(&fc_class);
+ destroy_workqueue(nvme_fc_wq);
+}
+
+module_init(nvme_fc_init_module);
+module_exit(nvme_fc_exit_module);
+
+MODULE_LICENSE("GPL v2");
diff --git a/drivers/nvme/host/fc.h b/drivers/nvme/host/fc.h
new file mode 100644
index 0000000000..05ce566f2c
--- /dev/null
+++ b/drivers/nvme/host/fc.h
@@ -0,0 +1,227 @@
+/* SPDX-License-Identifier: GPL-2.0 */
+/*
+ * Copyright (c) 2016, Avago Technologies
+ */
+
+#ifndef _NVME_FC_TRANSPORT_H
+#define _NVME_FC_TRANSPORT_H 1
+
+
+/*
+ * Common definitions between the nvme_fc (host) transport and
+ * nvmet_fc (target) transport implementation.
+ */
+
+/*
+ * ****************** FC-NVME LS HANDLING ******************
+ */
+
+union nvmefc_ls_requests {
+ struct fcnvme_ls_rqst_w0 w0;
+ struct fcnvme_ls_cr_assoc_rqst rq_cr_assoc;
+ struct fcnvme_ls_cr_conn_rqst rq_cr_conn;
+ struct fcnvme_ls_disconnect_assoc_rqst rq_dis_assoc;
+ struct fcnvme_ls_disconnect_conn_rqst rq_dis_conn;
+} __aligned(128); /* alignment for other things alloc'd with */
+
+union nvmefc_ls_responses {
+ struct fcnvme_ls_rjt rsp_rjt;
+ struct fcnvme_ls_cr_assoc_acc rsp_cr_assoc;
+ struct fcnvme_ls_cr_conn_acc rsp_cr_conn;
+ struct fcnvme_ls_disconnect_assoc_acc rsp_dis_assoc;
+ struct fcnvme_ls_disconnect_conn_acc rsp_dis_conn;
+} __aligned(128); /* alignment for other things alloc'd with */
+
+static inline void
+nvme_fc_format_rsp_hdr(void *buf, u8 ls_cmd, __be32 desc_len, u8 rqst_ls_cmd)
+{
+ struct fcnvme_ls_acc_hdr *acc = buf;
+
+ acc->w0.ls_cmd = ls_cmd;
+ acc->desc_list_len = desc_len;
+ acc->rqst.desc_tag = cpu_to_be32(FCNVME_LSDESC_RQST);
+ acc->rqst.desc_len =
+ fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_rqst));
+ acc->rqst.w0.ls_cmd = rqst_ls_cmd;
+}
+
+static inline int
+nvme_fc_format_rjt(void *buf, u16 buflen, u8 ls_cmd,
+ u8 reason, u8 explanation, u8 vendor)
+{
+ struct fcnvme_ls_rjt *rjt = buf;
+
+ nvme_fc_format_rsp_hdr(buf, FCNVME_LSDESC_RQST,
+ fcnvme_lsdesc_len(sizeof(struct fcnvme_ls_rjt)),
+ ls_cmd);
+ rjt->rjt.desc_tag = cpu_to_be32(FCNVME_LSDESC_RJT);
+ rjt->rjt.desc_len = fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_rjt));
+ rjt->rjt.reason_code = reason;
+ rjt->rjt.reason_explanation = explanation;
+ rjt->rjt.vendor = vendor;
+
+ return sizeof(struct fcnvme_ls_rjt);
+}
+
+/* Validation Error indexes into the string table below */
+enum {
+ VERR_NO_ERROR = 0,
+ VERR_CR_ASSOC_LEN = 1,
+ VERR_CR_ASSOC_RQST_LEN = 2,
+ VERR_CR_ASSOC_CMD = 3,
+ VERR_CR_ASSOC_CMD_LEN = 4,
+ VERR_ERSP_RATIO = 5,
+ VERR_ASSOC_ALLOC_FAIL = 6,
+ VERR_QUEUE_ALLOC_FAIL = 7,
+ VERR_CR_CONN_LEN = 8,
+ VERR_CR_CONN_RQST_LEN = 9,
+ VERR_ASSOC_ID = 10,
+ VERR_ASSOC_ID_LEN = 11,
+ VERR_NO_ASSOC = 12,
+ VERR_CONN_ID = 13,
+ VERR_CONN_ID_LEN = 14,
+ VERR_INVAL_CONN = 15,
+ VERR_CR_CONN_CMD = 16,
+ VERR_CR_CONN_CMD_LEN = 17,
+ VERR_DISCONN_LEN = 18,
+ VERR_DISCONN_RQST_LEN = 19,
+ VERR_DISCONN_CMD = 20,
+ VERR_DISCONN_CMD_LEN = 21,
+ VERR_DISCONN_SCOPE = 22,
+ VERR_RS_LEN = 23,
+ VERR_RS_RQST_LEN = 24,
+ VERR_RS_CMD = 25,
+ VERR_RS_CMD_LEN = 26,
+ VERR_RS_RCTL = 27,
+ VERR_RS_RO = 28,
+ VERR_LSACC = 29,
+ VERR_LSDESC_RQST = 30,
+ VERR_LSDESC_RQST_LEN = 31,
+ VERR_CR_ASSOC = 32,
+ VERR_CR_ASSOC_ACC_LEN = 33,
+ VERR_CR_CONN = 34,
+ VERR_CR_CONN_ACC_LEN = 35,
+ VERR_DISCONN = 36,
+ VERR_DISCONN_ACC_LEN = 37,
+};
+
+static char *validation_errors[] = {
+ "OK",
+ "Bad CR_ASSOC Length",
+ "Bad CR_ASSOC Rqst Length",
+ "Not CR_ASSOC Cmd",
+ "Bad CR_ASSOC Cmd Length",
+ "Bad Ersp Ratio",
+ "Association Allocation Failed",
+ "Queue Allocation Failed",
+ "Bad CR_CONN Length",
+ "Bad CR_CONN Rqst Length",
+ "Not Association ID",
+ "Bad Association ID Length",
+ "No Association",
+ "Not Connection ID",
+ "Bad Connection ID Length",
+ "Invalid Connection ID",
+ "Not CR_CONN Cmd",
+ "Bad CR_CONN Cmd Length",
+ "Bad DISCONN Length",
+ "Bad DISCONN Rqst Length",
+ "Not DISCONN Cmd",
+ "Bad DISCONN Cmd Length",
+ "Bad Disconnect Scope",
+ "Bad RS Length",
+ "Bad RS Rqst Length",
+ "Not RS Cmd",
+ "Bad RS Cmd Length",
+ "Bad RS R_CTL",
+ "Bad RS Relative Offset",
+ "Not LS_ACC",
+ "Not LSDESC_RQST",
+ "Bad LSDESC_RQST Length",
+ "Not CR_ASSOC Rqst",
+ "Bad CR_ASSOC ACC Length",
+ "Not CR_CONN Rqst",
+ "Bad CR_CONN ACC Length",
+ "Not Disconnect Rqst",
+ "Bad Disconnect ACC Length",
+};
+
+#define NVME_FC_LAST_LS_CMD_VALUE FCNVME_LS_DISCONNECT_CONN
+
+static char *nvmefc_ls_names[] = {
+ "Reserved (0)",
+ "RJT (1)",
+ "ACC (2)",
+ "Create Association",
+ "Create Connection",
+ "Disconnect Association",
+ "Disconnect Connection",
+};
+
+static inline void
+nvmefc_fmt_lsreq_discon_assoc(struct nvmefc_ls_req *lsreq,
+ struct fcnvme_ls_disconnect_assoc_rqst *discon_rqst,
+ struct fcnvme_ls_disconnect_assoc_acc *discon_acc,
+ u64 association_id)
+{
+ lsreq->rqstaddr = discon_rqst;
+ lsreq->rqstlen = sizeof(*discon_rqst);
+ lsreq->rspaddr = discon_acc;
+ lsreq->rsplen = sizeof(*discon_acc);
+ lsreq->timeout = NVME_FC_LS_TIMEOUT_SEC;
+
+ discon_rqst->w0.ls_cmd = FCNVME_LS_DISCONNECT_ASSOC;
+ discon_rqst->desc_list_len = cpu_to_be32(
+ sizeof(struct fcnvme_lsdesc_assoc_id) +
+ sizeof(struct fcnvme_lsdesc_disconn_cmd));
+
+ discon_rqst->associd.desc_tag = cpu_to_be32(FCNVME_LSDESC_ASSOC_ID);
+ discon_rqst->associd.desc_len =
+ fcnvme_lsdesc_len(
+ sizeof(struct fcnvme_lsdesc_assoc_id));
+
+ discon_rqst->associd.association_id = cpu_to_be64(association_id);
+
+ discon_rqst->discon_cmd.desc_tag = cpu_to_be32(
+ FCNVME_LSDESC_DISCONN_CMD);
+ discon_rqst->discon_cmd.desc_len =
+ fcnvme_lsdesc_len(
+ sizeof(struct fcnvme_lsdesc_disconn_cmd));
+}
+
+static inline int
+nvmefc_vldt_lsreq_discon_assoc(u32 rqstlen,
+ struct fcnvme_ls_disconnect_assoc_rqst *rqst)
+{
+ int ret = 0;
+
+ if (rqstlen < sizeof(struct fcnvme_ls_disconnect_assoc_rqst))
+ ret = VERR_DISCONN_LEN;
+ else if (rqst->desc_list_len !=
+ fcnvme_lsdesc_len(
+ sizeof(struct fcnvme_ls_disconnect_assoc_rqst)))
+ ret = VERR_DISCONN_RQST_LEN;
+ else if (rqst->associd.desc_tag != cpu_to_be32(FCNVME_LSDESC_ASSOC_ID))
+ ret = VERR_ASSOC_ID;
+ else if (rqst->associd.desc_len !=
+ fcnvme_lsdesc_len(
+ sizeof(struct fcnvme_lsdesc_assoc_id)))
+ ret = VERR_ASSOC_ID_LEN;
+ else if (rqst->discon_cmd.desc_tag !=
+ cpu_to_be32(FCNVME_LSDESC_DISCONN_CMD))
+ ret = VERR_DISCONN_CMD;
+ else if (rqst->discon_cmd.desc_len !=
+ fcnvme_lsdesc_len(
+ sizeof(struct fcnvme_lsdesc_disconn_cmd)))
+ ret = VERR_DISCONN_CMD_LEN;
+ /*
+ * As the standard changed on the LS, check if old format and scope
+ * something other than Association (e.g. 0).
+ */
+ else if (rqst->discon_cmd.rsvd8[0])
+ ret = VERR_DISCONN_SCOPE;
+
+ return ret;
+}
+
+#endif /* _NVME_FC_TRANSPORT_H */
diff --git a/drivers/nvme/host/hwmon.c b/drivers/nvme/host/hwmon.c
new file mode 100644
index 0000000000..8df73a0b39
--- /dev/null
+++ b/drivers/nvme/host/hwmon.c
@@ -0,0 +1,281 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * NVM Express hardware monitoring support
+ * Copyright (c) 2019, Guenter Roeck
+ */
+
+#include <linux/hwmon.h>
+#include <linux/units.h>
+#include <asm/unaligned.h>
+
+#include "nvme.h"
+
+struct nvme_hwmon_data {
+ struct nvme_ctrl *ctrl;
+ struct nvme_smart_log *log;
+ struct mutex read_lock;
+};
+
+static int nvme_get_temp_thresh(struct nvme_ctrl *ctrl, int sensor, bool under,
+ long *temp)
+{
+ unsigned int threshold = sensor << NVME_TEMP_THRESH_SELECT_SHIFT;
+ u32 status;
+ int ret;
+
+ if (under)
+ threshold |= NVME_TEMP_THRESH_TYPE_UNDER;
+
+ ret = nvme_get_features(ctrl, NVME_FEAT_TEMP_THRESH, threshold, NULL, 0,
+ &status);
+ if (ret > 0)
+ return -EIO;
+ if (ret < 0)
+ return ret;
+ *temp = kelvin_to_millicelsius(status & NVME_TEMP_THRESH_MASK);
+
+ return 0;
+}
+
+static int nvme_set_temp_thresh(struct nvme_ctrl *ctrl, int sensor, bool under,
+ long temp)
+{
+ unsigned int threshold = sensor << NVME_TEMP_THRESH_SELECT_SHIFT;
+ int ret;
+
+ temp = millicelsius_to_kelvin(temp);
+ threshold |= clamp_val(temp, 0, NVME_TEMP_THRESH_MASK);
+
+ if (under)
+ threshold |= NVME_TEMP_THRESH_TYPE_UNDER;
+
+ ret = nvme_set_features(ctrl, NVME_FEAT_TEMP_THRESH, threshold, NULL, 0,
+ NULL);
+ if (ret > 0)
+ return -EIO;
+
+ return ret;
+}
+
+static int nvme_hwmon_get_smart_log(struct nvme_hwmon_data *data)
+{
+ return nvme_get_log(data->ctrl, NVME_NSID_ALL, NVME_LOG_SMART, 0,
+ NVME_CSI_NVM, data->log, sizeof(*data->log), 0);
+}
+
+static int nvme_hwmon_read(struct device *dev, enum hwmon_sensor_types type,
+ u32 attr, int channel, long *val)
+{
+ struct nvme_hwmon_data *data = dev_get_drvdata(dev);
+ struct nvme_smart_log *log = data->log;
+ int temp;
+ int err;
+
+ /*
+ * First handle attributes which don't require us to read
+ * the smart log.
+ */
+ switch (attr) {
+ case hwmon_temp_max:
+ return nvme_get_temp_thresh(data->ctrl, channel, false, val);
+ case hwmon_temp_min:
+ return nvme_get_temp_thresh(data->ctrl, channel, true, val);
+ case hwmon_temp_crit:
+ *val = kelvin_to_millicelsius(data->ctrl->cctemp);
+ return 0;
+ default:
+ break;
+ }
+
+ mutex_lock(&data->read_lock);
+ err = nvme_hwmon_get_smart_log(data);
+ if (err)
+ goto unlock;
+
+ switch (attr) {
+ case hwmon_temp_input:
+ if (!channel)
+ temp = get_unaligned_le16(log->temperature);
+ else
+ temp = le16_to_cpu(log->temp_sensor[channel - 1]);
+ *val = kelvin_to_millicelsius(temp);
+ break;
+ case hwmon_temp_alarm:
+ *val = !!(log->critical_warning & NVME_SMART_CRIT_TEMPERATURE);
+ break;
+ default:
+ err = -EOPNOTSUPP;
+ break;
+ }
+unlock:
+ mutex_unlock(&data->read_lock);
+ return err;
+}
+
+static int nvme_hwmon_write(struct device *dev, enum hwmon_sensor_types type,
+ u32 attr, int channel, long val)
+{
+ struct nvme_hwmon_data *data = dev_get_drvdata(dev);
+
+ switch (attr) {
+ case hwmon_temp_max:
+ return nvme_set_temp_thresh(data->ctrl, channel, false, val);
+ case hwmon_temp_min:
+ return nvme_set_temp_thresh(data->ctrl, channel, true, val);
+ default:
+ break;
+ }
+
+ return -EOPNOTSUPP;
+}
+
+static const char * const nvme_hwmon_sensor_names[] = {
+ "Composite",
+ "Sensor 1",
+ "Sensor 2",
+ "Sensor 3",
+ "Sensor 4",
+ "Sensor 5",
+ "Sensor 6",
+ "Sensor 7",
+ "Sensor 8",
+};
+
+static int nvme_hwmon_read_string(struct device *dev,
+ enum hwmon_sensor_types type, u32 attr,
+ int channel, const char **str)
+{
+ *str = nvme_hwmon_sensor_names[channel];
+ return 0;
+}
+
+static umode_t nvme_hwmon_is_visible(const void *_data,
+ enum hwmon_sensor_types type,
+ u32 attr, int channel)
+{
+ const struct nvme_hwmon_data *data = _data;
+
+ switch (attr) {
+ case hwmon_temp_crit:
+ if (!channel && data->ctrl->cctemp)
+ return 0444;
+ break;
+ case hwmon_temp_max:
+ case hwmon_temp_min:
+ if ((!channel && data->ctrl->wctemp) ||
+ (channel && data->log->temp_sensor[channel - 1] &&
+ !(data->ctrl->quirks &
+ NVME_QUIRK_NO_SECONDARY_TEMP_THRESH))) {
+ if (data->ctrl->quirks &
+ NVME_QUIRK_NO_TEMP_THRESH_CHANGE)
+ return 0444;
+ return 0644;
+ }
+ break;
+ case hwmon_temp_alarm:
+ if (!channel)
+ return 0444;
+ break;
+ case hwmon_temp_input:
+ case hwmon_temp_label:
+ if (!channel || data->log->temp_sensor[channel - 1])
+ return 0444;
+ break;
+ default:
+ break;
+ }
+ return 0;
+}
+
+static const struct hwmon_channel_info *const nvme_hwmon_info[] = {
+ HWMON_CHANNEL_INFO(chip, HWMON_C_REGISTER_TZ),
+ HWMON_CHANNEL_INFO(temp,
+ HWMON_T_INPUT | HWMON_T_MAX | HWMON_T_MIN |
+ HWMON_T_CRIT | HWMON_T_LABEL | HWMON_T_ALARM,
+ HWMON_T_INPUT | HWMON_T_MAX | HWMON_T_MIN |
+ HWMON_T_LABEL,
+ HWMON_T_INPUT | HWMON_T_MAX | HWMON_T_MIN |
+ HWMON_T_LABEL,
+ HWMON_T_INPUT | HWMON_T_MAX | HWMON_T_MIN |
+ HWMON_T_LABEL,
+ HWMON_T_INPUT | HWMON_T_MAX | HWMON_T_MIN |
+ HWMON_T_LABEL,
+ HWMON_T_INPUT | HWMON_T_MAX | HWMON_T_MIN |
+ HWMON_T_LABEL,
+ HWMON_T_INPUT | HWMON_T_MAX | HWMON_T_MIN |
+ HWMON_T_LABEL,
+ HWMON_T_INPUT | HWMON_T_MAX | HWMON_T_MIN |
+ HWMON_T_LABEL,
+ HWMON_T_INPUT | HWMON_T_MAX | HWMON_T_MIN |
+ HWMON_T_LABEL),
+ NULL
+};
+
+static const struct hwmon_ops nvme_hwmon_ops = {
+ .is_visible = nvme_hwmon_is_visible,
+ .read = nvme_hwmon_read,
+ .read_string = nvme_hwmon_read_string,
+ .write = nvme_hwmon_write,
+};
+
+static const struct hwmon_chip_info nvme_hwmon_chip_info = {
+ .ops = &nvme_hwmon_ops,
+ .info = nvme_hwmon_info,
+};
+
+int nvme_hwmon_init(struct nvme_ctrl *ctrl)
+{
+ struct device *dev = ctrl->device;
+ struct nvme_hwmon_data *data;
+ struct device *hwmon;
+ int err;
+
+ data = kzalloc(sizeof(*data), GFP_KERNEL);
+ if (!data)
+ return -ENOMEM;
+
+ data->log = kzalloc(sizeof(*data->log), GFP_KERNEL);
+ if (!data->log) {
+ err = -ENOMEM;
+ goto err_free_data;
+ }
+
+ data->ctrl = ctrl;
+ mutex_init(&data->read_lock);
+
+ err = nvme_hwmon_get_smart_log(data);
+ if (err) {
+ dev_warn(dev, "Failed to read smart log (error %d)\n", err);
+ goto err_free_log;
+ }
+
+ hwmon = hwmon_device_register_with_info(dev, "nvme",
+ data, &nvme_hwmon_chip_info,
+ NULL);
+ if (IS_ERR(hwmon)) {
+ dev_warn(dev, "Failed to instantiate hwmon device\n");
+ err = PTR_ERR(hwmon);
+ goto err_free_log;
+ }
+ ctrl->hwmon_device = hwmon;
+ return 0;
+
+err_free_log:
+ kfree(data->log);
+err_free_data:
+ kfree(data);
+ return err;
+}
+
+void nvme_hwmon_exit(struct nvme_ctrl *ctrl)
+{
+ if (ctrl->hwmon_device) {
+ struct nvme_hwmon_data *data =
+ dev_get_drvdata(ctrl->hwmon_device);
+
+ hwmon_device_unregister(ctrl->hwmon_device);
+ ctrl->hwmon_device = NULL;
+ kfree(data->log);
+ kfree(data);
+ }
+}
diff --git a/drivers/nvme/host/ioctl.c b/drivers/nvme/host/ioctl.c
new file mode 100644
index 0000000000..4939ed3563
--- /dev/null
+++ b/drivers/nvme/host/ioctl.c
@@ -0,0 +1,985 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * Copyright (c) 2011-2014, Intel Corporation.
+ * Copyright (c) 2017-2021 Christoph Hellwig.
+ */
+#include <linux/ptrace.h> /* for force_successful_syscall_return */
+#include <linux/nvme_ioctl.h>
+#include <linux/io_uring.h>
+#include "nvme.h"
+
+enum {
+ NVME_IOCTL_VEC = (1 << 0),
+ NVME_IOCTL_PARTITION = (1 << 1),
+};
+
+static bool nvme_cmd_allowed(struct nvme_ns *ns, struct nvme_command *c,
+ unsigned int flags, bool open_for_write)
+{
+ u32 effects;
+
+ /*
+ * Do not allow unprivileged passthrough on partitions, as that allows an
+ * escape from the containment of the partition.
+ */
+ if (flags & NVME_IOCTL_PARTITION)
+ goto admin;
+
+ /*
+ * Do not allow unprivileged processes to send vendor specific or fabrics
+ * commands as we can't be sure about their effects.
+ */
+ if (c->common.opcode >= nvme_cmd_vendor_start ||
+ c->common.opcode == nvme_fabrics_command)
+ goto admin;
+
+ /*
+ * Do not allow unprivileged passthrough of admin commands except
+ * for a subset of identify commands that contain information required
+ * to form proper I/O commands in userspace and do not expose any
+ * potentially sensitive information.
+ */
+ if (!ns) {
+ if (c->common.opcode == nvme_admin_identify) {
+ switch (c->identify.cns) {
+ case NVME_ID_CNS_NS:
+ case NVME_ID_CNS_CS_NS:
+ case NVME_ID_CNS_NS_CS_INDEP:
+ case NVME_ID_CNS_CS_CTRL:
+ case NVME_ID_CNS_CTRL:
+ return true;
+ }
+ }
+ goto admin;
+ }
+
+ /*
+ * Check if the controller provides a Commands Supported and Effects log
+ * and marks this command as supported. If not reject unprivileged
+ * passthrough.
+ */
+ effects = nvme_command_effects(ns->ctrl, ns, c->common.opcode);
+ if (!(effects & NVME_CMD_EFFECTS_CSUPP))
+ goto admin;
+
+ /*
+ * Don't allow passthrough for command that have intrusive (or unknown)
+ * effects.
+ */
+ if (effects & ~(NVME_CMD_EFFECTS_CSUPP | NVME_CMD_EFFECTS_LBCC |
+ NVME_CMD_EFFECTS_UUID_SEL |
+ NVME_CMD_EFFECTS_SCOPE_MASK))
+ goto admin;
+
+ /*
+ * Only allow I/O commands that transfer data to the controller or that
+ * change the logical block contents if the file descriptor is open for
+ * writing.
+ */
+ if ((nvme_is_write(c) || (effects & NVME_CMD_EFFECTS_LBCC)) &&
+ !open_for_write)
+ goto admin;
+
+ return true;
+admin:
+ return capable(CAP_SYS_ADMIN);
+}
+
+/*
+ * Convert integer values from ioctl structures to user pointers, silently
+ * ignoring the upper bits in the compat case to match behaviour of 32-bit
+ * kernels.
+ */
+static void __user *nvme_to_user_ptr(uintptr_t ptrval)
+{
+ if (in_compat_syscall())
+ ptrval = (compat_uptr_t)ptrval;
+ return (void __user *)ptrval;
+}
+
+static void *nvme_add_user_metadata(struct request *req, void __user *ubuf,
+ unsigned len, u32 seed)
+{
+ struct bio_integrity_payload *bip;
+ int ret = -ENOMEM;
+ void *buf;
+ struct bio *bio = req->bio;
+
+ buf = kmalloc(len, GFP_KERNEL);
+ if (!buf)
+ goto out;
+
+ if (req_op(req) == REQ_OP_DRV_OUT) {
+ ret = -EFAULT;
+ if (copy_from_user(buf, ubuf, len))
+ goto out_free_meta;
+ } else {
+ memset(buf, 0, len);
+ }
+
+ bip = bio_integrity_alloc(bio, GFP_KERNEL, 1);
+ if (IS_ERR(bip)) {
+ ret = PTR_ERR(bip);
+ goto out_free_meta;
+ }
+
+ bip->bip_iter.bi_sector = seed;
+ ret = bio_integrity_add_page(bio, virt_to_page(buf), len,
+ offset_in_page(buf));
+ if (ret != len) {
+ ret = -ENOMEM;
+ goto out_free_meta;
+ }
+
+ req->cmd_flags |= REQ_INTEGRITY;
+ return buf;
+out_free_meta:
+ kfree(buf);
+out:
+ return ERR_PTR(ret);
+}
+
+static int nvme_finish_user_metadata(struct request *req, void __user *ubuf,
+ void *meta, unsigned len, int ret)
+{
+ if (!ret && req_op(req) == REQ_OP_DRV_IN &&
+ copy_to_user(ubuf, meta, len))
+ ret = -EFAULT;
+ kfree(meta);
+ return ret;
+}
+
+static struct request *nvme_alloc_user_request(struct request_queue *q,
+ struct nvme_command *cmd, blk_opf_t rq_flags,
+ blk_mq_req_flags_t blk_flags)
+{
+ struct request *req;
+
+ req = blk_mq_alloc_request(q, nvme_req_op(cmd) | rq_flags, blk_flags);
+ if (IS_ERR(req))
+ return req;
+ nvme_init_request(req, cmd);
+ nvme_req(req)->flags |= NVME_REQ_USERCMD;
+ return req;
+}
+
+static int nvme_map_user_request(struct request *req, u64 ubuffer,
+ unsigned bufflen, void __user *meta_buffer, unsigned meta_len,
+ u32 meta_seed, void **metap, struct io_uring_cmd *ioucmd,
+ unsigned int flags)
+{
+ struct request_queue *q = req->q;
+ struct nvme_ns *ns = q->queuedata;
+ struct block_device *bdev = ns ? ns->disk->part0 : NULL;
+ struct bio *bio = NULL;
+ void *meta = NULL;
+ int ret;
+
+ if (ioucmd && (ioucmd->flags & IORING_URING_CMD_FIXED)) {
+ struct iov_iter iter;
+
+ /* fixedbufs is only for non-vectored io */
+ if (WARN_ON_ONCE(flags & NVME_IOCTL_VEC))
+ return -EINVAL;
+ ret = io_uring_cmd_import_fixed(ubuffer, bufflen,
+ rq_data_dir(req), &iter, ioucmd);
+ if (ret < 0)
+ goto out;
+ ret = blk_rq_map_user_iov(q, req, NULL, &iter, GFP_KERNEL);
+ } else {
+ ret = blk_rq_map_user_io(req, NULL, nvme_to_user_ptr(ubuffer),
+ bufflen, GFP_KERNEL, flags & NVME_IOCTL_VEC, 0,
+ 0, rq_data_dir(req));
+ }
+
+ if (ret)
+ goto out;
+ bio = req->bio;
+ if (bdev)
+ bio_set_dev(bio, bdev);
+
+ if (bdev && meta_buffer && meta_len) {
+ meta = nvme_add_user_metadata(req, meta_buffer, meta_len,
+ meta_seed);
+ if (IS_ERR(meta)) {
+ ret = PTR_ERR(meta);
+ goto out_unmap;
+ }
+ *metap = meta;
+ }
+
+ return ret;
+
+out_unmap:
+ if (bio)
+ blk_rq_unmap_user(bio);
+out:
+ blk_mq_free_request(req);
+ return ret;
+}
+
+static int nvme_submit_user_cmd(struct request_queue *q,
+ struct nvme_command *cmd, u64 ubuffer, unsigned bufflen,
+ void __user *meta_buffer, unsigned meta_len, u32 meta_seed,
+ u64 *result, unsigned timeout, unsigned int flags)
+{
+ struct nvme_ns *ns = q->queuedata;
+ struct nvme_ctrl *ctrl;
+ struct request *req;
+ void *meta = NULL;
+ struct bio *bio;
+ u32 effects;
+ int ret;
+
+ req = nvme_alloc_user_request(q, cmd, 0, 0);
+ if (IS_ERR(req))
+ return PTR_ERR(req);
+
+ req->timeout = timeout;
+ if (ubuffer && bufflen) {
+ ret = nvme_map_user_request(req, ubuffer, bufflen, meta_buffer,
+ meta_len, meta_seed, &meta, NULL, flags);
+ if (ret)
+ return ret;
+ }
+
+ bio = req->bio;
+ ctrl = nvme_req(req)->ctrl;
+
+ effects = nvme_passthru_start(ctrl, ns, cmd->common.opcode);
+ ret = nvme_execute_rq(req, false);
+ if (result)
+ *result = le64_to_cpu(nvme_req(req)->result.u64);
+ if (meta)
+ ret = nvme_finish_user_metadata(req, meta_buffer, meta,
+ meta_len, ret);
+ if (bio)
+ blk_rq_unmap_user(bio);
+ blk_mq_free_request(req);
+
+ if (effects)
+ nvme_passthru_end(ctrl, ns, effects, cmd, ret);
+
+ return ret;
+}
+
+static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio)
+{
+ struct nvme_user_io io;
+ struct nvme_command c;
+ unsigned length, meta_len;
+ void __user *metadata;
+
+ if (copy_from_user(&io, uio, sizeof(io)))
+ return -EFAULT;
+ if (io.flags)
+ return -EINVAL;
+
+ switch (io.opcode) {
+ case nvme_cmd_write:
+ case nvme_cmd_read:
+ case nvme_cmd_compare:
+ break;
+ default:
+ return -EINVAL;
+ }
+
+ length = (io.nblocks + 1) << ns->lba_shift;
+
+ if ((io.control & NVME_RW_PRINFO_PRACT) &&
+ ns->ms == sizeof(struct t10_pi_tuple)) {
+ /*
+ * Protection information is stripped/inserted by the
+ * controller.
+ */
+ if (nvme_to_user_ptr(io.metadata))
+ return -EINVAL;
+ meta_len = 0;
+ metadata = NULL;
+ } else {
+ meta_len = (io.nblocks + 1) * ns->ms;
+ metadata = nvme_to_user_ptr(io.metadata);
+ }
+
+ if (ns->features & NVME_NS_EXT_LBAS) {
+ length += meta_len;
+ meta_len = 0;
+ } else if (meta_len) {
+ if ((io.metadata & 3) || !io.metadata)
+ return -EINVAL;
+ }
+
+ memset(&c, 0, sizeof(c));
+ c.rw.opcode = io.opcode;
+ c.rw.flags = io.flags;
+ c.rw.nsid = cpu_to_le32(ns->head->ns_id);
+ c.rw.slba = cpu_to_le64(io.slba);
+ c.rw.length = cpu_to_le16(io.nblocks);
+ c.rw.control = cpu_to_le16(io.control);
+ c.rw.dsmgmt = cpu_to_le32(io.dsmgmt);
+ c.rw.reftag = cpu_to_le32(io.reftag);
+ c.rw.apptag = cpu_to_le16(io.apptag);
+ c.rw.appmask = cpu_to_le16(io.appmask);
+
+ return nvme_submit_user_cmd(ns->queue, &c, io.addr, length, metadata,
+ meta_len, lower_32_bits(io.slba), NULL, 0, 0);
+}
+
+static bool nvme_validate_passthru_nsid(struct nvme_ctrl *ctrl,
+ struct nvme_ns *ns, __u32 nsid)
+{
+ if (ns && nsid != ns->head->ns_id) {
+ dev_err(ctrl->device,
+ "%s: nsid (%u) in cmd does not match nsid (%u)"
+ "of namespace\n",
+ current->comm, nsid, ns->head->ns_id);
+ return false;
+ }
+
+ return true;
+}
+
+static int nvme_user_cmd(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
+ struct nvme_passthru_cmd __user *ucmd, unsigned int flags,
+ bool open_for_write)
+{
+ struct nvme_passthru_cmd cmd;
+ struct nvme_command c;
+ unsigned timeout = 0;
+ u64 result;
+ int status;
+
+ if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
+ return -EFAULT;
+ if (cmd.flags)
+ return -EINVAL;
+ if (!nvme_validate_passthru_nsid(ctrl, ns, cmd.nsid))
+ return -EINVAL;
+
+ memset(&c, 0, sizeof(c));
+ c.common.opcode = cmd.opcode;
+ c.common.flags = cmd.flags;
+ c.common.nsid = cpu_to_le32(cmd.nsid);
+ c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
+ c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
+ c.common.cdw10 = cpu_to_le32(cmd.cdw10);
+ c.common.cdw11 = cpu_to_le32(cmd.cdw11);
+ c.common.cdw12 = cpu_to_le32(cmd.cdw12);
+ c.common.cdw13 = cpu_to_le32(cmd.cdw13);
+ c.common.cdw14 = cpu_to_le32(cmd.cdw14);
+ c.common.cdw15 = cpu_to_le32(cmd.cdw15);
+
+ if (!nvme_cmd_allowed(ns, &c, 0, open_for_write))
+ return -EACCES;
+
+ if (cmd.timeout_ms)
+ timeout = msecs_to_jiffies(cmd.timeout_ms);
+
+ status = nvme_submit_user_cmd(ns ? ns->queue : ctrl->admin_q, &c,
+ cmd.addr, cmd.data_len, nvme_to_user_ptr(cmd.metadata),
+ cmd.metadata_len, 0, &result, timeout, 0);
+
+ if (status >= 0) {
+ if (put_user(result, &ucmd->result))
+ return -EFAULT;
+ }
+
+ return status;
+}
+
+static int nvme_user_cmd64(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
+ struct nvme_passthru_cmd64 __user *ucmd, unsigned int flags,
+ bool open_for_write)
+{
+ struct nvme_passthru_cmd64 cmd;
+ struct nvme_command c;
+ unsigned timeout = 0;
+ int status;
+
+ if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
+ return -EFAULT;
+ if (cmd.flags)
+ return -EINVAL;
+ if (!nvme_validate_passthru_nsid(ctrl, ns, cmd.nsid))
+ return -EINVAL;
+
+ memset(&c, 0, sizeof(c));
+ c.common.opcode = cmd.opcode;
+ c.common.flags = cmd.flags;
+ c.common.nsid = cpu_to_le32(cmd.nsid);
+ c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
+ c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
+ c.common.cdw10 = cpu_to_le32(cmd.cdw10);
+ c.common.cdw11 = cpu_to_le32(cmd.cdw11);
+ c.common.cdw12 = cpu_to_le32(cmd.cdw12);
+ c.common.cdw13 = cpu_to_le32(cmd.cdw13);
+ c.common.cdw14 = cpu_to_le32(cmd.cdw14);
+ c.common.cdw15 = cpu_to_le32(cmd.cdw15);
+
+ if (!nvme_cmd_allowed(ns, &c, flags, open_for_write))
+ return -EACCES;
+
+ if (cmd.timeout_ms)
+ timeout = msecs_to_jiffies(cmd.timeout_ms);
+
+ status = nvme_submit_user_cmd(ns ? ns->queue : ctrl->admin_q, &c,
+ cmd.addr, cmd.data_len, nvme_to_user_ptr(cmd.metadata),
+ cmd.metadata_len, 0, &cmd.result, timeout, flags);
+
+ if (status >= 0) {
+ if (put_user(cmd.result, &ucmd->result))
+ return -EFAULT;
+ }
+
+ return status;
+}
+
+struct nvme_uring_data {
+ __u64 metadata;
+ __u64 addr;
+ __u32 data_len;
+ __u32 metadata_len;
+ __u32 timeout_ms;
+};
+
+/*
+ * This overlays struct io_uring_cmd pdu.
+ * Expect build errors if this grows larger than that.
+ */
+struct nvme_uring_cmd_pdu {
+ union {
+ struct bio *bio;
+ struct request *req;
+ };
+ u32 meta_len;
+ u32 nvme_status;
+ union {
+ struct {
+ void *meta; /* kernel-resident buffer */
+ void __user *meta_buffer;
+ };
+ u64 result;
+ } u;
+};
+
+static inline struct nvme_uring_cmd_pdu *nvme_uring_cmd_pdu(
+ struct io_uring_cmd *ioucmd)
+{
+ return (struct nvme_uring_cmd_pdu *)&ioucmd->pdu;
+}
+
+static void nvme_uring_task_meta_cb(struct io_uring_cmd *ioucmd,
+ unsigned issue_flags)
+{
+ struct nvme_uring_cmd_pdu *pdu = nvme_uring_cmd_pdu(ioucmd);
+ struct request *req = pdu->req;
+ int status;
+ u64 result;
+
+ if (nvme_req(req)->flags & NVME_REQ_CANCELLED)
+ status = -EINTR;
+ else
+ status = nvme_req(req)->status;
+
+ result = le64_to_cpu(nvme_req(req)->result.u64);
+
+ if (pdu->meta_len)
+ status = nvme_finish_user_metadata(req, pdu->u.meta_buffer,
+ pdu->u.meta, pdu->meta_len, status);
+ if (req->bio)
+ blk_rq_unmap_user(req->bio);
+ blk_mq_free_request(req);
+
+ io_uring_cmd_done(ioucmd, status, result, issue_flags);
+}
+
+static void nvme_uring_task_cb(struct io_uring_cmd *ioucmd,
+ unsigned issue_flags)
+{
+ struct nvme_uring_cmd_pdu *pdu = nvme_uring_cmd_pdu(ioucmd);
+
+ if (pdu->bio)
+ blk_rq_unmap_user(pdu->bio);
+
+ io_uring_cmd_done(ioucmd, pdu->nvme_status, pdu->u.result, issue_flags);
+}
+
+static enum rq_end_io_ret nvme_uring_cmd_end_io(struct request *req,
+ blk_status_t err)
+{
+ struct io_uring_cmd *ioucmd = req->end_io_data;
+ struct nvme_uring_cmd_pdu *pdu = nvme_uring_cmd_pdu(ioucmd);
+
+ req->bio = pdu->bio;
+ if (nvme_req(req)->flags & NVME_REQ_CANCELLED) {
+ pdu->nvme_status = -EINTR;
+ } else {
+ pdu->nvme_status = nvme_req(req)->status;
+ if (!pdu->nvme_status)
+ pdu->nvme_status = blk_status_to_errno(err);
+ }
+ pdu->u.result = le64_to_cpu(nvme_req(req)->result.u64);
+
+ /*
+ * For iopoll, complete it directly.
+ * Otherwise, move the completion to task work.
+ */
+ if (blk_rq_is_poll(req)) {
+ WRITE_ONCE(ioucmd->cookie, NULL);
+ nvme_uring_task_cb(ioucmd, IO_URING_F_UNLOCKED);
+ } else {
+ io_uring_cmd_do_in_task_lazy(ioucmd, nvme_uring_task_cb);
+ }
+
+ return RQ_END_IO_FREE;
+}
+
+static enum rq_end_io_ret nvme_uring_cmd_end_io_meta(struct request *req,
+ blk_status_t err)
+{
+ struct io_uring_cmd *ioucmd = req->end_io_data;
+ struct nvme_uring_cmd_pdu *pdu = nvme_uring_cmd_pdu(ioucmd);
+
+ req->bio = pdu->bio;
+ pdu->req = req;
+
+ /*
+ * For iopoll, complete it directly.
+ * Otherwise, move the completion to task work.
+ */
+ if (blk_rq_is_poll(req)) {
+ WRITE_ONCE(ioucmd->cookie, NULL);
+ nvme_uring_task_meta_cb(ioucmd, IO_URING_F_UNLOCKED);
+ } else {
+ io_uring_cmd_do_in_task_lazy(ioucmd, nvme_uring_task_meta_cb);
+ }
+
+ return RQ_END_IO_NONE;
+}
+
+static int nvme_uring_cmd_io(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
+ struct io_uring_cmd *ioucmd, unsigned int issue_flags, bool vec)
+{
+ struct nvme_uring_cmd_pdu *pdu = nvme_uring_cmd_pdu(ioucmd);
+ const struct nvme_uring_cmd *cmd = io_uring_sqe_cmd(ioucmd->sqe);
+ struct request_queue *q = ns ? ns->queue : ctrl->admin_q;
+ struct nvme_uring_data d;
+ struct nvme_command c;
+ struct request *req;
+ blk_opf_t rq_flags = REQ_ALLOC_CACHE;
+ blk_mq_req_flags_t blk_flags = 0;
+ void *meta = NULL;
+ int ret;
+
+ c.common.opcode = READ_ONCE(cmd->opcode);
+ c.common.flags = READ_ONCE(cmd->flags);
+ if (c.common.flags)
+ return -EINVAL;
+
+ c.common.command_id = 0;
+ c.common.nsid = cpu_to_le32(cmd->nsid);
+ if (!nvme_validate_passthru_nsid(ctrl, ns, le32_to_cpu(c.common.nsid)))
+ return -EINVAL;
+
+ c.common.cdw2[0] = cpu_to_le32(READ_ONCE(cmd->cdw2));
+ c.common.cdw2[1] = cpu_to_le32(READ_ONCE(cmd->cdw3));
+ c.common.metadata = 0;
+ c.common.dptr.prp1 = c.common.dptr.prp2 = 0;
+ c.common.cdw10 = cpu_to_le32(READ_ONCE(cmd->cdw10));
+ c.common.cdw11 = cpu_to_le32(READ_ONCE(cmd->cdw11));
+ c.common.cdw12 = cpu_to_le32(READ_ONCE(cmd->cdw12));
+ c.common.cdw13 = cpu_to_le32(READ_ONCE(cmd->cdw13));
+ c.common.cdw14 = cpu_to_le32(READ_ONCE(cmd->cdw14));
+ c.common.cdw15 = cpu_to_le32(READ_ONCE(cmd->cdw15));
+
+ if (!nvme_cmd_allowed(ns, &c, 0, ioucmd->file->f_mode & FMODE_WRITE))
+ return -EACCES;
+
+ d.metadata = READ_ONCE(cmd->metadata);
+ d.addr = READ_ONCE(cmd->addr);
+ d.data_len = READ_ONCE(cmd->data_len);
+ d.metadata_len = READ_ONCE(cmd->metadata_len);
+ d.timeout_ms = READ_ONCE(cmd->timeout_ms);
+
+ if (issue_flags & IO_URING_F_NONBLOCK) {
+ rq_flags |= REQ_NOWAIT;
+ blk_flags = BLK_MQ_REQ_NOWAIT;
+ }
+ if (issue_flags & IO_URING_F_IOPOLL)
+ rq_flags |= REQ_POLLED;
+
+ req = nvme_alloc_user_request(q, &c, rq_flags, blk_flags);
+ if (IS_ERR(req))
+ return PTR_ERR(req);
+ req->timeout = d.timeout_ms ? msecs_to_jiffies(d.timeout_ms) : 0;
+
+ if (d.addr && d.data_len) {
+ ret = nvme_map_user_request(req, d.addr,
+ d.data_len, nvme_to_user_ptr(d.metadata),
+ d.metadata_len, 0, &meta, ioucmd, vec);
+ if (ret)
+ return ret;
+ }
+
+ if (blk_rq_is_poll(req)) {
+ ioucmd->flags |= IORING_URING_CMD_POLLED;
+ WRITE_ONCE(ioucmd->cookie, req);
+ }
+
+ /* to free bio on completion, as req->bio will be null at that time */
+ pdu->bio = req->bio;
+ pdu->meta_len = d.metadata_len;
+ req->end_io_data = ioucmd;
+ if (pdu->meta_len) {
+ pdu->u.meta = meta;
+ pdu->u.meta_buffer = nvme_to_user_ptr(d.metadata);
+ req->end_io = nvme_uring_cmd_end_io_meta;
+ } else {
+ req->end_io = nvme_uring_cmd_end_io;
+ }
+ blk_execute_rq_nowait(req, false);
+ return -EIOCBQUEUED;
+}
+
+static bool is_ctrl_ioctl(unsigned int cmd)
+{
+ if (cmd == NVME_IOCTL_ADMIN_CMD || cmd == NVME_IOCTL_ADMIN64_CMD)
+ return true;
+ if (is_sed_ioctl(cmd))
+ return true;
+ return false;
+}
+
+static int nvme_ctrl_ioctl(struct nvme_ctrl *ctrl, unsigned int cmd,
+ void __user *argp, bool open_for_write)
+{
+ switch (cmd) {
+ case NVME_IOCTL_ADMIN_CMD:
+ return nvme_user_cmd(ctrl, NULL, argp, 0, open_for_write);
+ case NVME_IOCTL_ADMIN64_CMD:
+ return nvme_user_cmd64(ctrl, NULL, argp, 0, open_for_write);
+ default:
+ return sed_ioctl(ctrl->opal_dev, cmd, argp);
+ }
+}
+
+#ifdef COMPAT_FOR_U64_ALIGNMENT
+struct nvme_user_io32 {
+ __u8 opcode;
+ __u8 flags;
+ __u16 control;
+ __u16 nblocks;
+ __u16 rsvd;
+ __u64 metadata;
+ __u64 addr;
+ __u64 slba;
+ __u32 dsmgmt;
+ __u32 reftag;
+ __u16 apptag;
+ __u16 appmask;
+} __attribute__((__packed__));
+#define NVME_IOCTL_SUBMIT_IO32 _IOW('N', 0x42, struct nvme_user_io32)
+#endif /* COMPAT_FOR_U64_ALIGNMENT */
+
+static int nvme_ns_ioctl(struct nvme_ns *ns, unsigned int cmd,
+ void __user *argp, unsigned int flags, bool open_for_write)
+{
+ switch (cmd) {
+ case NVME_IOCTL_ID:
+ force_successful_syscall_return();
+ return ns->head->ns_id;
+ case NVME_IOCTL_IO_CMD:
+ return nvme_user_cmd(ns->ctrl, ns, argp, flags, open_for_write);
+ /*
+ * struct nvme_user_io can have different padding on some 32-bit ABIs.
+ * Just accept the compat version as all fields that are used are the
+ * same size and at the same offset.
+ */
+#ifdef COMPAT_FOR_U64_ALIGNMENT
+ case NVME_IOCTL_SUBMIT_IO32:
+#endif
+ case NVME_IOCTL_SUBMIT_IO:
+ return nvme_submit_io(ns, argp);
+ case NVME_IOCTL_IO64_CMD_VEC:
+ flags |= NVME_IOCTL_VEC;
+ fallthrough;
+ case NVME_IOCTL_IO64_CMD:
+ return nvme_user_cmd64(ns->ctrl, ns, argp, flags,
+ open_for_write);
+ default:
+ return -ENOTTY;
+ }
+}
+
+int nvme_ioctl(struct block_device *bdev, blk_mode_t mode,
+ unsigned int cmd, unsigned long arg)
+{
+ struct nvme_ns *ns = bdev->bd_disk->private_data;
+ bool open_for_write = mode & BLK_OPEN_WRITE;
+ void __user *argp = (void __user *)arg;
+ unsigned int flags = 0;
+
+ if (bdev_is_partition(bdev))
+ flags |= NVME_IOCTL_PARTITION;
+
+ if (is_ctrl_ioctl(cmd))
+ return nvme_ctrl_ioctl(ns->ctrl, cmd, argp, open_for_write);
+ return nvme_ns_ioctl(ns, cmd, argp, flags, open_for_write);
+}
+
+long nvme_ns_chr_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
+{
+ struct nvme_ns *ns =
+ container_of(file_inode(file)->i_cdev, struct nvme_ns, cdev);
+ bool open_for_write = file->f_mode & FMODE_WRITE;
+ void __user *argp = (void __user *)arg;
+
+ if (is_ctrl_ioctl(cmd))
+ return nvme_ctrl_ioctl(ns->ctrl, cmd, argp, open_for_write);
+ return nvme_ns_ioctl(ns, cmd, argp, 0, open_for_write);
+}
+
+static int nvme_uring_cmd_checks(unsigned int issue_flags)
+{
+
+ /* NVMe passthrough requires big SQE/CQE support */
+ if ((issue_flags & (IO_URING_F_SQE128|IO_URING_F_CQE32)) !=
+ (IO_URING_F_SQE128|IO_URING_F_CQE32))
+ return -EOPNOTSUPP;
+ return 0;
+}
+
+static int nvme_ns_uring_cmd(struct nvme_ns *ns, struct io_uring_cmd *ioucmd,
+ unsigned int issue_flags)
+{
+ struct nvme_ctrl *ctrl = ns->ctrl;
+ int ret;
+
+ BUILD_BUG_ON(sizeof(struct nvme_uring_cmd_pdu) > sizeof(ioucmd->pdu));
+
+ ret = nvme_uring_cmd_checks(issue_flags);
+ if (ret)
+ return ret;
+
+ switch (ioucmd->cmd_op) {
+ case NVME_URING_CMD_IO:
+ ret = nvme_uring_cmd_io(ctrl, ns, ioucmd, issue_flags, false);
+ break;
+ case NVME_URING_CMD_IO_VEC:
+ ret = nvme_uring_cmd_io(ctrl, ns, ioucmd, issue_flags, true);
+ break;
+ default:
+ ret = -ENOTTY;
+ }
+
+ return ret;
+}
+
+int nvme_ns_chr_uring_cmd(struct io_uring_cmd *ioucmd, unsigned int issue_flags)
+{
+ struct nvme_ns *ns = container_of(file_inode(ioucmd->file)->i_cdev,
+ struct nvme_ns, cdev);
+
+ return nvme_ns_uring_cmd(ns, ioucmd, issue_flags);
+}
+
+int nvme_ns_chr_uring_cmd_iopoll(struct io_uring_cmd *ioucmd,
+ struct io_comp_batch *iob,
+ unsigned int poll_flags)
+{
+ struct request *req;
+ int ret = 0;
+
+ if (!(ioucmd->flags & IORING_URING_CMD_POLLED))
+ return 0;
+
+ req = READ_ONCE(ioucmd->cookie);
+ if (req && blk_rq_is_poll(req))
+ ret = blk_rq_poll(req, iob, poll_flags);
+ return ret;
+}
+#ifdef CONFIG_NVME_MULTIPATH
+static int nvme_ns_head_ctrl_ioctl(struct nvme_ns *ns, unsigned int cmd,
+ void __user *argp, struct nvme_ns_head *head, int srcu_idx,
+ bool open_for_write)
+ __releases(&head->srcu)
+{
+ struct nvme_ctrl *ctrl = ns->ctrl;
+ int ret;
+
+ nvme_get_ctrl(ns->ctrl);
+ srcu_read_unlock(&head->srcu, srcu_idx);
+ ret = nvme_ctrl_ioctl(ns->ctrl, cmd, argp, open_for_write);
+
+ nvme_put_ctrl(ctrl);
+ return ret;
+}
+
+int nvme_ns_head_ioctl(struct block_device *bdev, blk_mode_t mode,
+ unsigned int cmd, unsigned long arg)
+{
+ struct nvme_ns_head *head = bdev->bd_disk->private_data;
+ bool open_for_write = mode & BLK_OPEN_WRITE;
+ void __user *argp = (void __user *)arg;
+ struct nvme_ns *ns;
+ int srcu_idx, ret = -EWOULDBLOCK;
+ unsigned int flags = 0;
+
+ if (bdev_is_partition(bdev))
+ flags |= NVME_IOCTL_PARTITION;
+
+ srcu_idx = srcu_read_lock(&head->srcu);
+ ns = nvme_find_path(head);
+ if (!ns)
+ goto out_unlock;
+
+ /*
+ * Handle ioctls that apply to the controller instead of the namespace
+ * seperately and drop the ns SRCU reference early. This avoids a
+ * deadlock when deleting namespaces using the passthrough interface.
+ */
+ if (is_ctrl_ioctl(cmd))
+ return nvme_ns_head_ctrl_ioctl(ns, cmd, argp, head, srcu_idx,
+ open_for_write);
+
+ ret = nvme_ns_ioctl(ns, cmd, argp, flags, open_for_write);
+out_unlock:
+ srcu_read_unlock(&head->srcu, srcu_idx);
+ return ret;
+}
+
+long nvme_ns_head_chr_ioctl(struct file *file, unsigned int cmd,
+ unsigned long arg)
+{
+ bool open_for_write = file->f_mode & FMODE_WRITE;
+ struct cdev *cdev = file_inode(file)->i_cdev;
+ struct nvme_ns_head *head =
+ container_of(cdev, struct nvme_ns_head, cdev);
+ void __user *argp = (void __user *)arg;
+ struct nvme_ns *ns;
+ int srcu_idx, ret = -EWOULDBLOCK;
+
+ srcu_idx = srcu_read_lock(&head->srcu);
+ ns = nvme_find_path(head);
+ if (!ns)
+ goto out_unlock;
+
+ if (is_ctrl_ioctl(cmd))
+ return nvme_ns_head_ctrl_ioctl(ns, cmd, argp, head, srcu_idx,
+ open_for_write);
+
+ ret = nvme_ns_ioctl(ns, cmd, argp, 0, open_for_write);
+out_unlock:
+ srcu_read_unlock(&head->srcu, srcu_idx);
+ return ret;
+}
+
+int nvme_ns_head_chr_uring_cmd(struct io_uring_cmd *ioucmd,
+ unsigned int issue_flags)
+{
+ struct cdev *cdev = file_inode(ioucmd->file)->i_cdev;
+ struct nvme_ns_head *head = container_of(cdev, struct nvme_ns_head, cdev);
+ int srcu_idx = srcu_read_lock(&head->srcu);
+ struct nvme_ns *ns = nvme_find_path(head);
+ int ret = -EINVAL;
+
+ if (ns)
+ ret = nvme_ns_uring_cmd(ns, ioucmd, issue_flags);
+ srcu_read_unlock(&head->srcu, srcu_idx);
+ return ret;
+}
+#endif /* CONFIG_NVME_MULTIPATH */
+
+int nvme_dev_uring_cmd(struct io_uring_cmd *ioucmd, unsigned int issue_flags)
+{
+ struct nvme_ctrl *ctrl = ioucmd->file->private_data;
+ int ret;
+
+ /* IOPOLL not supported yet */
+ if (issue_flags & IO_URING_F_IOPOLL)
+ return -EOPNOTSUPP;
+
+ ret = nvme_uring_cmd_checks(issue_flags);
+ if (ret)
+ return ret;
+
+ switch (ioucmd->cmd_op) {
+ case NVME_URING_CMD_ADMIN:
+ ret = nvme_uring_cmd_io(ctrl, NULL, ioucmd, issue_flags, false);
+ break;
+ case NVME_URING_CMD_ADMIN_VEC:
+ ret = nvme_uring_cmd_io(ctrl, NULL, ioucmd, issue_flags, true);
+ break;
+ default:
+ ret = -ENOTTY;
+ }
+
+ return ret;
+}
+
+static int nvme_dev_user_cmd(struct nvme_ctrl *ctrl, void __user *argp,
+ bool open_for_write)
+{
+ struct nvme_ns *ns;
+ int ret;
+
+ down_read(&ctrl->namespaces_rwsem);
+ if (list_empty(&ctrl->namespaces)) {
+ ret = -ENOTTY;
+ goto out_unlock;
+ }
+
+ ns = list_first_entry(&ctrl->namespaces, struct nvme_ns, list);
+ if (ns != list_last_entry(&ctrl->namespaces, struct nvme_ns, list)) {
+ dev_warn(ctrl->device,
+ "NVME_IOCTL_IO_CMD not supported when multiple namespaces present!\n");
+ ret = -EINVAL;
+ goto out_unlock;
+ }
+
+ dev_warn(ctrl->device,
+ "using deprecated NVME_IOCTL_IO_CMD ioctl on the char device!\n");
+ kref_get(&ns->kref);
+ up_read(&ctrl->namespaces_rwsem);
+
+ ret = nvme_user_cmd(ctrl, ns, argp, 0, open_for_write);
+ nvme_put_ns(ns);
+ return ret;
+
+out_unlock:
+ up_read(&ctrl->namespaces_rwsem);
+ return ret;
+}
+
+long nvme_dev_ioctl(struct file *file, unsigned int cmd,
+ unsigned long arg)
+{
+ bool open_for_write = file->f_mode & FMODE_WRITE;
+ struct nvme_ctrl *ctrl = file->private_data;
+ void __user *argp = (void __user *)arg;
+
+ switch (cmd) {
+ case NVME_IOCTL_ADMIN_CMD:
+ return nvme_user_cmd(ctrl, NULL, argp, 0, open_for_write);
+ case NVME_IOCTL_ADMIN64_CMD:
+ return nvme_user_cmd64(ctrl, NULL, argp, 0, open_for_write);
+ case NVME_IOCTL_IO_CMD:
+ return nvme_dev_user_cmd(ctrl, argp, open_for_write);
+ case NVME_IOCTL_RESET:
+ if (!capable(CAP_SYS_ADMIN))
+ return -EACCES;
+ dev_warn(ctrl->device, "resetting controller\n");
+ return nvme_reset_ctrl_sync(ctrl);
+ case NVME_IOCTL_SUBSYS_RESET:
+ if (!capable(CAP_SYS_ADMIN))
+ return -EACCES;
+ return nvme_reset_subsystem(ctrl);
+ case NVME_IOCTL_RESCAN:
+ if (!capable(CAP_SYS_ADMIN))
+ return -EACCES;
+ nvme_queue_scan(ctrl);
+ return 0;
+ default:
+ return -ENOTTY;
+ }
+}
diff --git a/drivers/nvme/host/multipath.c b/drivers/nvme/host/multipath.c
new file mode 100644
index 0000000000..0a88d7bdc5
--- /dev/null
+++ b/drivers/nvme/host/multipath.c
@@ -0,0 +1,964 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * Copyright (c) 2017-2018 Christoph Hellwig.
+ */
+
+#include <linux/backing-dev.h>
+#include <linux/moduleparam.h>
+#include <linux/vmalloc.h>
+#include <trace/events/block.h>
+#include "nvme.h"
+
+bool multipath = true;
+module_param(multipath, bool, 0444);
+MODULE_PARM_DESC(multipath,
+ "turn on native support for multiple controllers per subsystem");
+
+static const char *nvme_iopolicy_names[] = {
+ [NVME_IOPOLICY_NUMA] = "numa",
+ [NVME_IOPOLICY_RR] = "round-robin",
+};
+
+static int iopolicy = NVME_IOPOLICY_NUMA;
+
+static int nvme_set_iopolicy(const char *val, const struct kernel_param *kp)
+{
+ if (!val)
+ return -EINVAL;
+ if (!strncmp(val, "numa", 4))
+ iopolicy = NVME_IOPOLICY_NUMA;
+ else if (!strncmp(val, "round-robin", 11))
+ iopolicy = NVME_IOPOLICY_RR;
+ else
+ return -EINVAL;
+
+ return 0;
+}
+
+static int nvme_get_iopolicy(char *buf, const struct kernel_param *kp)
+{
+ return sprintf(buf, "%s\n", nvme_iopolicy_names[iopolicy]);
+}
+
+module_param_call(iopolicy, nvme_set_iopolicy, nvme_get_iopolicy,
+ &iopolicy, 0644);
+MODULE_PARM_DESC(iopolicy,
+ "Default multipath I/O policy; 'numa' (default) or 'round-robin'");
+
+void nvme_mpath_default_iopolicy(struct nvme_subsystem *subsys)
+{
+ subsys->iopolicy = iopolicy;
+}
+
+void nvme_mpath_unfreeze(struct nvme_subsystem *subsys)
+{
+ struct nvme_ns_head *h;
+
+ lockdep_assert_held(&subsys->lock);
+ list_for_each_entry(h, &subsys->nsheads, entry)
+ if (h->disk)
+ blk_mq_unfreeze_queue(h->disk->queue);
+}
+
+void nvme_mpath_wait_freeze(struct nvme_subsystem *subsys)
+{
+ struct nvme_ns_head *h;
+
+ lockdep_assert_held(&subsys->lock);
+ list_for_each_entry(h, &subsys->nsheads, entry)
+ if (h->disk)
+ blk_mq_freeze_queue_wait(h->disk->queue);
+}
+
+void nvme_mpath_start_freeze(struct nvme_subsystem *subsys)
+{
+ struct nvme_ns_head *h;
+
+ lockdep_assert_held(&subsys->lock);
+ list_for_each_entry(h, &subsys->nsheads, entry)
+ if (h->disk)
+ blk_freeze_queue_start(h->disk->queue);
+}
+
+void nvme_failover_req(struct request *req)
+{
+ struct nvme_ns *ns = req->q->queuedata;
+ u16 status = nvme_req(req)->status & 0x7ff;
+ unsigned long flags;
+ struct bio *bio;
+
+ nvme_mpath_clear_current_path(ns);
+
+ /*
+ * If we got back an ANA error, we know the controller is alive but not
+ * ready to serve this namespace. Kick of a re-read of the ANA
+ * information page, and just try any other available path for now.
+ */
+ if (nvme_is_ana_error(status) && ns->ctrl->ana_log_buf) {
+ set_bit(NVME_NS_ANA_PENDING, &ns->flags);
+ queue_work(nvme_wq, &ns->ctrl->ana_work);
+ }
+
+ spin_lock_irqsave(&ns->head->requeue_lock, flags);
+ for (bio = req->bio; bio; bio = bio->bi_next) {
+ bio_set_dev(bio, ns->head->disk->part0);
+ if (bio->bi_opf & REQ_POLLED) {
+ bio->bi_opf &= ~REQ_POLLED;
+ bio->bi_cookie = BLK_QC_T_NONE;
+ }
+ /*
+ * The alternate request queue that we may end up submitting
+ * the bio to may be frozen temporarily, in this case REQ_NOWAIT
+ * will fail the I/O immediately with EAGAIN to the issuer.
+ * We are not in the issuer context which cannot block. Clear
+ * the flag to avoid spurious EAGAIN I/O failures.
+ */
+ bio->bi_opf &= ~REQ_NOWAIT;
+ }
+ blk_steal_bios(&ns->head->requeue_list, req);
+ spin_unlock_irqrestore(&ns->head->requeue_lock, flags);
+
+ blk_mq_end_request(req, 0);
+ kblockd_schedule_work(&ns->head->requeue_work);
+}
+
+void nvme_mpath_start_request(struct request *rq)
+{
+ struct nvme_ns *ns = rq->q->queuedata;
+ struct gendisk *disk = ns->head->disk;
+
+ if (!blk_queue_io_stat(disk->queue) || blk_rq_is_passthrough(rq))
+ return;
+
+ nvme_req(rq)->flags |= NVME_MPATH_IO_STATS;
+ nvme_req(rq)->start_time = bdev_start_io_acct(disk->part0, req_op(rq),
+ jiffies);
+}
+EXPORT_SYMBOL_GPL(nvme_mpath_start_request);
+
+void nvme_mpath_end_request(struct request *rq)
+{
+ struct nvme_ns *ns = rq->q->queuedata;
+
+ if (!(nvme_req(rq)->flags & NVME_MPATH_IO_STATS))
+ return;
+ bdev_end_io_acct(ns->head->disk->part0, req_op(rq),
+ blk_rq_bytes(rq) >> SECTOR_SHIFT,
+ nvme_req(rq)->start_time);
+}
+
+void nvme_kick_requeue_lists(struct nvme_ctrl *ctrl)
+{
+ struct nvme_ns *ns;
+
+ down_read(&ctrl->namespaces_rwsem);
+ list_for_each_entry(ns, &ctrl->namespaces, list) {
+ if (!ns->head->disk)
+ continue;
+ kblockd_schedule_work(&ns->head->requeue_work);
+ if (ctrl->state == NVME_CTRL_LIVE)
+ disk_uevent(ns->head->disk, KOBJ_CHANGE);
+ }
+ up_read(&ctrl->namespaces_rwsem);
+}
+
+static const char *nvme_ana_state_names[] = {
+ [0] = "invalid state",
+ [NVME_ANA_OPTIMIZED] = "optimized",
+ [NVME_ANA_NONOPTIMIZED] = "non-optimized",
+ [NVME_ANA_INACCESSIBLE] = "inaccessible",
+ [NVME_ANA_PERSISTENT_LOSS] = "persistent-loss",
+ [NVME_ANA_CHANGE] = "change",
+};
+
+bool nvme_mpath_clear_current_path(struct nvme_ns *ns)
+{
+ struct nvme_ns_head *head = ns->head;
+ bool changed = false;
+ int node;
+
+ if (!head)
+ goto out;
+
+ for_each_node(node) {
+ if (ns == rcu_access_pointer(head->current_path[node])) {
+ rcu_assign_pointer(head->current_path[node], NULL);
+ changed = true;
+ }
+ }
+out:
+ return changed;
+}
+
+void nvme_mpath_clear_ctrl_paths(struct nvme_ctrl *ctrl)
+{
+ struct nvme_ns *ns;
+
+ down_read(&ctrl->namespaces_rwsem);
+ list_for_each_entry(ns, &ctrl->namespaces, list) {
+ nvme_mpath_clear_current_path(ns);
+ kblockd_schedule_work(&ns->head->requeue_work);
+ }
+ up_read(&ctrl->namespaces_rwsem);
+}
+
+void nvme_mpath_revalidate_paths(struct nvme_ns *ns)
+{
+ struct nvme_ns_head *head = ns->head;
+ sector_t capacity = get_capacity(head->disk);
+ int node;
+ int srcu_idx;
+
+ srcu_idx = srcu_read_lock(&head->srcu);
+ list_for_each_entry_rcu(ns, &head->list, siblings) {
+ if (capacity != get_capacity(ns->disk))
+ clear_bit(NVME_NS_READY, &ns->flags);
+ }
+ srcu_read_unlock(&head->srcu, srcu_idx);
+
+ for_each_node(node)
+ rcu_assign_pointer(head->current_path[node], NULL);
+ kblockd_schedule_work(&head->requeue_work);
+}
+
+static bool nvme_path_is_disabled(struct nvme_ns *ns)
+{
+ /*
+ * We don't treat NVME_CTRL_DELETING as a disabled path as I/O should
+ * still be able to complete assuming that the controller is connected.
+ * Otherwise it will fail immediately and return to the requeue list.
+ */
+ if (ns->ctrl->state != NVME_CTRL_LIVE &&
+ ns->ctrl->state != NVME_CTRL_DELETING)
+ return true;
+ if (test_bit(NVME_NS_ANA_PENDING, &ns->flags) ||
+ !test_bit(NVME_NS_READY, &ns->flags))
+ return true;
+ return false;
+}
+
+static struct nvme_ns *__nvme_find_path(struct nvme_ns_head *head, int node)
+{
+ int found_distance = INT_MAX, fallback_distance = INT_MAX, distance;
+ struct nvme_ns *found = NULL, *fallback = NULL, *ns;
+
+ list_for_each_entry_rcu(ns, &head->list, siblings) {
+ if (nvme_path_is_disabled(ns))
+ continue;
+
+ if (READ_ONCE(head->subsys->iopolicy) == NVME_IOPOLICY_NUMA)
+ distance = node_distance(node, ns->ctrl->numa_node);
+ else
+ distance = LOCAL_DISTANCE;
+
+ switch (ns->ana_state) {
+ case NVME_ANA_OPTIMIZED:
+ if (distance < found_distance) {
+ found_distance = distance;
+ found = ns;
+ }
+ break;
+ case NVME_ANA_NONOPTIMIZED:
+ if (distance < fallback_distance) {
+ fallback_distance = distance;
+ fallback = ns;
+ }
+ break;
+ default:
+ break;
+ }
+ }
+
+ if (!found)
+ found = fallback;
+ if (found)
+ rcu_assign_pointer(head->current_path[node], found);
+ return found;
+}
+
+static struct nvme_ns *nvme_next_ns(struct nvme_ns_head *head,
+ struct nvme_ns *ns)
+{
+ ns = list_next_or_null_rcu(&head->list, &ns->siblings, struct nvme_ns,
+ siblings);
+ if (ns)
+ return ns;
+ return list_first_or_null_rcu(&head->list, struct nvme_ns, siblings);
+}
+
+static struct nvme_ns *nvme_round_robin_path(struct nvme_ns_head *head,
+ int node, struct nvme_ns *old)
+{
+ struct nvme_ns *ns, *found = NULL;
+
+ if (list_is_singular(&head->list)) {
+ if (nvme_path_is_disabled(old))
+ return NULL;
+ return old;
+ }
+
+ for (ns = nvme_next_ns(head, old);
+ ns && ns != old;
+ ns = nvme_next_ns(head, ns)) {
+ if (nvme_path_is_disabled(ns))
+ continue;
+
+ if (ns->ana_state == NVME_ANA_OPTIMIZED) {
+ found = ns;
+ goto out;
+ }
+ if (ns->ana_state == NVME_ANA_NONOPTIMIZED)
+ found = ns;
+ }
+
+ /*
+ * The loop above skips the current path for round-robin semantics.
+ * Fall back to the current path if either:
+ * - no other optimized path found and current is optimized,
+ * - no other usable path found and current is usable.
+ */
+ if (!nvme_path_is_disabled(old) &&
+ (old->ana_state == NVME_ANA_OPTIMIZED ||
+ (!found && old->ana_state == NVME_ANA_NONOPTIMIZED)))
+ return old;
+
+ if (!found)
+ return NULL;
+out:
+ rcu_assign_pointer(head->current_path[node], found);
+ return found;
+}
+
+static inline bool nvme_path_is_optimized(struct nvme_ns *ns)
+{
+ return ns->ctrl->state == NVME_CTRL_LIVE &&
+ ns->ana_state == NVME_ANA_OPTIMIZED;
+}
+
+inline struct nvme_ns *nvme_find_path(struct nvme_ns_head *head)
+{
+ int node = numa_node_id();
+ struct nvme_ns *ns;
+
+ ns = srcu_dereference(head->current_path[node], &head->srcu);
+ if (unlikely(!ns))
+ return __nvme_find_path(head, node);
+
+ if (READ_ONCE(head->subsys->iopolicy) == NVME_IOPOLICY_RR)
+ return nvme_round_robin_path(head, node, ns);
+ if (unlikely(!nvme_path_is_optimized(ns)))
+ return __nvme_find_path(head, node);
+ return ns;
+}
+
+static bool nvme_available_path(struct nvme_ns_head *head)
+{
+ struct nvme_ns *ns;
+
+ list_for_each_entry_rcu(ns, &head->list, siblings) {
+ if (test_bit(NVME_CTRL_FAILFAST_EXPIRED, &ns->ctrl->flags))
+ continue;
+ switch (ns->ctrl->state) {
+ case NVME_CTRL_LIVE:
+ case NVME_CTRL_RESETTING:
+ case NVME_CTRL_CONNECTING:
+ /* fallthru */
+ return true;
+ default:
+ break;
+ }
+ }
+ return false;
+}
+
+static void nvme_ns_head_submit_bio(struct bio *bio)
+{
+ struct nvme_ns_head *head = bio->bi_bdev->bd_disk->private_data;
+ struct device *dev = disk_to_dev(head->disk);
+ struct nvme_ns *ns;
+ int srcu_idx;
+
+ /*
+ * The namespace might be going away and the bio might be moved to a
+ * different queue via blk_steal_bios(), so we need to use the bio_split
+ * pool from the original queue to allocate the bvecs from.
+ */
+ bio = bio_split_to_limits(bio);
+ if (!bio)
+ return;
+
+ srcu_idx = srcu_read_lock(&head->srcu);
+ ns = nvme_find_path(head);
+ if (likely(ns)) {
+ bio_set_dev(bio, ns->disk->part0);
+ bio->bi_opf |= REQ_NVME_MPATH;
+ trace_block_bio_remap(bio, disk_devt(ns->head->disk),
+ bio->bi_iter.bi_sector);
+ submit_bio_noacct(bio);
+ } else if (nvme_available_path(head)) {
+ dev_warn_ratelimited(dev, "no usable path - requeuing I/O\n");
+
+ spin_lock_irq(&head->requeue_lock);
+ bio_list_add(&head->requeue_list, bio);
+ spin_unlock_irq(&head->requeue_lock);
+ } else {
+ dev_warn_ratelimited(dev, "no available path - failing I/O\n");
+
+ bio_io_error(bio);
+ }
+
+ srcu_read_unlock(&head->srcu, srcu_idx);
+}
+
+static int nvme_ns_head_open(struct gendisk *disk, blk_mode_t mode)
+{
+ if (!nvme_tryget_ns_head(disk->private_data))
+ return -ENXIO;
+ return 0;
+}
+
+static void nvme_ns_head_release(struct gendisk *disk)
+{
+ nvme_put_ns_head(disk->private_data);
+}
+
+#ifdef CONFIG_BLK_DEV_ZONED
+static int nvme_ns_head_report_zones(struct gendisk *disk, sector_t sector,
+ unsigned int nr_zones, report_zones_cb cb, void *data)
+{
+ struct nvme_ns_head *head = disk->private_data;
+ struct nvme_ns *ns;
+ int srcu_idx, ret = -EWOULDBLOCK;
+
+ srcu_idx = srcu_read_lock(&head->srcu);
+ ns = nvme_find_path(head);
+ if (ns)
+ ret = nvme_ns_report_zones(ns, sector, nr_zones, cb, data);
+ srcu_read_unlock(&head->srcu, srcu_idx);
+ return ret;
+}
+#else
+#define nvme_ns_head_report_zones NULL
+#endif /* CONFIG_BLK_DEV_ZONED */
+
+const struct block_device_operations nvme_ns_head_ops = {
+ .owner = THIS_MODULE,
+ .submit_bio = nvme_ns_head_submit_bio,
+ .open = nvme_ns_head_open,
+ .release = nvme_ns_head_release,
+ .ioctl = nvme_ns_head_ioctl,
+ .compat_ioctl = blkdev_compat_ptr_ioctl,
+ .getgeo = nvme_getgeo,
+ .report_zones = nvme_ns_head_report_zones,
+ .pr_ops = &nvme_pr_ops,
+};
+
+static inline struct nvme_ns_head *cdev_to_ns_head(struct cdev *cdev)
+{
+ return container_of(cdev, struct nvme_ns_head, cdev);
+}
+
+static int nvme_ns_head_chr_open(struct inode *inode, struct file *file)
+{
+ if (!nvme_tryget_ns_head(cdev_to_ns_head(inode->i_cdev)))
+ return -ENXIO;
+ return 0;
+}
+
+static int nvme_ns_head_chr_release(struct inode *inode, struct file *file)
+{
+ nvme_put_ns_head(cdev_to_ns_head(inode->i_cdev));
+ return 0;
+}
+
+static const struct file_operations nvme_ns_head_chr_fops = {
+ .owner = THIS_MODULE,
+ .open = nvme_ns_head_chr_open,
+ .release = nvme_ns_head_chr_release,
+ .unlocked_ioctl = nvme_ns_head_chr_ioctl,
+ .compat_ioctl = compat_ptr_ioctl,
+ .uring_cmd = nvme_ns_head_chr_uring_cmd,
+ .uring_cmd_iopoll = nvme_ns_chr_uring_cmd_iopoll,
+};
+
+static int nvme_add_ns_head_cdev(struct nvme_ns_head *head)
+{
+ int ret;
+
+ head->cdev_device.parent = &head->subsys->dev;
+ ret = dev_set_name(&head->cdev_device, "ng%dn%d",
+ head->subsys->instance, head->instance);
+ if (ret)
+ return ret;
+ ret = nvme_cdev_add(&head->cdev, &head->cdev_device,
+ &nvme_ns_head_chr_fops, THIS_MODULE);
+ return ret;
+}
+
+static void nvme_requeue_work(struct work_struct *work)
+{
+ struct nvme_ns_head *head =
+ container_of(work, struct nvme_ns_head, requeue_work);
+ struct bio *bio, *next;
+
+ spin_lock_irq(&head->requeue_lock);
+ next = bio_list_get(&head->requeue_list);
+ spin_unlock_irq(&head->requeue_lock);
+
+ while ((bio = next) != NULL) {
+ next = bio->bi_next;
+ bio->bi_next = NULL;
+
+ submit_bio_noacct(bio);
+ }
+}
+
+int nvme_mpath_alloc_disk(struct nvme_ctrl *ctrl, struct nvme_ns_head *head)
+{
+ bool vwc = false;
+
+ mutex_init(&head->lock);
+ bio_list_init(&head->requeue_list);
+ spin_lock_init(&head->requeue_lock);
+ INIT_WORK(&head->requeue_work, nvme_requeue_work);
+
+ /*
+ * Add a multipath node if the subsystems supports multiple controllers.
+ * We also do this for private namespaces as the namespace sharing flag
+ * could change after a rescan.
+ */
+ if (!(ctrl->subsys->cmic & NVME_CTRL_CMIC_MULTI_CTRL) ||
+ !nvme_is_unique_nsid(ctrl, head) || !multipath)
+ return 0;
+
+ head->disk = blk_alloc_disk(ctrl->numa_node);
+ if (!head->disk)
+ return -ENOMEM;
+ head->disk->fops = &nvme_ns_head_ops;
+ head->disk->private_data = head;
+ sprintf(head->disk->disk_name, "nvme%dn%d",
+ ctrl->subsys->instance, head->instance);
+
+ blk_queue_flag_set(QUEUE_FLAG_NONROT, head->disk->queue);
+ blk_queue_flag_set(QUEUE_FLAG_NOWAIT, head->disk->queue);
+ blk_queue_flag_set(QUEUE_FLAG_IO_STAT, head->disk->queue);
+ /*
+ * This assumes all controllers that refer to a namespace either
+ * support poll queues or not. That is not a strict guarantee,
+ * but if the assumption is wrong the effect is only suboptimal
+ * performance but not correctness problem.
+ */
+ if (ctrl->tagset->nr_maps > HCTX_TYPE_POLL &&
+ ctrl->tagset->map[HCTX_TYPE_POLL].nr_queues)
+ blk_queue_flag_set(QUEUE_FLAG_POLL, head->disk->queue);
+
+ /* set to a default value of 512 until the disk is validated */
+ blk_queue_logical_block_size(head->disk->queue, 512);
+ blk_set_stacking_limits(&head->disk->queue->limits);
+ blk_queue_dma_alignment(head->disk->queue, 3);
+
+ /* we need to propagate up the VMC settings */
+ if (ctrl->vwc & NVME_CTRL_VWC_PRESENT)
+ vwc = true;
+ blk_queue_write_cache(head->disk->queue, vwc, vwc);
+ return 0;
+}
+
+static void nvme_mpath_set_live(struct nvme_ns *ns)
+{
+ struct nvme_ns_head *head = ns->head;
+ int rc;
+
+ if (!head->disk)
+ return;
+
+ /*
+ * test_and_set_bit() is used because it is protecting against two nvme
+ * paths simultaneously calling device_add_disk() on the same namespace
+ * head.
+ */
+ if (!test_and_set_bit(NVME_NSHEAD_DISK_LIVE, &head->flags)) {
+ rc = device_add_disk(&head->subsys->dev, head->disk,
+ nvme_ns_id_attr_groups);
+ if (rc) {
+ clear_bit(NVME_NSHEAD_DISK_LIVE, &ns->flags);
+ return;
+ }
+ nvme_add_ns_head_cdev(head);
+ }
+
+ mutex_lock(&head->lock);
+ if (nvme_path_is_optimized(ns)) {
+ int node, srcu_idx;
+
+ srcu_idx = srcu_read_lock(&head->srcu);
+ for_each_node(node)
+ __nvme_find_path(head, node);
+ srcu_read_unlock(&head->srcu, srcu_idx);
+ }
+ mutex_unlock(&head->lock);
+
+ synchronize_srcu(&head->srcu);
+ kblockd_schedule_work(&head->requeue_work);
+}
+
+static int nvme_parse_ana_log(struct nvme_ctrl *ctrl, void *data,
+ int (*cb)(struct nvme_ctrl *ctrl, struct nvme_ana_group_desc *,
+ void *))
+{
+ void *base = ctrl->ana_log_buf;
+ size_t offset = sizeof(struct nvme_ana_rsp_hdr);
+ int error, i;
+
+ lockdep_assert_held(&ctrl->ana_lock);
+
+ for (i = 0; i < le16_to_cpu(ctrl->ana_log_buf->ngrps); i++) {
+ struct nvme_ana_group_desc *desc = base + offset;
+ u32 nr_nsids;
+ size_t nsid_buf_size;
+
+ if (WARN_ON_ONCE(offset > ctrl->ana_log_size - sizeof(*desc)))
+ return -EINVAL;
+
+ nr_nsids = le32_to_cpu(desc->nnsids);
+ nsid_buf_size = flex_array_size(desc, nsids, nr_nsids);
+
+ if (WARN_ON_ONCE(desc->grpid == 0))
+ return -EINVAL;
+ if (WARN_ON_ONCE(le32_to_cpu(desc->grpid) > ctrl->anagrpmax))
+ return -EINVAL;
+ if (WARN_ON_ONCE(desc->state == 0))
+ return -EINVAL;
+ if (WARN_ON_ONCE(desc->state > NVME_ANA_CHANGE))
+ return -EINVAL;
+
+ offset += sizeof(*desc);
+ if (WARN_ON_ONCE(offset > ctrl->ana_log_size - nsid_buf_size))
+ return -EINVAL;
+
+ error = cb(ctrl, desc, data);
+ if (error)
+ return error;
+
+ offset += nsid_buf_size;
+ }
+
+ return 0;
+}
+
+static inline bool nvme_state_is_live(enum nvme_ana_state state)
+{
+ return state == NVME_ANA_OPTIMIZED || state == NVME_ANA_NONOPTIMIZED;
+}
+
+static void nvme_update_ns_ana_state(struct nvme_ana_group_desc *desc,
+ struct nvme_ns *ns)
+{
+ ns->ana_grpid = le32_to_cpu(desc->grpid);
+ ns->ana_state = desc->state;
+ clear_bit(NVME_NS_ANA_PENDING, &ns->flags);
+ /*
+ * nvme_mpath_set_live() will trigger I/O to the multipath path device
+ * and in turn to this path device. However we cannot accept this I/O
+ * if the controller is not live. This may deadlock if called from
+ * nvme_mpath_init_identify() and the ctrl will never complete
+ * initialization, preventing I/O from completing. For this case we
+ * will reprocess the ANA log page in nvme_mpath_update() once the
+ * controller is ready.
+ */
+ if (nvme_state_is_live(ns->ana_state) &&
+ ns->ctrl->state == NVME_CTRL_LIVE)
+ nvme_mpath_set_live(ns);
+}
+
+static int nvme_update_ana_state(struct nvme_ctrl *ctrl,
+ struct nvme_ana_group_desc *desc, void *data)
+{
+ u32 nr_nsids = le32_to_cpu(desc->nnsids), n = 0;
+ unsigned *nr_change_groups = data;
+ struct nvme_ns *ns;
+
+ dev_dbg(ctrl->device, "ANA group %d: %s.\n",
+ le32_to_cpu(desc->grpid),
+ nvme_ana_state_names[desc->state]);
+
+ if (desc->state == NVME_ANA_CHANGE)
+ (*nr_change_groups)++;
+
+ if (!nr_nsids)
+ return 0;
+
+ down_read(&ctrl->namespaces_rwsem);
+ list_for_each_entry(ns, &ctrl->namespaces, list) {
+ unsigned nsid;
+again:
+ nsid = le32_to_cpu(desc->nsids[n]);
+ if (ns->head->ns_id < nsid)
+ continue;
+ if (ns->head->ns_id == nsid)
+ nvme_update_ns_ana_state(desc, ns);
+ if (++n == nr_nsids)
+ break;
+ if (ns->head->ns_id > nsid)
+ goto again;
+ }
+ up_read(&ctrl->namespaces_rwsem);
+ return 0;
+}
+
+static int nvme_read_ana_log(struct nvme_ctrl *ctrl)
+{
+ u32 nr_change_groups = 0;
+ int error;
+
+ mutex_lock(&ctrl->ana_lock);
+ error = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_ANA, 0, NVME_CSI_NVM,
+ ctrl->ana_log_buf, ctrl->ana_log_size, 0);
+ if (error) {
+ dev_warn(ctrl->device, "Failed to get ANA log: %d\n", error);
+ goto out_unlock;
+ }
+
+ error = nvme_parse_ana_log(ctrl, &nr_change_groups,
+ nvme_update_ana_state);
+ if (error)
+ goto out_unlock;
+
+ /*
+ * In theory we should have an ANATT timer per group as they might enter
+ * the change state at different times. But that is a lot of overhead
+ * just to protect against a target that keeps entering new changes
+ * states while never finishing previous ones. But we'll still
+ * eventually time out once all groups are in change state, so this
+ * isn't a big deal.
+ *
+ * We also double the ANATT value to provide some slack for transports
+ * or AEN processing overhead.
+ */
+ if (nr_change_groups)
+ mod_timer(&ctrl->anatt_timer, ctrl->anatt * HZ * 2 + jiffies);
+ else
+ del_timer_sync(&ctrl->anatt_timer);
+out_unlock:
+ mutex_unlock(&ctrl->ana_lock);
+ return error;
+}
+
+static void nvme_ana_work(struct work_struct *work)
+{
+ struct nvme_ctrl *ctrl = container_of(work, struct nvme_ctrl, ana_work);
+
+ if (ctrl->state != NVME_CTRL_LIVE)
+ return;
+
+ nvme_read_ana_log(ctrl);
+}
+
+void nvme_mpath_update(struct nvme_ctrl *ctrl)
+{
+ u32 nr_change_groups = 0;
+
+ if (!ctrl->ana_log_buf)
+ return;
+
+ mutex_lock(&ctrl->ana_lock);
+ nvme_parse_ana_log(ctrl, &nr_change_groups, nvme_update_ana_state);
+ mutex_unlock(&ctrl->ana_lock);
+}
+
+static void nvme_anatt_timeout(struct timer_list *t)
+{
+ struct nvme_ctrl *ctrl = from_timer(ctrl, t, anatt_timer);
+
+ dev_info(ctrl->device, "ANATT timeout, resetting controller.\n");
+ nvme_reset_ctrl(ctrl);
+}
+
+void nvme_mpath_stop(struct nvme_ctrl *ctrl)
+{
+ if (!nvme_ctrl_use_ana(ctrl))
+ return;
+ del_timer_sync(&ctrl->anatt_timer);
+ cancel_work_sync(&ctrl->ana_work);
+}
+
+#define SUBSYS_ATTR_RW(_name, _mode, _show, _store) \
+ struct device_attribute subsys_attr_##_name = \
+ __ATTR(_name, _mode, _show, _store)
+
+static ssize_t nvme_subsys_iopolicy_show(struct device *dev,
+ struct device_attribute *attr, char *buf)
+{
+ struct nvme_subsystem *subsys =
+ container_of(dev, struct nvme_subsystem, dev);
+
+ return sysfs_emit(buf, "%s\n",
+ nvme_iopolicy_names[READ_ONCE(subsys->iopolicy)]);
+}
+
+static ssize_t nvme_subsys_iopolicy_store(struct device *dev,
+ struct device_attribute *attr, const char *buf, size_t count)
+{
+ struct nvme_subsystem *subsys =
+ container_of(dev, struct nvme_subsystem, dev);
+ int i;
+
+ for (i = 0; i < ARRAY_SIZE(nvme_iopolicy_names); i++) {
+ if (sysfs_streq(buf, nvme_iopolicy_names[i])) {
+ WRITE_ONCE(subsys->iopolicy, i);
+ return count;
+ }
+ }
+
+ return -EINVAL;
+}
+SUBSYS_ATTR_RW(iopolicy, S_IRUGO | S_IWUSR,
+ nvme_subsys_iopolicy_show, nvme_subsys_iopolicy_store);
+
+static ssize_t ana_grpid_show(struct device *dev, struct device_attribute *attr,
+ char *buf)
+{
+ return sysfs_emit(buf, "%d\n", nvme_get_ns_from_dev(dev)->ana_grpid);
+}
+DEVICE_ATTR_RO(ana_grpid);
+
+static ssize_t ana_state_show(struct device *dev, struct device_attribute *attr,
+ char *buf)
+{
+ struct nvme_ns *ns = nvme_get_ns_from_dev(dev);
+
+ return sysfs_emit(buf, "%s\n", nvme_ana_state_names[ns->ana_state]);
+}
+DEVICE_ATTR_RO(ana_state);
+
+static int nvme_lookup_ana_group_desc(struct nvme_ctrl *ctrl,
+ struct nvme_ana_group_desc *desc, void *data)
+{
+ struct nvme_ana_group_desc *dst = data;
+
+ if (desc->grpid != dst->grpid)
+ return 0;
+
+ *dst = *desc;
+ return -ENXIO; /* just break out of the loop */
+}
+
+void nvme_mpath_add_disk(struct nvme_ns *ns, __le32 anagrpid)
+{
+ if (nvme_ctrl_use_ana(ns->ctrl)) {
+ struct nvme_ana_group_desc desc = {
+ .grpid = anagrpid,
+ .state = 0,
+ };
+
+ mutex_lock(&ns->ctrl->ana_lock);
+ ns->ana_grpid = le32_to_cpu(anagrpid);
+ nvme_parse_ana_log(ns->ctrl, &desc, nvme_lookup_ana_group_desc);
+ mutex_unlock(&ns->ctrl->ana_lock);
+ if (desc.state) {
+ /* found the group desc: update */
+ nvme_update_ns_ana_state(&desc, ns);
+ } else {
+ /* group desc not found: trigger a re-read */
+ set_bit(NVME_NS_ANA_PENDING, &ns->flags);
+ queue_work(nvme_wq, &ns->ctrl->ana_work);
+ }
+ } else {
+ ns->ana_state = NVME_ANA_OPTIMIZED;
+ nvme_mpath_set_live(ns);
+ }
+
+ if (blk_queue_stable_writes(ns->queue) && ns->head->disk)
+ blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES,
+ ns->head->disk->queue);
+#ifdef CONFIG_BLK_DEV_ZONED
+ if (blk_queue_is_zoned(ns->queue) && ns->head->disk)
+ ns->head->disk->nr_zones = ns->disk->nr_zones;
+#endif
+}
+
+void nvme_mpath_shutdown_disk(struct nvme_ns_head *head)
+{
+ if (!head->disk)
+ return;
+ kblockd_schedule_work(&head->requeue_work);
+ if (test_bit(NVME_NSHEAD_DISK_LIVE, &head->flags)) {
+ nvme_cdev_del(&head->cdev, &head->cdev_device);
+ del_gendisk(head->disk);
+ }
+}
+
+void nvme_mpath_remove_disk(struct nvme_ns_head *head)
+{
+ if (!head->disk)
+ return;
+ /* make sure all pending bios are cleaned up */
+ kblockd_schedule_work(&head->requeue_work);
+ flush_work(&head->requeue_work);
+ put_disk(head->disk);
+}
+
+void nvme_mpath_init_ctrl(struct nvme_ctrl *ctrl)
+{
+ mutex_init(&ctrl->ana_lock);
+ timer_setup(&ctrl->anatt_timer, nvme_anatt_timeout, 0);
+ INIT_WORK(&ctrl->ana_work, nvme_ana_work);
+}
+
+int nvme_mpath_init_identify(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
+{
+ size_t max_transfer_size = ctrl->max_hw_sectors << SECTOR_SHIFT;
+ size_t ana_log_size;
+ int error = 0;
+
+ /* check if multipath is enabled and we have the capability */
+ if (!multipath || !ctrl->subsys ||
+ !(ctrl->subsys->cmic & NVME_CTRL_CMIC_ANA))
+ return 0;
+
+ if (!ctrl->max_namespaces ||
+ ctrl->max_namespaces > le32_to_cpu(id->nn)) {
+ dev_err(ctrl->device,
+ "Invalid MNAN value %u\n", ctrl->max_namespaces);
+ return -EINVAL;
+ }
+
+ ctrl->anacap = id->anacap;
+ ctrl->anatt = id->anatt;
+ ctrl->nanagrpid = le32_to_cpu(id->nanagrpid);
+ ctrl->anagrpmax = le32_to_cpu(id->anagrpmax);
+
+ ana_log_size = sizeof(struct nvme_ana_rsp_hdr) +
+ ctrl->nanagrpid * sizeof(struct nvme_ana_group_desc) +
+ ctrl->max_namespaces * sizeof(__le32);
+ if (ana_log_size > max_transfer_size) {
+ dev_err(ctrl->device,
+ "ANA log page size (%zd) larger than MDTS (%zd).\n",
+ ana_log_size, max_transfer_size);
+ dev_err(ctrl->device, "disabling ANA support.\n");
+ goto out_uninit;
+ }
+ if (ana_log_size > ctrl->ana_log_size) {
+ nvme_mpath_stop(ctrl);
+ nvme_mpath_uninit(ctrl);
+ ctrl->ana_log_buf = kvmalloc(ana_log_size, GFP_KERNEL);
+ if (!ctrl->ana_log_buf)
+ return -ENOMEM;
+ }
+ ctrl->ana_log_size = ana_log_size;
+ error = nvme_read_ana_log(ctrl);
+ if (error)
+ goto out_uninit;
+ return 0;
+
+out_uninit:
+ nvme_mpath_uninit(ctrl);
+ return error;
+}
+
+void nvme_mpath_uninit(struct nvme_ctrl *ctrl)
+{
+ kvfree(ctrl->ana_log_buf);
+ ctrl->ana_log_buf = NULL;
+ ctrl->ana_log_size = 0;
+}
diff --git a/drivers/nvme/host/nvme.h b/drivers/nvme/host/nvme.h
new file mode 100644
index 0000000000..ba62d42d2a
--- /dev/null
+++ b/drivers/nvme/host/nvme.h
@@ -0,0 +1,1141 @@
+/* SPDX-License-Identifier: GPL-2.0 */
+/*
+ * Copyright (c) 2011-2014, Intel Corporation.
+ */
+
+#ifndef _NVME_H
+#define _NVME_H
+
+#include <linux/nvme.h>
+#include <linux/cdev.h>
+#include <linux/pci.h>
+#include <linux/kref.h>
+#include <linux/blk-mq.h>
+#include <linux/sed-opal.h>
+#include <linux/fault-inject.h>
+#include <linux/rcupdate.h>
+#include <linux/wait.h>
+#include <linux/t10-pi.h>
+
+#include <trace/events/block.h>
+
+extern const struct pr_ops nvme_pr_ops;
+
+extern unsigned int nvme_io_timeout;
+#define NVME_IO_TIMEOUT (nvme_io_timeout * HZ)
+
+extern unsigned int admin_timeout;
+#define NVME_ADMIN_TIMEOUT (admin_timeout * HZ)
+
+#define NVME_DEFAULT_KATO 5
+
+#ifdef CONFIG_ARCH_NO_SG_CHAIN
+#define NVME_INLINE_SG_CNT 0
+#define NVME_INLINE_METADATA_SG_CNT 0
+#else
+#define NVME_INLINE_SG_CNT 2
+#define NVME_INLINE_METADATA_SG_CNT 1
+#endif
+
+/*
+ * Default to a 4K page size, with the intention to update this
+ * path in the future to accommodate architectures with differing
+ * kernel and IO page sizes.
+ */
+#define NVME_CTRL_PAGE_SHIFT 12
+#define NVME_CTRL_PAGE_SIZE (1 << NVME_CTRL_PAGE_SHIFT)
+
+extern struct workqueue_struct *nvme_wq;
+extern struct workqueue_struct *nvme_reset_wq;
+extern struct workqueue_struct *nvme_delete_wq;
+
+/*
+ * List of workarounds for devices that required behavior not specified in
+ * the standard.
+ */
+enum nvme_quirks {
+ /*
+ * Prefers I/O aligned to a stripe size specified in a vendor
+ * specific Identify field.
+ */
+ NVME_QUIRK_STRIPE_SIZE = (1 << 0),
+
+ /*
+ * The controller doesn't handle Identify value others than 0 or 1
+ * correctly.
+ */
+ NVME_QUIRK_IDENTIFY_CNS = (1 << 1),
+
+ /*
+ * The controller deterministically returns O's on reads to
+ * logical blocks that deallocate was called on.
+ */
+ NVME_QUIRK_DEALLOCATE_ZEROES = (1 << 2),
+
+ /*
+ * The controller needs a delay before starts checking the device
+ * readiness, which is done by reading the NVME_CSTS_RDY bit.
+ */
+ NVME_QUIRK_DELAY_BEFORE_CHK_RDY = (1 << 3),
+
+ /*
+ * APST should not be used.
+ */
+ NVME_QUIRK_NO_APST = (1 << 4),
+
+ /*
+ * The deepest sleep state should not be used.
+ */
+ NVME_QUIRK_NO_DEEPEST_PS = (1 << 5),
+
+ /*
+ * Set MEDIUM priority on SQ creation
+ */
+ NVME_QUIRK_MEDIUM_PRIO_SQ = (1 << 7),
+
+ /*
+ * Ignore device provided subnqn.
+ */
+ NVME_QUIRK_IGNORE_DEV_SUBNQN = (1 << 8),
+
+ /*
+ * Broken Write Zeroes.
+ */
+ NVME_QUIRK_DISABLE_WRITE_ZEROES = (1 << 9),
+
+ /*
+ * Force simple suspend/resume path.
+ */
+ NVME_QUIRK_SIMPLE_SUSPEND = (1 << 10),
+
+ /*
+ * Use only one interrupt vector for all queues
+ */
+ NVME_QUIRK_SINGLE_VECTOR = (1 << 11),
+
+ /*
+ * Use non-standard 128 bytes SQEs.
+ */
+ NVME_QUIRK_128_BYTES_SQES = (1 << 12),
+
+ /*
+ * Prevent tag overlap between queues
+ */
+ NVME_QUIRK_SHARED_TAGS = (1 << 13),
+
+ /*
+ * Don't change the value of the temperature threshold feature
+ */
+ NVME_QUIRK_NO_TEMP_THRESH_CHANGE = (1 << 14),
+
+ /*
+ * The controller doesn't handle the Identify Namespace
+ * Identification Descriptor list subcommand despite claiming
+ * NVMe 1.3 compliance.
+ */
+ NVME_QUIRK_NO_NS_DESC_LIST = (1 << 15),
+
+ /*
+ * The controller does not properly handle DMA addresses over
+ * 48 bits.
+ */
+ NVME_QUIRK_DMA_ADDRESS_BITS_48 = (1 << 16),
+
+ /*
+ * The controller requires the command_id value be limited, so skip
+ * encoding the generation sequence number.
+ */
+ NVME_QUIRK_SKIP_CID_GEN = (1 << 17),
+
+ /*
+ * Reports garbage in the namespace identifiers (eui64, nguid, uuid).
+ */
+ NVME_QUIRK_BOGUS_NID = (1 << 18),
+
+ /*
+ * No temperature thresholds for channels other than 0 (Composite).
+ */
+ NVME_QUIRK_NO_SECONDARY_TEMP_THRESH = (1 << 19),
+
+ /*
+ * Disables simple suspend/resume path.
+ */
+ NVME_QUIRK_FORCE_NO_SIMPLE_SUSPEND = (1 << 20),
+};
+
+/*
+ * Common request structure for NVMe passthrough. All drivers must have
+ * this structure as the first member of their request-private data.
+ */
+struct nvme_request {
+ struct nvme_command *cmd;
+ union nvme_result result;
+ u8 genctr;
+ u8 retries;
+ u8 flags;
+ u16 status;
+#ifdef CONFIG_NVME_MULTIPATH
+ unsigned long start_time;
+#endif
+ struct nvme_ctrl *ctrl;
+};
+
+/*
+ * Mark a bio as coming in through the mpath node.
+ */
+#define REQ_NVME_MPATH REQ_DRV
+
+enum {
+ NVME_REQ_CANCELLED = (1 << 0),
+ NVME_REQ_USERCMD = (1 << 1),
+ NVME_MPATH_IO_STATS = (1 << 2),
+};
+
+static inline struct nvme_request *nvme_req(struct request *req)
+{
+ return blk_mq_rq_to_pdu(req);
+}
+
+static inline u16 nvme_req_qid(struct request *req)
+{
+ if (!req->q->queuedata)
+ return 0;
+
+ return req->mq_hctx->queue_num + 1;
+}
+
+/* The below value is the specific amount of delay needed before checking
+ * readiness in case of the PCI_DEVICE(0x1c58, 0x0003), which needs the
+ * NVME_QUIRK_DELAY_BEFORE_CHK_RDY quirk enabled. The value (in ms) was
+ * found empirically.
+ */
+#define NVME_QUIRK_DELAY_AMOUNT 2300
+
+/*
+ * enum nvme_ctrl_state: Controller state
+ *
+ * @NVME_CTRL_NEW: New controller just allocated, initial state
+ * @NVME_CTRL_LIVE: Controller is connected and I/O capable
+ * @NVME_CTRL_RESETTING: Controller is resetting (or scheduled reset)
+ * @NVME_CTRL_CONNECTING: Controller is disconnected, now connecting the
+ * transport
+ * @NVME_CTRL_DELETING: Controller is deleting (or scheduled deletion)
+ * @NVME_CTRL_DELETING_NOIO: Controller is deleting and I/O is not
+ * disabled/failed immediately. This state comes
+ * after all async event processing took place and
+ * before ns removal and the controller deletion
+ * progress
+ * @NVME_CTRL_DEAD: Controller is non-present/unresponsive during
+ * shutdown or removal. In this case we forcibly
+ * kill all inflight I/O as they have no chance to
+ * complete
+ */
+enum nvme_ctrl_state {
+ NVME_CTRL_NEW,
+ NVME_CTRL_LIVE,
+ NVME_CTRL_RESETTING,
+ NVME_CTRL_CONNECTING,
+ NVME_CTRL_DELETING,
+ NVME_CTRL_DELETING_NOIO,
+ NVME_CTRL_DEAD,
+};
+
+struct nvme_fault_inject {
+#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
+ struct fault_attr attr;
+ struct dentry *parent;
+ bool dont_retry; /* DNR, do not retry */
+ u16 status; /* status code */
+#endif
+};
+
+enum nvme_ctrl_flags {
+ NVME_CTRL_FAILFAST_EXPIRED = 0,
+ NVME_CTRL_ADMIN_Q_STOPPED = 1,
+ NVME_CTRL_STARTED_ONCE = 2,
+ NVME_CTRL_STOPPED = 3,
+ NVME_CTRL_SKIP_ID_CNS_CS = 4,
+ NVME_CTRL_DIRTY_CAPABILITY = 5,
+ NVME_CTRL_FROZEN = 6,
+};
+
+struct nvme_ctrl {
+ bool comp_seen;
+ bool identified;
+ enum nvme_ctrl_state state;
+ spinlock_t lock;
+ struct mutex scan_lock;
+ const struct nvme_ctrl_ops *ops;
+ struct request_queue *admin_q;
+ struct request_queue *connect_q;
+ struct request_queue *fabrics_q;
+ struct device *dev;
+ int instance;
+ int numa_node;
+ struct blk_mq_tag_set *tagset;
+ struct blk_mq_tag_set *admin_tagset;
+ struct list_head namespaces;
+ struct rw_semaphore namespaces_rwsem;
+ struct device ctrl_device;
+ struct device *device; /* char device */
+#ifdef CONFIG_NVME_HWMON
+ struct device *hwmon_device;
+#endif
+ struct cdev cdev;
+ struct work_struct reset_work;
+ struct work_struct delete_work;
+ wait_queue_head_t state_wq;
+
+ struct nvme_subsystem *subsys;
+ struct list_head subsys_entry;
+
+ struct opal_dev *opal_dev;
+
+ char name[12];
+ u16 cntlid;
+
+ u16 mtfa;
+ u32 ctrl_config;
+ u32 queue_count;
+
+ u64 cap;
+ u32 max_hw_sectors;
+ u32 max_segments;
+ u32 max_integrity_segments;
+ u32 max_discard_sectors;
+ u32 max_discard_segments;
+ u32 max_zeroes_sectors;
+#ifdef CONFIG_BLK_DEV_ZONED
+ u32 max_zone_append;
+#endif
+ u16 crdt[3];
+ u16 oncs;
+ u32 dmrsl;
+ u16 oacs;
+ u16 sqsize;
+ u32 max_namespaces;
+ atomic_t abort_limit;
+ u8 vwc;
+ u32 vs;
+ u32 sgls;
+ u16 kas;
+ u8 npss;
+ u8 apsta;
+ u16 wctemp;
+ u16 cctemp;
+ u32 oaes;
+ u32 aen_result;
+ u32 ctratt;
+ unsigned int shutdown_timeout;
+ unsigned int kato;
+ bool subsystem;
+ unsigned long quirks;
+ struct nvme_id_power_state psd[32];
+ struct nvme_effects_log *effects;
+ struct xarray cels;
+ struct work_struct scan_work;
+ struct work_struct async_event_work;
+ struct delayed_work ka_work;
+ struct delayed_work failfast_work;
+ struct nvme_command ka_cmd;
+ unsigned long ka_last_check_time;
+ struct work_struct fw_act_work;
+ unsigned long events;
+
+#ifdef CONFIG_NVME_MULTIPATH
+ /* asymmetric namespace access: */
+ u8 anacap;
+ u8 anatt;
+ u32 anagrpmax;
+ u32 nanagrpid;
+ struct mutex ana_lock;
+ struct nvme_ana_rsp_hdr *ana_log_buf;
+ size_t ana_log_size;
+ struct timer_list anatt_timer;
+ struct work_struct ana_work;
+#endif
+
+#ifdef CONFIG_NVME_AUTH
+ struct work_struct dhchap_auth_work;
+ struct mutex dhchap_auth_mutex;
+ struct nvme_dhchap_queue_context *dhchap_ctxs;
+ struct nvme_dhchap_key *host_key;
+ struct nvme_dhchap_key *ctrl_key;
+ u16 transaction;
+#endif
+
+ /* Power saving configuration */
+ u64 ps_max_latency_us;
+ bool apst_enabled;
+
+ /* PCIe only: */
+ u16 hmmaxd;
+ u32 hmpre;
+ u32 hmmin;
+ u32 hmminds;
+
+ /* Fabrics only */
+ u32 ioccsz;
+ u32 iorcsz;
+ u16 icdoff;
+ u16 maxcmd;
+ int nr_reconnects;
+ unsigned long flags;
+ struct nvmf_ctrl_options *opts;
+
+ struct page *discard_page;
+ unsigned long discard_page_busy;
+
+ struct nvme_fault_inject fault_inject;
+
+ enum nvme_ctrl_type cntrltype;
+ enum nvme_dctype dctype;
+};
+
+static inline enum nvme_ctrl_state nvme_ctrl_state(struct nvme_ctrl *ctrl)
+{
+ return READ_ONCE(ctrl->state);
+}
+
+enum nvme_iopolicy {
+ NVME_IOPOLICY_NUMA,
+ NVME_IOPOLICY_RR,
+};
+
+struct nvme_subsystem {
+ int instance;
+ struct device dev;
+ /*
+ * Because we unregister the device on the last put we need
+ * a separate refcount.
+ */
+ struct kref ref;
+ struct list_head entry;
+ struct mutex lock;
+ struct list_head ctrls;
+ struct list_head nsheads;
+ char subnqn[NVMF_NQN_SIZE];
+ char serial[20];
+ char model[40];
+ char firmware_rev[8];
+ u8 cmic;
+ enum nvme_subsys_type subtype;
+ u16 vendor_id;
+ u16 awupf; /* 0's based awupf value. */
+ struct ida ns_ida;
+#ifdef CONFIG_NVME_MULTIPATH
+ enum nvme_iopolicy iopolicy;
+#endif
+};
+
+/*
+ * Container structure for uniqueue namespace identifiers.
+ */
+struct nvme_ns_ids {
+ u8 eui64[8];
+ u8 nguid[16];
+ uuid_t uuid;
+ u8 csi;
+};
+
+/*
+ * Anchor structure for namespaces. There is one for each namespace in a
+ * NVMe subsystem that any of our controllers can see, and the namespace
+ * structure for each controller is chained of it. For private namespaces
+ * there is a 1:1 relation to our namespace structures, that is ->list
+ * only ever has a single entry for private namespaces.
+ */
+struct nvme_ns_head {
+ struct list_head list;
+ struct srcu_struct srcu;
+ struct nvme_subsystem *subsys;
+ unsigned ns_id;
+ struct nvme_ns_ids ids;
+ struct list_head entry;
+ struct kref ref;
+ bool shared;
+ int instance;
+ struct nvme_effects_log *effects;
+
+ struct cdev cdev;
+ struct device cdev_device;
+
+ struct gendisk *disk;
+#ifdef CONFIG_NVME_MULTIPATH
+ struct bio_list requeue_list;
+ spinlock_t requeue_lock;
+ struct work_struct requeue_work;
+ struct mutex lock;
+ unsigned long flags;
+#define NVME_NSHEAD_DISK_LIVE 0
+ struct nvme_ns __rcu *current_path[];
+#endif
+};
+
+static inline bool nvme_ns_head_multipath(struct nvme_ns_head *head)
+{
+ return IS_ENABLED(CONFIG_NVME_MULTIPATH) && head->disk;
+}
+
+enum nvme_ns_features {
+ NVME_NS_EXT_LBAS = 1 << 0, /* support extended LBA format */
+ NVME_NS_METADATA_SUPPORTED = 1 << 1, /* support getting generated md */
+ NVME_NS_DEAC, /* DEAC bit in Write Zeores supported */
+};
+
+struct nvme_ns {
+ struct list_head list;
+
+ struct nvme_ctrl *ctrl;
+ struct request_queue *queue;
+ struct gendisk *disk;
+#ifdef CONFIG_NVME_MULTIPATH
+ enum nvme_ana_state ana_state;
+ u32 ana_grpid;
+#endif
+ struct list_head siblings;
+ struct kref kref;
+ struct nvme_ns_head *head;
+
+ int lba_shift;
+ u16 ms;
+ u16 pi_size;
+ u16 sgs;
+ u32 sws;
+ u8 pi_type;
+ u8 guard_type;
+#ifdef CONFIG_BLK_DEV_ZONED
+ u64 zsze;
+#endif
+ unsigned long features;
+ unsigned long flags;
+#define NVME_NS_REMOVING 0
+#define NVME_NS_ANA_PENDING 2
+#define NVME_NS_FORCE_RO 3
+#define NVME_NS_READY 4
+
+ struct cdev cdev;
+ struct device cdev_device;
+
+ struct nvme_fault_inject fault_inject;
+
+};
+
+/* NVMe ns supports metadata actions by the controller (generate/strip) */
+static inline bool nvme_ns_has_pi(struct nvme_ns *ns)
+{
+ return ns->pi_type && ns->ms == ns->pi_size;
+}
+
+struct nvme_ctrl_ops {
+ const char *name;
+ struct module *module;
+ unsigned int flags;
+#define NVME_F_FABRICS (1 << 0)
+#define NVME_F_METADATA_SUPPORTED (1 << 1)
+#define NVME_F_BLOCKING (1 << 2)
+
+ const struct attribute_group **dev_attr_groups;
+ int (*reg_read32)(struct nvme_ctrl *ctrl, u32 off, u32 *val);
+ int (*reg_write32)(struct nvme_ctrl *ctrl, u32 off, u32 val);
+ int (*reg_read64)(struct nvme_ctrl *ctrl, u32 off, u64 *val);
+ void (*free_ctrl)(struct nvme_ctrl *ctrl);
+ void (*submit_async_event)(struct nvme_ctrl *ctrl);
+ void (*delete_ctrl)(struct nvme_ctrl *ctrl);
+ void (*stop_ctrl)(struct nvme_ctrl *ctrl);
+ int (*get_address)(struct nvme_ctrl *ctrl, char *buf, int size);
+ void (*print_device_info)(struct nvme_ctrl *ctrl);
+ bool (*supports_pci_p2pdma)(struct nvme_ctrl *ctrl);
+};
+
+/*
+ * nvme command_id is constructed as such:
+ * | xxxx | xxxxxxxxxxxx |
+ * gen request tag
+ */
+#define nvme_genctr_mask(gen) (gen & 0xf)
+#define nvme_cid_install_genctr(gen) (nvme_genctr_mask(gen) << 12)
+#define nvme_genctr_from_cid(cid) ((cid & 0xf000) >> 12)
+#define nvme_tag_from_cid(cid) (cid & 0xfff)
+
+static inline u16 nvme_cid(struct request *rq)
+{
+ return nvme_cid_install_genctr(nvme_req(rq)->genctr) | rq->tag;
+}
+
+static inline struct request *nvme_find_rq(struct blk_mq_tags *tags,
+ u16 command_id)
+{
+ u8 genctr = nvme_genctr_from_cid(command_id);
+ u16 tag = nvme_tag_from_cid(command_id);
+ struct request *rq;
+
+ rq = blk_mq_tag_to_rq(tags, tag);
+ if (unlikely(!rq)) {
+ pr_err("could not locate request for tag %#x\n",
+ tag);
+ return NULL;
+ }
+ if (unlikely(nvme_genctr_mask(nvme_req(rq)->genctr) != genctr)) {
+ dev_err(nvme_req(rq)->ctrl->device,
+ "request %#x genctr mismatch (got %#x expected %#x)\n",
+ tag, genctr, nvme_genctr_mask(nvme_req(rq)->genctr));
+ return NULL;
+ }
+ return rq;
+}
+
+static inline struct request *nvme_cid_to_rq(struct blk_mq_tags *tags,
+ u16 command_id)
+{
+ return blk_mq_tag_to_rq(tags, nvme_tag_from_cid(command_id));
+}
+
+/*
+ * Return the length of the string without the space padding
+ */
+static inline int nvme_strlen(char *s, int len)
+{
+ while (s[len - 1] == ' ')
+ len--;
+ return len;
+}
+
+static inline void nvme_print_device_info(struct nvme_ctrl *ctrl)
+{
+ struct nvme_subsystem *subsys = ctrl->subsys;
+
+ if (ctrl->ops->print_device_info) {
+ ctrl->ops->print_device_info(ctrl);
+ return;
+ }
+
+ dev_err(ctrl->device,
+ "VID:%04x model:%.*s firmware:%.*s\n", subsys->vendor_id,
+ nvme_strlen(subsys->model, sizeof(subsys->model)),
+ subsys->model, nvme_strlen(subsys->firmware_rev,
+ sizeof(subsys->firmware_rev)),
+ subsys->firmware_rev);
+}
+
+#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
+void nvme_fault_inject_init(struct nvme_fault_inject *fault_inj,
+ const char *dev_name);
+void nvme_fault_inject_fini(struct nvme_fault_inject *fault_inject);
+void nvme_should_fail(struct request *req);
+#else
+static inline void nvme_fault_inject_init(struct nvme_fault_inject *fault_inj,
+ const char *dev_name)
+{
+}
+static inline void nvme_fault_inject_fini(struct nvme_fault_inject *fault_inj)
+{
+}
+static inline void nvme_should_fail(struct request *req) {}
+#endif
+
+bool nvme_wait_reset(struct nvme_ctrl *ctrl);
+int nvme_try_sched_reset(struct nvme_ctrl *ctrl);
+
+static inline int nvme_reset_subsystem(struct nvme_ctrl *ctrl)
+{
+ int ret;
+
+ if (!ctrl->subsystem)
+ return -ENOTTY;
+ if (!nvme_wait_reset(ctrl))
+ return -EBUSY;
+
+ ret = ctrl->ops->reg_write32(ctrl, NVME_REG_NSSR, 0x4E564D65);
+ if (ret)
+ return ret;
+
+ return nvme_try_sched_reset(ctrl);
+}
+
+/*
+ * Convert a 512B sector number to a device logical block number.
+ */
+static inline u64 nvme_sect_to_lba(struct nvme_ns *ns, sector_t sector)
+{
+ return sector >> (ns->lba_shift - SECTOR_SHIFT);
+}
+
+/*
+ * Convert a device logical block number to a 512B sector number.
+ */
+static inline sector_t nvme_lba_to_sect(struct nvme_ns *ns, u64 lba)
+{
+ return lba << (ns->lba_shift - SECTOR_SHIFT);
+}
+
+/*
+ * Convert byte length to nvme's 0-based num dwords
+ */
+static inline u32 nvme_bytes_to_numd(size_t len)
+{
+ return (len >> 2) - 1;
+}
+
+static inline bool nvme_is_ana_error(u16 status)
+{
+ switch (status & 0x7ff) {
+ case NVME_SC_ANA_TRANSITION:
+ case NVME_SC_ANA_INACCESSIBLE:
+ case NVME_SC_ANA_PERSISTENT_LOSS:
+ return true;
+ default:
+ return false;
+ }
+}
+
+static inline bool nvme_is_path_error(u16 status)
+{
+ /* check for a status code type of 'path related status' */
+ return (status & 0x700) == 0x300;
+}
+
+/*
+ * Fill in the status and result information from the CQE, and then figure out
+ * if blk-mq will need to use IPI magic to complete the request, and if yes do
+ * so. If not let the caller complete the request without an indirect function
+ * call.
+ */
+static inline bool nvme_try_complete_req(struct request *req, __le16 status,
+ union nvme_result result)
+{
+ struct nvme_request *rq = nvme_req(req);
+ struct nvme_ctrl *ctrl = rq->ctrl;
+
+ if (!(ctrl->quirks & NVME_QUIRK_SKIP_CID_GEN))
+ rq->genctr++;
+
+ rq->status = le16_to_cpu(status) >> 1;
+ rq->result = result;
+ /* inject error when permitted by fault injection framework */
+ nvme_should_fail(req);
+ if (unlikely(blk_should_fake_timeout(req->q)))
+ return true;
+ return blk_mq_complete_request_remote(req);
+}
+
+static inline void nvme_get_ctrl(struct nvme_ctrl *ctrl)
+{
+ get_device(ctrl->device);
+}
+
+static inline void nvme_put_ctrl(struct nvme_ctrl *ctrl)
+{
+ put_device(ctrl->device);
+}
+
+static inline bool nvme_is_aen_req(u16 qid, __u16 command_id)
+{
+ return !qid &&
+ nvme_tag_from_cid(command_id) >= NVME_AQ_BLK_MQ_DEPTH;
+}
+
+void nvme_complete_rq(struct request *req);
+void nvme_complete_batch_req(struct request *req);
+
+static __always_inline void nvme_complete_batch(struct io_comp_batch *iob,
+ void (*fn)(struct request *rq))
+{
+ struct request *req;
+
+ rq_list_for_each(&iob->req_list, req) {
+ fn(req);
+ nvme_complete_batch_req(req);
+ }
+ blk_mq_end_request_batch(iob);
+}
+
+blk_status_t nvme_host_path_error(struct request *req);
+bool nvme_cancel_request(struct request *req, void *data);
+void nvme_cancel_tagset(struct nvme_ctrl *ctrl);
+void nvme_cancel_admin_tagset(struct nvme_ctrl *ctrl);
+bool nvme_change_ctrl_state(struct nvme_ctrl *ctrl,
+ enum nvme_ctrl_state new_state);
+int nvme_disable_ctrl(struct nvme_ctrl *ctrl, bool shutdown);
+int nvme_enable_ctrl(struct nvme_ctrl *ctrl);
+int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev,
+ const struct nvme_ctrl_ops *ops, unsigned long quirks);
+void nvme_uninit_ctrl(struct nvme_ctrl *ctrl);
+void nvme_start_ctrl(struct nvme_ctrl *ctrl);
+void nvme_stop_ctrl(struct nvme_ctrl *ctrl);
+int nvme_init_ctrl_finish(struct nvme_ctrl *ctrl, bool was_suspended);
+int nvme_alloc_admin_tag_set(struct nvme_ctrl *ctrl, struct blk_mq_tag_set *set,
+ const struct blk_mq_ops *ops, unsigned int cmd_size);
+void nvme_remove_admin_tag_set(struct nvme_ctrl *ctrl);
+int nvme_alloc_io_tag_set(struct nvme_ctrl *ctrl, struct blk_mq_tag_set *set,
+ const struct blk_mq_ops *ops, unsigned int nr_maps,
+ unsigned int cmd_size);
+void nvme_remove_io_tag_set(struct nvme_ctrl *ctrl);
+
+void nvme_remove_namespaces(struct nvme_ctrl *ctrl);
+
+void nvme_complete_async_event(struct nvme_ctrl *ctrl, __le16 status,
+ volatile union nvme_result *res);
+
+void nvme_quiesce_io_queues(struct nvme_ctrl *ctrl);
+void nvme_unquiesce_io_queues(struct nvme_ctrl *ctrl);
+void nvme_quiesce_admin_queue(struct nvme_ctrl *ctrl);
+void nvme_unquiesce_admin_queue(struct nvme_ctrl *ctrl);
+void nvme_mark_namespaces_dead(struct nvme_ctrl *ctrl);
+void nvme_sync_queues(struct nvme_ctrl *ctrl);
+void nvme_sync_io_queues(struct nvme_ctrl *ctrl);
+void nvme_unfreeze(struct nvme_ctrl *ctrl);
+void nvme_wait_freeze(struct nvme_ctrl *ctrl);
+int nvme_wait_freeze_timeout(struct nvme_ctrl *ctrl, long timeout);
+void nvme_start_freeze(struct nvme_ctrl *ctrl);
+
+static inline enum req_op nvme_req_op(struct nvme_command *cmd)
+{
+ return nvme_is_write(cmd) ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN;
+}
+
+#define NVME_QID_ANY -1
+void nvme_init_request(struct request *req, struct nvme_command *cmd);
+void nvme_cleanup_cmd(struct request *req);
+blk_status_t nvme_setup_cmd(struct nvme_ns *ns, struct request *req);
+blk_status_t nvme_fail_nonready_command(struct nvme_ctrl *ctrl,
+ struct request *req);
+bool __nvme_check_ready(struct nvme_ctrl *ctrl, struct request *rq,
+ bool queue_live);
+
+static inline bool nvme_check_ready(struct nvme_ctrl *ctrl, struct request *rq,
+ bool queue_live)
+{
+ if (likely(ctrl->state == NVME_CTRL_LIVE))
+ return true;
+ if (ctrl->ops->flags & NVME_F_FABRICS &&
+ ctrl->state == NVME_CTRL_DELETING)
+ return queue_live;
+ return __nvme_check_ready(ctrl, rq, queue_live);
+}
+
+/*
+ * NSID shall be unique for all shared namespaces, or if at least one of the
+ * following conditions is met:
+ * 1. Namespace Management is supported by the controller
+ * 2. ANA is supported by the controller
+ * 3. NVM Set are supported by the controller
+ *
+ * In other case, private namespace are not required to report a unique NSID.
+ */
+static inline bool nvme_is_unique_nsid(struct nvme_ctrl *ctrl,
+ struct nvme_ns_head *head)
+{
+ return head->shared ||
+ (ctrl->oacs & NVME_CTRL_OACS_NS_MNGT_SUPP) ||
+ (ctrl->subsys->cmic & NVME_CTRL_CMIC_ANA) ||
+ (ctrl->ctratt & NVME_CTRL_CTRATT_NVM_SETS);
+}
+
+int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
+ void *buf, unsigned bufflen);
+int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
+ union nvme_result *result, void *buffer, unsigned bufflen,
+ int qid, int at_head,
+ blk_mq_req_flags_t flags);
+int nvme_set_features(struct nvme_ctrl *dev, unsigned int fid,
+ unsigned int dword11, void *buffer, size_t buflen,
+ u32 *result);
+int nvme_get_features(struct nvme_ctrl *dev, unsigned int fid,
+ unsigned int dword11, void *buffer, size_t buflen,
+ u32 *result);
+int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count);
+void nvme_stop_keep_alive(struct nvme_ctrl *ctrl);
+int nvme_reset_ctrl(struct nvme_ctrl *ctrl);
+int nvme_reset_ctrl_sync(struct nvme_ctrl *ctrl);
+int nvme_delete_ctrl(struct nvme_ctrl *ctrl);
+void nvme_queue_scan(struct nvme_ctrl *ctrl);
+int nvme_get_log(struct nvme_ctrl *ctrl, u32 nsid, u8 log_page, u8 lsp, u8 csi,
+ void *log, size_t size, u64 offset);
+bool nvme_tryget_ns_head(struct nvme_ns_head *head);
+void nvme_put_ns_head(struct nvme_ns_head *head);
+int nvme_cdev_add(struct cdev *cdev, struct device *cdev_device,
+ const struct file_operations *fops, struct module *owner);
+void nvme_cdev_del(struct cdev *cdev, struct device *cdev_device);
+int nvme_ioctl(struct block_device *bdev, blk_mode_t mode,
+ unsigned int cmd, unsigned long arg);
+long nvme_ns_chr_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
+int nvme_ns_head_ioctl(struct block_device *bdev, blk_mode_t mode,
+ unsigned int cmd, unsigned long arg);
+long nvme_ns_head_chr_ioctl(struct file *file, unsigned int cmd,
+ unsigned long arg);
+long nvme_dev_ioctl(struct file *file, unsigned int cmd,
+ unsigned long arg);
+int nvme_ns_chr_uring_cmd_iopoll(struct io_uring_cmd *ioucmd,
+ struct io_comp_batch *iob, unsigned int poll_flags);
+int nvme_ns_chr_uring_cmd(struct io_uring_cmd *ioucmd,
+ unsigned int issue_flags);
+int nvme_ns_head_chr_uring_cmd(struct io_uring_cmd *ioucmd,
+ unsigned int issue_flags);
+int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo);
+int nvme_dev_uring_cmd(struct io_uring_cmd *ioucmd, unsigned int issue_flags);
+
+extern const struct attribute_group *nvme_ns_id_attr_groups[];
+extern const struct pr_ops nvme_pr_ops;
+extern const struct block_device_operations nvme_ns_head_ops;
+extern const struct attribute_group nvme_dev_attrs_group;
+extern const struct attribute_group *nvme_subsys_attrs_groups[];
+extern const struct attribute_group *nvme_dev_attr_groups[];
+extern const struct block_device_operations nvme_bdev_ops;
+
+void nvme_delete_ctrl_sync(struct nvme_ctrl *ctrl);
+struct nvme_ns *nvme_find_path(struct nvme_ns_head *head);
+#ifdef CONFIG_NVME_MULTIPATH
+static inline bool nvme_ctrl_use_ana(struct nvme_ctrl *ctrl)
+{
+ return ctrl->ana_log_buf != NULL;
+}
+
+void nvme_mpath_unfreeze(struct nvme_subsystem *subsys);
+void nvme_mpath_wait_freeze(struct nvme_subsystem *subsys);
+void nvme_mpath_start_freeze(struct nvme_subsystem *subsys);
+void nvme_mpath_default_iopolicy(struct nvme_subsystem *subsys);
+void nvme_failover_req(struct request *req);
+void nvme_kick_requeue_lists(struct nvme_ctrl *ctrl);
+int nvme_mpath_alloc_disk(struct nvme_ctrl *ctrl,struct nvme_ns_head *head);
+void nvme_mpath_add_disk(struct nvme_ns *ns, __le32 anagrpid);
+void nvme_mpath_remove_disk(struct nvme_ns_head *head);
+int nvme_mpath_init_identify(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id);
+void nvme_mpath_init_ctrl(struct nvme_ctrl *ctrl);
+void nvme_mpath_update(struct nvme_ctrl *ctrl);
+void nvme_mpath_uninit(struct nvme_ctrl *ctrl);
+void nvme_mpath_stop(struct nvme_ctrl *ctrl);
+bool nvme_mpath_clear_current_path(struct nvme_ns *ns);
+void nvme_mpath_revalidate_paths(struct nvme_ns *ns);
+void nvme_mpath_clear_ctrl_paths(struct nvme_ctrl *ctrl);
+void nvme_mpath_shutdown_disk(struct nvme_ns_head *head);
+void nvme_mpath_start_request(struct request *rq);
+void nvme_mpath_end_request(struct request *rq);
+
+static inline void nvme_trace_bio_complete(struct request *req)
+{
+ struct nvme_ns *ns = req->q->queuedata;
+
+ if ((req->cmd_flags & REQ_NVME_MPATH) && req->bio)
+ trace_block_bio_complete(ns->head->disk->queue, req->bio);
+}
+
+extern bool multipath;
+extern struct device_attribute dev_attr_ana_grpid;
+extern struct device_attribute dev_attr_ana_state;
+extern struct device_attribute subsys_attr_iopolicy;
+
+#else
+#define multipath false
+static inline bool nvme_ctrl_use_ana(struct nvme_ctrl *ctrl)
+{
+ return false;
+}
+static inline void nvme_failover_req(struct request *req)
+{
+}
+static inline void nvme_kick_requeue_lists(struct nvme_ctrl *ctrl)
+{
+}
+static inline int nvme_mpath_alloc_disk(struct nvme_ctrl *ctrl,
+ struct nvme_ns_head *head)
+{
+ return 0;
+}
+static inline void nvme_mpath_add_disk(struct nvme_ns *ns, __le32 anagrpid)
+{
+}
+static inline void nvme_mpath_remove_disk(struct nvme_ns_head *head)
+{
+}
+static inline bool nvme_mpath_clear_current_path(struct nvme_ns *ns)
+{
+ return false;
+}
+static inline void nvme_mpath_revalidate_paths(struct nvme_ns *ns)
+{
+}
+static inline void nvme_mpath_clear_ctrl_paths(struct nvme_ctrl *ctrl)
+{
+}
+static inline void nvme_mpath_shutdown_disk(struct nvme_ns_head *head)
+{
+}
+static inline void nvme_trace_bio_complete(struct request *req)
+{
+}
+static inline void nvme_mpath_init_ctrl(struct nvme_ctrl *ctrl)
+{
+}
+static inline int nvme_mpath_init_identify(struct nvme_ctrl *ctrl,
+ struct nvme_id_ctrl *id)
+{
+ if (ctrl->subsys->cmic & NVME_CTRL_CMIC_ANA)
+ dev_warn(ctrl->device,
+"Please enable CONFIG_NVME_MULTIPATH for full support of multi-port devices.\n");
+ return 0;
+}
+static inline void nvme_mpath_update(struct nvme_ctrl *ctrl)
+{
+}
+static inline void nvme_mpath_uninit(struct nvme_ctrl *ctrl)
+{
+}
+static inline void nvme_mpath_stop(struct nvme_ctrl *ctrl)
+{
+}
+static inline void nvme_mpath_unfreeze(struct nvme_subsystem *subsys)
+{
+}
+static inline void nvme_mpath_wait_freeze(struct nvme_subsystem *subsys)
+{
+}
+static inline void nvme_mpath_start_freeze(struct nvme_subsystem *subsys)
+{
+}
+static inline void nvme_mpath_default_iopolicy(struct nvme_subsystem *subsys)
+{
+}
+static inline void nvme_mpath_start_request(struct request *rq)
+{
+}
+static inline void nvme_mpath_end_request(struct request *rq)
+{
+}
+#endif /* CONFIG_NVME_MULTIPATH */
+
+int nvme_revalidate_zones(struct nvme_ns *ns);
+int nvme_ns_report_zones(struct nvme_ns *ns, sector_t sector,
+ unsigned int nr_zones, report_zones_cb cb, void *data);
+#ifdef CONFIG_BLK_DEV_ZONED
+int nvme_update_zone_info(struct nvme_ns *ns, unsigned lbaf);
+blk_status_t nvme_setup_zone_mgmt_send(struct nvme_ns *ns, struct request *req,
+ struct nvme_command *cmnd,
+ enum nvme_zone_mgmt_action action);
+#else
+static inline blk_status_t nvme_setup_zone_mgmt_send(struct nvme_ns *ns,
+ struct request *req, struct nvme_command *cmnd,
+ enum nvme_zone_mgmt_action action)
+{
+ return BLK_STS_NOTSUPP;
+}
+
+static inline int nvme_update_zone_info(struct nvme_ns *ns, unsigned lbaf)
+{
+ dev_warn(ns->ctrl->device,
+ "Please enable CONFIG_BLK_DEV_ZONED to support ZNS devices\n");
+ return -EPROTONOSUPPORT;
+}
+#endif
+
+static inline struct nvme_ns *nvme_get_ns_from_dev(struct device *dev)
+{
+ return dev_to_disk(dev)->private_data;
+}
+
+#ifdef CONFIG_NVME_HWMON
+int nvme_hwmon_init(struct nvme_ctrl *ctrl);
+void nvme_hwmon_exit(struct nvme_ctrl *ctrl);
+#else
+static inline int nvme_hwmon_init(struct nvme_ctrl *ctrl)
+{
+ return 0;
+}
+
+static inline void nvme_hwmon_exit(struct nvme_ctrl *ctrl)
+{
+}
+#endif
+
+static inline void nvme_start_request(struct request *rq)
+{
+ if (rq->cmd_flags & REQ_NVME_MPATH)
+ nvme_mpath_start_request(rq);
+ blk_mq_start_request(rq);
+}
+
+static inline bool nvme_ctrl_sgl_supported(struct nvme_ctrl *ctrl)
+{
+ return ctrl->sgls & ((1 << 0) | (1 << 1));
+}
+
+#ifdef CONFIG_NVME_AUTH
+int __init nvme_init_auth(void);
+void __exit nvme_exit_auth(void);
+int nvme_auth_init_ctrl(struct nvme_ctrl *ctrl);
+void nvme_auth_stop(struct nvme_ctrl *ctrl);
+int nvme_auth_negotiate(struct nvme_ctrl *ctrl, int qid);
+int nvme_auth_wait(struct nvme_ctrl *ctrl, int qid);
+void nvme_auth_free(struct nvme_ctrl *ctrl);
+#else
+static inline int nvme_auth_init_ctrl(struct nvme_ctrl *ctrl)
+{
+ return 0;
+}
+static inline int __init nvme_init_auth(void)
+{
+ return 0;
+}
+static inline void __exit nvme_exit_auth(void)
+{
+}
+static inline void nvme_auth_stop(struct nvme_ctrl *ctrl) {};
+static inline int nvme_auth_negotiate(struct nvme_ctrl *ctrl, int qid)
+{
+ return -EPROTONOSUPPORT;
+}
+static inline int nvme_auth_wait(struct nvme_ctrl *ctrl, int qid)
+{
+ return NVME_SC_AUTH_REQUIRED;
+}
+static inline void nvme_auth_free(struct nvme_ctrl *ctrl) {};
+#endif
+
+u32 nvme_command_effects(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
+ u8 opcode);
+u32 nvme_passthru_start(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u8 opcode);
+int nvme_execute_rq(struct request *rq, bool at_head);
+void nvme_passthru_end(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u32 effects,
+ struct nvme_command *cmd, int status);
+struct nvme_ctrl *nvme_ctrl_from_file(struct file *file);
+struct nvme_ns *nvme_find_get_ns(struct nvme_ctrl *ctrl, unsigned nsid);
+void nvme_put_ns(struct nvme_ns *ns);
+
+static inline bool nvme_multi_css(struct nvme_ctrl *ctrl)
+{
+ return (ctrl->ctrl_config & NVME_CC_CSS_MASK) == NVME_CC_CSS_CSI;
+}
+
+#ifdef CONFIG_NVME_VERBOSE_ERRORS
+const unsigned char *nvme_get_error_status_str(u16 status);
+const unsigned char *nvme_get_opcode_str(u8 opcode);
+const unsigned char *nvme_get_admin_opcode_str(u8 opcode);
+const unsigned char *nvme_get_fabrics_opcode_str(u8 opcode);
+#else /* CONFIG_NVME_VERBOSE_ERRORS */
+static inline const unsigned char *nvme_get_error_status_str(u16 status)
+{
+ return "I/O Error";
+}
+static inline const unsigned char *nvme_get_opcode_str(u8 opcode)
+{
+ return "I/O Cmd";
+}
+static inline const unsigned char *nvme_get_admin_opcode_str(u8 opcode)
+{
+ return "Admin Cmd";
+}
+
+static inline const unsigned char *nvme_get_fabrics_opcode_str(u8 opcode)
+{
+ return "Fabrics Cmd";
+}
+#endif /* CONFIG_NVME_VERBOSE_ERRORS */
+
+static inline const unsigned char *nvme_opcode_str(int qid, u8 opcode, u8 fctype)
+{
+ if (opcode == nvme_fabrics_command)
+ return nvme_get_fabrics_opcode_str(fctype);
+ return qid ? nvme_get_opcode_str(opcode) :
+ nvme_get_admin_opcode_str(opcode);
+}
+#endif /* _NVME_H */
diff --git a/drivers/nvme/host/pci.c b/drivers/nvme/host/pci.c
new file mode 100644
index 0000000000..f8e92404a6
--- /dev/null
+++ b/drivers/nvme/host/pci.c
@@ -0,0 +1,3543 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * NVM Express device driver
+ * Copyright (c) 2011-2014, Intel Corporation.
+ */
+
+#include <linux/acpi.h>
+#include <linux/async.h>
+#include <linux/blkdev.h>
+#include <linux/blk-mq.h>
+#include <linux/blk-mq-pci.h>
+#include <linux/blk-integrity.h>
+#include <linux/dmi.h>
+#include <linux/init.h>
+#include <linux/interrupt.h>
+#include <linux/io.h>
+#include <linux/kstrtox.h>
+#include <linux/memremap.h>
+#include <linux/mm.h>
+#include <linux/module.h>
+#include <linux/mutex.h>
+#include <linux/once.h>
+#include <linux/pci.h>
+#include <linux/suspend.h>
+#include <linux/t10-pi.h>
+#include <linux/types.h>
+#include <linux/io-64-nonatomic-lo-hi.h>
+#include <linux/io-64-nonatomic-hi-lo.h>
+#include <linux/sed-opal.h>
+#include <linux/pci-p2pdma.h>
+
+#include "trace.h"
+#include "nvme.h"
+
+#define SQ_SIZE(q) ((q)->q_depth << (q)->sqes)
+#define CQ_SIZE(q) ((q)->q_depth * sizeof(struct nvme_completion))
+
+#define SGES_PER_PAGE (NVME_CTRL_PAGE_SIZE / sizeof(struct nvme_sgl_desc))
+
+/*
+ * These can be higher, but we need to ensure that any command doesn't
+ * require an sg allocation that needs more than a page of data.
+ */
+#define NVME_MAX_KB_SZ 8192
+#define NVME_MAX_SEGS 128
+#define NVME_MAX_NR_ALLOCATIONS 5
+
+static int use_threaded_interrupts;
+module_param(use_threaded_interrupts, int, 0444);
+
+static bool use_cmb_sqes = true;
+module_param(use_cmb_sqes, bool, 0444);
+MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
+
+static unsigned int max_host_mem_size_mb = 128;
+module_param(max_host_mem_size_mb, uint, 0444);
+MODULE_PARM_DESC(max_host_mem_size_mb,
+ "Maximum Host Memory Buffer (HMB) size per controller (in MiB)");
+
+static unsigned int sgl_threshold = SZ_32K;
+module_param(sgl_threshold, uint, 0644);
+MODULE_PARM_DESC(sgl_threshold,
+ "Use SGLs when average request segment size is larger or equal to "
+ "this size. Use 0 to disable SGLs.");
+
+#define NVME_PCI_MIN_QUEUE_SIZE 2
+#define NVME_PCI_MAX_QUEUE_SIZE 4095
+static int io_queue_depth_set(const char *val, const struct kernel_param *kp);
+static const struct kernel_param_ops io_queue_depth_ops = {
+ .set = io_queue_depth_set,
+ .get = param_get_uint,
+};
+
+static unsigned int io_queue_depth = 1024;
+module_param_cb(io_queue_depth, &io_queue_depth_ops, &io_queue_depth, 0644);
+MODULE_PARM_DESC(io_queue_depth, "set io queue depth, should >= 2 and < 4096");
+
+static int io_queue_count_set(const char *val, const struct kernel_param *kp)
+{
+ unsigned int n;
+ int ret;
+
+ ret = kstrtouint(val, 10, &n);
+ if (ret != 0 || n > num_possible_cpus())
+ return -EINVAL;
+ return param_set_uint(val, kp);
+}
+
+static const struct kernel_param_ops io_queue_count_ops = {
+ .set = io_queue_count_set,
+ .get = param_get_uint,
+};
+
+static unsigned int write_queues;
+module_param_cb(write_queues, &io_queue_count_ops, &write_queues, 0644);
+MODULE_PARM_DESC(write_queues,
+ "Number of queues to use for writes. If not set, reads and writes "
+ "will share a queue set.");
+
+static unsigned int poll_queues;
+module_param_cb(poll_queues, &io_queue_count_ops, &poll_queues, 0644);
+MODULE_PARM_DESC(poll_queues, "Number of queues to use for polled IO.");
+
+static bool noacpi;
+module_param(noacpi, bool, 0444);
+MODULE_PARM_DESC(noacpi, "disable acpi bios quirks");
+
+struct nvme_dev;
+struct nvme_queue;
+
+static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown);
+static void nvme_delete_io_queues(struct nvme_dev *dev);
+static void nvme_update_attrs(struct nvme_dev *dev);
+
+/*
+ * Represents an NVM Express device. Each nvme_dev is a PCI function.
+ */
+struct nvme_dev {
+ struct nvme_queue *queues;
+ struct blk_mq_tag_set tagset;
+ struct blk_mq_tag_set admin_tagset;
+ u32 __iomem *dbs;
+ struct device *dev;
+ struct dma_pool *prp_page_pool;
+ struct dma_pool *prp_small_pool;
+ unsigned online_queues;
+ unsigned max_qid;
+ unsigned io_queues[HCTX_MAX_TYPES];
+ unsigned int num_vecs;
+ u32 q_depth;
+ int io_sqes;
+ u32 db_stride;
+ void __iomem *bar;
+ unsigned long bar_mapped_size;
+ struct mutex shutdown_lock;
+ bool subsystem;
+ u64 cmb_size;
+ bool cmb_use_sqes;
+ u32 cmbsz;
+ u32 cmbloc;
+ struct nvme_ctrl ctrl;
+ u32 last_ps;
+ bool hmb;
+
+ mempool_t *iod_mempool;
+
+ /* shadow doorbell buffer support: */
+ __le32 *dbbuf_dbs;
+ dma_addr_t dbbuf_dbs_dma_addr;
+ __le32 *dbbuf_eis;
+ dma_addr_t dbbuf_eis_dma_addr;
+
+ /* host memory buffer support: */
+ u64 host_mem_size;
+ u32 nr_host_mem_descs;
+ dma_addr_t host_mem_descs_dma;
+ struct nvme_host_mem_buf_desc *host_mem_descs;
+ void **host_mem_desc_bufs;
+ unsigned int nr_allocated_queues;
+ unsigned int nr_write_queues;
+ unsigned int nr_poll_queues;
+};
+
+static int io_queue_depth_set(const char *val, const struct kernel_param *kp)
+{
+ return param_set_uint_minmax(val, kp, NVME_PCI_MIN_QUEUE_SIZE,
+ NVME_PCI_MAX_QUEUE_SIZE);
+}
+
+static inline unsigned int sq_idx(unsigned int qid, u32 stride)
+{
+ return qid * 2 * stride;
+}
+
+static inline unsigned int cq_idx(unsigned int qid, u32 stride)
+{
+ return (qid * 2 + 1) * stride;
+}
+
+static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
+{
+ return container_of(ctrl, struct nvme_dev, ctrl);
+}
+
+/*
+ * An NVM Express queue. Each device has at least two (one for admin
+ * commands and one for I/O commands).
+ */
+struct nvme_queue {
+ struct nvme_dev *dev;
+ spinlock_t sq_lock;
+ void *sq_cmds;
+ /* only used for poll queues: */
+ spinlock_t cq_poll_lock ____cacheline_aligned_in_smp;
+ struct nvme_completion *cqes;
+ dma_addr_t sq_dma_addr;
+ dma_addr_t cq_dma_addr;
+ u32 __iomem *q_db;
+ u32 q_depth;
+ u16 cq_vector;
+ u16 sq_tail;
+ u16 last_sq_tail;
+ u16 cq_head;
+ u16 qid;
+ u8 cq_phase;
+ u8 sqes;
+ unsigned long flags;
+#define NVMEQ_ENABLED 0
+#define NVMEQ_SQ_CMB 1
+#define NVMEQ_DELETE_ERROR 2
+#define NVMEQ_POLLED 3
+ __le32 *dbbuf_sq_db;
+ __le32 *dbbuf_cq_db;
+ __le32 *dbbuf_sq_ei;
+ __le32 *dbbuf_cq_ei;
+ struct completion delete_done;
+};
+
+union nvme_descriptor {
+ struct nvme_sgl_desc *sg_list;
+ __le64 *prp_list;
+};
+
+/*
+ * The nvme_iod describes the data in an I/O.
+ *
+ * The sg pointer contains the list of PRP/SGL chunk allocations in addition
+ * to the actual struct scatterlist.
+ */
+struct nvme_iod {
+ struct nvme_request req;
+ struct nvme_command cmd;
+ bool aborted;
+ s8 nr_allocations; /* PRP list pool allocations. 0 means small
+ pool in use */
+ unsigned int dma_len; /* length of single DMA segment mapping */
+ dma_addr_t first_dma;
+ dma_addr_t meta_dma;
+ struct sg_table sgt;
+ union nvme_descriptor list[NVME_MAX_NR_ALLOCATIONS];
+};
+
+static inline unsigned int nvme_dbbuf_size(struct nvme_dev *dev)
+{
+ return dev->nr_allocated_queues * 8 * dev->db_stride;
+}
+
+static void nvme_dbbuf_dma_alloc(struct nvme_dev *dev)
+{
+ unsigned int mem_size = nvme_dbbuf_size(dev);
+
+ if (!(dev->ctrl.oacs & NVME_CTRL_OACS_DBBUF_SUPP))
+ return;
+
+ if (dev->dbbuf_dbs) {
+ /*
+ * Clear the dbbuf memory so the driver doesn't observe stale
+ * values from the previous instantiation.
+ */
+ memset(dev->dbbuf_dbs, 0, mem_size);
+ memset(dev->dbbuf_eis, 0, mem_size);
+ return;
+ }
+
+ dev->dbbuf_dbs = dma_alloc_coherent(dev->dev, mem_size,
+ &dev->dbbuf_dbs_dma_addr,
+ GFP_KERNEL);
+ if (!dev->dbbuf_dbs)
+ goto fail;
+ dev->dbbuf_eis = dma_alloc_coherent(dev->dev, mem_size,
+ &dev->dbbuf_eis_dma_addr,
+ GFP_KERNEL);
+ if (!dev->dbbuf_eis)
+ goto fail_free_dbbuf_dbs;
+ return;
+
+fail_free_dbbuf_dbs:
+ dma_free_coherent(dev->dev, mem_size, dev->dbbuf_dbs,
+ dev->dbbuf_dbs_dma_addr);
+ dev->dbbuf_dbs = NULL;
+fail:
+ dev_warn(dev->dev, "unable to allocate dma for dbbuf\n");
+}
+
+static void nvme_dbbuf_dma_free(struct nvme_dev *dev)
+{
+ unsigned int mem_size = nvme_dbbuf_size(dev);
+
+ if (dev->dbbuf_dbs) {
+ dma_free_coherent(dev->dev, mem_size,
+ dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
+ dev->dbbuf_dbs = NULL;
+ }
+ if (dev->dbbuf_eis) {
+ dma_free_coherent(dev->dev, mem_size,
+ dev->dbbuf_eis, dev->dbbuf_eis_dma_addr);
+ dev->dbbuf_eis = NULL;
+ }
+}
+
+static void nvme_dbbuf_init(struct nvme_dev *dev,
+ struct nvme_queue *nvmeq, int qid)
+{
+ if (!dev->dbbuf_dbs || !qid)
+ return;
+
+ nvmeq->dbbuf_sq_db = &dev->dbbuf_dbs[sq_idx(qid, dev->db_stride)];
+ nvmeq->dbbuf_cq_db = &dev->dbbuf_dbs[cq_idx(qid, dev->db_stride)];
+ nvmeq->dbbuf_sq_ei = &dev->dbbuf_eis[sq_idx(qid, dev->db_stride)];
+ nvmeq->dbbuf_cq_ei = &dev->dbbuf_eis[cq_idx(qid, dev->db_stride)];
+}
+
+static void nvme_dbbuf_free(struct nvme_queue *nvmeq)
+{
+ if (!nvmeq->qid)
+ return;
+
+ nvmeq->dbbuf_sq_db = NULL;
+ nvmeq->dbbuf_cq_db = NULL;
+ nvmeq->dbbuf_sq_ei = NULL;
+ nvmeq->dbbuf_cq_ei = NULL;
+}
+
+static void nvme_dbbuf_set(struct nvme_dev *dev)
+{
+ struct nvme_command c = { };
+ unsigned int i;
+
+ if (!dev->dbbuf_dbs)
+ return;
+
+ c.dbbuf.opcode = nvme_admin_dbbuf;
+ c.dbbuf.prp1 = cpu_to_le64(dev->dbbuf_dbs_dma_addr);
+ c.dbbuf.prp2 = cpu_to_le64(dev->dbbuf_eis_dma_addr);
+
+ if (nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0)) {
+ dev_warn(dev->ctrl.device, "unable to set dbbuf\n");
+ /* Free memory and continue on */
+ nvme_dbbuf_dma_free(dev);
+
+ for (i = 1; i <= dev->online_queues; i++)
+ nvme_dbbuf_free(&dev->queues[i]);
+ }
+}
+
+static inline int nvme_dbbuf_need_event(u16 event_idx, u16 new_idx, u16 old)
+{
+ return (u16)(new_idx - event_idx - 1) < (u16)(new_idx - old);
+}
+
+/* Update dbbuf and return true if an MMIO is required */
+static bool nvme_dbbuf_update_and_check_event(u16 value, __le32 *dbbuf_db,
+ volatile __le32 *dbbuf_ei)
+{
+ if (dbbuf_db) {
+ u16 old_value, event_idx;
+
+ /*
+ * Ensure that the queue is written before updating
+ * the doorbell in memory
+ */
+ wmb();
+
+ old_value = le32_to_cpu(*dbbuf_db);
+ *dbbuf_db = cpu_to_le32(value);
+
+ /*
+ * Ensure that the doorbell is updated before reading the event
+ * index from memory. The controller needs to provide similar
+ * ordering to ensure the envent index is updated before reading
+ * the doorbell.
+ */
+ mb();
+
+ event_idx = le32_to_cpu(*dbbuf_ei);
+ if (!nvme_dbbuf_need_event(event_idx, value, old_value))
+ return false;
+ }
+
+ return true;
+}
+
+/*
+ * Will slightly overestimate the number of pages needed. This is OK
+ * as it only leads to a small amount of wasted memory for the lifetime of
+ * the I/O.
+ */
+static int nvme_pci_npages_prp(void)
+{
+ unsigned max_bytes = (NVME_MAX_KB_SZ * 1024) + NVME_CTRL_PAGE_SIZE;
+ unsigned nprps = DIV_ROUND_UP(max_bytes, NVME_CTRL_PAGE_SIZE);
+ return DIV_ROUND_UP(8 * nprps, NVME_CTRL_PAGE_SIZE - 8);
+}
+
+static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
+ unsigned int hctx_idx)
+{
+ struct nvme_dev *dev = to_nvme_dev(data);
+ struct nvme_queue *nvmeq = &dev->queues[0];
+
+ WARN_ON(hctx_idx != 0);
+ WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
+
+ hctx->driver_data = nvmeq;
+ return 0;
+}
+
+static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
+ unsigned int hctx_idx)
+{
+ struct nvme_dev *dev = to_nvme_dev(data);
+ struct nvme_queue *nvmeq = &dev->queues[hctx_idx + 1];
+
+ WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
+ hctx->driver_data = nvmeq;
+ return 0;
+}
+
+static int nvme_pci_init_request(struct blk_mq_tag_set *set,
+ struct request *req, unsigned int hctx_idx,
+ unsigned int numa_node)
+{
+ struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
+
+ nvme_req(req)->ctrl = set->driver_data;
+ nvme_req(req)->cmd = &iod->cmd;
+ return 0;
+}
+
+static int queue_irq_offset(struct nvme_dev *dev)
+{
+ /* if we have more than 1 vec, admin queue offsets us by 1 */
+ if (dev->num_vecs > 1)
+ return 1;
+
+ return 0;
+}
+
+static void nvme_pci_map_queues(struct blk_mq_tag_set *set)
+{
+ struct nvme_dev *dev = to_nvme_dev(set->driver_data);
+ int i, qoff, offset;
+
+ offset = queue_irq_offset(dev);
+ for (i = 0, qoff = 0; i < set->nr_maps; i++) {
+ struct blk_mq_queue_map *map = &set->map[i];
+
+ map->nr_queues = dev->io_queues[i];
+ if (!map->nr_queues) {
+ BUG_ON(i == HCTX_TYPE_DEFAULT);
+ continue;
+ }
+
+ /*
+ * The poll queue(s) doesn't have an IRQ (and hence IRQ
+ * affinity), so use the regular blk-mq cpu mapping
+ */
+ map->queue_offset = qoff;
+ if (i != HCTX_TYPE_POLL && offset)
+ blk_mq_pci_map_queues(map, to_pci_dev(dev->dev), offset);
+ else
+ blk_mq_map_queues(map);
+ qoff += map->nr_queues;
+ offset += map->nr_queues;
+ }
+}
+
+/*
+ * Write sq tail if we are asked to, or if the next command would wrap.
+ */
+static inline void nvme_write_sq_db(struct nvme_queue *nvmeq, bool write_sq)
+{
+ if (!write_sq) {
+ u16 next_tail = nvmeq->sq_tail + 1;
+
+ if (next_tail == nvmeq->q_depth)
+ next_tail = 0;
+ if (next_tail != nvmeq->last_sq_tail)
+ return;
+ }
+
+ if (nvme_dbbuf_update_and_check_event(nvmeq->sq_tail,
+ nvmeq->dbbuf_sq_db, nvmeq->dbbuf_sq_ei))
+ writel(nvmeq->sq_tail, nvmeq->q_db);
+ nvmeq->last_sq_tail = nvmeq->sq_tail;
+}
+
+static inline void nvme_sq_copy_cmd(struct nvme_queue *nvmeq,
+ struct nvme_command *cmd)
+{
+ memcpy(nvmeq->sq_cmds + (nvmeq->sq_tail << nvmeq->sqes),
+ absolute_pointer(cmd), sizeof(*cmd));
+ if (++nvmeq->sq_tail == nvmeq->q_depth)
+ nvmeq->sq_tail = 0;
+}
+
+static void nvme_commit_rqs(struct blk_mq_hw_ctx *hctx)
+{
+ struct nvme_queue *nvmeq = hctx->driver_data;
+
+ spin_lock(&nvmeq->sq_lock);
+ if (nvmeq->sq_tail != nvmeq->last_sq_tail)
+ nvme_write_sq_db(nvmeq, true);
+ spin_unlock(&nvmeq->sq_lock);
+}
+
+static inline bool nvme_pci_use_sgls(struct nvme_dev *dev, struct request *req,
+ int nseg)
+{
+ struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
+ unsigned int avg_seg_size;
+
+ avg_seg_size = DIV_ROUND_UP(blk_rq_payload_bytes(req), nseg);
+
+ if (!nvme_ctrl_sgl_supported(&dev->ctrl))
+ return false;
+ if (!nvmeq->qid)
+ return false;
+ if (!sgl_threshold || avg_seg_size < sgl_threshold)
+ return false;
+ return true;
+}
+
+static void nvme_free_prps(struct nvme_dev *dev, struct request *req)
+{
+ const int last_prp = NVME_CTRL_PAGE_SIZE / sizeof(__le64) - 1;
+ struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
+ dma_addr_t dma_addr = iod->first_dma;
+ int i;
+
+ for (i = 0; i < iod->nr_allocations; i++) {
+ __le64 *prp_list = iod->list[i].prp_list;
+ dma_addr_t next_dma_addr = le64_to_cpu(prp_list[last_prp]);
+
+ dma_pool_free(dev->prp_page_pool, prp_list, dma_addr);
+ dma_addr = next_dma_addr;
+ }
+}
+
+static void nvme_unmap_data(struct nvme_dev *dev, struct request *req)
+{
+ struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
+
+ if (iod->dma_len) {
+ dma_unmap_page(dev->dev, iod->first_dma, iod->dma_len,
+ rq_dma_dir(req));
+ return;
+ }
+
+ WARN_ON_ONCE(!iod->sgt.nents);
+
+ dma_unmap_sgtable(dev->dev, &iod->sgt, rq_dma_dir(req), 0);
+
+ if (iod->nr_allocations == 0)
+ dma_pool_free(dev->prp_small_pool, iod->list[0].sg_list,
+ iod->first_dma);
+ else if (iod->nr_allocations == 1)
+ dma_pool_free(dev->prp_page_pool, iod->list[0].sg_list,
+ iod->first_dma);
+ else
+ nvme_free_prps(dev, req);
+ mempool_free(iod->sgt.sgl, dev->iod_mempool);
+}
+
+static void nvme_print_sgl(struct scatterlist *sgl, int nents)
+{
+ int i;
+ struct scatterlist *sg;
+
+ for_each_sg(sgl, sg, nents, i) {
+ dma_addr_t phys = sg_phys(sg);
+ pr_warn("sg[%d] phys_addr:%pad offset:%d length:%d "
+ "dma_address:%pad dma_length:%d\n",
+ i, &phys, sg->offset, sg->length, &sg_dma_address(sg),
+ sg_dma_len(sg));
+ }
+}
+
+static blk_status_t nvme_pci_setup_prps(struct nvme_dev *dev,
+ struct request *req, struct nvme_rw_command *cmnd)
+{
+ struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
+ struct dma_pool *pool;
+ int length = blk_rq_payload_bytes(req);
+ struct scatterlist *sg = iod->sgt.sgl;
+ int dma_len = sg_dma_len(sg);
+ u64 dma_addr = sg_dma_address(sg);
+ int offset = dma_addr & (NVME_CTRL_PAGE_SIZE - 1);
+ __le64 *prp_list;
+ dma_addr_t prp_dma;
+ int nprps, i;
+
+ length -= (NVME_CTRL_PAGE_SIZE - offset);
+ if (length <= 0) {
+ iod->first_dma = 0;
+ goto done;
+ }
+
+ dma_len -= (NVME_CTRL_PAGE_SIZE - offset);
+ if (dma_len) {
+ dma_addr += (NVME_CTRL_PAGE_SIZE - offset);
+ } else {
+ sg = sg_next(sg);
+ dma_addr = sg_dma_address(sg);
+ dma_len = sg_dma_len(sg);
+ }
+
+ if (length <= NVME_CTRL_PAGE_SIZE) {
+ iod->first_dma = dma_addr;
+ goto done;
+ }
+
+ nprps = DIV_ROUND_UP(length, NVME_CTRL_PAGE_SIZE);
+ if (nprps <= (256 / 8)) {
+ pool = dev->prp_small_pool;
+ iod->nr_allocations = 0;
+ } else {
+ pool = dev->prp_page_pool;
+ iod->nr_allocations = 1;
+ }
+
+ prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
+ if (!prp_list) {
+ iod->nr_allocations = -1;
+ return BLK_STS_RESOURCE;
+ }
+ iod->list[0].prp_list = prp_list;
+ iod->first_dma = prp_dma;
+ i = 0;
+ for (;;) {
+ if (i == NVME_CTRL_PAGE_SIZE >> 3) {
+ __le64 *old_prp_list = prp_list;
+ prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
+ if (!prp_list)
+ goto free_prps;
+ iod->list[iod->nr_allocations++].prp_list = prp_list;
+ prp_list[0] = old_prp_list[i - 1];
+ old_prp_list[i - 1] = cpu_to_le64(prp_dma);
+ i = 1;
+ }
+ prp_list[i++] = cpu_to_le64(dma_addr);
+ dma_len -= NVME_CTRL_PAGE_SIZE;
+ dma_addr += NVME_CTRL_PAGE_SIZE;
+ length -= NVME_CTRL_PAGE_SIZE;
+ if (length <= 0)
+ break;
+ if (dma_len > 0)
+ continue;
+ if (unlikely(dma_len < 0))
+ goto bad_sgl;
+ sg = sg_next(sg);
+ dma_addr = sg_dma_address(sg);
+ dma_len = sg_dma_len(sg);
+ }
+done:
+ cmnd->dptr.prp1 = cpu_to_le64(sg_dma_address(iod->sgt.sgl));
+ cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma);
+ return BLK_STS_OK;
+free_prps:
+ nvme_free_prps(dev, req);
+ return BLK_STS_RESOURCE;
+bad_sgl:
+ WARN(DO_ONCE(nvme_print_sgl, iod->sgt.sgl, iod->sgt.nents),
+ "Invalid SGL for payload:%d nents:%d\n",
+ blk_rq_payload_bytes(req), iod->sgt.nents);
+ return BLK_STS_IOERR;
+}
+
+static void nvme_pci_sgl_set_data(struct nvme_sgl_desc *sge,
+ struct scatterlist *sg)
+{
+ sge->addr = cpu_to_le64(sg_dma_address(sg));
+ sge->length = cpu_to_le32(sg_dma_len(sg));
+ sge->type = NVME_SGL_FMT_DATA_DESC << 4;
+}
+
+static void nvme_pci_sgl_set_seg(struct nvme_sgl_desc *sge,
+ dma_addr_t dma_addr, int entries)
+{
+ sge->addr = cpu_to_le64(dma_addr);
+ sge->length = cpu_to_le32(entries * sizeof(*sge));
+ sge->type = NVME_SGL_FMT_LAST_SEG_DESC << 4;
+}
+
+static blk_status_t nvme_pci_setup_sgls(struct nvme_dev *dev,
+ struct request *req, struct nvme_rw_command *cmd)
+{
+ struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
+ struct dma_pool *pool;
+ struct nvme_sgl_desc *sg_list;
+ struct scatterlist *sg = iod->sgt.sgl;
+ unsigned int entries = iod->sgt.nents;
+ dma_addr_t sgl_dma;
+ int i = 0;
+
+ /* setting the transfer type as SGL */
+ cmd->flags = NVME_CMD_SGL_METABUF;
+
+ if (entries == 1) {
+ nvme_pci_sgl_set_data(&cmd->dptr.sgl, sg);
+ return BLK_STS_OK;
+ }
+
+ if (entries <= (256 / sizeof(struct nvme_sgl_desc))) {
+ pool = dev->prp_small_pool;
+ iod->nr_allocations = 0;
+ } else {
+ pool = dev->prp_page_pool;
+ iod->nr_allocations = 1;
+ }
+
+ sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma);
+ if (!sg_list) {
+ iod->nr_allocations = -1;
+ return BLK_STS_RESOURCE;
+ }
+
+ iod->list[0].sg_list = sg_list;
+ iod->first_dma = sgl_dma;
+
+ nvme_pci_sgl_set_seg(&cmd->dptr.sgl, sgl_dma, entries);
+ do {
+ nvme_pci_sgl_set_data(&sg_list[i++], sg);
+ sg = sg_next(sg);
+ } while (--entries > 0);
+
+ return BLK_STS_OK;
+}
+
+static blk_status_t nvme_setup_prp_simple(struct nvme_dev *dev,
+ struct request *req, struct nvme_rw_command *cmnd,
+ struct bio_vec *bv)
+{
+ struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
+ unsigned int offset = bv->bv_offset & (NVME_CTRL_PAGE_SIZE - 1);
+ unsigned int first_prp_len = NVME_CTRL_PAGE_SIZE - offset;
+
+ iod->first_dma = dma_map_bvec(dev->dev, bv, rq_dma_dir(req), 0);
+ if (dma_mapping_error(dev->dev, iod->first_dma))
+ return BLK_STS_RESOURCE;
+ iod->dma_len = bv->bv_len;
+
+ cmnd->dptr.prp1 = cpu_to_le64(iod->first_dma);
+ if (bv->bv_len > first_prp_len)
+ cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma + first_prp_len);
+ else
+ cmnd->dptr.prp2 = 0;
+ return BLK_STS_OK;
+}
+
+static blk_status_t nvme_setup_sgl_simple(struct nvme_dev *dev,
+ struct request *req, struct nvme_rw_command *cmnd,
+ struct bio_vec *bv)
+{
+ struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
+
+ iod->first_dma = dma_map_bvec(dev->dev, bv, rq_dma_dir(req), 0);
+ if (dma_mapping_error(dev->dev, iod->first_dma))
+ return BLK_STS_RESOURCE;
+ iod->dma_len = bv->bv_len;
+
+ cmnd->flags = NVME_CMD_SGL_METABUF;
+ cmnd->dptr.sgl.addr = cpu_to_le64(iod->first_dma);
+ cmnd->dptr.sgl.length = cpu_to_le32(iod->dma_len);
+ cmnd->dptr.sgl.type = NVME_SGL_FMT_DATA_DESC << 4;
+ return BLK_STS_OK;
+}
+
+static blk_status_t nvme_map_data(struct nvme_dev *dev, struct request *req,
+ struct nvme_command *cmnd)
+{
+ struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
+ blk_status_t ret = BLK_STS_RESOURCE;
+ int rc;
+
+ if (blk_rq_nr_phys_segments(req) == 1) {
+ struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
+ struct bio_vec bv = req_bvec(req);
+
+ if (!is_pci_p2pdma_page(bv.bv_page)) {
+ if (bv.bv_offset + bv.bv_len <= NVME_CTRL_PAGE_SIZE * 2)
+ return nvme_setup_prp_simple(dev, req,
+ &cmnd->rw, &bv);
+
+ if (nvmeq->qid && sgl_threshold &&
+ nvme_ctrl_sgl_supported(&dev->ctrl))
+ return nvme_setup_sgl_simple(dev, req,
+ &cmnd->rw, &bv);
+ }
+ }
+
+ iod->dma_len = 0;
+ iod->sgt.sgl = mempool_alloc(dev->iod_mempool, GFP_ATOMIC);
+ if (!iod->sgt.sgl)
+ return BLK_STS_RESOURCE;
+ sg_init_table(iod->sgt.sgl, blk_rq_nr_phys_segments(req));
+ iod->sgt.orig_nents = blk_rq_map_sg(req->q, req, iod->sgt.sgl);
+ if (!iod->sgt.orig_nents)
+ goto out_free_sg;
+
+ rc = dma_map_sgtable(dev->dev, &iod->sgt, rq_dma_dir(req),
+ DMA_ATTR_NO_WARN);
+ if (rc) {
+ if (rc == -EREMOTEIO)
+ ret = BLK_STS_TARGET;
+ goto out_free_sg;
+ }
+
+ if (nvme_pci_use_sgls(dev, req, iod->sgt.nents))
+ ret = nvme_pci_setup_sgls(dev, req, &cmnd->rw);
+ else
+ ret = nvme_pci_setup_prps(dev, req, &cmnd->rw);
+ if (ret != BLK_STS_OK)
+ goto out_unmap_sg;
+ return BLK_STS_OK;
+
+out_unmap_sg:
+ dma_unmap_sgtable(dev->dev, &iod->sgt, rq_dma_dir(req), 0);
+out_free_sg:
+ mempool_free(iod->sgt.sgl, dev->iod_mempool);
+ return ret;
+}
+
+static blk_status_t nvme_map_metadata(struct nvme_dev *dev, struct request *req,
+ struct nvme_command *cmnd)
+{
+ struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
+
+ iod->meta_dma = dma_map_bvec(dev->dev, rq_integrity_vec(req),
+ rq_dma_dir(req), 0);
+ if (dma_mapping_error(dev->dev, iod->meta_dma))
+ return BLK_STS_IOERR;
+ cmnd->rw.metadata = cpu_to_le64(iod->meta_dma);
+ return BLK_STS_OK;
+}
+
+static blk_status_t nvme_prep_rq(struct nvme_dev *dev, struct request *req)
+{
+ struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
+ blk_status_t ret;
+
+ iod->aborted = false;
+ iod->nr_allocations = -1;
+ iod->sgt.nents = 0;
+
+ ret = nvme_setup_cmd(req->q->queuedata, req);
+ if (ret)
+ return ret;
+
+ if (blk_rq_nr_phys_segments(req)) {
+ ret = nvme_map_data(dev, req, &iod->cmd);
+ if (ret)
+ goto out_free_cmd;
+ }
+
+ if (blk_integrity_rq(req)) {
+ ret = nvme_map_metadata(dev, req, &iod->cmd);
+ if (ret)
+ goto out_unmap_data;
+ }
+
+ nvme_start_request(req);
+ return BLK_STS_OK;
+out_unmap_data:
+ nvme_unmap_data(dev, req);
+out_free_cmd:
+ nvme_cleanup_cmd(req);
+ return ret;
+}
+
+/*
+ * NOTE: ns is NULL when called on the admin queue.
+ */
+static blk_status_t nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
+ const struct blk_mq_queue_data *bd)
+{
+ struct nvme_queue *nvmeq = hctx->driver_data;
+ struct nvme_dev *dev = nvmeq->dev;
+ struct request *req = bd->rq;
+ struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
+ blk_status_t ret;
+
+ /*
+ * We should not need to do this, but we're still using this to
+ * ensure we can drain requests on a dying queue.
+ */
+ if (unlikely(!test_bit(NVMEQ_ENABLED, &nvmeq->flags)))
+ return BLK_STS_IOERR;
+
+ if (unlikely(!nvme_check_ready(&dev->ctrl, req, true)))
+ return nvme_fail_nonready_command(&dev->ctrl, req);
+
+ ret = nvme_prep_rq(dev, req);
+ if (unlikely(ret))
+ return ret;
+ spin_lock(&nvmeq->sq_lock);
+ nvme_sq_copy_cmd(nvmeq, &iod->cmd);
+ nvme_write_sq_db(nvmeq, bd->last);
+ spin_unlock(&nvmeq->sq_lock);
+ return BLK_STS_OK;
+}
+
+static void nvme_submit_cmds(struct nvme_queue *nvmeq, struct request **rqlist)
+{
+ spin_lock(&nvmeq->sq_lock);
+ while (!rq_list_empty(*rqlist)) {
+ struct request *req = rq_list_pop(rqlist);
+ struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
+
+ nvme_sq_copy_cmd(nvmeq, &iod->cmd);
+ }
+ nvme_write_sq_db(nvmeq, true);
+ spin_unlock(&nvmeq->sq_lock);
+}
+
+static bool nvme_prep_rq_batch(struct nvme_queue *nvmeq, struct request *req)
+{
+ /*
+ * We should not need to do this, but we're still using this to
+ * ensure we can drain requests on a dying queue.
+ */
+ if (unlikely(!test_bit(NVMEQ_ENABLED, &nvmeq->flags)))
+ return false;
+ if (unlikely(!nvme_check_ready(&nvmeq->dev->ctrl, req, true)))
+ return false;
+
+ req->mq_hctx->tags->rqs[req->tag] = req;
+ return nvme_prep_rq(nvmeq->dev, req) == BLK_STS_OK;
+}
+
+static void nvme_queue_rqs(struct request **rqlist)
+{
+ struct request *req, *next, *prev = NULL;
+ struct request *requeue_list = NULL;
+
+ rq_list_for_each_safe(rqlist, req, next) {
+ struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
+
+ if (!nvme_prep_rq_batch(nvmeq, req)) {
+ /* detach 'req' and add to remainder list */
+ rq_list_move(rqlist, &requeue_list, req, prev);
+
+ req = prev;
+ if (!req)
+ continue;
+ }
+
+ if (!next || req->mq_hctx != next->mq_hctx) {
+ /* detach rest of list, and submit */
+ req->rq_next = NULL;
+ nvme_submit_cmds(nvmeq, rqlist);
+ *rqlist = next;
+ prev = NULL;
+ } else
+ prev = req;
+ }
+
+ *rqlist = requeue_list;
+}
+
+static __always_inline void nvme_pci_unmap_rq(struct request *req)
+{
+ struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
+ struct nvme_dev *dev = nvmeq->dev;
+
+ if (blk_integrity_rq(req)) {
+ struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
+
+ dma_unmap_page(dev->dev, iod->meta_dma,
+ rq_integrity_vec(req)->bv_len, rq_dma_dir(req));
+ }
+
+ if (blk_rq_nr_phys_segments(req))
+ nvme_unmap_data(dev, req);
+}
+
+static void nvme_pci_complete_rq(struct request *req)
+{
+ nvme_pci_unmap_rq(req);
+ nvme_complete_rq(req);
+}
+
+static void nvme_pci_complete_batch(struct io_comp_batch *iob)
+{
+ nvme_complete_batch(iob, nvme_pci_unmap_rq);
+}
+
+/* We read the CQE phase first to check if the rest of the entry is valid */
+static inline bool nvme_cqe_pending(struct nvme_queue *nvmeq)
+{
+ struct nvme_completion *hcqe = &nvmeq->cqes[nvmeq->cq_head];
+
+ return (le16_to_cpu(READ_ONCE(hcqe->status)) & 1) == nvmeq->cq_phase;
+}
+
+static inline void nvme_ring_cq_doorbell(struct nvme_queue *nvmeq)
+{
+ u16 head = nvmeq->cq_head;
+
+ if (nvme_dbbuf_update_and_check_event(head, nvmeq->dbbuf_cq_db,
+ nvmeq->dbbuf_cq_ei))
+ writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
+}
+
+static inline struct blk_mq_tags *nvme_queue_tagset(struct nvme_queue *nvmeq)
+{
+ if (!nvmeq->qid)
+ return nvmeq->dev->admin_tagset.tags[0];
+ return nvmeq->dev->tagset.tags[nvmeq->qid - 1];
+}
+
+static inline void nvme_handle_cqe(struct nvme_queue *nvmeq,
+ struct io_comp_batch *iob, u16 idx)
+{
+ struct nvme_completion *cqe = &nvmeq->cqes[idx];
+ __u16 command_id = READ_ONCE(cqe->command_id);
+ struct request *req;
+
+ /*
+ * AEN requests are special as they don't time out and can
+ * survive any kind of queue freeze and often don't respond to
+ * aborts. We don't even bother to allocate a struct request
+ * for them but rather special case them here.
+ */
+ if (unlikely(nvme_is_aen_req(nvmeq->qid, command_id))) {
+ nvme_complete_async_event(&nvmeq->dev->ctrl,
+ cqe->status, &cqe->result);
+ return;
+ }
+
+ req = nvme_find_rq(nvme_queue_tagset(nvmeq), command_id);
+ if (unlikely(!req)) {
+ dev_warn(nvmeq->dev->ctrl.device,
+ "invalid id %d completed on queue %d\n",
+ command_id, le16_to_cpu(cqe->sq_id));
+ return;
+ }
+
+ trace_nvme_sq(req, cqe->sq_head, nvmeq->sq_tail);
+ if (!nvme_try_complete_req(req, cqe->status, cqe->result) &&
+ !blk_mq_add_to_batch(req, iob, nvme_req(req)->status,
+ nvme_pci_complete_batch))
+ nvme_pci_complete_rq(req);
+}
+
+static inline void nvme_update_cq_head(struct nvme_queue *nvmeq)
+{
+ u32 tmp = nvmeq->cq_head + 1;
+
+ if (tmp == nvmeq->q_depth) {
+ nvmeq->cq_head = 0;
+ nvmeq->cq_phase ^= 1;
+ } else {
+ nvmeq->cq_head = tmp;
+ }
+}
+
+static inline int nvme_poll_cq(struct nvme_queue *nvmeq,
+ struct io_comp_batch *iob)
+{
+ int found = 0;
+
+ while (nvme_cqe_pending(nvmeq)) {
+ found++;
+ /*
+ * load-load control dependency between phase and the rest of
+ * the cqe requires a full read memory barrier
+ */
+ dma_rmb();
+ nvme_handle_cqe(nvmeq, iob, nvmeq->cq_head);
+ nvme_update_cq_head(nvmeq);
+ }
+
+ if (found)
+ nvme_ring_cq_doorbell(nvmeq);
+ return found;
+}
+
+static irqreturn_t nvme_irq(int irq, void *data)
+{
+ struct nvme_queue *nvmeq = data;
+ DEFINE_IO_COMP_BATCH(iob);
+
+ if (nvme_poll_cq(nvmeq, &iob)) {
+ if (!rq_list_empty(iob.req_list))
+ nvme_pci_complete_batch(&iob);
+ return IRQ_HANDLED;
+ }
+ return IRQ_NONE;
+}
+
+static irqreturn_t nvme_irq_check(int irq, void *data)
+{
+ struct nvme_queue *nvmeq = data;
+
+ if (nvme_cqe_pending(nvmeq))
+ return IRQ_WAKE_THREAD;
+ return IRQ_NONE;
+}
+
+/*
+ * Poll for completions for any interrupt driven queue
+ * Can be called from any context.
+ */
+static void nvme_poll_irqdisable(struct nvme_queue *nvmeq)
+{
+ struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
+
+ WARN_ON_ONCE(test_bit(NVMEQ_POLLED, &nvmeq->flags));
+
+ disable_irq(pci_irq_vector(pdev, nvmeq->cq_vector));
+ nvme_poll_cq(nvmeq, NULL);
+ enable_irq(pci_irq_vector(pdev, nvmeq->cq_vector));
+}
+
+static int nvme_poll(struct blk_mq_hw_ctx *hctx, struct io_comp_batch *iob)
+{
+ struct nvme_queue *nvmeq = hctx->driver_data;
+ bool found;
+
+ if (!nvme_cqe_pending(nvmeq))
+ return 0;
+
+ spin_lock(&nvmeq->cq_poll_lock);
+ found = nvme_poll_cq(nvmeq, iob);
+ spin_unlock(&nvmeq->cq_poll_lock);
+
+ return found;
+}
+
+static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl)
+{
+ struct nvme_dev *dev = to_nvme_dev(ctrl);
+ struct nvme_queue *nvmeq = &dev->queues[0];
+ struct nvme_command c = { };
+
+ c.common.opcode = nvme_admin_async_event;
+ c.common.command_id = NVME_AQ_BLK_MQ_DEPTH;
+
+ spin_lock(&nvmeq->sq_lock);
+ nvme_sq_copy_cmd(nvmeq, &c);
+ nvme_write_sq_db(nvmeq, true);
+ spin_unlock(&nvmeq->sq_lock);
+}
+
+static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
+{
+ struct nvme_command c = { };
+
+ c.delete_queue.opcode = opcode;
+ c.delete_queue.qid = cpu_to_le16(id);
+
+ return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
+}
+
+static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
+ struct nvme_queue *nvmeq, s16 vector)
+{
+ struct nvme_command c = { };
+ int flags = NVME_QUEUE_PHYS_CONTIG;
+
+ if (!test_bit(NVMEQ_POLLED, &nvmeq->flags))
+ flags |= NVME_CQ_IRQ_ENABLED;
+
+ /*
+ * Note: we (ab)use the fact that the prp fields survive if no data
+ * is attached to the request.
+ */
+ c.create_cq.opcode = nvme_admin_create_cq;
+ c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
+ c.create_cq.cqid = cpu_to_le16(qid);
+ c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
+ c.create_cq.cq_flags = cpu_to_le16(flags);
+ c.create_cq.irq_vector = cpu_to_le16(vector);
+
+ return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
+}
+
+static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
+ struct nvme_queue *nvmeq)
+{
+ struct nvme_ctrl *ctrl = &dev->ctrl;
+ struct nvme_command c = { };
+ int flags = NVME_QUEUE_PHYS_CONTIG;
+
+ /*
+ * Some drives have a bug that auto-enables WRRU if MEDIUM isn't
+ * set. Since URGENT priority is zeroes, it makes all queues
+ * URGENT.
+ */
+ if (ctrl->quirks & NVME_QUIRK_MEDIUM_PRIO_SQ)
+ flags |= NVME_SQ_PRIO_MEDIUM;
+
+ /*
+ * Note: we (ab)use the fact that the prp fields survive if no data
+ * is attached to the request.
+ */
+ c.create_sq.opcode = nvme_admin_create_sq;
+ c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
+ c.create_sq.sqid = cpu_to_le16(qid);
+ c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
+ c.create_sq.sq_flags = cpu_to_le16(flags);
+ c.create_sq.cqid = cpu_to_le16(qid);
+
+ return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
+}
+
+static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
+{
+ return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
+}
+
+static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
+{
+ return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
+}
+
+static enum rq_end_io_ret abort_endio(struct request *req, blk_status_t error)
+{
+ struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
+
+ dev_warn(nvmeq->dev->ctrl.device,
+ "Abort status: 0x%x", nvme_req(req)->status);
+ atomic_inc(&nvmeq->dev->ctrl.abort_limit);
+ blk_mq_free_request(req);
+ return RQ_END_IO_NONE;
+}
+
+static bool nvme_should_reset(struct nvme_dev *dev, u32 csts)
+{
+ /* If true, indicates loss of adapter communication, possibly by a
+ * NVMe Subsystem reset.
+ */
+ bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO);
+
+ /* If there is a reset/reinit ongoing, we shouldn't reset again. */
+ switch (nvme_ctrl_state(&dev->ctrl)) {
+ case NVME_CTRL_RESETTING:
+ case NVME_CTRL_CONNECTING:
+ return false;
+ default:
+ break;
+ }
+
+ /* We shouldn't reset unless the controller is on fatal error state
+ * _or_ if we lost the communication with it.
+ */
+ if (!(csts & NVME_CSTS_CFS) && !nssro)
+ return false;
+
+ return true;
+}
+
+static void nvme_warn_reset(struct nvme_dev *dev, u32 csts)
+{
+ /* Read a config register to help see what died. */
+ u16 pci_status;
+ int result;
+
+ result = pci_read_config_word(to_pci_dev(dev->dev), PCI_STATUS,
+ &pci_status);
+ if (result == PCIBIOS_SUCCESSFUL)
+ dev_warn(dev->ctrl.device,
+ "controller is down; will reset: CSTS=0x%x, PCI_STATUS=0x%hx\n",
+ csts, pci_status);
+ else
+ dev_warn(dev->ctrl.device,
+ "controller is down; will reset: CSTS=0x%x, PCI_STATUS read failed (%d)\n",
+ csts, result);
+
+ if (csts != ~0)
+ return;
+
+ dev_warn(dev->ctrl.device,
+ "Does your device have a faulty power saving mode enabled?\n");
+ dev_warn(dev->ctrl.device,
+ "Try \"nvme_core.default_ps_max_latency_us=0 pcie_aspm=off\" and report a bug\n");
+}
+
+static enum blk_eh_timer_return nvme_timeout(struct request *req)
+{
+ struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
+ struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
+ struct nvme_dev *dev = nvmeq->dev;
+ struct request *abort_req;
+ struct nvme_command cmd = { };
+ u32 csts = readl(dev->bar + NVME_REG_CSTS);
+
+ /* If PCI error recovery process is happening, we cannot reset or
+ * the recovery mechanism will surely fail.
+ */
+ mb();
+ if (pci_channel_offline(to_pci_dev(dev->dev)))
+ return BLK_EH_RESET_TIMER;
+
+ /*
+ * Reset immediately if the controller is failed
+ */
+ if (nvme_should_reset(dev, csts)) {
+ nvme_warn_reset(dev, csts);
+ goto disable;
+ }
+
+ /*
+ * Did we miss an interrupt?
+ */
+ if (test_bit(NVMEQ_POLLED, &nvmeq->flags))
+ nvme_poll(req->mq_hctx, NULL);
+ else
+ nvme_poll_irqdisable(nvmeq);
+
+ if (blk_mq_rq_state(req) != MQ_RQ_IN_FLIGHT) {
+ dev_warn(dev->ctrl.device,
+ "I/O %d QID %d timeout, completion polled\n",
+ req->tag, nvmeq->qid);
+ return BLK_EH_DONE;
+ }
+
+ /*
+ * Shutdown immediately if controller times out while starting. The
+ * reset work will see the pci device disabled when it gets the forced
+ * cancellation error. All outstanding requests are completed on
+ * shutdown, so we return BLK_EH_DONE.
+ */
+ switch (nvme_ctrl_state(&dev->ctrl)) {
+ case NVME_CTRL_CONNECTING:
+ nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
+ fallthrough;
+ case NVME_CTRL_DELETING:
+ dev_warn_ratelimited(dev->ctrl.device,
+ "I/O %d QID %d timeout, disable controller\n",
+ req->tag, nvmeq->qid);
+ nvme_req(req)->flags |= NVME_REQ_CANCELLED;
+ nvme_dev_disable(dev, true);
+ return BLK_EH_DONE;
+ case NVME_CTRL_RESETTING:
+ return BLK_EH_RESET_TIMER;
+ default:
+ break;
+ }
+
+ /*
+ * Shutdown the controller immediately and schedule a reset if the
+ * command was already aborted once before and still hasn't been
+ * returned to the driver, or if this is the admin queue.
+ */
+ if (!nvmeq->qid || iod->aborted) {
+ dev_warn(dev->ctrl.device,
+ "I/O %d QID %d timeout, reset controller\n",
+ req->tag, nvmeq->qid);
+ nvme_req(req)->flags |= NVME_REQ_CANCELLED;
+ goto disable;
+ }
+
+ if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) {
+ atomic_inc(&dev->ctrl.abort_limit);
+ return BLK_EH_RESET_TIMER;
+ }
+ iod->aborted = true;
+
+ cmd.abort.opcode = nvme_admin_abort_cmd;
+ cmd.abort.cid = nvme_cid(req);
+ cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
+
+ dev_warn(nvmeq->dev->ctrl.device,
+ "I/O %d (%s) QID %d timeout, aborting\n",
+ req->tag,
+ nvme_get_opcode_str(nvme_req(req)->cmd->common.opcode),
+ nvmeq->qid);
+
+ abort_req = blk_mq_alloc_request(dev->ctrl.admin_q, nvme_req_op(&cmd),
+ BLK_MQ_REQ_NOWAIT);
+ if (IS_ERR(abort_req)) {
+ atomic_inc(&dev->ctrl.abort_limit);
+ return BLK_EH_RESET_TIMER;
+ }
+ nvme_init_request(abort_req, &cmd);
+
+ abort_req->end_io = abort_endio;
+ abort_req->end_io_data = NULL;
+ blk_execute_rq_nowait(abort_req, false);
+
+ /*
+ * The aborted req will be completed on receiving the abort req.
+ * We enable the timer again. If hit twice, it'll cause a device reset,
+ * as the device then is in a faulty state.
+ */
+ return BLK_EH_RESET_TIMER;
+
+disable:
+ if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_RESETTING))
+ return BLK_EH_DONE;
+
+ nvme_dev_disable(dev, false);
+ if (nvme_try_sched_reset(&dev->ctrl))
+ nvme_unquiesce_io_queues(&dev->ctrl);
+ return BLK_EH_DONE;
+}
+
+static void nvme_free_queue(struct nvme_queue *nvmeq)
+{
+ dma_free_coherent(nvmeq->dev->dev, CQ_SIZE(nvmeq),
+ (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
+ if (!nvmeq->sq_cmds)
+ return;
+
+ if (test_and_clear_bit(NVMEQ_SQ_CMB, &nvmeq->flags)) {
+ pci_free_p2pmem(to_pci_dev(nvmeq->dev->dev),
+ nvmeq->sq_cmds, SQ_SIZE(nvmeq));
+ } else {
+ dma_free_coherent(nvmeq->dev->dev, SQ_SIZE(nvmeq),
+ nvmeq->sq_cmds, nvmeq->sq_dma_addr);
+ }
+}
+
+static void nvme_free_queues(struct nvme_dev *dev, int lowest)
+{
+ int i;
+
+ for (i = dev->ctrl.queue_count - 1; i >= lowest; i--) {
+ dev->ctrl.queue_count--;
+ nvme_free_queue(&dev->queues[i]);
+ }
+}
+
+static void nvme_suspend_queue(struct nvme_dev *dev, unsigned int qid)
+{
+ struct nvme_queue *nvmeq = &dev->queues[qid];
+
+ if (!test_and_clear_bit(NVMEQ_ENABLED, &nvmeq->flags))
+ return;
+
+ /* ensure that nvme_queue_rq() sees NVMEQ_ENABLED cleared */
+ mb();
+
+ nvmeq->dev->online_queues--;
+ if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
+ nvme_quiesce_admin_queue(&nvmeq->dev->ctrl);
+ if (!test_and_clear_bit(NVMEQ_POLLED, &nvmeq->flags))
+ pci_free_irq(to_pci_dev(dev->dev), nvmeq->cq_vector, nvmeq);
+}
+
+static void nvme_suspend_io_queues(struct nvme_dev *dev)
+{
+ int i;
+
+ for (i = dev->ctrl.queue_count - 1; i > 0; i--)
+ nvme_suspend_queue(dev, i);
+}
+
+/*
+ * Called only on a device that has been disabled and after all other threads
+ * that can check this device's completion queues have synced, except
+ * nvme_poll(). This is the last chance for the driver to see a natural
+ * completion before nvme_cancel_request() terminates all incomplete requests.
+ */
+static void nvme_reap_pending_cqes(struct nvme_dev *dev)
+{
+ int i;
+
+ for (i = dev->ctrl.queue_count - 1; i > 0; i--) {
+ spin_lock(&dev->queues[i].cq_poll_lock);
+ nvme_poll_cq(&dev->queues[i], NULL);
+ spin_unlock(&dev->queues[i].cq_poll_lock);
+ }
+}
+
+static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
+ int entry_size)
+{
+ int q_depth = dev->q_depth;
+ unsigned q_size_aligned = roundup(q_depth * entry_size,
+ NVME_CTRL_PAGE_SIZE);
+
+ if (q_size_aligned * nr_io_queues > dev->cmb_size) {
+ u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
+
+ mem_per_q = round_down(mem_per_q, NVME_CTRL_PAGE_SIZE);
+ q_depth = div_u64(mem_per_q, entry_size);
+
+ /*
+ * Ensure the reduced q_depth is above some threshold where it
+ * would be better to map queues in system memory with the
+ * original depth
+ */
+ if (q_depth < 64)
+ return -ENOMEM;
+ }
+
+ return q_depth;
+}
+
+static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
+ int qid)
+{
+ struct pci_dev *pdev = to_pci_dev(dev->dev);
+
+ if (qid && dev->cmb_use_sqes && (dev->cmbsz & NVME_CMBSZ_SQS)) {
+ nvmeq->sq_cmds = pci_alloc_p2pmem(pdev, SQ_SIZE(nvmeq));
+ if (nvmeq->sq_cmds) {
+ nvmeq->sq_dma_addr = pci_p2pmem_virt_to_bus(pdev,
+ nvmeq->sq_cmds);
+ if (nvmeq->sq_dma_addr) {
+ set_bit(NVMEQ_SQ_CMB, &nvmeq->flags);
+ return 0;
+ }
+
+ pci_free_p2pmem(pdev, nvmeq->sq_cmds, SQ_SIZE(nvmeq));
+ }
+ }
+
+ nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(nvmeq),
+ &nvmeq->sq_dma_addr, GFP_KERNEL);
+ if (!nvmeq->sq_cmds)
+ return -ENOMEM;
+ return 0;
+}
+
+static int nvme_alloc_queue(struct nvme_dev *dev, int qid, int depth)
+{
+ struct nvme_queue *nvmeq = &dev->queues[qid];
+
+ if (dev->ctrl.queue_count > qid)
+ return 0;
+
+ nvmeq->sqes = qid ? dev->io_sqes : NVME_ADM_SQES;
+ nvmeq->q_depth = depth;
+ nvmeq->cqes = dma_alloc_coherent(dev->dev, CQ_SIZE(nvmeq),
+ &nvmeq->cq_dma_addr, GFP_KERNEL);
+ if (!nvmeq->cqes)
+ goto free_nvmeq;
+
+ if (nvme_alloc_sq_cmds(dev, nvmeq, qid))
+ goto free_cqdma;
+
+ nvmeq->dev = dev;
+ spin_lock_init(&nvmeq->sq_lock);
+ spin_lock_init(&nvmeq->cq_poll_lock);
+ nvmeq->cq_head = 0;
+ nvmeq->cq_phase = 1;
+ nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
+ nvmeq->qid = qid;
+ dev->ctrl.queue_count++;
+
+ return 0;
+
+ free_cqdma:
+ dma_free_coherent(dev->dev, CQ_SIZE(nvmeq), (void *)nvmeq->cqes,
+ nvmeq->cq_dma_addr);
+ free_nvmeq:
+ return -ENOMEM;
+}
+
+static int queue_request_irq(struct nvme_queue *nvmeq)
+{
+ struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
+ int nr = nvmeq->dev->ctrl.instance;
+
+ if (use_threaded_interrupts) {
+ return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq_check,
+ nvme_irq, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
+ } else {
+ return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq,
+ NULL, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
+ }
+}
+
+static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
+{
+ struct nvme_dev *dev = nvmeq->dev;
+
+ nvmeq->sq_tail = 0;
+ nvmeq->last_sq_tail = 0;
+ nvmeq->cq_head = 0;
+ nvmeq->cq_phase = 1;
+ nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
+ memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq));
+ nvme_dbbuf_init(dev, nvmeq, qid);
+ dev->online_queues++;
+ wmb(); /* ensure the first interrupt sees the initialization */
+}
+
+/*
+ * Try getting shutdown_lock while setting up IO queues.
+ */
+static int nvme_setup_io_queues_trylock(struct nvme_dev *dev)
+{
+ /*
+ * Give up if the lock is being held by nvme_dev_disable.
+ */
+ if (!mutex_trylock(&dev->shutdown_lock))
+ return -ENODEV;
+
+ /*
+ * Controller is in wrong state, fail early.
+ */
+ if (nvme_ctrl_state(&dev->ctrl) != NVME_CTRL_CONNECTING) {
+ mutex_unlock(&dev->shutdown_lock);
+ return -ENODEV;
+ }
+
+ return 0;
+}
+
+static int nvme_create_queue(struct nvme_queue *nvmeq, int qid, bool polled)
+{
+ struct nvme_dev *dev = nvmeq->dev;
+ int result;
+ u16 vector = 0;
+
+ clear_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags);
+
+ /*
+ * A queue's vector matches the queue identifier unless the controller
+ * has only one vector available.
+ */
+ if (!polled)
+ vector = dev->num_vecs == 1 ? 0 : qid;
+ else
+ set_bit(NVMEQ_POLLED, &nvmeq->flags);
+
+ result = adapter_alloc_cq(dev, qid, nvmeq, vector);
+ if (result)
+ return result;
+
+ result = adapter_alloc_sq(dev, qid, nvmeq);
+ if (result < 0)
+ return result;
+ if (result)
+ goto release_cq;
+
+ nvmeq->cq_vector = vector;
+
+ result = nvme_setup_io_queues_trylock(dev);
+ if (result)
+ return result;
+ nvme_init_queue(nvmeq, qid);
+ if (!polled) {
+ result = queue_request_irq(nvmeq);
+ if (result < 0)
+ goto release_sq;
+ }
+
+ set_bit(NVMEQ_ENABLED, &nvmeq->flags);
+ mutex_unlock(&dev->shutdown_lock);
+ return result;
+
+release_sq:
+ dev->online_queues--;
+ mutex_unlock(&dev->shutdown_lock);
+ adapter_delete_sq(dev, qid);
+release_cq:
+ adapter_delete_cq(dev, qid);
+ return result;
+}
+
+static const struct blk_mq_ops nvme_mq_admin_ops = {
+ .queue_rq = nvme_queue_rq,
+ .complete = nvme_pci_complete_rq,
+ .init_hctx = nvme_admin_init_hctx,
+ .init_request = nvme_pci_init_request,
+ .timeout = nvme_timeout,
+};
+
+static const struct blk_mq_ops nvme_mq_ops = {
+ .queue_rq = nvme_queue_rq,
+ .queue_rqs = nvme_queue_rqs,
+ .complete = nvme_pci_complete_rq,
+ .commit_rqs = nvme_commit_rqs,
+ .init_hctx = nvme_init_hctx,
+ .init_request = nvme_pci_init_request,
+ .map_queues = nvme_pci_map_queues,
+ .timeout = nvme_timeout,
+ .poll = nvme_poll,
+};
+
+static void nvme_dev_remove_admin(struct nvme_dev *dev)
+{
+ if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
+ /*
+ * If the controller was reset during removal, it's possible
+ * user requests may be waiting on a stopped queue. Start the
+ * queue to flush these to completion.
+ */
+ nvme_unquiesce_admin_queue(&dev->ctrl);
+ nvme_remove_admin_tag_set(&dev->ctrl);
+ }
+}
+
+static unsigned long db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
+{
+ return NVME_REG_DBS + ((nr_io_queues + 1) * 8 * dev->db_stride);
+}
+
+static int nvme_remap_bar(struct nvme_dev *dev, unsigned long size)
+{
+ struct pci_dev *pdev = to_pci_dev(dev->dev);
+
+ if (size <= dev->bar_mapped_size)
+ return 0;
+ if (size > pci_resource_len(pdev, 0))
+ return -ENOMEM;
+ if (dev->bar)
+ iounmap(dev->bar);
+ dev->bar = ioremap(pci_resource_start(pdev, 0), size);
+ if (!dev->bar) {
+ dev->bar_mapped_size = 0;
+ return -ENOMEM;
+ }
+ dev->bar_mapped_size = size;
+ dev->dbs = dev->bar + NVME_REG_DBS;
+
+ return 0;
+}
+
+static int nvme_pci_configure_admin_queue(struct nvme_dev *dev)
+{
+ int result;
+ u32 aqa;
+ struct nvme_queue *nvmeq;
+
+ result = nvme_remap_bar(dev, db_bar_size(dev, 0));
+ if (result < 0)
+ return result;
+
+ dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1, 0) ?
+ NVME_CAP_NSSRC(dev->ctrl.cap) : 0;
+
+ if (dev->subsystem &&
+ (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
+ writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
+
+ /*
+ * If the device has been passed off to us in an enabled state, just
+ * clear the enabled bit. The spec says we should set the 'shutdown
+ * notification bits', but doing so may cause the device to complete
+ * commands to the admin queue ... and we don't know what memory that
+ * might be pointing at!
+ */
+ result = nvme_disable_ctrl(&dev->ctrl, false);
+ if (result < 0)
+ return result;
+
+ result = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
+ if (result)
+ return result;
+
+ dev->ctrl.numa_node = dev_to_node(dev->dev);
+
+ nvmeq = &dev->queues[0];
+ aqa = nvmeq->q_depth - 1;
+ aqa |= aqa << 16;
+
+ writel(aqa, dev->bar + NVME_REG_AQA);
+ lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
+ lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
+
+ result = nvme_enable_ctrl(&dev->ctrl);
+ if (result)
+ return result;
+
+ nvmeq->cq_vector = 0;
+ nvme_init_queue(nvmeq, 0);
+ result = queue_request_irq(nvmeq);
+ if (result) {
+ dev->online_queues--;
+ return result;
+ }
+
+ set_bit(NVMEQ_ENABLED, &nvmeq->flags);
+ return result;
+}
+
+static int nvme_create_io_queues(struct nvme_dev *dev)
+{
+ unsigned i, max, rw_queues;
+ int ret = 0;
+
+ for (i = dev->ctrl.queue_count; i <= dev->max_qid; i++) {
+ if (nvme_alloc_queue(dev, i, dev->q_depth)) {
+ ret = -ENOMEM;
+ break;
+ }
+ }
+
+ max = min(dev->max_qid, dev->ctrl.queue_count - 1);
+ if (max != 1 && dev->io_queues[HCTX_TYPE_POLL]) {
+ rw_queues = dev->io_queues[HCTX_TYPE_DEFAULT] +
+ dev->io_queues[HCTX_TYPE_READ];
+ } else {
+ rw_queues = max;
+ }
+
+ for (i = dev->online_queues; i <= max; i++) {
+ bool polled = i > rw_queues;
+
+ ret = nvme_create_queue(&dev->queues[i], i, polled);
+ if (ret)
+ break;
+ }
+
+ /*
+ * Ignore failing Create SQ/CQ commands, we can continue with less
+ * than the desired amount of queues, and even a controller without
+ * I/O queues can still be used to issue admin commands. This might
+ * be useful to upgrade a buggy firmware for example.
+ */
+ return ret >= 0 ? 0 : ret;
+}
+
+static u64 nvme_cmb_size_unit(struct nvme_dev *dev)
+{
+ u8 szu = (dev->cmbsz >> NVME_CMBSZ_SZU_SHIFT) & NVME_CMBSZ_SZU_MASK;
+
+ return 1ULL << (12 + 4 * szu);
+}
+
+static u32 nvme_cmb_size(struct nvme_dev *dev)
+{
+ return (dev->cmbsz >> NVME_CMBSZ_SZ_SHIFT) & NVME_CMBSZ_SZ_MASK;
+}
+
+static void nvme_map_cmb(struct nvme_dev *dev)
+{
+ u64 size, offset;
+ resource_size_t bar_size;
+ struct pci_dev *pdev = to_pci_dev(dev->dev);
+ int bar;
+
+ if (dev->cmb_size)
+ return;
+
+ if (NVME_CAP_CMBS(dev->ctrl.cap))
+ writel(NVME_CMBMSC_CRE, dev->bar + NVME_REG_CMBMSC);
+
+ dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
+ if (!dev->cmbsz)
+ return;
+ dev->cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
+
+ size = nvme_cmb_size_unit(dev) * nvme_cmb_size(dev);
+ offset = nvme_cmb_size_unit(dev) * NVME_CMB_OFST(dev->cmbloc);
+ bar = NVME_CMB_BIR(dev->cmbloc);
+ bar_size = pci_resource_len(pdev, bar);
+
+ if (offset > bar_size)
+ return;
+
+ /*
+ * Tell the controller about the host side address mapping the CMB,
+ * and enable CMB decoding for the NVMe 1.4+ scheme:
+ */
+ if (NVME_CAP_CMBS(dev->ctrl.cap)) {
+ hi_lo_writeq(NVME_CMBMSC_CRE | NVME_CMBMSC_CMSE |
+ (pci_bus_address(pdev, bar) + offset),
+ dev->bar + NVME_REG_CMBMSC);
+ }
+
+ /*
+ * Controllers may support a CMB size larger than their BAR,
+ * for example, due to being behind a bridge. Reduce the CMB to
+ * the reported size of the BAR
+ */
+ if (size > bar_size - offset)
+ size = bar_size - offset;
+
+ if (pci_p2pdma_add_resource(pdev, bar, size, offset)) {
+ dev_warn(dev->ctrl.device,
+ "failed to register the CMB\n");
+ return;
+ }
+
+ dev->cmb_size = size;
+ dev->cmb_use_sqes = use_cmb_sqes && (dev->cmbsz & NVME_CMBSZ_SQS);
+
+ if ((dev->cmbsz & (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS)) ==
+ (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS))
+ pci_p2pmem_publish(pdev, true);
+
+ nvme_update_attrs(dev);
+}
+
+static int nvme_set_host_mem(struct nvme_dev *dev, u32 bits)
+{
+ u32 host_mem_size = dev->host_mem_size >> NVME_CTRL_PAGE_SHIFT;
+ u64 dma_addr = dev->host_mem_descs_dma;
+ struct nvme_command c = { };
+ int ret;
+
+ c.features.opcode = nvme_admin_set_features;
+ c.features.fid = cpu_to_le32(NVME_FEAT_HOST_MEM_BUF);
+ c.features.dword11 = cpu_to_le32(bits);
+ c.features.dword12 = cpu_to_le32(host_mem_size);
+ c.features.dword13 = cpu_to_le32(lower_32_bits(dma_addr));
+ c.features.dword14 = cpu_to_le32(upper_32_bits(dma_addr));
+ c.features.dword15 = cpu_to_le32(dev->nr_host_mem_descs);
+
+ ret = nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
+ if (ret) {
+ dev_warn(dev->ctrl.device,
+ "failed to set host mem (err %d, flags %#x).\n",
+ ret, bits);
+ } else
+ dev->hmb = bits & NVME_HOST_MEM_ENABLE;
+
+ return ret;
+}
+
+static void nvme_free_host_mem(struct nvme_dev *dev)
+{
+ int i;
+
+ for (i = 0; i < dev->nr_host_mem_descs; i++) {
+ struct nvme_host_mem_buf_desc *desc = &dev->host_mem_descs[i];
+ size_t size = le32_to_cpu(desc->size) * NVME_CTRL_PAGE_SIZE;
+
+ dma_free_attrs(dev->dev, size, dev->host_mem_desc_bufs[i],
+ le64_to_cpu(desc->addr),
+ DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
+ }
+
+ kfree(dev->host_mem_desc_bufs);
+ dev->host_mem_desc_bufs = NULL;
+ dma_free_coherent(dev->dev,
+ dev->nr_host_mem_descs * sizeof(*dev->host_mem_descs),
+ dev->host_mem_descs, dev->host_mem_descs_dma);
+ dev->host_mem_descs = NULL;
+ dev->nr_host_mem_descs = 0;
+}
+
+static int __nvme_alloc_host_mem(struct nvme_dev *dev, u64 preferred,
+ u32 chunk_size)
+{
+ struct nvme_host_mem_buf_desc *descs;
+ u32 max_entries, len;
+ dma_addr_t descs_dma;
+ int i = 0;
+ void **bufs;
+ u64 size, tmp;
+
+ tmp = (preferred + chunk_size - 1);
+ do_div(tmp, chunk_size);
+ max_entries = tmp;
+
+ if (dev->ctrl.hmmaxd && dev->ctrl.hmmaxd < max_entries)
+ max_entries = dev->ctrl.hmmaxd;
+
+ descs = dma_alloc_coherent(dev->dev, max_entries * sizeof(*descs),
+ &descs_dma, GFP_KERNEL);
+ if (!descs)
+ goto out;
+
+ bufs = kcalloc(max_entries, sizeof(*bufs), GFP_KERNEL);
+ if (!bufs)
+ goto out_free_descs;
+
+ for (size = 0; size < preferred && i < max_entries; size += len) {
+ dma_addr_t dma_addr;
+
+ len = min_t(u64, chunk_size, preferred - size);
+ bufs[i] = dma_alloc_attrs(dev->dev, len, &dma_addr, GFP_KERNEL,
+ DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
+ if (!bufs[i])
+ break;
+
+ descs[i].addr = cpu_to_le64(dma_addr);
+ descs[i].size = cpu_to_le32(len / NVME_CTRL_PAGE_SIZE);
+ i++;
+ }
+
+ if (!size)
+ goto out_free_bufs;
+
+ dev->nr_host_mem_descs = i;
+ dev->host_mem_size = size;
+ dev->host_mem_descs = descs;
+ dev->host_mem_descs_dma = descs_dma;
+ dev->host_mem_desc_bufs = bufs;
+ return 0;
+
+out_free_bufs:
+ while (--i >= 0) {
+ size_t size = le32_to_cpu(descs[i].size) * NVME_CTRL_PAGE_SIZE;
+
+ dma_free_attrs(dev->dev, size, bufs[i],
+ le64_to_cpu(descs[i].addr),
+ DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
+ }
+
+ kfree(bufs);
+out_free_descs:
+ dma_free_coherent(dev->dev, max_entries * sizeof(*descs), descs,
+ descs_dma);
+out:
+ dev->host_mem_descs = NULL;
+ return -ENOMEM;
+}
+
+static int nvme_alloc_host_mem(struct nvme_dev *dev, u64 min, u64 preferred)
+{
+ u64 min_chunk = min_t(u64, preferred, PAGE_SIZE * MAX_ORDER_NR_PAGES);
+ u64 hmminds = max_t(u32, dev->ctrl.hmminds * 4096, PAGE_SIZE * 2);
+ u64 chunk_size;
+
+ /* start big and work our way down */
+ for (chunk_size = min_chunk; chunk_size >= hmminds; chunk_size /= 2) {
+ if (!__nvme_alloc_host_mem(dev, preferred, chunk_size)) {
+ if (!min || dev->host_mem_size >= min)
+ return 0;
+ nvme_free_host_mem(dev);
+ }
+ }
+
+ return -ENOMEM;
+}
+
+static int nvme_setup_host_mem(struct nvme_dev *dev)
+{
+ u64 max = (u64)max_host_mem_size_mb * SZ_1M;
+ u64 preferred = (u64)dev->ctrl.hmpre * 4096;
+ u64 min = (u64)dev->ctrl.hmmin * 4096;
+ u32 enable_bits = NVME_HOST_MEM_ENABLE;
+ int ret;
+
+ if (!dev->ctrl.hmpre)
+ return 0;
+
+ preferred = min(preferred, max);
+ if (min > max) {
+ dev_warn(dev->ctrl.device,
+ "min host memory (%lld MiB) above limit (%d MiB).\n",
+ min >> ilog2(SZ_1M), max_host_mem_size_mb);
+ nvme_free_host_mem(dev);
+ return 0;
+ }
+
+ /*
+ * If we already have a buffer allocated check if we can reuse it.
+ */
+ if (dev->host_mem_descs) {
+ if (dev->host_mem_size >= min)
+ enable_bits |= NVME_HOST_MEM_RETURN;
+ else
+ nvme_free_host_mem(dev);
+ }
+
+ if (!dev->host_mem_descs) {
+ if (nvme_alloc_host_mem(dev, min, preferred)) {
+ dev_warn(dev->ctrl.device,
+ "failed to allocate host memory buffer.\n");
+ return 0; /* controller must work without HMB */
+ }
+
+ dev_info(dev->ctrl.device,
+ "allocated %lld MiB host memory buffer.\n",
+ dev->host_mem_size >> ilog2(SZ_1M));
+ }
+
+ ret = nvme_set_host_mem(dev, enable_bits);
+ if (ret)
+ nvme_free_host_mem(dev);
+ return ret;
+}
+
+static ssize_t cmb_show(struct device *dev, struct device_attribute *attr,
+ char *buf)
+{
+ struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
+
+ return sysfs_emit(buf, "cmbloc : x%08x\ncmbsz : x%08x\n",
+ ndev->cmbloc, ndev->cmbsz);
+}
+static DEVICE_ATTR_RO(cmb);
+
+static ssize_t cmbloc_show(struct device *dev, struct device_attribute *attr,
+ char *buf)
+{
+ struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
+
+ return sysfs_emit(buf, "%u\n", ndev->cmbloc);
+}
+static DEVICE_ATTR_RO(cmbloc);
+
+static ssize_t cmbsz_show(struct device *dev, struct device_attribute *attr,
+ char *buf)
+{
+ struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
+
+ return sysfs_emit(buf, "%u\n", ndev->cmbsz);
+}
+static DEVICE_ATTR_RO(cmbsz);
+
+static ssize_t hmb_show(struct device *dev, struct device_attribute *attr,
+ char *buf)
+{
+ struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
+
+ return sysfs_emit(buf, "%d\n", ndev->hmb);
+}
+
+static ssize_t hmb_store(struct device *dev, struct device_attribute *attr,
+ const char *buf, size_t count)
+{
+ struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
+ bool new;
+ int ret;
+
+ if (kstrtobool(buf, &new) < 0)
+ return -EINVAL;
+
+ if (new == ndev->hmb)
+ return count;
+
+ if (new) {
+ ret = nvme_setup_host_mem(ndev);
+ } else {
+ ret = nvme_set_host_mem(ndev, 0);
+ if (!ret)
+ nvme_free_host_mem(ndev);
+ }
+
+ if (ret < 0)
+ return ret;
+
+ return count;
+}
+static DEVICE_ATTR_RW(hmb);
+
+static umode_t nvme_pci_attrs_are_visible(struct kobject *kobj,
+ struct attribute *a, int n)
+{
+ struct nvme_ctrl *ctrl =
+ dev_get_drvdata(container_of(kobj, struct device, kobj));
+ struct nvme_dev *dev = to_nvme_dev(ctrl);
+
+ if (a == &dev_attr_cmb.attr ||
+ a == &dev_attr_cmbloc.attr ||
+ a == &dev_attr_cmbsz.attr) {
+ if (!dev->cmbsz)
+ return 0;
+ }
+ if (a == &dev_attr_hmb.attr && !ctrl->hmpre)
+ return 0;
+
+ return a->mode;
+}
+
+static struct attribute *nvme_pci_attrs[] = {
+ &dev_attr_cmb.attr,
+ &dev_attr_cmbloc.attr,
+ &dev_attr_cmbsz.attr,
+ &dev_attr_hmb.attr,
+ NULL,
+};
+
+static const struct attribute_group nvme_pci_dev_attrs_group = {
+ .attrs = nvme_pci_attrs,
+ .is_visible = nvme_pci_attrs_are_visible,
+};
+
+static const struct attribute_group *nvme_pci_dev_attr_groups[] = {
+ &nvme_dev_attrs_group,
+ &nvme_pci_dev_attrs_group,
+ NULL,
+};
+
+static void nvme_update_attrs(struct nvme_dev *dev)
+{
+ sysfs_update_group(&dev->ctrl.device->kobj, &nvme_pci_dev_attrs_group);
+}
+
+/*
+ * nirqs is the number of interrupts available for write and read
+ * queues. The core already reserved an interrupt for the admin queue.
+ */
+static void nvme_calc_irq_sets(struct irq_affinity *affd, unsigned int nrirqs)
+{
+ struct nvme_dev *dev = affd->priv;
+ unsigned int nr_read_queues, nr_write_queues = dev->nr_write_queues;
+
+ /*
+ * If there is no interrupt available for queues, ensure that
+ * the default queue is set to 1. The affinity set size is
+ * also set to one, but the irq core ignores it for this case.
+ *
+ * If only one interrupt is available or 'write_queue' == 0, combine
+ * write and read queues.
+ *
+ * If 'write_queues' > 0, ensure it leaves room for at least one read
+ * queue.
+ */
+ if (!nrirqs) {
+ nrirqs = 1;
+ nr_read_queues = 0;
+ } else if (nrirqs == 1 || !nr_write_queues) {
+ nr_read_queues = 0;
+ } else if (nr_write_queues >= nrirqs) {
+ nr_read_queues = 1;
+ } else {
+ nr_read_queues = nrirqs - nr_write_queues;
+ }
+
+ dev->io_queues[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues;
+ affd->set_size[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues;
+ dev->io_queues[HCTX_TYPE_READ] = nr_read_queues;
+ affd->set_size[HCTX_TYPE_READ] = nr_read_queues;
+ affd->nr_sets = nr_read_queues ? 2 : 1;
+}
+
+static int nvme_setup_irqs(struct nvme_dev *dev, unsigned int nr_io_queues)
+{
+ struct pci_dev *pdev = to_pci_dev(dev->dev);
+ struct irq_affinity affd = {
+ .pre_vectors = 1,
+ .calc_sets = nvme_calc_irq_sets,
+ .priv = dev,
+ };
+ unsigned int irq_queues, poll_queues;
+
+ /*
+ * Poll queues don't need interrupts, but we need at least one I/O queue
+ * left over for non-polled I/O.
+ */
+ poll_queues = min(dev->nr_poll_queues, nr_io_queues - 1);
+ dev->io_queues[HCTX_TYPE_POLL] = poll_queues;
+
+ /*
+ * Initialize for the single interrupt case, will be updated in
+ * nvme_calc_irq_sets().
+ */
+ dev->io_queues[HCTX_TYPE_DEFAULT] = 1;
+ dev->io_queues[HCTX_TYPE_READ] = 0;
+
+ /*
+ * We need interrupts for the admin queue and each non-polled I/O queue,
+ * but some Apple controllers require all queues to use the first
+ * vector.
+ */
+ irq_queues = 1;
+ if (!(dev->ctrl.quirks & NVME_QUIRK_SINGLE_VECTOR))
+ irq_queues += (nr_io_queues - poll_queues);
+ return pci_alloc_irq_vectors_affinity(pdev, 1, irq_queues,
+ PCI_IRQ_ALL_TYPES | PCI_IRQ_AFFINITY, &affd);
+}
+
+static unsigned int nvme_max_io_queues(struct nvme_dev *dev)
+{
+ /*
+ * If tags are shared with admin queue (Apple bug), then
+ * make sure we only use one IO queue.
+ */
+ if (dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS)
+ return 1;
+ return num_possible_cpus() + dev->nr_write_queues + dev->nr_poll_queues;
+}
+
+static int nvme_setup_io_queues(struct nvme_dev *dev)
+{
+ struct nvme_queue *adminq = &dev->queues[0];
+ struct pci_dev *pdev = to_pci_dev(dev->dev);
+ unsigned int nr_io_queues;
+ unsigned long size;
+ int result;
+
+ /*
+ * Sample the module parameters once at reset time so that we have
+ * stable values to work with.
+ */
+ dev->nr_write_queues = write_queues;
+ dev->nr_poll_queues = poll_queues;
+
+ nr_io_queues = dev->nr_allocated_queues - 1;
+ result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues);
+ if (result < 0)
+ return result;
+
+ if (nr_io_queues == 0)
+ return 0;
+
+ /*
+ * Free IRQ resources as soon as NVMEQ_ENABLED bit transitions
+ * from set to unset. If there is a window to it is truely freed,
+ * pci_free_irq_vectors() jumping into this window will crash.
+ * And take lock to avoid racing with pci_free_irq_vectors() in
+ * nvme_dev_disable() path.
+ */
+ result = nvme_setup_io_queues_trylock(dev);
+ if (result)
+ return result;
+ if (test_and_clear_bit(NVMEQ_ENABLED, &adminq->flags))
+ pci_free_irq(pdev, 0, adminq);
+
+ if (dev->cmb_use_sqes) {
+ result = nvme_cmb_qdepth(dev, nr_io_queues,
+ sizeof(struct nvme_command));
+ if (result > 0) {
+ dev->q_depth = result;
+ dev->ctrl.sqsize = result - 1;
+ } else {
+ dev->cmb_use_sqes = false;
+ }
+ }
+
+ do {
+ size = db_bar_size(dev, nr_io_queues);
+ result = nvme_remap_bar(dev, size);
+ if (!result)
+ break;
+ if (!--nr_io_queues) {
+ result = -ENOMEM;
+ goto out_unlock;
+ }
+ } while (1);
+ adminq->q_db = dev->dbs;
+
+ retry:
+ /* Deregister the admin queue's interrupt */
+ if (test_and_clear_bit(NVMEQ_ENABLED, &adminq->flags))
+ pci_free_irq(pdev, 0, adminq);
+
+ /*
+ * If we enable msix early due to not intx, disable it again before
+ * setting up the full range we need.
+ */
+ pci_free_irq_vectors(pdev);
+
+ result = nvme_setup_irqs(dev, nr_io_queues);
+ if (result <= 0) {
+ result = -EIO;
+ goto out_unlock;
+ }
+
+ dev->num_vecs = result;
+ result = max(result - 1, 1);
+ dev->max_qid = result + dev->io_queues[HCTX_TYPE_POLL];
+
+ /*
+ * Should investigate if there's a performance win from allocating
+ * more queues than interrupt vectors; it might allow the submission
+ * path to scale better, even if the receive path is limited by the
+ * number of interrupts.
+ */
+ result = queue_request_irq(adminq);
+ if (result)
+ goto out_unlock;
+ set_bit(NVMEQ_ENABLED, &adminq->flags);
+ mutex_unlock(&dev->shutdown_lock);
+
+ result = nvme_create_io_queues(dev);
+ if (result || dev->online_queues < 2)
+ return result;
+
+ if (dev->online_queues - 1 < dev->max_qid) {
+ nr_io_queues = dev->online_queues - 1;
+ nvme_delete_io_queues(dev);
+ result = nvme_setup_io_queues_trylock(dev);
+ if (result)
+ return result;
+ nvme_suspend_io_queues(dev);
+ goto retry;
+ }
+ dev_info(dev->ctrl.device, "%d/%d/%d default/read/poll queues\n",
+ dev->io_queues[HCTX_TYPE_DEFAULT],
+ dev->io_queues[HCTX_TYPE_READ],
+ dev->io_queues[HCTX_TYPE_POLL]);
+ return 0;
+out_unlock:
+ mutex_unlock(&dev->shutdown_lock);
+ return result;
+}
+
+static enum rq_end_io_ret nvme_del_queue_end(struct request *req,
+ blk_status_t error)
+{
+ struct nvme_queue *nvmeq = req->end_io_data;
+
+ blk_mq_free_request(req);
+ complete(&nvmeq->delete_done);
+ return RQ_END_IO_NONE;
+}
+
+static enum rq_end_io_ret nvme_del_cq_end(struct request *req,
+ blk_status_t error)
+{
+ struct nvme_queue *nvmeq = req->end_io_data;
+
+ if (error)
+ set_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags);
+
+ return nvme_del_queue_end(req, error);
+}
+
+static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode)
+{
+ struct request_queue *q = nvmeq->dev->ctrl.admin_q;
+ struct request *req;
+ struct nvme_command cmd = { };
+
+ cmd.delete_queue.opcode = opcode;
+ cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid);
+
+ req = blk_mq_alloc_request(q, nvme_req_op(&cmd), BLK_MQ_REQ_NOWAIT);
+ if (IS_ERR(req))
+ return PTR_ERR(req);
+ nvme_init_request(req, &cmd);
+
+ if (opcode == nvme_admin_delete_cq)
+ req->end_io = nvme_del_cq_end;
+ else
+ req->end_io = nvme_del_queue_end;
+ req->end_io_data = nvmeq;
+
+ init_completion(&nvmeq->delete_done);
+ blk_execute_rq_nowait(req, false);
+ return 0;
+}
+
+static bool __nvme_delete_io_queues(struct nvme_dev *dev, u8 opcode)
+{
+ int nr_queues = dev->online_queues - 1, sent = 0;
+ unsigned long timeout;
+
+ retry:
+ timeout = NVME_ADMIN_TIMEOUT;
+ while (nr_queues > 0) {
+ if (nvme_delete_queue(&dev->queues[nr_queues], opcode))
+ break;
+ nr_queues--;
+ sent++;
+ }
+ while (sent) {
+ struct nvme_queue *nvmeq = &dev->queues[nr_queues + sent];
+
+ timeout = wait_for_completion_io_timeout(&nvmeq->delete_done,
+ timeout);
+ if (timeout == 0)
+ return false;
+
+ sent--;
+ if (nr_queues)
+ goto retry;
+ }
+ return true;
+}
+
+static void nvme_delete_io_queues(struct nvme_dev *dev)
+{
+ if (__nvme_delete_io_queues(dev, nvme_admin_delete_sq))
+ __nvme_delete_io_queues(dev, nvme_admin_delete_cq);
+}
+
+static unsigned int nvme_pci_nr_maps(struct nvme_dev *dev)
+{
+ if (dev->io_queues[HCTX_TYPE_POLL])
+ return 3;
+ if (dev->io_queues[HCTX_TYPE_READ])
+ return 2;
+ return 1;
+}
+
+static void nvme_pci_update_nr_queues(struct nvme_dev *dev)
+{
+ blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1);
+ /* free previously allocated queues that are no longer usable */
+ nvme_free_queues(dev, dev->online_queues);
+}
+
+static int nvme_pci_enable(struct nvme_dev *dev)
+{
+ int result = -ENOMEM;
+ struct pci_dev *pdev = to_pci_dev(dev->dev);
+
+ if (pci_enable_device_mem(pdev))
+ return result;
+
+ pci_set_master(pdev);
+
+ if (readl(dev->bar + NVME_REG_CSTS) == -1) {
+ result = -ENODEV;
+ goto disable;
+ }
+
+ /*
+ * Some devices and/or platforms don't advertise or work with INTx
+ * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll
+ * adjust this later.
+ */
+ result = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_ALL_TYPES);
+ if (result < 0)
+ goto disable;
+
+ dev->ctrl.cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
+
+ dev->q_depth = min_t(u32, NVME_CAP_MQES(dev->ctrl.cap) + 1,
+ io_queue_depth);
+ dev->db_stride = 1 << NVME_CAP_STRIDE(dev->ctrl.cap);
+ dev->dbs = dev->bar + 4096;
+
+ /*
+ * Some Apple controllers require a non-standard SQE size.
+ * Interestingly they also seem to ignore the CC:IOSQES register
+ * so we don't bother updating it here.
+ */
+ if (dev->ctrl.quirks & NVME_QUIRK_128_BYTES_SQES)
+ dev->io_sqes = 7;
+ else
+ dev->io_sqes = NVME_NVM_IOSQES;
+
+ /*
+ * Temporary fix for the Apple controller found in the MacBook8,1 and
+ * some MacBook7,1 to avoid controller resets and data loss.
+ */
+ if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) {
+ dev->q_depth = 2;
+ dev_warn(dev->ctrl.device, "detected Apple NVMe controller, "
+ "set queue depth=%u to work around controller resets\n",
+ dev->q_depth);
+ } else if (pdev->vendor == PCI_VENDOR_ID_SAMSUNG &&
+ (pdev->device == 0xa821 || pdev->device == 0xa822) &&
+ NVME_CAP_MQES(dev->ctrl.cap) == 0) {
+ dev->q_depth = 64;
+ dev_err(dev->ctrl.device, "detected PM1725 NVMe controller, "
+ "set queue depth=%u\n", dev->q_depth);
+ }
+
+ /*
+ * Controllers with the shared tags quirk need the IO queue to be
+ * big enough so that we get 32 tags for the admin queue
+ */
+ if ((dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS) &&
+ (dev->q_depth < (NVME_AQ_DEPTH + 2))) {
+ dev->q_depth = NVME_AQ_DEPTH + 2;
+ dev_warn(dev->ctrl.device, "IO queue depth clamped to %d\n",
+ dev->q_depth);
+ }
+ dev->ctrl.sqsize = dev->q_depth - 1; /* 0's based queue depth */
+
+ nvme_map_cmb(dev);
+
+ pci_save_state(pdev);
+
+ result = nvme_pci_configure_admin_queue(dev);
+ if (result)
+ goto free_irq;
+ return result;
+
+ free_irq:
+ pci_free_irq_vectors(pdev);
+ disable:
+ pci_disable_device(pdev);
+ return result;
+}
+
+static void nvme_dev_unmap(struct nvme_dev *dev)
+{
+ if (dev->bar)
+ iounmap(dev->bar);
+ pci_release_mem_regions(to_pci_dev(dev->dev));
+}
+
+static bool nvme_pci_ctrl_is_dead(struct nvme_dev *dev)
+{
+ struct pci_dev *pdev = to_pci_dev(dev->dev);
+ u32 csts;
+
+ if (!pci_is_enabled(pdev) || !pci_device_is_present(pdev))
+ return true;
+ if (pdev->error_state != pci_channel_io_normal)
+ return true;
+
+ csts = readl(dev->bar + NVME_REG_CSTS);
+ return (csts & NVME_CSTS_CFS) || !(csts & NVME_CSTS_RDY);
+}
+
+static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown)
+{
+ enum nvme_ctrl_state state = nvme_ctrl_state(&dev->ctrl);
+ struct pci_dev *pdev = to_pci_dev(dev->dev);
+ bool dead;
+
+ mutex_lock(&dev->shutdown_lock);
+ dead = nvme_pci_ctrl_is_dead(dev);
+ if (state == NVME_CTRL_LIVE || state == NVME_CTRL_RESETTING) {
+ if (pci_is_enabled(pdev))
+ nvme_start_freeze(&dev->ctrl);
+ /*
+ * Give the controller a chance to complete all entered requests
+ * if doing a safe shutdown.
+ */
+ if (!dead && shutdown)
+ nvme_wait_freeze_timeout(&dev->ctrl, NVME_IO_TIMEOUT);
+ }
+
+ nvme_quiesce_io_queues(&dev->ctrl);
+
+ if (!dead && dev->ctrl.queue_count > 0) {
+ nvme_delete_io_queues(dev);
+ nvme_disable_ctrl(&dev->ctrl, shutdown);
+ nvme_poll_irqdisable(&dev->queues[0]);
+ }
+ nvme_suspend_io_queues(dev);
+ nvme_suspend_queue(dev, 0);
+ pci_free_irq_vectors(pdev);
+ if (pci_is_enabled(pdev))
+ pci_disable_device(pdev);
+ nvme_reap_pending_cqes(dev);
+
+ nvme_cancel_tagset(&dev->ctrl);
+ nvme_cancel_admin_tagset(&dev->ctrl);
+
+ /*
+ * The driver will not be starting up queues again if shutting down so
+ * must flush all entered requests to their failed completion to avoid
+ * deadlocking blk-mq hot-cpu notifier.
+ */
+ if (shutdown) {
+ nvme_unquiesce_io_queues(&dev->ctrl);
+ if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q))
+ nvme_unquiesce_admin_queue(&dev->ctrl);
+ }
+ mutex_unlock(&dev->shutdown_lock);
+}
+
+static int nvme_disable_prepare_reset(struct nvme_dev *dev, bool shutdown)
+{
+ if (!nvme_wait_reset(&dev->ctrl))
+ return -EBUSY;
+ nvme_dev_disable(dev, shutdown);
+ return 0;
+}
+
+static int nvme_setup_prp_pools(struct nvme_dev *dev)
+{
+ dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
+ NVME_CTRL_PAGE_SIZE,
+ NVME_CTRL_PAGE_SIZE, 0);
+ if (!dev->prp_page_pool)
+ return -ENOMEM;
+
+ /* Optimisation for I/Os between 4k and 128k */
+ dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
+ 256, 256, 0);
+ if (!dev->prp_small_pool) {
+ dma_pool_destroy(dev->prp_page_pool);
+ return -ENOMEM;
+ }
+ return 0;
+}
+
+static void nvme_release_prp_pools(struct nvme_dev *dev)
+{
+ dma_pool_destroy(dev->prp_page_pool);
+ dma_pool_destroy(dev->prp_small_pool);
+}
+
+static int nvme_pci_alloc_iod_mempool(struct nvme_dev *dev)
+{
+ size_t alloc_size = sizeof(struct scatterlist) * NVME_MAX_SEGS;
+
+ dev->iod_mempool = mempool_create_node(1,
+ mempool_kmalloc, mempool_kfree,
+ (void *)alloc_size, GFP_KERNEL,
+ dev_to_node(dev->dev));
+ if (!dev->iod_mempool)
+ return -ENOMEM;
+ return 0;
+}
+
+static void nvme_free_tagset(struct nvme_dev *dev)
+{
+ if (dev->tagset.tags)
+ nvme_remove_io_tag_set(&dev->ctrl);
+ dev->ctrl.tagset = NULL;
+}
+
+/* pairs with nvme_pci_alloc_dev */
+static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
+{
+ struct nvme_dev *dev = to_nvme_dev(ctrl);
+
+ nvme_free_tagset(dev);
+ put_device(dev->dev);
+ kfree(dev->queues);
+ kfree(dev);
+}
+
+static void nvme_reset_work(struct work_struct *work)
+{
+ struct nvme_dev *dev =
+ container_of(work, struct nvme_dev, ctrl.reset_work);
+ bool was_suspend = !!(dev->ctrl.ctrl_config & NVME_CC_SHN_NORMAL);
+ int result;
+
+ if (nvme_ctrl_state(&dev->ctrl) != NVME_CTRL_RESETTING) {
+ dev_warn(dev->ctrl.device, "ctrl state %d is not RESETTING\n",
+ dev->ctrl.state);
+ result = -ENODEV;
+ goto out;
+ }
+
+ /*
+ * If we're called to reset a live controller first shut it down before
+ * moving on.
+ */
+ if (dev->ctrl.ctrl_config & NVME_CC_ENABLE)
+ nvme_dev_disable(dev, false);
+ nvme_sync_queues(&dev->ctrl);
+
+ mutex_lock(&dev->shutdown_lock);
+ result = nvme_pci_enable(dev);
+ if (result)
+ goto out_unlock;
+ nvme_unquiesce_admin_queue(&dev->ctrl);
+ mutex_unlock(&dev->shutdown_lock);
+
+ /*
+ * Introduce CONNECTING state from nvme-fc/rdma transports to mark the
+ * initializing procedure here.
+ */
+ if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_CONNECTING)) {
+ dev_warn(dev->ctrl.device,
+ "failed to mark controller CONNECTING\n");
+ result = -EBUSY;
+ goto out;
+ }
+
+ result = nvme_init_ctrl_finish(&dev->ctrl, was_suspend);
+ if (result)
+ goto out;
+
+ nvme_dbbuf_dma_alloc(dev);
+
+ result = nvme_setup_host_mem(dev);
+ if (result < 0)
+ goto out;
+
+ result = nvme_setup_io_queues(dev);
+ if (result)
+ goto out;
+
+ /*
+ * Freeze and update the number of I/O queues as thos might have
+ * changed. If there are no I/O queues left after this reset, keep the
+ * controller around but remove all namespaces.
+ */
+ if (dev->online_queues > 1) {
+ nvme_unquiesce_io_queues(&dev->ctrl);
+ nvme_wait_freeze(&dev->ctrl);
+ nvme_pci_update_nr_queues(dev);
+ nvme_dbbuf_set(dev);
+ nvme_unfreeze(&dev->ctrl);
+ } else {
+ dev_warn(dev->ctrl.device, "IO queues lost\n");
+ nvme_mark_namespaces_dead(&dev->ctrl);
+ nvme_unquiesce_io_queues(&dev->ctrl);
+ nvme_remove_namespaces(&dev->ctrl);
+ nvme_free_tagset(dev);
+ }
+
+ /*
+ * If only admin queue live, keep it to do further investigation or
+ * recovery.
+ */
+ if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) {
+ dev_warn(dev->ctrl.device,
+ "failed to mark controller live state\n");
+ result = -ENODEV;
+ goto out;
+ }
+
+ nvme_start_ctrl(&dev->ctrl);
+ return;
+
+ out_unlock:
+ mutex_unlock(&dev->shutdown_lock);
+ out:
+ /*
+ * Set state to deleting now to avoid blocking nvme_wait_reset(), which
+ * may be holding this pci_dev's device lock.
+ */
+ dev_warn(dev->ctrl.device, "Disabling device after reset failure: %d\n",
+ result);
+ nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
+ nvme_dev_disable(dev, true);
+ nvme_sync_queues(&dev->ctrl);
+ nvme_mark_namespaces_dead(&dev->ctrl);
+ nvme_unquiesce_io_queues(&dev->ctrl);
+ nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD);
+}
+
+static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
+{
+ *val = readl(to_nvme_dev(ctrl)->bar + off);
+ return 0;
+}
+
+static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
+{
+ writel(val, to_nvme_dev(ctrl)->bar + off);
+ return 0;
+}
+
+static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
+{
+ *val = lo_hi_readq(to_nvme_dev(ctrl)->bar + off);
+ return 0;
+}
+
+static int nvme_pci_get_address(struct nvme_ctrl *ctrl, char *buf, int size)
+{
+ struct pci_dev *pdev = to_pci_dev(to_nvme_dev(ctrl)->dev);
+
+ return snprintf(buf, size, "%s\n", dev_name(&pdev->dev));
+}
+
+static void nvme_pci_print_device_info(struct nvme_ctrl *ctrl)
+{
+ struct pci_dev *pdev = to_pci_dev(to_nvme_dev(ctrl)->dev);
+ struct nvme_subsystem *subsys = ctrl->subsys;
+
+ dev_err(ctrl->device,
+ "VID:DID %04x:%04x model:%.*s firmware:%.*s\n",
+ pdev->vendor, pdev->device,
+ nvme_strlen(subsys->model, sizeof(subsys->model)),
+ subsys->model, nvme_strlen(subsys->firmware_rev,
+ sizeof(subsys->firmware_rev)),
+ subsys->firmware_rev);
+}
+
+static bool nvme_pci_supports_pci_p2pdma(struct nvme_ctrl *ctrl)
+{
+ struct nvme_dev *dev = to_nvme_dev(ctrl);
+
+ return dma_pci_p2pdma_supported(dev->dev);
+}
+
+static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
+ .name = "pcie",
+ .module = THIS_MODULE,
+ .flags = NVME_F_METADATA_SUPPORTED,
+ .dev_attr_groups = nvme_pci_dev_attr_groups,
+ .reg_read32 = nvme_pci_reg_read32,
+ .reg_write32 = nvme_pci_reg_write32,
+ .reg_read64 = nvme_pci_reg_read64,
+ .free_ctrl = nvme_pci_free_ctrl,
+ .submit_async_event = nvme_pci_submit_async_event,
+ .get_address = nvme_pci_get_address,
+ .print_device_info = nvme_pci_print_device_info,
+ .supports_pci_p2pdma = nvme_pci_supports_pci_p2pdma,
+};
+
+static int nvme_dev_map(struct nvme_dev *dev)
+{
+ struct pci_dev *pdev = to_pci_dev(dev->dev);
+
+ if (pci_request_mem_regions(pdev, "nvme"))
+ return -ENODEV;
+
+ if (nvme_remap_bar(dev, NVME_REG_DBS + 4096))
+ goto release;
+
+ return 0;
+ release:
+ pci_release_mem_regions(pdev);
+ return -ENODEV;
+}
+
+static unsigned long check_vendor_combination_bug(struct pci_dev *pdev)
+{
+ if (pdev->vendor == 0x144d && pdev->device == 0xa802) {
+ /*
+ * Several Samsung devices seem to drop off the PCIe bus
+ * randomly when APST is on and uses the deepest sleep state.
+ * This has been observed on a Samsung "SM951 NVMe SAMSUNG
+ * 256GB", a "PM951 NVMe SAMSUNG 512GB", and a "Samsung SSD
+ * 950 PRO 256GB", but it seems to be restricted to two Dell
+ * laptops.
+ */
+ if (dmi_match(DMI_SYS_VENDOR, "Dell Inc.") &&
+ (dmi_match(DMI_PRODUCT_NAME, "XPS 15 9550") ||
+ dmi_match(DMI_PRODUCT_NAME, "Precision 5510")))
+ return NVME_QUIRK_NO_DEEPEST_PS;
+ } else if (pdev->vendor == 0x144d && pdev->device == 0xa804) {
+ /*
+ * Samsung SSD 960 EVO drops off the PCIe bus after system
+ * suspend on a Ryzen board, ASUS PRIME B350M-A, as well as
+ * within few minutes after bootup on a Coffee Lake board -
+ * ASUS PRIME Z370-A
+ */
+ if (dmi_match(DMI_BOARD_VENDOR, "ASUSTeK COMPUTER INC.") &&
+ (dmi_match(DMI_BOARD_NAME, "PRIME B350M-A") ||
+ dmi_match(DMI_BOARD_NAME, "PRIME Z370-A")))
+ return NVME_QUIRK_NO_APST;
+ } else if ((pdev->vendor == 0x144d && (pdev->device == 0xa801 ||
+ pdev->device == 0xa808 || pdev->device == 0xa809)) ||
+ (pdev->vendor == 0x1e0f && pdev->device == 0x0001)) {
+ /*
+ * Forcing to use host managed nvme power settings for
+ * lowest idle power with quick resume latency on
+ * Samsung and Toshiba SSDs based on suspend behavior
+ * on Coffee Lake board for LENOVO C640
+ */
+ if ((dmi_match(DMI_BOARD_VENDOR, "LENOVO")) &&
+ dmi_match(DMI_BOARD_NAME, "LNVNB161216"))
+ return NVME_QUIRK_SIMPLE_SUSPEND;
+ } else if (pdev->vendor == 0x2646 && (pdev->device == 0x2263 ||
+ pdev->device == 0x500f)) {
+ /*
+ * Exclude some Kingston NV1 and A2000 devices from
+ * NVME_QUIRK_SIMPLE_SUSPEND. Do a full suspend to save a
+ * lot fo energy with s2idle sleep on some TUXEDO platforms.
+ */
+ if (dmi_match(DMI_BOARD_NAME, "NS5X_NS7XAU") ||
+ dmi_match(DMI_BOARD_NAME, "NS5x_7xAU") ||
+ dmi_match(DMI_BOARD_NAME, "NS5x_7xPU") ||
+ dmi_match(DMI_BOARD_NAME, "PH4PRX1_PH6PRX1"))
+ return NVME_QUIRK_FORCE_NO_SIMPLE_SUSPEND;
+ }
+
+ return 0;
+}
+
+static struct nvme_dev *nvme_pci_alloc_dev(struct pci_dev *pdev,
+ const struct pci_device_id *id)
+{
+ unsigned long quirks = id->driver_data;
+ int node = dev_to_node(&pdev->dev);
+ struct nvme_dev *dev;
+ int ret = -ENOMEM;
+
+ dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
+ if (!dev)
+ return ERR_PTR(-ENOMEM);
+ INIT_WORK(&dev->ctrl.reset_work, nvme_reset_work);
+ mutex_init(&dev->shutdown_lock);
+
+ dev->nr_write_queues = write_queues;
+ dev->nr_poll_queues = poll_queues;
+ dev->nr_allocated_queues = nvme_max_io_queues(dev) + 1;
+ dev->queues = kcalloc_node(dev->nr_allocated_queues,
+ sizeof(struct nvme_queue), GFP_KERNEL, node);
+ if (!dev->queues)
+ goto out_free_dev;
+
+ dev->dev = get_device(&pdev->dev);
+
+ quirks |= check_vendor_combination_bug(pdev);
+ if (!noacpi &&
+ !(quirks & NVME_QUIRK_FORCE_NO_SIMPLE_SUSPEND) &&
+ acpi_storage_d3(&pdev->dev)) {
+ /*
+ * Some systems use a bios work around to ask for D3 on
+ * platforms that support kernel managed suspend.
+ */
+ dev_info(&pdev->dev,
+ "platform quirk: setting simple suspend\n");
+ quirks |= NVME_QUIRK_SIMPLE_SUSPEND;
+ }
+ ret = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops,
+ quirks);
+ if (ret)
+ goto out_put_device;
+
+ if (dev->ctrl.quirks & NVME_QUIRK_DMA_ADDRESS_BITS_48)
+ dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(48));
+ else
+ dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
+ dma_set_min_align_mask(&pdev->dev, NVME_CTRL_PAGE_SIZE - 1);
+ dma_set_max_seg_size(&pdev->dev, 0xffffffff);
+
+ /*
+ * Limit the max command size to prevent iod->sg allocations going
+ * over a single page.
+ */
+ dev->ctrl.max_hw_sectors = min_t(u32,
+ NVME_MAX_KB_SZ << 1, dma_opt_mapping_size(&pdev->dev) >> 9);
+ dev->ctrl.max_segments = NVME_MAX_SEGS;
+
+ /*
+ * There is no support for SGLs for metadata (yet), so we are limited to
+ * a single integrity segment for the separate metadata pointer.
+ */
+ dev->ctrl.max_integrity_segments = 1;
+ return dev;
+
+out_put_device:
+ put_device(dev->dev);
+ kfree(dev->queues);
+out_free_dev:
+ kfree(dev);
+ return ERR_PTR(ret);
+}
+
+static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
+{
+ struct nvme_dev *dev;
+ int result = -ENOMEM;
+
+ dev = nvme_pci_alloc_dev(pdev, id);
+ if (IS_ERR(dev))
+ return PTR_ERR(dev);
+
+ result = nvme_dev_map(dev);
+ if (result)
+ goto out_uninit_ctrl;
+
+ result = nvme_setup_prp_pools(dev);
+ if (result)
+ goto out_dev_unmap;
+
+ result = nvme_pci_alloc_iod_mempool(dev);
+ if (result)
+ goto out_release_prp_pools;
+
+ dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev));
+
+ result = nvme_pci_enable(dev);
+ if (result)
+ goto out_release_iod_mempool;
+
+ result = nvme_alloc_admin_tag_set(&dev->ctrl, &dev->admin_tagset,
+ &nvme_mq_admin_ops, sizeof(struct nvme_iod));
+ if (result)
+ goto out_disable;
+
+ /*
+ * Mark the controller as connecting before sending admin commands to
+ * allow the timeout handler to do the right thing.
+ */
+ if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_CONNECTING)) {
+ dev_warn(dev->ctrl.device,
+ "failed to mark controller CONNECTING\n");
+ result = -EBUSY;
+ goto out_disable;
+ }
+
+ result = nvme_init_ctrl_finish(&dev->ctrl, false);
+ if (result)
+ goto out_disable;
+
+ nvme_dbbuf_dma_alloc(dev);
+
+ result = nvme_setup_host_mem(dev);
+ if (result < 0)
+ goto out_disable;
+
+ result = nvme_setup_io_queues(dev);
+ if (result)
+ goto out_disable;
+
+ if (dev->online_queues > 1) {
+ nvme_alloc_io_tag_set(&dev->ctrl, &dev->tagset, &nvme_mq_ops,
+ nvme_pci_nr_maps(dev), sizeof(struct nvme_iod));
+ nvme_dbbuf_set(dev);
+ }
+
+ if (!dev->ctrl.tagset)
+ dev_warn(dev->ctrl.device, "IO queues not created\n");
+
+ if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) {
+ dev_warn(dev->ctrl.device,
+ "failed to mark controller live state\n");
+ result = -ENODEV;
+ goto out_disable;
+ }
+
+ pci_set_drvdata(pdev, dev);
+
+ nvme_start_ctrl(&dev->ctrl);
+ nvme_put_ctrl(&dev->ctrl);
+ flush_work(&dev->ctrl.scan_work);
+ return 0;
+
+out_disable:
+ nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
+ nvme_dev_disable(dev, true);
+ nvme_free_host_mem(dev);
+ nvme_dev_remove_admin(dev);
+ nvme_dbbuf_dma_free(dev);
+ nvme_free_queues(dev, 0);
+out_release_iod_mempool:
+ mempool_destroy(dev->iod_mempool);
+out_release_prp_pools:
+ nvme_release_prp_pools(dev);
+out_dev_unmap:
+ nvme_dev_unmap(dev);
+out_uninit_ctrl:
+ nvme_uninit_ctrl(&dev->ctrl);
+ nvme_put_ctrl(&dev->ctrl);
+ return result;
+}
+
+static void nvme_reset_prepare(struct pci_dev *pdev)
+{
+ struct nvme_dev *dev = pci_get_drvdata(pdev);
+
+ /*
+ * We don't need to check the return value from waiting for the reset
+ * state as pci_dev device lock is held, making it impossible to race
+ * with ->remove().
+ */
+ nvme_disable_prepare_reset(dev, false);
+ nvme_sync_queues(&dev->ctrl);
+}
+
+static void nvme_reset_done(struct pci_dev *pdev)
+{
+ struct nvme_dev *dev = pci_get_drvdata(pdev);
+
+ if (!nvme_try_sched_reset(&dev->ctrl))
+ flush_work(&dev->ctrl.reset_work);
+}
+
+static void nvme_shutdown(struct pci_dev *pdev)
+{
+ struct nvme_dev *dev = pci_get_drvdata(pdev);
+
+ nvme_disable_prepare_reset(dev, true);
+}
+
+/*
+ * The driver's remove may be called on a device in a partially initialized
+ * state. This function must not have any dependencies on the device state in
+ * order to proceed.
+ */
+static void nvme_remove(struct pci_dev *pdev)
+{
+ struct nvme_dev *dev = pci_get_drvdata(pdev);
+
+ nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
+ pci_set_drvdata(pdev, NULL);
+
+ if (!pci_device_is_present(pdev)) {
+ nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD);
+ nvme_dev_disable(dev, true);
+ }
+
+ flush_work(&dev->ctrl.reset_work);
+ nvme_stop_ctrl(&dev->ctrl);
+ nvme_remove_namespaces(&dev->ctrl);
+ nvme_dev_disable(dev, true);
+ nvme_free_host_mem(dev);
+ nvme_dev_remove_admin(dev);
+ nvme_dbbuf_dma_free(dev);
+ nvme_free_queues(dev, 0);
+ mempool_destroy(dev->iod_mempool);
+ nvme_release_prp_pools(dev);
+ nvme_dev_unmap(dev);
+ nvme_uninit_ctrl(&dev->ctrl);
+}
+
+#ifdef CONFIG_PM_SLEEP
+static int nvme_get_power_state(struct nvme_ctrl *ctrl, u32 *ps)
+{
+ return nvme_get_features(ctrl, NVME_FEAT_POWER_MGMT, 0, NULL, 0, ps);
+}
+
+static int nvme_set_power_state(struct nvme_ctrl *ctrl, u32 ps)
+{
+ return nvme_set_features(ctrl, NVME_FEAT_POWER_MGMT, ps, NULL, 0, NULL);
+}
+
+static int nvme_resume(struct device *dev)
+{
+ struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev));
+ struct nvme_ctrl *ctrl = &ndev->ctrl;
+
+ if (ndev->last_ps == U32_MAX ||
+ nvme_set_power_state(ctrl, ndev->last_ps) != 0)
+ goto reset;
+ if (ctrl->hmpre && nvme_setup_host_mem(ndev))
+ goto reset;
+
+ return 0;
+reset:
+ return nvme_try_sched_reset(ctrl);
+}
+
+static int nvme_suspend(struct device *dev)
+{
+ struct pci_dev *pdev = to_pci_dev(dev);
+ struct nvme_dev *ndev = pci_get_drvdata(pdev);
+ struct nvme_ctrl *ctrl = &ndev->ctrl;
+ int ret = -EBUSY;
+
+ ndev->last_ps = U32_MAX;
+
+ /*
+ * The platform does not remove power for a kernel managed suspend so
+ * use host managed nvme power settings for lowest idle power if
+ * possible. This should have quicker resume latency than a full device
+ * shutdown. But if the firmware is involved after the suspend or the
+ * device does not support any non-default power states, shut down the
+ * device fully.
+ *
+ * If ASPM is not enabled for the device, shut down the device and allow
+ * the PCI bus layer to put it into D3 in order to take the PCIe link
+ * down, so as to allow the platform to achieve its minimum low-power
+ * state (which may not be possible if the link is up).
+ */
+ if (pm_suspend_via_firmware() || !ctrl->npss ||
+ !pcie_aspm_enabled(pdev) ||
+ (ndev->ctrl.quirks & NVME_QUIRK_SIMPLE_SUSPEND))
+ return nvme_disable_prepare_reset(ndev, true);
+
+ nvme_start_freeze(ctrl);
+ nvme_wait_freeze(ctrl);
+ nvme_sync_queues(ctrl);
+
+ if (nvme_ctrl_state(ctrl) != NVME_CTRL_LIVE)
+ goto unfreeze;
+
+ /*
+ * Host memory access may not be successful in a system suspend state,
+ * but the specification allows the controller to access memory in a
+ * non-operational power state.
+ */
+ if (ndev->hmb) {
+ ret = nvme_set_host_mem(ndev, 0);
+ if (ret < 0)
+ goto unfreeze;
+ }
+
+ ret = nvme_get_power_state(ctrl, &ndev->last_ps);
+ if (ret < 0)
+ goto unfreeze;
+
+ /*
+ * A saved state prevents pci pm from generically controlling the
+ * device's power. If we're using protocol specific settings, we don't
+ * want pci interfering.
+ */
+ pci_save_state(pdev);
+
+ ret = nvme_set_power_state(ctrl, ctrl->npss);
+ if (ret < 0)
+ goto unfreeze;
+
+ if (ret) {
+ /* discard the saved state */
+ pci_load_saved_state(pdev, NULL);
+
+ /*
+ * Clearing npss forces a controller reset on resume. The
+ * correct value will be rediscovered then.
+ */
+ ret = nvme_disable_prepare_reset(ndev, true);
+ ctrl->npss = 0;
+ }
+unfreeze:
+ nvme_unfreeze(ctrl);
+ return ret;
+}
+
+static int nvme_simple_suspend(struct device *dev)
+{
+ struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev));
+
+ return nvme_disable_prepare_reset(ndev, true);
+}
+
+static int nvme_simple_resume(struct device *dev)
+{
+ struct pci_dev *pdev = to_pci_dev(dev);
+ struct nvme_dev *ndev = pci_get_drvdata(pdev);
+
+ return nvme_try_sched_reset(&ndev->ctrl);
+}
+
+static const struct dev_pm_ops nvme_dev_pm_ops = {
+ .suspend = nvme_suspend,
+ .resume = nvme_resume,
+ .freeze = nvme_simple_suspend,
+ .thaw = nvme_simple_resume,
+ .poweroff = nvme_simple_suspend,
+ .restore = nvme_simple_resume,
+};
+#endif /* CONFIG_PM_SLEEP */
+
+static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev,
+ pci_channel_state_t state)
+{
+ struct nvme_dev *dev = pci_get_drvdata(pdev);
+
+ /*
+ * A frozen channel requires a reset. When detected, this method will
+ * shutdown the controller to quiesce. The controller will be restarted
+ * after the slot reset through driver's slot_reset callback.
+ */
+ switch (state) {
+ case pci_channel_io_normal:
+ return PCI_ERS_RESULT_CAN_RECOVER;
+ case pci_channel_io_frozen:
+ dev_warn(dev->ctrl.device,
+ "frozen state error detected, reset controller\n");
+ if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_RESETTING)) {
+ nvme_dev_disable(dev, true);
+ return PCI_ERS_RESULT_DISCONNECT;
+ }
+ nvme_dev_disable(dev, false);
+ return PCI_ERS_RESULT_NEED_RESET;
+ case pci_channel_io_perm_failure:
+ dev_warn(dev->ctrl.device,
+ "failure state error detected, request disconnect\n");
+ return PCI_ERS_RESULT_DISCONNECT;
+ }
+ return PCI_ERS_RESULT_NEED_RESET;
+}
+
+static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev)
+{
+ struct nvme_dev *dev = pci_get_drvdata(pdev);
+
+ dev_info(dev->ctrl.device, "restart after slot reset\n");
+ pci_restore_state(pdev);
+ if (!nvme_try_sched_reset(&dev->ctrl))
+ nvme_unquiesce_io_queues(&dev->ctrl);
+ return PCI_ERS_RESULT_RECOVERED;
+}
+
+static void nvme_error_resume(struct pci_dev *pdev)
+{
+ struct nvme_dev *dev = pci_get_drvdata(pdev);
+
+ flush_work(&dev->ctrl.reset_work);
+}
+
+static const struct pci_error_handlers nvme_err_handler = {
+ .error_detected = nvme_error_detected,
+ .slot_reset = nvme_slot_reset,
+ .resume = nvme_error_resume,
+ .reset_prepare = nvme_reset_prepare,
+ .reset_done = nvme_reset_done,
+};
+
+static const struct pci_device_id nvme_id_table[] = {
+ { PCI_VDEVICE(INTEL, 0x0953), /* Intel 750/P3500/P3600/P3700 */
+ .driver_data = NVME_QUIRK_STRIPE_SIZE |
+ NVME_QUIRK_DEALLOCATE_ZEROES, },
+ { PCI_VDEVICE(INTEL, 0x0a53), /* Intel P3520 */
+ .driver_data = NVME_QUIRK_STRIPE_SIZE |
+ NVME_QUIRK_DEALLOCATE_ZEROES, },
+ { PCI_VDEVICE(INTEL, 0x0a54), /* Intel P4500/P4600 */
+ .driver_data = NVME_QUIRK_STRIPE_SIZE |
+ NVME_QUIRK_DEALLOCATE_ZEROES |
+ NVME_QUIRK_IGNORE_DEV_SUBNQN |
+ NVME_QUIRK_BOGUS_NID, },
+ { PCI_VDEVICE(INTEL, 0x0a55), /* Dell Express Flash P4600 */
+ .driver_data = NVME_QUIRK_STRIPE_SIZE |
+ NVME_QUIRK_DEALLOCATE_ZEROES, },
+ { PCI_VDEVICE(INTEL, 0xf1a5), /* Intel 600P/P3100 */
+ .driver_data = NVME_QUIRK_NO_DEEPEST_PS |
+ NVME_QUIRK_MEDIUM_PRIO_SQ |
+ NVME_QUIRK_NO_TEMP_THRESH_CHANGE |
+ NVME_QUIRK_DISABLE_WRITE_ZEROES, },
+ { PCI_VDEVICE(INTEL, 0xf1a6), /* Intel 760p/Pro 7600p */
+ .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN, },
+ { PCI_VDEVICE(INTEL, 0x5845), /* Qemu emulated controller */
+ .driver_data = NVME_QUIRK_IDENTIFY_CNS |
+ NVME_QUIRK_DISABLE_WRITE_ZEROES |
+ NVME_QUIRK_BOGUS_NID, },
+ { PCI_VDEVICE(REDHAT, 0x0010), /* Qemu emulated controller */
+ .driver_data = NVME_QUIRK_BOGUS_NID, },
+ { PCI_DEVICE(0x126f, 0x2263), /* Silicon Motion unidentified */
+ .driver_data = NVME_QUIRK_NO_NS_DESC_LIST |
+ NVME_QUIRK_BOGUS_NID, },
+ { PCI_DEVICE(0x1bb1, 0x0100), /* Seagate Nytro Flash Storage */
+ .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY |
+ NVME_QUIRK_NO_NS_DESC_LIST, },
+ { PCI_DEVICE(0x1c58, 0x0003), /* HGST adapter */
+ .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
+ { PCI_DEVICE(0x1c58, 0x0023), /* WDC SN200 adapter */
+ .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
+ { PCI_DEVICE(0x1c5f, 0x0540), /* Memblaze Pblaze4 adapter */
+ .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
+ { PCI_DEVICE(0x144d, 0xa821), /* Samsung PM1725 */
+ .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
+ { PCI_DEVICE(0x144d, 0xa822), /* Samsung PM1725a */
+ .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY |
+ NVME_QUIRK_DISABLE_WRITE_ZEROES|
+ NVME_QUIRK_IGNORE_DEV_SUBNQN, },
+ { PCI_DEVICE(0x1987, 0x5012), /* Phison E12 */
+ .driver_data = NVME_QUIRK_BOGUS_NID, },
+ { PCI_DEVICE(0x1987, 0x5016), /* Phison E16 */
+ .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN |
+ NVME_QUIRK_BOGUS_NID, },
+ { PCI_DEVICE(0x1987, 0x5019), /* phison E19 */
+ .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
+ { PCI_DEVICE(0x1987, 0x5021), /* Phison E21 */
+ .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
+ { PCI_DEVICE(0x1b4b, 0x1092), /* Lexar 256 GB SSD */
+ .driver_data = NVME_QUIRK_NO_NS_DESC_LIST |
+ NVME_QUIRK_IGNORE_DEV_SUBNQN, },
+ { PCI_DEVICE(0x1cc1, 0x33f8), /* ADATA IM2P33F8ABR1 1 TB */
+ .driver_data = NVME_QUIRK_BOGUS_NID, },
+ { PCI_DEVICE(0x10ec, 0x5762), /* ADATA SX6000LNP */
+ .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN |
+ NVME_QUIRK_BOGUS_NID, },
+ { PCI_DEVICE(0x10ec, 0x5763), /* ADATA SX6000PNP */
+ .driver_data = NVME_QUIRK_BOGUS_NID, },
+ { PCI_DEVICE(0x1cc1, 0x8201), /* ADATA SX8200PNP 512GB */
+ .driver_data = NVME_QUIRK_NO_DEEPEST_PS |
+ NVME_QUIRK_IGNORE_DEV_SUBNQN, },
+ { PCI_DEVICE(0x1344, 0x5407), /* Micron Technology Inc NVMe SSD */
+ .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN },
+ { PCI_DEVICE(0x1344, 0x6001), /* Micron Nitro NVMe */
+ .driver_data = NVME_QUIRK_BOGUS_NID, },
+ { PCI_DEVICE(0x1c5c, 0x1504), /* SK Hynix PC400 */
+ .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
+ { PCI_DEVICE(0x1c5c, 0x174a), /* SK Hynix P31 SSD */
+ .driver_data = NVME_QUIRK_BOGUS_NID, },
+ { PCI_DEVICE(0x15b7, 0x2001), /* Sandisk Skyhawk */
+ .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
+ { PCI_DEVICE(0x1d97, 0x2263), /* SPCC */
+ .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
+ { PCI_DEVICE(0x144d, 0xa80b), /* Samsung PM9B1 256G and 512G */
+ .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES |
+ NVME_QUIRK_BOGUS_NID, },
+ { PCI_DEVICE(0x144d, 0xa809), /* Samsung MZALQ256HBJD 256G */
+ .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
+ { PCI_DEVICE(0x144d, 0xa802), /* Samsung SM953 */
+ .driver_data = NVME_QUIRK_BOGUS_NID, },
+ { PCI_DEVICE(0x1cc4, 0x6303), /* UMIS RPJTJ512MGE1QDY 512G */
+ .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
+ { PCI_DEVICE(0x1cc4, 0x6302), /* UMIS RPJTJ256MGE1QDY 256G */
+ .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
+ { PCI_DEVICE(0x2646, 0x2262), /* KINGSTON SKC2000 NVMe SSD */
+ .driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
+ { PCI_DEVICE(0x2646, 0x2263), /* KINGSTON A2000 NVMe SSD */
+ .driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
+ { PCI_DEVICE(0x2646, 0x5013), /* Kingston KC3000, Kingston FURY Renegade */
+ .driver_data = NVME_QUIRK_NO_SECONDARY_TEMP_THRESH, },
+ { PCI_DEVICE(0x2646, 0x5018), /* KINGSTON OM8SFP4xxxxP OS21012 NVMe SSD */
+ .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
+ { PCI_DEVICE(0x2646, 0x5016), /* KINGSTON OM3PGP4xxxxP OS21011 NVMe SSD */
+ .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
+ { PCI_DEVICE(0x2646, 0x501A), /* KINGSTON OM8PGP4xxxxP OS21005 NVMe SSD */
+ .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
+ { PCI_DEVICE(0x2646, 0x501B), /* KINGSTON OM8PGP4xxxxQ OS21005 NVMe SSD */
+ .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
+ { PCI_DEVICE(0x2646, 0x501E), /* KINGSTON OM3PGP4xxxxQ OS21011 NVMe SSD */
+ .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
+ { PCI_DEVICE(0x1f40, 0x1202), /* Netac Technologies Co. NV3000 NVMe SSD */
+ .driver_data = NVME_QUIRK_BOGUS_NID, },
+ { PCI_DEVICE(0x1f40, 0x5236), /* Netac Technologies Co. NV7000 NVMe SSD */
+ .driver_data = NVME_QUIRK_BOGUS_NID, },
+ { PCI_DEVICE(0x1e4B, 0x1001), /* MAXIO MAP1001 */
+ .driver_data = NVME_QUIRK_BOGUS_NID, },
+ { PCI_DEVICE(0x1e4B, 0x1002), /* MAXIO MAP1002 */
+ .driver_data = NVME_QUIRK_BOGUS_NID, },
+ { PCI_DEVICE(0x1e4B, 0x1202), /* MAXIO MAP1202 */
+ .driver_data = NVME_QUIRK_BOGUS_NID, },
+ { PCI_DEVICE(0x1e4B, 0x1602), /* MAXIO MAP1602 */
+ .driver_data = NVME_QUIRK_BOGUS_NID, },
+ { PCI_DEVICE(0x1cc1, 0x5350), /* ADATA XPG GAMMIX S50 */
+ .driver_data = NVME_QUIRK_BOGUS_NID, },
+ { PCI_DEVICE(0x1dbe, 0x5236), /* ADATA XPG GAMMIX S70 */
+ .driver_data = NVME_QUIRK_BOGUS_NID, },
+ { PCI_DEVICE(0x1e49, 0x0021), /* ZHITAI TiPro5000 NVMe SSD */
+ .driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
+ { PCI_DEVICE(0x1e49, 0x0041), /* ZHITAI TiPro7000 NVMe SSD */
+ .driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
+ { PCI_DEVICE(0xc0a9, 0x540a), /* Crucial P2 */
+ .driver_data = NVME_QUIRK_BOGUS_NID, },
+ { PCI_DEVICE(0x1d97, 0x2263), /* Lexar NM610 */
+ .driver_data = NVME_QUIRK_BOGUS_NID, },
+ { PCI_DEVICE(0x1d97, 0x1d97), /* Lexar NM620 */
+ .driver_data = NVME_QUIRK_BOGUS_NID, },
+ { PCI_DEVICE(0x1d97, 0x2269), /* Lexar NM760 */
+ .driver_data = NVME_QUIRK_BOGUS_NID |
+ NVME_QUIRK_IGNORE_DEV_SUBNQN, },
+ { PCI_DEVICE(0x10ec, 0x5763), /* TEAMGROUP T-FORCE CARDEA ZERO Z330 SSD */
+ .driver_data = NVME_QUIRK_BOGUS_NID, },
+ { PCI_DEVICE(0x1e4b, 0x1602), /* HS-SSD-FUTURE 2048G */
+ .driver_data = NVME_QUIRK_BOGUS_NID, },
+ { PCI_DEVICE(0x10ec, 0x5765), /* TEAMGROUP MP33 2TB SSD */
+ .driver_data = NVME_QUIRK_BOGUS_NID, },
+ { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x0061),
+ .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
+ { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x0065),
+ .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
+ { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x8061),
+ .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
+ { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd00),
+ .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
+ { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd01),
+ .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
+ { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd02),
+ .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
+ { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001),
+ .driver_data = NVME_QUIRK_SINGLE_VECTOR },
+ { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2003) },
+ { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2005),
+ .driver_data = NVME_QUIRK_SINGLE_VECTOR |
+ NVME_QUIRK_128_BYTES_SQES |
+ NVME_QUIRK_SHARED_TAGS |
+ NVME_QUIRK_SKIP_CID_GEN |
+ NVME_QUIRK_IDENTIFY_CNS },
+ { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
+ { 0, }
+};
+MODULE_DEVICE_TABLE(pci, nvme_id_table);
+
+static struct pci_driver nvme_driver = {
+ .name = "nvme",
+ .id_table = nvme_id_table,
+ .probe = nvme_probe,
+ .remove = nvme_remove,
+ .shutdown = nvme_shutdown,
+ .driver = {
+ .probe_type = PROBE_PREFER_ASYNCHRONOUS,
+#ifdef CONFIG_PM_SLEEP
+ .pm = &nvme_dev_pm_ops,
+#endif
+ },
+ .sriov_configure = pci_sriov_configure_simple,
+ .err_handler = &nvme_err_handler,
+};
+
+static int __init nvme_init(void)
+{
+ BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
+ BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
+ BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
+ BUILD_BUG_ON(IRQ_AFFINITY_MAX_SETS < 2);
+ BUILD_BUG_ON(NVME_MAX_SEGS > SGES_PER_PAGE);
+ BUILD_BUG_ON(sizeof(struct scatterlist) * NVME_MAX_SEGS > PAGE_SIZE);
+ BUILD_BUG_ON(nvme_pci_npages_prp() > NVME_MAX_NR_ALLOCATIONS);
+
+ return pci_register_driver(&nvme_driver);
+}
+
+static void __exit nvme_exit(void)
+{
+ pci_unregister_driver(&nvme_driver);
+ flush_workqueue(nvme_wq);
+}
+
+MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
+MODULE_LICENSE("GPL");
+MODULE_VERSION("1.0");
+module_init(nvme_init);
+module_exit(nvme_exit);
diff --git a/drivers/nvme/host/pr.c b/drivers/nvme/host/pr.c
new file mode 100644
index 0000000000..391b1465eb
--- /dev/null
+++ b/drivers/nvme/host/pr.c
@@ -0,0 +1,315 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * Copyright (c) 2015 Intel Corporation
+ * Keith Busch <kbusch@kernel.org>
+ */
+#include <linux/blkdev.h>
+#include <linux/pr.h>
+#include <asm/unaligned.h>
+
+#include "nvme.h"
+
+static enum nvme_pr_type nvme_pr_type_from_blk(enum pr_type type)
+{
+ switch (type) {
+ case PR_WRITE_EXCLUSIVE:
+ return NVME_PR_WRITE_EXCLUSIVE;
+ case PR_EXCLUSIVE_ACCESS:
+ return NVME_PR_EXCLUSIVE_ACCESS;
+ case PR_WRITE_EXCLUSIVE_REG_ONLY:
+ return NVME_PR_WRITE_EXCLUSIVE_REG_ONLY;
+ case PR_EXCLUSIVE_ACCESS_REG_ONLY:
+ return NVME_PR_EXCLUSIVE_ACCESS_REG_ONLY;
+ case PR_WRITE_EXCLUSIVE_ALL_REGS:
+ return NVME_PR_WRITE_EXCLUSIVE_ALL_REGS;
+ case PR_EXCLUSIVE_ACCESS_ALL_REGS:
+ return NVME_PR_EXCLUSIVE_ACCESS_ALL_REGS;
+ }
+
+ return 0;
+}
+
+static enum pr_type block_pr_type_from_nvme(enum nvme_pr_type type)
+{
+ switch (type) {
+ case NVME_PR_WRITE_EXCLUSIVE:
+ return PR_WRITE_EXCLUSIVE;
+ case NVME_PR_EXCLUSIVE_ACCESS:
+ return PR_EXCLUSIVE_ACCESS;
+ case NVME_PR_WRITE_EXCLUSIVE_REG_ONLY:
+ return PR_WRITE_EXCLUSIVE_REG_ONLY;
+ case NVME_PR_EXCLUSIVE_ACCESS_REG_ONLY:
+ return PR_EXCLUSIVE_ACCESS_REG_ONLY;
+ case NVME_PR_WRITE_EXCLUSIVE_ALL_REGS:
+ return PR_WRITE_EXCLUSIVE_ALL_REGS;
+ case NVME_PR_EXCLUSIVE_ACCESS_ALL_REGS:
+ return PR_EXCLUSIVE_ACCESS_ALL_REGS;
+ }
+
+ return 0;
+}
+
+static int nvme_send_ns_head_pr_command(struct block_device *bdev,
+ struct nvme_command *c, void *data, unsigned int data_len)
+{
+ struct nvme_ns_head *head = bdev->bd_disk->private_data;
+ int srcu_idx = srcu_read_lock(&head->srcu);
+ struct nvme_ns *ns = nvme_find_path(head);
+ int ret = -EWOULDBLOCK;
+
+ if (ns) {
+ c->common.nsid = cpu_to_le32(ns->head->ns_id);
+ ret = nvme_submit_sync_cmd(ns->queue, c, data, data_len);
+ }
+ srcu_read_unlock(&head->srcu, srcu_idx);
+ return ret;
+}
+
+static int nvme_send_ns_pr_command(struct nvme_ns *ns, struct nvme_command *c,
+ void *data, unsigned int data_len)
+{
+ c->common.nsid = cpu_to_le32(ns->head->ns_id);
+ return nvme_submit_sync_cmd(ns->queue, c, data, data_len);
+}
+
+static int nvme_sc_to_pr_err(int nvme_sc)
+{
+ if (nvme_is_path_error(nvme_sc))
+ return PR_STS_PATH_FAILED;
+
+ switch (nvme_sc) {
+ case NVME_SC_SUCCESS:
+ return PR_STS_SUCCESS;
+ case NVME_SC_RESERVATION_CONFLICT:
+ return PR_STS_RESERVATION_CONFLICT;
+ case NVME_SC_ONCS_NOT_SUPPORTED:
+ return -EOPNOTSUPP;
+ case NVME_SC_BAD_ATTRIBUTES:
+ case NVME_SC_INVALID_OPCODE:
+ case NVME_SC_INVALID_FIELD:
+ case NVME_SC_INVALID_NS:
+ return -EINVAL;
+ default:
+ return PR_STS_IOERR;
+ }
+}
+
+static int nvme_send_pr_command(struct block_device *bdev,
+ struct nvme_command *c, void *data, unsigned int data_len)
+{
+ if (IS_ENABLED(CONFIG_NVME_MULTIPATH) &&
+ bdev->bd_disk->fops == &nvme_ns_head_ops)
+ return nvme_send_ns_head_pr_command(bdev, c, data, data_len);
+
+ return nvme_send_ns_pr_command(bdev->bd_disk->private_data, c, data,
+ data_len);
+}
+
+static int nvme_pr_command(struct block_device *bdev, u32 cdw10,
+ u64 key, u64 sa_key, u8 op)
+{
+ struct nvme_command c = { };
+ u8 data[16] = { 0, };
+ int ret;
+
+ put_unaligned_le64(key, &data[0]);
+ put_unaligned_le64(sa_key, &data[8]);
+
+ c.common.opcode = op;
+ c.common.cdw10 = cpu_to_le32(cdw10);
+
+ ret = nvme_send_pr_command(bdev, &c, data, sizeof(data));
+ if (ret < 0)
+ return ret;
+
+ return nvme_sc_to_pr_err(ret);
+}
+
+static int nvme_pr_register(struct block_device *bdev, u64 old,
+ u64 new, unsigned flags)
+{
+ u32 cdw10;
+
+ if (flags & ~PR_FL_IGNORE_KEY)
+ return -EOPNOTSUPP;
+
+ cdw10 = old ? 2 : 0;
+ cdw10 |= (flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0;
+ cdw10 |= (1 << 30) | (1 << 31); /* PTPL=1 */
+ return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_register);
+}
+
+static int nvme_pr_reserve(struct block_device *bdev, u64 key,
+ enum pr_type type, unsigned flags)
+{
+ u32 cdw10;
+
+ if (flags & ~PR_FL_IGNORE_KEY)
+ return -EOPNOTSUPP;
+
+ cdw10 = nvme_pr_type_from_blk(type) << 8;
+ cdw10 |= ((flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0);
+ return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_acquire);
+}
+
+static int nvme_pr_preempt(struct block_device *bdev, u64 old, u64 new,
+ enum pr_type type, bool abort)
+{
+ u32 cdw10 = nvme_pr_type_from_blk(type) << 8 | (abort ? 2 : 1);
+
+ return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_acquire);
+}
+
+static int nvme_pr_clear(struct block_device *bdev, u64 key)
+{
+ u32 cdw10 = 1 | (key ? 0 : 1 << 3);
+
+ return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_release);
+}
+
+static int nvme_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
+{
+ u32 cdw10 = nvme_pr_type_from_blk(type) << 8 | (key ? 0 : 1 << 3);
+
+ return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_release);
+}
+
+static int nvme_pr_resv_report(struct block_device *bdev, void *data,
+ u32 data_len, bool *eds)
+{
+ struct nvme_command c = { };
+ int ret;
+
+ c.common.opcode = nvme_cmd_resv_report;
+ c.common.cdw10 = cpu_to_le32(nvme_bytes_to_numd(data_len));
+ c.common.cdw11 = cpu_to_le32(NVME_EXTENDED_DATA_STRUCT);
+ *eds = true;
+
+retry:
+ ret = nvme_send_pr_command(bdev, &c, data, data_len);
+ if (ret == NVME_SC_HOST_ID_INCONSIST &&
+ c.common.cdw11 == cpu_to_le32(NVME_EXTENDED_DATA_STRUCT)) {
+ c.common.cdw11 = 0;
+ *eds = false;
+ goto retry;
+ }
+
+ if (ret < 0)
+ return ret;
+
+ return nvme_sc_to_pr_err(ret);
+}
+
+static int nvme_pr_read_keys(struct block_device *bdev,
+ struct pr_keys *keys_info)
+{
+ u32 rse_len, num_keys = keys_info->num_keys;
+ struct nvme_reservation_status_ext *rse;
+ int ret, i;
+ bool eds;
+
+ /*
+ * Assume we are using 128-bit host IDs and allocate a buffer large
+ * enough to get enough keys to fill the return keys buffer.
+ */
+ rse_len = struct_size(rse, regctl_eds, num_keys);
+ rse = kzalloc(rse_len, GFP_KERNEL);
+ if (!rse)
+ return -ENOMEM;
+
+ ret = nvme_pr_resv_report(bdev, rse, rse_len, &eds);
+ if (ret)
+ goto free_rse;
+
+ keys_info->generation = le32_to_cpu(rse->gen);
+ keys_info->num_keys = get_unaligned_le16(&rse->regctl);
+
+ num_keys = min(num_keys, keys_info->num_keys);
+ for (i = 0; i < num_keys; i++) {
+ if (eds) {
+ keys_info->keys[i] =
+ le64_to_cpu(rse->regctl_eds[i].rkey);
+ } else {
+ struct nvme_reservation_status *rs;
+
+ rs = (struct nvme_reservation_status *)rse;
+ keys_info->keys[i] = le64_to_cpu(rs->regctl_ds[i].rkey);
+ }
+ }
+
+free_rse:
+ kfree(rse);
+ return ret;
+}
+
+static int nvme_pr_read_reservation(struct block_device *bdev,
+ struct pr_held_reservation *resv)
+{
+ struct nvme_reservation_status_ext tmp_rse, *rse;
+ int ret, i, num_regs;
+ u32 rse_len;
+ bool eds;
+
+get_num_regs:
+ /*
+ * Get the number of registrations so we know how big to allocate
+ * the response buffer.
+ */
+ ret = nvme_pr_resv_report(bdev, &tmp_rse, sizeof(tmp_rse), &eds);
+ if (ret)
+ return ret;
+
+ num_regs = get_unaligned_le16(&tmp_rse.regctl);
+ if (!num_regs) {
+ resv->generation = le32_to_cpu(tmp_rse.gen);
+ return 0;
+ }
+
+ rse_len = struct_size(rse, regctl_eds, num_regs);
+ rse = kzalloc(rse_len, GFP_KERNEL);
+ if (!rse)
+ return -ENOMEM;
+
+ ret = nvme_pr_resv_report(bdev, rse, rse_len, &eds);
+ if (ret)
+ goto free_rse;
+
+ if (num_regs != get_unaligned_le16(&rse->regctl)) {
+ kfree(rse);
+ goto get_num_regs;
+ }
+
+ resv->generation = le32_to_cpu(rse->gen);
+ resv->type = block_pr_type_from_nvme(rse->rtype);
+
+ for (i = 0; i < num_regs; i++) {
+ if (eds) {
+ if (rse->regctl_eds[i].rcsts) {
+ resv->key = le64_to_cpu(rse->regctl_eds[i].rkey);
+ break;
+ }
+ } else {
+ struct nvme_reservation_status *rs;
+
+ rs = (struct nvme_reservation_status *)rse;
+ if (rs->regctl_ds[i].rcsts) {
+ resv->key = le64_to_cpu(rs->regctl_ds[i].rkey);
+ break;
+ }
+ }
+ }
+
+free_rse:
+ kfree(rse);
+ return ret;
+}
+
+const struct pr_ops nvme_pr_ops = {
+ .pr_register = nvme_pr_register,
+ .pr_reserve = nvme_pr_reserve,
+ .pr_release = nvme_pr_release,
+ .pr_preempt = nvme_pr_preempt,
+ .pr_clear = nvme_pr_clear,
+ .pr_read_keys = nvme_pr_read_keys,
+ .pr_read_reservation = nvme_pr_read_reservation,
+};
diff --git a/drivers/nvme/host/rdma.c b/drivers/nvme/host/rdma.c
new file mode 100644
index 0000000000..c04317a966
--- /dev/null
+++ b/drivers/nvme/host/rdma.c
@@ -0,0 +1,2397 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * NVMe over Fabrics RDMA host code.
+ * Copyright (c) 2015-2016 HGST, a Western Digital Company.
+ */
+#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
+#include <linux/module.h>
+#include <linux/init.h>
+#include <linux/slab.h>
+#include <rdma/mr_pool.h>
+#include <linux/err.h>
+#include <linux/string.h>
+#include <linux/atomic.h>
+#include <linux/blk-mq.h>
+#include <linux/blk-integrity.h>
+#include <linux/types.h>
+#include <linux/list.h>
+#include <linux/mutex.h>
+#include <linux/scatterlist.h>
+#include <linux/nvme.h>
+#include <asm/unaligned.h>
+
+#include <rdma/ib_verbs.h>
+#include <rdma/rdma_cm.h>
+#include <linux/nvme-rdma.h>
+
+#include "nvme.h"
+#include "fabrics.h"
+
+
+#define NVME_RDMA_CM_TIMEOUT_MS 3000 /* 3 second */
+
+#define NVME_RDMA_MAX_SEGMENTS 256
+
+#define NVME_RDMA_MAX_INLINE_SEGMENTS 4
+
+#define NVME_RDMA_DATA_SGL_SIZE \
+ (sizeof(struct scatterlist) * NVME_INLINE_SG_CNT)
+#define NVME_RDMA_METADATA_SGL_SIZE \
+ (sizeof(struct scatterlist) * NVME_INLINE_METADATA_SG_CNT)
+
+struct nvme_rdma_device {
+ struct ib_device *dev;
+ struct ib_pd *pd;
+ struct kref ref;
+ struct list_head entry;
+ unsigned int num_inline_segments;
+};
+
+struct nvme_rdma_qe {
+ struct ib_cqe cqe;
+ void *data;
+ u64 dma;
+};
+
+struct nvme_rdma_sgl {
+ int nents;
+ struct sg_table sg_table;
+};
+
+struct nvme_rdma_queue;
+struct nvme_rdma_request {
+ struct nvme_request req;
+ struct ib_mr *mr;
+ struct nvme_rdma_qe sqe;
+ union nvme_result result;
+ __le16 status;
+ refcount_t ref;
+ struct ib_sge sge[1 + NVME_RDMA_MAX_INLINE_SEGMENTS];
+ u32 num_sge;
+ struct ib_reg_wr reg_wr;
+ struct ib_cqe reg_cqe;
+ struct nvme_rdma_queue *queue;
+ struct nvme_rdma_sgl data_sgl;
+ struct nvme_rdma_sgl *metadata_sgl;
+ bool use_sig_mr;
+};
+
+enum nvme_rdma_queue_flags {
+ NVME_RDMA_Q_ALLOCATED = 0,
+ NVME_RDMA_Q_LIVE = 1,
+ NVME_RDMA_Q_TR_READY = 2,
+};
+
+struct nvme_rdma_queue {
+ struct nvme_rdma_qe *rsp_ring;
+ int queue_size;
+ size_t cmnd_capsule_len;
+ struct nvme_rdma_ctrl *ctrl;
+ struct nvme_rdma_device *device;
+ struct ib_cq *ib_cq;
+ struct ib_qp *qp;
+
+ unsigned long flags;
+ struct rdma_cm_id *cm_id;
+ int cm_error;
+ struct completion cm_done;
+ bool pi_support;
+ int cq_size;
+ struct mutex queue_lock;
+};
+
+struct nvme_rdma_ctrl {
+ /* read only in the hot path */
+ struct nvme_rdma_queue *queues;
+
+ /* other member variables */
+ struct blk_mq_tag_set tag_set;
+ struct work_struct err_work;
+
+ struct nvme_rdma_qe async_event_sqe;
+
+ struct delayed_work reconnect_work;
+
+ struct list_head list;
+
+ struct blk_mq_tag_set admin_tag_set;
+ struct nvme_rdma_device *device;
+
+ u32 max_fr_pages;
+
+ struct sockaddr_storage addr;
+ struct sockaddr_storage src_addr;
+
+ struct nvme_ctrl ctrl;
+ bool use_inline_data;
+ u32 io_queues[HCTX_MAX_TYPES];
+};
+
+static inline struct nvme_rdma_ctrl *to_rdma_ctrl(struct nvme_ctrl *ctrl)
+{
+ return container_of(ctrl, struct nvme_rdma_ctrl, ctrl);
+}
+
+static LIST_HEAD(device_list);
+static DEFINE_MUTEX(device_list_mutex);
+
+static LIST_HEAD(nvme_rdma_ctrl_list);
+static DEFINE_MUTEX(nvme_rdma_ctrl_mutex);
+
+/*
+ * Disabling this option makes small I/O goes faster, but is fundamentally
+ * unsafe. With it turned off we will have to register a global rkey that
+ * allows read and write access to all physical memory.
+ */
+static bool register_always = true;
+module_param(register_always, bool, 0444);
+MODULE_PARM_DESC(register_always,
+ "Use memory registration even for contiguous memory regions");
+
+static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id,
+ struct rdma_cm_event *event);
+static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc);
+static void nvme_rdma_complete_rq(struct request *rq);
+
+static const struct blk_mq_ops nvme_rdma_mq_ops;
+static const struct blk_mq_ops nvme_rdma_admin_mq_ops;
+
+static inline int nvme_rdma_queue_idx(struct nvme_rdma_queue *queue)
+{
+ return queue - queue->ctrl->queues;
+}
+
+static bool nvme_rdma_poll_queue(struct nvme_rdma_queue *queue)
+{
+ return nvme_rdma_queue_idx(queue) >
+ queue->ctrl->io_queues[HCTX_TYPE_DEFAULT] +
+ queue->ctrl->io_queues[HCTX_TYPE_READ];
+}
+
+static inline size_t nvme_rdma_inline_data_size(struct nvme_rdma_queue *queue)
+{
+ return queue->cmnd_capsule_len - sizeof(struct nvme_command);
+}
+
+static void nvme_rdma_free_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe,
+ size_t capsule_size, enum dma_data_direction dir)
+{
+ ib_dma_unmap_single(ibdev, qe->dma, capsule_size, dir);
+ kfree(qe->data);
+}
+
+static int nvme_rdma_alloc_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe,
+ size_t capsule_size, enum dma_data_direction dir)
+{
+ qe->data = kzalloc(capsule_size, GFP_KERNEL);
+ if (!qe->data)
+ return -ENOMEM;
+
+ qe->dma = ib_dma_map_single(ibdev, qe->data, capsule_size, dir);
+ if (ib_dma_mapping_error(ibdev, qe->dma)) {
+ kfree(qe->data);
+ qe->data = NULL;
+ return -ENOMEM;
+ }
+
+ return 0;
+}
+
+static void nvme_rdma_free_ring(struct ib_device *ibdev,
+ struct nvme_rdma_qe *ring, size_t ib_queue_size,
+ size_t capsule_size, enum dma_data_direction dir)
+{
+ int i;
+
+ for (i = 0; i < ib_queue_size; i++)
+ nvme_rdma_free_qe(ibdev, &ring[i], capsule_size, dir);
+ kfree(ring);
+}
+
+static struct nvme_rdma_qe *nvme_rdma_alloc_ring(struct ib_device *ibdev,
+ size_t ib_queue_size, size_t capsule_size,
+ enum dma_data_direction dir)
+{
+ struct nvme_rdma_qe *ring;
+ int i;
+
+ ring = kcalloc(ib_queue_size, sizeof(struct nvme_rdma_qe), GFP_KERNEL);
+ if (!ring)
+ return NULL;
+
+ /*
+ * Bind the CQEs (post recv buffers) DMA mapping to the RDMA queue
+ * lifetime. It's safe, since any chage in the underlying RDMA device
+ * will issue error recovery and queue re-creation.
+ */
+ for (i = 0; i < ib_queue_size; i++) {
+ if (nvme_rdma_alloc_qe(ibdev, &ring[i], capsule_size, dir))
+ goto out_free_ring;
+ }
+
+ return ring;
+
+out_free_ring:
+ nvme_rdma_free_ring(ibdev, ring, i, capsule_size, dir);
+ return NULL;
+}
+
+static void nvme_rdma_qp_event(struct ib_event *event, void *context)
+{
+ pr_debug("QP event %s (%d)\n",
+ ib_event_msg(event->event), event->event);
+
+}
+
+static int nvme_rdma_wait_for_cm(struct nvme_rdma_queue *queue)
+{
+ int ret;
+
+ ret = wait_for_completion_interruptible(&queue->cm_done);
+ if (ret)
+ return ret;
+ WARN_ON_ONCE(queue->cm_error > 0);
+ return queue->cm_error;
+}
+
+static int nvme_rdma_create_qp(struct nvme_rdma_queue *queue, const int factor)
+{
+ struct nvme_rdma_device *dev = queue->device;
+ struct ib_qp_init_attr init_attr;
+ int ret;
+
+ memset(&init_attr, 0, sizeof(init_attr));
+ init_attr.event_handler = nvme_rdma_qp_event;
+ /* +1 for drain */
+ init_attr.cap.max_send_wr = factor * queue->queue_size + 1;
+ /* +1 for drain */
+ init_attr.cap.max_recv_wr = queue->queue_size + 1;
+ init_attr.cap.max_recv_sge = 1;
+ init_attr.cap.max_send_sge = 1 + dev->num_inline_segments;
+ init_attr.sq_sig_type = IB_SIGNAL_REQ_WR;
+ init_attr.qp_type = IB_QPT_RC;
+ init_attr.send_cq = queue->ib_cq;
+ init_attr.recv_cq = queue->ib_cq;
+ if (queue->pi_support)
+ init_attr.create_flags |= IB_QP_CREATE_INTEGRITY_EN;
+ init_attr.qp_context = queue;
+
+ ret = rdma_create_qp(queue->cm_id, dev->pd, &init_attr);
+
+ queue->qp = queue->cm_id->qp;
+ return ret;
+}
+
+static void nvme_rdma_exit_request(struct blk_mq_tag_set *set,
+ struct request *rq, unsigned int hctx_idx)
+{
+ struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
+
+ kfree(req->sqe.data);
+}
+
+static int nvme_rdma_init_request(struct blk_mq_tag_set *set,
+ struct request *rq, unsigned int hctx_idx,
+ unsigned int numa_node)
+{
+ struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(set->driver_data);
+ struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
+ int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0;
+ struct nvme_rdma_queue *queue = &ctrl->queues[queue_idx];
+
+ nvme_req(rq)->ctrl = &ctrl->ctrl;
+ req->sqe.data = kzalloc(sizeof(struct nvme_command), GFP_KERNEL);
+ if (!req->sqe.data)
+ return -ENOMEM;
+
+ /* metadata nvme_rdma_sgl struct is located after command's data SGL */
+ if (queue->pi_support)
+ req->metadata_sgl = (void *)nvme_req(rq) +
+ sizeof(struct nvme_rdma_request) +
+ NVME_RDMA_DATA_SGL_SIZE;
+
+ req->queue = queue;
+ nvme_req(rq)->cmd = req->sqe.data;
+
+ return 0;
+}
+
+static int nvme_rdma_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
+ unsigned int hctx_idx)
+{
+ struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(data);
+ struct nvme_rdma_queue *queue = &ctrl->queues[hctx_idx + 1];
+
+ BUG_ON(hctx_idx >= ctrl->ctrl.queue_count);
+
+ hctx->driver_data = queue;
+ return 0;
+}
+
+static int nvme_rdma_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data,
+ unsigned int hctx_idx)
+{
+ struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(data);
+ struct nvme_rdma_queue *queue = &ctrl->queues[0];
+
+ BUG_ON(hctx_idx != 0);
+
+ hctx->driver_data = queue;
+ return 0;
+}
+
+static void nvme_rdma_free_dev(struct kref *ref)
+{
+ struct nvme_rdma_device *ndev =
+ container_of(ref, struct nvme_rdma_device, ref);
+
+ mutex_lock(&device_list_mutex);
+ list_del(&ndev->entry);
+ mutex_unlock(&device_list_mutex);
+
+ ib_dealloc_pd(ndev->pd);
+ kfree(ndev);
+}
+
+static void nvme_rdma_dev_put(struct nvme_rdma_device *dev)
+{
+ kref_put(&dev->ref, nvme_rdma_free_dev);
+}
+
+static int nvme_rdma_dev_get(struct nvme_rdma_device *dev)
+{
+ return kref_get_unless_zero(&dev->ref);
+}
+
+static struct nvme_rdma_device *
+nvme_rdma_find_get_device(struct rdma_cm_id *cm_id)
+{
+ struct nvme_rdma_device *ndev;
+
+ mutex_lock(&device_list_mutex);
+ list_for_each_entry(ndev, &device_list, entry) {
+ if (ndev->dev->node_guid == cm_id->device->node_guid &&
+ nvme_rdma_dev_get(ndev))
+ goto out_unlock;
+ }
+
+ ndev = kzalloc(sizeof(*ndev), GFP_KERNEL);
+ if (!ndev)
+ goto out_err;
+
+ ndev->dev = cm_id->device;
+ kref_init(&ndev->ref);
+
+ ndev->pd = ib_alloc_pd(ndev->dev,
+ register_always ? 0 : IB_PD_UNSAFE_GLOBAL_RKEY);
+ if (IS_ERR(ndev->pd))
+ goto out_free_dev;
+
+ if (!(ndev->dev->attrs.device_cap_flags &
+ IB_DEVICE_MEM_MGT_EXTENSIONS)) {
+ dev_err(&ndev->dev->dev,
+ "Memory registrations not supported.\n");
+ goto out_free_pd;
+ }
+
+ ndev->num_inline_segments = min(NVME_RDMA_MAX_INLINE_SEGMENTS,
+ ndev->dev->attrs.max_send_sge - 1);
+ list_add(&ndev->entry, &device_list);
+out_unlock:
+ mutex_unlock(&device_list_mutex);
+ return ndev;
+
+out_free_pd:
+ ib_dealloc_pd(ndev->pd);
+out_free_dev:
+ kfree(ndev);
+out_err:
+ mutex_unlock(&device_list_mutex);
+ return NULL;
+}
+
+static void nvme_rdma_free_cq(struct nvme_rdma_queue *queue)
+{
+ if (nvme_rdma_poll_queue(queue))
+ ib_free_cq(queue->ib_cq);
+ else
+ ib_cq_pool_put(queue->ib_cq, queue->cq_size);
+}
+
+static void nvme_rdma_destroy_queue_ib(struct nvme_rdma_queue *queue)
+{
+ struct nvme_rdma_device *dev;
+ struct ib_device *ibdev;
+
+ if (!test_and_clear_bit(NVME_RDMA_Q_TR_READY, &queue->flags))
+ return;
+
+ dev = queue->device;
+ ibdev = dev->dev;
+
+ if (queue->pi_support)
+ ib_mr_pool_destroy(queue->qp, &queue->qp->sig_mrs);
+ ib_mr_pool_destroy(queue->qp, &queue->qp->rdma_mrs);
+
+ /*
+ * The cm_id object might have been destroyed during RDMA connection
+ * establishment error flow to avoid getting other cma events, thus
+ * the destruction of the QP shouldn't use rdma_cm API.
+ */
+ ib_destroy_qp(queue->qp);
+ nvme_rdma_free_cq(queue);
+
+ nvme_rdma_free_ring(ibdev, queue->rsp_ring, queue->queue_size,
+ sizeof(struct nvme_completion), DMA_FROM_DEVICE);
+
+ nvme_rdma_dev_put(dev);
+}
+
+static int nvme_rdma_get_max_fr_pages(struct ib_device *ibdev, bool pi_support)
+{
+ u32 max_page_list_len;
+
+ if (pi_support)
+ max_page_list_len = ibdev->attrs.max_pi_fast_reg_page_list_len;
+ else
+ max_page_list_len = ibdev->attrs.max_fast_reg_page_list_len;
+
+ return min_t(u32, NVME_RDMA_MAX_SEGMENTS, max_page_list_len - 1);
+}
+
+static int nvme_rdma_create_cq(struct ib_device *ibdev,
+ struct nvme_rdma_queue *queue)
+{
+ int ret, comp_vector, idx = nvme_rdma_queue_idx(queue);
+
+ /*
+ * Spread I/O queues completion vectors according their queue index.
+ * Admin queues can always go on completion vector 0.
+ */
+ comp_vector = (idx == 0 ? idx : idx - 1) % ibdev->num_comp_vectors;
+
+ /* Polling queues need direct cq polling context */
+ if (nvme_rdma_poll_queue(queue))
+ queue->ib_cq = ib_alloc_cq(ibdev, queue, queue->cq_size,
+ comp_vector, IB_POLL_DIRECT);
+ else
+ queue->ib_cq = ib_cq_pool_get(ibdev, queue->cq_size,
+ comp_vector, IB_POLL_SOFTIRQ);
+
+ if (IS_ERR(queue->ib_cq)) {
+ ret = PTR_ERR(queue->ib_cq);
+ return ret;
+ }
+
+ return 0;
+}
+
+static int nvme_rdma_create_queue_ib(struct nvme_rdma_queue *queue)
+{
+ struct ib_device *ibdev;
+ const int send_wr_factor = 3; /* MR, SEND, INV */
+ const int cq_factor = send_wr_factor + 1; /* + RECV */
+ int ret, pages_per_mr;
+
+ queue->device = nvme_rdma_find_get_device(queue->cm_id);
+ if (!queue->device) {
+ dev_err(queue->cm_id->device->dev.parent,
+ "no client data found!\n");
+ return -ECONNREFUSED;
+ }
+ ibdev = queue->device->dev;
+
+ /* +1 for ib_drain_qp */
+ queue->cq_size = cq_factor * queue->queue_size + 1;
+
+ ret = nvme_rdma_create_cq(ibdev, queue);
+ if (ret)
+ goto out_put_dev;
+
+ ret = nvme_rdma_create_qp(queue, send_wr_factor);
+ if (ret)
+ goto out_destroy_ib_cq;
+
+ queue->rsp_ring = nvme_rdma_alloc_ring(ibdev, queue->queue_size,
+ sizeof(struct nvme_completion), DMA_FROM_DEVICE);
+ if (!queue->rsp_ring) {
+ ret = -ENOMEM;
+ goto out_destroy_qp;
+ }
+
+ /*
+ * Currently we don't use SG_GAPS MR's so if the first entry is
+ * misaligned we'll end up using two entries for a single data page,
+ * so one additional entry is required.
+ */
+ pages_per_mr = nvme_rdma_get_max_fr_pages(ibdev, queue->pi_support) + 1;
+ ret = ib_mr_pool_init(queue->qp, &queue->qp->rdma_mrs,
+ queue->queue_size,
+ IB_MR_TYPE_MEM_REG,
+ pages_per_mr, 0);
+ if (ret) {
+ dev_err(queue->ctrl->ctrl.device,
+ "failed to initialize MR pool sized %d for QID %d\n",
+ queue->queue_size, nvme_rdma_queue_idx(queue));
+ goto out_destroy_ring;
+ }
+
+ if (queue->pi_support) {
+ ret = ib_mr_pool_init(queue->qp, &queue->qp->sig_mrs,
+ queue->queue_size, IB_MR_TYPE_INTEGRITY,
+ pages_per_mr, pages_per_mr);
+ if (ret) {
+ dev_err(queue->ctrl->ctrl.device,
+ "failed to initialize PI MR pool sized %d for QID %d\n",
+ queue->queue_size, nvme_rdma_queue_idx(queue));
+ goto out_destroy_mr_pool;
+ }
+ }
+
+ set_bit(NVME_RDMA_Q_TR_READY, &queue->flags);
+
+ return 0;
+
+out_destroy_mr_pool:
+ ib_mr_pool_destroy(queue->qp, &queue->qp->rdma_mrs);
+out_destroy_ring:
+ nvme_rdma_free_ring(ibdev, queue->rsp_ring, queue->queue_size,
+ sizeof(struct nvme_completion), DMA_FROM_DEVICE);
+out_destroy_qp:
+ rdma_destroy_qp(queue->cm_id);
+out_destroy_ib_cq:
+ nvme_rdma_free_cq(queue);
+out_put_dev:
+ nvme_rdma_dev_put(queue->device);
+ return ret;
+}
+
+static int nvme_rdma_alloc_queue(struct nvme_rdma_ctrl *ctrl,
+ int idx, size_t queue_size)
+{
+ struct nvme_rdma_queue *queue;
+ struct sockaddr *src_addr = NULL;
+ int ret;
+
+ queue = &ctrl->queues[idx];
+ mutex_init(&queue->queue_lock);
+ queue->ctrl = ctrl;
+ if (idx && ctrl->ctrl.max_integrity_segments)
+ queue->pi_support = true;
+ else
+ queue->pi_support = false;
+ init_completion(&queue->cm_done);
+
+ if (idx > 0)
+ queue->cmnd_capsule_len = ctrl->ctrl.ioccsz * 16;
+ else
+ queue->cmnd_capsule_len = sizeof(struct nvme_command);
+
+ queue->queue_size = queue_size;
+
+ queue->cm_id = rdma_create_id(&init_net, nvme_rdma_cm_handler, queue,
+ RDMA_PS_TCP, IB_QPT_RC);
+ if (IS_ERR(queue->cm_id)) {
+ dev_info(ctrl->ctrl.device,
+ "failed to create CM ID: %ld\n", PTR_ERR(queue->cm_id));
+ ret = PTR_ERR(queue->cm_id);
+ goto out_destroy_mutex;
+ }
+
+ if (ctrl->ctrl.opts->mask & NVMF_OPT_HOST_TRADDR)
+ src_addr = (struct sockaddr *)&ctrl->src_addr;
+
+ queue->cm_error = -ETIMEDOUT;
+ ret = rdma_resolve_addr(queue->cm_id, src_addr,
+ (struct sockaddr *)&ctrl->addr,
+ NVME_RDMA_CM_TIMEOUT_MS);
+ if (ret) {
+ dev_info(ctrl->ctrl.device,
+ "rdma_resolve_addr failed (%d).\n", ret);
+ goto out_destroy_cm_id;
+ }
+
+ ret = nvme_rdma_wait_for_cm(queue);
+ if (ret) {
+ dev_info(ctrl->ctrl.device,
+ "rdma connection establishment failed (%d)\n", ret);
+ goto out_destroy_cm_id;
+ }
+
+ set_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags);
+
+ return 0;
+
+out_destroy_cm_id:
+ rdma_destroy_id(queue->cm_id);
+ nvme_rdma_destroy_queue_ib(queue);
+out_destroy_mutex:
+ mutex_destroy(&queue->queue_lock);
+ return ret;
+}
+
+static void __nvme_rdma_stop_queue(struct nvme_rdma_queue *queue)
+{
+ rdma_disconnect(queue->cm_id);
+ ib_drain_qp(queue->qp);
+}
+
+static void nvme_rdma_stop_queue(struct nvme_rdma_queue *queue)
+{
+ if (!test_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags))
+ return;
+
+ mutex_lock(&queue->queue_lock);
+ if (test_and_clear_bit(NVME_RDMA_Q_LIVE, &queue->flags))
+ __nvme_rdma_stop_queue(queue);
+ mutex_unlock(&queue->queue_lock);
+}
+
+static void nvme_rdma_free_queue(struct nvme_rdma_queue *queue)
+{
+ if (!test_and_clear_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags))
+ return;
+
+ rdma_destroy_id(queue->cm_id);
+ nvme_rdma_destroy_queue_ib(queue);
+ mutex_destroy(&queue->queue_lock);
+}
+
+static void nvme_rdma_free_io_queues(struct nvme_rdma_ctrl *ctrl)
+{
+ int i;
+
+ for (i = 1; i < ctrl->ctrl.queue_count; i++)
+ nvme_rdma_free_queue(&ctrl->queues[i]);
+}
+
+static void nvme_rdma_stop_io_queues(struct nvme_rdma_ctrl *ctrl)
+{
+ int i;
+
+ for (i = 1; i < ctrl->ctrl.queue_count; i++)
+ nvme_rdma_stop_queue(&ctrl->queues[i]);
+}
+
+static int nvme_rdma_start_queue(struct nvme_rdma_ctrl *ctrl, int idx)
+{
+ struct nvme_rdma_queue *queue = &ctrl->queues[idx];
+ int ret;
+
+ if (idx)
+ ret = nvmf_connect_io_queue(&ctrl->ctrl, idx);
+ else
+ ret = nvmf_connect_admin_queue(&ctrl->ctrl);
+
+ if (!ret) {
+ set_bit(NVME_RDMA_Q_LIVE, &queue->flags);
+ } else {
+ if (test_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags))
+ __nvme_rdma_stop_queue(queue);
+ dev_info(ctrl->ctrl.device,
+ "failed to connect queue: %d ret=%d\n", idx, ret);
+ }
+ return ret;
+}
+
+static int nvme_rdma_start_io_queues(struct nvme_rdma_ctrl *ctrl,
+ int first, int last)
+{
+ int i, ret = 0;
+
+ for (i = first; i < last; i++) {
+ ret = nvme_rdma_start_queue(ctrl, i);
+ if (ret)
+ goto out_stop_queues;
+ }
+
+ return 0;
+
+out_stop_queues:
+ for (i--; i >= first; i--)
+ nvme_rdma_stop_queue(&ctrl->queues[i]);
+ return ret;
+}
+
+static int nvme_rdma_alloc_io_queues(struct nvme_rdma_ctrl *ctrl)
+{
+ struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
+ unsigned int nr_io_queues;
+ int i, ret;
+
+ nr_io_queues = nvmf_nr_io_queues(opts);
+ ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues);
+ if (ret)
+ return ret;
+
+ if (nr_io_queues == 0) {
+ dev_err(ctrl->ctrl.device,
+ "unable to set any I/O queues\n");
+ return -ENOMEM;
+ }
+
+ ctrl->ctrl.queue_count = nr_io_queues + 1;
+ dev_info(ctrl->ctrl.device,
+ "creating %d I/O queues.\n", nr_io_queues);
+
+ nvmf_set_io_queues(opts, nr_io_queues, ctrl->io_queues);
+ for (i = 1; i < ctrl->ctrl.queue_count; i++) {
+ ret = nvme_rdma_alloc_queue(ctrl, i,
+ ctrl->ctrl.sqsize + 1);
+ if (ret)
+ goto out_free_queues;
+ }
+
+ return 0;
+
+out_free_queues:
+ for (i--; i >= 1; i--)
+ nvme_rdma_free_queue(&ctrl->queues[i]);
+
+ return ret;
+}
+
+static int nvme_rdma_alloc_tag_set(struct nvme_ctrl *ctrl)
+{
+ unsigned int cmd_size = sizeof(struct nvme_rdma_request) +
+ NVME_RDMA_DATA_SGL_SIZE;
+
+ if (ctrl->max_integrity_segments)
+ cmd_size += sizeof(struct nvme_rdma_sgl) +
+ NVME_RDMA_METADATA_SGL_SIZE;
+
+ return nvme_alloc_io_tag_set(ctrl, &to_rdma_ctrl(ctrl)->tag_set,
+ &nvme_rdma_mq_ops,
+ ctrl->opts->nr_poll_queues ? HCTX_MAX_TYPES : 2,
+ cmd_size);
+}
+
+static void nvme_rdma_destroy_admin_queue(struct nvme_rdma_ctrl *ctrl)
+{
+ if (ctrl->async_event_sqe.data) {
+ cancel_work_sync(&ctrl->ctrl.async_event_work);
+ nvme_rdma_free_qe(ctrl->device->dev, &ctrl->async_event_sqe,
+ sizeof(struct nvme_command), DMA_TO_DEVICE);
+ ctrl->async_event_sqe.data = NULL;
+ }
+ nvme_rdma_free_queue(&ctrl->queues[0]);
+}
+
+static int nvme_rdma_configure_admin_queue(struct nvme_rdma_ctrl *ctrl,
+ bool new)
+{
+ bool pi_capable = false;
+ int error;
+
+ error = nvme_rdma_alloc_queue(ctrl, 0, NVME_AQ_DEPTH);
+ if (error)
+ return error;
+
+ ctrl->device = ctrl->queues[0].device;
+ ctrl->ctrl.numa_node = ibdev_to_node(ctrl->device->dev);
+
+ /* T10-PI support */
+ if (ctrl->device->dev->attrs.kernel_cap_flags &
+ IBK_INTEGRITY_HANDOVER)
+ pi_capable = true;
+
+ ctrl->max_fr_pages = nvme_rdma_get_max_fr_pages(ctrl->device->dev,
+ pi_capable);
+
+ /*
+ * Bind the async event SQE DMA mapping to the admin queue lifetime.
+ * It's safe, since any chage in the underlying RDMA device will issue
+ * error recovery and queue re-creation.
+ */
+ error = nvme_rdma_alloc_qe(ctrl->device->dev, &ctrl->async_event_sqe,
+ sizeof(struct nvme_command), DMA_TO_DEVICE);
+ if (error)
+ goto out_free_queue;
+
+ if (new) {
+ error = nvme_alloc_admin_tag_set(&ctrl->ctrl,
+ &ctrl->admin_tag_set, &nvme_rdma_admin_mq_ops,
+ sizeof(struct nvme_rdma_request) +
+ NVME_RDMA_DATA_SGL_SIZE);
+ if (error)
+ goto out_free_async_qe;
+
+ }
+
+ error = nvme_rdma_start_queue(ctrl, 0);
+ if (error)
+ goto out_remove_admin_tag_set;
+
+ error = nvme_enable_ctrl(&ctrl->ctrl);
+ if (error)
+ goto out_stop_queue;
+
+ ctrl->ctrl.max_segments = ctrl->max_fr_pages;
+ ctrl->ctrl.max_hw_sectors = ctrl->max_fr_pages << (ilog2(SZ_4K) - 9);
+ if (pi_capable)
+ ctrl->ctrl.max_integrity_segments = ctrl->max_fr_pages;
+ else
+ ctrl->ctrl.max_integrity_segments = 0;
+
+ nvme_unquiesce_admin_queue(&ctrl->ctrl);
+
+ error = nvme_init_ctrl_finish(&ctrl->ctrl, false);
+ if (error)
+ goto out_quiesce_queue;
+
+ return 0;
+
+out_quiesce_queue:
+ nvme_quiesce_admin_queue(&ctrl->ctrl);
+ blk_sync_queue(ctrl->ctrl.admin_q);
+out_stop_queue:
+ nvme_rdma_stop_queue(&ctrl->queues[0]);
+ nvme_cancel_admin_tagset(&ctrl->ctrl);
+out_remove_admin_tag_set:
+ if (new)
+ nvme_remove_admin_tag_set(&ctrl->ctrl);
+out_free_async_qe:
+ if (ctrl->async_event_sqe.data) {
+ nvme_rdma_free_qe(ctrl->device->dev, &ctrl->async_event_sqe,
+ sizeof(struct nvme_command), DMA_TO_DEVICE);
+ ctrl->async_event_sqe.data = NULL;
+ }
+out_free_queue:
+ nvme_rdma_free_queue(&ctrl->queues[0]);
+ return error;
+}
+
+static int nvme_rdma_configure_io_queues(struct nvme_rdma_ctrl *ctrl, bool new)
+{
+ int ret, nr_queues;
+
+ ret = nvme_rdma_alloc_io_queues(ctrl);
+ if (ret)
+ return ret;
+
+ if (new) {
+ ret = nvme_rdma_alloc_tag_set(&ctrl->ctrl);
+ if (ret)
+ goto out_free_io_queues;
+ }
+
+ /*
+ * Only start IO queues for which we have allocated the tagset
+ * and limitted it to the available queues. On reconnects, the
+ * queue number might have changed.
+ */
+ nr_queues = min(ctrl->tag_set.nr_hw_queues + 1, ctrl->ctrl.queue_count);
+ ret = nvme_rdma_start_io_queues(ctrl, 1, nr_queues);
+ if (ret)
+ goto out_cleanup_tagset;
+
+ if (!new) {
+ nvme_start_freeze(&ctrl->ctrl);
+ nvme_unquiesce_io_queues(&ctrl->ctrl);
+ if (!nvme_wait_freeze_timeout(&ctrl->ctrl, NVME_IO_TIMEOUT)) {
+ /*
+ * If we timed out waiting for freeze we are likely to
+ * be stuck. Fail the controller initialization just
+ * to be safe.
+ */
+ ret = -ENODEV;
+ nvme_unfreeze(&ctrl->ctrl);
+ goto out_wait_freeze_timed_out;
+ }
+ blk_mq_update_nr_hw_queues(ctrl->ctrl.tagset,
+ ctrl->ctrl.queue_count - 1);
+ nvme_unfreeze(&ctrl->ctrl);
+ }
+
+ /*
+ * If the number of queues has increased (reconnect case)
+ * start all new queues now.
+ */
+ ret = nvme_rdma_start_io_queues(ctrl, nr_queues,
+ ctrl->tag_set.nr_hw_queues + 1);
+ if (ret)
+ goto out_wait_freeze_timed_out;
+
+ return 0;
+
+out_wait_freeze_timed_out:
+ nvme_quiesce_io_queues(&ctrl->ctrl);
+ nvme_sync_io_queues(&ctrl->ctrl);
+ nvme_rdma_stop_io_queues(ctrl);
+out_cleanup_tagset:
+ nvme_cancel_tagset(&ctrl->ctrl);
+ if (new)
+ nvme_remove_io_tag_set(&ctrl->ctrl);
+out_free_io_queues:
+ nvme_rdma_free_io_queues(ctrl);
+ return ret;
+}
+
+static void nvme_rdma_teardown_admin_queue(struct nvme_rdma_ctrl *ctrl,
+ bool remove)
+{
+ nvme_quiesce_admin_queue(&ctrl->ctrl);
+ blk_sync_queue(ctrl->ctrl.admin_q);
+ nvme_rdma_stop_queue(&ctrl->queues[0]);
+ nvme_cancel_admin_tagset(&ctrl->ctrl);
+ if (remove) {
+ nvme_unquiesce_admin_queue(&ctrl->ctrl);
+ nvme_remove_admin_tag_set(&ctrl->ctrl);
+ }
+ nvme_rdma_destroy_admin_queue(ctrl);
+}
+
+static void nvme_rdma_teardown_io_queues(struct nvme_rdma_ctrl *ctrl,
+ bool remove)
+{
+ if (ctrl->ctrl.queue_count > 1) {
+ nvme_quiesce_io_queues(&ctrl->ctrl);
+ nvme_sync_io_queues(&ctrl->ctrl);
+ nvme_rdma_stop_io_queues(ctrl);
+ nvme_cancel_tagset(&ctrl->ctrl);
+ if (remove) {
+ nvme_unquiesce_io_queues(&ctrl->ctrl);
+ nvme_remove_io_tag_set(&ctrl->ctrl);
+ }
+ nvme_rdma_free_io_queues(ctrl);
+ }
+}
+
+static void nvme_rdma_stop_ctrl(struct nvme_ctrl *nctrl)
+{
+ struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
+
+ flush_work(&ctrl->err_work);
+ cancel_delayed_work_sync(&ctrl->reconnect_work);
+}
+
+static void nvme_rdma_free_ctrl(struct nvme_ctrl *nctrl)
+{
+ struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
+
+ if (list_empty(&ctrl->list))
+ goto free_ctrl;
+
+ mutex_lock(&nvme_rdma_ctrl_mutex);
+ list_del(&ctrl->list);
+ mutex_unlock(&nvme_rdma_ctrl_mutex);
+
+ nvmf_free_options(nctrl->opts);
+free_ctrl:
+ kfree(ctrl->queues);
+ kfree(ctrl);
+}
+
+static void nvme_rdma_reconnect_or_remove(struct nvme_rdma_ctrl *ctrl)
+{
+ enum nvme_ctrl_state state = nvme_ctrl_state(&ctrl->ctrl);
+
+ /* If we are resetting/deleting then do nothing */
+ if (state != NVME_CTRL_CONNECTING) {
+ WARN_ON_ONCE(state == NVME_CTRL_NEW || state == NVME_CTRL_LIVE);
+ return;
+ }
+
+ if (nvmf_should_reconnect(&ctrl->ctrl)) {
+ dev_info(ctrl->ctrl.device, "Reconnecting in %d seconds...\n",
+ ctrl->ctrl.opts->reconnect_delay);
+ queue_delayed_work(nvme_wq, &ctrl->reconnect_work,
+ ctrl->ctrl.opts->reconnect_delay * HZ);
+ } else {
+ nvme_delete_ctrl(&ctrl->ctrl);
+ }
+}
+
+static int nvme_rdma_setup_ctrl(struct nvme_rdma_ctrl *ctrl, bool new)
+{
+ int ret;
+ bool changed;
+
+ ret = nvme_rdma_configure_admin_queue(ctrl, new);
+ if (ret)
+ return ret;
+
+ if (ctrl->ctrl.icdoff) {
+ ret = -EOPNOTSUPP;
+ dev_err(ctrl->ctrl.device, "icdoff is not supported!\n");
+ goto destroy_admin;
+ }
+
+ if (!(ctrl->ctrl.sgls & (1 << 2))) {
+ ret = -EOPNOTSUPP;
+ dev_err(ctrl->ctrl.device,
+ "Mandatory keyed sgls are not supported!\n");
+ goto destroy_admin;
+ }
+
+ if (ctrl->ctrl.opts->queue_size > ctrl->ctrl.sqsize + 1) {
+ dev_warn(ctrl->ctrl.device,
+ "queue_size %zu > ctrl sqsize %u, clamping down\n",
+ ctrl->ctrl.opts->queue_size, ctrl->ctrl.sqsize + 1);
+ }
+
+ if (ctrl->ctrl.sqsize + 1 > NVME_RDMA_MAX_QUEUE_SIZE) {
+ dev_warn(ctrl->ctrl.device,
+ "ctrl sqsize %u > max queue size %u, clamping down\n",
+ ctrl->ctrl.sqsize + 1, NVME_RDMA_MAX_QUEUE_SIZE);
+ ctrl->ctrl.sqsize = NVME_RDMA_MAX_QUEUE_SIZE - 1;
+ }
+
+ if (ctrl->ctrl.sqsize + 1 > ctrl->ctrl.maxcmd) {
+ dev_warn(ctrl->ctrl.device,
+ "sqsize %u > ctrl maxcmd %u, clamping down\n",
+ ctrl->ctrl.sqsize + 1, ctrl->ctrl.maxcmd);
+ ctrl->ctrl.sqsize = ctrl->ctrl.maxcmd - 1;
+ }
+
+ if (ctrl->ctrl.sgls & (1 << 20))
+ ctrl->use_inline_data = true;
+
+ if (ctrl->ctrl.queue_count > 1) {
+ ret = nvme_rdma_configure_io_queues(ctrl, new);
+ if (ret)
+ goto destroy_admin;
+ }
+
+ changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
+ if (!changed) {
+ /*
+ * state change failure is ok if we started ctrl delete,
+ * unless we're during creation of a new controller to
+ * avoid races with teardown flow.
+ */
+ enum nvme_ctrl_state state = nvme_ctrl_state(&ctrl->ctrl);
+
+ WARN_ON_ONCE(state != NVME_CTRL_DELETING &&
+ state != NVME_CTRL_DELETING_NOIO);
+ WARN_ON_ONCE(new);
+ ret = -EINVAL;
+ goto destroy_io;
+ }
+
+ nvme_start_ctrl(&ctrl->ctrl);
+ return 0;
+
+destroy_io:
+ if (ctrl->ctrl.queue_count > 1) {
+ nvme_quiesce_io_queues(&ctrl->ctrl);
+ nvme_sync_io_queues(&ctrl->ctrl);
+ nvme_rdma_stop_io_queues(ctrl);
+ nvme_cancel_tagset(&ctrl->ctrl);
+ if (new)
+ nvme_remove_io_tag_set(&ctrl->ctrl);
+ nvme_rdma_free_io_queues(ctrl);
+ }
+destroy_admin:
+ nvme_quiesce_admin_queue(&ctrl->ctrl);
+ blk_sync_queue(ctrl->ctrl.admin_q);
+ nvme_rdma_stop_queue(&ctrl->queues[0]);
+ nvme_cancel_admin_tagset(&ctrl->ctrl);
+ if (new)
+ nvme_remove_admin_tag_set(&ctrl->ctrl);
+ nvme_rdma_destroy_admin_queue(ctrl);
+ return ret;
+}
+
+static void nvme_rdma_reconnect_ctrl_work(struct work_struct *work)
+{
+ struct nvme_rdma_ctrl *ctrl = container_of(to_delayed_work(work),
+ struct nvme_rdma_ctrl, reconnect_work);
+
+ ++ctrl->ctrl.nr_reconnects;
+
+ if (nvme_rdma_setup_ctrl(ctrl, false))
+ goto requeue;
+
+ dev_info(ctrl->ctrl.device, "Successfully reconnected (%d attempts)\n",
+ ctrl->ctrl.nr_reconnects);
+
+ ctrl->ctrl.nr_reconnects = 0;
+
+ return;
+
+requeue:
+ dev_info(ctrl->ctrl.device, "Failed reconnect attempt %d\n",
+ ctrl->ctrl.nr_reconnects);
+ nvme_rdma_reconnect_or_remove(ctrl);
+}
+
+static void nvme_rdma_error_recovery_work(struct work_struct *work)
+{
+ struct nvme_rdma_ctrl *ctrl = container_of(work,
+ struct nvme_rdma_ctrl, err_work);
+
+ nvme_stop_keep_alive(&ctrl->ctrl);
+ flush_work(&ctrl->ctrl.async_event_work);
+ nvme_rdma_teardown_io_queues(ctrl, false);
+ nvme_unquiesce_io_queues(&ctrl->ctrl);
+ nvme_rdma_teardown_admin_queue(ctrl, false);
+ nvme_unquiesce_admin_queue(&ctrl->ctrl);
+ nvme_auth_stop(&ctrl->ctrl);
+
+ if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) {
+ /* state change failure is ok if we started ctrl delete */
+ enum nvme_ctrl_state state = nvme_ctrl_state(&ctrl->ctrl);
+
+ WARN_ON_ONCE(state != NVME_CTRL_DELETING &&
+ state != NVME_CTRL_DELETING_NOIO);
+ return;
+ }
+
+ nvme_rdma_reconnect_or_remove(ctrl);
+}
+
+static void nvme_rdma_error_recovery(struct nvme_rdma_ctrl *ctrl)
+{
+ if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RESETTING))
+ return;
+
+ dev_warn(ctrl->ctrl.device, "starting error recovery\n");
+ queue_work(nvme_reset_wq, &ctrl->err_work);
+}
+
+static void nvme_rdma_end_request(struct nvme_rdma_request *req)
+{
+ struct request *rq = blk_mq_rq_from_pdu(req);
+
+ if (!refcount_dec_and_test(&req->ref))
+ return;
+ if (!nvme_try_complete_req(rq, req->status, req->result))
+ nvme_rdma_complete_rq(rq);
+}
+
+static void nvme_rdma_wr_error(struct ib_cq *cq, struct ib_wc *wc,
+ const char *op)
+{
+ struct nvme_rdma_queue *queue = wc->qp->qp_context;
+ struct nvme_rdma_ctrl *ctrl = queue->ctrl;
+
+ if (nvme_ctrl_state(&ctrl->ctrl) == NVME_CTRL_LIVE)
+ dev_info(ctrl->ctrl.device,
+ "%s for CQE 0x%p failed with status %s (%d)\n",
+ op, wc->wr_cqe,
+ ib_wc_status_msg(wc->status), wc->status);
+ nvme_rdma_error_recovery(ctrl);
+}
+
+static void nvme_rdma_memreg_done(struct ib_cq *cq, struct ib_wc *wc)
+{
+ if (unlikely(wc->status != IB_WC_SUCCESS))
+ nvme_rdma_wr_error(cq, wc, "MEMREG");
+}
+
+static void nvme_rdma_inv_rkey_done(struct ib_cq *cq, struct ib_wc *wc)
+{
+ struct nvme_rdma_request *req =
+ container_of(wc->wr_cqe, struct nvme_rdma_request, reg_cqe);
+
+ if (unlikely(wc->status != IB_WC_SUCCESS))
+ nvme_rdma_wr_error(cq, wc, "LOCAL_INV");
+ else
+ nvme_rdma_end_request(req);
+}
+
+static int nvme_rdma_inv_rkey(struct nvme_rdma_queue *queue,
+ struct nvme_rdma_request *req)
+{
+ struct ib_send_wr wr = {
+ .opcode = IB_WR_LOCAL_INV,
+ .next = NULL,
+ .num_sge = 0,
+ .send_flags = IB_SEND_SIGNALED,
+ .ex.invalidate_rkey = req->mr->rkey,
+ };
+
+ req->reg_cqe.done = nvme_rdma_inv_rkey_done;
+ wr.wr_cqe = &req->reg_cqe;
+
+ return ib_post_send(queue->qp, &wr, NULL);
+}
+
+static void nvme_rdma_dma_unmap_req(struct ib_device *ibdev, struct request *rq)
+{
+ struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
+
+ if (blk_integrity_rq(rq)) {
+ ib_dma_unmap_sg(ibdev, req->metadata_sgl->sg_table.sgl,
+ req->metadata_sgl->nents, rq_dma_dir(rq));
+ sg_free_table_chained(&req->metadata_sgl->sg_table,
+ NVME_INLINE_METADATA_SG_CNT);
+ }
+
+ ib_dma_unmap_sg(ibdev, req->data_sgl.sg_table.sgl, req->data_sgl.nents,
+ rq_dma_dir(rq));
+ sg_free_table_chained(&req->data_sgl.sg_table, NVME_INLINE_SG_CNT);
+}
+
+static void nvme_rdma_unmap_data(struct nvme_rdma_queue *queue,
+ struct request *rq)
+{
+ struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
+ struct nvme_rdma_device *dev = queue->device;
+ struct ib_device *ibdev = dev->dev;
+ struct list_head *pool = &queue->qp->rdma_mrs;
+
+ if (!blk_rq_nr_phys_segments(rq))
+ return;
+
+ if (req->use_sig_mr)
+ pool = &queue->qp->sig_mrs;
+
+ if (req->mr) {
+ ib_mr_pool_put(queue->qp, pool, req->mr);
+ req->mr = NULL;
+ }
+
+ nvme_rdma_dma_unmap_req(ibdev, rq);
+}
+
+static int nvme_rdma_set_sg_null(struct nvme_command *c)
+{
+ struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
+
+ sg->addr = 0;
+ put_unaligned_le24(0, sg->length);
+ put_unaligned_le32(0, sg->key);
+ sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4;
+ return 0;
+}
+
+static int nvme_rdma_map_sg_inline(struct nvme_rdma_queue *queue,
+ struct nvme_rdma_request *req, struct nvme_command *c,
+ int count)
+{
+ struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
+ struct ib_sge *sge = &req->sge[1];
+ struct scatterlist *sgl;
+ u32 len = 0;
+ int i;
+
+ for_each_sg(req->data_sgl.sg_table.sgl, sgl, count, i) {
+ sge->addr = sg_dma_address(sgl);
+ sge->length = sg_dma_len(sgl);
+ sge->lkey = queue->device->pd->local_dma_lkey;
+ len += sge->length;
+ sge++;
+ }
+
+ sg->addr = cpu_to_le64(queue->ctrl->ctrl.icdoff);
+ sg->length = cpu_to_le32(len);
+ sg->type = (NVME_SGL_FMT_DATA_DESC << 4) | NVME_SGL_FMT_OFFSET;
+
+ req->num_sge += count;
+ return 0;
+}
+
+static int nvme_rdma_map_sg_single(struct nvme_rdma_queue *queue,
+ struct nvme_rdma_request *req, struct nvme_command *c)
+{
+ struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
+
+ sg->addr = cpu_to_le64(sg_dma_address(req->data_sgl.sg_table.sgl));
+ put_unaligned_le24(sg_dma_len(req->data_sgl.sg_table.sgl), sg->length);
+ put_unaligned_le32(queue->device->pd->unsafe_global_rkey, sg->key);
+ sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4;
+ return 0;
+}
+
+static int nvme_rdma_map_sg_fr(struct nvme_rdma_queue *queue,
+ struct nvme_rdma_request *req, struct nvme_command *c,
+ int count)
+{
+ struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
+ int nr;
+
+ req->mr = ib_mr_pool_get(queue->qp, &queue->qp->rdma_mrs);
+ if (WARN_ON_ONCE(!req->mr))
+ return -EAGAIN;
+
+ /*
+ * Align the MR to a 4K page size to match the ctrl page size and
+ * the block virtual boundary.
+ */
+ nr = ib_map_mr_sg(req->mr, req->data_sgl.sg_table.sgl, count, NULL,
+ SZ_4K);
+ if (unlikely(nr < count)) {
+ ib_mr_pool_put(queue->qp, &queue->qp->rdma_mrs, req->mr);
+ req->mr = NULL;
+ if (nr < 0)
+ return nr;
+ return -EINVAL;
+ }
+
+ ib_update_fast_reg_key(req->mr, ib_inc_rkey(req->mr->rkey));
+
+ req->reg_cqe.done = nvme_rdma_memreg_done;
+ memset(&req->reg_wr, 0, sizeof(req->reg_wr));
+ req->reg_wr.wr.opcode = IB_WR_REG_MR;
+ req->reg_wr.wr.wr_cqe = &req->reg_cqe;
+ req->reg_wr.wr.num_sge = 0;
+ req->reg_wr.mr = req->mr;
+ req->reg_wr.key = req->mr->rkey;
+ req->reg_wr.access = IB_ACCESS_LOCAL_WRITE |
+ IB_ACCESS_REMOTE_READ |
+ IB_ACCESS_REMOTE_WRITE;
+
+ sg->addr = cpu_to_le64(req->mr->iova);
+ put_unaligned_le24(req->mr->length, sg->length);
+ put_unaligned_le32(req->mr->rkey, sg->key);
+ sg->type = (NVME_KEY_SGL_FMT_DATA_DESC << 4) |
+ NVME_SGL_FMT_INVALIDATE;
+
+ return 0;
+}
+
+static void nvme_rdma_set_sig_domain(struct blk_integrity *bi,
+ struct nvme_command *cmd, struct ib_sig_domain *domain,
+ u16 control, u8 pi_type)
+{
+ domain->sig_type = IB_SIG_TYPE_T10_DIF;
+ domain->sig.dif.bg_type = IB_T10DIF_CRC;
+ domain->sig.dif.pi_interval = 1 << bi->interval_exp;
+ domain->sig.dif.ref_tag = le32_to_cpu(cmd->rw.reftag);
+ if (control & NVME_RW_PRINFO_PRCHK_REF)
+ domain->sig.dif.ref_remap = true;
+
+ domain->sig.dif.app_tag = le16_to_cpu(cmd->rw.apptag);
+ domain->sig.dif.apptag_check_mask = le16_to_cpu(cmd->rw.appmask);
+ domain->sig.dif.app_escape = true;
+ if (pi_type == NVME_NS_DPS_PI_TYPE3)
+ domain->sig.dif.ref_escape = true;
+}
+
+static void nvme_rdma_set_sig_attrs(struct blk_integrity *bi,
+ struct nvme_command *cmd, struct ib_sig_attrs *sig_attrs,
+ u8 pi_type)
+{
+ u16 control = le16_to_cpu(cmd->rw.control);
+
+ memset(sig_attrs, 0, sizeof(*sig_attrs));
+ if (control & NVME_RW_PRINFO_PRACT) {
+ /* for WRITE_INSERT/READ_STRIP no memory domain */
+ sig_attrs->mem.sig_type = IB_SIG_TYPE_NONE;
+ nvme_rdma_set_sig_domain(bi, cmd, &sig_attrs->wire, control,
+ pi_type);
+ /* Clear the PRACT bit since HCA will generate/verify the PI */
+ control &= ~NVME_RW_PRINFO_PRACT;
+ cmd->rw.control = cpu_to_le16(control);
+ } else {
+ /* for WRITE_PASS/READ_PASS both wire/memory domains exist */
+ nvme_rdma_set_sig_domain(bi, cmd, &sig_attrs->wire, control,
+ pi_type);
+ nvme_rdma_set_sig_domain(bi, cmd, &sig_attrs->mem, control,
+ pi_type);
+ }
+}
+
+static void nvme_rdma_set_prot_checks(struct nvme_command *cmd, u8 *mask)
+{
+ *mask = 0;
+ if (le16_to_cpu(cmd->rw.control) & NVME_RW_PRINFO_PRCHK_REF)
+ *mask |= IB_SIG_CHECK_REFTAG;
+ if (le16_to_cpu(cmd->rw.control) & NVME_RW_PRINFO_PRCHK_GUARD)
+ *mask |= IB_SIG_CHECK_GUARD;
+}
+
+static void nvme_rdma_sig_done(struct ib_cq *cq, struct ib_wc *wc)
+{
+ if (unlikely(wc->status != IB_WC_SUCCESS))
+ nvme_rdma_wr_error(cq, wc, "SIG");
+}
+
+static int nvme_rdma_map_sg_pi(struct nvme_rdma_queue *queue,
+ struct nvme_rdma_request *req, struct nvme_command *c,
+ int count, int pi_count)
+{
+ struct nvme_rdma_sgl *sgl = &req->data_sgl;
+ struct ib_reg_wr *wr = &req->reg_wr;
+ struct request *rq = blk_mq_rq_from_pdu(req);
+ struct nvme_ns *ns = rq->q->queuedata;
+ struct bio *bio = rq->bio;
+ struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
+ int nr;
+
+ req->mr = ib_mr_pool_get(queue->qp, &queue->qp->sig_mrs);
+ if (WARN_ON_ONCE(!req->mr))
+ return -EAGAIN;
+
+ nr = ib_map_mr_sg_pi(req->mr, sgl->sg_table.sgl, count, NULL,
+ req->metadata_sgl->sg_table.sgl, pi_count, NULL,
+ SZ_4K);
+ if (unlikely(nr))
+ goto mr_put;
+
+ nvme_rdma_set_sig_attrs(blk_get_integrity(bio->bi_bdev->bd_disk), c,
+ req->mr->sig_attrs, ns->pi_type);
+ nvme_rdma_set_prot_checks(c, &req->mr->sig_attrs->check_mask);
+
+ ib_update_fast_reg_key(req->mr, ib_inc_rkey(req->mr->rkey));
+
+ req->reg_cqe.done = nvme_rdma_sig_done;
+ memset(wr, 0, sizeof(*wr));
+ wr->wr.opcode = IB_WR_REG_MR_INTEGRITY;
+ wr->wr.wr_cqe = &req->reg_cqe;
+ wr->wr.num_sge = 0;
+ wr->wr.send_flags = 0;
+ wr->mr = req->mr;
+ wr->key = req->mr->rkey;
+ wr->access = IB_ACCESS_LOCAL_WRITE |
+ IB_ACCESS_REMOTE_READ |
+ IB_ACCESS_REMOTE_WRITE;
+
+ sg->addr = cpu_to_le64(req->mr->iova);
+ put_unaligned_le24(req->mr->length, sg->length);
+ put_unaligned_le32(req->mr->rkey, sg->key);
+ sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4;
+
+ return 0;
+
+mr_put:
+ ib_mr_pool_put(queue->qp, &queue->qp->sig_mrs, req->mr);
+ req->mr = NULL;
+ if (nr < 0)
+ return nr;
+ return -EINVAL;
+}
+
+static int nvme_rdma_dma_map_req(struct ib_device *ibdev, struct request *rq,
+ int *count, int *pi_count)
+{
+ struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
+ int ret;
+
+ req->data_sgl.sg_table.sgl = (struct scatterlist *)(req + 1);
+ ret = sg_alloc_table_chained(&req->data_sgl.sg_table,
+ blk_rq_nr_phys_segments(rq), req->data_sgl.sg_table.sgl,
+ NVME_INLINE_SG_CNT);
+ if (ret)
+ return -ENOMEM;
+
+ req->data_sgl.nents = blk_rq_map_sg(rq->q, rq,
+ req->data_sgl.sg_table.sgl);
+
+ *count = ib_dma_map_sg(ibdev, req->data_sgl.sg_table.sgl,
+ req->data_sgl.nents, rq_dma_dir(rq));
+ if (unlikely(*count <= 0)) {
+ ret = -EIO;
+ goto out_free_table;
+ }
+
+ if (blk_integrity_rq(rq)) {
+ req->metadata_sgl->sg_table.sgl =
+ (struct scatterlist *)(req->metadata_sgl + 1);
+ ret = sg_alloc_table_chained(&req->metadata_sgl->sg_table,
+ blk_rq_count_integrity_sg(rq->q, rq->bio),
+ req->metadata_sgl->sg_table.sgl,
+ NVME_INLINE_METADATA_SG_CNT);
+ if (unlikely(ret)) {
+ ret = -ENOMEM;
+ goto out_unmap_sg;
+ }
+
+ req->metadata_sgl->nents = blk_rq_map_integrity_sg(rq->q,
+ rq->bio, req->metadata_sgl->sg_table.sgl);
+ *pi_count = ib_dma_map_sg(ibdev,
+ req->metadata_sgl->sg_table.sgl,
+ req->metadata_sgl->nents,
+ rq_dma_dir(rq));
+ if (unlikely(*pi_count <= 0)) {
+ ret = -EIO;
+ goto out_free_pi_table;
+ }
+ }
+
+ return 0;
+
+out_free_pi_table:
+ sg_free_table_chained(&req->metadata_sgl->sg_table,
+ NVME_INLINE_METADATA_SG_CNT);
+out_unmap_sg:
+ ib_dma_unmap_sg(ibdev, req->data_sgl.sg_table.sgl, req->data_sgl.nents,
+ rq_dma_dir(rq));
+out_free_table:
+ sg_free_table_chained(&req->data_sgl.sg_table, NVME_INLINE_SG_CNT);
+ return ret;
+}
+
+static int nvme_rdma_map_data(struct nvme_rdma_queue *queue,
+ struct request *rq, struct nvme_command *c)
+{
+ struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
+ struct nvme_rdma_device *dev = queue->device;
+ struct ib_device *ibdev = dev->dev;
+ int pi_count = 0;
+ int count, ret;
+
+ req->num_sge = 1;
+ refcount_set(&req->ref, 2); /* send and recv completions */
+
+ c->common.flags |= NVME_CMD_SGL_METABUF;
+
+ if (!blk_rq_nr_phys_segments(rq))
+ return nvme_rdma_set_sg_null(c);
+
+ ret = nvme_rdma_dma_map_req(ibdev, rq, &count, &pi_count);
+ if (unlikely(ret))
+ return ret;
+
+ if (req->use_sig_mr) {
+ ret = nvme_rdma_map_sg_pi(queue, req, c, count, pi_count);
+ goto out;
+ }
+
+ if (count <= dev->num_inline_segments) {
+ if (rq_data_dir(rq) == WRITE && nvme_rdma_queue_idx(queue) &&
+ queue->ctrl->use_inline_data &&
+ blk_rq_payload_bytes(rq) <=
+ nvme_rdma_inline_data_size(queue)) {
+ ret = nvme_rdma_map_sg_inline(queue, req, c, count);
+ goto out;
+ }
+
+ if (count == 1 && dev->pd->flags & IB_PD_UNSAFE_GLOBAL_RKEY) {
+ ret = nvme_rdma_map_sg_single(queue, req, c);
+ goto out;
+ }
+ }
+
+ ret = nvme_rdma_map_sg_fr(queue, req, c, count);
+out:
+ if (unlikely(ret))
+ goto out_dma_unmap_req;
+
+ return 0;
+
+out_dma_unmap_req:
+ nvme_rdma_dma_unmap_req(ibdev, rq);
+ return ret;
+}
+
+static void nvme_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc)
+{
+ struct nvme_rdma_qe *qe =
+ container_of(wc->wr_cqe, struct nvme_rdma_qe, cqe);
+ struct nvme_rdma_request *req =
+ container_of(qe, struct nvme_rdma_request, sqe);
+
+ if (unlikely(wc->status != IB_WC_SUCCESS))
+ nvme_rdma_wr_error(cq, wc, "SEND");
+ else
+ nvme_rdma_end_request(req);
+}
+
+static int nvme_rdma_post_send(struct nvme_rdma_queue *queue,
+ struct nvme_rdma_qe *qe, struct ib_sge *sge, u32 num_sge,
+ struct ib_send_wr *first)
+{
+ struct ib_send_wr wr;
+ int ret;
+
+ sge->addr = qe->dma;
+ sge->length = sizeof(struct nvme_command);
+ sge->lkey = queue->device->pd->local_dma_lkey;
+
+ wr.next = NULL;
+ wr.wr_cqe = &qe->cqe;
+ wr.sg_list = sge;
+ wr.num_sge = num_sge;
+ wr.opcode = IB_WR_SEND;
+ wr.send_flags = IB_SEND_SIGNALED;
+
+ if (first)
+ first->next = &wr;
+ else
+ first = &wr;
+
+ ret = ib_post_send(queue->qp, first, NULL);
+ if (unlikely(ret)) {
+ dev_err(queue->ctrl->ctrl.device,
+ "%s failed with error code %d\n", __func__, ret);
+ }
+ return ret;
+}
+
+static int nvme_rdma_post_recv(struct nvme_rdma_queue *queue,
+ struct nvme_rdma_qe *qe)
+{
+ struct ib_recv_wr wr;
+ struct ib_sge list;
+ int ret;
+
+ list.addr = qe->dma;
+ list.length = sizeof(struct nvme_completion);
+ list.lkey = queue->device->pd->local_dma_lkey;
+
+ qe->cqe.done = nvme_rdma_recv_done;
+
+ wr.next = NULL;
+ wr.wr_cqe = &qe->cqe;
+ wr.sg_list = &list;
+ wr.num_sge = 1;
+
+ ret = ib_post_recv(queue->qp, &wr, NULL);
+ if (unlikely(ret)) {
+ dev_err(queue->ctrl->ctrl.device,
+ "%s failed with error code %d\n", __func__, ret);
+ }
+ return ret;
+}
+
+static struct blk_mq_tags *nvme_rdma_tagset(struct nvme_rdma_queue *queue)
+{
+ u32 queue_idx = nvme_rdma_queue_idx(queue);
+
+ if (queue_idx == 0)
+ return queue->ctrl->admin_tag_set.tags[queue_idx];
+ return queue->ctrl->tag_set.tags[queue_idx - 1];
+}
+
+static void nvme_rdma_async_done(struct ib_cq *cq, struct ib_wc *wc)
+{
+ if (unlikely(wc->status != IB_WC_SUCCESS))
+ nvme_rdma_wr_error(cq, wc, "ASYNC");
+}
+
+static void nvme_rdma_submit_async_event(struct nvme_ctrl *arg)
+{
+ struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(arg);
+ struct nvme_rdma_queue *queue = &ctrl->queues[0];
+ struct ib_device *dev = queue->device->dev;
+ struct nvme_rdma_qe *sqe = &ctrl->async_event_sqe;
+ struct nvme_command *cmd = sqe->data;
+ struct ib_sge sge;
+ int ret;
+
+ ib_dma_sync_single_for_cpu(dev, sqe->dma, sizeof(*cmd), DMA_TO_DEVICE);
+
+ memset(cmd, 0, sizeof(*cmd));
+ cmd->common.opcode = nvme_admin_async_event;
+ cmd->common.command_id = NVME_AQ_BLK_MQ_DEPTH;
+ cmd->common.flags |= NVME_CMD_SGL_METABUF;
+ nvme_rdma_set_sg_null(cmd);
+
+ sqe->cqe.done = nvme_rdma_async_done;
+
+ ib_dma_sync_single_for_device(dev, sqe->dma, sizeof(*cmd),
+ DMA_TO_DEVICE);
+
+ ret = nvme_rdma_post_send(queue, sqe, &sge, 1, NULL);
+ WARN_ON_ONCE(ret);
+}
+
+static void nvme_rdma_process_nvme_rsp(struct nvme_rdma_queue *queue,
+ struct nvme_completion *cqe, struct ib_wc *wc)
+{
+ struct request *rq;
+ struct nvme_rdma_request *req;
+
+ rq = nvme_find_rq(nvme_rdma_tagset(queue), cqe->command_id);
+ if (!rq) {
+ dev_err(queue->ctrl->ctrl.device,
+ "got bad command_id %#x on QP %#x\n",
+ cqe->command_id, queue->qp->qp_num);
+ nvme_rdma_error_recovery(queue->ctrl);
+ return;
+ }
+ req = blk_mq_rq_to_pdu(rq);
+
+ req->status = cqe->status;
+ req->result = cqe->result;
+
+ if (wc->wc_flags & IB_WC_WITH_INVALIDATE) {
+ if (unlikely(!req->mr ||
+ wc->ex.invalidate_rkey != req->mr->rkey)) {
+ dev_err(queue->ctrl->ctrl.device,
+ "Bogus remote invalidation for rkey %#x\n",
+ req->mr ? req->mr->rkey : 0);
+ nvme_rdma_error_recovery(queue->ctrl);
+ }
+ } else if (req->mr) {
+ int ret;
+
+ ret = nvme_rdma_inv_rkey(queue, req);
+ if (unlikely(ret < 0)) {
+ dev_err(queue->ctrl->ctrl.device,
+ "Queueing INV WR for rkey %#x failed (%d)\n",
+ req->mr->rkey, ret);
+ nvme_rdma_error_recovery(queue->ctrl);
+ }
+ /* the local invalidation completion will end the request */
+ return;
+ }
+
+ nvme_rdma_end_request(req);
+}
+
+static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc)
+{
+ struct nvme_rdma_qe *qe =
+ container_of(wc->wr_cqe, struct nvme_rdma_qe, cqe);
+ struct nvme_rdma_queue *queue = wc->qp->qp_context;
+ struct ib_device *ibdev = queue->device->dev;
+ struct nvme_completion *cqe = qe->data;
+ const size_t len = sizeof(struct nvme_completion);
+
+ if (unlikely(wc->status != IB_WC_SUCCESS)) {
+ nvme_rdma_wr_error(cq, wc, "RECV");
+ return;
+ }
+
+ /* sanity checking for received data length */
+ if (unlikely(wc->byte_len < len)) {
+ dev_err(queue->ctrl->ctrl.device,
+ "Unexpected nvme completion length(%d)\n", wc->byte_len);
+ nvme_rdma_error_recovery(queue->ctrl);
+ return;
+ }
+
+ ib_dma_sync_single_for_cpu(ibdev, qe->dma, len, DMA_FROM_DEVICE);
+ /*
+ * AEN requests are special as they don't time out and can
+ * survive any kind of queue freeze and often don't respond to
+ * aborts. We don't even bother to allocate a struct request
+ * for them but rather special case them here.
+ */
+ if (unlikely(nvme_is_aen_req(nvme_rdma_queue_idx(queue),
+ cqe->command_id)))
+ nvme_complete_async_event(&queue->ctrl->ctrl, cqe->status,
+ &cqe->result);
+ else
+ nvme_rdma_process_nvme_rsp(queue, cqe, wc);
+ ib_dma_sync_single_for_device(ibdev, qe->dma, len, DMA_FROM_DEVICE);
+
+ nvme_rdma_post_recv(queue, qe);
+}
+
+static int nvme_rdma_conn_established(struct nvme_rdma_queue *queue)
+{
+ int ret, i;
+
+ for (i = 0; i < queue->queue_size; i++) {
+ ret = nvme_rdma_post_recv(queue, &queue->rsp_ring[i]);
+ if (ret)
+ return ret;
+ }
+
+ return 0;
+}
+
+static int nvme_rdma_conn_rejected(struct nvme_rdma_queue *queue,
+ struct rdma_cm_event *ev)
+{
+ struct rdma_cm_id *cm_id = queue->cm_id;
+ int status = ev->status;
+ const char *rej_msg;
+ const struct nvme_rdma_cm_rej *rej_data;
+ u8 rej_data_len;
+
+ rej_msg = rdma_reject_msg(cm_id, status);
+ rej_data = rdma_consumer_reject_data(cm_id, ev, &rej_data_len);
+
+ if (rej_data && rej_data_len >= sizeof(u16)) {
+ u16 sts = le16_to_cpu(rej_data->sts);
+
+ dev_err(queue->ctrl->ctrl.device,
+ "Connect rejected: status %d (%s) nvme status %d (%s).\n",
+ status, rej_msg, sts, nvme_rdma_cm_msg(sts));
+ } else {
+ dev_err(queue->ctrl->ctrl.device,
+ "Connect rejected: status %d (%s).\n", status, rej_msg);
+ }
+
+ return -ECONNRESET;
+}
+
+static int nvme_rdma_addr_resolved(struct nvme_rdma_queue *queue)
+{
+ struct nvme_ctrl *ctrl = &queue->ctrl->ctrl;
+ int ret;
+
+ ret = nvme_rdma_create_queue_ib(queue);
+ if (ret)
+ return ret;
+
+ if (ctrl->opts->tos >= 0)
+ rdma_set_service_type(queue->cm_id, ctrl->opts->tos);
+ ret = rdma_resolve_route(queue->cm_id, NVME_RDMA_CM_TIMEOUT_MS);
+ if (ret) {
+ dev_err(ctrl->device, "rdma_resolve_route failed (%d).\n",
+ queue->cm_error);
+ goto out_destroy_queue;
+ }
+
+ return 0;
+
+out_destroy_queue:
+ nvme_rdma_destroy_queue_ib(queue);
+ return ret;
+}
+
+static int nvme_rdma_route_resolved(struct nvme_rdma_queue *queue)
+{
+ struct nvme_rdma_ctrl *ctrl = queue->ctrl;
+ struct rdma_conn_param param = { };
+ struct nvme_rdma_cm_req priv = { };
+ int ret;
+
+ param.qp_num = queue->qp->qp_num;
+ param.flow_control = 1;
+
+ param.responder_resources = queue->device->dev->attrs.max_qp_rd_atom;
+ /* maximum retry count */
+ param.retry_count = 7;
+ param.rnr_retry_count = 7;
+ param.private_data = &priv;
+ param.private_data_len = sizeof(priv);
+
+ priv.recfmt = cpu_to_le16(NVME_RDMA_CM_FMT_1_0);
+ priv.qid = cpu_to_le16(nvme_rdma_queue_idx(queue));
+ /*
+ * set the admin queue depth to the minimum size
+ * specified by the Fabrics standard.
+ */
+ if (priv.qid == 0) {
+ priv.hrqsize = cpu_to_le16(NVME_AQ_DEPTH);
+ priv.hsqsize = cpu_to_le16(NVME_AQ_DEPTH - 1);
+ } else {
+ /*
+ * current interpretation of the fabrics spec
+ * is at minimum you make hrqsize sqsize+1, or a
+ * 1's based representation of sqsize.
+ */
+ priv.hrqsize = cpu_to_le16(queue->queue_size);
+ priv.hsqsize = cpu_to_le16(queue->ctrl->ctrl.sqsize);
+ }
+
+ ret = rdma_connect_locked(queue->cm_id, &param);
+ if (ret) {
+ dev_err(ctrl->ctrl.device,
+ "rdma_connect_locked failed (%d).\n", ret);
+ return ret;
+ }
+
+ return 0;
+}
+
+static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id,
+ struct rdma_cm_event *ev)
+{
+ struct nvme_rdma_queue *queue = cm_id->context;
+ int cm_error = 0;
+
+ dev_dbg(queue->ctrl->ctrl.device, "%s (%d): status %d id %p\n",
+ rdma_event_msg(ev->event), ev->event,
+ ev->status, cm_id);
+
+ switch (ev->event) {
+ case RDMA_CM_EVENT_ADDR_RESOLVED:
+ cm_error = nvme_rdma_addr_resolved(queue);
+ break;
+ case RDMA_CM_EVENT_ROUTE_RESOLVED:
+ cm_error = nvme_rdma_route_resolved(queue);
+ break;
+ case RDMA_CM_EVENT_ESTABLISHED:
+ queue->cm_error = nvme_rdma_conn_established(queue);
+ /* complete cm_done regardless of success/failure */
+ complete(&queue->cm_done);
+ return 0;
+ case RDMA_CM_EVENT_REJECTED:
+ cm_error = nvme_rdma_conn_rejected(queue, ev);
+ break;
+ case RDMA_CM_EVENT_ROUTE_ERROR:
+ case RDMA_CM_EVENT_CONNECT_ERROR:
+ case RDMA_CM_EVENT_UNREACHABLE:
+ case RDMA_CM_EVENT_ADDR_ERROR:
+ dev_dbg(queue->ctrl->ctrl.device,
+ "CM error event %d\n", ev->event);
+ cm_error = -ECONNRESET;
+ break;
+ case RDMA_CM_EVENT_DISCONNECTED:
+ case RDMA_CM_EVENT_ADDR_CHANGE:
+ case RDMA_CM_EVENT_TIMEWAIT_EXIT:
+ dev_dbg(queue->ctrl->ctrl.device,
+ "disconnect received - connection closed\n");
+ nvme_rdma_error_recovery(queue->ctrl);
+ break;
+ case RDMA_CM_EVENT_DEVICE_REMOVAL:
+ /* device removal is handled via the ib_client API */
+ break;
+ default:
+ dev_err(queue->ctrl->ctrl.device,
+ "Unexpected RDMA CM event (%d)\n", ev->event);
+ nvme_rdma_error_recovery(queue->ctrl);
+ break;
+ }
+
+ if (cm_error) {
+ queue->cm_error = cm_error;
+ complete(&queue->cm_done);
+ }
+
+ return 0;
+}
+
+static void nvme_rdma_complete_timed_out(struct request *rq)
+{
+ struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
+ struct nvme_rdma_queue *queue = req->queue;
+
+ nvme_rdma_stop_queue(queue);
+ nvmf_complete_timed_out_request(rq);
+}
+
+static enum blk_eh_timer_return nvme_rdma_timeout(struct request *rq)
+{
+ struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
+ struct nvme_rdma_queue *queue = req->queue;
+ struct nvme_rdma_ctrl *ctrl = queue->ctrl;
+
+ dev_warn(ctrl->ctrl.device, "I/O %d QID %d timeout\n",
+ rq->tag, nvme_rdma_queue_idx(queue));
+
+ if (nvme_ctrl_state(&ctrl->ctrl) != NVME_CTRL_LIVE) {
+ /*
+ * If we are resetting, connecting or deleting we should
+ * complete immediately because we may block controller
+ * teardown or setup sequence
+ * - ctrl disable/shutdown fabrics requests
+ * - connect requests
+ * - initialization admin requests
+ * - I/O requests that entered after unquiescing and
+ * the controller stopped responding
+ *
+ * All other requests should be cancelled by the error
+ * recovery work, so it's fine that we fail it here.
+ */
+ nvme_rdma_complete_timed_out(rq);
+ return BLK_EH_DONE;
+ }
+
+ /*
+ * LIVE state should trigger the normal error recovery which will
+ * handle completing this request.
+ */
+ nvme_rdma_error_recovery(ctrl);
+ return BLK_EH_RESET_TIMER;
+}
+
+static blk_status_t nvme_rdma_queue_rq(struct blk_mq_hw_ctx *hctx,
+ const struct blk_mq_queue_data *bd)
+{
+ struct nvme_ns *ns = hctx->queue->queuedata;
+ struct nvme_rdma_queue *queue = hctx->driver_data;
+ struct request *rq = bd->rq;
+ struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
+ struct nvme_rdma_qe *sqe = &req->sqe;
+ struct nvme_command *c = nvme_req(rq)->cmd;
+ struct ib_device *dev;
+ bool queue_ready = test_bit(NVME_RDMA_Q_LIVE, &queue->flags);
+ blk_status_t ret;
+ int err;
+
+ WARN_ON_ONCE(rq->tag < 0);
+
+ if (!nvme_check_ready(&queue->ctrl->ctrl, rq, queue_ready))
+ return nvme_fail_nonready_command(&queue->ctrl->ctrl, rq);
+
+ dev = queue->device->dev;
+
+ req->sqe.dma = ib_dma_map_single(dev, req->sqe.data,
+ sizeof(struct nvme_command),
+ DMA_TO_DEVICE);
+ err = ib_dma_mapping_error(dev, req->sqe.dma);
+ if (unlikely(err))
+ return BLK_STS_RESOURCE;
+
+ ib_dma_sync_single_for_cpu(dev, sqe->dma,
+ sizeof(struct nvme_command), DMA_TO_DEVICE);
+
+ ret = nvme_setup_cmd(ns, rq);
+ if (ret)
+ goto unmap_qe;
+
+ nvme_start_request(rq);
+
+ if (IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY) &&
+ queue->pi_support &&
+ (c->common.opcode == nvme_cmd_write ||
+ c->common.opcode == nvme_cmd_read) &&
+ nvme_ns_has_pi(ns))
+ req->use_sig_mr = true;
+ else
+ req->use_sig_mr = false;
+
+ err = nvme_rdma_map_data(queue, rq, c);
+ if (unlikely(err < 0)) {
+ dev_err(queue->ctrl->ctrl.device,
+ "Failed to map data (%d)\n", err);
+ goto err;
+ }
+
+ sqe->cqe.done = nvme_rdma_send_done;
+
+ ib_dma_sync_single_for_device(dev, sqe->dma,
+ sizeof(struct nvme_command), DMA_TO_DEVICE);
+
+ err = nvme_rdma_post_send(queue, sqe, req->sge, req->num_sge,
+ req->mr ? &req->reg_wr.wr : NULL);
+ if (unlikely(err))
+ goto err_unmap;
+
+ return BLK_STS_OK;
+
+err_unmap:
+ nvme_rdma_unmap_data(queue, rq);
+err:
+ if (err == -EIO)
+ ret = nvme_host_path_error(rq);
+ else if (err == -ENOMEM || err == -EAGAIN)
+ ret = BLK_STS_RESOURCE;
+ else
+ ret = BLK_STS_IOERR;
+ nvme_cleanup_cmd(rq);
+unmap_qe:
+ ib_dma_unmap_single(dev, req->sqe.dma, sizeof(struct nvme_command),
+ DMA_TO_DEVICE);
+ return ret;
+}
+
+static int nvme_rdma_poll(struct blk_mq_hw_ctx *hctx, struct io_comp_batch *iob)
+{
+ struct nvme_rdma_queue *queue = hctx->driver_data;
+
+ return ib_process_cq_direct(queue->ib_cq, -1);
+}
+
+static void nvme_rdma_check_pi_status(struct nvme_rdma_request *req)
+{
+ struct request *rq = blk_mq_rq_from_pdu(req);
+ struct ib_mr_status mr_status;
+ int ret;
+
+ ret = ib_check_mr_status(req->mr, IB_MR_CHECK_SIG_STATUS, &mr_status);
+ if (ret) {
+ pr_err("ib_check_mr_status failed, ret %d\n", ret);
+ nvme_req(rq)->status = NVME_SC_INVALID_PI;
+ return;
+ }
+
+ if (mr_status.fail_status & IB_MR_CHECK_SIG_STATUS) {
+ switch (mr_status.sig_err.err_type) {
+ case IB_SIG_BAD_GUARD:
+ nvme_req(rq)->status = NVME_SC_GUARD_CHECK;
+ break;
+ case IB_SIG_BAD_REFTAG:
+ nvme_req(rq)->status = NVME_SC_REFTAG_CHECK;
+ break;
+ case IB_SIG_BAD_APPTAG:
+ nvme_req(rq)->status = NVME_SC_APPTAG_CHECK;
+ break;
+ }
+ pr_err("PI error found type %d expected 0x%x vs actual 0x%x\n",
+ mr_status.sig_err.err_type, mr_status.sig_err.expected,
+ mr_status.sig_err.actual);
+ }
+}
+
+static void nvme_rdma_complete_rq(struct request *rq)
+{
+ struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
+ struct nvme_rdma_queue *queue = req->queue;
+ struct ib_device *ibdev = queue->device->dev;
+
+ if (req->use_sig_mr)
+ nvme_rdma_check_pi_status(req);
+
+ nvme_rdma_unmap_data(queue, rq);
+ ib_dma_unmap_single(ibdev, req->sqe.dma, sizeof(struct nvme_command),
+ DMA_TO_DEVICE);
+ nvme_complete_rq(rq);
+}
+
+static void nvme_rdma_map_queues(struct blk_mq_tag_set *set)
+{
+ struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(set->driver_data);
+
+ nvmf_map_queues(set, &ctrl->ctrl, ctrl->io_queues);
+}
+
+static const struct blk_mq_ops nvme_rdma_mq_ops = {
+ .queue_rq = nvme_rdma_queue_rq,
+ .complete = nvme_rdma_complete_rq,
+ .init_request = nvme_rdma_init_request,
+ .exit_request = nvme_rdma_exit_request,
+ .init_hctx = nvme_rdma_init_hctx,
+ .timeout = nvme_rdma_timeout,
+ .map_queues = nvme_rdma_map_queues,
+ .poll = nvme_rdma_poll,
+};
+
+static const struct blk_mq_ops nvme_rdma_admin_mq_ops = {
+ .queue_rq = nvme_rdma_queue_rq,
+ .complete = nvme_rdma_complete_rq,
+ .init_request = nvme_rdma_init_request,
+ .exit_request = nvme_rdma_exit_request,
+ .init_hctx = nvme_rdma_init_admin_hctx,
+ .timeout = nvme_rdma_timeout,
+};
+
+static void nvme_rdma_shutdown_ctrl(struct nvme_rdma_ctrl *ctrl, bool shutdown)
+{
+ nvme_rdma_teardown_io_queues(ctrl, shutdown);
+ nvme_quiesce_admin_queue(&ctrl->ctrl);
+ nvme_disable_ctrl(&ctrl->ctrl, shutdown);
+ nvme_rdma_teardown_admin_queue(ctrl, shutdown);
+}
+
+static void nvme_rdma_delete_ctrl(struct nvme_ctrl *ctrl)
+{
+ nvme_rdma_shutdown_ctrl(to_rdma_ctrl(ctrl), true);
+}
+
+static void nvme_rdma_reset_ctrl_work(struct work_struct *work)
+{
+ struct nvme_rdma_ctrl *ctrl =
+ container_of(work, struct nvme_rdma_ctrl, ctrl.reset_work);
+
+ nvme_stop_ctrl(&ctrl->ctrl);
+ nvme_rdma_shutdown_ctrl(ctrl, false);
+
+ if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) {
+ /* state change failure should never happen */
+ WARN_ON_ONCE(1);
+ return;
+ }
+
+ if (nvme_rdma_setup_ctrl(ctrl, false))
+ goto out_fail;
+
+ return;
+
+out_fail:
+ ++ctrl->ctrl.nr_reconnects;
+ nvme_rdma_reconnect_or_remove(ctrl);
+}
+
+static const struct nvme_ctrl_ops nvme_rdma_ctrl_ops = {
+ .name = "rdma",
+ .module = THIS_MODULE,
+ .flags = NVME_F_FABRICS | NVME_F_METADATA_SUPPORTED,
+ .reg_read32 = nvmf_reg_read32,
+ .reg_read64 = nvmf_reg_read64,
+ .reg_write32 = nvmf_reg_write32,
+ .free_ctrl = nvme_rdma_free_ctrl,
+ .submit_async_event = nvme_rdma_submit_async_event,
+ .delete_ctrl = nvme_rdma_delete_ctrl,
+ .get_address = nvmf_get_address,
+ .stop_ctrl = nvme_rdma_stop_ctrl,
+};
+
+/*
+ * Fails a connection request if it matches an existing controller
+ * (association) with the same tuple:
+ * <Host NQN, Host ID, local address, remote address, remote port, SUBSYS NQN>
+ *
+ * if local address is not specified in the request, it will match an
+ * existing controller with all the other parameters the same and no
+ * local port address specified as well.
+ *
+ * The ports don't need to be compared as they are intrinsically
+ * already matched by the port pointers supplied.
+ */
+static bool
+nvme_rdma_existing_controller(struct nvmf_ctrl_options *opts)
+{
+ struct nvme_rdma_ctrl *ctrl;
+ bool found = false;
+
+ mutex_lock(&nvme_rdma_ctrl_mutex);
+ list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list) {
+ found = nvmf_ip_options_match(&ctrl->ctrl, opts);
+ if (found)
+ break;
+ }
+ mutex_unlock(&nvme_rdma_ctrl_mutex);
+
+ return found;
+}
+
+static struct nvme_ctrl *nvme_rdma_create_ctrl(struct device *dev,
+ struct nvmf_ctrl_options *opts)
+{
+ struct nvme_rdma_ctrl *ctrl;
+ int ret;
+ bool changed;
+
+ ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
+ if (!ctrl)
+ return ERR_PTR(-ENOMEM);
+ ctrl->ctrl.opts = opts;
+ INIT_LIST_HEAD(&ctrl->list);
+
+ if (!(opts->mask & NVMF_OPT_TRSVCID)) {
+ opts->trsvcid =
+ kstrdup(__stringify(NVME_RDMA_IP_PORT), GFP_KERNEL);
+ if (!opts->trsvcid) {
+ ret = -ENOMEM;
+ goto out_free_ctrl;
+ }
+ opts->mask |= NVMF_OPT_TRSVCID;
+ }
+
+ ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
+ opts->traddr, opts->trsvcid, &ctrl->addr);
+ if (ret) {
+ pr_err("malformed address passed: %s:%s\n",
+ opts->traddr, opts->trsvcid);
+ goto out_free_ctrl;
+ }
+
+ if (opts->mask & NVMF_OPT_HOST_TRADDR) {
+ ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
+ opts->host_traddr, NULL, &ctrl->src_addr);
+ if (ret) {
+ pr_err("malformed src address passed: %s\n",
+ opts->host_traddr);
+ goto out_free_ctrl;
+ }
+ }
+
+ if (!opts->duplicate_connect && nvme_rdma_existing_controller(opts)) {
+ ret = -EALREADY;
+ goto out_free_ctrl;
+ }
+
+ INIT_DELAYED_WORK(&ctrl->reconnect_work,
+ nvme_rdma_reconnect_ctrl_work);
+ INIT_WORK(&ctrl->err_work, nvme_rdma_error_recovery_work);
+ INIT_WORK(&ctrl->ctrl.reset_work, nvme_rdma_reset_ctrl_work);
+
+ ctrl->ctrl.queue_count = opts->nr_io_queues + opts->nr_write_queues +
+ opts->nr_poll_queues + 1;
+ ctrl->ctrl.sqsize = opts->queue_size - 1;
+ ctrl->ctrl.kato = opts->kato;
+
+ ret = -ENOMEM;
+ ctrl->queues = kcalloc(ctrl->ctrl.queue_count, sizeof(*ctrl->queues),
+ GFP_KERNEL);
+ if (!ctrl->queues)
+ goto out_free_ctrl;
+
+ ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_rdma_ctrl_ops,
+ 0 /* no quirks, we're perfect! */);
+ if (ret)
+ goto out_kfree_queues;
+
+ changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING);
+ WARN_ON_ONCE(!changed);
+
+ ret = nvme_rdma_setup_ctrl(ctrl, true);
+ if (ret)
+ goto out_uninit_ctrl;
+
+ dev_info(ctrl->ctrl.device, "new ctrl: NQN \"%s\", addr %pISpcs\n",
+ nvmf_ctrl_subsysnqn(&ctrl->ctrl), &ctrl->addr);
+
+ mutex_lock(&nvme_rdma_ctrl_mutex);
+ list_add_tail(&ctrl->list, &nvme_rdma_ctrl_list);
+ mutex_unlock(&nvme_rdma_ctrl_mutex);
+
+ return &ctrl->ctrl;
+
+out_uninit_ctrl:
+ nvme_uninit_ctrl(&ctrl->ctrl);
+ nvme_put_ctrl(&ctrl->ctrl);
+ if (ret > 0)
+ ret = -EIO;
+ return ERR_PTR(ret);
+out_kfree_queues:
+ kfree(ctrl->queues);
+out_free_ctrl:
+ kfree(ctrl);
+ return ERR_PTR(ret);
+}
+
+static struct nvmf_transport_ops nvme_rdma_transport = {
+ .name = "rdma",
+ .module = THIS_MODULE,
+ .required_opts = NVMF_OPT_TRADDR,
+ .allowed_opts = NVMF_OPT_TRSVCID | NVMF_OPT_RECONNECT_DELAY |
+ NVMF_OPT_HOST_TRADDR | NVMF_OPT_CTRL_LOSS_TMO |
+ NVMF_OPT_NR_WRITE_QUEUES | NVMF_OPT_NR_POLL_QUEUES |
+ NVMF_OPT_TOS,
+ .create_ctrl = nvme_rdma_create_ctrl,
+};
+
+static void nvme_rdma_remove_one(struct ib_device *ib_device, void *client_data)
+{
+ struct nvme_rdma_ctrl *ctrl;
+ struct nvme_rdma_device *ndev;
+ bool found = false;
+
+ mutex_lock(&device_list_mutex);
+ list_for_each_entry(ndev, &device_list, entry) {
+ if (ndev->dev == ib_device) {
+ found = true;
+ break;
+ }
+ }
+ mutex_unlock(&device_list_mutex);
+
+ if (!found)
+ return;
+
+ /* Delete all controllers using this device */
+ mutex_lock(&nvme_rdma_ctrl_mutex);
+ list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list) {
+ if (ctrl->device->dev != ib_device)
+ continue;
+ nvme_delete_ctrl(&ctrl->ctrl);
+ }
+ mutex_unlock(&nvme_rdma_ctrl_mutex);
+
+ flush_workqueue(nvme_delete_wq);
+}
+
+static struct ib_client nvme_rdma_ib_client = {
+ .name = "nvme_rdma",
+ .remove = nvme_rdma_remove_one
+};
+
+static int __init nvme_rdma_init_module(void)
+{
+ int ret;
+
+ ret = ib_register_client(&nvme_rdma_ib_client);
+ if (ret)
+ return ret;
+
+ ret = nvmf_register_transport(&nvme_rdma_transport);
+ if (ret)
+ goto err_unreg_client;
+
+ return 0;
+
+err_unreg_client:
+ ib_unregister_client(&nvme_rdma_ib_client);
+ return ret;
+}
+
+static void __exit nvme_rdma_cleanup_module(void)
+{
+ struct nvme_rdma_ctrl *ctrl;
+
+ nvmf_unregister_transport(&nvme_rdma_transport);
+ ib_unregister_client(&nvme_rdma_ib_client);
+
+ mutex_lock(&nvme_rdma_ctrl_mutex);
+ list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list)
+ nvme_delete_ctrl(&ctrl->ctrl);
+ mutex_unlock(&nvme_rdma_ctrl_mutex);
+ flush_workqueue(nvme_delete_wq);
+}
+
+module_init(nvme_rdma_init_module);
+module_exit(nvme_rdma_cleanup_module);
+
+MODULE_LICENSE("GPL v2");
diff --git a/drivers/nvme/host/sysfs.c b/drivers/nvme/host/sysfs.c
new file mode 100644
index 0000000000..212e1b05d2
--- /dev/null
+++ b/drivers/nvme/host/sysfs.c
@@ -0,0 +1,668 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * Sysfs interface for the NVMe core driver.
+ *
+ * Copyright (c) 2011-2014, Intel Corporation.
+ */
+
+#include <linux/nvme-auth.h>
+
+#include "nvme.h"
+#include "fabrics.h"
+
+static ssize_t nvme_sysfs_reset(struct device *dev,
+ struct device_attribute *attr, const char *buf,
+ size_t count)
+{
+ struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
+ int ret;
+
+ ret = nvme_reset_ctrl_sync(ctrl);
+ if (ret < 0)
+ return ret;
+ return count;
+}
+static DEVICE_ATTR(reset_controller, S_IWUSR, NULL, nvme_sysfs_reset);
+
+static ssize_t nvme_sysfs_rescan(struct device *dev,
+ struct device_attribute *attr, const char *buf,
+ size_t count)
+{
+ struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
+
+ nvme_queue_scan(ctrl);
+ return count;
+}
+static DEVICE_ATTR(rescan_controller, S_IWUSR, NULL, nvme_sysfs_rescan);
+
+static inline struct nvme_ns_head *dev_to_ns_head(struct device *dev)
+{
+ struct gendisk *disk = dev_to_disk(dev);
+
+ if (disk->fops == &nvme_bdev_ops)
+ return nvme_get_ns_from_dev(dev)->head;
+ else
+ return disk->private_data;
+}
+
+static ssize_t wwid_show(struct device *dev, struct device_attribute *attr,
+ char *buf)
+{
+ struct nvme_ns_head *head = dev_to_ns_head(dev);
+ struct nvme_ns_ids *ids = &head->ids;
+ struct nvme_subsystem *subsys = head->subsys;
+ int serial_len = sizeof(subsys->serial);
+ int model_len = sizeof(subsys->model);
+
+ if (!uuid_is_null(&ids->uuid))
+ return sysfs_emit(buf, "uuid.%pU\n", &ids->uuid);
+
+ if (memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
+ return sysfs_emit(buf, "eui.%16phN\n", ids->nguid);
+
+ if (memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
+ return sysfs_emit(buf, "eui.%8phN\n", ids->eui64);
+
+ while (serial_len > 0 && (subsys->serial[serial_len - 1] == ' ' ||
+ subsys->serial[serial_len - 1] == '\0'))
+ serial_len--;
+ while (model_len > 0 && (subsys->model[model_len - 1] == ' ' ||
+ subsys->model[model_len - 1] == '\0'))
+ model_len--;
+
+ return sysfs_emit(buf, "nvme.%04x-%*phN-%*phN-%08x\n", subsys->vendor_id,
+ serial_len, subsys->serial, model_len, subsys->model,
+ head->ns_id);
+}
+static DEVICE_ATTR_RO(wwid);
+
+static ssize_t nguid_show(struct device *dev, struct device_attribute *attr,
+ char *buf)
+{
+ return sysfs_emit(buf, "%pU\n", dev_to_ns_head(dev)->ids.nguid);
+}
+static DEVICE_ATTR_RO(nguid);
+
+static ssize_t uuid_show(struct device *dev, struct device_attribute *attr,
+ char *buf)
+{
+ struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids;
+
+ /* For backward compatibility expose the NGUID to userspace if
+ * we have no UUID set
+ */
+ if (uuid_is_null(&ids->uuid)) {
+ dev_warn_once(dev,
+ "No UUID available providing old NGUID\n");
+ return sysfs_emit(buf, "%pU\n", ids->nguid);
+ }
+ return sysfs_emit(buf, "%pU\n", &ids->uuid);
+}
+static DEVICE_ATTR_RO(uuid);
+
+static ssize_t eui_show(struct device *dev, struct device_attribute *attr,
+ char *buf)
+{
+ return sysfs_emit(buf, "%8ph\n", dev_to_ns_head(dev)->ids.eui64);
+}
+static DEVICE_ATTR_RO(eui);
+
+static ssize_t nsid_show(struct device *dev, struct device_attribute *attr,
+ char *buf)
+{
+ return sysfs_emit(buf, "%d\n", dev_to_ns_head(dev)->ns_id);
+}
+static DEVICE_ATTR_RO(nsid);
+
+static struct attribute *nvme_ns_id_attrs[] = {
+ &dev_attr_wwid.attr,
+ &dev_attr_uuid.attr,
+ &dev_attr_nguid.attr,
+ &dev_attr_eui.attr,
+ &dev_attr_nsid.attr,
+#ifdef CONFIG_NVME_MULTIPATH
+ &dev_attr_ana_grpid.attr,
+ &dev_attr_ana_state.attr,
+#endif
+ NULL,
+};
+
+static umode_t nvme_ns_id_attrs_are_visible(struct kobject *kobj,
+ struct attribute *a, int n)
+{
+ struct device *dev = container_of(kobj, struct device, kobj);
+ struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids;
+
+ if (a == &dev_attr_uuid.attr) {
+ if (uuid_is_null(&ids->uuid) &&
+ !memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
+ return 0;
+ }
+ if (a == &dev_attr_nguid.attr) {
+ if (!memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
+ return 0;
+ }
+ if (a == &dev_attr_eui.attr) {
+ if (!memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
+ return 0;
+ }
+#ifdef CONFIG_NVME_MULTIPATH
+ if (a == &dev_attr_ana_grpid.attr || a == &dev_attr_ana_state.attr) {
+ if (dev_to_disk(dev)->fops != &nvme_bdev_ops) /* per-path attr */
+ return 0;
+ if (!nvme_ctrl_use_ana(nvme_get_ns_from_dev(dev)->ctrl))
+ return 0;
+ }
+#endif
+ return a->mode;
+}
+
+static const struct attribute_group nvme_ns_id_attr_group = {
+ .attrs = nvme_ns_id_attrs,
+ .is_visible = nvme_ns_id_attrs_are_visible,
+};
+
+const struct attribute_group *nvme_ns_id_attr_groups[] = {
+ &nvme_ns_id_attr_group,
+ NULL,
+};
+
+#define nvme_show_str_function(field) \
+static ssize_t field##_show(struct device *dev, \
+ struct device_attribute *attr, char *buf) \
+{ \
+ struct nvme_ctrl *ctrl = dev_get_drvdata(dev); \
+ return sysfs_emit(buf, "%.*s\n", \
+ (int)sizeof(ctrl->subsys->field), ctrl->subsys->field); \
+} \
+static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
+
+nvme_show_str_function(model);
+nvme_show_str_function(serial);
+nvme_show_str_function(firmware_rev);
+
+#define nvme_show_int_function(field) \
+static ssize_t field##_show(struct device *dev, \
+ struct device_attribute *attr, char *buf) \
+{ \
+ struct nvme_ctrl *ctrl = dev_get_drvdata(dev); \
+ return sysfs_emit(buf, "%d\n", ctrl->field); \
+} \
+static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
+
+nvme_show_int_function(cntlid);
+nvme_show_int_function(numa_node);
+nvme_show_int_function(queue_count);
+nvme_show_int_function(sqsize);
+nvme_show_int_function(kato);
+
+static ssize_t nvme_sysfs_delete(struct device *dev,
+ struct device_attribute *attr, const char *buf,
+ size_t count)
+{
+ struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
+
+ if (!test_bit(NVME_CTRL_STARTED_ONCE, &ctrl->flags))
+ return -EBUSY;
+
+ if (device_remove_file_self(dev, attr))
+ nvme_delete_ctrl_sync(ctrl);
+ return count;
+}
+static DEVICE_ATTR(delete_controller, S_IWUSR, NULL, nvme_sysfs_delete);
+
+static ssize_t nvme_sysfs_show_transport(struct device *dev,
+ struct device_attribute *attr,
+ char *buf)
+{
+ struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
+
+ return sysfs_emit(buf, "%s\n", ctrl->ops->name);
+}
+static DEVICE_ATTR(transport, S_IRUGO, nvme_sysfs_show_transport, NULL);
+
+static ssize_t nvme_sysfs_show_state(struct device *dev,
+ struct device_attribute *attr,
+ char *buf)
+{
+ struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
+ static const char *const state_name[] = {
+ [NVME_CTRL_NEW] = "new",
+ [NVME_CTRL_LIVE] = "live",
+ [NVME_CTRL_RESETTING] = "resetting",
+ [NVME_CTRL_CONNECTING] = "connecting",
+ [NVME_CTRL_DELETING] = "deleting",
+ [NVME_CTRL_DELETING_NOIO]= "deleting (no IO)",
+ [NVME_CTRL_DEAD] = "dead",
+ };
+
+ if ((unsigned)ctrl->state < ARRAY_SIZE(state_name) &&
+ state_name[ctrl->state])
+ return sysfs_emit(buf, "%s\n", state_name[ctrl->state]);
+
+ return sysfs_emit(buf, "unknown state\n");
+}
+
+static DEVICE_ATTR(state, S_IRUGO, nvme_sysfs_show_state, NULL);
+
+static ssize_t nvme_sysfs_show_subsysnqn(struct device *dev,
+ struct device_attribute *attr,
+ char *buf)
+{
+ struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
+
+ return sysfs_emit(buf, "%s\n", ctrl->subsys->subnqn);
+}
+static DEVICE_ATTR(subsysnqn, S_IRUGO, nvme_sysfs_show_subsysnqn, NULL);
+
+static ssize_t nvme_sysfs_show_hostnqn(struct device *dev,
+ struct device_attribute *attr,
+ char *buf)
+{
+ struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
+
+ return sysfs_emit(buf, "%s\n", ctrl->opts->host->nqn);
+}
+static DEVICE_ATTR(hostnqn, S_IRUGO, nvme_sysfs_show_hostnqn, NULL);
+
+static ssize_t nvme_sysfs_show_hostid(struct device *dev,
+ struct device_attribute *attr,
+ char *buf)
+{
+ struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
+
+ return sysfs_emit(buf, "%pU\n", &ctrl->opts->host->id);
+}
+static DEVICE_ATTR(hostid, S_IRUGO, nvme_sysfs_show_hostid, NULL);
+
+static ssize_t nvme_sysfs_show_address(struct device *dev,
+ struct device_attribute *attr,
+ char *buf)
+{
+ struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
+
+ return ctrl->ops->get_address(ctrl, buf, PAGE_SIZE);
+}
+static DEVICE_ATTR(address, S_IRUGO, nvme_sysfs_show_address, NULL);
+
+static ssize_t nvme_ctrl_loss_tmo_show(struct device *dev,
+ struct device_attribute *attr, char *buf)
+{
+ struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
+ struct nvmf_ctrl_options *opts = ctrl->opts;
+
+ if (ctrl->opts->max_reconnects == -1)
+ return sysfs_emit(buf, "off\n");
+ return sysfs_emit(buf, "%d\n",
+ opts->max_reconnects * opts->reconnect_delay);
+}
+
+static ssize_t nvme_ctrl_loss_tmo_store(struct device *dev,
+ struct device_attribute *attr, const char *buf, size_t count)
+{
+ struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
+ struct nvmf_ctrl_options *opts = ctrl->opts;
+ int ctrl_loss_tmo, err;
+
+ err = kstrtoint(buf, 10, &ctrl_loss_tmo);
+ if (err)
+ return -EINVAL;
+
+ if (ctrl_loss_tmo < 0)
+ opts->max_reconnects = -1;
+ else
+ opts->max_reconnects = DIV_ROUND_UP(ctrl_loss_tmo,
+ opts->reconnect_delay);
+ return count;
+}
+static DEVICE_ATTR(ctrl_loss_tmo, S_IRUGO | S_IWUSR,
+ nvme_ctrl_loss_tmo_show, nvme_ctrl_loss_tmo_store);
+
+static ssize_t nvme_ctrl_reconnect_delay_show(struct device *dev,
+ struct device_attribute *attr, char *buf)
+{
+ struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
+
+ if (ctrl->opts->reconnect_delay == -1)
+ return sysfs_emit(buf, "off\n");
+ return sysfs_emit(buf, "%d\n", ctrl->opts->reconnect_delay);
+}
+
+static ssize_t nvme_ctrl_reconnect_delay_store(struct device *dev,
+ struct device_attribute *attr, const char *buf, size_t count)
+{
+ struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
+ unsigned int v;
+ int err;
+
+ err = kstrtou32(buf, 10, &v);
+ if (err)
+ return err;
+
+ ctrl->opts->reconnect_delay = v;
+ return count;
+}
+static DEVICE_ATTR(reconnect_delay, S_IRUGO | S_IWUSR,
+ nvme_ctrl_reconnect_delay_show, nvme_ctrl_reconnect_delay_store);
+
+static ssize_t nvme_ctrl_fast_io_fail_tmo_show(struct device *dev,
+ struct device_attribute *attr, char *buf)
+{
+ struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
+
+ if (ctrl->opts->fast_io_fail_tmo == -1)
+ return sysfs_emit(buf, "off\n");
+ return sysfs_emit(buf, "%d\n", ctrl->opts->fast_io_fail_tmo);
+}
+
+static ssize_t nvme_ctrl_fast_io_fail_tmo_store(struct device *dev,
+ struct device_attribute *attr, const char *buf, size_t count)
+{
+ struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
+ struct nvmf_ctrl_options *opts = ctrl->opts;
+ int fast_io_fail_tmo, err;
+
+ err = kstrtoint(buf, 10, &fast_io_fail_tmo);
+ if (err)
+ return -EINVAL;
+
+ if (fast_io_fail_tmo < 0)
+ opts->fast_io_fail_tmo = -1;
+ else
+ opts->fast_io_fail_tmo = fast_io_fail_tmo;
+ return count;
+}
+static DEVICE_ATTR(fast_io_fail_tmo, S_IRUGO | S_IWUSR,
+ nvme_ctrl_fast_io_fail_tmo_show, nvme_ctrl_fast_io_fail_tmo_store);
+
+static ssize_t cntrltype_show(struct device *dev,
+ struct device_attribute *attr, char *buf)
+{
+ static const char * const type[] = {
+ [NVME_CTRL_IO] = "io\n",
+ [NVME_CTRL_DISC] = "discovery\n",
+ [NVME_CTRL_ADMIN] = "admin\n",
+ };
+ struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
+
+ if (ctrl->cntrltype > NVME_CTRL_ADMIN || !type[ctrl->cntrltype])
+ return sysfs_emit(buf, "reserved\n");
+
+ return sysfs_emit(buf, type[ctrl->cntrltype]);
+}
+static DEVICE_ATTR_RO(cntrltype);
+
+static ssize_t dctype_show(struct device *dev,
+ struct device_attribute *attr, char *buf)
+{
+ static const char * const type[] = {
+ [NVME_DCTYPE_NOT_REPORTED] = "none\n",
+ [NVME_DCTYPE_DDC] = "ddc\n",
+ [NVME_DCTYPE_CDC] = "cdc\n",
+ };
+ struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
+
+ if (ctrl->dctype > NVME_DCTYPE_CDC || !type[ctrl->dctype])
+ return sysfs_emit(buf, "reserved\n");
+
+ return sysfs_emit(buf, type[ctrl->dctype]);
+}
+static DEVICE_ATTR_RO(dctype);
+
+#ifdef CONFIG_NVME_AUTH
+static ssize_t nvme_ctrl_dhchap_secret_show(struct device *dev,
+ struct device_attribute *attr, char *buf)
+{
+ struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
+ struct nvmf_ctrl_options *opts = ctrl->opts;
+
+ if (!opts->dhchap_secret)
+ return sysfs_emit(buf, "none\n");
+ return sysfs_emit(buf, "%s\n", opts->dhchap_secret);
+}
+
+static ssize_t nvme_ctrl_dhchap_secret_store(struct device *dev,
+ struct device_attribute *attr, const char *buf, size_t count)
+{
+ struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
+ struct nvmf_ctrl_options *opts = ctrl->opts;
+ char *dhchap_secret;
+
+ if (!ctrl->opts->dhchap_secret)
+ return -EINVAL;
+ if (count < 7)
+ return -EINVAL;
+ if (memcmp(buf, "DHHC-1:", 7))
+ return -EINVAL;
+
+ dhchap_secret = kzalloc(count + 1, GFP_KERNEL);
+ if (!dhchap_secret)
+ return -ENOMEM;
+ memcpy(dhchap_secret, buf, count);
+ nvme_auth_stop(ctrl);
+ if (strcmp(dhchap_secret, opts->dhchap_secret)) {
+ struct nvme_dhchap_key *key, *host_key;
+ int ret;
+
+ ret = nvme_auth_generate_key(dhchap_secret, &key);
+ if (ret) {
+ kfree(dhchap_secret);
+ return ret;
+ }
+ kfree(opts->dhchap_secret);
+ opts->dhchap_secret = dhchap_secret;
+ host_key = ctrl->host_key;
+ mutex_lock(&ctrl->dhchap_auth_mutex);
+ ctrl->host_key = key;
+ mutex_unlock(&ctrl->dhchap_auth_mutex);
+ nvme_auth_free_key(host_key);
+ } else
+ kfree(dhchap_secret);
+ /* Start re-authentication */
+ dev_info(ctrl->device, "re-authenticating controller\n");
+ queue_work(nvme_wq, &ctrl->dhchap_auth_work);
+
+ return count;
+}
+
+static DEVICE_ATTR(dhchap_secret, S_IRUGO | S_IWUSR,
+ nvme_ctrl_dhchap_secret_show, nvme_ctrl_dhchap_secret_store);
+
+static ssize_t nvme_ctrl_dhchap_ctrl_secret_show(struct device *dev,
+ struct device_attribute *attr, char *buf)
+{
+ struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
+ struct nvmf_ctrl_options *opts = ctrl->opts;
+
+ if (!opts->dhchap_ctrl_secret)
+ return sysfs_emit(buf, "none\n");
+ return sysfs_emit(buf, "%s\n", opts->dhchap_ctrl_secret);
+}
+
+static ssize_t nvme_ctrl_dhchap_ctrl_secret_store(struct device *dev,
+ struct device_attribute *attr, const char *buf, size_t count)
+{
+ struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
+ struct nvmf_ctrl_options *opts = ctrl->opts;
+ char *dhchap_secret;
+
+ if (!ctrl->opts->dhchap_ctrl_secret)
+ return -EINVAL;
+ if (count < 7)
+ return -EINVAL;
+ if (memcmp(buf, "DHHC-1:", 7))
+ return -EINVAL;
+
+ dhchap_secret = kzalloc(count + 1, GFP_KERNEL);
+ if (!dhchap_secret)
+ return -ENOMEM;
+ memcpy(dhchap_secret, buf, count);
+ nvme_auth_stop(ctrl);
+ if (strcmp(dhchap_secret, opts->dhchap_ctrl_secret)) {
+ struct nvme_dhchap_key *key, *ctrl_key;
+ int ret;
+
+ ret = nvme_auth_generate_key(dhchap_secret, &key);
+ if (ret) {
+ kfree(dhchap_secret);
+ return ret;
+ }
+ kfree(opts->dhchap_ctrl_secret);
+ opts->dhchap_ctrl_secret = dhchap_secret;
+ ctrl_key = ctrl->ctrl_key;
+ mutex_lock(&ctrl->dhchap_auth_mutex);
+ ctrl->ctrl_key = key;
+ mutex_unlock(&ctrl->dhchap_auth_mutex);
+ nvme_auth_free_key(ctrl_key);
+ } else
+ kfree(dhchap_secret);
+ /* Start re-authentication */
+ dev_info(ctrl->device, "re-authenticating controller\n");
+ queue_work(nvme_wq, &ctrl->dhchap_auth_work);
+
+ return count;
+}
+
+static DEVICE_ATTR(dhchap_ctrl_secret, S_IRUGO | S_IWUSR,
+ nvme_ctrl_dhchap_ctrl_secret_show, nvme_ctrl_dhchap_ctrl_secret_store);
+#endif
+
+static struct attribute *nvme_dev_attrs[] = {
+ &dev_attr_reset_controller.attr,
+ &dev_attr_rescan_controller.attr,
+ &dev_attr_model.attr,
+ &dev_attr_serial.attr,
+ &dev_attr_firmware_rev.attr,
+ &dev_attr_cntlid.attr,
+ &dev_attr_delete_controller.attr,
+ &dev_attr_transport.attr,
+ &dev_attr_subsysnqn.attr,
+ &dev_attr_address.attr,
+ &dev_attr_state.attr,
+ &dev_attr_numa_node.attr,
+ &dev_attr_queue_count.attr,
+ &dev_attr_sqsize.attr,
+ &dev_attr_hostnqn.attr,
+ &dev_attr_hostid.attr,
+ &dev_attr_ctrl_loss_tmo.attr,
+ &dev_attr_reconnect_delay.attr,
+ &dev_attr_fast_io_fail_tmo.attr,
+ &dev_attr_kato.attr,
+ &dev_attr_cntrltype.attr,
+ &dev_attr_dctype.attr,
+#ifdef CONFIG_NVME_AUTH
+ &dev_attr_dhchap_secret.attr,
+ &dev_attr_dhchap_ctrl_secret.attr,
+#endif
+ NULL
+};
+
+static umode_t nvme_dev_attrs_are_visible(struct kobject *kobj,
+ struct attribute *a, int n)
+{
+ struct device *dev = container_of(kobj, struct device, kobj);
+ struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
+
+ if (a == &dev_attr_delete_controller.attr && !ctrl->ops->delete_ctrl)
+ return 0;
+ if (a == &dev_attr_address.attr && !ctrl->ops->get_address)
+ return 0;
+ if (a == &dev_attr_hostnqn.attr && !ctrl->opts)
+ return 0;
+ if (a == &dev_attr_hostid.attr && !ctrl->opts)
+ return 0;
+ if (a == &dev_attr_ctrl_loss_tmo.attr && !ctrl->opts)
+ return 0;
+ if (a == &dev_attr_reconnect_delay.attr && !ctrl->opts)
+ return 0;
+ if (a == &dev_attr_fast_io_fail_tmo.attr && !ctrl->opts)
+ return 0;
+#ifdef CONFIG_NVME_AUTH
+ if (a == &dev_attr_dhchap_secret.attr && !ctrl->opts)
+ return 0;
+ if (a == &dev_attr_dhchap_ctrl_secret.attr && !ctrl->opts)
+ return 0;
+#endif
+
+ return a->mode;
+}
+
+const struct attribute_group nvme_dev_attrs_group = {
+ .attrs = nvme_dev_attrs,
+ .is_visible = nvme_dev_attrs_are_visible,
+};
+EXPORT_SYMBOL_GPL(nvme_dev_attrs_group);
+
+const struct attribute_group *nvme_dev_attr_groups[] = {
+ &nvme_dev_attrs_group,
+ NULL,
+};
+
+#define SUBSYS_ATTR_RO(_name, _mode, _show) \
+ struct device_attribute subsys_attr_##_name = \
+ __ATTR(_name, _mode, _show, NULL)
+
+static ssize_t nvme_subsys_show_nqn(struct device *dev,
+ struct device_attribute *attr,
+ char *buf)
+{
+ struct nvme_subsystem *subsys =
+ container_of(dev, struct nvme_subsystem, dev);
+
+ return sysfs_emit(buf, "%s\n", subsys->subnqn);
+}
+static SUBSYS_ATTR_RO(subsysnqn, S_IRUGO, nvme_subsys_show_nqn);
+
+static ssize_t nvme_subsys_show_type(struct device *dev,
+ struct device_attribute *attr,
+ char *buf)
+{
+ struct nvme_subsystem *subsys =
+ container_of(dev, struct nvme_subsystem, dev);
+
+ switch (subsys->subtype) {
+ case NVME_NQN_DISC:
+ return sysfs_emit(buf, "discovery\n");
+ case NVME_NQN_NVME:
+ return sysfs_emit(buf, "nvm\n");
+ default:
+ return sysfs_emit(buf, "reserved\n");
+ }
+}
+static SUBSYS_ATTR_RO(subsystype, S_IRUGO, nvme_subsys_show_type);
+
+#define nvme_subsys_show_str_function(field) \
+static ssize_t subsys_##field##_show(struct device *dev, \
+ struct device_attribute *attr, char *buf) \
+{ \
+ struct nvme_subsystem *subsys = \
+ container_of(dev, struct nvme_subsystem, dev); \
+ return sysfs_emit(buf, "%.*s\n", \
+ (int)sizeof(subsys->field), subsys->field); \
+} \
+static SUBSYS_ATTR_RO(field, S_IRUGO, subsys_##field##_show);
+
+nvme_subsys_show_str_function(model);
+nvme_subsys_show_str_function(serial);
+nvme_subsys_show_str_function(firmware_rev);
+
+static struct attribute *nvme_subsys_attrs[] = {
+ &subsys_attr_model.attr,
+ &subsys_attr_serial.attr,
+ &subsys_attr_firmware_rev.attr,
+ &subsys_attr_subsysnqn.attr,
+ &subsys_attr_subsystype.attr,
+#ifdef CONFIG_NVME_MULTIPATH
+ &subsys_attr_iopolicy.attr,
+#endif
+ NULL,
+};
+
+static const struct attribute_group nvme_subsys_attrs_group = {
+ .attrs = nvme_subsys_attrs,
+};
+
+const struct attribute_group *nvme_subsys_attrs_groups[] = {
+ &nvme_subsys_attrs_group,
+ NULL,
+};
diff --git a/drivers/nvme/host/tcp.c b/drivers/nvme/host/tcp.c
new file mode 100644
index 0000000000..f1d62d7442
--- /dev/null
+++ b/drivers/nvme/host/tcp.c
@@ -0,0 +1,2673 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * NVMe over Fabrics TCP host.
+ * Copyright (c) 2018 Lightbits Labs. All rights reserved.
+ */
+#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
+#include <linux/module.h>
+#include <linux/init.h>
+#include <linux/slab.h>
+#include <linux/err.h>
+#include <linux/nvme-tcp.h>
+#include <net/sock.h>
+#include <net/tcp.h>
+#include <linux/blk-mq.h>
+#include <crypto/hash.h>
+#include <net/busy_poll.h>
+#include <trace/events/sock.h>
+
+#include "nvme.h"
+#include "fabrics.h"
+
+struct nvme_tcp_queue;
+
+/* Define the socket priority to use for connections were it is desirable
+ * that the NIC consider performing optimized packet processing or filtering.
+ * A non-zero value being sufficient to indicate general consideration of any
+ * possible optimization. Making it a module param allows for alternative
+ * values that may be unique for some NIC implementations.
+ */
+static int so_priority;
+module_param(so_priority, int, 0644);
+MODULE_PARM_DESC(so_priority, "nvme tcp socket optimize priority");
+
+#ifdef CONFIG_DEBUG_LOCK_ALLOC
+/* lockdep can detect a circular dependency of the form
+ * sk_lock -> mmap_lock (page fault) -> fs locks -> sk_lock
+ * because dependencies are tracked for both nvme-tcp and user contexts. Using
+ * a separate class prevents lockdep from conflating nvme-tcp socket use with
+ * user-space socket API use.
+ */
+static struct lock_class_key nvme_tcp_sk_key[2];
+static struct lock_class_key nvme_tcp_slock_key[2];
+
+static void nvme_tcp_reclassify_socket(struct socket *sock)
+{
+ struct sock *sk = sock->sk;
+
+ if (WARN_ON_ONCE(!sock_allow_reclassification(sk)))
+ return;
+
+ switch (sk->sk_family) {
+ case AF_INET:
+ sock_lock_init_class_and_name(sk, "slock-AF_INET-NVME",
+ &nvme_tcp_slock_key[0],
+ "sk_lock-AF_INET-NVME",
+ &nvme_tcp_sk_key[0]);
+ break;
+ case AF_INET6:
+ sock_lock_init_class_and_name(sk, "slock-AF_INET6-NVME",
+ &nvme_tcp_slock_key[1],
+ "sk_lock-AF_INET6-NVME",
+ &nvme_tcp_sk_key[1]);
+ break;
+ default:
+ WARN_ON_ONCE(1);
+ }
+}
+#else
+static void nvme_tcp_reclassify_socket(struct socket *sock) { }
+#endif
+
+enum nvme_tcp_send_state {
+ NVME_TCP_SEND_CMD_PDU = 0,
+ NVME_TCP_SEND_H2C_PDU,
+ NVME_TCP_SEND_DATA,
+ NVME_TCP_SEND_DDGST,
+};
+
+struct nvme_tcp_request {
+ struct nvme_request req;
+ void *pdu;
+ struct nvme_tcp_queue *queue;
+ u32 data_len;
+ u32 pdu_len;
+ u32 pdu_sent;
+ u32 h2cdata_left;
+ u32 h2cdata_offset;
+ u16 ttag;
+ __le16 status;
+ struct list_head entry;
+ struct llist_node lentry;
+ __le32 ddgst;
+
+ struct bio *curr_bio;
+ struct iov_iter iter;
+
+ /* send state */
+ size_t offset;
+ size_t data_sent;
+ enum nvme_tcp_send_state state;
+};
+
+enum nvme_tcp_queue_flags {
+ NVME_TCP_Q_ALLOCATED = 0,
+ NVME_TCP_Q_LIVE = 1,
+ NVME_TCP_Q_POLLING = 2,
+};
+
+enum nvme_tcp_recv_state {
+ NVME_TCP_RECV_PDU = 0,
+ NVME_TCP_RECV_DATA,
+ NVME_TCP_RECV_DDGST,
+};
+
+struct nvme_tcp_ctrl;
+struct nvme_tcp_queue {
+ struct socket *sock;
+ struct work_struct io_work;
+ int io_cpu;
+
+ struct mutex queue_lock;
+ struct mutex send_mutex;
+ struct llist_head req_list;
+ struct list_head send_list;
+
+ /* recv state */
+ void *pdu;
+ int pdu_remaining;
+ int pdu_offset;
+ size_t data_remaining;
+ size_t ddgst_remaining;
+ unsigned int nr_cqe;
+
+ /* send state */
+ struct nvme_tcp_request *request;
+
+ u32 maxh2cdata;
+ size_t cmnd_capsule_len;
+ struct nvme_tcp_ctrl *ctrl;
+ unsigned long flags;
+ bool rd_enabled;
+
+ bool hdr_digest;
+ bool data_digest;
+ struct ahash_request *rcv_hash;
+ struct ahash_request *snd_hash;
+ __le32 exp_ddgst;
+ __le32 recv_ddgst;
+
+ struct page_frag_cache pf_cache;
+
+ void (*state_change)(struct sock *);
+ void (*data_ready)(struct sock *);
+ void (*write_space)(struct sock *);
+};
+
+struct nvme_tcp_ctrl {
+ /* read only in the hot path */
+ struct nvme_tcp_queue *queues;
+ struct blk_mq_tag_set tag_set;
+
+ /* other member variables */
+ struct list_head list;
+ struct blk_mq_tag_set admin_tag_set;
+ struct sockaddr_storage addr;
+ struct sockaddr_storage src_addr;
+ struct nvme_ctrl ctrl;
+
+ struct work_struct err_work;
+ struct delayed_work connect_work;
+ struct nvme_tcp_request async_req;
+ u32 io_queues[HCTX_MAX_TYPES];
+};
+
+static LIST_HEAD(nvme_tcp_ctrl_list);
+static DEFINE_MUTEX(nvme_tcp_ctrl_mutex);
+static struct workqueue_struct *nvme_tcp_wq;
+static const struct blk_mq_ops nvme_tcp_mq_ops;
+static const struct blk_mq_ops nvme_tcp_admin_mq_ops;
+static int nvme_tcp_try_send(struct nvme_tcp_queue *queue);
+
+static inline struct nvme_tcp_ctrl *to_tcp_ctrl(struct nvme_ctrl *ctrl)
+{
+ return container_of(ctrl, struct nvme_tcp_ctrl, ctrl);
+}
+
+static inline int nvme_tcp_queue_id(struct nvme_tcp_queue *queue)
+{
+ return queue - queue->ctrl->queues;
+}
+
+static inline struct blk_mq_tags *nvme_tcp_tagset(struct nvme_tcp_queue *queue)
+{
+ u32 queue_idx = nvme_tcp_queue_id(queue);
+
+ if (queue_idx == 0)
+ return queue->ctrl->admin_tag_set.tags[queue_idx];
+ return queue->ctrl->tag_set.tags[queue_idx - 1];
+}
+
+static inline u8 nvme_tcp_hdgst_len(struct nvme_tcp_queue *queue)
+{
+ return queue->hdr_digest ? NVME_TCP_DIGEST_LENGTH : 0;
+}
+
+static inline u8 nvme_tcp_ddgst_len(struct nvme_tcp_queue *queue)
+{
+ return queue->data_digest ? NVME_TCP_DIGEST_LENGTH : 0;
+}
+
+static inline void *nvme_tcp_req_cmd_pdu(struct nvme_tcp_request *req)
+{
+ return req->pdu;
+}
+
+static inline void *nvme_tcp_req_data_pdu(struct nvme_tcp_request *req)
+{
+ /* use the pdu space in the back for the data pdu */
+ return req->pdu + sizeof(struct nvme_tcp_cmd_pdu) -
+ sizeof(struct nvme_tcp_data_pdu);
+}
+
+static inline size_t nvme_tcp_inline_data_size(struct nvme_tcp_request *req)
+{
+ if (nvme_is_fabrics(req->req.cmd))
+ return NVME_TCP_ADMIN_CCSZ;
+ return req->queue->cmnd_capsule_len - sizeof(struct nvme_command);
+}
+
+static inline bool nvme_tcp_async_req(struct nvme_tcp_request *req)
+{
+ return req == &req->queue->ctrl->async_req;
+}
+
+static inline bool nvme_tcp_has_inline_data(struct nvme_tcp_request *req)
+{
+ struct request *rq;
+
+ if (unlikely(nvme_tcp_async_req(req)))
+ return false; /* async events don't have a request */
+
+ rq = blk_mq_rq_from_pdu(req);
+
+ return rq_data_dir(rq) == WRITE && req->data_len &&
+ req->data_len <= nvme_tcp_inline_data_size(req);
+}
+
+static inline struct page *nvme_tcp_req_cur_page(struct nvme_tcp_request *req)
+{
+ return req->iter.bvec->bv_page;
+}
+
+static inline size_t nvme_tcp_req_cur_offset(struct nvme_tcp_request *req)
+{
+ return req->iter.bvec->bv_offset + req->iter.iov_offset;
+}
+
+static inline size_t nvme_tcp_req_cur_length(struct nvme_tcp_request *req)
+{
+ return min_t(size_t, iov_iter_single_seg_count(&req->iter),
+ req->pdu_len - req->pdu_sent);
+}
+
+static inline size_t nvme_tcp_pdu_data_left(struct nvme_tcp_request *req)
+{
+ return rq_data_dir(blk_mq_rq_from_pdu(req)) == WRITE ?
+ req->pdu_len - req->pdu_sent : 0;
+}
+
+static inline size_t nvme_tcp_pdu_last_send(struct nvme_tcp_request *req,
+ int len)
+{
+ return nvme_tcp_pdu_data_left(req) <= len;
+}
+
+static void nvme_tcp_init_iter(struct nvme_tcp_request *req,
+ unsigned int dir)
+{
+ struct request *rq = blk_mq_rq_from_pdu(req);
+ struct bio_vec *vec;
+ unsigned int size;
+ int nr_bvec;
+ size_t offset;
+
+ if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) {
+ vec = &rq->special_vec;
+ nr_bvec = 1;
+ size = blk_rq_payload_bytes(rq);
+ offset = 0;
+ } else {
+ struct bio *bio = req->curr_bio;
+ struct bvec_iter bi;
+ struct bio_vec bv;
+
+ vec = __bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter);
+ nr_bvec = 0;
+ bio_for_each_bvec(bv, bio, bi) {
+ nr_bvec++;
+ }
+ size = bio->bi_iter.bi_size;
+ offset = bio->bi_iter.bi_bvec_done;
+ }
+
+ iov_iter_bvec(&req->iter, dir, vec, nr_bvec, size);
+ req->iter.iov_offset = offset;
+}
+
+static inline void nvme_tcp_advance_req(struct nvme_tcp_request *req,
+ int len)
+{
+ req->data_sent += len;
+ req->pdu_sent += len;
+ iov_iter_advance(&req->iter, len);
+ if (!iov_iter_count(&req->iter) &&
+ req->data_sent < req->data_len) {
+ req->curr_bio = req->curr_bio->bi_next;
+ nvme_tcp_init_iter(req, ITER_SOURCE);
+ }
+}
+
+static inline void nvme_tcp_send_all(struct nvme_tcp_queue *queue)
+{
+ int ret;
+
+ /* drain the send queue as much as we can... */
+ do {
+ ret = nvme_tcp_try_send(queue);
+ } while (ret > 0);
+}
+
+static inline bool nvme_tcp_queue_more(struct nvme_tcp_queue *queue)
+{
+ return !list_empty(&queue->send_list) ||
+ !llist_empty(&queue->req_list);
+}
+
+static inline void nvme_tcp_queue_request(struct nvme_tcp_request *req,
+ bool sync, bool last)
+{
+ struct nvme_tcp_queue *queue = req->queue;
+ bool empty;
+
+ empty = llist_add(&req->lentry, &queue->req_list) &&
+ list_empty(&queue->send_list) && !queue->request;
+
+ /*
+ * if we're the first on the send_list and we can try to send
+ * directly, otherwise queue io_work. Also, only do that if we
+ * are on the same cpu, so we don't introduce contention.
+ */
+ if (queue->io_cpu == raw_smp_processor_id() &&
+ sync && empty && mutex_trylock(&queue->send_mutex)) {
+ nvme_tcp_send_all(queue);
+ mutex_unlock(&queue->send_mutex);
+ }
+
+ if (last && nvme_tcp_queue_more(queue))
+ queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
+}
+
+static void nvme_tcp_process_req_list(struct nvme_tcp_queue *queue)
+{
+ struct nvme_tcp_request *req;
+ struct llist_node *node;
+
+ for (node = llist_del_all(&queue->req_list); node; node = node->next) {
+ req = llist_entry(node, struct nvme_tcp_request, lentry);
+ list_add(&req->entry, &queue->send_list);
+ }
+}
+
+static inline struct nvme_tcp_request *
+nvme_tcp_fetch_request(struct nvme_tcp_queue *queue)
+{
+ struct nvme_tcp_request *req;
+
+ req = list_first_entry_or_null(&queue->send_list,
+ struct nvme_tcp_request, entry);
+ if (!req) {
+ nvme_tcp_process_req_list(queue);
+ req = list_first_entry_or_null(&queue->send_list,
+ struct nvme_tcp_request, entry);
+ if (unlikely(!req))
+ return NULL;
+ }
+
+ list_del(&req->entry);
+ return req;
+}
+
+static inline void nvme_tcp_ddgst_final(struct ahash_request *hash,
+ __le32 *dgst)
+{
+ ahash_request_set_crypt(hash, NULL, (u8 *)dgst, 0);
+ crypto_ahash_final(hash);
+}
+
+static inline void nvme_tcp_ddgst_update(struct ahash_request *hash,
+ struct page *page, off_t off, size_t len)
+{
+ struct scatterlist sg;
+
+ sg_init_table(&sg, 1);
+ sg_set_page(&sg, page, len, off);
+ ahash_request_set_crypt(hash, &sg, NULL, len);
+ crypto_ahash_update(hash);
+}
+
+static inline void nvme_tcp_hdgst(struct ahash_request *hash,
+ void *pdu, size_t len)
+{
+ struct scatterlist sg;
+
+ sg_init_one(&sg, pdu, len);
+ ahash_request_set_crypt(hash, &sg, pdu + len, len);
+ crypto_ahash_digest(hash);
+}
+
+static int nvme_tcp_verify_hdgst(struct nvme_tcp_queue *queue,
+ void *pdu, size_t pdu_len)
+{
+ struct nvme_tcp_hdr *hdr = pdu;
+ __le32 recv_digest;
+ __le32 exp_digest;
+
+ if (unlikely(!(hdr->flags & NVME_TCP_F_HDGST))) {
+ dev_err(queue->ctrl->ctrl.device,
+ "queue %d: header digest flag is cleared\n",
+ nvme_tcp_queue_id(queue));
+ return -EPROTO;
+ }
+
+ recv_digest = *(__le32 *)(pdu + hdr->hlen);
+ nvme_tcp_hdgst(queue->rcv_hash, pdu, pdu_len);
+ exp_digest = *(__le32 *)(pdu + hdr->hlen);
+ if (recv_digest != exp_digest) {
+ dev_err(queue->ctrl->ctrl.device,
+ "header digest error: recv %#x expected %#x\n",
+ le32_to_cpu(recv_digest), le32_to_cpu(exp_digest));
+ return -EIO;
+ }
+
+ return 0;
+}
+
+static int nvme_tcp_check_ddgst(struct nvme_tcp_queue *queue, void *pdu)
+{
+ struct nvme_tcp_hdr *hdr = pdu;
+ u8 digest_len = nvme_tcp_hdgst_len(queue);
+ u32 len;
+
+ len = le32_to_cpu(hdr->plen) - hdr->hlen -
+ ((hdr->flags & NVME_TCP_F_HDGST) ? digest_len : 0);
+
+ if (unlikely(len && !(hdr->flags & NVME_TCP_F_DDGST))) {
+ dev_err(queue->ctrl->ctrl.device,
+ "queue %d: data digest flag is cleared\n",
+ nvme_tcp_queue_id(queue));
+ return -EPROTO;
+ }
+ crypto_ahash_init(queue->rcv_hash);
+
+ return 0;
+}
+
+static void nvme_tcp_exit_request(struct blk_mq_tag_set *set,
+ struct request *rq, unsigned int hctx_idx)
+{
+ struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
+
+ page_frag_free(req->pdu);
+}
+
+static int nvme_tcp_init_request(struct blk_mq_tag_set *set,
+ struct request *rq, unsigned int hctx_idx,
+ unsigned int numa_node)
+{
+ struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(set->driver_data);
+ struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
+ struct nvme_tcp_cmd_pdu *pdu;
+ int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0;
+ struct nvme_tcp_queue *queue = &ctrl->queues[queue_idx];
+ u8 hdgst = nvme_tcp_hdgst_len(queue);
+
+ req->pdu = page_frag_alloc(&queue->pf_cache,
+ sizeof(struct nvme_tcp_cmd_pdu) + hdgst,
+ GFP_KERNEL | __GFP_ZERO);
+ if (!req->pdu)
+ return -ENOMEM;
+
+ pdu = req->pdu;
+ req->queue = queue;
+ nvme_req(rq)->ctrl = &ctrl->ctrl;
+ nvme_req(rq)->cmd = &pdu->cmd;
+
+ return 0;
+}
+
+static int nvme_tcp_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
+ unsigned int hctx_idx)
+{
+ struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(data);
+ struct nvme_tcp_queue *queue = &ctrl->queues[hctx_idx + 1];
+
+ hctx->driver_data = queue;
+ return 0;
+}
+
+static int nvme_tcp_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data,
+ unsigned int hctx_idx)
+{
+ struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(data);
+ struct nvme_tcp_queue *queue = &ctrl->queues[0];
+
+ hctx->driver_data = queue;
+ return 0;
+}
+
+static enum nvme_tcp_recv_state
+nvme_tcp_recv_state(struct nvme_tcp_queue *queue)
+{
+ return (queue->pdu_remaining) ? NVME_TCP_RECV_PDU :
+ (queue->ddgst_remaining) ? NVME_TCP_RECV_DDGST :
+ NVME_TCP_RECV_DATA;
+}
+
+static void nvme_tcp_init_recv_ctx(struct nvme_tcp_queue *queue)
+{
+ queue->pdu_remaining = sizeof(struct nvme_tcp_rsp_pdu) +
+ nvme_tcp_hdgst_len(queue);
+ queue->pdu_offset = 0;
+ queue->data_remaining = -1;
+ queue->ddgst_remaining = 0;
+}
+
+static void nvme_tcp_error_recovery(struct nvme_ctrl *ctrl)
+{
+ if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
+ return;
+
+ dev_warn(ctrl->device, "starting error recovery\n");
+ queue_work(nvme_reset_wq, &to_tcp_ctrl(ctrl)->err_work);
+}
+
+static int nvme_tcp_process_nvme_cqe(struct nvme_tcp_queue *queue,
+ struct nvme_completion *cqe)
+{
+ struct nvme_tcp_request *req;
+ struct request *rq;
+
+ rq = nvme_find_rq(nvme_tcp_tagset(queue), cqe->command_id);
+ if (!rq) {
+ dev_err(queue->ctrl->ctrl.device,
+ "got bad cqe.command_id %#x on queue %d\n",
+ cqe->command_id, nvme_tcp_queue_id(queue));
+ nvme_tcp_error_recovery(&queue->ctrl->ctrl);
+ return -EINVAL;
+ }
+
+ req = blk_mq_rq_to_pdu(rq);
+ if (req->status == cpu_to_le16(NVME_SC_SUCCESS))
+ req->status = cqe->status;
+
+ if (!nvme_try_complete_req(rq, req->status, cqe->result))
+ nvme_complete_rq(rq);
+ queue->nr_cqe++;
+
+ return 0;
+}
+
+static int nvme_tcp_handle_c2h_data(struct nvme_tcp_queue *queue,
+ struct nvme_tcp_data_pdu *pdu)
+{
+ struct request *rq;
+
+ rq = nvme_find_rq(nvme_tcp_tagset(queue), pdu->command_id);
+ if (!rq) {
+ dev_err(queue->ctrl->ctrl.device,
+ "got bad c2hdata.command_id %#x on queue %d\n",
+ pdu->command_id, nvme_tcp_queue_id(queue));
+ return -ENOENT;
+ }
+
+ if (!blk_rq_payload_bytes(rq)) {
+ dev_err(queue->ctrl->ctrl.device,
+ "queue %d tag %#x unexpected data\n",
+ nvme_tcp_queue_id(queue), rq->tag);
+ return -EIO;
+ }
+
+ queue->data_remaining = le32_to_cpu(pdu->data_length);
+
+ if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS &&
+ unlikely(!(pdu->hdr.flags & NVME_TCP_F_DATA_LAST))) {
+ dev_err(queue->ctrl->ctrl.device,
+ "queue %d tag %#x SUCCESS set but not last PDU\n",
+ nvme_tcp_queue_id(queue), rq->tag);
+ nvme_tcp_error_recovery(&queue->ctrl->ctrl);
+ return -EPROTO;
+ }
+
+ return 0;
+}
+
+static int nvme_tcp_handle_comp(struct nvme_tcp_queue *queue,
+ struct nvme_tcp_rsp_pdu *pdu)
+{
+ struct nvme_completion *cqe = &pdu->cqe;
+ int ret = 0;
+
+ /*
+ * AEN requests are special as they don't time out and can
+ * survive any kind of queue freeze and often don't respond to
+ * aborts. We don't even bother to allocate a struct request
+ * for them but rather special case them here.
+ */
+ if (unlikely(nvme_is_aen_req(nvme_tcp_queue_id(queue),
+ cqe->command_id)))
+ nvme_complete_async_event(&queue->ctrl->ctrl, cqe->status,
+ &cqe->result);
+ else
+ ret = nvme_tcp_process_nvme_cqe(queue, cqe);
+
+ return ret;
+}
+
+static void nvme_tcp_setup_h2c_data_pdu(struct nvme_tcp_request *req)
+{
+ struct nvme_tcp_data_pdu *data = nvme_tcp_req_data_pdu(req);
+ struct nvme_tcp_queue *queue = req->queue;
+ struct request *rq = blk_mq_rq_from_pdu(req);
+ u32 h2cdata_sent = req->pdu_len;
+ u8 hdgst = nvme_tcp_hdgst_len(queue);
+ u8 ddgst = nvme_tcp_ddgst_len(queue);
+
+ req->state = NVME_TCP_SEND_H2C_PDU;
+ req->offset = 0;
+ req->pdu_len = min(req->h2cdata_left, queue->maxh2cdata);
+ req->pdu_sent = 0;
+ req->h2cdata_left -= req->pdu_len;
+ req->h2cdata_offset += h2cdata_sent;
+
+ memset(data, 0, sizeof(*data));
+ data->hdr.type = nvme_tcp_h2c_data;
+ if (!req->h2cdata_left)
+ data->hdr.flags = NVME_TCP_F_DATA_LAST;
+ if (queue->hdr_digest)
+ data->hdr.flags |= NVME_TCP_F_HDGST;
+ if (queue->data_digest)
+ data->hdr.flags |= NVME_TCP_F_DDGST;
+ data->hdr.hlen = sizeof(*data);
+ data->hdr.pdo = data->hdr.hlen + hdgst;
+ data->hdr.plen =
+ cpu_to_le32(data->hdr.hlen + hdgst + req->pdu_len + ddgst);
+ data->ttag = req->ttag;
+ data->command_id = nvme_cid(rq);
+ data->data_offset = cpu_to_le32(req->h2cdata_offset);
+ data->data_length = cpu_to_le32(req->pdu_len);
+}
+
+static int nvme_tcp_handle_r2t(struct nvme_tcp_queue *queue,
+ struct nvme_tcp_r2t_pdu *pdu)
+{
+ struct nvme_tcp_request *req;
+ struct request *rq;
+ u32 r2t_length = le32_to_cpu(pdu->r2t_length);
+ u32 r2t_offset = le32_to_cpu(pdu->r2t_offset);
+
+ rq = nvme_find_rq(nvme_tcp_tagset(queue), pdu->command_id);
+ if (!rq) {
+ dev_err(queue->ctrl->ctrl.device,
+ "got bad r2t.command_id %#x on queue %d\n",
+ pdu->command_id, nvme_tcp_queue_id(queue));
+ return -ENOENT;
+ }
+ req = blk_mq_rq_to_pdu(rq);
+
+ if (unlikely(!r2t_length)) {
+ dev_err(queue->ctrl->ctrl.device,
+ "req %d r2t len is %u, probably a bug...\n",
+ rq->tag, r2t_length);
+ return -EPROTO;
+ }
+
+ if (unlikely(req->data_sent + r2t_length > req->data_len)) {
+ dev_err(queue->ctrl->ctrl.device,
+ "req %d r2t len %u exceeded data len %u (%zu sent)\n",
+ rq->tag, r2t_length, req->data_len, req->data_sent);
+ return -EPROTO;
+ }
+
+ if (unlikely(r2t_offset < req->data_sent)) {
+ dev_err(queue->ctrl->ctrl.device,
+ "req %d unexpected r2t offset %u (expected %zu)\n",
+ rq->tag, r2t_offset, req->data_sent);
+ return -EPROTO;
+ }
+
+ req->pdu_len = 0;
+ req->h2cdata_left = r2t_length;
+ req->h2cdata_offset = r2t_offset;
+ req->ttag = pdu->ttag;
+
+ nvme_tcp_setup_h2c_data_pdu(req);
+ nvme_tcp_queue_request(req, false, true);
+
+ return 0;
+}
+
+static int nvme_tcp_recv_pdu(struct nvme_tcp_queue *queue, struct sk_buff *skb,
+ unsigned int *offset, size_t *len)
+{
+ struct nvme_tcp_hdr *hdr;
+ char *pdu = queue->pdu;
+ size_t rcv_len = min_t(size_t, *len, queue->pdu_remaining);
+ int ret;
+
+ ret = skb_copy_bits(skb, *offset,
+ &pdu[queue->pdu_offset], rcv_len);
+ if (unlikely(ret))
+ return ret;
+
+ queue->pdu_remaining -= rcv_len;
+ queue->pdu_offset += rcv_len;
+ *offset += rcv_len;
+ *len -= rcv_len;
+ if (queue->pdu_remaining)
+ return 0;
+
+ hdr = queue->pdu;
+ if (queue->hdr_digest) {
+ ret = nvme_tcp_verify_hdgst(queue, queue->pdu, hdr->hlen);
+ if (unlikely(ret))
+ return ret;
+ }
+
+
+ if (queue->data_digest) {
+ ret = nvme_tcp_check_ddgst(queue, queue->pdu);
+ if (unlikely(ret))
+ return ret;
+ }
+
+ switch (hdr->type) {
+ case nvme_tcp_c2h_data:
+ return nvme_tcp_handle_c2h_data(queue, (void *)queue->pdu);
+ case nvme_tcp_rsp:
+ nvme_tcp_init_recv_ctx(queue);
+ return nvme_tcp_handle_comp(queue, (void *)queue->pdu);
+ case nvme_tcp_r2t:
+ nvme_tcp_init_recv_ctx(queue);
+ return nvme_tcp_handle_r2t(queue, (void *)queue->pdu);
+ default:
+ dev_err(queue->ctrl->ctrl.device,
+ "unsupported pdu type (%d)\n", hdr->type);
+ return -EINVAL;
+ }
+}
+
+static inline void nvme_tcp_end_request(struct request *rq, u16 status)
+{
+ union nvme_result res = {};
+
+ if (!nvme_try_complete_req(rq, cpu_to_le16(status << 1), res))
+ nvme_complete_rq(rq);
+}
+
+static int nvme_tcp_recv_data(struct nvme_tcp_queue *queue, struct sk_buff *skb,
+ unsigned int *offset, size_t *len)
+{
+ struct nvme_tcp_data_pdu *pdu = (void *)queue->pdu;
+ struct request *rq =
+ nvme_cid_to_rq(nvme_tcp_tagset(queue), pdu->command_id);
+ struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
+
+ while (true) {
+ int recv_len, ret;
+
+ recv_len = min_t(size_t, *len, queue->data_remaining);
+ if (!recv_len)
+ break;
+
+ if (!iov_iter_count(&req->iter)) {
+ req->curr_bio = req->curr_bio->bi_next;
+
+ /*
+ * If we don`t have any bios it means that controller
+ * sent more data than we requested, hence error
+ */
+ if (!req->curr_bio) {
+ dev_err(queue->ctrl->ctrl.device,
+ "queue %d no space in request %#x",
+ nvme_tcp_queue_id(queue), rq->tag);
+ nvme_tcp_init_recv_ctx(queue);
+ return -EIO;
+ }
+ nvme_tcp_init_iter(req, ITER_DEST);
+ }
+
+ /* we can read only from what is left in this bio */
+ recv_len = min_t(size_t, recv_len,
+ iov_iter_count(&req->iter));
+
+ if (queue->data_digest)
+ ret = skb_copy_and_hash_datagram_iter(skb, *offset,
+ &req->iter, recv_len, queue->rcv_hash);
+ else
+ ret = skb_copy_datagram_iter(skb, *offset,
+ &req->iter, recv_len);
+ if (ret) {
+ dev_err(queue->ctrl->ctrl.device,
+ "queue %d failed to copy request %#x data",
+ nvme_tcp_queue_id(queue), rq->tag);
+ return ret;
+ }
+
+ *len -= recv_len;
+ *offset += recv_len;
+ queue->data_remaining -= recv_len;
+ }
+
+ if (!queue->data_remaining) {
+ if (queue->data_digest) {
+ nvme_tcp_ddgst_final(queue->rcv_hash, &queue->exp_ddgst);
+ queue->ddgst_remaining = NVME_TCP_DIGEST_LENGTH;
+ } else {
+ if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS) {
+ nvme_tcp_end_request(rq,
+ le16_to_cpu(req->status));
+ queue->nr_cqe++;
+ }
+ nvme_tcp_init_recv_ctx(queue);
+ }
+ }
+
+ return 0;
+}
+
+static int nvme_tcp_recv_ddgst(struct nvme_tcp_queue *queue,
+ struct sk_buff *skb, unsigned int *offset, size_t *len)
+{
+ struct nvme_tcp_data_pdu *pdu = (void *)queue->pdu;
+ char *ddgst = (char *)&queue->recv_ddgst;
+ size_t recv_len = min_t(size_t, *len, queue->ddgst_remaining);
+ off_t off = NVME_TCP_DIGEST_LENGTH - queue->ddgst_remaining;
+ int ret;
+
+ ret = skb_copy_bits(skb, *offset, &ddgst[off], recv_len);
+ if (unlikely(ret))
+ return ret;
+
+ queue->ddgst_remaining -= recv_len;
+ *offset += recv_len;
+ *len -= recv_len;
+ if (queue->ddgst_remaining)
+ return 0;
+
+ if (queue->recv_ddgst != queue->exp_ddgst) {
+ struct request *rq = nvme_cid_to_rq(nvme_tcp_tagset(queue),
+ pdu->command_id);
+ struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
+
+ req->status = cpu_to_le16(NVME_SC_DATA_XFER_ERROR);
+
+ dev_err(queue->ctrl->ctrl.device,
+ "data digest error: recv %#x expected %#x\n",
+ le32_to_cpu(queue->recv_ddgst),
+ le32_to_cpu(queue->exp_ddgst));
+ }
+
+ if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS) {
+ struct request *rq = nvme_cid_to_rq(nvme_tcp_tagset(queue),
+ pdu->command_id);
+ struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
+
+ nvme_tcp_end_request(rq, le16_to_cpu(req->status));
+ queue->nr_cqe++;
+ }
+
+ nvme_tcp_init_recv_ctx(queue);
+ return 0;
+}
+
+static int nvme_tcp_recv_skb(read_descriptor_t *desc, struct sk_buff *skb,
+ unsigned int offset, size_t len)
+{
+ struct nvme_tcp_queue *queue = desc->arg.data;
+ size_t consumed = len;
+ int result;
+
+ if (unlikely(!queue->rd_enabled))
+ return -EFAULT;
+
+ while (len) {
+ switch (nvme_tcp_recv_state(queue)) {
+ case NVME_TCP_RECV_PDU:
+ result = nvme_tcp_recv_pdu(queue, skb, &offset, &len);
+ break;
+ case NVME_TCP_RECV_DATA:
+ result = nvme_tcp_recv_data(queue, skb, &offset, &len);
+ break;
+ case NVME_TCP_RECV_DDGST:
+ result = nvme_tcp_recv_ddgst(queue, skb, &offset, &len);
+ break;
+ default:
+ result = -EFAULT;
+ }
+ if (result) {
+ dev_err(queue->ctrl->ctrl.device,
+ "receive failed: %d\n", result);
+ queue->rd_enabled = false;
+ nvme_tcp_error_recovery(&queue->ctrl->ctrl);
+ return result;
+ }
+ }
+
+ return consumed;
+}
+
+static void nvme_tcp_data_ready(struct sock *sk)
+{
+ struct nvme_tcp_queue *queue;
+
+ trace_sk_data_ready(sk);
+
+ read_lock_bh(&sk->sk_callback_lock);
+ queue = sk->sk_user_data;
+ if (likely(queue && queue->rd_enabled) &&
+ !test_bit(NVME_TCP_Q_POLLING, &queue->flags))
+ queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
+ read_unlock_bh(&sk->sk_callback_lock);
+}
+
+static void nvme_tcp_write_space(struct sock *sk)
+{
+ struct nvme_tcp_queue *queue;
+
+ read_lock_bh(&sk->sk_callback_lock);
+ queue = sk->sk_user_data;
+ if (likely(queue && sk_stream_is_writeable(sk))) {
+ clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
+ queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
+ }
+ read_unlock_bh(&sk->sk_callback_lock);
+}
+
+static void nvme_tcp_state_change(struct sock *sk)
+{
+ struct nvme_tcp_queue *queue;
+
+ read_lock_bh(&sk->sk_callback_lock);
+ queue = sk->sk_user_data;
+ if (!queue)
+ goto done;
+
+ switch (sk->sk_state) {
+ case TCP_CLOSE:
+ case TCP_CLOSE_WAIT:
+ case TCP_LAST_ACK:
+ case TCP_FIN_WAIT1:
+ case TCP_FIN_WAIT2:
+ nvme_tcp_error_recovery(&queue->ctrl->ctrl);
+ break;
+ default:
+ dev_info(queue->ctrl->ctrl.device,
+ "queue %d socket state %d\n",
+ nvme_tcp_queue_id(queue), sk->sk_state);
+ }
+
+ queue->state_change(sk);
+done:
+ read_unlock_bh(&sk->sk_callback_lock);
+}
+
+static inline void nvme_tcp_done_send_req(struct nvme_tcp_queue *queue)
+{
+ queue->request = NULL;
+}
+
+static void nvme_tcp_fail_request(struct nvme_tcp_request *req)
+{
+ if (nvme_tcp_async_req(req)) {
+ union nvme_result res = {};
+
+ nvme_complete_async_event(&req->queue->ctrl->ctrl,
+ cpu_to_le16(NVME_SC_HOST_PATH_ERROR), &res);
+ } else {
+ nvme_tcp_end_request(blk_mq_rq_from_pdu(req),
+ NVME_SC_HOST_PATH_ERROR);
+ }
+}
+
+static int nvme_tcp_try_send_data(struct nvme_tcp_request *req)
+{
+ struct nvme_tcp_queue *queue = req->queue;
+ int req_data_len = req->data_len;
+ u32 h2cdata_left = req->h2cdata_left;
+
+ while (true) {
+ struct bio_vec bvec;
+ struct msghdr msg = {
+ .msg_flags = MSG_DONTWAIT | MSG_SPLICE_PAGES,
+ };
+ struct page *page = nvme_tcp_req_cur_page(req);
+ size_t offset = nvme_tcp_req_cur_offset(req);
+ size_t len = nvme_tcp_req_cur_length(req);
+ bool last = nvme_tcp_pdu_last_send(req, len);
+ int req_data_sent = req->data_sent;
+ int ret;
+
+ if (last && !queue->data_digest && !nvme_tcp_queue_more(queue))
+ msg.msg_flags |= MSG_EOR;
+ else
+ msg.msg_flags |= MSG_MORE;
+
+ if (!sendpage_ok(page))
+ msg.msg_flags &= ~MSG_SPLICE_PAGES;
+
+ bvec_set_page(&bvec, page, len, offset);
+ iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, len);
+ ret = sock_sendmsg(queue->sock, &msg);
+ if (ret <= 0)
+ return ret;
+
+ if (queue->data_digest)
+ nvme_tcp_ddgst_update(queue->snd_hash, page,
+ offset, ret);
+
+ /*
+ * update the request iterator except for the last payload send
+ * in the request where we don't want to modify it as we may
+ * compete with the RX path completing the request.
+ */
+ if (req_data_sent + ret < req_data_len)
+ nvme_tcp_advance_req(req, ret);
+
+ /* fully successful last send in current PDU */
+ if (last && ret == len) {
+ if (queue->data_digest) {
+ nvme_tcp_ddgst_final(queue->snd_hash,
+ &req->ddgst);
+ req->state = NVME_TCP_SEND_DDGST;
+ req->offset = 0;
+ } else {
+ if (h2cdata_left)
+ nvme_tcp_setup_h2c_data_pdu(req);
+ else
+ nvme_tcp_done_send_req(queue);
+ }
+ return 1;
+ }
+ }
+ return -EAGAIN;
+}
+
+static int nvme_tcp_try_send_cmd_pdu(struct nvme_tcp_request *req)
+{
+ struct nvme_tcp_queue *queue = req->queue;
+ struct nvme_tcp_cmd_pdu *pdu = nvme_tcp_req_cmd_pdu(req);
+ struct bio_vec bvec;
+ struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_SPLICE_PAGES, };
+ bool inline_data = nvme_tcp_has_inline_data(req);
+ u8 hdgst = nvme_tcp_hdgst_len(queue);
+ int len = sizeof(*pdu) + hdgst - req->offset;
+ int ret;
+
+ if (inline_data || nvme_tcp_queue_more(queue))
+ msg.msg_flags |= MSG_MORE;
+ else
+ msg.msg_flags |= MSG_EOR;
+
+ if (queue->hdr_digest && !req->offset)
+ nvme_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu));
+
+ bvec_set_virt(&bvec, (void *)pdu + req->offset, len);
+ iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, len);
+ ret = sock_sendmsg(queue->sock, &msg);
+ if (unlikely(ret <= 0))
+ return ret;
+
+ len -= ret;
+ if (!len) {
+ if (inline_data) {
+ req->state = NVME_TCP_SEND_DATA;
+ if (queue->data_digest)
+ crypto_ahash_init(queue->snd_hash);
+ } else {
+ nvme_tcp_done_send_req(queue);
+ }
+ return 1;
+ }
+ req->offset += ret;
+
+ return -EAGAIN;
+}
+
+static int nvme_tcp_try_send_data_pdu(struct nvme_tcp_request *req)
+{
+ struct nvme_tcp_queue *queue = req->queue;
+ struct nvme_tcp_data_pdu *pdu = nvme_tcp_req_data_pdu(req);
+ struct bio_vec bvec;
+ struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_MORE, };
+ u8 hdgst = nvme_tcp_hdgst_len(queue);
+ int len = sizeof(*pdu) - req->offset + hdgst;
+ int ret;
+
+ if (queue->hdr_digest && !req->offset)
+ nvme_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu));
+
+ if (!req->h2cdata_left)
+ msg.msg_flags |= MSG_SPLICE_PAGES;
+
+ bvec_set_virt(&bvec, (void *)pdu + req->offset, len);
+ iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, len);
+ ret = sock_sendmsg(queue->sock, &msg);
+ if (unlikely(ret <= 0))
+ return ret;
+
+ len -= ret;
+ if (!len) {
+ req->state = NVME_TCP_SEND_DATA;
+ if (queue->data_digest)
+ crypto_ahash_init(queue->snd_hash);
+ return 1;
+ }
+ req->offset += ret;
+
+ return -EAGAIN;
+}
+
+static int nvme_tcp_try_send_ddgst(struct nvme_tcp_request *req)
+{
+ struct nvme_tcp_queue *queue = req->queue;
+ size_t offset = req->offset;
+ u32 h2cdata_left = req->h2cdata_left;
+ int ret;
+ struct msghdr msg = { .msg_flags = MSG_DONTWAIT };
+ struct kvec iov = {
+ .iov_base = (u8 *)&req->ddgst + req->offset,
+ .iov_len = NVME_TCP_DIGEST_LENGTH - req->offset
+ };
+
+ if (nvme_tcp_queue_more(queue))
+ msg.msg_flags |= MSG_MORE;
+ else
+ msg.msg_flags |= MSG_EOR;
+
+ ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len);
+ if (unlikely(ret <= 0))
+ return ret;
+
+ if (offset + ret == NVME_TCP_DIGEST_LENGTH) {
+ if (h2cdata_left)
+ nvme_tcp_setup_h2c_data_pdu(req);
+ else
+ nvme_tcp_done_send_req(queue);
+ return 1;
+ }
+
+ req->offset += ret;
+ return -EAGAIN;
+}
+
+static int nvme_tcp_try_send(struct nvme_tcp_queue *queue)
+{
+ struct nvme_tcp_request *req;
+ unsigned int noreclaim_flag;
+ int ret = 1;
+
+ if (!queue->request) {
+ queue->request = nvme_tcp_fetch_request(queue);
+ if (!queue->request)
+ return 0;
+ }
+ req = queue->request;
+
+ noreclaim_flag = memalloc_noreclaim_save();
+ if (req->state == NVME_TCP_SEND_CMD_PDU) {
+ ret = nvme_tcp_try_send_cmd_pdu(req);
+ if (ret <= 0)
+ goto done;
+ if (!nvme_tcp_has_inline_data(req))
+ goto out;
+ }
+
+ if (req->state == NVME_TCP_SEND_H2C_PDU) {
+ ret = nvme_tcp_try_send_data_pdu(req);
+ if (ret <= 0)
+ goto done;
+ }
+
+ if (req->state == NVME_TCP_SEND_DATA) {
+ ret = nvme_tcp_try_send_data(req);
+ if (ret <= 0)
+ goto done;
+ }
+
+ if (req->state == NVME_TCP_SEND_DDGST)
+ ret = nvme_tcp_try_send_ddgst(req);
+done:
+ if (ret == -EAGAIN) {
+ ret = 0;
+ } else if (ret < 0) {
+ dev_err(queue->ctrl->ctrl.device,
+ "failed to send request %d\n", ret);
+ nvme_tcp_fail_request(queue->request);
+ nvme_tcp_done_send_req(queue);
+ }
+out:
+ memalloc_noreclaim_restore(noreclaim_flag);
+ return ret;
+}
+
+static int nvme_tcp_try_recv(struct nvme_tcp_queue *queue)
+{
+ struct socket *sock = queue->sock;
+ struct sock *sk = sock->sk;
+ read_descriptor_t rd_desc;
+ int consumed;
+
+ rd_desc.arg.data = queue;
+ rd_desc.count = 1;
+ lock_sock(sk);
+ queue->nr_cqe = 0;
+ consumed = sock->ops->read_sock(sk, &rd_desc, nvme_tcp_recv_skb);
+ release_sock(sk);
+ return consumed;
+}
+
+static void nvme_tcp_io_work(struct work_struct *w)
+{
+ struct nvme_tcp_queue *queue =
+ container_of(w, struct nvme_tcp_queue, io_work);
+ unsigned long deadline = jiffies + msecs_to_jiffies(1);
+
+ do {
+ bool pending = false;
+ int result;
+
+ if (mutex_trylock(&queue->send_mutex)) {
+ result = nvme_tcp_try_send(queue);
+ mutex_unlock(&queue->send_mutex);
+ if (result > 0)
+ pending = true;
+ else if (unlikely(result < 0))
+ break;
+ }
+
+ result = nvme_tcp_try_recv(queue);
+ if (result > 0)
+ pending = true;
+ else if (unlikely(result < 0))
+ return;
+
+ if (!pending || !queue->rd_enabled)
+ return;
+
+ } while (!time_after(jiffies, deadline)); /* quota is exhausted */
+
+ queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
+}
+
+static void nvme_tcp_free_crypto(struct nvme_tcp_queue *queue)
+{
+ struct crypto_ahash *tfm = crypto_ahash_reqtfm(queue->rcv_hash);
+
+ ahash_request_free(queue->rcv_hash);
+ ahash_request_free(queue->snd_hash);
+ crypto_free_ahash(tfm);
+}
+
+static int nvme_tcp_alloc_crypto(struct nvme_tcp_queue *queue)
+{
+ struct crypto_ahash *tfm;
+
+ tfm = crypto_alloc_ahash("crc32c", 0, CRYPTO_ALG_ASYNC);
+ if (IS_ERR(tfm))
+ return PTR_ERR(tfm);
+
+ queue->snd_hash = ahash_request_alloc(tfm, GFP_KERNEL);
+ if (!queue->snd_hash)
+ goto free_tfm;
+ ahash_request_set_callback(queue->snd_hash, 0, NULL, NULL);
+
+ queue->rcv_hash = ahash_request_alloc(tfm, GFP_KERNEL);
+ if (!queue->rcv_hash)
+ goto free_snd_hash;
+ ahash_request_set_callback(queue->rcv_hash, 0, NULL, NULL);
+
+ return 0;
+free_snd_hash:
+ ahash_request_free(queue->snd_hash);
+free_tfm:
+ crypto_free_ahash(tfm);
+ return -ENOMEM;
+}
+
+static void nvme_tcp_free_async_req(struct nvme_tcp_ctrl *ctrl)
+{
+ struct nvme_tcp_request *async = &ctrl->async_req;
+
+ page_frag_free(async->pdu);
+}
+
+static int nvme_tcp_alloc_async_req(struct nvme_tcp_ctrl *ctrl)
+{
+ struct nvme_tcp_queue *queue = &ctrl->queues[0];
+ struct nvme_tcp_request *async = &ctrl->async_req;
+ u8 hdgst = nvme_tcp_hdgst_len(queue);
+
+ async->pdu = page_frag_alloc(&queue->pf_cache,
+ sizeof(struct nvme_tcp_cmd_pdu) + hdgst,
+ GFP_KERNEL | __GFP_ZERO);
+ if (!async->pdu)
+ return -ENOMEM;
+
+ async->queue = &ctrl->queues[0];
+ return 0;
+}
+
+static void nvme_tcp_free_queue(struct nvme_ctrl *nctrl, int qid)
+{
+ struct page *page;
+ struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
+ struct nvme_tcp_queue *queue = &ctrl->queues[qid];
+ unsigned int noreclaim_flag;
+
+ if (!test_and_clear_bit(NVME_TCP_Q_ALLOCATED, &queue->flags))
+ return;
+
+ if (queue->hdr_digest || queue->data_digest)
+ nvme_tcp_free_crypto(queue);
+
+ if (queue->pf_cache.va) {
+ page = virt_to_head_page(queue->pf_cache.va);
+ __page_frag_cache_drain(page, queue->pf_cache.pagecnt_bias);
+ queue->pf_cache.va = NULL;
+ }
+
+ noreclaim_flag = memalloc_noreclaim_save();
+ sock_release(queue->sock);
+ memalloc_noreclaim_restore(noreclaim_flag);
+
+ kfree(queue->pdu);
+ mutex_destroy(&queue->send_mutex);
+ mutex_destroy(&queue->queue_lock);
+}
+
+static int nvme_tcp_init_connection(struct nvme_tcp_queue *queue)
+{
+ struct nvme_tcp_icreq_pdu *icreq;
+ struct nvme_tcp_icresp_pdu *icresp;
+ struct msghdr msg = {};
+ struct kvec iov;
+ bool ctrl_hdgst, ctrl_ddgst;
+ u32 maxh2cdata;
+ int ret;
+
+ icreq = kzalloc(sizeof(*icreq), GFP_KERNEL);
+ if (!icreq)
+ return -ENOMEM;
+
+ icresp = kzalloc(sizeof(*icresp), GFP_KERNEL);
+ if (!icresp) {
+ ret = -ENOMEM;
+ goto free_icreq;
+ }
+
+ icreq->hdr.type = nvme_tcp_icreq;
+ icreq->hdr.hlen = sizeof(*icreq);
+ icreq->hdr.pdo = 0;
+ icreq->hdr.plen = cpu_to_le32(icreq->hdr.hlen);
+ icreq->pfv = cpu_to_le16(NVME_TCP_PFV_1_0);
+ icreq->maxr2t = 0; /* single inflight r2t supported */
+ icreq->hpda = 0; /* no alignment constraint */
+ if (queue->hdr_digest)
+ icreq->digest |= NVME_TCP_HDR_DIGEST_ENABLE;
+ if (queue->data_digest)
+ icreq->digest |= NVME_TCP_DATA_DIGEST_ENABLE;
+
+ iov.iov_base = icreq;
+ iov.iov_len = sizeof(*icreq);
+ ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len);
+ if (ret < 0)
+ goto free_icresp;
+
+ memset(&msg, 0, sizeof(msg));
+ iov.iov_base = icresp;
+ iov.iov_len = sizeof(*icresp);
+ ret = kernel_recvmsg(queue->sock, &msg, &iov, 1,
+ iov.iov_len, msg.msg_flags);
+ if (ret < 0)
+ goto free_icresp;
+
+ ret = -EINVAL;
+ if (icresp->hdr.type != nvme_tcp_icresp) {
+ pr_err("queue %d: bad type returned %d\n",
+ nvme_tcp_queue_id(queue), icresp->hdr.type);
+ goto free_icresp;
+ }
+
+ if (le32_to_cpu(icresp->hdr.plen) != sizeof(*icresp)) {
+ pr_err("queue %d: bad pdu length returned %d\n",
+ nvme_tcp_queue_id(queue), icresp->hdr.plen);
+ goto free_icresp;
+ }
+
+ if (icresp->pfv != NVME_TCP_PFV_1_0) {
+ pr_err("queue %d: bad pfv returned %d\n",
+ nvme_tcp_queue_id(queue), icresp->pfv);
+ goto free_icresp;
+ }
+
+ ctrl_ddgst = !!(icresp->digest & NVME_TCP_DATA_DIGEST_ENABLE);
+ if ((queue->data_digest && !ctrl_ddgst) ||
+ (!queue->data_digest && ctrl_ddgst)) {
+ pr_err("queue %d: data digest mismatch host: %s ctrl: %s\n",
+ nvme_tcp_queue_id(queue),
+ queue->data_digest ? "enabled" : "disabled",
+ ctrl_ddgst ? "enabled" : "disabled");
+ goto free_icresp;
+ }
+
+ ctrl_hdgst = !!(icresp->digest & NVME_TCP_HDR_DIGEST_ENABLE);
+ if ((queue->hdr_digest && !ctrl_hdgst) ||
+ (!queue->hdr_digest && ctrl_hdgst)) {
+ pr_err("queue %d: header digest mismatch host: %s ctrl: %s\n",
+ nvme_tcp_queue_id(queue),
+ queue->hdr_digest ? "enabled" : "disabled",
+ ctrl_hdgst ? "enabled" : "disabled");
+ goto free_icresp;
+ }
+
+ if (icresp->cpda != 0) {
+ pr_err("queue %d: unsupported cpda returned %d\n",
+ nvme_tcp_queue_id(queue), icresp->cpda);
+ goto free_icresp;
+ }
+
+ maxh2cdata = le32_to_cpu(icresp->maxdata);
+ if ((maxh2cdata % 4) || (maxh2cdata < NVME_TCP_MIN_MAXH2CDATA)) {
+ pr_err("queue %d: invalid maxh2cdata returned %u\n",
+ nvme_tcp_queue_id(queue), maxh2cdata);
+ goto free_icresp;
+ }
+ queue->maxh2cdata = maxh2cdata;
+
+ ret = 0;
+free_icresp:
+ kfree(icresp);
+free_icreq:
+ kfree(icreq);
+ return ret;
+}
+
+static bool nvme_tcp_admin_queue(struct nvme_tcp_queue *queue)
+{
+ return nvme_tcp_queue_id(queue) == 0;
+}
+
+static bool nvme_tcp_default_queue(struct nvme_tcp_queue *queue)
+{
+ struct nvme_tcp_ctrl *ctrl = queue->ctrl;
+ int qid = nvme_tcp_queue_id(queue);
+
+ return !nvme_tcp_admin_queue(queue) &&
+ qid < 1 + ctrl->io_queues[HCTX_TYPE_DEFAULT];
+}
+
+static bool nvme_tcp_read_queue(struct nvme_tcp_queue *queue)
+{
+ struct nvme_tcp_ctrl *ctrl = queue->ctrl;
+ int qid = nvme_tcp_queue_id(queue);
+
+ return !nvme_tcp_admin_queue(queue) &&
+ !nvme_tcp_default_queue(queue) &&
+ qid < 1 + ctrl->io_queues[HCTX_TYPE_DEFAULT] +
+ ctrl->io_queues[HCTX_TYPE_READ];
+}
+
+static bool nvme_tcp_poll_queue(struct nvme_tcp_queue *queue)
+{
+ struct nvme_tcp_ctrl *ctrl = queue->ctrl;
+ int qid = nvme_tcp_queue_id(queue);
+
+ return !nvme_tcp_admin_queue(queue) &&
+ !nvme_tcp_default_queue(queue) &&
+ !nvme_tcp_read_queue(queue) &&
+ qid < 1 + ctrl->io_queues[HCTX_TYPE_DEFAULT] +
+ ctrl->io_queues[HCTX_TYPE_READ] +
+ ctrl->io_queues[HCTX_TYPE_POLL];
+}
+
+static void nvme_tcp_set_queue_io_cpu(struct nvme_tcp_queue *queue)
+{
+ struct nvme_tcp_ctrl *ctrl = queue->ctrl;
+ int qid = nvme_tcp_queue_id(queue);
+ int n = 0;
+
+ if (nvme_tcp_default_queue(queue))
+ n = qid - 1;
+ else if (nvme_tcp_read_queue(queue))
+ n = qid - ctrl->io_queues[HCTX_TYPE_DEFAULT] - 1;
+ else if (nvme_tcp_poll_queue(queue))
+ n = qid - ctrl->io_queues[HCTX_TYPE_DEFAULT] -
+ ctrl->io_queues[HCTX_TYPE_READ] - 1;
+ queue->io_cpu = cpumask_next_wrap(n - 1, cpu_online_mask, -1, false);
+}
+
+static int nvme_tcp_alloc_queue(struct nvme_ctrl *nctrl, int qid)
+{
+ struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
+ struct nvme_tcp_queue *queue = &ctrl->queues[qid];
+ int ret, rcv_pdu_size;
+
+ mutex_init(&queue->queue_lock);
+ queue->ctrl = ctrl;
+ init_llist_head(&queue->req_list);
+ INIT_LIST_HEAD(&queue->send_list);
+ mutex_init(&queue->send_mutex);
+ INIT_WORK(&queue->io_work, nvme_tcp_io_work);
+
+ if (qid > 0)
+ queue->cmnd_capsule_len = nctrl->ioccsz * 16;
+ else
+ queue->cmnd_capsule_len = sizeof(struct nvme_command) +
+ NVME_TCP_ADMIN_CCSZ;
+
+ ret = sock_create(ctrl->addr.ss_family, SOCK_STREAM,
+ IPPROTO_TCP, &queue->sock);
+ if (ret) {
+ dev_err(nctrl->device,
+ "failed to create socket: %d\n", ret);
+ goto err_destroy_mutex;
+ }
+
+ nvme_tcp_reclassify_socket(queue->sock);
+
+ /* Single syn retry */
+ tcp_sock_set_syncnt(queue->sock->sk, 1);
+
+ /* Set TCP no delay */
+ tcp_sock_set_nodelay(queue->sock->sk);
+
+ /*
+ * Cleanup whatever is sitting in the TCP transmit queue on socket
+ * close. This is done to prevent stale data from being sent should
+ * the network connection be restored before TCP times out.
+ */
+ sock_no_linger(queue->sock->sk);
+
+ if (so_priority > 0)
+ sock_set_priority(queue->sock->sk, so_priority);
+
+ /* Set socket type of service */
+ if (nctrl->opts->tos >= 0)
+ ip_sock_set_tos(queue->sock->sk, nctrl->opts->tos);
+
+ /* Set 10 seconds timeout for icresp recvmsg */
+ queue->sock->sk->sk_rcvtimeo = 10 * HZ;
+
+ queue->sock->sk->sk_allocation = GFP_ATOMIC;
+ queue->sock->sk->sk_use_task_frag = false;
+ nvme_tcp_set_queue_io_cpu(queue);
+ queue->request = NULL;
+ queue->data_remaining = 0;
+ queue->ddgst_remaining = 0;
+ queue->pdu_remaining = 0;
+ queue->pdu_offset = 0;
+ sk_set_memalloc(queue->sock->sk);
+
+ if (nctrl->opts->mask & NVMF_OPT_HOST_TRADDR) {
+ ret = kernel_bind(queue->sock, (struct sockaddr *)&ctrl->src_addr,
+ sizeof(ctrl->src_addr));
+ if (ret) {
+ dev_err(nctrl->device,
+ "failed to bind queue %d socket %d\n",
+ qid, ret);
+ goto err_sock;
+ }
+ }
+
+ if (nctrl->opts->mask & NVMF_OPT_HOST_IFACE) {
+ char *iface = nctrl->opts->host_iface;
+ sockptr_t optval = KERNEL_SOCKPTR(iface);
+
+ ret = sock_setsockopt(queue->sock, SOL_SOCKET, SO_BINDTODEVICE,
+ optval, strlen(iface));
+ if (ret) {
+ dev_err(nctrl->device,
+ "failed to bind to interface %s queue %d err %d\n",
+ iface, qid, ret);
+ goto err_sock;
+ }
+ }
+
+ queue->hdr_digest = nctrl->opts->hdr_digest;
+ queue->data_digest = nctrl->opts->data_digest;
+ if (queue->hdr_digest || queue->data_digest) {
+ ret = nvme_tcp_alloc_crypto(queue);
+ if (ret) {
+ dev_err(nctrl->device,
+ "failed to allocate queue %d crypto\n", qid);
+ goto err_sock;
+ }
+ }
+
+ rcv_pdu_size = sizeof(struct nvme_tcp_rsp_pdu) +
+ nvme_tcp_hdgst_len(queue);
+ queue->pdu = kmalloc(rcv_pdu_size, GFP_KERNEL);
+ if (!queue->pdu) {
+ ret = -ENOMEM;
+ goto err_crypto;
+ }
+
+ dev_dbg(nctrl->device, "connecting queue %d\n",
+ nvme_tcp_queue_id(queue));
+
+ ret = kernel_connect(queue->sock, (struct sockaddr *)&ctrl->addr,
+ sizeof(ctrl->addr), 0);
+ if (ret) {
+ dev_err(nctrl->device,
+ "failed to connect socket: %d\n", ret);
+ goto err_rcv_pdu;
+ }
+
+ ret = nvme_tcp_init_connection(queue);
+ if (ret)
+ goto err_init_connect;
+
+ set_bit(NVME_TCP_Q_ALLOCATED, &queue->flags);
+
+ return 0;
+
+err_init_connect:
+ kernel_sock_shutdown(queue->sock, SHUT_RDWR);
+err_rcv_pdu:
+ kfree(queue->pdu);
+err_crypto:
+ if (queue->hdr_digest || queue->data_digest)
+ nvme_tcp_free_crypto(queue);
+err_sock:
+ sock_release(queue->sock);
+ queue->sock = NULL;
+err_destroy_mutex:
+ mutex_destroy(&queue->send_mutex);
+ mutex_destroy(&queue->queue_lock);
+ return ret;
+}
+
+static void nvme_tcp_restore_sock_ops(struct nvme_tcp_queue *queue)
+{
+ struct socket *sock = queue->sock;
+
+ write_lock_bh(&sock->sk->sk_callback_lock);
+ sock->sk->sk_user_data = NULL;
+ sock->sk->sk_data_ready = queue->data_ready;
+ sock->sk->sk_state_change = queue->state_change;
+ sock->sk->sk_write_space = queue->write_space;
+ write_unlock_bh(&sock->sk->sk_callback_lock);
+}
+
+static void __nvme_tcp_stop_queue(struct nvme_tcp_queue *queue)
+{
+ kernel_sock_shutdown(queue->sock, SHUT_RDWR);
+ nvme_tcp_restore_sock_ops(queue);
+ cancel_work_sync(&queue->io_work);
+}
+
+static void nvme_tcp_stop_queue(struct nvme_ctrl *nctrl, int qid)
+{
+ struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
+ struct nvme_tcp_queue *queue = &ctrl->queues[qid];
+
+ if (!test_bit(NVME_TCP_Q_ALLOCATED, &queue->flags))
+ return;
+
+ mutex_lock(&queue->queue_lock);
+ if (test_and_clear_bit(NVME_TCP_Q_LIVE, &queue->flags))
+ __nvme_tcp_stop_queue(queue);
+ mutex_unlock(&queue->queue_lock);
+}
+
+static void nvme_tcp_setup_sock_ops(struct nvme_tcp_queue *queue)
+{
+ write_lock_bh(&queue->sock->sk->sk_callback_lock);
+ queue->sock->sk->sk_user_data = queue;
+ queue->state_change = queue->sock->sk->sk_state_change;
+ queue->data_ready = queue->sock->sk->sk_data_ready;
+ queue->write_space = queue->sock->sk->sk_write_space;
+ queue->sock->sk->sk_data_ready = nvme_tcp_data_ready;
+ queue->sock->sk->sk_state_change = nvme_tcp_state_change;
+ queue->sock->sk->sk_write_space = nvme_tcp_write_space;
+#ifdef CONFIG_NET_RX_BUSY_POLL
+ queue->sock->sk->sk_ll_usec = 1;
+#endif
+ write_unlock_bh(&queue->sock->sk->sk_callback_lock);
+}
+
+static int nvme_tcp_start_queue(struct nvme_ctrl *nctrl, int idx)
+{
+ struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
+ struct nvme_tcp_queue *queue = &ctrl->queues[idx];
+ int ret;
+
+ queue->rd_enabled = true;
+ nvme_tcp_init_recv_ctx(queue);
+ nvme_tcp_setup_sock_ops(queue);
+
+ if (idx)
+ ret = nvmf_connect_io_queue(nctrl, idx);
+ else
+ ret = nvmf_connect_admin_queue(nctrl);
+
+ if (!ret) {
+ set_bit(NVME_TCP_Q_LIVE, &queue->flags);
+ } else {
+ if (test_bit(NVME_TCP_Q_ALLOCATED, &queue->flags))
+ __nvme_tcp_stop_queue(queue);
+ dev_err(nctrl->device,
+ "failed to connect queue: %d ret=%d\n", idx, ret);
+ }
+ return ret;
+}
+
+static void nvme_tcp_free_admin_queue(struct nvme_ctrl *ctrl)
+{
+ if (to_tcp_ctrl(ctrl)->async_req.pdu) {
+ cancel_work_sync(&ctrl->async_event_work);
+ nvme_tcp_free_async_req(to_tcp_ctrl(ctrl));
+ to_tcp_ctrl(ctrl)->async_req.pdu = NULL;
+ }
+
+ nvme_tcp_free_queue(ctrl, 0);
+}
+
+static void nvme_tcp_free_io_queues(struct nvme_ctrl *ctrl)
+{
+ int i;
+
+ for (i = 1; i < ctrl->queue_count; i++)
+ nvme_tcp_free_queue(ctrl, i);
+}
+
+static void nvme_tcp_stop_io_queues(struct nvme_ctrl *ctrl)
+{
+ int i;
+
+ for (i = 1; i < ctrl->queue_count; i++)
+ nvme_tcp_stop_queue(ctrl, i);
+}
+
+static int nvme_tcp_start_io_queues(struct nvme_ctrl *ctrl,
+ int first, int last)
+{
+ int i, ret;
+
+ for (i = first; i < last; i++) {
+ ret = nvme_tcp_start_queue(ctrl, i);
+ if (ret)
+ goto out_stop_queues;
+ }
+
+ return 0;
+
+out_stop_queues:
+ for (i--; i >= first; i--)
+ nvme_tcp_stop_queue(ctrl, i);
+ return ret;
+}
+
+static int nvme_tcp_alloc_admin_queue(struct nvme_ctrl *ctrl)
+{
+ int ret;
+
+ ret = nvme_tcp_alloc_queue(ctrl, 0);
+ if (ret)
+ return ret;
+
+ ret = nvme_tcp_alloc_async_req(to_tcp_ctrl(ctrl));
+ if (ret)
+ goto out_free_queue;
+
+ return 0;
+
+out_free_queue:
+ nvme_tcp_free_queue(ctrl, 0);
+ return ret;
+}
+
+static int __nvme_tcp_alloc_io_queues(struct nvme_ctrl *ctrl)
+{
+ int i, ret;
+
+ for (i = 1; i < ctrl->queue_count; i++) {
+ ret = nvme_tcp_alloc_queue(ctrl, i);
+ if (ret)
+ goto out_free_queues;
+ }
+
+ return 0;
+
+out_free_queues:
+ for (i--; i >= 1; i--)
+ nvme_tcp_free_queue(ctrl, i);
+
+ return ret;
+}
+
+static int nvme_tcp_alloc_io_queues(struct nvme_ctrl *ctrl)
+{
+ unsigned int nr_io_queues;
+ int ret;
+
+ nr_io_queues = nvmf_nr_io_queues(ctrl->opts);
+ ret = nvme_set_queue_count(ctrl, &nr_io_queues);
+ if (ret)
+ return ret;
+
+ if (nr_io_queues == 0) {
+ dev_err(ctrl->device,
+ "unable to set any I/O queues\n");
+ return -ENOMEM;
+ }
+
+ ctrl->queue_count = nr_io_queues + 1;
+ dev_info(ctrl->device,
+ "creating %d I/O queues.\n", nr_io_queues);
+
+ nvmf_set_io_queues(ctrl->opts, nr_io_queues,
+ to_tcp_ctrl(ctrl)->io_queues);
+ return __nvme_tcp_alloc_io_queues(ctrl);
+}
+
+static void nvme_tcp_destroy_io_queues(struct nvme_ctrl *ctrl, bool remove)
+{
+ nvme_tcp_stop_io_queues(ctrl);
+ if (remove)
+ nvme_remove_io_tag_set(ctrl);
+ nvme_tcp_free_io_queues(ctrl);
+}
+
+static int nvme_tcp_configure_io_queues(struct nvme_ctrl *ctrl, bool new)
+{
+ int ret, nr_queues;
+
+ ret = nvme_tcp_alloc_io_queues(ctrl);
+ if (ret)
+ return ret;
+
+ if (new) {
+ ret = nvme_alloc_io_tag_set(ctrl, &to_tcp_ctrl(ctrl)->tag_set,
+ &nvme_tcp_mq_ops,
+ ctrl->opts->nr_poll_queues ? HCTX_MAX_TYPES : 2,
+ sizeof(struct nvme_tcp_request));
+ if (ret)
+ goto out_free_io_queues;
+ }
+
+ /*
+ * Only start IO queues for which we have allocated the tagset
+ * and limitted it to the available queues. On reconnects, the
+ * queue number might have changed.
+ */
+ nr_queues = min(ctrl->tagset->nr_hw_queues + 1, ctrl->queue_count);
+ ret = nvme_tcp_start_io_queues(ctrl, 1, nr_queues);
+ if (ret)
+ goto out_cleanup_connect_q;
+
+ if (!new) {
+ nvme_start_freeze(ctrl);
+ nvme_unquiesce_io_queues(ctrl);
+ if (!nvme_wait_freeze_timeout(ctrl, NVME_IO_TIMEOUT)) {
+ /*
+ * If we timed out waiting for freeze we are likely to
+ * be stuck. Fail the controller initialization just
+ * to be safe.
+ */
+ ret = -ENODEV;
+ nvme_unfreeze(ctrl);
+ goto out_wait_freeze_timed_out;
+ }
+ blk_mq_update_nr_hw_queues(ctrl->tagset,
+ ctrl->queue_count - 1);
+ nvme_unfreeze(ctrl);
+ }
+
+ /*
+ * If the number of queues has increased (reconnect case)
+ * start all new queues now.
+ */
+ ret = nvme_tcp_start_io_queues(ctrl, nr_queues,
+ ctrl->tagset->nr_hw_queues + 1);
+ if (ret)
+ goto out_wait_freeze_timed_out;
+
+ return 0;
+
+out_wait_freeze_timed_out:
+ nvme_quiesce_io_queues(ctrl);
+ nvme_sync_io_queues(ctrl);
+ nvme_tcp_stop_io_queues(ctrl);
+out_cleanup_connect_q:
+ nvme_cancel_tagset(ctrl);
+ if (new)
+ nvme_remove_io_tag_set(ctrl);
+out_free_io_queues:
+ nvme_tcp_free_io_queues(ctrl);
+ return ret;
+}
+
+static void nvme_tcp_destroy_admin_queue(struct nvme_ctrl *ctrl, bool remove)
+{
+ nvme_tcp_stop_queue(ctrl, 0);
+ if (remove)
+ nvme_remove_admin_tag_set(ctrl);
+ nvme_tcp_free_admin_queue(ctrl);
+}
+
+static int nvme_tcp_configure_admin_queue(struct nvme_ctrl *ctrl, bool new)
+{
+ int error;
+
+ error = nvme_tcp_alloc_admin_queue(ctrl);
+ if (error)
+ return error;
+
+ if (new) {
+ error = nvme_alloc_admin_tag_set(ctrl,
+ &to_tcp_ctrl(ctrl)->admin_tag_set,
+ &nvme_tcp_admin_mq_ops,
+ sizeof(struct nvme_tcp_request));
+ if (error)
+ goto out_free_queue;
+ }
+
+ error = nvme_tcp_start_queue(ctrl, 0);
+ if (error)
+ goto out_cleanup_tagset;
+
+ error = nvme_enable_ctrl(ctrl);
+ if (error)
+ goto out_stop_queue;
+
+ nvme_unquiesce_admin_queue(ctrl);
+
+ error = nvme_init_ctrl_finish(ctrl, false);
+ if (error)
+ goto out_quiesce_queue;
+
+ return 0;
+
+out_quiesce_queue:
+ nvme_quiesce_admin_queue(ctrl);
+ blk_sync_queue(ctrl->admin_q);
+out_stop_queue:
+ nvme_tcp_stop_queue(ctrl, 0);
+ nvme_cancel_admin_tagset(ctrl);
+out_cleanup_tagset:
+ if (new)
+ nvme_remove_admin_tag_set(ctrl);
+out_free_queue:
+ nvme_tcp_free_admin_queue(ctrl);
+ return error;
+}
+
+static void nvme_tcp_teardown_admin_queue(struct nvme_ctrl *ctrl,
+ bool remove)
+{
+ nvme_quiesce_admin_queue(ctrl);
+ blk_sync_queue(ctrl->admin_q);
+ nvme_tcp_stop_queue(ctrl, 0);
+ nvme_cancel_admin_tagset(ctrl);
+ if (remove)
+ nvme_unquiesce_admin_queue(ctrl);
+ nvme_tcp_destroy_admin_queue(ctrl, remove);
+}
+
+static void nvme_tcp_teardown_io_queues(struct nvme_ctrl *ctrl,
+ bool remove)
+{
+ if (ctrl->queue_count <= 1)
+ return;
+ nvme_quiesce_admin_queue(ctrl);
+ nvme_quiesce_io_queues(ctrl);
+ nvme_sync_io_queues(ctrl);
+ nvme_tcp_stop_io_queues(ctrl);
+ nvme_cancel_tagset(ctrl);
+ if (remove)
+ nvme_unquiesce_io_queues(ctrl);
+ nvme_tcp_destroy_io_queues(ctrl, remove);
+}
+
+static void nvme_tcp_reconnect_or_remove(struct nvme_ctrl *ctrl)
+{
+ enum nvme_ctrl_state state = nvme_ctrl_state(ctrl);
+
+ /* If we are resetting/deleting then do nothing */
+ if (state != NVME_CTRL_CONNECTING) {
+ WARN_ON_ONCE(state == NVME_CTRL_NEW || state == NVME_CTRL_LIVE);
+ return;
+ }
+
+ if (nvmf_should_reconnect(ctrl)) {
+ dev_info(ctrl->device, "Reconnecting in %d seconds...\n",
+ ctrl->opts->reconnect_delay);
+ queue_delayed_work(nvme_wq, &to_tcp_ctrl(ctrl)->connect_work,
+ ctrl->opts->reconnect_delay * HZ);
+ } else {
+ dev_info(ctrl->device, "Removing controller...\n");
+ nvme_delete_ctrl(ctrl);
+ }
+}
+
+static int nvme_tcp_setup_ctrl(struct nvme_ctrl *ctrl, bool new)
+{
+ struct nvmf_ctrl_options *opts = ctrl->opts;
+ int ret;
+
+ ret = nvme_tcp_configure_admin_queue(ctrl, new);
+ if (ret)
+ return ret;
+
+ if (ctrl->icdoff) {
+ ret = -EOPNOTSUPP;
+ dev_err(ctrl->device, "icdoff is not supported!\n");
+ goto destroy_admin;
+ }
+
+ if (!nvme_ctrl_sgl_supported(ctrl)) {
+ ret = -EOPNOTSUPP;
+ dev_err(ctrl->device, "Mandatory sgls are not supported!\n");
+ goto destroy_admin;
+ }
+
+ if (opts->queue_size > ctrl->sqsize + 1)
+ dev_warn(ctrl->device,
+ "queue_size %zu > ctrl sqsize %u, clamping down\n",
+ opts->queue_size, ctrl->sqsize + 1);
+
+ if (ctrl->sqsize + 1 > ctrl->maxcmd) {
+ dev_warn(ctrl->device,
+ "sqsize %u > ctrl maxcmd %u, clamping down\n",
+ ctrl->sqsize + 1, ctrl->maxcmd);
+ ctrl->sqsize = ctrl->maxcmd - 1;
+ }
+
+ if (ctrl->queue_count > 1) {
+ ret = nvme_tcp_configure_io_queues(ctrl, new);
+ if (ret)
+ goto destroy_admin;
+ }
+
+ if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE)) {
+ /*
+ * state change failure is ok if we started ctrl delete,
+ * unless we're during creation of a new controller to
+ * avoid races with teardown flow.
+ */
+ enum nvme_ctrl_state state = nvme_ctrl_state(ctrl);
+
+ WARN_ON_ONCE(state != NVME_CTRL_DELETING &&
+ state != NVME_CTRL_DELETING_NOIO);
+ WARN_ON_ONCE(new);
+ ret = -EINVAL;
+ goto destroy_io;
+ }
+
+ nvme_start_ctrl(ctrl);
+ return 0;
+
+destroy_io:
+ if (ctrl->queue_count > 1) {
+ nvme_quiesce_io_queues(ctrl);
+ nvme_sync_io_queues(ctrl);
+ nvme_tcp_stop_io_queues(ctrl);
+ nvme_cancel_tagset(ctrl);
+ nvme_tcp_destroy_io_queues(ctrl, new);
+ }
+destroy_admin:
+ nvme_quiesce_admin_queue(ctrl);
+ blk_sync_queue(ctrl->admin_q);
+ nvme_tcp_stop_queue(ctrl, 0);
+ nvme_cancel_admin_tagset(ctrl);
+ nvme_tcp_destroy_admin_queue(ctrl, new);
+ return ret;
+}
+
+static void nvme_tcp_reconnect_ctrl_work(struct work_struct *work)
+{
+ struct nvme_tcp_ctrl *tcp_ctrl = container_of(to_delayed_work(work),
+ struct nvme_tcp_ctrl, connect_work);
+ struct nvme_ctrl *ctrl = &tcp_ctrl->ctrl;
+
+ ++ctrl->nr_reconnects;
+
+ if (nvme_tcp_setup_ctrl(ctrl, false))
+ goto requeue;
+
+ dev_info(ctrl->device, "Successfully reconnected (%d attempt)\n",
+ ctrl->nr_reconnects);
+
+ ctrl->nr_reconnects = 0;
+
+ return;
+
+requeue:
+ dev_info(ctrl->device, "Failed reconnect attempt %d\n",
+ ctrl->nr_reconnects);
+ nvme_tcp_reconnect_or_remove(ctrl);
+}
+
+static void nvme_tcp_error_recovery_work(struct work_struct *work)
+{
+ struct nvme_tcp_ctrl *tcp_ctrl = container_of(work,
+ struct nvme_tcp_ctrl, err_work);
+ struct nvme_ctrl *ctrl = &tcp_ctrl->ctrl;
+
+ nvme_stop_keep_alive(ctrl);
+ flush_work(&ctrl->async_event_work);
+ nvme_tcp_teardown_io_queues(ctrl, false);
+ /* unquiesce to fail fast pending requests */
+ nvme_unquiesce_io_queues(ctrl);
+ nvme_tcp_teardown_admin_queue(ctrl, false);
+ nvme_unquiesce_admin_queue(ctrl);
+ nvme_auth_stop(ctrl);
+
+ if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_CONNECTING)) {
+ /* state change failure is ok if we started ctrl delete */
+ enum nvme_ctrl_state state = nvme_ctrl_state(ctrl);
+
+ WARN_ON_ONCE(state != NVME_CTRL_DELETING &&
+ state != NVME_CTRL_DELETING_NOIO);
+ return;
+ }
+
+ nvme_tcp_reconnect_or_remove(ctrl);
+}
+
+static void nvme_tcp_teardown_ctrl(struct nvme_ctrl *ctrl, bool shutdown)
+{
+ nvme_tcp_teardown_io_queues(ctrl, shutdown);
+ nvme_quiesce_admin_queue(ctrl);
+ nvme_disable_ctrl(ctrl, shutdown);
+ nvme_tcp_teardown_admin_queue(ctrl, shutdown);
+}
+
+static void nvme_tcp_delete_ctrl(struct nvme_ctrl *ctrl)
+{
+ nvme_tcp_teardown_ctrl(ctrl, true);
+}
+
+static void nvme_reset_ctrl_work(struct work_struct *work)
+{
+ struct nvme_ctrl *ctrl =
+ container_of(work, struct nvme_ctrl, reset_work);
+
+ nvme_stop_ctrl(ctrl);
+ nvme_tcp_teardown_ctrl(ctrl, false);
+
+ if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_CONNECTING)) {
+ /* state change failure is ok if we started ctrl delete */
+ enum nvme_ctrl_state state = nvme_ctrl_state(ctrl);
+
+ WARN_ON_ONCE(state != NVME_CTRL_DELETING &&
+ state != NVME_CTRL_DELETING_NOIO);
+ return;
+ }
+
+ if (nvme_tcp_setup_ctrl(ctrl, false))
+ goto out_fail;
+
+ return;
+
+out_fail:
+ ++ctrl->nr_reconnects;
+ nvme_tcp_reconnect_or_remove(ctrl);
+}
+
+static void nvme_tcp_stop_ctrl(struct nvme_ctrl *ctrl)
+{
+ flush_work(&to_tcp_ctrl(ctrl)->err_work);
+ cancel_delayed_work_sync(&to_tcp_ctrl(ctrl)->connect_work);
+}
+
+static void nvme_tcp_free_ctrl(struct nvme_ctrl *nctrl)
+{
+ struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
+
+ if (list_empty(&ctrl->list))
+ goto free_ctrl;
+
+ mutex_lock(&nvme_tcp_ctrl_mutex);
+ list_del(&ctrl->list);
+ mutex_unlock(&nvme_tcp_ctrl_mutex);
+
+ nvmf_free_options(nctrl->opts);
+free_ctrl:
+ kfree(ctrl->queues);
+ kfree(ctrl);
+}
+
+static void nvme_tcp_set_sg_null(struct nvme_command *c)
+{
+ struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
+
+ sg->addr = 0;
+ sg->length = 0;
+ sg->type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) |
+ NVME_SGL_FMT_TRANSPORT_A;
+}
+
+static void nvme_tcp_set_sg_inline(struct nvme_tcp_queue *queue,
+ struct nvme_command *c, u32 data_len)
+{
+ struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
+
+ sg->addr = cpu_to_le64(queue->ctrl->ctrl.icdoff);
+ sg->length = cpu_to_le32(data_len);
+ sg->type = (NVME_SGL_FMT_DATA_DESC << 4) | NVME_SGL_FMT_OFFSET;
+}
+
+static void nvme_tcp_set_sg_host_data(struct nvme_command *c,
+ u32 data_len)
+{
+ struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
+
+ sg->addr = 0;
+ sg->length = cpu_to_le32(data_len);
+ sg->type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) |
+ NVME_SGL_FMT_TRANSPORT_A;
+}
+
+static void nvme_tcp_submit_async_event(struct nvme_ctrl *arg)
+{
+ struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(arg);
+ struct nvme_tcp_queue *queue = &ctrl->queues[0];
+ struct nvme_tcp_cmd_pdu *pdu = ctrl->async_req.pdu;
+ struct nvme_command *cmd = &pdu->cmd;
+ u8 hdgst = nvme_tcp_hdgst_len(queue);
+
+ memset(pdu, 0, sizeof(*pdu));
+ pdu->hdr.type = nvme_tcp_cmd;
+ if (queue->hdr_digest)
+ pdu->hdr.flags |= NVME_TCP_F_HDGST;
+ pdu->hdr.hlen = sizeof(*pdu);
+ pdu->hdr.plen = cpu_to_le32(pdu->hdr.hlen + hdgst);
+
+ cmd->common.opcode = nvme_admin_async_event;
+ cmd->common.command_id = NVME_AQ_BLK_MQ_DEPTH;
+ cmd->common.flags |= NVME_CMD_SGL_METABUF;
+ nvme_tcp_set_sg_null(cmd);
+
+ ctrl->async_req.state = NVME_TCP_SEND_CMD_PDU;
+ ctrl->async_req.offset = 0;
+ ctrl->async_req.curr_bio = NULL;
+ ctrl->async_req.data_len = 0;
+
+ nvme_tcp_queue_request(&ctrl->async_req, true, true);
+}
+
+static void nvme_tcp_complete_timed_out(struct request *rq)
+{
+ struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
+ struct nvme_ctrl *ctrl = &req->queue->ctrl->ctrl;
+
+ nvme_tcp_stop_queue(ctrl, nvme_tcp_queue_id(req->queue));
+ nvmf_complete_timed_out_request(rq);
+}
+
+static enum blk_eh_timer_return nvme_tcp_timeout(struct request *rq)
+{
+ struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
+ struct nvme_ctrl *ctrl = &req->queue->ctrl->ctrl;
+ struct nvme_tcp_cmd_pdu *pdu = nvme_tcp_req_cmd_pdu(req);
+ u8 opc = pdu->cmd.common.opcode, fctype = pdu->cmd.fabrics.fctype;
+ int qid = nvme_tcp_queue_id(req->queue);
+
+ dev_warn(ctrl->device,
+ "queue %d: timeout cid %#x type %d opcode %#x (%s)\n",
+ nvme_tcp_queue_id(req->queue), nvme_cid(rq), pdu->hdr.type,
+ opc, nvme_opcode_str(qid, opc, fctype));
+
+ if (nvme_ctrl_state(ctrl) != NVME_CTRL_LIVE) {
+ /*
+ * If we are resetting, connecting or deleting we should
+ * complete immediately because we may block controller
+ * teardown or setup sequence
+ * - ctrl disable/shutdown fabrics requests
+ * - connect requests
+ * - initialization admin requests
+ * - I/O requests that entered after unquiescing and
+ * the controller stopped responding
+ *
+ * All other requests should be cancelled by the error
+ * recovery work, so it's fine that we fail it here.
+ */
+ nvme_tcp_complete_timed_out(rq);
+ return BLK_EH_DONE;
+ }
+
+ /*
+ * LIVE state should trigger the normal error recovery which will
+ * handle completing this request.
+ */
+ nvme_tcp_error_recovery(ctrl);
+ return BLK_EH_RESET_TIMER;
+}
+
+static blk_status_t nvme_tcp_map_data(struct nvme_tcp_queue *queue,
+ struct request *rq)
+{
+ struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
+ struct nvme_tcp_cmd_pdu *pdu = nvme_tcp_req_cmd_pdu(req);
+ struct nvme_command *c = &pdu->cmd;
+
+ c->common.flags |= NVME_CMD_SGL_METABUF;
+
+ if (!blk_rq_nr_phys_segments(rq))
+ nvme_tcp_set_sg_null(c);
+ else if (rq_data_dir(rq) == WRITE &&
+ req->data_len <= nvme_tcp_inline_data_size(req))
+ nvme_tcp_set_sg_inline(queue, c, req->data_len);
+ else
+ nvme_tcp_set_sg_host_data(c, req->data_len);
+
+ return 0;
+}
+
+static blk_status_t nvme_tcp_setup_cmd_pdu(struct nvme_ns *ns,
+ struct request *rq)
+{
+ struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
+ struct nvme_tcp_cmd_pdu *pdu = nvme_tcp_req_cmd_pdu(req);
+ struct nvme_tcp_queue *queue = req->queue;
+ u8 hdgst = nvme_tcp_hdgst_len(queue), ddgst = 0;
+ blk_status_t ret;
+
+ ret = nvme_setup_cmd(ns, rq);
+ if (ret)
+ return ret;
+
+ req->state = NVME_TCP_SEND_CMD_PDU;
+ req->status = cpu_to_le16(NVME_SC_SUCCESS);
+ req->offset = 0;
+ req->data_sent = 0;
+ req->pdu_len = 0;
+ req->pdu_sent = 0;
+ req->h2cdata_left = 0;
+ req->data_len = blk_rq_nr_phys_segments(rq) ?
+ blk_rq_payload_bytes(rq) : 0;
+ req->curr_bio = rq->bio;
+ if (req->curr_bio && req->data_len)
+ nvme_tcp_init_iter(req, rq_data_dir(rq));
+
+ if (rq_data_dir(rq) == WRITE &&
+ req->data_len <= nvme_tcp_inline_data_size(req))
+ req->pdu_len = req->data_len;
+
+ pdu->hdr.type = nvme_tcp_cmd;
+ pdu->hdr.flags = 0;
+ if (queue->hdr_digest)
+ pdu->hdr.flags |= NVME_TCP_F_HDGST;
+ if (queue->data_digest && req->pdu_len) {
+ pdu->hdr.flags |= NVME_TCP_F_DDGST;
+ ddgst = nvme_tcp_ddgst_len(queue);
+ }
+ pdu->hdr.hlen = sizeof(*pdu);
+ pdu->hdr.pdo = req->pdu_len ? pdu->hdr.hlen + hdgst : 0;
+ pdu->hdr.plen =
+ cpu_to_le32(pdu->hdr.hlen + hdgst + req->pdu_len + ddgst);
+
+ ret = nvme_tcp_map_data(queue, rq);
+ if (unlikely(ret)) {
+ nvme_cleanup_cmd(rq);
+ dev_err(queue->ctrl->ctrl.device,
+ "Failed to map data (%d)\n", ret);
+ return ret;
+ }
+
+ return 0;
+}
+
+static void nvme_tcp_commit_rqs(struct blk_mq_hw_ctx *hctx)
+{
+ struct nvme_tcp_queue *queue = hctx->driver_data;
+
+ if (!llist_empty(&queue->req_list))
+ queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
+}
+
+static blk_status_t nvme_tcp_queue_rq(struct blk_mq_hw_ctx *hctx,
+ const struct blk_mq_queue_data *bd)
+{
+ struct nvme_ns *ns = hctx->queue->queuedata;
+ struct nvme_tcp_queue *queue = hctx->driver_data;
+ struct request *rq = bd->rq;
+ struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
+ bool queue_ready = test_bit(NVME_TCP_Q_LIVE, &queue->flags);
+ blk_status_t ret;
+
+ if (!nvme_check_ready(&queue->ctrl->ctrl, rq, queue_ready))
+ return nvme_fail_nonready_command(&queue->ctrl->ctrl, rq);
+
+ ret = nvme_tcp_setup_cmd_pdu(ns, rq);
+ if (unlikely(ret))
+ return ret;
+
+ nvme_start_request(rq);
+
+ nvme_tcp_queue_request(req, true, bd->last);
+
+ return BLK_STS_OK;
+}
+
+static void nvme_tcp_map_queues(struct blk_mq_tag_set *set)
+{
+ struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(set->driver_data);
+
+ nvmf_map_queues(set, &ctrl->ctrl, ctrl->io_queues);
+}
+
+static int nvme_tcp_poll(struct blk_mq_hw_ctx *hctx, struct io_comp_batch *iob)
+{
+ struct nvme_tcp_queue *queue = hctx->driver_data;
+ struct sock *sk = queue->sock->sk;
+
+ if (!test_bit(NVME_TCP_Q_LIVE, &queue->flags))
+ return 0;
+
+ set_bit(NVME_TCP_Q_POLLING, &queue->flags);
+ if (sk_can_busy_loop(sk) && skb_queue_empty_lockless(&sk->sk_receive_queue))
+ sk_busy_loop(sk, true);
+ nvme_tcp_try_recv(queue);
+ clear_bit(NVME_TCP_Q_POLLING, &queue->flags);
+ return queue->nr_cqe;
+}
+
+static int nvme_tcp_get_address(struct nvme_ctrl *ctrl, char *buf, int size)
+{
+ struct nvme_tcp_queue *queue = &to_tcp_ctrl(ctrl)->queues[0];
+ struct sockaddr_storage src_addr;
+ int ret, len;
+
+ len = nvmf_get_address(ctrl, buf, size);
+
+ mutex_lock(&queue->queue_lock);
+
+ if (!test_bit(NVME_TCP_Q_LIVE, &queue->flags))
+ goto done;
+ ret = kernel_getsockname(queue->sock, (struct sockaddr *)&src_addr);
+ if (ret > 0) {
+ if (len > 0)
+ len--; /* strip trailing newline */
+ len += scnprintf(buf + len, size - len, "%ssrc_addr=%pISc\n",
+ (len) ? "," : "", &src_addr);
+ }
+done:
+ mutex_unlock(&queue->queue_lock);
+
+ return len;
+}
+
+static const struct blk_mq_ops nvme_tcp_mq_ops = {
+ .queue_rq = nvme_tcp_queue_rq,
+ .commit_rqs = nvme_tcp_commit_rqs,
+ .complete = nvme_complete_rq,
+ .init_request = nvme_tcp_init_request,
+ .exit_request = nvme_tcp_exit_request,
+ .init_hctx = nvme_tcp_init_hctx,
+ .timeout = nvme_tcp_timeout,
+ .map_queues = nvme_tcp_map_queues,
+ .poll = nvme_tcp_poll,
+};
+
+static const struct blk_mq_ops nvme_tcp_admin_mq_ops = {
+ .queue_rq = nvme_tcp_queue_rq,
+ .complete = nvme_complete_rq,
+ .init_request = nvme_tcp_init_request,
+ .exit_request = nvme_tcp_exit_request,
+ .init_hctx = nvme_tcp_init_admin_hctx,
+ .timeout = nvme_tcp_timeout,
+};
+
+static const struct nvme_ctrl_ops nvme_tcp_ctrl_ops = {
+ .name = "tcp",
+ .module = THIS_MODULE,
+ .flags = NVME_F_FABRICS | NVME_F_BLOCKING,
+ .reg_read32 = nvmf_reg_read32,
+ .reg_read64 = nvmf_reg_read64,
+ .reg_write32 = nvmf_reg_write32,
+ .free_ctrl = nvme_tcp_free_ctrl,
+ .submit_async_event = nvme_tcp_submit_async_event,
+ .delete_ctrl = nvme_tcp_delete_ctrl,
+ .get_address = nvme_tcp_get_address,
+ .stop_ctrl = nvme_tcp_stop_ctrl,
+};
+
+static bool
+nvme_tcp_existing_controller(struct nvmf_ctrl_options *opts)
+{
+ struct nvme_tcp_ctrl *ctrl;
+ bool found = false;
+
+ mutex_lock(&nvme_tcp_ctrl_mutex);
+ list_for_each_entry(ctrl, &nvme_tcp_ctrl_list, list) {
+ found = nvmf_ip_options_match(&ctrl->ctrl, opts);
+ if (found)
+ break;
+ }
+ mutex_unlock(&nvme_tcp_ctrl_mutex);
+
+ return found;
+}
+
+static struct nvme_ctrl *nvme_tcp_create_ctrl(struct device *dev,
+ struct nvmf_ctrl_options *opts)
+{
+ struct nvme_tcp_ctrl *ctrl;
+ int ret;
+
+ ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
+ if (!ctrl)
+ return ERR_PTR(-ENOMEM);
+
+ INIT_LIST_HEAD(&ctrl->list);
+ ctrl->ctrl.opts = opts;
+ ctrl->ctrl.queue_count = opts->nr_io_queues + opts->nr_write_queues +
+ opts->nr_poll_queues + 1;
+ ctrl->ctrl.sqsize = opts->queue_size - 1;
+ ctrl->ctrl.kato = opts->kato;
+
+ INIT_DELAYED_WORK(&ctrl->connect_work,
+ nvme_tcp_reconnect_ctrl_work);
+ INIT_WORK(&ctrl->err_work, nvme_tcp_error_recovery_work);
+ INIT_WORK(&ctrl->ctrl.reset_work, nvme_reset_ctrl_work);
+
+ if (!(opts->mask & NVMF_OPT_TRSVCID)) {
+ opts->trsvcid =
+ kstrdup(__stringify(NVME_TCP_DISC_PORT), GFP_KERNEL);
+ if (!opts->trsvcid) {
+ ret = -ENOMEM;
+ goto out_free_ctrl;
+ }
+ opts->mask |= NVMF_OPT_TRSVCID;
+ }
+
+ ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
+ opts->traddr, opts->trsvcid, &ctrl->addr);
+ if (ret) {
+ pr_err("malformed address passed: %s:%s\n",
+ opts->traddr, opts->trsvcid);
+ goto out_free_ctrl;
+ }
+
+ if (opts->mask & NVMF_OPT_HOST_TRADDR) {
+ ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
+ opts->host_traddr, NULL, &ctrl->src_addr);
+ if (ret) {
+ pr_err("malformed src address passed: %s\n",
+ opts->host_traddr);
+ goto out_free_ctrl;
+ }
+ }
+
+ if (opts->mask & NVMF_OPT_HOST_IFACE) {
+ if (!__dev_get_by_name(&init_net, opts->host_iface)) {
+ pr_err("invalid interface passed: %s\n",
+ opts->host_iface);
+ ret = -ENODEV;
+ goto out_free_ctrl;
+ }
+ }
+
+ if (!opts->duplicate_connect && nvme_tcp_existing_controller(opts)) {
+ ret = -EALREADY;
+ goto out_free_ctrl;
+ }
+
+ ctrl->queues = kcalloc(ctrl->ctrl.queue_count, sizeof(*ctrl->queues),
+ GFP_KERNEL);
+ if (!ctrl->queues) {
+ ret = -ENOMEM;
+ goto out_free_ctrl;
+ }
+
+ ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_tcp_ctrl_ops, 0);
+ if (ret)
+ goto out_kfree_queues;
+
+ if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) {
+ WARN_ON_ONCE(1);
+ ret = -EINTR;
+ goto out_uninit_ctrl;
+ }
+
+ ret = nvme_tcp_setup_ctrl(&ctrl->ctrl, true);
+ if (ret)
+ goto out_uninit_ctrl;
+
+ dev_info(ctrl->ctrl.device, "new ctrl: NQN \"%s\", addr %pISp\n",
+ nvmf_ctrl_subsysnqn(&ctrl->ctrl), &ctrl->addr);
+
+ mutex_lock(&nvme_tcp_ctrl_mutex);
+ list_add_tail(&ctrl->list, &nvme_tcp_ctrl_list);
+ mutex_unlock(&nvme_tcp_ctrl_mutex);
+
+ return &ctrl->ctrl;
+
+out_uninit_ctrl:
+ nvme_uninit_ctrl(&ctrl->ctrl);
+ nvme_put_ctrl(&ctrl->ctrl);
+ if (ret > 0)
+ ret = -EIO;
+ return ERR_PTR(ret);
+out_kfree_queues:
+ kfree(ctrl->queues);
+out_free_ctrl:
+ kfree(ctrl);
+ return ERR_PTR(ret);
+}
+
+static struct nvmf_transport_ops nvme_tcp_transport = {
+ .name = "tcp",
+ .module = THIS_MODULE,
+ .required_opts = NVMF_OPT_TRADDR,
+ .allowed_opts = NVMF_OPT_TRSVCID | NVMF_OPT_RECONNECT_DELAY |
+ NVMF_OPT_HOST_TRADDR | NVMF_OPT_CTRL_LOSS_TMO |
+ NVMF_OPT_HDR_DIGEST | NVMF_OPT_DATA_DIGEST |
+ NVMF_OPT_NR_WRITE_QUEUES | NVMF_OPT_NR_POLL_QUEUES |
+ NVMF_OPT_TOS | NVMF_OPT_HOST_IFACE,
+ .create_ctrl = nvme_tcp_create_ctrl,
+};
+
+static int __init nvme_tcp_init_module(void)
+{
+ BUILD_BUG_ON(sizeof(struct nvme_tcp_hdr) != 8);
+ BUILD_BUG_ON(sizeof(struct nvme_tcp_cmd_pdu) != 72);
+ BUILD_BUG_ON(sizeof(struct nvme_tcp_data_pdu) != 24);
+ BUILD_BUG_ON(sizeof(struct nvme_tcp_rsp_pdu) != 24);
+ BUILD_BUG_ON(sizeof(struct nvme_tcp_r2t_pdu) != 24);
+ BUILD_BUG_ON(sizeof(struct nvme_tcp_icreq_pdu) != 128);
+ BUILD_BUG_ON(sizeof(struct nvme_tcp_icresp_pdu) != 128);
+ BUILD_BUG_ON(sizeof(struct nvme_tcp_term_pdu) != 24);
+
+ nvme_tcp_wq = alloc_workqueue("nvme_tcp_wq",
+ WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
+ if (!nvme_tcp_wq)
+ return -ENOMEM;
+
+ nvmf_register_transport(&nvme_tcp_transport);
+ return 0;
+}
+
+static void __exit nvme_tcp_cleanup_module(void)
+{
+ struct nvme_tcp_ctrl *ctrl;
+
+ nvmf_unregister_transport(&nvme_tcp_transport);
+
+ mutex_lock(&nvme_tcp_ctrl_mutex);
+ list_for_each_entry(ctrl, &nvme_tcp_ctrl_list, list)
+ nvme_delete_ctrl(&ctrl->ctrl);
+ mutex_unlock(&nvme_tcp_ctrl_mutex);
+ flush_workqueue(nvme_delete_wq);
+
+ destroy_workqueue(nvme_tcp_wq);
+}
+
+module_init(nvme_tcp_init_module);
+module_exit(nvme_tcp_cleanup_module);
+
+MODULE_LICENSE("GPL v2");
diff --git a/drivers/nvme/host/trace.c b/drivers/nvme/host/trace.c
new file mode 100644
index 0000000000..1c36fcedea
--- /dev/null
+++ b/drivers/nvme/host/trace.c
@@ -0,0 +1,357 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * NVM Express device driver tracepoints
+ * Copyright (c) 2018 Johannes Thumshirn, SUSE Linux GmbH
+ */
+
+#include <asm/unaligned.h>
+#include "trace.h"
+
+static const char *nvme_trace_delete_sq(struct trace_seq *p, u8 *cdw10)
+{
+ const char *ret = trace_seq_buffer_ptr(p);
+ u16 sqid = get_unaligned_le16(cdw10);
+
+ trace_seq_printf(p, "sqid=%u", sqid);
+ trace_seq_putc(p, 0);
+
+ return ret;
+}
+
+static const char *nvme_trace_create_sq(struct trace_seq *p, u8 *cdw10)
+{
+ const char *ret = trace_seq_buffer_ptr(p);
+ u16 sqid = get_unaligned_le16(cdw10);
+ u16 qsize = get_unaligned_le16(cdw10 + 2);
+ u16 sq_flags = get_unaligned_le16(cdw10 + 4);
+ u16 cqid = get_unaligned_le16(cdw10 + 6);
+
+
+ trace_seq_printf(p, "sqid=%u, qsize=%u, sq_flags=0x%x, cqid=%u",
+ sqid, qsize, sq_flags, cqid);
+ trace_seq_putc(p, 0);
+
+ return ret;
+}
+
+static const char *nvme_trace_delete_cq(struct trace_seq *p, u8 *cdw10)
+{
+ const char *ret = trace_seq_buffer_ptr(p);
+ u16 cqid = get_unaligned_le16(cdw10);
+
+ trace_seq_printf(p, "cqid=%u", cqid);
+ trace_seq_putc(p, 0);
+
+ return ret;
+}
+
+static const char *nvme_trace_create_cq(struct trace_seq *p, u8 *cdw10)
+{
+ const char *ret = trace_seq_buffer_ptr(p);
+ u16 cqid = get_unaligned_le16(cdw10);
+ u16 qsize = get_unaligned_le16(cdw10 + 2);
+ u16 cq_flags = get_unaligned_le16(cdw10 + 4);
+ u16 irq_vector = get_unaligned_le16(cdw10 + 6);
+
+ trace_seq_printf(p, "cqid=%u, qsize=%u, cq_flags=0x%x, irq_vector=%u",
+ cqid, qsize, cq_flags, irq_vector);
+ trace_seq_putc(p, 0);
+
+ return ret;
+}
+
+static const char *nvme_trace_admin_identify(struct trace_seq *p, u8 *cdw10)
+{
+ const char *ret = trace_seq_buffer_ptr(p);
+ u8 cns = cdw10[0];
+ u16 ctrlid = get_unaligned_le16(cdw10 + 2);
+
+ trace_seq_printf(p, "cns=%u, ctrlid=%u", cns, ctrlid);
+ trace_seq_putc(p, 0);
+
+ return ret;
+}
+
+static const char *nvme_trace_admin_set_features(struct trace_seq *p,
+ u8 *cdw10)
+{
+ const char *ret = trace_seq_buffer_ptr(p);
+ u8 fid = cdw10[0];
+ u8 sv = cdw10[3] & 0x8;
+ u32 cdw11 = get_unaligned_le32(cdw10 + 4);
+
+ trace_seq_printf(p, "fid=0x%x, sv=0x%x, cdw11=0x%x", fid, sv, cdw11);
+ trace_seq_putc(p, 0);
+
+ return ret;
+}
+
+static const char *nvme_trace_admin_get_features(struct trace_seq *p,
+ u8 *cdw10)
+{
+ const char *ret = trace_seq_buffer_ptr(p);
+ u8 fid = cdw10[0];
+ u8 sel = cdw10[1] & 0x7;
+ u32 cdw11 = get_unaligned_le32(cdw10 + 4);
+
+ trace_seq_printf(p, "fid=0x%x, sel=0x%x, cdw11=0x%x", fid, sel, cdw11);
+ trace_seq_putc(p, 0);
+
+ return ret;
+}
+
+static const char *nvme_trace_get_lba_status(struct trace_seq *p,
+ u8 *cdw10)
+{
+ const char *ret = trace_seq_buffer_ptr(p);
+ u64 slba = get_unaligned_le64(cdw10);
+ u32 mndw = get_unaligned_le32(cdw10 + 8);
+ u16 rl = get_unaligned_le16(cdw10 + 12);
+ u8 atype = cdw10[15];
+
+ trace_seq_printf(p, "slba=0x%llx, mndw=0x%x, rl=0x%x, atype=%u",
+ slba, mndw, rl, atype);
+ trace_seq_putc(p, 0);
+
+ return ret;
+}
+
+static const char *nvme_trace_admin_format_nvm(struct trace_seq *p, u8 *cdw10)
+{
+ const char *ret = trace_seq_buffer_ptr(p);
+ u8 lbaf = cdw10[0] & 0xF;
+ u8 mset = (cdw10[0] >> 4) & 0x1;
+ u8 pi = (cdw10[0] >> 5) & 0x7;
+ u8 pil = cdw10[1] & 0x1;
+ u8 ses = (cdw10[1] >> 1) & 0x7;
+
+ trace_seq_printf(p, "lbaf=%u, mset=%u, pi=%u, pil=%u, ses=%u",
+ lbaf, mset, pi, pil, ses);
+
+ trace_seq_putc(p, 0);
+
+ return ret;
+}
+
+static const char *nvme_trace_read_write(struct trace_seq *p, u8 *cdw10)
+{
+ const char *ret = trace_seq_buffer_ptr(p);
+ u64 slba = get_unaligned_le64(cdw10);
+ u16 length = get_unaligned_le16(cdw10 + 8);
+ u16 control = get_unaligned_le16(cdw10 + 10);
+ u32 dsmgmt = get_unaligned_le32(cdw10 + 12);
+ u32 reftag = get_unaligned_le32(cdw10 + 16);
+
+ trace_seq_printf(p,
+ "slba=%llu, len=%u, ctrl=0x%x, dsmgmt=%u, reftag=%u",
+ slba, length, control, dsmgmt, reftag);
+ trace_seq_putc(p, 0);
+
+ return ret;
+}
+
+static const char *nvme_trace_dsm(struct trace_seq *p, u8 *cdw10)
+{
+ const char *ret = trace_seq_buffer_ptr(p);
+
+ trace_seq_printf(p, "nr=%u, attributes=%u",
+ get_unaligned_le32(cdw10),
+ get_unaligned_le32(cdw10 + 4));
+ trace_seq_putc(p, 0);
+
+ return ret;
+}
+
+static const char *nvme_trace_zone_mgmt_send(struct trace_seq *p, u8 *cdw10)
+{
+ const char *ret = trace_seq_buffer_ptr(p);
+ u64 slba = get_unaligned_le64(cdw10);
+ u8 zsa = cdw10[12];
+ u8 all = cdw10[13];
+
+ trace_seq_printf(p, "slba=%llu, zsa=%u, all=%u", slba, zsa, all);
+ trace_seq_putc(p, 0);
+
+ return ret;
+}
+
+static const char *nvme_trace_zone_mgmt_recv(struct trace_seq *p, u8 *cdw10)
+{
+ const char *ret = trace_seq_buffer_ptr(p);
+ u64 slba = get_unaligned_le64(cdw10);
+ u32 numd = get_unaligned_le32(cdw10 + 8);
+ u8 zra = cdw10[12];
+ u8 zrasf = cdw10[13];
+ u8 pr = cdw10[14];
+
+ trace_seq_printf(p, "slba=%llu, numd=%u, zra=%u, zrasf=%u, pr=%u",
+ slba, numd, zra, zrasf, pr);
+ trace_seq_putc(p, 0);
+
+ return ret;
+}
+
+static const char *nvme_trace_common(struct trace_seq *p, u8 *cdw10)
+{
+ const char *ret = trace_seq_buffer_ptr(p);
+
+ trace_seq_printf(p, "cdw10=%*ph", 24, cdw10);
+ trace_seq_putc(p, 0);
+
+ return ret;
+}
+
+const char *nvme_trace_parse_admin_cmd(struct trace_seq *p,
+ u8 opcode, u8 *cdw10)
+{
+ switch (opcode) {
+ case nvme_admin_delete_sq:
+ return nvme_trace_delete_sq(p, cdw10);
+ case nvme_admin_create_sq:
+ return nvme_trace_create_sq(p, cdw10);
+ case nvme_admin_delete_cq:
+ return nvme_trace_delete_cq(p, cdw10);
+ case nvme_admin_create_cq:
+ return nvme_trace_create_cq(p, cdw10);
+ case nvme_admin_identify:
+ return nvme_trace_admin_identify(p, cdw10);
+ case nvme_admin_set_features:
+ return nvme_trace_admin_set_features(p, cdw10);
+ case nvme_admin_get_features:
+ return nvme_trace_admin_get_features(p, cdw10);
+ case nvme_admin_get_lba_status:
+ return nvme_trace_get_lba_status(p, cdw10);
+ case nvme_admin_format_nvm:
+ return nvme_trace_admin_format_nvm(p, cdw10);
+ default:
+ return nvme_trace_common(p, cdw10);
+ }
+}
+
+const char *nvme_trace_parse_nvm_cmd(struct trace_seq *p,
+ u8 opcode, u8 *cdw10)
+{
+ switch (opcode) {
+ case nvme_cmd_read:
+ case nvme_cmd_write:
+ case nvme_cmd_write_zeroes:
+ case nvme_cmd_zone_append:
+ return nvme_trace_read_write(p, cdw10);
+ case nvme_cmd_dsm:
+ return nvme_trace_dsm(p, cdw10);
+ case nvme_cmd_zone_mgmt_send:
+ return nvme_trace_zone_mgmt_send(p, cdw10);
+ case nvme_cmd_zone_mgmt_recv:
+ return nvme_trace_zone_mgmt_recv(p, cdw10);
+ default:
+ return nvme_trace_common(p, cdw10);
+ }
+}
+
+static const char *nvme_trace_fabrics_property_set(struct trace_seq *p, u8 *spc)
+{
+ const char *ret = trace_seq_buffer_ptr(p);
+ u8 attrib = spc[0];
+ u32 ofst = get_unaligned_le32(spc + 4);
+ u64 value = get_unaligned_le64(spc + 8);
+
+ trace_seq_printf(p, "attrib=%u, ofst=0x%x, value=0x%llx",
+ attrib, ofst, value);
+ trace_seq_putc(p, 0);
+ return ret;
+}
+
+static const char *nvme_trace_fabrics_connect(struct trace_seq *p, u8 *spc)
+{
+ const char *ret = trace_seq_buffer_ptr(p);
+ u16 recfmt = get_unaligned_le16(spc);
+ u16 qid = get_unaligned_le16(spc + 2);
+ u16 sqsize = get_unaligned_le16(spc + 4);
+ u8 cattr = spc[6];
+ u32 kato = get_unaligned_le32(spc + 8);
+
+ trace_seq_printf(p, "recfmt=%u, qid=%u, sqsize=%u, cattr=%u, kato=%u",
+ recfmt, qid, sqsize, cattr, kato);
+ trace_seq_putc(p, 0);
+ return ret;
+}
+
+static const char *nvme_trace_fabrics_property_get(struct trace_seq *p, u8 *spc)
+{
+ const char *ret = trace_seq_buffer_ptr(p);
+ u8 attrib = spc[0];
+ u32 ofst = get_unaligned_le32(spc + 4);
+
+ trace_seq_printf(p, "attrib=%u, ofst=0x%x", attrib, ofst);
+ trace_seq_putc(p, 0);
+ return ret;
+}
+
+static const char *nvme_trace_fabrics_auth_send(struct trace_seq *p, u8 *spc)
+{
+ const char *ret = trace_seq_buffer_ptr(p);
+ u8 spsp0 = spc[1];
+ u8 spsp1 = spc[2];
+ u8 secp = spc[3];
+ u32 tl = get_unaligned_le32(spc + 4);
+
+ trace_seq_printf(p, "spsp0=%02x, spsp1=%02x, secp=%02x, tl=%u",
+ spsp0, spsp1, secp, tl);
+ trace_seq_putc(p, 0);
+ return ret;
+}
+
+static const char *nvme_trace_fabrics_auth_receive(struct trace_seq *p, u8 *spc)
+{
+ const char *ret = trace_seq_buffer_ptr(p);
+ u8 spsp0 = spc[1];
+ u8 spsp1 = spc[2];
+ u8 secp = spc[3];
+ u32 al = get_unaligned_le32(spc + 4);
+
+ trace_seq_printf(p, "spsp0=%02x, spsp1=%02x, secp=%02x, al=%u",
+ spsp0, spsp1, secp, al);
+ trace_seq_putc(p, 0);
+ return ret;
+}
+
+static const char *nvme_trace_fabrics_common(struct trace_seq *p, u8 *spc)
+{
+ const char *ret = trace_seq_buffer_ptr(p);
+
+ trace_seq_printf(p, "specific=%*ph", 24, spc);
+ trace_seq_putc(p, 0);
+ return ret;
+}
+
+const char *nvme_trace_parse_fabrics_cmd(struct trace_seq *p,
+ u8 fctype, u8 *spc)
+{
+ switch (fctype) {
+ case nvme_fabrics_type_property_set:
+ return nvme_trace_fabrics_property_set(p, spc);
+ case nvme_fabrics_type_connect:
+ return nvme_trace_fabrics_connect(p, spc);
+ case nvme_fabrics_type_property_get:
+ return nvme_trace_fabrics_property_get(p, spc);
+ case nvme_fabrics_type_auth_send:
+ return nvme_trace_fabrics_auth_send(p, spc);
+ case nvme_fabrics_type_auth_receive:
+ return nvme_trace_fabrics_auth_receive(p, spc);
+ default:
+ return nvme_trace_fabrics_common(p, spc);
+ }
+}
+
+const char *nvme_trace_disk_name(struct trace_seq *p, char *name)
+{
+ const char *ret = trace_seq_buffer_ptr(p);
+
+ if (*name)
+ trace_seq_printf(p, "disk=%s, ", name);
+ trace_seq_putc(p, 0);
+
+ return ret;
+}
+
+EXPORT_TRACEPOINT_SYMBOL_GPL(nvme_sq);
diff --git a/drivers/nvme/host/trace.h b/drivers/nvme/host/trace.h
new file mode 100644
index 0000000000..4fb5922ffd
--- /dev/null
+++ b/drivers/nvme/host/trace.h
@@ -0,0 +1,172 @@
+/* SPDX-License-Identifier: GPL-2.0 */
+/*
+ * NVM Express device driver tracepoints
+ * Copyright (c) 2018 Johannes Thumshirn, SUSE Linux GmbH
+ */
+
+#undef TRACE_SYSTEM
+#define TRACE_SYSTEM nvme
+
+#if !defined(_TRACE_NVME_H) || defined(TRACE_HEADER_MULTI_READ)
+#define _TRACE_NVME_H
+
+#include <linux/nvme.h>
+#include <linux/tracepoint.h>
+#include <linux/trace_seq.h>
+
+#include "nvme.h"
+
+const char *nvme_trace_parse_admin_cmd(struct trace_seq *p, u8 opcode,
+ u8 *cdw10);
+const char *nvme_trace_parse_nvm_cmd(struct trace_seq *p, u8 opcode,
+ u8 *cdw10);
+const char *nvme_trace_parse_fabrics_cmd(struct trace_seq *p, u8 fctype,
+ u8 *spc);
+
+#define parse_nvme_cmd(qid, opcode, fctype, cdw10) \
+ ((opcode) == nvme_fabrics_command ? \
+ nvme_trace_parse_fabrics_cmd(p, fctype, cdw10) : \
+ ((qid) ? \
+ nvme_trace_parse_nvm_cmd(p, opcode, cdw10) : \
+ nvme_trace_parse_admin_cmd(p, opcode, cdw10)))
+
+const char *nvme_trace_disk_name(struct trace_seq *p, char *name);
+#define __print_disk_name(name) \
+ nvme_trace_disk_name(p, name)
+
+#ifndef TRACE_HEADER_MULTI_READ
+static inline void __assign_disk_name(char *name, struct gendisk *disk)
+{
+ if (disk)
+ memcpy(name, disk->disk_name, DISK_NAME_LEN);
+ else
+ memset(name, 0, DISK_NAME_LEN);
+}
+#endif
+
+TRACE_EVENT(nvme_setup_cmd,
+ TP_PROTO(struct request *req, struct nvme_command *cmd),
+ TP_ARGS(req, cmd),
+ TP_STRUCT__entry(
+ __array(char, disk, DISK_NAME_LEN)
+ __field(int, ctrl_id)
+ __field(int, qid)
+ __field(u8, opcode)
+ __field(u8, flags)
+ __field(u8, fctype)
+ __field(u16, cid)
+ __field(u32, nsid)
+ __field(bool, metadata)
+ __array(u8, cdw10, 24)
+ ),
+ TP_fast_assign(
+ __entry->ctrl_id = nvme_req(req)->ctrl->instance;
+ __entry->qid = nvme_req_qid(req);
+ __entry->opcode = cmd->common.opcode;
+ __entry->flags = cmd->common.flags;
+ __entry->cid = cmd->common.command_id;
+ __entry->nsid = le32_to_cpu(cmd->common.nsid);
+ __entry->metadata = !!blk_integrity_rq(req);
+ __entry->fctype = cmd->fabrics.fctype;
+ __assign_disk_name(__entry->disk, req->q->disk);
+ memcpy(__entry->cdw10, &cmd->common.cdws,
+ sizeof(__entry->cdw10));
+ ),
+ TP_printk("nvme%d: %sqid=%d, cmdid=%u, nsid=%u, flags=0x%x, meta=0x%x, cmd=(%s %s)",
+ __entry->ctrl_id, __print_disk_name(__entry->disk),
+ __entry->qid, __entry->cid, __entry->nsid,
+ __entry->flags, __entry->metadata,
+ show_opcode_name(__entry->qid, __entry->opcode,
+ __entry->fctype),
+ parse_nvme_cmd(__entry->qid, __entry->opcode,
+ __entry->fctype, __entry->cdw10))
+);
+
+TRACE_EVENT(nvme_complete_rq,
+ TP_PROTO(struct request *req),
+ TP_ARGS(req),
+ TP_STRUCT__entry(
+ __array(char, disk, DISK_NAME_LEN)
+ __field(int, ctrl_id)
+ __field(int, qid)
+ __field(int, cid)
+ __field(u64, result)
+ __field(u8, retries)
+ __field(u8, flags)
+ __field(u16, status)
+ ),
+ TP_fast_assign(
+ __entry->ctrl_id = nvme_req(req)->ctrl->instance;
+ __entry->qid = nvme_req_qid(req);
+ __entry->cid = nvme_req(req)->cmd->common.command_id;
+ __entry->result = le64_to_cpu(nvme_req(req)->result.u64);
+ __entry->retries = nvme_req(req)->retries;
+ __entry->flags = nvme_req(req)->flags;
+ __entry->status = nvme_req(req)->status;
+ __assign_disk_name(__entry->disk, req->q->disk);
+ ),
+ TP_printk("nvme%d: %sqid=%d, cmdid=%u, res=%#llx, retries=%u, flags=0x%x, status=%#x",
+ __entry->ctrl_id, __print_disk_name(__entry->disk),
+ __entry->qid, __entry->cid, __entry->result,
+ __entry->retries, __entry->flags, __entry->status)
+
+);
+
+#define aer_name(aer) { aer, #aer }
+
+TRACE_EVENT(nvme_async_event,
+ TP_PROTO(struct nvme_ctrl *ctrl, u32 result),
+ TP_ARGS(ctrl, result),
+ TP_STRUCT__entry(
+ __field(int, ctrl_id)
+ __field(u32, result)
+ ),
+ TP_fast_assign(
+ __entry->ctrl_id = ctrl->instance;
+ __entry->result = result;
+ ),
+ TP_printk("nvme%d: NVME_AEN=%#08x [%s]",
+ __entry->ctrl_id, __entry->result,
+ __print_symbolic(__entry->result & 0x7,
+ aer_name(NVME_AER_ERROR),
+ aer_name(NVME_AER_SMART),
+ aer_name(NVME_AER_NOTICE),
+ aer_name(NVME_AER_CSS),
+ aer_name(NVME_AER_VS))
+ )
+);
+
+#undef aer_name
+
+TRACE_EVENT(nvme_sq,
+ TP_PROTO(struct request *req, __le16 sq_head, int sq_tail),
+ TP_ARGS(req, sq_head, sq_tail),
+ TP_STRUCT__entry(
+ __field(int, ctrl_id)
+ __array(char, disk, DISK_NAME_LEN)
+ __field(int, qid)
+ __field(u16, sq_head)
+ __field(u16, sq_tail)
+ ),
+ TP_fast_assign(
+ __entry->ctrl_id = nvme_req(req)->ctrl->instance;
+ __assign_disk_name(__entry->disk, req->q->disk);
+ __entry->qid = nvme_req_qid(req);
+ __entry->sq_head = le16_to_cpu(sq_head);
+ __entry->sq_tail = sq_tail;
+ ),
+ TP_printk("nvme%d: %sqid=%d, head=%u, tail=%u",
+ __entry->ctrl_id, __print_disk_name(__entry->disk),
+ __entry->qid, __entry->sq_head, __entry->sq_tail
+ )
+);
+
+#endif /* _TRACE_NVME_H */
+
+#undef TRACE_INCLUDE_PATH
+#define TRACE_INCLUDE_PATH .
+#undef TRACE_INCLUDE_FILE
+#define TRACE_INCLUDE_FILE trace
+
+/* This part must be outside protection */
+#include <trace/define_trace.h>
diff --git a/drivers/nvme/host/zns.c b/drivers/nvme/host/zns.c
new file mode 100644
index 0000000000..ec8557810c
--- /dev/null
+++ b/drivers/nvme/host/zns.c
@@ -0,0 +1,249 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * Copyright (C) 2020 Western Digital Corporation or its affiliates.
+ */
+
+#include <linux/blkdev.h>
+#include <linux/vmalloc.h>
+#include "nvme.h"
+
+int nvme_revalidate_zones(struct nvme_ns *ns)
+{
+ struct request_queue *q = ns->queue;
+
+ blk_queue_chunk_sectors(q, ns->zsze);
+ blk_queue_max_zone_append_sectors(q, ns->ctrl->max_zone_append);
+
+ return blk_revalidate_disk_zones(ns->disk, NULL);
+}
+
+static int nvme_set_max_append(struct nvme_ctrl *ctrl)
+{
+ struct nvme_command c = { };
+ struct nvme_id_ctrl_zns *id;
+ int status;
+
+ id = kzalloc(sizeof(*id), GFP_KERNEL);
+ if (!id)
+ return -ENOMEM;
+
+ c.identify.opcode = nvme_admin_identify;
+ c.identify.cns = NVME_ID_CNS_CS_CTRL;
+ c.identify.csi = NVME_CSI_ZNS;
+
+ status = nvme_submit_sync_cmd(ctrl->admin_q, &c, id, sizeof(*id));
+ if (status) {
+ kfree(id);
+ return status;
+ }
+
+ if (id->zasl)
+ ctrl->max_zone_append = 1 << (id->zasl + 3);
+ else
+ ctrl->max_zone_append = ctrl->max_hw_sectors;
+ kfree(id);
+ return 0;
+}
+
+int nvme_update_zone_info(struct nvme_ns *ns, unsigned lbaf)
+{
+ struct nvme_effects_log *log = ns->head->effects;
+ struct request_queue *q = ns->queue;
+ struct nvme_command c = { };
+ struct nvme_id_ns_zns *id;
+ int status;
+
+ /* Driver requires zone append support */
+ if ((le32_to_cpu(log->iocs[nvme_cmd_zone_append]) &
+ NVME_CMD_EFFECTS_CSUPP)) {
+ if (test_and_clear_bit(NVME_NS_FORCE_RO, &ns->flags))
+ dev_warn(ns->ctrl->device,
+ "Zone Append supported for zoned namespace:%d. Remove read-only mode\n",
+ ns->head->ns_id);
+ } else {
+ set_bit(NVME_NS_FORCE_RO, &ns->flags);
+ dev_warn(ns->ctrl->device,
+ "Zone Append not supported for zoned namespace:%d. Forcing to read-only mode\n",
+ ns->head->ns_id);
+ }
+
+ /* Lazily query controller append limit for the first zoned namespace */
+ if (!ns->ctrl->max_zone_append) {
+ status = nvme_set_max_append(ns->ctrl);
+ if (status)
+ return status;
+ }
+
+ id = kzalloc(sizeof(*id), GFP_KERNEL);
+ if (!id)
+ return -ENOMEM;
+
+ c.identify.opcode = nvme_admin_identify;
+ c.identify.nsid = cpu_to_le32(ns->head->ns_id);
+ c.identify.cns = NVME_ID_CNS_CS_NS;
+ c.identify.csi = NVME_CSI_ZNS;
+
+ status = nvme_submit_sync_cmd(ns->ctrl->admin_q, &c, id, sizeof(*id));
+ if (status)
+ goto free_data;
+
+ /*
+ * We currently do not handle devices requiring any of the zoned
+ * operation characteristics.
+ */
+ if (id->zoc) {
+ dev_warn(ns->ctrl->device,
+ "zone operations:%x not supported for namespace:%u\n",
+ le16_to_cpu(id->zoc), ns->head->ns_id);
+ status = -ENODEV;
+ goto free_data;
+ }
+
+ ns->zsze = nvme_lba_to_sect(ns, le64_to_cpu(id->lbafe[lbaf].zsze));
+ if (!is_power_of_2(ns->zsze)) {
+ dev_warn(ns->ctrl->device,
+ "invalid zone size:%llu for namespace:%u\n",
+ ns->zsze, ns->head->ns_id);
+ status = -ENODEV;
+ goto free_data;
+ }
+
+ disk_set_zoned(ns->disk, BLK_ZONED_HM);
+ blk_queue_flag_set(QUEUE_FLAG_ZONE_RESETALL, q);
+ disk_set_max_open_zones(ns->disk, le32_to_cpu(id->mor) + 1);
+ disk_set_max_active_zones(ns->disk, le32_to_cpu(id->mar) + 1);
+free_data:
+ kfree(id);
+ return status;
+}
+
+static void *nvme_zns_alloc_report_buffer(struct nvme_ns *ns,
+ unsigned int nr_zones, size_t *buflen)
+{
+ struct request_queue *q = ns->disk->queue;
+ size_t bufsize;
+ void *buf;
+
+ const size_t min_bufsize = sizeof(struct nvme_zone_report) +
+ sizeof(struct nvme_zone_descriptor);
+
+ nr_zones = min_t(unsigned int, nr_zones,
+ get_capacity(ns->disk) >> ilog2(ns->zsze));
+
+ bufsize = sizeof(struct nvme_zone_report) +
+ nr_zones * sizeof(struct nvme_zone_descriptor);
+ bufsize = min_t(size_t, bufsize,
+ queue_max_hw_sectors(q) << SECTOR_SHIFT);
+ bufsize = min_t(size_t, bufsize, queue_max_segments(q) << PAGE_SHIFT);
+
+ while (bufsize >= min_bufsize) {
+ buf = __vmalloc(bufsize, GFP_KERNEL | __GFP_NORETRY);
+ if (buf) {
+ *buflen = bufsize;
+ return buf;
+ }
+ bufsize >>= 1;
+ }
+ return NULL;
+}
+
+static int nvme_zone_parse_entry(struct nvme_ns *ns,
+ struct nvme_zone_descriptor *entry,
+ unsigned int idx, report_zones_cb cb,
+ void *data)
+{
+ struct blk_zone zone = { };
+
+ if ((entry->zt & 0xf) != NVME_ZONE_TYPE_SEQWRITE_REQ) {
+ dev_err(ns->ctrl->device, "invalid zone type %#x\n",
+ entry->zt);
+ return -EINVAL;
+ }
+
+ zone.type = BLK_ZONE_TYPE_SEQWRITE_REQ;
+ zone.cond = entry->zs >> 4;
+ zone.len = ns->zsze;
+ zone.capacity = nvme_lba_to_sect(ns, le64_to_cpu(entry->zcap));
+ zone.start = nvme_lba_to_sect(ns, le64_to_cpu(entry->zslba));
+ if (zone.cond == BLK_ZONE_COND_FULL)
+ zone.wp = zone.start + zone.len;
+ else
+ zone.wp = nvme_lba_to_sect(ns, le64_to_cpu(entry->wp));
+
+ return cb(&zone, idx, data);
+}
+
+int nvme_ns_report_zones(struct nvme_ns *ns, sector_t sector,
+ unsigned int nr_zones, report_zones_cb cb, void *data)
+{
+ struct nvme_zone_report *report;
+ struct nvme_command c = { };
+ int ret, zone_idx = 0;
+ unsigned int nz, i;
+ size_t buflen;
+
+ if (ns->head->ids.csi != NVME_CSI_ZNS)
+ return -EINVAL;
+
+ report = nvme_zns_alloc_report_buffer(ns, nr_zones, &buflen);
+ if (!report)
+ return -ENOMEM;
+
+ c.zmr.opcode = nvme_cmd_zone_mgmt_recv;
+ c.zmr.nsid = cpu_to_le32(ns->head->ns_id);
+ c.zmr.numd = cpu_to_le32(nvme_bytes_to_numd(buflen));
+ c.zmr.zra = NVME_ZRA_ZONE_REPORT;
+ c.zmr.zrasf = NVME_ZRASF_ZONE_REPORT_ALL;
+ c.zmr.pr = NVME_REPORT_ZONE_PARTIAL;
+
+ sector &= ~(ns->zsze - 1);
+ while (zone_idx < nr_zones && sector < get_capacity(ns->disk)) {
+ memset(report, 0, buflen);
+
+ c.zmr.slba = cpu_to_le64(nvme_sect_to_lba(ns, sector));
+ ret = nvme_submit_sync_cmd(ns->queue, &c, report, buflen);
+ if (ret) {
+ if (ret > 0)
+ ret = -EIO;
+ goto out_free;
+ }
+
+ nz = min((unsigned int)le64_to_cpu(report->nr_zones), nr_zones);
+ if (!nz)
+ break;
+
+ for (i = 0; i < nz && zone_idx < nr_zones; i++) {
+ ret = nvme_zone_parse_entry(ns, &report->entries[i],
+ zone_idx, cb, data);
+ if (ret)
+ goto out_free;
+ zone_idx++;
+ }
+
+ sector += ns->zsze * nz;
+ }
+
+ if (zone_idx > 0)
+ ret = zone_idx;
+ else
+ ret = -EINVAL;
+out_free:
+ kvfree(report);
+ return ret;
+}
+
+blk_status_t nvme_setup_zone_mgmt_send(struct nvme_ns *ns, struct request *req,
+ struct nvme_command *c, enum nvme_zone_mgmt_action action)
+{
+ memset(c, 0, sizeof(*c));
+
+ c->zms.opcode = nvme_cmd_zone_mgmt_send;
+ c->zms.nsid = cpu_to_le32(ns->head->ns_id);
+ c->zms.slba = cpu_to_le64(nvme_sect_to_lba(ns, blk_rq_pos(req)));
+ c->zms.zsa = action;
+
+ if (req_op(req) == REQ_OP_ZONE_RESET_ALL)
+ c->zms.select_all = 1;
+
+ return BLK_STS_OK;
+}