summaryrefslogtreecommitdiffstats
path: root/Documentation/admin-guide/perf-security.rst
diff options
context:
space:
mode:
Diffstat (limited to 'Documentation/admin-guide/perf-security.rst')
-rw-r--r--Documentation/admin-guide/perf-security.rst325
1 files changed, 325 insertions, 0 deletions
diff --git a/Documentation/admin-guide/perf-security.rst b/Documentation/admin-guide/perf-security.rst
new file mode 100644
index 0000000000..34aa334320
--- /dev/null
+++ b/Documentation/admin-guide/perf-security.rst
@@ -0,0 +1,325 @@
+.. _perf_security:
+
+Perf events and tool security
+=============================
+
+Overview
+--------
+
+Usage of Performance Counters for Linux (perf_events) [1]_ , [2]_ , [3]_
+can impose a considerable risk of leaking sensitive data accessed by
+monitored processes. The data leakage is possible both in scenarios of
+direct usage of perf_events system call API [2]_ and over data files
+generated by Perf tool user mode utility (Perf) [3]_ , [4]_ . The risk
+depends on the nature of data that perf_events performance monitoring
+units (PMU) [2]_ and Perf collect and expose for performance analysis.
+Collected system and performance data may be split into several
+categories:
+
+1. System hardware and software configuration data, for example: a CPU
+ model and its cache configuration, an amount of available memory and
+ its topology, used kernel and Perf versions, performance monitoring
+ setup including experiment time, events configuration, Perf command
+ line parameters, etc.
+
+2. User and kernel module paths and their load addresses with sizes,
+ process and thread names with their PIDs and TIDs, timestamps for
+ captured hardware and software events.
+
+3. Content of kernel software counters (e.g., for context switches, page
+ faults, CPU migrations), architectural hardware performance counters
+ (PMC) [8]_ and machine specific registers (MSR) [9]_ that provide
+ execution metrics for various monitored parts of the system (e.g.,
+ memory controller (IMC), interconnect (QPI/UPI) or peripheral (PCIe)
+ uncore counters) without direct attribution to any execution context
+ state.
+
+4. Content of architectural execution context registers (e.g., RIP, RSP,
+ RBP on x86_64), process user and kernel space memory addresses and
+ data, content of various architectural MSRs that capture data from
+ this category.
+
+Data that belong to the fourth category can potentially contain
+sensitive process data. If PMUs in some monitoring modes capture values
+of execution context registers or data from process memory then access
+to such monitoring modes requires to be ordered and secured properly.
+So, perf_events performance monitoring and observability operations are
+the subject for security access control management [5]_ .
+
+perf_events access control
+-------------------------------
+
+To perform security checks, the Linux implementation splits processes
+into two categories [6]_ : a) privileged processes (whose effective user
+ID is 0, referred to as superuser or root), and b) unprivileged
+processes (whose effective UID is nonzero). Privileged processes bypass
+all kernel security permission checks so perf_events performance
+monitoring is fully available to privileged processes without access,
+scope and resource restrictions.
+
+Unprivileged processes are subject to a full security permission check
+based on the process's credentials [5]_ (usually: effective UID,
+effective GID, and supplementary group list).
+
+Linux divides the privileges traditionally associated with superuser
+into distinct units, known as capabilities [6]_ , which can be
+independently enabled and disabled on per-thread basis for processes and
+files of unprivileged users.
+
+Unprivileged processes with enabled CAP_PERFMON capability are treated
+as privileged processes with respect to perf_events performance
+monitoring and observability operations, thus, bypass *scope* permissions
+checks in the kernel. CAP_PERFMON implements the principle of least
+privilege [13]_ (POSIX 1003.1e: 2.2.2.39) for performance monitoring and
+observability operations in the kernel and provides a secure approach to
+performance monitoring and observability in the system.
+
+For backward compatibility reasons the access to perf_events monitoring and
+observability operations is also open for CAP_SYS_ADMIN privileged
+processes but CAP_SYS_ADMIN usage for secure monitoring and observability
+use cases is discouraged with respect to the CAP_PERFMON capability.
+If system audit records [14]_ for a process using perf_events system call
+API contain denial records of acquiring both CAP_PERFMON and CAP_SYS_ADMIN
+capabilities then providing the process with CAP_PERFMON capability singly
+is recommended as the preferred secure approach to resolve double access
+denial logging related to usage of performance monitoring and observability.
+
+Prior Linux v5.9 unprivileged processes using perf_events system call
+are also subject for PTRACE_MODE_READ_REALCREDS ptrace access mode check
+[7]_ , whose outcome determines whether monitoring is permitted.
+So unprivileged processes provided with CAP_SYS_PTRACE capability are
+effectively permitted to pass the check. Starting from Linux v5.9
+CAP_SYS_PTRACE capability is not required and CAP_PERFMON is enough to
+be provided for processes to make performance monitoring and observability
+operations.
+
+Other capabilities being granted to unprivileged processes can
+effectively enable capturing of additional data required for later
+performance analysis of monitored processes or a system. For example,
+CAP_SYSLOG capability permits reading kernel space memory addresses from
+/proc/kallsyms file.
+
+Privileged Perf users groups
+---------------------------------
+
+Mechanisms of capabilities, privileged capability-dumb files [6]_,
+file system ACLs [10]_ and sudo [15]_ utility can be used to create
+dedicated groups of privileged Perf users who are permitted to execute
+performance monitoring and observability without limits. The following
+steps can be taken to create such groups of privileged Perf users.
+
+1. Create perf_users group of privileged Perf users, assign perf_users
+ group to Perf tool executable and limit access to the executable for
+ other users in the system who are not in the perf_users group:
+
+::
+
+ # groupadd perf_users
+ # ls -alhF
+ -rwxr-xr-x 2 root root 11M Oct 19 15:12 perf
+ # chgrp perf_users perf
+ # ls -alhF
+ -rwxr-xr-x 2 root perf_users 11M Oct 19 15:12 perf
+ # chmod o-rwx perf
+ # ls -alhF
+ -rwxr-x--- 2 root perf_users 11M Oct 19 15:12 perf
+
+2. Assign the required capabilities to the Perf tool executable file and
+ enable members of perf_users group with monitoring and observability
+ privileges [6]_ :
+
+::
+
+ # setcap "cap_perfmon,cap_sys_ptrace,cap_syslog=ep" perf
+ # setcap -v "cap_perfmon,cap_sys_ptrace,cap_syslog=ep" perf
+ perf: OK
+ # getcap perf
+ perf = cap_sys_ptrace,cap_syslog,cap_perfmon+ep
+
+If the libcap [16]_ installed doesn't yet support "cap_perfmon", use "38" instead,
+i.e.:
+
+::
+
+ # setcap "38,cap_ipc_lock,cap_sys_ptrace,cap_syslog=ep" perf
+
+Note that you may need to have 'cap_ipc_lock' in the mix for tools such as
+'perf top', alternatively use 'perf top -m N', to reduce the memory that
+it uses for the perf ring buffer, see the memory allocation section below.
+
+Using a libcap without support for CAP_PERFMON will make cap_get_flag(caps, 38,
+CAP_EFFECTIVE, &val) fail, which will lead the default event to be 'cycles:u',
+so as a workaround explicitly ask for the 'cycles' event, i.e.:
+
+::
+
+ # perf top -e cycles
+
+To get kernel and user samples with a perf binary with just CAP_PERFMON.
+
+As a result, members of perf_users group are capable of conducting
+performance monitoring and observability by using functionality of the
+configured Perf tool executable that, when executes, passes perf_events
+subsystem scope checks.
+
+In case Perf tool executable can't be assigned required capabilities (e.g.
+file system is mounted with nosuid option or extended attributes are
+not supported by the file system) then creation of the capabilities
+privileged environment, naturally shell, is possible. The shell provides
+inherent processes with CAP_PERFMON and other required capabilities so that
+performance monitoring and observability operations are available in the
+environment without limits. Access to the environment can be open via sudo
+utility for members of perf_users group only. In order to create such
+environment:
+
+1. Create shell script that uses capsh utility [16]_ to assign CAP_PERFMON
+ and other required capabilities into ambient capability set of the shell
+ process, lock the process security bits after enabling SECBIT_NO_SETUID_FIXUP,
+ SECBIT_NOROOT and SECBIT_NO_CAP_AMBIENT_RAISE bits and then change
+ the process identity to sudo caller of the script who should essentially
+ be a member of perf_users group:
+
+::
+
+ # ls -alh /usr/local/bin/perf.shell
+ -rwxr-xr-x. 1 root root 83 Oct 13 23:57 /usr/local/bin/perf.shell
+ # cat /usr/local/bin/perf.shell
+ exec /usr/sbin/capsh --iab=^cap_perfmon --secbits=239 --user=$SUDO_USER -- -l
+
+2. Extend sudo policy at /etc/sudoers file with a rule for perf_users group:
+
+::
+
+ # grep perf_users /etc/sudoers
+ %perf_users ALL=/usr/local/bin/perf.shell
+
+3. Check that members of perf_users group have access to the privileged
+ shell and have CAP_PERFMON and other required capabilities enabled
+ in permitted, effective and ambient capability sets of an inherent process:
+
+::
+
+ $ id
+ uid=1003(capsh_test) gid=1004(capsh_test) groups=1004(capsh_test),1000(perf_users) context=unconfined_u:unconfined_r:unconfined_t:s0-s0:c0.c1023
+ $ sudo perf.shell
+ [sudo] password for capsh_test:
+ $ grep Cap /proc/self/status
+ CapInh: 0000004000000000
+ CapPrm: 0000004000000000
+ CapEff: 0000004000000000
+ CapBnd: 000000ffffffffff
+ CapAmb: 0000004000000000
+ $ capsh --decode=0000004000000000
+ 0x0000004000000000=cap_perfmon
+
+As a result, members of perf_users group have access to the privileged
+environment where they can use tools employing performance monitoring APIs
+governed by CAP_PERFMON Linux capability.
+
+This specific access control management is only available to superuser
+or root running processes with CAP_SETPCAP, CAP_SETFCAP [6]_
+capabilities.
+
+Unprivileged users
+-----------------------------------
+
+perf_events *scope* and *access* control for unprivileged processes
+is governed by perf_event_paranoid [2]_ setting:
+
+-1:
+ Impose no *scope* and *access* restrictions on using perf_events
+ performance monitoring. Per-user per-cpu perf_event_mlock_kb [2]_
+ locking limit is ignored when allocating memory buffers for storing
+ performance data. This is the least secure mode since allowed
+ monitored *scope* is maximized and no perf_events specific limits
+ are imposed on *resources* allocated for performance monitoring.
+
+>=0:
+ *scope* includes per-process and system wide performance monitoring
+ but excludes raw tracepoints and ftrace function tracepoints
+ monitoring. CPU and system events happened when executing either in
+ user or in kernel space can be monitored and captured for later
+ analysis. Per-user per-cpu perf_event_mlock_kb locking limit is
+ imposed but ignored for unprivileged processes with CAP_IPC_LOCK
+ [6]_ capability.
+
+>=1:
+ *scope* includes per-process performance monitoring only and
+ excludes system wide performance monitoring. CPU and system events
+ happened when executing either in user or in kernel space can be
+ monitored and captured for later analysis. Per-user per-cpu
+ perf_event_mlock_kb locking limit is imposed but ignored for
+ unprivileged processes with CAP_IPC_LOCK capability.
+
+>=2:
+ *scope* includes per-process performance monitoring only. CPU and
+ system events happened when executing in user space only can be
+ monitored and captured for later analysis. Per-user per-cpu
+ perf_event_mlock_kb locking limit is imposed but ignored for
+ unprivileged processes with CAP_IPC_LOCK capability.
+
+Resource control
+---------------------------------
+
+Open file descriptors
++++++++++++++++++++++
+
+The perf_events system call API [2]_ allocates file descriptors for
+every configured PMU event. Open file descriptors are a per-process
+accountable resource governed by the RLIMIT_NOFILE [11]_ limit
+(ulimit -n), which is usually derived from the login shell process. When
+configuring Perf collection for a long list of events on a large server
+system, this limit can be easily hit preventing required monitoring
+configuration. RLIMIT_NOFILE limit can be increased on per-user basis
+modifying content of the limits.conf file [12]_ . Ordinarily, a Perf
+sampling session (perf record) requires an amount of open perf_event
+file descriptors that is not less than the number of monitored events
+multiplied by the number of monitored CPUs.
+
+Memory allocation
++++++++++++++++++
+
+The amount of memory available to user processes for capturing
+performance monitoring data is governed by the perf_event_mlock_kb [2]_
+setting. This perf_event specific resource setting defines overall
+per-cpu limits of memory allowed for mapping by the user processes to
+execute performance monitoring. The setting essentially extends the
+RLIMIT_MEMLOCK [11]_ limit, but only for memory regions mapped
+specifically for capturing monitored performance events and related data.
+
+For example, if a machine has eight cores and perf_event_mlock_kb limit
+is set to 516 KiB, then a user process is provided with 516 KiB * 8 =
+4128 KiB of memory above the RLIMIT_MEMLOCK limit (ulimit -l) for
+perf_event mmap buffers. In particular, this means that, if the user
+wants to start two or more performance monitoring processes, the user is
+required to manually distribute the available 4128 KiB between the
+monitoring processes, for example, using the --mmap-pages Perf record
+mode option. Otherwise, the first started performance monitoring process
+allocates all available 4128 KiB and the other processes will fail to
+proceed due to the lack of memory.
+
+RLIMIT_MEMLOCK and perf_event_mlock_kb resource constraints are ignored
+for processes with the CAP_IPC_LOCK capability. Thus, perf_events/Perf
+privileged users can be provided with memory above the constraints for
+perf_events/Perf performance monitoring purpose by providing the Perf
+executable with CAP_IPC_LOCK capability.
+
+Bibliography
+------------
+
+.. [1] `<https://lwn.net/Articles/337493/>`_
+.. [2] `<http://man7.org/linux/man-pages/man2/perf_event_open.2.html>`_
+.. [3] `<http://web.eece.maine.edu/~vweaver/projects/perf_events/>`_
+.. [4] `<https://perf.wiki.kernel.org/index.php/Main_Page>`_
+.. [5] `<https://www.kernel.org/doc/html/latest/security/credentials.html>`_
+.. [6] `<http://man7.org/linux/man-pages/man7/capabilities.7.html>`_
+.. [7] `<http://man7.org/linux/man-pages/man2/ptrace.2.html>`_
+.. [8] `<https://en.wikipedia.org/wiki/Hardware_performance_counter>`_
+.. [9] `<https://en.wikipedia.org/wiki/Model-specific_register>`_
+.. [10] `<http://man7.org/linux/man-pages/man5/acl.5.html>`_
+.. [11] `<http://man7.org/linux/man-pages/man2/getrlimit.2.html>`_
+.. [12] `<http://man7.org/linux/man-pages/man5/limits.conf.5.html>`_
+.. [13] `<https://sites.google.com/site/fullycapable>`_
+.. [14] `<http://man7.org/linux/man-pages/man8/auditd.8.html>`_
+.. [15] `<https://man7.org/linux/man-pages/man8/sudo.8.html>`_
+.. [16] `<https://git.kernel.org/pub/scm/libs/libcap/libcap.git/>`_