summaryrefslogtreecommitdiffstats
path: root/Documentation/i2c/gpio-fault-injection.rst
diff options
context:
space:
mode:
Diffstat (limited to 'Documentation/i2c/gpio-fault-injection.rst')
-rw-r--r--Documentation/i2c/gpio-fault-injection.rst136
1 files changed, 136 insertions, 0 deletions
diff --git a/Documentation/i2c/gpio-fault-injection.rst b/Documentation/i2c/gpio-fault-injection.rst
new file mode 100644
index 0000000000..91d23889ab
--- /dev/null
+++ b/Documentation/i2c/gpio-fault-injection.rst
@@ -0,0 +1,136 @@
+=========================
+Linux I2C fault injection
+=========================
+
+The GPIO based I2C bus master driver can be configured to provide fault
+injection capabilities. It is then meant to be connected to another I2C bus
+which is driven by the I2C bus master driver under test. The GPIO fault
+injection driver can create special states on the bus which the other I2C bus
+master driver should handle gracefully.
+
+Once the Kconfig option I2C_GPIO_FAULT_INJECTOR is enabled, there will be an
+'i2c-fault-injector' subdirectory in the Kernel debugfs filesystem, usually
+mounted at /sys/kernel/debug. There will be a separate subdirectory per GPIO
+driven I2C bus. Each subdirectory will contain files to trigger the fault
+injection. They will be described now along with their intended use-cases.
+
+Wire states
+===========
+
+"scl"
+-----
+
+By reading this file, you get the current state of SCL. By writing, you can
+change its state to either force it low or to release it again. So, by using
+"echo 0 > scl" you force SCL low and thus, no communication will be possible
+because the bus master under test will not be able to clock. It should detect
+the condition of SCL being unresponsive and report an error to the upper
+layers.
+
+"sda"
+-----
+
+By reading this file, you get the current state of SDA. By writing, you can
+change its state to either force it low or to release it again. So, by using
+"echo 0 > sda" you force SDA low and thus, data cannot be transmitted. The bus
+master under test should detect this condition and trigger a bus recovery (see
+I2C specification version 4, section 3.1.16) using the helpers of the Linux I2C
+core (see 'struct bus_recovery_info'). However, the bus recovery will not
+succeed because SDA is still pinned low until you manually release it again
+with "echo 1 > sda". A test with an automatic release can be done with the
+"incomplete transfers" class of fault injectors.
+
+Incomplete transfers
+====================
+
+The following fault injectors create situations where SDA will be held low by a
+device. Bus recovery should be able to fix these situations. But please note:
+there are I2C client devices which detect a stuck SDA on their side and release
+it on their own after a few milliseconds. Also, there might be an external
+device deglitching and monitoring the I2C bus. It could also detect a stuck SDA
+and will init a bus recovery on its own. If you want to implement bus recovery
+in a bus master driver, make sure you checked your hardware setup for such
+devices before. And always verify with a scope or logic analyzer!
+
+"incomplete_address_phase"
+--------------------------
+
+This file is write only and you need to write the address of an existing I2C
+client device to it. Then, a read transfer to this device will be started, but
+it will stop at the ACK phase after the address of the client has been
+transmitted. Because the device will ACK its presence, this results in SDA
+being pulled low by the device while SCL is high. So, similar to the "sda" file
+above, the bus master under test should detect this condition and try a bus
+recovery. This time, however, it should succeed and the device should release
+SDA after toggling SCL.
+
+"incomplete_write_byte"
+-----------------------
+
+Similar to above, this file is write only and you need to write the address of
+an existing I2C client device to it.
+
+The injector will again stop at one ACK phase, so the device will keep SDA low
+because it acknowledges data. However, there are two differences compared to
+'incomplete_address_phase':
+
+a) the message sent out will be a write message
+b) after the address byte, a 0x00 byte will be transferred. Then, stop at ACK.
+
+This is a highly delicate state, the device is set up to write any data to
+register 0x00 (if it has registers) when further clock pulses happen on SCL.
+This is why bus recovery (up to 9 clock pulses) must either check SDA or send
+additional STOP conditions to ensure the bus has been released. Otherwise
+random data will be written to a device!
+
+Lost arbitration
+================
+
+Here, we want to simulate the condition where the master under test loses the
+bus arbitration against another master in a multi-master setup.
+
+"lose_arbitration"
+------------------
+
+This file is write only and you need to write the duration of the arbitration
+interference (in µs, maximum is 100ms). The calling process will then sleep
+and wait for the next bus clock. The process is interruptible, though.
+
+Arbitration lost is achieved by waiting for SCL going down by the master under
+test and then pulling SDA low for some time. So, the I2C address sent out
+should be corrupted and that should be detected properly. That means that the
+address sent out should have a lot of '1' bits to be able to detect corruption.
+There doesn't need to be a device at this address because arbitration lost
+should be detected beforehand. Also note, that SCL going down is monitored
+using interrupts, so the interrupt latency might cause the first bits to be not
+corrupted. A good starting point for using this fault injector on an otherwise
+idle bus is::
+
+ # echo 200 > lose_arbitration &
+ # i2cget -y <bus_to_test> 0x3f
+
+Panic during transfer
+=====================
+
+This fault injector will create a Kernel panic once the master under test
+started a transfer. This usually means that the state machine of the bus master
+driver will be ungracefully interrupted and the bus may end up in an unusual
+state. Use this to check if your shutdown/reboot/boot code can handle this
+scenario.
+
+"inject_panic"
+--------------
+
+This file is write only and you need to write the delay between the detected
+start of a transmission and the induced Kernel panic (in µs, maximum is 100ms).
+The calling process will then sleep and wait for the next bus clock. The
+process is interruptible, though.
+
+Start of a transfer is detected by waiting for SCL going down by the master
+under test. A good starting point for using this fault injector is::
+
+ # echo 0 > inject_panic &
+ # i2cget -y <bus_to_test> <some_address>
+
+Note that there doesn't need to be a device listening to the address you are
+using. Results may vary depending on that, though.