diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-11 08:27:49 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-11 08:27:49 +0000 |
commit | ace9429bb58fd418f0c81d4c2835699bddf6bde6 (patch) | |
tree | b2d64bc10158fdd5497876388cd68142ca374ed3 /rust/kernel/init.rs | |
parent | Initial commit. (diff) | |
download | linux-ace9429bb58fd418f0c81d4c2835699bddf6bde6.tar.xz linux-ace9429bb58fd418f0c81d4c2835699bddf6bde6.zip |
Adding upstream version 6.6.15.upstream/6.6.15
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to '')
-rw-r--r-- | rust/kernel/init.rs | 1344 |
1 files changed, 1344 insertions, 0 deletions
diff --git a/rust/kernel/init.rs b/rust/kernel/init.rs new file mode 100644 index 0000000000..4ebb6f23fc --- /dev/null +++ b/rust/kernel/init.rs @@ -0,0 +1,1344 @@ +// SPDX-License-Identifier: Apache-2.0 OR MIT + +//! API to safely and fallibly initialize pinned `struct`s using in-place constructors. +//! +//! It also allows in-place initialization of big `struct`s that would otherwise produce a stack +//! overflow. +//! +//! Most `struct`s from the [`sync`] module need to be pinned, because they contain self-referential +//! `struct`s from C. [Pinning][pinning] is Rust's way of ensuring data does not move. +//! +//! # Overview +//! +//! To initialize a `struct` with an in-place constructor you will need two things: +//! - an in-place constructor, +//! - a memory location that can hold your `struct` (this can be the [stack], an [`Arc<T>`], +//! [`UniqueArc<T>`], [`Box<T>`] or any other smart pointer that implements [`InPlaceInit`]). +//! +//! To get an in-place constructor there are generally three options: +//! - directly creating an in-place constructor using the [`pin_init!`] macro, +//! - a custom function/macro returning an in-place constructor provided by someone else, +//! - using the unsafe function [`pin_init_from_closure()`] to manually create an initializer. +//! +//! Aside from pinned initialization, this API also supports in-place construction without pinning, +//! the macros/types/functions are generally named like the pinned variants without the `pin` +//! prefix. +//! +//! # Examples +//! +//! ## Using the [`pin_init!`] macro +//! +//! If you want to use [`PinInit`], then you will have to annotate your `struct` with +//! `#[`[`pin_data`]`]`. It is a macro that uses `#[pin]` as a marker for +//! [structurally pinned fields]. After doing this, you can then create an in-place constructor via +//! [`pin_init!`]. The syntax is almost the same as normal `struct` initializers. The difference is +//! that you need to write `<-` instead of `:` for fields that you want to initialize in-place. +//! +//! ```rust +//! # #![allow(clippy::disallowed_names, clippy::new_ret_no_self)] +//! use kernel::{prelude::*, sync::Mutex, new_mutex}; +//! # use core::pin::Pin; +//! #[pin_data] +//! struct Foo { +//! #[pin] +//! a: Mutex<usize>, +//! b: u32, +//! } +//! +//! let foo = pin_init!(Foo { +//! a <- new_mutex!(42, "Foo::a"), +//! b: 24, +//! }); +//! ``` +//! +//! `foo` now is of the type [`impl PinInit<Foo>`]. We can now use any smart pointer that we like +//! (or just the stack) to actually initialize a `Foo`: +//! +//! ```rust +//! # #![allow(clippy::disallowed_names, clippy::new_ret_no_self)] +//! # use kernel::{prelude::*, sync::Mutex, new_mutex}; +//! # use core::pin::Pin; +//! # #[pin_data] +//! # struct Foo { +//! # #[pin] +//! # a: Mutex<usize>, +//! # b: u32, +//! # } +//! # let foo = pin_init!(Foo { +//! # a <- new_mutex!(42, "Foo::a"), +//! # b: 24, +//! # }); +//! let foo: Result<Pin<Box<Foo>>> = Box::pin_init(foo); +//! ``` +//! +//! For more information see the [`pin_init!`] macro. +//! +//! ## Using a custom function/macro that returns an initializer +//! +//! Many types from the kernel supply a function/macro that returns an initializer, because the +//! above method only works for types where you can access the fields. +//! +//! ```rust +//! # use kernel::{new_mutex, sync::{Arc, Mutex}}; +//! let mtx: Result<Arc<Mutex<usize>>> = Arc::pin_init(new_mutex!(42, "example::mtx")); +//! ``` +//! +//! To declare an init macro/function you just return an [`impl PinInit<T, E>`]: +//! +//! ```rust +//! # #![allow(clippy::disallowed_names, clippy::new_ret_no_self)] +//! # use kernel::{sync::Mutex, prelude::*, new_mutex, init::PinInit, try_pin_init}; +//! #[pin_data] +//! struct DriverData { +//! #[pin] +//! status: Mutex<i32>, +//! buffer: Box<[u8; 1_000_000]>, +//! } +//! +//! impl DriverData { +//! fn new() -> impl PinInit<Self, Error> { +//! try_pin_init!(Self { +//! status <- new_mutex!(0, "DriverData::status"), +//! buffer: Box::init(kernel::init::zeroed())?, +//! }) +//! } +//! } +//! ``` +//! +//! ## Manual creation of an initializer +//! +//! Often when working with primitives the previous approaches are not sufficient. That is where +//! [`pin_init_from_closure()`] comes in. This `unsafe` function allows you to create a +//! [`impl PinInit<T, E>`] directly from a closure. Of course you have to ensure that the closure +//! actually does the initialization in the correct way. Here are the things to look out for +//! (we are calling the parameter to the closure `slot`): +//! - when the closure returns `Ok(())`, then it has completed the initialization successfully, so +//! `slot` now contains a valid bit pattern for the type `T`, +//! - when the closure returns `Err(e)`, then the caller may deallocate the memory at `slot`, so +//! you need to take care to clean up anything if your initialization fails mid-way, +//! - you may assume that `slot` will stay pinned even after the closure returns until `drop` of +//! `slot` gets called. +//! +//! ```rust +//! # #![allow(unreachable_pub, clippy::disallowed_names)] +//! use kernel::{prelude::*, init, types::Opaque}; +//! use core::{ptr::addr_of_mut, marker::PhantomPinned, pin::Pin}; +//! # mod bindings { +//! # #![allow(non_camel_case_types)] +//! # pub struct foo; +//! # pub unsafe fn init_foo(_ptr: *mut foo) {} +//! # pub unsafe fn destroy_foo(_ptr: *mut foo) {} +//! # pub unsafe fn enable_foo(_ptr: *mut foo, _flags: u32) -> i32 { 0 } +//! # } +//! # // `Error::from_errno` is `pub(crate)` in the `kernel` crate, thus provide a workaround. +//! # trait FromErrno { +//! # fn from_errno(errno: core::ffi::c_int) -> Error { +//! # // Dummy error that can be constructed outside the `kernel` crate. +//! # Error::from(core::fmt::Error) +//! # } +//! # } +//! # impl FromErrno for Error {} +//! /// # Invariants +//! /// +//! /// `foo` is always initialized +//! #[pin_data(PinnedDrop)] +//! pub struct RawFoo { +//! #[pin] +//! foo: Opaque<bindings::foo>, +//! #[pin] +//! _p: PhantomPinned, +//! } +//! +//! impl RawFoo { +//! pub fn new(flags: u32) -> impl PinInit<Self, Error> { +//! // SAFETY: +//! // - when the closure returns `Ok(())`, then it has successfully initialized and +//! // enabled `foo`, +//! // - when it returns `Err(e)`, then it has cleaned up before +//! unsafe { +//! init::pin_init_from_closure(move |slot: *mut Self| { +//! // `slot` contains uninit memory, avoid creating a reference. +//! let foo = addr_of_mut!((*slot).foo); +//! +//! // Initialize the `foo` +//! bindings::init_foo(Opaque::raw_get(foo)); +//! +//! // Try to enable it. +//! let err = bindings::enable_foo(Opaque::raw_get(foo), flags); +//! if err != 0 { +//! // Enabling has failed, first clean up the foo and then return the error. +//! bindings::destroy_foo(Opaque::raw_get(foo)); +//! return Err(Error::from_errno(err)); +//! } +//! +//! // All fields of `RawFoo` have been initialized, since `_p` is a ZST. +//! Ok(()) +//! }) +//! } +//! } +//! } +//! +//! #[pinned_drop] +//! impl PinnedDrop for RawFoo { +//! fn drop(self: Pin<&mut Self>) { +//! // SAFETY: Since `foo` is initialized, destroying is safe. +//! unsafe { bindings::destroy_foo(self.foo.get()) }; +//! } +//! } +//! ``` +//! +//! For the special case where initializing a field is a single FFI-function call that cannot fail, +//! there exist the helper function [`Opaque::ffi_init`]. This function initialize a single +//! [`Opaque`] field by just delegating to the supplied closure. You can use these in combination +//! with [`pin_init!`]. +//! +//! For more information on how to use [`pin_init_from_closure()`], take a look at the uses inside +//! the `kernel` crate. The [`sync`] module is a good starting point. +//! +//! [`sync`]: kernel::sync +//! [pinning]: https://doc.rust-lang.org/std/pin/index.html +//! [structurally pinned fields]: +//! https://doc.rust-lang.org/std/pin/index.html#pinning-is-structural-for-field +//! [stack]: crate::stack_pin_init +//! [`Arc<T>`]: crate::sync::Arc +//! [`impl PinInit<Foo>`]: PinInit +//! [`impl PinInit<T, E>`]: PinInit +//! [`impl Init<T, E>`]: Init +//! [`Opaque`]: kernel::types::Opaque +//! [`Opaque::ffi_init`]: kernel::types::Opaque::ffi_init +//! [`pin_data`]: ::macros::pin_data +//! [`pin_init!`]: crate::pin_init! + +use crate::{ + error::{self, Error}, + sync::UniqueArc, + types::{Opaque, ScopeGuard}, +}; +use alloc::boxed::Box; +use core::{ + alloc::AllocError, + cell::UnsafeCell, + convert::Infallible, + marker::PhantomData, + mem::MaybeUninit, + num::*, + pin::Pin, + ptr::{self, NonNull}, +}; + +#[doc(hidden)] +pub mod __internal; +#[doc(hidden)] +pub mod macros; + +/// Initialize and pin a type directly on the stack. +/// +/// # Examples +/// +/// ```rust +/// # #![allow(clippy::disallowed_names, clippy::new_ret_no_self)] +/// # use kernel::{init, macros::pin_data, pin_init, stack_pin_init, init::*, sync::Mutex, new_mutex}; +/// # use core::pin::Pin; +/// #[pin_data] +/// struct Foo { +/// #[pin] +/// a: Mutex<usize>, +/// b: Bar, +/// } +/// +/// #[pin_data] +/// struct Bar { +/// x: u32, +/// } +/// +/// stack_pin_init!(let foo = pin_init!(Foo { +/// a <- new_mutex!(42), +/// b: Bar { +/// x: 64, +/// }, +/// })); +/// let foo: Pin<&mut Foo> = foo; +/// pr_info!("a: {}", &*foo.a.lock()); +/// ``` +/// +/// # Syntax +/// +/// A normal `let` binding with optional type annotation. The expression is expected to implement +/// [`PinInit`]/[`Init`] with the error type [`Infallible`]. If you want to use a different error +/// type, then use [`stack_try_pin_init!`]. +/// +/// [`stack_try_pin_init!`]: crate::stack_try_pin_init! +#[macro_export] +macro_rules! stack_pin_init { + (let $var:ident $(: $t:ty)? = $val:expr) => { + let val = $val; + let mut $var = ::core::pin::pin!($crate::init::__internal::StackInit$(::<$t>)?::uninit()); + let mut $var = match $crate::init::__internal::StackInit::init($var, val) { + Ok(res) => res, + Err(x) => { + let x: ::core::convert::Infallible = x; + match x {} + } + }; + }; +} + +/// Initialize and pin a type directly on the stack. +/// +/// # Examples +/// +/// ```rust,ignore +/// # #![allow(clippy::disallowed_names, clippy::new_ret_no_self)] +/// # use kernel::{init, pin_init, stack_try_pin_init, init::*, sync::Mutex, new_mutex}; +/// # use macros::pin_data; +/// # use core::{alloc::AllocError, pin::Pin}; +/// #[pin_data] +/// struct Foo { +/// #[pin] +/// a: Mutex<usize>, +/// b: Box<Bar>, +/// } +/// +/// struct Bar { +/// x: u32, +/// } +/// +/// stack_try_pin_init!(let foo: Result<Pin<&mut Foo>, AllocError> = pin_init!(Foo { +/// a <- new_mutex!(42), +/// b: Box::try_new(Bar { +/// x: 64, +/// })?, +/// })); +/// let foo = foo.unwrap(); +/// pr_info!("a: {}", &*foo.a.lock()); +/// ``` +/// +/// ```rust,ignore +/// # #![allow(clippy::disallowed_names, clippy::new_ret_no_self)] +/// # use kernel::{init, pin_init, stack_try_pin_init, init::*, sync::Mutex, new_mutex}; +/// # use macros::pin_data; +/// # use core::{alloc::AllocError, pin::Pin}; +/// #[pin_data] +/// struct Foo { +/// #[pin] +/// a: Mutex<usize>, +/// b: Box<Bar>, +/// } +/// +/// struct Bar { +/// x: u32, +/// } +/// +/// stack_try_pin_init!(let foo: Pin<&mut Foo> =? pin_init!(Foo { +/// a <- new_mutex!(42), +/// b: Box::try_new(Bar { +/// x: 64, +/// })?, +/// })); +/// pr_info!("a: {}", &*foo.a.lock()); +/// # Ok::<_, AllocError>(()) +/// ``` +/// +/// # Syntax +/// +/// A normal `let` binding with optional type annotation. The expression is expected to implement +/// [`PinInit`]/[`Init`]. This macro assigns a result to the given variable, adding a `?` after the +/// `=` will propagate this error. +#[macro_export] +macro_rules! stack_try_pin_init { + (let $var:ident $(: $t:ty)? = $val:expr) => { + let val = $val; + let mut $var = ::core::pin::pin!($crate::init::__internal::StackInit$(::<$t>)?::uninit()); + let mut $var = $crate::init::__internal::StackInit::init($var, val); + }; + (let $var:ident $(: $t:ty)? =? $val:expr) => { + let val = $val; + let mut $var = ::core::pin::pin!($crate::init::__internal::StackInit$(::<$t>)?::uninit()); + let mut $var = $crate::init::__internal::StackInit::init($var, val)?; + }; +} + +/// Construct an in-place, pinned initializer for `struct`s. +/// +/// This macro defaults the error to [`Infallible`]. If you need [`Error`], then use +/// [`try_pin_init!`]. +/// +/// The syntax is almost identical to that of a normal `struct` initializer: +/// +/// ```rust +/// # #![allow(clippy::disallowed_names, clippy::new_ret_no_self)] +/// # use kernel::{init, pin_init, macros::pin_data, init::*}; +/// # use core::pin::Pin; +/// #[pin_data] +/// struct Foo { +/// a: usize, +/// b: Bar, +/// } +/// +/// #[pin_data] +/// struct Bar { +/// x: u32, +/// } +/// +/// # fn demo() -> impl PinInit<Foo> { +/// let a = 42; +/// +/// let initializer = pin_init!(Foo { +/// a, +/// b: Bar { +/// x: 64, +/// }, +/// }); +/// # initializer } +/// # Box::pin_init(demo()).unwrap(); +/// ``` +/// +/// Arbitrary Rust expressions can be used to set the value of a variable. +/// +/// The fields are initialized in the order that they appear in the initializer. So it is possible +/// to read already initialized fields using raw pointers. +/// +/// IMPORTANT: You are not allowed to create references to fields of the struct inside of the +/// initializer. +/// +/// # Init-functions +/// +/// When working with this API it is often desired to let others construct your types without +/// giving access to all fields. This is where you would normally write a plain function `new` +/// that would return a new instance of your type. With this API that is also possible. +/// However, there are a few extra things to keep in mind. +/// +/// To create an initializer function, simply declare it like this: +/// +/// ```rust +/// # #![allow(clippy::disallowed_names, clippy::new_ret_no_self)] +/// # use kernel::{init, pin_init, prelude::*, init::*}; +/// # use core::pin::Pin; +/// # #[pin_data] +/// # struct Foo { +/// # a: usize, +/// # b: Bar, +/// # } +/// # #[pin_data] +/// # struct Bar { +/// # x: u32, +/// # } +/// impl Foo { +/// fn new() -> impl PinInit<Self> { +/// pin_init!(Self { +/// a: 42, +/// b: Bar { +/// x: 64, +/// }, +/// }) +/// } +/// } +/// ``` +/// +/// Users of `Foo` can now create it like this: +/// +/// ```rust +/// # #![allow(clippy::disallowed_names, clippy::new_ret_no_self)] +/// # use kernel::{init, pin_init, macros::pin_data, init::*}; +/// # use core::pin::Pin; +/// # #[pin_data] +/// # struct Foo { +/// # a: usize, +/// # b: Bar, +/// # } +/// # #[pin_data] +/// # struct Bar { +/// # x: u32, +/// # } +/// # impl Foo { +/// # fn new() -> impl PinInit<Self> { +/// # pin_init!(Self { +/// # a: 42, +/// # b: Bar { +/// # x: 64, +/// # }, +/// # }) +/// # } +/// # } +/// let foo = Box::pin_init(Foo::new()); +/// ``` +/// +/// They can also easily embed it into their own `struct`s: +/// +/// ```rust +/// # #![allow(clippy::disallowed_names, clippy::new_ret_no_self)] +/// # use kernel::{init, pin_init, macros::pin_data, init::*}; +/// # use core::pin::Pin; +/// # #[pin_data] +/// # struct Foo { +/// # a: usize, +/// # b: Bar, +/// # } +/// # #[pin_data] +/// # struct Bar { +/// # x: u32, +/// # } +/// # impl Foo { +/// # fn new() -> impl PinInit<Self> { +/// # pin_init!(Self { +/// # a: 42, +/// # b: Bar { +/// # x: 64, +/// # }, +/// # }) +/// # } +/// # } +/// #[pin_data] +/// struct FooContainer { +/// #[pin] +/// foo1: Foo, +/// #[pin] +/// foo2: Foo, +/// other: u32, +/// } +/// +/// impl FooContainer { +/// fn new(other: u32) -> impl PinInit<Self> { +/// pin_init!(Self { +/// foo1 <- Foo::new(), +/// foo2 <- Foo::new(), +/// other, +/// }) +/// } +/// } +/// ``` +/// +/// Here we see that when using `pin_init!` with `PinInit`, one needs to write `<-` instead of `:`. +/// This signifies that the given field is initialized in-place. As with `struct` initializers, just +/// writing the field (in this case `other`) without `:` or `<-` means `other: other,`. +/// +/// # Syntax +/// +/// As already mentioned in the examples above, inside of `pin_init!` a `struct` initializer with +/// the following modifications is expected: +/// - Fields that you want to initialize in-place have to use `<-` instead of `:`. +/// - In front of the initializer you can write `&this in` to have access to a [`NonNull<Self>`] +/// pointer named `this` inside of the initializer. +/// - Using struct update syntax one can place `..Zeroable::zeroed()` at the very end of the +/// struct, this initializes every field with 0 and then runs all initializers specified in the +/// body. This can only be done if [`Zeroable`] is implemented for the struct. +/// +/// For instance: +/// +/// ```rust +/// # use kernel::{macros::{Zeroable, pin_data}, pin_init}; +/// # use core::{ptr::addr_of_mut, marker::PhantomPinned}; +/// #[pin_data] +/// #[derive(Zeroable)] +/// struct Buf { +/// // `ptr` points into `buf`. +/// ptr: *mut u8, +/// buf: [u8; 64], +/// #[pin] +/// pin: PhantomPinned, +/// } +/// pin_init!(&this in Buf { +/// buf: [0; 64], +/// ptr: unsafe { addr_of_mut!((*this.as_ptr()).buf).cast() }, +/// pin: PhantomPinned, +/// }); +/// pin_init!(Buf { +/// buf: [1; 64], +/// ..Zeroable::zeroed() +/// }); +/// ``` +/// +/// [`try_pin_init!`]: kernel::try_pin_init +/// [`NonNull<Self>`]: core::ptr::NonNull +// For a detailed example of how this macro works, see the module documentation of the hidden +// module `__internal` inside of `init/__internal.rs`. +#[macro_export] +macro_rules! pin_init { + ($(&$this:ident in)? $t:ident $(::<$($generics:ty),* $(,)?>)? { + $($fields:tt)* + }) => { + $crate::__init_internal!( + @this($($this)?), + @typ($t $(::<$($generics),*>)?), + @fields($($fields)*), + @error(::core::convert::Infallible), + @data(PinData, use_data), + @has_data(HasPinData, __pin_data), + @construct_closure(pin_init_from_closure), + @munch_fields($($fields)*), + ) + }; +} + +/// Construct an in-place, fallible pinned initializer for `struct`s. +/// +/// If the initialization can complete without error (or [`Infallible`]), then use [`pin_init!`]. +/// +/// You can use the `?` operator or use `return Err(err)` inside the initializer to stop +/// initialization and return the error. +/// +/// IMPORTANT: if you have `unsafe` code inside of the initializer you have to ensure that when +/// initialization fails, the memory can be safely deallocated without any further modifications. +/// +/// This macro defaults the error to [`Error`]. +/// +/// The syntax is identical to [`pin_init!`] with the following exception: you can append `? $type` +/// after the `struct` initializer to specify the error type you want to use. +/// +/// # Examples +/// +/// ```rust +/// # #![feature(new_uninit)] +/// use kernel::{init::{self, PinInit}, error::Error}; +/// #[pin_data] +/// struct BigBuf { +/// big: Box<[u8; 1024 * 1024 * 1024]>, +/// small: [u8; 1024 * 1024], +/// ptr: *mut u8, +/// } +/// +/// impl BigBuf { +/// fn new() -> impl PinInit<Self, Error> { +/// try_pin_init!(Self { +/// big: Box::init(init::zeroed())?, +/// small: [0; 1024 * 1024], +/// ptr: core::ptr::null_mut(), +/// }? Error) +/// } +/// } +/// ``` +// For a detailed example of how this macro works, see the module documentation of the hidden +// module `__internal` inside of `init/__internal.rs`. +#[macro_export] +macro_rules! try_pin_init { + ($(&$this:ident in)? $t:ident $(::<$($generics:ty),* $(,)?>)? { + $($fields:tt)* + }) => { + $crate::__init_internal!( + @this($($this)?), + @typ($t $(::<$($generics),*>)? ), + @fields($($fields)*), + @error($crate::error::Error), + @data(PinData, use_data), + @has_data(HasPinData, __pin_data), + @construct_closure(pin_init_from_closure), + @munch_fields($($fields)*), + ) + }; + ($(&$this:ident in)? $t:ident $(::<$($generics:ty),* $(,)?>)? { + $($fields:tt)* + }? $err:ty) => { + $crate::__init_internal!( + @this($($this)?), + @typ($t $(::<$($generics),*>)? ), + @fields($($fields)*), + @error($err), + @data(PinData, use_data), + @has_data(HasPinData, __pin_data), + @construct_closure(pin_init_from_closure), + @munch_fields($($fields)*), + ) + }; +} + +/// Construct an in-place initializer for `struct`s. +/// +/// This macro defaults the error to [`Infallible`]. If you need [`Error`], then use +/// [`try_init!`]. +/// +/// The syntax is identical to [`pin_init!`] and its safety caveats also apply: +/// - `unsafe` code must guarantee either full initialization or return an error and allow +/// deallocation of the memory. +/// - the fields are initialized in the order given in the initializer. +/// - no references to fields are allowed to be created inside of the initializer. +/// +/// This initializer is for initializing data in-place that might later be moved. If you want to +/// pin-initialize, use [`pin_init!`]. +/// +/// [`try_init!`]: crate::try_init! +// For a detailed example of how this macro works, see the module documentation of the hidden +// module `__internal` inside of `init/__internal.rs`. +#[macro_export] +macro_rules! init { + ($(&$this:ident in)? $t:ident $(::<$($generics:ty),* $(,)?>)? { + $($fields:tt)* + }) => { + $crate::__init_internal!( + @this($($this)?), + @typ($t $(::<$($generics),*>)?), + @fields($($fields)*), + @error(::core::convert::Infallible), + @data(InitData, /*no use_data*/), + @has_data(HasInitData, __init_data), + @construct_closure(init_from_closure), + @munch_fields($($fields)*), + ) + } +} + +/// Construct an in-place fallible initializer for `struct`s. +/// +/// This macro defaults the error to [`Error`]. If you need [`Infallible`], then use +/// [`init!`]. +/// +/// The syntax is identical to [`try_pin_init!`]. If you want to specify a custom error, +/// append `? $type` after the `struct` initializer. +/// The safety caveats from [`try_pin_init!`] also apply: +/// - `unsafe` code must guarantee either full initialization or return an error and allow +/// deallocation of the memory. +/// - the fields are initialized in the order given in the initializer. +/// - no references to fields are allowed to be created inside of the initializer. +/// +/// # Examples +/// +/// ```rust +/// use kernel::{init::{PinInit, zeroed}, error::Error}; +/// struct BigBuf { +/// big: Box<[u8; 1024 * 1024 * 1024]>, +/// small: [u8; 1024 * 1024], +/// } +/// +/// impl BigBuf { +/// fn new() -> impl Init<Self, Error> { +/// try_init!(Self { +/// big: Box::init(zeroed())?, +/// small: [0; 1024 * 1024], +/// }? Error) +/// } +/// } +/// ``` +// For a detailed example of how this macro works, see the module documentation of the hidden +// module `__internal` inside of `init/__internal.rs`. +#[macro_export] +macro_rules! try_init { + ($(&$this:ident in)? $t:ident $(::<$($generics:ty),* $(,)?>)? { + $($fields:tt)* + }) => { + $crate::__init_internal!( + @this($($this)?), + @typ($t $(::<$($generics),*>)?), + @fields($($fields)*), + @error($crate::error::Error), + @data(InitData, /*no use_data*/), + @has_data(HasInitData, __init_data), + @construct_closure(init_from_closure), + @munch_fields($($fields)*), + ) + }; + ($(&$this:ident in)? $t:ident $(::<$($generics:ty),* $(,)?>)? { + $($fields:tt)* + }? $err:ty) => { + $crate::__init_internal!( + @this($($this)?), + @typ($t $(::<$($generics),*>)?), + @fields($($fields)*), + @error($err), + @data(InitData, /*no use_data*/), + @has_data(HasInitData, __init_data), + @construct_closure(init_from_closure), + @munch_fields($($fields)*), + ) + }; +} + +/// A pin-initializer for the type `T`. +/// +/// To use this initializer, you will need a suitable memory location that can hold a `T`. This can +/// be [`Box<T>`], [`Arc<T>`], [`UniqueArc<T>`] or even the stack (see [`stack_pin_init!`]). Use the +/// [`InPlaceInit::pin_init`] function of a smart pointer like [`Arc<T>`] on this. +/// +/// Also see the [module description](self). +/// +/// # Safety +/// +/// When implementing this type you will need to take great care. Also there are probably very few +/// cases where a manual implementation is necessary. Use [`pin_init_from_closure`] where possible. +/// +/// The [`PinInit::__pinned_init`] function +/// - returns `Ok(())` if it initialized every field of `slot`, +/// - returns `Err(err)` if it encountered an error and then cleaned `slot`, this means: +/// - `slot` can be deallocated without UB occurring, +/// - `slot` does not need to be dropped, +/// - `slot` is not partially initialized. +/// - while constructing the `T` at `slot` it upholds the pinning invariants of `T`. +/// +/// [`Arc<T>`]: crate::sync::Arc +/// [`Arc::pin_init`]: crate::sync::Arc::pin_init +#[must_use = "An initializer must be used in order to create its value."] +pub unsafe trait PinInit<T: ?Sized, E = Infallible>: Sized { + /// Initializes `slot`. + /// + /// # Safety + /// + /// - `slot` is a valid pointer to uninitialized memory. + /// - the caller does not touch `slot` when `Err` is returned, they are only permitted to + /// deallocate. + /// - `slot` will not move until it is dropped, i.e. it will be pinned. + unsafe fn __pinned_init(self, slot: *mut T) -> Result<(), E>; + + /// First initializes the value using `self` then calls the function `f` with the initialized + /// value. + /// + /// If `f` returns an error the value is dropped and the initializer will forward the error. + /// + /// # Examples + /// + /// ```rust + /// # #![allow(clippy::disallowed_names)] + /// use kernel::{types::Opaque, init::pin_init_from_closure}; + /// #[repr(C)] + /// struct RawFoo([u8; 16]); + /// extern { + /// fn init_foo(_: *mut RawFoo); + /// } + /// + /// #[pin_data] + /// struct Foo { + /// #[pin] + /// raw: Opaque<RawFoo>, + /// } + /// + /// impl Foo { + /// fn setup(self: Pin<&mut Self>) { + /// pr_info!("Setting up foo"); + /// } + /// } + /// + /// let foo = pin_init!(Foo { + /// raw <- unsafe { + /// Opaque::ffi_init(|s| { + /// init_foo(s); + /// }) + /// }, + /// }).pin_chain(|foo| { + /// foo.setup(); + /// Ok(()) + /// }); + /// ``` + fn pin_chain<F>(self, f: F) -> ChainPinInit<Self, F, T, E> + where + F: FnOnce(Pin<&mut T>) -> Result<(), E>, + { + ChainPinInit(self, f, PhantomData) + } +} + +/// An initializer returned by [`PinInit::pin_chain`]. +pub struct ChainPinInit<I, F, T: ?Sized, E>(I, F, __internal::Invariant<(E, Box<T>)>); + +// SAFETY: The `__pinned_init` function is implemented such that it +// - returns `Ok(())` on successful initialization, +// - returns `Err(err)` on error and in this case `slot` will be dropped. +// - considers `slot` pinned. +unsafe impl<T: ?Sized, E, I, F> PinInit<T, E> for ChainPinInit<I, F, T, E> +where + I: PinInit<T, E>, + F: FnOnce(Pin<&mut T>) -> Result<(), E>, +{ + unsafe fn __pinned_init(self, slot: *mut T) -> Result<(), E> { + // SAFETY: All requirements fulfilled since this function is `__pinned_init`. + unsafe { self.0.__pinned_init(slot)? }; + // SAFETY: The above call initialized `slot` and we still have unique access. + let val = unsafe { &mut *slot }; + // SAFETY: `slot` is considered pinned. + let val = unsafe { Pin::new_unchecked(val) }; + (self.1)(val).map_err(|e| { + // SAFETY: `slot` was initialized above. + unsafe { core::ptr::drop_in_place(slot) }; + e + }) + } +} + +/// An initializer for `T`. +/// +/// To use this initializer, you will need a suitable memory location that can hold a `T`. This can +/// be [`Box<T>`], [`Arc<T>`], [`UniqueArc<T>`] or even the stack (see [`stack_pin_init!`]). Use the +/// [`InPlaceInit::init`] function of a smart pointer like [`Arc<T>`] on this. Because +/// [`PinInit<T, E>`] is a super trait, you can use every function that takes it as well. +/// +/// Also see the [module description](self). +/// +/// # Safety +/// +/// When implementing this type you will need to take great care. Also there are probably very few +/// cases where a manual implementation is necessary. Use [`init_from_closure`] where possible. +/// +/// The [`Init::__init`] function +/// - returns `Ok(())` if it initialized every field of `slot`, +/// - returns `Err(err)` if it encountered an error and then cleaned `slot`, this means: +/// - `slot` can be deallocated without UB occurring, +/// - `slot` does not need to be dropped, +/// - `slot` is not partially initialized. +/// - while constructing the `T` at `slot` it upholds the pinning invariants of `T`. +/// +/// The `__pinned_init` function from the supertrait [`PinInit`] needs to execute the exact same +/// code as `__init`. +/// +/// Contrary to its supertype [`PinInit<T, E>`] the caller is allowed to +/// move the pointee after initialization. +/// +/// [`Arc<T>`]: crate::sync::Arc +#[must_use = "An initializer must be used in order to create its value."] +pub unsafe trait Init<T: ?Sized, E = Infallible>: PinInit<T, E> { + /// Initializes `slot`. + /// + /// # Safety + /// + /// - `slot` is a valid pointer to uninitialized memory. + /// - the caller does not touch `slot` when `Err` is returned, they are only permitted to + /// deallocate. + unsafe fn __init(self, slot: *mut T) -> Result<(), E>; + + /// First initializes the value using `self` then calls the function `f` with the initialized + /// value. + /// + /// If `f` returns an error the value is dropped and the initializer will forward the error. + /// + /// # Examples + /// + /// ```rust + /// # #![allow(clippy::disallowed_names)] + /// use kernel::{types::Opaque, init::{self, init_from_closure}}; + /// struct Foo { + /// buf: [u8; 1_000_000], + /// } + /// + /// impl Foo { + /// fn setup(&mut self) { + /// pr_info!("Setting up foo"); + /// } + /// } + /// + /// let foo = init!(Foo { + /// buf <- init::zeroed() + /// }).chain(|foo| { + /// foo.setup(); + /// Ok(()) + /// }); + /// ``` + fn chain<F>(self, f: F) -> ChainInit<Self, F, T, E> + where + F: FnOnce(&mut T) -> Result<(), E>, + { + ChainInit(self, f, PhantomData) + } +} + +/// An initializer returned by [`Init::chain`]. +pub struct ChainInit<I, F, T: ?Sized, E>(I, F, __internal::Invariant<(E, Box<T>)>); + +// SAFETY: The `__init` function is implemented such that it +// - returns `Ok(())` on successful initialization, +// - returns `Err(err)` on error and in this case `slot` will be dropped. +unsafe impl<T: ?Sized, E, I, F> Init<T, E> for ChainInit<I, F, T, E> +where + I: Init<T, E>, + F: FnOnce(&mut T) -> Result<(), E>, +{ + unsafe fn __init(self, slot: *mut T) -> Result<(), E> { + // SAFETY: All requirements fulfilled since this function is `__init`. + unsafe { self.0.__pinned_init(slot)? }; + // SAFETY: The above call initialized `slot` and we still have unique access. + (self.1)(unsafe { &mut *slot }).map_err(|e| { + // SAFETY: `slot` was initialized above. + unsafe { core::ptr::drop_in_place(slot) }; + e + }) + } +} + +// SAFETY: `__pinned_init` behaves exactly the same as `__init`. +unsafe impl<T: ?Sized, E, I, F> PinInit<T, E> for ChainInit<I, F, T, E> +where + I: Init<T, E>, + F: FnOnce(&mut T) -> Result<(), E>, +{ + unsafe fn __pinned_init(self, slot: *mut T) -> Result<(), E> { + // SAFETY: `__init` has less strict requirements compared to `__pinned_init`. + unsafe { self.__init(slot) } + } +} + +/// Creates a new [`PinInit<T, E>`] from the given closure. +/// +/// # Safety +/// +/// The closure: +/// - returns `Ok(())` if it initialized every field of `slot`, +/// - returns `Err(err)` if it encountered an error and then cleaned `slot`, this means: +/// - `slot` can be deallocated without UB occurring, +/// - `slot` does not need to be dropped, +/// - `slot` is not partially initialized. +/// - may assume that the `slot` does not move if `T: !Unpin`, +/// - while constructing the `T` at `slot` it upholds the pinning invariants of `T`. +#[inline] +pub const unsafe fn pin_init_from_closure<T: ?Sized, E>( + f: impl FnOnce(*mut T) -> Result<(), E>, +) -> impl PinInit<T, E> { + __internal::InitClosure(f, PhantomData) +} + +/// Creates a new [`Init<T, E>`] from the given closure. +/// +/// # Safety +/// +/// The closure: +/// - returns `Ok(())` if it initialized every field of `slot`, +/// - returns `Err(err)` if it encountered an error and then cleaned `slot`, this means: +/// - `slot` can be deallocated without UB occurring, +/// - `slot` does not need to be dropped, +/// - `slot` is not partially initialized. +/// - the `slot` may move after initialization. +/// - while constructing the `T` at `slot` it upholds the pinning invariants of `T`. +#[inline] +pub const unsafe fn init_from_closure<T: ?Sized, E>( + f: impl FnOnce(*mut T) -> Result<(), E>, +) -> impl Init<T, E> { + __internal::InitClosure(f, PhantomData) +} + +/// An initializer that leaves the memory uninitialized. +/// +/// The initializer is a no-op. The `slot` memory is not changed. +#[inline] +pub fn uninit<T, E>() -> impl Init<MaybeUninit<T>, E> { + // SAFETY: The memory is allowed to be uninitialized. + unsafe { init_from_closure(|_| Ok(())) } +} + +/// Initializes an array by initializing each element via the provided initializer. +/// +/// # Examples +/// +/// ```rust +/// use kernel::{error::Error, init::init_array_from_fn}; +/// let array: Box<[usize; 1_000]>= Box::init::<Error>(init_array_from_fn(|i| i)).unwrap(); +/// assert_eq!(array.len(), 1_000); +/// ``` +pub fn init_array_from_fn<I, const N: usize, T, E>( + mut make_init: impl FnMut(usize) -> I, +) -> impl Init<[T; N], E> +where + I: Init<T, E>, +{ + let init = move |slot: *mut [T; N]| { + let slot = slot.cast::<T>(); + // Counts the number of initialized elements and when dropped drops that many elements from + // `slot`. + let mut init_count = ScopeGuard::new_with_data(0, |i| { + // We now free every element that has been initialized before: + // SAFETY: The loop initialized exactly the values from 0..i and since we + // return `Err` below, the caller will consider the memory at `slot` as + // uninitialized. + unsafe { ptr::drop_in_place(ptr::slice_from_raw_parts_mut(slot, i)) }; + }); + for i in 0..N { + let init = make_init(i); + // SAFETY: Since 0 <= `i` < N, it is still in bounds of `[T; N]`. + let ptr = unsafe { slot.add(i) }; + // SAFETY: The pointer is derived from `slot` and thus satisfies the `__init` + // requirements. + unsafe { init.__init(ptr) }?; + *init_count += 1; + } + init_count.dismiss(); + Ok(()) + }; + // SAFETY: The initializer above initializes every element of the array. On failure it drops + // any initialized elements and returns `Err`. + unsafe { init_from_closure(init) } +} + +/// Initializes an array by initializing each element via the provided initializer. +/// +/// # Examples +/// +/// ```rust +/// use kernel::{sync::{Arc, Mutex}, init::pin_init_array_from_fn, new_mutex}; +/// let array: Arc<[Mutex<usize>; 1_000]>= +/// Arc::pin_init(pin_init_array_from_fn(|i| new_mutex!(i))).unwrap(); +/// assert_eq!(array.len(), 1_000); +/// ``` +pub fn pin_init_array_from_fn<I, const N: usize, T, E>( + mut make_init: impl FnMut(usize) -> I, +) -> impl PinInit<[T; N], E> +where + I: PinInit<T, E>, +{ + let init = move |slot: *mut [T; N]| { + let slot = slot.cast::<T>(); + // Counts the number of initialized elements and when dropped drops that many elements from + // `slot`. + let mut init_count = ScopeGuard::new_with_data(0, |i| { + // We now free every element that has been initialized before: + // SAFETY: The loop initialized exactly the values from 0..i and since we + // return `Err` below, the caller will consider the memory at `slot` as + // uninitialized. + unsafe { ptr::drop_in_place(ptr::slice_from_raw_parts_mut(slot, i)) }; + }); + for i in 0..N { + let init = make_init(i); + // SAFETY: Since 0 <= `i` < N, it is still in bounds of `[T; N]`. + let ptr = unsafe { slot.add(i) }; + // SAFETY: The pointer is derived from `slot` and thus satisfies the `__init` + // requirements. + unsafe { init.__pinned_init(ptr) }?; + *init_count += 1; + } + init_count.dismiss(); + Ok(()) + }; + // SAFETY: The initializer above initializes every element of the array. On failure it drops + // any initialized elements and returns `Err`. + unsafe { pin_init_from_closure(init) } +} + +// SAFETY: Every type can be initialized by-value. +unsafe impl<T, E> Init<T, E> for T { + unsafe fn __init(self, slot: *mut T) -> Result<(), E> { + unsafe { slot.write(self) }; + Ok(()) + } +} + +// SAFETY: Every type can be initialized by-value. `__pinned_init` calls `__init`. +unsafe impl<T, E> PinInit<T, E> for T { + unsafe fn __pinned_init(self, slot: *mut T) -> Result<(), E> { + unsafe { self.__init(slot) } + } +} + +/// Smart pointer that can initialize memory in-place. +pub trait InPlaceInit<T>: Sized { + /// Use the given pin-initializer to pin-initialize a `T` inside of a new smart pointer of this + /// type. + /// + /// If `T: !Unpin` it will not be able to move afterwards. + fn try_pin_init<E>(init: impl PinInit<T, E>) -> Result<Pin<Self>, E> + where + E: From<AllocError>; + + /// Use the given pin-initializer to pin-initialize a `T` inside of a new smart pointer of this + /// type. + /// + /// If `T: !Unpin` it will not be able to move afterwards. + fn pin_init<E>(init: impl PinInit<T, E>) -> error::Result<Pin<Self>> + where + Error: From<E>, + { + // SAFETY: We delegate to `init` and only change the error type. + let init = unsafe { + pin_init_from_closure(|slot| init.__pinned_init(slot).map_err(|e| Error::from(e))) + }; + Self::try_pin_init(init) + } + + /// Use the given initializer to in-place initialize a `T`. + fn try_init<E>(init: impl Init<T, E>) -> Result<Self, E> + where + E: From<AllocError>; + + /// Use the given initializer to in-place initialize a `T`. + fn init<E>(init: impl Init<T, E>) -> error::Result<Self> + where + Error: From<E>, + { + // SAFETY: We delegate to `init` and only change the error type. + let init = unsafe { + init_from_closure(|slot| init.__pinned_init(slot).map_err(|e| Error::from(e))) + }; + Self::try_init(init) + } +} + +impl<T> InPlaceInit<T> for Box<T> { + #[inline] + fn try_pin_init<E>(init: impl PinInit<T, E>) -> Result<Pin<Self>, E> + where + E: From<AllocError>, + { + let mut this = Box::try_new_uninit()?; + let slot = this.as_mut_ptr(); + // SAFETY: When init errors/panics, slot will get deallocated but not dropped, + // slot is valid and will not be moved, because we pin it later. + unsafe { init.__pinned_init(slot)? }; + // SAFETY: All fields have been initialized. + Ok(unsafe { this.assume_init() }.into()) + } + + #[inline] + fn try_init<E>(init: impl Init<T, E>) -> Result<Self, E> + where + E: From<AllocError>, + { + let mut this = Box::try_new_uninit()?; + let slot = this.as_mut_ptr(); + // SAFETY: When init errors/panics, slot will get deallocated but not dropped, + // slot is valid. + unsafe { init.__init(slot)? }; + // SAFETY: All fields have been initialized. + Ok(unsafe { this.assume_init() }) + } +} + +impl<T> InPlaceInit<T> for UniqueArc<T> { + #[inline] + fn try_pin_init<E>(init: impl PinInit<T, E>) -> Result<Pin<Self>, E> + where + E: From<AllocError>, + { + let mut this = UniqueArc::try_new_uninit()?; + let slot = this.as_mut_ptr(); + // SAFETY: When init errors/panics, slot will get deallocated but not dropped, + // slot is valid and will not be moved, because we pin it later. + unsafe { init.__pinned_init(slot)? }; + // SAFETY: All fields have been initialized. + Ok(unsafe { this.assume_init() }.into()) + } + + #[inline] + fn try_init<E>(init: impl Init<T, E>) -> Result<Self, E> + where + E: From<AllocError>, + { + let mut this = UniqueArc::try_new_uninit()?; + let slot = this.as_mut_ptr(); + // SAFETY: When init errors/panics, slot will get deallocated but not dropped, + // slot is valid. + unsafe { init.__init(slot)? }; + // SAFETY: All fields have been initialized. + Ok(unsafe { this.assume_init() }) + } +} + +/// Trait facilitating pinned destruction. +/// +/// Use [`pinned_drop`] to implement this trait safely: +/// +/// ```rust +/// # use kernel::sync::Mutex; +/// use kernel::macros::pinned_drop; +/// use core::pin::Pin; +/// #[pin_data(PinnedDrop)] +/// struct Foo { +/// #[pin] +/// mtx: Mutex<usize>, +/// } +/// +/// #[pinned_drop] +/// impl PinnedDrop for Foo { +/// fn drop(self: Pin<&mut Self>) { +/// pr_info!("Foo is being dropped!"); +/// } +/// } +/// ``` +/// +/// # Safety +/// +/// This trait must be implemented via the [`pinned_drop`] proc-macro attribute on the impl. +/// +/// [`pinned_drop`]: kernel::macros::pinned_drop +pub unsafe trait PinnedDrop: __internal::HasPinData { + /// Executes the pinned destructor of this type. + /// + /// While this function is marked safe, it is actually unsafe to call it manually. For this + /// reason it takes an additional parameter. This type can only be constructed by `unsafe` code + /// and thus prevents this function from being called where it should not. + /// + /// This extra parameter will be generated by the `#[pinned_drop]` proc-macro attribute + /// automatically. + fn drop(self: Pin<&mut Self>, only_call_from_drop: __internal::OnlyCallFromDrop); +} + +/// Marker trait for types that can be initialized by writing just zeroes. +/// +/// # Safety +/// +/// The bit pattern consisting of only zeroes is a valid bit pattern for this type. In other words, +/// this is not UB: +/// +/// ```rust,ignore +/// let val: Self = unsafe { core::mem::zeroed() }; +/// ``` +pub unsafe trait Zeroable {} + +/// Create a new zeroed T. +/// +/// The returned initializer will write `0x00` to every byte of the given `slot`. +#[inline] +pub fn zeroed<T: Zeroable>() -> impl Init<T> { + // SAFETY: Because `T: Zeroable`, all bytes zero is a valid bit pattern for `T` + // and because we write all zeroes, the memory is initialized. + unsafe { + init_from_closure(|slot: *mut T| { + slot.write_bytes(0, 1); + Ok(()) + }) + } +} + +macro_rules! impl_zeroable { + ($($({$($generics:tt)*})? $t:ty, )*) => { + $(unsafe impl$($($generics)*)? Zeroable for $t {})* + }; +} + +impl_zeroable! { + // SAFETY: All primitives that are allowed to be zero. + bool, + char, + u8, u16, u32, u64, u128, usize, + i8, i16, i32, i64, i128, isize, + f32, f64, + + // SAFETY: These are ZSTs, there is nothing to zero. + {<T: ?Sized>} PhantomData<T>, core::marker::PhantomPinned, Infallible, (), + + // SAFETY: Type is allowed to take any value, including all zeros. + {<T>} MaybeUninit<T>, + // SAFETY: Type is allowed to take any value, including all zeros. + {<T>} Opaque<T>, + + // SAFETY: `T: Zeroable` and `UnsafeCell` is `repr(transparent)`. + {<T: ?Sized + Zeroable>} UnsafeCell<T>, + + // SAFETY: All zeros is equivalent to `None` (option layout optimization guarantee). + Option<NonZeroU8>, Option<NonZeroU16>, Option<NonZeroU32>, Option<NonZeroU64>, + Option<NonZeroU128>, Option<NonZeroUsize>, + Option<NonZeroI8>, Option<NonZeroI16>, Option<NonZeroI32>, Option<NonZeroI64>, + Option<NonZeroI128>, Option<NonZeroIsize>, + + // SAFETY: All zeros is equivalent to `None` (option layout optimization guarantee). + // + // In this case we are allowed to use `T: ?Sized`, since all zeros is the `None` variant. + {<T: ?Sized>} Option<NonNull<T>>, + {<T: ?Sized>} Option<Box<T>>, + + // SAFETY: `null` pointer is valid. + // + // We cannot use `T: ?Sized`, since the VTABLE pointer part of fat pointers is not allowed to be + // null. + // + // When `Pointee` gets stabilized, we could use + // `T: ?Sized where <T as Pointee>::Metadata: Zeroable` + {<T>} *mut T, {<T>} *const T, + + // SAFETY: `null` pointer is valid and the metadata part of these fat pointers is allowed to be + // zero. + {<T>} *mut [T], {<T>} *const [T], *mut str, *const str, + + // SAFETY: `T` is `Zeroable`. + {<const N: usize, T: Zeroable>} [T; N], {<T: Zeroable>} Wrapping<T>, +} + +macro_rules! impl_tuple_zeroable { + ($(,)?) => {}; + ($first:ident, $($t:ident),* $(,)?) => { + // SAFETY: All elements are zeroable and padding can be zero. + unsafe impl<$first: Zeroable, $($t: Zeroable),*> Zeroable for ($first, $($t),*) {} + impl_tuple_zeroable!($($t),* ,); + } +} + +impl_tuple_zeroable!(A, B, C, D, E, F, G, H, I, J); |