summaryrefslogtreecommitdiffstats
path: root/mm/swap_state.c
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-11 08:27:49 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-11 08:27:49 +0000
commitace9429bb58fd418f0c81d4c2835699bddf6bde6 (patch)
treeb2d64bc10158fdd5497876388cd68142ca374ed3 /mm/swap_state.c
parentInitial commit. (diff)
downloadlinux-ace9429bb58fd418f0c81d4c2835699bddf6bde6.tar.xz
linux-ace9429bb58fd418f0c81d4c2835699bddf6bde6.zip
Adding upstream version 6.6.15.upstream/6.6.15
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'mm/swap_state.c')
-rw-r--r--mm/swap_state.c913
1 files changed, 913 insertions, 0 deletions
diff --git a/mm/swap_state.c b/mm/swap_state.c
new file mode 100644
index 0000000000..b3b14bd0dd
--- /dev/null
+++ b/mm/swap_state.c
@@ -0,0 +1,913 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * linux/mm/swap_state.c
+ *
+ * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
+ * Swap reorganised 29.12.95, Stephen Tweedie
+ *
+ * Rewritten to use page cache, (C) 1998 Stephen Tweedie
+ */
+#include <linux/mm.h>
+#include <linux/gfp.h>
+#include <linux/kernel_stat.h>
+#include <linux/swap.h>
+#include <linux/swapops.h>
+#include <linux/init.h>
+#include <linux/pagemap.h>
+#include <linux/backing-dev.h>
+#include <linux/blkdev.h>
+#include <linux/migrate.h>
+#include <linux/vmalloc.h>
+#include <linux/swap_slots.h>
+#include <linux/huge_mm.h>
+#include <linux/shmem_fs.h>
+#include "internal.h"
+#include "swap.h"
+
+/*
+ * swapper_space is a fiction, retained to simplify the path through
+ * vmscan's shrink_page_list.
+ */
+static const struct address_space_operations swap_aops = {
+ .writepage = swap_writepage,
+ .dirty_folio = noop_dirty_folio,
+#ifdef CONFIG_MIGRATION
+ .migrate_folio = migrate_folio,
+#endif
+};
+
+struct address_space *swapper_spaces[MAX_SWAPFILES] __read_mostly;
+static unsigned int nr_swapper_spaces[MAX_SWAPFILES] __read_mostly;
+static bool enable_vma_readahead __read_mostly = true;
+
+#define SWAP_RA_WIN_SHIFT (PAGE_SHIFT / 2)
+#define SWAP_RA_HITS_MASK ((1UL << SWAP_RA_WIN_SHIFT) - 1)
+#define SWAP_RA_HITS_MAX SWAP_RA_HITS_MASK
+#define SWAP_RA_WIN_MASK (~PAGE_MASK & ~SWAP_RA_HITS_MASK)
+
+#define SWAP_RA_HITS(v) ((v) & SWAP_RA_HITS_MASK)
+#define SWAP_RA_WIN(v) (((v) & SWAP_RA_WIN_MASK) >> SWAP_RA_WIN_SHIFT)
+#define SWAP_RA_ADDR(v) ((v) & PAGE_MASK)
+
+#define SWAP_RA_VAL(addr, win, hits) \
+ (((addr) & PAGE_MASK) | \
+ (((win) << SWAP_RA_WIN_SHIFT) & SWAP_RA_WIN_MASK) | \
+ ((hits) & SWAP_RA_HITS_MASK))
+
+/* Initial readahead hits is 4 to start up with a small window */
+#define GET_SWAP_RA_VAL(vma) \
+ (atomic_long_read(&(vma)->swap_readahead_info) ? : 4)
+
+static atomic_t swapin_readahead_hits = ATOMIC_INIT(4);
+
+void show_swap_cache_info(void)
+{
+ printk("%lu pages in swap cache\n", total_swapcache_pages());
+ printk("Free swap = %ldkB\n", K(get_nr_swap_pages()));
+ printk("Total swap = %lukB\n", K(total_swap_pages));
+}
+
+void *get_shadow_from_swap_cache(swp_entry_t entry)
+{
+ struct address_space *address_space = swap_address_space(entry);
+ pgoff_t idx = swp_offset(entry);
+ struct page *page;
+
+ page = xa_load(&address_space->i_pages, idx);
+ if (xa_is_value(page))
+ return page;
+ return NULL;
+}
+
+/*
+ * add_to_swap_cache resembles filemap_add_folio on swapper_space,
+ * but sets SwapCache flag and private instead of mapping and index.
+ */
+int add_to_swap_cache(struct folio *folio, swp_entry_t entry,
+ gfp_t gfp, void **shadowp)
+{
+ struct address_space *address_space = swap_address_space(entry);
+ pgoff_t idx = swp_offset(entry);
+ XA_STATE_ORDER(xas, &address_space->i_pages, idx, folio_order(folio));
+ unsigned long i, nr = folio_nr_pages(folio);
+ void *old;
+
+ xas_set_update(&xas, workingset_update_node);
+
+ VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
+ VM_BUG_ON_FOLIO(folio_test_swapcache(folio), folio);
+ VM_BUG_ON_FOLIO(!folio_test_swapbacked(folio), folio);
+
+ folio_ref_add(folio, nr);
+ folio_set_swapcache(folio);
+ folio->swap = entry;
+
+ do {
+ xas_lock_irq(&xas);
+ xas_create_range(&xas);
+ if (xas_error(&xas))
+ goto unlock;
+ for (i = 0; i < nr; i++) {
+ VM_BUG_ON_FOLIO(xas.xa_index != idx + i, folio);
+ old = xas_load(&xas);
+ if (xa_is_value(old)) {
+ if (shadowp)
+ *shadowp = old;
+ }
+ xas_store(&xas, folio);
+ xas_next(&xas);
+ }
+ address_space->nrpages += nr;
+ __node_stat_mod_folio(folio, NR_FILE_PAGES, nr);
+ __lruvec_stat_mod_folio(folio, NR_SWAPCACHE, nr);
+unlock:
+ xas_unlock_irq(&xas);
+ } while (xas_nomem(&xas, gfp));
+
+ if (!xas_error(&xas))
+ return 0;
+
+ folio_clear_swapcache(folio);
+ folio_ref_sub(folio, nr);
+ return xas_error(&xas);
+}
+
+/*
+ * This must be called only on folios that have
+ * been verified to be in the swap cache.
+ */
+void __delete_from_swap_cache(struct folio *folio,
+ swp_entry_t entry, void *shadow)
+{
+ struct address_space *address_space = swap_address_space(entry);
+ int i;
+ long nr = folio_nr_pages(folio);
+ pgoff_t idx = swp_offset(entry);
+ XA_STATE(xas, &address_space->i_pages, idx);
+
+ xas_set_update(&xas, workingset_update_node);
+
+ VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
+ VM_BUG_ON_FOLIO(!folio_test_swapcache(folio), folio);
+ VM_BUG_ON_FOLIO(folio_test_writeback(folio), folio);
+
+ for (i = 0; i < nr; i++) {
+ void *entry = xas_store(&xas, shadow);
+ VM_BUG_ON_PAGE(entry != folio, entry);
+ xas_next(&xas);
+ }
+ folio->swap.val = 0;
+ folio_clear_swapcache(folio);
+ address_space->nrpages -= nr;
+ __node_stat_mod_folio(folio, NR_FILE_PAGES, -nr);
+ __lruvec_stat_mod_folio(folio, NR_SWAPCACHE, -nr);
+}
+
+/**
+ * add_to_swap - allocate swap space for a folio
+ * @folio: folio we want to move to swap
+ *
+ * Allocate swap space for the folio and add the folio to the
+ * swap cache.
+ *
+ * Context: Caller needs to hold the folio lock.
+ * Return: Whether the folio was added to the swap cache.
+ */
+bool add_to_swap(struct folio *folio)
+{
+ swp_entry_t entry;
+ int err;
+
+ VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
+ VM_BUG_ON_FOLIO(!folio_test_uptodate(folio), folio);
+
+ entry = folio_alloc_swap(folio);
+ if (!entry.val)
+ return false;
+
+ /*
+ * XArray node allocations from PF_MEMALLOC contexts could
+ * completely exhaust the page allocator. __GFP_NOMEMALLOC
+ * stops emergency reserves from being allocated.
+ *
+ * TODO: this could cause a theoretical memory reclaim
+ * deadlock in the swap out path.
+ */
+ /*
+ * Add it to the swap cache.
+ */
+ err = add_to_swap_cache(folio, entry,
+ __GFP_HIGH|__GFP_NOMEMALLOC|__GFP_NOWARN, NULL);
+ if (err)
+ /*
+ * add_to_swap_cache() doesn't return -EEXIST, so we can safely
+ * clear SWAP_HAS_CACHE flag.
+ */
+ goto fail;
+ /*
+ * Normally the folio will be dirtied in unmap because its
+ * pte should be dirty. A special case is MADV_FREE page. The
+ * page's pte could have dirty bit cleared but the folio's
+ * SwapBacked flag is still set because clearing the dirty bit
+ * and SwapBacked flag has no lock protected. For such folio,
+ * unmap will not set dirty bit for it, so folio reclaim will
+ * not write the folio out. This can cause data corruption when
+ * the folio is swapped in later. Always setting the dirty flag
+ * for the folio solves the problem.
+ */
+ folio_mark_dirty(folio);
+
+ return true;
+
+fail:
+ put_swap_folio(folio, entry);
+ return false;
+}
+
+/*
+ * This must be called only on folios that have
+ * been verified to be in the swap cache and locked.
+ * It will never put the folio into the free list,
+ * the caller has a reference on the folio.
+ */
+void delete_from_swap_cache(struct folio *folio)
+{
+ swp_entry_t entry = folio->swap;
+ struct address_space *address_space = swap_address_space(entry);
+
+ xa_lock_irq(&address_space->i_pages);
+ __delete_from_swap_cache(folio, entry, NULL);
+ xa_unlock_irq(&address_space->i_pages);
+
+ put_swap_folio(folio, entry);
+ folio_ref_sub(folio, folio_nr_pages(folio));
+}
+
+void clear_shadow_from_swap_cache(int type, unsigned long begin,
+ unsigned long end)
+{
+ unsigned long curr = begin;
+ void *old;
+
+ for (;;) {
+ swp_entry_t entry = swp_entry(type, curr);
+ struct address_space *address_space = swap_address_space(entry);
+ XA_STATE(xas, &address_space->i_pages, curr);
+
+ xas_set_update(&xas, workingset_update_node);
+
+ xa_lock_irq(&address_space->i_pages);
+ xas_for_each(&xas, old, end) {
+ if (!xa_is_value(old))
+ continue;
+ xas_store(&xas, NULL);
+ }
+ xa_unlock_irq(&address_space->i_pages);
+
+ /* search the next swapcache until we meet end */
+ curr >>= SWAP_ADDRESS_SPACE_SHIFT;
+ curr++;
+ curr <<= SWAP_ADDRESS_SPACE_SHIFT;
+ if (curr > end)
+ break;
+ }
+}
+
+/*
+ * If we are the only user, then try to free up the swap cache.
+ *
+ * Its ok to check the swapcache flag without the folio lock
+ * here because we are going to recheck again inside
+ * folio_free_swap() _with_ the lock.
+ * - Marcelo
+ */
+void free_swap_cache(struct page *page)
+{
+ struct folio *folio = page_folio(page);
+
+ if (folio_test_swapcache(folio) && !folio_mapped(folio) &&
+ folio_trylock(folio)) {
+ folio_free_swap(folio);
+ folio_unlock(folio);
+ }
+}
+
+/*
+ * Perform a free_page(), also freeing any swap cache associated with
+ * this page if it is the last user of the page.
+ */
+void free_page_and_swap_cache(struct page *page)
+{
+ free_swap_cache(page);
+ if (!is_huge_zero_page(page))
+ put_page(page);
+}
+
+/*
+ * Passed an array of pages, drop them all from swapcache and then release
+ * them. They are removed from the LRU and freed if this is their last use.
+ */
+void free_pages_and_swap_cache(struct encoded_page **pages, int nr)
+{
+ lru_add_drain();
+ for (int i = 0; i < nr; i++)
+ free_swap_cache(encoded_page_ptr(pages[i]));
+ release_pages(pages, nr);
+}
+
+static inline bool swap_use_vma_readahead(void)
+{
+ return READ_ONCE(enable_vma_readahead) && !atomic_read(&nr_rotate_swap);
+}
+
+/*
+ * Lookup a swap entry in the swap cache. A found folio will be returned
+ * unlocked and with its refcount incremented - we rely on the kernel
+ * lock getting page table operations atomic even if we drop the folio
+ * lock before returning.
+ *
+ * Caller must lock the swap device or hold a reference to keep it valid.
+ */
+struct folio *swap_cache_get_folio(swp_entry_t entry,
+ struct vm_area_struct *vma, unsigned long addr)
+{
+ struct folio *folio;
+
+ folio = filemap_get_folio(swap_address_space(entry), swp_offset(entry));
+ if (!IS_ERR(folio)) {
+ bool vma_ra = swap_use_vma_readahead();
+ bool readahead;
+
+ /*
+ * At the moment, we don't support PG_readahead for anon THP
+ * so let's bail out rather than confusing the readahead stat.
+ */
+ if (unlikely(folio_test_large(folio)))
+ return folio;
+
+ readahead = folio_test_clear_readahead(folio);
+ if (vma && vma_ra) {
+ unsigned long ra_val;
+ int win, hits;
+
+ ra_val = GET_SWAP_RA_VAL(vma);
+ win = SWAP_RA_WIN(ra_val);
+ hits = SWAP_RA_HITS(ra_val);
+ if (readahead)
+ hits = min_t(int, hits + 1, SWAP_RA_HITS_MAX);
+ atomic_long_set(&vma->swap_readahead_info,
+ SWAP_RA_VAL(addr, win, hits));
+ }
+
+ if (readahead) {
+ count_vm_event(SWAP_RA_HIT);
+ if (!vma || !vma_ra)
+ atomic_inc(&swapin_readahead_hits);
+ }
+ } else {
+ folio = NULL;
+ }
+
+ return folio;
+}
+
+/**
+ * filemap_get_incore_folio - Find and get a folio from the page or swap caches.
+ * @mapping: The address_space to search.
+ * @index: The page cache index.
+ *
+ * This differs from filemap_get_folio() in that it will also look for the
+ * folio in the swap cache.
+ *
+ * Return: The found folio or %NULL.
+ */
+struct folio *filemap_get_incore_folio(struct address_space *mapping,
+ pgoff_t index)
+{
+ swp_entry_t swp;
+ struct swap_info_struct *si;
+ struct folio *folio = filemap_get_entry(mapping, index);
+
+ if (!folio)
+ return ERR_PTR(-ENOENT);
+ if (!xa_is_value(folio))
+ return folio;
+ if (!shmem_mapping(mapping))
+ return ERR_PTR(-ENOENT);
+
+ swp = radix_to_swp_entry(folio);
+ /* There might be swapin error entries in shmem mapping. */
+ if (non_swap_entry(swp))
+ return ERR_PTR(-ENOENT);
+ /* Prevent swapoff from happening to us */
+ si = get_swap_device(swp);
+ if (!si)
+ return ERR_PTR(-ENOENT);
+ index = swp_offset(swp);
+ folio = filemap_get_folio(swap_address_space(swp), index);
+ put_swap_device(si);
+ return folio;
+}
+
+struct page *__read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask,
+ struct vm_area_struct *vma, unsigned long addr,
+ bool *new_page_allocated)
+{
+ struct swap_info_struct *si;
+ struct folio *folio;
+ struct page *page;
+ void *shadow = NULL;
+
+ *new_page_allocated = false;
+ si = get_swap_device(entry);
+ if (!si)
+ return NULL;
+
+ for (;;) {
+ int err;
+ /*
+ * First check the swap cache. Since this is normally
+ * called after swap_cache_get_folio() failed, re-calling
+ * that would confuse statistics.
+ */
+ folio = filemap_get_folio(swap_address_space(entry),
+ swp_offset(entry));
+ if (!IS_ERR(folio)) {
+ page = folio_file_page(folio, swp_offset(entry));
+ goto got_page;
+ }
+
+ /*
+ * Just skip read ahead for unused swap slot.
+ * During swap_off when swap_slot_cache is disabled,
+ * we have to handle the race between putting
+ * swap entry in swap cache and marking swap slot
+ * as SWAP_HAS_CACHE. That's done in later part of code or
+ * else swap_off will be aborted if we return NULL.
+ */
+ if (!swap_swapcount(si, entry) && swap_slot_cache_enabled)
+ goto fail_put_swap;
+
+ /*
+ * Get a new page to read into from swap. Allocate it now,
+ * before marking swap_map SWAP_HAS_CACHE, when -EEXIST will
+ * cause any racers to loop around until we add it to cache.
+ */
+ folio = vma_alloc_folio(gfp_mask, 0, vma, addr, false);
+ if (!folio)
+ goto fail_put_swap;
+
+ /*
+ * Swap entry may have been freed since our caller observed it.
+ */
+ err = swapcache_prepare(entry);
+ if (!err)
+ break;
+
+ folio_put(folio);
+ if (err != -EEXIST)
+ goto fail_put_swap;
+
+ /*
+ * We might race against __delete_from_swap_cache(), and
+ * stumble across a swap_map entry whose SWAP_HAS_CACHE
+ * has not yet been cleared. Or race against another
+ * __read_swap_cache_async(), which has set SWAP_HAS_CACHE
+ * in swap_map, but not yet added its page to swap cache.
+ */
+ schedule_timeout_uninterruptible(1);
+ }
+
+ /*
+ * The swap entry is ours to swap in. Prepare the new page.
+ */
+
+ __folio_set_locked(folio);
+ __folio_set_swapbacked(folio);
+
+ if (mem_cgroup_swapin_charge_folio(folio, NULL, gfp_mask, entry))
+ goto fail_unlock;
+
+ /* May fail (-ENOMEM) if XArray node allocation failed. */
+ if (add_to_swap_cache(folio, entry, gfp_mask & GFP_RECLAIM_MASK, &shadow))
+ goto fail_unlock;
+
+ mem_cgroup_swapin_uncharge_swap(entry);
+
+ if (shadow)
+ workingset_refault(folio, shadow);
+
+ /* Caller will initiate read into locked folio */
+ folio_add_lru(folio);
+ *new_page_allocated = true;
+ page = &folio->page;
+got_page:
+ put_swap_device(si);
+ return page;
+
+fail_unlock:
+ put_swap_folio(folio, entry);
+ folio_unlock(folio);
+ folio_put(folio);
+fail_put_swap:
+ put_swap_device(si);
+ return NULL;
+}
+
+/*
+ * Locate a page of swap in physical memory, reserving swap cache space
+ * and reading the disk if it is not already cached.
+ * A failure return means that either the page allocation failed or that
+ * the swap entry is no longer in use.
+ *
+ * get/put_swap_device() aren't needed to call this function, because
+ * __read_swap_cache_async() call them and swap_readpage() holds the
+ * swap cache folio lock.
+ */
+struct page *read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask,
+ struct vm_area_struct *vma,
+ unsigned long addr, struct swap_iocb **plug)
+{
+ bool page_was_allocated;
+ struct page *retpage = __read_swap_cache_async(entry, gfp_mask,
+ vma, addr, &page_was_allocated);
+
+ if (page_was_allocated)
+ swap_readpage(retpage, false, plug);
+
+ return retpage;
+}
+
+static unsigned int __swapin_nr_pages(unsigned long prev_offset,
+ unsigned long offset,
+ int hits,
+ int max_pages,
+ int prev_win)
+{
+ unsigned int pages, last_ra;
+
+ /*
+ * This heuristic has been found to work well on both sequential and
+ * random loads, swapping to hard disk or to SSD: please don't ask
+ * what the "+ 2" means, it just happens to work well, that's all.
+ */
+ pages = hits + 2;
+ if (pages == 2) {
+ /*
+ * We can have no readahead hits to judge by: but must not get
+ * stuck here forever, so check for an adjacent offset instead
+ * (and don't even bother to check whether swap type is same).
+ */
+ if (offset != prev_offset + 1 && offset != prev_offset - 1)
+ pages = 1;
+ } else {
+ unsigned int roundup = 4;
+ while (roundup < pages)
+ roundup <<= 1;
+ pages = roundup;
+ }
+
+ if (pages > max_pages)
+ pages = max_pages;
+
+ /* Don't shrink readahead too fast */
+ last_ra = prev_win / 2;
+ if (pages < last_ra)
+ pages = last_ra;
+
+ return pages;
+}
+
+static unsigned long swapin_nr_pages(unsigned long offset)
+{
+ static unsigned long prev_offset;
+ unsigned int hits, pages, max_pages;
+ static atomic_t last_readahead_pages;
+
+ max_pages = 1 << READ_ONCE(page_cluster);
+ if (max_pages <= 1)
+ return 1;
+
+ hits = atomic_xchg(&swapin_readahead_hits, 0);
+ pages = __swapin_nr_pages(READ_ONCE(prev_offset), offset, hits,
+ max_pages,
+ atomic_read(&last_readahead_pages));
+ if (!hits)
+ WRITE_ONCE(prev_offset, offset);
+ atomic_set(&last_readahead_pages, pages);
+
+ return pages;
+}
+
+/**
+ * swap_cluster_readahead - swap in pages in hope we need them soon
+ * @entry: swap entry of this memory
+ * @gfp_mask: memory allocation flags
+ * @vmf: fault information
+ *
+ * Returns the struct page for entry and addr, after queueing swapin.
+ *
+ * Primitive swap readahead code. We simply read an aligned block of
+ * (1 << page_cluster) entries in the swap area. This method is chosen
+ * because it doesn't cost us any seek time. We also make sure to queue
+ * the 'original' request together with the readahead ones...
+ *
+ * This has been extended to use the NUMA policies from the mm triggering
+ * the readahead.
+ *
+ * Caller must hold read mmap_lock if vmf->vma is not NULL.
+ */
+struct page *swap_cluster_readahead(swp_entry_t entry, gfp_t gfp_mask,
+ struct vm_fault *vmf)
+{
+ struct page *page;
+ unsigned long entry_offset = swp_offset(entry);
+ unsigned long offset = entry_offset;
+ unsigned long start_offset, end_offset;
+ unsigned long mask;
+ struct swap_info_struct *si = swp_swap_info(entry);
+ struct blk_plug plug;
+ struct swap_iocb *splug = NULL;
+ bool page_allocated;
+ struct vm_area_struct *vma = vmf->vma;
+ unsigned long addr = vmf->address;
+
+ mask = swapin_nr_pages(offset) - 1;
+ if (!mask)
+ goto skip;
+
+ /* Read a page_cluster sized and aligned cluster around offset. */
+ start_offset = offset & ~mask;
+ end_offset = offset | mask;
+ if (!start_offset) /* First page is swap header. */
+ start_offset++;
+ if (end_offset >= si->max)
+ end_offset = si->max - 1;
+
+ blk_start_plug(&plug);
+ for (offset = start_offset; offset <= end_offset ; offset++) {
+ /* Ok, do the async read-ahead now */
+ page = __read_swap_cache_async(
+ swp_entry(swp_type(entry), offset),
+ gfp_mask, vma, addr, &page_allocated);
+ if (!page)
+ continue;
+ if (page_allocated) {
+ swap_readpage(page, false, &splug);
+ if (offset != entry_offset) {
+ SetPageReadahead(page);
+ count_vm_event(SWAP_RA);
+ }
+ }
+ put_page(page);
+ }
+ blk_finish_plug(&plug);
+ swap_read_unplug(splug);
+
+ lru_add_drain(); /* Push any new pages onto the LRU now */
+skip:
+ /* The page was likely read above, so no need for plugging here */
+ return read_swap_cache_async(entry, gfp_mask, vma, addr, NULL);
+}
+
+int init_swap_address_space(unsigned int type, unsigned long nr_pages)
+{
+ struct address_space *spaces, *space;
+ unsigned int i, nr;
+
+ nr = DIV_ROUND_UP(nr_pages, SWAP_ADDRESS_SPACE_PAGES);
+ spaces = kvcalloc(nr, sizeof(struct address_space), GFP_KERNEL);
+ if (!spaces)
+ return -ENOMEM;
+ for (i = 0; i < nr; i++) {
+ space = spaces + i;
+ xa_init_flags(&space->i_pages, XA_FLAGS_LOCK_IRQ);
+ atomic_set(&space->i_mmap_writable, 0);
+ space->a_ops = &swap_aops;
+ /* swap cache doesn't use writeback related tags */
+ mapping_set_no_writeback_tags(space);
+ }
+ nr_swapper_spaces[type] = nr;
+ swapper_spaces[type] = spaces;
+
+ return 0;
+}
+
+void exit_swap_address_space(unsigned int type)
+{
+ int i;
+ struct address_space *spaces = swapper_spaces[type];
+
+ for (i = 0; i < nr_swapper_spaces[type]; i++)
+ VM_WARN_ON_ONCE(!mapping_empty(&spaces[i]));
+ kvfree(spaces);
+ nr_swapper_spaces[type] = 0;
+ swapper_spaces[type] = NULL;
+}
+
+#define SWAP_RA_ORDER_CEILING 5
+
+struct vma_swap_readahead {
+ unsigned short win;
+ unsigned short offset;
+ unsigned short nr_pte;
+};
+
+static void swap_ra_info(struct vm_fault *vmf,
+ struct vma_swap_readahead *ra_info)
+{
+ struct vm_area_struct *vma = vmf->vma;
+ unsigned long ra_val;
+ unsigned long faddr, pfn, fpfn, lpfn, rpfn;
+ unsigned long start, end;
+ unsigned int max_win, hits, prev_win, win;
+
+ max_win = 1 << min_t(unsigned int, READ_ONCE(page_cluster),
+ SWAP_RA_ORDER_CEILING);
+ if (max_win == 1) {
+ ra_info->win = 1;
+ return;
+ }
+
+ faddr = vmf->address;
+ fpfn = PFN_DOWN(faddr);
+ ra_val = GET_SWAP_RA_VAL(vma);
+ pfn = PFN_DOWN(SWAP_RA_ADDR(ra_val));
+ prev_win = SWAP_RA_WIN(ra_val);
+ hits = SWAP_RA_HITS(ra_val);
+ ra_info->win = win = __swapin_nr_pages(pfn, fpfn, hits,
+ max_win, prev_win);
+ atomic_long_set(&vma->swap_readahead_info,
+ SWAP_RA_VAL(faddr, win, 0));
+ if (win == 1)
+ return;
+
+ if (fpfn == pfn + 1) {
+ lpfn = fpfn;
+ rpfn = fpfn + win;
+ } else if (pfn == fpfn + 1) {
+ lpfn = fpfn - win + 1;
+ rpfn = fpfn + 1;
+ } else {
+ unsigned int left = (win - 1) / 2;
+
+ lpfn = fpfn - left;
+ rpfn = fpfn + win - left;
+ }
+ start = max3(lpfn, PFN_DOWN(vma->vm_start),
+ PFN_DOWN(faddr & PMD_MASK));
+ end = min3(rpfn, PFN_DOWN(vma->vm_end),
+ PFN_DOWN((faddr & PMD_MASK) + PMD_SIZE));
+
+ ra_info->nr_pte = end - start;
+ ra_info->offset = fpfn - start;
+}
+
+/**
+ * swap_vma_readahead - swap in pages in hope we need them soon
+ * @fentry: swap entry of this memory
+ * @gfp_mask: memory allocation flags
+ * @vmf: fault information
+ *
+ * Returns the struct page for entry and addr, after queueing swapin.
+ *
+ * Primitive swap readahead code. We simply read in a few pages whose
+ * virtual addresses are around the fault address in the same vma.
+ *
+ * Caller must hold read mmap_lock if vmf->vma is not NULL.
+ *
+ */
+static struct page *swap_vma_readahead(swp_entry_t fentry, gfp_t gfp_mask,
+ struct vm_fault *vmf)
+{
+ struct blk_plug plug;
+ struct swap_iocb *splug = NULL;
+ struct vm_area_struct *vma = vmf->vma;
+ struct page *page;
+ pte_t *pte = NULL, pentry;
+ unsigned long addr;
+ swp_entry_t entry;
+ unsigned int i;
+ bool page_allocated;
+ struct vma_swap_readahead ra_info = {
+ .win = 1,
+ };
+
+ swap_ra_info(vmf, &ra_info);
+ if (ra_info.win == 1)
+ goto skip;
+
+ addr = vmf->address - (ra_info.offset * PAGE_SIZE);
+
+ blk_start_plug(&plug);
+ for (i = 0; i < ra_info.nr_pte; i++, addr += PAGE_SIZE) {
+ if (!pte++) {
+ pte = pte_offset_map(vmf->pmd, addr);
+ if (!pte)
+ break;
+ }
+ pentry = ptep_get_lockless(pte);
+ if (!is_swap_pte(pentry))
+ continue;
+ entry = pte_to_swp_entry(pentry);
+ if (unlikely(non_swap_entry(entry)))
+ continue;
+ pte_unmap(pte);
+ pte = NULL;
+ page = __read_swap_cache_async(entry, gfp_mask, vma,
+ addr, &page_allocated);
+ if (!page)
+ continue;
+ if (page_allocated) {
+ swap_readpage(page, false, &splug);
+ if (i != ra_info.offset) {
+ SetPageReadahead(page);
+ count_vm_event(SWAP_RA);
+ }
+ }
+ put_page(page);
+ }
+ if (pte)
+ pte_unmap(pte);
+ blk_finish_plug(&plug);
+ swap_read_unplug(splug);
+ lru_add_drain();
+skip:
+ /* The page was likely read above, so no need for plugging here */
+ return read_swap_cache_async(fentry, gfp_mask, vma, vmf->address,
+ NULL);
+}
+
+/**
+ * swapin_readahead - swap in pages in hope we need them soon
+ * @entry: swap entry of this memory
+ * @gfp_mask: memory allocation flags
+ * @vmf: fault information
+ *
+ * Returns the struct page for entry and addr, after queueing swapin.
+ *
+ * It's a main entry function for swap readahead. By the configuration,
+ * it will read ahead blocks by cluster-based(ie, physical disk based)
+ * or vma-based(ie, virtual address based on faulty address) readahead.
+ */
+struct page *swapin_readahead(swp_entry_t entry, gfp_t gfp_mask,
+ struct vm_fault *vmf)
+{
+ return swap_use_vma_readahead() ?
+ swap_vma_readahead(entry, gfp_mask, vmf) :
+ swap_cluster_readahead(entry, gfp_mask, vmf);
+}
+
+#ifdef CONFIG_SYSFS
+static ssize_t vma_ra_enabled_show(struct kobject *kobj,
+ struct kobj_attribute *attr, char *buf)
+{
+ return sysfs_emit(buf, "%s\n",
+ enable_vma_readahead ? "true" : "false");
+}
+static ssize_t vma_ra_enabled_store(struct kobject *kobj,
+ struct kobj_attribute *attr,
+ const char *buf, size_t count)
+{
+ ssize_t ret;
+
+ ret = kstrtobool(buf, &enable_vma_readahead);
+ if (ret)
+ return ret;
+
+ return count;
+}
+static struct kobj_attribute vma_ra_enabled_attr = __ATTR_RW(vma_ra_enabled);
+
+static struct attribute *swap_attrs[] = {
+ &vma_ra_enabled_attr.attr,
+ NULL,
+};
+
+static const struct attribute_group swap_attr_group = {
+ .attrs = swap_attrs,
+};
+
+static int __init swap_init_sysfs(void)
+{
+ int err;
+ struct kobject *swap_kobj;
+
+ swap_kobj = kobject_create_and_add("swap", mm_kobj);
+ if (!swap_kobj) {
+ pr_err("failed to create swap kobject\n");
+ return -ENOMEM;
+ }
+ err = sysfs_create_group(swap_kobj, &swap_attr_group);
+ if (err) {
+ pr_err("failed to register swap group\n");
+ goto delete_obj;
+ }
+ return 0;
+
+delete_obj:
+ kobject_put(swap_kobj);
+ return err;
+}
+subsys_initcall(swap_init_sysfs);
+#endif