diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-08-07 13:11:22 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-08-07 13:11:22 +0000 |
commit | b20732900e4636a467c0183a47f7396700f5f743 (patch) | |
tree | 42f079ff82e701ebcb76829974b4caca3e5b6798 /drivers/ras/amd/atl/dehash.c | |
parent | Adding upstream version 6.8.12. (diff) | |
download | linux-b20732900e4636a467c0183a47f7396700f5f743.tar.xz linux-b20732900e4636a467c0183a47f7396700f5f743.zip |
Adding upstream version 6.9.7.upstream/6.9.7
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'drivers/ras/amd/atl/dehash.c')
-rw-r--r-- | drivers/ras/amd/atl/dehash.c | 500 |
1 files changed, 500 insertions, 0 deletions
diff --git a/drivers/ras/amd/atl/dehash.c b/drivers/ras/amd/atl/dehash.c new file mode 100644 index 0000000000..4ea46262c4 --- /dev/null +++ b/drivers/ras/amd/atl/dehash.c @@ -0,0 +1,500 @@ +// SPDX-License-Identifier: GPL-2.0-or-later +/* + * AMD Address Translation Library + * + * dehash.c : Functions to account for hashing bits + * + * Copyright (c) 2023, Advanced Micro Devices, Inc. + * All Rights Reserved. + * + * Author: Yazen Ghannam <Yazen.Ghannam@amd.com> + */ + +#include "internal.h" + +/* + * Verify the interleave bits are correct in the different interleaving + * settings. + * + * If @num_intlv_dies and/or @num_intlv_sockets are 1, it means the + * respective interleaving is disabled. + */ +static inline bool map_bits_valid(struct addr_ctx *ctx, u8 bit1, u8 bit2, + u8 num_intlv_dies, u8 num_intlv_sockets) +{ + if (!(ctx->map.intlv_bit_pos == bit1 || ctx->map.intlv_bit_pos == bit2)) { + pr_debug("Invalid interleave bit: %u", ctx->map.intlv_bit_pos); + return false; + } + + if (ctx->map.num_intlv_dies > num_intlv_dies) { + pr_debug("Invalid number of interleave dies: %u", ctx->map.num_intlv_dies); + return false; + } + + if (ctx->map.num_intlv_sockets > num_intlv_sockets) { + pr_debug("Invalid number of interleave sockets: %u", ctx->map.num_intlv_sockets); + return false; + } + + return true; +} + +static int df2_dehash_addr(struct addr_ctx *ctx) +{ + u8 hashed_bit, intlv_bit, intlv_bit_pos; + + if (!map_bits_valid(ctx, 8, 9, 1, 1)) + return -EINVAL; + + intlv_bit_pos = ctx->map.intlv_bit_pos; + intlv_bit = !!(BIT_ULL(intlv_bit_pos) & ctx->ret_addr); + + hashed_bit = intlv_bit; + hashed_bit ^= FIELD_GET(BIT_ULL(12), ctx->ret_addr); + hashed_bit ^= FIELD_GET(BIT_ULL(18), ctx->ret_addr); + hashed_bit ^= FIELD_GET(BIT_ULL(21), ctx->ret_addr); + hashed_bit ^= FIELD_GET(BIT_ULL(30), ctx->ret_addr); + + if (hashed_bit != intlv_bit) + ctx->ret_addr ^= BIT_ULL(intlv_bit_pos); + + return 0; +} + +static int df3_dehash_addr(struct addr_ctx *ctx) +{ + bool hash_ctl_64k, hash_ctl_2M, hash_ctl_1G; + u8 hashed_bit, intlv_bit, intlv_bit_pos; + + if (!map_bits_valid(ctx, 8, 9, 1, 1)) + return -EINVAL; + + hash_ctl_64k = FIELD_GET(DF3_HASH_CTL_64K, ctx->map.ctl); + hash_ctl_2M = FIELD_GET(DF3_HASH_CTL_2M, ctx->map.ctl); + hash_ctl_1G = FIELD_GET(DF3_HASH_CTL_1G, ctx->map.ctl); + + intlv_bit_pos = ctx->map.intlv_bit_pos; + intlv_bit = !!(BIT_ULL(intlv_bit_pos) & ctx->ret_addr); + + hashed_bit = intlv_bit; + hashed_bit ^= FIELD_GET(BIT_ULL(14), ctx->ret_addr); + hashed_bit ^= FIELD_GET(BIT_ULL(18), ctx->ret_addr) & hash_ctl_64k; + hashed_bit ^= FIELD_GET(BIT_ULL(23), ctx->ret_addr) & hash_ctl_2M; + hashed_bit ^= FIELD_GET(BIT_ULL(32), ctx->ret_addr) & hash_ctl_1G; + + if (hashed_bit != intlv_bit) + ctx->ret_addr ^= BIT_ULL(intlv_bit_pos); + + /* Calculation complete for 2 channels. Continue for 4 and 8 channels. */ + if (ctx->map.intlv_mode == DF3_COD4_2CHAN_HASH) + return 0; + + intlv_bit = FIELD_GET(BIT_ULL(12), ctx->ret_addr); + + hashed_bit = intlv_bit; + hashed_bit ^= FIELD_GET(BIT_ULL(16), ctx->ret_addr) & hash_ctl_64k; + hashed_bit ^= FIELD_GET(BIT_ULL(21), ctx->ret_addr) & hash_ctl_2M; + hashed_bit ^= FIELD_GET(BIT_ULL(30), ctx->ret_addr) & hash_ctl_1G; + + if (hashed_bit != intlv_bit) + ctx->ret_addr ^= BIT_ULL(12); + + /* Calculation complete for 4 channels. Continue for 8 channels. */ + if (ctx->map.intlv_mode == DF3_COD2_4CHAN_HASH) + return 0; + + intlv_bit = FIELD_GET(BIT_ULL(13), ctx->ret_addr); + + hashed_bit = intlv_bit; + hashed_bit ^= FIELD_GET(BIT_ULL(17), ctx->ret_addr) & hash_ctl_64k; + hashed_bit ^= FIELD_GET(BIT_ULL(22), ctx->ret_addr) & hash_ctl_2M; + hashed_bit ^= FIELD_GET(BIT_ULL(31), ctx->ret_addr) & hash_ctl_1G; + + if (hashed_bit != intlv_bit) + ctx->ret_addr ^= BIT_ULL(13); + + return 0; +} + +static int df3_6chan_dehash_addr(struct addr_ctx *ctx) +{ + u8 intlv_bit_pos = ctx->map.intlv_bit_pos; + u8 hashed_bit, intlv_bit, num_intlv_bits; + bool hash_ctl_2M, hash_ctl_1G; + + if (ctx->map.intlv_mode != DF3_6CHAN) { + atl_debug_on_bad_intlv_mode(ctx); + return -EINVAL; + } + + num_intlv_bits = ilog2(ctx->map.num_intlv_chan) + 1; + + hash_ctl_2M = FIELD_GET(DF3_HASH_CTL_2M, ctx->map.ctl); + hash_ctl_1G = FIELD_GET(DF3_HASH_CTL_1G, ctx->map.ctl); + + intlv_bit = !!(BIT_ULL(intlv_bit_pos) & ctx->ret_addr); + + hashed_bit = intlv_bit; + hashed_bit ^= !!(BIT_ULL(intlv_bit_pos + num_intlv_bits) & ctx->ret_addr); + hashed_bit ^= FIELD_GET(BIT_ULL(23), ctx->ret_addr) & hash_ctl_2M; + hashed_bit ^= FIELD_GET(BIT_ULL(32), ctx->ret_addr) & hash_ctl_1G; + + if (hashed_bit != intlv_bit) + ctx->ret_addr ^= BIT_ULL(intlv_bit_pos); + + intlv_bit_pos++; + intlv_bit = !!(BIT_ULL(intlv_bit_pos) & ctx->ret_addr); + + hashed_bit = intlv_bit; + hashed_bit ^= FIELD_GET(BIT_ULL(21), ctx->ret_addr) & hash_ctl_2M; + hashed_bit ^= FIELD_GET(BIT_ULL(30), ctx->ret_addr) & hash_ctl_1G; + + if (hashed_bit != intlv_bit) + ctx->ret_addr ^= BIT_ULL(intlv_bit_pos); + + intlv_bit_pos++; + intlv_bit = !!(BIT_ULL(intlv_bit_pos) & ctx->ret_addr); + + hashed_bit = intlv_bit; + hashed_bit ^= FIELD_GET(BIT_ULL(22), ctx->ret_addr) & hash_ctl_2M; + hashed_bit ^= FIELD_GET(BIT_ULL(31), ctx->ret_addr) & hash_ctl_1G; + + if (hashed_bit != intlv_bit) + ctx->ret_addr ^= BIT_ULL(intlv_bit_pos); + + return 0; +} + +static int df4_dehash_addr(struct addr_ctx *ctx) +{ + bool hash_ctl_64k, hash_ctl_2M, hash_ctl_1G; + u8 hashed_bit, intlv_bit; + + if (!map_bits_valid(ctx, 8, 8, 1, 2)) + return -EINVAL; + + hash_ctl_64k = FIELD_GET(DF4_HASH_CTL_64K, ctx->map.ctl); + hash_ctl_2M = FIELD_GET(DF4_HASH_CTL_2M, ctx->map.ctl); + hash_ctl_1G = FIELD_GET(DF4_HASH_CTL_1G, ctx->map.ctl); + + intlv_bit = FIELD_GET(BIT_ULL(8), ctx->ret_addr); + + hashed_bit = intlv_bit; + hashed_bit ^= FIELD_GET(BIT_ULL(16), ctx->ret_addr) & hash_ctl_64k; + hashed_bit ^= FIELD_GET(BIT_ULL(21), ctx->ret_addr) & hash_ctl_2M; + hashed_bit ^= FIELD_GET(BIT_ULL(30), ctx->ret_addr) & hash_ctl_1G; + + if (ctx->map.num_intlv_sockets == 1) + hashed_bit ^= FIELD_GET(BIT_ULL(14), ctx->ret_addr); + + if (hashed_bit != intlv_bit) + ctx->ret_addr ^= BIT_ULL(8); + + /* + * Hashing is possible with socket interleaving, so check the total number + * of channels in the system rather than DRAM map interleaving mode. + * + * Calculation complete for 2 channels. Continue for 4, 8, and 16 channels. + */ + if (ctx->map.total_intlv_chan <= 2) + return 0; + + intlv_bit = FIELD_GET(BIT_ULL(12), ctx->ret_addr); + + hashed_bit = intlv_bit; + hashed_bit ^= FIELD_GET(BIT_ULL(17), ctx->ret_addr) & hash_ctl_64k; + hashed_bit ^= FIELD_GET(BIT_ULL(22), ctx->ret_addr) & hash_ctl_2M; + hashed_bit ^= FIELD_GET(BIT_ULL(31), ctx->ret_addr) & hash_ctl_1G; + + if (hashed_bit != intlv_bit) + ctx->ret_addr ^= BIT_ULL(12); + + /* Calculation complete for 4 channels. Continue for 8 and 16 channels. */ + if (ctx->map.total_intlv_chan <= 4) + return 0; + + intlv_bit = FIELD_GET(BIT_ULL(13), ctx->ret_addr); + + hashed_bit = intlv_bit; + hashed_bit ^= FIELD_GET(BIT_ULL(18), ctx->ret_addr) & hash_ctl_64k; + hashed_bit ^= FIELD_GET(BIT_ULL(23), ctx->ret_addr) & hash_ctl_2M; + hashed_bit ^= FIELD_GET(BIT_ULL(32), ctx->ret_addr) & hash_ctl_1G; + + if (hashed_bit != intlv_bit) + ctx->ret_addr ^= BIT_ULL(13); + + /* Calculation complete for 8 channels. Continue for 16 channels. */ + if (ctx->map.total_intlv_chan <= 8) + return 0; + + intlv_bit = FIELD_GET(BIT_ULL(14), ctx->ret_addr); + + hashed_bit = intlv_bit; + hashed_bit ^= FIELD_GET(BIT_ULL(19), ctx->ret_addr) & hash_ctl_64k; + hashed_bit ^= FIELD_GET(BIT_ULL(24), ctx->ret_addr) & hash_ctl_2M; + hashed_bit ^= FIELD_GET(BIT_ULL(33), ctx->ret_addr) & hash_ctl_1G; + + if (hashed_bit != intlv_bit) + ctx->ret_addr ^= BIT_ULL(14); + + return 0; +} + +static int df4p5_dehash_addr(struct addr_ctx *ctx) +{ + bool hash_ctl_64k, hash_ctl_2M, hash_ctl_1G, hash_ctl_1T; + u8 hashed_bit, intlv_bit; + u64 rehash_vector; + + if (!map_bits_valid(ctx, 8, 8, 1, 2)) + return -EINVAL; + + hash_ctl_64k = FIELD_GET(DF4_HASH_CTL_64K, ctx->map.ctl); + hash_ctl_2M = FIELD_GET(DF4_HASH_CTL_2M, ctx->map.ctl); + hash_ctl_1G = FIELD_GET(DF4_HASH_CTL_1G, ctx->map.ctl); + hash_ctl_1T = FIELD_GET(DF4p5_HASH_CTL_1T, ctx->map.ctl); + + /* + * Generate a unique address to determine which bits + * need to be dehashed. + * + * Start with a contiguous bitmask for the total + * number of channels starting at bit 8. + * + * Then make a gap in the proper place based on + * interleave mode. + */ + rehash_vector = ctx->map.total_intlv_chan - 1; + rehash_vector <<= 8; + + if (ctx->map.intlv_mode == DF4p5_NPS2_4CHAN_1K_HASH || + ctx->map.intlv_mode == DF4p5_NPS1_8CHAN_1K_HASH || + ctx->map.intlv_mode == DF4p5_NPS1_16CHAN_1K_HASH) + rehash_vector = expand_bits(10, 2, rehash_vector); + else + rehash_vector = expand_bits(9, 3, rehash_vector); + + if (rehash_vector & BIT_ULL(8)) { + intlv_bit = FIELD_GET(BIT_ULL(8), ctx->ret_addr); + + hashed_bit = intlv_bit; + hashed_bit ^= FIELD_GET(BIT_ULL(16), ctx->ret_addr) & hash_ctl_64k; + hashed_bit ^= FIELD_GET(BIT_ULL(21), ctx->ret_addr) & hash_ctl_2M; + hashed_bit ^= FIELD_GET(BIT_ULL(30), ctx->ret_addr) & hash_ctl_1G; + hashed_bit ^= FIELD_GET(BIT_ULL(40), ctx->ret_addr) & hash_ctl_1T; + + if (hashed_bit != intlv_bit) + ctx->ret_addr ^= BIT_ULL(8); + } + + if (rehash_vector & BIT_ULL(9)) { + intlv_bit = FIELD_GET(BIT_ULL(9), ctx->ret_addr); + + hashed_bit = intlv_bit; + hashed_bit ^= FIELD_GET(BIT_ULL(17), ctx->ret_addr) & hash_ctl_64k; + hashed_bit ^= FIELD_GET(BIT_ULL(22), ctx->ret_addr) & hash_ctl_2M; + hashed_bit ^= FIELD_GET(BIT_ULL(31), ctx->ret_addr) & hash_ctl_1G; + hashed_bit ^= FIELD_GET(BIT_ULL(41), ctx->ret_addr) & hash_ctl_1T; + + if (hashed_bit != intlv_bit) + ctx->ret_addr ^= BIT_ULL(9); + } + + if (rehash_vector & BIT_ULL(12)) { + intlv_bit = FIELD_GET(BIT_ULL(12), ctx->ret_addr); + + hashed_bit = intlv_bit; + hashed_bit ^= FIELD_GET(BIT_ULL(18), ctx->ret_addr) & hash_ctl_64k; + hashed_bit ^= FIELD_GET(BIT_ULL(23), ctx->ret_addr) & hash_ctl_2M; + hashed_bit ^= FIELD_GET(BIT_ULL(32), ctx->ret_addr) & hash_ctl_1G; + hashed_bit ^= FIELD_GET(BIT_ULL(42), ctx->ret_addr) & hash_ctl_1T; + + if (hashed_bit != intlv_bit) + ctx->ret_addr ^= BIT_ULL(12); + } + + if (rehash_vector & BIT_ULL(13)) { + intlv_bit = FIELD_GET(BIT_ULL(13), ctx->ret_addr); + + hashed_bit = intlv_bit; + hashed_bit ^= FIELD_GET(BIT_ULL(19), ctx->ret_addr) & hash_ctl_64k; + hashed_bit ^= FIELD_GET(BIT_ULL(24), ctx->ret_addr) & hash_ctl_2M; + hashed_bit ^= FIELD_GET(BIT_ULL(33), ctx->ret_addr) & hash_ctl_1G; + hashed_bit ^= FIELD_GET(BIT_ULL(43), ctx->ret_addr) & hash_ctl_1T; + + if (hashed_bit != intlv_bit) + ctx->ret_addr ^= BIT_ULL(13); + } + + if (rehash_vector & BIT_ULL(14)) { + intlv_bit = FIELD_GET(BIT_ULL(14), ctx->ret_addr); + + hashed_bit = intlv_bit; + hashed_bit ^= FIELD_GET(BIT_ULL(20), ctx->ret_addr) & hash_ctl_64k; + hashed_bit ^= FIELD_GET(BIT_ULL(25), ctx->ret_addr) & hash_ctl_2M; + hashed_bit ^= FIELD_GET(BIT_ULL(34), ctx->ret_addr) & hash_ctl_1G; + hashed_bit ^= FIELD_GET(BIT_ULL(44), ctx->ret_addr) & hash_ctl_1T; + + if (hashed_bit != intlv_bit) + ctx->ret_addr ^= BIT_ULL(14); + } + + return 0; +} + +/* + * MI300 hash bits + * 4K 64K 2M 1G 1T 1T + * COH_ST_Select[0] = XOR of addr{8, 12, 15, 22, 29, 36, 43} + * COH_ST_Select[1] = XOR of addr{9, 13, 16, 23, 30, 37, 44} + * COH_ST_Select[2] = XOR of addr{10, 14, 17, 24, 31, 38, 45} + * COH_ST_Select[3] = XOR of addr{11, 18, 25, 32, 39, 46} + * COH_ST_Select[4] = XOR of addr{14, 19, 26, 33, 40, 47} aka Stack + * DieID[0] = XOR of addr{12, 20, 27, 34, 41 } + * DieID[1] = XOR of addr{13, 21, 28, 35, 42 } + */ +static int mi300_dehash_addr(struct addr_ctx *ctx) +{ + bool hash_ctl_4k, hash_ctl_64k, hash_ctl_2M, hash_ctl_1G, hash_ctl_1T; + bool hashed_bit, intlv_bit, test_bit; + u8 num_intlv_bits, base_bit, i; + + if (!map_bits_valid(ctx, 8, 8, 4, 1)) + return -EINVAL; + + hash_ctl_4k = FIELD_GET(DF4p5_HASH_CTL_4K, ctx->map.ctl); + hash_ctl_64k = FIELD_GET(DF4_HASH_CTL_64K, ctx->map.ctl); + hash_ctl_2M = FIELD_GET(DF4_HASH_CTL_2M, ctx->map.ctl); + hash_ctl_1G = FIELD_GET(DF4_HASH_CTL_1G, ctx->map.ctl); + hash_ctl_1T = FIELD_GET(DF4p5_HASH_CTL_1T, ctx->map.ctl); + + /* Channel bits */ + num_intlv_bits = ilog2(ctx->map.num_intlv_chan); + + for (i = 0; i < num_intlv_bits; i++) { + base_bit = 8 + i; + + /* COH_ST_Select[4] jumps to a base bit of 14. */ + if (i == 4) + base_bit = 14; + + intlv_bit = BIT_ULL(base_bit) & ctx->ret_addr; + + hashed_bit = intlv_bit; + + /* 4k hash bit only applies to the first 3 bits. */ + if (i <= 2) { + test_bit = BIT_ULL(12 + i) & ctx->ret_addr; + hashed_bit ^= test_bit & hash_ctl_4k; + } + + /* Use temporary 'test_bit' value to avoid Sparse warnings. */ + test_bit = BIT_ULL(15 + i) & ctx->ret_addr; + hashed_bit ^= test_bit & hash_ctl_64k; + test_bit = BIT_ULL(22 + i) & ctx->ret_addr; + hashed_bit ^= test_bit & hash_ctl_2M; + test_bit = BIT_ULL(29 + i) & ctx->ret_addr; + hashed_bit ^= test_bit & hash_ctl_1G; + test_bit = BIT_ULL(36 + i) & ctx->ret_addr; + hashed_bit ^= test_bit & hash_ctl_1T; + test_bit = BIT_ULL(43 + i) & ctx->ret_addr; + hashed_bit ^= test_bit & hash_ctl_1T; + + if (hashed_bit != intlv_bit) + ctx->ret_addr ^= BIT_ULL(base_bit); + } + + /* Die bits */ + num_intlv_bits = ilog2(ctx->map.num_intlv_dies); + + for (i = 0; i < num_intlv_bits; i++) { + base_bit = 12 + i; + + intlv_bit = BIT_ULL(base_bit) & ctx->ret_addr; + + hashed_bit = intlv_bit; + + test_bit = BIT_ULL(20 + i) & ctx->ret_addr; + hashed_bit ^= test_bit & hash_ctl_64k; + test_bit = BIT_ULL(27 + i) & ctx->ret_addr; + hashed_bit ^= test_bit & hash_ctl_2M; + test_bit = BIT_ULL(34 + i) & ctx->ret_addr; + hashed_bit ^= test_bit & hash_ctl_1G; + test_bit = BIT_ULL(41 + i) & ctx->ret_addr; + hashed_bit ^= test_bit & hash_ctl_1T; + + if (hashed_bit != intlv_bit) + ctx->ret_addr ^= BIT_ULL(base_bit); + } + + return 0; +} + +int dehash_address(struct addr_ctx *ctx) +{ + switch (ctx->map.intlv_mode) { + /* No hashing cases. */ + case NONE: + case NOHASH_2CHAN: + case NOHASH_4CHAN: + case NOHASH_8CHAN: + case NOHASH_16CHAN: + case NOHASH_32CHAN: + /* Hashing bits handled earlier during CS ID calculation. */ + case DF4_NPS4_3CHAN_HASH: + case DF4_NPS2_5CHAN_HASH: + case DF4_NPS2_6CHAN_HASH: + case DF4_NPS1_10CHAN_HASH: + case DF4_NPS1_12CHAN_HASH: + case DF4p5_NPS2_6CHAN_1K_HASH: + case DF4p5_NPS2_6CHAN_2K_HASH: + case DF4p5_NPS1_10CHAN_1K_HASH: + case DF4p5_NPS1_10CHAN_2K_HASH: + case DF4p5_NPS1_12CHAN_1K_HASH: + case DF4p5_NPS1_12CHAN_2K_HASH: + case DF4p5_NPS0_24CHAN_1K_HASH: + case DF4p5_NPS0_24CHAN_2K_HASH: + /* No hash physical address bits, so nothing to do. */ + case DF4p5_NPS4_3CHAN_1K_HASH: + case DF4p5_NPS4_3CHAN_2K_HASH: + case DF4p5_NPS2_5CHAN_1K_HASH: + case DF4p5_NPS2_5CHAN_2K_HASH: + return 0; + + case DF2_2CHAN_HASH: + return df2_dehash_addr(ctx); + + case DF3_COD4_2CHAN_HASH: + case DF3_COD2_4CHAN_HASH: + case DF3_COD1_8CHAN_HASH: + return df3_dehash_addr(ctx); + + case DF3_6CHAN: + return df3_6chan_dehash_addr(ctx); + + case DF4_NPS4_2CHAN_HASH: + case DF4_NPS2_4CHAN_HASH: + case DF4_NPS1_8CHAN_HASH: + return df4_dehash_addr(ctx); + + case DF4p5_NPS4_2CHAN_1K_HASH: + case DF4p5_NPS4_2CHAN_2K_HASH: + case DF4p5_NPS2_4CHAN_2K_HASH: + case DF4p5_NPS2_4CHAN_1K_HASH: + case DF4p5_NPS1_8CHAN_1K_HASH: + case DF4p5_NPS1_8CHAN_2K_HASH: + case DF4p5_NPS1_16CHAN_1K_HASH: + case DF4p5_NPS1_16CHAN_2K_HASH: + return df4p5_dehash_addr(ctx); + + case MI3_HASH_8CHAN: + case MI3_HASH_16CHAN: + case MI3_HASH_32CHAN: + return mi300_dehash_addr(ctx); + + default: + atl_debug_on_bad_intlv_mode(ctx); + return -EINVAL; + } +} |