diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-11 08:27:49 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-11 08:27:49 +0000 |
commit | ace9429bb58fd418f0c81d4c2835699bddf6bde6 (patch) | |
tree | b2d64bc10158fdd5497876388cd68142ca374ed3 /tools/testing/selftests/kvm/aarch64 | |
parent | Initial commit. (diff) | |
download | linux-ace9429bb58fd418f0c81d4c2835699bddf6bde6.tar.xz linux-ace9429bb58fd418f0c81d4c2835699bddf6bde6.zip |
Adding upstream version 6.6.15.upstream/6.6.15
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'tools/testing/selftests/kvm/aarch64')
-rw-r--r-- | tools/testing/selftests/kvm/aarch64/aarch32_id_regs.c | 167 | ||||
-rw-r--r-- | tools/testing/selftests/kvm/aarch64/arch_timer.c | 480 | ||||
-rw-r--r-- | tools/testing/selftests/kvm/aarch64/debug-exceptions.c | 607 | ||||
-rw-r--r-- | tools/testing/selftests/kvm/aarch64/get-reg-list.c | 757 | ||||
-rw-r--r-- | tools/testing/selftests/kvm/aarch64/hypercalls.c | 308 | ||||
-rw-r--r-- | tools/testing/selftests/kvm/aarch64/page_fault_test.c | 1133 | ||||
-rw-r--r-- | tools/testing/selftests/kvm/aarch64/psci_test.c | 198 | ||||
-rw-r--r-- | tools/testing/selftests/kvm/aarch64/smccc_filter.c | 268 | ||||
-rw-r--r-- | tools/testing/selftests/kvm/aarch64/vcpu_width_config.c | 121 | ||||
-rw-r--r-- | tools/testing/selftests/kvm/aarch64/vgic_init.c | 716 | ||||
-rw-r--r-- | tools/testing/selftests/kvm/aarch64/vgic_irq.c | 855 |
11 files changed, 5610 insertions, 0 deletions
diff --git a/tools/testing/selftests/kvm/aarch64/aarch32_id_regs.c b/tools/testing/selftests/kvm/aarch64/aarch32_id_regs.c new file mode 100644 index 0000000000..b90580840b --- /dev/null +++ b/tools/testing/selftests/kvm/aarch64/aarch32_id_regs.c @@ -0,0 +1,167 @@ +// SPDX-License-Identifier: GPL-2.0-only +/* + * aarch32_id_regs - Test for ID register behavior on AArch64-only systems + * + * Copyright (c) 2022 Google LLC. + * + * Test that KVM handles the AArch64 views of the AArch32 ID registers as RAZ + * and WI from userspace. + */ + +#include <stdint.h> + +#include "kvm_util.h" +#include "processor.h" +#include "test_util.h" +#include <linux/bitfield.h> + +#define BAD_ID_REG_VAL 0x1badc0deul + +#define GUEST_ASSERT_REG_RAZ(reg) GUEST_ASSERT_EQ(read_sysreg_s(reg), 0) + +static void guest_main(void) +{ + GUEST_ASSERT_REG_RAZ(SYS_ID_PFR0_EL1); + GUEST_ASSERT_REG_RAZ(SYS_ID_PFR1_EL1); + GUEST_ASSERT_REG_RAZ(SYS_ID_DFR0_EL1); + GUEST_ASSERT_REG_RAZ(SYS_ID_AFR0_EL1); + GUEST_ASSERT_REG_RAZ(SYS_ID_MMFR0_EL1); + GUEST_ASSERT_REG_RAZ(SYS_ID_MMFR1_EL1); + GUEST_ASSERT_REG_RAZ(SYS_ID_MMFR2_EL1); + GUEST_ASSERT_REG_RAZ(SYS_ID_MMFR3_EL1); + GUEST_ASSERT_REG_RAZ(SYS_ID_ISAR0_EL1); + GUEST_ASSERT_REG_RAZ(SYS_ID_ISAR1_EL1); + GUEST_ASSERT_REG_RAZ(SYS_ID_ISAR2_EL1); + GUEST_ASSERT_REG_RAZ(SYS_ID_ISAR3_EL1); + GUEST_ASSERT_REG_RAZ(SYS_ID_ISAR4_EL1); + GUEST_ASSERT_REG_RAZ(SYS_ID_ISAR5_EL1); + GUEST_ASSERT_REG_RAZ(SYS_ID_MMFR4_EL1); + GUEST_ASSERT_REG_RAZ(SYS_ID_ISAR6_EL1); + GUEST_ASSERT_REG_RAZ(SYS_MVFR0_EL1); + GUEST_ASSERT_REG_RAZ(SYS_MVFR1_EL1); + GUEST_ASSERT_REG_RAZ(SYS_MVFR2_EL1); + GUEST_ASSERT_REG_RAZ(sys_reg(3, 0, 0, 3, 3)); + GUEST_ASSERT_REG_RAZ(SYS_ID_PFR2_EL1); + GUEST_ASSERT_REG_RAZ(SYS_ID_DFR1_EL1); + GUEST_ASSERT_REG_RAZ(SYS_ID_MMFR5_EL1); + GUEST_ASSERT_REG_RAZ(sys_reg(3, 0, 0, 3, 7)); + + GUEST_DONE(); +} + +static void test_guest_raz(struct kvm_vcpu *vcpu) +{ + struct ucall uc; + + vcpu_run(vcpu); + + switch (get_ucall(vcpu, &uc)) { + case UCALL_ABORT: + REPORT_GUEST_ASSERT(uc); + break; + case UCALL_DONE: + break; + default: + TEST_FAIL("Unexpected ucall: %lu", uc.cmd); + } +} + +static uint64_t raz_wi_reg_ids[] = { + KVM_ARM64_SYS_REG(SYS_ID_PFR0_EL1), + KVM_ARM64_SYS_REG(SYS_ID_PFR1_EL1), + KVM_ARM64_SYS_REG(SYS_ID_DFR0_EL1), + KVM_ARM64_SYS_REG(SYS_ID_MMFR0_EL1), + KVM_ARM64_SYS_REG(SYS_ID_MMFR1_EL1), + KVM_ARM64_SYS_REG(SYS_ID_MMFR2_EL1), + KVM_ARM64_SYS_REG(SYS_ID_MMFR3_EL1), + KVM_ARM64_SYS_REG(SYS_ID_ISAR0_EL1), + KVM_ARM64_SYS_REG(SYS_ID_ISAR1_EL1), + KVM_ARM64_SYS_REG(SYS_ID_ISAR2_EL1), + KVM_ARM64_SYS_REG(SYS_ID_ISAR3_EL1), + KVM_ARM64_SYS_REG(SYS_ID_ISAR4_EL1), + KVM_ARM64_SYS_REG(SYS_ID_ISAR5_EL1), + KVM_ARM64_SYS_REG(SYS_ID_MMFR4_EL1), + KVM_ARM64_SYS_REG(SYS_ID_ISAR6_EL1), + KVM_ARM64_SYS_REG(SYS_MVFR0_EL1), + KVM_ARM64_SYS_REG(SYS_MVFR1_EL1), + KVM_ARM64_SYS_REG(SYS_MVFR2_EL1), + KVM_ARM64_SYS_REG(SYS_ID_PFR2_EL1), + KVM_ARM64_SYS_REG(SYS_ID_MMFR5_EL1), +}; + +static void test_user_raz_wi(struct kvm_vcpu *vcpu) +{ + int i; + + for (i = 0; i < ARRAY_SIZE(raz_wi_reg_ids); i++) { + uint64_t reg_id = raz_wi_reg_ids[i]; + uint64_t val; + + vcpu_get_reg(vcpu, reg_id, &val); + TEST_ASSERT_EQ(val, 0); + + /* + * Expect the ioctl to succeed with no effect on the register + * value. + */ + vcpu_set_reg(vcpu, reg_id, BAD_ID_REG_VAL); + + vcpu_get_reg(vcpu, reg_id, &val); + TEST_ASSERT_EQ(val, 0); + } +} + +static uint64_t raz_invariant_reg_ids[] = { + KVM_ARM64_SYS_REG(SYS_ID_AFR0_EL1), + KVM_ARM64_SYS_REG(sys_reg(3, 0, 0, 3, 3)), + KVM_ARM64_SYS_REG(SYS_ID_DFR1_EL1), + KVM_ARM64_SYS_REG(sys_reg(3, 0, 0, 3, 7)), +}; + +static void test_user_raz_invariant(struct kvm_vcpu *vcpu) +{ + int i, r; + + for (i = 0; i < ARRAY_SIZE(raz_invariant_reg_ids); i++) { + uint64_t reg_id = raz_invariant_reg_ids[i]; + uint64_t val; + + vcpu_get_reg(vcpu, reg_id, &val); + TEST_ASSERT_EQ(val, 0); + + r = __vcpu_set_reg(vcpu, reg_id, BAD_ID_REG_VAL); + TEST_ASSERT(r < 0 && errno == EINVAL, + "unexpected KVM_SET_ONE_REG error: r=%d, errno=%d", r, errno); + + vcpu_get_reg(vcpu, reg_id, &val); + TEST_ASSERT_EQ(val, 0); + } +} + + + +static bool vcpu_aarch64_only(struct kvm_vcpu *vcpu) +{ + uint64_t val, el0; + + vcpu_get_reg(vcpu, KVM_ARM64_SYS_REG(SYS_ID_AA64PFR0_EL1), &val); + + el0 = FIELD_GET(ARM64_FEATURE_MASK(ID_AA64PFR0_EL0), val); + return el0 == ID_AA64PFR0_ELx_64BIT_ONLY; +} + +int main(void) +{ + struct kvm_vcpu *vcpu; + struct kvm_vm *vm; + + vm = vm_create_with_one_vcpu(&vcpu, guest_main); + + TEST_REQUIRE(vcpu_aarch64_only(vcpu)); + + test_user_raz_wi(vcpu); + test_user_raz_invariant(vcpu); + test_guest_raz(vcpu); + + kvm_vm_free(vm); +} diff --git a/tools/testing/selftests/kvm/aarch64/arch_timer.c b/tools/testing/selftests/kvm/aarch64/arch_timer.c new file mode 100644 index 0000000000..274b8465b4 --- /dev/null +++ b/tools/testing/selftests/kvm/aarch64/arch_timer.c @@ -0,0 +1,480 @@ +// SPDX-License-Identifier: GPL-2.0-only +/* + * arch_timer.c - Tests the aarch64 timer IRQ functionality + * + * The test validates both the virtual and physical timer IRQs using + * CVAL and TVAL registers. This consitutes the four stages in the test. + * The guest's main thread configures the timer interrupt for a stage + * and waits for it to fire, with a timeout equal to the timer period. + * It asserts that the timeout doesn't exceed the timer period. + * + * On the other hand, upon receipt of an interrupt, the guest's interrupt + * handler validates the interrupt by checking if the architectural state + * is in compliance with the specifications. + * + * The test provides command-line options to configure the timer's + * period (-p), number of vCPUs (-n), and iterations per stage (-i). + * To stress-test the timer stack even more, an option to migrate the + * vCPUs across pCPUs (-m), at a particular rate, is also provided. + * + * Copyright (c) 2021, Google LLC. + */ +#define _GNU_SOURCE + +#include <stdlib.h> +#include <pthread.h> +#include <linux/kvm.h> +#include <linux/sizes.h> +#include <linux/bitmap.h> +#include <sys/sysinfo.h> + +#include "kvm_util.h" +#include "processor.h" +#include "delay.h" +#include "arch_timer.h" +#include "gic.h" +#include "vgic.h" + +#define NR_VCPUS_DEF 4 +#define NR_TEST_ITERS_DEF 5 +#define TIMER_TEST_PERIOD_MS_DEF 10 +#define TIMER_TEST_ERR_MARGIN_US 100 +#define TIMER_TEST_MIGRATION_FREQ_MS 2 + +struct test_args { + int nr_vcpus; + int nr_iter; + int timer_period_ms; + int migration_freq_ms; + struct kvm_arm_counter_offset offset; +}; + +static struct test_args test_args = { + .nr_vcpus = NR_VCPUS_DEF, + .nr_iter = NR_TEST_ITERS_DEF, + .timer_period_ms = TIMER_TEST_PERIOD_MS_DEF, + .migration_freq_ms = TIMER_TEST_MIGRATION_FREQ_MS, + .offset = { .reserved = 1 }, +}; + +#define msecs_to_usecs(msec) ((msec) * 1000LL) + +#define GICD_BASE_GPA 0x8000000ULL +#define GICR_BASE_GPA 0x80A0000ULL + +enum guest_stage { + GUEST_STAGE_VTIMER_CVAL = 1, + GUEST_STAGE_VTIMER_TVAL, + GUEST_STAGE_PTIMER_CVAL, + GUEST_STAGE_PTIMER_TVAL, + GUEST_STAGE_MAX, +}; + +/* Shared variables between host and guest */ +struct test_vcpu_shared_data { + int nr_iter; + enum guest_stage guest_stage; + uint64_t xcnt; +}; + +static struct kvm_vcpu *vcpus[KVM_MAX_VCPUS]; +static pthread_t pt_vcpu_run[KVM_MAX_VCPUS]; +static struct test_vcpu_shared_data vcpu_shared_data[KVM_MAX_VCPUS]; + +static int vtimer_irq, ptimer_irq; + +static unsigned long *vcpu_done_map; +static pthread_mutex_t vcpu_done_map_lock; + +static void +guest_configure_timer_action(struct test_vcpu_shared_data *shared_data) +{ + switch (shared_data->guest_stage) { + case GUEST_STAGE_VTIMER_CVAL: + timer_set_next_cval_ms(VIRTUAL, test_args.timer_period_ms); + shared_data->xcnt = timer_get_cntct(VIRTUAL); + timer_set_ctl(VIRTUAL, CTL_ENABLE); + break; + case GUEST_STAGE_VTIMER_TVAL: + timer_set_next_tval_ms(VIRTUAL, test_args.timer_period_ms); + shared_data->xcnt = timer_get_cntct(VIRTUAL); + timer_set_ctl(VIRTUAL, CTL_ENABLE); + break; + case GUEST_STAGE_PTIMER_CVAL: + timer_set_next_cval_ms(PHYSICAL, test_args.timer_period_ms); + shared_data->xcnt = timer_get_cntct(PHYSICAL); + timer_set_ctl(PHYSICAL, CTL_ENABLE); + break; + case GUEST_STAGE_PTIMER_TVAL: + timer_set_next_tval_ms(PHYSICAL, test_args.timer_period_ms); + shared_data->xcnt = timer_get_cntct(PHYSICAL); + timer_set_ctl(PHYSICAL, CTL_ENABLE); + break; + default: + GUEST_ASSERT(0); + } +} + +static void guest_validate_irq(unsigned int intid, + struct test_vcpu_shared_data *shared_data) +{ + enum guest_stage stage = shared_data->guest_stage; + uint64_t xcnt = 0, xcnt_diff_us, cval = 0; + unsigned long xctl = 0; + unsigned int timer_irq = 0; + unsigned int accessor; + + if (intid == IAR_SPURIOUS) + return; + + switch (stage) { + case GUEST_STAGE_VTIMER_CVAL: + case GUEST_STAGE_VTIMER_TVAL: + accessor = VIRTUAL; + timer_irq = vtimer_irq; + break; + case GUEST_STAGE_PTIMER_CVAL: + case GUEST_STAGE_PTIMER_TVAL: + accessor = PHYSICAL; + timer_irq = ptimer_irq; + break; + default: + GUEST_ASSERT(0); + return; + } + + xctl = timer_get_ctl(accessor); + if ((xctl & CTL_IMASK) || !(xctl & CTL_ENABLE)) + return; + + timer_set_ctl(accessor, CTL_IMASK); + xcnt = timer_get_cntct(accessor); + cval = timer_get_cval(accessor); + + xcnt_diff_us = cycles_to_usec(xcnt - shared_data->xcnt); + + /* Make sure we are dealing with the correct timer IRQ */ + GUEST_ASSERT_EQ(intid, timer_irq); + + /* Basic 'timer condition met' check */ + __GUEST_ASSERT(xcnt >= cval, + "xcnt = 0x%llx, cval = 0x%llx, xcnt_diff_us = 0x%llx", + xcnt, cval, xcnt_diff_us); + __GUEST_ASSERT(xctl & CTL_ISTATUS, "xcnt = 0x%llx", xcnt); + + WRITE_ONCE(shared_data->nr_iter, shared_data->nr_iter + 1); +} + +static void guest_irq_handler(struct ex_regs *regs) +{ + unsigned int intid = gic_get_and_ack_irq(); + uint32_t cpu = guest_get_vcpuid(); + struct test_vcpu_shared_data *shared_data = &vcpu_shared_data[cpu]; + + guest_validate_irq(intid, shared_data); + + gic_set_eoi(intid); +} + +static void guest_run_stage(struct test_vcpu_shared_data *shared_data, + enum guest_stage stage) +{ + uint32_t irq_iter, config_iter; + + shared_data->guest_stage = stage; + shared_data->nr_iter = 0; + + for (config_iter = 0; config_iter < test_args.nr_iter; config_iter++) { + /* Setup the next interrupt */ + guest_configure_timer_action(shared_data); + + /* Setup a timeout for the interrupt to arrive */ + udelay(msecs_to_usecs(test_args.timer_period_ms) + + TIMER_TEST_ERR_MARGIN_US); + + irq_iter = READ_ONCE(shared_data->nr_iter); + GUEST_ASSERT_EQ(config_iter + 1, irq_iter); + } +} + +static void guest_code(void) +{ + uint32_t cpu = guest_get_vcpuid(); + struct test_vcpu_shared_data *shared_data = &vcpu_shared_data[cpu]; + + local_irq_disable(); + + gic_init(GIC_V3, test_args.nr_vcpus, + (void *)GICD_BASE_GPA, (void *)GICR_BASE_GPA); + + timer_set_ctl(VIRTUAL, CTL_IMASK); + timer_set_ctl(PHYSICAL, CTL_IMASK); + + gic_irq_enable(vtimer_irq); + gic_irq_enable(ptimer_irq); + local_irq_enable(); + + guest_run_stage(shared_data, GUEST_STAGE_VTIMER_CVAL); + guest_run_stage(shared_data, GUEST_STAGE_VTIMER_TVAL); + guest_run_stage(shared_data, GUEST_STAGE_PTIMER_CVAL); + guest_run_stage(shared_data, GUEST_STAGE_PTIMER_TVAL); + + GUEST_DONE(); +} + +static void *test_vcpu_run(void *arg) +{ + unsigned int vcpu_idx = (unsigned long)arg; + struct ucall uc; + struct kvm_vcpu *vcpu = vcpus[vcpu_idx]; + struct kvm_vm *vm = vcpu->vm; + struct test_vcpu_shared_data *shared_data = &vcpu_shared_data[vcpu_idx]; + + vcpu_run(vcpu); + + /* Currently, any exit from guest is an indication of completion */ + pthread_mutex_lock(&vcpu_done_map_lock); + __set_bit(vcpu_idx, vcpu_done_map); + pthread_mutex_unlock(&vcpu_done_map_lock); + + switch (get_ucall(vcpu, &uc)) { + case UCALL_SYNC: + case UCALL_DONE: + break; + case UCALL_ABORT: + sync_global_from_guest(vm, *shared_data); + fprintf(stderr, "Guest assert failed, vcpu %u; stage; %u; iter: %u\n", + vcpu_idx, shared_data->guest_stage, shared_data->nr_iter); + REPORT_GUEST_ASSERT(uc); + break; + default: + TEST_FAIL("Unexpected guest exit\n"); + } + + return NULL; +} + +static uint32_t test_get_pcpu(void) +{ + uint32_t pcpu; + unsigned int nproc_conf; + cpu_set_t online_cpuset; + + nproc_conf = get_nprocs_conf(); + sched_getaffinity(0, sizeof(cpu_set_t), &online_cpuset); + + /* Randomly find an available pCPU to place a vCPU on */ + do { + pcpu = rand() % nproc_conf; + } while (!CPU_ISSET(pcpu, &online_cpuset)); + + return pcpu; +} + +static int test_migrate_vcpu(unsigned int vcpu_idx) +{ + int ret; + cpu_set_t cpuset; + uint32_t new_pcpu = test_get_pcpu(); + + CPU_ZERO(&cpuset); + CPU_SET(new_pcpu, &cpuset); + + pr_debug("Migrating vCPU: %u to pCPU: %u\n", vcpu_idx, new_pcpu); + + ret = pthread_setaffinity_np(pt_vcpu_run[vcpu_idx], + sizeof(cpuset), &cpuset); + + /* Allow the error where the vCPU thread is already finished */ + TEST_ASSERT(ret == 0 || ret == ESRCH, + "Failed to migrate the vCPU:%u to pCPU: %u; ret: %d\n", + vcpu_idx, new_pcpu, ret); + + return ret; +} + +static void *test_vcpu_migration(void *arg) +{ + unsigned int i, n_done; + bool vcpu_done; + + do { + usleep(msecs_to_usecs(test_args.migration_freq_ms)); + + for (n_done = 0, i = 0; i < test_args.nr_vcpus; i++) { + pthread_mutex_lock(&vcpu_done_map_lock); + vcpu_done = test_bit(i, vcpu_done_map); + pthread_mutex_unlock(&vcpu_done_map_lock); + + if (vcpu_done) { + n_done++; + continue; + } + + test_migrate_vcpu(i); + } + } while (test_args.nr_vcpus != n_done); + + return NULL; +} + +static void test_run(struct kvm_vm *vm) +{ + pthread_t pt_vcpu_migration; + unsigned int i; + int ret; + + pthread_mutex_init(&vcpu_done_map_lock, NULL); + vcpu_done_map = bitmap_zalloc(test_args.nr_vcpus); + TEST_ASSERT(vcpu_done_map, "Failed to allocate vcpu done bitmap\n"); + + for (i = 0; i < (unsigned long)test_args.nr_vcpus; i++) { + ret = pthread_create(&pt_vcpu_run[i], NULL, test_vcpu_run, + (void *)(unsigned long)i); + TEST_ASSERT(!ret, "Failed to create vCPU-%d pthread\n", i); + } + + /* Spawn a thread to control the vCPU migrations */ + if (test_args.migration_freq_ms) { + srand(time(NULL)); + + ret = pthread_create(&pt_vcpu_migration, NULL, + test_vcpu_migration, NULL); + TEST_ASSERT(!ret, "Failed to create the migration pthread\n"); + } + + + for (i = 0; i < test_args.nr_vcpus; i++) + pthread_join(pt_vcpu_run[i], NULL); + + if (test_args.migration_freq_ms) + pthread_join(pt_vcpu_migration, NULL); + + bitmap_free(vcpu_done_map); +} + +static void test_init_timer_irq(struct kvm_vm *vm) +{ + /* Timer initid should be same for all the vCPUs, so query only vCPU-0 */ + vcpu_device_attr_get(vcpus[0], KVM_ARM_VCPU_TIMER_CTRL, + KVM_ARM_VCPU_TIMER_IRQ_PTIMER, &ptimer_irq); + vcpu_device_attr_get(vcpus[0], KVM_ARM_VCPU_TIMER_CTRL, + KVM_ARM_VCPU_TIMER_IRQ_VTIMER, &vtimer_irq); + + sync_global_to_guest(vm, ptimer_irq); + sync_global_to_guest(vm, vtimer_irq); + + pr_debug("ptimer_irq: %d; vtimer_irq: %d\n", ptimer_irq, vtimer_irq); +} + +static int gic_fd; + +static struct kvm_vm *test_vm_create(void) +{ + struct kvm_vm *vm; + unsigned int i; + int nr_vcpus = test_args.nr_vcpus; + + vm = vm_create_with_vcpus(nr_vcpus, guest_code, vcpus); + + vm_init_descriptor_tables(vm); + vm_install_exception_handler(vm, VECTOR_IRQ_CURRENT, guest_irq_handler); + + if (!test_args.offset.reserved) { + if (kvm_has_cap(KVM_CAP_COUNTER_OFFSET)) + vm_ioctl(vm, KVM_ARM_SET_COUNTER_OFFSET, &test_args.offset); + else + TEST_FAIL("no support for global offset\n"); + } + + for (i = 0; i < nr_vcpus; i++) + vcpu_init_descriptor_tables(vcpus[i]); + + test_init_timer_irq(vm); + gic_fd = vgic_v3_setup(vm, nr_vcpus, 64, GICD_BASE_GPA, GICR_BASE_GPA); + __TEST_REQUIRE(gic_fd >= 0, "Failed to create vgic-v3"); + + /* Make all the test's cmdline args visible to the guest */ + sync_global_to_guest(vm, test_args); + + return vm; +} + +static void test_vm_cleanup(struct kvm_vm *vm) +{ + close(gic_fd); + kvm_vm_free(vm); +} + +static void test_print_help(char *name) +{ + pr_info("Usage: %s [-h] [-n nr_vcpus] [-i iterations] [-p timer_period_ms]\n", + name); + pr_info("\t-n: Number of vCPUs to configure (default: %u; max: %u)\n", + NR_VCPUS_DEF, KVM_MAX_VCPUS); + pr_info("\t-i: Number of iterations per stage (default: %u)\n", + NR_TEST_ITERS_DEF); + pr_info("\t-p: Periodicity (in ms) of the guest timer (default: %u)\n", + TIMER_TEST_PERIOD_MS_DEF); + pr_info("\t-m: Frequency (in ms) of vCPUs to migrate to different pCPU. 0 to turn off (default: %u)\n", + TIMER_TEST_MIGRATION_FREQ_MS); + pr_info("\t-o: Counter offset (in counter cycles, default: 0)\n"); + pr_info("\t-h: print this help screen\n"); +} + +static bool parse_args(int argc, char *argv[]) +{ + int opt; + + while ((opt = getopt(argc, argv, "hn:i:p:m:o:")) != -1) { + switch (opt) { + case 'n': + test_args.nr_vcpus = atoi_positive("Number of vCPUs", optarg); + if (test_args.nr_vcpus > KVM_MAX_VCPUS) { + pr_info("Max allowed vCPUs: %u\n", + KVM_MAX_VCPUS); + goto err; + } + break; + case 'i': + test_args.nr_iter = atoi_positive("Number of iterations", optarg); + break; + case 'p': + test_args.timer_period_ms = atoi_positive("Periodicity", optarg); + break; + case 'm': + test_args.migration_freq_ms = atoi_non_negative("Frequency", optarg); + break; + case 'o': + test_args.offset.counter_offset = strtol(optarg, NULL, 0); + test_args.offset.reserved = 0; + break; + case 'h': + default: + goto err; + } + } + + return true; + +err: + test_print_help(argv[0]); + return false; +} + +int main(int argc, char *argv[]) +{ + struct kvm_vm *vm; + + if (!parse_args(argc, argv)) + exit(KSFT_SKIP); + + __TEST_REQUIRE(!test_args.migration_freq_ms || get_nprocs() >= 2, + "At least two physical CPUs needed for vCPU migration"); + + vm = test_vm_create(); + test_run(vm); + test_vm_cleanup(vm); + + return 0; +} diff --git a/tools/testing/selftests/kvm/aarch64/debug-exceptions.c b/tools/testing/selftests/kvm/aarch64/debug-exceptions.c new file mode 100644 index 0000000000..f5b6cb3a00 --- /dev/null +++ b/tools/testing/selftests/kvm/aarch64/debug-exceptions.c @@ -0,0 +1,607 @@ +// SPDX-License-Identifier: GPL-2.0 +#include <test_util.h> +#include <kvm_util.h> +#include <processor.h> +#include <linux/bitfield.h> + +#define MDSCR_KDE (1 << 13) +#define MDSCR_MDE (1 << 15) +#define MDSCR_SS (1 << 0) + +#define DBGBCR_LEN8 (0xff << 5) +#define DBGBCR_EXEC (0x0 << 3) +#define DBGBCR_EL1 (0x1 << 1) +#define DBGBCR_E (0x1 << 0) +#define DBGBCR_LBN_SHIFT 16 +#define DBGBCR_BT_SHIFT 20 +#define DBGBCR_BT_ADDR_LINK_CTX (0x1 << DBGBCR_BT_SHIFT) +#define DBGBCR_BT_CTX_LINK (0x3 << DBGBCR_BT_SHIFT) + +#define DBGWCR_LEN8 (0xff << 5) +#define DBGWCR_RD (0x1 << 3) +#define DBGWCR_WR (0x2 << 3) +#define DBGWCR_EL1 (0x1 << 1) +#define DBGWCR_E (0x1 << 0) +#define DBGWCR_LBN_SHIFT 16 +#define DBGWCR_WT_SHIFT 20 +#define DBGWCR_WT_LINK (0x1 << DBGWCR_WT_SHIFT) + +#define SPSR_D (1 << 9) +#define SPSR_SS (1 << 21) + +extern unsigned char sw_bp, sw_bp2, hw_bp, hw_bp2, bp_svc, bp_brk, hw_wp, ss_start, hw_bp_ctx; +extern unsigned char iter_ss_begin, iter_ss_end; +static volatile uint64_t sw_bp_addr, hw_bp_addr; +static volatile uint64_t wp_addr, wp_data_addr; +static volatile uint64_t svc_addr; +static volatile uint64_t ss_addr[4], ss_idx; +#define PC(v) ((uint64_t)&(v)) + +#define GEN_DEBUG_WRITE_REG(reg_name) \ +static void write_##reg_name(int num, uint64_t val) \ +{ \ + switch (num) { \ + case 0: \ + write_sysreg(val, reg_name##0_el1); \ + break; \ + case 1: \ + write_sysreg(val, reg_name##1_el1); \ + break; \ + case 2: \ + write_sysreg(val, reg_name##2_el1); \ + break; \ + case 3: \ + write_sysreg(val, reg_name##3_el1); \ + break; \ + case 4: \ + write_sysreg(val, reg_name##4_el1); \ + break; \ + case 5: \ + write_sysreg(val, reg_name##5_el1); \ + break; \ + case 6: \ + write_sysreg(val, reg_name##6_el1); \ + break; \ + case 7: \ + write_sysreg(val, reg_name##7_el1); \ + break; \ + case 8: \ + write_sysreg(val, reg_name##8_el1); \ + break; \ + case 9: \ + write_sysreg(val, reg_name##9_el1); \ + break; \ + case 10: \ + write_sysreg(val, reg_name##10_el1); \ + break; \ + case 11: \ + write_sysreg(val, reg_name##11_el1); \ + break; \ + case 12: \ + write_sysreg(val, reg_name##12_el1); \ + break; \ + case 13: \ + write_sysreg(val, reg_name##13_el1); \ + break; \ + case 14: \ + write_sysreg(val, reg_name##14_el1); \ + break; \ + case 15: \ + write_sysreg(val, reg_name##15_el1); \ + break; \ + default: \ + GUEST_ASSERT(0); \ + } \ +} + +/* Define write_dbgbcr()/write_dbgbvr()/write_dbgwcr()/write_dbgwvr() */ +GEN_DEBUG_WRITE_REG(dbgbcr) +GEN_DEBUG_WRITE_REG(dbgbvr) +GEN_DEBUG_WRITE_REG(dbgwcr) +GEN_DEBUG_WRITE_REG(dbgwvr) + +static void reset_debug_state(void) +{ + uint8_t brps, wrps, i; + uint64_t dfr0; + + asm volatile("msr daifset, #8"); + + write_sysreg(0, osdlr_el1); + write_sysreg(0, oslar_el1); + isb(); + + write_sysreg(0, mdscr_el1); + write_sysreg(0, contextidr_el1); + + /* Reset all bcr/bvr/wcr/wvr registers */ + dfr0 = read_sysreg(id_aa64dfr0_el1); + brps = FIELD_GET(ARM64_FEATURE_MASK(ID_AA64DFR0_BRPS), dfr0); + for (i = 0; i <= brps; i++) { + write_dbgbcr(i, 0); + write_dbgbvr(i, 0); + } + wrps = FIELD_GET(ARM64_FEATURE_MASK(ID_AA64DFR0_WRPS), dfr0); + for (i = 0; i <= wrps; i++) { + write_dbgwcr(i, 0); + write_dbgwvr(i, 0); + } + + isb(); +} + +static void enable_os_lock(void) +{ + write_sysreg(1, oslar_el1); + isb(); + + GUEST_ASSERT(read_sysreg(oslsr_el1) & 2); +} + +static void enable_monitor_debug_exceptions(void) +{ + uint32_t mdscr; + + asm volatile("msr daifclr, #8"); + + mdscr = read_sysreg(mdscr_el1) | MDSCR_KDE | MDSCR_MDE; + write_sysreg(mdscr, mdscr_el1); + isb(); +} + +static void install_wp(uint8_t wpn, uint64_t addr) +{ + uint32_t wcr; + + wcr = DBGWCR_LEN8 | DBGWCR_RD | DBGWCR_WR | DBGWCR_EL1 | DBGWCR_E; + write_dbgwcr(wpn, wcr); + write_dbgwvr(wpn, addr); + + isb(); + + enable_monitor_debug_exceptions(); +} + +static void install_hw_bp(uint8_t bpn, uint64_t addr) +{ + uint32_t bcr; + + bcr = DBGBCR_LEN8 | DBGBCR_EXEC | DBGBCR_EL1 | DBGBCR_E; + write_dbgbcr(bpn, bcr); + write_dbgbvr(bpn, addr); + isb(); + + enable_monitor_debug_exceptions(); +} + +static void install_wp_ctx(uint8_t addr_wp, uint8_t ctx_bp, uint64_t addr, + uint64_t ctx) +{ + uint32_t wcr; + uint64_t ctx_bcr; + + /* Setup a context-aware breakpoint for Linked Context ID Match */ + ctx_bcr = DBGBCR_LEN8 | DBGBCR_EXEC | DBGBCR_EL1 | DBGBCR_E | + DBGBCR_BT_CTX_LINK; + write_dbgbcr(ctx_bp, ctx_bcr); + write_dbgbvr(ctx_bp, ctx); + + /* Setup a linked watchpoint (linked to the context-aware breakpoint) */ + wcr = DBGWCR_LEN8 | DBGWCR_RD | DBGWCR_WR | DBGWCR_EL1 | DBGWCR_E | + DBGWCR_WT_LINK | ((uint32_t)ctx_bp << DBGWCR_LBN_SHIFT); + write_dbgwcr(addr_wp, wcr); + write_dbgwvr(addr_wp, addr); + isb(); + + enable_monitor_debug_exceptions(); +} + +void install_hw_bp_ctx(uint8_t addr_bp, uint8_t ctx_bp, uint64_t addr, + uint64_t ctx) +{ + uint32_t addr_bcr, ctx_bcr; + + /* Setup a context-aware breakpoint for Linked Context ID Match */ + ctx_bcr = DBGBCR_LEN8 | DBGBCR_EXEC | DBGBCR_EL1 | DBGBCR_E | + DBGBCR_BT_CTX_LINK; + write_dbgbcr(ctx_bp, ctx_bcr); + write_dbgbvr(ctx_bp, ctx); + + /* + * Setup a normal breakpoint for Linked Address Match, and link it + * to the context-aware breakpoint. + */ + addr_bcr = DBGBCR_LEN8 | DBGBCR_EXEC | DBGBCR_EL1 | DBGBCR_E | + DBGBCR_BT_ADDR_LINK_CTX | + ((uint32_t)ctx_bp << DBGBCR_LBN_SHIFT); + write_dbgbcr(addr_bp, addr_bcr); + write_dbgbvr(addr_bp, addr); + isb(); + + enable_monitor_debug_exceptions(); +} + +static void install_ss(void) +{ + uint32_t mdscr; + + asm volatile("msr daifclr, #8"); + + mdscr = read_sysreg(mdscr_el1) | MDSCR_KDE | MDSCR_SS; + write_sysreg(mdscr, mdscr_el1); + isb(); +} + +static volatile char write_data; + +static void guest_code(uint8_t bpn, uint8_t wpn, uint8_t ctx_bpn) +{ + uint64_t ctx = 0xabcdef; /* a random context number */ + + /* Software-breakpoint */ + reset_debug_state(); + asm volatile("sw_bp: brk #0"); + GUEST_ASSERT_EQ(sw_bp_addr, PC(sw_bp)); + + /* Hardware-breakpoint */ + reset_debug_state(); + install_hw_bp(bpn, PC(hw_bp)); + asm volatile("hw_bp: nop"); + GUEST_ASSERT_EQ(hw_bp_addr, PC(hw_bp)); + + /* Hardware-breakpoint + svc */ + reset_debug_state(); + install_hw_bp(bpn, PC(bp_svc)); + asm volatile("bp_svc: svc #0"); + GUEST_ASSERT_EQ(hw_bp_addr, PC(bp_svc)); + GUEST_ASSERT_EQ(svc_addr, PC(bp_svc) + 4); + + /* Hardware-breakpoint + software-breakpoint */ + reset_debug_state(); + install_hw_bp(bpn, PC(bp_brk)); + asm volatile("bp_brk: brk #0"); + GUEST_ASSERT_EQ(sw_bp_addr, PC(bp_brk)); + GUEST_ASSERT_EQ(hw_bp_addr, PC(bp_brk)); + + /* Watchpoint */ + reset_debug_state(); + install_wp(wpn, PC(write_data)); + write_data = 'x'; + GUEST_ASSERT_EQ(write_data, 'x'); + GUEST_ASSERT_EQ(wp_data_addr, PC(write_data)); + + /* Single-step */ + reset_debug_state(); + install_ss(); + ss_idx = 0; + asm volatile("ss_start:\n" + "mrs x0, esr_el1\n" + "add x0, x0, #1\n" + "msr daifset, #8\n" + : : : "x0"); + GUEST_ASSERT_EQ(ss_addr[0], PC(ss_start)); + GUEST_ASSERT_EQ(ss_addr[1], PC(ss_start) + 4); + GUEST_ASSERT_EQ(ss_addr[2], PC(ss_start) + 8); + + /* OS Lock does not block software-breakpoint */ + reset_debug_state(); + enable_os_lock(); + sw_bp_addr = 0; + asm volatile("sw_bp2: brk #0"); + GUEST_ASSERT_EQ(sw_bp_addr, PC(sw_bp2)); + + /* OS Lock blocking hardware-breakpoint */ + reset_debug_state(); + enable_os_lock(); + install_hw_bp(bpn, PC(hw_bp2)); + hw_bp_addr = 0; + asm volatile("hw_bp2: nop"); + GUEST_ASSERT_EQ(hw_bp_addr, 0); + + /* OS Lock blocking watchpoint */ + reset_debug_state(); + enable_os_lock(); + write_data = '\0'; + wp_data_addr = 0; + install_wp(wpn, PC(write_data)); + write_data = 'x'; + GUEST_ASSERT_EQ(write_data, 'x'); + GUEST_ASSERT_EQ(wp_data_addr, 0); + + /* OS Lock blocking single-step */ + reset_debug_state(); + enable_os_lock(); + ss_addr[0] = 0; + install_ss(); + ss_idx = 0; + asm volatile("mrs x0, esr_el1\n\t" + "add x0, x0, #1\n\t" + "msr daifset, #8\n\t" + : : : "x0"); + GUEST_ASSERT_EQ(ss_addr[0], 0); + + /* Linked hardware-breakpoint */ + hw_bp_addr = 0; + reset_debug_state(); + install_hw_bp_ctx(bpn, ctx_bpn, PC(hw_bp_ctx), ctx); + /* Set context id */ + write_sysreg(ctx, contextidr_el1); + isb(); + asm volatile("hw_bp_ctx: nop"); + write_sysreg(0, contextidr_el1); + GUEST_ASSERT_EQ(hw_bp_addr, PC(hw_bp_ctx)); + + /* Linked watchpoint */ + reset_debug_state(); + install_wp_ctx(wpn, ctx_bpn, PC(write_data), ctx); + /* Set context id */ + write_sysreg(ctx, contextidr_el1); + isb(); + write_data = 'x'; + GUEST_ASSERT_EQ(write_data, 'x'); + GUEST_ASSERT_EQ(wp_data_addr, PC(write_data)); + + GUEST_DONE(); +} + +static void guest_sw_bp_handler(struct ex_regs *regs) +{ + sw_bp_addr = regs->pc; + regs->pc += 4; +} + +static void guest_hw_bp_handler(struct ex_regs *regs) +{ + hw_bp_addr = regs->pc; + regs->pstate |= SPSR_D; +} + +static void guest_wp_handler(struct ex_regs *regs) +{ + wp_data_addr = read_sysreg(far_el1); + wp_addr = regs->pc; + regs->pstate |= SPSR_D; +} + +static void guest_ss_handler(struct ex_regs *regs) +{ + __GUEST_ASSERT(ss_idx < 4, "Expected index < 4, got '%u'", ss_idx); + ss_addr[ss_idx++] = regs->pc; + regs->pstate |= SPSR_SS; +} + +static void guest_svc_handler(struct ex_regs *regs) +{ + svc_addr = regs->pc; +} + +static void guest_code_ss(int test_cnt) +{ + uint64_t i; + uint64_t bvr, wvr, w_bvr, w_wvr; + + for (i = 0; i < test_cnt; i++) { + /* Bits [1:0] of dbg{b,w}vr are RES0 */ + w_bvr = i << 2; + w_wvr = i << 2; + + /* + * Enable Single Step execution. Note! This _must_ be a bare + * ucall as the ucall() path uses atomic operations to manage + * the ucall structures, and the built-in "atomics" are usually + * implemented via exclusive access instructions. The exlusive + * monitor is cleared on ERET, and so taking debug exceptions + * during a LDREX=>STREX sequence will prevent forward progress + * and hang the guest/test. + */ + GUEST_UCALL_NONE(); + + /* + * The userspace will verify that the pc is as expected during + * single step execution between iter_ss_begin and iter_ss_end. + */ + asm volatile("iter_ss_begin:nop\n"); + + write_sysreg(w_bvr, dbgbvr0_el1); + write_sysreg(w_wvr, dbgwvr0_el1); + bvr = read_sysreg(dbgbvr0_el1); + wvr = read_sysreg(dbgwvr0_el1); + + /* Userspace disables Single Step when the end is nigh. */ + asm volatile("iter_ss_end:\n"); + + GUEST_ASSERT_EQ(bvr, w_bvr); + GUEST_ASSERT_EQ(wvr, w_wvr); + } + GUEST_DONE(); +} + +static int debug_version(uint64_t id_aa64dfr0) +{ + return FIELD_GET(ARM64_FEATURE_MASK(ID_AA64DFR0_DEBUGVER), id_aa64dfr0); +} + +static void test_guest_debug_exceptions(uint8_t bpn, uint8_t wpn, uint8_t ctx_bpn) +{ + struct kvm_vcpu *vcpu; + struct kvm_vm *vm; + struct ucall uc; + + vm = vm_create_with_one_vcpu(&vcpu, guest_code); + + vm_init_descriptor_tables(vm); + vcpu_init_descriptor_tables(vcpu); + + vm_install_sync_handler(vm, VECTOR_SYNC_CURRENT, + ESR_EC_BRK_INS, guest_sw_bp_handler); + vm_install_sync_handler(vm, VECTOR_SYNC_CURRENT, + ESR_EC_HW_BP_CURRENT, guest_hw_bp_handler); + vm_install_sync_handler(vm, VECTOR_SYNC_CURRENT, + ESR_EC_WP_CURRENT, guest_wp_handler); + vm_install_sync_handler(vm, VECTOR_SYNC_CURRENT, + ESR_EC_SSTEP_CURRENT, guest_ss_handler); + vm_install_sync_handler(vm, VECTOR_SYNC_CURRENT, + ESR_EC_SVC64, guest_svc_handler); + + /* Specify bpn/wpn/ctx_bpn to be tested */ + vcpu_args_set(vcpu, 3, bpn, wpn, ctx_bpn); + pr_debug("Use bpn#%d, wpn#%d and ctx_bpn#%d\n", bpn, wpn, ctx_bpn); + + vcpu_run(vcpu); + switch (get_ucall(vcpu, &uc)) { + case UCALL_ABORT: + REPORT_GUEST_ASSERT(uc); + break; + case UCALL_DONE: + goto done; + default: + TEST_FAIL("Unknown ucall %lu", uc.cmd); + } + +done: + kvm_vm_free(vm); +} + +void test_single_step_from_userspace(int test_cnt) +{ + struct kvm_vcpu *vcpu; + struct kvm_vm *vm; + struct ucall uc; + struct kvm_run *run; + uint64_t pc, cmd; + uint64_t test_pc = 0; + bool ss_enable = false; + struct kvm_guest_debug debug = {}; + + vm = vm_create_with_one_vcpu(&vcpu, guest_code_ss); + run = vcpu->run; + vcpu_args_set(vcpu, 1, test_cnt); + + while (1) { + vcpu_run(vcpu); + if (run->exit_reason != KVM_EXIT_DEBUG) { + cmd = get_ucall(vcpu, &uc); + if (cmd == UCALL_ABORT) { + REPORT_GUEST_ASSERT(uc); + /* NOT REACHED */ + } else if (cmd == UCALL_DONE) { + break; + } + + TEST_ASSERT(cmd == UCALL_NONE, + "Unexpected ucall cmd 0x%lx", cmd); + + debug.control = KVM_GUESTDBG_ENABLE | + KVM_GUESTDBG_SINGLESTEP; + ss_enable = true; + vcpu_guest_debug_set(vcpu, &debug); + continue; + } + + TEST_ASSERT(ss_enable, "Unexpected KVM_EXIT_DEBUG"); + + /* Check if the current pc is expected. */ + vcpu_get_reg(vcpu, ARM64_CORE_REG(regs.pc), &pc); + TEST_ASSERT(!test_pc || pc == test_pc, + "Unexpected pc 0x%lx (expected 0x%lx)", + pc, test_pc); + + if ((pc + 4) == (uint64_t)&iter_ss_end) { + test_pc = 0; + debug.control = KVM_GUESTDBG_ENABLE; + ss_enable = false; + vcpu_guest_debug_set(vcpu, &debug); + continue; + } + + /* + * If the current pc is between iter_ss_bgin and + * iter_ss_end, the pc for the next KVM_EXIT_DEBUG should + * be the current pc + 4. + */ + if ((pc >= (uint64_t)&iter_ss_begin) && + (pc < (uint64_t)&iter_ss_end)) + test_pc = pc + 4; + else + test_pc = 0; + } + + kvm_vm_free(vm); +} + +/* + * Run debug testing using the various breakpoint#, watchpoint# and + * context-aware breakpoint# with the given ID_AA64DFR0_EL1 configuration. + */ +void test_guest_debug_exceptions_all(uint64_t aa64dfr0) +{ + uint8_t brp_num, wrp_num, ctx_brp_num, normal_brp_num, ctx_brp_base; + int b, w, c; + + /* Number of breakpoints */ + brp_num = FIELD_GET(ARM64_FEATURE_MASK(ID_AA64DFR0_BRPS), aa64dfr0) + 1; + __TEST_REQUIRE(brp_num >= 2, "At least two breakpoints are required"); + + /* Number of watchpoints */ + wrp_num = FIELD_GET(ARM64_FEATURE_MASK(ID_AA64DFR0_WRPS), aa64dfr0) + 1; + + /* Number of context aware breakpoints */ + ctx_brp_num = FIELD_GET(ARM64_FEATURE_MASK(ID_AA64DFR0_CTX_CMPS), aa64dfr0) + 1; + + pr_debug("%s brp_num:%d, wrp_num:%d, ctx_brp_num:%d\n", __func__, + brp_num, wrp_num, ctx_brp_num); + + /* Number of normal (non-context aware) breakpoints */ + normal_brp_num = brp_num - ctx_brp_num; + + /* Lowest context aware breakpoint number */ + ctx_brp_base = normal_brp_num; + + /* Run tests with all supported breakpoints/watchpoints */ + for (c = ctx_brp_base; c < ctx_brp_base + ctx_brp_num; c++) { + for (b = 0; b < normal_brp_num; b++) { + for (w = 0; w < wrp_num; w++) + test_guest_debug_exceptions(b, w, c); + } + } +} + +static void help(char *name) +{ + puts(""); + printf("Usage: %s [-h] [-i iterations of the single step test]\n", name); + puts(""); + exit(0); +} + +int main(int argc, char *argv[]) +{ + struct kvm_vcpu *vcpu; + struct kvm_vm *vm; + int opt; + int ss_iteration = 10000; + uint64_t aa64dfr0; + + vm = vm_create_with_one_vcpu(&vcpu, guest_code); + vcpu_get_reg(vcpu, KVM_ARM64_SYS_REG(SYS_ID_AA64DFR0_EL1), &aa64dfr0); + __TEST_REQUIRE(debug_version(aa64dfr0) >= 6, + "Armv8 debug architecture not supported."); + kvm_vm_free(vm); + + while ((opt = getopt(argc, argv, "i:")) != -1) { + switch (opt) { + case 'i': + ss_iteration = atoi_positive("Number of iterations", optarg); + break; + case 'h': + default: + help(argv[0]); + break; + } + } + + test_guest_debug_exceptions_all(aa64dfr0); + test_single_step_from_userspace(ss_iteration); + + return 0; +} diff --git a/tools/testing/selftests/kvm/aarch64/get-reg-list.c b/tools/testing/selftests/kvm/aarch64/get-reg-list.c new file mode 100644 index 0000000000..709d7d7217 --- /dev/null +++ b/tools/testing/selftests/kvm/aarch64/get-reg-list.c @@ -0,0 +1,757 @@ +// SPDX-License-Identifier: GPL-2.0 +/* + * Check for KVM_GET_REG_LIST regressions. + * + * Copyright (C) 2020, Red Hat, Inc. + * + * While the blessed list should be created from the oldest possible + * kernel, we can't go older than v5.2, though, because that's the first + * release which includes df205b5c6328 ("KVM: arm64: Filter out invalid + * core register IDs in KVM_GET_REG_LIST"). Without that commit the core + * registers won't match expectations. + */ +#include <stdio.h> +#include "kvm_util.h" +#include "test_util.h" +#include "processor.h" + +struct feature_id_reg { + __u64 reg; + __u64 id_reg; + __u64 feat_shift; + __u64 feat_min; +}; + +static struct feature_id_reg feat_id_regs[] = { + { + ARM64_SYS_REG(3, 0, 2, 0, 3), /* TCR2_EL1 */ + ARM64_SYS_REG(3, 0, 0, 7, 3), /* ID_AA64MMFR3_EL1 */ + 0, + 1 + }, + { + ARM64_SYS_REG(3, 0, 10, 2, 2), /* PIRE0_EL1 */ + ARM64_SYS_REG(3, 0, 0, 7, 3), /* ID_AA64MMFR3_EL1 */ + 4, + 1 + }, + { + ARM64_SYS_REG(3, 0, 10, 2, 3), /* PIR_EL1 */ + ARM64_SYS_REG(3, 0, 0, 7, 3), /* ID_AA64MMFR3_EL1 */ + 4, + 1 + } +}; + +bool filter_reg(__u64 reg) +{ + /* + * DEMUX register presence depends on the host's CLIDR_EL1. + * This means there's no set of them that we can bless. + */ + if ((reg & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX) + return true; + + return false; +} + +static bool check_supported_feat_reg(struct kvm_vcpu *vcpu, __u64 reg) +{ + int i, ret; + __u64 data, feat_val; + + for (i = 0; i < ARRAY_SIZE(feat_id_regs); i++) { + if (feat_id_regs[i].reg == reg) { + ret = __vcpu_get_reg(vcpu, feat_id_regs[i].id_reg, &data); + if (ret < 0) + return false; + + feat_val = ((data >> feat_id_regs[i].feat_shift) & 0xf); + return feat_val >= feat_id_regs[i].feat_min; + } + } + + return true; +} + +bool check_supported_reg(struct kvm_vcpu *vcpu, __u64 reg) +{ + return check_supported_feat_reg(vcpu, reg); +} + +bool check_reject_set(int err) +{ + return err == EPERM; +} + +void finalize_vcpu(struct kvm_vcpu *vcpu, struct vcpu_reg_list *c) +{ + struct vcpu_reg_sublist *s; + int feature; + + for_each_sublist(c, s) { + if (s->finalize) { + feature = s->feature; + vcpu_ioctl(vcpu, KVM_ARM_VCPU_FINALIZE, &feature); + } + } +} + +#define REG_MASK (KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK | KVM_REG_ARM_COPROC_MASK) + +#define CORE_REGS_XX_NR_WORDS 2 +#define CORE_SPSR_XX_NR_WORDS 2 +#define CORE_FPREGS_XX_NR_WORDS 4 + +static const char *core_id_to_str(const char *prefix, __u64 id) +{ + __u64 core_off = id & ~REG_MASK, idx; + + /* + * core_off is the offset into struct kvm_regs + */ + switch (core_off) { + case KVM_REG_ARM_CORE_REG(regs.regs[0]) ... + KVM_REG_ARM_CORE_REG(regs.regs[30]): + idx = (core_off - KVM_REG_ARM_CORE_REG(regs.regs[0])) / CORE_REGS_XX_NR_WORDS; + TEST_ASSERT(idx < 31, "%s: Unexpected regs.regs index: %lld", prefix, idx); + return strdup_printf("KVM_REG_ARM_CORE_REG(regs.regs[%lld])", idx); + case KVM_REG_ARM_CORE_REG(regs.sp): + return "KVM_REG_ARM_CORE_REG(regs.sp)"; + case KVM_REG_ARM_CORE_REG(regs.pc): + return "KVM_REG_ARM_CORE_REG(regs.pc)"; + case KVM_REG_ARM_CORE_REG(regs.pstate): + return "KVM_REG_ARM_CORE_REG(regs.pstate)"; + case KVM_REG_ARM_CORE_REG(sp_el1): + return "KVM_REG_ARM_CORE_REG(sp_el1)"; + case KVM_REG_ARM_CORE_REG(elr_el1): + return "KVM_REG_ARM_CORE_REG(elr_el1)"; + case KVM_REG_ARM_CORE_REG(spsr[0]) ... + KVM_REG_ARM_CORE_REG(spsr[KVM_NR_SPSR - 1]): + idx = (core_off - KVM_REG_ARM_CORE_REG(spsr[0])) / CORE_SPSR_XX_NR_WORDS; + TEST_ASSERT(idx < KVM_NR_SPSR, "%s: Unexpected spsr index: %lld", prefix, idx); + return strdup_printf("KVM_REG_ARM_CORE_REG(spsr[%lld])", idx); + case KVM_REG_ARM_CORE_REG(fp_regs.vregs[0]) ... + KVM_REG_ARM_CORE_REG(fp_regs.vregs[31]): + idx = (core_off - KVM_REG_ARM_CORE_REG(fp_regs.vregs[0])) / CORE_FPREGS_XX_NR_WORDS; + TEST_ASSERT(idx < 32, "%s: Unexpected fp_regs.vregs index: %lld", prefix, idx); + return strdup_printf("KVM_REG_ARM_CORE_REG(fp_regs.vregs[%lld])", idx); + case KVM_REG_ARM_CORE_REG(fp_regs.fpsr): + return "KVM_REG_ARM_CORE_REG(fp_regs.fpsr)"; + case KVM_REG_ARM_CORE_REG(fp_regs.fpcr): + return "KVM_REG_ARM_CORE_REG(fp_regs.fpcr)"; + } + + TEST_FAIL("%s: Unknown core reg id: 0x%llx", prefix, id); + return NULL; +} + +static const char *sve_id_to_str(const char *prefix, __u64 id) +{ + __u64 sve_off, n, i; + + if (id == KVM_REG_ARM64_SVE_VLS) + return "KVM_REG_ARM64_SVE_VLS"; + + sve_off = id & ~(REG_MASK | ((1ULL << 5) - 1)); + i = id & (KVM_ARM64_SVE_MAX_SLICES - 1); + + TEST_ASSERT(i == 0, "%s: Currently we don't expect slice > 0, reg id 0x%llx", prefix, id); + + switch (sve_off) { + case KVM_REG_ARM64_SVE_ZREG_BASE ... + KVM_REG_ARM64_SVE_ZREG_BASE + (1ULL << 5) * KVM_ARM64_SVE_NUM_ZREGS - 1: + n = (id >> 5) & (KVM_ARM64_SVE_NUM_ZREGS - 1); + TEST_ASSERT(id == KVM_REG_ARM64_SVE_ZREG(n, 0), + "%s: Unexpected bits set in SVE ZREG id: 0x%llx", prefix, id); + return strdup_printf("KVM_REG_ARM64_SVE_ZREG(%lld, 0)", n); + case KVM_REG_ARM64_SVE_PREG_BASE ... + KVM_REG_ARM64_SVE_PREG_BASE + (1ULL << 5) * KVM_ARM64_SVE_NUM_PREGS - 1: + n = (id >> 5) & (KVM_ARM64_SVE_NUM_PREGS - 1); + TEST_ASSERT(id == KVM_REG_ARM64_SVE_PREG(n, 0), + "%s: Unexpected bits set in SVE PREG id: 0x%llx", prefix, id); + return strdup_printf("KVM_REG_ARM64_SVE_PREG(%lld, 0)", n); + case KVM_REG_ARM64_SVE_FFR_BASE: + TEST_ASSERT(id == KVM_REG_ARM64_SVE_FFR(0), + "%s: Unexpected bits set in SVE FFR id: 0x%llx", prefix, id); + return "KVM_REG_ARM64_SVE_FFR(0)"; + } + + return NULL; +} + +void print_reg(const char *prefix, __u64 id) +{ + unsigned op0, op1, crn, crm, op2; + const char *reg_size = NULL; + + TEST_ASSERT((id & KVM_REG_ARCH_MASK) == KVM_REG_ARM64, + "%s: KVM_REG_ARM64 missing in reg id: 0x%llx", prefix, id); + + switch (id & KVM_REG_SIZE_MASK) { + case KVM_REG_SIZE_U8: + reg_size = "KVM_REG_SIZE_U8"; + break; + case KVM_REG_SIZE_U16: + reg_size = "KVM_REG_SIZE_U16"; + break; + case KVM_REG_SIZE_U32: + reg_size = "KVM_REG_SIZE_U32"; + break; + case KVM_REG_SIZE_U64: + reg_size = "KVM_REG_SIZE_U64"; + break; + case KVM_REG_SIZE_U128: + reg_size = "KVM_REG_SIZE_U128"; + break; + case KVM_REG_SIZE_U256: + reg_size = "KVM_REG_SIZE_U256"; + break; + case KVM_REG_SIZE_U512: + reg_size = "KVM_REG_SIZE_U512"; + break; + case KVM_REG_SIZE_U1024: + reg_size = "KVM_REG_SIZE_U1024"; + break; + case KVM_REG_SIZE_U2048: + reg_size = "KVM_REG_SIZE_U2048"; + break; + default: + TEST_FAIL("%s: Unexpected reg size: 0x%llx in reg id: 0x%llx", + prefix, (id & KVM_REG_SIZE_MASK) >> KVM_REG_SIZE_SHIFT, id); + } + + switch (id & KVM_REG_ARM_COPROC_MASK) { + case KVM_REG_ARM_CORE: + printf("\tKVM_REG_ARM64 | %s | KVM_REG_ARM_CORE | %s,\n", reg_size, core_id_to_str(prefix, id)); + break; + case KVM_REG_ARM_DEMUX: + TEST_ASSERT(!(id & ~(REG_MASK | KVM_REG_ARM_DEMUX_ID_MASK | KVM_REG_ARM_DEMUX_VAL_MASK)), + "%s: Unexpected bits set in DEMUX reg id: 0x%llx", prefix, id); + printf("\tKVM_REG_ARM64 | %s | KVM_REG_ARM_DEMUX | KVM_REG_ARM_DEMUX_ID_CCSIDR | %lld,\n", + reg_size, id & KVM_REG_ARM_DEMUX_VAL_MASK); + break; + case KVM_REG_ARM64_SYSREG: + op0 = (id & KVM_REG_ARM64_SYSREG_OP0_MASK) >> KVM_REG_ARM64_SYSREG_OP0_SHIFT; + op1 = (id & KVM_REG_ARM64_SYSREG_OP1_MASK) >> KVM_REG_ARM64_SYSREG_OP1_SHIFT; + crn = (id & KVM_REG_ARM64_SYSREG_CRN_MASK) >> KVM_REG_ARM64_SYSREG_CRN_SHIFT; + crm = (id & KVM_REG_ARM64_SYSREG_CRM_MASK) >> KVM_REG_ARM64_SYSREG_CRM_SHIFT; + op2 = (id & KVM_REG_ARM64_SYSREG_OP2_MASK) >> KVM_REG_ARM64_SYSREG_OP2_SHIFT; + TEST_ASSERT(id == ARM64_SYS_REG(op0, op1, crn, crm, op2), + "%s: Unexpected bits set in SYSREG reg id: 0x%llx", prefix, id); + printf("\tARM64_SYS_REG(%d, %d, %d, %d, %d),\n", op0, op1, crn, crm, op2); + break; + case KVM_REG_ARM_FW: + TEST_ASSERT(id == KVM_REG_ARM_FW_REG(id & 0xffff), + "%s: Unexpected bits set in FW reg id: 0x%llx", prefix, id); + printf("\tKVM_REG_ARM_FW_REG(%lld),\n", id & 0xffff); + break; + case KVM_REG_ARM_FW_FEAT_BMAP: + TEST_ASSERT(id == KVM_REG_ARM_FW_FEAT_BMAP_REG(id & 0xffff), + "%s: Unexpected bits set in the bitmap feature FW reg id: 0x%llx", prefix, id); + printf("\tKVM_REG_ARM_FW_FEAT_BMAP_REG(%lld),\n", id & 0xffff); + break; + case KVM_REG_ARM64_SVE: + printf("\t%s,\n", sve_id_to_str(prefix, id)); + break; + default: + TEST_FAIL("%s: Unexpected coproc type: 0x%llx in reg id: 0x%llx", + prefix, (id & KVM_REG_ARM_COPROC_MASK) >> KVM_REG_ARM_COPROC_SHIFT, id); + } +} + +/* + * The original blessed list was primed with the output of kernel version + * v4.15 with --core-reg-fixup and then later updated with new registers. + * (The --core-reg-fixup option and it's fixup function have been removed + * from the test, as it's unlikely to use this type of test on a kernel + * older than v5.2.) + * + * The blessed list is up to date with kernel version v6.4 (or so we hope) + */ +static __u64 base_regs[] = { + KVM_REG_ARM64 | KVM_REG_SIZE_U64 | KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(regs.regs[0]), + KVM_REG_ARM64 | KVM_REG_SIZE_U64 | KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(regs.regs[1]), + KVM_REG_ARM64 | KVM_REG_SIZE_U64 | KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(regs.regs[2]), + KVM_REG_ARM64 | KVM_REG_SIZE_U64 | KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(regs.regs[3]), + KVM_REG_ARM64 | KVM_REG_SIZE_U64 | KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(regs.regs[4]), + KVM_REG_ARM64 | KVM_REG_SIZE_U64 | KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(regs.regs[5]), + KVM_REG_ARM64 | KVM_REG_SIZE_U64 | KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(regs.regs[6]), + KVM_REG_ARM64 | KVM_REG_SIZE_U64 | KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(regs.regs[7]), + KVM_REG_ARM64 | KVM_REG_SIZE_U64 | KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(regs.regs[8]), + KVM_REG_ARM64 | KVM_REG_SIZE_U64 | KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(regs.regs[9]), + KVM_REG_ARM64 | KVM_REG_SIZE_U64 | KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(regs.regs[10]), + KVM_REG_ARM64 | KVM_REG_SIZE_U64 | KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(regs.regs[11]), + KVM_REG_ARM64 | KVM_REG_SIZE_U64 | KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(regs.regs[12]), + KVM_REG_ARM64 | KVM_REG_SIZE_U64 | KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(regs.regs[13]), + KVM_REG_ARM64 | KVM_REG_SIZE_U64 | KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(regs.regs[14]), + KVM_REG_ARM64 | KVM_REG_SIZE_U64 | KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(regs.regs[15]), + KVM_REG_ARM64 | KVM_REG_SIZE_U64 | KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(regs.regs[16]), + KVM_REG_ARM64 | KVM_REG_SIZE_U64 | KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(regs.regs[17]), + KVM_REG_ARM64 | KVM_REG_SIZE_U64 | KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(regs.regs[18]), + KVM_REG_ARM64 | KVM_REG_SIZE_U64 | KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(regs.regs[19]), + KVM_REG_ARM64 | KVM_REG_SIZE_U64 | KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(regs.regs[20]), + KVM_REG_ARM64 | KVM_REG_SIZE_U64 | KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(regs.regs[21]), + KVM_REG_ARM64 | KVM_REG_SIZE_U64 | KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(regs.regs[22]), + KVM_REG_ARM64 | KVM_REG_SIZE_U64 | KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(regs.regs[23]), + KVM_REG_ARM64 | KVM_REG_SIZE_U64 | KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(regs.regs[24]), + KVM_REG_ARM64 | KVM_REG_SIZE_U64 | KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(regs.regs[25]), + KVM_REG_ARM64 | KVM_REG_SIZE_U64 | KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(regs.regs[26]), + KVM_REG_ARM64 | KVM_REG_SIZE_U64 | KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(regs.regs[27]), + KVM_REG_ARM64 | KVM_REG_SIZE_U64 | KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(regs.regs[28]), + KVM_REG_ARM64 | KVM_REG_SIZE_U64 | KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(regs.regs[29]), + KVM_REG_ARM64 | KVM_REG_SIZE_U64 | KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(regs.regs[30]), + KVM_REG_ARM64 | KVM_REG_SIZE_U64 | KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(regs.sp), + KVM_REG_ARM64 | KVM_REG_SIZE_U64 | KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(regs.pc), + KVM_REG_ARM64 | KVM_REG_SIZE_U64 | KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(regs.pstate), + KVM_REG_ARM64 | KVM_REG_SIZE_U64 | KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(sp_el1), + KVM_REG_ARM64 | KVM_REG_SIZE_U64 | KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(elr_el1), + KVM_REG_ARM64 | KVM_REG_SIZE_U64 | KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(spsr[0]), + KVM_REG_ARM64 | KVM_REG_SIZE_U64 | KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(spsr[1]), + KVM_REG_ARM64 | KVM_REG_SIZE_U64 | KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(spsr[2]), + KVM_REG_ARM64 | KVM_REG_SIZE_U64 | KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(spsr[3]), + KVM_REG_ARM64 | KVM_REG_SIZE_U64 | KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(spsr[4]), + KVM_REG_ARM64 | KVM_REG_SIZE_U32 | KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(fp_regs.fpsr), + KVM_REG_ARM64 | KVM_REG_SIZE_U32 | KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(fp_regs.fpcr), + KVM_REG_ARM_FW_REG(0), /* KVM_REG_ARM_PSCI_VERSION */ + KVM_REG_ARM_FW_REG(1), /* KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_1 */ + KVM_REG_ARM_FW_REG(2), /* KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2 */ + KVM_REG_ARM_FW_REG(3), /* KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_3 */ + KVM_REG_ARM_FW_FEAT_BMAP_REG(0), /* KVM_REG_ARM_STD_BMAP */ + KVM_REG_ARM_FW_FEAT_BMAP_REG(1), /* KVM_REG_ARM_STD_HYP_BMAP */ + KVM_REG_ARM_FW_FEAT_BMAP_REG(2), /* KVM_REG_ARM_VENDOR_HYP_BMAP */ + ARM64_SYS_REG(3, 3, 14, 3, 1), /* CNTV_CTL_EL0 */ + ARM64_SYS_REG(3, 3, 14, 3, 2), /* CNTV_CVAL_EL0 */ + ARM64_SYS_REG(3, 3, 14, 0, 2), + ARM64_SYS_REG(3, 0, 0, 0, 0), /* MIDR_EL1 */ + ARM64_SYS_REG(3, 0, 0, 0, 6), /* REVIDR_EL1 */ + ARM64_SYS_REG(3, 1, 0, 0, 1), /* CLIDR_EL1 */ + ARM64_SYS_REG(3, 1, 0, 0, 7), /* AIDR_EL1 */ + ARM64_SYS_REG(3, 3, 0, 0, 1), /* CTR_EL0 */ + ARM64_SYS_REG(2, 0, 0, 0, 4), + ARM64_SYS_REG(2, 0, 0, 0, 5), + ARM64_SYS_REG(2, 0, 0, 0, 6), + ARM64_SYS_REG(2, 0, 0, 0, 7), + ARM64_SYS_REG(2, 0, 0, 1, 4), + ARM64_SYS_REG(2, 0, 0, 1, 5), + ARM64_SYS_REG(2, 0, 0, 1, 6), + ARM64_SYS_REG(2, 0, 0, 1, 7), + ARM64_SYS_REG(2, 0, 0, 2, 0), /* MDCCINT_EL1 */ + ARM64_SYS_REG(2, 0, 0, 2, 2), /* MDSCR_EL1 */ + ARM64_SYS_REG(2, 0, 0, 2, 4), + ARM64_SYS_REG(2, 0, 0, 2, 5), + ARM64_SYS_REG(2, 0, 0, 2, 6), + ARM64_SYS_REG(2, 0, 0, 2, 7), + ARM64_SYS_REG(2, 0, 0, 3, 4), + ARM64_SYS_REG(2, 0, 0, 3, 5), + ARM64_SYS_REG(2, 0, 0, 3, 6), + ARM64_SYS_REG(2, 0, 0, 3, 7), + ARM64_SYS_REG(2, 0, 0, 4, 4), + ARM64_SYS_REG(2, 0, 0, 4, 5), + ARM64_SYS_REG(2, 0, 0, 4, 6), + ARM64_SYS_REG(2, 0, 0, 4, 7), + ARM64_SYS_REG(2, 0, 0, 5, 4), + ARM64_SYS_REG(2, 0, 0, 5, 5), + ARM64_SYS_REG(2, 0, 0, 5, 6), + ARM64_SYS_REG(2, 0, 0, 5, 7), + ARM64_SYS_REG(2, 0, 0, 6, 4), + ARM64_SYS_REG(2, 0, 0, 6, 5), + ARM64_SYS_REG(2, 0, 0, 6, 6), + ARM64_SYS_REG(2, 0, 0, 6, 7), + ARM64_SYS_REG(2, 0, 0, 7, 4), + ARM64_SYS_REG(2, 0, 0, 7, 5), + ARM64_SYS_REG(2, 0, 0, 7, 6), + ARM64_SYS_REG(2, 0, 0, 7, 7), + ARM64_SYS_REG(2, 0, 0, 8, 4), + ARM64_SYS_REG(2, 0, 0, 8, 5), + ARM64_SYS_REG(2, 0, 0, 8, 6), + ARM64_SYS_REG(2, 0, 0, 8, 7), + ARM64_SYS_REG(2, 0, 0, 9, 4), + ARM64_SYS_REG(2, 0, 0, 9, 5), + ARM64_SYS_REG(2, 0, 0, 9, 6), + ARM64_SYS_REG(2, 0, 0, 9, 7), + ARM64_SYS_REG(2, 0, 0, 10, 4), + ARM64_SYS_REG(2, 0, 0, 10, 5), + ARM64_SYS_REG(2, 0, 0, 10, 6), + ARM64_SYS_REG(2, 0, 0, 10, 7), + ARM64_SYS_REG(2, 0, 0, 11, 4), + ARM64_SYS_REG(2, 0, 0, 11, 5), + ARM64_SYS_REG(2, 0, 0, 11, 6), + ARM64_SYS_REG(2, 0, 0, 11, 7), + ARM64_SYS_REG(2, 0, 0, 12, 4), + ARM64_SYS_REG(2, 0, 0, 12, 5), + ARM64_SYS_REG(2, 0, 0, 12, 6), + ARM64_SYS_REG(2, 0, 0, 12, 7), + ARM64_SYS_REG(2, 0, 0, 13, 4), + ARM64_SYS_REG(2, 0, 0, 13, 5), + ARM64_SYS_REG(2, 0, 0, 13, 6), + ARM64_SYS_REG(2, 0, 0, 13, 7), + ARM64_SYS_REG(2, 0, 0, 14, 4), + ARM64_SYS_REG(2, 0, 0, 14, 5), + ARM64_SYS_REG(2, 0, 0, 14, 6), + ARM64_SYS_REG(2, 0, 0, 14, 7), + ARM64_SYS_REG(2, 0, 0, 15, 4), + ARM64_SYS_REG(2, 0, 0, 15, 5), + ARM64_SYS_REG(2, 0, 0, 15, 6), + ARM64_SYS_REG(2, 0, 0, 15, 7), + ARM64_SYS_REG(2, 0, 1, 1, 4), /* OSLSR_EL1 */ + ARM64_SYS_REG(2, 4, 0, 7, 0), /* DBGVCR32_EL2 */ + ARM64_SYS_REG(3, 0, 0, 0, 5), /* MPIDR_EL1 */ + ARM64_SYS_REG(3, 0, 0, 1, 0), /* ID_PFR0_EL1 */ + ARM64_SYS_REG(3, 0, 0, 1, 1), /* ID_PFR1_EL1 */ + ARM64_SYS_REG(3, 0, 0, 1, 2), /* ID_DFR0_EL1 */ + ARM64_SYS_REG(3, 0, 0, 1, 3), /* ID_AFR0_EL1 */ + ARM64_SYS_REG(3, 0, 0, 1, 4), /* ID_MMFR0_EL1 */ + ARM64_SYS_REG(3, 0, 0, 1, 5), /* ID_MMFR1_EL1 */ + ARM64_SYS_REG(3, 0, 0, 1, 6), /* ID_MMFR2_EL1 */ + ARM64_SYS_REG(3, 0, 0, 1, 7), /* ID_MMFR3_EL1 */ + ARM64_SYS_REG(3, 0, 0, 2, 0), /* ID_ISAR0_EL1 */ + ARM64_SYS_REG(3, 0, 0, 2, 1), /* ID_ISAR1_EL1 */ + ARM64_SYS_REG(3, 0, 0, 2, 2), /* ID_ISAR2_EL1 */ + ARM64_SYS_REG(3, 0, 0, 2, 3), /* ID_ISAR3_EL1 */ + ARM64_SYS_REG(3, 0, 0, 2, 4), /* ID_ISAR4_EL1 */ + ARM64_SYS_REG(3, 0, 0, 2, 5), /* ID_ISAR5_EL1 */ + ARM64_SYS_REG(3, 0, 0, 2, 6), /* ID_MMFR4_EL1 */ + ARM64_SYS_REG(3, 0, 0, 2, 7), /* ID_ISAR6_EL1 */ + ARM64_SYS_REG(3, 0, 0, 3, 0), /* MVFR0_EL1 */ + ARM64_SYS_REG(3, 0, 0, 3, 1), /* MVFR1_EL1 */ + ARM64_SYS_REG(3, 0, 0, 3, 2), /* MVFR2_EL1 */ + ARM64_SYS_REG(3, 0, 0, 3, 3), + ARM64_SYS_REG(3, 0, 0, 3, 4), /* ID_PFR2_EL1 */ + ARM64_SYS_REG(3, 0, 0, 3, 5), /* ID_DFR1_EL1 */ + ARM64_SYS_REG(3, 0, 0, 3, 6), /* ID_MMFR5_EL1 */ + ARM64_SYS_REG(3, 0, 0, 3, 7), + ARM64_SYS_REG(3, 0, 0, 4, 0), /* ID_AA64PFR0_EL1 */ + ARM64_SYS_REG(3, 0, 0, 4, 1), /* ID_AA64PFR1_EL1 */ + ARM64_SYS_REG(3, 0, 0, 4, 2), /* ID_AA64PFR2_EL1 */ + ARM64_SYS_REG(3, 0, 0, 4, 3), + ARM64_SYS_REG(3, 0, 0, 4, 4), /* ID_AA64ZFR0_EL1 */ + ARM64_SYS_REG(3, 0, 0, 4, 5), /* ID_AA64SMFR0_EL1 */ + ARM64_SYS_REG(3, 0, 0, 4, 6), + ARM64_SYS_REG(3, 0, 0, 4, 7), + ARM64_SYS_REG(3, 0, 0, 5, 0), /* ID_AA64DFR0_EL1 */ + ARM64_SYS_REG(3, 0, 0, 5, 1), /* ID_AA64DFR1_EL1 */ + ARM64_SYS_REG(3, 0, 0, 5, 2), + ARM64_SYS_REG(3, 0, 0, 5, 3), + ARM64_SYS_REG(3, 0, 0, 5, 4), /* ID_AA64AFR0_EL1 */ + ARM64_SYS_REG(3, 0, 0, 5, 5), /* ID_AA64AFR1_EL1 */ + ARM64_SYS_REG(3, 0, 0, 5, 6), + ARM64_SYS_REG(3, 0, 0, 5, 7), + ARM64_SYS_REG(3, 0, 0, 6, 0), /* ID_AA64ISAR0_EL1 */ + ARM64_SYS_REG(3, 0, 0, 6, 1), /* ID_AA64ISAR1_EL1 */ + ARM64_SYS_REG(3, 0, 0, 6, 2), /* ID_AA64ISAR2_EL1 */ + ARM64_SYS_REG(3, 0, 0, 6, 3), + ARM64_SYS_REG(3, 0, 0, 6, 4), + ARM64_SYS_REG(3, 0, 0, 6, 5), + ARM64_SYS_REG(3, 0, 0, 6, 6), + ARM64_SYS_REG(3, 0, 0, 6, 7), + ARM64_SYS_REG(3, 0, 0, 7, 0), /* ID_AA64MMFR0_EL1 */ + ARM64_SYS_REG(3, 0, 0, 7, 1), /* ID_AA64MMFR1_EL1 */ + ARM64_SYS_REG(3, 0, 0, 7, 2), /* ID_AA64MMFR2_EL1 */ + ARM64_SYS_REG(3, 0, 0, 7, 3), /* ID_AA64MMFR3_EL1 */ + ARM64_SYS_REG(3, 0, 0, 7, 4), /* ID_AA64MMFR4_EL1 */ + ARM64_SYS_REG(3, 0, 0, 7, 5), + ARM64_SYS_REG(3, 0, 0, 7, 6), + ARM64_SYS_REG(3, 0, 0, 7, 7), + ARM64_SYS_REG(3, 0, 1, 0, 0), /* SCTLR_EL1 */ + ARM64_SYS_REG(3, 0, 1, 0, 1), /* ACTLR_EL1 */ + ARM64_SYS_REG(3, 0, 1, 0, 2), /* CPACR_EL1 */ + ARM64_SYS_REG(3, 0, 2, 0, 0), /* TTBR0_EL1 */ + ARM64_SYS_REG(3, 0, 2, 0, 1), /* TTBR1_EL1 */ + ARM64_SYS_REG(3, 0, 2, 0, 2), /* TCR_EL1 */ + ARM64_SYS_REG(3, 0, 2, 0, 3), /* TCR2_EL1 */ + ARM64_SYS_REG(3, 0, 5, 1, 0), /* AFSR0_EL1 */ + ARM64_SYS_REG(3, 0, 5, 1, 1), /* AFSR1_EL1 */ + ARM64_SYS_REG(3, 0, 5, 2, 0), /* ESR_EL1 */ + ARM64_SYS_REG(3, 0, 6, 0, 0), /* FAR_EL1 */ + ARM64_SYS_REG(3, 0, 7, 4, 0), /* PAR_EL1 */ + ARM64_SYS_REG(3, 0, 10, 2, 0), /* MAIR_EL1 */ + ARM64_SYS_REG(3, 0, 10, 2, 2), /* PIRE0_EL1 */ + ARM64_SYS_REG(3, 0, 10, 2, 3), /* PIR_EL1 */ + ARM64_SYS_REG(3, 0, 10, 3, 0), /* AMAIR_EL1 */ + ARM64_SYS_REG(3, 0, 12, 0, 0), /* VBAR_EL1 */ + ARM64_SYS_REG(3, 0, 12, 1, 1), /* DISR_EL1 */ + ARM64_SYS_REG(3, 0, 13, 0, 1), /* CONTEXTIDR_EL1 */ + ARM64_SYS_REG(3, 0, 13, 0, 4), /* TPIDR_EL1 */ + ARM64_SYS_REG(3, 0, 14, 1, 0), /* CNTKCTL_EL1 */ + ARM64_SYS_REG(3, 2, 0, 0, 0), /* CSSELR_EL1 */ + ARM64_SYS_REG(3, 3, 13, 0, 2), /* TPIDR_EL0 */ + ARM64_SYS_REG(3, 3, 13, 0, 3), /* TPIDRRO_EL0 */ + ARM64_SYS_REG(3, 3, 14, 0, 1), /* CNTPCT_EL0 */ + ARM64_SYS_REG(3, 3, 14, 2, 1), /* CNTP_CTL_EL0 */ + ARM64_SYS_REG(3, 3, 14, 2, 2), /* CNTP_CVAL_EL0 */ + ARM64_SYS_REG(3, 4, 3, 0, 0), /* DACR32_EL2 */ + ARM64_SYS_REG(3, 4, 5, 0, 1), /* IFSR32_EL2 */ + ARM64_SYS_REG(3, 4, 5, 3, 0), /* FPEXC32_EL2 */ +}; + +static __u64 pmu_regs[] = { + ARM64_SYS_REG(3, 0, 9, 14, 1), /* PMINTENSET_EL1 */ + ARM64_SYS_REG(3, 0, 9, 14, 2), /* PMINTENCLR_EL1 */ + ARM64_SYS_REG(3, 3, 9, 12, 0), /* PMCR_EL0 */ + ARM64_SYS_REG(3, 3, 9, 12, 1), /* PMCNTENSET_EL0 */ + ARM64_SYS_REG(3, 3, 9, 12, 2), /* PMCNTENCLR_EL0 */ + ARM64_SYS_REG(3, 3, 9, 12, 3), /* PMOVSCLR_EL0 */ + ARM64_SYS_REG(3, 3, 9, 12, 4), /* PMSWINC_EL0 */ + ARM64_SYS_REG(3, 3, 9, 12, 5), /* PMSELR_EL0 */ + ARM64_SYS_REG(3, 3, 9, 13, 0), /* PMCCNTR_EL0 */ + ARM64_SYS_REG(3, 3, 9, 14, 0), /* PMUSERENR_EL0 */ + ARM64_SYS_REG(3, 3, 9, 14, 3), /* PMOVSSET_EL0 */ + ARM64_SYS_REG(3, 3, 14, 8, 0), + ARM64_SYS_REG(3, 3, 14, 8, 1), + ARM64_SYS_REG(3, 3, 14, 8, 2), + ARM64_SYS_REG(3, 3, 14, 8, 3), + ARM64_SYS_REG(3, 3, 14, 8, 4), + ARM64_SYS_REG(3, 3, 14, 8, 5), + ARM64_SYS_REG(3, 3, 14, 8, 6), + ARM64_SYS_REG(3, 3, 14, 8, 7), + ARM64_SYS_REG(3, 3, 14, 9, 0), + ARM64_SYS_REG(3, 3, 14, 9, 1), + ARM64_SYS_REG(3, 3, 14, 9, 2), + ARM64_SYS_REG(3, 3, 14, 9, 3), + ARM64_SYS_REG(3, 3, 14, 9, 4), + ARM64_SYS_REG(3, 3, 14, 9, 5), + ARM64_SYS_REG(3, 3, 14, 9, 6), + ARM64_SYS_REG(3, 3, 14, 9, 7), + ARM64_SYS_REG(3, 3, 14, 10, 0), + ARM64_SYS_REG(3, 3, 14, 10, 1), + ARM64_SYS_REG(3, 3, 14, 10, 2), + ARM64_SYS_REG(3, 3, 14, 10, 3), + ARM64_SYS_REG(3, 3, 14, 10, 4), + ARM64_SYS_REG(3, 3, 14, 10, 5), + ARM64_SYS_REG(3, 3, 14, 10, 6), + ARM64_SYS_REG(3, 3, 14, 10, 7), + ARM64_SYS_REG(3, 3, 14, 11, 0), + ARM64_SYS_REG(3, 3, 14, 11, 1), + ARM64_SYS_REG(3, 3, 14, 11, 2), + ARM64_SYS_REG(3, 3, 14, 11, 3), + ARM64_SYS_REG(3, 3, 14, 11, 4), + ARM64_SYS_REG(3, 3, 14, 11, 5), + ARM64_SYS_REG(3, 3, 14, 11, 6), + ARM64_SYS_REG(3, 3, 14, 12, 0), + ARM64_SYS_REG(3, 3, 14, 12, 1), + ARM64_SYS_REG(3, 3, 14, 12, 2), + ARM64_SYS_REG(3, 3, 14, 12, 3), + ARM64_SYS_REG(3, 3, 14, 12, 4), + ARM64_SYS_REG(3, 3, 14, 12, 5), + ARM64_SYS_REG(3, 3, 14, 12, 6), + ARM64_SYS_REG(3, 3, 14, 12, 7), + ARM64_SYS_REG(3, 3, 14, 13, 0), + ARM64_SYS_REG(3, 3, 14, 13, 1), + ARM64_SYS_REG(3, 3, 14, 13, 2), + ARM64_SYS_REG(3, 3, 14, 13, 3), + ARM64_SYS_REG(3, 3, 14, 13, 4), + ARM64_SYS_REG(3, 3, 14, 13, 5), + ARM64_SYS_REG(3, 3, 14, 13, 6), + ARM64_SYS_REG(3, 3, 14, 13, 7), + ARM64_SYS_REG(3, 3, 14, 14, 0), + ARM64_SYS_REG(3, 3, 14, 14, 1), + ARM64_SYS_REG(3, 3, 14, 14, 2), + ARM64_SYS_REG(3, 3, 14, 14, 3), + ARM64_SYS_REG(3, 3, 14, 14, 4), + ARM64_SYS_REG(3, 3, 14, 14, 5), + ARM64_SYS_REG(3, 3, 14, 14, 6), + ARM64_SYS_REG(3, 3, 14, 14, 7), + ARM64_SYS_REG(3, 3, 14, 15, 0), + ARM64_SYS_REG(3, 3, 14, 15, 1), + ARM64_SYS_REG(3, 3, 14, 15, 2), + ARM64_SYS_REG(3, 3, 14, 15, 3), + ARM64_SYS_REG(3, 3, 14, 15, 4), + ARM64_SYS_REG(3, 3, 14, 15, 5), + ARM64_SYS_REG(3, 3, 14, 15, 6), + ARM64_SYS_REG(3, 3, 14, 15, 7), /* PMCCFILTR_EL0 */ +}; + +static __u64 vregs[] = { + KVM_REG_ARM64 | KVM_REG_SIZE_U128 | KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(fp_regs.vregs[0]), + KVM_REG_ARM64 | KVM_REG_SIZE_U128 | KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(fp_regs.vregs[1]), + KVM_REG_ARM64 | KVM_REG_SIZE_U128 | KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(fp_regs.vregs[2]), + KVM_REG_ARM64 | KVM_REG_SIZE_U128 | KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(fp_regs.vregs[3]), + KVM_REG_ARM64 | KVM_REG_SIZE_U128 | KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(fp_regs.vregs[4]), + KVM_REG_ARM64 | KVM_REG_SIZE_U128 | KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(fp_regs.vregs[5]), + KVM_REG_ARM64 | KVM_REG_SIZE_U128 | KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(fp_regs.vregs[6]), + KVM_REG_ARM64 | KVM_REG_SIZE_U128 | KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(fp_regs.vregs[7]), + KVM_REG_ARM64 | KVM_REG_SIZE_U128 | KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(fp_regs.vregs[8]), + KVM_REG_ARM64 | KVM_REG_SIZE_U128 | KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(fp_regs.vregs[9]), + KVM_REG_ARM64 | KVM_REG_SIZE_U128 | KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(fp_regs.vregs[10]), + KVM_REG_ARM64 | KVM_REG_SIZE_U128 | KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(fp_regs.vregs[11]), + KVM_REG_ARM64 | KVM_REG_SIZE_U128 | KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(fp_regs.vregs[12]), + KVM_REG_ARM64 | KVM_REG_SIZE_U128 | KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(fp_regs.vregs[13]), + KVM_REG_ARM64 | KVM_REG_SIZE_U128 | KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(fp_regs.vregs[14]), + KVM_REG_ARM64 | KVM_REG_SIZE_U128 | KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(fp_regs.vregs[15]), + KVM_REG_ARM64 | KVM_REG_SIZE_U128 | KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(fp_regs.vregs[16]), + KVM_REG_ARM64 | KVM_REG_SIZE_U128 | KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(fp_regs.vregs[17]), + KVM_REG_ARM64 | KVM_REG_SIZE_U128 | KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(fp_regs.vregs[18]), + KVM_REG_ARM64 | KVM_REG_SIZE_U128 | KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(fp_regs.vregs[19]), + KVM_REG_ARM64 | KVM_REG_SIZE_U128 | KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(fp_regs.vregs[20]), + KVM_REG_ARM64 | KVM_REG_SIZE_U128 | KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(fp_regs.vregs[21]), + KVM_REG_ARM64 | KVM_REG_SIZE_U128 | KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(fp_regs.vregs[22]), + KVM_REG_ARM64 | KVM_REG_SIZE_U128 | KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(fp_regs.vregs[23]), + KVM_REG_ARM64 | KVM_REG_SIZE_U128 | KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(fp_regs.vregs[24]), + KVM_REG_ARM64 | KVM_REG_SIZE_U128 | KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(fp_regs.vregs[25]), + KVM_REG_ARM64 | KVM_REG_SIZE_U128 | KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(fp_regs.vregs[26]), + KVM_REG_ARM64 | KVM_REG_SIZE_U128 | KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(fp_regs.vregs[27]), + KVM_REG_ARM64 | KVM_REG_SIZE_U128 | KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(fp_regs.vregs[28]), + KVM_REG_ARM64 | KVM_REG_SIZE_U128 | KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(fp_regs.vregs[29]), + KVM_REG_ARM64 | KVM_REG_SIZE_U128 | KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(fp_regs.vregs[30]), + KVM_REG_ARM64 | KVM_REG_SIZE_U128 | KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(fp_regs.vregs[31]), +}; + +static __u64 sve_regs[] = { + KVM_REG_ARM64_SVE_VLS, + KVM_REG_ARM64_SVE_ZREG(0, 0), + KVM_REG_ARM64_SVE_ZREG(1, 0), + KVM_REG_ARM64_SVE_ZREG(2, 0), + KVM_REG_ARM64_SVE_ZREG(3, 0), + KVM_REG_ARM64_SVE_ZREG(4, 0), + KVM_REG_ARM64_SVE_ZREG(5, 0), + KVM_REG_ARM64_SVE_ZREG(6, 0), + KVM_REG_ARM64_SVE_ZREG(7, 0), + KVM_REG_ARM64_SVE_ZREG(8, 0), + KVM_REG_ARM64_SVE_ZREG(9, 0), + KVM_REG_ARM64_SVE_ZREG(10, 0), + KVM_REG_ARM64_SVE_ZREG(11, 0), + KVM_REG_ARM64_SVE_ZREG(12, 0), + KVM_REG_ARM64_SVE_ZREG(13, 0), + KVM_REG_ARM64_SVE_ZREG(14, 0), + KVM_REG_ARM64_SVE_ZREG(15, 0), + KVM_REG_ARM64_SVE_ZREG(16, 0), + KVM_REG_ARM64_SVE_ZREG(17, 0), + KVM_REG_ARM64_SVE_ZREG(18, 0), + KVM_REG_ARM64_SVE_ZREG(19, 0), + KVM_REG_ARM64_SVE_ZREG(20, 0), + KVM_REG_ARM64_SVE_ZREG(21, 0), + KVM_REG_ARM64_SVE_ZREG(22, 0), + KVM_REG_ARM64_SVE_ZREG(23, 0), + KVM_REG_ARM64_SVE_ZREG(24, 0), + KVM_REG_ARM64_SVE_ZREG(25, 0), + KVM_REG_ARM64_SVE_ZREG(26, 0), + KVM_REG_ARM64_SVE_ZREG(27, 0), + KVM_REG_ARM64_SVE_ZREG(28, 0), + KVM_REG_ARM64_SVE_ZREG(29, 0), + KVM_REG_ARM64_SVE_ZREG(30, 0), + KVM_REG_ARM64_SVE_ZREG(31, 0), + KVM_REG_ARM64_SVE_PREG(0, 0), + KVM_REG_ARM64_SVE_PREG(1, 0), + KVM_REG_ARM64_SVE_PREG(2, 0), + KVM_REG_ARM64_SVE_PREG(3, 0), + KVM_REG_ARM64_SVE_PREG(4, 0), + KVM_REG_ARM64_SVE_PREG(5, 0), + KVM_REG_ARM64_SVE_PREG(6, 0), + KVM_REG_ARM64_SVE_PREG(7, 0), + KVM_REG_ARM64_SVE_PREG(8, 0), + KVM_REG_ARM64_SVE_PREG(9, 0), + KVM_REG_ARM64_SVE_PREG(10, 0), + KVM_REG_ARM64_SVE_PREG(11, 0), + KVM_REG_ARM64_SVE_PREG(12, 0), + KVM_REG_ARM64_SVE_PREG(13, 0), + KVM_REG_ARM64_SVE_PREG(14, 0), + KVM_REG_ARM64_SVE_PREG(15, 0), + KVM_REG_ARM64_SVE_FFR(0), + ARM64_SYS_REG(3, 0, 1, 2, 0), /* ZCR_EL1 */ +}; + +static __u64 sve_rejects_set[] = { + KVM_REG_ARM64_SVE_VLS, +}; + +static __u64 pauth_addr_regs[] = { + ARM64_SYS_REG(3, 0, 2, 1, 0), /* APIAKEYLO_EL1 */ + ARM64_SYS_REG(3, 0, 2, 1, 1), /* APIAKEYHI_EL1 */ + ARM64_SYS_REG(3, 0, 2, 1, 2), /* APIBKEYLO_EL1 */ + ARM64_SYS_REG(3, 0, 2, 1, 3), /* APIBKEYHI_EL1 */ + ARM64_SYS_REG(3, 0, 2, 2, 0), /* APDAKEYLO_EL1 */ + ARM64_SYS_REG(3, 0, 2, 2, 1), /* APDAKEYHI_EL1 */ + ARM64_SYS_REG(3, 0, 2, 2, 2), /* APDBKEYLO_EL1 */ + ARM64_SYS_REG(3, 0, 2, 2, 3) /* APDBKEYHI_EL1 */ +}; + +static __u64 pauth_generic_regs[] = { + ARM64_SYS_REG(3, 0, 2, 3, 0), /* APGAKEYLO_EL1 */ + ARM64_SYS_REG(3, 0, 2, 3, 1), /* APGAKEYHI_EL1 */ +}; + +#define BASE_SUBLIST \ + { "base", .regs = base_regs, .regs_n = ARRAY_SIZE(base_regs), } +#define VREGS_SUBLIST \ + { "vregs", .regs = vregs, .regs_n = ARRAY_SIZE(vregs), } +#define PMU_SUBLIST \ + { "pmu", .capability = KVM_CAP_ARM_PMU_V3, .feature = KVM_ARM_VCPU_PMU_V3, \ + .regs = pmu_regs, .regs_n = ARRAY_SIZE(pmu_regs), } +#define SVE_SUBLIST \ + { "sve", .capability = KVM_CAP_ARM_SVE, .feature = KVM_ARM_VCPU_SVE, .finalize = true, \ + .regs = sve_regs, .regs_n = ARRAY_SIZE(sve_regs), \ + .rejects_set = sve_rejects_set, .rejects_set_n = ARRAY_SIZE(sve_rejects_set), } +#define PAUTH_SUBLIST \ + { \ + .name = "pauth_address", \ + .capability = KVM_CAP_ARM_PTRAUTH_ADDRESS, \ + .feature = KVM_ARM_VCPU_PTRAUTH_ADDRESS, \ + .regs = pauth_addr_regs, \ + .regs_n = ARRAY_SIZE(pauth_addr_regs), \ + }, \ + { \ + .name = "pauth_generic", \ + .capability = KVM_CAP_ARM_PTRAUTH_GENERIC, \ + .feature = KVM_ARM_VCPU_PTRAUTH_GENERIC, \ + .regs = pauth_generic_regs, \ + .regs_n = ARRAY_SIZE(pauth_generic_regs), \ + } + +static struct vcpu_reg_list vregs_config = { + .sublists = { + BASE_SUBLIST, + VREGS_SUBLIST, + {0}, + }, +}; +static struct vcpu_reg_list vregs_pmu_config = { + .sublists = { + BASE_SUBLIST, + VREGS_SUBLIST, + PMU_SUBLIST, + {0}, + }, +}; +static struct vcpu_reg_list sve_config = { + .sublists = { + BASE_SUBLIST, + SVE_SUBLIST, + {0}, + }, +}; +static struct vcpu_reg_list sve_pmu_config = { + .sublists = { + BASE_SUBLIST, + SVE_SUBLIST, + PMU_SUBLIST, + {0}, + }, +}; +static struct vcpu_reg_list pauth_config = { + .sublists = { + BASE_SUBLIST, + VREGS_SUBLIST, + PAUTH_SUBLIST, + {0}, + }, +}; +static struct vcpu_reg_list pauth_pmu_config = { + .sublists = { + BASE_SUBLIST, + VREGS_SUBLIST, + PAUTH_SUBLIST, + PMU_SUBLIST, + {0}, + }, +}; + +struct vcpu_reg_list *vcpu_configs[] = { + &vregs_config, + &vregs_pmu_config, + &sve_config, + &sve_pmu_config, + &pauth_config, + &pauth_pmu_config, +}; +int vcpu_configs_n = ARRAY_SIZE(vcpu_configs); diff --git a/tools/testing/selftests/kvm/aarch64/hypercalls.c b/tools/testing/selftests/kvm/aarch64/hypercalls.c new file mode 100644 index 0000000000..31f66ba972 --- /dev/null +++ b/tools/testing/selftests/kvm/aarch64/hypercalls.c @@ -0,0 +1,308 @@ +// SPDX-License-Identifier: GPL-2.0-only + +/* hypercalls: Check the ARM64's psuedo-firmware bitmap register interface. + * + * The test validates the basic hypercall functionalities that are exposed + * via the psuedo-firmware bitmap register. This includes the registers' + * read/write behavior before and after the VM has started, and if the + * hypercalls are properly masked or unmasked to the guest when disabled or + * enabled from the KVM userspace, respectively. + */ +#include <errno.h> +#include <linux/arm-smccc.h> +#include <asm/kvm.h> +#include <kvm_util.h> + +#include "processor.h" + +#define FW_REG_ULIMIT_VAL(max_feat_bit) (GENMASK(max_feat_bit, 0)) + +/* Last valid bits of the bitmapped firmware registers */ +#define KVM_REG_ARM_STD_BMAP_BIT_MAX 0 +#define KVM_REG_ARM_STD_HYP_BMAP_BIT_MAX 0 +#define KVM_REG_ARM_VENDOR_HYP_BMAP_BIT_MAX 1 + +struct kvm_fw_reg_info { + uint64_t reg; /* Register definition */ + uint64_t max_feat_bit; /* Bit that represents the upper limit of the feature-map */ +}; + +#define FW_REG_INFO(r) \ + { \ + .reg = r, \ + .max_feat_bit = r##_BIT_MAX, \ + } + +static const struct kvm_fw_reg_info fw_reg_info[] = { + FW_REG_INFO(KVM_REG_ARM_STD_BMAP), + FW_REG_INFO(KVM_REG_ARM_STD_HYP_BMAP), + FW_REG_INFO(KVM_REG_ARM_VENDOR_HYP_BMAP), +}; + +enum test_stage { + TEST_STAGE_REG_IFACE, + TEST_STAGE_HVC_IFACE_FEAT_DISABLED, + TEST_STAGE_HVC_IFACE_FEAT_ENABLED, + TEST_STAGE_HVC_IFACE_FALSE_INFO, + TEST_STAGE_END, +}; + +static int stage = TEST_STAGE_REG_IFACE; + +struct test_hvc_info { + uint32_t func_id; + uint64_t arg1; +}; + +#define TEST_HVC_INFO(f, a1) \ + { \ + .func_id = f, \ + .arg1 = a1, \ + } + +static const struct test_hvc_info hvc_info[] = { + /* KVM_REG_ARM_STD_BMAP */ + TEST_HVC_INFO(ARM_SMCCC_TRNG_VERSION, 0), + TEST_HVC_INFO(ARM_SMCCC_TRNG_FEATURES, ARM_SMCCC_TRNG_RND64), + TEST_HVC_INFO(ARM_SMCCC_TRNG_GET_UUID, 0), + TEST_HVC_INFO(ARM_SMCCC_TRNG_RND32, 0), + TEST_HVC_INFO(ARM_SMCCC_TRNG_RND64, 0), + + /* KVM_REG_ARM_STD_HYP_BMAP */ + TEST_HVC_INFO(ARM_SMCCC_ARCH_FEATURES_FUNC_ID, ARM_SMCCC_HV_PV_TIME_FEATURES), + TEST_HVC_INFO(ARM_SMCCC_HV_PV_TIME_FEATURES, ARM_SMCCC_HV_PV_TIME_ST), + TEST_HVC_INFO(ARM_SMCCC_HV_PV_TIME_ST, 0), + + /* KVM_REG_ARM_VENDOR_HYP_BMAP */ + TEST_HVC_INFO(ARM_SMCCC_VENDOR_HYP_KVM_FEATURES_FUNC_ID, + ARM_SMCCC_VENDOR_HYP_KVM_PTP_FUNC_ID), + TEST_HVC_INFO(ARM_SMCCC_VENDOR_HYP_CALL_UID_FUNC_ID, 0), + TEST_HVC_INFO(ARM_SMCCC_VENDOR_HYP_KVM_PTP_FUNC_ID, KVM_PTP_VIRT_COUNTER), +}; + +/* Feed false hypercall info to test the KVM behavior */ +static const struct test_hvc_info false_hvc_info[] = { + /* Feature support check against a different family of hypercalls */ + TEST_HVC_INFO(ARM_SMCCC_TRNG_FEATURES, ARM_SMCCC_VENDOR_HYP_KVM_PTP_FUNC_ID), + TEST_HVC_INFO(ARM_SMCCC_ARCH_FEATURES_FUNC_ID, ARM_SMCCC_TRNG_RND64), + TEST_HVC_INFO(ARM_SMCCC_HV_PV_TIME_FEATURES, ARM_SMCCC_TRNG_RND64), +}; + +static void guest_test_hvc(const struct test_hvc_info *hc_info) +{ + unsigned int i; + struct arm_smccc_res res; + unsigned int hvc_info_arr_sz; + + hvc_info_arr_sz = + hc_info == hvc_info ? ARRAY_SIZE(hvc_info) : ARRAY_SIZE(false_hvc_info); + + for (i = 0; i < hvc_info_arr_sz; i++, hc_info++) { + memset(&res, 0, sizeof(res)); + smccc_hvc(hc_info->func_id, hc_info->arg1, 0, 0, 0, 0, 0, 0, &res); + + switch (stage) { + case TEST_STAGE_HVC_IFACE_FEAT_DISABLED: + case TEST_STAGE_HVC_IFACE_FALSE_INFO: + __GUEST_ASSERT(res.a0 == SMCCC_RET_NOT_SUPPORTED, + "a0 = 0x%lx, func_id = 0x%x, arg1 = 0x%llx, stage = %u", + res.a0, hc_info->func_id, hc_info->arg1, stage); + break; + case TEST_STAGE_HVC_IFACE_FEAT_ENABLED: + __GUEST_ASSERT(res.a0 != SMCCC_RET_NOT_SUPPORTED, + "a0 = 0x%lx, func_id = 0x%x, arg1 = 0x%llx, stage = %u", + res.a0, hc_info->func_id, hc_info->arg1, stage); + break; + default: + GUEST_FAIL("Unexpected stage = %u", stage); + } + } +} + +static void guest_code(void) +{ + while (stage != TEST_STAGE_END) { + switch (stage) { + case TEST_STAGE_REG_IFACE: + break; + case TEST_STAGE_HVC_IFACE_FEAT_DISABLED: + case TEST_STAGE_HVC_IFACE_FEAT_ENABLED: + guest_test_hvc(hvc_info); + break; + case TEST_STAGE_HVC_IFACE_FALSE_INFO: + guest_test_hvc(false_hvc_info); + break; + default: + GUEST_FAIL("Unexpected stage = %u", stage); + } + + GUEST_SYNC(stage); + } + + GUEST_DONE(); +} + +struct st_time { + uint32_t rev; + uint32_t attr; + uint64_t st_time; +}; + +#define STEAL_TIME_SIZE ((sizeof(struct st_time) + 63) & ~63) +#define ST_GPA_BASE (1 << 30) + +static void steal_time_init(struct kvm_vcpu *vcpu) +{ + uint64_t st_ipa = (ulong)ST_GPA_BASE; + unsigned int gpages; + + gpages = vm_calc_num_guest_pages(VM_MODE_DEFAULT, STEAL_TIME_SIZE); + vm_userspace_mem_region_add(vcpu->vm, VM_MEM_SRC_ANONYMOUS, ST_GPA_BASE, 1, gpages, 0); + + vcpu_device_attr_set(vcpu, KVM_ARM_VCPU_PVTIME_CTRL, + KVM_ARM_VCPU_PVTIME_IPA, &st_ipa); +} + +static void test_fw_regs_before_vm_start(struct kvm_vcpu *vcpu) +{ + uint64_t val; + unsigned int i; + int ret; + + for (i = 0; i < ARRAY_SIZE(fw_reg_info); i++) { + const struct kvm_fw_reg_info *reg_info = &fw_reg_info[i]; + + /* First 'read' should be an upper limit of the features supported */ + vcpu_get_reg(vcpu, reg_info->reg, &val); + TEST_ASSERT(val == FW_REG_ULIMIT_VAL(reg_info->max_feat_bit), + "Expected all the features to be set for reg: 0x%lx; expected: 0x%lx; read: 0x%lx\n", + reg_info->reg, FW_REG_ULIMIT_VAL(reg_info->max_feat_bit), val); + + /* Test a 'write' by disabling all the features of the register map */ + ret = __vcpu_set_reg(vcpu, reg_info->reg, 0); + TEST_ASSERT(ret == 0, + "Failed to clear all the features of reg: 0x%lx; ret: %d\n", + reg_info->reg, errno); + + vcpu_get_reg(vcpu, reg_info->reg, &val); + TEST_ASSERT(val == 0, + "Expected all the features to be cleared for reg: 0x%lx\n", reg_info->reg); + + /* + * Test enabling a feature that's not supported. + * Avoid this check if all the bits are occupied. + */ + if (reg_info->max_feat_bit < 63) { + ret = __vcpu_set_reg(vcpu, reg_info->reg, BIT(reg_info->max_feat_bit + 1)); + TEST_ASSERT(ret != 0 && errno == EINVAL, + "Unexpected behavior or return value (%d) while setting an unsupported feature for reg: 0x%lx\n", + errno, reg_info->reg); + } + } +} + +static void test_fw_regs_after_vm_start(struct kvm_vcpu *vcpu) +{ + uint64_t val; + unsigned int i; + int ret; + + for (i = 0; i < ARRAY_SIZE(fw_reg_info); i++) { + const struct kvm_fw_reg_info *reg_info = &fw_reg_info[i]; + + /* + * Before starting the VM, the test clears all the bits. + * Check if that's still the case. + */ + vcpu_get_reg(vcpu, reg_info->reg, &val); + TEST_ASSERT(val == 0, + "Expected all the features to be cleared for reg: 0x%lx\n", + reg_info->reg); + + /* + * Since the VM has run at least once, KVM shouldn't allow modification of + * the registers and should return EBUSY. Set the registers and check for + * the expected errno. + */ + ret = __vcpu_set_reg(vcpu, reg_info->reg, FW_REG_ULIMIT_VAL(reg_info->max_feat_bit)); + TEST_ASSERT(ret != 0 && errno == EBUSY, + "Unexpected behavior or return value (%d) while setting a feature while VM is running for reg: 0x%lx\n", + errno, reg_info->reg); + } +} + +static struct kvm_vm *test_vm_create(struct kvm_vcpu **vcpu) +{ + struct kvm_vm *vm; + + vm = vm_create_with_one_vcpu(vcpu, guest_code); + + steal_time_init(*vcpu); + + return vm; +} + +static void test_guest_stage(struct kvm_vm **vm, struct kvm_vcpu **vcpu) +{ + int prev_stage = stage; + + pr_debug("Stage: %d\n", prev_stage); + + /* Sync the stage early, the VM might be freed below. */ + stage++; + sync_global_to_guest(*vm, stage); + + switch (prev_stage) { + case TEST_STAGE_REG_IFACE: + test_fw_regs_after_vm_start(*vcpu); + break; + case TEST_STAGE_HVC_IFACE_FEAT_DISABLED: + /* Start a new VM so that all the features are now enabled by default */ + kvm_vm_free(*vm); + *vm = test_vm_create(vcpu); + break; + case TEST_STAGE_HVC_IFACE_FEAT_ENABLED: + case TEST_STAGE_HVC_IFACE_FALSE_INFO: + break; + default: + TEST_FAIL("Unknown test stage: %d\n", prev_stage); + } +} + +static void test_run(void) +{ + struct kvm_vcpu *vcpu; + struct kvm_vm *vm; + struct ucall uc; + bool guest_done = false; + + vm = test_vm_create(&vcpu); + + test_fw_regs_before_vm_start(vcpu); + + while (!guest_done) { + vcpu_run(vcpu); + + switch (get_ucall(vcpu, &uc)) { + case UCALL_SYNC: + test_guest_stage(&vm, &vcpu); + break; + case UCALL_DONE: + guest_done = true; + break; + case UCALL_ABORT: + REPORT_GUEST_ASSERT(uc); + break; + default: + TEST_FAIL("Unexpected guest exit\n"); + } + } + + kvm_vm_free(vm); +} + +int main(void) +{ + test_run(); + return 0; +} diff --git a/tools/testing/selftests/kvm/aarch64/page_fault_test.c b/tools/testing/selftests/kvm/aarch64/page_fault_test.c new file mode 100644 index 0000000000..47bb914ab2 --- /dev/null +++ b/tools/testing/selftests/kvm/aarch64/page_fault_test.c @@ -0,0 +1,1133 @@ +// SPDX-License-Identifier: GPL-2.0 +/* + * page_fault_test.c - Test stage 2 faults. + * + * This test tries different combinations of guest accesses (e.g., write, + * S1PTW), backing source type (e.g., anon) and types of faults (e.g., read on + * hugetlbfs with a hole). It checks that the expected handling method is + * called (e.g., uffd faults with the right address and write/read flag). + */ +#define _GNU_SOURCE +#include <linux/bitmap.h> +#include <fcntl.h> +#include <test_util.h> +#include <kvm_util.h> +#include <processor.h> +#include <asm/sysreg.h> +#include <linux/bitfield.h> +#include "guest_modes.h" +#include "userfaultfd_util.h" + +/* Guest virtual addresses that point to the test page and its PTE. */ +#define TEST_GVA 0xc0000000 +#define TEST_EXEC_GVA (TEST_GVA + 0x8) +#define TEST_PTE_GVA 0xb0000000 +#define TEST_DATA 0x0123456789ABCDEF + +static uint64_t *guest_test_memory = (uint64_t *)TEST_GVA; + +#define CMD_NONE (0) +#define CMD_SKIP_TEST (1ULL << 1) +#define CMD_HOLE_PT (1ULL << 2) +#define CMD_HOLE_DATA (1ULL << 3) +#define CMD_CHECK_WRITE_IN_DIRTY_LOG (1ULL << 4) +#define CMD_CHECK_S1PTW_WR_IN_DIRTY_LOG (1ULL << 5) +#define CMD_CHECK_NO_WRITE_IN_DIRTY_LOG (1ULL << 6) +#define CMD_CHECK_NO_S1PTW_WR_IN_DIRTY_LOG (1ULL << 7) +#define CMD_SET_PTE_AF (1ULL << 8) + +#define PREPARE_FN_NR 10 +#define CHECK_FN_NR 10 + +static struct event_cnt { + int mmio_exits; + int fail_vcpu_runs; + int uffd_faults; + /* uffd_faults is incremented from multiple threads. */ + pthread_mutex_t uffd_faults_mutex; +} events; + +struct test_desc { + const char *name; + uint64_t mem_mark_cmd; + /* Skip the test if any prepare function returns false */ + bool (*guest_prepare[PREPARE_FN_NR])(void); + void (*guest_test)(void); + void (*guest_test_check[CHECK_FN_NR])(void); + uffd_handler_t uffd_pt_handler; + uffd_handler_t uffd_data_handler; + void (*dabt_handler)(struct ex_regs *regs); + void (*iabt_handler)(struct ex_regs *regs); + void (*mmio_handler)(struct kvm_vm *vm, struct kvm_run *run); + void (*fail_vcpu_run_handler)(int ret); + uint32_t pt_memslot_flags; + uint32_t data_memslot_flags; + bool skip; + struct event_cnt expected_events; +}; + +struct test_params { + enum vm_mem_backing_src_type src_type; + struct test_desc *test_desc; +}; + +static inline void flush_tlb_page(uint64_t vaddr) +{ + uint64_t page = vaddr >> 12; + + dsb(ishst); + asm volatile("tlbi vaae1is, %0" :: "r" (page)); + dsb(ish); + isb(); +} + +static void guest_write64(void) +{ + uint64_t val; + + WRITE_ONCE(*guest_test_memory, TEST_DATA); + val = READ_ONCE(*guest_test_memory); + GUEST_ASSERT_EQ(val, TEST_DATA); +} + +/* Check the system for atomic instructions. */ +static bool guest_check_lse(void) +{ + uint64_t isar0 = read_sysreg(id_aa64isar0_el1); + uint64_t atomic; + + atomic = FIELD_GET(ARM64_FEATURE_MASK(ID_AA64ISAR0_ATOMICS), isar0); + return atomic >= 2; +} + +static bool guest_check_dc_zva(void) +{ + uint64_t dczid = read_sysreg(dczid_el0); + uint64_t dzp = FIELD_GET(ARM64_FEATURE_MASK(DCZID_DZP), dczid); + + return dzp == 0; +} + +/* Compare and swap instruction. */ +static void guest_cas(void) +{ + uint64_t val; + + GUEST_ASSERT(guest_check_lse()); + asm volatile(".arch_extension lse\n" + "casal %0, %1, [%2]\n" + :: "r" (0ul), "r" (TEST_DATA), "r" (guest_test_memory)); + val = READ_ONCE(*guest_test_memory); + GUEST_ASSERT_EQ(val, TEST_DATA); +} + +static void guest_read64(void) +{ + uint64_t val; + + val = READ_ONCE(*guest_test_memory); + GUEST_ASSERT_EQ(val, 0); +} + +/* Address translation instruction */ +static void guest_at(void) +{ + uint64_t par; + + asm volatile("at s1e1r, %0" :: "r" (guest_test_memory)); + par = read_sysreg(par_el1); + isb(); + + /* Bit 1 indicates whether the AT was successful */ + GUEST_ASSERT_EQ(par & 1, 0); +} + +/* + * The size of the block written by "dc zva" is guaranteed to be between (2 << + * 0) and (2 << 9), which is safe in our case as we need the write to happen + * for at least a word, and not more than a page. + */ +static void guest_dc_zva(void) +{ + uint16_t val; + + asm volatile("dc zva, %0" :: "r" (guest_test_memory)); + dsb(ish); + val = READ_ONCE(*guest_test_memory); + GUEST_ASSERT_EQ(val, 0); +} + +/* + * Pre-indexing loads and stores don't have a valid syndrome (ESR_EL2.ISV==0). + * And that's special because KVM must take special care with those: they + * should still count as accesses for dirty logging or user-faulting, but + * should be handled differently on mmio. + */ +static void guest_ld_preidx(void) +{ + uint64_t val; + uint64_t addr = TEST_GVA - 8; + + /* + * This ends up accessing "TEST_GVA + 8 - 8", where "TEST_GVA - 8" is + * in a gap between memslots not backing by anything. + */ + asm volatile("ldr %0, [%1, #8]!" + : "=r" (val), "+r" (addr)); + GUEST_ASSERT_EQ(val, 0); + GUEST_ASSERT_EQ(addr, TEST_GVA); +} + +static void guest_st_preidx(void) +{ + uint64_t val = TEST_DATA; + uint64_t addr = TEST_GVA - 8; + + asm volatile("str %0, [%1, #8]!" + : "+r" (val), "+r" (addr)); + + GUEST_ASSERT_EQ(addr, TEST_GVA); + val = READ_ONCE(*guest_test_memory); +} + +static bool guest_set_ha(void) +{ + uint64_t mmfr1 = read_sysreg(id_aa64mmfr1_el1); + uint64_t hadbs, tcr; + + /* Skip if HA is not supported. */ + hadbs = FIELD_GET(ARM64_FEATURE_MASK(ID_AA64MMFR1_HADBS), mmfr1); + if (hadbs == 0) + return false; + + tcr = read_sysreg(tcr_el1) | TCR_EL1_HA; + write_sysreg(tcr, tcr_el1); + isb(); + + return true; +} + +static bool guest_clear_pte_af(void) +{ + *((uint64_t *)TEST_PTE_GVA) &= ~PTE_AF; + flush_tlb_page(TEST_GVA); + + return true; +} + +static void guest_check_pte_af(void) +{ + dsb(ish); + GUEST_ASSERT_EQ(*((uint64_t *)TEST_PTE_GVA) & PTE_AF, PTE_AF); +} + +static void guest_check_write_in_dirty_log(void) +{ + GUEST_SYNC(CMD_CHECK_WRITE_IN_DIRTY_LOG); +} + +static void guest_check_no_write_in_dirty_log(void) +{ + GUEST_SYNC(CMD_CHECK_NO_WRITE_IN_DIRTY_LOG); +} + +static void guest_check_s1ptw_wr_in_dirty_log(void) +{ + GUEST_SYNC(CMD_CHECK_S1PTW_WR_IN_DIRTY_LOG); +} + +static void guest_check_no_s1ptw_wr_in_dirty_log(void) +{ + GUEST_SYNC(CMD_CHECK_NO_S1PTW_WR_IN_DIRTY_LOG); +} + +static void guest_exec(void) +{ + int (*code)(void) = (int (*)(void))TEST_EXEC_GVA; + int ret; + + ret = code(); + GUEST_ASSERT_EQ(ret, 0x77); +} + +static bool guest_prepare(struct test_desc *test) +{ + bool (*prepare_fn)(void); + int i; + + for (i = 0; i < PREPARE_FN_NR; i++) { + prepare_fn = test->guest_prepare[i]; + if (prepare_fn && !prepare_fn()) + return false; + } + + return true; +} + +static void guest_test_check(struct test_desc *test) +{ + void (*check_fn)(void); + int i; + + for (i = 0; i < CHECK_FN_NR; i++) { + check_fn = test->guest_test_check[i]; + if (check_fn) + check_fn(); + } +} + +static void guest_code(struct test_desc *test) +{ + if (!guest_prepare(test)) + GUEST_SYNC(CMD_SKIP_TEST); + + GUEST_SYNC(test->mem_mark_cmd); + + if (test->guest_test) + test->guest_test(); + + guest_test_check(test); + GUEST_DONE(); +} + +static void no_dabt_handler(struct ex_regs *regs) +{ + GUEST_FAIL("Unexpected dabt, far_el1 = 0x%llx", read_sysreg(far_el1)); +} + +static void no_iabt_handler(struct ex_regs *regs) +{ + GUEST_FAIL("Unexpected iabt, pc = 0x%lx", regs->pc); +} + +static struct uffd_args { + char *copy; + void *hva; + uint64_t paging_size; +} pt_args, data_args; + +/* Returns true to continue the test, and false if it should be skipped. */ +static int uffd_generic_handler(int uffd_mode, int uffd, struct uffd_msg *msg, + struct uffd_args *args) +{ + uint64_t addr = msg->arg.pagefault.address; + uint64_t flags = msg->arg.pagefault.flags; + struct uffdio_copy copy; + int ret; + + TEST_ASSERT(uffd_mode == UFFDIO_REGISTER_MODE_MISSING, + "The only expected UFFD mode is MISSING"); + TEST_ASSERT_EQ(addr, (uint64_t)args->hva); + + pr_debug("uffd fault: addr=%p write=%d\n", + (void *)addr, !!(flags & UFFD_PAGEFAULT_FLAG_WRITE)); + + copy.src = (uint64_t)args->copy; + copy.dst = addr; + copy.len = args->paging_size; + copy.mode = 0; + + ret = ioctl(uffd, UFFDIO_COPY, ©); + if (ret == -1) { + pr_info("Failed UFFDIO_COPY in 0x%lx with errno: %d\n", + addr, errno); + return ret; + } + + pthread_mutex_lock(&events.uffd_faults_mutex); + events.uffd_faults += 1; + pthread_mutex_unlock(&events.uffd_faults_mutex); + return 0; +} + +static int uffd_pt_handler(int mode, int uffd, struct uffd_msg *msg) +{ + return uffd_generic_handler(mode, uffd, msg, &pt_args); +} + +static int uffd_data_handler(int mode, int uffd, struct uffd_msg *msg) +{ + return uffd_generic_handler(mode, uffd, msg, &data_args); +} + +static void setup_uffd_args(struct userspace_mem_region *region, + struct uffd_args *args) +{ + args->hva = (void *)region->region.userspace_addr; + args->paging_size = region->region.memory_size; + + args->copy = malloc(args->paging_size); + TEST_ASSERT(args->copy, "Failed to allocate data copy."); + memcpy(args->copy, args->hva, args->paging_size); +} + +static void setup_uffd(struct kvm_vm *vm, struct test_params *p, + struct uffd_desc **pt_uffd, struct uffd_desc **data_uffd) +{ + struct test_desc *test = p->test_desc; + int uffd_mode = UFFDIO_REGISTER_MODE_MISSING; + + setup_uffd_args(vm_get_mem_region(vm, MEM_REGION_PT), &pt_args); + setup_uffd_args(vm_get_mem_region(vm, MEM_REGION_TEST_DATA), &data_args); + + *pt_uffd = NULL; + if (test->uffd_pt_handler) + *pt_uffd = uffd_setup_demand_paging(uffd_mode, 0, + pt_args.hva, + pt_args.paging_size, + test->uffd_pt_handler); + + *data_uffd = NULL; + if (test->uffd_data_handler) + *data_uffd = uffd_setup_demand_paging(uffd_mode, 0, + data_args.hva, + data_args.paging_size, + test->uffd_data_handler); +} + +static void free_uffd(struct test_desc *test, struct uffd_desc *pt_uffd, + struct uffd_desc *data_uffd) +{ + if (test->uffd_pt_handler) + uffd_stop_demand_paging(pt_uffd); + if (test->uffd_data_handler) + uffd_stop_demand_paging(data_uffd); + + free(pt_args.copy); + free(data_args.copy); +} + +static int uffd_no_handler(int mode, int uffd, struct uffd_msg *msg) +{ + TEST_FAIL("There was no UFFD fault expected."); + return -1; +} + +/* Returns false if the test should be skipped. */ +static bool punch_hole_in_backing_store(struct kvm_vm *vm, + struct userspace_mem_region *region) +{ + void *hva = (void *)region->region.userspace_addr; + uint64_t paging_size = region->region.memory_size; + int ret, fd = region->fd; + + if (fd != -1) { + ret = fallocate(fd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE, + 0, paging_size); + TEST_ASSERT(ret == 0, "fallocate failed\n"); + } else { + ret = madvise(hva, paging_size, MADV_DONTNEED); + TEST_ASSERT(ret == 0, "madvise failed\n"); + } + + return true; +} + +static void mmio_on_test_gpa_handler(struct kvm_vm *vm, struct kvm_run *run) +{ + struct userspace_mem_region *region; + void *hva; + + region = vm_get_mem_region(vm, MEM_REGION_TEST_DATA); + hva = (void *)region->region.userspace_addr; + + TEST_ASSERT_EQ(run->mmio.phys_addr, region->region.guest_phys_addr); + + memcpy(hva, run->mmio.data, run->mmio.len); + events.mmio_exits += 1; +} + +static void mmio_no_handler(struct kvm_vm *vm, struct kvm_run *run) +{ + uint64_t data; + + memcpy(&data, run->mmio.data, sizeof(data)); + pr_debug("addr=%lld len=%d w=%d data=%lx\n", + run->mmio.phys_addr, run->mmio.len, + run->mmio.is_write, data); + TEST_FAIL("There was no MMIO exit expected."); +} + +static bool check_write_in_dirty_log(struct kvm_vm *vm, + struct userspace_mem_region *region, + uint64_t host_pg_nr) +{ + unsigned long *bmap; + bool first_page_dirty; + uint64_t size = region->region.memory_size; + + /* getpage_size() is not always equal to vm->page_size */ + bmap = bitmap_zalloc(size / getpagesize()); + kvm_vm_get_dirty_log(vm, region->region.slot, bmap); + first_page_dirty = test_bit(host_pg_nr, bmap); + free(bmap); + return first_page_dirty; +} + +/* Returns true to continue the test, and false if it should be skipped. */ +static bool handle_cmd(struct kvm_vm *vm, int cmd) +{ + struct userspace_mem_region *data_region, *pt_region; + bool continue_test = true; + uint64_t pte_gpa, pte_pg; + + data_region = vm_get_mem_region(vm, MEM_REGION_TEST_DATA); + pt_region = vm_get_mem_region(vm, MEM_REGION_PT); + pte_gpa = addr_hva2gpa(vm, virt_get_pte_hva(vm, TEST_GVA)); + pte_pg = (pte_gpa - pt_region->region.guest_phys_addr) / getpagesize(); + + if (cmd == CMD_SKIP_TEST) + continue_test = false; + + if (cmd & CMD_HOLE_PT) + continue_test = punch_hole_in_backing_store(vm, pt_region); + if (cmd & CMD_HOLE_DATA) + continue_test = punch_hole_in_backing_store(vm, data_region); + if (cmd & CMD_CHECK_WRITE_IN_DIRTY_LOG) + TEST_ASSERT(check_write_in_dirty_log(vm, data_region, 0), + "Missing write in dirty log"); + if (cmd & CMD_CHECK_S1PTW_WR_IN_DIRTY_LOG) + TEST_ASSERT(check_write_in_dirty_log(vm, pt_region, pte_pg), + "Missing s1ptw write in dirty log"); + if (cmd & CMD_CHECK_NO_WRITE_IN_DIRTY_LOG) + TEST_ASSERT(!check_write_in_dirty_log(vm, data_region, 0), + "Unexpected write in dirty log"); + if (cmd & CMD_CHECK_NO_S1PTW_WR_IN_DIRTY_LOG) + TEST_ASSERT(!check_write_in_dirty_log(vm, pt_region, pte_pg), + "Unexpected s1ptw write in dirty log"); + + return continue_test; +} + +void fail_vcpu_run_no_handler(int ret) +{ + TEST_FAIL("Unexpected vcpu run failure\n"); +} + +void fail_vcpu_run_mmio_no_syndrome_handler(int ret) +{ + TEST_ASSERT(errno == ENOSYS, + "The mmio handler should have returned not implemented."); + events.fail_vcpu_runs += 1; +} + +typedef uint32_t aarch64_insn_t; +extern aarch64_insn_t __exec_test[2]; + +noinline void __return_0x77(void) +{ + asm volatile("__exec_test: mov x0, #0x77\n" + "ret\n"); +} + +/* + * Note that this function runs on the host before the test VM starts: there's + * no need to sync the D$ and I$ caches. + */ +static void load_exec_code_for_test(struct kvm_vm *vm) +{ + uint64_t *code; + struct userspace_mem_region *region; + void *hva; + + region = vm_get_mem_region(vm, MEM_REGION_TEST_DATA); + hva = (void *)region->region.userspace_addr; + + assert(TEST_EXEC_GVA > TEST_GVA); + code = hva + TEST_EXEC_GVA - TEST_GVA; + memcpy(code, __exec_test, sizeof(__exec_test)); +} + +static void setup_abort_handlers(struct kvm_vm *vm, struct kvm_vcpu *vcpu, + struct test_desc *test) +{ + vm_init_descriptor_tables(vm); + vcpu_init_descriptor_tables(vcpu); + + vm_install_sync_handler(vm, VECTOR_SYNC_CURRENT, + ESR_EC_DABT, no_dabt_handler); + vm_install_sync_handler(vm, VECTOR_SYNC_CURRENT, + ESR_EC_IABT, no_iabt_handler); +} + +static void setup_gva_maps(struct kvm_vm *vm) +{ + struct userspace_mem_region *region; + uint64_t pte_gpa; + + region = vm_get_mem_region(vm, MEM_REGION_TEST_DATA); + /* Map TEST_GVA first. This will install a new PTE. */ + virt_pg_map(vm, TEST_GVA, region->region.guest_phys_addr); + /* Then map TEST_PTE_GVA to the above PTE. */ + pte_gpa = addr_hva2gpa(vm, virt_get_pte_hva(vm, TEST_GVA)); + virt_pg_map(vm, TEST_PTE_GVA, pte_gpa); +} + +enum pf_test_memslots { + CODE_AND_DATA_MEMSLOT, + PAGE_TABLE_MEMSLOT, + TEST_DATA_MEMSLOT, +}; + +/* + * Create a memslot for code and data at pfn=0, and test-data and PT ones + * at max_gfn. + */ +static void setup_memslots(struct kvm_vm *vm, struct test_params *p) +{ + uint64_t backing_src_pagesz = get_backing_src_pagesz(p->src_type); + uint64_t guest_page_size = vm->page_size; + uint64_t max_gfn = vm_compute_max_gfn(vm); + /* Enough for 2M of code when using 4K guest pages. */ + uint64_t code_npages = 512; + uint64_t pt_size, data_size, data_gpa; + + /* + * This test requires 1 pgd, 2 pud, 4 pmd, and 6 pte pages when using + * VM_MODE_P48V48_4K. Note that the .text takes ~1.6MBs. That's 13 + * pages. VM_MODE_P48V48_4K is the mode with most PT pages; let's use + * twice that just in case. + */ + pt_size = 26 * guest_page_size; + + /* memslot sizes and gpa's must be aligned to the backing page size */ + pt_size = align_up(pt_size, backing_src_pagesz); + data_size = align_up(guest_page_size, backing_src_pagesz); + data_gpa = (max_gfn * guest_page_size) - data_size; + data_gpa = align_down(data_gpa, backing_src_pagesz); + + vm_userspace_mem_region_add(vm, VM_MEM_SRC_ANONYMOUS, 0, + CODE_AND_DATA_MEMSLOT, code_npages, 0); + vm->memslots[MEM_REGION_CODE] = CODE_AND_DATA_MEMSLOT; + vm->memslots[MEM_REGION_DATA] = CODE_AND_DATA_MEMSLOT; + + vm_userspace_mem_region_add(vm, p->src_type, data_gpa - pt_size, + PAGE_TABLE_MEMSLOT, pt_size / guest_page_size, + p->test_desc->pt_memslot_flags); + vm->memslots[MEM_REGION_PT] = PAGE_TABLE_MEMSLOT; + + vm_userspace_mem_region_add(vm, p->src_type, data_gpa, TEST_DATA_MEMSLOT, + data_size / guest_page_size, + p->test_desc->data_memslot_flags); + vm->memslots[MEM_REGION_TEST_DATA] = TEST_DATA_MEMSLOT; +} + +static void setup_ucall(struct kvm_vm *vm) +{ + struct userspace_mem_region *region = vm_get_mem_region(vm, MEM_REGION_TEST_DATA); + + ucall_init(vm, region->region.guest_phys_addr + region->region.memory_size); +} + +static void setup_default_handlers(struct test_desc *test) +{ + if (!test->mmio_handler) + test->mmio_handler = mmio_no_handler; + + if (!test->fail_vcpu_run_handler) + test->fail_vcpu_run_handler = fail_vcpu_run_no_handler; +} + +static void check_event_counts(struct test_desc *test) +{ + TEST_ASSERT_EQ(test->expected_events.uffd_faults, events.uffd_faults); + TEST_ASSERT_EQ(test->expected_events.mmio_exits, events.mmio_exits); + TEST_ASSERT_EQ(test->expected_events.fail_vcpu_runs, events.fail_vcpu_runs); +} + +static void print_test_banner(enum vm_guest_mode mode, struct test_params *p) +{ + struct test_desc *test = p->test_desc; + + pr_debug("Test: %s\n", test->name); + pr_debug("Testing guest mode: %s\n", vm_guest_mode_string(mode)); + pr_debug("Testing memory backing src type: %s\n", + vm_mem_backing_src_alias(p->src_type)->name); +} + +static void reset_event_counts(void) +{ + memset(&events, 0, sizeof(events)); +} + +/* + * This function either succeeds, skips the test (after setting test->skip), or + * fails with a TEST_FAIL that aborts all tests. + */ +static void vcpu_run_loop(struct kvm_vm *vm, struct kvm_vcpu *vcpu, + struct test_desc *test) +{ + struct kvm_run *run; + struct ucall uc; + int ret; + + run = vcpu->run; + + for (;;) { + ret = _vcpu_run(vcpu); + if (ret) { + test->fail_vcpu_run_handler(ret); + goto done; + } + + switch (get_ucall(vcpu, &uc)) { + case UCALL_SYNC: + if (!handle_cmd(vm, uc.args[1])) { + test->skip = true; + goto done; + } + break; + case UCALL_ABORT: + REPORT_GUEST_ASSERT(uc); + break; + case UCALL_DONE: + goto done; + case UCALL_NONE: + if (run->exit_reason == KVM_EXIT_MMIO) + test->mmio_handler(vm, run); + break; + default: + TEST_FAIL("Unknown ucall %lu", uc.cmd); + } + } + +done: + pr_debug(test->skip ? "Skipped.\n" : "Done.\n"); +} + +static void run_test(enum vm_guest_mode mode, void *arg) +{ + struct test_params *p = (struct test_params *)arg; + struct test_desc *test = p->test_desc; + struct kvm_vm *vm; + struct kvm_vcpu *vcpu; + struct uffd_desc *pt_uffd, *data_uffd; + + print_test_banner(mode, p); + + vm = ____vm_create(mode); + setup_memslots(vm, p); + kvm_vm_elf_load(vm, program_invocation_name); + setup_ucall(vm); + vcpu = vm_vcpu_add(vm, 0, guest_code); + + setup_gva_maps(vm); + + reset_event_counts(); + + /* + * Set some code in the data memslot for the guest to execute (only + * applicable to the EXEC tests). This has to be done before + * setup_uffd() as that function copies the memslot data for the uffd + * handler. + */ + load_exec_code_for_test(vm); + setup_uffd(vm, p, &pt_uffd, &data_uffd); + setup_abort_handlers(vm, vcpu, test); + setup_default_handlers(test); + vcpu_args_set(vcpu, 1, test); + + vcpu_run_loop(vm, vcpu, test); + + kvm_vm_free(vm); + free_uffd(test, pt_uffd, data_uffd); + + /* + * Make sure we check the events after the uffd threads have exited, + * which means they updated their respective event counters. + */ + if (!test->skip) + check_event_counts(test); +} + +static void help(char *name) +{ + puts(""); + printf("usage: %s [-h] [-s mem-type]\n", name); + puts(""); + guest_modes_help(); + backing_src_help("-s"); + puts(""); +} + +#define SNAME(s) #s +#define SCAT2(a, b) SNAME(a ## _ ## b) +#define SCAT3(a, b, c) SCAT2(a, SCAT2(b, c)) +#define SCAT4(a, b, c, d) SCAT2(a, SCAT3(b, c, d)) + +#define _CHECK(_test) _CHECK_##_test +#define _PREPARE(_test) _PREPARE_##_test +#define _PREPARE_guest_read64 NULL +#define _PREPARE_guest_ld_preidx NULL +#define _PREPARE_guest_write64 NULL +#define _PREPARE_guest_st_preidx NULL +#define _PREPARE_guest_exec NULL +#define _PREPARE_guest_at NULL +#define _PREPARE_guest_dc_zva guest_check_dc_zva +#define _PREPARE_guest_cas guest_check_lse + +/* With or without access flag checks */ +#define _PREPARE_with_af guest_set_ha, guest_clear_pte_af +#define _PREPARE_no_af NULL +#define _CHECK_with_af guest_check_pte_af +#define _CHECK_no_af NULL + +/* Performs an access and checks that no faults were triggered. */ +#define TEST_ACCESS(_access, _with_af, _mark_cmd) \ +{ \ + .name = SCAT3(_access, _with_af, #_mark_cmd), \ + .guest_prepare = { _PREPARE(_with_af), \ + _PREPARE(_access) }, \ + .mem_mark_cmd = _mark_cmd, \ + .guest_test = _access, \ + .guest_test_check = { _CHECK(_with_af) }, \ + .expected_events = { 0 }, \ +} + +#define TEST_UFFD(_access, _with_af, _mark_cmd, \ + _uffd_data_handler, _uffd_pt_handler, _uffd_faults) \ +{ \ + .name = SCAT4(uffd, _access, _with_af, #_mark_cmd), \ + .guest_prepare = { _PREPARE(_with_af), \ + _PREPARE(_access) }, \ + .guest_test = _access, \ + .mem_mark_cmd = _mark_cmd, \ + .guest_test_check = { _CHECK(_with_af) }, \ + .uffd_data_handler = _uffd_data_handler, \ + .uffd_pt_handler = _uffd_pt_handler, \ + .expected_events = { .uffd_faults = _uffd_faults, }, \ +} + +#define TEST_DIRTY_LOG(_access, _with_af, _test_check, _pt_check) \ +{ \ + .name = SCAT3(dirty_log, _access, _with_af), \ + .data_memslot_flags = KVM_MEM_LOG_DIRTY_PAGES, \ + .pt_memslot_flags = KVM_MEM_LOG_DIRTY_PAGES, \ + .guest_prepare = { _PREPARE(_with_af), \ + _PREPARE(_access) }, \ + .guest_test = _access, \ + .guest_test_check = { _CHECK(_with_af), _test_check, _pt_check }, \ + .expected_events = { 0 }, \ +} + +#define TEST_UFFD_AND_DIRTY_LOG(_access, _with_af, _uffd_data_handler, \ + _uffd_faults, _test_check, _pt_check) \ +{ \ + .name = SCAT3(uffd_and_dirty_log, _access, _with_af), \ + .data_memslot_flags = KVM_MEM_LOG_DIRTY_PAGES, \ + .pt_memslot_flags = KVM_MEM_LOG_DIRTY_PAGES, \ + .guest_prepare = { _PREPARE(_with_af), \ + _PREPARE(_access) }, \ + .guest_test = _access, \ + .mem_mark_cmd = CMD_HOLE_DATA | CMD_HOLE_PT, \ + .guest_test_check = { _CHECK(_with_af), _test_check, _pt_check }, \ + .uffd_data_handler = _uffd_data_handler, \ + .uffd_pt_handler = uffd_pt_handler, \ + .expected_events = { .uffd_faults = _uffd_faults, }, \ +} + +#define TEST_RO_MEMSLOT(_access, _mmio_handler, _mmio_exits) \ +{ \ + .name = SCAT2(ro_memslot, _access), \ + .data_memslot_flags = KVM_MEM_READONLY, \ + .pt_memslot_flags = KVM_MEM_READONLY, \ + .guest_prepare = { _PREPARE(_access) }, \ + .guest_test = _access, \ + .mmio_handler = _mmio_handler, \ + .expected_events = { .mmio_exits = _mmio_exits }, \ +} + +#define TEST_RO_MEMSLOT_NO_SYNDROME(_access) \ +{ \ + .name = SCAT2(ro_memslot_no_syndrome, _access), \ + .data_memslot_flags = KVM_MEM_READONLY, \ + .pt_memslot_flags = KVM_MEM_READONLY, \ + .guest_test = _access, \ + .fail_vcpu_run_handler = fail_vcpu_run_mmio_no_syndrome_handler, \ + .expected_events = { .fail_vcpu_runs = 1 }, \ +} + +#define TEST_RO_MEMSLOT_AND_DIRTY_LOG(_access, _mmio_handler, _mmio_exits, \ + _test_check) \ +{ \ + .name = SCAT2(ro_memslot, _access), \ + .data_memslot_flags = KVM_MEM_READONLY | KVM_MEM_LOG_DIRTY_PAGES, \ + .pt_memslot_flags = KVM_MEM_READONLY | KVM_MEM_LOG_DIRTY_PAGES, \ + .guest_prepare = { _PREPARE(_access) }, \ + .guest_test = _access, \ + .guest_test_check = { _test_check }, \ + .mmio_handler = _mmio_handler, \ + .expected_events = { .mmio_exits = _mmio_exits}, \ +} + +#define TEST_RO_MEMSLOT_NO_SYNDROME_AND_DIRTY_LOG(_access, _test_check) \ +{ \ + .name = SCAT2(ro_memslot_no_syn_and_dlog, _access), \ + .data_memslot_flags = KVM_MEM_READONLY | KVM_MEM_LOG_DIRTY_PAGES, \ + .pt_memslot_flags = KVM_MEM_READONLY | KVM_MEM_LOG_DIRTY_PAGES, \ + .guest_test = _access, \ + .guest_test_check = { _test_check }, \ + .fail_vcpu_run_handler = fail_vcpu_run_mmio_no_syndrome_handler, \ + .expected_events = { .fail_vcpu_runs = 1 }, \ +} + +#define TEST_RO_MEMSLOT_AND_UFFD(_access, _mmio_handler, _mmio_exits, \ + _uffd_data_handler, _uffd_faults) \ +{ \ + .name = SCAT2(ro_memslot_uffd, _access), \ + .data_memslot_flags = KVM_MEM_READONLY, \ + .pt_memslot_flags = KVM_MEM_READONLY, \ + .mem_mark_cmd = CMD_HOLE_DATA | CMD_HOLE_PT, \ + .guest_prepare = { _PREPARE(_access) }, \ + .guest_test = _access, \ + .uffd_data_handler = _uffd_data_handler, \ + .uffd_pt_handler = uffd_pt_handler, \ + .mmio_handler = _mmio_handler, \ + .expected_events = { .mmio_exits = _mmio_exits, \ + .uffd_faults = _uffd_faults }, \ +} + +#define TEST_RO_MEMSLOT_NO_SYNDROME_AND_UFFD(_access, _uffd_data_handler, \ + _uffd_faults) \ +{ \ + .name = SCAT2(ro_memslot_no_syndrome, _access), \ + .data_memslot_flags = KVM_MEM_READONLY, \ + .pt_memslot_flags = KVM_MEM_READONLY, \ + .mem_mark_cmd = CMD_HOLE_DATA | CMD_HOLE_PT, \ + .guest_test = _access, \ + .uffd_data_handler = _uffd_data_handler, \ + .uffd_pt_handler = uffd_pt_handler, \ + .fail_vcpu_run_handler = fail_vcpu_run_mmio_no_syndrome_handler, \ + .expected_events = { .fail_vcpu_runs = 1, \ + .uffd_faults = _uffd_faults }, \ +} + +static struct test_desc tests[] = { + + /* Check that HW is setting the Access Flag (AF) (sanity checks). */ + TEST_ACCESS(guest_read64, with_af, CMD_NONE), + TEST_ACCESS(guest_ld_preidx, with_af, CMD_NONE), + TEST_ACCESS(guest_cas, with_af, CMD_NONE), + TEST_ACCESS(guest_write64, with_af, CMD_NONE), + TEST_ACCESS(guest_st_preidx, with_af, CMD_NONE), + TEST_ACCESS(guest_dc_zva, with_af, CMD_NONE), + TEST_ACCESS(guest_exec, with_af, CMD_NONE), + + /* + * Punch a hole in the data backing store, and then try multiple + * accesses: reads should rturn zeroes, and writes should + * re-populate the page. Moreover, the test also check that no + * exception was generated in the guest. Note that this + * reading/writing behavior is the same as reading/writing a + * punched page (with fallocate(FALLOC_FL_PUNCH_HOLE)) from + * userspace. + */ + TEST_ACCESS(guest_read64, no_af, CMD_HOLE_DATA), + TEST_ACCESS(guest_cas, no_af, CMD_HOLE_DATA), + TEST_ACCESS(guest_ld_preidx, no_af, CMD_HOLE_DATA), + TEST_ACCESS(guest_write64, no_af, CMD_HOLE_DATA), + TEST_ACCESS(guest_st_preidx, no_af, CMD_HOLE_DATA), + TEST_ACCESS(guest_at, no_af, CMD_HOLE_DATA), + TEST_ACCESS(guest_dc_zva, no_af, CMD_HOLE_DATA), + + /* + * Punch holes in the data and PT backing stores and mark them for + * userfaultfd handling. This should result in 2 faults: the access + * on the data backing store, and its respective S1 page table walk + * (S1PTW). + */ + TEST_UFFD(guest_read64, with_af, CMD_HOLE_DATA | CMD_HOLE_PT, + uffd_data_handler, uffd_pt_handler, 2), + TEST_UFFD(guest_read64, no_af, CMD_HOLE_DATA | CMD_HOLE_PT, + uffd_data_handler, uffd_pt_handler, 2), + TEST_UFFD(guest_cas, with_af, CMD_HOLE_DATA | CMD_HOLE_PT, + uffd_data_handler, uffd_pt_handler, 2), + /* + * Can't test guest_at with_af as it's IMPDEF whether the AF is set. + * The S1PTW fault should still be marked as a write. + */ + TEST_UFFD(guest_at, no_af, CMD_HOLE_DATA | CMD_HOLE_PT, + uffd_no_handler, uffd_pt_handler, 1), + TEST_UFFD(guest_ld_preidx, with_af, CMD_HOLE_DATA | CMD_HOLE_PT, + uffd_data_handler, uffd_pt_handler, 2), + TEST_UFFD(guest_write64, with_af, CMD_HOLE_DATA | CMD_HOLE_PT, + uffd_data_handler, uffd_pt_handler, 2), + TEST_UFFD(guest_dc_zva, with_af, CMD_HOLE_DATA | CMD_HOLE_PT, + uffd_data_handler, uffd_pt_handler, 2), + TEST_UFFD(guest_st_preidx, with_af, CMD_HOLE_DATA | CMD_HOLE_PT, + uffd_data_handler, uffd_pt_handler, 2), + TEST_UFFD(guest_exec, with_af, CMD_HOLE_DATA | CMD_HOLE_PT, + uffd_data_handler, uffd_pt_handler, 2), + + /* + * Try accesses when the data and PT memory regions are both + * tracked for dirty logging. + */ + TEST_DIRTY_LOG(guest_read64, with_af, guest_check_no_write_in_dirty_log, + guest_check_s1ptw_wr_in_dirty_log), + TEST_DIRTY_LOG(guest_read64, no_af, guest_check_no_write_in_dirty_log, + guest_check_no_s1ptw_wr_in_dirty_log), + TEST_DIRTY_LOG(guest_ld_preidx, with_af, + guest_check_no_write_in_dirty_log, + guest_check_s1ptw_wr_in_dirty_log), + TEST_DIRTY_LOG(guest_at, no_af, guest_check_no_write_in_dirty_log, + guest_check_no_s1ptw_wr_in_dirty_log), + TEST_DIRTY_LOG(guest_exec, with_af, guest_check_no_write_in_dirty_log, + guest_check_s1ptw_wr_in_dirty_log), + TEST_DIRTY_LOG(guest_write64, with_af, guest_check_write_in_dirty_log, + guest_check_s1ptw_wr_in_dirty_log), + TEST_DIRTY_LOG(guest_cas, with_af, guest_check_write_in_dirty_log, + guest_check_s1ptw_wr_in_dirty_log), + TEST_DIRTY_LOG(guest_dc_zva, with_af, guest_check_write_in_dirty_log, + guest_check_s1ptw_wr_in_dirty_log), + TEST_DIRTY_LOG(guest_st_preidx, with_af, guest_check_write_in_dirty_log, + guest_check_s1ptw_wr_in_dirty_log), + + /* + * Access when the data and PT memory regions are both marked for + * dirty logging and UFFD at the same time. The expected result is + * that writes should mark the dirty log and trigger a userfaultfd + * write fault. Reads/execs should result in a read userfaultfd + * fault, and nothing in the dirty log. Any S1PTW should result in + * a write in the dirty log and a userfaultfd write. + */ + TEST_UFFD_AND_DIRTY_LOG(guest_read64, with_af, + uffd_data_handler, 2, + guest_check_no_write_in_dirty_log, + guest_check_s1ptw_wr_in_dirty_log), + TEST_UFFD_AND_DIRTY_LOG(guest_read64, no_af, + uffd_data_handler, 2, + guest_check_no_write_in_dirty_log, + guest_check_no_s1ptw_wr_in_dirty_log), + TEST_UFFD_AND_DIRTY_LOG(guest_ld_preidx, with_af, + uffd_data_handler, + 2, guest_check_no_write_in_dirty_log, + guest_check_s1ptw_wr_in_dirty_log), + TEST_UFFD_AND_DIRTY_LOG(guest_at, with_af, uffd_no_handler, 1, + guest_check_no_write_in_dirty_log, + guest_check_s1ptw_wr_in_dirty_log), + TEST_UFFD_AND_DIRTY_LOG(guest_exec, with_af, + uffd_data_handler, 2, + guest_check_no_write_in_dirty_log, + guest_check_s1ptw_wr_in_dirty_log), + TEST_UFFD_AND_DIRTY_LOG(guest_write64, with_af, + uffd_data_handler, + 2, guest_check_write_in_dirty_log, + guest_check_s1ptw_wr_in_dirty_log), + TEST_UFFD_AND_DIRTY_LOG(guest_cas, with_af, + uffd_data_handler, 2, + guest_check_write_in_dirty_log, + guest_check_s1ptw_wr_in_dirty_log), + TEST_UFFD_AND_DIRTY_LOG(guest_dc_zva, with_af, + uffd_data_handler, + 2, guest_check_write_in_dirty_log, + guest_check_s1ptw_wr_in_dirty_log), + TEST_UFFD_AND_DIRTY_LOG(guest_st_preidx, with_af, + uffd_data_handler, 2, + guest_check_write_in_dirty_log, + guest_check_s1ptw_wr_in_dirty_log), + /* + * Access when both the PT and data regions are marked read-only + * (with KVM_MEM_READONLY). Writes with a syndrome result in an + * MMIO exit, writes with no syndrome (e.g., CAS) result in a + * failed vcpu run, and reads/execs with and without syndroms do + * not fault. + */ + TEST_RO_MEMSLOT(guest_read64, 0, 0), + TEST_RO_MEMSLOT(guest_ld_preidx, 0, 0), + TEST_RO_MEMSLOT(guest_at, 0, 0), + TEST_RO_MEMSLOT(guest_exec, 0, 0), + TEST_RO_MEMSLOT(guest_write64, mmio_on_test_gpa_handler, 1), + TEST_RO_MEMSLOT_NO_SYNDROME(guest_dc_zva), + TEST_RO_MEMSLOT_NO_SYNDROME(guest_cas), + TEST_RO_MEMSLOT_NO_SYNDROME(guest_st_preidx), + + /* + * The PT and data regions are both read-only and marked + * for dirty logging at the same time. The expected result is that + * for writes there should be no write in the dirty log. The + * readonly handling is the same as if the memslot was not marked + * for dirty logging: writes with a syndrome result in an MMIO + * exit, and writes with no syndrome result in a failed vcpu run. + */ + TEST_RO_MEMSLOT_AND_DIRTY_LOG(guest_read64, 0, 0, + guest_check_no_write_in_dirty_log), + TEST_RO_MEMSLOT_AND_DIRTY_LOG(guest_ld_preidx, 0, 0, + guest_check_no_write_in_dirty_log), + TEST_RO_MEMSLOT_AND_DIRTY_LOG(guest_at, 0, 0, + guest_check_no_write_in_dirty_log), + TEST_RO_MEMSLOT_AND_DIRTY_LOG(guest_exec, 0, 0, + guest_check_no_write_in_dirty_log), + TEST_RO_MEMSLOT_AND_DIRTY_LOG(guest_write64, mmio_on_test_gpa_handler, + 1, guest_check_no_write_in_dirty_log), + TEST_RO_MEMSLOT_NO_SYNDROME_AND_DIRTY_LOG(guest_dc_zva, + guest_check_no_write_in_dirty_log), + TEST_RO_MEMSLOT_NO_SYNDROME_AND_DIRTY_LOG(guest_cas, + guest_check_no_write_in_dirty_log), + TEST_RO_MEMSLOT_NO_SYNDROME_AND_DIRTY_LOG(guest_st_preidx, + guest_check_no_write_in_dirty_log), + + /* + * The PT and data regions are both read-only and punched with + * holes tracked with userfaultfd. The expected result is the + * union of both userfaultfd and read-only behaviors. For example, + * write accesses result in a userfaultfd write fault and an MMIO + * exit. Writes with no syndrome result in a failed vcpu run and + * no userfaultfd write fault. Reads result in userfaultfd getting + * triggered. + */ + TEST_RO_MEMSLOT_AND_UFFD(guest_read64, 0, 0, uffd_data_handler, 2), + TEST_RO_MEMSLOT_AND_UFFD(guest_ld_preidx, 0, 0, uffd_data_handler, 2), + TEST_RO_MEMSLOT_AND_UFFD(guest_at, 0, 0, uffd_no_handler, 1), + TEST_RO_MEMSLOT_AND_UFFD(guest_exec, 0, 0, uffd_data_handler, 2), + TEST_RO_MEMSLOT_AND_UFFD(guest_write64, mmio_on_test_gpa_handler, 1, + uffd_data_handler, 2), + TEST_RO_MEMSLOT_NO_SYNDROME_AND_UFFD(guest_cas, uffd_data_handler, 2), + TEST_RO_MEMSLOT_NO_SYNDROME_AND_UFFD(guest_dc_zva, uffd_no_handler, 1), + TEST_RO_MEMSLOT_NO_SYNDROME_AND_UFFD(guest_st_preidx, uffd_no_handler, 1), + + { 0 } +}; + +static void for_each_test_and_guest_mode(enum vm_mem_backing_src_type src_type) +{ + struct test_desc *t; + + for (t = &tests[0]; t->name; t++) { + if (t->skip) + continue; + + struct test_params p = { + .src_type = src_type, + .test_desc = t, + }; + + for_each_guest_mode(run_test, &p); + } +} + +int main(int argc, char *argv[]) +{ + enum vm_mem_backing_src_type src_type; + int opt; + + src_type = DEFAULT_VM_MEM_SRC; + + while ((opt = getopt(argc, argv, "hm:s:")) != -1) { + switch (opt) { + case 'm': + guest_modes_cmdline(optarg); + break; + case 's': + src_type = parse_backing_src_type(optarg); + break; + case 'h': + default: + help(argv[0]); + exit(0); + } + } + + for_each_test_and_guest_mode(src_type); + return 0; +} diff --git a/tools/testing/selftests/kvm/aarch64/psci_test.c b/tools/testing/selftests/kvm/aarch64/psci_test.c new file mode 100644 index 0000000000..9b004905d1 --- /dev/null +++ b/tools/testing/selftests/kvm/aarch64/psci_test.c @@ -0,0 +1,198 @@ +// SPDX-License-Identifier: GPL-2.0-only +/* + * psci_test - Tests relating to KVM's PSCI implementation. + * + * Copyright (c) 2021 Google LLC. + * + * This test includes: + * - A regression test for a race between KVM servicing the PSCI CPU_ON call + * and userspace reading the targeted vCPU's registers. + * - A test for KVM's handling of PSCI SYSTEM_SUSPEND and the associated + * KVM_SYSTEM_EVENT_SUSPEND UAPI. + */ + +#define _GNU_SOURCE + +#include <linux/psci.h> + +#include "kvm_util.h" +#include "processor.h" +#include "test_util.h" + +#define CPU_ON_ENTRY_ADDR 0xfeedf00dul +#define CPU_ON_CONTEXT_ID 0xdeadc0deul + +static uint64_t psci_cpu_on(uint64_t target_cpu, uint64_t entry_addr, + uint64_t context_id) +{ + struct arm_smccc_res res; + + smccc_hvc(PSCI_0_2_FN64_CPU_ON, target_cpu, entry_addr, context_id, + 0, 0, 0, 0, &res); + + return res.a0; +} + +static uint64_t psci_affinity_info(uint64_t target_affinity, + uint64_t lowest_affinity_level) +{ + struct arm_smccc_res res; + + smccc_hvc(PSCI_0_2_FN64_AFFINITY_INFO, target_affinity, lowest_affinity_level, + 0, 0, 0, 0, 0, &res); + + return res.a0; +} + +static uint64_t psci_system_suspend(uint64_t entry_addr, uint64_t context_id) +{ + struct arm_smccc_res res; + + smccc_hvc(PSCI_1_0_FN64_SYSTEM_SUSPEND, entry_addr, context_id, + 0, 0, 0, 0, 0, &res); + + return res.a0; +} + +static uint64_t psci_features(uint32_t func_id) +{ + struct arm_smccc_res res; + + smccc_hvc(PSCI_1_0_FN_PSCI_FEATURES, func_id, 0, 0, 0, 0, 0, 0, &res); + + return res.a0; +} + +static void vcpu_power_off(struct kvm_vcpu *vcpu) +{ + struct kvm_mp_state mp_state = { + .mp_state = KVM_MP_STATE_STOPPED, + }; + + vcpu_mp_state_set(vcpu, &mp_state); +} + +static struct kvm_vm *setup_vm(void *guest_code, struct kvm_vcpu **source, + struct kvm_vcpu **target) +{ + struct kvm_vcpu_init init; + struct kvm_vm *vm; + + vm = vm_create(2); + + vm_ioctl(vm, KVM_ARM_PREFERRED_TARGET, &init); + init.features[0] |= (1 << KVM_ARM_VCPU_PSCI_0_2); + + *source = aarch64_vcpu_add(vm, 0, &init, guest_code); + *target = aarch64_vcpu_add(vm, 1, &init, guest_code); + + return vm; +} + +static void enter_guest(struct kvm_vcpu *vcpu) +{ + struct ucall uc; + + vcpu_run(vcpu); + if (get_ucall(vcpu, &uc) == UCALL_ABORT) + REPORT_GUEST_ASSERT(uc); +} + +static void assert_vcpu_reset(struct kvm_vcpu *vcpu) +{ + uint64_t obs_pc, obs_x0; + + vcpu_get_reg(vcpu, ARM64_CORE_REG(regs.pc), &obs_pc); + vcpu_get_reg(vcpu, ARM64_CORE_REG(regs.regs[0]), &obs_x0); + + TEST_ASSERT(obs_pc == CPU_ON_ENTRY_ADDR, + "unexpected target cpu pc: %lx (expected: %lx)", + obs_pc, CPU_ON_ENTRY_ADDR); + TEST_ASSERT(obs_x0 == CPU_ON_CONTEXT_ID, + "unexpected target context id: %lx (expected: %lx)", + obs_x0, CPU_ON_CONTEXT_ID); +} + +static void guest_test_cpu_on(uint64_t target_cpu) +{ + uint64_t target_state; + + GUEST_ASSERT(!psci_cpu_on(target_cpu, CPU_ON_ENTRY_ADDR, CPU_ON_CONTEXT_ID)); + + do { + target_state = psci_affinity_info(target_cpu, 0); + + GUEST_ASSERT((target_state == PSCI_0_2_AFFINITY_LEVEL_ON) || + (target_state == PSCI_0_2_AFFINITY_LEVEL_OFF)); + } while (target_state != PSCI_0_2_AFFINITY_LEVEL_ON); + + GUEST_DONE(); +} + +static void host_test_cpu_on(void) +{ + struct kvm_vcpu *source, *target; + uint64_t target_mpidr; + struct kvm_vm *vm; + struct ucall uc; + + vm = setup_vm(guest_test_cpu_on, &source, &target); + + /* + * make sure the target is already off when executing the test. + */ + vcpu_power_off(target); + + vcpu_get_reg(target, KVM_ARM64_SYS_REG(SYS_MPIDR_EL1), &target_mpidr); + vcpu_args_set(source, 1, target_mpidr & MPIDR_HWID_BITMASK); + enter_guest(source); + + if (get_ucall(source, &uc) != UCALL_DONE) + TEST_FAIL("Unhandled ucall: %lu", uc.cmd); + + assert_vcpu_reset(target); + kvm_vm_free(vm); +} + +static void guest_test_system_suspend(void) +{ + uint64_t ret; + + /* assert that SYSTEM_SUSPEND is discoverable */ + GUEST_ASSERT(!psci_features(PSCI_1_0_FN_SYSTEM_SUSPEND)); + GUEST_ASSERT(!psci_features(PSCI_1_0_FN64_SYSTEM_SUSPEND)); + + ret = psci_system_suspend(CPU_ON_ENTRY_ADDR, CPU_ON_CONTEXT_ID); + GUEST_SYNC(ret); +} + +static void host_test_system_suspend(void) +{ + struct kvm_vcpu *source, *target; + struct kvm_run *run; + struct kvm_vm *vm; + + vm = setup_vm(guest_test_system_suspend, &source, &target); + vm_enable_cap(vm, KVM_CAP_ARM_SYSTEM_SUSPEND, 0); + + vcpu_power_off(target); + run = source->run; + + enter_guest(source); + + TEST_ASSERT_KVM_EXIT_REASON(source, KVM_EXIT_SYSTEM_EVENT); + TEST_ASSERT(run->system_event.type == KVM_SYSTEM_EVENT_SUSPEND, + "Unhandled system event: %u (expected: %u)", + run->system_event.type, KVM_SYSTEM_EVENT_SUSPEND); + + kvm_vm_free(vm); +} + +int main(void) +{ + TEST_REQUIRE(kvm_has_cap(KVM_CAP_ARM_SYSTEM_SUSPEND)); + + host_test_cpu_on(); + host_test_system_suspend(); + return 0; +} diff --git a/tools/testing/selftests/kvm/aarch64/smccc_filter.c b/tools/testing/selftests/kvm/aarch64/smccc_filter.c new file mode 100644 index 0000000000..f4ceae9c89 --- /dev/null +++ b/tools/testing/selftests/kvm/aarch64/smccc_filter.c @@ -0,0 +1,268 @@ +// SPDX-License-Identifier: GPL-2.0-only +/* + * smccc_filter - Tests for the SMCCC filter UAPI. + * + * Copyright (c) 2023 Google LLC + * + * This test includes: + * - Tests that the UAPI constraints are upheld by KVM. For example, userspace + * is prevented from filtering the architecture range of SMCCC calls. + * - Test that the filter actions (DENIED, FWD_TO_USER) work as intended. + */ + +#include <linux/arm-smccc.h> +#include <linux/psci.h> +#include <stdint.h> + +#include "processor.h" +#include "test_util.h" + +enum smccc_conduit { + HVC_INSN, + SMC_INSN, +}; + +#define for_each_conduit(conduit) \ + for (conduit = HVC_INSN; conduit <= SMC_INSN; conduit++) + +static void guest_main(uint32_t func_id, enum smccc_conduit conduit) +{ + struct arm_smccc_res res; + + if (conduit == SMC_INSN) + smccc_smc(func_id, 0, 0, 0, 0, 0, 0, 0, &res); + else + smccc_hvc(func_id, 0, 0, 0, 0, 0, 0, 0, &res); + + GUEST_SYNC(res.a0); +} + +static int __set_smccc_filter(struct kvm_vm *vm, uint32_t start, uint32_t nr_functions, + enum kvm_smccc_filter_action action) +{ + struct kvm_smccc_filter filter = { + .base = start, + .nr_functions = nr_functions, + .action = action, + }; + + return __kvm_device_attr_set(vm->fd, KVM_ARM_VM_SMCCC_CTRL, + KVM_ARM_VM_SMCCC_FILTER, &filter); +} + +static void set_smccc_filter(struct kvm_vm *vm, uint32_t start, uint32_t nr_functions, + enum kvm_smccc_filter_action action) +{ + int ret = __set_smccc_filter(vm, start, nr_functions, action); + + TEST_ASSERT(!ret, "failed to configure SMCCC filter: %d", ret); +} + +static struct kvm_vm *setup_vm(struct kvm_vcpu **vcpu) +{ + struct kvm_vcpu_init init; + struct kvm_vm *vm; + + vm = vm_create(1); + vm_ioctl(vm, KVM_ARM_PREFERRED_TARGET, &init); + + /* + * Enable in-kernel emulation of PSCI to ensure that calls are denied + * due to the SMCCC filter, not because of KVM. + */ + init.features[0] |= (1 << KVM_ARM_VCPU_PSCI_0_2); + + *vcpu = aarch64_vcpu_add(vm, 0, &init, guest_main); + return vm; +} + +static void test_pad_must_be_zero(void) +{ + struct kvm_vcpu *vcpu; + struct kvm_vm *vm = setup_vm(&vcpu); + struct kvm_smccc_filter filter = { + .base = PSCI_0_2_FN_PSCI_VERSION, + .nr_functions = 1, + .action = KVM_SMCCC_FILTER_DENY, + .pad = { -1 }, + }; + int r; + + r = __kvm_device_attr_set(vm->fd, KVM_ARM_VM_SMCCC_CTRL, + KVM_ARM_VM_SMCCC_FILTER, &filter); + TEST_ASSERT(r < 0 && errno == EINVAL, + "Setting filter with nonzero padding should return EINVAL"); +} + +/* Ensure that userspace cannot filter the Arm Architecture SMCCC range */ +static void test_filter_reserved_range(void) +{ + struct kvm_vcpu *vcpu; + struct kvm_vm *vm = setup_vm(&vcpu); + uint32_t smc64_fn; + int r; + + r = __set_smccc_filter(vm, ARM_SMCCC_ARCH_WORKAROUND_1, + 1, KVM_SMCCC_FILTER_DENY); + TEST_ASSERT(r < 0 && errno == EEXIST, + "Attempt to filter reserved range should return EEXIST"); + + smc64_fn = ARM_SMCCC_CALL_VAL(ARM_SMCCC_FAST_CALL, ARM_SMCCC_SMC_64, + 0, 0); + + r = __set_smccc_filter(vm, smc64_fn, 1, KVM_SMCCC_FILTER_DENY); + TEST_ASSERT(r < 0 && errno == EEXIST, + "Attempt to filter reserved range should return EEXIST"); + + kvm_vm_free(vm); +} + +static void test_invalid_nr_functions(void) +{ + struct kvm_vcpu *vcpu; + struct kvm_vm *vm = setup_vm(&vcpu); + int r; + + r = __set_smccc_filter(vm, PSCI_0_2_FN64_CPU_ON, 0, KVM_SMCCC_FILTER_DENY); + TEST_ASSERT(r < 0 && errno == EINVAL, + "Attempt to filter 0 functions should return EINVAL"); + + kvm_vm_free(vm); +} + +static void test_overflow_nr_functions(void) +{ + struct kvm_vcpu *vcpu; + struct kvm_vm *vm = setup_vm(&vcpu); + int r; + + r = __set_smccc_filter(vm, ~0, ~0, KVM_SMCCC_FILTER_DENY); + TEST_ASSERT(r < 0 && errno == EINVAL, + "Attempt to overflow filter range should return EINVAL"); + + kvm_vm_free(vm); +} + +static void test_reserved_action(void) +{ + struct kvm_vcpu *vcpu; + struct kvm_vm *vm = setup_vm(&vcpu); + int r; + + r = __set_smccc_filter(vm, PSCI_0_2_FN64_CPU_ON, 1, -1); + TEST_ASSERT(r < 0 && errno == EINVAL, + "Attempt to use reserved filter action should return EINVAL"); + + kvm_vm_free(vm); +} + + +/* Test that overlapping configurations of the SMCCC filter are rejected */ +static void test_filter_overlap(void) +{ + struct kvm_vcpu *vcpu; + struct kvm_vm *vm = setup_vm(&vcpu); + int r; + + set_smccc_filter(vm, PSCI_0_2_FN64_CPU_ON, 1, KVM_SMCCC_FILTER_DENY); + + r = __set_smccc_filter(vm, PSCI_0_2_FN64_CPU_ON, 1, KVM_SMCCC_FILTER_DENY); + TEST_ASSERT(r < 0 && errno == EEXIST, + "Attempt to filter already configured range should return EEXIST"); + + kvm_vm_free(vm); +} + +static void expect_call_denied(struct kvm_vcpu *vcpu) +{ + struct ucall uc; + + if (get_ucall(vcpu, &uc) != UCALL_SYNC) + TEST_FAIL("Unexpected ucall: %lu\n", uc.cmd); + + TEST_ASSERT(uc.args[1] == SMCCC_RET_NOT_SUPPORTED, + "Unexpected SMCCC return code: %lu", uc.args[1]); +} + +/* Denied SMCCC calls have a return code of SMCCC_RET_NOT_SUPPORTED */ +static void test_filter_denied(void) +{ + enum smccc_conduit conduit; + struct kvm_vcpu *vcpu; + struct kvm_vm *vm; + + for_each_conduit(conduit) { + vm = setup_vm(&vcpu); + + set_smccc_filter(vm, PSCI_0_2_FN_PSCI_VERSION, 1, KVM_SMCCC_FILTER_DENY); + vcpu_args_set(vcpu, 2, PSCI_0_2_FN_PSCI_VERSION, conduit); + + vcpu_run(vcpu); + expect_call_denied(vcpu); + + kvm_vm_free(vm); + } +} + +static void expect_call_fwd_to_user(struct kvm_vcpu *vcpu, uint32_t func_id, + enum smccc_conduit conduit) +{ + struct kvm_run *run = vcpu->run; + + TEST_ASSERT(run->exit_reason == KVM_EXIT_HYPERCALL, + "Unexpected exit reason: %u", run->exit_reason); + TEST_ASSERT(run->hypercall.nr == func_id, + "Unexpected SMCCC function: %llu", run->hypercall.nr); + + if (conduit == SMC_INSN) + TEST_ASSERT(run->hypercall.flags & KVM_HYPERCALL_EXIT_SMC, + "KVM_HYPERCALL_EXIT_SMC is not set"); + else + TEST_ASSERT(!(run->hypercall.flags & KVM_HYPERCALL_EXIT_SMC), + "KVM_HYPERCALL_EXIT_SMC is set"); +} + +/* SMCCC calls forwarded to userspace cause KVM_EXIT_HYPERCALL exits */ +static void test_filter_fwd_to_user(void) +{ + enum smccc_conduit conduit; + struct kvm_vcpu *vcpu; + struct kvm_vm *vm; + + for_each_conduit(conduit) { + vm = setup_vm(&vcpu); + + set_smccc_filter(vm, PSCI_0_2_FN_PSCI_VERSION, 1, KVM_SMCCC_FILTER_FWD_TO_USER); + vcpu_args_set(vcpu, 2, PSCI_0_2_FN_PSCI_VERSION, conduit); + + vcpu_run(vcpu); + expect_call_fwd_to_user(vcpu, PSCI_0_2_FN_PSCI_VERSION, conduit); + + kvm_vm_free(vm); + } +} + +static bool kvm_supports_smccc_filter(void) +{ + struct kvm_vm *vm = vm_create_barebones(); + int r; + + r = __kvm_has_device_attr(vm->fd, KVM_ARM_VM_SMCCC_CTRL, KVM_ARM_VM_SMCCC_FILTER); + + kvm_vm_free(vm); + return !r; +} + +int main(void) +{ + TEST_REQUIRE(kvm_supports_smccc_filter()); + + test_pad_must_be_zero(); + test_invalid_nr_functions(); + test_overflow_nr_functions(); + test_reserved_action(); + test_filter_reserved_range(); + test_filter_overlap(); + test_filter_denied(); + test_filter_fwd_to_user(); +} diff --git a/tools/testing/selftests/kvm/aarch64/vcpu_width_config.c b/tools/testing/selftests/kvm/aarch64/vcpu_width_config.c new file mode 100644 index 0000000000..80b74c6f15 --- /dev/null +++ b/tools/testing/selftests/kvm/aarch64/vcpu_width_config.c @@ -0,0 +1,121 @@ +// SPDX-License-Identifier: GPL-2.0-only +/* + * vcpu_width_config - Test KVM_ARM_VCPU_INIT() with KVM_ARM_VCPU_EL1_32BIT. + * + * Copyright (c) 2022 Google LLC. + * + * This is a test that ensures that non-mixed-width vCPUs (all 64bit vCPUs + * or all 32bit vcPUs) can be configured and mixed-width vCPUs cannot be + * configured. + */ + +#include "kvm_util.h" +#include "processor.h" +#include "test_util.h" + + +/* + * Add a vCPU, run KVM_ARM_VCPU_INIT with @init0, and then + * add another vCPU, and run KVM_ARM_VCPU_INIT with @init1. + */ +static int add_init_2vcpus(struct kvm_vcpu_init *init0, + struct kvm_vcpu_init *init1) +{ + struct kvm_vcpu *vcpu0, *vcpu1; + struct kvm_vm *vm; + int ret; + + vm = vm_create_barebones(); + + vcpu0 = __vm_vcpu_add(vm, 0); + ret = __vcpu_ioctl(vcpu0, KVM_ARM_VCPU_INIT, init0); + if (ret) + goto free_exit; + + vcpu1 = __vm_vcpu_add(vm, 1); + ret = __vcpu_ioctl(vcpu1, KVM_ARM_VCPU_INIT, init1); + +free_exit: + kvm_vm_free(vm); + return ret; +} + +/* + * Add two vCPUs, then run KVM_ARM_VCPU_INIT for one vCPU with @init0, + * and run KVM_ARM_VCPU_INIT for another vCPU with @init1. + */ +static int add_2vcpus_init_2vcpus(struct kvm_vcpu_init *init0, + struct kvm_vcpu_init *init1) +{ + struct kvm_vcpu *vcpu0, *vcpu1; + struct kvm_vm *vm; + int ret; + + vm = vm_create_barebones(); + + vcpu0 = __vm_vcpu_add(vm, 0); + vcpu1 = __vm_vcpu_add(vm, 1); + + ret = __vcpu_ioctl(vcpu0, KVM_ARM_VCPU_INIT, init0); + if (ret) + goto free_exit; + + ret = __vcpu_ioctl(vcpu1, KVM_ARM_VCPU_INIT, init1); + +free_exit: + kvm_vm_free(vm); + return ret; +} + +/* + * Tests that two 64bit vCPUs can be configured, two 32bit vCPUs can be + * configured, and two mixed-width vCPUs cannot be configured. + * Each of those three cases, configure vCPUs in two different orders. + * The one is running KVM_CREATE_VCPU for 2 vCPUs, and then running + * KVM_ARM_VCPU_INIT for them. + * The other is running KVM_CREATE_VCPU and KVM_ARM_VCPU_INIT for a vCPU, + * and then run those commands for another vCPU. + */ +int main(void) +{ + struct kvm_vcpu_init init0, init1; + struct kvm_vm *vm; + int ret; + + TEST_REQUIRE(kvm_has_cap(KVM_CAP_ARM_EL1_32BIT)); + + /* Get the preferred target type and copy that to init1 for later use */ + vm = vm_create_barebones(); + vm_ioctl(vm, KVM_ARM_PREFERRED_TARGET, &init0); + kvm_vm_free(vm); + init1 = init0; + + /* Test with 64bit vCPUs */ + ret = add_init_2vcpus(&init0, &init0); + TEST_ASSERT(ret == 0, + "Configuring 64bit EL1 vCPUs failed unexpectedly"); + ret = add_2vcpus_init_2vcpus(&init0, &init0); + TEST_ASSERT(ret == 0, + "Configuring 64bit EL1 vCPUs failed unexpectedly"); + + /* Test with 32bit vCPUs */ + init0.features[0] = (1 << KVM_ARM_VCPU_EL1_32BIT); + ret = add_init_2vcpus(&init0, &init0); + TEST_ASSERT(ret == 0, + "Configuring 32bit EL1 vCPUs failed unexpectedly"); + ret = add_2vcpus_init_2vcpus(&init0, &init0); + TEST_ASSERT(ret == 0, + "Configuring 32bit EL1 vCPUs failed unexpectedly"); + + /* Test with mixed-width vCPUs */ + init0.features[0] = 0; + init1.features[0] = (1 << KVM_ARM_VCPU_EL1_32BIT); + ret = add_init_2vcpus(&init0, &init1); + TEST_ASSERT(ret != 0, + "Configuring mixed-width vCPUs worked unexpectedly"); + ret = add_2vcpus_init_2vcpus(&init0, &init1); + TEST_ASSERT(ret != 0, + "Configuring mixed-width vCPUs worked unexpectedly"); + + return 0; +} diff --git a/tools/testing/selftests/kvm/aarch64/vgic_init.c b/tools/testing/selftests/kvm/aarch64/vgic_init.c new file mode 100644 index 0000000000..eef816b809 --- /dev/null +++ b/tools/testing/selftests/kvm/aarch64/vgic_init.c @@ -0,0 +1,716 @@ +// SPDX-License-Identifier: GPL-2.0 +/* + * vgic init sequence tests + * + * Copyright (C) 2020, Red Hat, Inc. + */ +#define _GNU_SOURCE +#include <linux/kernel.h> +#include <sys/syscall.h> +#include <asm/kvm.h> +#include <asm/kvm_para.h> + +#include "test_util.h" +#include "kvm_util.h" +#include "processor.h" +#include "vgic.h" + +#define NR_VCPUS 4 + +#define REG_OFFSET(vcpu, offset) (((uint64_t)vcpu << 32) | offset) + +#define GICR_TYPER 0x8 + +#define VGIC_DEV_IS_V2(_d) ((_d) == KVM_DEV_TYPE_ARM_VGIC_V2) +#define VGIC_DEV_IS_V3(_d) ((_d) == KVM_DEV_TYPE_ARM_VGIC_V3) + +struct vm_gic { + struct kvm_vm *vm; + int gic_fd; + uint32_t gic_dev_type; +}; + +static uint64_t max_phys_size; + +/* + * Helpers to access a redistributor register and verify the ioctl() failed or + * succeeded as expected, and provided the correct value on success. + */ +static void v3_redist_reg_get_errno(int gicv3_fd, int vcpu, int offset, + int want, const char *msg) +{ + uint32_t ignored_val; + int ret = __kvm_device_attr_get(gicv3_fd, KVM_DEV_ARM_VGIC_GRP_REDIST_REGS, + REG_OFFSET(vcpu, offset), &ignored_val); + + TEST_ASSERT(ret && errno == want, "%s; want errno = %d", msg, want); +} + +static void v3_redist_reg_get(int gicv3_fd, int vcpu, int offset, uint32_t want, + const char *msg) +{ + uint32_t val; + + kvm_device_attr_get(gicv3_fd, KVM_DEV_ARM_VGIC_GRP_REDIST_REGS, + REG_OFFSET(vcpu, offset), &val); + TEST_ASSERT(val == want, "%s; want '0x%x', got '0x%x'", msg, want, val); +} + +/* dummy guest code */ +static void guest_code(void) +{ + GUEST_SYNC(0); + GUEST_SYNC(1); + GUEST_SYNC(2); + GUEST_DONE(); +} + +/* we don't want to assert on run execution, hence that helper */ +static int run_vcpu(struct kvm_vcpu *vcpu) +{ + return __vcpu_run(vcpu) ? -errno : 0; +} + +static struct vm_gic vm_gic_create_with_vcpus(uint32_t gic_dev_type, + uint32_t nr_vcpus, + struct kvm_vcpu *vcpus[]) +{ + struct vm_gic v; + + v.gic_dev_type = gic_dev_type; + v.vm = vm_create_with_vcpus(nr_vcpus, guest_code, vcpus); + v.gic_fd = kvm_create_device(v.vm, gic_dev_type); + + return v; +} + +static void vm_gic_destroy(struct vm_gic *v) +{ + close(v->gic_fd); + kvm_vm_free(v->vm); +} + +struct vgic_region_attr { + uint64_t attr; + uint64_t size; + uint64_t alignment; +}; + +struct vgic_region_attr gic_v3_dist_region = { + .attr = KVM_VGIC_V3_ADDR_TYPE_DIST, + .size = 0x10000, + .alignment = 0x10000, +}; + +struct vgic_region_attr gic_v3_redist_region = { + .attr = KVM_VGIC_V3_ADDR_TYPE_REDIST, + .size = NR_VCPUS * 0x20000, + .alignment = 0x10000, +}; + +struct vgic_region_attr gic_v2_dist_region = { + .attr = KVM_VGIC_V2_ADDR_TYPE_DIST, + .size = 0x1000, + .alignment = 0x1000, +}; + +struct vgic_region_attr gic_v2_cpu_region = { + .attr = KVM_VGIC_V2_ADDR_TYPE_CPU, + .size = 0x2000, + .alignment = 0x1000, +}; + +/** + * Helper routine that performs KVM device tests in general. Eventually the + * ARM_VGIC (GICv2 or GICv3) device gets created with an overlapping + * DIST/REDIST (or DIST/CPUIF for GICv2). Assumption is 4 vcpus are going to be + * used hence the overlap. In the case of GICv3, A RDIST region is set at @0x0 + * and a DIST region is set @0x70000. The GICv2 case sets a CPUIF @0x0 and a + * DIST region @0x1000. + */ +static void subtest_dist_rdist(struct vm_gic *v) +{ + int ret; + uint64_t addr; + struct vgic_region_attr rdist; /* CPU interface in GICv2*/ + struct vgic_region_attr dist; + + rdist = VGIC_DEV_IS_V3(v->gic_dev_type) ? gic_v3_redist_region + : gic_v2_cpu_region; + dist = VGIC_DEV_IS_V3(v->gic_dev_type) ? gic_v3_dist_region + : gic_v2_dist_region; + + /* Check existing group/attributes */ + kvm_has_device_attr(v->gic_fd, KVM_DEV_ARM_VGIC_GRP_ADDR, dist.attr); + + kvm_has_device_attr(v->gic_fd, KVM_DEV_ARM_VGIC_GRP_ADDR, rdist.attr); + + /* check non existing attribute */ + ret = __kvm_has_device_attr(v->gic_fd, KVM_DEV_ARM_VGIC_GRP_ADDR, -1); + TEST_ASSERT(ret && errno == ENXIO, "attribute not supported"); + + /* misaligned DIST and REDIST address settings */ + addr = dist.alignment / 0x10; + ret = __kvm_device_attr_set(v->gic_fd, KVM_DEV_ARM_VGIC_GRP_ADDR, + dist.attr, &addr); + TEST_ASSERT(ret && errno == EINVAL, "GIC dist base not aligned"); + + addr = rdist.alignment / 0x10; + ret = __kvm_device_attr_set(v->gic_fd, KVM_DEV_ARM_VGIC_GRP_ADDR, + rdist.attr, &addr); + TEST_ASSERT(ret && errno == EINVAL, "GIC redist/cpu base not aligned"); + + /* out of range address */ + addr = max_phys_size; + ret = __kvm_device_attr_set(v->gic_fd, KVM_DEV_ARM_VGIC_GRP_ADDR, + dist.attr, &addr); + TEST_ASSERT(ret && errno == E2BIG, "dist address beyond IPA limit"); + + ret = __kvm_device_attr_set(v->gic_fd, KVM_DEV_ARM_VGIC_GRP_ADDR, + rdist.attr, &addr); + TEST_ASSERT(ret && errno == E2BIG, "redist address beyond IPA limit"); + + /* Space for half a rdist (a rdist is: 2 * rdist.alignment). */ + addr = max_phys_size - dist.alignment; + ret = __kvm_device_attr_set(v->gic_fd, KVM_DEV_ARM_VGIC_GRP_ADDR, + rdist.attr, &addr); + TEST_ASSERT(ret && errno == E2BIG, + "half of the redist is beyond IPA limit"); + + /* set REDIST base address @0x0*/ + addr = 0x00000; + kvm_device_attr_set(v->gic_fd, KVM_DEV_ARM_VGIC_GRP_ADDR, + rdist.attr, &addr); + + /* Attempt to create a second legacy redistributor region */ + addr = 0xE0000; + ret = __kvm_device_attr_set(v->gic_fd, KVM_DEV_ARM_VGIC_GRP_ADDR, + rdist.attr, &addr); + TEST_ASSERT(ret && errno == EEXIST, "GIC redist base set again"); + + ret = __kvm_has_device_attr(v->gic_fd, KVM_DEV_ARM_VGIC_GRP_ADDR, + KVM_VGIC_V3_ADDR_TYPE_REDIST); + if (!ret) { + /* Attempt to mix legacy and new redistributor regions */ + addr = REDIST_REGION_ATTR_ADDR(NR_VCPUS, 0x100000, 0, 0); + ret = __kvm_device_attr_set(v->gic_fd, KVM_DEV_ARM_VGIC_GRP_ADDR, + KVM_VGIC_V3_ADDR_TYPE_REDIST_REGION, &addr); + TEST_ASSERT(ret && errno == EINVAL, + "attempt to mix GICv3 REDIST and REDIST_REGION"); + } + + /* + * Set overlapping DIST / REDIST, cannot be detected here. Will be detected + * on first vcpu run instead. + */ + addr = rdist.size - rdist.alignment; + kvm_device_attr_set(v->gic_fd, KVM_DEV_ARM_VGIC_GRP_ADDR, + dist.attr, &addr); +} + +/* Test the new REDIST region API */ +static void subtest_v3_redist_regions(struct vm_gic *v) +{ + uint64_t addr, expected_addr; + int ret; + + ret = __kvm_has_device_attr(v->gic_fd, KVM_DEV_ARM_VGIC_GRP_ADDR, + KVM_VGIC_V3_ADDR_TYPE_REDIST); + TEST_ASSERT(!ret, "Multiple redist regions advertised"); + + addr = REDIST_REGION_ATTR_ADDR(NR_VCPUS, 0x100000, 2, 0); + ret = __kvm_device_attr_set(v->gic_fd, KVM_DEV_ARM_VGIC_GRP_ADDR, + KVM_VGIC_V3_ADDR_TYPE_REDIST_REGION, &addr); + TEST_ASSERT(ret && errno == EINVAL, "redist region attr value with flags != 0"); + + addr = REDIST_REGION_ATTR_ADDR(0, 0x100000, 0, 0); + ret = __kvm_device_attr_set(v->gic_fd, KVM_DEV_ARM_VGIC_GRP_ADDR, + KVM_VGIC_V3_ADDR_TYPE_REDIST_REGION, &addr); + TEST_ASSERT(ret && errno == EINVAL, "redist region attr value with count== 0"); + + addr = REDIST_REGION_ATTR_ADDR(2, 0x200000, 0, 1); + ret = __kvm_device_attr_set(v->gic_fd, KVM_DEV_ARM_VGIC_GRP_ADDR, + KVM_VGIC_V3_ADDR_TYPE_REDIST_REGION, &addr); + TEST_ASSERT(ret && errno == EINVAL, + "attempt to register the first rdist region with index != 0"); + + addr = REDIST_REGION_ATTR_ADDR(2, 0x201000, 0, 1); + ret = __kvm_device_attr_set(v->gic_fd, KVM_DEV_ARM_VGIC_GRP_ADDR, + KVM_VGIC_V3_ADDR_TYPE_REDIST_REGION, &addr); + TEST_ASSERT(ret && errno == EINVAL, "rdist region with misaligned address"); + + addr = REDIST_REGION_ATTR_ADDR(2, 0x200000, 0, 0); + kvm_device_attr_set(v->gic_fd, KVM_DEV_ARM_VGIC_GRP_ADDR, + KVM_VGIC_V3_ADDR_TYPE_REDIST_REGION, &addr); + + addr = REDIST_REGION_ATTR_ADDR(2, 0x200000, 0, 1); + ret = __kvm_device_attr_set(v->gic_fd, KVM_DEV_ARM_VGIC_GRP_ADDR, + KVM_VGIC_V3_ADDR_TYPE_REDIST_REGION, &addr); + TEST_ASSERT(ret && errno == EINVAL, "register an rdist region with already used index"); + + addr = REDIST_REGION_ATTR_ADDR(1, 0x210000, 0, 2); + ret = __kvm_device_attr_set(v->gic_fd, KVM_DEV_ARM_VGIC_GRP_ADDR, + KVM_VGIC_V3_ADDR_TYPE_REDIST_REGION, &addr); + TEST_ASSERT(ret && errno == EINVAL, + "register an rdist region overlapping with another one"); + + addr = REDIST_REGION_ATTR_ADDR(1, 0x240000, 0, 2); + ret = __kvm_device_attr_set(v->gic_fd, KVM_DEV_ARM_VGIC_GRP_ADDR, + KVM_VGIC_V3_ADDR_TYPE_REDIST_REGION, &addr); + TEST_ASSERT(ret && errno == EINVAL, "register redist region with index not +1"); + + addr = REDIST_REGION_ATTR_ADDR(1, 0x240000, 0, 1); + kvm_device_attr_set(v->gic_fd, KVM_DEV_ARM_VGIC_GRP_ADDR, + KVM_VGIC_V3_ADDR_TYPE_REDIST_REGION, &addr); + + addr = REDIST_REGION_ATTR_ADDR(1, max_phys_size, 0, 2); + ret = __kvm_device_attr_set(v->gic_fd, KVM_DEV_ARM_VGIC_GRP_ADDR, + KVM_VGIC_V3_ADDR_TYPE_REDIST_REGION, &addr); + TEST_ASSERT(ret && errno == E2BIG, + "register redist region with base address beyond IPA range"); + + /* The last redist is above the pa range. */ + addr = REDIST_REGION_ATTR_ADDR(2, max_phys_size - 0x30000, 0, 2); + ret = __kvm_device_attr_set(v->gic_fd, KVM_DEV_ARM_VGIC_GRP_ADDR, + KVM_VGIC_V3_ADDR_TYPE_REDIST_REGION, &addr); + TEST_ASSERT(ret && errno == E2BIG, + "register redist region with top address beyond IPA range"); + + addr = 0x260000; + ret = __kvm_device_attr_set(v->gic_fd, KVM_DEV_ARM_VGIC_GRP_ADDR, + KVM_VGIC_V3_ADDR_TYPE_REDIST, &addr); + TEST_ASSERT(ret && errno == EINVAL, + "Mix KVM_VGIC_V3_ADDR_TYPE_REDIST and REDIST_REGION"); + + /* + * Now there are 2 redist regions: + * region 0 @ 0x200000 2 redists + * region 1 @ 0x240000 1 redist + * Attempt to read their characteristics + */ + + addr = REDIST_REGION_ATTR_ADDR(0, 0, 0, 0); + expected_addr = REDIST_REGION_ATTR_ADDR(2, 0x200000, 0, 0); + ret = __kvm_device_attr_get(v->gic_fd, KVM_DEV_ARM_VGIC_GRP_ADDR, + KVM_VGIC_V3_ADDR_TYPE_REDIST_REGION, &addr); + TEST_ASSERT(!ret && addr == expected_addr, "read characteristics of region #0"); + + addr = REDIST_REGION_ATTR_ADDR(0, 0, 0, 1); + expected_addr = REDIST_REGION_ATTR_ADDR(1, 0x240000, 0, 1); + ret = __kvm_device_attr_get(v->gic_fd, KVM_DEV_ARM_VGIC_GRP_ADDR, + KVM_VGIC_V3_ADDR_TYPE_REDIST_REGION, &addr); + TEST_ASSERT(!ret && addr == expected_addr, "read characteristics of region #1"); + + addr = REDIST_REGION_ATTR_ADDR(0, 0, 0, 2); + ret = __kvm_device_attr_get(v->gic_fd, KVM_DEV_ARM_VGIC_GRP_ADDR, + KVM_VGIC_V3_ADDR_TYPE_REDIST_REGION, &addr); + TEST_ASSERT(ret && errno == ENOENT, "read characteristics of non existing region"); + + addr = 0x260000; + kvm_device_attr_set(v->gic_fd, KVM_DEV_ARM_VGIC_GRP_ADDR, + KVM_VGIC_V3_ADDR_TYPE_DIST, &addr); + + addr = REDIST_REGION_ATTR_ADDR(1, 0x260000, 0, 2); + ret = __kvm_device_attr_set(v->gic_fd, KVM_DEV_ARM_VGIC_GRP_ADDR, + KVM_VGIC_V3_ADDR_TYPE_REDIST_REGION, &addr); + TEST_ASSERT(ret && errno == EINVAL, "register redist region colliding with dist"); +} + +/* + * VGIC KVM device is created and initialized before the secondary CPUs + * get created + */ +static void test_vgic_then_vcpus(uint32_t gic_dev_type) +{ + struct kvm_vcpu *vcpus[NR_VCPUS]; + struct vm_gic v; + int ret, i; + + v = vm_gic_create_with_vcpus(gic_dev_type, 1, vcpus); + + subtest_dist_rdist(&v); + + /* Add the rest of the VCPUs */ + for (i = 1; i < NR_VCPUS; ++i) + vcpus[i] = vm_vcpu_add(v.vm, i, guest_code); + + ret = run_vcpu(vcpus[3]); + TEST_ASSERT(ret == -EINVAL, "dist/rdist overlap detected on 1st vcpu run"); + + vm_gic_destroy(&v); +} + +/* All the VCPUs are created before the VGIC KVM device gets initialized */ +static void test_vcpus_then_vgic(uint32_t gic_dev_type) +{ + struct kvm_vcpu *vcpus[NR_VCPUS]; + struct vm_gic v; + int ret; + + v = vm_gic_create_with_vcpus(gic_dev_type, NR_VCPUS, vcpus); + + subtest_dist_rdist(&v); + + ret = run_vcpu(vcpus[3]); + TEST_ASSERT(ret == -EINVAL, "dist/rdist overlap detected on 1st vcpu run"); + + vm_gic_destroy(&v); +} + +static void test_v3_new_redist_regions(void) +{ + struct kvm_vcpu *vcpus[NR_VCPUS]; + void *dummy = NULL; + struct vm_gic v; + uint64_t addr; + int ret; + + v = vm_gic_create_with_vcpus(KVM_DEV_TYPE_ARM_VGIC_V3, NR_VCPUS, vcpus); + subtest_v3_redist_regions(&v); + kvm_device_attr_set(v.gic_fd, KVM_DEV_ARM_VGIC_GRP_CTRL, + KVM_DEV_ARM_VGIC_CTRL_INIT, NULL); + + ret = run_vcpu(vcpus[3]); + TEST_ASSERT(ret == -ENXIO, "running without sufficient number of rdists"); + vm_gic_destroy(&v); + + /* step2 */ + + v = vm_gic_create_with_vcpus(KVM_DEV_TYPE_ARM_VGIC_V3, NR_VCPUS, vcpus); + subtest_v3_redist_regions(&v); + + addr = REDIST_REGION_ATTR_ADDR(1, 0x280000, 0, 2); + kvm_device_attr_set(v.gic_fd, KVM_DEV_ARM_VGIC_GRP_ADDR, + KVM_VGIC_V3_ADDR_TYPE_REDIST_REGION, &addr); + + ret = run_vcpu(vcpus[3]); + TEST_ASSERT(ret == -EBUSY, "running without vgic explicit init"); + + vm_gic_destroy(&v); + + /* step 3 */ + + v = vm_gic_create_with_vcpus(KVM_DEV_TYPE_ARM_VGIC_V3, NR_VCPUS, vcpus); + subtest_v3_redist_regions(&v); + + ret = __kvm_device_attr_set(v.gic_fd, KVM_DEV_ARM_VGIC_GRP_ADDR, + KVM_VGIC_V3_ADDR_TYPE_REDIST_REGION, dummy); + TEST_ASSERT(ret && errno == EFAULT, + "register a third region allowing to cover the 4 vcpus"); + + addr = REDIST_REGION_ATTR_ADDR(1, 0x280000, 0, 2); + kvm_device_attr_set(v.gic_fd, KVM_DEV_ARM_VGIC_GRP_ADDR, + KVM_VGIC_V3_ADDR_TYPE_REDIST_REGION, &addr); + + kvm_device_attr_set(v.gic_fd, KVM_DEV_ARM_VGIC_GRP_CTRL, + KVM_DEV_ARM_VGIC_CTRL_INIT, NULL); + + ret = run_vcpu(vcpus[3]); + TEST_ASSERT(!ret, "vcpu run"); + + vm_gic_destroy(&v); +} + +static void test_v3_typer_accesses(void) +{ + struct vm_gic v; + uint64_t addr; + int ret, i; + + v.vm = vm_create(NR_VCPUS); + (void)vm_vcpu_add(v.vm, 0, guest_code); + + v.gic_fd = kvm_create_device(v.vm, KVM_DEV_TYPE_ARM_VGIC_V3); + + (void)vm_vcpu_add(v.vm, 3, guest_code); + + v3_redist_reg_get_errno(v.gic_fd, 1, GICR_TYPER, EINVAL, + "attempting to read GICR_TYPER of non created vcpu"); + + (void)vm_vcpu_add(v.vm, 1, guest_code); + + v3_redist_reg_get_errno(v.gic_fd, 1, GICR_TYPER, EBUSY, + "read GICR_TYPER before GIC initialized"); + + (void)vm_vcpu_add(v.vm, 2, guest_code); + + kvm_device_attr_set(v.gic_fd, KVM_DEV_ARM_VGIC_GRP_CTRL, + KVM_DEV_ARM_VGIC_CTRL_INIT, NULL); + + for (i = 0; i < NR_VCPUS ; i++) { + v3_redist_reg_get(v.gic_fd, i, GICR_TYPER, i * 0x100, + "read GICR_TYPER before rdist region setting"); + } + + addr = REDIST_REGION_ATTR_ADDR(2, 0x200000, 0, 0); + kvm_device_attr_set(v.gic_fd, KVM_DEV_ARM_VGIC_GRP_ADDR, + KVM_VGIC_V3_ADDR_TYPE_REDIST_REGION, &addr); + + /* The 2 first rdists should be put there (vcpu 0 and 3) */ + v3_redist_reg_get(v.gic_fd, 0, GICR_TYPER, 0x0, "read typer of rdist #0"); + v3_redist_reg_get(v.gic_fd, 3, GICR_TYPER, 0x310, "read typer of rdist #1"); + + addr = REDIST_REGION_ATTR_ADDR(10, 0x100000, 0, 1); + ret = __kvm_device_attr_set(v.gic_fd, KVM_DEV_ARM_VGIC_GRP_ADDR, + KVM_VGIC_V3_ADDR_TYPE_REDIST_REGION, &addr); + TEST_ASSERT(ret && errno == EINVAL, "collision with previous rdist region"); + + v3_redist_reg_get(v.gic_fd, 1, GICR_TYPER, 0x100, + "no redist region attached to vcpu #1 yet, last cannot be returned"); + v3_redist_reg_get(v.gic_fd, 2, GICR_TYPER, 0x200, + "no redist region attached to vcpu #2, last cannot be returned"); + + addr = REDIST_REGION_ATTR_ADDR(10, 0x20000, 0, 1); + kvm_device_attr_set(v.gic_fd, KVM_DEV_ARM_VGIC_GRP_ADDR, + KVM_VGIC_V3_ADDR_TYPE_REDIST_REGION, &addr); + + v3_redist_reg_get(v.gic_fd, 1, GICR_TYPER, 0x100, "read typer of rdist #1"); + v3_redist_reg_get(v.gic_fd, 2, GICR_TYPER, 0x210, + "read typer of rdist #1, last properly returned"); + + vm_gic_destroy(&v); +} + +static struct vm_gic vm_gic_v3_create_with_vcpuids(int nr_vcpus, + uint32_t vcpuids[]) +{ + struct vm_gic v; + int i; + + v.vm = vm_create(nr_vcpus); + for (i = 0; i < nr_vcpus; i++) + vm_vcpu_add(v.vm, vcpuids[i], guest_code); + + v.gic_fd = kvm_create_device(v.vm, KVM_DEV_TYPE_ARM_VGIC_V3); + + return v; +} + +/** + * Test GICR_TYPER last bit with new redist regions + * rdist regions #1 and #2 are contiguous + * rdist region #0 @0x100000 2 rdist capacity + * rdists: 0, 3 (Last) + * rdist region #1 @0x240000 2 rdist capacity + * rdists: 5, 4 (Last) + * rdist region #2 @0x200000 2 rdist capacity + * rdists: 1, 2 + */ +static void test_v3_last_bit_redist_regions(void) +{ + uint32_t vcpuids[] = { 0, 3, 5, 4, 1, 2 }; + struct vm_gic v; + uint64_t addr; + + v = vm_gic_v3_create_with_vcpuids(ARRAY_SIZE(vcpuids), vcpuids); + + kvm_device_attr_set(v.gic_fd, KVM_DEV_ARM_VGIC_GRP_CTRL, + KVM_DEV_ARM_VGIC_CTRL_INIT, NULL); + + addr = REDIST_REGION_ATTR_ADDR(2, 0x100000, 0, 0); + kvm_device_attr_set(v.gic_fd, KVM_DEV_ARM_VGIC_GRP_ADDR, + KVM_VGIC_V3_ADDR_TYPE_REDIST_REGION, &addr); + + addr = REDIST_REGION_ATTR_ADDR(2, 0x240000, 0, 1); + kvm_device_attr_set(v.gic_fd, KVM_DEV_ARM_VGIC_GRP_ADDR, + KVM_VGIC_V3_ADDR_TYPE_REDIST_REGION, &addr); + + addr = REDIST_REGION_ATTR_ADDR(2, 0x200000, 0, 2); + kvm_device_attr_set(v.gic_fd, KVM_DEV_ARM_VGIC_GRP_ADDR, + KVM_VGIC_V3_ADDR_TYPE_REDIST_REGION, &addr); + + v3_redist_reg_get(v.gic_fd, 0, GICR_TYPER, 0x000, "read typer of rdist #0"); + v3_redist_reg_get(v.gic_fd, 1, GICR_TYPER, 0x100, "read typer of rdist #1"); + v3_redist_reg_get(v.gic_fd, 2, GICR_TYPER, 0x200, "read typer of rdist #2"); + v3_redist_reg_get(v.gic_fd, 3, GICR_TYPER, 0x310, "read typer of rdist #3"); + v3_redist_reg_get(v.gic_fd, 5, GICR_TYPER, 0x500, "read typer of rdist #5"); + v3_redist_reg_get(v.gic_fd, 4, GICR_TYPER, 0x410, "read typer of rdist #4"); + + vm_gic_destroy(&v); +} + +/* Test last bit with legacy region */ +static void test_v3_last_bit_single_rdist(void) +{ + uint32_t vcpuids[] = { 0, 3, 5, 4, 1, 2 }; + struct vm_gic v; + uint64_t addr; + + v = vm_gic_v3_create_with_vcpuids(ARRAY_SIZE(vcpuids), vcpuids); + + kvm_device_attr_set(v.gic_fd, KVM_DEV_ARM_VGIC_GRP_CTRL, + KVM_DEV_ARM_VGIC_CTRL_INIT, NULL); + + addr = 0x10000; + kvm_device_attr_set(v.gic_fd, KVM_DEV_ARM_VGIC_GRP_ADDR, + KVM_VGIC_V3_ADDR_TYPE_REDIST, &addr); + + v3_redist_reg_get(v.gic_fd, 0, GICR_TYPER, 0x000, "read typer of rdist #0"); + v3_redist_reg_get(v.gic_fd, 3, GICR_TYPER, 0x300, "read typer of rdist #1"); + v3_redist_reg_get(v.gic_fd, 5, GICR_TYPER, 0x500, "read typer of rdist #2"); + v3_redist_reg_get(v.gic_fd, 1, GICR_TYPER, 0x100, "read typer of rdist #3"); + v3_redist_reg_get(v.gic_fd, 2, GICR_TYPER, 0x210, "read typer of rdist #3"); + + vm_gic_destroy(&v); +} + +/* Uses the legacy REDIST region API. */ +static void test_v3_redist_ipa_range_check_at_vcpu_run(void) +{ + struct kvm_vcpu *vcpus[NR_VCPUS]; + struct vm_gic v; + int ret, i; + uint64_t addr; + + v = vm_gic_create_with_vcpus(KVM_DEV_TYPE_ARM_VGIC_V3, 1, vcpus); + + /* Set space for 3 redists, we have 1 vcpu, so this succeeds. */ + addr = max_phys_size - (3 * 2 * 0x10000); + kvm_device_attr_set(v.gic_fd, KVM_DEV_ARM_VGIC_GRP_ADDR, + KVM_VGIC_V3_ADDR_TYPE_REDIST, &addr); + + addr = 0x00000; + kvm_device_attr_set(v.gic_fd, KVM_DEV_ARM_VGIC_GRP_ADDR, + KVM_VGIC_V3_ADDR_TYPE_DIST, &addr); + + /* Add the rest of the VCPUs */ + for (i = 1; i < NR_VCPUS; ++i) + vcpus[i] = vm_vcpu_add(v.vm, i, guest_code); + + kvm_device_attr_set(v.gic_fd, KVM_DEV_ARM_VGIC_GRP_CTRL, + KVM_DEV_ARM_VGIC_CTRL_INIT, NULL); + + /* Attempt to run a vcpu without enough redist space. */ + ret = run_vcpu(vcpus[2]); + TEST_ASSERT(ret && errno == EINVAL, + "redist base+size above PA range detected on 1st vcpu run"); + + vm_gic_destroy(&v); +} + +static void test_v3_its_region(void) +{ + struct kvm_vcpu *vcpus[NR_VCPUS]; + struct vm_gic v; + uint64_t addr; + int its_fd, ret; + + v = vm_gic_create_with_vcpus(KVM_DEV_TYPE_ARM_VGIC_V3, NR_VCPUS, vcpus); + its_fd = kvm_create_device(v.vm, KVM_DEV_TYPE_ARM_VGIC_ITS); + + addr = 0x401000; + ret = __kvm_device_attr_set(its_fd, KVM_DEV_ARM_VGIC_GRP_ADDR, + KVM_VGIC_ITS_ADDR_TYPE, &addr); + TEST_ASSERT(ret && errno == EINVAL, + "ITS region with misaligned address"); + + addr = max_phys_size; + ret = __kvm_device_attr_set(its_fd, KVM_DEV_ARM_VGIC_GRP_ADDR, + KVM_VGIC_ITS_ADDR_TYPE, &addr); + TEST_ASSERT(ret && errno == E2BIG, + "register ITS region with base address beyond IPA range"); + + addr = max_phys_size - 0x10000; + ret = __kvm_device_attr_set(its_fd, KVM_DEV_ARM_VGIC_GRP_ADDR, + KVM_VGIC_ITS_ADDR_TYPE, &addr); + TEST_ASSERT(ret && errno == E2BIG, + "Half of ITS region is beyond IPA range"); + + /* This one succeeds setting the ITS base */ + addr = 0x400000; + kvm_device_attr_set(its_fd, KVM_DEV_ARM_VGIC_GRP_ADDR, + KVM_VGIC_ITS_ADDR_TYPE, &addr); + + addr = 0x300000; + ret = __kvm_device_attr_set(its_fd, KVM_DEV_ARM_VGIC_GRP_ADDR, + KVM_VGIC_ITS_ADDR_TYPE, &addr); + TEST_ASSERT(ret && errno == EEXIST, "ITS base set again"); + + close(its_fd); + vm_gic_destroy(&v); +} + +/* + * Returns 0 if it's possible to create GIC device of a given type (V2 or V3). + */ +int test_kvm_device(uint32_t gic_dev_type) +{ + struct kvm_vcpu *vcpus[NR_VCPUS]; + struct vm_gic v; + uint32_t other; + int ret; + + v.vm = vm_create_with_vcpus(NR_VCPUS, guest_code, vcpus); + + /* try to create a non existing KVM device */ + ret = __kvm_test_create_device(v.vm, 0); + TEST_ASSERT(ret && errno == ENODEV, "unsupported device"); + + /* trial mode */ + ret = __kvm_test_create_device(v.vm, gic_dev_type); + if (ret) + return ret; + v.gic_fd = kvm_create_device(v.vm, gic_dev_type); + + ret = __kvm_create_device(v.vm, gic_dev_type); + TEST_ASSERT(ret < 0 && errno == EEXIST, "create GIC device twice"); + + /* try to create the other gic_dev_type */ + other = VGIC_DEV_IS_V2(gic_dev_type) ? KVM_DEV_TYPE_ARM_VGIC_V3 + : KVM_DEV_TYPE_ARM_VGIC_V2; + + if (!__kvm_test_create_device(v.vm, other)) { + ret = __kvm_create_device(v.vm, other); + TEST_ASSERT(ret < 0 && (errno == EINVAL || errno == EEXIST), + "create GIC device while other version exists"); + } + + vm_gic_destroy(&v); + + return 0; +} + +void run_tests(uint32_t gic_dev_type) +{ + test_vcpus_then_vgic(gic_dev_type); + test_vgic_then_vcpus(gic_dev_type); + + if (VGIC_DEV_IS_V3(gic_dev_type)) { + test_v3_new_redist_regions(); + test_v3_typer_accesses(); + test_v3_last_bit_redist_regions(); + test_v3_last_bit_single_rdist(); + test_v3_redist_ipa_range_check_at_vcpu_run(); + test_v3_its_region(); + } +} + +int main(int ac, char **av) +{ + int ret; + int pa_bits; + int cnt_impl = 0; + + pa_bits = vm_guest_mode_params[VM_MODE_DEFAULT].pa_bits; + max_phys_size = 1ULL << pa_bits; + + ret = test_kvm_device(KVM_DEV_TYPE_ARM_VGIC_V3); + if (!ret) { + pr_info("Running GIC_v3 tests.\n"); + run_tests(KVM_DEV_TYPE_ARM_VGIC_V3); + cnt_impl++; + } + + ret = test_kvm_device(KVM_DEV_TYPE_ARM_VGIC_V2); + if (!ret) { + pr_info("Running GIC_v2 tests.\n"); + run_tests(KVM_DEV_TYPE_ARM_VGIC_V2); + cnt_impl++; + } + + if (!cnt_impl) { + print_skip("No GICv2 nor GICv3 support"); + exit(KSFT_SKIP); + } + return 0; +} diff --git a/tools/testing/selftests/kvm/aarch64/vgic_irq.c b/tools/testing/selftests/kvm/aarch64/vgic_irq.c new file mode 100644 index 0000000000..2e64b4856e --- /dev/null +++ b/tools/testing/selftests/kvm/aarch64/vgic_irq.c @@ -0,0 +1,855 @@ +// SPDX-License-Identifier: GPL-2.0 +/* + * vgic_irq.c - Test userspace injection of IRQs + * + * This test validates the injection of IRQs from userspace using various + * methods (e.g., KVM_IRQ_LINE) and modes (e.g., EOI). The guest "asks" the + * host to inject a specific intid via a GUEST_SYNC call, and then checks that + * it received it. + */ +#include <asm/kvm.h> +#include <asm/kvm_para.h> +#include <sys/eventfd.h> +#include <linux/sizes.h> + +#include "processor.h" +#include "test_util.h" +#include "kvm_util.h" +#include "gic.h" +#include "gic_v3.h" +#include "vgic.h" + +#define GICD_BASE_GPA 0x08000000ULL +#define GICR_BASE_GPA 0x080A0000ULL + +/* + * Stores the user specified args; it's passed to the guest and to every test + * function. + */ +struct test_args { + uint32_t nr_irqs; /* number of KVM supported IRQs. */ + bool eoi_split; /* 1 is eoir+dir, 0 is eoir only */ + bool level_sensitive; /* 1 is level, 0 is edge */ + int kvm_max_routes; /* output of KVM_CAP_IRQ_ROUTING */ + bool kvm_supports_irqfd; /* output of KVM_CAP_IRQFD */ +}; + +/* + * KVM implements 32 priority levels: + * 0x00 (highest priority) - 0xF8 (lowest priority), in steps of 8 + * + * Note that these macros will still be correct in the case that KVM implements + * more priority levels. Also note that 32 is the minimum for GICv3 and GICv2. + */ +#define KVM_NUM_PRIOS 32 +#define KVM_PRIO_SHIFT 3 /* steps of 8 = 1 << 3 */ +#define KVM_PRIO_STEPS (1 << KVM_PRIO_SHIFT) /* 8 */ +#define LOWEST_PRIO (KVM_NUM_PRIOS - 1) +#define CPU_PRIO_MASK (LOWEST_PRIO << KVM_PRIO_SHIFT) /* 0xf8 */ +#define IRQ_DEFAULT_PRIO (LOWEST_PRIO - 1) +#define IRQ_DEFAULT_PRIO_REG (IRQ_DEFAULT_PRIO << KVM_PRIO_SHIFT) /* 0xf0 */ + +static void *dist = (void *)GICD_BASE_GPA; +static void *redist = (void *)GICR_BASE_GPA; + +/* + * The kvm_inject_* utilities are used by the guest to ask the host to inject + * interrupts (e.g., using the KVM_IRQ_LINE ioctl). + */ + +typedef enum { + KVM_INJECT_EDGE_IRQ_LINE = 1, + KVM_SET_IRQ_LINE, + KVM_SET_IRQ_LINE_HIGH, + KVM_SET_LEVEL_INFO_HIGH, + KVM_INJECT_IRQFD, + KVM_WRITE_ISPENDR, + KVM_WRITE_ISACTIVER, +} kvm_inject_cmd; + +struct kvm_inject_args { + kvm_inject_cmd cmd; + uint32_t first_intid; + uint32_t num; + int level; + bool expect_failure; +}; + +/* Used on the guest side to perform the hypercall. */ +static void kvm_inject_call(kvm_inject_cmd cmd, uint32_t first_intid, + uint32_t num, int level, bool expect_failure); + +/* Used on the host side to get the hypercall info. */ +static void kvm_inject_get_call(struct kvm_vm *vm, struct ucall *uc, + struct kvm_inject_args *args); + +#define _KVM_INJECT_MULTI(cmd, intid, num, expect_failure) \ + kvm_inject_call(cmd, intid, num, -1 /* not used */, expect_failure) + +#define KVM_INJECT_MULTI(cmd, intid, num) \ + _KVM_INJECT_MULTI(cmd, intid, num, false) + +#define _KVM_INJECT(cmd, intid, expect_failure) \ + _KVM_INJECT_MULTI(cmd, intid, 1, expect_failure) + +#define KVM_INJECT(cmd, intid) \ + _KVM_INJECT_MULTI(cmd, intid, 1, false) + +#define KVM_ACTIVATE(cmd, intid) \ + kvm_inject_call(cmd, intid, 1, 1, false); + +struct kvm_inject_desc { + kvm_inject_cmd cmd; + /* can inject PPIs, PPIs, and/or SPIs. */ + bool sgi, ppi, spi; +}; + +static struct kvm_inject_desc inject_edge_fns[] = { + /* sgi ppi spi */ + { KVM_INJECT_EDGE_IRQ_LINE, false, false, true }, + { KVM_INJECT_IRQFD, false, false, true }, + { KVM_WRITE_ISPENDR, true, false, true }, + { 0, }, +}; + +static struct kvm_inject_desc inject_level_fns[] = { + /* sgi ppi spi */ + { KVM_SET_IRQ_LINE_HIGH, false, true, true }, + { KVM_SET_LEVEL_INFO_HIGH, false, true, true }, + { KVM_INJECT_IRQFD, false, false, true }, + { KVM_WRITE_ISPENDR, false, true, true }, + { 0, }, +}; + +static struct kvm_inject_desc set_active_fns[] = { + /* sgi ppi spi */ + { KVM_WRITE_ISACTIVER, true, true, true }, + { 0, }, +}; + +#define for_each_inject_fn(t, f) \ + for ((f) = (t); (f)->cmd; (f)++) + +#define for_each_supported_inject_fn(args, t, f) \ + for_each_inject_fn(t, f) \ + if ((args)->kvm_supports_irqfd || (f)->cmd != KVM_INJECT_IRQFD) + +#define for_each_supported_activate_fn(args, t, f) \ + for_each_supported_inject_fn((args), (t), (f)) + +/* Shared between the guest main thread and the IRQ handlers. */ +volatile uint64_t irq_handled; +volatile uint32_t irqnr_received[MAX_SPI + 1]; + +static void reset_stats(void) +{ + int i; + + irq_handled = 0; + for (i = 0; i <= MAX_SPI; i++) + irqnr_received[i] = 0; +} + +static uint64_t gic_read_ap1r0(void) +{ + uint64_t reg = read_sysreg_s(SYS_ICV_AP1R0_EL1); + + dsb(sy); + return reg; +} + +static void gic_write_ap1r0(uint64_t val) +{ + write_sysreg_s(val, SYS_ICV_AP1R0_EL1); + isb(); +} + +static void guest_set_irq_line(uint32_t intid, uint32_t level); + +static void guest_irq_generic_handler(bool eoi_split, bool level_sensitive) +{ + uint32_t intid = gic_get_and_ack_irq(); + + if (intid == IAR_SPURIOUS) + return; + + GUEST_ASSERT(gic_irq_get_active(intid)); + + if (!level_sensitive) + GUEST_ASSERT(!gic_irq_get_pending(intid)); + + if (level_sensitive) + guest_set_irq_line(intid, 0); + + GUEST_ASSERT(intid < MAX_SPI); + irqnr_received[intid] += 1; + irq_handled += 1; + + gic_set_eoi(intid); + GUEST_ASSERT_EQ(gic_read_ap1r0(), 0); + if (eoi_split) + gic_set_dir(intid); + + GUEST_ASSERT(!gic_irq_get_active(intid)); + GUEST_ASSERT(!gic_irq_get_pending(intid)); +} + +static void kvm_inject_call(kvm_inject_cmd cmd, uint32_t first_intid, + uint32_t num, int level, bool expect_failure) +{ + struct kvm_inject_args args = { + .cmd = cmd, + .first_intid = first_intid, + .num = num, + .level = level, + .expect_failure = expect_failure, + }; + GUEST_SYNC(&args); +} + +#define GUEST_ASSERT_IAR_EMPTY() \ +do { \ + uint32_t _intid; \ + _intid = gic_get_and_ack_irq(); \ + GUEST_ASSERT(_intid == 0 || _intid == IAR_SPURIOUS); \ +} while (0) + +#define CAT_HELPER(a, b) a ## b +#define CAT(a, b) CAT_HELPER(a, b) +#define PREFIX guest_irq_handler_ +#define GUEST_IRQ_HANDLER_NAME(split, lev) CAT(PREFIX, CAT(split, lev)) +#define GENERATE_GUEST_IRQ_HANDLER(split, lev) \ +static void CAT(PREFIX, CAT(split, lev))(struct ex_regs *regs) \ +{ \ + guest_irq_generic_handler(split, lev); \ +} + +GENERATE_GUEST_IRQ_HANDLER(0, 0); +GENERATE_GUEST_IRQ_HANDLER(0, 1); +GENERATE_GUEST_IRQ_HANDLER(1, 0); +GENERATE_GUEST_IRQ_HANDLER(1, 1); + +static void (*guest_irq_handlers[2][2])(struct ex_regs *) = { + {GUEST_IRQ_HANDLER_NAME(0, 0), GUEST_IRQ_HANDLER_NAME(0, 1),}, + {GUEST_IRQ_HANDLER_NAME(1, 0), GUEST_IRQ_HANDLER_NAME(1, 1),}, +}; + +static void reset_priorities(struct test_args *args) +{ + int i; + + for (i = 0; i < args->nr_irqs; i++) + gic_set_priority(i, IRQ_DEFAULT_PRIO_REG); +} + +static void guest_set_irq_line(uint32_t intid, uint32_t level) +{ + kvm_inject_call(KVM_SET_IRQ_LINE, intid, 1, level, false); +} + +static void test_inject_fail(struct test_args *args, + uint32_t intid, kvm_inject_cmd cmd) +{ + reset_stats(); + + _KVM_INJECT(cmd, intid, true); + /* no IRQ to handle on entry */ + + GUEST_ASSERT_EQ(irq_handled, 0); + GUEST_ASSERT_IAR_EMPTY(); +} + +static void guest_inject(struct test_args *args, + uint32_t first_intid, uint32_t num, + kvm_inject_cmd cmd) +{ + uint32_t i; + + reset_stats(); + + /* Cycle over all priorities to make things more interesting. */ + for (i = first_intid; i < num + first_intid; i++) + gic_set_priority(i, (i % (KVM_NUM_PRIOS - 1)) << 3); + + asm volatile("msr daifset, #2" : : : "memory"); + KVM_INJECT_MULTI(cmd, first_intid, num); + + while (irq_handled < num) { + asm volatile("wfi\n" + "msr daifclr, #2\n" + /* handle IRQ */ + "msr daifset, #2\n" + : : : "memory"); + } + asm volatile("msr daifclr, #2" : : : "memory"); + + GUEST_ASSERT_EQ(irq_handled, num); + for (i = first_intid; i < num + first_intid; i++) + GUEST_ASSERT_EQ(irqnr_received[i], 1); + GUEST_ASSERT_IAR_EMPTY(); + + reset_priorities(args); +} + +/* + * Restore the active state of multiple concurrent IRQs (given by + * concurrent_irqs). This does what a live-migration would do on the + * destination side assuming there are some active IRQs that were not + * deactivated yet. + */ +static void guest_restore_active(struct test_args *args, + uint32_t first_intid, uint32_t num, + kvm_inject_cmd cmd) +{ + uint32_t prio, intid, ap1r; + int i; + + /* + * Set the priorities of the first (KVM_NUM_PRIOS - 1) IRQs + * in descending order, so intid+1 can preempt intid. + */ + for (i = 0, prio = (num - 1) * 8; i < num; i++, prio -= 8) { + GUEST_ASSERT(prio >= 0); + intid = i + first_intid; + gic_set_priority(intid, prio); + } + + /* + * In a real migration, KVM would restore all GIC state before running + * guest code. + */ + for (i = 0; i < num; i++) { + intid = i + first_intid; + KVM_ACTIVATE(cmd, intid); + ap1r = gic_read_ap1r0(); + ap1r |= 1U << i; + gic_write_ap1r0(ap1r); + } + + /* This is where the "migration" would occur. */ + + /* finish handling the IRQs starting with the highest priority one. */ + for (i = 0; i < num; i++) { + intid = num - i - 1 + first_intid; + gic_set_eoi(intid); + if (args->eoi_split) + gic_set_dir(intid); + } + + for (i = 0; i < num; i++) + GUEST_ASSERT(!gic_irq_get_active(i + first_intid)); + GUEST_ASSERT_EQ(gic_read_ap1r0(), 0); + GUEST_ASSERT_IAR_EMPTY(); +} + +/* + * Polls the IAR until it's not a spurious interrupt. + * + * This function should only be used in test_inject_preemption (with IRQs + * masked). + */ +static uint32_t wait_for_and_activate_irq(void) +{ + uint32_t intid; + + do { + asm volatile("wfi" : : : "memory"); + intid = gic_get_and_ack_irq(); + } while (intid == IAR_SPURIOUS); + + return intid; +} + +/* + * Inject multiple concurrent IRQs (num IRQs starting at first_intid) and + * handle them without handling the actual exceptions. This is done by masking + * interrupts for the whole test. + */ +static void test_inject_preemption(struct test_args *args, + uint32_t first_intid, int num, + kvm_inject_cmd cmd) +{ + uint32_t intid, prio, step = KVM_PRIO_STEPS; + int i; + + /* Set the priorities of the first (KVM_NUM_PRIOS - 1) IRQs + * in descending order, so intid+1 can preempt intid. + */ + for (i = 0, prio = (num - 1) * step; i < num; i++, prio -= step) { + GUEST_ASSERT(prio >= 0); + intid = i + first_intid; + gic_set_priority(intid, prio); + } + + local_irq_disable(); + + for (i = 0; i < num; i++) { + uint32_t tmp; + intid = i + first_intid; + KVM_INJECT(cmd, intid); + /* Each successive IRQ will preempt the previous one. */ + tmp = wait_for_and_activate_irq(); + GUEST_ASSERT_EQ(tmp, intid); + if (args->level_sensitive) + guest_set_irq_line(intid, 0); + } + + /* finish handling the IRQs starting with the highest priority one. */ + for (i = 0; i < num; i++) { + intid = num - i - 1 + first_intid; + gic_set_eoi(intid); + if (args->eoi_split) + gic_set_dir(intid); + } + + local_irq_enable(); + + for (i = 0; i < num; i++) + GUEST_ASSERT(!gic_irq_get_active(i + first_intid)); + GUEST_ASSERT_EQ(gic_read_ap1r0(), 0); + GUEST_ASSERT_IAR_EMPTY(); + + reset_priorities(args); +} + +static void test_injection(struct test_args *args, struct kvm_inject_desc *f) +{ + uint32_t nr_irqs = args->nr_irqs; + + if (f->sgi) { + guest_inject(args, MIN_SGI, 1, f->cmd); + guest_inject(args, 0, 16, f->cmd); + } + + if (f->ppi) + guest_inject(args, MIN_PPI, 1, f->cmd); + + if (f->spi) { + guest_inject(args, MIN_SPI, 1, f->cmd); + guest_inject(args, nr_irqs - 1, 1, f->cmd); + guest_inject(args, MIN_SPI, nr_irqs - MIN_SPI, f->cmd); + } +} + +static void test_injection_failure(struct test_args *args, + struct kvm_inject_desc *f) +{ + uint32_t bad_intid[] = { args->nr_irqs, 1020, 1024, 1120, 5120, ~0U, }; + int i; + + for (i = 0; i < ARRAY_SIZE(bad_intid); i++) + test_inject_fail(args, bad_intid[i], f->cmd); +} + +static void test_preemption(struct test_args *args, struct kvm_inject_desc *f) +{ + /* + * Test up to 4 levels of preemption. The reason is that KVM doesn't + * currently implement the ability to have more than the number-of-LRs + * number of concurrently active IRQs. The number of LRs implemented is + * IMPLEMENTATION DEFINED, however, it seems that most implement 4. + */ + if (f->sgi) + test_inject_preemption(args, MIN_SGI, 4, f->cmd); + + if (f->ppi) + test_inject_preemption(args, MIN_PPI, 4, f->cmd); + + if (f->spi) + test_inject_preemption(args, MIN_SPI, 4, f->cmd); +} + +static void test_restore_active(struct test_args *args, struct kvm_inject_desc *f) +{ + /* Test up to 4 active IRQs. Same reason as in test_preemption. */ + if (f->sgi) + guest_restore_active(args, MIN_SGI, 4, f->cmd); + + if (f->ppi) + guest_restore_active(args, MIN_PPI, 4, f->cmd); + + if (f->spi) + guest_restore_active(args, MIN_SPI, 4, f->cmd); +} + +static void guest_code(struct test_args *args) +{ + uint32_t i, nr_irqs = args->nr_irqs; + bool level_sensitive = args->level_sensitive; + struct kvm_inject_desc *f, *inject_fns; + + gic_init(GIC_V3, 1, dist, redist); + + for (i = 0; i < nr_irqs; i++) + gic_irq_enable(i); + + for (i = MIN_SPI; i < nr_irqs; i++) + gic_irq_set_config(i, !level_sensitive); + + gic_set_eoi_split(args->eoi_split); + + reset_priorities(args); + gic_set_priority_mask(CPU_PRIO_MASK); + + inject_fns = level_sensitive ? inject_level_fns + : inject_edge_fns; + + local_irq_enable(); + + /* Start the tests. */ + for_each_supported_inject_fn(args, inject_fns, f) { + test_injection(args, f); + test_preemption(args, f); + test_injection_failure(args, f); + } + + /* + * Restore the active state of IRQs. This would happen when live + * migrating IRQs in the middle of being handled. + */ + for_each_supported_activate_fn(args, set_active_fns, f) + test_restore_active(args, f); + + GUEST_DONE(); +} + +static void kvm_irq_line_check(struct kvm_vm *vm, uint32_t intid, int level, + struct test_args *test_args, bool expect_failure) +{ + int ret; + + if (!expect_failure) { + kvm_arm_irq_line(vm, intid, level); + } else { + /* The interface doesn't allow larger intid's. */ + if (intid > KVM_ARM_IRQ_NUM_MASK) + return; + + ret = _kvm_arm_irq_line(vm, intid, level); + TEST_ASSERT(ret != 0 && errno == EINVAL, + "Bad intid %i did not cause KVM_IRQ_LINE " + "error: rc: %i errno: %i", intid, ret, errno); + } +} + +void kvm_irq_set_level_info_check(int gic_fd, uint32_t intid, int level, + bool expect_failure) +{ + if (!expect_failure) { + kvm_irq_set_level_info(gic_fd, intid, level); + } else { + int ret = _kvm_irq_set_level_info(gic_fd, intid, level); + /* + * The kernel silently fails for invalid SPIs and SGIs (which + * are not level-sensitive). It only checks for intid to not + * spill over 1U << 10 (the max reserved SPI). Also, callers + * are supposed to mask the intid with 0x3ff (1023). + */ + if (intid > VGIC_MAX_RESERVED) + TEST_ASSERT(ret != 0 && errno == EINVAL, + "Bad intid %i did not cause VGIC_GRP_LEVEL_INFO " + "error: rc: %i errno: %i", intid, ret, errno); + else + TEST_ASSERT(!ret, "KVM_DEV_ARM_VGIC_GRP_LEVEL_INFO " + "for intid %i failed, rc: %i errno: %i", + intid, ret, errno); + } +} + +static void kvm_set_gsi_routing_irqchip_check(struct kvm_vm *vm, + uint32_t intid, uint32_t num, uint32_t kvm_max_routes, + bool expect_failure) +{ + struct kvm_irq_routing *routing; + int ret; + uint64_t i; + + assert(num <= kvm_max_routes && kvm_max_routes <= KVM_MAX_IRQ_ROUTES); + + routing = kvm_gsi_routing_create(); + for (i = intid; i < (uint64_t)intid + num; i++) + kvm_gsi_routing_irqchip_add(routing, i - MIN_SPI, i - MIN_SPI); + + if (!expect_failure) { + kvm_gsi_routing_write(vm, routing); + } else { + ret = _kvm_gsi_routing_write(vm, routing); + /* The kernel only checks e->irqchip.pin >= KVM_IRQCHIP_NUM_PINS */ + if (((uint64_t)intid + num - 1 - MIN_SPI) >= KVM_IRQCHIP_NUM_PINS) + TEST_ASSERT(ret != 0 && errno == EINVAL, + "Bad intid %u did not cause KVM_SET_GSI_ROUTING " + "error: rc: %i errno: %i", intid, ret, errno); + else + TEST_ASSERT(ret == 0, "KVM_SET_GSI_ROUTING " + "for intid %i failed, rc: %i errno: %i", + intid, ret, errno); + } +} + +static void kvm_irq_write_ispendr_check(int gic_fd, uint32_t intid, + struct kvm_vcpu *vcpu, + bool expect_failure) +{ + /* + * Ignore this when expecting failure as invalid intids will lead to + * either trying to inject SGIs when we configured the test to be + * level_sensitive (or the reverse), or inject large intids which + * will lead to writing above the ISPENDR register space (and we + * don't want to do that either). + */ + if (!expect_failure) + kvm_irq_write_ispendr(gic_fd, intid, vcpu); +} + +static void kvm_routing_and_irqfd_check(struct kvm_vm *vm, + uint32_t intid, uint32_t num, uint32_t kvm_max_routes, + bool expect_failure) +{ + int fd[MAX_SPI]; + uint64_t val; + int ret, f; + uint64_t i; + + /* + * There is no way to try injecting an SGI or PPI as the interface + * starts counting from the first SPI (above the private ones), so just + * exit. + */ + if (INTID_IS_SGI(intid) || INTID_IS_PPI(intid)) + return; + + kvm_set_gsi_routing_irqchip_check(vm, intid, num, + kvm_max_routes, expect_failure); + + /* + * If expect_failure, then just to inject anyway. These + * will silently fail. And in any case, the guest will check + * that no actual interrupt was injected for those cases. + */ + + for (f = 0, i = intid; i < (uint64_t)intid + num; i++, f++) { + fd[f] = eventfd(0, 0); + TEST_ASSERT(fd[f] != -1, __KVM_SYSCALL_ERROR("eventfd()", fd[f])); + } + + for (f = 0, i = intid; i < (uint64_t)intid + num; i++, f++) { + struct kvm_irqfd irqfd = { + .fd = fd[f], + .gsi = i - MIN_SPI, + }; + assert(i <= (uint64_t)UINT_MAX); + vm_ioctl(vm, KVM_IRQFD, &irqfd); + } + + for (f = 0, i = intid; i < (uint64_t)intid + num; i++, f++) { + val = 1; + ret = write(fd[f], &val, sizeof(uint64_t)); + TEST_ASSERT(ret == sizeof(uint64_t), + __KVM_SYSCALL_ERROR("write()", ret)); + } + + for (f = 0, i = intid; i < (uint64_t)intid + num; i++, f++) + close(fd[f]); +} + +/* handles the valid case: intid=0xffffffff num=1 */ +#define for_each_intid(first, num, tmp, i) \ + for ((tmp) = (i) = (first); \ + (tmp) < (uint64_t)(first) + (uint64_t)(num); \ + (tmp)++, (i)++) + +static void run_guest_cmd(struct kvm_vcpu *vcpu, int gic_fd, + struct kvm_inject_args *inject_args, + struct test_args *test_args) +{ + kvm_inject_cmd cmd = inject_args->cmd; + uint32_t intid = inject_args->first_intid; + uint32_t num = inject_args->num; + int level = inject_args->level; + bool expect_failure = inject_args->expect_failure; + struct kvm_vm *vm = vcpu->vm; + uint64_t tmp; + uint32_t i; + + /* handles the valid case: intid=0xffffffff num=1 */ + assert(intid < UINT_MAX - num || num == 1); + + switch (cmd) { + case KVM_INJECT_EDGE_IRQ_LINE: + for_each_intid(intid, num, tmp, i) + kvm_irq_line_check(vm, i, 1, test_args, + expect_failure); + for_each_intid(intid, num, tmp, i) + kvm_irq_line_check(vm, i, 0, test_args, + expect_failure); + break; + case KVM_SET_IRQ_LINE: + for_each_intid(intid, num, tmp, i) + kvm_irq_line_check(vm, i, level, test_args, + expect_failure); + break; + case KVM_SET_IRQ_LINE_HIGH: + for_each_intid(intid, num, tmp, i) + kvm_irq_line_check(vm, i, 1, test_args, + expect_failure); + break; + case KVM_SET_LEVEL_INFO_HIGH: + for_each_intid(intid, num, tmp, i) + kvm_irq_set_level_info_check(gic_fd, i, 1, + expect_failure); + break; + case KVM_INJECT_IRQFD: + kvm_routing_and_irqfd_check(vm, intid, num, + test_args->kvm_max_routes, + expect_failure); + break; + case KVM_WRITE_ISPENDR: + for (i = intid; i < intid + num; i++) + kvm_irq_write_ispendr_check(gic_fd, i, vcpu, + expect_failure); + break; + case KVM_WRITE_ISACTIVER: + for (i = intid; i < intid + num; i++) + kvm_irq_write_isactiver(gic_fd, i, vcpu); + break; + default: + break; + } +} + +static void kvm_inject_get_call(struct kvm_vm *vm, struct ucall *uc, + struct kvm_inject_args *args) +{ + struct kvm_inject_args *kvm_args_hva; + vm_vaddr_t kvm_args_gva; + + kvm_args_gva = uc->args[1]; + kvm_args_hva = (struct kvm_inject_args *)addr_gva2hva(vm, kvm_args_gva); + memcpy(args, kvm_args_hva, sizeof(struct kvm_inject_args)); +} + +static void print_args(struct test_args *args) +{ + printf("nr-irqs=%d level-sensitive=%d eoi-split=%d\n", + args->nr_irqs, args->level_sensitive, + args->eoi_split); +} + +static void test_vgic(uint32_t nr_irqs, bool level_sensitive, bool eoi_split) +{ + struct ucall uc; + int gic_fd; + struct kvm_vcpu *vcpu; + struct kvm_vm *vm; + struct kvm_inject_args inject_args; + vm_vaddr_t args_gva; + + struct test_args args = { + .nr_irqs = nr_irqs, + .level_sensitive = level_sensitive, + .eoi_split = eoi_split, + .kvm_max_routes = kvm_check_cap(KVM_CAP_IRQ_ROUTING), + .kvm_supports_irqfd = kvm_check_cap(KVM_CAP_IRQFD), + }; + + print_args(&args); + + vm = vm_create_with_one_vcpu(&vcpu, guest_code); + + vm_init_descriptor_tables(vm); + vcpu_init_descriptor_tables(vcpu); + + /* Setup the guest args page (so it gets the args). */ + args_gva = vm_vaddr_alloc_page(vm); + memcpy(addr_gva2hva(vm, args_gva), &args, sizeof(args)); + vcpu_args_set(vcpu, 1, args_gva); + + gic_fd = vgic_v3_setup(vm, 1, nr_irqs, + GICD_BASE_GPA, GICR_BASE_GPA); + __TEST_REQUIRE(gic_fd >= 0, "Failed to create vgic-v3, skipping"); + + vm_install_exception_handler(vm, VECTOR_IRQ_CURRENT, + guest_irq_handlers[args.eoi_split][args.level_sensitive]); + + while (1) { + vcpu_run(vcpu); + + switch (get_ucall(vcpu, &uc)) { + case UCALL_SYNC: + kvm_inject_get_call(vm, &uc, &inject_args); + run_guest_cmd(vcpu, gic_fd, &inject_args, &args); + break; + case UCALL_ABORT: + REPORT_GUEST_ASSERT(uc); + break; + case UCALL_DONE: + goto done; + default: + TEST_FAIL("Unknown ucall %lu", uc.cmd); + } + } + +done: + close(gic_fd); + kvm_vm_free(vm); +} + +static void help(const char *name) +{ + printf( + "\n" + "usage: %s [-n num_irqs] [-e eoi_split] [-l level_sensitive]\n", name); + printf(" -n: specify number of IRQs to setup the vgic with. " + "It has to be a multiple of 32 and between 64 and 1024.\n"); + printf(" -e: if 1 then EOI is split into a write to DIR on top " + "of writing EOI.\n"); + printf(" -l: specify whether the IRQs are level-sensitive (1) or not (0)."); + puts(""); + exit(1); +} + +int main(int argc, char **argv) +{ + uint32_t nr_irqs = 64; + bool default_args = true; + bool level_sensitive = false; + int opt; + bool eoi_split = false; + + while ((opt = getopt(argc, argv, "hn:e:l:")) != -1) { + switch (opt) { + case 'n': + nr_irqs = atoi_non_negative("Number of IRQs", optarg); + if (nr_irqs > 1024 || nr_irqs % 32) + help(argv[0]); + break; + case 'e': + eoi_split = (bool)atoi_paranoid(optarg); + default_args = false; + break; + case 'l': + level_sensitive = (bool)atoi_paranoid(optarg); + default_args = false; + break; + case 'h': + default: + help(argv[0]); + break; + } + } + + /* + * If the user just specified nr_irqs and/or gic_version, then run all + * combinations. + */ + if (default_args) { + test_vgic(nr_irqs, false /* level */, false /* eoi_split */); + test_vgic(nr_irqs, false /* level */, true /* eoi_split */); + test_vgic(nr_irqs, true /* level */, false /* eoi_split */); + test_vgic(nr_irqs, true /* level */, true /* eoi_split */); + } else { + test_vgic(nr_irqs, level_sensitive, eoi_split); + } + + return 0; +} |