summaryrefslogtreecommitdiffstats
path: root/fs/btrfs/block-rsv.c
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-11 08:27:49 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-11 08:27:49 +0000
commitace9429bb58fd418f0c81d4c2835699bddf6bde6 (patch)
treeb2d64bc10158fdd5497876388cd68142ca374ed3 /fs/btrfs/block-rsv.c
parentInitial commit. (diff)
downloadlinux-ace9429bb58fd418f0c81d4c2835699bddf6bde6.tar.xz
linux-ace9429bb58fd418f0c81d4c2835699bddf6bde6.zip
Adding upstream version 6.6.15.upstream/6.6.15
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'fs/btrfs/block-rsv.c')
-rw-r--r--fs/btrfs/block-rsv.c567
1 files changed, 567 insertions, 0 deletions
diff --git a/fs/btrfs/block-rsv.c b/fs/btrfs/block-rsv.c
new file mode 100644
index 0000000000..77684c5e0c
--- /dev/null
+++ b/fs/btrfs/block-rsv.c
@@ -0,0 +1,567 @@
+// SPDX-License-Identifier: GPL-2.0
+
+#include "misc.h"
+#include "ctree.h"
+#include "block-rsv.h"
+#include "space-info.h"
+#include "transaction.h"
+#include "block-group.h"
+#include "disk-io.h"
+#include "fs.h"
+#include "accessors.h"
+
+/*
+ * HOW DO BLOCK RESERVES WORK
+ *
+ * Think of block_rsv's as buckets for logically grouped metadata
+ * reservations. Each block_rsv has a ->size and a ->reserved. ->size is
+ * how large we want our block rsv to be, ->reserved is how much space is
+ * currently reserved for this block reserve.
+ *
+ * ->failfast exists for the truncate case, and is described below.
+ *
+ * NORMAL OPERATION
+ *
+ * -> Reserve
+ * Entrance: btrfs_block_rsv_add, btrfs_block_rsv_refill
+ *
+ * We call into btrfs_reserve_metadata_bytes() with our bytes, which is
+ * accounted for in space_info->bytes_may_use, and then add the bytes to
+ * ->reserved, and ->size in the case of btrfs_block_rsv_add.
+ *
+ * ->size is an over-estimation of how much we may use for a particular
+ * operation.
+ *
+ * -> Use
+ * Entrance: btrfs_use_block_rsv
+ *
+ * When we do a btrfs_alloc_tree_block() we call into btrfs_use_block_rsv()
+ * to determine the appropriate block_rsv to use, and then verify that
+ * ->reserved has enough space for our tree block allocation. Once
+ * successful we subtract fs_info->nodesize from ->reserved.
+ *
+ * -> Finish
+ * Entrance: btrfs_block_rsv_release
+ *
+ * We are finished with our operation, subtract our individual reservation
+ * from ->size, and then subtract ->size from ->reserved and free up the
+ * excess if there is any.
+ *
+ * There is some logic here to refill the delayed refs rsv or the global rsv
+ * as needed, otherwise the excess is subtracted from
+ * space_info->bytes_may_use.
+ *
+ * TYPES OF BLOCK RESERVES
+ *
+ * BLOCK_RSV_TRANS, BLOCK_RSV_DELOPS, BLOCK_RSV_CHUNK
+ * These behave normally, as described above, just within the confines of the
+ * lifetime of their particular operation (transaction for the whole trans
+ * handle lifetime, for example).
+ *
+ * BLOCK_RSV_GLOBAL
+ * It is impossible to properly account for all the space that may be required
+ * to make our extent tree updates. This block reserve acts as an overflow
+ * buffer in case our delayed refs reserve does not reserve enough space to
+ * update the extent tree.
+ *
+ * We can steal from this in some cases as well, notably on evict() or
+ * truncate() in order to help users recover from ENOSPC conditions.
+ *
+ * BLOCK_RSV_DELALLOC
+ * The individual item sizes are determined by the per-inode size
+ * calculations, which are described with the delalloc code. This is pretty
+ * straightforward, it's just the calculation of ->size encodes a lot of
+ * different items, and thus it gets used when updating inodes, inserting file
+ * extents, and inserting checksums.
+ *
+ * BLOCK_RSV_DELREFS
+ * We keep a running tally of how many delayed refs we have on the system.
+ * We assume each one of these delayed refs are going to use a full
+ * reservation. We use the transaction items and pre-reserve space for every
+ * operation, and use this reservation to refill any gap between ->size and
+ * ->reserved that may exist.
+ *
+ * From there it's straightforward, removing a delayed ref means we remove its
+ * count from ->size and free up reservations as necessary. Since this is
+ * the most dynamic block reserve in the system, we will try to refill this
+ * block reserve first with any excess returned by any other block reserve.
+ *
+ * BLOCK_RSV_EMPTY
+ * This is the fallback block reserve to make us try to reserve space if we
+ * don't have a specific bucket for this allocation. It is mostly used for
+ * updating the device tree and such, since that is a separate pool we're
+ * content to just reserve space from the space_info on demand.
+ *
+ * BLOCK_RSV_TEMP
+ * This is used by things like truncate and iput. We will temporarily
+ * allocate a block reserve, set it to some size, and then truncate bytes
+ * until we have no space left. With ->failfast set we'll simply return
+ * ENOSPC from btrfs_use_block_rsv() to signal that we need to unwind and try
+ * to make a new reservation. This is because these operations are
+ * unbounded, so we want to do as much work as we can, and then back off and
+ * re-reserve.
+ */
+
+static u64 block_rsv_release_bytes(struct btrfs_fs_info *fs_info,
+ struct btrfs_block_rsv *block_rsv,
+ struct btrfs_block_rsv *dest, u64 num_bytes,
+ u64 *qgroup_to_release_ret)
+{
+ struct btrfs_space_info *space_info = block_rsv->space_info;
+ u64 qgroup_to_release = 0;
+ u64 ret;
+
+ spin_lock(&block_rsv->lock);
+ if (num_bytes == (u64)-1) {
+ num_bytes = block_rsv->size;
+ qgroup_to_release = block_rsv->qgroup_rsv_size;
+ }
+ block_rsv->size -= num_bytes;
+ if (block_rsv->reserved >= block_rsv->size) {
+ num_bytes = block_rsv->reserved - block_rsv->size;
+ block_rsv->reserved = block_rsv->size;
+ block_rsv->full = true;
+ } else {
+ num_bytes = 0;
+ }
+ if (qgroup_to_release_ret &&
+ block_rsv->qgroup_rsv_reserved >= block_rsv->qgroup_rsv_size) {
+ qgroup_to_release = block_rsv->qgroup_rsv_reserved -
+ block_rsv->qgroup_rsv_size;
+ block_rsv->qgroup_rsv_reserved = block_rsv->qgroup_rsv_size;
+ } else {
+ qgroup_to_release = 0;
+ }
+ spin_unlock(&block_rsv->lock);
+
+ ret = num_bytes;
+ if (num_bytes > 0) {
+ if (dest) {
+ spin_lock(&dest->lock);
+ if (!dest->full) {
+ u64 bytes_to_add;
+
+ bytes_to_add = dest->size - dest->reserved;
+ bytes_to_add = min(num_bytes, bytes_to_add);
+ dest->reserved += bytes_to_add;
+ if (dest->reserved >= dest->size)
+ dest->full = true;
+ num_bytes -= bytes_to_add;
+ }
+ spin_unlock(&dest->lock);
+ }
+ if (num_bytes)
+ btrfs_space_info_free_bytes_may_use(fs_info,
+ space_info,
+ num_bytes);
+ }
+ if (qgroup_to_release_ret)
+ *qgroup_to_release_ret = qgroup_to_release;
+ return ret;
+}
+
+int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src,
+ struct btrfs_block_rsv *dst, u64 num_bytes,
+ bool update_size)
+{
+ int ret;
+
+ ret = btrfs_block_rsv_use_bytes(src, num_bytes);
+ if (ret)
+ return ret;
+
+ btrfs_block_rsv_add_bytes(dst, num_bytes, update_size);
+ return 0;
+}
+
+void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, enum btrfs_rsv_type type)
+{
+ memset(rsv, 0, sizeof(*rsv));
+ spin_lock_init(&rsv->lock);
+ rsv->type = type;
+}
+
+void btrfs_init_metadata_block_rsv(struct btrfs_fs_info *fs_info,
+ struct btrfs_block_rsv *rsv,
+ enum btrfs_rsv_type type)
+{
+ btrfs_init_block_rsv(rsv, type);
+ rsv->space_info = btrfs_find_space_info(fs_info,
+ BTRFS_BLOCK_GROUP_METADATA);
+}
+
+struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_fs_info *fs_info,
+ enum btrfs_rsv_type type)
+{
+ struct btrfs_block_rsv *block_rsv;
+
+ block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
+ if (!block_rsv)
+ return NULL;
+
+ btrfs_init_metadata_block_rsv(fs_info, block_rsv, type);
+ return block_rsv;
+}
+
+void btrfs_free_block_rsv(struct btrfs_fs_info *fs_info,
+ struct btrfs_block_rsv *rsv)
+{
+ if (!rsv)
+ return;
+ btrfs_block_rsv_release(fs_info, rsv, (u64)-1, NULL);
+ kfree(rsv);
+}
+
+int btrfs_block_rsv_add(struct btrfs_fs_info *fs_info,
+ struct btrfs_block_rsv *block_rsv, u64 num_bytes,
+ enum btrfs_reserve_flush_enum flush)
+{
+ int ret;
+
+ if (num_bytes == 0)
+ return 0;
+
+ ret = btrfs_reserve_metadata_bytes(fs_info, block_rsv, num_bytes, flush);
+ if (!ret)
+ btrfs_block_rsv_add_bytes(block_rsv, num_bytes, true);
+
+ return ret;
+}
+
+int btrfs_block_rsv_check(struct btrfs_block_rsv *block_rsv, int min_percent)
+{
+ u64 num_bytes = 0;
+ int ret = -ENOSPC;
+
+ spin_lock(&block_rsv->lock);
+ num_bytes = mult_perc(block_rsv->size, min_percent);
+ if (block_rsv->reserved >= num_bytes)
+ ret = 0;
+ spin_unlock(&block_rsv->lock);
+
+ return ret;
+}
+
+int btrfs_block_rsv_refill(struct btrfs_fs_info *fs_info,
+ struct btrfs_block_rsv *block_rsv, u64 num_bytes,
+ enum btrfs_reserve_flush_enum flush)
+{
+ int ret = -ENOSPC;
+
+ if (!block_rsv)
+ return 0;
+
+ spin_lock(&block_rsv->lock);
+ if (block_rsv->reserved >= num_bytes)
+ ret = 0;
+ else
+ num_bytes -= block_rsv->reserved;
+ spin_unlock(&block_rsv->lock);
+
+ if (!ret)
+ return 0;
+
+ ret = btrfs_reserve_metadata_bytes(fs_info, block_rsv, num_bytes, flush);
+ if (!ret) {
+ btrfs_block_rsv_add_bytes(block_rsv, num_bytes, false);
+ return 0;
+ }
+
+ return ret;
+}
+
+u64 btrfs_block_rsv_release(struct btrfs_fs_info *fs_info,
+ struct btrfs_block_rsv *block_rsv, u64 num_bytes,
+ u64 *qgroup_to_release)
+{
+ struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
+ struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_refs_rsv;
+ struct btrfs_block_rsv *target = NULL;
+
+ /*
+ * If we are the delayed_rsv then push to the global rsv, otherwise dump
+ * into the delayed rsv if it is not full.
+ */
+ if (block_rsv == delayed_rsv)
+ target = global_rsv;
+ else if (block_rsv != global_rsv && !btrfs_block_rsv_full(delayed_rsv))
+ target = delayed_rsv;
+
+ if (target && block_rsv->space_info != target->space_info)
+ target = NULL;
+
+ return block_rsv_release_bytes(fs_info, block_rsv, target, num_bytes,
+ qgroup_to_release);
+}
+
+int btrfs_block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv, u64 num_bytes)
+{
+ int ret = -ENOSPC;
+
+ spin_lock(&block_rsv->lock);
+ if (block_rsv->reserved >= num_bytes) {
+ block_rsv->reserved -= num_bytes;
+ if (block_rsv->reserved < block_rsv->size)
+ block_rsv->full = false;
+ ret = 0;
+ }
+ spin_unlock(&block_rsv->lock);
+ return ret;
+}
+
+void btrfs_block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
+ u64 num_bytes, bool update_size)
+{
+ spin_lock(&block_rsv->lock);
+ block_rsv->reserved += num_bytes;
+ if (update_size)
+ block_rsv->size += num_bytes;
+ else if (block_rsv->reserved >= block_rsv->size)
+ block_rsv->full = true;
+ spin_unlock(&block_rsv->lock);
+}
+
+void btrfs_update_global_block_rsv(struct btrfs_fs_info *fs_info)
+{
+ struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
+ struct btrfs_space_info *sinfo = block_rsv->space_info;
+ struct btrfs_root *root, *tmp;
+ u64 num_bytes = btrfs_root_used(&fs_info->tree_root->root_item);
+ unsigned int min_items = 1;
+
+ /*
+ * The global block rsv is based on the size of the extent tree, the
+ * checksum tree and the root tree. If the fs is empty we want to set
+ * it to a minimal amount for safety.
+ *
+ * We also are going to need to modify the minimum of the tree root and
+ * any global roots we could touch.
+ */
+ read_lock(&fs_info->global_root_lock);
+ rbtree_postorder_for_each_entry_safe(root, tmp, &fs_info->global_root_tree,
+ rb_node) {
+ if (root->root_key.objectid == BTRFS_EXTENT_TREE_OBJECTID ||
+ root->root_key.objectid == BTRFS_CSUM_TREE_OBJECTID ||
+ root->root_key.objectid == BTRFS_FREE_SPACE_TREE_OBJECTID) {
+ num_bytes += btrfs_root_used(&root->root_item);
+ min_items++;
+ }
+ }
+ read_unlock(&fs_info->global_root_lock);
+
+ if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE)) {
+ num_bytes += btrfs_root_used(&fs_info->block_group_root->root_item);
+ min_items++;
+ }
+
+ /*
+ * But we also want to reserve enough space so we can do the fallback
+ * global reserve for an unlink, which is an additional
+ * BTRFS_UNLINK_METADATA_UNITS items.
+ *
+ * But we also need space for the delayed ref updates from the unlink,
+ * so add BTRFS_UNLINK_METADATA_UNITS units for delayed refs, one for
+ * each unlink metadata item.
+ */
+ min_items += BTRFS_UNLINK_METADATA_UNITS;
+
+ num_bytes = max_t(u64, num_bytes,
+ btrfs_calc_insert_metadata_size(fs_info, min_items) +
+ btrfs_calc_delayed_ref_bytes(fs_info,
+ BTRFS_UNLINK_METADATA_UNITS));
+
+ spin_lock(&sinfo->lock);
+ spin_lock(&block_rsv->lock);
+
+ block_rsv->size = min_t(u64, num_bytes, SZ_512M);
+
+ if (block_rsv->reserved < block_rsv->size) {
+ num_bytes = block_rsv->size - block_rsv->reserved;
+ btrfs_space_info_update_bytes_may_use(fs_info, sinfo,
+ num_bytes);
+ block_rsv->reserved = block_rsv->size;
+ } else if (block_rsv->reserved > block_rsv->size) {
+ num_bytes = block_rsv->reserved - block_rsv->size;
+ btrfs_space_info_update_bytes_may_use(fs_info, sinfo,
+ -num_bytes);
+ block_rsv->reserved = block_rsv->size;
+ btrfs_try_granting_tickets(fs_info, sinfo);
+ }
+
+ block_rsv->full = (block_rsv->reserved == block_rsv->size);
+
+ if (block_rsv->size >= sinfo->total_bytes)
+ sinfo->force_alloc = CHUNK_ALLOC_FORCE;
+ spin_unlock(&block_rsv->lock);
+ spin_unlock(&sinfo->lock);
+}
+
+void btrfs_init_root_block_rsv(struct btrfs_root *root)
+{
+ struct btrfs_fs_info *fs_info = root->fs_info;
+
+ switch (root->root_key.objectid) {
+ case BTRFS_CSUM_TREE_OBJECTID:
+ case BTRFS_EXTENT_TREE_OBJECTID:
+ case BTRFS_FREE_SPACE_TREE_OBJECTID:
+ case BTRFS_BLOCK_GROUP_TREE_OBJECTID:
+ root->block_rsv = &fs_info->delayed_refs_rsv;
+ break;
+ case BTRFS_ROOT_TREE_OBJECTID:
+ case BTRFS_DEV_TREE_OBJECTID:
+ case BTRFS_QUOTA_TREE_OBJECTID:
+ root->block_rsv = &fs_info->global_block_rsv;
+ break;
+ case BTRFS_CHUNK_TREE_OBJECTID:
+ root->block_rsv = &fs_info->chunk_block_rsv;
+ break;
+ default:
+ root->block_rsv = NULL;
+ break;
+ }
+}
+
+void btrfs_init_global_block_rsv(struct btrfs_fs_info *fs_info)
+{
+ struct btrfs_space_info *space_info;
+
+ space_info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
+ fs_info->chunk_block_rsv.space_info = space_info;
+
+ space_info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
+ fs_info->global_block_rsv.space_info = space_info;
+ fs_info->trans_block_rsv.space_info = space_info;
+ fs_info->empty_block_rsv.space_info = space_info;
+ fs_info->delayed_block_rsv.space_info = space_info;
+ fs_info->delayed_refs_rsv.space_info = space_info;
+
+ btrfs_update_global_block_rsv(fs_info);
+}
+
+void btrfs_release_global_block_rsv(struct btrfs_fs_info *fs_info)
+{
+ btrfs_block_rsv_release(fs_info, &fs_info->global_block_rsv, (u64)-1,
+ NULL);
+ WARN_ON(fs_info->trans_block_rsv.size > 0);
+ WARN_ON(fs_info->trans_block_rsv.reserved > 0);
+ WARN_ON(fs_info->chunk_block_rsv.size > 0);
+ WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
+ WARN_ON(fs_info->delayed_block_rsv.size > 0);
+ WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
+ WARN_ON(fs_info->delayed_refs_rsv.reserved > 0);
+ WARN_ON(fs_info->delayed_refs_rsv.size > 0);
+}
+
+static struct btrfs_block_rsv *get_block_rsv(
+ const struct btrfs_trans_handle *trans,
+ const struct btrfs_root *root)
+{
+ struct btrfs_fs_info *fs_info = root->fs_info;
+ struct btrfs_block_rsv *block_rsv = NULL;
+
+ if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state) ||
+ (root == fs_info->uuid_root) ||
+ (trans->adding_csums &&
+ root->root_key.objectid == BTRFS_CSUM_TREE_OBJECTID))
+ block_rsv = trans->block_rsv;
+
+ if (!block_rsv)
+ block_rsv = root->block_rsv;
+
+ if (!block_rsv)
+ block_rsv = &fs_info->empty_block_rsv;
+
+ return block_rsv;
+}
+
+struct btrfs_block_rsv *btrfs_use_block_rsv(struct btrfs_trans_handle *trans,
+ struct btrfs_root *root,
+ u32 blocksize)
+{
+ struct btrfs_fs_info *fs_info = root->fs_info;
+ struct btrfs_block_rsv *block_rsv;
+ struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
+ int ret;
+ bool global_updated = false;
+
+ block_rsv = get_block_rsv(trans, root);
+
+ if (unlikely(block_rsv->size == 0))
+ goto try_reserve;
+again:
+ ret = btrfs_block_rsv_use_bytes(block_rsv, blocksize);
+ if (!ret)
+ return block_rsv;
+
+ if (block_rsv->failfast)
+ return ERR_PTR(ret);
+
+ if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) {
+ global_updated = true;
+ btrfs_update_global_block_rsv(fs_info);
+ goto again;
+ }
+
+ /*
+ * The global reserve still exists to save us from ourselves, so don't
+ * warn_on if we are short on our delayed refs reserve.
+ */
+ if (block_rsv->type != BTRFS_BLOCK_RSV_DELREFS &&
+ btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
+ static DEFINE_RATELIMIT_STATE(_rs,
+ DEFAULT_RATELIMIT_INTERVAL * 10,
+ /*DEFAULT_RATELIMIT_BURST*/ 1);
+ if (__ratelimit(&_rs))
+ WARN(1, KERN_DEBUG
+ "BTRFS: block rsv %d returned %d\n",
+ block_rsv->type, ret);
+ }
+try_reserve:
+ ret = btrfs_reserve_metadata_bytes(fs_info, block_rsv, blocksize,
+ BTRFS_RESERVE_NO_FLUSH);
+ if (!ret)
+ return block_rsv;
+ /*
+ * If we couldn't reserve metadata bytes try and use some from
+ * the global reserve if its space type is the same as the global
+ * reservation.
+ */
+ if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL &&
+ block_rsv->space_info == global_rsv->space_info) {
+ ret = btrfs_block_rsv_use_bytes(global_rsv, blocksize);
+ if (!ret)
+ return global_rsv;
+ }
+
+ /*
+ * All hope is lost, but of course our reservations are overly
+ * pessimistic, so instead of possibly having an ENOSPC abort here, try
+ * one last time to force a reservation if there's enough actual space
+ * on disk to make the reservation.
+ */
+ ret = btrfs_reserve_metadata_bytes(fs_info, block_rsv, blocksize,
+ BTRFS_RESERVE_FLUSH_EMERGENCY);
+ if (!ret)
+ return block_rsv;
+
+ return ERR_PTR(ret);
+}
+
+int btrfs_check_trunc_cache_free_space(struct btrfs_fs_info *fs_info,
+ struct btrfs_block_rsv *rsv)
+{
+ u64 needed_bytes;
+ int ret;
+
+ /* 1 for slack space, 1 for updating the inode */
+ needed_bytes = btrfs_calc_insert_metadata_size(fs_info, 1) +
+ btrfs_calc_metadata_size(fs_info, 1);
+
+ spin_lock(&rsv->lock);
+ if (rsv->reserved < needed_bytes)
+ ret = -ENOSPC;
+ else
+ ret = 0;
+ spin_unlock(&rsv->lock);
+ return ret;
+}