summaryrefslogtreecommitdiffstats
path: root/mm/memblock.c
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-11 08:27:49 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-11 08:27:49 +0000
commitace9429bb58fd418f0c81d4c2835699bddf6bde6 (patch)
treeb2d64bc10158fdd5497876388cd68142ca374ed3 /mm/memblock.c
parentInitial commit. (diff)
downloadlinux-ace9429bb58fd418f0c81d4c2835699bddf6bde6.tar.xz
linux-ace9429bb58fd418f0c81d4c2835699bddf6bde6.zip
Adding upstream version 6.6.15.upstream/6.6.15
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'mm/memblock.c')
-rw-r--r--mm/memblock.c2249
1 files changed, 2249 insertions, 0 deletions
diff --git a/mm/memblock.c b/mm/memblock.c
new file mode 100644
index 0000000000..6d18485571
--- /dev/null
+++ b/mm/memblock.c
@@ -0,0 +1,2249 @@
+// SPDX-License-Identifier: GPL-2.0-or-later
+/*
+ * Procedures for maintaining information about logical memory blocks.
+ *
+ * Peter Bergner, IBM Corp. June 2001.
+ * Copyright (C) 2001 Peter Bergner.
+ */
+
+#include <linux/kernel.h>
+#include <linux/slab.h>
+#include <linux/init.h>
+#include <linux/bitops.h>
+#include <linux/poison.h>
+#include <linux/pfn.h>
+#include <linux/debugfs.h>
+#include <linux/kmemleak.h>
+#include <linux/seq_file.h>
+#include <linux/memblock.h>
+
+#include <asm/sections.h>
+#include <linux/io.h>
+
+#include "internal.h"
+
+#define INIT_MEMBLOCK_REGIONS 128
+#define INIT_PHYSMEM_REGIONS 4
+
+#ifndef INIT_MEMBLOCK_RESERVED_REGIONS
+# define INIT_MEMBLOCK_RESERVED_REGIONS INIT_MEMBLOCK_REGIONS
+#endif
+
+#ifndef INIT_MEMBLOCK_MEMORY_REGIONS
+#define INIT_MEMBLOCK_MEMORY_REGIONS INIT_MEMBLOCK_REGIONS
+#endif
+
+/**
+ * DOC: memblock overview
+ *
+ * Memblock is a method of managing memory regions during the early
+ * boot period when the usual kernel memory allocators are not up and
+ * running.
+ *
+ * Memblock views the system memory as collections of contiguous
+ * regions. There are several types of these collections:
+ *
+ * * ``memory`` - describes the physical memory available to the
+ * kernel; this may differ from the actual physical memory installed
+ * in the system, for instance when the memory is restricted with
+ * ``mem=`` command line parameter
+ * * ``reserved`` - describes the regions that were allocated
+ * * ``physmem`` - describes the actual physical memory available during
+ * boot regardless of the possible restrictions and memory hot(un)plug;
+ * the ``physmem`` type is only available on some architectures.
+ *
+ * Each region is represented by struct memblock_region that
+ * defines the region extents, its attributes and NUMA node id on NUMA
+ * systems. Every memory type is described by the struct memblock_type
+ * which contains an array of memory regions along with
+ * the allocator metadata. The "memory" and "reserved" types are nicely
+ * wrapped with struct memblock. This structure is statically
+ * initialized at build time. The region arrays are initially sized to
+ * %INIT_MEMBLOCK_MEMORY_REGIONS for "memory" and
+ * %INIT_MEMBLOCK_RESERVED_REGIONS for "reserved". The region array
+ * for "physmem" is initially sized to %INIT_PHYSMEM_REGIONS.
+ * The memblock_allow_resize() enables automatic resizing of the region
+ * arrays during addition of new regions. This feature should be used
+ * with care so that memory allocated for the region array will not
+ * overlap with areas that should be reserved, for example initrd.
+ *
+ * The early architecture setup should tell memblock what the physical
+ * memory layout is by using memblock_add() or memblock_add_node()
+ * functions. The first function does not assign the region to a NUMA
+ * node and it is appropriate for UMA systems. Yet, it is possible to
+ * use it on NUMA systems as well and assign the region to a NUMA node
+ * later in the setup process using memblock_set_node(). The
+ * memblock_add_node() performs such an assignment directly.
+ *
+ * Once memblock is setup the memory can be allocated using one of the
+ * API variants:
+ *
+ * * memblock_phys_alloc*() - these functions return the **physical**
+ * address of the allocated memory
+ * * memblock_alloc*() - these functions return the **virtual** address
+ * of the allocated memory.
+ *
+ * Note, that both API variants use implicit assumptions about allowed
+ * memory ranges and the fallback methods. Consult the documentation
+ * of memblock_alloc_internal() and memblock_alloc_range_nid()
+ * functions for more elaborate description.
+ *
+ * As the system boot progresses, the architecture specific mem_init()
+ * function frees all the memory to the buddy page allocator.
+ *
+ * Unless an architecture enables %CONFIG_ARCH_KEEP_MEMBLOCK, the
+ * memblock data structures (except "physmem") will be discarded after the
+ * system initialization completes.
+ */
+
+#ifndef CONFIG_NUMA
+struct pglist_data __refdata contig_page_data;
+EXPORT_SYMBOL(contig_page_data);
+#endif
+
+unsigned long max_low_pfn;
+unsigned long min_low_pfn;
+unsigned long max_pfn;
+unsigned long long max_possible_pfn;
+
+static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_MEMORY_REGIONS] __initdata_memblock;
+static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_RESERVED_REGIONS] __initdata_memblock;
+#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
+static struct memblock_region memblock_physmem_init_regions[INIT_PHYSMEM_REGIONS];
+#endif
+
+struct memblock memblock __initdata_memblock = {
+ .memory.regions = memblock_memory_init_regions,
+ .memory.cnt = 1, /* empty dummy entry */
+ .memory.max = INIT_MEMBLOCK_MEMORY_REGIONS,
+ .memory.name = "memory",
+
+ .reserved.regions = memblock_reserved_init_regions,
+ .reserved.cnt = 1, /* empty dummy entry */
+ .reserved.max = INIT_MEMBLOCK_RESERVED_REGIONS,
+ .reserved.name = "reserved",
+
+ .bottom_up = false,
+ .current_limit = MEMBLOCK_ALLOC_ANYWHERE,
+};
+
+#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
+struct memblock_type physmem = {
+ .regions = memblock_physmem_init_regions,
+ .cnt = 1, /* empty dummy entry */
+ .max = INIT_PHYSMEM_REGIONS,
+ .name = "physmem",
+};
+#endif
+
+/*
+ * keep a pointer to &memblock.memory in the text section to use it in
+ * __next_mem_range() and its helpers.
+ * For architectures that do not keep memblock data after init, this
+ * pointer will be reset to NULL at memblock_discard()
+ */
+static __refdata struct memblock_type *memblock_memory = &memblock.memory;
+
+#define for_each_memblock_type(i, memblock_type, rgn) \
+ for (i = 0, rgn = &memblock_type->regions[0]; \
+ i < memblock_type->cnt; \
+ i++, rgn = &memblock_type->regions[i])
+
+#define memblock_dbg(fmt, ...) \
+ do { \
+ if (memblock_debug) \
+ pr_info(fmt, ##__VA_ARGS__); \
+ } while (0)
+
+static int memblock_debug __initdata_memblock;
+static bool system_has_some_mirror __initdata_memblock;
+static int memblock_can_resize __initdata_memblock;
+static int memblock_memory_in_slab __initdata_memblock;
+static int memblock_reserved_in_slab __initdata_memblock;
+
+bool __init_memblock memblock_has_mirror(void)
+{
+ return system_has_some_mirror;
+}
+
+static enum memblock_flags __init_memblock choose_memblock_flags(void)
+{
+ return system_has_some_mirror ? MEMBLOCK_MIRROR : MEMBLOCK_NONE;
+}
+
+/* adjust *@size so that (@base + *@size) doesn't overflow, return new size */
+static inline phys_addr_t memblock_cap_size(phys_addr_t base, phys_addr_t *size)
+{
+ return *size = min(*size, PHYS_ADDR_MAX - base);
+}
+
+/*
+ * Address comparison utilities
+ */
+static unsigned long __init_memblock memblock_addrs_overlap(phys_addr_t base1, phys_addr_t size1,
+ phys_addr_t base2, phys_addr_t size2)
+{
+ return ((base1 < (base2 + size2)) && (base2 < (base1 + size1)));
+}
+
+bool __init_memblock memblock_overlaps_region(struct memblock_type *type,
+ phys_addr_t base, phys_addr_t size)
+{
+ unsigned long i;
+
+ memblock_cap_size(base, &size);
+
+ for (i = 0; i < type->cnt; i++)
+ if (memblock_addrs_overlap(base, size, type->regions[i].base,
+ type->regions[i].size))
+ break;
+ return i < type->cnt;
+}
+
+/**
+ * __memblock_find_range_bottom_up - find free area utility in bottom-up
+ * @start: start of candidate range
+ * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
+ * %MEMBLOCK_ALLOC_ACCESSIBLE
+ * @size: size of free area to find
+ * @align: alignment of free area to find
+ * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
+ * @flags: pick from blocks based on memory attributes
+ *
+ * Utility called from memblock_find_in_range_node(), find free area bottom-up.
+ *
+ * Return:
+ * Found address on success, 0 on failure.
+ */
+static phys_addr_t __init_memblock
+__memblock_find_range_bottom_up(phys_addr_t start, phys_addr_t end,
+ phys_addr_t size, phys_addr_t align, int nid,
+ enum memblock_flags flags)
+{
+ phys_addr_t this_start, this_end, cand;
+ u64 i;
+
+ for_each_free_mem_range(i, nid, flags, &this_start, &this_end, NULL) {
+ this_start = clamp(this_start, start, end);
+ this_end = clamp(this_end, start, end);
+
+ cand = round_up(this_start, align);
+ if (cand < this_end && this_end - cand >= size)
+ return cand;
+ }
+
+ return 0;
+}
+
+/**
+ * __memblock_find_range_top_down - find free area utility, in top-down
+ * @start: start of candidate range
+ * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
+ * %MEMBLOCK_ALLOC_ACCESSIBLE
+ * @size: size of free area to find
+ * @align: alignment of free area to find
+ * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
+ * @flags: pick from blocks based on memory attributes
+ *
+ * Utility called from memblock_find_in_range_node(), find free area top-down.
+ *
+ * Return:
+ * Found address on success, 0 on failure.
+ */
+static phys_addr_t __init_memblock
+__memblock_find_range_top_down(phys_addr_t start, phys_addr_t end,
+ phys_addr_t size, phys_addr_t align, int nid,
+ enum memblock_flags flags)
+{
+ phys_addr_t this_start, this_end, cand;
+ u64 i;
+
+ for_each_free_mem_range_reverse(i, nid, flags, &this_start, &this_end,
+ NULL) {
+ this_start = clamp(this_start, start, end);
+ this_end = clamp(this_end, start, end);
+
+ if (this_end < size)
+ continue;
+
+ cand = round_down(this_end - size, align);
+ if (cand >= this_start)
+ return cand;
+ }
+
+ return 0;
+}
+
+/**
+ * memblock_find_in_range_node - find free area in given range and node
+ * @size: size of free area to find
+ * @align: alignment of free area to find
+ * @start: start of candidate range
+ * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
+ * %MEMBLOCK_ALLOC_ACCESSIBLE
+ * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
+ * @flags: pick from blocks based on memory attributes
+ *
+ * Find @size free area aligned to @align in the specified range and node.
+ *
+ * Return:
+ * Found address on success, 0 on failure.
+ */
+static phys_addr_t __init_memblock memblock_find_in_range_node(phys_addr_t size,
+ phys_addr_t align, phys_addr_t start,
+ phys_addr_t end, int nid,
+ enum memblock_flags flags)
+{
+ /* pump up @end */
+ if (end == MEMBLOCK_ALLOC_ACCESSIBLE ||
+ end == MEMBLOCK_ALLOC_NOLEAKTRACE)
+ end = memblock.current_limit;
+
+ /* avoid allocating the first page */
+ start = max_t(phys_addr_t, start, PAGE_SIZE);
+ end = max(start, end);
+
+ if (memblock_bottom_up())
+ return __memblock_find_range_bottom_up(start, end, size, align,
+ nid, flags);
+ else
+ return __memblock_find_range_top_down(start, end, size, align,
+ nid, flags);
+}
+
+/**
+ * memblock_find_in_range - find free area in given range
+ * @start: start of candidate range
+ * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
+ * %MEMBLOCK_ALLOC_ACCESSIBLE
+ * @size: size of free area to find
+ * @align: alignment of free area to find
+ *
+ * Find @size free area aligned to @align in the specified range.
+ *
+ * Return:
+ * Found address on success, 0 on failure.
+ */
+static phys_addr_t __init_memblock memblock_find_in_range(phys_addr_t start,
+ phys_addr_t end, phys_addr_t size,
+ phys_addr_t align)
+{
+ phys_addr_t ret;
+ enum memblock_flags flags = choose_memblock_flags();
+
+again:
+ ret = memblock_find_in_range_node(size, align, start, end,
+ NUMA_NO_NODE, flags);
+
+ if (!ret && (flags & MEMBLOCK_MIRROR)) {
+ pr_warn_ratelimited("Could not allocate %pap bytes of mirrored memory\n",
+ &size);
+ flags &= ~MEMBLOCK_MIRROR;
+ goto again;
+ }
+
+ return ret;
+}
+
+static void __init_memblock memblock_remove_region(struct memblock_type *type, unsigned long r)
+{
+ type->total_size -= type->regions[r].size;
+ memmove(&type->regions[r], &type->regions[r + 1],
+ (type->cnt - (r + 1)) * sizeof(type->regions[r]));
+ type->cnt--;
+
+ /* Special case for empty arrays */
+ if (type->cnt == 0) {
+ WARN_ON(type->total_size != 0);
+ type->cnt = 1;
+ type->regions[0].base = 0;
+ type->regions[0].size = 0;
+ type->regions[0].flags = 0;
+ memblock_set_region_node(&type->regions[0], MAX_NUMNODES);
+ }
+}
+
+#ifndef CONFIG_ARCH_KEEP_MEMBLOCK
+/**
+ * memblock_discard - discard memory and reserved arrays if they were allocated
+ */
+void __init memblock_discard(void)
+{
+ phys_addr_t addr, size;
+
+ if (memblock.reserved.regions != memblock_reserved_init_regions) {
+ addr = __pa(memblock.reserved.regions);
+ size = PAGE_ALIGN(sizeof(struct memblock_region) *
+ memblock.reserved.max);
+ if (memblock_reserved_in_slab)
+ kfree(memblock.reserved.regions);
+ else
+ memblock_free_late(addr, size);
+ }
+
+ if (memblock.memory.regions != memblock_memory_init_regions) {
+ addr = __pa(memblock.memory.regions);
+ size = PAGE_ALIGN(sizeof(struct memblock_region) *
+ memblock.memory.max);
+ if (memblock_memory_in_slab)
+ kfree(memblock.memory.regions);
+ else
+ memblock_free_late(addr, size);
+ }
+
+ memblock_memory = NULL;
+}
+#endif
+
+/**
+ * memblock_double_array - double the size of the memblock regions array
+ * @type: memblock type of the regions array being doubled
+ * @new_area_start: starting address of memory range to avoid overlap with
+ * @new_area_size: size of memory range to avoid overlap with
+ *
+ * Double the size of the @type regions array. If memblock is being used to
+ * allocate memory for a new reserved regions array and there is a previously
+ * allocated memory range [@new_area_start, @new_area_start + @new_area_size]
+ * waiting to be reserved, ensure the memory used by the new array does
+ * not overlap.
+ *
+ * Return:
+ * 0 on success, -1 on failure.
+ */
+static int __init_memblock memblock_double_array(struct memblock_type *type,
+ phys_addr_t new_area_start,
+ phys_addr_t new_area_size)
+{
+ struct memblock_region *new_array, *old_array;
+ phys_addr_t old_alloc_size, new_alloc_size;
+ phys_addr_t old_size, new_size, addr, new_end;
+ int use_slab = slab_is_available();
+ int *in_slab;
+
+ /* We don't allow resizing until we know about the reserved regions
+ * of memory that aren't suitable for allocation
+ */
+ if (!memblock_can_resize)
+ return -1;
+
+ /* Calculate new doubled size */
+ old_size = type->max * sizeof(struct memblock_region);
+ new_size = old_size << 1;
+ /*
+ * We need to allocated new one align to PAGE_SIZE,
+ * so we can free them completely later.
+ */
+ old_alloc_size = PAGE_ALIGN(old_size);
+ new_alloc_size = PAGE_ALIGN(new_size);
+
+ /* Retrieve the slab flag */
+ if (type == &memblock.memory)
+ in_slab = &memblock_memory_in_slab;
+ else
+ in_slab = &memblock_reserved_in_slab;
+
+ /* Try to find some space for it */
+ if (use_slab) {
+ new_array = kmalloc(new_size, GFP_KERNEL);
+ addr = new_array ? __pa(new_array) : 0;
+ } else {
+ /* only exclude range when trying to double reserved.regions */
+ if (type != &memblock.reserved)
+ new_area_start = new_area_size = 0;
+
+ addr = memblock_find_in_range(new_area_start + new_area_size,
+ memblock.current_limit,
+ new_alloc_size, PAGE_SIZE);
+ if (!addr && new_area_size)
+ addr = memblock_find_in_range(0,
+ min(new_area_start, memblock.current_limit),
+ new_alloc_size, PAGE_SIZE);
+
+ new_array = addr ? __va(addr) : NULL;
+ }
+ if (!addr) {
+ pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n",
+ type->name, type->max, type->max * 2);
+ return -1;
+ }
+
+ new_end = addr + new_size - 1;
+ memblock_dbg("memblock: %s is doubled to %ld at [%pa-%pa]",
+ type->name, type->max * 2, &addr, &new_end);
+
+ /*
+ * Found space, we now need to move the array over before we add the
+ * reserved region since it may be our reserved array itself that is
+ * full.
+ */
+ memcpy(new_array, type->regions, old_size);
+ memset(new_array + type->max, 0, old_size);
+ old_array = type->regions;
+ type->regions = new_array;
+ type->max <<= 1;
+
+ /* Free old array. We needn't free it if the array is the static one */
+ if (*in_slab)
+ kfree(old_array);
+ else if (old_array != memblock_memory_init_regions &&
+ old_array != memblock_reserved_init_regions)
+ memblock_free(old_array, old_alloc_size);
+
+ /*
+ * Reserve the new array if that comes from the memblock. Otherwise, we
+ * needn't do it
+ */
+ if (!use_slab)
+ BUG_ON(memblock_reserve(addr, new_alloc_size));
+
+ /* Update slab flag */
+ *in_slab = use_slab;
+
+ return 0;
+}
+
+/**
+ * memblock_merge_regions - merge neighboring compatible regions
+ * @type: memblock type to scan
+ * @start_rgn: start scanning from (@start_rgn - 1)
+ * @end_rgn: end scanning at (@end_rgn - 1)
+ * Scan @type and merge neighboring compatible regions in [@start_rgn - 1, @end_rgn)
+ */
+static void __init_memblock memblock_merge_regions(struct memblock_type *type,
+ unsigned long start_rgn,
+ unsigned long end_rgn)
+{
+ int i = 0;
+ if (start_rgn)
+ i = start_rgn - 1;
+ end_rgn = min(end_rgn, type->cnt - 1);
+ while (i < end_rgn) {
+ struct memblock_region *this = &type->regions[i];
+ struct memblock_region *next = &type->regions[i + 1];
+
+ if (this->base + this->size != next->base ||
+ memblock_get_region_node(this) !=
+ memblock_get_region_node(next) ||
+ this->flags != next->flags) {
+ BUG_ON(this->base + this->size > next->base);
+ i++;
+ continue;
+ }
+
+ this->size += next->size;
+ /* move forward from next + 1, index of which is i + 2 */
+ memmove(next, next + 1, (type->cnt - (i + 2)) * sizeof(*next));
+ type->cnt--;
+ end_rgn--;
+ }
+}
+
+/**
+ * memblock_insert_region - insert new memblock region
+ * @type: memblock type to insert into
+ * @idx: index for the insertion point
+ * @base: base address of the new region
+ * @size: size of the new region
+ * @nid: node id of the new region
+ * @flags: flags of the new region
+ *
+ * Insert new memblock region [@base, @base + @size) into @type at @idx.
+ * @type must already have extra room to accommodate the new region.
+ */
+static void __init_memblock memblock_insert_region(struct memblock_type *type,
+ int idx, phys_addr_t base,
+ phys_addr_t size,
+ int nid,
+ enum memblock_flags flags)
+{
+ struct memblock_region *rgn = &type->regions[idx];
+
+ BUG_ON(type->cnt >= type->max);
+ memmove(rgn + 1, rgn, (type->cnt - idx) * sizeof(*rgn));
+ rgn->base = base;
+ rgn->size = size;
+ rgn->flags = flags;
+ memblock_set_region_node(rgn, nid);
+ type->cnt++;
+ type->total_size += size;
+}
+
+/**
+ * memblock_add_range - add new memblock region
+ * @type: memblock type to add new region into
+ * @base: base address of the new region
+ * @size: size of the new region
+ * @nid: nid of the new region
+ * @flags: flags of the new region
+ *
+ * Add new memblock region [@base, @base + @size) into @type. The new region
+ * is allowed to overlap with existing ones - overlaps don't affect already
+ * existing regions. @type is guaranteed to be minimal (all neighbouring
+ * compatible regions are merged) after the addition.
+ *
+ * Return:
+ * 0 on success, -errno on failure.
+ */
+static int __init_memblock memblock_add_range(struct memblock_type *type,
+ phys_addr_t base, phys_addr_t size,
+ int nid, enum memblock_flags flags)
+{
+ bool insert = false;
+ phys_addr_t obase = base;
+ phys_addr_t end = base + memblock_cap_size(base, &size);
+ int idx, nr_new, start_rgn = -1, end_rgn;
+ struct memblock_region *rgn;
+
+ if (!size)
+ return 0;
+
+ /* special case for empty array */
+ if (type->regions[0].size == 0) {
+ WARN_ON(type->cnt != 1 || type->total_size);
+ type->regions[0].base = base;
+ type->regions[0].size = size;
+ type->regions[0].flags = flags;
+ memblock_set_region_node(&type->regions[0], nid);
+ type->total_size = size;
+ return 0;
+ }
+
+ /*
+ * The worst case is when new range overlaps all existing regions,
+ * then we'll need type->cnt + 1 empty regions in @type. So if
+ * type->cnt * 2 + 1 is less than or equal to type->max, we know
+ * that there is enough empty regions in @type, and we can insert
+ * regions directly.
+ */
+ if (type->cnt * 2 + 1 <= type->max)
+ insert = true;
+
+repeat:
+ /*
+ * The following is executed twice. Once with %false @insert and
+ * then with %true. The first counts the number of regions needed
+ * to accommodate the new area. The second actually inserts them.
+ */
+ base = obase;
+ nr_new = 0;
+
+ for_each_memblock_type(idx, type, rgn) {
+ phys_addr_t rbase = rgn->base;
+ phys_addr_t rend = rbase + rgn->size;
+
+ if (rbase >= end)
+ break;
+ if (rend <= base)
+ continue;
+ /*
+ * @rgn overlaps. If it separates the lower part of new
+ * area, insert that portion.
+ */
+ if (rbase > base) {
+#ifdef CONFIG_NUMA
+ WARN_ON(nid != memblock_get_region_node(rgn));
+#endif
+ WARN_ON(flags != rgn->flags);
+ nr_new++;
+ if (insert) {
+ if (start_rgn == -1)
+ start_rgn = idx;
+ end_rgn = idx + 1;
+ memblock_insert_region(type, idx++, base,
+ rbase - base, nid,
+ flags);
+ }
+ }
+ /* area below @rend is dealt with, forget about it */
+ base = min(rend, end);
+ }
+
+ /* insert the remaining portion */
+ if (base < end) {
+ nr_new++;
+ if (insert) {
+ if (start_rgn == -1)
+ start_rgn = idx;
+ end_rgn = idx + 1;
+ memblock_insert_region(type, idx, base, end - base,
+ nid, flags);
+ }
+ }
+
+ if (!nr_new)
+ return 0;
+
+ /*
+ * If this was the first round, resize array and repeat for actual
+ * insertions; otherwise, merge and return.
+ */
+ if (!insert) {
+ while (type->cnt + nr_new > type->max)
+ if (memblock_double_array(type, obase, size) < 0)
+ return -ENOMEM;
+ insert = true;
+ goto repeat;
+ } else {
+ memblock_merge_regions(type, start_rgn, end_rgn);
+ return 0;
+ }
+}
+
+/**
+ * memblock_add_node - add new memblock region within a NUMA node
+ * @base: base address of the new region
+ * @size: size of the new region
+ * @nid: nid of the new region
+ * @flags: flags of the new region
+ *
+ * Add new memblock region [@base, @base + @size) to the "memory"
+ * type. See memblock_add_range() description for mode details
+ *
+ * Return:
+ * 0 on success, -errno on failure.
+ */
+int __init_memblock memblock_add_node(phys_addr_t base, phys_addr_t size,
+ int nid, enum memblock_flags flags)
+{
+ phys_addr_t end = base + size - 1;
+
+ memblock_dbg("%s: [%pa-%pa] nid=%d flags=%x %pS\n", __func__,
+ &base, &end, nid, flags, (void *)_RET_IP_);
+
+ return memblock_add_range(&memblock.memory, base, size, nid, flags);
+}
+
+/**
+ * memblock_add - add new memblock region
+ * @base: base address of the new region
+ * @size: size of the new region
+ *
+ * Add new memblock region [@base, @base + @size) to the "memory"
+ * type. See memblock_add_range() description for mode details
+ *
+ * Return:
+ * 0 on success, -errno on failure.
+ */
+int __init_memblock memblock_add(phys_addr_t base, phys_addr_t size)
+{
+ phys_addr_t end = base + size - 1;
+
+ memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
+ &base, &end, (void *)_RET_IP_);
+
+ return memblock_add_range(&memblock.memory, base, size, MAX_NUMNODES, 0);
+}
+
+/**
+ * memblock_isolate_range - isolate given range into disjoint memblocks
+ * @type: memblock type to isolate range for
+ * @base: base of range to isolate
+ * @size: size of range to isolate
+ * @start_rgn: out parameter for the start of isolated region
+ * @end_rgn: out parameter for the end of isolated region
+ *
+ * Walk @type and ensure that regions don't cross the boundaries defined by
+ * [@base, @base + @size). Crossing regions are split at the boundaries,
+ * which may create at most two more regions. The index of the first
+ * region inside the range is returned in *@start_rgn and end in *@end_rgn.
+ *
+ * Return:
+ * 0 on success, -errno on failure.
+ */
+static int __init_memblock memblock_isolate_range(struct memblock_type *type,
+ phys_addr_t base, phys_addr_t size,
+ int *start_rgn, int *end_rgn)
+{
+ phys_addr_t end = base + memblock_cap_size(base, &size);
+ int idx;
+ struct memblock_region *rgn;
+
+ *start_rgn = *end_rgn = 0;
+
+ if (!size)
+ return 0;
+
+ /* we'll create at most two more regions */
+ while (type->cnt + 2 > type->max)
+ if (memblock_double_array(type, base, size) < 0)
+ return -ENOMEM;
+
+ for_each_memblock_type(idx, type, rgn) {
+ phys_addr_t rbase = rgn->base;
+ phys_addr_t rend = rbase + rgn->size;
+
+ if (rbase >= end)
+ break;
+ if (rend <= base)
+ continue;
+
+ if (rbase < base) {
+ /*
+ * @rgn intersects from below. Split and continue
+ * to process the next region - the new top half.
+ */
+ rgn->base = base;
+ rgn->size -= base - rbase;
+ type->total_size -= base - rbase;
+ memblock_insert_region(type, idx, rbase, base - rbase,
+ memblock_get_region_node(rgn),
+ rgn->flags);
+ } else if (rend > end) {
+ /*
+ * @rgn intersects from above. Split and redo the
+ * current region - the new bottom half.
+ */
+ rgn->base = end;
+ rgn->size -= end - rbase;
+ type->total_size -= end - rbase;
+ memblock_insert_region(type, idx--, rbase, end - rbase,
+ memblock_get_region_node(rgn),
+ rgn->flags);
+ } else {
+ /* @rgn is fully contained, record it */
+ if (!*end_rgn)
+ *start_rgn = idx;
+ *end_rgn = idx + 1;
+ }
+ }
+
+ return 0;
+}
+
+static int __init_memblock memblock_remove_range(struct memblock_type *type,
+ phys_addr_t base, phys_addr_t size)
+{
+ int start_rgn, end_rgn;
+ int i, ret;
+
+ ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
+ if (ret)
+ return ret;
+
+ for (i = end_rgn - 1; i >= start_rgn; i--)
+ memblock_remove_region(type, i);
+ return 0;
+}
+
+int __init_memblock memblock_remove(phys_addr_t base, phys_addr_t size)
+{
+ phys_addr_t end = base + size - 1;
+
+ memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
+ &base, &end, (void *)_RET_IP_);
+
+ return memblock_remove_range(&memblock.memory, base, size);
+}
+
+/**
+ * memblock_free - free boot memory allocation
+ * @ptr: starting address of the boot memory allocation
+ * @size: size of the boot memory block in bytes
+ *
+ * Free boot memory block previously allocated by memblock_alloc_xx() API.
+ * The freeing memory will not be released to the buddy allocator.
+ */
+void __init_memblock memblock_free(void *ptr, size_t size)
+{
+ if (ptr)
+ memblock_phys_free(__pa(ptr), size);
+}
+
+/**
+ * memblock_phys_free - free boot memory block
+ * @base: phys starting address of the boot memory block
+ * @size: size of the boot memory block in bytes
+ *
+ * Free boot memory block previously allocated by memblock_phys_alloc_xx() API.
+ * The freeing memory will not be released to the buddy allocator.
+ */
+int __init_memblock memblock_phys_free(phys_addr_t base, phys_addr_t size)
+{
+ phys_addr_t end = base + size - 1;
+
+ memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
+ &base, &end, (void *)_RET_IP_);
+
+ kmemleak_free_part_phys(base, size);
+ return memblock_remove_range(&memblock.reserved, base, size);
+}
+
+int __init_memblock memblock_reserve(phys_addr_t base, phys_addr_t size)
+{
+ phys_addr_t end = base + size - 1;
+
+ memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
+ &base, &end, (void *)_RET_IP_);
+
+ return memblock_add_range(&memblock.reserved, base, size, MAX_NUMNODES, 0);
+}
+
+#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
+int __init_memblock memblock_physmem_add(phys_addr_t base, phys_addr_t size)
+{
+ phys_addr_t end = base + size - 1;
+
+ memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
+ &base, &end, (void *)_RET_IP_);
+
+ return memblock_add_range(&physmem, base, size, MAX_NUMNODES, 0);
+}
+#endif
+
+/**
+ * memblock_setclr_flag - set or clear flag for a memory region
+ * @base: base address of the region
+ * @size: size of the region
+ * @set: set or clear the flag
+ * @flag: the flag to update
+ *
+ * This function isolates region [@base, @base + @size), and sets/clears flag
+ *
+ * Return: 0 on success, -errno on failure.
+ */
+static int __init_memblock memblock_setclr_flag(phys_addr_t base,
+ phys_addr_t size, int set, int flag)
+{
+ struct memblock_type *type = &memblock.memory;
+ int i, ret, start_rgn, end_rgn;
+
+ ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
+ if (ret)
+ return ret;
+
+ for (i = start_rgn; i < end_rgn; i++) {
+ struct memblock_region *r = &type->regions[i];
+
+ if (set)
+ r->flags |= flag;
+ else
+ r->flags &= ~flag;
+ }
+
+ memblock_merge_regions(type, start_rgn, end_rgn);
+ return 0;
+}
+
+/**
+ * memblock_mark_hotplug - Mark hotpluggable memory with flag MEMBLOCK_HOTPLUG.
+ * @base: the base phys addr of the region
+ * @size: the size of the region
+ *
+ * Return: 0 on success, -errno on failure.
+ */
+int __init_memblock memblock_mark_hotplug(phys_addr_t base, phys_addr_t size)
+{
+ return memblock_setclr_flag(base, size, 1, MEMBLOCK_HOTPLUG);
+}
+
+/**
+ * memblock_clear_hotplug - Clear flag MEMBLOCK_HOTPLUG for a specified region.
+ * @base: the base phys addr of the region
+ * @size: the size of the region
+ *
+ * Return: 0 on success, -errno on failure.
+ */
+int __init_memblock memblock_clear_hotplug(phys_addr_t base, phys_addr_t size)
+{
+ return memblock_setclr_flag(base, size, 0, MEMBLOCK_HOTPLUG);
+}
+
+/**
+ * memblock_mark_mirror - Mark mirrored memory with flag MEMBLOCK_MIRROR.
+ * @base: the base phys addr of the region
+ * @size: the size of the region
+ *
+ * Return: 0 on success, -errno on failure.
+ */
+int __init_memblock memblock_mark_mirror(phys_addr_t base, phys_addr_t size)
+{
+ if (!mirrored_kernelcore)
+ return 0;
+
+ system_has_some_mirror = true;
+
+ return memblock_setclr_flag(base, size, 1, MEMBLOCK_MIRROR);
+}
+
+/**
+ * memblock_mark_nomap - Mark a memory region with flag MEMBLOCK_NOMAP.
+ * @base: the base phys addr of the region
+ * @size: the size of the region
+ *
+ * The memory regions marked with %MEMBLOCK_NOMAP will not be added to the
+ * direct mapping of the physical memory. These regions will still be
+ * covered by the memory map. The struct page representing NOMAP memory
+ * frames in the memory map will be PageReserved()
+ *
+ * Note: if the memory being marked %MEMBLOCK_NOMAP was allocated from
+ * memblock, the caller must inform kmemleak to ignore that memory
+ *
+ * Return: 0 on success, -errno on failure.
+ */
+int __init_memblock memblock_mark_nomap(phys_addr_t base, phys_addr_t size)
+{
+ return memblock_setclr_flag(base, size, 1, MEMBLOCK_NOMAP);
+}
+
+/**
+ * memblock_clear_nomap - Clear flag MEMBLOCK_NOMAP for a specified region.
+ * @base: the base phys addr of the region
+ * @size: the size of the region
+ *
+ * Return: 0 on success, -errno on failure.
+ */
+int __init_memblock memblock_clear_nomap(phys_addr_t base, phys_addr_t size)
+{
+ return memblock_setclr_flag(base, size, 0, MEMBLOCK_NOMAP);
+}
+
+static bool should_skip_region(struct memblock_type *type,
+ struct memblock_region *m,
+ int nid, int flags)
+{
+ int m_nid = memblock_get_region_node(m);
+
+ /* we never skip regions when iterating memblock.reserved or physmem */
+ if (type != memblock_memory)
+ return false;
+
+ /* only memory regions are associated with nodes, check it */
+ if (nid != NUMA_NO_NODE && nid != m_nid)
+ return true;
+
+ /* skip hotpluggable memory regions if needed */
+ if (movable_node_is_enabled() && memblock_is_hotpluggable(m) &&
+ !(flags & MEMBLOCK_HOTPLUG))
+ return true;
+
+ /* if we want mirror memory skip non-mirror memory regions */
+ if ((flags & MEMBLOCK_MIRROR) && !memblock_is_mirror(m))
+ return true;
+
+ /* skip nomap memory unless we were asked for it explicitly */
+ if (!(flags & MEMBLOCK_NOMAP) && memblock_is_nomap(m))
+ return true;
+
+ /* skip driver-managed memory unless we were asked for it explicitly */
+ if (!(flags & MEMBLOCK_DRIVER_MANAGED) && memblock_is_driver_managed(m))
+ return true;
+
+ return false;
+}
+
+/**
+ * __next_mem_range - next function for for_each_free_mem_range() etc.
+ * @idx: pointer to u64 loop variable
+ * @nid: node selector, %NUMA_NO_NODE for all nodes
+ * @flags: pick from blocks based on memory attributes
+ * @type_a: pointer to memblock_type from where the range is taken
+ * @type_b: pointer to memblock_type which excludes memory from being taken
+ * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
+ * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
+ * @out_nid: ptr to int for nid of the range, can be %NULL
+ *
+ * Find the first area from *@idx which matches @nid, fill the out
+ * parameters, and update *@idx for the next iteration. The lower 32bit of
+ * *@idx contains index into type_a and the upper 32bit indexes the
+ * areas before each region in type_b. For example, if type_b regions
+ * look like the following,
+ *
+ * 0:[0-16), 1:[32-48), 2:[128-130)
+ *
+ * The upper 32bit indexes the following regions.
+ *
+ * 0:[0-0), 1:[16-32), 2:[48-128), 3:[130-MAX)
+ *
+ * As both region arrays are sorted, the function advances the two indices
+ * in lockstep and returns each intersection.
+ */
+void __next_mem_range(u64 *idx, int nid, enum memblock_flags flags,
+ struct memblock_type *type_a,
+ struct memblock_type *type_b, phys_addr_t *out_start,
+ phys_addr_t *out_end, int *out_nid)
+{
+ int idx_a = *idx & 0xffffffff;
+ int idx_b = *idx >> 32;
+
+ if (WARN_ONCE(nid == MAX_NUMNODES,
+ "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
+ nid = NUMA_NO_NODE;
+
+ for (; idx_a < type_a->cnt; idx_a++) {
+ struct memblock_region *m = &type_a->regions[idx_a];
+
+ phys_addr_t m_start = m->base;
+ phys_addr_t m_end = m->base + m->size;
+ int m_nid = memblock_get_region_node(m);
+
+ if (should_skip_region(type_a, m, nid, flags))
+ continue;
+
+ if (!type_b) {
+ if (out_start)
+ *out_start = m_start;
+ if (out_end)
+ *out_end = m_end;
+ if (out_nid)
+ *out_nid = m_nid;
+ idx_a++;
+ *idx = (u32)idx_a | (u64)idx_b << 32;
+ return;
+ }
+
+ /* scan areas before each reservation */
+ for (; idx_b < type_b->cnt + 1; idx_b++) {
+ struct memblock_region *r;
+ phys_addr_t r_start;
+ phys_addr_t r_end;
+
+ r = &type_b->regions[idx_b];
+ r_start = idx_b ? r[-1].base + r[-1].size : 0;
+ r_end = idx_b < type_b->cnt ?
+ r->base : PHYS_ADDR_MAX;
+
+ /*
+ * if idx_b advanced past idx_a,
+ * break out to advance idx_a
+ */
+ if (r_start >= m_end)
+ break;
+ /* if the two regions intersect, we're done */
+ if (m_start < r_end) {
+ if (out_start)
+ *out_start =
+ max(m_start, r_start);
+ if (out_end)
+ *out_end = min(m_end, r_end);
+ if (out_nid)
+ *out_nid = m_nid;
+ /*
+ * The region which ends first is
+ * advanced for the next iteration.
+ */
+ if (m_end <= r_end)
+ idx_a++;
+ else
+ idx_b++;
+ *idx = (u32)idx_a | (u64)idx_b << 32;
+ return;
+ }
+ }
+ }
+
+ /* signal end of iteration */
+ *idx = ULLONG_MAX;
+}
+
+/**
+ * __next_mem_range_rev - generic next function for for_each_*_range_rev()
+ *
+ * @idx: pointer to u64 loop variable
+ * @nid: node selector, %NUMA_NO_NODE for all nodes
+ * @flags: pick from blocks based on memory attributes
+ * @type_a: pointer to memblock_type from where the range is taken
+ * @type_b: pointer to memblock_type which excludes memory from being taken
+ * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
+ * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
+ * @out_nid: ptr to int for nid of the range, can be %NULL
+ *
+ * Finds the next range from type_a which is not marked as unsuitable
+ * in type_b.
+ *
+ * Reverse of __next_mem_range().
+ */
+void __init_memblock __next_mem_range_rev(u64 *idx, int nid,
+ enum memblock_flags flags,
+ struct memblock_type *type_a,
+ struct memblock_type *type_b,
+ phys_addr_t *out_start,
+ phys_addr_t *out_end, int *out_nid)
+{
+ int idx_a = *idx & 0xffffffff;
+ int idx_b = *idx >> 32;
+
+ if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
+ nid = NUMA_NO_NODE;
+
+ if (*idx == (u64)ULLONG_MAX) {
+ idx_a = type_a->cnt - 1;
+ if (type_b != NULL)
+ idx_b = type_b->cnt;
+ else
+ idx_b = 0;
+ }
+
+ for (; idx_a >= 0; idx_a--) {
+ struct memblock_region *m = &type_a->regions[idx_a];
+
+ phys_addr_t m_start = m->base;
+ phys_addr_t m_end = m->base + m->size;
+ int m_nid = memblock_get_region_node(m);
+
+ if (should_skip_region(type_a, m, nid, flags))
+ continue;
+
+ if (!type_b) {
+ if (out_start)
+ *out_start = m_start;
+ if (out_end)
+ *out_end = m_end;
+ if (out_nid)
+ *out_nid = m_nid;
+ idx_a--;
+ *idx = (u32)idx_a | (u64)idx_b << 32;
+ return;
+ }
+
+ /* scan areas before each reservation */
+ for (; idx_b >= 0; idx_b--) {
+ struct memblock_region *r;
+ phys_addr_t r_start;
+ phys_addr_t r_end;
+
+ r = &type_b->regions[idx_b];
+ r_start = idx_b ? r[-1].base + r[-1].size : 0;
+ r_end = idx_b < type_b->cnt ?
+ r->base : PHYS_ADDR_MAX;
+ /*
+ * if idx_b advanced past idx_a,
+ * break out to advance idx_a
+ */
+
+ if (r_end <= m_start)
+ break;
+ /* if the two regions intersect, we're done */
+ if (m_end > r_start) {
+ if (out_start)
+ *out_start = max(m_start, r_start);
+ if (out_end)
+ *out_end = min(m_end, r_end);
+ if (out_nid)
+ *out_nid = m_nid;
+ if (m_start >= r_start)
+ idx_a--;
+ else
+ idx_b--;
+ *idx = (u32)idx_a | (u64)idx_b << 32;
+ return;
+ }
+ }
+ }
+ /* signal end of iteration */
+ *idx = ULLONG_MAX;
+}
+
+/*
+ * Common iterator interface used to define for_each_mem_pfn_range().
+ */
+void __init_memblock __next_mem_pfn_range(int *idx, int nid,
+ unsigned long *out_start_pfn,
+ unsigned long *out_end_pfn, int *out_nid)
+{
+ struct memblock_type *type = &memblock.memory;
+ struct memblock_region *r;
+ int r_nid;
+
+ while (++*idx < type->cnt) {
+ r = &type->regions[*idx];
+ r_nid = memblock_get_region_node(r);
+
+ if (PFN_UP(r->base) >= PFN_DOWN(r->base + r->size))
+ continue;
+ if (nid == MAX_NUMNODES || nid == r_nid)
+ break;
+ }
+ if (*idx >= type->cnt) {
+ *idx = -1;
+ return;
+ }
+
+ if (out_start_pfn)
+ *out_start_pfn = PFN_UP(r->base);
+ if (out_end_pfn)
+ *out_end_pfn = PFN_DOWN(r->base + r->size);
+ if (out_nid)
+ *out_nid = r_nid;
+}
+
+/**
+ * memblock_set_node - set node ID on memblock regions
+ * @base: base of area to set node ID for
+ * @size: size of area to set node ID for
+ * @type: memblock type to set node ID for
+ * @nid: node ID to set
+ *
+ * Set the nid of memblock @type regions in [@base, @base + @size) to @nid.
+ * Regions which cross the area boundaries are split as necessary.
+ *
+ * Return:
+ * 0 on success, -errno on failure.
+ */
+int __init_memblock memblock_set_node(phys_addr_t base, phys_addr_t size,
+ struct memblock_type *type, int nid)
+{
+#ifdef CONFIG_NUMA
+ int start_rgn, end_rgn;
+ int i, ret;
+
+ ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
+ if (ret)
+ return ret;
+
+ for (i = start_rgn; i < end_rgn; i++)
+ memblock_set_region_node(&type->regions[i], nid);
+
+ memblock_merge_regions(type, start_rgn, end_rgn);
+#endif
+ return 0;
+}
+
+#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
+/**
+ * __next_mem_pfn_range_in_zone - iterator for for_each_*_range_in_zone()
+ *
+ * @idx: pointer to u64 loop variable
+ * @zone: zone in which all of the memory blocks reside
+ * @out_spfn: ptr to ulong for start pfn of the range, can be %NULL
+ * @out_epfn: ptr to ulong for end pfn of the range, can be %NULL
+ *
+ * This function is meant to be a zone/pfn specific wrapper for the
+ * for_each_mem_range type iterators. Specifically they are used in the
+ * deferred memory init routines and as such we were duplicating much of
+ * this logic throughout the code. So instead of having it in multiple
+ * locations it seemed like it would make more sense to centralize this to
+ * one new iterator that does everything they need.
+ */
+void __init_memblock
+__next_mem_pfn_range_in_zone(u64 *idx, struct zone *zone,
+ unsigned long *out_spfn, unsigned long *out_epfn)
+{
+ int zone_nid = zone_to_nid(zone);
+ phys_addr_t spa, epa;
+
+ __next_mem_range(idx, zone_nid, MEMBLOCK_NONE,
+ &memblock.memory, &memblock.reserved,
+ &spa, &epa, NULL);
+
+ while (*idx != U64_MAX) {
+ unsigned long epfn = PFN_DOWN(epa);
+ unsigned long spfn = PFN_UP(spa);
+
+ /*
+ * Verify the end is at least past the start of the zone and
+ * that we have at least one PFN to initialize.
+ */
+ if (zone->zone_start_pfn < epfn && spfn < epfn) {
+ /* if we went too far just stop searching */
+ if (zone_end_pfn(zone) <= spfn) {
+ *idx = U64_MAX;
+ break;
+ }
+
+ if (out_spfn)
+ *out_spfn = max(zone->zone_start_pfn, spfn);
+ if (out_epfn)
+ *out_epfn = min(zone_end_pfn(zone), epfn);
+
+ return;
+ }
+
+ __next_mem_range(idx, zone_nid, MEMBLOCK_NONE,
+ &memblock.memory, &memblock.reserved,
+ &spa, &epa, NULL);
+ }
+
+ /* signal end of iteration */
+ if (out_spfn)
+ *out_spfn = ULONG_MAX;
+ if (out_epfn)
+ *out_epfn = 0;
+}
+
+#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
+
+/**
+ * memblock_alloc_range_nid - allocate boot memory block
+ * @size: size of memory block to be allocated in bytes
+ * @align: alignment of the region and block's size
+ * @start: the lower bound of the memory region to allocate (phys address)
+ * @end: the upper bound of the memory region to allocate (phys address)
+ * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
+ * @exact_nid: control the allocation fall back to other nodes
+ *
+ * The allocation is performed from memory region limited by
+ * memblock.current_limit if @end == %MEMBLOCK_ALLOC_ACCESSIBLE.
+ *
+ * If the specified node can not hold the requested memory and @exact_nid
+ * is false, the allocation falls back to any node in the system.
+ *
+ * For systems with memory mirroring, the allocation is attempted first
+ * from the regions with mirroring enabled and then retried from any
+ * memory region.
+ *
+ * In addition, function using kmemleak_alloc_phys for allocated boot
+ * memory block, it is never reported as leaks.
+ *
+ * Return:
+ * Physical address of allocated memory block on success, %0 on failure.
+ */
+phys_addr_t __init memblock_alloc_range_nid(phys_addr_t size,
+ phys_addr_t align, phys_addr_t start,
+ phys_addr_t end, int nid,
+ bool exact_nid)
+{
+ enum memblock_flags flags = choose_memblock_flags();
+ phys_addr_t found;
+
+ if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
+ nid = NUMA_NO_NODE;
+
+ if (!align) {
+ /* Can't use WARNs this early in boot on powerpc */
+ dump_stack();
+ align = SMP_CACHE_BYTES;
+ }
+
+again:
+ found = memblock_find_in_range_node(size, align, start, end, nid,
+ flags);
+ if (found && !memblock_reserve(found, size))
+ goto done;
+
+ if (nid != NUMA_NO_NODE && !exact_nid) {
+ found = memblock_find_in_range_node(size, align, start,
+ end, NUMA_NO_NODE,
+ flags);
+ if (found && !memblock_reserve(found, size))
+ goto done;
+ }
+
+ if (flags & MEMBLOCK_MIRROR) {
+ flags &= ~MEMBLOCK_MIRROR;
+ pr_warn_ratelimited("Could not allocate %pap bytes of mirrored memory\n",
+ &size);
+ goto again;
+ }
+
+ return 0;
+
+done:
+ /*
+ * Skip kmemleak for those places like kasan_init() and
+ * early_pgtable_alloc() due to high volume.
+ */
+ if (end != MEMBLOCK_ALLOC_NOLEAKTRACE)
+ /*
+ * Memblock allocated blocks are never reported as
+ * leaks. This is because many of these blocks are
+ * only referred via the physical address which is
+ * not looked up by kmemleak.
+ */
+ kmemleak_alloc_phys(found, size, 0);
+
+ /*
+ * Some Virtual Machine platforms, such as Intel TDX or AMD SEV-SNP,
+ * require memory to be accepted before it can be used by the
+ * guest.
+ *
+ * Accept the memory of the allocated buffer.
+ */
+ accept_memory(found, found + size);
+
+ return found;
+}
+
+/**
+ * memblock_phys_alloc_range - allocate a memory block inside specified range
+ * @size: size of memory block to be allocated in bytes
+ * @align: alignment of the region and block's size
+ * @start: the lower bound of the memory region to allocate (physical address)
+ * @end: the upper bound of the memory region to allocate (physical address)
+ *
+ * Allocate @size bytes in the between @start and @end.
+ *
+ * Return: physical address of the allocated memory block on success,
+ * %0 on failure.
+ */
+phys_addr_t __init memblock_phys_alloc_range(phys_addr_t size,
+ phys_addr_t align,
+ phys_addr_t start,
+ phys_addr_t end)
+{
+ memblock_dbg("%s: %llu bytes align=0x%llx from=%pa max_addr=%pa %pS\n",
+ __func__, (u64)size, (u64)align, &start, &end,
+ (void *)_RET_IP_);
+ return memblock_alloc_range_nid(size, align, start, end, NUMA_NO_NODE,
+ false);
+}
+
+/**
+ * memblock_phys_alloc_try_nid - allocate a memory block from specified NUMA node
+ * @size: size of memory block to be allocated in bytes
+ * @align: alignment of the region and block's size
+ * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
+ *
+ * Allocates memory block from the specified NUMA node. If the node
+ * has no available memory, attempts to allocated from any node in the
+ * system.
+ *
+ * Return: physical address of the allocated memory block on success,
+ * %0 on failure.
+ */
+phys_addr_t __init memblock_phys_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid)
+{
+ return memblock_alloc_range_nid(size, align, 0,
+ MEMBLOCK_ALLOC_ACCESSIBLE, nid, false);
+}
+
+/**
+ * memblock_alloc_internal - allocate boot memory block
+ * @size: size of memory block to be allocated in bytes
+ * @align: alignment of the region and block's size
+ * @min_addr: the lower bound of the memory region to allocate (phys address)
+ * @max_addr: the upper bound of the memory region to allocate (phys address)
+ * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
+ * @exact_nid: control the allocation fall back to other nodes
+ *
+ * Allocates memory block using memblock_alloc_range_nid() and
+ * converts the returned physical address to virtual.
+ *
+ * The @min_addr limit is dropped if it can not be satisfied and the allocation
+ * will fall back to memory below @min_addr. Other constraints, such
+ * as node and mirrored memory will be handled again in
+ * memblock_alloc_range_nid().
+ *
+ * Return:
+ * Virtual address of allocated memory block on success, NULL on failure.
+ */
+static void * __init memblock_alloc_internal(
+ phys_addr_t size, phys_addr_t align,
+ phys_addr_t min_addr, phys_addr_t max_addr,
+ int nid, bool exact_nid)
+{
+ phys_addr_t alloc;
+
+ /*
+ * Detect any accidental use of these APIs after slab is ready, as at
+ * this moment memblock may be deinitialized already and its
+ * internal data may be destroyed (after execution of memblock_free_all)
+ */
+ if (WARN_ON_ONCE(slab_is_available()))
+ return kzalloc_node(size, GFP_NOWAIT, nid);
+
+ if (max_addr > memblock.current_limit)
+ max_addr = memblock.current_limit;
+
+ alloc = memblock_alloc_range_nid(size, align, min_addr, max_addr, nid,
+ exact_nid);
+
+ /* retry allocation without lower limit */
+ if (!alloc && min_addr)
+ alloc = memblock_alloc_range_nid(size, align, 0, max_addr, nid,
+ exact_nid);
+
+ if (!alloc)
+ return NULL;
+
+ return phys_to_virt(alloc);
+}
+
+/**
+ * memblock_alloc_exact_nid_raw - allocate boot memory block on the exact node
+ * without zeroing memory
+ * @size: size of memory block to be allocated in bytes
+ * @align: alignment of the region and block's size
+ * @min_addr: the lower bound of the memory region from where the allocation
+ * is preferred (phys address)
+ * @max_addr: the upper bound of the memory region from where the allocation
+ * is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
+ * allocate only from memory limited by memblock.current_limit value
+ * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
+ *
+ * Public function, provides additional debug information (including caller
+ * info), if enabled. Does not zero allocated memory.
+ *
+ * Return:
+ * Virtual address of allocated memory block on success, NULL on failure.
+ */
+void * __init memblock_alloc_exact_nid_raw(
+ phys_addr_t size, phys_addr_t align,
+ phys_addr_t min_addr, phys_addr_t max_addr,
+ int nid)
+{
+ memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n",
+ __func__, (u64)size, (u64)align, nid, &min_addr,
+ &max_addr, (void *)_RET_IP_);
+
+ return memblock_alloc_internal(size, align, min_addr, max_addr, nid,
+ true);
+}
+
+/**
+ * memblock_alloc_try_nid_raw - allocate boot memory block without zeroing
+ * memory and without panicking
+ * @size: size of memory block to be allocated in bytes
+ * @align: alignment of the region and block's size
+ * @min_addr: the lower bound of the memory region from where the allocation
+ * is preferred (phys address)
+ * @max_addr: the upper bound of the memory region from where the allocation
+ * is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
+ * allocate only from memory limited by memblock.current_limit value
+ * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
+ *
+ * Public function, provides additional debug information (including caller
+ * info), if enabled. Does not zero allocated memory, does not panic if request
+ * cannot be satisfied.
+ *
+ * Return:
+ * Virtual address of allocated memory block on success, NULL on failure.
+ */
+void * __init memblock_alloc_try_nid_raw(
+ phys_addr_t size, phys_addr_t align,
+ phys_addr_t min_addr, phys_addr_t max_addr,
+ int nid)
+{
+ memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n",
+ __func__, (u64)size, (u64)align, nid, &min_addr,
+ &max_addr, (void *)_RET_IP_);
+
+ return memblock_alloc_internal(size, align, min_addr, max_addr, nid,
+ false);
+}
+
+/**
+ * memblock_alloc_try_nid - allocate boot memory block
+ * @size: size of memory block to be allocated in bytes
+ * @align: alignment of the region and block's size
+ * @min_addr: the lower bound of the memory region from where the allocation
+ * is preferred (phys address)
+ * @max_addr: the upper bound of the memory region from where the allocation
+ * is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
+ * allocate only from memory limited by memblock.current_limit value
+ * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
+ *
+ * Public function, provides additional debug information (including caller
+ * info), if enabled. This function zeroes the allocated memory.
+ *
+ * Return:
+ * Virtual address of allocated memory block on success, NULL on failure.
+ */
+void * __init memblock_alloc_try_nid(
+ phys_addr_t size, phys_addr_t align,
+ phys_addr_t min_addr, phys_addr_t max_addr,
+ int nid)
+{
+ void *ptr;
+
+ memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n",
+ __func__, (u64)size, (u64)align, nid, &min_addr,
+ &max_addr, (void *)_RET_IP_);
+ ptr = memblock_alloc_internal(size, align,
+ min_addr, max_addr, nid, false);
+ if (ptr)
+ memset(ptr, 0, size);
+
+ return ptr;
+}
+
+/**
+ * memblock_free_late - free pages directly to buddy allocator
+ * @base: phys starting address of the boot memory block
+ * @size: size of the boot memory block in bytes
+ *
+ * This is only useful when the memblock allocator has already been torn
+ * down, but we are still initializing the system. Pages are released directly
+ * to the buddy allocator.
+ */
+void __init memblock_free_late(phys_addr_t base, phys_addr_t size)
+{
+ phys_addr_t cursor, end;
+
+ end = base + size - 1;
+ memblock_dbg("%s: [%pa-%pa] %pS\n",
+ __func__, &base, &end, (void *)_RET_IP_);
+ kmemleak_free_part_phys(base, size);
+ cursor = PFN_UP(base);
+ end = PFN_DOWN(base + size);
+
+ for (; cursor < end; cursor++) {
+ memblock_free_pages(pfn_to_page(cursor), cursor, 0);
+ totalram_pages_inc();
+ }
+}
+
+/*
+ * Remaining API functions
+ */
+
+phys_addr_t __init_memblock memblock_phys_mem_size(void)
+{
+ return memblock.memory.total_size;
+}
+
+phys_addr_t __init_memblock memblock_reserved_size(void)
+{
+ return memblock.reserved.total_size;
+}
+
+/* lowest address */
+phys_addr_t __init_memblock memblock_start_of_DRAM(void)
+{
+ return memblock.memory.regions[0].base;
+}
+
+phys_addr_t __init_memblock memblock_end_of_DRAM(void)
+{
+ int idx = memblock.memory.cnt - 1;
+
+ return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size);
+}
+
+static phys_addr_t __init_memblock __find_max_addr(phys_addr_t limit)
+{
+ phys_addr_t max_addr = PHYS_ADDR_MAX;
+ struct memblock_region *r;
+
+ /*
+ * translate the memory @limit size into the max address within one of
+ * the memory memblock regions, if the @limit exceeds the total size
+ * of those regions, max_addr will keep original value PHYS_ADDR_MAX
+ */
+ for_each_mem_region(r) {
+ if (limit <= r->size) {
+ max_addr = r->base + limit;
+ break;
+ }
+ limit -= r->size;
+ }
+
+ return max_addr;
+}
+
+void __init memblock_enforce_memory_limit(phys_addr_t limit)
+{
+ phys_addr_t max_addr;
+
+ if (!limit)
+ return;
+
+ max_addr = __find_max_addr(limit);
+
+ /* @limit exceeds the total size of the memory, do nothing */
+ if (max_addr == PHYS_ADDR_MAX)
+ return;
+
+ /* truncate both memory and reserved regions */
+ memblock_remove_range(&memblock.memory, max_addr,
+ PHYS_ADDR_MAX);
+ memblock_remove_range(&memblock.reserved, max_addr,
+ PHYS_ADDR_MAX);
+}
+
+void __init memblock_cap_memory_range(phys_addr_t base, phys_addr_t size)
+{
+ int start_rgn, end_rgn;
+ int i, ret;
+
+ if (!size)
+ return;
+
+ if (!memblock_memory->total_size) {
+ pr_warn("%s: No memory registered yet\n", __func__);
+ return;
+ }
+
+ ret = memblock_isolate_range(&memblock.memory, base, size,
+ &start_rgn, &end_rgn);
+ if (ret)
+ return;
+
+ /* remove all the MAP regions */
+ for (i = memblock.memory.cnt - 1; i >= end_rgn; i--)
+ if (!memblock_is_nomap(&memblock.memory.regions[i]))
+ memblock_remove_region(&memblock.memory, i);
+
+ for (i = start_rgn - 1; i >= 0; i--)
+ if (!memblock_is_nomap(&memblock.memory.regions[i]))
+ memblock_remove_region(&memblock.memory, i);
+
+ /* truncate the reserved regions */
+ memblock_remove_range(&memblock.reserved, 0, base);
+ memblock_remove_range(&memblock.reserved,
+ base + size, PHYS_ADDR_MAX);
+}
+
+void __init memblock_mem_limit_remove_map(phys_addr_t limit)
+{
+ phys_addr_t max_addr;
+
+ if (!limit)
+ return;
+
+ max_addr = __find_max_addr(limit);
+
+ /* @limit exceeds the total size of the memory, do nothing */
+ if (max_addr == PHYS_ADDR_MAX)
+ return;
+
+ memblock_cap_memory_range(0, max_addr);
+}
+
+static int __init_memblock memblock_search(struct memblock_type *type, phys_addr_t addr)
+{
+ unsigned int left = 0, right = type->cnt;
+
+ do {
+ unsigned int mid = (right + left) / 2;
+
+ if (addr < type->regions[mid].base)
+ right = mid;
+ else if (addr >= (type->regions[mid].base +
+ type->regions[mid].size))
+ left = mid + 1;
+ else
+ return mid;
+ } while (left < right);
+ return -1;
+}
+
+bool __init_memblock memblock_is_reserved(phys_addr_t addr)
+{
+ return memblock_search(&memblock.reserved, addr) != -1;
+}
+
+bool __init_memblock memblock_is_memory(phys_addr_t addr)
+{
+ return memblock_search(&memblock.memory, addr) != -1;
+}
+
+bool __init_memblock memblock_is_map_memory(phys_addr_t addr)
+{
+ int i = memblock_search(&memblock.memory, addr);
+
+ if (i == -1)
+ return false;
+ return !memblock_is_nomap(&memblock.memory.regions[i]);
+}
+
+int __init_memblock memblock_search_pfn_nid(unsigned long pfn,
+ unsigned long *start_pfn, unsigned long *end_pfn)
+{
+ struct memblock_type *type = &memblock.memory;
+ int mid = memblock_search(type, PFN_PHYS(pfn));
+
+ if (mid == -1)
+ return -1;
+
+ *start_pfn = PFN_DOWN(type->regions[mid].base);
+ *end_pfn = PFN_DOWN(type->regions[mid].base + type->regions[mid].size);
+
+ return memblock_get_region_node(&type->regions[mid]);
+}
+
+/**
+ * memblock_is_region_memory - check if a region is a subset of memory
+ * @base: base of region to check
+ * @size: size of region to check
+ *
+ * Check if the region [@base, @base + @size) is a subset of a memory block.
+ *
+ * Return:
+ * 0 if false, non-zero if true
+ */
+bool __init_memblock memblock_is_region_memory(phys_addr_t base, phys_addr_t size)
+{
+ int idx = memblock_search(&memblock.memory, base);
+ phys_addr_t end = base + memblock_cap_size(base, &size);
+
+ if (idx == -1)
+ return false;
+ return (memblock.memory.regions[idx].base +
+ memblock.memory.regions[idx].size) >= end;
+}
+
+/**
+ * memblock_is_region_reserved - check if a region intersects reserved memory
+ * @base: base of region to check
+ * @size: size of region to check
+ *
+ * Check if the region [@base, @base + @size) intersects a reserved
+ * memory block.
+ *
+ * Return:
+ * True if they intersect, false if not.
+ */
+bool __init_memblock memblock_is_region_reserved(phys_addr_t base, phys_addr_t size)
+{
+ return memblock_overlaps_region(&memblock.reserved, base, size);
+}
+
+void __init_memblock memblock_trim_memory(phys_addr_t align)
+{
+ phys_addr_t start, end, orig_start, orig_end;
+ struct memblock_region *r;
+
+ for_each_mem_region(r) {
+ orig_start = r->base;
+ orig_end = r->base + r->size;
+ start = round_up(orig_start, align);
+ end = round_down(orig_end, align);
+
+ if (start == orig_start && end == orig_end)
+ continue;
+
+ if (start < end) {
+ r->base = start;
+ r->size = end - start;
+ } else {
+ memblock_remove_region(&memblock.memory,
+ r - memblock.memory.regions);
+ r--;
+ }
+ }
+}
+
+void __init_memblock memblock_set_current_limit(phys_addr_t limit)
+{
+ memblock.current_limit = limit;
+}
+
+phys_addr_t __init_memblock memblock_get_current_limit(void)
+{
+ return memblock.current_limit;
+}
+
+static void __init_memblock memblock_dump(struct memblock_type *type)
+{
+ phys_addr_t base, end, size;
+ enum memblock_flags flags;
+ int idx;
+ struct memblock_region *rgn;
+
+ pr_info(" %s.cnt = 0x%lx\n", type->name, type->cnt);
+
+ for_each_memblock_type(idx, type, rgn) {
+ char nid_buf[32] = "";
+
+ base = rgn->base;
+ size = rgn->size;
+ end = base + size - 1;
+ flags = rgn->flags;
+#ifdef CONFIG_NUMA
+ if (memblock_get_region_node(rgn) != MAX_NUMNODES)
+ snprintf(nid_buf, sizeof(nid_buf), " on node %d",
+ memblock_get_region_node(rgn));
+#endif
+ pr_info(" %s[%#x]\t[%pa-%pa], %pa bytes%s flags: %#x\n",
+ type->name, idx, &base, &end, &size, nid_buf, flags);
+ }
+}
+
+static void __init_memblock __memblock_dump_all(void)
+{
+ pr_info("MEMBLOCK configuration:\n");
+ pr_info(" memory size = %pa reserved size = %pa\n",
+ &memblock.memory.total_size,
+ &memblock.reserved.total_size);
+
+ memblock_dump(&memblock.memory);
+ memblock_dump(&memblock.reserved);
+#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
+ memblock_dump(&physmem);
+#endif
+}
+
+void __init_memblock memblock_dump_all(void)
+{
+ if (memblock_debug)
+ __memblock_dump_all();
+}
+
+void __init memblock_allow_resize(void)
+{
+ memblock_can_resize = 1;
+}
+
+static int __init early_memblock(char *p)
+{
+ if (p && strstr(p, "debug"))
+ memblock_debug = 1;
+ return 0;
+}
+early_param("memblock", early_memblock);
+
+static void __init free_memmap(unsigned long start_pfn, unsigned long end_pfn)
+{
+ struct page *start_pg, *end_pg;
+ phys_addr_t pg, pgend;
+
+ /*
+ * Convert start_pfn/end_pfn to a struct page pointer.
+ */
+ start_pg = pfn_to_page(start_pfn - 1) + 1;
+ end_pg = pfn_to_page(end_pfn - 1) + 1;
+
+ /*
+ * Convert to physical addresses, and round start upwards and end
+ * downwards.
+ */
+ pg = PAGE_ALIGN(__pa(start_pg));
+ pgend = __pa(end_pg) & PAGE_MASK;
+
+ /*
+ * If there are free pages between these, free the section of the
+ * memmap array.
+ */
+ if (pg < pgend)
+ memblock_phys_free(pg, pgend - pg);
+}
+
+/*
+ * The mem_map array can get very big. Free the unused area of the memory map.
+ */
+static void __init free_unused_memmap(void)
+{
+ unsigned long start, end, prev_end = 0;
+ int i;
+
+ if (!IS_ENABLED(CONFIG_HAVE_ARCH_PFN_VALID) ||
+ IS_ENABLED(CONFIG_SPARSEMEM_VMEMMAP))
+ return;
+
+ /*
+ * This relies on each bank being in address order.
+ * The banks are sorted previously in bootmem_init().
+ */
+ for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, NULL) {
+#ifdef CONFIG_SPARSEMEM
+ /*
+ * Take care not to free memmap entries that don't exist
+ * due to SPARSEMEM sections which aren't present.
+ */
+ start = min(start, ALIGN(prev_end, PAGES_PER_SECTION));
+#endif
+ /*
+ * Align down here since many operations in VM subsystem
+ * presume that there are no holes in the memory map inside
+ * a pageblock
+ */
+ start = pageblock_start_pfn(start);
+
+ /*
+ * If we had a previous bank, and there is a space
+ * between the current bank and the previous, free it.
+ */
+ if (prev_end && prev_end < start)
+ free_memmap(prev_end, start);
+
+ /*
+ * Align up here since many operations in VM subsystem
+ * presume that there are no holes in the memory map inside
+ * a pageblock
+ */
+ prev_end = pageblock_align(end);
+ }
+
+#ifdef CONFIG_SPARSEMEM
+ if (!IS_ALIGNED(prev_end, PAGES_PER_SECTION)) {
+ prev_end = pageblock_align(end);
+ free_memmap(prev_end, ALIGN(prev_end, PAGES_PER_SECTION));
+ }
+#endif
+}
+
+static void __init __free_pages_memory(unsigned long start, unsigned long end)
+{
+ int order;
+
+ while (start < end) {
+ /*
+ * Free the pages in the largest chunks alignment allows.
+ *
+ * __ffs() behaviour is undefined for 0. start == 0 is
+ * MAX_ORDER-aligned, set order to MAX_ORDER for the case.
+ */
+ if (start)
+ order = min_t(int, MAX_ORDER, __ffs(start));
+ else
+ order = MAX_ORDER;
+
+ while (start + (1UL << order) > end)
+ order--;
+
+ memblock_free_pages(pfn_to_page(start), start, order);
+
+ start += (1UL << order);
+ }
+}
+
+static unsigned long __init __free_memory_core(phys_addr_t start,
+ phys_addr_t end)
+{
+ unsigned long start_pfn = PFN_UP(start);
+ unsigned long end_pfn = min_t(unsigned long,
+ PFN_DOWN(end), max_low_pfn);
+
+ if (start_pfn >= end_pfn)
+ return 0;
+
+ __free_pages_memory(start_pfn, end_pfn);
+
+ return end_pfn - start_pfn;
+}
+
+static void __init memmap_init_reserved_pages(void)
+{
+ struct memblock_region *region;
+ phys_addr_t start, end;
+ int nid;
+
+ /*
+ * set nid on all reserved pages and also treat struct
+ * pages for the NOMAP regions as PageReserved
+ */
+ for_each_mem_region(region) {
+ nid = memblock_get_region_node(region);
+ start = region->base;
+ end = start + region->size;
+
+ if (memblock_is_nomap(region))
+ reserve_bootmem_region(start, end, nid);
+
+ memblock_set_node(start, end, &memblock.reserved, nid);
+ }
+
+ /* initialize struct pages for the reserved regions */
+ for_each_reserved_mem_region(region) {
+ nid = memblock_get_region_node(region);
+ start = region->base;
+ end = start + region->size;
+
+ if (nid == NUMA_NO_NODE || nid >= MAX_NUMNODES)
+ nid = early_pfn_to_nid(PFN_DOWN(start));
+
+ reserve_bootmem_region(start, end, nid);
+ }
+}
+
+static unsigned long __init free_low_memory_core_early(void)
+{
+ unsigned long count = 0;
+ phys_addr_t start, end;
+ u64 i;
+
+ memblock_clear_hotplug(0, -1);
+
+ memmap_init_reserved_pages();
+
+ /*
+ * We need to use NUMA_NO_NODE instead of NODE_DATA(0)->node_id
+ * because in some case like Node0 doesn't have RAM installed
+ * low ram will be on Node1
+ */
+ for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE, &start, &end,
+ NULL)
+ count += __free_memory_core(start, end);
+
+ return count;
+}
+
+static int reset_managed_pages_done __initdata;
+
+static void __init reset_node_managed_pages(pg_data_t *pgdat)
+{
+ struct zone *z;
+
+ for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++)
+ atomic_long_set(&z->managed_pages, 0);
+}
+
+void __init reset_all_zones_managed_pages(void)
+{
+ struct pglist_data *pgdat;
+
+ if (reset_managed_pages_done)
+ return;
+
+ for_each_online_pgdat(pgdat)
+ reset_node_managed_pages(pgdat);
+
+ reset_managed_pages_done = 1;
+}
+
+/**
+ * memblock_free_all - release free pages to the buddy allocator
+ */
+void __init memblock_free_all(void)
+{
+ unsigned long pages;
+
+ free_unused_memmap();
+ reset_all_zones_managed_pages();
+
+ pages = free_low_memory_core_early();
+ totalram_pages_add(pages);
+}
+
+#if defined(CONFIG_DEBUG_FS) && defined(CONFIG_ARCH_KEEP_MEMBLOCK)
+static const char * const flagname[] = {
+ [ilog2(MEMBLOCK_HOTPLUG)] = "HOTPLUG",
+ [ilog2(MEMBLOCK_MIRROR)] = "MIRROR",
+ [ilog2(MEMBLOCK_NOMAP)] = "NOMAP",
+ [ilog2(MEMBLOCK_DRIVER_MANAGED)] = "DRV_MNG",
+};
+
+static int memblock_debug_show(struct seq_file *m, void *private)
+{
+ struct memblock_type *type = m->private;
+ struct memblock_region *reg;
+ int i, j, nid;
+ unsigned int count = ARRAY_SIZE(flagname);
+ phys_addr_t end;
+
+ for (i = 0; i < type->cnt; i++) {
+ reg = &type->regions[i];
+ end = reg->base + reg->size - 1;
+ nid = memblock_get_region_node(reg);
+
+ seq_printf(m, "%4d: ", i);
+ seq_printf(m, "%pa..%pa ", &reg->base, &end);
+ if (nid != MAX_NUMNODES)
+ seq_printf(m, "%4d ", nid);
+ else
+ seq_printf(m, "%4c ", 'x');
+ if (reg->flags) {
+ for (j = 0; j < count; j++) {
+ if (reg->flags & (1U << j)) {
+ seq_printf(m, "%s\n", flagname[j]);
+ break;
+ }
+ }
+ if (j == count)
+ seq_printf(m, "%s\n", "UNKNOWN");
+ } else {
+ seq_printf(m, "%s\n", "NONE");
+ }
+ }
+ return 0;
+}
+DEFINE_SHOW_ATTRIBUTE(memblock_debug);
+
+static int __init memblock_init_debugfs(void)
+{
+ struct dentry *root = debugfs_create_dir("memblock", NULL);
+
+ debugfs_create_file("memory", 0444, root,
+ &memblock.memory, &memblock_debug_fops);
+ debugfs_create_file("reserved", 0444, root,
+ &memblock.reserved, &memblock_debug_fops);
+#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
+ debugfs_create_file("physmem", 0444, root, &physmem,
+ &memblock_debug_fops);
+#endif
+
+ return 0;
+}
+__initcall(memblock_init_debugfs);
+
+#endif /* CONFIG_DEBUG_FS */