summaryrefslogtreecommitdiffstats
path: root/Documentation/power/charger-manager.rst
diff options
context:
space:
mode:
Diffstat (limited to '')
-rw-r--r--Documentation/power/charger-manager.rst205
1 files changed, 205 insertions, 0 deletions
diff --git a/Documentation/power/charger-manager.rst b/Documentation/power/charger-manager.rst
new file mode 100644
index 0000000000..84fab93767
--- /dev/null
+++ b/Documentation/power/charger-manager.rst
@@ -0,0 +1,205 @@
+===============
+Charger Manager
+===============
+
+ (C) 2011 MyungJoo Ham <myungjoo.ham@samsung.com>, GPL
+
+Charger Manager provides in-kernel battery charger management that
+requires temperature monitoring during suspend-to-RAM state
+and where each battery may have multiple chargers attached and the userland
+wants to look at the aggregated information of the multiple chargers.
+
+Charger Manager is a platform_driver with power-supply-class entries.
+An instance of Charger Manager (a platform-device created with Charger-Manager)
+represents an independent battery with chargers. If there are multiple
+batteries with their own chargers acting independently in a system,
+the system may need multiple instances of Charger Manager.
+
+1. Introduction
+===============
+
+Charger Manager supports the following:
+
+* Support for multiple chargers (e.g., a device with USB, AC, and solar panels)
+ A system may have multiple chargers (or power sources) and some of
+ they may be activated at the same time. Each charger may have its
+ own power-supply-class and each power-supply-class can provide
+ different information about the battery status. This framework
+ aggregates charger-related information from multiple sources and
+ shows combined information as a single power-supply-class.
+
+* Support for in suspend-to-RAM polling (with suspend_again callback)
+ While the battery is being charged and the system is in suspend-to-RAM,
+ we may need to monitor the battery health by looking at the ambient or
+ battery temperature. We can accomplish this by waking up the system
+ periodically. However, such a method wakes up devices unnecessarily for
+ monitoring the battery health and tasks, and user processes that are
+ supposed to be kept suspended. That, in turn, incurs unnecessary power
+ consumption and slow down charging process. Or even, such peak power
+ consumption can stop chargers in the middle of charging
+ (external power input < device power consumption), which not
+ only affects the charging time, but the lifespan of the battery.
+
+ Charger Manager provides a function "cm_suspend_again" that can be
+ used as suspend_again callback of platform_suspend_ops. If the platform
+ requires tasks other than cm_suspend_again, it may implement its own
+ suspend_again callback that calls cm_suspend_again in the middle.
+ Normally, the platform will need to resume and suspend some devices
+ that are used by Charger Manager.
+
+* Support for premature full-battery event handling
+ If the battery voltage drops by "fullbatt_vchkdrop_uV" after
+ "fullbatt_vchkdrop_ms" from the full-battery event, the framework
+ restarts charging. This check is also performed while suspended by
+ setting wakeup time accordingly and using suspend_again.
+
+* Support for uevent-notify
+ With the charger-related events, the device sends
+ notification to users with UEVENT.
+
+2. Global Charger-Manager Data related with suspend_again
+=========================================================
+In order to setup Charger Manager with suspend-again feature
+(in-suspend monitoring), the user should provide charger_global_desc
+with setup_charger_manager(`struct charger_global_desc *`).
+This charger_global_desc data for in-suspend monitoring is global
+as the name suggests. Thus, the user needs to provide only once even
+if there are multiple batteries. If there are multiple batteries, the
+multiple instances of Charger Manager share the same charger_global_desc
+and it will manage in-suspend monitoring for all instances of Charger Manager.
+
+The user needs to provide all the three entries to `struct charger_global_desc`
+properly in order to activate in-suspend monitoring:
+
+`char *rtc_name;`
+ The name of rtc (e.g., "rtc0") used to wakeup the system from
+ suspend for Charger Manager. The alarm interrupt (AIE) of the rtc
+ should be able to wake up the system from suspend. Charger Manager
+ saves and restores the alarm value and use the previously-defined
+ alarm if it is going to go off earlier than Charger Manager so that
+ Charger Manager does not interfere with previously-defined alarms.
+
+`bool (*rtc_only_wakeup)(void);`
+ This callback should let CM know whether
+ the wakeup-from-suspend is caused only by the alarm of "rtc" in the
+ same struct. If there is any other wakeup source triggered the
+ wakeup, it should return false. If the "rtc" is the only wakeup
+ reason, it should return true.
+
+`bool assume_timer_stops_in_suspend;`
+ if true, Charger Manager assumes that
+ the timer (CM uses jiffies as timer) stops during suspend. Then, CM
+ assumes that the suspend-duration is same as the alarm length.
+
+
+3. How to setup suspend_again
+=============================
+Charger Manager provides a function "extern bool cm_suspend_again(void)".
+When cm_suspend_again is called, it monitors every battery. The suspend_ops
+callback of the system's platform_suspend_ops can call cm_suspend_again
+function to know whether Charger Manager wants to suspend again or not.
+If there are no other devices or tasks that want to use suspend_again
+feature, the platform_suspend_ops may directly refer to cm_suspend_again
+for its suspend_again callback.
+
+The cm_suspend_again() returns true (meaning "I want to suspend again")
+if the system was woken up by Charger Manager and the polling
+(in-suspend monitoring) results in "normal".
+
+4. Charger-Manager Data (struct charger_desc)
+=============================================
+For each battery charged independently from other batteries (if a series of
+batteries are charged by a single charger, they are counted as one independent
+battery), an instance of Charger Manager is attached to it. The following
+
+struct charger_desc elements:
+
+`char *psy_name;`
+ The power-supply-class name of the battery. Default is
+ "battery" if psy_name is NULL. Users can access the psy entries
+ at "/sys/class/power_supply/[psy_name]/".
+
+`enum polling_modes polling_mode;`
+ CM_POLL_DISABLE:
+ do not poll this battery.
+ CM_POLL_ALWAYS:
+ always poll this battery.
+ CM_POLL_EXTERNAL_POWER_ONLY:
+ poll this battery if and only if an external power
+ source is attached.
+ CM_POLL_CHARGING_ONLY:
+ poll this battery if and only if the battery is being charged.
+
+`unsigned int fullbatt_vchkdrop_ms; / unsigned int fullbatt_vchkdrop_uV;`
+ If both have non-zero values, Charger Manager will check the
+ battery voltage drop fullbatt_vchkdrop_ms after the battery is fully
+ charged. If the voltage drop is over fullbatt_vchkdrop_uV, Charger
+ Manager will try to recharge the battery by disabling and enabling
+ chargers. Recharge with voltage drop condition only (without delay
+ condition) is needed to be implemented with hardware interrupts from
+ fuel gauges or charger devices/chips.
+
+`unsigned int fullbatt_uV;`
+ If specified with a non-zero value, Charger Manager assumes
+ that the battery is full (capacity = 100) if the battery is not being
+ charged and the battery voltage is equal to or greater than
+ fullbatt_uV.
+
+`unsigned int polling_interval_ms;`
+ Required polling interval in ms. Charger Manager will poll
+ this battery every polling_interval_ms or more frequently.
+
+`enum data_source battery_present;`
+ CM_BATTERY_PRESENT:
+ assume that the battery exists.
+ CM_NO_BATTERY:
+ assume that the battery does not exists.
+ CM_FUEL_GAUGE:
+ get battery presence information from fuel gauge.
+ CM_CHARGER_STAT:
+ get battery presence from chargers.
+
+`char **psy_charger_stat;`
+ An array ending with NULL that has power-supply-class names of
+ chargers. Each power-supply-class should provide "PRESENT" (if
+ battery_present is "CM_CHARGER_STAT"), "ONLINE" (shows whether an
+ external power source is attached or not), and "STATUS" (shows whether
+ the battery is {"FULL" or not FULL} or {"FULL", "Charging",
+ "Discharging", "NotCharging"}).
+
+`int num_charger_regulators; / struct regulator_bulk_data *charger_regulators;`
+ Regulators representing the chargers in the form for
+ regulator framework's bulk functions.
+
+`char *psy_fuel_gauge;`
+ Power-supply-class name of the fuel gauge.
+
+`int (*temperature_out_of_range)(int *mC); / bool measure_battery_temp;`
+ This callback returns 0 if the temperature is safe for charging,
+ a positive number if it is too hot to charge, and a negative number
+ if it is too cold to charge. With the variable mC, the callback returns
+ the temperature in 1/1000 of centigrade.
+ The source of temperature can be battery or ambient one according to
+ the value of measure_battery_temp.
+
+
+5. Notify Charger-Manager of charger events: cm_notify_event()
+==============================================================
+If there is an charger event is required to notify
+Charger Manager, a charger device driver that triggers the event can call
+cm_notify_event(psy, type, msg) to notify the corresponding Charger Manager.
+In the function, psy is the charger driver's power_supply pointer, which is
+associated with Charger-Manager. The parameter "type"
+is the same as irq's type (enum cm_event_types). The event message "msg" is
+optional and is effective only if the event type is "UNDESCRIBED" or "OTHERS".
+
+6. Other Considerations
+=======================
+
+At the charger/battery-related events such as battery-pulled-out,
+charger-pulled-out, charger-inserted, DCIN-over/under-voltage, charger-stopped,
+and others critical to chargers, the system should be configured to wake up.
+At least the following should wake up the system from a suspend:
+a) charger-on/off b) external-power-in/out c) battery-in/out (while charging)
+
+It is usually accomplished by configuring the PMIC as a wakeup source.