diff options
Diffstat (limited to 'Documentation/trace/timerlat-tracer.rst')
-rw-r--r-- | Documentation/trace/timerlat-tracer.rst | 260 |
1 files changed, 260 insertions, 0 deletions
diff --git a/Documentation/trace/timerlat-tracer.rst b/Documentation/trace/timerlat-tracer.rst new file mode 100644 index 0000000000..53a56823e9 --- /dev/null +++ b/Documentation/trace/timerlat-tracer.rst @@ -0,0 +1,260 @@ +############### +Timerlat tracer +############### + +The timerlat tracer aims to help the preemptive kernel developers to +find sources of wakeup latencies of real-time threads. Like cyclictest, +the tracer sets a periodic timer that wakes up a thread. The thread then +computes a *wakeup latency* value as the difference between the *current +time* and the *absolute time* that the timer was set to expire. The main +goal of timerlat is tracing in such a way to help kernel developers. + +Usage +----- + +Write the ASCII text "timerlat" into the current_tracer file of the +tracing system (generally mounted at /sys/kernel/tracing). + +For example:: + + [root@f32 ~]# cd /sys/kernel/tracing/ + [root@f32 tracing]# echo timerlat > current_tracer + +It is possible to follow the trace by reading the trace file:: + + [root@f32 tracing]# cat trace + # tracer: timerlat + # + # _-----=> irqs-off + # / _----=> need-resched + # | / _---=> hardirq/softirq + # || / _--=> preempt-depth + # || / + # |||| ACTIVATION + # TASK-PID CPU# |||| TIMESTAMP ID CONTEXT LATENCY + # | | | |||| | | | | + <idle>-0 [000] d.h1 54.029328: #1 context irq timer_latency 932 ns + <...>-867 [000] .... 54.029339: #1 context thread timer_latency 11700 ns + <idle>-0 [001] dNh1 54.029346: #1 context irq timer_latency 2833 ns + <...>-868 [001] .... 54.029353: #1 context thread timer_latency 9820 ns + <idle>-0 [000] d.h1 54.030328: #2 context irq timer_latency 769 ns + <...>-867 [000] .... 54.030330: #2 context thread timer_latency 3070 ns + <idle>-0 [001] d.h1 54.030344: #2 context irq timer_latency 935 ns + <...>-868 [001] .... 54.030347: #2 context thread timer_latency 4351 ns + + +The tracer creates a per-cpu kernel thread with real-time priority that +prints two lines at every activation. The first is the *timer latency* +observed at the *hardirq* context before the activation of the thread. +The second is the *timer latency* observed by the thread. The ACTIVATION +ID field serves to relate the *irq* execution to its respective *thread* +execution. + +The *irq*/*thread* splitting is important to clarify in which context +the unexpected high value is coming from. The *irq* context can be +delayed by hardware-related actions, such as SMIs, NMIs, IRQs, +or by thread masking interrupts. Once the timer happens, the delay +can also be influenced by blocking caused by threads. For example, by +postponing the scheduler execution via preempt_disable(), scheduler +execution, or masking interrupts. Threads can also be delayed by the +interference from other threads and IRQs. + +Tracer options +--------------------- + +The timerlat tracer is built on top of osnoise tracer. +So its configuration is also done in the osnoise/ config +directory. The timerlat configs are: + + - cpus: CPUs at which a timerlat thread will execute. + - timerlat_period_us: the period of the timerlat thread. + - stop_tracing_us: stop the system tracing if a + timer latency at the *irq* context higher than the configured + value happens. Writing 0 disables this option. + - stop_tracing_total_us: stop the system tracing if a + timer latency at the *thread* context is higher than the configured + value happens. Writing 0 disables this option. + - print_stack: save the stack of the IRQ occurrence. The stack is printed + after the *thread context* event, or at the IRQ handler if *stop_tracing_us* + is hit. + +timerlat and osnoise +---------------------------- + +The timerlat can also take advantage of the osnoise: traceevents. +For example:: + + [root@f32 ~]# cd /sys/kernel/tracing/ + [root@f32 tracing]# echo timerlat > current_tracer + [root@f32 tracing]# echo 1 > events/osnoise/enable + [root@f32 tracing]# echo 25 > osnoise/stop_tracing_total_us + [root@f32 tracing]# tail -10 trace + cc1-87882 [005] d..h... 548.771078: #402268 context irq timer_latency 13585 ns + cc1-87882 [005] dNLh1.. 548.771082: irq_noise: local_timer:236 start 548.771077442 duration 7597 ns + cc1-87882 [005] dNLh2.. 548.771099: irq_noise: qxl:21 start 548.771085017 duration 7139 ns + cc1-87882 [005] d...3.. 548.771102: thread_noise: cc1:87882 start 548.771078243 duration 9909 ns + timerlat/5-1035 [005] ....... 548.771104: #402268 context thread timer_latency 39960 ns + +In this case, the root cause of the timer latency does not point to a +single cause but to multiple ones. Firstly, the timer IRQ was delayed +for 13 us, which may point to a long IRQ disabled section (see IRQ +stacktrace section). Then the timer interrupt that wakes up the timerlat +thread took 7597 ns, and the qxl:21 device IRQ took 7139 ns. Finally, +the cc1 thread noise took 9909 ns of time before the context switch. +Such pieces of evidence are useful for the developer to use other +tracing methods to figure out how to debug and optimize the system. + +It is worth mentioning that the *duration* values reported +by the osnoise: events are *net* values. For example, the +thread_noise does not include the duration of the overhead caused +by the IRQ execution (which indeed accounted for 12736 ns). But +the values reported by the timerlat tracer (timerlat_latency) +are *gross* values. + +The art below illustrates a CPU timeline and how the timerlat tracer +observes it at the top and the osnoise: events at the bottom. Each "-" +in the timelines means circa 1 us, and the time moves ==>:: + + External timer irq thread + clock latency latency + event 13585 ns 39960 ns + | ^ ^ + v | | + |-------------| | + |-------------+-------------------------| + ^ ^ + ======================================================================== + [tmr irq] [dev irq] + [another thread...^ v..^ v.......][timerlat/ thread] <-- CPU timeline + ========================================================================= + |-------| |-------| + |--^ v-------| + | | | + | | + thread_noise: 9909 ns + | +-> irq_noise: 6139 ns + +-> irq_noise: 7597 ns + +IRQ stacktrace +--------------------------- + +The osnoise/print_stack option is helpful for the cases in which a thread +noise causes the major factor for the timer latency, because of preempt or +irq disabled. For example:: + + [root@f32 tracing]# echo 500 > osnoise/stop_tracing_total_us + [root@f32 tracing]# echo 500 > osnoise/print_stack + [root@f32 tracing]# echo timerlat > current_tracer + [root@f32 tracing]# tail -21 per_cpu/cpu7/trace + insmod-1026 [007] dN.h1.. 200.201948: irq_noise: local_timer:236 start 200.201939376 duration 7872 ns + insmod-1026 [007] d..h1.. 200.202587: #29800 context irq timer_latency 1616 ns + insmod-1026 [007] dN.h2.. 200.202598: irq_noise: local_timer:236 start 200.202586162 duration 11855 ns + insmod-1026 [007] dN.h3.. 200.202947: irq_noise: local_timer:236 start 200.202939174 duration 7318 ns + insmod-1026 [007] d...3.. 200.203444: thread_noise: insmod:1026 start 200.202586933 duration 838681 ns + timerlat/7-1001 [007] ....... 200.203445: #29800 context thread timer_latency 859978 ns + timerlat/7-1001 [007] ....1.. 200.203446: <stack trace> + => timerlat_irq + => __hrtimer_run_queues + => hrtimer_interrupt + => __sysvec_apic_timer_interrupt + => asm_call_irq_on_stack + => sysvec_apic_timer_interrupt + => asm_sysvec_apic_timer_interrupt + => delay_tsc + => dummy_load_1ms_pd_init + => do_one_initcall + => do_init_module + => __do_sys_finit_module + => do_syscall_64 + => entry_SYSCALL_64_after_hwframe + +In this case, it is possible to see that the thread added the highest +contribution to the *timer latency* and the stack trace, saved during +the timerlat IRQ handler, points to a function named +dummy_load_1ms_pd_init, which had the following code (on purpose):: + + static int __init dummy_load_1ms_pd_init(void) + { + preempt_disable(); + mdelay(1); + preempt_enable(); + return 0; + + } + +User-space interface +--------------------------- + +Timerlat allows user-space threads to use timerlat infra-structure to +measure scheduling latency. This interface is accessible via a per-CPU +file descriptor inside $tracing_dir/osnoise/per_cpu/cpu$ID/timerlat_fd. + +This interface is accessible under the following conditions: + + - timerlat tracer is enable + - osnoise workload option is set to NO_OSNOISE_WORKLOAD + - The user-space thread is affined to a single processor + - The thread opens the file associated with its single processor + - Only one thread can access the file at a time + +The open() syscall will fail if any of these conditions are not met. +After opening the file descriptor, the user space can read from it. + +The read() system call will run a timerlat code that will arm the +timer in the future and wait for it as the regular kernel thread does. + +When the timer IRQ fires, the timerlat IRQ will execute, report the +IRQ latency and wake up the thread waiting in the read. The thread will be +scheduled and report the thread latency via tracer - as for the kernel +thread. + +The difference from the in-kernel timerlat is that, instead of re-arming +the timer, timerlat will return to the read() system call. At this point, +the user can run any code. + +If the application rereads the file timerlat file descriptor, the tracer +will report the return from user-space latency, which is the total +latency. If this is the end of the work, it can be interpreted as the +response time for the request. + +After reporting the total latency, timerlat will restart the cycle, arm +a timer, and go to sleep for the following activation. + +If at any time one of the conditions is broken, e.g., the thread migrates +while in user space, or the timerlat tracer is disabled, the SIG_KILL +signal will be sent to the user-space thread. + +Here is an basic example of user-space code for timerlat:: + + int main(void) + { + char buffer[1024]; + int timerlat_fd; + int retval; + long cpu = 0; /* place in CPU 0 */ + cpu_set_t set; + + CPU_ZERO(&set); + CPU_SET(cpu, &set); + + if (sched_setaffinity(gettid(), sizeof(set), &set) == -1) + return 1; + + snprintf(buffer, sizeof(buffer), + "/sys/kernel/tracing/osnoise/per_cpu/cpu%ld/timerlat_fd", + cpu); + + timerlat_fd = open(buffer, O_RDONLY); + if (timerlat_fd < 0) { + printf("error opening %s: %s\n", buffer, strerror(errno)); + exit(1); + } + + for (;;) { + retval = read(timerlat_fd, buffer, 1024); + if (retval < 0) + break; + } + + close(timerlat_fd); + exit(0); + } |