diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-11 08:27:49 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-11 08:27:49 +0000 |
commit | ace9429bb58fd418f0c81d4c2835699bddf6bde6 (patch) | |
tree | b2d64bc10158fdd5497876388cd68142ca374ed3 /fs/ext4/fast_commit.c | |
parent | Initial commit. (diff) | |
download | linux-ace9429bb58fd418f0c81d4c2835699bddf6bde6.tar.xz linux-ace9429bb58fd418f0c81d4c2835699bddf6bde6.zip |
Adding upstream version 6.6.15.upstream/6.6.15
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'fs/ext4/fast_commit.c')
-rw-r--r-- | fs/ext4/fast_commit.c | 2304 |
1 files changed, 2304 insertions, 0 deletions
diff --git a/fs/ext4/fast_commit.c b/fs/ext4/fast_commit.c new file mode 100644 index 0000000000..b06de728b3 --- /dev/null +++ b/fs/ext4/fast_commit.c @@ -0,0 +1,2304 @@ +// SPDX-License-Identifier: GPL-2.0 + +/* + * fs/ext4/fast_commit.c + * + * Written by Harshad Shirwadkar <harshadshirwadkar@gmail.com> + * + * Ext4 fast commits routines. + */ +#include "ext4.h" +#include "ext4_jbd2.h" +#include "ext4_extents.h" +#include "mballoc.h" + +/* + * Ext4 Fast Commits + * ----------------- + * + * Ext4 fast commits implement fine grained journalling for Ext4. + * + * Fast commits are organized as a log of tag-length-value (TLV) structs. (See + * struct ext4_fc_tl). Each TLV contains some delta that is replayed TLV by + * TLV during the recovery phase. For the scenarios for which we currently + * don't have replay code, fast commit falls back to full commits. + * Fast commits record delta in one of the following three categories. + * + * (A) Directory entry updates: + * + * - EXT4_FC_TAG_UNLINK - records directory entry unlink + * - EXT4_FC_TAG_LINK - records directory entry link + * - EXT4_FC_TAG_CREAT - records inode and directory entry creation + * + * (B) File specific data range updates: + * + * - EXT4_FC_TAG_ADD_RANGE - records addition of new blocks to an inode + * - EXT4_FC_TAG_DEL_RANGE - records deletion of blocks from an inode + * + * (C) Inode metadata (mtime / ctime etc): + * + * - EXT4_FC_TAG_INODE - record the inode that should be replayed + * during recovery. Note that iblocks field is + * not replayed and instead derived during + * replay. + * Commit Operation + * ---------------- + * With fast commits, we maintain all the directory entry operations in the + * order in which they are issued in an in-memory queue. This queue is flushed + * to disk during the commit operation. We also maintain a list of inodes + * that need to be committed during a fast commit in another in memory queue of + * inodes. During the commit operation, we commit in the following order: + * + * [1] Lock inodes for any further data updates by setting COMMITTING state + * [2] Submit data buffers of all the inodes + * [3] Wait for [2] to complete + * [4] Commit all the directory entry updates in the fast commit space + * [5] Commit all the changed inode structures + * [6] Write tail tag (this tag ensures the atomicity, please read the following + * section for more details). + * [7] Wait for [4], [5] and [6] to complete. + * + * All the inode updates must call ext4_fc_start_update() before starting an + * update. If such an ongoing update is present, fast commit waits for it to + * complete. The completion of such an update is marked by + * ext4_fc_stop_update(). + * + * Fast Commit Ineligibility + * ------------------------- + * + * Not all operations are supported by fast commits today (e.g extended + * attributes). Fast commit ineligibility is marked by calling + * ext4_fc_mark_ineligible(): This makes next fast commit operation to fall back + * to full commit. + * + * Atomicity of commits + * -------------------- + * In order to guarantee atomicity during the commit operation, fast commit + * uses "EXT4_FC_TAG_TAIL" tag that marks a fast commit as complete. Tail + * tag contains CRC of the contents and TID of the transaction after which + * this fast commit should be applied. Recovery code replays fast commit + * logs only if there's at least 1 valid tail present. For every fast commit + * operation, there is 1 tail. This means, we may end up with multiple tails + * in the fast commit space. Here's an example: + * + * - Create a new file A and remove existing file B + * - fsync() + * - Append contents to file A + * - Truncate file A + * - fsync() + * + * The fast commit space at the end of above operations would look like this: + * [HEAD] [CREAT A] [UNLINK B] [TAIL] [ADD_RANGE A] [DEL_RANGE A] [TAIL] + * |<--- Fast Commit 1 --->|<--- Fast Commit 2 ---->| + * + * Replay code should thus check for all the valid tails in the FC area. + * + * Fast Commit Replay Idempotence + * ------------------------------ + * + * Fast commits tags are idempotent in nature provided the recovery code follows + * certain rules. The guiding principle that the commit path follows while + * committing is that it stores the result of a particular operation instead of + * storing the procedure. + * + * Let's consider this rename operation: 'mv /a /b'. Let's assume dirent '/a' + * was associated with inode 10. During fast commit, instead of storing this + * operation as a procedure "rename a to b", we store the resulting file system + * state as a "series" of outcomes: + * + * - Link dirent b to inode 10 + * - Unlink dirent a + * - Inode <10> with valid refcount + * + * Now when recovery code runs, it needs "enforce" this state on the file + * system. This is what guarantees idempotence of fast commit replay. + * + * Let's take an example of a procedure that is not idempotent and see how fast + * commits make it idempotent. Consider following sequence of operations: + * + * rm A; mv B A; read A + * (x) (y) (z) + * + * (x), (y) and (z) are the points at which we can crash. If we store this + * sequence of operations as is then the replay is not idempotent. Let's say + * while in replay, we crash at (z). During the second replay, file A (which was + * actually created as a result of "mv B A" operation) would get deleted. Thus, + * file named A would be absent when we try to read A. So, this sequence of + * operations is not idempotent. However, as mentioned above, instead of storing + * the procedure fast commits store the outcome of each procedure. Thus the fast + * commit log for above procedure would be as follows: + * + * (Let's assume dirent A was linked to inode 10 and dirent B was linked to + * inode 11 before the replay) + * + * [Unlink A] [Link A to inode 11] [Unlink B] [Inode 11] + * (w) (x) (y) (z) + * + * If we crash at (z), we will have file A linked to inode 11. During the second + * replay, we will remove file A (inode 11). But we will create it back and make + * it point to inode 11. We won't find B, so we'll just skip that step. At this + * point, the refcount for inode 11 is not reliable, but that gets fixed by the + * replay of last inode 11 tag. Crashes at points (w), (x) and (y) get handled + * similarly. Thus, by converting a non-idempotent procedure into a series of + * idempotent outcomes, fast commits ensured idempotence during the replay. + * + * TODOs + * ----- + * + * 0) Fast commit replay path hardening: Fast commit replay code should use + * journal handles to make sure all the updates it does during the replay + * path are atomic. With that if we crash during fast commit replay, after + * trying to do recovery again, we will find a file system where fast commit + * area is invalid (because new full commit would be found). In order to deal + * with that, fast commit replay code should ensure that the "FC_REPLAY" + * superblock state is persisted before starting the replay, so that after + * the crash, fast commit recovery code can look at that flag and perform + * fast commit recovery even if that area is invalidated by later full + * commits. + * + * 1) Fast commit's commit path locks the entire file system during fast + * commit. This has significant performance penalty. Instead of that, we + * should use ext4_fc_start/stop_update functions to start inode level + * updates from ext4_journal_start/stop. Once we do that we can drop file + * system locking during commit path. + * + * 2) Handle more ineligible cases. + */ + +#include <trace/events/ext4.h> +static struct kmem_cache *ext4_fc_dentry_cachep; + +static void ext4_end_buffer_io_sync(struct buffer_head *bh, int uptodate) +{ + BUFFER_TRACE(bh, ""); + if (uptodate) { + ext4_debug("%s: Block %lld up-to-date", + __func__, bh->b_blocknr); + set_buffer_uptodate(bh); + } else { + ext4_debug("%s: Block %lld not up-to-date", + __func__, bh->b_blocknr); + clear_buffer_uptodate(bh); + } + + unlock_buffer(bh); +} + +static inline void ext4_fc_reset_inode(struct inode *inode) +{ + struct ext4_inode_info *ei = EXT4_I(inode); + + ei->i_fc_lblk_start = 0; + ei->i_fc_lblk_len = 0; +} + +void ext4_fc_init_inode(struct inode *inode) +{ + struct ext4_inode_info *ei = EXT4_I(inode); + + ext4_fc_reset_inode(inode); + ext4_clear_inode_state(inode, EXT4_STATE_FC_COMMITTING); + INIT_LIST_HEAD(&ei->i_fc_list); + INIT_LIST_HEAD(&ei->i_fc_dilist); + init_waitqueue_head(&ei->i_fc_wait); + atomic_set(&ei->i_fc_updates, 0); +} + +/* This function must be called with sbi->s_fc_lock held. */ +static void ext4_fc_wait_committing_inode(struct inode *inode) +__releases(&EXT4_SB(inode->i_sb)->s_fc_lock) +{ + wait_queue_head_t *wq; + struct ext4_inode_info *ei = EXT4_I(inode); + +#if (BITS_PER_LONG < 64) + DEFINE_WAIT_BIT(wait, &ei->i_state_flags, + EXT4_STATE_FC_COMMITTING); + wq = bit_waitqueue(&ei->i_state_flags, + EXT4_STATE_FC_COMMITTING); +#else + DEFINE_WAIT_BIT(wait, &ei->i_flags, + EXT4_STATE_FC_COMMITTING); + wq = bit_waitqueue(&ei->i_flags, + EXT4_STATE_FC_COMMITTING); +#endif + lockdep_assert_held(&EXT4_SB(inode->i_sb)->s_fc_lock); + prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE); + spin_unlock(&EXT4_SB(inode->i_sb)->s_fc_lock); + schedule(); + finish_wait(wq, &wait.wq_entry); +} + +static bool ext4_fc_disabled(struct super_block *sb) +{ + return (!test_opt2(sb, JOURNAL_FAST_COMMIT) || + (EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY)); +} + +/* + * Inform Ext4's fast about start of an inode update + * + * This function is called by the high level call VFS callbacks before + * performing any inode update. This function blocks if there's an ongoing + * fast commit on the inode in question. + */ +void ext4_fc_start_update(struct inode *inode) +{ + struct ext4_inode_info *ei = EXT4_I(inode); + + if (ext4_fc_disabled(inode->i_sb)) + return; + +restart: + spin_lock(&EXT4_SB(inode->i_sb)->s_fc_lock); + if (list_empty(&ei->i_fc_list)) + goto out; + + if (ext4_test_inode_state(inode, EXT4_STATE_FC_COMMITTING)) { + ext4_fc_wait_committing_inode(inode); + goto restart; + } +out: + atomic_inc(&ei->i_fc_updates); + spin_unlock(&EXT4_SB(inode->i_sb)->s_fc_lock); +} + +/* + * Stop inode update and wake up waiting fast commits if any. + */ +void ext4_fc_stop_update(struct inode *inode) +{ + struct ext4_inode_info *ei = EXT4_I(inode); + + if (ext4_fc_disabled(inode->i_sb)) + return; + + if (atomic_dec_and_test(&ei->i_fc_updates)) + wake_up_all(&ei->i_fc_wait); +} + +/* + * Remove inode from fast commit list. If the inode is being committed + * we wait until inode commit is done. + */ +void ext4_fc_del(struct inode *inode) +{ + struct ext4_inode_info *ei = EXT4_I(inode); + struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); + struct ext4_fc_dentry_update *fc_dentry; + + if (ext4_fc_disabled(inode->i_sb)) + return; + +restart: + spin_lock(&EXT4_SB(inode->i_sb)->s_fc_lock); + if (list_empty(&ei->i_fc_list) && list_empty(&ei->i_fc_dilist)) { + spin_unlock(&EXT4_SB(inode->i_sb)->s_fc_lock); + return; + } + + if (ext4_test_inode_state(inode, EXT4_STATE_FC_COMMITTING)) { + ext4_fc_wait_committing_inode(inode); + goto restart; + } + + if (!list_empty(&ei->i_fc_list)) + list_del_init(&ei->i_fc_list); + + /* + * Since this inode is getting removed, let's also remove all FC + * dentry create references, since it is not needed to log it anyways. + */ + if (list_empty(&ei->i_fc_dilist)) { + spin_unlock(&sbi->s_fc_lock); + return; + } + + fc_dentry = list_first_entry(&ei->i_fc_dilist, struct ext4_fc_dentry_update, fcd_dilist); + WARN_ON(fc_dentry->fcd_op != EXT4_FC_TAG_CREAT); + list_del_init(&fc_dentry->fcd_list); + list_del_init(&fc_dentry->fcd_dilist); + + WARN_ON(!list_empty(&ei->i_fc_dilist)); + spin_unlock(&sbi->s_fc_lock); + + if (fc_dentry->fcd_name.name && + fc_dentry->fcd_name.len > DNAME_INLINE_LEN) + kfree(fc_dentry->fcd_name.name); + kmem_cache_free(ext4_fc_dentry_cachep, fc_dentry); + + return; +} + +/* + * Mark file system as fast commit ineligible, and record latest + * ineligible transaction tid. This means until the recorded + * transaction, commit operation would result in a full jbd2 commit. + */ +void ext4_fc_mark_ineligible(struct super_block *sb, int reason, handle_t *handle) +{ + struct ext4_sb_info *sbi = EXT4_SB(sb); + tid_t tid; + + if (ext4_fc_disabled(sb)) + return; + + ext4_set_mount_flag(sb, EXT4_MF_FC_INELIGIBLE); + if (handle && !IS_ERR(handle)) + tid = handle->h_transaction->t_tid; + else { + read_lock(&sbi->s_journal->j_state_lock); + tid = sbi->s_journal->j_running_transaction ? + sbi->s_journal->j_running_transaction->t_tid : 0; + read_unlock(&sbi->s_journal->j_state_lock); + } + spin_lock(&sbi->s_fc_lock); + if (sbi->s_fc_ineligible_tid < tid) + sbi->s_fc_ineligible_tid = tid; + spin_unlock(&sbi->s_fc_lock); + WARN_ON(reason >= EXT4_FC_REASON_MAX); + sbi->s_fc_stats.fc_ineligible_reason_count[reason]++; +} + +/* + * Generic fast commit tracking function. If this is the first time this we are + * called after a full commit, we initialize fast commit fields and then call + * __fc_track_fn() with update = 0. If we have already been called after a full + * commit, we pass update = 1. Based on that, the track function can determine + * if it needs to track a field for the first time or if it needs to just + * update the previously tracked value. + * + * If enqueue is set, this function enqueues the inode in fast commit list. + */ +static int ext4_fc_track_template( + handle_t *handle, struct inode *inode, + int (*__fc_track_fn)(struct inode *, void *, bool), + void *args, int enqueue) +{ + bool update = false; + struct ext4_inode_info *ei = EXT4_I(inode); + struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); + tid_t tid = 0; + int ret; + + tid = handle->h_transaction->t_tid; + mutex_lock(&ei->i_fc_lock); + if (tid == ei->i_sync_tid) { + update = true; + } else { + ext4_fc_reset_inode(inode); + ei->i_sync_tid = tid; + } + ret = __fc_track_fn(inode, args, update); + mutex_unlock(&ei->i_fc_lock); + + if (!enqueue) + return ret; + + spin_lock(&sbi->s_fc_lock); + if (list_empty(&EXT4_I(inode)->i_fc_list)) + list_add_tail(&EXT4_I(inode)->i_fc_list, + (sbi->s_journal->j_flags & JBD2_FULL_COMMIT_ONGOING || + sbi->s_journal->j_flags & JBD2_FAST_COMMIT_ONGOING) ? + &sbi->s_fc_q[FC_Q_STAGING] : + &sbi->s_fc_q[FC_Q_MAIN]); + spin_unlock(&sbi->s_fc_lock); + + return ret; +} + +struct __track_dentry_update_args { + struct dentry *dentry; + int op; +}; + +/* __track_fn for directory entry updates. Called with ei->i_fc_lock. */ +static int __track_dentry_update(struct inode *inode, void *arg, bool update) +{ + struct ext4_fc_dentry_update *node; + struct ext4_inode_info *ei = EXT4_I(inode); + struct __track_dentry_update_args *dentry_update = + (struct __track_dentry_update_args *)arg; + struct dentry *dentry = dentry_update->dentry; + struct inode *dir = dentry->d_parent->d_inode; + struct super_block *sb = inode->i_sb; + struct ext4_sb_info *sbi = EXT4_SB(sb); + + mutex_unlock(&ei->i_fc_lock); + + if (IS_ENCRYPTED(dir)) { + ext4_fc_mark_ineligible(sb, EXT4_FC_REASON_ENCRYPTED_FILENAME, + NULL); + mutex_lock(&ei->i_fc_lock); + return -EOPNOTSUPP; + } + + node = kmem_cache_alloc(ext4_fc_dentry_cachep, GFP_NOFS); + if (!node) { + ext4_fc_mark_ineligible(sb, EXT4_FC_REASON_NOMEM, NULL); + mutex_lock(&ei->i_fc_lock); + return -ENOMEM; + } + + node->fcd_op = dentry_update->op; + node->fcd_parent = dir->i_ino; + node->fcd_ino = inode->i_ino; + if (dentry->d_name.len > DNAME_INLINE_LEN) { + node->fcd_name.name = kmalloc(dentry->d_name.len, GFP_NOFS); + if (!node->fcd_name.name) { + kmem_cache_free(ext4_fc_dentry_cachep, node); + ext4_fc_mark_ineligible(sb, EXT4_FC_REASON_NOMEM, NULL); + mutex_lock(&ei->i_fc_lock); + return -ENOMEM; + } + memcpy((u8 *)node->fcd_name.name, dentry->d_name.name, + dentry->d_name.len); + } else { + memcpy(node->fcd_iname, dentry->d_name.name, + dentry->d_name.len); + node->fcd_name.name = node->fcd_iname; + } + node->fcd_name.len = dentry->d_name.len; + INIT_LIST_HEAD(&node->fcd_dilist); + spin_lock(&sbi->s_fc_lock); + if (sbi->s_journal->j_flags & JBD2_FULL_COMMIT_ONGOING || + sbi->s_journal->j_flags & JBD2_FAST_COMMIT_ONGOING) + list_add_tail(&node->fcd_list, + &sbi->s_fc_dentry_q[FC_Q_STAGING]); + else + list_add_tail(&node->fcd_list, &sbi->s_fc_dentry_q[FC_Q_MAIN]); + + /* + * This helps us keep a track of all fc_dentry updates which is part of + * this ext4 inode. So in case the inode is getting unlinked, before + * even we get a chance to fsync, we could remove all fc_dentry + * references while evicting the inode in ext4_fc_del(). + * Also with this, we don't need to loop over all the inodes in + * sbi->s_fc_q to get the corresponding inode in + * ext4_fc_commit_dentry_updates(). + */ + if (dentry_update->op == EXT4_FC_TAG_CREAT) { + WARN_ON(!list_empty(&ei->i_fc_dilist)); + list_add_tail(&node->fcd_dilist, &ei->i_fc_dilist); + } + spin_unlock(&sbi->s_fc_lock); + mutex_lock(&ei->i_fc_lock); + + return 0; +} + +void __ext4_fc_track_unlink(handle_t *handle, + struct inode *inode, struct dentry *dentry) +{ + struct __track_dentry_update_args args; + int ret; + + args.dentry = dentry; + args.op = EXT4_FC_TAG_UNLINK; + + ret = ext4_fc_track_template(handle, inode, __track_dentry_update, + (void *)&args, 0); + trace_ext4_fc_track_unlink(handle, inode, dentry, ret); +} + +void ext4_fc_track_unlink(handle_t *handle, struct dentry *dentry) +{ + struct inode *inode = d_inode(dentry); + + if (ext4_fc_disabled(inode->i_sb)) + return; + + if (ext4_test_mount_flag(inode->i_sb, EXT4_MF_FC_INELIGIBLE)) + return; + + __ext4_fc_track_unlink(handle, inode, dentry); +} + +void __ext4_fc_track_link(handle_t *handle, + struct inode *inode, struct dentry *dentry) +{ + struct __track_dentry_update_args args; + int ret; + + args.dentry = dentry; + args.op = EXT4_FC_TAG_LINK; + + ret = ext4_fc_track_template(handle, inode, __track_dentry_update, + (void *)&args, 0); + trace_ext4_fc_track_link(handle, inode, dentry, ret); +} + +void ext4_fc_track_link(handle_t *handle, struct dentry *dentry) +{ + struct inode *inode = d_inode(dentry); + + if (ext4_fc_disabled(inode->i_sb)) + return; + + if (ext4_test_mount_flag(inode->i_sb, EXT4_MF_FC_INELIGIBLE)) + return; + + __ext4_fc_track_link(handle, inode, dentry); +} + +void __ext4_fc_track_create(handle_t *handle, struct inode *inode, + struct dentry *dentry) +{ + struct __track_dentry_update_args args; + int ret; + + args.dentry = dentry; + args.op = EXT4_FC_TAG_CREAT; + + ret = ext4_fc_track_template(handle, inode, __track_dentry_update, + (void *)&args, 0); + trace_ext4_fc_track_create(handle, inode, dentry, ret); +} + +void ext4_fc_track_create(handle_t *handle, struct dentry *dentry) +{ + struct inode *inode = d_inode(dentry); + + if (ext4_fc_disabled(inode->i_sb)) + return; + + if (ext4_test_mount_flag(inode->i_sb, EXT4_MF_FC_INELIGIBLE)) + return; + + __ext4_fc_track_create(handle, inode, dentry); +} + +/* __track_fn for inode tracking */ +static int __track_inode(struct inode *inode, void *arg, bool update) +{ + if (update) + return -EEXIST; + + EXT4_I(inode)->i_fc_lblk_len = 0; + + return 0; +} + +void ext4_fc_track_inode(handle_t *handle, struct inode *inode) +{ + int ret; + + if (S_ISDIR(inode->i_mode)) + return; + + if (ext4_fc_disabled(inode->i_sb)) + return; + + if (ext4_should_journal_data(inode)) { + ext4_fc_mark_ineligible(inode->i_sb, + EXT4_FC_REASON_INODE_JOURNAL_DATA, handle); + return; + } + + if (ext4_test_mount_flag(inode->i_sb, EXT4_MF_FC_INELIGIBLE)) + return; + + ret = ext4_fc_track_template(handle, inode, __track_inode, NULL, 1); + trace_ext4_fc_track_inode(handle, inode, ret); +} + +struct __track_range_args { + ext4_lblk_t start, end; +}; + +/* __track_fn for tracking data updates */ +static int __track_range(struct inode *inode, void *arg, bool update) +{ + struct ext4_inode_info *ei = EXT4_I(inode); + ext4_lblk_t oldstart; + struct __track_range_args *__arg = + (struct __track_range_args *)arg; + + if (inode->i_ino < EXT4_FIRST_INO(inode->i_sb)) { + ext4_debug("Special inode %ld being modified\n", inode->i_ino); + return -ECANCELED; + } + + oldstart = ei->i_fc_lblk_start; + + if (update && ei->i_fc_lblk_len > 0) { + ei->i_fc_lblk_start = min(ei->i_fc_lblk_start, __arg->start); + ei->i_fc_lblk_len = + max(oldstart + ei->i_fc_lblk_len - 1, __arg->end) - + ei->i_fc_lblk_start + 1; + } else { + ei->i_fc_lblk_start = __arg->start; + ei->i_fc_lblk_len = __arg->end - __arg->start + 1; + } + + return 0; +} + +void ext4_fc_track_range(handle_t *handle, struct inode *inode, ext4_lblk_t start, + ext4_lblk_t end) +{ + struct __track_range_args args; + int ret; + + if (S_ISDIR(inode->i_mode)) + return; + + if (ext4_fc_disabled(inode->i_sb)) + return; + + if (ext4_test_mount_flag(inode->i_sb, EXT4_MF_FC_INELIGIBLE)) + return; + + args.start = start; + args.end = end; + + ret = ext4_fc_track_template(handle, inode, __track_range, &args, 1); + + trace_ext4_fc_track_range(handle, inode, start, end, ret); +} + +static void ext4_fc_submit_bh(struct super_block *sb, bool is_tail) +{ + blk_opf_t write_flags = REQ_SYNC; + struct buffer_head *bh = EXT4_SB(sb)->s_fc_bh; + + /* Add REQ_FUA | REQ_PREFLUSH only its tail */ + if (test_opt(sb, BARRIER) && is_tail) + write_flags |= REQ_FUA | REQ_PREFLUSH; + lock_buffer(bh); + set_buffer_dirty(bh); + set_buffer_uptodate(bh); + bh->b_end_io = ext4_end_buffer_io_sync; + submit_bh(REQ_OP_WRITE | write_flags, bh); + EXT4_SB(sb)->s_fc_bh = NULL; +} + +/* Ext4 commit path routines */ + +/* + * Allocate len bytes on a fast commit buffer. + * + * During the commit time this function is used to manage fast commit + * block space. We don't split a fast commit log onto different + * blocks. So this function makes sure that if there's not enough space + * on the current block, the remaining space in the current block is + * marked as unused by adding EXT4_FC_TAG_PAD tag. In that case, + * new block is from jbd2 and CRC is updated to reflect the padding + * we added. + */ +static u8 *ext4_fc_reserve_space(struct super_block *sb, int len, u32 *crc) +{ + struct ext4_fc_tl tl; + struct ext4_sb_info *sbi = EXT4_SB(sb); + struct buffer_head *bh; + int bsize = sbi->s_journal->j_blocksize; + int ret, off = sbi->s_fc_bytes % bsize; + int remaining; + u8 *dst; + + /* + * If 'len' is too long to fit in any block alongside a PAD tlv, then we + * cannot fulfill the request. + */ + if (len > bsize - EXT4_FC_TAG_BASE_LEN) + return NULL; + + if (!sbi->s_fc_bh) { + ret = jbd2_fc_get_buf(EXT4_SB(sb)->s_journal, &bh); + if (ret) + return NULL; + sbi->s_fc_bh = bh; + } + dst = sbi->s_fc_bh->b_data + off; + + /* + * Allocate the bytes in the current block if we can do so while still + * leaving enough space for a PAD tlv. + */ + remaining = bsize - EXT4_FC_TAG_BASE_LEN - off; + if (len <= remaining) { + sbi->s_fc_bytes += len; + return dst; + } + + /* + * Else, terminate the current block with a PAD tlv, then allocate a new + * block and allocate the bytes at the start of that new block. + */ + + tl.fc_tag = cpu_to_le16(EXT4_FC_TAG_PAD); + tl.fc_len = cpu_to_le16(remaining); + memcpy(dst, &tl, EXT4_FC_TAG_BASE_LEN); + memset(dst + EXT4_FC_TAG_BASE_LEN, 0, remaining); + *crc = ext4_chksum(sbi, *crc, sbi->s_fc_bh->b_data, bsize); + + ext4_fc_submit_bh(sb, false); + + ret = jbd2_fc_get_buf(EXT4_SB(sb)->s_journal, &bh); + if (ret) + return NULL; + sbi->s_fc_bh = bh; + sbi->s_fc_bytes += bsize - off + len; + return sbi->s_fc_bh->b_data; +} + +/* + * Complete a fast commit by writing tail tag. + * + * Writing tail tag marks the end of a fast commit. In order to guarantee + * atomicity, after writing tail tag, even if there's space remaining + * in the block, next commit shouldn't use it. That's why tail tag + * has the length as that of the remaining space on the block. + */ +static int ext4_fc_write_tail(struct super_block *sb, u32 crc) +{ + struct ext4_sb_info *sbi = EXT4_SB(sb); + struct ext4_fc_tl tl; + struct ext4_fc_tail tail; + int off, bsize = sbi->s_journal->j_blocksize; + u8 *dst; + + /* + * ext4_fc_reserve_space takes care of allocating an extra block if + * there's no enough space on this block for accommodating this tail. + */ + dst = ext4_fc_reserve_space(sb, EXT4_FC_TAG_BASE_LEN + sizeof(tail), &crc); + if (!dst) + return -ENOSPC; + + off = sbi->s_fc_bytes % bsize; + + tl.fc_tag = cpu_to_le16(EXT4_FC_TAG_TAIL); + tl.fc_len = cpu_to_le16(bsize - off + sizeof(struct ext4_fc_tail)); + sbi->s_fc_bytes = round_up(sbi->s_fc_bytes, bsize); + + memcpy(dst, &tl, EXT4_FC_TAG_BASE_LEN); + dst += EXT4_FC_TAG_BASE_LEN; + tail.fc_tid = cpu_to_le32(sbi->s_journal->j_running_transaction->t_tid); + memcpy(dst, &tail.fc_tid, sizeof(tail.fc_tid)); + dst += sizeof(tail.fc_tid); + crc = ext4_chksum(sbi, crc, sbi->s_fc_bh->b_data, + dst - (u8 *)sbi->s_fc_bh->b_data); + tail.fc_crc = cpu_to_le32(crc); + memcpy(dst, &tail.fc_crc, sizeof(tail.fc_crc)); + dst += sizeof(tail.fc_crc); + memset(dst, 0, bsize - off); /* Don't leak uninitialized memory. */ + + ext4_fc_submit_bh(sb, true); + + return 0; +} + +/* + * Adds tag, length, value and updates CRC. Returns true if tlv was added. + * Returns false if there's not enough space. + */ +static bool ext4_fc_add_tlv(struct super_block *sb, u16 tag, u16 len, u8 *val, + u32 *crc) +{ + struct ext4_fc_tl tl; + u8 *dst; + + dst = ext4_fc_reserve_space(sb, EXT4_FC_TAG_BASE_LEN + len, crc); + if (!dst) + return false; + + tl.fc_tag = cpu_to_le16(tag); + tl.fc_len = cpu_to_le16(len); + + memcpy(dst, &tl, EXT4_FC_TAG_BASE_LEN); + memcpy(dst + EXT4_FC_TAG_BASE_LEN, val, len); + + return true; +} + +/* Same as above, but adds dentry tlv. */ +static bool ext4_fc_add_dentry_tlv(struct super_block *sb, u32 *crc, + struct ext4_fc_dentry_update *fc_dentry) +{ + struct ext4_fc_dentry_info fcd; + struct ext4_fc_tl tl; + int dlen = fc_dentry->fcd_name.len; + u8 *dst = ext4_fc_reserve_space(sb, + EXT4_FC_TAG_BASE_LEN + sizeof(fcd) + dlen, crc); + + if (!dst) + return false; + + fcd.fc_parent_ino = cpu_to_le32(fc_dentry->fcd_parent); + fcd.fc_ino = cpu_to_le32(fc_dentry->fcd_ino); + tl.fc_tag = cpu_to_le16(fc_dentry->fcd_op); + tl.fc_len = cpu_to_le16(sizeof(fcd) + dlen); + memcpy(dst, &tl, EXT4_FC_TAG_BASE_LEN); + dst += EXT4_FC_TAG_BASE_LEN; + memcpy(dst, &fcd, sizeof(fcd)); + dst += sizeof(fcd); + memcpy(dst, fc_dentry->fcd_name.name, dlen); + + return true; +} + +/* + * Writes inode in the fast commit space under TLV with tag @tag. + * Returns 0 on success, error on failure. + */ +static int ext4_fc_write_inode(struct inode *inode, u32 *crc) +{ + struct ext4_inode_info *ei = EXT4_I(inode); + int inode_len = EXT4_GOOD_OLD_INODE_SIZE; + int ret; + struct ext4_iloc iloc; + struct ext4_fc_inode fc_inode; + struct ext4_fc_tl tl; + u8 *dst; + + ret = ext4_get_inode_loc(inode, &iloc); + if (ret) + return ret; + + if (ext4_test_inode_flag(inode, EXT4_INODE_INLINE_DATA)) + inode_len = EXT4_INODE_SIZE(inode->i_sb); + else if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) + inode_len += ei->i_extra_isize; + + fc_inode.fc_ino = cpu_to_le32(inode->i_ino); + tl.fc_tag = cpu_to_le16(EXT4_FC_TAG_INODE); + tl.fc_len = cpu_to_le16(inode_len + sizeof(fc_inode.fc_ino)); + + ret = -ECANCELED; + dst = ext4_fc_reserve_space(inode->i_sb, + EXT4_FC_TAG_BASE_LEN + inode_len + sizeof(fc_inode.fc_ino), crc); + if (!dst) + goto err; + + memcpy(dst, &tl, EXT4_FC_TAG_BASE_LEN); + dst += EXT4_FC_TAG_BASE_LEN; + memcpy(dst, &fc_inode, sizeof(fc_inode)); + dst += sizeof(fc_inode); + memcpy(dst, (u8 *)ext4_raw_inode(&iloc), inode_len); + ret = 0; +err: + brelse(iloc.bh); + return ret; +} + +/* + * Writes updated data ranges for the inode in question. Updates CRC. + * Returns 0 on success, error otherwise. + */ +static int ext4_fc_write_inode_data(struct inode *inode, u32 *crc) +{ + ext4_lblk_t old_blk_size, cur_lblk_off, new_blk_size; + struct ext4_inode_info *ei = EXT4_I(inode); + struct ext4_map_blocks map; + struct ext4_fc_add_range fc_ext; + struct ext4_fc_del_range lrange; + struct ext4_extent *ex; + int ret; + + mutex_lock(&ei->i_fc_lock); + if (ei->i_fc_lblk_len == 0) { + mutex_unlock(&ei->i_fc_lock); + return 0; + } + old_blk_size = ei->i_fc_lblk_start; + new_blk_size = ei->i_fc_lblk_start + ei->i_fc_lblk_len - 1; + ei->i_fc_lblk_len = 0; + mutex_unlock(&ei->i_fc_lock); + + cur_lblk_off = old_blk_size; + ext4_debug("will try writing %d to %d for inode %ld\n", + cur_lblk_off, new_blk_size, inode->i_ino); + + while (cur_lblk_off <= new_blk_size) { + map.m_lblk = cur_lblk_off; + map.m_len = new_blk_size - cur_lblk_off + 1; + ret = ext4_map_blocks(NULL, inode, &map, 0); + if (ret < 0) + return -ECANCELED; + + if (map.m_len == 0) { + cur_lblk_off++; + continue; + } + + if (ret == 0) { + lrange.fc_ino = cpu_to_le32(inode->i_ino); + lrange.fc_lblk = cpu_to_le32(map.m_lblk); + lrange.fc_len = cpu_to_le32(map.m_len); + if (!ext4_fc_add_tlv(inode->i_sb, EXT4_FC_TAG_DEL_RANGE, + sizeof(lrange), (u8 *)&lrange, crc)) + return -ENOSPC; + } else { + unsigned int max = (map.m_flags & EXT4_MAP_UNWRITTEN) ? + EXT_UNWRITTEN_MAX_LEN : EXT_INIT_MAX_LEN; + + /* Limit the number of blocks in one extent */ + map.m_len = min(max, map.m_len); + + fc_ext.fc_ino = cpu_to_le32(inode->i_ino); + ex = (struct ext4_extent *)&fc_ext.fc_ex; + ex->ee_block = cpu_to_le32(map.m_lblk); + ex->ee_len = cpu_to_le16(map.m_len); + ext4_ext_store_pblock(ex, map.m_pblk); + if (map.m_flags & EXT4_MAP_UNWRITTEN) + ext4_ext_mark_unwritten(ex); + else + ext4_ext_mark_initialized(ex); + if (!ext4_fc_add_tlv(inode->i_sb, EXT4_FC_TAG_ADD_RANGE, + sizeof(fc_ext), (u8 *)&fc_ext, crc)) + return -ENOSPC; + } + + cur_lblk_off += map.m_len; + } + + return 0; +} + + +/* Submit data for all the fast commit inodes */ +static int ext4_fc_submit_inode_data_all(journal_t *journal) +{ + struct super_block *sb = journal->j_private; + struct ext4_sb_info *sbi = EXT4_SB(sb); + struct ext4_inode_info *ei; + int ret = 0; + + spin_lock(&sbi->s_fc_lock); + list_for_each_entry(ei, &sbi->s_fc_q[FC_Q_MAIN], i_fc_list) { + ext4_set_inode_state(&ei->vfs_inode, EXT4_STATE_FC_COMMITTING); + while (atomic_read(&ei->i_fc_updates)) { + DEFINE_WAIT(wait); + + prepare_to_wait(&ei->i_fc_wait, &wait, + TASK_UNINTERRUPTIBLE); + if (atomic_read(&ei->i_fc_updates)) { + spin_unlock(&sbi->s_fc_lock); + schedule(); + spin_lock(&sbi->s_fc_lock); + } + finish_wait(&ei->i_fc_wait, &wait); + } + spin_unlock(&sbi->s_fc_lock); + ret = jbd2_submit_inode_data(journal, ei->jinode); + if (ret) + return ret; + spin_lock(&sbi->s_fc_lock); + } + spin_unlock(&sbi->s_fc_lock); + + return ret; +} + +/* Wait for completion of data for all the fast commit inodes */ +static int ext4_fc_wait_inode_data_all(journal_t *journal) +{ + struct super_block *sb = journal->j_private; + struct ext4_sb_info *sbi = EXT4_SB(sb); + struct ext4_inode_info *pos, *n; + int ret = 0; + + spin_lock(&sbi->s_fc_lock); + list_for_each_entry_safe(pos, n, &sbi->s_fc_q[FC_Q_MAIN], i_fc_list) { + if (!ext4_test_inode_state(&pos->vfs_inode, + EXT4_STATE_FC_COMMITTING)) + continue; + spin_unlock(&sbi->s_fc_lock); + + ret = jbd2_wait_inode_data(journal, pos->jinode); + if (ret) + return ret; + spin_lock(&sbi->s_fc_lock); + } + spin_unlock(&sbi->s_fc_lock); + + return 0; +} + +/* Commit all the directory entry updates */ +static int ext4_fc_commit_dentry_updates(journal_t *journal, u32 *crc) +__acquires(&sbi->s_fc_lock) +__releases(&sbi->s_fc_lock) +{ + struct super_block *sb = journal->j_private; + struct ext4_sb_info *sbi = EXT4_SB(sb); + struct ext4_fc_dentry_update *fc_dentry, *fc_dentry_n; + struct inode *inode; + struct ext4_inode_info *ei; + int ret; + + if (list_empty(&sbi->s_fc_dentry_q[FC_Q_MAIN])) + return 0; + list_for_each_entry_safe(fc_dentry, fc_dentry_n, + &sbi->s_fc_dentry_q[FC_Q_MAIN], fcd_list) { + if (fc_dentry->fcd_op != EXT4_FC_TAG_CREAT) { + spin_unlock(&sbi->s_fc_lock); + if (!ext4_fc_add_dentry_tlv(sb, crc, fc_dentry)) { + ret = -ENOSPC; + goto lock_and_exit; + } + spin_lock(&sbi->s_fc_lock); + continue; + } + /* + * With fcd_dilist we need not loop in sbi->s_fc_q to get the + * corresponding inode pointer + */ + WARN_ON(list_empty(&fc_dentry->fcd_dilist)); + ei = list_first_entry(&fc_dentry->fcd_dilist, + struct ext4_inode_info, i_fc_dilist); + inode = &ei->vfs_inode; + WARN_ON(inode->i_ino != fc_dentry->fcd_ino); + + spin_unlock(&sbi->s_fc_lock); + + /* + * We first write the inode and then the create dirent. This + * allows the recovery code to create an unnamed inode first + * and then link it to a directory entry. This allows us + * to use namei.c routines almost as is and simplifies + * the recovery code. + */ + ret = ext4_fc_write_inode(inode, crc); + if (ret) + goto lock_and_exit; + + ret = ext4_fc_write_inode_data(inode, crc); + if (ret) + goto lock_and_exit; + + if (!ext4_fc_add_dentry_tlv(sb, crc, fc_dentry)) { + ret = -ENOSPC; + goto lock_and_exit; + } + + spin_lock(&sbi->s_fc_lock); + } + return 0; +lock_and_exit: + spin_lock(&sbi->s_fc_lock); + return ret; +} + +static int ext4_fc_perform_commit(journal_t *journal) +{ + struct super_block *sb = journal->j_private; + struct ext4_sb_info *sbi = EXT4_SB(sb); + struct ext4_inode_info *iter; + struct ext4_fc_head head; + struct inode *inode; + struct blk_plug plug; + int ret = 0; + u32 crc = 0; + + ret = ext4_fc_submit_inode_data_all(journal); + if (ret) + return ret; + + ret = ext4_fc_wait_inode_data_all(journal); + if (ret) + return ret; + + /* + * If file system device is different from journal device, issue a cache + * flush before we start writing fast commit blocks. + */ + if (journal->j_fs_dev != journal->j_dev) + blkdev_issue_flush(journal->j_fs_dev); + + blk_start_plug(&plug); + if (sbi->s_fc_bytes == 0) { + /* + * Add a head tag only if this is the first fast commit + * in this TID. + */ + head.fc_features = cpu_to_le32(EXT4_FC_SUPPORTED_FEATURES); + head.fc_tid = cpu_to_le32( + sbi->s_journal->j_running_transaction->t_tid); + if (!ext4_fc_add_tlv(sb, EXT4_FC_TAG_HEAD, sizeof(head), + (u8 *)&head, &crc)) { + ret = -ENOSPC; + goto out; + } + } + + spin_lock(&sbi->s_fc_lock); + ret = ext4_fc_commit_dentry_updates(journal, &crc); + if (ret) { + spin_unlock(&sbi->s_fc_lock); + goto out; + } + + list_for_each_entry(iter, &sbi->s_fc_q[FC_Q_MAIN], i_fc_list) { + inode = &iter->vfs_inode; + if (!ext4_test_inode_state(inode, EXT4_STATE_FC_COMMITTING)) + continue; + + spin_unlock(&sbi->s_fc_lock); + ret = ext4_fc_write_inode_data(inode, &crc); + if (ret) + goto out; + ret = ext4_fc_write_inode(inode, &crc); + if (ret) + goto out; + spin_lock(&sbi->s_fc_lock); + } + spin_unlock(&sbi->s_fc_lock); + + ret = ext4_fc_write_tail(sb, crc); + +out: + blk_finish_plug(&plug); + return ret; +} + +static void ext4_fc_update_stats(struct super_block *sb, int status, + u64 commit_time, int nblks, tid_t commit_tid) +{ + struct ext4_fc_stats *stats = &EXT4_SB(sb)->s_fc_stats; + + ext4_debug("Fast commit ended with status = %d for tid %u", + status, commit_tid); + if (status == EXT4_FC_STATUS_OK) { + stats->fc_num_commits++; + stats->fc_numblks += nblks; + if (likely(stats->s_fc_avg_commit_time)) + stats->s_fc_avg_commit_time = + (commit_time + + stats->s_fc_avg_commit_time * 3) / 4; + else + stats->s_fc_avg_commit_time = commit_time; + } else if (status == EXT4_FC_STATUS_FAILED || + status == EXT4_FC_STATUS_INELIGIBLE) { + if (status == EXT4_FC_STATUS_FAILED) + stats->fc_failed_commits++; + stats->fc_ineligible_commits++; + } else { + stats->fc_skipped_commits++; + } + trace_ext4_fc_commit_stop(sb, nblks, status, commit_tid); +} + +/* + * The main commit entry point. Performs a fast commit for transaction + * commit_tid if needed. If it's not possible to perform a fast commit + * due to various reasons, we fall back to full commit. Returns 0 + * on success, error otherwise. + */ +int ext4_fc_commit(journal_t *journal, tid_t commit_tid) +{ + struct super_block *sb = journal->j_private; + struct ext4_sb_info *sbi = EXT4_SB(sb); + int nblks = 0, ret, bsize = journal->j_blocksize; + int subtid = atomic_read(&sbi->s_fc_subtid); + int status = EXT4_FC_STATUS_OK, fc_bufs_before = 0; + ktime_t start_time, commit_time; + + if (!test_opt2(sb, JOURNAL_FAST_COMMIT)) + return jbd2_complete_transaction(journal, commit_tid); + + trace_ext4_fc_commit_start(sb, commit_tid); + + start_time = ktime_get(); + +restart_fc: + ret = jbd2_fc_begin_commit(journal, commit_tid); + if (ret == -EALREADY) { + /* There was an ongoing commit, check if we need to restart */ + if (atomic_read(&sbi->s_fc_subtid) <= subtid && + commit_tid > journal->j_commit_sequence) + goto restart_fc; + ext4_fc_update_stats(sb, EXT4_FC_STATUS_SKIPPED, 0, 0, + commit_tid); + return 0; + } else if (ret) { + /* + * Commit couldn't start. Just update stats and perform a + * full commit. + */ + ext4_fc_update_stats(sb, EXT4_FC_STATUS_FAILED, 0, 0, + commit_tid); + return jbd2_complete_transaction(journal, commit_tid); + } + + /* + * After establishing journal barrier via jbd2_fc_begin_commit(), check + * if we are fast commit ineligible. + */ + if (ext4_test_mount_flag(sb, EXT4_MF_FC_INELIGIBLE)) { + status = EXT4_FC_STATUS_INELIGIBLE; + goto fallback; + } + + fc_bufs_before = (sbi->s_fc_bytes + bsize - 1) / bsize; + ret = ext4_fc_perform_commit(journal); + if (ret < 0) { + status = EXT4_FC_STATUS_FAILED; + goto fallback; + } + nblks = (sbi->s_fc_bytes + bsize - 1) / bsize - fc_bufs_before; + ret = jbd2_fc_wait_bufs(journal, nblks); + if (ret < 0) { + status = EXT4_FC_STATUS_FAILED; + goto fallback; + } + atomic_inc(&sbi->s_fc_subtid); + ret = jbd2_fc_end_commit(journal); + /* + * weight the commit time higher than the average time so we + * don't react too strongly to vast changes in the commit time + */ + commit_time = ktime_to_ns(ktime_sub(ktime_get(), start_time)); + ext4_fc_update_stats(sb, status, commit_time, nblks, commit_tid); + return ret; + +fallback: + ret = jbd2_fc_end_commit_fallback(journal); + ext4_fc_update_stats(sb, status, 0, 0, commit_tid); + return ret; +} + +/* + * Fast commit cleanup routine. This is called after every fast commit and + * full commit. full is true if we are called after a full commit. + */ +static void ext4_fc_cleanup(journal_t *journal, int full, tid_t tid) +{ + struct super_block *sb = journal->j_private; + struct ext4_sb_info *sbi = EXT4_SB(sb); + struct ext4_inode_info *iter, *iter_n; + struct ext4_fc_dentry_update *fc_dentry; + + if (full && sbi->s_fc_bh) + sbi->s_fc_bh = NULL; + + trace_ext4_fc_cleanup(journal, full, tid); + jbd2_fc_release_bufs(journal); + + spin_lock(&sbi->s_fc_lock); + list_for_each_entry_safe(iter, iter_n, &sbi->s_fc_q[FC_Q_MAIN], + i_fc_list) { + list_del_init(&iter->i_fc_list); + ext4_clear_inode_state(&iter->vfs_inode, + EXT4_STATE_FC_COMMITTING); + if (iter->i_sync_tid <= tid) + ext4_fc_reset_inode(&iter->vfs_inode); + /* Make sure EXT4_STATE_FC_COMMITTING bit is clear */ + smp_mb(); +#if (BITS_PER_LONG < 64) + wake_up_bit(&iter->i_state_flags, EXT4_STATE_FC_COMMITTING); +#else + wake_up_bit(&iter->i_flags, EXT4_STATE_FC_COMMITTING); +#endif + } + + while (!list_empty(&sbi->s_fc_dentry_q[FC_Q_MAIN])) { + fc_dentry = list_first_entry(&sbi->s_fc_dentry_q[FC_Q_MAIN], + struct ext4_fc_dentry_update, + fcd_list); + list_del_init(&fc_dentry->fcd_list); + list_del_init(&fc_dentry->fcd_dilist); + spin_unlock(&sbi->s_fc_lock); + + if (fc_dentry->fcd_name.name && + fc_dentry->fcd_name.len > DNAME_INLINE_LEN) + kfree(fc_dentry->fcd_name.name); + kmem_cache_free(ext4_fc_dentry_cachep, fc_dentry); + spin_lock(&sbi->s_fc_lock); + } + + list_splice_init(&sbi->s_fc_dentry_q[FC_Q_STAGING], + &sbi->s_fc_dentry_q[FC_Q_MAIN]); + list_splice_init(&sbi->s_fc_q[FC_Q_STAGING], + &sbi->s_fc_q[FC_Q_MAIN]); + + if (tid >= sbi->s_fc_ineligible_tid) { + sbi->s_fc_ineligible_tid = 0; + ext4_clear_mount_flag(sb, EXT4_MF_FC_INELIGIBLE); + } + + if (full) + sbi->s_fc_bytes = 0; + spin_unlock(&sbi->s_fc_lock); + trace_ext4_fc_stats(sb); +} + +/* Ext4 Replay Path Routines */ + +/* Helper struct for dentry replay routines */ +struct dentry_info_args { + int parent_ino, dname_len, ino, inode_len; + char *dname; +}; + +/* Same as struct ext4_fc_tl, but uses native endianness fields */ +struct ext4_fc_tl_mem { + u16 fc_tag; + u16 fc_len; +}; + +static inline void tl_to_darg(struct dentry_info_args *darg, + struct ext4_fc_tl_mem *tl, u8 *val) +{ + struct ext4_fc_dentry_info fcd; + + memcpy(&fcd, val, sizeof(fcd)); + + darg->parent_ino = le32_to_cpu(fcd.fc_parent_ino); + darg->ino = le32_to_cpu(fcd.fc_ino); + darg->dname = val + offsetof(struct ext4_fc_dentry_info, fc_dname); + darg->dname_len = tl->fc_len - sizeof(struct ext4_fc_dentry_info); +} + +static inline void ext4_fc_get_tl(struct ext4_fc_tl_mem *tl, u8 *val) +{ + struct ext4_fc_tl tl_disk; + + memcpy(&tl_disk, val, EXT4_FC_TAG_BASE_LEN); + tl->fc_len = le16_to_cpu(tl_disk.fc_len); + tl->fc_tag = le16_to_cpu(tl_disk.fc_tag); +} + +/* Unlink replay function */ +static int ext4_fc_replay_unlink(struct super_block *sb, + struct ext4_fc_tl_mem *tl, u8 *val) +{ + struct inode *inode, *old_parent; + struct qstr entry; + struct dentry_info_args darg; + int ret = 0; + + tl_to_darg(&darg, tl, val); + + trace_ext4_fc_replay(sb, EXT4_FC_TAG_UNLINK, darg.ino, + darg.parent_ino, darg.dname_len); + + entry.name = darg.dname; + entry.len = darg.dname_len; + inode = ext4_iget(sb, darg.ino, EXT4_IGET_NORMAL); + + if (IS_ERR(inode)) { + ext4_debug("Inode %d not found", darg.ino); + return 0; + } + + old_parent = ext4_iget(sb, darg.parent_ino, + EXT4_IGET_NORMAL); + if (IS_ERR(old_parent)) { + ext4_debug("Dir with inode %d not found", darg.parent_ino); + iput(inode); + return 0; + } + + ret = __ext4_unlink(old_parent, &entry, inode, NULL); + /* -ENOENT ok coz it might not exist anymore. */ + if (ret == -ENOENT) + ret = 0; + iput(old_parent); + iput(inode); + return ret; +} + +static int ext4_fc_replay_link_internal(struct super_block *sb, + struct dentry_info_args *darg, + struct inode *inode) +{ + struct inode *dir = NULL; + struct dentry *dentry_dir = NULL, *dentry_inode = NULL; + struct qstr qstr_dname = QSTR_INIT(darg->dname, darg->dname_len); + int ret = 0; + + dir = ext4_iget(sb, darg->parent_ino, EXT4_IGET_NORMAL); + if (IS_ERR(dir)) { + ext4_debug("Dir with inode %d not found.", darg->parent_ino); + dir = NULL; + goto out; + } + + dentry_dir = d_obtain_alias(dir); + if (IS_ERR(dentry_dir)) { + ext4_debug("Failed to obtain dentry"); + dentry_dir = NULL; + goto out; + } + + dentry_inode = d_alloc(dentry_dir, &qstr_dname); + if (!dentry_inode) { + ext4_debug("Inode dentry not created."); + ret = -ENOMEM; + goto out; + } + + ret = __ext4_link(dir, inode, dentry_inode); + /* + * It's possible that link already existed since data blocks + * for the dir in question got persisted before we crashed OR + * we replayed this tag and crashed before the entire replay + * could complete. + */ + if (ret && ret != -EEXIST) { + ext4_debug("Failed to link\n"); + goto out; + } + + ret = 0; +out: + if (dentry_dir) { + d_drop(dentry_dir); + dput(dentry_dir); + } else if (dir) { + iput(dir); + } + if (dentry_inode) { + d_drop(dentry_inode); + dput(dentry_inode); + } + + return ret; +} + +/* Link replay function */ +static int ext4_fc_replay_link(struct super_block *sb, + struct ext4_fc_tl_mem *tl, u8 *val) +{ + struct inode *inode; + struct dentry_info_args darg; + int ret = 0; + + tl_to_darg(&darg, tl, val); + trace_ext4_fc_replay(sb, EXT4_FC_TAG_LINK, darg.ino, + darg.parent_ino, darg.dname_len); + + inode = ext4_iget(sb, darg.ino, EXT4_IGET_NORMAL); + if (IS_ERR(inode)) { + ext4_debug("Inode not found."); + return 0; + } + + ret = ext4_fc_replay_link_internal(sb, &darg, inode); + iput(inode); + return ret; +} + +/* + * Record all the modified inodes during replay. We use this later to setup + * block bitmaps correctly. + */ +static int ext4_fc_record_modified_inode(struct super_block *sb, int ino) +{ + struct ext4_fc_replay_state *state; + int i; + + state = &EXT4_SB(sb)->s_fc_replay_state; + for (i = 0; i < state->fc_modified_inodes_used; i++) + if (state->fc_modified_inodes[i] == ino) + return 0; + if (state->fc_modified_inodes_used == state->fc_modified_inodes_size) { + int *fc_modified_inodes; + + fc_modified_inodes = krealloc(state->fc_modified_inodes, + sizeof(int) * (state->fc_modified_inodes_size + + EXT4_FC_REPLAY_REALLOC_INCREMENT), + GFP_KERNEL); + if (!fc_modified_inodes) + return -ENOMEM; + state->fc_modified_inodes = fc_modified_inodes; + state->fc_modified_inodes_size += + EXT4_FC_REPLAY_REALLOC_INCREMENT; + } + state->fc_modified_inodes[state->fc_modified_inodes_used++] = ino; + return 0; +} + +/* + * Inode replay function + */ +static int ext4_fc_replay_inode(struct super_block *sb, + struct ext4_fc_tl_mem *tl, u8 *val) +{ + struct ext4_fc_inode fc_inode; + struct ext4_inode *raw_inode; + struct ext4_inode *raw_fc_inode; + struct inode *inode = NULL; + struct ext4_iloc iloc; + int inode_len, ino, ret, tag = tl->fc_tag; + struct ext4_extent_header *eh; + size_t off_gen = offsetof(struct ext4_inode, i_generation); + + memcpy(&fc_inode, val, sizeof(fc_inode)); + + ino = le32_to_cpu(fc_inode.fc_ino); + trace_ext4_fc_replay(sb, tag, ino, 0, 0); + + inode = ext4_iget(sb, ino, EXT4_IGET_NORMAL); + if (!IS_ERR(inode)) { + ext4_ext_clear_bb(inode); + iput(inode); + } + inode = NULL; + + ret = ext4_fc_record_modified_inode(sb, ino); + if (ret) + goto out; + + raw_fc_inode = (struct ext4_inode *) + (val + offsetof(struct ext4_fc_inode, fc_raw_inode)); + ret = ext4_get_fc_inode_loc(sb, ino, &iloc); + if (ret) + goto out; + + inode_len = tl->fc_len - sizeof(struct ext4_fc_inode); + raw_inode = ext4_raw_inode(&iloc); + + memcpy(raw_inode, raw_fc_inode, offsetof(struct ext4_inode, i_block)); + memcpy((u8 *)raw_inode + off_gen, (u8 *)raw_fc_inode + off_gen, + inode_len - off_gen); + if (le32_to_cpu(raw_inode->i_flags) & EXT4_EXTENTS_FL) { + eh = (struct ext4_extent_header *)(&raw_inode->i_block[0]); + if (eh->eh_magic != EXT4_EXT_MAGIC) { + memset(eh, 0, sizeof(*eh)); + eh->eh_magic = EXT4_EXT_MAGIC; + eh->eh_max = cpu_to_le16( + (sizeof(raw_inode->i_block) - + sizeof(struct ext4_extent_header)) + / sizeof(struct ext4_extent)); + } + } else if (le32_to_cpu(raw_inode->i_flags) & EXT4_INLINE_DATA_FL) { + memcpy(raw_inode->i_block, raw_fc_inode->i_block, + sizeof(raw_inode->i_block)); + } + + /* Immediately update the inode on disk. */ + ret = ext4_handle_dirty_metadata(NULL, NULL, iloc.bh); + if (ret) + goto out; + ret = sync_dirty_buffer(iloc.bh); + if (ret) + goto out; + ret = ext4_mark_inode_used(sb, ino); + if (ret) + goto out; + + /* Given that we just wrote the inode on disk, this SHOULD succeed. */ + inode = ext4_iget(sb, ino, EXT4_IGET_NORMAL); + if (IS_ERR(inode)) { + ext4_debug("Inode not found."); + return -EFSCORRUPTED; + } + + /* + * Our allocator could have made different decisions than before + * crashing. This should be fixed but until then, we calculate + * the number of blocks the inode. + */ + if (!ext4_test_inode_flag(inode, EXT4_INODE_INLINE_DATA)) + ext4_ext_replay_set_iblocks(inode); + + inode->i_generation = le32_to_cpu(ext4_raw_inode(&iloc)->i_generation); + ext4_reset_inode_seed(inode); + + ext4_inode_csum_set(inode, ext4_raw_inode(&iloc), EXT4_I(inode)); + ret = ext4_handle_dirty_metadata(NULL, NULL, iloc.bh); + sync_dirty_buffer(iloc.bh); + brelse(iloc.bh); +out: + iput(inode); + if (!ret) + blkdev_issue_flush(sb->s_bdev); + + return 0; +} + +/* + * Dentry create replay function. + * + * EXT4_FC_TAG_CREAT is preceded by EXT4_FC_TAG_INODE_FULL. Which means, the + * inode for which we are trying to create a dentry here, should already have + * been replayed before we start here. + */ +static int ext4_fc_replay_create(struct super_block *sb, + struct ext4_fc_tl_mem *tl, u8 *val) +{ + int ret = 0; + struct inode *inode = NULL; + struct inode *dir = NULL; + struct dentry_info_args darg; + + tl_to_darg(&darg, tl, val); + + trace_ext4_fc_replay(sb, EXT4_FC_TAG_CREAT, darg.ino, + darg.parent_ino, darg.dname_len); + + /* This takes care of update group descriptor and other metadata */ + ret = ext4_mark_inode_used(sb, darg.ino); + if (ret) + goto out; + + inode = ext4_iget(sb, darg.ino, EXT4_IGET_NORMAL); + if (IS_ERR(inode)) { + ext4_debug("inode %d not found.", darg.ino); + inode = NULL; + ret = -EINVAL; + goto out; + } + + if (S_ISDIR(inode->i_mode)) { + /* + * If we are creating a directory, we need to make sure that the + * dot and dot dot dirents are setup properly. + */ + dir = ext4_iget(sb, darg.parent_ino, EXT4_IGET_NORMAL); + if (IS_ERR(dir)) { + ext4_debug("Dir %d not found.", darg.ino); + goto out; + } + ret = ext4_init_new_dir(NULL, dir, inode); + iput(dir); + if (ret) { + ret = 0; + goto out; + } + } + ret = ext4_fc_replay_link_internal(sb, &darg, inode); + if (ret) + goto out; + set_nlink(inode, 1); + ext4_mark_inode_dirty(NULL, inode); +out: + iput(inode); + return ret; +} + +/* + * Record physical disk regions which are in use as per fast commit area, + * and used by inodes during replay phase. Our simple replay phase + * allocator excludes these regions from allocation. + */ +int ext4_fc_record_regions(struct super_block *sb, int ino, + ext4_lblk_t lblk, ext4_fsblk_t pblk, int len, int replay) +{ + struct ext4_fc_replay_state *state; + struct ext4_fc_alloc_region *region; + + state = &EXT4_SB(sb)->s_fc_replay_state; + /* + * during replay phase, the fc_regions_valid may not same as + * fc_regions_used, update it when do new additions. + */ + if (replay && state->fc_regions_used != state->fc_regions_valid) + state->fc_regions_used = state->fc_regions_valid; + if (state->fc_regions_used == state->fc_regions_size) { + struct ext4_fc_alloc_region *fc_regions; + + fc_regions = krealloc(state->fc_regions, + sizeof(struct ext4_fc_alloc_region) * + (state->fc_regions_size + + EXT4_FC_REPLAY_REALLOC_INCREMENT), + GFP_KERNEL); + if (!fc_regions) + return -ENOMEM; + state->fc_regions_size += + EXT4_FC_REPLAY_REALLOC_INCREMENT; + state->fc_regions = fc_regions; + } + region = &state->fc_regions[state->fc_regions_used++]; + region->ino = ino; + region->lblk = lblk; + region->pblk = pblk; + region->len = len; + + if (replay) + state->fc_regions_valid++; + + return 0; +} + +/* Replay add range tag */ +static int ext4_fc_replay_add_range(struct super_block *sb, + struct ext4_fc_tl_mem *tl, u8 *val) +{ + struct ext4_fc_add_range fc_add_ex; + struct ext4_extent newex, *ex; + struct inode *inode; + ext4_lblk_t start, cur; + int remaining, len; + ext4_fsblk_t start_pblk; + struct ext4_map_blocks map; + struct ext4_ext_path *path = NULL; + int ret; + + memcpy(&fc_add_ex, val, sizeof(fc_add_ex)); + ex = (struct ext4_extent *)&fc_add_ex.fc_ex; + + trace_ext4_fc_replay(sb, EXT4_FC_TAG_ADD_RANGE, + le32_to_cpu(fc_add_ex.fc_ino), le32_to_cpu(ex->ee_block), + ext4_ext_get_actual_len(ex)); + + inode = ext4_iget(sb, le32_to_cpu(fc_add_ex.fc_ino), EXT4_IGET_NORMAL); + if (IS_ERR(inode)) { + ext4_debug("Inode not found."); + return 0; + } + + ret = ext4_fc_record_modified_inode(sb, inode->i_ino); + if (ret) + goto out; + + start = le32_to_cpu(ex->ee_block); + start_pblk = ext4_ext_pblock(ex); + len = ext4_ext_get_actual_len(ex); + + cur = start; + remaining = len; + ext4_debug("ADD_RANGE, lblk %d, pblk %lld, len %d, unwritten %d, inode %ld\n", + start, start_pblk, len, ext4_ext_is_unwritten(ex), + inode->i_ino); + + while (remaining > 0) { + map.m_lblk = cur; + map.m_len = remaining; + map.m_pblk = 0; + ret = ext4_map_blocks(NULL, inode, &map, 0); + + if (ret < 0) + goto out; + + if (ret == 0) { + /* Range is not mapped */ + path = ext4_find_extent(inode, cur, NULL, 0); + if (IS_ERR(path)) + goto out; + memset(&newex, 0, sizeof(newex)); + newex.ee_block = cpu_to_le32(cur); + ext4_ext_store_pblock( + &newex, start_pblk + cur - start); + newex.ee_len = cpu_to_le16(map.m_len); + if (ext4_ext_is_unwritten(ex)) + ext4_ext_mark_unwritten(&newex); + down_write(&EXT4_I(inode)->i_data_sem); + ret = ext4_ext_insert_extent( + NULL, inode, &path, &newex, 0); + up_write((&EXT4_I(inode)->i_data_sem)); + ext4_free_ext_path(path); + if (ret) + goto out; + goto next; + } + + if (start_pblk + cur - start != map.m_pblk) { + /* + * Logical to physical mapping changed. This can happen + * if this range was removed and then reallocated to + * map to new physical blocks during a fast commit. + */ + ret = ext4_ext_replay_update_ex(inode, cur, map.m_len, + ext4_ext_is_unwritten(ex), + start_pblk + cur - start); + if (ret) + goto out; + /* + * Mark the old blocks as free since they aren't used + * anymore. We maintain an array of all the modified + * inodes. In case these blocks are still used at either + * a different logical range in the same inode or in + * some different inode, we will mark them as allocated + * at the end of the FC replay using our array of + * modified inodes. + */ + ext4_mb_mark_bb(inode->i_sb, map.m_pblk, map.m_len, 0); + goto next; + } + + /* Range is mapped and needs a state change */ + ext4_debug("Converting from %ld to %d %lld", + map.m_flags & EXT4_MAP_UNWRITTEN, + ext4_ext_is_unwritten(ex), map.m_pblk); + ret = ext4_ext_replay_update_ex(inode, cur, map.m_len, + ext4_ext_is_unwritten(ex), map.m_pblk); + if (ret) + goto out; + /* + * We may have split the extent tree while toggling the state. + * Try to shrink the extent tree now. + */ + ext4_ext_replay_shrink_inode(inode, start + len); +next: + cur += map.m_len; + remaining -= map.m_len; + } + ext4_ext_replay_shrink_inode(inode, i_size_read(inode) >> + sb->s_blocksize_bits); +out: + iput(inode); + return 0; +} + +/* Replay DEL_RANGE tag */ +static int +ext4_fc_replay_del_range(struct super_block *sb, + struct ext4_fc_tl_mem *tl, u8 *val) +{ + struct inode *inode; + struct ext4_fc_del_range lrange; + struct ext4_map_blocks map; + ext4_lblk_t cur, remaining; + int ret; + + memcpy(&lrange, val, sizeof(lrange)); + cur = le32_to_cpu(lrange.fc_lblk); + remaining = le32_to_cpu(lrange.fc_len); + + trace_ext4_fc_replay(sb, EXT4_FC_TAG_DEL_RANGE, + le32_to_cpu(lrange.fc_ino), cur, remaining); + + inode = ext4_iget(sb, le32_to_cpu(lrange.fc_ino), EXT4_IGET_NORMAL); + if (IS_ERR(inode)) { + ext4_debug("Inode %d not found", le32_to_cpu(lrange.fc_ino)); + return 0; + } + + ret = ext4_fc_record_modified_inode(sb, inode->i_ino); + if (ret) + goto out; + + ext4_debug("DEL_RANGE, inode %ld, lblk %d, len %d\n", + inode->i_ino, le32_to_cpu(lrange.fc_lblk), + le32_to_cpu(lrange.fc_len)); + while (remaining > 0) { + map.m_lblk = cur; + map.m_len = remaining; + + ret = ext4_map_blocks(NULL, inode, &map, 0); + if (ret < 0) + goto out; + if (ret > 0) { + remaining -= ret; + cur += ret; + ext4_mb_mark_bb(inode->i_sb, map.m_pblk, map.m_len, 0); + } else { + remaining -= map.m_len; + cur += map.m_len; + } + } + + down_write(&EXT4_I(inode)->i_data_sem); + ret = ext4_ext_remove_space(inode, le32_to_cpu(lrange.fc_lblk), + le32_to_cpu(lrange.fc_lblk) + + le32_to_cpu(lrange.fc_len) - 1); + up_write(&EXT4_I(inode)->i_data_sem); + if (ret) + goto out; + ext4_ext_replay_shrink_inode(inode, + i_size_read(inode) >> sb->s_blocksize_bits); + ext4_mark_inode_dirty(NULL, inode); +out: + iput(inode); + return 0; +} + +static void ext4_fc_set_bitmaps_and_counters(struct super_block *sb) +{ + struct ext4_fc_replay_state *state; + struct inode *inode; + struct ext4_ext_path *path = NULL; + struct ext4_map_blocks map; + int i, ret, j; + ext4_lblk_t cur, end; + + state = &EXT4_SB(sb)->s_fc_replay_state; + for (i = 0; i < state->fc_modified_inodes_used; i++) { + inode = ext4_iget(sb, state->fc_modified_inodes[i], + EXT4_IGET_NORMAL); + if (IS_ERR(inode)) { + ext4_debug("Inode %d not found.", + state->fc_modified_inodes[i]); + continue; + } + cur = 0; + end = EXT_MAX_BLOCKS; + if (ext4_test_inode_flag(inode, EXT4_INODE_INLINE_DATA)) { + iput(inode); + continue; + } + while (cur < end) { + map.m_lblk = cur; + map.m_len = end - cur; + + ret = ext4_map_blocks(NULL, inode, &map, 0); + if (ret < 0) + break; + + if (ret > 0) { + path = ext4_find_extent(inode, map.m_lblk, NULL, 0); + if (!IS_ERR(path)) { + for (j = 0; j < path->p_depth; j++) + ext4_mb_mark_bb(inode->i_sb, + path[j].p_block, 1, 1); + ext4_free_ext_path(path); + } + cur += ret; + ext4_mb_mark_bb(inode->i_sb, map.m_pblk, + map.m_len, 1); + } else { + cur = cur + (map.m_len ? map.m_len : 1); + } + } + iput(inode); + } +} + +/* + * Check if block is in excluded regions for block allocation. The simple + * allocator that runs during replay phase is calls this function to see + * if it is okay to use a block. + */ +bool ext4_fc_replay_check_excluded(struct super_block *sb, ext4_fsblk_t blk) +{ + int i; + struct ext4_fc_replay_state *state; + + state = &EXT4_SB(sb)->s_fc_replay_state; + for (i = 0; i < state->fc_regions_valid; i++) { + if (state->fc_regions[i].ino == 0 || + state->fc_regions[i].len == 0) + continue; + if (in_range(blk, state->fc_regions[i].pblk, + state->fc_regions[i].len)) + return true; + } + return false; +} + +/* Cleanup function called after replay */ +void ext4_fc_replay_cleanup(struct super_block *sb) +{ + struct ext4_sb_info *sbi = EXT4_SB(sb); + + sbi->s_mount_state &= ~EXT4_FC_REPLAY; + kfree(sbi->s_fc_replay_state.fc_regions); + kfree(sbi->s_fc_replay_state.fc_modified_inodes); +} + +static bool ext4_fc_value_len_isvalid(struct ext4_sb_info *sbi, + int tag, int len) +{ + switch (tag) { + case EXT4_FC_TAG_ADD_RANGE: + return len == sizeof(struct ext4_fc_add_range); + case EXT4_FC_TAG_DEL_RANGE: + return len == sizeof(struct ext4_fc_del_range); + case EXT4_FC_TAG_CREAT: + case EXT4_FC_TAG_LINK: + case EXT4_FC_TAG_UNLINK: + len -= sizeof(struct ext4_fc_dentry_info); + return len >= 1 && len <= EXT4_NAME_LEN; + case EXT4_FC_TAG_INODE: + len -= sizeof(struct ext4_fc_inode); + return len >= EXT4_GOOD_OLD_INODE_SIZE && + len <= sbi->s_inode_size; + case EXT4_FC_TAG_PAD: + return true; /* padding can have any length */ + case EXT4_FC_TAG_TAIL: + return len >= sizeof(struct ext4_fc_tail); + case EXT4_FC_TAG_HEAD: + return len == sizeof(struct ext4_fc_head); + } + return false; +} + +/* + * Recovery Scan phase handler + * + * This function is called during the scan phase and is responsible + * for doing following things: + * - Make sure the fast commit area has valid tags for replay + * - Count number of tags that need to be replayed by the replay handler + * - Verify CRC + * - Create a list of excluded blocks for allocation during replay phase + * + * This function returns JBD2_FC_REPLAY_CONTINUE to indicate that SCAN is + * incomplete and JBD2 should send more blocks. It returns JBD2_FC_REPLAY_STOP + * to indicate that scan has finished and JBD2 can now start replay phase. + * It returns a negative error to indicate that there was an error. At the end + * of a successful scan phase, sbi->s_fc_replay_state.fc_replay_num_tags is set + * to indicate the number of tags that need to replayed during the replay phase. + */ +static int ext4_fc_replay_scan(journal_t *journal, + struct buffer_head *bh, int off, + tid_t expected_tid) +{ + struct super_block *sb = journal->j_private; + struct ext4_sb_info *sbi = EXT4_SB(sb); + struct ext4_fc_replay_state *state; + int ret = JBD2_FC_REPLAY_CONTINUE; + struct ext4_fc_add_range ext; + struct ext4_fc_tl_mem tl; + struct ext4_fc_tail tail; + __u8 *start, *end, *cur, *val; + struct ext4_fc_head head; + struct ext4_extent *ex; + + state = &sbi->s_fc_replay_state; + + start = (u8 *)bh->b_data; + end = start + journal->j_blocksize; + + if (state->fc_replay_expected_off == 0) { + state->fc_cur_tag = 0; + state->fc_replay_num_tags = 0; + state->fc_crc = 0; + state->fc_regions = NULL; + state->fc_regions_valid = state->fc_regions_used = + state->fc_regions_size = 0; + /* Check if we can stop early */ + if (le16_to_cpu(((struct ext4_fc_tl *)start)->fc_tag) + != EXT4_FC_TAG_HEAD) + return 0; + } + + if (off != state->fc_replay_expected_off) { + ret = -EFSCORRUPTED; + goto out_err; + } + + state->fc_replay_expected_off++; + for (cur = start; cur <= end - EXT4_FC_TAG_BASE_LEN; + cur = cur + EXT4_FC_TAG_BASE_LEN + tl.fc_len) { + ext4_fc_get_tl(&tl, cur); + val = cur + EXT4_FC_TAG_BASE_LEN; + if (tl.fc_len > end - val || + !ext4_fc_value_len_isvalid(sbi, tl.fc_tag, tl.fc_len)) { + ret = state->fc_replay_num_tags ? + JBD2_FC_REPLAY_STOP : -ECANCELED; + goto out_err; + } + ext4_debug("Scan phase, tag:%s, blk %lld\n", + tag2str(tl.fc_tag), bh->b_blocknr); + switch (tl.fc_tag) { + case EXT4_FC_TAG_ADD_RANGE: + memcpy(&ext, val, sizeof(ext)); + ex = (struct ext4_extent *)&ext.fc_ex; + ret = ext4_fc_record_regions(sb, + le32_to_cpu(ext.fc_ino), + le32_to_cpu(ex->ee_block), ext4_ext_pblock(ex), + ext4_ext_get_actual_len(ex), 0); + if (ret < 0) + break; + ret = JBD2_FC_REPLAY_CONTINUE; + fallthrough; + case EXT4_FC_TAG_DEL_RANGE: + case EXT4_FC_TAG_LINK: + case EXT4_FC_TAG_UNLINK: + case EXT4_FC_TAG_CREAT: + case EXT4_FC_TAG_INODE: + case EXT4_FC_TAG_PAD: + state->fc_cur_tag++; + state->fc_crc = ext4_chksum(sbi, state->fc_crc, cur, + EXT4_FC_TAG_BASE_LEN + tl.fc_len); + break; + case EXT4_FC_TAG_TAIL: + state->fc_cur_tag++; + memcpy(&tail, val, sizeof(tail)); + state->fc_crc = ext4_chksum(sbi, state->fc_crc, cur, + EXT4_FC_TAG_BASE_LEN + + offsetof(struct ext4_fc_tail, + fc_crc)); + if (le32_to_cpu(tail.fc_tid) == expected_tid && + le32_to_cpu(tail.fc_crc) == state->fc_crc) { + state->fc_replay_num_tags = state->fc_cur_tag; + state->fc_regions_valid = + state->fc_regions_used; + } else { + ret = state->fc_replay_num_tags ? + JBD2_FC_REPLAY_STOP : -EFSBADCRC; + } + state->fc_crc = 0; + break; + case EXT4_FC_TAG_HEAD: + memcpy(&head, val, sizeof(head)); + if (le32_to_cpu(head.fc_features) & + ~EXT4_FC_SUPPORTED_FEATURES) { + ret = -EOPNOTSUPP; + break; + } + if (le32_to_cpu(head.fc_tid) != expected_tid) { + ret = JBD2_FC_REPLAY_STOP; + break; + } + state->fc_cur_tag++; + state->fc_crc = ext4_chksum(sbi, state->fc_crc, cur, + EXT4_FC_TAG_BASE_LEN + tl.fc_len); + break; + default: + ret = state->fc_replay_num_tags ? + JBD2_FC_REPLAY_STOP : -ECANCELED; + } + if (ret < 0 || ret == JBD2_FC_REPLAY_STOP) + break; + } + +out_err: + trace_ext4_fc_replay_scan(sb, ret, off); + return ret; +} + +/* + * Main recovery path entry point. + * The meaning of return codes is similar as above. + */ +static int ext4_fc_replay(journal_t *journal, struct buffer_head *bh, + enum passtype pass, int off, tid_t expected_tid) +{ + struct super_block *sb = journal->j_private; + struct ext4_sb_info *sbi = EXT4_SB(sb); + struct ext4_fc_tl_mem tl; + __u8 *start, *end, *cur, *val; + int ret = JBD2_FC_REPLAY_CONTINUE; + struct ext4_fc_replay_state *state = &sbi->s_fc_replay_state; + struct ext4_fc_tail tail; + + if (pass == PASS_SCAN) { + state->fc_current_pass = PASS_SCAN; + return ext4_fc_replay_scan(journal, bh, off, expected_tid); + } + + if (state->fc_current_pass != pass) { + state->fc_current_pass = pass; + sbi->s_mount_state |= EXT4_FC_REPLAY; + } + if (!sbi->s_fc_replay_state.fc_replay_num_tags) { + ext4_debug("Replay stops\n"); + ext4_fc_set_bitmaps_and_counters(sb); + return 0; + } + +#ifdef CONFIG_EXT4_DEBUG + if (sbi->s_fc_debug_max_replay && off >= sbi->s_fc_debug_max_replay) { + pr_warn("Dropping fc block %d because max_replay set\n", off); + return JBD2_FC_REPLAY_STOP; + } +#endif + + start = (u8 *)bh->b_data; + end = start + journal->j_blocksize; + + for (cur = start; cur <= end - EXT4_FC_TAG_BASE_LEN; + cur = cur + EXT4_FC_TAG_BASE_LEN + tl.fc_len) { + ext4_fc_get_tl(&tl, cur); + val = cur + EXT4_FC_TAG_BASE_LEN; + + if (state->fc_replay_num_tags == 0) { + ret = JBD2_FC_REPLAY_STOP; + ext4_fc_set_bitmaps_and_counters(sb); + break; + } + + ext4_debug("Replay phase, tag:%s\n", tag2str(tl.fc_tag)); + state->fc_replay_num_tags--; + switch (tl.fc_tag) { + case EXT4_FC_TAG_LINK: + ret = ext4_fc_replay_link(sb, &tl, val); + break; + case EXT4_FC_TAG_UNLINK: + ret = ext4_fc_replay_unlink(sb, &tl, val); + break; + case EXT4_FC_TAG_ADD_RANGE: + ret = ext4_fc_replay_add_range(sb, &tl, val); + break; + case EXT4_FC_TAG_CREAT: + ret = ext4_fc_replay_create(sb, &tl, val); + break; + case EXT4_FC_TAG_DEL_RANGE: + ret = ext4_fc_replay_del_range(sb, &tl, val); + break; + case EXT4_FC_TAG_INODE: + ret = ext4_fc_replay_inode(sb, &tl, val); + break; + case EXT4_FC_TAG_PAD: + trace_ext4_fc_replay(sb, EXT4_FC_TAG_PAD, 0, + tl.fc_len, 0); + break; + case EXT4_FC_TAG_TAIL: + trace_ext4_fc_replay(sb, EXT4_FC_TAG_TAIL, + 0, tl.fc_len, 0); + memcpy(&tail, val, sizeof(tail)); + WARN_ON(le32_to_cpu(tail.fc_tid) != expected_tid); + break; + case EXT4_FC_TAG_HEAD: + break; + default: + trace_ext4_fc_replay(sb, tl.fc_tag, 0, tl.fc_len, 0); + ret = -ECANCELED; + break; + } + if (ret < 0) + break; + ret = JBD2_FC_REPLAY_CONTINUE; + } + return ret; +} + +void ext4_fc_init(struct super_block *sb, journal_t *journal) +{ + /* + * We set replay callback even if fast commit disabled because we may + * could still have fast commit blocks that need to be replayed even if + * fast commit has now been turned off. + */ + journal->j_fc_replay_callback = ext4_fc_replay; + if (!test_opt2(sb, JOURNAL_FAST_COMMIT)) + return; + journal->j_fc_cleanup_callback = ext4_fc_cleanup; +} + +static const char * const fc_ineligible_reasons[] = { + [EXT4_FC_REASON_XATTR] = "Extended attributes changed", + [EXT4_FC_REASON_CROSS_RENAME] = "Cross rename", + [EXT4_FC_REASON_JOURNAL_FLAG_CHANGE] = "Journal flag changed", + [EXT4_FC_REASON_NOMEM] = "Insufficient memory", + [EXT4_FC_REASON_SWAP_BOOT] = "Swap boot", + [EXT4_FC_REASON_RESIZE] = "Resize", + [EXT4_FC_REASON_RENAME_DIR] = "Dir renamed", + [EXT4_FC_REASON_FALLOC_RANGE] = "Falloc range op", + [EXT4_FC_REASON_INODE_JOURNAL_DATA] = "Data journalling", + [EXT4_FC_REASON_ENCRYPTED_FILENAME] = "Encrypted filename", +}; + +int ext4_fc_info_show(struct seq_file *seq, void *v) +{ + struct ext4_sb_info *sbi = EXT4_SB((struct super_block *)seq->private); + struct ext4_fc_stats *stats = &sbi->s_fc_stats; + int i; + + if (v != SEQ_START_TOKEN) + return 0; + + seq_printf(seq, + "fc stats:\n%ld commits\n%ld ineligible\n%ld numblks\n%lluus avg_commit_time\n", + stats->fc_num_commits, stats->fc_ineligible_commits, + stats->fc_numblks, + div_u64(stats->s_fc_avg_commit_time, 1000)); + seq_puts(seq, "Ineligible reasons:\n"); + for (i = 0; i < EXT4_FC_REASON_MAX; i++) + seq_printf(seq, "\"%s\":\t%d\n", fc_ineligible_reasons[i], + stats->fc_ineligible_reason_count[i]); + + return 0; +} + +int __init ext4_fc_init_dentry_cache(void) +{ + ext4_fc_dentry_cachep = KMEM_CACHE(ext4_fc_dentry_update, + SLAB_RECLAIM_ACCOUNT); + + if (ext4_fc_dentry_cachep == NULL) + return -ENOMEM; + + return 0; +} + +void ext4_fc_destroy_dentry_cache(void) +{ + kmem_cache_destroy(ext4_fc_dentry_cachep); +} |