diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-11 08:27:49 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-11 08:27:49 +0000 |
commit | ace9429bb58fd418f0c81d4c2835699bddf6bde6 (patch) | |
tree | b2d64bc10158fdd5497876388cd68142ca374ed3 /mm/slab.h | |
parent | Initial commit. (diff) | |
download | linux-ace9429bb58fd418f0c81d4c2835699bddf6bde6.tar.xz linux-ace9429bb58fd418f0c81d4c2835699bddf6bde6.zip |
Adding upstream version 6.6.15.upstream/6.6.15
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'mm/slab.h')
-rw-r--r-- | mm/slab.h | 893 |
1 files changed, 893 insertions, 0 deletions
diff --git a/mm/slab.h b/mm/slab.h new file mode 100644 index 0000000000..799a315695 --- /dev/null +++ b/mm/slab.h @@ -0,0 +1,893 @@ +/* SPDX-License-Identifier: GPL-2.0 */ +#ifndef MM_SLAB_H +#define MM_SLAB_H +/* + * Internal slab definitions + */ +void __init kmem_cache_init(void); + +#ifdef CONFIG_64BIT +# ifdef system_has_cmpxchg128 +# define system_has_freelist_aba() system_has_cmpxchg128() +# define try_cmpxchg_freelist try_cmpxchg128 +# endif +#define this_cpu_try_cmpxchg_freelist this_cpu_try_cmpxchg128 +typedef u128 freelist_full_t; +#else /* CONFIG_64BIT */ +# ifdef system_has_cmpxchg64 +# define system_has_freelist_aba() system_has_cmpxchg64() +# define try_cmpxchg_freelist try_cmpxchg64 +# endif +#define this_cpu_try_cmpxchg_freelist this_cpu_try_cmpxchg64 +typedef u64 freelist_full_t; +#endif /* CONFIG_64BIT */ + +#if defined(system_has_freelist_aba) && !defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE) +#undef system_has_freelist_aba +#endif + +/* + * Freelist pointer and counter to cmpxchg together, avoids the typical ABA + * problems with cmpxchg of just a pointer. + */ +typedef union { + struct { + void *freelist; + unsigned long counter; + }; + freelist_full_t full; +} freelist_aba_t; + +/* Reuses the bits in struct page */ +struct slab { + unsigned long __page_flags; + +#if defined(CONFIG_SLAB) + + struct kmem_cache *slab_cache; + union { + struct { + struct list_head slab_list; + void *freelist; /* array of free object indexes */ + void *s_mem; /* first object */ + }; + struct rcu_head rcu_head; + }; + unsigned int active; + +#elif defined(CONFIG_SLUB) + + struct kmem_cache *slab_cache; + union { + struct { + union { + struct list_head slab_list; +#ifdef CONFIG_SLUB_CPU_PARTIAL + struct { + struct slab *next; + int slabs; /* Nr of slabs left */ + }; +#endif + }; + /* Double-word boundary */ + union { + struct { + void *freelist; /* first free object */ + union { + unsigned long counters; + struct { + unsigned inuse:16; + unsigned objects:15; + unsigned frozen:1; + }; + }; + }; +#ifdef system_has_freelist_aba + freelist_aba_t freelist_counter; +#endif + }; + }; + struct rcu_head rcu_head; + }; + unsigned int __unused; + +#else +#error "Unexpected slab allocator configured" +#endif + + atomic_t __page_refcount; +#ifdef CONFIG_MEMCG + unsigned long memcg_data; +#endif +}; + +#define SLAB_MATCH(pg, sl) \ + static_assert(offsetof(struct page, pg) == offsetof(struct slab, sl)) +SLAB_MATCH(flags, __page_flags); +SLAB_MATCH(compound_head, slab_cache); /* Ensure bit 0 is clear */ +SLAB_MATCH(_refcount, __page_refcount); +#ifdef CONFIG_MEMCG +SLAB_MATCH(memcg_data, memcg_data); +#endif +#undef SLAB_MATCH +static_assert(sizeof(struct slab) <= sizeof(struct page)); +#if defined(system_has_freelist_aba) && defined(CONFIG_SLUB) +static_assert(IS_ALIGNED(offsetof(struct slab, freelist), sizeof(freelist_aba_t))); +#endif + +/** + * folio_slab - Converts from folio to slab. + * @folio: The folio. + * + * Currently struct slab is a different representation of a folio where + * folio_test_slab() is true. + * + * Return: The slab which contains this folio. + */ +#define folio_slab(folio) (_Generic((folio), \ + const struct folio *: (const struct slab *)(folio), \ + struct folio *: (struct slab *)(folio))) + +/** + * slab_folio - The folio allocated for a slab + * @slab: The slab. + * + * Slabs are allocated as folios that contain the individual objects and are + * using some fields in the first struct page of the folio - those fields are + * now accessed by struct slab. It is occasionally necessary to convert back to + * a folio in order to communicate with the rest of the mm. Please use this + * helper function instead of casting yourself, as the implementation may change + * in the future. + */ +#define slab_folio(s) (_Generic((s), \ + const struct slab *: (const struct folio *)s, \ + struct slab *: (struct folio *)s)) + +/** + * page_slab - Converts from first struct page to slab. + * @p: The first (either head of compound or single) page of slab. + * + * A temporary wrapper to convert struct page to struct slab in situations where + * we know the page is the compound head, or single order-0 page. + * + * Long-term ideally everything would work with struct slab directly or go + * through folio to struct slab. + * + * Return: The slab which contains this page + */ +#define page_slab(p) (_Generic((p), \ + const struct page *: (const struct slab *)(p), \ + struct page *: (struct slab *)(p))) + +/** + * slab_page - The first struct page allocated for a slab + * @slab: The slab. + * + * A convenience wrapper for converting slab to the first struct page of the + * underlying folio, to communicate with code not yet converted to folio or + * struct slab. + */ +#define slab_page(s) folio_page(slab_folio(s), 0) + +/* + * If network-based swap is enabled, sl*b must keep track of whether pages + * were allocated from pfmemalloc reserves. + */ +static inline bool slab_test_pfmemalloc(const struct slab *slab) +{ + return folio_test_active((struct folio *)slab_folio(slab)); +} + +static inline void slab_set_pfmemalloc(struct slab *slab) +{ + folio_set_active(slab_folio(slab)); +} + +static inline void slab_clear_pfmemalloc(struct slab *slab) +{ + folio_clear_active(slab_folio(slab)); +} + +static inline void __slab_clear_pfmemalloc(struct slab *slab) +{ + __folio_clear_active(slab_folio(slab)); +} + +static inline void *slab_address(const struct slab *slab) +{ + return folio_address(slab_folio(slab)); +} + +static inline int slab_nid(const struct slab *slab) +{ + return folio_nid(slab_folio(slab)); +} + +static inline pg_data_t *slab_pgdat(const struct slab *slab) +{ + return folio_pgdat(slab_folio(slab)); +} + +static inline struct slab *virt_to_slab(const void *addr) +{ + struct folio *folio = virt_to_folio(addr); + + if (!folio_test_slab(folio)) + return NULL; + + return folio_slab(folio); +} + +static inline int slab_order(const struct slab *slab) +{ + return folio_order((struct folio *)slab_folio(slab)); +} + +static inline size_t slab_size(const struct slab *slab) +{ + return PAGE_SIZE << slab_order(slab); +} + +#ifdef CONFIG_SLAB +#include <linux/slab_def.h> +#endif + +#ifdef CONFIG_SLUB +#include <linux/slub_def.h> +#endif + +#include <linux/memcontrol.h> +#include <linux/fault-inject.h> +#include <linux/kasan.h> +#include <linux/kmemleak.h> +#include <linux/random.h> +#include <linux/sched/mm.h> +#include <linux/list_lru.h> + +/* + * State of the slab allocator. + * + * This is used to describe the states of the allocator during bootup. + * Allocators use this to gradually bootstrap themselves. Most allocators + * have the problem that the structures used for managing slab caches are + * allocated from slab caches themselves. + */ +enum slab_state { + DOWN, /* No slab functionality yet */ + PARTIAL, /* SLUB: kmem_cache_node available */ + PARTIAL_NODE, /* SLAB: kmalloc size for node struct available */ + UP, /* Slab caches usable but not all extras yet */ + FULL /* Everything is working */ +}; + +extern enum slab_state slab_state; + +/* The slab cache mutex protects the management structures during changes */ +extern struct mutex slab_mutex; + +/* The list of all slab caches on the system */ +extern struct list_head slab_caches; + +/* The slab cache that manages slab cache information */ +extern struct kmem_cache *kmem_cache; + +/* A table of kmalloc cache names and sizes */ +extern const struct kmalloc_info_struct { + const char *name[NR_KMALLOC_TYPES]; + unsigned int size; +} kmalloc_info[]; + +/* Kmalloc array related functions */ +void setup_kmalloc_cache_index_table(void); +void create_kmalloc_caches(slab_flags_t); + +/* Find the kmalloc slab corresponding for a certain size */ +struct kmem_cache *kmalloc_slab(size_t size, gfp_t flags, unsigned long caller); + +void *__kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, + int node, size_t orig_size, + unsigned long caller); +void __kmem_cache_free(struct kmem_cache *s, void *x, unsigned long caller); + +gfp_t kmalloc_fix_flags(gfp_t flags); + +/* Functions provided by the slab allocators */ +int __kmem_cache_create(struct kmem_cache *, slab_flags_t flags); + +void __init new_kmalloc_cache(int idx, enum kmalloc_cache_type type, + slab_flags_t flags); +extern void create_boot_cache(struct kmem_cache *, const char *name, + unsigned int size, slab_flags_t flags, + unsigned int useroffset, unsigned int usersize); + +int slab_unmergeable(struct kmem_cache *s); +struct kmem_cache *find_mergeable(unsigned size, unsigned align, + slab_flags_t flags, const char *name, void (*ctor)(void *)); +struct kmem_cache * +__kmem_cache_alias(const char *name, unsigned int size, unsigned int align, + slab_flags_t flags, void (*ctor)(void *)); + +slab_flags_t kmem_cache_flags(unsigned int object_size, + slab_flags_t flags, const char *name); + +static inline bool is_kmalloc_cache(struct kmem_cache *s) +{ + return (s->flags & SLAB_KMALLOC); +} + +/* Legal flag mask for kmem_cache_create(), for various configurations */ +#define SLAB_CORE_FLAGS (SLAB_HWCACHE_ALIGN | SLAB_CACHE_DMA | \ + SLAB_CACHE_DMA32 | SLAB_PANIC | \ + SLAB_TYPESAFE_BY_RCU | SLAB_DEBUG_OBJECTS ) + +#if defined(CONFIG_DEBUG_SLAB) +#define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER) +#elif defined(CONFIG_SLUB_DEBUG) +#define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \ + SLAB_TRACE | SLAB_CONSISTENCY_CHECKS) +#else +#define SLAB_DEBUG_FLAGS (0) +#endif + +#if defined(CONFIG_SLAB) +#define SLAB_CACHE_FLAGS (SLAB_MEM_SPREAD | SLAB_NOLEAKTRACE | \ + SLAB_RECLAIM_ACCOUNT | SLAB_TEMPORARY | \ + SLAB_ACCOUNT | SLAB_NO_MERGE) +#elif defined(CONFIG_SLUB) +#define SLAB_CACHE_FLAGS (SLAB_NOLEAKTRACE | SLAB_RECLAIM_ACCOUNT | \ + SLAB_TEMPORARY | SLAB_ACCOUNT | \ + SLAB_NO_USER_FLAGS | SLAB_KMALLOC | SLAB_NO_MERGE) +#else +#define SLAB_CACHE_FLAGS (SLAB_NOLEAKTRACE) +#endif + +/* Common flags available with current configuration */ +#define CACHE_CREATE_MASK (SLAB_CORE_FLAGS | SLAB_DEBUG_FLAGS | SLAB_CACHE_FLAGS) + +/* Common flags permitted for kmem_cache_create */ +#define SLAB_FLAGS_PERMITTED (SLAB_CORE_FLAGS | \ + SLAB_RED_ZONE | \ + SLAB_POISON | \ + SLAB_STORE_USER | \ + SLAB_TRACE | \ + SLAB_CONSISTENCY_CHECKS | \ + SLAB_MEM_SPREAD | \ + SLAB_NOLEAKTRACE | \ + SLAB_RECLAIM_ACCOUNT | \ + SLAB_TEMPORARY | \ + SLAB_ACCOUNT | \ + SLAB_KMALLOC | \ + SLAB_NO_MERGE | \ + SLAB_NO_USER_FLAGS) + +bool __kmem_cache_empty(struct kmem_cache *); +int __kmem_cache_shutdown(struct kmem_cache *); +void __kmem_cache_release(struct kmem_cache *); +int __kmem_cache_shrink(struct kmem_cache *); +void slab_kmem_cache_release(struct kmem_cache *); + +struct seq_file; +struct file; + +struct slabinfo { + unsigned long active_objs; + unsigned long num_objs; + unsigned long active_slabs; + unsigned long num_slabs; + unsigned long shared_avail; + unsigned int limit; + unsigned int batchcount; + unsigned int shared; + unsigned int objects_per_slab; + unsigned int cache_order; +}; + +void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo); +void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s); +ssize_t slabinfo_write(struct file *file, const char __user *buffer, + size_t count, loff_t *ppos); + +static inline enum node_stat_item cache_vmstat_idx(struct kmem_cache *s) +{ + return (s->flags & SLAB_RECLAIM_ACCOUNT) ? + NR_SLAB_RECLAIMABLE_B : NR_SLAB_UNRECLAIMABLE_B; +} + +#ifdef CONFIG_SLUB_DEBUG +#ifdef CONFIG_SLUB_DEBUG_ON +DECLARE_STATIC_KEY_TRUE(slub_debug_enabled); +#else +DECLARE_STATIC_KEY_FALSE(slub_debug_enabled); +#endif +extern void print_tracking(struct kmem_cache *s, void *object); +long validate_slab_cache(struct kmem_cache *s); +static inline bool __slub_debug_enabled(void) +{ + return static_branch_unlikely(&slub_debug_enabled); +} +#else +static inline void print_tracking(struct kmem_cache *s, void *object) +{ +} +static inline bool __slub_debug_enabled(void) +{ + return false; +} +#endif + +/* + * Returns true if any of the specified slub_debug flags is enabled for the + * cache. Use only for flags parsed by setup_slub_debug() as it also enables + * the static key. + */ +static inline bool kmem_cache_debug_flags(struct kmem_cache *s, slab_flags_t flags) +{ + if (IS_ENABLED(CONFIG_SLUB_DEBUG)) + VM_WARN_ON_ONCE(!(flags & SLAB_DEBUG_FLAGS)); + if (__slub_debug_enabled()) + return s->flags & flags; + return false; +} + +#ifdef CONFIG_MEMCG_KMEM +/* + * slab_objcgs - get the object cgroups vector associated with a slab + * @slab: a pointer to the slab struct + * + * Returns a pointer to the object cgroups vector associated with the slab, + * or NULL if no such vector has been associated yet. + */ +static inline struct obj_cgroup **slab_objcgs(struct slab *slab) +{ + unsigned long memcg_data = READ_ONCE(slab->memcg_data); + + VM_BUG_ON_PAGE(memcg_data && !(memcg_data & MEMCG_DATA_OBJCGS), + slab_page(slab)); + VM_BUG_ON_PAGE(memcg_data & MEMCG_DATA_KMEM, slab_page(slab)); + + return (struct obj_cgroup **)(memcg_data & ~MEMCG_DATA_FLAGS_MASK); +} + +int memcg_alloc_slab_cgroups(struct slab *slab, struct kmem_cache *s, + gfp_t gfp, bool new_slab); +void mod_objcg_state(struct obj_cgroup *objcg, struct pglist_data *pgdat, + enum node_stat_item idx, int nr); + +static inline void memcg_free_slab_cgroups(struct slab *slab) +{ + kfree(slab_objcgs(slab)); + slab->memcg_data = 0; +} + +static inline size_t obj_full_size(struct kmem_cache *s) +{ + /* + * For each accounted object there is an extra space which is used + * to store obj_cgroup membership. Charge it too. + */ + return s->size + sizeof(struct obj_cgroup *); +} + +/* + * Returns false if the allocation should fail. + */ +static inline bool memcg_slab_pre_alloc_hook(struct kmem_cache *s, + struct list_lru *lru, + struct obj_cgroup **objcgp, + size_t objects, gfp_t flags) +{ + struct obj_cgroup *objcg; + + if (!memcg_kmem_online()) + return true; + + if (!(flags & __GFP_ACCOUNT) && !(s->flags & SLAB_ACCOUNT)) + return true; + + objcg = get_obj_cgroup_from_current(); + if (!objcg) + return true; + + if (lru) { + int ret; + struct mem_cgroup *memcg; + + memcg = get_mem_cgroup_from_objcg(objcg); + ret = memcg_list_lru_alloc(memcg, lru, flags); + css_put(&memcg->css); + + if (ret) + goto out; + } + + if (obj_cgroup_charge(objcg, flags, objects * obj_full_size(s))) + goto out; + + *objcgp = objcg; + return true; +out: + obj_cgroup_put(objcg); + return false; +} + +static inline void memcg_slab_post_alloc_hook(struct kmem_cache *s, + struct obj_cgroup *objcg, + gfp_t flags, size_t size, + void **p) +{ + struct slab *slab; + unsigned long off; + size_t i; + + if (!memcg_kmem_online() || !objcg) + return; + + for (i = 0; i < size; i++) { + if (likely(p[i])) { + slab = virt_to_slab(p[i]); + + if (!slab_objcgs(slab) && + memcg_alloc_slab_cgroups(slab, s, flags, + false)) { + obj_cgroup_uncharge(objcg, obj_full_size(s)); + continue; + } + + off = obj_to_index(s, slab, p[i]); + obj_cgroup_get(objcg); + slab_objcgs(slab)[off] = objcg; + mod_objcg_state(objcg, slab_pgdat(slab), + cache_vmstat_idx(s), obj_full_size(s)); + } else { + obj_cgroup_uncharge(objcg, obj_full_size(s)); + } + } + obj_cgroup_put(objcg); +} + +static inline void memcg_slab_free_hook(struct kmem_cache *s, struct slab *slab, + void **p, int objects) +{ + struct obj_cgroup **objcgs; + int i; + + if (!memcg_kmem_online()) + return; + + objcgs = slab_objcgs(slab); + if (!objcgs) + return; + + for (i = 0; i < objects; i++) { + struct obj_cgroup *objcg; + unsigned int off; + + off = obj_to_index(s, slab, p[i]); + objcg = objcgs[off]; + if (!objcg) + continue; + + objcgs[off] = NULL; + obj_cgroup_uncharge(objcg, obj_full_size(s)); + mod_objcg_state(objcg, slab_pgdat(slab), cache_vmstat_idx(s), + -obj_full_size(s)); + obj_cgroup_put(objcg); + } +} + +#else /* CONFIG_MEMCG_KMEM */ +static inline struct obj_cgroup **slab_objcgs(struct slab *slab) +{ + return NULL; +} + +static inline struct mem_cgroup *memcg_from_slab_obj(void *ptr) +{ + return NULL; +} + +static inline int memcg_alloc_slab_cgroups(struct slab *slab, + struct kmem_cache *s, gfp_t gfp, + bool new_slab) +{ + return 0; +} + +static inline void memcg_free_slab_cgroups(struct slab *slab) +{ +} + +static inline bool memcg_slab_pre_alloc_hook(struct kmem_cache *s, + struct list_lru *lru, + struct obj_cgroup **objcgp, + size_t objects, gfp_t flags) +{ + return true; +} + +static inline void memcg_slab_post_alloc_hook(struct kmem_cache *s, + struct obj_cgroup *objcg, + gfp_t flags, size_t size, + void **p) +{ +} + +static inline void memcg_slab_free_hook(struct kmem_cache *s, struct slab *slab, + void **p, int objects) +{ +} +#endif /* CONFIG_MEMCG_KMEM */ + +static inline struct kmem_cache *virt_to_cache(const void *obj) +{ + struct slab *slab; + + slab = virt_to_slab(obj); + if (WARN_ONCE(!slab, "%s: Object is not a Slab page!\n", + __func__)) + return NULL; + return slab->slab_cache; +} + +static __always_inline void account_slab(struct slab *slab, int order, + struct kmem_cache *s, gfp_t gfp) +{ + if (memcg_kmem_online() && (s->flags & SLAB_ACCOUNT)) + memcg_alloc_slab_cgroups(slab, s, gfp, true); + + mod_node_page_state(slab_pgdat(slab), cache_vmstat_idx(s), + PAGE_SIZE << order); +} + +static __always_inline void unaccount_slab(struct slab *slab, int order, + struct kmem_cache *s) +{ + if (memcg_kmem_online()) + memcg_free_slab_cgroups(slab); + + mod_node_page_state(slab_pgdat(slab), cache_vmstat_idx(s), + -(PAGE_SIZE << order)); +} + +static inline struct kmem_cache *cache_from_obj(struct kmem_cache *s, void *x) +{ + struct kmem_cache *cachep; + + if (!IS_ENABLED(CONFIG_SLAB_FREELIST_HARDENED) && + !kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS)) + return s; + + cachep = virt_to_cache(x); + if (WARN(cachep && cachep != s, + "%s: Wrong slab cache. %s but object is from %s\n", + __func__, s->name, cachep->name)) + print_tracking(cachep, x); + return cachep; +} + +void free_large_kmalloc(struct folio *folio, void *object); + +size_t __ksize(const void *objp); + +static inline size_t slab_ksize(const struct kmem_cache *s) +{ +#ifndef CONFIG_SLUB + return s->object_size; + +#else /* CONFIG_SLUB */ +# ifdef CONFIG_SLUB_DEBUG + /* + * Debugging requires use of the padding between object + * and whatever may come after it. + */ + if (s->flags & (SLAB_RED_ZONE | SLAB_POISON)) + return s->object_size; +# endif + if (s->flags & SLAB_KASAN) + return s->object_size; + /* + * If we have the need to store the freelist pointer + * back there or track user information then we can + * only use the space before that information. + */ + if (s->flags & (SLAB_TYPESAFE_BY_RCU | SLAB_STORE_USER)) + return s->inuse; + /* + * Else we can use all the padding etc for the allocation + */ + return s->size; +#endif +} + +static inline struct kmem_cache *slab_pre_alloc_hook(struct kmem_cache *s, + struct list_lru *lru, + struct obj_cgroup **objcgp, + size_t size, gfp_t flags) +{ + flags &= gfp_allowed_mask; + + might_alloc(flags); + + if (should_failslab(s, flags)) + return NULL; + + if (!memcg_slab_pre_alloc_hook(s, lru, objcgp, size, flags)) + return NULL; + + return s; +} + +static inline void slab_post_alloc_hook(struct kmem_cache *s, + struct obj_cgroup *objcg, gfp_t flags, + size_t size, void **p, bool init, + unsigned int orig_size) +{ + unsigned int zero_size = s->object_size; + bool kasan_init = init; + size_t i; + + flags &= gfp_allowed_mask; + + /* + * For kmalloc object, the allocated memory size(object_size) is likely + * larger than the requested size(orig_size). If redzone check is + * enabled for the extra space, don't zero it, as it will be redzoned + * soon. The redzone operation for this extra space could be seen as a + * replacement of current poisoning under certain debug option, and + * won't break other sanity checks. + */ + if (kmem_cache_debug_flags(s, SLAB_STORE_USER | SLAB_RED_ZONE) && + (s->flags & SLAB_KMALLOC)) + zero_size = orig_size; + + /* + * When slub_debug is enabled, avoid memory initialization integrated + * into KASAN and instead zero out the memory via the memset below with + * the proper size. Otherwise, KASAN might overwrite SLUB redzones and + * cause false-positive reports. This does not lead to a performance + * penalty on production builds, as slub_debug is not intended to be + * enabled there. + */ + if (__slub_debug_enabled()) + kasan_init = false; + + /* + * As memory initialization might be integrated into KASAN, + * kasan_slab_alloc and initialization memset must be + * kept together to avoid discrepancies in behavior. + * + * As p[i] might get tagged, memset and kmemleak hook come after KASAN. + */ + for (i = 0; i < size; i++) { + p[i] = kasan_slab_alloc(s, p[i], flags, kasan_init); + if (p[i] && init && (!kasan_init || !kasan_has_integrated_init())) + memset(p[i], 0, zero_size); + kmemleak_alloc_recursive(p[i], s->object_size, 1, + s->flags, flags); + kmsan_slab_alloc(s, p[i], flags); + } + + memcg_slab_post_alloc_hook(s, objcg, flags, size, p); +} + +/* + * The slab lists for all objects. + */ +struct kmem_cache_node { +#ifdef CONFIG_SLAB + raw_spinlock_t list_lock; + struct list_head slabs_partial; /* partial list first, better asm code */ + struct list_head slabs_full; + struct list_head slabs_free; + unsigned long total_slabs; /* length of all slab lists */ + unsigned long free_slabs; /* length of free slab list only */ + unsigned long free_objects; + unsigned int free_limit; + unsigned int colour_next; /* Per-node cache coloring */ + struct array_cache *shared; /* shared per node */ + struct alien_cache **alien; /* on other nodes */ + unsigned long next_reap; /* updated without locking */ + int free_touched; /* updated without locking */ +#endif + +#ifdef CONFIG_SLUB + spinlock_t list_lock; + unsigned long nr_partial; + struct list_head partial; +#ifdef CONFIG_SLUB_DEBUG + atomic_long_t nr_slabs; + atomic_long_t total_objects; + struct list_head full; +#endif +#endif + +}; + +static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node) +{ + return s->node[node]; +} + +/* + * Iterator over all nodes. The body will be executed for each node that has + * a kmem_cache_node structure allocated (which is true for all online nodes) + */ +#define for_each_kmem_cache_node(__s, __node, __n) \ + for (__node = 0; __node < nr_node_ids; __node++) \ + if ((__n = get_node(__s, __node))) + + +#if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG) +void dump_unreclaimable_slab(void); +#else +static inline void dump_unreclaimable_slab(void) +{ +} +#endif + +void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr); + +#ifdef CONFIG_SLAB_FREELIST_RANDOM +int cache_random_seq_create(struct kmem_cache *cachep, unsigned int count, + gfp_t gfp); +void cache_random_seq_destroy(struct kmem_cache *cachep); +#else +static inline int cache_random_seq_create(struct kmem_cache *cachep, + unsigned int count, gfp_t gfp) +{ + return 0; +} +static inline void cache_random_seq_destroy(struct kmem_cache *cachep) { } +#endif /* CONFIG_SLAB_FREELIST_RANDOM */ + +static inline bool slab_want_init_on_alloc(gfp_t flags, struct kmem_cache *c) +{ + if (static_branch_maybe(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, + &init_on_alloc)) { + if (c->ctor) + return false; + if (c->flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) + return flags & __GFP_ZERO; + return true; + } + return flags & __GFP_ZERO; +} + +static inline bool slab_want_init_on_free(struct kmem_cache *c) +{ + if (static_branch_maybe(CONFIG_INIT_ON_FREE_DEFAULT_ON, + &init_on_free)) + return !(c->ctor || + (c->flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON))); + return false; +} + +#if defined(CONFIG_DEBUG_FS) && defined(CONFIG_SLUB_DEBUG) +void debugfs_slab_release(struct kmem_cache *); +#else +static inline void debugfs_slab_release(struct kmem_cache *s) { } +#endif + +#ifdef CONFIG_PRINTK +#define KS_ADDRS_COUNT 16 +struct kmem_obj_info { + void *kp_ptr; + struct slab *kp_slab; + void *kp_objp; + unsigned long kp_data_offset; + struct kmem_cache *kp_slab_cache; + void *kp_ret; + void *kp_stack[KS_ADDRS_COUNT]; + void *kp_free_stack[KS_ADDRS_COUNT]; +}; +void __kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct slab *slab); +#endif + +void __check_heap_object(const void *ptr, unsigned long n, + const struct slab *slab, bool to_user); + +#ifdef CONFIG_SLUB_DEBUG +void skip_orig_size_check(struct kmem_cache *s, const void *object); +#endif + +#endif /* MM_SLAB_H */ |