diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-11 08:27:49 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-11 08:27:49 +0000 |
commit | ace9429bb58fd418f0c81d4c2835699bddf6bde6 (patch) | |
tree | b2d64bc10158fdd5497876388cd68142ca374ed3 /kernel/dma/direct.c | |
parent | Initial commit. (diff) | |
download | linux-ace9429bb58fd418f0c81d4c2835699bddf6bde6.tar.xz linux-ace9429bb58fd418f0c81d4c2835699bddf6bde6.zip |
Adding upstream version 6.6.15.upstream/6.6.15
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'kernel/dma/direct.c')
-rw-r--r-- | kernel/dma/direct.c | 655 |
1 files changed, 655 insertions, 0 deletions
diff --git a/kernel/dma/direct.c b/kernel/dma/direct.c new file mode 100644 index 0000000000..9596ae1aa0 --- /dev/null +++ b/kernel/dma/direct.c @@ -0,0 +1,655 @@ +// SPDX-License-Identifier: GPL-2.0 +/* + * Copyright (C) 2018-2020 Christoph Hellwig. + * + * DMA operations that map physical memory directly without using an IOMMU. + */ +#include <linux/memblock.h> /* for max_pfn */ +#include <linux/export.h> +#include <linux/mm.h> +#include <linux/dma-map-ops.h> +#include <linux/scatterlist.h> +#include <linux/pfn.h> +#include <linux/vmalloc.h> +#include <linux/set_memory.h> +#include <linux/slab.h> +#include "direct.h" + +/* + * Most architectures use ZONE_DMA for the first 16 Megabytes, but some use + * it for entirely different regions. In that case the arch code needs to + * override the variable below for dma-direct to work properly. + */ +unsigned int zone_dma_bits __ro_after_init = 24; + +static inline dma_addr_t phys_to_dma_direct(struct device *dev, + phys_addr_t phys) +{ + if (force_dma_unencrypted(dev)) + return phys_to_dma_unencrypted(dev, phys); + return phys_to_dma(dev, phys); +} + +static inline struct page *dma_direct_to_page(struct device *dev, + dma_addr_t dma_addr) +{ + return pfn_to_page(PHYS_PFN(dma_to_phys(dev, dma_addr))); +} + +u64 dma_direct_get_required_mask(struct device *dev) +{ + phys_addr_t phys = (phys_addr_t)(max_pfn - 1) << PAGE_SHIFT; + u64 max_dma = phys_to_dma_direct(dev, phys); + + return (1ULL << (fls64(max_dma) - 1)) * 2 - 1; +} + +static gfp_t dma_direct_optimal_gfp_mask(struct device *dev, u64 *phys_limit) +{ + u64 dma_limit = min_not_zero( + dev->coherent_dma_mask, + dev->bus_dma_limit); + + /* + * Optimistically try the zone that the physical address mask falls + * into first. If that returns memory that isn't actually addressable + * we will fallback to the next lower zone and try again. + * + * Note that GFP_DMA32 and GFP_DMA are no ops without the corresponding + * zones. + */ + *phys_limit = dma_to_phys(dev, dma_limit); + if (*phys_limit <= DMA_BIT_MASK(zone_dma_bits)) + return GFP_DMA; + if (*phys_limit <= DMA_BIT_MASK(32)) + return GFP_DMA32; + return 0; +} + +bool dma_coherent_ok(struct device *dev, phys_addr_t phys, size_t size) +{ + dma_addr_t dma_addr = phys_to_dma_direct(dev, phys); + + if (dma_addr == DMA_MAPPING_ERROR) + return false; + return dma_addr + size - 1 <= + min_not_zero(dev->coherent_dma_mask, dev->bus_dma_limit); +} + +static int dma_set_decrypted(struct device *dev, void *vaddr, size_t size) +{ + if (!force_dma_unencrypted(dev)) + return 0; + return set_memory_decrypted((unsigned long)vaddr, PFN_UP(size)); +} + +static int dma_set_encrypted(struct device *dev, void *vaddr, size_t size) +{ + int ret; + + if (!force_dma_unencrypted(dev)) + return 0; + ret = set_memory_encrypted((unsigned long)vaddr, PFN_UP(size)); + if (ret) + pr_warn_ratelimited("leaking DMA memory that can't be re-encrypted\n"); + return ret; +} + +static void __dma_direct_free_pages(struct device *dev, struct page *page, + size_t size) +{ + if (swiotlb_free(dev, page, size)) + return; + dma_free_contiguous(dev, page, size); +} + +static struct page *dma_direct_alloc_swiotlb(struct device *dev, size_t size) +{ + struct page *page = swiotlb_alloc(dev, size); + + if (page && !dma_coherent_ok(dev, page_to_phys(page), size)) { + swiotlb_free(dev, page, size); + return NULL; + } + + return page; +} + +static struct page *__dma_direct_alloc_pages(struct device *dev, size_t size, + gfp_t gfp, bool allow_highmem) +{ + int node = dev_to_node(dev); + struct page *page = NULL; + u64 phys_limit; + + WARN_ON_ONCE(!PAGE_ALIGNED(size)); + + if (is_swiotlb_for_alloc(dev)) + return dma_direct_alloc_swiotlb(dev, size); + + gfp |= dma_direct_optimal_gfp_mask(dev, &phys_limit); + page = dma_alloc_contiguous(dev, size, gfp); + if (page) { + if (!dma_coherent_ok(dev, page_to_phys(page), size) || + (!allow_highmem && PageHighMem(page))) { + dma_free_contiguous(dev, page, size); + page = NULL; + } + } +again: + if (!page) + page = alloc_pages_node(node, gfp, get_order(size)); + if (page && !dma_coherent_ok(dev, page_to_phys(page), size)) { + dma_free_contiguous(dev, page, size); + page = NULL; + + if (IS_ENABLED(CONFIG_ZONE_DMA32) && + phys_limit < DMA_BIT_MASK(64) && + !(gfp & (GFP_DMA32 | GFP_DMA))) { + gfp |= GFP_DMA32; + goto again; + } + + if (IS_ENABLED(CONFIG_ZONE_DMA) && !(gfp & GFP_DMA)) { + gfp = (gfp & ~GFP_DMA32) | GFP_DMA; + goto again; + } + } + + return page; +} + +/* + * Check if a potentially blocking operations needs to dip into the atomic + * pools for the given device/gfp. + */ +static bool dma_direct_use_pool(struct device *dev, gfp_t gfp) +{ + return !gfpflags_allow_blocking(gfp) && !is_swiotlb_for_alloc(dev); +} + +static void *dma_direct_alloc_from_pool(struct device *dev, size_t size, + dma_addr_t *dma_handle, gfp_t gfp) +{ + struct page *page; + u64 phys_limit; + void *ret; + + if (WARN_ON_ONCE(!IS_ENABLED(CONFIG_DMA_COHERENT_POOL))) + return NULL; + + gfp |= dma_direct_optimal_gfp_mask(dev, &phys_limit); + page = dma_alloc_from_pool(dev, size, &ret, gfp, dma_coherent_ok); + if (!page) + return NULL; + *dma_handle = phys_to_dma_direct(dev, page_to_phys(page)); + return ret; +} + +static void *dma_direct_alloc_no_mapping(struct device *dev, size_t size, + dma_addr_t *dma_handle, gfp_t gfp) +{ + struct page *page; + + page = __dma_direct_alloc_pages(dev, size, gfp & ~__GFP_ZERO, true); + if (!page) + return NULL; + + /* remove any dirty cache lines on the kernel alias */ + if (!PageHighMem(page)) + arch_dma_prep_coherent(page, size); + + /* return the page pointer as the opaque cookie */ + *dma_handle = phys_to_dma_direct(dev, page_to_phys(page)); + return page; +} + +void *dma_direct_alloc(struct device *dev, size_t size, + dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs) +{ + bool remap = false, set_uncached = false; + struct page *page; + void *ret; + + size = PAGE_ALIGN(size); + if (attrs & DMA_ATTR_NO_WARN) + gfp |= __GFP_NOWARN; + + if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) && + !force_dma_unencrypted(dev) && !is_swiotlb_for_alloc(dev)) + return dma_direct_alloc_no_mapping(dev, size, dma_handle, gfp); + + if (!dev_is_dma_coherent(dev)) { + /* + * Fallback to the arch handler if it exists. This should + * eventually go away. + */ + if (!IS_ENABLED(CONFIG_ARCH_HAS_DMA_SET_UNCACHED) && + !IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) && + !IS_ENABLED(CONFIG_DMA_GLOBAL_POOL) && + !is_swiotlb_for_alloc(dev)) + return arch_dma_alloc(dev, size, dma_handle, gfp, + attrs); + + /* + * If there is a global pool, always allocate from it for + * non-coherent devices. + */ + if (IS_ENABLED(CONFIG_DMA_GLOBAL_POOL)) + return dma_alloc_from_global_coherent(dev, size, + dma_handle); + + /* + * Otherwise remap if the architecture is asking for it. But + * given that remapping memory is a blocking operation we'll + * instead have to dip into the atomic pools. + */ + remap = IS_ENABLED(CONFIG_DMA_DIRECT_REMAP); + if (remap) { + if (dma_direct_use_pool(dev, gfp)) + return dma_direct_alloc_from_pool(dev, size, + dma_handle, gfp); + } else { + if (!IS_ENABLED(CONFIG_ARCH_HAS_DMA_SET_UNCACHED)) + return NULL; + set_uncached = true; + } + } + + /* + * Decrypting memory may block, so allocate the memory from the atomic + * pools if we can't block. + */ + if (force_dma_unencrypted(dev) && dma_direct_use_pool(dev, gfp)) + return dma_direct_alloc_from_pool(dev, size, dma_handle, gfp); + + /* we always manually zero the memory once we are done */ + page = __dma_direct_alloc_pages(dev, size, gfp & ~__GFP_ZERO, true); + if (!page) + return NULL; + + /* + * dma_alloc_contiguous can return highmem pages depending on a + * combination the cma= arguments and per-arch setup. These need to be + * remapped to return a kernel virtual address. + */ + if (PageHighMem(page)) { + remap = true; + set_uncached = false; + } + + if (remap) { + pgprot_t prot = dma_pgprot(dev, PAGE_KERNEL, attrs); + + if (force_dma_unencrypted(dev)) + prot = pgprot_decrypted(prot); + + /* remove any dirty cache lines on the kernel alias */ + arch_dma_prep_coherent(page, size); + + /* create a coherent mapping */ + ret = dma_common_contiguous_remap(page, size, prot, + __builtin_return_address(0)); + if (!ret) + goto out_free_pages; + } else { + ret = page_address(page); + if (dma_set_decrypted(dev, ret, size)) + goto out_free_pages; + } + + memset(ret, 0, size); + + if (set_uncached) { + arch_dma_prep_coherent(page, size); + ret = arch_dma_set_uncached(ret, size); + if (IS_ERR(ret)) + goto out_encrypt_pages; + } + + *dma_handle = phys_to_dma_direct(dev, page_to_phys(page)); + return ret; + +out_encrypt_pages: + if (dma_set_encrypted(dev, page_address(page), size)) + return NULL; +out_free_pages: + __dma_direct_free_pages(dev, page, size); + return NULL; +} + +void dma_direct_free(struct device *dev, size_t size, + void *cpu_addr, dma_addr_t dma_addr, unsigned long attrs) +{ + unsigned int page_order = get_order(size); + + if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) && + !force_dma_unencrypted(dev) && !is_swiotlb_for_alloc(dev)) { + /* cpu_addr is a struct page cookie, not a kernel address */ + dma_free_contiguous(dev, cpu_addr, size); + return; + } + + if (!IS_ENABLED(CONFIG_ARCH_HAS_DMA_SET_UNCACHED) && + !IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) && + !IS_ENABLED(CONFIG_DMA_GLOBAL_POOL) && + !dev_is_dma_coherent(dev) && + !is_swiotlb_for_alloc(dev)) { + arch_dma_free(dev, size, cpu_addr, dma_addr, attrs); + return; + } + + if (IS_ENABLED(CONFIG_DMA_GLOBAL_POOL) && + !dev_is_dma_coherent(dev)) { + if (!dma_release_from_global_coherent(page_order, cpu_addr)) + WARN_ON_ONCE(1); + return; + } + + /* If cpu_addr is not from an atomic pool, dma_free_from_pool() fails */ + if (IS_ENABLED(CONFIG_DMA_COHERENT_POOL) && + dma_free_from_pool(dev, cpu_addr, PAGE_ALIGN(size))) + return; + + if (is_vmalloc_addr(cpu_addr)) { + vunmap(cpu_addr); + } else { + if (IS_ENABLED(CONFIG_ARCH_HAS_DMA_CLEAR_UNCACHED)) + arch_dma_clear_uncached(cpu_addr, size); + if (dma_set_encrypted(dev, cpu_addr, size)) + return; + } + + __dma_direct_free_pages(dev, dma_direct_to_page(dev, dma_addr), size); +} + +struct page *dma_direct_alloc_pages(struct device *dev, size_t size, + dma_addr_t *dma_handle, enum dma_data_direction dir, gfp_t gfp) +{ + struct page *page; + void *ret; + + if (force_dma_unencrypted(dev) && dma_direct_use_pool(dev, gfp)) + return dma_direct_alloc_from_pool(dev, size, dma_handle, gfp); + + page = __dma_direct_alloc_pages(dev, size, gfp, false); + if (!page) + return NULL; + + ret = page_address(page); + if (dma_set_decrypted(dev, ret, size)) + goto out_free_pages; + memset(ret, 0, size); + *dma_handle = phys_to_dma_direct(dev, page_to_phys(page)); + return page; +out_free_pages: + __dma_direct_free_pages(dev, page, size); + return NULL; +} + +void dma_direct_free_pages(struct device *dev, size_t size, + struct page *page, dma_addr_t dma_addr, + enum dma_data_direction dir) +{ + void *vaddr = page_address(page); + + /* If cpu_addr is not from an atomic pool, dma_free_from_pool() fails */ + if (IS_ENABLED(CONFIG_DMA_COHERENT_POOL) && + dma_free_from_pool(dev, vaddr, size)) + return; + + if (dma_set_encrypted(dev, vaddr, size)) + return; + __dma_direct_free_pages(dev, page, size); +} + +#if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVICE) || \ + defined(CONFIG_SWIOTLB) +void dma_direct_sync_sg_for_device(struct device *dev, + struct scatterlist *sgl, int nents, enum dma_data_direction dir) +{ + struct scatterlist *sg; + int i; + + for_each_sg(sgl, sg, nents, i) { + phys_addr_t paddr = dma_to_phys(dev, sg_dma_address(sg)); + + if (unlikely(is_swiotlb_buffer(dev, paddr))) + swiotlb_sync_single_for_device(dev, paddr, sg->length, + dir); + + if (!dev_is_dma_coherent(dev)) + arch_sync_dma_for_device(paddr, sg->length, + dir); + } +} +#endif + +#if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU) || \ + defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL) || \ + defined(CONFIG_SWIOTLB) +void dma_direct_sync_sg_for_cpu(struct device *dev, + struct scatterlist *sgl, int nents, enum dma_data_direction dir) +{ + struct scatterlist *sg; + int i; + + for_each_sg(sgl, sg, nents, i) { + phys_addr_t paddr = dma_to_phys(dev, sg_dma_address(sg)); + + if (!dev_is_dma_coherent(dev)) + arch_sync_dma_for_cpu(paddr, sg->length, dir); + + if (unlikely(is_swiotlb_buffer(dev, paddr))) + swiotlb_sync_single_for_cpu(dev, paddr, sg->length, + dir); + + if (dir == DMA_FROM_DEVICE) + arch_dma_mark_clean(paddr, sg->length); + } + + if (!dev_is_dma_coherent(dev)) + arch_sync_dma_for_cpu_all(); +} + +/* + * Unmaps segments, except for ones marked as pci_p2pdma which do not + * require any further action as they contain a bus address. + */ +void dma_direct_unmap_sg(struct device *dev, struct scatterlist *sgl, + int nents, enum dma_data_direction dir, unsigned long attrs) +{ + struct scatterlist *sg; + int i; + + for_each_sg(sgl, sg, nents, i) { + if (sg_dma_is_bus_address(sg)) + sg_dma_unmark_bus_address(sg); + else + dma_direct_unmap_page(dev, sg->dma_address, + sg_dma_len(sg), dir, attrs); + } +} +#endif + +int dma_direct_map_sg(struct device *dev, struct scatterlist *sgl, int nents, + enum dma_data_direction dir, unsigned long attrs) +{ + struct pci_p2pdma_map_state p2pdma_state = {}; + enum pci_p2pdma_map_type map; + struct scatterlist *sg; + int i, ret; + + for_each_sg(sgl, sg, nents, i) { + if (is_pci_p2pdma_page(sg_page(sg))) { + map = pci_p2pdma_map_segment(&p2pdma_state, dev, sg); + switch (map) { + case PCI_P2PDMA_MAP_BUS_ADDR: + continue; + case PCI_P2PDMA_MAP_THRU_HOST_BRIDGE: + /* + * Any P2P mapping that traverses the PCI + * host bridge must be mapped with CPU physical + * address and not PCI bus addresses. This is + * done with dma_direct_map_page() below. + */ + break; + default: + ret = -EREMOTEIO; + goto out_unmap; + } + } + + sg->dma_address = dma_direct_map_page(dev, sg_page(sg), + sg->offset, sg->length, dir, attrs); + if (sg->dma_address == DMA_MAPPING_ERROR) { + ret = -EIO; + goto out_unmap; + } + sg_dma_len(sg) = sg->length; + } + + return nents; + +out_unmap: + dma_direct_unmap_sg(dev, sgl, i, dir, attrs | DMA_ATTR_SKIP_CPU_SYNC); + return ret; +} + +dma_addr_t dma_direct_map_resource(struct device *dev, phys_addr_t paddr, + size_t size, enum dma_data_direction dir, unsigned long attrs) +{ + dma_addr_t dma_addr = paddr; + + if (unlikely(!dma_capable(dev, dma_addr, size, false))) { + dev_err_once(dev, + "DMA addr %pad+%zu overflow (mask %llx, bus limit %llx).\n", + &dma_addr, size, *dev->dma_mask, dev->bus_dma_limit); + WARN_ON_ONCE(1); + return DMA_MAPPING_ERROR; + } + + return dma_addr; +} + +int dma_direct_get_sgtable(struct device *dev, struct sg_table *sgt, + void *cpu_addr, dma_addr_t dma_addr, size_t size, + unsigned long attrs) +{ + struct page *page = dma_direct_to_page(dev, dma_addr); + int ret; + + ret = sg_alloc_table(sgt, 1, GFP_KERNEL); + if (!ret) + sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0); + return ret; +} + +bool dma_direct_can_mmap(struct device *dev) +{ + return dev_is_dma_coherent(dev) || + IS_ENABLED(CONFIG_DMA_NONCOHERENT_MMAP); +} + +int dma_direct_mmap(struct device *dev, struct vm_area_struct *vma, + void *cpu_addr, dma_addr_t dma_addr, size_t size, + unsigned long attrs) +{ + unsigned long user_count = vma_pages(vma); + unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT; + unsigned long pfn = PHYS_PFN(dma_to_phys(dev, dma_addr)); + int ret = -ENXIO; + + vma->vm_page_prot = dma_pgprot(dev, vma->vm_page_prot, attrs); + if (force_dma_unencrypted(dev)) + vma->vm_page_prot = pgprot_decrypted(vma->vm_page_prot); + + if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret)) + return ret; + if (dma_mmap_from_global_coherent(vma, cpu_addr, size, &ret)) + return ret; + + if (vma->vm_pgoff >= count || user_count > count - vma->vm_pgoff) + return -ENXIO; + return remap_pfn_range(vma, vma->vm_start, pfn + vma->vm_pgoff, + user_count << PAGE_SHIFT, vma->vm_page_prot); +} + +int dma_direct_supported(struct device *dev, u64 mask) +{ + u64 min_mask = (max_pfn - 1) << PAGE_SHIFT; + + /* + * Because 32-bit DMA masks are so common we expect every architecture + * to be able to satisfy them - either by not supporting more physical + * memory, or by providing a ZONE_DMA32. If neither is the case, the + * architecture needs to use an IOMMU instead of the direct mapping. + */ + if (mask >= DMA_BIT_MASK(32)) + return 1; + + /* + * This check needs to be against the actual bit mask value, so use + * phys_to_dma_unencrypted() here so that the SME encryption mask isn't + * part of the check. + */ + if (IS_ENABLED(CONFIG_ZONE_DMA)) + min_mask = min_t(u64, min_mask, DMA_BIT_MASK(zone_dma_bits)); + return mask >= phys_to_dma_unencrypted(dev, min_mask); +} + +size_t dma_direct_max_mapping_size(struct device *dev) +{ + /* If SWIOTLB is active, use its maximum mapping size */ + if (is_swiotlb_active(dev) && + (dma_addressing_limited(dev) || is_swiotlb_force_bounce(dev))) + return swiotlb_max_mapping_size(dev); + return SIZE_MAX; +} + +bool dma_direct_need_sync(struct device *dev, dma_addr_t dma_addr) +{ + return !dev_is_dma_coherent(dev) || + is_swiotlb_buffer(dev, dma_to_phys(dev, dma_addr)); +} + +/** + * dma_direct_set_offset - Assign scalar offset for a single DMA range. + * @dev: device pointer; needed to "own" the alloced memory. + * @cpu_start: beginning of memory region covered by this offset. + * @dma_start: beginning of DMA/PCI region covered by this offset. + * @size: size of the region. + * + * This is for the simple case of a uniform offset which cannot + * be discovered by "dma-ranges". + * + * It returns -ENOMEM if out of memory, -EINVAL if a map + * already exists, 0 otherwise. + * + * Note: any call to this from a driver is a bug. The mapping needs + * to be described by the device tree or other firmware interfaces. + */ +int dma_direct_set_offset(struct device *dev, phys_addr_t cpu_start, + dma_addr_t dma_start, u64 size) +{ + struct bus_dma_region *map; + u64 offset = (u64)cpu_start - (u64)dma_start; + + if (dev->dma_range_map) { + dev_err(dev, "attempt to add DMA range to existing map\n"); + return -EINVAL; + } + + if (!offset) + return 0; + + map = kcalloc(2, sizeof(*map), GFP_KERNEL); + if (!map) + return -ENOMEM; + map[0].cpu_start = cpu_start; + map[0].dma_start = dma_start; + map[0].offset = offset; + map[0].size = size; + dev->dma_range_map = map; + return 0; +} |