summaryrefslogtreecommitdiffstats
path: root/fs/btrfs/defrag.c
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-11 08:27:49 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-11 08:27:49 +0000
commitace9429bb58fd418f0c81d4c2835699bddf6bde6 (patch)
treeb2d64bc10158fdd5497876388cd68142ca374ed3 /fs/btrfs/defrag.c
parentInitial commit. (diff)
downloadlinux-ace9429bb58fd418f0c81d4c2835699bddf6bde6.tar.xz
linux-ace9429bb58fd418f0c81d4c2835699bddf6bde6.zip
Adding upstream version 6.6.15.upstream/6.6.15
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to '')
-rw-r--r--fs/btrfs/defrag.c1379
1 files changed, 1379 insertions, 0 deletions
diff --git a/fs/btrfs/defrag.c b/fs/btrfs/defrag.c
new file mode 100644
index 0000000000..f2ff4cbe86
--- /dev/null
+++ b/fs/btrfs/defrag.c
@@ -0,0 +1,1379 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * Copyright (C) 2007 Oracle. All rights reserved.
+ */
+
+#include <linux/sched.h>
+#include "ctree.h"
+#include "disk-io.h"
+#include "print-tree.h"
+#include "transaction.h"
+#include "locking.h"
+#include "accessors.h"
+#include "messages.h"
+#include "delalloc-space.h"
+#include "subpage.h"
+#include "defrag.h"
+#include "file-item.h"
+#include "super.h"
+
+static struct kmem_cache *btrfs_inode_defrag_cachep;
+
+/*
+ * When auto defrag is enabled we queue up these defrag structs to remember
+ * which inodes need defragging passes.
+ */
+struct inode_defrag {
+ struct rb_node rb_node;
+ /* Inode number */
+ u64 ino;
+ /*
+ * Transid where the defrag was added, we search for extents newer than
+ * this.
+ */
+ u64 transid;
+
+ /* Root objectid */
+ u64 root;
+
+ /*
+ * The extent size threshold for autodefrag.
+ *
+ * This value is different for compressed/non-compressed extents, thus
+ * needs to be passed from higher layer.
+ * (aka, inode_should_defrag())
+ */
+ u32 extent_thresh;
+};
+
+static int __compare_inode_defrag(struct inode_defrag *defrag1,
+ struct inode_defrag *defrag2)
+{
+ if (defrag1->root > defrag2->root)
+ return 1;
+ else if (defrag1->root < defrag2->root)
+ return -1;
+ else if (defrag1->ino > defrag2->ino)
+ return 1;
+ else if (defrag1->ino < defrag2->ino)
+ return -1;
+ else
+ return 0;
+}
+
+/*
+ * Pop a record for an inode into the defrag tree. The lock must be held
+ * already.
+ *
+ * If you're inserting a record for an older transid than an existing record,
+ * the transid already in the tree is lowered.
+ *
+ * If an existing record is found the defrag item you pass in is freed.
+ */
+static int __btrfs_add_inode_defrag(struct btrfs_inode *inode,
+ struct inode_defrag *defrag)
+{
+ struct btrfs_fs_info *fs_info = inode->root->fs_info;
+ struct inode_defrag *entry;
+ struct rb_node **p;
+ struct rb_node *parent = NULL;
+ int ret;
+
+ p = &fs_info->defrag_inodes.rb_node;
+ while (*p) {
+ parent = *p;
+ entry = rb_entry(parent, struct inode_defrag, rb_node);
+
+ ret = __compare_inode_defrag(defrag, entry);
+ if (ret < 0)
+ p = &parent->rb_left;
+ else if (ret > 0)
+ p = &parent->rb_right;
+ else {
+ /*
+ * If we're reinserting an entry for an old defrag run,
+ * make sure to lower the transid of our existing
+ * record.
+ */
+ if (defrag->transid < entry->transid)
+ entry->transid = defrag->transid;
+ entry->extent_thresh = min(defrag->extent_thresh,
+ entry->extent_thresh);
+ return -EEXIST;
+ }
+ }
+ set_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags);
+ rb_link_node(&defrag->rb_node, parent, p);
+ rb_insert_color(&defrag->rb_node, &fs_info->defrag_inodes);
+ return 0;
+}
+
+static inline int __need_auto_defrag(struct btrfs_fs_info *fs_info)
+{
+ if (!btrfs_test_opt(fs_info, AUTO_DEFRAG))
+ return 0;
+
+ if (btrfs_fs_closing(fs_info))
+ return 0;
+
+ return 1;
+}
+
+/*
+ * Insert a defrag record for this inode if auto defrag is enabled.
+ */
+int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans,
+ struct btrfs_inode *inode, u32 extent_thresh)
+{
+ struct btrfs_root *root = inode->root;
+ struct btrfs_fs_info *fs_info = root->fs_info;
+ struct inode_defrag *defrag;
+ u64 transid;
+ int ret;
+
+ if (!__need_auto_defrag(fs_info))
+ return 0;
+
+ if (test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags))
+ return 0;
+
+ if (trans)
+ transid = trans->transid;
+ else
+ transid = inode->root->last_trans;
+
+ defrag = kmem_cache_zalloc(btrfs_inode_defrag_cachep, GFP_NOFS);
+ if (!defrag)
+ return -ENOMEM;
+
+ defrag->ino = btrfs_ino(inode);
+ defrag->transid = transid;
+ defrag->root = root->root_key.objectid;
+ defrag->extent_thresh = extent_thresh;
+
+ spin_lock(&fs_info->defrag_inodes_lock);
+ if (!test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags)) {
+ /*
+ * If we set IN_DEFRAG flag and evict the inode from memory,
+ * and then re-read this inode, this new inode doesn't have
+ * IN_DEFRAG flag. At the case, we may find the existed defrag.
+ */
+ ret = __btrfs_add_inode_defrag(inode, defrag);
+ if (ret)
+ kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
+ } else {
+ kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
+ }
+ spin_unlock(&fs_info->defrag_inodes_lock);
+ return 0;
+}
+
+/*
+ * Pick the defragable inode that we want, if it doesn't exist, we will get the
+ * next one.
+ */
+static struct inode_defrag *btrfs_pick_defrag_inode(
+ struct btrfs_fs_info *fs_info, u64 root, u64 ino)
+{
+ struct inode_defrag *entry = NULL;
+ struct inode_defrag tmp;
+ struct rb_node *p;
+ struct rb_node *parent = NULL;
+ int ret;
+
+ tmp.ino = ino;
+ tmp.root = root;
+
+ spin_lock(&fs_info->defrag_inodes_lock);
+ p = fs_info->defrag_inodes.rb_node;
+ while (p) {
+ parent = p;
+ entry = rb_entry(parent, struct inode_defrag, rb_node);
+
+ ret = __compare_inode_defrag(&tmp, entry);
+ if (ret < 0)
+ p = parent->rb_left;
+ else if (ret > 0)
+ p = parent->rb_right;
+ else
+ goto out;
+ }
+
+ if (parent && __compare_inode_defrag(&tmp, entry) > 0) {
+ parent = rb_next(parent);
+ if (parent)
+ entry = rb_entry(parent, struct inode_defrag, rb_node);
+ else
+ entry = NULL;
+ }
+out:
+ if (entry)
+ rb_erase(parent, &fs_info->defrag_inodes);
+ spin_unlock(&fs_info->defrag_inodes_lock);
+ return entry;
+}
+
+void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info)
+{
+ struct inode_defrag *defrag;
+ struct rb_node *node;
+
+ spin_lock(&fs_info->defrag_inodes_lock);
+ node = rb_first(&fs_info->defrag_inodes);
+ while (node) {
+ rb_erase(node, &fs_info->defrag_inodes);
+ defrag = rb_entry(node, struct inode_defrag, rb_node);
+ kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
+
+ cond_resched_lock(&fs_info->defrag_inodes_lock);
+
+ node = rb_first(&fs_info->defrag_inodes);
+ }
+ spin_unlock(&fs_info->defrag_inodes_lock);
+}
+
+#define BTRFS_DEFRAG_BATCH 1024
+
+static int __btrfs_run_defrag_inode(struct btrfs_fs_info *fs_info,
+ struct inode_defrag *defrag)
+{
+ struct btrfs_root *inode_root;
+ struct inode *inode;
+ struct btrfs_ioctl_defrag_range_args range;
+ int ret = 0;
+ u64 cur = 0;
+
+again:
+ if (test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state))
+ goto cleanup;
+ if (!__need_auto_defrag(fs_info))
+ goto cleanup;
+
+ /* Get the inode */
+ inode_root = btrfs_get_fs_root(fs_info, defrag->root, true);
+ if (IS_ERR(inode_root)) {
+ ret = PTR_ERR(inode_root);
+ goto cleanup;
+ }
+
+ inode = btrfs_iget(fs_info->sb, defrag->ino, inode_root);
+ btrfs_put_root(inode_root);
+ if (IS_ERR(inode)) {
+ ret = PTR_ERR(inode);
+ goto cleanup;
+ }
+
+ if (cur >= i_size_read(inode)) {
+ iput(inode);
+ goto cleanup;
+ }
+
+ /* Do a chunk of defrag */
+ clear_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags);
+ memset(&range, 0, sizeof(range));
+ range.len = (u64)-1;
+ range.start = cur;
+ range.extent_thresh = defrag->extent_thresh;
+
+ sb_start_write(fs_info->sb);
+ ret = btrfs_defrag_file(inode, NULL, &range, defrag->transid,
+ BTRFS_DEFRAG_BATCH);
+ sb_end_write(fs_info->sb);
+ iput(inode);
+
+ if (ret < 0)
+ goto cleanup;
+
+ cur = max(cur + fs_info->sectorsize, range.start);
+ goto again;
+
+cleanup:
+ kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
+ return ret;
+}
+
+/*
+ * Run through the list of inodes in the FS that need defragging.
+ */
+int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info)
+{
+ struct inode_defrag *defrag;
+ u64 first_ino = 0;
+ u64 root_objectid = 0;
+
+ atomic_inc(&fs_info->defrag_running);
+ while (1) {
+ /* Pause the auto defragger. */
+ if (test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state))
+ break;
+
+ if (!__need_auto_defrag(fs_info))
+ break;
+
+ /* find an inode to defrag */
+ defrag = btrfs_pick_defrag_inode(fs_info, root_objectid, first_ino);
+ if (!defrag) {
+ if (root_objectid || first_ino) {
+ root_objectid = 0;
+ first_ino = 0;
+ continue;
+ } else {
+ break;
+ }
+ }
+
+ first_ino = defrag->ino + 1;
+ root_objectid = defrag->root;
+
+ __btrfs_run_defrag_inode(fs_info, defrag);
+ }
+ atomic_dec(&fs_info->defrag_running);
+
+ /*
+ * During unmount, we use the transaction_wait queue to wait for the
+ * defragger to stop.
+ */
+ wake_up(&fs_info->transaction_wait);
+ return 0;
+}
+
+/*
+ * Defrag all the leaves in a given btree.
+ * Read all the leaves and try to get key order to
+ * better reflect disk order
+ */
+
+int btrfs_defrag_leaves(struct btrfs_trans_handle *trans,
+ struct btrfs_root *root)
+{
+ struct btrfs_path *path = NULL;
+ struct btrfs_key key;
+ int ret = 0;
+ int wret;
+ int level;
+ int next_key_ret = 0;
+ u64 last_ret = 0;
+
+ if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
+ goto out;
+
+ path = btrfs_alloc_path();
+ if (!path) {
+ ret = -ENOMEM;
+ goto out;
+ }
+
+ level = btrfs_header_level(root->node);
+
+ if (level == 0)
+ goto out;
+
+ if (root->defrag_progress.objectid == 0) {
+ struct extent_buffer *root_node;
+ u32 nritems;
+
+ root_node = btrfs_lock_root_node(root);
+ nritems = btrfs_header_nritems(root_node);
+ root->defrag_max.objectid = 0;
+ /* from above we know this is not a leaf */
+ btrfs_node_key_to_cpu(root_node, &root->defrag_max,
+ nritems - 1);
+ btrfs_tree_unlock(root_node);
+ free_extent_buffer(root_node);
+ memset(&key, 0, sizeof(key));
+ } else {
+ memcpy(&key, &root->defrag_progress, sizeof(key));
+ }
+
+ path->keep_locks = 1;
+
+ ret = btrfs_search_forward(root, &key, path, BTRFS_OLDEST_GENERATION);
+ if (ret < 0)
+ goto out;
+ if (ret > 0) {
+ ret = 0;
+ goto out;
+ }
+ btrfs_release_path(path);
+ /*
+ * We don't need a lock on a leaf. btrfs_realloc_node() will lock all
+ * leafs from path->nodes[1], so set lowest_level to 1 to avoid later
+ * a deadlock (attempting to write lock an already write locked leaf).
+ */
+ path->lowest_level = 1;
+ wret = btrfs_search_slot(trans, root, &key, path, 0, 1);
+
+ if (wret < 0) {
+ ret = wret;
+ goto out;
+ }
+ if (!path->nodes[1]) {
+ ret = 0;
+ goto out;
+ }
+ /*
+ * The node at level 1 must always be locked when our path has
+ * keep_locks set and lowest_level is 1, regardless of the value of
+ * path->slots[1].
+ */
+ BUG_ON(path->locks[1] == 0);
+ ret = btrfs_realloc_node(trans, root,
+ path->nodes[1], 0,
+ &last_ret,
+ &root->defrag_progress);
+ if (ret) {
+ WARN_ON(ret == -EAGAIN);
+ goto out;
+ }
+ /*
+ * Now that we reallocated the node we can find the next key. Note that
+ * btrfs_find_next_key() can release our path and do another search
+ * without COWing, this is because even with path->keep_locks = 1,
+ * btrfs_search_slot() / ctree.c:unlock_up() does not keeps a lock on a
+ * node when path->slots[node_level - 1] does not point to the last
+ * item or a slot beyond the last item (ctree.c:unlock_up()). Therefore
+ * we search for the next key after reallocating our node.
+ */
+ path->slots[1] = btrfs_header_nritems(path->nodes[1]);
+ next_key_ret = btrfs_find_next_key(root, path, &key, 1,
+ BTRFS_OLDEST_GENERATION);
+ if (next_key_ret == 0) {
+ memcpy(&root->defrag_progress, &key, sizeof(key));
+ ret = -EAGAIN;
+ }
+out:
+ btrfs_free_path(path);
+ if (ret == -EAGAIN) {
+ if (root->defrag_max.objectid > root->defrag_progress.objectid)
+ goto done;
+ if (root->defrag_max.type > root->defrag_progress.type)
+ goto done;
+ if (root->defrag_max.offset > root->defrag_progress.offset)
+ goto done;
+ ret = 0;
+ }
+done:
+ if (ret != -EAGAIN)
+ memset(&root->defrag_progress, 0,
+ sizeof(root->defrag_progress));
+
+ return ret;
+}
+
+/*
+ * Defrag specific helper to get an extent map.
+ *
+ * Differences between this and btrfs_get_extent() are:
+ *
+ * - No extent_map will be added to inode->extent_tree
+ * To reduce memory usage in the long run.
+ *
+ * - Extra optimization to skip file extents older than @newer_than
+ * By using btrfs_search_forward() we can skip entire file ranges that
+ * have extents created in past transactions, because btrfs_search_forward()
+ * will not visit leaves and nodes with a generation smaller than given
+ * minimal generation threshold (@newer_than).
+ *
+ * Return valid em if we find a file extent matching the requirement.
+ * Return NULL if we can not find a file extent matching the requirement.
+ *
+ * Return ERR_PTR() for error.
+ */
+static struct extent_map *defrag_get_extent(struct btrfs_inode *inode,
+ u64 start, u64 newer_than)
+{
+ struct btrfs_root *root = inode->root;
+ struct btrfs_file_extent_item *fi;
+ struct btrfs_path path = { 0 };
+ struct extent_map *em;
+ struct btrfs_key key;
+ u64 ino = btrfs_ino(inode);
+ int ret;
+
+ em = alloc_extent_map();
+ if (!em) {
+ ret = -ENOMEM;
+ goto err;
+ }
+
+ key.objectid = ino;
+ key.type = BTRFS_EXTENT_DATA_KEY;
+ key.offset = start;
+
+ if (newer_than) {
+ ret = btrfs_search_forward(root, &key, &path, newer_than);
+ if (ret < 0)
+ goto err;
+ /* Can't find anything newer */
+ if (ret > 0)
+ goto not_found;
+ } else {
+ ret = btrfs_search_slot(NULL, root, &key, &path, 0, 0);
+ if (ret < 0)
+ goto err;
+ }
+ if (path.slots[0] >= btrfs_header_nritems(path.nodes[0])) {
+ /*
+ * If btrfs_search_slot() makes path to point beyond nritems,
+ * we should not have an empty leaf, as this inode must at
+ * least have its INODE_ITEM.
+ */
+ ASSERT(btrfs_header_nritems(path.nodes[0]));
+ path.slots[0] = btrfs_header_nritems(path.nodes[0]) - 1;
+ }
+ btrfs_item_key_to_cpu(path.nodes[0], &key, path.slots[0]);
+ /* Perfect match, no need to go one slot back */
+ if (key.objectid == ino && key.type == BTRFS_EXTENT_DATA_KEY &&
+ key.offset == start)
+ goto iterate;
+
+ /* We didn't find a perfect match, needs to go one slot back */
+ if (path.slots[0] > 0) {
+ btrfs_item_key_to_cpu(path.nodes[0], &key, path.slots[0]);
+ if (key.objectid == ino && key.type == BTRFS_EXTENT_DATA_KEY)
+ path.slots[0]--;
+ }
+
+iterate:
+ /* Iterate through the path to find a file extent covering @start */
+ while (true) {
+ u64 extent_end;
+
+ if (path.slots[0] >= btrfs_header_nritems(path.nodes[0]))
+ goto next;
+
+ btrfs_item_key_to_cpu(path.nodes[0], &key, path.slots[0]);
+
+ /*
+ * We may go one slot back to INODE_REF/XATTR item, then
+ * need to go forward until we reach an EXTENT_DATA.
+ * But we should still has the correct ino as key.objectid.
+ */
+ if (WARN_ON(key.objectid < ino) || key.type < BTRFS_EXTENT_DATA_KEY)
+ goto next;
+
+ /* It's beyond our target range, definitely not extent found */
+ if (key.objectid > ino || key.type > BTRFS_EXTENT_DATA_KEY)
+ goto not_found;
+
+ /*
+ * | |<- File extent ->|
+ * \- start
+ *
+ * This means there is a hole between start and key.offset.
+ */
+ if (key.offset > start) {
+ em->start = start;
+ em->orig_start = start;
+ em->block_start = EXTENT_MAP_HOLE;
+ em->len = key.offset - start;
+ break;
+ }
+
+ fi = btrfs_item_ptr(path.nodes[0], path.slots[0],
+ struct btrfs_file_extent_item);
+ extent_end = btrfs_file_extent_end(&path);
+
+ /*
+ * |<- file extent ->| |
+ * \- start
+ *
+ * We haven't reached start, search next slot.
+ */
+ if (extent_end <= start)
+ goto next;
+
+ /* Now this extent covers @start, convert it to em */
+ btrfs_extent_item_to_extent_map(inode, &path, fi, em);
+ break;
+next:
+ ret = btrfs_next_item(root, &path);
+ if (ret < 0)
+ goto err;
+ if (ret > 0)
+ goto not_found;
+ }
+ btrfs_release_path(&path);
+ return em;
+
+not_found:
+ btrfs_release_path(&path);
+ free_extent_map(em);
+ return NULL;
+
+err:
+ btrfs_release_path(&path);
+ free_extent_map(em);
+ return ERR_PTR(ret);
+}
+
+static struct extent_map *defrag_lookup_extent(struct inode *inode, u64 start,
+ u64 newer_than, bool locked)
+{
+ struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
+ struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
+ struct extent_map *em;
+ const u32 sectorsize = BTRFS_I(inode)->root->fs_info->sectorsize;
+
+ /*
+ * Hopefully we have this extent in the tree already, try without the
+ * full extent lock.
+ */
+ read_lock(&em_tree->lock);
+ em = lookup_extent_mapping(em_tree, start, sectorsize);
+ read_unlock(&em_tree->lock);
+
+ /*
+ * We can get a merged extent, in that case, we need to re-search
+ * tree to get the original em for defrag.
+ *
+ * If @newer_than is 0 or em::generation < newer_than, we can trust
+ * this em, as either we don't care about the generation, or the
+ * merged extent map will be rejected anyway.
+ */
+ if (em && test_bit(EXTENT_FLAG_MERGED, &em->flags) &&
+ newer_than && em->generation >= newer_than) {
+ free_extent_map(em);
+ em = NULL;
+ }
+
+ if (!em) {
+ struct extent_state *cached = NULL;
+ u64 end = start + sectorsize - 1;
+
+ /* Get the big lock and read metadata off disk. */
+ if (!locked)
+ lock_extent(io_tree, start, end, &cached);
+ em = defrag_get_extent(BTRFS_I(inode), start, newer_than);
+ if (!locked)
+ unlock_extent(io_tree, start, end, &cached);
+
+ if (IS_ERR(em))
+ return NULL;
+ }
+
+ return em;
+}
+
+static u32 get_extent_max_capacity(const struct btrfs_fs_info *fs_info,
+ const struct extent_map *em)
+{
+ if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
+ return BTRFS_MAX_COMPRESSED;
+ return fs_info->max_extent_size;
+}
+
+static bool defrag_check_next_extent(struct inode *inode, struct extent_map *em,
+ u32 extent_thresh, u64 newer_than, bool locked)
+{
+ struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
+ struct extent_map *next;
+ bool ret = false;
+
+ /* This is the last extent */
+ if (em->start + em->len >= i_size_read(inode))
+ return false;
+
+ /*
+ * Here we need to pass @newer_then when checking the next extent, or
+ * we will hit a case we mark current extent for defrag, but the next
+ * one will not be a target.
+ * This will just cause extra IO without really reducing the fragments.
+ */
+ next = defrag_lookup_extent(inode, em->start + em->len, newer_than, locked);
+ /* No more em or hole */
+ if (!next || next->block_start >= EXTENT_MAP_LAST_BYTE)
+ goto out;
+ if (test_bit(EXTENT_FLAG_PREALLOC, &next->flags))
+ goto out;
+ /*
+ * If the next extent is at its max capacity, defragging current extent
+ * makes no sense, as the total number of extents won't change.
+ */
+ if (next->len >= get_extent_max_capacity(fs_info, em))
+ goto out;
+ /* Skip older extent */
+ if (next->generation < newer_than)
+ goto out;
+ /* Also check extent size */
+ if (next->len >= extent_thresh)
+ goto out;
+
+ ret = true;
+out:
+ free_extent_map(next);
+ return ret;
+}
+
+/*
+ * Prepare one page to be defragged.
+ *
+ * This will ensure:
+ *
+ * - Returned page is locked and has been set up properly.
+ * - No ordered extent exists in the page.
+ * - The page is uptodate.
+ *
+ * NOTE: Caller should also wait for page writeback after the cluster is
+ * prepared, here we don't do writeback wait for each page.
+ */
+static struct page *defrag_prepare_one_page(struct btrfs_inode *inode, pgoff_t index)
+{
+ struct address_space *mapping = inode->vfs_inode.i_mapping;
+ gfp_t mask = btrfs_alloc_write_mask(mapping);
+ u64 page_start = (u64)index << PAGE_SHIFT;
+ u64 page_end = page_start + PAGE_SIZE - 1;
+ struct extent_state *cached_state = NULL;
+ struct page *page;
+ int ret;
+
+again:
+ page = find_or_create_page(mapping, index, mask);
+ if (!page)
+ return ERR_PTR(-ENOMEM);
+
+ /*
+ * Since we can defragment files opened read-only, we can encounter
+ * transparent huge pages here (see CONFIG_READ_ONLY_THP_FOR_FS). We
+ * can't do I/O using huge pages yet, so return an error for now.
+ * Filesystem transparent huge pages are typically only used for
+ * executables that explicitly enable them, so this isn't very
+ * restrictive.
+ */
+ if (PageCompound(page)) {
+ unlock_page(page);
+ put_page(page);
+ return ERR_PTR(-ETXTBSY);
+ }
+
+ ret = set_page_extent_mapped(page);
+ if (ret < 0) {
+ unlock_page(page);
+ put_page(page);
+ return ERR_PTR(ret);
+ }
+
+ /* Wait for any existing ordered extent in the range */
+ while (1) {
+ struct btrfs_ordered_extent *ordered;
+
+ lock_extent(&inode->io_tree, page_start, page_end, &cached_state);
+ ordered = btrfs_lookup_ordered_range(inode, page_start, PAGE_SIZE);
+ unlock_extent(&inode->io_tree, page_start, page_end,
+ &cached_state);
+ if (!ordered)
+ break;
+
+ unlock_page(page);
+ btrfs_start_ordered_extent(ordered);
+ btrfs_put_ordered_extent(ordered);
+ lock_page(page);
+ /*
+ * We unlocked the page above, so we need check if it was
+ * released or not.
+ */
+ if (page->mapping != mapping || !PagePrivate(page)) {
+ unlock_page(page);
+ put_page(page);
+ goto again;
+ }
+ }
+
+ /*
+ * Now the page range has no ordered extent any more. Read the page to
+ * make it uptodate.
+ */
+ if (!PageUptodate(page)) {
+ btrfs_read_folio(NULL, page_folio(page));
+ lock_page(page);
+ if (page->mapping != mapping || !PagePrivate(page)) {
+ unlock_page(page);
+ put_page(page);
+ goto again;
+ }
+ if (!PageUptodate(page)) {
+ unlock_page(page);
+ put_page(page);
+ return ERR_PTR(-EIO);
+ }
+ }
+ return page;
+}
+
+struct defrag_target_range {
+ struct list_head list;
+ u64 start;
+ u64 len;
+};
+
+/*
+ * Collect all valid target extents.
+ *
+ * @start: file offset to lookup
+ * @len: length to lookup
+ * @extent_thresh: file extent size threshold, any extent size >= this value
+ * will be ignored
+ * @newer_than: only defrag extents newer than this value
+ * @do_compress: whether the defrag is doing compression
+ * if true, @extent_thresh will be ignored and all regular
+ * file extents meeting @newer_than will be targets.
+ * @locked: if the range has already held extent lock
+ * @target_list: list of targets file extents
+ */
+static int defrag_collect_targets(struct btrfs_inode *inode,
+ u64 start, u64 len, u32 extent_thresh,
+ u64 newer_than, bool do_compress,
+ bool locked, struct list_head *target_list,
+ u64 *last_scanned_ret)
+{
+ struct btrfs_fs_info *fs_info = inode->root->fs_info;
+ bool last_is_target = false;
+ u64 cur = start;
+ int ret = 0;
+
+ while (cur < start + len) {
+ struct extent_map *em;
+ struct defrag_target_range *new;
+ bool next_mergeable = true;
+ u64 range_len;
+
+ last_is_target = false;
+ em = defrag_lookup_extent(&inode->vfs_inode, cur, newer_than, locked);
+ if (!em)
+ break;
+
+ /*
+ * If the file extent is an inlined one, we may still want to
+ * defrag it (fallthrough) if it will cause a regular extent.
+ * This is for users who want to convert inline extents to
+ * regular ones through max_inline= mount option.
+ */
+ if (em->block_start == EXTENT_MAP_INLINE &&
+ em->len <= inode->root->fs_info->max_inline)
+ goto next;
+
+ /* Skip hole/delalloc/preallocated extents */
+ if (em->block_start == EXTENT_MAP_HOLE ||
+ em->block_start == EXTENT_MAP_DELALLOC ||
+ test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
+ goto next;
+
+ /* Skip older extent */
+ if (em->generation < newer_than)
+ goto next;
+
+ /* This em is under writeback, no need to defrag */
+ if (em->generation == (u64)-1)
+ goto next;
+
+ /*
+ * Our start offset might be in the middle of an existing extent
+ * map, so take that into account.
+ */
+ range_len = em->len - (cur - em->start);
+ /*
+ * If this range of the extent map is already flagged for delalloc,
+ * skip it, because:
+ *
+ * 1) We could deadlock later, when trying to reserve space for
+ * delalloc, because in case we can't immediately reserve space
+ * the flusher can start delalloc and wait for the respective
+ * ordered extents to complete. The deadlock would happen
+ * because we do the space reservation while holding the range
+ * locked, and starting writeback, or finishing an ordered
+ * extent, requires locking the range;
+ *
+ * 2) If there's delalloc there, it means there's dirty pages for
+ * which writeback has not started yet (we clean the delalloc
+ * flag when starting writeback and after creating an ordered
+ * extent). If we mark pages in an adjacent range for defrag,
+ * then we will have a larger contiguous range for delalloc,
+ * very likely resulting in a larger extent after writeback is
+ * triggered (except in a case of free space fragmentation).
+ */
+ if (test_range_bit(&inode->io_tree, cur, cur + range_len - 1,
+ EXTENT_DELALLOC, 0, NULL))
+ goto next;
+
+ /*
+ * For do_compress case, we want to compress all valid file
+ * extents, thus no @extent_thresh or mergeable check.
+ */
+ if (do_compress)
+ goto add;
+
+ /* Skip too large extent */
+ if (range_len >= extent_thresh)
+ goto next;
+
+ /*
+ * Skip extents already at its max capacity, this is mostly for
+ * compressed extents, which max cap is only 128K.
+ */
+ if (em->len >= get_extent_max_capacity(fs_info, em))
+ goto next;
+
+ /*
+ * Normally there are no more extents after an inline one, thus
+ * @next_mergeable will normally be false and not defragged.
+ * So if an inline extent passed all above checks, just add it
+ * for defrag, and be converted to regular extents.
+ */
+ if (em->block_start == EXTENT_MAP_INLINE)
+ goto add;
+
+ next_mergeable = defrag_check_next_extent(&inode->vfs_inode, em,
+ extent_thresh, newer_than, locked);
+ if (!next_mergeable) {
+ struct defrag_target_range *last;
+
+ /* Empty target list, no way to merge with last entry */
+ if (list_empty(target_list))
+ goto next;
+ last = list_entry(target_list->prev,
+ struct defrag_target_range, list);
+ /* Not mergeable with last entry */
+ if (last->start + last->len != cur)
+ goto next;
+
+ /* Mergeable, fall through to add it to @target_list. */
+ }
+
+add:
+ last_is_target = true;
+ range_len = min(extent_map_end(em), start + len) - cur;
+ /*
+ * This one is a good target, check if it can be merged into
+ * last range of the target list.
+ */
+ if (!list_empty(target_list)) {
+ struct defrag_target_range *last;
+
+ last = list_entry(target_list->prev,
+ struct defrag_target_range, list);
+ ASSERT(last->start + last->len <= cur);
+ if (last->start + last->len == cur) {
+ /* Mergeable, enlarge the last entry */
+ last->len += range_len;
+ goto next;
+ }
+ /* Fall through to allocate a new entry */
+ }
+
+ /* Allocate new defrag_target_range */
+ new = kmalloc(sizeof(*new), GFP_NOFS);
+ if (!new) {
+ free_extent_map(em);
+ ret = -ENOMEM;
+ break;
+ }
+ new->start = cur;
+ new->len = range_len;
+ list_add_tail(&new->list, target_list);
+
+next:
+ cur = extent_map_end(em);
+ free_extent_map(em);
+ }
+ if (ret < 0) {
+ struct defrag_target_range *entry;
+ struct defrag_target_range *tmp;
+
+ list_for_each_entry_safe(entry, tmp, target_list, list) {
+ list_del_init(&entry->list);
+ kfree(entry);
+ }
+ }
+ if (!ret && last_scanned_ret) {
+ /*
+ * If the last extent is not a target, the caller can skip to
+ * the end of that extent.
+ * Otherwise, we can only go the end of the specified range.
+ */
+ if (!last_is_target)
+ *last_scanned_ret = max(cur, *last_scanned_ret);
+ else
+ *last_scanned_ret = max(start + len, *last_scanned_ret);
+ }
+ return ret;
+}
+
+#define CLUSTER_SIZE (SZ_256K)
+static_assert(PAGE_ALIGNED(CLUSTER_SIZE));
+
+/*
+ * Defrag one contiguous target range.
+ *
+ * @inode: target inode
+ * @target: target range to defrag
+ * @pages: locked pages covering the defrag range
+ * @nr_pages: number of locked pages
+ *
+ * Caller should ensure:
+ *
+ * - Pages are prepared
+ * Pages should be locked, no ordered extent in the pages range,
+ * no writeback.
+ *
+ * - Extent bits are locked
+ */
+static int defrag_one_locked_target(struct btrfs_inode *inode,
+ struct defrag_target_range *target,
+ struct page **pages, int nr_pages,
+ struct extent_state **cached_state)
+{
+ struct btrfs_fs_info *fs_info = inode->root->fs_info;
+ struct extent_changeset *data_reserved = NULL;
+ const u64 start = target->start;
+ const u64 len = target->len;
+ unsigned long last_index = (start + len - 1) >> PAGE_SHIFT;
+ unsigned long start_index = start >> PAGE_SHIFT;
+ unsigned long first_index = page_index(pages[0]);
+ int ret = 0;
+ int i;
+
+ ASSERT(last_index - first_index + 1 <= nr_pages);
+
+ ret = btrfs_delalloc_reserve_space(inode, &data_reserved, start, len);
+ if (ret < 0)
+ return ret;
+ clear_extent_bit(&inode->io_tree, start, start + len - 1,
+ EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
+ EXTENT_DEFRAG, cached_state);
+ set_extent_bit(&inode->io_tree, start, start + len - 1,
+ EXTENT_DELALLOC | EXTENT_DEFRAG, cached_state);
+
+ /* Update the page status */
+ for (i = start_index - first_index; i <= last_index - first_index; i++) {
+ ClearPageChecked(pages[i]);
+ btrfs_page_clamp_set_dirty(fs_info, pages[i], start, len);
+ }
+ btrfs_delalloc_release_extents(inode, len);
+ extent_changeset_free(data_reserved);
+
+ return ret;
+}
+
+static int defrag_one_range(struct btrfs_inode *inode, u64 start, u32 len,
+ u32 extent_thresh, u64 newer_than, bool do_compress,
+ u64 *last_scanned_ret)
+{
+ struct extent_state *cached_state = NULL;
+ struct defrag_target_range *entry;
+ struct defrag_target_range *tmp;
+ LIST_HEAD(target_list);
+ struct page **pages;
+ const u32 sectorsize = inode->root->fs_info->sectorsize;
+ u64 last_index = (start + len - 1) >> PAGE_SHIFT;
+ u64 start_index = start >> PAGE_SHIFT;
+ unsigned int nr_pages = last_index - start_index + 1;
+ int ret = 0;
+ int i;
+
+ ASSERT(nr_pages <= CLUSTER_SIZE / PAGE_SIZE);
+ ASSERT(IS_ALIGNED(start, sectorsize) && IS_ALIGNED(len, sectorsize));
+
+ pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
+ if (!pages)
+ return -ENOMEM;
+
+ /* Prepare all pages */
+ for (i = 0; i < nr_pages; i++) {
+ pages[i] = defrag_prepare_one_page(inode, start_index + i);
+ if (IS_ERR(pages[i])) {
+ ret = PTR_ERR(pages[i]);
+ pages[i] = NULL;
+ goto free_pages;
+ }
+ }
+ for (i = 0; i < nr_pages; i++)
+ wait_on_page_writeback(pages[i]);
+
+ /* Lock the pages range */
+ lock_extent(&inode->io_tree, start_index << PAGE_SHIFT,
+ (last_index << PAGE_SHIFT) + PAGE_SIZE - 1,
+ &cached_state);
+ /*
+ * Now we have a consistent view about the extent map, re-check
+ * which range really needs to be defragged.
+ *
+ * And this time we have extent locked already, pass @locked = true
+ * so that we won't relock the extent range and cause deadlock.
+ */
+ ret = defrag_collect_targets(inode, start, len, extent_thresh,
+ newer_than, do_compress, true,
+ &target_list, last_scanned_ret);
+ if (ret < 0)
+ goto unlock_extent;
+
+ list_for_each_entry(entry, &target_list, list) {
+ ret = defrag_one_locked_target(inode, entry, pages, nr_pages,
+ &cached_state);
+ if (ret < 0)
+ break;
+ }
+
+ list_for_each_entry_safe(entry, tmp, &target_list, list) {
+ list_del_init(&entry->list);
+ kfree(entry);
+ }
+unlock_extent:
+ unlock_extent(&inode->io_tree, start_index << PAGE_SHIFT,
+ (last_index << PAGE_SHIFT) + PAGE_SIZE - 1,
+ &cached_state);
+free_pages:
+ for (i = 0; i < nr_pages; i++) {
+ if (pages[i]) {
+ unlock_page(pages[i]);
+ put_page(pages[i]);
+ }
+ }
+ kfree(pages);
+ return ret;
+}
+
+static int defrag_one_cluster(struct btrfs_inode *inode,
+ struct file_ra_state *ra,
+ u64 start, u32 len, u32 extent_thresh,
+ u64 newer_than, bool do_compress,
+ unsigned long *sectors_defragged,
+ unsigned long max_sectors,
+ u64 *last_scanned_ret)
+{
+ const u32 sectorsize = inode->root->fs_info->sectorsize;
+ struct defrag_target_range *entry;
+ struct defrag_target_range *tmp;
+ LIST_HEAD(target_list);
+ int ret;
+
+ ret = defrag_collect_targets(inode, start, len, extent_thresh,
+ newer_than, do_compress, false,
+ &target_list, NULL);
+ if (ret < 0)
+ goto out;
+
+ list_for_each_entry(entry, &target_list, list) {
+ u32 range_len = entry->len;
+
+ /* Reached or beyond the limit */
+ if (max_sectors && *sectors_defragged >= max_sectors) {
+ ret = 1;
+ break;
+ }
+
+ if (max_sectors)
+ range_len = min_t(u32, range_len,
+ (max_sectors - *sectors_defragged) * sectorsize);
+
+ /*
+ * If defrag_one_range() has updated last_scanned_ret,
+ * our range may already be invalid (e.g. hole punched).
+ * Skip if our range is before last_scanned_ret, as there is
+ * no need to defrag the range anymore.
+ */
+ if (entry->start + range_len <= *last_scanned_ret)
+ continue;
+
+ if (ra)
+ page_cache_sync_readahead(inode->vfs_inode.i_mapping,
+ ra, NULL, entry->start >> PAGE_SHIFT,
+ ((entry->start + range_len - 1) >> PAGE_SHIFT) -
+ (entry->start >> PAGE_SHIFT) + 1);
+ /*
+ * Here we may not defrag any range if holes are punched before
+ * we locked the pages.
+ * But that's fine, it only affects the @sectors_defragged
+ * accounting.
+ */
+ ret = defrag_one_range(inode, entry->start, range_len,
+ extent_thresh, newer_than, do_compress,
+ last_scanned_ret);
+ if (ret < 0)
+ break;
+ *sectors_defragged += range_len >>
+ inode->root->fs_info->sectorsize_bits;
+ }
+out:
+ list_for_each_entry_safe(entry, tmp, &target_list, list) {
+ list_del_init(&entry->list);
+ kfree(entry);
+ }
+ if (ret >= 0)
+ *last_scanned_ret = max(*last_scanned_ret, start + len);
+ return ret;
+}
+
+/*
+ * Entry point to file defragmentation.
+ *
+ * @inode: inode to be defragged
+ * @ra: readahead state (can be NUL)
+ * @range: defrag options including range and flags
+ * @newer_than: minimum transid to defrag
+ * @max_to_defrag: max number of sectors to be defragged, if 0, the whole inode
+ * will be defragged.
+ *
+ * Return <0 for error.
+ * Return >=0 for the number of sectors defragged, and range->start will be updated
+ * to indicate the file offset where next defrag should be started at.
+ * (Mostly for autodefrag, which sets @max_to_defrag thus we may exit early without
+ * defragging all the range).
+ */
+int btrfs_defrag_file(struct inode *inode, struct file_ra_state *ra,
+ struct btrfs_ioctl_defrag_range_args *range,
+ u64 newer_than, unsigned long max_to_defrag)
+{
+ struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
+ unsigned long sectors_defragged = 0;
+ u64 isize = i_size_read(inode);
+ u64 cur;
+ u64 last_byte;
+ bool do_compress = (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS);
+ bool ra_allocated = false;
+ int compress_type = BTRFS_COMPRESS_ZLIB;
+ int ret = 0;
+ u32 extent_thresh = range->extent_thresh;
+ pgoff_t start_index;
+
+ if (isize == 0)
+ return 0;
+
+ if (range->start >= isize)
+ return -EINVAL;
+
+ if (do_compress) {
+ if (range->compress_type >= BTRFS_NR_COMPRESS_TYPES)
+ return -EINVAL;
+ if (range->compress_type)
+ compress_type = range->compress_type;
+ }
+
+ if (extent_thresh == 0)
+ extent_thresh = SZ_256K;
+
+ if (range->start + range->len > range->start) {
+ /* Got a specific range */
+ last_byte = min(isize, range->start + range->len);
+ } else {
+ /* Defrag until file end */
+ last_byte = isize;
+ }
+
+ /* Align the range */
+ cur = round_down(range->start, fs_info->sectorsize);
+ last_byte = round_up(last_byte, fs_info->sectorsize) - 1;
+
+ /*
+ * If we were not given a ra, allocate a readahead context. As
+ * readahead is just an optimization, defrag will work without it so
+ * we don't error out.
+ */
+ if (!ra) {
+ ra_allocated = true;
+ ra = kzalloc(sizeof(*ra), GFP_KERNEL);
+ if (ra)
+ file_ra_state_init(ra, inode->i_mapping);
+ }
+
+ /*
+ * Make writeback start from the beginning of the range, so that the
+ * defrag range can be written sequentially.
+ */
+ start_index = cur >> PAGE_SHIFT;
+ if (start_index < inode->i_mapping->writeback_index)
+ inode->i_mapping->writeback_index = start_index;
+
+ while (cur < last_byte) {
+ const unsigned long prev_sectors_defragged = sectors_defragged;
+ u64 last_scanned = cur;
+ u64 cluster_end;
+
+ if (btrfs_defrag_cancelled(fs_info)) {
+ ret = -EAGAIN;
+ break;
+ }
+
+ /* We want the cluster end at page boundary when possible */
+ cluster_end = (((cur >> PAGE_SHIFT) +
+ (SZ_256K >> PAGE_SHIFT)) << PAGE_SHIFT) - 1;
+ cluster_end = min(cluster_end, last_byte);
+
+ btrfs_inode_lock(BTRFS_I(inode), 0);
+ if (IS_SWAPFILE(inode)) {
+ ret = -ETXTBSY;
+ btrfs_inode_unlock(BTRFS_I(inode), 0);
+ break;
+ }
+ if (!(inode->i_sb->s_flags & SB_ACTIVE)) {
+ btrfs_inode_unlock(BTRFS_I(inode), 0);
+ break;
+ }
+ if (do_compress)
+ BTRFS_I(inode)->defrag_compress = compress_type;
+ ret = defrag_one_cluster(BTRFS_I(inode), ra, cur,
+ cluster_end + 1 - cur, extent_thresh,
+ newer_than, do_compress, &sectors_defragged,
+ max_to_defrag, &last_scanned);
+
+ if (sectors_defragged > prev_sectors_defragged)
+ balance_dirty_pages_ratelimited(inode->i_mapping);
+
+ btrfs_inode_unlock(BTRFS_I(inode), 0);
+ if (ret < 0)
+ break;
+ cur = max(cluster_end + 1, last_scanned);
+ if (ret > 0) {
+ ret = 0;
+ break;
+ }
+ cond_resched();
+ }
+
+ if (ra_allocated)
+ kfree(ra);
+ /*
+ * Update range.start for autodefrag, this will indicate where to start
+ * in next run.
+ */
+ range->start = cur;
+ if (sectors_defragged) {
+ /*
+ * We have defragged some sectors, for compression case they
+ * need to be written back immediately.
+ */
+ if (range->flags & BTRFS_DEFRAG_RANGE_START_IO) {
+ filemap_flush(inode->i_mapping);
+ if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
+ &BTRFS_I(inode)->runtime_flags))
+ filemap_flush(inode->i_mapping);
+ }
+ if (range->compress_type == BTRFS_COMPRESS_LZO)
+ btrfs_set_fs_incompat(fs_info, COMPRESS_LZO);
+ else if (range->compress_type == BTRFS_COMPRESS_ZSTD)
+ btrfs_set_fs_incompat(fs_info, COMPRESS_ZSTD);
+ ret = sectors_defragged;
+ }
+ if (do_compress) {
+ btrfs_inode_lock(BTRFS_I(inode), 0);
+ BTRFS_I(inode)->defrag_compress = BTRFS_COMPRESS_NONE;
+ btrfs_inode_unlock(BTRFS_I(inode), 0);
+ }
+ return ret;
+}
+
+void __cold btrfs_auto_defrag_exit(void)
+{
+ kmem_cache_destroy(btrfs_inode_defrag_cachep);
+}
+
+int __init btrfs_auto_defrag_init(void)
+{
+ btrfs_inode_defrag_cachep = kmem_cache_create("btrfs_inode_defrag",
+ sizeof(struct inode_defrag), 0,
+ SLAB_MEM_SPREAD,
+ NULL);
+ if (!btrfs_inode_defrag_cachep)
+ return -ENOMEM;
+
+ return 0;
+}