diff options
Diffstat (limited to '')
-rw-r--r-- | Documentation/driver-api/libata.rst | 993 |
1 files changed, 993 insertions, 0 deletions
diff --git a/Documentation/driver-api/libata.rst b/Documentation/driver-api/libata.rst new file mode 100644 index 0000000000..5da27a7492 --- /dev/null +++ b/Documentation/driver-api/libata.rst @@ -0,0 +1,993 @@ +======================== +libATA Developer's Guide +======================== + +:Author: Jeff Garzik + +Introduction +============ + +libATA is a library used inside the Linux kernel to support ATA host +controllers and devices. libATA provides an ATA driver API, class +transports for ATA and ATAPI devices, and SCSI<->ATA translation for ATA +devices according to the T10 SAT specification. + +This Guide documents the libATA driver API, library functions, library +internals, and a couple sample ATA low-level drivers. + +libata Driver API +================= + +:c:type:`struct ata_port_operations <ata_port_operations>` +is defined for every low-level libata +hardware driver, and it controls how the low-level driver interfaces +with the ATA and SCSI layers. + +FIS-based drivers will hook into the system with ``->qc_prep()`` and +``->qc_issue()`` high-level hooks. Hardware which behaves in a manner +similar to PCI IDE hardware may utilize several generic helpers, +defining at a bare minimum the bus I/O addresses of the ATA shadow +register blocks. + +:c:type:`struct ata_port_operations <ata_port_operations>` +---------------------------------------------------------- + +Post-IDENTIFY device configuration +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +:: + + void (*dev_config) (struct ata_port *, struct ata_device *); + + +Called after IDENTIFY [PACKET] DEVICE is issued to each device found. +Typically used to apply device-specific fixups prior to issue of SET +FEATURES - XFER MODE, and prior to operation. + +This entry may be specified as NULL in ata_port_operations. + +Set PIO/DMA mode +~~~~~~~~~~~~~~~~ + +:: + + void (*set_piomode) (struct ata_port *, struct ata_device *); + void (*set_dmamode) (struct ata_port *, struct ata_device *); + void (*post_set_mode) (struct ata_port *); + unsigned int (*mode_filter) (struct ata_port *, struct ata_device *, unsigned int); + + +Hooks called prior to the issue of SET FEATURES - XFER MODE command. The +optional ``->mode_filter()`` hook is called when libata has built a mask of +the possible modes. This is passed to the ``->mode_filter()`` function +which should return a mask of valid modes after filtering those +unsuitable due to hardware limits. It is not valid to use this interface +to add modes. + +``dev->pio_mode`` and ``dev->dma_mode`` are guaranteed to be valid when +``->set_piomode()`` and when ``->set_dmamode()`` is called. The timings for +any other drive sharing the cable will also be valid at this point. That +is the library records the decisions for the modes of each drive on a +channel before it attempts to set any of them. + +``->post_set_mode()`` is called unconditionally, after the SET FEATURES - +XFER MODE command completes successfully. + +``->set_piomode()`` is always called (if present), but ``->set_dma_mode()`` +is only called if DMA is possible. + +Taskfile read/write +~~~~~~~~~~~~~~~~~~~ + +:: + + void (*sff_tf_load) (struct ata_port *ap, struct ata_taskfile *tf); + void (*sff_tf_read) (struct ata_port *ap, struct ata_taskfile *tf); + + +``->tf_load()`` is called to load the given taskfile into hardware +registers / DMA buffers. ``->tf_read()`` is called to read the hardware +registers / DMA buffers, to obtain the current set of taskfile register +values. Most drivers for taskfile-based hardware (PIO or MMIO) use +:c:func:`ata_sff_tf_load` and :c:func:`ata_sff_tf_read` for these hooks. + +PIO data read/write +~~~~~~~~~~~~~~~~~~~ + +:: + + void (*sff_data_xfer) (struct ata_device *, unsigned char *, unsigned int, int); + + +All bmdma-style drivers must implement this hook. This is the low-level +operation that actually copies the data bytes during a PIO data +transfer. Typically the driver will choose one of +:c:func:`ata_sff_data_xfer`, or :c:func:`ata_sff_data_xfer32`. + +ATA command execute +~~~~~~~~~~~~~~~~~~~ + +:: + + void (*sff_exec_command)(struct ata_port *ap, struct ata_taskfile *tf); + + +causes an ATA command, previously loaded with ``->tf_load()``, to be +initiated in hardware. Most drivers for taskfile-based hardware use +:c:func:`ata_sff_exec_command` for this hook. + +Per-cmd ATAPI DMA capabilities filter +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +:: + + int (*check_atapi_dma) (struct ata_queued_cmd *qc); + + +Allow low-level driver to filter ATA PACKET commands, returning a status +indicating whether or not it is OK to use DMA for the supplied PACKET +command. + +This hook may be specified as NULL, in which case libata will assume +that atapi dma can be supported. + +Read specific ATA shadow registers +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +:: + + u8 (*sff_check_status)(struct ata_port *ap); + u8 (*sff_check_altstatus)(struct ata_port *ap); + + +Reads the Status/AltStatus ATA shadow register from hardware. On some +hardware, reading the Status register has the side effect of clearing +the interrupt condition. Most drivers for taskfile-based hardware use +:c:func:`ata_sff_check_status` for this hook. + +Write specific ATA shadow register +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +:: + + void (*sff_set_devctl)(struct ata_port *ap, u8 ctl); + + +Write the device control ATA shadow register to the hardware. Most +drivers don't need to define this. + +Select ATA device on bus +~~~~~~~~~~~~~~~~~~~~~~~~ + +:: + + void (*sff_dev_select)(struct ata_port *ap, unsigned int device); + + +Issues the low-level hardware command(s) that causes one of N hardware +devices to be considered 'selected' (active and available for use) on +the ATA bus. This generally has no meaning on FIS-based devices. + +Most drivers for taskfile-based hardware use :c:func:`ata_sff_dev_select` for +this hook. + +Private tuning method +~~~~~~~~~~~~~~~~~~~~~ + +:: + + void (*set_mode) (struct ata_port *ap); + + +By default libata performs drive and controller tuning in accordance +with the ATA timing rules and also applies blacklists and cable limits. +Some controllers need special handling and have custom tuning rules, +typically raid controllers that use ATA commands but do not actually do +drive timing. + + **Warning** + + This hook should not be used to replace the standard controller + tuning logic when a controller has quirks. Replacing the default + tuning logic in that case would bypass handling for drive and bridge + quirks that may be important to data reliability. If a controller + needs to filter the mode selection it should use the mode_filter + hook instead. + +Control PCI IDE BMDMA engine +~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +:: + + void (*bmdma_setup) (struct ata_queued_cmd *qc); + void (*bmdma_start) (struct ata_queued_cmd *qc); + void (*bmdma_stop) (struct ata_port *ap); + u8 (*bmdma_status) (struct ata_port *ap); + + +When setting up an IDE BMDMA transaction, these hooks arm +(``->bmdma_setup``), fire (``->bmdma_start``), and halt (``->bmdma_stop``) the +hardware's DMA engine. ``->bmdma_status`` is used to read the standard PCI +IDE DMA Status register. + +These hooks are typically either no-ops, or simply not implemented, in +FIS-based drivers. + +Most legacy IDE drivers use :c:func:`ata_bmdma_setup` for the +:c:func:`bmdma_setup` hook. :c:func:`ata_bmdma_setup` will write the pointer +to the PRD table to the IDE PRD Table Address register, enable DMA in the DMA +Command register, and call :c:func:`exec_command` to begin the transfer. + +Most legacy IDE drivers use :c:func:`ata_bmdma_start` for the +:c:func:`bmdma_start` hook. :c:func:`ata_bmdma_start` will write the +ATA_DMA_START flag to the DMA Command register. + +Many legacy IDE drivers use :c:func:`ata_bmdma_stop` for the +:c:func:`bmdma_stop` hook. :c:func:`ata_bmdma_stop` clears the ATA_DMA_START +flag in the DMA command register. + +Many legacy IDE drivers use :c:func:`ata_bmdma_status` as the +:c:func:`bmdma_status` hook. + +High-level taskfile hooks +~~~~~~~~~~~~~~~~~~~~~~~~~ + +:: + + enum ata_completion_errors (*qc_prep) (struct ata_queued_cmd *qc); + int (*qc_issue) (struct ata_queued_cmd *qc); + + +Higher-level hooks, these two hooks can potentially supersede several of +the above taskfile/DMA engine hooks. ``->qc_prep`` is called after the +buffers have been DMA-mapped, and is typically used to populate the +hardware's DMA scatter-gather table. Some drivers use the standard +:c:func:`ata_bmdma_qc_prep` and :c:func:`ata_bmdma_dumb_qc_prep` helper +functions, but more advanced drivers roll their own. + +``->qc_issue`` is used to make a command active, once the hardware and S/G +tables have been prepared. IDE BMDMA drivers use the helper function +:c:func:`ata_sff_qc_issue` for taskfile protocol-based dispatch. More +advanced drivers implement their own ``->qc_issue``. + +:c:func:`ata_sff_qc_issue` calls ``->sff_tf_load()``, ``->bmdma_setup()``, and +``->bmdma_start()`` as necessary to initiate a transfer. + +Exception and probe handling (EH) +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +:: + + void (*freeze) (struct ata_port *ap); + void (*thaw) (struct ata_port *ap); + + +:c:func:`ata_port_freeze` is called when HSM violations or some other +condition disrupts normal operation of the port. A frozen port is not +allowed to perform any operation until the port is thawed, which usually +follows a successful reset. + +The optional ``->freeze()`` callback can be used for freezing the port +hardware-wise (e.g. mask interrupt and stop DMA engine). If a port +cannot be frozen hardware-wise, the interrupt handler must ack and clear +interrupts unconditionally while the port is frozen. + +The optional ``->thaw()`` callback is called to perform the opposite of +``->freeze()``: prepare the port for normal operation once again. Unmask +interrupts, start DMA engine, etc. + +:: + + void (*error_handler) (struct ata_port *ap); + + +``->error_handler()`` is a driver's hook into probe, hotplug, and recovery +and other exceptional conditions. The primary responsibility of an +implementation is to call :c:func:`ata_do_eh` or :c:func:`ata_bmdma_drive_eh` +with a set of EH hooks as arguments: + +'prereset' hook (may be NULL) is called during an EH reset, before any +other actions are taken. + +'postreset' hook (may be NULL) is called after the EH reset is +performed. Based on existing conditions, severity of the problem, and +hardware capabilities, + +Either 'softreset' (may be NULL) or 'hardreset' (may be NULL) will be +called to perform the low-level EH reset. + +:: + + void (*post_internal_cmd) (struct ata_queued_cmd *qc); + + +Perform any hardware-specific actions necessary to finish processing +after executing a probe-time or EH-time command via +:c:func:`ata_exec_internal`. + +Hardware interrupt handling +~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +:: + + irqreturn_t (*irq_handler)(int, void *, struct pt_regs *); + void (*irq_clear) (struct ata_port *); + + +``->irq_handler`` is the interrupt handling routine registered with the +system, by libata. ``->irq_clear`` is called during probe just before the +interrupt handler is registered, to be sure hardware is quiet. + +The second argument, dev_instance, should be cast to a pointer to +:c:type:`struct ata_host_set <ata_host_set>`. + +Most legacy IDE drivers use :c:func:`ata_sff_interrupt` for the irq_handler +hook, which scans all ports in the host_set, determines which queued +command was active (if any), and calls ata_sff_host_intr(ap,qc). + +Most legacy IDE drivers use :c:func:`ata_sff_irq_clear` for the +:c:func:`irq_clear` hook, which simply clears the interrupt and error flags +in the DMA status register. + +SATA phy read/write +~~~~~~~~~~~~~~~~~~~ + +:: + + int (*scr_read) (struct ata_port *ap, unsigned int sc_reg, + u32 *val); + int (*scr_write) (struct ata_port *ap, unsigned int sc_reg, + u32 val); + + +Read and write standard SATA phy registers. +sc_reg is one of SCR_STATUS, SCR_CONTROL, SCR_ERROR, or SCR_ACTIVE. + +Init and shutdown +~~~~~~~~~~~~~~~~~ + +:: + + int (*port_start) (struct ata_port *ap); + void (*port_stop) (struct ata_port *ap); + void (*host_stop) (struct ata_host_set *host_set); + + +``->port_start()`` is called just after the data structures for each port +are initialized. Typically this is used to alloc per-port DMA buffers / +tables / rings, enable DMA engines, and similar tasks. Some drivers also +use this entry point as a chance to allocate driver-private memory for +``ap->private_data``. + +Many drivers use :c:func:`ata_port_start` as this hook or call it from their +own :c:func:`port_start` hooks. :c:func:`ata_port_start` allocates space for +a legacy IDE PRD table and returns. + +``->port_stop()`` is called after ``->host_stop()``. Its sole function is to +release DMA/memory resources, now that they are no longer actively being +used. Many drivers also free driver-private data from port at this time. + +``->host_stop()`` is called after all ``->port_stop()`` calls have completed. +The hook must finalize hardware shutdown, release DMA and other +resources, etc. This hook may be specified as NULL, in which case it is +not called. + +Error handling +============== + +This chapter describes how errors are handled under libata. Readers are +advised to read SCSI EH (Documentation/scsi/scsi_eh.rst) and ATA +exceptions doc first. + +Origins of commands +------------------- + +In libata, a command is represented with +:c:type:`struct ata_queued_cmd <ata_queued_cmd>` or qc. +qc's are preallocated during port initialization and repetitively used +for command executions. Currently only one qc is allocated per port but +yet-to-be-merged NCQ branch allocates one for each tag and maps each qc +to NCQ tag 1-to-1. + +libata commands can originate from two sources - libata itself and SCSI +midlayer. libata internal commands are used for initialization and error +handling. All normal blk requests and commands for SCSI emulation are +passed as SCSI commands through queuecommand callback of SCSI host +template. + +How commands are issued +----------------------- + +Internal commands + Once allocated qc's taskfile is initialized for the command to be + executed. qc currently has two mechanisms to notify completion. One + is via ``qc->complete_fn()`` callback and the other is completion + ``qc->waiting``. ``qc->complete_fn()`` callback is the asynchronous path + used by normal SCSI translated commands and ``qc->waiting`` is the + synchronous (issuer sleeps in process context) path used by internal + commands. + + Once initialization is complete, host_set lock is acquired and the + qc is issued. + +SCSI commands + All libata drivers use :c:func:`ata_scsi_queuecmd` as + ``hostt->queuecommand`` callback. scmds can either be simulated or + translated. No qc is involved in processing a simulated scmd. The + result is computed right away and the scmd is completed. + + ``qc->complete_fn()`` callback is used for completion notification. ATA + commands use :c:func:`ata_scsi_qc_complete` while ATAPI commands use + :c:func:`atapi_qc_complete`. Both functions end up calling ``qc->scsidone`` + to notify upper layer when the qc is finished. After translation is + completed, the qc is issued with :c:func:`ata_qc_issue`. + + Note that SCSI midlayer invokes hostt->queuecommand while holding + host_set lock, so all above occur while holding host_set lock. + +How commands are processed +-------------------------- + +Depending on which protocol and which controller are used, commands are +processed differently. For the purpose of discussion, a controller which +uses taskfile interface and all standard callbacks is assumed. + +Currently 6 ATA command protocols are used. They can be sorted into the +following four categories according to how they are processed. + +ATA NO DATA or DMA + ATA_PROT_NODATA and ATA_PROT_DMA fall into this category. These + types of commands don't require any software intervention once + issued. Device will raise interrupt on completion. + +ATA PIO + ATA_PROT_PIO is in this category. libata currently implements PIO + with polling. ATA_NIEN bit is set to turn off interrupt and + pio_task on ata_wq performs polling and IO. + +ATAPI NODATA or DMA + ATA_PROT_ATAPI_NODATA and ATA_PROT_ATAPI_DMA are in this + category. packet_task is used to poll BSY bit after issuing PACKET + command. Once BSY is turned off by the device, packet_task + transfers CDB and hands off processing to interrupt handler. + +ATAPI PIO + ATA_PROT_ATAPI is in this category. ATA_NIEN bit is set and, as + in ATAPI NODATA or DMA, packet_task submits cdb. However, after + submitting cdb, further processing (data transfer) is handed off to + pio_task. + +How commands are completed +-------------------------- + +Once issued, all qc's are either completed with :c:func:`ata_qc_complete` or +time out. For commands which are handled by interrupts, +:c:func:`ata_host_intr` invokes :c:func:`ata_qc_complete`, and, for PIO tasks, +pio_task invokes :c:func:`ata_qc_complete`. In error cases, packet_task may +also complete commands. + +:c:func:`ata_qc_complete` does the following. + +1. DMA memory is unmapped. + +2. ATA_QCFLAG_ACTIVE is cleared from qc->flags. + +3. :c:expr:`qc->complete_fn` callback is invoked. If the return value of the + callback is not zero. Completion is short circuited and + :c:func:`ata_qc_complete` returns. + +4. :c:func:`__ata_qc_complete` is called, which does + + 1. ``qc->flags`` is cleared to zero. + + 2. ``ap->active_tag`` and ``qc->tag`` are poisoned. + + 3. ``qc->waiting`` is cleared & completed (in that order). + + 4. qc is deallocated by clearing appropriate bit in ``ap->qactive``. + +So, it basically notifies upper layer and deallocates qc. One exception +is short-circuit path in #3 which is used by :c:func:`atapi_qc_complete`. + +For all non-ATAPI commands, whether it fails or not, almost the same +code path is taken and very little error handling takes place. A qc is +completed with success status if it succeeded, with failed status +otherwise. + +However, failed ATAPI commands require more handling as REQUEST SENSE is +needed to acquire sense data. If an ATAPI command fails, +:c:func:`ata_qc_complete` is invoked with error status, which in turn invokes +:c:func:`atapi_qc_complete` via ``qc->complete_fn()`` callback. + +This makes :c:func:`atapi_qc_complete` set ``scmd->result`` to +SAM_STAT_CHECK_CONDITION, complete the scmd and return 1. As the +sense data is empty but ``scmd->result`` is CHECK CONDITION, SCSI midlayer +will invoke EH for the scmd, and returning 1 makes :c:func:`ata_qc_complete` +to return without deallocating the qc. This leads us to +:c:func:`ata_scsi_error` with partially completed qc. + +:c:func:`ata_scsi_error` +------------------------ + +:c:func:`ata_scsi_error` is the current ``transportt->eh_strategy_handler()`` +for libata. As discussed above, this will be entered in two cases - +timeout and ATAPI error completion. This function will check if a qc is active +and has not failed yet. Such a qc will be marked with AC_ERR_TIMEOUT such that +EH will know to handle it later. Then it calls low level libata driver's +:c:func:`error_handler` callback. + +When the :c:func:`error_handler` callback is invoked it stops BMDMA and +completes the qc. Note that as we're currently in EH, we cannot call +scsi_done. As described in SCSI EH doc, a recovered scmd should be +either retried with :c:func:`scsi_queue_insert` or finished with +:c:func:`scsi_finish_command`. Here, we override ``qc->scsidone`` with +:c:func:`scsi_finish_command` and calls :c:func:`ata_qc_complete`. + +If EH is invoked due to a failed ATAPI qc, the qc here is completed but +not deallocated. The purpose of this half-completion is to use the qc as +place holder to make EH code reach this place. This is a bit hackish, +but it works. + +Once control reaches here, the qc is deallocated by invoking +:c:func:`__ata_qc_complete` explicitly. Then, internal qc for REQUEST SENSE +is issued. Once sense data is acquired, scmd is finished by directly +invoking :c:func:`scsi_finish_command` on the scmd. Note that as we already +have completed and deallocated the qc which was associated with the +scmd, we don't need to/cannot call :c:func:`ata_qc_complete` again. + +Problems with the current EH +---------------------------- + +- Error representation is too crude. Currently any and all error + conditions are represented with ATA STATUS and ERROR registers. + Errors which aren't ATA device errors are treated as ATA device + errors by setting ATA_ERR bit. Better error descriptor which can + properly represent ATA and other errors/exceptions is needed. + +- When handling timeouts, no action is taken to make device forget + about the timed out command and ready for new commands. + +- EH handling via :c:func:`ata_scsi_error` is not properly protected from + usual command processing. On EH entrance, the device is not in + quiescent state. Timed out commands may succeed or fail any time. + pio_task and atapi_task may still be running. + +- Too weak error recovery. Devices / controllers causing HSM mismatch + errors and other errors quite often require reset to return to known + state. Also, advanced error handling is necessary to support features + like NCQ and hotplug. + +- ATA errors are directly handled in the interrupt handler and PIO + errors in pio_task. This is problematic for advanced error handling + for the following reasons. + + First, advanced error handling often requires context and internal qc + execution. + + Second, even a simple failure (say, CRC error) needs information + gathering and could trigger complex error handling (say, resetting & + reconfiguring). Having multiple code paths to gather information, + enter EH and trigger actions makes life painful. + + Third, scattered EH code makes implementing low level drivers + difficult. Low level drivers override libata callbacks. If EH is + scattered over several places, each affected callbacks should perform + its part of error handling. This can be error prone and painful. + +libata Library +============== + +.. kernel-doc:: drivers/ata/libata-core.c + :export: + +libata Core Internals +===================== + +.. kernel-doc:: drivers/ata/libata-core.c + :internal: + +.. kernel-doc:: drivers/ata/libata-eh.c + +libata SCSI translation/emulation +================================= + +.. kernel-doc:: drivers/ata/libata-scsi.c + :export: + +.. kernel-doc:: drivers/ata/libata-scsi.c + :internal: + +ATA errors and exceptions +========================= + +This chapter tries to identify what error/exception conditions exist for +ATA/ATAPI devices and describe how they should be handled in +implementation-neutral way. + +The term 'error' is used to describe conditions where either an explicit +error condition is reported from device or a command has timed out. + +The term 'exception' is either used to describe exceptional conditions +which are not errors (say, power or hotplug events), or to describe both +errors and non-error exceptional conditions. Where explicit distinction +between error and exception is necessary, the term 'non-error exception' +is used. + +Exception categories +-------------------- + +Exceptions are described primarily with respect to legacy taskfile + bus +master IDE interface. If a controller provides other better mechanism +for error reporting, mapping those into categories described below +shouldn't be difficult. + +In the following sections, two recovery actions - reset and +reconfiguring transport - are mentioned. These are described further in +`EH recovery actions <#exrec>`__. + +HSM violation +~~~~~~~~~~~~~ + +This error is indicated when STATUS value doesn't match HSM requirement +during issuing or execution any ATA/ATAPI command. + +- ATA_STATUS doesn't contain !BSY && DRDY && !DRQ while trying to + issue a command. + +- !BSY && !DRQ during PIO data transfer. + +- DRQ on command completion. + +- !BSY && ERR after CDB transfer starts but before the last byte of CDB + is transferred. ATA/ATAPI standard states that "The device shall not + terminate the PACKET command with an error before the last byte of + the command packet has been written" in the error outputs description + of PACKET command and the state diagram doesn't include such + transitions. + +In these cases, HSM is violated and not much information regarding the +error can be acquired from STATUS or ERROR register. IOW, this error can +be anything - driver bug, faulty device, controller and/or cable. + +As HSM is violated, reset is necessary to restore known state. +Reconfiguring transport for lower speed might be helpful too as +transmission errors sometimes cause this kind of errors. + +ATA/ATAPI device error (non-NCQ / non-CHECK CONDITION) +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +These are errors detected and reported by ATA/ATAPI devices indicating +device problems. For this type of errors, STATUS and ERROR register +values are valid and describe error condition. Note that some of ATA bus +errors are detected by ATA/ATAPI devices and reported using the same +mechanism as device errors. Those cases are described later in this +section. + +For ATA commands, this type of errors are indicated by !BSY && ERR +during command execution and on completion. + +For ATAPI commands, + +- !BSY && ERR && ABRT right after issuing PACKET indicates that PACKET + command is not supported and falls in this category. + +- !BSY && ERR(==CHK) && !ABRT after the last byte of CDB is transferred + indicates CHECK CONDITION and doesn't fall in this category. + +- !BSY && ERR(==CHK) && ABRT after the last byte of CDB is transferred + \*probably\* indicates CHECK CONDITION and doesn't fall in this + category. + +Of errors detected as above, the following are not ATA/ATAPI device +errors but ATA bus errors and should be handled according to +`ATA bus error <#excatATAbusErr>`__. + +CRC error during data transfer + This is indicated by ICRC bit in the ERROR register and means that + corruption occurred during data transfer. Up to ATA/ATAPI-7, the + standard specifies that this bit is only applicable to UDMA + transfers but ATA/ATAPI-8 draft revision 1f says that the bit may be + applicable to multiword DMA and PIO. + +ABRT error during data transfer or on completion + Up to ATA/ATAPI-7, the standard specifies that ABRT could be set on + ICRC errors and on cases where a device is not able to complete a + command. Combined with the fact that MWDMA and PIO transfer errors + aren't allowed to use ICRC bit up to ATA/ATAPI-7, it seems to imply + that ABRT bit alone could indicate transfer errors. + + However, ATA/ATAPI-8 draft revision 1f removes the part that ICRC + errors can turn on ABRT. So, this is kind of gray area. Some + heuristics are needed here. + +ATA/ATAPI device errors can be further categorized as follows. + +Media errors + This is indicated by UNC bit in the ERROR register. ATA devices + reports UNC error only after certain number of retries cannot + recover the data, so there's nothing much else to do other than + notifying upper layer. + + READ and WRITE commands report CHS or LBA of the first failed sector + but ATA/ATAPI standard specifies that the amount of transferred data + on error completion is indeterminate, so we cannot assume that + sectors preceding the failed sector have been transferred and thus + cannot complete those sectors successfully as SCSI does. + +Media changed / media change requested error + <<TODO: fill here>> + +Address error + This is indicated by IDNF bit in the ERROR register. Report to upper + layer. + +Other errors + This can be invalid command or parameter indicated by ABRT ERROR bit + or some other error condition. Note that ABRT bit can indicate a lot + of things including ICRC and Address errors. Heuristics needed. + +Depending on commands, not all STATUS/ERROR bits are applicable. These +non-applicable bits are marked with "na" in the output descriptions but +up to ATA/ATAPI-7 no definition of "na" can be found. However, +ATA/ATAPI-8 draft revision 1f describes "N/A" as follows. + + 3.2.3.3a N/A + A keyword the indicates a field has no defined value in this + standard and should not be checked by the host or device. N/A + fields should be cleared to zero. + +So, it seems reasonable to assume that "na" bits are cleared to zero by +devices and thus need no explicit masking. + +ATAPI device CHECK CONDITION +~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +ATAPI device CHECK CONDITION error is indicated by set CHK bit (ERR bit) +in the STATUS register after the last byte of CDB is transferred for a +PACKET command. For this kind of errors, sense data should be acquired +to gather information regarding the errors. REQUEST SENSE packet command +should be used to acquire sense data. + +Once sense data is acquired, this type of errors can be handled +similarly to other SCSI errors. Note that sense data may indicate ATA +bus error (e.g. Sense Key 04h HARDWARE ERROR && ASC/ASCQ 47h/00h SCSI +PARITY ERROR). In such cases, the error should be considered as an ATA +bus error and handled according to `ATA bus error <#excatATAbusErr>`__. + +ATA device error (NCQ) +~~~~~~~~~~~~~~~~~~~~~~ + +NCQ command error is indicated by cleared BSY and set ERR bit during NCQ +command phase (one or more NCQ commands outstanding). Although STATUS +and ERROR registers will contain valid values describing the error, READ +LOG EXT is required to clear the error condition, determine which +command has failed and acquire more information. + +READ LOG EXT Log Page 10h reports which tag has failed and taskfile +register values describing the error. With this information the failed +command can be handled as a normal ATA command error as in +`ATA/ATAPI device error (non-NCQ / non-CHECK CONDITION) <#excatDevErr>`__ +and all other in-flight commands must be retried. Note that this retry +should not be counted - it's likely that commands retried this way would +have completed normally if it were not for the failed command. + +Note that ATA bus errors can be reported as ATA device NCQ errors. This +should be handled as described in `ATA bus error <#excatATAbusErr>`__. + +If READ LOG EXT Log Page 10h fails or reports NQ, we're thoroughly +screwed. This condition should be treated according to +`HSM violation <#excatHSMviolation>`__. + +ATA bus error +~~~~~~~~~~~~~ + +ATA bus error means that data corruption occurred during transmission +over ATA bus (SATA or PATA). This type of errors can be indicated by + +- ICRC or ABRT error as described in + `ATA/ATAPI device error (non-NCQ / non-CHECK CONDITION) <#excatDevErr>`__. + +- Controller-specific error completion with error information + indicating transmission error. + +- On some controllers, command timeout. In this case, there may be a + mechanism to determine that the timeout is due to transmission error. + +- Unknown/random errors, timeouts and all sorts of weirdities. + +As described above, transmission errors can cause wide variety of +symptoms ranging from device ICRC error to random device lockup, and, +for many cases, there is no way to tell if an error condition is due to +transmission error or not; therefore, it's necessary to employ some kind +of heuristic when dealing with errors and timeouts. For example, +encountering repetitive ABRT errors for known supported command is +likely to indicate ATA bus error. + +Once it's determined that ATA bus errors have possibly occurred, +lowering ATA bus transmission speed is one of actions which may +alleviate the problem. See `Reconfigure transport <#exrecReconf>`__ for +more information. + +PCI bus error +~~~~~~~~~~~~~ + +Data corruption or other failures during transmission over PCI (or other +system bus). For standard BMDMA, this is indicated by Error bit in the +BMDMA Status register. This type of errors must be logged as it +indicates something is very wrong with the system. Resetting host +controller is recommended. + +Late completion +~~~~~~~~~~~~~~~ + +This occurs when timeout occurs and the timeout handler finds out that +the timed out command has completed successfully or with error. This is +usually caused by lost interrupts. This type of errors must be logged. +Resetting host controller is recommended. + +Unknown error (timeout) +~~~~~~~~~~~~~~~~~~~~~~~ + +This is when timeout occurs and the command is still processing or the +host and device are in unknown state. When this occurs, HSM could be in +any valid or invalid state. To bring the device to known state and make +it forget about the timed out command, resetting is necessary. The timed +out command may be retried. + +Timeouts can also be caused by transmission errors. Refer to +`ATA bus error <#excatATAbusErr>`__ for more details. + +Hotplug and power management exceptions +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +<<TODO: fill here>> + +EH recovery actions +------------------- + +This section discusses several important recovery actions. + +Clearing error condition +~~~~~~~~~~~~~~~~~~~~~~~~ + +Many controllers require its error registers to be cleared by error +handler. Different controllers may have different requirements. + +For SATA, it's strongly recommended to clear at least SError register +during error handling. + +Reset +~~~~~ + +During EH, resetting is necessary in the following cases. + +- HSM is in unknown or invalid state + +- HBA is in unknown or invalid state + +- EH needs to make HBA/device forget about in-flight commands + +- HBA/device behaves weirdly + +Resetting during EH might be a good idea regardless of error condition +to improve EH robustness. Whether to reset both or either one of HBA and +device depends on situation but the following scheme is recommended. + +- When it's known that HBA is in ready state but ATA/ATAPI device is in + unknown state, reset only device. + +- If HBA is in unknown state, reset both HBA and device. + +HBA resetting is implementation specific. For a controller complying to +taskfile/BMDMA PCI IDE, stopping active DMA transaction may be +sufficient iff BMDMA state is the only HBA context. But even mostly +taskfile/BMDMA PCI IDE complying controllers may have implementation +specific requirements and mechanism to reset themselves. This must be +addressed by specific drivers. + +OTOH, ATA/ATAPI standard describes in detail ways to reset ATA/ATAPI +devices. + +PATA hardware reset + This is hardware initiated device reset signalled with asserted PATA + RESET- signal. There is no standard way to initiate hardware reset + from software although some hardware provides registers that allow + driver to directly tweak the RESET- signal. + +Software reset + This is achieved by turning CONTROL SRST bit on for at least 5us. + Both PATA and SATA support it but, in case of SATA, this may require + controller-specific support as the second Register FIS to clear SRST + should be transmitted while BSY bit is still set. Note that on PATA, + this resets both master and slave devices on a channel. + +EXECUTE DEVICE DIAGNOSTIC command + Although ATA/ATAPI standard doesn't describe exactly, EDD implies + some level of resetting, possibly similar level with software reset. + Host-side EDD protocol can be handled with normal command processing + and most SATA controllers should be able to handle EDD's just like + other commands. As in software reset, EDD affects both devices on a + PATA bus. + + Although EDD does reset devices, this doesn't suit error handling as + EDD cannot be issued while BSY is set and it's unclear how it will + act when device is in unknown/weird state. + +ATAPI DEVICE RESET command + This is very similar to software reset except that reset can be + restricted to the selected device without affecting the other device + sharing the cable. + +SATA phy reset + This is the preferred way of resetting a SATA device. In effect, + it's identical to PATA hardware reset. Note that this can be done + with the standard SCR Control register. As such, it's usually easier + to implement than software reset. + +One more thing to consider when resetting devices is that resetting +clears certain configuration parameters and they need to be set to their +previous or newly adjusted values after reset. + +Parameters affected are. + +- CHS set up with INITIALIZE DEVICE PARAMETERS (seldom used) + +- Parameters set with SET FEATURES including transfer mode setting + +- Block count set with SET MULTIPLE MODE + +- Other parameters (SET MAX, MEDIA LOCK...) + +ATA/ATAPI standard specifies that some parameters must be maintained +across hardware or software reset, but doesn't strictly specify all of +them. Always reconfiguring needed parameters after reset is required for +robustness. Note that this also applies when resuming from deep sleep +(power-off). + +Also, ATA/ATAPI standard requires that IDENTIFY DEVICE / IDENTIFY PACKET +DEVICE is issued after any configuration parameter is updated or a +hardware reset and the result used for further operation. OS driver is +required to implement revalidation mechanism to support this. + +Reconfigure transport +~~~~~~~~~~~~~~~~~~~~~ + +For both PATA and SATA, a lot of corners are cut for cheap connectors, +cables or controllers and it's quite common to see high transmission +error rate. This can be mitigated by lowering transmission speed. + +The following is a possible scheme Jeff Garzik suggested. + + If more than $N (3?) transmission errors happen in 15 minutes, + + - if SATA, decrease SATA PHY speed. if speed cannot be decreased, + + - decrease UDMA xfer speed. if at UDMA0, switch to PIO4, + + - decrease PIO xfer speed. if at PIO3, complain, but continue + +ata_piix Internals +=================== + +.. kernel-doc:: drivers/ata/ata_piix.c + :internal: + +sata_sil Internals +=================== + +.. kernel-doc:: drivers/ata/sata_sil.c + :internal: + +Thanks +====== + +The bulk of the ATA knowledge comes thanks to long conversations with +Andre Hedrick (www.linux-ide.org), and long hours pondering the ATA and +SCSI specifications. + +Thanks to Alan Cox for pointing out similarities between SATA and SCSI, +and in general for motivation to hack on libata. + +libata's device detection method, ata_pio_devchk, and in general all +the early probing was based on extensive study of Hale Landis's +probe/reset code in his ATADRVR driver (www.ata-atapi.com). |