diff options
Diffstat (limited to '')
-rw-r--r-- | Documentation/powerpc/syscall64-abi.rst | 153 |
1 files changed, 153 insertions, 0 deletions
diff --git a/Documentation/powerpc/syscall64-abi.rst b/Documentation/powerpc/syscall64-abi.rst new file mode 100644 index 0000000000..56490c4c0c --- /dev/null +++ b/Documentation/powerpc/syscall64-abi.rst @@ -0,0 +1,153 @@ +=============================================== +Power Architecture 64-bit Linux system call ABI +=============================================== + +syscall +======= + +Invocation +---------- +The syscall is made with the sc instruction, and returns with execution +continuing at the instruction following the sc instruction. + +If PPC_FEATURE2_SCV appears in the AT_HWCAP2 ELF auxiliary vector, the +scv 0 instruction is an alternative that may provide better performance, +with some differences to calling sequence. + +syscall calling sequence\ [1]_ matches the Power Architecture 64-bit ELF ABI +specification C function calling sequence, including register preservation +rules, with the following differences. + +.. [1] Some syscalls (typically low-level management functions) may have + different calling sequences (e.g., rt_sigreturn). + +Parameters +---------- +The system call number is specified in r0. + +There is a maximum of 6 integer parameters to a syscall, passed in r3-r8. + +Return value +------------ +- For the sc instruction, both a value and an error condition are returned. + cr0.SO is the error condition, and r3 is the return value. When cr0.SO is + clear, the syscall succeeded and r3 is the return value. When cr0.SO is set, + the syscall failed and r3 is the error value (that normally corresponds to + errno). + +- For the scv 0 instruction, the return value indicates failure if it is + -4095..-1 (i.e., it is >= -MAX_ERRNO (-4095) as an unsigned comparison), + in which case the error value is the negated return value. + +Stack +----- +System calls do not modify the caller's stack frame. For example, the caller's +stack frame LR and CR save fields are not used. + +Register preservation rules +--------------------------- +Register preservation rules match the ELF ABI calling sequence with some +differences. + +For the sc instruction, the differences from the ELF ABI are as follows: + ++--------------+--------------------+-----------------------------------------+ +| Register | Preservation Rules | Purpose | ++==============+====================+=========================================+ +| r0 | Volatile | (System call number.) | ++--------------+--------------------+-----------------------------------------+ +| r3 | Volatile | (Parameter 1, and return value.) | ++--------------+--------------------+-----------------------------------------+ +| r4-r8 | Volatile | (Parameters 2-6.) | ++--------------+--------------------+-----------------------------------------+ +| cr0 | Volatile | (cr0.SO is the return error condition.) | ++--------------+--------------------+-----------------------------------------+ +| cr1, cr5-7 | Nonvolatile | | ++--------------+--------------------+-----------------------------------------+ +| lr | Nonvolatile | | ++--------------+--------------------+-----------------------------------------+ + +For the scv 0 instruction, the differences from the ELF ABI are as follows: + ++--------------+--------------------+-----------------------------------------+ +| Register | Preservation Rules | Purpose | ++==============+====================+=========================================+ +| r0 | Volatile | (System call number.) | ++--------------+--------------------+-----------------------------------------+ +| r3 | Volatile | (Parameter 1, and return value.) | ++--------------+--------------------+-----------------------------------------+ +| r4-r8 | Volatile | (Parameters 2-6.) | ++--------------+--------------------+-----------------------------------------+ + +All floating point and vector data registers as well as control and status +registers are nonvolatile. + +Transactional Memory +-------------------- +Syscall behavior can change if the processor is in transactional or suspended +transaction state, and the syscall can affect the behavior of the transaction. + +If the processor is in suspended state when a syscall is made, the syscall +will be performed as normal, and will return as normal. The syscall will be +performed in suspended state, so its side effects will be persistent according +to the usual transactional memory semantics. A syscall may or may not result +in the transaction being doomed by hardware. + +If the processor is in transactional state when a syscall is made, then the +behavior depends on the presence of PPC_FEATURE2_HTM_NOSC in the AT_HWCAP2 ELF +auxiliary vector. + +- If present, which is the case for newer kernels, then the syscall will not + be performed and the transaction will be doomed by the kernel with the + failure code TM_CAUSE_SYSCALL | TM_CAUSE_PERSISTENT in the TEXASR SPR. + +- If not present (older kernels), then the kernel will suspend the + transactional state and the syscall will proceed as in the case of a + suspended state syscall, and will resume the transactional state before + returning to the caller. This case is not well defined or supported, so this + behavior should not be relied upon. + +scv 0 syscalls will always behave as PPC_FEATURE2_HTM_NOSC. + +ptrace +------ +When ptracing system calls (PTRACE_SYSCALL), the pt_regs.trap value contains +the system call type that can be used to distinguish between sc and scv 0 +system calls, and the different register conventions can be accounted for. + +If the value of (pt_regs.trap & 0xfff0) is 0xc00 then the system call was +performed with the sc instruction, if it is 0x3000 then the system call was +performed with the scv 0 instruction. + +vsyscall +======== + +vsyscall calling sequence matches the syscall calling sequence, with the +following differences. Some vsyscalls may have different calling sequences. + +Parameters and return value +--------------------------- +r0 is not used as an input. The vsyscall is selected by its address. + +Stack +----- +The vsyscall may or may not use the caller's stack frame save areas. + +Register preservation rules +--------------------------- + +=========== ======== +r0 Volatile +cr1, cr5-7 Volatile +lr Volatile +=========== ======== + +Invocation +---------- +The vsyscall is performed with a branch-with-link instruction to the vsyscall +function address. + +Transactional Memory +-------------------- +vsyscalls will run in the same transactional state as the caller. A vsyscall +may or may not result in the transaction being doomed by hardware. |