summaryrefslogtreecommitdiffstats
path: root/mm/util.c
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-11 08:27:49 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-11 08:27:49 +0000
commitace9429bb58fd418f0c81d4c2835699bddf6bde6 (patch)
treeb2d64bc10158fdd5497876388cd68142ca374ed3 /mm/util.c
parentInitial commit. (diff)
downloadlinux-ace9429bb58fd418f0c81d4c2835699bddf6bde6.tar.xz
linux-ace9429bb58fd418f0c81d4c2835699bddf6bde6.zip
Adding upstream version 6.6.15.upstream/6.6.15
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'mm/util.c')
-rw-r--r--mm/util.c1146
1 files changed, 1146 insertions, 0 deletions
diff --git a/mm/util.c b/mm/util.c
new file mode 100644
index 0000000000..be798981ac
--- /dev/null
+++ b/mm/util.c
@@ -0,0 +1,1146 @@
+// SPDX-License-Identifier: GPL-2.0-only
+#include <linux/mm.h>
+#include <linux/slab.h>
+#include <linux/string.h>
+#include <linux/compiler.h>
+#include <linux/export.h>
+#include <linux/err.h>
+#include <linux/sched.h>
+#include <linux/sched/mm.h>
+#include <linux/sched/signal.h>
+#include <linux/sched/task_stack.h>
+#include <linux/security.h>
+#include <linux/swap.h>
+#include <linux/swapops.h>
+#include <linux/mman.h>
+#include <linux/hugetlb.h>
+#include <linux/vmalloc.h>
+#include <linux/userfaultfd_k.h>
+#include <linux/elf.h>
+#include <linux/elf-randomize.h>
+#include <linux/personality.h>
+#include <linux/random.h>
+#include <linux/processor.h>
+#include <linux/sizes.h>
+#include <linux/compat.h>
+
+#include <linux/uaccess.h>
+
+#include "internal.h"
+#include "swap.h"
+
+/**
+ * kfree_const - conditionally free memory
+ * @x: pointer to the memory
+ *
+ * Function calls kfree only if @x is not in .rodata section.
+ */
+void kfree_const(const void *x)
+{
+ if (!is_kernel_rodata((unsigned long)x))
+ kfree(x);
+}
+EXPORT_SYMBOL(kfree_const);
+
+/**
+ * kstrdup - allocate space for and copy an existing string
+ * @s: the string to duplicate
+ * @gfp: the GFP mask used in the kmalloc() call when allocating memory
+ *
+ * Return: newly allocated copy of @s or %NULL in case of error
+ */
+noinline
+char *kstrdup(const char *s, gfp_t gfp)
+{
+ size_t len;
+ char *buf;
+
+ if (!s)
+ return NULL;
+
+ len = strlen(s) + 1;
+ buf = kmalloc_track_caller(len, gfp);
+ if (buf)
+ memcpy(buf, s, len);
+ return buf;
+}
+EXPORT_SYMBOL(kstrdup);
+
+/**
+ * kstrdup_const - conditionally duplicate an existing const string
+ * @s: the string to duplicate
+ * @gfp: the GFP mask used in the kmalloc() call when allocating memory
+ *
+ * Note: Strings allocated by kstrdup_const should be freed by kfree_const and
+ * must not be passed to krealloc().
+ *
+ * Return: source string if it is in .rodata section otherwise
+ * fallback to kstrdup.
+ */
+const char *kstrdup_const(const char *s, gfp_t gfp)
+{
+ if (is_kernel_rodata((unsigned long)s))
+ return s;
+
+ return kstrdup(s, gfp);
+}
+EXPORT_SYMBOL(kstrdup_const);
+
+/**
+ * kstrndup - allocate space for and copy an existing string
+ * @s: the string to duplicate
+ * @max: read at most @max chars from @s
+ * @gfp: the GFP mask used in the kmalloc() call when allocating memory
+ *
+ * Note: Use kmemdup_nul() instead if the size is known exactly.
+ *
+ * Return: newly allocated copy of @s or %NULL in case of error
+ */
+char *kstrndup(const char *s, size_t max, gfp_t gfp)
+{
+ size_t len;
+ char *buf;
+
+ if (!s)
+ return NULL;
+
+ len = strnlen(s, max);
+ buf = kmalloc_track_caller(len+1, gfp);
+ if (buf) {
+ memcpy(buf, s, len);
+ buf[len] = '\0';
+ }
+ return buf;
+}
+EXPORT_SYMBOL(kstrndup);
+
+/**
+ * kmemdup - duplicate region of memory
+ *
+ * @src: memory region to duplicate
+ * @len: memory region length
+ * @gfp: GFP mask to use
+ *
+ * Return: newly allocated copy of @src or %NULL in case of error,
+ * result is physically contiguous. Use kfree() to free.
+ */
+void *kmemdup(const void *src, size_t len, gfp_t gfp)
+{
+ void *p;
+
+ p = kmalloc_track_caller(len, gfp);
+ if (p)
+ memcpy(p, src, len);
+ return p;
+}
+EXPORT_SYMBOL(kmemdup);
+
+/**
+ * kvmemdup - duplicate region of memory
+ *
+ * @src: memory region to duplicate
+ * @len: memory region length
+ * @gfp: GFP mask to use
+ *
+ * Return: newly allocated copy of @src or %NULL in case of error,
+ * result may be not physically contiguous. Use kvfree() to free.
+ */
+void *kvmemdup(const void *src, size_t len, gfp_t gfp)
+{
+ void *p;
+
+ p = kvmalloc(len, gfp);
+ if (p)
+ memcpy(p, src, len);
+ return p;
+}
+EXPORT_SYMBOL(kvmemdup);
+
+/**
+ * kmemdup_nul - Create a NUL-terminated string from unterminated data
+ * @s: The data to stringify
+ * @len: The size of the data
+ * @gfp: the GFP mask used in the kmalloc() call when allocating memory
+ *
+ * Return: newly allocated copy of @s with NUL-termination or %NULL in
+ * case of error
+ */
+char *kmemdup_nul(const char *s, size_t len, gfp_t gfp)
+{
+ char *buf;
+
+ if (!s)
+ return NULL;
+
+ buf = kmalloc_track_caller(len + 1, gfp);
+ if (buf) {
+ memcpy(buf, s, len);
+ buf[len] = '\0';
+ }
+ return buf;
+}
+EXPORT_SYMBOL(kmemdup_nul);
+
+/**
+ * memdup_user - duplicate memory region from user space
+ *
+ * @src: source address in user space
+ * @len: number of bytes to copy
+ *
+ * Return: an ERR_PTR() on failure. Result is physically
+ * contiguous, to be freed by kfree().
+ */
+void *memdup_user(const void __user *src, size_t len)
+{
+ void *p;
+
+ p = kmalloc_track_caller(len, GFP_USER | __GFP_NOWARN);
+ if (!p)
+ return ERR_PTR(-ENOMEM);
+
+ if (copy_from_user(p, src, len)) {
+ kfree(p);
+ return ERR_PTR(-EFAULT);
+ }
+
+ return p;
+}
+EXPORT_SYMBOL(memdup_user);
+
+/**
+ * vmemdup_user - duplicate memory region from user space
+ *
+ * @src: source address in user space
+ * @len: number of bytes to copy
+ *
+ * Return: an ERR_PTR() on failure. Result may be not
+ * physically contiguous. Use kvfree() to free.
+ */
+void *vmemdup_user(const void __user *src, size_t len)
+{
+ void *p;
+
+ p = kvmalloc(len, GFP_USER);
+ if (!p)
+ return ERR_PTR(-ENOMEM);
+
+ if (copy_from_user(p, src, len)) {
+ kvfree(p);
+ return ERR_PTR(-EFAULT);
+ }
+
+ return p;
+}
+EXPORT_SYMBOL(vmemdup_user);
+
+/**
+ * strndup_user - duplicate an existing string from user space
+ * @s: The string to duplicate
+ * @n: Maximum number of bytes to copy, including the trailing NUL.
+ *
+ * Return: newly allocated copy of @s or an ERR_PTR() in case of error
+ */
+char *strndup_user(const char __user *s, long n)
+{
+ char *p;
+ long length;
+
+ length = strnlen_user(s, n);
+
+ if (!length)
+ return ERR_PTR(-EFAULT);
+
+ if (length > n)
+ return ERR_PTR(-EINVAL);
+
+ p = memdup_user(s, length);
+
+ if (IS_ERR(p))
+ return p;
+
+ p[length - 1] = '\0';
+
+ return p;
+}
+EXPORT_SYMBOL(strndup_user);
+
+/**
+ * memdup_user_nul - duplicate memory region from user space and NUL-terminate
+ *
+ * @src: source address in user space
+ * @len: number of bytes to copy
+ *
+ * Return: an ERR_PTR() on failure.
+ */
+void *memdup_user_nul(const void __user *src, size_t len)
+{
+ char *p;
+
+ /*
+ * Always use GFP_KERNEL, since copy_from_user() can sleep and
+ * cause pagefault, which makes it pointless to use GFP_NOFS
+ * or GFP_ATOMIC.
+ */
+ p = kmalloc_track_caller(len + 1, GFP_KERNEL);
+ if (!p)
+ return ERR_PTR(-ENOMEM);
+
+ if (copy_from_user(p, src, len)) {
+ kfree(p);
+ return ERR_PTR(-EFAULT);
+ }
+ p[len] = '\0';
+
+ return p;
+}
+EXPORT_SYMBOL(memdup_user_nul);
+
+/* Check if the vma is being used as a stack by this task */
+int vma_is_stack_for_current(struct vm_area_struct *vma)
+{
+ struct task_struct * __maybe_unused t = current;
+
+ return (vma->vm_start <= KSTK_ESP(t) && vma->vm_end >= KSTK_ESP(t));
+}
+
+/*
+ * Change backing file, only valid to use during initial VMA setup.
+ */
+void vma_set_file(struct vm_area_struct *vma, struct file *file)
+{
+ /* Changing an anonymous vma with this is illegal */
+ get_file(file);
+ swap(vma->vm_file, file);
+ fput(file);
+}
+EXPORT_SYMBOL(vma_set_file);
+
+#ifndef STACK_RND_MASK
+#define STACK_RND_MASK (0x7ff >> (PAGE_SHIFT - 12)) /* 8MB of VA */
+#endif
+
+unsigned long randomize_stack_top(unsigned long stack_top)
+{
+ unsigned long random_variable = 0;
+
+ if (current->flags & PF_RANDOMIZE) {
+ random_variable = get_random_long();
+ random_variable &= STACK_RND_MASK;
+ random_variable <<= PAGE_SHIFT;
+ }
+#ifdef CONFIG_STACK_GROWSUP
+ return PAGE_ALIGN(stack_top) + random_variable;
+#else
+ return PAGE_ALIGN(stack_top) - random_variable;
+#endif
+}
+
+/**
+ * randomize_page - Generate a random, page aligned address
+ * @start: The smallest acceptable address the caller will take.
+ * @range: The size of the area, starting at @start, within which the
+ * random address must fall.
+ *
+ * If @start + @range would overflow, @range is capped.
+ *
+ * NOTE: Historical use of randomize_range, which this replaces, presumed that
+ * @start was already page aligned. We now align it regardless.
+ *
+ * Return: A page aligned address within [start, start + range). On error,
+ * @start is returned.
+ */
+unsigned long randomize_page(unsigned long start, unsigned long range)
+{
+ if (!PAGE_ALIGNED(start)) {
+ range -= PAGE_ALIGN(start) - start;
+ start = PAGE_ALIGN(start);
+ }
+
+ if (start > ULONG_MAX - range)
+ range = ULONG_MAX - start;
+
+ range >>= PAGE_SHIFT;
+
+ if (range == 0)
+ return start;
+
+ return start + (get_random_long() % range << PAGE_SHIFT);
+}
+
+#ifdef CONFIG_ARCH_WANT_DEFAULT_TOPDOWN_MMAP_LAYOUT
+unsigned long __weak arch_randomize_brk(struct mm_struct *mm)
+{
+ /* Is the current task 32bit ? */
+ if (!IS_ENABLED(CONFIG_64BIT) || is_compat_task())
+ return randomize_page(mm->brk, SZ_32M);
+
+ return randomize_page(mm->brk, SZ_1G);
+}
+
+unsigned long arch_mmap_rnd(void)
+{
+ unsigned long rnd;
+
+#ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
+ if (is_compat_task())
+ rnd = get_random_long() & ((1UL << mmap_rnd_compat_bits) - 1);
+ else
+#endif /* CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS */
+ rnd = get_random_long() & ((1UL << mmap_rnd_bits) - 1);
+
+ return rnd << PAGE_SHIFT;
+}
+
+static int mmap_is_legacy(struct rlimit *rlim_stack)
+{
+ if (current->personality & ADDR_COMPAT_LAYOUT)
+ return 1;
+
+ /* On parisc the stack always grows up - so a unlimited stack should
+ * not be an indicator to use the legacy memory layout. */
+ if (rlim_stack->rlim_cur == RLIM_INFINITY &&
+ !IS_ENABLED(CONFIG_STACK_GROWSUP))
+ return 1;
+
+ return sysctl_legacy_va_layout;
+}
+
+/*
+ * Leave enough space between the mmap area and the stack to honour ulimit in
+ * the face of randomisation.
+ */
+#define MIN_GAP (SZ_128M)
+#define MAX_GAP (STACK_TOP / 6 * 5)
+
+static unsigned long mmap_base(unsigned long rnd, struct rlimit *rlim_stack)
+{
+#ifdef CONFIG_STACK_GROWSUP
+ /*
+ * For an upwards growing stack the calculation is much simpler.
+ * Memory for the maximum stack size is reserved at the top of the
+ * task. mmap_base starts directly below the stack and grows
+ * downwards.
+ */
+ return PAGE_ALIGN_DOWN(mmap_upper_limit(rlim_stack) - rnd);
+#else
+ unsigned long gap = rlim_stack->rlim_cur;
+ unsigned long pad = stack_guard_gap;
+
+ /* Account for stack randomization if necessary */
+ if (current->flags & PF_RANDOMIZE)
+ pad += (STACK_RND_MASK << PAGE_SHIFT);
+
+ /* Values close to RLIM_INFINITY can overflow. */
+ if (gap + pad > gap)
+ gap += pad;
+
+ if (gap < MIN_GAP)
+ gap = MIN_GAP;
+ else if (gap > MAX_GAP)
+ gap = MAX_GAP;
+
+ return PAGE_ALIGN(STACK_TOP - gap - rnd);
+#endif
+}
+
+void arch_pick_mmap_layout(struct mm_struct *mm, struct rlimit *rlim_stack)
+{
+ unsigned long random_factor = 0UL;
+
+ if (current->flags & PF_RANDOMIZE)
+ random_factor = arch_mmap_rnd();
+
+ if (mmap_is_legacy(rlim_stack)) {
+ mm->mmap_base = TASK_UNMAPPED_BASE + random_factor;
+ mm->get_unmapped_area = arch_get_unmapped_area;
+ } else {
+ mm->mmap_base = mmap_base(random_factor, rlim_stack);
+ mm->get_unmapped_area = arch_get_unmapped_area_topdown;
+ }
+}
+#elif defined(CONFIG_MMU) && !defined(HAVE_ARCH_PICK_MMAP_LAYOUT)
+void arch_pick_mmap_layout(struct mm_struct *mm, struct rlimit *rlim_stack)
+{
+ mm->mmap_base = TASK_UNMAPPED_BASE;
+ mm->get_unmapped_area = arch_get_unmapped_area;
+}
+#endif
+
+/**
+ * __account_locked_vm - account locked pages to an mm's locked_vm
+ * @mm: mm to account against
+ * @pages: number of pages to account
+ * @inc: %true if @pages should be considered positive, %false if not
+ * @task: task used to check RLIMIT_MEMLOCK
+ * @bypass_rlim: %true if checking RLIMIT_MEMLOCK should be skipped
+ *
+ * Assumes @task and @mm are valid (i.e. at least one reference on each), and
+ * that mmap_lock is held as writer.
+ *
+ * Return:
+ * * 0 on success
+ * * -ENOMEM if RLIMIT_MEMLOCK would be exceeded.
+ */
+int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc,
+ struct task_struct *task, bool bypass_rlim)
+{
+ unsigned long locked_vm, limit;
+ int ret = 0;
+
+ mmap_assert_write_locked(mm);
+
+ locked_vm = mm->locked_vm;
+ if (inc) {
+ if (!bypass_rlim) {
+ limit = task_rlimit(task, RLIMIT_MEMLOCK) >> PAGE_SHIFT;
+ if (locked_vm + pages > limit)
+ ret = -ENOMEM;
+ }
+ if (!ret)
+ mm->locked_vm = locked_vm + pages;
+ } else {
+ WARN_ON_ONCE(pages > locked_vm);
+ mm->locked_vm = locked_vm - pages;
+ }
+
+ pr_debug("%s: [%d] caller %ps %c%lu %lu/%lu%s\n", __func__, task->pid,
+ (void *)_RET_IP_, (inc) ? '+' : '-', pages << PAGE_SHIFT,
+ locked_vm << PAGE_SHIFT, task_rlimit(task, RLIMIT_MEMLOCK),
+ ret ? " - exceeded" : "");
+
+ return ret;
+}
+EXPORT_SYMBOL_GPL(__account_locked_vm);
+
+/**
+ * account_locked_vm - account locked pages to an mm's locked_vm
+ * @mm: mm to account against, may be NULL
+ * @pages: number of pages to account
+ * @inc: %true if @pages should be considered positive, %false if not
+ *
+ * Assumes a non-NULL @mm is valid (i.e. at least one reference on it).
+ *
+ * Return:
+ * * 0 on success, or if mm is NULL
+ * * -ENOMEM if RLIMIT_MEMLOCK would be exceeded.
+ */
+int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc)
+{
+ int ret;
+
+ if (pages == 0 || !mm)
+ return 0;
+
+ mmap_write_lock(mm);
+ ret = __account_locked_vm(mm, pages, inc, current,
+ capable(CAP_IPC_LOCK));
+ mmap_write_unlock(mm);
+
+ return ret;
+}
+EXPORT_SYMBOL_GPL(account_locked_vm);
+
+unsigned long vm_mmap_pgoff(struct file *file, unsigned long addr,
+ unsigned long len, unsigned long prot,
+ unsigned long flag, unsigned long pgoff)
+{
+ unsigned long ret;
+ struct mm_struct *mm = current->mm;
+ unsigned long populate;
+ LIST_HEAD(uf);
+
+ ret = security_mmap_file(file, prot, flag);
+ if (!ret) {
+ if (mmap_write_lock_killable(mm))
+ return -EINTR;
+ ret = do_mmap(file, addr, len, prot, flag, 0, pgoff, &populate,
+ &uf);
+ mmap_write_unlock(mm);
+ userfaultfd_unmap_complete(mm, &uf);
+ if (populate)
+ mm_populate(ret, populate);
+ }
+ return ret;
+}
+
+unsigned long vm_mmap(struct file *file, unsigned long addr,
+ unsigned long len, unsigned long prot,
+ unsigned long flag, unsigned long offset)
+{
+ if (unlikely(offset + PAGE_ALIGN(len) < offset))
+ return -EINVAL;
+ if (unlikely(offset_in_page(offset)))
+ return -EINVAL;
+
+ return vm_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT);
+}
+EXPORT_SYMBOL(vm_mmap);
+
+/**
+ * kvmalloc_node - attempt to allocate physically contiguous memory, but upon
+ * failure, fall back to non-contiguous (vmalloc) allocation.
+ * @size: size of the request.
+ * @flags: gfp mask for the allocation - must be compatible (superset) with GFP_KERNEL.
+ * @node: numa node to allocate from
+ *
+ * Uses kmalloc to get the memory but if the allocation fails then falls back
+ * to the vmalloc allocator. Use kvfree for freeing the memory.
+ *
+ * GFP_NOWAIT and GFP_ATOMIC are not supported, neither is the __GFP_NORETRY modifier.
+ * __GFP_RETRY_MAYFAIL is supported, and it should be used only if kmalloc is
+ * preferable to the vmalloc fallback, due to visible performance drawbacks.
+ *
+ * Return: pointer to the allocated memory of %NULL in case of failure
+ */
+void *kvmalloc_node(size_t size, gfp_t flags, int node)
+{
+ gfp_t kmalloc_flags = flags;
+ void *ret;
+
+ /*
+ * We want to attempt a large physically contiguous block first because
+ * it is less likely to fragment multiple larger blocks and therefore
+ * contribute to a long term fragmentation less than vmalloc fallback.
+ * However make sure that larger requests are not too disruptive - no
+ * OOM killer and no allocation failure warnings as we have a fallback.
+ */
+ if (size > PAGE_SIZE) {
+ kmalloc_flags |= __GFP_NOWARN;
+
+ if (!(kmalloc_flags & __GFP_RETRY_MAYFAIL))
+ kmalloc_flags |= __GFP_NORETRY;
+
+ /* nofail semantic is implemented by the vmalloc fallback */
+ kmalloc_flags &= ~__GFP_NOFAIL;
+ }
+
+ ret = kmalloc_node(size, kmalloc_flags, node);
+
+ /*
+ * It doesn't really make sense to fallback to vmalloc for sub page
+ * requests
+ */
+ if (ret || size <= PAGE_SIZE)
+ return ret;
+
+ /* non-sleeping allocations are not supported by vmalloc */
+ if (!gfpflags_allow_blocking(flags))
+ return NULL;
+
+ /* Don't even allow crazy sizes */
+ if (unlikely(size > INT_MAX)) {
+ WARN_ON_ONCE(!(flags & __GFP_NOWARN));
+ return NULL;
+ }
+
+ /*
+ * kvmalloc() can always use VM_ALLOW_HUGE_VMAP,
+ * since the callers already cannot assume anything
+ * about the resulting pointer, and cannot play
+ * protection games.
+ */
+ return __vmalloc_node_range(size, 1, VMALLOC_START, VMALLOC_END,
+ flags, PAGE_KERNEL, VM_ALLOW_HUGE_VMAP,
+ node, __builtin_return_address(0));
+}
+EXPORT_SYMBOL(kvmalloc_node);
+
+/**
+ * kvfree() - Free memory.
+ * @addr: Pointer to allocated memory.
+ *
+ * kvfree frees memory allocated by any of vmalloc(), kmalloc() or kvmalloc().
+ * It is slightly more efficient to use kfree() or vfree() if you are certain
+ * that you know which one to use.
+ *
+ * Context: Either preemptible task context or not-NMI interrupt.
+ */
+void kvfree(const void *addr)
+{
+ if (is_vmalloc_addr(addr))
+ vfree(addr);
+ else
+ kfree(addr);
+}
+EXPORT_SYMBOL(kvfree);
+
+/**
+ * kvfree_sensitive - Free a data object containing sensitive information.
+ * @addr: address of the data object to be freed.
+ * @len: length of the data object.
+ *
+ * Use the special memzero_explicit() function to clear the content of a
+ * kvmalloc'ed object containing sensitive data to make sure that the
+ * compiler won't optimize out the data clearing.
+ */
+void kvfree_sensitive(const void *addr, size_t len)
+{
+ if (likely(!ZERO_OR_NULL_PTR(addr))) {
+ memzero_explicit((void *)addr, len);
+ kvfree(addr);
+ }
+}
+EXPORT_SYMBOL(kvfree_sensitive);
+
+void *kvrealloc(const void *p, size_t oldsize, size_t newsize, gfp_t flags)
+{
+ void *newp;
+
+ if (oldsize >= newsize)
+ return (void *)p;
+ newp = kvmalloc(newsize, flags);
+ if (!newp)
+ return NULL;
+ memcpy(newp, p, oldsize);
+ kvfree(p);
+ return newp;
+}
+EXPORT_SYMBOL(kvrealloc);
+
+/**
+ * __vmalloc_array - allocate memory for a virtually contiguous array.
+ * @n: number of elements.
+ * @size: element size.
+ * @flags: the type of memory to allocate (see kmalloc).
+ */
+void *__vmalloc_array(size_t n, size_t size, gfp_t flags)
+{
+ size_t bytes;
+
+ if (unlikely(check_mul_overflow(n, size, &bytes)))
+ return NULL;
+ return __vmalloc(bytes, flags);
+}
+EXPORT_SYMBOL(__vmalloc_array);
+
+/**
+ * vmalloc_array - allocate memory for a virtually contiguous array.
+ * @n: number of elements.
+ * @size: element size.
+ */
+void *vmalloc_array(size_t n, size_t size)
+{
+ return __vmalloc_array(n, size, GFP_KERNEL);
+}
+EXPORT_SYMBOL(vmalloc_array);
+
+/**
+ * __vcalloc - allocate and zero memory for a virtually contiguous array.
+ * @n: number of elements.
+ * @size: element size.
+ * @flags: the type of memory to allocate (see kmalloc).
+ */
+void *__vcalloc(size_t n, size_t size, gfp_t flags)
+{
+ return __vmalloc_array(n, size, flags | __GFP_ZERO);
+}
+EXPORT_SYMBOL(__vcalloc);
+
+/**
+ * vcalloc - allocate and zero memory for a virtually contiguous array.
+ * @n: number of elements.
+ * @size: element size.
+ */
+void *vcalloc(size_t n, size_t size)
+{
+ return __vmalloc_array(n, size, GFP_KERNEL | __GFP_ZERO);
+}
+EXPORT_SYMBOL(vcalloc);
+
+struct anon_vma *folio_anon_vma(struct folio *folio)
+{
+ unsigned long mapping = (unsigned long)folio->mapping;
+
+ if ((mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
+ return NULL;
+ return (void *)(mapping - PAGE_MAPPING_ANON);
+}
+
+/**
+ * folio_mapping - Find the mapping where this folio is stored.
+ * @folio: The folio.
+ *
+ * For folios which are in the page cache, return the mapping that this
+ * page belongs to. Folios in the swap cache return the swap mapping
+ * this page is stored in (which is different from the mapping for the
+ * swap file or swap device where the data is stored).
+ *
+ * You can call this for folios which aren't in the swap cache or page
+ * cache and it will return NULL.
+ */
+struct address_space *folio_mapping(struct folio *folio)
+{
+ struct address_space *mapping;
+
+ /* This happens if someone calls flush_dcache_page on slab page */
+ if (unlikely(folio_test_slab(folio)))
+ return NULL;
+
+ if (unlikely(folio_test_swapcache(folio)))
+ return swap_address_space(folio->swap);
+
+ mapping = folio->mapping;
+ if ((unsigned long)mapping & PAGE_MAPPING_FLAGS)
+ return NULL;
+
+ return mapping;
+}
+EXPORT_SYMBOL(folio_mapping);
+
+/**
+ * folio_copy - Copy the contents of one folio to another.
+ * @dst: Folio to copy to.
+ * @src: Folio to copy from.
+ *
+ * The bytes in the folio represented by @src are copied to @dst.
+ * Assumes the caller has validated that @dst is at least as large as @src.
+ * Can be called in atomic context for order-0 folios, but if the folio is
+ * larger, it may sleep.
+ */
+void folio_copy(struct folio *dst, struct folio *src)
+{
+ long i = 0;
+ long nr = folio_nr_pages(src);
+
+ for (;;) {
+ copy_highpage(folio_page(dst, i), folio_page(src, i));
+ if (++i == nr)
+ break;
+ cond_resched();
+ }
+}
+
+int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS;
+int sysctl_overcommit_ratio __read_mostly = 50;
+unsigned long sysctl_overcommit_kbytes __read_mostly;
+int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT;
+unsigned long sysctl_user_reserve_kbytes __read_mostly = 1UL << 17; /* 128MB */
+unsigned long sysctl_admin_reserve_kbytes __read_mostly = 1UL << 13; /* 8MB */
+
+int overcommit_ratio_handler(struct ctl_table *table, int write, void *buffer,
+ size_t *lenp, loff_t *ppos)
+{
+ int ret;
+
+ ret = proc_dointvec(table, write, buffer, lenp, ppos);
+ if (ret == 0 && write)
+ sysctl_overcommit_kbytes = 0;
+ return ret;
+}
+
+static void sync_overcommit_as(struct work_struct *dummy)
+{
+ percpu_counter_sync(&vm_committed_as);
+}
+
+int overcommit_policy_handler(struct ctl_table *table, int write, void *buffer,
+ size_t *lenp, loff_t *ppos)
+{
+ struct ctl_table t;
+ int new_policy = -1;
+ int ret;
+
+ /*
+ * The deviation of sync_overcommit_as could be big with loose policy
+ * like OVERCOMMIT_ALWAYS/OVERCOMMIT_GUESS. When changing policy to
+ * strict OVERCOMMIT_NEVER, we need to reduce the deviation to comply
+ * with the strict "NEVER", and to avoid possible race condition (even
+ * though user usually won't too frequently do the switching to policy
+ * OVERCOMMIT_NEVER), the switch is done in the following order:
+ * 1. changing the batch
+ * 2. sync percpu count on each CPU
+ * 3. switch the policy
+ */
+ if (write) {
+ t = *table;
+ t.data = &new_policy;
+ ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
+ if (ret || new_policy == -1)
+ return ret;
+
+ mm_compute_batch(new_policy);
+ if (new_policy == OVERCOMMIT_NEVER)
+ schedule_on_each_cpu(sync_overcommit_as);
+ sysctl_overcommit_memory = new_policy;
+ } else {
+ ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
+ }
+
+ return ret;
+}
+
+int overcommit_kbytes_handler(struct ctl_table *table, int write, void *buffer,
+ size_t *lenp, loff_t *ppos)
+{
+ int ret;
+
+ ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
+ if (ret == 0 && write)
+ sysctl_overcommit_ratio = 0;
+ return ret;
+}
+
+/*
+ * Committed memory limit enforced when OVERCOMMIT_NEVER policy is used
+ */
+unsigned long vm_commit_limit(void)
+{
+ unsigned long allowed;
+
+ if (sysctl_overcommit_kbytes)
+ allowed = sysctl_overcommit_kbytes >> (PAGE_SHIFT - 10);
+ else
+ allowed = ((totalram_pages() - hugetlb_total_pages())
+ * sysctl_overcommit_ratio / 100);
+ allowed += total_swap_pages;
+
+ return allowed;
+}
+
+/*
+ * Make sure vm_committed_as in one cacheline and not cacheline shared with
+ * other variables. It can be updated by several CPUs frequently.
+ */
+struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp;
+
+/*
+ * The global memory commitment made in the system can be a metric
+ * that can be used to drive ballooning decisions when Linux is hosted
+ * as a guest. On Hyper-V, the host implements a policy engine for dynamically
+ * balancing memory across competing virtual machines that are hosted.
+ * Several metrics drive this policy engine including the guest reported
+ * memory commitment.
+ *
+ * The time cost of this is very low for small platforms, and for big
+ * platform like a 2S/36C/72T Skylake server, in worst case where
+ * vm_committed_as's spinlock is under severe contention, the time cost
+ * could be about 30~40 microseconds.
+ */
+unsigned long vm_memory_committed(void)
+{
+ return percpu_counter_sum_positive(&vm_committed_as);
+}
+EXPORT_SYMBOL_GPL(vm_memory_committed);
+
+/*
+ * Check that a process has enough memory to allocate a new virtual
+ * mapping. 0 means there is enough memory for the allocation to
+ * succeed and -ENOMEM implies there is not.
+ *
+ * We currently support three overcommit policies, which are set via the
+ * vm.overcommit_memory sysctl. See Documentation/mm/overcommit-accounting.rst
+ *
+ * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
+ * Additional code 2002 Jul 20 by Robert Love.
+ *
+ * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
+ *
+ * Note this is a helper function intended to be used by LSMs which
+ * wish to use this logic.
+ */
+int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
+{
+ long allowed;
+
+ vm_acct_memory(pages);
+
+ /*
+ * Sometimes we want to use more memory than we have
+ */
+ if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
+ return 0;
+
+ if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
+ if (pages > totalram_pages() + total_swap_pages)
+ goto error;
+ return 0;
+ }
+
+ allowed = vm_commit_limit();
+ /*
+ * Reserve some for root
+ */
+ if (!cap_sys_admin)
+ allowed -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
+
+ /*
+ * Don't let a single process grow so big a user can't recover
+ */
+ if (mm) {
+ long reserve = sysctl_user_reserve_kbytes >> (PAGE_SHIFT - 10);
+
+ allowed -= min_t(long, mm->total_vm / 32, reserve);
+ }
+
+ if (percpu_counter_read_positive(&vm_committed_as) < allowed)
+ return 0;
+error:
+ pr_warn_ratelimited("%s: pid: %d, comm: %s, not enough memory for the allocation\n",
+ __func__, current->pid, current->comm);
+ vm_unacct_memory(pages);
+
+ return -ENOMEM;
+}
+
+/**
+ * get_cmdline() - copy the cmdline value to a buffer.
+ * @task: the task whose cmdline value to copy.
+ * @buffer: the buffer to copy to.
+ * @buflen: the length of the buffer. Larger cmdline values are truncated
+ * to this length.
+ *
+ * Return: the size of the cmdline field copied. Note that the copy does
+ * not guarantee an ending NULL byte.
+ */
+int get_cmdline(struct task_struct *task, char *buffer, int buflen)
+{
+ int res = 0;
+ unsigned int len;
+ struct mm_struct *mm = get_task_mm(task);
+ unsigned long arg_start, arg_end, env_start, env_end;
+ if (!mm)
+ goto out;
+ if (!mm->arg_end)
+ goto out_mm; /* Shh! No looking before we're done */
+
+ spin_lock(&mm->arg_lock);
+ arg_start = mm->arg_start;
+ arg_end = mm->arg_end;
+ env_start = mm->env_start;
+ env_end = mm->env_end;
+ spin_unlock(&mm->arg_lock);
+
+ len = arg_end - arg_start;
+
+ if (len > buflen)
+ len = buflen;
+
+ res = access_process_vm(task, arg_start, buffer, len, FOLL_FORCE);
+
+ /*
+ * If the nul at the end of args has been overwritten, then
+ * assume application is using setproctitle(3).
+ */
+ if (res > 0 && buffer[res-1] != '\0' && len < buflen) {
+ len = strnlen(buffer, res);
+ if (len < res) {
+ res = len;
+ } else {
+ len = env_end - env_start;
+ if (len > buflen - res)
+ len = buflen - res;
+ res += access_process_vm(task, env_start,
+ buffer+res, len,
+ FOLL_FORCE);
+ res = strnlen(buffer, res);
+ }
+ }
+out_mm:
+ mmput(mm);
+out:
+ return res;
+}
+
+int __weak memcmp_pages(struct page *page1, struct page *page2)
+{
+ char *addr1, *addr2;
+ int ret;
+
+ addr1 = kmap_atomic(page1);
+ addr2 = kmap_atomic(page2);
+ ret = memcmp(addr1, addr2, PAGE_SIZE);
+ kunmap_atomic(addr2);
+ kunmap_atomic(addr1);
+ return ret;
+}
+
+#ifdef CONFIG_PRINTK
+/**
+ * mem_dump_obj - Print available provenance information
+ * @object: object for which to find provenance information.
+ *
+ * This function uses pr_cont(), so that the caller is expected to have
+ * printed out whatever preamble is appropriate. The provenance information
+ * depends on the type of object and on how much debugging is enabled.
+ * For example, for a slab-cache object, the slab name is printed, and,
+ * if available, the return address and stack trace from the allocation
+ * and last free path of that object.
+ */
+void mem_dump_obj(void *object)
+{
+ const char *type;
+
+ if (kmem_valid_obj(object)) {
+ kmem_dump_obj(object);
+ return;
+ }
+
+ if (vmalloc_dump_obj(object))
+ return;
+
+ if (is_vmalloc_addr(object))
+ type = "vmalloc memory";
+ else if (virt_addr_valid(object))
+ type = "non-slab/vmalloc memory";
+ else if (object == NULL)
+ type = "NULL pointer";
+ else if (object == ZERO_SIZE_PTR)
+ type = "zero-size pointer";
+ else
+ type = "non-paged memory";
+
+ pr_cont(" %s\n", type);
+}
+EXPORT_SYMBOL_GPL(mem_dump_obj);
+#endif
+
+/*
+ * A driver might set a page logically offline -- PageOffline() -- and
+ * turn the page inaccessible in the hypervisor; after that, access to page
+ * content can be fatal.
+ *
+ * Some special PFN walkers -- i.e., /proc/kcore -- read content of random
+ * pages after checking PageOffline(); however, these PFN walkers can race
+ * with drivers that set PageOffline().
+ *
+ * page_offline_freeze()/page_offline_thaw() allows for a subsystem to
+ * synchronize with such drivers, achieving that a page cannot be set
+ * PageOffline() while frozen.
+ *
+ * page_offline_begin()/page_offline_end() is used by drivers that care about
+ * such races when setting a page PageOffline().
+ */
+static DECLARE_RWSEM(page_offline_rwsem);
+
+void page_offline_freeze(void)
+{
+ down_read(&page_offline_rwsem);
+}
+
+void page_offline_thaw(void)
+{
+ up_read(&page_offline_rwsem);
+}
+
+void page_offline_begin(void)
+{
+ down_write(&page_offline_rwsem);
+}
+EXPORT_SYMBOL(page_offline_begin);
+
+void page_offline_end(void)
+{
+ up_write(&page_offline_rwsem);
+}
+EXPORT_SYMBOL(page_offline_end);
+
+#ifndef flush_dcache_folio
+void flush_dcache_folio(struct folio *folio)
+{
+ long i, nr = folio_nr_pages(folio);
+
+ for (i = 0; i < nr; i++)
+ flush_dcache_page(folio_page(folio, i));
+}
+EXPORT_SYMBOL(flush_dcache_folio);
+#endif