diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-08-07 13:11:27 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-08-07 13:11:27 +0000 |
commit | 34996e42f82bfd60bc2c191e5cae3c6ab233ec6c (patch) | |
tree | 62db60558cbf089714b48daeabca82bf2b20b20e /fs/ntfs/layout.h | |
parent | Adding debian version 6.8.12-1. (diff) | |
download | linux-34996e42f82bfd60bc2c191e5cae3c6ab233ec6c.tar.xz linux-34996e42f82bfd60bc2c191e5cae3c6ab233ec6c.zip |
Merging upstream version 6.9.7.
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'fs/ntfs/layout.h')
-rw-r--r-- | fs/ntfs/layout.h | 2421 |
1 files changed, 0 insertions, 2421 deletions
diff --git a/fs/ntfs/layout.h b/fs/ntfs/layout.h deleted file mode 100644 index 5d4bf7a325..0000000000 --- a/fs/ntfs/layout.h +++ /dev/null @@ -1,2421 +0,0 @@ -/* SPDX-License-Identifier: GPL-2.0-or-later */ -/* - * layout.h - All NTFS associated on-disk structures. Part of the Linux-NTFS - * project. - * - * Copyright (c) 2001-2005 Anton Altaparmakov - * Copyright (c) 2002 Richard Russon - */ - -#ifndef _LINUX_NTFS_LAYOUT_H -#define _LINUX_NTFS_LAYOUT_H - -#include <linux/types.h> -#include <linux/bitops.h> -#include <linux/list.h> -#include <asm/byteorder.h> - -#include "types.h" - -/* The NTFS oem_id "NTFS " */ -#define magicNTFS cpu_to_le64(0x202020205346544eULL) - -/* - * Location of bootsector on partition: - * The standard NTFS_BOOT_SECTOR is on sector 0 of the partition. - * On NT4 and above there is one backup copy of the boot sector to - * be found on the last sector of the partition (not normally accessible - * from within Windows as the bootsector contained number of sectors - * value is one less than the actual value!). - * On versions of NT 3.51 and earlier, the backup copy was located at - * number of sectors/2 (integer divide), i.e. in the middle of the volume. - */ - -/* - * BIOS parameter block (bpb) structure. - */ -typedef struct { - le16 bytes_per_sector; /* Size of a sector in bytes. */ - u8 sectors_per_cluster; /* Size of a cluster in sectors. */ - le16 reserved_sectors; /* zero */ - u8 fats; /* zero */ - le16 root_entries; /* zero */ - le16 sectors; /* zero */ - u8 media_type; /* 0xf8 = hard disk */ - le16 sectors_per_fat; /* zero */ - le16 sectors_per_track; /* irrelevant */ - le16 heads; /* irrelevant */ - le32 hidden_sectors; /* zero */ - le32 large_sectors; /* zero */ -} __attribute__ ((__packed__)) BIOS_PARAMETER_BLOCK; - -/* - * NTFS boot sector structure. - */ -typedef struct { - u8 jump[3]; /* Irrelevant (jump to boot up code).*/ - le64 oem_id; /* Magic "NTFS ". */ - BIOS_PARAMETER_BLOCK bpb; /* See BIOS_PARAMETER_BLOCK. */ - u8 unused[4]; /* zero, NTFS diskedit.exe states that - this is actually: - __u8 physical_drive; // 0x80 - __u8 current_head; // zero - __u8 extended_boot_signature; - // 0x80 - __u8 unused; // zero - */ -/*0x28*/sle64 number_of_sectors; /* Number of sectors in volume. Gives - maximum volume size of 2^63 sectors. - Assuming standard sector size of 512 - bytes, the maximum byte size is - approx. 4.7x10^21 bytes. (-; */ - sle64 mft_lcn; /* Cluster location of mft data. */ - sle64 mftmirr_lcn; /* Cluster location of copy of mft. */ - s8 clusters_per_mft_record; /* Mft record size in clusters. */ - u8 reserved0[3]; /* zero */ - s8 clusters_per_index_record; /* Index block size in clusters. */ - u8 reserved1[3]; /* zero */ - le64 volume_serial_number; /* Irrelevant (serial number). */ - le32 checksum; /* Boot sector checksum. */ -/*0x54*/u8 bootstrap[426]; /* Irrelevant (boot up code). */ - le16 end_of_sector_marker; /* End of bootsector magic. Always is - 0xaa55 in little endian. */ -/* sizeof() = 512 (0x200) bytes */ -} __attribute__ ((__packed__)) NTFS_BOOT_SECTOR; - -/* - * Magic identifiers present at the beginning of all ntfs record containing - * records (like mft records for example). - */ -enum { - /* Found in $MFT/$DATA. */ - magic_FILE = cpu_to_le32(0x454c4946), /* Mft entry. */ - magic_INDX = cpu_to_le32(0x58444e49), /* Index buffer. */ - magic_HOLE = cpu_to_le32(0x454c4f48), /* ? (NTFS 3.0+?) */ - - /* Found in $LogFile/$DATA. */ - magic_RSTR = cpu_to_le32(0x52545352), /* Restart page. */ - magic_RCRD = cpu_to_le32(0x44524352), /* Log record page. */ - - /* Found in $LogFile/$DATA. (May be found in $MFT/$DATA, also?) */ - magic_CHKD = cpu_to_le32(0x444b4843), /* Modified by chkdsk. */ - - /* Found in all ntfs record containing records. */ - magic_BAAD = cpu_to_le32(0x44414142), /* Failed multi sector - transfer was detected. */ - /* - * Found in $LogFile/$DATA when a page is full of 0xff bytes and is - * thus not initialized. Page must be initialized before using it. - */ - magic_empty = cpu_to_le32(0xffffffff) /* Record is empty. */ -}; - -typedef le32 NTFS_RECORD_TYPE; - -/* - * Generic magic comparison macros. Finally found a use for the ## preprocessor - * operator! (-8 - */ - -static inline bool __ntfs_is_magic(le32 x, NTFS_RECORD_TYPE r) -{ - return (x == r); -} -#define ntfs_is_magic(x, m) __ntfs_is_magic(x, magic_##m) - -static inline bool __ntfs_is_magicp(le32 *p, NTFS_RECORD_TYPE r) -{ - return (*p == r); -} -#define ntfs_is_magicp(p, m) __ntfs_is_magicp(p, magic_##m) - -/* - * Specialised magic comparison macros for the NTFS_RECORD_TYPEs defined above. - */ -#define ntfs_is_file_record(x) ( ntfs_is_magic (x, FILE) ) -#define ntfs_is_file_recordp(p) ( ntfs_is_magicp(p, FILE) ) -#define ntfs_is_mft_record(x) ( ntfs_is_file_record (x) ) -#define ntfs_is_mft_recordp(p) ( ntfs_is_file_recordp(p) ) -#define ntfs_is_indx_record(x) ( ntfs_is_magic (x, INDX) ) -#define ntfs_is_indx_recordp(p) ( ntfs_is_magicp(p, INDX) ) -#define ntfs_is_hole_record(x) ( ntfs_is_magic (x, HOLE) ) -#define ntfs_is_hole_recordp(p) ( ntfs_is_magicp(p, HOLE) ) - -#define ntfs_is_rstr_record(x) ( ntfs_is_magic (x, RSTR) ) -#define ntfs_is_rstr_recordp(p) ( ntfs_is_magicp(p, RSTR) ) -#define ntfs_is_rcrd_record(x) ( ntfs_is_magic (x, RCRD) ) -#define ntfs_is_rcrd_recordp(p) ( ntfs_is_magicp(p, RCRD) ) - -#define ntfs_is_chkd_record(x) ( ntfs_is_magic (x, CHKD) ) -#define ntfs_is_chkd_recordp(p) ( ntfs_is_magicp(p, CHKD) ) - -#define ntfs_is_baad_record(x) ( ntfs_is_magic (x, BAAD) ) -#define ntfs_is_baad_recordp(p) ( ntfs_is_magicp(p, BAAD) ) - -#define ntfs_is_empty_record(x) ( ntfs_is_magic (x, empty) ) -#define ntfs_is_empty_recordp(p) ( ntfs_is_magicp(p, empty) ) - -/* - * The Update Sequence Array (usa) is an array of the le16 values which belong - * to the end of each sector protected by the update sequence record in which - * this array is contained. Note that the first entry is the Update Sequence - * Number (usn), a cyclic counter of how many times the protected record has - * been written to disk. The values 0 and -1 (ie. 0xffff) are not used. All - * last le16's of each sector have to be equal to the usn (during reading) or - * are set to it (during writing). If they are not, an incomplete multi sector - * transfer has occurred when the data was written. - * The maximum size for the update sequence array is fixed to: - * maximum size = usa_ofs + (usa_count * 2) = 510 bytes - * The 510 bytes comes from the fact that the last le16 in the array has to - * (obviously) finish before the last le16 of the first 512-byte sector. - * This formula can be used as a consistency check in that usa_ofs + - * (usa_count * 2) has to be less than or equal to 510. - */ -typedef struct { - NTFS_RECORD_TYPE magic; /* A four-byte magic identifying the record - type and/or status. */ - le16 usa_ofs; /* Offset to the Update Sequence Array (usa) - from the start of the ntfs record. */ - le16 usa_count; /* Number of le16 sized entries in the usa - including the Update Sequence Number (usn), - thus the number of fixups is the usa_count - minus 1. */ -} __attribute__ ((__packed__)) NTFS_RECORD; - -/* - * System files mft record numbers. All these files are always marked as used - * in the bitmap attribute of the mft; presumably in order to avoid accidental - * allocation for random other mft records. Also, the sequence number for each - * of the system files is always equal to their mft record number and it is - * never modified. - */ -typedef enum { - FILE_MFT = 0, /* Master file table (mft). Data attribute - contains the entries and bitmap attribute - records which ones are in use (bit==1). */ - FILE_MFTMirr = 1, /* Mft mirror: copy of first four mft records - in data attribute. If cluster size > 4kiB, - copy of first N mft records, with - N = cluster_size / mft_record_size. */ - FILE_LogFile = 2, /* Journalling log in data attribute. */ - FILE_Volume = 3, /* Volume name attribute and volume information - attribute (flags and ntfs version). Windows - refers to this file as volume DASD (Direct - Access Storage Device). */ - FILE_AttrDef = 4, /* Array of attribute definitions in data - attribute. */ - FILE_root = 5, /* Root directory. */ - FILE_Bitmap = 6, /* Allocation bitmap of all clusters (lcns) in - data attribute. */ - FILE_Boot = 7, /* Boot sector (always at cluster 0) in data - attribute. */ - FILE_BadClus = 8, /* Contains all bad clusters in the non-resident - data attribute. */ - FILE_Secure = 9, /* Shared security descriptors in data attribute - and two indexes into the descriptors. - Appeared in Windows 2000. Before that, this - file was named $Quota but was unused. */ - FILE_UpCase = 10, /* Uppercase equivalents of all 65536 Unicode - characters in data attribute. */ - FILE_Extend = 11, /* Directory containing other system files (eg. - $ObjId, $Quota, $Reparse and $UsnJrnl). This - is new to NTFS3.0. */ - FILE_reserved12 = 12, /* Reserved for future use (records 12-15). */ - FILE_reserved13 = 13, - FILE_reserved14 = 14, - FILE_reserved15 = 15, - FILE_first_user = 16, /* First user file, used as test limit for - whether to allow opening a file or not. */ -} NTFS_SYSTEM_FILES; - -/* - * These are the so far known MFT_RECORD_* flags (16-bit) which contain - * information about the mft record in which they are present. - */ -enum { - MFT_RECORD_IN_USE = cpu_to_le16(0x0001), - MFT_RECORD_IS_DIRECTORY = cpu_to_le16(0x0002), -} __attribute__ ((__packed__)); - -typedef le16 MFT_RECORD_FLAGS; - -/* - * mft references (aka file references or file record segment references) are - * used whenever a structure needs to refer to a record in the mft. - * - * A reference consists of a 48-bit index into the mft and a 16-bit sequence - * number used to detect stale references. - * - * For error reporting purposes we treat the 48-bit index as a signed quantity. - * - * The sequence number is a circular counter (skipping 0) describing how many - * times the referenced mft record has been (re)used. This has to match the - * sequence number of the mft record being referenced, otherwise the reference - * is considered stale and removed (FIXME: only ntfsck or the driver itself?). - * - * If the sequence number is zero it is assumed that no sequence number - * consistency checking should be performed. - * - * FIXME: Since inodes are 32-bit as of now, the driver needs to always check - * for high_part being 0 and if not either BUG(), cause a panic() or handle - * the situation in some other way. This shouldn't be a problem as a volume has - * to become HUGE in order to need more than 32-bits worth of mft records. - * Assuming the standard mft record size of 1kb only the records (never mind - * the non-resident attributes, etc.) would require 4Tb of space on their own - * for the first 32 bits worth of records. This is only if some strange person - * doesn't decide to foul play and make the mft sparse which would be a really - * horrible thing to do as it would trash our current driver implementation. )-: - * Do I hear screams "we want 64-bit inodes!" ?!? (-; - * - * FIXME: The mft zone is defined as the first 12% of the volume. This space is - * reserved so that the mft can grow contiguously and hence doesn't become - * fragmented. Volume free space includes the empty part of the mft zone and - * when the volume's free 88% are used up, the mft zone is shrunk by a factor - * of 2, thus making more space available for more files/data. This process is - * repeated every time there is no more free space except for the mft zone until - * there really is no more free space. - */ - -/* - * Typedef the MFT_REF as a 64-bit value for easier handling. - * Also define two unpacking macros to get to the reference (MREF) and - * sequence number (MSEQNO) respectively. - * The _LE versions are to be applied on little endian MFT_REFs. - * Note: The _LE versions will return a CPU endian formatted value! - */ -#define MFT_REF_MASK_CPU 0x0000ffffffffffffULL -#define MFT_REF_MASK_LE cpu_to_le64(MFT_REF_MASK_CPU) - -typedef u64 MFT_REF; -typedef le64 leMFT_REF; - -#define MK_MREF(m, s) ((MFT_REF)(((MFT_REF)(s) << 48) | \ - ((MFT_REF)(m) & MFT_REF_MASK_CPU))) -#define MK_LE_MREF(m, s) cpu_to_le64(MK_MREF(m, s)) - -#define MREF(x) ((unsigned long)((x) & MFT_REF_MASK_CPU)) -#define MSEQNO(x) ((u16)(((x) >> 48) & 0xffff)) -#define MREF_LE(x) ((unsigned long)(le64_to_cpu(x) & MFT_REF_MASK_CPU)) -#define MSEQNO_LE(x) ((u16)((le64_to_cpu(x) >> 48) & 0xffff)) - -#define IS_ERR_MREF(x) (((x) & 0x0000800000000000ULL) ? true : false) -#define ERR_MREF(x) ((u64)((s64)(x))) -#define MREF_ERR(x) ((int)((s64)(x))) - -/* - * The mft record header present at the beginning of every record in the mft. - * This is followed by a sequence of variable length attribute records which - * is terminated by an attribute of type AT_END which is a truncated attribute - * in that it only consists of the attribute type code AT_END and none of the - * other members of the attribute structure are present. - */ -typedef struct { -/*Ofs*/ -/* 0 NTFS_RECORD; -- Unfolded here as gcc doesn't like unnamed structs. */ - NTFS_RECORD_TYPE magic; /* Usually the magic is "FILE". */ - le16 usa_ofs; /* See NTFS_RECORD definition above. */ - le16 usa_count; /* See NTFS_RECORD definition above. */ - -/* 8*/ le64 lsn; /* $LogFile sequence number for this record. - Changed every time the record is modified. */ -/* 16*/ le16 sequence_number; /* Number of times this mft record has been - reused. (See description for MFT_REF - above.) NOTE: The increment (skipping zero) - is done when the file is deleted. NOTE: If - this is zero it is left zero. */ -/* 18*/ le16 link_count; /* Number of hard links, i.e. the number of - directory entries referencing this record. - NOTE: Only used in mft base records. - NOTE: When deleting a directory entry we - check the link_count and if it is 1 we - delete the file. Otherwise we delete the - FILE_NAME_ATTR being referenced by the - directory entry from the mft record and - decrement the link_count. - FIXME: Careful with Win32 + DOS names! */ -/* 20*/ le16 attrs_offset; /* Byte offset to the first attribute in this - mft record from the start of the mft record. - NOTE: Must be aligned to 8-byte boundary. */ -/* 22*/ MFT_RECORD_FLAGS flags; /* Bit array of MFT_RECORD_FLAGS. When a file - is deleted, the MFT_RECORD_IN_USE flag is - set to zero. */ -/* 24*/ le32 bytes_in_use; /* Number of bytes used in this mft record. - NOTE: Must be aligned to 8-byte boundary. */ -/* 28*/ le32 bytes_allocated; /* Number of bytes allocated for this mft - record. This should be equal to the mft - record size. */ -/* 32*/ leMFT_REF base_mft_record;/* This is zero for base mft records. - When it is not zero it is a mft reference - pointing to the base mft record to which - this record belongs (this is then used to - locate the attribute list attribute present - in the base record which describes this - extension record and hence might need - modification when the extension record - itself is modified, also locating the - attribute list also means finding the other - potential extents, belonging to the non-base - mft record). */ -/* 40*/ le16 next_attr_instance;/* The instance number that will be assigned to - the next attribute added to this mft record. - NOTE: Incremented each time after it is used. - NOTE: Every time the mft record is reused - this number is set to zero. NOTE: The first - instance number is always 0. */ -/* The below fields are specific to NTFS 3.1+ (Windows XP and above): */ -/* 42*/ le16 reserved; /* Reserved/alignment. */ -/* 44*/ le32 mft_record_number; /* Number of this mft record. */ -/* sizeof() = 48 bytes */ -/* - * When (re)using the mft record, we place the update sequence array at this - * offset, i.e. before we start with the attributes. This also makes sense, - * otherwise we could run into problems with the update sequence array - * containing in itself the last two bytes of a sector which would mean that - * multi sector transfer protection wouldn't work. As you can't protect data - * by overwriting it since you then can't get it back... - * When reading we obviously use the data from the ntfs record header. - */ -} __attribute__ ((__packed__)) MFT_RECORD; - -/* This is the version without the NTFS 3.1+ specific fields. */ -typedef struct { -/*Ofs*/ -/* 0 NTFS_RECORD; -- Unfolded here as gcc doesn't like unnamed structs. */ - NTFS_RECORD_TYPE magic; /* Usually the magic is "FILE". */ - le16 usa_ofs; /* See NTFS_RECORD definition above. */ - le16 usa_count; /* See NTFS_RECORD definition above. */ - -/* 8*/ le64 lsn; /* $LogFile sequence number for this record. - Changed every time the record is modified. */ -/* 16*/ le16 sequence_number; /* Number of times this mft record has been - reused. (See description for MFT_REF - above.) NOTE: The increment (skipping zero) - is done when the file is deleted. NOTE: If - this is zero it is left zero. */ -/* 18*/ le16 link_count; /* Number of hard links, i.e. the number of - directory entries referencing this record. - NOTE: Only used in mft base records. - NOTE: When deleting a directory entry we - check the link_count and if it is 1 we - delete the file. Otherwise we delete the - FILE_NAME_ATTR being referenced by the - directory entry from the mft record and - decrement the link_count. - FIXME: Careful with Win32 + DOS names! */ -/* 20*/ le16 attrs_offset; /* Byte offset to the first attribute in this - mft record from the start of the mft record. - NOTE: Must be aligned to 8-byte boundary. */ -/* 22*/ MFT_RECORD_FLAGS flags; /* Bit array of MFT_RECORD_FLAGS. When a file - is deleted, the MFT_RECORD_IN_USE flag is - set to zero. */ -/* 24*/ le32 bytes_in_use; /* Number of bytes used in this mft record. - NOTE: Must be aligned to 8-byte boundary. */ -/* 28*/ le32 bytes_allocated; /* Number of bytes allocated for this mft - record. This should be equal to the mft - record size. */ -/* 32*/ leMFT_REF base_mft_record;/* This is zero for base mft records. - When it is not zero it is a mft reference - pointing to the base mft record to which - this record belongs (this is then used to - locate the attribute list attribute present - in the base record which describes this - extension record and hence might need - modification when the extension record - itself is modified, also locating the - attribute list also means finding the other - potential extents, belonging to the non-base - mft record). */ -/* 40*/ le16 next_attr_instance;/* The instance number that will be assigned to - the next attribute added to this mft record. - NOTE: Incremented each time after it is used. - NOTE: Every time the mft record is reused - this number is set to zero. NOTE: The first - instance number is always 0. */ -/* sizeof() = 42 bytes */ -/* - * When (re)using the mft record, we place the update sequence array at this - * offset, i.e. before we start with the attributes. This also makes sense, - * otherwise we could run into problems with the update sequence array - * containing in itself the last two bytes of a sector which would mean that - * multi sector transfer protection wouldn't work. As you can't protect data - * by overwriting it since you then can't get it back... - * When reading we obviously use the data from the ntfs record header. - */ -} __attribute__ ((__packed__)) MFT_RECORD_OLD; - -/* - * System defined attributes (32-bit). Each attribute type has a corresponding - * attribute name (Unicode string of maximum 64 character length) as described - * by the attribute definitions present in the data attribute of the $AttrDef - * system file. On NTFS 3.0 volumes the names are just as the types are named - * in the below defines exchanging AT_ for the dollar sign ($). If that is not - * a revealing choice of symbol I do not know what is... (-; - */ -enum { - AT_UNUSED = cpu_to_le32( 0), - AT_STANDARD_INFORMATION = cpu_to_le32( 0x10), - AT_ATTRIBUTE_LIST = cpu_to_le32( 0x20), - AT_FILE_NAME = cpu_to_le32( 0x30), - AT_OBJECT_ID = cpu_to_le32( 0x40), - AT_SECURITY_DESCRIPTOR = cpu_to_le32( 0x50), - AT_VOLUME_NAME = cpu_to_le32( 0x60), - AT_VOLUME_INFORMATION = cpu_to_le32( 0x70), - AT_DATA = cpu_to_le32( 0x80), - AT_INDEX_ROOT = cpu_to_le32( 0x90), - AT_INDEX_ALLOCATION = cpu_to_le32( 0xa0), - AT_BITMAP = cpu_to_le32( 0xb0), - AT_REPARSE_POINT = cpu_to_le32( 0xc0), - AT_EA_INFORMATION = cpu_to_le32( 0xd0), - AT_EA = cpu_to_le32( 0xe0), - AT_PROPERTY_SET = cpu_to_le32( 0xf0), - AT_LOGGED_UTILITY_STREAM = cpu_to_le32( 0x100), - AT_FIRST_USER_DEFINED_ATTRIBUTE = cpu_to_le32( 0x1000), - AT_END = cpu_to_le32(0xffffffff) -}; - -typedef le32 ATTR_TYPE; - -/* - * The collation rules for sorting views/indexes/etc (32-bit). - * - * COLLATION_BINARY - Collate by binary compare where the first byte is most - * significant. - * COLLATION_UNICODE_STRING - Collate Unicode strings by comparing their binary - * Unicode values, except that when a character can be uppercased, the - * upper case value collates before the lower case one. - * COLLATION_FILE_NAME - Collate file names as Unicode strings. The collation - * is done very much like COLLATION_UNICODE_STRING. In fact I have no idea - * what the difference is. Perhaps the difference is that file names - * would treat some special characters in an odd way (see - * unistr.c::ntfs_collate_names() and unistr.c::legal_ansi_char_array[] - * for what I mean but COLLATION_UNICODE_STRING would not give any special - * treatment to any characters at all, but this is speculation. - * COLLATION_NTOFS_ULONG - Sorting is done according to ascending le32 key - * values. E.g. used for $SII index in FILE_Secure, which sorts by - * security_id (le32). - * COLLATION_NTOFS_SID - Sorting is done according to ascending SID values. - * E.g. used for $O index in FILE_Extend/$Quota. - * COLLATION_NTOFS_SECURITY_HASH - Sorting is done first by ascending hash - * values and second by ascending security_id values. E.g. used for $SDH - * index in FILE_Secure. - * COLLATION_NTOFS_ULONGS - Sorting is done according to a sequence of ascending - * le32 key values. E.g. used for $O index in FILE_Extend/$ObjId, which - * sorts by object_id (16-byte), by splitting up the object_id in four - * le32 values and using them as individual keys. E.g. take the following - * two security_ids, stored as follows on disk: - * 1st: a1 61 65 b7 65 7b d4 11 9e 3d 00 e0 81 10 42 59 - * 2nd: 38 14 37 d2 d2 f3 d4 11 a5 21 c8 6b 79 b1 97 45 - * To compare them, they are split into four le32 values each, like so: - * 1st: 0xb76561a1 0x11d47b65 0xe0003d9e 0x59421081 - * 2nd: 0xd2371438 0x11d4f3d2 0x6bc821a5 0x4597b179 - * Now, it is apparent why the 2nd object_id collates after the 1st: the - * first le32 value of the 1st object_id is less than the first le32 of - * the 2nd object_id. If the first le32 values of both object_ids were - * equal then the second le32 values would be compared, etc. - */ -enum { - COLLATION_BINARY = cpu_to_le32(0x00), - COLLATION_FILE_NAME = cpu_to_le32(0x01), - COLLATION_UNICODE_STRING = cpu_to_le32(0x02), - COLLATION_NTOFS_ULONG = cpu_to_le32(0x10), - COLLATION_NTOFS_SID = cpu_to_le32(0x11), - COLLATION_NTOFS_SECURITY_HASH = cpu_to_le32(0x12), - COLLATION_NTOFS_ULONGS = cpu_to_le32(0x13), -}; - -typedef le32 COLLATION_RULE; - -/* - * The flags (32-bit) describing attribute properties in the attribute - * definition structure. FIXME: This information is based on Regis's - * information and, according to him, it is not certain and probably - * incomplete. The INDEXABLE flag is fairly certainly correct as only the file - * name attribute has this flag set and this is the only attribute indexed in - * NT4. - */ -enum { - ATTR_DEF_INDEXABLE = cpu_to_le32(0x02), /* Attribute can be - indexed. */ - ATTR_DEF_MULTIPLE = cpu_to_le32(0x04), /* Attribute type - can be present multiple times in the - mft records of an inode. */ - ATTR_DEF_NOT_ZERO = cpu_to_le32(0x08), /* Attribute value - must contain at least one non-zero - byte. */ - ATTR_DEF_INDEXED_UNIQUE = cpu_to_le32(0x10), /* Attribute must be - indexed and the attribute value must be - unique for the attribute type in all of - the mft records of an inode. */ - ATTR_DEF_NAMED_UNIQUE = cpu_to_le32(0x20), /* Attribute must be - named and the name must be unique for - the attribute type in all of the mft - records of an inode. */ - ATTR_DEF_RESIDENT = cpu_to_le32(0x40), /* Attribute must be - resident. */ - ATTR_DEF_ALWAYS_LOG = cpu_to_le32(0x80), /* Always log - modifications to this attribute, - regardless of whether it is resident or - non-resident. Without this, only log - modifications if the attribute is - resident. */ -}; - -typedef le32 ATTR_DEF_FLAGS; - -/* - * The data attribute of FILE_AttrDef contains a sequence of attribute - * definitions for the NTFS volume. With this, it is supposed to be safe for an - * older NTFS driver to mount a volume containing a newer NTFS version without - * damaging it (that's the theory. In practice it's: not damaging it too much). - * Entries are sorted by attribute type. The flags describe whether the - * attribute can be resident/non-resident and possibly other things, but the - * actual bits are unknown. - */ -typedef struct { -/*hex ofs*/ -/* 0*/ ntfschar name[0x40]; /* Unicode name of the attribute. Zero - terminated. */ -/* 80*/ ATTR_TYPE type; /* Type of the attribute. */ -/* 84*/ le32 display_rule; /* Default display rule. - FIXME: What does it mean? (AIA) */ -/* 88*/ COLLATION_RULE collation_rule; /* Default collation rule. */ -/* 8c*/ ATTR_DEF_FLAGS flags; /* Flags describing the attribute. */ -/* 90*/ sle64 min_size; /* Optional minimum attribute size. */ -/* 98*/ sle64 max_size; /* Maximum size of attribute. */ -/* sizeof() = 0xa0 or 160 bytes */ -} __attribute__ ((__packed__)) ATTR_DEF; - -/* - * Attribute flags (16-bit). - */ -enum { - ATTR_IS_COMPRESSED = cpu_to_le16(0x0001), - ATTR_COMPRESSION_MASK = cpu_to_le16(0x00ff), /* Compression method - mask. Also, first - illegal value. */ - ATTR_IS_ENCRYPTED = cpu_to_le16(0x4000), - ATTR_IS_SPARSE = cpu_to_le16(0x8000), -} __attribute__ ((__packed__)); - -typedef le16 ATTR_FLAGS; - -/* - * Attribute compression. - * - * Only the data attribute is ever compressed in the current ntfs driver in - * Windows. Further, compression is only applied when the data attribute is - * non-resident. Finally, to use compression, the maximum allowed cluster size - * on a volume is 4kib. - * - * The compression method is based on independently compressing blocks of X - * clusters, where X is determined from the compression_unit value found in the - * non-resident attribute record header (more precisely: X = 2^compression_unit - * clusters). On Windows NT/2k, X always is 16 clusters (compression_unit = 4). - * - * There are three different cases of how a compression block of X clusters - * can be stored: - * - * 1) The data in the block is all zero (a sparse block): - * This is stored as a sparse block in the runlist, i.e. the runlist - * entry has length = X and lcn = -1. The mapping pairs array actually - * uses a delta_lcn value length of 0, i.e. delta_lcn is not present at - * all, which is then interpreted by the driver as lcn = -1. - * NOTE: Even uncompressed files can be sparse on NTFS 3.0 volumes, then - * the same principles apply as above, except that the length is not - * restricted to being any particular value. - * - * 2) The data in the block is not compressed: - * This happens when compression doesn't reduce the size of the block - * in clusters. I.e. if compression has a small effect so that the - * compressed data still occupies X clusters, then the uncompressed data - * is stored in the block. - * This case is recognised by the fact that the runlist entry has - * length = X and lcn >= 0. The mapping pairs array stores this as - * normal with a run length of X and some specific delta_lcn, i.e. - * delta_lcn has to be present. - * - * 3) The data in the block is compressed: - * The common case. This case is recognised by the fact that the run - * list entry has length L < X and lcn >= 0. The mapping pairs array - * stores this as normal with a run length of X and some specific - * delta_lcn, i.e. delta_lcn has to be present. This runlist entry is - * immediately followed by a sparse entry with length = X - L and - * lcn = -1. The latter entry is to make up the vcn counting to the - * full compression block size X. - * - * In fact, life is more complicated because adjacent entries of the same type - * can be coalesced. This means that one has to keep track of the number of - * clusters handled and work on a basis of X clusters at a time being one - * block. An example: if length L > X this means that this particular runlist - * entry contains a block of length X and part of one or more blocks of length - * L - X. Another example: if length L < X, this does not necessarily mean that - * the block is compressed as it might be that the lcn changes inside the block - * and hence the following runlist entry describes the continuation of the - * potentially compressed block. The block would be compressed if the - * following runlist entry describes at least X - L sparse clusters, thus - * making up the compression block length as described in point 3 above. (Of - * course, there can be several runlist entries with small lengths so that the - * sparse entry does not follow the first data containing entry with - * length < X.) - * - * NOTE: At the end of the compressed attribute value, there most likely is not - * just the right amount of data to make up a compression block, thus this data - * is not even attempted to be compressed. It is just stored as is, unless - * the number of clusters it occupies is reduced when compressed in which case - * it is stored as a compressed compression block, complete with sparse - * clusters at the end. - */ - -/* - * Flags of resident attributes (8-bit). - */ -enum { - RESIDENT_ATTR_IS_INDEXED = 0x01, /* Attribute is referenced in an index - (has implications for deleting and - modifying the attribute). */ -} __attribute__ ((__packed__)); - -typedef u8 RESIDENT_ATTR_FLAGS; - -/* - * Attribute record header. Always aligned to 8-byte boundary. - */ -typedef struct { -/*Ofs*/ -/* 0*/ ATTR_TYPE type; /* The (32-bit) type of the attribute. */ -/* 4*/ le32 length; /* Byte size of the resident part of the - attribute (aligned to 8-byte boundary). - Used to get to the next attribute. */ -/* 8*/ u8 non_resident; /* If 0, attribute is resident. - If 1, attribute is non-resident. */ -/* 9*/ u8 name_length; /* Unicode character size of name of attribute. - 0 if unnamed. */ -/* 10*/ le16 name_offset; /* If name_length != 0, the byte offset to the - beginning of the name from the attribute - record. Note that the name is stored as a - Unicode string. When creating, place offset - just at the end of the record header. Then, - follow with attribute value or mapping pairs - array, resident and non-resident attributes - respectively, aligning to an 8-byte - boundary. */ -/* 12*/ ATTR_FLAGS flags; /* Flags describing the attribute. */ -/* 14*/ le16 instance; /* The instance of this attribute record. This - number is unique within this mft record (see - MFT_RECORD/next_attribute_instance notes in - mft.h for more details). */ -/* 16*/ union { - /* Resident attributes. */ - struct { -/* 16 */ le32 value_length;/* Byte size of attribute value. */ -/* 20 */ le16 value_offset;/* Byte offset of the attribute - value from the start of the - attribute record. When creating, - align to 8-byte boundary if we - have a name present as this might - not have a length of a multiple - of 8-bytes. */ -/* 22 */ RESIDENT_ATTR_FLAGS flags; /* See above. */ -/* 23 */ s8 reserved; /* Reserved/alignment to 8-byte - boundary. */ - } __attribute__ ((__packed__)) resident; - /* Non-resident attributes. */ - struct { -/* 16*/ leVCN lowest_vcn;/* Lowest valid virtual cluster number - for this portion of the attribute value or - 0 if this is the only extent (usually the - case). - Only when an attribute list is used - does lowest_vcn != 0 ever occur. */ -/* 24*/ leVCN highest_vcn;/* Highest valid vcn of this extent of - the attribute value. - Usually there is only one - portion, so this usually equals the attribute - value size in clusters minus 1. Can be -1 for - zero length files. Can be 0 for "single extent" - attributes. */ -/* 32*/ le16 mapping_pairs_offset; /* Byte offset from the - beginning of the structure to the mapping pairs - array which contains the mappings between the - vcns and the logical cluster numbers (lcns). - When creating, place this at the end of this - record header aligned to 8-byte boundary. */ -/* 34*/ u8 compression_unit; /* The compression unit expressed - as the log to the base 2 of the number of - clusters in a compression unit. 0 means not - compressed. (This effectively limits the - compression unit size to be a power of two - clusters.) WinNT4 only uses a value of 4. - Sparse files have this set to 0 on XPSP2. */ -/* 35*/ u8 reserved[5]; /* Align to 8-byte boundary. */ -/* The sizes below are only used when lowest_vcn is zero, as otherwise it would - be difficult to keep them up-to-date.*/ -/* 40*/ sle64 allocated_size; /* Byte size of disk space - allocated to hold the attribute value. Always - is a multiple of the cluster size. When a file - is compressed, this field is a multiple of the - compression block size (2^compression_unit) and - it represents the logically allocated space - rather than the actual on disk usage. For this - use the compressed_size (see below). */ -/* 48*/ sle64 data_size; /* Byte size of the attribute - value. Can be larger than allocated_size if - attribute value is compressed or sparse. */ -/* 56*/ sle64 initialized_size; /* Byte size of initialized - portion of the attribute value. Usually equals - data_size. */ -/* sizeof(uncompressed attr) = 64*/ -/* 64*/ sle64 compressed_size; /* Byte size of the attribute - value after compression. Only present when - compressed or sparse. Always is a multiple of - the cluster size. Represents the actual amount - of disk space being used on the disk. */ -/* sizeof(compressed attr) = 72*/ - } __attribute__ ((__packed__)) non_resident; - } __attribute__ ((__packed__)) data; -} __attribute__ ((__packed__)) ATTR_RECORD; - -typedef ATTR_RECORD ATTR_REC; - -/* - * File attribute flags (32-bit) appearing in the file_attributes fields of the - * STANDARD_INFORMATION attribute of MFT_RECORDs and the FILENAME_ATTR - * attributes of MFT_RECORDs and directory index entries. - * - * All of the below flags appear in the directory index entries but only some - * appear in the STANDARD_INFORMATION attribute whilst only some others appear - * in the FILENAME_ATTR attribute of MFT_RECORDs. Unless otherwise stated the - * flags appear in all of the above. - */ -enum { - FILE_ATTR_READONLY = cpu_to_le32(0x00000001), - FILE_ATTR_HIDDEN = cpu_to_le32(0x00000002), - FILE_ATTR_SYSTEM = cpu_to_le32(0x00000004), - /* Old DOS volid. Unused in NT. = cpu_to_le32(0x00000008), */ - - FILE_ATTR_DIRECTORY = cpu_to_le32(0x00000010), - /* Note, FILE_ATTR_DIRECTORY is not considered valid in NT. It is - reserved for the DOS SUBDIRECTORY flag. */ - FILE_ATTR_ARCHIVE = cpu_to_le32(0x00000020), - FILE_ATTR_DEVICE = cpu_to_le32(0x00000040), - FILE_ATTR_NORMAL = cpu_to_le32(0x00000080), - - FILE_ATTR_TEMPORARY = cpu_to_le32(0x00000100), - FILE_ATTR_SPARSE_FILE = cpu_to_le32(0x00000200), - FILE_ATTR_REPARSE_POINT = cpu_to_le32(0x00000400), - FILE_ATTR_COMPRESSED = cpu_to_le32(0x00000800), - - FILE_ATTR_OFFLINE = cpu_to_le32(0x00001000), - FILE_ATTR_NOT_CONTENT_INDEXED = cpu_to_le32(0x00002000), - FILE_ATTR_ENCRYPTED = cpu_to_le32(0x00004000), - - FILE_ATTR_VALID_FLAGS = cpu_to_le32(0x00007fb7), - /* Note, FILE_ATTR_VALID_FLAGS masks out the old DOS VolId and the - FILE_ATTR_DEVICE and preserves everything else. This mask is used - to obtain all flags that are valid for reading. */ - FILE_ATTR_VALID_SET_FLAGS = cpu_to_le32(0x000031a7), - /* Note, FILE_ATTR_VALID_SET_FLAGS masks out the old DOS VolId, the - F_A_DEVICE, F_A_DIRECTORY, F_A_SPARSE_FILE, F_A_REPARSE_POINT, - F_A_COMPRESSED, and F_A_ENCRYPTED and preserves the rest. This mask - is used to obtain all flags that are valid for setting. */ - /* - * The flag FILE_ATTR_DUP_FILENAME_INDEX_PRESENT is present in all - * FILENAME_ATTR attributes but not in the STANDARD_INFORMATION - * attribute of an mft record. - */ - FILE_ATTR_DUP_FILE_NAME_INDEX_PRESENT = cpu_to_le32(0x10000000), - /* Note, this is a copy of the corresponding bit from the mft record, - telling us whether this is a directory or not, i.e. whether it has - an index root attribute or not. */ - FILE_ATTR_DUP_VIEW_INDEX_PRESENT = cpu_to_le32(0x20000000), - /* Note, this is a copy of the corresponding bit from the mft record, - telling us whether this file has a view index present (eg. object id - index, quota index, one of the security indexes or the encrypting - filesystem related indexes). */ -}; - -typedef le32 FILE_ATTR_FLAGS; - -/* - * NOTE on times in NTFS: All times are in MS standard time format, i.e. they - * are the number of 100-nanosecond intervals since 1st January 1601, 00:00:00 - * universal coordinated time (UTC). (In Linux time starts 1st January 1970, - * 00:00:00 UTC and is stored as the number of 1-second intervals since then.) - */ - -/* - * Attribute: Standard information (0x10). - * - * NOTE: Always resident. - * NOTE: Present in all base file records on a volume. - * NOTE: There is conflicting information about the meaning of each of the time - * fields but the meaning as defined below has been verified to be - * correct by practical experimentation on Windows NT4 SP6a and is hence - * assumed to be the one and only correct interpretation. - */ -typedef struct { -/*Ofs*/ -/* 0*/ sle64 creation_time; /* Time file was created. Updated when - a filename is changed(?). */ -/* 8*/ sle64 last_data_change_time; /* Time the data attribute was last - modified. */ -/* 16*/ sle64 last_mft_change_time; /* Time this mft record was last - modified. */ -/* 24*/ sle64 last_access_time; /* Approximate time when the file was - last accessed (obviously this is not - updated on read-only volumes). In - Windows this is only updated when - accessed if some time delta has - passed since the last update. Also, - last access time updates can be - disabled altogether for speed. */ -/* 32*/ FILE_ATTR_FLAGS file_attributes; /* Flags describing the file. */ -/* 36*/ union { - /* NTFS 1.2 */ - struct { - /* 36*/ u8 reserved12[12]; /* Reserved/alignment to 8-byte - boundary. */ - } __attribute__ ((__packed__)) v1; - /* sizeof() = 48 bytes */ - /* NTFS 3.x */ - struct { -/* - * If a volume has been upgraded from a previous NTFS version, then these - * fields are present only if the file has been accessed since the upgrade. - * Recognize the difference by comparing the length of the resident attribute - * value. If it is 48, then the following fields are missing. If it is 72 then - * the fields are present. Maybe just check like this: - * if (resident.ValueLength < sizeof(STANDARD_INFORMATION)) { - * Assume NTFS 1.2- format. - * If (volume version is 3.x) - * Upgrade attribute to NTFS 3.x format. - * else - * Use NTFS 1.2- format for access. - * } else - * Use NTFS 3.x format for access. - * Only problem is that it might be legal to set the length of the value to - * arbitrarily large values thus spoiling this check. - But chkdsk probably - * views that as a corruption, assuming that it behaves like this for all - * attributes. - */ - /* 36*/ le32 maximum_versions; /* Maximum allowed versions for - file. Zero if version numbering is disabled. */ - /* 40*/ le32 version_number; /* This file's version (if any). - Set to zero if maximum_versions is zero. */ - /* 44*/ le32 class_id; /* Class id from bidirectional - class id index (?). */ - /* 48*/ le32 owner_id; /* Owner_id of the user owning - the file. Translate via $Q index in FILE_Extend - /$Quota to the quota control entry for the user - owning the file. Zero if quotas are disabled. */ - /* 52*/ le32 security_id; /* Security_id for the file. - Translate via $SII index and $SDS data stream - in FILE_Secure to the security descriptor. */ - /* 56*/ le64 quota_charged; /* Byte size of the charge to - the quota for all streams of the file. Note: Is - zero if quotas are disabled. */ - /* 64*/ leUSN usn; /* Last update sequence number - of the file. This is a direct index into the - transaction log file ($UsnJrnl). It is zero if - the usn journal is disabled or this file has - not been subject to logging yet. See usnjrnl.h - for details. */ - } __attribute__ ((__packed__)) v3; - /* sizeof() = 72 bytes (NTFS 3.x) */ - } __attribute__ ((__packed__)) ver; -} __attribute__ ((__packed__)) STANDARD_INFORMATION; - -/* - * Attribute: Attribute list (0x20). - * - * - Can be either resident or non-resident. - * - Value consists of a sequence of variable length, 8-byte aligned, - * ATTR_LIST_ENTRY records. - * - The list is not terminated by anything at all! The only way to know when - * the end is reached is to keep track of the current offset and compare it to - * the attribute value size. - * - The attribute list attribute contains one entry for each attribute of - * the file in which the list is located, except for the list attribute - * itself. The list is sorted: first by attribute type, second by attribute - * name (if present), third by instance number. The extents of one - * non-resident attribute (if present) immediately follow after the initial - * extent. They are ordered by lowest_vcn and have their instace set to zero. - * It is not allowed to have two attributes with all sorting keys equal. - * - Further restrictions: - * - If not resident, the vcn to lcn mapping array has to fit inside the - * base mft record. - * - The attribute list attribute value has a maximum size of 256kb. This - * is imposed by the Windows cache manager. - * - Attribute lists are only used when the attributes of mft record do not - * fit inside the mft record despite all attributes (that can be made - * non-resident) having been made non-resident. This can happen e.g. when: - * - File has a large number of hard links (lots of file name - * attributes present). - * - The mapping pairs array of some non-resident attribute becomes so - * large due to fragmentation that it overflows the mft record. - * - The security descriptor is very complex (not applicable to - * NTFS 3.0 volumes). - * - There are many named streams. - */ -typedef struct { -/*Ofs*/ -/* 0*/ ATTR_TYPE type; /* Type of referenced attribute. */ -/* 4*/ le16 length; /* Byte size of this entry (8-byte aligned). */ -/* 6*/ u8 name_length; /* Size in Unicode chars of the name of the - attribute or 0 if unnamed. */ -/* 7*/ u8 name_offset; /* Byte offset to beginning of attribute name - (always set this to where the name would - start even if unnamed). */ -/* 8*/ leVCN lowest_vcn; /* Lowest virtual cluster number of this portion - of the attribute value. This is usually 0. It - is non-zero for the case where one attribute - does not fit into one mft record and thus - several mft records are allocated to hold - this attribute. In the latter case, each mft - record holds one extent of the attribute and - there is one attribute list entry for each - extent. NOTE: This is DEFINITELY a signed - value! The windows driver uses cmp, followed - by jg when comparing this, thus it treats it - as signed. */ -/* 16*/ leMFT_REF mft_reference;/* The reference of the mft record holding - the ATTR_RECORD for this portion of the - attribute value. */ -/* 24*/ le16 instance; /* If lowest_vcn = 0, the instance of the - attribute being referenced; otherwise 0. */ -/* 26*/ ntfschar name[0]; /* Use when creating only. When reading use - name_offset to determine the location of the - name. */ -/* sizeof() = 26 + (attribute_name_length * 2) bytes */ -} __attribute__ ((__packed__)) ATTR_LIST_ENTRY; - -/* - * The maximum allowed length for a file name. - */ -#define MAXIMUM_FILE_NAME_LENGTH 255 - -/* - * Possible namespaces for filenames in ntfs (8-bit). - */ -enum { - FILE_NAME_POSIX = 0x00, - /* This is the largest namespace. It is case sensitive and allows all - Unicode characters except for: '\0' and '/'. Beware that in - WinNT/2k/2003 by default files which eg have the same name except - for their case will not be distinguished by the standard utilities - and thus a "del filename" will delete both "filename" and "fileName" - without warning. However if for example Services For Unix (SFU) are - installed and the case sensitive option was enabled at installation - time, then you can create/access/delete such files. - Note that even SFU places restrictions on the filenames beyond the - '\0' and '/' and in particular the following set of characters is - not allowed: '"', '/', '<', '>', '\'. All other characters, - including the ones no allowed in WIN32 namespace are allowed. - Tested with SFU 3.5 (this is now free) running on Windows XP. */ - FILE_NAME_WIN32 = 0x01, - /* The standard WinNT/2k NTFS long filenames. Case insensitive. All - Unicode chars except: '\0', '"', '*', '/', ':', '<', '>', '?', '\', - and '|'. Further, names cannot end with a '.' or a space. */ - FILE_NAME_DOS = 0x02, - /* The standard DOS filenames (8.3 format). Uppercase only. All 8-bit - characters greater space, except: '"', '*', '+', ',', '/', ':', ';', - '<', '=', '>', '?', and '\'. */ - FILE_NAME_WIN32_AND_DOS = 0x03, - /* 3 means that both the Win32 and the DOS filenames are identical and - hence have been saved in this single filename record. */ -} __attribute__ ((__packed__)); - -typedef u8 FILE_NAME_TYPE_FLAGS; - -/* - * Attribute: Filename (0x30). - * - * NOTE: Always resident. - * NOTE: All fields, except the parent_directory, are only updated when the - * filename is changed. Until then, they just become out of sync with - * reality and the more up to date values are present in the standard - * information attribute. - * NOTE: There is conflicting information about the meaning of each of the time - * fields but the meaning as defined below has been verified to be - * correct by practical experimentation on Windows NT4 SP6a and is hence - * assumed to be the one and only correct interpretation. - */ -typedef struct { -/*hex ofs*/ -/* 0*/ leMFT_REF parent_directory; /* Directory this filename is - referenced from. */ -/* 8*/ sle64 creation_time; /* Time file was created. */ -/* 10*/ sle64 last_data_change_time; /* Time the data attribute was last - modified. */ -/* 18*/ sle64 last_mft_change_time; /* Time this mft record was last - modified. */ -/* 20*/ sle64 last_access_time; /* Time this mft record was last - accessed. */ -/* 28*/ sle64 allocated_size; /* Byte size of on-disk allocated space - for the unnamed data attribute. So - for normal $DATA, this is the - allocated_size from the unnamed - $DATA attribute and for compressed - and/or sparse $DATA, this is the - compressed_size from the unnamed - $DATA attribute. For a directory or - other inode without an unnamed $DATA - attribute, this is always 0. NOTE: - This is a multiple of the cluster - size. */ -/* 30*/ sle64 data_size; /* Byte size of actual data in unnamed - data attribute. For a directory or - other inode without an unnamed $DATA - attribute, this is always 0. */ -/* 38*/ FILE_ATTR_FLAGS file_attributes; /* Flags describing the file. */ -/* 3c*/ union { - /* 3c*/ struct { - /* 3c*/ le16 packed_ea_size; /* Size of the buffer needed to - pack the extended attributes - (EAs), if such are present.*/ - /* 3e*/ le16 reserved; /* Reserved for alignment. */ - } __attribute__ ((__packed__)) ea; - /* 3c*/ struct { - /* 3c*/ le32 reparse_point_tag; /* Type of reparse point, - present only in reparse - points and only if there are - no EAs. */ - } __attribute__ ((__packed__)) rp; - } __attribute__ ((__packed__)) type; -/* 40*/ u8 file_name_length; /* Length of file name in - (Unicode) characters. */ -/* 41*/ FILE_NAME_TYPE_FLAGS file_name_type; /* Namespace of the file name.*/ -/* 42*/ ntfschar file_name[0]; /* File name in Unicode. */ -} __attribute__ ((__packed__)) FILE_NAME_ATTR; - -/* - * GUID structures store globally unique identifiers (GUID). A GUID is a - * 128-bit value consisting of one group of eight hexadecimal digits, followed - * by three groups of four hexadecimal digits each, followed by one group of - * twelve hexadecimal digits. GUIDs are Microsoft's implementation of the - * distributed computing environment (DCE) universally unique identifier (UUID). - * Example of a GUID: - * 1F010768-5A73-BC91-0010A52216A7 - */ -typedef struct { - le32 data1; /* The first eight hexadecimal digits of the GUID. */ - le16 data2; /* The first group of four hexadecimal digits. */ - le16 data3; /* The second group of four hexadecimal digits. */ - u8 data4[8]; /* The first two bytes are the third group of four - hexadecimal digits. The remaining six bytes are the - final 12 hexadecimal digits. */ -} __attribute__ ((__packed__)) GUID; - -/* - * FILE_Extend/$ObjId contains an index named $O. This index contains all - * object_ids present on the volume as the index keys and the corresponding - * mft_record numbers as the index entry data parts. The data part (defined - * below) also contains three other object_ids: - * birth_volume_id - object_id of FILE_Volume on which the file was first - * created. Optional (i.e. can be zero). - * birth_object_id - object_id of file when it was first created. Usually - * equals the object_id. Optional (i.e. can be zero). - * domain_id - Reserved (always zero). - */ -typedef struct { - leMFT_REF mft_reference;/* Mft record containing the object_id in - the index entry key. */ - union { - struct { - GUID birth_volume_id; - GUID birth_object_id; - GUID domain_id; - } __attribute__ ((__packed__)) origin; - u8 extended_info[48]; - } __attribute__ ((__packed__)) opt; -} __attribute__ ((__packed__)) OBJ_ID_INDEX_DATA; - -/* - * Attribute: Object id (NTFS 3.0+) (0x40). - * - * NOTE: Always resident. - */ -typedef struct { - GUID object_id; /* Unique id assigned to the - file.*/ - /* The following fields are optional. The attribute value size is 16 - bytes, i.e. sizeof(GUID), if these are not present at all. Note, - the entries can be present but one or more (or all) can be zero - meaning that that particular value(s) is(are) not defined. */ - union { - struct { - GUID birth_volume_id; /* Unique id of volume on which - the file was first created.*/ - GUID birth_object_id; /* Unique id of file when it was - first created. */ - GUID domain_id; /* Reserved, zero. */ - } __attribute__ ((__packed__)) origin; - u8 extended_info[48]; - } __attribute__ ((__packed__)) opt; -} __attribute__ ((__packed__)) OBJECT_ID_ATTR; - -/* - * The pre-defined IDENTIFIER_AUTHORITIES used as SID_IDENTIFIER_AUTHORITY in - * the SID structure (see below). - */ -//typedef enum { /* SID string prefix. */ -// SECURITY_NULL_SID_AUTHORITY = {0, 0, 0, 0, 0, 0}, /* S-1-0 */ -// SECURITY_WORLD_SID_AUTHORITY = {0, 0, 0, 0, 0, 1}, /* S-1-1 */ -// SECURITY_LOCAL_SID_AUTHORITY = {0, 0, 0, 0, 0, 2}, /* S-1-2 */ -// SECURITY_CREATOR_SID_AUTHORITY = {0, 0, 0, 0, 0, 3}, /* S-1-3 */ -// SECURITY_NON_UNIQUE_AUTHORITY = {0, 0, 0, 0, 0, 4}, /* S-1-4 */ -// SECURITY_NT_SID_AUTHORITY = {0, 0, 0, 0, 0, 5}, /* S-1-5 */ -//} IDENTIFIER_AUTHORITIES; - -/* - * These relative identifiers (RIDs) are used with the above identifier - * authorities to make up universal well-known SIDs. - * - * Note: The relative identifier (RID) refers to the portion of a SID, which - * identifies a user or group in relation to the authority that issued the SID. - * For example, the universal well-known SID Creator Owner ID (S-1-3-0) is - * made up of the identifier authority SECURITY_CREATOR_SID_AUTHORITY (3) and - * the relative identifier SECURITY_CREATOR_OWNER_RID (0). - */ -typedef enum { /* Identifier authority. */ - SECURITY_NULL_RID = 0, /* S-1-0 */ - SECURITY_WORLD_RID = 0, /* S-1-1 */ - SECURITY_LOCAL_RID = 0, /* S-1-2 */ - - SECURITY_CREATOR_OWNER_RID = 0, /* S-1-3 */ - SECURITY_CREATOR_GROUP_RID = 1, /* S-1-3 */ - - SECURITY_CREATOR_OWNER_SERVER_RID = 2, /* S-1-3 */ - SECURITY_CREATOR_GROUP_SERVER_RID = 3, /* S-1-3 */ - - SECURITY_DIALUP_RID = 1, - SECURITY_NETWORK_RID = 2, - SECURITY_BATCH_RID = 3, - SECURITY_INTERACTIVE_RID = 4, - SECURITY_SERVICE_RID = 6, - SECURITY_ANONYMOUS_LOGON_RID = 7, - SECURITY_PROXY_RID = 8, - SECURITY_ENTERPRISE_CONTROLLERS_RID=9, - SECURITY_SERVER_LOGON_RID = 9, - SECURITY_PRINCIPAL_SELF_RID = 0xa, - SECURITY_AUTHENTICATED_USER_RID = 0xb, - SECURITY_RESTRICTED_CODE_RID = 0xc, - SECURITY_TERMINAL_SERVER_RID = 0xd, - - SECURITY_LOGON_IDS_RID = 5, - SECURITY_LOGON_IDS_RID_COUNT = 3, - - SECURITY_LOCAL_SYSTEM_RID = 0x12, - - SECURITY_NT_NON_UNIQUE = 0x15, - - SECURITY_BUILTIN_DOMAIN_RID = 0x20, - - /* - * Well-known domain relative sub-authority values (RIDs). - */ - - /* Users. */ - DOMAIN_USER_RID_ADMIN = 0x1f4, - DOMAIN_USER_RID_GUEST = 0x1f5, - DOMAIN_USER_RID_KRBTGT = 0x1f6, - - /* Groups. */ - DOMAIN_GROUP_RID_ADMINS = 0x200, - DOMAIN_GROUP_RID_USERS = 0x201, - DOMAIN_GROUP_RID_GUESTS = 0x202, - DOMAIN_GROUP_RID_COMPUTERS = 0x203, - DOMAIN_GROUP_RID_CONTROLLERS = 0x204, - DOMAIN_GROUP_RID_CERT_ADMINS = 0x205, - DOMAIN_GROUP_RID_SCHEMA_ADMINS = 0x206, - DOMAIN_GROUP_RID_ENTERPRISE_ADMINS= 0x207, - DOMAIN_GROUP_RID_POLICY_ADMINS = 0x208, - - /* Aliases. */ - DOMAIN_ALIAS_RID_ADMINS = 0x220, - DOMAIN_ALIAS_RID_USERS = 0x221, - DOMAIN_ALIAS_RID_GUESTS = 0x222, - DOMAIN_ALIAS_RID_POWER_USERS = 0x223, - - DOMAIN_ALIAS_RID_ACCOUNT_OPS = 0x224, - DOMAIN_ALIAS_RID_SYSTEM_OPS = 0x225, - DOMAIN_ALIAS_RID_PRINT_OPS = 0x226, - DOMAIN_ALIAS_RID_BACKUP_OPS = 0x227, - - DOMAIN_ALIAS_RID_REPLICATOR = 0x228, - DOMAIN_ALIAS_RID_RAS_SERVERS = 0x229, - DOMAIN_ALIAS_RID_PREW2KCOMPACCESS = 0x22a, -} RELATIVE_IDENTIFIERS; - -/* - * The universal well-known SIDs: - * - * NULL_SID S-1-0-0 - * WORLD_SID S-1-1-0 - * LOCAL_SID S-1-2-0 - * CREATOR_OWNER_SID S-1-3-0 - * CREATOR_GROUP_SID S-1-3-1 - * CREATOR_OWNER_SERVER_SID S-1-3-2 - * CREATOR_GROUP_SERVER_SID S-1-3-3 - * - * (Non-unique IDs) S-1-4 - * - * NT well-known SIDs: - * - * NT_AUTHORITY_SID S-1-5 - * DIALUP_SID S-1-5-1 - * - * NETWORD_SID S-1-5-2 - * BATCH_SID S-1-5-3 - * INTERACTIVE_SID S-1-5-4 - * SERVICE_SID S-1-5-6 - * ANONYMOUS_LOGON_SID S-1-5-7 (aka null logon session) - * PROXY_SID S-1-5-8 - * SERVER_LOGON_SID S-1-5-9 (aka domain controller account) - * SELF_SID S-1-5-10 (self RID) - * AUTHENTICATED_USER_SID S-1-5-11 - * RESTRICTED_CODE_SID S-1-5-12 (running restricted code) - * TERMINAL_SERVER_SID S-1-5-13 (running on terminal server) - * - * (Logon IDs) S-1-5-5-X-Y - * - * (NT non-unique IDs) S-1-5-0x15-... - * - * (Built-in domain) S-1-5-0x20 - */ - -/* - * The SID_IDENTIFIER_AUTHORITY is a 48-bit value used in the SID structure. - * - * NOTE: This is stored as a big endian number, hence the high_part comes - * before the low_part. - */ -typedef union { - struct { - u16 high_part; /* High 16-bits. */ - u32 low_part; /* Low 32-bits. */ - } __attribute__ ((__packed__)) parts; - u8 value[6]; /* Value as individual bytes. */ -} __attribute__ ((__packed__)) SID_IDENTIFIER_AUTHORITY; - -/* - * The SID structure is a variable-length structure used to uniquely identify - * users or groups. SID stands for security identifier. - * - * The standard textual representation of the SID is of the form: - * S-R-I-S-S... - * Where: - * - The first "S" is the literal character 'S' identifying the following - * digits as a SID. - * - R is the revision level of the SID expressed as a sequence of digits - * either in decimal or hexadecimal (if the later, prefixed by "0x"). - * - I is the 48-bit identifier_authority, expressed as digits as R above. - * - S... is one or more sub_authority values, expressed as digits as above. - * - * Example SID; the domain-relative SID of the local Administrators group on - * Windows NT/2k: - * S-1-5-32-544 - * This translates to a SID with: - * revision = 1, - * sub_authority_count = 2, - * identifier_authority = {0,0,0,0,0,5}, // SECURITY_NT_AUTHORITY - * sub_authority[0] = 32, // SECURITY_BUILTIN_DOMAIN_RID - * sub_authority[1] = 544 // DOMAIN_ALIAS_RID_ADMINS - */ -typedef struct { - u8 revision; - u8 sub_authority_count; - SID_IDENTIFIER_AUTHORITY identifier_authority; - le32 sub_authority[1]; /* At least one sub_authority. */ -} __attribute__ ((__packed__)) SID; - -/* - * Current constants for SIDs. - */ -typedef enum { - SID_REVISION = 1, /* Current revision level. */ - SID_MAX_SUB_AUTHORITIES = 15, /* Maximum number of those. */ - SID_RECOMMENDED_SUB_AUTHORITIES = 1, /* Will change to around 6 in - a future revision. */ -} SID_CONSTANTS; - -/* - * The predefined ACE types (8-bit, see below). - */ -enum { - ACCESS_MIN_MS_ACE_TYPE = 0, - ACCESS_ALLOWED_ACE_TYPE = 0, - ACCESS_DENIED_ACE_TYPE = 1, - SYSTEM_AUDIT_ACE_TYPE = 2, - SYSTEM_ALARM_ACE_TYPE = 3, /* Not implemented as of Win2k. */ - ACCESS_MAX_MS_V2_ACE_TYPE = 3, - - ACCESS_ALLOWED_COMPOUND_ACE_TYPE= 4, - ACCESS_MAX_MS_V3_ACE_TYPE = 4, - - /* The following are Win2k only. */ - ACCESS_MIN_MS_OBJECT_ACE_TYPE = 5, - ACCESS_ALLOWED_OBJECT_ACE_TYPE = 5, - ACCESS_DENIED_OBJECT_ACE_TYPE = 6, - SYSTEM_AUDIT_OBJECT_ACE_TYPE = 7, - SYSTEM_ALARM_OBJECT_ACE_TYPE = 8, - ACCESS_MAX_MS_OBJECT_ACE_TYPE = 8, - - ACCESS_MAX_MS_V4_ACE_TYPE = 8, - - /* This one is for WinNT/2k. */ - ACCESS_MAX_MS_ACE_TYPE = 8, -} __attribute__ ((__packed__)); - -typedef u8 ACE_TYPES; - -/* - * The ACE flags (8-bit) for audit and inheritance (see below). - * - * SUCCESSFUL_ACCESS_ACE_FLAG is only used with system audit and alarm ACE - * types to indicate that a message is generated (in Windows!) for successful - * accesses. - * - * FAILED_ACCESS_ACE_FLAG is only used with system audit and alarm ACE types - * to indicate that a message is generated (in Windows!) for failed accesses. - */ -enum { - /* The inheritance flags. */ - OBJECT_INHERIT_ACE = 0x01, - CONTAINER_INHERIT_ACE = 0x02, - NO_PROPAGATE_INHERIT_ACE = 0x04, - INHERIT_ONLY_ACE = 0x08, - INHERITED_ACE = 0x10, /* Win2k only. */ - VALID_INHERIT_FLAGS = 0x1f, - - /* The audit flags. */ - SUCCESSFUL_ACCESS_ACE_FLAG = 0x40, - FAILED_ACCESS_ACE_FLAG = 0x80, -} __attribute__ ((__packed__)); - -typedef u8 ACE_FLAGS; - -/* - * An ACE is an access-control entry in an access-control list (ACL). - * An ACE defines access to an object for a specific user or group or defines - * the types of access that generate system-administration messages or alarms - * for a specific user or group. The user or group is identified by a security - * identifier (SID). - * - * Each ACE starts with an ACE_HEADER structure (aligned on 4-byte boundary), - * which specifies the type and size of the ACE. The format of the subsequent - * data depends on the ACE type. - */ -typedef struct { -/*Ofs*/ -/* 0*/ ACE_TYPES type; /* Type of the ACE. */ -/* 1*/ ACE_FLAGS flags; /* Flags describing the ACE. */ -/* 2*/ le16 size; /* Size in bytes of the ACE. */ -} __attribute__ ((__packed__)) ACE_HEADER; - -/* - * The access mask (32-bit). Defines the access rights. - * - * The specific rights (bits 0 to 15). These depend on the type of the object - * being secured by the ACE. - */ -enum { - /* Specific rights for files and directories are as follows: */ - - /* Right to read data from the file. (FILE) */ - FILE_READ_DATA = cpu_to_le32(0x00000001), - /* Right to list contents of a directory. (DIRECTORY) */ - FILE_LIST_DIRECTORY = cpu_to_le32(0x00000001), - - /* Right to write data to the file. (FILE) */ - FILE_WRITE_DATA = cpu_to_le32(0x00000002), - /* Right to create a file in the directory. (DIRECTORY) */ - FILE_ADD_FILE = cpu_to_le32(0x00000002), - - /* Right to append data to the file. (FILE) */ - FILE_APPEND_DATA = cpu_to_le32(0x00000004), - /* Right to create a subdirectory. (DIRECTORY) */ - FILE_ADD_SUBDIRECTORY = cpu_to_le32(0x00000004), - - /* Right to read extended attributes. (FILE/DIRECTORY) */ - FILE_READ_EA = cpu_to_le32(0x00000008), - - /* Right to write extended attributes. (FILE/DIRECTORY) */ - FILE_WRITE_EA = cpu_to_le32(0x00000010), - - /* Right to execute a file. (FILE) */ - FILE_EXECUTE = cpu_to_le32(0x00000020), - /* Right to traverse the directory. (DIRECTORY) */ - FILE_TRAVERSE = cpu_to_le32(0x00000020), - - /* - * Right to delete a directory and all the files it contains (its - * children), even if the files are read-only. (DIRECTORY) - */ - FILE_DELETE_CHILD = cpu_to_le32(0x00000040), - - /* Right to read file attributes. (FILE/DIRECTORY) */ - FILE_READ_ATTRIBUTES = cpu_to_le32(0x00000080), - - /* Right to change file attributes. (FILE/DIRECTORY) */ - FILE_WRITE_ATTRIBUTES = cpu_to_le32(0x00000100), - - /* - * The standard rights (bits 16 to 23). These are independent of the - * type of object being secured. - */ - - /* Right to delete the object. */ - DELETE = cpu_to_le32(0x00010000), - - /* - * Right to read the information in the object's security descriptor, - * not including the information in the SACL, i.e. right to read the - * security descriptor and owner. - */ - READ_CONTROL = cpu_to_le32(0x00020000), - - /* Right to modify the DACL in the object's security descriptor. */ - WRITE_DAC = cpu_to_le32(0x00040000), - - /* Right to change the owner in the object's security descriptor. */ - WRITE_OWNER = cpu_to_le32(0x00080000), - - /* - * Right to use the object for synchronization. Enables a process to - * wait until the object is in the signalled state. Some object types - * do not support this access right. - */ - SYNCHRONIZE = cpu_to_le32(0x00100000), - - /* - * The following STANDARD_RIGHTS_* are combinations of the above for - * convenience and are defined by the Win32 API. - */ - - /* These are currently defined to READ_CONTROL. */ - STANDARD_RIGHTS_READ = cpu_to_le32(0x00020000), - STANDARD_RIGHTS_WRITE = cpu_to_le32(0x00020000), - STANDARD_RIGHTS_EXECUTE = cpu_to_le32(0x00020000), - - /* Combines DELETE, READ_CONTROL, WRITE_DAC, and WRITE_OWNER access. */ - STANDARD_RIGHTS_REQUIRED = cpu_to_le32(0x000f0000), - - /* - * Combines DELETE, READ_CONTROL, WRITE_DAC, WRITE_OWNER, and - * SYNCHRONIZE access. - */ - STANDARD_RIGHTS_ALL = cpu_to_le32(0x001f0000), - - /* - * The access system ACL and maximum allowed access types (bits 24 to - * 25, bits 26 to 27 are reserved). - */ - ACCESS_SYSTEM_SECURITY = cpu_to_le32(0x01000000), - MAXIMUM_ALLOWED = cpu_to_le32(0x02000000), - - /* - * The generic rights (bits 28 to 31). These map onto the standard and - * specific rights. - */ - - /* Read, write, and execute access. */ - GENERIC_ALL = cpu_to_le32(0x10000000), - - /* Execute access. */ - GENERIC_EXECUTE = cpu_to_le32(0x20000000), - - /* - * Write access. For files, this maps onto: - * FILE_APPEND_DATA | FILE_WRITE_ATTRIBUTES | FILE_WRITE_DATA | - * FILE_WRITE_EA | STANDARD_RIGHTS_WRITE | SYNCHRONIZE - * For directories, the mapping has the same numerical value. See - * above for the descriptions of the rights granted. - */ - GENERIC_WRITE = cpu_to_le32(0x40000000), - - /* - * Read access. For files, this maps onto: - * FILE_READ_ATTRIBUTES | FILE_READ_DATA | FILE_READ_EA | - * STANDARD_RIGHTS_READ | SYNCHRONIZE - * For directories, the mapping has the same numberical value. See - * above for the descriptions of the rights granted. - */ - GENERIC_READ = cpu_to_le32(0x80000000), -}; - -typedef le32 ACCESS_MASK; - -/* - * The generic mapping array. Used to denote the mapping of each generic - * access right to a specific access mask. - * - * FIXME: What exactly is this and what is it for? (AIA) - */ -typedef struct { - ACCESS_MASK generic_read; - ACCESS_MASK generic_write; - ACCESS_MASK generic_execute; - ACCESS_MASK generic_all; -} __attribute__ ((__packed__)) GENERIC_MAPPING; - -/* - * The predefined ACE type structures are as defined below. - */ - -/* - * ACCESS_ALLOWED_ACE, ACCESS_DENIED_ACE, SYSTEM_AUDIT_ACE, SYSTEM_ALARM_ACE - */ -typedef struct { -/* 0 ACE_HEADER; -- Unfolded here as gcc doesn't like unnamed structs. */ - ACE_TYPES type; /* Type of the ACE. */ - ACE_FLAGS flags; /* Flags describing the ACE. */ - le16 size; /* Size in bytes of the ACE. */ -/* 4*/ ACCESS_MASK mask; /* Access mask associated with the ACE. */ - -/* 8*/ SID sid; /* The SID associated with the ACE. */ -} __attribute__ ((__packed__)) ACCESS_ALLOWED_ACE, ACCESS_DENIED_ACE, - SYSTEM_AUDIT_ACE, SYSTEM_ALARM_ACE; - -/* - * The object ACE flags (32-bit). - */ -enum { - ACE_OBJECT_TYPE_PRESENT = cpu_to_le32(1), - ACE_INHERITED_OBJECT_TYPE_PRESENT = cpu_to_le32(2), -}; - -typedef le32 OBJECT_ACE_FLAGS; - -typedef struct { -/* 0 ACE_HEADER; -- Unfolded here as gcc doesn't like unnamed structs. */ - ACE_TYPES type; /* Type of the ACE. */ - ACE_FLAGS flags; /* Flags describing the ACE. */ - le16 size; /* Size in bytes of the ACE. */ -/* 4*/ ACCESS_MASK mask; /* Access mask associated with the ACE. */ - -/* 8*/ OBJECT_ACE_FLAGS object_flags; /* Flags describing the object ACE. */ -/* 12*/ GUID object_type; -/* 28*/ GUID inherited_object_type; - -/* 44*/ SID sid; /* The SID associated with the ACE. */ -} __attribute__ ((__packed__)) ACCESS_ALLOWED_OBJECT_ACE, - ACCESS_DENIED_OBJECT_ACE, - SYSTEM_AUDIT_OBJECT_ACE, - SYSTEM_ALARM_OBJECT_ACE; - -/* - * An ACL is an access-control list (ACL). - * An ACL starts with an ACL header structure, which specifies the size of - * the ACL and the number of ACEs it contains. The ACL header is followed by - * zero or more access control entries (ACEs). The ACL as well as each ACE - * are aligned on 4-byte boundaries. - */ -typedef struct { - u8 revision; /* Revision of this ACL. */ - u8 alignment1; - le16 size; /* Allocated space in bytes for ACL. Includes this - header, the ACEs and the remaining free space. */ - le16 ace_count; /* Number of ACEs in the ACL. */ - le16 alignment2; -/* sizeof() = 8 bytes */ -} __attribute__ ((__packed__)) ACL; - -/* - * Current constants for ACLs. - */ -typedef enum { - /* Current revision. */ - ACL_REVISION = 2, - ACL_REVISION_DS = 4, - - /* History of revisions. */ - ACL_REVISION1 = 1, - MIN_ACL_REVISION = 2, - ACL_REVISION2 = 2, - ACL_REVISION3 = 3, - ACL_REVISION4 = 4, - MAX_ACL_REVISION = 4, -} ACL_CONSTANTS; - -/* - * The security descriptor control flags (16-bit). - * - * SE_OWNER_DEFAULTED - This boolean flag, when set, indicates that the SID - * pointed to by the Owner field was provided by a defaulting mechanism - * rather than explicitly provided by the original provider of the - * security descriptor. This may affect the treatment of the SID with - * respect to inheritance of an owner. - * - * SE_GROUP_DEFAULTED - This boolean flag, when set, indicates that the SID in - * the Group field was provided by a defaulting mechanism rather than - * explicitly provided by the original provider of the security - * descriptor. This may affect the treatment of the SID with respect to - * inheritance of a primary group. - * - * SE_DACL_PRESENT - This boolean flag, when set, indicates that the security - * descriptor contains a discretionary ACL. If this flag is set and the - * Dacl field of the SECURITY_DESCRIPTOR is null, then a null ACL is - * explicitly being specified. - * - * SE_DACL_DEFAULTED - This boolean flag, when set, indicates that the ACL - * pointed to by the Dacl field was provided by a defaulting mechanism - * rather than explicitly provided by the original provider of the - * security descriptor. This may affect the treatment of the ACL with - * respect to inheritance of an ACL. This flag is ignored if the - * DaclPresent flag is not set. - * - * SE_SACL_PRESENT - This boolean flag, when set, indicates that the security - * descriptor contains a system ACL pointed to by the Sacl field. If this - * flag is set and the Sacl field of the SECURITY_DESCRIPTOR is null, then - * an empty (but present) ACL is being specified. - * - * SE_SACL_DEFAULTED - This boolean flag, when set, indicates that the ACL - * pointed to by the Sacl field was provided by a defaulting mechanism - * rather than explicitly provided by the original provider of the - * security descriptor. This may affect the treatment of the ACL with - * respect to inheritance of an ACL. This flag is ignored if the - * SaclPresent flag is not set. - * - * SE_SELF_RELATIVE - This boolean flag, when set, indicates that the security - * descriptor is in self-relative form. In this form, all fields of the - * security descriptor are contiguous in memory and all pointer fields are - * expressed as offsets from the beginning of the security descriptor. - */ -enum { - SE_OWNER_DEFAULTED = cpu_to_le16(0x0001), - SE_GROUP_DEFAULTED = cpu_to_le16(0x0002), - SE_DACL_PRESENT = cpu_to_le16(0x0004), - SE_DACL_DEFAULTED = cpu_to_le16(0x0008), - - SE_SACL_PRESENT = cpu_to_le16(0x0010), - SE_SACL_DEFAULTED = cpu_to_le16(0x0020), - - SE_DACL_AUTO_INHERIT_REQ = cpu_to_le16(0x0100), - SE_SACL_AUTO_INHERIT_REQ = cpu_to_le16(0x0200), - SE_DACL_AUTO_INHERITED = cpu_to_le16(0x0400), - SE_SACL_AUTO_INHERITED = cpu_to_le16(0x0800), - - SE_DACL_PROTECTED = cpu_to_le16(0x1000), - SE_SACL_PROTECTED = cpu_to_le16(0x2000), - SE_RM_CONTROL_VALID = cpu_to_le16(0x4000), - SE_SELF_RELATIVE = cpu_to_le16(0x8000) -} __attribute__ ((__packed__)); - -typedef le16 SECURITY_DESCRIPTOR_CONTROL; - -/* - * Self-relative security descriptor. Contains the owner and group SIDs as well - * as the sacl and dacl ACLs inside the security descriptor itself. - */ -typedef struct { - u8 revision; /* Revision level of the security descriptor. */ - u8 alignment; - SECURITY_DESCRIPTOR_CONTROL control; /* Flags qualifying the type of - the descriptor as well as the following fields. */ - le32 owner; /* Byte offset to a SID representing an object's - owner. If this is NULL, no owner SID is present in - the descriptor. */ - le32 group; /* Byte offset to a SID representing an object's - primary group. If this is NULL, no primary group - SID is present in the descriptor. */ - le32 sacl; /* Byte offset to a system ACL. Only valid, if - SE_SACL_PRESENT is set in the control field. If - SE_SACL_PRESENT is set but sacl is NULL, a NULL ACL - is specified. */ - le32 dacl; /* Byte offset to a discretionary ACL. Only valid, if - SE_DACL_PRESENT is set in the control field. If - SE_DACL_PRESENT is set but dacl is NULL, a NULL ACL - (unconditionally granting access) is specified. */ -/* sizeof() = 0x14 bytes */ -} __attribute__ ((__packed__)) SECURITY_DESCRIPTOR_RELATIVE; - -/* - * Absolute security descriptor. Does not contain the owner and group SIDs, nor - * the sacl and dacl ACLs inside the security descriptor. Instead, it contains - * pointers to these structures in memory. Obviously, absolute security - * descriptors are only useful for in memory representations of security - * descriptors. On disk, a self-relative security descriptor is used. - */ -typedef struct { - u8 revision; /* Revision level of the security descriptor. */ - u8 alignment; - SECURITY_DESCRIPTOR_CONTROL control; /* Flags qualifying the type of - the descriptor as well as the following fields. */ - SID *owner; /* Points to a SID representing an object's owner. If - this is NULL, no owner SID is present in the - descriptor. */ - SID *group; /* Points to a SID representing an object's primary - group. If this is NULL, no primary group SID is - present in the descriptor. */ - ACL *sacl; /* Points to a system ACL. Only valid, if - SE_SACL_PRESENT is set in the control field. If - SE_SACL_PRESENT is set but sacl is NULL, a NULL ACL - is specified. */ - ACL *dacl; /* Points to a discretionary ACL. Only valid, if - SE_DACL_PRESENT is set in the control field. If - SE_DACL_PRESENT is set but dacl is NULL, a NULL ACL - (unconditionally granting access) is specified. */ -} __attribute__ ((__packed__)) SECURITY_DESCRIPTOR; - -/* - * Current constants for security descriptors. - */ -typedef enum { - /* Current revision. */ - SECURITY_DESCRIPTOR_REVISION = 1, - SECURITY_DESCRIPTOR_REVISION1 = 1, - - /* The sizes of both the absolute and relative security descriptors is - the same as pointers, at least on ia32 architecture are 32-bit. */ - SECURITY_DESCRIPTOR_MIN_LENGTH = sizeof(SECURITY_DESCRIPTOR), -} SECURITY_DESCRIPTOR_CONSTANTS; - -/* - * Attribute: Security descriptor (0x50). A standard self-relative security - * descriptor. - * - * NOTE: Can be resident or non-resident. - * NOTE: Not used in NTFS 3.0+, as security descriptors are stored centrally - * in FILE_Secure and the correct descriptor is found using the security_id - * from the standard information attribute. - */ -typedef SECURITY_DESCRIPTOR_RELATIVE SECURITY_DESCRIPTOR_ATTR; - -/* - * On NTFS 3.0+, all security descriptors are stored in FILE_Secure. Only one - * referenced instance of each unique security descriptor is stored. - * - * FILE_Secure contains no unnamed data attribute, i.e. it has zero length. It - * does, however, contain two indexes ($SDH and $SII) as well as a named data - * stream ($SDS). - * - * Every unique security descriptor is assigned a unique security identifier - * (security_id, not to be confused with a SID). The security_id is unique for - * the NTFS volume and is used as an index into the $SII index, which maps - * security_ids to the security descriptor's storage location within the $SDS - * data attribute. The $SII index is sorted by ascending security_id. - * - * A simple hash is computed from each security descriptor. This hash is used - * as an index into the $SDH index, which maps security descriptor hashes to - * the security descriptor's storage location within the $SDS data attribute. - * The $SDH index is sorted by security descriptor hash and is stored in a B+ - * tree. When searching $SDH (with the intent of determining whether or not a - * new security descriptor is already present in the $SDS data stream), if a - * matching hash is found, but the security descriptors do not match, the - * search in the $SDH index is continued, searching for a next matching hash. - * - * When a precise match is found, the security_id coresponding to the security - * descriptor in the $SDS attribute is read from the found $SDH index entry and - * is stored in the $STANDARD_INFORMATION attribute of the file/directory to - * which the security descriptor is being applied. The $STANDARD_INFORMATION - * attribute is present in all base mft records (i.e. in all files and - * directories). - * - * If a match is not found, the security descriptor is assigned a new unique - * security_id and is added to the $SDS data attribute. Then, entries - * referencing the this security descriptor in the $SDS data attribute are - * added to the $SDH and $SII indexes. - * - * Note: Entries are never deleted from FILE_Secure, even if nothing - * references an entry any more. - */ - -/* - * This header precedes each security descriptor in the $SDS data stream. - * This is also the index entry data part of both the $SII and $SDH indexes. - */ -typedef struct { - le32 hash; /* Hash of the security descriptor. */ - le32 security_id; /* The security_id assigned to the descriptor. */ - le64 offset; /* Byte offset of this entry in the $SDS stream. */ - le32 length; /* Size in bytes of this entry in $SDS stream. */ -} __attribute__ ((__packed__)) SECURITY_DESCRIPTOR_HEADER; - -/* - * The $SDS data stream contains the security descriptors, aligned on 16-byte - * boundaries, sorted by security_id in a B+ tree. Security descriptors cannot - * cross 256kib boundaries (this restriction is imposed by the Windows cache - * manager). Each security descriptor is contained in a SDS_ENTRY structure. - * Also, each security descriptor is stored twice in the $SDS stream with a - * fixed offset of 0x40000 bytes (256kib, the Windows cache manager's max size) - * between them; i.e. if a SDS_ENTRY specifies an offset of 0x51d0, then the - * first copy of the security descriptor will be at offset 0x51d0 in the - * $SDS data stream and the second copy will be at offset 0x451d0. - */ -typedef struct { -/*Ofs*/ -/* 0 SECURITY_DESCRIPTOR_HEADER; -- Unfolded here as gcc doesn't like - unnamed structs. */ - le32 hash; /* Hash of the security descriptor. */ - le32 security_id; /* The security_id assigned to the descriptor. */ - le64 offset; /* Byte offset of this entry in the $SDS stream. */ - le32 length; /* Size in bytes of this entry in $SDS stream. */ -/* 20*/ SECURITY_DESCRIPTOR_RELATIVE sid; /* The self-relative security - descriptor. */ -} __attribute__ ((__packed__)) SDS_ENTRY; - -/* - * The index entry key used in the $SII index. The collation type is - * COLLATION_NTOFS_ULONG. - */ -typedef struct { - le32 security_id; /* The security_id assigned to the descriptor. */ -} __attribute__ ((__packed__)) SII_INDEX_KEY; - -/* - * The index entry key used in the $SDH index. The keys are sorted first by - * hash and then by security_id. The collation rule is - * COLLATION_NTOFS_SECURITY_HASH. - */ -typedef struct { - le32 hash; /* Hash of the security descriptor. */ - le32 security_id; /* The security_id assigned to the descriptor. */ -} __attribute__ ((__packed__)) SDH_INDEX_KEY; - -/* - * Attribute: Volume name (0x60). - * - * NOTE: Always resident. - * NOTE: Present only in FILE_Volume. - */ -typedef struct { - ntfschar name[0]; /* The name of the volume in Unicode. */ -} __attribute__ ((__packed__)) VOLUME_NAME; - -/* - * Possible flags for the volume (16-bit). - */ -enum { - VOLUME_IS_DIRTY = cpu_to_le16(0x0001), - VOLUME_RESIZE_LOG_FILE = cpu_to_le16(0x0002), - VOLUME_UPGRADE_ON_MOUNT = cpu_to_le16(0x0004), - VOLUME_MOUNTED_ON_NT4 = cpu_to_le16(0x0008), - - VOLUME_DELETE_USN_UNDERWAY = cpu_to_le16(0x0010), - VOLUME_REPAIR_OBJECT_ID = cpu_to_le16(0x0020), - - VOLUME_CHKDSK_UNDERWAY = cpu_to_le16(0x4000), - VOLUME_MODIFIED_BY_CHKDSK = cpu_to_le16(0x8000), - - VOLUME_FLAGS_MASK = cpu_to_le16(0xc03f), - - /* To make our life easier when checking if we must mount read-only. */ - VOLUME_MUST_MOUNT_RO_MASK = cpu_to_le16(0xc027), -} __attribute__ ((__packed__)); - -typedef le16 VOLUME_FLAGS; - -/* - * Attribute: Volume information (0x70). - * - * NOTE: Always resident. - * NOTE: Present only in FILE_Volume. - * NOTE: Windows 2000 uses NTFS 3.0 while Windows NT4 service pack 6a uses - * NTFS 1.2. I haven't personally seen other values yet. - */ -typedef struct { - le64 reserved; /* Not used (yet?). */ - u8 major_ver; /* Major version of the ntfs format. */ - u8 minor_ver; /* Minor version of the ntfs format. */ - VOLUME_FLAGS flags; /* Bit array of VOLUME_* flags. */ -} __attribute__ ((__packed__)) VOLUME_INFORMATION; - -/* - * Attribute: Data attribute (0x80). - * - * NOTE: Can be resident or non-resident. - * - * Data contents of a file (i.e. the unnamed stream) or of a named stream. - */ -typedef struct { - u8 data[0]; /* The file's data contents. */ -} __attribute__ ((__packed__)) DATA_ATTR; - -/* - * Index header flags (8-bit). - */ -enum { - /* - * When index header is in an index root attribute: - */ - SMALL_INDEX = 0, /* The index is small enough to fit inside the index - root attribute and there is no index allocation - attribute present. */ - LARGE_INDEX = 1, /* The index is too large to fit in the index root - attribute and/or an index allocation attribute is - present. */ - /* - * When index header is in an index block, i.e. is part of index - * allocation attribute: - */ - LEAF_NODE = 0, /* This is a leaf node, i.e. there are no more nodes - branching off it. */ - INDEX_NODE = 1, /* This node indexes other nodes, i.e. it is not a leaf - node. */ - NODE_MASK = 1, /* Mask for accessing the *_NODE bits. */ -} __attribute__ ((__packed__)); - -typedef u8 INDEX_HEADER_FLAGS; - -/* - * This is the header for indexes, describing the INDEX_ENTRY records, which - * follow the INDEX_HEADER. Together the index header and the index entries - * make up a complete index. - * - * IMPORTANT NOTE: The offset, length and size structure members are counted - * relative to the start of the index header structure and not relative to the - * start of the index root or index allocation structures themselves. - */ -typedef struct { - le32 entries_offset; /* Byte offset to first INDEX_ENTRY - aligned to 8-byte boundary. */ - le32 index_length; /* Data size of the index in bytes, - i.e. bytes used from allocated - size, aligned to 8-byte boundary. */ - le32 allocated_size; /* Byte size of this index (block), - multiple of 8 bytes. */ - /* NOTE: For the index root attribute, the above two numbers are always - equal, as the attribute is resident and it is resized as needed. In - the case of the index allocation attribute the attribute is not - resident and hence the allocated_size is a fixed value and must - equal the index_block_size specified by the INDEX_ROOT attribute - corresponding to the INDEX_ALLOCATION attribute this INDEX_BLOCK - belongs to. */ - INDEX_HEADER_FLAGS flags; /* Bit field of INDEX_HEADER_FLAGS. */ - u8 reserved[3]; /* Reserved/align to 8-byte boundary. */ -} __attribute__ ((__packed__)) INDEX_HEADER; - -/* - * Attribute: Index root (0x90). - * - * NOTE: Always resident. - * - * This is followed by a sequence of index entries (INDEX_ENTRY structures) - * as described by the index header. - * - * When a directory is small enough to fit inside the index root then this - * is the only attribute describing the directory. When the directory is too - * large to fit in the index root, on the other hand, two additional attributes - * are present: an index allocation attribute, containing sub-nodes of the B+ - * directory tree (see below), and a bitmap attribute, describing which virtual - * cluster numbers (vcns) in the index allocation attribute are in use by an - * index block. - * - * NOTE: The root directory (FILE_root) contains an entry for itself. Other - * directories do not contain entries for themselves, though. - */ -typedef struct { - ATTR_TYPE type; /* Type of the indexed attribute. Is - $FILE_NAME for directories, zero - for view indexes. No other values - allowed. */ - COLLATION_RULE collation_rule; /* Collation rule used to sort the - index entries. If type is $FILE_NAME, - this must be COLLATION_FILE_NAME. */ - le32 index_block_size; /* Size of each index block in bytes (in - the index allocation attribute). */ - u8 clusters_per_index_block; /* Cluster size of each index block (in - the index allocation attribute), when - an index block is >= than a cluster, - otherwise this will be the log of - the size (like how the encoding of - the mft record size and the index - record size found in the boot sector - work). Has to be a power of 2. */ - u8 reserved[3]; /* Reserved/align to 8-byte boundary. */ - INDEX_HEADER index; /* Index header describing the - following index entries. */ -} __attribute__ ((__packed__)) INDEX_ROOT; - -/* - * Attribute: Index allocation (0xa0). - * - * NOTE: Always non-resident (doesn't make sense to be resident anyway!). - * - * This is an array of index blocks. Each index block starts with an - * INDEX_BLOCK structure containing an index header, followed by a sequence of - * index entries (INDEX_ENTRY structures), as described by the INDEX_HEADER. - */ -typedef struct { -/* 0 NTFS_RECORD; -- Unfolded here as gcc doesn't like unnamed structs. */ - NTFS_RECORD_TYPE magic; /* Magic is "INDX". */ - le16 usa_ofs; /* See NTFS_RECORD definition. */ - le16 usa_count; /* See NTFS_RECORD definition. */ - -/* 8*/ sle64 lsn; /* $LogFile sequence number of the last - modification of this index block. */ -/* 16*/ leVCN index_block_vcn; /* Virtual cluster number of the index block. - If the cluster_size on the volume is <= the - index_block_size of the directory, - index_block_vcn counts in units of clusters, - and in units of sectors otherwise. */ -/* 24*/ INDEX_HEADER index; /* Describes the following index entries. */ -/* sizeof()= 40 (0x28) bytes */ -/* - * When creating the index block, we place the update sequence array at this - * offset, i.e. before we start with the index entries. This also makes sense, - * otherwise we could run into problems with the update sequence array - * containing in itself the last two bytes of a sector which would mean that - * multi sector transfer protection wouldn't work. As you can't protect data - * by overwriting it since you then can't get it back... - * When reading use the data from the ntfs record header. - */ -} __attribute__ ((__packed__)) INDEX_BLOCK; - -typedef INDEX_BLOCK INDEX_ALLOCATION; - -/* - * The system file FILE_Extend/$Reparse contains an index named $R listing - * all reparse points on the volume. The index entry keys are as defined - * below. Note, that there is no index data associated with the index entries. - * - * The index entries are sorted by the index key file_id. The collation rule is - * COLLATION_NTOFS_ULONGS. FIXME: Verify whether the reparse_tag is not the - * primary key / is not a key at all. (AIA) - */ -typedef struct { - le32 reparse_tag; /* Reparse point type (inc. flags). */ - leMFT_REF file_id; /* Mft record of the file containing the - reparse point attribute. */ -} __attribute__ ((__packed__)) REPARSE_INDEX_KEY; - -/* - * Quota flags (32-bit). - * - * The user quota flags. Names explain meaning. - */ -enum { - QUOTA_FLAG_DEFAULT_LIMITS = cpu_to_le32(0x00000001), - QUOTA_FLAG_LIMIT_REACHED = cpu_to_le32(0x00000002), - QUOTA_FLAG_ID_DELETED = cpu_to_le32(0x00000004), - - QUOTA_FLAG_USER_MASK = cpu_to_le32(0x00000007), - /* This is a bit mask for the user quota flags. */ - - /* - * These flags are only present in the quota defaults index entry, i.e. - * in the entry where owner_id = QUOTA_DEFAULTS_ID. - */ - QUOTA_FLAG_TRACKING_ENABLED = cpu_to_le32(0x00000010), - QUOTA_FLAG_ENFORCEMENT_ENABLED = cpu_to_le32(0x00000020), - QUOTA_FLAG_TRACKING_REQUESTED = cpu_to_le32(0x00000040), - QUOTA_FLAG_LOG_THRESHOLD = cpu_to_le32(0x00000080), - - QUOTA_FLAG_LOG_LIMIT = cpu_to_le32(0x00000100), - QUOTA_FLAG_OUT_OF_DATE = cpu_to_le32(0x00000200), - QUOTA_FLAG_CORRUPT = cpu_to_le32(0x00000400), - QUOTA_FLAG_PENDING_DELETES = cpu_to_le32(0x00000800), -}; - -typedef le32 QUOTA_FLAGS; - -/* - * The system file FILE_Extend/$Quota contains two indexes $O and $Q. Quotas - * are on a per volume and per user basis. - * - * The $Q index contains one entry for each existing user_id on the volume. The - * index key is the user_id of the user/group owning this quota control entry, - * i.e. the key is the owner_id. The user_id of the owner of a file, i.e. the - * owner_id, is found in the standard information attribute. The collation rule - * for $Q is COLLATION_NTOFS_ULONG. - * - * The $O index contains one entry for each user/group who has been assigned - * a quota on that volume. The index key holds the SID of the user_id the - * entry belongs to, i.e. the owner_id. The collation rule for $O is - * COLLATION_NTOFS_SID. - * - * The $O index entry data is the user_id of the user corresponding to the SID. - * This user_id is used as an index into $Q to find the quota control entry - * associated with the SID. - * - * The $Q index entry data is the quota control entry and is defined below. - */ -typedef struct { - le32 version; /* Currently equals 2. */ - QUOTA_FLAGS flags; /* Flags describing this quota entry. */ - le64 bytes_used; /* How many bytes of the quota are in use. */ - sle64 change_time; /* Last time this quota entry was changed. */ - sle64 threshold; /* Soft quota (-1 if not limited). */ - sle64 limit; /* Hard quota (-1 if not limited). */ - sle64 exceeded_time; /* How long the soft quota has been exceeded. */ - SID sid; /* The SID of the user/object associated with - this quota entry. Equals zero for the quota - defaults entry (and in fact on a WinXP - volume, it is not present at all). */ -} __attribute__ ((__packed__)) QUOTA_CONTROL_ENTRY; - -/* - * Predefined owner_id values (32-bit). - */ -enum { - QUOTA_INVALID_ID = cpu_to_le32(0x00000000), - QUOTA_DEFAULTS_ID = cpu_to_le32(0x00000001), - QUOTA_FIRST_USER_ID = cpu_to_le32(0x00000100), -}; - -/* - * Current constants for quota control entries. - */ -typedef enum { - /* Current version. */ - QUOTA_VERSION = 2, -} QUOTA_CONTROL_ENTRY_CONSTANTS; - -/* - * Index entry flags (16-bit). - */ -enum { - INDEX_ENTRY_NODE = cpu_to_le16(1), /* This entry contains a - sub-node, i.e. a reference to an index block in form of - a virtual cluster number (see below). */ - INDEX_ENTRY_END = cpu_to_le16(2), /* This signifies the last - entry in an index block. The index entry does not - represent a file but it can point to a sub-node. */ - - INDEX_ENTRY_SPACE_FILLER = cpu_to_le16(0xffff), /* gcc: Force - enum bit width to 16-bit. */ -} __attribute__ ((__packed__)); - -typedef le16 INDEX_ENTRY_FLAGS; - -/* - * This the index entry header (see below). - */ -typedef struct { -/* 0*/ union { - struct { /* Only valid when INDEX_ENTRY_END is not set. */ - leMFT_REF indexed_file; /* The mft reference of the file - described by this index - entry. Used for directory - indexes. */ - } __attribute__ ((__packed__)) dir; - struct { /* Used for views/indexes to find the entry's data. */ - le16 data_offset; /* Data byte offset from this - INDEX_ENTRY. Follows the - index key. */ - le16 data_length; /* Data length in bytes. */ - le32 reservedV; /* Reserved (zero). */ - } __attribute__ ((__packed__)) vi; - } __attribute__ ((__packed__)) data; -/* 8*/ le16 length; /* Byte size of this index entry, multiple of - 8-bytes. */ -/* 10*/ le16 key_length; /* Byte size of the key value, which is in the - index entry. It follows field reserved. Not - multiple of 8-bytes. */ -/* 12*/ INDEX_ENTRY_FLAGS flags; /* Bit field of INDEX_ENTRY_* flags. */ -/* 14*/ le16 reserved; /* Reserved/align to 8-byte boundary. */ -/* sizeof() = 16 bytes */ -} __attribute__ ((__packed__)) INDEX_ENTRY_HEADER; - -/* - * This is an index entry. A sequence of such entries follows each INDEX_HEADER - * structure. Together they make up a complete index. The index follows either - * an index root attribute or an index allocation attribute. - * - * NOTE: Before NTFS 3.0 only filename attributes were indexed. - */ -typedef struct { -/*Ofs*/ -/* 0 INDEX_ENTRY_HEADER; -- Unfolded here as gcc dislikes unnamed structs. */ - union { - struct { /* Only valid when INDEX_ENTRY_END is not set. */ - leMFT_REF indexed_file; /* The mft reference of the file - described by this index - entry. Used for directory - indexes. */ - } __attribute__ ((__packed__)) dir; - struct { /* Used for views/indexes to find the entry's data. */ - le16 data_offset; /* Data byte offset from this - INDEX_ENTRY. Follows the - index key. */ - le16 data_length; /* Data length in bytes. */ - le32 reservedV; /* Reserved (zero). */ - } __attribute__ ((__packed__)) vi; - } __attribute__ ((__packed__)) data; - le16 length; /* Byte size of this index entry, multiple of - 8-bytes. */ - le16 key_length; /* Byte size of the key value, which is in the - index entry. It follows field reserved. Not - multiple of 8-bytes. */ - INDEX_ENTRY_FLAGS flags; /* Bit field of INDEX_ENTRY_* flags. */ - le16 reserved; /* Reserved/align to 8-byte boundary. */ - -/* 16*/ union { /* The key of the indexed attribute. NOTE: Only present - if INDEX_ENTRY_END bit in flags is not set. NOTE: On - NTFS versions before 3.0 the only valid key is the - FILE_NAME_ATTR. On NTFS 3.0+ the following - additional index keys are defined: */ - FILE_NAME_ATTR file_name;/* $I30 index in directories. */ - SII_INDEX_KEY sii; /* $SII index in $Secure. */ - SDH_INDEX_KEY sdh; /* $SDH index in $Secure. */ - GUID object_id; /* $O index in FILE_Extend/$ObjId: The - object_id of the mft record found in - the data part of the index. */ - REPARSE_INDEX_KEY reparse; /* $R index in - FILE_Extend/$Reparse. */ - SID sid; /* $O index in FILE_Extend/$Quota: - SID of the owner of the user_id. */ - le32 owner_id; /* $Q index in FILE_Extend/$Quota: - user_id of the owner of the quota - control entry in the data part of - the index. */ - } __attribute__ ((__packed__)) key; - /* The (optional) index data is inserted here when creating. */ - // leVCN vcn; /* If INDEX_ENTRY_NODE bit in flags is set, the last - // eight bytes of this index entry contain the virtual - // cluster number of the index block that holds the - // entries immediately preceding the current entry (the - // vcn references the corresponding cluster in the data - // of the non-resident index allocation attribute). If - // the key_length is zero, then the vcn immediately - // follows the INDEX_ENTRY_HEADER. Regardless of - // key_length, the address of the 8-byte boundary - // aligned vcn of INDEX_ENTRY{_HEADER} *ie is given by - // (char*)ie + le16_to_cpu(ie*)->length) - sizeof(VCN), - // where sizeof(VCN) can be hardcoded as 8 if wanted. */ -} __attribute__ ((__packed__)) INDEX_ENTRY; - -/* - * Attribute: Bitmap (0xb0). - * - * Contains an array of bits (aka a bitfield). - * - * When used in conjunction with the index allocation attribute, each bit - * corresponds to one index block within the index allocation attribute. Thus - * the number of bits in the bitmap * index block size / cluster size is the - * number of clusters in the index allocation attribute. - */ -typedef struct { - u8 bitmap[0]; /* Array of bits. */ -} __attribute__ ((__packed__)) BITMAP_ATTR; - -/* - * The reparse point tag defines the type of the reparse point. It also - * includes several flags, which further describe the reparse point. - * - * The reparse point tag is an unsigned 32-bit value divided in three parts: - * - * 1. The least significant 16 bits (i.e. bits 0 to 15) specifiy the type of - * the reparse point. - * 2. The 13 bits after this (i.e. bits 16 to 28) are reserved for future use. - * 3. The most significant three bits are flags describing the reparse point. - * They are defined as follows: - * bit 29: Name surrogate bit. If set, the filename is an alias for - * another object in the system. - * bit 30: High-latency bit. If set, accessing the first byte of data will - * be slow. (E.g. the data is stored on a tape drive.) - * bit 31: Microsoft bit. If set, the tag is owned by Microsoft. User - * defined tags have to use zero here. - * - * These are the predefined reparse point tags: - */ -enum { - IO_REPARSE_TAG_IS_ALIAS = cpu_to_le32(0x20000000), - IO_REPARSE_TAG_IS_HIGH_LATENCY = cpu_to_le32(0x40000000), - IO_REPARSE_TAG_IS_MICROSOFT = cpu_to_le32(0x80000000), - - IO_REPARSE_TAG_RESERVED_ZERO = cpu_to_le32(0x00000000), - IO_REPARSE_TAG_RESERVED_ONE = cpu_to_le32(0x00000001), - IO_REPARSE_TAG_RESERVED_RANGE = cpu_to_le32(0x00000001), - - IO_REPARSE_TAG_NSS = cpu_to_le32(0x68000005), - IO_REPARSE_TAG_NSS_RECOVER = cpu_to_le32(0x68000006), - IO_REPARSE_TAG_SIS = cpu_to_le32(0x68000007), - IO_REPARSE_TAG_DFS = cpu_to_le32(0x68000008), - - IO_REPARSE_TAG_MOUNT_POINT = cpu_to_le32(0x88000003), - - IO_REPARSE_TAG_HSM = cpu_to_le32(0xa8000004), - - IO_REPARSE_TAG_SYMBOLIC_LINK = cpu_to_le32(0xe8000000), - - IO_REPARSE_TAG_VALID_VALUES = cpu_to_le32(0xe000ffff), -}; - -/* - * Attribute: Reparse point (0xc0). - * - * NOTE: Can be resident or non-resident. - */ -typedef struct { - le32 reparse_tag; /* Reparse point type (inc. flags). */ - le16 reparse_data_length; /* Byte size of reparse data. */ - le16 reserved; /* Align to 8-byte boundary. */ - u8 reparse_data[0]; /* Meaning depends on reparse_tag. */ -} __attribute__ ((__packed__)) REPARSE_POINT; - -/* - * Attribute: Extended attribute (EA) information (0xd0). - * - * NOTE: Always resident. (Is this true???) - */ -typedef struct { - le16 ea_length; /* Byte size of the packed extended - attributes. */ - le16 need_ea_count; /* The number of extended attributes which have - the NEED_EA bit set. */ - le32 ea_query_length; /* Byte size of the buffer required to query - the extended attributes when calling - ZwQueryEaFile() in Windows NT/2k. I.e. the - byte size of the unpacked extended - attributes. */ -} __attribute__ ((__packed__)) EA_INFORMATION; - -/* - * Extended attribute flags (8-bit). - */ -enum { - NEED_EA = 0x80 /* If set the file to which the EA belongs - cannot be interpreted without understanding - the associates extended attributes. */ -} __attribute__ ((__packed__)); - -typedef u8 EA_FLAGS; - -/* - * Attribute: Extended attribute (EA) (0xe0). - * - * NOTE: Can be resident or non-resident. - * - * Like the attribute list and the index buffer list, the EA attribute value is - * a sequence of EA_ATTR variable length records. - */ -typedef struct { - le32 next_entry_offset; /* Offset to the next EA_ATTR. */ - EA_FLAGS flags; /* Flags describing the EA. */ - u8 ea_name_length; /* Length of the name of the EA in bytes - excluding the '\0' byte terminator. */ - le16 ea_value_length; /* Byte size of the EA's value. */ - u8 ea_name[0]; /* Name of the EA. Note this is ASCII, not - Unicode and it is zero terminated. */ - u8 ea_value[0]; /* The value of the EA. Immediately follows - the name. */ -} __attribute__ ((__packed__)) EA_ATTR; - -/* - * Attribute: Property set (0xf0). - * - * Intended to support Native Structure Storage (NSS) - a feature removed from - * NTFS 3.0 during beta testing. - */ -typedef struct { - /* Irrelevant as feature unused. */ -} __attribute__ ((__packed__)) PROPERTY_SET; - -/* - * Attribute: Logged utility stream (0x100). - * - * NOTE: Can be resident or non-resident. - * - * Operations on this attribute are logged to the journal ($LogFile) like - * normal metadata changes. - * - * Used by the Encrypting File System (EFS). All encrypted files have this - * attribute with the name $EFS. - */ -typedef struct { - /* Can be anything the creator chooses. */ - /* EFS uses it as follows: */ - // FIXME: Type this info, verifying it along the way. (AIA) -} __attribute__ ((__packed__)) LOGGED_UTILITY_STREAM, EFS_ATTR; - -#endif /* _LINUX_NTFS_LAYOUT_H */ |