diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-11 08:27:49 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-11 08:27:49 +0000 |
commit | ace9429bb58fd418f0c81d4c2835699bddf6bde6 (patch) | |
tree | b2d64bc10158fdd5497876388cd68142ca374ed3 /rust/kernel | |
parent | Initial commit. (diff) | |
download | linux-ace9429bb58fd418f0c81d4c2835699bddf6bde6.tar.xz linux-ace9429bb58fd418f0c81d4c2835699bddf6bde6.zip |
Adding upstream version 6.6.15.upstream/6.6.15
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to '')
-rw-r--r-- | rust/kernel/allocator.rs | 88 | ||||
-rw-r--r-- | rust/kernel/build_assert.rs | 84 | ||||
-rw-r--r-- | rust/kernel/error.rs | 337 | ||||
-rw-r--r-- | rust/kernel/init.rs | 1344 | ||||
-rw-r--r-- | rust/kernel/init/__internal.rs | 230 | ||||
-rw-r--r-- | rust/kernel/init/macros.rs | 1383 | ||||
-rw-r--r-- | rust/kernel/ioctl.rs | 72 | ||||
-rw-r--r-- | rust/kernel/kunit.rs | 163 | ||||
-rw-r--r-- | rust/kernel/lib.rs | 98 | ||||
-rw-r--r-- | rust/kernel/prelude.rs | 40 | ||||
-rw-r--r-- | rust/kernel/print.rs | 417 | ||||
-rw-r--r-- | rust/kernel/static_assert.rs | 34 | ||||
-rw-r--r-- | rust/kernel/std_vendor.rs | 165 | ||||
-rw-r--r-- | rust/kernel/str.rs | 615 | ||||
-rw-r--r-- | rust/kernel/sync.rs | 60 | ||||
-rw-r--r-- | rust/kernel/sync/arc.rs | 637 | ||||
-rw-r--r-- | rust/kernel/sync/arc/std_vendor.rs | 28 | ||||
-rw-r--r-- | rust/kernel/sync/condvar.rs | 174 | ||||
-rw-r--r-- | rust/kernel/sync/lock.rs | 191 | ||||
-rw-r--r-- | rust/kernel/sync/lock/mutex.rs | 119 | ||||
-rw-r--r-- | rust/kernel/sync/lock/spinlock.rs | 118 | ||||
-rw-r--r-- | rust/kernel/sync/locked_by.rs | 156 | ||||
-rw-r--r-- | rust/kernel/task.rs | 161 | ||||
-rw-r--r-- | rust/kernel/types.rs | 389 |
24 files changed, 7103 insertions, 0 deletions
diff --git a/rust/kernel/allocator.rs b/rust/kernel/allocator.rs new file mode 100644 index 0000000000..a8f3d5be1a --- /dev/null +++ b/rust/kernel/allocator.rs @@ -0,0 +1,88 @@ +// SPDX-License-Identifier: GPL-2.0 + +//! Allocator support. + +use core::alloc::{GlobalAlloc, Layout}; +use core::ptr; + +use crate::bindings; + +struct KernelAllocator; + +/// Calls `krealloc` with a proper size to alloc a new object aligned to `new_layout`'s alignment. +/// +/// # Safety +/// +/// - `ptr` can be either null or a pointer which has been allocated by this allocator. +/// - `new_layout` must have a non-zero size. +unsafe fn krealloc_aligned(ptr: *mut u8, new_layout: Layout, flags: bindings::gfp_t) -> *mut u8 { + // Customized layouts from `Layout::from_size_align()` can have size < align, so pad first. + let layout = new_layout.pad_to_align(); + + let mut size = layout.size(); + + if layout.align() > bindings::BINDINGS_ARCH_SLAB_MINALIGN { + // The alignment requirement exceeds the slab guarantee, thus try to enlarge the size + // to use the "power-of-two" size/alignment guarantee (see comments in `kmalloc()` for + // more information). + // + // Note that `layout.size()` (after padding) is guaranteed to be a multiple of + // `layout.align()`, so `next_power_of_two` gives enough alignment guarantee. + size = size.next_power_of_two(); + } + + // SAFETY: + // - `ptr` is either null or a pointer returned from a previous `k{re}alloc()` by the + // function safety requirement. + // - `size` is greater than 0 since it's either a `layout.size()` (which cannot be zero + // according to the function safety requirement) or a result from `next_power_of_two()`. + unsafe { bindings::krealloc(ptr as *const core::ffi::c_void, size, flags) as *mut u8 } +} + +unsafe impl GlobalAlloc for KernelAllocator { + unsafe fn alloc(&self, layout: Layout) -> *mut u8 { + // SAFETY: `ptr::null_mut()` is null and `layout` has a non-zero size by the function safety + // requirement. + unsafe { krealloc_aligned(ptr::null_mut(), layout, bindings::GFP_KERNEL) } + } + + unsafe fn dealloc(&self, ptr: *mut u8, _layout: Layout) { + unsafe { + bindings::kfree(ptr as *const core::ffi::c_void); + } + } + + unsafe fn realloc(&self, ptr: *mut u8, layout: Layout, new_size: usize) -> *mut u8 { + // SAFETY: + // - `new_size`, when rounded up to the nearest multiple of `layout.align()`, will not + // overflow `isize` by the function safety requirement. + // - `layout.align()` is a proper alignment (i.e. not zero and must be a power of two). + let layout = unsafe { Layout::from_size_align_unchecked(new_size, layout.align()) }; + + // SAFETY: + // - `ptr` is either null or a pointer allocated by this allocator by the function safety + // requirement. + // - the size of `layout` is not zero because `new_size` is not zero by the function safety + // requirement. + unsafe { krealloc_aligned(ptr, layout, bindings::GFP_KERNEL) } + } + + unsafe fn alloc_zeroed(&self, layout: Layout) -> *mut u8 { + // SAFETY: `ptr::null_mut()` is null and `layout` has a non-zero size by the function safety + // requirement. + unsafe { + krealloc_aligned( + ptr::null_mut(), + layout, + bindings::GFP_KERNEL | bindings::__GFP_ZERO, + ) + } + } +} + +#[global_allocator] +static ALLOCATOR: KernelAllocator = KernelAllocator; + +// See <https://github.com/rust-lang/rust/pull/86844>. +#[no_mangle] +static __rust_no_alloc_shim_is_unstable: u8 = 0; diff --git a/rust/kernel/build_assert.rs b/rust/kernel/build_assert.rs new file mode 100644 index 0000000000..9e37120bc6 --- /dev/null +++ b/rust/kernel/build_assert.rs @@ -0,0 +1,84 @@ +// SPDX-License-Identifier: GPL-2.0 + +//! Build-time assert. + +/// Fails the build if the code path calling `build_error!` can possibly be executed. +/// +/// If the macro is executed in const context, `build_error!` will panic. +/// If the compiler or optimizer cannot guarantee that `build_error!` can never +/// be called, a build error will be triggered. +/// +/// # Examples +/// +/// ``` +/// # use kernel::build_error; +/// #[inline] +/// fn foo(a: usize) -> usize { +/// a.checked_add(1).unwrap_or_else(|| build_error!("overflow")) +/// } +/// +/// assert_eq!(foo(usize::MAX - 1), usize::MAX); // OK. +/// // foo(usize::MAX); // Fails to compile. +/// ``` +#[macro_export] +macro_rules! build_error { + () => {{ + $crate::build_error("") + }}; + ($msg:expr) => {{ + $crate::build_error($msg) + }}; +} + +/// Asserts that a boolean expression is `true` at compile time. +/// +/// If the condition is evaluated to `false` in const context, `build_assert!` +/// will panic. If the compiler or optimizer cannot guarantee the condition will +/// be evaluated to `true`, a build error will be triggered. +/// +/// [`static_assert!`] should be preferred to `build_assert!` whenever possible. +/// +/// # Examples +/// +/// These examples show that different types of [`assert!`] will trigger errors +/// at different stage of compilation. It is preferred to err as early as +/// possible, so [`static_assert!`] should be used whenever possible. +/// ```ignore +/// fn foo() { +/// static_assert!(1 > 1); // Compile-time error +/// build_assert!(1 > 1); // Build-time error +/// assert!(1 > 1); // Run-time error +/// } +/// ``` +/// +/// When the condition refers to generic parameters or parameters of an inline function, +/// [`static_assert!`] cannot be used. Use `build_assert!` in this scenario. +/// ``` +/// fn foo<const N: usize>() { +/// // `static_assert!(N > 1);` is not allowed +/// build_assert!(N > 1); // Build-time check +/// assert!(N > 1); // Run-time check +/// } +/// +/// #[inline] +/// fn bar(n: usize) { +/// // `static_assert!(n > 1);` is not allowed +/// build_assert!(n > 1); // Build-time check +/// assert!(n > 1); // Run-time check +/// } +/// ``` +/// +/// [`static_assert!`]: crate::static_assert! +#[macro_export] +macro_rules! build_assert { + ($cond:expr $(,)?) => {{ + if !$cond { + $crate::build_error(concat!("assertion failed: ", stringify!($cond))); + } + }}; + ($cond:expr, $msg:expr) => {{ + if !$cond { + $crate::build_error($msg); + } + }}; +} diff --git a/rust/kernel/error.rs b/rust/kernel/error.rs new file mode 100644 index 0000000000..032b645439 --- /dev/null +++ b/rust/kernel/error.rs @@ -0,0 +1,337 @@ +// SPDX-License-Identifier: GPL-2.0 + +//! Kernel errors. +//! +//! C header: [`include/uapi/asm-generic/errno-base.h`](../../../include/uapi/asm-generic/errno-base.h) + +use crate::str::CStr; + +use alloc::{ + alloc::{AllocError, LayoutError}, + collections::TryReserveError, +}; + +use core::convert::From; +use core::fmt; +use core::num::TryFromIntError; +use core::str::Utf8Error; + +/// Contains the C-compatible error codes. +#[rustfmt::skip] +pub mod code { + macro_rules! declare_err { + ($err:tt $(,)? $($doc:expr),+) => { + $( + #[doc = $doc] + )* + pub const $err: super::Error = super::Error(-(crate::bindings::$err as i32)); + }; + } + + declare_err!(EPERM, "Operation not permitted."); + declare_err!(ENOENT, "No such file or directory."); + declare_err!(ESRCH, "No such process."); + declare_err!(EINTR, "Interrupted system call."); + declare_err!(EIO, "I/O error."); + declare_err!(ENXIO, "No such device or address."); + declare_err!(E2BIG, "Argument list too long."); + declare_err!(ENOEXEC, "Exec format error."); + declare_err!(EBADF, "Bad file number."); + declare_err!(ECHILD, "No child processes."); + declare_err!(EAGAIN, "Try again."); + declare_err!(ENOMEM, "Out of memory."); + declare_err!(EACCES, "Permission denied."); + declare_err!(EFAULT, "Bad address."); + declare_err!(ENOTBLK, "Block device required."); + declare_err!(EBUSY, "Device or resource busy."); + declare_err!(EEXIST, "File exists."); + declare_err!(EXDEV, "Cross-device link."); + declare_err!(ENODEV, "No such device."); + declare_err!(ENOTDIR, "Not a directory."); + declare_err!(EISDIR, "Is a directory."); + declare_err!(EINVAL, "Invalid argument."); + declare_err!(ENFILE, "File table overflow."); + declare_err!(EMFILE, "Too many open files."); + declare_err!(ENOTTY, "Not a typewriter."); + declare_err!(ETXTBSY, "Text file busy."); + declare_err!(EFBIG, "File too large."); + declare_err!(ENOSPC, "No space left on device."); + declare_err!(ESPIPE, "Illegal seek."); + declare_err!(EROFS, "Read-only file system."); + declare_err!(EMLINK, "Too many links."); + declare_err!(EPIPE, "Broken pipe."); + declare_err!(EDOM, "Math argument out of domain of func."); + declare_err!(ERANGE, "Math result not representable."); + declare_err!(ERESTARTSYS, "Restart the system call."); + declare_err!(ERESTARTNOINTR, "System call was interrupted by a signal and will be restarted."); + declare_err!(ERESTARTNOHAND, "Restart if no handler."); + declare_err!(ENOIOCTLCMD, "No ioctl command."); + declare_err!(ERESTART_RESTARTBLOCK, "Restart by calling sys_restart_syscall."); + declare_err!(EPROBE_DEFER, "Driver requests probe retry."); + declare_err!(EOPENSTALE, "Open found a stale dentry."); + declare_err!(ENOPARAM, "Parameter not supported."); + declare_err!(EBADHANDLE, "Illegal NFS file handle."); + declare_err!(ENOTSYNC, "Update synchronization mismatch."); + declare_err!(EBADCOOKIE, "Cookie is stale."); + declare_err!(ENOTSUPP, "Operation is not supported."); + declare_err!(ETOOSMALL, "Buffer or request is too small."); + declare_err!(ESERVERFAULT, "An untranslatable error occurred."); + declare_err!(EBADTYPE, "Type not supported by server."); + declare_err!(EJUKEBOX, "Request initiated, but will not complete before timeout."); + declare_err!(EIOCBQUEUED, "iocb queued, will get completion event."); + declare_err!(ERECALLCONFLICT, "Conflict with recalled state."); + declare_err!(ENOGRACE, "NFS file lock reclaim refused."); +} + +/// Generic integer kernel error. +/// +/// The kernel defines a set of integer generic error codes based on C and +/// POSIX ones. These codes may have a more specific meaning in some contexts. +/// +/// # Invariants +/// +/// The value is a valid `errno` (i.e. `>= -MAX_ERRNO && < 0`). +#[derive(Clone, Copy, PartialEq, Eq)] +pub struct Error(core::ffi::c_int); + +impl Error { + /// Creates an [`Error`] from a kernel error code. + /// + /// It is a bug to pass an out-of-range `errno`. `EINVAL` would + /// be returned in such a case. + pub(crate) fn from_errno(errno: core::ffi::c_int) -> Error { + if errno < -(bindings::MAX_ERRNO as i32) || errno >= 0 { + // TODO: Make it a `WARN_ONCE` once available. + crate::pr_warn!( + "attempted to create `Error` with out of range `errno`: {}", + errno + ); + return code::EINVAL; + } + + // INVARIANT: The check above ensures the type invariant + // will hold. + Error(errno) + } + + /// Creates an [`Error`] from a kernel error code. + /// + /// # Safety + /// + /// `errno` must be within error code range (i.e. `>= -MAX_ERRNO && < 0`). + unsafe fn from_errno_unchecked(errno: core::ffi::c_int) -> Error { + // INVARIANT: The contract ensures the type invariant + // will hold. + Error(errno) + } + + /// Returns the kernel error code. + pub fn to_errno(self) -> core::ffi::c_int { + self.0 + } + + /// Returns the error encoded as a pointer. + #[allow(dead_code)] + pub(crate) fn to_ptr<T>(self) -> *mut T { + // SAFETY: `self.0` is a valid error due to its invariant. + unsafe { bindings::ERR_PTR(self.0.into()) as *mut _ } + } + + /// Returns a string representing the error, if one exists. + #[cfg(not(testlib))] + pub fn name(&self) -> Option<&'static CStr> { + // SAFETY: Just an FFI call, there are no extra safety requirements. + let ptr = unsafe { bindings::errname(-self.0) }; + if ptr.is_null() { + None + } else { + // SAFETY: The string returned by `errname` is static and `NUL`-terminated. + Some(unsafe { CStr::from_char_ptr(ptr) }) + } + } + + /// Returns a string representing the error, if one exists. + /// + /// When `testlib` is configured, this always returns `None` to avoid the dependency on a + /// kernel function so that tests that use this (e.g., by calling [`Result::unwrap`]) can still + /// run in userspace. + #[cfg(testlib)] + pub fn name(&self) -> Option<&'static CStr> { + None + } +} + +impl fmt::Debug for Error { + fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { + match self.name() { + // Print out number if no name can be found. + None => f.debug_tuple("Error").field(&-self.0).finish(), + // SAFETY: These strings are ASCII-only. + Some(name) => f + .debug_tuple(unsafe { core::str::from_utf8_unchecked(name) }) + .finish(), + } + } +} + +impl From<AllocError> for Error { + fn from(_: AllocError) -> Error { + code::ENOMEM + } +} + +impl From<TryFromIntError> for Error { + fn from(_: TryFromIntError) -> Error { + code::EINVAL + } +} + +impl From<Utf8Error> for Error { + fn from(_: Utf8Error) -> Error { + code::EINVAL + } +} + +impl From<TryReserveError> for Error { + fn from(_: TryReserveError) -> Error { + code::ENOMEM + } +} + +impl From<LayoutError> for Error { + fn from(_: LayoutError) -> Error { + code::ENOMEM + } +} + +impl From<core::fmt::Error> for Error { + fn from(_: core::fmt::Error) -> Error { + code::EINVAL + } +} + +impl From<core::convert::Infallible> for Error { + fn from(e: core::convert::Infallible) -> Error { + match e {} + } +} + +/// A [`Result`] with an [`Error`] error type. +/// +/// To be used as the return type for functions that may fail. +/// +/// # Error codes in C and Rust +/// +/// In C, it is common that functions indicate success or failure through +/// their return value; modifying or returning extra data through non-`const` +/// pointer parameters. In particular, in the kernel, functions that may fail +/// typically return an `int` that represents a generic error code. We model +/// those as [`Error`]. +/// +/// In Rust, it is idiomatic to model functions that may fail as returning +/// a [`Result`]. Since in the kernel many functions return an error code, +/// [`Result`] is a type alias for a [`core::result::Result`] that uses +/// [`Error`] as its error type. +/// +/// Note that even if a function does not return anything when it succeeds, +/// it should still be modeled as returning a `Result` rather than +/// just an [`Error`]. +pub type Result<T = (), E = Error> = core::result::Result<T, E>; + +/// Converts an integer as returned by a C kernel function to an error if it's negative, and +/// `Ok(())` otherwise. +pub fn to_result(err: core::ffi::c_int) -> Result { + if err < 0 { + Err(Error::from_errno(err)) + } else { + Ok(()) + } +} + +/// Transform a kernel "error pointer" to a normal pointer. +/// +/// Some kernel C API functions return an "error pointer" which optionally +/// embeds an `errno`. Callers are supposed to check the returned pointer +/// for errors. This function performs the check and converts the "error pointer" +/// to a normal pointer in an idiomatic fashion. +/// +/// # Examples +/// +/// ```ignore +/// # use kernel::from_err_ptr; +/// # use kernel::bindings; +/// fn devm_platform_ioremap_resource( +/// pdev: &mut PlatformDevice, +/// index: u32, +/// ) -> Result<*mut core::ffi::c_void> { +/// // SAFETY: FFI call. +/// unsafe { +/// from_err_ptr(bindings::devm_platform_ioremap_resource( +/// pdev.to_ptr(), +/// index, +/// )) +/// } +/// } +/// ``` +// TODO: Remove `dead_code` marker once an in-kernel client is available. +#[allow(dead_code)] +pub(crate) fn from_err_ptr<T>(ptr: *mut T) -> Result<*mut T> { + // CAST: Casting a pointer to `*const core::ffi::c_void` is always valid. + let const_ptr: *const core::ffi::c_void = ptr.cast(); + // SAFETY: The FFI function does not deref the pointer. + if unsafe { bindings::IS_ERR(const_ptr) } { + // SAFETY: The FFI function does not deref the pointer. + let err = unsafe { bindings::PTR_ERR(const_ptr) }; + // CAST: If `IS_ERR()` returns `true`, + // then `PTR_ERR()` is guaranteed to return a + // negative value greater-or-equal to `-bindings::MAX_ERRNO`, + // which always fits in an `i16`, as per the invariant above. + // And an `i16` always fits in an `i32`. So casting `err` to + // an `i32` can never overflow, and is always valid. + // + // SAFETY: `IS_ERR()` ensures `err` is a + // negative value greater-or-equal to `-bindings::MAX_ERRNO`. + #[allow(clippy::unnecessary_cast)] + return Err(unsafe { Error::from_errno_unchecked(err as core::ffi::c_int) }); + } + Ok(ptr) +} + +/// Calls a closure returning a [`crate::error::Result<T>`] and converts the result to +/// a C integer result. +/// +/// This is useful when calling Rust functions that return [`crate::error::Result<T>`] +/// from inside `extern "C"` functions that need to return an integer error result. +/// +/// `T` should be convertible from an `i16` via `From<i16>`. +/// +/// # Examples +/// +/// ```ignore +/// # use kernel::from_result; +/// # use kernel::bindings; +/// unsafe extern "C" fn probe_callback( +/// pdev: *mut bindings::platform_device, +/// ) -> core::ffi::c_int { +/// from_result(|| { +/// let ptr = devm_alloc(pdev)?; +/// bindings::platform_set_drvdata(pdev, ptr); +/// Ok(0) +/// }) +/// } +/// ``` +// TODO: Remove `dead_code` marker once an in-kernel client is available. +#[allow(dead_code)] +pub(crate) fn from_result<T, F>(f: F) -> T +where + T: From<i16>, + F: FnOnce() -> Result<T>, +{ + match f() { + Ok(v) => v, + // NO-OVERFLOW: negative `errno`s are no smaller than `-bindings::MAX_ERRNO`, + // `-bindings::MAX_ERRNO` fits in an `i16` as per invariant above, + // therefore a negative `errno` always fits in an `i16` and will not overflow. + Err(e) => T::from(e.to_errno() as i16), + } +} diff --git a/rust/kernel/init.rs b/rust/kernel/init.rs new file mode 100644 index 0000000000..4ebb6f23fc --- /dev/null +++ b/rust/kernel/init.rs @@ -0,0 +1,1344 @@ +// SPDX-License-Identifier: Apache-2.0 OR MIT + +//! API to safely and fallibly initialize pinned `struct`s using in-place constructors. +//! +//! It also allows in-place initialization of big `struct`s that would otherwise produce a stack +//! overflow. +//! +//! Most `struct`s from the [`sync`] module need to be pinned, because they contain self-referential +//! `struct`s from C. [Pinning][pinning] is Rust's way of ensuring data does not move. +//! +//! # Overview +//! +//! To initialize a `struct` with an in-place constructor you will need two things: +//! - an in-place constructor, +//! - a memory location that can hold your `struct` (this can be the [stack], an [`Arc<T>`], +//! [`UniqueArc<T>`], [`Box<T>`] or any other smart pointer that implements [`InPlaceInit`]). +//! +//! To get an in-place constructor there are generally three options: +//! - directly creating an in-place constructor using the [`pin_init!`] macro, +//! - a custom function/macro returning an in-place constructor provided by someone else, +//! - using the unsafe function [`pin_init_from_closure()`] to manually create an initializer. +//! +//! Aside from pinned initialization, this API also supports in-place construction without pinning, +//! the macros/types/functions are generally named like the pinned variants without the `pin` +//! prefix. +//! +//! # Examples +//! +//! ## Using the [`pin_init!`] macro +//! +//! If you want to use [`PinInit`], then you will have to annotate your `struct` with +//! `#[`[`pin_data`]`]`. It is a macro that uses `#[pin]` as a marker for +//! [structurally pinned fields]. After doing this, you can then create an in-place constructor via +//! [`pin_init!`]. The syntax is almost the same as normal `struct` initializers. The difference is +//! that you need to write `<-` instead of `:` for fields that you want to initialize in-place. +//! +//! ```rust +//! # #![allow(clippy::disallowed_names, clippy::new_ret_no_self)] +//! use kernel::{prelude::*, sync::Mutex, new_mutex}; +//! # use core::pin::Pin; +//! #[pin_data] +//! struct Foo { +//! #[pin] +//! a: Mutex<usize>, +//! b: u32, +//! } +//! +//! let foo = pin_init!(Foo { +//! a <- new_mutex!(42, "Foo::a"), +//! b: 24, +//! }); +//! ``` +//! +//! `foo` now is of the type [`impl PinInit<Foo>`]. We can now use any smart pointer that we like +//! (or just the stack) to actually initialize a `Foo`: +//! +//! ```rust +//! # #![allow(clippy::disallowed_names, clippy::new_ret_no_self)] +//! # use kernel::{prelude::*, sync::Mutex, new_mutex}; +//! # use core::pin::Pin; +//! # #[pin_data] +//! # struct Foo { +//! # #[pin] +//! # a: Mutex<usize>, +//! # b: u32, +//! # } +//! # let foo = pin_init!(Foo { +//! # a <- new_mutex!(42, "Foo::a"), +//! # b: 24, +//! # }); +//! let foo: Result<Pin<Box<Foo>>> = Box::pin_init(foo); +//! ``` +//! +//! For more information see the [`pin_init!`] macro. +//! +//! ## Using a custom function/macro that returns an initializer +//! +//! Many types from the kernel supply a function/macro that returns an initializer, because the +//! above method only works for types where you can access the fields. +//! +//! ```rust +//! # use kernel::{new_mutex, sync::{Arc, Mutex}}; +//! let mtx: Result<Arc<Mutex<usize>>> = Arc::pin_init(new_mutex!(42, "example::mtx")); +//! ``` +//! +//! To declare an init macro/function you just return an [`impl PinInit<T, E>`]: +//! +//! ```rust +//! # #![allow(clippy::disallowed_names, clippy::new_ret_no_self)] +//! # use kernel::{sync::Mutex, prelude::*, new_mutex, init::PinInit, try_pin_init}; +//! #[pin_data] +//! struct DriverData { +//! #[pin] +//! status: Mutex<i32>, +//! buffer: Box<[u8; 1_000_000]>, +//! } +//! +//! impl DriverData { +//! fn new() -> impl PinInit<Self, Error> { +//! try_pin_init!(Self { +//! status <- new_mutex!(0, "DriverData::status"), +//! buffer: Box::init(kernel::init::zeroed())?, +//! }) +//! } +//! } +//! ``` +//! +//! ## Manual creation of an initializer +//! +//! Often when working with primitives the previous approaches are not sufficient. That is where +//! [`pin_init_from_closure()`] comes in. This `unsafe` function allows you to create a +//! [`impl PinInit<T, E>`] directly from a closure. Of course you have to ensure that the closure +//! actually does the initialization in the correct way. Here are the things to look out for +//! (we are calling the parameter to the closure `slot`): +//! - when the closure returns `Ok(())`, then it has completed the initialization successfully, so +//! `slot` now contains a valid bit pattern for the type `T`, +//! - when the closure returns `Err(e)`, then the caller may deallocate the memory at `slot`, so +//! you need to take care to clean up anything if your initialization fails mid-way, +//! - you may assume that `slot` will stay pinned even after the closure returns until `drop` of +//! `slot` gets called. +//! +//! ```rust +//! # #![allow(unreachable_pub, clippy::disallowed_names)] +//! use kernel::{prelude::*, init, types::Opaque}; +//! use core::{ptr::addr_of_mut, marker::PhantomPinned, pin::Pin}; +//! # mod bindings { +//! # #![allow(non_camel_case_types)] +//! # pub struct foo; +//! # pub unsafe fn init_foo(_ptr: *mut foo) {} +//! # pub unsafe fn destroy_foo(_ptr: *mut foo) {} +//! # pub unsafe fn enable_foo(_ptr: *mut foo, _flags: u32) -> i32 { 0 } +//! # } +//! # // `Error::from_errno` is `pub(crate)` in the `kernel` crate, thus provide a workaround. +//! # trait FromErrno { +//! # fn from_errno(errno: core::ffi::c_int) -> Error { +//! # // Dummy error that can be constructed outside the `kernel` crate. +//! # Error::from(core::fmt::Error) +//! # } +//! # } +//! # impl FromErrno for Error {} +//! /// # Invariants +//! /// +//! /// `foo` is always initialized +//! #[pin_data(PinnedDrop)] +//! pub struct RawFoo { +//! #[pin] +//! foo: Opaque<bindings::foo>, +//! #[pin] +//! _p: PhantomPinned, +//! } +//! +//! impl RawFoo { +//! pub fn new(flags: u32) -> impl PinInit<Self, Error> { +//! // SAFETY: +//! // - when the closure returns `Ok(())`, then it has successfully initialized and +//! // enabled `foo`, +//! // - when it returns `Err(e)`, then it has cleaned up before +//! unsafe { +//! init::pin_init_from_closure(move |slot: *mut Self| { +//! // `slot` contains uninit memory, avoid creating a reference. +//! let foo = addr_of_mut!((*slot).foo); +//! +//! // Initialize the `foo` +//! bindings::init_foo(Opaque::raw_get(foo)); +//! +//! // Try to enable it. +//! let err = bindings::enable_foo(Opaque::raw_get(foo), flags); +//! if err != 0 { +//! // Enabling has failed, first clean up the foo and then return the error. +//! bindings::destroy_foo(Opaque::raw_get(foo)); +//! return Err(Error::from_errno(err)); +//! } +//! +//! // All fields of `RawFoo` have been initialized, since `_p` is a ZST. +//! Ok(()) +//! }) +//! } +//! } +//! } +//! +//! #[pinned_drop] +//! impl PinnedDrop for RawFoo { +//! fn drop(self: Pin<&mut Self>) { +//! // SAFETY: Since `foo` is initialized, destroying is safe. +//! unsafe { bindings::destroy_foo(self.foo.get()) }; +//! } +//! } +//! ``` +//! +//! For the special case where initializing a field is a single FFI-function call that cannot fail, +//! there exist the helper function [`Opaque::ffi_init`]. This function initialize a single +//! [`Opaque`] field by just delegating to the supplied closure. You can use these in combination +//! with [`pin_init!`]. +//! +//! For more information on how to use [`pin_init_from_closure()`], take a look at the uses inside +//! the `kernel` crate. The [`sync`] module is a good starting point. +//! +//! [`sync`]: kernel::sync +//! [pinning]: https://doc.rust-lang.org/std/pin/index.html +//! [structurally pinned fields]: +//! https://doc.rust-lang.org/std/pin/index.html#pinning-is-structural-for-field +//! [stack]: crate::stack_pin_init +//! [`Arc<T>`]: crate::sync::Arc +//! [`impl PinInit<Foo>`]: PinInit +//! [`impl PinInit<T, E>`]: PinInit +//! [`impl Init<T, E>`]: Init +//! [`Opaque`]: kernel::types::Opaque +//! [`Opaque::ffi_init`]: kernel::types::Opaque::ffi_init +//! [`pin_data`]: ::macros::pin_data +//! [`pin_init!`]: crate::pin_init! + +use crate::{ + error::{self, Error}, + sync::UniqueArc, + types::{Opaque, ScopeGuard}, +}; +use alloc::boxed::Box; +use core::{ + alloc::AllocError, + cell::UnsafeCell, + convert::Infallible, + marker::PhantomData, + mem::MaybeUninit, + num::*, + pin::Pin, + ptr::{self, NonNull}, +}; + +#[doc(hidden)] +pub mod __internal; +#[doc(hidden)] +pub mod macros; + +/// Initialize and pin a type directly on the stack. +/// +/// # Examples +/// +/// ```rust +/// # #![allow(clippy::disallowed_names, clippy::new_ret_no_self)] +/// # use kernel::{init, macros::pin_data, pin_init, stack_pin_init, init::*, sync::Mutex, new_mutex}; +/// # use core::pin::Pin; +/// #[pin_data] +/// struct Foo { +/// #[pin] +/// a: Mutex<usize>, +/// b: Bar, +/// } +/// +/// #[pin_data] +/// struct Bar { +/// x: u32, +/// } +/// +/// stack_pin_init!(let foo = pin_init!(Foo { +/// a <- new_mutex!(42), +/// b: Bar { +/// x: 64, +/// }, +/// })); +/// let foo: Pin<&mut Foo> = foo; +/// pr_info!("a: {}", &*foo.a.lock()); +/// ``` +/// +/// # Syntax +/// +/// A normal `let` binding with optional type annotation. The expression is expected to implement +/// [`PinInit`]/[`Init`] with the error type [`Infallible`]. If you want to use a different error +/// type, then use [`stack_try_pin_init!`]. +/// +/// [`stack_try_pin_init!`]: crate::stack_try_pin_init! +#[macro_export] +macro_rules! stack_pin_init { + (let $var:ident $(: $t:ty)? = $val:expr) => { + let val = $val; + let mut $var = ::core::pin::pin!($crate::init::__internal::StackInit$(::<$t>)?::uninit()); + let mut $var = match $crate::init::__internal::StackInit::init($var, val) { + Ok(res) => res, + Err(x) => { + let x: ::core::convert::Infallible = x; + match x {} + } + }; + }; +} + +/// Initialize and pin a type directly on the stack. +/// +/// # Examples +/// +/// ```rust,ignore +/// # #![allow(clippy::disallowed_names, clippy::new_ret_no_self)] +/// # use kernel::{init, pin_init, stack_try_pin_init, init::*, sync::Mutex, new_mutex}; +/// # use macros::pin_data; +/// # use core::{alloc::AllocError, pin::Pin}; +/// #[pin_data] +/// struct Foo { +/// #[pin] +/// a: Mutex<usize>, +/// b: Box<Bar>, +/// } +/// +/// struct Bar { +/// x: u32, +/// } +/// +/// stack_try_pin_init!(let foo: Result<Pin<&mut Foo>, AllocError> = pin_init!(Foo { +/// a <- new_mutex!(42), +/// b: Box::try_new(Bar { +/// x: 64, +/// })?, +/// })); +/// let foo = foo.unwrap(); +/// pr_info!("a: {}", &*foo.a.lock()); +/// ``` +/// +/// ```rust,ignore +/// # #![allow(clippy::disallowed_names, clippy::new_ret_no_self)] +/// # use kernel::{init, pin_init, stack_try_pin_init, init::*, sync::Mutex, new_mutex}; +/// # use macros::pin_data; +/// # use core::{alloc::AllocError, pin::Pin}; +/// #[pin_data] +/// struct Foo { +/// #[pin] +/// a: Mutex<usize>, +/// b: Box<Bar>, +/// } +/// +/// struct Bar { +/// x: u32, +/// } +/// +/// stack_try_pin_init!(let foo: Pin<&mut Foo> =? pin_init!(Foo { +/// a <- new_mutex!(42), +/// b: Box::try_new(Bar { +/// x: 64, +/// })?, +/// })); +/// pr_info!("a: {}", &*foo.a.lock()); +/// # Ok::<_, AllocError>(()) +/// ``` +/// +/// # Syntax +/// +/// A normal `let` binding with optional type annotation. The expression is expected to implement +/// [`PinInit`]/[`Init`]. This macro assigns a result to the given variable, adding a `?` after the +/// `=` will propagate this error. +#[macro_export] +macro_rules! stack_try_pin_init { + (let $var:ident $(: $t:ty)? = $val:expr) => { + let val = $val; + let mut $var = ::core::pin::pin!($crate::init::__internal::StackInit$(::<$t>)?::uninit()); + let mut $var = $crate::init::__internal::StackInit::init($var, val); + }; + (let $var:ident $(: $t:ty)? =? $val:expr) => { + let val = $val; + let mut $var = ::core::pin::pin!($crate::init::__internal::StackInit$(::<$t>)?::uninit()); + let mut $var = $crate::init::__internal::StackInit::init($var, val)?; + }; +} + +/// Construct an in-place, pinned initializer for `struct`s. +/// +/// This macro defaults the error to [`Infallible`]. If you need [`Error`], then use +/// [`try_pin_init!`]. +/// +/// The syntax is almost identical to that of a normal `struct` initializer: +/// +/// ```rust +/// # #![allow(clippy::disallowed_names, clippy::new_ret_no_self)] +/// # use kernel::{init, pin_init, macros::pin_data, init::*}; +/// # use core::pin::Pin; +/// #[pin_data] +/// struct Foo { +/// a: usize, +/// b: Bar, +/// } +/// +/// #[pin_data] +/// struct Bar { +/// x: u32, +/// } +/// +/// # fn demo() -> impl PinInit<Foo> { +/// let a = 42; +/// +/// let initializer = pin_init!(Foo { +/// a, +/// b: Bar { +/// x: 64, +/// }, +/// }); +/// # initializer } +/// # Box::pin_init(demo()).unwrap(); +/// ``` +/// +/// Arbitrary Rust expressions can be used to set the value of a variable. +/// +/// The fields are initialized in the order that they appear in the initializer. So it is possible +/// to read already initialized fields using raw pointers. +/// +/// IMPORTANT: You are not allowed to create references to fields of the struct inside of the +/// initializer. +/// +/// # Init-functions +/// +/// When working with this API it is often desired to let others construct your types without +/// giving access to all fields. This is where you would normally write a plain function `new` +/// that would return a new instance of your type. With this API that is also possible. +/// However, there are a few extra things to keep in mind. +/// +/// To create an initializer function, simply declare it like this: +/// +/// ```rust +/// # #![allow(clippy::disallowed_names, clippy::new_ret_no_self)] +/// # use kernel::{init, pin_init, prelude::*, init::*}; +/// # use core::pin::Pin; +/// # #[pin_data] +/// # struct Foo { +/// # a: usize, +/// # b: Bar, +/// # } +/// # #[pin_data] +/// # struct Bar { +/// # x: u32, +/// # } +/// impl Foo { +/// fn new() -> impl PinInit<Self> { +/// pin_init!(Self { +/// a: 42, +/// b: Bar { +/// x: 64, +/// }, +/// }) +/// } +/// } +/// ``` +/// +/// Users of `Foo` can now create it like this: +/// +/// ```rust +/// # #![allow(clippy::disallowed_names, clippy::new_ret_no_self)] +/// # use kernel::{init, pin_init, macros::pin_data, init::*}; +/// # use core::pin::Pin; +/// # #[pin_data] +/// # struct Foo { +/// # a: usize, +/// # b: Bar, +/// # } +/// # #[pin_data] +/// # struct Bar { +/// # x: u32, +/// # } +/// # impl Foo { +/// # fn new() -> impl PinInit<Self> { +/// # pin_init!(Self { +/// # a: 42, +/// # b: Bar { +/// # x: 64, +/// # }, +/// # }) +/// # } +/// # } +/// let foo = Box::pin_init(Foo::new()); +/// ``` +/// +/// They can also easily embed it into their own `struct`s: +/// +/// ```rust +/// # #![allow(clippy::disallowed_names, clippy::new_ret_no_self)] +/// # use kernel::{init, pin_init, macros::pin_data, init::*}; +/// # use core::pin::Pin; +/// # #[pin_data] +/// # struct Foo { +/// # a: usize, +/// # b: Bar, +/// # } +/// # #[pin_data] +/// # struct Bar { +/// # x: u32, +/// # } +/// # impl Foo { +/// # fn new() -> impl PinInit<Self> { +/// # pin_init!(Self { +/// # a: 42, +/// # b: Bar { +/// # x: 64, +/// # }, +/// # }) +/// # } +/// # } +/// #[pin_data] +/// struct FooContainer { +/// #[pin] +/// foo1: Foo, +/// #[pin] +/// foo2: Foo, +/// other: u32, +/// } +/// +/// impl FooContainer { +/// fn new(other: u32) -> impl PinInit<Self> { +/// pin_init!(Self { +/// foo1 <- Foo::new(), +/// foo2 <- Foo::new(), +/// other, +/// }) +/// } +/// } +/// ``` +/// +/// Here we see that when using `pin_init!` with `PinInit`, one needs to write `<-` instead of `:`. +/// This signifies that the given field is initialized in-place. As with `struct` initializers, just +/// writing the field (in this case `other`) without `:` or `<-` means `other: other,`. +/// +/// # Syntax +/// +/// As already mentioned in the examples above, inside of `pin_init!` a `struct` initializer with +/// the following modifications is expected: +/// - Fields that you want to initialize in-place have to use `<-` instead of `:`. +/// - In front of the initializer you can write `&this in` to have access to a [`NonNull<Self>`] +/// pointer named `this` inside of the initializer. +/// - Using struct update syntax one can place `..Zeroable::zeroed()` at the very end of the +/// struct, this initializes every field with 0 and then runs all initializers specified in the +/// body. This can only be done if [`Zeroable`] is implemented for the struct. +/// +/// For instance: +/// +/// ```rust +/// # use kernel::{macros::{Zeroable, pin_data}, pin_init}; +/// # use core::{ptr::addr_of_mut, marker::PhantomPinned}; +/// #[pin_data] +/// #[derive(Zeroable)] +/// struct Buf { +/// // `ptr` points into `buf`. +/// ptr: *mut u8, +/// buf: [u8; 64], +/// #[pin] +/// pin: PhantomPinned, +/// } +/// pin_init!(&this in Buf { +/// buf: [0; 64], +/// ptr: unsafe { addr_of_mut!((*this.as_ptr()).buf).cast() }, +/// pin: PhantomPinned, +/// }); +/// pin_init!(Buf { +/// buf: [1; 64], +/// ..Zeroable::zeroed() +/// }); +/// ``` +/// +/// [`try_pin_init!`]: kernel::try_pin_init +/// [`NonNull<Self>`]: core::ptr::NonNull +// For a detailed example of how this macro works, see the module documentation of the hidden +// module `__internal` inside of `init/__internal.rs`. +#[macro_export] +macro_rules! pin_init { + ($(&$this:ident in)? $t:ident $(::<$($generics:ty),* $(,)?>)? { + $($fields:tt)* + }) => { + $crate::__init_internal!( + @this($($this)?), + @typ($t $(::<$($generics),*>)?), + @fields($($fields)*), + @error(::core::convert::Infallible), + @data(PinData, use_data), + @has_data(HasPinData, __pin_data), + @construct_closure(pin_init_from_closure), + @munch_fields($($fields)*), + ) + }; +} + +/// Construct an in-place, fallible pinned initializer for `struct`s. +/// +/// If the initialization can complete without error (or [`Infallible`]), then use [`pin_init!`]. +/// +/// You can use the `?` operator or use `return Err(err)` inside the initializer to stop +/// initialization and return the error. +/// +/// IMPORTANT: if you have `unsafe` code inside of the initializer you have to ensure that when +/// initialization fails, the memory can be safely deallocated without any further modifications. +/// +/// This macro defaults the error to [`Error`]. +/// +/// The syntax is identical to [`pin_init!`] with the following exception: you can append `? $type` +/// after the `struct` initializer to specify the error type you want to use. +/// +/// # Examples +/// +/// ```rust +/// # #![feature(new_uninit)] +/// use kernel::{init::{self, PinInit}, error::Error}; +/// #[pin_data] +/// struct BigBuf { +/// big: Box<[u8; 1024 * 1024 * 1024]>, +/// small: [u8; 1024 * 1024], +/// ptr: *mut u8, +/// } +/// +/// impl BigBuf { +/// fn new() -> impl PinInit<Self, Error> { +/// try_pin_init!(Self { +/// big: Box::init(init::zeroed())?, +/// small: [0; 1024 * 1024], +/// ptr: core::ptr::null_mut(), +/// }? Error) +/// } +/// } +/// ``` +// For a detailed example of how this macro works, see the module documentation of the hidden +// module `__internal` inside of `init/__internal.rs`. +#[macro_export] +macro_rules! try_pin_init { + ($(&$this:ident in)? $t:ident $(::<$($generics:ty),* $(,)?>)? { + $($fields:tt)* + }) => { + $crate::__init_internal!( + @this($($this)?), + @typ($t $(::<$($generics),*>)? ), + @fields($($fields)*), + @error($crate::error::Error), + @data(PinData, use_data), + @has_data(HasPinData, __pin_data), + @construct_closure(pin_init_from_closure), + @munch_fields($($fields)*), + ) + }; + ($(&$this:ident in)? $t:ident $(::<$($generics:ty),* $(,)?>)? { + $($fields:tt)* + }? $err:ty) => { + $crate::__init_internal!( + @this($($this)?), + @typ($t $(::<$($generics),*>)? ), + @fields($($fields)*), + @error($err), + @data(PinData, use_data), + @has_data(HasPinData, __pin_data), + @construct_closure(pin_init_from_closure), + @munch_fields($($fields)*), + ) + }; +} + +/// Construct an in-place initializer for `struct`s. +/// +/// This macro defaults the error to [`Infallible`]. If you need [`Error`], then use +/// [`try_init!`]. +/// +/// The syntax is identical to [`pin_init!`] and its safety caveats also apply: +/// - `unsafe` code must guarantee either full initialization or return an error and allow +/// deallocation of the memory. +/// - the fields are initialized in the order given in the initializer. +/// - no references to fields are allowed to be created inside of the initializer. +/// +/// This initializer is for initializing data in-place that might later be moved. If you want to +/// pin-initialize, use [`pin_init!`]. +/// +/// [`try_init!`]: crate::try_init! +// For a detailed example of how this macro works, see the module documentation of the hidden +// module `__internal` inside of `init/__internal.rs`. +#[macro_export] +macro_rules! init { + ($(&$this:ident in)? $t:ident $(::<$($generics:ty),* $(,)?>)? { + $($fields:tt)* + }) => { + $crate::__init_internal!( + @this($($this)?), + @typ($t $(::<$($generics),*>)?), + @fields($($fields)*), + @error(::core::convert::Infallible), + @data(InitData, /*no use_data*/), + @has_data(HasInitData, __init_data), + @construct_closure(init_from_closure), + @munch_fields($($fields)*), + ) + } +} + +/// Construct an in-place fallible initializer for `struct`s. +/// +/// This macro defaults the error to [`Error`]. If you need [`Infallible`], then use +/// [`init!`]. +/// +/// The syntax is identical to [`try_pin_init!`]. If you want to specify a custom error, +/// append `? $type` after the `struct` initializer. +/// The safety caveats from [`try_pin_init!`] also apply: +/// - `unsafe` code must guarantee either full initialization or return an error and allow +/// deallocation of the memory. +/// - the fields are initialized in the order given in the initializer. +/// - no references to fields are allowed to be created inside of the initializer. +/// +/// # Examples +/// +/// ```rust +/// use kernel::{init::{PinInit, zeroed}, error::Error}; +/// struct BigBuf { +/// big: Box<[u8; 1024 * 1024 * 1024]>, +/// small: [u8; 1024 * 1024], +/// } +/// +/// impl BigBuf { +/// fn new() -> impl Init<Self, Error> { +/// try_init!(Self { +/// big: Box::init(zeroed())?, +/// small: [0; 1024 * 1024], +/// }? Error) +/// } +/// } +/// ``` +// For a detailed example of how this macro works, see the module documentation of the hidden +// module `__internal` inside of `init/__internal.rs`. +#[macro_export] +macro_rules! try_init { + ($(&$this:ident in)? $t:ident $(::<$($generics:ty),* $(,)?>)? { + $($fields:tt)* + }) => { + $crate::__init_internal!( + @this($($this)?), + @typ($t $(::<$($generics),*>)?), + @fields($($fields)*), + @error($crate::error::Error), + @data(InitData, /*no use_data*/), + @has_data(HasInitData, __init_data), + @construct_closure(init_from_closure), + @munch_fields($($fields)*), + ) + }; + ($(&$this:ident in)? $t:ident $(::<$($generics:ty),* $(,)?>)? { + $($fields:tt)* + }? $err:ty) => { + $crate::__init_internal!( + @this($($this)?), + @typ($t $(::<$($generics),*>)?), + @fields($($fields)*), + @error($err), + @data(InitData, /*no use_data*/), + @has_data(HasInitData, __init_data), + @construct_closure(init_from_closure), + @munch_fields($($fields)*), + ) + }; +} + +/// A pin-initializer for the type `T`. +/// +/// To use this initializer, you will need a suitable memory location that can hold a `T`. This can +/// be [`Box<T>`], [`Arc<T>`], [`UniqueArc<T>`] or even the stack (see [`stack_pin_init!`]). Use the +/// [`InPlaceInit::pin_init`] function of a smart pointer like [`Arc<T>`] on this. +/// +/// Also see the [module description](self). +/// +/// # Safety +/// +/// When implementing this type you will need to take great care. Also there are probably very few +/// cases where a manual implementation is necessary. Use [`pin_init_from_closure`] where possible. +/// +/// The [`PinInit::__pinned_init`] function +/// - returns `Ok(())` if it initialized every field of `slot`, +/// - returns `Err(err)` if it encountered an error and then cleaned `slot`, this means: +/// - `slot` can be deallocated without UB occurring, +/// - `slot` does not need to be dropped, +/// - `slot` is not partially initialized. +/// - while constructing the `T` at `slot` it upholds the pinning invariants of `T`. +/// +/// [`Arc<T>`]: crate::sync::Arc +/// [`Arc::pin_init`]: crate::sync::Arc::pin_init +#[must_use = "An initializer must be used in order to create its value."] +pub unsafe trait PinInit<T: ?Sized, E = Infallible>: Sized { + /// Initializes `slot`. + /// + /// # Safety + /// + /// - `slot` is a valid pointer to uninitialized memory. + /// - the caller does not touch `slot` when `Err` is returned, they are only permitted to + /// deallocate. + /// - `slot` will not move until it is dropped, i.e. it will be pinned. + unsafe fn __pinned_init(self, slot: *mut T) -> Result<(), E>; + + /// First initializes the value using `self` then calls the function `f` with the initialized + /// value. + /// + /// If `f` returns an error the value is dropped and the initializer will forward the error. + /// + /// # Examples + /// + /// ```rust + /// # #![allow(clippy::disallowed_names)] + /// use kernel::{types::Opaque, init::pin_init_from_closure}; + /// #[repr(C)] + /// struct RawFoo([u8; 16]); + /// extern { + /// fn init_foo(_: *mut RawFoo); + /// } + /// + /// #[pin_data] + /// struct Foo { + /// #[pin] + /// raw: Opaque<RawFoo>, + /// } + /// + /// impl Foo { + /// fn setup(self: Pin<&mut Self>) { + /// pr_info!("Setting up foo"); + /// } + /// } + /// + /// let foo = pin_init!(Foo { + /// raw <- unsafe { + /// Opaque::ffi_init(|s| { + /// init_foo(s); + /// }) + /// }, + /// }).pin_chain(|foo| { + /// foo.setup(); + /// Ok(()) + /// }); + /// ``` + fn pin_chain<F>(self, f: F) -> ChainPinInit<Self, F, T, E> + where + F: FnOnce(Pin<&mut T>) -> Result<(), E>, + { + ChainPinInit(self, f, PhantomData) + } +} + +/// An initializer returned by [`PinInit::pin_chain`]. +pub struct ChainPinInit<I, F, T: ?Sized, E>(I, F, __internal::Invariant<(E, Box<T>)>); + +// SAFETY: The `__pinned_init` function is implemented such that it +// - returns `Ok(())` on successful initialization, +// - returns `Err(err)` on error and in this case `slot` will be dropped. +// - considers `slot` pinned. +unsafe impl<T: ?Sized, E, I, F> PinInit<T, E> for ChainPinInit<I, F, T, E> +where + I: PinInit<T, E>, + F: FnOnce(Pin<&mut T>) -> Result<(), E>, +{ + unsafe fn __pinned_init(self, slot: *mut T) -> Result<(), E> { + // SAFETY: All requirements fulfilled since this function is `__pinned_init`. + unsafe { self.0.__pinned_init(slot)? }; + // SAFETY: The above call initialized `slot` and we still have unique access. + let val = unsafe { &mut *slot }; + // SAFETY: `slot` is considered pinned. + let val = unsafe { Pin::new_unchecked(val) }; + (self.1)(val).map_err(|e| { + // SAFETY: `slot` was initialized above. + unsafe { core::ptr::drop_in_place(slot) }; + e + }) + } +} + +/// An initializer for `T`. +/// +/// To use this initializer, you will need a suitable memory location that can hold a `T`. This can +/// be [`Box<T>`], [`Arc<T>`], [`UniqueArc<T>`] or even the stack (see [`stack_pin_init!`]). Use the +/// [`InPlaceInit::init`] function of a smart pointer like [`Arc<T>`] on this. Because +/// [`PinInit<T, E>`] is a super trait, you can use every function that takes it as well. +/// +/// Also see the [module description](self). +/// +/// # Safety +/// +/// When implementing this type you will need to take great care. Also there are probably very few +/// cases where a manual implementation is necessary. Use [`init_from_closure`] where possible. +/// +/// The [`Init::__init`] function +/// - returns `Ok(())` if it initialized every field of `slot`, +/// - returns `Err(err)` if it encountered an error and then cleaned `slot`, this means: +/// - `slot` can be deallocated without UB occurring, +/// - `slot` does not need to be dropped, +/// - `slot` is not partially initialized. +/// - while constructing the `T` at `slot` it upholds the pinning invariants of `T`. +/// +/// The `__pinned_init` function from the supertrait [`PinInit`] needs to execute the exact same +/// code as `__init`. +/// +/// Contrary to its supertype [`PinInit<T, E>`] the caller is allowed to +/// move the pointee after initialization. +/// +/// [`Arc<T>`]: crate::sync::Arc +#[must_use = "An initializer must be used in order to create its value."] +pub unsafe trait Init<T: ?Sized, E = Infallible>: PinInit<T, E> { + /// Initializes `slot`. + /// + /// # Safety + /// + /// - `slot` is a valid pointer to uninitialized memory. + /// - the caller does not touch `slot` when `Err` is returned, they are only permitted to + /// deallocate. + unsafe fn __init(self, slot: *mut T) -> Result<(), E>; + + /// First initializes the value using `self` then calls the function `f` with the initialized + /// value. + /// + /// If `f` returns an error the value is dropped and the initializer will forward the error. + /// + /// # Examples + /// + /// ```rust + /// # #![allow(clippy::disallowed_names)] + /// use kernel::{types::Opaque, init::{self, init_from_closure}}; + /// struct Foo { + /// buf: [u8; 1_000_000], + /// } + /// + /// impl Foo { + /// fn setup(&mut self) { + /// pr_info!("Setting up foo"); + /// } + /// } + /// + /// let foo = init!(Foo { + /// buf <- init::zeroed() + /// }).chain(|foo| { + /// foo.setup(); + /// Ok(()) + /// }); + /// ``` + fn chain<F>(self, f: F) -> ChainInit<Self, F, T, E> + where + F: FnOnce(&mut T) -> Result<(), E>, + { + ChainInit(self, f, PhantomData) + } +} + +/// An initializer returned by [`Init::chain`]. +pub struct ChainInit<I, F, T: ?Sized, E>(I, F, __internal::Invariant<(E, Box<T>)>); + +// SAFETY: The `__init` function is implemented such that it +// - returns `Ok(())` on successful initialization, +// - returns `Err(err)` on error and in this case `slot` will be dropped. +unsafe impl<T: ?Sized, E, I, F> Init<T, E> for ChainInit<I, F, T, E> +where + I: Init<T, E>, + F: FnOnce(&mut T) -> Result<(), E>, +{ + unsafe fn __init(self, slot: *mut T) -> Result<(), E> { + // SAFETY: All requirements fulfilled since this function is `__init`. + unsafe { self.0.__pinned_init(slot)? }; + // SAFETY: The above call initialized `slot` and we still have unique access. + (self.1)(unsafe { &mut *slot }).map_err(|e| { + // SAFETY: `slot` was initialized above. + unsafe { core::ptr::drop_in_place(slot) }; + e + }) + } +} + +// SAFETY: `__pinned_init` behaves exactly the same as `__init`. +unsafe impl<T: ?Sized, E, I, F> PinInit<T, E> for ChainInit<I, F, T, E> +where + I: Init<T, E>, + F: FnOnce(&mut T) -> Result<(), E>, +{ + unsafe fn __pinned_init(self, slot: *mut T) -> Result<(), E> { + // SAFETY: `__init` has less strict requirements compared to `__pinned_init`. + unsafe { self.__init(slot) } + } +} + +/// Creates a new [`PinInit<T, E>`] from the given closure. +/// +/// # Safety +/// +/// The closure: +/// - returns `Ok(())` if it initialized every field of `slot`, +/// - returns `Err(err)` if it encountered an error and then cleaned `slot`, this means: +/// - `slot` can be deallocated without UB occurring, +/// - `slot` does not need to be dropped, +/// - `slot` is not partially initialized. +/// - may assume that the `slot` does not move if `T: !Unpin`, +/// - while constructing the `T` at `slot` it upholds the pinning invariants of `T`. +#[inline] +pub const unsafe fn pin_init_from_closure<T: ?Sized, E>( + f: impl FnOnce(*mut T) -> Result<(), E>, +) -> impl PinInit<T, E> { + __internal::InitClosure(f, PhantomData) +} + +/// Creates a new [`Init<T, E>`] from the given closure. +/// +/// # Safety +/// +/// The closure: +/// - returns `Ok(())` if it initialized every field of `slot`, +/// - returns `Err(err)` if it encountered an error and then cleaned `slot`, this means: +/// - `slot` can be deallocated without UB occurring, +/// - `slot` does not need to be dropped, +/// - `slot` is not partially initialized. +/// - the `slot` may move after initialization. +/// - while constructing the `T` at `slot` it upholds the pinning invariants of `T`. +#[inline] +pub const unsafe fn init_from_closure<T: ?Sized, E>( + f: impl FnOnce(*mut T) -> Result<(), E>, +) -> impl Init<T, E> { + __internal::InitClosure(f, PhantomData) +} + +/// An initializer that leaves the memory uninitialized. +/// +/// The initializer is a no-op. The `slot` memory is not changed. +#[inline] +pub fn uninit<T, E>() -> impl Init<MaybeUninit<T>, E> { + // SAFETY: The memory is allowed to be uninitialized. + unsafe { init_from_closure(|_| Ok(())) } +} + +/// Initializes an array by initializing each element via the provided initializer. +/// +/// # Examples +/// +/// ```rust +/// use kernel::{error::Error, init::init_array_from_fn}; +/// let array: Box<[usize; 1_000]>= Box::init::<Error>(init_array_from_fn(|i| i)).unwrap(); +/// assert_eq!(array.len(), 1_000); +/// ``` +pub fn init_array_from_fn<I, const N: usize, T, E>( + mut make_init: impl FnMut(usize) -> I, +) -> impl Init<[T; N], E> +where + I: Init<T, E>, +{ + let init = move |slot: *mut [T; N]| { + let slot = slot.cast::<T>(); + // Counts the number of initialized elements and when dropped drops that many elements from + // `slot`. + let mut init_count = ScopeGuard::new_with_data(0, |i| { + // We now free every element that has been initialized before: + // SAFETY: The loop initialized exactly the values from 0..i and since we + // return `Err` below, the caller will consider the memory at `slot` as + // uninitialized. + unsafe { ptr::drop_in_place(ptr::slice_from_raw_parts_mut(slot, i)) }; + }); + for i in 0..N { + let init = make_init(i); + // SAFETY: Since 0 <= `i` < N, it is still in bounds of `[T; N]`. + let ptr = unsafe { slot.add(i) }; + // SAFETY: The pointer is derived from `slot` and thus satisfies the `__init` + // requirements. + unsafe { init.__init(ptr) }?; + *init_count += 1; + } + init_count.dismiss(); + Ok(()) + }; + // SAFETY: The initializer above initializes every element of the array. On failure it drops + // any initialized elements and returns `Err`. + unsafe { init_from_closure(init) } +} + +/// Initializes an array by initializing each element via the provided initializer. +/// +/// # Examples +/// +/// ```rust +/// use kernel::{sync::{Arc, Mutex}, init::pin_init_array_from_fn, new_mutex}; +/// let array: Arc<[Mutex<usize>; 1_000]>= +/// Arc::pin_init(pin_init_array_from_fn(|i| new_mutex!(i))).unwrap(); +/// assert_eq!(array.len(), 1_000); +/// ``` +pub fn pin_init_array_from_fn<I, const N: usize, T, E>( + mut make_init: impl FnMut(usize) -> I, +) -> impl PinInit<[T; N], E> +where + I: PinInit<T, E>, +{ + let init = move |slot: *mut [T; N]| { + let slot = slot.cast::<T>(); + // Counts the number of initialized elements and when dropped drops that many elements from + // `slot`. + let mut init_count = ScopeGuard::new_with_data(0, |i| { + // We now free every element that has been initialized before: + // SAFETY: The loop initialized exactly the values from 0..i and since we + // return `Err` below, the caller will consider the memory at `slot` as + // uninitialized. + unsafe { ptr::drop_in_place(ptr::slice_from_raw_parts_mut(slot, i)) }; + }); + for i in 0..N { + let init = make_init(i); + // SAFETY: Since 0 <= `i` < N, it is still in bounds of `[T; N]`. + let ptr = unsafe { slot.add(i) }; + // SAFETY: The pointer is derived from `slot` and thus satisfies the `__init` + // requirements. + unsafe { init.__pinned_init(ptr) }?; + *init_count += 1; + } + init_count.dismiss(); + Ok(()) + }; + // SAFETY: The initializer above initializes every element of the array. On failure it drops + // any initialized elements and returns `Err`. + unsafe { pin_init_from_closure(init) } +} + +// SAFETY: Every type can be initialized by-value. +unsafe impl<T, E> Init<T, E> for T { + unsafe fn __init(self, slot: *mut T) -> Result<(), E> { + unsafe { slot.write(self) }; + Ok(()) + } +} + +// SAFETY: Every type can be initialized by-value. `__pinned_init` calls `__init`. +unsafe impl<T, E> PinInit<T, E> for T { + unsafe fn __pinned_init(self, slot: *mut T) -> Result<(), E> { + unsafe { self.__init(slot) } + } +} + +/// Smart pointer that can initialize memory in-place. +pub trait InPlaceInit<T>: Sized { + /// Use the given pin-initializer to pin-initialize a `T` inside of a new smart pointer of this + /// type. + /// + /// If `T: !Unpin` it will not be able to move afterwards. + fn try_pin_init<E>(init: impl PinInit<T, E>) -> Result<Pin<Self>, E> + where + E: From<AllocError>; + + /// Use the given pin-initializer to pin-initialize a `T` inside of a new smart pointer of this + /// type. + /// + /// If `T: !Unpin` it will not be able to move afterwards. + fn pin_init<E>(init: impl PinInit<T, E>) -> error::Result<Pin<Self>> + where + Error: From<E>, + { + // SAFETY: We delegate to `init` and only change the error type. + let init = unsafe { + pin_init_from_closure(|slot| init.__pinned_init(slot).map_err(|e| Error::from(e))) + }; + Self::try_pin_init(init) + } + + /// Use the given initializer to in-place initialize a `T`. + fn try_init<E>(init: impl Init<T, E>) -> Result<Self, E> + where + E: From<AllocError>; + + /// Use the given initializer to in-place initialize a `T`. + fn init<E>(init: impl Init<T, E>) -> error::Result<Self> + where + Error: From<E>, + { + // SAFETY: We delegate to `init` and only change the error type. + let init = unsafe { + init_from_closure(|slot| init.__pinned_init(slot).map_err(|e| Error::from(e))) + }; + Self::try_init(init) + } +} + +impl<T> InPlaceInit<T> for Box<T> { + #[inline] + fn try_pin_init<E>(init: impl PinInit<T, E>) -> Result<Pin<Self>, E> + where + E: From<AllocError>, + { + let mut this = Box::try_new_uninit()?; + let slot = this.as_mut_ptr(); + // SAFETY: When init errors/panics, slot will get deallocated but not dropped, + // slot is valid and will not be moved, because we pin it later. + unsafe { init.__pinned_init(slot)? }; + // SAFETY: All fields have been initialized. + Ok(unsafe { this.assume_init() }.into()) + } + + #[inline] + fn try_init<E>(init: impl Init<T, E>) -> Result<Self, E> + where + E: From<AllocError>, + { + let mut this = Box::try_new_uninit()?; + let slot = this.as_mut_ptr(); + // SAFETY: When init errors/panics, slot will get deallocated but not dropped, + // slot is valid. + unsafe { init.__init(slot)? }; + // SAFETY: All fields have been initialized. + Ok(unsafe { this.assume_init() }) + } +} + +impl<T> InPlaceInit<T> for UniqueArc<T> { + #[inline] + fn try_pin_init<E>(init: impl PinInit<T, E>) -> Result<Pin<Self>, E> + where + E: From<AllocError>, + { + let mut this = UniqueArc::try_new_uninit()?; + let slot = this.as_mut_ptr(); + // SAFETY: When init errors/panics, slot will get deallocated but not dropped, + // slot is valid and will not be moved, because we pin it later. + unsafe { init.__pinned_init(slot)? }; + // SAFETY: All fields have been initialized. + Ok(unsafe { this.assume_init() }.into()) + } + + #[inline] + fn try_init<E>(init: impl Init<T, E>) -> Result<Self, E> + where + E: From<AllocError>, + { + let mut this = UniqueArc::try_new_uninit()?; + let slot = this.as_mut_ptr(); + // SAFETY: When init errors/panics, slot will get deallocated but not dropped, + // slot is valid. + unsafe { init.__init(slot)? }; + // SAFETY: All fields have been initialized. + Ok(unsafe { this.assume_init() }) + } +} + +/// Trait facilitating pinned destruction. +/// +/// Use [`pinned_drop`] to implement this trait safely: +/// +/// ```rust +/// # use kernel::sync::Mutex; +/// use kernel::macros::pinned_drop; +/// use core::pin::Pin; +/// #[pin_data(PinnedDrop)] +/// struct Foo { +/// #[pin] +/// mtx: Mutex<usize>, +/// } +/// +/// #[pinned_drop] +/// impl PinnedDrop for Foo { +/// fn drop(self: Pin<&mut Self>) { +/// pr_info!("Foo is being dropped!"); +/// } +/// } +/// ``` +/// +/// # Safety +/// +/// This trait must be implemented via the [`pinned_drop`] proc-macro attribute on the impl. +/// +/// [`pinned_drop`]: kernel::macros::pinned_drop +pub unsafe trait PinnedDrop: __internal::HasPinData { + /// Executes the pinned destructor of this type. + /// + /// While this function is marked safe, it is actually unsafe to call it manually. For this + /// reason it takes an additional parameter. This type can only be constructed by `unsafe` code + /// and thus prevents this function from being called where it should not. + /// + /// This extra parameter will be generated by the `#[pinned_drop]` proc-macro attribute + /// automatically. + fn drop(self: Pin<&mut Self>, only_call_from_drop: __internal::OnlyCallFromDrop); +} + +/// Marker trait for types that can be initialized by writing just zeroes. +/// +/// # Safety +/// +/// The bit pattern consisting of only zeroes is a valid bit pattern for this type. In other words, +/// this is not UB: +/// +/// ```rust,ignore +/// let val: Self = unsafe { core::mem::zeroed() }; +/// ``` +pub unsafe trait Zeroable {} + +/// Create a new zeroed T. +/// +/// The returned initializer will write `0x00` to every byte of the given `slot`. +#[inline] +pub fn zeroed<T: Zeroable>() -> impl Init<T> { + // SAFETY: Because `T: Zeroable`, all bytes zero is a valid bit pattern for `T` + // and because we write all zeroes, the memory is initialized. + unsafe { + init_from_closure(|slot: *mut T| { + slot.write_bytes(0, 1); + Ok(()) + }) + } +} + +macro_rules! impl_zeroable { + ($($({$($generics:tt)*})? $t:ty, )*) => { + $(unsafe impl$($($generics)*)? Zeroable for $t {})* + }; +} + +impl_zeroable! { + // SAFETY: All primitives that are allowed to be zero. + bool, + char, + u8, u16, u32, u64, u128, usize, + i8, i16, i32, i64, i128, isize, + f32, f64, + + // SAFETY: These are ZSTs, there is nothing to zero. + {<T: ?Sized>} PhantomData<T>, core::marker::PhantomPinned, Infallible, (), + + // SAFETY: Type is allowed to take any value, including all zeros. + {<T>} MaybeUninit<T>, + // SAFETY: Type is allowed to take any value, including all zeros. + {<T>} Opaque<T>, + + // SAFETY: `T: Zeroable` and `UnsafeCell` is `repr(transparent)`. + {<T: ?Sized + Zeroable>} UnsafeCell<T>, + + // SAFETY: All zeros is equivalent to `None` (option layout optimization guarantee). + Option<NonZeroU8>, Option<NonZeroU16>, Option<NonZeroU32>, Option<NonZeroU64>, + Option<NonZeroU128>, Option<NonZeroUsize>, + Option<NonZeroI8>, Option<NonZeroI16>, Option<NonZeroI32>, Option<NonZeroI64>, + Option<NonZeroI128>, Option<NonZeroIsize>, + + // SAFETY: All zeros is equivalent to `None` (option layout optimization guarantee). + // + // In this case we are allowed to use `T: ?Sized`, since all zeros is the `None` variant. + {<T: ?Sized>} Option<NonNull<T>>, + {<T: ?Sized>} Option<Box<T>>, + + // SAFETY: `null` pointer is valid. + // + // We cannot use `T: ?Sized`, since the VTABLE pointer part of fat pointers is not allowed to be + // null. + // + // When `Pointee` gets stabilized, we could use + // `T: ?Sized where <T as Pointee>::Metadata: Zeroable` + {<T>} *mut T, {<T>} *const T, + + // SAFETY: `null` pointer is valid and the metadata part of these fat pointers is allowed to be + // zero. + {<T>} *mut [T], {<T>} *const [T], *mut str, *const str, + + // SAFETY: `T` is `Zeroable`. + {<const N: usize, T: Zeroable>} [T; N], {<T: Zeroable>} Wrapping<T>, +} + +macro_rules! impl_tuple_zeroable { + ($(,)?) => {}; + ($first:ident, $($t:ident),* $(,)?) => { + // SAFETY: All elements are zeroable and padding can be zero. + unsafe impl<$first: Zeroable, $($t: Zeroable),*> Zeroable for ($first, $($t),*) {} + impl_tuple_zeroable!($($t),* ,); + } +} + +impl_tuple_zeroable!(A, B, C, D, E, F, G, H, I, J); diff --git a/rust/kernel/init/__internal.rs b/rust/kernel/init/__internal.rs new file mode 100644 index 0000000000..db3372619e --- /dev/null +++ b/rust/kernel/init/__internal.rs @@ -0,0 +1,230 @@ +// SPDX-License-Identifier: Apache-2.0 OR MIT + +//! This module contains API-internal items for pin-init. +//! +//! These items must not be used outside of +//! - `kernel/init.rs` +//! - `macros/pin_data.rs` +//! - `macros/pinned_drop.rs` + +use super::*; + +/// See the [nomicon] for what subtyping is. See also [this table]. +/// +/// [nomicon]: https://doc.rust-lang.org/nomicon/subtyping.html +/// [this table]: https://doc.rust-lang.org/nomicon/phantom-data.html#table-of-phantomdata-patterns +pub(super) type Invariant<T> = PhantomData<fn(*mut T) -> *mut T>; + +/// This is the module-internal type implementing `PinInit` and `Init`. It is unsafe to create this +/// type, since the closure needs to fulfill the same safety requirement as the +/// `__pinned_init`/`__init` functions. +pub(crate) struct InitClosure<F, T: ?Sized, E>(pub(crate) F, pub(crate) Invariant<(E, T)>); + +// SAFETY: While constructing the `InitClosure`, the user promised that it upholds the +// `__init` invariants. +unsafe impl<T: ?Sized, F, E> Init<T, E> for InitClosure<F, T, E> +where + F: FnOnce(*mut T) -> Result<(), E>, +{ + #[inline] + unsafe fn __init(self, slot: *mut T) -> Result<(), E> { + (self.0)(slot) + } +} + +// SAFETY: While constructing the `InitClosure`, the user promised that it upholds the +// `__pinned_init` invariants. +unsafe impl<T: ?Sized, F, E> PinInit<T, E> for InitClosure<F, T, E> +where + F: FnOnce(*mut T) -> Result<(), E>, +{ + #[inline] + unsafe fn __pinned_init(self, slot: *mut T) -> Result<(), E> { + (self.0)(slot) + } +} + +/// This trait is only implemented via the `#[pin_data]` proc-macro. It is used to facilitate +/// the pin projections within the initializers. +/// +/// # Safety +/// +/// Only the `init` module is allowed to use this trait. +pub unsafe trait HasPinData { + type PinData: PinData; + + unsafe fn __pin_data() -> Self::PinData; +} + +/// Marker trait for pinning data of structs. +/// +/// # Safety +/// +/// Only the `init` module is allowed to use this trait. +pub unsafe trait PinData: Copy { + type Datee: ?Sized + HasPinData; + + /// Type inference helper function. + fn make_closure<F, O, E>(self, f: F) -> F + where + F: FnOnce(*mut Self::Datee) -> Result<O, E>, + { + f + } +} + +/// This trait is automatically implemented for every type. It aims to provide the same type +/// inference help as `HasPinData`. +/// +/// # Safety +/// +/// Only the `init` module is allowed to use this trait. +pub unsafe trait HasInitData { + type InitData: InitData; + + unsafe fn __init_data() -> Self::InitData; +} + +/// Same function as `PinData`, but for arbitrary data. +/// +/// # Safety +/// +/// Only the `init` module is allowed to use this trait. +pub unsafe trait InitData: Copy { + type Datee: ?Sized + HasInitData; + + /// Type inference helper function. + fn make_closure<F, O, E>(self, f: F) -> F + where + F: FnOnce(*mut Self::Datee) -> Result<O, E>, + { + f + } +} + +pub struct AllData<T: ?Sized>(PhantomData<fn(Box<T>) -> Box<T>>); + +impl<T: ?Sized> Clone for AllData<T> { + fn clone(&self) -> Self { + *self + } +} + +impl<T: ?Sized> Copy for AllData<T> {} + +unsafe impl<T: ?Sized> InitData for AllData<T> { + type Datee = T; +} + +unsafe impl<T: ?Sized> HasInitData for T { + type InitData = AllData<T>; + + unsafe fn __init_data() -> Self::InitData { + AllData(PhantomData) + } +} + +/// Stack initializer helper type. Use [`stack_pin_init`] instead of this primitive. +/// +/// # Invariants +/// +/// If `self.is_init` is true, then `self.value` is initialized. +/// +/// [`stack_pin_init`]: kernel::stack_pin_init +pub struct StackInit<T> { + value: MaybeUninit<T>, + is_init: bool, +} + +impl<T> Drop for StackInit<T> { + #[inline] + fn drop(&mut self) { + if self.is_init { + // SAFETY: As we are being dropped, we only call this once. And since `self.is_init` is + // true, `self.value` is initialized. + unsafe { self.value.assume_init_drop() }; + } + } +} + +impl<T> StackInit<T> { + /// Creates a new [`StackInit<T>`] that is uninitialized. Use [`stack_pin_init`] instead of this + /// primitive. + /// + /// [`stack_pin_init`]: kernel::stack_pin_init + #[inline] + pub fn uninit() -> Self { + Self { + value: MaybeUninit::uninit(), + is_init: false, + } + } + + /// Initializes the contents and returns the result. + #[inline] + pub fn init<E>(self: Pin<&mut Self>, init: impl PinInit<T, E>) -> Result<Pin<&mut T>, E> { + // SAFETY: We never move out of `this`. + let this = unsafe { Pin::into_inner_unchecked(self) }; + // The value is currently initialized, so it needs to be dropped before we can reuse + // the memory (this is a safety guarantee of `Pin`). + if this.is_init { + this.is_init = false; + // SAFETY: `this.is_init` was true and therefore `this.value` is initialized. + unsafe { this.value.assume_init_drop() }; + } + // SAFETY: The memory slot is valid and this type ensures that it will stay pinned. + unsafe { init.__pinned_init(this.value.as_mut_ptr())? }; + // INVARIANT: `this.value` is initialized above. + this.is_init = true; + // SAFETY: The slot is now pinned, since we will never give access to `&mut T`. + Ok(unsafe { Pin::new_unchecked(this.value.assume_init_mut()) }) + } +} + +/// When a value of this type is dropped, it drops a `T`. +/// +/// Can be forgotten to prevent the drop. +pub struct DropGuard<T: ?Sized> { + ptr: *mut T, +} + +impl<T: ?Sized> DropGuard<T> { + /// Creates a new [`DropGuard<T>`]. It will [`ptr::drop_in_place`] `ptr` when it gets dropped. + /// + /// # Safety + /// + /// `ptr` must be a valid pointer. + /// + /// It is the callers responsibility that `self` will only get dropped if the pointee of `ptr`: + /// - has not been dropped, + /// - is not accessible by any other means, + /// - will not be dropped by any other means. + #[inline] + pub unsafe fn new(ptr: *mut T) -> Self { + Self { ptr } + } +} + +impl<T: ?Sized> Drop for DropGuard<T> { + #[inline] + fn drop(&mut self) { + // SAFETY: A `DropGuard` can only be constructed using the unsafe `new` function + // ensuring that this operation is safe. + unsafe { ptr::drop_in_place(self.ptr) } + } +} + +/// Token used by `PinnedDrop` to prevent calling the function without creating this unsafely +/// created struct. This is needed, because the `drop` function is safe, but should not be called +/// manually. +pub struct OnlyCallFromDrop(()); + +impl OnlyCallFromDrop { + /// # Safety + /// + /// This function should only be called from the [`Drop::drop`] function and only be used to + /// delegate the destruction to the pinned destructor [`PinnedDrop::drop`] of the same type. + pub unsafe fn new() -> Self { + Self(()) + } +} diff --git a/rust/kernel/init/macros.rs b/rust/kernel/init/macros.rs new file mode 100644 index 0000000000..cb6e61b6c5 --- /dev/null +++ b/rust/kernel/init/macros.rs @@ -0,0 +1,1383 @@ +// SPDX-License-Identifier: Apache-2.0 OR MIT + +//! This module provides the macros that actually implement the proc-macros `pin_data` and +//! `pinned_drop`. It also contains `__init_internal` the implementation of the `{try_}{pin_}init!` +//! macros. +//! +//! These macros should never be called directly, since they expect their input to be +//! in a certain format which is internal. If used incorrectly, these macros can lead to UB even in +//! safe code! Use the public facing macros instead. +//! +//! This architecture has been chosen because the kernel does not yet have access to `syn` which +//! would make matters a lot easier for implementing these as proc-macros. +//! +//! # Macro expansion example +//! +//! This section is intended for readers trying to understand the macros in this module and the +//! `pin_init!` macros from `init.rs`. +//! +//! We will look at the following example: +//! +//! ```rust,ignore +//! # use kernel::init::*; +//! # use core::pin::Pin; +//! #[pin_data] +//! #[repr(C)] +//! struct Bar<T> { +//! #[pin] +//! t: T, +//! pub x: usize, +//! } +//! +//! impl<T> Bar<T> { +//! fn new(t: T) -> impl PinInit<Self> { +//! pin_init!(Self { t, x: 0 }) +//! } +//! } +//! +//! #[pin_data(PinnedDrop)] +//! struct Foo { +//! a: usize, +//! #[pin] +//! b: Bar<u32>, +//! } +//! +//! #[pinned_drop] +//! impl PinnedDrop for Foo { +//! fn drop(self: Pin<&mut Self>) { +//! pr_info!("{self:p} is getting dropped."); +//! } +//! } +//! +//! let a = 42; +//! let initializer = pin_init!(Foo { +//! a, +//! b <- Bar::new(36), +//! }); +//! ``` +//! +//! This example includes the most common and important features of the pin-init API. +//! +//! Below you can find individual section about the different macro invocations. Here are some +//! general things we need to take into account when designing macros: +//! - use global paths, similarly to file paths, these start with the separator: `::core::panic!()` +//! this ensures that the correct item is used, since users could define their own `mod core {}` +//! and then their own `panic!` inside to execute arbitrary code inside of our macro. +//! - macro `unsafe` hygiene: we need to ensure that we do not expand arbitrary, user-supplied +//! expressions inside of an `unsafe` block in the macro, because this would allow users to do +//! `unsafe` operations without an associated `unsafe` block. +//! +//! ## `#[pin_data]` on `Bar` +//! +//! This macro is used to specify which fields are structurally pinned and which fields are not. It +//! is placed on the struct definition and allows `#[pin]` to be placed on the fields. +//! +//! Here is the definition of `Bar` from our example: +//! +//! ```rust,ignore +//! # use kernel::init::*; +//! #[pin_data] +//! #[repr(C)] +//! struct Bar<T> { +//! #[pin] +//! t: T, +//! pub x: usize, +//! } +//! ``` +//! +//! This expands to the following code: +//! +//! ```rust,ignore +//! // Firstly the normal definition of the struct, attributes are preserved: +//! #[repr(C)] +//! struct Bar<T> { +//! t: T, +//! pub x: usize, +//! } +//! // Then an anonymous constant is defined, this is because we do not want any code to access the +//! // types that we define inside: +//! const _: () = { +//! // We define the pin-data carrying struct, it is a ZST and needs to have the same generics, +//! // since we need to implement access functions for each field and thus need to know its +//! // type. +//! struct __ThePinData<T> { +//! __phantom: ::core::marker::PhantomData<fn(Bar<T>) -> Bar<T>>, +//! } +//! // We implement `Copy` for the pin-data struct, since all functions it defines will take +//! // `self` by value. +//! impl<T> ::core::clone::Clone for __ThePinData<T> { +//! fn clone(&self) -> Self { +//! *self +//! } +//! } +//! impl<T> ::core::marker::Copy for __ThePinData<T> {} +//! // For every field of `Bar`, the pin-data struct will define a function with the same name +//! // and accessor (`pub` or `pub(crate)` etc.). This function will take a pointer to the +//! // field (`slot`) and a `PinInit` or `Init` depending on the projection kind of the field +//! // (if pinning is structural for the field, then `PinInit` otherwise `Init`). +//! #[allow(dead_code)] +//! impl<T> __ThePinData<T> { +//! unsafe fn t<E>( +//! self, +//! slot: *mut T, +//! // Since `t` is `#[pin]`, this is `PinInit`. +//! init: impl ::kernel::init::PinInit<T, E>, +//! ) -> ::core::result::Result<(), E> { +//! unsafe { ::kernel::init::PinInit::__pinned_init(init, slot) } +//! } +//! pub unsafe fn x<E>( +//! self, +//! slot: *mut usize, +//! // Since `x` is not `#[pin]`, this is `Init`. +//! init: impl ::kernel::init::Init<usize, E>, +//! ) -> ::core::result::Result<(), E> { +//! unsafe { ::kernel::init::Init::__init(init, slot) } +//! } +//! } +//! // Implement the internal `HasPinData` trait that associates `Bar` with the pin-data struct +//! // that we constructed above. +//! unsafe impl<T> ::kernel::init::__internal::HasPinData for Bar<T> { +//! type PinData = __ThePinData<T>; +//! unsafe fn __pin_data() -> Self::PinData { +//! __ThePinData { +//! __phantom: ::core::marker::PhantomData, +//! } +//! } +//! } +//! // Implement the internal `PinData` trait that marks the pin-data struct as a pin-data +//! // struct. This is important to ensure that no user can implement a rouge `__pin_data` +//! // function without using `unsafe`. +//! unsafe impl<T> ::kernel::init::__internal::PinData for __ThePinData<T> { +//! type Datee = Bar<T>; +//! } +//! // Now we only want to implement `Unpin` for `Bar` when every structurally pinned field is +//! // `Unpin`. In other words, whether `Bar` is `Unpin` only depends on structurally pinned +//! // fields (those marked with `#[pin]`). These fields will be listed in this struct, in our +//! // case no such fields exist, hence this is almost empty. The two phantomdata fields exist +//! // for two reasons: +//! // - `__phantom`: every generic must be used, since we cannot really know which generics +//! // are used, we declere all and then use everything here once. +//! // - `__phantom_pin`: uses the `'__pin` lifetime and ensures that this struct is invariant +//! // over it. The lifetime is needed to work around the limitation that trait bounds must +//! // not be trivial, e.g. the user has a `#[pin] PhantomPinned` field -- this is +//! // unconditionally `!Unpin` and results in an error. The lifetime tricks the compiler +//! // into accepting these bounds regardless. +//! #[allow(dead_code)] +//! struct __Unpin<'__pin, T> { +//! __phantom_pin: ::core::marker::PhantomData<fn(&'__pin ()) -> &'__pin ()>, +//! __phantom: ::core::marker::PhantomData<fn(Bar<T>) -> Bar<T>>, +//! // Our only `#[pin]` field is `t`. +//! t: T, +//! } +//! #[doc(hidden)] +//! impl<'__pin, T> ::core::marker::Unpin for Bar<T> +//! where +//! __Unpin<'__pin, T>: ::core::marker::Unpin, +//! {} +//! // Now we need to ensure that `Bar` does not implement `Drop`, since that would give users +//! // access to `&mut self` inside of `drop` even if the struct was pinned. This could lead to +//! // UB with only safe code, so we disallow this by giving a trait implementation error using +//! // a direct impl and a blanket implementation. +//! trait MustNotImplDrop {} +//! // Normally `Drop` bounds do not have the correct semantics, but for this purpose they do +//! // (normally people want to know if a type has any kind of drop glue at all, here we want +//! // to know if it has any kind of custom drop glue, which is exactly what this bound does). +//! #[allow(drop_bounds)] +//! impl<T: ::core::ops::Drop> MustNotImplDrop for T {} +//! impl<T> MustNotImplDrop for Bar<T> {} +//! // Here comes a convenience check, if one implemented `PinnedDrop`, but forgot to add it to +//! // `#[pin_data]`, then this will error with the same mechanic as above, this is not needed +//! // for safety, but a good sanity check, since no normal code calls `PinnedDrop::drop`. +//! #[allow(non_camel_case_types)] +//! trait UselessPinnedDropImpl_you_need_to_specify_PinnedDrop {} +//! impl< +//! T: ::kernel::init::PinnedDrop, +//! > UselessPinnedDropImpl_you_need_to_specify_PinnedDrop for T {} +//! impl<T> UselessPinnedDropImpl_you_need_to_specify_PinnedDrop for Bar<T> {} +//! }; +//! ``` +//! +//! ## `pin_init!` in `impl Bar` +//! +//! This macro creates an pin-initializer for the given struct. It requires that the struct is +//! annotated by `#[pin_data]`. +//! +//! Here is the impl on `Bar` defining the new function: +//! +//! ```rust,ignore +//! impl<T> Bar<T> { +//! fn new(t: T) -> impl PinInit<Self> { +//! pin_init!(Self { t, x: 0 }) +//! } +//! } +//! ``` +//! +//! This expands to the following code: +//! +//! ```rust,ignore +//! impl<T> Bar<T> { +//! fn new(t: T) -> impl PinInit<Self> { +//! { +//! // We do not want to allow arbitrary returns, so we declare this type as the `Ok` +//! // return type and shadow it later when we insert the arbitrary user code. That way +//! // there will be no possibility of returning without `unsafe`. +//! struct __InitOk; +//! // Get the data about fields from the supplied type. +//! // - the function is unsafe, hence the unsafe block +//! // - we `use` the `HasPinData` trait in the block, it is only available in that +//! // scope. +//! let data = unsafe { +//! use ::kernel::init::__internal::HasPinData; +//! Self::__pin_data() +//! }; +//! // Ensure that `data` really is of type `PinData` and help with type inference: +//! let init = ::kernel::init::__internal::PinData::make_closure::< +//! _, +//! __InitOk, +//! ::core::convert::Infallible, +//! >(data, move |slot| { +//! { +//! // Shadow the structure so it cannot be used to return early. If a user +//! // tries to write `return Ok(__InitOk)`, then they get a type error, +//! // since that will refer to this struct instead of the one defined +//! // above. +//! struct __InitOk; +//! // This is the expansion of `t,`, which is syntactic sugar for `t: t,`. +//! { +//! unsafe { ::core::ptr::write(::core::addr_of_mut!((*slot).t), t) }; +//! } +//! // Since initialization could fail later (not in this case, since the +//! // error type is `Infallible`) we will need to drop this field if there +//! // is an error later. This `DropGuard` will drop the field when it gets +//! // dropped and has not yet been forgotten. +//! let t = unsafe { +//! ::pinned_init::__internal::DropGuard::new(::core::addr_of_mut!((*slot).t)) +//! }; +//! // Expansion of `x: 0,`: +//! // Since this can be an arbitrary expression we cannot place it inside +//! // of the `unsafe` block, so we bind it here. +//! { +//! let x = 0; +//! unsafe { ::core::ptr::write(::core::addr_of_mut!((*slot).x), x) }; +//! } +//! // We again create a `DropGuard`. +//! let x = unsafe { +//! ::kernel::init::__internal::DropGuard::new(::core::addr_of_mut!((*slot).x)) +//! }; +//! // Since initialization has successfully completed, we can now forget +//! // the guards. This is not `mem::forget`, since we only have +//! // `&DropGuard`. +//! ::core::mem::forget(x); +//! ::core::mem::forget(t); +//! // Here we use the type checker to ensure that every field has been +//! // initialized exactly once, since this is `if false` it will never get +//! // executed, but still type-checked. +//! // Additionally we abuse `slot` to automatically infer the correct type +//! // for the struct. This is also another check that every field is +//! // accessible from this scope. +//! #[allow(unreachable_code, clippy::diverging_sub_expression)] +//! let _ = || { +//! unsafe { +//! ::core::ptr::write( +//! slot, +//! Self { +//! // We only care about typecheck finding every field +//! // here, the expression does not matter, just conjure +//! // one using `panic!()`: +//! t: ::core::panic!(), +//! x: ::core::panic!(), +//! }, +//! ); +//! }; +//! }; +//! } +//! // We leave the scope above and gain access to the previously shadowed +//! // `__InitOk` that we need to return. +//! Ok(__InitOk) +//! }); +//! // Change the return type from `__InitOk` to `()`. +//! let init = move | +//! slot, +//! | -> ::core::result::Result<(), ::core::convert::Infallible> { +//! init(slot).map(|__InitOk| ()) +//! }; +//! // Construct the initializer. +//! let init = unsafe { +//! ::kernel::init::pin_init_from_closure::< +//! _, +//! ::core::convert::Infallible, +//! >(init) +//! }; +//! init +//! } +//! } +//! } +//! ``` +//! +//! ## `#[pin_data]` on `Foo` +//! +//! Since we already took a look at `#[pin_data]` on `Bar`, this section will only explain the +//! differences/new things in the expansion of the `Foo` definition: +//! +//! ```rust,ignore +//! #[pin_data(PinnedDrop)] +//! struct Foo { +//! a: usize, +//! #[pin] +//! b: Bar<u32>, +//! } +//! ``` +//! +//! This expands to the following code: +//! +//! ```rust,ignore +//! struct Foo { +//! a: usize, +//! b: Bar<u32>, +//! } +//! const _: () = { +//! struct __ThePinData { +//! __phantom: ::core::marker::PhantomData<fn(Foo) -> Foo>, +//! } +//! impl ::core::clone::Clone for __ThePinData { +//! fn clone(&self) -> Self { +//! *self +//! } +//! } +//! impl ::core::marker::Copy for __ThePinData {} +//! #[allow(dead_code)] +//! impl __ThePinData { +//! unsafe fn b<E>( +//! self, +//! slot: *mut Bar<u32>, +//! init: impl ::kernel::init::PinInit<Bar<u32>, E>, +//! ) -> ::core::result::Result<(), E> { +//! unsafe { ::kernel::init::PinInit::__pinned_init(init, slot) } +//! } +//! unsafe fn a<E>( +//! self, +//! slot: *mut usize, +//! init: impl ::kernel::init::Init<usize, E>, +//! ) -> ::core::result::Result<(), E> { +//! unsafe { ::kernel::init::Init::__init(init, slot) } +//! } +//! } +//! unsafe impl ::kernel::init::__internal::HasPinData for Foo { +//! type PinData = __ThePinData; +//! unsafe fn __pin_data() -> Self::PinData { +//! __ThePinData { +//! __phantom: ::core::marker::PhantomData, +//! } +//! } +//! } +//! unsafe impl ::kernel::init::__internal::PinData for __ThePinData { +//! type Datee = Foo; +//! } +//! #[allow(dead_code)] +//! struct __Unpin<'__pin> { +//! __phantom_pin: ::core::marker::PhantomData<fn(&'__pin ()) -> &'__pin ()>, +//! __phantom: ::core::marker::PhantomData<fn(Foo) -> Foo>, +//! b: Bar<u32>, +//! } +//! #[doc(hidden)] +//! impl<'__pin> ::core::marker::Unpin for Foo +//! where +//! __Unpin<'__pin>: ::core::marker::Unpin, +//! {} +//! // Since we specified `PinnedDrop` as the argument to `#[pin_data]`, we expect `Foo` to +//! // implement `PinnedDrop`. Thus we do not need to prevent `Drop` implementations like +//! // before, instead we implement `Drop` here and delegate to `PinnedDrop`. +//! impl ::core::ops::Drop for Foo { +//! fn drop(&mut self) { +//! // Since we are getting dropped, no one else has a reference to `self` and thus we +//! // can assume that we never move. +//! let pinned = unsafe { ::core::pin::Pin::new_unchecked(self) }; +//! // Create the unsafe token that proves that we are inside of a destructor, this +//! // type is only allowed to be created in a destructor. +//! let token = unsafe { ::kernel::init::__internal::OnlyCallFromDrop::new() }; +//! ::kernel::init::PinnedDrop::drop(pinned, token); +//! } +//! } +//! }; +//! ``` +//! +//! ## `#[pinned_drop]` on `impl PinnedDrop for Foo` +//! +//! This macro is used to implement the `PinnedDrop` trait, since that trait is `unsafe` and has an +//! extra parameter that should not be used at all. The macro hides that parameter. +//! +//! Here is the `PinnedDrop` impl for `Foo`: +//! +//! ```rust,ignore +//! #[pinned_drop] +//! impl PinnedDrop for Foo { +//! fn drop(self: Pin<&mut Self>) { +//! pr_info!("{self:p} is getting dropped."); +//! } +//! } +//! ``` +//! +//! This expands to the following code: +//! +//! ```rust,ignore +//! // `unsafe`, full path and the token parameter are added, everything else stays the same. +//! unsafe impl ::kernel::init::PinnedDrop for Foo { +//! fn drop(self: Pin<&mut Self>, _: ::kernel::init::__internal::OnlyCallFromDrop) { +//! pr_info!("{self:p} is getting dropped."); +//! } +//! } +//! ``` +//! +//! ## `pin_init!` on `Foo` +//! +//! Since we already took a look at `pin_init!` on `Bar`, this section will only show the expansion +//! of `pin_init!` on `Foo`: +//! +//! ```rust,ignore +//! let a = 42; +//! let initializer = pin_init!(Foo { +//! a, +//! b <- Bar::new(36), +//! }); +//! ``` +//! +//! This expands to the following code: +//! +//! ```rust,ignore +//! let a = 42; +//! let initializer = { +//! struct __InitOk; +//! let data = unsafe { +//! use ::kernel::init::__internal::HasPinData; +//! Foo::__pin_data() +//! }; +//! let init = ::kernel::init::__internal::PinData::make_closure::< +//! _, +//! __InitOk, +//! ::core::convert::Infallible, +//! >(data, move |slot| { +//! { +//! struct __InitOk; +//! { +//! unsafe { ::core::ptr::write(::core::addr_of_mut!((*slot).a), a) }; +//! } +//! let a = unsafe { +//! ::kernel::init::__internal::DropGuard::new(::core::addr_of_mut!((*slot).a)) +//! }; +//! let init = Bar::new(36); +//! unsafe { data.b(::core::addr_of_mut!((*slot).b), b)? }; +//! let b = unsafe { +//! ::kernel::init::__internal::DropGuard::new(::core::addr_of_mut!((*slot).b)) +//! }; +//! ::core::mem::forget(b); +//! ::core::mem::forget(a); +//! #[allow(unreachable_code, clippy::diverging_sub_expression)] +//! let _ = || { +//! unsafe { +//! ::core::ptr::write( +//! slot, +//! Foo { +//! a: ::core::panic!(), +//! b: ::core::panic!(), +//! }, +//! ); +//! }; +//! }; +//! } +//! Ok(__InitOk) +//! }); +//! let init = move | +//! slot, +//! | -> ::core::result::Result<(), ::core::convert::Infallible> { +//! init(slot).map(|__InitOk| ()) +//! }; +//! let init = unsafe { +//! ::kernel::init::pin_init_from_closure::<_, ::core::convert::Infallible>(init) +//! }; +//! init +//! }; +//! ``` + +/// Creates a `unsafe impl<...> PinnedDrop for $type` block. +/// +/// See [`PinnedDrop`] for more information. +#[doc(hidden)] +#[macro_export] +macro_rules! __pinned_drop { + ( + @impl_sig($($impl_sig:tt)*), + @impl_body( + $(#[$($attr:tt)*])* + fn drop($($sig:tt)*) { + $($inner:tt)* + } + ), + ) => { + unsafe $($impl_sig)* { + // Inherit all attributes and the type/ident tokens for the signature. + $(#[$($attr)*])* + fn drop($($sig)*, _: $crate::init::__internal::OnlyCallFromDrop) { + $($inner)* + } + } + } +} + +/// This macro first parses the struct definition such that it separates pinned and not pinned +/// fields. Afterwards it declares the struct and implement the `PinData` trait safely. +#[doc(hidden)] +#[macro_export] +macro_rules! __pin_data { + // Proc-macro entry point, this is supplied by the proc-macro pre-parsing. + (parse_input: + @args($($pinned_drop:ident)?), + @sig( + $(#[$($struct_attr:tt)*])* + $vis:vis struct $name:ident + $(where $($whr:tt)*)? + ), + @impl_generics($($impl_generics:tt)*), + @ty_generics($($ty_generics:tt)*), + @body({ $($fields:tt)* }), + ) => { + // We now use token munching to iterate through all of the fields. While doing this we + // identify fields marked with `#[pin]`, these fields are the 'pinned fields'. The user + // wants these to be structurally pinned. The rest of the fields are the + // 'not pinned fields'. Additionally we collect all fields, since we need them in the right + // order to declare the struct. + // + // In this call we also put some explaining comments for the parameters. + $crate::__pin_data!(find_pinned_fields: + // Attributes on the struct itself, these will just be propagated to be put onto the + // struct definition. + @struct_attrs($(#[$($struct_attr)*])*), + // The visibility of the struct. + @vis($vis), + // The name of the struct. + @name($name), + // The 'impl generics', the generics that will need to be specified on the struct inside + // of an `impl<$ty_generics>` block. + @impl_generics($($impl_generics)*), + // The 'ty generics', the generics that will need to be specified on the impl blocks. + @ty_generics($($ty_generics)*), + // The where clause of any impl block and the declaration. + @where($($($whr)*)?), + // The remaining fields tokens that need to be processed. + // We add a `,` at the end to ensure correct parsing. + @fields_munch($($fields)* ,), + // The pinned fields. + @pinned(), + // The not pinned fields. + @not_pinned(), + // All fields. + @fields(), + // The accumulator containing all attributes already parsed. + @accum(), + // Contains `yes` or `` to indicate if `#[pin]` was found on the current field. + @is_pinned(), + // The proc-macro argument, this should be `PinnedDrop` or ``. + @pinned_drop($($pinned_drop)?), + ); + }; + (find_pinned_fields: + @struct_attrs($($struct_attrs:tt)*), + @vis($vis:vis), + @name($name:ident), + @impl_generics($($impl_generics:tt)*), + @ty_generics($($ty_generics:tt)*), + @where($($whr:tt)*), + // We found a PhantomPinned field, this should generally be pinned! + @fields_munch($field:ident : $($($(::)?core::)?marker::)?PhantomPinned, $($rest:tt)*), + @pinned($($pinned:tt)*), + @not_pinned($($not_pinned:tt)*), + @fields($($fields:tt)*), + @accum($($accum:tt)*), + // This field is not pinned. + @is_pinned(), + @pinned_drop($($pinned_drop:ident)?), + ) => { + ::core::compile_error!(concat!( + "The field `", + stringify!($field), + "` of type `PhantomPinned` only has an effect, if it has the `#[pin]` attribute.", + )); + $crate::__pin_data!(find_pinned_fields: + @struct_attrs($($struct_attrs)*), + @vis($vis), + @name($name), + @impl_generics($($impl_generics)*), + @ty_generics($($ty_generics)*), + @where($($whr)*), + @fields_munch($($rest)*), + @pinned($($pinned)* $($accum)* $field: ::core::marker::PhantomPinned,), + @not_pinned($($not_pinned)*), + @fields($($fields)* $($accum)* $field: ::core::marker::PhantomPinned,), + @accum(), + @is_pinned(), + @pinned_drop($($pinned_drop)?), + ); + }; + (find_pinned_fields: + @struct_attrs($($struct_attrs:tt)*), + @vis($vis:vis), + @name($name:ident), + @impl_generics($($impl_generics:tt)*), + @ty_generics($($ty_generics:tt)*), + @where($($whr:tt)*), + // We reached the field declaration. + @fields_munch($field:ident : $type:ty, $($rest:tt)*), + @pinned($($pinned:tt)*), + @not_pinned($($not_pinned:tt)*), + @fields($($fields:tt)*), + @accum($($accum:tt)*), + // This field is pinned. + @is_pinned(yes), + @pinned_drop($($pinned_drop:ident)?), + ) => { + $crate::__pin_data!(find_pinned_fields: + @struct_attrs($($struct_attrs)*), + @vis($vis), + @name($name), + @impl_generics($($impl_generics)*), + @ty_generics($($ty_generics)*), + @where($($whr)*), + @fields_munch($($rest)*), + @pinned($($pinned)* $($accum)* $field: $type,), + @not_pinned($($not_pinned)*), + @fields($($fields)* $($accum)* $field: $type,), + @accum(), + @is_pinned(), + @pinned_drop($($pinned_drop)?), + ); + }; + (find_pinned_fields: + @struct_attrs($($struct_attrs:tt)*), + @vis($vis:vis), + @name($name:ident), + @impl_generics($($impl_generics:tt)*), + @ty_generics($($ty_generics:tt)*), + @where($($whr:tt)*), + // We reached the field declaration. + @fields_munch($field:ident : $type:ty, $($rest:tt)*), + @pinned($($pinned:tt)*), + @not_pinned($($not_pinned:tt)*), + @fields($($fields:tt)*), + @accum($($accum:tt)*), + // This field is not pinned. + @is_pinned(), + @pinned_drop($($pinned_drop:ident)?), + ) => { + $crate::__pin_data!(find_pinned_fields: + @struct_attrs($($struct_attrs)*), + @vis($vis), + @name($name), + @impl_generics($($impl_generics)*), + @ty_generics($($ty_generics)*), + @where($($whr)*), + @fields_munch($($rest)*), + @pinned($($pinned)*), + @not_pinned($($not_pinned)* $($accum)* $field: $type,), + @fields($($fields)* $($accum)* $field: $type,), + @accum(), + @is_pinned(), + @pinned_drop($($pinned_drop)?), + ); + }; + (find_pinned_fields: + @struct_attrs($($struct_attrs:tt)*), + @vis($vis:vis), + @name($name:ident), + @impl_generics($($impl_generics:tt)*), + @ty_generics($($ty_generics:tt)*), + @where($($whr:tt)*), + // We found the `#[pin]` attr. + @fields_munch(#[pin] $($rest:tt)*), + @pinned($($pinned:tt)*), + @not_pinned($($not_pinned:tt)*), + @fields($($fields:tt)*), + @accum($($accum:tt)*), + @is_pinned($($is_pinned:ident)?), + @pinned_drop($($pinned_drop:ident)?), + ) => { + $crate::__pin_data!(find_pinned_fields: + @struct_attrs($($struct_attrs)*), + @vis($vis), + @name($name), + @impl_generics($($impl_generics)*), + @ty_generics($($ty_generics)*), + @where($($whr)*), + @fields_munch($($rest)*), + // We do not include `#[pin]` in the list of attributes, since it is not actually an + // attribute that is defined somewhere. + @pinned($($pinned)*), + @not_pinned($($not_pinned)*), + @fields($($fields)*), + @accum($($accum)*), + // Set this to `yes`. + @is_pinned(yes), + @pinned_drop($($pinned_drop)?), + ); + }; + (find_pinned_fields: + @struct_attrs($($struct_attrs:tt)*), + @vis($vis:vis), + @name($name:ident), + @impl_generics($($impl_generics:tt)*), + @ty_generics($($ty_generics:tt)*), + @where($($whr:tt)*), + // We reached the field declaration with visibility, for simplicity we only munch the + // visibility and put it into `$accum`. + @fields_munch($fvis:vis $field:ident $($rest:tt)*), + @pinned($($pinned:tt)*), + @not_pinned($($not_pinned:tt)*), + @fields($($fields:tt)*), + @accum($($accum:tt)*), + @is_pinned($($is_pinned:ident)?), + @pinned_drop($($pinned_drop:ident)?), + ) => { + $crate::__pin_data!(find_pinned_fields: + @struct_attrs($($struct_attrs)*), + @vis($vis), + @name($name), + @impl_generics($($impl_generics)*), + @ty_generics($($ty_generics)*), + @where($($whr)*), + @fields_munch($field $($rest)*), + @pinned($($pinned)*), + @not_pinned($($not_pinned)*), + @fields($($fields)*), + @accum($($accum)* $fvis), + @is_pinned($($is_pinned)?), + @pinned_drop($($pinned_drop)?), + ); + }; + (find_pinned_fields: + @struct_attrs($($struct_attrs:tt)*), + @vis($vis:vis), + @name($name:ident), + @impl_generics($($impl_generics:tt)*), + @ty_generics($($ty_generics:tt)*), + @where($($whr:tt)*), + // Some other attribute, just put it into `$accum`. + @fields_munch(#[$($attr:tt)*] $($rest:tt)*), + @pinned($($pinned:tt)*), + @not_pinned($($not_pinned:tt)*), + @fields($($fields:tt)*), + @accum($($accum:tt)*), + @is_pinned($($is_pinned:ident)?), + @pinned_drop($($pinned_drop:ident)?), + ) => { + $crate::__pin_data!(find_pinned_fields: + @struct_attrs($($struct_attrs)*), + @vis($vis), + @name($name), + @impl_generics($($impl_generics)*), + @ty_generics($($ty_generics)*), + @where($($whr)*), + @fields_munch($($rest)*), + @pinned($($pinned)*), + @not_pinned($($not_pinned)*), + @fields($($fields)*), + @accum($($accum)* #[$($attr)*]), + @is_pinned($($is_pinned)?), + @pinned_drop($($pinned_drop)?), + ); + }; + (find_pinned_fields: + @struct_attrs($($struct_attrs:tt)*), + @vis($vis:vis), + @name($name:ident), + @impl_generics($($impl_generics:tt)*), + @ty_generics($($ty_generics:tt)*), + @where($($whr:tt)*), + // We reached the end of the fields, plus an optional additional comma, since we added one + // before and the user is also allowed to put a trailing comma. + @fields_munch($(,)?), + @pinned($($pinned:tt)*), + @not_pinned($($not_pinned:tt)*), + @fields($($fields:tt)*), + @accum(), + @is_pinned(), + @pinned_drop($($pinned_drop:ident)?), + ) => { + // Declare the struct with all fields in the correct order. + $($struct_attrs)* + $vis struct $name <$($impl_generics)*> + where $($whr)* + { + $($fields)* + } + + // We put the rest into this const item, because it then will not be accessible to anything + // outside. + const _: () = { + // We declare this struct which will host all of the projection function for our type. + // it will be invariant over all generic parameters which are inherited from the + // struct. + $vis struct __ThePinData<$($impl_generics)*> + where $($whr)* + { + __phantom: ::core::marker::PhantomData< + fn($name<$($ty_generics)*>) -> $name<$($ty_generics)*> + >, + } + + impl<$($impl_generics)*> ::core::clone::Clone for __ThePinData<$($ty_generics)*> + where $($whr)* + { + fn clone(&self) -> Self { *self } + } + + impl<$($impl_generics)*> ::core::marker::Copy for __ThePinData<$($ty_generics)*> + where $($whr)* + {} + + // Make all projection functions. + $crate::__pin_data!(make_pin_data: + @pin_data(__ThePinData), + @impl_generics($($impl_generics)*), + @ty_generics($($ty_generics)*), + @where($($whr)*), + @pinned($($pinned)*), + @not_pinned($($not_pinned)*), + ); + + // SAFETY: We have added the correct projection functions above to `__ThePinData` and + // we also use the least restrictive generics possible. + unsafe impl<$($impl_generics)*> + $crate::init::__internal::HasPinData for $name<$($ty_generics)*> + where $($whr)* + { + type PinData = __ThePinData<$($ty_generics)*>; + + unsafe fn __pin_data() -> Self::PinData { + __ThePinData { __phantom: ::core::marker::PhantomData } + } + } + + unsafe impl<$($impl_generics)*> + $crate::init::__internal::PinData for __ThePinData<$($ty_generics)*> + where $($whr)* + { + type Datee = $name<$($ty_generics)*>; + } + + // This struct will be used for the unpin analysis. Since only structurally pinned + // fields are relevant whether the struct should implement `Unpin`. + #[allow(dead_code)] + struct __Unpin <'__pin, $($impl_generics)*> + where $($whr)* + { + __phantom_pin: ::core::marker::PhantomData<fn(&'__pin ()) -> &'__pin ()>, + __phantom: ::core::marker::PhantomData< + fn($name<$($ty_generics)*>) -> $name<$($ty_generics)*> + >, + // Only the pinned fields. + $($pinned)* + } + + #[doc(hidden)] + impl<'__pin, $($impl_generics)*> ::core::marker::Unpin for $name<$($ty_generics)*> + where + __Unpin<'__pin, $($ty_generics)*>: ::core::marker::Unpin, + $($whr)* + {} + + // We need to disallow normal `Drop` implementation, the exact behavior depends on + // whether `PinnedDrop` was specified as the parameter. + $crate::__pin_data!(drop_prevention: + @name($name), + @impl_generics($($impl_generics)*), + @ty_generics($($ty_generics)*), + @where($($whr)*), + @pinned_drop($($pinned_drop)?), + ); + }; + }; + // When no `PinnedDrop` was specified, then we have to prevent implementing drop. + (drop_prevention: + @name($name:ident), + @impl_generics($($impl_generics:tt)*), + @ty_generics($($ty_generics:tt)*), + @where($($whr:tt)*), + @pinned_drop(), + ) => { + // We prevent this by creating a trait that will be implemented for all types implementing + // `Drop`. Additionally we will implement this trait for the struct leading to a conflict, + // if it also implements `Drop` + trait MustNotImplDrop {} + #[allow(drop_bounds)] + impl<T: ::core::ops::Drop> MustNotImplDrop for T {} + impl<$($impl_generics)*> MustNotImplDrop for $name<$($ty_generics)*> + where $($whr)* {} + // We also take care to prevent users from writing a useless `PinnedDrop` implementation. + // They might implement `PinnedDrop` correctly for the struct, but forget to give + // `PinnedDrop` as the parameter to `#[pin_data]`. + #[allow(non_camel_case_types)] + trait UselessPinnedDropImpl_you_need_to_specify_PinnedDrop {} + impl<T: $crate::init::PinnedDrop> + UselessPinnedDropImpl_you_need_to_specify_PinnedDrop for T {} + impl<$($impl_generics)*> + UselessPinnedDropImpl_you_need_to_specify_PinnedDrop for $name<$($ty_generics)*> + where $($whr)* {} + }; + // When `PinnedDrop` was specified we just implement `Drop` and delegate. + (drop_prevention: + @name($name:ident), + @impl_generics($($impl_generics:tt)*), + @ty_generics($($ty_generics:tt)*), + @where($($whr:tt)*), + @pinned_drop(PinnedDrop), + ) => { + impl<$($impl_generics)*> ::core::ops::Drop for $name<$($ty_generics)*> + where $($whr)* + { + fn drop(&mut self) { + // SAFETY: Since this is a destructor, `self` will not move after this function + // terminates, since it is inaccessible. + let pinned = unsafe { ::core::pin::Pin::new_unchecked(self) }; + // SAFETY: Since this is a drop function, we can create this token to call the + // pinned destructor of this type. + let token = unsafe { $crate::init::__internal::OnlyCallFromDrop::new() }; + $crate::init::PinnedDrop::drop(pinned, token); + } + } + }; + // If some other parameter was specified, we emit a readable error. + (drop_prevention: + @name($name:ident), + @impl_generics($($impl_generics:tt)*), + @ty_generics($($ty_generics:tt)*), + @where($($whr:tt)*), + @pinned_drop($($rest:tt)*), + ) => { + compile_error!( + "Wrong parameters to `#[pin_data]`, expected nothing or `PinnedDrop`, got '{}'.", + stringify!($($rest)*), + ); + }; + (make_pin_data: + @pin_data($pin_data:ident), + @impl_generics($($impl_generics:tt)*), + @ty_generics($($ty_generics:tt)*), + @where($($whr:tt)*), + @pinned($($(#[$($p_attr:tt)*])* $pvis:vis $p_field:ident : $p_type:ty),* $(,)?), + @not_pinned($($(#[$($attr:tt)*])* $fvis:vis $field:ident : $type:ty),* $(,)?), + ) => { + // For every field, we create a projection function according to its projection type. If a + // field is structurally pinned, then it must be initialized via `PinInit`, if it is not + // structurally pinned, then it can be initialized via `Init`. + // + // The functions are `unsafe` to prevent accidentally calling them. + #[allow(dead_code)] + impl<$($impl_generics)*> $pin_data<$($ty_generics)*> + where $($whr)* + { + $( + $(#[$($p_attr)*])* + $pvis unsafe fn $p_field<E>( + self, + slot: *mut $p_type, + init: impl $crate::init::PinInit<$p_type, E>, + ) -> ::core::result::Result<(), E> { + unsafe { $crate::init::PinInit::__pinned_init(init, slot) } + } + )* + $( + $(#[$($attr)*])* + $fvis unsafe fn $field<E>( + self, + slot: *mut $type, + init: impl $crate::init::Init<$type, E>, + ) -> ::core::result::Result<(), E> { + unsafe { $crate::init::Init::__init(init, slot) } + } + )* + } + }; +} + +/// The internal init macro. Do not call manually! +/// +/// This is called by the `{try_}{pin_}init!` macros with various inputs. +/// +/// This macro has multiple internal call configurations, these are always the very first ident: +/// - nothing: this is the base case and called by the `{try_}{pin_}init!` macros. +/// - `with_update_parsed`: when the `..Zeroable::zeroed()` syntax has been handled. +/// - `init_slot`: recursively creates the code that initializes all fields in `slot`. +/// - `make_initializer`: recursively create the struct initializer that guarantees that every +/// field has been initialized exactly once. +#[doc(hidden)] +#[macro_export] +macro_rules! __init_internal { + ( + @this($($this:ident)?), + @typ($t:path), + @fields($($fields:tt)*), + @error($err:ty), + // Either `PinData` or `InitData`, `$use_data` should only be present in the `PinData` + // case. + @data($data:ident, $($use_data:ident)?), + // `HasPinData` or `HasInitData`. + @has_data($has_data:ident, $get_data:ident), + // `pin_init_from_closure` or `init_from_closure`. + @construct_closure($construct_closure:ident), + @munch_fields(), + ) => { + $crate::__init_internal!(with_update_parsed: + @this($($this)?), + @typ($t), + @fields($($fields)*), + @error($err), + @data($data, $($use_data)?), + @has_data($has_data, $get_data), + @construct_closure($construct_closure), + @zeroed(), // Nothing means default behavior. + ) + }; + ( + @this($($this:ident)?), + @typ($t:path), + @fields($($fields:tt)*), + @error($err:ty), + // Either `PinData` or `InitData`, `$use_data` should only be present in the `PinData` + // case. + @data($data:ident, $($use_data:ident)?), + // `HasPinData` or `HasInitData`. + @has_data($has_data:ident, $get_data:ident), + // `pin_init_from_closure` or `init_from_closure`. + @construct_closure($construct_closure:ident), + @munch_fields(..Zeroable::zeroed()), + ) => { + $crate::__init_internal!(with_update_parsed: + @this($($this)?), + @typ($t), + @fields($($fields)*), + @error($err), + @data($data, $($use_data)?), + @has_data($has_data, $get_data), + @construct_closure($construct_closure), + @zeroed(()), // `()` means zero all fields not mentioned. + ) + }; + ( + @this($($this:ident)?), + @typ($t:path), + @fields($($fields:tt)*), + @error($err:ty), + // Either `PinData` or `InitData`, `$use_data` should only be present in the `PinData` + // case. + @data($data:ident, $($use_data:ident)?), + // `HasPinData` or `HasInitData`. + @has_data($has_data:ident, $get_data:ident), + // `pin_init_from_closure` or `init_from_closure`. + @construct_closure($construct_closure:ident), + @munch_fields($ignore:tt $($rest:tt)*), + ) => { + $crate::__init_internal!( + @this($($this)?), + @typ($t), + @fields($($fields)*), + @error($err), + @data($data, $($use_data)?), + @has_data($has_data, $get_data), + @construct_closure($construct_closure), + @munch_fields($($rest)*), + ) + }; + (with_update_parsed: + @this($($this:ident)?), + @typ($t:path), + @fields($($fields:tt)*), + @error($err:ty), + // Either `PinData` or `InitData`, `$use_data` should only be present in the `PinData` + // case. + @data($data:ident, $($use_data:ident)?), + // `HasPinData` or `HasInitData`. + @has_data($has_data:ident, $get_data:ident), + // `pin_init_from_closure` or `init_from_closure`. + @construct_closure($construct_closure:ident), + @zeroed($($init_zeroed:expr)?), + ) => {{ + // We do not want to allow arbitrary returns, so we declare this type as the `Ok` return + // type and shadow it later when we insert the arbitrary user code. That way there will be + // no possibility of returning without `unsafe`. + struct __InitOk; + // Get the data about fields from the supplied type. + let data = unsafe { + use $crate::init::__internal::$has_data; + // Here we abuse `paste!` to retokenize `$t`. Declarative macros have some internal + // information that is associated to already parsed fragments, so a path fragment + // cannot be used in this position. Doing the retokenization results in valid rust + // code. + ::kernel::macros::paste!($t::$get_data()) + }; + // Ensure that `data` really is of type `$data` and help with type inference: + let init = $crate::init::__internal::$data::make_closure::<_, __InitOk, $err>( + data, + move |slot| { + { + // Shadow the structure so it cannot be used to return early. + struct __InitOk; + // If `$init_zeroed` is present we should zero the slot now and not emit an + // error when fields are missing (since they will be zeroed). We also have to + // check that the type actually implements `Zeroable`. + $({ + fn assert_zeroable<T: $crate::init::Zeroable>(_: *mut T) {} + // Ensure that the struct is indeed `Zeroable`. + assert_zeroable(slot); + // SAFETY: The type implements `Zeroable` by the check above. + unsafe { ::core::ptr::write_bytes(slot, 0, 1) }; + $init_zeroed // This will be `()` if set. + })? + // Create the `this` so it can be referenced by the user inside of the + // expressions creating the individual fields. + $(let $this = unsafe { ::core::ptr::NonNull::new_unchecked(slot) };)? + // Initialize every field. + $crate::__init_internal!(init_slot($($use_data)?): + @data(data), + @slot(slot), + @guards(), + @munch_fields($($fields)*,), + ); + // We use unreachable code to ensure that all fields have been mentioned exactly + // once, this struct initializer will still be type-checked and complain with a + // very natural error message if a field is forgotten/mentioned more than once. + #[allow(unreachable_code, clippy::diverging_sub_expression)] + let _ = || { + $crate::__init_internal!(make_initializer: + @slot(slot), + @type_name($t), + @munch_fields($($fields)*,), + @acc(), + ); + }; + } + Ok(__InitOk) + } + ); + let init = move |slot| -> ::core::result::Result<(), $err> { + init(slot).map(|__InitOk| ()) + }; + let init = unsafe { $crate::init::$construct_closure::<_, $err>(init) }; + init + }}; + (init_slot($($use_data:ident)?): + @data($data:ident), + @slot($slot:ident), + @guards($($guards:ident,)*), + @munch_fields($(..Zeroable::zeroed())? $(,)?), + ) => { + // Endpoint of munching, no fields are left. If execution reaches this point, all fields + // have been initialized. Therefore we can now dismiss the guards by forgetting them. + $(::core::mem::forget($guards);)* + }; + (init_slot($use_data:ident): // `use_data` is present, so we use the `data` to init fields. + @data($data:ident), + @slot($slot:ident), + @guards($($guards:ident,)*), + // In-place initialization syntax. + @munch_fields($field:ident <- $val:expr, $($rest:tt)*), + ) => { + let init = $val; + // Call the initializer. + // + // SAFETY: `slot` is valid, because we are inside of an initializer closure, we + // return when an error/panic occurs. + // We also use the `data` to require the correct trait (`Init` or `PinInit`) for `$field`. + unsafe { $data.$field(::core::ptr::addr_of_mut!((*$slot).$field), init)? }; + // Create the drop guard: + // + // We rely on macro hygiene to make it impossible for users to access this local variable. + // We use `paste!` to create new hygiene for `$field`. + ::kernel::macros::paste! { + // SAFETY: We forget the guard later when initialization has succeeded. + let [<$field>] = unsafe { + $crate::init::__internal::DropGuard::new(::core::ptr::addr_of_mut!((*$slot).$field)) + }; + + $crate::__init_internal!(init_slot($use_data): + @data($data), + @slot($slot), + @guards([<$field>], $($guards,)*), + @munch_fields($($rest)*), + ); + } + }; + (init_slot(): // No `use_data`, so we use `Init::__init` directly. + @data($data:ident), + @slot($slot:ident), + @guards($($guards:ident,)*), + // In-place initialization syntax. + @munch_fields($field:ident <- $val:expr, $($rest:tt)*), + ) => { + let init = $val; + // Call the initializer. + // + // SAFETY: `slot` is valid, because we are inside of an initializer closure, we + // return when an error/panic occurs. + unsafe { $crate::init::Init::__init(init, ::core::ptr::addr_of_mut!((*$slot).$field))? }; + // Create the drop guard: + // + // We rely on macro hygiene to make it impossible for users to access this local variable. + // We use `paste!` to create new hygiene for `$field`. + ::kernel::macros::paste! { + // SAFETY: We forget the guard later when initialization has succeeded. + let [<$field>] = unsafe { + $crate::init::__internal::DropGuard::new(::core::ptr::addr_of_mut!((*$slot).$field)) + }; + + $crate::__init_internal!(init_slot(): + @data($data), + @slot($slot), + @guards([<$field>], $($guards,)*), + @munch_fields($($rest)*), + ); + } + }; + (init_slot($($use_data:ident)?): + @data($data:ident), + @slot($slot:ident), + @guards($($guards:ident,)*), + // Init by-value. + @munch_fields($field:ident $(: $val:expr)?, $($rest:tt)*), + ) => { + { + $(let $field = $val;)? + // Initialize the field. + // + // SAFETY: The memory at `slot` is uninitialized. + unsafe { ::core::ptr::write(::core::ptr::addr_of_mut!((*$slot).$field), $field) }; + } + // Create the drop guard: + // + // We rely on macro hygiene to make it impossible for users to access this local variable. + // We use `paste!` to create new hygiene for `$field`. + ::kernel::macros::paste! { + // SAFETY: We forget the guard later when initialization has succeeded. + let [<$field>] = unsafe { + $crate::init::__internal::DropGuard::new(::core::ptr::addr_of_mut!((*$slot).$field)) + }; + + $crate::__init_internal!(init_slot($($use_data)?): + @data($data), + @slot($slot), + @guards([<$field>], $($guards,)*), + @munch_fields($($rest)*), + ); + } + }; + (make_initializer: + @slot($slot:ident), + @type_name($t:path), + @munch_fields(..Zeroable::zeroed() $(,)?), + @acc($($acc:tt)*), + ) => { + // Endpoint, nothing more to munch, create the initializer. Since the users specified + // `..Zeroable::zeroed()`, the slot will already have been zeroed and all field that have + // not been overwritten are thus zero and initialized. We still check that all fields are + // actually accessible by using the struct update syntax ourselves. + // We are inside of a closure that is never executed and thus we can abuse `slot` to + // get the correct type inference here: + #[allow(unused_assignments)] + unsafe { + let mut zeroed = ::core::mem::zeroed(); + // We have to use type inference here to make zeroed have the correct type. This does + // not get executed, so it has no effect. + ::core::ptr::write($slot, zeroed); + zeroed = ::core::mem::zeroed(); + // Here we abuse `paste!` to retokenize `$t`. Declarative macros have some internal + // information that is associated to already parsed fragments, so a path fragment + // cannot be used in this position. Doing the retokenization results in valid rust + // code. + ::kernel::macros::paste!( + ::core::ptr::write($slot, $t { + $($acc)* + ..zeroed + }); + ); + } + }; + (make_initializer: + @slot($slot:ident), + @type_name($t:path), + @munch_fields($(,)?), + @acc($($acc:tt)*), + ) => { + // Endpoint, nothing more to munch, create the initializer. + // Since we are in the closure that is never called, this will never get executed. + // We abuse `slot` to get the correct type inference here: + unsafe { + // Here we abuse `paste!` to retokenize `$t`. Declarative macros have some internal + // information that is associated to already parsed fragments, so a path fragment + // cannot be used in this position. Doing the retokenization results in valid rust + // code. + ::kernel::macros::paste!( + ::core::ptr::write($slot, $t { + $($acc)* + }); + ); + } + }; + (make_initializer: + @slot($slot:ident), + @type_name($t:path), + @munch_fields($field:ident <- $val:expr, $($rest:tt)*), + @acc($($acc:tt)*), + ) => { + $crate::__init_internal!(make_initializer: + @slot($slot), + @type_name($t), + @munch_fields($($rest)*), + @acc($($acc)* $field: ::core::panic!(),), + ); + }; + (make_initializer: + @slot($slot:ident), + @type_name($t:path), + @munch_fields($field:ident $(: $val:expr)?, $($rest:tt)*), + @acc($($acc:tt)*), + ) => { + $crate::__init_internal!(make_initializer: + @slot($slot), + @type_name($t), + @munch_fields($($rest)*), + @acc($($acc)* $field: ::core::panic!(),), + ); + }; +} + +#[doc(hidden)] +#[macro_export] +macro_rules! __derive_zeroable { + (parse_input: + @sig( + $(#[$($struct_attr:tt)*])* + $vis:vis struct $name:ident + $(where $($whr:tt)*)? + ), + @impl_generics($($impl_generics:tt)*), + @ty_generics($($ty_generics:tt)*), + @body({ + $( + $(#[$($field_attr:tt)*])* + $field:ident : $field_ty:ty + ),* $(,)? + }), + ) => { + // SAFETY: Every field type implements `Zeroable` and padding bytes may be zero. + #[automatically_derived] + unsafe impl<$($impl_generics)*> $crate::init::Zeroable for $name<$($ty_generics)*> + where + $($($whr)*)? + {} + const _: () = { + fn assert_zeroable<T: ?::core::marker::Sized + $crate::init::Zeroable>() {} + fn ensure_zeroable<$($impl_generics)*>() + where $($($whr)*)? + { + $(assert_zeroable::<$field_ty>();)* + } + }; + }; +} diff --git a/rust/kernel/ioctl.rs b/rust/kernel/ioctl.rs new file mode 100644 index 0000000000..c49e1a8d3f --- /dev/null +++ b/rust/kernel/ioctl.rs @@ -0,0 +1,72 @@ +// SPDX-License-Identifier: GPL-2.0 + +//! ioctl() number definitions +//! +//! C header: [`include/asm-generic/ioctl.h`](../../../../include/asm-generic/ioctl.h) + +#![allow(non_snake_case)] + +use crate::build_assert; + +/// Build an ioctl number, analogous to the C macro of the same name. +#[inline(always)] +const fn _IOC(dir: u32, ty: u32, nr: u32, size: usize) -> u32 { + build_assert!(dir <= uapi::_IOC_DIRMASK); + build_assert!(ty <= uapi::_IOC_TYPEMASK); + build_assert!(nr <= uapi::_IOC_NRMASK); + build_assert!(size <= (uapi::_IOC_SIZEMASK as usize)); + + (dir << uapi::_IOC_DIRSHIFT) + | (ty << uapi::_IOC_TYPESHIFT) + | (nr << uapi::_IOC_NRSHIFT) + | ((size as u32) << uapi::_IOC_SIZESHIFT) +} + +/// Build an ioctl number for an argumentless ioctl. +#[inline(always)] +pub const fn _IO(ty: u32, nr: u32) -> u32 { + _IOC(uapi::_IOC_NONE, ty, nr, 0) +} + +/// Build an ioctl number for an read-only ioctl. +#[inline(always)] +pub const fn _IOR<T>(ty: u32, nr: u32) -> u32 { + _IOC(uapi::_IOC_READ, ty, nr, core::mem::size_of::<T>()) +} + +/// Build an ioctl number for an write-only ioctl. +#[inline(always)] +pub const fn _IOW<T>(ty: u32, nr: u32) -> u32 { + _IOC(uapi::_IOC_WRITE, ty, nr, core::mem::size_of::<T>()) +} + +/// Build an ioctl number for a read-write ioctl. +#[inline(always)] +pub const fn _IOWR<T>(ty: u32, nr: u32) -> u32 { + _IOC( + uapi::_IOC_READ | uapi::_IOC_WRITE, + ty, + nr, + core::mem::size_of::<T>(), + ) +} + +/// Get the ioctl direction from an ioctl number. +pub const fn _IOC_DIR(nr: u32) -> u32 { + (nr >> uapi::_IOC_DIRSHIFT) & uapi::_IOC_DIRMASK +} + +/// Get the ioctl type from an ioctl number. +pub const fn _IOC_TYPE(nr: u32) -> u32 { + (nr >> uapi::_IOC_TYPESHIFT) & uapi::_IOC_TYPEMASK +} + +/// Get the ioctl number from an ioctl number. +pub const fn _IOC_NR(nr: u32) -> u32 { + (nr >> uapi::_IOC_NRSHIFT) & uapi::_IOC_NRMASK +} + +/// Get the ioctl size from an ioctl number. +pub const fn _IOC_SIZE(nr: u32) -> usize { + ((nr >> uapi::_IOC_SIZESHIFT) & uapi::_IOC_SIZEMASK) as usize +} diff --git a/rust/kernel/kunit.rs b/rust/kernel/kunit.rs new file mode 100644 index 0000000000..722655b2d6 --- /dev/null +++ b/rust/kernel/kunit.rs @@ -0,0 +1,163 @@ +// SPDX-License-Identifier: GPL-2.0 + +//! KUnit-based macros for Rust unit tests. +//! +//! C header: [`include/kunit/test.h`](../../../../../include/kunit/test.h) +//! +//! Reference: <https://docs.kernel.org/dev-tools/kunit/index.html> + +use core::{ffi::c_void, fmt}; + +/// Prints a KUnit error-level message. +/// +/// Public but hidden since it should only be used from KUnit generated code. +#[doc(hidden)] +pub fn err(args: fmt::Arguments<'_>) { + // SAFETY: The format string is null-terminated and the `%pA` specifier matches the argument we + // are passing. + #[cfg(CONFIG_PRINTK)] + unsafe { + bindings::_printk( + b"\x013%pA\0".as_ptr() as _, + &args as *const _ as *const c_void, + ); + } +} + +/// Prints a KUnit info-level message. +/// +/// Public but hidden since it should only be used from KUnit generated code. +#[doc(hidden)] +pub fn info(args: fmt::Arguments<'_>) { + // SAFETY: The format string is null-terminated and the `%pA` specifier matches the argument we + // are passing. + #[cfg(CONFIG_PRINTK)] + unsafe { + bindings::_printk( + b"\x016%pA\0".as_ptr() as _, + &args as *const _ as *const c_void, + ); + } +} + +/// Asserts that a boolean expression is `true` at runtime. +/// +/// Public but hidden since it should only be used from generated tests. +/// +/// Unlike the one in `core`, this one does not panic; instead, it is mapped to the KUnit +/// facilities. See [`assert!`] for more details. +#[doc(hidden)] +#[macro_export] +macro_rules! kunit_assert { + ($name:literal, $file:literal, $diff:expr, $condition:expr $(,)?) => { + 'out: { + // Do nothing if the condition is `true`. + if $condition { + break 'out; + } + + static FILE: &'static $crate::str::CStr = $crate::c_str!($file); + static LINE: i32 = core::line!() as i32 - $diff; + static CONDITION: &'static $crate::str::CStr = $crate::c_str!(stringify!($condition)); + + // SAFETY: FFI call without safety requirements. + let kunit_test = unsafe { $crate::bindings::kunit_get_current_test() }; + if kunit_test.is_null() { + // The assertion failed but this task is not running a KUnit test, so we cannot call + // KUnit, but at least print an error to the kernel log. This may happen if this + // macro is called from an spawned thread in a test (see + // `scripts/rustdoc_test_gen.rs`) or if some non-test code calls this macro by + // mistake (it is hidden to prevent that). + // + // This mimics KUnit's failed assertion format. + $crate::kunit::err(format_args!( + " # {}: ASSERTION FAILED at {FILE}:{LINE}\n", + $name + )); + $crate::kunit::err(format_args!( + " Expected {CONDITION} to be true, but is false\n" + )); + $crate::kunit::err(format_args!( + " Failure not reported to KUnit since this is a non-KUnit task\n" + )); + break 'out; + } + + #[repr(transparent)] + struct Location($crate::bindings::kunit_loc); + + #[repr(transparent)] + struct UnaryAssert($crate::bindings::kunit_unary_assert); + + // SAFETY: There is only a static instance and in that one the pointer field points to + // an immutable C string. + unsafe impl Sync for Location {} + + // SAFETY: There is only a static instance and in that one the pointer field points to + // an immutable C string. + unsafe impl Sync for UnaryAssert {} + + static LOCATION: Location = Location($crate::bindings::kunit_loc { + file: FILE.as_char_ptr(), + line: LINE, + }); + static ASSERTION: UnaryAssert = UnaryAssert($crate::bindings::kunit_unary_assert { + assert: $crate::bindings::kunit_assert {}, + condition: CONDITION.as_char_ptr(), + expected_true: true, + }); + + // SAFETY: + // - FFI call. + // - The `kunit_test` pointer is valid because we got it from + // `kunit_get_current_test()` and it was not null. This means we are in a KUnit + // test, and that the pointer can be passed to KUnit functions and assertions. + // - The string pointers (`file` and `condition` above) point to null-terminated + // strings since they are `CStr`s. + // - The function pointer (`format`) points to the proper function. + // - The pointers passed will remain valid since they point to `static`s. + // - The format string is allowed to be null. + // - There are, however, problems with this: first of all, this will end up stopping + // the thread, without running destructors. While that is problematic in itself, + // it is considered UB to have what is effectively a forced foreign unwind + // with `extern "C"` ABI. One could observe the stack that is now gone from + // another thread. We should avoid pinning stack variables to prevent library UB, + // too. For the moment, given that test failures are reported immediately before the + // next test runs, that test failures should be fixed and that KUnit is explicitly + // documented as not suitable for production environments, we feel it is reasonable. + unsafe { + $crate::bindings::__kunit_do_failed_assertion( + kunit_test, + core::ptr::addr_of!(LOCATION.0), + $crate::bindings::kunit_assert_type_KUNIT_ASSERTION, + core::ptr::addr_of!(ASSERTION.0.assert), + Some($crate::bindings::kunit_unary_assert_format), + core::ptr::null(), + ); + } + + // SAFETY: FFI call; the `test` pointer is valid because this hidden macro should only + // be called by the generated documentation tests which forward the test pointer given + // by KUnit. + unsafe { + $crate::bindings::__kunit_abort(kunit_test); + } + } + }; +} + +/// Asserts that two expressions are equal to each other (using [`PartialEq`]). +/// +/// Public but hidden since it should only be used from generated tests. +/// +/// Unlike the one in `core`, this one does not panic; instead, it is mapped to the KUnit +/// facilities. See [`assert!`] for more details. +#[doc(hidden)] +#[macro_export] +macro_rules! kunit_assert_eq { + ($name:literal, $file:literal, $diff:expr, $left:expr, $right:expr $(,)?) => {{ + // For the moment, we just forward to the expression assert because, for binary asserts, + // KUnit supports only a few types (e.g. integers). + $crate::kunit_assert!($name, $file, $diff, $left == $right); + }}; +} diff --git a/rust/kernel/lib.rs b/rust/kernel/lib.rs new file mode 100644 index 0000000000..e881170023 --- /dev/null +++ b/rust/kernel/lib.rs @@ -0,0 +1,98 @@ +// SPDX-License-Identifier: GPL-2.0 + +//! The `kernel` crate. +//! +//! This crate contains the kernel APIs that have been ported or wrapped for +//! usage by Rust code in the kernel and is shared by all of them. +//! +//! In other words, all the rest of the Rust code in the kernel (e.g. kernel +//! modules written in Rust) depends on [`core`], [`alloc`] and this crate. +//! +//! If you need a kernel C API that is not ported or wrapped yet here, then +//! do so first instead of bypassing this crate. + +#![no_std] +#![feature(allocator_api)] +#![feature(coerce_unsized)] +#![feature(dispatch_from_dyn)] +#![feature(new_uninit)] +#![feature(receiver_trait)] +#![feature(unsize)] + +// Ensure conditional compilation based on the kernel configuration works; +// otherwise we may silently break things like initcall handling. +#[cfg(not(CONFIG_RUST))] +compile_error!("Missing kernel configuration for conditional compilation"); + +// Allow proc-macros to refer to `::kernel` inside the `kernel` crate (this crate). +extern crate self as kernel; + +#[cfg(not(test))] +#[cfg(not(testlib))] +mod allocator; +mod build_assert; +pub mod error; +pub mod init; +pub mod ioctl; +#[cfg(CONFIG_KUNIT)] +pub mod kunit; +pub mod prelude; +pub mod print; +mod static_assert; +#[doc(hidden)] +pub mod std_vendor; +pub mod str; +pub mod sync; +pub mod task; +pub mod types; + +#[doc(hidden)] +pub use bindings; +pub use macros; +pub use uapi; + +#[doc(hidden)] +pub use build_error::build_error; + +/// Prefix to appear before log messages printed from within the `kernel` crate. +const __LOG_PREFIX: &[u8] = b"rust_kernel\0"; + +/// The top level entrypoint to implementing a kernel module. +/// +/// For any teardown or cleanup operations, your type may implement [`Drop`]. +pub trait Module: Sized + Sync { + /// Called at module initialization time. + /// + /// Use this method to perform whatever setup or registration your module + /// should do. + /// + /// Equivalent to the `module_init` macro in the C API. + fn init(module: &'static ThisModule) -> error::Result<Self>; +} + +/// Equivalent to `THIS_MODULE` in the C API. +/// +/// C header: `include/linux/export.h` +pub struct ThisModule(*mut bindings::module); + +// SAFETY: `THIS_MODULE` may be used from all threads within a module. +unsafe impl Sync for ThisModule {} + +impl ThisModule { + /// Creates a [`ThisModule`] given the `THIS_MODULE` pointer. + /// + /// # Safety + /// + /// The pointer must be equal to the right `THIS_MODULE`. + pub const unsafe fn from_ptr(ptr: *mut bindings::module) -> ThisModule { + ThisModule(ptr) + } +} + +#[cfg(not(any(testlib, test)))] +#[panic_handler] +fn panic(info: &core::panic::PanicInfo<'_>) -> ! { + pr_emerg!("{}\n", info); + // SAFETY: FFI call. + unsafe { bindings::BUG() }; +} diff --git a/rust/kernel/prelude.rs b/rust/kernel/prelude.rs new file mode 100644 index 0000000000..ae21600970 --- /dev/null +++ b/rust/kernel/prelude.rs @@ -0,0 +1,40 @@ +// SPDX-License-Identifier: GPL-2.0 + +//! The `kernel` prelude. +//! +//! These are the most common items used by Rust code in the kernel, +//! intended to be imported by all Rust code, for convenience. +//! +//! # Examples +//! +//! ``` +//! use kernel::prelude::*; +//! ``` + +#[doc(no_inline)] +pub use core::pin::Pin; + +#[doc(no_inline)] +pub use alloc::{boxed::Box, vec::Vec}; + +#[doc(no_inline)] +pub use macros::{module, pin_data, pinned_drop, vtable, Zeroable}; + +pub use super::build_assert; + +// `super::std_vendor` is hidden, which makes the macro inline for some reason. +#[doc(no_inline)] +pub use super::dbg; +pub use super::{pr_alert, pr_crit, pr_debug, pr_emerg, pr_err, pr_info, pr_notice, pr_warn}; + +pub use super::{init, pin_init, try_init, try_pin_init}; + +pub use super::static_assert; + +pub use super::error::{code::*, Error, Result}; + +pub use super::{str::CStr, ThisModule}; + +pub use super::init::{InPlaceInit, Init, PinInit}; + +pub use super::current; diff --git a/rust/kernel/print.rs b/rust/kernel/print.rs new file mode 100644 index 0000000000..8009184bf6 --- /dev/null +++ b/rust/kernel/print.rs @@ -0,0 +1,417 @@ +// SPDX-License-Identifier: GPL-2.0 + +//! Printing facilities. +//! +//! C header: [`include/linux/printk.h`](../../../../include/linux/printk.h) +//! +//! Reference: <https://www.kernel.org/doc/html/latest/core-api/printk-basics.html> + +use core::{ + ffi::{c_char, c_void}, + fmt, +}; + +use crate::str::RawFormatter; + +#[cfg(CONFIG_PRINTK)] +use crate::bindings; + +// Called from `vsprintf` with format specifier `%pA`. +#[no_mangle] +unsafe extern "C" fn rust_fmt_argument( + buf: *mut c_char, + end: *mut c_char, + ptr: *const c_void, +) -> *mut c_char { + use fmt::Write; + // SAFETY: The C contract guarantees that `buf` is valid if it's less than `end`. + let mut w = unsafe { RawFormatter::from_ptrs(buf.cast(), end.cast()) }; + let _ = w.write_fmt(unsafe { *(ptr as *const fmt::Arguments<'_>) }); + w.pos().cast() +} + +/// Format strings. +/// +/// Public but hidden since it should only be used from public macros. +#[doc(hidden)] +pub mod format_strings { + use crate::bindings; + + /// The length we copy from the `KERN_*` kernel prefixes. + const LENGTH_PREFIX: usize = 2; + + /// The length of the fixed format strings. + pub const LENGTH: usize = 10; + + /// Generates a fixed format string for the kernel's [`_printk`]. + /// + /// The format string is always the same for a given level, i.e. for a + /// given `prefix`, which are the kernel's `KERN_*` constants. + /// + /// [`_printk`]: ../../../../include/linux/printk.h + const fn generate(is_cont: bool, prefix: &[u8; 3]) -> [u8; LENGTH] { + // Ensure the `KERN_*` macros are what we expect. + assert!(prefix[0] == b'\x01'); + if is_cont { + assert!(prefix[1] == b'c'); + } else { + assert!(prefix[1] >= b'0' && prefix[1] <= b'7'); + } + assert!(prefix[2] == b'\x00'); + + let suffix: &[u8; LENGTH - LENGTH_PREFIX] = if is_cont { + b"%pA\0\0\0\0\0" + } else { + b"%s: %pA\0" + }; + + [ + prefix[0], prefix[1], suffix[0], suffix[1], suffix[2], suffix[3], suffix[4], suffix[5], + suffix[6], suffix[7], + ] + } + + // Generate the format strings at compile-time. + // + // This avoids the compiler generating the contents on the fly in the stack. + // + // Furthermore, `static` instead of `const` is used to share the strings + // for all the kernel. + pub static EMERG: [u8; LENGTH] = generate(false, bindings::KERN_EMERG); + pub static ALERT: [u8; LENGTH] = generate(false, bindings::KERN_ALERT); + pub static CRIT: [u8; LENGTH] = generate(false, bindings::KERN_CRIT); + pub static ERR: [u8; LENGTH] = generate(false, bindings::KERN_ERR); + pub static WARNING: [u8; LENGTH] = generate(false, bindings::KERN_WARNING); + pub static NOTICE: [u8; LENGTH] = generate(false, bindings::KERN_NOTICE); + pub static INFO: [u8; LENGTH] = generate(false, bindings::KERN_INFO); + pub static DEBUG: [u8; LENGTH] = generate(false, bindings::KERN_DEBUG); + pub static CONT: [u8; LENGTH] = generate(true, bindings::KERN_CONT); +} + +/// Prints a message via the kernel's [`_printk`]. +/// +/// Public but hidden since it should only be used from public macros. +/// +/// # Safety +/// +/// The format string must be one of the ones in [`format_strings`], and +/// the module name must be null-terminated. +/// +/// [`_printk`]: ../../../../include/linux/_printk.h +#[doc(hidden)] +#[cfg_attr(not(CONFIG_PRINTK), allow(unused_variables))] +pub unsafe fn call_printk( + format_string: &[u8; format_strings::LENGTH], + module_name: &[u8], + args: fmt::Arguments<'_>, +) { + // `_printk` does not seem to fail in any path. + #[cfg(CONFIG_PRINTK)] + unsafe { + bindings::_printk( + format_string.as_ptr() as _, + module_name.as_ptr(), + &args as *const _ as *const c_void, + ); + } +} + +/// Prints a message via the kernel's [`_printk`] for the `CONT` level. +/// +/// Public but hidden since it should only be used from public macros. +/// +/// [`_printk`]: ../../../../include/linux/printk.h +#[doc(hidden)] +#[cfg_attr(not(CONFIG_PRINTK), allow(unused_variables))] +pub fn call_printk_cont(args: fmt::Arguments<'_>) { + // `_printk` does not seem to fail in any path. + // + // SAFETY: The format string is fixed. + #[cfg(CONFIG_PRINTK)] + unsafe { + bindings::_printk( + format_strings::CONT.as_ptr() as _, + &args as *const _ as *const c_void, + ); + } +} + +/// Performs formatting and forwards the string to [`call_printk`]. +/// +/// Public but hidden since it should only be used from public macros. +#[doc(hidden)] +#[cfg(not(testlib))] +#[macro_export] +#[allow(clippy::crate_in_macro_def)] +macro_rules! print_macro ( + // The non-continuation cases (most of them, e.g. `INFO`). + ($format_string:path, false, $($arg:tt)+) => ( + // To remain sound, `arg`s must be expanded outside the `unsafe` block. + // Typically one would use a `let` binding for that; however, `format_args!` + // takes borrows on the arguments, but does not extend the scope of temporaries. + // Therefore, a `match` expression is used to keep them around, since + // the scrutinee is kept until the end of the `match`. + match format_args!($($arg)+) { + // SAFETY: This hidden macro should only be called by the documented + // printing macros which ensure the format string is one of the fixed + // ones. All `__LOG_PREFIX`s are null-terminated as they are generated + // by the `module!` proc macro or fixed values defined in a kernel + // crate. + args => unsafe { + $crate::print::call_printk( + &$format_string, + crate::__LOG_PREFIX, + args, + ); + } + } + ); + + // The `CONT` case. + ($format_string:path, true, $($arg:tt)+) => ( + $crate::print::call_printk_cont( + format_args!($($arg)+), + ); + ); +); + +/// Stub for doctests +#[cfg(testlib)] +#[macro_export] +macro_rules! print_macro ( + ($format_string:path, $e:expr, $($arg:tt)+) => ( + () + ); +); + +// We could use a macro to generate these macros. However, doing so ends +// up being a bit ugly: it requires the dollar token trick to escape `$` as +// well as playing with the `doc` attribute. Furthermore, they cannot be easily +// imported in the prelude due to [1]. So, for the moment, we just write them +// manually, like in the C side; while keeping most of the logic in another +// macro, i.e. [`print_macro`]. +// +// [1]: https://github.com/rust-lang/rust/issues/52234 + +/// Prints an emergency-level message (level 0). +/// +/// Use this level if the system is unusable. +/// +/// Equivalent to the kernel's [`pr_emerg`] macro. +/// +/// Mimics the interface of [`std::print!`]. See [`core::fmt`] and +/// `alloc::format!` for information about the formatting syntax. +/// +/// [`pr_emerg`]: https://www.kernel.org/doc/html/latest/core-api/printk-basics.html#c.pr_emerg +/// [`std::print!`]: https://doc.rust-lang.org/std/macro.print.html +/// +/// # Examples +/// +/// ``` +/// pr_emerg!("hello {}\n", "there"); +/// ``` +#[macro_export] +macro_rules! pr_emerg ( + ($($arg:tt)*) => ( + $crate::print_macro!($crate::print::format_strings::EMERG, false, $($arg)*) + ) +); + +/// Prints an alert-level message (level 1). +/// +/// Use this level if action must be taken immediately. +/// +/// Equivalent to the kernel's [`pr_alert`] macro. +/// +/// Mimics the interface of [`std::print!`]. See [`core::fmt`] and +/// `alloc::format!` for information about the formatting syntax. +/// +/// [`pr_alert`]: https://www.kernel.org/doc/html/latest/core-api/printk-basics.html#c.pr_alert +/// [`std::print!`]: https://doc.rust-lang.org/std/macro.print.html +/// +/// # Examples +/// +/// ``` +/// pr_alert!("hello {}\n", "there"); +/// ``` +#[macro_export] +macro_rules! pr_alert ( + ($($arg:tt)*) => ( + $crate::print_macro!($crate::print::format_strings::ALERT, false, $($arg)*) + ) +); + +/// Prints a critical-level message (level 2). +/// +/// Use this level for critical conditions. +/// +/// Equivalent to the kernel's [`pr_crit`] macro. +/// +/// Mimics the interface of [`std::print!`]. See [`core::fmt`] and +/// `alloc::format!` for information about the formatting syntax. +/// +/// [`pr_crit`]: https://www.kernel.org/doc/html/latest/core-api/printk-basics.html#c.pr_crit +/// [`std::print!`]: https://doc.rust-lang.org/std/macro.print.html +/// +/// # Examples +/// +/// ``` +/// pr_crit!("hello {}\n", "there"); +/// ``` +#[macro_export] +macro_rules! pr_crit ( + ($($arg:tt)*) => ( + $crate::print_macro!($crate::print::format_strings::CRIT, false, $($arg)*) + ) +); + +/// Prints an error-level message (level 3). +/// +/// Use this level for error conditions. +/// +/// Equivalent to the kernel's [`pr_err`] macro. +/// +/// Mimics the interface of [`std::print!`]. See [`core::fmt`] and +/// `alloc::format!` for information about the formatting syntax. +/// +/// [`pr_err`]: https://www.kernel.org/doc/html/latest/core-api/printk-basics.html#c.pr_err +/// [`std::print!`]: https://doc.rust-lang.org/std/macro.print.html +/// +/// # Examples +/// +/// ``` +/// pr_err!("hello {}\n", "there"); +/// ``` +#[macro_export] +macro_rules! pr_err ( + ($($arg:tt)*) => ( + $crate::print_macro!($crate::print::format_strings::ERR, false, $($arg)*) + ) +); + +/// Prints a warning-level message (level 4). +/// +/// Use this level for warning conditions. +/// +/// Equivalent to the kernel's [`pr_warn`] macro. +/// +/// Mimics the interface of [`std::print!`]. See [`core::fmt`] and +/// `alloc::format!` for information about the formatting syntax. +/// +/// [`pr_warn`]: https://www.kernel.org/doc/html/latest/core-api/printk-basics.html#c.pr_warn +/// [`std::print!`]: https://doc.rust-lang.org/std/macro.print.html +/// +/// # Examples +/// +/// ``` +/// pr_warn!("hello {}\n", "there"); +/// ``` +#[macro_export] +macro_rules! pr_warn ( + ($($arg:tt)*) => ( + $crate::print_macro!($crate::print::format_strings::WARNING, false, $($arg)*) + ) +); + +/// Prints a notice-level message (level 5). +/// +/// Use this level for normal but significant conditions. +/// +/// Equivalent to the kernel's [`pr_notice`] macro. +/// +/// Mimics the interface of [`std::print!`]. See [`core::fmt`] and +/// `alloc::format!` for information about the formatting syntax. +/// +/// [`pr_notice`]: https://www.kernel.org/doc/html/latest/core-api/printk-basics.html#c.pr_notice +/// [`std::print!`]: https://doc.rust-lang.org/std/macro.print.html +/// +/// # Examples +/// +/// ``` +/// pr_notice!("hello {}\n", "there"); +/// ``` +#[macro_export] +macro_rules! pr_notice ( + ($($arg:tt)*) => ( + $crate::print_macro!($crate::print::format_strings::NOTICE, false, $($arg)*) + ) +); + +/// Prints an info-level message (level 6). +/// +/// Use this level for informational messages. +/// +/// Equivalent to the kernel's [`pr_info`] macro. +/// +/// Mimics the interface of [`std::print!`]. See [`core::fmt`] and +/// `alloc::format!` for information about the formatting syntax. +/// +/// [`pr_info`]: https://www.kernel.org/doc/html/latest/core-api/printk-basics.html#c.pr_info +/// [`std::print!`]: https://doc.rust-lang.org/std/macro.print.html +/// +/// # Examples +/// +/// ``` +/// pr_info!("hello {}\n", "there"); +/// ``` +#[macro_export] +#[doc(alias = "print")] +macro_rules! pr_info ( + ($($arg:tt)*) => ( + $crate::print_macro!($crate::print::format_strings::INFO, false, $($arg)*) + ) +); + +/// Prints a debug-level message (level 7). +/// +/// Use this level for debug messages. +/// +/// Equivalent to the kernel's [`pr_debug`] macro, except that it doesn't support dynamic debug +/// yet. +/// +/// Mimics the interface of [`std::print!`]. See [`core::fmt`] and +/// `alloc::format!` for information about the formatting syntax. +/// +/// [`pr_debug`]: https://www.kernel.org/doc/html/latest/core-api/printk-basics.html#c.pr_debug +/// [`std::print!`]: https://doc.rust-lang.org/std/macro.print.html +/// +/// # Examples +/// +/// ``` +/// pr_debug!("hello {}\n", "there"); +/// ``` +#[macro_export] +#[doc(alias = "print")] +macro_rules! pr_debug ( + ($($arg:tt)*) => ( + if cfg!(debug_assertions) { + $crate::print_macro!($crate::print::format_strings::DEBUG, false, $($arg)*) + } + ) +); + +/// Continues a previous log message in the same line. +/// +/// Use only when continuing a previous `pr_*!` macro (e.g. [`pr_info!`]). +/// +/// Equivalent to the kernel's [`pr_cont`] macro. +/// +/// Mimics the interface of [`std::print!`]. See [`core::fmt`] and +/// `alloc::format!` for information about the formatting syntax. +/// +/// [`pr_cont`]: https://www.kernel.org/doc/html/latest/core-api/printk-basics.html#c.pr_cont +/// [`std::print!`]: https://doc.rust-lang.org/std/macro.print.html +/// +/// # Examples +/// +/// ``` +/// # use kernel::pr_cont; +/// pr_info!("hello"); +/// pr_cont!(" {}\n", "there"); +/// ``` +#[macro_export] +macro_rules! pr_cont ( + ($($arg:tt)*) => ( + $crate::print_macro!($crate::print::format_strings::CONT, true, $($arg)*) + ) +); diff --git a/rust/kernel/static_assert.rs b/rust/kernel/static_assert.rs new file mode 100644 index 0000000000..3115ee0ba8 --- /dev/null +++ b/rust/kernel/static_assert.rs @@ -0,0 +1,34 @@ +// SPDX-License-Identifier: GPL-2.0 + +//! Static assert. + +/// Static assert (i.e. compile-time assert). +/// +/// Similar to C11 [`_Static_assert`] and C++11 [`static_assert`]. +/// +/// The feature may be added to Rust in the future: see [RFC 2790]. +/// +/// [`_Static_assert`]: https://en.cppreference.com/w/c/language/_Static_assert +/// [`static_assert`]: https://en.cppreference.com/w/cpp/language/static_assert +/// [RFC 2790]: https://github.com/rust-lang/rfcs/issues/2790 +/// +/// # Examples +/// +/// ``` +/// static_assert!(42 > 24); +/// static_assert!(core::mem::size_of::<u8>() == 1); +/// +/// const X: &[u8] = b"bar"; +/// static_assert!(X[1] == b'a'); +/// +/// const fn f(x: i32) -> i32 { +/// x + 2 +/// } +/// static_assert!(f(40) == 42); +/// ``` +#[macro_export] +macro_rules! static_assert { + ($condition:expr) => { + const _: () = core::assert!($condition); + }; +} diff --git a/rust/kernel/std_vendor.rs b/rust/kernel/std_vendor.rs new file mode 100644 index 0000000000..388d6a5147 --- /dev/null +++ b/rust/kernel/std_vendor.rs @@ -0,0 +1,165 @@ +// SPDX-License-Identifier: Apache-2.0 OR MIT + +//! The contents of this file come from the Rust standard library, hosted in +//! the <https://github.com/rust-lang/rust> repository, licensed under +//! "Apache-2.0 OR MIT" and adapted for kernel use. For copyright details, +//! see <https://github.com/rust-lang/rust/blob/master/COPYRIGHT>. + +/// [`std::dbg`], but using [`pr_info`] instead of [`eprintln`]. +/// +/// Prints and returns the value of a given expression for quick and dirty +/// debugging. +/// +/// An example: +/// +/// ```rust +/// let a = 2; +/// # #[allow(clippy::dbg_macro)] +/// let b = dbg!(a * 2) + 1; +/// // ^-- prints: [src/main.rs:2] a * 2 = 4 +/// assert_eq!(b, 5); +/// ``` +/// +/// The macro works by using the `Debug` implementation of the type of +/// the given expression to print the value with [`printk`] along with the +/// source location of the macro invocation as well as the source code +/// of the expression. +/// +/// Invoking the macro on an expression moves and takes ownership of it +/// before returning the evaluated expression unchanged. If the type +/// of the expression does not implement `Copy` and you don't want +/// to give up ownership, you can instead borrow with `dbg!(&expr)` +/// for some expression `expr`. +/// +/// The `dbg!` macro works exactly the same in release builds. +/// This is useful when debugging issues that only occur in release +/// builds or when debugging in release mode is significantly faster. +/// +/// Note that the macro is intended as a temporary debugging tool to be +/// used during development. Therefore, avoid committing `dbg!` macro +/// invocations into the kernel tree. +/// +/// For debug output that is intended to be kept in the kernel tree, +/// use [`pr_debug`] and similar facilities instead. +/// +/// # Stability +/// +/// The exact output printed by this macro should not be relied upon +/// and is subject to future changes. +/// +/// # Further examples +/// +/// With a method call: +/// +/// ```rust +/// # #[allow(clippy::dbg_macro)] +/// fn foo(n: usize) { +/// if dbg!(n.checked_sub(4)).is_some() { +/// // ... +/// } +/// } +/// +/// foo(3) +/// ``` +/// +/// This prints to the kernel log: +/// +/// ```text,ignore +/// [src/main.rs:4] n.checked_sub(4) = None +/// ``` +/// +/// Naive factorial implementation: +/// +/// ```rust +/// # #[allow(clippy::dbg_macro)] +/// # { +/// fn factorial(n: u32) -> u32 { +/// if dbg!(n <= 1) { +/// dbg!(1) +/// } else { +/// dbg!(n * factorial(n - 1)) +/// } +/// } +/// +/// dbg!(factorial(4)); +/// # } +/// ``` +/// +/// This prints to the kernel log: +/// +/// ```text,ignore +/// [src/main.rs:3] n <= 1 = false +/// [src/main.rs:3] n <= 1 = false +/// [src/main.rs:3] n <= 1 = false +/// [src/main.rs:3] n <= 1 = true +/// [src/main.rs:4] 1 = 1 +/// [src/main.rs:5] n * factorial(n - 1) = 2 +/// [src/main.rs:5] n * factorial(n - 1) = 6 +/// [src/main.rs:5] n * factorial(n - 1) = 24 +/// [src/main.rs:11] factorial(4) = 24 +/// ``` +/// +/// The `dbg!(..)` macro moves the input: +/// +/// ```ignore +/// /// A wrapper around `usize` which importantly is not Copyable. +/// #[derive(Debug)] +/// struct NoCopy(usize); +/// +/// let a = NoCopy(42); +/// let _ = dbg!(a); // <-- `a` is moved here. +/// let _ = dbg!(a); // <-- `a` is moved again; error! +/// ``` +/// +/// You can also use `dbg!()` without a value to just print the +/// file and line whenever it's reached. +/// +/// Finally, if you want to `dbg!(..)` multiple values, it will treat them as +/// a tuple (and return it, too): +/// +/// ``` +/// # #[allow(clippy::dbg_macro)] +/// assert_eq!(dbg!(1usize, 2u32), (1, 2)); +/// ``` +/// +/// However, a single argument with a trailing comma will still not be treated +/// as a tuple, following the convention of ignoring trailing commas in macro +/// invocations. You can use a 1-tuple directly if you need one: +/// +/// ``` +/// # #[allow(clippy::dbg_macro)] +/// # { +/// assert_eq!(1, dbg!(1u32,)); // trailing comma ignored +/// assert_eq!((1,), dbg!((1u32,))); // 1-tuple +/// # } +/// ``` +/// +/// [`std::dbg`]: https://doc.rust-lang.org/std/macro.dbg.html +/// [`eprintln`]: https://doc.rust-lang.org/std/macro.eprintln.html +/// [`printk`]: https://www.kernel.org/doc/html/latest/core-api/printk-basics.html +/// [`pr_info`]: crate::pr_info! +/// [`pr_debug`]: crate::pr_debug! +#[macro_export] +macro_rules! dbg { + // NOTE: We cannot use `concat!` to make a static string as a format argument + // of `pr_info!` because `file!` could contain a `{` or + // `$val` expression could be a block (`{ .. }`), in which case the `pr_info!` + // will be malformed. + () => { + $crate::pr_info!("[{}:{}]\n", ::core::file!(), ::core::line!()) + }; + ($val:expr $(,)?) => { + // Use of `match` here is intentional because it affects the lifetimes + // of temporaries - https://stackoverflow.com/a/48732525/1063961 + match $val { + tmp => { + $crate::pr_info!("[{}:{}] {} = {:#?}\n", + ::core::file!(), ::core::line!(), ::core::stringify!($val), &tmp); + tmp + } + } + }; + ($($val:expr),+ $(,)?) => { + ($($crate::dbg!($val)),+,) + }; +} diff --git a/rust/kernel/str.rs b/rust/kernel/str.rs new file mode 100644 index 0000000000..c41607b2e4 --- /dev/null +++ b/rust/kernel/str.rs @@ -0,0 +1,615 @@ +// SPDX-License-Identifier: GPL-2.0 + +//! String representations. + +use alloc::alloc::AllocError; +use alloc::vec::Vec; +use core::fmt::{self, Write}; +use core::ops::{self, Deref, Index}; + +use crate::{ + bindings, + error::{code::*, Error}, +}; + +/// Byte string without UTF-8 validity guarantee. +/// +/// `BStr` is simply an alias to `[u8]`, but has a more evident semantical meaning. +pub type BStr = [u8]; + +/// Creates a new [`BStr`] from a string literal. +/// +/// `b_str!` converts the supplied string literal to byte string, so non-ASCII +/// characters can be included. +/// +/// # Examples +/// +/// ``` +/// # use kernel::b_str; +/// # use kernel::str::BStr; +/// const MY_BSTR: &BStr = b_str!("My awesome BStr!"); +/// ``` +#[macro_export] +macro_rules! b_str { + ($str:literal) => {{ + const S: &'static str = $str; + const C: &'static $crate::str::BStr = S.as_bytes(); + C + }}; +} + +/// Possible errors when using conversion functions in [`CStr`]. +#[derive(Debug, Clone, Copy)] +pub enum CStrConvertError { + /// Supplied bytes contain an interior `NUL`. + InteriorNul, + + /// Supplied bytes are not terminated by `NUL`. + NotNulTerminated, +} + +impl From<CStrConvertError> for Error { + #[inline] + fn from(_: CStrConvertError) -> Error { + EINVAL + } +} + +/// A string that is guaranteed to have exactly one `NUL` byte, which is at the +/// end. +/// +/// Used for interoperability with kernel APIs that take C strings. +#[repr(transparent)] +pub struct CStr([u8]); + +impl CStr { + /// Returns the length of this string excluding `NUL`. + #[inline] + pub const fn len(&self) -> usize { + self.len_with_nul() - 1 + } + + /// Returns the length of this string with `NUL`. + #[inline] + pub const fn len_with_nul(&self) -> usize { + // SAFETY: This is one of the invariant of `CStr`. + // We add a `unreachable_unchecked` here to hint the optimizer that + // the value returned from this function is non-zero. + if self.0.is_empty() { + unsafe { core::hint::unreachable_unchecked() }; + } + self.0.len() + } + + /// Returns `true` if the string only includes `NUL`. + #[inline] + pub const fn is_empty(&self) -> bool { + self.len() == 0 + } + + /// Wraps a raw C string pointer. + /// + /// # Safety + /// + /// `ptr` must be a valid pointer to a `NUL`-terminated C string, and it must + /// last at least `'a`. When `CStr` is alive, the memory pointed by `ptr` + /// must not be mutated. + #[inline] + pub unsafe fn from_char_ptr<'a>(ptr: *const core::ffi::c_char) -> &'a Self { + // SAFETY: The safety precondition guarantees `ptr` is a valid pointer + // to a `NUL`-terminated C string. + let len = unsafe { bindings::strlen(ptr) } + 1; + // SAFETY: Lifetime guaranteed by the safety precondition. + let bytes = unsafe { core::slice::from_raw_parts(ptr as _, len as _) }; + // SAFETY: As `len` is returned by `strlen`, `bytes` does not contain interior `NUL`. + // As we have added 1 to `len`, the last byte is known to be `NUL`. + unsafe { Self::from_bytes_with_nul_unchecked(bytes) } + } + + /// Creates a [`CStr`] from a `[u8]`. + /// + /// The provided slice must be `NUL`-terminated, does not contain any + /// interior `NUL` bytes. + pub const fn from_bytes_with_nul(bytes: &[u8]) -> Result<&Self, CStrConvertError> { + if bytes.is_empty() { + return Err(CStrConvertError::NotNulTerminated); + } + if bytes[bytes.len() - 1] != 0 { + return Err(CStrConvertError::NotNulTerminated); + } + let mut i = 0; + // `i + 1 < bytes.len()` allows LLVM to optimize away bounds checking, + // while it couldn't optimize away bounds checks for `i < bytes.len() - 1`. + while i + 1 < bytes.len() { + if bytes[i] == 0 { + return Err(CStrConvertError::InteriorNul); + } + i += 1; + } + // SAFETY: We just checked that all properties hold. + Ok(unsafe { Self::from_bytes_with_nul_unchecked(bytes) }) + } + + /// Creates a [`CStr`] from a `[u8]` without performing any additional + /// checks. + /// + /// # Safety + /// + /// `bytes` *must* end with a `NUL` byte, and should only have a single + /// `NUL` byte (or the string will be truncated). + #[inline] + pub const unsafe fn from_bytes_with_nul_unchecked(bytes: &[u8]) -> &CStr { + // SAFETY: Properties of `bytes` guaranteed by the safety precondition. + unsafe { core::mem::transmute(bytes) } + } + + /// Returns a C pointer to the string. + #[inline] + pub const fn as_char_ptr(&self) -> *const core::ffi::c_char { + self.0.as_ptr() as _ + } + + /// Convert the string to a byte slice without the trailing 0 byte. + #[inline] + pub fn as_bytes(&self) -> &[u8] { + &self.0[..self.len()] + } + + /// Convert the string to a byte slice containing the trailing 0 byte. + #[inline] + pub const fn as_bytes_with_nul(&self) -> &[u8] { + &self.0 + } + + /// Yields a [`&str`] slice if the [`CStr`] contains valid UTF-8. + /// + /// If the contents of the [`CStr`] are valid UTF-8 data, this + /// function will return the corresponding [`&str`] slice. Otherwise, + /// it will return an error with details of where UTF-8 validation failed. + /// + /// # Examples + /// + /// ``` + /// # use kernel::str::CStr; + /// let cstr = CStr::from_bytes_with_nul(b"foo\0").unwrap(); + /// assert_eq!(cstr.to_str(), Ok("foo")); + /// ``` + #[inline] + pub fn to_str(&self) -> Result<&str, core::str::Utf8Error> { + core::str::from_utf8(self.as_bytes()) + } + + /// Unsafely convert this [`CStr`] into a [`&str`], without checking for + /// valid UTF-8. + /// + /// # Safety + /// + /// The contents must be valid UTF-8. + /// + /// # Examples + /// + /// ``` + /// # use kernel::c_str; + /// # use kernel::str::CStr; + /// // SAFETY: String literals are guaranteed to be valid UTF-8 + /// // by the Rust compiler. + /// let bar = c_str!("ツ"); + /// assert_eq!(unsafe { bar.as_str_unchecked() }, "ツ"); + /// ``` + #[inline] + pub unsafe fn as_str_unchecked(&self) -> &str { + unsafe { core::str::from_utf8_unchecked(self.as_bytes()) } + } + + /// Convert this [`CStr`] into a [`CString`] by allocating memory and + /// copying over the string data. + pub fn to_cstring(&self) -> Result<CString, AllocError> { + CString::try_from(self) + } +} + +impl fmt::Display for CStr { + /// Formats printable ASCII characters, escaping the rest. + /// + /// ``` + /// # use kernel::c_str; + /// # use kernel::fmt; + /// # use kernel::str::CStr; + /// # use kernel::str::CString; + /// let penguin = c_str!("🐧"); + /// let s = CString::try_from_fmt(fmt!("{}", penguin)).unwrap(); + /// assert_eq!(s.as_bytes_with_nul(), "\\xf0\\x9f\\x90\\xa7\0".as_bytes()); + /// + /// let ascii = c_str!("so \"cool\""); + /// let s = CString::try_from_fmt(fmt!("{}", ascii)).unwrap(); + /// assert_eq!(s.as_bytes_with_nul(), "so \"cool\"\0".as_bytes()); + /// ``` + fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { + for &c in self.as_bytes() { + if (0x20..0x7f).contains(&c) { + // Printable character. + f.write_char(c as char)?; + } else { + write!(f, "\\x{:02x}", c)?; + } + } + Ok(()) + } +} + +impl fmt::Debug for CStr { + /// Formats printable ASCII characters with a double quote on either end, escaping the rest. + /// + /// ``` + /// # use kernel::c_str; + /// # use kernel::fmt; + /// # use kernel::str::CStr; + /// # use kernel::str::CString; + /// let penguin = c_str!("🐧"); + /// let s = CString::try_from_fmt(fmt!("{:?}", penguin)).unwrap(); + /// assert_eq!(s.as_bytes_with_nul(), "\"\\xf0\\x9f\\x90\\xa7\"\0".as_bytes()); + /// + /// // Embedded double quotes are escaped. + /// let ascii = c_str!("so \"cool\""); + /// let s = CString::try_from_fmt(fmt!("{:?}", ascii)).unwrap(); + /// assert_eq!(s.as_bytes_with_nul(), "\"so \\\"cool\\\"\"\0".as_bytes()); + /// ``` + fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { + f.write_str("\"")?; + for &c in self.as_bytes() { + match c { + // Printable characters. + b'\"' => f.write_str("\\\"")?, + 0x20..=0x7e => f.write_char(c as char)?, + _ => write!(f, "\\x{:02x}", c)?, + } + } + f.write_str("\"") + } +} + +impl AsRef<BStr> for CStr { + #[inline] + fn as_ref(&self) -> &BStr { + self.as_bytes() + } +} + +impl Deref for CStr { + type Target = BStr; + + #[inline] + fn deref(&self) -> &Self::Target { + self.as_bytes() + } +} + +impl Index<ops::RangeFrom<usize>> for CStr { + type Output = CStr; + + #[inline] + fn index(&self, index: ops::RangeFrom<usize>) -> &Self::Output { + // Delegate bounds checking to slice. + // Assign to _ to mute clippy's unnecessary operation warning. + let _ = &self.as_bytes()[index.start..]; + // SAFETY: We just checked the bounds. + unsafe { Self::from_bytes_with_nul_unchecked(&self.0[index.start..]) } + } +} + +impl Index<ops::RangeFull> for CStr { + type Output = CStr; + + #[inline] + fn index(&self, _index: ops::RangeFull) -> &Self::Output { + self + } +} + +mod private { + use core::ops; + + // Marker trait for index types that can be forward to `BStr`. + pub trait CStrIndex {} + + impl CStrIndex for usize {} + impl CStrIndex for ops::Range<usize> {} + impl CStrIndex for ops::RangeInclusive<usize> {} + impl CStrIndex for ops::RangeToInclusive<usize> {} +} + +impl<Idx> Index<Idx> for CStr +where + Idx: private::CStrIndex, + BStr: Index<Idx>, +{ + type Output = <BStr as Index<Idx>>::Output; + + #[inline] + fn index(&self, index: Idx) -> &Self::Output { + &self.as_bytes()[index] + } +} + +/// Creates a new [`CStr`] from a string literal. +/// +/// The string literal should not contain any `NUL` bytes. +/// +/// # Examples +/// +/// ``` +/// # use kernel::c_str; +/// # use kernel::str::CStr; +/// const MY_CSTR: &CStr = c_str!("My awesome CStr!"); +/// ``` +#[macro_export] +macro_rules! c_str { + ($str:expr) => {{ + const S: &str = concat!($str, "\0"); + const C: &$crate::str::CStr = match $crate::str::CStr::from_bytes_with_nul(S.as_bytes()) { + Ok(v) => v, + Err(_) => panic!("string contains interior NUL"), + }; + C + }}; +} + +#[cfg(test)] +mod tests { + use super::*; + + #[test] + fn test_cstr_to_str() { + let good_bytes = b"\xf0\x9f\xa6\x80\0"; + let checked_cstr = CStr::from_bytes_with_nul(good_bytes).unwrap(); + let checked_str = checked_cstr.to_str().unwrap(); + assert_eq!(checked_str, "🦀"); + } + + #[test] + #[should_panic] + fn test_cstr_to_str_panic() { + let bad_bytes = b"\xc3\x28\0"; + let checked_cstr = CStr::from_bytes_with_nul(bad_bytes).unwrap(); + checked_cstr.to_str().unwrap(); + } + + #[test] + fn test_cstr_as_str_unchecked() { + let good_bytes = b"\xf0\x9f\x90\xA7\0"; + let checked_cstr = CStr::from_bytes_with_nul(good_bytes).unwrap(); + let unchecked_str = unsafe { checked_cstr.as_str_unchecked() }; + assert_eq!(unchecked_str, "🐧"); + } +} + +/// Allows formatting of [`fmt::Arguments`] into a raw buffer. +/// +/// It does not fail if callers write past the end of the buffer so that they can calculate the +/// size required to fit everything. +/// +/// # Invariants +/// +/// The memory region between `pos` (inclusive) and `end` (exclusive) is valid for writes if `pos` +/// is less than `end`. +pub(crate) struct RawFormatter { + // Use `usize` to use `saturating_*` functions. + beg: usize, + pos: usize, + end: usize, +} + +impl RawFormatter { + /// Creates a new instance of [`RawFormatter`] with an empty buffer. + fn new() -> Self { + // INVARIANT: The buffer is empty, so the region that needs to be writable is empty. + Self { + beg: 0, + pos: 0, + end: 0, + } + } + + /// Creates a new instance of [`RawFormatter`] with the given buffer pointers. + /// + /// # Safety + /// + /// If `pos` is less than `end`, then the region between `pos` (inclusive) and `end` + /// (exclusive) must be valid for writes for the lifetime of the returned [`RawFormatter`]. + pub(crate) unsafe fn from_ptrs(pos: *mut u8, end: *mut u8) -> Self { + // INVARIANT: The safety requirements guarantee the type invariants. + Self { + beg: pos as _, + pos: pos as _, + end: end as _, + } + } + + /// Creates a new instance of [`RawFormatter`] with the given buffer. + /// + /// # Safety + /// + /// The memory region starting at `buf` and extending for `len` bytes must be valid for writes + /// for the lifetime of the returned [`RawFormatter`]. + pub(crate) unsafe fn from_buffer(buf: *mut u8, len: usize) -> Self { + let pos = buf as usize; + // INVARIANT: We ensure that `end` is never less then `buf`, and the safety requirements + // guarantees that the memory region is valid for writes. + Self { + pos, + beg: pos, + end: pos.saturating_add(len), + } + } + + /// Returns the current insert position. + /// + /// N.B. It may point to invalid memory. + pub(crate) fn pos(&self) -> *mut u8 { + self.pos as _ + } + + /// Return the number of bytes written to the formatter. + pub(crate) fn bytes_written(&self) -> usize { + self.pos - self.beg + } +} + +impl fmt::Write for RawFormatter { + fn write_str(&mut self, s: &str) -> fmt::Result { + // `pos` value after writing `len` bytes. This does not have to be bounded by `end`, but we + // don't want it to wrap around to 0. + let pos_new = self.pos.saturating_add(s.len()); + + // Amount that we can copy. `saturating_sub` ensures we get 0 if `pos` goes past `end`. + let len_to_copy = core::cmp::min(pos_new, self.end).saturating_sub(self.pos); + + if len_to_copy > 0 { + // SAFETY: If `len_to_copy` is non-zero, then we know `pos` has not gone past `end` + // yet, so it is valid for write per the type invariants. + unsafe { + core::ptr::copy_nonoverlapping( + s.as_bytes().as_ptr(), + self.pos as *mut u8, + len_to_copy, + ) + }; + } + + self.pos = pos_new; + Ok(()) + } +} + +/// Allows formatting of [`fmt::Arguments`] into a raw buffer. +/// +/// Fails if callers attempt to write more than will fit in the buffer. +pub(crate) struct Formatter(RawFormatter); + +impl Formatter { + /// Creates a new instance of [`Formatter`] with the given buffer. + /// + /// # Safety + /// + /// The memory region starting at `buf` and extending for `len` bytes must be valid for writes + /// for the lifetime of the returned [`Formatter`]. + pub(crate) unsafe fn from_buffer(buf: *mut u8, len: usize) -> Self { + // SAFETY: The safety requirements of this function satisfy those of the callee. + Self(unsafe { RawFormatter::from_buffer(buf, len) }) + } +} + +impl Deref for Formatter { + type Target = RawFormatter; + + fn deref(&self) -> &Self::Target { + &self.0 + } +} + +impl fmt::Write for Formatter { + fn write_str(&mut self, s: &str) -> fmt::Result { + self.0.write_str(s)?; + + // Fail the request if we go past the end of the buffer. + if self.0.pos > self.0.end { + Err(fmt::Error) + } else { + Ok(()) + } + } +} + +/// An owned string that is guaranteed to have exactly one `NUL` byte, which is at the end. +/// +/// Used for interoperability with kernel APIs that take C strings. +/// +/// # Invariants +/// +/// The string is always `NUL`-terminated and contains no other `NUL` bytes. +/// +/// # Examples +/// +/// ``` +/// use kernel::{str::CString, fmt}; +/// +/// let s = CString::try_from_fmt(fmt!("{}{}{}", "abc", 10, 20)).unwrap(); +/// assert_eq!(s.as_bytes_with_nul(), "abc1020\0".as_bytes()); +/// +/// let tmp = "testing"; +/// let s = CString::try_from_fmt(fmt!("{tmp}{}", 123)).unwrap(); +/// assert_eq!(s.as_bytes_with_nul(), "testing123\0".as_bytes()); +/// +/// // This fails because it has an embedded `NUL` byte. +/// let s = CString::try_from_fmt(fmt!("a\0b{}", 123)); +/// assert_eq!(s.is_ok(), false); +/// ``` +pub struct CString { + buf: Vec<u8>, +} + +impl CString { + /// Creates an instance of [`CString`] from the given formatted arguments. + pub fn try_from_fmt(args: fmt::Arguments<'_>) -> Result<Self, Error> { + // Calculate the size needed (formatted string plus `NUL` terminator). + let mut f = RawFormatter::new(); + f.write_fmt(args)?; + f.write_str("\0")?; + let size = f.bytes_written(); + + // Allocate a vector with the required number of bytes, and write to it. + let mut buf = Vec::try_with_capacity(size)?; + // SAFETY: The buffer stored in `buf` is at least of size `size` and is valid for writes. + let mut f = unsafe { Formatter::from_buffer(buf.as_mut_ptr(), size) }; + f.write_fmt(args)?; + f.write_str("\0")?; + + // SAFETY: The number of bytes that can be written to `f` is bounded by `size`, which is + // `buf`'s capacity. The contents of the buffer have been initialised by writes to `f`. + unsafe { buf.set_len(f.bytes_written()) }; + + // Check that there are no `NUL` bytes before the end. + // SAFETY: The buffer is valid for read because `f.bytes_written()` is bounded by `size` + // (which the minimum buffer size) and is non-zero (we wrote at least the `NUL` terminator) + // so `f.bytes_written() - 1` doesn't underflow. + let ptr = unsafe { bindings::memchr(buf.as_ptr().cast(), 0, (f.bytes_written() - 1) as _) }; + if !ptr.is_null() { + return Err(EINVAL); + } + + // INVARIANT: We wrote the `NUL` terminator and checked above that no other `NUL` bytes + // exist in the buffer. + Ok(Self { buf }) + } +} + +impl Deref for CString { + type Target = CStr; + + fn deref(&self) -> &Self::Target { + // SAFETY: The type invariants guarantee that the string is `NUL`-terminated and that no + // other `NUL` bytes exist. + unsafe { CStr::from_bytes_with_nul_unchecked(self.buf.as_slice()) } + } +} + +impl<'a> TryFrom<&'a CStr> for CString { + type Error = AllocError; + + fn try_from(cstr: &'a CStr) -> Result<CString, AllocError> { + let mut buf = Vec::new(); + + buf.try_extend_from_slice(cstr.as_bytes_with_nul()) + .map_err(|_| AllocError)?; + + // INVARIANT: The `CStr` and `CString` types have the same invariants for + // the string data, and we copied it over without changes. + Ok(CString { buf }) + } +} + +/// A convenience alias for [`core::format_args`]. +#[macro_export] +macro_rules! fmt { + ($($f:tt)*) => ( core::format_args!($($f)*) ) +} diff --git a/rust/kernel/sync.rs b/rust/kernel/sync.rs new file mode 100644 index 0000000000..d219ee518e --- /dev/null +++ b/rust/kernel/sync.rs @@ -0,0 +1,60 @@ +// SPDX-License-Identifier: GPL-2.0 + +//! Synchronisation primitives. +//! +//! This module contains the kernel APIs related to synchronisation that have been ported or +//! wrapped for usage by Rust code in the kernel. + +use crate::types::Opaque; + +mod arc; +mod condvar; +pub mod lock; +mod locked_by; + +pub use arc::{Arc, ArcBorrow, UniqueArc}; +pub use condvar::CondVar; +pub use lock::{mutex::Mutex, spinlock::SpinLock}; +pub use locked_by::LockedBy; + +/// Represents a lockdep class. It's a wrapper around C's `lock_class_key`. +#[repr(transparent)] +pub struct LockClassKey(Opaque<bindings::lock_class_key>); + +// SAFETY: `bindings::lock_class_key` is designed to be used concurrently from multiple threads and +// provides its own synchronization. +unsafe impl Sync for LockClassKey {} + +impl LockClassKey { + /// Creates a new lock class key. + pub const fn new() -> Self { + Self(Opaque::uninit()) + } + + pub(crate) fn as_ptr(&self) -> *mut bindings::lock_class_key { + self.0.get() + } +} + +/// Defines a new static lock class and returns a pointer to it. +#[doc(hidden)] +#[macro_export] +macro_rules! static_lock_class { + () => {{ + static CLASS: $crate::sync::LockClassKey = $crate::sync::LockClassKey::new(); + &CLASS + }}; +} + +/// Returns the given string, if one is provided, otherwise generates one based on the source code +/// location. +#[doc(hidden)] +#[macro_export] +macro_rules! optional_name { + () => { + $crate::c_str!(::core::concat!(::core::file!(), ":", ::core::line!())) + }; + ($name:literal) => { + $crate::c_str!($name) + }; +} diff --git a/rust/kernel/sync/arc.rs b/rust/kernel/sync/arc.rs new file mode 100644 index 0000000000..3d496391a9 --- /dev/null +++ b/rust/kernel/sync/arc.rs @@ -0,0 +1,637 @@ +// SPDX-License-Identifier: GPL-2.0 + +//! A reference-counted pointer. +//! +//! This module implements a way for users to create reference-counted objects and pointers to +//! them. Such a pointer automatically increments and decrements the count, and drops the +//! underlying object when it reaches zero. It is also safe to use concurrently from multiple +//! threads. +//! +//! It is different from the standard library's [`Arc`] in a few ways: +//! 1. It is backed by the kernel's `refcount_t` type. +//! 2. It does not support weak references, which allows it to be half the size. +//! 3. It saturates the reference count instead of aborting when it goes over a threshold. +//! 4. It does not provide a `get_mut` method, so the ref counted object is pinned. +//! +//! [`Arc`]: https://doc.rust-lang.org/std/sync/struct.Arc.html + +use crate::{ + bindings, + error::{self, Error}, + init::{self, InPlaceInit, Init, PinInit}, + try_init, + types::{ForeignOwnable, Opaque}, +}; +use alloc::boxed::Box; +use core::{ + alloc::AllocError, + fmt, + marker::{PhantomData, Unsize}, + mem::{ManuallyDrop, MaybeUninit}, + ops::{Deref, DerefMut}, + pin::Pin, + ptr::NonNull, +}; +use macros::pin_data; + +mod std_vendor; + +/// A reference-counted pointer to an instance of `T`. +/// +/// The reference count is incremented when new instances of [`Arc`] are created, and decremented +/// when they are dropped. When the count reaches zero, the underlying `T` is also dropped. +/// +/// # Invariants +/// +/// The reference count on an instance of [`Arc`] is always non-zero. +/// The object pointed to by [`Arc`] is always pinned. +/// +/// # Examples +/// +/// ``` +/// use kernel::sync::Arc; +/// +/// struct Example { +/// a: u32, +/// b: u32, +/// } +/// +/// // Create a ref-counted instance of `Example`. +/// let obj = Arc::try_new(Example { a: 10, b: 20 })?; +/// +/// // Get a new pointer to `obj` and increment the refcount. +/// let cloned = obj.clone(); +/// +/// // Assert that both `obj` and `cloned` point to the same underlying object. +/// assert!(core::ptr::eq(&*obj, &*cloned)); +/// +/// // Destroy `obj` and decrement its refcount. +/// drop(obj); +/// +/// // Check that the values are still accessible through `cloned`. +/// assert_eq!(cloned.a, 10); +/// assert_eq!(cloned.b, 20); +/// +/// // The refcount drops to zero when `cloned` goes out of scope, and the memory is freed. +/// # Ok::<(), Error>(()) +/// ``` +/// +/// Using `Arc<T>` as the type of `self`: +/// +/// ``` +/// use kernel::sync::Arc; +/// +/// struct Example { +/// a: u32, +/// b: u32, +/// } +/// +/// impl Example { +/// fn take_over(self: Arc<Self>) { +/// // ... +/// } +/// +/// fn use_reference(self: &Arc<Self>) { +/// // ... +/// } +/// } +/// +/// let obj = Arc::try_new(Example { a: 10, b: 20 })?; +/// obj.use_reference(); +/// obj.take_over(); +/// # Ok::<(), Error>(()) +/// ``` +/// +/// Coercion from `Arc<Example>` to `Arc<dyn MyTrait>`: +/// +/// ``` +/// use kernel::sync::{Arc, ArcBorrow}; +/// +/// trait MyTrait { +/// // Trait has a function whose `self` type is `Arc<Self>`. +/// fn example1(self: Arc<Self>) {} +/// +/// // Trait has a function whose `self` type is `ArcBorrow<'_, Self>`. +/// fn example2(self: ArcBorrow<'_, Self>) {} +/// } +/// +/// struct Example; +/// impl MyTrait for Example {} +/// +/// // `obj` has type `Arc<Example>`. +/// let obj: Arc<Example> = Arc::try_new(Example)?; +/// +/// // `coerced` has type `Arc<dyn MyTrait>`. +/// let coerced: Arc<dyn MyTrait> = obj; +/// # Ok::<(), Error>(()) +/// ``` +pub struct Arc<T: ?Sized> { + ptr: NonNull<ArcInner<T>>, + _p: PhantomData<ArcInner<T>>, +} + +#[pin_data] +#[repr(C)] +struct ArcInner<T: ?Sized> { + refcount: Opaque<bindings::refcount_t>, + data: T, +} + +// This is to allow [`Arc`] (and variants) to be used as the type of `self`. +impl<T: ?Sized> core::ops::Receiver for Arc<T> {} + +// This is to allow coercion from `Arc<T>` to `Arc<U>` if `T` can be converted to the +// dynamically-sized type (DST) `U`. +impl<T: ?Sized + Unsize<U>, U: ?Sized> core::ops::CoerceUnsized<Arc<U>> for Arc<T> {} + +// This is to allow `Arc<U>` to be dispatched on when `Arc<T>` can be coerced into `Arc<U>`. +impl<T: ?Sized + Unsize<U>, U: ?Sized> core::ops::DispatchFromDyn<Arc<U>> for Arc<T> {} + +// SAFETY: It is safe to send `Arc<T>` to another thread when the underlying `T` is `Sync` because +// it effectively means sharing `&T` (which is safe because `T` is `Sync`); additionally, it needs +// `T` to be `Send` because any thread that has an `Arc<T>` may ultimately access `T` using a +// mutable reference when the reference count reaches zero and `T` is dropped. +unsafe impl<T: ?Sized + Sync + Send> Send for Arc<T> {} + +// SAFETY: It is safe to send `&Arc<T>` to another thread when the underlying `T` is `Sync` +// because it effectively means sharing `&T` (which is safe because `T` is `Sync`); additionally, +// it needs `T` to be `Send` because any thread that has a `&Arc<T>` may clone it and get an +// `Arc<T>` on that thread, so the thread may ultimately access `T` using a mutable reference when +// the reference count reaches zero and `T` is dropped. +unsafe impl<T: ?Sized + Sync + Send> Sync for Arc<T> {} + +impl<T> Arc<T> { + /// Constructs a new reference counted instance of `T`. + pub fn try_new(contents: T) -> Result<Self, AllocError> { + // INVARIANT: The refcount is initialised to a non-zero value. + let value = ArcInner { + // SAFETY: There are no safety requirements for this FFI call. + refcount: Opaque::new(unsafe { bindings::REFCOUNT_INIT(1) }), + data: contents, + }; + + let inner = Box::try_new(value)?; + + // SAFETY: We just created `inner` with a reference count of 1, which is owned by the new + // `Arc` object. + Ok(unsafe { Self::from_inner(Box::leak(inner).into()) }) + } + + /// Use the given initializer to in-place initialize a `T`. + /// + /// If `T: !Unpin` it will not be able to move afterwards. + #[inline] + pub fn pin_init<E>(init: impl PinInit<T, E>) -> error::Result<Self> + where + Error: From<E>, + { + UniqueArc::pin_init(init).map(|u| u.into()) + } + + /// Use the given initializer to in-place initialize a `T`. + /// + /// This is equivalent to [`Arc<T>::pin_init`], since an [`Arc`] is always pinned. + #[inline] + pub fn init<E>(init: impl Init<T, E>) -> error::Result<Self> + where + Error: From<E>, + { + UniqueArc::init(init).map(|u| u.into()) + } +} + +impl<T: ?Sized> Arc<T> { + /// Constructs a new [`Arc`] from an existing [`ArcInner`]. + /// + /// # Safety + /// + /// The caller must ensure that `inner` points to a valid location and has a non-zero reference + /// count, one of which will be owned by the new [`Arc`] instance. + unsafe fn from_inner(inner: NonNull<ArcInner<T>>) -> Self { + // INVARIANT: By the safety requirements, the invariants hold. + Arc { + ptr: inner, + _p: PhantomData, + } + } + + /// Returns an [`ArcBorrow`] from the given [`Arc`]. + /// + /// This is useful when the argument of a function call is an [`ArcBorrow`] (e.g., in a method + /// receiver), but we have an [`Arc`] instead. Getting an [`ArcBorrow`] is free when optimised. + #[inline] + pub fn as_arc_borrow(&self) -> ArcBorrow<'_, T> { + // SAFETY: The constraint that the lifetime of the shared reference must outlive that of + // the returned `ArcBorrow` ensures that the object remains alive and that no mutable + // reference can be created. + unsafe { ArcBorrow::new(self.ptr) } + } + + /// Compare whether two [`Arc`] pointers reference the same underlying object. + pub fn ptr_eq(this: &Self, other: &Self) -> bool { + core::ptr::eq(this.ptr.as_ptr(), other.ptr.as_ptr()) + } +} + +impl<T: 'static> ForeignOwnable for Arc<T> { + type Borrowed<'a> = ArcBorrow<'a, T>; + + fn into_foreign(self) -> *const core::ffi::c_void { + ManuallyDrop::new(self).ptr.as_ptr() as _ + } + + unsafe fn borrow<'a>(ptr: *const core::ffi::c_void) -> ArcBorrow<'a, T> { + // SAFETY: By the safety requirement of this function, we know that `ptr` came from + // a previous call to `Arc::into_foreign`. + let inner = NonNull::new(ptr as *mut ArcInner<T>).unwrap(); + + // SAFETY: The safety requirements of `from_foreign` ensure that the object remains alive + // for the lifetime of the returned value. + unsafe { ArcBorrow::new(inner) } + } + + unsafe fn from_foreign(ptr: *const core::ffi::c_void) -> Self { + // SAFETY: By the safety requirement of this function, we know that `ptr` came from + // a previous call to `Arc::into_foreign`, which guarantees that `ptr` is valid and + // holds a reference count increment that is transferrable to us. + unsafe { Self::from_inner(NonNull::new(ptr as _).unwrap()) } + } +} + +impl<T: ?Sized> Deref for Arc<T> { + type Target = T; + + fn deref(&self) -> &Self::Target { + // SAFETY: By the type invariant, there is necessarily a reference to the object, so it is + // safe to dereference it. + unsafe { &self.ptr.as_ref().data } + } +} + +impl<T: ?Sized> AsRef<T> for Arc<T> { + fn as_ref(&self) -> &T { + self.deref() + } +} + +impl<T: ?Sized> Clone for Arc<T> { + fn clone(&self) -> Self { + // INVARIANT: C `refcount_inc` saturates the refcount, so it cannot overflow to zero. + // SAFETY: By the type invariant, there is necessarily a reference to the object, so it is + // safe to increment the refcount. + unsafe { bindings::refcount_inc(self.ptr.as_ref().refcount.get()) }; + + // SAFETY: We just incremented the refcount. This increment is now owned by the new `Arc`. + unsafe { Self::from_inner(self.ptr) } + } +} + +impl<T: ?Sized> Drop for Arc<T> { + fn drop(&mut self) { + // SAFETY: By the type invariant, there is necessarily a reference to the object. We cannot + // touch `refcount` after it's decremented to a non-zero value because another thread/CPU + // may concurrently decrement it to zero and free it. It is ok to have a raw pointer to + // freed/invalid memory as long as it is never dereferenced. + let refcount = unsafe { self.ptr.as_ref() }.refcount.get(); + + // INVARIANT: If the refcount reaches zero, there are no other instances of `Arc`, and + // this instance is being dropped, so the broken invariant is not observable. + // SAFETY: Also by the type invariant, we are allowed to decrement the refcount. + let is_zero = unsafe { bindings::refcount_dec_and_test(refcount) }; + if is_zero { + // The count reached zero, we must free the memory. + // + // SAFETY: The pointer was initialised from the result of `Box::leak`. + unsafe { Box::from_raw(self.ptr.as_ptr()) }; + } + } +} + +impl<T: ?Sized> From<UniqueArc<T>> for Arc<T> { + fn from(item: UniqueArc<T>) -> Self { + item.inner + } +} + +impl<T: ?Sized> From<Pin<UniqueArc<T>>> for Arc<T> { + fn from(item: Pin<UniqueArc<T>>) -> Self { + // SAFETY: The type invariants of `Arc` guarantee that the data is pinned. + unsafe { Pin::into_inner_unchecked(item).inner } + } +} + +/// A borrowed reference to an [`Arc`] instance. +/// +/// For cases when one doesn't ever need to increment the refcount on the allocation, it is simpler +/// to use just `&T`, which we can trivially get from an `Arc<T>` instance. +/// +/// However, when one may need to increment the refcount, it is preferable to use an `ArcBorrow<T>` +/// over `&Arc<T>` because the latter results in a double-indirection: a pointer (shared reference) +/// to a pointer (`Arc<T>`) to the object (`T`). An [`ArcBorrow`] eliminates this double +/// indirection while still allowing one to increment the refcount and getting an `Arc<T>` when/if +/// needed. +/// +/// # Invariants +/// +/// There are no mutable references to the underlying [`Arc`], and it remains valid for the +/// lifetime of the [`ArcBorrow`] instance. +/// +/// # Example +/// +/// ``` +/// use kernel::sync::{Arc, ArcBorrow}; +/// +/// struct Example; +/// +/// fn do_something(e: ArcBorrow<'_, Example>) -> Arc<Example> { +/// e.into() +/// } +/// +/// let obj = Arc::try_new(Example)?; +/// let cloned = do_something(obj.as_arc_borrow()); +/// +/// // Assert that both `obj` and `cloned` point to the same underlying object. +/// assert!(core::ptr::eq(&*obj, &*cloned)); +/// # Ok::<(), Error>(()) +/// ``` +/// +/// Using `ArcBorrow<T>` as the type of `self`: +/// +/// ``` +/// use kernel::sync::{Arc, ArcBorrow}; +/// +/// struct Example { +/// a: u32, +/// b: u32, +/// } +/// +/// impl Example { +/// fn use_reference(self: ArcBorrow<'_, Self>) { +/// // ... +/// } +/// } +/// +/// let obj = Arc::try_new(Example { a: 10, b: 20 })?; +/// obj.as_arc_borrow().use_reference(); +/// # Ok::<(), Error>(()) +/// ``` +pub struct ArcBorrow<'a, T: ?Sized + 'a> { + inner: NonNull<ArcInner<T>>, + _p: PhantomData<&'a ()>, +} + +// This is to allow [`ArcBorrow`] (and variants) to be used as the type of `self`. +impl<T: ?Sized> core::ops::Receiver for ArcBorrow<'_, T> {} + +// This is to allow `ArcBorrow<U>` to be dispatched on when `ArcBorrow<T>` can be coerced into +// `ArcBorrow<U>`. +impl<T: ?Sized + Unsize<U>, U: ?Sized> core::ops::DispatchFromDyn<ArcBorrow<'_, U>> + for ArcBorrow<'_, T> +{ +} + +impl<T: ?Sized> Clone for ArcBorrow<'_, T> { + fn clone(&self) -> Self { + *self + } +} + +impl<T: ?Sized> Copy for ArcBorrow<'_, T> {} + +impl<T: ?Sized> ArcBorrow<'_, T> { + /// Creates a new [`ArcBorrow`] instance. + /// + /// # Safety + /// + /// Callers must ensure the following for the lifetime of the returned [`ArcBorrow`] instance: + /// 1. That `inner` remains valid; + /// 2. That no mutable references to `inner` are created. + unsafe fn new(inner: NonNull<ArcInner<T>>) -> Self { + // INVARIANT: The safety requirements guarantee the invariants. + Self { + inner, + _p: PhantomData, + } + } +} + +impl<T: ?Sized> From<ArcBorrow<'_, T>> for Arc<T> { + fn from(b: ArcBorrow<'_, T>) -> Self { + // SAFETY: The existence of `b` guarantees that the refcount is non-zero. `ManuallyDrop` + // guarantees that `drop` isn't called, so it's ok that the temporary `Arc` doesn't own the + // increment. + ManuallyDrop::new(unsafe { Arc::from_inner(b.inner) }) + .deref() + .clone() + } +} + +impl<T: ?Sized> Deref for ArcBorrow<'_, T> { + type Target = T; + + fn deref(&self) -> &Self::Target { + // SAFETY: By the type invariant, the underlying object is still alive with no mutable + // references to it, so it is safe to create a shared reference. + unsafe { &self.inner.as_ref().data } + } +} + +/// A refcounted object that is known to have a refcount of 1. +/// +/// It is mutable and can be converted to an [`Arc`] so that it can be shared. +/// +/// # Invariants +/// +/// `inner` always has a reference count of 1. +/// +/// # Examples +/// +/// In the following example, we make changes to the inner object before turning it into an +/// `Arc<Test>` object (after which point, it cannot be mutated directly). Note that `x.into()` +/// cannot fail. +/// +/// ``` +/// use kernel::sync::{Arc, UniqueArc}; +/// +/// struct Example { +/// a: u32, +/// b: u32, +/// } +/// +/// fn test() -> Result<Arc<Example>> { +/// let mut x = UniqueArc::try_new(Example { a: 10, b: 20 })?; +/// x.a += 1; +/// x.b += 1; +/// Ok(x.into()) +/// } +/// +/// # test().unwrap(); +/// ``` +/// +/// In the following example we first allocate memory for a ref-counted `Example` but we don't +/// initialise it on allocation. We do initialise it later with a call to [`UniqueArc::write`], +/// followed by a conversion to `Arc<Example>`. This is particularly useful when allocation happens +/// in one context (e.g., sleepable) and initialisation in another (e.g., atomic): +/// +/// ``` +/// use kernel::sync::{Arc, UniqueArc}; +/// +/// struct Example { +/// a: u32, +/// b: u32, +/// } +/// +/// fn test() -> Result<Arc<Example>> { +/// let x = UniqueArc::try_new_uninit()?; +/// Ok(x.write(Example { a: 10, b: 20 }).into()) +/// } +/// +/// # test().unwrap(); +/// ``` +/// +/// In the last example below, the caller gets a pinned instance of `Example` while converting to +/// `Arc<Example>`; this is useful in scenarios where one needs a pinned reference during +/// initialisation, for example, when initialising fields that are wrapped in locks. +/// +/// ``` +/// use kernel::sync::{Arc, UniqueArc}; +/// +/// struct Example { +/// a: u32, +/// b: u32, +/// } +/// +/// fn test() -> Result<Arc<Example>> { +/// let mut pinned = Pin::from(UniqueArc::try_new(Example { a: 10, b: 20 })?); +/// // We can modify `pinned` because it is `Unpin`. +/// pinned.as_mut().a += 1; +/// Ok(pinned.into()) +/// } +/// +/// # test().unwrap(); +/// ``` +pub struct UniqueArc<T: ?Sized> { + inner: Arc<T>, +} + +impl<T> UniqueArc<T> { + /// Tries to allocate a new [`UniqueArc`] instance. + pub fn try_new(value: T) -> Result<Self, AllocError> { + Ok(Self { + // INVARIANT: The newly-created object has a ref-count of 1. + inner: Arc::try_new(value)?, + }) + } + + /// Tries to allocate a new [`UniqueArc`] instance whose contents are not initialised yet. + pub fn try_new_uninit() -> Result<UniqueArc<MaybeUninit<T>>, AllocError> { + // INVARIANT: The refcount is initialised to a non-zero value. + let inner = Box::try_init::<AllocError>(try_init!(ArcInner { + // SAFETY: There are no safety requirements for this FFI call. + refcount: Opaque::new(unsafe { bindings::REFCOUNT_INIT(1) }), + data <- init::uninit::<T, AllocError>(), + }? AllocError))?; + Ok(UniqueArc { + // INVARIANT: The newly-created object has a ref-count of 1. + // SAFETY: The pointer from the `Box` is valid. + inner: unsafe { Arc::from_inner(Box::leak(inner).into()) }, + }) + } +} + +impl<T> UniqueArc<MaybeUninit<T>> { + /// Converts a `UniqueArc<MaybeUninit<T>>` into a `UniqueArc<T>` by writing a value into it. + pub fn write(mut self, value: T) -> UniqueArc<T> { + self.deref_mut().write(value); + // SAFETY: We just wrote the value to be initialized. + unsafe { self.assume_init() } + } + + /// Unsafely assume that `self` is initialized. + /// + /// # Safety + /// + /// The caller guarantees that the value behind this pointer has been initialized. It is + /// *immediate* UB to call this when the value is not initialized. + pub unsafe fn assume_init(self) -> UniqueArc<T> { + let inner = ManuallyDrop::new(self).inner.ptr; + UniqueArc { + // SAFETY: The new `Arc` is taking over `ptr` from `self.inner` (which won't be + // dropped). The types are compatible because `MaybeUninit<T>` is compatible with `T`. + inner: unsafe { Arc::from_inner(inner.cast()) }, + } + } + + /// Initialize `self` using the given initializer. + pub fn init_with<E>(mut self, init: impl Init<T, E>) -> core::result::Result<UniqueArc<T>, E> { + // SAFETY: The supplied pointer is valid for initialization. + match unsafe { init.__init(self.as_mut_ptr()) } { + // SAFETY: Initialization completed successfully. + Ok(()) => Ok(unsafe { self.assume_init() }), + Err(err) => Err(err), + } + } + + /// Pin-initialize `self` using the given pin-initializer. + pub fn pin_init_with<E>( + mut self, + init: impl PinInit<T, E>, + ) -> core::result::Result<Pin<UniqueArc<T>>, E> { + // SAFETY: The supplied pointer is valid for initialization and we will later pin the value + // to ensure it does not move. + match unsafe { init.__pinned_init(self.as_mut_ptr()) } { + // SAFETY: Initialization completed successfully. + Ok(()) => Ok(unsafe { self.assume_init() }.into()), + Err(err) => Err(err), + } + } +} + +impl<T: ?Sized> From<UniqueArc<T>> for Pin<UniqueArc<T>> { + fn from(obj: UniqueArc<T>) -> Self { + // SAFETY: It is not possible to move/replace `T` inside a `Pin<UniqueArc<T>>` (unless `T` + // is `Unpin`), so it is ok to convert it to `Pin<UniqueArc<T>>`. + unsafe { Pin::new_unchecked(obj) } + } +} + +impl<T: ?Sized> Deref for UniqueArc<T> { + type Target = T; + + fn deref(&self) -> &Self::Target { + self.inner.deref() + } +} + +impl<T: ?Sized> DerefMut for UniqueArc<T> { + fn deref_mut(&mut self) -> &mut Self::Target { + // SAFETY: By the `Arc` type invariant, there is necessarily a reference to the object, so + // it is safe to dereference it. Additionally, we know there is only one reference when + // it's inside a `UniqueArc`, so it is safe to get a mutable reference. + unsafe { &mut self.inner.ptr.as_mut().data } + } +} + +impl<T: fmt::Display + ?Sized> fmt::Display for UniqueArc<T> { + fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { + fmt::Display::fmt(self.deref(), f) + } +} + +impl<T: fmt::Display + ?Sized> fmt::Display for Arc<T> { + fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { + fmt::Display::fmt(self.deref(), f) + } +} + +impl<T: fmt::Debug + ?Sized> fmt::Debug for UniqueArc<T> { + fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { + fmt::Debug::fmt(self.deref(), f) + } +} + +impl<T: fmt::Debug + ?Sized> fmt::Debug for Arc<T> { + fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { + fmt::Debug::fmt(self.deref(), f) + } +} diff --git a/rust/kernel/sync/arc/std_vendor.rs b/rust/kernel/sync/arc/std_vendor.rs new file mode 100644 index 0000000000..a66a0c2831 --- /dev/null +++ b/rust/kernel/sync/arc/std_vendor.rs @@ -0,0 +1,28 @@ +// SPDX-License-Identifier: Apache-2.0 OR MIT + +//! The contents of this file come from the Rust standard library, hosted in +//! the <https://github.com/rust-lang/rust> repository, licensed under +//! "Apache-2.0 OR MIT" and adapted for kernel use. For copyright details, +//! see <https://github.com/rust-lang/rust/blob/master/COPYRIGHT>. + +use crate::sync::{arc::ArcInner, Arc}; +use core::any::Any; + +impl Arc<dyn Any + Send + Sync> { + /// Attempt to downcast the `Arc<dyn Any + Send + Sync>` to a concrete type. + pub fn downcast<T>(self) -> core::result::Result<Arc<T>, Self> + where + T: Any + Send + Sync, + { + if (*self).is::<T>() { + // SAFETY: We have just checked that the type is correct, so we can cast the pointer. + unsafe { + let ptr = self.ptr.cast::<ArcInner<T>>(); + core::mem::forget(self); + Ok(Arc::from_inner(ptr)) + } + } else { + Err(self) + } + } +} diff --git a/rust/kernel/sync/condvar.rs b/rust/kernel/sync/condvar.rs new file mode 100644 index 0000000000..ed353399c4 --- /dev/null +++ b/rust/kernel/sync/condvar.rs @@ -0,0 +1,174 @@ +// SPDX-License-Identifier: GPL-2.0 + +//! A condition variable. +//! +//! This module allows Rust code to use the kernel's [`struct wait_queue_head`] as a condition +//! variable. + +use super::{lock::Backend, lock::Guard, LockClassKey}; +use crate::{bindings, init::PinInit, pin_init, str::CStr, types::Opaque}; +use core::marker::PhantomPinned; +use macros::pin_data; + +/// Creates a [`CondVar`] initialiser with the given name and a newly-created lock class. +#[macro_export] +macro_rules! new_condvar { + ($($name:literal)?) => { + $crate::sync::CondVar::new($crate::optional_name!($($name)?), $crate::static_lock_class!()) + }; +} + +/// A conditional variable. +/// +/// Exposes the kernel's [`struct wait_queue_head`] as a condition variable. It allows the caller to +/// atomically release the given lock and go to sleep. It reacquires the lock when it wakes up. And +/// it wakes up when notified by another thread (via [`CondVar::notify_one`] or +/// [`CondVar::notify_all`]) or because the thread received a signal. It may also wake up +/// spuriously. +/// +/// Instances of [`CondVar`] need a lock class and to be pinned. The recommended way to create such +/// instances is with the [`pin_init`](crate::pin_init) and [`new_condvar`] macros. +/// +/// # Examples +/// +/// The following is an example of using a condvar with a mutex: +/// +/// ``` +/// use kernel::sync::{CondVar, Mutex}; +/// use kernel::{new_condvar, new_mutex}; +/// +/// #[pin_data] +/// pub struct Example { +/// #[pin] +/// value: Mutex<u32>, +/// +/// #[pin] +/// value_changed: CondVar, +/// } +/// +/// /// Waits for `e.value` to become `v`. +/// fn wait_for_value(e: &Example, v: u32) { +/// let mut guard = e.value.lock(); +/// while *guard != v { +/// e.value_changed.wait_uninterruptible(&mut guard); +/// } +/// } +/// +/// /// Increments `e.value` and notifies all potential waiters. +/// fn increment(e: &Example) { +/// *e.value.lock() += 1; +/// e.value_changed.notify_all(); +/// } +/// +/// /// Allocates a new boxed `Example`. +/// fn new_example() -> Result<Pin<Box<Example>>> { +/// Box::pin_init(pin_init!(Example { +/// value <- new_mutex!(0), +/// value_changed <- new_condvar!(), +/// })) +/// } +/// ``` +/// +/// [`struct wait_queue_head`]: ../../../include/linux/wait.h +#[pin_data] +pub struct CondVar { + #[pin] + pub(crate) wait_list: Opaque<bindings::wait_queue_head>, + + /// A condvar needs to be pinned because it contains a [`struct list_head`] that is + /// self-referential, so it cannot be safely moved once it is initialised. + #[pin] + _pin: PhantomPinned, +} + +// SAFETY: `CondVar` only uses a `struct wait_queue_head`, which is safe to use on any thread. +#[allow(clippy::non_send_fields_in_send_ty)] +unsafe impl Send for CondVar {} + +// SAFETY: `CondVar` only uses a `struct wait_queue_head`, which is safe to use on multiple threads +// concurrently. +unsafe impl Sync for CondVar {} + +impl CondVar { + /// Constructs a new condvar initialiser. + #[allow(clippy::new_ret_no_self)] + pub fn new(name: &'static CStr, key: &'static LockClassKey) -> impl PinInit<Self> { + pin_init!(Self { + _pin: PhantomPinned, + // SAFETY: `slot` is valid while the closure is called and both `name` and `key` have + // static lifetimes so they live indefinitely. + wait_list <- Opaque::ffi_init(|slot| unsafe { + bindings::__init_waitqueue_head(slot, name.as_char_ptr(), key.as_ptr()) + }), + }) + } + + fn wait_internal<T: ?Sized, B: Backend>(&self, wait_state: u32, guard: &mut Guard<'_, T, B>) { + let wait = Opaque::<bindings::wait_queue_entry>::uninit(); + + // SAFETY: `wait` points to valid memory. + unsafe { bindings::init_wait(wait.get()) }; + + // SAFETY: Both `wait` and `wait_list` point to valid memory. + unsafe { + bindings::prepare_to_wait_exclusive(self.wait_list.get(), wait.get(), wait_state as _) + }; + + // SAFETY: No arguments, switches to another thread. + guard.do_unlocked(|| unsafe { bindings::schedule() }); + + // SAFETY: Both `wait` and `wait_list` point to valid memory. + unsafe { bindings::finish_wait(self.wait_list.get(), wait.get()) }; + } + + /// Releases the lock and waits for a notification in interruptible mode. + /// + /// Atomically releases the given lock (whose ownership is proven by the guard) and puts the + /// thread to sleep, reacquiring the lock on wake up. It wakes up when notified by + /// [`CondVar::notify_one`] or [`CondVar::notify_all`], or when the thread receives a signal. + /// It may also wake up spuriously. + /// + /// Returns whether there is a signal pending. + #[must_use = "wait returns if a signal is pending, so the caller must check the return value"] + pub fn wait<T: ?Sized, B: Backend>(&self, guard: &mut Guard<'_, T, B>) -> bool { + self.wait_internal(bindings::TASK_INTERRUPTIBLE, guard); + crate::current!().signal_pending() + } + + /// Releases the lock and waits for a notification in uninterruptible mode. + /// + /// Similar to [`CondVar::wait`], except that the wait is not interruptible. That is, the + /// thread won't wake up due to signals. It may, however, wake up supirously. + pub fn wait_uninterruptible<T: ?Sized, B: Backend>(&self, guard: &mut Guard<'_, T, B>) { + self.wait_internal(bindings::TASK_UNINTERRUPTIBLE, guard) + } + + /// Calls the kernel function to notify the appropriate number of threads with the given flags. + fn notify(&self, count: i32, flags: u32) { + // SAFETY: `wait_list` points to valid memory. + unsafe { + bindings::__wake_up( + self.wait_list.get(), + bindings::TASK_NORMAL, + count, + flags as _, + ) + }; + } + + /// Wakes a single waiter up, if any. + /// + /// This is not 'sticky' in the sense that if no thread is waiting, the notification is lost + /// completely (as opposed to automatically waking up the next waiter). + pub fn notify_one(&self) { + self.notify(1, 0); + } + + /// Wakes all waiters up, if any. + /// + /// This is not 'sticky' in the sense that if no thread is waiting, the notification is lost + /// completely (as opposed to automatically waking up the next waiter). + pub fn notify_all(&self) { + self.notify(0, 0); + } +} diff --git a/rust/kernel/sync/lock.rs b/rust/kernel/sync/lock.rs new file mode 100644 index 0000000000..70a785f047 --- /dev/null +++ b/rust/kernel/sync/lock.rs @@ -0,0 +1,191 @@ +// SPDX-License-Identifier: GPL-2.0 + +//! Generic kernel lock and guard. +//! +//! It contains a generic Rust lock and guard that allow for different backends (e.g., mutexes, +//! spinlocks, raw spinlocks) to be provided with minimal effort. + +use super::LockClassKey; +use crate::{bindings, init::PinInit, pin_init, str::CStr, types::Opaque, types::ScopeGuard}; +use core::{cell::UnsafeCell, marker::PhantomData, marker::PhantomPinned}; +use macros::pin_data; + +pub mod mutex; +pub mod spinlock; + +/// The "backend" of a lock. +/// +/// It is the actual implementation of the lock, without the need to repeat patterns used in all +/// locks. +/// +/// # Safety +/// +/// - Implementers must ensure that only one thread/CPU may access the protected data once the lock +/// is owned, that is, between calls to `lock` and `unlock`. +/// - Implementers must also ensure that `relock` uses the same locking method as the original +/// lock operation. +pub unsafe trait Backend { + /// The state required by the lock. + type State; + + /// The state required to be kept between lock and unlock. + type GuardState; + + /// Initialises the lock. + /// + /// # Safety + /// + /// `ptr` must be valid for write for the duration of the call, while `name` and `key` must + /// remain valid for read indefinitely. + unsafe fn init( + ptr: *mut Self::State, + name: *const core::ffi::c_char, + key: *mut bindings::lock_class_key, + ); + + /// Acquires the lock, making the caller its owner. + /// + /// # Safety + /// + /// Callers must ensure that [`Backend::init`] has been previously called. + #[must_use] + unsafe fn lock(ptr: *mut Self::State) -> Self::GuardState; + + /// Releases the lock, giving up its ownership. + /// + /// # Safety + /// + /// It must only be called by the current owner of the lock. + unsafe fn unlock(ptr: *mut Self::State, guard_state: &Self::GuardState); + + /// Reacquires the lock, making the caller its owner. + /// + /// # Safety + /// + /// Callers must ensure that `guard_state` comes from a previous call to [`Backend::lock`] (or + /// variant) that has been unlocked with [`Backend::unlock`] and will be relocked now. + unsafe fn relock(ptr: *mut Self::State, guard_state: &mut Self::GuardState) { + // SAFETY: The safety requirements ensure that the lock is initialised. + *guard_state = unsafe { Self::lock(ptr) }; + } +} + +/// A mutual exclusion primitive. +/// +/// Exposes one of the kernel locking primitives. Which one is exposed depends on the lock +/// [`Backend`] specified as the generic parameter `B`. +#[pin_data] +pub struct Lock<T: ?Sized, B: Backend> { + /// The kernel lock object. + #[pin] + state: Opaque<B::State>, + + /// Some locks are known to be self-referential (e.g., mutexes), while others are architecture + /// or config defined (e.g., spinlocks). So we conservatively require them to be pinned in case + /// some architecture uses self-references now or in the future. + #[pin] + _pin: PhantomPinned, + + /// The data protected by the lock. + pub(crate) data: UnsafeCell<T>, +} + +// SAFETY: `Lock` can be transferred across thread boundaries iff the data it protects can. +unsafe impl<T: ?Sized + Send, B: Backend> Send for Lock<T, B> {} + +// SAFETY: `Lock` serialises the interior mutability it provides, so it is `Sync` as long as the +// data it protects is `Send`. +unsafe impl<T: ?Sized + Send, B: Backend> Sync for Lock<T, B> {} + +impl<T, B: Backend> Lock<T, B> { + /// Constructs a new lock initialiser. + #[allow(clippy::new_ret_no_self)] + pub fn new(t: T, name: &'static CStr, key: &'static LockClassKey) -> impl PinInit<Self> { + pin_init!(Self { + data: UnsafeCell::new(t), + _pin: PhantomPinned, + // SAFETY: `slot` is valid while the closure is called and both `name` and `key` have + // static lifetimes so they live indefinitely. + state <- Opaque::ffi_init(|slot| unsafe { + B::init(slot, name.as_char_ptr(), key.as_ptr()) + }), + }) + } +} + +impl<T: ?Sized, B: Backend> Lock<T, B> { + /// Acquires the lock and gives the caller access to the data protected by it. + pub fn lock(&self) -> Guard<'_, T, B> { + // SAFETY: The constructor of the type calls `init`, so the existence of the object proves + // that `init` was called. + let state = unsafe { B::lock(self.state.get()) }; + // SAFETY: The lock was just acquired. + unsafe { Guard::new(self, state) } + } +} + +/// A lock guard. +/// +/// Allows mutual exclusion primitives that implement the [`Backend`] trait to automatically unlock +/// when a guard goes out of scope. It also provides a safe and convenient way to access the data +/// protected by the lock. +#[must_use = "the lock unlocks immediately when the guard is unused"] +pub struct Guard<'a, T: ?Sized, B: Backend> { + pub(crate) lock: &'a Lock<T, B>, + pub(crate) state: B::GuardState, + _not_send: PhantomData<*mut ()>, +} + +// SAFETY: `Guard` is sync when the data protected by the lock is also sync. +unsafe impl<T: Sync + ?Sized, B: Backend> Sync for Guard<'_, T, B> {} + +impl<T: ?Sized, B: Backend> Guard<'_, T, B> { + pub(crate) fn do_unlocked(&mut self, cb: impl FnOnce()) { + // SAFETY: The caller owns the lock, so it is safe to unlock it. + unsafe { B::unlock(self.lock.state.get(), &self.state) }; + + // SAFETY: The lock was just unlocked above and is being relocked now. + let _relock = + ScopeGuard::new(|| unsafe { B::relock(self.lock.state.get(), &mut self.state) }); + + cb(); + } +} + +impl<T: ?Sized, B: Backend> core::ops::Deref for Guard<'_, T, B> { + type Target = T; + + fn deref(&self) -> &Self::Target { + // SAFETY: The caller owns the lock, so it is safe to deref the protected data. + unsafe { &*self.lock.data.get() } + } +} + +impl<T: ?Sized, B: Backend> core::ops::DerefMut for Guard<'_, T, B> { + fn deref_mut(&mut self) -> &mut Self::Target { + // SAFETY: The caller owns the lock, so it is safe to deref the protected data. + unsafe { &mut *self.lock.data.get() } + } +} + +impl<T: ?Sized, B: Backend> Drop for Guard<'_, T, B> { + fn drop(&mut self) { + // SAFETY: The caller owns the lock, so it is safe to unlock it. + unsafe { B::unlock(self.lock.state.get(), &self.state) }; + } +} + +impl<'a, T: ?Sized, B: Backend> Guard<'a, T, B> { + /// Constructs a new immutable lock guard. + /// + /// # Safety + /// + /// The caller must ensure that it owns the lock. + pub(crate) unsafe fn new(lock: &'a Lock<T, B>, state: B::GuardState) -> Self { + Self { + lock, + state, + _not_send: PhantomData, + } + } +} diff --git a/rust/kernel/sync/lock/mutex.rs b/rust/kernel/sync/lock/mutex.rs new file mode 100644 index 0000000000..09276fedc0 --- /dev/null +++ b/rust/kernel/sync/lock/mutex.rs @@ -0,0 +1,119 @@ +// SPDX-License-Identifier: GPL-2.0 + +//! A kernel mutex. +//! +//! This module allows Rust code to use the kernel's `struct mutex`. + +use crate::bindings; + +/// Creates a [`Mutex`] initialiser with the given name and a newly-created lock class. +/// +/// It uses the name if one is given, otherwise it generates one based on the file name and line +/// number. +#[macro_export] +macro_rules! new_mutex { + ($inner:expr $(, $name:literal)? $(,)?) => { + $crate::sync::Mutex::new( + $inner, $crate::optional_name!($($name)?), $crate::static_lock_class!()) + }; +} + +/// A mutual exclusion primitive. +/// +/// Exposes the kernel's [`struct mutex`]. When multiple threads attempt to lock the same mutex, +/// only one at a time is allowed to progress, the others will block (sleep) until the mutex is +/// unlocked, at which point another thread will be allowed to wake up and make progress. +/// +/// Since it may block, [`Mutex`] needs to be used with care in atomic contexts. +/// +/// Instances of [`Mutex`] need a lock class and to be pinned. The recommended way to create such +/// instances is with the [`pin_init`](crate::pin_init) and [`new_mutex`] macros. +/// +/// # Examples +/// +/// The following example shows how to declare, allocate and initialise a struct (`Example`) that +/// contains an inner struct (`Inner`) that is protected by a mutex. +/// +/// ``` +/// use kernel::{init::InPlaceInit, init::PinInit, new_mutex, pin_init, sync::Mutex}; +/// +/// struct Inner { +/// a: u32, +/// b: u32, +/// } +/// +/// #[pin_data] +/// struct Example { +/// c: u32, +/// #[pin] +/// d: Mutex<Inner>, +/// } +/// +/// impl Example { +/// fn new() -> impl PinInit<Self> { +/// pin_init!(Self { +/// c: 10, +/// d <- new_mutex!(Inner { a: 20, b: 30 }), +/// }) +/// } +/// } +/// +/// // Allocate a boxed `Example`. +/// let e = Box::pin_init(Example::new())?; +/// assert_eq!(e.c, 10); +/// assert_eq!(e.d.lock().a, 20); +/// assert_eq!(e.d.lock().b, 30); +/// # Ok::<(), Error>(()) +/// ``` +/// +/// The following example shows how to use interior mutability to modify the contents of a struct +/// protected by a mutex despite only having a shared reference: +/// +/// ``` +/// use kernel::sync::Mutex; +/// +/// struct Example { +/// a: u32, +/// b: u32, +/// } +/// +/// fn example(m: &Mutex<Example>) { +/// let mut guard = m.lock(); +/// guard.a += 10; +/// guard.b += 20; +/// } +/// ``` +/// +/// [`struct mutex`]: ../../../../include/linux/mutex.h +pub type Mutex<T> = super::Lock<T, MutexBackend>; + +/// A kernel `struct mutex` lock backend. +pub struct MutexBackend; + +// SAFETY: The underlying kernel `struct mutex` object ensures mutual exclusion. +unsafe impl super::Backend for MutexBackend { + type State = bindings::mutex; + type GuardState = (); + + unsafe fn init( + ptr: *mut Self::State, + name: *const core::ffi::c_char, + key: *mut bindings::lock_class_key, + ) { + // SAFETY: The safety requirements ensure that `ptr` is valid for writes, and `name` and + // `key` are valid for read indefinitely. + unsafe { bindings::__mutex_init(ptr, name, key) } + } + + unsafe fn lock(ptr: *mut Self::State) -> Self::GuardState { + // SAFETY: The safety requirements of this function ensure that `ptr` points to valid + // memory, and that it has been initialised before. + unsafe { bindings::mutex_lock(ptr) }; + } + + unsafe fn unlock(ptr: *mut Self::State, _guard_state: &Self::GuardState) { + // SAFETY: The safety requirements of this function ensure that `ptr` is valid and that the + // caller is the owner of the mutex. + unsafe { bindings::mutex_unlock(ptr) }; + } +} diff --git a/rust/kernel/sync/lock/spinlock.rs b/rust/kernel/sync/lock/spinlock.rs new file mode 100644 index 0000000000..91eb2c9e91 --- /dev/null +++ b/rust/kernel/sync/lock/spinlock.rs @@ -0,0 +1,118 @@ +// SPDX-License-Identifier: GPL-2.0 + +//! A kernel spinlock. +//! +//! This module allows Rust code to use the kernel's `spinlock_t`. + +use crate::bindings; + +/// Creates a [`SpinLock`] initialiser with the given name and a newly-created lock class. +/// +/// It uses the name if one is given, otherwise it generates one based on the file name and line +/// number. +#[macro_export] +macro_rules! new_spinlock { + ($inner:expr $(, $name:literal)? $(,)?) => { + $crate::sync::SpinLock::new( + $inner, $crate::optional_name!($($name)?), $crate::static_lock_class!()) + }; +} + +/// A spinlock. +/// +/// Exposes the kernel's [`spinlock_t`]. When multiple CPUs attempt to lock the same spinlock, only +/// one at a time is allowed to progress, the others will block (spinning) until the spinlock is +/// unlocked, at which point another CPU will be allowed to make progress. +/// +/// Instances of [`SpinLock`] need a lock class and to be pinned. The recommended way to create such +/// instances is with the [`pin_init`](crate::pin_init) and [`new_spinlock`] macros. +/// +/// # Examples +/// +/// The following example shows how to declare, allocate and initialise a struct (`Example`) that +/// contains an inner struct (`Inner`) that is protected by a spinlock. +/// +/// ``` +/// use kernel::{init::InPlaceInit, init::PinInit, new_spinlock, pin_init, sync::SpinLock}; +/// +/// struct Inner { +/// a: u32, +/// b: u32, +/// } +/// +/// #[pin_data] +/// struct Example { +/// c: u32, +/// #[pin] +/// d: SpinLock<Inner>, +/// } +/// +/// impl Example { +/// fn new() -> impl PinInit<Self> { +/// pin_init!(Self { +/// c: 10, +/// d <- new_spinlock!(Inner { a: 20, b: 30 }), +/// }) +/// } +/// } +/// +/// // Allocate a boxed `Example`. +/// let e = Box::pin_init(Example::new())?; +/// assert_eq!(e.c, 10); +/// assert_eq!(e.d.lock().a, 20); +/// assert_eq!(e.d.lock().b, 30); +/// # Ok::<(), Error>(()) +/// ``` +/// +/// The following example shows how to use interior mutability to modify the contents of a struct +/// protected by a spinlock despite only having a shared reference: +/// +/// ``` +/// use kernel::sync::SpinLock; +/// +/// struct Example { +/// a: u32, +/// b: u32, +/// } +/// +/// fn example(m: &SpinLock<Example>) { +/// let mut guard = m.lock(); +/// guard.a += 10; +/// guard.b += 20; +/// } +/// ``` +/// +/// [`spinlock_t`]: ../../../../include/linux/spinlock.h +pub type SpinLock<T> = super::Lock<T, SpinLockBackend>; + +/// A kernel `spinlock_t` lock backend. +pub struct SpinLockBackend; + +// SAFETY: The underlying kernel `spinlock_t` object ensures mutual exclusion. `relock` uses the +// default implementation that always calls the same locking method. +unsafe impl super::Backend for SpinLockBackend { + type State = bindings::spinlock_t; + type GuardState = (); + + unsafe fn init( + ptr: *mut Self::State, + name: *const core::ffi::c_char, + key: *mut bindings::lock_class_key, + ) { + // SAFETY: The safety requirements ensure that `ptr` is valid for writes, and `name` and + // `key` are valid for read indefinitely. + unsafe { bindings::__spin_lock_init(ptr, name, key) } + } + + unsafe fn lock(ptr: *mut Self::State) -> Self::GuardState { + // SAFETY: The safety requirements of this function ensure that `ptr` points to valid + // memory, and that it has been initialised before. + unsafe { bindings::spin_lock(ptr) } + } + + unsafe fn unlock(ptr: *mut Self::State, _guard_state: &Self::GuardState) { + // SAFETY: The safety requirements of this function ensure that `ptr` is valid and that the + // caller is the owner of the mutex. + unsafe { bindings::spin_unlock(ptr) } + } +} diff --git a/rust/kernel/sync/locked_by.rs b/rust/kernel/sync/locked_by.rs new file mode 100644 index 0000000000..b17ee5cd98 --- /dev/null +++ b/rust/kernel/sync/locked_by.rs @@ -0,0 +1,156 @@ +// SPDX-License-Identifier: GPL-2.0 + +//! A wrapper for data protected by a lock that does not wrap it. + +use super::{lock::Backend, lock::Lock}; +use crate::build_assert; +use core::{cell::UnsafeCell, mem::size_of, ptr}; + +/// Allows access to some data to be serialised by a lock that does not wrap it. +/// +/// In most cases, data protected by a lock is wrapped by the appropriate lock type, e.g., +/// [`super::Mutex`] or [`super::SpinLock`]. [`LockedBy`] is meant for cases when this is not +/// possible. For example, if a container has a lock and some data in the contained elements needs +/// to be protected by the same lock. +/// +/// [`LockedBy`] wraps the data in lieu of another locking primitive, and only allows access to it +/// when the caller shows evidence that the 'external' lock is locked. It panics if the evidence +/// refers to the wrong instance of the lock. +/// +/// # Examples +/// +/// The following is an example for illustrative purposes: `InnerDirectory::bytes_used` is an +/// aggregate of all `InnerFile::bytes_used` and must be kept consistent; so we wrap `InnerFile` in +/// a `LockedBy` so that it shares a lock with `InnerDirectory`. This allows us to enforce at +/// compile-time that access to `InnerFile` is only granted when an `InnerDirectory` is also +/// locked; we enforce at run time that the right `InnerDirectory` is locked. +/// +/// ``` +/// use kernel::sync::{LockedBy, Mutex}; +/// +/// struct InnerFile { +/// bytes_used: u64, +/// } +/// +/// struct File { +/// _ino: u32, +/// inner: LockedBy<InnerFile, InnerDirectory>, +/// } +/// +/// struct InnerDirectory { +/// /// The sum of the bytes used by all files. +/// bytes_used: u64, +/// _files: Vec<File>, +/// } +/// +/// struct Directory { +/// _ino: u32, +/// inner: Mutex<InnerDirectory>, +/// } +/// +/// /// Prints `bytes_used` from both the directory and file. +/// fn print_bytes_used(dir: &Directory, file: &File) { +/// let guard = dir.inner.lock(); +/// let inner_file = file.inner.access(&guard); +/// pr_info!("{} {}", guard.bytes_used, inner_file.bytes_used); +/// } +/// +/// /// Increments `bytes_used` for both the directory and file. +/// fn inc_bytes_used(dir: &Directory, file: &File) { +/// let mut guard = dir.inner.lock(); +/// guard.bytes_used += 10; +/// +/// let file_inner = file.inner.access_mut(&mut guard); +/// file_inner.bytes_used += 10; +/// } +/// +/// /// Creates a new file. +/// fn new_file(ino: u32, dir: &Directory) -> File { +/// File { +/// _ino: ino, +/// inner: LockedBy::new(&dir.inner, InnerFile { bytes_used: 0 }), +/// } +/// } +/// ``` +pub struct LockedBy<T: ?Sized, U: ?Sized> { + owner: *const U, + data: UnsafeCell<T>, +} + +// SAFETY: `LockedBy` can be transferred across thread boundaries iff the data it protects can. +unsafe impl<T: ?Sized + Send, U: ?Sized> Send for LockedBy<T, U> {} + +// SAFETY: `LockedBy` serialises the interior mutability it provides, so it is `Sync` as long as the +// data it protects is `Send`. +unsafe impl<T: ?Sized + Send, U: ?Sized> Sync for LockedBy<T, U> {} + +impl<T, U> LockedBy<T, U> { + /// Constructs a new instance of [`LockedBy`]. + /// + /// It stores a raw pointer to the owner that is never dereferenced. It is only used to ensure + /// that the right owner is being used to access the protected data. If the owner is freed, the + /// data becomes inaccessible; if another instance of the owner is allocated *on the same + /// memory location*, the data becomes accessible again: none of this affects memory safety + /// because in any case at most one thread (or CPU) can access the protected data at a time. + pub fn new<B: Backend>(owner: &Lock<U, B>, data: T) -> Self { + build_assert!( + size_of::<Lock<U, B>>() > 0, + "The lock type cannot be a ZST because it may be impossible to distinguish instances" + ); + Self { + owner: owner.data.get(), + data: UnsafeCell::new(data), + } + } +} + +impl<T: ?Sized, U> LockedBy<T, U> { + /// Returns a reference to the protected data when the caller provides evidence (via a + /// reference) that the owner is locked. + /// + /// `U` cannot be a zero-sized type (ZST) because there are ways to get an `&U` that matches + /// the data protected by the lock without actually holding it. + /// + /// # Panics + /// + /// Panics if `owner` is different from the data protected by the lock used in + /// [`new`](LockedBy::new). + pub fn access<'a>(&'a self, owner: &'a U) -> &'a T { + build_assert!( + size_of::<U>() > 0, + "`U` cannot be a ZST because `owner` wouldn't be unique" + ); + if !ptr::eq(owner, self.owner) { + panic!("mismatched owners"); + } + + // SAFETY: `owner` is evidence that the owner is locked. + unsafe { &*self.data.get() } + } + + /// Returns a mutable reference to the protected data when the caller provides evidence (via a + /// mutable owner) that the owner is locked mutably. + /// + /// `U` cannot be a zero-sized type (ZST) because there are ways to get an `&mut U` that + /// matches the data protected by the lock without actually holding it. + /// + /// Showing a mutable reference to the owner is sufficient because we know no other references + /// can exist to it. + /// + /// # Panics + /// + /// Panics if `owner` is different from the data protected by the lock used in + /// [`new`](LockedBy::new). + pub fn access_mut<'a>(&'a self, owner: &'a mut U) -> &'a mut T { + build_assert!( + size_of::<U>() > 0, + "`U` cannot be a ZST because `owner` wouldn't be unique" + ); + if !ptr::eq(owner, self.owner) { + panic!("mismatched owners"); + } + + // SAFETY: `owner` is evidence that there is only one reference to the owner. + unsafe { &mut *self.data.get() } + } +} diff --git a/rust/kernel/task.rs b/rust/kernel/task.rs new file mode 100644 index 0000000000..7eda15e5f1 --- /dev/null +++ b/rust/kernel/task.rs @@ -0,0 +1,161 @@ +// SPDX-License-Identifier: GPL-2.0 + +//! Tasks (threads and processes). +//! +//! C header: [`include/linux/sched.h`](../../../../include/linux/sched.h). + +use crate::{bindings, types::Opaque}; +use core::{marker::PhantomData, ops::Deref, ptr}; + +/// Returns the currently running task. +#[macro_export] +macro_rules! current { + () => { + // SAFETY: Deref + addr-of below create a temporary `TaskRef` that cannot outlive the + // caller. + unsafe { &*$crate::task::Task::current() } + }; +} + +/// Wraps the kernel's `struct task_struct`. +/// +/// # Invariants +/// +/// All instances are valid tasks created by the C portion of the kernel. +/// +/// Instances of this type are always ref-counted, that is, a call to `get_task_struct` ensures +/// that the allocation remains valid at least until the matching call to `put_task_struct`. +/// +/// # Examples +/// +/// The following is an example of getting the PID of the current thread with zero additional cost +/// when compared to the C version: +/// +/// ``` +/// let pid = current!().pid(); +/// ``` +/// +/// Getting the PID of the current process, also zero additional cost: +/// +/// ``` +/// let pid = current!().group_leader().pid(); +/// ``` +/// +/// Getting the current task and storing it in some struct. The reference count is automatically +/// incremented when creating `State` and decremented when it is dropped: +/// +/// ``` +/// use kernel::{task::Task, types::ARef}; +/// +/// struct State { +/// creator: ARef<Task>, +/// index: u32, +/// } +/// +/// impl State { +/// fn new() -> Self { +/// Self { +/// creator: current!().into(), +/// index: 0, +/// } +/// } +/// } +/// ``` +#[repr(transparent)] +pub struct Task(pub(crate) Opaque<bindings::task_struct>); + +// SAFETY: By design, the only way to access a `Task` is via the `current` function or via an +// `ARef<Task>` obtained through the `AlwaysRefCounted` impl. This means that the only situation in +// which a `Task` can be accessed mutably is when the refcount drops to zero and the destructor +// runs. It is safe for that to happen on any thread, so it is ok for this type to be `Send`. +unsafe impl Send for Task {} + +// SAFETY: It's OK to access `Task` through shared references from other threads because we're +// either accessing properties that don't change (e.g., `pid`, `group_leader`) or that are properly +// synchronised by C code (e.g., `signal_pending`). +unsafe impl Sync for Task {} + +/// The type of process identifiers (PIDs). +type Pid = bindings::pid_t; + +impl Task { + /// Returns a task reference for the currently executing task/thread. + /// + /// The recommended way to get the current task/thread is to use the + /// [`current`](crate::current) macro because it is safe. + /// + /// # Safety + /// + /// Callers must ensure that the returned object doesn't outlive the current task/thread. + pub unsafe fn current() -> impl Deref<Target = Task> { + struct TaskRef<'a> { + task: &'a Task, + _not_send: PhantomData<*mut ()>, + } + + impl Deref for TaskRef<'_> { + type Target = Task; + + fn deref(&self) -> &Self::Target { + self.task + } + } + + // SAFETY: Just an FFI call with no additional safety requirements. + let ptr = unsafe { bindings::get_current() }; + + TaskRef { + // SAFETY: If the current thread is still running, the current task is valid. Given + // that `TaskRef` is not `Send`, we know it cannot be transferred to another thread + // (where it could potentially outlive the caller). + task: unsafe { &*ptr.cast() }, + _not_send: PhantomData, + } + } + + /// Returns the group leader of the given task. + pub fn group_leader(&self) -> &Task { + // SAFETY: By the type invariant, we know that `self.0` is a valid task. Valid tasks always + // have a valid group_leader. + let ptr = unsafe { *ptr::addr_of!((*self.0.get()).group_leader) }; + + // SAFETY: The lifetime of the returned task reference is tied to the lifetime of `self`, + // and given that a task has a reference to its group leader, we know it must be valid for + // the lifetime of the returned task reference. + unsafe { &*ptr.cast() } + } + + /// Returns the PID of the given task. + pub fn pid(&self) -> Pid { + // SAFETY: By the type invariant, we know that `self.0` is a valid task. Valid tasks always + // have a valid pid. + unsafe { *ptr::addr_of!((*self.0.get()).pid) } + } + + /// Determines whether the given task has pending signals. + pub fn signal_pending(&self) -> bool { + // SAFETY: By the type invariant, we know that `self.0` is valid. + unsafe { bindings::signal_pending(self.0.get()) != 0 } + } + + /// Wakes up the task. + pub fn wake_up(&self) { + // SAFETY: By the type invariant, we know that `self.0.get()` is non-null and valid. + // And `wake_up_process` is safe to be called for any valid task, even if the task is + // running. + unsafe { bindings::wake_up_process(self.0.get()) }; + } +} + +// SAFETY: The type invariants guarantee that `Task` is always ref-counted. +unsafe impl crate::types::AlwaysRefCounted for Task { + fn inc_ref(&self) { + // SAFETY: The existence of a shared reference means that the refcount is nonzero. + unsafe { bindings::get_task_struct(self.0.get()) }; + } + + unsafe fn dec_ref(obj: ptr::NonNull<Self>) { + // SAFETY: The safety requirements guarantee that the refcount is nonzero. + unsafe { bindings::put_task_struct(obj.cast().as_ptr()) } + } +} diff --git a/rust/kernel/types.rs b/rust/kernel/types.rs new file mode 100644 index 0000000000..fdb778e65d --- /dev/null +++ b/rust/kernel/types.rs @@ -0,0 +1,389 @@ +// SPDX-License-Identifier: GPL-2.0 + +//! Kernel types. + +use crate::init::{self, PinInit}; +use alloc::boxed::Box; +use core::{ + cell::UnsafeCell, + marker::{PhantomData, PhantomPinned}, + mem::MaybeUninit, + ops::{Deref, DerefMut}, + ptr::NonNull, +}; + +/// Used to transfer ownership to and from foreign (non-Rust) languages. +/// +/// Ownership is transferred from Rust to a foreign language by calling [`Self::into_foreign`] and +/// later may be transferred back to Rust by calling [`Self::from_foreign`]. +/// +/// This trait is meant to be used in cases when Rust objects are stored in C objects and +/// eventually "freed" back to Rust. +pub trait ForeignOwnable: Sized { + /// Type of values borrowed between calls to [`ForeignOwnable::into_foreign`] and + /// [`ForeignOwnable::from_foreign`]. + type Borrowed<'a>; + + /// Converts a Rust-owned object to a foreign-owned one. + /// + /// The foreign representation is a pointer to void. + fn into_foreign(self) -> *const core::ffi::c_void; + + /// Borrows a foreign-owned object. + /// + /// # Safety + /// + /// `ptr` must have been returned by a previous call to [`ForeignOwnable::into_foreign`] for + /// which a previous matching [`ForeignOwnable::from_foreign`] hasn't been called yet. + unsafe fn borrow<'a>(ptr: *const core::ffi::c_void) -> Self::Borrowed<'a>; + + /// Converts a foreign-owned object back to a Rust-owned one. + /// + /// # Safety + /// + /// `ptr` must have been returned by a previous call to [`ForeignOwnable::into_foreign`] for + /// which a previous matching [`ForeignOwnable::from_foreign`] hasn't been called yet. + /// Additionally, all instances (if any) of values returned by [`ForeignOwnable::borrow`] for + /// this object must have been dropped. + unsafe fn from_foreign(ptr: *const core::ffi::c_void) -> Self; +} + +impl<T: 'static> ForeignOwnable for Box<T> { + type Borrowed<'a> = &'a T; + + fn into_foreign(self) -> *const core::ffi::c_void { + Box::into_raw(self) as _ + } + + unsafe fn borrow<'a>(ptr: *const core::ffi::c_void) -> &'a T { + // SAFETY: The safety requirements for this function ensure that the object is still alive, + // so it is safe to dereference the raw pointer. + // The safety requirements of `from_foreign` also ensure that the object remains alive for + // the lifetime of the returned value. + unsafe { &*ptr.cast() } + } + + unsafe fn from_foreign(ptr: *const core::ffi::c_void) -> Self { + // SAFETY: The safety requirements of this function ensure that `ptr` comes from a previous + // call to `Self::into_foreign`. + unsafe { Box::from_raw(ptr as _) } + } +} + +impl ForeignOwnable for () { + type Borrowed<'a> = (); + + fn into_foreign(self) -> *const core::ffi::c_void { + core::ptr::NonNull::dangling().as_ptr() + } + + unsafe fn borrow<'a>(_: *const core::ffi::c_void) -> Self::Borrowed<'a> {} + + unsafe fn from_foreign(_: *const core::ffi::c_void) -> Self {} +} + +/// Runs a cleanup function/closure when dropped. +/// +/// The [`ScopeGuard::dismiss`] function prevents the cleanup function from running. +/// +/// # Examples +/// +/// In the example below, we have multiple exit paths and we want to log regardless of which one is +/// taken: +/// ``` +/// # use kernel::types::ScopeGuard; +/// fn example1(arg: bool) { +/// let _log = ScopeGuard::new(|| pr_info!("example1 completed\n")); +/// +/// if arg { +/// return; +/// } +/// +/// pr_info!("Do something...\n"); +/// } +/// +/// # example1(false); +/// # example1(true); +/// ``` +/// +/// In the example below, we want to log the same message on all early exits but a different one on +/// the main exit path: +/// ``` +/// # use kernel::types::ScopeGuard; +/// fn example2(arg: bool) { +/// let log = ScopeGuard::new(|| pr_info!("example2 returned early\n")); +/// +/// if arg { +/// return; +/// } +/// +/// // (Other early returns...) +/// +/// log.dismiss(); +/// pr_info!("example2 no early return\n"); +/// } +/// +/// # example2(false); +/// # example2(true); +/// ``` +/// +/// In the example below, we need a mutable object (the vector) to be accessible within the log +/// function, so we wrap it in the [`ScopeGuard`]: +/// ``` +/// # use kernel::types::ScopeGuard; +/// fn example3(arg: bool) -> Result { +/// let mut vec = +/// ScopeGuard::new_with_data(Vec::new(), |v| pr_info!("vec had {} elements\n", v.len())); +/// +/// vec.try_push(10u8)?; +/// if arg { +/// return Ok(()); +/// } +/// vec.try_push(20u8)?; +/// Ok(()) +/// } +/// +/// # assert_eq!(example3(false), Ok(())); +/// # assert_eq!(example3(true), Ok(())); +/// ``` +/// +/// # Invariants +/// +/// The value stored in the struct is nearly always `Some(_)`, except between +/// [`ScopeGuard::dismiss`] and [`ScopeGuard::drop`]: in this case, it will be `None` as the value +/// will have been returned to the caller. Since [`ScopeGuard::dismiss`] consumes the guard, +/// callers won't be able to use it anymore. +pub struct ScopeGuard<T, F: FnOnce(T)>(Option<(T, F)>); + +impl<T, F: FnOnce(T)> ScopeGuard<T, F> { + /// Creates a new guarded object wrapping the given data and with the given cleanup function. + pub fn new_with_data(data: T, cleanup_func: F) -> Self { + // INVARIANT: The struct is being initialised with `Some(_)`. + Self(Some((data, cleanup_func))) + } + + /// Prevents the cleanup function from running and returns the guarded data. + pub fn dismiss(mut self) -> T { + // INVARIANT: This is the exception case in the invariant; it is not visible to callers + // because this function consumes `self`. + self.0.take().unwrap().0 + } +} + +impl ScopeGuard<(), fn(())> { + /// Creates a new guarded object with the given cleanup function. + pub fn new(cleanup: impl FnOnce()) -> ScopeGuard<(), impl FnOnce(())> { + ScopeGuard::new_with_data((), move |_| cleanup()) + } +} + +impl<T, F: FnOnce(T)> Deref for ScopeGuard<T, F> { + type Target = T; + + fn deref(&self) -> &T { + // The type invariants guarantee that `unwrap` will succeed. + &self.0.as_ref().unwrap().0 + } +} + +impl<T, F: FnOnce(T)> DerefMut for ScopeGuard<T, F> { + fn deref_mut(&mut self) -> &mut T { + // The type invariants guarantee that `unwrap` will succeed. + &mut self.0.as_mut().unwrap().0 + } +} + +impl<T, F: FnOnce(T)> Drop for ScopeGuard<T, F> { + fn drop(&mut self) { + // Run the cleanup function if one is still present. + if let Some((data, cleanup)) = self.0.take() { + cleanup(data) + } + } +} + +/// Stores an opaque value. +/// +/// This is meant to be used with FFI objects that are never interpreted by Rust code. +#[repr(transparent)] +pub struct Opaque<T> { + value: UnsafeCell<MaybeUninit<T>>, + _pin: PhantomPinned, +} + +impl<T> Opaque<T> { + /// Creates a new opaque value. + pub const fn new(value: T) -> Self { + Self { + value: UnsafeCell::new(MaybeUninit::new(value)), + _pin: PhantomPinned, + } + } + + /// Creates an uninitialised value. + pub const fn uninit() -> Self { + Self { + value: UnsafeCell::new(MaybeUninit::uninit()), + _pin: PhantomPinned, + } + } + + /// Creates a pin-initializer from the given initializer closure. + /// + /// The returned initializer calls the given closure with the pointer to the inner `T` of this + /// `Opaque`. Since this memory is uninitialized, the closure is not allowed to read from it. + /// + /// This function is safe, because the `T` inside of an `Opaque` is allowed to be + /// uninitialized. Additionally, access to the inner `T` requires `unsafe`, so the caller needs + /// to verify at that point that the inner value is valid. + pub fn ffi_init(init_func: impl FnOnce(*mut T)) -> impl PinInit<Self> { + // SAFETY: We contain a `MaybeUninit`, so it is OK for the `init_func` to not fully + // initialize the `T`. + unsafe { + init::pin_init_from_closure::<_, ::core::convert::Infallible>(move |slot| { + init_func(Self::raw_get(slot)); + Ok(()) + }) + } + } + + /// Returns a raw pointer to the opaque data. + pub fn get(&self) -> *mut T { + UnsafeCell::get(&self.value).cast::<T>() + } + + /// Gets the value behind `this`. + /// + /// This function is useful to get access to the value without creating intermediate + /// references. + pub const fn raw_get(this: *const Self) -> *mut T { + UnsafeCell::raw_get(this.cast::<UnsafeCell<MaybeUninit<T>>>()).cast::<T>() + } +} + +/// Types that are _always_ reference counted. +/// +/// It allows such types to define their own custom ref increment and decrement functions. +/// Additionally, it allows users to convert from a shared reference `&T` to an owned reference +/// [`ARef<T>`]. +/// +/// This is usually implemented by wrappers to existing structures on the C side of the code. For +/// Rust code, the recommendation is to use [`Arc`](crate::sync::Arc) to create reference-counted +/// instances of a type. +/// +/// # Safety +/// +/// Implementers must ensure that increments to the reference count keep the object alive in memory +/// at least until matching decrements are performed. +/// +/// Implementers must also ensure that all instances are reference-counted. (Otherwise they +/// won't be able to honour the requirement that [`AlwaysRefCounted::inc_ref`] keep the object +/// alive.) +pub unsafe trait AlwaysRefCounted { + /// Increments the reference count on the object. + fn inc_ref(&self); + + /// Decrements the reference count on the object. + /// + /// Frees the object when the count reaches zero. + /// + /// # Safety + /// + /// Callers must ensure that there was a previous matching increment to the reference count, + /// and that the object is no longer used after its reference count is decremented (as it may + /// result in the object being freed), unless the caller owns another increment on the refcount + /// (e.g., it calls [`AlwaysRefCounted::inc_ref`] twice, then calls + /// [`AlwaysRefCounted::dec_ref`] once). + unsafe fn dec_ref(obj: NonNull<Self>); +} + +/// An owned reference to an always-reference-counted object. +/// +/// The object's reference count is automatically decremented when an instance of [`ARef`] is +/// dropped. It is also automatically incremented when a new instance is created via +/// [`ARef::clone`]. +/// +/// # Invariants +/// +/// The pointer stored in `ptr` is non-null and valid for the lifetime of the [`ARef`] instance. In +/// particular, the [`ARef`] instance owns an increment on the underlying object's reference count. +pub struct ARef<T: AlwaysRefCounted> { + ptr: NonNull<T>, + _p: PhantomData<T>, +} + +// SAFETY: It is safe to send `ARef<T>` to another thread when the underlying `T` is `Sync` because +// it effectively means sharing `&T` (which is safe because `T` is `Sync`); additionally, it needs +// `T` to be `Send` because any thread that has an `ARef<T>` may ultimately access `T` using a +// mutable reference, for example, when the reference count reaches zero and `T` is dropped. +unsafe impl<T: AlwaysRefCounted + Sync + Send> Send for ARef<T> {} + +// SAFETY: It is safe to send `&ARef<T>` to another thread when the underlying `T` is `Sync` +// because it effectively means sharing `&T` (which is safe because `T` is `Sync`); additionally, +// it needs `T` to be `Send` because any thread that has a `&ARef<T>` may clone it and get an +// `ARef<T>` on that thread, so the thread may ultimately access `T` using a mutable reference, for +// example, when the reference count reaches zero and `T` is dropped. +unsafe impl<T: AlwaysRefCounted + Sync + Send> Sync for ARef<T> {} + +impl<T: AlwaysRefCounted> ARef<T> { + /// Creates a new instance of [`ARef`]. + /// + /// It takes over an increment of the reference count on the underlying object. + /// + /// # Safety + /// + /// Callers must ensure that the reference count was incremented at least once, and that they + /// are properly relinquishing one increment. That is, if there is only one increment, callers + /// must not use the underlying object anymore -- it is only safe to do so via the newly + /// created [`ARef`]. + pub unsafe fn from_raw(ptr: NonNull<T>) -> Self { + // INVARIANT: The safety requirements guarantee that the new instance now owns the + // increment on the refcount. + Self { + ptr, + _p: PhantomData, + } + } +} + +impl<T: AlwaysRefCounted> Clone for ARef<T> { + fn clone(&self) -> Self { + self.inc_ref(); + // SAFETY: We just incremented the refcount above. + unsafe { Self::from_raw(self.ptr) } + } +} + +impl<T: AlwaysRefCounted> Deref for ARef<T> { + type Target = T; + + fn deref(&self) -> &Self::Target { + // SAFETY: The type invariants guarantee that the object is valid. + unsafe { self.ptr.as_ref() } + } +} + +impl<T: AlwaysRefCounted> From<&T> for ARef<T> { + fn from(b: &T) -> Self { + b.inc_ref(); + // SAFETY: We just incremented the refcount above. + unsafe { Self::from_raw(NonNull::from(b)) } + } +} + +impl<T: AlwaysRefCounted> Drop for ARef<T> { + fn drop(&mut self) { + // SAFETY: The type invariants guarantee that the `ARef` owns the reference we're about to + // decrement. + unsafe { T::dec_ref(self.ptr) }; + } +} + +/// A sum type that always holds either a value of type `L` or `R`. +pub enum Either<L, R> { + /// Constructs an instance of [`Either`] containing a value of type `L`. + Left(L), + + /// Constructs an instance of [`Either`] containing a value of type `R`. + Right(R), +} |