diff options
Diffstat (limited to 'Documentation/userspace-api/landlock.rst')
-rw-r--r-- | Documentation/userspace-api/landlock.rst | 500 |
1 files changed, 500 insertions, 0 deletions
diff --git a/Documentation/userspace-api/landlock.rst b/Documentation/userspace-api/landlock.rst new file mode 100644 index 0000000000..d8cd8cd9ce --- /dev/null +++ b/Documentation/userspace-api/landlock.rst @@ -0,0 +1,500 @@ +.. SPDX-License-Identifier: GPL-2.0 +.. Copyright © 2017-2020 Mickaël Salaün <mic@digikod.net> +.. Copyright © 2019-2020 ANSSI +.. Copyright © 2021-2022 Microsoft Corporation + +===================================== +Landlock: unprivileged access control +===================================== + +:Author: Mickaël Salaün +:Date: October 2022 + +The goal of Landlock is to enable to restrict ambient rights (e.g. global +filesystem access) for a set of processes. Because Landlock is a stackable +LSM, it makes possible to create safe security sandboxes as new security layers +in addition to the existing system-wide access-controls. This kind of sandbox +is expected to help mitigate the security impact of bugs or +unexpected/malicious behaviors in user space applications. Landlock empowers +any process, including unprivileged ones, to securely restrict themselves. + +We can quickly make sure that Landlock is enabled in the running system by +looking for "landlock: Up and running" in kernel logs (as root): ``dmesg | grep +landlock || journalctl -kg landlock`` . Developers can also easily check for +Landlock support with a :ref:`related system call <landlock_abi_versions>`. If +Landlock is not currently supported, we need to :ref:`configure the kernel +appropriately <kernel_support>`. + +Landlock rules +============== + +A Landlock rule describes an action on an object. An object is currently a +file hierarchy, and the related filesystem actions are defined with `access +rights`_. A set of rules is aggregated in a ruleset, which can then restrict +the thread enforcing it, and its future children. + +Defining and enforcing a security policy +---------------------------------------- + +We first need to define the ruleset that will contain our rules. For this +example, the ruleset will contain rules that only allow read actions, but write +actions will be denied. The ruleset then needs to handle both of these kind of +actions. This is required for backward and forward compatibility (i.e. the +kernel and user space may not know each other's supported restrictions), hence +the need to be explicit about the denied-by-default access rights. + +.. code-block:: c + + struct landlock_ruleset_attr ruleset_attr = { + .handled_access_fs = + LANDLOCK_ACCESS_FS_EXECUTE | + LANDLOCK_ACCESS_FS_WRITE_FILE | + LANDLOCK_ACCESS_FS_READ_FILE | + LANDLOCK_ACCESS_FS_READ_DIR | + LANDLOCK_ACCESS_FS_REMOVE_DIR | + LANDLOCK_ACCESS_FS_REMOVE_FILE | + LANDLOCK_ACCESS_FS_MAKE_CHAR | + LANDLOCK_ACCESS_FS_MAKE_DIR | + LANDLOCK_ACCESS_FS_MAKE_REG | + LANDLOCK_ACCESS_FS_MAKE_SOCK | + LANDLOCK_ACCESS_FS_MAKE_FIFO | + LANDLOCK_ACCESS_FS_MAKE_BLOCK | + LANDLOCK_ACCESS_FS_MAKE_SYM | + LANDLOCK_ACCESS_FS_REFER | + LANDLOCK_ACCESS_FS_TRUNCATE, + }; + +Because we may not know on which kernel version an application will be +executed, it is safer to follow a best-effort security approach. Indeed, we +should try to protect users as much as possible whatever the kernel they are +using. To avoid binary enforcement (i.e. either all security features or +none), we can leverage a dedicated Landlock command to get the current version +of the Landlock ABI and adapt the handled accesses. Let's check if we should +remove the ``LANDLOCK_ACCESS_FS_REFER`` or ``LANDLOCK_ACCESS_FS_TRUNCATE`` +access rights, which are only supported starting with the second and third +version of the ABI. + +.. code-block:: c + + int abi; + + abi = landlock_create_ruleset(NULL, 0, LANDLOCK_CREATE_RULESET_VERSION); + if (abi < 0) { + /* Degrades gracefully if Landlock is not handled. */ + perror("The running kernel does not enable to use Landlock"); + return 0; + } + switch (abi) { + case 1: + /* Removes LANDLOCK_ACCESS_FS_REFER for ABI < 2 */ + ruleset_attr.handled_access_fs &= ~LANDLOCK_ACCESS_FS_REFER; + __attribute__((fallthrough)); + case 2: + /* Removes LANDLOCK_ACCESS_FS_TRUNCATE for ABI < 3 */ + ruleset_attr.handled_access_fs &= ~LANDLOCK_ACCESS_FS_TRUNCATE; + } + +This enables to create an inclusive ruleset that will contain our rules. + +.. code-block:: c + + int ruleset_fd; + + ruleset_fd = landlock_create_ruleset(&ruleset_attr, sizeof(ruleset_attr), 0); + if (ruleset_fd < 0) { + perror("Failed to create a ruleset"); + return 1; + } + +We can now add a new rule to this ruleset thanks to the returned file +descriptor referring to this ruleset. The rule will only allow reading the +file hierarchy ``/usr``. Without another rule, write actions would then be +denied by the ruleset. To add ``/usr`` to the ruleset, we open it with the +``O_PATH`` flag and fill the &struct landlock_path_beneath_attr with this file +descriptor. + +.. code-block:: c + + int err; + struct landlock_path_beneath_attr path_beneath = { + .allowed_access = + LANDLOCK_ACCESS_FS_EXECUTE | + LANDLOCK_ACCESS_FS_READ_FILE | + LANDLOCK_ACCESS_FS_READ_DIR, + }; + + path_beneath.parent_fd = open("/usr", O_PATH | O_CLOEXEC); + if (path_beneath.parent_fd < 0) { + perror("Failed to open file"); + close(ruleset_fd); + return 1; + } + err = landlock_add_rule(ruleset_fd, LANDLOCK_RULE_PATH_BENEATH, + &path_beneath, 0); + close(path_beneath.parent_fd); + if (err) { + perror("Failed to update ruleset"); + close(ruleset_fd); + return 1; + } + +It may also be required to create rules following the same logic as explained +for the ruleset creation, by filtering access rights according to the Landlock +ABI version. In this example, this is not required because all of the requested +``allowed_access`` rights are already available in ABI 1. + +We now have a ruleset with one rule allowing read access to ``/usr`` while +denying all other handled accesses for the filesystem. The next step is to +restrict the current thread from gaining more privileges (e.g. thanks to a SUID +binary). + +.. code-block:: c + + if (prctl(PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0)) { + perror("Failed to restrict privileges"); + close(ruleset_fd); + return 1; + } + +The current thread is now ready to sandbox itself with the ruleset. + +.. code-block:: c + + if (landlock_restrict_self(ruleset_fd, 0)) { + perror("Failed to enforce ruleset"); + close(ruleset_fd); + return 1; + } + close(ruleset_fd); + +If the ``landlock_restrict_self`` system call succeeds, the current thread is +now restricted and this policy will be enforced on all its subsequently created +children as well. Once a thread is landlocked, there is no way to remove its +security policy; only adding more restrictions is allowed. These threads are +now in a new Landlock domain, merge of their parent one (if any) with the new +ruleset. + +Full working code can be found in `samples/landlock/sandboxer.c`_. + +Good practices +-------------- + +It is recommended setting access rights to file hierarchy leaves as much as +possible. For instance, it is better to be able to have ``~/doc/`` as a +read-only hierarchy and ``~/tmp/`` as a read-write hierarchy, compared to +``~/`` as a read-only hierarchy and ``~/tmp/`` as a read-write hierarchy. +Following this good practice leads to self-sufficient hierarchies that do not +depend on their location (i.e. parent directories). This is particularly +relevant when we want to allow linking or renaming. Indeed, having consistent +access rights per directory enables to change the location of such directory +without relying on the destination directory access rights (except those that +are required for this operation, see ``LANDLOCK_ACCESS_FS_REFER`` +documentation). +Having self-sufficient hierarchies also helps to tighten the required access +rights to the minimal set of data. This also helps avoid sinkhole directories, +i.e. directories where data can be linked to but not linked from. However, +this depends on data organization, which might not be controlled by developers. +In this case, granting read-write access to ``~/tmp/``, instead of write-only +access, would potentially allow to move ``~/tmp/`` to a non-readable directory +and still keep the ability to list the content of ``~/tmp/``. + +Layers of file path access rights +--------------------------------- + +Each time a thread enforces a ruleset on itself, it updates its Landlock domain +with a new layer of policy. Indeed, this complementary policy is stacked with +the potentially other rulesets already restricting this thread. A sandboxed +thread can then safely add more constraints to itself with a new enforced +ruleset. + +One policy layer grants access to a file path if at least one of its rules +encountered on the path grants the access. A sandboxed thread can only access +a file path if all its enforced policy layers grant the access as well as all +the other system access controls (e.g. filesystem DAC, other LSM policies, +etc.). + +Bind mounts and OverlayFS +------------------------- + +Landlock enables to restrict access to file hierarchies, which means that these +access rights can be propagated with bind mounts (cf. +Documentation/filesystems/sharedsubtree.rst) but not with +Documentation/filesystems/overlayfs.rst. + +A bind mount mirrors a source file hierarchy to a destination. The destination +hierarchy is then composed of the exact same files, on which Landlock rules can +be tied, either via the source or the destination path. These rules restrict +access when they are encountered on a path, which means that they can restrict +access to multiple file hierarchies at the same time, whether these hierarchies +are the result of bind mounts or not. + +An OverlayFS mount point consists of upper and lower layers. These layers are +combined in a merge directory, result of the mount point. This merge hierarchy +may include files from the upper and lower layers, but modifications performed +on the merge hierarchy only reflects on the upper layer. From a Landlock +policy point of view, each OverlayFS layers and merge hierarchies are +standalone and contains their own set of files and directories, which is +different from bind mounts. A policy restricting an OverlayFS layer will not +restrict the resulted merged hierarchy, and vice versa. Landlock users should +then only think about file hierarchies they want to allow access to, regardless +of the underlying filesystem. + +Inheritance +----------- + +Every new thread resulting from a :manpage:`clone(2)` inherits Landlock domain +restrictions from its parent. This is similar to the seccomp inheritance (cf. +Documentation/userspace-api/seccomp_filter.rst) or any other LSM dealing with +task's :manpage:`credentials(7)`. For instance, one process's thread may apply +Landlock rules to itself, but they will not be automatically applied to other +sibling threads (unlike POSIX thread credential changes, cf. +:manpage:`nptl(7)`). + +When a thread sandboxes itself, we have the guarantee that the related security +policy will stay enforced on all this thread's descendants. This allows +creating standalone and modular security policies per application, which will +automatically be composed between themselves according to their runtime parent +policies. + +Ptrace restrictions +------------------- + +A sandboxed process has less privileges than a non-sandboxed process and must +then be subject to additional restrictions when manipulating another process. +To be allowed to use :manpage:`ptrace(2)` and related syscalls on a target +process, a sandboxed process should have a subset of the target process rules, +which means the tracee must be in a sub-domain of the tracer. + +Truncating files +---------------- + +The operations covered by ``LANDLOCK_ACCESS_FS_WRITE_FILE`` and +``LANDLOCK_ACCESS_FS_TRUNCATE`` both change the contents of a file and sometimes +overlap in non-intuitive ways. It is recommended to always specify both of +these together. + +A particularly surprising example is :manpage:`creat(2)`. The name suggests +that this system call requires the rights to create and write files. However, +it also requires the truncate right if an existing file under the same name is +already present. + +It should also be noted that truncating files does not require the +``LANDLOCK_ACCESS_FS_WRITE_FILE`` right. Apart from the :manpage:`truncate(2)` +system call, this can also be done through :manpage:`open(2)` with the flags +``O_RDONLY | O_TRUNC``. + +When opening a file, the availability of the ``LANDLOCK_ACCESS_FS_TRUNCATE`` +right is associated with the newly created file descriptor and will be used for +subsequent truncation attempts using :manpage:`ftruncate(2)`. The behavior is +similar to opening a file for reading or writing, where permissions are checked +during :manpage:`open(2)`, but not during the subsequent :manpage:`read(2)` and +:manpage:`write(2)` calls. + +As a consequence, it is possible to have multiple open file descriptors for the +same file, where one grants the right to truncate the file and the other does +not. It is also possible to pass such file descriptors between processes, +keeping their Landlock properties, even when these processes do not have an +enforced Landlock ruleset. + +Compatibility +============= + +Backward and forward compatibility +---------------------------------- + +Landlock is designed to be compatible with past and future versions of the +kernel. This is achieved thanks to the system call attributes and the +associated bitflags, particularly the ruleset's ``handled_access_fs``. Making +handled access right explicit enables the kernel and user space to have a clear +contract with each other. This is required to make sure sandboxing will not +get stricter with a system update, which could break applications. + +Developers can subscribe to the `Landlock mailing list +<https://subspace.kernel.org/lists.linux.dev.html>`_ to knowingly update and +test their applications with the latest available features. In the interest of +users, and because they may use different kernel versions, it is strongly +encouraged to follow a best-effort security approach by checking the Landlock +ABI version at runtime and only enforcing the supported features. + +.. _landlock_abi_versions: + +Landlock ABI versions +--------------------- + +The Landlock ABI version can be read with the sys_landlock_create_ruleset() +system call: + +.. code-block:: c + + int abi; + + abi = landlock_create_ruleset(NULL, 0, LANDLOCK_CREATE_RULESET_VERSION); + if (abi < 0) { + switch (errno) { + case ENOSYS: + printf("Landlock is not supported by the current kernel.\n"); + break; + case EOPNOTSUPP: + printf("Landlock is currently disabled.\n"); + break; + } + return 0; + } + if (abi >= 2) { + printf("Landlock supports LANDLOCK_ACCESS_FS_REFER.\n"); + } + +The following kernel interfaces are implicitly supported by the first ABI +version. Features only supported from a specific version are explicitly marked +as such. + +Kernel interface +================ + +Access rights +------------- + +.. kernel-doc:: include/uapi/linux/landlock.h + :identifiers: fs_access + +Creating a new ruleset +---------------------- + +.. kernel-doc:: security/landlock/syscalls.c + :identifiers: sys_landlock_create_ruleset + +.. kernel-doc:: include/uapi/linux/landlock.h + :identifiers: landlock_ruleset_attr + +Extending a ruleset +------------------- + +.. kernel-doc:: security/landlock/syscalls.c + :identifiers: sys_landlock_add_rule + +.. kernel-doc:: include/uapi/linux/landlock.h + :identifiers: landlock_rule_type landlock_path_beneath_attr + +Enforcing a ruleset +------------------- + +.. kernel-doc:: security/landlock/syscalls.c + :identifiers: sys_landlock_restrict_self + +Current limitations +=================== + +Filesystem topology modification +-------------------------------- + +As for file renaming and linking, a sandboxed thread cannot modify its +filesystem topology, whether via :manpage:`mount(2)` or +:manpage:`pivot_root(2)`. However, :manpage:`chroot(2)` calls are not denied. + +Special filesystems +------------------- + +Access to regular files and directories can be restricted by Landlock, +according to the handled accesses of a ruleset. However, files that do not +come from a user-visible filesystem (e.g. pipe, socket), but can still be +accessed through ``/proc/<pid>/fd/*``, cannot currently be explicitly +restricted. Likewise, some special kernel filesystems such as nsfs, which can +be accessed through ``/proc/<pid>/ns/*``, cannot currently be explicitly +restricted. However, thanks to the `ptrace restrictions`_, access to such +sensitive ``/proc`` files are automatically restricted according to domain +hierarchies. Future Landlock evolutions could still enable to explicitly +restrict such paths with dedicated ruleset flags. + +Ruleset layers +-------------- + +There is a limit of 16 layers of stacked rulesets. This can be an issue for a +task willing to enforce a new ruleset in complement to its 16 inherited +rulesets. Once this limit is reached, sys_landlock_restrict_self() returns +E2BIG. It is then strongly suggested to carefully build rulesets once in the +life of a thread, especially for applications able to launch other applications +that may also want to sandbox themselves (e.g. shells, container managers, +etc.). + +Memory usage +------------ + +Kernel memory allocated to create rulesets is accounted and can be restricted +by the Documentation/admin-guide/cgroup-v1/memory.rst. + +Previous limitations +==================== + +File renaming and linking (ABI < 2) +----------------------------------- + +Because Landlock targets unprivileged access controls, it needs to properly +handle composition of rules. Such property also implies rules nesting. +Properly handling multiple layers of rulesets, each one of them able to +restrict access to files, also implies inheritance of the ruleset restrictions +from a parent to its hierarchy. Because files are identified and restricted by +their hierarchy, moving or linking a file from one directory to another implies +propagation of the hierarchy constraints, or restriction of these actions +according to the potentially lost constraints. To protect against privilege +escalations through renaming or linking, and for the sake of simplicity, +Landlock previously limited linking and renaming to the same directory. +Starting with the Landlock ABI version 2, it is now possible to securely +control renaming and linking thanks to the new ``LANDLOCK_ACCESS_FS_REFER`` +access right. + +File truncation (ABI < 3) +------------------------- + +File truncation could not be denied before the third Landlock ABI, so it is +always allowed when using a kernel that only supports the first or second ABI. + +Starting with the Landlock ABI version 3, it is now possible to securely control +truncation thanks to the new ``LANDLOCK_ACCESS_FS_TRUNCATE`` access right. + +.. _kernel_support: + +Kernel support +============== + +Landlock was first introduced in Linux 5.13 but it must be configured at build +time with ``CONFIG_SECURITY_LANDLOCK=y``. Landlock must also be enabled at boot +time as the other security modules. The list of security modules enabled by +default is set with ``CONFIG_LSM``. The kernel configuration should then +contains ``CONFIG_LSM=landlock,[...]`` with ``[...]`` as the list of other +potentially useful security modules for the running system (see the +``CONFIG_LSM`` help). + +If the running kernel does not have ``landlock`` in ``CONFIG_LSM``, then we can +still enable it by adding ``lsm=landlock,[...]`` to +Documentation/admin-guide/kernel-parameters.rst thanks to the bootloader +configuration. + +Questions and answers +===================== + +What about user space sandbox managers? +--------------------------------------- + +Using user space process to enforce restrictions on kernel resources can lead +to race conditions or inconsistent evaluations (i.e. `Incorrect mirroring of +the OS code and state +<https://www.ndss-symposium.org/ndss2003/traps-and-pitfalls-practical-problems-system-call-interposition-based-security-tools/>`_). + +What about namespaces and containers? +------------------------------------- + +Namespaces can help create sandboxes but they are not designed for +access-control and then miss useful features for such use case (e.g. no +fine-grained restrictions). Moreover, their complexity can lead to security +issues, especially when untrusted processes can manipulate them (cf. +`Controlling access to user namespaces <https://lwn.net/Articles/673597/>`_). + +Additional documentation +======================== + +* Documentation/security/landlock.rst +* https://landlock.io + +.. Links +.. _samples/landlock/sandboxer.c: + https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/tree/samples/landlock/sandboxer.c |