diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-11 08:27:49 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-11 08:27:49 +0000 |
commit | ace9429bb58fd418f0c81d4c2835699bddf6bde6 (patch) | |
tree | b2d64bc10158fdd5497876388cd68142ca374ed3 /fs/btrfs/delayed-inode.c | |
parent | Initial commit. (diff) | |
download | linux-ace9429bb58fd418f0c81d4c2835699bddf6bde6.tar.xz linux-ace9429bb58fd418f0c81d4c2835699bddf6bde6.zip |
Adding upstream version 6.6.15.upstream/6.6.15
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to '')
-rw-r--r-- | fs/btrfs/delayed-inode.c | 2200 |
1 files changed, 2200 insertions, 0 deletions
diff --git a/fs/btrfs/delayed-inode.c b/fs/btrfs/delayed-inode.c new file mode 100644 index 0000000000..16f9e5f474 --- /dev/null +++ b/fs/btrfs/delayed-inode.c @@ -0,0 +1,2200 @@ +// SPDX-License-Identifier: GPL-2.0 +/* + * Copyright (C) 2011 Fujitsu. All rights reserved. + * Written by Miao Xie <miaox@cn.fujitsu.com> + */ + +#include <linux/slab.h> +#include <linux/iversion.h> +#include "ctree.h" +#include "fs.h" +#include "messages.h" +#include "misc.h" +#include "delayed-inode.h" +#include "disk-io.h" +#include "transaction.h" +#include "qgroup.h" +#include "locking.h" +#include "inode-item.h" +#include "space-info.h" +#include "accessors.h" +#include "file-item.h" + +#define BTRFS_DELAYED_WRITEBACK 512 +#define BTRFS_DELAYED_BACKGROUND 128 +#define BTRFS_DELAYED_BATCH 16 + +static struct kmem_cache *delayed_node_cache; + +int __init btrfs_delayed_inode_init(void) +{ + delayed_node_cache = kmem_cache_create("btrfs_delayed_node", + sizeof(struct btrfs_delayed_node), + 0, + SLAB_MEM_SPREAD, + NULL); + if (!delayed_node_cache) + return -ENOMEM; + return 0; +} + +void __cold btrfs_delayed_inode_exit(void) +{ + kmem_cache_destroy(delayed_node_cache); +} + +static inline void btrfs_init_delayed_node( + struct btrfs_delayed_node *delayed_node, + struct btrfs_root *root, u64 inode_id) +{ + delayed_node->root = root; + delayed_node->inode_id = inode_id; + refcount_set(&delayed_node->refs, 0); + delayed_node->ins_root = RB_ROOT_CACHED; + delayed_node->del_root = RB_ROOT_CACHED; + mutex_init(&delayed_node->mutex); + INIT_LIST_HEAD(&delayed_node->n_list); + INIT_LIST_HEAD(&delayed_node->p_list); +} + +static struct btrfs_delayed_node *btrfs_get_delayed_node( + struct btrfs_inode *btrfs_inode) +{ + struct btrfs_root *root = btrfs_inode->root; + u64 ino = btrfs_ino(btrfs_inode); + struct btrfs_delayed_node *node; + + node = READ_ONCE(btrfs_inode->delayed_node); + if (node) { + refcount_inc(&node->refs); + return node; + } + + spin_lock(&root->inode_lock); + node = radix_tree_lookup(&root->delayed_nodes_tree, ino); + + if (node) { + if (btrfs_inode->delayed_node) { + refcount_inc(&node->refs); /* can be accessed */ + BUG_ON(btrfs_inode->delayed_node != node); + spin_unlock(&root->inode_lock); + return node; + } + + /* + * It's possible that we're racing into the middle of removing + * this node from the radix tree. In this case, the refcount + * was zero and it should never go back to one. Just return + * NULL like it was never in the radix at all; our release + * function is in the process of removing it. + * + * Some implementations of refcount_inc refuse to bump the + * refcount once it has hit zero. If we don't do this dance + * here, refcount_inc() may decide to just WARN_ONCE() instead + * of actually bumping the refcount. + * + * If this node is properly in the radix, we want to bump the + * refcount twice, once for the inode and once for this get + * operation. + */ + if (refcount_inc_not_zero(&node->refs)) { + refcount_inc(&node->refs); + btrfs_inode->delayed_node = node; + } else { + node = NULL; + } + + spin_unlock(&root->inode_lock); + return node; + } + spin_unlock(&root->inode_lock); + + return NULL; +} + +/* Will return either the node or PTR_ERR(-ENOMEM) */ +static struct btrfs_delayed_node *btrfs_get_or_create_delayed_node( + struct btrfs_inode *btrfs_inode) +{ + struct btrfs_delayed_node *node; + struct btrfs_root *root = btrfs_inode->root; + u64 ino = btrfs_ino(btrfs_inode); + int ret; + +again: + node = btrfs_get_delayed_node(btrfs_inode); + if (node) + return node; + + node = kmem_cache_zalloc(delayed_node_cache, GFP_NOFS); + if (!node) + return ERR_PTR(-ENOMEM); + btrfs_init_delayed_node(node, root, ino); + + /* cached in the btrfs inode and can be accessed */ + refcount_set(&node->refs, 2); + + ret = radix_tree_preload(GFP_NOFS); + if (ret) { + kmem_cache_free(delayed_node_cache, node); + return ERR_PTR(ret); + } + + spin_lock(&root->inode_lock); + ret = radix_tree_insert(&root->delayed_nodes_tree, ino, node); + if (ret == -EEXIST) { + spin_unlock(&root->inode_lock); + kmem_cache_free(delayed_node_cache, node); + radix_tree_preload_end(); + goto again; + } + btrfs_inode->delayed_node = node; + spin_unlock(&root->inode_lock); + radix_tree_preload_end(); + + return node; +} + +/* + * Call it when holding delayed_node->mutex + * + * If mod = 1, add this node into the prepared list. + */ +static void btrfs_queue_delayed_node(struct btrfs_delayed_root *root, + struct btrfs_delayed_node *node, + int mod) +{ + spin_lock(&root->lock); + if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) { + if (!list_empty(&node->p_list)) + list_move_tail(&node->p_list, &root->prepare_list); + else if (mod) + list_add_tail(&node->p_list, &root->prepare_list); + } else { + list_add_tail(&node->n_list, &root->node_list); + list_add_tail(&node->p_list, &root->prepare_list); + refcount_inc(&node->refs); /* inserted into list */ + root->nodes++; + set_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags); + } + spin_unlock(&root->lock); +} + +/* Call it when holding delayed_node->mutex */ +static void btrfs_dequeue_delayed_node(struct btrfs_delayed_root *root, + struct btrfs_delayed_node *node) +{ + spin_lock(&root->lock); + if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) { + root->nodes--; + refcount_dec(&node->refs); /* not in the list */ + list_del_init(&node->n_list); + if (!list_empty(&node->p_list)) + list_del_init(&node->p_list); + clear_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags); + } + spin_unlock(&root->lock); +} + +static struct btrfs_delayed_node *btrfs_first_delayed_node( + struct btrfs_delayed_root *delayed_root) +{ + struct list_head *p; + struct btrfs_delayed_node *node = NULL; + + spin_lock(&delayed_root->lock); + if (list_empty(&delayed_root->node_list)) + goto out; + + p = delayed_root->node_list.next; + node = list_entry(p, struct btrfs_delayed_node, n_list); + refcount_inc(&node->refs); +out: + spin_unlock(&delayed_root->lock); + + return node; +} + +static struct btrfs_delayed_node *btrfs_next_delayed_node( + struct btrfs_delayed_node *node) +{ + struct btrfs_delayed_root *delayed_root; + struct list_head *p; + struct btrfs_delayed_node *next = NULL; + + delayed_root = node->root->fs_info->delayed_root; + spin_lock(&delayed_root->lock); + if (!test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) { + /* not in the list */ + if (list_empty(&delayed_root->node_list)) + goto out; + p = delayed_root->node_list.next; + } else if (list_is_last(&node->n_list, &delayed_root->node_list)) + goto out; + else + p = node->n_list.next; + + next = list_entry(p, struct btrfs_delayed_node, n_list); + refcount_inc(&next->refs); +out: + spin_unlock(&delayed_root->lock); + + return next; +} + +static void __btrfs_release_delayed_node( + struct btrfs_delayed_node *delayed_node, + int mod) +{ + struct btrfs_delayed_root *delayed_root; + + if (!delayed_node) + return; + + delayed_root = delayed_node->root->fs_info->delayed_root; + + mutex_lock(&delayed_node->mutex); + if (delayed_node->count) + btrfs_queue_delayed_node(delayed_root, delayed_node, mod); + else + btrfs_dequeue_delayed_node(delayed_root, delayed_node); + mutex_unlock(&delayed_node->mutex); + + if (refcount_dec_and_test(&delayed_node->refs)) { + struct btrfs_root *root = delayed_node->root; + + spin_lock(&root->inode_lock); + /* + * Once our refcount goes to zero, nobody is allowed to bump it + * back up. We can delete it now. + */ + ASSERT(refcount_read(&delayed_node->refs) == 0); + radix_tree_delete(&root->delayed_nodes_tree, + delayed_node->inode_id); + spin_unlock(&root->inode_lock); + kmem_cache_free(delayed_node_cache, delayed_node); + } +} + +static inline void btrfs_release_delayed_node(struct btrfs_delayed_node *node) +{ + __btrfs_release_delayed_node(node, 0); +} + +static struct btrfs_delayed_node *btrfs_first_prepared_delayed_node( + struct btrfs_delayed_root *delayed_root) +{ + struct list_head *p; + struct btrfs_delayed_node *node = NULL; + + spin_lock(&delayed_root->lock); + if (list_empty(&delayed_root->prepare_list)) + goto out; + + p = delayed_root->prepare_list.next; + list_del_init(p); + node = list_entry(p, struct btrfs_delayed_node, p_list); + refcount_inc(&node->refs); +out: + spin_unlock(&delayed_root->lock); + + return node; +} + +static inline void btrfs_release_prepared_delayed_node( + struct btrfs_delayed_node *node) +{ + __btrfs_release_delayed_node(node, 1); +} + +static struct btrfs_delayed_item *btrfs_alloc_delayed_item(u16 data_len, + struct btrfs_delayed_node *node, + enum btrfs_delayed_item_type type) +{ + struct btrfs_delayed_item *item; + + item = kmalloc(struct_size(item, data, data_len), GFP_NOFS); + if (item) { + item->data_len = data_len; + item->type = type; + item->bytes_reserved = 0; + item->delayed_node = node; + RB_CLEAR_NODE(&item->rb_node); + INIT_LIST_HEAD(&item->log_list); + item->logged = false; + refcount_set(&item->refs, 1); + } + return item; +} + +/* + * __btrfs_lookup_delayed_item - look up the delayed item by key + * @delayed_node: pointer to the delayed node + * @index: the dir index value to lookup (offset of a dir index key) + * + * Note: if we don't find the right item, we will return the prev item and + * the next item. + */ +static struct btrfs_delayed_item *__btrfs_lookup_delayed_item( + struct rb_root *root, + u64 index) +{ + struct rb_node *node = root->rb_node; + struct btrfs_delayed_item *delayed_item = NULL; + + while (node) { + delayed_item = rb_entry(node, struct btrfs_delayed_item, + rb_node); + if (delayed_item->index < index) + node = node->rb_right; + else if (delayed_item->index > index) + node = node->rb_left; + else + return delayed_item; + } + + return NULL; +} + +static int __btrfs_add_delayed_item(struct btrfs_delayed_node *delayed_node, + struct btrfs_delayed_item *ins) +{ + struct rb_node **p, *node; + struct rb_node *parent_node = NULL; + struct rb_root_cached *root; + struct btrfs_delayed_item *item; + bool leftmost = true; + + if (ins->type == BTRFS_DELAYED_INSERTION_ITEM) + root = &delayed_node->ins_root; + else + root = &delayed_node->del_root; + + p = &root->rb_root.rb_node; + node = &ins->rb_node; + + while (*p) { + parent_node = *p; + item = rb_entry(parent_node, struct btrfs_delayed_item, + rb_node); + + if (item->index < ins->index) { + p = &(*p)->rb_right; + leftmost = false; + } else if (item->index > ins->index) { + p = &(*p)->rb_left; + } else { + return -EEXIST; + } + } + + rb_link_node(node, parent_node, p); + rb_insert_color_cached(node, root, leftmost); + + if (ins->type == BTRFS_DELAYED_INSERTION_ITEM && + ins->index >= delayed_node->index_cnt) + delayed_node->index_cnt = ins->index + 1; + + delayed_node->count++; + atomic_inc(&delayed_node->root->fs_info->delayed_root->items); + return 0; +} + +static void finish_one_item(struct btrfs_delayed_root *delayed_root) +{ + int seq = atomic_inc_return(&delayed_root->items_seq); + + /* atomic_dec_return implies a barrier */ + if ((atomic_dec_return(&delayed_root->items) < + BTRFS_DELAYED_BACKGROUND || seq % BTRFS_DELAYED_BATCH == 0)) + cond_wake_up_nomb(&delayed_root->wait); +} + +static void __btrfs_remove_delayed_item(struct btrfs_delayed_item *delayed_item) +{ + struct btrfs_delayed_node *delayed_node = delayed_item->delayed_node; + struct rb_root_cached *root; + struct btrfs_delayed_root *delayed_root; + + /* Not inserted, ignore it. */ + if (RB_EMPTY_NODE(&delayed_item->rb_node)) + return; + + /* If it's in a rbtree, then we need to have delayed node locked. */ + lockdep_assert_held(&delayed_node->mutex); + + delayed_root = delayed_node->root->fs_info->delayed_root; + + BUG_ON(!delayed_root); + + if (delayed_item->type == BTRFS_DELAYED_INSERTION_ITEM) + root = &delayed_node->ins_root; + else + root = &delayed_node->del_root; + + rb_erase_cached(&delayed_item->rb_node, root); + RB_CLEAR_NODE(&delayed_item->rb_node); + delayed_node->count--; + + finish_one_item(delayed_root); +} + +static void btrfs_release_delayed_item(struct btrfs_delayed_item *item) +{ + if (item) { + __btrfs_remove_delayed_item(item); + if (refcount_dec_and_test(&item->refs)) + kfree(item); + } +} + +static struct btrfs_delayed_item *__btrfs_first_delayed_insertion_item( + struct btrfs_delayed_node *delayed_node) +{ + struct rb_node *p; + struct btrfs_delayed_item *item = NULL; + + p = rb_first_cached(&delayed_node->ins_root); + if (p) + item = rb_entry(p, struct btrfs_delayed_item, rb_node); + + return item; +} + +static struct btrfs_delayed_item *__btrfs_first_delayed_deletion_item( + struct btrfs_delayed_node *delayed_node) +{ + struct rb_node *p; + struct btrfs_delayed_item *item = NULL; + + p = rb_first_cached(&delayed_node->del_root); + if (p) + item = rb_entry(p, struct btrfs_delayed_item, rb_node); + + return item; +} + +static struct btrfs_delayed_item *__btrfs_next_delayed_item( + struct btrfs_delayed_item *item) +{ + struct rb_node *p; + struct btrfs_delayed_item *next = NULL; + + p = rb_next(&item->rb_node); + if (p) + next = rb_entry(p, struct btrfs_delayed_item, rb_node); + + return next; +} + +static int btrfs_delayed_item_reserve_metadata(struct btrfs_trans_handle *trans, + struct btrfs_delayed_item *item) +{ + struct btrfs_block_rsv *src_rsv; + struct btrfs_block_rsv *dst_rsv; + struct btrfs_fs_info *fs_info = trans->fs_info; + u64 num_bytes; + int ret; + + if (!trans->bytes_reserved) + return 0; + + src_rsv = trans->block_rsv; + dst_rsv = &fs_info->delayed_block_rsv; + + num_bytes = btrfs_calc_insert_metadata_size(fs_info, 1); + + /* + * Here we migrate space rsv from transaction rsv, since have already + * reserved space when starting a transaction. So no need to reserve + * qgroup space here. + */ + ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, true); + if (!ret) { + trace_btrfs_space_reservation(fs_info, "delayed_item", + item->delayed_node->inode_id, + num_bytes, 1); + /* + * For insertions we track reserved metadata space by accounting + * for the number of leaves that will be used, based on the delayed + * node's index_items_size field. + */ + if (item->type == BTRFS_DELAYED_DELETION_ITEM) + item->bytes_reserved = num_bytes; + } + + return ret; +} + +static void btrfs_delayed_item_release_metadata(struct btrfs_root *root, + struct btrfs_delayed_item *item) +{ + struct btrfs_block_rsv *rsv; + struct btrfs_fs_info *fs_info = root->fs_info; + + if (!item->bytes_reserved) + return; + + rsv = &fs_info->delayed_block_rsv; + /* + * Check btrfs_delayed_item_reserve_metadata() to see why we don't need + * to release/reserve qgroup space. + */ + trace_btrfs_space_reservation(fs_info, "delayed_item", + item->delayed_node->inode_id, + item->bytes_reserved, 0); + btrfs_block_rsv_release(fs_info, rsv, item->bytes_reserved, NULL); +} + +static void btrfs_delayed_item_release_leaves(struct btrfs_delayed_node *node, + unsigned int num_leaves) +{ + struct btrfs_fs_info *fs_info = node->root->fs_info; + const u64 bytes = btrfs_calc_insert_metadata_size(fs_info, num_leaves); + + /* There are no space reservations during log replay, bail out. */ + if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) + return; + + trace_btrfs_space_reservation(fs_info, "delayed_item", node->inode_id, + bytes, 0); + btrfs_block_rsv_release(fs_info, &fs_info->delayed_block_rsv, bytes, NULL); +} + +static int btrfs_delayed_inode_reserve_metadata( + struct btrfs_trans_handle *trans, + struct btrfs_root *root, + struct btrfs_delayed_node *node) +{ + struct btrfs_fs_info *fs_info = root->fs_info; + struct btrfs_block_rsv *src_rsv; + struct btrfs_block_rsv *dst_rsv; + u64 num_bytes; + int ret; + + src_rsv = trans->block_rsv; + dst_rsv = &fs_info->delayed_block_rsv; + + num_bytes = btrfs_calc_metadata_size(fs_info, 1); + + /* + * btrfs_dirty_inode will update the inode under btrfs_join_transaction + * which doesn't reserve space for speed. This is a problem since we + * still need to reserve space for this update, so try to reserve the + * space. + * + * Now if src_rsv == delalloc_block_rsv we'll let it just steal since + * we always reserve enough to update the inode item. + */ + if (!src_rsv || (!trans->bytes_reserved && + src_rsv->type != BTRFS_BLOCK_RSV_DELALLOC)) { + ret = btrfs_qgroup_reserve_meta(root, num_bytes, + BTRFS_QGROUP_RSV_META_PREALLOC, true); + if (ret < 0) + return ret; + ret = btrfs_block_rsv_add(fs_info, dst_rsv, num_bytes, + BTRFS_RESERVE_NO_FLUSH); + /* NO_FLUSH could only fail with -ENOSPC */ + ASSERT(ret == 0 || ret == -ENOSPC); + if (ret) + btrfs_qgroup_free_meta_prealloc(root, num_bytes); + } else { + ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, true); + } + + if (!ret) { + trace_btrfs_space_reservation(fs_info, "delayed_inode", + node->inode_id, num_bytes, 1); + node->bytes_reserved = num_bytes; + } + + return ret; +} + +static void btrfs_delayed_inode_release_metadata(struct btrfs_fs_info *fs_info, + struct btrfs_delayed_node *node, + bool qgroup_free) +{ + struct btrfs_block_rsv *rsv; + + if (!node->bytes_reserved) + return; + + rsv = &fs_info->delayed_block_rsv; + trace_btrfs_space_reservation(fs_info, "delayed_inode", + node->inode_id, node->bytes_reserved, 0); + btrfs_block_rsv_release(fs_info, rsv, node->bytes_reserved, NULL); + if (qgroup_free) + btrfs_qgroup_free_meta_prealloc(node->root, + node->bytes_reserved); + else + btrfs_qgroup_convert_reserved_meta(node->root, + node->bytes_reserved); + node->bytes_reserved = 0; +} + +/* + * Insert a single delayed item or a batch of delayed items, as many as possible + * that fit in a leaf. The delayed items (dir index keys) are sorted by their key + * in the rbtree, and if there's a gap between two consecutive dir index items, + * then it means at some point we had delayed dir indexes to add but they got + * removed (by btrfs_delete_delayed_dir_index()) before we attempted to flush them + * into the subvolume tree. Dir index keys also have their offsets coming from a + * monotonically increasing counter, so we can't get new keys with an offset that + * fits within a gap between delayed dir index items. + */ +static int btrfs_insert_delayed_item(struct btrfs_trans_handle *trans, + struct btrfs_root *root, + struct btrfs_path *path, + struct btrfs_delayed_item *first_item) +{ + struct btrfs_fs_info *fs_info = root->fs_info; + struct btrfs_delayed_node *node = first_item->delayed_node; + LIST_HEAD(item_list); + struct btrfs_delayed_item *curr; + struct btrfs_delayed_item *next; + const int max_size = BTRFS_LEAF_DATA_SIZE(fs_info); + struct btrfs_item_batch batch; + struct btrfs_key first_key; + const u32 first_data_size = first_item->data_len; + int total_size; + char *ins_data = NULL; + int ret; + bool continuous_keys_only = false; + + lockdep_assert_held(&node->mutex); + + /* + * During normal operation the delayed index offset is continuously + * increasing, so we can batch insert all items as there will not be any + * overlapping keys in the tree. + * + * The exception to this is log replay, where we may have interleaved + * offsets in the tree, so our batch needs to be continuous keys only in + * order to ensure we do not end up with out of order items in our leaf. + */ + if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) + continuous_keys_only = true; + + /* + * For delayed items to insert, we track reserved metadata bytes based + * on the number of leaves that we will use. + * See btrfs_insert_delayed_dir_index() and + * btrfs_delayed_item_reserve_metadata()). + */ + ASSERT(first_item->bytes_reserved == 0); + + list_add_tail(&first_item->tree_list, &item_list); + batch.total_data_size = first_data_size; + batch.nr = 1; + total_size = first_data_size + sizeof(struct btrfs_item); + curr = first_item; + + while (true) { + int next_size; + + next = __btrfs_next_delayed_item(curr); + if (!next) + break; + + /* + * We cannot allow gaps in the key space if we're doing log + * replay. + */ + if (continuous_keys_only && (next->index != curr->index + 1)) + break; + + ASSERT(next->bytes_reserved == 0); + + next_size = next->data_len + sizeof(struct btrfs_item); + if (total_size + next_size > max_size) + break; + + list_add_tail(&next->tree_list, &item_list); + batch.nr++; + total_size += next_size; + batch.total_data_size += next->data_len; + curr = next; + } + + if (batch.nr == 1) { + first_key.objectid = node->inode_id; + first_key.type = BTRFS_DIR_INDEX_KEY; + first_key.offset = first_item->index; + batch.keys = &first_key; + batch.data_sizes = &first_data_size; + } else { + struct btrfs_key *ins_keys; + u32 *ins_sizes; + int i = 0; + + ins_data = kmalloc(batch.nr * sizeof(u32) + + batch.nr * sizeof(struct btrfs_key), GFP_NOFS); + if (!ins_data) { + ret = -ENOMEM; + goto out; + } + ins_sizes = (u32 *)ins_data; + ins_keys = (struct btrfs_key *)(ins_data + batch.nr * sizeof(u32)); + batch.keys = ins_keys; + batch.data_sizes = ins_sizes; + list_for_each_entry(curr, &item_list, tree_list) { + ins_keys[i].objectid = node->inode_id; + ins_keys[i].type = BTRFS_DIR_INDEX_KEY; + ins_keys[i].offset = curr->index; + ins_sizes[i] = curr->data_len; + i++; + } + } + + ret = btrfs_insert_empty_items(trans, root, path, &batch); + if (ret) + goto out; + + list_for_each_entry(curr, &item_list, tree_list) { + char *data_ptr; + + data_ptr = btrfs_item_ptr(path->nodes[0], path->slots[0], char); + write_extent_buffer(path->nodes[0], &curr->data, + (unsigned long)data_ptr, curr->data_len); + path->slots[0]++; + } + + /* + * Now release our path before releasing the delayed items and their + * metadata reservations, so that we don't block other tasks for more + * time than needed. + */ + btrfs_release_path(path); + + ASSERT(node->index_item_leaves > 0); + + /* + * For normal operations we will batch an entire leaf's worth of delayed + * items, so if there are more items to process we can decrement + * index_item_leaves by 1 as we inserted 1 leaf's worth of items. + * + * However for log replay we may not have inserted an entire leaf's + * worth of items, we may have not had continuous items, so decrementing + * here would mess up the index_item_leaves accounting. For this case + * only clean up the accounting when there are no items left. + */ + if (next && !continuous_keys_only) { + /* + * We inserted one batch of items into a leaf a there are more + * items to flush in a future batch, now release one unit of + * metadata space from the delayed block reserve, corresponding + * the leaf we just flushed to. + */ + btrfs_delayed_item_release_leaves(node, 1); + node->index_item_leaves--; + } else if (!next) { + /* + * There are no more items to insert. We can have a number of + * reserved leaves > 1 here - this happens when many dir index + * items are added and then removed before they are flushed (file + * names with a very short life, never span a transaction). So + * release all remaining leaves. + */ + btrfs_delayed_item_release_leaves(node, node->index_item_leaves); + node->index_item_leaves = 0; + } + + list_for_each_entry_safe(curr, next, &item_list, tree_list) { + list_del(&curr->tree_list); + btrfs_release_delayed_item(curr); + } +out: + kfree(ins_data); + return ret; +} + +static int btrfs_insert_delayed_items(struct btrfs_trans_handle *trans, + struct btrfs_path *path, + struct btrfs_root *root, + struct btrfs_delayed_node *node) +{ + int ret = 0; + + while (ret == 0) { + struct btrfs_delayed_item *curr; + + mutex_lock(&node->mutex); + curr = __btrfs_first_delayed_insertion_item(node); + if (!curr) { + mutex_unlock(&node->mutex); + break; + } + ret = btrfs_insert_delayed_item(trans, root, path, curr); + mutex_unlock(&node->mutex); + } + + return ret; +} + +static int btrfs_batch_delete_items(struct btrfs_trans_handle *trans, + struct btrfs_root *root, + struct btrfs_path *path, + struct btrfs_delayed_item *item) +{ + const u64 ino = item->delayed_node->inode_id; + struct btrfs_fs_info *fs_info = root->fs_info; + struct btrfs_delayed_item *curr, *next; + struct extent_buffer *leaf = path->nodes[0]; + LIST_HEAD(batch_list); + int nitems, slot, last_slot; + int ret; + u64 total_reserved_size = item->bytes_reserved; + + ASSERT(leaf != NULL); + + slot = path->slots[0]; + last_slot = btrfs_header_nritems(leaf) - 1; + /* + * Our caller always gives us a path pointing to an existing item, so + * this can not happen. + */ + ASSERT(slot <= last_slot); + if (WARN_ON(slot > last_slot)) + return -ENOENT; + + nitems = 1; + curr = item; + list_add_tail(&curr->tree_list, &batch_list); + + /* + * Keep checking if the next delayed item matches the next item in the + * leaf - if so, we can add it to the batch of items to delete from the + * leaf. + */ + while (slot < last_slot) { + struct btrfs_key key; + + next = __btrfs_next_delayed_item(curr); + if (!next) + break; + + slot++; + btrfs_item_key_to_cpu(leaf, &key, slot); + if (key.objectid != ino || + key.type != BTRFS_DIR_INDEX_KEY || + key.offset != next->index) + break; + nitems++; + curr = next; + list_add_tail(&curr->tree_list, &batch_list); + total_reserved_size += curr->bytes_reserved; + } + + ret = btrfs_del_items(trans, root, path, path->slots[0], nitems); + if (ret) + return ret; + + /* In case of BTRFS_FS_LOG_RECOVERING items won't have reserved space */ + if (total_reserved_size > 0) { + /* + * Check btrfs_delayed_item_reserve_metadata() to see why we + * don't need to release/reserve qgroup space. + */ + trace_btrfs_space_reservation(fs_info, "delayed_item", ino, + total_reserved_size, 0); + btrfs_block_rsv_release(fs_info, &fs_info->delayed_block_rsv, + total_reserved_size, NULL); + } + + list_for_each_entry_safe(curr, next, &batch_list, tree_list) { + list_del(&curr->tree_list); + btrfs_release_delayed_item(curr); + } + + return 0; +} + +static int btrfs_delete_delayed_items(struct btrfs_trans_handle *trans, + struct btrfs_path *path, + struct btrfs_root *root, + struct btrfs_delayed_node *node) +{ + struct btrfs_key key; + int ret = 0; + + key.objectid = node->inode_id; + key.type = BTRFS_DIR_INDEX_KEY; + + while (ret == 0) { + struct btrfs_delayed_item *item; + + mutex_lock(&node->mutex); + item = __btrfs_first_delayed_deletion_item(node); + if (!item) { + mutex_unlock(&node->mutex); + break; + } + + key.offset = item->index; + ret = btrfs_search_slot(trans, root, &key, path, -1, 1); + if (ret > 0) { + /* + * There's no matching item in the leaf. This means we + * have already deleted this item in a past run of the + * delayed items. We ignore errors when running delayed + * items from an async context, through a work queue job + * running btrfs_async_run_delayed_root(), and don't + * release delayed items that failed to complete. This + * is because we will retry later, and at transaction + * commit time we always run delayed items and will + * then deal with errors if they fail to run again. + * + * So just release delayed items for which we can't find + * an item in the tree, and move to the next item. + */ + btrfs_release_path(path); + btrfs_release_delayed_item(item); + ret = 0; + } else if (ret == 0) { + ret = btrfs_batch_delete_items(trans, root, path, item); + btrfs_release_path(path); + } + + /* + * We unlock and relock on each iteration, this is to prevent + * blocking other tasks for too long while we are being run from + * the async context (work queue job). Those tasks are typically + * running system calls like creat/mkdir/rename/unlink/etc which + * need to add delayed items to this delayed node. + */ + mutex_unlock(&node->mutex); + } + + return ret; +} + +static void btrfs_release_delayed_inode(struct btrfs_delayed_node *delayed_node) +{ + struct btrfs_delayed_root *delayed_root; + + if (delayed_node && + test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) { + BUG_ON(!delayed_node->root); + clear_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags); + delayed_node->count--; + + delayed_root = delayed_node->root->fs_info->delayed_root; + finish_one_item(delayed_root); + } +} + +static void btrfs_release_delayed_iref(struct btrfs_delayed_node *delayed_node) +{ + + if (test_and_clear_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags)) { + struct btrfs_delayed_root *delayed_root; + + ASSERT(delayed_node->root); + delayed_node->count--; + + delayed_root = delayed_node->root->fs_info->delayed_root; + finish_one_item(delayed_root); + } +} + +static int __btrfs_update_delayed_inode(struct btrfs_trans_handle *trans, + struct btrfs_root *root, + struct btrfs_path *path, + struct btrfs_delayed_node *node) +{ + struct btrfs_fs_info *fs_info = root->fs_info; + struct btrfs_key key; + struct btrfs_inode_item *inode_item; + struct extent_buffer *leaf; + int mod; + int ret; + + key.objectid = node->inode_id; + key.type = BTRFS_INODE_ITEM_KEY; + key.offset = 0; + + if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags)) + mod = -1; + else + mod = 1; + + ret = btrfs_lookup_inode(trans, root, path, &key, mod); + if (ret > 0) + ret = -ENOENT; + if (ret < 0) + goto out; + + leaf = path->nodes[0]; + inode_item = btrfs_item_ptr(leaf, path->slots[0], + struct btrfs_inode_item); + write_extent_buffer(leaf, &node->inode_item, (unsigned long)inode_item, + sizeof(struct btrfs_inode_item)); + btrfs_mark_buffer_dirty(trans, leaf); + + if (!test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags)) + goto out; + + path->slots[0]++; + if (path->slots[0] >= btrfs_header_nritems(leaf)) + goto search; +again: + btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); + if (key.objectid != node->inode_id) + goto out; + + if (key.type != BTRFS_INODE_REF_KEY && + key.type != BTRFS_INODE_EXTREF_KEY) + goto out; + + /* + * Delayed iref deletion is for the inode who has only one link, + * so there is only one iref. The case that several irefs are + * in the same item doesn't exist. + */ + ret = btrfs_del_item(trans, root, path); +out: + btrfs_release_delayed_iref(node); + btrfs_release_path(path); +err_out: + btrfs_delayed_inode_release_metadata(fs_info, node, (ret < 0)); + btrfs_release_delayed_inode(node); + + /* + * If we fail to update the delayed inode we need to abort the + * transaction, because we could leave the inode with the improper + * counts behind. + */ + if (ret && ret != -ENOENT) + btrfs_abort_transaction(trans, ret); + + return ret; + +search: + btrfs_release_path(path); + + key.type = BTRFS_INODE_EXTREF_KEY; + key.offset = -1; + + ret = btrfs_search_slot(trans, root, &key, path, -1, 1); + if (ret < 0) + goto err_out; + ASSERT(ret); + + ret = 0; + leaf = path->nodes[0]; + path->slots[0]--; + goto again; +} + +static inline int btrfs_update_delayed_inode(struct btrfs_trans_handle *trans, + struct btrfs_root *root, + struct btrfs_path *path, + struct btrfs_delayed_node *node) +{ + int ret; + + mutex_lock(&node->mutex); + if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &node->flags)) { + mutex_unlock(&node->mutex); + return 0; + } + + ret = __btrfs_update_delayed_inode(trans, root, path, node); + mutex_unlock(&node->mutex); + return ret; +} + +static inline int +__btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans, + struct btrfs_path *path, + struct btrfs_delayed_node *node) +{ + int ret; + + ret = btrfs_insert_delayed_items(trans, path, node->root, node); + if (ret) + return ret; + + ret = btrfs_delete_delayed_items(trans, path, node->root, node); + if (ret) + return ret; + + ret = btrfs_update_delayed_inode(trans, node->root, path, node); + return ret; +} + +/* + * Called when committing the transaction. + * Returns 0 on success. + * Returns < 0 on error and returns with an aborted transaction with any + * outstanding delayed items cleaned up. + */ +static int __btrfs_run_delayed_items(struct btrfs_trans_handle *trans, int nr) +{ + struct btrfs_fs_info *fs_info = trans->fs_info; + struct btrfs_delayed_root *delayed_root; + struct btrfs_delayed_node *curr_node, *prev_node; + struct btrfs_path *path; + struct btrfs_block_rsv *block_rsv; + int ret = 0; + bool count = (nr > 0); + + if (TRANS_ABORTED(trans)) + return -EIO; + + path = btrfs_alloc_path(); + if (!path) + return -ENOMEM; + + block_rsv = trans->block_rsv; + trans->block_rsv = &fs_info->delayed_block_rsv; + + delayed_root = fs_info->delayed_root; + + curr_node = btrfs_first_delayed_node(delayed_root); + while (curr_node && (!count || nr--)) { + ret = __btrfs_commit_inode_delayed_items(trans, path, + curr_node); + if (ret) { + btrfs_abort_transaction(trans, ret); + break; + } + + prev_node = curr_node; + curr_node = btrfs_next_delayed_node(curr_node); + /* + * See the comment below about releasing path before releasing + * node. If the commit of delayed items was successful the path + * should always be released, but in case of an error, it may + * point to locked extent buffers (a leaf at the very least). + */ + ASSERT(path->nodes[0] == NULL); + btrfs_release_delayed_node(prev_node); + } + + /* + * Release the path to avoid a potential deadlock and lockdep splat when + * releasing the delayed node, as that requires taking the delayed node's + * mutex. If another task starts running delayed items before we take + * the mutex, it will first lock the mutex and then it may try to lock + * the same btree path (leaf). + */ + btrfs_free_path(path); + + if (curr_node) + btrfs_release_delayed_node(curr_node); + trans->block_rsv = block_rsv; + + return ret; +} + +int btrfs_run_delayed_items(struct btrfs_trans_handle *trans) +{ + return __btrfs_run_delayed_items(trans, -1); +} + +int btrfs_run_delayed_items_nr(struct btrfs_trans_handle *trans, int nr) +{ + return __btrfs_run_delayed_items(trans, nr); +} + +int btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans, + struct btrfs_inode *inode) +{ + struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode); + struct btrfs_path *path; + struct btrfs_block_rsv *block_rsv; + int ret; + + if (!delayed_node) + return 0; + + mutex_lock(&delayed_node->mutex); + if (!delayed_node->count) { + mutex_unlock(&delayed_node->mutex); + btrfs_release_delayed_node(delayed_node); + return 0; + } + mutex_unlock(&delayed_node->mutex); + + path = btrfs_alloc_path(); + if (!path) { + btrfs_release_delayed_node(delayed_node); + return -ENOMEM; + } + + block_rsv = trans->block_rsv; + trans->block_rsv = &delayed_node->root->fs_info->delayed_block_rsv; + + ret = __btrfs_commit_inode_delayed_items(trans, path, delayed_node); + + btrfs_release_delayed_node(delayed_node); + btrfs_free_path(path); + trans->block_rsv = block_rsv; + + return ret; +} + +int btrfs_commit_inode_delayed_inode(struct btrfs_inode *inode) +{ + struct btrfs_fs_info *fs_info = inode->root->fs_info; + struct btrfs_trans_handle *trans; + struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode); + struct btrfs_path *path; + struct btrfs_block_rsv *block_rsv; + int ret; + + if (!delayed_node) + return 0; + + mutex_lock(&delayed_node->mutex); + if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) { + mutex_unlock(&delayed_node->mutex); + btrfs_release_delayed_node(delayed_node); + return 0; + } + mutex_unlock(&delayed_node->mutex); + + trans = btrfs_join_transaction(delayed_node->root); + if (IS_ERR(trans)) { + ret = PTR_ERR(trans); + goto out; + } + + path = btrfs_alloc_path(); + if (!path) { + ret = -ENOMEM; + goto trans_out; + } + + block_rsv = trans->block_rsv; + trans->block_rsv = &fs_info->delayed_block_rsv; + + mutex_lock(&delayed_node->mutex); + if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) + ret = __btrfs_update_delayed_inode(trans, delayed_node->root, + path, delayed_node); + else + ret = 0; + mutex_unlock(&delayed_node->mutex); + + btrfs_free_path(path); + trans->block_rsv = block_rsv; +trans_out: + btrfs_end_transaction(trans); + btrfs_btree_balance_dirty(fs_info); +out: + btrfs_release_delayed_node(delayed_node); + + return ret; +} + +void btrfs_remove_delayed_node(struct btrfs_inode *inode) +{ + struct btrfs_delayed_node *delayed_node; + + delayed_node = READ_ONCE(inode->delayed_node); + if (!delayed_node) + return; + + inode->delayed_node = NULL; + btrfs_release_delayed_node(delayed_node); +} + +struct btrfs_async_delayed_work { + struct btrfs_delayed_root *delayed_root; + int nr; + struct btrfs_work work; +}; + +static void btrfs_async_run_delayed_root(struct btrfs_work *work) +{ + struct btrfs_async_delayed_work *async_work; + struct btrfs_delayed_root *delayed_root; + struct btrfs_trans_handle *trans; + struct btrfs_path *path; + struct btrfs_delayed_node *delayed_node = NULL; + struct btrfs_root *root; + struct btrfs_block_rsv *block_rsv; + int total_done = 0; + + async_work = container_of(work, struct btrfs_async_delayed_work, work); + delayed_root = async_work->delayed_root; + + path = btrfs_alloc_path(); + if (!path) + goto out; + + do { + if (atomic_read(&delayed_root->items) < + BTRFS_DELAYED_BACKGROUND / 2) + break; + + delayed_node = btrfs_first_prepared_delayed_node(delayed_root); + if (!delayed_node) + break; + + root = delayed_node->root; + + trans = btrfs_join_transaction(root); + if (IS_ERR(trans)) { + btrfs_release_path(path); + btrfs_release_prepared_delayed_node(delayed_node); + total_done++; + continue; + } + + block_rsv = trans->block_rsv; + trans->block_rsv = &root->fs_info->delayed_block_rsv; + + __btrfs_commit_inode_delayed_items(trans, path, delayed_node); + + trans->block_rsv = block_rsv; + btrfs_end_transaction(trans); + btrfs_btree_balance_dirty_nodelay(root->fs_info); + + btrfs_release_path(path); + btrfs_release_prepared_delayed_node(delayed_node); + total_done++; + + } while ((async_work->nr == 0 && total_done < BTRFS_DELAYED_WRITEBACK) + || total_done < async_work->nr); + + btrfs_free_path(path); +out: + wake_up(&delayed_root->wait); + kfree(async_work); +} + + +static int btrfs_wq_run_delayed_node(struct btrfs_delayed_root *delayed_root, + struct btrfs_fs_info *fs_info, int nr) +{ + struct btrfs_async_delayed_work *async_work; + + async_work = kmalloc(sizeof(*async_work), GFP_NOFS); + if (!async_work) + return -ENOMEM; + + async_work->delayed_root = delayed_root; + btrfs_init_work(&async_work->work, btrfs_async_run_delayed_root, NULL, + NULL); + async_work->nr = nr; + + btrfs_queue_work(fs_info->delayed_workers, &async_work->work); + return 0; +} + +void btrfs_assert_delayed_root_empty(struct btrfs_fs_info *fs_info) +{ + WARN_ON(btrfs_first_delayed_node(fs_info->delayed_root)); +} + +static int could_end_wait(struct btrfs_delayed_root *delayed_root, int seq) +{ + int val = atomic_read(&delayed_root->items_seq); + + if (val < seq || val >= seq + BTRFS_DELAYED_BATCH) + return 1; + + if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND) + return 1; + + return 0; +} + +void btrfs_balance_delayed_items(struct btrfs_fs_info *fs_info) +{ + struct btrfs_delayed_root *delayed_root = fs_info->delayed_root; + + if ((atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND) || + btrfs_workqueue_normal_congested(fs_info->delayed_workers)) + return; + + if (atomic_read(&delayed_root->items) >= BTRFS_DELAYED_WRITEBACK) { + int seq; + int ret; + + seq = atomic_read(&delayed_root->items_seq); + + ret = btrfs_wq_run_delayed_node(delayed_root, fs_info, 0); + if (ret) + return; + + wait_event_interruptible(delayed_root->wait, + could_end_wait(delayed_root, seq)); + return; + } + + btrfs_wq_run_delayed_node(delayed_root, fs_info, BTRFS_DELAYED_BATCH); +} + +static void btrfs_release_dir_index_item_space(struct btrfs_trans_handle *trans) +{ + struct btrfs_fs_info *fs_info = trans->fs_info; + const u64 bytes = btrfs_calc_insert_metadata_size(fs_info, 1); + + if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) + return; + + /* + * Adding the new dir index item does not require touching another + * leaf, so we can release 1 unit of metadata that was previously + * reserved when starting the transaction. This applies only to + * the case where we had a transaction start and excludes the + * transaction join case (when replaying log trees). + */ + trace_btrfs_space_reservation(fs_info, "transaction", + trans->transid, bytes, 0); + btrfs_block_rsv_release(fs_info, trans->block_rsv, bytes, NULL); + ASSERT(trans->bytes_reserved >= bytes); + trans->bytes_reserved -= bytes; +} + +/* Will return 0, -ENOMEM or -EEXIST (index number collision, unexpected). */ +int btrfs_insert_delayed_dir_index(struct btrfs_trans_handle *trans, + const char *name, int name_len, + struct btrfs_inode *dir, + struct btrfs_disk_key *disk_key, u8 flags, + u64 index) +{ + struct btrfs_fs_info *fs_info = trans->fs_info; + const unsigned int leaf_data_size = BTRFS_LEAF_DATA_SIZE(fs_info); + struct btrfs_delayed_node *delayed_node; + struct btrfs_delayed_item *delayed_item; + struct btrfs_dir_item *dir_item; + bool reserve_leaf_space; + u32 data_len; + int ret; + + delayed_node = btrfs_get_or_create_delayed_node(dir); + if (IS_ERR(delayed_node)) + return PTR_ERR(delayed_node); + + delayed_item = btrfs_alloc_delayed_item(sizeof(*dir_item) + name_len, + delayed_node, + BTRFS_DELAYED_INSERTION_ITEM); + if (!delayed_item) { + ret = -ENOMEM; + goto release_node; + } + + delayed_item->index = index; + + dir_item = (struct btrfs_dir_item *)delayed_item->data; + dir_item->location = *disk_key; + btrfs_set_stack_dir_transid(dir_item, trans->transid); + btrfs_set_stack_dir_data_len(dir_item, 0); + btrfs_set_stack_dir_name_len(dir_item, name_len); + btrfs_set_stack_dir_flags(dir_item, flags); + memcpy((char *)(dir_item + 1), name, name_len); + + data_len = delayed_item->data_len + sizeof(struct btrfs_item); + + mutex_lock(&delayed_node->mutex); + + /* + * First attempt to insert the delayed item. This is to make the error + * handling path simpler in case we fail (-EEXIST). There's no risk of + * any other task coming in and running the delayed item before we do + * the metadata space reservation below, because we are holding the + * delayed node's mutex and that mutex must also be locked before the + * node's delayed items can be run. + */ + ret = __btrfs_add_delayed_item(delayed_node, delayed_item); + if (unlikely(ret)) { + btrfs_err(trans->fs_info, +"error adding delayed dir index item, name: %.*s, index: %llu, root: %llu, dir: %llu, dir->index_cnt: %llu, delayed_node->index_cnt: %llu, error: %d", + name_len, name, index, btrfs_root_id(delayed_node->root), + delayed_node->inode_id, dir->index_cnt, + delayed_node->index_cnt, ret); + btrfs_release_delayed_item(delayed_item); + btrfs_release_dir_index_item_space(trans); + mutex_unlock(&delayed_node->mutex); + goto release_node; + } + + if (delayed_node->index_item_leaves == 0 || + delayed_node->curr_index_batch_size + data_len > leaf_data_size) { + delayed_node->curr_index_batch_size = data_len; + reserve_leaf_space = true; + } else { + delayed_node->curr_index_batch_size += data_len; + reserve_leaf_space = false; + } + + if (reserve_leaf_space) { + ret = btrfs_delayed_item_reserve_metadata(trans, delayed_item); + /* + * Space was reserved for a dir index item insertion when we + * started the transaction, so getting a failure here should be + * impossible. + */ + if (WARN_ON(ret)) { + btrfs_release_delayed_item(delayed_item); + mutex_unlock(&delayed_node->mutex); + goto release_node; + } + + delayed_node->index_item_leaves++; + } else { + btrfs_release_dir_index_item_space(trans); + } + mutex_unlock(&delayed_node->mutex); + +release_node: + btrfs_release_delayed_node(delayed_node); + return ret; +} + +static int btrfs_delete_delayed_insertion_item(struct btrfs_fs_info *fs_info, + struct btrfs_delayed_node *node, + u64 index) +{ + struct btrfs_delayed_item *item; + + mutex_lock(&node->mutex); + item = __btrfs_lookup_delayed_item(&node->ins_root.rb_root, index); + if (!item) { + mutex_unlock(&node->mutex); + return 1; + } + + /* + * For delayed items to insert, we track reserved metadata bytes based + * on the number of leaves that we will use. + * See btrfs_insert_delayed_dir_index() and + * btrfs_delayed_item_reserve_metadata()). + */ + ASSERT(item->bytes_reserved == 0); + ASSERT(node->index_item_leaves > 0); + + /* + * If there's only one leaf reserved, we can decrement this item from the + * current batch, otherwise we can not because we don't know which leaf + * it belongs to. With the current limit on delayed items, we rarely + * accumulate enough dir index items to fill more than one leaf (even + * when using a leaf size of 4K). + */ + if (node->index_item_leaves == 1) { + const u32 data_len = item->data_len + sizeof(struct btrfs_item); + + ASSERT(node->curr_index_batch_size >= data_len); + node->curr_index_batch_size -= data_len; + } + + btrfs_release_delayed_item(item); + + /* If we now have no more dir index items, we can release all leaves. */ + if (RB_EMPTY_ROOT(&node->ins_root.rb_root)) { + btrfs_delayed_item_release_leaves(node, node->index_item_leaves); + node->index_item_leaves = 0; + } + + mutex_unlock(&node->mutex); + return 0; +} + +int btrfs_delete_delayed_dir_index(struct btrfs_trans_handle *trans, + struct btrfs_inode *dir, u64 index) +{ + struct btrfs_delayed_node *node; + struct btrfs_delayed_item *item; + int ret; + + node = btrfs_get_or_create_delayed_node(dir); + if (IS_ERR(node)) + return PTR_ERR(node); + + ret = btrfs_delete_delayed_insertion_item(trans->fs_info, node, index); + if (!ret) + goto end; + + item = btrfs_alloc_delayed_item(0, node, BTRFS_DELAYED_DELETION_ITEM); + if (!item) { + ret = -ENOMEM; + goto end; + } + + item->index = index; + + ret = btrfs_delayed_item_reserve_metadata(trans, item); + /* + * we have reserved enough space when we start a new transaction, + * so reserving metadata failure is impossible. + */ + if (ret < 0) { + btrfs_err(trans->fs_info, +"metadata reservation failed for delayed dir item deltiona, should have been reserved"); + btrfs_release_delayed_item(item); + goto end; + } + + mutex_lock(&node->mutex); + ret = __btrfs_add_delayed_item(node, item); + if (unlikely(ret)) { + btrfs_err(trans->fs_info, + "err add delayed dir index item(index: %llu) into the deletion tree of the delayed node(root id: %llu, inode id: %llu, errno: %d)", + index, node->root->root_key.objectid, + node->inode_id, ret); + btrfs_delayed_item_release_metadata(dir->root, item); + btrfs_release_delayed_item(item); + } + mutex_unlock(&node->mutex); +end: + btrfs_release_delayed_node(node); + return ret; +} + +int btrfs_inode_delayed_dir_index_count(struct btrfs_inode *inode) +{ + struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode); + + if (!delayed_node) + return -ENOENT; + + /* + * Since we have held i_mutex of this directory, it is impossible that + * a new directory index is added into the delayed node and index_cnt + * is updated now. So we needn't lock the delayed node. + */ + if (!delayed_node->index_cnt) { + btrfs_release_delayed_node(delayed_node); + return -EINVAL; + } + + inode->index_cnt = delayed_node->index_cnt; + btrfs_release_delayed_node(delayed_node); + return 0; +} + +bool btrfs_readdir_get_delayed_items(struct inode *inode, + u64 last_index, + struct list_head *ins_list, + struct list_head *del_list) +{ + struct btrfs_delayed_node *delayed_node; + struct btrfs_delayed_item *item; + + delayed_node = btrfs_get_delayed_node(BTRFS_I(inode)); + if (!delayed_node) + return false; + + /* + * We can only do one readdir with delayed items at a time because of + * item->readdir_list. + */ + btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_SHARED); + btrfs_inode_lock(BTRFS_I(inode), 0); + + mutex_lock(&delayed_node->mutex); + item = __btrfs_first_delayed_insertion_item(delayed_node); + while (item && item->index <= last_index) { + refcount_inc(&item->refs); + list_add_tail(&item->readdir_list, ins_list); + item = __btrfs_next_delayed_item(item); + } + + item = __btrfs_first_delayed_deletion_item(delayed_node); + while (item && item->index <= last_index) { + refcount_inc(&item->refs); + list_add_tail(&item->readdir_list, del_list); + item = __btrfs_next_delayed_item(item); + } + mutex_unlock(&delayed_node->mutex); + /* + * This delayed node is still cached in the btrfs inode, so refs + * must be > 1 now, and we needn't check it is going to be freed + * or not. + * + * Besides that, this function is used to read dir, we do not + * insert/delete delayed items in this period. So we also needn't + * requeue or dequeue this delayed node. + */ + refcount_dec(&delayed_node->refs); + + return true; +} + +void btrfs_readdir_put_delayed_items(struct inode *inode, + struct list_head *ins_list, + struct list_head *del_list) +{ + struct btrfs_delayed_item *curr, *next; + + list_for_each_entry_safe(curr, next, ins_list, readdir_list) { + list_del(&curr->readdir_list); + if (refcount_dec_and_test(&curr->refs)) + kfree(curr); + } + + list_for_each_entry_safe(curr, next, del_list, readdir_list) { + list_del(&curr->readdir_list); + if (refcount_dec_and_test(&curr->refs)) + kfree(curr); + } + + /* + * The VFS is going to do up_read(), so we need to downgrade back to a + * read lock. + */ + downgrade_write(&inode->i_rwsem); +} + +int btrfs_should_delete_dir_index(struct list_head *del_list, + u64 index) +{ + struct btrfs_delayed_item *curr; + int ret = 0; + + list_for_each_entry(curr, del_list, readdir_list) { + if (curr->index > index) + break; + if (curr->index == index) { + ret = 1; + break; + } + } + return ret; +} + +/* + * btrfs_readdir_delayed_dir_index - read dir info stored in the delayed tree + * + */ +int btrfs_readdir_delayed_dir_index(struct dir_context *ctx, + struct list_head *ins_list) +{ + struct btrfs_dir_item *di; + struct btrfs_delayed_item *curr, *next; + struct btrfs_key location; + char *name; + int name_len; + int over = 0; + unsigned char d_type; + + /* + * Changing the data of the delayed item is impossible. So + * we needn't lock them. And we have held i_mutex of the + * directory, nobody can delete any directory indexes now. + */ + list_for_each_entry_safe(curr, next, ins_list, readdir_list) { + list_del(&curr->readdir_list); + + if (curr->index < ctx->pos) { + if (refcount_dec_and_test(&curr->refs)) + kfree(curr); + continue; + } + + ctx->pos = curr->index; + + di = (struct btrfs_dir_item *)curr->data; + name = (char *)(di + 1); + name_len = btrfs_stack_dir_name_len(di); + + d_type = fs_ftype_to_dtype(btrfs_dir_flags_to_ftype(di->type)); + btrfs_disk_key_to_cpu(&location, &di->location); + + over = !dir_emit(ctx, name, name_len, + location.objectid, d_type); + + if (refcount_dec_and_test(&curr->refs)) + kfree(curr); + + if (over) + return 1; + ctx->pos++; + } + return 0; +} + +static void fill_stack_inode_item(struct btrfs_trans_handle *trans, + struct btrfs_inode_item *inode_item, + struct inode *inode) +{ + u64 flags; + + btrfs_set_stack_inode_uid(inode_item, i_uid_read(inode)); + btrfs_set_stack_inode_gid(inode_item, i_gid_read(inode)); + btrfs_set_stack_inode_size(inode_item, BTRFS_I(inode)->disk_i_size); + btrfs_set_stack_inode_mode(inode_item, inode->i_mode); + btrfs_set_stack_inode_nlink(inode_item, inode->i_nlink); + btrfs_set_stack_inode_nbytes(inode_item, inode_get_bytes(inode)); + btrfs_set_stack_inode_generation(inode_item, + BTRFS_I(inode)->generation); + btrfs_set_stack_inode_sequence(inode_item, + inode_peek_iversion(inode)); + btrfs_set_stack_inode_transid(inode_item, trans->transid); + btrfs_set_stack_inode_rdev(inode_item, inode->i_rdev); + flags = btrfs_inode_combine_flags(BTRFS_I(inode)->flags, + BTRFS_I(inode)->ro_flags); + btrfs_set_stack_inode_flags(inode_item, flags); + btrfs_set_stack_inode_block_group(inode_item, 0); + + btrfs_set_stack_timespec_sec(&inode_item->atime, + inode->i_atime.tv_sec); + btrfs_set_stack_timespec_nsec(&inode_item->atime, + inode->i_atime.tv_nsec); + + btrfs_set_stack_timespec_sec(&inode_item->mtime, + inode->i_mtime.tv_sec); + btrfs_set_stack_timespec_nsec(&inode_item->mtime, + inode->i_mtime.tv_nsec); + + btrfs_set_stack_timespec_sec(&inode_item->ctime, + inode_get_ctime(inode).tv_sec); + btrfs_set_stack_timespec_nsec(&inode_item->ctime, + inode_get_ctime(inode).tv_nsec); + + btrfs_set_stack_timespec_sec(&inode_item->otime, + BTRFS_I(inode)->i_otime.tv_sec); + btrfs_set_stack_timespec_nsec(&inode_item->otime, + BTRFS_I(inode)->i_otime.tv_nsec); +} + +int btrfs_fill_inode(struct inode *inode, u32 *rdev) +{ + struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; + struct btrfs_delayed_node *delayed_node; + struct btrfs_inode_item *inode_item; + + delayed_node = btrfs_get_delayed_node(BTRFS_I(inode)); + if (!delayed_node) + return -ENOENT; + + mutex_lock(&delayed_node->mutex); + if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) { + mutex_unlock(&delayed_node->mutex); + btrfs_release_delayed_node(delayed_node); + return -ENOENT; + } + + inode_item = &delayed_node->inode_item; + + i_uid_write(inode, btrfs_stack_inode_uid(inode_item)); + i_gid_write(inode, btrfs_stack_inode_gid(inode_item)); + btrfs_i_size_write(BTRFS_I(inode), btrfs_stack_inode_size(inode_item)); + btrfs_inode_set_file_extent_range(BTRFS_I(inode), 0, + round_up(i_size_read(inode), fs_info->sectorsize)); + inode->i_mode = btrfs_stack_inode_mode(inode_item); + set_nlink(inode, btrfs_stack_inode_nlink(inode_item)); + inode_set_bytes(inode, btrfs_stack_inode_nbytes(inode_item)); + BTRFS_I(inode)->generation = btrfs_stack_inode_generation(inode_item); + BTRFS_I(inode)->last_trans = btrfs_stack_inode_transid(inode_item); + + inode_set_iversion_queried(inode, + btrfs_stack_inode_sequence(inode_item)); + inode->i_rdev = 0; + *rdev = btrfs_stack_inode_rdev(inode_item); + btrfs_inode_split_flags(btrfs_stack_inode_flags(inode_item), + &BTRFS_I(inode)->flags, &BTRFS_I(inode)->ro_flags); + + inode->i_atime.tv_sec = btrfs_stack_timespec_sec(&inode_item->atime); + inode->i_atime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->atime); + + inode->i_mtime.tv_sec = btrfs_stack_timespec_sec(&inode_item->mtime); + inode->i_mtime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->mtime); + + inode_set_ctime(inode, btrfs_stack_timespec_sec(&inode_item->ctime), + btrfs_stack_timespec_nsec(&inode_item->ctime)); + + BTRFS_I(inode)->i_otime.tv_sec = + btrfs_stack_timespec_sec(&inode_item->otime); + BTRFS_I(inode)->i_otime.tv_nsec = + btrfs_stack_timespec_nsec(&inode_item->otime); + + inode->i_generation = BTRFS_I(inode)->generation; + BTRFS_I(inode)->index_cnt = (u64)-1; + + mutex_unlock(&delayed_node->mutex); + btrfs_release_delayed_node(delayed_node); + return 0; +} + +int btrfs_delayed_update_inode(struct btrfs_trans_handle *trans, + struct btrfs_root *root, + struct btrfs_inode *inode) +{ + struct btrfs_delayed_node *delayed_node; + int ret = 0; + + delayed_node = btrfs_get_or_create_delayed_node(inode); + if (IS_ERR(delayed_node)) + return PTR_ERR(delayed_node); + + mutex_lock(&delayed_node->mutex); + if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) { + fill_stack_inode_item(trans, &delayed_node->inode_item, + &inode->vfs_inode); + goto release_node; + } + + ret = btrfs_delayed_inode_reserve_metadata(trans, root, delayed_node); + if (ret) + goto release_node; + + fill_stack_inode_item(trans, &delayed_node->inode_item, &inode->vfs_inode); + set_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags); + delayed_node->count++; + atomic_inc(&root->fs_info->delayed_root->items); +release_node: + mutex_unlock(&delayed_node->mutex); + btrfs_release_delayed_node(delayed_node); + return ret; +} + +int btrfs_delayed_delete_inode_ref(struct btrfs_inode *inode) +{ + struct btrfs_fs_info *fs_info = inode->root->fs_info; + struct btrfs_delayed_node *delayed_node; + + /* + * we don't do delayed inode updates during log recovery because it + * leads to enospc problems. This means we also can't do + * delayed inode refs + */ + if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) + return -EAGAIN; + + delayed_node = btrfs_get_or_create_delayed_node(inode); + if (IS_ERR(delayed_node)) + return PTR_ERR(delayed_node); + + /* + * We don't reserve space for inode ref deletion is because: + * - We ONLY do async inode ref deletion for the inode who has only + * one link(i_nlink == 1), it means there is only one inode ref. + * And in most case, the inode ref and the inode item are in the + * same leaf, and we will deal with them at the same time. + * Since we are sure we will reserve the space for the inode item, + * it is unnecessary to reserve space for inode ref deletion. + * - If the inode ref and the inode item are not in the same leaf, + * We also needn't worry about enospc problem, because we reserve + * much more space for the inode update than it needs. + * - At the worst, we can steal some space from the global reservation. + * It is very rare. + */ + mutex_lock(&delayed_node->mutex); + if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags)) + goto release_node; + + set_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags); + delayed_node->count++; + atomic_inc(&fs_info->delayed_root->items); +release_node: + mutex_unlock(&delayed_node->mutex); + btrfs_release_delayed_node(delayed_node); + return 0; +} + +static void __btrfs_kill_delayed_node(struct btrfs_delayed_node *delayed_node) +{ + struct btrfs_root *root = delayed_node->root; + struct btrfs_fs_info *fs_info = root->fs_info; + struct btrfs_delayed_item *curr_item, *prev_item; + + mutex_lock(&delayed_node->mutex); + curr_item = __btrfs_first_delayed_insertion_item(delayed_node); + while (curr_item) { + prev_item = curr_item; + curr_item = __btrfs_next_delayed_item(prev_item); + btrfs_release_delayed_item(prev_item); + } + + if (delayed_node->index_item_leaves > 0) { + btrfs_delayed_item_release_leaves(delayed_node, + delayed_node->index_item_leaves); + delayed_node->index_item_leaves = 0; + } + + curr_item = __btrfs_first_delayed_deletion_item(delayed_node); + while (curr_item) { + btrfs_delayed_item_release_metadata(root, curr_item); + prev_item = curr_item; + curr_item = __btrfs_next_delayed_item(prev_item); + btrfs_release_delayed_item(prev_item); + } + + btrfs_release_delayed_iref(delayed_node); + + if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) { + btrfs_delayed_inode_release_metadata(fs_info, delayed_node, false); + btrfs_release_delayed_inode(delayed_node); + } + mutex_unlock(&delayed_node->mutex); +} + +void btrfs_kill_delayed_inode_items(struct btrfs_inode *inode) +{ + struct btrfs_delayed_node *delayed_node; + + delayed_node = btrfs_get_delayed_node(inode); + if (!delayed_node) + return; + + __btrfs_kill_delayed_node(delayed_node); + btrfs_release_delayed_node(delayed_node); +} + +void btrfs_kill_all_delayed_nodes(struct btrfs_root *root) +{ + u64 inode_id = 0; + struct btrfs_delayed_node *delayed_nodes[8]; + int i, n; + + while (1) { + spin_lock(&root->inode_lock); + n = radix_tree_gang_lookup(&root->delayed_nodes_tree, + (void **)delayed_nodes, inode_id, + ARRAY_SIZE(delayed_nodes)); + if (!n) { + spin_unlock(&root->inode_lock); + break; + } + + inode_id = delayed_nodes[n - 1]->inode_id + 1; + for (i = 0; i < n; i++) { + /* + * Don't increase refs in case the node is dead and + * about to be removed from the tree in the loop below + */ + if (!refcount_inc_not_zero(&delayed_nodes[i]->refs)) + delayed_nodes[i] = NULL; + } + spin_unlock(&root->inode_lock); + + for (i = 0; i < n; i++) { + if (!delayed_nodes[i]) + continue; + __btrfs_kill_delayed_node(delayed_nodes[i]); + btrfs_release_delayed_node(delayed_nodes[i]); + } + } +} + +void btrfs_destroy_delayed_inodes(struct btrfs_fs_info *fs_info) +{ + struct btrfs_delayed_node *curr_node, *prev_node; + + curr_node = btrfs_first_delayed_node(fs_info->delayed_root); + while (curr_node) { + __btrfs_kill_delayed_node(curr_node); + + prev_node = curr_node; + curr_node = btrfs_next_delayed_node(curr_node); + btrfs_release_delayed_node(prev_node); + } +} + +void btrfs_log_get_delayed_items(struct btrfs_inode *inode, + struct list_head *ins_list, + struct list_head *del_list) +{ + struct btrfs_delayed_node *node; + struct btrfs_delayed_item *item; + + node = btrfs_get_delayed_node(inode); + if (!node) + return; + + mutex_lock(&node->mutex); + item = __btrfs_first_delayed_insertion_item(node); + while (item) { + /* + * It's possible that the item is already in a log list. This + * can happen in case two tasks are trying to log the same + * directory. For example if we have tasks A and task B: + * + * Task A collected the delayed items into a log list while + * under the inode's log_mutex (at btrfs_log_inode()), but it + * only releases the items after logging the inodes they point + * to (if they are new inodes), which happens after unlocking + * the log mutex; + * + * Task B enters btrfs_log_inode() and acquires the log_mutex + * of the same directory inode, before task B releases the + * delayed items. This can happen for example when logging some + * inode we need to trigger logging of its parent directory, so + * logging two files that have the same parent directory can + * lead to this. + * + * If this happens, just ignore delayed items already in a log + * list. All the tasks logging the directory are under a log + * transaction and whichever finishes first can not sync the log + * before the other completes and leaves the log transaction. + */ + if (!item->logged && list_empty(&item->log_list)) { + refcount_inc(&item->refs); + list_add_tail(&item->log_list, ins_list); + } + item = __btrfs_next_delayed_item(item); + } + + item = __btrfs_first_delayed_deletion_item(node); + while (item) { + /* It may be non-empty, for the same reason mentioned above. */ + if (!item->logged && list_empty(&item->log_list)) { + refcount_inc(&item->refs); + list_add_tail(&item->log_list, del_list); + } + item = __btrfs_next_delayed_item(item); + } + mutex_unlock(&node->mutex); + + /* + * We are called during inode logging, which means the inode is in use + * and can not be evicted before we finish logging the inode. So we never + * have the last reference on the delayed inode. + * Also, we don't use btrfs_release_delayed_node() because that would + * requeue the delayed inode (change its order in the list of prepared + * nodes) and we don't want to do such change because we don't create or + * delete delayed items. + */ + ASSERT(refcount_read(&node->refs) > 1); + refcount_dec(&node->refs); +} + +void btrfs_log_put_delayed_items(struct btrfs_inode *inode, + struct list_head *ins_list, + struct list_head *del_list) +{ + struct btrfs_delayed_node *node; + struct btrfs_delayed_item *item; + struct btrfs_delayed_item *next; + + node = btrfs_get_delayed_node(inode); + if (!node) + return; + + mutex_lock(&node->mutex); + + list_for_each_entry_safe(item, next, ins_list, log_list) { + item->logged = true; + list_del_init(&item->log_list); + if (refcount_dec_and_test(&item->refs)) + kfree(item); + } + + list_for_each_entry_safe(item, next, del_list, log_list) { + item->logged = true; + list_del_init(&item->log_list); + if (refcount_dec_and_test(&item->refs)) + kfree(item); + } + + mutex_unlock(&node->mutex); + + /* + * We are called during inode logging, which means the inode is in use + * and can not be evicted before we finish logging the inode. So we never + * have the last reference on the delayed inode. + * Also, we don't use btrfs_release_delayed_node() because that would + * requeue the delayed inode (change its order in the list of prepared + * nodes) and we don't want to do such change because we don't create or + * delete delayed items. + */ + ASSERT(refcount_read(&node->refs) > 1); + refcount_dec(&node->refs); +} |