diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-11 08:27:49 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-11 08:27:49 +0000 |
commit | ace9429bb58fd418f0c81d4c2835699bddf6bde6 (patch) | |
tree | b2d64bc10158fdd5497876388cd68142ca374ed3 /mm/kfence | |
parent | Initial commit. (diff) | |
download | linux-ace9429bb58fd418f0c81d4c2835699bddf6bde6.tar.xz linux-ace9429bb58fd418f0c81d4c2835699bddf6bde6.zip |
Adding upstream version 6.6.15.upstream/6.6.15
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to '')
-rw-r--r-- | mm/kfence/.kunitconfig | 6 | ||||
-rw-r--r-- | mm/kfence/Makefile | 6 | ||||
-rw-r--r-- | mm/kfence/core.c | 1232 | ||||
-rw-r--r-- | mm/kfence/kfence.h | 145 | ||||
-rw-r--r-- | mm/kfence/kfence_test.c | 854 | ||||
-rw-r--r-- | mm/kfence/report.c | 326 |
6 files changed, 2569 insertions, 0 deletions
diff --git a/mm/kfence/.kunitconfig b/mm/kfence/.kunitconfig new file mode 100644 index 0000000000..f3d65e939b --- /dev/null +++ b/mm/kfence/.kunitconfig @@ -0,0 +1,6 @@ +CONFIG_KUNIT=y +CONFIG_KFENCE=y +CONFIG_KFENCE_KUNIT_TEST=y + +# Additional dependencies. +CONFIG_FTRACE=y diff --git a/mm/kfence/Makefile b/mm/kfence/Makefile new file mode 100644 index 0000000000..2de2a58d11 --- /dev/null +++ b/mm/kfence/Makefile @@ -0,0 +1,6 @@ +# SPDX-License-Identifier: GPL-2.0 + +obj-y := core.o report.o + +CFLAGS_kfence_test.o := -fno-omit-frame-pointer -fno-optimize-sibling-calls +obj-$(CONFIG_KFENCE_KUNIT_TEST) += kfence_test.o diff --git a/mm/kfence/core.c b/mm/kfence/core.c new file mode 100644 index 0000000000..3872528d09 --- /dev/null +++ b/mm/kfence/core.c @@ -0,0 +1,1232 @@ +// SPDX-License-Identifier: GPL-2.0 +/* + * KFENCE guarded object allocator and fault handling. + * + * Copyright (C) 2020, Google LLC. + */ + +#define pr_fmt(fmt) "kfence: " fmt + +#include <linux/atomic.h> +#include <linux/bug.h> +#include <linux/debugfs.h> +#include <linux/hash.h> +#include <linux/irq_work.h> +#include <linux/jhash.h> +#include <linux/kcsan-checks.h> +#include <linux/kfence.h> +#include <linux/kmemleak.h> +#include <linux/list.h> +#include <linux/lockdep.h> +#include <linux/log2.h> +#include <linux/memblock.h> +#include <linux/moduleparam.h> +#include <linux/notifier.h> +#include <linux/panic_notifier.h> +#include <linux/random.h> +#include <linux/rcupdate.h> +#include <linux/sched/clock.h> +#include <linux/seq_file.h> +#include <linux/slab.h> +#include <linux/spinlock.h> +#include <linux/string.h> + +#include <asm/kfence.h> + +#include "kfence.h" + +/* Disables KFENCE on the first warning assuming an irrecoverable error. */ +#define KFENCE_WARN_ON(cond) \ + ({ \ + const bool __cond = WARN_ON(cond); \ + if (unlikely(__cond)) { \ + WRITE_ONCE(kfence_enabled, false); \ + disabled_by_warn = true; \ + } \ + __cond; \ + }) + +/* === Data ================================================================= */ + +static bool kfence_enabled __read_mostly; +static bool disabled_by_warn __read_mostly; + +unsigned long kfence_sample_interval __read_mostly = CONFIG_KFENCE_SAMPLE_INTERVAL; +EXPORT_SYMBOL_GPL(kfence_sample_interval); /* Export for test modules. */ + +#ifdef MODULE_PARAM_PREFIX +#undef MODULE_PARAM_PREFIX +#endif +#define MODULE_PARAM_PREFIX "kfence." + +static int kfence_enable_late(void); +static int param_set_sample_interval(const char *val, const struct kernel_param *kp) +{ + unsigned long num; + int ret = kstrtoul(val, 0, &num); + + if (ret < 0) + return ret; + + /* Using 0 to indicate KFENCE is disabled. */ + if (!num && READ_ONCE(kfence_enabled)) { + pr_info("disabled\n"); + WRITE_ONCE(kfence_enabled, false); + } + + *((unsigned long *)kp->arg) = num; + + if (num && !READ_ONCE(kfence_enabled) && system_state != SYSTEM_BOOTING) + return disabled_by_warn ? -EINVAL : kfence_enable_late(); + return 0; +} + +static int param_get_sample_interval(char *buffer, const struct kernel_param *kp) +{ + if (!READ_ONCE(kfence_enabled)) + return sprintf(buffer, "0\n"); + + return param_get_ulong(buffer, kp); +} + +static const struct kernel_param_ops sample_interval_param_ops = { + .set = param_set_sample_interval, + .get = param_get_sample_interval, +}; +module_param_cb(sample_interval, &sample_interval_param_ops, &kfence_sample_interval, 0600); + +/* Pool usage% threshold when currently covered allocations are skipped. */ +static unsigned long kfence_skip_covered_thresh __read_mostly = 75; +module_param_named(skip_covered_thresh, kfence_skip_covered_thresh, ulong, 0644); + +/* If true, use a deferrable timer. */ +static bool kfence_deferrable __read_mostly = IS_ENABLED(CONFIG_KFENCE_DEFERRABLE); +module_param_named(deferrable, kfence_deferrable, bool, 0444); + +/* If true, check all canary bytes on panic. */ +static bool kfence_check_on_panic __read_mostly; +module_param_named(check_on_panic, kfence_check_on_panic, bool, 0444); + +/* The pool of pages used for guard pages and objects. */ +char *__kfence_pool __read_mostly; +EXPORT_SYMBOL(__kfence_pool); /* Export for test modules. */ + +/* + * Per-object metadata, with one-to-one mapping of object metadata to + * backing pages (in __kfence_pool). + */ +static_assert(CONFIG_KFENCE_NUM_OBJECTS > 0); +struct kfence_metadata *kfence_metadata __read_mostly; + +/* + * If kfence_metadata is not NULL, it may be accessed by kfence_shutdown_cache(). + * So introduce kfence_metadata_init to initialize metadata, and then make + * kfence_metadata visible after initialization is successful. This prevents + * potential UAF or access to uninitialized metadata. + */ +static struct kfence_metadata *kfence_metadata_init __read_mostly; + +/* Freelist with available objects. */ +static struct list_head kfence_freelist = LIST_HEAD_INIT(kfence_freelist); +static DEFINE_RAW_SPINLOCK(kfence_freelist_lock); /* Lock protecting freelist. */ + +/* + * The static key to set up a KFENCE allocation; or if static keys are not used + * to gate allocations, to avoid a load and compare if KFENCE is disabled. + */ +DEFINE_STATIC_KEY_FALSE(kfence_allocation_key); + +/* Gates the allocation, ensuring only one succeeds in a given period. */ +atomic_t kfence_allocation_gate = ATOMIC_INIT(1); + +/* + * A Counting Bloom filter of allocation coverage: limits currently covered + * allocations of the same source filling up the pool. + * + * Assuming a range of 15%-85% unique allocations in the pool at any point in + * time, the below parameters provide a probablity of 0.02-0.33 for false + * positive hits respectively: + * + * P(alloc_traces) = (1 - e^(-HNUM * (alloc_traces / SIZE)) ^ HNUM + */ +#define ALLOC_COVERED_HNUM 2 +#define ALLOC_COVERED_ORDER (const_ilog2(CONFIG_KFENCE_NUM_OBJECTS) + 2) +#define ALLOC_COVERED_SIZE (1 << ALLOC_COVERED_ORDER) +#define ALLOC_COVERED_HNEXT(h) hash_32(h, ALLOC_COVERED_ORDER) +#define ALLOC_COVERED_MASK (ALLOC_COVERED_SIZE - 1) +static atomic_t alloc_covered[ALLOC_COVERED_SIZE]; + +/* Stack depth used to determine uniqueness of an allocation. */ +#define UNIQUE_ALLOC_STACK_DEPTH ((size_t)8) + +/* + * Randomness for stack hashes, making the same collisions across reboots and + * different machines less likely. + */ +static u32 stack_hash_seed __ro_after_init; + +/* Statistics counters for debugfs. */ +enum kfence_counter_id { + KFENCE_COUNTER_ALLOCATED, + KFENCE_COUNTER_ALLOCS, + KFENCE_COUNTER_FREES, + KFENCE_COUNTER_ZOMBIES, + KFENCE_COUNTER_BUGS, + KFENCE_COUNTER_SKIP_INCOMPAT, + KFENCE_COUNTER_SKIP_CAPACITY, + KFENCE_COUNTER_SKIP_COVERED, + KFENCE_COUNTER_COUNT, +}; +static atomic_long_t counters[KFENCE_COUNTER_COUNT]; +static const char *const counter_names[] = { + [KFENCE_COUNTER_ALLOCATED] = "currently allocated", + [KFENCE_COUNTER_ALLOCS] = "total allocations", + [KFENCE_COUNTER_FREES] = "total frees", + [KFENCE_COUNTER_ZOMBIES] = "zombie allocations", + [KFENCE_COUNTER_BUGS] = "total bugs", + [KFENCE_COUNTER_SKIP_INCOMPAT] = "skipped allocations (incompatible)", + [KFENCE_COUNTER_SKIP_CAPACITY] = "skipped allocations (capacity)", + [KFENCE_COUNTER_SKIP_COVERED] = "skipped allocations (covered)", +}; +static_assert(ARRAY_SIZE(counter_names) == KFENCE_COUNTER_COUNT); + +/* === Internals ============================================================ */ + +static inline bool should_skip_covered(void) +{ + unsigned long thresh = (CONFIG_KFENCE_NUM_OBJECTS * kfence_skip_covered_thresh) / 100; + + return atomic_long_read(&counters[KFENCE_COUNTER_ALLOCATED]) > thresh; +} + +static u32 get_alloc_stack_hash(unsigned long *stack_entries, size_t num_entries) +{ + num_entries = min(num_entries, UNIQUE_ALLOC_STACK_DEPTH); + num_entries = filter_irq_stacks(stack_entries, num_entries); + return jhash(stack_entries, num_entries * sizeof(stack_entries[0]), stack_hash_seed); +} + +/* + * Adds (or subtracts) count @val for allocation stack trace hash + * @alloc_stack_hash from Counting Bloom filter. + */ +static void alloc_covered_add(u32 alloc_stack_hash, int val) +{ + int i; + + for (i = 0; i < ALLOC_COVERED_HNUM; i++) { + atomic_add(val, &alloc_covered[alloc_stack_hash & ALLOC_COVERED_MASK]); + alloc_stack_hash = ALLOC_COVERED_HNEXT(alloc_stack_hash); + } +} + +/* + * Returns true if the allocation stack trace hash @alloc_stack_hash is + * currently contained (non-zero count) in Counting Bloom filter. + */ +static bool alloc_covered_contains(u32 alloc_stack_hash) +{ + int i; + + for (i = 0; i < ALLOC_COVERED_HNUM; i++) { + if (!atomic_read(&alloc_covered[alloc_stack_hash & ALLOC_COVERED_MASK])) + return false; + alloc_stack_hash = ALLOC_COVERED_HNEXT(alloc_stack_hash); + } + + return true; +} + +static bool kfence_protect(unsigned long addr) +{ + return !KFENCE_WARN_ON(!kfence_protect_page(ALIGN_DOWN(addr, PAGE_SIZE), true)); +} + +static bool kfence_unprotect(unsigned long addr) +{ + return !KFENCE_WARN_ON(!kfence_protect_page(ALIGN_DOWN(addr, PAGE_SIZE), false)); +} + +static inline unsigned long metadata_to_pageaddr(const struct kfence_metadata *meta) +{ + unsigned long offset = (meta - kfence_metadata + 1) * PAGE_SIZE * 2; + unsigned long pageaddr = (unsigned long)&__kfence_pool[offset]; + + /* The checks do not affect performance; only called from slow-paths. */ + + /* Only call with a pointer into kfence_metadata. */ + if (KFENCE_WARN_ON(meta < kfence_metadata || + meta >= kfence_metadata + CONFIG_KFENCE_NUM_OBJECTS)) + return 0; + + /* + * This metadata object only ever maps to 1 page; verify that the stored + * address is in the expected range. + */ + if (KFENCE_WARN_ON(ALIGN_DOWN(meta->addr, PAGE_SIZE) != pageaddr)) + return 0; + + return pageaddr; +} + +/* + * Update the object's metadata state, including updating the alloc/free stacks + * depending on the state transition. + */ +static noinline void +metadata_update_state(struct kfence_metadata *meta, enum kfence_object_state next, + unsigned long *stack_entries, size_t num_stack_entries) +{ + struct kfence_track *track = + next == KFENCE_OBJECT_FREED ? &meta->free_track : &meta->alloc_track; + + lockdep_assert_held(&meta->lock); + + if (stack_entries) { + memcpy(track->stack_entries, stack_entries, + num_stack_entries * sizeof(stack_entries[0])); + } else { + /* + * Skip over 1 (this) functions; noinline ensures we do not + * accidentally skip over the caller by never inlining. + */ + num_stack_entries = stack_trace_save(track->stack_entries, KFENCE_STACK_DEPTH, 1); + } + track->num_stack_entries = num_stack_entries; + track->pid = task_pid_nr(current); + track->cpu = raw_smp_processor_id(); + track->ts_nsec = local_clock(); /* Same source as printk timestamps. */ + + /* + * Pairs with READ_ONCE() in + * kfence_shutdown_cache(), + * kfence_handle_page_fault(). + */ + WRITE_ONCE(meta->state, next); +} + +/* Check canary byte at @addr. */ +static inline bool check_canary_byte(u8 *addr) +{ + struct kfence_metadata *meta; + unsigned long flags; + + if (likely(*addr == KFENCE_CANARY_PATTERN_U8(addr))) + return true; + + atomic_long_inc(&counters[KFENCE_COUNTER_BUGS]); + + meta = addr_to_metadata((unsigned long)addr); + raw_spin_lock_irqsave(&meta->lock, flags); + kfence_report_error((unsigned long)addr, false, NULL, meta, KFENCE_ERROR_CORRUPTION); + raw_spin_unlock_irqrestore(&meta->lock, flags); + + return false; +} + +static inline void set_canary(const struct kfence_metadata *meta) +{ + const unsigned long pageaddr = ALIGN_DOWN(meta->addr, PAGE_SIZE); + unsigned long addr = pageaddr; + + /* + * The canary may be written to part of the object memory, but it does + * not affect it. The user should initialize the object before using it. + */ + for (; addr < meta->addr; addr += sizeof(u64)) + *((u64 *)addr) = KFENCE_CANARY_PATTERN_U64; + + addr = ALIGN_DOWN(meta->addr + meta->size, sizeof(u64)); + for (; addr - pageaddr < PAGE_SIZE; addr += sizeof(u64)) + *((u64 *)addr) = KFENCE_CANARY_PATTERN_U64; +} + +static inline void check_canary(const struct kfence_metadata *meta) +{ + const unsigned long pageaddr = ALIGN_DOWN(meta->addr, PAGE_SIZE); + unsigned long addr = pageaddr; + + /* + * We'll iterate over each canary byte per-side until a corrupted byte + * is found. However, we'll still iterate over the canary bytes to the + * right of the object even if there was an error in the canary bytes to + * the left of the object. Specifically, if check_canary_byte() + * generates an error, showing both sides might give more clues as to + * what the error is about when displaying which bytes were corrupted. + */ + + /* Apply to left of object. */ + for (; meta->addr - addr >= sizeof(u64); addr += sizeof(u64)) { + if (unlikely(*((u64 *)addr) != KFENCE_CANARY_PATTERN_U64)) + break; + } + + /* + * If the canary is corrupted in a certain 64 bytes, or the canary + * memory cannot be completely covered by multiple consecutive 64 bytes, + * it needs to be checked one by one. + */ + for (; addr < meta->addr; addr++) { + if (unlikely(!check_canary_byte((u8 *)addr))) + break; + } + + /* Apply to right of object. */ + for (addr = meta->addr + meta->size; addr % sizeof(u64) != 0; addr++) { + if (unlikely(!check_canary_byte((u8 *)addr))) + return; + } + for (; addr - pageaddr < PAGE_SIZE; addr += sizeof(u64)) { + if (unlikely(*((u64 *)addr) != KFENCE_CANARY_PATTERN_U64)) { + + for (; addr - pageaddr < PAGE_SIZE; addr++) { + if (!check_canary_byte((u8 *)addr)) + return; + } + } + } +} + +static void *kfence_guarded_alloc(struct kmem_cache *cache, size_t size, gfp_t gfp, + unsigned long *stack_entries, size_t num_stack_entries, + u32 alloc_stack_hash) +{ + struct kfence_metadata *meta = NULL; + unsigned long flags; + struct slab *slab; + void *addr; + const bool random_right_allocate = get_random_u32_below(2); + const bool random_fault = CONFIG_KFENCE_STRESS_TEST_FAULTS && + !get_random_u32_below(CONFIG_KFENCE_STRESS_TEST_FAULTS); + + /* Try to obtain a free object. */ + raw_spin_lock_irqsave(&kfence_freelist_lock, flags); + if (!list_empty(&kfence_freelist)) { + meta = list_entry(kfence_freelist.next, struct kfence_metadata, list); + list_del_init(&meta->list); + } + raw_spin_unlock_irqrestore(&kfence_freelist_lock, flags); + if (!meta) { + atomic_long_inc(&counters[KFENCE_COUNTER_SKIP_CAPACITY]); + return NULL; + } + + if (unlikely(!raw_spin_trylock_irqsave(&meta->lock, flags))) { + /* + * This is extremely unlikely -- we are reporting on a + * use-after-free, which locked meta->lock, and the reporting + * code via printk calls kmalloc() which ends up in + * kfence_alloc() and tries to grab the same object that we're + * reporting on. While it has never been observed, lockdep does + * report that there is a possibility of deadlock. Fix it by + * using trylock and bailing out gracefully. + */ + raw_spin_lock_irqsave(&kfence_freelist_lock, flags); + /* Put the object back on the freelist. */ + list_add_tail(&meta->list, &kfence_freelist); + raw_spin_unlock_irqrestore(&kfence_freelist_lock, flags); + + return NULL; + } + + meta->addr = metadata_to_pageaddr(meta); + /* Unprotect if we're reusing this page. */ + if (meta->state == KFENCE_OBJECT_FREED) + kfence_unprotect(meta->addr); + + /* + * Note: for allocations made before RNG initialization, will always + * return zero. We still benefit from enabling KFENCE as early as + * possible, even when the RNG is not yet available, as this will allow + * KFENCE to detect bugs due to earlier allocations. The only downside + * is that the out-of-bounds accesses detected are deterministic for + * such allocations. + */ + if (random_right_allocate) { + /* Allocate on the "right" side, re-calculate address. */ + meta->addr += PAGE_SIZE - size; + meta->addr = ALIGN_DOWN(meta->addr, cache->align); + } + + addr = (void *)meta->addr; + + /* Update remaining metadata. */ + metadata_update_state(meta, KFENCE_OBJECT_ALLOCATED, stack_entries, num_stack_entries); + /* Pairs with READ_ONCE() in kfence_shutdown_cache(). */ + WRITE_ONCE(meta->cache, cache); + meta->size = size; + meta->alloc_stack_hash = alloc_stack_hash; + raw_spin_unlock_irqrestore(&meta->lock, flags); + + alloc_covered_add(alloc_stack_hash, 1); + + /* Set required slab fields. */ + slab = virt_to_slab((void *)meta->addr); + slab->slab_cache = cache; +#if defined(CONFIG_SLUB) + slab->objects = 1; +#elif defined(CONFIG_SLAB) + slab->s_mem = addr; +#endif + + /* Memory initialization. */ + set_canary(meta); + + /* + * We check slab_want_init_on_alloc() ourselves, rather than letting + * SL*B do the initialization, as otherwise we might overwrite KFENCE's + * redzone. + */ + if (unlikely(slab_want_init_on_alloc(gfp, cache))) + memzero_explicit(addr, size); + if (cache->ctor) + cache->ctor(addr); + + if (random_fault) + kfence_protect(meta->addr); /* Random "faults" by protecting the object. */ + + atomic_long_inc(&counters[KFENCE_COUNTER_ALLOCATED]); + atomic_long_inc(&counters[KFENCE_COUNTER_ALLOCS]); + + return addr; +} + +static void kfence_guarded_free(void *addr, struct kfence_metadata *meta, bool zombie) +{ + struct kcsan_scoped_access assert_page_exclusive; + unsigned long flags; + bool init; + + raw_spin_lock_irqsave(&meta->lock, flags); + + if (meta->state != KFENCE_OBJECT_ALLOCATED || meta->addr != (unsigned long)addr) { + /* Invalid or double-free, bail out. */ + atomic_long_inc(&counters[KFENCE_COUNTER_BUGS]); + kfence_report_error((unsigned long)addr, false, NULL, meta, + KFENCE_ERROR_INVALID_FREE); + raw_spin_unlock_irqrestore(&meta->lock, flags); + return; + } + + /* Detect racy use-after-free, or incorrect reallocation of this page by KFENCE. */ + kcsan_begin_scoped_access((void *)ALIGN_DOWN((unsigned long)addr, PAGE_SIZE), PAGE_SIZE, + KCSAN_ACCESS_SCOPED | KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT, + &assert_page_exclusive); + + if (CONFIG_KFENCE_STRESS_TEST_FAULTS) + kfence_unprotect((unsigned long)addr); /* To check canary bytes. */ + + /* Restore page protection if there was an OOB access. */ + if (meta->unprotected_page) { + memzero_explicit((void *)ALIGN_DOWN(meta->unprotected_page, PAGE_SIZE), PAGE_SIZE); + kfence_protect(meta->unprotected_page); + meta->unprotected_page = 0; + } + + /* Mark the object as freed. */ + metadata_update_state(meta, KFENCE_OBJECT_FREED, NULL, 0); + init = slab_want_init_on_free(meta->cache); + raw_spin_unlock_irqrestore(&meta->lock, flags); + + alloc_covered_add(meta->alloc_stack_hash, -1); + + /* Check canary bytes for memory corruption. */ + check_canary(meta); + + /* + * Clear memory if init-on-free is set. While we protect the page, the + * data is still there, and after a use-after-free is detected, we + * unprotect the page, so the data is still accessible. + */ + if (!zombie && unlikely(init)) + memzero_explicit(addr, meta->size); + + /* Protect to detect use-after-frees. */ + kfence_protect((unsigned long)addr); + + kcsan_end_scoped_access(&assert_page_exclusive); + if (!zombie) { + /* Add it to the tail of the freelist for reuse. */ + raw_spin_lock_irqsave(&kfence_freelist_lock, flags); + KFENCE_WARN_ON(!list_empty(&meta->list)); + list_add_tail(&meta->list, &kfence_freelist); + raw_spin_unlock_irqrestore(&kfence_freelist_lock, flags); + + atomic_long_dec(&counters[KFENCE_COUNTER_ALLOCATED]); + atomic_long_inc(&counters[KFENCE_COUNTER_FREES]); + } else { + /* See kfence_shutdown_cache(). */ + atomic_long_inc(&counters[KFENCE_COUNTER_ZOMBIES]); + } +} + +static void rcu_guarded_free(struct rcu_head *h) +{ + struct kfence_metadata *meta = container_of(h, struct kfence_metadata, rcu_head); + + kfence_guarded_free((void *)meta->addr, meta, false); +} + +/* + * Initialization of the KFENCE pool after its allocation. + * Returns 0 on success; otherwise returns the address up to + * which partial initialization succeeded. + */ +static unsigned long kfence_init_pool(void) +{ + unsigned long addr; + struct page *pages; + int i; + + if (!arch_kfence_init_pool()) + return (unsigned long)__kfence_pool; + + addr = (unsigned long)__kfence_pool; + pages = virt_to_page(__kfence_pool); + + /* + * Set up object pages: they must have PG_slab set, to avoid freeing + * these as real pages. + * + * We also want to avoid inserting kfence_free() in the kfree() + * fast-path in SLUB, and therefore need to ensure kfree() correctly + * enters __slab_free() slow-path. + */ + for (i = 0; i < KFENCE_POOL_SIZE / PAGE_SIZE; i++) { + struct slab *slab = page_slab(nth_page(pages, i)); + + if (!i || (i % 2)) + continue; + + __folio_set_slab(slab_folio(slab)); +#ifdef CONFIG_MEMCG + slab->memcg_data = (unsigned long)&kfence_metadata_init[i / 2 - 1].objcg | + MEMCG_DATA_OBJCGS; +#endif + } + + /* + * Protect the first 2 pages. The first page is mostly unnecessary, and + * merely serves as an extended guard page. However, adding one + * additional page in the beginning gives us an even number of pages, + * which simplifies the mapping of address to metadata index. + */ + for (i = 0; i < 2; i++) { + if (unlikely(!kfence_protect(addr))) + return addr; + + addr += PAGE_SIZE; + } + + for (i = 0; i < CONFIG_KFENCE_NUM_OBJECTS; i++) { + struct kfence_metadata *meta = &kfence_metadata_init[i]; + + /* Initialize metadata. */ + INIT_LIST_HEAD(&meta->list); + raw_spin_lock_init(&meta->lock); + meta->state = KFENCE_OBJECT_UNUSED; + meta->addr = addr; /* Initialize for validation in metadata_to_pageaddr(). */ + list_add_tail(&meta->list, &kfence_freelist); + + /* Protect the right redzone. */ + if (unlikely(!kfence_protect(addr + PAGE_SIZE))) + goto reset_slab; + + addr += 2 * PAGE_SIZE; + } + + /* + * Make kfence_metadata visible only when initialization is successful. + * Otherwise, if the initialization fails and kfence_metadata is freed, + * it may cause UAF in kfence_shutdown_cache(). + */ + smp_store_release(&kfence_metadata, kfence_metadata_init); + return 0; + +reset_slab: + for (i = 0; i < KFENCE_POOL_SIZE / PAGE_SIZE; i++) { + struct slab *slab = page_slab(nth_page(pages, i)); + + if (!i || (i % 2)) + continue; +#ifdef CONFIG_MEMCG + slab->memcg_data = 0; +#endif + __folio_clear_slab(slab_folio(slab)); + } + + return addr; +} + +static bool __init kfence_init_pool_early(void) +{ + unsigned long addr; + + if (!__kfence_pool) + return false; + + addr = kfence_init_pool(); + + if (!addr) { + /* + * The pool is live and will never be deallocated from this point on. + * Ignore the pool object from the kmemleak phys object tree, as it would + * otherwise overlap with allocations returned by kfence_alloc(), which + * are registered with kmemleak through the slab post-alloc hook. + */ + kmemleak_ignore_phys(__pa(__kfence_pool)); + return true; + } + + /* + * Only release unprotected pages, and do not try to go back and change + * page attributes due to risk of failing to do so as well. If changing + * page attributes for some pages fails, it is very likely that it also + * fails for the first page, and therefore expect addr==__kfence_pool in + * most failure cases. + */ + memblock_free_late(__pa(addr), KFENCE_POOL_SIZE - (addr - (unsigned long)__kfence_pool)); + __kfence_pool = NULL; + + memblock_free_late(__pa(kfence_metadata_init), KFENCE_METADATA_SIZE); + kfence_metadata_init = NULL; + + return false; +} + +/* === DebugFS Interface ==================================================== */ + +static int stats_show(struct seq_file *seq, void *v) +{ + int i; + + seq_printf(seq, "enabled: %i\n", READ_ONCE(kfence_enabled)); + for (i = 0; i < KFENCE_COUNTER_COUNT; i++) + seq_printf(seq, "%s: %ld\n", counter_names[i], atomic_long_read(&counters[i])); + + return 0; +} +DEFINE_SHOW_ATTRIBUTE(stats); + +/* + * debugfs seq_file operations for /sys/kernel/debug/kfence/objects. + * start_object() and next_object() return the object index + 1, because NULL is used + * to stop iteration. + */ +static void *start_object(struct seq_file *seq, loff_t *pos) +{ + if (*pos < CONFIG_KFENCE_NUM_OBJECTS) + return (void *)((long)*pos + 1); + return NULL; +} + +static void stop_object(struct seq_file *seq, void *v) +{ +} + +static void *next_object(struct seq_file *seq, void *v, loff_t *pos) +{ + ++*pos; + if (*pos < CONFIG_KFENCE_NUM_OBJECTS) + return (void *)((long)*pos + 1); + return NULL; +} + +static int show_object(struct seq_file *seq, void *v) +{ + struct kfence_metadata *meta = &kfence_metadata[(long)v - 1]; + unsigned long flags; + + raw_spin_lock_irqsave(&meta->lock, flags); + kfence_print_object(seq, meta); + raw_spin_unlock_irqrestore(&meta->lock, flags); + seq_puts(seq, "---------------------------------\n"); + + return 0; +} + +static const struct seq_operations objects_sops = { + .start = start_object, + .next = next_object, + .stop = stop_object, + .show = show_object, +}; +DEFINE_SEQ_ATTRIBUTE(objects); + +static int kfence_debugfs_init(void) +{ + struct dentry *kfence_dir; + + if (!READ_ONCE(kfence_enabled)) + return 0; + + kfence_dir = debugfs_create_dir("kfence", NULL); + debugfs_create_file("stats", 0444, kfence_dir, NULL, &stats_fops); + debugfs_create_file("objects", 0400, kfence_dir, NULL, &objects_fops); + return 0; +} + +late_initcall(kfence_debugfs_init); + +/* === Panic Notifier ====================================================== */ + +static void kfence_check_all_canary(void) +{ + int i; + + for (i = 0; i < CONFIG_KFENCE_NUM_OBJECTS; i++) { + struct kfence_metadata *meta = &kfence_metadata[i]; + + if (meta->state == KFENCE_OBJECT_ALLOCATED) + check_canary(meta); + } +} + +static int kfence_check_canary_callback(struct notifier_block *nb, + unsigned long reason, void *arg) +{ + kfence_check_all_canary(); + return NOTIFY_OK; +} + +static struct notifier_block kfence_check_canary_notifier = { + .notifier_call = kfence_check_canary_callback, +}; + +/* === Allocation Gate Timer ================================================ */ + +static struct delayed_work kfence_timer; + +#ifdef CONFIG_KFENCE_STATIC_KEYS +/* Wait queue to wake up allocation-gate timer task. */ +static DECLARE_WAIT_QUEUE_HEAD(allocation_wait); + +static void wake_up_kfence_timer(struct irq_work *work) +{ + wake_up(&allocation_wait); +} +static DEFINE_IRQ_WORK(wake_up_kfence_timer_work, wake_up_kfence_timer); +#endif + +/* + * Set up delayed work, which will enable and disable the static key. We need to + * use a work queue (rather than a simple timer), since enabling and disabling a + * static key cannot be done from an interrupt. + * + * Note: Toggling a static branch currently causes IPIs, and here we'll end up + * with a total of 2 IPIs to all CPUs. If this ends up a problem in future (with + * more aggressive sampling intervals), we could get away with a variant that + * avoids IPIs, at the cost of not immediately capturing allocations if the + * instructions remain cached. + */ +static void toggle_allocation_gate(struct work_struct *work) +{ + if (!READ_ONCE(kfence_enabled)) + return; + + atomic_set(&kfence_allocation_gate, 0); +#ifdef CONFIG_KFENCE_STATIC_KEYS + /* Enable static key, and await allocation to happen. */ + static_branch_enable(&kfence_allocation_key); + + wait_event_idle(allocation_wait, atomic_read(&kfence_allocation_gate)); + + /* Disable static key and reset timer. */ + static_branch_disable(&kfence_allocation_key); +#endif + queue_delayed_work(system_unbound_wq, &kfence_timer, + msecs_to_jiffies(kfence_sample_interval)); +} + +/* === Public interface ===================================================== */ + +void __init kfence_alloc_pool_and_metadata(void) +{ + if (!kfence_sample_interval) + return; + + /* + * If the pool has already been initialized by arch, there is no need to + * re-allocate the memory pool. + */ + if (!__kfence_pool) + __kfence_pool = memblock_alloc(KFENCE_POOL_SIZE, PAGE_SIZE); + + if (!__kfence_pool) { + pr_err("failed to allocate pool\n"); + return; + } + + /* The memory allocated by memblock has been zeroed out. */ + kfence_metadata_init = memblock_alloc(KFENCE_METADATA_SIZE, PAGE_SIZE); + if (!kfence_metadata_init) { + pr_err("failed to allocate metadata\n"); + memblock_free(__kfence_pool, KFENCE_POOL_SIZE); + __kfence_pool = NULL; + } +} + +static void kfence_init_enable(void) +{ + if (!IS_ENABLED(CONFIG_KFENCE_STATIC_KEYS)) + static_branch_enable(&kfence_allocation_key); + + if (kfence_deferrable) + INIT_DEFERRABLE_WORK(&kfence_timer, toggle_allocation_gate); + else + INIT_DELAYED_WORK(&kfence_timer, toggle_allocation_gate); + + if (kfence_check_on_panic) + atomic_notifier_chain_register(&panic_notifier_list, &kfence_check_canary_notifier); + + WRITE_ONCE(kfence_enabled, true); + queue_delayed_work(system_unbound_wq, &kfence_timer, 0); + + pr_info("initialized - using %lu bytes for %d objects at 0x%p-0x%p\n", KFENCE_POOL_SIZE, + CONFIG_KFENCE_NUM_OBJECTS, (void *)__kfence_pool, + (void *)(__kfence_pool + KFENCE_POOL_SIZE)); +} + +void __init kfence_init(void) +{ + stack_hash_seed = get_random_u32(); + + /* Setting kfence_sample_interval to 0 on boot disables KFENCE. */ + if (!kfence_sample_interval) + return; + + if (!kfence_init_pool_early()) { + pr_err("%s failed\n", __func__); + return; + } + + kfence_init_enable(); +} + +static int kfence_init_late(void) +{ + const unsigned long nr_pages_pool = KFENCE_POOL_SIZE / PAGE_SIZE; + const unsigned long nr_pages_meta = KFENCE_METADATA_SIZE / PAGE_SIZE; + unsigned long addr = (unsigned long)__kfence_pool; + unsigned long free_size = KFENCE_POOL_SIZE; + int err = -ENOMEM; + +#ifdef CONFIG_CONTIG_ALLOC + struct page *pages; + + pages = alloc_contig_pages(nr_pages_pool, GFP_KERNEL, first_online_node, + NULL); + if (!pages) + return -ENOMEM; + + __kfence_pool = page_to_virt(pages); + pages = alloc_contig_pages(nr_pages_meta, GFP_KERNEL, first_online_node, + NULL); + if (pages) + kfence_metadata_init = page_to_virt(pages); +#else + if (nr_pages_pool > MAX_ORDER_NR_PAGES || + nr_pages_meta > MAX_ORDER_NR_PAGES) { + pr_warn("KFENCE_NUM_OBJECTS too large for buddy allocator\n"); + return -EINVAL; + } + + __kfence_pool = alloc_pages_exact(KFENCE_POOL_SIZE, GFP_KERNEL); + if (!__kfence_pool) + return -ENOMEM; + + kfence_metadata_init = alloc_pages_exact(KFENCE_METADATA_SIZE, GFP_KERNEL); +#endif + + if (!kfence_metadata_init) + goto free_pool; + + memzero_explicit(kfence_metadata_init, KFENCE_METADATA_SIZE); + addr = kfence_init_pool(); + if (!addr) { + kfence_init_enable(); + kfence_debugfs_init(); + return 0; + } + + pr_err("%s failed\n", __func__); + free_size = KFENCE_POOL_SIZE - (addr - (unsigned long)__kfence_pool); + err = -EBUSY; + +#ifdef CONFIG_CONTIG_ALLOC + free_contig_range(page_to_pfn(virt_to_page((void *)kfence_metadata_init)), + nr_pages_meta); +free_pool: + free_contig_range(page_to_pfn(virt_to_page((void *)addr)), + free_size / PAGE_SIZE); +#else + free_pages_exact((void *)kfence_metadata_init, KFENCE_METADATA_SIZE); +free_pool: + free_pages_exact((void *)addr, free_size); +#endif + + kfence_metadata_init = NULL; + __kfence_pool = NULL; + return err; +} + +static int kfence_enable_late(void) +{ + if (!__kfence_pool) + return kfence_init_late(); + + WRITE_ONCE(kfence_enabled, true); + queue_delayed_work(system_unbound_wq, &kfence_timer, 0); + pr_info("re-enabled\n"); + return 0; +} + +void kfence_shutdown_cache(struct kmem_cache *s) +{ + unsigned long flags; + struct kfence_metadata *meta; + int i; + + /* Pairs with release in kfence_init_pool(). */ + if (!smp_load_acquire(&kfence_metadata)) + return; + + for (i = 0; i < CONFIG_KFENCE_NUM_OBJECTS; i++) { + bool in_use; + + meta = &kfence_metadata[i]; + + /* + * If we observe some inconsistent cache and state pair where we + * should have returned false here, cache destruction is racing + * with either kmem_cache_alloc() or kmem_cache_free(). Taking + * the lock will not help, as different critical section + * serialization will have the same outcome. + */ + if (READ_ONCE(meta->cache) != s || + READ_ONCE(meta->state) != KFENCE_OBJECT_ALLOCATED) + continue; + + raw_spin_lock_irqsave(&meta->lock, flags); + in_use = meta->cache == s && meta->state == KFENCE_OBJECT_ALLOCATED; + raw_spin_unlock_irqrestore(&meta->lock, flags); + + if (in_use) { + /* + * This cache still has allocations, and we should not + * release them back into the freelist so they can still + * safely be used and retain the kernel's default + * behaviour of keeping the allocations alive (leak the + * cache); however, they effectively become "zombie + * allocations" as the KFENCE objects are the only ones + * still in use and the owning cache is being destroyed. + * + * We mark them freed, so that any subsequent use shows + * more useful error messages that will include stack + * traces of the user of the object, the original + * allocation, and caller to shutdown_cache(). + */ + kfence_guarded_free((void *)meta->addr, meta, /*zombie=*/true); + } + } + + for (i = 0; i < CONFIG_KFENCE_NUM_OBJECTS; i++) { + meta = &kfence_metadata[i]; + + /* See above. */ + if (READ_ONCE(meta->cache) != s || READ_ONCE(meta->state) != KFENCE_OBJECT_FREED) + continue; + + raw_spin_lock_irqsave(&meta->lock, flags); + if (meta->cache == s && meta->state == KFENCE_OBJECT_FREED) + meta->cache = NULL; + raw_spin_unlock_irqrestore(&meta->lock, flags); + } +} + +void *__kfence_alloc(struct kmem_cache *s, size_t size, gfp_t flags) +{ + unsigned long stack_entries[KFENCE_STACK_DEPTH]; + size_t num_stack_entries; + u32 alloc_stack_hash; + + /* + * Perform size check before switching kfence_allocation_gate, so that + * we don't disable KFENCE without making an allocation. + */ + if (size > PAGE_SIZE) { + atomic_long_inc(&counters[KFENCE_COUNTER_SKIP_INCOMPAT]); + return NULL; + } + + /* + * Skip allocations from non-default zones, including DMA. We cannot + * guarantee that pages in the KFENCE pool will have the requested + * properties (e.g. reside in DMAable memory). + */ + if ((flags & GFP_ZONEMASK) || + (s->flags & (SLAB_CACHE_DMA | SLAB_CACHE_DMA32))) { + atomic_long_inc(&counters[KFENCE_COUNTER_SKIP_INCOMPAT]); + return NULL; + } + + /* + * Skip allocations for this slab, if KFENCE has been disabled for + * this slab. + */ + if (s->flags & SLAB_SKIP_KFENCE) + return NULL; + + if (atomic_inc_return(&kfence_allocation_gate) > 1) + return NULL; +#ifdef CONFIG_KFENCE_STATIC_KEYS + /* + * waitqueue_active() is fully ordered after the update of + * kfence_allocation_gate per atomic_inc_return(). + */ + if (waitqueue_active(&allocation_wait)) { + /* + * Calling wake_up() here may deadlock when allocations happen + * from within timer code. Use an irq_work to defer it. + */ + irq_work_queue(&wake_up_kfence_timer_work); + } +#endif + + if (!READ_ONCE(kfence_enabled)) + return NULL; + + num_stack_entries = stack_trace_save(stack_entries, KFENCE_STACK_DEPTH, 0); + + /* + * Do expensive check for coverage of allocation in slow-path after + * allocation_gate has already become non-zero, even though it might + * mean not making any allocation within a given sample interval. + * + * This ensures reasonable allocation coverage when the pool is almost + * full, including avoiding long-lived allocations of the same source + * filling up the pool (e.g. pagecache allocations). + */ + alloc_stack_hash = get_alloc_stack_hash(stack_entries, num_stack_entries); + if (should_skip_covered() && alloc_covered_contains(alloc_stack_hash)) { + atomic_long_inc(&counters[KFENCE_COUNTER_SKIP_COVERED]); + return NULL; + } + + return kfence_guarded_alloc(s, size, flags, stack_entries, num_stack_entries, + alloc_stack_hash); +} + +size_t kfence_ksize(const void *addr) +{ + const struct kfence_metadata *meta = addr_to_metadata((unsigned long)addr); + + /* + * Read locklessly -- if there is a race with __kfence_alloc(), this is + * either a use-after-free or invalid access. + */ + return meta ? meta->size : 0; +} + +void *kfence_object_start(const void *addr) +{ + const struct kfence_metadata *meta = addr_to_metadata((unsigned long)addr); + + /* + * Read locklessly -- if there is a race with __kfence_alloc(), this is + * either a use-after-free or invalid access. + */ + return meta ? (void *)meta->addr : NULL; +} + +void __kfence_free(void *addr) +{ + struct kfence_metadata *meta = addr_to_metadata((unsigned long)addr); + +#ifdef CONFIG_MEMCG + KFENCE_WARN_ON(meta->objcg); +#endif + /* + * If the objects of the cache are SLAB_TYPESAFE_BY_RCU, defer freeing + * the object, as the object page may be recycled for other-typed + * objects once it has been freed. meta->cache may be NULL if the cache + * was destroyed. + */ + if (unlikely(meta->cache && (meta->cache->flags & SLAB_TYPESAFE_BY_RCU))) + call_rcu(&meta->rcu_head, rcu_guarded_free); + else + kfence_guarded_free(addr, meta, false); +} + +bool kfence_handle_page_fault(unsigned long addr, bool is_write, struct pt_regs *regs) +{ + const int page_index = (addr - (unsigned long)__kfence_pool) / PAGE_SIZE; + struct kfence_metadata *to_report = NULL; + enum kfence_error_type error_type; + unsigned long flags; + + if (!is_kfence_address((void *)addr)) + return false; + + if (!READ_ONCE(kfence_enabled)) /* If disabled at runtime ... */ + return kfence_unprotect(addr); /* ... unprotect and proceed. */ + + atomic_long_inc(&counters[KFENCE_COUNTER_BUGS]); + + if (page_index % 2) { + /* This is a redzone, report a buffer overflow. */ + struct kfence_metadata *meta; + int distance = 0; + + meta = addr_to_metadata(addr - PAGE_SIZE); + if (meta && READ_ONCE(meta->state) == KFENCE_OBJECT_ALLOCATED) { + to_report = meta; + /* Data race ok; distance calculation approximate. */ + distance = addr - data_race(meta->addr + meta->size); + } + + meta = addr_to_metadata(addr + PAGE_SIZE); + if (meta && READ_ONCE(meta->state) == KFENCE_OBJECT_ALLOCATED) { + /* Data race ok; distance calculation approximate. */ + if (!to_report || distance > data_race(meta->addr) - addr) + to_report = meta; + } + + if (!to_report) + goto out; + + raw_spin_lock_irqsave(&to_report->lock, flags); + to_report->unprotected_page = addr; + error_type = KFENCE_ERROR_OOB; + + /* + * If the object was freed before we took the look we can still + * report this as an OOB -- the report will simply show the + * stacktrace of the free as well. + */ + } else { + to_report = addr_to_metadata(addr); + if (!to_report) + goto out; + + raw_spin_lock_irqsave(&to_report->lock, flags); + error_type = KFENCE_ERROR_UAF; + /* + * We may race with __kfence_alloc(), and it is possible that a + * freed object may be reallocated. We simply report this as a + * use-after-free, with the stack trace showing the place where + * the object was re-allocated. + */ + } + +out: + if (to_report) { + kfence_report_error(addr, is_write, regs, to_report, error_type); + raw_spin_unlock_irqrestore(&to_report->lock, flags); + } else { + /* This may be a UAF or OOB access, but we can't be sure. */ + kfence_report_error(addr, is_write, regs, NULL, KFENCE_ERROR_INVALID); + } + + return kfence_unprotect(addr); /* Unprotect and let access proceed. */ +} diff --git a/mm/kfence/kfence.h b/mm/kfence/kfence.h new file mode 100644 index 0000000000..f46fbb0306 --- /dev/null +++ b/mm/kfence/kfence.h @@ -0,0 +1,145 @@ +/* SPDX-License-Identifier: GPL-2.0 */ +/* + * Kernel Electric-Fence (KFENCE). For more info please see + * Documentation/dev-tools/kfence.rst. + * + * Copyright (C) 2020, Google LLC. + */ + +#ifndef MM_KFENCE_KFENCE_H +#define MM_KFENCE_KFENCE_H + +#include <linux/mm.h> +#include <linux/slab.h> +#include <linux/spinlock.h> +#include <linux/types.h> + +#include "../slab.h" /* for struct kmem_cache */ + +/* + * Get the canary byte pattern for @addr. Use a pattern that varies based on the + * lower 3 bits of the address, to detect memory corruptions with higher + * probability, where similar constants are used. + */ +#define KFENCE_CANARY_PATTERN_U8(addr) ((u8)0xaa ^ (u8)((unsigned long)(addr) & 0x7)) + +/* + * Define a continuous 8-byte canary starting from a multiple of 8. The canary + * of each byte is only related to the lowest three bits of its address, so the + * canary of every 8 bytes is the same. 64-bit memory can be filled and checked + * at a time instead of byte by byte to improve performance. + */ +#define KFENCE_CANARY_PATTERN_U64 ((u64)0xaaaaaaaaaaaaaaaa ^ (u64)(le64_to_cpu(0x0706050403020100))) + +/* Maximum stack depth for reports. */ +#define KFENCE_STACK_DEPTH 64 + +/* KFENCE object states. */ +enum kfence_object_state { + KFENCE_OBJECT_UNUSED, /* Object is unused. */ + KFENCE_OBJECT_ALLOCATED, /* Object is currently allocated. */ + KFENCE_OBJECT_FREED, /* Object was allocated, and then freed. */ +}; + +/* Alloc/free tracking information. */ +struct kfence_track { + pid_t pid; + int cpu; + u64 ts_nsec; + int num_stack_entries; + unsigned long stack_entries[KFENCE_STACK_DEPTH]; +}; + +/* KFENCE metadata per guarded allocation. */ +struct kfence_metadata { + struct list_head list; /* Freelist node; access under kfence_freelist_lock. */ + struct rcu_head rcu_head; /* For delayed freeing. */ + + /* + * Lock protecting below data; to ensure consistency of the below data, + * since the following may execute concurrently: __kfence_alloc(), + * __kfence_free(), kfence_handle_page_fault(). However, note that we + * cannot grab the same metadata off the freelist twice, and multiple + * __kfence_alloc() cannot run concurrently on the same metadata. + */ + raw_spinlock_t lock; + + /* The current state of the object; see above. */ + enum kfence_object_state state; + + /* + * Allocated object address; cannot be calculated from size, because of + * alignment requirements. + * + * Invariant: ALIGN_DOWN(addr, PAGE_SIZE) is constant. + */ + unsigned long addr; + + /* + * The size of the original allocation. + */ + size_t size; + + /* + * The kmem_cache cache of the last allocation; NULL if never allocated + * or the cache has already been destroyed. + */ + struct kmem_cache *cache; + + /* + * In case of an invalid access, the page that was unprotected; we + * optimistically only store one address. + */ + unsigned long unprotected_page; + + /* Allocation and free stack information. */ + struct kfence_track alloc_track; + struct kfence_track free_track; + /* For updating alloc_covered on frees. */ + u32 alloc_stack_hash; +#ifdef CONFIG_MEMCG + struct obj_cgroup *objcg; +#endif +}; + +#define KFENCE_METADATA_SIZE PAGE_ALIGN(sizeof(struct kfence_metadata) * \ + CONFIG_KFENCE_NUM_OBJECTS) + +extern struct kfence_metadata *kfence_metadata; + +static inline struct kfence_metadata *addr_to_metadata(unsigned long addr) +{ + long index; + + /* The checks do not affect performance; only called from slow-paths. */ + + if (!is_kfence_address((void *)addr)) + return NULL; + + /* + * May be an invalid index if called with an address at the edge of + * __kfence_pool, in which case we would report an "invalid access" + * error. + */ + index = (addr - (unsigned long)__kfence_pool) / (PAGE_SIZE * 2) - 1; + if (index < 0 || index >= CONFIG_KFENCE_NUM_OBJECTS) + return NULL; + + return &kfence_metadata[index]; +} + +/* KFENCE error types for report generation. */ +enum kfence_error_type { + KFENCE_ERROR_OOB, /* Detected a out-of-bounds access. */ + KFENCE_ERROR_UAF, /* Detected a use-after-free access. */ + KFENCE_ERROR_CORRUPTION, /* Detected a memory corruption on free. */ + KFENCE_ERROR_INVALID, /* Invalid access of unknown type. */ + KFENCE_ERROR_INVALID_FREE, /* Invalid free. */ +}; + +void kfence_report_error(unsigned long address, bool is_write, struct pt_regs *regs, + const struct kfence_metadata *meta, enum kfence_error_type type); + +void kfence_print_object(struct seq_file *seq, const struct kfence_metadata *meta); + +#endif /* MM_KFENCE_KFENCE_H */ diff --git a/mm/kfence/kfence_test.c b/mm/kfence/kfence_test.c new file mode 100644 index 0000000000..95b2b84c29 --- /dev/null +++ b/mm/kfence/kfence_test.c @@ -0,0 +1,854 @@ +// SPDX-License-Identifier: GPL-2.0 +/* + * Test cases for KFENCE memory safety error detector. Since the interface with + * which KFENCE's reports are obtained is via the console, this is the output we + * should verify. For each test case checks the presence (or absence) of + * generated reports. Relies on 'console' tracepoint to capture reports as they + * appear in the kernel log. + * + * Copyright (C) 2020, Google LLC. + * Author: Alexander Potapenko <glider@google.com> + * Marco Elver <elver@google.com> + */ + +#include <kunit/test.h> +#include <linux/jiffies.h> +#include <linux/kernel.h> +#include <linux/kfence.h> +#include <linux/mm.h> +#include <linux/random.h> +#include <linux/slab.h> +#include <linux/spinlock.h> +#include <linux/string.h> +#include <linux/tracepoint.h> +#include <trace/events/printk.h> + +#include <asm/kfence.h> + +#include "kfence.h" + +/* May be overridden by <asm/kfence.h>. */ +#ifndef arch_kfence_test_address +#define arch_kfence_test_address(addr) (addr) +#endif + +#define KFENCE_TEST_REQUIRES(test, cond) do { \ + if (!(cond)) \ + kunit_skip((test), "Test requires: " #cond); \ +} while (0) + +/* Report as observed from console. */ +static struct { + spinlock_t lock; + int nlines; + char lines[2][256]; +} observed = { + .lock = __SPIN_LOCK_UNLOCKED(observed.lock), +}; + +/* Probe for console output: obtains observed lines of interest. */ +static void probe_console(void *ignore, const char *buf, size_t len) +{ + unsigned long flags; + int nlines; + + spin_lock_irqsave(&observed.lock, flags); + nlines = observed.nlines; + + if (strnstr(buf, "BUG: KFENCE: ", len) && strnstr(buf, "test_", len)) { + /* + * KFENCE report and related to the test. + * + * The provided @buf is not NUL-terminated; copy no more than + * @len bytes and let strscpy() add the missing NUL-terminator. + */ + strscpy(observed.lines[0], buf, min(len + 1, sizeof(observed.lines[0]))); + nlines = 1; + } else if (nlines == 1 && (strnstr(buf, "at 0x", len) || strnstr(buf, "of 0x", len))) { + strscpy(observed.lines[nlines++], buf, min(len + 1, sizeof(observed.lines[0]))); + } + + WRITE_ONCE(observed.nlines, nlines); /* Publish new nlines. */ + spin_unlock_irqrestore(&observed.lock, flags); +} + +/* Check if a report related to the test exists. */ +static bool report_available(void) +{ + return READ_ONCE(observed.nlines) == ARRAY_SIZE(observed.lines); +} + +/* Information we expect in a report. */ +struct expect_report { + enum kfence_error_type type; /* The type or error. */ + void *fn; /* Function pointer to expected function where access occurred. */ + char *addr; /* Address at which the bad access occurred. */ + bool is_write; /* Is access a write. */ +}; + +static const char *get_access_type(const struct expect_report *r) +{ + return r->is_write ? "write" : "read"; +} + +/* Check observed report matches information in @r. */ +static bool report_matches(const struct expect_report *r) +{ + unsigned long addr = (unsigned long)r->addr; + bool ret = false; + unsigned long flags; + typeof(observed.lines) expect; + const char *end; + char *cur; + + /* Doubled-checked locking. */ + if (!report_available()) + return false; + + /* Generate expected report contents. */ + + /* Title */ + cur = expect[0]; + end = &expect[0][sizeof(expect[0]) - 1]; + switch (r->type) { + case KFENCE_ERROR_OOB: + cur += scnprintf(cur, end - cur, "BUG: KFENCE: out-of-bounds %s", + get_access_type(r)); + break; + case KFENCE_ERROR_UAF: + cur += scnprintf(cur, end - cur, "BUG: KFENCE: use-after-free %s", + get_access_type(r)); + break; + case KFENCE_ERROR_CORRUPTION: + cur += scnprintf(cur, end - cur, "BUG: KFENCE: memory corruption"); + break; + case KFENCE_ERROR_INVALID: + cur += scnprintf(cur, end - cur, "BUG: KFENCE: invalid %s", + get_access_type(r)); + break; + case KFENCE_ERROR_INVALID_FREE: + cur += scnprintf(cur, end - cur, "BUG: KFENCE: invalid free"); + break; + } + + scnprintf(cur, end - cur, " in %pS", r->fn); + /* The exact offset won't match, remove it; also strip module name. */ + cur = strchr(expect[0], '+'); + if (cur) + *cur = '\0'; + + /* Access information */ + cur = expect[1]; + end = &expect[1][sizeof(expect[1]) - 1]; + + switch (r->type) { + case KFENCE_ERROR_OOB: + cur += scnprintf(cur, end - cur, "Out-of-bounds %s at", get_access_type(r)); + addr = arch_kfence_test_address(addr); + break; + case KFENCE_ERROR_UAF: + cur += scnprintf(cur, end - cur, "Use-after-free %s at", get_access_type(r)); + addr = arch_kfence_test_address(addr); + break; + case KFENCE_ERROR_CORRUPTION: + cur += scnprintf(cur, end - cur, "Corrupted memory at"); + break; + case KFENCE_ERROR_INVALID: + cur += scnprintf(cur, end - cur, "Invalid %s at", get_access_type(r)); + addr = arch_kfence_test_address(addr); + break; + case KFENCE_ERROR_INVALID_FREE: + cur += scnprintf(cur, end - cur, "Invalid free of"); + break; + } + + cur += scnprintf(cur, end - cur, " 0x%p", (void *)addr); + + spin_lock_irqsave(&observed.lock, flags); + if (!report_available()) + goto out; /* A new report is being captured. */ + + /* Finally match expected output to what we actually observed. */ + ret = strstr(observed.lines[0], expect[0]) && strstr(observed.lines[1], expect[1]); +out: + spin_unlock_irqrestore(&observed.lock, flags); + return ret; +} + +/* ===== Test cases ===== */ + +#define TEST_PRIV_WANT_MEMCACHE ((void *)1) + +/* Cache used by tests; if NULL, allocate from kmalloc instead. */ +static struct kmem_cache *test_cache; + +static size_t setup_test_cache(struct kunit *test, size_t size, slab_flags_t flags, + void (*ctor)(void *)) +{ + if (test->priv != TEST_PRIV_WANT_MEMCACHE) + return size; + + kunit_info(test, "%s: size=%zu, ctor=%ps\n", __func__, size, ctor); + + /* + * Use SLAB_NO_MERGE to prevent merging with existing caches. + * Use SLAB_ACCOUNT to allocate via memcg, if enabled. + */ + flags |= SLAB_NO_MERGE | SLAB_ACCOUNT; + test_cache = kmem_cache_create("test", size, 1, flags, ctor); + KUNIT_ASSERT_TRUE_MSG(test, test_cache, "could not create cache"); + + return size; +} + +static void test_cache_destroy(void) +{ + if (!test_cache) + return; + + kmem_cache_destroy(test_cache); + test_cache = NULL; +} + +static inline size_t kmalloc_cache_alignment(size_t size) +{ + /* just to get ->align so no need to pass in the real caller */ + enum kmalloc_cache_type type = kmalloc_type(GFP_KERNEL, 0); + return kmalloc_caches[type][__kmalloc_index(size, false)]->align; +} + +/* Must always inline to match stack trace against caller. */ +static __always_inline void test_free(void *ptr) +{ + if (test_cache) + kmem_cache_free(test_cache, ptr); + else + kfree(ptr); +} + +/* + * If this should be a KFENCE allocation, and on which side the allocation and + * the closest guard page should be. + */ +enum allocation_policy { + ALLOCATE_ANY, /* KFENCE, any side. */ + ALLOCATE_LEFT, /* KFENCE, left side of page. */ + ALLOCATE_RIGHT, /* KFENCE, right side of page. */ + ALLOCATE_NONE, /* No KFENCE allocation. */ +}; + +/* + * Try to get a guarded allocation from KFENCE. Uses either kmalloc() or the + * current test_cache if set up. + */ +static void *test_alloc(struct kunit *test, size_t size, gfp_t gfp, enum allocation_policy policy) +{ + void *alloc; + unsigned long timeout, resched_after; + const char *policy_name; + + switch (policy) { + case ALLOCATE_ANY: + policy_name = "any"; + break; + case ALLOCATE_LEFT: + policy_name = "left"; + break; + case ALLOCATE_RIGHT: + policy_name = "right"; + break; + case ALLOCATE_NONE: + policy_name = "none"; + break; + } + + kunit_info(test, "%s: size=%zu, gfp=%x, policy=%s, cache=%i\n", __func__, size, gfp, + policy_name, !!test_cache); + + /* + * 100x the sample interval should be more than enough to ensure we get + * a KFENCE allocation eventually. + */ + timeout = jiffies + msecs_to_jiffies(100 * kfence_sample_interval); + /* + * Especially for non-preemption kernels, ensure the allocation-gate + * timer can catch up: after @resched_after, every failed allocation + * attempt yields, to ensure the allocation-gate timer is scheduled. + */ + resched_after = jiffies + msecs_to_jiffies(kfence_sample_interval); + do { + if (test_cache) + alloc = kmem_cache_alloc(test_cache, gfp); + else + alloc = kmalloc(size, gfp); + + if (is_kfence_address(alloc)) { + struct slab *slab = virt_to_slab(alloc); + enum kmalloc_cache_type type = kmalloc_type(GFP_KERNEL, _RET_IP_); + struct kmem_cache *s = test_cache ?: + kmalloc_caches[type][__kmalloc_index(size, false)]; + + /* + * Verify that various helpers return the right values + * even for KFENCE objects; these are required so that + * memcg accounting works correctly. + */ + KUNIT_EXPECT_EQ(test, obj_to_index(s, slab, alloc), 0U); + KUNIT_EXPECT_EQ(test, objs_per_slab(s, slab), 1); + + if (policy == ALLOCATE_ANY) + return alloc; + if (policy == ALLOCATE_LEFT && PAGE_ALIGNED(alloc)) + return alloc; + if (policy == ALLOCATE_RIGHT && !PAGE_ALIGNED(alloc)) + return alloc; + } else if (policy == ALLOCATE_NONE) + return alloc; + + test_free(alloc); + + if (time_after(jiffies, resched_after)) + cond_resched(); + } while (time_before(jiffies, timeout)); + + KUNIT_ASSERT_TRUE_MSG(test, false, "failed to allocate from KFENCE"); + return NULL; /* Unreachable. */ +} + +static void test_out_of_bounds_read(struct kunit *test) +{ + size_t size = 32; + struct expect_report expect = { + .type = KFENCE_ERROR_OOB, + .fn = test_out_of_bounds_read, + .is_write = false, + }; + char *buf; + + setup_test_cache(test, size, 0, NULL); + + /* + * If we don't have our own cache, adjust based on alignment, so that we + * actually access guard pages on either side. + */ + if (!test_cache) + size = kmalloc_cache_alignment(size); + + /* Test both sides. */ + + buf = test_alloc(test, size, GFP_KERNEL, ALLOCATE_LEFT); + expect.addr = buf - 1; + READ_ONCE(*expect.addr); + KUNIT_EXPECT_TRUE(test, report_matches(&expect)); + test_free(buf); + + buf = test_alloc(test, size, GFP_KERNEL, ALLOCATE_RIGHT); + expect.addr = buf + size; + READ_ONCE(*expect.addr); + KUNIT_EXPECT_TRUE(test, report_matches(&expect)); + test_free(buf); +} + +static void test_out_of_bounds_write(struct kunit *test) +{ + size_t size = 32; + struct expect_report expect = { + .type = KFENCE_ERROR_OOB, + .fn = test_out_of_bounds_write, + .is_write = true, + }; + char *buf; + + setup_test_cache(test, size, 0, NULL); + buf = test_alloc(test, size, GFP_KERNEL, ALLOCATE_LEFT); + expect.addr = buf - 1; + WRITE_ONCE(*expect.addr, 42); + KUNIT_EXPECT_TRUE(test, report_matches(&expect)); + test_free(buf); +} + +static void test_use_after_free_read(struct kunit *test) +{ + const size_t size = 32; + struct expect_report expect = { + .type = KFENCE_ERROR_UAF, + .fn = test_use_after_free_read, + .is_write = false, + }; + + setup_test_cache(test, size, 0, NULL); + expect.addr = test_alloc(test, size, GFP_KERNEL, ALLOCATE_ANY); + test_free(expect.addr); + READ_ONCE(*expect.addr); + KUNIT_EXPECT_TRUE(test, report_matches(&expect)); +} + +static void test_double_free(struct kunit *test) +{ + const size_t size = 32; + struct expect_report expect = { + .type = KFENCE_ERROR_INVALID_FREE, + .fn = test_double_free, + }; + + setup_test_cache(test, size, 0, NULL); + expect.addr = test_alloc(test, size, GFP_KERNEL, ALLOCATE_ANY); + test_free(expect.addr); + test_free(expect.addr); /* Double-free. */ + KUNIT_EXPECT_TRUE(test, report_matches(&expect)); +} + +static void test_invalid_addr_free(struct kunit *test) +{ + const size_t size = 32; + struct expect_report expect = { + .type = KFENCE_ERROR_INVALID_FREE, + .fn = test_invalid_addr_free, + }; + char *buf; + + setup_test_cache(test, size, 0, NULL); + buf = test_alloc(test, size, GFP_KERNEL, ALLOCATE_ANY); + expect.addr = buf + 1; /* Free on invalid address. */ + test_free(expect.addr); /* Invalid address free. */ + test_free(buf); /* No error. */ + KUNIT_EXPECT_TRUE(test, report_matches(&expect)); +} + +static void test_corruption(struct kunit *test) +{ + size_t size = 32; + struct expect_report expect = { + .type = KFENCE_ERROR_CORRUPTION, + .fn = test_corruption, + }; + char *buf; + + setup_test_cache(test, size, 0, NULL); + + /* Test both sides. */ + + buf = test_alloc(test, size, GFP_KERNEL, ALLOCATE_LEFT); + expect.addr = buf + size; + WRITE_ONCE(*expect.addr, 42); + test_free(buf); + KUNIT_EXPECT_TRUE(test, report_matches(&expect)); + + buf = test_alloc(test, size, GFP_KERNEL, ALLOCATE_RIGHT); + expect.addr = buf - 1; + WRITE_ONCE(*expect.addr, 42); + test_free(buf); + KUNIT_EXPECT_TRUE(test, report_matches(&expect)); +} + +/* + * KFENCE is unable to detect an OOB if the allocation's alignment requirements + * leave a gap between the object and the guard page. Specifically, an + * allocation of e.g. 73 bytes is aligned on 8 and 128 bytes for SLUB or SLAB + * respectively. Therefore it is impossible for the allocated object to + * contiguously line up with the right guard page. + * + * However, we test that an access to memory beyond the gap results in KFENCE + * detecting an OOB access. + */ +static void test_kmalloc_aligned_oob_read(struct kunit *test) +{ + const size_t size = 73; + const size_t align = kmalloc_cache_alignment(size); + struct expect_report expect = { + .type = KFENCE_ERROR_OOB, + .fn = test_kmalloc_aligned_oob_read, + .is_write = false, + }; + char *buf; + + buf = test_alloc(test, size, GFP_KERNEL, ALLOCATE_RIGHT); + + /* + * The object is offset to the right, so there won't be an OOB to the + * left of it. + */ + READ_ONCE(*(buf - 1)); + KUNIT_EXPECT_FALSE(test, report_available()); + + /* + * @buf must be aligned on @align, therefore buf + size belongs to the + * same page -> no OOB. + */ + READ_ONCE(*(buf + size)); + KUNIT_EXPECT_FALSE(test, report_available()); + + /* Overflowing by @align bytes will result in an OOB. */ + expect.addr = buf + size + align; + READ_ONCE(*expect.addr); + KUNIT_EXPECT_TRUE(test, report_matches(&expect)); + + test_free(buf); +} + +static void test_kmalloc_aligned_oob_write(struct kunit *test) +{ + const size_t size = 73; + struct expect_report expect = { + .type = KFENCE_ERROR_CORRUPTION, + .fn = test_kmalloc_aligned_oob_write, + }; + char *buf; + + buf = test_alloc(test, size, GFP_KERNEL, ALLOCATE_RIGHT); + /* + * The object is offset to the right, so we won't get a page + * fault immediately after it. + */ + expect.addr = buf + size; + WRITE_ONCE(*expect.addr, READ_ONCE(*expect.addr) + 1); + KUNIT_EXPECT_FALSE(test, report_available()); + test_free(buf); + KUNIT_EXPECT_TRUE(test, report_matches(&expect)); +} + +/* Test cache shrinking and destroying with KFENCE. */ +static void test_shrink_memcache(struct kunit *test) +{ + const size_t size = 32; + void *buf; + + setup_test_cache(test, size, 0, NULL); + KUNIT_EXPECT_TRUE(test, test_cache); + buf = test_alloc(test, size, GFP_KERNEL, ALLOCATE_ANY); + kmem_cache_shrink(test_cache); + test_free(buf); + + KUNIT_EXPECT_FALSE(test, report_available()); +} + +static void ctor_set_x(void *obj) +{ + /* Every object has at least 8 bytes. */ + memset(obj, 'x', 8); +} + +/* Ensure that SL*B does not modify KFENCE objects on bulk free. */ +static void test_free_bulk(struct kunit *test) +{ + int iter; + + for (iter = 0; iter < 5; iter++) { + const size_t size = setup_test_cache(test, get_random_u32_inclusive(8, 307), + 0, (iter & 1) ? ctor_set_x : NULL); + void *objects[] = { + test_alloc(test, size, GFP_KERNEL, ALLOCATE_RIGHT), + test_alloc(test, size, GFP_KERNEL, ALLOCATE_NONE), + test_alloc(test, size, GFP_KERNEL, ALLOCATE_LEFT), + test_alloc(test, size, GFP_KERNEL, ALLOCATE_NONE), + test_alloc(test, size, GFP_KERNEL, ALLOCATE_NONE), + }; + + kmem_cache_free_bulk(test_cache, ARRAY_SIZE(objects), objects); + KUNIT_ASSERT_FALSE(test, report_available()); + test_cache_destroy(); + } +} + +/* Test init-on-free works. */ +static void test_init_on_free(struct kunit *test) +{ + const size_t size = 32; + struct expect_report expect = { + .type = KFENCE_ERROR_UAF, + .fn = test_init_on_free, + .is_write = false, + }; + int i; + + KFENCE_TEST_REQUIRES(test, IS_ENABLED(CONFIG_INIT_ON_FREE_DEFAULT_ON)); + /* Assume it hasn't been disabled on command line. */ + + setup_test_cache(test, size, 0, NULL); + expect.addr = test_alloc(test, size, GFP_KERNEL, ALLOCATE_ANY); + for (i = 0; i < size; i++) + expect.addr[i] = i + 1; + test_free(expect.addr); + + for (i = 0; i < size; i++) { + /* + * This may fail if the page was recycled by KFENCE and then + * written to again -- this however, is near impossible with a + * default config. + */ + KUNIT_EXPECT_EQ(test, expect.addr[i], (char)0); + + if (!i) /* Only check first access to not fail test if page is ever re-protected. */ + KUNIT_EXPECT_TRUE(test, report_matches(&expect)); + } +} + +/* Ensure that constructors work properly. */ +static void test_memcache_ctor(struct kunit *test) +{ + const size_t size = 32; + char *buf; + int i; + + setup_test_cache(test, size, 0, ctor_set_x); + buf = test_alloc(test, size, GFP_KERNEL, ALLOCATE_ANY); + + for (i = 0; i < 8; i++) + KUNIT_EXPECT_EQ(test, buf[i], (char)'x'); + + test_free(buf); + + KUNIT_EXPECT_FALSE(test, report_available()); +} + +/* Test that memory is zeroed if requested. */ +static void test_gfpzero(struct kunit *test) +{ + const size_t size = PAGE_SIZE; /* PAGE_SIZE so we can use ALLOCATE_ANY. */ + char *buf1, *buf2; + int i; + + /* Skip if we think it'd take too long. */ + KFENCE_TEST_REQUIRES(test, kfence_sample_interval <= 100); + + setup_test_cache(test, size, 0, NULL); + buf1 = test_alloc(test, size, GFP_KERNEL, ALLOCATE_ANY); + for (i = 0; i < size; i++) + buf1[i] = i + 1; + test_free(buf1); + + /* Try to get same address again -- this can take a while. */ + for (i = 0;; i++) { + buf2 = test_alloc(test, size, GFP_KERNEL | __GFP_ZERO, ALLOCATE_ANY); + if (buf1 == buf2) + break; + test_free(buf2); + + if (kthread_should_stop() || (i == CONFIG_KFENCE_NUM_OBJECTS)) { + kunit_warn(test, "giving up ... cannot get same object back\n"); + return; + } + cond_resched(); + } + + for (i = 0; i < size; i++) + KUNIT_EXPECT_EQ(test, buf2[i], (char)0); + + test_free(buf2); + + KUNIT_EXPECT_FALSE(test, report_available()); +} + +static void test_invalid_access(struct kunit *test) +{ + const struct expect_report expect = { + .type = KFENCE_ERROR_INVALID, + .fn = test_invalid_access, + .addr = &__kfence_pool[10], + .is_write = false, + }; + + READ_ONCE(__kfence_pool[10]); + KUNIT_EXPECT_TRUE(test, report_matches(&expect)); +} + +/* Test SLAB_TYPESAFE_BY_RCU works. */ +static void test_memcache_typesafe_by_rcu(struct kunit *test) +{ + const size_t size = 32; + struct expect_report expect = { + .type = KFENCE_ERROR_UAF, + .fn = test_memcache_typesafe_by_rcu, + .is_write = false, + }; + + setup_test_cache(test, size, SLAB_TYPESAFE_BY_RCU, NULL); + KUNIT_EXPECT_TRUE(test, test_cache); /* Want memcache. */ + + expect.addr = test_alloc(test, size, GFP_KERNEL, ALLOCATE_ANY); + *expect.addr = 42; + + rcu_read_lock(); + test_free(expect.addr); + KUNIT_EXPECT_EQ(test, *expect.addr, (char)42); + /* + * Up to this point, memory should not have been freed yet, and + * therefore there should be no KFENCE report from the above access. + */ + rcu_read_unlock(); + + /* Above access to @expect.addr should not have generated a report! */ + KUNIT_EXPECT_FALSE(test, report_available()); + + /* Only after rcu_barrier() is the memory guaranteed to be freed. */ + rcu_barrier(); + + /* Expect use-after-free. */ + KUNIT_EXPECT_EQ(test, *expect.addr, (char)42); + KUNIT_EXPECT_TRUE(test, report_matches(&expect)); +} + +/* Test krealloc(). */ +static void test_krealloc(struct kunit *test) +{ + const size_t size = 32; + const struct expect_report expect = { + .type = KFENCE_ERROR_UAF, + .fn = test_krealloc, + .addr = test_alloc(test, size, GFP_KERNEL, ALLOCATE_ANY), + .is_write = false, + }; + char *buf = expect.addr; + int i; + + KUNIT_EXPECT_FALSE(test, test_cache); + KUNIT_EXPECT_EQ(test, ksize(buf), size); /* Precise size match after KFENCE alloc. */ + for (i = 0; i < size; i++) + buf[i] = i + 1; + + /* Check that we successfully change the size. */ + buf = krealloc(buf, size * 3, GFP_KERNEL); /* Grow. */ + /* Note: Might no longer be a KFENCE alloc. */ + KUNIT_EXPECT_GE(test, ksize(buf), size * 3); + for (i = 0; i < size; i++) + KUNIT_EXPECT_EQ(test, buf[i], (char)(i + 1)); + for (; i < size * 3; i++) /* Fill to extra bytes. */ + buf[i] = i + 1; + + buf = krealloc(buf, size * 2, GFP_KERNEL); /* Shrink. */ + KUNIT_EXPECT_GE(test, ksize(buf), size * 2); + for (i = 0; i < size * 2; i++) + KUNIT_EXPECT_EQ(test, buf[i], (char)(i + 1)); + + buf = krealloc(buf, 0, GFP_KERNEL); /* Free. */ + KUNIT_EXPECT_EQ(test, (unsigned long)buf, (unsigned long)ZERO_SIZE_PTR); + KUNIT_ASSERT_FALSE(test, report_available()); /* No reports yet! */ + + READ_ONCE(*expect.addr); /* Ensure krealloc() actually freed earlier KFENCE object. */ + KUNIT_ASSERT_TRUE(test, report_matches(&expect)); +} + +/* Test that some objects from a bulk allocation belong to KFENCE pool. */ +static void test_memcache_alloc_bulk(struct kunit *test) +{ + const size_t size = 32; + bool pass = false; + unsigned long timeout; + + setup_test_cache(test, size, 0, NULL); + KUNIT_EXPECT_TRUE(test, test_cache); /* Want memcache. */ + /* + * 100x the sample interval should be more than enough to ensure we get + * a KFENCE allocation eventually. + */ + timeout = jiffies + msecs_to_jiffies(100 * kfence_sample_interval); + do { + void *objects[100]; + int i, num = kmem_cache_alloc_bulk(test_cache, GFP_ATOMIC, ARRAY_SIZE(objects), + objects); + if (!num) + continue; + for (i = 0; i < ARRAY_SIZE(objects); i++) { + if (is_kfence_address(objects[i])) { + pass = true; + break; + } + } + kmem_cache_free_bulk(test_cache, num, objects); + /* + * kmem_cache_alloc_bulk() disables interrupts, and calling it + * in a tight loop may not give KFENCE a chance to switch the + * static branch. Call cond_resched() to let KFENCE chime in. + */ + cond_resched(); + } while (!pass && time_before(jiffies, timeout)); + + KUNIT_EXPECT_TRUE(test, pass); + KUNIT_EXPECT_FALSE(test, report_available()); +} + +/* + * KUnit does not provide a way to provide arguments to tests, and we encode + * additional info in the name. Set up 2 tests per test case, one using the + * default allocator, and another using a custom memcache (suffix '-memcache'). + */ +#define KFENCE_KUNIT_CASE(test_name) \ + { .run_case = test_name, .name = #test_name }, \ + { .run_case = test_name, .name = #test_name "-memcache" } + +static struct kunit_case kfence_test_cases[] = { + KFENCE_KUNIT_CASE(test_out_of_bounds_read), + KFENCE_KUNIT_CASE(test_out_of_bounds_write), + KFENCE_KUNIT_CASE(test_use_after_free_read), + KFENCE_KUNIT_CASE(test_double_free), + KFENCE_KUNIT_CASE(test_invalid_addr_free), + KFENCE_KUNIT_CASE(test_corruption), + KFENCE_KUNIT_CASE(test_free_bulk), + KFENCE_KUNIT_CASE(test_init_on_free), + KUNIT_CASE(test_kmalloc_aligned_oob_read), + KUNIT_CASE(test_kmalloc_aligned_oob_write), + KUNIT_CASE(test_shrink_memcache), + KUNIT_CASE(test_memcache_ctor), + KUNIT_CASE(test_invalid_access), + KUNIT_CASE(test_gfpzero), + KUNIT_CASE(test_memcache_typesafe_by_rcu), + KUNIT_CASE(test_krealloc), + KUNIT_CASE(test_memcache_alloc_bulk), + {}, +}; + +/* ===== End test cases ===== */ + +static int test_init(struct kunit *test) +{ + unsigned long flags; + int i; + + if (!__kfence_pool) + return -EINVAL; + + spin_lock_irqsave(&observed.lock, flags); + for (i = 0; i < ARRAY_SIZE(observed.lines); i++) + observed.lines[i][0] = '\0'; + observed.nlines = 0; + spin_unlock_irqrestore(&observed.lock, flags); + + /* Any test with 'memcache' in its name will want a memcache. */ + if (strstr(test->name, "memcache")) + test->priv = TEST_PRIV_WANT_MEMCACHE; + else + test->priv = NULL; + + return 0; +} + +static void test_exit(struct kunit *test) +{ + test_cache_destroy(); +} + +static int kfence_suite_init(struct kunit_suite *suite) +{ + register_trace_console(probe_console, NULL); + return 0; +} + +static void kfence_suite_exit(struct kunit_suite *suite) +{ + unregister_trace_console(probe_console, NULL); + tracepoint_synchronize_unregister(); +} + +static struct kunit_suite kfence_test_suite = { + .name = "kfence", + .test_cases = kfence_test_cases, + .init = test_init, + .exit = test_exit, + .suite_init = kfence_suite_init, + .suite_exit = kfence_suite_exit, +}; + +kunit_test_suites(&kfence_test_suite); + +MODULE_LICENSE("GPL v2"); +MODULE_AUTHOR("Alexander Potapenko <glider@google.com>, Marco Elver <elver@google.com>"); diff --git a/mm/kfence/report.c b/mm/kfence/report.c new file mode 100644 index 0000000000..c509aed326 --- /dev/null +++ b/mm/kfence/report.c @@ -0,0 +1,326 @@ +// SPDX-License-Identifier: GPL-2.0 +/* + * KFENCE reporting. + * + * Copyright (C) 2020, Google LLC. + */ + +#include <linux/stdarg.h> + +#include <linux/kernel.h> +#include <linux/lockdep.h> +#include <linux/math.h> +#include <linux/printk.h> +#include <linux/sched/debug.h> +#include <linux/seq_file.h> +#include <linux/sprintf.h> +#include <linux/stacktrace.h> +#include <linux/string.h> +#include <trace/events/error_report.h> + +#include <asm/kfence.h> + +#include "kfence.h" + +/* May be overridden by <asm/kfence.h>. */ +#ifndef ARCH_FUNC_PREFIX +#define ARCH_FUNC_PREFIX "" +#endif + +/* Helper function to either print to a seq_file or to console. */ +__printf(2, 3) +static void seq_con_printf(struct seq_file *seq, const char *fmt, ...) +{ + va_list args; + + va_start(args, fmt); + if (seq) + seq_vprintf(seq, fmt, args); + else + vprintk(fmt, args); + va_end(args); +} + +/* + * Get the number of stack entries to skip to get out of MM internals. @type is + * optional, and if set to NULL, assumes an allocation or free stack. + */ +static int get_stack_skipnr(const unsigned long stack_entries[], int num_entries, + const enum kfence_error_type *type) +{ + char buf[64]; + int skipnr, fallback = 0; + + if (type) { + /* Depending on error type, find different stack entries. */ + switch (*type) { + case KFENCE_ERROR_UAF: + case KFENCE_ERROR_OOB: + case KFENCE_ERROR_INVALID: + /* + * kfence_handle_page_fault() may be called with pt_regs + * set to NULL; in that case we'll simply show the full + * stack trace. + */ + return 0; + case KFENCE_ERROR_CORRUPTION: + case KFENCE_ERROR_INVALID_FREE: + break; + } + } + + for (skipnr = 0; skipnr < num_entries; skipnr++) { + int len = scnprintf(buf, sizeof(buf), "%ps", (void *)stack_entries[skipnr]); + + if (str_has_prefix(buf, ARCH_FUNC_PREFIX "kfence_") || + str_has_prefix(buf, ARCH_FUNC_PREFIX "__kfence_") || + str_has_prefix(buf, ARCH_FUNC_PREFIX "__kmem_cache_free") || + !strncmp(buf, ARCH_FUNC_PREFIX "__slab_free", len)) { + /* + * In case of tail calls from any of the below to any of + * the above, optimized by the compiler such that the + * stack trace would omit the initial entry point below. + */ + fallback = skipnr + 1; + } + + /* + * The below list should only include the initial entry points + * into the slab allocators. Includes the *_bulk() variants by + * checking prefixes. + */ + if (str_has_prefix(buf, ARCH_FUNC_PREFIX "kfree") || + str_has_prefix(buf, ARCH_FUNC_PREFIX "kmem_cache_free") || + str_has_prefix(buf, ARCH_FUNC_PREFIX "__kmalloc") || + str_has_prefix(buf, ARCH_FUNC_PREFIX "kmem_cache_alloc")) + goto found; + } + if (fallback < num_entries) + return fallback; +found: + skipnr++; + return skipnr < num_entries ? skipnr : 0; +} + +static void kfence_print_stack(struct seq_file *seq, const struct kfence_metadata *meta, + bool show_alloc) +{ + const struct kfence_track *track = show_alloc ? &meta->alloc_track : &meta->free_track; + u64 ts_sec = track->ts_nsec; + unsigned long rem_nsec = do_div(ts_sec, NSEC_PER_SEC); + + /* Timestamp matches printk timestamp format. */ + seq_con_printf(seq, "%s by task %d on cpu %d at %lu.%06lus:\n", + show_alloc ? "allocated" : "freed", track->pid, + track->cpu, (unsigned long)ts_sec, rem_nsec / 1000); + + if (track->num_stack_entries) { + /* Skip allocation/free internals stack. */ + int i = get_stack_skipnr(track->stack_entries, track->num_stack_entries, NULL); + + /* stack_trace_seq_print() does not exist; open code our own. */ + for (; i < track->num_stack_entries; i++) + seq_con_printf(seq, " %pS\n", (void *)track->stack_entries[i]); + } else { + seq_con_printf(seq, " no %s stack\n", show_alloc ? "allocation" : "deallocation"); + } +} + +void kfence_print_object(struct seq_file *seq, const struct kfence_metadata *meta) +{ + const int size = abs(meta->size); + const unsigned long start = meta->addr; + const struct kmem_cache *const cache = meta->cache; + + lockdep_assert_held(&meta->lock); + + if (meta->state == KFENCE_OBJECT_UNUSED) { + seq_con_printf(seq, "kfence-#%td unused\n", meta - kfence_metadata); + return; + } + + seq_con_printf(seq, "kfence-#%td: 0x%p-0x%p, size=%d, cache=%s\n\n", + meta - kfence_metadata, (void *)start, (void *)(start + size - 1), + size, (cache && cache->name) ? cache->name : "<destroyed>"); + + kfence_print_stack(seq, meta, true); + + if (meta->state == KFENCE_OBJECT_FREED) { + seq_con_printf(seq, "\n"); + kfence_print_stack(seq, meta, false); + } +} + +/* + * Show bytes at @addr that are different from the expected canary values, up to + * @max_bytes. + */ +static void print_diff_canary(unsigned long address, size_t bytes_to_show, + const struct kfence_metadata *meta) +{ + const unsigned long show_until_addr = address + bytes_to_show; + const u8 *cur, *end; + + /* Do not show contents of object nor read into following guard page. */ + end = (const u8 *)(address < meta->addr ? min(show_until_addr, meta->addr) + : min(show_until_addr, PAGE_ALIGN(address))); + + pr_cont("["); + for (cur = (const u8 *)address; cur < end; cur++) { + if (*cur == KFENCE_CANARY_PATTERN_U8(cur)) + pr_cont(" ."); + else if (no_hash_pointers) + pr_cont(" 0x%02x", *cur); + else /* Do not leak kernel memory in non-debug builds. */ + pr_cont(" !"); + } + pr_cont(" ]"); +} + +static const char *get_access_type(bool is_write) +{ + return is_write ? "write" : "read"; +} + +void kfence_report_error(unsigned long address, bool is_write, struct pt_regs *regs, + const struct kfence_metadata *meta, enum kfence_error_type type) +{ + unsigned long stack_entries[KFENCE_STACK_DEPTH] = { 0 }; + const ptrdiff_t object_index = meta ? meta - kfence_metadata : -1; + int num_stack_entries; + int skipnr = 0; + + if (regs) { + num_stack_entries = stack_trace_save_regs(regs, stack_entries, KFENCE_STACK_DEPTH, 0); + } else { + num_stack_entries = stack_trace_save(stack_entries, KFENCE_STACK_DEPTH, 1); + skipnr = get_stack_skipnr(stack_entries, num_stack_entries, &type); + } + + /* Require non-NULL meta, except if KFENCE_ERROR_INVALID. */ + if (WARN_ON(type != KFENCE_ERROR_INVALID && !meta)) + return; + + if (meta) + lockdep_assert_held(&meta->lock); + /* + * Because we may generate reports in printk-unfriendly parts of the + * kernel, such as scheduler code, the use of printk() could deadlock. + * Until such time that all printing code here is safe in all parts of + * the kernel, accept the risk, and just get our message out (given the + * system might already behave unpredictably due to the memory error). + * As such, also disable lockdep to hide warnings, and avoid disabling + * lockdep for the rest of the kernel. + */ + lockdep_off(); + + pr_err("==================================================================\n"); + /* Print report header. */ + switch (type) { + case KFENCE_ERROR_OOB: { + const bool left_of_object = address < meta->addr; + + pr_err("BUG: KFENCE: out-of-bounds %s in %pS\n\n", get_access_type(is_write), + (void *)stack_entries[skipnr]); + pr_err("Out-of-bounds %s at 0x%p (%luB %s of kfence-#%td):\n", + get_access_type(is_write), (void *)address, + left_of_object ? meta->addr - address : address - meta->addr, + left_of_object ? "left" : "right", object_index); + break; + } + case KFENCE_ERROR_UAF: + pr_err("BUG: KFENCE: use-after-free %s in %pS\n\n", get_access_type(is_write), + (void *)stack_entries[skipnr]); + pr_err("Use-after-free %s at 0x%p (in kfence-#%td):\n", + get_access_type(is_write), (void *)address, object_index); + break; + case KFENCE_ERROR_CORRUPTION: + pr_err("BUG: KFENCE: memory corruption in %pS\n\n", (void *)stack_entries[skipnr]); + pr_err("Corrupted memory at 0x%p ", (void *)address); + print_diff_canary(address, 16, meta); + pr_cont(" (in kfence-#%td):\n", object_index); + break; + case KFENCE_ERROR_INVALID: + pr_err("BUG: KFENCE: invalid %s in %pS\n\n", get_access_type(is_write), + (void *)stack_entries[skipnr]); + pr_err("Invalid %s at 0x%p:\n", get_access_type(is_write), + (void *)address); + break; + case KFENCE_ERROR_INVALID_FREE: + pr_err("BUG: KFENCE: invalid free in %pS\n\n", (void *)stack_entries[skipnr]); + pr_err("Invalid free of 0x%p (in kfence-#%td):\n", (void *)address, + object_index); + break; + } + + /* Print stack trace and object info. */ + stack_trace_print(stack_entries + skipnr, num_stack_entries - skipnr, 0); + + if (meta) { + pr_err("\n"); + kfence_print_object(NULL, meta); + } + + /* Print report footer. */ + pr_err("\n"); + if (no_hash_pointers && regs) + show_regs(regs); + else + dump_stack_print_info(KERN_ERR); + trace_error_report_end(ERROR_DETECTOR_KFENCE, address); + pr_err("==================================================================\n"); + + lockdep_on(); + + check_panic_on_warn("KFENCE"); + + /* We encountered a memory safety error, taint the kernel! */ + add_taint(TAINT_BAD_PAGE, LOCKDEP_STILL_OK); +} + +#ifdef CONFIG_PRINTK +static void kfence_to_kp_stack(const struct kfence_track *track, void **kp_stack) +{ + int i, j; + + i = get_stack_skipnr(track->stack_entries, track->num_stack_entries, NULL); + for (j = 0; i < track->num_stack_entries && j < KS_ADDRS_COUNT; ++i, ++j) + kp_stack[j] = (void *)track->stack_entries[i]; + if (j < KS_ADDRS_COUNT) + kp_stack[j] = NULL; +} + +bool __kfence_obj_info(struct kmem_obj_info *kpp, void *object, struct slab *slab) +{ + struct kfence_metadata *meta = addr_to_metadata((unsigned long)object); + unsigned long flags; + + if (!meta) + return false; + + /* + * If state is UNUSED at least show the pointer requested; the rest + * would be garbage data. + */ + kpp->kp_ptr = object; + + /* Requesting info an a never-used object is almost certainly a bug. */ + if (WARN_ON(meta->state == KFENCE_OBJECT_UNUSED)) + return true; + + raw_spin_lock_irqsave(&meta->lock, flags); + + kpp->kp_slab = slab; + kpp->kp_slab_cache = meta->cache; + kpp->kp_objp = (void *)meta->addr; + kfence_to_kp_stack(&meta->alloc_track, kpp->kp_stack); + if (meta->state == KFENCE_OBJECT_FREED) + kfence_to_kp_stack(&meta->free_track, kpp->kp_free_stack); + /* get_stack_skipnr() ensures the first entry is outside allocator. */ + kpp->kp_ret = kpp->kp_stack[0]; + + raw_spin_unlock_irqrestore(&meta->lock, flags); + + return true; +} +#endif |