summaryrefslogtreecommitdiffstats
path: root/Documentation/networking/bridge.rst
diff options
context:
space:
mode:
Diffstat (limited to 'Documentation/networking/bridge.rst')
-rw-r--r--Documentation/networking/bridge.rst334
1 files changed, 324 insertions, 10 deletions
diff --git a/Documentation/networking/bridge.rst b/Documentation/networking/bridge.rst
index c859f3c163..ba14e7b078 100644
--- a/Documentation/networking/bridge.rst
+++ b/Documentation/networking/bridge.rst
@@ -4,18 +4,332 @@
Ethernet Bridging
=================
-In order to use the Ethernet bridging functionality, you'll need the
-userspace tools.
+Introduction
+============
-Documentation for Linux bridging is on:
- https://wiki.linuxfoundation.org/networking/bridge
+The IEEE 802.1Q-2022 (Bridges and Bridged Networks) standard defines the
+operation of bridges in computer networks. A bridge, in the context of this
+standard, is a device that connects two or more network segments and operates
+at the data link layer (Layer 2) of the OSI (Open Systems Interconnection)
+model. The purpose of a bridge is to filter and forward frames between
+different segments based on the destination MAC (Media Access Control) address.
-The bridge-utilities are maintained at:
- git://git.kernel.org/pub/scm/linux/kernel/git/shemminger/bridge-utils.git
+Bridge kAPI
+===========
-Additionally, the iproute2 utilities can be used to configure
-bridge devices.
+Here are some core structures of bridge code. Note that the kAPI is *unstable*,
+and can be changed at any time.
-If you still have questions, don't hesitate to post to the mailing list
-(more info https://lists.linux-foundation.org/mailman/listinfo/bridge).
+.. kernel-doc:: net/bridge/br_private.h
+ :identifiers: net_bridge_vlan
+Bridge uAPI
+===========
+
+Modern Linux bridge uAPI is accessed via Netlink interface. You can find
+below files where the bridge and bridge port netlink attributes are defined.
+
+Bridge netlink attributes
+-------------------------
+
+.. kernel-doc:: include/uapi/linux/if_link.h
+ :doc: Bridge enum definition
+
+Bridge port netlink attributes
+------------------------------
+
+.. kernel-doc:: include/uapi/linux/if_link.h
+ :doc: Bridge port enum definition
+
+Bridge sysfs
+------------
+
+The sysfs interface is deprecated and should not be extended if new
+options are added.
+
+STP
+===
+
+The STP (Spanning Tree Protocol) implementation in the Linux bridge driver
+is a critical feature that helps prevent loops and broadcast storms in
+Ethernet networks by identifying and disabling redundant links. In a Linux
+bridge context, STP is crucial for network stability and availability.
+
+STP is a Layer 2 protocol that operates at the Data Link Layer of the OSI
+model. It was originally developed as IEEE 802.1D and has since evolved into
+multiple versions, including Rapid Spanning Tree Protocol (RSTP) and
+`Multiple Spanning Tree Protocol (MSTP)
+<https://lore.kernel.org/netdev/20220316150857.2442916-1-tobias@waldekranz.com/>`_.
+
+The 802.1D-2004 removed the original Spanning Tree Protocol, instead
+incorporating the Rapid Spanning Tree Protocol (RSTP). By 2014, all the
+functionality defined by IEEE 802.1D has been incorporated into either
+IEEE 802.1Q (Bridges and Bridged Networks) or IEEE 802.1AC (MAC Service
+Definition). 802.1D has been officially withdrawn in 2022.
+
+Bridge Ports and STP States
+---------------------------
+
+In the context of STP, bridge ports can be in one of the following states:
+ * Blocking: The port is disabled for data traffic and only listens for
+ BPDUs (Bridge Protocol Data Units) from other devices to determine the
+ network topology.
+ * Listening: The port begins to participate in the STP process and listens
+ for BPDUs.
+ * Learning: The port continues to listen for BPDUs and begins to learn MAC
+ addresses from incoming frames but does not forward data frames.
+ * Forwarding: The port is fully operational and forwards both BPDUs and
+ data frames.
+ * Disabled: The port is administratively disabled and does not participate
+ in the STP process. The data frames forwarding are also disabled.
+
+Root Bridge and Convergence
+---------------------------
+
+In the context of networking and Ethernet bridging in Linux, the root bridge
+is a designated switch in a bridged network that serves as a reference point
+for the spanning tree algorithm to create a loop-free topology.
+
+Here's how the STP works and root bridge is chosen:
+ 1. Bridge Priority: Each bridge running a spanning tree protocol, has a
+ configurable Bridge Priority value. The lower the value, the higher the
+ priority. By default, the Bridge Priority is set to a standard value
+ (e.g., 32768).
+ 2. Bridge ID: The Bridge ID is composed of two components: Bridge Priority
+ and the MAC address of the bridge. It uniquely identifies each bridge
+ in the network. The Bridge ID is used to compare the priorities of
+ different bridges.
+ 3. Bridge Election: When the network starts, all bridges initially assume
+ that they are the root bridge. They start advertising Bridge Protocol
+ Data Units (BPDU) to their neighbors, containing their Bridge ID and
+ other information.
+ 4. BPDU Comparison: Bridges exchange BPDUs to determine the root bridge.
+ Each bridge examines the received BPDUs, including the Bridge Priority
+ and Bridge ID, to determine if it should adjust its own priorities.
+ The bridge with the lowest Bridge ID will become the root bridge.
+ 5. Root Bridge Announcement: Once the root bridge is determined, it sends
+ BPDUs with information about the root bridge to all other bridges in the
+ network. This information is used by other bridges to calculate the
+ shortest path to the root bridge and, in doing so, create a loop-free
+ topology.
+ 6. Forwarding Ports: After the root bridge is selected and the spanning tree
+ topology is established, each bridge determines which of its ports should
+ be in the forwarding state (used for data traffic) and which should be in
+ the blocking state (used to prevent loops). The root bridge's ports are
+ all in the forwarding state. while other bridges have some ports in the
+ blocking state to avoid loops.
+ 7. Root Ports: After the root bridge is selected and the spanning tree
+ topology is established, each non-root bridge processes incoming
+ BPDUs and determines which of its ports provides the shortest path to the
+ root bridge based on the information in the received BPDUs. This port is
+ designated as the root port. And it is in the Forwarding state, allowing
+ it to actively forward network traffic.
+ 8. Designated ports: A designated port is the port through which the non-root
+ bridge will forward traffic towards the designated segment. Designated ports
+ are placed in the Forwarding state. All other ports on the non-root
+ bridge that are not designated for specific segments are placed in the
+ Blocking state to prevent network loops.
+
+STP ensures network convergence by calculating the shortest path and disabling
+redundant links. When network topology changes occur (e.g., a link failure),
+STP recalculates the network topology to restore connectivity while avoiding loops.
+
+Proper configuration of STP parameters, such as the bridge priority, can
+influence network performance, path selection and which bridge becomes the
+Root Bridge.
+
+User space STP helper
+---------------------
+
+The user space STP helper *bridge-stp* is a program to control whether to use
+user mode spanning tree. The ``/sbin/bridge-stp <bridge> <start|stop>`` is
+called by the kernel when STP is enabled/disabled on a bridge
+(via ``brctl stp <bridge> <on|off>`` or ``ip link set <bridge> type bridge
+stp_state <0|1>``). The kernel enables user_stp mode if that command returns
+0, or enables kernel_stp mode if that command returns any other value.
+
+VLAN
+====
+
+A LAN (Local Area Network) is a network that covers a small geographic area,
+typically within a single building or a campus. LANs are used to connect
+computers, servers, printers, and other networked devices within a localized
+area. LANs can be wired (using Ethernet cables) or wireless (using Wi-Fi).
+
+A VLAN (Virtual Local Area Network) is a logical segmentation of a physical
+network into multiple isolated broadcast domains. VLANs are used to divide
+a single physical LAN into multiple virtual LANs, allowing different groups of
+devices to communicate as if they were on separate physical networks.
+
+Typically there are two VLAN implementations, IEEE 802.1Q and IEEE 802.1ad
+(also known as QinQ). IEEE 802.1Q is a standard for VLAN tagging in Ethernet
+networks. It allows network administrators to create logical VLANs on a
+physical network and tag Ethernet frames with VLAN information, which is
+called *VLAN-tagged frames*. IEEE 802.1ad, commonly known as QinQ or Double
+VLAN, is an extension of the IEEE 802.1Q standard. QinQ allows for the
+stacking of multiple VLAN tags within a single Ethernet frame. The Linux
+bridge supports both the IEEE 802.1Q and `802.1AD
+<https://lore.kernel.org/netdev/1402401565-15423-1-git-send-email-makita.toshiaki@lab.ntt.co.jp/>`_
+protocol for VLAN tagging.
+
+`VLAN filtering <https://lore.kernel.org/netdev/1360792820-14116-1-git-send-email-vyasevic@redhat.com/>`_
+on a bridge is disabled by default. After enabling VLAN filtering on a bridge,
+it will start forwarding frames to appropriate destinations based on their
+destination MAC address and VLAN tag (both must match).
+
+Multicast
+=========
+
+The Linux bridge driver has multicast support allowing it to process Internet
+Group Management Protocol (IGMP) or Multicast Listener Discovery (MLD)
+messages, and to efficiently forward multicast data packets. The bridge
+driver supports IGMPv2/IGMPv3 and MLDv1/MLDv2.
+
+Multicast snooping
+------------------
+
+Multicast snooping is a networking technology that allows network switches
+to intelligently manage multicast traffic within a local area network (LAN).
+
+The switch maintains a multicast group table, which records the association
+between multicast group addresses and the ports where hosts have joined these
+groups. The group table is dynamically updated based on the IGMP/MLD messages
+received. With the multicast group information gathered through snooping, the
+switch optimizes the forwarding of multicast traffic. Instead of blindly
+broadcasting the multicast traffic to all ports, it sends the multicast
+traffic based on the destination MAC address only to ports which have
+subscribed the respective destination multicast group.
+
+When created, the Linux bridge devices have multicast snooping enabled by
+default. It maintains a Multicast forwarding database (MDB) which keeps track
+of port and group relationships.
+
+IGMPv3/MLDv2 EHT support
+------------------------
+
+The Linux bridge supports IGMPv3/MLDv2 EHT (Explicit Host Tracking), which
+was added by `474ddb37fa3a ("net: bridge: multicast: add EHT allow/block handling")
+<https://lore.kernel.org/netdev/20210120145203.1109140-1-razor@blackwall.org/>`_
+
+The explicit host tracking enables the device to keep track of each
+individual host that is joined to a particular group or channel. The main
+benefit of the explicit host tracking in IGMP is to allow minimal leave
+latencies when a host leaves a multicast group or channel.
+
+The length of time between a host wanting to leave and a device stopping
+traffic forwarding is called the IGMP leave latency. A device configured
+with IGMPv3 or MLDv2 and explicit tracking can immediately stop forwarding
+traffic if the last host to request to receive traffic from the device
+indicates that it no longer wants to receive traffic. The leave latency
+is thus bound only by the packet transmission latencies in the multiaccess
+network and the processing time in the device.
+
+Other multicast features
+------------------------
+
+The Linux bridge also supports `per-VLAN multicast snooping
+<https://lore.kernel.org/netdev/20210719170637.435541-1-razor@blackwall.org/>`_,
+which is disabled by default but can be enabled. And `Multicast Router Discovery
+<https://lore.kernel.org/netdev/20190121062628.2710-1-linus.luessing@c0d3.blue/>`_,
+which help identify the location of multicast routers.
+
+Switchdev
+=========
+
+Linux Bridge Switchdev is a feature in the Linux kernel that extends the
+capabilities of the traditional Linux bridge to work more efficiently with
+hardware switches that support switchdev. With Linux Bridge Switchdev, certain
+networking functions like forwarding, filtering, and learning of Ethernet
+frames can be offloaded to a hardware switch. This offloading reduces the
+burden on the Linux kernel and CPU, leading to improved network performance
+and lower latency.
+
+To use Linux Bridge Switchdev, you need hardware switches that support the
+switchdev interface. This means that the switch hardware needs to have the
+necessary drivers and functionality to work in conjunction with the Linux
+kernel.
+
+Please see the :ref:`switchdev` document for more details.
+
+Netfilter
+=========
+
+The bridge netfilter module is a legacy feature that allows to filter bridged
+packets with iptables and ip6tables. Its use is discouraged. Users should
+consider using nftables for packet filtering.
+
+The older ebtables tool is more feature-limited compared to nftables, but
+just like nftables it doesn't need this module either to function.
+
+The br_netfilter module intercepts packets entering the bridge, performs
+minimal sanity tests on ipv4 and ipv6 packets and then pretends that
+these packets are being routed, not bridged. br_netfilter then calls
+the ip and ipv6 netfilter hooks from the bridge layer, i.e. ip(6)tables
+rulesets will also see these packets.
+
+br_netfilter is also the reason for the iptables *physdev* match:
+This match is the only way to reliably tell routed and bridged packets
+apart in an iptables ruleset.
+
+Note that ebtables and nftables will work fine without the br_netfilter module.
+iptables/ip6tables/arptables do not work for bridged traffic because they
+plug in the routing stack. nftables rules in ip/ip6/inet/arp families won't
+see traffic that is forwarded by a bridge either, but that's very much how it
+should be.
+
+Historically the feature set of ebtables was very limited (it still is),
+this module was added to pretend packets are routed and invoke the ipv4/ipv6
+netfilter hooks from the bridge so users had access to the more feature-rich
+iptables matching capabilities (including conntrack). nftables doesn't have
+this limitation, pretty much all features work regardless of the protocol family.
+
+So, br_netfilter is only needed if users, for some reason, need to use
+ip(6)tables to filter packets forwarded by the bridge, or NAT bridged
+traffic. For pure link layer filtering, this module isn't needed.
+
+Other Features
+==============
+
+The Linux bridge also supports `IEEE 802.11 Proxy ARP
+<https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=958501163ddd6ea22a98f94fa0e7ce6d4734e5c4>`_,
+`Media Redundancy Protocol (MRP)
+<https://lore.kernel.org/netdev/20200426132208.3232-1-horatiu.vultur@microchip.com/>`_,
+`Media Redundancy Protocol (MRP) LC mode
+<https://lore.kernel.org/r/20201124082525.273820-1-horatiu.vultur@microchip.com>`_,
+`IEEE 802.1X port authentication
+<https://lore.kernel.org/netdev/20220218155148.2329797-1-schultz.hans+netdev@gmail.com/>`_,
+and `MAC Authentication Bypass (MAB)
+<https://lore.kernel.org/netdev/20221101193922.2125323-2-idosch@nvidia.com/>`_.
+
+FAQ
+===
+
+What does a bridge do?
+----------------------
+
+A bridge transparently forwards traffic between multiple network interfaces.
+In plain English this means that a bridge connects two or more physical
+Ethernet networks, to form one larger (logical) Ethernet network.
+
+Is it L3 protocol independent?
+------------------------------
+
+Yes. The bridge sees all frames, but it *uses* only L2 headers/information.
+As such, the bridging functionality is protocol independent, and there should
+be no trouble forwarding IPX, NetBEUI, IP, IPv6, etc.
+
+Contact Info
+============
+
+The code is currently maintained by Roopa Prabhu <roopa@nvidia.com> and
+Nikolay Aleksandrov <razor@blackwall.org>. Bridge bugs and enhancements
+are discussed on the linux-netdev mailing list netdev@vger.kernel.org and
+bridge@lists.linux-foundation.org.
+
+The list is open to anyone interested: http://vger.kernel.org/vger-lists.html#netdev
+
+External Links
+==============
+
+The old Documentation for Linux bridging is on:
+https://wiki.linuxfoundation.org/networking/bridge