diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-11 08:27:49 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-11 08:27:49 +0000 |
commit | ace9429bb58fd418f0c81d4c2835699bddf6bde6 (patch) | |
tree | b2d64bc10158fdd5497876388cd68142ca374ed3 /kernel/locking/mutex.c | |
parent | Initial commit. (diff) | |
download | linux-ace9429bb58fd418f0c81d4c2835699bddf6bde6.tar.xz linux-ace9429bb58fd418f0c81d4c2835699bddf6bde6.zip |
Adding upstream version 6.6.15.upstream/6.6.15
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to '')
-rw-r--r-- | kernel/locking/mutex.c | 1151 |
1 files changed, 1151 insertions, 0 deletions
diff --git a/kernel/locking/mutex.c b/kernel/locking/mutex.c new file mode 100644 index 0000000000..d973fe6041 --- /dev/null +++ b/kernel/locking/mutex.c @@ -0,0 +1,1151 @@ +// SPDX-License-Identifier: GPL-2.0-only +/* + * kernel/locking/mutex.c + * + * Mutexes: blocking mutual exclusion locks + * + * Started by Ingo Molnar: + * + * Copyright (C) 2004, 2005, 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com> + * + * Many thanks to Arjan van de Ven, Thomas Gleixner, Steven Rostedt and + * David Howells for suggestions and improvements. + * + * - Adaptive spinning for mutexes by Peter Zijlstra. (Ported to mainline + * from the -rt tree, where it was originally implemented for rtmutexes + * by Steven Rostedt, based on work by Gregory Haskins, Peter Morreale + * and Sven Dietrich. + * + * Also see Documentation/locking/mutex-design.rst. + */ +#include <linux/mutex.h> +#include <linux/ww_mutex.h> +#include <linux/sched/signal.h> +#include <linux/sched/rt.h> +#include <linux/sched/wake_q.h> +#include <linux/sched/debug.h> +#include <linux/export.h> +#include <linux/spinlock.h> +#include <linux/interrupt.h> +#include <linux/debug_locks.h> +#include <linux/osq_lock.h> + +#define CREATE_TRACE_POINTS +#include <trace/events/lock.h> + +#ifndef CONFIG_PREEMPT_RT +#include "mutex.h" + +#ifdef CONFIG_DEBUG_MUTEXES +# define MUTEX_WARN_ON(cond) DEBUG_LOCKS_WARN_ON(cond) +#else +# define MUTEX_WARN_ON(cond) +#endif + +void +__mutex_init(struct mutex *lock, const char *name, struct lock_class_key *key) +{ + atomic_long_set(&lock->owner, 0); + raw_spin_lock_init(&lock->wait_lock); + INIT_LIST_HEAD(&lock->wait_list); +#ifdef CONFIG_MUTEX_SPIN_ON_OWNER + osq_lock_init(&lock->osq); +#endif + + debug_mutex_init(lock, name, key); +} +EXPORT_SYMBOL(__mutex_init); + +/* + * @owner: contains: 'struct task_struct *' to the current lock owner, + * NULL means not owned. Since task_struct pointers are aligned at + * at least L1_CACHE_BYTES, we have low bits to store extra state. + * + * Bit0 indicates a non-empty waiter list; unlock must issue a wakeup. + * Bit1 indicates unlock needs to hand the lock to the top-waiter + * Bit2 indicates handoff has been done and we're waiting for pickup. + */ +#define MUTEX_FLAG_WAITERS 0x01 +#define MUTEX_FLAG_HANDOFF 0x02 +#define MUTEX_FLAG_PICKUP 0x04 + +#define MUTEX_FLAGS 0x07 + +/* + * Internal helper function; C doesn't allow us to hide it :/ + * + * DO NOT USE (outside of mutex code). + */ +static inline struct task_struct *__mutex_owner(struct mutex *lock) +{ + return (struct task_struct *)(atomic_long_read(&lock->owner) & ~MUTEX_FLAGS); +} + +static inline struct task_struct *__owner_task(unsigned long owner) +{ + return (struct task_struct *)(owner & ~MUTEX_FLAGS); +} + +bool mutex_is_locked(struct mutex *lock) +{ + return __mutex_owner(lock) != NULL; +} +EXPORT_SYMBOL(mutex_is_locked); + +static inline unsigned long __owner_flags(unsigned long owner) +{ + return owner & MUTEX_FLAGS; +} + +/* + * Returns: __mutex_owner(lock) on failure or NULL on success. + */ +static inline struct task_struct *__mutex_trylock_common(struct mutex *lock, bool handoff) +{ + unsigned long owner, curr = (unsigned long)current; + + owner = atomic_long_read(&lock->owner); + for (;;) { /* must loop, can race against a flag */ + unsigned long flags = __owner_flags(owner); + unsigned long task = owner & ~MUTEX_FLAGS; + + if (task) { + if (flags & MUTEX_FLAG_PICKUP) { + if (task != curr) + break; + flags &= ~MUTEX_FLAG_PICKUP; + } else if (handoff) { + if (flags & MUTEX_FLAG_HANDOFF) + break; + flags |= MUTEX_FLAG_HANDOFF; + } else { + break; + } + } else { + MUTEX_WARN_ON(flags & (MUTEX_FLAG_HANDOFF | MUTEX_FLAG_PICKUP)); + task = curr; + } + + if (atomic_long_try_cmpxchg_acquire(&lock->owner, &owner, task | flags)) { + if (task == curr) + return NULL; + break; + } + } + + return __owner_task(owner); +} + +/* + * Trylock or set HANDOFF + */ +static inline bool __mutex_trylock_or_handoff(struct mutex *lock, bool handoff) +{ + return !__mutex_trylock_common(lock, handoff); +} + +/* + * Actual trylock that will work on any unlocked state. + */ +static inline bool __mutex_trylock(struct mutex *lock) +{ + return !__mutex_trylock_common(lock, false); +} + +#ifndef CONFIG_DEBUG_LOCK_ALLOC +/* + * Lockdep annotations are contained to the slow paths for simplicity. + * There is nothing that would stop spreading the lockdep annotations outwards + * except more code. + */ + +/* + * Optimistic trylock that only works in the uncontended case. Make sure to + * follow with a __mutex_trylock() before failing. + */ +static __always_inline bool __mutex_trylock_fast(struct mutex *lock) +{ + unsigned long curr = (unsigned long)current; + unsigned long zero = 0UL; + + if (atomic_long_try_cmpxchg_acquire(&lock->owner, &zero, curr)) + return true; + + return false; +} + +static __always_inline bool __mutex_unlock_fast(struct mutex *lock) +{ + unsigned long curr = (unsigned long)current; + + return atomic_long_try_cmpxchg_release(&lock->owner, &curr, 0UL); +} +#endif + +static inline void __mutex_set_flag(struct mutex *lock, unsigned long flag) +{ + atomic_long_or(flag, &lock->owner); +} + +static inline void __mutex_clear_flag(struct mutex *lock, unsigned long flag) +{ + atomic_long_andnot(flag, &lock->owner); +} + +static inline bool __mutex_waiter_is_first(struct mutex *lock, struct mutex_waiter *waiter) +{ + return list_first_entry(&lock->wait_list, struct mutex_waiter, list) == waiter; +} + +/* + * Add @waiter to a given location in the lock wait_list and set the + * FLAG_WAITERS flag if it's the first waiter. + */ +static void +__mutex_add_waiter(struct mutex *lock, struct mutex_waiter *waiter, + struct list_head *list) +{ + debug_mutex_add_waiter(lock, waiter, current); + + list_add_tail(&waiter->list, list); + if (__mutex_waiter_is_first(lock, waiter)) + __mutex_set_flag(lock, MUTEX_FLAG_WAITERS); +} + +static void +__mutex_remove_waiter(struct mutex *lock, struct mutex_waiter *waiter) +{ + list_del(&waiter->list); + if (likely(list_empty(&lock->wait_list))) + __mutex_clear_flag(lock, MUTEX_FLAGS); + + debug_mutex_remove_waiter(lock, waiter, current); +} + +/* + * Give up ownership to a specific task, when @task = NULL, this is equivalent + * to a regular unlock. Sets PICKUP on a handoff, clears HANDOFF, preserves + * WAITERS. Provides RELEASE semantics like a regular unlock, the + * __mutex_trylock() provides a matching ACQUIRE semantics for the handoff. + */ +static void __mutex_handoff(struct mutex *lock, struct task_struct *task) +{ + unsigned long owner = atomic_long_read(&lock->owner); + + for (;;) { + unsigned long new; + + MUTEX_WARN_ON(__owner_task(owner) != current); + MUTEX_WARN_ON(owner & MUTEX_FLAG_PICKUP); + + new = (owner & MUTEX_FLAG_WAITERS); + new |= (unsigned long)task; + if (task) + new |= MUTEX_FLAG_PICKUP; + + if (atomic_long_try_cmpxchg_release(&lock->owner, &owner, new)) + break; + } +} + +#ifndef CONFIG_DEBUG_LOCK_ALLOC +/* + * We split the mutex lock/unlock logic into separate fastpath and + * slowpath functions, to reduce the register pressure on the fastpath. + * We also put the fastpath first in the kernel image, to make sure the + * branch is predicted by the CPU as default-untaken. + */ +static void __sched __mutex_lock_slowpath(struct mutex *lock); + +/** + * mutex_lock - acquire the mutex + * @lock: the mutex to be acquired + * + * Lock the mutex exclusively for this task. If the mutex is not + * available right now, it will sleep until it can get it. + * + * The mutex must later on be released by the same task that + * acquired it. Recursive locking is not allowed. The task + * may not exit without first unlocking the mutex. Also, kernel + * memory where the mutex resides must not be freed with + * the mutex still locked. The mutex must first be initialized + * (or statically defined) before it can be locked. memset()-ing + * the mutex to 0 is not allowed. + * + * (The CONFIG_DEBUG_MUTEXES .config option turns on debugging + * checks that will enforce the restrictions and will also do + * deadlock debugging) + * + * This function is similar to (but not equivalent to) down(). + */ +void __sched mutex_lock(struct mutex *lock) +{ + might_sleep(); + + if (!__mutex_trylock_fast(lock)) + __mutex_lock_slowpath(lock); +} +EXPORT_SYMBOL(mutex_lock); +#endif + +#include "ww_mutex.h" + +#ifdef CONFIG_MUTEX_SPIN_ON_OWNER + +/* + * Trylock variant that returns the owning task on failure. + */ +static inline struct task_struct *__mutex_trylock_or_owner(struct mutex *lock) +{ + return __mutex_trylock_common(lock, false); +} + +static inline +bool ww_mutex_spin_on_owner(struct mutex *lock, struct ww_acquire_ctx *ww_ctx, + struct mutex_waiter *waiter) +{ + struct ww_mutex *ww; + + ww = container_of(lock, struct ww_mutex, base); + + /* + * If ww->ctx is set the contents are undefined, only + * by acquiring wait_lock there is a guarantee that + * they are not invalid when reading. + * + * As such, when deadlock detection needs to be + * performed the optimistic spinning cannot be done. + * + * Check this in every inner iteration because we may + * be racing against another thread's ww_mutex_lock. + */ + if (ww_ctx->acquired > 0 && READ_ONCE(ww->ctx)) + return false; + + /* + * If we aren't on the wait list yet, cancel the spin + * if there are waiters. We want to avoid stealing the + * lock from a waiter with an earlier stamp, since the + * other thread may already own a lock that we also + * need. + */ + if (!waiter && (atomic_long_read(&lock->owner) & MUTEX_FLAG_WAITERS)) + return false; + + /* + * Similarly, stop spinning if we are no longer the + * first waiter. + */ + if (waiter && !__mutex_waiter_is_first(lock, waiter)) + return false; + + return true; +} + +/* + * Look out! "owner" is an entirely speculative pointer access and not + * reliable. + * + * "noinline" so that this function shows up on perf profiles. + */ +static noinline +bool mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner, + struct ww_acquire_ctx *ww_ctx, struct mutex_waiter *waiter) +{ + bool ret = true; + + lockdep_assert_preemption_disabled(); + + while (__mutex_owner(lock) == owner) { + /* + * Ensure we emit the owner->on_cpu, dereference _after_ + * checking lock->owner still matches owner. And we already + * disabled preemption which is equal to the RCU read-side + * crital section in optimistic spinning code. Thus the + * task_strcut structure won't go away during the spinning + * period + */ + barrier(); + + /* + * Use vcpu_is_preempted to detect lock holder preemption issue. + */ + if (!owner_on_cpu(owner) || need_resched()) { + ret = false; + break; + } + + if (ww_ctx && !ww_mutex_spin_on_owner(lock, ww_ctx, waiter)) { + ret = false; + break; + } + + cpu_relax(); + } + + return ret; +} + +/* + * Initial check for entering the mutex spinning loop + */ +static inline int mutex_can_spin_on_owner(struct mutex *lock) +{ + struct task_struct *owner; + int retval = 1; + + lockdep_assert_preemption_disabled(); + + if (need_resched()) + return 0; + + /* + * We already disabled preemption which is equal to the RCU read-side + * crital section in optimistic spinning code. Thus the task_strcut + * structure won't go away during the spinning period. + */ + owner = __mutex_owner(lock); + if (owner) + retval = owner_on_cpu(owner); + + /* + * If lock->owner is not set, the mutex has been released. Return true + * such that we'll trylock in the spin path, which is a faster option + * than the blocking slow path. + */ + return retval; +} + +/* + * Optimistic spinning. + * + * We try to spin for acquisition when we find that the lock owner + * is currently running on a (different) CPU and while we don't + * need to reschedule. The rationale is that if the lock owner is + * running, it is likely to release the lock soon. + * + * The mutex spinners are queued up using MCS lock so that only one + * spinner can compete for the mutex. However, if mutex spinning isn't + * going to happen, there is no point in going through the lock/unlock + * overhead. + * + * Returns true when the lock was taken, otherwise false, indicating + * that we need to jump to the slowpath and sleep. + * + * The waiter flag is set to true if the spinner is a waiter in the wait + * queue. The waiter-spinner will spin on the lock directly and concurrently + * with the spinner at the head of the OSQ, if present, until the owner is + * changed to itself. + */ +static __always_inline bool +mutex_optimistic_spin(struct mutex *lock, struct ww_acquire_ctx *ww_ctx, + struct mutex_waiter *waiter) +{ + if (!waiter) { + /* + * The purpose of the mutex_can_spin_on_owner() function is + * to eliminate the overhead of osq_lock() and osq_unlock() + * in case spinning isn't possible. As a waiter-spinner + * is not going to take OSQ lock anyway, there is no need + * to call mutex_can_spin_on_owner(). + */ + if (!mutex_can_spin_on_owner(lock)) + goto fail; + + /* + * In order to avoid a stampede of mutex spinners trying to + * acquire the mutex all at once, the spinners need to take a + * MCS (queued) lock first before spinning on the owner field. + */ + if (!osq_lock(&lock->osq)) + goto fail; + } + + for (;;) { + struct task_struct *owner; + + /* Try to acquire the mutex... */ + owner = __mutex_trylock_or_owner(lock); + if (!owner) + break; + + /* + * There's an owner, wait for it to either + * release the lock or go to sleep. + */ + if (!mutex_spin_on_owner(lock, owner, ww_ctx, waiter)) + goto fail_unlock; + + /* + * The cpu_relax() call is a compiler barrier which forces + * everything in this loop to be re-loaded. We don't need + * memory barriers as we'll eventually observe the right + * values at the cost of a few extra spins. + */ + cpu_relax(); + } + + if (!waiter) + osq_unlock(&lock->osq); + + return true; + + +fail_unlock: + if (!waiter) + osq_unlock(&lock->osq); + +fail: + /* + * If we fell out of the spin path because of need_resched(), + * reschedule now, before we try-lock the mutex. This avoids getting + * scheduled out right after we obtained the mutex. + */ + if (need_resched()) { + /* + * We _should_ have TASK_RUNNING here, but just in case + * we do not, make it so, otherwise we might get stuck. + */ + __set_current_state(TASK_RUNNING); + schedule_preempt_disabled(); + } + + return false; +} +#else +static __always_inline bool +mutex_optimistic_spin(struct mutex *lock, struct ww_acquire_ctx *ww_ctx, + struct mutex_waiter *waiter) +{ + return false; +} +#endif + +static noinline void __sched __mutex_unlock_slowpath(struct mutex *lock, unsigned long ip); + +/** + * mutex_unlock - release the mutex + * @lock: the mutex to be released + * + * Unlock a mutex that has been locked by this task previously. + * + * This function must not be used in interrupt context. Unlocking + * of a not locked mutex is not allowed. + * + * This function is similar to (but not equivalent to) up(). + */ +void __sched mutex_unlock(struct mutex *lock) +{ +#ifndef CONFIG_DEBUG_LOCK_ALLOC + if (__mutex_unlock_fast(lock)) + return; +#endif + __mutex_unlock_slowpath(lock, _RET_IP_); +} +EXPORT_SYMBOL(mutex_unlock); + +/** + * ww_mutex_unlock - release the w/w mutex + * @lock: the mutex to be released + * + * Unlock a mutex that has been locked by this task previously with any of the + * ww_mutex_lock* functions (with or without an acquire context). It is + * forbidden to release the locks after releasing the acquire context. + * + * This function must not be used in interrupt context. Unlocking + * of a unlocked mutex is not allowed. + */ +void __sched ww_mutex_unlock(struct ww_mutex *lock) +{ + __ww_mutex_unlock(lock); + mutex_unlock(&lock->base); +} +EXPORT_SYMBOL(ww_mutex_unlock); + +/* + * Lock a mutex (possibly interruptible), slowpath: + */ +static __always_inline int __sched +__mutex_lock_common(struct mutex *lock, unsigned int state, unsigned int subclass, + struct lockdep_map *nest_lock, unsigned long ip, + struct ww_acquire_ctx *ww_ctx, const bool use_ww_ctx) +{ + struct mutex_waiter waiter; + struct ww_mutex *ww; + int ret; + + if (!use_ww_ctx) + ww_ctx = NULL; + + might_sleep(); + + MUTEX_WARN_ON(lock->magic != lock); + + ww = container_of(lock, struct ww_mutex, base); + if (ww_ctx) { + if (unlikely(ww_ctx == READ_ONCE(ww->ctx))) + return -EALREADY; + + /* + * Reset the wounded flag after a kill. No other process can + * race and wound us here since they can't have a valid owner + * pointer if we don't have any locks held. + */ + if (ww_ctx->acquired == 0) + ww_ctx->wounded = 0; + +#ifdef CONFIG_DEBUG_LOCK_ALLOC + nest_lock = &ww_ctx->dep_map; +#endif + } + + preempt_disable(); + mutex_acquire_nest(&lock->dep_map, subclass, 0, nest_lock, ip); + + trace_contention_begin(lock, LCB_F_MUTEX | LCB_F_SPIN); + if (__mutex_trylock(lock) || + mutex_optimistic_spin(lock, ww_ctx, NULL)) { + /* got the lock, yay! */ + lock_acquired(&lock->dep_map, ip); + if (ww_ctx) + ww_mutex_set_context_fastpath(ww, ww_ctx); + trace_contention_end(lock, 0); + preempt_enable(); + return 0; + } + + raw_spin_lock(&lock->wait_lock); + /* + * After waiting to acquire the wait_lock, try again. + */ + if (__mutex_trylock(lock)) { + if (ww_ctx) + __ww_mutex_check_waiters(lock, ww_ctx); + + goto skip_wait; + } + + debug_mutex_lock_common(lock, &waiter); + waiter.task = current; + if (use_ww_ctx) + waiter.ww_ctx = ww_ctx; + + lock_contended(&lock->dep_map, ip); + + if (!use_ww_ctx) { + /* add waiting tasks to the end of the waitqueue (FIFO): */ + __mutex_add_waiter(lock, &waiter, &lock->wait_list); + } else { + /* + * Add in stamp order, waking up waiters that must kill + * themselves. + */ + ret = __ww_mutex_add_waiter(&waiter, lock, ww_ctx); + if (ret) + goto err_early_kill; + } + + set_current_state(state); + trace_contention_begin(lock, LCB_F_MUTEX); + for (;;) { + bool first; + + /* + * Once we hold wait_lock, we're serialized against + * mutex_unlock() handing the lock off to us, do a trylock + * before testing the error conditions to make sure we pick up + * the handoff. + */ + if (__mutex_trylock(lock)) + goto acquired; + + /* + * Check for signals and kill conditions while holding + * wait_lock. This ensures the lock cancellation is ordered + * against mutex_unlock() and wake-ups do not go missing. + */ + if (signal_pending_state(state, current)) { + ret = -EINTR; + goto err; + } + + if (ww_ctx) { + ret = __ww_mutex_check_kill(lock, &waiter, ww_ctx); + if (ret) + goto err; + } + + raw_spin_unlock(&lock->wait_lock); + schedule_preempt_disabled(); + + first = __mutex_waiter_is_first(lock, &waiter); + + set_current_state(state); + /* + * Here we order against unlock; we must either see it change + * state back to RUNNING and fall through the next schedule(), + * or we must see its unlock and acquire. + */ + if (__mutex_trylock_or_handoff(lock, first)) + break; + + if (first) { + trace_contention_begin(lock, LCB_F_MUTEX | LCB_F_SPIN); + if (mutex_optimistic_spin(lock, ww_ctx, &waiter)) + break; + trace_contention_begin(lock, LCB_F_MUTEX); + } + + raw_spin_lock(&lock->wait_lock); + } + raw_spin_lock(&lock->wait_lock); +acquired: + __set_current_state(TASK_RUNNING); + + if (ww_ctx) { + /* + * Wound-Wait; we stole the lock (!first_waiter), check the + * waiters as anyone might want to wound us. + */ + if (!ww_ctx->is_wait_die && + !__mutex_waiter_is_first(lock, &waiter)) + __ww_mutex_check_waiters(lock, ww_ctx); + } + + __mutex_remove_waiter(lock, &waiter); + + debug_mutex_free_waiter(&waiter); + +skip_wait: + /* got the lock - cleanup and rejoice! */ + lock_acquired(&lock->dep_map, ip); + trace_contention_end(lock, 0); + + if (ww_ctx) + ww_mutex_lock_acquired(ww, ww_ctx); + + raw_spin_unlock(&lock->wait_lock); + preempt_enable(); + return 0; + +err: + __set_current_state(TASK_RUNNING); + __mutex_remove_waiter(lock, &waiter); +err_early_kill: + trace_contention_end(lock, ret); + raw_spin_unlock(&lock->wait_lock); + debug_mutex_free_waiter(&waiter); + mutex_release(&lock->dep_map, ip); + preempt_enable(); + return ret; +} + +static int __sched +__mutex_lock(struct mutex *lock, unsigned int state, unsigned int subclass, + struct lockdep_map *nest_lock, unsigned long ip) +{ + return __mutex_lock_common(lock, state, subclass, nest_lock, ip, NULL, false); +} + +static int __sched +__ww_mutex_lock(struct mutex *lock, unsigned int state, unsigned int subclass, + unsigned long ip, struct ww_acquire_ctx *ww_ctx) +{ + return __mutex_lock_common(lock, state, subclass, NULL, ip, ww_ctx, true); +} + +/** + * ww_mutex_trylock - tries to acquire the w/w mutex with optional acquire context + * @ww: mutex to lock + * @ww_ctx: optional w/w acquire context + * + * Trylocks a mutex with the optional acquire context; no deadlock detection is + * possible. Returns 1 if the mutex has been acquired successfully, 0 otherwise. + * + * Unlike ww_mutex_lock, no deadlock handling is performed. However, if a @ctx is + * specified, -EALREADY handling may happen in calls to ww_mutex_trylock. + * + * A mutex acquired with this function must be released with ww_mutex_unlock. + */ +int ww_mutex_trylock(struct ww_mutex *ww, struct ww_acquire_ctx *ww_ctx) +{ + if (!ww_ctx) + return mutex_trylock(&ww->base); + + MUTEX_WARN_ON(ww->base.magic != &ww->base); + + /* + * Reset the wounded flag after a kill. No other process can + * race and wound us here, since they can't have a valid owner + * pointer if we don't have any locks held. + */ + if (ww_ctx->acquired == 0) + ww_ctx->wounded = 0; + + if (__mutex_trylock(&ww->base)) { + ww_mutex_set_context_fastpath(ww, ww_ctx); + mutex_acquire_nest(&ww->base.dep_map, 0, 1, &ww_ctx->dep_map, _RET_IP_); + return 1; + } + + return 0; +} +EXPORT_SYMBOL(ww_mutex_trylock); + +#ifdef CONFIG_DEBUG_LOCK_ALLOC +void __sched +mutex_lock_nested(struct mutex *lock, unsigned int subclass) +{ + __mutex_lock(lock, TASK_UNINTERRUPTIBLE, subclass, NULL, _RET_IP_); +} + +EXPORT_SYMBOL_GPL(mutex_lock_nested); + +void __sched +_mutex_lock_nest_lock(struct mutex *lock, struct lockdep_map *nest) +{ + __mutex_lock(lock, TASK_UNINTERRUPTIBLE, 0, nest, _RET_IP_); +} +EXPORT_SYMBOL_GPL(_mutex_lock_nest_lock); + +int __sched +mutex_lock_killable_nested(struct mutex *lock, unsigned int subclass) +{ + return __mutex_lock(lock, TASK_KILLABLE, subclass, NULL, _RET_IP_); +} +EXPORT_SYMBOL_GPL(mutex_lock_killable_nested); + +int __sched +mutex_lock_interruptible_nested(struct mutex *lock, unsigned int subclass) +{ + return __mutex_lock(lock, TASK_INTERRUPTIBLE, subclass, NULL, _RET_IP_); +} +EXPORT_SYMBOL_GPL(mutex_lock_interruptible_nested); + +void __sched +mutex_lock_io_nested(struct mutex *lock, unsigned int subclass) +{ + int token; + + might_sleep(); + + token = io_schedule_prepare(); + __mutex_lock_common(lock, TASK_UNINTERRUPTIBLE, + subclass, NULL, _RET_IP_, NULL, 0); + io_schedule_finish(token); +} +EXPORT_SYMBOL_GPL(mutex_lock_io_nested); + +static inline int +ww_mutex_deadlock_injection(struct ww_mutex *lock, struct ww_acquire_ctx *ctx) +{ +#ifdef CONFIG_DEBUG_WW_MUTEX_SLOWPATH + unsigned tmp; + + if (ctx->deadlock_inject_countdown-- == 0) { + tmp = ctx->deadlock_inject_interval; + if (tmp > UINT_MAX/4) + tmp = UINT_MAX; + else + tmp = tmp*2 + tmp + tmp/2; + + ctx->deadlock_inject_interval = tmp; + ctx->deadlock_inject_countdown = tmp; + ctx->contending_lock = lock; + + ww_mutex_unlock(lock); + + return -EDEADLK; + } +#endif + + return 0; +} + +int __sched +ww_mutex_lock(struct ww_mutex *lock, struct ww_acquire_ctx *ctx) +{ + int ret; + + might_sleep(); + ret = __ww_mutex_lock(&lock->base, TASK_UNINTERRUPTIBLE, + 0, _RET_IP_, ctx); + if (!ret && ctx && ctx->acquired > 1) + return ww_mutex_deadlock_injection(lock, ctx); + + return ret; +} +EXPORT_SYMBOL_GPL(ww_mutex_lock); + +int __sched +ww_mutex_lock_interruptible(struct ww_mutex *lock, struct ww_acquire_ctx *ctx) +{ + int ret; + + might_sleep(); + ret = __ww_mutex_lock(&lock->base, TASK_INTERRUPTIBLE, + 0, _RET_IP_, ctx); + + if (!ret && ctx && ctx->acquired > 1) + return ww_mutex_deadlock_injection(lock, ctx); + + return ret; +} +EXPORT_SYMBOL_GPL(ww_mutex_lock_interruptible); + +#endif + +/* + * Release the lock, slowpath: + */ +static noinline void __sched __mutex_unlock_slowpath(struct mutex *lock, unsigned long ip) +{ + struct task_struct *next = NULL; + DEFINE_WAKE_Q(wake_q); + unsigned long owner; + + mutex_release(&lock->dep_map, ip); + + /* + * Release the lock before (potentially) taking the spinlock such that + * other contenders can get on with things ASAP. + * + * Except when HANDOFF, in that case we must not clear the owner field, + * but instead set it to the top waiter. + */ + owner = atomic_long_read(&lock->owner); + for (;;) { + MUTEX_WARN_ON(__owner_task(owner) != current); + MUTEX_WARN_ON(owner & MUTEX_FLAG_PICKUP); + + if (owner & MUTEX_FLAG_HANDOFF) + break; + + if (atomic_long_try_cmpxchg_release(&lock->owner, &owner, __owner_flags(owner))) { + if (owner & MUTEX_FLAG_WAITERS) + break; + + return; + } + } + + raw_spin_lock(&lock->wait_lock); + debug_mutex_unlock(lock); + if (!list_empty(&lock->wait_list)) { + /* get the first entry from the wait-list: */ + struct mutex_waiter *waiter = + list_first_entry(&lock->wait_list, + struct mutex_waiter, list); + + next = waiter->task; + + debug_mutex_wake_waiter(lock, waiter); + wake_q_add(&wake_q, next); + } + + if (owner & MUTEX_FLAG_HANDOFF) + __mutex_handoff(lock, next); + + raw_spin_unlock(&lock->wait_lock); + + wake_up_q(&wake_q); +} + +#ifndef CONFIG_DEBUG_LOCK_ALLOC +/* + * Here come the less common (and hence less performance-critical) APIs: + * mutex_lock_interruptible() and mutex_trylock(). + */ +static noinline int __sched +__mutex_lock_killable_slowpath(struct mutex *lock); + +static noinline int __sched +__mutex_lock_interruptible_slowpath(struct mutex *lock); + +/** + * mutex_lock_interruptible() - Acquire the mutex, interruptible by signals. + * @lock: The mutex to be acquired. + * + * Lock the mutex like mutex_lock(). If a signal is delivered while the + * process is sleeping, this function will return without acquiring the + * mutex. + * + * Context: Process context. + * Return: 0 if the lock was successfully acquired or %-EINTR if a + * signal arrived. + */ +int __sched mutex_lock_interruptible(struct mutex *lock) +{ + might_sleep(); + + if (__mutex_trylock_fast(lock)) + return 0; + + return __mutex_lock_interruptible_slowpath(lock); +} + +EXPORT_SYMBOL(mutex_lock_interruptible); + +/** + * mutex_lock_killable() - Acquire the mutex, interruptible by fatal signals. + * @lock: The mutex to be acquired. + * + * Lock the mutex like mutex_lock(). If a signal which will be fatal to + * the current process is delivered while the process is sleeping, this + * function will return without acquiring the mutex. + * + * Context: Process context. + * Return: 0 if the lock was successfully acquired or %-EINTR if a + * fatal signal arrived. + */ +int __sched mutex_lock_killable(struct mutex *lock) +{ + might_sleep(); + + if (__mutex_trylock_fast(lock)) + return 0; + + return __mutex_lock_killable_slowpath(lock); +} +EXPORT_SYMBOL(mutex_lock_killable); + +/** + * mutex_lock_io() - Acquire the mutex and mark the process as waiting for I/O + * @lock: The mutex to be acquired. + * + * Lock the mutex like mutex_lock(). While the task is waiting for this + * mutex, it will be accounted as being in the IO wait state by the + * scheduler. + * + * Context: Process context. + */ +void __sched mutex_lock_io(struct mutex *lock) +{ + int token; + + token = io_schedule_prepare(); + mutex_lock(lock); + io_schedule_finish(token); +} +EXPORT_SYMBOL_GPL(mutex_lock_io); + +static noinline void __sched +__mutex_lock_slowpath(struct mutex *lock) +{ + __mutex_lock(lock, TASK_UNINTERRUPTIBLE, 0, NULL, _RET_IP_); +} + +static noinline int __sched +__mutex_lock_killable_slowpath(struct mutex *lock) +{ + return __mutex_lock(lock, TASK_KILLABLE, 0, NULL, _RET_IP_); +} + +static noinline int __sched +__mutex_lock_interruptible_slowpath(struct mutex *lock) +{ + return __mutex_lock(lock, TASK_INTERRUPTIBLE, 0, NULL, _RET_IP_); +} + +static noinline int __sched +__ww_mutex_lock_slowpath(struct ww_mutex *lock, struct ww_acquire_ctx *ctx) +{ + return __ww_mutex_lock(&lock->base, TASK_UNINTERRUPTIBLE, 0, + _RET_IP_, ctx); +} + +static noinline int __sched +__ww_mutex_lock_interruptible_slowpath(struct ww_mutex *lock, + struct ww_acquire_ctx *ctx) +{ + return __ww_mutex_lock(&lock->base, TASK_INTERRUPTIBLE, 0, + _RET_IP_, ctx); +} + +#endif + +/** + * mutex_trylock - try to acquire the mutex, without waiting + * @lock: the mutex to be acquired + * + * Try to acquire the mutex atomically. Returns 1 if the mutex + * has been acquired successfully, and 0 on contention. + * + * NOTE: this function follows the spin_trylock() convention, so + * it is negated from the down_trylock() return values! Be careful + * about this when converting semaphore users to mutexes. + * + * This function must not be used in interrupt context. The + * mutex must be released by the same task that acquired it. + */ +int __sched mutex_trylock(struct mutex *lock) +{ + bool locked; + + MUTEX_WARN_ON(lock->magic != lock); + + locked = __mutex_trylock(lock); + if (locked) + mutex_acquire(&lock->dep_map, 0, 1, _RET_IP_); + + return locked; +} +EXPORT_SYMBOL(mutex_trylock); + +#ifndef CONFIG_DEBUG_LOCK_ALLOC +int __sched +ww_mutex_lock(struct ww_mutex *lock, struct ww_acquire_ctx *ctx) +{ + might_sleep(); + + if (__mutex_trylock_fast(&lock->base)) { + if (ctx) + ww_mutex_set_context_fastpath(lock, ctx); + return 0; + } + + return __ww_mutex_lock_slowpath(lock, ctx); +} +EXPORT_SYMBOL(ww_mutex_lock); + +int __sched +ww_mutex_lock_interruptible(struct ww_mutex *lock, struct ww_acquire_ctx *ctx) +{ + might_sleep(); + + if (__mutex_trylock_fast(&lock->base)) { + if (ctx) + ww_mutex_set_context_fastpath(lock, ctx); + return 0; + } + + return __ww_mutex_lock_interruptible_slowpath(lock, ctx); +} +EXPORT_SYMBOL(ww_mutex_lock_interruptible); + +#endif /* !CONFIG_DEBUG_LOCK_ALLOC */ +#endif /* !CONFIG_PREEMPT_RT */ + +/** + * atomic_dec_and_mutex_lock - return holding mutex if we dec to 0 + * @cnt: the atomic which we are to dec + * @lock: the mutex to return holding if we dec to 0 + * + * return true and hold lock if we dec to 0, return false otherwise + */ +int atomic_dec_and_mutex_lock(atomic_t *cnt, struct mutex *lock) +{ + /* dec if we can't possibly hit 0 */ + if (atomic_add_unless(cnt, -1, 1)) + return 0; + /* we might hit 0, so take the lock */ + mutex_lock(lock); + if (!atomic_dec_and_test(cnt)) { + /* when we actually did the dec, we didn't hit 0 */ + mutex_unlock(lock); + return 0; + } + /* we hit 0, and we hold the lock */ + return 1; +} +EXPORT_SYMBOL(atomic_dec_and_mutex_lock); |