diff options
Diffstat (limited to 'Documentation/dev-tools/kcov.rst')
-rw-r--r-- | Documentation/dev-tools/kcov.rst | 374 |
1 files changed, 374 insertions, 0 deletions
diff --git a/Documentation/dev-tools/kcov.rst b/Documentation/dev-tools/kcov.rst new file mode 100644 index 0000000000..6611434e2d --- /dev/null +++ b/Documentation/dev-tools/kcov.rst @@ -0,0 +1,374 @@ +KCOV: code coverage for fuzzing +=============================== + +KCOV collects and exposes kernel code coverage information in a form suitable +for coverage-guided fuzzing. Coverage data of a running kernel is exported via +the ``kcov`` debugfs file. Coverage collection is enabled on a task basis, and +thus KCOV can capture precise coverage of a single system call. + +Note that KCOV does not aim to collect as much coverage as possible. It aims +to collect more or less stable coverage that is a function of syscall inputs. +To achieve this goal, it does not collect coverage in soft/hard interrupts +(unless remove coverage collection is enabled, see below) and from some +inherently non-deterministic parts of the kernel (e.g. scheduler, locking). + +Besides collecting code coverage, KCOV can also collect comparison operands. +See the "Comparison operands collection" section for details. + +Besides collecting coverage data from syscall handlers, KCOV can also collect +coverage for annotated parts of the kernel executing in background kernel +tasks or soft interrupts. See the "Remote coverage collection" section for +details. + +Prerequisites +------------- + +KCOV relies on compiler instrumentation and requires GCC 6.1.0 or later +or any Clang version supported by the kernel. + +Collecting comparison operands is supported with GCC 8+ or with Clang. + +To enable KCOV, configure the kernel with:: + + CONFIG_KCOV=y + +To enable comparison operands collection, set:: + + CONFIG_KCOV_ENABLE_COMPARISONS=y + +Coverage data only becomes accessible once debugfs has been mounted:: + + mount -t debugfs none /sys/kernel/debug + +Coverage collection +------------------- + +The following program demonstrates how to use KCOV to collect coverage for a +single syscall from within a test program: + +.. code-block:: c + + #include <stdio.h> + #include <stddef.h> + #include <stdint.h> + #include <stdlib.h> + #include <sys/types.h> + #include <sys/stat.h> + #include <sys/ioctl.h> + #include <sys/mman.h> + #include <unistd.h> + #include <fcntl.h> + #include <linux/types.h> + + #define KCOV_INIT_TRACE _IOR('c', 1, unsigned long) + #define KCOV_ENABLE _IO('c', 100) + #define KCOV_DISABLE _IO('c', 101) + #define COVER_SIZE (64<<10) + + #define KCOV_TRACE_PC 0 + #define KCOV_TRACE_CMP 1 + + int main(int argc, char **argv) + { + int fd; + unsigned long *cover, n, i; + + /* A single fd descriptor allows coverage collection on a single + * thread. + */ + fd = open("/sys/kernel/debug/kcov", O_RDWR); + if (fd == -1) + perror("open"), exit(1); + /* Setup trace mode and trace size. */ + if (ioctl(fd, KCOV_INIT_TRACE, COVER_SIZE)) + perror("ioctl"), exit(1); + /* Mmap buffer shared between kernel- and user-space. */ + cover = (unsigned long*)mmap(NULL, COVER_SIZE * sizeof(unsigned long), + PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0); + if ((void*)cover == MAP_FAILED) + perror("mmap"), exit(1); + /* Enable coverage collection on the current thread. */ + if (ioctl(fd, KCOV_ENABLE, KCOV_TRACE_PC)) + perror("ioctl"), exit(1); + /* Reset coverage from the tail of the ioctl() call. */ + __atomic_store_n(&cover[0], 0, __ATOMIC_RELAXED); + /* Call the target syscall call. */ + read(-1, NULL, 0); + /* Read number of PCs collected. */ + n = __atomic_load_n(&cover[0], __ATOMIC_RELAXED); + for (i = 0; i < n; i++) + printf("0x%lx\n", cover[i + 1]); + /* Disable coverage collection for the current thread. After this call + * coverage can be enabled for a different thread. + */ + if (ioctl(fd, KCOV_DISABLE, 0)) + perror("ioctl"), exit(1); + /* Free resources. */ + if (munmap(cover, COVER_SIZE * sizeof(unsigned long))) + perror("munmap"), exit(1); + if (close(fd)) + perror("close"), exit(1); + return 0; + } + +After piping through ``addr2line`` the output of the program looks as follows:: + + SyS_read + fs/read_write.c:562 + __fdget_pos + fs/file.c:774 + __fget_light + fs/file.c:746 + __fget_light + fs/file.c:750 + __fget_light + fs/file.c:760 + __fdget_pos + fs/file.c:784 + SyS_read + fs/read_write.c:562 + +If a program needs to collect coverage from several threads (independently), +it needs to open ``/sys/kernel/debug/kcov`` in each thread separately. + +The interface is fine-grained to allow efficient forking of test processes. +That is, a parent process opens ``/sys/kernel/debug/kcov``, enables trace mode, +mmaps coverage buffer, and then forks child processes in a loop. The child +processes only need to enable coverage (it gets disabled automatically when +a thread exits). + +Comparison operands collection +------------------------------ + +Comparison operands collection is similar to coverage collection: + +.. code-block:: c + + /* Same includes and defines as above. */ + + /* Number of 64-bit words per record. */ + #define KCOV_WORDS_PER_CMP 4 + + /* + * The format for the types of collected comparisons. + * + * Bit 0 shows whether one of the arguments is a compile-time constant. + * Bits 1 & 2 contain log2 of the argument size, up to 8 bytes. + */ + + #define KCOV_CMP_CONST (1 << 0) + #define KCOV_CMP_SIZE(n) ((n) << 1) + #define KCOV_CMP_MASK KCOV_CMP_SIZE(3) + + int main(int argc, char **argv) + { + int fd; + uint64_t *cover, type, arg1, arg2, is_const, size; + unsigned long n, i; + + fd = open("/sys/kernel/debug/kcov", O_RDWR); + if (fd == -1) + perror("open"), exit(1); + if (ioctl(fd, KCOV_INIT_TRACE, COVER_SIZE)) + perror("ioctl"), exit(1); + /* + * Note that the buffer pointer is of type uint64_t*, because all + * the comparison operands are promoted to uint64_t. + */ + cover = (uint64_t *)mmap(NULL, COVER_SIZE * sizeof(unsigned long), + PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0); + if ((void*)cover == MAP_FAILED) + perror("mmap"), exit(1); + /* Note KCOV_TRACE_CMP instead of KCOV_TRACE_PC. */ + if (ioctl(fd, KCOV_ENABLE, KCOV_TRACE_CMP)) + perror("ioctl"), exit(1); + __atomic_store_n(&cover[0], 0, __ATOMIC_RELAXED); + read(-1, NULL, 0); + /* Read number of comparisons collected. */ + n = __atomic_load_n(&cover[0], __ATOMIC_RELAXED); + for (i = 0; i < n; i++) { + uint64_t ip; + + type = cover[i * KCOV_WORDS_PER_CMP + 1]; + /* arg1 and arg2 - operands of the comparison. */ + arg1 = cover[i * KCOV_WORDS_PER_CMP + 2]; + arg2 = cover[i * KCOV_WORDS_PER_CMP + 3]; + /* ip - caller address. */ + ip = cover[i * KCOV_WORDS_PER_CMP + 4]; + /* size of the operands. */ + size = 1 << ((type & KCOV_CMP_MASK) >> 1); + /* is_const - true if either operand is a compile-time constant.*/ + is_const = type & KCOV_CMP_CONST; + printf("ip: 0x%lx type: 0x%lx, arg1: 0x%lx, arg2: 0x%lx, " + "size: %lu, %s\n", + ip, type, arg1, arg2, size, + is_const ? "const" : "non-const"); + } + if (ioctl(fd, KCOV_DISABLE, 0)) + perror("ioctl"), exit(1); + /* Free resources. */ + if (munmap(cover, COVER_SIZE * sizeof(unsigned long))) + perror("munmap"), exit(1); + if (close(fd)) + perror("close"), exit(1); + return 0; + } + +Note that the KCOV modes (collection of code coverage or comparison operands) +are mutually exclusive. + +Remote coverage collection +-------------------------- + +Besides collecting coverage data from handlers of syscalls issued from a +userspace process, KCOV can also collect coverage for parts of the kernel +executing in other contexts - so-called "remote" coverage. + +Using KCOV to collect remote coverage requires: + +1. Modifying kernel code to annotate the code section from where coverage + should be collected with ``kcov_remote_start`` and ``kcov_remote_stop``. + +2. Using ``KCOV_REMOTE_ENABLE`` instead of ``KCOV_ENABLE`` in the userspace + process that collects coverage. + +Both ``kcov_remote_start`` and ``kcov_remote_stop`` annotations and the +``KCOV_REMOTE_ENABLE`` ioctl accept handles that identify particular coverage +collection sections. The way a handle is used depends on the context where the +matching code section executes. + +KCOV supports collecting remote coverage from the following contexts: + +1. Global kernel background tasks. These are the tasks that are spawned during + kernel boot in a limited number of instances (e.g. one USB ``hub_event`` + worker is spawned per one USB HCD). + +2. Local kernel background tasks. These are spawned when a userspace process + interacts with some kernel interface and are usually killed when the process + exits (e.g. vhost workers). + +3. Soft interrupts. + +For #1 and #3, a unique global handle must be chosen and passed to the +corresponding ``kcov_remote_start`` call. Then a userspace process must pass +this handle to ``KCOV_REMOTE_ENABLE`` in the ``handles`` array field of the +``kcov_remote_arg`` struct. This will attach the used KCOV device to the code +section referenced by this handle. Multiple global handles identifying +different code sections can be passed at once. + +For #2, the userspace process instead must pass a non-zero handle through the +``common_handle`` field of the ``kcov_remote_arg`` struct. This common handle +gets saved to the ``kcov_handle`` field in the current ``task_struct`` and +needs to be passed to the newly spawned local tasks via custom kernel code +modifications. Those tasks should in turn use the passed handle in their +``kcov_remote_start`` and ``kcov_remote_stop`` annotations. + +KCOV follows a predefined format for both global and common handles. Each +handle is a ``u64`` integer. Currently, only the one top and the lower 4 bytes +are used. Bytes 4-7 are reserved and must be zero. + +For global handles, the top byte of the handle denotes the id of a subsystem +this handle belongs to. For example, KCOV uses ``1`` as the USB subsystem id. +The lower 4 bytes of a global handle denote the id of a task instance within +that subsystem. For example, each ``hub_event`` worker uses the USB bus number +as the task instance id. + +For common handles, a reserved value ``0`` is used as a subsystem id, as such +handles don't belong to a particular subsystem. The lower 4 bytes of a common +handle identify a collective instance of all local tasks spawned by the +userspace process that passed a common handle to ``KCOV_REMOTE_ENABLE``. + +In practice, any value can be used for common handle instance id if coverage +is only collected from a single userspace process on the system. However, if +common handles are used by multiple processes, unique instance ids must be +used for each process. One option is to use the process id as the common +handle instance id. + +The following program demonstrates using KCOV to collect coverage from both +local tasks spawned by the process and the global task that handles USB bus #1: + +.. code-block:: c + + /* Same includes and defines as above. */ + + struct kcov_remote_arg { + __u32 trace_mode; + __u32 area_size; + __u32 num_handles; + __aligned_u64 common_handle; + __aligned_u64 handles[0]; + }; + + #define KCOV_INIT_TRACE _IOR('c', 1, unsigned long) + #define KCOV_DISABLE _IO('c', 101) + #define KCOV_REMOTE_ENABLE _IOW('c', 102, struct kcov_remote_arg) + + #define COVER_SIZE (64 << 10) + + #define KCOV_TRACE_PC 0 + + #define KCOV_SUBSYSTEM_COMMON (0x00ull << 56) + #define KCOV_SUBSYSTEM_USB (0x01ull << 56) + + #define KCOV_SUBSYSTEM_MASK (0xffull << 56) + #define KCOV_INSTANCE_MASK (0xffffffffull) + + static inline __u64 kcov_remote_handle(__u64 subsys, __u64 inst) + { + if (subsys & ~KCOV_SUBSYSTEM_MASK || inst & ~KCOV_INSTANCE_MASK) + return 0; + return subsys | inst; + } + + #define KCOV_COMMON_ID 0x42 + #define KCOV_USB_BUS_NUM 1 + + int main(int argc, char **argv) + { + int fd; + unsigned long *cover, n, i; + struct kcov_remote_arg *arg; + + fd = open("/sys/kernel/debug/kcov", O_RDWR); + if (fd == -1) + perror("open"), exit(1); + if (ioctl(fd, KCOV_INIT_TRACE, COVER_SIZE)) + perror("ioctl"), exit(1); + cover = (unsigned long*)mmap(NULL, COVER_SIZE * sizeof(unsigned long), + PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0); + if ((void*)cover == MAP_FAILED) + perror("mmap"), exit(1); + + /* Enable coverage collection via common handle and from USB bus #1. */ + arg = calloc(1, sizeof(*arg) + sizeof(uint64_t)); + if (!arg) + perror("calloc"), exit(1); + arg->trace_mode = KCOV_TRACE_PC; + arg->area_size = COVER_SIZE; + arg->num_handles = 1; + arg->common_handle = kcov_remote_handle(KCOV_SUBSYSTEM_COMMON, + KCOV_COMMON_ID); + arg->handles[0] = kcov_remote_handle(KCOV_SUBSYSTEM_USB, + KCOV_USB_BUS_NUM); + if (ioctl(fd, KCOV_REMOTE_ENABLE, arg)) + perror("ioctl"), free(arg), exit(1); + free(arg); + + /* + * Here the user needs to trigger execution of a kernel code section + * that is either annotated with the common handle, or to trigger some + * activity on USB bus #1. + */ + sleep(2); + + n = __atomic_load_n(&cover[0], __ATOMIC_RELAXED); + for (i = 0; i < n; i++) + printf("0x%lx\n", cover[i + 1]); + if (ioctl(fd, KCOV_DISABLE, 0)) + perror("ioctl"), exit(1); + if (munmap(cover, COVER_SIZE * sizeof(unsigned long))) + perror("munmap"), exit(1); + if (close(fd)) + perror("close"), exit(1); + return 0; + } |