diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-11 08:27:49 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-11 08:27:49 +0000 |
commit | ace9429bb58fd418f0c81d4c2835699bddf6bde6 (patch) | |
tree | b2d64bc10158fdd5497876388cd68142ca374ed3 /kernel/cgroup/cpuset.c | |
parent | Initial commit. (diff) | |
download | linux-ace9429bb58fd418f0c81d4c2835699bddf6bde6.tar.xz linux-ace9429bb58fd418f0c81d4c2835699bddf6bde6.zip |
Adding upstream version 6.6.15.upstream/6.6.15
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to '')
-rw-r--r-- | kernel/cgroup/cpuset.c | 4321 |
1 files changed, 4321 insertions, 0 deletions
diff --git a/kernel/cgroup/cpuset.c b/kernel/cgroup/cpuset.c new file mode 100644 index 0000000000..4749e0c86c --- /dev/null +++ b/kernel/cgroup/cpuset.c @@ -0,0 +1,4321 @@ +/* + * kernel/cpuset.c + * + * Processor and Memory placement constraints for sets of tasks. + * + * Copyright (C) 2003 BULL SA. + * Copyright (C) 2004-2007 Silicon Graphics, Inc. + * Copyright (C) 2006 Google, Inc + * + * Portions derived from Patrick Mochel's sysfs code. + * sysfs is Copyright (c) 2001-3 Patrick Mochel + * + * 2003-10-10 Written by Simon Derr. + * 2003-10-22 Updates by Stephen Hemminger. + * 2004 May-July Rework by Paul Jackson. + * 2006 Rework by Paul Menage to use generic cgroups + * 2008 Rework of the scheduler domains and CPU hotplug handling + * by Max Krasnyansky + * + * This file is subject to the terms and conditions of the GNU General Public + * License. See the file COPYING in the main directory of the Linux + * distribution for more details. + */ + +#include <linux/cpu.h> +#include <linux/cpumask.h> +#include <linux/cpuset.h> +#include <linux/init.h> +#include <linux/interrupt.h> +#include <linux/kernel.h> +#include <linux/mempolicy.h> +#include <linux/mm.h> +#include <linux/memory.h> +#include <linux/export.h> +#include <linux/rcupdate.h> +#include <linux/sched.h> +#include <linux/sched/deadline.h> +#include <linux/sched/mm.h> +#include <linux/sched/task.h> +#include <linux/security.h> +#include <linux/spinlock.h> +#include <linux/oom.h> +#include <linux/sched/isolation.h> +#include <linux/cgroup.h> +#include <linux/wait.h> + +DEFINE_STATIC_KEY_FALSE(cpusets_pre_enable_key); +DEFINE_STATIC_KEY_FALSE(cpusets_enabled_key); + +/* + * There could be abnormal cpuset configurations for cpu or memory + * node binding, add this key to provide a quick low-cost judgment + * of the situation. + */ +DEFINE_STATIC_KEY_FALSE(cpusets_insane_config_key); + +/* See "Frequency meter" comments, below. */ + +struct fmeter { + int cnt; /* unprocessed events count */ + int val; /* most recent output value */ + time64_t time; /* clock (secs) when val computed */ + spinlock_t lock; /* guards read or write of above */ +}; + +/* + * Invalid partition error code + */ +enum prs_errcode { + PERR_NONE = 0, + PERR_INVCPUS, + PERR_INVPARENT, + PERR_NOTPART, + PERR_NOTEXCL, + PERR_NOCPUS, + PERR_HOTPLUG, + PERR_CPUSEMPTY, +}; + +static const char * const perr_strings[] = { + [PERR_INVCPUS] = "Invalid cpu list in cpuset.cpus", + [PERR_INVPARENT] = "Parent is an invalid partition root", + [PERR_NOTPART] = "Parent is not a partition root", + [PERR_NOTEXCL] = "Cpu list in cpuset.cpus not exclusive", + [PERR_NOCPUS] = "Parent unable to distribute cpu downstream", + [PERR_HOTPLUG] = "No cpu available due to hotplug", + [PERR_CPUSEMPTY] = "cpuset.cpus is empty", +}; + +struct cpuset { + struct cgroup_subsys_state css; + + unsigned long flags; /* "unsigned long" so bitops work */ + + /* + * On default hierarchy: + * + * The user-configured masks can only be changed by writing to + * cpuset.cpus and cpuset.mems, and won't be limited by the + * parent masks. + * + * The effective masks is the real masks that apply to the tasks + * in the cpuset. They may be changed if the configured masks are + * changed or hotplug happens. + * + * effective_mask == configured_mask & parent's effective_mask, + * and if it ends up empty, it will inherit the parent's mask. + * + * + * On legacy hierarchy: + * + * The user-configured masks are always the same with effective masks. + */ + + /* user-configured CPUs and Memory Nodes allow to tasks */ + cpumask_var_t cpus_allowed; + nodemask_t mems_allowed; + + /* effective CPUs and Memory Nodes allow to tasks */ + cpumask_var_t effective_cpus; + nodemask_t effective_mems; + + /* + * CPUs allocated to child sub-partitions (default hierarchy only) + * - CPUs granted by the parent = effective_cpus U subparts_cpus + * - effective_cpus and subparts_cpus are mutually exclusive. + * + * effective_cpus contains only onlined CPUs, but subparts_cpus + * may have offlined ones. + */ + cpumask_var_t subparts_cpus; + + /* + * This is old Memory Nodes tasks took on. + * + * - top_cpuset.old_mems_allowed is initialized to mems_allowed. + * - A new cpuset's old_mems_allowed is initialized when some + * task is moved into it. + * - old_mems_allowed is used in cpuset_migrate_mm() when we change + * cpuset.mems_allowed and have tasks' nodemask updated, and + * then old_mems_allowed is updated to mems_allowed. + */ + nodemask_t old_mems_allowed; + + struct fmeter fmeter; /* memory_pressure filter */ + + /* + * Tasks are being attached to this cpuset. Used to prevent + * zeroing cpus/mems_allowed between ->can_attach() and ->attach(). + */ + int attach_in_progress; + + /* partition number for rebuild_sched_domains() */ + int pn; + + /* for custom sched domain */ + int relax_domain_level; + + /* number of CPUs in subparts_cpus */ + int nr_subparts_cpus; + + /* partition root state */ + int partition_root_state; + + /* + * Default hierarchy only: + * use_parent_ecpus - set if using parent's effective_cpus + * child_ecpus_count - # of children with use_parent_ecpus set + */ + int use_parent_ecpus; + int child_ecpus_count; + + /* + * number of SCHED_DEADLINE tasks attached to this cpuset, so that we + * know when to rebuild associated root domain bandwidth information. + */ + int nr_deadline_tasks; + int nr_migrate_dl_tasks; + u64 sum_migrate_dl_bw; + + /* Invalid partition error code, not lock protected */ + enum prs_errcode prs_err; + + /* Handle for cpuset.cpus.partition */ + struct cgroup_file partition_file; +}; + +/* + * Partition root states: + * + * 0 - member (not a partition root) + * 1 - partition root + * 2 - partition root without load balancing (isolated) + * -1 - invalid partition root + * -2 - invalid isolated partition root + */ +#define PRS_MEMBER 0 +#define PRS_ROOT 1 +#define PRS_ISOLATED 2 +#define PRS_INVALID_ROOT -1 +#define PRS_INVALID_ISOLATED -2 + +static inline bool is_prs_invalid(int prs_state) +{ + return prs_state < 0; +} + +/* + * Temporary cpumasks for working with partitions that are passed among + * functions to avoid memory allocation in inner functions. + */ +struct tmpmasks { + cpumask_var_t addmask, delmask; /* For partition root */ + cpumask_var_t new_cpus; /* For update_cpumasks_hier() */ +}; + +static inline struct cpuset *css_cs(struct cgroup_subsys_state *css) +{ + return css ? container_of(css, struct cpuset, css) : NULL; +} + +/* Retrieve the cpuset for a task */ +static inline struct cpuset *task_cs(struct task_struct *task) +{ + return css_cs(task_css(task, cpuset_cgrp_id)); +} + +static inline struct cpuset *parent_cs(struct cpuset *cs) +{ + return css_cs(cs->css.parent); +} + +void inc_dl_tasks_cs(struct task_struct *p) +{ + struct cpuset *cs = task_cs(p); + + cs->nr_deadline_tasks++; +} + +void dec_dl_tasks_cs(struct task_struct *p) +{ + struct cpuset *cs = task_cs(p); + + cs->nr_deadline_tasks--; +} + +/* bits in struct cpuset flags field */ +typedef enum { + CS_ONLINE, + CS_CPU_EXCLUSIVE, + CS_MEM_EXCLUSIVE, + CS_MEM_HARDWALL, + CS_MEMORY_MIGRATE, + CS_SCHED_LOAD_BALANCE, + CS_SPREAD_PAGE, + CS_SPREAD_SLAB, +} cpuset_flagbits_t; + +/* convenient tests for these bits */ +static inline bool is_cpuset_online(struct cpuset *cs) +{ + return test_bit(CS_ONLINE, &cs->flags) && !css_is_dying(&cs->css); +} + +static inline int is_cpu_exclusive(const struct cpuset *cs) +{ + return test_bit(CS_CPU_EXCLUSIVE, &cs->flags); +} + +static inline int is_mem_exclusive(const struct cpuset *cs) +{ + return test_bit(CS_MEM_EXCLUSIVE, &cs->flags); +} + +static inline int is_mem_hardwall(const struct cpuset *cs) +{ + return test_bit(CS_MEM_HARDWALL, &cs->flags); +} + +static inline int is_sched_load_balance(const struct cpuset *cs) +{ + return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags); +} + +static inline int is_memory_migrate(const struct cpuset *cs) +{ + return test_bit(CS_MEMORY_MIGRATE, &cs->flags); +} + +static inline int is_spread_page(const struct cpuset *cs) +{ + return test_bit(CS_SPREAD_PAGE, &cs->flags); +} + +static inline int is_spread_slab(const struct cpuset *cs) +{ + return test_bit(CS_SPREAD_SLAB, &cs->flags); +} + +static inline int is_partition_valid(const struct cpuset *cs) +{ + return cs->partition_root_state > 0; +} + +static inline int is_partition_invalid(const struct cpuset *cs) +{ + return cs->partition_root_state < 0; +} + +/* + * Callers should hold callback_lock to modify partition_root_state. + */ +static inline void make_partition_invalid(struct cpuset *cs) +{ + if (is_partition_valid(cs)) + cs->partition_root_state = -cs->partition_root_state; +} + +/* + * Send notification event of whenever partition_root_state changes. + */ +static inline void notify_partition_change(struct cpuset *cs, int old_prs) +{ + if (old_prs == cs->partition_root_state) + return; + cgroup_file_notify(&cs->partition_file); + + /* Reset prs_err if not invalid */ + if (is_partition_valid(cs)) + WRITE_ONCE(cs->prs_err, PERR_NONE); +} + +static struct cpuset top_cpuset = { + .flags = ((1 << CS_ONLINE) | (1 << CS_CPU_EXCLUSIVE) | + (1 << CS_MEM_EXCLUSIVE)), + .partition_root_state = PRS_ROOT, +}; + +/** + * cpuset_for_each_child - traverse online children of a cpuset + * @child_cs: loop cursor pointing to the current child + * @pos_css: used for iteration + * @parent_cs: target cpuset to walk children of + * + * Walk @child_cs through the online children of @parent_cs. Must be used + * with RCU read locked. + */ +#define cpuset_for_each_child(child_cs, pos_css, parent_cs) \ + css_for_each_child((pos_css), &(parent_cs)->css) \ + if (is_cpuset_online(((child_cs) = css_cs((pos_css))))) + +/** + * cpuset_for_each_descendant_pre - pre-order walk of a cpuset's descendants + * @des_cs: loop cursor pointing to the current descendant + * @pos_css: used for iteration + * @root_cs: target cpuset to walk ancestor of + * + * Walk @des_cs through the online descendants of @root_cs. Must be used + * with RCU read locked. The caller may modify @pos_css by calling + * css_rightmost_descendant() to skip subtree. @root_cs is included in the + * iteration and the first node to be visited. + */ +#define cpuset_for_each_descendant_pre(des_cs, pos_css, root_cs) \ + css_for_each_descendant_pre((pos_css), &(root_cs)->css) \ + if (is_cpuset_online(((des_cs) = css_cs((pos_css))))) + +/* + * There are two global locks guarding cpuset structures - cpuset_mutex and + * callback_lock. We also require taking task_lock() when dereferencing a + * task's cpuset pointer. See "The task_lock() exception", at the end of this + * comment. The cpuset code uses only cpuset_mutex. Other kernel subsystems + * can use cpuset_lock()/cpuset_unlock() to prevent change to cpuset + * structures. Note that cpuset_mutex needs to be a mutex as it is used in + * paths that rely on priority inheritance (e.g. scheduler - on RT) for + * correctness. + * + * A task must hold both locks to modify cpusets. If a task holds + * cpuset_mutex, it blocks others, ensuring that it is the only task able to + * also acquire callback_lock and be able to modify cpusets. It can perform + * various checks on the cpuset structure first, knowing nothing will change. + * It can also allocate memory while just holding cpuset_mutex. While it is + * performing these checks, various callback routines can briefly acquire + * callback_lock to query cpusets. Once it is ready to make the changes, it + * takes callback_lock, blocking everyone else. + * + * Calls to the kernel memory allocator can not be made while holding + * callback_lock, as that would risk double tripping on callback_lock + * from one of the callbacks into the cpuset code from within + * __alloc_pages(). + * + * If a task is only holding callback_lock, then it has read-only + * access to cpusets. + * + * Now, the task_struct fields mems_allowed and mempolicy may be changed + * by other task, we use alloc_lock in the task_struct fields to protect + * them. + * + * The cpuset_common_file_read() handlers only hold callback_lock across + * small pieces of code, such as when reading out possibly multi-word + * cpumasks and nodemasks. + * + * Accessing a task's cpuset should be done in accordance with the + * guidelines for accessing subsystem state in kernel/cgroup.c + */ + +static DEFINE_MUTEX(cpuset_mutex); + +void cpuset_lock(void) +{ + mutex_lock(&cpuset_mutex); +} + +void cpuset_unlock(void) +{ + mutex_unlock(&cpuset_mutex); +} + +static DEFINE_SPINLOCK(callback_lock); + +static struct workqueue_struct *cpuset_migrate_mm_wq; + +/* + * CPU / memory hotplug is handled asynchronously. + */ +static void cpuset_hotplug_workfn(struct work_struct *work); +static DECLARE_WORK(cpuset_hotplug_work, cpuset_hotplug_workfn); + +static DECLARE_WAIT_QUEUE_HEAD(cpuset_attach_wq); + +static inline void check_insane_mems_config(nodemask_t *nodes) +{ + if (!cpusets_insane_config() && + movable_only_nodes(nodes)) { + static_branch_enable(&cpusets_insane_config_key); + pr_info("Unsupported (movable nodes only) cpuset configuration detected (nmask=%*pbl)!\n" + "Cpuset allocations might fail even with a lot of memory available.\n", + nodemask_pr_args(nodes)); + } +} + +/* + * Cgroup v2 behavior is used on the "cpus" and "mems" control files when + * on default hierarchy or when the cpuset_v2_mode flag is set by mounting + * the v1 cpuset cgroup filesystem with the "cpuset_v2_mode" mount option. + * With v2 behavior, "cpus" and "mems" are always what the users have + * requested and won't be changed by hotplug events. Only the effective + * cpus or mems will be affected. + */ +static inline bool is_in_v2_mode(void) +{ + return cgroup_subsys_on_dfl(cpuset_cgrp_subsys) || + (cpuset_cgrp_subsys.root->flags & CGRP_ROOT_CPUSET_V2_MODE); +} + +/** + * partition_is_populated - check if partition has tasks + * @cs: partition root to be checked + * @excluded_child: a child cpuset to be excluded in task checking + * Return: true if there are tasks, false otherwise + * + * It is assumed that @cs is a valid partition root. @excluded_child should + * be non-NULL when this cpuset is going to become a partition itself. + */ +static inline bool partition_is_populated(struct cpuset *cs, + struct cpuset *excluded_child) +{ + struct cgroup_subsys_state *css; + struct cpuset *child; + + if (cs->css.cgroup->nr_populated_csets) + return true; + if (!excluded_child && !cs->nr_subparts_cpus) + return cgroup_is_populated(cs->css.cgroup); + + rcu_read_lock(); + cpuset_for_each_child(child, css, cs) { + if (child == excluded_child) + continue; + if (is_partition_valid(child)) + continue; + if (cgroup_is_populated(child->css.cgroup)) { + rcu_read_unlock(); + return true; + } + } + rcu_read_unlock(); + return false; +} + +/* + * Return in pmask the portion of a task's cpusets's cpus_allowed that + * are online and are capable of running the task. If none are found, + * walk up the cpuset hierarchy until we find one that does have some + * appropriate cpus. + * + * One way or another, we guarantee to return some non-empty subset + * of cpu_online_mask. + * + * Call with callback_lock or cpuset_mutex held. + */ +static void guarantee_online_cpus(struct task_struct *tsk, + struct cpumask *pmask) +{ + const struct cpumask *possible_mask = task_cpu_possible_mask(tsk); + struct cpuset *cs; + + if (WARN_ON(!cpumask_and(pmask, possible_mask, cpu_online_mask))) + cpumask_copy(pmask, cpu_online_mask); + + rcu_read_lock(); + cs = task_cs(tsk); + + while (!cpumask_intersects(cs->effective_cpus, pmask)) { + cs = parent_cs(cs); + if (unlikely(!cs)) { + /* + * The top cpuset doesn't have any online cpu as a + * consequence of a race between cpuset_hotplug_work + * and cpu hotplug notifier. But we know the top + * cpuset's effective_cpus is on its way to be + * identical to cpu_online_mask. + */ + goto out_unlock; + } + } + cpumask_and(pmask, pmask, cs->effective_cpus); + +out_unlock: + rcu_read_unlock(); +} + +/* + * Return in *pmask the portion of a cpusets's mems_allowed that + * are online, with memory. If none are online with memory, walk + * up the cpuset hierarchy until we find one that does have some + * online mems. The top cpuset always has some mems online. + * + * One way or another, we guarantee to return some non-empty subset + * of node_states[N_MEMORY]. + * + * Call with callback_lock or cpuset_mutex held. + */ +static void guarantee_online_mems(struct cpuset *cs, nodemask_t *pmask) +{ + while (!nodes_intersects(cs->effective_mems, node_states[N_MEMORY])) + cs = parent_cs(cs); + nodes_and(*pmask, cs->effective_mems, node_states[N_MEMORY]); +} + +/* + * update task's spread flag if cpuset's page/slab spread flag is set + * + * Call with callback_lock or cpuset_mutex held. The check can be skipped + * if on default hierarchy. + */ +static void cpuset_update_task_spread_flags(struct cpuset *cs, + struct task_struct *tsk) +{ + if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys)) + return; + + if (is_spread_page(cs)) + task_set_spread_page(tsk); + else + task_clear_spread_page(tsk); + + if (is_spread_slab(cs)) + task_set_spread_slab(tsk); + else + task_clear_spread_slab(tsk); +} + +/* + * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q? + * + * One cpuset is a subset of another if all its allowed CPUs and + * Memory Nodes are a subset of the other, and its exclusive flags + * are only set if the other's are set. Call holding cpuset_mutex. + */ + +static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q) +{ + return cpumask_subset(p->cpus_allowed, q->cpus_allowed) && + nodes_subset(p->mems_allowed, q->mems_allowed) && + is_cpu_exclusive(p) <= is_cpu_exclusive(q) && + is_mem_exclusive(p) <= is_mem_exclusive(q); +} + +/** + * alloc_cpumasks - allocate three cpumasks for cpuset + * @cs: the cpuset that have cpumasks to be allocated. + * @tmp: the tmpmasks structure pointer + * Return: 0 if successful, -ENOMEM otherwise. + * + * Only one of the two input arguments should be non-NULL. + */ +static inline int alloc_cpumasks(struct cpuset *cs, struct tmpmasks *tmp) +{ + cpumask_var_t *pmask1, *pmask2, *pmask3; + + if (cs) { + pmask1 = &cs->cpus_allowed; + pmask2 = &cs->effective_cpus; + pmask3 = &cs->subparts_cpus; + } else { + pmask1 = &tmp->new_cpus; + pmask2 = &tmp->addmask; + pmask3 = &tmp->delmask; + } + + if (!zalloc_cpumask_var(pmask1, GFP_KERNEL)) + return -ENOMEM; + + if (!zalloc_cpumask_var(pmask2, GFP_KERNEL)) + goto free_one; + + if (!zalloc_cpumask_var(pmask3, GFP_KERNEL)) + goto free_two; + + return 0; + +free_two: + free_cpumask_var(*pmask2); +free_one: + free_cpumask_var(*pmask1); + return -ENOMEM; +} + +/** + * free_cpumasks - free cpumasks in a tmpmasks structure + * @cs: the cpuset that have cpumasks to be free. + * @tmp: the tmpmasks structure pointer + */ +static inline void free_cpumasks(struct cpuset *cs, struct tmpmasks *tmp) +{ + if (cs) { + free_cpumask_var(cs->cpus_allowed); + free_cpumask_var(cs->effective_cpus); + free_cpumask_var(cs->subparts_cpus); + } + if (tmp) { + free_cpumask_var(tmp->new_cpus); + free_cpumask_var(tmp->addmask); + free_cpumask_var(tmp->delmask); + } +} + +/** + * alloc_trial_cpuset - allocate a trial cpuset + * @cs: the cpuset that the trial cpuset duplicates + */ +static struct cpuset *alloc_trial_cpuset(struct cpuset *cs) +{ + struct cpuset *trial; + + trial = kmemdup(cs, sizeof(*cs), GFP_KERNEL); + if (!trial) + return NULL; + + if (alloc_cpumasks(trial, NULL)) { + kfree(trial); + return NULL; + } + + cpumask_copy(trial->cpus_allowed, cs->cpus_allowed); + cpumask_copy(trial->effective_cpus, cs->effective_cpus); + return trial; +} + +/** + * free_cpuset - free the cpuset + * @cs: the cpuset to be freed + */ +static inline void free_cpuset(struct cpuset *cs) +{ + free_cpumasks(cs, NULL); + kfree(cs); +} + +/* + * validate_change_legacy() - Validate conditions specific to legacy (v1) + * behavior. + */ +static int validate_change_legacy(struct cpuset *cur, struct cpuset *trial) +{ + struct cgroup_subsys_state *css; + struct cpuset *c, *par; + int ret; + + WARN_ON_ONCE(!rcu_read_lock_held()); + + /* Each of our child cpusets must be a subset of us */ + ret = -EBUSY; + cpuset_for_each_child(c, css, cur) + if (!is_cpuset_subset(c, trial)) + goto out; + + /* On legacy hierarchy, we must be a subset of our parent cpuset. */ + ret = -EACCES; + par = parent_cs(cur); + if (par && !is_cpuset_subset(trial, par)) + goto out; + + ret = 0; +out: + return ret; +} + +/* + * validate_change() - Used to validate that any proposed cpuset change + * follows the structural rules for cpusets. + * + * If we replaced the flag and mask values of the current cpuset + * (cur) with those values in the trial cpuset (trial), would + * our various subset and exclusive rules still be valid? Presumes + * cpuset_mutex held. + * + * 'cur' is the address of an actual, in-use cpuset. Operations + * such as list traversal that depend on the actual address of the + * cpuset in the list must use cur below, not trial. + * + * 'trial' is the address of bulk structure copy of cur, with + * perhaps one or more of the fields cpus_allowed, mems_allowed, + * or flags changed to new, trial values. + * + * Return 0 if valid, -errno if not. + */ + +static int validate_change(struct cpuset *cur, struct cpuset *trial) +{ + struct cgroup_subsys_state *css; + struct cpuset *c, *par; + int ret = 0; + + rcu_read_lock(); + + if (!is_in_v2_mode()) + ret = validate_change_legacy(cur, trial); + if (ret) + goto out; + + /* Remaining checks don't apply to root cpuset */ + if (cur == &top_cpuset) + goto out; + + par = parent_cs(cur); + + /* + * Cpusets with tasks - existing or newly being attached - can't + * be changed to have empty cpus_allowed or mems_allowed. + */ + ret = -ENOSPC; + if ((cgroup_is_populated(cur->css.cgroup) || cur->attach_in_progress)) { + if (!cpumask_empty(cur->cpus_allowed) && + cpumask_empty(trial->cpus_allowed)) + goto out; + if (!nodes_empty(cur->mems_allowed) && + nodes_empty(trial->mems_allowed)) + goto out; + } + + /* + * We can't shrink if we won't have enough room for SCHED_DEADLINE + * tasks. + */ + ret = -EBUSY; + if (is_cpu_exclusive(cur) && + !cpuset_cpumask_can_shrink(cur->cpus_allowed, + trial->cpus_allowed)) + goto out; + + /* + * If either I or some sibling (!= me) is exclusive, we can't + * overlap + */ + ret = -EINVAL; + cpuset_for_each_child(c, css, par) { + if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) && + c != cur && + cpumask_intersects(trial->cpus_allowed, c->cpus_allowed)) + goto out; + if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) && + c != cur && + nodes_intersects(trial->mems_allowed, c->mems_allowed)) + goto out; + } + + ret = 0; +out: + rcu_read_unlock(); + return ret; +} + +#ifdef CONFIG_SMP +/* + * Helper routine for generate_sched_domains(). + * Do cpusets a, b have overlapping effective cpus_allowed masks? + */ +static int cpusets_overlap(struct cpuset *a, struct cpuset *b) +{ + return cpumask_intersects(a->effective_cpus, b->effective_cpus); +} + +static void +update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c) +{ + if (dattr->relax_domain_level < c->relax_domain_level) + dattr->relax_domain_level = c->relax_domain_level; + return; +} + +static void update_domain_attr_tree(struct sched_domain_attr *dattr, + struct cpuset *root_cs) +{ + struct cpuset *cp; + struct cgroup_subsys_state *pos_css; + + rcu_read_lock(); + cpuset_for_each_descendant_pre(cp, pos_css, root_cs) { + /* skip the whole subtree if @cp doesn't have any CPU */ + if (cpumask_empty(cp->cpus_allowed)) { + pos_css = css_rightmost_descendant(pos_css); + continue; + } + + if (is_sched_load_balance(cp)) + update_domain_attr(dattr, cp); + } + rcu_read_unlock(); +} + +/* Must be called with cpuset_mutex held. */ +static inline int nr_cpusets(void) +{ + /* jump label reference count + the top-level cpuset */ + return static_key_count(&cpusets_enabled_key.key) + 1; +} + +/* + * generate_sched_domains() + * + * This function builds a partial partition of the systems CPUs + * A 'partial partition' is a set of non-overlapping subsets whose + * union is a subset of that set. + * The output of this function needs to be passed to kernel/sched/core.c + * partition_sched_domains() routine, which will rebuild the scheduler's + * load balancing domains (sched domains) as specified by that partial + * partition. + * + * See "What is sched_load_balance" in Documentation/admin-guide/cgroup-v1/cpusets.rst + * for a background explanation of this. + * + * Does not return errors, on the theory that the callers of this + * routine would rather not worry about failures to rebuild sched + * domains when operating in the severe memory shortage situations + * that could cause allocation failures below. + * + * Must be called with cpuset_mutex held. + * + * The three key local variables below are: + * cp - cpuset pointer, used (together with pos_css) to perform a + * top-down scan of all cpusets. For our purposes, rebuilding + * the schedulers sched domains, we can ignore !is_sched_load_ + * balance cpusets. + * csa - (for CpuSet Array) Array of pointers to all the cpusets + * that need to be load balanced, for convenient iterative + * access by the subsequent code that finds the best partition, + * i.e the set of domains (subsets) of CPUs such that the + * cpus_allowed of every cpuset marked is_sched_load_balance + * is a subset of one of these domains, while there are as + * many such domains as possible, each as small as possible. + * doms - Conversion of 'csa' to an array of cpumasks, for passing to + * the kernel/sched/core.c routine partition_sched_domains() in a + * convenient format, that can be easily compared to the prior + * value to determine what partition elements (sched domains) + * were changed (added or removed.) + * + * Finding the best partition (set of domains): + * The triple nested loops below over i, j, k scan over the + * load balanced cpusets (using the array of cpuset pointers in + * csa[]) looking for pairs of cpusets that have overlapping + * cpus_allowed, but which don't have the same 'pn' partition + * number and gives them in the same partition number. It keeps + * looping on the 'restart' label until it can no longer find + * any such pairs. + * + * The union of the cpus_allowed masks from the set of + * all cpusets having the same 'pn' value then form the one + * element of the partition (one sched domain) to be passed to + * partition_sched_domains(). + */ +static int generate_sched_domains(cpumask_var_t **domains, + struct sched_domain_attr **attributes) +{ + struct cpuset *cp; /* top-down scan of cpusets */ + struct cpuset **csa; /* array of all cpuset ptrs */ + int csn; /* how many cpuset ptrs in csa so far */ + int i, j, k; /* indices for partition finding loops */ + cpumask_var_t *doms; /* resulting partition; i.e. sched domains */ + struct sched_domain_attr *dattr; /* attributes for custom domains */ + int ndoms = 0; /* number of sched domains in result */ + int nslot; /* next empty doms[] struct cpumask slot */ + struct cgroup_subsys_state *pos_css; + bool root_load_balance = is_sched_load_balance(&top_cpuset); + + doms = NULL; + dattr = NULL; + csa = NULL; + + /* Special case for the 99% of systems with one, full, sched domain */ + if (root_load_balance && !top_cpuset.nr_subparts_cpus) { + ndoms = 1; + doms = alloc_sched_domains(ndoms); + if (!doms) + goto done; + + dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL); + if (dattr) { + *dattr = SD_ATTR_INIT; + update_domain_attr_tree(dattr, &top_cpuset); + } + cpumask_and(doms[0], top_cpuset.effective_cpus, + housekeeping_cpumask(HK_TYPE_DOMAIN)); + + goto done; + } + + csa = kmalloc_array(nr_cpusets(), sizeof(cp), GFP_KERNEL); + if (!csa) + goto done; + csn = 0; + + rcu_read_lock(); + if (root_load_balance) + csa[csn++] = &top_cpuset; + cpuset_for_each_descendant_pre(cp, pos_css, &top_cpuset) { + if (cp == &top_cpuset) + continue; + /* + * Continue traversing beyond @cp iff @cp has some CPUs and + * isn't load balancing. The former is obvious. The + * latter: All child cpusets contain a subset of the + * parent's cpus, so just skip them, and then we call + * update_domain_attr_tree() to calc relax_domain_level of + * the corresponding sched domain. + * + * If root is load-balancing, we can skip @cp if it + * is a subset of the root's effective_cpus. + */ + if (!cpumask_empty(cp->cpus_allowed) && + !(is_sched_load_balance(cp) && + cpumask_intersects(cp->cpus_allowed, + housekeeping_cpumask(HK_TYPE_DOMAIN)))) + continue; + + if (root_load_balance && + cpumask_subset(cp->cpus_allowed, top_cpuset.effective_cpus)) + continue; + + if (is_sched_load_balance(cp) && + !cpumask_empty(cp->effective_cpus)) + csa[csn++] = cp; + + /* skip @cp's subtree if not a partition root */ + if (!is_partition_valid(cp)) + pos_css = css_rightmost_descendant(pos_css); + } + rcu_read_unlock(); + + for (i = 0; i < csn; i++) + csa[i]->pn = i; + ndoms = csn; + +restart: + /* Find the best partition (set of sched domains) */ + for (i = 0; i < csn; i++) { + struct cpuset *a = csa[i]; + int apn = a->pn; + + for (j = 0; j < csn; j++) { + struct cpuset *b = csa[j]; + int bpn = b->pn; + + if (apn != bpn && cpusets_overlap(a, b)) { + for (k = 0; k < csn; k++) { + struct cpuset *c = csa[k]; + + if (c->pn == bpn) + c->pn = apn; + } + ndoms--; /* one less element */ + goto restart; + } + } + } + + /* + * Now we know how many domains to create. + * Convert <csn, csa> to <ndoms, doms> and populate cpu masks. + */ + doms = alloc_sched_domains(ndoms); + if (!doms) + goto done; + + /* + * The rest of the code, including the scheduler, can deal with + * dattr==NULL case. No need to abort if alloc fails. + */ + dattr = kmalloc_array(ndoms, sizeof(struct sched_domain_attr), + GFP_KERNEL); + + for (nslot = 0, i = 0; i < csn; i++) { + struct cpuset *a = csa[i]; + struct cpumask *dp; + int apn = a->pn; + + if (apn < 0) { + /* Skip completed partitions */ + continue; + } + + dp = doms[nslot]; + + if (nslot == ndoms) { + static int warnings = 10; + if (warnings) { + pr_warn("rebuild_sched_domains confused: nslot %d, ndoms %d, csn %d, i %d, apn %d\n", + nslot, ndoms, csn, i, apn); + warnings--; + } + continue; + } + + cpumask_clear(dp); + if (dattr) + *(dattr + nslot) = SD_ATTR_INIT; + for (j = i; j < csn; j++) { + struct cpuset *b = csa[j]; + + if (apn == b->pn) { + cpumask_or(dp, dp, b->effective_cpus); + cpumask_and(dp, dp, housekeeping_cpumask(HK_TYPE_DOMAIN)); + if (dattr) + update_domain_attr_tree(dattr + nslot, b); + + /* Done with this partition */ + b->pn = -1; + } + } + nslot++; + } + BUG_ON(nslot != ndoms); + +done: + kfree(csa); + + /* + * Fallback to the default domain if kmalloc() failed. + * See comments in partition_sched_domains(). + */ + if (doms == NULL) + ndoms = 1; + + *domains = doms; + *attributes = dattr; + return ndoms; +} + +static void dl_update_tasks_root_domain(struct cpuset *cs) +{ + struct css_task_iter it; + struct task_struct *task; + + if (cs->nr_deadline_tasks == 0) + return; + + css_task_iter_start(&cs->css, 0, &it); + + while ((task = css_task_iter_next(&it))) + dl_add_task_root_domain(task); + + css_task_iter_end(&it); +} + +static void dl_rebuild_rd_accounting(void) +{ + struct cpuset *cs = NULL; + struct cgroup_subsys_state *pos_css; + + lockdep_assert_held(&cpuset_mutex); + lockdep_assert_cpus_held(); + lockdep_assert_held(&sched_domains_mutex); + + rcu_read_lock(); + + /* + * Clear default root domain DL accounting, it will be computed again + * if a task belongs to it. + */ + dl_clear_root_domain(&def_root_domain); + + cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) { + + if (cpumask_empty(cs->effective_cpus)) { + pos_css = css_rightmost_descendant(pos_css); + continue; + } + + css_get(&cs->css); + + rcu_read_unlock(); + + dl_update_tasks_root_domain(cs); + + rcu_read_lock(); + css_put(&cs->css); + } + rcu_read_unlock(); +} + +static void +partition_and_rebuild_sched_domains(int ndoms_new, cpumask_var_t doms_new[], + struct sched_domain_attr *dattr_new) +{ + mutex_lock(&sched_domains_mutex); + partition_sched_domains_locked(ndoms_new, doms_new, dattr_new); + dl_rebuild_rd_accounting(); + mutex_unlock(&sched_domains_mutex); +} + +/* + * Rebuild scheduler domains. + * + * If the flag 'sched_load_balance' of any cpuset with non-empty + * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset + * which has that flag enabled, or if any cpuset with a non-empty + * 'cpus' is removed, then call this routine to rebuild the + * scheduler's dynamic sched domains. + * + * Call with cpuset_mutex held. Takes cpus_read_lock(). + */ +static void rebuild_sched_domains_locked(void) +{ + struct cgroup_subsys_state *pos_css; + struct sched_domain_attr *attr; + cpumask_var_t *doms; + struct cpuset *cs; + int ndoms; + + lockdep_assert_cpus_held(); + lockdep_assert_held(&cpuset_mutex); + + /* + * If we have raced with CPU hotplug, return early to avoid + * passing doms with offlined cpu to partition_sched_domains(). + * Anyways, cpuset_hotplug_workfn() will rebuild sched domains. + * + * With no CPUs in any subpartitions, top_cpuset's effective CPUs + * should be the same as the active CPUs, so checking only top_cpuset + * is enough to detect racing CPU offlines. + */ + if (!top_cpuset.nr_subparts_cpus && + !cpumask_equal(top_cpuset.effective_cpus, cpu_active_mask)) + return; + + /* + * With subpartition CPUs, however, the effective CPUs of a partition + * root should be only a subset of the active CPUs. Since a CPU in any + * partition root could be offlined, all must be checked. + */ + if (top_cpuset.nr_subparts_cpus) { + rcu_read_lock(); + cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) { + if (!is_partition_valid(cs)) { + pos_css = css_rightmost_descendant(pos_css); + continue; + } + if (!cpumask_subset(cs->effective_cpus, + cpu_active_mask)) { + rcu_read_unlock(); + return; + } + } + rcu_read_unlock(); + } + + /* Generate domain masks and attrs */ + ndoms = generate_sched_domains(&doms, &attr); + + /* Have scheduler rebuild the domains */ + partition_and_rebuild_sched_domains(ndoms, doms, attr); +} +#else /* !CONFIG_SMP */ +static void rebuild_sched_domains_locked(void) +{ +} +#endif /* CONFIG_SMP */ + +void rebuild_sched_domains(void) +{ + cpus_read_lock(); + mutex_lock(&cpuset_mutex); + rebuild_sched_domains_locked(); + mutex_unlock(&cpuset_mutex); + cpus_read_unlock(); +} + +/** + * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset. + * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed + * @new_cpus: the temp variable for the new effective_cpus mask + * + * Iterate through each task of @cs updating its cpus_allowed to the + * effective cpuset's. As this function is called with cpuset_mutex held, + * cpuset membership stays stable. For top_cpuset, task_cpu_possible_mask() + * is used instead of effective_cpus to make sure all offline CPUs are also + * included as hotplug code won't update cpumasks for tasks in top_cpuset. + */ +static void update_tasks_cpumask(struct cpuset *cs, struct cpumask *new_cpus) +{ + struct css_task_iter it; + struct task_struct *task; + bool top_cs = cs == &top_cpuset; + + css_task_iter_start(&cs->css, 0, &it); + while ((task = css_task_iter_next(&it))) { + const struct cpumask *possible_mask = task_cpu_possible_mask(task); + + if (top_cs) { + /* + * Percpu kthreads in top_cpuset are ignored + */ + if (kthread_is_per_cpu(task)) + continue; + cpumask_andnot(new_cpus, possible_mask, cs->subparts_cpus); + } else { + cpumask_and(new_cpus, possible_mask, cs->effective_cpus); + } + set_cpus_allowed_ptr(task, new_cpus); + } + css_task_iter_end(&it); +} + +/** + * compute_effective_cpumask - Compute the effective cpumask of the cpuset + * @new_cpus: the temp variable for the new effective_cpus mask + * @cs: the cpuset the need to recompute the new effective_cpus mask + * @parent: the parent cpuset + * + * If the parent has subpartition CPUs, include them in the list of + * allowable CPUs in computing the new effective_cpus mask. Since offlined + * CPUs are not removed from subparts_cpus, we have to use cpu_active_mask + * to mask those out. + */ +static void compute_effective_cpumask(struct cpumask *new_cpus, + struct cpuset *cs, struct cpuset *parent) +{ + if (parent->nr_subparts_cpus && is_partition_valid(cs)) { + cpumask_or(new_cpus, parent->effective_cpus, + parent->subparts_cpus); + cpumask_and(new_cpus, new_cpus, cs->cpus_allowed); + cpumask_and(new_cpus, new_cpus, cpu_active_mask); + } else { + cpumask_and(new_cpus, cs->cpus_allowed, parent->effective_cpus); + } +} + +/* + * Commands for update_parent_subparts_cpumask + */ +enum subparts_cmd { + partcmd_enable, /* Enable partition root */ + partcmd_disable, /* Disable partition root */ + partcmd_update, /* Update parent's subparts_cpus */ + partcmd_invalidate, /* Make partition invalid */ +}; + +static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs, + int turning_on); +static void update_sibling_cpumasks(struct cpuset *parent, struct cpuset *cs, + struct tmpmasks *tmp); + +/* + * Update partition exclusive flag + * + * Return: 0 if successful, an error code otherwise + */ +static int update_partition_exclusive(struct cpuset *cs, int new_prs) +{ + bool exclusive = (new_prs > 0); + + if (exclusive && !is_cpu_exclusive(cs)) { + if (update_flag(CS_CPU_EXCLUSIVE, cs, 1)) + return PERR_NOTEXCL; + } else if (!exclusive && is_cpu_exclusive(cs)) { + /* Turning off CS_CPU_EXCLUSIVE will not return error */ + update_flag(CS_CPU_EXCLUSIVE, cs, 0); + } + return 0; +} + +/* + * Update partition load balance flag and/or rebuild sched domain + * + * Changing load balance flag will automatically call + * rebuild_sched_domains_locked(). + * This function is for cgroup v2 only. + */ +static void update_partition_sd_lb(struct cpuset *cs, int old_prs) +{ + int new_prs = cs->partition_root_state; + bool rebuild_domains = (new_prs > 0) || (old_prs > 0); + bool new_lb; + + /* + * If cs is not a valid partition root, the load balance state + * will follow its parent. + */ + if (new_prs > 0) { + new_lb = (new_prs != PRS_ISOLATED); + } else { + new_lb = is_sched_load_balance(parent_cs(cs)); + } + if (new_lb != !!is_sched_load_balance(cs)) { + rebuild_domains = true; + if (new_lb) + set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags); + else + clear_bit(CS_SCHED_LOAD_BALANCE, &cs->flags); + } + + if (rebuild_domains) + rebuild_sched_domains_locked(); +} + +/** + * update_parent_subparts_cpumask - update subparts_cpus mask of parent cpuset + * @cs: The cpuset that requests change in partition root state + * @cmd: Partition root state change command + * @newmask: Optional new cpumask for partcmd_update + * @tmp: Temporary addmask and delmask + * Return: 0 or a partition root state error code + * + * For partcmd_enable, the cpuset is being transformed from a non-partition + * root to a partition root. The cpus_allowed mask of the given cpuset will + * be put into parent's subparts_cpus and taken away from parent's + * effective_cpus. The function will return 0 if all the CPUs listed in + * cpus_allowed can be granted or an error code will be returned. + * + * For partcmd_disable, the cpuset is being transformed from a partition + * root back to a non-partition root. Any CPUs in cpus_allowed that are in + * parent's subparts_cpus will be taken away from that cpumask and put back + * into parent's effective_cpus. 0 will always be returned. + * + * For partcmd_update, if the optional newmask is specified, the cpu list is + * to be changed from cpus_allowed to newmask. Otherwise, cpus_allowed is + * assumed to remain the same. The cpuset should either be a valid or invalid + * partition root. The partition root state may change from valid to invalid + * or vice versa. An error code will only be returned if transitioning from + * invalid to valid violates the exclusivity rule. + * + * For partcmd_invalidate, the current partition will be made invalid. + * + * The partcmd_enable and partcmd_disable commands are used by + * update_prstate(). An error code may be returned and the caller will check + * for error. + * + * The partcmd_update command is used by update_cpumasks_hier() with newmask + * NULL and update_cpumask() with newmask set. The partcmd_invalidate is used + * by update_cpumask() with NULL newmask. In both cases, the callers won't + * check for error and so partition_root_state and prs_error will be updated + * directly. + */ +static int update_parent_subparts_cpumask(struct cpuset *cs, int cmd, + struct cpumask *newmask, + struct tmpmasks *tmp) +{ + struct cpuset *parent = parent_cs(cs); + int adding; /* Moving cpus from effective_cpus to subparts_cpus */ + int deleting; /* Moving cpus from subparts_cpus to effective_cpus */ + int old_prs, new_prs; + int part_error = PERR_NONE; /* Partition error? */ + + lockdep_assert_held(&cpuset_mutex); + + /* + * The parent must be a partition root. + * The new cpumask, if present, or the current cpus_allowed must + * not be empty. + */ + if (!is_partition_valid(parent)) { + return is_partition_invalid(parent) + ? PERR_INVPARENT : PERR_NOTPART; + } + if (!newmask && cpumask_empty(cs->cpus_allowed)) + return PERR_CPUSEMPTY; + + /* + * new_prs will only be changed for the partcmd_update and + * partcmd_invalidate commands. + */ + adding = deleting = false; + old_prs = new_prs = cs->partition_root_state; + if (cmd == partcmd_enable) { + /* + * Enabling partition root is not allowed if cpus_allowed + * doesn't overlap parent's cpus_allowed. + */ + if (!cpumask_intersects(cs->cpus_allowed, parent->cpus_allowed)) + return PERR_INVCPUS; + + /* + * A parent can be left with no CPU as long as there is no + * task directly associated with the parent partition. + */ + if (cpumask_subset(parent->effective_cpus, cs->cpus_allowed) && + partition_is_populated(parent, cs)) + return PERR_NOCPUS; + + cpumask_copy(tmp->addmask, cs->cpus_allowed); + adding = true; + } else if (cmd == partcmd_disable) { + /* + * Need to remove cpus from parent's subparts_cpus for valid + * partition root. + */ + deleting = !is_prs_invalid(old_prs) && + cpumask_and(tmp->delmask, cs->cpus_allowed, + parent->subparts_cpus); + } else if (cmd == partcmd_invalidate) { + if (is_prs_invalid(old_prs)) + return 0; + + /* + * Make the current partition invalid. It is assumed that + * invalidation is caused by violating cpu exclusivity rule. + */ + deleting = cpumask_and(tmp->delmask, cs->cpus_allowed, + parent->subparts_cpus); + if (old_prs > 0) { + new_prs = -old_prs; + part_error = PERR_NOTEXCL; + } + } else if (newmask) { + /* + * partcmd_update with newmask: + * + * Compute add/delete mask to/from subparts_cpus + * + * delmask = cpus_allowed & ~newmask & parent->subparts_cpus + * addmask = newmask & parent->cpus_allowed + * & ~parent->subparts_cpus + */ + cpumask_andnot(tmp->delmask, cs->cpus_allowed, newmask); + deleting = cpumask_and(tmp->delmask, tmp->delmask, + parent->subparts_cpus); + + cpumask_and(tmp->addmask, newmask, parent->cpus_allowed); + adding = cpumask_andnot(tmp->addmask, tmp->addmask, + parent->subparts_cpus); + /* + * Empty cpumask is not allowed + */ + if (cpumask_empty(newmask)) { + part_error = PERR_CPUSEMPTY; + /* + * Make partition invalid if parent's effective_cpus could + * become empty and there are tasks in the parent. + */ + } else if (adding && + cpumask_subset(parent->effective_cpus, tmp->addmask) && + !cpumask_intersects(tmp->delmask, cpu_active_mask) && + partition_is_populated(parent, cs)) { + part_error = PERR_NOCPUS; + adding = false; + deleting = cpumask_and(tmp->delmask, cs->cpus_allowed, + parent->subparts_cpus); + } + } else { + /* + * partcmd_update w/o newmask: + * + * delmask = cpus_allowed & parent->subparts_cpus + * addmask = cpus_allowed & parent->cpus_allowed + * & ~parent->subparts_cpus + * + * This gets invoked either due to a hotplug event or from + * update_cpumasks_hier(). This can cause the state of a + * partition root to transition from valid to invalid or vice + * versa. So we still need to compute the addmask and delmask. + + * A partition error happens when: + * 1) Cpuset is valid partition, but parent does not distribute + * out any CPUs. + * 2) Parent has tasks and all its effective CPUs will have + * to be distributed out. + */ + cpumask_and(tmp->addmask, cs->cpus_allowed, + parent->cpus_allowed); + adding = cpumask_andnot(tmp->addmask, tmp->addmask, + parent->subparts_cpus); + + if ((is_partition_valid(cs) && !parent->nr_subparts_cpus) || + (adding && + cpumask_subset(parent->effective_cpus, tmp->addmask) && + partition_is_populated(parent, cs))) { + part_error = PERR_NOCPUS; + adding = false; + } + + if (part_error && is_partition_valid(cs) && + parent->nr_subparts_cpus) + deleting = cpumask_and(tmp->delmask, cs->cpus_allowed, + parent->subparts_cpus); + } + if (part_error) + WRITE_ONCE(cs->prs_err, part_error); + + if (cmd == partcmd_update) { + /* + * Check for possible transition between valid and invalid + * partition root. + */ + switch (cs->partition_root_state) { + case PRS_ROOT: + case PRS_ISOLATED: + if (part_error) + new_prs = -old_prs; + break; + case PRS_INVALID_ROOT: + case PRS_INVALID_ISOLATED: + if (!part_error) + new_prs = -old_prs; + break; + } + } + + if (!adding && !deleting && (new_prs == old_prs)) + return 0; + + /* + * Transitioning between invalid to valid or vice versa may require + * changing CS_CPU_EXCLUSIVE. + */ + if (old_prs != new_prs) { + int err = update_partition_exclusive(cs, new_prs); + + if (err) + return err; + } + + /* + * Change the parent's subparts_cpus. + * Newly added CPUs will be removed from effective_cpus and + * newly deleted ones will be added back to effective_cpus. + */ + spin_lock_irq(&callback_lock); + if (adding) { + cpumask_or(parent->subparts_cpus, + parent->subparts_cpus, tmp->addmask); + cpumask_andnot(parent->effective_cpus, + parent->effective_cpus, tmp->addmask); + } + if (deleting) { + cpumask_andnot(parent->subparts_cpus, + parent->subparts_cpus, tmp->delmask); + /* + * Some of the CPUs in subparts_cpus might have been offlined. + */ + cpumask_and(tmp->delmask, tmp->delmask, cpu_active_mask); + cpumask_or(parent->effective_cpus, + parent->effective_cpus, tmp->delmask); + } + + parent->nr_subparts_cpus = cpumask_weight(parent->subparts_cpus); + + if (old_prs != new_prs) + cs->partition_root_state = new_prs; + + spin_unlock_irq(&callback_lock); + + if (adding || deleting) { + update_tasks_cpumask(parent, tmp->addmask); + if (parent->child_ecpus_count) + update_sibling_cpumasks(parent, cs, tmp); + } + + /* + * For partcmd_update without newmask, it is being called from + * cpuset_hotplug_workfn() where cpus_read_lock() wasn't taken. + * Update the load balance flag and scheduling domain if + * cpus_read_trylock() is successful. + */ + if ((cmd == partcmd_update) && !newmask && cpus_read_trylock()) { + update_partition_sd_lb(cs, old_prs); + cpus_read_unlock(); + } + + notify_partition_change(cs, old_prs); + return 0; +} + +/* + * update_cpumasks_hier() flags + */ +#define HIER_CHECKALL 0x01 /* Check all cpusets with no skipping */ +#define HIER_NO_SD_REBUILD 0x02 /* Don't rebuild sched domains */ + +/* + * update_cpumasks_hier - Update effective cpumasks and tasks in the subtree + * @cs: the cpuset to consider + * @tmp: temp variables for calculating effective_cpus & partition setup + * @force: don't skip any descendant cpusets if set + * + * When configured cpumask is changed, the effective cpumasks of this cpuset + * and all its descendants need to be updated. + * + * On legacy hierarchy, effective_cpus will be the same with cpu_allowed. + * + * Called with cpuset_mutex held + */ +static void update_cpumasks_hier(struct cpuset *cs, struct tmpmasks *tmp, + int flags) +{ + struct cpuset *cp; + struct cgroup_subsys_state *pos_css; + bool need_rebuild_sched_domains = false; + int old_prs, new_prs; + + rcu_read_lock(); + cpuset_for_each_descendant_pre(cp, pos_css, cs) { + struct cpuset *parent = parent_cs(cp); + bool update_parent = false; + + compute_effective_cpumask(tmp->new_cpus, cp, parent); + + /* + * If it becomes empty, inherit the effective mask of the + * parent, which is guaranteed to have some CPUs unless + * it is a partition root that has explicitly distributed + * out all its CPUs. + */ + if (is_in_v2_mode() && cpumask_empty(tmp->new_cpus)) { + if (is_partition_valid(cp) && + cpumask_equal(cp->cpus_allowed, cp->subparts_cpus)) + goto update_parent_subparts; + + cpumask_copy(tmp->new_cpus, parent->effective_cpus); + if (!cp->use_parent_ecpus) { + cp->use_parent_ecpus = true; + parent->child_ecpus_count++; + } + } else if (cp->use_parent_ecpus) { + cp->use_parent_ecpus = false; + WARN_ON_ONCE(!parent->child_ecpus_count); + parent->child_ecpus_count--; + } + + /* + * Skip the whole subtree if + * 1) the cpumask remains the same, + * 2) has no partition root state, + * 3) HIER_CHECKALL flag not set, and + * 4) for v2 load balance state same as its parent. + */ + if (!cp->partition_root_state && !(flags & HIER_CHECKALL) && + cpumask_equal(tmp->new_cpus, cp->effective_cpus) && + (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) || + (is_sched_load_balance(parent) == is_sched_load_balance(cp)))) { + pos_css = css_rightmost_descendant(pos_css); + continue; + } + +update_parent_subparts: + /* + * update_parent_subparts_cpumask() should have been called + * for cs already in update_cpumask(). We should also call + * update_tasks_cpumask() again for tasks in the parent + * cpuset if the parent's subparts_cpus changes. + */ + old_prs = new_prs = cp->partition_root_state; + if ((cp != cs) && old_prs) { + switch (parent->partition_root_state) { + case PRS_ROOT: + case PRS_ISOLATED: + update_parent = true; + break; + + default: + /* + * When parent is not a partition root or is + * invalid, child partition roots become + * invalid too. + */ + if (is_partition_valid(cp)) + new_prs = -cp->partition_root_state; + WRITE_ONCE(cp->prs_err, + is_partition_invalid(parent) + ? PERR_INVPARENT : PERR_NOTPART); + break; + } + } + + if (!css_tryget_online(&cp->css)) + continue; + rcu_read_unlock(); + + if (update_parent) { + update_parent_subparts_cpumask(cp, partcmd_update, NULL, + tmp); + /* + * The cpuset partition_root_state may become + * invalid. Capture it. + */ + new_prs = cp->partition_root_state; + } + + spin_lock_irq(&callback_lock); + + if (cp->nr_subparts_cpus && !is_partition_valid(cp)) { + /* + * Put all active subparts_cpus back to effective_cpus. + */ + cpumask_or(tmp->new_cpus, tmp->new_cpus, + cp->subparts_cpus); + cpumask_and(tmp->new_cpus, tmp->new_cpus, + cpu_active_mask); + cp->nr_subparts_cpus = 0; + cpumask_clear(cp->subparts_cpus); + } + + cpumask_copy(cp->effective_cpus, tmp->new_cpus); + if (cp->nr_subparts_cpus) { + /* + * Make sure that effective_cpus & subparts_cpus + * are mutually exclusive. + */ + cpumask_andnot(cp->effective_cpus, cp->effective_cpus, + cp->subparts_cpus); + } + + cp->partition_root_state = new_prs; + spin_unlock_irq(&callback_lock); + + notify_partition_change(cp, old_prs); + + WARN_ON(!is_in_v2_mode() && + !cpumask_equal(cp->cpus_allowed, cp->effective_cpus)); + + update_tasks_cpumask(cp, tmp->new_cpus); + + /* + * On default hierarchy, inherit the CS_SCHED_LOAD_BALANCE + * from parent if current cpuset isn't a valid partition root + * and their load balance states differ. + */ + if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys) && + !is_partition_valid(cp) && + (is_sched_load_balance(parent) != is_sched_load_balance(cp))) { + if (is_sched_load_balance(parent)) + set_bit(CS_SCHED_LOAD_BALANCE, &cp->flags); + else + clear_bit(CS_SCHED_LOAD_BALANCE, &cp->flags); + } + + /* + * On legacy hierarchy, if the effective cpumask of any non- + * empty cpuset is changed, we need to rebuild sched domains. + * On default hierarchy, the cpuset needs to be a partition + * root as well. + */ + if (!cpumask_empty(cp->cpus_allowed) && + is_sched_load_balance(cp) && + (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) || + is_partition_valid(cp))) + need_rebuild_sched_domains = true; + + rcu_read_lock(); + css_put(&cp->css); + } + rcu_read_unlock(); + + if (need_rebuild_sched_domains && !(flags & HIER_NO_SD_REBUILD)) + rebuild_sched_domains_locked(); +} + +/** + * update_sibling_cpumasks - Update siblings cpumasks + * @parent: Parent cpuset + * @cs: Current cpuset + * @tmp: Temp variables + */ +static void update_sibling_cpumasks(struct cpuset *parent, struct cpuset *cs, + struct tmpmasks *tmp) +{ + struct cpuset *sibling; + struct cgroup_subsys_state *pos_css; + + lockdep_assert_held(&cpuset_mutex); + + /* + * Check all its siblings and call update_cpumasks_hier() + * if their use_parent_ecpus flag is set in order for them + * to use the right effective_cpus value. + * + * The update_cpumasks_hier() function may sleep. So we have to + * release the RCU read lock before calling it. HIER_NO_SD_REBUILD + * flag is used to suppress rebuild of sched domains as the callers + * will take care of that. + */ + rcu_read_lock(); + cpuset_for_each_child(sibling, pos_css, parent) { + if (sibling == cs) + continue; + if (!sibling->use_parent_ecpus) + continue; + if (!css_tryget_online(&sibling->css)) + continue; + + rcu_read_unlock(); + update_cpumasks_hier(sibling, tmp, HIER_NO_SD_REBUILD); + rcu_read_lock(); + css_put(&sibling->css); + } + rcu_read_unlock(); +} + +/** + * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it + * @cs: the cpuset to consider + * @trialcs: trial cpuset + * @buf: buffer of cpu numbers written to this cpuset + */ +static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs, + const char *buf) +{ + int retval; + struct tmpmasks tmp; + bool invalidate = false; + int old_prs = cs->partition_root_state; + + /* top_cpuset.cpus_allowed tracks cpu_online_mask; it's read-only */ + if (cs == &top_cpuset) + return -EACCES; + + /* + * An empty cpus_allowed is ok only if the cpuset has no tasks. + * Since cpulist_parse() fails on an empty mask, we special case + * that parsing. The validate_change() call ensures that cpusets + * with tasks have cpus. + */ + if (!*buf) { + cpumask_clear(trialcs->cpus_allowed); + } else { + retval = cpulist_parse(buf, trialcs->cpus_allowed); + if (retval < 0) + return retval; + + if (!cpumask_subset(trialcs->cpus_allowed, + top_cpuset.cpus_allowed)) + return -EINVAL; + } + + /* Nothing to do if the cpus didn't change */ + if (cpumask_equal(cs->cpus_allowed, trialcs->cpus_allowed)) + return 0; + + if (alloc_cpumasks(NULL, &tmp)) + return -ENOMEM; + + retval = validate_change(cs, trialcs); + + if ((retval == -EINVAL) && cgroup_subsys_on_dfl(cpuset_cgrp_subsys)) { + struct cpuset *cp, *parent; + struct cgroup_subsys_state *css; + + /* + * The -EINVAL error code indicates that partition sibling + * CPU exclusivity rule has been violated. We still allow + * the cpumask change to proceed while invalidating the + * partition. However, any conflicting sibling partitions + * have to be marked as invalid too. + */ + invalidate = true; + rcu_read_lock(); + parent = parent_cs(cs); + cpuset_for_each_child(cp, css, parent) + if (is_partition_valid(cp) && + cpumask_intersects(trialcs->cpus_allowed, cp->cpus_allowed)) { + rcu_read_unlock(); + update_parent_subparts_cpumask(cp, partcmd_invalidate, NULL, &tmp); + rcu_read_lock(); + } + rcu_read_unlock(); + retval = 0; + } + if (retval < 0) + goto out_free; + + if (cs->partition_root_state) { + if (invalidate) + update_parent_subparts_cpumask(cs, partcmd_invalidate, + NULL, &tmp); + else + update_parent_subparts_cpumask(cs, partcmd_update, + trialcs->cpus_allowed, &tmp); + } + + compute_effective_cpumask(trialcs->effective_cpus, trialcs, + parent_cs(cs)); + spin_lock_irq(&callback_lock); + cpumask_copy(cs->cpus_allowed, trialcs->cpus_allowed); + + /* + * Make sure that subparts_cpus, if not empty, is a subset of + * cpus_allowed. Clear subparts_cpus if partition not valid or + * empty effective cpus with tasks. + */ + if (cs->nr_subparts_cpus) { + if (!is_partition_valid(cs) || + (cpumask_subset(trialcs->effective_cpus, cs->subparts_cpus) && + partition_is_populated(cs, NULL))) { + cs->nr_subparts_cpus = 0; + cpumask_clear(cs->subparts_cpus); + } else { + cpumask_and(cs->subparts_cpus, cs->subparts_cpus, + cs->cpus_allowed); + cs->nr_subparts_cpus = cpumask_weight(cs->subparts_cpus); + } + } + spin_unlock_irq(&callback_lock); + + /* effective_cpus will be updated here */ + update_cpumasks_hier(cs, &tmp, 0); + + if (cs->partition_root_state) { + struct cpuset *parent = parent_cs(cs); + + /* + * For partition root, update the cpumasks of sibling + * cpusets if they use parent's effective_cpus. + */ + if (parent->child_ecpus_count) + update_sibling_cpumasks(parent, cs, &tmp); + + /* Update CS_SCHED_LOAD_BALANCE and/or sched_domains */ + update_partition_sd_lb(cs, old_prs); + } +out_free: + free_cpumasks(NULL, &tmp); + return 0; +} + +/* + * Migrate memory region from one set of nodes to another. This is + * performed asynchronously as it can be called from process migration path + * holding locks involved in process management. All mm migrations are + * performed in the queued order and can be waited for by flushing + * cpuset_migrate_mm_wq. + */ + +struct cpuset_migrate_mm_work { + struct work_struct work; + struct mm_struct *mm; + nodemask_t from; + nodemask_t to; +}; + +static void cpuset_migrate_mm_workfn(struct work_struct *work) +{ + struct cpuset_migrate_mm_work *mwork = + container_of(work, struct cpuset_migrate_mm_work, work); + + /* on a wq worker, no need to worry about %current's mems_allowed */ + do_migrate_pages(mwork->mm, &mwork->from, &mwork->to, MPOL_MF_MOVE_ALL); + mmput(mwork->mm); + kfree(mwork); +} + +static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from, + const nodemask_t *to) +{ + struct cpuset_migrate_mm_work *mwork; + + if (nodes_equal(*from, *to)) { + mmput(mm); + return; + } + + mwork = kzalloc(sizeof(*mwork), GFP_KERNEL); + if (mwork) { + mwork->mm = mm; + mwork->from = *from; + mwork->to = *to; + INIT_WORK(&mwork->work, cpuset_migrate_mm_workfn); + queue_work(cpuset_migrate_mm_wq, &mwork->work); + } else { + mmput(mm); + } +} + +static void cpuset_post_attach(void) +{ + flush_workqueue(cpuset_migrate_mm_wq); +} + +/* + * cpuset_change_task_nodemask - change task's mems_allowed and mempolicy + * @tsk: the task to change + * @newmems: new nodes that the task will be set + * + * We use the mems_allowed_seq seqlock to safely update both tsk->mems_allowed + * and rebind an eventual tasks' mempolicy. If the task is allocating in + * parallel, it might temporarily see an empty intersection, which results in + * a seqlock check and retry before OOM or allocation failure. + */ +static void cpuset_change_task_nodemask(struct task_struct *tsk, + nodemask_t *newmems) +{ + task_lock(tsk); + + local_irq_disable(); + write_seqcount_begin(&tsk->mems_allowed_seq); + + nodes_or(tsk->mems_allowed, tsk->mems_allowed, *newmems); + mpol_rebind_task(tsk, newmems); + tsk->mems_allowed = *newmems; + + write_seqcount_end(&tsk->mems_allowed_seq); + local_irq_enable(); + + task_unlock(tsk); +} + +static void *cpuset_being_rebound; + +/** + * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset. + * @cs: the cpuset in which each task's mems_allowed mask needs to be changed + * + * Iterate through each task of @cs updating its mems_allowed to the + * effective cpuset's. As this function is called with cpuset_mutex held, + * cpuset membership stays stable. + */ +static void update_tasks_nodemask(struct cpuset *cs) +{ + static nodemask_t newmems; /* protected by cpuset_mutex */ + struct css_task_iter it; + struct task_struct *task; + + cpuset_being_rebound = cs; /* causes mpol_dup() rebind */ + + guarantee_online_mems(cs, &newmems); + + /* + * The mpol_rebind_mm() call takes mmap_lock, which we couldn't + * take while holding tasklist_lock. Forks can happen - the + * mpol_dup() cpuset_being_rebound check will catch such forks, + * and rebind their vma mempolicies too. Because we still hold + * the global cpuset_mutex, we know that no other rebind effort + * will be contending for the global variable cpuset_being_rebound. + * It's ok if we rebind the same mm twice; mpol_rebind_mm() + * is idempotent. Also migrate pages in each mm to new nodes. + */ + css_task_iter_start(&cs->css, 0, &it); + while ((task = css_task_iter_next(&it))) { + struct mm_struct *mm; + bool migrate; + + cpuset_change_task_nodemask(task, &newmems); + + mm = get_task_mm(task); + if (!mm) + continue; + + migrate = is_memory_migrate(cs); + + mpol_rebind_mm(mm, &cs->mems_allowed); + if (migrate) + cpuset_migrate_mm(mm, &cs->old_mems_allowed, &newmems); + else + mmput(mm); + } + css_task_iter_end(&it); + + /* + * All the tasks' nodemasks have been updated, update + * cs->old_mems_allowed. + */ + cs->old_mems_allowed = newmems; + + /* We're done rebinding vmas to this cpuset's new mems_allowed. */ + cpuset_being_rebound = NULL; +} + +/* + * update_nodemasks_hier - Update effective nodemasks and tasks in the subtree + * @cs: the cpuset to consider + * @new_mems: a temp variable for calculating new effective_mems + * + * When configured nodemask is changed, the effective nodemasks of this cpuset + * and all its descendants need to be updated. + * + * On legacy hierarchy, effective_mems will be the same with mems_allowed. + * + * Called with cpuset_mutex held + */ +static void update_nodemasks_hier(struct cpuset *cs, nodemask_t *new_mems) +{ + struct cpuset *cp; + struct cgroup_subsys_state *pos_css; + + rcu_read_lock(); + cpuset_for_each_descendant_pre(cp, pos_css, cs) { + struct cpuset *parent = parent_cs(cp); + + nodes_and(*new_mems, cp->mems_allowed, parent->effective_mems); + + /* + * If it becomes empty, inherit the effective mask of the + * parent, which is guaranteed to have some MEMs. + */ + if (is_in_v2_mode() && nodes_empty(*new_mems)) + *new_mems = parent->effective_mems; + + /* Skip the whole subtree if the nodemask remains the same. */ + if (nodes_equal(*new_mems, cp->effective_mems)) { + pos_css = css_rightmost_descendant(pos_css); + continue; + } + + if (!css_tryget_online(&cp->css)) + continue; + rcu_read_unlock(); + + spin_lock_irq(&callback_lock); + cp->effective_mems = *new_mems; + spin_unlock_irq(&callback_lock); + + WARN_ON(!is_in_v2_mode() && + !nodes_equal(cp->mems_allowed, cp->effective_mems)); + + update_tasks_nodemask(cp); + + rcu_read_lock(); + css_put(&cp->css); + } + rcu_read_unlock(); +} + +/* + * Handle user request to change the 'mems' memory placement + * of a cpuset. Needs to validate the request, update the + * cpusets mems_allowed, and for each task in the cpuset, + * update mems_allowed and rebind task's mempolicy and any vma + * mempolicies and if the cpuset is marked 'memory_migrate', + * migrate the tasks pages to the new memory. + * + * Call with cpuset_mutex held. May take callback_lock during call. + * Will take tasklist_lock, scan tasklist for tasks in cpuset cs, + * lock each such tasks mm->mmap_lock, scan its vma's and rebind + * their mempolicies to the cpusets new mems_allowed. + */ +static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs, + const char *buf) +{ + int retval; + + /* + * top_cpuset.mems_allowed tracks node_stats[N_MEMORY]; + * it's read-only + */ + if (cs == &top_cpuset) { + retval = -EACCES; + goto done; + } + + /* + * An empty mems_allowed is ok iff there are no tasks in the cpuset. + * Since nodelist_parse() fails on an empty mask, we special case + * that parsing. The validate_change() call ensures that cpusets + * with tasks have memory. + */ + if (!*buf) { + nodes_clear(trialcs->mems_allowed); + } else { + retval = nodelist_parse(buf, trialcs->mems_allowed); + if (retval < 0) + goto done; + + if (!nodes_subset(trialcs->mems_allowed, + top_cpuset.mems_allowed)) { + retval = -EINVAL; + goto done; + } + } + + if (nodes_equal(cs->mems_allowed, trialcs->mems_allowed)) { + retval = 0; /* Too easy - nothing to do */ + goto done; + } + retval = validate_change(cs, trialcs); + if (retval < 0) + goto done; + + check_insane_mems_config(&trialcs->mems_allowed); + + spin_lock_irq(&callback_lock); + cs->mems_allowed = trialcs->mems_allowed; + spin_unlock_irq(&callback_lock); + + /* use trialcs->mems_allowed as a temp variable */ + update_nodemasks_hier(cs, &trialcs->mems_allowed); +done: + return retval; +} + +bool current_cpuset_is_being_rebound(void) +{ + bool ret; + + rcu_read_lock(); + ret = task_cs(current) == cpuset_being_rebound; + rcu_read_unlock(); + + return ret; +} + +static int update_relax_domain_level(struct cpuset *cs, s64 val) +{ +#ifdef CONFIG_SMP + if (val < -1 || val >= sched_domain_level_max) + return -EINVAL; +#endif + + if (val != cs->relax_domain_level) { + cs->relax_domain_level = val; + if (!cpumask_empty(cs->cpus_allowed) && + is_sched_load_balance(cs)) + rebuild_sched_domains_locked(); + } + + return 0; +} + +/** + * update_tasks_flags - update the spread flags of tasks in the cpuset. + * @cs: the cpuset in which each task's spread flags needs to be changed + * + * Iterate through each task of @cs updating its spread flags. As this + * function is called with cpuset_mutex held, cpuset membership stays + * stable. + */ +static void update_tasks_flags(struct cpuset *cs) +{ + struct css_task_iter it; + struct task_struct *task; + + css_task_iter_start(&cs->css, 0, &it); + while ((task = css_task_iter_next(&it))) + cpuset_update_task_spread_flags(cs, task); + css_task_iter_end(&it); +} + +/* + * update_flag - read a 0 or a 1 in a file and update associated flag + * bit: the bit to update (see cpuset_flagbits_t) + * cs: the cpuset to update + * turning_on: whether the flag is being set or cleared + * + * Call with cpuset_mutex held. + */ + +static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs, + int turning_on) +{ + struct cpuset *trialcs; + int balance_flag_changed; + int spread_flag_changed; + int err; + + trialcs = alloc_trial_cpuset(cs); + if (!trialcs) + return -ENOMEM; + + if (turning_on) + set_bit(bit, &trialcs->flags); + else + clear_bit(bit, &trialcs->flags); + + err = validate_change(cs, trialcs); + if (err < 0) + goto out; + + balance_flag_changed = (is_sched_load_balance(cs) != + is_sched_load_balance(trialcs)); + + spread_flag_changed = ((is_spread_slab(cs) != is_spread_slab(trialcs)) + || (is_spread_page(cs) != is_spread_page(trialcs))); + + spin_lock_irq(&callback_lock); + cs->flags = trialcs->flags; + spin_unlock_irq(&callback_lock); + + if (!cpumask_empty(trialcs->cpus_allowed) && balance_flag_changed) + rebuild_sched_domains_locked(); + + if (spread_flag_changed) + update_tasks_flags(cs); +out: + free_cpuset(trialcs); + return err; +} + +/** + * update_prstate - update partition_root_state + * @cs: the cpuset to update + * @new_prs: new partition root state + * Return: 0 if successful, != 0 if error + * + * Call with cpuset_mutex held. + */ +static int update_prstate(struct cpuset *cs, int new_prs) +{ + int err = PERR_NONE, old_prs = cs->partition_root_state; + struct cpuset *parent = parent_cs(cs); + struct tmpmasks tmpmask; + + if (old_prs == new_prs) + return 0; + + /* + * For a previously invalid partition root, leave it at being + * invalid if new_prs is not "member". + */ + if (new_prs && is_prs_invalid(old_prs)) { + cs->partition_root_state = -new_prs; + return 0; + } + + if (alloc_cpumasks(NULL, &tmpmask)) + return -ENOMEM; + + err = update_partition_exclusive(cs, new_prs); + if (err) + goto out; + + if (!old_prs) { + /* + * cpus_allowed cannot be empty. + */ + if (cpumask_empty(cs->cpus_allowed)) { + err = PERR_CPUSEMPTY; + goto out; + } + + err = update_parent_subparts_cpumask(cs, partcmd_enable, + NULL, &tmpmask); + } else if (old_prs && new_prs) { + /* + * A change in load balance state only, no change in cpumasks. + */ + ; + } else { + /* + * Switching back to member is always allowed even if it + * disables child partitions. + */ + update_parent_subparts_cpumask(cs, partcmd_disable, NULL, + &tmpmask); + + /* + * If there are child partitions, they will all become invalid. + */ + if (unlikely(cs->nr_subparts_cpus)) { + spin_lock_irq(&callback_lock); + cs->nr_subparts_cpus = 0; + cpumask_clear(cs->subparts_cpus); + compute_effective_cpumask(cs->effective_cpus, cs, parent); + spin_unlock_irq(&callback_lock); + } + } +out: + /* + * Make partition invalid & disable CS_CPU_EXCLUSIVE if an error + * happens. + */ + if (err) { + new_prs = -new_prs; + update_partition_exclusive(cs, new_prs); + } + + spin_lock_irq(&callback_lock); + cs->partition_root_state = new_prs; + WRITE_ONCE(cs->prs_err, err); + spin_unlock_irq(&callback_lock); + + /* + * Update child cpusets, if present. + * Force update if switching back to member. + */ + if (!list_empty(&cs->css.children)) + update_cpumasks_hier(cs, &tmpmask, !new_prs ? HIER_CHECKALL : 0); + + /* Update sched domains and load balance flag */ + update_partition_sd_lb(cs, old_prs); + + notify_partition_change(cs, old_prs); + free_cpumasks(NULL, &tmpmask); + return 0; +} + +/* + * Frequency meter - How fast is some event occurring? + * + * These routines manage a digitally filtered, constant time based, + * event frequency meter. There are four routines: + * fmeter_init() - initialize a frequency meter. + * fmeter_markevent() - called each time the event happens. + * fmeter_getrate() - returns the recent rate of such events. + * fmeter_update() - internal routine used to update fmeter. + * + * A common data structure is passed to each of these routines, + * which is used to keep track of the state required to manage the + * frequency meter and its digital filter. + * + * The filter works on the number of events marked per unit time. + * The filter is single-pole low-pass recursive (IIR). The time unit + * is 1 second. Arithmetic is done using 32-bit integers scaled to + * simulate 3 decimal digits of precision (multiplied by 1000). + * + * With an FM_COEF of 933, and a time base of 1 second, the filter + * has a half-life of 10 seconds, meaning that if the events quit + * happening, then the rate returned from the fmeter_getrate() + * will be cut in half each 10 seconds, until it converges to zero. + * + * It is not worth doing a real infinitely recursive filter. If more + * than FM_MAXTICKS ticks have elapsed since the last filter event, + * just compute FM_MAXTICKS ticks worth, by which point the level + * will be stable. + * + * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid + * arithmetic overflow in the fmeter_update() routine. + * + * Given the simple 32 bit integer arithmetic used, this meter works + * best for reporting rates between one per millisecond (msec) and + * one per 32 (approx) seconds. At constant rates faster than one + * per msec it maxes out at values just under 1,000,000. At constant + * rates between one per msec, and one per second it will stabilize + * to a value N*1000, where N is the rate of events per second. + * At constant rates between one per second and one per 32 seconds, + * it will be choppy, moving up on the seconds that have an event, + * and then decaying until the next event. At rates slower than + * about one in 32 seconds, it decays all the way back to zero between + * each event. + */ + +#define FM_COEF 933 /* coefficient for half-life of 10 secs */ +#define FM_MAXTICKS ((u32)99) /* useless computing more ticks than this */ +#define FM_MAXCNT 1000000 /* limit cnt to avoid overflow */ +#define FM_SCALE 1000 /* faux fixed point scale */ + +/* Initialize a frequency meter */ +static void fmeter_init(struct fmeter *fmp) +{ + fmp->cnt = 0; + fmp->val = 0; + fmp->time = 0; + spin_lock_init(&fmp->lock); +} + +/* Internal meter update - process cnt events and update value */ +static void fmeter_update(struct fmeter *fmp) +{ + time64_t now; + u32 ticks; + + now = ktime_get_seconds(); + ticks = now - fmp->time; + + if (ticks == 0) + return; + + ticks = min(FM_MAXTICKS, ticks); + while (ticks-- > 0) + fmp->val = (FM_COEF * fmp->val) / FM_SCALE; + fmp->time = now; + + fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE; + fmp->cnt = 0; +} + +/* Process any previous ticks, then bump cnt by one (times scale). */ +static void fmeter_markevent(struct fmeter *fmp) +{ + spin_lock(&fmp->lock); + fmeter_update(fmp); + fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE); + spin_unlock(&fmp->lock); +} + +/* Process any previous ticks, then return current value. */ +static int fmeter_getrate(struct fmeter *fmp) +{ + int val; + + spin_lock(&fmp->lock); + fmeter_update(fmp); + val = fmp->val; + spin_unlock(&fmp->lock); + return val; +} + +static struct cpuset *cpuset_attach_old_cs; + +/* + * Check to see if a cpuset can accept a new task + * For v1, cpus_allowed and mems_allowed can't be empty. + * For v2, effective_cpus can't be empty. + * Note that in v1, effective_cpus = cpus_allowed. + */ +static int cpuset_can_attach_check(struct cpuset *cs) +{ + if (cpumask_empty(cs->effective_cpus) || + (!is_in_v2_mode() && nodes_empty(cs->mems_allowed))) + return -ENOSPC; + return 0; +} + +static void reset_migrate_dl_data(struct cpuset *cs) +{ + cs->nr_migrate_dl_tasks = 0; + cs->sum_migrate_dl_bw = 0; +} + +/* Called by cgroups to determine if a cpuset is usable; cpuset_mutex held */ +static int cpuset_can_attach(struct cgroup_taskset *tset) +{ + struct cgroup_subsys_state *css; + struct cpuset *cs, *oldcs; + struct task_struct *task; + bool cpus_updated, mems_updated; + int ret; + + /* used later by cpuset_attach() */ + cpuset_attach_old_cs = task_cs(cgroup_taskset_first(tset, &css)); + oldcs = cpuset_attach_old_cs; + cs = css_cs(css); + + mutex_lock(&cpuset_mutex); + + /* Check to see if task is allowed in the cpuset */ + ret = cpuset_can_attach_check(cs); + if (ret) + goto out_unlock; + + cpus_updated = !cpumask_equal(cs->effective_cpus, oldcs->effective_cpus); + mems_updated = !nodes_equal(cs->effective_mems, oldcs->effective_mems); + + cgroup_taskset_for_each(task, css, tset) { + ret = task_can_attach(task); + if (ret) + goto out_unlock; + + /* + * Skip rights over task check in v2 when nothing changes, + * migration permission derives from hierarchy ownership in + * cgroup_procs_write_permission()). + */ + if (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) || + (cpus_updated || mems_updated)) { + ret = security_task_setscheduler(task); + if (ret) + goto out_unlock; + } + + if (dl_task(task)) { + cs->nr_migrate_dl_tasks++; + cs->sum_migrate_dl_bw += task->dl.dl_bw; + } + } + + if (!cs->nr_migrate_dl_tasks) + goto out_success; + + if (!cpumask_intersects(oldcs->effective_cpus, cs->effective_cpus)) { + int cpu = cpumask_any_and(cpu_active_mask, cs->effective_cpus); + + if (unlikely(cpu >= nr_cpu_ids)) { + reset_migrate_dl_data(cs); + ret = -EINVAL; + goto out_unlock; + } + + ret = dl_bw_alloc(cpu, cs->sum_migrate_dl_bw); + if (ret) { + reset_migrate_dl_data(cs); + goto out_unlock; + } + } + +out_success: + /* + * Mark attach is in progress. This makes validate_change() fail + * changes which zero cpus/mems_allowed. + */ + cs->attach_in_progress++; +out_unlock: + mutex_unlock(&cpuset_mutex); + return ret; +} + +static void cpuset_cancel_attach(struct cgroup_taskset *tset) +{ + struct cgroup_subsys_state *css; + struct cpuset *cs; + + cgroup_taskset_first(tset, &css); + cs = css_cs(css); + + mutex_lock(&cpuset_mutex); + cs->attach_in_progress--; + if (!cs->attach_in_progress) + wake_up(&cpuset_attach_wq); + + if (cs->nr_migrate_dl_tasks) { + int cpu = cpumask_any(cs->effective_cpus); + + dl_bw_free(cpu, cs->sum_migrate_dl_bw); + reset_migrate_dl_data(cs); + } + + mutex_unlock(&cpuset_mutex); +} + +/* + * Protected by cpuset_mutex. cpus_attach is used only by cpuset_attach_task() + * but we can't allocate it dynamically there. Define it global and + * allocate from cpuset_init(). + */ +static cpumask_var_t cpus_attach; +static nodemask_t cpuset_attach_nodemask_to; + +static void cpuset_attach_task(struct cpuset *cs, struct task_struct *task) +{ + lockdep_assert_held(&cpuset_mutex); + + if (cs != &top_cpuset) + guarantee_online_cpus(task, cpus_attach); + else + cpumask_andnot(cpus_attach, task_cpu_possible_mask(task), + cs->subparts_cpus); + /* + * can_attach beforehand should guarantee that this doesn't + * fail. TODO: have a better way to handle failure here + */ + WARN_ON_ONCE(set_cpus_allowed_ptr(task, cpus_attach)); + + cpuset_change_task_nodemask(task, &cpuset_attach_nodemask_to); + cpuset_update_task_spread_flags(cs, task); +} + +static void cpuset_attach(struct cgroup_taskset *tset) +{ + struct task_struct *task; + struct task_struct *leader; + struct cgroup_subsys_state *css; + struct cpuset *cs; + struct cpuset *oldcs = cpuset_attach_old_cs; + bool cpus_updated, mems_updated; + + cgroup_taskset_first(tset, &css); + cs = css_cs(css); + + lockdep_assert_cpus_held(); /* see cgroup_attach_lock() */ + mutex_lock(&cpuset_mutex); + cpus_updated = !cpumask_equal(cs->effective_cpus, + oldcs->effective_cpus); + mems_updated = !nodes_equal(cs->effective_mems, oldcs->effective_mems); + + /* + * In the default hierarchy, enabling cpuset in the child cgroups + * will trigger a number of cpuset_attach() calls with no change + * in effective cpus and mems. In that case, we can optimize out + * by skipping the task iteration and update. + */ + if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys) && + !cpus_updated && !mems_updated) { + cpuset_attach_nodemask_to = cs->effective_mems; + goto out; + } + + guarantee_online_mems(cs, &cpuset_attach_nodemask_to); + + cgroup_taskset_for_each(task, css, tset) + cpuset_attach_task(cs, task); + + /* + * Change mm for all threadgroup leaders. This is expensive and may + * sleep and should be moved outside migration path proper. Skip it + * if there is no change in effective_mems and CS_MEMORY_MIGRATE is + * not set. + */ + cpuset_attach_nodemask_to = cs->effective_mems; + if (!is_memory_migrate(cs) && !mems_updated) + goto out; + + cgroup_taskset_for_each_leader(leader, css, tset) { + struct mm_struct *mm = get_task_mm(leader); + + if (mm) { + mpol_rebind_mm(mm, &cpuset_attach_nodemask_to); + + /* + * old_mems_allowed is the same with mems_allowed + * here, except if this task is being moved + * automatically due to hotplug. In that case + * @mems_allowed has been updated and is empty, so + * @old_mems_allowed is the right nodesets that we + * migrate mm from. + */ + if (is_memory_migrate(cs)) + cpuset_migrate_mm(mm, &oldcs->old_mems_allowed, + &cpuset_attach_nodemask_to); + else + mmput(mm); + } + } + +out: + cs->old_mems_allowed = cpuset_attach_nodemask_to; + + if (cs->nr_migrate_dl_tasks) { + cs->nr_deadline_tasks += cs->nr_migrate_dl_tasks; + oldcs->nr_deadline_tasks -= cs->nr_migrate_dl_tasks; + reset_migrate_dl_data(cs); + } + + cs->attach_in_progress--; + if (!cs->attach_in_progress) + wake_up(&cpuset_attach_wq); + + mutex_unlock(&cpuset_mutex); +} + +/* The various types of files and directories in a cpuset file system */ + +typedef enum { + FILE_MEMORY_MIGRATE, + FILE_CPULIST, + FILE_MEMLIST, + FILE_EFFECTIVE_CPULIST, + FILE_EFFECTIVE_MEMLIST, + FILE_SUBPARTS_CPULIST, + FILE_CPU_EXCLUSIVE, + FILE_MEM_EXCLUSIVE, + FILE_MEM_HARDWALL, + FILE_SCHED_LOAD_BALANCE, + FILE_PARTITION_ROOT, + FILE_SCHED_RELAX_DOMAIN_LEVEL, + FILE_MEMORY_PRESSURE_ENABLED, + FILE_MEMORY_PRESSURE, + FILE_SPREAD_PAGE, + FILE_SPREAD_SLAB, +} cpuset_filetype_t; + +static int cpuset_write_u64(struct cgroup_subsys_state *css, struct cftype *cft, + u64 val) +{ + struct cpuset *cs = css_cs(css); + cpuset_filetype_t type = cft->private; + int retval = 0; + + cpus_read_lock(); + mutex_lock(&cpuset_mutex); + if (!is_cpuset_online(cs)) { + retval = -ENODEV; + goto out_unlock; + } + + switch (type) { + case FILE_CPU_EXCLUSIVE: + retval = update_flag(CS_CPU_EXCLUSIVE, cs, val); + break; + case FILE_MEM_EXCLUSIVE: + retval = update_flag(CS_MEM_EXCLUSIVE, cs, val); + break; + case FILE_MEM_HARDWALL: + retval = update_flag(CS_MEM_HARDWALL, cs, val); + break; + case FILE_SCHED_LOAD_BALANCE: + retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, val); + break; + case FILE_MEMORY_MIGRATE: + retval = update_flag(CS_MEMORY_MIGRATE, cs, val); + break; + case FILE_MEMORY_PRESSURE_ENABLED: + cpuset_memory_pressure_enabled = !!val; + break; + case FILE_SPREAD_PAGE: + retval = update_flag(CS_SPREAD_PAGE, cs, val); + break; + case FILE_SPREAD_SLAB: + retval = update_flag(CS_SPREAD_SLAB, cs, val); + break; + default: + retval = -EINVAL; + break; + } +out_unlock: + mutex_unlock(&cpuset_mutex); + cpus_read_unlock(); + return retval; +} + +static int cpuset_write_s64(struct cgroup_subsys_state *css, struct cftype *cft, + s64 val) +{ + struct cpuset *cs = css_cs(css); + cpuset_filetype_t type = cft->private; + int retval = -ENODEV; + + cpus_read_lock(); + mutex_lock(&cpuset_mutex); + if (!is_cpuset_online(cs)) + goto out_unlock; + + switch (type) { + case FILE_SCHED_RELAX_DOMAIN_LEVEL: + retval = update_relax_domain_level(cs, val); + break; + default: + retval = -EINVAL; + break; + } +out_unlock: + mutex_unlock(&cpuset_mutex); + cpus_read_unlock(); + return retval; +} + +/* + * Common handling for a write to a "cpus" or "mems" file. + */ +static ssize_t cpuset_write_resmask(struct kernfs_open_file *of, + char *buf, size_t nbytes, loff_t off) +{ + struct cpuset *cs = css_cs(of_css(of)); + struct cpuset *trialcs; + int retval = -ENODEV; + + buf = strstrip(buf); + + /* + * CPU or memory hotunplug may leave @cs w/o any execution + * resources, in which case the hotplug code asynchronously updates + * configuration and transfers all tasks to the nearest ancestor + * which can execute. + * + * As writes to "cpus" or "mems" may restore @cs's execution + * resources, wait for the previously scheduled operations before + * proceeding, so that we don't end up keep removing tasks added + * after execution capability is restored. + * + * cpuset_hotplug_work calls back into cgroup core via + * cgroup_transfer_tasks() and waiting for it from a cgroupfs + * operation like this one can lead to a deadlock through kernfs + * active_ref protection. Let's break the protection. Losing the + * protection is okay as we check whether @cs is online after + * grabbing cpuset_mutex anyway. This only happens on the legacy + * hierarchies. + */ + css_get(&cs->css); + kernfs_break_active_protection(of->kn); + flush_work(&cpuset_hotplug_work); + + cpus_read_lock(); + mutex_lock(&cpuset_mutex); + if (!is_cpuset_online(cs)) + goto out_unlock; + + trialcs = alloc_trial_cpuset(cs); + if (!trialcs) { + retval = -ENOMEM; + goto out_unlock; + } + + switch (of_cft(of)->private) { + case FILE_CPULIST: + retval = update_cpumask(cs, trialcs, buf); + break; + case FILE_MEMLIST: + retval = update_nodemask(cs, trialcs, buf); + break; + default: + retval = -EINVAL; + break; + } + + free_cpuset(trialcs); +out_unlock: + mutex_unlock(&cpuset_mutex); + cpus_read_unlock(); + kernfs_unbreak_active_protection(of->kn); + css_put(&cs->css); + flush_workqueue(cpuset_migrate_mm_wq); + return retval ?: nbytes; +} + +/* + * These ascii lists should be read in a single call, by using a user + * buffer large enough to hold the entire map. If read in smaller + * chunks, there is no guarantee of atomicity. Since the display format + * used, list of ranges of sequential numbers, is variable length, + * and since these maps can change value dynamically, one could read + * gibberish by doing partial reads while a list was changing. + */ +static int cpuset_common_seq_show(struct seq_file *sf, void *v) +{ + struct cpuset *cs = css_cs(seq_css(sf)); + cpuset_filetype_t type = seq_cft(sf)->private; + int ret = 0; + + spin_lock_irq(&callback_lock); + + switch (type) { + case FILE_CPULIST: + seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->cpus_allowed)); + break; + case FILE_MEMLIST: + seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->mems_allowed)); + break; + case FILE_EFFECTIVE_CPULIST: + seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->effective_cpus)); + break; + case FILE_EFFECTIVE_MEMLIST: + seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->effective_mems)); + break; + case FILE_SUBPARTS_CPULIST: + seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->subparts_cpus)); + break; + default: + ret = -EINVAL; + } + + spin_unlock_irq(&callback_lock); + return ret; +} + +static u64 cpuset_read_u64(struct cgroup_subsys_state *css, struct cftype *cft) +{ + struct cpuset *cs = css_cs(css); + cpuset_filetype_t type = cft->private; + switch (type) { + case FILE_CPU_EXCLUSIVE: + return is_cpu_exclusive(cs); + case FILE_MEM_EXCLUSIVE: + return is_mem_exclusive(cs); + case FILE_MEM_HARDWALL: + return is_mem_hardwall(cs); + case FILE_SCHED_LOAD_BALANCE: + return is_sched_load_balance(cs); + case FILE_MEMORY_MIGRATE: + return is_memory_migrate(cs); + case FILE_MEMORY_PRESSURE_ENABLED: + return cpuset_memory_pressure_enabled; + case FILE_MEMORY_PRESSURE: + return fmeter_getrate(&cs->fmeter); + case FILE_SPREAD_PAGE: + return is_spread_page(cs); + case FILE_SPREAD_SLAB: + return is_spread_slab(cs); + default: + BUG(); + } + + /* Unreachable but makes gcc happy */ + return 0; +} + +static s64 cpuset_read_s64(struct cgroup_subsys_state *css, struct cftype *cft) +{ + struct cpuset *cs = css_cs(css); + cpuset_filetype_t type = cft->private; + switch (type) { + case FILE_SCHED_RELAX_DOMAIN_LEVEL: + return cs->relax_domain_level; + default: + BUG(); + } + + /* Unreachable but makes gcc happy */ + return 0; +} + +static int sched_partition_show(struct seq_file *seq, void *v) +{ + struct cpuset *cs = css_cs(seq_css(seq)); + const char *err, *type = NULL; + + switch (cs->partition_root_state) { + case PRS_ROOT: + seq_puts(seq, "root\n"); + break; + case PRS_ISOLATED: + seq_puts(seq, "isolated\n"); + break; + case PRS_MEMBER: + seq_puts(seq, "member\n"); + break; + case PRS_INVALID_ROOT: + type = "root"; + fallthrough; + case PRS_INVALID_ISOLATED: + if (!type) + type = "isolated"; + err = perr_strings[READ_ONCE(cs->prs_err)]; + if (err) + seq_printf(seq, "%s invalid (%s)\n", type, err); + else + seq_printf(seq, "%s invalid\n", type); + break; + } + return 0; +} + +static ssize_t sched_partition_write(struct kernfs_open_file *of, char *buf, + size_t nbytes, loff_t off) +{ + struct cpuset *cs = css_cs(of_css(of)); + int val; + int retval = -ENODEV; + + buf = strstrip(buf); + + /* + * Convert "root" to ENABLED, and convert "member" to DISABLED. + */ + if (!strcmp(buf, "root")) + val = PRS_ROOT; + else if (!strcmp(buf, "member")) + val = PRS_MEMBER; + else if (!strcmp(buf, "isolated")) + val = PRS_ISOLATED; + else + return -EINVAL; + + css_get(&cs->css); + cpus_read_lock(); + mutex_lock(&cpuset_mutex); + if (!is_cpuset_online(cs)) + goto out_unlock; + + retval = update_prstate(cs, val); +out_unlock: + mutex_unlock(&cpuset_mutex); + cpus_read_unlock(); + css_put(&cs->css); + return retval ?: nbytes; +} + +/* + * for the common functions, 'private' gives the type of file + */ + +static struct cftype legacy_files[] = { + { + .name = "cpus", + .seq_show = cpuset_common_seq_show, + .write = cpuset_write_resmask, + .max_write_len = (100U + 6 * NR_CPUS), + .private = FILE_CPULIST, + }, + + { + .name = "mems", + .seq_show = cpuset_common_seq_show, + .write = cpuset_write_resmask, + .max_write_len = (100U + 6 * MAX_NUMNODES), + .private = FILE_MEMLIST, + }, + + { + .name = "effective_cpus", + .seq_show = cpuset_common_seq_show, + .private = FILE_EFFECTIVE_CPULIST, + }, + + { + .name = "effective_mems", + .seq_show = cpuset_common_seq_show, + .private = FILE_EFFECTIVE_MEMLIST, + }, + + { + .name = "cpu_exclusive", + .read_u64 = cpuset_read_u64, + .write_u64 = cpuset_write_u64, + .private = FILE_CPU_EXCLUSIVE, + }, + + { + .name = "mem_exclusive", + .read_u64 = cpuset_read_u64, + .write_u64 = cpuset_write_u64, + .private = FILE_MEM_EXCLUSIVE, + }, + + { + .name = "mem_hardwall", + .read_u64 = cpuset_read_u64, + .write_u64 = cpuset_write_u64, + .private = FILE_MEM_HARDWALL, + }, + + { + .name = "sched_load_balance", + .read_u64 = cpuset_read_u64, + .write_u64 = cpuset_write_u64, + .private = FILE_SCHED_LOAD_BALANCE, + }, + + { + .name = "sched_relax_domain_level", + .read_s64 = cpuset_read_s64, + .write_s64 = cpuset_write_s64, + .private = FILE_SCHED_RELAX_DOMAIN_LEVEL, + }, + + { + .name = "memory_migrate", + .read_u64 = cpuset_read_u64, + .write_u64 = cpuset_write_u64, + .private = FILE_MEMORY_MIGRATE, + }, + + { + .name = "memory_pressure", + .read_u64 = cpuset_read_u64, + .private = FILE_MEMORY_PRESSURE, + }, + + { + .name = "memory_spread_page", + .read_u64 = cpuset_read_u64, + .write_u64 = cpuset_write_u64, + .private = FILE_SPREAD_PAGE, + }, + + { + .name = "memory_spread_slab", + .read_u64 = cpuset_read_u64, + .write_u64 = cpuset_write_u64, + .private = FILE_SPREAD_SLAB, + }, + + { + .name = "memory_pressure_enabled", + .flags = CFTYPE_ONLY_ON_ROOT, + .read_u64 = cpuset_read_u64, + .write_u64 = cpuset_write_u64, + .private = FILE_MEMORY_PRESSURE_ENABLED, + }, + + { } /* terminate */ +}; + +/* + * This is currently a minimal set for the default hierarchy. It can be + * expanded later on by migrating more features and control files from v1. + */ +static struct cftype dfl_files[] = { + { + .name = "cpus", + .seq_show = cpuset_common_seq_show, + .write = cpuset_write_resmask, + .max_write_len = (100U + 6 * NR_CPUS), + .private = FILE_CPULIST, + .flags = CFTYPE_NOT_ON_ROOT, + }, + + { + .name = "mems", + .seq_show = cpuset_common_seq_show, + .write = cpuset_write_resmask, + .max_write_len = (100U + 6 * MAX_NUMNODES), + .private = FILE_MEMLIST, + .flags = CFTYPE_NOT_ON_ROOT, + }, + + { + .name = "cpus.effective", + .seq_show = cpuset_common_seq_show, + .private = FILE_EFFECTIVE_CPULIST, + }, + + { + .name = "mems.effective", + .seq_show = cpuset_common_seq_show, + .private = FILE_EFFECTIVE_MEMLIST, + }, + + { + .name = "cpus.partition", + .seq_show = sched_partition_show, + .write = sched_partition_write, + .private = FILE_PARTITION_ROOT, + .flags = CFTYPE_NOT_ON_ROOT, + .file_offset = offsetof(struct cpuset, partition_file), + }, + + { + .name = "cpus.subpartitions", + .seq_show = cpuset_common_seq_show, + .private = FILE_SUBPARTS_CPULIST, + .flags = CFTYPE_DEBUG, + }, + + { } /* terminate */ +}; + + +/** + * cpuset_css_alloc - Allocate a cpuset css + * @parent_css: Parent css of the control group that the new cpuset will be + * part of + * Return: cpuset css on success, -ENOMEM on failure. + * + * Allocate and initialize a new cpuset css, for non-NULL @parent_css, return + * top cpuset css otherwise. + */ +static struct cgroup_subsys_state * +cpuset_css_alloc(struct cgroup_subsys_state *parent_css) +{ + struct cpuset *cs; + + if (!parent_css) + return &top_cpuset.css; + + cs = kzalloc(sizeof(*cs), GFP_KERNEL); + if (!cs) + return ERR_PTR(-ENOMEM); + + if (alloc_cpumasks(cs, NULL)) { + kfree(cs); + return ERR_PTR(-ENOMEM); + } + + __set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags); + nodes_clear(cs->mems_allowed); + nodes_clear(cs->effective_mems); + fmeter_init(&cs->fmeter); + cs->relax_domain_level = -1; + + /* Set CS_MEMORY_MIGRATE for default hierarchy */ + if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys)) + __set_bit(CS_MEMORY_MIGRATE, &cs->flags); + + return &cs->css; +} + +static int cpuset_css_online(struct cgroup_subsys_state *css) +{ + struct cpuset *cs = css_cs(css); + struct cpuset *parent = parent_cs(cs); + struct cpuset *tmp_cs; + struct cgroup_subsys_state *pos_css; + + if (!parent) + return 0; + + cpus_read_lock(); + mutex_lock(&cpuset_mutex); + + set_bit(CS_ONLINE, &cs->flags); + if (is_spread_page(parent)) + set_bit(CS_SPREAD_PAGE, &cs->flags); + if (is_spread_slab(parent)) + set_bit(CS_SPREAD_SLAB, &cs->flags); + + cpuset_inc(); + + spin_lock_irq(&callback_lock); + if (is_in_v2_mode()) { + cpumask_copy(cs->effective_cpus, parent->effective_cpus); + cs->effective_mems = parent->effective_mems; + cs->use_parent_ecpus = true; + parent->child_ecpus_count++; + } + + /* + * For v2, clear CS_SCHED_LOAD_BALANCE if parent is isolated + */ + if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys) && + !is_sched_load_balance(parent)) + clear_bit(CS_SCHED_LOAD_BALANCE, &cs->flags); + + spin_unlock_irq(&callback_lock); + + if (!test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags)) + goto out_unlock; + + /* + * Clone @parent's configuration if CGRP_CPUSET_CLONE_CHILDREN is + * set. This flag handling is implemented in cgroup core for + * historical reasons - the flag may be specified during mount. + * + * Currently, if any sibling cpusets have exclusive cpus or mem, we + * refuse to clone the configuration - thereby refusing the task to + * be entered, and as a result refusing the sys_unshare() or + * clone() which initiated it. If this becomes a problem for some + * users who wish to allow that scenario, then this could be + * changed to grant parent->cpus_allowed-sibling_cpus_exclusive + * (and likewise for mems) to the new cgroup. + */ + rcu_read_lock(); + cpuset_for_each_child(tmp_cs, pos_css, parent) { + if (is_mem_exclusive(tmp_cs) || is_cpu_exclusive(tmp_cs)) { + rcu_read_unlock(); + goto out_unlock; + } + } + rcu_read_unlock(); + + spin_lock_irq(&callback_lock); + cs->mems_allowed = parent->mems_allowed; + cs->effective_mems = parent->mems_allowed; + cpumask_copy(cs->cpus_allowed, parent->cpus_allowed); + cpumask_copy(cs->effective_cpus, parent->cpus_allowed); + spin_unlock_irq(&callback_lock); +out_unlock: + mutex_unlock(&cpuset_mutex); + cpus_read_unlock(); + return 0; +} + +/* + * If the cpuset being removed has its flag 'sched_load_balance' + * enabled, then simulate turning sched_load_balance off, which + * will call rebuild_sched_domains_locked(). That is not needed + * in the default hierarchy where only changes in partition + * will cause repartitioning. + * + * If the cpuset has the 'sched.partition' flag enabled, simulate + * turning 'sched.partition" off. + */ + +static void cpuset_css_offline(struct cgroup_subsys_state *css) +{ + struct cpuset *cs = css_cs(css); + + cpus_read_lock(); + mutex_lock(&cpuset_mutex); + + if (is_partition_valid(cs)) + update_prstate(cs, 0); + + if (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) && + is_sched_load_balance(cs)) + update_flag(CS_SCHED_LOAD_BALANCE, cs, 0); + + if (cs->use_parent_ecpus) { + struct cpuset *parent = parent_cs(cs); + + cs->use_parent_ecpus = false; + parent->child_ecpus_count--; + } + + cpuset_dec(); + clear_bit(CS_ONLINE, &cs->flags); + + mutex_unlock(&cpuset_mutex); + cpus_read_unlock(); +} + +static void cpuset_css_free(struct cgroup_subsys_state *css) +{ + struct cpuset *cs = css_cs(css); + + free_cpuset(cs); +} + +static void cpuset_bind(struct cgroup_subsys_state *root_css) +{ + mutex_lock(&cpuset_mutex); + spin_lock_irq(&callback_lock); + + if (is_in_v2_mode()) { + cpumask_copy(top_cpuset.cpus_allowed, cpu_possible_mask); + top_cpuset.mems_allowed = node_possible_map; + } else { + cpumask_copy(top_cpuset.cpus_allowed, + top_cpuset.effective_cpus); + top_cpuset.mems_allowed = top_cpuset.effective_mems; + } + + spin_unlock_irq(&callback_lock); + mutex_unlock(&cpuset_mutex); +} + +/* + * In case the child is cloned into a cpuset different from its parent, + * additional checks are done to see if the move is allowed. + */ +static int cpuset_can_fork(struct task_struct *task, struct css_set *cset) +{ + struct cpuset *cs = css_cs(cset->subsys[cpuset_cgrp_id]); + bool same_cs; + int ret; + + rcu_read_lock(); + same_cs = (cs == task_cs(current)); + rcu_read_unlock(); + + if (same_cs) + return 0; + + lockdep_assert_held(&cgroup_mutex); + mutex_lock(&cpuset_mutex); + + /* Check to see if task is allowed in the cpuset */ + ret = cpuset_can_attach_check(cs); + if (ret) + goto out_unlock; + + ret = task_can_attach(task); + if (ret) + goto out_unlock; + + ret = security_task_setscheduler(task); + if (ret) + goto out_unlock; + + /* + * Mark attach is in progress. This makes validate_change() fail + * changes which zero cpus/mems_allowed. + */ + cs->attach_in_progress++; +out_unlock: + mutex_unlock(&cpuset_mutex); + return ret; +} + +static void cpuset_cancel_fork(struct task_struct *task, struct css_set *cset) +{ + struct cpuset *cs = css_cs(cset->subsys[cpuset_cgrp_id]); + bool same_cs; + + rcu_read_lock(); + same_cs = (cs == task_cs(current)); + rcu_read_unlock(); + + if (same_cs) + return; + + mutex_lock(&cpuset_mutex); + cs->attach_in_progress--; + if (!cs->attach_in_progress) + wake_up(&cpuset_attach_wq); + mutex_unlock(&cpuset_mutex); +} + +/* + * Make sure the new task conform to the current state of its parent, + * which could have been changed by cpuset just after it inherits the + * state from the parent and before it sits on the cgroup's task list. + */ +static void cpuset_fork(struct task_struct *task) +{ + struct cpuset *cs; + bool same_cs; + + rcu_read_lock(); + cs = task_cs(task); + same_cs = (cs == task_cs(current)); + rcu_read_unlock(); + + if (same_cs) { + if (cs == &top_cpuset) + return; + + set_cpus_allowed_ptr(task, current->cpus_ptr); + task->mems_allowed = current->mems_allowed; + return; + } + + /* CLONE_INTO_CGROUP */ + mutex_lock(&cpuset_mutex); + guarantee_online_mems(cs, &cpuset_attach_nodemask_to); + cpuset_attach_task(cs, task); + + cs->attach_in_progress--; + if (!cs->attach_in_progress) + wake_up(&cpuset_attach_wq); + + mutex_unlock(&cpuset_mutex); +} + +struct cgroup_subsys cpuset_cgrp_subsys = { + .css_alloc = cpuset_css_alloc, + .css_online = cpuset_css_online, + .css_offline = cpuset_css_offline, + .css_free = cpuset_css_free, + .can_attach = cpuset_can_attach, + .cancel_attach = cpuset_cancel_attach, + .attach = cpuset_attach, + .post_attach = cpuset_post_attach, + .bind = cpuset_bind, + .can_fork = cpuset_can_fork, + .cancel_fork = cpuset_cancel_fork, + .fork = cpuset_fork, + .legacy_cftypes = legacy_files, + .dfl_cftypes = dfl_files, + .early_init = true, + .threaded = true, +}; + +/** + * cpuset_init - initialize cpusets at system boot + * + * Description: Initialize top_cpuset + **/ + +int __init cpuset_init(void) +{ + BUG_ON(!alloc_cpumask_var(&top_cpuset.cpus_allowed, GFP_KERNEL)); + BUG_ON(!alloc_cpumask_var(&top_cpuset.effective_cpus, GFP_KERNEL)); + BUG_ON(!zalloc_cpumask_var(&top_cpuset.subparts_cpus, GFP_KERNEL)); + + cpumask_setall(top_cpuset.cpus_allowed); + nodes_setall(top_cpuset.mems_allowed); + cpumask_setall(top_cpuset.effective_cpus); + nodes_setall(top_cpuset.effective_mems); + + fmeter_init(&top_cpuset.fmeter); + set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags); + top_cpuset.relax_domain_level = -1; + + BUG_ON(!alloc_cpumask_var(&cpus_attach, GFP_KERNEL)); + + return 0; +} + +/* + * If CPU and/or memory hotplug handlers, below, unplug any CPUs + * or memory nodes, we need to walk over the cpuset hierarchy, + * removing that CPU or node from all cpusets. If this removes the + * last CPU or node from a cpuset, then move the tasks in the empty + * cpuset to its next-highest non-empty parent. + */ +static void remove_tasks_in_empty_cpuset(struct cpuset *cs) +{ + struct cpuset *parent; + + /* + * Find its next-highest non-empty parent, (top cpuset + * has online cpus, so can't be empty). + */ + parent = parent_cs(cs); + while (cpumask_empty(parent->cpus_allowed) || + nodes_empty(parent->mems_allowed)) + parent = parent_cs(parent); + + if (cgroup_transfer_tasks(parent->css.cgroup, cs->css.cgroup)) { + pr_err("cpuset: failed to transfer tasks out of empty cpuset "); + pr_cont_cgroup_name(cs->css.cgroup); + pr_cont("\n"); + } +} + +static void +hotplug_update_tasks_legacy(struct cpuset *cs, + struct cpumask *new_cpus, nodemask_t *new_mems, + bool cpus_updated, bool mems_updated) +{ + bool is_empty; + + spin_lock_irq(&callback_lock); + cpumask_copy(cs->cpus_allowed, new_cpus); + cpumask_copy(cs->effective_cpus, new_cpus); + cs->mems_allowed = *new_mems; + cs->effective_mems = *new_mems; + spin_unlock_irq(&callback_lock); + + /* + * Don't call update_tasks_cpumask() if the cpuset becomes empty, + * as the tasks will be migrated to an ancestor. + */ + if (cpus_updated && !cpumask_empty(cs->cpus_allowed)) + update_tasks_cpumask(cs, new_cpus); + if (mems_updated && !nodes_empty(cs->mems_allowed)) + update_tasks_nodemask(cs); + + is_empty = cpumask_empty(cs->cpus_allowed) || + nodes_empty(cs->mems_allowed); + + /* + * Move tasks to the nearest ancestor with execution resources, + * This is full cgroup operation which will also call back into + * cpuset. Should be done outside any lock. + */ + if (is_empty) { + mutex_unlock(&cpuset_mutex); + remove_tasks_in_empty_cpuset(cs); + mutex_lock(&cpuset_mutex); + } +} + +static void +hotplug_update_tasks(struct cpuset *cs, + struct cpumask *new_cpus, nodemask_t *new_mems, + bool cpus_updated, bool mems_updated) +{ + /* A partition root is allowed to have empty effective cpus */ + if (cpumask_empty(new_cpus) && !is_partition_valid(cs)) + cpumask_copy(new_cpus, parent_cs(cs)->effective_cpus); + if (nodes_empty(*new_mems)) + *new_mems = parent_cs(cs)->effective_mems; + + spin_lock_irq(&callback_lock); + cpumask_copy(cs->effective_cpus, new_cpus); + cs->effective_mems = *new_mems; + spin_unlock_irq(&callback_lock); + + if (cpus_updated) + update_tasks_cpumask(cs, new_cpus); + if (mems_updated) + update_tasks_nodemask(cs); +} + +static bool force_rebuild; + +void cpuset_force_rebuild(void) +{ + force_rebuild = true; +} + +/** + * cpuset_hotplug_update_tasks - update tasks in a cpuset for hotunplug + * @cs: cpuset in interest + * @tmp: the tmpmasks structure pointer + * + * Compare @cs's cpu and mem masks against top_cpuset and if some have gone + * offline, update @cs accordingly. If @cs ends up with no CPU or memory, + * all its tasks are moved to the nearest ancestor with both resources. + */ +static void cpuset_hotplug_update_tasks(struct cpuset *cs, struct tmpmasks *tmp) +{ + static cpumask_t new_cpus; + static nodemask_t new_mems; + bool cpus_updated; + bool mems_updated; + struct cpuset *parent; +retry: + wait_event(cpuset_attach_wq, cs->attach_in_progress == 0); + + mutex_lock(&cpuset_mutex); + + /* + * We have raced with task attaching. We wait until attaching + * is finished, so we won't attach a task to an empty cpuset. + */ + if (cs->attach_in_progress) { + mutex_unlock(&cpuset_mutex); + goto retry; + } + + parent = parent_cs(cs); + compute_effective_cpumask(&new_cpus, cs, parent); + nodes_and(new_mems, cs->mems_allowed, parent->effective_mems); + + if (cs->nr_subparts_cpus) + /* + * Make sure that CPUs allocated to child partitions + * do not show up in effective_cpus. + */ + cpumask_andnot(&new_cpus, &new_cpus, cs->subparts_cpus); + + if (!tmp || !cs->partition_root_state) + goto update_tasks; + + /* + * In the unlikely event that a partition root has empty + * effective_cpus with tasks, we will have to invalidate child + * partitions, if present, by setting nr_subparts_cpus to 0 to + * reclaim their cpus. + */ + if (cs->nr_subparts_cpus && is_partition_valid(cs) && + cpumask_empty(&new_cpus) && partition_is_populated(cs, NULL)) { + spin_lock_irq(&callback_lock); + cs->nr_subparts_cpus = 0; + cpumask_clear(cs->subparts_cpus); + spin_unlock_irq(&callback_lock); + compute_effective_cpumask(&new_cpus, cs, parent); + } + + /* + * Force the partition to become invalid if either one of + * the following conditions hold: + * 1) empty effective cpus but not valid empty partition. + * 2) parent is invalid or doesn't grant any cpus to child + * partitions. + */ + if (is_partition_valid(cs) && (!parent->nr_subparts_cpus || + (cpumask_empty(&new_cpus) && partition_is_populated(cs, NULL)))) { + int old_prs, parent_prs; + + update_parent_subparts_cpumask(cs, partcmd_disable, NULL, tmp); + if (cs->nr_subparts_cpus) { + spin_lock_irq(&callback_lock); + cs->nr_subparts_cpus = 0; + cpumask_clear(cs->subparts_cpus); + spin_unlock_irq(&callback_lock); + compute_effective_cpumask(&new_cpus, cs, parent); + } + + old_prs = cs->partition_root_state; + parent_prs = parent->partition_root_state; + if (is_partition_valid(cs)) { + spin_lock_irq(&callback_lock); + make_partition_invalid(cs); + spin_unlock_irq(&callback_lock); + if (is_prs_invalid(parent_prs)) + WRITE_ONCE(cs->prs_err, PERR_INVPARENT); + else if (!parent_prs) + WRITE_ONCE(cs->prs_err, PERR_NOTPART); + else + WRITE_ONCE(cs->prs_err, PERR_HOTPLUG); + notify_partition_change(cs, old_prs); + } + cpuset_force_rebuild(); + } + + /* + * On the other hand, an invalid partition root may be transitioned + * back to a regular one. + */ + else if (is_partition_valid(parent) && is_partition_invalid(cs)) { + update_parent_subparts_cpumask(cs, partcmd_update, NULL, tmp); + if (is_partition_valid(cs)) + cpuset_force_rebuild(); + } + +update_tasks: + cpus_updated = !cpumask_equal(&new_cpus, cs->effective_cpus); + mems_updated = !nodes_equal(new_mems, cs->effective_mems); + if (!cpus_updated && !mems_updated) + goto unlock; /* Hotplug doesn't affect this cpuset */ + + if (mems_updated) + check_insane_mems_config(&new_mems); + + if (is_in_v2_mode()) + hotplug_update_tasks(cs, &new_cpus, &new_mems, + cpus_updated, mems_updated); + else + hotplug_update_tasks_legacy(cs, &new_cpus, &new_mems, + cpus_updated, mems_updated); + +unlock: + mutex_unlock(&cpuset_mutex); +} + +/** + * cpuset_hotplug_workfn - handle CPU/memory hotunplug for a cpuset + * @work: unused + * + * This function is called after either CPU or memory configuration has + * changed and updates cpuset accordingly. The top_cpuset is always + * synchronized to cpu_active_mask and N_MEMORY, which is necessary in + * order to make cpusets transparent (of no affect) on systems that are + * actively using CPU hotplug but making no active use of cpusets. + * + * Non-root cpusets are only affected by offlining. If any CPUs or memory + * nodes have been taken down, cpuset_hotplug_update_tasks() is invoked on + * all descendants. + * + * Note that CPU offlining during suspend is ignored. We don't modify + * cpusets across suspend/resume cycles at all. + */ +static void cpuset_hotplug_workfn(struct work_struct *work) +{ + static cpumask_t new_cpus; + static nodemask_t new_mems; + bool cpus_updated, mems_updated; + bool on_dfl = is_in_v2_mode(); + struct tmpmasks tmp, *ptmp = NULL; + + if (on_dfl && !alloc_cpumasks(NULL, &tmp)) + ptmp = &tmp; + + mutex_lock(&cpuset_mutex); + + /* fetch the available cpus/mems and find out which changed how */ + cpumask_copy(&new_cpus, cpu_active_mask); + new_mems = node_states[N_MEMORY]; + + /* + * If subparts_cpus is populated, it is likely that the check below + * will produce a false positive on cpus_updated when the cpu list + * isn't changed. It is extra work, but it is better to be safe. + */ + cpus_updated = !cpumask_equal(top_cpuset.effective_cpus, &new_cpus); + mems_updated = !nodes_equal(top_cpuset.effective_mems, new_mems); + + /* + * In the rare case that hotplug removes all the cpus in subparts_cpus, + * we assumed that cpus are updated. + */ + if (!cpus_updated && top_cpuset.nr_subparts_cpus) + cpus_updated = true; + + /* synchronize cpus_allowed to cpu_active_mask */ + if (cpus_updated) { + spin_lock_irq(&callback_lock); + if (!on_dfl) + cpumask_copy(top_cpuset.cpus_allowed, &new_cpus); + /* + * Make sure that CPUs allocated to child partitions + * do not show up in effective_cpus. If no CPU is left, + * we clear the subparts_cpus & let the child partitions + * fight for the CPUs again. + */ + if (top_cpuset.nr_subparts_cpus) { + if (cpumask_subset(&new_cpus, + top_cpuset.subparts_cpus)) { + top_cpuset.nr_subparts_cpus = 0; + cpumask_clear(top_cpuset.subparts_cpus); + } else { + cpumask_andnot(&new_cpus, &new_cpus, + top_cpuset.subparts_cpus); + } + } + cpumask_copy(top_cpuset.effective_cpus, &new_cpus); + spin_unlock_irq(&callback_lock); + /* we don't mess with cpumasks of tasks in top_cpuset */ + } + + /* synchronize mems_allowed to N_MEMORY */ + if (mems_updated) { + spin_lock_irq(&callback_lock); + if (!on_dfl) + top_cpuset.mems_allowed = new_mems; + top_cpuset.effective_mems = new_mems; + spin_unlock_irq(&callback_lock); + update_tasks_nodemask(&top_cpuset); + } + + mutex_unlock(&cpuset_mutex); + + /* if cpus or mems changed, we need to propagate to descendants */ + if (cpus_updated || mems_updated) { + struct cpuset *cs; + struct cgroup_subsys_state *pos_css; + + rcu_read_lock(); + cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) { + if (cs == &top_cpuset || !css_tryget_online(&cs->css)) + continue; + rcu_read_unlock(); + + cpuset_hotplug_update_tasks(cs, ptmp); + + rcu_read_lock(); + css_put(&cs->css); + } + rcu_read_unlock(); + } + + /* rebuild sched domains if cpus_allowed has changed */ + if (cpus_updated || force_rebuild) { + force_rebuild = false; + rebuild_sched_domains(); + } + + free_cpumasks(NULL, ptmp); +} + +void cpuset_update_active_cpus(void) +{ + /* + * We're inside cpu hotplug critical region which usually nests + * inside cgroup synchronization. Bounce actual hotplug processing + * to a work item to avoid reverse locking order. + */ + schedule_work(&cpuset_hotplug_work); +} + +void cpuset_wait_for_hotplug(void) +{ + flush_work(&cpuset_hotplug_work); +} + +/* + * Keep top_cpuset.mems_allowed tracking node_states[N_MEMORY]. + * Call this routine anytime after node_states[N_MEMORY] changes. + * See cpuset_update_active_cpus() for CPU hotplug handling. + */ +static int cpuset_track_online_nodes(struct notifier_block *self, + unsigned long action, void *arg) +{ + schedule_work(&cpuset_hotplug_work); + return NOTIFY_OK; +} + +/** + * cpuset_init_smp - initialize cpus_allowed + * + * Description: Finish top cpuset after cpu, node maps are initialized + */ +void __init cpuset_init_smp(void) +{ + /* + * cpus_allowd/mems_allowed set to v2 values in the initial + * cpuset_bind() call will be reset to v1 values in another + * cpuset_bind() call when v1 cpuset is mounted. + */ + top_cpuset.old_mems_allowed = top_cpuset.mems_allowed; + + cpumask_copy(top_cpuset.effective_cpus, cpu_active_mask); + top_cpuset.effective_mems = node_states[N_MEMORY]; + + hotplug_memory_notifier(cpuset_track_online_nodes, CPUSET_CALLBACK_PRI); + + cpuset_migrate_mm_wq = alloc_ordered_workqueue("cpuset_migrate_mm", 0); + BUG_ON(!cpuset_migrate_mm_wq); +} + +/** + * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset. + * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed. + * @pmask: pointer to struct cpumask variable to receive cpus_allowed set. + * + * Description: Returns the cpumask_var_t cpus_allowed of the cpuset + * attached to the specified @tsk. Guaranteed to return some non-empty + * subset of cpu_online_mask, even if this means going outside the + * tasks cpuset, except when the task is in the top cpuset. + **/ + +void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask) +{ + unsigned long flags; + struct cpuset *cs; + + spin_lock_irqsave(&callback_lock, flags); + rcu_read_lock(); + + cs = task_cs(tsk); + if (cs != &top_cpuset) + guarantee_online_cpus(tsk, pmask); + /* + * Tasks in the top cpuset won't get update to their cpumasks + * when a hotplug online/offline event happens. So we include all + * offline cpus in the allowed cpu list. + */ + if ((cs == &top_cpuset) || cpumask_empty(pmask)) { + const struct cpumask *possible_mask = task_cpu_possible_mask(tsk); + + /* + * We first exclude cpus allocated to partitions. If there is no + * allowable online cpu left, we fall back to all possible cpus. + */ + cpumask_andnot(pmask, possible_mask, top_cpuset.subparts_cpus); + if (!cpumask_intersects(pmask, cpu_online_mask)) + cpumask_copy(pmask, possible_mask); + } + + rcu_read_unlock(); + spin_unlock_irqrestore(&callback_lock, flags); +} + +/** + * cpuset_cpus_allowed_fallback - final fallback before complete catastrophe. + * @tsk: pointer to task_struct with which the scheduler is struggling + * + * Description: In the case that the scheduler cannot find an allowed cpu in + * tsk->cpus_allowed, we fall back to task_cs(tsk)->cpus_allowed. In legacy + * mode however, this value is the same as task_cs(tsk)->effective_cpus, + * which will not contain a sane cpumask during cases such as cpu hotplugging. + * This is the absolute last resort for the scheduler and it is only used if + * _every_ other avenue has been traveled. + * + * Returns true if the affinity of @tsk was changed, false otherwise. + **/ + +bool cpuset_cpus_allowed_fallback(struct task_struct *tsk) +{ + const struct cpumask *possible_mask = task_cpu_possible_mask(tsk); + const struct cpumask *cs_mask; + bool changed = false; + + rcu_read_lock(); + cs_mask = task_cs(tsk)->cpus_allowed; + if (is_in_v2_mode() && cpumask_subset(cs_mask, possible_mask)) { + do_set_cpus_allowed(tsk, cs_mask); + changed = true; + } + rcu_read_unlock(); + + /* + * We own tsk->cpus_allowed, nobody can change it under us. + * + * But we used cs && cs->cpus_allowed lockless and thus can + * race with cgroup_attach_task() or update_cpumask() and get + * the wrong tsk->cpus_allowed. However, both cases imply the + * subsequent cpuset_change_cpumask()->set_cpus_allowed_ptr() + * which takes task_rq_lock(). + * + * If we are called after it dropped the lock we must see all + * changes in tsk_cs()->cpus_allowed. Otherwise we can temporary + * set any mask even if it is not right from task_cs() pov, + * the pending set_cpus_allowed_ptr() will fix things. + * + * select_fallback_rq() will fix things ups and set cpu_possible_mask + * if required. + */ + return changed; +} + +void __init cpuset_init_current_mems_allowed(void) +{ + nodes_setall(current->mems_allowed); +} + +/** + * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset. + * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed. + * + * Description: Returns the nodemask_t mems_allowed of the cpuset + * attached to the specified @tsk. Guaranteed to return some non-empty + * subset of node_states[N_MEMORY], even if this means going outside the + * tasks cpuset. + **/ + +nodemask_t cpuset_mems_allowed(struct task_struct *tsk) +{ + nodemask_t mask; + unsigned long flags; + + spin_lock_irqsave(&callback_lock, flags); + rcu_read_lock(); + guarantee_online_mems(task_cs(tsk), &mask); + rcu_read_unlock(); + spin_unlock_irqrestore(&callback_lock, flags); + + return mask; +} + +/** + * cpuset_nodemask_valid_mems_allowed - check nodemask vs. current mems_allowed + * @nodemask: the nodemask to be checked + * + * Are any of the nodes in the nodemask allowed in current->mems_allowed? + */ +int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask) +{ + return nodes_intersects(*nodemask, current->mems_allowed); +} + +/* + * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or + * mem_hardwall ancestor to the specified cpuset. Call holding + * callback_lock. If no ancestor is mem_exclusive or mem_hardwall + * (an unusual configuration), then returns the root cpuset. + */ +static struct cpuset *nearest_hardwall_ancestor(struct cpuset *cs) +{ + while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && parent_cs(cs)) + cs = parent_cs(cs); + return cs; +} + +/* + * cpuset_node_allowed - Can we allocate on a memory node? + * @node: is this an allowed node? + * @gfp_mask: memory allocation flags + * + * If we're in interrupt, yes, we can always allocate. If @node is set in + * current's mems_allowed, yes. If it's not a __GFP_HARDWALL request and this + * node is set in the nearest hardwalled cpuset ancestor to current's cpuset, + * yes. If current has access to memory reserves as an oom victim, yes. + * Otherwise, no. + * + * GFP_USER allocations are marked with the __GFP_HARDWALL bit, + * and do not allow allocations outside the current tasks cpuset + * unless the task has been OOM killed. + * GFP_KERNEL allocations are not so marked, so can escape to the + * nearest enclosing hardwalled ancestor cpuset. + * + * Scanning up parent cpusets requires callback_lock. The + * __alloc_pages() routine only calls here with __GFP_HARDWALL bit + * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the + * current tasks mems_allowed came up empty on the first pass over + * the zonelist. So only GFP_KERNEL allocations, if all nodes in the + * cpuset are short of memory, might require taking the callback_lock. + * + * The first call here from mm/page_alloc:get_page_from_freelist() + * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets, + * so no allocation on a node outside the cpuset is allowed (unless + * in interrupt, of course). + * + * The second pass through get_page_from_freelist() doesn't even call + * here for GFP_ATOMIC calls. For those calls, the __alloc_pages() + * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set + * in alloc_flags. That logic and the checks below have the combined + * affect that: + * in_interrupt - any node ok (current task context irrelevant) + * GFP_ATOMIC - any node ok + * tsk_is_oom_victim - any node ok + * GFP_KERNEL - any node in enclosing hardwalled cpuset ok + * GFP_USER - only nodes in current tasks mems allowed ok. + */ +bool cpuset_node_allowed(int node, gfp_t gfp_mask) +{ + struct cpuset *cs; /* current cpuset ancestors */ + bool allowed; /* is allocation in zone z allowed? */ + unsigned long flags; + + if (in_interrupt()) + return true; + if (node_isset(node, current->mems_allowed)) + return true; + /* + * Allow tasks that have access to memory reserves because they have + * been OOM killed to get memory anywhere. + */ + if (unlikely(tsk_is_oom_victim(current))) + return true; + if (gfp_mask & __GFP_HARDWALL) /* If hardwall request, stop here */ + return false; + + if (current->flags & PF_EXITING) /* Let dying task have memory */ + return true; + + /* Not hardwall and node outside mems_allowed: scan up cpusets */ + spin_lock_irqsave(&callback_lock, flags); + + rcu_read_lock(); + cs = nearest_hardwall_ancestor(task_cs(current)); + allowed = node_isset(node, cs->mems_allowed); + rcu_read_unlock(); + + spin_unlock_irqrestore(&callback_lock, flags); + return allowed; +} + +/** + * cpuset_spread_node() - On which node to begin search for a page + * @rotor: round robin rotor + * + * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for + * tasks in a cpuset with is_spread_page or is_spread_slab set), + * and if the memory allocation used cpuset_mem_spread_node() + * to determine on which node to start looking, as it will for + * certain page cache or slab cache pages such as used for file + * system buffers and inode caches, then instead of starting on the + * local node to look for a free page, rather spread the starting + * node around the tasks mems_allowed nodes. + * + * We don't have to worry about the returned node being offline + * because "it can't happen", and even if it did, it would be ok. + * + * The routines calling guarantee_online_mems() are careful to + * only set nodes in task->mems_allowed that are online. So it + * should not be possible for the following code to return an + * offline node. But if it did, that would be ok, as this routine + * is not returning the node where the allocation must be, only + * the node where the search should start. The zonelist passed to + * __alloc_pages() will include all nodes. If the slab allocator + * is passed an offline node, it will fall back to the local node. + * See kmem_cache_alloc_node(). + */ +static int cpuset_spread_node(int *rotor) +{ + return *rotor = next_node_in(*rotor, current->mems_allowed); +} + +/** + * cpuset_mem_spread_node() - On which node to begin search for a file page + */ +int cpuset_mem_spread_node(void) +{ + if (current->cpuset_mem_spread_rotor == NUMA_NO_NODE) + current->cpuset_mem_spread_rotor = + node_random(¤t->mems_allowed); + + return cpuset_spread_node(¤t->cpuset_mem_spread_rotor); +} + +/** + * cpuset_slab_spread_node() - On which node to begin search for a slab page + */ +int cpuset_slab_spread_node(void) +{ + if (current->cpuset_slab_spread_rotor == NUMA_NO_NODE) + current->cpuset_slab_spread_rotor = + node_random(¤t->mems_allowed); + + return cpuset_spread_node(¤t->cpuset_slab_spread_rotor); +} +EXPORT_SYMBOL_GPL(cpuset_mem_spread_node); + +/** + * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's? + * @tsk1: pointer to task_struct of some task. + * @tsk2: pointer to task_struct of some other task. + * + * Description: Return true if @tsk1's mems_allowed intersects the + * mems_allowed of @tsk2. Used by the OOM killer to determine if + * one of the task's memory usage might impact the memory available + * to the other. + **/ + +int cpuset_mems_allowed_intersects(const struct task_struct *tsk1, + const struct task_struct *tsk2) +{ + return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed); +} + +/** + * cpuset_print_current_mems_allowed - prints current's cpuset and mems_allowed + * + * Description: Prints current's name, cpuset name, and cached copy of its + * mems_allowed to the kernel log. + */ +void cpuset_print_current_mems_allowed(void) +{ + struct cgroup *cgrp; + + rcu_read_lock(); + + cgrp = task_cs(current)->css.cgroup; + pr_cont(",cpuset="); + pr_cont_cgroup_name(cgrp); + pr_cont(",mems_allowed=%*pbl", + nodemask_pr_args(¤t->mems_allowed)); + + rcu_read_unlock(); +} + +/* + * Collection of memory_pressure is suppressed unless + * this flag is enabled by writing "1" to the special + * cpuset file 'memory_pressure_enabled' in the root cpuset. + */ + +int cpuset_memory_pressure_enabled __read_mostly; + +/* + * __cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims. + * + * Keep a running average of the rate of synchronous (direct) + * page reclaim efforts initiated by tasks in each cpuset. + * + * This represents the rate at which some task in the cpuset + * ran low on memory on all nodes it was allowed to use, and + * had to enter the kernels page reclaim code in an effort to + * create more free memory by tossing clean pages or swapping + * or writing dirty pages. + * + * Display to user space in the per-cpuset read-only file + * "memory_pressure". Value displayed is an integer + * representing the recent rate of entry into the synchronous + * (direct) page reclaim by any task attached to the cpuset. + */ + +void __cpuset_memory_pressure_bump(void) +{ + rcu_read_lock(); + fmeter_markevent(&task_cs(current)->fmeter); + rcu_read_unlock(); +} + +#ifdef CONFIG_PROC_PID_CPUSET +/* + * proc_cpuset_show() + * - Print tasks cpuset path into seq_file. + * - Used for /proc/<pid>/cpuset. + * - No need to task_lock(tsk) on this tsk->cpuset reference, as it + * doesn't really matter if tsk->cpuset changes after we read it, + * and we take cpuset_mutex, keeping cpuset_attach() from changing it + * anyway. + */ +int proc_cpuset_show(struct seq_file *m, struct pid_namespace *ns, + struct pid *pid, struct task_struct *tsk) +{ + char *buf; + struct cgroup_subsys_state *css; + int retval; + + retval = -ENOMEM; + buf = kmalloc(PATH_MAX, GFP_KERNEL); + if (!buf) + goto out; + + css = task_get_css(tsk, cpuset_cgrp_id); + retval = cgroup_path_ns(css->cgroup, buf, PATH_MAX, + current->nsproxy->cgroup_ns); + css_put(css); + if (retval >= PATH_MAX) + retval = -ENAMETOOLONG; + if (retval < 0) + goto out_free; + seq_puts(m, buf); + seq_putc(m, '\n'); + retval = 0; +out_free: + kfree(buf); +out: + return retval; +} +#endif /* CONFIG_PROC_PID_CPUSET */ + +/* Display task mems_allowed in /proc/<pid>/status file. */ +void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task) +{ + seq_printf(m, "Mems_allowed:\t%*pb\n", + nodemask_pr_args(&task->mems_allowed)); + seq_printf(m, "Mems_allowed_list:\t%*pbl\n", + nodemask_pr_args(&task->mems_allowed)); +} |