summaryrefslogtreecommitdiffstats
path: root/kernel/sched/deadline.c
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-05-18 18:50:12 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-05-18 18:50:12 +0000
commit8665bd53f2f2e27e5511d90428cb3f60e6d0ce15 (patch)
tree8d58900dc0ebd4a3011f92c128d2fe45bc7c4bf2 /kernel/sched/deadline.c
parentAdding debian version 6.7.12-1. (diff)
downloadlinux-8665bd53f2f2e27e5511d90428cb3f60e6d0ce15.tar.xz
linux-8665bd53f2f2e27e5511d90428cb3f60e6d0ce15.zip
Merging upstream version 6.8.9.
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'kernel/sched/deadline.c')
-rw-r--r--kernel/sched/deadline.c479
1 files changed, 305 insertions, 174 deletions
diff --git a/kernel/sched/deadline.c b/kernel/sched/deadline.c
index b28114478b..a04a436af8 100644
--- a/kernel/sched/deadline.c
+++ b/kernel/sched/deadline.c
@@ -54,8 +54,14 @@ static int __init sched_dl_sysctl_init(void)
late_initcall(sched_dl_sysctl_init);
#endif
+static bool dl_server(struct sched_dl_entity *dl_se)
+{
+ return dl_se->dl_server;
+}
+
static inline struct task_struct *dl_task_of(struct sched_dl_entity *dl_se)
{
+ BUG_ON(dl_server(dl_se));
return container_of(dl_se, struct task_struct, dl);
}
@@ -64,12 +70,19 @@ static inline struct rq *rq_of_dl_rq(struct dl_rq *dl_rq)
return container_of(dl_rq, struct rq, dl);
}
-static inline struct dl_rq *dl_rq_of_se(struct sched_dl_entity *dl_se)
+static inline struct rq *rq_of_dl_se(struct sched_dl_entity *dl_se)
{
- struct task_struct *p = dl_task_of(dl_se);
- struct rq *rq = task_rq(p);
+ struct rq *rq = dl_se->rq;
+
+ if (!dl_server(dl_se))
+ rq = task_rq(dl_task_of(dl_se));
+
+ return rq;
+}
- return &rq->dl;
+static inline struct dl_rq *dl_rq_of_se(struct sched_dl_entity *dl_se)
+{
+ return &rq_of_dl_se(dl_se)->dl;
}
static inline int on_dl_rq(struct sched_dl_entity *dl_se)
@@ -335,6 +348,8 @@ static void dl_change_utilization(struct task_struct *p, u64 new_bw)
__add_rq_bw(new_bw, &rq->dl);
}
+static void __dl_clear_params(struct sched_dl_entity *dl_se);
+
/*
* The utilization of a task cannot be immediately removed from
* the rq active utilization (running_bw) when the task blocks.
@@ -389,12 +404,11 @@ static void dl_change_utilization(struct task_struct *p, u64 new_bw)
* up, and checks if the task is still in the "ACTIVE non contending"
* state or not (in the second case, it updates running_bw).
*/
-static void task_non_contending(struct task_struct *p)
+static void task_non_contending(struct sched_dl_entity *dl_se)
{
- struct sched_dl_entity *dl_se = &p->dl;
struct hrtimer *timer = &dl_se->inactive_timer;
- struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
- struct rq *rq = rq_of_dl_rq(dl_rq);
+ struct rq *rq = rq_of_dl_se(dl_se);
+ struct dl_rq *dl_rq = &rq->dl;
s64 zerolag_time;
/*
@@ -424,24 +438,33 @@ static void task_non_contending(struct task_struct *p)
* utilization now, instead of starting a timer
*/
if ((zerolag_time < 0) || hrtimer_active(&dl_se->inactive_timer)) {
- if (dl_task(p))
+ if (dl_server(dl_se)) {
sub_running_bw(dl_se, dl_rq);
- if (!dl_task(p) || READ_ONCE(p->__state) == TASK_DEAD) {
- struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
-
- if (READ_ONCE(p->__state) == TASK_DEAD)
- sub_rq_bw(&p->dl, &rq->dl);
- raw_spin_lock(&dl_b->lock);
- __dl_sub(dl_b, p->dl.dl_bw, dl_bw_cpus(task_cpu(p)));
- raw_spin_unlock(&dl_b->lock);
- __dl_clear_params(p);
+ } else {
+ struct task_struct *p = dl_task_of(dl_se);
+
+ if (dl_task(p))
+ sub_running_bw(dl_se, dl_rq);
+
+ if (!dl_task(p) || READ_ONCE(p->__state) == TASK_DEAD) {
+ struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
+
+ if (READ_ONCE(p->__state) == TASK_DEAD)
+ sub_rq_bw(dl_se, &rq->dl);
+ raw_spin_lock(&dl_b->lock);
+ __dl_sub(dl_b, dl_se->dl_bw, dl_bw_cpus(task_cpu(p)));
+ raw_spin_unlock(&dl_b->lock);
+ __dl_clear_params(dl_se);
+ }
}
return;
}
dl_se->dl_non_contending = 1;
- get_task_struct(p);
+ if (!dl_server(dl_se))
+ get_task_struct(dl_task_of(dl_se));
+
hrtimer_start(timer, ns_to_ktime(zerolag_time), HRTIMER_MODE_REL_HARD);
}
@@ -468,8 +491,10 @@ static void task_contending(struct sched_dl_entity *dl_se, int flags)
* will not touch the rq's active utilization,
* so we are still safe.
*/
- if (hrtimer_try_to_cancel(&dl_se->inactive_timer) == 1)
- put_task_struct(dl_task_of(dl_se));
+ if (hrtimer_try_to_cancel(&dl_se->inactive_timer) == 1) {
+ if (!dl_server(dl_se))
+ put_task_struct(dl_task_of(dl_se));
+ }
} else {
/*
* Since "dl_non_contending" is not set, the
@@ -482,10 +507,8 @@ static void task_contending(struct sched_dl_entity *dl_se, int flags)
}
}
-static inline int is_leftmost(struct task_struct *p, struct dl_rq *dl_rq)
+static inline int is_leftmost(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
{
- struct sched_dl_entity *dl_se = &p->dl;
-
return rb_first_cached(&dl_rq->root) == &dl_se->rb_node;
}
@@ -737,8 +760,10 @@ static inline void deadline_queue_pull_task(struct rq *rq)
}
#endif /* CONFIG_SMP */
+static void
+enqueue_dl_entity(struct sched_dl_entity *dl_se, int flags);
static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags);
-static void __dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags);
+static void dequeue_dl_entity(struct sched_dl_entity *dl_se, int flags);
static void wakeup_preempt_dl(struct rq *rq, struct task_struct *p, int flags);
static inline void replenish_dl_new_period(struct sched_dl_entity *dl_se,
@@ -986,8 +1011,7 @@ static inline bool dl_is_implicit(struct sched_dl_entity *dl_se)
*/
static void update_dl_entity(struct sched_dl_entity *dl_se)
{
- struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
- struct rq *rq = rq_of_dl_rq(dl_rq);
+ struct rq *rq = rq_of_dl_se(dl_se);
if (dl_time_before(dl_se->deadline, rq_clock(rq)) ||
dl_entity_overflow(dl_se, rq_clock(rq))) {
@@ -1018,11 +1042,11 @@ static inline u64 dl_next_period(struct sched_dl_entity *dl_se)
* actually started or not (i.e., the replenishment instant is in
* the future or in the past).
*/
-static int start_dl_timer(struct task_struct *p)
+static int start_dl_timer(struct sched_dl_entity *dl_se)
{
- struct sched_dl_entity *dl_se = &p->dl;
struct hrtimer *timer = &dl_se->dl_timer;
- struct rq *rq = task_rq(p);
+ struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
+ struct rq *rq = rq_of_dl_rq(dl_rq);
ktime_t now, act;
s64 delta;
@@ -1056,13 +1080,33 @@ static int start_dl_timer(struct task_struct *p)
* and observe our state.
*/
if (!hrtimer_is_queued(timer)) {
- get_task_struct(p);
+ if (!dl_server(dl_se))
+ get_task_struct(dl_task_of(dl_se));
hrtimer_start(timer, act, HRTIMER_MODE_ABS_HARD);
}
return 1;
}
+static void __push_dl_task(struct rq *rq, struct rq_flags *rf)
+{
+#ifdef CONFIG_SMP
+ /*
+ * Queueing this task back might have overloaded rq, check if we need
+ * to kick someone away.
+ */
+ if (has_pushable_dl_tasks(rq)) {
+ /*
+ * Nothing relies on rq->lock after this, so its safe to drop
+ * rq->lock.
+ */
+ rq_unpin_lock(rq, rf);
+ push_dl_task(rq);
+ rq_repin_lock(rq, rf);
+ }
+#endif
+}
+
/*
* This is the bandwidth enforcement timer callback. If here, we know
* a task is not on its dl_rq, since the fact that the timer was running
@@ -1081,10 +1125,34 @@ static enum hrtimer_restart dl_task_timer(struct hrtimer *timer)
struct sched_dl_entity *dl_se = container_of(timer,
struct sched_dl_entity,
dl_timer);
- struct task_struct *p = dl_task_of(dl_se);
+ struct task_struct *p;
struct rq_flags rf;
struct rq *rq;
+ if (dl_server(dl_se)) {
+ struct rq *rq = rq_of_dl_se(dl_se);
+ struct rq_flags rf;
+
+ rq_lock(rq, &rf);
+ if (dl_se->dl_throttled) {
+ sched_clock_tick();
+ update_rq_clock(rq);
+
+ if (dl_se->server_has_tasks(dl_se)) {
+ enqueue_dl_entity(dl_se, ENQUEUE_REPLENISH);
+ resched_curr(rq);
+ __push_dl_task(rq, &rf);
+ } else {
+ replenish_dl_entity(dl_se);
+ }
+
+ }
+ rq_unlock(rq, &rf);
+
+ return HRTIMER_NORESTART;
+ }
+
+ p = dl_task_of(dl_se);
rq = task_rq_lock(p, &rf);
/*
@@ -1155,21 +1223,7 @@ static enum hrtimer_restart dl_task_timer(struct hrtimer *timer)
else
resched_curr(rq);
-#ifdef CONFIG_SMP
- /*
- * Queueing this task back might have overloaded rq, check if we need
- * to kick someone away.
- */
- if (has_pushable_dl_tasks(rq)) {
- /*
- * Nothing relies on rq->lock after this, so its safe to drop
- * rq->lock.
- */
- rq_unpin_lock(rq, &rf);
- push_dl_task(rq);
- rq_repin_lock(rq, &rf);
- }
-#endif
+ __push_dl_task(rq, &rf);
unlock:
task_rq_unlock(rq, p, &rf);
@@ -1183,7 +1237,7 @@ unlock:
return HRTIMER_NORESTART;
}
-void init_dl_task_timer(struct sched_dl_entity *dl_se)
+static void init_dl_task_timer(struct sched_dl_entity *dl_se)
{
struct hrtimer *timer = &dl_se->dl_timer;
@@ -1211,12 +1265,11 @@ void init_dl_task_timer(struct sched_dl_entity *dl_se)
*/
static inline void dl_check_constrained_dl(struct sched_dl_entity *dl_se)
{
- struct task_struct *p = dl_task_of(dl_se);
- struct rq *rq = rq_of_dl_rq(dl_rq_of_se(dl_se));
+ struct rq *rq = rq_of_dl_se(dl_se);
if (dl_time_before(dl_se->deadline, rq_clock(rq)) &&
dl_time_before(rq_clock(rq), dl_next_period(dl_se))) {
- if (unlikely(is_dl_boosted(dl_se) || !start_dl_timer(p)))
+ if (unlikely(is_dl_boosted(dl_se) || !start_dl_timer(dl_se)))
return;
dl_se->dl_throttled = 1;
if (dl_se->runtime > 0)
@@ -1267,44 +1320,19 @@ static u64 grub_reclaim(u64 delta, struct rq *rq, struct sched_dl_entity *dl_se)
return (delta * u_act) >> BW_SHIFT;
}
-/*
- * Update the current task's runtime statistics (provided it is still
- * a -deadline task and has not been removed from the dl_rq).
- */
-static void update_curr_dl(struct rq *rq)
+static inline void
+update_stats_dequeue_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se,
+ int flags);
+static void update_curr_dl_se(struct rq *rq, struct sched_dl_entity *dl_se, s64 delta_exec)
{
- struct task_struct *curr = rq->curr;
- struct sched_dl_entity *dl_se = &curr->dl;
- u64 delta_exec, scaled_delta_exec;
- int cpu = cpu_of(rq);
- u64 now;
-
- if (!dl_task(curr) || !on_dl_rq(dl_se))
- return;
+ s64 scaled_delta_exec;
- /*
- * Consumed budget is computed considering the time as
- * observed by schedulable tasks (excluding time spent
- * in hardirq context, etc.). Deadlines are instead
- * computed using hard walltime. This seems to be the more
- * natural solution, but the full ramifications of this
- * approach need further study.
- */
- now = rq_clock_task(rq);
- delta_exec = now - curr->se.exec_start;
- if (unlikely((s64)delta_exec <= 0)) {
+ if (unlikely(delta_exec <= 0)) {
if (unlikely(dl_se->dl_yielded))
goto throttle;
return;
}
- schedstat_set(curr->stats.exec_max,
- max(curr->stats.exec_max, delta_exec));
-
- trace_sched_stat_runtime(curr, delta_exec, 0);
-
- update_current_exec_runtime(curr, now, delta_exec);
-
if (dl_entity_is_special(dl_se))
return;
@@ -1316,10 +1344,9 @@ static void update_curr_dl(struct rq *rq)
* according to current frequency and CPU maximum capacity.
*/
if (unlikely(dl_se->flags & SCHED_FLAG_RECLAIM)) {
- scaled_delta_exec = grub_reclaim(delta_exec,
- rq,
- &curr->dl);
+ scaled_delta_exec = grub_reclaim(delta_exec, rq, dl_se);
} else {
+ int cpu = cpu_of(rq);
unsigned long scale_freq = arch_scale_freq_capacity(cpu);
unsigned long scale_cpu = arch_scale_cpu_capacity(cpu);
@@ -1338,11 +1365,20 @@ throttle:
(dl_se->flags & SCHED_FLAG_DL_OVERRUN))
dl_se->dl_overrun = 1;
- __dequeue_task_dl(rq, curr, 0);
- if (unlikely(is_dl_boosted(dl_se) || !start_dl_timer(curr)))
- enqueue_task_dl(rq, curr, ENQUEUE_REPLENISH);
+ dequeue_dl_entity(dl_se, 0);
+ if (!dl_server(dl_se)) {
+ update_stats_dequeue_dl(&rq->dl, dl_se, 0);
+ dequeue_pushable_dl_task(rq, dl_task_of(dl_se));
+ }
+
+ if (unlikely(is_dl_boosted(dl_se) || !start_dl_timer(dl_se))) {
+ if (dl_server(dl_se))
+ enqueue_dl_entity(dl_se, ENQUEUE_REPLENISH);
+ else
+ enqueue_task_dl(rq, dl_task_of(dl_se), ENQUEUE_REPLENISH);
+ }
- if (!is_leftmost(curr, &rq->dl))
+ if (!is_leftmost(dl_se, &rq->dl))
resched_curr(rq);
}
@@ -1372,20 +1408,82 @@ throttle:
}
}
+void dl_server_update(struct sched_dl_entity *dl_se, s64 delta_exec)
+{
+ update_curr_dl_se(dl_se->rq, dl_se, delta_exec);
+}
+
+void dl_server_start(struct sched_dl_entity *dl_se)
+{
+ if (!dl_server(dl_se)) {
+ dl_se->dl_server = 1;
+ setup_new_dl_entity(dl_se);
+ }
+ enqueue_dl_entity(dl_se, ENQUEUE_WAKEUP);
+}
+
+void dl_server_stop(struct sched_dl_entity *dl_se)
+{
+ dequeue_dl_entity(dl_se, DEQUEUE_SLEEP);
+}
+
+void dl_server_init(struct sched_dl_entity *dl_se, struct rq *rq,
+ dl_server_has_tasks_f has_tasks,
+ dl_server_pick_f pick)
+{
+ dl_se->rq = rq;
+ dl_se->server_has_tasks = has_tasks;
+ dl_se->server_pick = pick;
+}
+
+/*
+ * Update the current task's runtime statistics (provided it is still
+ * a -deadline task and has not been removed from the dl_rq).
+ */
+static void update_curr_dl(struct rq *rq)
+{
+ struct task_struct *curr = rq->curr;
+ struct sched_dl_entity *dl_se = &curr->dl;
+ s64 delta_exec;
+
+ if (!dl_task(curr) || !on_dl_rq(dl_se))
+ return;
+
+ /*
+ * Consumed budget is computed considering the time as
+ * observed by schedulable tasks (excluding time spent
+ * in hardirq context, etc.). Deadlines are instead
+ * computed using hard walltime. This seems to be the more
+ * natural solution, but the full ramifications of this
+ * approach need further study.
+ */
+ delta_exec = update_curr_common(rq);
+ update_curr_dl_se(rq, dl_se, delta_exec);
+}
+
static enum hrtimer_restart inactive_task_timer(struct hrtimer *timer)
{
struct sched_dl_entity *dl_se = container_of(timer,
struct sched_dl_entity,
inactive_timer);
- struct task_struct *p = dl_task_of(dl_se);
+ struct task_struct *p = NULL;
struct rq_flags rf;
struct rq *rq;
- rq = task_rq_lock(p, &rf);
+ if (!dl_server(dl_se)) {
+ p = dl_task_of(dl_se);
+ rq = task_rq_lock(p, &rf);
+ } else {
+ rq = dl_se->rq;
+ rq_lock(rq, &rf);
+ }
sched_clock_tick();
update_rq_clock(rq);
+ if (dl_server(dl_se))
+ goto no_task;
+
if (!dl_task(p) || READ_ONCE(p->__state) == TASK_DEAD) {
struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
@@ -1398,23 +1496,30 @@ static enum hrtimer_restart inactive_task_timer(struct hrtimer *timer)
raw_spin_lock(&dl_b->lock);
__dl_sub(dl_b, p->dl.dl_bw, dl_bw_cpus(task_cpu(p)));
raw_spin_unlock(&dl_b->lock);
- __dl_clear_params(p);
+ __dl_clear_params(dl_se);
goto unlock;
}
+
+no_task:
if (dl_se->dl_non_contending == 0)
goto unlock;
sub_running_bw(dl_se, &rq->dl);
dl_se->dl_non_contending = 0;
unlock:
- task_rq_unlock(rq, p, &rf);
- put_task_struct(p);
+
+ if (!dl_server(dl_se)) {
+ task_rq_unlock(rq, p, &rf);
+ put_task_struct(p);
+ } else {
+ rq_unlock(rq, &rf);
+ }
return HRTIMER_NORESTART;
}
-void init_dl_inactive_task_timer(struct sched_dl_entity *dl_se)
+static void init_dl_inactive_task_timer(struct sched_dl_entity *dl_se)
{
struct hrtimer *timer = &dl_se->inactive_timer;
@@ -1472,10 +1577,8 @@ static inline void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {}
static inline
void inc_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
{
- int prio = dl_task_of(dl_se)->prio;
u64 deadline = dl_se->deadline;
- WARN_ON(!dl_prio(prio));
dl_rq->dl_nr_running++;
add_nr_running(rq_of_dl_rq(dl_rq), 1);
@@ -1485,9 +1588,6 @@ void inc_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
static inline
void dec_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
{
- int prio = dl_task_of(dl_se)->prio;
-
- WARN_ON(!dl_prio(prio));
WARN_ON(!dl_rq->dl_nr_running);
dl_rq->dl_nr_running--;
sub_nr_running(rq_of_dl_rq(dl_rq), 1);
@@ -1609,6 +1709,41 @@ enqueue_dl_entity(struct sched_dl_entity *dl_se, int flags)
update_stats_enqueue_dl(dl_rq_of_se(dl_se), dl_se, flags);
/*
+ * Check if a constrained deadline task was activated
+ * after the deadline but before the next period.
+ * If that is the case, the task will be throttled and
+ * the replenishment timer will be set to the next period.
+ */
+ if (!dl_se->dl_throttled && !dl_is_implicit(dl_se))
+ dl_check_constrained_dl(dl_se);
+
+ if (flags & (ENQUEUE_RESTORE|ENQUEUE_MIGRATING)) {
+ struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
+
+ add_rq_bw(dl_se, dl_rq);
+ add_running_bw(dl_se, dl_rq);
+ }
+
+ /*
+ * If p is throttled, we do not enqueue it. In fact, if it exhausted
+ * its budget it needs a replenishment and, since it now is on
+ * its rq, the bandwidth timer callback (which clearly has not
+ * run yet) will take care of this.
+ * However, the active utilization does not depend on the fact
+ * that the task is on the runqueue or not (but depends on the
+ * task's state - in GRUB parlance, "inactive" vs "active contending").
+ * In other words, even if a task is throttled its utilization must
+ * be counted in the active utilization; hence, we need to call
+ * add_running_bw().
+ */
+ if (dl_se->dl_throttled && !(flags & ENQUEUE_REPLENISH)) {
+ if (flags & ENQUEUE_WAKEUP)
+ task_contending(dl_se, flags);
+
+ return;
+ }
+
+ /*
* If this is a wakeup or a new instance, the scheduling
* parameters of the task might need updating. Otherwise,
* we want a replenishment of its runtime.
@@ -1619,17 +1754,35 @@ enqueue_dl_entity(struct sched_dl_entity *dl_se, int flags)
} else if (flags & ENQUEUE_REPLENISH) {
replenish_dl_entity(dl_se);
} else if ((flags & ENQUEUE_RESTORE) &&
- dl_time_before(dl_se->deadline,
- rq_clock(rq_of_dl_rq(dl_rq_of_se(dl_se))))) {
+ dl_time_before(dl_se->deadline, rq_clock(rq_of_dl_se(dl_se)))) {
setup_new_dl_entity(dl_se);
}
__enqueue_dl_entity(dl_se);
}
-static void dequeue_dl_entity(struct sched_dl_entity *dl_se)
+static void dequeue_dl_entity(struct sched_dl_entity *dl_se, int flags)
{
__dequeue_dl_entity(dl_se);
+
+ if (flags & (DEQUEUE_SAVE|DEQUEUE_MIGRATING)) {
+ struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
+
+ sub_running_bw(dl_se, dl_rq);
+ sub_rq_bw(dl_se, dl_rq);
+ }
+
+ /*
+ * This check allows to start the inactive timer (or to immediately
+ * decrease the active utilization, if needed) in two cases:
+ * when the task blocks and when it is terminating
+ * (p->state == TASK_DEAD). We can handle the two cases in the same
+ * way, because from GRUB's point of view the same thing is happening
+ * (the task moves from "active contending" to "active non contending"
+ * or "inactive")
+ */
+ if (flags & DEQUEUE_SLEEP)
+ task_non_contending(dl_se);
}
static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags)
@@ -1674,76 +1827,31 @@ static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags)
return;
}
- /*
- * Check if a constrained deadline task was activated
- * after the deadline but before the next period.
- * If that is the case, the task will be throttled and
- * the replenishment timer will be set to the next period.
- */
- if (!p->dl.dl_throttled && !dl_is_implicit(&p->dl))
- dl_check_constrained_dl(&p->dl);
-
- if (p->on_rq == TASK_ON_RQ_MIGRATING || flags & ENQUEUE_RESTORE) {
- add_rq_bw(&p->dl, &rq->dl);
- add_running_bw(&p->dl, &rq->dl);
- }
-
- /*
- * If p is throttled, we do not enqueue it. In fact, if it exhausted
- * its budget it needs a replenishment and, since it now is on
- * its rq, the bandwidth timer callback (which clearly has not
- * run yet) will take care of this.
- * However, the active utilization does not depend on the fact
- * that the task is on the runqueue or not (but depends on the
- * task's state - in GRUB parlance, "inactive" vs "active contending").
- * In other words, even if a task is throttled its utilization must
- * be counted in the active utilization; hence, we need to call
- * add_running_bw().
- */
- if (p->dl.dl_throttled && !(flags & ENQUEUE_REPLENISH)) {
- if (flags & ENQUEUE_WAKEUP)
- task_contending(&p->dl, flags);
-
- return;
- }
-
check_schedstat_required();
update_stats_wait_start_dl(dl_rq_of_se(&p->dl), &p->dl);
+ if (p->on_rq == TASK_ON_RQ_MIGRATING)
+ flags |= ENQUEUE_MIGRATING;
+
enqueue_dl_entity(&p->dl, flags);
- if (!task_current(rq, p) && p->nr_cpus_allowed > 1)
- enqueue_pushable_dl_task(rq, p);
-}
+ if (dl_server(&p->dl))
+ return;
-static void __dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags)
-{
- update_stats_dequeue_dl(&rq->dl, &p->dl, flags);
- dequeue_dl_entity(&p->dl);
- dequeue_pushable_dl_task(rq, p);
+ if (!task_current(rq, p) && !p->dl.dl_throttled && p->nr_cpus_allowed > 1)
+ enqueue_pushable_dl_task(rq, p);
}
static void dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags)
{
update_curr_dl(rq);
- __dequeue_task_dl(rq, p, flags);
- if (p->on_rq == TASK_ON_RQ_MIGRATING || flags & DEQUEUE_SAVE) {
- sub_running_bw(&p->dl, &rq->dl);
- sub_rq_bw(&p->dl, &rq->dl);
- }
+ if (p->on_rq == TASK_ON_RQ_MIGRATING)
+ flags |= DEQUEUE_MIGRATING;
- /*
- * This check allows to start the inactive timer (or to immediately
- * decrease the active utilization, if needed) in two cases:
- * when the task blocks and when it is terminating
- * (p->state == TASK_DEAD). We can handle the two cases in the same
- * way, because from GRUB's point of view the same thing is happening
- * (the task moves from "active contending" to "active non contending"
- * or "inactive")
- */
- if (flags & DEQUEUE_SLEEP)
- task_non_contending(p);
+ dequeue_dl_entity(&p->dl, flags);
+ if (!p->dl.dl_throttled && !dl_server(&p->dl))
+ dequeue_pushable_dl_task(rq, p);
}
/*
@@ -1933,12 +2041,12 @@ static void wakeup_preempt_dl(struct rq *rq, struct task_struct *p,
}
#ifdef CONFIG_SCHED_HRTICK
-static void start_hrtick_dl(struct rq *rq, struct task_struct *p)
+static void start_hrtick_dl(struct rq *rq, struct sched_dl_entity *dl_se)
{
- hrtick_start(rq, p->dl.runtime);
+ hrtick_start(rq, dl_se->runtime);
}
#else /* !CONFIG_SCHED_HRTICK */
-static void start_hrtick_dl(struct rq *rq, struct task_struct *p)
+static void start_hrtick_dl(struct rq *rq, struct sched_dl_entity *dl_se)
{
}
#endif
@@ -1958,9 +2066,6 @@ static void set_next_task_dl(struct rq *rq, struct task_struct *p, bool first)
if (!first)
return;
- if (hrtick_enabled_dl(rq))
- start_hrtick_dl(rq, p);
-
if (rq->curr->sched_class != &dl_sched_class)
update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 0);
@@ -1983,12 +2088,25 @@ static struct task_struct *pick_task_dl(struct rq *rq)
struct dl_rq *dl_rq = &rq->dl;
struct task_struct *p;
+again:
if (!sched_dl_runnable(rq))
return NULL;
dl_se = pick_next_dl_entity(dl_rq);
WARN_ON_ONCE(!dl_se);
- p = dl_task_of(dl_se);
+
+ if (dl_server(dl_se)) {
+ p = dl_se->server_pick(dl_se);
+ if (!p) {
+ WARN_ON_ONCE(1);
+ dl_se->dl_yielded = 1;
+ update_curr_dl_se(rq, dl_se, 0);
+ goto again;
+ }
+ p->dl_server = dl_se;
+ } else {
+ p = dl_task_of(dl_se);
+ }
return p;
}
@@ -1998,9 +2116,15 @@ static struct task_struct *pick_next_task_dl(struct rq *rq)
struct task_struct *p;
p = pick_task_dl(rq);
- if (p)
+ if (!p)
+ return p;
+
+ if (!p->dl_server)
set_next_task_dl(rq, p, true);
+ if (hrtick_enabled(rq))
+ start_hrtick_dl(rq, &p->dl);
+
return p;
}
@@ -2038,8 +2162,8 @@ static void task_tick_dl(struct rq *rq, struct task_struct *p, int queued)
* be set and schedule() will start a new hrtick for the next task.
*/
if (hrtick_enabled_dl(rq) && queued && p->dl.runtime > 0 &&
- is_leftmost(p, &rq->dl))
- start_hrtick_dl(rq, p);
+ is_leftmost(&p->dl, &rq->dl))
+ start_hrtick_dl(rq, &p->dl);
}
static void task_fork_dl(struct task_struct *p)
@@ -2558,7 +2682,7 @@ static void switched_from_dl(struct rq *rq, struct task_struct *p)
* will reset the task parameters.
*/
if (task_on_rq_queued(p) && p->dl.dl_runtime)
- task_non_contending(p);
+ task_non_contending(&p->dl);
/*
* In case a task is setscheduled out from SCHED_DEADLINE we need to
@@ -2966,10 +3090,8 @@ bool __checkparam_dl(const struct sched_attr *attr)
/*
* This function clears the sched_dl_entity static params.
*/
-void __dl_clear_params(struct task_struct *p)
+static void __dl_clear_params(struct sched_dl_entity *dl_se)
{
- struct sched_dl_entity *dl_se = &p->dl;
-
dl_se->dl_runtime = 0;
dl_se->dl_deadline = 0;
dl_se->dl_period = 0;
@@ -2981,12 +3103,21 @@ void __dl_clear_params(struct task_struct *p)
dl_se->dl_yielded = 0;
dl_se->dl_non_contending = 0;
dl_se->dl_overrun = 0;
+ dl_se->dl_server = 0;
#ifdef CONFIG_RT_MUTEXES
dl_se->pi_se = dl_se;
#endif
}
+void init_dl_entity(struct sched_dl_entity *dl_se)
+{
+ RB_CLEAR_NODE(&dl_se->rb_node);
+ init_dl_task_timer(dl_se);
+ init_dl_inactive_task_timer(dl_se);
+ __dl_clear_params(dl_se);
+}
+
bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr)
{
struct sched_dl_entity *dl_se = &p->dl;