diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-11 08:27:49 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-11 08:27:49 +0000 |
commit | ace9429bb58fd418f0c81d4c2835699bddf6bde6 (patch) | |
tree | b2d64bc10158fdd5497876388cd68142ca374ed3 /mm/memblock.c | |
parent | Initial commit. (diff) | |
download | linux-ace9429bb58fd418f0c81d4c2835699bddf6bde6.tar.xz linux-ace9429bb58fd418f0c81d4c2835699bddf6bde6.zip |
Adding upstream version 6.6.15.upstream/6.6.15
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'mm/memblock.c')
-rw-r--r-- | mm/memblock.c | 2249 |
1 files changed, 2249 insertions, 0 deletions
diff --git a/mm/memblock.c b/mm/memblock.c new file mode 100644 index 0000000000..6d18485571 --- /dev/null +++ b/mm/memblock.c @@ -0,0 +1,2249 @@ +// SPDX-License-Identifier: GPL-2.0-or-later +/* + * Procedures for maintaining information about logical memory blocks. + * + * Peter Bergner, IBM Corp. June 2001. + * Copyright (C) 2001 Peter Bergner. + */ + +#include <linux/kernel.h> +#include <linux/slab.h> +#include <linux/init.h> +#include <linux/bitops.h> +#include <linux/poison.h> +#include <linux/pfn.h> +#include <linux/debugfs.h> +#include <linux/kmemleak.h> +#include <linux/seq_file.h> +#include <linux/memblock.h> + +#include <asm/sections.h> +#include <linux/io.h> + +#include "internal.h" + +#define INIT_MEMBLOCK_REGIONS 128 +#define INIT_PHYSMEM_REGIONS 4 + +#ifndef INIT_MEMBLOCK_RESERVED_REGIONS +# define INIT_MEMBLOCK_RESERVED_REGIONS INIT_MEMBLOCK_REGIONS +#endif + +#ifndef INIT_MEMBLOCK_MEMORY_REGIONS +#define INIT_MEMBLOCK_MEMORY_REGIONS INIT_MEMBLOCK_REGIONS +#endif + +/** + * DOC: memblock overview + * + * Memblock is a method of managing memory regions during the early + * boot period when the usual kernel memory allocators are not up and + * running. + * + * Memblock views the system memory as collections of contiguous + * regions. There are several types of these collections: + * + * * ``memory`` - describes the physical memory available to the + * kernel; this may differ from the actual physical memory installed + * in the system, for instance when the memory is restricted with + * ``mem=`` command line parameter + * * ``reserved`` - describes the regions that were allocated + * * ``physmem`` - describes the actual physical memory available during + * boot regardless of the possible restrictions and memory hot(un)plug; + * the ``physmem`` type is only available on some architectures. + * + * Each region is represented by struct memblock_region that + * defines the region extents, its attributes and NUMA node id on NUMA + * systems. Every memory type is described by the struct memblock_type + * which contains an array of memory regions along with + * the allocator metadata. The "memory" and "reserved" types are nicely + * wrapped with struct memblock. This structure is statically + * initialized at build time. The region arrays are initially sized to + * %INIT_MEMBLOCK_MEMORY_REGIONS for "memory" and + * %INIT_MEMBLOCK_RESERVED_REGIONS for "reserved". The region array + * for "physmem" is initially sized to %INIT_PHYSMEM_REGIONS. + * The memblock_allow_resize() enables automatic resizing of the region + * arrays during addition of new regions. This feature should be used + * with care so that memory allocated for the region array will not + * overlap with areas that should be reserved, for example initrd. + * + * The early architecture setup should tell memblock what the physical + * memory layout is by using memblock_add() or memblock_add_node() + * functions. The first function does not assign the region to a NUMA + * node and it is appropriate for UMA systems. Yet, it is possible to + * use it on NUMA systems as well and assign the region to a NUMA node + * later in the setup process using memblock_set_node(). The + * memblock_add_node() performs such an assignment directly. + * + * Once memblock is setup the memory can be allocated using one of the + * API variants: + * + * * memblock_phys_alloc*() - these functions return the **physical** + * address of the allocated memory + * * memblock_alloc*() - these functions return the **virtual** address + * of the allocated memory. + * + * Note, that both API variants use implicit assumptions about allowed + * memory ranges and the fallback methods. Consult the documentation + * of memblock_alloc_internal() and memblock_alloc_range_nid() + * functions for more elaborate description. + * + * As the system boot progresses, the architecture specific mem_init() + * function frees all the memory to the buddy page allocator. + * + * Unless an architecture enables %CONFIG_ARCH_KEEP_MEMBLOCK, the + * memblock data structures (except "physmem") will be discarded after the + * system initialization completes. + */ + +#ifndef CONFIG_NUMA +struct pglist_data __refdata contig_page_data; +EXPORT_SYMBOL(contig_page_data); +#endif + +unsigned long max_low_pfn; +unsigned long min_low_pfn; +unsigned long max_pfn; +unsigned long long max_possible_pfn; + +static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_MEMORY_REGIONS] __initdata_memblock; +static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_RESERVED_REGIONS] __initdata_memblock; +#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP +static struct memblock_region memblock_physmem_init_regions[INIT_PHYSMEM_REGIONS]; +#endif + +struct memblock memblock __initdata_memblock = { + .memory.regions = memblock_memory_init_regions, + .memory.cnt = 1, /* empty dummy entry */ + .memory.max = INIT_MEMBLOCK_MEMORY_REGIONS, + .memory.name = "memory", + + .reserved.regions = memblock_reserved_init_regions, + .reserved.cnt = 1, /* empty dummy entry */ + .reserved.max = INIT_MEMBLOCK_RESERVED_REGIONS, + .reserved.name = "reserved", + + .bottom_up = false, + .current_limit = MEMBLOCK_ALLOC_ANYWHERE, +}; + +#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP +struct memblock_type physmem = { + .regions = memblock_physmem_init_regions, + .cnt = 1, /* empty dummy entry */ + .max = INIT_PHYSMEM_REGIONS, + .name = "physmem", +}; +#endif + +/* + * keep a pointer to &memblock.memory in the text section to use it in + * __next_mem_range() and its helpers. + * For architectures that do not keep memblock data after init, this + * pointer will be reset to NULL at memblock_discard() + */ +static __refdata struct memblock_type *memblock_memory = &memblock.memory; + +#define for_each_memblock_type(i, memblock_type, rgn) \ + for (i = 0, rgn = &memblock_type->regions[0]; \ + i < memblock_type->cnt; \ + i++, rgn = &memblock_type->regions[i]) + +#define memblock_dbg(fmt, ...) \ + do { \ + if (memblock_debug) \ + pr_info(fmt, ##__VA_ARGS__); \ + } while (0) + +static int memblock_debug __initdata_memblock; +static bool system_has_some_mirror __initdata_memblock; +static int memblock_can_resize __initdata_memblock; +static int memblock_memory_in_slab __initdata_memblock; +static int memblock_reserved_in_slab __initdata_memblock; + +bool __init_memblock memblock_has_mirror(void) +{ + return system_has_some_mirror; +} + +static enum memblock_flags __init_memblock choose_memblock_flags(void) +{ + return system_has_some_mirror ? MEMBLOCK_MIRROR : MEMBLOCK_NONE; +} + +/* adjust *@size so that (@base + *@size) doesn't overflow, return new size */ +static inline phys_addr_t memblock_cap_size(phys_addr_t base, phys_addr_t *size) +{ + return *size = min(*size, PHYS_ADDR_MAX - base); +} + +/* + * Address comparison utilities + */ +static unsigned long __init_memblock memblock_addrs_overlap(phys_addr_t base1, phys_addr_t size1, + phys_addr_t base2, phys_addr_t size2) +{ + return ((base1 < (base2 + size2)) && (base2 < (base1 + size1))); +} + +bool __init_memblock memblock_overlaps_region(struct memblock_type *type, + phys_addr_t base, phys_addr_t size) +{ + unsigned long i; + + memblock_cap_size(base, &size); + + for (i = 0; i < type->cnt; i++) + if (memblock_addrs_overlap(base, size, type->regions[i].base, + type->regions[i].size)) + break; + return i < type->cnt; +} + +/** + * __memblock_find_range_bottom_up - find free area utility in bottom-up + * @start: start of candidate range + * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or + * %MEMBLOCK_ALLOC_ACCESSIBLE + * @size: size of free area to find + * @align: alignment of free area to find + * @nid: nid of the free area to find, %NUMA_NO_NODE for any node + * @flags: pick from blocks based on memory attributes + * + * Utility called from memblock_find_in_range_node(), find free area bottom-up. + * + * Return: + * Found address on success, 0 on failure. + */ +static phys_addr_t __init_memblock +__memblock_find_range_bottom_up(phys_addr_t start, phys_addr_t end, + phys_addr_t size, phys_addr_t align, int nid, + enum memblock_flags flags) +{ + phys_addr_t this_start, this_end, cand; + u64 i; + + for_each_free_mem_range(i, nid, flags, &this_start, &this_end, NULL) { + this_start = clamp(this_start, start, end); + this_end = clamp(this_end, start, end); + + cand = round_up(this_start, align); + if (cand < this_end && this_end - cand >= size) + return cand; + } + + return 0; +} + +/** + * __memblock_find_range_top_down - find free area utility, in top-down + * @start: start of candidate range + * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or + * %MEMBLOCK_ALLOC_ACCESSIBLE + * @size: size of free area to find + * @align: alignment of free area to find + * @nid: nid of the free area to find, %NUMA_NO_NODE for any node + * @flags: pick from blocks based on memory attributes + * + * Utility called from memblock_find_in_range_node(), find free area top-down. + * + * Return: + * Found address on success, 0 on failure. + */ +static phys_addr_t __init_memblock +__memblock_find_range_top_down(phys_addr_t start, phys_addr_t end, + phys_addr_t size, phys_addr_t align, int nid, + enum memblock_flags flags) +{ + phys_addr_t this_start, this_end, cand; + u64 i; + + for_each_free_mem_range_reverse(i, nid, flags, &this_start, &this_end, + NULL) { + this_start = clamp(this_start, start, end); + this_end = clamp(this_end, start, end); + + if (this_end < size) + continue; + + cand = round_down(this_end - size, align); + if (cand >= this_start) + return cand; + } + + return 0; +} + +/** + * memblock_find_in_range_node - find free area in given range and node + * @size: size of free area to find + * @align: alignment of free area to find + * @start: start of candidate range + * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or + * %MEMBLOCK_ALLOC_ACCESSIBLE + * @nid: nid of the free area to find, %NUMA_NO_NODE for any node + * @flags: pick from blocks based on memory attributes + * + * Find @size free area aligned to @align in the specified range and node. + * + * Return: + * Found address on success, 0 on failure. + */ +static phys_addr_t __init_memblock memblock_find_in_range_node(phys_addr_t size, + phys_addr_t align, phys_addr_t start, + phys_addr_t end, int nid, + enum memblock_flags flags) +{ + /* pump up @end */ + if (end == MEMBLOCK_ALLOC_ACCESSIBLE || + end == MEMBLOCK_ALLOC_NOLEAKTRACE) + end = memblock.current_limit; + + /* avoid allocating the first page */ + start = max_t(phys_addr_t, start, PAGE_SIZE); + end = max(start, end); + + if (memblock_bottom_up()) + return __memblock_find_range_bottom_up(start, end, size, align, + nid, flags); + else + return __memblock_find_range_top_down(start, end, size, align, + nid, flags); +} + +/** + * memblock_find_in_range - find free area in given range + * @start: start of candidate range + * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or + * %MEMBLOCK_ALLOC_ACCESSIBLE + * @size: size of free area to find + * @align: alignment of free area to find + * + * Find @size free area aligned to @align in the specified range. + * + * Return: + * Found address on success, 0 on failure. + */ +static phys_addr_t __init_memblock memblock_find_in_range(phys_addr_t start, + phys_addr_t end, phys_addr_t size, + phys_addr_t align) +{ + phys_addr_t ret; + enum memblock_flags flags = choose_memblock_flags(); + +again: + ret = memblock_find_in_range_node(size, align, start, end, + NUMA_NO_NODE, flags); + + if (!ret && (flags & MEMBLOCK_MIRROR)) { + pr_warn_ratelimited("Could not allocate %pap bytes of mirrored memory\n", + &size); + flags &= ~MEMBLOCK_MIRROR; + goto again; + } + + return ret; +} + +static void __init_memblock memblock_remove_region(struct memblock_type *type, unsigned long r) +{ + type->total_size -= type->regions[r].size; + memmove(&type->regions[r], &type->regions[r + 1], + (type->cnt - (r + 1)) * sizeof(type->regions[r])); + type->cnt--; + + /* Special case for empty arrays */ + if (type->cnt == 0) { + WARN_ON(type->total_size != 0); + type->cnt = 1; + type->regions[0].base = 0; + type->regions[0].size = 0; + type->regions[0].flags = 0; + memblock_set_region_node(&type->regions[0], MAX_NUMNODES); + } +} + +#ifndef CONFIG_ARCH_KEEP_MEMBLOCK +/** + * memblock_discard - discard memory and reserved arrays if they were allocated + */ +void __init memblock_discard(void) +{ + phys_addr_t addr, size; + + if (memblock.reserved.regions != memblock_reserved_init_regions) { + addr = __pa(memblock.reserved.regions); + size = PAGE_ALIGN(sizeof(struct memblock_region) * + memblock.reserved.max); + if (memblock_reserved_in_slab) + kfree(memblock.reserved.regions); + else + memblock_free_late(addr, size); + } + + if (memblock.memory.regions != memblock_memory_init_regions) { + addr = __pa(memblock.memory.regions); + size = PAGE_ALIGN(sizeof(struct memblock_region) * + memblock.memory.max); + if (memblock_memory_in_slab) + kfree(memblock.memory.regions); + else + memblock_free_late(addr, size); + } + + memblock_memory = NULL; +} +#endif + +/** + * memblock_double_array - double the size of the memblock regions array + * @type: memblock type of the regions array being doubled + * @new_area_start: starting address of memory range to avoid overlap with + * @new_area_size: size of memory range to avoid overlap with + * + * Double the size of the @type regions array. If memblock is being used to + * allocate memory for a new reserved regions array and there is a previously + * allocated memory range [@new_area_start, @new_area_start + @new_area_size] + * waiting to be reserved, ensure the memory used by the new array does + * not overlap. + * + * Return: + * 0 on success, -1 on failure. + */ +static int __init_memblock memblock_double_array(struct memblock_type *type, + phys_addr_t new_area_start, + phys_addr_t new_area_size) +{ + struct memblock_region *new_array, *old_array; + phys_addr_t old_alloc_size, new_alloc_size; + phys_addr_t old_size, new_size, addr, new_end; + int use_slab = slab_is_available(); + int *in_slab; + + /* We don't allow resizing until we know about the reserved regions + * of memory that aren't suitable for allocation + */ + if (!memblock_can_resize) + return -1; + + /* Calculate new doubled size */ + old_size = type->max * sizeof(struct memblock_region); + new_size = old_size << 1; + /* + * We need to allocated new one align to PAGE_SIZE, + * so we can free them completely later. + */ + old_alloc_size = PAGE_ALIGN(old_size); + new_alloc_size = PAGE_ALIGN(new_size); + + /* Retrieve the slab flag */ + if (type == &memblock.memory) + in_slab = &memblock_memory_in_slab; + else + in_slab = &memblock_reserved_in_slab; + + /* Try to find some space for it */ + if (use_slab) { + new_array = kmalloc(new_size, GFP_KERNEL); + addr = new_array ? __pa(new_array) : 0; + } else { + /* only exclude range when trying to double reserved.regions */ + if (type != &memblock.reserved) + new_area_start = new_area_size = 0; + + addr = memblock_find_in_range(new_area_start + new_area_size, + memblock.current_limit, + new_alloc_size, PAGE_SIZE); + if (!addr && new_area_size) + addr = memblock_find_in_range(0, + min(new_area_start, memblock.current_limit), + new_alloc_size, PAGE_SIZE); + + new_array = addr ? __va(addr) : NULL; + } + if (!addr) { + pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n", + type->name, type->max, type->max * 2); + return -1; + } + + new_end = addr + new_size - 1; + memblock_dbg("memblock: %s is doubled to %ld at [%pa-%pa]", + type->name, type->max * 2, &addr, &new_end); + + /* + * Found space, we now need to move the array over before we add the + * reserved region since it may be our reserved array itself that is + * full. + */ + memcpy(new_array, type->regions, old_size); + memset(new_array + type->max, 0, old_size); + old_array = type->regions; + type->regions = new_array; + type->max <<= 1; + + /* Free old array. We needn't free it if the array is the static one */ + if (*in_slab) + kfree(old_array); + else if (old_array != memblock_memory_init_regions && + old_array != memblock_reserved_init_regions) + memblock_free(old_array, old_alloc_size); + + /* + * Reserve the new array if that comes from the memblock. Otherwise, we + * needn't do it + */ + if (!use_slab) + BUG_ON(memblock_reserve(addr, new_alloc_size)); + + /* Update slab flag */ + *in_slab = use_slab; + + return 0; +} + +/** + * memblock_merge_regions - merge neighboring compatible regions + * @type: memblock type to scan + * @start_rgn: start scanning from (@start_rgn - 1) + * @end_rgn: end scanning at (@end_rgn - 1) + * Scan @type and merge neighboring compatible regions in [@start_rgn - 1, @end_rgn) + */ +static void __init_memblock memblock_merge_regions(struct memblock_type *type, + unsigned long start_rgn, + unsigned long end_rgn) +{ + int i = 0; + if (start_rgn) + i = start_rgn - 1; + end_rgn = min(end_rgn, type->cnt - 1); + while (i < end_rgn) { + struct memblock_region *this = &type->regions[i]; + struct memblock_region *next = &type->regions[i + 1]; + + if (this->base + this->size != next->base || + memblock_get_region_node(this) != + memblock_get_region_node(next) || + this->flags != next->flags) { + BUG_ON(this->base + this->size > next->base); + i++; + continue; + } + + this->size += next->size; + /* move forward from next + 1, index of which is i + 2 */ + memmove(next, next + 1, (type->cnt - (i + 2)) * sizeof(*next)); + type->cnt--; + end_rgn--; + } +} + +/** + * memblock_insert_region - insert new memblock region + * @type: memblock type to insert into + * @idx: index for the insertion point + * @base: base address of the new region + * @size: size of the new region + * @nid: node id of the new region + * @flags: flags of the new region + * + * Insert new memblock region [@base, @base + @size) into @type at @idx. + * @type must already have extra room to accommodate the new region. + */ +static void __init_memblock memblock_insert_region(struct memblock_type *type, + int idx, phys_addr_t base, + phys_addr_t size, + int nid, + enum memblock_flags flags) +{ + struct memblock_region *rgn = &type->regions[idx]; + + BUG_ON(type->cnt >= type->max); + memmove(rgn + 1, rgn, (type->cnt - idx) * sizeof(*rgn)); + rgn->base = base; + rgn->size = size; + rgn->flags = flags; + memblock_set_region_node(rgn, nid); + type->cnt++; + type->total_size += size; +} + +/** + * memblock_add_range - add new memblock region + * @type: memblock type to add new region into + * @base: base address of the new region + * @size: size of the new region + * @nid: nid of the new region + * @flags: flags of the new region + * + * Add new memblock region [@base, @base + @size) into @type. The new region + * is allowed to overlap with existing ones - overlaps don't affect already + * existing regions. @type is guaranteed to be minimal (all neighbouring + * compatible regions are merged) after the addition. + * + * Return: + * 0 on success, -errno on failure. + */ +static int __init_memblock memblock_add_range(struct memblock_type *type, + phys_addr_t base, phys_addr_t size, + int nid, enum memblock_flags flags) +{ + bool insert = false; + phys_addr_t obase = base; + phys_addr_t end = base + memblock_cap_size(base, &size); + int idx, nr_new, start_rgn = -1, end_rgn; + struct memblock_region *rgn; + + if (!size) + return 0; + + /* special case for empty array */ + if (type->regions[0].size == 0) { + WARN_ON(type->cnt != 1 || type->total_size); + type->regions[0].base = base; + type->regions[0].size = size; + type->regions[0].flags = flags; + memblock_set_region_node(&type->regions[0], nid); + type->total_size = size; + return 0; + } + + /* + * The worst case is when new range overlaps all existing regions, + * then we'll need type->cnt + 1 empty regions in @type. So if + * type->cnt * 2 + 1 is less than or equal to type->max, we know + * that there is enough empty regions in @type, and we can insert + * regions directly. + */ + if (type->cnt * 2 + 1 <= type->max) + insert = true; + +repeat: + /* + * The following is executed twice. Once with %false @insert and + * then with %true. The first counts the number of regions needed + * to accommodate the new area. The second actually inserts them. + */ + base = obase; + nr_new = 0; + + for_each_memblock_type(idx, type, rgn) { + phys_addr_t rbase = rgn->base; + phys_addr_t rend = rbase + rgn->size; + + if (rbase >= end) + break; + if (rend <= base) + continue; + /* + * @rgn overlaps. If it separates the lower part of new + * area, insert that portion. + */ + if (rbase > base) { +#ifdef CONFIG_NUMA + WARN_ON(nid != memblock_get_region_node(rgn)); +#endif + WARN_ON(flags != rgn->flags); + nr_new++; + if (insert) { + if (start_rgn == -1) + start_rgn = idx; + end_rgn = idx + 1; + memblock_insert_region(type, idx++, base, + rbase - base, nid, + flags); + } + } + /* area below @rend is dealt with, forget about it */ + base = min(rend, end); + } + + /* insert the remaining portion */ + if (base < end) { + nr_new++; + if (insert) { + if (start_rgn == -1) + start_rgn = idx; + end_rgn = idx + 1; + memblock_insert_region(type, idx, base, end - base, + nid, flags); + } + } + + if (!nr_new) + return 0; + + /* + * If this was the first round, resize array and repeat for actual + * insertions; otherwise, merge and return. + */ + if (!insert) { + while (type->cnt + nr_new > type->max) + if (memblock_double_array(type, obase, size) < 0) + return -ENOMEM; + insert = true; + goto repeat; + } else { + memblock_merge_regions(type, start_rgn, end_rgn); + return 0; + } +} + +/** + * memblock_add_node - add new memblock region within a NUMA node + * @base: base address of the new region + * @size: size of the new region + * @nid: nid of the new region + * @flags: flags of the new region + * + * Add new memblock region [@base, @base + @size) to the "memory" + * type. See memblock_add_range() description for mode details + * + * Return: + * 0 on success, -errno on failure. + */ +int __init_memblock memblock_add_node(phys_addr_t base, phys_addr_t size, + int nid, enum memblock_flags flags) +{ + phys_addr_t end = base + size - 1; + + memblock_dbg("%s: [%pa-%pa] nid=%d flags=%x %pS\n", __func__, + &base, &end, nid, flags, (void *)_RET_IP_); + + return memblock_add_range(&memblock.memory, base, size, nid, flags); +} + +/** + * memblock_add - add new memblock region + * @base: base address of the new region + * @size: size of the new region + * + * Add new memblock region [@base, @base + @size) to the "memory" + * type. See memblock_add_range() description for mode details + * + * Return: + * 0 on success, -errno on failure. + */ +int __init_memblock memblock_add(phys_addr_t base, phys_addr_t size) +{ + phys_addr_t end = base + size - 1; + + memblock_dbg("%s: [%pa-%pa] %pS\n", __func__, + &base, &end, (void *)_RET_IP_); + + return memblock_add_range(&memblock.memory, base, size, MAX_NUMNODES, 0); +} + +/** + * memblock_isolate_range - isolate given range into disjoint memblocks + * @type: memblock type to isolate range for + * @base: base of range to isolate + * @size: size of range to isolate + * @start_rgn: out parameter for the start of isolated region + * @end_rgn: out parameter for the end of isolated region + * + * Walk @type and ensure that regions don't cross the boundaries defined by + * [@base, @base + @size). Crossing regions are split at the boundaries, + * which may create at most two more regions. The index of the first + * region inside the range is returned in *@start_rgn and end in *@end_rgn. + * + * Return: + * 0 on success, -errno on failure. + */ +static int __init_memblock memblock_isolate_range(struct memblock_type *type, + phys_addr_t base, phys_addr_t size, + int *start_rgn, int *end_rgn) +{ + phys_addr_t end = base + memblock_cap_size(base, &size); + int idx; + struct memblock_region *rgn; + + *start_rgn = *end_rgn = 0; + + if (!size) + return 0; + + /* we'll create at most two more regions */ + while (type->cnt + 2 > type->max) + if (memblock_double_array(type, base, size) < 0) + return -ENOMEM; + + for_each_memblock_type(idx, type, rgn) { + phys_addr_t rbase = rgn->base; + phys_addr_t rend = rbase + rgn->size; + + if (rbase >= end) + break; + if (rend <= base) + continue; + + if (rbase < base) { + /* + * @rgn intersects from below. Split and continue + * to process the next region - the new top half. + */ + rgn->base = base; + rgn->size -= base - rbase; + type->total_size -= base - rbase; + memblock_insert_region(type, idx, rbase, base - rbase, + memblock_get_region_node(rgn), + rgn->flags); + } else if (rend > end) { + /* + * @rgn intersects from above. Split and redo the + * current region - the new bottom half. + */ + rgn->base = end; + rgn->size -= end - rbase; + type->total_size -= end - rbase; + memblock_insert_region(type, idx--, rbase, end - rbase, + memblock_get_region_node(rgn), + rgn->flags); + } else { + /* @rgn is fully contained, record it */ + if (!*end_rgn) + *start_rgn = idx; + *end_rgn = idx + 1; + } + } + + return 0; +} + +static int __init_memblock memblock_remove_range(struct memblock_type *type, + phys_addr_t base, phys_addr_t size) +{ + int start_rgn, end_rgn; + int i, ret; + + ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn); + if (ret) + return ret; + + for (i = end_rgn - 1; i >= start_rgn; i--) + memblock_remove_region(type, i); + return 0; +} + +int __init_memblock memblock_remove(phys_addr_t base, phys_addr_t size) +{ + phys_addr_t end = base + size - 1; + + memblock_dbg("%s: [%pa-%pa] %pS\n", __func__, + &base, &end, (void *)_RET_IP_); + + return memblock_remove_range(&memblock.memory, base, size); +} + +/** + * memblock_free - free boot memory allocation + * @ptr: starting address of the boot memory allocation + * @size: size of the boot memory block in bytes + * + * Free boot memory block previously allocated by memblock_alloc_xx() API. + * The freeing memory will not be released to the buddy allocator. + */ +void __init_memblock memblock_free(void *ptr, size_t size) +{ + if (ptr) + memblock_phys_free(__pa(ptr), size); +} + +/** + * memblock_phys_free - free boot memory block + * @base: phys starting address of the boot memory block + * @size: size of the boot memory block in bytes + * + * Free boot memory block previously allocated by memblock_phys_alloc_xx() API. + * The freeing memory will not be released to the buddy allocator. + */ +int __init_memblock memblock_phys_free(phys_addr_t base, phys_addr_t size) +{ + phys_addr_t end = base + size - 1; + + memblock_dbg("%s: [%pa-%pa] %pS\n", __func__, + &base, &end, (void *)_RET_IP_); + + kmemleak_free_part_phys(base, size); + return memblock_remove_range(&memblock.reserved, base, size); +} + +int __init_memblock memblock_reserve(phys_addr_t base, phys_addr_t size) +{ + phys_addr_t end = base + size - 1; + + memblock_dbg("%s: [%pa-%pa] %pS\n", __func__, + &base, &end, (void *)_RET_IP_); + + return memblock_add_range(&memblock.reserved, base, size, MAX_NUMNODES, 0); +} + +#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP +int __init_memblock memblock_physmem_add(phys_addr_t base, phys_addr_t size) +{ + phys_addr_t end = base + size - 1; + + memblock_dbg("%s: [%pa-%pa] %pS\n", __func__, + &base, &end, (void *)_RET_IP_); + + return memblock_add_range(&physmem, base, size, MAX_NUMNODES, 0); +} +#endif + +/** + * memblock_setclr_flag - set or clear flag for a memory region + * @base: base address of the region + * @size: size of the region + * @set: set or clear the flag + * @flag: the flag to update + * + * This function isolates region [@base, @base + @size), and sets/clears flag + * + * Return: 0 on success, -errno on failure. + */ +static int __init_memblock memblock_setclr_flag(phys_addr_t base, + phys_addr_t size, int set, int flag) +{ + struct memblock_type *type = &memblock.memory; + int i, ret, start_rgn, end_rgn; + + ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn); + if (ret) + return ret; + + for (i = start_rgn; i < end_rgn; i++) { + struct memblock_region *r = &type->regions[i]; + + if (set) + r->flags |= flag; + else + r->flags &= ~flag; + } + + memblock_merge_regions(type, start_rgn, end_rgn); + return 0; +} + +/** + * memblock_mark_hotplug - Mark hotpluggable memory with flag MEMBLOCK_HOTPLUG. + * @base: the base phys addr of the region + * @size: the size of the region + * + * Return: 0 on success, -errno on failure. + */ +int __init_memblock memblock_mark_hotplug(phys_addr_t base, phys_addr_t size) +{ + return memblock_setclr_flag(base, size, 1, MEMBLOCK_HOTPLUG); +} + +/** + * memblock_clear_hotplug - Clear flag MEMBLOCK_HOTPLUG for a specified region. + * @base: the base phys addr of the region + * @size: the size of the region + * + * Return: 0 on success, -errno on failure. + */ +int __init_memblock memblock_clear_hotplug(phys_addr_t base, phys_addr_t size) +{ + return memblock_setclr_flag(base, size, 0, MEMBLOCK_HOTPLUG); +} + +/** + * memblock_mark_mirror - Mark mirrored memory with flag MEMBLOCK_MIRROR. + * @base: the base phys addr of the region + * @size: the size of the region + * + * Return: 0 on success, -errno on failure. + */ +int __init_memblock memblock_mark_mirror(phys_addr_t base, phys_addr_t size) +{ + if (!mirrored_kernelcore) + return 0; + + system_has_some_mirror = true; + + return memblock_setclr_flag(base, size, 1, MEMBLOCK_MIRROR); +} + +/** + * memblock_mark_nomap - Mark a memory region with flag MEMBLOCK_NOMAP. + * @base: the base phys addr of the region + * @size: the size of the region + * + * The memory regions marked with %MEMBLOCK_NOMAP will not be added to the + * direct mapping of the physical memory. These regions will still be + * covered by the memory map. The struct page representing NOMAP memory + * frames in the memory map will be PageReserved() + * + * Note: if the memory being marked %MEMBLOCK_NOMAP was allocated from + * memblock, the caller must inform kmemleak to ignore that memory + * + * Return: 0 on success, -errno on failure. + */ +int __init_memblock memblock_mark_nomap(phys_addr_t base, phys_addr_t size) +{ + return memblock_setclr_flag(base, size, 1, MEMBLOCK_NOMAP); +} + +/** + * memblock_clear_nomap - Clear flag MEMBLOCK_NOMAP for a specified region. + * @base: the base phys addr of the region + * @size: the size of the region + * + * Return: 0 on success, -errno on failure. + */ +int __init_memblock memblock_clear_nomap(phys_addr_t base, phys_addr_t size) +{ + return memblock_setclr_flag(base, size, 0, MEMBLOCK_NOMAP); +} + +static bool should_skip_region(struct memblock_type *type, + struct memblock_region *m, + int nid, int flags) +{ + int m_nid = memblock_get_region_node(m); + + /* we never skip regions when iterating memblock.reserved or physmem */ + if (type != memblock_memory) + return false; + + /* only memory regions are associated with nodes, check it */ + if (nid != NUMA_NO_NODE && nid != m_nid) + return true; + + /* skip hotpluggable memory regions if needed */ + if (movable_node_is_enabled() && memblock_is_hotpluggable(m) && + !(flags & MEMBLOCK_HOTPLUG)) + return true; + + /* if we want mirror memory skip non-mirror memory regions */ + if ((flags & MEMBLOCK_MIRROR) && !memblock_is_mirror(m)) + return true; + + /* skip nomap memory unless we were asked for it explicitly */ + if (!(flags & MEMBLOCK_NOMAP) && memblock_is_nomap(m)) + return true; + + /* skip driver-managed memory unless we were asked for it explicitly */ + if (!(flags & MEMBLOCK_DRIVER_MANAGED) && memblock_is_driver_managed(m)) + return true; + + return false; +} + +/** + * __next_mem_range - next function for for_each_free_mem_range() etc. + * @idx: pointer to u64 loop variable + * @nid: node selector, %NUMA_NO_NODE for all nodes + * @flags: pick from blocks based on memory attributes + * @type_a: pointer to memblock_type from where the range is taken + * @type_b: pointer to memblock_type which excludes memory from being taken + * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL + * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL + * @out_nid: ptr to int for nid of the range, can be %NULL + * + * Find the first area from *@idx which matches @nid, fill the out + * parameters, and update *@idx for the next iteration. The lower 32bit of + * *@idx contains index into type_a and the upper 32bit indexes the + * areas before each region in type_b. For example, if type_b regions + * look like the following, + * + * 0:[0-16), 1:[32-48), 2:[128-130) + * + * The upper 32bit indexes the following regions. + * + * 0:[0-0), 1:[16-32), 2:[48-128), 3:[130-MAX) + * + * As both region arrays are sorted, the function advances the two indices + * in lockstep and returns each intersection. + */ +void __next_mem_range(u64 *idx, int nid, enum memblock_flags flags, + struct memblock_type *type_a, + struct memblock_type *type_b, phys_addr_t *out_start, + phys_addr_t *out_end, int *out_nid) +{ + int idx_a = *idx & 0xffffffff; + int idx_b = *idx >> 32; + + if (WARN_ONCE(nid == MAX_NUMNODES, + "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n")) + nid = NUMA_NO_NODE; + + for (; idx_a < type_a->cnt; idx_a++) { + struct memblock_region *m = &type_a->regions[idx_a]; + + phys_addr_t m_start = m->base; + phys_addr_t m_end = m->base + m->size; + int m_nid = memblock_get_region_node(m); + + if (should_skip_region(type_a, m, nid, flags)) + continue; + + if (!type_b) { + if (out_start) + *out_start = m_start; + if (out_end) + *out_end = m_end; + if (out_nid) + *out_nid = m_nid; + idx_a++; + *idx = (u32)idx_a | (u64)idx_b << 32; + return; + } + + /* scan areas before each reservation */ + for (; idx_b < type_b->cnt + 1; idx_b++) { + struct memblock_region *r; + phys_addr_t r_start; + phys_addr_t r_end; + + r = &type_b->regions[idx_b]; + r_start = idx_b ? r[-1].base + r[-1].size : 0; + r_end = idx_b < type_b->cnt ? + r->base : PHYS_ADDR_MAX; + + /* + * if idx_b advanced past idx_a, + * break out to advance idx_a + */ + if (r_start >= m_end) + break; + /* if the two regions intersect, we're done */ + if (m_start < r_end) { + if (out_start) + *out_start = + max(m_start, r_start); + if (out_end) + *out_end = min(m_end, r_end); + if (out_nid) + *out_nid = m_nid; + /* + * The region which ends first is + * advanced for the next iteration. + */ + if (m_end <= r_end) + idx_a++; + else + idx_b++; + *idx = (u32)idx_a | (u64)idx_b << 32; + return; + } + } + } + + /* signal end of iteration */ + *idx = ULLONG_MAX; +} + +/** + * __next_mem_range_rev - generic next function for for_each_*_range_rev() + * + * @idx: pointer to u64 loop variable + * @nid: node selector, %NUMA_NO_NODE for all nodes + * @flags: pick from blocks based on memory attributes + * @type_a: pointer to memblock_type from where the range is taken + * @type_b: pointer to memblock_type which excludes memory from being taken + * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL + * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL + * @out_nid: ptr to int for nid of the range, can be %NULL + * + * Finds the next range from type_a which is not marked as unsuitable + * in type_b. + * + * Reverse of __next_mem_range(). + */ +void __init_memblock __next_mem_range_rev(u64 *idx, int nid, + enum memblock_flags flags, + struct memblock_type *type_a, + struct memblock_type *type_b, + phys_addr_t *out_start, + phys_addr_t *out_end, int *out_nid) +{ + int idx_a = *idx & 0xffffffff; + int idx_b = *idx >> 32; + + if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n")) + nid = NUMA_NO_NODE; + + if (*idx == (u64)ULLONG_MAX) { + idx_a = type_a->cnt - 1; + if (type_b != NULL) + idx_b = type_b->cnt; + else + idx_b = 0; + } + + for (; idx_a >= 0; idx_a--) { + struct memblock_region *m = &type_a->regions[idx_a]; + + phys_addr_t m_start = m->base; + phys_addr_t m_end = m->base + m->size; + int m_nid = memblock_get_region_node(m); + + if (should_skip_region(type_a, m, nid, flags)) + continue; + + if (!type_b) { + if (out_start) + *out_start = m_start; + if (out_end) + *out_end = m_end; + if (out_nid) + *out_nid = m_nid; + idx_a--; + *idx = (u32)idx_a | (u64)idx_b << 32; + return; + } + + /* scan areas before each reservation */ + for (; idx_b >= 0; idx_b--) { + struct memblock_region *r; + phys_addr_t r_start; + phys_addr_t r_end; + + r = &type_b->regions[idx_b]; + r_start = idx_b ? r[-1].base + r[-1].size : 0; + r_end = idx_b < type_b->cnt ? + r->base : PHYS_ADDR_MAX; + /* + * if idx_b advanced past idx_a, + * break out to advance idx_a + */ + + if (r_end <= m_start) + break; + /* if the two regions intersect, we're done */ + if (m_end > r_start) { + if (out_start) + *out_start = max(m_start, r_start); + if (out_end) + *out_end = min(m_end, r_end); + if (out_nid) + *out_nid = m_nid; + if (m_start >= r_start) + idx_a--; + else + idx_b--; + *idx = (u32)idx_a | (u64)idx_b << 32; + return; + } + } + } + /* signal end of iteration */ + *idx = ULLONG_MAX; +} + +/* + * Common iterator interface used to define for_each_mem_pfn_range(). + */ +void __init_memblock __next_mem_pfn_range(int *idx, int nid, + unsigned long *out_start_pfn, + unsigned long *out_end_pfn, int *out_nid) +{ + struct memblock_type *type = &memblock.memory; + struct memblock_region *r; + int r_nid; + + while (++*idx < type->cnt) { + r = &type->regions[*idx]; + r_nid = memblock_get_region_node(r); + + if (PFN_UP(r->base) >= PFN_DOWN(r->base + r->size)) + continue; + if (nid == MAX_NUMNODES || nid == r_nid) + break; + } + if (*idx >= type->cnt) { + *idx = -1; + return; + } + + if (out_start_pfn) + *out_start_pfn = PFN_UP(r->base); + if (out_end_pfn) + *out_end_pfn = PFN_DOWN(r->base + r->size); + if (out_nid) + *out_nid = r_nid; +} + +/** + * memblock_set_node - set node ID on memblock regions + * @base: base of area to set node ID for + * @size: size of area to set node ID for + * @type: memblock type to set node ID for + * @nid: node ID to set + * + * Set the nid of memblock @type regions in [@base, @base + @size) to @nid. + * Regions which cross the area boundaries are split as necessary. + * + * Return: + * 0 on success, -errno on failure. + */ +int __init_memblock memblock_set_node(phys_addr_t base, phys_addr_t size, + struct memblock_type *type, int nid) +{ +#ifdef CONFIG_NUMA + int start_rgn, end_rgn; + int i, ret; + + ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn); + if (ret) + return ret; + + for (i = start_rgn; i < end_rgn; i++) + memblock_set_region_node(&type->regions[i], nid); + + memblock_merge_regions(type, start_rgn, end_rgn); +#endif + return 0; +} + +#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT +/** + * __next_mem_pfn_range_in_zone - iterator for for_each_*_range_in_zone() + * + * @idx: pointer to u64 loop variable + * @zone: zone in which all of the memory blocks reside + * @out_spfn: ptr to ulong for start pfn of the range, can be %NULL + * @out_epfn: ptr to ulong for end pfn of the range, can be %NULL + * + * This function is meant to be a zone/pfn specific wrapper for the + * for_each_mem_range type iterators. Specifically they are used in the + * deferred memory init routines and as such we were duplicating much of + * this logic throughout the code. So instead of having it in multiple + * locations it seemed like it would make more sense to centralize this to + * one new iterator that does everything they need. + */ +void __init_memblock +__next_mem_pfn_range_in_zone(u64 *idx, struct zone *zone, + unsigned long *out_spfn, unsigned long *out_epfn) +{ + int zone_nid = zone_to_nid(zone); + phys_addr_t spa, epa; + + __next_mem_range(idx, zone_nid, MEMBLOCK_NONE, + &memblock.memory, &memblock.reserved, + &spa, &epa, NULL); + + while (*idx != U64_MAX) { + unsigned long epfn = PFN_DOWN(epa); + unsigned long spfn = PFN_UP(spa); + + /* + * Verify the end is at least past the start of the zone and + * that we have at least one PFN to initialize. + */ + if (zone->zone_start_pfn < epfn && spfn < epfn) { + /* if we went too far just stop searching */ + if (zone_end_pfn(zone) <= spfn) { + *idx = U64_MAX; + break; + } + + if (out_spfn) + *out_spfn = max(zone->zone_start_pfn, spfn); + if (out_epfn) + *out_epfn = min(zone_end_pfn(zone), epfn); + + return; + } + + __next_mem_range(idx, zone_nid, MEMBLOCK_NONE, + &memblock.memory, &memblock.reserved, + &spa, &epa, NULL); + } + + /* signal end of iteration */ + if (out_spfn) + *out_spfn = ULONG_MAX; + if (out_epfn) + *out_epfn = 0; +} + +#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ + +/** + * memblock_alloc_range_nid - allocate boot memory block + * @size: size of memory block to be allocated in bytes + * @align: alignment of the region and block's size + * @start: the lower bound of the memory region to allocate (phys address) + * @end: the upper bound of the memory region to allocate (phys address) + * @nid: nid of the free area to find, %NUMA_NO_NODE for any node + * @exact_nid: control the allocation fall back to other nodes + * + * The allocation is performed from memory region limited by + * memblock.current_limit if @end == %MEMBLOCK_ALLOC_ACCESSIBLE. + * + * If the specified node can not hold the requested memory and @exact_nid + * is false, the allocation falls back to any node in the system. + * + * For systems with memory mirroring, the allocation is attempted first + * from the regions with mirroring enabled and then retried from any + * memory region. + * + * In addition, function using kmemleak_alloc_phys for allocated boot + * memory block, it is never reported as leaks. + * + * Return: + * Physical address of allocated memory block on success, %0 on failure. + */ +phys_addr_t __init memblock_alloc_range_nid(phys_addr_t size, + phys_addr_t align, phys_addr_t start, + phys_addr_t end, int nid, + bool exact_nid) +{ + enum memblock_flags flags = choose_memblock_flags(); + phys_addr_t found; + + if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n")) + nid = NUMA_NO_NODE; + + if (!align) { + /* Can't use WARNs this early in boot on powerpc */ + dump_stack(); + align = SMP_CACHE_BYTES; + } + +again: + found = memblock_find_in_range_node(size, align, start, end, nid, + flags); + if (found && !memblock_reserve(found, size)) + goto done; + + if (nid != NUMA_NO_NODE && !exact_nid) { + found = memblock_find_in_range_node(size, align, start, + end, NUMA_NO_NODE, + flags); + if (found && !memblock_reserve(found, size)) + goto done; + } + + if (flags & MEMBLOCK_MIRROR) { + flags &= ~MEMBLOCK_MIRROR; + pr_warn_ratelimited("Could not allocate %pap bytes of mirrored memory\n", + &size); + goto again; + } + + return 0; + +done: + /* + * Skip kmemleak for those places like kasan_init() and + * early_pgtable_alloc() due to high volume. + */ + if (end != MEMBLOCK_ALLOC_NOLEAKTRACE) + /* + * Memblock allocated blocks are never reported as + * leaks. This is because many of these blocks are + * only referred via the physical address which is + * not looked up by kmemleak. + */ + kmemleak_alloc_phys(found, size, 0); + + /* + * Some Virtual Machine platforms, such as Intel TDX or AMD SEV-SNP, + * require memory to be accepted before it can be used by the + * guest. + * + * Accept the memory of the allocated buffer. + */ + accept_memory(found, found + size); + + return found; +} + +/** + * memblock_phys_alloc_range - allocate a memory block inside specified range + * @size: size of memory block to be allocated in bytes + * @align: alignment of the region and block's size + * @start: the lower bound of the memory region to allocate (physical address) + * @end: the upper bound of the memory region to allocate (physical address) + * + * Allocate @size bytes in the between @start and @end. + * + * Return: physical address of the allocated memory block on success, + * %0 on failure. + */ +phys_addr_t __init memblock_phys_alloc_range(phys_addr_t size, + phys_addr_t align, + phys_addr_t start, + phys_addr_t end) +{ + memblock_dbg("%s: %llu bytes align=0x%llx from=%pa max_addr=%pa %pS\n", + __func__, (u64)size, (u64)align, &start, &end, + (void *)_RET_IP_); + return memblock_alloc_range_nid(size, align, start, end, NUMA_NO_NODE, + false); +} + +/** + * memblock_phys_alloc_try_nid - allocate a memory block from specified NUMA node + * @size: size of memory block to be allocated in bytes + * @align: alignment of the region and block's size + * @nid: nid of the free area to find, %NUMA_NO_NODE for any node + * + * Allocates memory block from the specified NUMA node. If the node + * has no available memory, attempts to allocated from any node in the + * system. + * + * Return: physical address of the allocated memory block on success, + * %0 on failure. + */ +phys_addr_t __init memblock_phys_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid) +{ + return memblock_alloc_range_nid(size, align, 0, + MEMBLOCK_ALLOC_ACCESSIBLE, nid, false); +} + +/** + * memblock_alloc_internal - allocate boot memory block + * @size: size of memory block to be allocated in bytes + * @align: alignment of the region and block's size + * @min_addr: the lower bound of the memory region to allocate (phys address) + * @max_addr: the upper bound of the memory region to allocate (phys address) + * @nid: nid of the free area to find, %NUMA_NO_NODE for any node + * @exact_nid: control the allocation fall back to other nodes + * + * Allocates memory block using memblock_alloc_range_nid() and + * converts the returned physical address to virtual. + * + * The @min_addr limit is dropped if it can not be satisfied and the allocation + * will fall back to memory below @min_addr. Other constraints, such + * as node and mirrored memory will be handled again in + * memblock_alloc_range_nid(). + * + * Return: + * Virtual address of allocated memory block on success, NULL on failure. + */ +static void * __init memblock_alloc_internal( + phys_addr_t size, phys_addr_t align, + phys_addr_t min_addr, phys_addr_t max_addr, + int nid, bool exact_nid) +{ + phys_addr_t alloc; + + /* + * Detect any accidental use of these APIs after slab is ready, as at + * this moment memblock may be deinitialized already and its + * internal data may be destroyed (after execution of memblock_free_all) + */ + if (WARN_ON_ONCE(slab_is_available())) + return kzalloc_node(size, GFP_NOWAIT, nid); + + if (max_addr > memblock.current_limit) + max_addr = memblock.current_limit; + + alloc = memblock_alloc_range_nid(size, align, min_addr, max_addr, nid, + exact_nid); + + /* retry allocation without lower limit */ + if (!alloc && min_addr) + alloc = memblock_alloc_range_nid(size, align, 0, max_addr, nid, + exact_nid); + + if (!alloc) + return NULL; + + return phys_to_virt(alloc); +} + +/** + * memblock_alloc_exact_nid_raw - allocate boot memory block on the exact node + * without zeroing memory + * @size: size of memory block to be allocated in bytes + * @align: alignment of the region and block's size + * @min_addr: the lower bound of the memory region from where the allocation + * is preferred (phys address) + * @max_addr: the upper bound of the memory region from where the allocation + * is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to + * allocate only from memory limited by memblock.current_limit value + * @nid: nid of the free area to find, %NUMA_NO_NODE for any node + * + * Public function, provides additional debug information (including caller + * info), if enabled. Does not zero allocated memory. + * + * Return: + * Virtual address of allocated memory block on success, NULL on failure. + */ +void * __init memblock_alloc_exact_nid_raw( + phys_addr_t size, phys_addr_t align, + phys_addr_t min_addr, phys_addr_t max_addr, + int nid) +{ + memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n", + __func__, (u64)size, (u64)align, nid, &min_addr, + &max_addr, (void *)_RET_IP_); + + return memblock_alloc_internal(size, align, min_addr, max_addr, nid, + true); +} + +/** + * memblock_alloc_try_nid_raw - allocate boot memory block without zeroing + * memory and without panicking + * @size: size of memory block to be allocated in bytes + * @align: alignment of the region and block's size + * @min_addr: the lower bound of the memory region from where the allocation + * is preferred (phys address) + * @max_addr: the upper bound of the memory region from where the allocation + * is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to + * allocate only from memory limited by memblock.current_limit value + * @nid: nid of the free area to find, %NUMA_NO_NODE for any node + * + * Public function, provides additional debug information (including caller + * info), if enabled. Does not zero allocated memory, does not panic if request + * cannot be satisfied. + * + * Return: + * Virtual address of allocated memory block on success, NULL on failure. + */ +void * __init memblock_alloc_try_nid_raw( + phys_addr_t size, phys_addr_t align, + phys_addr_t min_addr, phys_addr_t max_addr, + int nid) +{ + memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n", + __func__, (u64)size, (u64)align, nid, &min_addr, + &max_addr, (void *)_RET_IP_); + + return memblock_alloc_internal(size, align, min_addr, max_addr, nid, + false); +} + +/** + * memblock_alloc_try_nid - allocate boot memory block + * @size: size of memory block to be allocated in bytes + * @align: alignment of the region and block's size + * @min_addr: the lower bound of the memory region from where the allocation + * is preferred (phys address) + * @max_addr: the upper bound of the memory region from where the allocation + * is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to + * allocate only from memory limited by memblock.current_limit value + * @nid: nid of the free area to find, %NUMA_NO_NODE for any node + * + * Public function, provides additional debug information (including caller + * info), if enabled. This function zeroes the allocated memory. + * + * Return: + * Virtual address of allocated memory block on success, NULL on failure. + */ +void * __init memblock_alloc_try_nid( + phys_addr_t size, phys_addr_t align, + phys_addr_t min_addr, phys_addr_t max_addr, + int nid) +{ + void *ptr; + + memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n", + __func__, (u64)size, (u64)align, nid, &min_addr, + &max_addr, (void *)_RET_IP_); + ptr = memblock_alloc_internal(size, align, + min_addr, max_addr, nid, false); + if (ptr) + memset(ptr, 0, size); + + return ptr; +} + +/** + * memblock_free_late - free pages directly to buddy allocator + * @base: phys starting address of the boot memory block + * @size: size of the boot memory block in bytes + * + * This is only useful when the memblock allocator has already been torn + * down, but we are still initializing the system. Pages are released directly + * to the buddy allocator. + */ +void __init memblock_free_late(phys_addr_t base, phys_addr_t size) +{ + phys_addr_t cursor, end; + + end = base + size - 1; + memblock_dbg("%s: [%pa-%pa] %pS\n", + __func__, &base, &end, (void *)_RET_IP_); + kmemleak_free_part_phys(base, size); + cursor = PFN_UP(base); + end = PFN_DOWN(base + size); + + for (; cursor < end; cursor++) { + memblock_free_pages(pfn_to_page(cursor), cursor, 0); + totalram_pages_inc(); + } +} + +/* + * Remaining API functions + */ + +phys_addr_t __init_memblock memblock_phys_mem_size(void) +{ + return memblock.memory.total_size; +} + +phys_addr_t __init_memblock memblock_reserved_size(void) +{ + return memblock.reserved.total_size; +} + +/* lowest address */ +phys_addr_t __init_memblock memblock_start_of_DRAM(void) +{ + return memblock.memory.regions[0].base; +} + +phys_addr_t __init_memblock memblock_end_of_DRAM(void) +{ + int idx = memblock.memory.cnt - 1; + + return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size); +} + +static phys_addr_t __init_memblock __find_max_addr(phys_addr_t limit) +{ + phys_addr_t max_addr = PHYS_ADDR_MAX; + struct memblock_region *r; + + /* + * translate the memory @limit size into the max address within one of + * the memory memblock regions, if the @limit exceeds the total size + * of those regions, max_addr will keep original value PHYS_ADDR_MAX + */ + for_each_mem_region(r) { + if (limit <= r->size) { + max_addr = r->base + limit; + break; + } + limit -= r->size; + } + + return max_addr; +} + +void __init memblock_enforce_memory_limit(phys_addr_t limit) +{ + phys_addr_t max_addr; + + if (!limit) + return; + + max_addr = __find_max_addr(limit); + + /* @limit exceeds the total size of the memory, do nothing */ + if (max_addr == PHYS_ADDR_MAX) + return; + + /* truncate both memory and reserved regions */ + memblock_remove_range(&memblock.memory, max_addr, + PHYS_ADDR_MAX); + memblock_remove_range(&memblock.reserved, max_addr, + PHYS_ADDR_MAX); +} + +void __init memblock_cap_memory_range(phys_addr_t base, phys_addr_t size) +{ + int start_rgn, end_rgn; + int i, ret; + + if (!size) + return; + + if (!memblock_memory->total_size) { + pr_warn("%s: No memory registered yet\n", __func__); + return; + } + + ret = memblock_isolate_range(&memblock.memory, base, size, + &start_rgn, &end_rgn); + if (ret) + return; + + /* remove all the MAP regions */ + for (i = memblock.memory.cnt - 1; i >= end_rgn; i--) + if (!memblock_is_nomap(&memblock.memory.regions[i])) + memblock_remove_region(&memblock.memory, i); + + for (i = start_rgn - 1; i >= 0; i--) + if (!memblock_is_nomap(&memblock.memory.regions[i])) + memblock_remove_region(&memblock.memory, i); + + /* truncate the reserved regions */ + memblock_remove_range(&memblock.reserved, 0, base); + memblock_remove_range(&memblock.reserved, + base + size, PHYS_ADDR_MAX); +} + +void __init memblock_mem_limit_remove_map(phys_addr_t limit) +{ + phys_addr_t max_addr; + + if (!limit) + return; + + max_addr = __find_max_addr(limit); + + /* @limit exceeds the total size of the memory, do nothing */ + if (max_addr == PHYS_ADDR_MAX) + return; + + memblock_cap_memory_range(0, max_addr); +} + +static int __init_memblock memblock_search(struct memblock_type *type, phys_addr_t addr) +{ + unsigned int left = 0, right = type->cnt; + + do { + unsigned int mid = (right + left) / 2; + + if (addr < type->regions[mid].base) + right = mid; + else if (addr >= (type->regions[mid].base + + type->regions[mid].size)) + left = mid + 1; + else + return mid; + } while (left < right); + return -1; +} + +bool __init_memblock memblock_is_reserved(phys_addr_t addr) +{ + return memblock_search(&memblock.reserved, addr) != -1; +} + +bool __init_memblock memblock_is_memory(phys_addr_t addr) +{ + return memblock_search(&memblock.memory, addr) != -1; +} + +bool __init_memblock memblock_is_map_memory(phys_addr_t addr) +{ + int i = memblock_search(&memblock.memory, addr); + + if (i == -1) + return false; + return !memblock_is_nomap(&memblock.memory.regions[i]); +} + +int __init_memblock memblock_search_pfn_nid(unsigned long pfn, + unsigned long *start_pfn, unsigned long *end_pfn) +{ + struct memblock_type *type = &memblock.memory; + int mid = memblock_search(type, PFN_PHYS(pfn)); + + if (mid == -1) + return -1; + + *start_pfn = PFN_DOWN(type->regions[mid].base); + *end_pfn = PFN_DOWN(type->regions[mid].base + type->regions[mid].size); + + return memblock_get_region_node(&type->regions[mid]); +} + +/** + * memblock_is_region_memory - check if a region is a subset of memory + * @base: base of region to check + * @size: size of region to check + * + * Check if the region [@base, @base + @size) is a subset of a memory block. + * + * Return: + * 0 if false, non-zero if true + */ +bool __init_memblock memblock_is_region_memory(phys_addr_t base, phys_addr_t size) +{ + int idx = memblock_search(&memblock.memory, base); + phys_addr_t end = base + memblock_cap_size(base, &size); + + if (idx == -1) + return false; + return (memblock.memory.regions[idx].base + + memblock.memory.regions[idx].size) >= end; +} + +/** + * memblock_is_region_reserved - check if a region intersects reserved memory + * @base: base of region to check + * @size: size of region to check + * + * Check if the region [@base, @base + @size) intersects a reserved + * memory block. + * + * Return: + * True if they intersect, false if not. + */ +bool __init_memblock memblock_is_region_reserved(phys_addr_t base, phys_addr_t size) +{ + return memblock_overlaps_region(&memblock.reserved, base, size); +} + +void __init_memblock memblock_trim_memory(phys_addr_t align) +{ + phys_addr_t start, end, orig_start, orig_end; + struct memblock_region *r; + + for_each_mem_region(r) { + orig_start = r->base; + orig_end = r->base + r->size; + start = round_up(orig_start, align); + end = round_down(orig_end, align); + + if (start == orig_start && end == orig_end) + continue; + + if (start < end) { + r->base = start; + r->size = end - start; + } else { + memblock_remove_region(&memblock.memory, + r - memblock.memory.regions); + r--; + } + } +} + +void __init_memblock memblock_set_current_limit(phys_addr_t limit) +{ + memblock.current_limit = limit; +} + +phys_addr_t __init_memblock memblock_get_current_limit(void) +{ + return memblock.current_limit; +} + +static void __init_memblock memblock_dump(struct memblock_type *type) +{ + phys_addr_t base, end, size; + enum memblock_flags flags; + int idx; + struct memblock_region *rgn; + + pr_info(" %s.cnt = 0x%lx\n", type->name, type->cnt); + + for_each_memblock_type(idx, type, rgn) { + char nid_buf[32] = ""; + + base = rgn->base; + size = rgn->size; + end = base + size - 1; + flags = rgn->flags; +#ifdef CONFIG_NUMA + if (memblock_get_region_node(rgn) != MAX_NUMNODES) + snprintf(nid_buf, sizeof(nid_buf), " on node %d", + memblock_get_region_node(rgn)); +#endif + pr_info(" %s[%#x]\t[%pa-%pa], %pa bytes%s flags: %#x\n", + type->name, idx, &base, &end, &size, nid_buf, flags); + } +} + +static void __init_memblock __memblock_dump_all(void) +{ + pr_info("MEMBLOCK configuration:\n"); + pr_info(" memory size = %pa reserved size = %pa\n", + &memblock.memory.total_size, + &memblock.reserved.total_size); + + memblock_dump(&memblock.memory); + memblock_dump(&memblock.reserved); +#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP + memblock_dump(&physmem); +#endif +} + +void __init_memblock memblock_dump_all(void) +{ + if (memblock_debug) + __memblock_dump_all(); +} + +void __init memblock_allow_resize(void) +{ + memblock_can_resize = 1; +} + +static int __init early_memblock(char *p) +{ + if (p && strstr(p, "debug")) + memblock_debug = 1; + return 0; +} +early_param("memblock", early_memblock); + +static void __init free_memmap(unsigned long start_pfn, unsigned long end_pfn) +{ + struct page *start_pg, *end_pg; + phys_addr_t pg, pgend; + + /* + * Convert start_pfn/end_pfn to a struct page pointer. + */ + start_pg = pfn_to_page(start_pfn - 1) + 1; + end_pg = pfn_to_page(end_pfn - 1) + 1; + + /* + * Convert to physical addresses, and round start upwards and end + * downwards. + */ + pg = PAGE_ALIGN(__pa(start_pg)); + pgend = __pa(end_pg) & PAGE_MASK; + + /* + * If there are free pages between these, free the section of the + * memmap array. + */ + if (pg < pgend) + memblock_phys_free(pg, pgend - pg); +} + +/* + * The mem_map array can get very big. Free the unused area of the memory map. + */ +static void __init free_unused_memmap(void) +{ + unsigned long start, end, prev_end = 0; + int i; + + if (!IS_ENABLED(CONFIG_HAVE_ARCH_PFN_VALID) || + IS_ENABLED(CONFIG_SPARSEMEM_VMEMMAP)) + return; + + /* + * This relies on each bank being in address order. + * The banks are sorted previously in bootmem_init(). + */ + for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, NULL) { +#ifdef CONFIG_SPARSEMEM + /* + * Take care not to free memmap entries that don't exist + * due to SPARSEMEM sections which aren't present. + */ + start = min(start, ALIGN(prev_end, PAGES_PER_SECTION)); +#endif + /* + * Align down here since many operations in VM subsystem + * presume that there are no holes in the memory map inside + * a pageblock + */ + start = pageblock_start_pfn(start); + + /* + * If we had a previous bank, and there is a space + * between the current bank and the previous, free it. + */ + if (prev_end && prev_end < start) + free_memmap(prev_end, start); + + /* + * Align up here since many operations in VM subsystem + * presume that there are no holes in the memory map inside + * a pageblock + */ + prev_end = pageblock_align(end); + } + +#ifdef CONFIG_SPARSEMEM + if (!IS_ALIGNED(prev_end, PAGES_PER_SECTION)) { + prev_end = pageblock_align(end); + free_memmap(prev_end, ALIGN(prev_end, PAGES_PER_SECTION)); + } +#endif +} + +static void __init __free_pages_memory(unsigned long start, unsigned long end) +{ + int order; + + while (start < end) { + /* + * Free the pages in the largest chunks alignment allows. + * + * __ffs() behaviour is undefined for 0. start == 0 is + * MAX_ORDER-aligned, set order to MAX_ORDER for the case. + */ + if (start) + order = min_t(int, MAX_ORDER, __ffs(start)); + else + order = MAX_ORDER; + + while (start + (1UL << order) > end) + order--; + + memblock_free_pages(pfn_to_page(start), start, order); + + start += (1UL << order); + } +} + +static unsigned long __init __free_memory_core(phys_addr_t start, + phys_addr_t end) +{ + unsigned long start_pfn = PFN_UP(start); + unsigned long end_pfn = min_t(unsigned long, + PFN_DOWN(end), max_low_pfn); + + if (start_pfn >= end_pfn) + return 0; + + __free_pages_memory(start_pfn, end_pfn); + + return end_pfn - start_pfn; +} + +static void __init memmap_init_reserved_pages(void) +{ + struct memblock_region *region; + phys_addr_t start, end; + int nid; + + /* + * set nid on all reserved pages and also treat struct + * pages for the NOMAP regions as PageReserved + */ + for_each_mem_region(region) { + nid = memblock_get_region_node(region); + start = region->base; + end = start + region->size; + + if (memblock_is_nomap(region)) + reserve_bootmem_region(start, end, nid); + + memblock_set_node(start, end, &memblock.reserved, nid); + } + + /* initialize struct pages for the reserved regions */ + for_each_reserved_mem_region(region) { + nid = memblock_get_region_node(region); + start = region->base; + end = start + region->size; + + if (nid == NUMA_NO_NODE || nid >= MAX_NUMNODES) + nid = early_pfn_to_nid(PFN_DOWN(start)); + + reserve_bootmem_region(start, end, nid); + } +} + +static unsigned long __init free_low_memory_core_early(void) +{ + unsigned long count = 0; + phys_addr_t start, end; + u64 i; + + memblock_clear_hotplug(0, -1); + + memmap_init_reserved_pages(); + + /* + * We need to use NUMA_NO_NODE instead of NODE_DATA(0)->node_id + * because in some case like Node0 doesn't have RAM installed + * low ram will be on Node1 + */ + for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE, &start, &end, + NULL) + count += __free_memory_core(start, end); + + return count; +} + +static int reset_managed_pages_done __initdata; + +static void __init reset_node_managed_pages(pg_data_t *pgdat) +{ + struct zone *z; + + for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++) + atomic_long_set(&z->managed_pages, 0); +} + +void __init reset_all_zones_managed_pages(void) +{ + struct pglist_data *pgdat; + + if (reset_managed_pages_done) + return; + + for_each_online_pgdat(pgdat) + reset_node_managed_pages(pgdat); + + reset_managed_pages_done = 1; +} + +/** + * memblock_free_all - release free pages to the buddy allocator + */ +void __init memblock_free_all(void) +{ + unsigned long pages; + + free_unused_memmap(); + reset_all_zones_managed_pages(); + + pages = free_low_memory_core_early(); + totalram_pages_add(pages); +} + +#if defined(CONFIG_DEBUG_FS) && defined(CONFIG_ARCH_KEEP_MEMBLOCK) +static const char * const flagname[] = { + [ilog2(MEMBLOCK_HOTPLUG)] = "HOTPLUG", + [ilog2(MEMBLOCK_MIRROR)] = "MIRROR", + [ilog2(MEMBLOCK_NOMAP)] = "NOMAP", + [ilog2(MEMBLOCK_DRIVER_MANAGED)] = "DRV_MNG", +}; + +static int memblock_debug_show(struct seq_file *m, void *private) +{ + struct memblock_type *type = m->private; + struct memblock_region *reg; + int i, j, nid; + unsigned int count = ARRAY_SIZE(flagname); + phys_addr_t end; + + for (i = 0; i < type->cnt; i++) { + reg = &type->regions[i]; + end = reg->base + reg->size - 1; + nid = memblock_get_region_node(reg); + + seq_printf(m, "%4d: ", i); + seq_printf(m, "%pa..%pa ", ®->base, &end); + if (nid != MAX_NUMNODES) + seq_printf(m, "%4d ", nid); + else + seq_printf(m, "%4c ", 'x'); + if (reg->flags) { + for (j = 0; j < count; j++) { + if (reg->flags & (1U << j)) { + seq_printf(m, "%s\n", flagname[j]); + break; + } + } + if (j == count) + seq_printf(m, "%s\n", "UNKNOWN"); + } else { + seq_printf(m, "%s\n", "NONE"); + } + } + return 0; +} +DEFINE_SHOW_ATTRIBUTE(memblock_debug); + +static int __init memblock_init_debugfs(void) +{ + struct dentry *root = debugfs_create_dir("memblock", NULL); + + debugfs_create_file("memory", 0444, root, + &memblock.memory, &memblock_debug_fops); + debugfs_create_file("reserved", 0444, root, + &memblock.reserved, &memblock_debug_fops); +#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP + debugfs_create_file("physmem", 0444, root, &physmem, + &memblock_debug_fops); +#endif + + return 0; +} +__initcall(memblock_init_debugfs); + +#endif /* CONFIG_DEBUG_FS */ |