diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-11 08:27:49 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-11 08:27:49 +0000 |
commit | ace9429bb58fd418f0c81d4c2835699bddf6bde6 (patch) | |
tree | b2d64bc10158fdd5497876388cd68142ca374ed3 /lib/test_meminit.c | |
parent | Initial commit. (diff) | |
download | linux-ace9429bb58fd418f0c81d4c2835699bddf6bde6.tar.xz linux-ace9429bb58fd418f0c81d4c2835699bddf6bde6.zip |
Adding upstream version 6.6.15.upstream/6.6.15
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'lib/test_meminit.c')
-rw-r--r-- | lib/test_meminit.c | 439 |
1 files changed, 439 insertions, 0 deletions
diff --git a/lib/test_meminit.c b/lib/test_meminit.c new file mode 100644 index 0000000000..0ae35223d7 --- /dev/null +++ b/lib/test_meminit.c @@ -0,0 +1,439 @@ +// SPDX-License-Identifier: GPL-2.0 +/* + * Test cases for SL[AOU]B/page initialization at alloc/free time. + */ +#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt + +#include <linux/init.h> +#include <linux/kernel.h> +#include <linux/mm.h> +#include <linux/module.h> +#include <linux/slab.h> +#include <linux/string.h> +#include <linux/vmalloc.h> + +#define GARBAGE_INT (0x09A7BA9E) +#define GARBAGE_BYTE (0x9E) + +#define REPORT_FAILURES_IN_FN() \ + do { \ + if (failures) \ + pr_info("%s failed %d out of %d times\n", \ + __func__, failures, num_tests); \ + else \ + pr_info("all %d tests in %s passed\n", \ + num_tests, __func__); \ + } while (0) + +/* Calculate the number of uninitialized bytes in the buffer. */ +static int __init count_nonzero_bytes(void *ptr, size_t size) +{ + int i, ret = 0; + unsigned char *p = (unsigned char *)ptr; + + for (i = 0; i < size; i++) + if (p[i]) + ret++; + return ret; +} + +/* Fill a buffer with garbage, skipping |skip| first bytes. */ +static void __init fill_with_garbage_skip(void *ptr, int size, size_t skip) +{ + unsigned int *p = (unsigned int *)((char *)ptr + skip); + int i = 0; + + WARN_ON(skip > size); + size -= skip; + + while (size >= sizeof(*p)) { + p[i] = GARBAGE_INT; + i++; + size -= sizeof(*p); + } + if (size) + memset(&p[i], GARBAGE_BYTE, size); +} + +static void __init fill_with_garbage(void *ptr, size_t size) +{ + fill_with_garbage_skip(ptr, size, 0); +} + +static int __init do_alloc_pages_order(int order, int *total_failures) +{ + struct page *page; + void *buf; + size_t size = PAGE_SIZE << order; + + page = alloc_pages(GFP_KERNEL, order); + if (!page) + goto err; + buf = page_address(page); + fill_with_garbage(buf, size); + __free_pages(page, order); + + page = alloc_pages(GFP_KERNEL, order); + if (!page) + goto err; + buf = page_address(page); + if (count_nonzero_bytes(buf, size)) + (*total_failures)++; + fill_with_garbage(buf, size); + __free_pages(page, order); + return 1; +err: + (*total_failures)++; + return 1; +} + +/* Test the page allocator by calling alloc_pages with different orders. */ +static int __init test_pages(int *total_failures) +{ + int failures = 0, num_tests = 0; + int i; + + for (i = 0; i <= MAX_ORDER; i++) + num_tests += do_alloc_pages_order(i, &failures); + + REPORT_FAILURES_IN_FN(); + *total_failures += failures; + return num_tests; +} + +/* Test kmalloc() with given parameters. */ +static int __init do_kmalloc_size(size_t size, int *total_failures) +{ + void *buf; + + buf = kmalloc(size, GFP_KERNEL); + if (!buf) + goto err; + fill_with_garbage(buf, size); + kfree(buf); + + buf = kmalloc(size, GFP_KERNEL); + if (!buf) + goto err; + if (count_nonzero_bytes(buf, size)) + (*total_failures)++; + fill_with_garbage(buf, size); + kfree(buf); + return 1; +err: + (*total_failures)++; + return 1; +} + +/* Test vmalloc() with given parameters. */ +static int __init do_vmalloc_size(size_t size, int *total_failures) +{ + void *buf; + + buf = vmalloc(size); + if (!buf) + goto err; + fill_with_garbage(buf, size); + vfree(buf); + + buf = vmalloc(size); + if (!buf) + goto err; + if (count_nonzero_bytes(buf, size)) + (*total_failures)++; + fill_with_garbage(buf, size); + vfree(buf); + return 1; +err: + (*total_failures)++; + return 1; +} + +/* Test kmalloc()/vmalloc() by allocating objects of different sizes. */ +static int __init test_kvmalloc(int *total_failures) +{ + int failures = 0, num_tests = 0; + int i, size; + + for (i = 0; i < 20; i++) { + size = 1 << i; + num_tests += do_kmalloc_size(size, &failures); + num_tests += do_vmalloc_size(size, &failures); + } + + REPORT_FAILURES_IN_FN(); + *total_failures += failures; + return num_tests; +} + +#define CTOR_BYTES (sizeof(unsigned int)) +#define CTOR_PATTERN (0x41414141) +/* Initialize the first 4 bytes of the object. */ +static void test_ctor(void *obj) +{ + *(unsigned int *)obj = CTOR_PATTERN; +} + +/* + * Check the invariants for the buffer allocated from a slab cache. + * If the cache has a test constructor, the first 4 bytes of the object must + * always remain equal to CTOR_PATTERN. + * If the cache isn't an RCU-typesafe one, or if the allocation is done with + * __GFP_ZERO, then the object contents must be zeroed after allocation. + * If the cache is an RCU-typesafe one, the object contents must never be + * zeroed after the first use. This is checked by memcmp() in + * do_kmem_cache_size(). + */ +static bool __init check_buf(void *buf, int size, bool want_ctor, + bool want_rcu, bool want_zero) +{ + int bytes; + bool fail = false; + + bytes = count_nonzero_bytes(buf, size); + WARN_ON(want_ctor && want_zero); + if (want_zero) + return bytes; + if (want_ctor) { + if (*(unsigned int *)buf != CTOR_PATTERN) + fail = 1; + } else { + if (bytes) + fail = !want_rcu; + } + return fail; +} + +#define BULK_SIZE 100 +static void *bulk_array[BULK_SIZE]; + +/* + * Test kmem_cache with given parameters: + * want_ctor - use a constructor; + * want_rcu - use SLAB_TYPESAFE_BY_RCU; + * want_zero - use __GFP_ZERO. + */ +static int __init do_kmem_cache_size(size_t size, bool want_ctor, + bool want_rcu, bool want_zero, + int *total_failures) +{ + struct kmem_cache *c; + int iter; + bool fail = false; + gfp_t alloc_mask = GFP_KERNEL | (want_zero ? __GFP_ZERO : 0); + void *buf, *buf_copy; + + c = kmem_cache_create("test_cache", size, 1, + want_rcu ? SLAB_TYPESAFE_BY_RCU : 0, + want_ctor ? test_ctor : NULL); + for (iter = 0; iter < 10; iter++) { + /* Do a test of bulk allocations */ + if (!want_rcu && !want_ctor) { + int ret; + + ret = kmem_cache_alloc_bulk(c, alloc_mask, BULK_SIZE, bulk_array); + if (!ret) { + fail = true; + } else { + int i; + for (i = 0; i < ret; i++) + fail |= check_buf(bulk_array[i], size, want_ctor, want_rcu, want_zero); + kmem_cache_free_bulk(c, ret, bulk_array); + } + } + + buf = kmem_cache_alloc(c, alloc_mask); + /* Check that buf is zeroed, if it must be. */ + fail |= check_buf(buf, size, want_ctor, want_rcu, want_zero); + fill_with_garbage_skip(buf, size, want_ctor ? CTOR_BYTES : 0); + + if (!want_rcu) { + kmem_cache_free(c, buf); + continue; + } + + /* + * If this is an RCU cache, use a critical section to ensure we + * can touch objects after they're freed. + */ + rcu_read_lock(); + /* + * Copy the buffer to check that it's not wiped on + * free(). + */ + buf_copy = kmalloc(size, GFP_ATOMIC); + if (buf_copy) + memcpy(buf_copy, buf, size); + + kmem_cache_free(c, buf); + /* + * Check that |buf| is intact after kmem_cache_free(). + * |want_zero| is false, because we wrote garbage to + * the buffer already. + */ + fail |= check_buf(buf, size, want_ctor, want_rcu, + false); + if (buf_copy) { + fail |= (bool)memcmp(buf, buf_copy, size); + kfree(buf_copy); + } + rcu_read_unlock(); + } + kmem_cache_destroy(c); + + *total_failures += fail; + return 1; +} + +/* + * Check that the data written to an RCU-allocated object survives + * reallocation. + */ +static int __init do_kmem_cache_rcu_persistent(int size, int *total_failures) +{ + struct kmem_cache *c; + void *buf, *buf_contents, *saved_ptr; + void **used_objects; + int i, iter, maxiter = 1024; + bool fail = false; + + c = kmem_cache_create("test_cache", size, size, SLAB_TYPESAFE_BY_RCU, + NULL); + buf = kmem_cache_alloc(c, GFP_KERNEL); + if (!buf) + goto out; + saved_ptr = buf; + fill_with_garbage(buf, size); + buf_contents = kmalloc(size, GFP_KERNEL); + if (!buf_contents) { + kmem_cache_free(c, buf); + goto out; + } + used_objects = kmalloc_array(maxiter, sizeof(void *), GFP_KERNEL); + if (!used_objects) { + kmem_cache_free(c, buf); + kfree(buf_contents); + goto out; + } + memcpy(buf_contents, buf, size); + kmem_cache_free(c, buf); + /* + * Run for a fixed number of iterations. If we never hit saved_ptr, + * assume the test passes. + */ + for (iter = 0; iter < maxiter; iter++) { + buf = kmem_cache_alloc(c, GFP_KERNEL); + used_objects[iter] = buf; + if (buf == saved_ptr) { + fail = memcmp(buf_contents, buf, size); + for (i = 0; i <= iter; i++) + kmem_cache_free(c, used_objects[i]); + goto free_out; + } + } + + for (iter = 0; iter < maxiter; iter++) + kmem_cache_free(c, used_objects[iter]); + +free_out: + kfree(buf_contents); + kfree(used_objects); +out: + kmem_cache_destroy(c); + *total_failures += fail; + return 1; +} + +static int __init do_kmem_cache_size_bulk(int size, int *total_failures) +{ + struct kmem_cache *c; + int i, iter, maxiter = 1024; + int num, bytes; + bool fail = false; + void *objects[10]; + + c = kmem_cache_create("test_cache", size, size, 0, NULL); + for (iter = 0; (iter < maxiter) && !fail; iter++) { + num = kmem_cache_alloc_bulk(c, GFP_KERNEL, ARRAY_SIZE(objects), + objects); + for (i = 0; i < num; i++) { + bytes = count_nonzero_bytes(objects[i], size); + if (bytes) + fail = true; + fill_with_garbage(objects[i], size); + } + + if (num) + kmem_cache_free_bulk(c, num, objects); + } + kmem_cache_destroy(c); + *total_failures += fail; + return 1; +} + +/* + * Test kmem_cache allocation by creating caches of different sizes, with and + * without constructors, with and without SLAB_TYPESAFE_BY_RCU. + */ +static int __init test_kmemcache(int *total_failures) +{ + int failures = 0, num_tests = 0; + int i, flags, size; + bool ctor, rcu, zero; + + for (i = 0; i < 10; i++) { + size = 8 << i; + for (flags = 0; flags < 8; flags++) { + ctor = flags & 1; + rcu = flags & 2; + zero = flags & 4; + if (ctor & zero) + continue; + num_tests += do_kmem_cache_size(size, ctor, rcu, zero, + &failures); + } + num_tests += do_kmem_cache_size_bulk(size, &failures); + } + REPORT_FAILURES_IN_FN(); + *total_failures += failures; + return num_tests; +} + +/* Test the behavior of SLAB_TYPESAFE_BY_RCU caches of different sizes. */ +static int __init test_rcu_persistent(int *total_failures) +{ + int failures = 0, num_tests = 0; + int i, size; + + for (i = 0; i < 10; i++) { + size = 8 << i; + num_tests += do_kmem_cache_rcu_persistent(size, &failures); + } + REPORT_FAILURES_IN_FN(); + *total_failures += failures; + return num_tests; +} + +/* + * Run the tests. Each test function returns the number of executed tests and + * updates |failures| with the number of failed tests. + */ +static int __init test_meminit_init(void) +{ + int failures = 0, num_tests = 0; + + num_tests += test_pages(&failures); + num_tests += test_kvmalloc(&failures); + num_tests += test_kmemcache(&failures); + num_tests += test_rcu_persistent(&failures); + + if (failures == 0) + pr_info("all %d tests passed!\n", num_tests); + else + pr_info("failures: %d out of %d\n", failures, num_tests); + + return failures ? -EINVAL : 0; +} +module_init(test_meminit_init); + +MODULE_LICENSE("GPL"); |