diff options
Diffstat (limited to 'arch/arm64/kvm')
102 files changed, 45048 insertions, 0 deletions
diff --git a/arch/arm64/kvm/.gitignore b/arch/arm64/kvm/.gitignore new file mode 100644 index 0000000000..6182aefb83 --- /dev/null +++ b/arch/arm64/kvm/.gitignore @@ -0,0 +1,2 @@ +# SPDX-License-Identifier: GPL-2.0-only +hyp_constants.h diff --git a/arch/arm64/kvm/Kconfig b/arch/arm64/kvm/Kconfig new file mode 100644 index 0000000000..83c1e09be4 --- /dev/null +++ b/arch/arm64/kvm/Kconfig @@ -0,0 +1,74 @@ +# SPDX-License-Identifier: GPL-2.0 +# +# KVM configuration +# + +source "virt/lib/Kconfig" +source "virt/kvm/Kconfig" + +menuconfig VIRTUALIZATION + bool "Virtualization" + help + Say Y here to get to see options for using your Linux host to run + other operating systems inside virtual machines (guests). + This option alone does not add any kernel code. + + If you say N, all options in this submenu will be skipped and + disabled. + +if VIRTUALIZATION + +menuconfig KVM + bool "Kernel-based Virtual Machine (KVM) support" + depends on HAVE_KVM + select KVM_GENERIC_HARDWARE_ENABLING + select MMU_NOTIFIER + select PREEMPT_NOTIFIERS + select HAVE_KVM_CPU_RELAX_INTERCEPT + select KVM_MMIO + select KVM_GENERIC_DIRTYLOG_READ_PROTECT + select KVM_XFER_TO_GUEST_WORK + select KVM_VFIO + select HAVE_KVM_EVENTFD + select HAVE_KVM_IRQFD + select HAVE_KVM_DIRTY_RING_ACQ_REL + select NEED_KVM_DIRTY_RING_WITH_BITMAP + select HAVE_KVM_MSI + select HAVE_KVM_IRQCHIP + select HAVE_KVM_IRQ_ROUTING + select IRQ_BYPASS_MANAGER + select HAVE_KVM_IRQ_BYPASS + select HAVE_KVM_VCPU_RUN_PID_CHANGE + select SCHED_INFO + select GUEST_PERF_EVENTS if PERF_EVENTS + select INTERVAL_TREE + select XARRAY_MULTI + help + Support hosting virtualized guest machines. + + If unsure, say N. + +config NVHE_EL2_DEBUG + bool "Debug mode for non-VHE EL2 object" + depends on KVM + help + Say Y here to enable the debug mode for the non-VHE KVM EL2 object. + Failure reports will BUG() in the hypervisor. This is intended for + local EL2 hypervisor development. + + If unsure, say N. + +config PROTECTED_NVHE_STACKTRACE + bool "Protected KVM hypervisor stacktraces" + depends on NVHE_EL2_DEBUG + default n + help + Say Y here to enable pKVM hypervisor stacktraces on hyp_panic() + + If using protected nVHE mode, but cannot afford the associated + memory cost (less than 0.75 page per CPU) of pKVM stacktraces, + say N. + + If unsure, or not using protected nVHE (pKVM), say N. + +endif # VIRTUALIZATION diff --git a/arch/arm64/kvm/Makefile b/arch/arm64/kvm/Makefile new file mode 100644 index 0000000000..c0c050e531 --- /dev/null +++ b/arch/arm64/kvm/Makefile @@ -0,0 +1,41 @@ +# SPDX-License-Identifier: GPL-2.0 +# +# Makefile for Kernel-based Virtual Machine module +# + +ccflags-y += -I $(srctree)/$(src) + +include $(srctree)/virt/kvm/Makefile.kvm + +obj-$(CONFIG_KVM) += kvm.o +obj-$(CONFIG_KVM) += hyp/ + +kvm-y += arm.o mmu.o mmio.o psci.o hypercalls.o pvtime.o \ + inject_fault.o va_layout.o handle_exit.o \ + guest.o debug.o reset.o sys_regs.o stacktrace.o \ + vgic-sys-reg-v3.o fpsimd.o pkvm.o \ + arch_timer.o trng.o vmid.o emulate-nested.o nested.o \ + vgic/vgic.o vgic/vgic-init.o \ + vgic/vgic-irqfd.o vgic/vgic-v2.o \ + vgic/vgic-v3.o vgic/vgic-v4.o \ + vgic/vgic-mmio.o vgic/vgic-mmio-v2.o \ + vgic/vgic-mmio-v3.o vgic/vgic-kvm-device.o \ + vgic/vgic-its.o vgic/vgic-debug.o + +kvm-$(CONFIG_HW_PERF_EVENTS) += pmu-emul.o pmu.o + +always-y := hyp_constants.h hyp-constants.s + +define rule_gen_hyp_constants + $(call filechk,offsets,__HYP_CONSTANTS_H__) +endef + +CFLAGS_hyp-constants.o = -I $(srctree)/$(src)/hyp/include +$(obj)/hyp-constants.s: $(src)/hyp/hyp-constants.c FORCE + $(call if_changed_dep,cc_s_c) + +$(obj)/hyp_constants.h: $(obj)/hyp-constants.s FORCE + $(call if_changed_rule,gen_hyp_constants) + +obj-kvm := $(addprefix $(obj)/, $(kvm-y)) +$(obj-kvm): $(obj)/hyp_constants.h diff --git a/arch/arm64/kvm/arch_timer.c b/arch/arm64/kvm/arch_timer.c new file mode 100644 index 0000000000..a1e24228aa --- /dev/null +++ b/arch/arm64/kvm/arch_timer.c @@ -0,0 +1,1684 @@ +// SPDX-License-Identifier: GPL-2.0-only +/* + * Copyright (C) 2012 ARM Ltd. + * Author: Marc Zyngier <marc.zyngier@arm.com> + */ + +#include <linux/cpu.h> +#include <linux/kvm.h> +#include <linux/kvm_host.h> +#include <linux/interrupt.h> +#include <linux/irq.h> +#include <linux/irqdomain.h> +#include <linux/uaccess.h> + +#include <clocksource/arm_arch_timer.h> +#include <asm/arch_timer.h> +#include <asm/kvm_emulate.h> +#include <asm/kvm_hyp.h> +#include <asm/kvm_nested.h> + +#include <kvm/arm_vgic.h> +#include <kvm/arm_arch_timer.h> + +#include "trace.h" + +static struct timecounter *timecounter; +static unsigned int host_vtimer_irq; +static unsigned int host_ptimer_irq; +static u32 host_vtimer_irq_flags; +static u32 host_ptimer_irq_flags; + +static DEFINE_STATIC_KEY_FALSE(has_gic_active_state); + +static const u8 default_ppi[] = { + [TIMER_PTIMER] = 30, + [TIMER_VTIMER] = 27, + [TIMER_HPTIMER] = 26, + [TIMER_HVTIMER] = 28, +}; + +static bool kvm_timer_irq_can_fire(struct arch_timer_context *timer_ctx); +static void kvm_timer_update_irq(struct kvm_vcpu *vcpu, bool new_level, + struct arch_timer_context *timer_ctx); +static bool kvm_timer_should_fire(struct arch_timer_context *timer_ctx); +static void kvm_arm_timer_write(struct kvm_vcpu *vcpu, + struct arch_timer_context *timer, + enum kvm_arch_timer_regs treg, + u64 val); +static u64 kvm_arm_timer_read(struct kvm_vcpu *vcpu, + struct arch_timer_context *timer, + enum kvm_arch_timer_regs treg); +static bool kvm_arch_timer_get_input_level(int vintid); + +static struct irq_ops arch_timer_irq_ops = { + .get_input_level = kvm_arch_timer_get_input_level, +}; + +static int nr_timers(struct kvm_vcpu *vcpu) +{ + if (!vcpu_has_nv(vcpu)) + return NR_KVM_EL0_TIMERS; + + return NR_KVM_TIMERS; +} + +u32 timer_get_ctl(struct arch_timer_context *ctxt) +{ + struct kvm_vcpu *vcpu = ctxt->vcpu; + + switch(arch_timer_ctx_index(ctxt)) { + case TIMER_VTIMER: + return __vcpu_sys_reg(vcpu, CNTV_CTL_EL0); + case TIMER_PTIMER: + return __vcpu_sys_reg(vcpu, CNTP_CTL_EL0); + case TIMER_HVTIMER: + return __vcpu_sys_reg(vcpu, CNTHV_CTL_EL2); + case TIMER_HPTIMER: + return __vcpu_sys_reg(vcpu, CNTHP_CTL_EL2); + default: + WARN_ON(1); + return 0; + } +} + +u64 timer_get_cval(struct arch_timer_context *ctxt) +{ + struct kvm_vcpu *vcpu = ctxt->vcpu; + + switch(arch_timer_ctx_index(ctxt)) { + case TIMER_VTIMER: + return __vcpu_sys_reg(vcpu, CNTV_CVAL_EL0); + case TIMER_PTIMER: + return __vcpu_sys_reg(vcpu, CNTP_CVAL_EL0); + case TIMER_HVTIMER: + return __vcpu_sys_reg(vcpu, CNTHV_CVAL_EL2); + case TIMER_HPTIMER: + return __vcpu_sys_reg(vcpu, CNTHP_CVAL_EL2); + default: + WARN_ON(1); + return 0; + } +} + +static u64 timer_get_offset(struct arch_timer_context *ctxt) +{ + u64 offset = 0; + + if (!ctxt) + return 0; + + if (ctxt->offset.vm_offset) + offset += *ctxt->offset.vm_offset; + if (ctxt->offset.vcpu_offset) + offset += *ctxt->offset.vcpu_offset; + + return offset; +} + +static void timer_set_ctl(struct arch_timer_context *ctxt, u32 ctl) +{ + struct kvm_vcpu *vcpu = ctxt->vcpu; + + switch(arch_timer_ctx_index(ctxt)) { + case TIMER_VTIMER: + __vcpu_sys_reg(vcpu, CNTV_CTL_EL0) = ctl; + break; + case TIMER_PTIMER: + __vcpu_sys_reg(vcpu, CNTP_CTL_EL0) = ctl; + break; + case TIMER_HVTIMER: + __vcpu_sys_reg(vcpu, CNTHV_CTL_EL2) = ctl; + break; + case TIMER_HPTIMER: + __vcpu_sys_reg(vcpu, CNTHP_CTL_EL2) = ctl; + break; + default: + WARN_ON(1); + } +} + +static void timer_set_cval(struct arch_timer_context *ctxt, u64 cval) +{ + struct kvm_vcpu *vcpu = ctxt->vcpu; + + switch(arch_timer_ctx_index(ctxt)) { + case TIMER_VTIMER: + __vcpu_sys_reg(vcpu, CNTV_CVAL_EL0) = cval; + break; + case TIMER_PTIMER: + __vcpu_sys_reg(vcpu, CNTP_CVAL_EL0) = cval; + break; + case TIMER_HVTIMER: + __vcpu_sys_reg(vcpu, CNTHV_CVAL_EL2) = cval; + break; + case TIMER_HPTIMER: + __vcpu_sys_reg(vcpu, CNTHP_CVAL_EL2) = cval; + break; + default: + WARN_ON(1); + } +} + +static void timer_set_offset(struct arch_timer_context *ctxt, u64 offset) +{ + if (!ctxt->offset.vm_offset) { + WARN(offset, "timer %ld\n", arch_timer_ctx_index(ctxt)); + return; + } + + WRITE_ONCE(*ctxt->offset.vm_offset, offset); +} + +u64 kvm_phys_timer_read(void) +{ + return timecounter->cc->read(timecounter->cc); +} + +void get_timer_map(struct kvm_vcpu *vcpu, struct timer_map *map) +{ + if (vcpu_has_nv(vcpu)) { + if (is_hyp_ctxt(vcpu)) { + map->direct_vtimer = vcpu_hvtimer(vcpu); + map->direct_ptimer = vcpu_hptimer(vcpu); + map->emul_vtimer = vcpu_vtimer(vcpu); + map->emul_ptimer = vcpu_ptimer(vcpu); + } else { + map->direct_vtimer = vcpu_vtimer(vcpu); + map->direct_ptimer = vcpu_ptimer(vcpu); + map->emul_vtimer = vcpu_hvtimer(vcpu); + map->emul_ptimer = vcpu_hptimer(vcpu); + } + } else if (has_vhe()) { + map->direct_vtimer = vcpu_vtimer(vcpu); + map->direct_ptimer = vcpu_ptimer(vcpu); + map->emul_vtimer = NULL; + map->emul_ptimer = NULL; + } else { + map->direct_vtimer = vcpu_vtimer(vcpu); + map->direct_ptimer = NULL; + map->emul_vtimer = NULL; + map->emul_ptimer = vcpu_ptimer(vcpu); + } + + trace_kvm_get_timer_map(vcpu->vcpu_id, map); +} + +static inline bool userspace_irqchip(struct kvm *kvm) +{ + return static_branch_unlikely(&userspace_irqchip_in_use) && + unlikely(!irqchip_in_kernel(kvm)); +} + +static void soft_timer_start(struct hrtimer *hrt, u64 ns) +{ + hrtimer_start(hrt, ktime_add_ns(ktime_get(), ns), + HRTIMER_MODE_ABS_HARD); +} + +static void soft_timer_cancel(struct hrtimer *hrt) +{ + hrtimer_cancel(hrt); +} + +static irqreturn_t kvm_arch_timer_handler(int irq, void *dev_id) +{ + struct kvm_vcpu *vcpu = *(struct kvm_vcpu **)dev_id; + struct arch_timer_context *ctx; + struct timer_map map; + + /* + * We may see a timer interrupt after vcpu_put() has been called which + * sets the CPU's vcpu pointer to NULL, because even though the timer + * has been disabled in timer_save_state(), the hardware interrupt + * signal may not have been retired from the interrupt controller yet. + */ + if (!vcpu) + return IRQ_HANDLED; + + get_timer_map(vcpu, &map); + + if (irq == host_vtimer_irq) + ctx = map.direct_vtimer; + else + ctx = map.direct_ptimer; + + if (kvm_timer_should_fire(ctx)) + kvm_timer_update_irq(vcpu, true, ctx); + + if (userspace_irqchip(vcpu->kvm) && + !static_branch_unlikely(&has_gic_active_state)) + disable_percpu_irq(host_vtimer_irq); + + return IRQ_HANDLED; +} + +static u64 kvm_counter_compute_delta(struct arch_timer_context *timer_ctx, + u64 val) +{ + u64 now = kvm_phys_timer_read() - timer_get_offset(timer_ctx); + + if (now < val) { + u64 ns; + + ns = cyclecounter_cyc2ns(timecounter->cc, + val - now, + timecounter->mask, + &timer_ctx->ns_frac); + return ns; + } + + return 0; +} + +static u64 kvm_timer_compute_delta(struct arch_timer_context *timer_ctx) +{ + return kvm_counter_compute_delta(timer_ctx, timer_get_cval(timer_ctx)); +} + +static bool kvm_timer_irq_can_fire(struct arch_timer_context *timer_ctx) +{ + WARN_ON(timer_ctx && timer_ctx->loaded); + return timer_ctx && + ((timer_get_ctl(timer_ctx) & + (ARCH_TIMER_CTRL_IT_MASK | ARCH_TIMER_CTRL_ENABLE)) == ARCH_TIMER_CTRL_ENABLE); +} + +static bool vcpu_has_wfit_active(struct kvm_vcpu *vcpu) +{ + return (cpus_have_final_cap(ARM64_HAS_WFXT) && + vcpu_get_flag(vcpu, IN_WFIT)); +} + +static u64 wfit_delay_ns(struct kvm_vcpu *vcpu) +{ + u64 val = vcpu_get_reg(vcpu, kvm_vcpu_sys_get_rt(vcpu)); + struct arch_timer_context *ctx; + + ctx = (vcpu_has_nv(vcpu) && is_hyp_ctxt(vcpu)) ? vcpu_hvtimer(vcpu) + : vcpu_vtimer(vcpu); + + return kvm_counter_compute_delta(ctx, val); +} + +/* + * Returns the earliest expiration time in ns among guest timers. + * Note that it will return 0 if none of timers can fire. + */ +static u64 kvm_timer_earliest_exp(struct kvm_vcpu *vcpu) +{ + u64 min_delta = ULLONG_MAX; + int i; + + for (i = 0; i < nr_timers(vcpu); i++) { + struct arch_timer_context *ctx = &vcpu->arch.timer_cpu.timers[i]; + + WARN(ctx->loaded, "timer %d loaded\n", i); + if (kvm_timer_irq_can_fire(ctx)) + min_delta = min(min_delta, kvm_timer_compute_delta(ctx)); + } + + if (vcpu_has_wfit_active(vcpu)) + min_delta = min(min_delta, wfit_delay_ns(vcpu)); + + /* If none of timers can fire, then return 0 */ + if (min_delta == ULLONG_MAX) + return 0; + + return min_delta; +} + +static enum hrtimer_restart kvm_bg_timer_expire(struct hrtimer *hrt) +{ + struct arch_timer_cpu *timer; + struct kvm_vcpu *vcpu; + u64 ns; + + timer = container_of(hrt, struct arch_timer_cpu, bg_timer); + vcpu = container_of(timer, struct kvm_vcpu, arch.timer_cpu); + + /* + * Check that the timer has really expired from the guest's + * PoV (NTP on the host may have forced it to expire + * early). If we should have slept longer, restart it. + */ + ns = kvm_timer_earliest_exp(vcpu); + if (unlikely(ns)) { + hrtimer_forward_now(hrt, ns_to_ktime(ns)); + return HRTIMER_RESTART; + } + + kvm_vcpu_wake_up(vcpu); + return HRTIMER_NORESTART; +} + +static enum hrtimer_restart kvm_hrtimer_expire(struct hrtimer *hrt) +{ + struct arch_timer_context *ctx; + struct kvm_vcpu *vcpu; + u64 ns; + + ctx = container_of(hrt, struct arch_timer_context, hrtimer); + vcpu = ctx->vcpu; + + trace_kvm_timer_hrtimer_expire(ctx); + + /* + * Check that the timer has really expired from the guest's + * PoV (NTP on the host may have forced it to expire + * early). If not ready, schedule for a later time. + */ + ns = kvm_timer_compute_delta(ctx); + if (unlikely(ns)) { + hrtimer_forward_now(hrt, ns_to_ktime(ns)); + return HRTIMER_RESTART; + } + + kvm_timer_update_irq(vcpu, true, ctx); + return HRTIMER_NORESTART; +} + +static bool kvm_timer_should_fire(struct arch_timer_context *timer_ctx) +{ + enum kvm_arch_timers index; + u64 cval, now; + + if (!timer_ctx) + return false; + + index = arch_timer_ctx_index(timer_ctx); + + if (timer_ctx->loaded) { + u32 cnt_ctl = 0; + + switch (index) { + case TIMER_VTIMER: + case TIMER_HVTIMER: + cnt_ctl = read_sysreg_el0(SYS_CNTV_CTL); + break; + case TIMER_PTIMER: + case TIMER_HPTIMER: + cnt_ctl = read_sysreg_el0(SYS_CNTP_CTL); + break; + case NR_KVM_TIMERS: + /* GCC is braindead */ + cnt_ctl = 0; + break; + } + + return (cnt_ctl & ARCH_TIMER_CTRL_ENABLE) && + (cnt_ctl & ARCH_TIMER_CTRL_IT_STAT) && + !(cnt_ctl & ARCH_TIMER_CTRL_IT_MASK); + } + + if (!kvm_timer_irq_can_fire(timer_ctx)) + return false; + + cval = timer_get_cval(timer_ctx); + now = kvm_phys_timer_read() - timer_get_offset(timer_ctx); + + return cval <= now; +} + +int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu) +{ + return vcpu_has_wfit_active(vcpu) && wfit_delay_ns(vcpu) == 0; +} + +/* + * Reflect the timer output level into the kvm_run structure + */ +void kvm_timer_update_run(struct kvm_vcpu *vcpu) +{ + struct arch_timer_context *vtimer = vcpu_vtimer(vcpu); + struct arch_timer_context *ptimer = vcpu_ptimer(vcpu); + struct kvm_sync_regs *regs = &vcpu->run->s.regs; + + /* Populate the device bitmap with the timer states */ + regs->device_irq_level &= ~(KVM_ARM_DEV_EL1_VTIMER | + KVM_ARM_DEV_EL1_PTIMER); + if (kvm_timer_should_fire(vtimer)) + regs->device_irq_level |= KVM_ARM_DEV_EL1_VTIMER; + if (kvm_timer_should_fire(ptimer)) + regs->device_irq_level |= KVM_ARM_DEV_EL1_PTIMER; +} + +static void kvm_timer_update_irq(struct kvm_vcpu *vcpu, bool new_level, + struct arch_timer_context *timer_ctx) +{ + int ret; + + timer_ctx->irq.level = new_level; + trace_kvm_timer_update_irq(vcpu->vcpu_id, timer_irq(timer_ctx), + timer_ctx->irq.level); + + if (!userspace_irqchip(vcpu->kvm)) { + ret = kvm_vgic_inject_irq(vcpu->kvm, vcpu->vcpu_id, + timer_irq(timer_ctx), + timer_ctx->irq.level, + timer_ctx); + WARN_ON(ret); + } +} + +/* Only called for a fully emulated timer */ +static void timer_emulate(struct arch_timer_context *ctx) +{ + bool should_fire = kvm_timer_should_fire(ctx); + + trace_kvm_timer_emulate(ctx, should_fire); + + if (should_fire != ctx->irq.level) { + kvm_timer_update_irq(ctx->vcpu, should_fire, ctx); + return; + } + + /* + * If the timer can fire now, we don't need to have a soft timer + * scheduled for the future. If the timer cannot fire at all, + * then we also don't need a soft timer. + */ + if (should_fire || !kvm_timer_irq_can_fire(ctx)) + return; + + soft_timer_start(&ctx->hrtimer, kvm_timer_compute_delta(ctx)); +} + +static void set_cntvoff(u64 cntvoff) +{ + kvm_call_hyp(__kvm_timer_set_cntvoff, cntvoff); +} + +static void set_cntpoff(u64 cntpoff) +{ + if (has_cntpoff()) + write_sysreg_s(cntpoff, SYS_CNTPOFF_EL2); +} + +static void timer_save_state(struct arch_timer_context *ctx) +{ + struct arch_timer_cpu *timer = vcpu_timer(ctx->vcpu); + enum kvm_arch_timers index = arch_timer_ctx_index(ctx); + unsigned long flags; + + if (!timer->enabled) + return; + + local_irq_save(flags); + + if (!ctx->loaded) + goto out; + + switch (index) { + u64 cval; + + case TIMER_VTIMER: + case TIMER_HVTIMER: + timer_set_ctl(ctx, read_sysreg_el0(SYS_CNTV_CTL)); + timer_set_cval(ctx, read_sysreg_el0(SYS_CNTV_CVAL)); + + /* Disable the timer */ + write_sysreg_el0(0, SYS_CNTV_CTL); + isb(); + + /* + * The kernel may decide to run userspace after + * calling vcpu_put, so we reset cntvoff to 0 to + * ensure a consistent read between user accesses to + * the virtual counter and kernel access to the + * physical counter of non-VHE case. + * + * For VHE, the virtual counter uses a fixed virtual + * offset of zero, so no need to zero CNTVOFF_EL2 + * register, but this is actually useful when switching + * between EL1/vEL2 with NV. + * + * Do it unconditionally, as this is either unavoidable + * or dirt cheap. + */ + set_cntvoff(0); + break; + case TIMER_PTIMER: + case TIMER_HPTIMER: + timer_set_ctl(ctx, read_sysreg_el0(SYS_CNTP_CTL)); + cval = read_sysreg_el0(SYS_CNTP_CVAL); + + cval -= timer_get_offset(ctx); + + timer_set_cval(ctx, cval); + + /* Disable the timer */ + write_sysreg_el0(0, SYS_CNTP_CTL); + isb(); + + set_cntpoff(0); + break; + case NR_KVM_TIMERS: + BUG(); + } + + trace_kvm_timer_save_state(ctx); + + ctx->loaded = false; +out: + local_irq_restore(flags); +} + +/* + * Schedule the background timer before calling kvm_vcpu_halt, so that this + * thread is removed from its waitqueue and made runnable when there's a timer + * interrupt to handle. + */ +static void kvm_timer_blocking(struct kvm_vcpu *vcpu) +{ + struct arch_timer_cpu *timer = vcpu_timer(vcpu); + struct timer_map map; + + get_timer_map(vcpu, &map); + + /* + * If no timers are capable of raising interrupts (disabled or + * masked), then there's no more work for us to do. + */ + if (!kvm_timer_irq_can_fire(map.direct_vtimer) && + !kvm_timer_irq_can_fire(map.direct_ptimer) && + !kvm_timer_irq_can_fire(map.emul_vtimer) && + !kvm_timer_irq_can_fire(map.emul_ptimer) && + !vcpu_has_wfit_active(vcpu)) + return; + + /* + * At least one guest time will expire. Schedule a background timer. + * Set the earliest expiration time among the guest timers. + */ + soft_timer_start(&timer->bg_timer, kvm_timer_earliest_exp(vcpu)); +} + +static void kvm_timer_unblocking(struct kvm_vcpu *vcpu) +{ + struct arch_timer_cpu *timer = vcpu_timer(vcpu); + + soft_timer_cancel(&timer->bg_timer); +} + +static void timer_restore_state(struct arch_timer_context *ctx) +{ + struct arch_timer_cpu *timer = vcpu_timer(ctx->vcpu); + enum kvm_arch_timers index = arch_timer_ctx_index(ctx); + unsigned long flags; + + if (!timer->enabled) + return; + + local_irq_save(flags); + + if (ctx->loaded) + goto out; + + switch (index) { + u64 cval, offset; + + case TIMER_VTIMER: + case TIMER_HVTIMER: + set_cntvoff(timer_get_offset(ctx)); + write_sysreg_el0(timer_get_cval(ctx), SYS_CNTV_CVAL); + isb(); + write_sysreg_el0(timer_get_ctl(ctx), SYS_CNTV_CTL); + break; + case TIMER_PTIMER: + case TIMER_HPTIMER: + cval = timer_get_cval(ctx); + offset = timer_get_offset(ctx); + set_cntpoff(offset); + cval += offset; + write_sysreg_el0(cval, SYS_CNTP_CVAL); + isb(); + write_sysreg_el0(timer_get_ctl(ctx), SYS_CNTP_CTL); + break; + case NR_KVM_TIMERS: + BUG(); + } + + trace_kvm_timer_restore_state(ctx); + + ctx->loaded = true; +out: + local_irq_restore(flags); +} + +static inline void set_timer_irq_phys_active(struct arch_timer_context *ctx, bool active) +{ + int r; + r = irq_set_irqchip_state(ctx->host_timer_irq, IRQCHIP_STATE_ACTIVE, active); + WARN_ON(r); +} + +static void kvm_timer_vcpu_load_gic(struct arch_timer_context *ctx) +{ + struct kvm_vcpu *vcpu = ctx->vcpu; + bool phys_active = false; + + /* + * Update the timer output so that it is likely to match the + * state we're about to restore. If the timer expires between + * this point and the register restoration, we'll take the + * interrupt anyway. + */ + kvm_timer_update_irq(ctx->vcpu, kvm_timer_should_fire(ctx), ctx); + + if (irqchip_in_kernel(vcpu->kvm)) + phys_active = kvm_vgic_map_is_active(vcpu, timer_irq(ctx)); + + phys_active |= ctx->irq.level; + + set_timer_irq_phys_active(ctx, phys_active); +} + +static void kvm_timer_vcpu_load_nogic(struct kvm_vcpu *vcpu) +{ + struct arch_timer_context *vtimer = vcpu_vtimer(vcpu); + + /* + * Update the timer output so that it is likely to match the + * state we're about to restore. If the timer expires between + * this point and the register restoration, we'll take the + * interrupt anyway. + */ + kvm_timer_update_irq(vcpu, kvm_timer_should_fire(vtimer), vtimer); + + /* + * When using a userspace irqchip with the architected timers and a + * host interrupt controller that doesn't support an active state, we + * must still prevent continuously exiting from the guest, and + * therefore mask the physical interrupt by disabling it on the host + * interrupt controller when the virtual level is high, such that the + * guest can make forward progress. Once we detect the output level + * being de-asserted, we unmask the interrupt again so that we exit + * from the guest when the timer fires. + */ + if (vtimer->irq.level) + disable_percpu_irq(host_vtimer_irq); + else + enable_percpu_irq(host_vtimer_irq, host_vtimer_irq_flags); +} + +/* If _pred is true, set bit in _set, otherwise set it in _clr */ +#define assign_clear_set_bit(_pred, _bit, _clr, _set) \ + do { \ + if (_pred) \ + (_set) |= (_bit); \ + else \ + (_clr) |= (_bit); \ + } while (0) + +static void kvm_timer_vcpu_load_nested_switch(struct kvm_vcpu *vcpu, + struct timer_map *map) +{ + int hw, ret; + + if (!irqchip_in_kernel(vcpu->kvm)) + return; + + /* + * We only ever unmap the vtimer irq on a VHE system that runs nested + * virtualization, in which case we have both a valid emul_vtimer, + * emul_ptimer, direct_vtimer, and direct_ptimer. + * + * Since this is called from kvm_timer_vcpu_load(), a change between + * vEL2 and vEL1/0 will have just happened, and the timer_map will + * represent this, and therefore we switch the emul/direct mappings + * below. + */ + hw = kvm_vgic_get_map(vcpu, timer_irq(map->direct_vtimer)); + if (hw < 0) { + kvm_vgic_unmap_phys_irq(vcpu, timer_irq(map->emul_vtimer)); + kvm_vgic_unmap_phys_irq(vcpu, timer_irq(map->emul_ptimer)); + + ret = kvm_vgic_map_phys_irq(vcpu, + map->direct_vtimer->host_timer_irq, + timer_irq(map->direct_vtimer), + &arch_timer_irq_ops); + WARN_ON_ONCE(ret); + ret = kvm_vgic_map_phys_irq(vcpu, + map->direct_ptimer->host_timer_irq, + timer_irq(map->direct_ptimer), + &arch_timer_irq_ops); + WARN_ON_ONCE(ret); + + /* + * The virtual offset behaviour is "interresting", as it + * always applies when HCR_EL2.E2H==0, but only when + * accessed from EL1 when HCR_EL2.E2H==1. So make sure we + * track E2H when putting the HV timer in "direct" mode. + */ + if (map->direct_vtimer == vcpu_hvtimer(vcpu)) { + struct arch_timer_offset *offs = &map->direct_vtimer->offset; + + if (vcpu_el2_e2h_is_set(vcpu)) + offs->vcpu_offset = NULL; + else + offs->vcpu_offset = &__vcpu_sys_reg(vcpu, CNTVOFF_EL2); + } + } +} + +static void timer_set_traps(struct kvm_vcpu *vcpu, struct timer_map *map) +{ + bool tpt, tpc; + u64 clr, set; + + /* + * No trapping gets configured here with nVHE. See + * __timer_enable_traps(), which is where the stuff happens. + */ + if (!has_vhe()) + return; + + /* + * Our default policy is not to trap anything. As we progress + * within this function, reality kicks in and we start adding + * traps based on emulation requirements. + */ + tpt = tpc = false; + + /* + * We have two possibility to deal with a physical offset: + * + * - Either we have CNTPOFF (yay!) or the offset is 0: + * we let the guest freely access the HW + * + * - or neither of these condition apply: + * we trap accesses to the HW, but still use it + * after correcting the physical offset + */ + if (!has_cntpoff() && timer_get_offset(map->direct_ptimer)) + tpt = tpc = true; + + /* + * Apply the enable bits that the guest hypervisor has requested for + * its own guest. We can only add traps that wouldn't have been set + * above. + */ + if (vcpu_has_nv(vcpu) && !is_hyp_ctxt(vcpu)) { + u64 val = __vcpu_sys_reg(vcpu, CNTHCTL_EL2); + + /* Use the VHE format for mental sanity */ + if (!vcpu_el2_e2h_is_set(vcpu)) + val = (val & (CNTHCTL_EL1PCEN | CNTHCTL_EL1PCTEN)) << 10; + + tpt |= !(val & (CNTHCTL_EL1PCEN << 10)); + tpc |= !(val & (CNTHCTL_EL1PCTEN << 10)); + } + + /* + * Now that we have collected our requirements, compute the + * trap and enable bits. + */ + set = 0; + clr = 0; + + assign_clear_set_bit(tpt, CNTHCTL_EL1PCEN << 10, set, clr); + assign_clear_set_bit(tpc, CNTHCTL_EL1PCTEN << 10, set, clr); + + /* This only happens on VHE, so use the CNTHCTL_EL2 accessor. */ + sysreg_clear_set(cnthctl_el2, clr, set); +} + +void kvm_timer_vcpu_load(struct kvm_vcpu *vcpu) +{ + struct arch_timer_cpu *timer = vcpu_timer(vcpu); + struct timer_map map; + + if (unlikely(!timer->enabled)) + return; + + get_timer_map(vcpu, &map); + + if (static_branch_likely(&has_gic_active_state)) { + if (vcpu_has_nv(vcpu)) + kvm_timer_vcpu_load_nested_switch(vcpu, &map); + + kvm_timer_vcpu_load_gic(map.direct_vtimer); + if (map.direct_ptimer) + kvm_timer_vcpu_load_gic(map.direct_ptimer); + } else { + kvm_timer_vcpu_load_nogic(vcpu); + } + + kvm_timer_unblocking(vcpu); + + timer_restore_state(map.direct_vtimer); + if (map.direct_ptimer) + timer_restore_state(map.direct_ptimer); + if (map.emul_vtimer) + timer_emulate(map.emul_vtimer); + if (map.emul_ptimer) + timer_emulate(map.emul_ptimer); + + timer_set_traps(vcpu, &map); +} + +bool kvm_timer_should_notify_user(struct kvm_vcpu *vcpu) +{ + struct arch_timer_context *vtimer = vcpu_vtimer(vcpu); + struct arch_timer_context *ptimer = vcpu_ptimer(vcpu); + struct kvm_sync_regs *sregs = &vcpu->run->s.regs; + bool vlevel, plevel; + + if (likely(irqchip_in_kernel(vcpu->kvm))) + return false; + + vlevel = sregs->device_irq_level & KVM_ARM_DEV_EL1_VTIMER; + plevel = sregs->device_irq_level & KVM_ARM_DEV_EL1_PTIMER; + + return kvm_timer_should_fire(vtimer) != vlevel || + kvm_timer_should_fire(ptimer) != plevel; +} + +void kvm_timer_vcpu_put(struct kvm_vcpu *vcpu) +{ + struct arch_timer_cpu *timer = vcpu_timer(vcpu); + struct timer_map map; + + if (unlikely(!timer->enabled)) + return; + + get_timer_map(vcpu, &map); + + timer_save_state(map.direct_vtimer); + if (map.direct_ptimer) + timer_save_state(map.direct_ptimer); + + /* + * Cancel soft timer emulation, because the only case where we + * need it after a vcpu_put is in the context of a sleeping VCPU, and + * in that case we already factor in the deadline for the physical + * timer when scheduling the bg_timer. + * + * In any case, we re-schedule the hrtimer for the physical timer when + * coming back to the VCPU thread in kvm_timer_vcpu_load(). + */ + if (map.emul_vtimer) + soft_timer_cancel(&map.emul_vtimer->hrtimer); + if (map.emul_ptimer) + soft_timer_cancel(&map.emul_ptimer->hrtimer); + + if (kvm_vcpu_is_blocking(vcpu)) + kvm_timer_blocking(vcpu); +} + +/* + * With a userspace irqchip we have to check if the guest de-asserted the + * timer and if so, unmask the timer irq signal on the host interrupt + * controller to ensure that we see future timer signals. + */ +static void unmask_vtimer_irq_user(struct kvm_vcpu *vcpu) +{ + struct arch_timer_context *vtimer = vcpu_vtimer(vcpu); + + if (!kvm_timer_should_fire(vtimer)) { + kvm_timer_update_irq(vcpu, false, vtimer); + if (static_branch_likely(&has_gic_active_state)) + set_timer_irq_phys_active(vtimer, false); + else + enable_percpu_irq(host_vtimer_irq, host_vtimer_irq_flags); + } +} + +void kvm_timer_sync_user(struct kvm_vcpu *vcpu) +{ + struct arch_timer_cpu *timer = vcpu_timer(vcpu); + + if (unlikely(!timer->enabled)) + return; + + if (unlikely(!irqchip_in_kernel(vcpu->kvm))) + unmask_vtimer_irq_user(vcpu); +} + +int kvm_timer_vcpu_reset(struct kvm_vcpu *vcpu) +{ + struct arch_timer_cpu *timer = vcpu_timer(vcpu); + struct timer_map map; + + get_timer_map(vcpu, &map); + + /* + * The bits in CNTV_CTL are architecturally reset to UNKNOWN for ARMv8 + * and to 0 for ARMv7. We provide an implementation that always + * resets the timer to be disabled and unmasked and is compliant with + * the ARMv7 architecture. + */ + for (int i = 0; i < nr_timers(vcpu); i++) + timer_set_ctl(vcpu_get_timer(vcpu, i), 0); + + /* + * A vcpu running at EL2 is in charge of the offset applied to + * the virtual timer, so use the physical VM offset, and point + * the vcpu offset to CNTVOFF_EL2. + */ + if (vcpu_has_nv(vcpu)) { + struct arch_timer_offset *offs = &vcpu_vtimer(vcpu)->offset; + + offs->vcpu_offset = &__vcpu_sys_reg(vcpu, CNTVOFF_EL2); + offs->vm_offset = &vcpu->kvm->arch.timer_data.poffset; + } + + if (timer->enabled) { + for (int i = 0; i < nr_timers(vcpu); i++) + kvm_timer_update_irq(vcpu, false, + vcpu_get_timer(vcpu, i)); + + if (irqchip_in_kernel(vcpu->kvm)) { + kvm_vgic_reset_mapped_irq(vcpu, timer_irq(map.direct_vtimer)); + if (map.direct_ptimer) + kvm_vgic_reset_mapped_irq(vcpu, timer_irq(map.direct_ptimer)); + } + } + + if (map.emul_vtimer) + soft_timer_cancel(&map.emul_vtimer->hrtimer); + if (map.emul_ptimer) + soft_timer_cancel(&map.emul_ptimer->hrtimer); + + return 0; +} + +static void timer_context_init(struct kvm_vcpu *vcpu, int timerid) +{ + struct arch_timer_context *ctxt = vcpu_get_timer(vcpu, timerid); + struct kvm *kvm = vcpu->kvm; + + ctxt->vcpu = vcpu; + + if (timerid == TIMER_VTIMER) + ctxt->offset.vm_offset = &kvm->arch.timer_data.voffset; + else + ctxt->offset.vm_offset = &kvm->arch.timer_data.poffset; + + hrtimer_init(&ctxt->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_HARD); + ctxt->hrtimer.function = kvm_hrtimer_expire; + + switch (timerid) { + case TIMER_PTIMER: + case TIMER_HPTIMER: + ctxt->host_timer_irq = host_ptimer_irq; + break; + case TIMER_VTIMER: + case TIMER_HVTIMER: + ctxt->host_timer_irq = host_vtimer_irq; + break; + } +} + +void kvm_timer_vcpu_init(struct kvm_vcpu *vcpu) +{ + struct arch_timer_cpu *timer = vcpu_timer(vcpu); + + for (int i = 0; i < NR_KVM_TIMERS; i++) + timer_context_init(vcpu, i); + + /* Synchronize offsets across timers of a VM if not already provided */ + if (!test_bit(KVM_ARCH_FLAG_VM_COUNTER_OFFSET, &vcpu->kvm->arch.flags)) { + timer_set_offset(vcpu_vtimer(vcpu), kvm_phys_timer_read()); + timer_set_offset(vcpu_ptimer(vcpu), 0); + } + + hrtimer_init(&timer->bg_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_HARD); + timer->bg_timer.function = kvm_bg_timer_expire; +} + +void kvm_timer_init_vm(struct kvm *kvm) +{ + for (int i = 0; i < NR_KVM_TIMERS; i++) + kvm->arch.timer_data.ppi[i] = default_ppi[i]; +} + +void kvm_timer_cpu_up(void) +{ + enable_percpu_irq(host_vtimer_irq, host_vtimer_irq_flags); + if (host_ptimer_irq) + enable_percpu_irq(host_ptimer_irq, host_ptimer_irq_flags); +} + +void kvm_timer_cpu_down(void) +{ + disable_percpu_irq(host_vtimer_irq); + if (host_ptimer_irq) + disable_percpu_irq(host_ptimer_irq); +} + +int kvm_arm_timer_set_reg(struct kvm_vcpu *vcpu, u64 regid, u64 value) +{ + struct arch_timer_context *timer; + + switch (regid) { + case KVM_REG_ARM_TIMER_CTL: + timer = vcpu_vtimer(vcpu); + kvm_arm_timer_write(vcpu, timer, TIMER_REG_CTL, value); + break; + case KVM_REG_ARM_TIMER_CNT: + if (!test_bit(KVM_ARCH_FLAG_VM_COUNTER_OFFSET, + &vcpu->kvm->arch.flags)) { + timer = vcpu_vtimer(vcpu); + timer_set_offset(timer, kvm_phys_timer_read() - value); + } + break; + case KVM_REG_ARM_TIMER_CVAL: + timer = vcpu_vtimer(vcpu); + kvm_arm_timer_write(vcpu, timer, TIMER_REG_CVAL, value); + break; + case KVM_REG_ARM_PTIMER_CTL: + timer = vcpu_ptimer(vcpu); + kvm_arm_timer_write(vcpu, timer, TIMER_REG_CTL, value); + break; + case KVM_REG_ARM_PTIMER_CNT: + if (!test_bit(KVM_ARCH_FLAG_VM_COUNTER_OFFSET, + &vcpu->kvm->arch.flags)) { + timer = vcpu_ptimer(vcpu); + timer_set_offset(timer, kvm_phys_timer_read() - value); + } + break; + case KVM_REG_ARM_PTIMER_CVAL: + timer = vcpu_ptimer(vcpu); + kvm_arm_timer_write(vcpu, timer, TIMER_REG_CVAL, value); + break; + + default: + return -1; + } + + return 0; +} + +static u64 read_timer_ctl(struct arch_timer_context *timer) +{ + /* + * Set ISTATUS bit if it's expired. + * Note that according to ARMv8 ARM Issue A.k, ISTATUS bit is + * UNKNOWN when ENABLE bit is 0, so we chose to set ISTATUS bit + * regardless of ENABLE bit for our implementation convenience. + */ + u32 ctl = timer_get_ctl(timer); + + if (!kvm_timer_compute_delta(timer)) + ctl |= ARCH_TIMER_CTRL_IT_STAT; + + return ctl; +} + +u64 kvm_arm_timer_get_reg(struct kvm_vcpu *vcpu, u64 regid) +{ + switch (regid) { + case KVM_REG_ARM_TIMER_CTL: + return kvm_arm_timer_read(vcpu, + vcpu_vtimer(vcpu), TIMER_REG_CTL); + case KVM_REG_ARM_TIMER_CNT: + return kvm_arm_timer_read(vcpu, + vcpu_vtimer(vcpu), TIMER_REG_CNT); + case KVM_REG_ARM_TIMER_CVAL: + return kvm_arm_timer_read(vcpu, + vcpu_vtimer(vcpu), TIMER_REG_CVAL); + case KVM_REG_ARM_PTIMER_CTL: + return kvm_arm_timer_read(vcpu, + vcpu_ptimer(vcpu), TIMER_REG_CTL); + case KVM_REG_ARM_PTIMER_CNT: + return kvm_arm_timer_read(vcpu, + vcpu_ptimer(vcpu), TIMER_REG_CNT); + case KVM_REG_ARM_PTIMER_CVAL: + return kvm_arm_timer_read(vcpu, + vcpu_ptimer(vcpu), TIMER_REG_CVAL); + } + return (u64)-1; +} + +static u64 kvm_arm_timer_read(struct kvm_vcpu *vcpu, + struct arch_timer_context *timer, + enum kvm_arch_timer_regs treg) +{ + u64 val; + + switch (treg) { + case TIMER_REG_TVAL: + val = timer_get_cval(timer) - kvm_phys_timer_read() + timer_get_offset(timer); + val = lower_32_bits(val); + break; + + case TIMER_REG_CTL: + val = read_timer_ctl(timer); + break; + + case TIMER_REG_CVAL: + val = timer_get_cval(timer); + break; + + case TIMER_REG_CNT: + val = kvm_phys_timer_read() - timer_get_offset(timer); + break; + + case TIMER_REG_VOFF: + val = *timer->offset.vcpu_offset; + break; + + default: + BUG(); + } + + return val; +} + +u64 kvm_arm_timer_read_sysreg(struct kvm_vcpu *vcpu, + enum kvm_arch_timers tmr, + enum kvm_arch_timer_regs treg) +{ + struct arch_timer_context *timer; + struct timer_map map; + u64 val; + + get_timer_map(vcpu, &map); + timer = vcpu_get_timer(vcpu, tmr); + + if (timer == map.emul_vtimer || timer == map.emul_ptimer) + return kvm_arm_timer_read(vcpu, timer, treg); + + preempt_disable(); + timer_save_state(timer); + + val = kvm_arm_timer_read(vcpu, timer, treg); + + timer_restore_state(timer); + preempt_enable(); + + return val; +} + +static void kvm_arm_timer_write(struct kvm_vcpu *vcpu, + struct arch_timer_context *timer, + enum kvm_arch_timer_regs treg, + u64 val) +{ + switch (treg) { + case TIMER_REG_TVAL: + timer_set_cval(timer, kvm_phys_timer_read() - timer_get_offset(timer) + (s32)val); + break; + + case TIMER_REG_CTL: + timer_set_ctl(timer, val & ~ARCH_TIMER_CTRL_IT_STAT); + break; + + case TIMER_REG_CVAL: + timer_set_cval(timer, val); + break; + + case TIMER_REG_VOFF: + *timer->offset.vcpu_offset = val; + break; + + default: + BUG(); + } +} + +void kvm_arm_timer_write_sysreg(struct kvm_vcpu *vcpu, + enum kvm_arch_timers tmr, + enum kvm_arch_timer_regs treg, + u64 val) +{ + struct arch_timer_context *timer; + struct timer_map map; + + get_timer_map(vcpu, &map); + timer = vcpu_get_timer(vcpu, tmr); + if (timer == map.emul_vtimer || timer == map.emul_ptimer) { + soft_timer_cancel(&timer->hrtimer); + kvm_arm_timer_write(vcpu, timer, treg, val); + timer_emulate(timer); + } else { + preempt_disable(); + timer_save_state(timer); + kvm_arm_timer_write(vcpu, timer, treg, val); + timer_restore_state(timer); + preempt_enable(); + } +} + +static int timer_irq_set_vcpu_affinity(struct irq_data *d, void *vcpu) +{ + if (vcpu) + irqd_set_forwarded_to_vcpu(d); + else + irqd_clr_forwarded_to_vcpu(d); + + return 0; +} + +static int timer_irq_set_irqchip_state(struct irq_data *d, + enum irqchip_irq_state which, bool val) +{ + if (which != IRQCHIP_STATE_ACTIVE || !irqd_is_forwarded_to_vcpu(d)) + return irq_chip_set_parent_state(d, which, val); + + if (val) + irq_chip_mask_parent(d); + else + irq_chip_unmask_parent(d); + + return 0; +} + +static void timer_irq_eoi(struct irq_data *d) +{ + if (!irqd_is_forwarded_to_vcpu(d)) + irq_chip_eoi_parent(d); +} + +static void timer_irq_ack(struct irq_data *d) +{ + d = d->parent_data; + if (d->chip->irq_ack) + d->chip->irq_ack(d); +} + +static struct irq_chip timer_chip = { + .name = "KVM", + .irq_ack = timer_irq_ack, + .irq_mask = irq_chip_mask_parent, + .irq_unmask = irq_chip_unmask_parent, + .irq_eoi = timer_irq_eoi, + .irq_set_type = irq_chip_set_type_parent, + .irq_set_vcpu_affinity = timer_irq_set_vcpu_affinity, + .irq_set_irqchip_state = timer_irq_set_irqchip_state, +}; + +static int timer_irq_domain_alloc(struct irq_domain *domain, unsigned int virq, + unsigned int nr_irqs, void *arg) +{ + irq_hw_number_t hwirq = (uintptr_t)arg; + + return irq_domain_set_hwirq_and_chip(domain, virq, hwirq, + &timer_chip, NULL); +} + +static void timer_irq_domain_free(struct irq_domain *domain, unsigned int virq, + unsigned int nr_irqs) +{ +} + +static const struct irq_domain_ops timer_domain_ops = { + .alloc = timer_irq_domain_alloc, + .free = timer_irq_domain_free, +}; + +static void kvm_irq_fixup_flags(unsigned int virq, u32 *flags) +{ + *flags = irq_get_trigger_type(virq); + if (*flags != IRQF_TRIGGER_HIGH && *flags != IRQF_TRIGGER_LOW) { + kvm_err("Invalid trigger for timer IRQ%d, assuming level low\n", + virq); + *flags = IRQF_TRIGGER_LOW; + } +} + +static int kvm_irq_init(struct arch_timer_kvm_info *info) +{ + struct irq_domain *domain = NULL; + + if (info->virtual_irq <= 0) { + kvm_err("kvm_arch_timer: invalid virtual timer IRQ: %d\n", + info->virtual_irq); + return -ENODEV; + } + + host_vtimer_irq = info->virtual_irq; + kvm_irq_fixup_flags(host_vtimer_irq, &host_vtimer_irq_flags); + + if (kvm_vgic_global_state.no_hw_deactivation) { + struct fwnode_handle *fwnode; + struct irq_data *data; + + fwnode = irq_domain_alloc_named_fwnode("kvm-timer"); + if (!fwnode) + return -ENOMEM; + + /* Assume both vtimer and ptimer in the same parent */ + data = irq_get_irq_data(host_vtimer_irq); + domain = irq_domain_create_hierarchy(data->domain, 0, + NR_KVM_TIMERS, fwnode, + &timer_domain_ops, NULL); + if (!domain) { + irq_domain_free_fwnode(fwnode); + return -ENOMEM; + } + + arch_timer_irq_ops.flags |= VGIC_IRQ_SW_RESAMPLE; + WARN_ON(irq_domain_push_irq(domain, host_vtimer_irq, + (void *)TIMER_VTIMER)); + } + + if (info->physical_irq > 0) { + host_ptimer_irq = info->physical_irq; + kvm_irq_fixup_flags(host_ptimer_irq, &host_ptimer_irq_flags); + + if (domain) + WARN_ON(irq_domain_push_irq(domain, host_ptimer_irq, + (void *)TIMER_PTIMER)); + } + + return 0; +} + +int __init kvm_timer_hyp_init(bool has_gic) +{ + struct arch_timer_kvm_info *info; + int err; + + info = arch_timer_get_kvm_info(); + timecounter = &info->timecounter; + + if (!timecounter->cc) { + kvm_err("kvm_arch_timer: uninitialized timecounter\n"); + return -ENODEV; + } + + err = kvm_irq_init(info); + if (err) + return err; + + /* First, do the virtual EL1 timer irq */ + + err = request_percpu_irq(host_vtimer_irq, kvm_arch_timer_handler, + "kvm guest vtimer", kvm_get_running_vcpus()); + if (err) { + kvm_err("kvm_arch_timer: can't request vtimer interrupt %d (%d)\n", + host_vtimer_irq, err); + return err; + } + + if (has_gic) { + err = irq_set_vcpu_affinity(host_vtimer_irq, + kvm_get_running_vcpus()); + if (err) { + kvm_err("kvm_arch_timer: error setting vcpu affinity\n"); + goto out_free_vtimer_irq; + } + + static_branch_enable(&has_gic_active_state); + } + + kvm_debug("virtual timer IRQ%d\n", host_vtimer_irq); + + /* Now let's do the physical EL1 timer irq */ + + if (info->physical_irq > 0) { + err = request_percpu_irq(host_ptimer_irq, kvm_arch_timer_handler, + "kvm guest ptimer", kvm_get_running_vcpus()); + if (err) { + kvm_err("kvm_arch_timer: can't request ptimer interrupt %d (%d)\n", + host_ptimer_irq, err); + goto out_free_vtimer_irq; + } + + if (has_gic) { + err = irq_set_vcpu_affinity(host_ptimer_irq, + kvm_get_running_vcpus()); + if (err) { + kvm_err("kvm_arch_timer: error setting vcpu affinity\n"); + goto out_free_ptimer_irq; + } + } + + kvm_debug("physical timer IRQ%d\n", host_ptimer_irq); + } else if (has_vhe()) { + kvm_err("kvm_arch_timer: invalid physical timer IRQ: %d\n", + info->physical_irq); + err = -ENODEV; + goto out_free_vtimer_irq; + } + + return 0; + +out_free_ptimer_irq: + if (info->physical_irq > 0) + free_percpu_irq(host_ptimer_irq, kvm_get_running_vcpus()); +out_free_vtimer_irq: + free_percpu_irq(host_vtimer_irq, kvm_get_running_vcpus()); + return err; +} + +void kvm_timer_vcpu_terminate(struct kvm_vcpu *vcpu) +{ + struct arch_timer_cpu *timer = vcpu_timer(vcpu); + + soft_timer_cancel(&timer->bg_timer); +} + +static bool timer_irqs_are_valid(struct kvm_vcpu *vcpu) +{ + u32 ppis = 0; + bool valid; + + mutex_lock(&vcpu->kvm->arch.config_lock); + + for (int i = 0; i < nr_timers(vcpu); i++) { + struct arch_timer_context *ctx; + int irq; + + ctx = vcpu_get_timer(vcpu, i); + irq = timer_irq(ctx); + if (kvm_vgic_set_owner(vcpu, irq, ctx)) + break; + + /* + * We know by construction that we only have PPIs, so + * all values are less than 32. + */ + ppis |= BIT(irq); + } + + valid = hweight32(ppis) == nr_timers(vcpu); + + if (valid) + set_bit(KVM_ARCH_FLAG_TIMER_PPIS_IMMUTABLE, &vcpu->kvm->arch.flags); + + mutex_unlock(&vcpu->kvm->arch.config_lock); + + return valid; +} + +static bool kvm_arch_timer_get_input_level(int vintid) +{ + struct kvm_vcpu *vcpu = kvm_get_running_vcpu(); + + if (WARN(!vcpu, "No vcpu context!\n")) + return false; + + for (int i = 0; i < nr_timers(vcpu); i++) { + struct arch_timer_context *ctx; + + ctx = vcpu_get_timer(vcpu, i); + if (timer_irq(ctx) == vintid) + return kvm_timer_should_fire(ctx); + } + + /* A timer IRQ has fired, but no matching timer was found? */ + WARN_RATELIMIT(1, "timer INTID%d unknown\n", vintid); + + return false; +} + +int kvm_timer_enable(struct kvm_vcpu *vcpu) +{ + struct arch_timer_cpu *timer = vcpu_timer(vcpu); + struct timer_map map; + int ret; + + if (timer->enabled) + return 0; + + /* Without a VGIC we do not map virtual IRQs to physical IRQs */ + if (!irqchip_in_kernel(vcpu->kvm)) + goto no_vgic; + + /* + * At this stage, we have the guarantee that the vgic is both + * available and initialized. + */ + if (!timer_irqs_are_valid(vcpu)) { + kvm_debug("incorrectly configured timer irqs\n"); + return -EINVAL; + } + + get_timer_map(vcpu, &map); + + ret = kvm_vgic_map_phys_irq(vcpu, + map.direct_vtimer->host_timer_irq, + timer_irq(map.direct_vtimer), + &arch_timer_irq_ops); + if (ret) + return ret; + + if (map.direct_ptimer) { + ret = kvm_vgic_map_phys_irq(vcpu, + map.direct_ptimer->host_timer_irq, + timer_irq(map.direct_ptimer), + &arch_timer_irq_ops); + } + + if (ret) + return ret; + +no_vgic: + timer->enabled = 1; + return 0; +} + +/* If we have CNTPOFF, permanently set ECV to enable it */ +void kvm_timer_init_vhe(void) +{ + if (cpus_have_final_cap(ARM64_HAS_ECV_CNTPOFF)) + sysreg_clear_set(cnthctl_el2, 0, CNTHCTL_ECV); +} + +int kvm_arm_timer_set_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr) +{ + int __user *uaddr = (int __user *)(long)attr->addr; + int irq, idx, ret = 0; + + if (!irqchip_in_kernel(vcpu->kvm)) + return -EINVAL; + + if (get_user(irq, uaddr)) + return -EFAULT; + + if (!(irq_is_ppi(irq))) + return -EINVAL; + + mutex_lock(&vcpu->kvm->arch.config_lock); + + if (test_bit(KVM_ARCH_FLAG_TIMER_PPIS_IMMUTABLE, + &vcpu->kvm->arch.flags)) { + ret = -EBUSY; + goto out; + } + + switch (attr->attr) { + case KVM_ARM_VCPU_TIMER_IRQ_VTIMER: + idx = TIMER_VTIMER; + break; + case KVM_ARM_VCPU_TIMER_IRQ_PTIMER: + idx = TIMER_PTIMER; + break; + case KVM_ARM_VCPU_TIMER_IRQ_HVTIMER: + idx = TIMER_HVTIMER; + break; + case KVM_ARM_VCPU_TIMER_IRQ_HPTIMER: + idx = TIMER_HPTIMER; + break; + default: + ret = -ENXIO; + goto out; + } + + /* + * We cannot validate the IRQ unicity before we run, so take it at + * face value. The verdict will be given on first vcpu run, for each + * vcpu. Yes this is late. Blame it on the stupid API. + */ + vcpu->kvm->arch.timer_data.ppi[idx] = irq; + +out: + mutex_unlock(&vcpu->kvm->arch.config_lock); + return ret; +} + +int kvm_arm_timer_get_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr) +{ + int __user *uaddr = (int __user *)(long)attr->addr; + struct arch_timer_context *timer; + int irq; + + switch (attr->attr) { + case KVM_ARM_VCPU_TIMER_IRQ_VTIMER: + timer = vcpu_vtimer(vcpu); + break; + case KVM_ARM_VCPU_TIMER_IRQ_PTIMER: + timer = vcpu_ptimer(vcpu); + break; + case KVM_ARM_VCPU_TIMER_IRQ_HVTIMER: + timer = vcpu_hvtimer(vcpu); + break; + case KVM_ARM_VCPU_TIMER_IRQ_HPTIMER: + timer = vcpu_hptimer(vcpu); + break; + default: + return -ENXIO; + } + + irq = timer_irq(timer); + return put_user(irq, uaddr); +} + +int kvm_arm_timer_has_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr) +{ + switch (attr->attr) { + case KVM_ARM_VCPU_TIMER_IRQ_VTIMER: + case KVM_ARM_VCPU_TIMER_IRQ_PTIMER: + case KVM_ARM_VCPU_TIMER_IRQ_HVTIMER: + case KVM_ARM_VCPU_TIMER_IRQ_HPTIMER: + return 0; + } + + return -ENXIO; +} + +int kvm_vm_ioctl_set_counter_offset(struct kvm *kvm, + struct kvm_arm_counter_offset *offset) +{ + int ret = 0; + + if (offset->reserved) + return -EINVAL; + + mutex_lock(&kvm->lock); + + if (lock_all_vcpus(kvm)) { + set_bit(KVM_ARCH_FLAG_VM_COUNTER_OFFSET, &kvm->arch.flags); + + /* + * If userspace decides to set the offset using this + * API rather than merely restoring the counter + * values, the offset applies to both the virtual and + * physical views. + */ + kvm->arch.timer_data.voffset = offset->counter_offset; + kvm->arch.timer_data.poffset = offset->counter_offset; + + unlock_all_vcpus(kvm); + } else { + ret = -EBUSY; + } + + mutex_unlock(&kvm->lock); + + return ret; +} diff --git a/arch/arm64/kvm/arm.c b/arch/arm64/kvm/arm.c new file mode 100644 index 0000000000..685cc43614 --- /dev/null +++ b/arch/arm64/kvm/arm.c @@ -0,0 +1,2528 @@ +// SPDX-License-Identifier: GPL-2.0-only +/* + * Copyright (C) 2012 - Virtual Open Systems and Columbia University + * Author: Christoffer Dall <c.dall@virtualopensystems.com> + */ + +#include <linux/bug.h> +#include <linux/cpu_pm.h> +#include <linux/entry-kvm.h> +#include <linux/errno.h> +#include <linux/err.h> +#include <linux/kvm_host.h> +#include <linux/list.h> +#include <linux/module.h> +#include <linux/vmalloc.h> +#include <linux/fs.h> +#include <linux/mman.h> +#include <linux/sched.h> +#include <linux/kvm.h> +#include <linux/kvm_irqfd.h> +#include <linux/irqbypass.h> +#include <linux/sched/stat.h> +#include <linux/psci.h> +#include <trace/events/kvm.h> + +#define CREATE_TRACE_POINTS +#include "trace_arm.h" + +#include <linux/uaccess.h> +#include <asm/ptrace.h> +#include <asm/mman.h> +#include <asm/tlbflush.h> +#include <asm/cacheflush.h> +#include <asm/cpufeature.h> +#include <asm/virt.h> +#include <asm/kvm_arm.h> +#include <asm/kvm_asm.h> +#include <asm/kvm_mmu.h> +#include <asm/kvm_nested.h> +#include <asm/kvm_pkvm.h> +#include <asm/kvm_emulate.h> +#include <asm/sections.h> + +#include <kvm/arm_hypercalls.h> +#include <kvm/arm_pmu.h> +#include <kvm/arm_psci.h> + +static enum kvm_mode kvm_mode = KVM_MODE_DEFAULT; + +DECLARE_KVM_HYP_PER_CPU(unsigned long, kvm_hyp_vector); + +DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page); +DECLARE_KVM_NVHE_PER_CPU(struct kvm_nvhe_init_params, kvm_init_params); + +DECLARE_KVM_NVHE_PER_CPU(struct kvm_cpu_context, kvm_hyp_ctxt); + +static bool vgic_present, kvm_arm_initialised; + +static DEFINE_PER_CPU(unsigned char, kvm_hyp_initialized); +DEFINE_STATIC_KEY_FALSE(userspace_irqchip_in_use); + +bool is_kvm_arm_initialised(void) +{ + return kvm_arm_initialised; +} + +int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu) +{ + return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE; +} + +int kvm_vm_ioctl_enable_cap(struct kvm *kvm, + struct kvm_enable_cap *cap) +{ + int r; + u64 new_cap; + + if (cap->flags) + return -EINVAL; + + switch (cap->cap) { + case KVM_CAP_ARM_NISV_TO_USER: + r = 0; + set_bit(KVM_ARCH_FLAG_RETURN_NISV_IO_ABORT_TO_USER, + &kvm->arch.flags); + break; + case KVM_CAP_ARM_MTE: + mutex_lock(&kvm->lock); + if (!system_supports_mte() || kvm->created_vcpus) { + r = -EINVAL; + } else { + r = 0; + set_bit(KVM_ARCH_FLAG_MTE_ENABLED, &kvm->arch.flags); + } + mutex_unlock(&kvm->lock); + break; + case KVM_CAP_ARM_SYSTEM_SUSPEND: + r = 0; + set_bit(KVM_ARCH_FLAG_SYSTEM_SUSPEND_ENABLED, &kvm->arch.flags); + break; + case KVM_CAP_ARM_EAGER_SPLIT_CHUNK_SIZE: + new_cap = cap->args[0]; + + mutex_lock(&kvm->slots_lock); + /* + * To keep things simple, allow changing the chunk + * size only when no memory slots have been created. + */ + if (!kvm_are_all_memslots_empty(kvm)) { + r = -EINVAL; + } else if (new_cap && !kvm_is_block_size_supported(new_cap)) { + r = -EINVAL; + } else { + r = 0; + kvm->arch.mmu.split_page_chunk_size = new_cap; + } + mutex_unlock(&kvm->slots_lock); + break; + default: + r = -EINVAL; + break; + } + + return r; +} + +static int kvm_arm_default_max_vcpus(void) +{ + return vgic_present ? kvm_vgic_get_max_vcpus() : KVM_MAX_VCPUS; +} + +/** + * kvm_arch_init_vm - initializes a VM data structure + * @kvm: pointer to the KVM struct + */ +int kvm_arch_init_vm(struct kvm *kvm, unsigned long type) +{ + int ret; + + mutex_init(&kvm->arch.config_lock); + +#ifdef CONFIG_LOCKDEP + /* Clue in lockdep that the config_lock must be taken inside kvm->lock */ + mutex_lock(&kvm->lock); + mutex_lock(&kvm->arch.config_lock); + mutex_unlock(&kvm->arch.config_lock); + mutex_unlock(&kvm->lock); +#endif + + ret = kvm_share_hyp(kvm, kvm + 1); + if (ret) + return ret; + + ret = pkvm_init_host_vm(kvm); + if (ret) + goto err_unshare_kvm; + + if (!zalloc_cpumask_var(&kvm->arch.supported_cpus, GFP_KERNEL_ACCOUNT)) { + ret = -ENOMEM; + goto err_unshare_kvm; + } + cpumask_copy(kvm->arch.supported_cpus, cpu_possible_mask); + + ret = kvm_init_stage2_mmu(kvm, &kvm->arch.mmu, type); + if (ret) + goto err_free_cpumask; + + kvm_vgic_early_init(kvm); + + kvm_timer_init_vm(kvm); + + /* The maximum number of VCPUs is limited by the host's GIC model */ + kvm->max_vcpus = kvm_arm_default_max_vcpus(); + + kvm_arm_init_hypercalls(kvm); + + bitmap_zero(kvm->arch.vcpu_features, KVM_VCPU_MAX_FEATURES); + + return 0; + +err_free_cpumask: + free_cpumask_var(kvm->arch.supported_cpus); +err_unshare_kvm: + kvm_unshare_hyp(kvm, kvm + 1); + return ret; +} + +vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf) +{ + return VM_FAULT_SIGBUS; +} + + +/** + * kvm_arch_destroy_vm - destroy the VM data structure + * @kvm: pointer to the KVM struct + */ +void kvm_arch_destroy_vm(struct kvm *kvm) +{ + bitmap_free(kvm->arch.pmu_filter); + free_cpumask_var(kvm->arch.supported_cpus); + + kvm_vgic_destroy(kvm); + + if (is_protected_kvm_enabled()) + pkvm_destroy_hyp_vm(kvm); + + kvm_destroy_vcpus(kvm); + + kvm_unshare_hyp(kvm, kvm + 1); + + kvm_arm_teardown_hypercalls(kvm); +} + +int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext) +{ + int r; + switch (ext) { + case KVM_CAP_IRQCHIP: + r = vgic_present; + break; + case KVM_CAP_IOEVENTFD: + case KVM_CAP_DEVICE_CTRL: + case KVM_CAP_USER_MEMORY: + case KVM_CAP_SYNC_MMU: + case KVM_CAP_DESTROY_MEMORY_REGION_WORKS: + case KVM_CAP_ONE_REG: + case KVM_CAP_ARM_PSCI: + case KVM_CAP_ARM_PSCI_0_2: + case KVM_CAP_READONLY_MEM: + case KVM_CAP_MP_STATE: + case KVM_CAP_IMMEDIATE_EXIT: + case KVM_CAP_VCPU_EVENTS: + case KVM_CAP_ARM_IRQ_LINE_LAYOUT_2: + case KVM_CAP_ARM_NISV_TO_USER: + case KVM_CAP_ARM_INJECT_EXT_DABT: + case KVM_CAP_SET_GUEST_DEBUG: + case KVM_CAP_VCPU_ATTRIBUTES: + case KVM_CAP_PTP_KVM: + case KVM_CAP_ARM_SYSTEM_SUSPEND: + case KVM_CAP_IRQFD_RESAMPLE: + case KVM_CAP_COUNTER_OFFSET: + r = 1; + break; + case KVM_CAP_SET_GUEST_DEBUG2: + return KVM_GUESTDBG_VALID_MASK; + case KVM_CAP_ARM_SET_DEVICE_ADDR: + r = 1; + break; + case KVM_CAP_NR_VCPUS: + /* + * ARM64 treats KVM_CAP_NR_CPUS differently from all other + * architectures, as it does not always bound it to + * KVM_CAP_MAX_VCPUS. It should not matter much because + * this is just an advisory value. + */ + r = min_t(unsigned int, num_online_cpus(), + kvm_arm_default_max_vcpus()); + break; + case KVM_CAP_MAX_VCPUS: + case KVM_CAP_MAX_VCPU_ID: + if (kvm) + r = kvm->max_vcpus; + else + r = kvm_arm_default_max_vcpus(); + break; + case KVM_CAP_MSI_DEVID: + if (!kvm) + r = -EINVAL; + else + r = kvm->arch.vgic.msis_require_devid; + break; + case KVM_CAP_ARM_USER_IRQ: + /* + * 1: EL1_VTIMER, EL1_PTIMER, and PMU. + * (bump this number if adding more devices) + */ + r = 1; + break; + case KVM_CAP_ARM_MTE: + r = system_supports_mte(); + break; + case KVM_CAP_STEAL_TIME: + r = kvm_arm_pvtime_supported(); + break; + case KVM_CAP_ARM_EL1_32BIT: + r = cpus_have_const_cap(ARM64_HAS_32BIT_EL1); + break; + case KVM_CAP_GUEST_DEBUG_HW_BPS: + r = get_num_brps(); + break; + case KVM_CAP_GUEST_DEBUG_HW_WPS: + r = get_num_wrps(); + break; + case KVM_CAP_ARM_PMU_V3: + r = kvm_arm_support_pmu_v3(); + break; + case KVM_CAP_ARM_INJECT_SERROR_ESR: + r = cpus_have_const_cap(ARM64_HAS_RAS_EXTN); + break; + case KVM_CAP_ARM_VM_IPA_SIZE: + r = get_kvm_ipa_limit(); + break; + case KVM_CAP_ARM_SVE: + r = system_supports_sve(); + break; + case KVM_CAP_ARM_PTRAUTH_ADDRESS: + case KVM_CAP_ARM_PTRAUTH_GENERIC: + r = system_has_full_ptr_auth(); + break; + case KVM_CAP_ARM_EAGER_SPLIT_CHUNK_SIZE: + if (kvm) + r = kvm->arch.mmu.split_page_chunk_size; + else + r = KVM_ARM_EAGER_SPLIT_CHUNK_SIZE_DEFAULT; + break; + case KVM_CAP_ARM_SUPPORTED_BLOCK_SIZES: + r = kvm_supported_block_sizes(); + break; + default: + r = 0; + } + + return r; +} + +long kvm_arch_dev_ioctl(struct file *filp, + unsigned int ioctl, unsigned long arg) +{ + return -EINVAL; +} + +struct kvm *kvm_arch_alloc_vm(void) +{ + size_t sz = sizeof(struct kvm); + + if (!has_vhe()) + return kzalloc(sz, GFP_KERNEL_ACCOUNT); + + return __vmalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_HIGHMEM | __GFP_ZERO); +} + +int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id) +{ + if (irqchip_in_kernel(kvm) && vgic_initialized(kvm)) + return -EBUSY; + + if (id >= kvm->max_vcpus) + return -EINVAL; + + return 0; +} + +int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu) +{ + int err; + + spin_lock_init(&vcpu->arch.mp_state_lock); + +#ifdef CONFIG_LOCKDEP + /* Inform lockdep that the config_lock is acquired after vcpu->mutex */ + mutex_lock(&vcpu->mutex); + mutex_lock(&vcpu->kvm->arch.config_lock); + mutex_unlock(&vcpu->kvm->arch.config_lock); + mutex_unlock(&vcpu->mutex); +#endif + + /* Force users to call KVM_ARM_VCPU_INIT */ + vcpu_clear_flag(vcpu, VCPU_INITIALIZED); + bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES); + + vcpu->arch.mmu_page_cache.gfp_zero = __GFP_ZERO; + + /* + * Default value for the FP state, will be overloaded at load + * time if we support FP (pretty likely) + */ + vcpu->arch.fp_state = FP_STATE_FREE; + + /* Set up the timer */ + kvm_timer_vcpu_init(vcpu); + + kvm_pmu_vcpu_init(vcpu); + + kvm_arm_reset_debug_ptr(vcpu); + + kvm_arm_pvtime_vcpu_init(&vcpu->arch); + + vcpu->arch.hw_mmu = &vcpu->kvm->arch.mmu; + + err = kvm_vgic_vcpu_init(vcpu); + if (err) + return err; + + return kvm_share_hyp(vcpu, vcpu + 1); +} + +void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu) +{ +} + +void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu) +{ + if (vcpu_has_run_once(vcpu) && unlikely(!irqchip_in_kernel(vcpu->kvm))) + static_branch_dec(&userspace_irqchip_in_use); + + kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_cache); + kvm_timer_vcpu_terminate(vcpu); + kvm_pmu_vcpu_destroy(vcpu); + kvm_vgic_vcpu_destroy(vcpu); + kvm_arm_vcpu_destroy(vcpu); +} + +void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu) +{ + +} + +void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu) +{ + +} + +void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu) +{ + struct kvm_s2_mmu *mmu; + int *last_ran; + + mmu = vcpu->arch.hw_mmu; + last_ran = this_cpu_ptr(mmu->last_vcpu_ran); + + /* + * We guarantee that both TLBs and I-cache are private to each + * vcpu. If detecting that a vcpu from the same VM has + * previously run on the same physical CPU, call into the + * hypervisor code to nuke the relevant contexts. + * + * We might get preempted before the vCPU actually runs, but + * over-invalidation doesn't affect correctness. + */ + if (*last_ran != vcpu->vcpu_id) { + kvm_call_hyp(__kvm_flush_cpu_context, mmu); + *last_ran = vcpu->vcpu_id; + } + + vcpu->cpu = cpu; + + kvm_vgic_load(vcpu); + kvm_timer_vcpu_load(vcpu); + if (has_vhe()) + kvm_vcpu_load_sysregs_vhe(vcpu); + kvm_arch_vcpu_load_fp(vcpu); + kvm_vcpu_pmu_restore_guest(vcpu); + if (kvm_arm_is_pvtime_enabled(&vcpu->arch)) + kvm_make_request(KVM_REQ_RECORD_STEAL, vcpu); + + if (single_task_running()) + vcpu_clear_wfx_traps(vcpu); + else + vcpu_set_wfx_traps(vcpu); + + if (vcpu_has_ptrauth(vcpu)) + vcpu_ptrauth_disable(vcpu); + kvm_arch_vcpu_load_debug_state_flags(vcpu); + + if (!cpumask_test_cpu(cpu, vcpu->kvm->arch.supported_cpus)) + vcpu_set_on_unsupported_cpu(vcpu); +} + +void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu) +{ + kvm_arch_vcpu_put_debug_state_flags(vcpu); + kvm_arch_vcpu_put_fp(vcpu); + if (has_vhe()) + kvm_vcpu_put_sysregs_vhe(vcpu); + kvm_timer_vcpu_put(vcpu); + kvm_vgic_put(vcpu); + kvm_vcpu_pmu_restore_host(vcpu); + kvm_arm_vmid_clear_active(); + + vcpu_clear_on_unsupported_cpu(vcpu); + vcpu->cpu = -1; +} + +static void __kvm_arm_vcpu_power_off(struct kvm_vcpu *vcpu) +{ + WRITE_ONCE(vcpu->arch.mp_state.mp_state, KVM_MP_STATE_STOPPED); + kvm_make_request(KVM_REQ_SLEEP, vcpu); + kvm_vcpu_kick(vcpu); +} + +void kvm_arm_vcpu_power_off(struct kvm_vcpu *vcpu) +{ + spin_lock(&vcpu->arch.mp_state_lock); + __kvm_arm_vcpu_power_off(vcpu); + spin_unlock(&vcpu->arch.mp_state_lock); +} + +bool kvm_arm_vcpu_stopped(struct kvm_vcpu *vcpu) +{ + return READ_ONCE(vcpu->arch.mp_state.mp_state) == KVM_MP_STATE_STOPPED; +} + +static void kvm_arm_vcpu_suspend(struct kvm_vcpu *vcpu) +{ + WRITE_ONCE(vcpu->arch.mp_state.mp_state, KVM_MP_STATE_SUSPENDED); + kvm_make_request(KVM_REQ_SUSPEND, vcpu); + kvm_vcpu_kick(vcpu); +} + +static bool kvm_arm_vcpu_suspended(struct kvm_vcpu *vcpu) +{ + return READ_ONCE(vcpu->arch.mp_state.mp_state) == KVM_MP_STATE_SUSPENDED; +} + +int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu, + struct kvm_mp_state *mp_state) +{ + *mp_state = READ_ONCE(vcpu->arch.mp_state); + + return 0; +} + +int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, + struct kvm_mp_state *mp_state) +{ + int ret = 0; + + spin_lock(&vcpu->arch.mp_state_lock); + + switch (mp_state->mp_state) { + case KVM_MP_STATE_RUNNABLE: + WRITE_ONCE(vcpu->arch.mp_state, *mp_state); + break; + case KVM_MP_STATE_STOPPED: + __kvm_arm_vcpu_power_off(vcpu); + break; + case KVM_MP_STATE_SUSPENDED: + kvm_arm_vcpu_suspend(vcpu); + break; + default: + ret = -EINVAL; + } + + spin_unlock(&vcpu->arch.mp_state_lock); + + return ret; +} + +/** + * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled + * @v: The VCPU pointer + * + * If the guest CPU is not waiting for interrupts or an interrupt line is + * asserted, the CPU is by definition runnable. + */ +int kvm_arch_vcpu_runnable(struct kvm_vcpu *v) +{ + bool irq_lines = *vcpu_hcr(v) & (HCR_VI | HCR_VF); + return ((irq_lines || kvm_vgic_vcpu_pending_irq(v)) + && !kvm_arm_vcpu_stopped(v) && !v->arch.pause); +} + +bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu) +{ + return vcpu_mode_priv(vcpu); +} + +#ifdef CONFIG_GUEST_PERF_EVENTS +unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu) +{ + return *vcpu_pc(vcpu); +} +#endif + +static int kvm_vcpu_initialized(struct kvm_vcpu *vcpu) +{ + return vcpu_get_flag(vcpu, VCPU_INITIALIZED); +} + +/* + * Handle both the initialisation that is being done when the vcpu is + * run for the first time, as well as the updates that must be + * performed each time we get a new thread dealing with this vcpu. + */ +int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu) +{ + struct kvm *kvm = vcpu->kvm; + int ret; + + if (!kvm_vcpu_initialized(vcpu)) + return -ENOEXEC; + + if (!kvm_arm_vcpu_is_finalized(vcpu)) + return -EPERM; + + ret = kvm_arch_vcpu_run_map_fp(vcpu); + if (ret) + return ret; + + if (likely(vcpu_has_run_once(vcpu))) + return 0; + + kvm_arm_vcpu_init_debug(vcpu); + + if (likely(irqchip_in_kernel(kvm))) { + /* + * Map the VGIC hardware resources before running a vcpu the + * first time on this VM. + */ + ret = kvm_vgic_map_resources(kvm); + if (ret) + return ret; + } + + ret = kvm_timer_enable(vcpu); + if (ret) + return ret; + + ret = kvm_arm_pmu_v3_enable(vcpu); + if (ret) + return ret; + + if (is_protected_kvm_enabled()) { + ret = pkvm_create_hyp_vm(kvm); + if (ret) + return ret; + } + + if (!irqchip_in_kernel(kvm)) { + /* + * Tell the rest of the code that there are userspace irqchip + * VMs in the wild. + */ + static_branch_inc(&userspace_irqchip_in_use); + } + + /* + * Initialize traps for protected VMs. + * NOTE: Move to run in EL2 directly, rather than via a hypercall, once + * the code is in place for first run initialization at EL2. + */ + if (kvm_vm_is_protected(kvm)) + kvm_call_hyp_nvhe(__pkvm_vcpu_init_traps, vcpu); + + mutex_lock(&kvm->arch.config_lock); + set_bit(KVM_ARCH_FLAG_HAS_RAN_ONCE, &kvm->arch.flags); + mutex_unlock(&kvm->arch.config_lock); + + return ret; +} + +bool kvm_arch_intc_initialized(struct kvm *kvm) +{ + return vgic_initialized(kvm); +} + +void kvm_arm_halt_guest(struct kvm *kvm) +{ + unsigned long i; + struct kvm_vcpu *vcpu; + + kvm_for_each_vcpu(i, vcpu, kvm) + vcpu->arch.pause = true; + kvm_make_all_cpus_request(kvm, KVM_REQ_SLEEP); +} + +void kvm_arm_resume_guest(struct kvm *kvm) +{ + unsigned long i; + struct kvm_vcpu *vcpu; + + kvm_for_each_vcpu(i, vcpu, kvm) { + vcpu->arch.pause = false; + __kvm_vcpu_wake_up(vcpu); + } +} + +static void kvm_vcpu_sleep(struct kvm_vcpu *vcpu) +{ + struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu); + + rcuwait_wait_event(wait, + (!kvm_arm_vcpu_stopped(vcpu)) && (!vcpu->arch.pause), + TASK_INTERRUPTIBLE); + + if (kvm_arm_vcpu_stopped(vcpu) || vcpu->arch.pause) { + /* Awaken to handle a signal, request we sleep again later. */ + kvm_make_request(KVM_REQ_SLEEP, vcpu); + } + + /* + * Make sure we will observe a potential reset request if we've + * observed a change to the power state. Pairs with the smp_wmb() in + * kvm_psci_vcpu_on(). + */ + smp_rmb(); +} + +/** + * kvm_vcpu_wfi - emulate Wait-For-Interrupt behavior + * @vcpu: The VCPU pointer + * + * Suspend execution of a vCPU until a valid wake event is detected, i.e. until + * the vCPU is runnable. The vCPU may or may not be scheduled out, depending + * on when a wake event arrives, e.g. there may already be a pending wake event. + */ +void kvm_vcpu_wfi(struct kvm_vcpu *vcpu) +{ + /* + * Sync back the state of the GIC CPU interface so that we have + * the latest PMR and group enables. This ensures that + * kvm_arch_vcpu_runnable has up-to-date data to decide whether + * we have pending interrupts, e.g. when determining if the + * vCPU should block. + * + * For the same reason, we want to tell GICv4 that we need + * doorbells to be signalled, should an interrupt become pending. + */ + preempt_disable(); + kvm_vgic_vmcr_sync(vcpu); + vcpu_set_flag(vcpu, IN_WFI); + vgic_v4_put(vcpu); + preempt_enable(); + + kvm_vcpu_halt(vcpu); + vcpu_clear_flag(vcpu, IN_WFIT); + + preempt_disable(); + vcpu_clear_flag(vcpu, IN_WFI); + vgic_v4_load(vcpu); + preempt_enable(); +} + +static int kvm_vcpu_suspend(struct kvm_vcpu *vcpu) +{ + if (!kvm_arm_vcpu_suspended(vcpu)) + return 1; + + kvm_vcpu_wfi(vcpu); + + /* + * The suspend state is sticky; we do not leave it until userspace + * explicitly marks the vCPU as runnable. Request that we suspend again + * later. + */ + kvm_make_request(KVM_REQ_SUSPEND, vcpu); + + /* + * Check to make sure the vCPU is actually runnable. If so, exit to + * userspace informing it of the wakeup condition. + */ + if (kvm_arch_vcpu_runnable(vcpu)) { + memset(&vcpu->run->system_event, 0, sizeof(vcpu->run->system_event)); + vcpu->run->system_event.type = KVM_SYSTEM_EVENT_WAKEUP; + vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT; + return 0; + } + + /* + * Otherwise, we were unblocked to process a different event, such as a + * pending signal. Return 1 and allow kvm_arch_vcpu_ioctl_run() to + * process the event. + */ + return 1; +} + +/** + * check_vcpu_requests - check and handle pending vCPU requests + * @vcpu: the VCPU pointer + * + * Return: 1 if we should enter the guest + * 0 if we should exit to userspace + * < 0 if we should exit to userspace, where the return value indicates + * an error + */ +static int check_vcpu_requests(struct kvm_vcpu *vcpu) +{ + if (kvm_request_pending(vcpu)) { + if (kvm_check_request(KVM_REQ_SLEEP, vcpu)) + kvm_vcpu_sleep(vcpu); + + if (kvm_check_request(KVM_REQ_VCPU_RESET, vcpu)) + kvm_reset_vcpu(vcpu); + + /* + * Clear IRQ_PENDING requests that were made to guarantee + * that a VCPU sees new virtual interrupts. + */ + kvm_check_request(KVM_REQ_IRQ_PENDING, vcpu); + + if (kvm_check_request(KVM_REQ_RECORD_STEAL, vcpu)) + kvm_update_stolen_time(vcpu); + + if (kvm_check_request(KVM_REQ_RELOAD_GICv4, vcpu)) { + /* The distributor enable bits were changed */ + preempt_disable(); + vgic_v4_put(vcpu); + vgic_v4_load(vcpu); + preempt_enable(); + } + + if (kvm_check_request(KVM_REQ_RELOAD_PMU, vcpu)) + kvm_pmu_handle_pmcr(vcpu, + __vcpu_sys_reg(vcpu, PMCR_EL0)); + + if (kvm_check_request(KVM_REQ_RESYNC_PMU_EL0, vcpu)) + kvm_vcpu_pmu_restore_guest(vcpu); + + if (kvm_check_request(KVM_REQ_SUSPEND, vcpu)) + return kvm_vcpu_suspend(vcpu); + + if (kvm_dirty_ring_check_request(vcpu)) + return 0; + } + + return 1; +} + +static bool vcpu_mode_is_bad_32bit(struct kvm_vcpu *vcpu) +{ + if (likely(!vcpu_mode_is_32bit(vcpu))) + return false; + + if (vcpu_has_nv(vcpu)) + return true; + + return !kvm_supports_32bit_el0(); +} + +/** + * kvm_vcpu_exit_request - returns true if the VCPU should *not* enter the guest + * @vcpu: The VCPU pointer + * @ret: Pointer to write optional return code + * + * Returns: true if the VCPU needs to return to a preemptible + interruptible + * and skip guest entry. + * + * This function disambiguates between two different types of exits: exits to a + * preemptible + interruptible kernel context and exits to userspace. For an + * exit to userspace, this function will write the return code to ret and return + * true. For an exit to preemptible + interruptible kernel context (i.e. check + * for pending work and re-enter), return true without writing to ret. + */ +static bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu, int *ret) +{ + struct kvm_run *run = vcpu->run; + + /* + * If we're using a userspace irqchip, then check if we need + * to tell a userspace irqchip about timer or PMU level + * changes and if so, exit to userspace (the actual level + * state gets updated in kvm_timer_update_run and + * kvm_pmu_update_run below). + */ + if (static_branch_unlikely(&userspace_irqchip_in_use)) { + if (kvm_timer_should_notify_user(vcpu) || + kvm_pmu_should_notify_user(vcpu)) { + *ret = -EINTR; + run->exit_reason = KVM_EXIT_INTR; + return true; + } + } + + if (unlikely(vcpu_on_unsupported_cpu(vcpu))) { + run->exit_reason = KVM_EXIT_FAIL_ENTRY; + run->fail_entry.hardware_entry_failure_reason = KVM_EXIT_FAIL_ENTRY_CPU_UNSUPPORTED; + run->fail_entry.cpu = smp_processor_id(); + *ret = 0; + return true; + } + + return kvm_request_pending(vcpu) || + xfer_to_guest_mode_work_pending(); +} + +/* + * Actually run the vCPU, entering an RCU extended quiescent state (EQS) while + * the vCPU is running. + * + * This must be noinstr as instrumentation may make use of RCU, and this is not + * safe during the EQS. + */ +static int noinstr kvm_arm_vcpu_enter_exit(struct kvm_vcpu *vcpu) +{ + int ret; + + guest_state_enter_irqoff(); + ret = kvm_call_hyp_ret(__kvm_vcpu_run, vcpu); + guest_state_exit_irqoff(); + + return ret; +} + +/** + * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code + * @vcpu: The VCPU pointer + * + * This function is called through the VCPU_RUN ioctl called from user space. It + * will execute VM code in a loop until the time slice for the process is used + * or some emulation is needed from user space in which case the function will + * return with return value 0 and with the kvm_run structure filled in with the + * required data for the requested emulation. + */ +int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu) +{ + struct kvm_run *run = vcpu->run; + int ret; + + if (run->exit_reason == KVM_EXIT_MMIO) { + ret = kvm_handle_mmio_return(vcpu); + if (ret) + return ret; + } + + vcpu_load(vcpu); + + if (run->immediate_exit) { + ret = -EINTR; + goto out; + } + + kvm_sigset_activate(vcpu); + + ret = 1; + run->exit_reason = KVM_EXIT_UNKNOWN; + run->flags = 0; + while (ret > 0) { + /* + * Check conditions before entering the guest + */ + ret = xfer_to_guest_mode_handle_work(vcpu); + if (!ret) + ret = 1; + + if (ret > 0) + ret = check_vcpu_requests(vcpu); + + /* + * Preparing the interrupts to be injected also + * involves poking the GIC, which must be done in a + * non-preemptible context. + */ + preempt_disable(); + + /* + * The VMID allocator only tracks active VMIDs per + * physical CPU, and therefore the VMID allocated may not be + * preserved on VMID roll-over if the task was preempted, + * making a thread's VMID inactive. So we need to call + * kvm_arm_vmid_update() in non-premptible context. + */ + kvm_arm_vmid_update(&vcpu->arch.hw_mmu->vmid); + + kvm_pmu_flush_hwstate(vcpu); + + local_irq_disable(); + + kvm_vgic_flush_hwstate(vcpu); + + kvm_pmu_update_vcpu_events(vcpu); + + /* + * Ensure we set mode to IN_GUEST_MODE after we disable + * interrupts and before the final VCPU requests check. + * See the comment in kvm_vcpu_exiting_guest_mode() and + * Documentation/virt/kvm/vcpu-requests.rst + */ + smp_store_mb(vcpu->mode, IN_GUEST_MODE); + + if (ret <= 0 || kvm_vcpu_exit_request(vcpu, &ret)) { + vcpu->mode = OUTSIDE_GUEST_MODE; + isb(); /* Ensure work in x_flush_hwstate is committed */ + kvm_pmu_sync_hwstate(vcpu); + if (static_branch_unlikely(&userspace_irqchip_in_use)) + kvm_timer_sync_user(vcpu); + kvm_vgic_sync_hwstate(vcpu); + local_irq_enable(); + preempt_enable(); + continue; + } + + kvm_arm_setup_debug(vcpu); + kvm_arch_vcpu_ctxflush_fp(vcpu); + + /************************************************************** + * Enter the guest + */ + trace_kvm_entry(*vcpu_pc(vcpu)); + guest_timing_enter_irqoff(); + + ret = kvm_arm_vcpu_enter_exit(vcpu); + + vcpu->mode = OUTSIDE_GUEST_MODE; + vcpu->stat.exits++; + /* + * Back from guest + *************************************************************/ + + kvm_arm_clear_debug(vcpu); + + /* + * We must sync the PMU state before the vgic state so + * that the vgic can properly sample the updated state of the + * interrupt line. + */ + kvm_pmu_sync_hwstate(vcpu); + + /* + * Sync the vgic state before syncing the timer state because + * the timer code needs to know if the virtual timer + * interrupts are active. + */ + kvm_vgic_sync_hwstate(vcpu); + + /* + * Sync the timer hardware state before enabling interrupts as + * we don't want vtimer interrupts to race with syncing the + * timer virtual interrupt state. + */ + if (static_branch_unlikely(&userspace_irqchip_in_use)) + kvm_timer_sync_user(vcpu); + + kvm_arch_vcpu_ctxsync_fp(vcpu); + + /* + * We must ensure that any pending interrupts are taken before + * we exit guest timing so that timer ticks are accounted as + * guest time. Transiently unmask interrupts so that any + * pending interrupts are taken. + * + * Per ARM DDI 0487G.b section D1.13.4, an ISB (or other + * context synchronization event) is necessary to ensure that + * pending interrupts are taken. + */ + if (ARM_EXCEPTION_CODE(ret) == ARM_EXCEPTION_IRQ) { + local_irq_enable(); + isb(); + local_irq_disable(); + } + + guest_timing_exit_irqoff(); + + local_irq_enable(); + + trace_kvm_exit(ret, kvm_vcpu_trap_get_class(vcpu), *vcpu_pc(vcpu)); + + /* Exit types that need handling before we can be preempted */ + handle_exit_early(vcpu, ret); + + preempt_enable(); + + /* + * The ARMv8 architecture doesn't give the hypervisor + * a mechanism to prevent a guest from dropping to AArch32 EL0 + * if implemented by the CPU. If we spot the guest in such + * state and that we decided it wasn't supposed to do so (like + * with the asymmetric AArch32 case), return to userspace with + * a fatal error. + */ + if (vcpu_mode_is_bad_32bit(vcpu)) { + /* + * As we have caught the guest red-handed, decide that + * it isn't fit for purpose anymore by making the vcpu + * invalid. The VMM can try and fix it by issuing a + * KVM_ARM_VCPU_INIT if it really wants to. + */ + vcpu_clear_flag(vcpu, VCPU_INITIALIZED); + ret = ARM_EXCEPTION_IL; + } + + ret = handle_exit(vcpu, ret); + } + + /* Tell userspace about in-kernel device output levels */ + if (unlikely(!irqchip_in_kernel(vcpu->kvm))) { + kvm_timer_update_run(vcpu); + kvm_pmu_update_run(vcpu); + } + + kvm_sigset_deactivate(vcpu); + +out: + /* + * In the unlikely event that we are returning to userspace + * with pending exceptions or PC adjustment, commit these + * adjustments in order to give userspace a consistent view of + * the vcpu state. Note that this relies on __kvm_adjust_pc() + * being preempt-safe on VHE. + */ + if (unlikely(vcpu_get_flag(vcpu, PENDING_EXCEPTION) || + vcpu_get_flag(vcpu, INCREMENT_PC))) + kvm_call_hyp(__kvm_adjust_pc, vcpu); + + vcpu_put(vcpu); + return ret; +} + +static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level) +{ + int bit_index; + bool set; + unsigned long *hcr; + + if (number == KVM_ARM_IRQ_CPU_IRQ) + bit_index = __ffs(HCR_VI); + else /* KVM_ARM_IRQ_CPU_FIQ */ + bit_index = __ffs(HCR_VF); + + hcr = vcpu_hcr(vcpu); + if (level) + set = test_and_set_bit(bit_index, hcr); + else + set = test_and_clear_bit(bit_index, hcr); + + /* + * If we didn't change anything, no need to wake up or kick other CPUs + */ + if (set == level) + return 0; + + /* + * The vcpu irq_lines field was updated, wake up sleeping VCPUs and + * trigger a world-switch round on the running physical CPU to set the + * virtual IRQ/FIQ fields in the HCR appropriately. + */ + kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu); + kvm_vcpu_kick(vcpu); + + return 0; +} + +int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level, + bool line_status) +{ + u32 irq = irq_level->irq; + unsigned int irq_type, vcpu_idx, irq_num; + int nrcpus = atomic_read(&kvm->online_vcpus); + struct kvm_vcpu *vcpu = NULL; + bool level = irq_level->level; + + irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK; + vcpu_idx = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK; + vcpu_idx += ((irq >> KVM_ARM_IRQ_VCPU2_SHIFT) & KVM_ARM_IRQ_VCPU2_MASK) * (KVM_ARM_IRQ_VCPU_MASK + 1); + irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK; + + trace_kvm_irq_line(irq_type, vcpu_idx, irq_num, irq_level->level); + + switch (irq_type) { + case KVM_ARM_IRQ_TYPE_CPU: + if (irqchip_in_kernel(kvm)) + return -ENXIO; + + if (vcpu_idx >= nrcpus) + return -EINVAL; + + vcpu = kvm_get_vcpu(kvm, vcpu_idx); + if (!vcpu) + return -EINVAL; + + if (irq_num > KVM_ARM_IRQ_CPU_FIQ) + return -EINVAL; + + return vcpu_interrupt_line(vcpu, irq_num, level); + case KVM_ARM_IRQ_TYPE_PPI: + if (!irqchip_in_kernel(kvm)) + return -ENXIO; + + if (vcpu_idx >= nrcpus) + return -EINVAL; + + vcpu = kvm_get_vcpu(kvm, vcpu_idx); + if (!vcpu) + return -EINVAL; + + if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS) + return -EINVAL; + + return kvm_vgic_inject_irq(kvm, vcpu->vcpu_id, irq_num, level, NULL); + case KVM_ARM_IRQ_TYPE_SPI: + if (!irqchip_in_kernel(kvm)) + return -ENXIO; + + if (irq_num < VGIC_NR_PRIVATE_IRQS) + return -EINVAL; + + return kvm_vgic_inject_irq(kvm, 0, irq_num, level, NULL); + } + + return -EINVAL; +} + +static int kvm_vcpu_init_check_features(struct kvm_vcpu *vcpu, + const struct kvm_vcpu_init *init) +{ + unsigned long features = init->features[0]; + int i; + + if (features & ~KVM_VCPU_VALID_FEATURES) + return -ENOENT; + + for (i = 1; i < ARRAY_SIZE(init->features); i++) { + if (init->features[i]) + return -ENOENT; + } + + if (!test_bit(KVM_ARM_VCPU_EL1_32BIT, &features)) + return 0; + + if (!cpus_have_const_cap(ARM64_HAS_32BIT_EL1)) + return -EINVAL; + + /* MTE is incompatible with AArch32 */ + if (kvm_has_mte(vcpu->kvm)) + return -EINVAL; + + /* NV is incompatible with AArch32 */ + if (test_bit(KVM_ARM_VCPU_HAS_EL2, &features)) + return -EINVAL; + + return 0; +} + +static bool kvm_vcpu_init_changed(struct kvm_vcpu *vcpu, + const struct kvm_vcpu_init *init) +{ + unsigned long features = init->features[0]; + + return !bitmap_equal(vcpu->arch.features, &features, KVM_VCPU_MAX_FEATURES); +} + +static int __kvm_vcpu_set_target(struct kvm_vcpu *vcpu, + const struct kvm_vcpu_init *init) +{ + unsigned long features = init->features[0]; + struct kvm *kvm = vcpu->kvm; + int ret = -EINVAL; + + mutex_lock(&kvm->arch.config_lock); + + if (test_bit(KVM_ARCH_FLAG_VCPU_FEATURES_CONFIGURED, &kvm->arch.flags) && + !bitmap_equal(kvm->arch.vcpu_features, &features, KVM_VCPU_MAX_FEATURES)) + goto out_unlock; + + bitmap_copy(vcpu->arch.features, &features, KVM_VCPU_MAX_FEATURES); + + /* Now we know what it is, we can reset it. */ + ret = kvm_reset_vcpu(vcpu); + if (ret) { + bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES); + goto out_unlock; + } + + bitmap_copy(kvm->arch.vcpu_features, &features, KVM_VCPU_MAX_FEATURES); + set_bit(KVM_ARCH_FLAG_VCPU_FEATURES_CONFIGURED, &kvm->arch.flags); + vcpu_set_flag(vcpu, VCPU_INITIALIZED); +out_unlock: + mutex_unlock(&kvm->arch.config_lock); + return ret; +} + +static int kvm_vcpu_set_target(struct kvm_vcpu *vcpu, + const struct kvm_vcpu_init *init) +{ + int ret; + + if (init->target != KVM_ARM_TARGET_GENERIC_V8 && + init->target != kvm_target_cpu()) + return -EINVAL; + + ret = kvm_vcpu_init_check_features(vcpu, init); + if (ret) + return ret; + + if (!kvm_vcpu_initialized(vcpu)) + return __kvm_vcpu_set_target(vcpu, init); + + if (kvm_vcpu_init_changed(vcpu, init)) + return -EINVAL; + + return kvm_reset_vcpu(vcpu); +} + +static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu, + struct kvm_vcpu_init *init) +{ + bool power_off = false; + int ret; + + /* + * Treat the power-off vCPU feature as ephemeral. Clear the bit to avoid + * reflecting it in the finalized feature set, thus limiting its scope + * to a single KVM_ARM_VCPU_INIT call. + */ + if (init->features[0] & BIT(KVM_ARM_VCPU_POWER_OFF)) { + init->features[0] &= ~BIT(KVM_ARM_VCPU_POWER_OFF); + power_off = true; + } + + ret = kvm_vcpu_set_target(vcpu, init); + if (ret) + return ret; + + /* + * Ensure a rebooted VM will fault in RAM pages and detect if the + * guest MMU is turned off and flush the caches as needed. + * + * S2FWB enforces all memory accesses to RAM being cacheable, + * ensuring that the data side is always coherent. We still + * need to invalidate the I-cache though, as FWB does *not* + * imply CTR_EL0.DIC. + */ + if (vcpu_has_run_once(vcpu)) { + if (!cpus_have_final_cap(ARM64_HAS_STAGE2_FWB)) + stage2_unmap_vm(vcpu->kvm); + else + icache_inval_all_pou(); + } + + vcpu_reset_hcr(vcpu); + vcpu->arch.cptr_el2 = kvm_get_reset_cptr_el2(vcpu); + + /* + * Handle the "start in power-off" case. + */ + spin_lock(&vcpu->arch.mp_state_lock); + + if (power_off) + __kvm_arm_vcpu_power_off(vcpu); + else + WRITE_ONCE(vcpu->arch.mp_state.mp_state, KVM_MP_STATE_RUNNABLE); + + spin_unlock(&vcpu->arch.mp_state_lock); + + return 0; +} + +static int kvm_arm_vcpu_set_attr(struct kvm_vcpu *vcpu, + struct kvm_device_attr *attr) +{ + int ret = -ENXIO; + + switch (attr->group) { + default: + ret = kvm_arm_vcpu_arch_set_attr(vcpu, attr); + break; + } + + return ret; +} + +static int kvm_arm_vcpu_get_attr(struct kvm_vcpu *vcpu, + struct kvm_device_attr *attr) +{ + int ret = -ENXIO; + + switch (attr->group) { + default: + ret = kvm_arm_vcpu_arch_get_attr(vcpu, attr); + break; + } + + return ret; +} + +static int kvm_arm_vcpu_has_attr(struct kvm_vcpu *vcpu, + struct kvm_device_attr *attr) +{ + int ret = -ENXIO; + + switch (attr->group) { + default: + ret = kvm_arm_vcpu_arch_has_attr(vcpu, attr); + break; + } + + return ret; +} + +static int kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu, + struct kvm_vcpu_events *events) +{ + memset(events, 0, sizeof(*events)); + + return __kvm_arm_vcpu_get_events(vcpu, events); +} + +static int kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu, + struct kvm_vcpu_events *events) +{ + int i; + + /* check whether the reserved field is zero */ + for (i = 0; i < ARRAY_SIZE(events->reserved); i++) + if (events->reserved[i]) + return -EINVAL; + + /* check whether the pad field is zero */ + for (i = 0; i < ARRAY_SIZE(events->exception.pad); i++) + if (events->exception.pad[i]) + return -EINVAL; + + return __kvm_arm_vcpu_set_events(vcpu, events); +} + +long kvm_arch_vcpu_ioctl(struct file *filp, + unsigned int ioctl, unsigned long arg) +{ + struct kvm_vcpu *vcpu = filp->private_data; + void __user *argp = (void __user *)arg; + struct kvm_device_attr attr; + long r; + + switch (ioctl) { + case KVM_ARM_VCPU_INIT: { + struct kvm_vcpu_init init; + + r = -EFAULT; + if (copy_from_user(&init, argp, sizeof(init))) + break; + + r = kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init); + break; + } + case KVM_SET_ONE_REG: + case KVM_GET_ONE_REG: { + struct kvm_one_reg reg; + + r = -ENOEXEC; + if (unlikely(!kvm_vcpu_initialized(vcpu))) + break; + + r = -EFAULT; + if (copy_from_user(®, argp, sizeof(reg))) + break; + + /* + * We could owe a reset due to PSCI. Handle the pending reset + * here to ensure userspace register accesses are ordered after + * the reset. + */ + if (kvm_check_request(KVM_REQ_VCPU_RESET, vcpu)) + kvm_reset_vcpu(vcpu); + + if (ioctl == KVM_SET_ONE_REG) + r = kvm_arm_set_reg(vcpu, ®); + else + r = kvm_arm_get_reg(vcpu, ®); + break; + } + case KVM_GET_REG_LIST: { + struct kvm_reg_list __user *user_list = argp; + struct kvm_reg_list reg_list; + unsigned n; + + r = -ENOEXEC; + if (unlikely(!kvm_vcpu_initialized(vcpu))) + break; + + r = -EPERM; + if (!kvm_arm_vcpu_is_finalized(vcpu)) + break; + + r = -EFAULT; + if (copy_from_user(®_list, user_list, sizeof(reg_list))) + break; + n = reg_list.n; + reg_list.n = kvm_arm_num_regs(vcpu); + if (copy_to_user(user_list, ®_list, sizeof(reg_list))) + break; + r = -E2BIG; + if (n < reg_list.n) + break; + r = kvm_arm_copy_reg_indices(vcpu, user_list->reg); + break; + } + case KVM_SET_DEVICE_ATTR: { + r = -EFAULT; + if (copy_from_user(&attr, argp, sizeof(attr))) + break; + r = kvm_arm_vcpu_set_attr(vcpu, &attr); + break; + } + case KVM_GET_DEVICE_ATTR: { + r = -EFAULT; + if (copy_from_user(&attr, argp, sizeof(attr))) + break; + r = kvm_arm_vcpu_get_attr(vcpu, &attr); + break; + } + case KVM_HAS_DEVICE_ATTR: { + r = -EFAULT; + if (copy_from_user(&attr, argp, sizeof(attr))) + break; + r = kvm_arm_vcpu_has_attr(vcpu, &attr); + break; + } + case KVM_GET_VCPU_EVENTS: { + struct kvm_vcpu_events events; + + if (kvm_arm_vcpu_get_events(vcpu, &events)) + return -EINVAL; + + if (copy_to_user(argp, &events, sizeof(events))) + return -EFAULT; + + return 0; + } + case KVM_SET_VCPU_EVENTS: { + struct kvm_vcpu_events events; + + if (copy_from_user(&events, argp, sizeof(events))) + return -EFAULT; + + return kvm_arm_vcpu_set_events(vcpu, &events); + } + case KVM_ARM_VCPU_FINALIZE: { + int what; + + if (!kvm_vcpu_initialized(vcpu)) + return -ENOEXEC; + + if (get_user(what, (const int __user *)argp)) + return -EFAULT; + + return kvm_arm_vcpu_finalize(vcpu, what); + } + default: + r = -EINVAL; + } + + return r; +} + +void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot) +{ + +} + +static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm, + struct kvm_arm_device_addr *dev_addr) +{ + switch (FIELD_GET(KVM_ARM_DEVICE_ID_MASK, dev_addr->id)) { + case KVM_ARM_DEVICE_VGIC_V2: + if (!vgic_present) + return -ENXIO; + return kvm_set_legacy_vgic_v2_addr(kvm, dev_addr); + default: + return -ENODEV; + } +} + +static int kvm_vm_has_attr(struct kvm *kvm, struct kvm_device_attr *attr) +{ + switch (attr->group) { + case KVM_ARM_VM_SMCCC_CTRL: + return kvm_vm_smccc_has_attr(kvm, attr); + default: + return -ENXIO; + } +} + +static int kvm_vm_set_attr(struct kvm *kvm, struct kvm_device_attr *attr) +{ + switch (attr->group) { + case KVM_ARM_VM_SMCCC_CTRL: + return kvm_vm_smccc_set_attr(kvm, attr); + default: + return -ENXIO; + } +} + +int kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg) +{ + struct kvm *kvm = filp->private_data; + void __user *argp = (void __user *)arg; + struct kvm_device_attr attr; + + switch (ioctl) { + case KVM_CREATE_IRQCHIP: { + int ret; + if (!vgic_present) + return -ENXIO; + mutex_lock(&kvm->lock); + ret = kvm_vgic_create(kvm, KVM_DEV_TYPE_ARM_VGIC_V2); + mutex_unlock(&kvm->lock); + return ret; + } + case KVM_ARM_SET_DEVICE_ADDR: { + struct kvm_arm_device_addr dev_addr; + + if (copy_from_user(&dev_addr, argp, sizeof(dev_addr))) + return -EFAULT; + return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr); + } + case KVM_ARM_PREFERRED_TARGET: { + struct kvm_vcpu_init init = { + .target = KVM_ARM_TARGET_GENERIC_V8, + }; + + if (copy_to_user(argp, &init, sizeof(init))) + return -EFAULT; + + return 0; + } + case KVM_ARM_MTE_COPY_TAGS: { + struct kvm_arm_copy_mte_tags copy_tags; + + if (copy_from_user(©_tags, argp, sizeof(copy_tags))) + return -EFAULT; + return kvm_vm_ioctl_mte_copy_tags(kvm, ©_tags); + } + case KVM_ARM_SET_COUNTER_OFFSET: { + struct kvm_arm_counter_offset offset; + + if (copy_from_user(&offset, argp, sizeof(offset))) + return -EFAULT; + return kvm_vm_ioctl_set_counter_offset(kvm, &offset); + } + case KVM_HAS_DEVICE_ATTR: { + if (copy_from_user(&attr, argp, sizeof(attr))) + return -EFAULT; + + return kvm_vm_has_attr(kvm, &attr); + } + case KVM_SET_DEVICE_ATTR: { + if (copy_from_user(&attr, argp, sizeof(attr))) + return -EFAULT; + + return kvm_vm_set_attr(kvm, &attr); + } + default: + return -EINVAL; + } +} + +/* unlocks vcpus from @vcpu_lock_idx and smaller */ +static void unlock_vcpus(struct kvm *kvm, int vcpu_lock_idx) +{ + struct kvm_vcpu *tmp_vcpu; + + for (; vcpu_lock_idx >= 0; vcpu_lock_idx--) { + tmp_vcpu = kvm_get_vcpu(kvm, vcpu_lock_idx); + mutex_unlock(&tmp_vcpu->mutex); + } +} + +void unlock_all_vcpus(struct kvm *kvm) +{ + lockdep_assert_held(&kvm->lock); + + unlock_vcpus(kvm, atomic_read(&kvm->online_vcpus) - 1); +} + +/* Returns true if all vcpus were locked, false otherwise */ +bool lock_all_vcpus(struct kvm *kvm) +{ + struct kvm_vcpu *tmp_vcpu; + unsigned long c; + + lockdep_assert_held(&kvm->lock); + + /* + * Any time a vcpu is in an ioctl (including running), the + * core KVM code tries to grab the vcpu->mutex. + * + * By grabbing the vcpu->mutex of all VCPUs we ensure that no + * other VCPUs can fiddle with the state while we access it. + */ + kvm_for_each_vcpu(c, tmp_vcpu, kvm) { + if (!mutex_trylock(&tmp_vcpu->mutex)) { + unlock_vcpus(kvm, c - 1); + return false; + } + } + + return true; +} + +static unsigned long nvhe_percpu_size(void) +{ + return (unsigned long)CHOOSE_NVHE_SYM(__per_cpu_end) - + (unsigned long)CHOOSE_NVHE_SYM(__per_cpu_start); +} + +static unsigned long nvhe_percpu_order(void) +{ + unsigned long size = nvhe_percpu_size(); + + return size ? get_order(size) : 0; +} + +/* A lookup table holding the hypervisor VA for each vector slot */ +static void *hyp_spectre_vector_selector[BP_HARDEN_EL2_SLOTS]; + +static void kvm_init_vector_slot(void *base, enum arm64_hyp_spectre_vector slot) +{ + hyp_spectre_vector_selector[slot] = __kvm_vector_slot2addr(base, slot); +} + +static int kvm_init_vector_slots(void) +{ + int err; + void *base; + + base = kern_hyp_va(kvm_ksym_ref(__kvm_hyp_vector)); + kvm_init_vector_slot(base, HYP_VECTOR_DIRECT); + + base = kern_hyp_va(kvm_ksym_ref(__bp_harden_hyp_vecs)); + kvm_init_vector_slot(base, HYP_VECTOR_SPECTRE_DIRECT); + + if (kvm_system_needs_idmapped_vectors() && + !is_protected_kvm_enabled()) { + err = create_hyp_exec_mappings(__pa_symbol(__bp_harden_hyp_vecs), + __BP_HARDEN_HYP_VECS_SZ, &base); + if (err) + return err; + } + + kvm_init_vector_slot(base, HYP_VECTOR_INDIRECT); + kvm_init_vector_slot(base, HYP_VECTOR_SPECTRE_INDIRECT); + return 0; +} + +static void __init cpu_prepare_hyp_mode(int cpu, u32 hyp_va_bits) +{ + struct kvm_nvhe_init_params *params = per_cpu_ptr_nvhe_sym(kvm_init_params, cpu); + unsigned long tcr; + + /* + * Calculate the raw per-cpu offset without a translation from the + * kernel's mapping to the linear mapping, and store it in tpidr_el2 + * so that we can use adr_l to access per-cpu variables in EL2. + * Also drop the KASAN tag which gets in the way... + */ + params->tpidr_el2 = (unsigned long)kasan_reset_tag(per_cpu_ptr_nvhe_sym(__per_cpu_start, cpu)) - + (unsigned long)kvm_ksym_ref(CHOOSE_NVHE_SYM(__per_cpu_start)); + + params->mair_el2 = read_sysreg(mair_el1); + + tcr = read_sysreg(tcr_el1); + if (cpus_have_final_cap(ARM64_KVM_HVHE)) { + tcr |= TCR_EPD1_MASK; + } else { + tcr &= TCR_EL2_MASK; + tcr |= TCR_EL2_RES1; + } + tcr &= ~TCR_T0SZ_MASK; + tcr |= TCR_T0SZ(hyp_va_bits); + params->tcr_el2 = tcr; + + params->pgd_pa = kvm_mmu_get_httbr(); + if (is_protected_kvm_enabled()) + params->hcr_el2 = HCR_HOST_NVHE_PROTECTED_FLAGS; + else + params->hcr_el2 = HCR_HOST_NVHE_FLAGS; + if (cpus_have_final_cap(ARM64_KVM_HVHE)) + params->hcr_el2 |= HCR_E2H; + params->vttbr = params->vtcr = 0; + + /* + * Flush the init params from the data cache because the struct will + * be read while the MMU is off. + */ + kvm_flush_dcache_to_poc(params, sizeof(*params)); +} + +static void hyp_install_host_vector(void) +{ + struct kvm_nvhe_init_params *params; + struct arm_smccc_res res; + + /* Switch from the HYP stub to our own HYP init vector */ + __hyp_set_vectors(kvm_get_idmap_vector()); + + /* + * Call initialization code, and switch to the full blown HYP code. + * If the cpucaps haven't been finalized yet, something has gone very + * wrong, and hyp will crash and burn when it uses any + * cpus_have_const_cap() wrapper. + */ + BUG_ON(!system_capabilities_finalized()); + params = this_cpu_ptr_nvhe_sym(kvm_init_params); + arm_smccc_1_1_hvc(KVM_HOST_SMCCC_FUNC(__kvm_hyp_init), virt_to_phys(params), &res); + WARN_ON(res.a0 != SMCCC_RET_SUCCESS); +} + +static void cpu_init_hyp_mode(void) +{ + hyp_install_host_vector(); + + /* + * Disabling SSBD on a non-VHE system requires us to enable SSBS + * at EL2. + */ + if (this_cpu_has_cap(ARM64_SSBS) && + arm64_get_spectre_v4_state() == SPECTRE_VULNERABLE) { + kvm_call_hyp_nvhe(__kvm_enable_ssbs); + } +} + +static void cpu_hyp_reset(void) +{ + if (!is_kernel_in_hyp_mode()) + __hyp_reset_vectors(); +} + +/* + * EL2 vectors can be mapped and rerouted in a number of ways, + * depending on the kernel configuration and CPU present: + * + * - If the CPU is affected by Spectre-v2, the hardening sequence is + * placed in one of the vector slots, which is executed before jumping + * to the real vectors. + * + * - If the CPU also has the ARM64_SPECTRE_V3A cap, the slot + * containing the hardening sequence is mapped next to the idmap page, + * and executed before jumping to the real vectors. + * + * - If the CPU only has the ARM64_SPECTRE_V3A cap, then an + * empty slot is selected, mapped next to the idmap page, and + * executed before jumping to the real vectors. + * + * Note that ARM64_SPECTRE_V3A is somewhat incompatible with + * VHE, as we don't have hypervisor-specific mappings. If the system + * is VHE and yet selects this capability, it will be ignored. + */ +static void cpu_set_hyp_vector(void) +{ + struct bp_hardening_data *data = this_cpu_ptr(&bp_hardening_data); + void *vector = hyp_spectre_vector_selector[data->slot]; + + if (!is_protected_kvm_enabled()) + *this_cpu_ptr_hyp_sym(kvm_hyp_vector) = (unsigned long)vector; + else + kvm_call_hyp_nvhe(__pkvm_cpu_set_vector, data->slot); +} + +static void cpu_hyp_init_context(void) +{ + kvm_init_host_cpu_context(&this_cpu_ptr_hyp_sym(kvm_host_data)->host_ctxt); + + if (!is_kernel_in_hyp_mode()) + cpu_init_hyp_mode(); +} + +static void cpu_hyp_init_features(void) +{ + cpu_set_hyp_vector(); + kvm_arm_init_debug(); + + if (is_kernel_in_hyp_mode()) + kvm_timer_init_vhe(); + + if (vgic_present) + kvm_vgic_init_cpu_hardware(); +} + +static void cpu_hyp_reinit(void) +{ + cpu_hyp_reset(); + cpu_hyp_init_context(); + cpu_hyp_init_features(); +} + +static void cpu_hyp_init(void *discard) +{ + if (!__this_cpu_read(kvm_hyp_initialized)) { + cpu_hyp_reinit(); + __this_cpu_write(kvm_hyp_initialized, 1); + } +} + +static void cpu_hyp_uninit(void *discard) +{ + if (__this_cpu_read(kvm_hyp_initialized)) { + cpu_hyp_reset(); + __this_cpu_write(kvm_hyp_initialized, 0); + } +} + +int kvm_arch_hardware_enable(void) +{ + /* + * Most calls to this function are made with migration + * disabled, but not with preemption disabled. The former is + * enough to ensure correctness, but most of the helpers + * expect the later and will throw a tantrum otherwise. + */ + preempt_disable(); + + cpu_hyp_init(NULL); + + kvm_vgic_cpu_up(); + kvm_timer_cpu_up(); + + preempt_enable(); + + return 0; +} + +void kvm_arch_hardware_disable(void) +{ + kvm_timer_cpu_down(); + kvm_vgic_cpu_down(); + + if (!is_protected_kvm_enabled()) + cpu_hyp_uninit(NULL); +} + +#ifdef CONFIG_CPU_PM +static int hyp_init_cpu_pm_notifier(struct notifier_block *self, + unsigned long cmd, + void *v) +{ + /* + * kvm_hyp_initialized is left with its old value over + * PM_ENTER->PM_EXIT. It is used to indicate PM_EXIT should + * re-enable hyp. + */ + switch (cmd) { + case CPU_PM_ENTER: + if (__this_cpu_read(kvm_hyp_initialized)) + /* + * don't update kvm_hyp_initialized here + * so that the hyp will be re-enabled + * when we resume. See below. + */ + cpu_hyp_reset(); + + return NOTIFY_OK; + case CPU_PM_ENTER_FAILED: + case CPU_PM_EXIT: + if (__this_cpu_read(kvm_hyp_initialized)) + /* The hyp was enabled before suspend. */ + cpu_hyp_reinit(); + + return NOTIFY_OK; + + default: + return NOTIFY_DONE; + } +} + +static struct notifier_block hyp_init_cpu_pm_nb = { + .notifier_call = hyp_init_cpu_pm_notifier, +}; + +static void __init hyp_cpu_pm_init(void) +{ + if (!is_protected_kvm_enabled()) + cpu_pm_register_notifier(&hyp_init_cpu_pm_nb); +} +static void __init hyp_cpu_pm_exit(void) +{ + if (!is_protected_kvm_enabled()) + cpu_pm_unregister_notifier(&hyp_init_cpu_pm_nb); +} +#else +static inline void __init hyp_cpu_pm_init(void) +{ +} +static inline void __init hyp_cpu_pm_exit(void) +{ +} +#endif + +static void __init init_cpu_logical_map(void) +{ + unsigned int cpu; + + /* + * Copy the MPIDR <-> logical CPU ID mapping to hyp. + * Only copy the set of online CPUs whose features have been checked + * against the finalized system capabilities. The hypervisor will not + * allow any other CPUs from the `possible` set to boot. + */ + for_each_online_cpu(cpu) + hyp_cpu_logical_map[cpu] = cpu_logical_map(cpu); +} + +#define init_psci_0_1_impl_state(config, what) \ + config.psci_0_1_ ## what ## _implemented = psci_ops.what + +static bool __init init_psci_relay(void) +{ + /* + * If PSCI has not been initialized, protected KVM cannot install + * itself on newly booted CPUs. + */ + if (!psci_ops.get_version) { + kvm_err("Cannot initialize protected mode without PSCI\n"); + return false; + } + + kvm_host_psci_config.version = psci_ops.get_version(); + kvm_host_psci_config.smccc_version = arm_smccc_get_version(); + + if (kvm_host_psci_config.version == PSCI_VERSION(0, 1)) { + kvm_host_psci_config.function_ids_0_1 = get_psci_0_1_function_ids(); + init_psci_0_1_impl_state(kvm_host_psci_config, cpu_suspend); + init_psci_0_1_impl_state(kvm_host_psci_config, cpu_on); + init_psci_0_1_impl_state(kvm_host_psci_config, cpu_off); + init_psci_0_1_impl_state(kvm_host_psci_config, migrate); + } + return true; +} + +static int __init init_subsystems(void) +{ + int err = 0; + + /* + * Enable hardware so that subsystem initialisation can access EL2. + */ + on_each_cpu(cpu_hyp_init, NULL, 1); + + /* + * Register CPU lower-power notifier + */ + hyp_cpu_pm_init(); + + /* + * Init HYP view of VGIC + */ + err = kvm_vgic_hyp_init(); + switch (err) { + case 0: + vgic_present = true; + break; + case -ENODEV: + case -ENXIO: + vgic_present = false; + err = 0; + break; + default: + goto out; + } + + /* + * Init HYP architected timer support + */ + err = kvm_timer_hyp_init(vgic_present); + if (err) + goto out; + + kvm_register_perf_callbacks(NULL); + +out: + if (err) + hyp_cpu_pm_exit(); + + if (err || !is_protected_kvm_enabled()) + on_each_cpu(cpu_hyp_uninit, NULL, 1); + + return err; +} + +static void __init teardown_subsystems(void) +{ + kvm_unregister_perf_callbacks(); + hyp_cpu_pm_exit(); +} + +static void __init teardown_hyp_mode(void) +{ + int cpu; + + free_hyp_pgds(); + for_each_possible_cpu(cpu) { + free_page(per_cpu(kvm_arm_hyp_stack_page, cpu)); + free_pages(kvm_nvhe_sym(kvm_arm_hyp_percpu_base)[cpu], nvhe_percpu_order()); + } +} + +static int __init do_pkvm_init(u32 hyp_va_bits) +{ + void *per_cpu_base = kvm_ksym_ref(kvm_nvhe_sym(kvm_arm_hyp_percpu_base)); + int ret; + + preempt_disable(); + cpu_hyp_init_context(); + ret = kvm_call_hyp_nvhe(__pkvm_init, hyp_mem_base, hyp_mem_size, + num_possible_cpus(), kern_hyp_va(per_cpu_base), + hyp_va_bits); + cpu_hyp_init_features(); + + /* + * The stub hypercalls are now disabled, so set our local flag to + * prevent a later re-init attempt in kvm_arch_hardware_enable(). + */ + __this_cpu_write(kvm_hyp_initialized, 1); + preempt_enable(); + + return ret; +} + +static u64 get_hyp_id_aa64pfr0_el1(void) +{ + /* + * Track whether the system isn't affected by spectre/meltdown in the + * hypervisor's view of id_aa64pfr0_el1, used for protected VMs. + * Although this is per-CPU, we make it global for simplicity, e.g., not + * to have to worry about vcpu migration. + * + * Unlike for non-protected VMs, userspace cannot override this for + * protected VMs. + */ + u64 val = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1); + + val &= ~(ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_CSV2) | + ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_CSV3)); + + val |= FIELD_PREP(ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_CSV2), + arm64_get_spectre_v2_state() == SPECTRE_UNAFFECTED); + val |= FIELD_PREP(ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_CSV3), + arm64_get_meltdown_state() == SPECTRE_UNAFFECTED); + + return val; +} + +static void kvm_hyp_init_symbols(void) +{ + kvm_nvhe_sym(id_aa64pfr0_el1_sys_val) = get_hyp_id_aa64pfr0_el1(); + kvm_nvhe_sym(id_aa64pfr1_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64PFR1_EL1); + kvm_nvhe_sym(id_aa64isar0_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64ISAR0_EL1); + kvm_nvhe_sym(id_aa64isar1_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64ISAR1_EL1); + kvm_nvhe_sym(id_aa64isar2_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64ISAR2_EL1); + kvm_nvhe_sym(id_aa64mmfr0_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1); + kvm_nvhe_sym(id_aa64mmfr1_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1); + kvm_nvhe_sym(id_aa64mmfr2_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64MMFR2_EL1); + kvm_nvhe_sym(id_aa64smfr0_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64SMFR0_EL1); + kvm_nvhe_sym(__icache_flags) = __icache_flags; + kvm_nvhe_sym(kvm_arm_vmid_bits) = kvm_arm_vmid_bits; +} + +static int __init kvm_hyp_init_protection(u32 hyp_va_bits) +{ + void *addr = phys_to_virt(hyp_mem_base); + int ret; + + ret = create_hyp_mappings(addr, addr + hyp_mem_size, PAGE_HYP); + if (ret) + return ret; + + ret = do_pkvm_init(hyp_va_bits); + if (ret) + return ret; + + free_hyp_pgds(); + + return 0; +} + +static void pkvm_hyp_init_ptrauth(void) +{ + struct kvm_cpu_context *hyp_ctxt; + int cpu; + + for_each_possible_cpu(cpu) { + hyp_ctxt = per_cpu_ptr_nvhe_sym(kvm_hyp_ctxt, cpu); + hyp_ctxt->sys_regs[APIAKEYLO_EL1] = get_random_long(); + hyp_ctxt->sys_regs[APIAKEYHI_EL1] = get_random_long(); + hyp_ctxt->sys_regs[APIBKEYLO_EL1] = get_random_long(); + hyp_ctxt->sys_regs[APIBKEYHI_EL1] = get_random_long(); + hyp_ctxt->sys_regs[APDAKEYLO_EL1] = get_random_long(); + hyp_ctxt->sys_regs[APDAKEYHI_EL1] = get_random_long(); + hyp_ctxt->sys_regs[APDBKEYLO_EL1] = get_random_long(); + hyp_ctxt->sys_regs[APDBKEYHI_EL1] = get_random_long(); + hyp_ctxt->sys_regs[APGAKEYLO_EL1] = get_random_long(); + hyp_ctxt->sys_regs[APGAKEYHI_EL1] = get_random_long(); + } +} + +/* Inits Hyp-mode on all online CPUs */ +static int __init init_hyp_mode(void) +{ + u32 hyp_va_bits; + int cpu; + int err = -ENOMEM; + + /* + * The protected Hyp-mode cannot be initialized if the memory pool + * allocation has failed. + */ + if (is_protected_kvm_enabled() && !hyp_mem_base) + goto out_err; + + /* + * Allocate Hyp PGD and setup Hyp identity mapping + */ + err = kvm_mmu_init(&hyp_va_bits); + if (err) + goto out_err; + + /* + * Allocate stack pages for Hypervisor-mode + */ + for_each_possible_cpu(cpu) { + unsigned long stack_page; + + stack_page = __get_free_page(GFP_KERNEL); + if (!stack_page) { + err = -ENOMEM; + goto out_err; + } + + per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page; + } + + /* + * Allocate and initialize pages for Hypervisor-mode percpu regions. + */ + for_each_possible_cpu(cpu) { + struct page *page; + void *page_addr; + + page = alloc_pages(GFP_KERNEL, nvhe_percpu_order()); + if (!page) { + err = -ENOMEM; + goto out_err; + } + + page_addr = page_address(page); + memcpy(page_addr, CHOOSE_NVHE_SYM(__per_cpu_start), nvhe_percpu_size()); + kvm_nvhe_sym(kvm_arm_hyp_percpu_base)[cpu] = (unsigned long)page_addr; + } + + /* + * Map the Hyp-code called directly from the host + */ + err = create_hyp_mappings(kvm_ksym_ref(__hyp_text_start), + kvm_ksym_ref(__hyp_text_end), PAGE_HYP_EXEC); + if (err) { + kvm_err("Cannot map world-switch code\n"); + goto out_err; + } + + err = create_hyp_mappings(kvm_ksym_ref(__hyp_rodata_start), + kvm_ksym_ref(__hyp_rodata_end), PAGE_HYP_RO); + if (err) { + kvm_err("Cannot map .hyp.rodata section\n"); + goto out_err; + } + + err = create_hyp_mappings(kvm_ksym_ref(__start_rodata), + kvm_ksym_ref(__end_rodata), PAGE_HYP_RO); + if (err) { + kvm_err("Cannot map rodata section\n"); + goto out_err; + } + + /* + * .hyp.bss is guaranteed to be placed at the beginning of the .bss + * section thanks to an assertion in the linker script. Map it RW and + * the rest of .bss RO. + */ + err = create_hyp_mappings(kvm_ksym_ref(__hyp_bss_start), + kvm_ksym_ref(__hyp_bss_end), PAGE_HYP); + if (err) { + kvm_err("Cannot map hyp bss section: %d\n", err); + goto out_err; + } + + err = create_hyp_mappings(kvm_ksym_ref(__hyp_bss_end), + kvm_ksym_ref(__bss_stop), PAGE_HYP_RO); + if (err) { + kvm_err("Cannot map bss section\n"); + goto out_err; + } + + /* + * Map the Hyp stack pages + */ + for_each_possible_cpu(cpu) { + struct kvm_nvhe_init_params *params = per_cpu_ptr_nvhe_sym(kvm_init_params, cpu); + char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu); + + err = create_hyp_stack(__pa(stack_page), ¶ms->stack_hyp_va); + if (err) { + kvm_err("Cannot map hyp stack\n"); + goto out_err; + } + + /* + * Save the stack PA in nvhe_init_params. This will be needed + * to recreate the stack mapping in protected nVHE mode. + * __hyp_pa() won't do the right thing there, since the stack + * has been mapped in the flexible private VA space. + */ + params->stack_pa = __pa(stack_page); + } + + for_each_possible_cpu(cpu) { + char *percpu_begin = (char *)kvm_nvhe_sym(kvm_arm_hyp_percpu_base)[cpu]; + char *percpu_end = percpu_begin + nvhe_percpu_size(); + + /* Map Hyp percpu pages */ + err = create_hyp_mappings(percpu_begin, percpu_end, PAGE_HYP); + if (err) { + kvm_err("Cannot map hyp percpu region\n"); + goto out_err; + } + + /* Prepare the CPU initialization parameters */ + cpu_prepare_hyp_mode(cpu, hyp_va_bits); + } + + kvm_hyp_init_symbols(); + + if (is_protected_kvm_enabled()) { + if (IS_ENABLED(CONFIG_ARM64_PTR_AUTH_KERNEL) && + cpus_have_const_cap(ARM64_HAS_ADDRESS_AUTH)) + pkvm_hyp_init_ptrauth(); + + init_cpu_logical_map(); + + if (!init_psci_relay()) { + err = -ENODEV; + goto out_err; + } + + err = kvm_hyp_init_protection(hyp_va_bits); + if (err) { + kvm_err("Failed to init hyp memory protection\n"); + goto out_err; + } + } + + return 0; + +out_err: + teardown_hyp_mode(); + kvm_err("error initializing Hyp mode: %d\n", err); + return err; +} + +struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr) +{ + struct kvm_vcpu *vcpu; + unsigned long i; + + mpidr &= MPIDR_HWID_BITMASK; + kvm_for_each_vcpu(i, vcpu, kvm) { + if (mpidr == kvm_vcpu_get_mpidr_aff(vcpu)) + return vcpu; + } + return NULL; +} + +bool kvm_arch_irqchip_in_kernel(struct kvm *kvm) +{ + return irqchip_in_kernel(kvm); +} + +bool kvm_arch_has_irq_bypass(void) +{ + return true; +} + +int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons, + struct irq_bypass_producer *prod) +{ + struct kvm_kernel_irqfd *irqfd = + container_of(cons, struct kvm_kernel_irqfd, consumer); + + return kvm_vgic_v4_set_forwarding(irqfd->kvm, prod->irq, + &irqfd->irq_entry); +} +void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons, + struct irq_bypass_producer *prod) +{ + struct kvm_kernel_irqfd *irqfd = + container_of(cons, struct kvm_kernel_irqfd, consumer); + + kvm_vgic_v4_unset_forwarding(irqfd->kvm, prod->irq, + &irqfd->irq_entry); +} + +void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *cons) +{ + struct kvm_kernel_irqfd *irqfd = + container_of(cons, struct kvm_kernel_irqfd, consumer); + + kvm_arm_halt_guest(irqfd->kvm); +} + +void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *cons) +{ + struct kvm_kernel_irqfd *irqfd = + container_of(cons, struct kvm_kernel_irqfd, consumer); + + kvm_arm_resume_guest(irqfd->kvm); +} + +/* Initialize Hyp-mode and memory mappings on all CPUs */ +static __init int kvm_arm_init(void) +{ + int err; + bool in_hyp_mode; + + if (!is_hyp_mode_available()) { + kvm_info("HYP mode not available\n"); + return -ENODEV; + } + + if (kvm_get_mode() == KVM_MODE_NONE) { + kvm_info("KVM disabled from command line\n"); + return -ENODEV; + } + + err = kvm_sys_reg_table_init(); + if (err) { + kvm_info("Error initializing system register tables"); + return err; + } + + in_hyp_mode = is_kernel_in_hyp_mode(); + + if (cpus_have_final_cap(ARM64_WORKAROUND_DEVICE_LOAD_ACQUIRE) || + cpus_have_final_cap(ARM64_WORKAROUND_1508412)) + kvm_info("Guests without required CPU erratum workarounds can deadlock system!\n" \ + "Only trusted guests should be used on this system.\n"); + + err = kvm_set_ipa_limit(); + if (err) + return err; + + err = kvm_arm_init_sve(); + if (err) + return err; + + err = kvm_arm_vmid_alloc_init(); + if (err) { + kvm_err("Failed to initialize VMID allocator.\n"); + return err; + } + + if (!in_hyp_mode) { + err = init_hyp_mode(); + if (err) + goto out_err; + } + + err = kvm_init_vector_slots(); + if (err) { + kvm_err("Cannot initialise vector slots\n"); + goto out_hyp; + } + + err = init_subsystems(); + if (err) + goto out_hyp; + + if (is_protected_kvm_enabled()) { + kvm_info("Protected nVHE mode initialized successfully\n"); + } else if (in_hyp_mode) { + kvm_info("VHE mode initialized successfully\n"); + } else { + kvm_info("Hyp mode initialized successfully\n"); + } + + /* + * FIXME: Do something reasonable if kvm_init() fails after pKVM + * hypervisor protection is finalized. + */ + err = kvm_init(sizeof(struct kvm_vcpu), 0, THIS_MODULE); + if (err) + goto out_subs; + + kvm_arm_initialised = true; + + return 0; + +out_subs: + teardown_subsystems(); +out_hyp: + if (!in_hyp_mode) + teardown_hyp_mode(); +out_err: + kvm_arm_vmid_alloc_free(); + return err; +} + +static int __init early_kvm_mode_cfg(char *arg) +{ + if (!arg) + return -EINVAL; + + if (strcmp(arg, "none") == 0) { + kvm_mode = KVM_MODE_NONE; + return 0; + } + + if (!is_hyp_mode_available()) { + pr_warn_once("KVM is not available. Ignoring kvm-arm.mode\n"); + return 0; + } + + if (strcmp(arg, "protected") == 0) { + if (!is_kernel_in_hyp_mode()) + kvm_mode = KVM_MODE_PROTECTED; + else + pr_warn_once("Protected KVM not available with VHE\n"); + + return 0; + } + + if (strcmp(arg, "nvhe") == 0 && !WARN_ON(is_kernel_in_hyp_mode())) { + kvm_mode = KVM_MODE_DEFAULT; + return 0; + } + + if (strcmp(arg, "nested") == 0 && !WARN_ON(!is_kernel_in_hyp_mode())) { + kvm_mode = KVM_MODE_NV; + return 0; + } + + return -EINVAL; +} +early_param("kvm-arm.mode", early_kvm_mode_cfg); + +enum kvm_mode kvm_get_mode(void) +{ + return kvm_mode; +} + +module_init(kvm_arm_init); diff --git a/arch/arm64/kvm/debug.c b/arch/arm64/kvm/debug.c new file mode 100644 index 0000000000..8725291cb0 --- /dev/null +++ b/arch/arm64/kvm/debug.c @@ -0,0 +1,344 @@ +// SPDX-License-Identifier: GPL-2.0-only +/* + * Debug and Guest Debug support + * + * Copyright (C) 2015 - Linaro Ltd + * Author: Alex Bennée <alex.bennee@linaro.org> + */ + +#include <linux/kvm_host.h> +#include <linux/hw_breakpoint.h> + +#include <asm/debug-monitors.h> +#include <asm/kvm_asm.h> +#include <asm/kvm_arm.h> +#include <asm/kvm_emulate.h> + +#include "trace.h" + +/* These are the bits of MDSCR_EL1 we may manipulate */ +#define MDSCR_EL1_DEBUG_MASK (DBG_MDSCR_SS | \ + DBG_MDSCR_KDE | \ + DBG_MDSCR_MDE) + +static DEFINE_PER_CPU(u64, mdcr_el2); + +/** + * save/restore_guest_debug_regs + * + * For some debug operations we need to tweak some guest registers. As + * a result we need to save the state of those registers before we + * make those modifications. + * + * Guest access to MDSCR_EL1 is trapped by the hypervisor and handled + * after we have restored the preserved value to the main context. + * + * When single-step is enabled by userspace, we tweak PSTATE.SS on every + * guest entry. Preserve PSTATE.SS so we can restore the original value + * for the vcpu after the single-step is disabled. + */ +static void save_guest_debug_regs(struct kvm_vcpu *vcpu) +{ + u64 val = vcpu_read_sys_reg(vcpu, MDSCR_EL1); + + vcpu->arch.guest_debug_preserved.mdscr_el1 = val; + + trace_kvm_arm_set_dreg32("Saved MDSCR_EL1", + vcpu->arch.guest_debug_preserved.mdscr_el1); + + vcpu->arch.guest_debug_preserved.pstate_ss = + (*vcpu_cpsr(vcpu) & DBG_SPSR_SS); +} + +static void restore_guest_debug_regs(struct kvm_vcpu *vcpu) +{ + u64 val = vcpu->arch.guest_debug_preserved.mdscr_el1; + + vcpu_write_sys_reg(vcpu, val, MDSCR_EL1); + + trace_kvm_arm_set_dreg32("Restored MDSCR_EL1", + vcpu_read_sys_reg(vcpu, MDSCR_EL1)); + + if (vcpu->arch.guest_debug_preserved.pstate_ss) + *vcpu_cpsr(vcpu) |= DBG_SPSR_SS; + else + *vcpu_cpsr(vcpu) &= ~DBG_SPSR_SS; +} + +/** + * kvm_arm_init_debug - grab what we need for debug + * + * Currently the sole task of this function is to retrieve the initial + * value of mdcr_el2 so we can preserve MDCR_EL2.HPMN which has + * presumably been set-up by some knowledgeable bootcode. + * + * It is called once per-cpu during CPU hyp initialisation. + */ + +void kvm_arm_init_debug(void) +{ + __this_cpu_write(mdcr_el2, kvm_call_hyp_ret(__kvm_get_mdcr_el2)); +} + +/** + * kvm_arm_setup_mdcr_el2 - configure vcpu mdcr_el2 value + * + * @vcpu: the vcpu pointer + * + * This ensures we will trap access to: + * - Performance monitors (MDCR_EL2_TPM/MDCR_EL2_TPMCR) + * - Debug ROM Address (MDCR_EL2_TDRA) + * - OS related registers (MDCR_EL2_TDOSA) + * - Statistical profiler (MDCR_EL2_TPMS/MDCR_EL2_E2PB) + * - Self-hosted Trace Filter controls (MDCR_EL2_TTRF) + * - Self-hosted Trace (MDCR_EL2_TTRF/MDCR_EL2_E2TB) + */ +static void kvm_arm_setup_mdcr_el2(struct kvm_vcpu *vcpu) +{ + /* + * This also clears MDCR_EL2_E2PB_MASK and MDCR_EL2_E2TB_MASK + * to disable guest access to the profiling and trace buffers + */ + vcpu->arch.mdcr_el2 = __this_cpu_read(mdcr_el2) & MDCR_EL2_HPMN_MASK; + vcpu->arch.mdcr_el2 |= (MDCR_EL2_TPM | + MDCR_EL2_TPMS | + MDCR_EL2_TTRF | + MDCR_EL2_TPMCR | + MDCR_EL2_TDRA | + MDCR_EL2_TDOSA); + + /* Is the VM being debugged by userspace? */ + if (vcpu->guest_debug) + /* Route all software debug exceptions to EL2 */ + vcpu->arch.mdcr_el2 |= MDCR_EL2_TDE; + + /* + * Trap debug register access when one of the following is true: + * - Userspace is using the hardware to debug the guest + * (KVM_GUESTDBG_USE_HW is set). + * - The guest is not using debug (DEBUG_DIRTY clear). + * - The guest has enabled the OS Lock (debug exceptions are blocked). + */ + if ((vcpu->guest_debug & KVM_GUESTDBG_USE_HW) || + !vcpu_get_flag(vcpu, DEBUG_DIRTY) || + kvm_vcpu_os_lock_enabled(vcpu)) + vcpu->arch.mdcr_el2 |= MDCR_EL2_TDA; + + trace_kvm_arm_set_dreg32("MDCR_EL2", vcpu->arch.mdcr_el2); +} + +/** + * kvm_arm_vcpu_init_debug - setup vcpu debug traps + * + * @vcpu: the vcpu pointer + * + * Set vcpu initial mdcr_el2 value. + */ +void kvm_arm_vcpu_init_debug(struct kvm_vcpu *vcpu) +{ + preempt_disable(); + kvm_arm_setup_mdcr_el2(vcpu); + preempt_enable(); +} + +/** + * kvm_arm_reset_debug_ptr - reset the debug ptr to point to the vcpu state + */ + +void kvm_arm_reset_debug_ptr(struct kvm_vcpu *vcpu) +{ + vcpu->arch.debug_ptr = &vcpu->arch.vcpu_debug_state; +} + +/** + * kvm_arm_setup_debug - set up debug related stuff + * + * @vcpu: the vcpu pointer + * + * This is called before each entry into the hypervisor to setup any + * debug related registers. + * + * Additionally, KVM only traps guest accesses to the debug registers if + * the guest is not actively using them (see the DEBUG_DIRTY + * flag on vcpu->arch.iflags). Since the guest must not interfere + * with the hardware state when debugging the guest, we must ensure that + * trapping is enabled whenever we are debugging the guest using the + * debug registers. + */ + +void kvm_arm_setup_debug(struct kvm_vcpu *vcpu) +{ + unsigned long mdscr, orig_mdcr_el2 = vcpu->arch.mdcr_el2; + + trace_kvm_arm_setup_debug(vcpu, vcpu->guest_debug); + + kvm_arm_setup_mdcr_el2(vcpu); + + /* Check if we need to use the debug registers. */ + if (vcpu->guest_debug || kvm_vcpu_os_lock_enabled(vcpu)) { + /* Save guest debug state */ + save_guest_debug_regs(vcpu); + + /* + * Single Step (ARM ARM D2.12.3 The software step state + * machine) + * + * If we are doing Single Step we need to manipulate + * the guest's MDSCR_EL1.SS and PSTATE.SS. Once the + * step has occurred the hypervisor will trap the + * debug exception and we return to userspace. + * + * If the guest attempts to single step its userspace + * we would have to deal with a trapped exception + * while in the guest kernel. Because this would be + * hard to unwind we suppress the guest's ability to + * do so by masking MDSCR_EL.SS. + * + * This confuses guest debuggers which use + * single-step behind the scenes but everything + * returns to normal once the host is no longer + * debugging the system. + */ + if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) { + /* + * If the software step state at the last guest exit + * was Active-pending, we don't set DBG_SPSR_SS so + * that the state is maintained (to not run another + * single-step until the pending Software Step + * exception is taken). + */ + if (!vcpu_get_flag(vcpu, DBG_SS_ACTIVE_PENDING)) + *vcpu_cpsr(vcpu) |= DBG_SPSR_SS; + else + *vcpu_cpsr(vcpu) &= ~DBG_SPSR_SS; + + mdscr = vcpu_read_sys_reg(vcpu, MDSCR_EL1); + mdscr |= DBG_MDSCR_SS; + vcpu_write_sys_reg(vcpu, mdscr, MDSCR_EL1); + } else { + mdscr = vcpu_read_sys_reg(vcpu, MDSCR_EL1); + mdscr &= ~DBG_MDSCR_SS; + vcpu_write_sys_reg(vcpu, mdscr, MDSCR_EL1); + } + + trace_kvm_arm_set_dreg32("SPSR_EL2", *vcpu_cpsr(vcpu)); + + /* + * HW Breakpoints and watchpoints + * + * We simply switch the debug_ptr to point to our new + * external_debug_state which has been populated by the + * debug ioctl. The existing DEBUG_DIRTY mechanism ensures + * the registers are updated on the world switch. + */ + if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW) { + /* Enable breakpoints/watchpoints */ + mdscr = vcpu_read_sys_reg(vcpu, MDSCR_EL1); + mdscr |= DBG_MDSCR_MDE; + vcpu_write_sys_reg(vcpu, mdscr, MDSCR_EL1); + + vcpu->arch.debug_ptr = &vcpu->arch.external_debug_state; + vcpu_set_flag(vcpu, DEBUG_DIRTY); + + trace_kvm_arm_set_regset("BKPTS", get_num_brps(), + &vcpu->arch.debug_ptr->dbg_bcr[0], + &vcpu->arch.debug_ptr->dbg_bvr[0]); + + trace_kvm_arm_set_regset("WAPTS", get_num_wrps(), + &vcpu->arch.debug_ptr->dbg_wcr[0], + &vcpu->arch.debug_ptr->dbg_wvr[0]); + + /* + * The OS Lock blocks debug exceptions in all ELs when it is + * enabled. If the guest has enabled the OS Lock, constrain its + * effects to the guest. Emulate the behavior by clearing + * MDSCR_EL1.MDE. In so doing, we ensure that host debug + * exceptions are unaffected by guest configuration of the OS + * Lock. + */ + } else if (kvm_vcpu_os_lock_enabled(vcpu)) { + mdscr = vcpu_read_sys_reg(vcpu, MDSCR_EL1); + mdscr &= ~DBG_MDSCR_MDE; + vcpu_write_sys_reg(vcpu, mdscr, MDSCR_EL1); + } + } + + BUG_ON(!vcpu->guest_debug && + vcpu->arch.debug_ptr != &vcpu->arch.vcpu_debug_state); + + /* If KDE or MDE are set, perform a full save/restore cycle. */ + if (vcpu_read_sys_reg(vcpu, MDSCR_EL1) & (DBG_MDSCR_KDE | DBG_MDSCR_MDE)) + vcpu_set_flag(vcpu, DEBUG_DIRTY); + + /* Write mdcr_el2 changes since vcpu_load on VHE systems */ + if (has_vhe() && orig_mdcr_el2 != vcpu->arch.mdcr_el2) + write_sysreg(vcpu->arch.mdcr_el2, mdcr_el2); + + trace_kvm_arm_set_dreg32("MDSCR_EL1", vcpu_read_sys_reg(vcpu, MDSCR_EL1)); +} + +void kvm_arm_clear_debug(struct kvm_vcpu *vcpu) +{ + trace_kvm_arm_clear_debug(vcpu->guest_debug); + + /* + * Restore the guest's debug registers if we were using them. + */ + if (vcpu->guest_debug || kvm_vcpu_os_lock_enabled(vcpu)) { + if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) { + if (!(*vcpu_cpsr(vcpu) & DBG_SPSR_SS)) + /* + * Mark the vcpu as ACTIVE_PENDING + * until Software Step exception is taken. + */ + vcpu_set_flag(vcpu, DBG_SS_ACTIVE_PENDING); + } + + restore_guest_debug_regs(vcpu); + + /* + * If we were using HW debug we need to restore the + * debug_ptr to the guest debug state. + */ + if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW) { + kvm_arm_reset_debug_ptr(vcpu); + + trace_kvm_arm_set_regset("BKPTS", get_num_brps(), + &vcpu->arch.debug_ptr->dbg_bcr[0], + &vcpu->arch.debug_ptr->dbg_bvr[0]); + + trace_kvm_arm_set_regset("WAPTS", get_num_wrps(), + &vcpu->arch.debug_ptr->dbg_wcr[0], + &vcpu->arch.debug_ptr->dbg_wvr[0]); + } + } +} + +void kvm_arch_vcpu_load_debug_state_flags(struct kvm_vcpu *vcpu) +{ + u64 dfr0; + + /* For VHE, there is nothing to do */ + if (has_vhe()) + return; + + dfr0 = read_sysreg(id_aa64dfr0_el1); + /* + * If SPE is present on this CPU and is available at current EL, + * we may need to check if the host state needs to be saved. + */ + if (cpuid_feature_extract_unsigned_field(dfr0, ID_AA64DFR0_EL1_PMSVer_SHIFT) && + !(read_sysreg_s(SYS_PMBIDR_EL1) & BIT(PMBIDR_EL1_P_SHIFT))) + vcpu_set_flag(vcpu, DEBUG_STATE_SAVE_SPE); + + /* Check if we have TRBE implemented and available at the host */ + if (cpuid_feature_extract_unsigned_field(dfr0, ID_AA64DFR0_EL1_TraceBuffer_SHIFT) && + !(read_sysreg_s(SYS_TRBIDR_EL1) & TRBIDR_EL1_P)) + vcpu_set_flag(vcpu, DEBUG_STATE_SAVE_TRBE); +} + +void kvm_arch_vcpu_put_debug_state_flags(struct kvm_vcpu *vcpu) +{ + vcpu_clear_flag(vcpu, DEBUG_STATE_SAVE_SPE); + vcpu_clear_flag(vcpu, DEBUG_STATE_SAVE_TRBE); +} diff --git a/arch/arm64/kvm/emulate-nested.c b/arch/arm64/kvm/emulate-nested.c new file mode 100644 index 0000000000..ee902ff2a5 --- /dev/null +++ b/arch/arm64/kvm/emulate-nested.c @@ -0,0 +1,2057 @@ +// SPDX-License-Identifier: GPL-2.0-only +/* + * Copyright (C) 2016 - Linaro and Columbia University + * Author: Jintack Lim <jintack.lim@linaro.org> + */ + +#include <linux/kvm.h> +#include <linux/kvm_host.h> + +#include <asm/kvm_emulate.h> +#include <asm/kvm_nested.h> + +#include "hyp/include/hyp/adjust_pc.h" + +#include "trace.h" + +enum trap_behaviour { + BEHAVE_HANDLE_LOCALLY = 0, + BEHAVE_FORWARD_READ = BIT(0), + BEHAVE_FORWARD_WRITE = BIT(1), + BEHAVE_FORWARD_ANY = BEHAVE_FORWARD_READ | BEHAVE_FORWARD_WRITE, +}; + +struct trap_bits { + const enum vcpu_sysreg index; + const enum trap_behaviour behaviour; + const u64 value; + const u64 mask; +}; + +/* Coarse Grained Trap definitions */ +enum cgt_group_id { + /* Indicates no coarse trap control */ + __RESERVED__, + + /* + * The first batch of IDs denote coarse trapping that are used + * on their own instead of being part of a combination of + * trap controls. + */ + CGT_HCR_TID1, + CGT_HCR_TID2, + CGT_HCR_TID3, + CGT_HCR_IMO, + CGT_HCR_FMO, + CGT_HCR_TIDCP, + CGT_HCR_TACR, + CGT_HCR_TSW, + CGT_HCR_TPC, + CGT_HCR_TPU, + CGT_HCR_TTLB, + CGT_HCR_TVM, + CGT_HCR_TDZ, + CGT_HCR_TRVM, + CGT_HCR_TLOR, + CGT_HCR_TERR, + CGT_HCR_APK, + CGT_HCR_NV, + CGT_HCR_NV_nNV2, + CGT_HCR_NV1_nNV2, + CGT_HCR_AT, + CGT_HCR_nFIEN, + CGT_HCR_TID4, + CGT_HCR_TICAB, + CGT_HCR_TOCU, + CGT_HCR_ENSCXT, + CGT_HCR_TTLBIS, + CGT_HCR_TTLBOS, + + CGT_MDCR_TPMCR, + CGT_MDCR_TPM, + CGT_MDCR_TDE, + CGT_MDCR_TDA, + CGT_MDCR_TDOSA, + CGT_MDCR_TDRA, + CGT_MDCR_E2PB, + CGT_MDCR_TPMS, + CGT_MDCR_TTRF, + CGT_MDCR_E2TB, + CGT_MDCR_TDCC, + + /* + * Anything after this point is a combination of coarse trap + * controls, which must all be evaluated to decide what to do. + */ + __MULTIPLE_CONTROL_BITS__, + CGT_HCR_IMO_FMO = __MULTIPLE_CONTROL_BITS__, + CGT_HCR_TID2_TID4, + CGT_HCR_TTLB_TTLBIS, + CGT_HCR_TTLB_TTLBOS, + CGT_HCR_TVM_TRVM, + CGT_HCR_TPU_TICAB, + CGT_HCR_TPU_TOCU, + CGT_HCR_NV1_nNV2_ENSCXT, + CGT_MDCR_TPM_TPMCR, + CGT_MDCR_TDE_TDA, + CGT_MDCR_TDE_TDOSA, + CGT_MDCR_TDE_TDRA, + CGT_MDCR_TDCC_TDE_TDA, + + /* + * Anything after this point requires a callback evaluating a + * complex trap condition. Ugly stuff. + */ + __COMPLEX_CONDITIONS__, + CGT_CNTHCTL_EL1PCTEN = __COMPLEX_CONDITIONS__, + CGT_CNTHCTL_EL1PTEN, + + /* Must be last */ + __NR_CGT_GROUP_IDS__ +}; + +static const struct trap_bits coarse_trap_bits[] = { + [CGT_HCR_TID1] = { + .index = HCR_EL2, + .value = HCR_TID1, + .mask = HCR_TID1, + .behaviour = BEHAVE_FORWARD_READ, + }, + [CGT_HCR_TID2] = { + .index = HCR_EL2, + .value = HCR_TID2, + .mask = HCR_TID2, + .behaviour = BEHAVE_FORWARD_ANY, + }, + [CGT_HCR_TID3] = { + .index = HCR_EL2, + .value = HCR_TID3, + .mask = HCR_TID3, + .behaviour = BEHAVE_FORWARD_READ, + }, + [CGT_HCR_IMO] = { + .index = HCR_EL2, + .value = HCR_IMO, + .mask = HCR_IMO, + .behaviour = BEHAVE_FORWARD_WRITE, + }, + [CGT_HCR_FMO] = { + .index = HCR_EL2, + .value = HCR_FMO, + .mask = HCR_FMO, + .behaviour = BEHAVE_FORWARD_WRITE, + }, + [CGT_HCR_TIDCP] = { + .index = HCR_EL2, + .value = HCR_TIDCP, + .mask = HCR_TIDCP, + .behaviour = BEHAVE_FORWARD_ANY, + }, + [CGT_HCR_TACR] = { + .index = HCR_EL2, + .value = HCR_TACR, + .mask = HCR_TACR, + .behaviour = BEHAVE_FORWARD_ANY, + }, + [CGT_HCR_TSW] = { + .index = HCR_EL2, + .value = HCR_TSW, + .mask = HCR_TSW, + .behaviour = BEHAVE_FORWARD_ANY, + }, + [CGT_HCR_TPC] = { /* Also called TCPC when FEAT_DPB is implemented */ + .index = HCR_EL2, + .value = HCR_TPC, + .mask = HCR_TPC, + .behaviour = BEHAVE_FORWARD_ANY, + }, + [CGT_HCR_TPU] = { + .index = HCR_EL2, + .value = HCR_TPU, + .mask = HCR_TPU, + .behaviour = BEHAVE_FORWARD_ANY, + }, + [CGT_HCR_TTLB] = { + .index = HCR_EL2, + .value = HCR_TTLB, + .mask = HCR_TTLB, + .behaviour = BEHAVE_FORWARD_ANY, + }, + [CGT_HCR_TVM] = { + .index = HCR_EL2, + .value = HCR_TVM, + .mask = HCR_TVM, + .behaviour = BEHAVE_FORWARD_WRITE, + }, + [CGT_HCR_TDZ] = { + .index = HCR_EL2, + .value = HCR_TDZ, + .mask = HCR_TDZ, + .behaviour = BEHAVE_FORWARD_ANY, + }, + [CGT_HCR_TRVM] = { + .index = HCR_EL2, + .value = HCR_TRVM, + .mask = HCR_TRVM, + .behaviour = BEHAVE_FORWARD_READ, + }, + [CGT_HCR_TLOR] = { + .index = HCR_EL2, + .value = HCR_TLOR, + .mask = HCR_TLOR, + .behaviour = BEHAVE_FORWARD_ANY, + }, + [CGT_HCR_TERR] = { + .index = HCR_EL2, + .value = HCR_TERR, + .mask = HCR_TERR, + .behaviour = BEHAVE_FORWARD_ANY, + }, + [CGT_HCR_APK] = { + .index = HCR_EL2, + .value = 0, + .mask = HCR_APK, + .behaviour = BEHAVE_FORWARD_ANY, + }, + [CGT_HCR_NV] = { + .index = HCR_EL2, + .value = HCR_NV, + .mask = HCR_NV, + .behaviour = BEHAVE_FORWARD_ANY, + }, + [CGT_HCR_NV_nNV2] = { + .index = HCR_EL2, + .value = HCR_NV, + .mask = HCR_NV | HCR_NV2, + .behaviour = BEHAVE_FORWARD_ANY, + }, + [CGT_HCR_NV1_nNV2] = { + .index = HCR_EL2, + .value = HCR_NV | HCR_NV1, + .mask = HCR_NV | HCR_NV1 | HCR_NV2, + .behaviour = BEHAVE_FORWARD_ANY, + }, + [CGT_HCR_AT] = { + .index = HCR_EL2, + .value = HCR_AT, + .mask = HCR_AT, + .behaviour = BEHAVE_FORWARD_ANY, + }, + [CGT_HCR_nFIEN] = { + .index = HCR_EL2, + .value = 0, + .mask = HCR_FIEN, + .behaviour = BEHAVE_FORWARD_ANY, + }, + [CGT_HCR_TID4] = { + .index = HCR_EL2, + .value = HCR_TID4, + .mask = HCR_TID4, + .behaviour = BEHAVE_FORWARD_ANY, + }, + [CGT_HCR_TICAB] = { + .index = HCR_EL2, + .value = HCR_TICAB, + .mask = HCR_TICAB, + .behaviour = BEHAVE_FORWARD_ANY, + }, + [CGT_HCR_TOCU] = { + .index = HCR_EL2, + .value = HCR_TOCU, + .mask = HCR_TOCU, + .behaviour = BEHAVE_FORWARD_ANY, + }, + [CGT_HCR_ENSCXT] = { + .index = HCR_EL2, + .value = 0, + .mask = HCR_ENSCXT, + .behaviour = BEHAVE_FORWARD_ANY, + }, + [CGT_HCR_TTLBIS] = { + .index = HCR_EL2, + .value = HCR_TTLBIS, + .mask = HCR_TTLBIS, + .behaviour = BEHAVE_FORWARD_ANY, + }, + [CGT_HCR_TTLBOS] = { + .index = HCR_EL2, + .value = HCR_TTLBOS, + .mask = HCR_TTLBOS, + .behaviour = BEHAVE_FORWARD_ANY, + }, + [CGT_MDCR_TPMCR] = { + .index = MDCR_EL2, + .value = MDCR_EL2_TPMCR, + .mask = MDCR_EL2_TPMCR, + .behaviour = BEHAVE_FORWARD_ANY, + }, + [CGT_MDCR_TPM] = { + .index = MDCR_EL2, + .value = MDCR_EL2_TPM, + .mask = MDCR_EL2_TPM, + .behaviour = BEHAVE_FORWARD_ANY, + }, + [CGT_MDCR_TDE] = { + .index = MDCR_EL2, + .value = MDCR_EL2_TDE, + .mask = MDCR_EL2_TDE, + .behaviour = BEHAVE_FORWARD_ANY, + }, + [CGT_MDCR_TDA] = { + .index = MDCR_EL2, + .value = MDCR_EL2_TDA, + .mask = MDCR_EL2_TDA, + .behaviour = BEHAVE_FORWARD_ANY, + }, + [CGT_MDCR_TDOSA] = { + .index = MDCR_EL2, + .value = MDCR_EL2_TDOSA, + .mask = MDCR_EL2_TDOSA, + .behaviour = BEHAVE_FORWARD_ANY, + }, + [CGT_MDCR_TDRA] = { + .index = MDCR_EL2, + .value = MDCR_EL2_TDRA, + .mask = MDCR_EL2_TDRA, + .behaviour = BEHAVE_FORWARD_ANY, + }, + [CGT_MDCR_E2PB] = { + .index = MDCR_EL2, + .value = 0, + .mask = BIT(MDCR_EL2_E2PB_SHIFT), + .behaviour = BEHAVE_FORWARD_ANY, + }, + [CGT_MDCR_TPMS] = { + .index = MDCR_EL2, + .value = MDCR_EL2_TPMS, + .mask = MDCR_EL2_TPMS, + .behaviour = BEHAVE_FORWARD_ANY, + }, + [CGT_MDCR_TTRF] = { + .index = MDCR_EL2, + .value = MDCR_EL2_TTRF, + .mask = MDCR_EL2_TTRF, + .behaviour = BEHAVE_FORWARD_ANY, + }, + [CGT_MDCR_E2TB] = { + .index = MDCR_EL2, + .value = 0, + .mask = BIT(MDCR_EL2_E2TB_SHIFT), + .behaviour = BEHAVE_FORWARD_ANY, + }, + [CGT_MDCR_TDCC] = { + .index = MDCR_EL2, + .value = MDCR_EL2_TDCC, + .mask = MDCR_EL2_TDCC, + .behaviour = BEHAVE_FORWARD_ANY, + }, +}; + +#define MCB(id, ...) \ + [id - __MULTIPLE_CONTROL_BITS__] = \ + (const enum cgt_group_id[]){ \ + __VA_ARGS__, __RESERVED__ \ + } + +static const enum cgt_group_id *coarse_control_combo[] = { + MCB(CGT_HCR_IMO_FMO, CGT_HCR_IMO, CGT_HCR_FMO), + MCB(CGT_HCR_TID2_TID4, CGT_HCR_TID2, CGT_HCR_TID4), + MCB(CGT_HCR_TTLB_TTLBIS, CGT_HCR_TTLB, CGT_HCR_TTLBIS), + MCB(CGT_HCR_TTLB_TTLBOS, CGT_HCR_TTLB, CGT_HCR_TTLBOS), + MCB(CGT_HCR_TVM_TRVM, CGT_HCR_TVM, CGT_HCR_TRVM), + MCB(CGT_HCR_TPU_TICAB, CGT_HCR_TPU, CGT_HCR_TICAB), + MCB(CGT_HCR_TPU_TOCU, CGT_HCR_TPU, CGT_HCR_TOCU), + MCB(CGT_HCR_NV1_nNV2_ENSCXT, CGT_HCR_NV1_nNV2, CGT_HCR_ENSCXT), + MCB(CGT_MDCR_TPM_TPMCR, CGT_MDCR_TPM, CGT_MDCR_TPMCR), + MCB(CGT_MDCR_TDE_TDA, CGT_MDCR_TDE, CGT_MDCR_TDA), + MCB(CGT_MDCR_TDE_TDOSA, CGT_MDCR_TDE, CGT_MDCR_TDOSA), + MCB(CGT_MDCR_TDE_TDRA, CGT_MDCR_TDE, CGT_MDCR_TDRA), + MCB(CGT_MDCR_TDCC_TDE_TDA, CGT_MDCR_TDCC, CGT_MDCR_TDE, CGT_MDCR_TDA), +}; + +typedef enum trap_behaviour (*complex_condition_check)(struct kvm_vcpu *); + +/* + * Warning, maximum confusion ahead. + * + * When E2H=0, CNTHCTL_EL2[1:0] are defined as EL1PCEN:EL1PCTEN + * When E2H=1, CNTHCTL_EL2[11:10] are defined as EL1PTEN:EL1PCTEN + * + * Note the single letter difference? Yet, the bits have the same + * function despite a different layout and a different name. + * + * We don't try to reconcile this mess. We just use the E2H=0 bits + * to generate something that is in the E2H=1 format, and live with + * it. You're welcome. + */ +static u64 get_sanitized_cnthctl(struct kvm_vcpu *vcpu) +{ + u64 val = __vcpu_sys_reg(vcpu, CNTHCTL_EL2); + + if (!vcpu_el2_e2h_is_set(vcpu)) + val = (val & (CNTHCTL_EL1PCEN | CNTHCTL_EL1PCTEN)) << 10; + + return val & ((CNTHCTL_EL1PCEN | CNTHCTL_EL1PCTEN) << 10); +} + +static enum trap_behaviour check_cnthctl_el1pcten(struct kvm_vcpu *vcpu) +{ + if (get_sanitized_cnthctl(vcpu) & (CNTHCTL_EL1PCTEN << 10)) + return BEHAVE_HANDLE_LOCALLY; + + return BEHAVE_FORWARD_ANY; +} + +static enum trap_behaviour check_cnthctl_el1pten(struct kvm_vcpu *vcpu) +{ + if (get_sanitized_cnthctl(vcpu) & (CNTHCTL_EL1PCEN << 10)) + return BEHAVE_HANDLE_LOCALLY; + + return BEHAVE_FORWARD_ANY; +} + +#define CCC(id, fn) \ + [id - __COMPLEX_CONDITIONS__] = fn + +static const complex_condition_check ccc[] = { + CCC(CGT_CNTHCTL_EL1PCTEN, check_cnthctl_el1pcten), + CCC(CGT_CNTHCTL_EL1PTEN, check_cnthctl_el1pten), +}; + +/* + * Bit assignment for the trap controls. We use a 64bit word with the + * following layout for each trapped sysreg: + * + * [9:0] enum cgt_group_id (10 bits) + * [13:10] enum fgt_group_id (4 bits) + * [19:14] bit number in the FGT register (6 bits) + * [20] trap polarity (1 bit) + * [25:21] FG filter (5 bits) + * [62:26] Unused (37 bits) + * [63] RES0 - Must be zero, as lost on insertion in the xarray + */ +#define TC_CGT_BITS 10 +#define TC_FGT_BITS 4 +#define TC_FGF_BITS 5 + +union trap_config { + u64 val; + struct { + unsigned long cgt:TC_CGT_BITS; /* Coarse Grained Trap id */ + unsigned long fgt:TC_FGT_BITS; /* Fine Grained Trap id */ + unsigned long bit:6; /* Bit number */ + unsigned long pol:1; /* Polarity */ + unsigned long fgf:TC_FGF_BITS; /* Fine Grained Filter */ + unsigned long unused:37; /* Unused, should be zero */ + unsigned long mbz:1; /* Must Be Zero */ + }; +}; + +struct encoding_to_trap_config { + const u32 encoding; + const u32 end; + const union trap_config tc; + const unsigned int line; +}; + +#define SR_RANGE_TRAP(sr_start, sr_end, trap_id) \ + { \ + .encoding = sr_start, \ + .end = sr_end, \ + .tc = { \ + .cgt = trap_id, \ + }, \ + .line = __LINE__, \ + } + +#define SR_TRAP(sr, trap_id) SR_RANGE_TRAP(sr, sr, trap_id) + +/* + * Map encoding to trap bits for exception reported with EC=0x18. + * These must only be evaluated when running a nested hypervisor, but + * that the current context is not a hypervisor context. When the + * trapped access matches one of the trap controls, the exception is + * re-injected in the nested hypervisor. + */ +static const struct encoding_to_trap_config encoding_to_cgt[] __initconst = { + SR_TRAP(SYS_REVIDR_EL1, CGT_HCR_TID1), + SR_TRAP(SYS_AIDR_EL1, CGT_HCR_TID1), + SR_TRAP(SYS_SMIDR_EL1, CGT_HCR_TID1), + SR_TRAP(SYS_CTR_EL0, CGT_HCR_TID2), + SR_TRAP(SYS_CCSIDR_EL1, CGT_HCR_TID2_TID4), + SR_TRAP(SYS_CCSIDR2_EL1, CGT_HCR_TID2_TID4), + SR_TRAP(SYS_CLIDR_EL1, CGT_HCR_TID2_TID4), + SR_TRAP(SYS_CSSELR_EL1, CGT_HCR_TID2_TID4), + SR_RANGE_TRAP(SYS_ID_PFR0_EL1, + sys_reg(3, 0, 0, 7, 7), CGT_HCR_TID3), + SR_TRAP(SYS_ICC_SGI0R_EL1, CGT_HCR_IMO_FMO), + SR_TRAP(SYS_ICC_ASGI1R_EL1, CGT_HCR_IMO_FMO), + SR_TRAP(SYS_ICC_SGI1R_EL1, CGT_HCR_IMO_FMO), + SR_RANGE_TRAP(sys_reg(3, 0, 11, 0, 0), + sys_reg(3, 0, 11, 15, 7), CGT_HCR_TIDCP), + SR_RANGE_TRAP(sys_reg(3, 1, 11, 0, 0), + sys_reg(3, 1, 11, 15, 7), CGT_HCR_TIDCP), + SR_RANGE_TRAP(sys_reg(3, 2, 11, 0, 0), + sys_reg(3, 2, 11, 15, 7), CGT_HCR_TIDCP), + SR_RANGE_TRAP(sys_reg(3, 3, 11, 0, 0), + sys_reg(3, 3, 11, 15, 7), CGT_HCR_TIDCP), + SR_RANGE_TRAP(sys_reg(3, 4, 11, 0, 0), + sys_reg(3, 4, 11, 15, 7), CGT_HCR_TIDCP), + SR_RANGE_TRAP(sys_reg(3, 5, 11, 0, 0), + sys_reg(3, 5, 11, 15, 7), CGT_HCR_TIDCP), + SR_RANGE_TRAP(sys_reg(3, 6, 11, 0, 0), + sys_reg(3, 6, 11, 15, 7), CGT_HCR_TIDCP), + SR_RANGE_TRAP(sys_reg(3, 7, 11, 0, 0), + sys_reg(3, 7, 11, 15, 7), CGT_HCR_TIDCP), + SR_RANGE_TRAP(sys_reg(3, 0, 15, 0, 0), + sys_reg(3, 0, 15, 15, 7), CGT_HCR_TIDCP), + SR_RANGE_TRAP(sys_reg(3, 1, 15, 0, 0), + sys_reg(3, 1, 15, 15, 7), CGT_HCR_TIDCP), + SR_RANGE_TRAP(sys_reg(3, 2, 15, 0, 0), + sys_reg(3, 2, 15, 15, 7), CGT_HCR_TIDCP), + SR_RANGE_TRAP(sys_reg(3, 3, 15, 0, 0), + sys_reg(3, 3, 15, 15, 7), CGT_HCR_TIDCP), + SR_RANGE_TRAP(sys_reg(3, 4, 15, 0, 0), + sys_reg(3, 4, 15, 15, 7), CGT_HCR_TIDCP), + SR_RANGE_TRAP(sys_reg(3, 5, 15, 0, 0), + sys_reg(3, 5, 15, 15, 7), CGT_HCR_TIDCP), + SR_RANGE_TRAP(sys_reg(3, 6, 15, 0, 0), + sys_reg(3, 6, 15, 15, 7), CGT_HCR_TIDCP), + SR_RANGE_TRAP(sys_reg(3, 7, 15, 0, 0), + sys_reg(3, 7, 15, 15, 7), CGT_HCR_TIDCP), + SR_TRAP(SYS_ACTLR_EL1, CGT_HCR_TACR), + SR_TRAP(SYS_DC_ISW, CGT_HCR_TSW), + SR_TRAP(SYS_DC_CSW, CGT_HCR_TSW), + SR_TRAP(SYS_DC_CISW, CGT_HCR_TSW), + SR_TRAP(SYS_DC_IGSW, CGT_HCR_TSW), + SR_TRAP(SYS_DC_IGDSW, CGT_HCR_TSW), + SR_TRAP(SYS_DC_CGSW, CGT_HCR_TSW), + SR_TRAP(SYS_DC_CGDSW, CGT_HCR_TSW), + SR_TRAP(SYS_DC_CIGSW, CGT_HCR_TSW), + SR_TRAP(SYS_DC_CIGDSW, CGT_HCR_TSW), + SR_TRAP(SYS_DC_CIVAC, CGT_HCR_TPC), + SR_TRAP(SYS_DC_CVAC, CGT_HCR_TPC), + SR_TRAP(SYS_DC_CVAP, CGT_HCR_TPC), + SR_TRAP(SYS_DC_CVADP, CGT_HCR_TPC), + SR_TRAP(SYS_DC_IVAC, CGT_HCR_TPC), + SR_TRAP(SYS_DC_CIGVAC, CGT_HCR_TPC), + SR_TRAP(SYS_DC_CIGDVAC, CGT_HCR_TPC), + SR_TRAP(SYS_DC_IGVAC, CGT_HCR_TPC), + SR_TRAP(SYS_DC_IGDVAC, CGT_HCR_TPC), + SR_TRAP(SYS_DC_CGVAC, CGT_HCR_TPC), + SR_TRAP(SYS_DC_CGDVAC, CGT_HCR_TPC), + SR_TRAP(SYS_DC_CGVAP, CGT_HCR_TPC), + SR_TRAP(SYS_DC_CGDVAP, CGT_HCR_TPC), + SR_TRAP(SYS_DC_CGVADP, CGT_HCR_TPC), + SR_TRAP(SYS_DC_CGDVADP, CGT_HCR_TPC), + SR_TRAP(SYS_IC_IVAU, CGT_HCR_TPU_TOCU), + SR_TRAP(SYS_IC_IALLU, CGT_HCR_TPU_TOCU), + SR_TRAP(SYS_IC_IALLUIS, CGT_HCR_TPU_TICAB), + SR_TRAP(SYS_DC_CVAU, CGT_HCR_TPU_TOCU), + SR_TRAP(OP_TLBI_RVAE1, CGT_HCR_TTLB), + SR_TRAP(OP_TLBI_RVAAE1, CGT_HCR_TTLB), + SR_TRAP(OP_TLBI_RVALE1, CGT_HCR_TTLB), + SR_TRAP(OP_TLBI_RVAALE1, CGT_HCR_TTLB), + SR_TRAP(OP_TLBI_VMALLE1, CGT_HCR_TTLB), + SR_TRAP(OP_TLBI_VAE1, CGT_HCR_TTLB), + SR_TRAP(OP_TLBI_ASIDE1, CGT_HCR_TTLB), + SR_TRAP(OP_TLBI_VAAE1, CGT_HCR_TTLB), + SR_TRAP(OP_TLBI_VALE1, CGT_HCR_TTLB), + SR_TRAP(OP_TLBI_VAALE1, CGT_HCR_TTLB), + SR_TRAP(OP_TLBI_RVAE1NXS, CGT_HCR_TTLB), + SR_TRAP(OP_TLBI_RVAAE1NXS, CGT_HCR_TTLB), + SR_TRAP(OP_TLBI_RVALE1NXS, CGT_HCR_TTLB), + SR_TRAP(OP_TLBI_RVAALE1NXS, CGT_HCR_TTLB), + SR_TRAP(OP_TLBI_VMALLE1NXS, CGT_HCR_TTLB), + SR_TRAP(OP_TLBI_VAE1NXS, CGT_HCR_TTLB), + SR_TRAP(OP_TLBI_ASIDE1NXS, CGT_HCR_TTLB), + SR_TRAP(OP_TLBI_VAAE1NXS, CGT_HCR_TTLB), + SR_TRAP(OP_TLBI_VALE1NXS, CGT_HCR_TTLB), + SR_TRAP(OP_TLBI_VAALE1NXS, CGT_HCR_TTLB), + SR_TRAP(OP_TLBI_RVAE1IS, CGT_HCR_TTLB_TTLBIS), + SR_TRAP(OP_TLBI_RVAAE1IS, CGT_HCR_TTLB_TTLBIS), + SR_TRAP(OP_TLBI_RVALE1IS, CGT_HCR_TTLB_TTLBIS), + SR_TRAP(OP_TLBI_RVAALE1IS, CGT_HCR_TTLB_TTLBIS), + SR_TRAP(OP_TLBI_VMALLE1IS, CGT_HCR_TTLB_TTLBIS), + SR_TRAP(OP_TLBI_VAE1IS, CGT_HCR_TTLB_TTLBIS), + SR_TRAP(OP_TLBI_ASIDE1IS, CGT_HCR_TTLB_TTLBIS), + SR_TRAP(OP_TLBI_VAAE1IS, CGT_HCR_TTLB_TTLBIS), + SR_TRAP(OP_TLBI_VALE1IS, CGT_HCR_TTLB_TTLBIS), + SR_TRAP(OP_TLBI_VAALE1IS, CGT_HCR_TTLB_TTLBIS), + SR_TRAP(OP_TLBI_RVAE1ISNXS, CGT_HCR_TTLB_TTLBIS), + SR_TRAP(OP_TLBI_RVAAE1ISNXS, CGT_HCR_TTLB_TTLBIS), + SR_TRAP(OP_TLBI_RVALE1ISNXS, CGT_HCR_TTLB_TTLBIS), + SR_TRAP(OP_TLBI_RVAALE1ISNXS, CGT_HCR_TTLB_TTLBIS), + SR_TRAP(OP_TLBI_VMALLE1ISNXS, CGT_HCR_TTLB_TTLBIS), + SR_TRAP(OP_TLBI_VAE1ISNXS, CGT_HCR_TTLB_TTLBIS), + SR_TRAP(OP_TLBI_ASIDE1ISNXS, CGT_HCR_TTLB_TTLBIS), + SR_TRAP(OP_TLBI_VAAE1ISNXS, CGT_HCR_TTLB_TTLBIS), + SR_TRAP(OP_TLBI_VALE1ISNXS, CGT_HCR_TTLB_TTLBIS), + SR_TRAP(OP_TLBI_VAALE1ISNXS, CGT_HCR_TTLB_TTLBIS), + SR_TRAP(OP_TLBI_VMALLE1OS, CGT_HCR_TTLB_TTLBOS), + SR_TRAP(OP_TLBI_VAE1OS, CGT_HCR_TTLB_TTLBOS), + SR_TRAP(OP_TLBI_ASIDE1OS, CGT_HCR_TTLB_TTLBOS), + SR_TRAP(OP_TLBI_VAAE1OS, CGT_HCR_TTLB_TTLBOS), + SR_TRAP(OP_TLBI_VALE1OS, CGT_HCR_TTLB_TTLBOS), + SR_TRAP(OP_TLBI_VAALE1OS, CGT_HCR_TTLB_TTLBOS), + SR_TRAP(OP_TLBI_RVAE1OS, CGT_HCR_TTLB_TTLBOS), + SR_TRAP(OP_TLBI_RVAAE1OS, CGT_HCR_TTLB_TTLBOS), + SR_TRAP(OP_TLBI_RVALE1OS, CGT_HCR_TTLB_TTLBOS), + SR_TRAP(OP_TLBI_RVAALE1OS, CGT_HCR_TTLB_TTLBOS), + SR_TRAP(OP_TLBI_VMALLE1OSNXS, CGT_HCR_TTLB_TTLBOS), + SR_TRAP(OP_TLBI_VAE1OSNXS, CGT_HCR_TTLB_TTLBOS), + SR_TRAP(OP_TLBI_ASIDE1OSNXS, CGT_HCR_TTLB_TTLBOS), + SR_TRAP(OP_TLBI_VAAE1OSNXS, CGT_HCR_TTLB_TTLBOS), + SR_TRAP(OP_TLBI_VALE1OSNXS, CGT_HCR_TTLB_TTLBOS), + SR_TRAP(OP_TLBI_VAALE1OSNXS, CGT_HCR_TTLB_TTLBOS), + SR_TRAP(OP_TLBI_RVAE1OSNXS, CGT_HCR_TTLB_TTLBOS), + SR_TRAP(OP_TLBI_RVAAE1OSNXS, CGT_HCR_TTLB_TTLBOS), + SR_TRAP(OP_TLBI_RVALE1OSNXS, CGT_HCR_TTLB_TTLBOS), + SR_TRAP(OP_TLBI_RVAALE1OSNXS, CGT_HCR_TTLB_TTLBOS), + SR_TRAP(SYS_SCTLR_EL1, CGT_HCR_TVM_TRVM), + SR_TRAP(SYS_TTBR0_EL1, CGT_HCR_TVM_TRVM), + SR_TRAP(SYS_TTBR1_EL1, CGT_HCR_TVM_TRVM), + SR_TRAP(SYS_TCR_EL1, CGT_HCR_TVM_TRVM), + SR_TRAP(SYS_ESR_EL1, CGT_HCR_TVM_TRVM), + SR_TRAP(SYS_FAR_EL1, CGT_HCR_TVM_TRVM), + SR_TRAP(SYS_AFSR0_EL1, CGT_HCR_TVM_TRVM), + SR_TRAP(SYS_AFSR1_EL1, CGT_HCR_TVM_TRVM), + SR_TRAP(SYS_MAIR_EL1, CGT_HCR_TVM_TRVM), + SR_TRAP(SYS_AMAIR_EL1, CGT_HCR_TVM_TRVM), + SR_TRAP(SYS_CONTEXTIDR_EL1, CGT_HCR_TVM_TRVM), + SR_TRAP(SYS_DC_ZVA, CGT_HCR_TDZ), + SR_TRAP(SYS_DC_GVA, CGT_HCR_TDZ), + SR_TRAP(SYS_DC_GZVA, CGT_HCR_TDZ), + SR_TRAP(SYS_LORSA_EL1, CGT_HCR_TLOR), + SR_TRAP(SYS_LOREA_EL1, CGT_HCR_TLOR), + SR_TRAP(SYS_LORN_EL1, CGT_HCR_TLOR), + SR_TRAP(SYS_LORC_EL1, CGT_HCR_TLOR), + SR_TRAP(SYS_LORID_EL1, CGT_HCR_TLOR), + SR_TRAP(SYS_ERRIDR_EL1, CGT_HCR_TERR), + SR_TRAP(SYS_ERRSELR_EL1, CGT_HCR_TERR), + SR_TRAP(SYS_ERXADDR_EL1, CGT_HCR_TERR), + SR_TRAP(SYS_ERXCTLR_EL1, CGT_HCR_TERR), + SR_TRAP(SYS_ERXFR_EL1, CGT_HCR_TERR), + SR_TRAP(SYS_ERXMISC0_EL1, CGT_HCR_TERR), + SR_TRAP(SYS_ERXMISC1_EL1, CGT_HCR_TERR), + SR_TRAP(SYS_ERXMISC2_EL1, CGT_HCR_TERR), + SR_TRAP(SYS_ERXMISC3_EL1, CGT_HCR_TERR), + SR_TRAP(SYS_ERXSTATUS_EL1, CGT_HCR_TERR), + SR_TRAP(SYS_APIAKEYLO_EL1, CGT_HCR_APK), + SR_TRAP(SYS_APIAKEYHI_EL1, CGT_HCR_APK), + SR_TRAP(SYS_APIBKEYLO_EL1, CGT_HCR_APK), + SR_TRAP(SYS_APIBKEYHI_EL1, CGT_HCR_APK), + SR_TRAP(SYS_APDAKEYLO_EL1, CGT_HCR_APK), + SR_TRAP(SYS_APDAKEYHI_EL1, CGT_HCR_APK), + SR_TRAP(SYS_APDBKEYLO_EL1, CGT_HCR_APK), + SR_TRAP(SYS_APDBKEYHI_EL1, CGT_HCR_APK), + SR_TRAP(SYS_APGAKEYLO_EL1, CGT_HCR_APK), + SR_TRAP(SYS_APGAKEYHI_EL1, CGT_HCR_APK), + /* All _EL2 registers */ + SR_RANGE_TRAP(sys_reg(3, 4, 0, 0, 0), + sys_reg(3, 4, 3, 15, 7), CGT_HCR_NV), + /* Skip the SP_EL1 encoding... */ + SR_TRAP(SYS_SPSR_EL2, CGT_HCR_NV), + SR_TRAP(SYS_ELR_EL2, CGT_HCR_NV), + SR_RANGE_TRAP(sys_reg(3, 4, 4, 1, 1), + sys_reg(3, 4, 10, 15, 7), CGT_HCR_NV), + SR_RANGE_TRAP(sys_reg(3, 4, 12, 0, 0), + sys_reg(3, 4, 14, 15, 7), CGT_HCR_NV), + /* All _EL02, _EL12 registers */ + SR_RANGE_TRAP(sys_reg(3, 5, 0, 0, 0), + sys_reg(3, 5, 10, 15, 7), CGT_HCR_NV), + SR_RANGE_TRAP(sys_reg(3, 5, 12, 0, 0), + sys_reg(3, 5, 14, 15, 7), CGT_HCR_NV), + SR_TRAP(OP_AT_S1E2R, CGT_HCR_NV), + SR_TRAP(OP_AT_S1E2W, CGT_HCR_NV), + SR_TRAP(OP_AT_S12E1R, CGT_HCR_NV), + SR_TRAP(OP_AT_S12E1W, CGT_HCR_NV), + SR_TRAP(OP_AT_S12E0R, CGT_HCR_NV), + SR_TRAP(OP_AT_S12E0W, CGT_HCR_NV), + SR_TRAP(OP_TLBI_IPAS2E1, CGT_HCR_NV), + SR_TRAP(OP_TLBI_RIPAS2E1, CGT_HCR_NV), + SR_TRAP(OP_TLBI_IPAS2LE1, CGT_HCR_NV), + SR_TRAP(OP_TLBI_RIPAS2LE1, CGT_HCR_NV), + SR_TRAP(OP_TLBI_RVAE2, CGT_HCR_NV), + SR_TRAP(OP_TLBI_RVALE2, CGT_HCR_NV), + SR_TRAP(OP_TLBI_ALLE2, CGT_HCR_NV), + SR_TRAP(OP_TLBI_VAE2, CGT_HCR_NV), + SR_TRAP(OP_TLBI_ALLE1, CGT_HCR_NV), + SR_TRAP(OP_TLBI_VALE2, CGT_HCR_NV), + SR_TRAP(OP_TLBI_VMALLS12E1, CGT_HCR_NV), + SR_TRAP(OP_TLBI_IPAS2E1NXS, CGT_HCR_NV), + SR_TRAP(OP_TLBI_RIPAS2E1NXS, CGT_HCR_NV), + SR_TRAP(OP_TLBI_IPAS2LE1NXS, CGT_HCR_NV), + SR_TRAP(OP_TLBI_RIPAS2LE1NXS, CGT_HCR_NV), + SR_TRAP(OP_TLBI_RVAE2NXS, CGT_HCR_NV), + SR_TRAP(OP_TLBI_RVALE2NXS, CGT_HCR_NV), + SR_TRAP(OP_TLBI_ALLE2NXS, CGT_HCR_NV), + SR_TRAP(OP_TLBI_VAE2NXS, CGT_HCR_NV), + SR_TRAP(OP_TLBI_ALLE1NXS, CGT_HCR_NV), + SR_TRAP(OP_TLBI_VALE2NXS, CGT_HCR_NV), + SR_TRAP(OP_TLBI_VMALLS12E1NXS, CGT_HCR_NV), + SR_TRAP(OP_TLBI_IPAS2E1IS, CGT_HCR_NV), + SR_TRAP(OP_TLBI_RIPAS2E1IS, CGT_HCR_NV), + SR_TRAP(OP_TLBI_IPAS2LE1IS, CGT_HCR_NV), + SR_TRAP(OP_TLBI_RIPAS2LE1IS, CGT_HCR_NV), + SR_TRAP(OP_TLBI_RVAE2IS, CGT_HCR_NV), + SR_TRAP(OP_TLBI_RVALE2IS, CGT_HCR_NV), + SR_TRAP(OP_TLBI_ALLE2IS, CGT_HCR_NV), + SR_TRAP(OP_TLBI_VAE2IS, CGT_HCR_NV), + SR_TRAP(OP_TLBI_ALLE1IS, CGT_HCR_NV), + SR_TRAP(OP_TLBI_VALE2IS, CGT_HCR_NV), + SR_TRAP(OP_TLBI_VMALLS12E1IS, CGT_HCR_NV), + SR_TRAP(OP_TLBI_IPAS2E1ISNXS, CGT_HCR_NV), + SR_TRAP(OP_TLBI_RIPAS2E1ISNXS, CGT_HCR_NV), + SR_TRAP(OP_TLBI_IPAS2LE1ISNXS, CGT_HCR_NV), + SR_TRAP(OP_TLBI_RIPAS2LE1ISNXS, CGT_HCR_NV), + SR_TRAP(OP_TLBI_RVAE2ISNXS, CGT_HCR_NV), + SR_TRAP(OP_TLBI_RVALE2ISNXS, CGT_HCR_NV), + SR_TRAP(OP_TLBI_ALLE2ISNXS, CGT_HCR_NV), + SR_TRAP(OP_TLBI_VAE2ISNXS, CGT_HCR_NV), + SR_TRAP(OP_TLBI_ALLE1ISNXS, CGT_HCR_NV), + SR_TRAP(OP_TLBI_VALE2ISNXS, CGT_HCR_NV), + SR_TRAP(OP_TLBI_VMALLS12E1ISNXS,CGT_HCR_NV), + SR_TRAP(OP_TLBI_ALLE2OS, CGT_HCR_NV), + SR_TRAP(OP_TLBI_VAE2OS, CGT_HCR_NV), + SR_TRAP(OP_TLBI_ALLE1OS, CGT_HCR_NV), + SR_TRAP(OP_TLBI_VALE2OS, CGT_HCR_NV), + SR_TRAP(OP_TLBI_VMALLS12E1OS, CGT_HCR_NV), + SR_TRAP(OP_TLBI_IPAS2E1OS, CGT_HCR_NV), + SR_TRAP(OP_TLBI_RIPAS2E1OS, CGT_HCR_NV), + SR_TRAP(OP_TLBI_IPAS2LE1OS, CGT_HCR_NV), + SR_TRAP(OP_TLBI_RIPAS2LE1OS, CGT_HCR_NV), + SR_TRAP(OP_TLBI_RVAE2OS, CGT_HCR_NV), + SR_TRAP(OP_TLBI_RVALE2OS, CGT_HCR_NV), + SR_TRAP(OP_TLBI_ALLE2OSNXS, CGT_HCR_NV), + SR_TRAP(OP_TLBI_VAE2OSNXS, CGT_HCR_NV), + SR_TRAP(OP_TLBI_ALLE1OSNXS, CGT_HCR_NV), + SR_TRAP(OP_TLBI_VALE2OSNXS, CGT_HCR_NV), + SR_TRAP(OP_TLBI_VMALLS12E1OSNXS,CGT_HCR_NV), + SR_TRAP(OP_TLBI_IPAS2E1OSNXS, CGT_HCR_NV), + SR_TRAP(OP_TLBI_RIPAS2E1OSNXS, CGT_HCR_NV), + SR_TRAP(OP_TLBI_IPAS2LE1OSNXS, CGT_HCR_NV), + SR_TRAP(OP_TLBI_RIPAS2LE1OSNXS, CGT_HCR_NV), + SR_TRAP(OP_TLBI_RVAE2OSNXS, CGT_HCR_NV), + SR_TRAP(OP_TLBI_RVALE2OSNXS, CGT_HCR_NV), + SR_TRAP(OP_CPP_RCTX, CGT_HCR_NV), + SR_TRAP(OP_DVP_RCTX, CGT_HCR_NV), + SR_TRAP(OP_CFP_RCTX, CGT_HCR_NV), + SR_TRAP(SYS_SP_EL1, CGT_HCR_NV_nNV2), + SR_TRAP(SYS_VBAR_EL1, CGT_HCR_NV1_nNV2), + SR_TRAP(SYS_ELR_EL1, CGT_HCR_NV1_nNV2), + SR_TRAP(SYS_SPSR_EL1, CGT_HCR_NV1_nNV2), + SR_TRAP(SYS_SCXTNUM_EL1, CGT_HCR_NV1_nNV2_ENSCXT), + SR_TRAP(SYS_SCXTNUM_EL0, CGT_HCR_ENSCXT), + SR_TRAP(OP_AT_S1E1R, CGT_HCR_AT), + SR_TRAP(OP_AT_S1E1W, CGT_HCR_AT), + SR_TRAP(OP_AT_S1E0R, CGT_HCR_AT), + SR_TRAP(OP_AT_S1E0W, CGT_HCR_AT), + SR_TRAP(OP_AT_S1E1RP, CGT_HCR_AT), + SR_TRAP(OP_AT_S1E1WP, CGT_HCR_AT), + SR_TRAP(SYS_ERXPFGF_EL1, CGT_HCR_nFIEN), + SR_TRAP(SYS_ERXPFGCTL_EL1, CGT_HCR_nFIEN), + SR_TRAP(SYS_ERXPFGCDN_EL1, CGT_HCR_nFIEN), + SR_TRAP(SYS_PMCR_EL0, CGT_MDCR_TPM_TPMCR), + SR_TRAP(SYS_PMCNTENSET_EL0, CGT_MDCR_TPM), + SR_TRAP(SYS_PMCNTENCLR_EL0, CGT_MDCR_TPM), + SR_TRAP(SYS_PMOVSSET_EL0, CGT_MDCR_TPM), + SR_TRAP(SYS_PMOVSCLR_EL0, CGT_MDCR_TPM), + SR_TRAP(SYS_PMCEID0_EL0, CGT_MDCR_TPM), + SR_TRAP(SYS_PMCEID1_EL0, CGT_MDCR_TPM), + SR_TRAP(SYS_PMXEVTYPER_EL0, CGT_MDCR_TPM), + SR_TRAP(SYS_PMSWINC_EL0, CGT_MDCR_TPM), + SR_TRAP(SYS_PMSELR_EL0, CGT_MDCR_TPM), + SR_TRAP(SYS_PMXEVCNTR_EL0, CGT_MDCR_TPM), + SR_TRAP(SYS_PMCCNTR_EL0, CGT_MDCR_TPM), + SR_TRAP(SYS_PMUSERENR_EL0, CGT_MDCR_TPM), + SR_TRAP(SYS_PMINTENSET_EL1, CGT_MDCR_TPM), + SR_TRAP(SYS_PMINTENCLR_EL1, CGT_MDCR_TPM), + SR_TRAP(SYS_PMMIR_EL1, CGT_MDCR_TPM), + SR_TRAP(SYS_PMEVCNTRn_EL0(0), CGT_MDCR_TPM), + SR_TRAP(SYS_PMEVCNTRn_EL0(1), CGT_MDCR_TPM), + SR_TRAP(SYS_PMEVCNTRn_EL0(2), CGT_MDCR_TPM), + SR_TRAP(SYS_PMEVCNTRn_EL0(3), CGT_MDCR_TPM), + SR_TRAP(SYS_PMEVCNTRn_EL0(4), CGT_MDCR_TPM), + SR_TRAP(SYS_PMEVCNTRn_EL0(5), CGT_MDCR_TPM), + SR_TRAP(SYS_PMEVCNTRn_EL0(6), CGT_MDCR_TPM), + SR_TRAP(SYS_PMEVCNTRn_EL0(7), CGT_MDCR_TPM), + SR_TRAP(SYS_PMEVCNTRn_EL0(8), CGT_MDCR_TPM), + SR_TRAP(SYS_PMEVCNTRn_EL0(9), CGT_MDCR_TPM), + SR_TRAP(SYS_PMEVCNTRn_EL0(10), CGT_MDCR_TPM), + SR_TRAP(SYS_PMEVCNTRn_EL0(11), CGT_MDCR_TPM), + SR_TRAP(SYS_PMEVCNTRn_EL0(12), CGT_MDCR_TPM), + SR_TRAP(SYS_PMEVCNTRn_EL0(13), CGT_MDCR_TPM), + SR_TRAP(SYS_PMEVCNTRn_EL0(14), CGT_MDCR_TPM), + SR_TRAP(SYS_PMEVCNTRn_EL0(15), CGT_MDCR_TPM), + SR_TRAP(SYS_PMEVCNTRn_EL0(16), CGT_MDCR_TPM), + SR_TRAP(SYS_PMEVCNTRn_EL0(17), CGT_MDCR_TPM), + SR_TRAP(SYS_PMEVCNTRn_EL0(18), CGT_MDCR_TPM), + SR_TRAP(SYS_PMEVCNTRn_EL0(19), CGT_MDCR_TPM), + SR_TRAP(SYS_PMEVCNTRn_EL0(20), CGT_MDCR_TPM), + SR_TRAP(SYS_PMEVCNTRn_EL0(21), CGT_MDCR_TPM), + SR_TRAP(SYS_PMEVCNTRn_EL0(22), CGT_MDCR_TPM), + SR_TRAP(SYS_PMEVCNTRn_EL0(23), CGT_MDCR_TPM), + SR_TRAP(SYS_PMEVCNTRn_EL0(24), CGT_MDCR_TPM), + SR_TRAP(SYS_PMEVCNTRn_EL0(25), CGT_MDCR_TPM), + SR_TRAP(SYS_PMEVCNTRn_EL0(26), CGT_MDCR_TPM), + SR_TRAP(SYS_PMEVCNTRn_EL0(27), CGT_MDCR_TPM), + SR_TRAP(SYS_PMEVCNTRn_EL0(28), CGT_MDCR_TPM), + SR_TRAP(SYS_PMEVCNTRn_EL0(29), CGT_MDCR_TPM), + SR_TRAP(SYS_PMEVCNTRn_EL0(30), CGT_MDCR_TPM), + SR_TRAP(SYS_PMEVTYPERn_EL0(0), CGT_MDCR_TPM), + SR_TRAP(SYS_PMEVTYPERn_EL0(1), CGT_MDCR_TPM), + SR_TRAP(SYS_PMEVTYPERn_EL0(2), CGT_MDCR_TPM), + SR_TRAP(SYS_PMEVTYPERn_EL0(3), CGT_MDCR_TPM), + SR_TRAP(SYS_PMEVTYPERn_EL0(4), CGT_MDCR_TPM), + SR_TRAP(SYS_PMEVTYPERn_EL0(5), CGT_MDCR_TPM), + SR_TRAP(SYS_PMEVTYPERn_EL0(6), CGT_MDCR_TPM), + SR_TRAP(SYS_PMEVTYPERn_EL0(7), CGT_MDCR_TPM), + SR_TRAP(SYS_PMEVTYPERn_EL0(8), CGT_MDCR_TPM), + SR_TRAP(SYS_PMEVTYPERn_EL0(9), CGT_MDCR_TPM), + SR_TRAP(SYS_PMEVTYPERn_EL0(10), CGT_MDCR_TPM), + SR_TRAP(SYS_PMEVTYPERn_EL0(11), CGT_MDCR_TPM), + SR_TRAP(SYS_PMEVTYPERn_EL0(12), CGT_MDCR_TPM), + SR_TRAP(SYS_PMEVTYPERn_EL0(13), CGT_MDCR_TPM), + SR_TRAP(SYS_PMEVTYPERn_EL0(14), CGT_MDCR_TPM), + SR_TRAP(SYS_PMEVTYPERn_EL0(15), CGT_MDCR_TPM), + SR_TRAP(SYS_PMEVTYPERn_EL0(16), CGT_MDCR_TPM), + SR_TRAP(SYS_PMEVTYPERn_EL0(17), CGT_MDCR_TPM), + SR_TRAP(SYS_PMEVTYPERn_EL0(18), CGT_MDCR_TPM), + SR_TRAP(SYS_PMEVTYPERn_EL0(19), CGT_MDCR_TPM), + SR_TRAP(SYS_PMEVTYPERn_EL0(20), CGT_MDCR_TPM), + SR_TRAP(SYS_PMEVTYPERn_EL0(21), CGT_MDCR_TPM), + SR_TRAP(SYS_PMEVTYPERn_EL0(22), CGT_MDCR_TPM), + SR_TRAP(SYS_PMEVTYPERn_EL0(23), CGT_MDCR_TPM), + SR_TRAP(SYS_PMEVTYPERn_EL0(24), CGT_MDCR_TPM), + SR_TRAP(SYS_PMEVTYPERn_EL0(25), CGT_MDCR_TPM), + SR_TRAP(SYS_PMEVTYPERn_EL0(26), CGT_MDCR_TPM), + SR_TRAP(SYS_PMEVTYPERn_EL0(27), CGT_MDCR_TPM), + SR_TRAP(SYS_PMEVTYPERn_EL0(28), CGT_MDCR_TPM), + SR_TRAP(SYS_PMEVTYPERn_EL0(29), CGT_MDCR_TPM), + SR_TRAP(SYS_PMEVTYPERn_EL0(30), CGT_MDCR_TPM), + SR_TRAP(SYS_PMCCFILTR_EL0, CGT_MDCR_TPM), + SR_TRAP(SYS_MDCCSR_EL0, CGT_MDCR_TDCC_TDE_TDA), + SR_TRAP(SYS_MDCCINT_EL1, CGT_MDCR_TDCC_TDE_TDA), + SR_TRAP(SYS_OSDTRRX_EL1, CGT_MDCR_TDCC_TDE_TDA), + SR_TRAP(SYS_OSDTRTX_EL1, CGT_MDCR_TDCC_TDE_TDA), + SR_TRAP(SYS_DBGDTR_EL0, CGT_MDCR_TDCC_TDE_TDA), + /* + * Also covers DBGDTRRX_EL0, which has the same encoding as + * SYS_DBGDTRTX_EL0... + */ + SR_TRAP(SYS_DBGDTRTX_EL0, CGT_MDCR_TDCC_TDE_TDA), + SR_TRAP(SYS_MDSCR_EL1, CGT_MDCR_TDE_TDA), + SR_TRAP(SYS_OSECCR_EL1, CGT_MDCR_TDE_TDA), + SR_TRAP(SYS_DBGBVRn_EL1(0), CGT_MDCR_TDE_TDA), + SR_TRAP(SYS_DBGBVRn_EL1(1), CGT_MDCR_TDE_TDA), + SR_TRAP(SYS_DBGBVRn_EL1(2), CGT_MDCR_TDE_TDA), + SR_TRAP(SYS_DBGBVRn_EL1(3), CGT_MDCR_TDE_TDA), + SR_TRAP(SYS_DBGBVRn_EL1(4), CGT_MDCR_TDE_TDA), + SR_TRAP(SYS_DBGBVRn_EL1(5), CGT_MDCR_TDE_TDA), + SR_TRAP(SYS_DBGBVRn_EL1(6), CGT_MDCR_TDE_TDA), + SR_TRAP(SYS_DBGBVRn_EL1(7), CGT_MDCR_TDE_TDA), + SR_TRAP(SYS_DBGBVRn_EL1(8), CGT_MDCR_TDE_TDA), + SR_TRAP(SYS_DBGBVRn_EL1(9), CGT_MDCR_TDE_TDA), + SR_TRAP(SYS_DBGBVRn_EL1(10), CGT_MDCR_TDE_TDA), + SR_TRAP(SYS_DBGBVRn_EL1(11), CGT_MDCR_TDE_TDA), + SR_TRAP(SYS_DBGBVRn_EL1(12), CGT_MDCR_TDE_TDA), + SR_TRAP(SYS_DBGBVRn_EL1(13), CGT_MDCR_TDE_TDA), + SR_TRAP(SYS_DBGBVRn_EL1(14), CGT_MDCR_TDE_TDA), + SR_TRAP(SYS_DBGBVRn_EL1(15), CGT_MDCR_TDE_TDA), + SR_TRAP(SYS_DBGBCRn_EL1(0), CGT_MDCR_TDE_TDA), + SR_TRAP(SYS_DBGBCRn_EL1(1), CGT_MDCR_TDE_TDA), + SR_TRAP(SYS_DBGBCRn_EL1(2), CGT_MDCR_TDE_TDA), + SR_TRAP(SYS_DBGBCRn_EL1(3), CGT_MDCR_TDE_TDA), + SR_TRAP(SYS_DBGBCRn_EL1(4), CGT_MDCR_TDE_TDA), + SR_TRAP(SYS_DBGBCRn_EL1(5), CGT_MDCR_TDE_TDA), + SR_TRAP(SYS_DBGBCRn_EL1(6), CGT_MDCR_TDE_TDA), + SR_TRAP(SYS_DBGBCRn_EL1(7), CGT_MDCR_TDE_TDA), + SR_TRAP(SYS_DBGBCRn_EL1(8), CGT_MDCR_TDE_TDA), + SR_TRAP(SYS_DBGBCRn_EL1(9), CGT_MDCR_TDE_TDA), + SR_TRAP(SYS_DBGBCRn_EL1(10), CGT_MDCR_TDE_TDA), + SR_TRAP(SYS_DBGBCRn_EL1(11), CGT_MDCR_TDE_TDA), + SR_TRAP(SYS_DBGBCRn_EL1(12), CGT_MDCR_TDE_TDA), + SR_TRAP(SYS_DBGBCRn_EL1(13), CGT_MDCR_TDE_TDA), + SR_TRAP(SYS_DBGBCRn_EL1(14), CGT_MDCR_TDE_TDA), + SR_TRAP(SYS_DBGBCRn_EL1(15), CGT_MDCR_TDE_TDA), + SR_TRAP(SYS_DBGWVRn_EL1(0), CGT_MDCR_TDE_TDA), + SR_TRAP(SYS_DBGWVRn_EL1(1), CGT_MDCR_TDE_TDA), + SR_TRAP(SYS_DBGWVRn_EL1(2), CGT_MDCR_TDE_TDA), + SR_TRAP(SYS_DBGWVRn_EL1(3), CGT_MDCR_TDE_TDA), + SR_TRAP(SYS_DBGWVRn_EL1(4), CGT_MDCR_TDE_TDA), + SR_TRAP(SYS_DBGWVRn_EL1(5), CGT_MDCR_TDE_TDA), + SR_TRAP(SYS_DBGWVRn_EL1(6), CGT_MDCR_TDE_TDA), + SR_TRAP(SYS_DBGWVRn_EL1(7), CGT_MDCR_TDE_TDA), + SR_TRAP(SYS_DBGWVRn_EL1(8), CGT_MDCR_TDE_TDA), + SR_TRAP(SYS_DBGWVRn_EL1(9), CGT_MDCR_TDE_TDA), + SR_TRAP(SYS_DBGWVRn_EL1(10), CGT_MDCR_TDE_TDA), + SR_TRAP(SYS_DBGWVRn_EL1(11), CGT_MDCR_TDE_TDA), + SR_TRAP(SYS_DBGWVRn_EL1(12), CGT_MDCR_TDE_TDA), + SR_TRAP(SYS_DBGWVRn_EL1(13), CGT_MDCR_TDE_TDA), + SR_TRAP(SYS_DBGWVRn_EL1(14), CGT_MDCR_TDE_TDA), + SR_TRAP(SYS_DBGWVRn_EL1(15), CGT_MDCR_TDE_TDA), + SR_TRAP(SYS_DBGWCRn_EL1(0), CGT_MDCR_TDE_TDA), + SR_TRAP(SYS_DBGWCRn_EL1(1), CGT_MDCR_TDE_TDA), + SR_TRAP(SYS_DBGWCRn_EL1(2), CGT_MDCR_TDE_TDA), + SR_TRAP(SYS_DBGWCRn_EL1(3), CGT_MDCR_TDE_TDA), + SR_TRAP(SYS_DBGWCRn_EL1(4), CGT_MDCR_TDE_TDA), + SR_TRAP(SYS_DBGWCRn_EL1(5), CGT_MDCR_TDE_TDA), + SR_TRAP(SYS_DBGWCRn_EL1(6), CGT_MDCR_TDE_TDA), + SR_TRAP(SYS_DBGWCRn_EL1(7), CGT_MDCR_TDE_TDA), + SR_TRAP(SYS_DBGWCRn_EL1(8), CGT_MDCR_TDE_TDA), + SR_TRAP(SYS_DBGWCRn_EL1(9), CGT_MDCR_TDE_TDA), + SR_TRAP(SYS_DBGWCRn_EL1(10), CGT_MDCR_TDE_TDA), + SR_TRAP(SYS_DBGWCRn_EL1(11), CGT_MDCR_TDE_TDA), + SR_TRAP(SYS_DBGWCRn_EL1(12), CGT_MDCR_TDE_TDA), + SR_TRAP(SYS_DBGWCRn_EL1(13), CGT_MDCR_TDE_TDA), + SR_TRAP(SYS_DBGWCRn_EL1(14), CGT_MDCR_TDE_TDA), + SR_TRAP(SYS_DBGCLAIMSET_EL1, CGT_MDCR_TDE_TDA), + SR_TRAP(SYS_DBGCLAIMCLR_EL1, CGT_MDCR_TDE_TDA), + SR_TRAP(SYS_DBGAUTHSTATUS_EL1, CGT_MDCR_TDE_TDA), + SR_TRAP(SYS_OSLAR_EL1, CGT_MDCR_TDE_TDOSA), + SR_TRAP(SYS_OSLSR_EL1, CGT_MDCR_TDE_TDOSA), + SR_TRAP(SYS_OSDLR_EL1, CGT_MDCR_TDE_TDOSA), + SR_TRAP(SYS_DBGPRCR_EL1, CGT_MDCR_TDE_TDOSA), + SR_TRAP(SYS_MDRAR_EL1, CGT_MDCR_TDE_TDRA), + SR_TRAP(SYS_PMBLIMITR_EL1, CGT_MDCR_E2PB), + SR_TRAP(SYS_PMBPTR_EL1, CGT_MDCR_E2PB), + SR_TRAP(SYS_PMBSR_EL1, CGT_MDCR_E2PB), + SR_TRAP(SYS_PMSCR_EL1, CGT_MDCR_TPMS), + SR_TRAP(SYS_PMSEVFR_EL1, CGT_MDCR_TPMS), + SR_TRAP(SYS_PMSFCR_EL1, CGT_MDCR_TPMS), + SR_TRAP(SYS_PMSICR_EL1, CGT_MDCR_TPMS), + SR_TRAP(SYS_PMSIDR_EL1, CGT_MDCR_TPMS), + SR_TRAP(SYS_PMSIRR_EL1, CGT_MDCR_TPMS), + SR_TRAP(SYS_PMSLATFR_EL1, CGT_MDCR_TPMS), + SR_TRAP(SYS_PMSNEVFR_EL1, CGT_MDCR_TPMS), + SR_TRAP(SYS_TRFCR_EL1, CGT_MDCR_TTRF), + SR_TRAP(SYS_TRBBASER_EL1, CGT_MDCR_E2TB), + SR_TRAP(SYS_TRBLIMITR_EL1, CGT_MDCR_E2TB), + SR_TRAP(SYS_TRBMAR_EL1, CGT_MDCR_E2TB), + SR_TRAP(SYS_TRBPTR_EL1, CGT_MDCR_E2TB), + SR_TRAP(SYS_TRBSR_EL1, CGT_MDCR_E2TB), + SR_TRAP(SYS_TRBTRG_EL1, CGT_MDCR_E2TB), + SR_TRAP(SYS_CNTP_TVAL_EL0, CGT_CNTHCTL_EL1PTEN), + SR_TRAP(SYS_CNTP_CVAL_EL0, CGT_CNTHCTL_EL1PTEN), + SR_TRAP(SYS_CNTP_CTL_EL0, CGT_CNTHCTL_EL1PTEN), + SR_TRAP(SYS_CNTPCT_EL0, CGT_CNTHCTL_EL1PCTEN), + SR_TRAP(SYS_CNTPCTSS_EL0, CGT_CNTHCTL_EL1PCTEN), +}; + +static DEFINE_XARRAY(sr_forward_xa); + +enum fgt_group_id { + __NO_FGT_GROUP__, + HFGxTR_GROUP, + HDFGRTR_GROUP, + HDFGWTR_GROUP, + HFGITR_GROUP, + + /* Must be last */ + __NR_FGT_GROUP_IDS__ +}; + +enum fg_filter_id { + __NO_FGF__, + HCRX_FGTnXS, + + /* Must be last */ + __NR_FG_FILTER_IDS__ +}; + +#define SR_FGF(sr, g, b, p, f) \ + { \ + .encoding = sr, \ + .end = sr, \ + .tc = { \ + .fgt = g ## _GROUP, \ + .bit = g ## _EL2_ ## b ## _SHIFT, \ + .pol = p, \ + .fgf = f, \ + }, \ + .line = __LINE__, \ + } + +#define SR_FGT(sr, g, b, p) SR_FGF(sr, g, b, p, __NO_FGF__) + +static const struct encoding_to_trap_config encoding_to_fgt[] __initconst = { + /* HFGRTR_EL2, HFGWTR_EL2 */ + SR_FGT(SYS_PIR_EL1, HFGxTR, nPIR_EL1, 0), + SR_FGT(SYS_PIRE0_EL1, HFGxTR, nPIRE0_EL1, 0), + SR_FGT(SYS_TPIDR2_EL0, HFGxTR, nTPIDR2_EL0, 0), + SR_FGT(SYS_SMPRI_EL1, HFGxTR, nSMPRI_EL1, 0), + SR_FGT(SYS_ACCDATA_EL1, HFGxTR, nACCDATA_EL1, 0), + SR_FGT(SYS_ERXADDR_EL1, HFGxTR, ERXADDR_EL1, 1), + SR_FGT(SYS_ERXPFGCDN_EL1, HFGxTR, ERXPFGCDN_EL1, 1), + SR_FGT(SYS_ERXPFGCTL_EL1, HFGxTR, ERXPFGCTL_EL1, 1), + SR_FGT(SYS_ERXPFGF_EL1, HFGxTR, ERXPFGF_EL1, 1), + SR_FGT(SYS_ERXMISC0_EL1, HFGxTR, ERXMISCn_EL1, 1), + SR_FGT(SYS_ERXMISC1_EL1, HFGxTR, ERXMISCn_EL1, 1), + SR_FGT(SYS_ERXMISC2_EL1, HFGxTR, ERXMISCn_EL1, 1), + SR_FGT(SYS_ERXMISC3_EL1, HFGxTR, ERXMISCn_EL1, 1), + SR_FGT(SYS_ERXSTATUS_EL1, HFGxTR, ERXSTATUS_EL1, 1), + SR_FGT(SYS_ERXCTLR_EL1, HFGxTR, ERXCTLR_EL1, 1), + SR_FGT(SYS_ERXFR_EL1, HFGxTR, ERXFR_EL1, 1), + SR_FGT(SYS_ERRSELR_EL1, HFGxTR, ERRSELR_EL1, 1), + SR_FGT(SYS_ERRIDR_EL1, HFGxTR, ERRIDR_EL1, 1), + SR_FGT(SYS_ICC_IGRPEN0_EL1, HFGxTR, ICC_IGRPENn_EL1, 1), + SR_FGT(SYS_ICC_IGRPEN1_EL1, HFGxTR, ICC_IGRPENn_EL1, 1), + SR_FGT(SYS_VBAR_EL1, HFGxTR, VBAR_EL1, 1), + SR_FGT(SYS_TTBR1_EL1, HFGxTR, TTBR1_EL1, 1), + SR_FGT(SYS_TTBR0_EL1, HFGxTR, TTBR0_EL1, 1), + SR_FGT(SYS_TPIDR_EL0, HFGxTR, TPIDR_EL0, 1), + SR_FGT(SYS_TPIDRRO_EL0, HFGxTR, TPIDRRO_EL0, 1), + SR_FGT(SYS_TPIDR_EL1, HFGxTR, TPIDR_EL1, 1), + SR_FGT(SYS_TCR_EL1, HFGxTR, TCR_EL1, 1), + SR_FGT(SYS_SCXTNUM_EL0, HFGxTR, SCXTNUM_EL0, 1), + SR_FGT(SYS_SCXTNUM_EL1, HFGxTR, SCXTNUM_EL1, 1), + SR_FGT(SYS_SCTLR_EL1, HFGxTR, SCTLR_EL1, 1), + SR_FGT(SYS_REVIDR_EL1, HFGxTR, REVIDR_EL1, 1), + SR_FGT(SYS_PAR_EL1, HFGxTR, PAR_EL1, 1), + SR_FGT(SYS_MPIDR_EL1, HFGxTR, MPIDR_EL1, 1), + SR_FGT(SYS_MIDR_EL1, HFGxTR, MIDR_EL1, 1), + SR_FGT(SYS_MAIR_EL1, HFGxTR, MAIR_EL1, 1), + SR_FGT(SYS_LORSA_EL1, HFGxTR, LORSA_EL1, 1), + SR_FGT(SYS_LORN_EL1, HFGxTR, LORN_EL1, 1), + SR_FGT(SYS_LORID_EL1, HFGxTR, LORID_EL1, 1), + SR_FGT(SYS_LOREA_EL1, HFGxTR, LOREA_EL1, 1), + SR_FGT(SYS_LORC_EL1, HFGxTR, LORC_EL1, 1), + SR_FGT(SYS_ISR_EL1, HFGxTR, ISR_EL1, 1), + SR_FGT(SYS_FAR_EL1, HFGxTR, FAR_EL1, 1), + SR_FGT(SYS_ESR_EL1, HFGxTR, ESR_EL1, 1), + SR_FGT(SYS_DCZID_EL0, HFGxTR, DCZID_EL0, 1), + SR_FGT(SYS_CTR_EL0, HFGxTR, CTR_EL0, 1), + SR_FGT(SYS_CSSELR_EL1, HFGxTR, CSSELR_EL1, 1), + SR_FGT(SYS_CPACR_EL1, HFGxTR, CPACR_EL1, 1), + SR_FGT(SYS_CONTEXTIDR_EL1, HFGxTR, CONTEXTIDR_EL1, 1), + SR_FGT(SYS_CLIDR_EL1, HFGxTR, CLIDR_EL1, 1), + SR_FGT(SYS_CCSIDR_EL1, HFGxTR, CCSIDR_EL1, 1), + SR_FGT(SYS_APIBKEYLO_EL1, HFGxTR, APIBKey, 1), + SR_FGT(SYS_APIBKEYHI_EL1, HFGxTR, APIBKey, 1), + SR_FGT(SYS_APIAKEYLO_EL1, HFGxTR, APIAKey, 1), + SR_FGT(SYS_APIAKEYHI_EL1, HFGxTR, APIAKey, 1), + SR_FGT(SYS_APGAKEYLO_EL1, HFGxTR, APGAKey, 1), + SR_FGT(SYS_APGAKEYHI_EL1, HFGxTR, APGAKey, 1), + SR_FGT(SYS_APDBKEYLO_EL1, HFGxTR, APDBKey, 1), + SR_FGT(SYS_APDBKEYHI_EL1, HFGxTR, APDBKey, 1), + SR_FGT(SYS_APDAKEYLO_EL1, HFGxTR, APDAKey, 1), + SR_FGT(SYS_APDAKEYHI_EL1, HFGxTR, APDAKey, 1), + SR_FGT(SYS_AMAIR_EL1, HFGxTR, AMAIR_EL1, 1), + SR_FGT(SYS_AIDR_EL1, HFGxTR, AIDR_EL1, 1), + SR_FGT(SYS_AFSR1_EL1, HFGxTR, AFSR1_EL1, 1), + SR_FGT(SYS_AFSR0_EL1, HFGxTR, AFSR0_EL1, 1), + /* HFGITR_EL2 */ + SR_FGT(OP_BRB_IALL, HFGITR, nBRBIALL, 0), + SR_FGT(OP_BRB_INJ, HFGITR, nBRBINJ, 0), + SR_FGT(SYS_DC_CVAC, HFGITR, DCCVAC, 1), + SR_FGT(SYS_DC_CGVAC, HFGITR, DCCVAC, 1), + SR_FGT(SYS_DC_CGDVAC, HFGITR, DCCVAC, 1), + SR_FGT(OP_CPP_RCTX, HFGITR, CPPRCTX, 1), + SR_FGT(OP_DVP_RCTX, HFGITR, DVPRCTX, 1), + SR_FGT(OP_CFP_RCTX, HFGITR, CFPRCTX, 1), + SR_FGT(OP_TLBI_VAALE1, HFGITR, TLBIVAALE1, 1), + SR_FGT(OP_TLBI_VALE1, HFGITR, TLBIVALE1, 1), + SR_FGT(OP_TLBI_VAAE1, HFGITR, TLBIVAAE1, 1), + SR_FGT(OP_TLBI_ASIDE1, HFGITR, TLBIASIDE1, 1), + SR_FGT(OP_TLBI_VAE1, HFGITR, TLBIVAE1, 1), + SR_FGT(OP_TLBI_VMALLE1, HFGITR, TLBIVMALLE1, 1), + SR_FGT(OP_TLBI_RVAALE1, HFGITR, TLBIRVAALE1, 1), + SR_FGT(OP_TLBI_RVALE1, HFGITR, TLBIRVALE1, 1), + SR_FGT(OP_TLBI_RVAAE1, HFGITR, TLBIRVAAE1, 1), + SR_FGT(OP_TLBI_RVAE1, HFGITR, TLBIRVAE1, 1), + SR_FGT(OP_TLBI_RVAALE1IS, HFGITR, TLBIRVAALE1IS, 1), + SR_FGT(OP_TLBI_RVALE1IS, HFGITR, TLBIRVALE1IS, 1), + SR_FGT(OP_TLBI_RVAAE1IS, HFGITR, TLBIRVAAE1IS, 1), + SR_FGT(OP_TLBI_RVAE1IS, HFGITR, TLBIRVAE1IS, 1), + SR_FGT(OP_TLBI_VAALE1IS, HFGITR, TLBIVAALE1IS, 1), + SR_FGT(OP_TLBI_VALE1IS, HFGITR, TLBIVALE1IS, 1), + SR_FGT(OP_TLBI_VAAE1IS, HFGITR, TLBIVAAE1IS, 1), + SR_FGT(OP_TLBI_ASIDE1IS, HFGITR, TLBIASIDE1IS, 1), + SR_FGT(OP_TLBI_VAE1IS, HFGITR, TLBIVAE1IS, 1), + SR_FGT(OP_TLBI_VMALLE1IS, HFGITR, TLBIVMALLE1IS, 1), + SR_FGT(OP_TLBI_RVAALE1OS, HFGITR, TLBIRVAALE1OS, 1), + SR_FGT(OP_TLBI_RVALE1OS, HFGITR, TLBIRVALE1OS, 1), + SR_FGT(OP_TLBI_RVAAE1OS, HFGITR, TLBIRVAAE1OS, 1), + SR_FGT(OP_TLBI_RVAE1OS, HFGITR, TLBIRVAE1OS, 1), + SR_FGT(OP_TLBI_VAALE1OS, HFGITR, TLBIVAALE1OS, 1), + SR_FGT(OP_TLBI_VALE1OS, HFGITR, TLBIVALE1OS, 1), + SR_FGT(OP_TLBI_VAAE1OS, HFGITR, TLBIVAAE1OS, 1), + SR_FGT(OP_TLBI_ASIDE1OS, HFGITR, TLBIASIDE1OS, 1), + SR_FGT(OP_TLBI_VAE1OS, HFGITR, TLBIVAE1OS, 1), + SR_FGT(OP_TLBI_VMALLE1OS, HFGITR, TLBIVMALLE1OS, 1), + /* nXS variants must be checked against HCRX_EL2.FGTnXS */ + SR_FGF(OP_TLBI_VAALE1NXS, HFGITR, TLBIVAALE1, 1, HCRX_FGTnXS), + SR_FGF(OP_TLBI_VALE1NXS, HFGITR, TLBIVALE1, 1, HCRX_FGTnXS), + SR_FGF(OP_TLBI_VAAE1NXS, HFGITR, TLBIVAAE1, 1, HCRX_FGTnXS), + SR_FGF(OP_TLBI_ASIDE1NXS, HFGITR, TLBIASIDE1, 1, HCRX_FGTnXS), + SR_FGF(OP_TLBI_VAE1NXS, HFGITR, TLBIVAE1, 1, HCRX_FGTnXS), + SR_FGF(OP_TLBI_VMALLE1NXS, HFGITR, TLBIVMALLE1, 1, HCRX_FGTnXS), + SR_FGF(OP_TLBI_RVAALE1NXS, HFGITR, TLBIRVAALE1, 1, HCRX_FGTnXS), + SR_FGF(OP_TLBI_RVALE1NXS, HFGITR, TLBIRVALE1, 1, HCRX_FGTnXS), + SR_FGF(OP_TLBI_RVAAE1NXS, HFGITR, TLBIRVAAE1, 1, HCRX_FGTnXS), + SR_FGF(OP_TLBI_RVAE1NXS, HFGITR, TLBIRVAE1, 1, HCRX_FGTnXS), + SR_FGF(OP_TLBI_RVAALE1ISNXS, HFGITR, TLBIRVAALE1IS, 1, HCRX_FGTnXS), + SR_FGF(OP_TLBI_RVALE1ISNXS, HFGITR, TLBIRVALE1IS, 1, HCRX_FGTnXS), + SR_FGF(OP_TLBI_RVAAE1ISNXS, HFGITR, TLBIRVAAE1IS, 1, HCRX_FGTnXS), + SR_FGF(OP_TLBI_RVAE1ISNXS, HFGITR, TLBIRVAE1IS, 1, HCRX_FGTnXS), + SR_FGF(OP_TLBI_VAALE1ISNXS, HFGITR, TLBIVAALE1IS, 1, HCRX_FGTnXS), + SR_FGF(OP_TLBI_VALE1ISNXS, HFGITR, TLBIVALE1IS, 1, HCRX_FGTnXS), + SR_FGF(OP_TLBI_VAAE1ISNXS, HFGITR, TLBIVAAE1IS, 1, HCRX_FGTnXS), + SR_FGF(OP_TLBI_ASIDE1ISNXS, HFGITR, TLBIASIDE1IS, 1, HCRX_FGTnXS), + SR_FGF(OP_TLBI_VAE1ISNXS, HFGITR, TLBIVAE1IS, 1, HCRX_FGTnXS), + SR_FGF(OP_TLBI_VMALLE1ISNXS, HFGITR, TLBIVMALLE1IS, 1, HCRX_FGTnXS), + SR_FGF(OP_TLBI_RVAALE1OSNXS, HFGITR, TLBIRVAALE1OS, 1, HCRX_FGTnXS), + SR_FGF(OP_TLBI_RVALE1OSNXS, HFGITR, TLBIRVALE1OS, 1, HCRX_FGTnXS), + SR_FGF(OP_TLBI_RVAAE1OSNXS, HFGITR, TLBIRVAAE1OS, 1, HCRX_FGTnXS), + SR_FGF(OP_TLBI_RVAE1OSNXS, HFGITR, TLBIRVAE1OS, 1, HCRX_FGTnXS), + SR_FGF(OP_TLBI_VAALE1OSNXS, HFGITR, TLBIVAALE1OS, 1, HCRX_FGTnXS), + SR_FGF(OP_TLBI_VALE1OSNXS, HFGITR, TLBIVALE1OS, 1, HCRX_FGTnXS), + SR_FGF(OP_TLBI_VAAE1OSNXS, HFGITR, TLBIVAAE1OS, 1, HCRX_FGTnXS), + SR_FGF(OP_TLBI_ASIDE1OSNXS, HFGITR, TLBIASIDE1OS, 1, HCRX_FGTnXS), + SR_FGF(OP_TLBI_VAE1OSNXS, HFGITR, TLBIVAE1OS, 1, HCRX_FGTnXS), + SR_FGF(OP_TLBI_VMALLE1OSNXS, HFGITR, TLBIVMALLE1OS, 1, HCRX_FGTnXS), + SR_FGT(OP_AT_S1E1WP, HFGITR, ATS1E1WP, 1), + SR_FGT(OP_AT_S1E1RP, HFGITR, ATS1E1RP, 1), + SR_FGT(OP_AT_S1E0W, HFGITR, ATS1E0W, 1), + SR_FGT(OP_AT_S1E0R, HFGITR, ATS1E0R, 1), + SR_FGT(OP_AT_S1E1W, HFGITR, ATS1E1W, 1), + SR_FGT(OP_AT_S1E1R, HFGITR, ATS1E1R, 1), + SR_FGT(SYS_DC_ZVA, HFGITR, DCZVA, 1), + SR_FGT(SYS_DC_GVA, HFGITR, DCZVA, 1), + SR_FGT(SYS_DC_GZVA, HFGITR, DCZVA, 1), + SR_FGT(SYS_DC_CIVAC, HFGITR, DCCIVAC, 1), + SR_FGT(SYS_DC_CIGVAC, HFGITR, DCCIVAC, 1), + SR_FGT(SYS_DC_CIGDVAC, HFGITR, DCCIVAC, 1), + SR_FGT(SYS_DC_CVADP, HFGITR, DCCVADP, 1), + SR_FGT(SYS_DC_CGVADP, HFGITR, DCCVADP, 1), + SR_FGT(SYS_DC_CGDVADP, HFGITR, DCCVADP, 1), + SR_FGT(SYS_DC_CVAP, HFGITR, DCCVAP, 1), + SR_FGT(SYS_DC_CGVAP, HFGITR, DCCVAP, 1), + SR_FGT(SYS_DC_CGDVAP, HFGITR, DCCVAP, 1), + SR_FGT(SYS_DC_CVAU, HFGITR, DCCVAU, 1), + SR_FGT(SYS_DC_CISW, HFGITR, DCCISW, 1), + SR_FGT(SYS_DC_CIGSW, HFGITR, DCCISW, 1), + SR_FGT(SYS_DC_CIGDSW, HFGITR, DCCISW, 1), + SR_FGT(SYS_DC_CSW, HFGITR, DCCSW, 1), + SR_FGT(SYS_DC_CGSW, HFGITR, DCCSW, 1), + SR_FGT(SYS_DC_CGDSW, HFGITR, DCCSW, 1), + SR_FGT(SYS_DC_ISW, HFGITR, DCISW, 1), + SR_FGT(SYS_DC_IGSW, HFGITR, DCISW, 1), + SR_FGT(SYS_DC_IGDSW, HFGITR, DCISW, 1), + SR_FGT(SYS_DC_IVAC, HFGITR, DCIVAC, 1), + SR_FGT(SYS_DC_IGVAC, HFGITR, DCIVAC, 1), + SR_FGT(SYS_DC_IGDVAC, HFGITR, DCIVAC, 1), + SR_FGT(SYS_IC_IVAU, HFGITR, ICIVAU, 1), + SR_FGT(SYS_IC_IALLU, HFGITR, ICIALLU, 1), + SR_FGT(SYS_IC_IALLUIS, HFGITR, ICIALLUIS, 1), + /* HDFGRTR_EL2 */ + SR_FGT(SYS_PMBIDR_EL1, HDFGRTR, PMBIDR_EL1, 1), + SR_FGT(SYS_PMSNEVFR_EL1, HDFGRTR, nPMSNEVFR_EL1, 0), + SR_FGT(SYS_BRBINF_EL1(0), HDFGRTR, nBRBDATA, 0), + SR_FGT(SYS_BRBINF_EL1(1), HDFGRTR, nBRBDATA, 0), + SR_FGT(SYS_BRBINF_EL1(2), HDFGRTR, nBRBDATA, 0), + SR_FGT(SYS_BRBINF_EL1(3), HDFGRTR, nBRBDATA, 0), + SR_FGT(SYS_BRBINF_EL1(4), HDFGRTR, nBRBDATA, 0), + SR_FGT(SYS_BRBINF_EL1(5), HDFGRTR, nBRBDATA, 0), + SR_FGT(SYS_BRBINF_EL1(6), HDFGRTR, nBRBDATA, 0), + SR_FGT(SYS_BRBINF_EL1(7), HDFGRTR, nBRBDATA, 0), + SR_FGT(SYS_BRBINF_EL1(8), HDFGRTR, nBRBDATA, 0), + SR_FGT(SYS_BRBINF_EL1(9), HDFGRTR, nBRBDATA, 0), + SR_FGT(SYS_BRBINF_EL1(10), HDFGRTR, nBRBDATA, 0), + SR_FGT(SYS_BRBINF_EL1(11), HDFGRTR, nBRBDATA, 0), + SR_FGT(SYS_BRBINF_EL1(12), HDFGRTR, nBRBDATA, 0), + SR_FGT(SYS_BRBINF_EL1(13), HDFGRTR, nBRBDATA, 0), + SR_FGT(SYS_BRBINF_EL1(14), HDFGRTR, nBRBDATA, 0), + SR_FGT(SYS_BRBINF_EL1(15), HDFGRTR, nBRBDATA, 0), + SR_FGT(SYS_BRBINF_EL1(16), HDFGRTR, nBRBDATA, 0), + SR_FGT(SYS_BRBINF_EL1(17), HDFGRTR, nBRBDATA, 0), + SR_FGT(SYS_BRBINF_EL1(18), HDFGRTR, nBRBDATA, 0), + SR_FGT(SYS_BRBINF_EL1(19), HDFGRTR, nBRBDATA, 0), + SR_FGT(SYS_BRBINF_EL1(20), HDFGRTR, nBRBDATA, 0), + SR_FGT(SYS_BRBINF_EL1(21), HDFGRTR, nBRBDATA, 0), + SR_FGT(SYS_BRBINF_EL1(22), HDFGRTR, nBRBDATA, 0), + SR_FGT(SYS_BRBINF_EL1(23), HDFGRTR, nBRBDATA, 0), + SR_FGT(SYS_BRBINF_EL1(24), HDFGRTR, nBRBDATA, 0), + SR_FGT(SYS_BRBINF_EL1(25), HDFGRTR, nBRBDATA, 0), + SR_FGT(SYS_BRBINF_EL1(26), HDFGRTR, nBRBDATA, 0), + SR_FGT(SYS_BRBINF_EL1(27), HDFGRTR, nBRBDATA, 0), + SR_FGT(SYS_BRBINF_EL1(28), HDFGRTR, nBRBDATA, 0), + SR_FGT(SYS_BRBINF_EL1(29), HDFGRTR, nBRBDATA, 0), + SR_FGT(SYS_BRBINF_EL1(30), HDFGRTR, nBRBDATA, 0), + SR_FGT(SYS_BRBINF_EL1(31), HDFGRTR, nBRBDATA, 0), + SR_FGT(SYS_BRBINFINJ_EL1, HDFGRTR, nBRBDATA, 0), + SR_FGT(SYS_BRBSRC_EL1(0), HDFGRTR, nBRBDATA, 0), + SR_FGT(SYS_BRBSRC_EL1(1), HDFGRTR, nBRBDATA, 0), + SR_FGT(SYS_BRBSRC_EL1(2), HDFGRTR, nBRBDATA, 0), + SR_FGT(SYS_BRBSRC_EL1(3), HDFGRTR, nBRBDATA, 0), + SR_FGT(SYS_BRBSRC_EL1(4), HDFGRTR, nBRBDATA, 0), + SR_FGT(SYS_BRBSRC_EL1(5), HDFGRTR, nBRBDATA, 0), + SR_FGT(SYS_BRBSRC_EL1(6), HDFGRTR, nBRBDATA, 0), + SR_FGT(SYS_BRBSRC_EL1(7), HDFGRTR, nBRBDATA, 0), + SR_FGT(SYS_BRBSRC_EL1(8), HDFGRTR, nBRBDATA, 0), + SR_FGT(SYS_BRBSRC_EL1(9), HDFGRTR, nBRBDATA, 0), + SR_FGT(SYS_BRBSRC_EL1(10), HDFGRTR, nBRBDATA, 0), + SR_FGT(SYS_BRBSRC_EL1(11), HDFGRTR, nBRBDATA, 0), + SR_FGT(SYS_BRBSRC_EL1(12), HDFGRTR, nBRBDATA, 0), + SR_FGT(SYS_BRBSRC_EL1(13), HDFGRTR, nBRBDATA, 0), + SR_FGT(SYS_BRBSRC_EL1(14), HDFGRTR, nBRBDATA, 0), + SR_FGT(SYS_BRBSRC_EL1(15), HDFGRTR, nBRBDATA, 0), + SR_FGT(SYS_BRBSRC_EL1(16), HDFGRTR, nBRBDATA, 0), + SR_FGT(SYS_BRBSRC_EL1(17), HDFGRTR, nBRBDATA, 0), + SR_FGT(SYS_BRBSRC_EL1(18), HDFGRTR, nBRBDATA, 0), + SR_FGT(SYS_BRBSRC_EL1(19), HDFGRTR, nBRBDATA, 0), + SR_FGT(SYS_BRBSRC_EL1(20), HDFGRTR, nBRBDATA, 0), + SR_FGT(SYS_BRBSRC_EL1(21), HDFGRTR, nBRBDATA, 0), + SR_FGT(SYS_BRBSRC_EL1(22), HDFGRTR, nBRBDATA, 0), + SR_FGT(SYS_BRBSRC_EL1(23), HDFGRTR, nBRBDATA, 0), + SR_FGT(SYS_BRBSRC_EL1(24), HDFGRTR, nBRBDATA, 0), + SR_FGT(SYS_BRBSRC_EL1(25), HDFGRTR, nBRBDATA, 0), + SR_FGT(SYS_BRBSRC_EL1(26), HDFGRTR, nBRBDATA, 0), + SR_FGT(SYS_BRBSRC_EL1(27), HDFGRTR, nBRBDATA, 0), + SR_FGT(SYS_BRBSRC_EL1(28), HDFGRTR, nBRBDATA, 0), + SR_FGT(SYS_BRBSRC_EL1(29), HDFGRTR, nBRBDATA, 0), + SR_FGT(SYS_BRBSRC_EL1(30), HDFGRTR, nBRBDATA, 0), + SR_FGT(SYS_BRBSRC_EL1(31), HDFGRTR, nBRBDATA, 0), + SR_FGT(SYS_BRBSRCINJ_EL1, HDFGRTR, nBRBDATA, 0), + SR_FGT(SYS_BRBTGT_EL1(0), HDFGRTR, nBRBDATA, 0), + SR_FGT(SYS_BRBTGT_EL1(1), HDFGRTR, nBRBDATA, 0), + SR_FGT(SYS_BRBTGT_EL1(2), HDFGRTR, nBRBDATA, 0), + SR_FGT(SYS_BRBTGT_EL1(3), HDFGRTR, nBRBDATA, 0), + SR_FGT(SYS_BRBTGT_EL1(4), HDFGRTR, nBRBDATA, 0), + SR_FGT(SYS_BRBTGT_EL1(5), HDFGRTR, nBRBDATA, 0), + SR_FGT(SYS_BRBTGT_EL1(6), HDFGRTR, nBRBDATA, 0), + SR_FGT(SYS_BRBTGT_EL1(7), HDFGRTR, nBRBDATA, 0), + SR_FGT(SYS_BRBTGT_EL1(8), HDFGRTR, nBRBDATA, 0), + SR_FGT(SYS_BRBTGT_EL1(9), HDFGRTR, nBRBDATA, 0), + SR_FGT(SYS_BRBTGT_EL1(10), HDFGRTR, nBRBDATA, 0), + SR_FGT(SYS_BRBTGT_EL1(11), HDFGRTR, nBRBDATA, 0), + SR_FGT(SYS_BRBTGT_EL1(12), HDFGRTR, nBRBDATA, 0), + SR_FGT(SYS_BRBTGT_EL1(13), HDFGRTR, nBRBDATA, 0), + SR_FGT(SYS_BRBTGT_EL1(14), HDFGRTR, nBRBDATA, 0), + SR_FGT(SYS_BRBTGT_EL1(15), HDFGRTR, nBRBDATA, 0), + SR_FGT(SYS_BRBTGT_EL1(16), HDFGRTR, nBRBDATA, 0), + SR_FGT(SYS_BRBTGT_EL1(17), HDFGRTR, nBRBDATA, 0), + SR_FGT(SYS_BRBTGT_EL1(18), HDFGRTR, nBRBDATA, 0), + SR_FGT(SYS_BRBTGT_EL1(19), HDFGRTR, nBRBDATA, 0), + SR_FGT(SYS_BRBTGT_EL1(20), HDFGRTR, nBRBDATA, 0), + SR_FGT(SYS_BRBTGT_EL1(21), HDFGRTR, nBRBDATA, 0), + SR_FGT(SYS_BRBTGT_EL1(22), HDFGRTR, nBRBDATA, 0), + SR_FGT(SYS_BRBTGT_EL1(23), HDFGRTR, nBRBDATA, 0), + SR_FGT(SYS_BRBTGT_EL1(24), HDFGRTR, nBRBDATA, 0), + SR_FGT(SYS_BRBTGT_EL1(25), HDFGRTR, nBRBDATA, 0), + SR_FGT(SYS_BRBTGT_EL1(26), HDFGRTR, nBRBDATA, 0), + SR_FGT(SYS_BRBTGT_EL1(27), HDFGRTR, nBRBDATA, 0), + SR_FGT(SYS_BRBTGT_EL1(28), HDFGRTR, nBRBDATA, 0), + SR_FGT(SYS_BRBTGT_EL1(29), HDFGRTR, nBRBDATA, 0), + SR_FGT(SYS_BRBTGT_EL1(30), HDFGRTR, nBRBDATA, 0), + SR_FGT(SYS_BRBTGT_EL1(31), HDFGRTR, nBRBDATA, 0), + SR_FGT(SYS_BRBTGTINJ_EL1, HDFGRTR, nBRBDATA, 0), + SR_FGT(SYS_BRBTS_EL1, HDFGRTR, nBRBDATA, 0), + SR_FGT(SYS_BRBCR_EL1, HDFGRTR, nBRBCTL, 0), + SR_FGT(SYS_BRBFCR_EL1, HDFGRTR, nBRBCTL, 0), + SR_FGT(SYS_BRBIDR0_EL1, HDFGRTR, nBRBIDR, 0), + SR_FGT(SYS_PMCEID0_EL0, HDFGRTR, PMCEIDn_EL0, 1), + SR_FGT(SYS_PMCEID1_EL0, HDFGRTR, PMCEIDn_EL0, 1), + SR_FGT(SYS_PMUSERENR_EL0, HDFGRTR, PMUSERENR_EL0, 1), + SR_FGT(SYS_TRBTRG_EL1, HDFGRTR, TRBTRG_EL1, 1), + SR_FGT(SYS_TRBSR_EL1, HDFGRTR, TRBSR_EL1, 1), + SR_FGT(SYS_TRBPTR_EL1, HDFGRTR, TRBPTR_EL1, 1), + SR_FGT(SYS_TRBMAR_EL1, HDFGRTR, TRBMAR_EL1, 1), + SR_FGT(SYS_TRBLIMITR_EL1, HDFGRTR, TRBLIMITR_EL1, 1), + SR_FGT(SYS_TRBIDR_EL1, HDFGRTR, TRBIDR_EL1, 1), + SR_FGT(SYS_TRBBASER_EL1, HDFGRTR, TRBBASER_EL1, 1), + SR_FGT(SYS_TRCVICTLR, HDFGRTR, TRCVICTLR, 1), + SR_FGT(SYS_TRCSTATR, HDFGRTR, TRCSTATR, 1), + SR_FGT(SYS_TRCSSCSR(0), HDFGRTR, TRCSSCSRn, 1), + SR_FGT(SYS_TRCSSCSR(1), HDFGRTR, TRCSSCSRn, 1), + SR_FGT(SYS_TRCSSCSR(2), HDFGRTR, TRCSSCSRn, 1), + SR_FGT(SYS_TRCSSCSR(3), HDFGRTR, TRCSSCSRn, 1), + SR_FGT(SYS_TRCSSCSR(4), HDFGRTR, TRCSSCSRn, 1), + SR_FGT(SYS_TRCSSCSR(5), HDFGRTR, TRCSSCSRn, 1), + SR_FGT(SYS_TRCSSCSR(6), HDFGRTR, TRCSSCSRn, 1), + SR_FGT(SYS_TRCSSCSR(7), HDFGRTR, TRCSSCSRn, 1), + SR_FGT(SYS_TRCSEQSTR, HDFGRTR, TRCSEQSTR, 1), + SR_FGT(SYS_TRCPRGCTLR, HDFGRTR, TRCPRGCTLR, 1), + SR_FGT(SYS_TRCOSLSR, HDFGRTR, TRCOSLSR, 1), + SR_FGT(SYS_TRCIMSPEC(0), HDFGRTR, TRCIMSPECn, 1), + SR_FGT(SYS_TRCIMSPEC(1), HDFGRTR, TRCIMSPECn, 1), + SR_FGT(SYS_TRCIMSPEC(2), HDFGRTR, TRCIMSPECn, 1), + SR_FGT(SYS_TRCIMSPEC(3), HDFGRTR, TRCIMSPECn, 1), + SR_FGT(SYS_TRCIMSPEC(4), HDFGRTR, TRCIMSPECn, 1), + SR_FGT(SYS_TRCIMSPEC(5), HDFGRTR, TRCIMSPECn, 1), + SR_FGT(SYS_TRCIMSPEC(6), HDFGRTR, TRCIMSPECn, 1), + SR_FGT(SYS_TRCIMSPEC(7), HDFGRTR, TRCIMSPECn, 1), + SR_FGT(SYS_TRCDEVARCH, HDFGRTR, TRCID, 1), + SR_FGT(SYS_TRCDEVID, HDFGRTR, TRCID, 1), + SR_FGT(SYS_TRCIDR0, HDFGRTR, TRCID, 1), + SR_FGT(SYS_TRCIDR1, HDFGRTR, TRCID, 1), + SR_FGT(SYS_TRCIDR2, HDFGRTR, TRCID, 1), + SR_FGT(SYS_TRCIDR3, HDFGRTR, TRCID, 1), + SR_FGT(SYS_TRCIDR4, HDFGRTR, TRCID, 1), + SR_FGT(SYS_TRCIDR5, HDFGRTR, TRCID, 1), + SR_FGT(SYS_TRCIDR6, HDFGRTR, TRCID, 1), + SR_FGT(SYS_TRCIDR7, HDFGRTR, TRCID, 1), + SR_FGT(SYS_TRCIDR8, HDFGRTR, TRCID, 1), + SR_FGT(SYS_TRCIDR9, HDFGRTR, TRCID, 1), + SR_FGT(SYS_TRCIDR10, HDFGRTR, TRCID, 1), + SR_FGT(SYS_TRCIDR11, HDFGRTR, TRCID, 1), + SR_FGT(SYS_TRCIDR12, HDFGRTR, TRCID, 1), + SR_FGT(SYS_TRCIDR13, HDFGRTR, TRCID, 1), + SR_FGT(SYS_TRCCNTVR(0), HDFGRTR, TRCCNTVRn, 1), + SR_FGT(SYS_TRCCNTVR(1), HDFGRTR, TRCCNTVRn, 1), + SR_FGT(SYS_TRCCNTVR(2), HDFGRTR, TRCCNTVRn, 1), + SR_FGT(SYS_TRCCNTVR(3), HDFGRTR, TRCCNTVRn, 1), + SR_FGT(SYS_TRCCLAIMCLR, HDFGRTR, TRCCLAIM, 1), + SR_FGT(SYS_TRCCLAIMSET, HDFGRTR, TRCCLAIM, 1), + SR_FGT(SYS_TRCAUXCTLR, HDFGRTR, TRCAUXCTLR, 1), + SR_FGT(SYS_TRCAUTHSTATUS, HDFGRTR, TRCAUTHSTATUS, 1), + SR_FGT(SYS_TRCACATR(0), HDFGRTR, TRC, 1), + SR_FGT(SYS_TRCACATR(1), HDFGRTR, TRC, 1), + SR_FGT(SYS_TRCACATR(2), HDFGRTR, TRC, 1), + SR_FGT(SYS_TRCACATR(3), HDFGRTR, TRC, 1), + SR_FGT(SYS_TRCACATR(4), HDFGRTR, TRC, 1), + SR_FGT(SYS_TRCACATR(5), HDFGRTR, TRC, 1), + SR_FGT(SYS_TRCACATR(6), HDFGRTR, TRC, 1), + SR_FGT(SYS_TRCACATR(7), HDFGRTR, TRC, 1), + SR_FGT(SYS_TRCACATR(8), HDFGRTR, TRC, 1), + SR_FGT(SYS_TRCACATR(9), HDFGRTR, TRC, 1), + SR_FGT(SYS_TRCACATR(10), HDFGRTR, TRC, 1), + SR_FGT(SYS_TRCACATR(11), HDFGRTR, TRC, 1), + SR_FGT(SYS_TRCACATR(12), HDFGRTR, TRC, 1), + SR_FGT(SYS_TRCACATR(13), HDFGRTR, TRC, 1), + SR_FGT(SYS_TRCACATR(14), HDFGRTR, TRC, 1), + SR_FGT(SYS_TRCACATR(15), HDFGRTR, TRC, 1), + SR_FGT(SYS_TRCACVR(0), HDFGRTR, TRC, 1), + SR_FGT(SYS_TRCACVR(1), HDFGRTR, TRC, 1), + SR_FGT(SYS_TRCACVR(2), HDFGRTR, TRC, 1), + SR_FGT(SYS_TRCACVR(3), HDFGRTR, TRC, 1), + SR_FGT(SYS_TRCACVR(4), HDFGRTR, TRC, 1), + SR_FGT(SYS_TRCACVR(5), HDFGRTR, TRC, 1), + SR_FGT(SYS_TRCACVR(6), HDFGRTR, TRC, 1), + SR_FGT(SYS_TRCACVR(7), HDFGRTR, TRC, 1), + SR_FGT(SYS_TRCACVR(8), HDFGRTR, TRC, 1), + SR_FGT(SYS_TRCACVR(9), HDFGRTR, TRC, 1), + SR_FGT(SYS_TRCACVR(10), HDFGRTR, TRC, 1), + SR_FGT(SYS_TRCACVR(11), HDFGRTR, TRC, 1), + SR_FGT(SYS_TRCACVR(12), HDFGRTR, TRC, 1), + SR_FGT(SYS_TRCACVR(13), HDFGRTR, TRC, 1), + SR_FGT(SYS_TRCACVR(14), HDFGRTR, TRC, 1), + SR_FGT(SYS_TRCACVR(15), HDFGRTR, TRC, 1), + SR_FGT(SYS_TRCBBCTLR, HDFGRTR, TRC, 1), + SR_FGT(SYS_TRCCCCTLR, HDFGRTR, TRC, 1), + SR_FGT(SYS_TRCCIDCCTLR0, HDFGRTR, TRC, 1), + SR_FGT(SYS_TRCCIDCCTLR1, HDFGRTR, TRC, 1), + SR_FGT(SYS_TRCCIDCVR(0), HDFGRTR, TRC, 1), + SR_FGT(SYS_TRCCIDCVR(1), HDFGRTR, TRC, 1), + SR_FGT(SYS_TRCCIDCVR(2), HDFGRTR, TRC, 1), + SR_FGT(SYS_TRCCIDCVR(3), HDFGRTR, TRC, 1), + SR_FGT(SYS_TRCCIDCVR(4), HDFGRTR, TRC, 1), + SR_FGT(SYS_TRCCIDCVR(5), HDFGRTR, TRC, 1), + SR_FGT(SYS_TRCCIDCVR(6), HDFGRTR, TRC, 1), + SR_FGT(SYS_TRCCIDCVR(7), HDFGRTR, TRC, 1), + SR_FGT(SYS_TRCCNTCTLR(0), HDFGRTR, TRC, 1), + SR_FGT(SYS_TRCCNTCTLR(1), HDFGRTR, TRC, 1), + SR_FGT(SYS_TRCCNTCTLR(2), HDFGRTR, TRC, 1), + SR_FGT(SYS_TRCCNTCTLR(3), HDFGRTR, TRC, 1), + SR_FGT(SYS_TRCCNTRLDVR(0), HDFGRTR, TRC, 1), + SR_FGT(SYS_TRCCNTRLDVR(1), HDFGRTR, TRC, 1), + SR_FGT(SYS_TRCCNTRLDVR(2), HDFGRTR, TRC, 1), + SR_FGT(SYS_TRCCNTRLDVR(3), HDFGRTR, TRC, 1), + SR_FGT(SYS_TRCCONFIGR, HDFGRTR, TRC, 1), + SR_FGT(SYS_TRCEVENTCTL0R, HDFGRTR, TRC, 1), + SR_FGT(SYS_TRCEVENTCTL1R, HDFGRTR, TRC, 1), + SR_FGT(SYS_TRCEXTINSELR(0), HDFGRTR, TRC, 1), + SR_FGT(SYS_TRCEXTINSELR(1), HDFGRTR, TRC, 1), + SR_FGT(SYS_TRCEXTINSELR(2), HDFGRTR, TRC, 1), + SR_FGT(SYS_TRCEXTINSELR(3), HDFGRTR, TRC, 1), + SR_FGT(SYS_TRCQCTLR, HDFGRTR, TRC, 1), + SR_FGT(SYS_TRCRSCTLR(2), HDFGRTR, TRC, 1), + SR_FGT(SYS_TRCRSCTLR(3), HDFGRTR, TRC, 1), + SR_FGT(SYS_TRCRSCTLR(4), HDFGRTR, TRC, 1), + SR_FGT(SYS_TRCRSCTLR(5), HDFGRTR, TRC, 1), + SR_FGT(SYS_TRCRSCTLR(6), HDFGRTR, TRC, 1), + SR_FGT(SYS_TRCRSCTLR(7), HDFGRTR, TRC, 1), + SR_FGT(SYS_TRCRSCTLR(8), HDFGRTR, TRC, 1), + SR_FGT(SYS_TRCRSCTLR(9), HDFGRTR, TRC, 1), + SR_FGT(SYS_TRCRSCTLR(10), HDFGRTR, TRC, 1), + SR_FGT(SYS_TRCRSCTLR(11), HDFGRTR, TRC, 1), + SR_FGT(SYS_TRCRSCTLR(12), HDFGRTR, TRC, 1), + SR_FGT(SYS_TRCRSCTLR(13), HDFGRTR, TRC, 1), + SR_FGT(SYS_TRCRSCTLR(14), HDFGRTR, TRC, 1), + SR_FGT(SYS_TRCRSCTLR(15), HDFGRTR, TRC, 1), + SR_FGT(SYS_TRCRSCTLR(16), HDFGRTR, TRC, 1), + SR_FGT(SYS_TRCRSCTLR(17), HDFGRTR, TRC, 1), + SR_FGT(SYS_TRCRSCTLR(18), HDFGRTR, TRC, 1), + SR_FGT(SYS_TRCRSCTLR(19), HDFGRTR, TRC, 1), + SR_FGT(SYS_TRCRSCTLR(20), HDFGRTR, TRC, 1), + SR_FGT(SYS_TRCRSCTLR(21), HDFGRTR, TRC, 1), + SR_FGT(SYS_TRCRSCTLR(22), HDFGRTR, TRC, 1), + SR_FGT(SYS_TRCRSCTLR(23), HDFGRTR, TRC, 1), + SR_FGT(SYS_TRCRSCTLR(24), HDFGRTR, TRC, 1), + SR_FGT(SYS_TRCRSCTLR(25), HDFGRTR, TRC, 1), + SR_FGT(SYS_TRCRSCTLR(26), HDFGRTR, TRC, 1), + SR_FGT(SYS_TRCRSCTLR(27), HDFGRTR, TRC, 1), + SR_FGT(SYS_TRCRSCTLR(28), HDFGRTR, TRC, 1), + SR_FGT(SYS_TRCRSCTLR(29), HDFGRTR, TRC, 1), + SR_FGT(SYS_TRCRSCTLR(30), HDFGRTR, TRC, 1), + SR_FGT(SYS_TRCRSCTLR(31), HDFGRTR, TRC, 1), + SR_FGT(SYS_TRCRSR, HDFGRTR, TRC, 1), + SR_FGT(SYS_TRCSEQEVR(0), HDFGRTR, TRC, 1), + SR_FGT(SYS_TRCSEQEVR(1), HDFGRTR, TRC, 1), + SR_FGT(SYS_TRCSEQEVR(2), HDFGRTR, TRC, 1), + SR_FGT(SYS_TRCSEQRSTEVR, HDFGRTR, TRC, 1), + SR_FGT(SYS_TRCSSCCR(0), HDFGRTR, TRC, 1), + SR_FGT(SYS_TRCSSCCR(1), HDFGRTR, TRC, 1), + SR_FGT(SYS_TRCSSCCR(2), HDFGRTR, TRC, 1), + SR_FGT(SYS_TRCSSCCR(3), HDFGRTR, TRC, 1), + SR_FGT(SYS_TRCSSCCR(4), HDFGRTR, TRC, 1), + SR_FGT(SYS_TRCSSCCR(5), HDFGRTR, TRC, 1), + SR_FGT(SYS_TRCSSCCR(6), HDFGRTR, TRC, 1), + SR_FGT(SYS_TRCSSCCR(7), HDFGRTR, TRC, 1), + SR_FGT(SYS_TRCSSPCICR(0), HDFGRTR, TRC, 1), + SR_FGT(SYS_TRCSSPCICR(1), HDFGRTR, TRC, 1), + SR_FGT(SYS_TRCSSPCICR(2), HDFGRTR, TRC, 1), + SR_FGT(SYS_TRCSSPCICR(3), HDFGRTR, TRC, 1), + SR_FGT(SYS_TRCSSPCICR(4), HDFGRTR, TRC, 1), + SR_FGT(SYS_TRCSSPCICR(5), HDFGRTR, TRC, 1), + SR_FGT(SYS_TRCSSPCICR(6), HDFGRTR, TRC, 1), + SR_FGT(SYS_TRCSSPCICR(7), HDFGRTR, TRC, 1), + SR_FGT(SYS_TRCSTALLCTLR, HDFGRTR, TRC, 1), + SR_FGT(SYS_TRCSYNCPR, HDFGRTR, TRC, 1), + SR_FGT(SYS_TRCTRACEIDR, HDFGRTR, TRC, 1), + SR_FGT(SYS_TRCTSCTLR, HDFGRTR, TRC, 1), + SR_FGT(SYS_TRCVIIECTLR, HDFGRTR, TRC, 1), + SR_FGT(SYS_TRCVIPCSSCTLR, HDFGRTR, TRC, 1), + SR_FGT(SYS_TRCVISSCTLR, HDFGRTR, TRC, 1), + SR_FGT(SYS_TRCVMIDCCTLR0, HDFGRTR, TRC, 1), + SR_FGT(SYS_TRCVMIDCCTLR1, HDFGRTR, TRC, 1), + SR_FGT(SYS_TRCVMIDCVR(0), HDFGRTR, TRC, 1), + SR_FGT(SYS_TRCVMIDCVR(1), HDFGRTR, TRC, 1), + SR_FGT(SYS_TRCVMIDCVR(2), HDFGRTR, TRC, 1), + SR_FGT(SYS_TRCVMIDCVR(3), HDFGRTR, TRC, 1), + SR_FGT(SYS_TRCVMIDCVR(4), HDFGRTR, TRC, 1), + SR_FGT(SYS_TRCVMIDCVR(5), HDFGRTR, TRC, 1), + SR_FGT(SYS_TRCVMIDCVR(6), HDFGRTR, TRC, 1), + SR_FGT(SYS_TRCVMIDCVR(7), HDFGRTR, TRC, 1), + SR_FGT(SYS_PMSLATFR_EL1, HDFGRTR, PMSLATFR_EL1, 1), + SR_FGT(SYS_PMSIRR_EL1, HDFGRTR, PMSIRR_EL1, 1), + SR_FGT(SYS_PMSIDR_EL1, HDFGRTR, PMSIDR_EL1, 1), + SR_FGT(SYS_PMSICR_EL1, HDFGRTR, PMSICR_EL1, 1), + SR_FGT(SYS_PMSFCR_EL1, HDFGRTR, PMSFCR_EL1, 1), + SR_FGT(SYS_PMSEVFR_EL1, HDFGRTR, PMSEVFR_EL1, 1), + SR_FGT(SYS_PMSCR_EL1, HDFGRTR, PMSCR_EL1, 1), + SR_FGT(SYS_PMBSR_EL1, HDFGRTR, PMBSR_EL1, 1), + SR_FGT(SYS_PMBPTR_EL1, HDFGRTR, PMBPTR_EL1, 1), + SR_FGT(SYS_PMBLIMITR_EL1, HDFGRTR, PMBLIMITR_EL1, 1), + SR_FGT(SYS_PMMIR_EL1, HDFGRTR, PMMIR_EL1, 1), + SR_FGT(SYS_PMSELR_EL0, HDFGRTR, PMSELR_EL0, 1), + SR_FGT(SYS_PMOVSCLR_EL0, HDFGRTR, PMOVS, 1), + SR_FGT(SYS_PMOVSSET_EL0, HDFGRTR, PMOVS, 1), + SR_FGT(SYS_PMINTENCLR_EL1, HDFGRTR, PMINTEN, 1), + SR_FGT(SYS_PMINTENSET_EL1, HDFGRTR, PMINTEN, 1), + SR_FGT(SYS_PMCNTENCLR_EL0, HDFGRTR, PMCNTEN, 1), + SR_FGT(SYS_PMCNTENSET_EL0, HDFGRTR, PMCNTEN, 1), + SR_FGT(SYS_PMCCNTR_EL0, HDFGRTR, PMCCNTR_EL0, 1), + SR_FGT(SYS_PMCCFILTR_EL0, HDFGRTR, PMCCFILTR_EL0, 1), + SR_FGT(SYS_PMEVTYPERn_EL0(0), HDFGRTR, PMEVTYPERn_EL0, 1), + SR_FGT(SYS_PMEVTYPERn_EL0(1), HDFGRTR, PMEVTYPERn_EL0, 1), + SR_FGT(SYS_PMEVTYPERn_EL0(2), HDFGRTR, PMEVTYPERn_EL0, 1), + SR_FGT(SYS_PMEVTYPERn_EL0(3), HDFGRTR, PMEVTYPERn_EL0, 1), + SR_FGT(SYS_PMEVTYPERn_EL0(4), HDFGRTR, PMEVTYPERn_EL0, 1), + SR_FGT(SYS_PMEVTYPERn_EL0(5), HDFGRTR, PMEVTYPERn_EL0, 1), + SR_FGT(SYS_PMEVTYPERn_EL0(6), HDFGRTR, PMEVTYPERn_EL0, 1), + SR_FGT(SYS_PMEVTYPERn_EL0(7), HDFGRTR, PMEVTYPERn_EL0, 1), + SR_FGT(SYS_PMEVTYPERn_EL0(8), HDFGRTR, PMEVTYPERn_EL0, 1), + SR_FGT(SYS_PMEVTYPERn_EL0(9), HDFGRTR, PMEVTYPERn_EL0, 1), + SR_FGT(SYS_PMEVTYPERn_EL0(10), HDFGRTR, PMEVTYPERn_EL0, 1), + SR_FGT(SYS_PMEVTYPERn_EL0(11), HDFGRTR, PMEVTYPERn_EL0, 1), + SR_FGT(SYS_PMEVTYPERn_EL0(12), HDFGRTR, PMEVTYPERn_EL0, 1), + SR_FGT(SYS_PMEVTYPERn_EL0(13), HDFGRTR, PMEVTYPERn_EL0, 1), + SR_FGT(SYS_PMEVTYPERn_EL0(14), HDFGRTR, PMEVTYPERn_EL0, 1), + SR_FGT(SYS_PMEVTYPERn_EL0(15), HDFGRTR, PMEVTYPERn_EL0, 1), + SR_FGT(SYS_PMEVTYPERn_EL0(16), HDFGRTR, PMEVTYPERn_EL0, 1), + SR_FGT(SYS_PMEVTYPERn_EL0(17), HDFGRTR, PMEVTYPERn_EL0, 1), + SR_FGT(SYS_PMEVTYPERn_EL0(18), HDFGRTR, PMEVTYPERn_EL0, 1), + SR_FGT(SYS_PMEVTYPERn_EL0(19), HDFGRTR, PMEVTYPERn_EL0, 1), + SR_FGT(SYS_PMEVTYPERn_EL0(20), HDFGRTR, PMEVTYPERn_EL0, 1), + SR_FGT(SYS_PMEVTYPERn_EL0(21), HDFGRTR, PMEVTYPERn_EL0, 1), + SR_FGT(SYS_PMEVTYPERn_EL0(22), HDFGRTR, PMEVTYPERn_EL0, 1), + SR_FGT(SYS_PMEVTYPERn_EL0(23), HDFGRTR, PMEVTYPERn_EL0, 1), + SR_FGT(SYS_PMEVTYPERn_EL0(24), HDFGRTR, PMEVTYPERn_EL0, 1), + SR_FGT(SYS_PMEVTYPERn_EL0(25), HDFGRTR, PMEVTYPERn_EL0, 1), + SR_FGT(SYS_PMEVTYPERn_EL0(26), HDFGRTR, PMEVTYPERn_EL0, 1), + SR_FGT(SYS_PMEVTYPERn_EL0(27), HDFGRTR, PMEVTYPERn_EL0, 1), + SR_FGT(SYS_PMEVTYPERn_EL0(28), HDFGRTR, PMEVTYPERn_EL0, 1), + SR_FGT(SYS_PMEVTYPERn_EL0(29), HDFGRTR, PMEVTYPERn_EL0, 1), + SR_FGT(SYS_PMEVTYPERn_EL0(30), HDFGRTR, PMEVTYPERn_EL0, 1), + SR_FGT(SYS_PMEVCNTRn_EL0(0), HDFGRTR, PMEVCNTRn_EL0, 1), + SR_FGT(SYS_PMEVCNTRn_EL0(1), HDFGRTR, PMEVCNTRn_EL0, 1), + SR_FGT(SYS_PMEVCNTRn_EL0(2), HDFGRTR, PMEVCNTRn_EL0, 1), + SR_FGT(SYS_PMEVCNTRn_EL0(3), HDFGRTR, PMEVCNTRn_EL0, 1), + SR_FGT(SYS_PMEVCNTRn_EL0(4), HDFGRTR, PMEVCNTRn_EL0, 1), + SR_FGT(SYS_PMEVCNTRn_EL0(5), HDFGRTR, PMEVCNTRn_EL0, 1), + SR_FGT(SYS_PMEVCNTRn_EL0(6), HDFGRTR, PMEVCNTRn_EL0, 1), + SR_FGT(SYS_PMEVCNTRn_EL0(7), HDFGRTR, PMEVCNTRn_EL0, 1), + SR_FGT(SYS_PMEVCNTRn_EL0(8), HDFGRTR, PMEVCNTRn_EL0, 1), + SR_FGT(SYS_PMEVCNTRn_EL0(9), HDFGRTR, PMEVCNTRn_EL0, 1), + SR_FGT(SYS_PMEVCNTRn_EL0(10), HDFGRTR, PMEVCNTRn_EL0, 1), + SR_FGT(SYS_PMEVCNTRn_EL0(11), HDFGRTR, PMEVCNTRn_EL0, 1), + SR_FGT(SYS_PMEVCNTRn_EL0(12), HDFGRTR, PMEVCNTRn_EL0, 1), + SR_FGT(SYS_PMEVCNTRn_EL0(13), HDFGRTR, PMEVCNTRn_EL0, 1), + SR_FGT(SYS_PMEVCNTRn_EL0(14), HDFGRTR, PMEVCNTRn_EL0, 1), + SR_FGT(SYS_PMEVCNTRn_EL0(15), HDFGRTR, PMEVCNTRn_EL0, 1), + SR_FGT(SYS_PMEVCNTRn_EL0(16), HDFGRTR, PMEVCNTRn_EL0, 1), + SR_FGT(SYS_PMEVCNTRn_EL0(17), HDFGRTR, PMEVCNTRn_EL0, 1), + SR_FGT(SYS_PMEVCNTRn_EL0(18), HDFGRTR, PMEVCNTRn_EL0, 1), + SR_FGT(SYS_PMEVCNTRn_EL0(19), HDFGRTR, PMEVCNTRn_EL0, 1), + SR_FGT(SYS_PMEVCNTRn_EL0(20), HDFGRTR, PMEVCNTRn_EL0, 1), + SR_FGT(SYS_PMEVCNTRn_EL0(21), HDFGRTR, PMEVCNTRn_EL0, 1), + SR_FGT(SYS_PMEVCNTRn_EL0(22), HDFGRTR, PMEVCNTRn_EL0, 1), + SR_FGT(SYS_PMEVCNTRn_EL0(23), HDFGRTR, PMEVCNTRn_EL0, 1), + SR_FGT(SYS_PMEVCNTRn_EL0(24), HDFGRTR, PMEVCNTRn_EL0, 1), + SR_FGT(SYS_PMEVCNTRn_EL0(25), HDFGRTR, PMEVCNTRn_EL0, 1), + SR_FGT(SYS_PMEVCNTRn_EL0(26), HDFGRTR, PMEVCNTRn_EL0, 1), + SR_FGT(SYS_PMEVCNTRn_EL0(27), HDFGRTR, PMEVCNTRn_EL0, 1), + SR_FGT(SYS_PMEVCNTRn_EL0(28), HDFGRTR, PMEVCNTRn_EL0, 1), + SR_FGT(SYS_PMEVCNTRn_EL0(29), HDFGRTR, PMEVCNTRn_EL0, 1), + SR_FGT(SYS_PMEVCNTRn_EL0(30), HDFGRTR, PMEVCNTRn_EL0, 1), + SR_FGT(SYS_OSDLR_EL1, HDFGRTR, OSDLR_EL1, 1), + SR_FGT(SYS_OSECCR_EL1, HDFGRTR, OSECCR_EL1, 1), + SR_FGT(SYS_OSLSR_EL1, HDFGRTR, OSLSR_EL1, 1), + SR_FGT(SYS_DBGPRCR_EL1, HDFGRTR, DBGPRCR_EL1, 1), + SR_FGT(SYS_DBGAUTHSTATUS_EL1, HDFGRTR, DBGAUTHSTATUS_EL1, 1), + SR_FGT(SYS_DBGCLAIMSET_EL1, HDFGRTR, DBGCLAIM, 1), + SR_FGT(SYS_DBGCLAIMCLR_EL1, HDFGRTR, DBGCLAIM, 1), + SR_FGT(SYS_MDSCR_EL1, HDFGRTR, MDSCR_EL1, 1), + /* + * The trap bits capture *64* debug registers per bit, but the + * ARM ARM only describes the encoding for the first 16, and + * we don't really support more than that anyway. + */ + SR_FGT(SYS_DBGWVRn_EL1(0), HDFGRTR, DBGWVRn_EL1, 1), + SR_FGT(SYS_DBGWVRn_EL1(1), HDFGRTR, DBGWVRn_EL1, 1), + SR_FGT(SYS_DBGWVRn_EL1(2), HDFGRTR, DBGWVRn_EL1, 1), + SR_FGT(SYS_DBGWVRn_EL1(3), HDFGRTR, DBGWVRn_EL1, 1), + SR_FGT(SYS_DBGWVRn_EL1(4), HDFGRTR, DBGWVRn_EL1, 1), + SR_FGT(SYS_DBGWVRn_EL1(5), HDFGRTR, DBGWVRn_EL1, 1), + SR_FGT(SYS_DBGWVRn_EL1(6), HDFGRTR, DBGWVRn_EL1, 1), + SR_FGT(SYS_DBGWVRn_EL1(7), HDFGRTR, DBGWVRn_EL1, 1), + SR_FGT(SYS_DBGWVRn_EL1(8), HDFGRTR, DBGWVRn_EL1, 1), + SR_FGT(SYS_DBGWVRn_EL1(9), HDFGRTR, DBGWVRn_EL1, 1), + SR_FGT(SYS_DBGWVRn_EL1(10), HDFGRTR, DBGWVRn_EL1, 1), + SR_FGT(SYS_DBGWVRn_EL1(11), HDFGRTR, DBGWVRn_EL1, 1), + SR_FGT(SYS_DBGWVRn_EL1(12), HDFGRTR, DBGWVRn_EL1, 1), + SR_FGT(SYS_DBGWVRn_EL1(13), HDFGRTR, DBGWVRn_EL1, 1), + SR_FGT(SYS_DBGWVRn_EL1(14), HDFGRTR, DBGWVRn_EL1, 1), + SR_FGT(SYS_DBGWVRn_EL1(15), HDFGRTR, DBGWVRn_EL1, 1), + SR_FGT(SYS_DBGWCRn_EL1(0), HDFGRTR, DBGWCRn_EL1, 1), + SR_FGT(SYS_DBGWCRn_EL1(1), HDFGRTR, DBGWCRn_EL1, 1), + SR_FGT(SYS_DBGWCRn_EL1(2), HDFGRTR, DBGWCRn_EL1, 1), + SR_FGT(SYS_DBGWCRn_EL1(3), HDFGRTR, DBGWCRn_EL1, 1), + SR_FGT(SYS_DBGWCRn_EL1(4), HDFGRTR, DBGWCRn_EL1, 1), + SR_FGT(SYS_DBGWCRn_EL1(5), HDFGRTR, DBGWCRn_EL1, 1), + SR_FGT(SYS_DBGWCRn_EL1(6), HDFGRTR, DBGWCRn_EL1, 1), + SR_FGT(SYS_DBGWCRn_EL1(7), HDFGRTR, DBGWCRn_EL1, 1), + SR_FGT(SYS_DBGWCRn_EL1(8), HDFGRTR, DBGWCRn_EL1, 1), + SR_FGT(SYS_DBGWCRn_EL1(9), HDFGRTR, DBGWCRn_EL1, 1), + SR_FGT(SYS_DBGWCRn_EL1(10), HDFGRTR, DBGWCRn_EL1, 1), + SR_FGT(SYS_DBGWCRn_EL1(11), HDFGRTR, DBGWCRn_EL1, 1), + SR_FGT(SYS_DBGWCRn_EL1(12), HDFGRTR, DBGWCRn_EL1, 1), + SR_FGT(SYS_DBGWCRn_EL1(13), HDFGRTR, DBGWCRn_EL1, 1), + SR_FGT(SYS_DBGWCRn_EL1(14), HDFGRTR, DBGWCRn_EL1, 1), + SR_FGT(SYS_DBGWCRn_EL1(15), HDFGRTR, DBGWCRn_EL1, 1), + SR_FGT(SYS_DBGBVRn_EL1(0), HDFGRTR, DBGBVRn_EL1, 1), + SR_FGT(SYS_DBGBVRn_EL1(1), HDFGRTR, DBGBVRn_EL1, 1), + SR_FGT(SYS_DBGBVRn_EL1(2), HDFGRTR, DBGBVRn_EL1, 1), + SR_FGT(SYS_DBGBVRn_EL1(3), HDFGRTR, DBGBVRn_EL1, 1), + SR_FGT(SYS_DBGBVRn_EL1(4), HDFGRTR, DBGBVRn_EL1, 1), + SR_FGT(SYS_DBGBVRn_EL1(5), HDFGRTR, DBGBVRn_EL1, 1), + SR_FGT(SYS_DBGBVRn_EL1(6), HDFGRTR, DBGBVRn_EL1, 1), + SR_FGT(SYS_DBGBVRn_EL1(7), HDFGRTR, DBGBVRn_EL1, 1), + SR_FGT(SYS_DBGBVRn_EL1(8), HDFGRTR, DBGBVRn_EL1, 1), + SR_FGT(SYS_DBGBVRn_EL1(9), HDFGRTR, DBGBVRn_EL1, 1), + SR_FGT(SYS_DBGBVRn_EL1(10), HDFGRTR, DBGBVRn_EL1, 1), + SR_FGT(SYS_DBGBVRn_EL1(11), HDFGRTR, DBGBVRn_EL1, 1), + SR_FGT(SYS_DBGBVRn_EL1(12), HDFGRTR, DBGBVRn_EL1, 1), + SR_FGT(SYS_DBGBVRn_EL1(13), HDFGRTR, DBGBVRn_EL1, 1), + SR_FGT(SYS_DBGBVRn_EL1(14), HDFGRTR, DBGBVRn_EL1, 1), + SR_FGT(SYS_DBGBVRn_EL1(15), HDFGRTR, DBGBVRn_EL1, 1), + SR_FGT(SYS_DBGBCRn_EL1(0), HDFGRTR, DBGBCRn_EL1, 1), + SR_FGT(SYS_DBGBCRn_EL1(1), HDFGRTR, DBGBCRn_EL1, 1), + SR_FGT(SYS_DBGBCRn_EL1(2), HDFGRTR, DBGBCRn_EL1, 1), + SR_FGT(SYS_DBGBCRn_EL1(3), HDFGRTR, DBGBCRn_EL1, 1), + SR_FGT(SYS_DBGBCRn_EL1(4), HDFGRTR, DBGBCRn_EL1, 1), + SR_FGT(SYS_DBGBCRn_EL1(5), HDFGRTR, DBGBCRn_EL1, 1), + SR_FGT(SYS_DBGBCRn_EL1(6), HDFGRTR, DBGBCRn_EL1, 1), + SR_FGT(SYS_DBGBCRn_EL1(7), HDFGRTR, DBGBCRn_EL1, 1), + SR_FGT(SYS_DBGBCRn_EL1(8), HDFGRTR, DBGBCRn_EL1, 1), + SR_FGT(SYS_DBGBCRn_EL1(9), HDFGRTR, DBGBCRn_EL1, 1), + SR_FGT(SYS_DBGBCRn_EL1(10), HDFGRTR, DBGBCRn_EL1, 1), + SR_FGT(SYS_DBGBCRn_EL1(11), HDFGRTR, DBGBCRn_EL1, 1), + SR_FGT(SYS_DBGBCRn_EL1(12), HDFGRTR, DBGBCRn_EL1, 1), + SR_FGT(SYS_DBGBCRn_EL1(13), HDFGRTR, DBGBCRn_EL1, 1), + SR_FGT(SYS_DBGBCRn_EL1(14), HDFGRTR, DBGBCRn_EL1, 1), + SR_FGT(SYS_DBGBCRn_EL1(15), HDFGRTR, DBGBCRn_EL1, 1), + /* + * HDFGWTR_EL2 + * + * Although HDFGRTR_EL2 and HDFGWTR_EL2 registers largely + * overlap in their bit assignment, there are a number of bits + * that are RES0 on one side, and an actual trap bit on the + * other. The policy chosen here is to describe all the + * read-side mappings, and only the write-side mappings that + * differ from the read side, and the trap handler will pick + * the correct shadow register based on the access type. + */ + SR_FGT(SYS_TRFCR_EL1, HDFGWTR, TRFCR_EL1, 1), + SR_FGT(SYS_TRCOSLAR, HDFGWTR, TRCOSLAR, 1), + SR_FGT(SYS_PMCR_EL0, HDFGWTR, PMCR_EL0, 1), + SR_FGT(SYS_PMSWINC_EL0, HDFGWTR, PMSWINC_EL0, 1), + SR_FGT(SYS_OSLAR_EL1, HDFGWTR, OSLAR_EL1, 1), +}; + +static union trap_config get_trap_config(u32 sysreg) +{ + return (union trap_config) { + .val = xa_to_value(xa_load(&sr_forward_xa, sysreg)), + }; +} + +static __init void print_nv_trap_error(const struct encoding_to_trap_config *tc, + const char *type, int err) +{ + kvm_err("%s line %d encoding range " + "(%d, %d, %d, %d, %d) - (%d, %d, %d, %d, %d) (err=%d)\n", + type, tc->line, + sys_reg_Op0(tc->encoding), sys_reg_Op1(tc->encoding), + sys_reg_CRn(tc->encoding), sys_reg_CRm(tc->encoding), + sys_reg_Op2(tc->encoding), + sys_reg_Op0(tc->end), sys_reg_Op1(tc->end), + sys_reg_CRn(tc->end), sys_reg_CRm(tc->end), + sys_reg_Op2(tc->end), + err); +} + +int __init populate_nv_trap_config(void) +{ + int ret = 0; + + BUILD_BUG_ON(sizeof(union trap_config) != sizeof(void *)); + BUILD_BUG_ON(__NR_CGT_GROUP_IDS__ > BIT(TC_CGT_BITS)); + BUILD_BUG_ON(__NR_FGT_GROUP_IDS__ > BIT(TC_FGT_BITS)); + BUILD_BUG_ON(__NR_FG_FILTER_IDS__ > BIT(TC_FGF_BITS)); + + for (int i = 0; i < ARRAY_SIZE(encoding_to_cgt); i++) { + const struct encoding_to_trap_config *cgt = &encoding_to_cgt[i]; + void *prev; + + if (cgt->tc.val & BIT(63)) { + kvm_err("CGT[%d] has MBZ bit set\n", i); + ret = -EINVAL; + } + + if (cgt->encoding != cgt->end) { + prev = xa_store_range(&sr_forward_xa, + cgt->encoding, cgt->end, + xa_mk_value(cgt->tc.val), + GFP_KERNEL); + } else { + prev = xa_store(&sr_forward_xa, cgt->encoding, + xa_mk_value(cgt->tc.val), GFP_KERNEL); + if (prev && !xa_is_err(prev)) { + ret = -EINVAL; + print_nv_trap_error(cgt, "Duplicate CGT", ret); + } + } + + if (xa_is_err(prev)) { + ret = xa_err(prev); + print_nv_trap_error(cgt, "Failed CGT insertion", ret); + } + } + + kvm_info("nv: %ld coarse grained trap handlers\n", + ARRAY_SIZE(encoding_to_cgt)); + + if (!cpus_have_final_cap(ARM64_HAS_FGT)) + goto check_mcb; + + for (int i = 0; i < ARRAY_SIZE(encoding_to_fgt); i++) { + const struct encoding_to_trap_config *fgt = &encoding_to_fgt[i]; + union trap_config tc; + + if (fgt->tc.fgt >= __NR_FGT_GROUP_IDS__) { + ret = -EINVAL; + print_nv_trap_error(fgt, "Invalid FGT", ret); + } + + tc = get_trap_config(fgt->encoding); + + if (tc.fgt) { + ret = -EINVAL; + print_nv_trap_error(fgt, "Duplicate FGT", ret); + } + + tc.val |= fgt->tc.val; + xa_store(&sr_forward_xa, fgt->encoding, + xa_mk_value(tc.val), GFP_KERNEL); + } + + kvm_info("nv: %ld fine grained trap handlers\n", + ARRAY_SIZE(encoding_to_fgt)); + +check_mcb: + for (int id = __MULTIPLE_CONTROL_BITS__; id < __COMPLEX_CONDITIONS__; id++) { + const enum cgt_group_id *cgids; + + cgids = coarse_control_combo[id - __MULTIPLE_CONTROL_BITS__]; + + for (int i = 0; cgids[i] != __RESERVED__; i++) { + if (cgids[i] >= __MULTIPLE_CONTROL_BITS__) { + kvm_err("Recursive MCB %d/%d\n", id, cgids[i]); + ret = -EINVAL; + } + } + } + + if (ret) + xa_destroy(&sr_forward_xa); + + return ret; +} + +static enum trap_behaviour get_behaviour(struct kvm_vcpu *vcpu, + const struct trap_bits *tb) +{ + enum trap_behaviour b = BEHAVE_HANDLE_LOCALLY; + u64 val; + + val = __vcpu_sys_reg(vcpu, tb->index); + if ((val & tb->mask) == tb->value) + b |= tb->behaviour; + + return b; +} + +static enum trap_behaviour __compute_trap_behaviour(struct kvm_vcpu *vcpu, + const enum cgt_group_id id, + enum trap_behaviour b) +{ + switch (id) { + const enum cgt_group_id *cgids; + + case __RESERVED__ ... __MULTIPLE_CONTROL_BITS__ - 1: + if (likely(id != __RESERVED__)) + b |= get_behaviour(vcpu, &coarse_trap_bits[id]); + break; + case __MULTIPLE_CONTROL_BITS__ ... __COMPLEX_CONDITIONS__ - 1: + /* Yes, this is recursive. Don't do anything stupid. */ + cgids = coarse_control_combo[id - __MULTIPLE_CONTROL_BITS__]; + for (int i = 0; cgids[i] != __RESERVED__; i++) + b |= __compute_trap_behaviour(vcpu, cgids[i], b); + break; + default: + if (ARRAY_SIZE(ccc)) + b |= ccc[id - __COMPLEX_CONDITIONS__](vcpu); + break; + } + + return b; +} + +static enum trap_behaviour compute_trap_behaviour(struct kvm_vcpu *vcpu, + const union trap_config tc) +{ + enum trap_behaviour b = BEHAVE_HANDLE_LOCALLY; + + return __compute_trap_behaviour(vcpu, tc.cgt, b); +} + +static bool check_fgt_bit(u64 val, const union trap_config tc) +{ + return ((val >> tc.bit) & 1) == tc.pol; +} + +#define sanitised_sys_reg(vcpu, reg) \ + ({ \ + u64 __val; \ + __val = __vcpu_sys_reg(vcpu, reg); \ + __val &= ~__ ## reg ## _RES0; \ + (__val); \ + }) + +bool __check_nv_sr_forward(struct kvm_vcpu *vcpu) +{ + union trap_config tc; + enum trap_behaviour b; + bool is_read; + u32 sysreg; + u64 esr, val; + + if (!vcpu_has_nv(vcpu) || is_hyp_ctxt(vcpu)) + return false; + + esr = kvm_vcpu_get_esr(vcpu); + sysreg = esr_sys64_to_sysreg(esr); + is_read = (esr & ESR_ELx_SYS64_ISS_DIR_MASK) == ESR_ELx_SYS64_ISS_DIR_READ; + + tc = get_trap_config(sysreg); + + /* + * A value of 0 for the whole entry means that we know nothing + * for this sysreg, and that it cannot be re-injected into the + * nested hypervisor. In this situation, let's cut it short. + * + * Note that ultimately, we could also make use of the xarray + * to store the index of the sysreg in the local descriptor + * array, avoiding another search... Hint, hint... + */ + if (!tc.val) + return false; + + switch ((enum fgt_group_id)tc.fgt) { + case __NO_FGT_GROUP__: + break; + + case HFGxTR_GROUP: + if (is_read) + val = sanitised_sys_reg(vcpu, HFGRTR_EL2); + else + val = sanitised_sys_reg(vcpu, HFGWTR_EL2); + break; + + case HDFGRTR_GROUP: + case HDFGWTR_GROUP: + if (is_read) + val = sanitised_sys_reg(vcpu, HDFGRTR_EL2); + else + val = sanitised_sys_reg(vcpu, HDFGWTR_EL2); + break; + + case HFGITR_GROUP: + val = sanitised_sys_reg(vcpu, HFGITR_EL2); + switch (tc.fgf) { + u64 tmp; + + case __NO_FGF__: + break; + + case HCRX_FGTnXS: + tmp = sanitised_sys_reg(vcpu, HCRX_EL2); + if (tmp & HCRX_EL2_FGTnXS) + tc.fgt = __NO_FGT_GROUP__; + } + break; + + case __NR_FGT_GROUP_IDS__: + /* Something is really wrong, bail out */ + WARN_ONCE(1, "__NR_FGT_GROUP_IDS__"); + return false; + } + + if (tc.fgt != __NO_FGT_GROUP__ && check_fgt_bit(val, tc)) + goto inject; + + b = compute_trap_behaviour(vcpu, tc); + + if (((b & BEHAVE_FORWARD_READ) && is_read) || + ((b & BEHAVE_FORWARD_WRITE) && !is_read)) + goto inject; + + return false; + +inject: + trace_kvm_forward_sysreg_trap(vcpu, sysreg, is_read); + + kvm_inject_nested_sync(vcpu, kvm_vcpu_get_esr(vcpu)); + return true; +} + +static u64 kvm_check_illegal_exception_return(struct kvm_vcpu *vcpu, u64 spsr) +{ + u64 mode = spsr & PSR_MODE_MASK; + + /* + * Possible causes for an Illegal Exception Return from EL2: + * - trying to return to EL3 + * - trying to return to an illegal M value + * - trying to return to a 32bit EL + * - trying to return to EL1 with HCR_EL2.TGE set + */ + if (mode == PSR_MODE_EL3t || mode == PSR_MODE_EL3h || + mode == 0b00001 || (mode & BIT(1)) || + (spsr & PSR_MODE32_BIT) || + (vcpu_el2_tge_is_set(vcpu) && (mode == PSR_MODE_EL1t || + mode == PSR_MODE_EL1h))) { + /* + * The guest is playing with our nerves. Preserve EL, SP, + * masks, flags from the existing PSTATE, and set IL. + * The HW will then generate an Illegal State Exception + * immediately after ERET. + */ + spsr = *vcpu_cpsr(vcpu); + + spsr &= (PSR_D_BIT | PSR_A_BIT | PSR_I_BIT | PSR_F_BIT | + PSR_N_BIT | PSR_Z_BIT | PSR_C_BIT | PSR_V_BIT | + PSR_MODE_MASK | PSR_MODE32_BIT); + spsr |= PSR_IL_BIT; + } + + return spsr; +} + +void kvm_emulate_nested_eret(struct kvm_vcpu *vcpu) +{ + u64 spsr, elr, mode; + bool direct_eret; + + /* + * Going through the whole put/load motions is a waste of time + * if this is a VHE guest hypervisor returning to its own + * userspace, or the hypervisor performing a local exception + * return. No need to save/restore registers, no need to + * switch S2 MMU. Just do the canonical ERET. + */ + spsr = vcpu_read_sys_reg(vcpu, SPSR_EL2); + spsr = kvm_check_illegal_exception_return(vcpu, spsr); + + mode = spsr & (PSR_MODE_MASK | PSR_MODE32_BIT); + + direct_eret = (mode == PSR_MODE_EL0t && + vcpu_el2_e2h_is_set(vcpu) && + vcpu_el2_tge_is_set(vcpu)); + direct_eret |= (mode == PSR_MODE_EL2h || mode == PSR_MODE_EL2t); + + if (direct_eret) { + *vcpu_pc(vcpu) = vcpu_read_sys_reg(vcpu, ELR_EL2); + *vcpu_cpsr(vcpu) = spsr; + trace_kvm_nested_eret(vcpu, *vcpu_pc(vcpu), spsr); + return; + } + + preempt_disable(); + kvm_arch_vcpu_put(vcpu); + + elr = __vcpu_sys_reg(vcpu, ELR_EL2); + + trace_kvm_nested_eret(vcpu, elr, spsr); + + /* + * Note that the current exception level is always the virtual EL2, + * since we set HCR_EL2.NV bit only when entering the virtual EL2. + */ + *vcpu_pc(vcpu) = elr; + *vcpu_cpsr(vcpu) = spsr; + + kvm_arch_vcpu_load(vcpu, smp_processor_id()); + preempt_enable(); +} + +static void kvm_inject_el2_exception(struct kvm_vcpu *vcpu, u64 esr_el2, + enum exception_type type) +{ + trace_kvm_inject_nested_exception(vcpu, esr_el2, type); + + switch (type) { + case except_type_sync: + kvm_pend_exception(vcpu, EXCEPT_AA64_EL2_SYNC); + vcpu_write_sys_reg(vcpu, esr_el2, ESR_EL2); + break; + case except_type_irq: + kvm_pend_exception(vcpu, EXCEPT_AA64_EL2_IRQ); + break; + default: + WARN_ONCE(1, "Unsupported EL2 exception injection %d\n", type); + } +} + +/* + * Emulate taking an exception to EL2. + * See ARM ARM J8.1.2 AArch64.TakeException() + */ +static int kvm_inject_nested(struct kvm_vcpu *vcpu, u64 esr_el2, + enum exception_type type) +{ + u64 pstate, mode; + bool direct_inject; + + if (!vcpu_has_nv(vcpu)) { + kvm_err("Unexpected call to %s for the non-nesting configuration\n", + __func__); + return -EINVAL; + } + + /* + * As for ERET, we can avoid doing too much on the injection path by + * checking that we either took the exception from a VHE host + * userspace or from vEL2. In these cases, there is no change in + * translation regime (or anything else), so let's do as little as + * possible. + */ + pstate = *vcpu_cpsr(vcpu); + mode = pstate & (PSR_MODE_MASK | PSR_MODE32_BIT); + + direct_inject = (mode == PSR_MODE_EL0t && + vcpu_el2_e2h_is_set(vcpu) && + vcpu_el2_tge_is_set(vcpu)); + direct_inject |= (mode == PSR_MODE_EL2h || mode == PSR_MODE_EL2t); + + if (direct_inject) { + kvm_inject_el2_exception(vcpu, esr_el2, type); + return 1; + } + + preempt_disable(); + + /* + * We may have an exception or PC update in the EL0/EL1 context. + * Commit it before entering EL2. + */ + __kvm_adjust_pc(vcpu); + + kvm_arch_vcpu_put(vcpu); + + kvm_inject_el2_exception(vcpu, esr_el2, type); + + /* + * A hard requirement is that a switch between EL1 and EL2 + * contexts has to happen between a put/load, so that we can + * pick the correct timer and interrupt configuration, among + * other things. + * + * Make sure the exception actually took place before we load + * the new context. + */ + __kvm_adjust_pc(vcpu); + + kvm_arch_vcpu_load(vcpu, smp_processor_id()); + preempt_enable(); + + return 1; +} + +int kvm_inject_nested_sync(struct kvm_vcpu *vcpu, u64 esr_el2) +{ + return kvm_inject_nested(vcpu, esr_el2, except_type_sync); +} + +int kvm_inject_nested_irq(struct kvm_vcpu *vcpu) +{ + /* + * Do not inject an irq if the: + * - Current exception level is EL2, and + * - virtual HCR_EL2.TGE == 0 + * - virtual HCR_EL2.IMO == 0 + * + * See Table D1-17 "Physical interrupt target and masking when EL3 is + * not implemented and EL2 is implemented" in ARM DDI 0487C.a. + */ + + if (vcpu_is_el2(vcpu) && !vcpu_el2_tge_is_set(vcpu) && + !(__vcpu_sys_reg(vcpu, HCR_EL2) & HCR_IMO)) + return 1; + + /* esr_el2 value doesn't matter for exits due to irqs. */ + return kvm_inject_nested(vcpu, 0, except_type_irq); +} diff --git a/arch/arm64/kvm/fpsimd.c b/arch/arm64/kvm/fpsimd.c new file mode 100644 index 0000000000..8c1d0d4853 --- /dev/null +++ b/arch/arm64/kvm/fpsimd.c @@ -0,0 +1,224 @@ +// SPDX-License-Identifier: GPL-2.0 +/* + * arch/arm64/kvm/fpsimd.c: Guest/host FPSIMD context coordination helpers + * + * Copyright 2018 Arm Limited + * Author: Dave Martin <Dave.Martin@arm.com> + */ +#include <linux/irqflags.h> +#include <linux/sched.h> +#include <linux/kvm_host.h> +#include <asm/fpsimd.h> +#include <asm/kvm_asm.h> +#include <asm/kvm_hyp.h> +#include <asm/kvm_mmu.h> +#include <asm/sysreg.h> + +void kvm_vcpu_unshare_task_fp(struct kvm_vcpu *vcpu) +{ + struct task_struct *p = vcpu->arch.parent_task; + struct user_fpsimd_state *fpsimd; + + if (!is_protected_kvm_enabled() || !p) + return; + + fpsimd = &p->thread.uw.fpsimd_state; + kvm_unshare_hyp(fpsimd, fpsimd + 1); + put_task_struct(p); +} + +/* + * Called on entry to KVM_RUN unless this vcpu previously ran at least + * once and the most recent prior KVM_RUN for this vcpu was called from + * the same task as current (highly likely). + * + * This is guaranteed to execute before kvm_arch_vcpu_load_fp(vcpu), + * such that on entering hyp the relevant parts of current are already + * mapped. + */ +int kvm_arch_vcpu_run_map_fp(struct kvm_vcpu *vcpu) +{ + int ret; + + struct user_fpsimd_state *fpsimd = ¤t->thread.uw.fpsimd_state; + + kvm_vcpu_unshare_task_fp(vcpu); + + /* Make sure the host task fpsimd state is visible to hyp: */ + ret = kvm_share_hyp(fpsimd, fpsimd + 1); + if (ret) + return ret; + + vcpu->arch.host_fpsimd_state = kern_hyp_va(fpsimd); + + /* + * We need to keep current's task_struct pinned until its data has been + * unshared with the hypervisor to make sure it is not re-used by the + * kernel and donated to someone else while already shared -- see + * kvm_vcpu_unshare_task_fp() for the matching put_task_struct(). + */ + if (is_protected_kvm_enabled()) { + get_task_struct(current); + vcpu->arch.parent_task = current; + } + + return 0; +} + +/* + * Prepare vcpu for saving the host's FPSIMD state and loading the guest's. + * The actual loading is done by the FPSIMD access trap taken to hyp. + * + * Here, we just set the correct metadata to indicate that the FPSIMD + * state in the cpu regs (if any) belongs to current on the host. + */ +void kvm_arch_vcpu_load_fp(struct kvm_vcpu *vcpu) +{ + BUG_ON(!current->mm); + + if (!system_supports_fpsimd()) + return; + + fpsimd_kvm_prepare(); + + /* + * We will check TIF_FOREIGN_FPSTATE just before entering the + * guest in kvm_arch_vcpu_ctxflush_fp() and override this to + * FP_STATE_FREE if the flag set. + */ + vcpu->arch.fp_state = FP_STATE_HOST_OWNED; + + vcpu_clear_flag(vcpu, HOST_SVE_ENABLED); + if (read_sysreg(cpacr_el1) & CPACR_EL1_ZEN_EL0EN) + vcpu_set_flag(vcpu, HOST_SVE_ENABLED); + + if (system_supports_sme()) { + vcpu_clear_flag(vcpu, HOST_SME_ENABLED); + if (read_sysreg(cpacr_el1) & CPACR_EL1_SMEN_EL0EN) + vcpu_set_flag(vcpu, HOST_SME_ENABLED); + + /* + * If PSTATE.SM is enabled then save any pending FP + * state and disable PSTATE.SM. If we leave PSTATE.SM + * enabled and the guest does not enable SME via + * CPACR_EL1.SMEN then operations that should be valid + * may generate SME traps from EL1 to EL1 which we + * can't intercept and which would confuse the guest. + * + * Do the same for PSTATE.ZA in the case where there + * is state in the registers which has not already + * been saved, this is very unlikely to happen. + */ + if (read_sysreg_s(SYS_SVCR) & (SVCR_SM_MASK | SVCR_ZA_MASK)) { + vcpu->arch.fp_state = FP_STATE_FREE; + fpsimd_save_and_flush_cpu_state(); + } + } +} + +/* + * Called just before entering the guest once we are no longer preemptable + * and interrupts are disabled. If we have managed to run anything using + * FP while we were preemptible (such as off the back of an interrupt), + * then neither the host nor the guest own the FP hardware (and it was the + * responsibility of the code that used FP to save the existing state). + */ +void kvm_arch_vcpu_ctxflush_fp(struct kvm_vcpu *vcpu) +{ + if (test_thread_flag(TIF_FOREIGN_FPSTATE)) + vcpu->arch.fp_state = FP_STATE_FREE; +} + +/* + * Called just after exiting the guest. If the guest FPSIMD state + * was loaded, update the host's context tracking data mark the CPU + * FPSIMD regs as dirty and belonging to vcpu so that they will be + * written back if the kernel clobbers them due to kernel-mode NEON + * before re-entry into the guest. + */ +void kvm_arch_vcpu_ctxsync_fp(struct kvm_vcpu *vcpu) +{ + struct cpu_fp_state fp_state; + + WARN_ON_ONCE(!irqs_disabled()); + + if (vcpu->arch.fp_state == FP_STATE_GUEST_OWNED) { + + /* + * Currently we do not support SME guests so SVCR is + * always 0 and we just need a variable to point to. + */ + fp_state.st = &vcpu->arch.ctxt.fp_regs; + fp_state.sve_state = vcpu->arch.sve_state; + fp_state.sve_vl = vcpu->arch.sve_max_vl; + fp_state.sme_state = NULL; + fp_state.svcr = &vcpu->arch.svcr; + fp_state.fp_type = &vcpu->arch.fp_type; + + if (vcpu_has_sve(vcpu)) + fp_state.to_save = FP_STATE_SVE; + else + fp_state.to_save = FP_STATE_FPSIMD; + + fpsimd_bind_state_to_cpu(&fp_state); + + clear_thread_flag(TIF_FOREIGN_FPSTATE); + } +} + +/* + * Write back the vcpu FPSIMD regs if they are dirty, and invalidate the + * cpu FPSIMD regs so that they can't be spuriously reused if this vcpu + * disappears and another task or vcpu appears that recycles the same + * struct fpsimd_state. + */ +void kvm_arch_vcpu_put_fp(struct kvm_vcpu *vcpu) +{ + unsigned long flags; + + local_irq_save(flags); + + /* + * If we have VHE then the Hyp code will reset CPACR_EL1 to + * the default value and we need to reenable SME. + */ + if (has_vhe() && system_supports_sme()) { + /* Also restore EL0 state seen on entry */ + if (vcpu_get_flag(vcpu, HOST_SME_ENABLED)) + sysreg_clear_set(CPACR_EL1, 0, + CPACR_EL1_SMEN_EL0EN | + CPACR_EL1_SMEN_EL1EN); + else + sysreg_clear_set(CPACR_EL1, + CPACR_EL1_SMEN_EL0EN, + CPACR_EL1_SMEN_EL1EN); + isb(); + } + + if (vcpu->arch.fp_state == FP_STATE_GUEST_OWNED) { + if (vcpu_has_sve(vcpu)) { + __vcpu_sys_reg(vcpu, ZCR_EL1) = read_sysreg_el1(SYS_ZCR); + + /* Restore the VL that was saved when bound to the CPU */ + if (!has_vhe()) + sve_cond_update_zcr_vq(vcpu_sve_max_vq(vcpu) - 1, + SYS_ZCR_EL1); + } + + fpsimd_save_and_flush_cpu_state(); + } else if (has_vhe() && system_supports_sve()) { + /* + * The FPSIMD/SVE state in the CPU has not been touched, and we + * have SVE (and VHE): CPACR_EL1 (alias CPTR_EL2) has been + * reset by kvm_reset_cptr_el2() in the Hyp code, disabling SVE + * for EL0. To avoid spurious traps, restore the trap state + * seen by kvm_arch_vcpu_load_fp(): + */ + if (vcpu_get_flag(vcpu, HOST_SVE_ENABLED)) + sysreg_clear_set(CPACR_EL1, 0, CPACR_EL1_ZEN_EL0EN); + else + sysreg_clear_set(CPACR_EL1, CPACR_EL1_ZEN_EL0EN, 0); + } + + local_irq_restore(flags); +} diff --git a/arch/arm64/kvm/guest.c b/arch/arm64/kvm/guest.c new file mode 100644 index 0000000000..a1710e5fa7 --- /dev/null +++ b/arch/arm64/kvm/guest.c @@ -0,0 +1,1106 @@ +// SPDX-License-Identifier: GPL-2.0-only +/* + * Copyright (C) 2012,2013 - ARM Ltd + * Author: Marc Zyngier <marc.zyngier@arm.com> + * + * Derived from arch/arm/kvm/guest.c: + * Copyright (C) 2012 - Virtual Open Systems and Columbia University + * Author: Christoffer Dall <c.dall@virtualopensystems.com> + */ + +#include <linux/bits.h> +#include <linux/errno.h> +#include <linux/err.h> +#include <linux/nospec.h> +#include <linux/kvm_host.h> +#include <linux/module.h> +#include <linux/stddef.h> +#include <linux/string.h> +#include <linux/vmalloc.h> +#include <linux/fs.h> +#include <kvm/arm_hypercalls.h> +#include <asm/cputype.h> +#include <linux/uaccess.h> +#include <asm/fpsimd.h> +#include <asm/kvm.h> +#include <asm/kvm_emulate.h> +#include <asm/kvm_nested.h> +#include <asm/sigcontext.h> + +#include "trace.h" + +const struct _kvm_stats_desc kvm_vm_stats_desc[] = { + KVM_GENERIC_VM_STATS() +}; + +const struct kvm_stats_header kvm_vm_stats_header = { + .name_size = KVM_STATS_NAME_SIZE, + .num_desc = ARRAY_SIZE(kvm_vm_stats_desc), + .id_offset = sizeof(struct kvm_stats_header), + .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE, + .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE + + sizeof(kvm_vm_stats_desc), +}; + +const struct _kvm_stats_desc kvm_vcpu_stats_desc[] = { + KVM_GENERIC_VCPU_STATS(), + STATS_DESC_COUNTER(VCPU, hvc_exit_stat), + STATS_DESC_COUNTER(VCPU, wfe_exit_stat), + STATS_DESC_COUNTER(VCPU, wfi_exit_stat), + STATS_DESC_COUNTER(VCPU, mmio_exit_user), + STATS_DESC_COUNTER(VCPU, mmio_exit_kernel), + STATS_DESC_COUNTER(VCPU, signal_exits), + STATS_DESC_COUNTER(VCPU, exits) +}; + +const struct kvm_stats_header kvm_vcpu_stats_header = { + .name_size = KVM_STATS_NAME_SIZE, + .num_desc = ARRAY_SIZE(kvm_vcpu_stats_desc), + .id_offset = sizeof(struct kvm_stats_header), + .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE, + .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE + + sizeof(kvm_vcpu_stats_desc), +}; + +static bool core_reg_offset_is_vreg(u64 off) +{ + return off >= KVM_REG_ARM_CORE_REG(fp_regs.vregs) && + off < KVM_REG_ARM_CORE_REG(fp_regs.fpsr); +} + +static u64 core_reg_offset_from_id(u64 id) +{ + return id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK | KVM_REG_ARM_CORE); +} + +static int core_reg_size_from_offset(const struct kvm_vcpu *vcpu, u64 off) +{ + int size; + + switch (off) { + case KVM_REG_ARM_CORE_REG(regs.regs[0]) ... + KVM_REG_ARM_CORE_REG(regs.regs[30]): + case KVM_REG_ARM_CORE_REG(regs.sp): + case KVM_REG_ARM_CORE_REG(regs.pc): + case KVM_REG_ARM_CORE_REG(regs.pstate): + case KVM_REG_ARM_CORE_REG(sp_el1): + case KVM_REG_ARM_CORE_REG(elr_el1): + case KVM_REG_ARM_CORE_REG(spsr[0]) ... + KVM_REG_ARM_CORE_REG(spsr[KVM_NR_SPSR - 1]): + size = sizeof(__u64); + break; + + case KVM_REG_ARM_CORE_REG(fp_regs.vregs[0]) ... + KVM_REG_ARM_CORE_REG(fp_regs.vregs[31]): + size = sizeof(__uint128_t); + break; + + case KVM_REG_ARM_CORE_REG(fp_regs.fpsr): + case KVM_REG_ARM_CORE_REG(fp_regs.fpcr): + size = sizeof(__u32); + break; + + default: + return -EINVAL; + } + + if (!IS_ALIGNED(off, size / sizeof(__u32))) + return -EINVAL; + + /* + * The KVM_REG_ARM64_SVE regs must be used instead of + * KVM_REG_ARM_CORE for accessing the FPSIMD V-registers on + * SVE-enabled vcpus: + */ + if (vcpu_has_sve(vcpu) && core_reg_offset_is_vreg(off)) + return -EINVAL; + + return size; +} + +static void *core_reg_addr(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg) +{ + u64 off = core_reg_offset_from_id(reg->id); + int size = core_reg_size_from_offset(vcpu, off); + + if (size < 0) + return NULL; + + if (KVM_REG_SIZE(reg->id) != size) + return NULL; + + switch (off) { + case KVM_REG_ARM_CORE_REG(regs.regs[0]) ... + KVM_REG_ARM_CORE_REG(regs.regs[30]): + off -= KVM_REG_ARM_CORE_REG(regs.regs[0]); + off /= 2; + return &vcpu->arch.ctxt.regs.regs[off]; + + case KVM_REG_ARM_CORE_REG(regs.sp): + return &vcpu->arch.ctxt.regs.sp; + + case KVM_REG_ARM_CORE_REG(regs.pc): + return &vcpu->arch.ctxt.regs.pc; + + case KVM_REG_ARM_CORE_REG(regs.pstate): + return &vcpu->arch.ctxt.regs.pstate; + + case KVM_REG_ARM_CORE_REG(sp_el1): + return __ctxt_sys_reg(&vcpu->arch.ctxt, SP_EL1); + + case KVM_REG_ARM_CORE_REG(elr_el1): + return __ctxt_sys_reg(&vcpu->arch.ctxt, ELR_EL1); + + case KVM_REG_ARM_CORE_REG(spsr[KVM_SPSR_EL1]): + return __ctxt_sys_reg(&vcpu->arch.ctxt, SPSR_EL1); + + case KVM_REG_ARM_CORE_REG(spsr[KVM_SPSR_ABT]): + return &vcpu->arch.ctxt.spsr_abt; + + case KVM_REG_ARM_CORE_REG(spsr[KVM_SPSR_UND]): + return &vcpu->arch.ctxt.spsr_und; + + case KVM_REG_ARM_CORE_REG(spsr[KVM_SPSR_IRQ]): + return &vcpu->arch.ctxt.spsr_irq; + + case KVM_REG_ARM_CORE_REG(spsr[KVM_SPSR_FIQ]): + return &vcpu->arch.ctxt.spsr_fiq; + + case KVM_REG_ARM_CORE_REG(fp_regs.vregs[0]) ... + KVM_REG_ARM_CORE_REG(fp_regs.vregs[31]): + off -= KVM_REG_ARM_CORE_REG(fp_regs.vregs[0]); + off /= 4; + return &vcpu->arch.ctxt.fp_regs.vregs[off]; + + case KVM_REG_ARM_CORE_REG(fp_regs.fpsr): + return &vcpu->arch.ctxt.fp_regs.fpsr; + + case KVM_REG_ARM_CORE_REG(fp_regs.fpcr): + return &vcpu->arch.ctxt.fp_regs.fpcr; + + default: + return NULL; + } +} + +static int get_core_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg) +{ + /* + * Because the kvm_regs structure is a mix of 32, 64 and + * 128bit fields, we index it as if it was a 32bit + * array. Hence below, nr_regs is the number of entries, and + * off the index in the "array". + */ + __u32 __user *uaddr = (__u32 __user *)(unsigned long)reg->addr; + int nr_regs = sizeof(struct kvm_regs) / sizeof(__u32); + void *addr; + u32 off; + + /* Our ID is an index into the kvm_regs struct. */ + off = core_reg_offset_from_id(reg->id); + if (off >= nr_regs || + (off + (KVM_REG_SIZE(reg->id) / sizeof(__u32))) >= nr_regs) + return -ENOENT; + + addr = core_reg_addr(vcpu, reg); + if (!addr) + return -EINVAL; + + if (copy_to_user(uaddr, addr, KVM_REG_SIZE(reg->id))) + return -EFAULT; + + return 0; +} + +static int set_core_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg) +{ + __u32 __user *uaddr = (__u32 __user *)(unsigned long)reg->addr; + int nr_regs = sizeof(struct kvm_regs) / sizeof(__u32); + __uint128_t tmp; + void *valp = &tmp, *addr; + u64 off; + int err = 0; + + /* Our ID is an index into the kvm_regs struct. */ + off = core_reg_offset_from_id(reg->id); + if (off >= nr_regs || + (off + (KVM_REG_SIZE(reg->id) / sizeof(__u32))) >= nr_regs) + return -ENOENT; + + addr = core_reg_addr(vcpu, reg); + if (!addr) + return -EINVAL; + + if (KVM_REG_SIZE(reg->id) > sizeof(tmp)) + return -EINVAL; + + if (copy_from_user(valp, uaddr, KVM_REG_SIZE(reg->id))) { + err = -EFAULT; + goto out; + } + + if (off == KVM_REG_ARM_CORE_REG(regs.pstate)) { + u64 mode = (*(u64 *)valp) & PSR_AA32_MODE_MASK; + switch (mode) { + case PSR_AA32_MODE_USR: + if (!kvm_supports_32bit_el0()) + return -EINVAL; + break; + case PSR_AA32_MODE_FIQ: + case PSR_AA32_MODE_IRQ: + case PSR_AA32_MODE_SVC: + case PSR_AA32_MODE_ABT: + case PSR_AA32_MODE_UND: + if (!vcpu_el1_is_32bit(vcpu)) + return -EINVAL; + break; + case PSR_MODE_EL2h: + case PSR_MODE_EL2t: + if (!vcpu_has_nv(vcpu)) + return -EINVAL; + fallthrough; + case PSR_MODE_EL0t: + case PSR_MODE_EL1t: + case PSR_MODE_EL1h: + if (vcpu_el1_is_32bit(vcpu)) + return -EINVAL; + break; + default: + err = -EINVAL; + goto out; + } + } + + memcpy(addr, valp, KVM_REG_SIZE(reg->id)); + + if (*vcpu_cpsr(vcpu) & PSR_MODE32_BIT) { + int i, nr_reg; + + switch (*vcpu_cpsr(vcpu)) { + /* + * Either we are dealing with user mode, and only the + * first 15 registers (+ PC) must be narrowed to 32bit. + * AArch32 r0-r14 conveniently map to AArch64 x0-x14. + */ + case PSR_AA32_MODE_USR: + case PSR_AA32_MODE_SYS: + nr_reg = 15; + break; + + /* + * Otherwise, this is a privileged mode, and *all* the + * registers must be narrowed to 32bit. + */ + default: + nr_reg = 31; + break; + } + + for (i = 0; i < nr_reg; i++) + vcpu_set_reg(vcpu, i, (u32)vcpu_get_reg(vcpu, i)); + + *vcpu_pc(vcpu) = (u32)*vcpu_pc(vcpu); + } +out: + return err; +} + +#define vq_word(vq) (((vq) - SVE_VQ_MIN) / 64) +#define vq_mask(vq) ((u64)1 << ((vq) - SVE_VQ_MIN) % 64) +#define vq_present(vqs, vq) (!!((vqs)[vq_word(vq)] & vq_mask(vq))) + +static int get_sve_vls(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg) +{ + unsigned int max_vq, vq; + u64 vqs[KVM_ARM64_SVE_VLS_WORDS]; + + if (!vcpu_has_sve(vcpu)) + return -ENOENT; + + if (WARN_ON(!sve_vl_valid(vcpu->arch.sve_max_vl))) + return -EINVAL; + + memset(vqs, 0, sizeof(vqs)); + + max_vq = vcpu_sve_max_vq(vcpu); + for (vq = SVE_VQ_MIN; vq <= max_vq; ++vq) + if (sve_vq_available(vq)) + vqs[vq_word(vq)] |= vq_mask(vq); + + if (copy_to_user((void __user *)reg->addr, vqs, sizeof(vqs))) + return -EFAULT; + + return 0; +} + +static int set_sve_vls(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg) +{ + unsigned int max_vq, vq; + u64 vqs[KVM_ARM64_SVE_VLS_WORDS]; + + if (!vcpu_has_sve(vcpu)) + return -ENOENT; + + if (kvm_arm_vcpu_sve_finalized(vcpu)) + return -EPERM; /* too late! */ + + if (WARN_ON(vcpu->arch.sve_state)) + return -EINVAL; + + if (copy_from_user(vqs, (const void __user *)reg->addr, sizeof(vqs))) + return -EFAULT; + + max_vq = 0; + for (vq = SVE_VQ_MIN; vq <= SVE_VQ_MAX; ++vq) + if (vq_present(vqs, vq)) + max_vq = vq; + + if (max_vq > sve_vq_from_vl(kvm_sve_max_vl)) + return -EINVAL; + + /* + * Vector lengths supported by the host can't currently be + * hidden from the guest individually: instead we can only set a + * maximum via ZCR_EL2.LEN. So, make sure the available vector + * lengths match the set requested exactly up to the requested + * maximum: + */ + for (vq = SVE_VQ_MIN; vq <= max_vq; ++vq) + if (vq_present(vqs, vq) != sve_vq_available(vq)) + return -EINVAL; + + /* Can't run with no vector lengths at all: */ + if (max_vq < SVE_VQ_MIN) + return -EINVAL; + + /* vcpu->arch.sve_state will be alloc'd by kvm_vcpu_finalize_sve() */ + vcpu->arch.sve_max_vl = sve_vl_from_vq(max_vq); + + return 0; +} + +#define SVE_REG_SLICE_SHIFT 0 +#define SVE_REG_SLICE_BITS 5 +#define SVE_REG_ID_SHIFT (SVE_REG_SLICE_SHIFT + SVE_REG_SLICE_BITS) +#define SVE_REG_ID_BITS 5 + +#define SVE_REG_SLICE_MASK \ + GENMASK(SVE_REG_SLICE_SHIFT + SVE_REG_SLICE_BITS - 1, \ + SVE_REG_SLICE_SHIFT) +#define SVE_REG_ID_MASK \ + GENMASK(SVE_REG_ID_SHIFT + SVE_REG_ID_BITS - 1, SVE_REG_ID_SHIFT) + +#define SVE_NUM_SLICES (1 << SVE_REG_SLICE_BITS) + +#define KVM_SVE_ZREG_SIZE KVM_REG_SIZE(KVM_REG_ARM64_SVE_ZREG(0, 0)) +#define KVM_SVE_PREG_SIZE KVM_REG_SIZE(KVM_REG_ARM64_SVE_PREG(0, 0)) + +/* + * Number of register slices required to cover each whole SVE register. + * NOTE: Only the first slice every exists, for now. + * If you are tempted to modify this, you must also rework sve_reg_to_region() + * to match: + */ +#define vcpu_sve_slices(vcpu) 1 + +/* Bounds of a single SVE register slice within vcpu->arch.sve_state */ +struct sve_state_reg_region { + unsigned int koffset; /* offset into sve_state in kernel memory */ + unsigned int klen; /* length in kernel memory */ + unsigned int upad; /* extra trailing padding in user memory */ +}; + +/* + * Validate SVE register ID and get sanitised bounds for user/kernel SVE + * register copy + */ +static int sve_reg_to_region(struct sve_state_reg_region *region, + struct kvm_vcpu *vcpu, + const struct kvm_one_reg *reg) +{ + /* reg ID ranges for Z- registers */ + const u64 zreg_id_min = KVM_REG_ARM64_SVE_ZREG(0, 0); + const u64 zreg_id_max = KVM_REG_ARM64_SVE_ZREG(SVE_NUM_ZREGS - 1, + SVE_NUM_SLICES - 1); + + /* reg ID ranges for P- registers and FFR (which are contiguous) */ + const u64 preg_id_min = KVM_REG_ARM64_SVE_PREG(0, 0); + const u64 preg_id_max = KVM_REG_ARM64_SVE_FFR(SVE_NUM_SLICES - 1); + + unsigned int vq; + unsigned int reg_num; + + unsigned int reqoffset, reqlen; /* User-requested offset and length */ + unsigned int maxlen; /* Maximum permitted length */ + + size_t sve_state_size; + + const u64 last_preg_id = KVM_REG_ARM64_SVE_PREG(SVE_NUM_PREGS - 1, + SVE_NUM_SLICES - 1); + + /* Verify that the P-regs and FFR really do have contiguous IDs: */ + BUILD_BUG_ON(KVM_REG_ARM64_SVE_FFR(0) != last_preg_id + 1); + + /* Verify that we match the UAPI header: */ + BUILD_BUG_ON(SVE_NUM_SLICES != KVM_ARM64_SVE_MAX_SLICES); + + reg_num = (reg->id & SVE_REG_ID_MASK) >> SVE_REG_ID_SHIFT; + + if (reg->id >= zreg_id_min && reg->id <= zreg_id_max) { + if (!vcpu_has_sve(vcpu) || (reg->id & SVE_REG_SLICE_MASK) > 0) + return -ENOENT; + + vq = vcpu_sve_max_vq(vcpu); + + reqoffset = SVE_SIG_ZREG_OFFSET(vq, reg_num) - + SVE_SIG_REGS_OFFSET; + reqlen = KVM_SVE_ZREG_SIZE; + maxlen = SVE_SIG_ZREG_SIZE(vq); + } else if (reg->id >= preg_id_min && reg->id <= preg_id_max) { + if (!vcpu_has_sve(vcpu) || (reg->id & SVE_REG_SLICE_MASK) > 0) + return -ENOENT; + + vq = vcpu_sve_max_vq(vcpu); + + reqoffset = SVE_SIG_PREG_OFFSET(vq, reg_num) - + SVE_SIG_REGS_OFFSET; + reqlen = KVM_SVE_PREG_SIZE; + maxlen = SVE_SIG_PREG_SIZE(vq); + } else { + return -EINVAL; + } + + sve_state_size = vcpu_sve_state_size(vcpu); + if (WARN_ON(!sve_state_size)) + return -EINVAL; + + region->koffset = array_index_nospec(reqoffset, sve_state_size); + region->klen = min(maxlen, reqlen); + region->upad = reqlen - region->klen; + + return 0; +} + +static int get_sve_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg) +{ + int ret; + struct sve_state_reg_region region; + char __user *uptr = (char __user *)reg->addr; + + /* Handle the KVM_REG_ARM64_SVE_VLS pseudo-reg as a special case: */ + if (reg->id == KVM_REG_ARM64_SVE_VLS) + return get_sve_vls(vcpu, reg); + + /* Try to interpret reg ID as an architectural SVE register... */ + ret = sve_reg_to_region(®ion, vcpu, reg); + if (ret) + return ret; + + if (!kvm_arm_vcpu_sve_finalized(vcpu)) + return -EPERM; + + if (copy_to_user(uptr, vcpu->arch.sve_state + region.koffset, + region.klen) || + clear_user(uptr + region.klen, region.upad)) + return -EFAULT; + + return 0; +} + +static int set_sve_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg) +{ + int ret; + struct sve_state_reg_region region; + const char __user *uptr = (const char __user *)reg->addr; + + /* Handle the KVM_REG_ARM64_SVE_VLS pseudo-reg as a special case: */ + if (reg->id == KVM_REG_ARM64_SVE_VLS) + return set_sve_vls(vcpu, reg); + + /* Try to interpret reg ID as an architectural SVE register... */ + ret = sve_reg_to_region(®ion, vcpu, reg); + if (ret) + return ret; + + if (!kvm_arm_vcpu_sve_finalized(vcpu)) + return -EPERM; + + if (copy_from_user(vcpu->arch.sve_state + region.koffset, uptr, + region.klen)) + return -EFAULT; + + return 0; +} + +int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) +{ + return -EINVAL; +} + +int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) +{ + return -EINVAL; +} + +static int copy_core_reg_indices(const struct kvm_vcpu *vcpu, + u64 __user *uindices) +{ + unsigned int i; + int n = 0; + + for (i = 0; i < sizeof(struct kvm_regs) / sizeof(__u32); i++) { + u64 reg = KVM_REG_ARM64 | KVM_REG_ARM_CORE | i; + int size = core_reg_size_from_offset(vcpu, i); + + if (size < 0) + continue; + + switch (size) { + case sizeof(__u32): + reg |= KVM_REG_SIZE_U32; + break; + + case sizeof(__u64): + reg |= KVM_REG_SIZE_U64; + break; + + case sizeof(__uint128_t): + reg |= KVM_REG_SIZE_U128; + break; + + default: + WARN_ON(1); + continue; + } + + if (uindices) { + if (put_user(reg, uindices)) + return -EFAULT; + uindices++; + } + + n++; + } + + return n; +} + +static unsigned long num_core_regs(const struct kvm_vcpu *vcpu) +{ + return copy_core_reg_indices(vcpu, NULL); +} + +static const u64 timer_reg_list[] = { + KVM_REG_ARM_TIMER_CTL, + KVM_REG_ARM_TIMER_CNT, + KVM_REG_ARM_TIMER_CVAL, + KVM_REG_ARM_PTIMER_CTL, + KVM_REG_ARM_PTIMER_CNT, + KVM_REG_ARM_PTIMER_CVAL, +}; + +#define NUM_TIMER_REGS ARRAY_SIZE(timer_reg_list) + +static bool is_timer_reg(u64 index) +{ + switch (index) { + case KVM_REG_ARM_TIMER_CTL: + case KVM_REG_ARM_TIMER_CNT: + case KVM_REG_ARM_TIMER_CVAL: + case KVM_REG_ARM_PTIMER_CTL: + case KVM_REG_ARM_PTIMER_CNT: + case KVM_REG_ARM_PTIMER_CVAL: + return true; + } + return false; +} + +static int copy_timer_indices(struct kvm_vcpu *vcpu, u64 __user *uindices) +{ + for (int i = 0; i < NUM_TIMER_REGS; i++) { + if (put_user(timer_reg_list[i], uindices)) + return -EFAULT; + uindices++; + } + + return 0; +} + +static int set_timer_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg) +{ + void __user *uaddr = (void __user *)(long)reg->addr; + u64 val; + int ret; + + ret = copy_from_user(&val, uaddr, KVM_REG_SIZE(reg->id)); + if (ret != 0) + return -EFAULT; + + return kvm_arm_timer_set_reg(vcpu, reg->id, val); +} + +static int get_timer_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg) +{ + void __user *uaddr = (void __user *)(long)reg->addr; + u64 val; + + val = kvm_arm_timer_get_reg(vcpu, reg->id); + return copy_to_user(uaddr, &val, KVM_REG_SIZE(reg->id)) ? -EFAULT : 0; +} + +static unsigned long num_sve_regs(const struct kvm_vcpu *vcpu) +{ + const unsigned int slices = vcpu_sve_slices(vcpu); + + if (!vcpu_has_sve(vcpu)) + return 0; + + /* Policed by KVM_GET_REG_LIST: */ + WARN_ON(!kvm_arm_vcpu_sve_finalized(vcpu)); + + return slices * (SVE_NUM_PREGS + SVE_NUM_ZREGS + 1 /* FFR */) + + 1; /* KVM_REG_ARM64_SVE_VLS */ +} + +static int copy_sve_reg_indices(const struct kvm_vcpu *vcpu, + u64 __user *uindices) +{ + const unsigned int slices = vcpu_sve_slices(vcpu); + u64 reg; + unsigned int i, n; + int num_regs = 0; + + if (!vcpu_has_sve(vcpu)) + return 0; + + /* Policed by KVM_GET_REG_LIST: */ + WARN_ON(!kvm_arm_vcpu_sve_finalized(vcpu)); + + /* + * Enumerate this first, so that userspace can save/restore in + * the order reported by KVM_GET_REG_LIST: + */ + reg = KVM_REG_ARM64_SVE_VLS; + if (put_user(reg, uindices++)) + return -EFAULT; + ++num_regs; + + for (i = 0; i < slices; i++) { + for (n = 0; n < SVE_NUM_ZREGS; n++) { + reg = KVM_REG_ARM64_SVE_ZREG(n, i); + if (put_user(reg, uindices++)) + return -EFAULT; + num_regs++; + } + + for (n = 0; n < SVE_NUM_PREGS; n++) { + reg = KVM_REG_ARM64_SVE_PREG(n, i); + if (put_user(reg, uindices++)) + return -EFAULT; + num_regs++; + } + + reg = KVM_REG_ARM64_SVE_FFR(i); + if (put_user(reg, uindices++)) + return -EFAULT; + num_regs++; + } + + return num_regs; +} + +/** + * kvm_arm_num_regs - how many registers do we present via KVM_GET_ONE_REG + * + * This is for all registers. + */ +unsigned long kvm_arm_num_regs(struct kvm_vcpu *vcpu) +{ + unsigned long res = 0; + + res += num_core_regs(vcpu); + res += num_sve_regs(vcpu); + res += kvm_arm_num_sys_reg_descs(vcpu); + res += kvm_arm_get_fw_num_regs(vcpu); + res += NUM_TIMER_REGS; + + return res; +} + +/** + * kvm_arm_copy_reg_indices - get indices of all registers. + * + * We do core registers right here, then we append system regs. + */ +int kvm_arm_copy_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices) +{ + int ret; + + ret = copy_core_reg_indices(vcpu, uindices); + if (ret < 0) + return ret; + uindices += ret; + + ret = copy_sve_reg_indices(vcpu, uindices); + if (ret < 0) + return ret; + uindices += ret; + + ret = kvm_arm_copy_fw_reg_indices(vcpu, uindices); + if (ret < 0) + return ret; + uindices += kvm_arm_get_fw_num_regs(vcpu); + + ret = copy_timer_indices(vcpu, uindices); + if (ret < 0) + return ret; + uindices += NUM_TIMER_REGS; + + return kvm_arm_copy_sys_reg_indices(vcpu, uindices); +} + +int kvm_arm_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg) +{ + /* We currently use nothing arch-specific in upper 32 bits */ + if ((reg->id & ~KVM_REG_SIZE_MASK) >> 32 != KVM_REG_ARM64 >> 32) + return -EINVAL; + + switch (reg->id & KVM_REG_ARM_COPROC_MASK) { + case KVM_REG_ARM_CORE: return get_core_reg(vcpu, reg); + case KVM_REG_ARM_FW: + case KVM_REG_ARM_FW_FEAT_BMAP: + return kvm_arm_get_fw_reg(vcpu, reg); + case KVM_REG_ARM64_SVE: return get_sve_reg(vcpu, reg); + } + + if (is_timer_reg(reg->id)) + return get_timer_reg(vcpu, reg); + + return kvm_arm_sys_reg_get_reg(vcpu, reg); +} + +int kvm_arm_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg) +{ + /* We currently use nothing arch-specific in upper 32 bits */ + if ((reg->id & ~KVM_REG_SIZE_MASK) >> 32 != KVM_REG_ARM64 >> 32) + return -EINVAL; + + switch (reg->id & KVM_REG_ARM_COPROC_MASK) { + case KVM_REG_ARM_CORE: return set_core_reg(vcpu, reg); + case KVM_REG_ARM_FW: + case KVM_REG_ARM_FW_FEAT_BMAP: + return kvm_arm_set_fw_reg(vcpu, reg); + case KVM_REG_ARM64_SVE: return set_sve_reg(vcpu, reg); + } + + if (is_timer_reg(reg->id)) + return set_timer_reg(vcpu, reg); + + return kvm_arm_sys_reg_set_reg(vcpu, reg); +} + +int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu, + struct kvm_sregs *sregs) +{ + return -EINVAL; +} + +int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu, + struct kvm_sregs *sregs) +{ + return -EINVAL; +} + +int __kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu, + struct kvm_vcpu_events *events) +{ + events->exception.serror_pending = !!(vcpu->arch.hcr_el2 & HCR_VSE); + events->exception.serror_has_esr = cpus_have_const_cap(ARM64_HAS_RAS_EXTN); + + if (events->exception.serror_pending && events->exception.serror_has_esr) + events->exception.serror_esr = vcpu_get_vsesr(vcpu); + + /* + * We never return a pending ext_dabt here because we deliver it to + * the virtual CPU directly when setting the event and it's no longer + * 'pending' at this point. + */ + + return 0; +} + +int __kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu, + struct kvm_vcpu_events *events) +{ + bool serror_pending = events->exception.serror_pending; + bool has_esr = events->exception.serror_has_esr; + bool ext_dabt_pending = events->exception.ext_dabt_pending; + + if (serror_pending && has_esr) { + if (!cpus_have_const_cap(ARM64_HAS_RAS_EXTN)) + return -EINVAL; + + if (!((events->exception.serror_esr) & ~ESR_ELx_ISS_MASK)) + kvm_set_sei_esr(vcpu, events->exception.serror_esr); + else + return -EINVAL; + } else if (serror_pending) { + kvm_inject_vabt(vcpu); + } + + if (ext_dabt_pending) + kvm_inject_dabt(vcpu, kvm_vcpu_get_hfar(vcpu)); + + return 0; +} + +u32 __attribute_const__ kvm_target_cpu(void) +{ + unsigned long implementor = read_cpuid_implementor(); + unsigned long part_number = read_cpuid_part_number(); + + switch (implementor) { + case ARM_CPU_IMP_ARM: + switch (part_number) { + case ARM_CPU_PART_AEM_V8: + return KVM_ARM_TARGET_AEM_V8; + case ARM_CPU_PART_FOUNDATION: + return KVM_ARM_TARGET_FOUNDATION_V8; + case ARM_CPU_PART_CORTEX_A53: + return KVM_ARM_TARGET_CORTEX_A53; + case ARM_CPU_PART_CORTEX_A57: + return KVM_ARM_TARGET_CORTEX_A57; + } + break; + case ARM_CPU_IMP_APM: + switch (part_number) { + case APM_CPU_PART_XGENE: + return KVM_ARM_TARGET_XGENE_POTENZA; + } + break; + } + + /* Return a default generic target */ + return KVM_ARM_TARGET_GENERIC_V8; +} + +int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) +{ + return -EINVAL; +} + +int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) +{ + return -EINVAL; +} + +int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu, + struct kvm_translation *tr) +{ + return -EINVAL; +} + +/** + * kvm_arch_vcpu_ioctl_set_guest_debug - set up guest debugging + * @kvm: pointer to the KVM struct + * @kvm_guest_debug: the ioctl data buffer + * + * This sets up and enables the VM for guest debugging. Userspace + * passes in a control flag to enable different debug types and + * potentially other architecture specific information in the rest of + * the structure. + */ +int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu, + struct kvm_guest_debug *dbg) +{ + int ret = 0; + + trace_kvm_set_guest_debug(vcpu, dbg->control); + + if (dbg->control & ~KVM_GUESTDBG_VALID_MASK) { + ret = -EINVAL; + goto out; + } + + if (dbg->control & KVM_GUESTDBG_ENABLE) { + vcpu->guest_debug = dbg->control; + + /* Hardware assisted Break and Watch points */ + if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW) { + vcpu->arch.external_debug_state = dbg->arch; + } + + } else { + /* If not enabled clear all flags */ + vcpu->guest_debug = 0; + vcpu_clear_flag(vcpu, DBG_SS_ACTIVE_PENDING); + } + +out: + return ret; +} + +int kvm_arm_vcpu_arch_set_attr(struct kvm_vcpu *vcpu, + struct kvm_device_attr *attr) +{ + int ret; + + switch (attr->group) { + case KVM_ARM_VCPU_PMU_V3_CTRL: + mutex_lock(&vcpu->kvm->arch.config_lock); + ret = kvm_arm_pmu_v3_set_attr(vcpu, attr); + mutex_unlock(&vcpu->kvm->arch.config_lock); + break; + case KVM_ARM_VCPU_TIMER_CTRL: + ret = kvm_arm_timer_set_attr(vcpu, attr); + break; + case KVM_ARM_VCPU_PVTIME_CTRL: + ret = kvm_arm_pvtime_set_attr(vcpu, attr); + break; + default: + ret = -ENXIO; + break; + } + + return ret; +} + +int kvm_arm_vcpu_arch_get_attr(struct kvm_vcpu *vcpu, + struct kvm_device_attr *attr) +{ + int ret; + + switch (attr->group) { + case KVM_ARM_VCPU_PMU_V3_CTRL: + ret = kvm_arm_pmu_v3_get_attr(vcpu, attr); + break; + case KVM_ARM_VCPU_TIMER_CTRL: + ret = kvm_arm_timer_get_attr(vcpu, attr); + break; + case KVM_ARM_VCPU_PVTIME_CTRL: + ret = kvm_arm_pvtime_get_attr(vcpu, attr); + break; + default: + ret = -ENXIO; + break; + } + + return ret; +} + +int kvm_arm_vcpu_arch_has_attr(struct kvm_vcpu *vcpu, + struct kvm_device_attr *attr) +{ + int ret; + + switch (attr->group) { + case KVM_ARM_VCPU_PMU_V3_CTRL: + ret = kvm_arm_pmu_v3_has_attr(vcpu, attr); + break; + case KVM_ARM_VCPU_TIMER_CTRL: + ret = kvm_arm_timer_has_attr(vcpu, attr); + break; + case KVM_ARM_VCPU_PVTIME_CTRL: + ret = kvm_arm_pvtime_has_attr(vcpu, attr); + break; + default: + ret = -ENXIO; + break; + } + + return ret; +} + +int kvm_vm_ioctl_mte_copy_tags(struct kvm *kvm, + struct kvm_arm_copy_mte_tags *copy_tags) +{ + gpa_t guest_ipa = copy_tags->guest_ipa; + size_t length = copy_tags->length; + void __user *tags = copy_tags->addr; + gpa_t gfn; + bool write = !(copy_tags->flags & KVM_ARM_TAGS_FROM_GUEST); + int ret = 0; + + if (!kvm_has_mte(kvm)) + return -EINVAL; + + if (copy_tags->reserved[0] || copy_tags->reserved[1]) + return -EINVAL; + + if (copy_tags->flags & ~KVM_ARM_TAGS_FROM_GUEST) + return -EINVAL; + + if (length & ~PAGE_MASK || guest_ipa & ~PAGE_MASK) + return -EINVAL; + + /* Lengths above INT_MAX cannot be represented in the return value */ + if (length > INT_MAX) + return -EINVAL; + + gfn = gpa_to_gfn(guest_ipa); + + mutex_lock(&kvm->slots_lock); + + while (length > 0) { + kvm_pfn_t pfn = gfn_to_pfn_prot(kvm, gfn, write, NULL); + void *maddr; + unsigned long num_tags; + struct page *page; + + if (is_error_noslot_pfn(pfn)) { + ret = -EFAULT; + goto out; + } + + page = pfn_to_online_page(pfn); + if (!page) { + /* Reject ZONE_DEVICE memory */ + ret = -EFAULT; + goto out; + } + maddr = page_address(page); + + if (!write) { + if (page_mte_tagged(page)) + num_tags = mte_copy_tags_to_user(tags, maddr, + MTE_GRANULES_PER_PAGE); + else + /* No tags in memory, so write zeros */ + num_tags = MTE_GRANULES_PER_PAGE - + clear_user(tags, MTE_GRANULES_PER_PAGE); + kvm_release_pfn_clean(pfn); + } else { + /* + * Only locking to serialise with a concurrent + * set_pte_at() in the VMM but still overriding the + * tags, hence ignoring the return value. + */ + try_page_mte_tagging(page); + num_tags = mte_copy_tags_from_user(maddr, tags, + MTE_GRANULES_PER_PAGE); + + /* uaccess failed, don't leave stale tags */ + if (num_tags != MTE_GRANULES_PER_PAGE) + mte_clear_page_tags(maddr); + set_page_mte_tagged(page); + + kvm_release_pfn_dirty(pfn); + } + + if (num_tags != MTE_GRANULES_PER_PAGE) { + ret = -EFAULT; + goto out; + } + + gfn++; + tags += num_tags; + length -= PAGE_SIZE; + } + +out: + mutex_unlock(&kvm->slots_lock); + /* If some data has been copied report the number of bytes copied */ + if (length != copy_tags->length) + return copy_tags->length - length; + return ret; +} diff --git a/arch/arm64/kvm/handle_exit.c b/arch/arm64/kvm/handle_exit.c new file mode 100644 index 0000000000..617ae6dea5 --- /dev/null +++ b/arch/arm64/kvm/handle_exit.c @@ -0,0 +1,434 @@ +// SPDX-License-Identifier: GPL-2.0-only +/* + * Copyright (C) 2012,2013 - ARM Ltd + * Author: Marc Zyngier <marc.zyngier@arm.com> + * + * Derived from arch/arm/kvm/handle_exit.c: + * Copyright (C) 2012 - Virtual Open Systems and Columbia University + * Author: Christoffer Dall <c.dall@virtualopensystems.com> + */ + +#include <linux/kvm.h> +#include <linux/kvm_host.h> + +#include <asm/esr.h> +#include <asm/exception.h> +#include <asm/kvm_asm.h> +#include <asm/kvm_emulate.h> +#include <asm/kvm_mmu.h> +#include <asm/kvm_nested.h> +#include <asm/debug-monitors.h> +#include <asm/stacktrace/nvhe.h> +#include <asm/traps.h> + +#include <kvm/arm_hypercalls.h> + +#define CREATE_TRACE_POINTS +#include "trace_handle_exit.h" + +typedef int (*exit_handle_fn)(struct kvm_vcpu *); + +static void kvm_handle_guest_serror(struct kvm_vcpu *vcpu, u64 esr) +{ + if (!arm64_is_ras_serror(esr) || arm64_is_fatal_ras_serror(NULL, esr)) + kvm_inject_vabt(vcpu); +} + +static int handle_hvc(struct kvm_vcpu *vcpu) +{ + trace_kvm_hvc_arm64(*vcpu_pc(vcpu), vcpu_get_reg(vcpu, 0), + kvm_vcpu_hvc_get_imm(vcpu)); + vcpu->stat.hvc_exit_stat++; + + /* Forward hvc instructions to the virtual EL2 if the guest has EL2. */ + if (vcpu_has_nv(vcpu)) { + if (vcpu_read_sys_reg(vcpu, HCR_EL2) & HCR_HCD) + kvm_inject_undefined(vcpu); + else + kvm_inject_nested_sync(vcpu, kvm_vcpu_get_esr(vcpu)); + + return 1; + } + + return kvm_smccc_call_handler(vcpu); +} + +static int handle_smc(struct kvm_vcpu *vcpu) +{ + /* + * "If an SMC instruction executed at Non-secure EL1 is + * trapped to EL2 because HCR_EL2.TSC is 1, the exception is a + * Trap exception, not a Secure Monitor Call exception [...]" + * + * We need to advance the PC after the trap, as it would + * otherwise return to the same address. Furthermore, pre-incrementing + * the PC before potentially exiting to userspace maintains the same + * abstraction for both SMCs and HVCs. + */ + kvm_incr_pc(vcpu); + + /* + * SMCs with a nonzero immediate are reserved according to DEN0028E 2.9 + * "SMC and HVC immediate value". + */ + if (kvm_vcpu_hvc_get_imm(vcpu)) { + vcpu_set_reg(vcpu, 0, ~0UL); + return 1; + } + + /* + * If imm is zero then it is likely an SMCCC call. + * + * Note that on ARMv8.3, even if EL3 is not implemented, SMC executed + * at Non-secure EL1 is trapped to EL2 if HCR_EL2.TSC==1, rather than + * being treated as UNDEFINED. + */ + return kvm_smccc_call_handler(vcpu); +} + +/* + * Guest access to FP/ASIMD registers are routed to this handler only + * when the system doesn't support FP/ASIMD. + */ +static int handle_no_fpsimd(struct kvm_vcpu *vcpu) +{ + kvm_inject_undefined(vcpu); + return 1; +} + +/** + * kvm_handle_wfx - handle a wait-for-interrupts or wait-for-event + * instruction executed by a guest + * + * @vcpu: the vcpu pointer + * + * WFE[T]: Yield the CPU and come back to this vcpu when the scheduler + * decides to. + * WFI: Simply call kvm_vcpu_halt(), which will halt execution of + * world-switches and schedule other host processes until there is an + * incoming IRQ or FIQ to the VM. + * WFIT: Same as WFI, with a timed wakeup implemented as a background timer + * + * WF{I,E}T can immediately return if the deadline has already expired. + */ +static int kvm_handle_wfx(struct kvm_vcpu *vcpu) +{ + u64 esr = kvm_vcpu_get_esr(vcpu); + + if (esr & ESR_ELx_WFx_ISS_WFE) { + trace_kvm_wfx_arm64(*vcpu_pc(vcpu), true); + vcpu->stat.wfe_exit_stat++; + } else { + trace_kvm_wfx_arm64(*vcpu_pc(vcpu), false); + vcpu->stat.wfi_exit_stat++; + } + + if (esr & ESR_ELx_WFx_ISS_WFxT) { + if (esr & ESR_ELx_WFx_ISS_RV) { + u64 val, now; + + now = kvm_arm_timer_get_reg(vcpu, KVM_REG_ARM_TIMER_CNT); + val = vcpu_get_reg(vcpu, kvm_vcpu_sys_get_rt(vcpu)); + + if (now >= val) + goto out; + } else { + /* Treat WFxT as WFx if RN is invalid */ + esr &= ~ESR_ELx_WFx_ISS_WFxT; + } + } + + if (esr & ESR_ELx_WFx_ISS_WFE) { + kvm_vcpu_on_spin(vcpu, vcpu_mode_priv(vcpu)); + } else { + if (esr & ESR_ELx_WFx_ISS_WFxT) + vcpu_set_flag(vcpu, IN_WFIT); + + kvm_vcpu_wfi(vcpu); + } +out: + kvm_incr_pc(vcpu); + + return 1; +} + +/** + * kvm_handle_guest_debug - handle a debug exception instruction + * + * @vcpu: the vcpu pointer + * + * We route all debug exceptions through the same handler. If both the + * guest and host are using the same debug facilities it will be up to + * userspace to re-inject the correct exception for guest delivery. + * + * @return: 0 (while setting vcpu->run->exit_reason) + */ +static int kvm_handle_guest_debug(struct kvm_vcpu *vcpu) +{ + struct kvm_run *run = vcpu->run; + u64 esr = kvm_vcpu_get_esr(vcpu); + + run->exit_reason = KVM_EXIT_DEBUG; + run->debug.arch.hsr = lower_32_bits(esr); + run->debug.arch.hsr_high = upper_32_bits(esr); + run->flags = KVM_DEBUG_ARCH_HSR_HIGH_VALID; + + switch (ESR_ELx_EC(esr)) { + case ESR_ELx_EC_WATCHPT_LOW: + run->debug.arch.far = vcpu->arch.fault.far_el2; + break; + case ESR_ELx_EC_SOFTSTP_LOW: + vcpu_clear_flag(vcpu, DBG_SS_ACTIVE_PENDING); + break; + } + + return 0; +} + +static int kvm_handle_unknown_ec(struct kvm_vcpu *vcpu) +{ + u64 esr = kvm_vcpu_get_esr(vcpu); + + kvm_pr_unimpl("Unknown exception class: esr: %#016llx -- %s\n", + esr, esr_get_class_string(esr)); + + kvm_inject_undefined(vcpu); + return 1; +} + +/* + * Guest access to SVE registers should be routed to this handler only + * when the system doesn't support SVE. + */ +static int handle_sve(struct kvm_vcpu *vcpu) +{ + kvm_inject_undefined(vcpu); + return 1; +} + +/* + * Guest usage of a ptrauth instruction (which the guest EL1 did not turn into + * a NOP). If we get here, it is that we didn't fixup ptrauth on exit, and all + * that we can do is give the guest an UNDEF. + */ +static int kvm_handle_ptrauth(struct kvm_vcpu *vcpu) +{ + kvm_inject_undefined(vcpu); + return 1; +} + +static int kvm_handle_eret(struct kvm_vcpu *vcpu) +{ + if (kvm_vcpu_get_esr(vcpu) & ESR_ELx_ERET_ISS_ERET) + return kvm_handle_ptrauth(vcpu); + + /* + * If we got here, two possibilities: + * + * - the guest is in EL2, and we need to fully emulate ERET + * + * - the guest is in EL1, and we need to reinject the + * exception into the L1 hypervisor. + * + * If KVM ever traps ERET for its own use, we'll have to + * revisit this. + */ + if (is_hyp_ctxt(vcpu)) + kvm_emulate_nested_eret(vcpu); + else + kvm_inject_nested_sync(vcpu, kvm_vcpu_get_esr(vcpu)); + + return 1; +} + +static int handle_svc(struct kvm_vcpu *vcpu) +{ + /* + * So far, SVC traps only for NV via HFGITR_EL2. A SVC from a + * 32bit guest would be caught by vpcu_mode_is_bad_32bit(), so + * we should only have to deal with a 64 bit exception. + */ + kvm_inject_nested_sync(vcpu, kvm_vcpu_get_esr(vcpu)); + return 1; +} + +static exit_handle_fn arm_exit_handlers[] = { + [0 ... ESR_ELx_EC_MAX] = kvm_handle_unknown_ec, + [ESR_ELx_EC_WFx] = kvm_handle_wfx, + [ESR_ELx_EC_CP15_32] = kvm_handle_cp15_32, + [ESR_ELx_EC_CP15_64] = kvm_handle_cp15_64, + [ESR_ELx_EC_CP14_MR] = kvm_handle_cp14_32, + [ESR_ELx_EC_CP14_LS] = kvm_handle_cp14_load_store, + [ESR_ELx_EC_CP10_ID] = kvm_handle_cp10_id, + [ESR_ELx_EC_CP14_64] = kvm_handle_cp14_64, + [ESR_ELx_EC_HVC32] = handle_hvc, + [ESR_ELx_EC_SMC32] = handle_smc, + [ESR_ELx_EC_HVC64] = handle_hvc, + [ESR_ELx_EC_SMC64] = handle_smc, + [ESR_ELx_EC_SVC64] = handle_svc, + [ESR_ELx_EC_SYS64] = kvm_handle_sys_reg, + [ESR_ELx_EC_SVE] = handle_sve, + [ESR_ELx_EC_ERET] = kvm_handle_eret, + [ESR_ELx_EC_IABT_LOW] = kvm_handle_guest_abort, + [ESR_ELx_EC_DABT_LOW] = kvm_handle_guest_abort, + [ESR_ELx_EC_SOFTSTP_LOW]= kvm_handle_guest_debug, + [ESR_ELx_EC_WATCHPT_LOW]= kvm_handle_guest_debug, + [ESR_ELx_EC_BREAKPT_LOW]= kvm_handle_guest_debug, + [ESR_ELx_EC_BKPT32] = kvm_handle_guest_debug, + [ESR_ELx_EC_BRK64] = kvm_handle_guest_debug, + [ESR_ELx_EC_FP_ASIMD] = handle_no_fpsimd, + [ESR_ELx_EC_PAC] = kvm_handle_ptrauth, +}; + +static exit_handle_fn kvm_get_exit_handler(struct kvm_vcpu *vcpu) +{ + u64 esr = kvm_vcpu_get_esr(vcpu); + u8 esr_ec = ESR_ELx_EC(esr); + + return arm_exit_handlers[esr_ec]; +} + +/* + * We may be single-stepping an emulated instruction. If the emulation + * has been completed in the kernel, we can return to userspace with a + * KVM_EXIT_DEBUG, otherwise userspace needs to complete its + * emulation first. + */ +static int handle_trap_exceptions(struct kvm_vcpu *vcpu) +{ + int handled; + + /* + * See ARM ARM B1.14.1: "Hyp traps on instructions + * that fail their condition code check" + */ + if (!kvm_condition_valid(vcpu)) { + kvm_incr_pc(vcpu); + handled = 1; + } else { + exit_handle_fn exit_handler; + + exit_handler = kvm_get_exit_handler(vcpu); + handled = exit_handler(vcpu); + } + + return handled; +} + +/* + * Return > 0 to return to guest, < 0 on error, 0 (and set exit_reason) on + * proper exit to userspace. + */ +int handle_exit(struct kvm_vcpu *vcpu, int exception_index) +{ + struct kvm_run *run = vcpu->run; + + if (ARM_SERROR_PENDING(exception_index)) { + /* + * The SError is handled by handle_exit_early(). If the guest + * survives it will re-execute the original instruction. + */ + return 1; + } + + exception_index = ARM_EXCEPTION_CODE(exception_index); + + switch (exception_index) { + case ARM_EXCEPTION_IRQ: + return 1; + case ARM_EXCEPTION_EL1_SERROR: + return 1; + case ARM_EXCEPTION_TRAP: + return handle_trap_exceptions(vcpu); + case ARM_EXCEPTION_HYP_GONE: + /* + * EL2 has been reset to the hyp-stub. This happens when a guest + * is pre-emptied by kvm_reboot()'s shutdown call. + */ + run->exit_reason = KVM_EXIT_FAIL_ENTRY; + return 0; + case ARM_EXCEPTION_IL: + /* + * We attempted an illegal exception return. Guest state must + * have been corrupted somehow. Give up. + */ + run->exit_reason = KVM_EXIT_FAIL_ENTRY; + return -EINVAL; + default: + kvm_pr_unimpl("Unsupported exception type: %d", + exception_index); + run->exit_reason = KVM_EXIT_INTERNAL_ERROR; + return 0; + } +} + +/* For exit types that need handling before we can be preempted */ +void handle_exit_early(struct kvm_vcpu *vcpu, int exception_index) +{ + if (ARM_SERROR_PENDING(exception_index)) { + if (this_cpu_has_cap(ARM64_HAS_RAS_EXTN)) { + u64 disr = kvm_vcpu_get_disr(vcpu); + + kvm_handle_guest_serror(vcpu, disr_to_esr(disr)); + } else { + kvm_inject_vabt(vcpu); + } + + return; + } + + exception_index = ARM_EXCEPTION_CODE(exception_index); + + if (exception_index == ARM_EXCEPTION_EL1_SERROR) + kvm_handle_guest_serror(vcpu, kvm_vcpu_get_esr(vcpu)); +} + +void __noreturn __cold nvhe_hyp_panic_handler(u64 esr, u64 spsr, + u64 elr_virt, u64 elr_phys, + u64 par, uintptr_t vcpu, + u64 far, u64 hpfar) { + u64 elr_in_kimg = __phys_to_kimg(elr_phys); + u64 hyp_offset = elr_in_kimg - kaslr_offset() - elr_virt; + u64 mode = spsr & PSR_MODE_MASK; + u64 panic_addr = elr_virt + hyp_offset; + + if (mode != PSR_MODE_EL2t && mode != PSR_MODE_EL2h) { + kvm_err("Invalid host exception to nVHE hyp!\n"); + } else if (ESR_ELx_EC(esr) == ESR_ELx_EC_BRK64 && + (esr & ESR_ELx_BRK64_ISS_COMMENT_MASK) == BUG_BRK_IMM) { + const char *file = NULL; + unsigned int line = 0; + + /* All hyp bugs, including warnings, are treated as fatal. */ + if (!is_protected_kvm_enabled() || + IS_ENABLED(CONFIG_NVHE_EL2_DEBUG)) { + struct bug_entry *bug = find_bug(elr_in_kimg); + + if (bug) + bug_get_file_line(bug, &file, &line); + } + + if (file) + kvm_err("nVHE hyp BUG at: %s:%u!\n", file, line); + else + kvm_err("nVHE hyp BUG at: [<%016llx>] %pB!\n", panic_addr, + (void *)(panic_addr + kaslr_offset())); + } else { + kvm_err("nVHE hyp panic at: [<%016llx>] %pB!\n", panic_addr, + (void *)(panic_addr + kaslr_offset())); + } + + /* Dump the nVHE hypervisor backtrace */ + kvm_nvhe_dump_backtrace(hyp_offset); + + /* + * Hyp has panicked and we're going to handle that by panicking the + * kernel. The kernel offset will be revealed in the panic so we're + * also safe to reveal the hyp offset as a debugging aid for translating + * hyp VAs to vmlinux addresses. + */ + kvm_err("Hyp Offset: 0x%llx\n", hyp_offset); + + panic("HYP panic:\nPS:%08llx PC:%016llx ESR:%016llx\nFAR:%016llx HPFAR:%016llx PAR:%016llx\nVCPU:%016lx\n", + spsr, elr_virt, esr, far, hpfar, par, vcpu); +} diff --git a/arch/arm64/kvm/hyp/Makefile b/arch/arm64/kvm/hyp/Makefile new file mode 100644 index 0000000000..a38dea6186 --- /dev/null +++ b/arch/arm64/kvm/hyp/Makefile @@ -0,0 +1,10 @@ +# SPDX-License-Identifier: GPL-2.0 +# +# Makefile for Kernel-based Virtual Machine module, HYP part +# + +incdir := $(srctree)/$(src)/include +subdir-asflags-y := -I$(incdir) +subdir-ccflags-y := -I$(incdir) + +obj-$(CONFIG_KVM) += vhe/ nvhe/ pgtable.o diff --git a/arch/arm64/kvm/hyp/aarch32.c b/arch/arm64/kvm/hyp/aarch32.c new file mode 100644 index 0000000000..f98cbe2626 --- /dev/null +++ b/arch/arm64/kvm/hyp/aarch32.c @@ -0,0 +1,140 @@ +// SPDX-License-Identifier: GPL-2.0 +/* + * Hyp portion of the (not much of an) Emulation layer for 32bit guests. + * + * Copyright (C) 2012,2013 - ARM Ltd + * Author: Marc Zyngier <marc.zyngier@arm.com> + * + * based on arch/arm/kvm/emulate.c + * Copyright (C) 2012 - Virtual Open Systems and Columbia University + * Author: Christoffer Dall <c.dall@virtualopensystems.com> + */ + +#include <linux/kvm_host.h> +#include <asm/kvm_emulate.h> +#include <asm/kvm_hyp.h> + +/* + * stolen from arch/arm/kernel/opcodes.c + * + * condition code lookup table + * index into the table is test code: EQ, NE, ... LT, GT, AL, NV + * + * bit position in short is condition code: NZCV + */ +static const unsigned short cc_map[16] = { + 0xF0F0, /* EQ == Z set */ + 0x0F0F, /* NE */ + 0xCCCC, /* CS == C set */ + 0x3333, /* CC */ + 0xFF00, /* MI == N set */ + 0x00FF, /* PL */ + 0xAAAA, /* VS == V set */ + 0x5555, /* VC */ + 0x0C0C, /* HI == C set && Z clear */ + 0xF3F3, /* LS == C clear || Z set */ + 0xAA55, /* GE == (N==V) */ + 0x55AA, /* LT == (N!=V) */ + 0x0A05, /* GT == (!Z && (N==V)) */ + 0xF5FA, /* LE == (Z || (N!=V)) */ + 0xFFFF, /* AL always */ + 0 /* NV */ +}; + +/* + * Check if a trapped instruction should have been executed or not. + */ +bool kvm_condition_valid32(const struct kvm_vcpu *vcpu) +{ + unsigned long cpsr; + u32 cpsr_cond; + int cond; + + /* Top two bits non-zero? Unconditional. */ + if (kvm_vcpu_get_esr(vcpu) >> 30) + return true; + + /* Is condition field valid? */ + cond = kvm_vcpu_get_condition(vcpu); + if (cond == 0xE) + return true; + + cpsr = *vcpu_cpsr(vcpu); + + if (cond < 0) { + /* This can happen in Thumb mode: examine IT state. */ + unsigned long it; + + it = ((cpsr >> 8) & 0xFC) | ((cpsr >> 25) & 0x3); + + /* it == 0 => unconditional. */ + if (it == 0) + return true; + + /* The cond for this insn works out as the top 4 bits. */ + cond = (it >> 4); + } + + cpsr_cond = cpsr >> 28; + + if (!((cc_map[cond] >> cpsr_cond) & 1)) + return false; + + return true; +} + +/** + * adjust_itstate - adjust ITSTATE when emulating instructions in IT-block + * @vcpu: The VCPU pointer + * + * When exceptions occur while instructions are executed in Thumb IF-THEN + * blocks, the ITSTATE field of the CPSR is not advanced (updated), so we have + * to do this little bit of work manually. The fields map like this: + * + * IT[7:0] -> CPSR[26:25],CPSR[15:10] + */ +static void kvm_adjust_itstate(struct kvm_vcpu *vcpu) +{ + unsigned long itbits, cond; + unsigned long cpsr = *vcpu_cpsr(vcpu); + bool is_arm = !(cpsr & PSR_AA32_T_BIT); + + if (is_arm || !(cpsr & PSR_AA32_IT_MASK)) + return; + + cond = (cpsr & 0xe000) >> 13; + itbits = (cpsr & 0x1c00) >> (10 - 2); + itbits |= (cpsr & (0x3 << 25)) >> 25; + + /* Perform ITAdvance (see page A2-52 in ARM DDI 0406C) */ + if ((itbits & 0x7) == 0) + itbits = cond = 0; + else + itbits = (itbits << 1) & 0x1f; + + cpsr &= ~PSR_AA32_IT_MASK; + cpsr |= cond << 13; + cpsr |= (itbits & 0x1c) << (10 - 2); + cpsr |= (itbits & 0x3) << 25; + *vcpu_cpsr(vcpu) = cpsr; +} + +/** + * kvm_skip_instr - skip a trapped instruction and proceed to the next + * @vcpu: The vcpu pointer + */ +void kvm_skip_instr32(struct kvm_vcpu *vcpu) +{ + u32 pc = *vcpu_pc(vcpu); + bool is_thumb; + + is_thumb = !!(*vcpu_cpsr(vcpu) & PSR_AA32_T_BIT); + if (is_thumb && !kvm_vcpu_trap_il_is32bit(vcpu)) + pc += 2; + else + pc += 4; + + *vcpu_pc(vcpu) = pc; + + kvm_adjust_itstate(vcpu); +} diff --git a/arch/arm64/kvm/hyp/entry.S b/arch/arm64/kvm/hyp/entry.S new file mode 100644 index 0000000000..f3aa7738b4 --- /dev/null +++ b/arch/arm64/kvm/hyp/entry.S @@ -0,0 +1,215 @@ +/* SPDX-License-Identifier: GPL-2.0-only */ +/* + * Copyright (C) 2015 - ARM Ltd + * Author: Marc Zyngier <marc.zyngier@arm.com> + */ + +#include <linux/linkage.h> + +#include <asm/alternative.h> +#include <asm/assembler.h> +#include <asm/fpsimdmacros.h> +#include <asm/kvm.h> +#include <asm/kvm_arm.h> +#include <asm/kvm_asm.h> +#include <asm/kvm_mmu.h> +#include <asm/kvm_mte.h> +#include <asm/kvm_ptrauth.h> + + .text + +/* + * u64 __guest_enter(struct kvm_vcpu *vcpu); + */ +SYM_FUNC_START(__guest_enter) + // x0: vcpu + // x1-x17: clobbered by macros + // x29: guest context + + adr_this_cpu x1, kvm_hyp_ctxt, x2 + + // Store the hyp regs + save_callee_saved_regs x1 + + // Save hyp's sp_el0 + save_sp_el0 x1, x2 + + // Now the hyp state is stored if we have a pending RAS SError it must + // affect the host or hyp. If any asynchronous exception is pending we + // defer the guest entry. The DSB isn't necessary before v8.2 as any + // SError would be fatal. +alternative_if ARM64_HAS_RAS_EXTN + dsb nshst + isb +alternative_else_nop_endif + mrs x1, isr_el1 + cbz x1, 1f + mov x0, #ARM_EXCEPTION_IRQ + ret + +1: + set_loaded_vcpu x0, x1, x2 + + add x29, x0, #VCPU_CONTEXT + + // mte_switch_to_guest(g_ctxt, h_ctxt, tmp1) + mte_switch_to_guest x29, x1, x2 + + // Macro ptrauth_switch_to_guest format: + // ptrauth_switch_to_guest(guest cxt, tmp1, tmp2, tmp3) + // The below macro to restore guest keys is not implemented in C code + // as it may cause Pointer Authentication key signing mismatch errors + // when this feature is enabled for kernel code. + ptrauth_switch_to_guest x29, x0, x1, x2 + + // Restore the guest's sp_el0 + restore_sp_el0 x29, x0 + + // Restore guest regs x0-x17 + ldp x0, x1, [x29, #CPU_XREG_OFFSET(0)] + ldp x2, x3, [x29, #CPU_XREG_OFFSET(2)] + ldp x4, x5, [x29, #CPU_XREG_OFFSET(4)] + ldp x6, x7, [x29, #CPU_XREG_OFFSET(6)] + ldp x8, x9, [x29, #CPU_XREG_OFFSET(8)] + ldp x10, x11, [x29, #CPU_XREG_OFFSET(10)] + ldp x12, x13, [x29, #CPU_XREG_OFFSET(12)] + ldp x14, x15, [x29, #CPU_XREG_OFFSET(14)] + ldp x16, x17, [x29, #CPU_XREG_OFFSET(16)] + + // Restore guest regs x18-x29, lr + restore_callee_saved_regs x29 + + // Do not touch any register after this! + eret + sb + +SYM_INNER_LABEL(__guest_exit_panic, SYM_L_GLOBAL) + // x2-x29,lr: vcpu regs + // vcpu x0-x1 on the stack + + // If the hyp context is loaded, go straight to hyp_panic + get_loaded_vcpu x0, x1 + cbnz x0, 1f + b hyp_panic + +1: + // The hyp context is saved so make sure it is restored to allow + // hyp_panic to run at hyp and, subsequently, panic to run in the host. + // This makes use of __guest_exit to avoid duplication but sets the + // return address to tail call into hyp_panic. As a side effect, the + // current state is saved to the guest context but it will only be + // accurate if the guest had been completely restored. + adr_this_cpu x0, kvm_hyp_ctxt, x1 + adr_l x1, hyp_panic + str x1, [x0, #CPU_XREG_OFFSET(30)] + + get_vcpu_ptr x1, x0 + +SYM_INNER_LABEL(__guest_exit, SYM_L_GLOBAL) + // x0: return code + // x1: vcpu + // x2-x29,lr: vcpu regs + // vcpu x0-x1 on the stack + + add x1, x1, #VCPU_CONTEXT + + ALTERNATIVE(nop, SET_PSTATE_PAN(1), ARM64_HAS_PAN, CONFIG_ARM64_PAN) + + // Store the guest regs x2 and x3 + stp x2, x3, [x1, #CPU_XREG_OFFSET(2)] + + // Retrieve the guest regs x0-x1 from the stack + ldp x2, x3, [sp], #16 // x0, x1 + + // Store the guest regs x0-x1 and x4-x17 + stp x2, x3, [x1, #CPU_XREG_OFFSET(0)] + stp x4, x5, [x1, #CPU_XREG_OFFSET(4)] + stp x6, x7, [x1, #CPU_XREG_OFFSET(6)] + stp x8, x9, [x1, #CPU_XREG_OFFSET(8)] + stp x10, x11, [x1, #CPU_XREG_OFFSET(10)] + stp x12, x13, [x1, #CPU_XREG_OFFSET(12)] + stp x14, x15, [x1, #CPU_XREG_OFFSET(14)] + stp x16, x17, [x1, #CPU_XREG_OFFSET(16)] + + // Store the guest regs x18-x29, lr + save_callee_saved_regs x1 + + // Store the guest's sp_el0 + save_sp_el0 x1, x2 + + adr_this_cpu x2, kvm_hyp_ctxt, x3 + + // Macro ptrauth_switch_to_hyp format: + // ptrauth_switch_to_hyp(guest cxt, host cxt, tmp1, tmp2, tmp3) + // The below macro to save/restore keys is not implemented in C code + // as it may cause Pointer Authentication key signing mismatch errors + // when this feature is enabled for kernel code. + ptrauth_switch_to_hyp x1, x2, x3, x4, x5 + + // mte_switch_to_hyp(g_ctxt, h_ctxt, reg1) + mte_switch_to_hyp x1, x2, x3 + + // Restore hyp's sp_el0 + restore_sp_el0 x2, x3 + + // Now restore the hyp regs + restore_callee_saved_regs x2 + + set_loaded_vcpu xzr, x2, x3 + +alternative_if ARM64_HAS_RAS_EXTN + // If we have the RAS extensions we can consume a pending error + // without an unmask-SError and isb. The ESB-instruction consumed any + // pending guest error when we took the exception from the guest. + mrs_s x2, SYS_DISR_EL1 + str x2, [x1, #(VCPU_FAULT_DISR - VCPU_CONTEXT)] + cbz x2, 1f + msr_s SYS_DISR_EL1, xzr + orr x0, x0, #(1<<ARM_EXIT_WITH_SERROR_BIT) +1: ret +alternative_else + dsb sy // Synchronize against in-flight ld/st + isb // Prevent an early read of side-effect free ISR + mrs x2, isr_el1 + tbnz x2, #ISR_EL1_A_SHIFT, 2f + ret + nop +2: +alternative_endif + // We know we have a pending asynchronous abort, now is the + // time to flush it out. From your VAXorcist book, page 666: + // "Threaten me not, oh Evil one! For I speak with + // the power of DEC, and I command thee to show thyself!" + mrs x2, elr_el2 + mrs x3, esr_el2 + mrs x4, spsr_el2 + mov x5, x0 + + msr daifclr, #4 // Unmask aborts + + // This is our single instruction exception window. A pending + // SError is guaranteed to occur at the earliest when we unmask + // it, and at the latest just after the ISB. +abort_guest_exit_start: + + isb + +abort_guest_exit_end: + + msr daifset, #4 // Mask aborts + ret + + _kvm_extable abort_guest_exit_start, 9997f + _kvm_extable abort_guest_exit_end, 9997f +9997: + msr daifset, #4 // Mask aborts + mov x0, #(1 << ARM_EXIT_WITH_SERROR_BIT) + + // restore the EL1 exception context so that we can report some + // information. Merge the exception code with the SError pending bit. + msr elr_el2, x2 + msr esr_el2, x3 + msr spsr_el2, x4 + orr x0, x0, x5 +1: ret +SYM_FUNC_END(__guest_enter) diff --git a/arch/arm64/kvm/hyp/exception.c b/arch/arm64/kvm/hyp/exception.c new file mode 100644 index 0000000000..424a5107cd --- /dev/null +++ b/arch/arm64/kvm/hyp/exception.c @@ -0,0 +1,375 @@ +// SPDX-License-Identifier: GPL-2.0-only +/* + * Fault injection for both 32 and 64bit guests. + * + * Copyright (C) 2012,2013 - ARM Ltd + * Author: Marc Zyngier <marc.zyngier@arm.com> + * + * Based on arch/arm/kvm/emulate.c + * Copyright (C) 2012 - Virtual Open Systems and Columbia University + * Author: Christoffer Dall <c.dall@virtualopensystems.com> + */ + +#include <hyp/adjust_pc.h> +#include <linux/kvm_host.h> +#include <asm/kvm_emulate.h> +#include <asm/kvm_mmu.h> +#include <asm/kvm_nested.h> + +#if !defined (__KVM_NVHE_HYPERVISOR__) && !defined (__KVM_VHE_HYPERVISOR__) +#error Hypervisor code only! +#endif + +static inline u64 __vcpu_read_sys_reg(const struct kvm_vcpu *vcpu, int reg) +{ + u64 val; + + if (unlikely(vcpu_has_nv(vcpu))) + return vcpu_read_sys_reg(vcpu, reg); + else if (__vcpu_read_sys_reg_from_cpu(reg, &val)) + return val; + + return __vcpu_sys_reg(vcpu, reg); +} + +static inline void __vcpu_write_sys_reg(struct kvm_vcpu *vcpu, u64 val, int reg) +{ + if (unlikely(vcpu_has_nv(vcpu))) + vcpu_write_sys_reg(vcpu, val, reg); + else if (!__vcpu_write_sys_reg_to_cpu(val, reg)) + __vcpu_sys_reg(vcpu, reg) = val; +} + +static void __vcpu_write_spsr(struct kvm_vcpu *vcpu, unsigned long target_mode, + u64 val) +{ + if (unlikely(vcpu_has_nv(vcpu))) { + if (target_mode == PSR_MODE_EL1h) + vcpu_write_sys_reg(vcpu, val, SPSR_EL1); + else + vcpu_write_sys_reg(vcpu, val, SPSR_EL2); + } else if (has_vhe()) { + write_sysreg_el1(val, SYS_SPSR); + } else { + __vcpu_sys_reg(vcpu, SPSR_EL1) = val; + } +} + +static void __vcpu_write_spsr_abt(struct kvm_vcpu *vcpu, u64 val) +{ + if (has_vhe()) + write_sysreg(val, spsr_abt); + else + vcpu->arch.ctxt.spsr_abt = val; +} + +static void __vcpu_write_spsr_und(struct kvm_vcpu *vcpu, u64 val) +{ + if (has_vhe()) + write_sysreg(val, spsr_und); + else + vcpu->arch.ctxt.spsr_und = val; +} + +/* + * This performs the exception entry at a given EL (@target_mode), stashing PC + * and PSTATE into ELR and SPSR respectively, and compute the new PC/PSTATE. + * The EL passed to this function *must* be a non-secure, privileged mode with + * bit 0 being set (PSTATE.SP == 1). + * + * When an exception is taken, most PSTATE fields are left unchanged in the + * handler. However, some are explicitly overridden (e.g. M[4:0]). Luckily all + * of the inherited bits have the same position in the AArch64/AArch32 SPSR_ELx + * layouts, so we don't need to shuffle these for exceptions from AArch32 EL0. + * + * For the SPSR_ELx layout for AArch64, see ARM DDI 0487E.a page C5-429. + * For the SPSR_ELx layout for AArch32, see ARM DDI 0487E.a page C5-426. + * + * Here we manipulate the fields in order of the AArch64 SPSR_ELx layout, from + * MSB to LSB. + */ +static void enter_exception64(struct kvm_vcpu *vcpu, unsigned long target_mode, + enum exception_type type) +{ + unsigned long sctlr, vbar, old, new, mode; + u64 exc_offset; + + mode = *vcpu_cpsr(vcpu) & (PSR_MODE_MASK | PSR_MODE32_BIT); + + if (mode == target_mode) + exc_offset = CURRENT_EL_SP_ELx_VECTOR; + else if ((mode | PSR_MODE_THREAD_BIT) == target_mode) + exc_offset = CURRENT_EL_SP_EL0_VECTOR; + else if (!(mode & PSR_MODE32_BIT)) + exc_offset = LOWER_EL_AArch64_VECTOR; + else + exc_offset = LOWER_EL_AArch32_VECTOR; + + switch (target_mode) { + case PSR_MODE_EL1h: + vbar = __vcpu_read_sys_reg(vcpu, VBAR_EL1); + sctlr = __vcpu_read_sys_reg(vcpu, SCTLR_EL1); + __vcpu_write_sys_reg(vcpu, *vcpu_pc(vcpu), ELR_EL1); + break; + case PSR_MODE_EL2h: + vbar = __vcpu_read_sys_reg(vcpu, VBAR_EL2); + sctlr = __vcpu_read_sys_reg(vcpu, SCTLR_EL2); + __vcpu_write_sys_reg(vcpu, *vcpu_pc(vcpu), ELR_EL2); + break; + default: + /* Don't do that */ + BUG(); + } + + *vcpu_pc(vcpu) = vbar + exc_offset + type; + + old = *vcpu_cpsr(vcpu); + new = 0; + + new |= (old & PSR_N_BIT); + new |= (old & PSR_Z_BIT); + new |= (old & PSR_C_BIT); + new |= (old & PSR_V_BIT); + + if (kvm_has_mte(kern_hyp_va(vcpu->kvm))) + new |= PSR_TCO_BIT; + + new |= (old & PSR_DIT_BIT); + + // PSTATE.UAO is set to zero upon any exception to AArch64 + // See ARM DDI 0487E.a, page D5-2579. + + // PSTATE.PAN is unchanged unless SCTLR_ELx.SPAN == 0b0 + // SCTLR_ELx.SPAN is RES1 when ARMv8.1-PAN is not implemented + // See ARM DDI 0487E.a, page D5-2578. + new |= (old & PSR_PAN_BIT); + if (!(sctlr & SCTLR_EL1_SPAN)) + new |= PSR_PAN_BIT; + + // PSTATE.SS is set to zero upon any exception to AArch64 + // See ARM DDI 0487E.a, page D2-2452. + + // PSTATE.IL is set to zero upon any exception to AArch64 + // See ARM DDI 0487E.a, page D1-2306. + + // PSTATE.SSBS is set to SCTLR_ELx.DSSBS upon any exception to AArch64 + // See ARM DDI 0487E.a, page D13-3258 + if (sctlr & SCTLR_ELx_DSSBS) + new |= PSR_SSBS_BIT; + + // PSTATE.BTYPE is set to zero upon any exception to AArch64 + // See ARM DDI 0487E.a, pages D1-2293 to D1-2294. + + new |= PSR_D_BIT; + new |= PSR_A_BIT; + new |= PSR_I_BIT; + new |= PSR_F_BIT; + + new |= target_mode; + + *vcpu_cpsr(vcpu) = new; + __vcpu_write_spsr(vcpu, target_mode, old); +} + +/* + * When an exception is taken, most CPSR fields are left unchanged in the + * handler. However, some are explicitly overridden (e.g. M[4:0]). + * + * The SPSR/SPSR_ELx layouts differ, and the below is intended to work with + * either format. Note: SPSR.J bit doesn't exist in SPSR_ELx, but this bit was + * obsoleted by the ARMv7 virtualization extensions and is RES0. + * + * For the SPSR layout seen from AArch32, see: + * - ARM DDI 0406C.d, page B1-1148 + * - ARM DDI 0487E.a, page G8-6264 + * + * For the SPSR_ELx layout for AArch32 seen from AArch64, see: + * - ARM DDI 0487E.a, page C5-426 + * + * Here we manipulate the fields in order of the AArch32 SPSR_ELx layout, from + * MSB to LSB. + */ +static unsigned long get_except32_cpsr(struct kvm_vcpu *vcpu, u32 mode) +{ + u32 sctlr = __vcpu_read_sys_reg(vcpu, SCTLR_EL1); + unsigned long old, new; + + old = *vcpu_cpsr(vcpu); + new = 0; + + new |= (old & PSR_AA32_N_BIT); + new |= (old & PSR_AA32_Z_BIT); + new |= (old & PSR_AA32_C_BIT); + new |= (old & PSR_AA32_V_BIT); + new |= (old & PSR_AA32_Q_BIT); + + // CPSR.IT[7:0] are set to zero upon any exception + // See ARM DDI 0487E.a, section G1.12.3 + // See ARM DDI 0406C.d, section B1.8.3 + + new |= (old & PSR_AA32_DIT_BIT); + + // CPSR.SSBS is set to SCTLR.DSSBS upon any exception + // See ARM DDI 0487E.a, page G8-6244 + if (sctlr & BIT(31)) + new |= PSR_AA32_SSBS_BIT; + + // CPSR.PAN is unchanged unless SCTLR.SPAN == 0b0 + // SCTLR.SPAN is RES1 when ARMv8.1-PAN is not implemented + // See ARM DDI 0487E.a, page G8-6246 + new |= (old & PSR_AA32_PAN_BIT); + if (!(sctlr & BIT(23))) + new |= PSR_AA32_PAN_BIT; + + // SS does not exist in AArch32, so ignore + + // CPSR.IL is set to zero upon any exception + // See ARM DDI 0487E.a, page G1-5527 + + new |= (old & PSR_AA32_GE_MASK); + + // CPSR.IT[7:0] are set to zero upon any exception + // See prior comment above + + // CPSR.E is set to SCTLR.EE upon any exception + // See ARM DDI 0487E.a, page G8-6245 + // See ARM DDI 0406C.d, page B4-1701 + if (sctlr & BIT(25)) + new |= PSR_AA32_E_BIT; + + // CPSR.A is unchanged upon an exception to Undefined, Supervisor + // CPSR.A is set upon an exception to other modes + // See ARM DDI 0487E.a, pages G1-5515 to G1-5516 + // See ARM DDI 0406C.d, page B1-1182 + new |= (old & PSR_AA32_A_BIT); + if (mode != PSR_AA32_MODE_UND && mode != PSR_AA32_MODE_SVC) + new |= PSR_AA32_A_BIT; + + // CPSR.I is set upon any exception + // See ARM DDI 0487E.a, pages G1-5515 to G1-5516 + // See ARM DDI 0406C.d, page B1-1182 + new |= PSR_AA32_I_BIT; + + // CPSR.F is set upon an exception to FIQ + // CPSR.F is unchanged upon an exception to other modes + // See ARM DDI 0487E.a, pages G1-5515 to G1-5516 + // See ARM DDI 0406C.d, page B1-1182 + new |= (old & PSR_AA32_F_BIT); + if (mode == PSR_AA32_MODE_FIQ) + new |= PSR_AA32_F_BIT; + + // CPSR.T is set to SCTLR.TE upon any exception + // See ARM DDI 0487E.a, page G8-5514 + // See ARM DDI 0406C.d, page B1-1181 + if (sctlr & BIT(30)) + new |= PSR_AA32_T_BIT; + + new |= mode; + + return new; +} + +/* + * Table taken from ARMv8 ARM DDI0487B-B, table G1-10. + */ +static const u8 return_offsets[8][2] = { + [0] = { 0, 0 }, /* Reset, unused */ + [1] = { 4, 2 }, /* Undefined */ + [2] = { 0, 0 }, /* SVC, unused */ + [3] = { 4, 4 }, /* Prefetch abort */ + [4] = { 8, 8 }, /* Data abort */ + [5] = { 0, 0 }, /* HVC, unused */ + [6] = { 4, 4 }, /* IRQ, unused */ + [7] = { 4, 4 }, /* FIQ, unused */ +}; + +static void enter_exception32(struct kvm_vcpu *vcpu, u32 mode, u32 vect_offset) +{ + unsigned long spsr = *vcpu_cpsr(vcpu); + bool is_thumb = (spsr & PSR_AA32_T_BIT); + u32 sctlr = __vcpu_read_sys_reg(vcpu, SCTLR_EL1); + u32 return_address; + + *vcpu_cpsr(vcpu) = get_except32_cpsr(vcpu, mode); + return_address = *vcpu_pc(vcpu); + return_address += return_offsets[vect_offset >> 2][is_thumb]; + + /* KVM only enters the ABT and UND modes, so only deal with those */ + switch(mode) { + case PSR_AA32_MODE_ABT: + __vcpu_write_spsr_abt(vcpu, host_spsr_to_spsr32(spsr)); + vcpu_gp_regs(vcpu)->compat_lr_abt = return_address; + break; + + case PSR_AA32_MODE_UND: + __vcpu_write_spsr_und(vcpu, host_spsr_to_spsr32(spsr)); + vcpu_gp_regs(vcpu)->compat_lr_und = return_address; + break; + } + + /* Branch to exception vector */ + if (sctlr & (1 << 13)) + vect_offset += 0xffff0000; + else /* always have security exceptions */ + vect_offset += __vcpu_read_sys_reg(vcpu, VBAR_EL1); + + *vcpu_pc(vcpu) = vect_offset; +} + +static void kvm_inject_exception(struct kvm_vcpu *vcpu) +{ + if (vcpu_el1_is_32bit(vcpu)) { + switch (vcpu_get_flag(vcpu, EXCEPT_MASK)) { + case unpack_vcpu_flag(EXCEPT_AA32_UND): + enter_exception32(vcpu, PSR_AA32_MODE_UND, 4); + break; + case unpack_vcpu_flag(EXCEPT_AA32_IABT): + enter_exception32(vcpu, PSR_AA32_MODE_ABT, 12); + break; + case unpack_vcpu_flag(EXCEPT_AA32_DABT): + enter_exception32(vcpu, PSR_AA32_MODE_ABT, 16); + break; + default: + /* Err... */ + break; + } + } else { + switch (vcpu_get_flag(vcpu, EXCEPT_MASK)) { + case unpack_vcpu_flag(EXCEPT_AA64_EL1_SYNC): + enter_exception64(vcpu, PSR_MODE_EL1h, except_type_sync); + break; + + case unpack_vcpu_flag(EXCEPT_AA64_EL2_SYNC): + enter_exception64(vcpu, PSR_MODE_EL2h, except_type_sync); + break; + + case unpack_vcpu_flag(EXCEPT_AA64_EL2_IRQ): + enter_exception64(vcpu, PSR_MODE_EL2h, except_type_irq); + break; + + default: + /* + * Only EL1_SYNC and EL2_{SYNC,IRQ} makes + * sense so far. Everything else gets silently + * ignored. + */ + break; + } + } +} + +/* + * Adjust the guest PC (and potentially exception state) depending on + * flags provided by the emulation code. + */ +void __kvm_adjust_pc(struct kvm_vcpu *vcpu) +{ + if (vcpu_get_flag(vcpu, PENDING_EXCEPTION)) { + kvm_inject_exception(vcpu); + vcpu_clear_flag(vcpu, PENDING_EXCEPTION); + vcpu_clear_flag(vcpu, EXCEPT_MASK); + } else if (vcpu_get_flag(vcpu, INCREMENT_PC)) { + kvm_skip_instr(vcpu); + vcpu_clear_flag(vcpu, INCREMENT_PC); + } +} diff --git a/arch/arm64/kvm/hyp/fpsimd.S b/arch/arm64/kvm/hyp/fpsimd.S new file mode 100644 index 0000000000..61e6f3ba7b --- /dev/null +++ b/arch/arm64/kvm/hyp/fpsimd.S @@ -0,0 +1,27 @@ +/* SPDX-License-Identifier: GPL-2.0-only */ +/* + * Copyright (C) 2015 - ARM Ltd + * Author: Marc Zyngier <marc.zyngier@arm.com> + */ + +#include <linux/linkage.h> + +#include <asm/fpsimdmacros.h> + + .text + +SYM_FUNC_START(__fpsimd_save_state) + fpsimd_save x0, 1 + ret +SYM_FUNC_END(__fpsimd_save_state) + +SYM_FUNC_START(__fpsimd_restore_state) + fpsimd_restore x0, 1 + ret +SYM_FUNC_END(__fpsimd_restore_state) + +SYM_FUNC_START(__sve_restore_state) + mov x2, #1 + sve_load 0, x1, x2, 3 + ret +SYM_FUNC_END(__sve_restore_state) diff --git a/arch/arm64/kvm/hyp/hyp-constants.c b/arch/arm64/kvm/hyp/hyp-constants.c new file mode 100644 index 0000000000..b257a3b4bf --- /dev/null +++ b/arch/arm64/kvm/hyp/hyp-constants.c @@ -0,0 +1,13 @@ +// SPDX-License-Identifier: GPL-2.0-only + +#include <linux/kbuild.h> +#include <nvhe/memory.h> +#include <nvhe/pkvm.h> + +int main(void) +{ + DEFINE(STRUCT_HYP_PAGE_SIZE, sizeof(struct hyp_page)); + DEFINE(PKVM_HYP_VM_SIZE, sizeof(struct pkvm_hyp_vm)); + DEFINE(PKVM_HYP_VCPU_SIZE, sizeof(struct pkvm_hyp_vcpu)); + return 0; +} diff --git a/arch/arm64/kvm/hyp/hyp-entry.S b/arch/arm64/kvm/hyp/hyp-entry.S new file mode 100644 index 0000000000..03f97d7198 --- /dev/null +++ b/arch/arm64/kvm/hyp/hyp-entry.S @@ -0,0 +1,264 @@ +/* SPDX-License-Identifier: GPL-2.0-only */ +/* + * Copyright (C) 2015-2018 - ARM Ltd + * Author: Marc Zyngier <marc.zyngier@arm.com> + */ + +#include <linux/arm-smccc.h> +#include <linux/linkage.h> + +#include <asm/alternative.h> +#include <asm/assembler.h> +#include <asm/cpufeature.h> +#include <asm/kvm_arm.h> +#include <asm/kvm_asm.h> +#include <asm/mmu.h> +#include <asm/spectre.h> + +.macro save_caller_saved_regs_vect + /* x0 and x1 were saved in the vector entry */ + stp x2, x3, [sp, #-16]! + stp x4, x5, [sp, #-16]! + stp x6, x7, [sp, #-16]! + stp x8, x9, [sp, #-16]! + stp x10, x11, [sp, #-16]! + stp x12, x13, [sp, #-16]! + stp x14, x15, [sp, #-16]! + stp x16, x17, [sp, #-16]! +.endm + +.macro restore_caller_saved_regs_vect + ldp x16, x17, [sp], #16 + ldp x14, x15, [sp], #16 + ldp x12, x13, [sp], #16 + ldp x10, x11, [sp], #16 + ldp x8, x9, [sp], #16 + ldp x6, x7, [sp], #16 + ldp x4, x5, [sp], #16 + ldp x2, x3, [sp], #16 + ldp x0, x1, [sp], #16 +.endm + + .text + +el1_sync: // Guest trapped into EL2 + + mrs x0, esr_el2 + ubfx x0, x0, #ESR_ELx_EC_SHIFT, #ESR_ELx_EC_WIDTH + cmp x0, #ESR_ELx_EC_HVC64 + ccmp x0, #ESR_ELx_EC_HVC32, #4, ne + b.ne el1_trap + + /* + * Fastest possible path for ARM_SMCCC_ARCH_WORKAROUND_1. + * The workaround has already been applied on the host, + * so let's quickly get back to the guest. We don't bother + * restoring x1, as it can be clobbered anyway. + */ + ldr x1, [sp] // Guest's x0 + eor w1, w1, #ARM_SMCCC_ARCH_WORKAROUND_1 + cbz w1, wa_epilogue + + /* ARM_SMCCC_ARCH_WORKAROUND_2 handling */ + eor w1, w1, #(ARM_SMCCC_ARCH_WORKAROUND_1 ^ \ + ARM_SMCCC_ARCH_WORKAROUND_2) + cbz w1, wa_epilogue + + eor w1, w1, #(ARM_SMCCC_ARCH_WORKAROUND_2 ^ \ + ARM_SMCCC_ARCH_WORKAROUND_3) + cbnz w1, el1_trap + +wa_epilogue: + mov x0, xzr + add sp, sp, #16 + eret + sb + +el1_trap: + get_vcpu_ptr x1, x0 + mov x0, #ARM_EXCEPTION_TRAP + b __guest_exit + +el1_irq: +el1_fiq: + get_vcpu_ptr x1, x0 + mov x0, #ARM_EXCEPTION_IRQ + b __guest_exit + +el1_error: + get_vcpu_ptr x1, x0 + mov x0, #ARM_EXCEPTION_EL1_SERROR + b __guest_exit + +el2_sync: + /* Check for illegal exception return */ + mrs x0, spsr_el2 + tbnz x0, #20, 1f + + save_caller_saved_regs_vect + stp x29, x30, [sp, #-16]! + bl kvm_unexpected_el2_exception + ldp x29, x30, [sp], #16 + restore_caller_saved_regs_vect + + eret + +1: + /* Let's attempt a recovery from the illegal exception return */ + get_vcpu_ptr x1, x0 + mov x0, #ARM_EXCEPTION_IL + b __guest_exit + + +el2_error: + save_caller_saved_regs_vect + stp x29, x30, [sp, #-16]! + + bl kvm_unexpected_el2_exception + + ldp x29, x30, [sp], #16 + restore_caller_saved_regs_vect + + eret + sb + +.macro invalid_vector label, target = __guest_exit_panic + .align 2 +SYM_CODE_START_LOCAL(\label) + b \target +SYM_CODE_END(\label) +.endm + + /* None of these should ever happen */ + invalid_vector el2t_sync_invalid + invalid_vector el2t_irq_invalid + invalid_vector el2t_fiq_invalid + invalid_vector el2t_error_invalid + invalid_vector el2h_irq_invalid + invalid_vector el2h_fiq_invalid + + .ltorg + + .align 11 + +.macro check_preamble_length start, end +/* kvm_patch_vector_branch() generates code that jumps over the preamble. */ +.if ((\end-\start) != KVM_VECTOR_PREAMBLE) + .error "KVM vector preamble length mismatch" +.endif +.endm + +.macro valid_vect target + .align 7 +661: + esb + stp x0, x1, [sp, #-16]! +662: + /* + * spectre vectors __bp_harden_hyp_vecs generate br instructions at runtime + * that jump at offset 8 at __kvm_hyp_vector. + * As hyp .text is guarded section, it needs bti j. + */ + bti j + b \target + +check_preamble_length 661b, 662b +.endm + +.macro invalid_vect target + .align 7 +661: + nop + stp x0, x1, [sp, #-16]! +662: + /* Check valid_vect */ + bti j + b \target + +check_preamble_length 661b, 662b +.endm + +SYM_CODE_START(__kvm_hyp_vector) + invalid_vect el2t_sync_invalid // Synchronous EL2t + invalid_vect el2t_irq_invalid // IRQ EL2t + invalid_vect el2t_fiq_invalid // FIQ EL2t + invalid_vect el2t_error_invalid // Error EL2t + + valid_vect el2_sync // Synchronous EL2h + invalid_vect el2h_irq_invalid // IRQ EL2h + invalid_vect el2h_fiq_invalid // FIQ EL2h + valid_vect el2_error // Error EL2h + + valid_vect el1_sync // Synchronous 64-bit EL1 + valid_vect el1_irq // IRQ 64-bit EL1 + valid_vect el1_fiq // FIQ 64-bit EL1 + valid_vect el1_error // Error 64-bit EL1 + + valid_vect el1_sync // Synchronous 32-bit EL1 + valid_vect el1_irq // IRQ 32-bit EL1 + valid_vect el1_fiq // FIQ 32-bit EL1 + valid_vect el1_error // Error 32-bit EL1 +SYM_CODE_END(__kvm_hyp_vector) + +.macro spectrev2_smccc_wa1_smc + sub sp, sp, #(8 * 4) + stp x2, x3, [sp, #(8 * 0)] + stp x0, x1, [sp, #(8 * 2)] + alternative_cb ARM64_ALWAYS_SYSTEM, spectre_bhb_patch_wa3 + /* Patched to mov WA3 when supported */ + mov w0, #ARM_SMCCC_ARCH_WORKAROUND_1 + alternative_cb_end + smc #0 + ldp x2, x3, [sp, #(8 * 0)] + add sp, sp, #(8 * 2) +.endm + +.macro hyp_ventry indirect, spectrev2 + .align 7 +1: esb + .if \spectrev2 != 0 + spectrev2_smccc_wa1_smc + .else + stp x0, x1, [sp, #-16]! + mitigate_spectre_bhb_loop x0 + mitigate_spectre_bhb_clear_insn + .endif + .if \indirect != 0 + alternative_cb ARM64_ALWAYS_SYSTEM, kvm_patch_vector_branch + /* + * For ARM64_SPECTRE_V3A configurations, these NOPs get replaced with: + * + * movz x0, #(addr & 0xffff) + * movk x0, #((addr >> 16) & 0xffff), lsl #16 + * movk x0, #((addr >> 32) & 0xffff), lsl #32 + * br x0 + * + * Where: + * addr = kern_hyp_va(__kvm_hyp_vector) + vector-offset + KVM_VECTOR_PREAMBLE. + * See kvm_patch_vector_branch for details. + */ + nop + nop + nop + nop + alternative_cb_end + .endif + b __kvm_hyp_vector + (1b - 0b + KVM_VECTOR_PREAMBLE) +.endm + +.macro generate_vectors indirect, spectrev2 +0: + .rept 16 + hyp_ventry \indirect, \spectrev2 + .endr + .org 0b + SZ_2K // Safety measure +.endm + + .align 11 +SYM_CODE_START(__bp_harden_hyp_vecs) + generate_vectors indirect = 0, spectrev2 = 1 // HYP_VECTOR_SPECTRE_DIRECT + generate_vectors indirect = 1, spectrev2 = 0 // HYP_VECTOR_INDIRECT + generate_vectors indirect = 1, spectrev2 = 1 // HYP_VECTOR_SPECTRE_INDIRECT +1: .org __bp_harden_hyp_vecs + __BP_HARDEN_HYP_VECS_SZ + .org 1b +SYM_CODE_END(__bp_harden_hyp_vecs) diff --git a/arch/arm64/kvm/hyp/include/hyp/adjust_pc.h b/arch/arm64/kvm/hyp/include/hyp/adjust_pc.h new file mode 100644 index 0000000000..4fdfeabefe --- /dev/null +++ b/arch/arm64/kvm/hyp/include/hyp/adjust_pc.h @@ -0,0 +1,53 @@ +// SPDX-License-Identifier: GPL-2.0-only +/* + * Guest PC manipulation helpers + * + * Copyright (C) 2012,2013 - ARM Ltd + * Copyright (C) 2020 - Google LLC + * Author: Marc Zyngier <maz@kernel.org> + */ + +#ifndef __ARM64_KVM_HYP_ADJUST_PC_H__ +#define __ARM64_KVM_HYP_ADJUST_PC_H__ + +#include <asm/kvm_emulate.h> +#include <asm/kvm_host.h> + +static inline void kvm_skip_instr(struct kvm_vcpu *vcpu) +{ + if (vcpu_mode_is_32bit(vcpu)) { + kvm_skip_instr32(vcpu); + } else { + *vcpu_pc(vcpu) += 4; + *vcpu_cpsr(vcpu) &= ~PSR_BTYPE_MASK; + } + + /* advance the singlestep state machine */ + *vcpu_cpsr(vcpu) &= ~DBG_SPSR_SS; +} + +/* + * Skip an instruction which has been emulated at hyp while most guest sysregs + * are live. + */ +static inline void __kvm_skip_instr(struct kvm_vcpu *vcpu) +{ + *vcpu_pc(vcpu) = read_sysreg_el2(SYS_ELR); + vcpu_gp_regs(vcpu)->pstate = read_sysreg_el2(SYS_SPSR); + + kvm_skip_instr(vcpu); + + write_sysreg_el2(vcpu_gp_regs(vcpu)->pstate, SYS_SPSR); + write_sysreg_el2(*vcpu_pc(vcpu), SYS_ELR); +} + +/* + * Skip an instruction while host sysregs are live. + * Assumes host is always 64-bit. + */ +static inline void kvm_skip_host_instr(void) +{ + write_sysreg_el2(read_sysreg_el2(SYS_ELR) + 4, SYS_ELR); +} + +#endif diff --git a/arch/arm64/kvm/hyp/include/hyp/debug-sr.h b/arch/arm64/kvm/hyp/include/hyp/debug-sr.h new file mode 100644 index 0000000000..961bbef104 --- /dev/null +++ b/arch/arm64/kvm/hyp/include/hyp/debug-sr.h @@ -0,0 +1,168 @@ +// SPDX-License-Identifier: GPL-2.0-only +/* + * Copyright (C) 2015 - ARM Ltd + * Author: Marc Zyngier <marc.zyngier@arm.com> + */ + +#ifndef __ARM64_KVM_HYP_DEBUG_SR_H__ +#define __ARM64_KVM_HYP_DEBUG_SR_H__ + +#include <linux/compiler.h> +#include <linux/kvm_host.h> + +#include <asm/debug-monitors.h> +#include <asm/kvm_asm.h> +#include <asm/kvm_hyp.h> +#include <asm/kvm_mmu.h> + +#define read_debug(r,n) read_sysreg(r##n##_el1) +#define write_debug(v,r,n) write_sysreg(v, r##n##_el1) + +#define save_debug(ptr,reg,nr) \ + switch (nr) { \ + case 15: ptr[15] = read_debug(reg, 15); \ + fallthrough; \ + case 14: ptr[14] = read_debug(reg, 14); \ + fallthrough; \ + case 13: ptr[13] = read_debug(reg, 13); \ + fallthrough; \ + case 12: ptr[12] = read_debug(reg, 12); \ + fallthrough; \ + case 11: ptr[11] = read_debug(reg, 11); \ + fallthrough; \ + case 10: ptr[10] = read_debug(reg, 10); \ + fallthrough; \ + case 9: ptr[9] = read_debug(reg, 9); \ + fallthrough; \ + case 8: ptr[8] = read_debug(reg, 8); \ + fallthrough; \ + case 7: ptr[7] = read_debug(reg, 7); \ + fallthrough; \ + case 6: ptr[6] = read_debug(reg, 6); \ + fallthrough; \ + case 5: ptr[5] = read_debug(reg, 5); \ + fallthrough; \ + case 4: ptr[4] = read_debug(reg, 4); \ + fallthrough; \ + case 3: ptr[3] = read_debug(reg, 3); \ + fallthrough; \ + case 2: ptr[2] = read_debug(reg, 2); \ + fallthrough; \ + case 1: ptr[1] = read_debug(reg, 1); \ + fallthrough; \ + default: ptr[0] = read_debug(reg, 0); \ + } + +#define restore_debug(ptr,reg,nr) \ + switch (nr) { \ + case 15: write_debug(ptr[15], reg, 15); \ + fallthrough; \ + case 14: write_debug(ptr[14], reg, 14); \ + fallthrough; \ + case 13: write_debug(ptr[13], reg, 13); \ + fallthrough; \ + case 12: write_debug(ptr[12], reg, 12); \ + fallthrough; \ + case 11: write_debug(ptr[11], reg, 11); \ + fallthrough; \ + case 10: write_debug(ptr[10], reg, 10); \ + fallthrough; \ + case 9: write_debug(ptr[9], reg, 9); \ + fallthrough; \ + case 8: write_debug(ptr[8], reg, 8); \ + fallthrough; \ + case 7: write_debug(ptr[7], reg, 7); \ + fallthrough; \ + case 6: write_debug(ptr[6], reg, 6); \ + fallthrough; \ + case 5: write_debug(ptr[5], reg, 5); \ + fallthrough; \ + case 4: write_debug(ptr[4], reg, 4); \ + fallthrough; \ + case 3: write_debug(ptr[3], reg, 3); \ + fallthrough; \ + case 2: write_debug(ptr[2], reg, 2); \ + fallthrough; \ + case 1: write_debug(ptr[1], reg, 1); \ + fallthrough; \ + default: write_debug(ptr[0], reg, 0); \ + } + +static void __debug_save_state(struct kvm_guest_debug_arch *dbg, + struct kvm_cpu_context *ctxt) +{ + u64 aa64dfr0; + int brps, wrps; + + aa64dfr0 = read_sysreg(id_aa64dfr0_el1); + brps = (aa64dfr0 >> 12) & 0xf; + wrps = (aa64dfr0 >> 20) & 0xf; + + save_debug(dbg->dbg_bcr, dbgbcr, brps); + save_debug(dbg->dbg_bvr, dbgbvr, brps); + save_debug(dbg->dbg_wcr, dbgwcr, wrps); + save_debug(dbg->dbg_wvr, dbgwvr, wrps); + + ctxt_sys_reg(ctxt, MDCCINT_EL1) = read_sysreg(mdccint_el1); +} + +static void __debug_restore_state(struct kvm_guest_debug_arch *dbg, + struct kvm_cpu_context *ctxt) +{ + u64 aa64dfr0; + int brps, wrps; + + aa64dfr0 = read_sysreg(id_aa64dfr0_el1); + + brps = (aa64dfr0 >> 12) & 0xf; + wrps = (aa64dfr0 >> 20) & 0xf; + + restore_debug(dbg->dbg_bcr, dbgbcr, brps); + restore_debug(dbg->dbg_bvr, dbgbvr, brps); + restore_debug(dbg->dbg_wcr, dbgwcr, wrps); + restore_debug(dbg->dbg_wvr, dbgwvr, wrps); + + write_sysreg(ctxt_sys_reg(ctxt, MDCCINT_EL1), mdccint_el1); +} + +static inline void __debug_switch_to_guest_common(struct kvm_vcpu *vcpu) +{ + struct kvm_cpu_context *host_ctxt; + struct kvm_cpu_context *guest_ctxt; + struct kvm_guest_debug_arch *host_dbg; + struct kvm_guest_debug_arch *guest_dbg; + + if (!vcpu_get_flag(vcpu, DEBUG_DIRTY)) + return; + + host_ctxt = &this_cpu_ptr(&kvm_host_data)->host_ctxt; + guest_ctxt = &vcpu->arch.ctxt; + host_dbg = &vcpu->arch.host_debug_state.regs; + guest_dbg = kern_hyp_va(vcpu->arch.debug_ptr); + + __debug_save_state(host_dbg, host_ctxt); + __debug_restore_state(guest_dbg, guest_ctxt); +} + +static inline void __debug_switch_to_host_common(struct kvm_vcpu *vcpu) +{ + struct kvm_cpu_context *host_ctxt; + struct kvm_cpu_context *guest_ctxt; + struct kvm_guest_debug_arch *host_dbg; + struct kvm_guest_debug_arch *guest_dbg; + + if (!vcpu_get_flag(vcpu, DEBUG_DIRTY)) + return; + + host_ctxt = &this_cpu_ptr(&kvm_host_data)->host_ctxt; + guest_ctxt = &vcpu->arch.ctxt; + host_dbg = &vcpu->arch.host_debug_state.regs; + guest_dbg = kern_hyp_va(vcpu->arch.debug_ptr); + + __debug_save_state(guest_dbg, guest_ctxt); + __debug_restore_state(host_dbg, host_ctxt); + + vcpu_clear_flag(vcpu, DEBUG_DIRTY); +} + +#endif /* __ARM64_KVM_HYP_DEBUG_SR_H__ */ diff --git a/arch/arm64/kvm/hyp/include/hyp/fault.h b/arch/arm64/kvm/hyp/include/hyp/fault.h new file mode 100644 index 0000000000..9ddcfe2c3e --- /dev/null +++ b/arch/arm64/kvm/hyp/include/hyp/fault.h @@ -0,0 +1,75 @@ +// SPDX-License-Identifier: GPL-2.0-only +/* + * Copyright (C) 2015 - ARM Ltd + * Author: Marc Zyngier <marc.zyngier@arm.com> + */ + +#ifndef __ARM64_KVM_HYP_FAULT_H__ +#define __ARM64_KVM_HYP_FAULT_H__ + +#include <asm/kvm_asm.h> +#include <asm/kvm_emulate.h> +#include <asm/kvm_hyp.h> +#include <asm/kvm_mmu.h> + +static inline bool __translate_far_to_hpfar(u64 far, u64 *hpfar) +{ + u64 par, tmp; + + /* + * Resolve the IPA the hard way using the guest VA. + * + * Stage-1 translation already validated the memory access + * rights. As such, we can use the EL1 translation regime, and + * don't have to distinguish between EL0 and EL1 access. + * + * We do need to save/restore PAR_EL1 though, as we haven't + * saved the guest context yet, and we may return early... + */ + par = read_sysreg_par(); + if (!__kvm_at("s1e1r", far)) + tmp = read_sysreg_par(); + else + tmp = SYS_PAR_EL1_F; /* back to the guest */ + write_sysreg(par, par_el1); + + if (unlikely(tmp & SYS_PAR_EL1_F)) + return false; /* Translation failed, back to guest */ + + /* Convert PAR to HPFAR format */ + *hpfar = PAR_TO_HPFAR(tmp); + return true; +} + +static inline bool __get_fault_info(u64 esr, struct kvm_vcpu_fault_info *fault) +{ + u64 hpfar, far; + + far = read_sysreg_el2(SYS_FAR); + + /* + * The HPFAR can be invalid if the stage 2 fault did not + * happen during a stage 1 page table walk (the ESR_EL2.S1PTW + * bit is clear) and one of the two following cases are true: + * 1. The fault was due to a permission fault + * 2. The processor carries errata 834220 + * + * Therefore, for all non S1PTW faults where we either have a + * permission fault or the errata workaround is enabled, we + * resolve the IPA using the AT instruction. + */ + if (!(esr & ESR_ELx_S1PTW) && + (cpus_have_final_cap(ARM64_WORKAROUND_834220) || + (esr & ESR_ELx_FSC_TYPE) == ESR_ELx_FSC_PERM)) { + if (!__translate_far_to_hpfar(far, &hpfar)) + return false; + } else { + hpfar = read_sysreg(hpfar_el2); + } + + fault->far_el2 = far; + fault->hpfar_el2 = hpfar; + return true; +} + +#endif diff --git a/arch/arm64/kvm/hyp/include/hyp/switch.h b/arch/arm64/kvm/hyp/include/hyp/switch.h new file mode 100644 index 0000000000..9cfe6bd1db --- /dev/null +++ b/arch/arm64/kvm/hyp/include/hyp/switch.h @@ -0,0 +1,727 @@ +// SPDX-License-Identifier: GPL-2.0-only +/* + * Copyright (C) 2015 - ARM Ltd + * Author: Marc Zyngier <marc.zyngier@arm.com> + */ + +#ifndef __ARM64_KVM_HYP_SWITCH_H__ +#define __ARM64_KVM_HYP_SWITCH_H__ + +#include <hyp/adjust_pc.h> +#include <hyp/fault.h> + +#include <linux/arm-smccc.h> +#include <linux/kvm_host.h> +#include <linux/types.h> +#include <linux/jump_label.h> +#include <uapi/linux/psci.h> + +#include <kvm/arm_psci.h> + +#include <asm/barrier.h> +#include <asm/cpufeature.h> +#include <asm/extable.h> +#include <asm/kprobes.h> +#include <asm/kvm_asm.h> +#include <asm/kvm_emulate.h> +#include <asm/kvm_hyp.h> +#include <asm/kvm_mmu.h> +#include <asm/kvm_nested.h> +#include <asm/fpsimd.h> +#include <asm/debug-monitors.h> +#include <asm/processor.h> + +struct kvm_exception_table_entry { + int insn, fixup; +}; + +extern struct kvm_exception_table_entry __start___kvm_ex_table; +extern struct kvm_exception_table_entry __stop___kvm_ex_table; + +/* Check whether the FP regs are owned by the guest */ +static inline bool guest_owns_fp_regs(struct kvm_vcpu *vcpu) +{ + return vcpu->arch.fp_state == FP_STATE_GUEST_OWNED; +} + +/* Save the 32-bit only FPSIMD system register state */ +static inline void __fpsimd_save_fpexc32(struct kvm_vcpu *vcpu) +{ + if (!vcpu_el1_is_32bit(vcpu)) + return; + + __vcpu_sys_reg(vcpu, FPEXC32_EL2) = read_sysreg(fpexc32_el2); +} + +static inline void __activate_traps_fpsimd32(struct kvm_vcpu *vcpu) +{ + /* + * We are about to set CPTR_EL2.TFP to trap all floating point + * register accesses to EL2, however, the ARM ARM clearly states that + * traps are only taken to EL2 if the operation would not otherwise + * trap to EL1. Therefore, always make sure that for 32-bit guests, + * we set FPEXC.EN to prevent traps to EL1, when setting the TFP bit. + * If FP/ASIMD is not implemented, FPEXC is UNDEFINED and any access to + * it will cause an exception. + */ + if (vcpu_el1_is_32bit(vcpu) && system_supports_fpsimd()) { + write_sysreg(1 << 30, fpexc32_el2); + isb(); + } +} + +#define compute_clr_set(vcpu, reg, clr, set) \ + do { \ + u64 hfg; \ + hfg = __vcpu_sys_reg(vcpu, reg) & ~__ ## reg ## _RES0; \ + set |= hfg & __ ## reg ## _MASK; \ + clr |= ~hfg & __ ## reg ## _nMASK; \ + } while(0) + + +static inline void __activate_traps_hfgxtr(struct kvm_vcpu *vcpu) +{ + struct kvm_cpu_context *hctxt = &this_cpu_ptr(&kvm_host_data)->host_ctxt; + u64 r_clr = 0, w_clr = 0, r_set = 0, w_set = 0, tmp; + u64 r_val, w_val; + + if (!cpus_have_final_cap(ARM64_HAS_FGT)) + return; + + ctxt_sys_reg(hctxt, HFGRTR_EL2) = read_sysreg_s(SYS_HFGRTR_EL2); + ctxt_sys_reg(hctxt, HFGWTR_EL2) = read_sysreg_s(SYS_HFGWTR_EL2); + + if (cpus_have_final_cap(ARM64_SME)) { + tmp = HFGxTR_EL2_nSMPRI_EL1_MASK | HFGxTR_EL2_nTPIDR2_EL0_MASK; + + r_clr |= tmp; + w_clr |= tmp; + } + + /* + * Trap guest writes to TCR_EL1 to prevent it from enabling HA or HD. + */ + if (cpus_have_final_cap(ARM64_WORKAROUND_AMPERE_AC03_CPU_38)) + w_set |= HFGxTR_EL2_TCR_EL1_MASK; + + if (vcpu_has_nv(vcpu) && !is_hyp_ctxt(vcpu)) { + compute_clr_set(vcpu, HFGRTR_EL2, r_clr, r_set); + compute_clr_set(vcpu, HFGWTR_EL2, w_clr, w_set); + } + + /* The default is not to trap anything but ACCDATA_EL1 */ + r_val = __HFGRTR_EL2_nMASK & ~HFGxTR_EL2_nACCDATA_EL1; + r_val |= r_set; + r_val &= ~r_clr; + + w_val = __HFGWTR_EL2_nMASK & ~HFGxTR_EL2_nACCDATA_EL1; + w_val |= w_set; + w_val &= ~w_clr; + + write_sysreg_s(r_val, SYS_HFGRTR_EL2); + write_sysreg_s(w_val, SYS_HFGWTR_EL2); + + if (!vcpu_has_nv(vcpu) || is_hyp_ctxt(vcpu)) + return; + + ctxt_sys_reg(hctxt, HFGITR_EL2) = read_sysreg_s(SYS_HFGITR_EL2); + + r_set = r_clr = 0; + compute_clr_set(vcpu, HFGITR_EL2, r_clr, r_set); + r_val = __HFGITR_EL2_nMASK; + r_val |= r_set; + r_val &= ~r_clr; + + write_sysreg_s(r_val, SYS_HFGITR_EL2); + + ctxt_sys_reg(hctxt, HDFGRTR_EL2) = read_sysreg_s(SYS_HDFGRTR_EL2); + ctxt_sys_reg(hctxt, HDFGWTR_EL2) = read_sysreg_s(SYS_HDFGWTR_EL2); + + r_clr = r_set = w_clr = w_set = 0; + + compute_clr_set(vcpu, HDFGRTR_EL2, r_clr, r_set); + compute_clr_set(vcpu, HDFGWTR_EL2, w_clr, w_set); + + r_val = __HDFGRTR_EL2_nMASK; + r_val |= r_set; + r_val &= ~r_clr; + + w_val = __HDFGWTR_EL2_nMASK; + w_val |= w_set; + w_val &= ~w_clr; + + write_sysreg_s(r_val, SYS_HDFGRTR_EL2); + write_sysreg_s(w_val, SYS_HDFGWTR_EL2); +} + +static inline void __deactivate_traps_hfgxtr(struct kvm_vcpu *vcpu) +{ + struct kvm_cpu_context *hctxt = &this_cpu_ptr(&kvm_host_data)->host_ctxt; + + if (!cpus_have_final_cap(ARM64_HAS_FGT)) + return; + + write_sysreg_s(ctxt_sys_reg(hctxt, HFGRTR_EL2), SYS_HFGRTR_EL2); + write_sysreg_s(ctxt_sys_reg(hctxt, HFGWTR_EL2), SYS_HFGWTR_EL2); + + if (!vcpu_has_nv(vcpu) || is_hyp_ctxt(vcpu)) + return; + + write_sysreg_s(ctxt_sys_reg(hctxt, HFGITR_EL2), SYS_HFGITR_EL2); + write_sysreg_s(ctxt_sys_reg(hctxt, HDFGRTR_EL2), SYS_HDFGRTR_EL2); + write_sysreg_s(ctxt_sys_reg(hctxt, HDFGWTR_EL2), SYS_HDFGWTR_EL2); +} + +static inline void __activate_traps_common(struct kvm_vcpu *vcpu) +{ + /* Trap on AArch32 cp15 c15 (impdef sysregs) accesses (EL1 or EL0) */ + write_sysreg(1 << 15, hstr_el2); + + /* + * Make sure we trap PMU access from EL0 to EL2. Also sanitize + * PMSELR_EL0 to make sure it never contains the cycle + * counter, which could make a PMXEVCNTR_EL0 access UNDEF at + * EL1 instead of being trapped to EL2. + */ + if (kvm_arm_support_pmu_v3()) { + struct kvm_cpu_context *hctxt; + + write_sysreg(0, pmselr_el0); + + hctxt = &this_cpu_ptr(&kvm_host_data)->host_ctxt; + ctxt_sys_reg(hctxt, PMUSERENR_EL0) = read_sysreg(pmuserenr_el0); + write_sysreg(ARMV8_PMU_USERENR_MASK, pmuserenr_el0); + vcpu_set_flag(vcpu, PMUSERENR_ON_CPU); + } + + vcpu->arch.mdcr_el2_host = read_sysreg(mdcr_el2); + write_sysreg(vcpu->arch.mdcr_el2, mdcr_el2); + + if (cpus_have_final_cap(ARM64_HAS_HCX)) { + u64 hcrx = HCRX_GUEST_FLAGS; + if (vcpu_has_nv(vcpu) && !is_hyp_ctxt(vcpu)) { + u64 clr = 0, set = 0; + + compute_clr_set(vcpu, HCRX_EL2, clr, set); + + hcrx |= set; + hcrx &= ~clr; + } + + write_sysreg_s(hcrx, SYS_HCRX_EL2); + } + + __activate_traps_hfgxtr(vcpu); +} + +static inline void __deactivate_traps_common(struct kvm_vcpu *vcpu) +{ + write_sysreg(vcpu->arch.mdcr_el2_host, mdcr_el2); + + write_sysreg(0, hstr_el2); + if (kvm_arm_support_pmu_v3()) { + struct kvm_cpu_context *hctxt; + + hctxt = &this_cpu_ptr(&kvm_host_data)->host_ctxt; + write_sysreg(ctxt_sys_reg(hctxt, PMUSERENR_EL0), pmuserenr_el0); + vcpu_clear_flag(vcpu, PMUSERENR_ON_CPU); + } + + if (cpus_have_final_cap(ARM64_HAS_HCX)) + write_sysreg_s(HCRX_HOST_FLAGS, SYS_HCRX_EL2); + + __deactivate_traps_hfgxtr(vcpu); +} + +static inline void ___activate_traps(struct kvm_vcpu *vcpu) +{ + u64 hcr = vcpu->arch.hcr_el2; + + if (cpus_have_final_cap(ARM64_WORKAROUND_CAVIUM_TX2_219_TVM)) + hcr |= HCR_TVM; + + write_sysreg(hcr, hcr_el2); + + if (cpus_have_final_cap(ARM64_HAS_RAS_EXTN) && (hcr & HCR_VSE)) + write_sysreg_s(vcpu->arch.vsesr_el2, SYS_VSESR_EL2); +} + +static inline void ___deactivate_traps(struct kvm_vcpu *vcpu) +{ + /* + * If we pended a virtual abort, preserve it until it gets + * cleared. See D1.14.3 (Virtual Interrupts) for details, but + * the crucial bit is "On taking a vSError interrupt, + * HCR_EL2.VSE is cleared to 0." + */ + if (vcpu->arch.hcr_el2 & HCR_VSE) { + vcpu->arch.hcr_el2 &= ~HCR_VSE; + vcpu->arch.hcr_el2 |= read_sysreg(hcr_el2) & HCR_VSE; + } +} + +static inline bool __populate_fault_info(struct kvm_vcpu *vcpu) +{ + return __get_fault_info(vcpu->arch.fault.esr_el2, &vcpu->arch.fault); +} + +static inline void __hyp_sve_restore_guest(struct kvm_vcpu *vcpu) +{ + sve_cond_update_zcr_vq(vcpu_sve_max_vq(vcpu) - 1, SYS_ZCR_EL2); + __sve_restore_state(vcpu_sve_pffr(vcpu), + &vcpu->arch.ctxt.fp_regs.fpsr); + write_sysreg_el1(__vcpu_sys_reg(vcpu, ZCR_EL1), SYS_ZCR); +} + +/* + * We trap the first access to the FP/SIMD to save the host context and + * restore the guest context lazily. + * If FP/SIMD is not implemented, handle the trap and inject an undefined + * instruction exception to the guest. Similarly for trapped SVE accesses. + */ +static bool kvm_hyp_handle_fpsimd(struct kvm_vcpu *vcpu, u64 *exit_code) +{ + bool sve_guest; + u8 esr_ec; + u64 reg; + + if (!system_supports_fpsimd()) + return false; + + sve_guest = vcpu_has_sve(vcpu); + esr_ec = kvm_vcpu_trap_get_class(vcpu); + + /* Only handle traps the vCPU can support here: */ + switch (esr_ec) { + case ESR_ELx_EC_FP_ASIMD: + break; + case ESR_ELx_EC_SVE: + if (!sve_guest) + return false; + break; + default: + return false; + } + + /* Valid trap. Switch the context: */ + + /* First disable enough traps to allow us to update the registers */ + if (has_vhe() || has_hvhe()) { + reg = CPACR_EL1_FPEN_EL0EN | CPACR_EL1_FPEN_EL1EN; + if (sve_guest) + reg |= CPACR_EL1_ZEN_EL0EN | CPACR_EL1_ZEN_EL1EN; + + sysreg_clear_set(cpacr_el1, 0, reg); + } else { + reg = CPTR_EL2_TFP; + if (sve_guest) + reg |= CPTR_EL2_TZ; + + sysreg_clear_set(cptr_el2, reg, 0); + } + isb(); + + /* Write out the host state if it's in the registers */ + if (vcpu->arch.fp_state == FP_STATE_HOST_OWNED) + __fpsimd_save_state(vcpu->arch.host_fpsimd_state); + + /* Restore the guest state */ + if (sve_guest) + __hyp_sve_restore_guest(vcpu); + else + __fpsimd_restore_state(&vcpu->arch.ctxt.fp_regs); + + /* Skip restoring fpexc32 for AArch64 guests */ + if (!(read_sysreg(hcr_el2) & HCR_RW)) + write_sysreg(__vcpu_sys_reg(vcpu, FPEXC32_EL2), fpexc32_el2); + + vcpu->arch.fp_state = FP_STATE_GUEST_OWNED; + + return true; +} + +static inline bool handle_tx2_tvm(struct kvm_vcpu *vcpu) +{ + u32 sysreg = esr_sys64_to_sysreg(kvm_vcpu_get_esr(vcpu)); + int rt = kvm_vcpu_sys_get_rt(vcpu); + u64 val = vcpu_get_reg(vcpu, rt); + + /* + * The normal sysreg handling code expects to see the traps, + * let's not do anything here. + */ + if (vcpu->arch.hcr_el2 & HCR_TVM) + return false; + + switch (sysreg) { + case SYS_SCTLR_EL1: + write_sysreg_el1(val, SYS_SCTLR); + break; + case SYS_TTBR0_EL1: + write_sysreg_el1(val, SYS_TTBR0); + break; + case SYS_TTBR1_EL1: + write_sysreg_el1(val, SYS_TTBR1); + break; + case SYS_TCR_EL1: + write_sysreg_el1(val, SYS_TCR); + break; + case SYS_ESR_EL1: + write_sysreg_el1(val, SYS_ESR); + break; + case SYS_FAR_EL1: + write_sysreg_el1(val, SYS_FAR); + break; + case SYS_AFSR0_EL1: + write_sysreg_el1(val, SYS_AFSR0); + break; + case SYS_AFSR1_EL1: + write_sysreg_el1(val, SYS_AFSR1); + break; + case SYS_MAIR_EL1: + write_sysreg_el1(val, SYS_MAIR); + break; + case SYS_AMAIR_EL1: + write_sysreg_el1(val, SYS_AMAIR); + break; + case SYS_CONTEXTIDR_EL1: + write_sysreg_el1(val, SYS_CONTEXTIDR); + break; + default: + return false; + } + + __kvm_skip_instr(vcpu); + return true; +} + +static inline bool esr_is_ptrauth_trap(u64 esr) +{ + switch (esr_sys64_to_sysreg(esr)) { + case SYS_APIAKEYLO_EL1: + case SYS_APIAKEYHI_EL1: + case SYS_APIBKEYLO_EL1: + case SYS_APIBKEYHI_EL1: + case SYS_APDAKEYLO_EL1: + case SYS_APDAKEYHI_EL1: + case SYS_APDBKEYLO_EL1: + case SYS_APDBKEYHI_EL1: + case SYS_APGAKEYLO_EL1: + case SYS_APGAKEYHI_EL1: + return true; + } + + return false; +} + +#define __ptrauth_save_key(ctxt, key) \ + do { \ + u64 __val; \ + __val = read_sysreg_s(SYS_ ## key ## KEYLO_EL1); \ + ctxt_sys_reg(ctxt, key ## KEYLO_EL1) = __val; \ + __val = read_sysreg_s(SYS_ ## key ## KEYHI_EL1); \ + ctxt_sys_reg(ctxt, key ## KEYHI_EL1) = __val; \ +} while(0) + +DECLARE_PER_CPU(struct kvm_cpu_context, kvm_hyp_ctxt); + +static bool kvm_hyp_handle_ptrauth(struct kvm_vcpu *vcpu, u64 *exit_code) +{ + struct kvm_cpu_context *ctxt; + u64 val; + + if (!vcpu_has_ptrauth(vcpu)) + return false; + + ctxt = this_cpu_ptr(&kvm_hyp_ctxt); + __ptrauth_save_key(ctxt, APIA); + __ptrauth_save_key(ctxt, APIB); + __ptrauth_save_key(ctxt, APDA); + __ptrauth_save_key(ctxt, APDB); + __ptrauth_save_key(ctxt, APGA); + + vcpu_ptrauth_enable(vcpu); + + val = read_sysreg(hcr_el2); + val |= (HCR_API | HCR_APK); + write_sysreg(val, hcr_el2); + + return true; +} + +static bool kvm_hyp_handle_cntpct(struct kvm_vcpu *vcpu) +{ + struct arch_timer_context *ctxt; + u32 sysreg; + u64 val; + + /* + * We only get here for 64bit guests, 32bit guests will hit + * the long and winding road all the way to the standard + * handling. Yes, it sucks to be irrelevant. + */ + sysreg = esr_sys64_to_sysreg(kvm_vcpu_get_esr(vcpu)); + + switch (sysreg) { + case SYS_CNTPCT_EL0: + case SYS_CNTPCTSS_EL0: + if (vcpu_has_nv(vcpu)) { + if (is_hyp_ctxt(vcpu)) { + ctxt = vcpu_hptimer(vcpu); + break; + } + + /* Check for guest hypervisor trapping */ + val = __vcpu_sys_reg(vcpu, CNTHCTL_EL2); + if (!vcpu_el2_e2h_is_set(vcpu)) + val = (val & CNTHCTL_EL1PCTEN) << 10; + + if (!(val & (CNTHCTL_EL1PCTEN << 10))) + return false; + } + + ctxt = vcpu_ptimer(vcpu); + break; + default: + return false; + } + + val = arch_timer_read_cntpct_el0(); + + if (ctxt->offset.vm_offset) + val -= *kern_hyp_va(ctxt->offset.vm_offset); + if (ctxt->offset.vcpu_offset) + val -= *kern_hyp_va(ctxt->offset.vcpu_offset); + + vcpu_set_reg(vcpu, kvm_vcpu_sys_get_rt(vcpu), val); + __kvm_skip_instr(vcpu); + return true; +} + +static bool handle_ampere1_tcr(struct kvm_vcpu *vcpu) +{ + u32 sysreg = esr_sys64_to_sysreg(kvm_vcpu_get_esr(vcpu)); + int rt = kvm_vcpu_sys_get_rt(vcpu); + u64 val = vcpu_get_reg(vcpu, rt); + + if (sysreg != SYS_TCR_EL1) + return false; + + /* + * Affected parts do not advertise support for hardware Access Flag / + * Dirty state management in ID_AA64MMFR1_EL1.HAFDBS, but the underlying + * control bits are still functional. The architecture requires these be + * RES0 on systems that do not implement FEAT_HAFDBS. + * + * Uphold the requirements of the architecture by masking guest writes + * to TCR_EL1.{HA,HD} here. + */ + val &= ~(TCR_HD | TCR_HA); + write_sysreg_el1(val, SYS_TCR); + __kvm_skip_instr(vcpu); + return true; +} + +static bool kvm_hyp_handle_sysreg(struct kvm_vcpu *vcpu, u64 *exit_code) +{ + if (cpus_have_final_cap(ARM64_WORKAROUND_CAVIUM_TX2_219_TVM) && + handle_tx2_tvm(vcpu)) + return true; + + if (cpus_have_final_cap(ARM64_WORKAROUND_AMPERE_AC03_CPU_38) && + handle_ampere1_tcr(vcpu)) + return true; + + if (static_branch_unlikely(&vgic_v3_cpuif_trap) && + __vgic_v3_perform_cpuif_access(vcpu) == 1) + return true; + + if (esr_is_ptrauth_trap(kvm_vcpu_get_esr(vcpu))) + return kvm_hyp_handle_ptrauth(vcpu, exit_code); + + if (kvm_hyp_handle_cntpct(vcpu)) + return true; + + return false; +} + +static bool kvm_hyp_handle_cp15_32(struct kvm_vcpu *vcpu, u64 *exit_code) +{ + if (static_branch_unlikely(&vgic_v3_cpuif_trap) && + __vgic_v3_perform_cpuif_access(vcpu) == 1) + return true; + + return false; +} + +static bool kvm_hyp_handle_memory_fault(struct kvm_vcpu *vcpu, u64 *exit_code) +{ + if (!__populate_fault_info(vcpu)) + return true; + + return false; +} +static bool kvm_hyp_handle_iabt_low(struct kvm_vcpu *vcpu, u64 *exit_code) + __alias(kvm_hyp_handle_memory_fault); +static bool kvm_hyp_handle_watchpt_low(struct kvm_vcpu *vcpu, u64 *exit_code) + __alias(kvm_hyp_handle_memory_fault); + +static bool kvm_hyp_handle_dabt_low(struct kvm_vcpu *vcpu, u64 *exit_code) +{ + if (kvm_hyp_handle_memory_fault(vcpu, exit_code)) + return true; + + if (static_branch_unlikely(&vgic_v2_cpuif_trap)) { + bool valid; + + valid = kvm_vcpu_trap_get_fault_type(vcpu) == ESR_ELx_FSC_FAULT && + kvm_vcpu_dabt_isvalid(vcpu) && + !kvm_vcpu_abt_issea(vcpu) && + !kvm_vcpu_abt_iss1tw(vcpu); + + if (valid) { + int ret = __vgic_v2_perform_cpuif_access(vcpu); + + if (ret == 1) + return true; + + /* Promote an illegal access to an SError.*/ + if (ret == -1) + *exit_code = ARM_EXCEPTION_EL1_SERROR; + } + } + + return false; +} + +typedef bool (*exit_handler_fn)(struct kvm_vcpu *, u64 *); + +static const exit_handler_fn *kvm_get_exit_handler_array(struct kvm_vcpu *vcpu); + +static void early_exit_filter(struct kvm_vcpu *vcpu, u64 *exit_code); + +/* + * Allow the hypervisor to handle the exit with an exit handler if it has one. + * + * Returns true if the hypervisor handled the exit, and control should go back + * to the guest, or false if it hasn't. + */ +static inline bool kvm_hyp_handle_exit(struct kvm_vcpu *vcpu, u64 *exit_code) +{ + const exit_handler_fn *handlers = kvm_get_exit_handler_array(vcpu); + exit_handler_fn fn; + + fn = handlers[kvm_vcpu_trap_get_class(vcpu)]; + + if (fn) + return fn(vcpu, exit_code); + + return false; +} + +static inline void synchronize_vcpu_pstate(struct kvm_vcpu *vcpu, u64 *exit_code) +{ + /* + * Check for the conditions of Cortex-A510's #2077057. When these occur + * SPSR_EL2 can't be trusted, but isn't needed either as it is + * unchanged from the value in vcpu_gp_regs(vcpu)->pstate. + * Are we single-stepping the guest, and took a PAC exception from the + * active-not-pending state? + */ + if (cpus_have_final_cap(ARM64_WORKAROUND_2077057) && + vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP && + *vcpu_cpsr(vcpu) & DBG_SPSR_SS && + ESR_ELx_EC(read_sysreg_el2(SYS_ESR)) == ESR_ELx_EC_PAC) + write_sysreg_el2(*vcpu_cpsr(vcpu), SYS_SPSR); + + vcpu->arch.ctxt.regs.pstate = read_sysreg_el2(SYS_SPSR); +} + +/* + * Return true when we were able to fixup the guest exit and should return to + * the guest, false when we should restore the host state and return to the + * main run loop. + */ +static inline bool fixup_guest_exit(struct kvm_vcpu *vcpu, u64 *exit_code) +{ + /* + * Save PSTATE early so that we can evaluate the vcpu mode + * early on. + */ + synchronize_vcpu_pstate(vcpu, exit_code); + + /* + * Check whether we want to repaint the state one way or + * another. + */ + early_exit_filter(vcpu, exit_code); + + if (ARM_EXCEPTION_CODE(*exit_code) != ARM_EXCEPTION_IRQ) + vcpu->arch.fault.esr_el2 = read_sysreg_el2(SYS_ESR); + + if (ARM_SERROR_PENDING(*exit_code) && + ARM_EXCEPTION_CODE(*exit_code) != ARM_EXCEPTION_IRQ) { + u8 esr_ec = kvm_vcpu_trap_get_class(vcpu); + + /* + * HVC already have an adjusted PC, which we need to + * correct in order to return to after having injected + * the SError. + * + * SMC, on the other hand, is *trapped*, meaning its + * preferred return address is the SMC itself. + */ + if (esr_ec == ESR_ELx_EC_HVC32 || esr_ec == ESR_ELx_EC_HVC64) + write_sysreg_el2(read_sysreg_el2(SYS_ELR) - 4, SYS_ELR); + } + + /* + * We're using the raw exception code in order to only process + * the trap if no SError is pending. We will come back to the + * same PC once the SError has been injected, and replay the + * trapping instruction. + */ + if (*exit_code != ARM_EXCEPTION_TRAP) + goto exit; + + /* Check if there's an exit handler and allow it to handle the exit. */ + if (kvm_hyp_handle_exit(vcpu, exit_code)) + goto guest; +exit: + /* Return to the host kernel and handle the exit */ + return false; + +guest: + /* Re-enter the guest */ + asm(ALTERNATIVE("nop", "dmb sy", ARM64_WORKAROUND_1508412)); + return true; +} + +static inline void __kvm_unexpected_el2_exception(void) +{ + extern char __guest_exit_panic[]; + unsigned long addr, fixup; + struct kvm_exception_table_entry *entry, *end; + unsigned long elr_el2 = read_sysreg(elr_el2); + + entry = &__start___kvm_ex_table; + end = &__stop___kvm_ex_table; + + while (entry < end) { + addr = (unsigned long)&entry->insn + entry->insn; + fixup = (unsigned long)&entry->fixup + entry->fixup; + + if (addr != elr_el2) { + entry++; + continue; + } + + write_sysreg(fixup, elr_el2); + return; + } + + /* Trigger a panic after restoring the hyp context. */ + write_sysreg(__guest_exit_panic, elr_el2); +} + +#endif /* __ARM64_KVM_HYP_SWITCH_H__ */ diff --git a/arch/arm64/kvm/hyp/include/hyp/sysreg-sr.h b/arch/arm64/kvm/hyp/include/hyp/sysreg-sr.h new file mode 100644 index 0000000000..bb6b571ec6 --- /dev/null +++ b/arch/arm64/kvm/hyp/include/hyp/sysreg-sr.h @@ -0,0 +1,246 @@ +// SPDX-License-Identifier: GPL-2.0-only +/* + * Copyright (C) 2012-2015 - ARM Ltd + * Author: Marc Zyngier <marc.zyngier@arm.com> + */ + +#ifndef __ARM64_KVM_HYP_SYSREG_SR_H__ +#define __ARM64_KVM_HYP_SYSREG_SR_H__ + +#include <linux/compiler.h> +#include <linux/kvm_host.h> + +#include <asm/kprobes.h> +#include <asm/kvm_asm.h> +#include <asm/kvm_emulate.h> +#include <asm/kvm_hyp.h> +#include <asm/kvm_mmu.h> + +static inline void __sysreg_save_common_state(struct kvm_cpu_context *ctxt) +{ + ctxt_sys_reg(ctxt, MDSCR_EL1) = read_sysreg(mdscr_el1); +} + +static inline void __sysreg_save_user_state(struct kvm_cpu_context *ctxt) +{ + ctxt_sys_reg(ctxt, TPIDR_EL0) = read_sysreg(tpidr_el0); + ctxt_sys_reg(ctxt, TPIDRRO_EL0) = read_sysreg(tpidrro_el0); +} + +static inline bool ctxt_has_mte(struct kvm_cpu_context *ctxt) +{ + struct kvm_vcpu *vcpu = ctxt->__hyp_running_vcpu; + + if (!vcpu) + vcpu = container_of(ctxt, struct kvm_vcpu, arch.ctxt); + + return kvm_has_mte(kern_hyp_va(vcpu->kvm)); +} + +static inline void __sysreg_save_el1_state(struct kvm_cpu_context *ctxt) +{ + ctxt_sys_reg(ctxt, SCTLR_EL1) = read_sysreg_el1(SYS_SCTLR); + ctxt_sys_reg(ctxt, CPACR_EL1) = read_sysreg_el1(SYS_CPACR); + ctxt_sys_reg(ctxt, TTBR0_EL1) = read_sysreg_el1(SYS_TTBR0); + ctxt_sys_reg(ctxt, TTBR1_EL1) = read_sysreg_el1(SYS_TTBR1); + ctxt_sys_reg(ctxt, TCR_EL1) = read_sysreg_el1(SYS_TCR); + if (cpus_have_final_cap(ARM64_HAS_TCR2)) + ctxt_sys_reg(ctxt, TCR2_EL1) = read_sysreg_el1(SYS_TCR2); + ctxt_sys_reg(ctxt, ESR_EL1) = read_sysreg_el1(SYS_ESR); + ctxt_sys_reg(ctxt, AFSR0_EL1) = read_sysreg_el1(SYS_AFSR0); + ctxt_sys_reg(ctxt, AFSR1_EL1) = read_sysreg_el1(SYS_AFSR1); + ctxt_sys_reg(ctxt, FAR_EL1) = read_sysreg_el1(SYS_FAR); + ctxt_sys_reg(ctxt, MAIR_EL1) = read_sysreg_el1(SYS_MAIR); + ctxt_sys_reg(ctxt, VBAR_EL1) = read_sysreg_el1(SYS_VBAR); + ctxt_sys_reg(ctxt, CONTEXTIDR_EL1) = read_sysreg_el1(SYS_CONTEXTIDR); + ctxt_sys_reg(ctxt, AMAIR_EL1) = read_sysreg_el1(SYS_AMAIR); + ctxt_sys_reg(ctxt, CNTKCTL_EL1) = read_sysreg_el1(SYS_CNTKCTL); + if (cpus_have_final_cap(ARM64_HAS_S1PIE)) { + ctxt_sys_reg(ctxt, PIR_EL1) = read_sysreg_el1(SYS_PIR); + ctxt_sys_reg(ctxt, PIRE0_EL1) = read_sysreg_el1(SYS_PIRE0); + } + ctxt_sys_reg(ctxt, PAR_EL1) = read_sysreg_par(); + ctxt_sys_reg(ctxt, TPIDR_EL1) = read_sysreg(tpidr_el1); + + if (ctxt_has_mte(ctxt)) { + ctxt_sys_reg(ctxt, TFSR_EL1) = read_sysreg_el1(SYS_TFSR); + ctxt_sys_reg(ctxt, TFSRE0_EL1) = read_sysreg_s(SYS_TFSRE0_EL1); + } + + ctxt_sys_reg(ctxt, SP_EL1) = read_sysreg(sp_el1); + ctxt_sys_reg(ctxt, ELR_EL1) = read_sysreg_el1(SYS_ELR); + ctxt_sys_reg(ctxt, SPSR_EL1) = read_sysreg_el1(SYS_SPSR); +} + +static inline void __sysreg_save_el2_return_state(struct kvm_cpu_context *ctxt) +{ + ctxt->regs.pc = read_sysreg_el2(SYS_ELR); + /* + * Guest PSTATE gets saved at guest fixup time in all + * cases. We still need to handle the nVHE host side here. + */ + if (!has_vhe() && ctxt->__hyp_running_vcpu) + ctxt->regs.pstate = read_sysreg_el2(SYS_SPSR); + + if (cpus_have_final_cap(ARM64_HAS_RAS_EXTN)) + ctxt_sys_reg(ctxt, DISR_EL1) = read_sysreg_s(SYS_VDISR_EL2); +} + +static inline void __sysreg_restore_common_state(struct kvm_cpu_context *ctxt) +{ + write_sysreg(ctxt_sys_reg(ctxt, MDSCR_EL1), mdscr_el1); +} + +static inline void __sysreg_restore_user_state(struct kvm_cpu_context *ctxt) +{ + write_sysreg(ctxt_sys_reg(ctxt, TPIDR_EL0), tpidr_el0); + write_sysreg(ctxt_sys_reg(ctxt, TPIDRRO_EL0), tpidrro_el0); +} + +static inline void __sysreg_restore_el1_state(struct kvm_cpu_context *ctxt) +{ + write_sysreg(ctxt_sys_reg(ctxt, MPIDR_EL1), vmpidr_el2); + + if (has_vhe() || + !cpus_have_final_cap(ARM64_WORKAROUND_SPECULATIVE_AT)) { + write_sysreg_el1(ctxt_sys_reg(ctxt, SCTLR_EL1), SYS_SCTLR); + write_sysreg_el1(ctxt_sys_reg(ctxt, TCR_EL1), SYS_TCR); + } else if (!ctxt->__hyp_running_vcpu) { + /* + * Must only be done for guest registers, hence the context + * test. We're coming from the host, so SCTLR.M is already + * set. Pairs with nVHE's __activate_traps(). + */ + write_sysreg_el1((ctxt_sys_reg(ctxt, TCR_EL1) | + TCR_EPD1_MASK | TCR_EPD0_MASK), + SYS_TCR); + isb(); + } + + write_sysreg_el1(ctxt_sys_reg(ctxt, CPACR_EL1), SYS_CPACR); + write_sysreg_el1(ctxt_sys_reg(ctxt, TTBR0_EL1), SYS_TTBR0); + write_sysreg_el1(ctxt_sys_reg(ctxt, TTBR1_EL1), SYS_TTBR1); + if (cpus_have_final_cap(ARM64_HAS_TCR2)) + write_sysreg_el1(ctxt_sys_reg(ctxt, TCR2_EL1), SYS_TCR2); + write_sysreg_el1(ctxt_sys_reg(ctxt, ESR_EL1), SYS_ESR); + write_sysreg_el1(ctxt_sys_reg(ctxt, AFSR0_EL1), SYS_AFSR0); + write_sysreg_el1(ctxt_sys_reg(ctxt, AFSR1_EL1), SYS_AFSR1); + write_sysreg_el1(ctxt_sys_reg(ctxt, FAR_EL1), SYS_FAR); + write_sysreg_el1(ctxt_sys_reg(ctxt, MAIR_EL1), SYS_MAIR); + write_sysreg_el1(ctxt_sys_reg(ctxt, VBAR_EL1), SYS_VBAR); + write_sysreg_el1(ctxt_sys_reg(ctxt, CONTEXTIDR_EL1), SYS_CONTEXTIDR); + write_sysreg_el1(ctxt_sys_reg(ctxt, AMAIR_EL1), SYS_AMAIR); + write_sysreg_el1(ctxt_sys_reg(ctxt, CNTKCTL_EL1), SYS_CNTKCTL); + if (cpus_have_final_cap(ARM64_HAS_S1PIE)) { + write_sysreg_el1(ctxt_sys_reg(ctxt, PIR_EL1), SYS_PIR); + write_sysreg_el1(ctxt_sys_reg(ctxt, PIRE0_EL1), SYS_PIRE0); + } + write_sysreg(ctxt_sys_reg(ctxt, PAR_EL1), par_el1); + write_sysreg(ctxt_sys_reg(ctxt, TPIDR_EL1), tpidr_el1); + + if (ctxt_has_mte(ctxt)) { + write_sysreg_el1(ctxt_sys_reg(ctxt, TFSR_EL1), SYS_TFSR); + write_sysreg_s(ctxt_sys_reg(ctxt, TFSRE0_EL1), SYS_TFSRE0_EL1); + } + + if (!has_vhe() && + cpus_have_final_cap(ARM64_WORKAROUND_SPECULATIVE_AT) && + ctxt->__hyp_running_vcpu) { + /* + * Must only be done for host registers, hence the context + * test. Pairs with nVHE's __deactivate_traps(). + */ + isb(); + /* + * At this stage, and thanks to the above isb(), S2 is + * deconfigured and disabled. We can now restore the host's + * S1 configuration: SCTLR, and only then TCR. + */ + write_sysreg_el1(ctxt_sys_reg(ctxt, SCTLR_EL1), SYS_SCTLR); + isb(); + write_sysreg_el1(ctxt_sys_reg(ctxt, TCR_EL1), SYS_TCR); + } + + write_sysreg(ctxt_sys_reg(ctxt, SP_EL1), sp_el1); + write_sysreg_el1(ctxt_sys_reg(ctxt, ELR_EL1), SYS_ELR); + write_sysreg_el1(ctxt_sys_reg(ctxt, SPSR_EL1), SYS_SPSR); +} + +/* Read the VCPU state's PSTATE, but translate (v)EL2 to EL1. */ +static inline u64 to_hw_pstate(const struct kvm_cpu_context *ctxt) +{ + u64 mode = ctxt->regs.pstate & (PSR_MODE_MASK | PSR_MODE32_BIT); + + switch (mode) { + case PSR_MODE_EL2t: + mode = PSR_MODE_EL1t; + break; + case PSR_MODE_EL2h: + mode = PSR_MODE_EL1h; + break; + } + + return (ctxt->regs.pstate & ~(PSR_MODE_MASK | PSR_MODE32_BIT)) | mode; +} + +static inline void __sysreg_restore_el2_return_state(struct kvm_cpu_context *ctxt) +{ + u64 pstate = to_hw_pstate(ctxt); + u64 mode = pstate & PSR_AA32_MODE_MASK; + + /* + * Safety check to ensure we're setting the CPU up to enter the guest + * in a less privileged mode. + * + * If we are attempting a return to EL2 or higher in AArch64 state, + * program SPSR_EL2 with M=EL2h and the IL bit set which ensures that + * we'll take an illegal exception state exception immediately after + * the ERET to the guest. Attempts to return to AArch32 Hyp will + * result in an illegal exception return because EL2's execution state + * is determined by SCR_EL3.RW. + */ + if (!(mode & PSR_MODE32_BIT) && mode >= PSR_MODE_EL2t) + pstate = PSR_MODE_EL2h | PSR_IL_BIT; + + write_sysreg_el2(ctxt->regs.pc, SYS_ELR); + write_sysreg_el2(pstate, SYS_SPSR); + + if (cpus_have_final_cap(ARM64_HAS_RAS_EXTN)) + write_sysreg_s(ctxt_sys_reg(ctxt, DISR_EL1), SYS_VDISR_EL2); +} + +static inline void __sysreg32_save_state(struct kvm_vcpu *vcpu) +{ + if (!vcpu_el1_is_32bit(vcpu)) + return; + + vcpu->arch.ctxt.spsr_abt = read_sysreg(spsr_abt); + vcpu->arch.ctxt.spsr_und = read_sysreg(spsr_und); + vcpu->arch.ctxt.spsr_irq = read_sysreg(spsr_irq); + vcpu->arch.ctxt.spsr_fiq = read_sysreg(spsr_fiq); + + __vcpu_sys_reg(vcpu, DACR32_EL2) = read_sysreg(dacr32_el2); + __vcpu_sys_reg(vcpu, IFSR32_EL2) = read_sysreg(ifsr32_el2); + + if (has_vhe() || vcpu_get_flag(vcpu, DEBUG_DIRTY)) + __vcpu_sys_reg(vcpu, DBGVCR32_EL2) = read_sysreg(dbgvcr32_el2); +} + +static inline void __sysreg32_restore_state(struct kvm_vcpu *vcpu) +{ + if (!vcpu_el1_is_32bit(vcpu)) + return; + + write_sysreg(vcpu->arch.ctxt.spsr_abt, spsr_abt); + write_sysreg(vcpu->arch.ctxt.spsr_und, spsr_und); + write_sysreg(vcpu->arch.ctxt.spsr_irq, spsr_irq); + write_sysreg(vcpu->arch.ctxt.spsr_fiq, spsr_fiq); + + write_sysreg(__vcpu_sys_reg(vcpu, DACR32_EL2), dacr32_el2); + write_sysreg(__vcpu_sys_reg(vcpu, IFSR32_EL2), ifsr32_el2); + + if (has_vhe() || vcpu_get_flag(vcpu, DEBUG_DIRTY)) + write_sysreg(__vcpu_sys_reg(vcpu, DBGVCR32_EL2), dbgvcr32_el2); +} + +#endif /* __ARM64_KVM_HYP_SYSREG_SR_H__ */ diff --git a/arch/arm64/kvm/hyp/include/nvhe/early_alloc.h b/arch/arm64/kvm/hyp/include/nvhe/early_alloc.h new file mode 100644 index 0000000000..dc61aaa56f --- /dev/null +++ b/arch/arm64/kvm/hyp/include/nvhe/early_alloc.h @@ -0,0 +1,14 @@ +/* SPDX-License-Identifier: GPL-2.0-only */ +#ifndef __KVM_HYP_EARLY_ALLOC_H +#define __KVM_HYP_EARLY_ALLOC_H + +#include <asm/kvm_pgtable.h> + +void hyp_early_alloc_init(void *virt, unsigned long size); +unsigned long hyp_early_alloc_nr_used_pages(void); +void *hyp_early_alloc_page(void *arg); +void *hyp_early_alloc_contig(unsigned int nr_pages); + +extern struct kvm_pgtable_mm_ops hyp_early_alloc_mm_ops; + +#endif /* __KVM_HYP_EARLY_ALLOC_H */ diff --git a/arch/arm64/kvm/hyp/include/nvhe/ffa.h b/arch/arm64/kvm/hyp/include/nvhe/ffa.h new file mode 100644 index 0000000000..d9fd5e6c7d --- /dev/null +++ b/arch/arm64/kvm/hyp/include/nvhe/ffa.h @@ -0,0 +1,17 @@ +/* SPDX-License-Identifier: GPL-2.0-only */ +/* + * Copyright (C) 2022 - Google LLC + * Author: Andrew Walbran <qwandor@google.com> + */ +#ifndef __KVM_HYP_FFA_H +#define __KVM_HYP_FFA_H + +#include <asm/kvm_host.h> + +#define FFA_MIN_FUNC_NUM 0x60 +#define FFA_MAX_FUNC_NUM 0x7F + +int hyp_ffa_init(void *pages); +bool kvm_host_ffa_handler(struct kvm_cpu_context *host_ctxt, u32 func_id); + +#endif /* __KVM_HYP_FFA_H */ diff --git a/arch/arm64/kvm/hyp/include/nvhe/fixed_config.h b/arch/arm64/kvm/hyp/include/nvhe/fixed_config.h new file mode 100644 index 0000000000..37440e1dda --- /dev/null +++ b/arch/arm64/kvm/hyp/include/nvhe/fixed_config.h @@ -0,0 +1,208 @@ +/* SPDX-License-Identifier: GPL-2.0-only */ +/* + * Copyright (C) 2021 Google LLC + * Author: Fuad Tabba <tabba@google.com> + */ + +#ifndef __ARM64_KVM_FIXED_CONFIG_H__ +#define __ARM64_KVM_FIXED_CONFIG_H__ + +#include <asm/sysreg.h> + +/* + * This file contains definitions for features to be allowed or restricted for + * guest virtual machines, depending on the mode KVM is running in and on the + * type of guest that is running. + * + * The ALLOW masks represent a bitmask of feature fields that are allowed + * without any restrictions as long as they are supported by the system. + * + * The RESTRICT_UNSIGNED masks, if present, represent unsigned fields for + * features that are restricted to support at most the specified feature. + * + * If a feature field is not present in either, than it is not supported. + * + * The approach taken for protected VMs is to allow features that are: + * - Needed by common Linux distributions (e.g., floating point) + * - Trivial to support, e.g., supporting the feature does not introduce or + * require tracking of additional state in KVM + * - Cannot be trapped or prevent the guest from using anyway + */ + +/* + * Allow for protected VMs: + * - Floating-point and Advanced SIMD + * - Data Independent Timing + * - Spectre/Meltdown Mitigation + */ +#define PVM_ID_AA64PFR0_ALLOW (\ + ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_FP) | \ + ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_AdvSIMD) | \ + ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_DIT) | \ + ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_CSV2) | \ + ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_CSV3) \ + ) + +/* + * Restrict to the following *unsigned* features for protected VMs: + * - AArch64 guests only (no support for AArch32 guests): + * AArch32 adds complexity in trap handling, emulation, condition codes, + * etc... + * - RAS (v1) + * Supported by KVM + */ +#define PVM_ID_AA64PFR0_RESTRICT_UNSIGNED (\ + FIELD_PREP(ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_EL0), ID_AA64PFR0_EL1_ELx_64BIT_ONLY) | \ + FIELD_PREP(ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_EL1), ID_AA64PFR0_EL1_ELx_64BIT_ONLY) | \ + FIELD_PREP(ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_EL2), ID_AA64PFR0_EL1_ELx_64BIT_ONLY) | \ + FIELD_PREP(ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_EL3), ID_AA64PFR0_EL1_ELx_64BIT_ONLY) | \ + FIELD_PREP(ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_RAS), ID_AA64PFR0_EL1_RAS_IMP) \ + ) + +/* + * Allow for protected VMs: + * - Branch Target Identification + * - Speculative Store Bypassing + */ +#define PVM_ID_AA64PFR1_ALLOW (\ + ARM64_FEATURE_MASK(ID_AA64PFR1_EL1_BT) | \ + ARM64_FEATURE_MASK(ID_AA64PFR1_EL1_SSBS) \ + ) + +/* + * Allow for protected VMs: + * - Mixed-endian + * - Distinction between Secure and Non-secure Memory + * - Mixed-endian at EL0 only + * - Non-context synchronizing exception entry and exit + */ +#define PVM_ID_AA64MMFR0_ALLOW (\ + ARM64_FEATURE_MASK(ID_AA64MMFR0_EL1_BIGEND) | \ + ARM64_FEATURE_MASK(ID_AA64MMFR0_EL1_SNSMEM) | \ + ARM64_FEATURE_MASK(ID_AA64MMFR0_EL1_BIGENDEL0) | \ + ARM64_FEATURE_MASK(ID_AA64MMFR0_EL1_EXS) \ + ) + +/* + * Restrict to the following *unsigned* features for protected VMs: + * - 40-bit IPA + * - 16-bit ASID + */ +#define PVM_ID_AA64MMFR0_RESTRICT_UNSIGNED (\ + FIELD_PREP(ARM64_FEATURE_MASK(ID_AA64MMFR0_EL1_PARANGE), ID_AA64MMFR0_EL1_PARANGE_40) | \ + FIELD_PREP(ARM64_FEATURE_MASK(ID_AA64MMFR0_EL1_ASIDBITS), ID_AA64MMFR0_EL1_ASIDBITS_16) \ + ) + +/* + * Allow for protected VMs: + * - Hardware translation table updates to Access flag and Dirty state + * - Number of VMID bits from CPU + * - Hierarchical Permission Disables + * - Privileged Access Never + * - SError interrupt exceptions from speculative reads + * - Enhanced Translation Synchronization + */ +#define PVM_ID_AA64MMFR1_ALLOW (\ + ARM64_FEATURE_MASK(ID_AA64MMFR1_EL1_HAFDBS) | \ + ARM64_FEATURE_MASK(ID_AA64MMFR1_EL1_VMIDBits) | \ + ARM64_FEATURE_MASK(ID_AA64MMFR1_EL1_HPDS) | \ + ARM64_FEATURE_MASK(ID_AA64MMFR1_EL1_PAN) | \ + ARM64_FEATURE_MASK(ID_AA64MMFR1_EL1_SpecSEI) | \ + ARM64_FEATURE_MASK(ID_AA64MMFR1_EL1_ETS) \ + ) + +/* + * Allow for protected VMs: + * - Common not Private translations + * - User Access Override + * - IESB bit in the SCTLR_ELx registers + * - Unaligned single-copy atomicity and atomic functions + * - ESR_ELx.EC value on an exception by read access to feature ID space + * - TTL field in address operations. + * - Break-before-make sequences when changing translation block size + * - E0PDx mechanism + */ +#define PVM_ID_AA64MMFR2_ALLOW (\ + ARM64_FEATURE_MASK(ID_AA64MMFR2_EL1_CnP) | \ + ARM64_FEATURE_MASK(ID_AA64MMFR2_EL1_UAO) | \ + ARM64_FEATURE_MASK(ID_AA64MMFR2_EL1_IESB) | \ + ARM64_FEATURE_MASK(ID_AA64MMFR2_EL1_AT) | \ + ARM64_FEATURE_MASK(ID_AA64MMFR2_EL1_IDS) | \ + ARM64_FEATURE_MASK(ID_AA64MMFR2_EL1_TTL) | \ + ARM64_FEATURE_MASK(ID_AA64MMFR2_EL1_BBM) | \ + ARM64_FEATURE_MASK(ID_AA64MMFR2_EL1_E0PD) \ + ) + +/* + * No support for Scalable Vectors for protected VMs: + * Requires additional support from KVM, e.g., context-switching and + * trapping at EL2 + */ +#define PVM_ID_AA64ZFR0_ALLOW (0ULL) + +/* + * No support for debug, including breakpoints, and watchpoints for protected + * VMs: + * The Arm architecture mandates support for at least the Armv8 debug + * architecture, which would include at least 2 hardware breakpoints and + * watchpoints. Providing that support to protected guests adds + * considerable state and complexity. Therefore, the reserved value of 0 is + * used for debug-related fields. + */ +#define PVM_ID_AA64DFR0_ALLOW (0ULL) +#define PVM_ID_AA64DFR1_ALLOW (0ULL) + +/* + * No support for implementation defined features. + */ +#define PVM_ID_AA64AFR0_ALLOW (0ULL) +#define PVM_ID_AA64AFR1_ALLOW (0ULL) + +/* + * No restrictions on instructions implemented in AArch64. + */ +#define PVM_ID_AA64ISAR0_ALLOW (\ + ARM64_FEATURE_MASK(ID_AA64ISAR0_EL1_AES) | \ + ARM64_FEATURE_MASK(ID_AA64ISAR0_EL1_SHA1) | \ + ARM64_FEATURE_MASK(ID_AA64ISAR0_EL1_SHA2) | \ + ARM64_FEATURE_MASK(ID_AA64ISAR0_EL1_CRC32) | \ + ARM64_FEATURE_MASK(ID_AA64ISAR0_EL1_ATOMIC) | \ + ARM64_FEATURE_MASK(ID_AA64ISAR0_EL1_RDM) | \ + ARM64_FEATURE_MASK(ID_AA64ISAR0_EL1_SHA3) | \ + ARM64_FEATURE_MASK(ID_AA64ISAR0_EL1_SM3) | \ + ARM64_FEATURE_MASK(ID_AA64ISAR0_EL1_SM4) | \ + ARM64_FEATURE_MASK(ID_AA64ISAR0_EL1_DP) | \ + ARM64_FEATURE_MASK(ID_AA64ISAR0_EL1_FHM) | \ + ARM64_FEATURE_MASK(ID_AA64ISAR0_EL1_TS) | \ + ARM64_FEATURE_MASK(ID_AA64ISAR0_EL1_TLB) | \ + ARM64_FEATURE_MASK(ID_AA64ISAR0_EL1_RNDR) \ + ) + +#define PVM_ID_AA64ISAR1_ALLOW (\ + ARM64_FEATURE_MASK(ID_AA64ISAR1_EL1_DPB) | \ + ARM64_FEATURE_MASK(ID_AA64ISAR1_EL1_APA) | \ + ARM64_FEATURE_MASK(ID_AA64ISAR1_EL1_API) | \ + ARM64_FEATURE_MASK(ID_AA64ISAR1_EL1_JSCVT) | \ + ARM64_FEATURE_MASK(ID_AA64ISAR1_EL1_FCMA) | \ + ARM64_FEATURE_MASK(ID_AA64ISAR1_EL1_LRCPC) | \ + ARM64_FEATURE_MASK(ID_AA64ISAR1_EL1_GPA) | \ + ARM64_FEATURE_MASK(ID_AA64ISAR1_EL1_GPI) | \ + ARM64_FEATURE_MASK(ID_AA64ISAR1_EL1_FRINTTS) | \ + ARM64_FEATURE_MASK(ID_AA64ISAR1_EL1_SB) | \ + ARM64_FEATURE_MASK(ID_AA64ISAR1_EL1_SPECRES) | \ + ARM64_FEATURE_MASK(ID_AA64ISAR1_EL1_BF16) | \ + ARM64_FEATURE_MASK(ID_AA64ISAR1_EL1_DGH) | \ + ARM64_FEATURE_MASK(ID_AA64ISAR1_EL1_I8MM) \ + ) + +#define PVM_ID_AA64ISAR2_ALLOW (\ + ARM64_FEATURE_MASK(ID_AA64ISAR2_EL1_GPA3) | \ + ARM64_FEATURE_MASK(ID_AA64ISAR2_EL1_APA3) \ + ) + +u64 pvm_read_id_reg(const struct kvm_vcpu *vcpu, u32 id); +bool kvm_handle_pvm_sysreg(struct kvm_vcpu *vcpu, u64 *exit_code); +bool kvm_handle_pvm_restricted(struct kvm_vcpu *vcpu, u64 *exit_code); +int kvm_check_pvm_sysreg_table(void); + +#endif /* __ARM64_KVM_FIXED_CONFIG_H__ */ diff --git a/arch/arm64/kvm/hyp/include/nvhe/gfp.h b/arch/arm64/kvm/hyp/include/nvhe/gfp.h new file mode 100644 index 0000000000..fe5472a184 --- /dev/null +++ b/arch/arm64/kvm/hyp/include/nvhe/gfp.h @@ -0,0 +1,34 @@ +/* SPDX-License-Identifier: GPL-2.0-only */ +#ifndef __KVM_HYP_GFP_H +#define __KVM_HYP_GFP_H + +#include <linux/list.h> + +#include <nvhe/memory.h> +#include <nvhe/spinlock.h> + +#define HYP_NO_ORDER USHRT_MAX + +struct hyp_pool { + /* + * Spinlock protecting concurrent changes to the memory pool as well as + * the struct hyp_page of the pool's pages until we have a proper atomic + * API at EL2. + */ + hyp_spinlock_t lock; + struct list_head free_area[MAX_ORDER + 1]; + phys_addr_t range_start; + phys_addr_t range_end; + unsigned short max_order; +}; + +/* Allocation */ +void *hyp_alloc_pages(struct hyp_pool *pool, unsigned short order); +void hyp_split_page(struct hyp_page *page); +void hyp_get_page(struct hyp_pool *pool, void *addr); +void hyp_put_page(struct hyp_pool *pool, void *addr); + +/* Used pages cannot be freed */ +int hyp_pool_init(struct hyp_pool *pool, u64 pfn, unsigned int nr_pages, + unsigned int reserved_pages); +#endif /* __KVM_HYP_GFP_H */ diff --git a/arch/arm64/kvm/hyp/include/nvhe/mem_protect.h b/arch/arm64/kvm/hyp/include/nvhe/mem_protect.h new file mode 100644 index 0000000000..0972faccc2 --- /dev/null +++ b/arch/arm64/kvm/hyp/include/nvhe/mem_protect.h @@ -0,0 +1,93 @@ +/* SPDX-License-Identifier: GPL-2.0-only */ +/* + * Copyright (C) 2020 Google LLC + * Author: Quentin Perret <qperret@google.com> + */ + +#ifndef __KVM_NVHE_MEM_PROTECT__ +#define __KVM_NVHE_MEM_PROTECT__ +#include <linux/kvm_host.h> +#include <asm/kvm_hyp.h> +#include <asm/kvm_mmu.h> +#include <asm/kvm_pgtable.h> +#include <asm/virt.h> +#include <nvhe/pkvm.h> +#include <nvhe/spinlock.h> + +/* + * SW bits 0-1 are reserved to track the memory ownership state of each page: + * 00: The page is owned exclusively by the page-table owner. + * 01: The page is owned by the page-table owner, but is shared + * with another entity. + * 10: The page is shared with, but not owned by the page-table owner. + * 11: Reserved for future use (lending). + */ +enum pkvm_page_state { + PKVM_PAGE_OWNED = 0ULL, + PKVM_PAGE_SHARED_OWNED = KVM_PGTABLE_PROT_SW0, + PKVM_PAGE_SHARED_BORROWED = KVM_PGTABLE_PROT_SW1, + __PKVM_PAGE_RESERVED = KVM_PGTABLE_PROT_SW0 | + KVM_PGTABLE_PROT_SW1, + + /* Meta-states which aren't encoded directly in the PTE's SW bits */ + PKVM_NOPAGE, +}; + +#define PKVM_PAGE_STATE_PROT_MASK (KVM_PGTABLE_PROT_SW0 | KVM_PGTABLE_PROT_SW1) +static inline enum kvm_pgtable_prot pkvm_mkstate(enum kvm_pgtable_prot prot, + enum pkvm_page_state state) +{ + return (prot & ~PKVM_PAGE_STATE_PROT_MASK) | state; +} + +static inline enum pkvm_page_state pkvm_getstate(enum kvm_pgtable_prot prot) +{ + return prot & PKVM_PAGE_STATE_PROT_MASK; +} + +struct host_mmu { + struct kvm_arch arch; + struct kvm_pgtable pgt; + struct kvm_pgtable_mm_ops mm_ops; + hyp_spinlock_t lock; +}; +extern struct host_mmu host_mmu; + +/* This corresponds to page-table locking order */ +enum pkvm_component_id { + PKVM_ID_HOST, + PKVM_ID_HYP, + PKVM_ID_FFA, +}; + +extern unsigned long hyp_nr_cpus; + +int __pkvm_prot_finalize(void); +int __pkvm_host_share_hyp(u64 pfn); +int __pkvm_host_unshare_hyp(u64 pfn); +int __pkvm_host_donate_hyp(u64 pfn, u64 nr_pages); +int __pkvm_hyp_donate_host(u64 pfn, u64 nr_pages); +int __pkvm_host_share_ffa(u64 pfn, u64 nr_pages); +int __pkvm_host_unshare_ffa(u64 pfn, u64 nr_pages); + +bool addr_is_memory(phys_addr_t phys); +int host_stage2_idmap_locked(phys_addr_t addr, u64 size, enum kvm_pgtable_prot prot); +int host_stage2_set_owner_locked(phys_addr_t addr, u64 size, u8 owner_id); +int kvm_host_prepare_stage2(void *pgt_pool_base); +int kvm_guest_prepare_stage2(struct pkvm_hyp_vm *vm, void *pgd); +void handle_host_mem_abort(struct kvm_cpu_context *host_ctxt); + +int hyp_pin_shared_mem(void *from, void *to); +void hyp_unpin_shared_mem(void *from, void *to); +void reclaim_guest_pages(struct pkvm_hyp_vm *vm, struct kvm_hyp_memcache *mc); +int refill_memcache(struct kvm_hyp_memcache *mc, unsigned long min_pages, + struct kvm_hyp_memcache *host_mc); + +static __always_inline void __load_host_stage2(void) +{ + if (static_branch_likely(&kvm_protected_mode_initialized)) + __load_stage2(&host_mmu.arch.mmu, &host_mmu.arch); + else + write_sysreg(0, vttbr_el2); +} +#endif /* __KVM_NVHE_MEM_PROTECT__ */ diff --git a/arch/arm64/kvm/hyp/include/nvhe/memory.h b/arch/arm64/kvm/hyp/include/nvhe/memory.h new file mode 100644 index 0000000000..ab205c4d67 --- /dev/null +++ b/arch/arm64/kvm/hyp/include/nvhe/memory.h @@ -0,0 +1,75 @@ +/* SPDX-License-Identifier: GPL-2.0-only */ +#ifndef __KVM_HYP_MEMORY_H +#define __KVM_HYP_MEMORY_H + +#include <asm/kvm_mmu.h> +#include <asm/page.h> + +#include <linux/types.h> + +struct hyp_page { + unsigned short refcount; + unsigned short order; +}; + +extern u64 __hyp_vmemmap; +#define hyp_vmemmap ((struct hyp_page *)__hyp_vmemmap) + +#define __hyp_va(phys) ((void *)((phys_addr_t)(phys) - hyp_physvirt_offset)) + +static inline void *hyp_phys_to_virt(phys_addr_t phys) +{ + return __hyp_va(phys); +} + +static inline phys_addr_t hyp_virt_to_phys(void *addr) +{ + return __hyp_pa(addr); +} + +#define hyp_phys_to_pfn(phys) ((phys) >> PAGE_SHIFT) +#define hyp_pfn_to_phys(pfn) ((phys_addr_t)((pfn) << PAGE_SHIFT)) +#define hyp_phys_to_page(phys) (&hyp_vmemmap[hyp_phys_to_pfn(phys)]) +#define hyp_virt_to_page(virt) hyp_phys_to_page(__hyp_pa(virt)) +#define hyp_virt_to_pfn(virt) hyp_phys_to_pfn(__hyp_pa(virt)) + +#define hyp_page_to_pfn(page) ((struct hyp_page *)(page) - hyp_vmemmap) +#define hyp_page_to_phys(page) hyp_pfn_to_phys((hyp_page_to_pfn(page))) +#define hyp_page_to_virt(page) __hyp_va(hyp_page_to_phys(page)) +#define hyp_page_to_pool(page) (((struct hyp_page *)page)->pool) + +/* + * Refcounting for 'struct hyp_page'. + * hyp_pool::lock must be held if atomic access to the refcount is required. + */ +static inline int hyp_page_count(void *addr) +{ + struct hyp_page *p = hyp_virt_to_page(addr); + + return p->refcount; +} + +static inline void hyp_page_ref_inc(struct hyp_page *p) +{ + BUG_ON(p->refcount == USHRT_MAX); + p->refcount++; +} + +static inline void hyp_page_ref_dec(struct hyp_page *p) +{ + BUG_ON(!p->refcount); + p->refcount--; +} + +static inline int hyp_page_ref_dec_and_test(struct hyp_page *p) +{ + hyp_page_ref_dec(p); + return (p->refcount == 0); +} + +static inline void hyp_set_page_refcounted(struct hyp_page *p) +{ + BUG_ON(p->refcount); + p->refcount = 1; +} +#endif /* __KVM_HYP_MEMORY_H */ diff --git a/arch/arm64/kvm/hyp/include/nvhe/mm.h b/arch/arm64/kvm/hyp/include/nvhe/mm.h new file mode 100644 index 0000000000..230e4f2527 --- /dev/null +++ b/arch/arm64/kvm/hyp/include/nvhe/mm.h @@ -0,0 +1,32 @@ +/* SPDX-License-Identifier: GPL-2.0-only */ +#ifndef __KVM_HYP_MM_H +#define __KVM_HYP_MM_H + +#include <asm/kvm_pgtable.h> +#include <asm/spectre.h> +#include <linux/memblock.h> +#include <linux/types.h> + +#include <nvhe/memory.h> +#include <nvhe/spinlock.h> + +extern struct kvm_pgtable pkvm_pgtable; +extern hyp_spinlock_t pkvm_pgd_lock; + +int hyp_create_pcpu_fixmap(void); +void *hyp_fixmap_map(phys_addr_t phys); +void hyp_fixmap_unmap(void); + +int hyp_create_idmap(u32 hyp_va_bits); +int hyp_map_vectors(void); +int hyp_back_vmemmap(phys_addr_t back); +int pkvm_cpu_set_vector(enum arm64_hyp_spectre_vector slot); +int pkvm_create_mappings(void *from, void *to, enum kvm_pgtable_prot prot); +int pkvm_create_mappings_locked(void *from, void *to, enum kvm_pgtable_prot prot); +int __pkvm_create_private_mapping(phys_addr_t phys, size_t size, + enum kvm_pgtable_prot prot, + unsigned long *haddr); +int pkvm_create_stack(phys_addr_t phys, unsigned long *haddr); +int pkvm_alloc_private_va_range(size_t size, unsigned long *haddr); + +#endif /* __KVM_HYP_MM_H */ diff --git a/arch/arm64/kvm/hyp/include/nvhe/pkvm.h b/arch/arm64/kvm/hyp/include/nvhe/pkvm.h new file mode 100644 index 0000000000..82b3d62538 --- /dev/null +++ b/arch/arm64/kvm/hyp/include/nvhe/pkvm.h @@ -0,0 +1,68 @@ +/* SPDX-License-Identifier: GPL-2.0-only */ +/* + * Copyright (C) 2021 Google LLC + * Author: Fuad Tabba <tabba@google.com> + */ + +#ifndef __ARM64_KVM_NVHE_PKVM_H__ +#define __ARM64_KVM_NVHE_PKVM_H__ + +#include <asm/kvm_pkvm.h> + +#include <nvhe/gfp.h> +#include <nvhe/spinlock.h> + +/* + * Holds the relevant data for maintaining the vcpu state completely at hyp. + */ +struct pkvm_hyp_vcpu { + struct kvm_vcpu vcpu; + + /* Backpointer to the host's (untrusted) vCPU instance. */ + struct kvm_vcpu *host_vcpu; +}; + +/* + * Holds the relevant data for running a protected vm. + */ +struct pkvm_hyp_vm { + struct kvm kvm; + + /* Backpointer to the host's (untrusted) KVM instance. */ + struct kvm *host_kvm; + + /* The guest's stage-2 page-table managed by the hypervisor. */ + struct kvm_pgtable pgt; + struct kvm_pgtable_mm_ops mm_ops; + struct hyp_pool pool; + hyp_spinlock_t lock; + + /* + * The number of vcpus initialized and ready to run. + * Modifying this is protected by 'vm_table_lock'. + */ + unsigned int nr_vcpus; + + /* Array of the hyp vCPU structures for this VM. */ + struct pkvm_hyp_vcpu *vcpus[]; +}; + +static inline struct pkvm_hyp_vm * +pkvm_hyp_vcpu_to_hyp_vm(struct pkvm_hyp_vcpu *hyp_vcpu) +{ + return container_of(hyp_vcpu->vcpu.kvm, struct pkvm_hyp_vm, kvm); +} + +void pkvm_hyp_vm_table_init(void *tbl); + +int __pkvm_init_vm(struct kvm *host_kvm, unsigned long vm_hva, + unsigned long pgd_hva); +int __pkvm_init_vcpu(pkvm_handle_t handle, struct kvm_vcpu *host_vcpu, + unsigned long vcpu_hva); +int __pkvm_teardown_vm(pkvm_handle_t handle); + +struct pkvm_hyp_vcpu *pkvm_load_hyp_vcpu(pkvm_handle_t handle, + unsigned int vcpu_idx); +void pkvm_put_hyp_vcpu(struct pkvm_hyp_vcpu *hyp_vcpu); + +#endif /* __ARM64_KVM_NVHE_PKVM_H__ */ diff --git a/arch/arm64/kvm/hyp/include/nvhe/spinlock.h b/arch/arm64/kvm/hyp/include/nvhe/spinlock.h new file mode 100644 index 0000000000..7c7ea8c554 --- /dev/null +++ b/arch/arm64/kvm/hyp/include/nvhe/spinlock.h @@ -0,0 +1,125 @@ +/* SPDX-License-Identifier: GPL-2.0-only */ +/* + * A stand-alone ticket spinlock implementation for use by the non-VHE + * KVM hypervisor code running at EL2. + * + * Copyright (C) 2020 Google LLC + * Author: Will Deacon <will@kernel.org> + * + * Heavily based on the implementation removed by c11090474d70 which was: + * Copyright (C) 2012 ARM Ltd. + */ + +#ifndef __ARM64_KVM_NVHE_SPINLOCK_H__ +#define __ARM64_KVM_NVHE_SPINLOCK_H__ + +#include <asm/alternative.h> +#include <asm/lse.h> +#include <asm/rwonce.h> + +typedef union hyp_spinlock { + u32 __val; + struct { +#ifdef __AARCH64EB__ + u16 next, owner; +#else + u16 owner, next; +#endif + }; +} hyp_spinlock_t; + +#define __HYP_SPIN_LOCK_INITIALIZER \ + { .__val = 0 } + +#define __HYP_SPIN_LOCK_UNLOCKED \ + ((hyp_spinlock_t) __HYP_SPIN_LOCK_INITIALIZER) + +#define DEFINE_HYP_SPINLOCK(x) hyp_spinlock_t x = __HYP_SPIN_LOCK_UNLOCKED + +#define hyp_spin_lock_init(l) \ +do { \ + *(l) = __HYP_SPIN_LOCK_UNLOCKED; \ +} while (0) + +static inline void hyp_spin_lock(hyp_spinlock_t *lock) +{ + u32 tmp; + hyp_spinlock_t lockval, newval; + + asm volatile( + /* Atomically increment the next ticket. */ + ARM64_LSE_ATOMIC_INSN( + /* LL/SC */ +" prfm pstl1strm, %3\n" +"1: ldaxr %w0, %3\n" +" add %w1, %w0, #(1 << 16)\n" +" stxr %w2, %w1, %3\n" +" cbnz %w2, 1b\n", + /* LSE atomics */ +" mov %w2, #(1 << 16)\n" +" ldadda %w2, %w0, %3\n" + __nops(3)) + + /* Did we get the lock? */ +" eor %w1, %w0, %w0, ror #16\n" +" cbz %w1, 3f\n" + /* + * No: spin on the owner. Send a local event to avoid missing an + * unlock before the exclusive load. + */ +" sevl\n" +"2: wfe\n" +" ldaxrh %w2, %4\n" +" eor %w1, %w2, %w0, lsr #16\n" +" cbnz %w1, 2b\n" + /* We got the lock. Critical section starts here. */ +"3:" + : "=&r" (lockval), "=&r" (newval), "=&r" (tmp), "+Q" (*lock) + : "Q" (lock->owner) + : "memory"); +} + +static inline void hyp_spin_unlock(hyp_spinlock_t *lock) +{ + u64 tmp; + + asm volatile( + ARM64_LSE_ATOMIC_INSN( + /* LL/SC */ + " ldrh %w1, %0\n" + " add %w1, %w1, #1\n" + " stlrh %w1, %0", + /* LSE atomics */ + " mov %w1, #1\n" + " staddlh %w1, %0\n" + __nops(1)) + : "=Q" (lock->owner), "=&r" (tmp) + : + : "memory"); +} + +static inline bool hyp_spin_is_locked(hyp_spinlock_t *lock) +{ + hyp_spinlock_t lockval = READ_ONCE(*lock); + + return lockval.owner != lockval.next; +} + +#ifdef CONFIG_NVHE_EL2_DEBUG +static inline void hyp_assert_lock_held(hyp_spinlock_t *lock) +{ + /* + * The __pkvm_init() path accesses protected data-structures without + * holding locks as the other CPUs are guaranteed to not enter EL2 + * concurrently at this point in time. The point by which EL2 is + * initialized on all CPUs is reflected in the pkvm static key, so + * wait until it is set before checking the lock state. + */ + if (static_branch_likely(&kvm_protected_mode_initialized)) + BUG_ON(!hyp_spin_is_locked(lock)); +} +#else +static inline void hyp_assert_lock_held(hyp_spinlock_t *lock) { } +#endif + +#endif /* __ARM64_KVM_NVHE_SPINLOCK_H__ */ diff --git a/arch/arm64/kvm/hyp/include/nvhe/trap_handler.h b/arch/arm64/kvm/hyp/include/nvhe/trap_handler.h new file mode 100644 index 0000000000..45a84f0ade --- /dev/null +++ b/arch/arm64/kvm/hyp/include/nvhe/trap_handler.h @@ -0,0 +1,20 @@ +/* SPDX-License-Identifier: GPL-2.0-only */ +/* + * Trap handler helpers. + * + * Copyright (C) 2020 - Google LLC + * Author: Marc Zyngier <maz@kernel.org> + */ + +#ifndef __ARM64_KVM_NVHE_TRAP_HANDLER_H__ +#define __ARM64_KVM_NVHE_TRAP_HANDLER_H__ + +#include <asm/kvm_host.h> + +#define cpu_reg(ctxt, r) (ctxt)->regs.regs[r] +#define DECLARE_REG(type, name, ctxt, reg) \ + type name = (type)cpu_reg(ctxt, (reg)) + +void __pkvm_vcpu_init_traps(struct kvm_vcpu *vcpu); + +#endif /* __ARM64_KVM_NVHE_TRAP_HANDLER_H__ */ diff --git a/arch/arm64/kvm/hyp/nvhe/.gitignore b/arch/arm64/kvm/hyp/nvhe/.gitignore new file mode 100644 index 0000000000..5b6c43cc96 --- /dev/null +++ b/arch/arm64/kvm/hyp/nvhe/.gitignore @@ -0,0 +1,4 @@ +# SPDX-License-Identifier: GPL-2.0-only +gen-hyprel +hyp.lds +hyp-reloc.S diff --git a/arch/arm64/kvm/hyp/nvhe/Makefile b/arch/arm64/kvm/hyp/nvhe/Makefile new file mode 100644 index 0000000000..2250253a64 --- /dev/null +++ b/arch/arm64/kvm/hyp/nvhe/Makefile @@ -0,0 +1,112 @@ +# SPDX-License-Identifier: GPL-2.0 +# +# Makefile for Kernel-based Virtual Machine module, HYP/nVHE part +# + +asflags-y := -D__KVM_NVHE_HYPERVISOR__ -D__DISABLE_EXPORTS + +# Tracepoint and MMIO logging symbols should not be visible at nVHE KVM as +# there is no way to execute them and any such MMIO access from nVHE KVM +# will explode instantly (Words of Marc Zyngier). So introduce a generic flag +# __DISABLE_TRACE_MMIO__ to disable MMIO tracing for nVHE KVM. +ccflags-y := -D__KVM_NVHE_HYPERVISOR__ -D__DISABLE_EXPORTS -D__DISABLE_TRACE_MMIO__ +ccflags-y += -fno-stack-protector \ + -DDISABLE_BRANCH_PROFILING \ + $(DISABLE_STACKLEAK_PLUGIN) + +hostprogs := gen-hyprel +HOST_EXTRACFLAGS += -I$(objtree)/include + +lib-objs := clear_page.o copy_page.o memcpy.o memset.o +lib-objs := $(addprefix ../../../lib/, $(lib-objs)) + +hyp-obj-y := timer-sr.o sysreg-sr.o debug-sr.o switch.o tlb.o hyp-init.o host.o \ + hyp-main.o hyp-smp.o psci-relay.o early_alloc.o page_alloc.o \ + cache.o setup.o mm.o mem_protect.o sys_regs.o pkvm.o stacktrace.o ffa.o +hyp-obj-y += ../vgic-v3-sr.o ../aarch32.o ../vgic-v2-cpuif-proxy.o ../entry.o \ + ../fpsimd.o ../hyp-entry.o ../exception.o ../pgtable.o +hyp-obj-$(CONFIG_LIST_HARDENED) += list_debug.o +hyp-obj-y += $(lib-objs) + +## +## Build rules for compiling nVHE hyp code +## Output of this folder is `kvm_nvhe.o`, a partially linked object +## file containing all nVHE hyp code and data. +## + +hyp-obj := $(patsubst %.o,%.nvhe.o,$(hyp-obj-y)) +obj-y := kvm_nvhe.o +targets += $(hyp-obj) kvm_nvhe.tmp.o kvm_nvhe.rel.o hyp.lds hyp-reloc.S hyp-reloc.o + +# 1) Compile all source files to `.nvhe.o` object files. The file extension +# avoids file name clashes for files shared with VHE. +$(obj)/%.nvhe.o: $(src)/%.c FORCE + $(call if_changed_rule,cc_o_c) +$(obj)/%.nvhe.o: $(src)/%.S FORCE + $(call if_changed_rule,as_o_S) + +# 2) Compile linker script. +$(obj)/hyp.lds: $(src)/hyp.lds.S FORCE + $(call if_changed_dep,cpp_lds_S) + +# 3) Partially link all '.nvhe.o' files and apply the linker script. +# Prefixes names of ELF sections with '.hyp', eg. '.hyp.text'. +# Note: The following rule assumes that the 'ld' rule puts LDFLAGS before +# the list of dependencies to form '-T $(obj)/hyp.lds'. This is to +# keep the dependency on the target while avoiding an error from +# GNU ld if the linker script is passed to it twice. +LDFLAGS_kvm_nvhe.tmp.o := -r -T +$(obj)/kvm_nvhe.tmp.o: $(obj)/hyp.lds $(addprefix $(obj)/,$(hyp-obj)) FORCE + $(call if_changed,ld) + +# 4) Generate list of hyp code/data positions that need to be relocated at +# runtime. Because the hypervisor is part of the kernel binary, relocations +# produce a kernel VA. We enumerate relocations targeting hyp at build time +# and convert the kernel VAs at those positions to hyp VAs. +$(obj)/hyp-reloc.S: $(obj)/kvm_nvhe.tmp.o $(obj)/gen-hyprel FORCE + $(call if_changed,hyprel) + +# 5) Compile hyp-reloc.S and link it into the existing partially linked object. +# The object file now contains a section with pointers to hyp positions that +# will contain kernel VAs at runtime. These pointers have relocations on them +# so that they get updated as the hyp object is linked into `vmlinux`. +LDFLAGS_kvm_nvhe.rel.o := -r +$(obj)/kvm_nvhe.rel.o: $(obj)/kvm_nvhe.tmp.o $(obj)/hyp-reloc.o FORCE + $(call if_changed,ld) + +# 6) Produce the final 'kvm_nvhe.o', ready to be linked into 'vmlinux'. +# Prefixes names of ELF symbols with '__kvm_nvhe_'. +$(obj)/kvm_nvhe.o: $(obj)/kvm_nvhe.rel.o FORCE + $(call if_changed,hypcopy) + +# The HYPREL command calls `gen-hyprel` to generate an assembly file with +# a list of relocations targeting hyp code/data. +quiet_cmd_hyprel = HYPREL $@ + cmd_hyprel = $(obj)/gen-hyprel $< > $@ + +# The HYPCOPY command uses `objcopy` to prefix all ELF symbol names +# to avoid clashes with VHE code/data. +quiet_cmd_hypcopy = HYPCOPY $@ + cmd_hypcopy = $(OBJCOPY) --prefix-symbols=__kvm_nvhe_ $< $@ + +# Remove ftrace, Shadow Call Stack, and CFI CFLAGS. +# This is equivalent to the 'notrace', '__noscs', and '__nocfi' annotations. +KBUILD_CFLAGS := $(filter-out $(CC_FLAGS_FTRACE) $(CC_FLAGS_SCS) $(CC_FLAGS_CFI), $(KBUILD_CFLAGS)) +# Starting from 13.0.0 llvm emits SHT_REL section '.llvm.call-graph-profile' +# when profile optimization is applied. gen-hyprel does not support SHT_REL and +# causes a build failure. Remove profile optimization flags. +KBUILD_CFLAGS := $(filter-out -fprofile-sample-use=% -fprofile-use=%, $(KBUILD_CFLAGS)) +KBUILD_CFLAGS += -fno-asynchronous-unwind-tables -fno-unwind-tables + +# KVM nVHE code is run at a different exception code with a different map, so +# compiler instrumentation that inserts callbacks or checks into the code may +# cause crashes. Just disable it. +GCOV_PROFILE := n +KASAN_SANITIZE := n +KCSAN_SANITIZE := n +UBSAN_SANITIZE := n +KCOV_INSTRUMENT := n + +# Skip objtool checking for this directory because nVHE code is compiled with +# non-standard build rules. +OBJECT_FILES_NON_STANDARD := y diff --git a/arch/arm64/kvm/hyp/nvhe/cache.S b/arch/arm64/kvm/hyp/nvhe/cache.S new file mode 100644 index 0000000000..85936c17ae --- /dev/null +++ b/arch/arm64/kvm/hyp/nvhe/cache.S @@ -0,0 +1,25 @@ +/* SPDX-License-Identifier: GPL-2.0-only */ +/* + * Code copied from arch/arm64/mm/cache.S. + */ + +#include <linux/linkage.h> +#include <asm/assembler.h> +#include <asm/alternative.h> + +SYM_FUNC_START(__pi_dcache_clean_inval_poc) + dcache_by_line_op civac, sy, x0, x1, x2, x3 + ret +SYM_FUNC_END(__pi_dcache_clean_inval_poc) +SYM_FUNC_ALIAS(dcache_clean_inval_poc, __pi_dcache_clean_inval_poc) + +SYM_FUNC_START(__pi_icache_inval_pou) +alternative_if ARM64_HAS_CACHE_DIC + isb + ret +alternative_else_nop_endif + + invalidate_icache_by_line x0, x1, x2, x3 + ret +SYM_FUNC_END(__pi_icache_inval_pou) +SYM_FUNC_ALIAS(icache_inval_pou, __pi_icache_inval_pou) diff --git a/arch/arm64/kvm/hyp/nvhe/debug-sr.c b/arch/arm64/kvm/hyp/nvhe/debug-sr.c new file mode 100644 index 0000000000..4558c02eb3 --- /dev/null +++ b/arch/arm64/kvm/hyp/nvhe/debug-sr.c @@ -0,0 +1,113 @@ +// SPDX-License-Identifier: GPL-2.0-only +/* + * Copyright (C) 2015 - ARM Ltd + * Author: Marc Zyngier <marc.zyngier@arm.com> + */ + +#include <hyp/debug-sr.h> + +#include <linux/compiler.h> +#include <linux/kvm_host.h> + +#include <asm/debug-monitors.h> +#include <asm/kvm_asm.h> +#include <asm/kvm_hyp.h> +#include <asm/kvm_mmu.h> + +static void __debug_save_spe(u64 *pmscr_el1) +{ + u64 reg; + + /* Clear pmscr in case of early return */ + *pmscr_el1 = 0; + + /* + * At this point, we know that this CPU implements + * SPE and is available to the host. + * Check if the host is actually using it ? + */ + reg = read_sysreg_s(SYS_PMBLIMITR_EL1); + if (!(reg & BIT(PMBLIMITR_EL1_E_SHIFT))) + return; + + /* Yes; save the control register and disable data generation */ + *pmscr_el1 = read_sysreg_s(SYS_PMSCR_EL1); + write_sysreg_s(0, SYS_PMSCR_EL1); + isb(); + + /* Now drain all buffered data to memory */ + psb_csync(); +} + +static void __debug_restore_spe(u64 pmscr_el1) +{ + if (!pmscr_el1) + return; + + /* The host page table is installed, but not yet synchronised */ + isb(); + + /* Re-enable data generation */ + write_sysreg_s(pmscr_el1, SYS_PMSCR_EL1); +} + +static void __debug_save_trace(u64 *trfcr_el1) +{ + *trfcr_el1 = 0; + + /* Check if the TRBE is enabled */ + if (!(read_sysreg_s(SYS_TRBLIMITR_EL1) & TRBLIMITR_EL1_E)) + return; + /* + * Prohibit trace generation while we are in guest. + * Since access to TRFCR_EL1 is trapped, the guest can't + * modify the filtering set by the host. + */ + *trfcr_el1 = read_sysreg_s(SYS_TRFCR_EL1); + write_sysreg_s(0, SYS_TRFCR_EL1); + isb(); + /* Drain the trace buffer to memory */ + tsb_csync(); +} + +static void __debug_restore_trace(u64 trfcr_el1) +{ + if (!trfcr_el1) + return; + + /* Restore trace filter controls */ + write_sysreg_s(trfcr_el1, SYS_TRFCR_EL1); +} + +void __debug_save_host_buffers_nvhe(struct kvm_vcpu *vcpu) +{ + /* Disable and flush SPE data generation */ + if (vcpu_get_flag(vcpu, DEBUG_STATE_SAVE_SPE)) + __debug_save_spe(&vcpu->arch.host_debug_state.pmscr_el1); + /* Disable and flush Self-Hosted Trace generation */ + if (vcpu_get_flag(vcpu, DEBUG_STATE_SAVE_TRBE)) + __debug_save_trace(&vcpu->arch.host_debug_state.trfcr_el1); +} + +void __debug_switch_to_guest(struct kvm_vcpu *vcpu) +{ + __debug_switch_to_guest_common(vcpu); +} + +void __debug_restore_host_buffers_nvhe(struct kvm_vcpu *vcpu) +{ + if (vcpu_get_flag(vcpu, DEBUG_STATE_SAVE_SPE)) + __debug_restore_spe(vcpu->arch.host_debug_state.pmscr_el1); + if (vcpu_get_flag(vcpu, DEBUG_STATE_SAVE_TRBE)) + __debug_restore_trace(vcpu->arch.host_debug_state.trfcr_el1); +} + +void __debug_switch_to_host(struct kvm_vcpu *vcpu) +{ + __debug_switch_to_host_common(vcpu); +} + +u64 __kvm_get_mdcr_el2(void) +{ + return read_sysreg(mdcr_el2); +} diff --git a/arch/arm64/kvm/hyp/nvhe/early_alloc.c b/arch/arm64/kvm/hyp/nvhe/early_alloc.c new file mode 100644 index 0000000000..00de04153c --- /dev/null +++ b/arch/arm64/kvm/hyp/nvhe/early_alloc.c @@ -0,0 +1,59 @@ +// SPDX-License-Identifier: GPL-2.0-only +/* + * Copyright (C) 2020 Google LLC + * Author: Quentin Perret <qperret@google.com> + */ + +#include <asm/kvm_pgtable.h> + +#include <nvhe/early_alloc.h> +#include <nvhe/memory.h> + +struct kvm_pgtable_mm_ops hyp_early_alloc_mm_ops; +s64 __ro_after_init hyp_physvirt_offset; + +static unsigned long base; +static unsigned long end; +static unsigned long cur; + +unsigned long hyp_early_alloc_nr_used_pages(void) +{ + return (cur - base) >> PAGE_SHIFT; +} + +void *hyp_early_alloc_contig(unsigned int nr_pages) +{ + unsigned long size = (nr_pages << PAGE_SHIFT); + void *ret = (void *)cur; + + if (!nr_pages) + return NULL; + + if (end - cur < size) + return NULL; + + cur += size; + memset(ret, 0, size); + + return ret; +} + +void *hyp_early_alloc_page(void *arg) +{ + return hyp_early_alloc_contig(1); +} + +static void hyp_early_alloc_get_page(void *addr) { } +static void hyp_early_alloc_put_page(void *addr) { } + +void hyp_early_alloc_init(void *virt, unsigned long size) +{ + base = cur = (unsigned long)virt; + end = base + size; + + hyp_early_alloc_mm_ops.zalloc_page = hyp_early_alloc_page; + hyp_early_alloc_mm_ops.phys_to_virt = hyp_phys_to_virt; + hyp_early_alloc_mm_ops.virt_to_phys = hyp_virt_to_phys; + hyp_early_alloc_mm_ops.get_page = hyp_early_alloc_get_page; + hyp_early_alloc_mm_ops.put_page = hyp_early_alloc_put_page; +} diff --git a/arch/arm64/kvm/hyp/nvhe/ffa.c b/arch/arm64/kvm/hyp/nvhe/ffa.c new file mode 100644 index 0000000000..6e4dba9ead --- /dev/null +++ b/arch/arm64/kvm/hyp/nvhe/ffa.c @@ -0,0 +1,774 @@ +// SPDX-License-Identifier: GPL-2.0-only +/* + * FF-A v1.0 proxy to filter out invalid memory-sharing SMC calls issued by + * the host. FF-A is a slightly more palatable abbreviation of "Arm Firmware + * Framework for Arm A-profile", which is specified by Arm in document + * number DEN0077. + * + * Copyright (C) 2022 - Google LLC + * Author: Andrew Walbran <qwandor@google.com> + * + * This driver hooks into the SMC trapping logic for the host and intercepts + * all calls falling within the FF-A range. Each call is either: + * + * - Forwarded on unmodified to the SPMD at EL3 + * - Rejected as "unsupported" + * - Accompanied by a host stage-2 page-table check/update and reissued + * + * Consequently, any attempts by the host to make guest memory pages + * accessible to the secure world using FF-A will be detected either here + * (in the case that the memory is already owned by the guest) or during + * donation to the guest (in the case that the memory was previously shared + * with the secure world). + * + * To allow the rolling-back of page-table updates and FF-A calls in the + * event of failure, operations involving the RXTX buffers are locked for + * the duration and are therefore serialised. + */ + +#include <linux/arm-smccc.h> +#include <linux/arm_ffa.h> +#include <asm/kvm_pkvm.h> + +#include <nvhe/ffa.h> +#include <nvhe/mem_protect.h> +#include <nvhe/memory.h> +#include <nvhe/trap_handler.h> +#include <nvhe/spinlock.h> + +/* + * "ID value 0 must be returned at the Non-secure physical FF-A instance" + * We share this ID with the host. + */ +#define HOST_FFA_ID 0 + +/* + * A buffer to hold the maximum descriptor size we can see from the host, + * which is required when the SPMD returns a fragmented FFA_MEM_RETRIEVE_RESP + * when resolving the handle on the reclaim path. + */ +struct kvm_ffa_descriptor_buffer { + void *buf; + size_t len; +}; + +static struct kvm_ffa_descriptor_buffer ffa_desc_buf; + +struct kvm_ffa_buffers { + hyp_spinlock_t lock; + void *tx; + void *rx; +}; + +/* + * Note that we don't currently lock these buffers explicitly, instead + * relying on the locking of the host FFA buffers as we only have one + * client. + */ +static struct kvm_ffa_buffers hyp_buffers; +static struct kvm_ffa_buffers host_buffers; + +static void ffa_to_smccc_error(struct arm_smccc_res *res, u64 ffa_errno) +{ + *res = (struct arm_smccc_res) { + .a0 = FFA_ERROR, + .a2 = ffa_errno, + }; +} + +static void ffa_to_smccc_res_prop(struct arm_smccc_res *res, int ret, u64 prop) +{ + if (ret == FFA_RET_SUCCESS) { + *res = (struct arm_smccc_res) { .a0 = FFA_SUCCESS, + .a2 = prop }; + } else { + ffa_to_smccc_error(res, ret); + } +} + +static void ffa_to_smccc_res(struct arm_smccc_res *res, int ret) +{ + ffa_to_smccc_res_prop(res, ret, 0); +} + +static void ffa_set_retval(struct kvm_cpu_context *ctxt, + struct arm_smccc_res *res) +{ + cpu_reg(ctxt, 0) = res->a0; + cpu_reg(ctxt, 1) = res->a1; + cpu_reg(ctxt, 2) = res->a2; + cpu_reg(ctxt, 3) = res->a3; +} + +static bool is_ffa_call(u64 func_id) +{ + return ARM_SMCCC_IS_FAST_CALL(func_id) && + ARM_SMCCC_OWNER_NUM(func_id) == ARM_SMCCC_OWNER_STANDARD && + ARM_SMCCC_FUNC_NUM(func_id) >= FFA_MIN_FUNC_NUM && + ARM_SMCCC_FUNC_NUM(func_id) <= FFA_MAX_FUNC_NUM; +} + +static int ffa_map_hyp_buffers(u64 ffa_page_count) +{ + struct arm_smccc_res res; + + arm_smccc_1_1_smc(FFA_FN64_RXTX_MAP, + hyp_virt_to_phys(hyp_buffers.tx), + hyp_virt_to_phys(hyp_buffers.rx), + ffa_page_count, + 0, 0, 0, 0, + &res); + + return res.a0 == FFA_SUCCESS ? FFA_RET_SUCCESS : res.a2; +} + +static int ffa_unmap_hyp_buffers(void) +{ + struct arm_smccc_res res; + + arm_smccc_1_1_smc(FFA_RXTX_UNMAP, + HOST_FFA_ID, + 0, 0, 0, 0, 0, 0, + &res); + + return res.a0 == FFA_SUCCESS ? FFA_RET_SUCCESS : res.a2; +} + +static void ffa_mem_frag_tx(struct arm_smccc_res *res, u32 handle_lo, + u32 handle_hi, u32 fraglen, u32 endpoint_id) +{ + arm_smccc_1_1_smc(FFA_MEM_FRAG_TX, + handle_lo, handle_hi, fraglen, endpoint_id, + 0, 0, 0, + res); +} + +static void ffa_mem_frag_rx(struct arm_smccc_res *res, u32 handle_lo, + u32 handle_hi, u32 fragoff) +{ + arm_smccc_1_1_smc(FFA_MEM_FRAG_RX, + handle_lo, handle_hi, fragoff, HOST_FFA_ID, + 0, 0, 0, + res); +} + +static void ffa_mem_xfer(struct arm_smccc_res *res, u64 func_id, u32 len, + u32 fraglen) +{ + arm_smccc_1_1_smc(func_id, len, fraglen, + 0, 0, 0, 0, 0, + res); +} + +static void ffa_mem_reclaim(struct arm_smccc_res *res, u32 handle_lo, + u32 handle_hi, u32 flags) +{ + arm_smccc_1_1_smc(FFA_MEM_RECLAIM, + handle_lo, handle_hi, flags, + 0, 0, 0, 0, + res); +} + +static void ffa_retrieve_req(struct arm_smccc_res *res, u32 len) +{ + arm_smccc_1_1_smc(FFA_FN64_MEM_RETRIEVE_REQ, + len, len, + 0, 0, 0, 0, 0, + res); +} + +static void do_ffa_rxtx_map(struct arm_smccc_res *res, + struct kvm_cpu_context *ctxt) +{ + DECLARE_REG(phys_addr_t, tx, ctxt, 1); + DECLARE_REG(phys_addr_t, rx, ctxt, 2); + DECLARE_REG(u32, npages, ctxt, 3); + int ret = 0; + void *rx_virt, *tx_virt; + + if (npages != (KVM_FFA_MBOX_NR_PAGES * PAGE_SIZE) / FFA_PAGE_SIZE) { + ret = FFA_RET_INVALID_PARAMETERS; + goto out; + } + + if (!PAGE_ALIGNED(tx) || !PAGE_ALIGNED(rx)) { + ret = FFA_RET_INVALID_PARAMETERS; + goto out; + } + + hyp_spin_lock(&host_buffers.lock); + if (host_buffers.tx) { + ret = FFA_RET_DENIED; + goto out_unlock; + } + + /* + * Map our hypervisor buffers into the SPMD before mapping and + * pinning the host buffers in our own address space. + */ + ret = ffa_map_hyp_buffers(npages); + if (ret) + goto out_unlock; + + ret = __pkvm_host_share_hyp(hyp_phys_to_pfn(tx)); + if (ret) { + ret = FFA_RET_INVALID_PARAMETERS; + goto err_unmap; + } + + ret = __pkvm_host_share_hyp(hyp_phys_to_pfn(rx)); + if (ret) { + ret = FFA_RET_INVALID_PARAMETERS; + goto err_unshare_tx; + } + + tx_virt = hyp_phys_to_virt(tx); + ret = hyp_pin_shared_mem(tx_virt, tx_virt + 1); + if (ret) { + ret = FFA_RET_INVALID_PARAMETERS; + goto err_unshare_rx; + } + + rx_virt = hyp_phys_to_virt(rx); + ret = hyp_pin_shared_mem(rx_virt, rx_virt + 1); + if (ret) { + ret = FFA_RET_INVALID_PARAMETERS; + goto err_unpin_tx; + } + + host_buffers.tx = tx_virt; + host_buffers.rx = rx_virt; + +out_unlock: + hyp_spin_unlock(&host_buffers.lock); +out: + ffa_to_smccc_res(res, ret); + return; + +err_unpin_tx: + hyp_unpin_shared_mem(tx_virt, tx_virt + 1); +err_unshare_rx: + __pkvm_host_unshare_hyp(hyp_phys_to_pfn(rx)); +err_unshare_tx: + __pkvm_host_unshare_hyp(hyp_phys_to_pfn(tx)); +err_unmap: + ffa_unmap_hyp_buffers(); + goto out_unlock; +} + +static void do_ffa_rxtx_unmap(struct arm_smccc_res *res, + struct kvm_cpu_context *ctxt) +{ + DECLARE_REG(u32, id, ctxt, 1); + int ret = 0; + + if (id != HOST_FFA_ID) { + ret = FFA_RET_INVALID_PARAMETERS; + goto out; + } + + hyp_spin_lock(&host_buffers.lock); + if (!host_buffers.tx) { + ret = FFA_RET_INVALID_PARAMETERS; + goto out_unlock; + } + + hyp_unpin_shared_mem(host_buffers.tx, host_buffers.tx + 1); + WARN_ON(__pkvm_host_unshare_hyp(hyp_virt_to_pfn(host_buffers.tx))); + host_buffers.tx = NULL; + + hyp_unpin_shared_mem(host_buffers.rx, host_buffers.rx + 1); + WARN_ON(__pkvm_host_unshare_hyp(hyp_virt_to_pfn(host_buffers.rx))); + host_buffers.rx = NULL; + + ffa_unmap_hyp_buffers(); + +out_unlock: + hyp_spin_unlock(&host_buffers.lock); +out: + ffa_to_smccc_res(res, ret); +} + +static u32 __ffa_host_share_ranges(struct ffa_mem_region_addr_range *ranges, + u32 nranges) +{ + u32 i; + + for (i = 0; i < nranges; ++i) { + struct ffa_mem_region_addr_range *range = &ranges[i]; + u64 sz = (u64)range->pg_cnt * FFA_PAGE_SIZE; + u64 pfn = hyp_phys_to_pfn(range->address); + + if (!PAGE_ALIGNED(sz)) + break; + + if (__pkvm_host_share_ffa(pfn, sz / PAGE_SIZE)) + break; + } + + return i; +} + +static u32 __ffa_host_unshare_ranges(struct ffa_mem_region_addr_range *ranges, + u32 nranges) +{ + u32 i; + + for (i = 0; i < nranges; ++i) { + struct ffa_mem_region_addr_range *range = &ranges[i]; + u64 sz = (u64)range->pg_cnt * FFA_PAGE_SIZE; + u64 pfn = hyp_phys_to_pfn(range->address); + + if (!PAGE_ALIGNED(sz)) + break; + + if (__pkvm_host_unshare_ffa(pfn, sz / PAGE_SIZE)) + break; + } + + return i; +} + +static int ffa_host_share_ranges(struct ffa_mem_region_addr_range *ranges, + u32 nranges) +{ + u32 nshared = __ffa_host_share_ranges(ranges, nranges); + int ret = 0; + + if (nshared != nranges) { + WARN_ON(__ffa_host_unshare_ranges(ranges, nshared) != nshared); + ret = FFA_RET_DENIED; + } + + return ret; +} + +static int ffa_host_unshare_ranges(struct ffa_mem_region_addr_range *ranges, + u32 nranges) +{ + u32 nunshared = __ffa_host_unshare_ranges(ranges, nranges); + int ret = 0; + + if (nunshared != nranges) { + WARN_ON(__ffa_host_share_ranges(ranges, nunshared) != nunshared); + ret = FFA_RET_DENIED; + } + + return ret; +} + +static void do_ffa_mem_frag_tx(struct arm_smccc_res *res, + struct kvm_cpu_context *ctxt) +{ + DECLARE_REG(u32, handle_lo, ctxt, 1); + DECLARE_REG(u32, handle_hi, ctxt, 2); + DECLARE_REG(u32, fraglen, ctxt, 3); + DECLARE_REG(u32, endpoint_id, ctxt, 4); + struct ffa_mem_region_addr_range *buf; + int ret = FFA_RET_INVALID_PARAMETERS; + u32 nr_ranges; + + if (fraglen > KVM_FFA_MBOX_NR_PAGES * PAGE_SIZE) + goto out; + + if (fraglen % sizeof(*buf)) + goto out; + + hyp_spin_lock(&host_buffers.lock); + if (!host_buffers.tx) + goto out_unlock; + + buf = hyp_buffers.tx; + memcpy(buf, host_buffers.tx, fraglen); + nr_ranges = fraglen / sizeof(*buf); + + ret = ffa_host_share_ranges(buf, nr_ranges); + if (ret) { + /* + * We're effectively aborting the transaction, so we need + * to restore the global state back to what it was prior to + * transmission of the first fragment. + */ + ffa_mem_reclaim(res, handle_lo, handle_hi, 0); + WARN_ON(res->a0 != FFA_SUCCESS); + goto out_unlock; + } + + ffa_mem_frag_tx(res, handle_lo, handle_hi, fraglen, endpoint_id); + if (res->a0 != FFA_SUCCESS && res->a0 != FFA_MEM_FRAG_RX) + WARN_ON(ffa_host_unshare_ranges(buf, nr_ranges)); + +out_unlock: + hyp_spin_unlock(&host_buffers.lock); +out: + if (ret) + ffa_to_smccc_res(res, ret); + + /* + * If for any reason this did not succeed, we're in trouble as we have + * now lost the content of the previous fragments and we can't rollback + * the host stage-2 changes. The pages previously marked as shared will + * remain stuck in that state forever, hence preventing the host from + * sharing/donating them again and may possibly lead to subsequent + * failures, but this will not compromise confidentiality. + */ + return; +} + +static __always_inline void do_ffa_mem_xfer(const u64 func_id, + struct arm_smccc_res *res, + struct kvm_cpu_context *ctxt) +{ + DECLARE_REG(u32, len, ctxt, 1); + DECLARE_REG(u32, fraglen, ctxt, 2); + DECLARE_REG(u64, addr_mbz, ctxt, 3); + DECLARE_REG(u32, npages_mbz, ctxt, 4); + struct ffa_composite_mem_region *reg; + struct ffa_mem_region *buf; + u32 offset, nr_ranges; + int ret = 0; + + BUILD_BUG_ON(func_id != FFA_FN64_MEM_SHARE && + func_id != FFA_FN64_MEM_LEND); + + if (addr_mbz || npages_mbz || fraglen > len || + fraglen > KVM_FFA_MBOX_NR_PAGES * PAGE_SIZE) { + ret = FFA_RET_INVALID_PARAMETERS; + goto out; + } + + if (fraglen < sizeof(struct ffa_mem_region) + + sizeof(struct ffa_mem_region_attributes)) { + ret = FFA_RET_INVALID_PARAMETERS; + goto out; + } + + hyp_spin_lock(&host_buffers.lock); + if (!host_buffers.tx) { + ret = FFA_RET_INVALID_PARAMETERS; + goto out_unlock; + } + + buf = hyp_buffers.tx; + memcpy(buf, host_buffers.tx, fraglen); + + offset = buf->ep_mem_access[0].composite_off; + if (!offset || buf->ep_count != 1 || buf->sender_id != HOST_FFA_ID) { + ret = FFA_RET_INVALID_PARAMETERS; + goto out_unlock; + } + + if (fraglen < offset + sizeof(struct ffa_composite_mem_region)) { + ret = FFA_RET_INVALID_PARAMETERS; + goto out_unlock; + } + + reg = (void *)buf + offset; + nr_ranges = ((void *)buf + fraglen) - (void *)reg->constituents; + if (nr_ranges % sizeof(reg->constituents[0])) { + ret = FFA_RET_INVALID_PARAMETERS; + goto out_unlock; + } + + nr_ranges /= sizeof(reg->constituents[0]); + ret = ffa_host_share_ranges(reg->constituents, nr_ranges); + if (ret) + goto out_unlock; + + ffa_mem_xfer(res, func_id, len, fraglen); + if (fraglen != len) { + if (res->a0 != FFA_MEM_FRAG_RX) + goto err_unshare; + + if (res->a3 != fraglen) + goto err_unshare; + } else if (res->a0 != FFA_SUCCESS) { + goto err_unshare; + } + +out_unlock: + hyp_spin_unlock(&host_buffers.lock); +out: + if (ret) + ffa_to_smccc_res(res, ret); + return; + +err_unshare: + WARN_ON(ffa_host_unshare_ranges(reg->constituents, nr_ranges)); + goto out_unlock; +} + +static void do_ffa_mem_reclaim(struct arm_smccc_res *res, + struct kvm_cpu_context *ctxt) +{ + DECLARE_REG(u32, handle_lo, ctxt, 1); + DECLARE_REG(u32, handle_hi, ctxt, 2); + DECLARE_REG(u32, flags, ctxt, 3); + struct ffa_composite_mem_region *reg; + u32 offset, len, fraglen, fragoff; + struct ffa_mem_region *buf; + int ret = 0; + u64 handle; + + handle = PACK_HANDLE(handle_lo, handle_hi); + + hyp_spin_lock(&host_buffers.lock); + + buf = hyp_buffers.tx; + *buf = (struct ffa_mem_region) { + .sender_id = HOST_FFA_ID, + .handle = handle, + }; + + ffa_retrieve_req(res, sizeof(*buf)); + buf = hyp_buffers.rx; + if (res->a0 != FFA_MEM_RETRIEVE_RESP) + goto out_unlock; + + len = res->a1; + fraglen = res->a2; + + offset = buf->ep_mem_access[0].composite_off; + /* + * We can trust the SPMD to get this right, but let's at least + * check that we end up with something that doesn't look _completely_ + * bogus. + */ + if (WARN_ON(offset > len || + fraglen > KVM_FFA_MBOX_NR_PAGES * PAGE_SIZE)) { + ret = FFA_RET_ABORTED; + goto out_unlock; + } + + if (len > ffa_desc_buf.len) { + ret = FFA_RET_NO_MEMORY; + goto out_unlock; + } + + buf = ffa_desc_buf.buf; + memcpy(buf, hyp_buffers.rx, fraglen); + + for (fragoff = fraglen; fragoff < len; fragoff += fraglen) { + ffa_mem_frag_rx(res, handle_lo, handle_hi, fragoff); + if (res->a0 != FFA_MEM_FRAG_TX) { + ret = FFA_RET_INVALID_PARAMETERS; + goto out_unlock; + } + + fraglen = res->a3; + memcpy((void *)buf + fragoff, hyp_buffers.rx, fraglen); + } + + ffa_mem_reclaim(res, handle_lo, handle_hi, flags); + if (res->a0 != FFA_SUCCESS) + goto out_unlock; + + reg = (void *)buf + offset; + /* If the SPMD was happy, then we should be too. */ + WARN_ON(ffa_host_unshare_ranges(reg->constituents, + reg->addr_range_cnt)); +out_unlock: + hyp_spin_unlock(&host_buffers.lock); + + if (ret) + ffa_to_smccc_res(res, ret); +} + +/* + * Is a given FFA function supported, either by forwarding on directly + * or by handling at EL2? + */ +static bool ffa_call_supported(u64 func_id) +{ + switch (func_id) { + /* Unsupported memory management calls */ + case FFA_FN64_MEM_RETRIEVE_REQ: + case FFA_MEM_RETRIEVE_RESP: + case FFA_MEM_RELINQUISH: + case FFA_MEM_OP_PAUSE: + case FFA_MEM_OP_RESUME: + case FFA_MEM_FRAG_RX: + case FFA_FN64_MEM_DONATE: + /* Indirect message passing via RX/TX buffers */ + case FFA_MSG_SEND: + case FFA_MSG_POLL: + case FFA_MSG_WAIT: + /* 32-bit variants of 64-bit calls */ + case FFA_MSG_SEND_DIRECT_REQ: + case FFA_MSG_SEND_DIRECT_RESP: + case FFA_RXTX_MAP: + case FFA_MEM_DONATE: + case FFA_MEM_RETRIEVE_REQ: + return false; + } + + return true; +} + +static bool do_ffa_features(struct arm_smccc_res *res, + struct kvm_cpu_context *ctxt) +{ + DECLARE_REG(u32, id, ctxt, 1); + u64 prop = 0; + int ret = 0; + + if (!ffa_call_supported(id)) { + ret = FFA_RET_NOT_SUPPORTED; + goto out_handled; + } + + switch (id) { + case FFA_MEM_SHARE: + case FFA_FN64_MEM_SHARE: + case FFA_MEM_LEND: + case FFA_FN64_MEM_LEND: + ret = FFA_RET_SUCCESS; + prop = 0; /* No support for dynamic buffers */ + goto out_handled; + default: + return false; + } + +out_handled: + ffa_to_smccc_res_prop(res, ret, prop); + return true; +} + +bool kvm_host_ffa_handler(struct kvm_cpu_context *host_ctxt, u32 func_id) +{ + struct arm_smccc_res res; + + /* + * There's no way we can tell what a non-standard SMC call might + * be up to. Ideally, we would terminate these here and return + * an error to the host, but sadly devices make use of custom + * firmware calls for things like power management, debugging, + * RNG access and crash reporting. + * + * Given that the architecture requires us to trust EL3 anyway, + * we forward unrecognised calls on under the assumption that + * the firmware doesn't expose a mechanism to access arbitrary + * non-secure memory. Short of a per-device table of SMCs, this + * is the best we can do. + */ + if (!is_ffa_call(func_id)) + return false; + + switch (func_id) { + case FFA_FEATURES: + if (!do_ffa_features(&res, host_ctxt)) + return false; + goto out_handled; + /* Memory management */ + case FFA_FN64_RXTX_MAP: + do_ffa_rxtx_map(&res, host_ctxt); + goto out_handled; + case FFA_RXTX_UNMAP: + do_ffa_rxtx_unmap(&res, host_ctxt); + goto out_handled; + case FFA_MEM_SHARE: + case FFA_FN64_MEM_SHARE: + do_ffa_mem_xfer(FFA_FN64_MEM_SHARE, &res, host_ctxt); + goto out_handled; + case FFA_MEM_RECLAIM: + do_ffa_mem_reclaim(&res, host_ctxt); + goto out_handled; + case FFA_MEM_LEND: + case FFA_FN64_MEM_LEND: + do_ffa_mem_xfer(FFA_FN64_MEM_LEND, &res, host_ctxt); + goto out_handled; + case FFA_MEM_FRAG_TX: + do_ffa_mem_frag_tx(&res, host_ctxt); + goto out_handled; + } + + if (ffa_call_supported(func_id)) + return false; /* Pass through */ + + ffa_to_smccc_error(&res, FFA_RET_NOT_SUPPORTED); +out_handled: + ffa_set_retval(host_ctxt, &res); + return true; +} + +int hyp_ffa_init(void *pages) +{ + struct arm_smccc_res res; + size_t min_rxtx_sz; + void *tx, *rx; + + if (kvm_host_psci_config.smccc_version < ARM_SMCCC_VERSION_1_2) + return 0; + + arm_smccc_1_1_smc(FFA_VERSION, FFA_VERSION_1_0, 0, 0, 0, 0, 0, 0, &res); + if (res.a0 == FFA_RET_NOT_SUPPORTED) + return 0; + + /* + * Firmware returns the maximum supported version of the FF-A + * implementation. Check that the returned version is + * backwards-compatible with the hyp according to the rules in DEN0077A + * v1.1 REL0 13.2.1. + * + * Of course, things are never simple when dealing with firmware. v1.1 + * broke ABI with v1.0 on several structures, which is itself + * incompatible with the aforementioned versioning scheme. The + * expectation is that v1.x implementations that do not support the v1.0 + * ABI return NOT_SUPPORTED rather than a version number, according to + * DEN0077A v1.1 REL0 18.6.4. + */ + if (FFA_MAJOR_VERSION(res.a0) != 1) + return -EOPNOTSUPP; + + arm_smccc_1_1_smc(FFA_ID_GET, 0, 0, 0, 0, 0, 0, 0, &res); + if (res.a0 != FFA_SUCCESS) + return -EOPNOTSUPP; + + if (res.a2 != HOST_FFA_ID) + return -EINVAL; + + arm_smccc_1_1_smc(FFA_FEATURES, FFA_FN64_RXTX_MAP, + 0, 0, 0, 0, 0, 0, &res); + if (res.a0 != FFA_SUCCESS) + return -EOPNOTSUPP; + + switch (res.a2) { + case FFA_FEAT_RXTX_MIN_SZ_4K: + min_rxtx_sz = SZ_4K; + break; + case FFA_FEAT_RXTX_MIN_SZ_16K: + min_rxtx_sz = SZ_16K; + break; + case FFA_FEAT_RXTX_MIN_SZ_64K: + min_rxtx_sz = SZ_64K; + break; + default: + return -EINVAL; + } + + if (min_rxtx_sz > PAGE_SIZE) + return -EOPNOTSUPP; + + tx = pages; + pages += KVM_FFA_MBOX_NR_PAGES * PAGE_SIZE; + rx = pages; + pages += KVM_FFA_MBOX_NR_PAGES * PAGE_SIZE; + + ffa_desc_buf = (struct kvm_ffa_descriptor_buffer) { + .buf = pages, + .len = PAGE_SIZE * + (hyp_ffa_proxy_pages() - (2 * KVM_FFA_MBOX_NR_PAGES)), + }; + + hyp_buffers = (struct kvm_ffa_buffers) { + .lock = __HYP_SPIN_LOCK_UNLOCKED, + .tx = tx, + .rx = rx, + }; + + host_buffers = (struct kvm_ffa_buffers) { + .lock = __HYP_SPIN_LOCK_UNLOCKED, + }; + + return 0; +} diff --git a/arch/arm64/kvm/hyp/nvhe/gen-hyprel.c b/arch/arm64/kvm/hyp/nvhe/gen-hyprel.c new file mode 100644 index 0000000000..6bc88a756c --- /dev/null +++ b/arch/arm64/kvm/hyp/nvhe/gen-hyprel.c @@ -0,0 +1,456 @@ +// SPDX-License-Identifier: GPL-2.0-only +/* + * Copyright (C) 2020 - Google LLC + * Author: David Brazdil <dbrazdil@google.com> + * + * Generates relocation information used by the kernel to convert + * absolute addresses in hyp data from kernel VAs to hyp VAs. + * + * This is necessary because hyp code is linked into the same binary + * as the kernel but executes under different memory mappings. + * If the compiler used absolute addressing, those addresses need to + * be converted before they are used by hyp code. + * + * The input of this program is the relocatable ELF object containing + * all hyp code/data, not yet linked into vmlinux. Hyp section names + * should have been prefixed with `.hyp` at this point. + * + * The output (printed to stdout) is an assembly file containing + * an array of 32-bit integers and static relocations that instruct + * the linker of `vmlinux` to populate the array entries with offsets + * to positions in the kernel binary containing VAs used by hyp code. + * + * Note that dynamic relocations could be used for the same purpose. + * However, those are only generated if CONFIG_RELOCATABLE=y. + */ + +#include <elf.h> +#include <endian.h> +#include <errno.h> +#include <fcntl.h> +#include <stdbool.h> +#include <stdio.h> +#include <stdlib.h> +#include <string.h> +#include <sys/mman.h> +#include <sys/types.h> +#include <sys/stat.h> +#include <unistd.h> + +#include <generated/autoconf.h> + +#define HYP_SECTION_PREFIX ".hyp" +#define HYP_RELOC_SECTION ".hyp.reloc" +#define HYP_SECTION_SYMBOL_PREFIX "__hyp_section_" + +/* + * AArch64 relocation type constants. + * Included in case these are not defined in the host toolchain. + */ +#ifndef R_AARCH64_ABS64 +#define R_AARCH64_ABS64 257 +#endif +#ifndef R_AARCH64_PREL64 +#define R_AARCH64_PREL64 260 +#endif +#ifndef R_AARCH64_PREL32 +#define R_AARCH64_PREL32 261 +#endif +#ifndef R_AARCH64_PREL16 +#define R_AARCH64_PREL16 262 +#endif +#ifndef R_AARCH64_PLT32 +#define R_AARCH64_PLT32 314 +#endif +#ifndef R_AARCH64_LD_PREL_LO19 +#define R_AARCH64_LD_PREL_LO19 273 +#endif +#ifndef R_AARCH64_ADR_PREL_LO21 +#define R_AARCH64_ADR_PREL_LO21 274 +#endif +#ifndef R_AARCH64_ADR_PREL_PG_HI21 +#define R_AARCH64_ADR_PREL_PG_HI21 275 +#endif +#ifndef R_AARCH64_ADR_PREL_PG_HI21_NC +#define R_AARCH64_ADR_PREL_PG_HI21_NC 276 +#endif +#ifndef R_AARCH64_ADD_ABS_LO12_NC +#define R_AARCH64_ADD_ABS_LO12_NC 277 +#endif +#ifndef R_AARCH64_LDST8_ABS_LO12_NC +#define R_AARCH64_LDST8_ABS_LO12_NC 278 +#endif +#ifndef R_AARCH64_TSTBR14 +#define R_AARCH64_TSTBR14 279 +#endif +#ifndef R_AARCH64_CONDBR19 +#define R_AARCH64_CONDBR19 280 +#endif +#ifndef R_AARCH64_JUMP26 +#define R_AARCH64_JUMP26 282 +#endif +#ifndef R_AARCH64_CALL26 +#define R_AARCH64_CALL26 283 +#endif +#ifndef R_AARCH64_LDST16_ABS_LO12_NC +#define R_AARCH64_LDST16_ABS_LO12_NC 284 +#endif +#ifndef R_AARCH64_LDST32_ABS_LO12_NC +#define R_AARCH64_LDST32_ABS_LO12_NC 285 +#endif +#ifndef R_AARCH64_LDST64_ABS_LO12_NC +#define R_AARCH64_LDST64_ABS_LO12_NC 286 +#endif +#ifndef R_AARCH64_MOVW_PREL_G0 +#define R_AARCH64_MOVW_PREL_G0 287 +#endif +#ifndef R_AARCH64_MOVW_PREL_G0_NC +#define R_AARCH64_MOVW_PREL_G0_NC 288 +#endif +#ifndef R_AARCH64_MOVW_PREL_G1 +#define R_AARCH64_MOVW_PREL_G1 289 +#endif +#ifndef R_AARCH64_MOVW_PREL_G1_NC +#define R_AARCH64_MOVW_PREL_G1_NC 290 +#endif +#ifndef R_AARCH64_MOVW_PREL_G2 +#define R_AARCH64_MOVW_PREL_G2 291 +#endif +#ifndef R_AARCH64_MOVW_PREL_G2_NC +#define R_AARCH64_MOVW_PREL_G2_NC 292 +#endif +#ifndef R_AARCH64_MOVW_PREL_G3 +#define R_AARCH64_MOVW_PREL_G3 293 +#endif +#ifndef R_AARCH64_LDST128_ABS_LO12_NC +#define R_AARCH64_LDST128_ABS_LO12_NC 299 +#endif + +/* Global state of the processed ELF. */ +static struct { + const char *path; + char *begin; + size_t size; + Elf64_Ehdr *ehdr; + Elf64_Shdr *sh_table; + const char *sh_string; +} elf; + +#if defined(CONFIG_CPU_LITTLE_ENDIAN) + +#define elf16toh(x) le16toh(x) +#define elf32toh(x) le32toh(x) +#define elf64toh(x) le64toh(x) + +#define ELFENDIAN ELFDATA2LSB + +#elif defined(CONFIG_CPU_BIG_ENDIAN) + +#define elf16toh(x) be16toh(x) +#define elf32toh(x) be32toh(x) +#define elf64toh(x) be64toh(x) + +#define ELFENDIAN ELFDATA2MSB + +#else + +#error PDP-endian sadly unsupported... + +#endif + +#define fatal_error(fmt, ...) \ + ({ \ + fprintf(stderr, "error: %s: " fmt "\n", \ + elf.path, ## __VA_ARGS__); \ + exit(EXIT_FAILURE); \ + __builtin_unreachable(); \ + }) + +#define fatal_perror(msg) \ + ({ \ + fprintf(stderr, "error: %s: " msg ": %s\n", \ + elf.path, strerror(errno)); \ + exit(EXIT_FAILURE); \ + __builtin_unreachable(); \ + }) + +#define assert_op(lhs, rhs, fmt, op) \ + ({ \ + typeof(lhs) _lhs = (lhs); \ + typeof(rhs) _rhs = (rhs); \ + \ + if (!(_lhs op _rhs)) { \ + fatal_error("assertion " #lhs " " #op " " #rhs \ + " failed (lhs=" fmt ", rhs=" fmt \ + ", line=%d)", _lhs, _rhs, __LINE__); \ + } \ + }) + +#define assert_eq(lhs, rhs, fmt) assert_op(lhs, rhs, fmt, ==) +#define assert_ne(lhs, rhs, fmt) assert_op(lhs, rhs, fmt, !=) +#define assert_lt(lhs, rhs, fmt) assert_op(lhs, rhs, fmt, <) +#define assert_ge(lhs, rhs, fmt) assert_op(lhs, rhs, fmt, >=) + +/* + * Return a pointer of a given type at a given offset from + * the beginning of the ELF file. + */ +#define elf_ptr(type, off) ((type *)(elf.begin + (off))) + +/* Iterate over all sections in the ELF. */ +#define for_each_section(var) \ + for (var = elf.sh_table; var < elf.sh_table + elf16toh(elf.ehdr->e_shnum); ++var) + +/* Iterate over all Elf64_Rela relocations in a given section. */ +#define for_each_rela(shdr, var) \ + for (var = elf_ptr(Elf64_Rela, elf64toh(shdr->sh_offset)); \ + var < elf_ptr(Elf64_Rela, elf64toh(shdr->sh_offset) + elf64toh(shdr->sh_size)); var++) + +/* True if a string starts with a given prefix. */ +static inline bool starts_with(const char *str, const char *prefix) +{ + return memcmp(str, prefix, strlen(prefix)) == 0; +} + +/* Returns a string containing the name of a given section. */ +static inline const char *section_name(Elf64_Shdr *shdr) +{ + return elf.sh_string + elf32toh(shdr->sh_name); +} + +/* Returns a pointer to the first byte of section data. */ +static inline const char *section_begin(Elf64_Shdr *shdr) +{ + return elf_ptr(char, elf64toh(shdr->sh_offset)); +} + +/* Find a section by its offset from the beginning of the file. */ +static inline Elf64_Shdr *section_by_off(Elf64_Off off) +{ + assert_ne(off, 0UL, "%lu"); + return elf_ptr(Elf64_Shdr, off); +} + +/* Find a section by its index. */ +static inline Elf64_Shdr *section_by_idx(uint16_t idx) +{ + assert_ne(idx, SHN_UNDEF, "%u"); + return &elf.sh_table[idx]; +} + +/* + * Memory-map the given ELF file, perform sanity checks, and + * populate global state. + */ +static void init_elf(const char *path) +{ + int fd, ret; + struct stat stat; + + /* Store path in the global struct for error printing. */ + elf.path = path; + + /* Open the ELF file. */ + fd = open(path, O_RDONLY); + if (fd < 0) + fatal_perror("Could not open ELF file"); + + /* Get status of ELF file to obtain its size. */ + ret = fstat(fd, &stat); + if (ret < 0) { + close(fd); + fatal_perror("Could not get status of ELF file"); + } + + /* mmap() the entire ELF file read-only at an arbitrary address. */ + elf.begin = mmap(0, stat.st_size, PROT_READ, MAP_PRIVATE, fd, 0); + if (elf.begin == MAP_FAILED) { + close(fd); + fatal_perror("Could not mmap ELF file"); + } + + /* mmap() was successful, close the FD. */ + close(fd); + + /* Get pointer to the ELF header. */ + assert_ge(stat.st_size, sizeof(*elf.ehdr), "%lu"); + elf.ehdr = elf_ptr(Elf64_Ehdr, 0); + + /* Check the ELF magic. */ + assert_eq(elf.ehdr->e_ident[EI_MAG0], ELFMAG0, "0x%x"); + assert_eq(elf.ehdr->e_ident[EI_MAG1], ELFMAG1, "0x%x"); + assert_eq(elf.ehdr->e_ident[EI_MAG2], ELFMAG2, "0x%x"); + assert_eq(elf.ehdr->e_ident[EI_MAG3], ELFMAG3, "0x%x"); + + /* Sanity check that this is an ELF64 relocatable object for AArch64. */ + assert_eq(elf.ehdr->e_ident[EI_CLASS], ELFCLASS64, "%u"); + assert_eq(elf.ehdr->e_ident[EI_DATA], ELFENDIAN, "%u"); + assert_eq(elf16toh(elf.ehdr->e_type), ET_REL, "%u"); + assert_eq(elf16toh(elf.ehdr->e_machine), EM_AARCH64, "%u"); + + /* Populate fields of the global struct. */ + elf.sh_table = section_by_off(elf64toh(elf.ehdr->e_shoff)); + elf.sh_string = section_begin(section_by_idx(elf16toh(elf.ehdr->e_shstrndx))); +} + +/* Print the prologue of the output ASM file. */ +static void emit_prologue(void) +{ + printf(".data\n" + ".pushsection " HYP_RELOC_SECTION ", \"a\"\n"); +} + +/* Print ASM statements needed as a prologue to a processed hyp section. */ +static void emit_section_prologue(const char *sh_orig_name) +{ + /* Declare the hyp section symbol. */ + printf(".global %s%s\n", HYP_SECTION_SYMBOL_PREFIX, sh_orig_name); +} + +/* + * Print ASM statements to create a hyp relocation entry for a given + * R_AARCH64_ABS64 relocation. + * + * The linker of vmlinux will populate the position given by `rela` with + * an absolute 64-bit kernel VA. If the kernel is relocatable, it will + * also generate a dynamic relocation entry so that the kernel can shift + * the address at runtime for KASLR. + * + * Emit a 32-bit offset from the current address to the position given + * by `rela`. This way the kernel can iterate over all kernel VAs used + * by hyp at runtime and convert them to hyp VAs. However, that offset + * will not be known until linking of `vmlinux`, so emit a PREL32 + * relocation referencing a symbol that the hyp linker script put at + * the beginning of the relocated section + the offset from `rela`. + */ +static void emit_rela_abs64(Elf64_Rela *rela, const char *sh_orig_name) +{ + /* Offset of this reloc from the beginning of HYP_RELOC_SECTION. */ + static size_t reloc_offset; + + /* Create storage for the 32-bit offset. */ + printf(".word 0\n"); + + /* + * Create a PREL32 relocation which instructs the linker of `vmlinux` + * to insert offset to position <base> + <offset>, where <base> is + * a symbol at the beginning of the relocated section, and <offset> + * is `rela->r_offset`. + */ + printf(".reloc %lu, R_AARCH64_PREL32, %s%s + 0x%lx\n", + reloc_offset, HYP_SECTION_SYMBOL_PREFIX, sh_orig_name, + elf64toh(rela->r_offset)); + + reloc_offset += 4; +} + +/* Print the epilogue of the output ASM file. */ +static void emit_epilogue(void) +{ + printf(".popsection\n"); +} + +/* + * Iterate over all RELA relocations in a given section and emit + * hyp relocation data for all absolute addresses in hyp code/data. + * + * Static relocations that generate PC-relative-addressing are ignored. + * Failure is reported for unexpected relocation types. + */ +static void emit_rela_section(Elf64_Shdr *sh_rela) +{ + Elf64_Shdr *sh_orig = &elf.sh_table[elf32toh(sh_rela->sh_info)]; + const char *sh_orig_name = section_name(sh_orig); + Elf64_Rela *rela; + + /* Skip all non-hyp sections. */ + if (!starts_with(sh_orig_name, HYP_SECTION_PREFIX)) + return; + + emit_section_prologue(sh_orig_name); + + for_each_rela(sh_rela, rela) { + uint32_t type = (uint32_t)elf64toh(rela->r_info); + + /* Check that rela points inside the relocated section. */ + assert_lt(elf64toh(rela->r_offset), elf64toh(sh_orig->sh_size), "0x%lx"); + + switch (type) { + /* + * Data relocations to generate absolute addressing. + * Emit a hyp relocation. + */ + case R_AARCH64_ABS64: + emit_rela_abs64(rela, sh_orig_name); + break; + /* Allow position-relative data relocations. */ + case R_AARCH64_PREL64: + case R_AARCH64_PREL32: + case R_AARCH64_PREL16: + case R_AARCH64_PLT32: + break; + /* Allow relocations to generate PC-relative addressing. */ + case R_AARCH64_LD_PREL_LO19: + case R_AARCH64_ADR_PREL_LO21: + case R_AARCH64_ADR_PREL_PG_HI21: + case R_AARCH64_ADR_PREL_PG_HI21_NC: + case R_AARCH64_ADD_ABS_LO12_NC: + case R_AARCH64_LDST8_ABS_LO12_NC: + case R_AARCH64_LDST16_ABS_LO12_NC: + case R_AARCH64_LDST32_ABS_LO12_NC: + case R_AARCH64_LDST64_ABS_LO12_NC: + case R_AARCH64_LDST128_ABS_LO12_NC: + break; + /* Allow relative relocations for control-flow instructions. */ + case R_AARCH64_TSTBR14: + case R_AARCH64_CONDBR19: + case R_AARCH64_JUMP26: + case R_AARCH64_CALL26: + break; + /* Allow group relocations to create PC-relative offset inline. */ + case R_AARCH64_MOVW_PREL_G0: + case R_AARCH64_MOVW_PREL_G0_NC: + case R_AARCH64_MOVW_PREL_G1: + case R_AARCH64_MOVW_PREL_G1_NC: + case R_AARCH64_MOVW_PREL_G2: + case R_AARCH64_MOVW_PREL_G2_NC: + case R_AARCH64_MOVW_PREL_G3: + break; + default: + fatal_error("Unexpected RELA type %u", type); + } + } +} + +/* Iterate over all sections and emit hyp relocation data for RELA sections. */ +static void emit_all_relocs(void) +{ + Elf64_Shdr *shdr; + + for_each_section(shdr) { + switch (elf32toh(shdr->sh_type)) { + case SHT_REL: + fatal_error("Unexpected SHT_REL section \"%s\"", + section_name(shdr)); + case SHT_RELA: + emit_rela_section(shdr); + break; + } + } +} + +int main(int argc, const char **argv) +{ + if (argc != 2) { + fprintf(stderr, "Usage: %s <elf_input>\n", argv[0]); + return EXIT_FAILURE; + } + + init_elf(argv[1]); + + emit_prologue(); + emit_all_relocs(); + emit_epilogue(); + + return EXIT_SUCCESS; +} diff --git a/arch/arm64/kvm/hyp/nvhe/host.S b/arch/arm64/kvm/hyp/nvhe/host.S new file mode 100644 index 0000000000..7693a6757c --- /dev/null +++ b/arch/arm64/kvm/hyp/nvhe/host.S @@ -0,0 +1,309 @@ +/* SPDX-License-Identifier: GPL-2.0-only */ +/* + * Copyright (C) 2020 - Google Inc + * Author: Andrew Scull <ascull@google.com> + */ + +#include <linux/linkage.h> + +#include <asm/assembler.h> +#include <asm/kvm_arm.h> +#include <asm/kvm_asm.h> +#include <asm/kvm_mmu.h> +#include <asm/kvm_ptrauth.h> + + .text + +SYM_FUNC_START(__host_exit) + get_host_ctxt x0, x1 + + /* Store the host regs x2 and x3 */ + stp x2, x3, [x0, #CPU_XREG_OFFSET(2)] + + /* Retrieve the host regs x0-x1 from the stack */ + ldp x2, x3, [sp], #16 // x0, x1 + + /* Store the host regs x0-x1 and x4-x17 */ + stp x2, x3, [x0, #CPU_XREG_OFFSET(0)] + stp x4, x5, [x0, #CPU_XREG_OFFSET(4)] + stp x6, x7, [x0, #CPU_XREG_OFFSET(6)] + stp x8, x9, [x0, #CPU_XREG_OFFSET(8)] + stp x10, x11, [x0, #CPU_XREG_OFFSET(10)] + stp x12, x13, [x0, #CPU_XREG_OFFSET(12)] + stp x14, x15, [x0, #CPU_XREG_OFFSET(14)] + stp x16, x17, [x0, #CPU_XREG_OFFSET(16)] + + /* Store the host regs x18-x29, lr */ + save_callee_saved_regs x0 + + /* Save the host context pointer in x29 across the function call */ + mov x29, x0 + +#ifdef CONFIG_ARM64_PTR_AUTH_KERNEL +alternative_if_not ARM64_HAS_ADDRESS_AUTH +b __skip_pauth_save +alternative_else_nop_endif + +alternative_if ARM64_KVM_PROTECTED_MODE + /* Save kernel ptrauth keys. */ + add x18, x29, #CPU_APIAKEYLO_EL1 + ptrauth_save_state x18, x19, x20 + + /* Use hyp keys. */ + adr_this_cpu x18, kvm_hyp_ctxt, x19 + add x18, x18, #CPU_APIAKEYLO_EL1 + ptrauth_restore_state x18, x19, x20 + isb +alternative_else_nop_endif +__skip_pauth_save: +#endif /* CONFIG_ARM64_PTR_AUTH_KERNEL */ + + bl handle_trap + +__host_enter_restore_full: + /* Restore kernel keys. */ +#ifdef CONFIG_ARM64_PTR_AUTH_KERNEL +alternative_if_not ARM64_HAS_ADDRESS_AUTH +b __skip_pauth_restore +alternative_else_nop_endif + +alternative_if ARM64_KVM_PROTECTED_MODE + add x18, x29, #CPU_APIAKEYLO_EL1 + ptrauth_restore_state x18, x19, x20 +alternative_else_nop_endif +__skip_pauth_restore: +#endif /* CONFIG_ARM64_PTR_AUTH_KERNEL */ + + /* Restore host regs x0-x17 */ + ldp x0, x1, [x29, #CPU_XREG_OFFSET(0)] + ldp x2, x3, [x29, #CPU_XREG_OFFSET(2)] + ldp x4, x5, [x29, #CPU_XREG_OFFSET(4)] + ldp x6, x7, [x29, #CPU_XREG_OFFSET(6)] + + /* x0-7 are use for panic arguments */ +__host_enter_for_panic: + ldp x8, x9, [x29, #CPU_XREG_OFFSET(8)] + ldp x10, x11, [x29, #CPU_XREG_OFFSET(10)] + ldp x12, x13, [x29, #CPU_XREG_OFFSET(12)] + ldp x14, x15, [x29, #CPU_XREG_OFFSET(14)] + ldp x16, x17, [x29, #CPU_XREG_OFFSET(16)] + + /* Restore host regs x18-x29, lr */ + restore_callee_saved_regs x29 + + /* Do not touch any register after this! */ +__host_enter_without_restoring: + eret + sb +SYM_FUNC_END(__host_exit) + +/* + * void __noreturn __host_enter(struct kvm_cpu_context *host_ctxt); + */ +SYM_FUNC_START(__host_enter) + mov x29, x0 + b __host_enter_restore_full +SYM_FUNC_END(__host_enter) + +/* + * void __noreturn __hyp_do_panic(struct kvm_cpu_context *host_ctxt, u64 spsr, + * u64 elr, u64 par); + */ +SYM_FUNC_START(__hyp_do_panic) + /* Prepare and exit to the host's panic funciton. */ + mov lr, #(PSR_F_BIT | PSR_I_BIT | PSR_A_BIT | PSR_D_BIT |\ + PSR_MODE_EL1h) + msr spsr_el2, lr + adr_l lr, nvhe_hyp_panic_handler + hyp_kimg_va lr, x6 + msr elr_el2, lr + + mov x29, x0 + +#ifdef CONFIG_NVHE_EL2_DEBUG + /* Ensure host stage-2 is disabled */ + mrs x0, hcr_el2 + bic x0, x0, #HCR_VM + msr hcr_el2, x0 + isb + tlbi vmalls12e1 + dsb nsh +#endif + + /* Load the panic arguments into x0-7 */ + mrs x0, esr_el2 + mov x4, x3 + mov x3, x2 + hyp_pa x3, x6 + get_vcpu_ptr x5, x6 + mrs x6, far_el2 + mrs x7, hpfar_el2 + + /* Enter the host, conditionally restoring the host context. */ + cbz x29, __host_enter_without_restoring + b __host_enter_for_panic +SYM_FUNC_END(__hyp_do_panic) + +SYM_FUNC_START(__host_hvc) + ldp x0, x1, [sp] // Don't fixup the stack yet + + /* No stub for you, sonny Jim */ +alternative_if ARM64_KVM_PROTECTED_MODE + b __host_exit +alternative_else_nop_endif + + /* Check for a stub HVC call */ + cmp x0, #HVC_STUB_HCALL_NR + b.hs __host_exit + + add sp, sp, #16 + /* + * Compute the idmap address of __kvm_handle_stub_hvc and + * jump there. + * + * Preserve x0-x4, which may contain stub parameters. + */ + adr_l x5, __kvm_handle_stub_hvc + hyp_pa x5, x6 + br x5 +SYM_FUNC_END(__host_hvc) + +.macro host_el1_sync_vect + .align 7 +.L__vect_start\@: + stp x0, x1, [sp, #-16]! + mrs x0, esr_el2 + ubfx x0, x0, #ESR_ELx_EC_SHIFT, #ESR_ELx_EC_WIDTH + cmp x0, #ESR_ELx_EC_HVC64 + b.eq __host_hvc + b __host_exit +.L__vect_end\@: +.if ((.L__vect_end\@ - .L__vect_start\@) > 0x80) + .error "host_el1_sync_vect larger than vector entry" +.endif +.endm + +.macro invalid_host_el2_vect + .align 7 + + /* + * Test whether the SP has overflowed, without corrupting a GPR. + * nVHE hypervisor stacks are aligned so that the PAGE_SHIFT bit + * of SP should always be 1. + */ + add sp, sp, x0 // sp' = sp + x0 + sub x0, sp, x0 // x0' = sp' - x0 = (sp + x0) - x0 = sp + tbz x0, #PAGE_SHIFT, .L__hyp_sp_overflow\@ + sub x0, sp, x0 // x0'' = sp' - x0' = (sp + x0) - sp = x0 + sub sp, sp, x0 // sp'' = sp' - x0 = (sp + x0) - x0 = sp + + /* If a guest is loaded, panic out of it. */ + stp x0, x1, [sp, #-16]! + get_loaded_vcpu x0, x1 + cbnz x0, __guest_exit_panic + add sp, sp, #16 + + /* + * The panic may not be clean if the exception is taken before the host + * context has been saved by __host_exit or after the hyp context has + * been partially clobbered by __host_enter. + */ + b hyp_panic + +.L__hyp_sp_overflow\@: + /* Switch to the overflow stack */ + adr_this_cpu sp, overflow_stack + OVERFLOW_STACK_SIZE, x0 + + b hyp_panic_bad_stack + ASM_BUG() +.endm + +.macro invalid_host_el1_vect + .align 7 + mov x0, xzr /* restore_host = false */ + mrs x1, spsr_el2 + mrs x2, elr_el2 + mrs x3, par_el1 + b __hyp_do_panic +.endm + +/* + * The host vector does not use an ESB instruction in order to avoid consuming + * SErrors that should only be consumed by the host. Guest entry is deferred by + * __guest_enter if there are any pending asynchronous exceptions so hyp will + * always return to the host without having consumerd host SErrors. + * + * CONFIG_KVM_INDIRECT_VECTORS is not applied to the host vectors because the + * host knows about the EL2 vectors already, and there is no point in hiding + * them. + */ + .align 11 +SYM_CODE_START(__kvm_hyp_host_vector) + invalid_host_el2_vect // Synchronous EL2t + invalid_host_el2_vect // IRQ EL2t + invalid_host_el2_vect // FIQ EL2t + invalid_host_el2_vect // Error EL2t + + invalid_host_el2_vect // Synchronous EL2h + invalid_host_el2_vect // IRQ EL2h + invalid_host_el2_vect // FIQ EL2h + invalid_host_el2_vect // Error EL2h + + host_el1_sync_vect // Synchronous 64-bit EL1/EL0 + invalid_host_el1_vect // IRQ 64-bit EL1/EL0 + invalid_host_el1_vect // FIQ 64-bit EL1/EL0 + invalid_host_el1_vect // Error 64-bit EL1/EL0 + + host_el1_sync_vect // Synchronous 32-bit EL1/EL0 + invalid_host_el1_vect // IRQ 32-bit EL1/EL0 + invalid_host_el1_vect // FIQ 32-bit EL1/EL0 + invalid_host_el1_vect // Error 32-bit EL1/EL0 +SYM_CODE_END(__kvm_hyp_host_vector) + +/* + * Forward SMC with arguments in struct kvm_cpu_context, and + * store the result into the same struct. Assumes SMCCC 1.2 or older. + * + * x0: struct kvm_cpu_context* + */ +SYM_CODE_START(__kvm_hyp_host_forward_smc) + /* + * Use x18 to keep the pointer to the host context because + * x18 is callee-saved in SMCCC but not in AAPCS64. + */ + mov x18, x0 + + ldp x0, x1, [x18, #CPU_XREG_OFFSET(0)] + ldp x2, x3, [x18, #CPU_XREG_OFFSET(2)] + ldp x4, x5, [x18, #CPU_XREG_OFFSET(4)] + ldp x6, x7, [x18, #CPU_XREG_OFFSET(6)] + ldp x8, x9, [x18, #CPU_XREG_OFFSET(8)] + ldp x10, x11, [x18, #CPU_XREG_OFFSET(10)] + ldp x12, x13, [x18, #CPU_XREG_OFFSET(12)] + ldp x14, x15, [x18, #CPU_XREG_OFFSET(14)] + ldp x16, x17, [x18, #CPU_XREG_OFFSET(16)] + + smc #0 + + stp x0, x1, [x18, #CPU_XREG_OFFSET(0)] + stp x2, x3, [x18, #CPU_XREG_OFFSET(2)] + stp x4, x5, [x18, #CPU_XREG_OFFSET(4)] + stp x6, x7, [x18, #CPU_XREG_OFFSET(6)] + stp x8, x9, [x18, #CPU_XREG_OFFSET(8)] + stp x10, x11, [x18, #CPU_XREG_OFFSET(10)] + stp x12, x13, [x18, #CPU_XREG_OFFSET(12)] + stp x14, x15, [x18, #CPU_XREG_OFFSET(14)] + stp x16, x17, [x18, #CPU_XREG_OFFSET(16)] + + ret +SYM_CODE_END(__kvm_hyp_host_forward_smc) + +/* + * kvm_host_psci_cpu_entry is called through br instruction, which requires + * bti j instruction as compilers (gcc and llvm) doesn't insert bti j for external + * functions, but bti c instead. + */ +SYM_CODE_START(kvm_host_psci_cpu_entry) + bti j + b __kvm_host_psci_cpu_entry +SYM_CODE_END(kvm_host_psci_cpu_entry) diff --git a/arch/arm64/kvm/hyp/nvhe/hyp-init.S b/arch/arm64/kvm/hyp/nvhe/hyp-init.S new file mode 100644 index 0000000000..1cc06e6797 --- /dev/null +++ b/arch/arm64/kvm/hyp/nvhe/hyp-init.S @@ -0,0 +1,299 @@ +/* SPDX-License-Identifier: GPL-2.0-only */ +/* + * Copyright (C) 2012,2013 - ARM Ltd + * Author: Marc Zyngier <marc.zyngier@arm.com> + */ + +#include <linux/arm-smccc.h> +#include <linux/linkage.h> + +#include <asm/alternative.h> +#include <asm/assembler.h> +#include <asm/el2_setup.h> +#include <asm/kvm_arm.h> +#include <asm/kvm_asm.h> +#include <asm/kvm_mmu.h> +#include <asm/pgtable-hwdef.h> +#include <asm/sysreg.h> +#include <asm/virt.h> + + .text + .pushsection .idmap.text, "ax" + + .align 11 + +SYM_CODE_START(__kvm_hyp_init) + ventry __invalid // Synchronous EL2t + ventry __invalid // IRQ EL2t + ventry __invalid // FIQ EL2t + ventry __invalid // Error EL2t + + ventry __invalid // Synchronous EL2h + ventry __invalid // IRQ EL2h + ventry __invalid // FIQ EL2h + ventry __invalid // Error EL2h + + ventry __do_hyp_init // Synchronous 64-bit EL1 + ventry __invalid // IRQ 64-bit EL1 + ventry __invalid // FIQ 64-bit EL1 + ventry __invalid // Error 64-bit EL1 + + ventry __invalid // Synchronous 32-bit EL1 + ventry __invalid // IRQ 32-bit EL1 + ventry __invalid // FIQ 32-bit EL1 + ventry __invalid // Error 32-bit EL1 + +__invalid: + b . + + /* + * Only uses x0..x3 so as to not clobber callee-saved SMCCC registers. + * + * x0: SMCCC function ID + * x1: struct kvm_nvhe_init_params PA + */ +__do_hyp_init: + /* Check for a stub HVC call */ + cmp x0, #HVC_STUB_HCALL_NR + b.lo __kvm_handle_stub_hvc + + bic x0, x0, #ARM_SMCCC_CALL_HINTS + mov x3, #KVM_HOST_SMCCC_FUNC(__kvm_hyp_init) + cmp x0, x3 + b.eq 1f + + mov x0, #SMCCC_RET_NOT_SUPPORTED + eret + +1: mov x0, x1 + mov x3, lr + bl ___kvm_hyp_init // Clobbers x0..x2 + mov lr, x3 + + /* Hello, World! */ + mov x0, #SMCCC_RET_SUCCESS + eret +SYM_CODE_END(__kvm_hyp_init) + +/* + * Initialize the hypervisor in EL2. + * + * Only uses x0..x2 so as to not clobber callee-saved SMCCC registers + * and leave x3 for the caller. + * + * x0: struct kvm_nvhe_init_params PA + */ +SYM_CODE_START_LOCAL(___kvm_hyp_init) + ldr x1, [x0, #NVHE_INIT_STACK_HYP_VA] + mov sp, x1 + + ldr x1, [x0, #NVHE_INIT_MAIR_EL2] + msr mair_el2, x1 + + ldr x1, [x0, #NVHE_INIT_HCR_EL2] + msr hcr_el2, x1 + + mov x2, #HCR_E2H + and x2, x1, x2 + cbz x2, 1f + + // hVHE: Replay the EL2 setup to account for the E2H bit + // TPIDR_EL2 is used to preserve x0 across the macro maze... + isb + msr tpidr_el2, x0 + init_el2_state + finalise_el2_state + mrs x0, tpidr_el2 + +1: + ldr x1, [x0, #NVHE_INIT_TPIDR_EL2] + msr tpidr_el2, x1 + + ldr x1, [x0, #NVHE_INIT_VTTBR] + msr vttbr_el2, x1 + + ldr x1, [x0, #NVHE_INIT_VTCR] + msr vtcr_el2, x1 + + ldr x1, [x0, #NVHE_INIT_PGD_PA] + phys_to_ttbr x2, x1 +alternative_if ARM64_HAS_CNP + orr x2, x2, #TTBR_CNP_BIT +alternative_else_nop_endif + msr ttbr0_el2, x2 + + /* + * Set the PS bits in TCR_EL2. + */ + ldr x0, [x0, #NVHE_INIT_TCR_EL2] + tcr_compute_pa_size x0, #TCR_EL2_PS_SHIFT, x1, x2 + msr tcr_el2, x0 + + isb + + /* Invalidate the stale TLBs from Bootloader */ + tlbi alle2 + tlbi vmalls12e1 + dsb sy + + mov_q x0, INIT_SCTLR_EL2_MMU_ON +alternative_if ARM64_HAS_ADDRESS_AUTH + mov_q x1, (SCTLR_ELx_ENIA | SCTLR_ELx_ENIB | \ + SCTLR_ELx_ENDA | SCTLR_ELx_ENDB) + orr x0, x0, x1 +alternative_else_nop_endif + +#ifdef CONFIG_ARM64_BTI_KERNEL +alternative_if ARM64_BTI + orr x0, x0, #SCTLR_EL2_BT +alternative_else_nop_endif +#endif /* CONFIG_ARM64_BTI_KERNEL */ + + msr sctlr_el2, x0 + isb + + /* Set the host vector */ + ldr x0, =__kvm_hyp_host_vector + msr vbar_el2, x0 + + ret +SYM_CODE_END(___kvm_hyp_init) + +/* + * PSCI CPU_ON entry point + * + * x0: struct kvm_nvhe_init_params PA + */ +SYM_CODE_START(kvm_hyp_cpu_entry) + mov x1, #1 // is_cpu_on = true + b __kvm_hyp_init_cpu +SYM_CODE_END(kvm_hyp_cpu_entry) + +/* + * PSCI CPU_SUSPEND / SYSTEM_SUSPEND entry point + * + * x0: struct kvm_nvhe_init_params PA + */ +SYM_CODE_START(kvm_hyp_cpu_resume) + mov x1, #0 // is_cpu_on = false + b __kvm_hyp_init_cpu +SYM_CODE_END(kvm_hyp_cpu_resume) + +/* + * Common code for CPU entry points. Initializes EL2 state and + * installs the hypervisor before handing over to a C handler. + * + * x0: struct kvm_nvhe_init_params PA + * x1: bool is_cpu_on + */ +SYM_CODE_START_LOCAL(__kvm_hyp_init_cpu) + mov x28, x0 // Stash arguments + mov x29, x1 + + /* Check that the core was booted in EL2. */ + mrs x0, CurrentEL + cmp x0, #CurrentEL_EL2 + b.eq 2f + + /* The core booted in EL1. KVM cannot be initialized on it. */ +1: wfe + wfi + b 1b + +2: msr SPsel, #1 // We want to use SP_EL{1,2} + + /* Initialize EL2 CPU state to sane values. */ + init_el2_state // Clobbers x0..x2 + finalise_el2_state + __init_el2_nvhe_prepare_eret + + /* Enable MMU, set vectors and stack. */ + mov x0, x28 + bl ___kvm_hyp_init // Clobbers x0..x2 + + /* Leave idmap. */ + mov x0, x29 + ldr x1, =kvm_host_psci_cpu_entry + br x1 +SYM_CODE_END(__kvm_hyp_init_cpu) + +SYM_CODE_START(__kvm_handle_stub_hvc) + /* + * __kvm_handle_stub_hvc called from __host_hvc through branch instruction(br) so + * we need bti j at beginning. + */ + bti j + cmp x0, #HVC_SOFT_RESTART + b.ne 1f + + /* This is where we're about to jump, staying at EL2 */ + msr elr_el2, x1 + mov x0, #(PSR_F_BIT | PSR_I_BIT | PSR_A_BIT | PSR_D_BIT | PSR_MODE_EL2h) + msr spsr_el2, x0 + + /* Shuffle the arguments, and don't come back */ + mov x0, x2 + mov x1, x3 + mov x2, x4 + b reset + +1: cmp x0, #HVC_RESET_VECTORS + b.ne 1f + + /* + * Set the HVC_RESET_VECTORS return code before entering the common + * path so that we do not clobber x0-x2 in case we are coming via + * HVC_SOFT_RESTART. + */ + mov x0, xzr +reset: + /* Reset kvm back to the hyp stub. */ + mov_q x5, INIT_SCTLR_EL2_MMU_OFF + pre_disable_mmu_workaround + msr sctlr_el2, x5 + isb + +alternative_if ARM64_KVM_PROTECTED_MODE + mov_q x5, HCR_HOST_NVHE_FLAGS + msr hcr_el2, x5 +alternative_else_nop_endif + + /* Install stub vectors */ + adr_l x5, __hyp_stub_vectors + msr vbar_el2, x5 + eret + +1: /* Bad stub call */ + mov_q x0, HVC_STUB_ERR + eret + +SYM_CODE_END(__kvm_handle_stub_hvc) + +SYM_FUNC_START(__pkvm_init_switch_pgd) + /* Turn the MMU off */ + pre_disable_mmu_workaround + mrs x2, sctlr_el2 + bic x3, x2, #SCTLR_ELx_M + msr sctlr_el2, x3 + isb + + tlbi alle2 + + /* Install the new pgtables */ + ldr x3, [x0, #NVHE_INIT_PGD_PA] + phys_to_ttbr x4, x3 +alternative_if ARM64_HAS_CNP + orr x4, x4, #TTBR_CNP_BIT +alternative_else_nop_endif + msr ttbr0_el2, x4 + + /* Set the new stack pointer */ + ldr x0, [x0, #NVHE_INIT_STACK_HYP_VA] + mov sp, x0 + + /* And turn the MMU back on! */ + set_sctlr_el2 x2 + ret x1 +SYM_FUNC_END(__pkvm_init_switch_pgd) + + .popsection diff --git a/arch/arm64/kvm/hyp/nvhe/hyp-main.c b/arch/arm64/kvm/hyp/nvhe/hyp-main.c new file mode 100644 index 0000000000..2385fd03ed --- /dev/null +++ b/arch/arm64/kvm/hyp/nvhe/hyp-main.c @@ -0,0 +1,438 @@ +// SPDX-License-Identifier: GPL-2.0-only +/* + * Copyright (C) 2020 - Google Inc + * Author: Andrew Scull <ascull@google.com> + */ + +#include <hyp/adjust_pc.h> + +#include <asm/pgtable-types.h> +#include <asm/kvm_asm.h> +#include <asm/kvm_emulate.h> +#include <asm/kvm_host.h> +#include <asm/kvm_hyp.h> +#include <asm/kvm_mmu.h> + +#include <nvhe/ffa.h> +#include <nvhe/mem_protect.h> +#include <nvhe/mm.h> +#include <nvhe/pkvm.h> +#include <nvhe/trap_handler.h> + +DEFINE_PER_CPU(struct kvm_nvhe_init_params, kvm_init_params); + +void __kvm_hyp_host_forward_smc(struct kvm_cpu_context *host_ctxt); + +static void flush_hyp_vcpu(struct pkvm_hyp_vcpu *hyp_vcpu) +{ + struct kvm_vcpu *host_vcpu = hyp_vcpu->host_vcpu; + + hyp_vcpu->vcpu.arch.ctxt = host_vcpu->arch.ctxt; + + hyp_vcpu->vcpu.arch.sve_state = kern_hyp_va(host_vcpu->arch.sve_state); + hyp_vcpu->vcpu.arch.sve_max_vl = host_vcpu->arch.sve_max_vl; + + hyp_vcpu->vcpu.arch.hw_mmu = host_vcpu->arch.hw_mmu; + + hyp_vcpu->vcpu.arch.hcr_el2 = host_vcpu->arch.hcr_el2; + hyp_vcpu->vcpu.arch.mdcr_el2 = host_vcpu->arch.mdcr_el2; + hyp_vcpu->vcpu.arch.cptr_el2 = host_vcpu->arch.cptr_el2; + + hyp_vcpu->vcpu.arch.iflags = host_vcpu->arch.iflags; + hyp_vcpu->vcpu.arch.fp_state = host_vcpu->arch.fp_state; + + hyp_vcpu->vcpu.arch.debug_ptr = kern_hyp_va(host_vcpu->arch.debug_ptr); + hyp_vcpu->vcpu.arch.host_fpsimd_state = host_vcpu->arch.host_fpsimd_state; + + hyp_vcpu->vcpu.arch.vsesr_el2 = host_vcpu->arch.vsesr_el2; + + hyp_vcpu->vcpu.arch.vgic_cpu.vgic_v3 = host_vcpu->arch.vgic_cpu.vgic_v3; +} + +static void sync_hyp_vcpu(struct pkvm_hyp_vcpu *hyp_vcpu) +{ + struct kvm_vcpu *host_vcpu = hyp_vcpu->host_vcpu; + struct vgic_v3_cpu_if *hyp_cpu_if = &hyp_vcpu->vcpu.arch.vgic_cpu.vgic_v3; + struct vgic_v3_cpu_if *host_cpu_if = &host_vcpu->arch.vgic_cpu.vgic_v3; + unsigned int i; + + host_vcpu->arch.ctxt = hyp_vcpu->vcpu.arch.ctxt; + + host_vcpu->arch.hcr_el2 = hyp_vcpu->vcpu.arch.hcr_el2; + host_vcpu->arch.cptr_el2 = hyp_vcpu->vcpu.arch.cptr_el2; + + host_vcpu->arch.fault = hyp_vcpu->vcpu.arch.fault; + + host_vcpu->arch.iflags = hyp_vcpu->vcpu.arch.iflags; + host_vcpu->arch.fp_state = hyp_vcpu->vcpu.arch.fp_state; + + host_cpu_if->vgic_hcr = hyp_cpu_if->vgic_hcr; + for (i = 0; i < hyp_cpu_if->used_lrs; ++i) + host_cpu_if->vgic_lr[i] = hyp_cpu_if->vgic_lr[i]; +} + +static void handle___kvm_vcpu_run(struct kvm_cpu_context *host_ctxt) +{ + DECLARE_REG(struct kvm_vcpu *, host_vcpu, host_ctxt, 1); + int ret; + + host_vcpu = kern_hyp_va(host_vcpu); + + if (unlikely(is_protected_kvm_enabled())) { + struct pkvm_hyp_vcpu *hyp_vcpu; + struct kvm *host_kvm; + + host_kvm = kern_hyp_va(host_vcpu->kvm); + hyp_vcpu = pkvm_load_hyp_vcpu(host_kvm->arch.pkvm.handle, + host_vcpu->vcpu_idx); + if (!hyp_vcpu) { + ret = -EINVAL; + goto out; + } + + flush_hyp_vcpu(hyp_vcpu); + + ret = __kvm_vcpu_run(&hyp_vcpu->vcpu); + + sync_hyp_vcpu(hyp_vcpu); + pkvm_put_hyp_vcpu(hyp_vcpu); + } else { + /* The host is fully trusted, run its vCPU directly. */ + ret = __kvm_vcpu_run(host_vcpu); + } + +out: + cpu_reg(host_ctxt, 1) = ret; +} + +static void handle___kvm_adjust_pc(struct kvm_cpu_context *host_ctxt) +{ + DECLARE_REG(struct kvm_vcpu *, vcpu, host_ctxt, 1); + + __kvm_adjust_pc(kern_hyp_va(vcpu)); +} + +static void handle___kvm_flush_vm_context(struct kvm_cpu_context *host_ctxt) +{ + __kvm_flush_vm_context(); +} + +static void handle___kvm_tlb_flush_vmid_ipa(struct kvm_cpu_context *host_ctxt) +{ + DECLARE_REG(struct kvm_s2_mmu *, mmu, host_ctxt, 1); + DECLARE_REG(phys_addr_t, ipa, host_ctxt, 2); + DECLARE_REG(int, level, host_ctxt, 3); + + __kvm_tlb_flush_vmid_ipa(kern_hyp_va(mmu), ipa, level); +} + +static void handle___kvm_tlb_flush_vmid_ipa_nsh(struct kvm_cpu_context *host_ctxt) +{ + DECLARE_REG(struct kvm_s2_mmu *, mmu, host_ctxt, 1); + DECLARE_REG(phys_addr_t, ipa, host_ctxt, 2); + DECLARE_REG(int, level, host_ctxt, 3); + + __kvm_tlb_flush_vmid_ipa_nsh(kern_hyp_va(mmu), ipa, level); +} + +static void +handle___kvm_tlb_flush_vmid_range(struct kvm_cpu_context *host_ctxt) +{ + DECLARE_REG(struct kvm_s2_mmu *, mmu, host_ctxt, 1); + DECLARE_REG(phys_addr_t, start, host_ctxt, 2); + DECLARE_REG(unsigned long, pages, host_ctxt, 3); + + __kvm_tlb_flush_vmid_range(kern_hyp_va(mmu), start, pages); +} + +static void handle___kvm_tlb_flush_vmid(struct kvm_cpu_context *host_ctxt) +{ + DECLARE_REG(struct kvm_s2_mmu *, mmu, host_ctxt, 1); + + __kvm_tlb_flush_vmid(kern_hyp_va(mmu)); +} + +static void handle___kvm_flush_cpu_context(struct kvm_cpu_context *host_ctxt) +{ + DECLARE_REG(struct kvm_s2_mmu *, mmu, host_ctxt, 1); + + __kvm_flush_cpu_context(kern_hyp_va(mmu)); +} + +static void handle___kvm_timer_set_cntvoff(struct kvm_cpu_context *host_ctxt) +{ + __kvm_timer_set_cntvoff(cpu_reg(host_ctxt, 1)); +} + +static void handle___kvm_enable_ssbs(struct kvm_cpu_context *host_ctxt) +{ + u64 tmp; + + tmp = read_sysreg_el2(SYS_SCTLR); + tmp |= SCTLR_ELx_DSSBS; + write_sysreg_el2(tmp, SYS_SCTLR); +} + +static void handle___vgic_v3_get_gic_config(struct kvm_cpu_context *host_ctxt) +{ + cpu_reg(host_ctxt, 1) = __vgic_v3_get_gic_config(); +} + +static void handle___vgic_v3_read_vmcr(struct kvm_cpu_context *host_ctxt) +{ + cpu_reg(host_ctxt, 1) = __vgic_v3_read_vmcr(); +} + +static void handle___vgic_v3_write_vmcr(struct kvm_cpu_context *host_ctxt) +{ + __vgic_v3_write_vmcr(cpu_reg(host_ctxt, 1)); +} + +static void handle___vgic_v3_init_lrs(struct kvm_cpu_context *host_ctxt) +{ + __vgic_v3_init_lrs(); +} + +static void handle___kvm_get_mdcr_el2(struct kvm_cpu_context *host_ctxt) +{ + cpu_reg(host_ctxt, 1) = __kvm_get_mdcr_el2(); +} + +static void handle___vgic_v3_save_aprs(struct kvm_cpu_context *host_ctxt) +{ + DECLARE_REG(struct vgic_v3_cpu_if *, cpu_if, host_ctxt, 1); + + __vgic_v3_save_aprs(kern_hyp_va(cpu_if)); +} + +static void handle___vgic_v3_restore_aprs(struct kvm_cpu_context *host_ctxt) +{ + DECLARE_REG(struct vgic_v3_cpu_if *, cpu_if, host_ctxt, 1); + + __vgic_v3_restore_aprs(kern_hyp_va(cpu_if)); +} + +static void handle___pkvm_init(struct kvm_cpu_context *host_ctxt) +{ + DECLARE_REG(phys_addr_t, phys, host_ctxt, 1); + DECLARE_REG(unsigned long, size, host_ctxt, 2); + DECLARE_REG(unsigned long, nr_cpus, host_ctxt, 3); + DECLARE_REG(unsigned long *, per_cpu_base, host_ctxt, 4); + DECLARE_REG(u32, hyp_va_bits, host_ctxt, 5); + + /* + * __pkvm_init() will return only if an error occurred, otherwise it + * will tail-call in __pkvm_init_finalise() which will have to deal + * with the host context directly. + */ + cpu_reg(host_ctxt, 1) = __pkvm_init(phys, size, nr_cpus, per_cpu_base, + hyp_va_bits); +} + +static void handle___pkvm_cpu_set_vector(struct kvm_cpu_context *host_ctxt) +{ + DECLARE_REG(enum arm64_hyp_spectre_vector, slot, host_ctxt, 1); + + cpu_reg(host_ctxt, 1) = pkvm_cpu_set_vector(slot); +} + +static void handle___pkvm_host_share_hyp(struct kvm_cpu_context *host_ctxt) +{ + DECLARE_REG(u64, pfn, host_ctxt, 1); + + cpu_reg(host_ctxt, 1) = __pkvm_host_share_hyp(pfn); +} + +static void handle___pkvm_host_unshare_hyp(struct kvm_cpu_context *host_ctxt) +{ + DECLARE_REG(u64, pfn, host_ctxt, 1); + + cpu_reg(host_ctxt, 1) = __pkvm_host_unshare_hyp(pfn); +} + +static void handle___pkvm_create_private_mapping(struct kvm_cpu_context *host_ctxt) +{ + DECLARE_REG(phys_addr_t, phys, host_ctxt, 1); + DECLARE_REG(size_t, size, host_ctxt, 2); + DECLARE_REG(enum kvm_pgtable_prot, prot, host_ctxt, 3); + + /* + * __pkvm_create_private_mapping() populates a pointer with the + * hypervisor start address of the allocation. + * + * However, handle___pkvm_create_private_mapping() hypercall crosses the + * EL1/EL2 boundary so the pointer would not be valid in this context. + * + * Instead pass the allocation address as the return value (or return + * ERR_PTR() on failure). + */ + unsigned long haddr; + int err = __pkvm_create_private_mapping(phys, size, prot, &haddr); + + if (err) + haddr = (unsigned long)ERR_PTR(err); + + cpu_reg(host_ctxt, 1) = haddr; +} + +static void handle___pkvm_prot_finalize(struct kvm_cpu_context *host_ctxt) +{ + cpu_reg(host_ctxt, 1) = __pkvm_prot_finalize(); +} + +static void handle___pkvm_vcpu_init_traps(struct kvm_cpu_context *host_ctxt) +{ + DECLARE_REG(struct kvm_vcpu *, vcpu, host_ctxt, 1); + + __pkvm_vcpu_init_traps(kern_hyp_va(vcpu)); +} + +static void handle___pkvm_init_vm(struct kvm_cpu_context *host_ctxt) +{ + DECLARE_REG(struct kvm *, host_kvm, host_ctxt, 1); + DECLARE_REG(unsigned long, vm_hva, host_ctxt, 2); + DECLARE_REG(unsigned long, pgd_hva, host_ctxt, 3); + + host_kvm = kern_hyp_va(host_kvm); + cpu_reg(host_ctxt, 1) = __pkvm_init_vm(host_kvm, vm_hva, pgd_hva); +} + +static void handle___pkvm_init_vcpu(struct kvm_cpu_context *host_ctxt) +{ + DECLARE_REG(pkvm_handle_t, handle, host_ctxt, 1); + DECLARE_REG(struct kvm_vcpu *, host_vcpu, host_ctxt, 2); + DECLARE_REG(unsigned long, vcpu_hva, host_ctxt, 3); + + host_vcpu = kern_hyp_va(host_vcpu); + cpu_reg(host_ctxt, 1) = __pkvm_init_vcpu(handle, host_vcpu, vcpu_hva); +} + +static void handle___pkvm_teardown_vm(struct kvm_cpu_context *host_ctxt) +{ + DECLARE_REG(pkvm_handle_t, handle, host_ctxt, 1); + + cpu_reg(host_ctxt, 1) = __pkvm_teardown_vm(handle); +} + +typedef void (*hcall_t)(struct kvm_cpu_context *); + +#define HANDLE_FUNC(x) [__KVM_HOST_SMCCC_FUNC_##x] = (hcall_t)handle_##x + +static const hcall_t host_hcall[] = { + /* ___kvm_hyp_init */ + HANDLE_FUNC(__kvm_get_mdcr_el2), + HANDLE_FUNC(__pkvm_init), + HANDLE_FUNC(__pkvm_create_private_mapping), + HANDLE_FUNC(__pkvm_cpu_set_vector), + HANDLE_FUNC(__kvm_enable_ssbs), + HANDLE_FUNC(__vgic_v3_init_lrs), + HANDLE_FUNC(__vgic_v3_get_gic_config), + HANDLE_FUNC(__pkvm_prot_finalize), + + HANDLE_FUNC(__pkvm_host_share_hyp), + HANDLE_FUNC(__pkvm_host_unshare_hyp), + HANDLE_FUNC(__kvm_adjust_pc), + HANDLE_FUNC(__kvm_vcpu_run), + HANDLE_FUNC(__kvm_flush_vm_context), + HANDLE_FUNC(__kvm_tlb_flush_vmid_ipa), + HANDLE_FUNC(__kvm_tlb_flush_vmid_ipa_nsh), + HANDLE_FUNC(__kvm_tlb_flush_vmid), + HANDLE_FUNC(__kvm_tlb_flush_vmid_range), + HANDLE_FUNC(__kvm_flush_cpu_context), + HANDLE_FUNC(__kvm_timer_set_cntvoff), + HANDLE_FUNC(__vgic_v3_read_vmcr), + HANDLE_FUNC(__vgic_v3_write_vmcr), + HANDLE_FUNC(__vgic_v3_save_aprs), + HANDLE_FUNC(__vgic_v3_restore_aprs), + HANDLE_FUNC(__pkvm_vcpu_init_traps), + HANDLE_FUNC(__pkvm_init_vm), + HANDLE_FUNC(__pkvm_init_vcpu), + HANDLE_FUNC(__pkvm_teardown_vm), +}; + +static void handle_host_hcall(struct kvm_cpu_context *host_ctxt) +{ + DECLARE_REG(unsigned long, id, host_ctxt, 0); + unsigned long hcall_min = 0; + hcall_t hfn; + + /* + * If pKVM has been initialised then reject any calls to the + * early "privileged" hypercalls. Note that we cannot reject + * calls to __pkvm_prot_finalize for two reasons: (1) The static + * key used to determine initialisation must be toggled prior to + * finalisation and (2) finalisation is performed on a per-CPU + * basis. This is all fine, however, since __pkvm_prot_finalize + * returns -EPERM after the first call for a given CPU. + */ + if (static_branch_unlikely(&kvm_protected_mode_initialized)) + hcall_min = __KVM_HOST_SMCCC_FUNC___pkvm_prot_finalize; + + id &= ~ARM_SMCCC_CALL_HINTS; + id -= KVM_HOST_SMCCC_ID(0); + + if (unlikely(id < hcall_min || id >= ARRAY_SIZE(host_hcall))) + goto inval; + + hfn = host_hcall[id]; + if (unlikely(!hfn)) + goto inval; + + cpu_reg(host_ctxt, 0) = SMCCC_RET_SUCCESS; + hfn(host_ctxt); + + return; +inval: + cpu_reg(host_ctxt, 0) = SMCCC_RET_NOT_SUPPORTED; +} + +static void default_host_smc_handler(struct kvm_cpu_context *host_ctxt) +{ + __kvm_hyp_host_forward_smc(host_ctxt); +} + +static void handle_host_smc(struct kvm_cpu_context *host_ctxt) +{ + DECLARE_REG(u64, func_id, host_ctxt, 0); + bool handled; + + func_id &= ~ARM_SMCCC_CALL_HINTS; + + handled = kvm_host_psci_handler(host_ctxt, func_id); + if (!handled) + handled = kvm_host_ffa_handler(host_ctxt, func_id); + if (!handled) + default_host_smc_handler(host_ctxt); + + /* SMC was trapped, move ELR past the current PC. */ + kvm_skip_host_instr(); +} + +void handle_trap(struct kvm_cpu_context *host_ctxt) +{ + u64 esr = read_sysreg_el2(SYS_ESR); + + switch (ESR_ELx_EC(esr)) { + case ESR_ELx_EC_HVC64: + handle_host_hcall(host_ctxt); + break; + case ESR_ELx_EC_SMC64: + handle_host_smc(host_ctxt); + break; + case ESR_ELx_EC_SVE: + if (has_hvhe()) + sysreg_clear_set(cpacr_el1, 0, (CPACR_EL1_ZEN_EL1EN | + CPACR_EL1_ZEN_EL0EN)); + else + sysreg_clear_set(cptr_el2, CPTR_EL2_TZ, 0); + isb(); + sve_cond_update_zcr_vq(ZCR_ELx_LEN_MASK, SYS_ZCR_EL2); + break; + case ESR_ELx_EC_IABT_LOW: + case ESR_ELx_EC_DABT_LOW: + handle_host_mem_abort(host_ctxt); + break; + default: + BUG(); + } +} diff --git a/arch/arm64/kvm/hyp/nvhe/hyp-smp.c b/arch/arm64/kvm/hyp/nvhe/hyp-smp.c new file mode 100644 index 0000000000..04d194583f --- /dev/null +++ b/arch/arm64/kvm/hyp/nvhe/hyp-smp.c @@ -0,0 +1,40 @@ +// SPDX-License-Identifier: GPL-2.0-only +/* + * Copyright (C) 2020 - Google LLC + * Author: David Brazdil <dbrazdil@google.com> + */ + +#include <asm/kvm_asm.h> +#include <asm/kvm_hyp.h> +#include <asm/kvm_mmu.h> + +/* + * nVHE copy of data structures tracking available CPU cores. + * Only entries for CPUs that were online at KVM init are populated. + * Other CPUs should not be allowed to boot because their features were + * not checked against the finalized system capabilities. + */ +u64 __ro_after_init hyp_cpu_logical_map[NR_CPUS] = { [0 ... NR_CPUS-1] = INVALID_HWID }; + +u64 cpu_logical_map(unsigned int cpu) +{ + BUG_ON(cpu >= ARRAY_SIZE(hyp_cpu_logical_map)); + + return hyp_cpu_logical_map[cpu]; +} + +unsigned long __ro_after_init kvm_arm_hyp_percpu_base[NR_CPUS]; + +unsigned long __hyp_per_cpu_offset(unsigned int cpu) +{ + unsigned long *cpu_base_array; + unsigned long this_cpu_base; + unsigned long elf_base; + + BUG_ON(cpu >= ARRAY_SIZE(kvm_arm_hyp_percpu_base)); + + cpu_base_array = (unsigned long *)&kvm_arm_hyp_percpu_base; + this_cpu_base = kern_hyp_va(cpu_base_array[cpu]); + elf_base = (unsigned long)&__per_cpu_start; + return this_cpu_base - elf_base; +} diff --git a/arch/arm64/kvm/hyp/nvhe/hyp.lds.S b/arch/arm64/kvm/hyp/nvhe/hyp.lds.S new file mode 100644 index 0000000000..f4562f417d --- /dev/null +++ b/arch/arm64/kvm/hyp/nvhe/hyp.lds.S @@ -0,0 +1,29 @@ +/* SPDX-License-Identifier: GPL-2.0 */ +/* + * Copyright (C) 2020 Google LLC. + * Written by David Brazdil <dbrazdil@google.com> + * + * Linker script used for partial linking of nVHE EL2 object files. + */ + +#include <asm/hyp_image.h> +#include <asm-generic/vmlinux.lds.h> +#include <asm/cache.h> +#include <asm/memory.h> + +SECTIONS { + HYP_SECTION(.idmap.text) + HYP_SECTION(.text) + HYP_SECTION(.data..ro_after_init) + HYP_SECTION(.rodata) + + /* + * .hyp..data..percpu needs to be page aligned to maintain the same + * alignment for when linking into vmlinux. + */ + . = ALIGN(PAGE_SIZE); + BEGIN_HYP_SECTION(.data..percpu) + PERCPU_INPUT(L1_CACHE_BYTES) + END_HYP_SECTION + HYP_SECTION(.bss) +} diff --git a/arch/arm64/kvm/hyp/nvhe/list_debug.c b/arch/arm64/kvm/hyp/nvhe/list_debug.c new file mode 100644 index 0000000000..46a2d4f2b3 --- /dev/null +++ b/arch/arm64/kvm/hyp/nvhe/list_debug.c @@ -0,0 +1,56 @@ +// SPDX-License-Identifier: GPL-2.0-only +/* + * Copyright (C) 2022 - Google LLC + * Author: Keir Fraser <keirf@google.com> + */ + +#include <linux/list.h> +#include <linux/bug.h> + +static inline __must_check bool nvhe_check_data_corruption(bool v) +{ + return v; +} + +#define NVHE_CHECK_DATA_CORRUPTION(condition) \ + nvhe_check_data_corruption(({ \ + bool corruption = unlikely(condition); \ + if (corruption) { \ + if (IS_ENABLED(CONFIG_BUG_ON_DATA_CORRUPTION)) { \ + BUG_ON(1); \ + } else \ + WARN_ON(1); \ + } \ + corruption; \ + })) + +/* The predicates checked here are taken from lib/list_debug.c. */ + +__list_valid_slowpath +bool __list_add_valid_or_report(struct list_head *new, struct list_head *prev, + struct list_head *next) +{ + if (NVHE_CHECK_DATA_CORRUPTION(next->prev != prev) || + NVHE_CHECK_DATA_CORRUPTION(prev->next != next) || + NVHE_CHECK_DATA_CORRUPTION(new == prev || new == next)) + return false; + + return true; +} + +__list_valid_slowpath +bool __list_del_entry_valid_or_report(struct list_head *entry) +{ + struct list_head *prev, *next; + + prev = entry->prev; + next = entry->next; + + if (NVHE_CHECK_DATA_CORRUPTION(next == LIST_POISON1) || + NVHE_CHECK_DATA_CORRUPTION(prev == LIST_POISON2) || + NVHE_CHECK_DATA_CORRUPTION(prev->next != entry) || + NVHE_CHECK_DATA_CORRUPTION(next->prev != entry)) + return false; + + return true; +} diff --git a/arch/arm64/kvm/hyp/nvhe/mem_protect.c b/arch/arm64/kvm/hyp/nvhe/mem_protect.c new file mode 100644 index 0000000000..9d70344127 --- /dev/null +++ b/arch/arm64/kvm/hyp/nvhe/mem_protect.c @@ -0,0 +1,1305 @@ +// SPDX-License-Identifier: GPL-2.0-only +/* + * Copyright (C) 2020 Google LLC + * Author: Quentin Perret <qperret@google.com> + */ + +#include <linux/kvm_host.h> +#include <asm/kvm_emulate.h> +#include <asm/kvm_hyp.h> +#include <asm/kvm_mmu.h> +#include <asm/kvm_pgtable.h> +#include <asm/kvm_pkvm.h> +#include <asm/stage2_pgtable.h> + +#include <hyp/fault.h> + +#include <nvhe/gfp.h> +#include <nvhe/memory.h> +#include <nvhe/mem_protect.h> +#include <nvhe/mm.h> + +#define KVM_HOST_S2_FLAGS (KVM_PGTABLE_S2_NOFWB | KVM_PGTABLE_S2_IDMAP) + +struct host_mmu host_mmu; + +static struct hyp_pool host_s2_pool; + +static DEFINE_PER_CPU(struct pkvm_hyp_vm *, __current_vm); +#define current_vm (*this_cpu_ptr(&__current_vm)) + +static void guest_lock_component(struct pkvm_hyp_vm *vm) +{ + hyp_spin_lock(&vm->lock); + current_vm = vm; +} + +static void guest_unlock_component(struct pkvm_hyp_vm *vm) +{ + current_vm = NULL; + hyp_spin_unlock(&vm->lock); +} + +static void host_lock_component(void) +{ + hyp_spin_lock(&host_mmu.lock); +} + +static void host_unlock_component(void) +{ + hyp_spin_unlock(&host_mmu.lock); +} + +static void hyp_lock_component(void) +{ + hyp_spin_lock(&pkvm_pgd_lock); +} + +static void hyp_unlock_component(void) +{ + hyp_spin_unlock(&pkvm_pgd_lock); +} + +static void *host_s2_zalloc_pages_exact(size_t size) +{ + void *addr = hyp_alloc_pages(&host_s2_pool, get_order(size)); + + hyp_split_page(hyp_virt_to_page(addr)); + + /* + * The size of concatenated PGDs is always a power of two of PAGE_SIZE, + * so there should be no need to free any of the tail pages to make the + * allocation exact. + */ + WARN_ON(size != (PAGE_SIZE << get_order(size))); + + return addr; +} + +static void *host_s2_zalloc_page(void *pool) +{ + return hyp_alloc_pages(pool, 0); +} + +static void host_s2_get_page(void *addr) +{ + hyp_get_page(&host_s2_pool, addr); +} + +static void host_s2_put_page(void *addr) +{ + hyp_put_page(&host_s2_pool, addr); +} + +static void host_s2_free_unlinked_table(void *addr, u32 level) +{ + kvm_pgtable_stage2_free_unlinked(&host_mmu.mm_ops, addr, level); +} + +static int prepare_s2_pool(void *pgt_pool_base) +{ + unsigned long nr_pages, pfn; + int ret; + + pfn = hyp_virt_to_pfn(pgt_pool_base); + nr_pages = host_s2_pgtable_pages(); + ret = hyp_pool_init(&host_s2_pool, pfn, nr_pages, 0); + if (ret) + return ret; + + host_mmu.mm_ops = (struct kvm_pgtable_mm_ops) { + .zalloc_pages_exact = host_s2_zalloc_pages_exact, + .zalloc_page = host_s2_zalloc_page, + .free_unlinked_table = host_s2_free_unlinked_table, + .phys_to_virt = hyp_phys_to_virt, + .virt_to_phys = hyp_virt_to_phys, + .page_count = hyp_page_count, + .get_page = host_s2_get_page, + .put_page = host_s2_put_page, + }; + + return 0; +} + +static void prepare_host_vtcr(void) +{ + u32 parange, phys_shift; + + /* The host stage 2 is id-mapped, so use parange for T0SZ */ + parange = kvm_get_parange(id_aa64mmfr0_el1_sys_val); + phys_shift = id_aa64mmfr0_parange_to_phys_shift(parange); + + host_mmu.arch.vtcr = kvm_get_vtcr(id_aa64mmfr0_el1_sys_val, + id_aa64mmfr1_el1_sys_val, phys_shift); +} + +static bool host_stage2_force_pte_cb(u64 addr, u64 end, enum kvm_pgtable_prot prot); + +int kvm_host_prepare_stage2(void *pgt_pool_base) +{ + struct kvm_s2_mmu *mmu = &host_mmu.arch.mmu; + int ret; + + prepare_host_vtcr(); + hyp_spin_lock_init(&host_mmu.lock); + mmu->arch = &host_mmu.arch; + + ret = prepare_s2_pool(pgt_pool_base); + if (ret) + return ret; + + ret = __kvm_pgtable_stage2_init(&host_mmu.pgt, mmu, + &host_mmu.mm_ops, KVM_HOST_S2_FLAGS, + host_stage2_force_pte_cb); + if (ret) + return ret; + + mmu->pgd_phys = __hyp_pa(host_mmu.pgt.pgd); + mmu->pgt = &host_mmu.pgt; + atomic64_set(&mmu->vmid.id, 0); + + return 0; +} + +static bool guest_stage2_force_pte_cb(u64 addr, u64 end, + enum kvm_pgtable_prot prot) +{ + return true; +} + +static void *guest_s2_zalloc_pages_exact(size_t size) +{ + void *addr = hyp_alloc_pages(¤t_vm->pool, get_order(size)); + + WARN_ON(size != (PAGE_SIZE << get_order(size))); + hyp_split_page(hyp_virt_to_page(addr)); + + return addr; +} + +static void guest_s2_free_pages_exact(void *addr, unsigned long size) +{ + u8 order = get_order(size); + unsigned int i; + + for (i = 0; i < (1 << order); i++) + hyp_put_page(¤t_vm->pool, addr + (i * PAGE_SIZE)); +} + +static void *guest_s2_zalloc_page(void *mc) +{ + struct hyp_page *p; + void *addr; + + addr = hyp_alloc_pages(¤t_vm->pool, 0); + if (addr) + return addr; + + addr = pop_hyp_memcache(mc, hyp_phys_to_virt); + if (!addr) + return addr; + + memset(addr, 0, PAGE_SIZE); + p = hyp_virt_to_page(addr); + memset(p, 0, sizeof(*p)); + p->refcount = 1; + + return addr; +} + +static void guest_s2_get_page(void *addr) +{ + hyp_get_page(¤t_vm->pool, addr); +} + +static void guest_s2_put_page(void *addr) +{ + hyp_put_page(¤t_vm->pool, addr); +} + +static void clean_dcache_guest_page(void *va, size_t size) +{ + __clean_dcache_guest_page(hyp_fixmap_map(__hyp_pa(va)), size); + hyp_fixmap_unmap(); +} + +static void invalidate_icache_guest_page(void *va, size_t size) +{ + __invalidate_icache_guest_page(hyp_fixmap_map(__hyp_pa(va)), size); + hyp_fixmap_unmap(); +} + +int kvm_guest_prepare_stage2(struct pkvm_hyp_vm *vm, void *pgd) +{ + struct kvm_s2_mmu *mmu = &vm->kvm.arch.mmu; + unsigned long nr_pages; + int ret; + + nr_pages = kvm_pgtable_stage2_pgd_size(vm->kvm.arch.vtcr) >> PAGE_SHIFT; + ret = hyp_pool_init(&vm->pool, hyp_virt_to_pfn(pgd), nr_pages, 0); + if (ret) + return ret; + + hyp_spin_lock_init(&vm->lock); + vm->mm_ops = (struct kvm_pgtable_mm_ops) { + .zalloc_pages_exact = guest_s2_zalloc_pages_exact, + .free_pages_exact = guest_s2_free_pages_exact, + .zalloc_page = guest_s2_zalloc_page, + .phys_to_virt = hyp_phys_to_virt, + .virt_to_phys = hyp_virt_to_phys, + .page_count = hyp_page_count, + .get_page = guest_s2_get_page, + .put_page = guest_s2_put_page, + .dcache_clean_inval_poc = clean_dcache_guest_page, + .icache_inval_pou = invalidate_icache_guest_page, + }; + + guest_lock_component(vm); + ret = __kvm_pgtable_stage2_init(mmu->pgt, mmu, &vm->mm_ops, 0, + guest_stage2_force_pte_cb); + guest_unlock_component(vm); + if (ret) + return ret; + + vm->kvm.arch.mmu.pgd_phys = __hyp_pa(vm->pgt.pgd); + + return 0; +} + +void reclaim_guest_pages(struct pkvm_hyp_vm *vm, struct kvm_hyp_memcache *mc) +{ + void *addr; + + /* Dump all pgtable pages in the hyp_pool */ + guest_lock_component(vm); + kvm_pgtable_stage2_destroy(&vm->pgt); + vm->kvm.arch.mmu.pgd_phys = 0ULL; + guest_unlock_component(vm); + + /* Drain the hyp_pool into the memcache */ + addr = hyp_alloc_pages(&vm->pool, 0); + while (addr) { + memset(hyp_virt_to_page(addr), 0, sizeof(struct hyp_page)); + push_hyp_memcache(mc, addr, hyp_virt_to_phys); + WARN_ON(__pkvm_hyp_donate_host(hyp_virt_to_pfn(addr), 1)); + addr = hyp_alloc_pages(&vm->pool, 0); + } +} + +int __pkvm_prot_finalize(void) +{ + struct kvm_s2_mmu *mmu = &host_mmu.arch.mmu; + struct kvm_nvhe_init_params *params = this_cpu_ptr(&kvm_init_params); + + if (params->hcr_el2 & HCR_VM) + return -EPERM; + + params->vttbr = kvm_get_vttbr(mmu); + params->vtcr = host_mmu.arch.vtcr; + params->hcr_el2 |= HCR_VM; + + /* + * The CMO below not only cleans the updated params to the + * PoC, but also provides the DSB that ensures ongoing + * page-table walks that have started before we trapped to EL2 + * have completed. + */ + kvm_flush_dcache_to_poc(params, sizeof(*params)); + + write_sysreg(params->hcr_el2, hcr_el2); + __load_stage2(&host_mmu.arch.mmu, &host_mmu.arch); + + /* + * Make sure to have an ISB before the TLB maintenance below but only + * when __load_stage2() doesn't include one already. + */ + asm(ALTERNATIVE("isb", "nop", ARM64_WORKAROUND_SPECULATIVE_AT)); + + /* Invalidate stale HCR bits that may be cached in TLBs */ + __tlbi(vmalls12e1); + dsb(nsh); + isb(); + + return 0; +} + +static int host_stage2_unmap_dev_all(void) +{ + struct kvm_pgtable *pgt = &host_mmu.pgt; + struct memblock_region *reg; + u64 addr = 0; + int i, ret; + + /* Unmap all non-memory regions to recycle the pages */ + for (i = 0; i < hyp_memblock_nr; i++, addr = reg->base + reg->size) { + reg = &hyp_memory[i]; + ret = kvm_pgtable_stage2_unmap(pgt, addr, reg->base - addr); + if (ret) + return ret; + } + return kvm_pgtable_stage2_unmap(pgt, addr, BIT(pgt->ia_bits) - addr); +} + +struct kvm_mem_range { + u64 start; + u64 end; +}; + +static struct memblock_region *find_mem_range(phys_addr_t addr, struct kvm_mem_range *range) +{ + int cur, left = 0, right = hyp_memblock_nr; + struct memblock_region *reg; + phys_addr_t end; + + range->start = 0; + range->end = ULONG_MAX; + + /* The list of memblock regions is sorted, binary search it */ + while (left < right) { + cur = (left + right) >> 1; + reg = &hyp_memory[cur]; + end = reg->base + reg->size; + if (addr < reg->base) { + right = cur; + range->end = reg->base; + } else if (addr >= end) { + left = cur + 1; + range->start = end; + } else { + range->start = reg->base; + range->end = end; + return reg; + } + } + + return NULL; +} + +bool addr_is_memory(phys_addr_t phys) +{ + struct kvm_mem_range range; + + return !!find_mem_range(phys, &range); +} + +static bool addr_is_allowed_memory(phys_addr_t phys) +{ + struct memblock_region *reg; + struct kvm_mem_range range; + + reg = find_mem_range(phys, &range); + + return reg && !(reg->flags & MEMBLOCK_NOMAP); +} + +static bool is_in_mem_range(u64 addr, struct kvm_mem_range *range) +{ + return range->start <= addr && addr < range->end; +} + +static bool range_is_memory(u64 start, u64 end) +{ + struct kvm_mem_range r; + + if (!find_mem_range(start, &r)) + return false; + + return is_in_mem_range(end - 1, &r); +} + +static inline int __host_stage2_idmap(u64 start, u64 end, + enum kvm_pgtable_prot prot) +{ + return kvm_pgtable_stage2_map(&host_mmu.pgt, start, end - start, start, + prot, &host_s2_pool, 0); +} + +/* + * The pool has been provided with enough pages to cover all of memory with + * page granularity, but it is difficult to know how much of the MMIO range + * we will need to cover upfront, so we may need to 'recycle' the pages if we + * run out. + */ +#define host_stage2_try(fn, ...) \ + ({ \ + int __ret; \ + hyp_assert_lock_held(&host_mmu.lock); \ + __ret = fn(__VA_ARGS__); \ + if (__ret == -ENOMEM) { \ + __ret = host_stage2_unmap_dev_all(); \ + if (!__ret) \ + __ret = fn(__VA_ARGS__); \ + } \ + __ret; \ + }) + +static inline bool range_included(struct kvm_mem_range *child, + struct kvm_mem_range *parent) +{ + return parent->start <= child->start && child->end <= parent->end; +} + +static int host_stage2_adjust_range(u64 addr, struct kvm_mem_range *range) +{ + struct kvm_mem_range cur; + kvm_pte_t pte; + u32 level; + int ret; + + hyp_assert_lock_held(&host_mmu.lock); + ret = kvm_pgtable_get_leaf(&host_mmu.pgt, addr, &pte, &level); + if (ret) + return ret; + + if (kvm_pte_valid(pte)) + return -EAGAIN; + + if (pte) + return -EPERM; + + do { + u64 granule = kvm_granule_size(level); + cur.start = ALIGN_DOWN(addr, granule); + cur.end = cur.start + granule; + level++; + } while ((level < KVM_PGTABLE_MAX_LEVELS) && + !(kvm_level_supports_block_mapping(level) && + range_included(&cur, range))); + + *range = cur; + + return 0; +} + +int host_stage2_idmap_locked(phys_addr_t addr, u64 size, + enum kvm_pgtable_prot prot) +{ + return host_stage2_try(__host_stage2_idmap, addr, addr + size, prot); +} + +int host_stage2_set_owner_locked(phys_addr_t addr, u64 size, u8 owner_id) +{ + return host_stage2_try(kvm_pgtable_stage2_set_owner, &host_mmu.pgt, + addr, size, &host_s2_pool, owner_id); +} + +static bool host_stage2_force_pte_cb(u64 addr, u64 end, enum kvm_pgtable_prot prot) +{ + /* + * Block mappings must be used with care in the host stage-2 as a + * kvm_pgtable_stage2_map() operation targeting a page in the range of + * an existing block will delete the block under the assumption that + * mappings in the rest of the block range can always be rebuilt lazily. + * That assumption is correct for the host stage-2 with RWX mappings + * targeting memory or RW mappings targeting MMIO ranges (see + * host_stage2_idmap() below which implements some of the host memory + * abort logic). However, this is not safe for any other mappings where + * the host stage-2 page-table is in fact the only place where this + * state is stored. In all those cases, it is safer to use page-level + * mappings, hence avoiding to lose the state because of side-effects in + * kvm_pgtable_stage2_map(). + */ + if (range_is_memory(addr, end)) + return prot != PKVM_HOST_MEM_PROT; + else + return prot != PKVM_HOST_MMIO_PROT; +} + +static int host_stage2_idmap(u64 addr) +{ + struct kvm_mem_range range; + bool is_memory = !!find_mem_range(addr, &range); + enum kvm_pgtable_prot prot; + int ret; + + prot = is_memory ? PKVM_HOST_MEM_PROT : PKVM_HOST_MMIO_PROT; + + host_lock_component(); + ret = host_stage2_adjust_range(addr, &range); + if (ret) + goto unlock; + + ret = host_stage2_idmap_locked(range.start, range.end - range.start, prot); +unlock: + host_unlock_component(); + + return ret; +} + +void handle_host_mem_abort(struct kvm_cpu_context *host_ctxt) +{ + struct kvm_vcpu_fault_info fault; + u64 esr, addr; + int ret = 0; + + esr = read_sysreg_el2(SYS_ESR); + BUG_ON(!__get_fault_info(esr, &fault)); + + addr = (fault.hpfar_el2 & HPFAR_MASK) << 8; + ret = host_stage2_idmap(addr); + BUG_ON(ret && ret != -EAGAIN); +} + +struct pkvm_mem_transition { + u64 nr_pages; + + struct { + enum pkvm_component_id id; + /* Address in the initiator's address space */ + u64 addr; + + union { + struct { + /* Address in the completer's address space */ + u64 completer_addr; + } host; + struct { + u64 completer_addr; + } hyp; + }; + } initiator; + + struct { + enum pkvm_component_id id; + } completer; +}; + +struct pkvm_mem_share { + const struct pkvm_mem_transition tx; + const enum kvm_pgtable_prot completer_prot; +}; + +struct pkvm_mem_donation { + const struct pkvm_mem_transition tx; +}; + +struct check_walk_data { + enum pkvm_page_state desired; + enum pkvm_page_state (*get_page_state)(kvm_pte_t pte, u64 addr); +}; + +static int __check_page_state_visitor(const struct kvm_pgtable_visit_ctx *ctx, + enum kvm_pgtable_walk_flags visit) +{ + struct check_walk_data *d = ctx->arg; + + return d->get_page_state(ctx->old, ctx->addr) == d->desired ? 0 : -EPERM; +} + +static int check_page_state_range(struct kvm_pgtable *pgt, u64 addr, u64 size, + struct check_walk_data *data) +{ + struct kvm_pgtable_walker walker = { + .cb = __check_page_state_visitor, + .arg = data, + .flags = KVM_PGTABLE_WALK_LEAF, + }; + + return kvm_pgtable_walk(pgt, addr, size, &walker); +} + +static enum pkvm_page_state host_get_page_state(kvm_pte_t pte, u64 addr) +{ + if (!addr_is_allowed_memory(addr)) + return PKVM_NOPAGE; + + if (!kvm_pte_valid(pte) && pte) + return PKVM_NOPAGE; + + return pkvm_getstate(kvm_pgtable_stage2_pte_prot(pte)); +} + +static int __host_check_page_state_range(u64 addr, u64 size, + enum pkvm_page_state state) +{ + struct check_walk_data d = { + .desired = state, + .get_page_state = host_get_page_state, + }; + + hyp_assert_lock_held(&host_mmu.lock); + return check_page_state_range(&host_mmu.pgt, addr, size, &d); +} + +static int __host_set_page_state_range(u64 addr, u64 size, + enum pkvm_page_state state) +{ + enum kvm_pgtable_prot prot = pkvm_mkstate(PKVM_HOST_MEM_PROT, state); + + return host_stage2_idmap_locked(addr, size, prot); +} + +static int host_request_owned_transition(u64 *completer_addr, + const struct pkvm_mem_transition *tx) +{ + u64 size = tx->nr_pages * PAGE_SIZE; + u64 addr = tx->initiator.addr; + + *completer_addr = tx->initiator.host.completer_addr; + return __host_check_page_state_range(addr, size, PKVM_PAGE_OWNED); +} + +static int host_request_unshare(u64 *completer_addr, + const struct pkvm_mem_transition *tx) +{ + u64 size = tx->nr_pages * PAGE_SIZE; + u64 addr = tx->initiator.addr; + + *completer_addr = tx->initiator.host.completer_addr; + return __host_check_page_state_range(addr, size, PKVM_PAGE_SHARED_OWNED); +} + +static int host_initiate_share(u64 *completer_addr, + const struct pkvm_mem_transition *tx) +{ + u64 size = tx->nr_pages * PAGE_SIZE; + u64 addr = tx->initiator.addr; + + *completer_addr = tx->initiator.host.completer_addr; + return __host_set_page_state_range(addr, size, PKVM_PAGE_SHARED_OWNED); +} + +static int host_initiate_unshare(u64 *completer_addr, + const struct pkvm_mem_transition *tx) +{ + u64 size = tx->nr_pages * PAGE_SIZE; + u64 addr = tx->initiator.addr; + + *completer_addr = tx->initiator.host.completer_addr; + return __host_set_page_state_range(addr, size, PKVM_PAGE_OWNED); +} + +static int host_initiate_donation(u64 *completer_addr, + const struct pkvm_mem_transition *tx) +{ + u8 owner_id = tx->completer.id; + u64 size = tx->nr_pages * PAGE_SIZE; + + *completer_addr = tx->initiator.host.completer_addr; + return host_stage2_set_owner_locked(tx->initiator.addr, size, owner_id); +} + +static bool __host_ack_skip_pgtable_check(const struct pkvm_mem_transition *tx) +{ + return !(IS_ENABLED(CONFIG_NVHE_EL2_DEBUG) || + tx->initiator.id != PKVM_ID_HYP); +} + +static int __host_ack_transition(u64 addr, const struct pkvm_mem_transition *tx, + enum pkvm_page_state state) +{ + u64 size = tx->nr_pages * PAGE_SIZE; + + if (__host_ack_skip_pgtable_check(tx)) + return 0; + + return __host_check_page_state_range(addr, size, state); +} + +static int host_ack_donation(u64 addr, const struct pkvm_mem_transition *tx) +{ + return __host_ack_transition(addr, tx, PKVM_NOPAGE); +} + +static int host_complete_donation(u64 addr, const struct pkvm_mem_transition *tx) +{ + u64 size = tx->nr_pages * PAGE_SIZE; + u8 host_id = tx->completer.id; + + return host_stage2_set_owner_locked(addr, size, host_id); +} + +static enum pkvm_page_state hyp_get_page_state(kvm_pte_t pte, u64 addr) +{ + if (!kvm_pte_valid(pte)) + return PKVM_NOPAGE; + + return pkvm_getstate(kvm_pgtable_hyp_pte_prot(pte)); +} + +static int __hyp_check_page_state_range(u64 addr, u64 size, + enum pkvm_page_state state) +{ + struct check_walk_data d = { + .desired = state, + .get_page_state = hyp_get_page_state, + }; + + hyp_assert_lock_held(&pkvm_pgd_lock); + return check_page_state_range(&pkvm_pgtable, addr, size, &d); +} + +static int hyp_request_donation(u64 *completer_addr, + const struct pkvm_mem_transition *tx) +{ + u64 size = tx->nr_pages * PAGE_SIZE; + u64 addr = tx->initiator.addr; + + *completer_addr = tx->initiator.hyp.completer_addr; + return __hyp_check_page_state_range(addr, size, PKVM_PAGE_OWNED); +} + +static int hyp_initiate_donation(u64 *completer_addr, + const struct pkvm_mem_transition *tx) +{ + u64 size = tx->nr_pages * PAGE_SIZE; + int ret; + + *completer_addr = tx->initiator.hyp.completer_addr; + ret = kvm_pgtable_hyp_unmap(&pkvm_pgtable, tx->initiator.addr, size); + return (ret != size) ? -EFAULT : 0; +} + +static bool __hyp_ack_skip_pgtable_check(const struct pkvm_mem_transition *tx) +{ + return !(IS_ENABLED(CONFIG_NVHE_EL2_DEBUG) || + tx->initiator.id != PKVM_ID_HOST); +} + +static int hyp_ack_share(u64 addr, const struct pkvm_mem_transition *tx, + enum kvm_pgtable_prot perms) +{ + u64 size = tx->nr_pages * PAGE_SIZE; + + if (perms != PAGE_HYP) + return -EPERM; + + if (__hyp_ack_skip_pgtable_check(tx)) + return 0; + + return __hyp_check_page_state_range(addr, size, PKVM_NOPAGE); +} + +static int hyp_ack_unshare(u64 addr, const struct pkvm_mem_transition *tx) +{ + u64 size = tx->nr_pages * PAGE_SIZE; + + if (tx->initiator.id == PKVM_ID_HOST && hyp_page_count((void *)addr)) + return -EBUSY; + + if (__hyp_ack_skip_pgtable_check(tx)) + return 0; + + return __hyp_check_page_state_range(addr, size, + PKVM_PAGE_SHARED_BORROWED); +} + +static int hyp_ack_donation(u64 addr, const struct pkvm_mem_transition *tx) +{ + u64 size = tx->nr_pages * PAGE_SIZE; + + if (__hyp_ack_skip_pgtable_check(tx)) + return 0; + + return __hyp_check_page_state_range(addr, size, PKVM_NOPAGE); +} + +static int hyp_complete_share(u64 addr, const struct pkvm_mem_transition *tx, + enum kvm_pgtable_prot perms) +{ + void *start = (void *)addr, *end = start + (tx->nr_pages * PAGE_SIZE); + enum kvm_pgtable_prot prot; + + prot = pkvm_mkstate(perms, PKVM_PAGE_SHARED_BORROWED); + return pkvm_create_mappings_locked(start, end, prot); +} + +static int hyp_complete_unshare(u64 addr, const struct pkvm_mem_transition *tx) +{ + u64 size = tx->nr_pages * PAGE_SIZE; + int ret = kvm_pgtable_hyp_unmap(&pkvm_pgtable, addr, size); + + return (ret != size) ? -EFAULT : 0; +} + +static int hyp_complete_donation(u64 addr, + const struct pkvm_mem_transition *tx) +{ + void *start = (void *)addr, *end = start + (tx->nr_pages * PAGE_SIZE); + enum kvm_pgtable_prot prot = pkvm_mkstate(PAGE_HYP, PKVM_PAGE_OWNED); + + return pkvm_create_mappings_locked(start, end, prot); +} + +static int check_share(struct pkvm_mem_share *share) +{ + const struct pkvm_mem_transition *tx = &share->tx; + u64 completer_addr; + int ret; + + switch (tx->initiator.id) { + case PKVM_ID_HOST: + ret = host_request_owned_transition(&completer_addr, tx); + break; + default: + ret = -EINVAL; + } + + if (ret) + return ret; + + switch (tx->completer.id) { + case PKVM_ID_HYP: + ret = hyp_ack_share(completer_addr, tx, share->completer_prot); + break; + case PKVM_ID_FFA: + /* + * We only check the host; the secure side will check the other + * end when we forward the FFA call. + */ + ret = 0; + break; + default: + ret = -EINVAL; + } + + return ret; +} + +static int __do_share(struct pkvm_mem_share *share) +{ + const struct pkvm_mem_transition *tx = &share->tx; + u64 completer_addr; + int ret; + + switch (tx->initiator.id) { + case PKVM_ID_HOST: + ret = host_initiate_share(&completer_addr, tx); + break; + default: + ret = -EINVAL; + } + + if (ret) + return ret; + + switch (tx->completer.id) { + case PKVM_ID_HYP: + ret = hyp_complete_share(completer_addr, tx, share->completer_prot); + break; + case PKVM_ID_FFA: + /* + * We're not responsible for any secure page-tables, so there's + * nothing to do here. + */ + ret = 0; + break; + default: + ret = -EINVAL; + } + + return ret; +} + +/* + * do_share(): + * + * The page owner grants access to another component with a given set + * of permissions. + * + * Initiator: OWNED => SHARED_OWNED + * Completer: NOPAGE => SHARED_BORROWED + */ +static int do_share(struct pkvm_mem_share *share) +{ + int ret; + + ret = check_share(share); + if (ret) + return ret; + + return WARN_ON(__do_share(share)); +} + +static int check_unshare(struct pkvm_mem_share *share) +{ + const struct pkvm_mem_transition *tx = &share->tx; + u64 completer_addr; + int ret; + + switch (tx->initiator.id) { + case PKVM_ID_HOST: + ret = host_request_unshare(&completer_addr, tx); + break; + default: + ret = -EINVAL; + } + + if (ret) + return ret; + + switch (tx->completer.id) { + case PKVM_ID_HYP: + ret = hyp_ack_unshare(completer_addr, tx); + break; + case PKVM_ID_FFA: + /* See check_share() */ + ret = 0; + break; + default: + ret = -EINVAL; + } + + return ret; +} + +static int __do_unshare(struct pkvm_mem_share *share) +{ + const struct pkvm_mem_transition *tx = &share->tx; + u64 completer_addr; + int ret; + + switch (tx->initiator.id) { + case PKVM_ID_HOST: + ret = host_initiate_unshare(&completer_addr, tx); + break; + default: + ret = -EINVAL; + } + + if (ret) + return ret; + + switch (tx->completer.id) { + case PKVM_ID_HYP: + ret = hyp_complete_unshare(completer_addr, tx); + break; + case PKVM_ID_FFA: + /* See __do_share() */ + ret = 0; + break; + default: + ret = -EINVAL; + } + + return ret; +} + +/* + * do_unshare(): + * + * The page owner revokes access from another component for a range of + * pages which were previously shared using do_share(). + * + * Initiator: SHARED_OWNED => OWNED + * Completer: SHARED_BORROWED => NOPAGE + */ +static int do_unshare(struct pkvm_mem_share *share) +{ + int ret; + + ret = check_unshare(share); + if (ret) + return ret; + + return WARN_ON(__do_unshare(share)); +} + +static int check_donation(struct pkvm_mem_donation *donation) +{ + const struct pkvm_mem_transition *tx = &donation->tx; + u64 completer_addr; + int ret; + + switch (tx->initiator.id) { + case PKVM_ID_HOST: + ret = host_request_owned_transition(&completer_addr, tx); + break; + case PKVM_ID_HYP: + ret = hyp_request_donation(&completer_addr, tx); + break; + default: + ret = -EINVAL; + } + + if (ret) + return ret; + + switch (tx->completer.id) { + case PKVM_ID_HOST: + ret = host_ack_donation(completer_addr, tx); + break; + case PKVM_ID_HYP: + ret = hyp_ack_donation(completer_addr, tx); + break; + default: + ret = -EINVAL; + } + + return ret; +} + +static int __do_donate(struct pkvm_mem_donation *donation) +{ + const struct pkvm_mem_transition *tx = &donation->tx; + u64 completer_addr; + int ret; + + switch (tx->initiator.id) { + case PKVM_ID_HOST: + ret = host_initiate_donation(&completer_addr, tx); + break; + case PKVM_ID_HYP: + ret = hyp_initiate_donation(&completer_addr, tx); + break; + default: + ret = -EINVAL; + } + + if (ret) + return ret; + + switch (tx->completer.id) { + case PKVM_ID_HOST: + ret = host_complete_donation(completer_addr, tx); + break; + case PKVM_ID_HYP: + ret = hyp_complete_donation(completer_addr, tx); + break; + default: + ret = -EINVAL; + } + + return ret; +} + +/* + * do_donate(): + * + * The page owner transfers ownership to another component, losing access + * as a consequence. + * + * Initiator: OWNED => NOPAGE + * Completer: NOPAGE => OWNED + */ +static int do_donate(struct pkvm_mem_donation *donation) +{ + int ret; + + ret = check_donation(donation); + if (ret) + return ret; + + return WARN_ON(__do_donate(donation)); +} + +int __pkvm_host_share_hyp(u64 pfn) +{ + int ret; + u64 host_addr = hyp_pfn_to_phys(pfn); + u64 hyp_addr = (u64)__hyp_va(host_addr); + struct pkvm_mem_share share = { + .tx = { + .nr_pages = 1, + .initiator = { + .id = PKVM_ID_HOST, + .addr = host_addr, + .host = { + .completer_addr = hyp_addr, + }, + }, + .completer = { + .id = PKVM_ID_HYP, + }, + }, + .completer_prot = PAGE_HYP, + }; + + host_lock_component(); + hyp_lock_component(); + + ret = do_share(&share); + + hyp_unlock_component(); + host_unlock_component(); + + return ret; +} + +int __pkvm_host_unshare_hyp(u64 pfn) +{ + int ret; + u64 host_addr = hyp_pfn_to_phys(pfn); + u64 hyp_addr = (u64)__hyp_va(host_addr); + struct pkvm_mem_share share = { + .tx = { + .nr_pages = 1, + .initiator = { + .id = PKVM_ID_HOST, + .addr = host_addr, + .host = { + .completer_addr = hyp_addr, + }, + }, + .completer = { + .id = PKVM_ID_HYP, + }, + }, + .completer_prot = PAGE_HYP, + }; + + host_lock_component(); + hyp_lock_component(); + + ret = do_unshare(&share); + + hyp_unlock_component(); + host_unlock_component(); + + return ret; +} + +int __pkvm_host_donate_hyp(u64 pfn, u64 nr_pages) +{ + int ret; + u64 host_addr = hyp_pfn_to_phys(pfn); + u64 hyp_addr = (u64)__hyp_va(host_addr); + struct pkvm_mem_donation donation = { + .tx = { + .nr_pages = nr_pages, + .initiator = { + .id = PKVM_ID_HOST, + .addr = host_addr, + .host = { + .completer_addr = hyp_addr, + }, + }, + .completer = { + .id = PKVM_ID_HYP, + }, + }, + }; + + host_lock_component(); + hyp_lock_component(); + + ret = do_donate(&donation); + + hyp_unlock_component(); + host_unlock_component(); + + return ret; +} + +int __pkvm_hyp_donate_host(u64 pfn, u64 nr_pages) +{ + int ret; + u64 host_addr = hyp_pfn_to_phys(pfn); + u64 hyp_addr = (u64)__hyp_va(host_addr); + struct pkvm_mem_donation donation = { + .tx = { + .nr_pages = nr_pages, + .initiator = { + .id = PKVM_ID_HYP, + .addr = hyp_addr, + .hyp = { + .completer_addr = host_addr, + }, + }, + .completer = { + .id = PKVM_ID_HOST, + }, + }, + }; + + host_lock_component(); + hyp_lock_component(); + + ret = do_donate(&donation); + + hyp_unlock_component(); + host_unlock_component(); + + return ret; +} + +int hyp_pin_shared_mem(void *from, void *to) +{ + u64 cur, start = ALIGN_DOWN((u64)from, PAGE_SIZE); + u64 end = PAGE_ALIGN((u64)to); + u64 size = end - start; + int ret; + + host_lock_component(); + hyp_lock_component(); + + ret = __host_check_page_state_range(__hyp_pa(start), size, + PKVM_PAGE_SHARED_OWNED); + if (ret) + goto unlock; + + ret = __hyp_check_page_state_range(start, size, + PKVM_PAGE_SHARED_BORROWED); + if (ret) + goto unlock; + + for (cur = start; cur < end; cur += PAGE_SIZE) + hyp_page_ref_inc(hyp_virt_to_page(cur)); + +unlock: + hyp_unlock_component(); + host_unlock_component(); + + return ret; +} + +void hyp_unpin_shared_mem(void *from, void *to) +{ + u64 cur, start = ALIGN_DOWN((u64)from, PAGE_SIZE); + u64 end = PAGE_ALIGN((u64)to); + + host_lock_component(); + hyp_lock_component(); + + for (cur = start; cur < end; cur += PAGE_SIZE) + hyp_page_ref_dec(hyp_virt_to_page(cur)); + + hyp_unlock_component(); + host_unlock_component(); +} + +int __pkvm_host_share_ffa(u64 pfn, u64 nr_pages) +{ + int ret; + struct pkvm_mem_share share = { + .tx = { + .nr_pages = nr_pages, + .initiator = { + .id = PKVM_ID_HOST, + .addr = hyp_pfn_to_phys(pfn), + }, + .completer = { + .id = PKVM_ID_FFA, + }, + }, + }; + + host_lock_component(); + ret = do_share(&share); + host_unlock_component(); + + return ret; +} + +int __pkvm_host_unshare_ffa(u64 pfn, u64 nr_pages) +{ + int ret; + struct pkvm_mem_share share = { + .tx = { + .nr_pages = nr_pages, + .initiator = { + .id = PKVM_ID_HOST, + .addr = hyp_pfn_to_phys(pfn), + }, + .completer = { + .id = PKVM_ID_FFA, + }, + }, + }; + + host_lock_component(); + ret = do_unshare(&share); + host_unlock_component(); + + return ret; +} diff --git a/arch/arm64/kvm/hyp/nvhe/mm.c b/arch/arm64/kvm/hyp/nvhe/mm.c new file mode 100644 index 0000000000..65a7a186d7 --- /dev/null +++ b/arch/arm64/kvm/hyp/nvhe/mm.c @@ -0,0 +1,423 @@ +// SPDX-License-Identifier: GPL-2.0-only +/* + * Copyright (C) 2020 Google LLC + * Author: Quentin Perret <qperret@google.com> + */ + +#include <linux/kvm_host.h> +#include <asm/kvm_hyp.h> +#include <asm/kvm_mmu.h> +#include <asm/kvm_pgtable.h> +#include <asm/kvm_pkvm.h> +#include <asm/spectre.h> + +#include <nvhe/early_alloc.h> +#include <nvhe/gfp.h> +#include <nvhe/memory.h> +#include <nvhe/mem_protect.h> +#include <nvhe/mm.h> +#include <nvhe/spinlock.h> + +struct kvm_pgtable pkvm_pgtable; +hyp_spinlock_t pkvm_pgd_lock; + +struct memblock_region hyp_memory[HYP_MEMBLOCK_REGIONS]; +unsigned int hyp_memblock_nr; + +static u64 __io_map_base; + +struct hyp_fixmap_slot { + u64 addr; + kvm_pte_t *ptep; +}; +static DEFINE_PER_CPU(struct hyp_fixmap_slot, fixmap_slots); + +static int __pkvm_create_mappings(unsigned long start, unsigned long size, + unsigned long phys, enum kvm_pgtable_prot prot) +{ + int err; + + hyp_spin_lock(&pkvm_pgd_lock); + err = kvm_pgtable_hyp_map(&pkvm_pgtable, start, size, phys, prot); + hyp_spin_unlock(&pkvm_pgd_lock); + + return err; +} + +static int __pkvm_alloc_private_va_range(unsigned long start, size_t size) +{ + unsigned long cur; + + hyp_assert_lock_held(&pkvm_pgd_lock); + + if (!start || start < __io_map_base) + return -EINVAL; + + /* The allocated size is always a multiple of PAGE_SIZE */ + cur = start + PAGE_ALIGN(size); + + /* Are we overflowing on the vmemmap ? */ + if (cur > __hyp_vmemmap) + return -ENOMEM; + + __io_map_base = cur; + + return 0; +} + +/** + * pkvm_alloc_private_va_range - Allocates a private VA range. + * @size: The size of the VA range to reserve. + * @haddr: The hypervisor virtual start address of the allocation. + * + * The private virtual address (VA) range is allocated above __io_map_base + * and aligned based on the order of @size. + * + * Return: 0 on success or negative error code on failure. + */ +int pkvm_alloc_private_va_range(size_t size, unsigned long *haddr) +{ + unsigned long addr; + int ret; + + hyp_spin_lock(&pkvm_pgd_lock); + addr = __io_map_base; + ret = __pkvm_alloc_private_va_range(addr, size); + hyp_spin_unlock(&pkvm_pgd_lock); + + *haddr = addr; + + return ret; +} + +int __pkvm_create_private_mapping(phys_addr_t phys, size_t size, + enum kvm_pgtable_prot prot, + unsigned long *haddr) +{ + unsigned long addr; + int err; + + size = PAGE_ALIGN(size + offset_in_page(phys)); + err = pkvm_alloc_private_va_range(size, &addr); + if (err) + return err; + + err = __pkvm_create_mappings(addr, size, phys, prot); + if (err) + return err; + + *haddr = addr + offset_in_page(phys); + return err; +} + +int pkvm_create_mappings_locked(void *from, void *to, enum kvm_pgtable_prot prot) +{ + unsigned long start = (unsigned long)from; + unsigned long end = (unsigned long)to; + unsigned long virt_addr; + phys_addr_t phys; + + hyp_assert_lock_held(&pkvm_pgd_lock); + + start = start & PAGE_MASK; + end = PAGE_ALIGN(end); + + for (virt_addr = start; virt_addr < end; virt_addr += PAGE_SIZE) { + int err; + + phys = hyp_virt_to_phys((void *)virt_addr); + err = kvm_pgtable_hyp_map(&pkvm_pgtable, virt_addr, PAGE_SIZE, + phys, prot); + if (err) + return err; + } + + return 0; +} + +int pkvm_create_mappings(void *from, void *to, enum kvm_pgtable_prot prot) +{ + int ret; + + hyp_spin_lock(&pkvm_pgd_lock); + ret = pkvm_create_mappings_locked(from, to, prot); + hyp_spin_unlock(&pkvm_pgd_lock); + + return ret; +} + +int hyp_back_vmemmap(phys_addr_t back) +{ + unsigned long i, start, size, end = 0; + int ret; + + for (i = 0; i < hyp_memblock_nr; i++) { + start = hyp_memory[i].base; + start = ALIGN_DOWN((u64)hyp_phys_to_page(start), PAGE_SIZE); + /* + * The begining of the hyp_vmemmap region for the current + * memblock may already be backed by the page backing the end + * the previous region, so avoid mapping it twice. + */ + start = max(start, end); + + end = hyp_memory[i].base + hyp_memory[i].size; + end = PAGE_ALIGN((u64)hyp_phys_to_page(end)); + if (start >= end) + continue; + + size = end - start; + ret = __pkvm_create_mappings(start, size, back, PAGE_HYP); + if (ret) + return ret; + + memset(hyp_phys_to_virt(back), 0, size); + back += size; + } + + return 0; +} + +static void *__hyp_bp_vect_base; +int pkvm_cpu_set_vector(enum arm64_hyp_spectre_vector slot) +{ + void *vector; + + switch (slot) { + case HYP_VECTOR_DIRECT: { + vector = __kvm_hyp_vector; + break; + } + case HYP_VECTOR_SPECTRE_DIRECT: { + vector = __bp_harden_hyp_vecs; + break; + } + case HYP_VECTOR_INDIRECT: + case HYP_VECTOR_SPECTRE_INDIRECT: { + vector = (void *)__hyp_bp_vect_base; + break; + } + default: + return -EINVAL; + } + + vector = __kvm_vector_slot2addr(vector, slot); + *this_cpu_ptr(&kvm_hyp_vector) = (unsigned long)vector; + + return 0; +} + +int hyp_map_vectors(void) +{ + phys_addr_t phys; + unsigned long bp_base; + int ret; + + if (!kvm_system_needs_idmapped_vectors()) { + __hyp_bp_vect_base = __bp_harden_hyp_vecs; + return 0; + } + + phys = __hyp_pa(__bp_harden_hyp_vecs); + ret = __pkvm_create_private_mapping(phys, __BP_HARDEN_HYP_VECS_SZ, + PAGE_HYP_EXEC, &bp_base); + if (ret) + return ret; + + __hyp_bp_vect_base = (void *)bp_base; + + return 0; +} + +void *hyp_fixmap_map(phys_addr_t phys) +{ + struct hyp_fixmap_slot *slot = this_cpu_ptr(&fixmap_slots); + kvm_pte_t pte, *ptep = slot->ptep; + + pte = *ptep; + pte &= ~kvm_phys_to_pte(KVM_PHYS_INVALID); + pte |= kvm_phys_to_pte(phys) | KVM_PTE_VALID; + WRITE_ONCE(*ptep, pte); + dsb(ishst); + + return (void *)slot->addr; +} + +static void fixmap_clear_slot(struct hyp_fixmap_slot *slot) +{ + kvm_pte_t *ptep = slot->ptep; + u64 addr = slot->addr; + + WRITE_ONCE(*ptep, *ptep & ~KVM_PTE_VALID); + + /* + * Irritatingly, the architecture requires that we use inner-shareable + * broadcast TLB invalidation here in case another CPU speculates + * through our fixmap and decides to create an "amalagamation of the + * values held in the TLB" due to the apparent lack of a + * break-before-make sequence. + * + * https://lore.kernel.org/kvm/20221017115209.2099-1-will@kernel.org/T/#mf10dfbaf1eaef9274c581b81c53758918c1d0f03 + */ + dsb(ishst); + __tlbi_level(vale2is, __TLBI_VADDR(addr, 0), (KVM_PGTABLE_MAX_LEVELS - 1)); + dsb(ish); + isb(); +} + +void hyp_fixmap_unmap(void) +{ + fixmap_clear_slot(this_cpu_ptr(&fixmap_slots)); +} + +static int __create_fixmap_slot_cb(const struct kvm_pgtable_visit_ctx *ctx, + enum kvm_pgtable_walk_flags visit) +{ + struct hyp_fixmap_slot *slot = per_cpu_ptr(&fixmap_slots, (u64)ctx->arg); + + if (!kvm_pte_valid(ctx->old) || ctx->level != KVM_PGTABLE_MAX_LEVELS - 1) + return -EINVAL; + + slot->addr = ctx->addr; + slot->ptep = ctx->ptep; + + /* + * Clear the PTE, but keep the page-table page refcount elevated to + * prevent it from ever being freed. This lets us manipulate the PTEs + * by hand safely without ever needing to allocate memory. + */ + fixmap_clear_slot(slot); + + return 0; +} + +static int create_fixmap_slot(u64 addr, u64 cpu) +{ + struct kvm_pgtable_walker walker = { + .cb = __create_fixmap_slot_cb, + .flags = KVM_PGTABLE_WALK_LEAF, + .arg = (void *)cpu, + }; + + return kvm_pgtable_walk(&pkvm_pgtable, addr, PAGE_SIZE, &walker); +} + +int hyp_create_pcpu_fixmap(void) +{ + unsigned long addr, i; + int ret; + + for (i = 0; i < hyp_nr_cpus; i++) { + ret = pkvm_alloc_private_va_range(PAGE_SIZE, &addr); + if (ret) + return ret; + + ret = kvm_pgtable_hyp_map(&pkvm_pgtable, addr, PAGE_SIZE, + __hyp_pa(__hyp_bss_start), PAGE_HYP); + if (ret) + return ret; + + ret = create_fixmap_slot(addr, i); + if (ret) + return ret; + } + + return 0; +} + +int hyp_create_idmap(u32 hyp_va_bits) +{ + unsigned long start, end; + + start = hyp_virt_to_phys((void *)__hyp_idmap_text_start); + start = ALIGN_DOWN(start, PAGE_SIZE); + + end = hyp_virt_to_phys((void *)__hyp_idmap_text_end); + end = ALIGN(end, PAGE_SIZE); + + /* + * One half of the VA space is reserved to linearly map portions of + * memory -- see va_layout.c for more details. The other half of the VA + * space contains the trampoline page, and needs some care. Split that + * second half in two and find the quarter of VA space not conflicting + * with the idmap to place the IOs and the vmemmap. IOs use the lower + * half of the quarter and the vmemmap the upper half. + */ + __io_map_base = start & BIT(hyp_va_bits - 2); + __io_map_base ^= BIT(hyp_va_bits - 2); + __hyp_vmemmap = __io_map_base | BIT(hyp_va_bits - 3); + + return __pkvm_create_mappings(start, end - start, start, PAGE_HYP_EXEC); +} + +int pkvm_create_stack(phys_addr_t phys, unsigned long *haddr) +{ + unsigned long addr, prev_base; + size_t size; + int ret; + + hyp_spin_lock(&pkvm_pgd_lock); + + prev_base = __io_map_base; + /* + * Efficient stack verification using the PAGE_SHIFT bit implies + * an alignment of our allocation on the order of the size. + */ + size = PAGE_SIZE * 2; + addr = ALIGN(__io_map_base, size); + + ret = __pkvm_alloc_private_va_range(addr, size); + if (!ret) { + /* + * Since the stack grows downwards, map the stack to the page + * at the higher address and leave the lower guard page + * unbacked. + * + * Any valid stack address now has the PAGE_SHIFT bit as 1 + * and addresses corresponding to the guard page have the + * PAGE_SHIFT bit as 0 - this is used for overflow detection. + */ + ret = kvm_pgtable_hyp_map(&pkvm_pgtable, addr + PAGE_SIZE, + PAGE_SIZE, phys, PAGE_HYP); + if (ret) + __io_map_base = prev_base; + } + hyp_spin_unlock(&pkvm_pgd_lock); + + *haddr = addr + size; + + return ret; +} + +static void *admit_host_page(void *arg) +{ + struct kvm_hyp_memcache *host_mc = arg; + + if (!host_mc->nr_pages) + return NULL; + + /* + * The host still owns the pages in its memcache, so we need to go + * through a full host-to-hyp donation cycle to change it. Fortunately, + * __pkvm_host_donate_hyp() takes care of races for us, so if it + * succeeds we're good to go. + */ + if (__pkvm_host_donate_hyp(hyp_phys_to_pfn(host_mc->head), 1)) + return NULL; + + return pop_hyp_memcache(host_mc, hyp_phys_to_virt); +} + +/* Refill our local memcache by poping pages from the one provided by the host. */ +int refill_memcache(struct kvm_hyp_memcache *mc, unsigned long min_pages, + struct kvm_hyp_memcache *host_mc) +{ + struct kvm_hyp_memcache tmp = *host_mc; + int ret; + + ret = __topup_hyp_memcache(mc, min_pages, admit_host_page, + hyp_virt_to_phys, &tmp); + *host_mc = tmp; + + return ret; +} diff --git a/arch/arm64/kvm/hyp/nvhe/page_alloc.c b/arch/arm64/kvm/hyp/nvhe/page_alloc.c new file mode 100644 index 0000000000..b1e392186a --- /dev/null +++ b/arch/arm64/kvm/hyp/nvhe/page_alloc.c @@ -0,0 +1,247 @@ +// SPDX-License-Identifier: GPL-2.0-only +/* + * Copyright (C) 2020 Google LLC + * Author: Quentin Perret <qperret@google.com> + */ + +#include <asm/kvm_hyp.h> +#include <nvhe/gfp.h> + +u64 __hyp_vmemmap; + +/* + * Index the hyp_vmemmap to find a potential buddy page, but make no assumption + * about its current state. + * + * Example buddy-tree for a 4-pages physically contiguous pool: + * + * o : Page 3 + * / + * o-o : Page 2 + * / + * / o : Page 1 + * / / + * o---o-o : Page 0 + * Order 2 1 0 + * + * Example of requests on this pool: + * __find_buddy_nocheck(pool, page 0, order 0) => page 1 + * __find_buddy_nocheck(pool, page 0, order 1) => page 2 + * __find_buddy_nocheck(pool, page 1, order 0) => page 0 + * __find_buddy_nocheck(pool, page 2, order 0) => page 3 + */ +static struct hyp_page *__find_buddy_nocheck(struct hyp_pool *pool, + struct hyp_page *p, + unsigned short order) +{ + phys_addr_t addr = hyp_page_to_phys(p); + + addr ^= (PAGE_SIZE << order); + + /* + * Don't return a page outside the pool range -- it belongs to + * something else and may not be mapped in hyp_vmemmap. + */ + if (addr < pool->range_start || addr >= pool->range_end) + return NULL; + + return hyp_phys_to_page(addr); +} + +/* Find a buddy page currently available for allocation */ +static struct hyp_page *__find_buddy_avail(struct hyp_pool *pool, + struct hyp_page *p, + unsigned short order) +{ + struct hyp_page *buddy = __find_buddy_nocheck(pool, p, order); + + if (!buddy || buddy->order != order || buddy->refcount) + return NULL; + + return buddy; + +} + +/* + * Pages that are available for allocation are tracked in free-lists, so we use + * the pages themselves to store the list nodes to avoid wasting space. As the + * allocator always returns zeroed pages (which are zeroed on the hyp_put_page() + * path to optimize allocation speed), we also need to clean-up the list node in + * each page when we take it out of the list. + */ +static inline void page_remove_from_list(struct hyp_page *p) +{ + struct list_head *node = hyp_page_to_virt(p); + + __list_del_entry(node); + memset(node, 0, sizeof(*node)); +} + +static inline void page_add_to_list(struct hyp_page *p, struct list_head *head) +{ + struct list_head *node = hyp_page_to_virt(p); + + INIT_LIST_HEAD(node); + list_add_tail(node, head); +} + +static inline struct hyp_page *node_to_page(struct list_head *node) +{ + return hyp_virt_to_page(node); +} + +static void __hyp_attach_page(struct hyp_pool *pool, + struct hyp_page *p) +{ + phys_addr_t phys = hyp_page_to_phys(p); + unsigned short order = p->order; + struct hyp_page *buddy; + + memset(hyp_page_to_virt(p), 0, PAGE_SIZE << p->order); + + /* Skip coalescing for 'external' pages being freed into the pool. */ + if (phys < pool->range_start || phys >= pool->range_end) + goto insert; + + /* + * Only the first struct hyp_page of a high-order page (otherwise known + * as the 'head') should have p->order set. The non-head pages should + * have p->order = HYP_NO_ORDER. Here @p may no longer be the head + * after coalescing, so make sure to mark it HYP_NO_ORDER proactively. + */ + p->order = HYP_NO_ORDER; + for (; (order + 1) <= pool->max_order; order++) { + buddy = __find_buddy_avail(pool, p, order); + if (!buddy) + break; + + /* Take the buddy out of its list, and coalesce with @p */ + page_remove_from_list(buddy); + buddy->order = HYP_NO_ORDER; + p = min(p, buddy); + } + +insert: + /* Mark the new head, and insert it */ + p->order = order; + page_add_to_list(p, &pool->free_area[order]); +} + +static struct hyp_page *__hyp_extract_page(struct hyp_pool *pool, + struct hyp_page *p, + unsigned short order) +{ + struct hyp_page *buddy; + + page_remove_from_list(p); + while (p->order > order) { + /* + * The buddy of order n - 1 currently has HYP_NO_ORDER as it + * is covered by a higher-level page (whose head is @p). Use + * __find_buddy_nocheck() to find it and inject it in the + * free_list[n - 1], effectively splitting @p in half. + */ + p->order--; + buddy = __find_buddy_nocheck(pool, p, p->order); + buddy->order = p->order; + page_add_to_list(buddy, &pool->free_area[buddy->order]); + } + + return p; +} + +static void __hyp_put_page(struct hyp_pool *pool, struct hyp_page *p) +{ + if (hyp_page_ref_dec_and_test(p)) + __hyp_attach_page(pool, p); +} + +/* + * Changes to the buddy tree and page refcounts must be done with the hyp_pool + * lock held. If a refcount change requires an update to the buddy tree (e.g. + * hyp_put_page()), both operations must be done within the same critical + * section to guarantee transient states (e.g. a page with null refcount but + * not yet attached to a free list) can't be observed by well-behaved readers. + */ +void hyp_put_page(struct hyp_pool *pool, void *addr) +{ + struct hyp_page *p = hyp_virt_to_page(addr); + + hyp_spin_lock(&pool->lock); + __hyp_put_page(pool, p); + hyp_spin_unlock(&pool->lock); +} + +void hyp_get_page(struct hyp_pool *pool, void *addr) +{ + struct hyp_page *p = hyp_virt_to_page(addr); + + hyp_spin_lock(&pool->lock); + hyp_page_ref_inc(p); + hyp_spin_unlock(&pool->lock); +} + +void hyp_split_page(struct hyp_page *p) +{ + unsigned short order = p->order; + unsigned int i; + + p->order = 0; + for (i = 1; i < (1 << order); i++) { + struct hyp_page *tail = p + i; + + tail->order = 0; + hyp_set_page_refcounted(tail); + } +} + +void *hyp_alloc_pages(struct hyp_pool *pool, unsigned short order) +{ + unsigned short i = order; + struct hyp_page *p; + + hyp_spin_lock(&pool->lock); + + /* Look for a high-enough-order page */ + while (i <= pool->max_order && list_empty(&pool->free_area[i])) + i++; + if (i > pool->max_order) { + hyp_spin_unlock(&pool->lock); + return NULL; + } + + /* Extract it from the tree at the right order */ + p = node_to_page(pool->free_area[i].next); + p = __hyp_extract_page(pool, p, order); + + hyp_set_page_refcounted(p); + hyp_spin_unlock(&pool->lock); + + return hyp_page_to_virt(p); +} + +int hyp_pool_init(struct hyp_pool *pool, u64 pfn, unsigned int nr_pages, + unsigned int reserved_pages) +{ + phys_addr_t phys = hyp_pfn_to_phys(pfn); + struct hyp_page *p; + int i; + + hyp_spin_lock_init(&pool->lock); + pool->max_order = min(MAX_ORDER, get_order(nr_pages << PAGE_SHIFT)); + for (i = 0; i <= pool->max_order; i++) + INIT_LIST_HEAD(&pool->free_area[i]); + pool->range_start = phys; + pool->range_end = phys + (nr_pages << PAGE_SHIFT); + + /* Init the vmemmap portion */ + p = hyp_phys_to_page(phys); + for (i = 0; i < nr_pages; i++) + hyp_set_page_refcounted(&p[i]); + + /* Attach the unused pages to the buddy tree */ + for (i = reserved_pages; i < nr_pages; i++) + __hyp_put_page(pool, &p[i]); + + return 0; +} diff --git a/arch/arm64/kvm/hyp/nvhe/pkvm.c b/arch/arm64/kvm/hyp/nvhe/pkvm.c new file mode 100644 index 0000000000..8033ef353a --- /dev/null +++ b/arch/arm64/kvm/hyp/nvhe/pkvm.c @@ -0,0 +1,636 @@ +// SPDX-License-Identifier: GPL-2.0-only +/* + * Copyright (C) 2021 Google LLC + * Author: Fuad Tabba <tabba@google.com> + */ + +#include <linux/kvm_host.h> +#include <linux/mm.h> +#include <nvhe/fixed_config.h> +#include <nvhe/mem_protect.h> +#include <nvhe/memory.h> +#include <nvhe/pkvm.h> +#include <nvhe/trap_handler.h> + +/* Used by icache_is_vpipt(). */ +unsigned long __icache_flags; + +/* Used by kvm_get_vttbr(). */ +unsigned int kvm_arm_vmid_bits; + +/* + * Set trap register values based on features in ID_AA64PFR0. + */ +static void pvm_init_traps_aa64pfr0(struct kvm_vcpu *vcpu) +{ + const u64 feature_ids = pvm_read_id_reg(vcpu, SYS_ID_AA64PFR0_EL1); + u64 hcr_set = HCR_RW; + u64 hcr_clear = 0; + u64 cptr_set = 0; + u64 cptr_clear = 0; + + /* Protected KVM does not support AArch32 guests. */ + BUILD_BUG_ON(FIELD_GET(ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_EL0), + PVM_ID_AA64PFR0_RESTRICT_UNSIGNED) != ID_AA64PFR0_EL1_ELx_64BIT_ONLY); + BUILD_BUG_ON(FIELD_GET(ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_EL1), + PVM_ID_AA64PFR0_RESTRICT_UNSIGNED) != ID_AA64PFR0_EL1_ELx_64BIT_ONLY); + + /* + * Linux guests assume support for floating-point and Advanced SIMD. Do + * not change the trapping behavior for these from the KVM default. + */ + BUILD_BUG_ON(!FIELD_GET(ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_FP), + PVM_ID_AA64PFR0_ALLOW)); + BUILD_BUG_ON(!FIELD_GET(ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_AdvSIMD), + PVM_ID_AA64PFR0_ALLOW)); + + if (has_hvhe()) + hcr_set |= HCR_E2H; + + /* Trap RAS unless all current versions are supported */ + if (FIELD_GET(ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_RAS), feature_ids) < + ID_AA64PFR0_EL1_RAS_V1P1) { + hcr_set |= HCR_TERR | HCR_TEA; + hcr_clear |= HCR_FIEN; + } + + /* Trap AMU */ + if (!FIELD_GET(ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_AMU), feature_ids)) { + hcr_clear |= HCR_AMVOFFEN; + cptr_set |= CPTR_EL2_TAM; + } + + /* Trap SVE */ + if (!FIELD_GET(ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_SVE), feature_ids)) { + if (has_hvhe()) + cptr_clear |= CPACR_EL1_ZEN_EL0EN | CPACR_EL1_ZEN_EL1EN; + else + cptr_set |= CPTR_EL2_TZ; + } + + vcpu->arch.hcr_el2 |= hcr_set; + vcpu->arch.hcr_el2 &= ~hcr_clear; + vcpu->arch.cptr_el2 |= cptr_set; + vcpu->arch.cptr_el2 &= ~cptr_clear; +} + +/* + * Set trap register values based on features in ID_AA64PFR1. + */ +static void pvm_init_traps_aa64pfr1(struct kvm_vcpu *vcpu) +{ + const u64 feature_ids = pvm_read_id_reg(vcpu, SYS_ID_AA64PFR1_EL1); + u64 hcr_set = 0; + u64 hcr_clear = 0; + + /* Memory Tagging: Trap and Treat as Untagged if not supported. */ + if (!FIELD_GET(ARM64_FEATURE_MASK(ID_AA64PFR1_EL1_MTE), feature_ids)) { + hcr_set |= HCR_TID5; + hcr_clear |= HCR_DCT | HCR_ATA; + } + + vcpu->arch.hcr_el2 |= hcr_set; + vcpu->arch.hcr_el2 &= ~hcr_clear; +} + +/* + * Set trap register values based on features in ID_AA64DFR0. + */ +static void pvm_init_traps_aa64dfr0(struct kvm_vcpu *vcpu) +{ + const u64 feature_ids = pvm_read_id_reg(vcpu, SYS_ID_AA64DFR0_EL1); + u64 mdcr_set = 0; + u64 mdcr_clear = 0; + u64 cptr_set = 0; + + /* Trap/constrain PMU */ + if (!FIELD_GET(ARM64_FEATURE_MASK(ID_AA64DFR0_EL1_PMUVer), feature_ids)) { + mdcr_set |= MDCR_EL2_TPM | MDCR_EL2_TPMCR; + mdcr_clear |= MDCR_EL2_HPME | MDCR_EL2_MTPME | + MDCR_EL2_HPMN_MASK; + } + + /* Trap Debug */ + if (!FIELD_GET(ARM64_FEATURE_MASK(ID_AA64DFR0_EL1_DebugVer), feature_ids)) + mdcr_set |= MDCR_EL2_TDRA | MDCR_EL2_TDA | MDCR_EL2_TDE; + + /* Trap OS Double Lock */ + if (!FIELD_GET(ARM64_FEATURE_MASK(ID_AA64DFR0_EL1_DoubleLock), feature_ids)) + mdcr_set |= MDCR_EL2_TDOSA; + + /* Trap SPE */ + if (!FIELD_GET(ARM64_FEATURE_MASK(ID_AA64DFR0_EL1_PMSVer), feature_ids)) { + mdcr_set |= MDCR_EL2_TPMS; + mdcr_clear |= MDCR_EL2_E2PB_MASK << MDCR_EL2_E2PB_SHIFT; + } + + /* Trap Trace Filter */ + if (!FIELD_GET(ARM64_FEATURE_MASK(ID_AA64DFR0_EL1_TraceFilt), feature_ids)) + mdcr_set |= MDCR_EL2_TTRF; + + /* Trap Trace */ + if (!FIELD_GET(ARM64_FEATURE_MASK(ID_AA64DFR0_EL1_TraceVer), feature_ids)) { + if (has_hvhe()) + cptr_set |= CPACR_EL1_TTA; + else + cptr_set |= CPTR_EL2_TTA; + } + + vcpu->arch.mdcr_el2 |= mdcr_set; + vcpu->arch.mdcr_el2 &= ~mdcr_clear; + vcpu->arch.cptr_el2 |= cptr_set; +} + +/* + * Set trap register values based on features in ID_AA64MMFR0. + */ +static void pvm_init_traps_aa64mmfr0(struct kvm_vcpu *vcpu) +{ + const u64 feature_ids = pvm_read_id_reg(vcpu, SYS_ID_AA64MMFR0_EL1); + u64 mdcr_set = 0; + + /* Trap Debug Communications Channel registers */ + if (!FIELD_GET(ARM64_FEATURE_MASK(ID_AA64MMFR0_EL1_FGT), feature_ids)) + mdcr_set |= MDCR_EL2_TDCC; + + vcpu->arch.mdcr_el2 |= mdcr_set; +} + +/* + * Set trap register values based on features in ID_AA64MMFR1. + */ +static void pvm_init_traps_aa64mmfr1(struct kvm_vcpu *vcpu) +{ + const u64 feature_ids = pvm_read_id_reg(vcpu, SYS_ID_AA64MMFR1_EL1); + u64 hcr_set = 0; + + /* Trap LOR */ + if (!FIELD_GET(ARM64_FEATURE_MASK(ID_AA64MMFR1_EL1_LO), feature_ids)) + hcr_set |= HCR_TLOR; + + vcpu->arch.hcr_el2 |= hcr_set; +} + +/* + * Set baseline trap register values. + */ +static void pvm_init_trap_regs(struct kvm_vcpu *vcpu) +{ + const u64 hcr_trap_feat_regs = HCR_TID3; + const u64 hcr_trap_impdef = HCR_TACR | HCR_TIDCP | HCR_TID1; + + /* + * Always trap: + * - Feature id registers: to control features exposed to guests + * - Implementation-defined features + */ + vcpu->arch.hcr_el2 |= hcr_trap_feat_regs | hcr_trap_impdef; + + /* Clear res0 and set res1 bits to trap potential new features. */ + vcpu->arch.hcr_el2 &= ~(HCR_RES0); + vcpu->arch.mdcr_el2 &= ~(MDCR_EL2_RES0); + if (!has_hvhe()) { + vcpu->arch.cptr_el2 |= CPTR_NVHE_EL2_RES1; + vcpu->arch.cptr_el2 &= ~(CPTR_NVHE_EL2_RES0); + } +} + +/* + * Initialize trap register values for protected VMs. + */ +void __pkvm_vcpu_init_traps(struct kvm_vcpu *vcpu) +{ + pvm_init_trap_regs(vcpu); + pvm_init_traps_aa64pfr0(vcpu); + pvm_init_traps_aa64pfr1(vcpu); + pvm_init_traps_aa64dfr0(vcpu); + pvm_init_traps_aa64mmfr0(vcpu); + pvm_init_traps_aa64mmfr1(vcpu); +} + +/* + * Start the VM table handle at the offset defined instead of at 0. + * Mainly for sanity checking and debugging. + */ +#define HANDLE_OFFSET 0x1000 + +static unsigned int vm_handle_to_idx(pkvm_handle_t handle) +{ + return handle - HANDLE_OFFSET; +} + +static pkvm_handle_t idx_to_vm_handle(unsigned int idx) +{ + return idx + HANDLE_OFFSET; +} + +/* + * Spinlock for protecting state related to the VM table. Protects writes + * to 'vm_table' and 'nr_table_entries' as well as reads and writes to + * 'last_hyp_vcpu_lookup'. + */ +static DEFINE_HYP_SPINLOCK(vm_table_lock); + +/* + * The table of VM entries for protected VMs in hyp. + * Allocated at hyp initialization and setup. + */ +static struct pkvm_hyp_vm **vm_table; + +void pkvm_hyp_vm_table_init(void *tbl) +{ + WARN_ON(vm_table); + vm_table = tbl; +} + +/* + * Return the hyp vm structure corresponding to the handle. + */ +static struct pkvm_hyp_vm *get_vm_by_handle(pkvm_handle_t handle) +{ + unsigned int idx = vm_handle_to_idx(handle); + + if (unlikely(idx >= KVM_MAX_PVMS)) + return NULL; + + return vm_table[idx]; +} + +struct pkvm_hyp_vcpu *pkvm_load_hyp_vcpu(pkvm_handle_t handle, + unsigned int vcpu_idx) +{ + struct pkvm_hyp_vcpu *hyp_vcpu = NULL; + struct pkvm_hyp_vm *hyp_vm; + + hyp_spin_lock(&vm_table_lock); + hyp_vm = get_vm_by_handle(handle); + if (!hyp_vm || hyp_vm->nr_vcpus <= vcpu_idx) + goto unlock; + + hyp_vcpu = hyp_vm->vcpus[vcpu_idx]; + hyp_page_ref_inc(hyp_virt_to_page(hyp_vm)); +unlock: + hyp_spin_unlock(&vm_table_lock); + return hyp_vcpu; +} + +void pkvm_put_hyp_vcpu(struct pkvm_hyp_vcpu *hyp_vcpu) +{ + struct pkvm_hyp_vm *hyp_vm = pkvm_hyp_vcpu_to_hyp_vm(hyp_vcpu); + + hyp_spin_lock(&vm_table_lock); + hyp_page_ref_dec(hyp_virt_to_page(hyp_vm)); + hyp_spin_unlock(&vm_table_lock); +} + +static void unpin_host_vcpu(struct kvm_vcpu *host_vcpu) +{ + if (host_vcpu) + hyp_unpin_shared_mem(host_vcpu, host_vcpu + 1); +} + +static void unpin_host_vcpus(struct pkvm_hyp_vcpu *hyp_vcpus[], + unsigned int nr_vcpus) +{ + int i; + + for (i = 0; i < nr_vcpus; i++) + unpin_host_vcpu(hyp_vcpus[i]->host_vcpu); +} + +static void init_pkvm_hyp_vm(struct kvm *host_kvm, struct pkvm_hyp_vm *hyp_vm, + unsigned int nr_vcpus) +{ + hyp_vm->host_kvm = host_kvm; + hyp_vm->kvm.created_vcpus = nr_vcpus; + hyp_vm->kvm.arch.vtcr = host_mmu.arch.vtcr; +} + +static int init_pkvm_hyp_vcpu(struct pkvm_hyp_vcpu *hyp_vcpu, + struct pkvm_hyp_vm *hyp_vm, + struct kvm_vcpu *host_vcpu, + unsigned int vcpu_idx) +{ + int ret = 0; + + if (hyp_pin_shared_mem(host_vcpu, host_vcpu + 1)) + return -EBUSY; + + if (host_vcpu->vcpu_idx != vcpu_idx) { + ret = -EINVAL; + goto done; + } + + hyp_vcpu->host_vcpu = host_vcpu; + + hyp_vcpu->vcpu.kvm = &hyp_vm->kvm; + hyp_vcpu->vcpu.vcpu_id = READ_ONCE(host_vcpu->vcpu_id); + hyp_vcpu->vcpu.vcpu_idx = vcpu_idx; + + hyp_vcpu->vcpu.arch.hw_mmu = &hyp_vm->kvm.arch.mmu; + hyp_vcpu->vcpu.arch.cflags = READ_ONCE(host_vcpu->arch.cflags); +done: + if (ret) + unpin_host_vcpu(host_vcpu); + return ret; +} + +static int find_free_vm_table_entry(struct kvm *host_kvm) +{ + int i; + + for (i = 0; i < KVM_MAX_PVMS; ++i) { + if (!vm_table[i]) + return i; + } + + return -ENOMEM; +} + +/* + * Allocate a VM table entry and insert a pointer to the new vm. + * + * Return a unique handle to the protected VM on success, + * negative error code on failure. + */ +static pkvm_handle_t insert_vm_table_entry(struct kvm *host_kvm, + struct pkvm_hyp_vm *hyp_vm) +{ + struct kvm_s2_mmu *mmu = &hyp_vm->kvm.arch.mmu; + int idx; + + hyp_assert_lock_held(&vm_table_lock); + + /* + * Initializing protected state might have failed, yet a malicious + * host could trigger this function. Thus, ensure that 'vm_table' + * exists. + */ + if (unlikely(!vm_table)) + return -EINVAL; + + idx = find_free_vm_table_entry(host_kvm); + if (idx < 0) + return idx; + + hyp_vm->kvm.arch.pkvm.handle = idx_to_vm_handle(idx); + + /* VMID 0 is reserved for the host */ + atomic64_set(&mmu->vmid.id, idx + 1); + + mmu->arch = &hyp_vm->kvm.arch; + mmu->pgt = &hyp_vm->pgt; + + vm_table[idx] = hyp_vm; + return hyp_vm->kvm.arch.pkvm.handle; +} + +/* + * Deallocate and remove the VM table entry corresponding to the handle. + */ +static void remove_vm_table_entry(pkvm_handle_t handle) +{ + hyp_assert_lock_held(&vm_table_lock); + vm_table[vm_handle_to_idx(handle)] = NULL; +} + +static size_t pkvm_get_hyp_vm_size(unsigned int nr_vcpus) +{ + return size_add(sizeof(struct pkvm_hyp_vm), + size_mul(sizeof(struct pkvm_hyp_vcpu *), nr_vcpus)); +} + +static void *map_donated_memory_noclear(unsigned long host_va, size_t size) +{ + void *va = (void *)kern_hyp_va(host_va); + + if (!PAGE_ALIGNED(va)) + return NULL; + + if (__pkvm_host_donate_hyp(hyp_virt_to_pfn(va), + PAGE_ALIGN(size) >> PAGE_SHIFT)) + return NULL; + + return va; +} + +static void *map_donated_memory(unsigned long host_va, size_t size) +{ + void *va = map_donated_memory_noclear(host_va, size); + + if (va) + memset(va, 0, size); + + return va; +} + +static void __unmap_donated_memory(void *va, size_t size) +{ + WARN_ON(__pkvm_hyp_donate_host(hyp_virt_to_pfn(va), + PAGE_ALIGN(size) >> PAGE_SHIFT)); +} + +static void unmap_donated_memory(void *va, size_t size) +{ + if (!va) + return; + + memset(va, 0, size); + __unmap_donated_memory(va, size); +} + +static void unmap_donated_memory_noclear(void *va, size_t size) +{ + if (!va) + return; + + __unmap_donated_memory(va, size); +} + +/* + * Initialize the hypervisor copy of the protected VM state using the + * memory donated by the host. + * + * Unmaps the donated memory from the host at stage 2. + * + * host_kvm: A pointer to the host's struct kvm. + * vm_hva: The host va of the area being donated for the VM state. + * Must be page aligned. + * pgd_hva: The host va of the area being donated for the stage-2 PGD for + * the VM. Must be page aligned. Its size is implied by the VM's + * VTCR. + * + * Return a unique handle to the protected VM on success, + * negative error code on failure. + */ +int __pkvm_init_vm(struct kvm *host_kvm, unsigned long vm_hva, + unsigned long pgd_hva) +{ + struct pkvm_hyp_vm *hyp_vm = NULL; + size_t vm_size, pgd_size; + unsigned int nr_vcpus; + void *pgd = NULL; + int ret; + + ret = hyp_pin_shared_mem(host_kvm, host_kvm + 1); + if (ret) + return ret; + + nr_vcpus = READ_ONCE(host_kvm->created_vcpus); + if (nr_vcpus < 1) { + ret = -EINVAL; + goto err_unpin_kvm; + } + + vm_size = pkvm_get_hyp_vm_size(nr_vcpus); + pgd_size = kvm_pgtable_stage2_pgd_size(host_mmu.arch.vtcr); + + ret = -ENOMEM; + + hyp_vm = map_donated_memory(vm_hva, vm_size); + if (!hyp_vm) + goto err_remove_mappings; + + pgd = map_donated_memory_noclear(pgd_hva, pgd_size); + if (!pgd) + goto err_remove_mappings; + + init_pkvm_hyp_vm(host_kvm, hyp_vm, nr_vcpus); + + hyp_spin_lock(&vm_table_lock); + ret = insert_vm_table_entry(host_kvm, hyp_vm); + if (ret < 0) + goto err_unlock; + + ret = kvm_guest_prepare_stage2(hyp_vm, pgd); + if (ret) + goto err_remove_vm_table_entry; + hyp_spin_unlock(&vm_table_lock); + + return hyp_vm->kvm.arch.pkvm.handle; + +err_remove_vm_table_entry: + remove_vm_table_entry(hyp_vm->kvm.arch.pkvm.handle); +err_unlock: + hyp_spin_unlock(&vm_table_lock); +err_remove_mappings: + unmap_donated_memory(hyp_vm, vm_size); + unmap_donated_memory(pgd, pgd_size); +err_unpin_kvm: + hyp_unpin_shared_mem(host_kvm, host_kvm + 1); + return ret; +} + +/* + * Initialize the hypervisor copy of the protected vCPU state using the + * memory donated by the host. + * + * handle: The handle for the protected vm. + * host_vcpu: A pointer to the corresponding host vcpu. + * vcpu_hva: The host va of the area being donated for the vcpu state. + * Must be page aligned. The size of the area must be equal to + * the page-aligned size of 'struct pkvm_hyp_vcpu'. + * Return 0 on success, negative error code on failure. + */ +int __pkvm_init_vcpu(pkvm_handle_t handle, struct kvm_vcpu *host_vcpu, + unsigned long vcpu_hva) +{ + struct pkvm_hyp_vcpu *hyp_vcpu; + struct pkvm_hyp_vm *hyp_vm; + unsigned int idx; + int ret; + + hyp_vcpu = map_donated_memory(vcpu_hva, sizeof(*hyp_vcpu)); + if (!hyp_vcpu) + return -ENOMEM; + + hyp_spin_lock(&vm_table_lock); + + hyp_vm = get_vm_by_handle(handle); + if (!hyp_vm) { + ret = -ENOENT; + goto unlock; + } + + idx = hyp_vm->nr_vcpus; + if (idx >= hyp_vm->kvm.created_vcpus) { + ret = -EINVAL; + goto unlock; + } + + ret = init_pkvm_hyp_vcpu(hyp_vcpu, hyp_vm, host_vcpu, idx); + if (ret) + goto unlock; + + hyp_vm->vcpus[idx] = hyp_vcpu; + hyp_vm->nr_vcpus++; +unlock: + hyp_spin_unlock(&vm_table_lock); + + if (ret) + unmap_donated_memory(hyp_vcpu, sizeof(*hyp_vcpu)); + + return ret; +} + +static void +teardown_donated_memory(struct kvm_hyp_memcache *mc, void *addr, size_t size) +{ + size = PAGE_ALIGN(size); + memset(addr, 0, size); + + for (void *start = addr; start < addr + size; start += PAGE_SIZE) + push_hyp_memcache(mc, start, hyp_virt_to_phys); + + unmap_donated_memory_noclear(addr, size); +} + +int __pkvm_teardown_vm(pkvm_handle_t handle) +{ + struct kvm_hyp_memcache *mc; + struct pkvm_hyp_vm *hyp_vm; + struct kvm *host_kvm; + unsigned int idx; + size_t vm_size; + int err; + + hyp_spin_lock(&vm_table_lock); + hyp_vm = get_vm_by_handle(handle); + if (!hyp_vm) { + err = -ENOENT; + goto err_unlock; + } + + if (WARN_ON(hyp_page_count(hyp_vm))) { + err = -EBUSY; + goto err_unlock; + } + + host_kvm = hyp_vm->host_kvm; + + /* Ensure the VMID is clean before it can be reallocated */ + __kvm_tlb_flush_vmid(&hyp_vm->kvm.arch.mmu); + remove_vm_table_entry(handle); + hyp_spin_unlock(&vm_table_lock); + + /* Reclaim guest pages (including page-table pages) */ + mc = &host_kvm->arch.pkvm.teardown_mc; + reclaim_guest_pages(hyp_vm, mc); + unpin_host_vcpus(hyp_vm->vcpus, hyp_vm->nr_vcpus); + + /* Push the metadata pages to the teardown memcache */ + for (idx = 0; idx < hyp_vm->nr_vcpus; ++idx) { + struct pkvm_hyp_vcpu *hyp_vcpu = hyp_vm->vcpus[idx]; + + teardown_donated_memory(mc, hyp_vcpu, sizeof(*hyp_vcpu)); + } + + vm_size = pkvm_get_hyp_vm_size(hyp_vm->kvm.created_vcpus); + teardown_donated_memory(mc, hyp_vm, vm_size); + hyp_unpin_shared_mem(host_kvm, host_kvm + 1); + return 0; + +err_unlock: + hyp_spin_unlock(&vm_table_lock); + return err; +} diff --git a/arch/arm64/kvm/hyp/nvhe/psci-relay.c b/arch/arm64/kvm/hyp/nvhe/psci-relay.c new file mode 100644 index 0000000000..d57bcb6ab9 --- /dev/null +++ b/arch/arm64/kvm/hyp/nvhe/psci-relay.c @@ -0,0 +1,303 @@ +// SPDX-License-Identifier: GPL-2.0-only +/* + * Copyright (C) 2020 - Google LLC + * Author: David Brazdil <dbrazdil@google.com> + */ + +#include <asm/kvm_asm.h> +#include <asm/kvm_hyp.h> +#include <asm/kvm_mmu.h> +#include <linux/arm-smccc.h> +#include <linux/kvm_host.h> +#include <uapi/linux/psci.h> + +#include <nvhe/memory.h> +#include <nvhe/trap_handler.h> + +void kvm_hyp_cpu_entry(unsigned long r0); +void kvm_hyp_cpu_resume(unsigned long r0); + +void __noreturn __host_enter(struct kvm_cpu_context *host_ctxt); + +/* Config options set by the host. */ +struct kvm_host_psci_config __ro_after_init kvm_host_psci_config; + +#define INVALID_CPU_ID UINT_MAX + +struct psci_boot_args { + atomic_t lock; + unsigned long pc; + unsigned long r0; +}; + +#define PSCI_BOOT_ARGS_UNLOCKED 0 +#define PSCI_BOOT_ARGS_LOCKED 1 + +#define PSCI_BOOT_ARGS_INIT \ + ((struct psci_boot_args){ \ + .lock = ATOMIC_INIT(PSCI_BOOT_ARGS_UNLOCKED), \ + }) + +static DEFINE_PER_CPU(struct psci_boot_args, cpu_on_args) = PSCI_BOOT_ARGS_INIT; +static DEFINE_PER_CPU(struct psci_boot_args, suspend_args) = PSCI_BOOT_ARGS_INIT; + +#define is_psci_0_1(what, func_id) \ + (kvm_host_psci_config.psci_0_1_ ## what ## _implemented && \ + (func_id) == kvm_host_psci_config.function_ids_0_1.what) + +static bool is_psci_0_1_call(u64 func_id) +{ + return (is_psci_0_1(cpu_suspend, func_id) || + is_psci_0_1(cpu_on, func_id) || + is_psci_0_1(cpu_off, func_id) || + is_psci_0_1(migrate, func_id)); +} + +static bool is_psci_0_2_call(u64 func_id) +{ + /* SMCCC reserves IDs 0x00-1F with the given 32/64-bit base for PSCI. */ + return (PSCI_0_2_FN(0) <= func_id && func_id <= PSCI_0_2_FN(31)) || + (PSCI_0_2_FN64(0) <= func_id && func_id <= PSCI_0_2_FN64(31)); +} + +static unsigned long psci_call(unsigned long fn, unsigned long arg0, + unsigned long arg1, unsigned long arg2) +{ + struct arm_smccc_res res; + + arm_smccc_1_1_smc(fn, arg0, arg1, arg2, &res); + return res.a0; +} + +static unsigned long psci_forward(struct kvm_cpu_context *host_ctxt) +{ + return psci_call(cpu_reg(host_ctxt, 0), cpu_reg(host_ctxt, 1), + cpu_reg(host_ctxt, 2), cpu_reg(host_ctxt, 3)); +} + +static unsigned int find_cpu_id(u64 mpidr) +{ + unsigned int i; + + /* Reject invalid MPIDRs */ + if (mpidr & ~MPIDR_HWID_BITMASK) + return INVALID_CPU_ID; + + for (i = 0; i < NR_CPUS; i++) { + if (cpu_logical_map(i) == mpidr) + return i; + } + + return INVALID_CPU_ID; +} + +static __always_inline bool try_acquire_boot_args(struct psci_boot_args *args) +{ + return atomic_cmpxchg_acquire(&args->lock, + PSCI_BOOT_ARGS_UNLOCKED, + PSCI_BOOT_ARGS_LOCKED) == + PSCI_BOOT_ARGS_UNLOCKED; +} + +static __always_inline void release_boot_args(struct psci_boot_args *args) +{ + atomic_set_release(&args->lock, PSCI_BOOT_ARGS_UNLOCKED); +} + +static int psci_cpu_on(u64 func_id, struct kvm_cpu_context *host_ctxt) +{ + DECLARE_REG(u64, mpidr, host_ctxt, 1); + DECLARE_REG(unsigned long, pc, host_ctxt, 2); + DECLARE_REG(unsigned long, r0, host_ctxt, 3); + + unsigned int cpu_id; + struct psci_boot_args *boot_args; + struct kvm_nvhe_init_params *init_params; + int ret; + + /* + * Find the logical CPU ID for the given MPIDR. The search set is + * the set of CPUs that were online at the point of KVM initialization. + * Booting other CPUs is rejected because their cpufeatures were not + * checked against the finalized capabilities. This could be relaxed + * by doing the feature checks in hyp. + */ + cpu_id = find_cpu_id(mpidr); + if (cpu_id == INVALID_CPU_ID) + return PSCI_RET_INVALID_PARAMS; + + boot_args = per_cpu_ptr(&cpu_on_args, cpu_id); + init_params = per_cpu_ptr(&kvm_init_params, cpu_id); + + /* Check if the target CPU is already being booted. */ + if (!try_acquire_boot_args(boot_args)) + return PSCI_RET_ALREADY_ON; + + boot_args->pc = pc; + boot_args->r0 = r0; + wmb(); + + ret = psci_call(func_id, mpidr, + __hyp_pa(&kvm_hyp_cpu_entry), + __hyp_pa(init_params)); + + /* If successful, the lock will be released by the target CPU. */ + if (ret != PSCI_RET_SUCCESS) + release_boot_args(boot_args); + + return ret; +} + +static int psci_cpu_suspend(u64 func_id, struct kvm_cpu_context *host_ctxt) +{ + DECLARE_REG(u64, power_state, host_ctxt, 1); + DECLARE_REG(unsigned long, pc, host_ctxt, 2); + DECLARE_REG(unsigned long, r0, host_ctxt, 3); + + struct psci_boot_args *boot_args; + struct kvm_nvhe_init_params *init_params; + + boot_args = this_cpu_ptr(&suspend_args); + init_params = this_cpu_ptr(&kvm_init_params); + + /* + * No need to acquire a lock before writing to boot_args because a core + * can only suspend itself. Racy CPU_ON calls use a separate struct. + */ + boot_args->pc = pc; + boot_args->r0 = r0; + + /* + * Will either return if shallow sleep state, or wake up into the entry + * point if it is a deep sleep state. + */ + return psci_call(func_id, power_state, + __hyp_pa(&kvm_hyp_cpu_resume), + __hyp_pa(init_params)); +} + +static int psci_system_suspend(u64 func_id, struct kvm_cpu_context *host_ctxt) +{ + DECLARE_REG(unsigned long, pc, host_ctxt, 1); + DECLARE_REG(unsigned long, r0, host_ctxt, 2); + + struct psci_boot_args *boot_args; + struct kvm_nvhe_init_params *init_params; + + boot_args = this_cpu_ptr(&suspend_args); + init_params = this_cpu_ptr(&kvm_init_params); + + /* + * No need to acquire a lock before writing to boot_args because a core + * can only suspend itself. Racy CPU_ON calls use a separate struct. + */ + boot_args->pc = pc; + boot_args->r0 = r0; + + /* Will only return on error. */ + return psci_call(func_id, + __hyp_pa(&kvm_hyp_cpu_resume), + __hyp_pa(init_params), 0); +} + +asmlinkage void __noreturn __kvm_host_psci_cpu_entry(bool is_cpu_on) +{ + struct psci_boot_args *boot_args; + struct kvm_cpu_context *host_ctxt; + + host_ctxt = &this_cpu_ptr(&kvm_host_data)->host_ctxt; + + if (is_cpu_on) + boot_args = this_cpu_ptr(&cpu_on_args); + else + boot_args = this_cpu_ptr(&suspend_args); + + cpu_reg(host_ctxt, 0) = boot_args->r0; + write_sysreg_el2(boot_args->pc, SYS_ELR); + + if (is_cpu_on) + release_boot_args(boot_args); + + __host_enter(host_ctxt); +} + +static unsigned long psci_0_1_handler(u64 func_id, struct kvm_cpu_context *host_ctxt) +{ + if (is_psci_0_1(cpu_off, func_id) || is_psci_0_1(migrate, func_id)) + return psci_forward(host_ctxt); + if (is_psci_0_1(cpu_on, func_id)) + return psci_cpu_on(func_id, host_ctxt); + if (is_psci_0_1(cpu_suspend, func_id)) + return psci_cpu_suspend(func_id, host_ctxt); + + return PSCI_RET_NOT_SUPPORTED; +} + +static unsigned long psci_0_2_handler(u64 func_id, struct kvm_cpu_context *host_ctxt) +{ + switch (func_id) { + case PSCI_0_2_FN_PSCI_VERSION: + case PSCI_0_2_FN_CPU_OFF: + case PSCI_0_2_FN64_AFFINITY_INFO: + case PSCI_0_2_FN64_MIGRATE: + case PSCI_0_2_FN_MIGRATE_INFO_TYPE: + case PSCI_0_2_FN64_MIGRATE_INFO_UP_CPU: + return psci_forward(host_ctxt); + /* + * SYSTEM_OFF/RESET should not return according to the spec. + * Allow it so as to stay robust to broken firmware. + */ + case PSCI_0_2_FN_SYSTEM_OFF: + case PSCI_0_2_FN_SYSTEM_RESET: + return psci_forward(host_ctxt); + case PSCI_0_2_FN64_CPU_SUSPEND: + return psci_cpu_suspend(func_id, host_ctxt); + case PSCI_0_2_FN64_CPU_ON: + return psci_cpu_on(func_id, host_ctxt); + default: + return PSCI_RET_NOT_SUPPORTED; + } +} + +static unsigned long psci_1_0_handler(u64 func_id, struct kvm_cpu_context *host_ctxt) +{ + switch (func_id) { + case PSCI_1_0_FN_PSCI_FEATURES: + case PSCI_1_0_FN_SET_SUSPEND_MODE: + case PSCI_1_1_FN64_SYSTEM_RESET2: + return psci_forward(host_ctxt); + case PSCI_1_0_FN64_SYSTEM_SUSPEND: + return psci_system_suspend(func_id, host_ctxt); + default: + return psci_0_2_handler(func_id, host_ctxt); + } +} + +bool kvm_host_psci_handler(struct kvm_cpu_context *host_ctxt, u32 func_id) +{ + unsigned long ret; + + switch (kvm_host_psci_config.version) { + case PSCI_VERSION(0, 1): + if (!is_psci_0_1_call(func_id)) + return false; + ret = psci_0_1_handler(func_id, host_ctxt); + break; + case PSCI_VERSION(0, 2): + if (!is_psci_0_2_call(func_id)) + return false; + ret = psci_0_2_handler(func_id, host_ctxt); + break; + default: + if (!is_psci_0_2_call(func_id)) + return false; + ret = psci_1_0_handler(func_id, host_ctxt); + break; + } + + cpu_reg(host_ctxt, 0) = ret; + cpu_reg(host_ctxt, 1) = 0; + cpu_reg(host_ctxt, 2) = 0; + cpu_reg(host_ctxt, 3) = 0; + return true; +} diff --git a/arch/arm64/kvm/hyp/nvhe/setup.c b/arch/arm64/kvm/hyp/nvhe/setup.c new file mode 100644 index 0000000000..0d5e0a89dd --- /dev/null +++ b/arch/arm64/kvm/hyp/nvhe/setup.c @@ -0,0 +1,346 @@ +// SPDX-License-Identifier: GPL-2.0-only +/* + * Copyright (C) 2020 Google LLC + * Author: Quentin Perret <qperret@google.com> + */ + +#include <linux/kvm_host.h> +#include <asm/kvm_hyp.h> +#include <asm/kvm_mmu.h> +#include <asm/kvm_pgtable.h> +#include <asm/kvm_pkvm.h> + +#include <nvhe/early_alloc.h> +#include <nvhe/ffa.h> +#include <nvhe/fixed_config.h> +#include <nvhe/gfp.h> +#include <nvhe/memory.h> +#include <nvhe/mem_protect.h> +#include <nvhe/mm.h> +#include <nvhe/pkvm.h> +#include <nvhe/trap_handler.h> + +unsigned long hyp_nr_cpus; + +#define hyp_percpu_size ((unsigned long)__per_cpu_end - \ + (unsigned long)__per_cpu_start) + +static void *vmemmap_base; +static void *vm_table_base; +static void *hyp_pgt_base; +static void *host_s2_pgt_base; +static void *ffa_proxy_pages; +static struct kvm_pgtable_mm_ops pkvm_pgtable_mm_ops; +static struct hyp_pool hpool; + +static int divide_memory_pool(void *virt, unsigned long size) +{ + unsigned long nr_pages; + + hyp_early_alloc_init(virt, size); + + nr_pages = hyp_vmemmap_pages(sizeof(struct hyp_page)); + vmemmap_base = hyp_early_alloc_contig(nr_pages); + if (!vmemmap_base) + return -ENOMEM; + + nr_pages = hyp_vm_table_pages(); + vm_table_base = hyp_early_alloc_contig(nr_pages); + if (!vm_table_base) + return -ENOMEM; + + nr_pages = hyp_s1_pgtable_pages(); + hyp_pgt_base = hyp_early_alloc_contig(nr_pages); + if (!hyp_pgt_base) + return -ENOMEM; + + nr_pages = host_s2_pgtable_pages(); + host_s2_pgt_base = hyp_early_alloc_contig(nr_pages); + if (!host_s2_pgt_base) + return -ENOMEM; + + nr_pages = hyp_ffa_proxy_pages(); + ffa_proxy_pages = hyp_early_alloc_contig(nr_pages); + if (!ffa_proxy_pages) + return -ENOMEM; + + return 0; +} + +static int recreate_hyp_mappings(phys_addr_t phys, unsigned long size, + unsigned long *per_cpu_base, + u32 hyp_va_bits) +{ + void *start, *end, *virt = hyp_phys_to_virt(phys); + unsigned long pgt_size = hyp_s1_pgtable_pages() << PAGE_SHIFT; + enum kvm_pgtable_prot prot; + int ret, i; + + /* Recreate the hyp page-table using the early page allocator */ + hyp_early_alloc_init(hyp_pgt_base, pgt_size); + ret = kvm_pgtable_hyp_init(&pkvm_pgtable, hyp_va_bits, + &hyp_early_alloc_mm_ops); + if (ret) + return ret; + + ret = hyp_create_idmap(hyp_va_bits); + if (ret) + return ret; + + ret = hyp_map_vectors(); + if (ret) + return ret; + + ret = hyp_back_vmemmap(hyp_virt_to_phys(vmemmap_base)); + if (ret) + return ret; + + ret = pkvm_create_mappings(__hyp_text_start, __hyp_text_end, PAGE_HYP_EXEC); + if (ret) + return ret; + + ret = pkvm_create_mappings(__hyp_rodata_start, __hyp_rodata_end, PAGE_HYP_RO); + if (ret) + return ret; + + ret = pkvm_create_mappings(__hyp_bss_start, __hyp_bss_end, PAGE_HYP); + if (ret) + return ret; + + ret = pkvm_create_mappings(virt, virt + size, PAGE_HYP); + if (ret) + return ret; + + for (i = 0; i < hyp_nr_cpus; i++) { + struct kvm_nvhe_init_params *params = per_cpu_ptr(&kvm_init_params, i); + + start = (void *)kern_hyp_va(per_cpu_base[i]); + end = start + PAGE_ALIGN(hyp_percpu_size); + ret = pkvm_create_mappings(start, end, PAGE_HYP); + if (ret) + return ret; + + ret = pkvm_create_stack(params->stack_pa, ¶ms->stack_hyp_va); + if (ret) + return ret; + } + + /* + * Map the host sections RO in the hypervisor, but transfer the + * ownership from the host to the hypervisor itself to make sure they + * can't be donated or shared with another entity. + * + * The ownership transition requires matching changes in the host + * stage-2. This will be done later (see finalize_host_mappings()) once + * the hyp_vmemmap is addressable. + */ + prot = pkvm_mkstate(PAGE_HYP_RO, PKVM_PAGE_SHARED_OWNED); + ret = pkvm_create_mappings(&kvm_vgic_global_state, + &kvm_vgic_global_state + 1, prot); + if (ret) + return ret; + + return 0; +} + +static void update_nvhe_init_params(void) +{ + struct kvm_nvhe_init_params *params; + unsigned long i; + + for (i = 0; i < hyp_nr_cpus; i++) { + params = per_cpu_ptr(&kvm_init_params, i); + params->pgd_pa = __hyp_pa(pkvm_pgtable.pgd); + dcache_clean_inval_poc((unsigned long)params, + (unsigned long)params + sizeof(*params)); + } +} + +static void *hyp_zalloc_hyp_page(void *arg) +{ + return hyp_alloc_pages(&hpool, 0); +} + +static void hpool_get_page(void *addr) +{ + hyp_get_page(&hpool, addr); +} + +static void hpool_put_page(void *addr) +{ + hyp_put_page(&hpool, addr); +} + +static int fix_host_ownership_walker(const struct kvm_pgtable_visit_ctx *ctx, + enum kvm_pgtable_walk_flags visit) +{ + enum kvm_pgtable_prot prot; + enum pkvm_page_state state; + phys_addr_t phys; + + if (!kvm_pte_valid(ctx->old)) + return 0; + + if (ctx->level != (KVM_PGTABLE_MAX_LEVELS - 1)) + return -EINVAL; + + phys = kvm_pte_to_phys(ctx->old); + if (!addr_is_memory(phys)) + return -EINVAL; + + /* + * Adjust the host stage-2 mappings to match the ownership attributes + * configured in the hypervisor stage-1. + */ + state = pkvm_getstate(kvm_pgtable_hyp_pte_prot(ctx->old)); + switch (state) { + case PKVM_PAGE_OWNED: + return host_stage2_set_owner_locked(phys, PAGE_SIZE, PKVM_ID_HYP); + case PKVM_PAGE_SHARED_OWNED: + prot = pkvm_mkstate(PKVM_HOST_MEM_PROT, PKVM_PAGE_SHARED_BORROWED); + break; + case PKVM_PAGE_SHARED_BORROWED: + prot = pkvm_mkstate(PKVM_HOST_MEM_PROT, PKVM_PAGE_SHARED_OWNED); + break; + default: + return -EINVAL; + } + + return host_stage2_idmap_locked(phys, PAGE_SIZE, prot); +} + +static int fix_hyp_pgtable_refcnt_walker(const struct kvm_pgtable_visit_ctx *ctx, + enum kvm_pgtable_walk_flags visit) +{ + /* + * Fix-up the refcount for the page-table pages as the early allocator + * was unable to access the hyp_vmemmap and so the buddy allocator has + * initialised the refcount to '1'. + */ + if (kvm_pte_valid(ctx->old)) + ctx->mm_ops->get_page(ctx->ptep); + + return 0; +} + +static int fix_host_ownership(void) +{ + struct kvm_pgtable_walker walker = { + .cb = fix_host_ownership_walker, + .flags = KVM_PGTABLE_WALK_LEAF, + }; + int i, ret; + + for (i = 0; i < hyp_memblock_nr; i++) { + struct memblock_region *reg = &hyp_memory[i]; + u64 start = (u64)hyp_phys_to_virt(reg->base); + + ret = kvm_pgtable_walk(&pkvm_pgtable, start, reg->size, &walker); + if (ret) + return ret; + } + + return 0; +} + +static int fix_hyp_pgtable_refcnt(void) +{ + struct kvm_pgtable_walker walker = { + .cb = fix_hyp_pgtable_refcnt_walker, + .flags = KVM_PGTABLE_WALK_LEAF | KVM_PGTABLE_WALK_TABLE_POST, + .arg = pkvm_pgtable.mm_ops, + }; + + return kvm_pgtable_walk(&pkvm_pgtable, 0, BIT(pkvm_pgtable.ia_bits), + &walker); +} + +void __noreturn __pkvm_init_finalise(void) +{ + struct kvm_host_data *host_data = this_cpu_ptr(&kvm_host_data); + struct kvm_cpu_context *host_ctxt = &host_data->host_ctxt; + unsigned long nr_pages, reserved_pages, pfn; + int ret; + + /* Now that the vmemmap is backed, install the full-fledged allocator */ + pfn = hyp_virt_to_pfn(hyp_pgt_base); + nr_pages = hyp_s1_pgtable_pages(); + reserved_pages = hyp_early_alloc_nr_used_pages(); + ret = hyp_pool_init(&hpool, pfn, nr_pages, reserved_pages); + if (ret) + goto out; + + ret = kvm_host_prepare_stage2(host_s2_pgt_base); + if (ret) + goto out; + + pkvm_pgtable_mm_ops = (struct kvm_pgtable_mm_ops) { + .zalloc_page = hyp_zalloc_hyp_page, + .phys_to_virt = hyp_phys_to_virt, + .virt_to_phys = hyp_virt_to_phys, + .get_page = hpool_get_page, + .put_page = hpool_put_page, + .page_count = hyp_page_count, + }; + pkvm_pgtable.mm_ops = &pkvm_pgtable_mm_ops; + + ret = fix_host_ownership(); + if (ret) + goto out; + + ret = fix_hyp_pgtable_refcnt(); + if (ret) + goto out; + + ret = hyp_create_pcpu_fixmap(); + if (ret) + goto out; + + ret = hyp_ffa_init(ffa_proxy_pages); + if (ret) + goto out; + + pkvm_hyp_vm_table_init(vm_table_base); +out: + /* + * We tail-called to here from handle___pkvm_init() and will not return, + * so make sure to propagate the return value to the host. + */ + cpu_reg(host_ctxt, 1) = ret; + + __host_enter(host_ctxt); +} + +int __pkvm_init(phys_addr_t phys, unsigned long size, unsigned long nr_cpus, + unsigned long *per_cpu_base, u32 hyp_va_bits) +{ + struct kvm_nvhe_init_params *params; + void *virt = hyp_phys_to_virt(phys); + void (*fn)(phys_addr_t params_pa, void *finalize_fn_va); + int ret; + + BUG_ON(kvm_check_pvm_sysreg_table()); + + if (!PAGE_ALIGNED(phys) || !PAGE_ALIGNED(size)) + return -EINVAL; + + hyp_spin_lock_init(&pkvm_pgd_lock); + hyp_nr_cpus = nr_cpus; + + ret = divide_memory_pool(virt, size); + if (ret) + return ret; + + ret = recreate_hyp_mappings(phys, size, per_cpu_base, hyp_va_bits); + if (ret) + return ret; + + update_nvhe_init_params(); + + /* Jump in the idmap page to switch to the new page-tables */ + params = this_cpu_ptr(&kvm_init_params); + fn = (typeof(fn))__hyp_pa(__pkvm_init_switch_pgd); + fn(__hyp_pa(params), __pkvm_init_finalise); + + unreachable(); +} diff --git a/arch/arm64/kvm/hyp/nvhe/stacktrace.c b/arch/arm64/kvm/hyp/nvhe/stacktrace.c new file mode 100644 index 0000000000..ed6b58b19c --- /dev/null +++ b/arch/arm64/kvm/hyp/nvhe/stacktrace.c @@ -0,0 +1,158 @@ +// SPDX-License-Identifier: GPL-2.0-only +/* + * KVM nVHE hypervisor stack tracing support. + * + * Copyright (C) 2022 Google LLC + */ +#include <asm/kvm_asm.h> +#include <asm/kvm_hyp.h> +#include <asm/memory.h> +#include <asm/percpu.h> + +DEFINE_PER_CPU(unsigned long [OVERFLOW_STACK_SIZE/sizeof(long)], overflow_stack) + __aligned(16); + +DEFINE_PER_CPU(struct kvm_nvhe_stacktrace_info, kvm_stacktrace_info); + +/* + * hyp_prepare_backtrace - Prepare non-protected nVHE backtrace. + * + * @fp : frame pointer at which to start the unwinding. + * @pc : program counter at which to start the unwinding. + * + * Save the information needed by the host to unwind the non-protected + * nVHE hypervisor stack in EL1. + */ +static void hyp_prepare_backtrace(unsigned long fp, unsigned long pc) +{ + struct kvm_nvhe_stacktrace_info *stacktrace_info = this_cpu_ptr(&kvm_stacktrace_info); + struct kvm_nvhe_init_params *params = this_cpu_ptr(&kvm_init_params); + + stacktrace_info->stack_base = (unsigned long)(params->stack_hyp_va - PAGE_SIZE); + stacktrace_info->overflow_stack_base = (unsigned long)this_cpu_ptr(overflow_stack); + stacktrace_info->fp = fp; + stacktrace_info->pc = pc; +} + +#ifdef CONFIG_PROTECTED_NVHE_STACKTRACE +#include <asm/stacktrace/nvhe.h> + +DEFINE_PER_CPU(unsigned long [NVHE_STACKTRACE_SIZE/sizeof(long)], pkvm_stacktrace); + +static struct stack_info stackinfo_get_overflow(void) +{ + unsigned long low = (unsigned long)this_cpu_ptr(overflow_stack); + unsigned long high = low + OVERFLOW_STACK_SIZE; + + return (struct stack_info) { + .low = low, + .high = high, + }; +} + +static struct stack_info stackinfo_get_hyp(void) +{ + struct kvm_nvhe_init_params *params = this_cpu_ptr(&kvm_init_params); + unsigned long high = params->stack_hyp_va; + unsigned long low = high - PAGE_SIZE; + + return (struct stack_info) { + .low = low, + .high = high, + }; +} + +static int unwind_next(struct unwind_state *state) +{ + return unwind_next_frame_record(state); +} + +static void notrace unwind(struct unwind_state *state, + stack_trace_consume_fn consume_entry, + void *cookie) +{ + while (1) { + int ret; + + if (!consume_entry(cookie, state->pc)) + break; + ret = unwind_next(state); + if (ret < 0) + break; + } +} + +/* + * pkvm_save_backtrace_entry - Saves a protected nVHE HYP stacktrace entry + * + * @arg : index of the entry in the stacktrace buffer + * @where : the program counter corresponding to the stack frame + * + * Save the return address of a stack frame to the shared stacktrace buffer. + * The host can access this shared buffer from EL1 to dump the backtrace. + */ +static bool pkvm_save_backtrace_entry(void *arg, unsigned long where) +{ + unsigned long *stacktrace = this_cpu_ptr(pkvm_stacktrace); + int *idx = (int *)arg; + + /* + * Need 2 free slots: 1 for current entry and 1 for the + * delimiter. + */ + if (*idx > ARRAY_SIZE(pkvm_stacktrace) - 2) + return false; + + stacktrace[*idx] = where; + stacktrace[++*idx] = 0UL; + + return true; +} + +/* + * pkvm_save_backtrace - Saves the protected nVHE HYP stacktrace + * + * @fp : frame pointer at which to start the unwinding. + * @pc : program counter at which to start the unwinding. + * + * Save the unwinded stack addresses to the shared stacktrace buffer. + * The host can access this shared buffer from EL1 to dump the backtrace. + */ +static void pkvm_save_backtrace(unsigned long fp, unsigned long pc) +{ + struct stack_info stacks[] = { + stackinfo_get_overflow(), + stackinfo_get_hyp(), + }; + struct unwind_state state = { + .stacks = stacks, + .nr_stacks = ARRAY_SIZE(stacks), + }; + int idx = 0; + + kvm_nvhe_unwind_init(&state, fp, pc); + + unwind(&state, pkvm_save_backtrace_entry, &idx); +} +#else /* !CONFIG_PROTECTED_NVHE_STACKTRACE */ +static void pkvm_save_backtrace(unsigned long fp, unsigned long pc) +{ +} +#endif /* CONFIG_PROTECTED_NVHE_STACKTRACE */ + +/* + * kvm_nvhe_prepare_backtrace - prepare to dump the nVHE backtrace + * + * @fp : frame pointer at which to start the unwinding. + * @pc : program counter at which to start the unwinding. + * + * Saves the information needed by the host to dump the nVHE hypervisor + * backtrace. + */ +void kvm_nvhe_prepare_backtrace(unsigned long fp, unsigned long pc) +{ + if (is_protected_kvm_enabled()) + pkvm_save_backtrace(fp, pc); + else + hyp_prepare_backtrace(fp, pc); +} diff --git a/arch/arm64/kvm/hyp/nvhe/switch.c b/arch/arm64/kvm/hyp/nvhe/switch.c new file mode 100644 index 0000000000..c353a06ee7 --- /dev/null +++ b/arch/arm64/kvm/hyp/nvhe/switch.c @@ -0,0 +1,394 @@ +// SPDX-License-Identifier: GPL-2.0-only +/* + * Copyright (C) 2015 - ARM Ltd + * Author: Marc Zyngier <marc.zyngier@arm.com> + */ + +#include <hyp/switch.h> +#include <hyp/sysreg-sr.h> + +#include <linux/arm-smccc.h> +#include <linux/kvm_host.h> +#include <linux/types.h> +#include <linux/jump_label.h> +#include <uapi/linux/psci.h> + +#include <kvm/arm_psci.h> + +#include <asm/barrier.h> +#include <asm/cpufeature.h> +#include <asm/kprobes.h> +#include <asm/kvm_asm.h> +#include <asm/kvm_emulate.h> +#include <asm/kvm_hyp.h> +#include <asm/kvm_mmu.h> +#include <asm/fpsimd.h> +#include <asm/debug-monitors.h> +#include <asm/processor.h> + +#include <nvhe/fixed_config.h> +#include <nvhe/mem_protect.h> + +/* Non-VHE specific context */ +DEFINE_PER_CPU(struct kvm_host_data, kvm_host_data); +DEFINE_PER_CPU(struct kvm_cpu_context, kvm_hyp_ctxt); +DEFINE_PER_CPU(unsigned long, kvm_hyp_vector); + +extern void kvm_nvhe_prepare_backtrace(unsigned long fp, unsigned long pc); + +static void __activate_traps(struct kvm_vcpu *vcpu) +{ + u64 val; + + ___activate_traps(vcpu); + __activate_traps_common(vcpu); + + val = vcpu->arch.cptr_el2; + val |= CPTR_EL2_TAM; /* Same bit irrespective of E2H */ + val |= has_hvhe() ? CPACR_EL1_TTA : CPTR_EL2_TTA; + if (cpus_have_final_cap(ARM64_SME)) { + if (has_hvhe()) + val &= ~(CPACR_EL1_SMEN_EL1EN | CPACR_EL1_SMEN_EL0EN); + else + val |= CPTR_EL2_TSM; + } + + if (!guest_owns_fp_regs(vcpu)) { + if (has_hvhe()) + val &= ~(CPACR_EL1_FPEN_EL0EN | CPACR_EL1_FPEN_EL1EN | + CPACR_EL1_ZEN_EL0EN | CPACR_EL1_ZEN_EL1EN); + else + val |= CPTR_EL2_TFP | CPTR_EL2_TZ; + + __activate_traps_fpsimd32(vcpu); + } + + kvm_write_cptr_el2(val); + write_sysreg(__this_cpu_read(kvm_hyp_vector), vbar_el2); + + if (cpus_have_final_cap(ARM64_WORKAROUND_SPECULATIVE_AT)) { + struct kvm_cpu_context *ctxt = &vcpu->arch.ctxt; + + isb(); + /* + * At this stage, and thanks to the above isb(), S2 is + * configured and enabled. We can now restore the guest's S1 + * configuration: SCTLR, and only then TCR. + */ + write_sysreg_el1(ctxt_sys_reg(ctxt, SCTLR_EL1), SYS_SCTLR); + isb(); + write_sysreg_el1(ctxt_sys_reg(ctxt, TCR_EL1), SYS_TCR); + } +} + +static void __deactivate_traps(struct kvm_vcpu *vcpu) +{ + extern char __kvm_hyp_host_vector[]; + + ___deactivate_traps(vcpu); + + if (cpus_have_final_cap(ARM64_WORKAROUND_SPECULATIVE_AT)) { + u64 val; + + /* + * Set the TCR and SCTLR registers in the exact opposite + * sequence as __activate_traps (first prevent walks, + * then force the MMU on). A generous sprinkling of isb() + * ensure that things happen in this exact order. + */ + val = read_sysreg_el1(SYS_TCR); + write_sysreg_el1(val | TCR_EPD1_MASK | TCR_EPD0_MASK, SYS_TCR); + isb(); + val = read_sysreg_el1(SYS_SCTLR); + write_sysreg_el1(val | SCTLR_ELx_M, SYS_SCTLR); + isb(); + } + + __deactivate_traps_common(vcpu); + + write_sysreg(this_cpu_ptr(&kvm_init_params)->hcr_el2, hcr_el2); + + kvm_reset_cptr_el2(vcpu); + write_sysreg(__kvm_hyp_host_vector, vbar_el2); +} + +/* Save VGICv3 state on non-VHE systems */ +static void __hyp_vgic_save_state(struct kvm_vcpu *vcpu) +{ + if (static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif)) { + __vgic_v3_save_state(&vcpu->arch.vgic_cpu.vgic_v3); + __vgic_v3_deactivate_traps(&vcpu->arch.vgic_cpu.vgic_v3); + } +} + +/* Restore VGICv3 state on non-VHE systems */ +static void __hyp_vgic_restore_state(struct kvm_vcpu *vcpu) +{ + if (static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif)) { + __vgic_v3_activate_traps(&vcpu->arch.vgic_cpu.vgic_v3); + __vgic_v3_restore_state(&vcpu->arch.vgic_cpu.vgic_v3); + } +} + +/* + * Disable host events, enable guest events + */ +#ifdef CONFIG_HW_PERF_EVENTS +static bool __pmu_switch_to_guest(struct kvm_vcpu *vcpu) +{ + struct kvm_pmu_events *pmu = &vcpu->arch.pmu.events; + + if (pmu->events_host) + write_sysreg(pmu->events_host, pmcntenclr_el0); + + if (pmu->events_guest) + write_sysreg(pmu->events_guest, pmcntenset_el0); + + return (pmu->events_host || pmu->events_guest); +} + +/* + * Disable guest events, enable host events + */ +static void __pmu_switch_to_host(struct kvm_vcpu *vcpu) +{ + struct kvm_pmu_events *pmu = &vcpu->arch.pmu.events; + + if (pmu->events_guest) + write_sysreg(pmu->events_guest, pmcntenclr_el0); + + if (pmu->events_host) + write_sysreg(pmu->events_host, pmcntenset_el0); +} +#else +#define __pmu_switch_to_guest(v) ({ false; }) +#define __pmu_switch_to_host(v) do {} while (0) +#endif + +/* + * Handler for protected VM MSR, MRS or System instruction execution in AArch64. + * + * Returns true if the hypervisor has handled the exit, and control should go + * back to the guest, or false if it hasn't. + */ +static bool kvm_handle_pvm_sys64(struct kvm_vcpu *vcpu, u64 *exit_code) +{ + /* + * Make sure we handle the exit for workarounds and ptrauth + * before the pKVM handling, as the latter could decide to + * UNDEF. + */ + return (kvm_hyp_handle_sysreg(vcpu, exit_code) || + kvm_handle_pvm_sysreg(vcpu, exit_code)); +} + +static const exit_handler_fn hyp_exit_handlers[] = { + [0 ... ESR_ELx_EC_MAX] = NULL, + [ESR_ELx_EC_CP15_32] = kvm_hyp_handle_cp15_32, + [ESR_ELx_EC_SYS64] = kvm_hyp_handle_sysreg, + [ESR_ELx_EC_SVE] = kvm_hyp_handle_fpsimd, + [ESR_ELx_EC_FP_ASIMD] = kvm_hyp_handle_fpsimd, + [ESR_ELx_EC_IABT_LOW] = kvm_hyp_handle_iabt_low, + [ESR_ELx_EC_DABT_LOW] = kvm_hyp_handle_dabt_low, + [ESR_ELx_EC_WATCHPT_LOW] = kvm_hyp_handle_watchpt_low, + [ESR_ELx_EC_PAC] = kvm_hyp_handle_ptrauth, +}; + +static const exit_handler_fn pvm_exit_handlers[] = { + [0 ... ESR_ELx_EC_MAX] = NULL, + [ESR_ELx_EC_SYS64] = kvm_handle_pvm_sys64, + [ESR_ELx_EC_SVE] = kvm_handle_pvm_restricted, + [ESR_ELx_EC_FP_ASIMD] = kvm_hyp_handle_fpsimd, + [ESR_ELx_EC_IABT_LOW] = kvm_hyp_handle_iabt_low, + [ESR_ELx_EC_DABT_LOW] = kvm_hyp_handle_dabt_low, + [ESR_ELx_EC_WATCHPT_LOW] = kvm_hyp_handle_watchpt_low, + [ESR_ELx_EC_PAC] = kvm_hyp_handle_ptrauth, +}; + +static const exit_handler_fn *kvm_get_exit_handler_array(struct kvm_vcpu *vcpu) +{ + if (unlikely(kvm_vm_is_protected(kern_hyp_va(vcpu->kvm)))) + return pvm_exit_handlers; + + return hyp_exit_handlers; +} + +/* + * Some guests (e.g., protected VMs) are not be allowed to run in AArch32. + * The ARMv8 architecture does not give the hypervisor a mechanism to prevent a + * guest from dropping to AArch32 EL0 if implemented by the CPU. If the + * hypervisor spots a guest in such a state ensure it is handled, and don't + * trust the host to spot or fix it. The check below is based on the one in + * kvm_arch_vcpu_ioctl_run(). + * + * Returns false if the guest ran in AArch32 when it shouldn't have, and + * thus should exit to the host, or true if a the guest run loop can continue. + */ +static void early_exit_filter(struct kvm_vcpu *vcpu, u64 *exit_code) +{ + struct kvm *kvm = kern_hyp_va(vcpu->kvm); + + if (kvm_vm_is_protected(kvm) && vcpu_mode_is_32bit(vcpu)) { + /* + * As we have caught the guest red-handed, decide that it isn't + * fit for purpose anymore by making the vcpu invalid. The VMM + * can try and fix it by re-initializing the vcpu with + * KVM_ARM_VCPU_INIT, however, this is likely not possible for + * protected VMs. + */ + vcpu_clear_flag(vcpu, VCPU_INITIALIZED); + *exit_code &= BIT(ARM_EXIT_WITH_SERROR_BIT); + *exit_code |= ARM_EXCEPTION_IL; + } +} + +/* Switch to the guest for legacy non-VHE systems */ +int __kvm_vcpu_run(struct kvm_vcpu *vcpu) +{ + struct kvm_cpu_context *host_ctxt; + struct kvm_cpu_context *guest_ctxt; + struct kvm_s2_mmu *mmu; + bool pmu_switch_needed; + u64 exit_code; + + /* + * Having IRQs masked via PMR when entering the guest means the GIC + * will not signal the CPU of interrupts of lower priority, and the + * only way to get out will be via guest exceptions. + * Naturally, we want to avoid this. + */ + if (system_uses_irq_prio_masking()) { + gic_write_pmr(GIC_PRIO_IRQON | GIC_PRIO_PSR_I_SET); + pmr_sync(); + } + + host_ctxt = &this_cpu_ptr(&kvm_host_data)->host_ctxt; + host_ctxt->__hyp_running_vcpu = vcpu; + guest_ctxt = &vcpu->arch.ctxt; + + pmu_switch_needed = __pmu_switch_to_guest(vcpu); + + __sysreg_save_state_nvhe(host_ctxt); + /* + * We must flush and disable the SPE buffer for nVHE, as + * the translation regime(EL1&0) is going to be loaded with + * that of the guest. And we must do this before we change the + * translation regime to EL2 (via MDCR_EL2_E2PB == 0) and + * before we load guest Stage1. + */ + __debug_save_host_buffers_nvhe(vcpu); + + /* + * We're about to restore some new MMU state. Make sure + * ongoing page-table walks that have started before we + * trapped to EL2 have completed. This also synchronises the + * above disabling of SPE and TRBE. + * + * See DDI0487I.a D8.1.5 "Out-of-context translation regimes", + * rule R_LFHQG and subsequent information statements. + */ + dsb(nsh); + + __kvm_adjust_pc(vcpu); + + /* + * We must restore the 32-bit state before the sysregs, thanks + * to erratum #852523 (Cortex-A57) or #853709 (Cortex-A72). + * + * Also, and in order to be able to deal with erratum #1319537 (A57) + * and #1319367 (A72), we must ensure that all VM-related sysreg are + * restored before we enable S2 translation. + */ + __sysreg32_restore_state(vcpu); + __sysreg_restore_state_nvhe(guest_ctxt); + + mmu = kern_hyp_va(vcpu->arch.hw_mmu); + __load_stage2(mmu, kern_hyp_va(mmu->arch)); + __activate_traps(vcpu); + + __hyp_vgic_restore_state(vcpu); + __timer_enable_traps(vcpu); + + __debug_switch_to_guest(vcpu); + + do { + /* Jump in the fire! */ + exit_code = __guest_enter(vcpu); + + /* And we're baaack! */ + } while (fixup_guest_exit(vcpu, &exit_code)); + + __sysreg_save_state_nvhe(guest_ctxt); + __sysreg32_save_state(vcpu); + __timer_disable_traps(vcpu); + __hyp_vgic_save_state(vcpu); + + /* + * Same thing as before the guest run: we're about to switch + * the MMU context, so let's make sure we don't have any + * ongoing EL1&0 translations. + */ + dsb(nsh); + + __deactivate_traps(vcpu); + __load_host_stage2(); + + __sysreg_restore_state_nvhe(host_ctxt); + + if (vcpu->arch.fp_state == FP_STATE_GUEST_OWNED) + __fpsimd_save_fpexc32(vcpu); + + __debug_switch_to_host(vcpu); + /* + * This must come after restoring the host sysregs, since a non-VHE + * system may enable SPE here and make use of the TTBRs. + */ + __debug_restore_host_buffers_nvhe(vcpu); + + if (pmu_switch_needed) + __pmu_switch_to_host(vcpu); + + /* Returning to host will clear PSR.I, remask PMR if needed */ + if (system_uses_irq_prio_masking()) + gic_write_pmr(GIC_PRIO_IRQOFF); + + host_ctxt->__hyp_running_vcpu = NULL; + + return exit_code; +} + +asmlinkage void __noreturn hyp_panic(void) +{ + u64 spsr = read_sysreg_el2(SYS_SPSR); + u64 elr = read_sysreg_el2(SYS_ELR); + u64 par = read_sysreg_par(); + struct kvm_cpu_context *host_ctxt; + struct kvm_vcpu *vcpu; + + host_ctxt = &this_cpu_ptr(&kvm_host_data)->host_ctxt; + vcpu = host_ctxt->__hyp_running_vcpu; + + if (vcpu) { + __timer_disable_traps(vcpu); + __deactivate_traps(vcpu); + __load_host_stage2(); + __sysreg_restore_state_nvhe(host_ctxt); + } + + /* Prepare to dump kvm nvhe hyp stacktrace */ + kvm_nvhe_prepare_backtrace((unsigned long)__builtin_frame_address(0), + _THIS_IP_); + + __hyp_do_panic(host_ctxt, spsr, elr, par); + unreachable(); +} + +asmlinkage void __noreturn hyp_panic_bad_stack(void) +{ + hyp_panic(); +} + +asmlinkage void kvm_unexpected_el2_exception(void) +{ + __kvm_unexpected_el2_exception(); +} diff --git a/arch/arm64/kvm/hyp/nvhe/sys_regs.c b/arch/arm64/kvm/hyp/nvhe/sys_regs.c new file mode 100644 index 0000000000..edd969a1f3 --- /dev/null +++ b/arch/arm64/kvm/hyp/nvhe/sys_regs.c @@ -0,0 +1,516 @@ +// SPDX-License-Identifier: GPL-2.0-only +/* + * Copyright (C) 2021 Google LLC + * Author: Fuad Tabba <tabba@google.com> + */ + +#include <linux/irqchip/arm-gic-v3.h> + +#include <asm/kvm_asm.h> +#include <asm/kvm_mmu.h> + +#include <hyp/adjust_pc.h> + +#include <nvhe/fixed_config.h> + +#include "../../sys_regs.h" + +/* + * Copies of the host's CPU features registers holding sanitized values at hyp. + */ +u64 id_aa64pfr0_el1_sys_val; +u64 id_aa64pfr1_el1_sys_val; +u64 id_aa64isar0_el1_sys_val; +u64 id_aa64isar1_el1_sys_val; +u64 id_aa64isar2_el1_sys_val; +u64 id_aa64mmfr0_el1_sys_val; +u64 id_aa64mmfr1_el1_sys_val; +u64 id_aa64mmfr2_el1_sys_val; +u64 id_aa64smfr0_el1_sys_val; + +/* + * Inject an unknown/undefined exception to an AArch64 guest while most of its + * sysregs are live. + */ +static void inject_undef64(struct kvm_vcpu *vcpu) +{ + u64 esr = (ESR_ELx_EC_UNKNOWN << ESR_ELx_EC_SHIFT); + + *vcpu_pc(vcpu) = read_sysreg_el2(SYS_ELR); + *vcpu_cpsr(vcpu) = read_sysreg_el2(SYS_SPSR); + + kvm_pend_exception(vcpu, EXCEPT_AA64_EL1_SYNC); + + __kvm_adjust_pc(vcpu); + + write_sysreg_el1(esr, SYS_ESR); + write_sysreg_el1(read_sysreg_el2(SYS_ELR), SYS_ELR); + write_sysreg_el2(*vcpu_pc(vcpu), SYS_ELR); + write_sysreg_el2(*vcpu_cpsr(vcpu), SYS_SPSR); +} + +/* + * Returns the restricted features values of the feature register based on the + * limitations in restrict_fields. + * A feature id field value of 0b0000 does not impose any restrictions. + * Note: Use only for unsigned feature field values. + */ +static u64 get_restricted_features_unsigned(u64 sys_reg_val, + u64 restrict_fields) +{ + u64 value = 0UL; + u64 mask = GENMASK_ULL(ARM64_FEATURE_FIELD_BITS - 1, 0); + + /* + * According to the Arm Architecture Reference Manual, feature fields + * use increasing values to indicate increases in functionality. + * Iterate over the restricted feature fields and calculate the minimum + * unsigned value between the one supported by the system, and what the + * value is being restricted to. + */ + while (sys_reg_val && restrict_fields) { + value |= min(sys_reg_val & mask, restrict_fields & mask); + sys_reg_val &= ~mask; + restrict_fields &= ~mask; + mask <<= ARM64_FEATURE_FIELD_BITS; + } + + return value; +} + +/* + * Functions that return the value of feature id registers for protected VMs + * based on allowed features, system features, and KVM support. + */ + +static u64 get_pvm_id_aa64pfr0(const struct kvm_vcpu *vcpu) +{ + u64 set_mask = 0; + u64 allow_mask = PVM_ID_AA64PFR0_ALLOW; + + set_mask |= get_restricted_features_unsigned(id_aa64pfr0_el1_sys_val, + PVM_ID_AA64PFR0_RESTRICT_UNSIGNED); + + return (id_aa64pfr0_el1_sys_val & allow_mask) | set_mask; +} + +static u64 get_pvm_id_aa64pfr1(const struct kvm_vcpu *vcpu) +{ + const struct kvm *kvm = (const struct kvm *)kern_hyp_va(vcpu->kvm); + u64 allow_mask = PVM_ID_AA64PFR1_ALLOW; + + if (!kvm_has_mte(kvm)) + allow_mask &= ~ARM64_FEATURE_MASK(ID_AA64PFR1_EL1_MTE); + + return id_aa64pfr1_el1_sys_val & allow_mask; +} + +static u64 get_pvm_id_aa64zfr0(const struct kvm_vcpu *vcpu) +{ + /* + * No support for Scalable Vectors, therefore, hyp has no sanitized + * copy of the feature id register. + */ + BUILD_BUG_ON(PVM_ID_AA64ZFR0_ALLOW != 0ULL); + return 0; +} + +static u64 get_pvm_id_aa64dfr0(const struct kvm_vcpu *vcpu) +{ + /* + * No support for debug, including breakpoints, and watchpoints, + * therefore, pKVM has no sanitized copy of the feature id register. + */ + BUILD_BUG_ON(PVM_ID_AA64DFR0_ALLOW != 0ULL); + return 0; +} + +static u64 get_pvm_id_aa64dfr1(const struct kvm_vcpu *vcpu) +{ + /* + * No support for debug, therefore, hyp has no sanitized copy of the + * feature id register. + */ + BUILD_BUG_ON(PVM_ID_AA64DFR1_ALLOW != 0ULL); + return 0; +} + +static u64 get_pvm_id_aa64afr0(const struct kvm_vcpu *vcpu) +{ + /* + * No support for implementation defined features, therefore, hyp has no + * sanitized copy of the feature id register. + */ + BUILD_BUG_ON(PVM_ID_AA64AFR0_ALLOW != 0ULL); + return 0; +} + +static u64 get_pvm_id_aa64afr1(const struct kvm_vcpu *vcpu) +{ + /* + * No support for implementation defined features, therefore, hyp has no + * sanitized copy of the feature id register. + */ + BUILD_BUG_ON(PVM_ID_AA64AFR1_ALLOW != 0ULL); + return 0; +} + +static u64 get_pvm_id_aa64isar0(const struct kvm_vcpu *vcpu) +{ + return id_aa64isar0_el1_sys_val & PVM_ID_AA64ISAR0_ALLOW; +} + +static u64 get_pvm_id_aa64isar1(const struct kvm_vcpu *vcpu) +{ + u64 allow_mask = PVM_ID_AA64ISAR1_ALLOW; + + if (!vcpu_has_ptrauth(vcpu)) + allow_mask &= ~(ARM64_FEATURE_MASK(ID_AA64ISAR1_EL1_APA) | + ARM64_FEATURE_MASK(ID_AA64ISAR1_EL1_API) | + ARM64_FEATURE_MASK(ID_AA64ISAR1_EL1_GPA) | + ARM64_FEATURE_MASK(ID_AA64ISAR1_EL1_GPI)); + + return id_aa64isar1_el1_sys_val & allow_mask; +} + +static u64 get_pvm_id_aa64isar2(const struct kvm_vcpu *vcpu) +{ + u64 allow_mask = PVM_ID_AA64ISAR2_ALLOW; + + if (!vcpu_has_ptrauth(vcpu)) + allow_mask &= ~(ARM64_FEATURE_MASK(ID_AA64ISAR2_EL1_APA3) | + ARM64_FEATURE_MASK(ID_AA64ISAR2_EL1_GPA3)); + + return id_aa64isar2_el1_sys_val & allow_mask; +} + +static u64 get_pvm_id_aa64mmfr0(const struct kvm_vcpu *vcpu) +{ + u64 set_mask; + + set_mask = get_restricted_features_unsigned(id_aa64mmfr0_el1_sys_val, + PVM_ID_AA64MMFR0_RESTRICT_UNSIGNED); + + return (id_aa64mmfr0_el1_sys_val & PVM_ID_AA64MMFR0_ALLOW) | set_mask; +} + +static u64 get_pvm_id_aa64mmfr1(const struct kvm_vcpu *vcpu) +{ + return id_aa64mmfr1_el1_sys_val & PVM_ID_AA64MMFR1_ALLOW; +} + +static u64 get_pvm_id_aa64mmfr2(const struct kvm_vcpu *vcpu) +{ + return id_aa64mmfr2_el1_sys_val & PVM_ID_AA64MMFR2_ALLOW; +} + +/* Read a sanitized cpufeature ID register by its encoding */ +u64 pvm_read_id_reg(const struct kvm_vcpu *vcpu, u32 id) +{ + switch (id) { + case SYS_ID_AA64PFR0_EL1: + return get_pvm_id_aa64pfr0(vcpu); + case SYS_ID_AA64PFR1_EL1: + return get_pvm_id_aa64pfr1(vcpu); + case SYS_ID_AA64ZFR0_EL1: + return get_pvm_id_aa64zfr0(vcpu); + case SYS_ID_AA64DFR0_EL1: + return get_pvm_id_aa64dfr0(vcpu); + case SYS_ID_AA64DFR1_EL1: + return get_pvm_id_aa64dfr1(vcpu); + case SYS_ID_AA64AFR0_EL1: + return get_pvm_id_aa64afr0(vcpu); + case SYS_ID_AA64AFR1_EL1: + return get_pvm_id_aa64afr1(vcpu); + case SYS_ID_AA64ISAR0_EL1: + return get_pvm_id_aa64isar0(vcpu); + case SYS_ID_AA64ISAR1_EL1: + return get_pvm_id_aa64isar1(vcpu); + case SYS_ID_AA64ISAR2_EL1: + return get_pvm_id_aa64isar2(vcpu); + case SYS_ID_AA64MMFR0_EL1: + return get_pvm_id_aa64mmfr0(vcpu); + case SYS_ID_AA64MMFR1_EL1: + return get_pvm_id_aa64mmfr1(vcpu); + case SYS_ID_AA64MMFR2_EL1: + return get_pvm_id_aa64mmfr2(vcpu); + default: + /* Unhandled ID register, RAZ */ + return 0; + } +} + +static u64 read_id_reg(const struct kvm_vcpu *vcpu, + struct sys_reg_desc const *r) +{ + return pvm_read_id_reg(vcpu, reg_to_encoding(r)); +} + +/* Handler to RAZ/WI sysregs */ +static bool pvm_access_raz_wi(struct kvm_vcpu *vcpu, struct sys_reg_params *p, + const struct sys_reg_desc *r) +{ + if (!p->is_write) + p->regval = 0; + + return true; +} + +/* + * Accessor for AArch32 feature id registers. + * + * The value of these registers is "unknown" according to the spec if AArch32 + * isn't supported. + */ +static bool pvm_access_id_aarch32(struct kvm_vcpu *vcpu, + struct sys_reg_params *p, + const struct sys_reg_desc *r) +{ + if (p->is_write) { + inject_undef64(vcpu); + return false; + } + + /* + * No support for AArch32 guests, therefore, pKVM has no sanitized copy + * of AArch32 feature id registers. + */ + BUILD_BUG_ON(FIELD_GET(ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_EL1), + PVM_ID_AA64PFR0_RESTRICT_UNSIGNED) > ID_AA64PFR0_EL1_ELx_64BIT_ONLY); + + return pvm_access_raz_wi(vcpu, p, r); +} + +/* + * Accessor for AArch64 feature id registers. + * + * If access is allowed, set the regval to the protected VM's view of the + * register and return true. + * Otherwise, inject an undefined exception and return false. + */ +static bool pvm_access_id_aarch64(struct kvm_vcpu *vcpu, + struct sys_reg_params *p, + const struct sys_reg_desc *r) +{ + if (p->is_write) { + inject_undef64(vcpu); + return false; + } + + p->regval = read_id_reg(vcpu, r); + return true; +} + +static bool pvm_gic_read_sre(struct kvm_vcpu *vcpu, + struct sys_reg_params *p, + const struct sys_reg_desc *r) +{ + /* pVMs only support GICv3. 'nuf said. */ + if (!p->is_write) + p->regval = ICC_SRE_EL1_DIB | ICC_SRE_EL1_DFB | ICC_SRE_EL1_SRE; + + return true; +} + +/* Mark the specified system register as an AArch32 feature id register. */ +#define AARCH32(REG) { SYS_DESC(REG), .access = pvm_access_id_aarch32 } + +/* Mark the specified system register as an AArch64 feature id register. */ +#define AARCH64(REG) { SYS_DESC(REG), .access = pvm_access_id_aarch64 } + +/* + * sys_reg_desc initialiser for architecturally unallocated cpufeature ID + * register with encoding Op0=3, Op1=0, CRn=0, CRm=crm, Op2=op2 + * (1 <= crm < 8, 0 <= Op2 < 8). + */ +#define ID_UNALLOCATED(crm, op2) { \ + Op0(3), Op1(0), CRn(0), CRm(crm), Op2(op2), \ + .access = pvm_access_id_aarch64, \ +} + +/* Mark the specified system register as Read-As-Zero/Write-Ignored */ +#define RAZ_WI(REG) { SYS_DESC(REG), .access = pvm_access_raz_wi } + +/* Mark the specified system register as not being handled in hyp. */ +#define HOST_HANDLED(REG) { SYS_DESC(REG), .access = NULL } + +/* + * Architected system registers. + * Important: Must be sorted ascending by Op0, Op1, CRn, CRm, Op2 + * + * NOTE: Anything not explicitly listed here is *restricted by default*, i.e., + * it will lead to injecting an exception into the guest. + */ +static const struct sys_reg_desc pvm_sys_reg_descs[] = { + /* Cache maintenance by set/way operations are restricted. */ + + /* Debug and Trace Registers are restricted. */ + + /* AArch64 mappings of the AArch32 ID registers */ + /* CRm=1 */ + AARCH32(SYS_ID_PFR0_EL1), + AARCH32(SYS_ID_PFR1_EL1), + AARCH32(SYS_ID_DFR0_EL1), + AARCH32(SYS_ID_AFR0_EL1), + AARCH32(SYS_ID_MMFR0_EL1), + AARCH32(SYS_ID_MMFR1_EL1), + AARCH32(SYS_ID_MMFR2_EL1), + AARCH32(SYS_ID_MMFR3_EL1), + + /* CRm=2 */ + AARCH32(SYS_ID_ISAR0_EL1), + AARCH32(SYS_ID_ISAR1_EL1), + AARCH32(SYS_ID_ISAR2_EL1), + AARCH32(SYS_ID_ISAR3_EL1), + AARCH32(SYS_ID_ISAR4_EL1), + AARCH32(SYS_ID_ISAR5_EL1), + AARCH32(SYS_ID_MMFR4_EL1), + AARCH32(SYS_ID_ISAR6_EL1), + + /* CRm=3 */ + AARCH32(SYS_MVFR0_EL1), + AARCH32(SYS_MVFR1_EL1), + AARCH32(SYS_MVFR2_EL1), + ID_UNALLOCATED(3,3), + AARCH32(SYS_ID_PFR2_EL1), + AARCH32(SYS_ID_DFR1_EL1), + AARCH32(SYS_ID_MMFR5_EL1), + ID_UNALLOCATED(3,7), + + /* AArch64 ID registers */ + /* CRm=4 */ + AARCH64(SYS_ID_AA64PFR0_EL1), + AARCH64(SYS_ID_AA64PFR1_EL1), + ID_UNALLOCATED(4,2), + ID_UNALLOCATED(4,3), + AARCH64(SYS_ID_AA64ZFR0_EL1), + ID_UNALLOCATED(4,5), + ID_UNALLOCATED(4,6), + ID_UNALLOCATED(4,7), + AARCH64(SYS_ID_AA64DFR0_EL1), + AARCH64(SYS_ID_AA64DFR1_EL1), + ID_UNALLOCATED(5,2), + ID_UNALLOCATED(5,3), + AARCH64(SYS_ID_AA64AFR0_EL1), + AARCH64(SYS_ID_AA64AFR1_EL1), + ID_UNALLOCATED(5,6), + ID_UNALLOCATED(5,7), + AARCH64(SYS_ID_AA64ISAR0_EL1), + AARCH64(SYS_ID_AA64ISAR1_EL1), + AARCH64(SYS_ID_AA64ISAR2_EL1), + ID_UNALLOCATED(6,3), + ID_UNALLOCATED(6,4), + ID_UNALLOCATED(6,5), + ID_UNALLOCATED(6,6), + ID_UNALLOCATED(6,7), + AARCH64(SYS_ID_AA64MMFR0_EL1), + AARCH64(SYS_ID_AA64MMFR1_EL1), + AARCH64(SYS_ID_AA64MMFR2_EL1), + ID_UNALLOCATED(7,3), + ID_UNALLOCATED(7,4), + ID_UNALLOCATED(7,5), + ID_UNALLOCATED(7,6), + ID_UNALLOCATED(7,7), + + /* Scalable Vector Registers are restricted. */ + + RAZ_WI(SYS_ERRIDR_EL1), + RAZ_WI(SYS_ERRSELR_EL1), + RAZ_WI(SYS_ERXFR_EL1), + RAZ_WI(SYS_ERXCTLR_EL1), + RAZ_WI(SYS_ERXSTATUS_EL1), + RAZ_WI(SYS_ERXADDR_EL1), + RAZ_WI(SYS_ERXMISC0_EL1), + RAZ_WI(SYS_ERXMISC1_EL1), + + /* Performance Monitoring Registers are restricted. */ + + /* Limited Ordering Regions Registers are restricted. */ + + HOST_HANDLED(SYS_ICC_SGI1R_EL1), + HOST_HANDLED(SYS_ICC_ASGI1R_EL1), + HOST_HANDLED(SYS_ICC_SGI0R_EL1), + { SYS_DESC(SYS_ICC_SRE_EL1), .access = pvm_gic_read_sre, }, + + HOST_HANDLED(SYS_CCSIDR_EL1), + HOST_HANDLED(SYS_CLIDR_EL1), + HOST_HANDLED(SYS_CSSELR_EL1), + HOST_HANDLED(SYS_CTR_EL0), + + /* Performance Monitoring Registers are restricted. */ + + /* Activity Monitoring Registers are restricted. */ + + HOST_HANDLED(SYS_CNTP_TVAL_EL0), + HOST_HANDLED(SYS_CNTP_CTL_EL0), + HOST_HANDLED(SYS_CNTP_CVAL_EL0), + + /* Performance Monitoring Registers are restricted. */ +}; + +/* + * Checks that the sysreg table is unique and in-order. + * + * Returns 0 if the table is consistent, or 1 otherwise. + */ +int kvm_check_pvm_sysreg_table(void) +{ + unsigned int i; + + for (i = 1; i < ARRAY_SIZE(pvm_sys_reg_descs); i++) { + if (cmp_sys_reg(&pvm_sys_reg_descs[i-1], &pvm_sys_reg_descs[i]) >= 0) + return 1; + } + + return 0; +} + +/* + * Handler for protected VM MSR, MRS or System instruction execution. + * + * Returns true if the hypervisor has handled the exit, and control should go + * back to the guest, or false if it hasn't, to be handled by the host. + */ +bool kvm_handle_pvm_sysreg(struct kvm_vcpu *vcpu, u64 *exit_code) +{ + const struct sys_reg_desc *r; + struct sys_reg_params params; + unsigned long esr = kvm_vcpu_get_esr(vcpu); + int Rt = kvm_vcpu_sys_get_rt(vcpu); + + params = esr_sys64_to_params(esr); + params.regval = vcpu_get_reg(vcpu, Rt); + + r = find_reg(¶ms, pvm_sys_reg_descs, ARRAY_SIZE(pvm_sys_reg_descs)); + + /* Undefined (RESTRICTED). */ + if (r == NULL) { + inject_undef64(vcpu); + return true; + } + + /* Handled by the host (HOST_HANDLED) */ + if (r->access == NULL) + return false; + + /* Handled by hyp: skip instruction if instructed to do so. */ + if (r->access(vcpu, ¶ms, r)) + __kvm_skip_instr(vcpu); + + if (!params.is_write) + vcpu_set_reg(vcpu, Rt, params.regval); + + return true; +} + +/* + * Handler for protected VM restricted exceptions. + * + * Inject an undefined exception into the guest and return true to indicate that + * the hypervisor has handled the exit, and control should go back to the guest. + */ +bool kvm_handle_pvm_restricted(struct kvm_vcpu *vcpu, u64 *exit_code) +{ + inject_undef64(vcpu); + return true; +} diff --git a/arch/arm64/kvm/hyp/nvhe/sysreg-sr.c b/arch/arm64/kvm/hyp/nvhe/sysreg-sr.c new file mode 100644 index 0000000000..29305022bc --- /dev/null +++ b/arch/arm64/kvm/hyp/nvhe/sysreg-sr.c @@ -0,0 +1,35 @@ +// SPDX-License-Identifier: GPL-2.0-only +/* + * Copyright (C) 2012-2015 - ARM Ltd + * Author: Marc Zyngier <marc.zyngier@arm.com> + */ + +#include <hyp/sysreg-sr.h> + +#include <linux/compiler.h> +#include <linux/kvm_host.h> + +#include <asm/kprobes.h> +#include <asm/kvm_asm.h> +#include <asm/kvm_emulate.h> +#include <asm/kvm_hyp.h> + +/* + * Non-VHE: Both host and guest must save everything. + */ + +void __sysreg_save_state_nvhe(struct kvm_cpu_context *ctxt) +{ + __sysreg_save_el1_state(ctxt); + __sysreg_save_common_state(ctxt); + __sysreg_save_user_state(ctxt); + __sysreg_save_el2_return_state(ctxt); +} + +void __sysreg_restore_state_nvhe(struct kvm_cpu_context *ctxt) +{ + __sysreg_restore_el1_state(ctxt); + __sysreg_restore_common_state(ctxt); + __sysreg_restore_user_state(ctxt); + __sysreg_restore_el2_return_state(ctxt); +} diff --git a/arch/arm64/kvm/hyp/nvhe/timer-sr.c b/arch/arm64/kvm/hyp/nvhe/timer-sr.c new file mode 100644 index 0000000000..3aaab20ae5 --- /dev/null +++ b/arch/arm64/kvm/hyp/nvhe/timer-sr.c @@ -0,0 +1,62 @@ +// SPDX-License-Identifier: GPL-2.0-only +/* + * Copyright (C) 2012-2015 - ARM Ltd + * Author: Marc Zyngier <marc.zyngier@arm.com> + */ + +#include <clocksource/arm_arch_timer.h> +#include <linux/compiler.h> +#include <linux/kvm_host.h> + +#include <asm/kvm_hyp.h> +#include <asm/kvm_mmu.h> + +void __kvm_timer_set_cntvoff(u64 cntvoff) +{ + write_sysreg(cntvoff, cntvoff_el2); +} + +/* + * Should only be called on non-VHE or hVHE setups. + * VHE systems use EL2 timers and configure EL1 timers in kvm_timer_init_vhe(). + */ +void __timer_disable_traps(struct kvm_vcpu *vcpu) +{ + u64 val, shift = 0; + + if (has_hvhe()) + shift = 10; + + /* Allow physical timer/counter access for the host */ + val = read_sysreg(cnthctl_el2); + val |= (CNTHCTL_EL1PCTEN | CNTHCTL_EL1PCEN) << shift; + write_sysreg(val, cnthctl_el2); +} + +/* + * Should only be called on non-VHE or hVHE setups. + * VHE systems use EL2 timers and configure EL1 timers in kvm_timer_init_vhe(). + */ +void __timer_enable_traps(struct kvm_vcpu *vcpu) +{ + u64 clr = 0, set = 0; + + /* + * Disallow physical timer access for the guest + * Physical counter access is allowed if no offset is enforced + * or running protected (we don't offset anything in this case). + */ + clr = CNTHCTL_EL1PCEN; + if (is_protected_kvm_enabled() || + !kern_hyp_va(vcpu->kvm)->arch.timer_data.poffset) + set |= CNTHCTL_EL1PCTEN; + else + clr |= CNTHCTL_EL1PCTEN; + + if (has_hvhe()) { + clr <<= 10; + set <<= 10; + } + + sysreg_clear_set(cnthctl_el2, clr, set); +} diff --git a/arch/arm64/kvm/hyp/nvhe/tlb.c b/arch/arm64/kvm/hyp/nvhe/tlb.c new file mode 100644 index 0000000000..1b265713d6 --- /dev/null +++ b/arch/arm64/kvm/hyp/nvhe/tlb.c @@ -0,0 +1,263 @@ +// SPDX-License-Identifier: GPL-2.0-only +/* + * Copyright (C) 2015 - ARM Ltd + * Author: Marc Zyngier <marc.zyngier@arm.com> + */ + +#include <asm/kvm_hyp.h> +#include <asm/kvm_mmu.h> +#include <asm/tlbflush.h> + +#include <nvhe/mem_protect.h> + +struct tlb_inv_context { + u64 tcr; +}; + +static void __tlb_switch_to_guest(struct kvm_s2_mmu *mmu, + struct tlb_inv_context *cxt, + bool nsh) +{ + /* + * We have two requirements: + * + * - ensure that the page table updates are visible to all + * CPUs, for which a dsb(DOMAIN-st) is what we need, DOMAIN + * being either ish or nsh, depending on the invalidation + * type. + * + * - complete any speculative page table walk started before + * we trapped to EL2 so that we can mess with the MM + * registers out of context, for which dsb(nsh) is enough + * + * The composition of these two barriers is a dsb(DOMAIN), and + * the 'nsh' parameter tracks the distinction between + * Inner-Shareable and Non-Shareable, as specified by the + * callers. + */ + if (nsh) + dsb(nsh); + else + dsb(ish); + + if (cpus_have_final_cap(ARM64_WORKAROUND_SPECULATIVE_AT)) { + u64 val; + + /* + * For CPUs that are affected by ARM 1319367, we need to + * avoid a host Stage-1 walk while we have the guest's + * VMID set in the VTTBR in order to invalidate TLBs. + * We're guaranteed that the S1 MMU is enabled, so we can + * simply set the EPD bits to avoid any further TLB fill. + */ + val = cxt->tcr = read_sysreg_el1(SYS_TCR); + val |= TCR_EPD1_MASK | TCR_EPD0_MASK; + write_sysreg_el1(val, SYS_TCR); + isb(); + } + + /* + * __load_stage2() includes an ISB only when the AT + * workaround is applied. Take care of the opposite condition, + * ensuring that we always have an ISB, but not two ISBs back + * to back. + */ + __load_stage2(mmu, kern_hyp_va(mmu->arch)); + asm(ALTERNATIVE("isb", "nop", ARM64_WORKAROUND_SPECULATIVE_AT)); +} + +static void __tlb_switch_to_host(struct tlb_inv_context *cxt) +{ + __load_host_stage2(); + + if (cpus_have_final_cap(ARM64_WORKAROUND_SPECULATIVE_AT)) { + /* Ensure write of the host VMID */ + isb(); + /* Restore the host's TCR_EL1 */ + write_sysreg_el1(cxt->tcr, SYS_TCR); + } +} + +void __kvm_tlb_flush_vmid_ipa(struct kvm_s2_mmu *mmu, + phys_addr_t ipa, int level) +{ + struct tlb_inv_context cxt; + + /* Switch to requested VMID */ + __tlb_switch_to_guest(mmu, &cxt, false); + + /* + * We could do so much better if we had the VA as well. + * Instead, we invalidate Stage-2 for this IPA, and the + * whole of Stage-1. Weep... + */ + ipa >>= 12; + __tlbi_level(ipas2e1is, ipa, level); + + /* + * We have to ensure completion of the invalidation at Stage-2, + * since a table walk on another CPU could refill a TLB with a + * complete (S1 + S2) walk based on the old Stage-2 mapping if + * the Stage-1 invalidation happened first. + */ + dsb(ish); + __tlbi(vmalle1is); + dsb(ish); + isb(); + + /* + * If the host is running at EL1 and we have a VPIPT I-cache, + * then we must perform I-cache maintenance at EL2 in order for + * it to have an effect on the guest. Since the guest cannot hit + * I-cache lines allocated with a different VMID, we don't need + * to worry about junk out of guest reset (we nuke the I-cache on + * VMID rollover), but we do need to be careful when remapping + * executable pages for the same guest. This can happen when KSM + * takes a CoW fault on an executable page, copies the page into + * a page that was previously mapped in the guest and then needs + * to invalidate the guest view of the I-cache for that page + * from EL1. To solve this, we invalidate the entire I-cache when + * unmapping a page from a guest if we have a VPIPT I-cache but + * the host is running at EL1. As above, we could do better if + * we had the VA. + * + * The moral of this story is: if you have a VPIPT I-cache, then + * you should be running with VHE enabled. + */ + if (icache_is_vpipt()) + icache_inval_all_pou(); + + __tlb_switch_to_host(&cxt); +} + +void __kvm_tlb_flush_vmid_ipa_nsh(struct kvm_s2_mmu *mmu, + phys_addr_t ipa, int level) +{ + struct tlb_inv_context cxt; + + /* Switch to requested VMID */ + __tlb_switch_to_guest(mmu, &cxt, true); + + /* + * We could do so much better if we had the VA as well. + * Instead, we invalidate Stage-2 for this IPA, and the + * whole of Stage-1. Weep... + */ + ipa >>= 12; + __tlbi_level(ipas2e1, ipa, level); + + /* + * We have to ensure completion of the invalidation at Stage-2, + * since a table walk on another CPU could refill a TLB with a + * complete (S1 + S2) walk based on the old Stage-2 mapping if + * the Stage-1 invalidation happened first. + */ + dsb(nsh); + __tlbi(vmalle1); + dsb(nsh); + isb(); + + /* + * If the host is running at EL1 and we have a VPIPT I-cache, + * then we must perform I-cache maintenance at EL2 in order for + * it to have an effect on the guest. Since the guest cannot hit + * I-cache lines allocated with a different VMID, we don't need + * to worry about junk out of guest reset (we nuke the I-cache on + * VMID rollover), but we do need to be careful when remapping + * executable pages for the same guest. This can happen when KSM + * takes a CoW fault on an executable page, copies the page into + * a page that was previously mapped in the guest and then needs + * to invalidate the guest view of the I-cache for that page + * from EL1. To solve this, we invalidate the entire I-cache when + * unmapping a page from a guest if we have a VPIPT I-cache but + * the host is running at EL1. As above, we could do better if + * we had the VA. + * + * The moral of this story is: if you have a VPIPT I-cache, then + * you should be running with VHE enabled. + */ + if (icache_is_vpipt()) + icache_inval_all_pou(); + + __tlb_switch_to_host(&cxt); +} + +void __kvm_tlb_flush_vmid_range(struct kvm_s2_mmu *mmu, + phys_addr_t start, unsigned long pages) +{ + struct tlb_inv_context cxt; + unsigned long stride; + + /* + * Since the range of addresses may not be mapped at + * the same level, assume the worst case as PAGE_SIZE + */ + stride = PAGE_SIZE; + start = round_down(start, stride); + + /* Switch to requested VMID */ + __tlb_switch_to_guest(mmu, &cxt, false); + + __flush_s2_tlb_range_op(ipas2e1is, start, pages, stride, 0); + + dsb(ish); + __tlbi(vmalle1is); + dsb(ish); + isb(); + + /* See the comment in __kvm_tlb_flush_vmid_ipa() */ + if (icache_is_vpipt()) + icache_inval_all_pou(); + + __tlb_switch_to_host(&cxt); +} + +void __kvm_tlb_flush_vmid(struct kvm_s2_mmu *mmu) +{ + struct tlb_inv_context cxt; + + /* Switch to requested VMID */ + __tlb_switch_to_guest(mmu, &cxt, false); + + __tlbi(vmalls12e1is); + dsb(ish); + isb(); + + __tlb_switch_to_host(&cxt); +} + +void __kvm_flush_cpu_context(struct kvm_s2_mmu *mmu) +{ + struct tlb_inv_context cxt; + + /* Switch to requested VMID */ + __tlb_switch_to_guest(mmu, &cxt, false); + + __tlbi(vmalle1); + asm volatile("ic iallu"); + dsb(nsh); + isb(); + + __tlb_switch_to_host(&cxt); +} + +void __kvm_flush_vm_context(void) +{ + /* Same remark as in __tlb_switch_to_guest() */ + dsb(ish); + __tlbi(alle1is); + + /* + * VIPT and PIPT caches are not affected by VMID, so no maintenance + * is necessary across a VMID rollover. + * + * VPIPT caches constrain lookup and maintenance to the active VMID, + * so we need to invalidate lines with a stale VMID to avoid an ABA + * race after multiple rollovers. + * + */ + if (icache_is_vpipt()) + asm volatile("ic ialluis"); + + dsb(ish); +} diff --git a/arch/arm64/kvm/hyp/pgtable.c b/arch/arm64/kvm/hyp/pgtable.c new file mode 100644 index 0000000000..f155b8c9e9 --- /dev/null +++ b/arch/arm64/kvm/hyp/pgtable.c @@ -0,0 +1,1600 @@ +// SPDX-License-Identifier: GPL-2.0-only +/* + * Stand-alone page-table allocator for hyp stage-1 and guest stage-2. + * No bombay mix was harmed in the writing of this file. + * + * Copyright (C) 2020 Google LLC + * Author: Will Deacon <will@kernel.org> + */ + +#include <linux/bitfield.h> +#include <asm/kvm_pgtable.h> +#include <asm/stage2_pgtable.h> + + +#define KVM_PTE_TYPE BIT(1) +#define KVM_PTE_TYPE_BLOCK 0 +#define KVM_PTE_TYPE_PAGE 1 +#define KVM_PTE_TYPE_TABLE 1 + +#define KVM_PTE_LEAF_ATTR_LO GENMASK(11, 2) + +#define KVM_PTE_LEAF_ATTR_LO_S1_ATTRIDX GENMASK(4, 2) +#define KVM_PTE_LEAF_ATTR_LO_S1_AP GENMASK(7, 6) +#define KVM_PTE_LEAF_ATTR_LO_S1_AP_RO \ + ({ cpus_have_final_cap(ARM64_KVM_HVHE) ? 2 : 3; }) +#define KVM_PTE_LEAF_ATTR_LO_S1_AP_RW \ + ({ cpus_have_final_cap(ARM64_KVM_HVHE) ? 0 : 1; }) +#define KVM_PTE_LEAF_ATTR_LO_S1_SH GENMASK(9, 8) +#define KVM_PTE_LEAF_ATTR_LO_S1_SH_IS 3 +#define KVM_PTE_LEAF_ATTR_LO_S1_AF BIT(10) + +#define KVM_PTE_LEAF_ATTR_LO_S2_MEMATTR GENMASK(5, 2) +#define KVM_PTE_LEAF_ATTR_LO_S2_S2AP_R BIT(6) +#define KVM_PTE_LEAF_ATTR_LO_S2_S2AP_W BIT(7) +#define KVM_PTE_LEAF_ATTR_LO_S2_SH GENMASK(9, 8) +#define KVM_PTE_LEAF_ATTR_LO_S2_SH_IS 3 +#define KVM_PTE_LEAF_ATTR_LO_S2_AF BIT(10) + +#define KVM_PTE_LEAF_ATTR_HI GENMASK(63, 50) + +#define KVM_PTE_LEAF_ATTR_HI_SW GENMASK(58, 55) + +#define KVM_PTE_LEAF_ATTR_HI_S1_XN BIT(54) + +#define KVM_PTE_LEAF_ATTR_HI_S2_XN BIT(54) + +#define KVM_PTE_LEAF_ATTR_HI_S1_GP BIT(50) + +#define KVM_PTE_LEAF_ATTR_S2_PERMS (KVM_PTE_LEAF_ATTR_LO_S2_S2AP_R | \ + KVM_PTE_LEAF_ATTR_LO_S2_S2AP_W | \ + KVM_PTE_LEAF_ATTR_HI_S2_XN) + +#define KVM_INVALID_PTE_OWNER_MASK GENMASK(9, 2) +#define KVM_MAX_OWNER_ID 1 + +/* + * Used to indicate a pte for which a 'break-before-make' sequence is in + * progress. + */ +#define KVM_INVALID_PTE_LOCKED BIT(10) + +struct kvm_pgtable_walk_data { + struct kvm_pgtable_walker *walker; + + const u64 start; + u64 addr; + const u64 end; +}; + +static bool kvm_pgtable_walk_skip_bbm_tlbi(const struct kvm_pgtable_visit_ctx *ctx) +{ + return unlikely(ctx->flags & KVM_PGTABLE_WALK_SKIP_BBM_TLBI); +} + +static bool kvm_pgtable_walk_skip_cmo(const struct kvm_pgtable_visit_ctx *ctx) +{ + return unlikely(ctx->flags & KVM_PGTABLE_WALK_SKIP_CMO); +} + +static bool kvm_phys_is_valid(u64 phys) +{ + return phys < BIT(id_aa64mmfr0_parange_to_phys_shift(ID_AA64MMFR0_EL1_PARANGE_MAX)); +} + +static bool kvm_block_mapping_supported(const struct kvm_pgtable_visit_ctx *ctx, u64 phys) +{ + u64 granule = kvm_granule_size(ctx->level); + + if (!kvm_level_supports_block_mapping(ctx->level)) + return false; + + if (granule > (ctx->end - ctx->addr)) + return false; + + if (kvm_phys_is_valid(phys) && !IS_ALIGNED(phys, granule)) + return false; + + return IS_ALIGNED(ctx->addr, granule); +} + +static u32 kvm_pgtable_idx(struct kvm_pgtable_walk_data *data, u32 level) +{ + u64 shift = kvm_granule_shift(level); + u64 mask = BIT(PAGE_SHIFT - 3) - 1; + + return (data->addr >> shift) & mask; +} + +static u32 kvm_pgd_page_idx(struct kvm_pgtable *pgt, u64 addr) +{ + u64 shift = kvm_granule_shift(pgt->start_level - 1); /* May underflow */ + u64 mask = BIT(pgt->ia_bits) - 1; + + return (addr & mask) >> shift; +} + +static u32 kvm_pgd_pages(u32 ia_bits, u32 start_level) +{ + struct kvm_pgtable pgt = { + .ia_bits = ia_bits, + .start_level = start_level, + }; + + return kvm_pgd_page_idx(&pgt, -1ULL) + 1; +} + +static bool kvm_pte_table(kvm_pte_t pte, u32 level) +{ + if (level == KVM_PGTABLE_MAX_LEVELS - 1) + return false; + + if (!kvm_pte_valid(pte)) + return false; + + return FIELD_GET(KVM_PTE_TYPE, pte) == KVM_PTE_TYPE_TABLE; +} + +static kvm_pte_t *kvm_pte_follow(kvm_pte_t pte, struct kvm_pgtable_mm_ops *mm_ops) +{ + return mm_ops->phys_to_virt(kvm_pte_to_phys(pte)); +} + +static void kvm_clear_pte(kvm_pte_t *ptep) +{ + WRITE_ONCE(*ptep, 0); +} + +static kvm_pte_t kvm_init_table_pte(kvm_pte_t *childp, struct kvm_pgtable_mm_ops *mm_ops) +{ + kvm_pte_t pte = kvm_phys_to_pte(mm_ops->virt_to_phys(childp)); + + pte |= FIELD_PREP(KVM_PTE_TYPE, KVM_PTE_TYPE_TABLE); + pte |= KVM_PTE_VALID; + return pte; +} + +static kvm_pte_t kvm_init_valid_leaf_pte(u64 pa, kvm_pte_t attr, u32 level) +{ + kvm_pte_t pte = kvm_phys_to_pte(pa); + u64 type = (level == KVM_PGTABLE_MAX_LEVELS - 1) ? KVM_PTE_TYPE_PAGE : + KVM_PTE_TYPE_BLOCK; + + pte |= attr & (KVM_PTE_LEAF_ATTR_LO | KVM_PTE_LEAF_ATTR_HI); + pte |= FIELD_PREP(KVM_PTE_TYPE, type); + pte |= KVM_PTE_VALID; + + return pte; +} + +static kvm_pte_t kvm_init_invalid_leaf_owner(u8 owner_id) +{ + return FIELD_PREP(KVM_INVALID_PTE_OWNER_MASK, owner_id); +} + +static int kvm_pgtable_visitor_cb(struct kvm_pgtable_walk_data *data, + const struct kvm_pgtable_visit_ctx *ctx, + enum kvm_pgtable_walk_flags visit) +{ + struct kvm_pgtable_walker *walker = data->walker; + + /* Ensure the appropriate lock is held (e.g. RCU lock for stage-2 MMU) */ + WARN_ON_ONCE(kvm_pgtable_walk_shared(ctx) && !kvm_pgtable_walk_lock_held()); + return walker->cb(ctx, visit); +} + +static bool kvm_pgtable_walk_continue(const struct kvm_pgtable_walker *walker, + int r) +{ + /* + * Visitor callbacks return EAGAIN when the conditions that led to a + * fault are no longer reflected in the page tables due to a race to + * update a PTE. In the context of a fault handler this is interpreted + * as a signal to retry guest execution. + * + * Ignore the return code altogether for walkers outside a fault handler + * (e.g. write protecting a range of memory) and chug along with the + * page table walk. + */ + if (r == -EAGAIN) + return !(walker->flags & KVM_PGTABLE_WALK_HANDLE_FAULT); + + return !r; +} + +static int __kvm_pgtable_walk(struct kvm_pgtable_walk_data *data, + struct kvm_pgtable_mm_ops *mm_ops, kvm_pteref_t pgtable, u32 level); + +static inline int __kvm_pgtable_visit(struct kvm_pgtable_walk_data *data, + struct kvm_pgtable_mm_ops *mm_ops, + kvm_pteref_t pteref, u32 level) +{ + enum kvm_pgtable_walk_flags flags = data->walker->flags; + kvm_pte_t *ptep = kvm_dereference_pteref(data->walker, pteref); + struct kvm_pgtable_visit_ctx ctx = { + .ptep = ptep, + .old = READ_ONCE(*ptep), + .arg = data->walker->arg, + .mm_ops = mm_ops, + .start = data->start, + .addr = data->addr, + .end = data->end, + .level = level, + .flags = flags, + }; + int ret = 0; + bool reload = false; + kvm_pteref_t childp; + bool table = kvm_pte_table(ctx.old, level); + + if (table && (ctx.flags & KVM_PGTABLE_WALK_TABLE_PRE)) { + ret = kvm_pgtable_visitor_cb(data, &ctx, KVM_PGTABLE_WALK_TABLE_PRE); + reload = true; + } + + if (!table && (ctx.flags & KVM_PGTABLE_WALK_LEAF)) { + ret = kvm_pgtable_visitor_cb(data, &ctx, KVM_PGTABLE_WALK_LEAF); + reload = true; + } + + /* + * Reload the page table after invoking the walker callback for leaf + * entries or after pre-order traversal, to allow the walker to descend + * into a newly installed or replaced table. + */ + if (reload) { + ctx.old = READ_ONCE(*ptep); + table = kvm_pte_table(ctx.old, level); + } + + if (!kvm_pgtable_walk_continue(data->walker, ret)) + goto out; + + if (!table) { + data->addr = ALIGN_DOWN(data->addr, kvm_granule_size(level)); + data->addr += kvm_granule_size(level); + goto out; + } + + childp = (kvm_pteref_t)kvm_pte_follow(ctx.old, mm_ops); + ret = __kvm_pgtable_walk(data, mm_ops, childp, level + 1); + if (!kvm_pgtable_walk_continue(data->walker, ret)) + goto out; + + if (ctx.flags & KVM_PGTABLE_WALK_TABLE_POST) + ret = kvm_pgtable_visitor_cb(data, &ctx, KVM_PGTABLE_WALK_TABLE_POST); + +out: + if (kvm_pgtable_walk_continue(data->walker, ret)) + return 0; + + return ret; +} + +static int __kvm_pgtable_walk(struct kvm_pgtable_walk_data *data, + struct kvm_pgtable_mm_ops *mm_ops, kvm_pteref_t pgtable, u32 level) +{ + u32 idx; + int ret = 0; + + if (WARN_ON_ONCE(level >= KVM_PGTABLE_MAX_LEVELS)) + return -EINVAL; + + for (idx = kvm_pgtable_idx(data, level); idx < PTRS_PER_PTE; ++idx) { + kvm_pteref_t pteref = &pgtable[idx]; + + if (data->addr >= data->end) + break; + + ret = __kvm_pgtable_visit(data, mm_ops, pteref, level); + if (ret) + break; + } + + return ret; +} + +static int _kvm_pgtable_walk(struct kvm_pgtable *pgt, struct kvm_pgtable_walk_data *data) +{ + u32 idx; + int ret = 0; + u64 limit = BIT(pgt->ia_bits); + + if (data->addr > limit || data->end > limit) + return -ERANGE; + + if (!pgt->pgd) + return -EINVAL; + + for (idx = kvm_pgd_page_idx(pgt, data->addr); data->addr < data->end; ++idx) { + kvm_pteref_t pteref = &pgt->pgd[idx * PTRS_PER_PTE]; + + ret = __kvm_pgtable_walk(data, pgt->mm_ops, pteref, pgt->start_level); + if (ret) + break; + } + + return ret; +} + +int kvm_pgtable_walk(struct kvm_pgtable *pgt, u64 addr, u64 size, + struct kvm_pgtable_walker *walker) +{ + struct kvm_pgtable_walk_data walk_data = { + .start = ALIGN_DOWN(addr, PAGE_SIZE), + .addr = ALIGN_DOWN(addr, PAGE_SIZE), + .end = PAGE_ALIGN(walk_data.addr + size), + .walker = walker, + }; + int r; + + r = kvm_pgtable_walk_begin(walker); + if (r) + return r; + + r = _kvm_pgtable_walk(pgt, &walk_data); + kvm_pgtable_walk_end(walker); + + return r; +} + +struct leaf_walk_data { + kvm_pte_t pte; + u32 level; +}; + +static int leaf_walker(const struct kvm_pgtable_visit_ctx *ctx, + enum kvm_pgtable_walk_flags visit) +{ + struct leaf_walk_data *data = ctx->arg; + + data->pte = ctx->old; + data->level = ctx->level; + + return 0; +} + +int kvm_pgtable_get_leaf(struct kvm_pgtable *pgt, u64 addr, + kvm_pte_t *ptep, u32 *level) +{ + struct leaf_walk_data data; + struct kvm_pgtable_walker walker = { + .cb = leaf_walker, + .flags = KVM_PGTABLE_WALK_LEAF, + .arg = &data, + }; + int ret; + + ret = kvm_pgtable_walk(pgt, ALIGN_DOWN(addr, PAGE_SIZE), + PAGE_SIZE, &walker); + if (!ret) { + if (ptep) + *ptep = data.pte; + if (level) + *level = data.level; + } + + return ret; +} + +struct hyp_map_data { + const u64 phys; + kvm_pte_t attr; +}; + +static int hyp_set_prot_attr(enum kvm_pgtable_prot prot, kvm_pte_t *ptep) +{ + bool device = prot & KVM_PGTABLE_PROT_DEVICE; + u32 mtype = device ? MT_DEVICE_nGnRE : MT_NORMAL; + kvm_pte_t attr = FIELD_PREP(KVM_PTE_LEAF_ATTR_LO_S1_ATTRIDX, mtype); + u32 sh = KVM_PTE_LEAF_ATTR_LO_S1_SH_IS; + u32 ap = (prot & KVM_PGTABLE_PROT_W) ? KVM_PTE_LEAF_ATTR_LO_S1_AP_RW : + KVM_PTE_LEAF_ATTR_LO_S1_AP_RO; + + if (!(prot & KVM_PGTABLE_PROT_R)) + return -EINVAL; + + if (prot & KVM_PGTABLE_PROT_X) { + if (prot & KVM_PGTABLE_PROT_W) + return -EINVAL; + + if (device) + return -EINVAL; + + if (IS_ENABLED(CONFIG_ARM64_BTI_KERNEL) && system_supports_bti()) + attr |= KVM_PTE_LEAF_ATTR_HI_S1_GP; + } else { + attr |= KVM_PTE_LEAF_ATTR_HI_S1_XN; + } + + attr |= FIELD_PREP(KVM_PTE_LEAF_ATTR_LO_S1_AP, ap); + attr |= FIELD_PREP(KVM_PTE_LEAF_ATTR_LO_S1_SH, sh); + attr |= KVM_PTE_LEAF_ATTR_LO_S1_AF; + attr |= prot & KVM_PTE_LEAF_ATTR_HI_SW; + *ptep = attr; + + return 0; +} + +enum kvm_pgtable_prot kvm_pgtable_hyp_pte_prot(kvm_pte_t pte) +{ + enum kvm_pgtable_prot prot = pte & KVM_PTE_LEAF_ATTR_HI_SW; + u32 ap; + + if (!kvm_pte_valid(pte)) + return prot; + + if (!(pte & KVM_PTE_LEAF_ATTR_HI_S1_XN)) + prot |= KVM_PGTABLE_PROT_X; + + ap = FIELD_GET(KVM_PTE_LEAF_ATTR_LO_S1_AP, pte); + if (ap == KVM_PTE_LEAF_ATTR_LO_S1_AP_RO) + prot |= KVM_PGTABLE_PROT_R; + else if (ap == KVM_PTE_LEAF_ATTR_LO_S1_AP_RW) + prot |= KVM_PGTABLE_PROT_RW; + + return prot; +} + +static bool hyp_map_walker_try_leaf(const struct kvm_pgtable_visit_ctx *ctx, + struct hyp_map_data *data) +{ + u64 phys = data->phys + (ctx->addr - ctx->start); + kvm_pte_t new; + + if (!kvm_block_mapping_supported(ctx, phys)) + return false; + + new = kvm_init_valid_leaf_pte(phys, data->attr, ctx->level); + if (ctx->old == new) + return true; + if (!kvm_pte_valid(ctx->old)) + ctx->mm_ops->get_page(ctx->ptep); + else if (WARN_ON((ctx->old ^ new) & ~KVM_PTE_LEAF_ATTR_HI_SW)) + return false; + + smp_store_release(ctx->ptep, new); + return true; +} + +static int hyp_map_walker(const struct kvm_pgtable_visit_ctx *ctx, + enum kvm_pgtable_walk_flags visit) +{ + kvm_pte_t *childp, new; + struct hyp_map_data *data = ctx->arg; + struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops; + + if (hyp_map_walker_try_leaf(ctx, data)) + return 0; + + if (WARN_ON(ctx->level == KVM_PGTABLE_MAX_LEVELS - 1)) + return -EINVAL; + + childp = (kvm_pte_t *)mm_ops->zalloc_page(NULL); + if (!childp) + return -ENOMEM; + + new = kvm_init_table_pte(childp, mm_ops); + mm_ops->get_page(ctx->ptep); + smp_store_release(ctx->ptep, new); + + return 0; +} + +int kvm_pgtable_hyp_map(struct kvm_pgtable *pgt, u64 addr, u64 size, u64 phys, + enum kvm_pgtable_prot prot) +{ + int ret; + struct hyp_map_data map_data = { + .phys = ALIGN_DOWN(phys, PAGE_SIZE), + }; + struct kvm_pgtable_walker walker = { + .cb = hyp_map_walker, + .flags = KVM_PGTABLE_WALK_LEAF, + .arg = &map_data, + }; + + ret = hyp_set_prot_attr(prot, &map_data.attr); + if (ret) + return ret; + + ret = kvm_pgtable_walk(pgt, addr, size, &walker); + dsb(ishst); + isb(); + return ret; +} + +static int hyp_unmap_walker(const struct kvm_pgtable_visit_ctx *ctx, + enum kvm_pgtable_walk_flags visit) +{ + kvm_pte_t *childp = NULL; + u64 granule = kvm_granule_size(ctx->level); + u64 *unmapped = ctx->arg; + struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops; + + if (!kvm_pte_valid(ctx->old)) + return -EINVAL; + + if (kvm_pte_table(ctx->old, ctx->level)) { + childp = kvm_pte_follow(ctx->old, mm_ops); + + if (mm_ops->page_count(childp) != 1) + return 0; + + kvm_clear_pte(ctx->ptep); + dsb(ishst); + __tlbi_level(vae2is, __TLBI_VADDR(ctx->addr, 0), ctx->level); + } else { + if (ctx->end - ctx->addr < granule) + return -EINVAL; + + kvm_clear_pte(ctx->ptep); + dsb(ishst); + __tlbi_level(vale2is, __TLBI_VADDR(ctx->addr, 0), ctx->level); + *unmapped += granule; + } + + dsb(ish); + isb(); + mm_ops->put_page(ctx->ptep); + + if (childp) + mm_ops->put_page(childp); + + return 0; +} + +u64 kvm_pgtable_hyp_unmap(struct kvm_pgtable *pgt, u64 addr, u64 size) +{ + u64 unmapped = 0; + struct kvm_pgtable_walker walker = { + .cb = hyp_unmap_walker, + .arg = &unmapped, + .flags = KVM_PGTABLE_WALK_LEAF | KVM_PGTABLE_WALK_TABLE_POST, + }; + + if (!pgt->mm_ops->page_count) + return 0; + + kvm_pgtable_walk(pgt, addr, size, &walker); + return unmapped; +} + +int kvm_pgtable_hyp_init(struct kvm_pgtable *pgt, u32 va_bits, + struct kvm_pgtable_mm_ops *mm_ops) +{ + u64 levels = ARM64_HW_PGTABLE_LEVELS(va_bits); + + pgt->pgd = (kvm_pteref_t)mm_ops->zalloc_page(NULL); + if (!pgt->pgd) + return -ENOMEM; + + pgt->ia_bits = va_bits; + pgt->start_level = KVM_PGTABLE_MAX_LEVELS - levels; + pgt->mm_ops = mm_ops; + pgt->mmu = NULL; + pgt->force_pte_cb = NULL; + + return 0; +} + +static int hyp_free_walker(const struct kvm_pgtable_visit_ctx *ctx, + enum kvm_pgtable_walk_flags visit) +{ + struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops; + + if (!kvm_pte_valid(ctx->old)) + return 0; + + mm_ops->put_page(ctx->ptep); + + if (kvm_pte_table(ctx->old, ctx->level)) + mm_ops->put_page(kvm_pte_follow(ctx->old, mm_ops)); + + return 0; +} + +void kvm_pgtable_hyp_destroy(struct kvm_pgtable *pgt) +{ + struct kvm_pgtable_walker walker = { + .cb = hyp_free_walker, + .flags = KVM_PGTABLE_WALK_LEAF | KVM_PGTABLE_WALK_TABLE_POST, + }; + + WARN_ON(kvm_pgtable_walk(pgt, 0, BIT(pgt->ia_bits), &walker)); + pgt->mm_ops->put_page(kvm_dereference_pteref(&walker, pgt->pgd)); + pgt->pgd = NULL; +} + +struct stage2_map_data { + const u64 phys; + kvm_pte_t attr; + u8 owner_id; + + kvm_pte_t *anchor; + kvm_pte_t *childp; + + struct kvm_s2_mmu *mmu; + void *memcache; + + /* Force mappings to page granularity */ + bool force_pte; +}; + +u64 kvm_get_vtcr(u64 mmfr0, u64 mmfr1, u32 phys_shift) +{ + u64 vtcr = VTCR_EL2_FLAGS; + u8 lvls; + + vtcr |= kvm_get_parange(mmfr0) << VTCR_EL2_PS_SHIFT; + vtcr |= VTCR_EL2_T0SZ(phys_shift); + /* + * Use a minimum 2 level page table to prevent splitting + * host PMD huge pages at stage2. + */ + lvls = stage2_pgtable_levels(phys_shift); + if (lvls < 2) + lvls = 2; + vtcr |= VTCR_EL2_LVLS_TO_SL0(lvls); + +#ifdef CONFIG_ARM64_HW_AFDBM + /* + * Enable the Hardware Access Flag management, unconditionally + * on all CPUs. In systems that have asymmetric support for the feature + * this allows KVM to leverage hardware support on the subset of cores + * that implement the feature. + * + * The architecture requires VTCR_EL2.HA to be RES0 (thus ignored by + * hardware) on implementations that do not advertise support for the + * feature. As such, setting HA unconditionally is safe, unless you + * happen to be running on a design that has unadvertised support for + * HAFDBS. Here be dragons. + */ + if (!cpus_have_final_cap(ARM64_WORKAROUND_AMPERE_AC03_CPU_38)) + vtcr |= VTCR_EL2_HA; +#endif /* CONFIG_ARM64_HW_AFDBM */ + + /* Set the vmid bits */ + vtcr |= (get_vmid_bits(mmfr1) == 16) ? + VTCR_EL2_VS_16BIT : + VTCR_EL2_VS_8BIT; + + return vtcr; +} + +static bool stage2_has_fwb(struct kvm_pgtable *pgt) +{ + if (!cpus_have_const_cap(ARM64_HAS_STAGE2_FWB)) + return false; + + return !(pgt->flags & KVM_PGTABLE_S2_NOFWB); +} + +void kvm_tlb_flush_vmid_range(struct kvm_s2_mmu *mmu, + phys_addr_t addr, size_t size) +{ + unsigned long pages, inval_pages; + + if (!system_supports_tlb_range()) { + kvm_call_hyp(__kvm_tlb_flush_vmid, mmu); + return; + } + + pages = size >> PAGE_SHIFT; + while (pages > 0) { + inval_pages = min(pages, MAX_TLBI_RANGE_PAGES); + kvm_call_hyp(__kvm_tlb_flush_vmid_range, mmu, addr, inval_pages); + + addr += inval_pages << PAGE_SHIFT; + pages -= inval_pages; + } +} + +#define KVM_S2_MEMATTR(pgt, attr) PAGE_S2_MEMATTR(attr, stage2_has_fwb(pgt)) + +static int stage2_set_prot_attr(struct kvm_pgtable *pgt, enum kvm_pgtable_prot prot, + kvm_pte_t *ptep) +{ + bool device = prot & KVM_PGTABLE_PROT_DEVICE; + kvm_pte_t attr = device ? KVM_S2_MEMATTR(pgt, DEVICE_nGnRE) : + KVM_S2_MEMATTR(pgt, NORMAL); + u32 sh = KVM_PTE_LEAF_ATTR_LO_S2_SH_IS; + + if (!(prot & KVM_PGTABLE_PROT_X)) + attr |= KVM_PTE_LEAF_ATTR_HI_S2_XN; + else if (device) + return -EINVAL; + + if (prot & KVM_PGTABLE_PROT_R) + attr |= KVM_PTE_LEAF_ATTR_LO_S2_S2AP_R; + + if (prot & KVM_PGTABLE_PROT_W) + attr |= KVM_PTE_LEAF_ATTR_LO_S2_S2AP_W; + + attr |= FIELD_PREP(KVM_PTE_LEAF_ATTR_LO_S2_SH, sh); + attr |= KVM_PTE_LEAF_ATTR_LO_S2_AF; + attr |= prot & KVM_PTE_LEAF_ATTR_HI_SW; + *ptep = attr; + + return 0; +} + +enum kvm_pgtable_prot kvm_pgtable_stage2_pte_prot(kvm_pte_t pte) +{ + enum kvm_pgtable_prot prot = pte & KVM_PTE_LEAF_ATTR_HI_SW; + + if (!kvm_pte_valid(pte)) + return prot; + + if (pte & KVM_PTE_LEAF_ATTR_LO_S2_S2AP_R) + prot |= KVM_PGTABLE_PROT_R; + if (pte & KVM_PTE_LEAF_ATTR_LO_S2_S2AP_W) + prot |= KVM_PGTABLE_PROT_W; + if (!(pte & KVM_PTE_LEAF_ATTR_HI_S2_XN)) + prot |= KVM_PGTABLE_PROT_X; + + return prot; +} + +static bool stage2_pte_needs_update(kvm_pte_t old, kvm_pte_t new) +{ + if (!kvm_pte_valid(old) || !kvm_pte_valid(new)) + return true; + + return ((old ^ new) & (~KVM_PTE_LEAF_ATTR_S2_PERMS)); +} + +static bool stage2_pte_is_counted(kvm_pte_t pte) +{ + /* + * The refcount tracks valid entries as well as invalid entries if they + * encode ownership of a page to another entity than the page-table + * owner, whose id is 0. + */ + return !!pte; +} + +static bool stage2_pte_is_locked(kvm_pte_t pte) +{ + return !kvm_pte_valid(pte) && (pte & KVM_INVALID_PTE_LOCKED); +} + +static bool stage2_try_set_pte(const struct kvm_pgtable_visit_ctx *ctx, kvm_pte_t new) +{ + if (!kvm_pgtable_walk_shared(ctx)) { + WRITE_ONCE(*ctx->ptep, new); + return true; + } + + return cmpxchg(ctx->ptep, ctx->old, new) == ctx->old; +} + +/** + * stage2_try_break_pte() - Invalidates a pte according to the + * 'break-before-make' requirements of the + * architecture. + * + * @ctx: context of the visited pte. + * @mmu: stage-2 mmu + * + * Returns: true if the pte was successfully broken. + * + * If the removed pte was valid, performs the necessary serialization and TLB + * invalidation for the old value. For counted ptes, drops the reference count + * on the containing table page. + */ +static bool stage2_try_break_pte(const struct kvm_pgtable_visit_ctx *ctx, + struct kvm_s2_mmu *mmu) +{ + struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops; + + if (stage2_pte_is_locked(ctx->old)) { + /* + * Should never occur if this walker has exclusive access to the + * page tables. + */ + WARN_ON(!kvm_pgtable_walk_shared(ctx)); + return false; + } + + if (!stage2_try_set_pte(ctx, KVM_INVALID_PTE_LOCKED)) + return false; + + if (!kvm_pgtable_walk_skip_bbm_tlbi(ctx)) { + /* + * Perform the appropriate TLB invalidation based on the + * evicted pte value (if any). + */ + if (kvm_pte_table(ctx->old, ctx->level)) + kvm_tlb_flush_vmid_range(mmu, ctx->addr, + kvm_granule_size(ctx->level)); + else if (kvm_pte_valid(ctx->old)) + kvm_call_hyp(__kvm_tlb_flush_vmid_ipa, mmu, + ctx->addr, ctx->level); + } + + if (stage2_pte_is_counted(ctx->old)) + mm_ops->put_page(ctx->ptep); + + return true; +} + +static void stage2_make_pte(const struct kvm_pgtable_visit_ctx *ctx, kvm_pte_t new) +{ + struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops; + + WARN_ON(!stage2_pte_is_locked(*ctx->ptep)); + + if (stage2_pte_is_counted(new)) + mm_ops->get_page(ctx->ptep); + + smp_store_release(ctx->ptep, new); +} + +static bool stage2_unmap_defer_tlb_flush(struct kvm_pgtable *pgt) +{ + /* + * If FEAT_TLBIRANGE is implemented, defer the individual + * TLB invalidations until the entire walk is finished, and + * then use the range-based TLBI instructions to do the + * invalidations. Condition deferred TLB invalidation on the + * system supporting FWB as the optimization is entirely + * pointless when the unmap walker needs to perform CMOs. + */ + return system_supports_tlb_range() && stage2_has_fwb(pgt); +} + +static void stage2_unmap_put_pte(const struct kvm_pgtable_visit_ctx *ctx, + struct kvm_s2_mmu *mmu, + struct kvm_pgtable_mm_ops *mm_ops) +{ + struct kvm_pgtable *pgt = ctx->arg; + + /* + * Clear the existing PTE, and perform break-before-make if it was + * valid. Depending on the system support, defer the TLB maintenance + * for the same until the entire unmap walk is completed. + */ + if (kvm_pte_valid(ctx->old)) { + kvm_clear_pte(ctx->ptep); + + if (!stage2_unmap_defer_tlb_flush(pgt)) + kvm_call_hyp(__kvm_tlb_flush_vmid_ipa, mmu, + ctx->addr, ctx->level); + } + + mm_ops->put_page(ctx->ptep); +} + +static bool stage2_pte_cacheable(struct kvm_pgtable *pgt, kvm_pte_t pte) +{ + u64 memattr = pte & KVM_PTE_LEAF_ATTR_LO_S2_MEMATTR; + return memattr == KVM_S2_MEMATTR(pgt, NORMAL); +} + +static bool stage2_pte_executable(kvm_pte_t pte) +{ + return !(pte & KVM_PTE_LEAF_ATTR_HI_S2_XN); +} + +static u64 stage2_map_walker_phys_addr(const struct kvm_pgtable_visit_ctx *ctx, + const struct stage2_map_data *data) +{ + u64 phys = data->phys; + + /* + * Stage-2 walks to update ownership data are communicated to the map + * walker using an invalid PA. Avoid offsetting an already invalid PA, + * which could overflow and make the address valid again. + */ + if (!kvm_phys_is_valid(phys)) + return phys; + + /* + * Otherwise, work out the correct PA based on how far the walk has + * gotten. + */ + return phys + (ctx->addr - ctx->start); +} + +static bool stage2_leaf_mapping_allowed(const struct kvm_pgtable_visit_ctx *ctx, + struct stage2_map_data *data) +{ + u64 phys = stage2_map_walker_phys_addr(ctx, data); + + if (data->force_pte && (ctx->level < (KVM_PGTABLE_MAX_LEVELS - 1))) + return false; + + return kvm_block_mapping_supported(ctx, phys); +} + +static int stage2_map_walker_try_leaf(const struct kvm_pgtable_visit_ctx *ctx, + struct stage2_map_data *data) +{ + kvm_pte_t new; + u64 phys = stage2_map_walker_phys_addr(ctx, data); + u64 granule = kvm_granule_size(ctx->level); + struct kvm_pgtable *pgt = data->mmu->pgt; + struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops; + + if (!stage2_leaf_mapping_allowed(ctx, data)) + return -E2BIG; + + if (kvm_phys_is_valid(phys)) + new = kvm_init_valid_leaf_pte(phys, data->attr, ctx->level); + else + new = kvm_init_invalid_leaf_owner(data->owner_id); + + /* + * Skip updating the PTE if we are trying to recreate the exact + * same mapping or only change the access permissions. Instead, + * the vCPU will exit one more time from guest if still needed + * and then go through the path of relaxing permissions. + */ + if (!stage2_pte_needs_update(ctx->old, new)) + return -EAGAIN; + + if (!stage2_try_break_pte(ctx, data->mmu)) + return -EAGAIN; + + /* Perform CMOs before installation of the guest stage-2 PTE */ + if (!kvm_pgtable_walk_skip_cmo(ctx) && mm_ops->dcache_clean_inval_poc && + stage2_pte_cacheable(pgt, new)) + mm_ops->dcache_clean_inval_poc(kvm_pte_follow(new, mm_ops), + granule); + + if (!kvm_pgtable_walk_skip_cmo(ctx) && mm_ops->icache_inval_pou && + stage2_pte_executable(new)) + mm_ops->icache_inval_pou(kvm_pte_follow(new, mm_ops), granule); + + stage2_make_pte(ctx, new); + + return 0; +} + +static int stage2_map_walk_table_pre(const struct kvm_pgtable_visit_ctx *ctx, + struct stage2_map_data *data) +{ + struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops; + kvm_pte_t *childp = kvm_pte_follow(ctx->old, mm_ops); + int ret; + + if (!stage2_leaf_mapping_allowed(ctx, data)) + return 0; + + ret = stage2_map_walker_try_leaf(ctx, data); + if (ret) + return ret; + + mm_ops->free_unlinked_table(childp, ctx->level); + return 0; +} + +static int stage2_map_walk_leaf(const struct kvm_pgtable_visit_ctx *ctx, + struct stage2_map_data *data) +{ + struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops; + kvm_pte_t *childp, new; + int ret; + + ret = stage2_map_walker_try_leaf(ctx, data); + if (ret != -E2BIG) + return ret; + + if (WARN_ON(ctx->level == KVM_PGTABLE_MAX_LEVELS - 1)) + return -EINVAL; + + if (!data->memcache) + return -ENOMEM; + + childp = mm_ops->zalloc_page(data->memcache); + if (!childp) + return -ENOMEM; + + if (!stage2_try_break_pte(ctx, data->mmu)) { + mm_ops->put_page(childp); + return -EAGAIN; + } + + /* + * If we've run into an existing block mapping then replace it with + * a table. Accesses beyond 'end' that fall within the new table + * will be mapped lazily. + */ + new = kvm_init_table_pte(childp, mm_ops); + stage2_make_pte(ctx, new); + + return 0; +} + +/* + * The TABLE_PRE callback runs for table entries on the way down, looking + * for table entries which we could conceivably replace with a block entry + * for this mapping. If it finds one it replaces the entry and calls + * kvm_pgtable_mm_ops::free_unlinked_table() to tear down the detached table. + * + * Otherwise, the LEAF callback performs the mapping at the existing leaves + * instead. + */ +static int stage2_map_walker(const struct kvm_pgtable_visit_ctx *ctx, + enum kvm_pgtable_walk_flags visit) +{ + struct stage2_map_data *data = ctx->arg; + + switch (visit) { + case KVM_PGTABLE_WALK_TABLE_PRE: + return stage2_map_walk_table_pre(ctx, data); + case KVM_PGTABLE_WALK_LEAF: + return stage2_map_walk_leaf(ctx, data); + default: + return -EINVAL; + } +} + +int kvm_pgtable_stage2_map(struct kvm_pgtable *pgt, u64 addr, u64 size, + u64 phys, enum kvm_pgtable_prot prot, + void *mc, enum kvm_pgtable_walk_flags flags) +{ + int ret; + struct stage2_map_data map_data = { + .phys = ALIGN_DOWN(phys, PAGE_SIZE), + .mmu = pgt->mmu, + .memcache = mc, + .force_pte = pgt->force_pte_cb && pgt->force_pte_cb(addr, addr + size, prot), + }; + struct kvm_pgtable_walker walker = { + .cb = stage2_map_walker, + .flags = flags | + KVM_PGTABLE_WALK_TABLE_PRE | + KVM_PGTABLE_WALK_LEAF, + .arg = &map_data, + }; + + if (WARN_ON((pgt->flags & KVM_PGTABLE_S2_IDMAP) && (addr != phys))) + return -EINVAL; + + ret = stage2_set_prot_attr(pgt, prot, &map_data.attr); + if (ret) + return ret; + + ret = kvm_pgtable_walk(pgt, addr, size, &walker); + dsb(ishst); + return ret; +} + +int kvm_pgtable_stage2_set_owner(struct kvm_pgtable *pgt, u64 addr, u64 size, + void *mc, u8 owner_id) +{ + int ret; + struct stage2_map_data map_data = { + .phys = KVM_PHYS_INVALID, + .mmu = pgt->mmu, + .memcache = mc, + .owner_id = owner_id, + .force_pte = true, + }; + struct kvm_pgtable_walker walker = { + .cb = stage2_map_walker, + .flags = KVM_PGTABLE_WALK_TABLE_PRE | + KVM_PGTABLE_WALK_LEAF, + .arg = &map_data, + }; + + if (owner_id > KVM_MAX_OWNER_ID) + return -EINVAL; + + ret = kvm_pgtable_walk(pgt, addr, size, &walker); + return ret; +} + +static int stage2_unmap_walker(const struct kvm_pgtable_visit_ctx *ctx, + enum kvm_pgtable_walk_flags visit) +{ + struct kvm_pgtable *pgt = ctx->arg; + struct kvm_s2_mmu *mmu = pgt->mmu; + struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops; + kvm_pte_t *childp = NULL; + bool need_flush = false; + + if (!kvm_pte_valid(ctx->old)) { + if (stage2_pte_is_counted(ctx->old)) { + kvm_clear_pte(ctx->ptep); + mm_ops->put_page(ctx->ptep); + } + return 0; + } + + if (kvm_pte_table(ctx->old, ctx->level)) { + childp = kvm_pte_follow(ctx->old, mm_ops); + + if (mm_ops->page_count(childp) != 1) + return 0; + } else if (stage2_pte_cacheable(pgt, ctx->old)) { + need_flush = !stage2_has_fwb(pgt); + } + + /* + * This is similar to the map() path in that we unmap the entire + * block entry and rely on the remaining portions being faulted + * back lazily. + */ + stage2_unmap_put_pte(ctx, mmu, mm_ops); + + if (need_flush && mm_ops->dcache_clean_inval_poc) + mm_ops->dcache_clean_inval_poc(kvm_pte_follow(ctx->old, mm_ops), + kvm_granule_size(ctx->level)); + + if (childp) + mm_ops->put_page(childp); + + return 0; +} + +int kvm_pgtable_stage2_unmap(struct kvm_pgtable *pgt, u64 addr, u64 size) +{ + int ret; + struct kvm_pgtable_walker walker = { + .cb = stage2_unmap_walker, + .arg = pgt, + .flags = KVM_PGTABLE_WALK_LEAF | KVM_PGTABLE_WALK_TABLE_POST, + }; + + ret = kvm_pgtable_walk(pgt, addr, size, &walker); + if (stage2_unmap_defer_tlb_flush(pgt)) + /* Perform the deferred TLB invalidations */ + kvm_tlb_flush_vmid_range(pgt->mmu, addr, size); + + return ret; +} + +struct stage2_attr_data { + kvm_pte_t attr_set; + kvm_pte_t attr_clr; + kvm_pte_t pte; + u32 level; +}; + +static int stage2_attr_walker(const struct kvm_pgtable_visit_ctx *ctx, + enum kvm_pgtable_walk_flags visit) +{ + kvm_pte_t pte = ctx->old; + struct stage2_attr_data *data = ctx->arg; + struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops; + + if (!kvm_pte_valid(ctx->old)) + return -EAGAIN; + + data->level = ctx->level; + data->pte = pte; + pte &= ~data->attr_clr; + pte |= data->attr_set; + + /* + * We may race with the CPU trying to set the access flag here, + * but worst-case the access flag update gets lost and will be + * set on the next access instead. + */ + if (data->pte != pte) { + /* + * Invalidate instruction cache before updating the guest + * stage-2 PTE if we are going to add executable permission. + */ + if (mm_ops->icache_inval_pou && + stage2_pte_executable(pte) && !stage2_pte_executable(ctx->old)) + mm_ops->icache_inval_pou(kvm_pte_follow(pte, mm_ops), + kvm_granule_size(ctx->level)); + + if (!stage2_try_set_pte(ctx, pte)) + return -EAGAIN; + } + + return 0; +} + +static int stage2_update_leaf_attrs(struct kvm_pgtable *pgt, u64 addr, + u64 size, kvm_pte_t attr_set, + kvm_pte_t attr_clr, kvm_pte_t *orig_pte, + u32 *level, enum kvm_pgtable_walk_flags flags) +{ + int ret; + kvm_pte_t attr_mask = KVM_PTE_LEAF_ATTR_LO | KVM_PTE_LEAF_ATTR_HI; + struct stage2_attr_data data = { + .attr_set = attr_set & attr_mask, + .attr_clr = attr_clr & attr_mask, + }; + struct kvm_pgtable_walker walker = { + .cb = stage2_attr_walker, + .arg = &data, + .flags = flags | KVM_PGTABLE_WALK_LEAF, + }; + + ret = kvm_pgtable_walk(pgt, addr, size, &walker); + if (ret) + return ret; + + if (orig_pte) + *orig_pte = data.pte; + + if (level) + *level = data.level; + return 0; +} + +int kvm_pgtable_stage2_wrprotect(struct kvm_pgtable *pgt, u64 addr, u64 size) +{ + return stage2_update_leaf_attrs(pgt, addr, size, 0, + KVM_PTE_LEAF_ATTR_LO_S2_S2AP_W, + NULL, NULL, 0); +} + +kvm_pte_t kvm_pgtable_stage2_mkyoung(struct kvm_pgtable *pgt, u64 addr) +{ + kvm_pte_t pte = 0; + int ret; + + ret = stage2_update_leaf_attrs(pgt, addr, 1, KVM_PTE_LEAF_ATTR_LO_S2_AF, 0, + &pte, NULL, + KVM_PGTABLE_WALK_HANDLE_FAULT | + KVM_PGTABLE_WALK_SHARED); + if (!ret) + dsb(ishst); + + return pte; +} + +struct stage2_age_data { + bool mkold; + bool young; +}; + +static int stage2_age_walker(const struct kvm_pgtable_visit_ctx *ctx, + enum kvm_pgtable_walk_flags visit) +{ + kvm_pte_t new = ctx->old & ~KVM_PTE_LEAF_ATTR_LO_S2_AF; + struct stage2_age_data *data = ctx->arg; + + if (!kvm_pte_valid(ctx->old) || new == ctx->old) + return 0; + + data->young = true; + + /* + * stage2_age_walker() is always called while holding the MMU lock for + * write, so this will always succeed. Nonetheless, this deliberately + * follows the race detection pattern of the other stage-2 walkers in + * case the locking mechanics of the MMU notifiers is ever changed. + */ + if (data->mkold && !stage2_try_set_pte(ctx, new)) + return -EAGAIN; + + /* + * "But where's the TLBI?!", you scream. + * "Over in the core code", I sigh. + * + * See the '->clear_flush_young()' callback on the KVM mmu notifier. + */ + return 0; +} + +bool kvm_pgtable_stage2_test_clear_young(struct kvm_pgtable *pgt, u64 addr, + u64 size, bool mkold) +{ + struct stage2_age_data data = { + .mkold = mkold, + }; + struct kvm_pgtable_walker walker = { + .cb = stage2_age_walker, + .arg = &data, + .flags = KVM_PGTABLE_WALK_LEAF, + }; + + WARN_ON(kvm_pgtable_walk(pgt, addr, size, &walker)); + return data.young; +} + +int kvm_pgtable_stage2_relax_perms(struct kvm_pgtable *pgt, u64 addr, + enum kvm_pgtable_prot prot) +{ + int ret; + u32 level; + kvm_pte_t set = 0, clr = 0; + + if (prot & KVM_PTE_LEAF_ATTR_HI_SW) + return -EINVAL; + + if (prot & KVM_PGTABLE_PROT_R) + set |= KVM_PTE_LEAF_ATTR_LO_S2_S2AP_R; + + if (prot & KVM_PGTABLE_PROT_W) + set |= KVM_PTE_LEAF_ATTR_LO_S2_S2AP_W; + + if (prot & KVM_PGTABLE_PROT_X) + clr |= KVM_PTE_LEAF_ATTR_HI_S2_XN; + + ret = stage2_update_leaf_attrs(pgt, addr, 1, set, clr, NULL, &level, + KVM_PGTABLE_WALK_HANDLE_FAULT | + KVM_PGTABLE_WALK_SHARED); + if (!ret) + kvm_call_hyp(__kvm_tlb_flush_vmid_ipa_nsh, pgt->mmu, addr, level); + return ret; +} + +static int stage2_flush_walker(const struct kvm_pgtable_visit_ctx *ctx, + enum kvm_pgtable_walk_flags visit) +{ + struct kvm_pgtable *pgt = ctx->arg; + struct kvm_pgtable_mm_ops *mm_ops = pgt->mm_ops; + + if (!kvm_pte_valid(ctx->old) || !stage2_pte_cacheable(pgt, ctx->old)) + return 0; + + if (mm_ops->dcache_clean_inval_poc) + mm_ops->dcache_clean_inval_poc(kvm_pte_follow(ctx->old, mm_ops), + kvm_granule_size(ctx->level)); + return 0; +} + +int kvm_pgtable_stage2_flush(struct kvm_pgtable *pgt, u64 addr, u64 size) +{ + struct kvm_pgtable_walker walker = { + .cb = stage2_flush_walker, + .flags = KVM_PGTABLE_WALK_LEAF, + .arg = pgt, + }; + + if (stage2_has_fwb(pgt)) + return 0; + + return kvm_pgtable_walk(pgt, addr, size, &walker); +} + +kvm_pte_t *kvm_pgtable_stage2_create_unlinked(struct kvm_pgtable *pgt, + u64 phys, u32 level, + enum kvm_pgtable_prot prot, + void *mc, bool force_pte) +{ + struct stage2_map_data map_data = { + .phys = phys, + .mmu = pgt->mmu, + .memcache = mc, + .force_pte = force_pte, + }; + struct kvm_pgtable_walker walker = { + .cb = stage2_map_walker, + .flags = KVM_PGTABLE_WALK_LEAF | + KVM_PGTABLE_WALK_SKIP_BBM_TLBI | + KVM_PGTABLE_WALK_SKIP_CMO, + .arg = &map_data, + }; + /* + * The input address (.addr) is irrelevant for walking an + * unlinked table. Construct an ambiguous IA range to map + * kvm_granule_size(level) worth of memory. + */ + struct kvm_pgtable_walk_data data = { + .walker = &walker, + .addr = 0, + .end = kvm_granule_size(level), + }; + struct kvm_pgtable_mm_ops *mm_ops = pgt->mm_ops; + kvm_pte_t *pgtable; + int ret; + + if (!IS_ALIGNED(phys, kvm_granule_size(level))) + return ERR_PTR(-EINVAL); + + ret = stage2_set_prot_attr(pgt, prot, &map_data.attr); + if (ret) + return ERR_PTR(ret); + + pgtable = mm_ops->zalloc_page(mc); + if (!pgtable) + return ERR_PTR(-ENOMEM); + + ret = __kvm_pgtable_walk(&data, mm_ops, (kvm_pteref_t)pgtable, + level + 1); + if (ret) { + kvm_pgtable_stage2_free_unlinked(mm_ops, pgtable, level); + mm_ops->put_page(pgtable); + return ERR_PTR(ret); + } + + return pgtable; +} + +/* + * Get the number of page-tables needed to replace a block with a + * fully populated tree up to the PTE entries. Note that @level is + * interpreted as in "level @level entry". + */ +static int stage2_block_get_nr_page_tables(u32 level) +{ + switch (level) { + case 1: + return PTRS_PER_PTE + 1; + case 2: + return 1; + case 3: + return 0; + default: + WARN_ON_ONCE(level < KVM_PGTABLE_MIN_BLOCK_LEVEL || + level >= KVM_PGTABLE_MAX_LEVELS); + return -EINVAL; + }; +} + +static int stage2_split_walker(const struct kvm_pgtable_visit_ctx *ctx, + enum kvm_pgtable_walk_flags visit) +{ + struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops; + struct kvm_mmu_memory_cache *mc = ctx->arg; + struct kvm_s2_mmu *mmu; + kvm_pte_t pte = ctx->old, new, *childp; + enum kvm_pgtable_prot prot; + u32 level = ctx->level; + bool force_pte; + int nr_pages; + u64 phys; + + /* No huge-pages exist at the last level */ + if (level == KVM_PGTABLE_MAX_LEVELS - 1) + return 0; + + /* We only split valid block mappings */ + if (!kvm_pte_valid(pte)) + return 0; + + nr_pages = stage2_block_get_nr_page_tables(level); + if (nr_pages < 0) + return nr_pages; + + if (mc->nobjs >= nr_pages) { + /* Build a tree mapped down to the PTE granularity. */ + force_pte = true; + } else { + /* + * Don't force PTEs, so create_unlinked() below does + * not populate the tree up to the PTE level. The + * consequence is that the call will require a single + * page of level 2 entries at level 1, or a single + * page of PTEs at level 2. If we are at level 1, the + * PTEs will be created recursively. + */ + force_pte = false; + nr_pages = 1; + } + + if (mc->nobjs < nr_pages) + return -ENOMEM; + + mmu = container_of(mc, struct kvm_s2_mmu, split_page_cache); + phys = kvm_pte_to_phys(pte); + prot = kvm_pgtable_stage2_pte_prot(pte); + + childp = kvm_pgtable_stage2_create_unlinked(mmu->pgt, phys, + level, prot, mc, force_pte); + if (IS_ERR(childp)) + return PTR_ERR(childp); + + if (!stage2_try_break_pte(ctx, mmu)) { + kvm_pgtable_stage2_free_unlinked(mm_ops, childp, level); + mm_ops->put_page(childp); + return -EAGAIN; + } + + /* + * Note, the contents of the page table are guaranteed to be made + * visible before the new PTE is assigned because stage2_make_pte() + * writes the PTE using smp_store_release(). + */ + new = kvm_init_table_pte(childp, mm_ops); + stage2_make_pte(ctx, new); + dsb(ishst); + return 0; +} + +int kvm_pgtable_stage2_split(struct kvm_pgtable *pgt, u64 addr, u64 size, + struct kvm_mmu_memory_cache *mc) +{ + struct kvm_pgtable_walker walker = { + .cb = stage2_split_walker, + .flags = KVM_PGTABLE_WALK_LEAF, + .arg = mc, + }; + + return kvm_pgtable_walk(pgt, addr, size, &walker); +} + +int __kvm_pgtable_stage2_init(struct kvm_pgtable *pgt, struct kvm_s2_mmu *mmu, + struct kvm_pgtable_mm_ops *mm_ops, + enum kvm_pgtable_stage2_flags flags, + kvm_pgtable_force_pte_cb_t force_pte_cb) +{ + size_t pgd_sz; + u64 vtcr = mmu->arch->vtcr; + u32 ia_bits = VTCR_EL2_IPA(vtcr); + u32 sl0 = FIELD_GET(VTCR_EL2_SL0_MASK, vtcr); + u32 start_level = VTCR_EL2_TGRAN_SL0_BASE - sl0; + + pgd_sz = kvm_pgd_pages(ia_bits, start_level) * PAGE_SIZE; + pgt->pgd = (kvm_pteref_t)mm_ops->zalloc_pages_exact(pgd_sz); + if (!pgt->pgd) + return -ENOMEM; + + pgt->ia_bits = ia_bits; + pgt->start_level = start_level; + pgt->mm_ops = mm_ops; + pgt->mmu = mmu; + pgt->flags = flags; + pgt->force_pte_cb = force_pte_cb; + + /* Ensure zeroed PGD pages are visible to the hardware walker */ + dsb(ishst); + return 0; +} + +size_t kvm_pgtable_stage2_pgd_size(u64 vtcr) +{ + u32 ia_bits = VTCR_EL2_IPA(vtcr); + u32 sl0 = FIELD_GET(VTCR_EL2_SL0_MASK, vtcr); + u32 start_level = VTCR_EL2_TGRAN_SL0_BASE - sl0; + + return kvm_pgd_pages(ia_bits, start_level) * PAGE_SIZE; +} + +static int stage2_free_walker(const struct kvm_pgtable_visit_ctx *ctx, + enum kvm_pgtable_walk_flags visit) +{ + struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops; + + if (!stage2_pte_is_counted(ctx->old)) + return 0; + + mm_ops->put_page(ctx->ptep); + + if (kvm_pte_table(ctx->old, ctx->level)) + mm_ops->put_page(kvm_pte_follow(ctx->old, mm_ops)); + + return 0; +} + +void kvm_pgtable_stage2_destroy(struct kvm_pgtable *pgt) +{ + size_t pgd_sz; + struct kvm_pgtable_walker walker = { + .cb = stage2_free_walker, + .flags = KVM_PGTABLE_WALK_LEAF | + KVM_PGTABLE_WALK_TABLE_POST, + }; + + WARN_ON(kvm_pgtable_walk(pgt, 0, BIT(pgt->ia_bits), &walker)); + pgd_sz = kvm_pgd_pages(pgt->ia_bits, pgt->start_level) * PAGE_SIZE; + pgt->mm_ops->free_pages_exact(kvm_dereference_pteref(&walker, pgt->pgd), pgd_sz); + pgt->pgd = NULL; +} + +void kvm_pgtable_stage2_free_unlinked(struct kvm_pgtable_mm_ops *mm_ops, void *pgtable, u32 level) +{ + kvm_pteref_t ptep = (kvm_pteref_t)pgtable; + struct kvm_pgtable_walker walker = { + .cb = stage2_free_walker, + .flags = KVM_PGTABLE_WALK_LEAF | + KVM_PGTABLE_WALK_TABLE_POST, + }; + struct kvm_pgtable_walk_data data = { + .walker = &walker, + + /* + * At this point the IPA really doesn't matter, as the page + * table being traversed has already been removed from the stage + * 2. Set an appropriate range to cover the entire page table. + */ + .addr = 0, + .end = kvm_granule_size(level), + }; + + WARN_ON(__kvm_pgtable_walk(&data, mm_ops, ptep, level + 1)); + + WARN_ON(mm_ops->page_count(pgtable) != 1); + mm_ops->put_page(pgtable); +} diff --git a/arch/arm64/kvm/hyp/vgic-v2-cpuif-proxy.c b/arch/arm64/kvm/hyp/vgic-v2-cpuif-proxy.c new file mode 100644 index 0000000000..87a54375bd --- /dev/null +++ b/arch/arm64/kvm/hyp/vgic-v2-cpuif-proxy.c @@ -0,0 +1,89 @@ +// SPDX-License-Identifier: GPL-2.0-only +/* + * Copyright (C) 2012-2015 - ARM Ltd + * Author: Marc Zyngier <marc.zyngier@arm.com> + */ + +#include <hyp/adjust_pc.h> + +#include <linux/compiler.h> +#include <linux/irqchip/arm-gic.h> +#include <linux/kvm_host.h> +#include <linux/swab.h> + +#include <asm/kvm_emulate.h> +#include <asm/kvm_hyp.h> +#include <asm/kvm_mmu.h> + +static bool __is_be(struct kvm_vcpu *vcpu) +{ + if (vcpu_mode_is_32bit(vcpu)) + return !!(read_sysreg_el2(SYS_SPSR) & PSR_AA32_E_BIT); + + return !!(read_sysreg(SCTLR_EL1) & SCTLR_ELx_EE); +} + +/* + * __vgic_v2_perform_cpuif_access -- perform a GICV access on behalf of the + * guest. + * + * @vcpu: the offending vcpu + * + * Returns: + * 1: GICV access successfully performed + * 0: Not a GICV access + * -1: Illegal GICV access successfully performed + */ +int __vgic_v2_perform_cpuif_access(struct kvm_vcpu *vcpu) +{ + struct kvm *kvm = kern_hyp_va(vcpu->kvm); + struct vgic_dist *vgic = &kvm->arch.vgic; + phys_addr_t fault_ipa; + void __iomem *addr; + int rd; + + /* Build the full address */ + fault_ipa = kvm_vcpu_get_fault_ipa(vcpu); + fault_ipa |= kvm_vcpu_get_hfar(vcpu) & GENMASK(11, 0); + + /* If not for GICV, move on */ + if (fault_ipa < vgic->vgic_cpu_base || + fault_ipa >= (vgic->vgic_cpu_base + KVM_VGIC_V2_CPU_SIZE)) + return 0; + + /* Reject anything but a 32bit access */ + if (kvm_vcpu_dabt_get_as(vcpu) != sizeof(u32)) { + __kvm_skip_instr(vcpu); + return -1; + } + + /* Not aligned? Don't bother */ + if (fault_ipa & 3) { + __kvm_skip_instr(vcpu); + return -1; + } + + rd = kvm_vcpu_dabt_get_rd(vcpu); + addr = kvm_vgic_global_state.vcpu_hyp_va; + addr += fault_ipa - vgic->vgic_cpu_base; + + if (kvm_vcpu_dabt_iswrite(vcpu)) { + u32 data = vcpu_get_reg(vcpu, rd); + if (__is_be(vcpu)) { + /* guest pre-swabbed data, undo this for writel() */ + data = __kvm_swab32(data); + } + writel_relaxed(data, addr); + } else { + u32 data = readl_relaxed(addr); + if (__is_be(vcpu)) { + /* guest expects swabbed data */ + data = __kvm_swab32(data); + } + vcpu_set_reg(vcpu, rd, data); + } + + __kvm_skip_instr(vcpu); + + return 1; +} diff --git a/arch/arm64/kvm/hyp/vgic-v3-sr.c b/arch/arm64/kvm/hyp/vgic-v3-sr.c new file mode 100644 index 0000000000..6cb638b184 --- /dev/null +++ b/arch/arm64/kvm/hyp/vgic-v3-sr.c @@ -0,0 +1,1143 @@ +// SPDX-License-Identifier: GPL-2.0-only +/* + * Copyright (C) 2012-2015 - ARM Ltd + * Author: Marc Zyngier <marc.zyngier@arm.com> + */ + +#include <hyp/adjust_pc.h> + +#include <linux/compiler.h> +#include <linux/irqchip/arm-gic-v3.h> +#include <linux/kvm_host.h> + +#include <asm/kvm_emulate.h> +#include <asm/kvm_hyp.h> +#include <asm/kvm_mmu.h> + +#define vtr_to_max_lr_idx(v) ((v) & 0xf) +#define vtr_to_nr_pre_bits(v) ((((u32)(v) >> 26) & 7) + 1) +#define vtr_to_nr_apr_regs(v) (1 << (vtr_to_nr_pre_bits(v) - 5)) + +static u64 __gic_v3_get_lr(unsigned int lr) +{ + switch (lr & 0xf) { + case 0: + return read_gicreg(ICH_LR0_EL2); + case 1: + return read_gicreg(ICH_LR1_EL2); + case 2: + return read_gicreg(ICH_LR2_EL2); + case 3: + return read_gicreg(ICH_LR3_EL2); + case 4: + return read_gicreg(ICH_LR4_EL2); + case 5: + return read_gicreg(ICH_LR5_EL2); + case 6: + return read_gicreg(ICH_LR6_EL2); + case 7: + return read_gicreg(ICH_LR7_EL2); + case 8: + return read_gicreg(ICH_LR8_EL2); + case 9: + return read_gicreg(ICH_LR9_EL2); + case 10: + return read_gicreg(ICH_LR10_EL2); + case 11: + return read_gicreg(ICH_LR11_EL2); + case 12: + return read_gicreg(ICH_LR12_EL2); + case 13: + return read_gicreg(ICH_LR13_EL2); + case 14: + return read_gicreg(ICH_LR14_EL2); + case 15: + return read_gicreg(ICH_LR15_EL2); + } + + unreachable(); +} + +static void __gic_v3_set_lr(u64 val, int lr) +{ + switch (lr & 0xf) { + case 0: + write_gicreg(val, ICH_LR0_EL2); + break; + case 1: + write_gicreg(val, ICH_LR1_EL2); + break; + case 2: + write_gicreg(val, ICH_LR2_EL2); + break; + case 3: + write_gicreg(val, ICH_LR3_EL2); + break; + case 4: + write_gicreg(val, ICH_LR4_EL2); + break; + case 5: + write_gicreg(val, ICH_LR5_EL2); + break; + case 6: + write_gicreg(val, ICH_LR6_EL2); + break; + case 7: + write_gicreg(val, ICH_LR7_EL2); + break; + case 8: + write_gicreg(val, ICH_LR8_EL2); + break; + case 9: + write_gicreg(val, ICH_LR9_EL2); + break; + case 10: + write_gicreg(val, ICH_LR10_EL2); + break; + case 11: + write_gicreg(val, ICH_LR11_EL2); + break; + case 12: + write_gicreg(val, ICH_LR12_EL2); + break; + case 13: + write_gicreg(val, ICH_LR13_EL2); + break; + case 14: + write_gicreg(val, ICH_LR14_EL2); + break; + case 15: + write_gicreg(val, ICH_LR15_EL2); + break; + } +} + +static void __vgic_v3_write_ap0rn(u32 val, int n) +{ + switch (n) { + case 0: + write_gicreg(val, ICH_AP0R0_EL2); + break; + case 1: + write_gicreg(val, ICH_AP0R1_EL2); + break; + case 2: + write_gicreg(val, ICH_AP0R2_EL2); + break; + case 3: + write_gicreg(val, ICH_AP0R3_EL2); + break; + } +} + +static void __vgic_v3_write_ap1rn(u32 val, int n) +{ + switch (n) { + case 0: + write_gicreg(val, ICH_AP1R0_EL2); + break; + case 1: + write_gicreg(val, ICH_AP1R1_EL2); + break; + case 2: + write_gicreg(val, ICH_AP1R2_EL2); + break; + case 3: + write_gicreg(val, ICH_AP1R3_EL2); + break; + } +} + +static u32 __vgic_v3_read_ap0rn(int n) +{ + u32 val; + + switch (n) { + case 0: + val = read_gicreg(ICH_AP0R0_EL2); + break; + case 1: + val = read_gicreg(ICH_AP0R1_EL2); + break; + case 2: + val = read_gicreg(ICH_AP0R2_EL2); + break; + case 3: + val = read_gicreg(ICH_AP0R3_EL2); + break; + default: + unreachable(); + } + + return val; +} + +static u32 __vgic_v3_read_ap1rn(int n) +{ + u32 val; + + switch (n) { + case 0: + val = read_gicreg(ICH_AP1R0_EL2); + break; + case 1: + val = read_gicreg(ICH_AP1R1_EL2); + break; + case 2: + val = read_gicreg(ICH_AP1R2_EL2); + break; + case 3: + val = read_gicreg(ICH_AP1R3_EL2); + break; + default: + unreachable(); + } + + return val; +} + +void __vgic_v3_save_state(struct vgic_v3_cpu_if *cpu_if) +{ + u64 used_lrs = cpu_if->used_lrs; + + /* + * Make sure stores to the GIC via the memory mapped interface + * are now visible to the system register interface when reading the + * LRs, and when reading back the VMCR on non-VHE systems. + */ + if (used_lrs || !has_vhe()) { + if (!cpu_if->vgic_sre) { + dsb(sy); + isb(); + } + } + + if (used_lrs || cpu_if->its_vpe.its_vm) { + int i; + u32 elrsr; + + elrsr = read_gicreg(ICH_ELRSR_EL2); + + write_gicreg(cpu_if->vgic_hcr & ~ICH_HCR_EN, ICH_HCR_EL2); + + for (i = 0; i < used_lrs; i++) { + if (elrsr & (1 << i)) + cpu_if->vgic_lr[i] &= ~ICH_LR_STATE; + else + cpu_if->vgic_lr[i] = __gic_v3_get_lr(i); + + __gic_v3_set_lr(0, i); + } + } +} + +void __vgic_v3_restore_state(struct vgic_v3_cpu_if *cpu_if) +{ + u64 used_lrs = cpu_if->used_lrs; + int i; + + if (used_lrs || cpu_if->its_vpe.its_vm) { + write_gicreg(cpu_if->vgic_hcr, ICH_HCR_EL2); + + for (i = 0; i < used_lrs; i++) + __gic_v3_set_lr(cpu_if->vgic_lr[i], i); + } + + /* + * Ensure that writes to the LRs, and on non-VHE systems ensure that + * the write to the VMCR in __vgic_v3_activate_traps(), will have + * reached the (re)distributors. This ensure the guest will read the + * correct values from the memory-mapped interface. + */ + if (used_lrs || !has_vhe()) { + if (!cpu_if->vgic_sre) { + isb(); + dsb(sy); + } + } +} + +void __vgic_v3_activate_traps(struct vgic_v3_cpu_if *cpu_if) +{ + /* + * VFIQEn is RES1 if ICC_SRE_EL1.SRE is 1. This causes a + * Group0 interrupt (as generated in GICv2 mode) to be + * delivered as a FIQ to the guest, with potentially fatal + * consequences. So we must make sure that ICC_SRE_EL1 has + * been actually programmed with the value we want before + * starting to mess with the rest of the GIC, and VMCR_EL2 in + * particular. This logic must be called before + * __vgic_v3_restore_state(). + */ + if (!cpu_if->vgic_sre) { + write_gicreg(0, ICC_SRE_EL1); + isb(); + write_gicreg(cpu_if->vgic_vmcr, ICH_VMCR_EL2); + + + if (has_vhe()) { + /* + * Ensure that the write to the VMCR will have reached + * the (re)distributors. This ensure the guest will + * read the correct values from the memory-mapped + * interface. + */ + isb(); + dsb(sy); + } + } + + /* + * Prevent the guest from touching the GIC system registers if + * SRE isn't enabled for GICv3 emulation. + */ + write_gicreg(read_gicreg(ICC_SRE_EL2) & ~ICC_SRE_EL2_ENABLE, + ICC_SRE_EL2); + + /* + * If we need to trap system registers, we must write + * ICH_HCR_EL2 anyway, even if no interrupts are being + * injected, + */ + if (static_branch_unlikely(&vgic_v3_cpuif_trap) || + cpu_if->its_vpe.its_vm) + write_gicreg(cpu_if->vgic_hcr, ICH_HCR_EL2); +} + +void __vgic_v3_deactivate_traps(struct vgic_v3_cpu_if *cpu_if) +{ + u64 val; + + if (!cpu_if->vgic_sre) { + cpu_if->vgic_vmcr = read_gicreg(ICH_VMCR_EL2); + } + + val = read_gicreg(ICC_SRE_EL2); + write_gicreg(val | ICC_SRE_EL2_ENABLE, ICC_SRE_EL2); + + if (!cpu_if->vgic_sre) { + /* Make sure ENABLE is set at EL2 before setting SRE at EL1 */ + isb(); + write_gicreg(1, ICC_SRE_EL1); + } + + /* + * If we were trapping system registers, we enabled the VGIC even if + * no interrupts were being injected, and we disable it again here. + */ + if (static_branch_unlikely(&vgic_v3_cpuif_trap) || + cpu_if->its_vpe.its_vm) + write_gicreg(0, ICH_HCR_EL2); +} + +void __vgic_v3_save_aprs(struct vgic_v3_cpu_if *cpu_if) +{ + u64 val; + u32 nr_pre_bits; + + val = read_gicreg(ICH_VTR_EL2); + nr_pre_bits = vtr_to_nr_pre_bits(val); + + switch (nr_pre_bits) { + case 7: + cpu_if->vgic_ap0r[3] = __vgic_v3_read_ap0rn(3); + cpu_if->vgic_ap0r[2] = __vgic_v3_read_ap0rn(2); + fallthrough; + case 6: + cpu_if->vgic_ap0r[1] = __vgic_v3_read_ap0rn(1); + fallthrough; + default: + cpu_if->vgic_ap0r[0] = __vgic_v3_read_ap0rn(0); + } + + switch (nr_pre_bits) { + case 7: + cpu_if->vgic_ap1r[3] = __vgic_v3_read_ap1rn(3); + cpu_if->vgic_ap1r[2] = __vgic_v3_read_ap1rn(2); + fallthrough; + case 6: + cpu_if->vgic_ap1r[1] = __vgic_v3_read_ap1rn(1); + fallthrough; + default: + cpu_if->vgic_ap1r[0] = __vgic_v3_read_ap1rn(0); + } +} + +void __vgic_v3_restore_aprs(struct vgic_v3_cpu_if *cpu_if) +{ + u64 val; + u32 nr_pre_bits; + + val = read_gicreg(ICH_VTR_EL2); + nr_pre_bits = vtr_to_nr_pre_bits(val); + + switch (nr_pre_bits) { + case 7: + __vgic_v3_write_ap0rn(cpu_if->vgic_ap0r[3], 3); + __vgic_v3_write_ap0rn(cpu_if->vgic_ap0r[2], 2); + fallthrough; + case 6: + __vgic_v3_write_ap0rn(cpu_if->vgic_ap0r[1], 1); + fallthrough; + default: + __vgic_v3_write_ap0rn(cpu_if->vgic_ap0r[0], 0); + } + + switch (nr_pre_bits) { + case 7: + __vgic_v3_write_ap1rn(cpu_if->vgic_ap1r[3], 3); + __vgic_v3_write_ap1rn(cpu_if->vgic_ap1r[2], 2); + fallthrough; + case 6: + __vgic_v3_write_ap1rn(cpu_if->vgic_ap1r[1], 1); + fallthrough; + default: + __vgic_v3_write_ap1rn(cpu_if->vgic_ap1r[0], 0); + } +} + +void __vgic_v3_init_lrs(void) +{ + int max_lr_idx = vtr_to_max_lr_idx(read_gicreg(ICH_VTR_EL2)); + int i; + + for (i = 0; i <= max_lr_idx; i++) + __gic_v3_set_lr(0, i); +} + +/* + * Return the GIC CPU configuration: + * - [31:0] ICH_VTR_EL2 + * - [62:32] RES0 + * - [63] MMIO (GICv2) capable + */ +u64 __vgic_v3_get_gic_config(void) +{ + u64 val, sre = read_gicreg(ICC_SRE_EL1); + unsigned long flags = 0; + + /* + * To check whether we have a MMIO-based (GICv2 compatible) + * CPU interface, we need to disable the system register + * view. To do that safely, we have to prevent any interrupt + * from firing (which would be deadly). + * + * Note that this only makes sense on VHE, as interrupts are + * already masked for nVHE as part of the exception entry to + * EL2. + */ + if (has_vhe()) + flags = local_daif_save(); + + /* + * Table 11-2 "Permitted ICC_SRE_ELx.SRE settings" indicates + * that to be able to set ICC_SRE_EL1.SRE to 0, all the + * interrupt overrides must be set. You've got to love this. + */ + sysreg_clear_set(hcr_el2, 0, HCR_AMO | HCR_FMO | HCR_IMO); + isb(); + write_gicreg(0, ICC_SRE_EL1); + isb(); + + val = read_gicreg(ICC_SRE_EL1); + + write_gicreg(sre, ICC_SRE_EL1); + isb(); + sysreg_clear_set(hcr_el2, HCR_AMO | HCR_FMO | HCR_IMO, 0); + isb(); + + if (has_vhe()) + local_daif_restore(flags); + + val = (val & ICC_SRE_EL1_SRE) ? 0 : (1ULL << 63); + val |= read_gicreg(ICH_VTR_EL2); + + return val; +} + +u64 __vgic_v3_read_vmcr(void) +{ + return read_gicreg(ICH_VMCR_EL2); +} + +void __vgic_v3_write_vmcr(u32 vmcr) +{ + write_gicreg(vmcr, ICH_VMCR_EL2); +} + +static int __vgic_v3_bpr_min(void) +{ + /* See Pseudocode for VPriorityGroup */ + return 8 - vtr_to_nr_pre_bits(read_gicreg(ICH_VTR_EL2)); +} + +static int __vgic_v3_get_group(struct kvm_vcpu *vcpu) +{ + u64 esr = kvm_vcpu_get_esr(vcpu); + u8 crm = (esr & ESR_ELx_SYS64_ISS_CRM_MASK) >> ESR_ELx_SYS64_ISS_CRM_SHIFT; + + return crm != 8; +} + +#define GICv3_IDLE_PRIORITY 0xff + +static int __vgic_v3_highest_priority_lr(struct kvm_vcpu *vcpu, u32 vmcr, + u64 *lr_val) +{ + unsigned int used_lrs = vcpu->arch.vgic_cpu.vgic_v3.used_lrs; + u8 priority = GICv3_IDLE_PRIORITY; + int i, lr = -1; + + for (i = 0; i < used_lrs; i++) { + u64 val = __gic_v3_get_lr(i); + u8 lr_prio = (val & ICH_LR_PRIORITY_MASK) >> ICH_LR_PRIORITY_SHIFT; + + /* Not pending in the state? */ + if ((val & ICH_LR_STATE) != ICH_LR_PENDING_BIT) + continue; + + /* Group-0 interrupt, but Group-0 disabled? */ + if (!(val & ICH_LR_GROUP) && !(vmcr & ICH_VMCR_ENG0_MASK)) + continue; + + /* Group-1 interrupt, but Group-1 disabled? */ + if ((val & ICH_LR_GROUP) && !(vmcr & ICH_VMCR_ENG1_MASK)) + continue; + + /* Not the highest priority? */ + if (lr_prio >= priority) + continue; + + /* This is a candidate */ + priority = lr_prio; + *lr_val = val; + lr = i; + } + + if (lr == -1) + *lr_val = ICC_IAR1_EL1_SPURIOUS; + + return lr; +} + +static int __vgic_v3_find_active_lr(struct kvm_vcpu *vcpu, int intid, + u64 *lr_val) +{ + unsigned int used_lrs = vcpu->arch.vgic_cpu.vgic_v3.used_lrs; + int i; + + for (i = 0; i < used_lrs; i++) { + u64 val = __gic_v3_get_lr(i); + + if ((val & ICH_LR_VIRTUAL_ID_MASK) == intid && + (val & ICH_LR_ACTIVE_BIT)) { + *lr_val = val; + return i; + } + } + + *lr_val = ICC_IAR1_EL1_SPURIOUS; + return -1; +} + +static int __vgic_v3_get_highest_active_priority(void) +{ + u8 nr_apr_regs = vtr_to_nr_apr_regs(read_gicreg(ICH_VTR_EL2)); + u32 hap = 0; + int i; + + for (i = 0; i < nr_apr_regs; i++) { + u32 val; + + /* + * The ICH_AP0Rn_EL2 and ICH_AP1Rn_EL2 registers + * contain the active priority levels for this VCPU + * for the maximum number of supported priority + * levels, and we return the full priority level only + * if the BPR is programmed to its minimum, otherwise + * we return a combination of the priority level and + * subpriority, as determined by the setting of the + * BPR, but without the full subpriority. + */ + val = __vgic_v3_read_ap0rn(i); + val |= __vgic_v3_read_ap1rn(i); + if (!val) { + hap += 32; + continue; + } + + return (hap + __ffs(val)) << __vgic_v3_bpr_min(); + } + + return GICv3_IDLE_PRIORITY; +} + +static unsigned int __vgic_v3_get_bpr0(u32 vmcr) +{ + return (vmcr & ICH_VMCR_BPR0_MASK) >> ICH_VMCR_BPR0_SHIFT; +} + +static unsigned int __vgic_v3_get_bpr1(u32 vmcr) +{ + unsigned int bpr; + + if (vmcr & ICH_VMCR_CBPR_MASK) { + bpr = __vgic_v3_get_bpr0(vmcr); + if (bpr < 7) + bpr++; + } else { + bpr = (vmcr & ICH_VMCR_BPR1_MASK) >> ICH_VMCR_BPR1_SHIFT; + } + + return bpr; +} + +/* + * Convert a priority to a preemption level, taking the relevant BPR + * into account by zeroing the sub-priority bits. + */ +static u8 __vgic_v3_pri_to_pre(u8 pri, u32 vmcr, int grp) +{ + unsigned int bpr; + + if (!grp) + bpr = __vgic_v3_get_bpr0(vmcr) + 1; + else + bpr = __vgic_v3_get_bpr1(vmcr); + + return pri & (GENMASK(7, 0) << bpr); +} + +/* + * The priority value is independent of any of the BPR values, so we + * normalize it using the minimal BPR value. This guarantees that no + * matter what the guest does with its BPR, we can always set/get the + * same value of a priority. + */ +static void __vgic_v3_set_active_priority(u8 pri, u32 vmcr, int grp) +{ + u8 pre, ap; + u32 val; + int apr; + + pre = __vgic_v3_pri_to_pre(pri, vmcr, grp); + ap = pre >> __vgic_v3_bpr_min(); + apr = ap / 32; + + if (!grp) { + val = __vgic_v3_read_ap0rn(apr); + __vgic_v3_write_ap0rn(val | BIT(ap % 32), apr); + } else { + val = __vgic_v3_read_ap1rn(apr); + __vgic_v3_write_ap1rn(val | BIT(ap % 32), apr); + } +} + +static int __vgic_v3_clear_highest_active_priority(void) +{ + u8 nr_apr_regs = vtr_to_nr_apr_regs(read_gicreg(ICH_VTR_EL2)); + u32 hap = 0; + int i; + + for (i = 0; i < nr_apr_regs; i++) { + u32 ap0, ap1; + int c0, c1; + + ap0 = __vgic_v3_read_ap0rn(i); + ap1 = __vgic_v3_read_ap1rn(i); + if (!ap0 && !ap1) { + hap += 32; + continue; + } + + c0 = ap0 ? __ffs(ap0) : 32; + c1 = ap1 ? __ffs(ap1) : 32; + + /* Always clear the LSB, which is the highest priority */ + if (c0 < c1) { + ap0 &= ~BIT(c0); + __vgic_v3_write_ap0rn(ap0, i); + hap += c0; + } else { + ap1 &= ~BIT(c1); + __vgic_v3_write_ap1rn(ap1, i); + hap += c1; + } + + /* Rescale to 8 bits of priority */ + return hap << __vgic_v3_bpr_min(); + } + + return GICv3_IDLE_PRIORITY; +} + +static void __vgic_v3_read_iar(struct kvm_vcpu *vcpu, u32 vmcr, int rt) +{ + u64 lr_val; + u8 lr_prio, pmr; + int lr, grp; + + grp = __vgic_v3_get_group(vcpu); + + lr = __vgic_v3_highest_priority_lr(vcpu, vmcr, &lr_val); + if (lr < 0) + goto spurious; + + if (grp != !!(lr_val & ICH_LR_GROUP)) + goto spurious; + + pmr = (vmcr & ICH_VMCR_PMR_MASK) >> ICH_VMCR_PMR_SHIFT; + lr_prio = (lr_val & ICH_LR_PRIORITY_MASK) >> ICH_LR_PRIORITY_SHIFT; + if (pmr <= lr_prio) + goto spurious; + + if (__vgic_v3_get_highest_active_priority() <= __vgic_v3_pri_to_pre(lr_prio, vmcr, grp)) + goto spurious; + + lr_val &= ~ICH_LR_STATE; + lr_val |= ICH_LR_ACTIVE_BIT; + __gic_v3_set_lr(lr_val, lr); + __vgic_v3_set_active_priority(lr_prio, vmcr, grp); + vcpu_set_reg(vcpu, rt, lr_val & ICH_LR_VIRTUAL_ID_MASK); + return; + +spurious: + vcpu_set_reg(vcpu, rt, ICC_IAR1_EL1_SPURIOUS); +} + +static void __vgic_v3_clear_active_lr(int lr, u64 lr_val) +{ + lr_val &= ~ICH_LR_ACTIVE_BIT; + if (lr_val & ICH_LR_HW) { + u32 pid; + + pid = (lr_val & ICH_LR_PHYS_ID_MASK) >> ICH_LR_PHYS_ID_SHIFT; + gic_write_dir(pid); + } + + __gic_v3_set_lr(lr_val, lr); +} + +static void __vgic_v3_bump_eoicount(void) +{ + u32 hcr; + + hcr = read_gicreg(ICH_HCR_EL2); + hcr += 1 << ICH_HCR_EOIcount_SHIFT; + write_gicreg(hcr, ICH_HCR_EL2); +} + +static void __vgic_v3_write_dir(struct kvm_vcpu *vcpu, u32 vmcr, int rt) +{ + u32 vid = vcpu_get_reg(vcpu, rt); + u64 lr_val; + int lr; + + /* EOImode == 0, nothing to be done here */ + if (!(vmcr & ICH_VMCR_EOIM_MASK)) + return; + + /* No deactivate to be performed on an LPI */ + if (vid >= VGIC_MIN_LPI) + return; + + lr = __vgic_v3_find_active_lr(vcpu, vid, &lr_val); + if (lr == -1) { + __vgic_v3_bump_eoicount(); + return; + } + + __vgic_v3_clear_active_lr(lr, lr_val); +} + +static void __vgic_v3_write_eoir(struct kvm_vcpu *vcpu, u32 vmcr, int rt) +{ + u32 vid = vcpu_get_reg(vcpu, rt); + u64 lr_val; + u8 lr_prio, act_prio; + int lr, grp; + + grp = __vgic_v3_get_group(vcpu); + + /* Drop priority in any case */ + act_prio = __vgic_v3_clear_highest_active_priority(); + + lr = __vgic_v3_find_active_lr(vcpu, vid, &lr_val); + if (lr == -1) { + /* Do not bump EOIcount for LPIs that aren't in the LRs */ + if (!(vid >= VGIC_MIN_LPI)) + __vgic_v3_bump_eoicount(); + return; + } + + /* EOImode == 1 and not an LPI, nothing to be done here */ + if ((vmcr & ICH_VMCR_EOIM_MASK) && !(vid >= VGIC_MIN_LPI)) + return; + + lr_prio = (lr_val & ICH_LR_PRIORITY_MASK) >> ICH_LR_PRIORITY_SHIFT; + + /* If priorities or group do not match, the guest has fscked-up. */ + if (grp != !!(lr_val & ICH_LR_GROUP) || + __vgic_v3_pri_to_pre(lr_prio, vmcr, grp) != act_prio) + return; + + /* Let's now perform the deactivation */ + __vgic_v3_clear_active_lr(lr, lr_val); +} + +static void __vgic_v3_read_igrpen0(struct kvm_vcpu *vcpu, u32 vmcr, int rt) +{ + vcpu_set_reg(vcpu, rt, !!(vmcr & ICH_VMCR_ENG0_MASK)); +} + +static void __vgic_v3_read_igrpen1(struct kvm_vcpu *vcpu, u32 vmcr, int rt) +{ + vcpu_set_reg(vcpu, rt, !!(vmcr & ICH_VMCR_ENG1_MASK)); +} + +static void __vgic_v3_write_igrpen0(struct kvm_vcpu *vcpu, u32 vmcr, int rt) +{ + u64 val = vcpu_get_reg(vcpu, rt); + + if (val & 1) + vmcr |= ICH_VMCR_ENG0_MASK; + else + vmcr &= ~ICH_VMCR_ENG0_MASK; + + __vgic_v3_write_vmcr(vmcr); +} + +static void __vgic_v3_write_igrpen1(struct kvm_vcpu *vcpu, u32 vmcr, int rt) +{ + u64 val = vcpu_get_reg(vcpu, rt); + + if (val & 1) + vmcr |= ICH_VMCR_ENG1_MASK; + else + vmcr &= ~ICH_VMCR_ENG1_MASK; + + __vgic_v3_write_vmcr(vmcr); +} + +static void __vgic_v3_read_bpr0(struct kvm_vcpu *vcpu, u32 vmcr, int rt) +{ + vcpu_set_reg(vcpu, rt, __vgic_v3_get_bpr0(vmcr)); +} + +static void __vgic_v3_read_bpr1(struct kvm_vcpu *vcpu, u32 vmcr, int rt) +{ + vcpu_set_reg(vcpu, rt, __vgic_v3_get_bpr1(vmcr)); +} + +static void __vgic_v3_write_bpr0(struct kvm_vcpu *vcpu, u32 vmcr, int rt) +{ + u64 val = vcpu_get_reg(vcpu, rt); + u8 bpr_min = __vgic_v3_bpr_min() - 1; + + /* Enforce BPR limiting */ + if (val < bpr_min) + val = bpr_min; + + val <<= ICH_VMCR_BPR0_SHIFT; + val &= ICH_VMCR_BPR0_MASK; + vmcr &= ~ICH_VMCR_BPR0_MASK; + vmcr |= val; + + __vgic_v3_write_vmcr(vmcr); +} + +static void __vgic_v3_write_bpr1(struct kvm_vcpu *vcpu, u32 vmcr, int rt) +{ + u64 val = vcpu_get_reg(vcpu, rt); + u8 bpr_min = __vgic_v3_bpr_min(); + + if (vmcr & ICH_VMCR_CBPR_MASK) + return; + + /* Enforce BPR limiting */ + if (val < bpr_min) + val = bpr_min; + + val <<= ICH_VMCR_BPR1_SHIFT; + val &= ICH_VMCR_BPR1_MASK; + vmcr &= ~ICH_VMCR_BPR1_MASK; + vmcr |= val; + + __vgic_v3_write_vmcr(vmcr); +} + +static void __vgic_v3_read_apxrn(struct kvm_vcpu *vcpu, int rt, int n) +{ + u32 val; + + if (!__vgic_v3_get_group(vcpu)) + val = __vgic_v3_read_ap0rn(n); + else + val = __vgic_v3_read_ap1rn(n); + + vcpu_set_reg(vcpu, rt, val); +} + +static void __vgic_v3_write_apxrn(struct kvm_vcpu *vcpu, int rt, int n) +{ + u32 val = vcpu_get_reg(vcpu, rt); + + if (!__vgic_v3_get_group(vcpu)) + __vgic_v3_write_ap0rn(val, n); + else + __vgic_v3_write_ap1rn(val, n); +} + +static void __vgic_v3_read_apxr0(struct kvm_vcpu *vcpu, + u32 vmcr, int rt) +{ + __vgic_v3_read_apxrn(vcpu, rt, 0); +} + +static void __vgic_v3_read_apxr1(struct kvm_vcpu *vcpu, + u32 vmcr, int rt) +{ + __vgic_v3_read_apxrn(vcpu, rt, 1); +} + +static void __vgic_v3_read_apxr2(struct kvm_vcpu *vcpu, u32 vmcr, int rt) +{ + __vgic_v3_read_apxrn(vcpu, rt, 2); +} + +static void __vgic_v3_read_apxr3(struct kvm_vcpu *vcpu, u32 vmcr, int rt) +{ + __vgic_v3_read_apxrn(vcpu, rt, 3); +} + +static void __vgic_v3_write_apxr0(struct kvm_vcpu *vcpu, u32 vmcr, int rt) +{ + __vgic_v3_write_apxrn(vcpu, rt, 0); +} + +static void __vgic_v3_write_apxr1(struct kvm_vcpu *vcpu, u32 vmcr, int rt) +{ + __vgic_v3_write_apxrn(vcpu, rt, 1); +} + +static void __vgic_v3_write_apxr2(struct kvm_vcpu *vcpu, u32 vmcr, int rt) +{ + __vgic_v3_write_apxrn(vcpu, rt, 2); +} + +static void __vgic_v3_write_apxr3(struct kvm_vcpu *vcpu, u32 vmcr, int rt) +{ + __vgic_v3_write_apxrn(vcpu, rt, 3); +} + +static void __vgic_v3_read_hppir(struct kvm_vcpu *vcpu, u32 vmcr, int rt) +{ + u64 lr_val; + int lr, lr_grp, grp; + + grp = __vgic_v3_get_group(vcpu); + + lr = __vgic_v3_highest_priority_lr(vcpu, vmcr, &lr_val); + if (lr == -1) + goto spurious; + + lr_grp = !!(lr_val & ICH_LR_GROUP); + if (lr_grp != grp) + lr_val = ICC_IAR1_EL1_SPURIOUS; + +spurious: + vcpu_set_reg(vcpu, rt, lr_val & ICH_LR_VIRTUAL_ID_MASK); +} + +static void __vgic_v3_read_pmr(struct kvm_vcpu *vcpu, u32 vmcr, int rt) +{ + vmcr &= ICH_VMCR_PMR_MASK; + vmcr >>= ICH_VMCR_PMR_SHIFT; + vcpu_set_reg(vcpu, rt, vmcr); +} + +static void __vgic_v3_write_pmr(struct kvm_vcpu *vcpu, u32 vmcr, int rt) +{ + u32 val = vcpu_get_reg(vcpu, rt); + + val <<= ICH_VMCR_PMR_SHIFT; + val &= ICH_VMCR_PMR_MASK; + vmcr &= ~ICH_VMCR_PMR_MASK; + vmcr |= val; + + write_gicreg(vmcr, ICH_VMCR_EL2); +} + +static void __vgic_v3_read_rpr(struct kvm_vcpu *vcpu, u32 vmcr, int rt) +{ + u32 val = __vgic_v3_get_highest_active_priority(); + vcpu_set_reg(vcpu, rt, val); +} + +static void __vgic_v3_read_ctlr(struct kvm_vcpu *vcpu, u32 vmcr, int rt) +{ + u32 vtr, val; + + vtr = read_gicreg(ICH_VTR_EL2); + /* PRIbits */ + val = ((vtr >> 29) & 7) << ICC_CTLR_EL1_PRI_BITS_SHIFT; + /* IDbits */ + val |= ((vtr >> 23) & 7) << ICC_CTLR_EL1_ID_BITS_SHIFT; + /* SEIS */ + if (kvm_vgic_global_state.ich_vtr_el2 & ICH_VTR_SEIS_MASK) + val |= BIT(ICC_CTLR_EL1_SEIS_SHIFT); + /* A3V */ + val |= ((vtr >> 21) & 1) << ICC_CTLR_EL1_A3V_SHIFT; + /* EOImode */ + val |= ((vmcr & ICH_VMCR_EOIM_MASK) >> ICH_VMCR_EOIM_SHIFT) << ICC_CTLR_EL1_EOImode_SHIFT; + /* CBPR */ + val |= (vmcr & ICH_VMCR_CBPR_MASK) >> ICH_VMCR_CBPR_SHIFT; + + vcpu_set_reg(vcpu, rt, val); +} + +static void __vgic_v3_write_ctlr(struct kvm_vcpu *vcpu, u32 vmcr, int rt) +{ + u32 val = vcpu_get_reg(vcpu, rt); + + if (val & ICC_CTLR_EL1_CBPR_MASK) + vmcr |= ICH_VMCR_CBPR_MASK; + else + vmcr &= ~ICH_VMCR_CBPR_MASK; + + if (val & ICC_CTLR_EL1_EOImode_MASK) + vmcr |= ICH_VMCR_EOIM_MASK; + else + vmcr &= ~ICH_VMCR_EOIM_MASK; + + write_gicreg(vmcr, ICH_VMCR_EL2); +} + +int __vgic_v3_perform_cpuif_access(struct kvm_vcpu *vcpu) +{ + int rt; + u64 esr; + u32 vmcr; + void (*fn)(struct kvm_vcpu *, u32, int); + bool is_read; + u32 sysreg; + + esr = kvm_vcpu_get_esr(vcpu); + if (vcpu_mode_is_32bit(vcpu)) { + if (!kvm_condition_valid(vcpu)) { + __kvm_skip_instr(vcpu); + return 1; + } + + sysreg = esr_cp15_to_sysreg(esr); + } else { + sysreg = esr_sys64_to_sysreg(esr); + } + + is_read = (esr & ESR_ELx_SYS64_ISS_DIR_MASK) == ESR_ELx_SYS64_ISS_DIR_READ; + + switch (sysreg) { + case SYS_ICC_IAR0_EL1: + case SYS_ICC_IAR1_EL1: + if (unlikely(!is_read)) + return 0; + fn = __vgic_v3_read_iar; + break; + case SYS_ICC_EOIR0_EL1: + case SYS_ICC_EOIR1_EL1: + if (unlikely(is_read)) + return 0; + fn = __vgic_v3_write_eoir; + break; + case SYS_ICC_IGRPEN1_EL1: + if (is_read) + fn = __vgic_v3_read_igrpen1; + else + fn = __vgic_v3_write_igrpen1; + break; + case SYS_ICC_BPR1_EL1: + if (is_read) + fn = __vgic_v3_read_bpr1; + else + fn = __vgic_v3_write_bpr1; + break; + case SYS_ICC_AP0Rn_EL1(0): + case SYS_ICC_AP1Rn_EL1(0): + if (is_read) + fn = __vgic_v3_read_apxr0; + else + fn = __vgic_v3_write_apxr0; + break; + case SYS_ICC_AP0Rn_EL1(1): + case SYS_ICC_AP1Rn_EL1(1): + if (is_read) + fn = __vgic_v3_read_apxr1; + else + fn = __vgic_v3_write_apxr1; + break; + case SYS_ICC_AP0Rn_EL1(2): + case SYS_ICC_AP1Rn_EL1(2): + if (is_read) + fn = __vgic_v3_read_apxr2; + else + fn = __vgic_v3_write_apxr2; + break; + case SYS_ICC_AP0Rn_EL1(3): + case SYS_ICC_AP1Rn_EL1(3): + if (is_read) + fn = __vgic_v3_read_apxr3; + else + fn = __vgic_v3_write_apxr3; + break; + case SYS_ICC_HPPIR0_EL1: + case SYS_ICC_HPPIR1_EL1: + if (unlikely(!is_read)) + return 0; + fn = __vgic_v3_read_hppir; + break; + case SYS_ICC_IGRPEN0_EL1: + if (is_read) + fn = __vgic_v3_read_igrpen0; + else + fn = __vgic_v3_write_igrpen0; + break; + case SYS_ICC_BPR0_EL1: + if (is_read) + fn = __vgic_v3_read_bpr0; + else + fn = __vgic_v3_write_bpr0; + break; + case SYS_ICC_DIR_EL1: + if (unlikely(is_read)) + return 0; + fn = __vgic_v3_write_dir; + break; + case SYS_ICC_RPR_EL1: + if (unlikely(!is_read)) + return 0; + fn = __vgic_v3_read_rpr; + break; + case SYS_ICC_CTLR_EL1: + if (is_read) + fn = __vgic_v3_read_ctlr; + else + fn = __vgic_v3_write_ctlr; + break; + case SYS_ICC_PMR_EL1: + if (is_read) + fn = __vgic_v3_read_pmr; + else + fn = __vgic_v3_write_pmr; + break; + default: + return 0; + } + + vmcr = __vgic_v3_read_vmcr(); + rt = kvm_vcpu_sys_get_rt(vcpu); + fn(vcpu, vmcr, rt); + + __kvm_skip_instr(vcpu); + + return 1; +} diff --git a/arch/arm64/kvm/hyp/vhe/Makefile b/arch/arm64/kvm/hyp/vhe/Makefile new file mode 100644 index 0000000000..3b9e5464b5 --- /dev/null +++ b/arch/arm64/kvm/hyp/vhe/Makefile @@ -0,0 +1,11 @@ +# SPDX-License-Identifier: GPL-2.0 +# +# Makefile for Kernel-based Virtual Machine module, HYP/VHE part +# + +asflags-y := -D__KVM_VHE_HYPERVISOR__ +ccflags-y := -D__KVM_VHE_HYPERVISOR__ + +obj-y := timer-sr.o sysreg-sr.o debug-sr.o switch.o tlb.o +obj-y += ../vgic-v3-sr.o ../aarch32.o ../vgic-v2-cpuif-proxy.o ../entry.o \ + ../fpsimd.o ../hyp-entry.o ../exception.o diff --git a/arch/arm64/kvm/hyp/vhe/debug-sr.c b/arch/arm64/kvm/hyp/vhe/debug-sr.c new file mode 100644 index 0000000000..289689b268 --- /dev/null +++ b/arch/arm64/kvm/hyp/vhe/debug-sr.c @@ -0,0 +1,26 @@ +// SPDX-License-Identifier: GPL-2.0-only +/* + * Copyright (C) 2015 - ARM Ltd + * Author: Marc Zyngier <marc.zyngier@arm.com> + */ + +#include <hyp/debug-sr.h> + +#include <linux/kvm_host.h> + +#include <asm/kvm_hyp.h> + +void __debug_switch_to_guest(struct kvm_vcpu *vcpu) +{ + __debug_switch_to_guest_common(vcpu); +} + +void __debug_switch_to_host(struct kvm_vcpu *vcpu) +{ + __debug_switch_to_host_common(vcpu); +} + +u64 __kvm_get_mdcr_el2(void) +{ + return read_sysreg(mdcr_el2); +} diff --git a/arch/arm64/kvm/hyp/vhe/switch.c b/arch/arm64/kvm/hyp/vhe/switch.c new file mode 100644 index 0000000000..448b17080d --- /dev/null +++ b/arch/arm64/kvm/hyp/vhe/switch.c @@ -0,0 +1,327 @@ +// SPDX-License-Identifier: GPL-2.0-only +/* + * Copyright (C) 2015 - ARM Ltd + * Author: Marc Zyngier <marc.zyngier@arm.com> + */ + +#include <hyp/switch.h> + +#include <linux/arm-smccc.h> +#include <linux/kvm_host.h> +#include <linux/types.h> +#include <linux/jump_label.h> +#include <linux/percpu.h> +#include <uapi/linux/psci.h> + +#include <kvm/arm_psci.h> + +#include <asm/barrier.h> +#include <asm/cpufeature.h> +#include <asm/kprobes.h> +#include <asm/kvm_asm.h> +#include <asm/kvm_emulate.h> +#include <asm/kvm_hyp.h> +#include <asm/kvm_mmu.h> +#include <asm/fpsimd.h> +#include <asm/debug-monitors.h> +#include <asm/processor.h> +#include <asm/thread_info.h> +#include <asm/vectors.h> + +/* VHE specific context */ +DEFINE_PER_CPU(struct kvm_host_data, kvm_host_data); +DEFINE_PER_CPU(struct kvm_cpu_context, kvm_hyp_ctxt); +DEFINE_PER_CPU(unsigned long, kvm_hyp_vector); + +static void __activate_traps(struct kvm_vcpu *vcpu) +{ + u64 val; + + ___activate_traps(vcpu); + + if (has_cntpoff()) { + struct timer_map map; + + get_timer_map(vcpu, &map); + + /* + * We're entrering the guest. Reload the correct + * values from memory now that TGE is clear. + */ + if (map.direct_ptimer == vcpu_ptimer(vcpu)) + val = __vcpu_sys_reg(vcpu, CNTP_CVAL_EL0); + if (map.direct_ptimer == vcpu_hptimer(vcpu)) + val = __vcpu_sys_reg(vcpu, CNTHP_CVAL_EL2); + + if (map.direct_ptimer) { + write_sysreg_el0(val, SYS_CNTP_CVAL); + isb(); + } + } + + val = read_sysreg(cpacr_el1); + val |= CPACR_ELx_TTA; + val &= ~(CPACR_EL1_ZEN_EL0EN | CPACR_EL1_ZEN_EL1EN | + CPACR_EL1_SMEN_EL0EN | CPACR_EL1_SMEN_EL1EN); + + /* + * With VHE (HCR.E2H == 1), accesses to CPACR_EL1 are routed to + * CPTR_EL2. In general, CPACR_EL1 has the same layout as CPTR_EL2, + * except for some missing controls, such as TAM. + * In this case, CPTR_EL2.TAM has the same position with or without + * VHE (HCR.E2H == 1) which allows us to use here the CPTR_EL2.TAM + * shift value for trapping the AMU accesses. + */ + + val |= CPTR_EL2_TAM; + + if (guest_owns_fp_regs(vcpu)) { + if (vcpu_has_sve(vcpu)) + val |= CPACR_EL1_ZEN_EL0EN | CPACR_EL1_ZEN_EL1EN; + } else { + val &= ~(CPACR_EL1_FPEN_EL0EN | CPACR_EL1_FPEN_EL1EN); + __activate_traps_fpsimd32(vcpu); + } + + write_sysreg(val, cpacr_el1); + + write_sysreg(__this_cpu_read(kvm_hyp_vector), vbar_el1); +} +NOKPROBE_SYMBOL(__activate_traps); + +static void __deactivate_traps(struct kvm_vcpu *vcpu) +{ + const char *host_vectors = vectors; + + ___deactivate_traps(vcpu); + + write_sysreg(HCR_HOST_VHE_FLAGS, hcr_el2); + + if (has_cntpoff()) { + struct timer_map map; + u64 val, offset; + + get_timer_map(vcpu, &map); + + /* + * We're exiting the guest. Save the latest CVAL value + * to memory and apply the offset now that TGE is set. + */ + val = read_sysreg_el0(SYS_CNTP_CVAL); + if (map.direct_ptimer == vcpu_ptimer(vcpu)) + __vcpu_sys_reg(vcpu, CNTP_CVAL_EL0) = val; + if (map.direct_ptimer == vcpu_hptimer(vcpu)) + __vcpu_sys_reg(vcpu, CNTHP_CVAL_EL2) = val; + + offset = read_sysreg_s(SYS_CNTPOFF_EL2); + + if (map.direct_ptimer && offset) { + write_sysreg_el0(val + offset, SYS_CNTP_CVAL); + isb(); + } + } + + /* + * ARM errata 1165522 and 1530923 require the actual execution of the + * above before we can switch to the EL2/EL0 translation regime used by + * the host. + */ + asm(ALTERNATIVE("nop", "isb", ARM64_WORKAROUND_SPECULATIVE_AT)); + + kvm_reset_cptr_el2(vcpu); + + if (!arm64_kernel_unmapped_at_el0()) + host_vectors = __this_cpu_read(this_cpu_vector); + write_sysreg(host_vectors, vbar_el1); +} +NOKPROBE_SYMBOL(__deactivate_traps); + +/* + * Disable IRQs in {activate,deactivate}_traps_vhe_{load,put}() to + * prevent a race condition between context switching of PMUSERENR_EL0 + * in __{activate,deactivate}_traps_common() and IPIs that attempts to + * update PMUSERENR_EL0. See also kvm_set_pmuserenr(). + */ +void activate_traps_vhe_load(struct kvm_vcpu *vcpu) +{ + unsigned long flags; + + local_irq_save(flags); + __activate_traps_common(vcpu); + local_irq_restore(flags); +} + +void deactivate_traps_vhe_put(struct kvm_vcpu *vcpu) +{ + unsigned long flags; + + local_irq_save(flags); + __deactivate_traps_common(vcpu); + local_irq_restore(flags); +} + +static const exit_handler_fn hyp_exit_handlers[] = { + [0 ... ESR_ELx_EC_MAX] = NULL, + [ESR_ELx_EC_CP15_32] = kvm_hyp_handle_cp15_32, + [ESR_ELx_EC_SYS64] = kvm_hyp_handle_sysreg, + [ESR_ELx_EC_SVE] = kvm_hyp_handle_fpsimd, + [ESR_ELx_EC_FP_ASIMD] = kvm_hyp_handle_fpsimd, + [ESR_ELx_EC_IABT_LOW] = kvm_hyp_handle_iabt_low, + [ESR_ELx_EC_DABT_LOW] = kvm_hyp_handle_dabt_low, + [ESR_ELx_EC_WATCHPT_LOW] = kvm_hyp_handle_watchpt_low, + [ESR_ELx_EC_PAC] = kvm_hyp_handle_ptrauth, +}; + +static const exit_handler_fn *kvm_get_exit_handler_array(struct kvm_vcpu *vcpu) +{ + return hyp_exit_handlers; +} + +static void early_exit_filter(struct kvm_vcpu *vcpu, u64 *exit_code) +{ + /* + * If we were in HYP context on entry, adjust the PSTATE view + * so that the usual helpers work correctly. + */ + if (unlikely(vcpu_get_flag(vcpu, VCPU_HYP_CONTEXT))) { + u64 mode = *vcpu_cpsr(vcpu) & (PSR_MODE_MASK | PSR_MODE32_BIT); + + switch (mode) { + case PSR_MODE_EL1t: + mode = PSR_MODE_EL2t; + break; + case PSR_MODE_EL1h: + mode = PSR_MODE_EL2h; + break; + } + + *vcpu_cpsr(vcpu) &= ~(PSR_MODE_MASK | PSR_MODE32_BIT); + *vcpu_cpsr(vcpu) |= mode; + } +} + +/* Switch to the guest for VHE systems running in EL2 */ +static int __kvm_vcpu_run_vhe(struct kvm_vcpu *vcpu) +{ + struct kvm_cpu_context *host_ctxt; + struct kvm_cpu_context *guest_ctxt; + u64 exit_code; + + host_ctxt = &this_cpu_ptr(&kvm_host_data)->host_ctxt; + host_ctxt->__hyp_running_vcpu = vcpu; + guest_ctxt = &vcpu->arch.ctxt; + + sysreg_save_host_state_vhe(host_ctxt); + + /* + * ARM erratum 1165522 requires us to configure both stage 1 and + * stage 2 translation for the guest context before we clear + * HCR_EL2.TGE. + * + * We have already configured the guest's stage 1 translation in + * kvm_vcpu_load_sysregs_vhe above. We must now call + * __load_stage2 before __activate_traps, because + * __load_stage2 configures stage 2 translation, and + * __activate_traps clear HCR_EL2.TGE (among other things). + */ + __load_stage2(vcpu->arch.hw_mmu, vcpu->arch.hw_mmu->arch); + __activate_traps(vcpu); + + __kvm_adjust_pc(vcpu); + + sysreg_restore_guest_state_vhe(guest_ctxt); + __debug_switch_to_guest(vcpu); + + if (is_hyp_ctxt(vcpu)) + vcpu_set_flag(vcpu, VCPU_HYP_CONTEXT); + else + vcpu_clear_flag(vcpu, VCPU_HYP_CONTEXT); + + do { + /* Jump in the fire! */ + exit_code = __guest_enter(vcpu); + + /* And we're baaack! */ + } while (fixup_guest_exit(vcpu, &exit_code)); + + sysreg_save_guest_state_vhe(guest_ctxt); + + __deactivate_traps(vcpu); + + sysreg_restore_host_state_vhe(host_ctxt); + + if (vcpu->arch.fp_state == FP_STATE_GUEST_OWNED) + __fpsimd_save_fpexc32(vcpu); + + __debug_switch_to_host(vcpu); + + return exit_code; +} +NOKPROBE_SYMBOL(__kvm_vcpu_run_vhe); + +int __kvm_vcpu_run(struct kvm_vcpu *vcpu) +{ + int ret; + + local_daif_mask(); + + /* + * Having IRQs masked via PMR when entering the guest means the GIC + * will not signal the CPU of interrupts of lower priority, and the + * only way to get out will be via guest exceptions. + * Naturally, we want to avoid this. + * + * local_daif_mask() already sets GIC_PRIO_PSR_I_SET, we just need a + * dsb to ensure the redistributor is forwards EL2 IRQs to the CPU. + */ + pmr_sync(); + + ret = __kvm_vcpu_run_vhe(vcpu); + + /* + * local_daif_restore() takes care to properly restore PSTATE.DAIF + * and the GIC PMR if the host is using IRQ priorities. + */ + local_daif_restore(DAIF_PROCCTX_NOIRQ); + + /* + * When we exit from the guest we change a number of CPU configuration + * parameters, such as traps. We rely on the isb() in kvm_call_hyp*() + * to make sure these changes take effect before running the host or + * additional guests. + */ + return ret; +} + +static void __hyp_call_panic(u64 spsr, u64 elr, u64 par) +{ + struct kvm_cpu_context *host_ctxt; + struct kvm_vcpu *vcpu; + + host_ctxt = &this_cpu_ptr(&kvm_host_data)->host_ctxt; + vcpu = host_ctxt->__hyp_running_vcpu; + + __deactivate_traps(vcpu); + sysreg_restore_host_state_vhe(host_ctxt); + + panic("HYP panic:\nPS:%08llx PC:%016llx ESR:%08llx\nFAR:%016llx HPFAR:%016llx PAR:%016llx\nVCPU:%p\n", + spsr, elr, + read_sysreg_el2(SYS_ESR), read_sysreg_el2(SYS_FAR), + read_sysreg(hpfar_el2), par, vcpu); +} +NOKPROBE_SYMBOL(__hyp_call_panic); + +void __noreturn hyp_panic(void) +{ + u64 spsr = read_sysreg_el2(SYS_SPSR); + u64 elr = read_sysreg_el2(SYS_ELR); + u64 par = read_sysreg_par(); + + __hyp_call_panic(spsr, elr, par); + unreachable(); +} + +asmlinkage void kvm_unexpected_el2_exception(void) +{ + __kvm_unexpected_el2_exception(); +} diff --git a/arch/arm64/kvm/hyp/vhe/sysreg-sr.c b/arch/arm64/kvm/hyp/vhe/sysreg-sr.c new file mode 100644 index 0000000000..b35a178e7e --- /dev/null +++ b/arch/arm64/kvm/hyp/vhe/sysreg-sr.c @@ -0,0 +1,126 @@ +// SPDX-License-Identifier: GPL-2.0-only +/* + * Copyright (C) 2012-2015 - ARM Ltd + * Author: Marc Zyngier <marc.zyngier@arm.com> + */ + +#include <hyp/sysreg-sr.h> + +#include <linux/compiler.h> +#include <linux/kvm_host.h> + +#include <asm/kprobes.h> +#include <asm/kvm_asm.h> +#include <asm/kvm_emulate.h> +#include <asm/kvm_hyp.h> +#include <asm/kvm_nested.h> + +/* + * VHE: Host and guest must save mdscr_el1 and sp_el0 (and the PC and + * pstate, which are handled as part of the el2 return state) on every + * switch (sp_el0 is being dealt with in the assembly code). + * tpidr_el0 and tpidrro_el0 only need to be switched when going + * to host userspace or a different VCPU. EL1 registers only need to be + * switched when potentially going to run a different VCPU. The latter two + * classes are handled as part of kvm_arch_vcpu_load and kvm_arch_vcpu_put. + */ + +void sysreg_save_host_state_vhe(struct kvm_cpu_context *ctxt) +{ + __sysreg_save_common_state(ctxt); +} +NOKPROBE_SYMBOL(sysreg_save_host_state_vhe); + +void sysreg_save_guest_state_vhe(struct kvm_cpu_context *ctxt) +{ + __sysreg_save_common_state(ctxt); + __sysreg_save_el2_return_state(ctxt); +} +NOKPROBE_SYMBOL(sysreg_save_guest_state_vhe); + +void sysreg_restore_host_state_vhe(struct kvm_cpu_context *ctxt) +{ + __sysreg_restore_common_state(ctxt); +} +NOKPROBE_SYMBOL(sysreg_restore_host_state_vhe); + +void sysreg_restore_guest_state_vhe(struct kvm_cpu_context *ctxt) +{ + __sysreg_restore_common_state(ctxt); + __sysreg_restore_el2_return_state(ctxt); +} +NOKPROBE_SYMBOL(sysreg_restore_guest_state_vhe); + +/** + * kvm_vcpu_load_sysregs_vhe - Load guest system registers to the physical CPU + * + * @vcpu: The VCPU pointer + * + * Load system registers that do not affect the host's execution, for + * example EL1 system registers on a VHE system where the host kernel + * runs at EL2. This function is called from KVM's vcpu_load() function + * and loading system register state early avoids having to load them on + * every entry to the VM. + */ +void kvm_vcpu_load_sysregs_vhe(struct kvm_vcpu *vcpu) +{ + struct kvm_cpu_context *guest_ctxt = &vcpu->arch.ctxt; + struct kvm_cpu_context *host_ctxt; + + host_ctxt = &this_cpu_ptr(&kvm_host_data)->host_ctxt; + __sysreg_save_user_state(host_ctxt); + + /* + * When running a normal EL1 guest, we only load a new vcpu + * after a context switch, which imvolves a DSB, so all + * speculative EL1&0 walks will have already completed. + * If running NV, the vcpu may transition between vEL1 and + * vEL2 without a context switch, so make sure we complete + * those walks before loading a new context. + */ + if (vcpu_has_nv(vcpu)) + dsb(nsh); + + /* + * Load guest EL1 and user state + * + * We must restore the 32-bit state before the sysregs, thanks + * to erratum #852523 (Cortex-A57) or #853709 (Cortex-A72). + */ + __sysreg32_restore_state(vcpu); + __sysreg_restore_user_state(guest_ctxt); + __sysreg_restore_el1_state(guest_ctxt); + + vcpu_set_flag(vcpu, SYSREGS_ON_CPU); + + activate_traps_vhe_load(vcpu); +} + +/** + * kvm_vcpu_put_sysregs_vhe - Restore host system registers to the physical CPU + * + * @vcpu: The VCPU pointer + * + * Save guest system registers that do not affect the host's execution, for + * example EL1 system registers on a VHE system where the host kernel + * runs at EL2. This function is called from KVM's vcpu_put() function + * and deferring saving system register state until we're no longer running the + * VCPU avoids having to save them on every exit from the VM. + */ +void kvm_vcpu_put_sysregs_vhe(struct kvm_vcpu *vcpu) +{ + struct kvm_cpu_context *guest_ctxt = &vcpu->arch.ctxt; + struct kvm_cpu_context *host_ctxt; + + host_ctxt = &this_cpu_ptr(&kvm_host_data)->host_ctxt; + deactivate_traps_vhe_put(vcpu); + + __sysreg_save_el1_state(guest_ctxt); + __sysreg_save_user_state(guest_ctxt); + __sysreg32_save_state(vcpu); + + /* Restore host user state */ + __sysreg_restore_user_state(host_ctxt); + + vcpu_clear_flag(vcpu, SYSREGS_ON_CPU); +} diff --git a/arch/arm64/kvm/hyp/vhe/timer-sr.c b/arch/arm64/kvm/hyp/vhe/timer-sr.c new file mode 100644 index 0000000000..4cda674a8b --- /dev/null +++ b/arch/arm64/kvm/hyp/vhe/timer-sr.c @@ -0,0 +1,12 @@ +// SPDX-License-Identifier: GPL-2.0-only +/* + * Copyright (C) 2012-2015 - ARM Ltd + * Author: Marc Zyngier <marc.zyngier@arm.com> + */ + +#include <asm/kvm_hyp.h> + +void __kvm_timer_set_cntvoff(u64 cntvoff) +{ + write_sysreg(cntvoff, cntvoff_el2); +} diff --git a/arch/arm64/kvm/hyp/vhe/tlb.c b/arch/arm64/kvm/hyp/vhe/tlb.c new file mode 100644 index 0000000000..46bd43f61d --- /dev/null +++ b/arch/arm64/kvm/hyp/vhe/tlb.c @@ -0,0 +1,223 @@ +// SPDX-License-Identifier: GPL-2.0-only +/* + * Copyright (C) 2015 - ARM Ltd + * Author: Marc Zyngier <marc.zyngier@arm.com> + */ + +#include <linux/irqflags.h> + +#include <asm/kvm_hyp.h> +#include <asm/kvm_mmu.h> +#include <asm/tlbflush.h> + +struct tlb_inv_context { + unsigned long flags; + u64 tcr; + u64 sctlr; +}; + +static void __tlb_switch_to_guest(struct kvm_s2_mmu *mmu, + struct tlb_inv_context *cxt) +{ + u64 val; + + local_irq_save(cxt->flags); + + if (cpus_have_final_cap(ARM64_WORKAROUND_SPECULATIVE_AT)) { + /* + * For CPUs that are affected by ARM errata 1165522 or 1530923, + * we cannot trust stage-1 to be in a correct state at that + * point. Since we do not want to force a full load of the + * vcpu state, we prevent the EL1 page-table walker to + * allocate new TLBs. This is done by setting the EPD bits + * in the TCR_EL1 register. We also need to prevent it to + * allocate IPA->PA walks, so we enable the S1 MMU... + */ + val = cxt->tcr = read_sysreg_el1(SYS_TCR); + val |= TCR_EPD1_MASK | TCR_EPD0_MASK; + write_sysreg_el1(val, SYS_TCR); + val = cxt->sctlr = read_sysreg_el1(SYS_SCTLR); + val |= SCTLR_ELx_M; + write_sysreg_el1(val, SYS_SCTLR); + } + + /* + * With VHE enabled, we have HCR_EL2.{E2H,TGE} = {1,1}, and + * most TLB operations target EL2/EL0. In order to affect the + * guest TLBs (EL1/EL0), we need to change one of these two + * bits. Changing E2H is impossible (goodbye TTBR1_EL2), so + * let's flip TGE before executing the TLB operation. + * + * ARM erratum 1165522 requires some special handling (again), + * as we need to make sure both stages of translation are in + * place before clearing TGE. __load_stage2() already + * has an ISB in order to deal with this. + */ + __load_stage2(mmu, mmu->arch); + val = read_sysreg(hcr_el2); + val &= ~HCR_TGE; + write_sysreg(val, hcr_el2); + isb(); +} + +static void __tlb_switch_to_host(struct tlb_inv_context *cxt) +{ + /* + * We're done with the TLB operation, let's restore the host's + * view of HCR_EL2. + */ + write_sysreg(0, vttbr_el2); + write_sysreg(HCR_HOST_VHE_FLAGS, hcr_el2); + isb(); + + if (cpus_have_final_cap(ARM64_WORKAROUND_SPECULATIVE_AT)) { + /* Restore the registers to what they were */ + write_sysreg_el1(cxt->tcr, SYS_TCR); + write_sysreg_el1(cxt->sctlr, SYS_SCTLR); + } + + local_irq_restore(cxt->flags); +} + +void __kvm_tlb_flush_vmid_ipa(struct kvm_s2_mmu *mmu, + phys_addr_t ipa, int level) +{ + struct tlb_inv_context cxt; + + dsb(ishst); + + /* Switch to requested VMID */ + __tlb_switch_to_guest(mmu, &cxt); + + /* + * We could do so much better if we had the VA as well. + * Instead, we invalidate Stage-2 for this IPA, and the + * whole of Stage-1. Weep... + */ + ipa >>= 12; + __tlbi_level(ipas2e1is, ipa, level); + + /* + * We have to ensure completion of the invalidation at Stage-2, + * since a table walk on another CPU could refill a TLB with a + * complete (S1 + S2) walk based on the old Stage-2 mapping if + * the Stage-1 invalidation happened first. + */ + dsb(ish); + __tlbi(vmalle1is); + dsb(ish); + isb(); + + __tlb_switch_to_host(&cxt); +} + +void __kvm_tlb_flush_vmid_ipa_nsh(struct kvm_s2_mmu *mmu, + phys_addr_t ipa, int level) +{ + struct tlb_inv_context cxt; + + dsb(nshst); + + /* Switch to requested VMID */ + __tlb_switch_to_guest(mmu, &cxt); + + /* + * We could do so much better if we had the VA as well. + * Instead, we invalidate Stage-2 for this IPA, and the + * whole of Stage-1. Weep... + */ + ipa >>= 12; + __tlbi_level(ipas2e1, ipa, level); + + /* + * We have to ensure completion of the invalidation at Stage-2, + * since a table walk on another CPU could refill a TLB with a + * complete (S1 + S2) walk based on the old Stage-2 mapping if + * the Stage-1 invalidation happened first. + */ + dsb(nsh); + __tlbi(vmalle1); + dsb(nsh); + isb(); + + __tlb_switch_to_host(&cxt); +} + +void __kvm_tlb_flush_vmid_range(struct kvm_s2_mmu *mmu, + phys_addr_t start, unsigned long pages) +{ + struct tlb_inv_context cxt; + unsigned long stride; + + /* + * Since the range of addresses may not be mapped at + * the same level, assume the worst case as PAGE_SIZE + */ + stride = PAGE_SIZE; + start = round_down(start, stride); + + dsb(ishst); + + /* Switch to requested VMID */ + __tlb_switch_to_guest(mmu, &cxt); + + __flush_s2_tlb_range_op(ipas2e1is, start, pages, stride, 0); + + dsb(ish); + __tlbi(vmalle1is); + dsb(ish); + isb(); + + __tlb_switch_to_host(&cxt); +} + +void __kvm_tlb_flush_vmid(struct kvm_s2_mmu *mmu) +{ + struct tlb_inv_context cxt; + + dsb(ishst); + + /* Switch to requested VMID */ + __tlb_switch_to_guest(mmu, &cxt); + + __tlbi(vmalls12e1is); + dsb(ish); + isb(); + + __tlb_switch_to_host(&cxt); +} + +void __kvm_flush_cpu_context(struct kvm_s2_mmu *mmu) +{ + struct tlb_inv_context cxt; + + /* Switch to requested VMID */ + __tlb_switch_to_guest(mmu, &cxt); + + __tlbi(vmalle1); + asm volatile("ic iallu"); + dsb(nsh); + isb(); + + __tlb_switch_to_host(&cxt); +} + +void __kvm_flush_vm_context(void) +{ + dsb(ishst); + __tlbi(alle1is); + + /* + * VIPT and PIPT caches are not affected by VMID, so no maintenance + * is necessary across a VMID rollover. + * + * VPIPT caches constrain lookup and maintenance to the active VMID, + * so we need to invalidate lines with a stale VMID to avoid an ABA + * race after multiple rollovers. + * + */ + if (icache_is_vpipt()) + asm volatile("ic ialluis"); + + dsb(ish); +} diff --git a/arch/arm64/kvm/hypercalls.c b/arch/arm64/kvm/hypercalls.c new file mode 100644 index 0000000000..7fb4df0456 --- /dev/null +++ b/arch/arm64/kvm/hypercalls.c @@ -0,0 +1,652 @@ +// SPDX-License-Identifier: GPL-2.0 +// Copyright (C) 2019 Arm Ltd. + +#include <linux/arm-smccc.h> +#include <linux/kvm_host.h> + +#include <asm/kvm_emulate.h> + +#include <kvm/arm_hypercalls.h> +#include <kvm/arm_psci.h> + +#define KVM_ARM_SMCCC_STD_FEATURES \ + GENMASK(KVM_REG_ARM_STD_BMAP_BIT_COUNT - 1, 0) +#define KVM_ARM_SMCCC_STD_HYP_FEATURES \ + GENMASK(KVM_REG_ARM_STD_HYP_BMAP_BIT_COUNT - 1, 0) +#define KVM_ARM_SMCCC_VENDOR_HYP_FEATURES \ + GENMASK(KVM_REG_ARM_VENDOR_HYP_BMAP_BIT_COUNT - 1, 0) + +static void kvm_ptp_get_time(struct kvm_vcpu *vcpu, u64 *val) +{ + struct system_time_snapshot systime_snapshot; + u64 cycles = ~0UL; + u32 feature; + + /* + * system time and counter value must captured at the same + * time to keep consistency and precision. + */ + ktime_get_snapshot(&systime_snapshot); + + /* + * This is only valid if the current clocksource is the + * architected counter, as this is the only one the guest + * can see. + */ + if (systime_snapshot.cs_id != CSID_ARM_ARCH_COUNTER) + return; + + /* + * The guest selects one of the two reference counters + * (virtual or physical) with the first argument of the SMCCC + * call. In case the identifier is not supported, error out. + */ + feature = smccc_get_arg1(vcpu); + switch (feature) { + case KVM_PTP_VIRT_COUNTER: + cycles = systime_snapshot.cycles - vcpu->kvm->arch.timer_data.voffset; + break; + case KVM_PTP_PHYS_COUNTER: + cycles = systime_snapshot.cycles - vcpu->kvm->arch.timer_data.poffset; + break; + default: + return; + } + + /* + * This relies on the top bit of val[0] never being set for + * valid values of system time, because that is *really* far + * in the future (about 292 years from 1970, and at that stage + * nobody will give a damn about it). + */ + val[0] = upper_32_bits(systime_snapshot.real); + val[1] = lower_32_bits(systime_snapshot.real); + val[2] = upper_32_bits(cycles); + val[3] = lower_32_bits(cycles); +} + +static bool kvm_smccc_default_allowed(u32 func_id) +{ + switch (func_id) { + /* + * List of function-ids that are not gated with the bitmapped + * feature firmware registers, and are to be allowed for + * servicing the call by default. + */ + case ARM_SMCCC_VERSION_FUNC_ID: + case ARM_SMCCC_ARCH_FEATURES_FUNC_ID: + return true; + default: + /* PSCI 0.2 and up is in the 0:0x1f range */ + if (ARM_SMCCC_OWNER_NUM(func_id) == ARM_SMCCC_OWNER_STANDARD && + ARM_SMCCC_FUNC_NUM(func_id) <= 0x1f) + return true; + + /* + * KVM's PSCI 0.1 doesn't comply with SMCCC, and has + * its own function-id base and range + */ + if (func_id >= KVM_PSCI_FN(0) && func_id <= KVM_PSCI_FN(3)) + return true; + + return false; + } +} + +static bool kvm_smccc_test_fw_bmap(struct kvm_vcpu *vcpu, u32 func_id) +{ + struct kvm_smccc_features *smccc_feat = &vcpu->kvm->arch.smccc_feat; + + switch (func_id) { + case ARM_SMCCC_TRNG_VERSION: + case ARM_SMCCC_TRNG_FEATURES: + case ARM_SMCCC_TRNG_GET_UUID: + case ARM_SMCCC_TRNG_RND32: + case ARM_SMCCC_TRNG_RND64: + return test_bit(KVM_REG_ARM_STD_BIT_TRNG_V1_0, + &smccc_feat->std_bmap); + case ARM_SMCCC_HV_PV_TIME_FEATURES: + case ARM_SMCCC_HV_PV_TIME_ST: + return test_bit(KVM_REG_ARM_STD_HYP_BIT_PV_TIME, + &smccc_feat->std_hyp_bmap); + case ARM_SMCCC_VENDOR_HYP_KVM_FEATURES_FUNC_ID: + case ARM_SMCCC_VENDOR_HYP_CALL_UID_FUNC_ID: + return test_bit(KVM_REG_ARM_VENDOR_HYP_BIT_FUNC_FEAT, + &smccc_feat->vendor_hyp_bmap); + case ARM_SMCCC_VENDOR_HYP_KVM_PTP_FUNC_ID: + return test_bit(KVM_REG_ARM_VENDOR_HYP_BIT_PTP, + &smccc_feat->vendor_hyp_bmap); + default: + return false; + } +} + +#define SMC32_ARCH_RANGE_BEGIN ARM_SMCCC_VERSION_FUNC_ID +#define SMC32_ARCH_RANGE_END ARM_SMCCC_CALL_VAL(ARM_SMCCC_FAST_CALL, \ + ARM_SMCCC_SMC_32, \ + 0, ARM_SMCCC_FUNC_MASK) + +#define SMC64_ARCH_RANGE_BEGIN ARM_SMCCC_CALL_VAL(ARM_SMCCC_FAST_CALL, \ + ARM_SMCCC_SMC_64, \ + 0, 0) +#define SMC64_ARCH_RANGE_END ARM_SMCCC_CALL_VAL(ARM_SMCCC_FAST_CALL, \ + ARM_SMCCC_SMC_64, \ + 0, ARM_SMCCC_FUNC_MASK) + +static void init_smccc_filter(struct kvm *kvm) +{ + int r; + + mt_init(&kvm->arch.smccc_filter); + + /* + * Prevent userspace from handling any SMCCC calls in the architecture + * range, avoiding the risk of misrepresenting Spectre mitigation status + * to the guest. + */ + r = mtree_insert_range(&kvm->arch.smccc_filter, + SMC32_ARCH_RANGE_BEGIN, SMC32_ARCH_RANGE_END, + xa_mk_value(KVM_SMCCC_FILTER_HANDLE), + GFP_KERNEL_ACCOUNT); + WARN_ON_ONCE(r); + + r = mtree_insert_range(&kvm->arch.smccc_filter, + SMC64_ARCH_RANGE_BEGIN, SMC64_ARCH_RANGE_END, + xa_mk_value(KVM_SMCCC_FILTER_HANDLE), + GFP_KERNEL_ACCOUNT); + WARN_ON_ONCE(r); + +} + +static int kvm_smccc_set_filter(struct kvm *kvm, struct kvm_smccc_filter __user *uaddr) +{ + const void *zero_page = page_to_virt(ZERO_PAGE(0)); + struct kvm_smccc_filter filter; + u32 start, end; + int r; + + if (copy_from_user(&filter, uaddr, sizeof(filter))) + return -EFAULT; + + if (memcmp(filter.pad, zero_page, sizeof(filter.pad))) + return -EINVAL; + + start = filter.base; + end = start + filter.nr_functions - 1; + + if (end < start || filter.action >= NR_SMCCC_FILTER_ACTIONS) + return -EINVAL; + + mutex_lock(&kvm->arch.config_lock); + + if (kvm_vm_has_ran_once(kvm)) { + r = -EBUSY; + goto out_unlock; + } + + r = mtree_insert_range(&kvm->arch.smccc_filter, start, end, + xa_mk_value(filter.action), GFP_KERNEL_ACCOUNT); + if (r) + goto out_unlock; + + set_bit(KVM_ARCH_FLAG_SMCCC_FILTER_CONFIGURED, &kvm->arch.flags); + +out_unlock: + mutex_unlock(&kvm->arch.config_lock); + return r; +} + +static u8 kvm_smccc_filter_get_action(struct kvm *kvm, u32 func_id) +{ + unsigned long idx = func_id; + void *val; + + if (!test_bit(KVM_ARCH_FLAG_SMCCC_FILTER_CONFIGURED, &kvm->arch.flags)) + return KVM_SMCCC_FILTER_HANDLE; + + /* + * But where's the error handling, you say? + * + * mt_find() returns NULL if no entry was found, which just so happens + * to match KVM_SMCCC_FILTER_HANDLE. + */ + val = mt_find(&kvm->arch.smccc_filter, &idx, idx); + return xa_to_value(val); +} + +static u8 kvm_smccc_get_action(struct kvm_vcpu *vcpu, u32 func_id) +{ + /* + * Intervening actions in the SMCCC filter take precedence over the + * pseudo-firmware register bitmaps. + */ + u8 action = kvm_smccc_filter_get_action(vcpu->kvm, func_id); + if (action != KVM_SMCCC_FILTER_HANDLE) + return action; + + if (kvm_smccc_test_fw_bmap(vcpu, func_id) || + kvm_smccc_default_allowed(func_id)) + return KVM_SMCCC_FILTER_HANDLE; + + return KVM_SMCCC_FILTER_DENY; +} + +static void kvm_prepare_hypercall_exit(struct kvm_vcpu *vcpu, u32 func_id) +{ + u8 ec = ESR_ELx_EC(kvm_vcpu_get_esr(vcpu)); + struct kvm_run *run = vcpu->run; + u64 flags = 0; + + if (ec == ESR_ELx_EC_SMC32 || ec == ESR_ELx_EC_SMC64) + flags |= KVM_HYPERCALL_EXIT_SMC; + + if (!kvm_vcpu_trap_il_is32bit(vcpu)) + flags |= KVM_HYPERCALL_EXIT_16BIT; + + run->exit_reason = KVM_EXIT_HYPERCALL; + run->hypercall = (typeof(run->hypercall)) { + .nr = func_id, + .flags = flags, + }; +} + +int kvm_smccc_call_handler(struct kvm_vcpu *vcpu) +{ + struct kvm_smccc_features *smccc_feat = &vcpu->kvm->arch.smccc_feat; + u32 func_id = smccc_get_function(vcpu); + u64 val[4] = {SMCCC_RET_NOT_SUPPORTED}; + u32 feature; + u8 action; + gpa_t gpa; + + action = kvm_smccc_get_action(vcpu, func_id); + switch (action) { + case KVM_SMCCC_FILTER_HANDLE: + break; + case KVM_SMCCC_FILTER_DENY: + goto out; + case KVM_SMCCC_FILTER_FWD_TO_USER: + kvm_prepare_hypercall_exit(vcpu, func_id); + return 0; + default: + WARN_RATELIMIT(1, "Unhandled SMCCC filter action: %d\n", action); + goto out; + } + + switch (func_id) { + case ARM_SMCCC_VERSION_FUNC_ID: + val[0] = ARM_SMCCC_VERSION_1_1; + break; + case ARM_SMCCC_ARCH_FEATURES_FUNC_ID: + feature = smccc_get_arg1(vcpu); + switch (feature) { + case ARM_SMCCC_ARCH_WORKAROUND_1: + switch (arm64_get_spectre_v2_state()) { + case SPECTRE_VULNERABLE: + break; + case SPECTRE_MITIGATED: + val[0] = SMCCC_RET_SUCCESS; + break; + case SPECTRE_UNAFFECTED: + val[0] = SMCCC_ARCH_WORKAROUND_RET_UNAFFECTED; + break; + } + break; + case ARM_SMCCC_ARCH_WORKAROUND_2: + switch (arm64_get_spectre_v4_state()) { + case SPECTRE_VULNERABLE: + break; + case SPECTRE_MITIGATED: + /* + * SSBS everywhere: Indicate no firmware + * support, as the SSBS support will be + * indicated to the guest and the default is + * safe. + * + * Otherwise, expose a permanent mitigation + * to the guest, and hide SSBS so that the + * guest stays protected. + */ + if (cpus_have_final_cap(ARM64_SSBS)) + break; + fallthrough; + case SPECTRE_UNAFFECTED: + val[0] = SMCCC_RET_NOT_REQUIRED; + break; + } + break; + case ARM_SMCCC_ARCH_WORKAROUND_3: + switch (arm64_get_spectre_bhb_state()) { + case SPECTRE_VULNERABLE: + break; + case SPECTRE_MITIGATED: + val[0] = SMCCC_RET_SUCCESS; + break; + case SPECTRE_UNAFFECTED: + val[0] = SMCCC_ARCH_WORKAROUND_RET_UNAFFECTED; + break; + } + break; + case ARM_SMCCC_HV_PV_TIME_FEATURES: + if (test_bit(KVM_REG_ARM_STD_HYP_BIT_PV_TIME, + &smccc_feat->std_hyp_bmap)) + val[0] = SMCCC_RET_SUCCESS; + break; + } + break; + case ARM_SMCCC_HV_PV_TIME_FEATURES: + val[0] = kvm_hypercall_pv_features(vcpu); + break; + case ARM_SMCCC_HV_PV_TIME_ST: + gpa = kvm_init_stolen_time(vcpu); + if (gpa != INVALID_GPA) + val[0] = gpa; + break; + case ARM_SMCCC_VENDOR_HYP_CALL_UID_FUNC_ID: + val[0] = ARM_SMCCC_VENDOR_HYP_UID_KVM_REG_0; + val[1] = ARM_SMCCC_VENDOR_HYP_UID_KVM_REG_1; + val[2] = ARM_SMCCC_VENDOR_HYP_UID_KVM_REG_2; + val[3] = ARM_SMCCC_VENDOR_HYP_UID_KVM_REG_3; + break; + case ARM_SMCCC_VENDOR_HYP_KVM_FEATURES_FUNC_ID: + val[0] = smccc_feat->vendor_hyp_bmap; + break; + case ARM_SMCCC_VENDOR_HYP_KVM_PTP_FUNC_ID: + kvm_ptp_get_time(vcpu, val); + break; + case ARM_SMCCC_TRNG_VERSION: + case ARM_SMCCC_TRNG_FEATURES: + case ARM_SMCCC_TRNG_GET_UUID: + case ARM_SMCCC_TRNG_RND32: + case ARM_SMCCC_TRNG_RND64: + return kvm_trng_call(vcpu); + default: + return kvm_psci_call(vcpu); + } + +out: + smccc_set_retval(vcpu, val[0], val[1], val[2], val[3]); + return 1; +} + +static const u64 kvm_arm_fw_reg_ids[] = { + KVM_REG_ARM_PSCI_VERSION, + KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_1, + KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2, + KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_3, + KVM_REG_ARM_STD_BMAP, + KVM_REG_ARM_STD_HYP_BMAP, + KVM_REG_ARM_VENDOR_HYP_BMAP, +}; + +void kvm_arm_init_hypercalls(struct kvm *kvm) +{ + struct kvm_smccc_features *smccc_feat = &kvm->arch.smccc_feat; + + smccc_feat->std_bmap = KVM_ARM_SMCCC_STD_FEATURES; + smccc_feat->std_hyp_bmap = KVM_ARM_SMCCC_STD_HYP_FEATURES; + smccc_feat->vendor_hyp_bmap = KVM_ARM_SMCCC_VENDOR_HYP_FEATURES; + + init_smccc_filter(kvm); +} + +void kvm_arm_teardown_hypercalls(struct kvm *kvm) +{ + mtree_destroy(&kvm->arch.smccc_filter); +} + +int kvm_arm_get_fw_num_regs(struct kvm_vcpu *vcpu) +{ + return ARRAY_SIZE(kvm_arm_fw_reg_ids); +} + +int kvm_arm_copy_fw_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices) +{ + int i; + + for (i = 0; i < ARRAY_SIZE(kvm_arm_fw_reg_ids); i++) { + if (put_user(kvm_arm_fw_reg_ids[i], uindices++)) + return -EFAULT; + } + + return 0; +} + +#define KVM_REG_FEATURE_LEVEL_MASK GENMASK(3, 0) + +/* + * Convert the workaround level into an easy-to-compare number, where higher + * values mean better protection. + */ +static int get_kernel_wa_level(u64 regid) +{ + switch (regid) { + case KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_1: + switch (arm64_get_spectre_v2_state()) { + case SPECTRE_VULNERABLE: + return KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_1_NOT_AVAIL; + case SPECTRE_MITIGATED: + return KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_1_AVAIL; + case SPECTRE_UNAFFECTED: + return KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_1_NOT_REQUIRED; + } + return KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_1_NOT_AVAIL; + case KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2: + switch (arm64_get_spectre_v4_state()) { + case SPECTRE_MITIGATED: + /* + * As for the hypercall discovery, we pretend we + * don't have any FW mitigation if SSBS is there at + * all times. + */ + if (cpus_have_final_cap(ARM64_SSBS)) + return KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2_NOT_AVAIL; + fallthrough; + case SPECTRE_UNAFFECTED: + return KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2_NOT_REQUIRED; + case SPECTRE_VULNERABLE: + return KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2_NOT_AVAIL; + } + break; + case KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_3: + switch (arm64_get_spectre_bhb_state()) { + case SPECTRE_VULNERABLE: + return KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_3_NOT_AVAIL; + case SPECTRE_MITIGATED: + return KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_3_AVAIL; + case SPECTRE_UNAFFECTED: + return KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_3_NOT_REQUIRED; + } + return KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_3_NOT_AVAIL; + } + + return -EINVAL; +} + +int kvm_arm_get_fw_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg) +{ + struct kvm_smccc_features *smccc_feat = &vcpu->kvm->arch.smccc_feat; + void __user *uaddr = (void __user *)(long)reg->addr; + u64 val; + + switch (reg->id) { + case KVM_REG_ARM_PSCI_VERSION: + val = kvm_psci_version(vcpu); + break; + case KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_1: + case KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2: + case KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_3: + val = get_kernel_wa_level(reg->id) & KVM_REG_FEATURE_LEVEL_MASK; + break; + case KVM_REG_ARM_STD_BMAP: + val = READ_ONCE(smccc_feat->std_bmap); + break; + case KVM_REG_ARM_STD_HYP_BMAP: + val = READ_ONCE(smccc_feat->std_hyp_bmap); + break; + case KVM_REG_ARM_VENDOR_HYP_BMAP: + val = READ_ONCE(smccc_feat->vendor_hyp_bmap); + break; + default: + return -ENOENT; + } + + if (copy_to_user(uaddr, &val, KVM_REG_SIZE(reg->id))) + return -EFAULT; + + return 0; +} + +static int kvm_arm_set_fw_reg_bmap(struct kvm_vcpu *vcpu, u64 reg_id, u64 val) +{ + int ret = 0; + struct kvm *kvm = vcpu->kvm; + struct kvm_smccc_features *smccc_feat = &kvm->arch.smccc_feat; + unsigned long *fw_reg_bmap, fw_reg_features; + + switch (reg_id) { + case KVM_REG_ARM_STD_BMAP: + fw_reg_bmap = &smccc_feat->std_bmap; + fw_reg_features = KVM_ARM_SMCCC_STD_FEATURES; + break; + case KVM_REG_ARM_STD_HYP_BMAP: + fw_reg_bmap = &smccc_feat->std_hyp_bmap; + fw_reg_features = KVM_ARM_SMCCC_STD_HYP_FEATURES; + break; + case KVM_REG_ARM_VENDOR_HYP_BMAP: + fw_reg_bmap = &smccc_feat->vendor_hyp_bmap; + fw_reg_features = KVM_ARM_SMCCC_VENDOR_HYP_FEATURES; + break; + default: + return -ENOENT; + } + + /* Check for unsupported bit */ + if (val & ~fw_reg_features) + return -EINVAL; + + mutex_lock(&kvm->arch.config_lock); + + if (kvm_vm_has_ran_once(kvm) && val != *fw_reg_bmap) { + ret = -EBUSY; + goto out; + } + + WRITE_ONCE(*fw_reg_bmap, val); +out: + mutex_unlock(&kvm->arch.config_lock); + return ret; +} + +int kvm_arm_set_fw_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg) +{ + void __user *uaddr = (void __user *)(long)reg->addr; + u64 val; + int wa_level; + + if (KVM_REG_SIZE(reg->id) != sizeof(val)) + return -ENOENT; + if (copy_from_user(&val, uaddr, KVM_REG_SIZE(reg->id))) + return -EFAULT; + + switch (reg->id) { + case KVM_REG_ARM_PSCI_VERSION: + { + bool wants_02; + + wants_02 = test_bit(KVM_ARM_VCPU_PSCI_0_2, vcpu->arch.features); + + switch (val) { + case KVM_ARM_PSCI_0_1: + if (wants_02) + return -EINVAL; + vcpu->kvm->arch.psci_version = val; + return 0; + case KVM_ARM_PSCI_0_2: + case KVM_ARM_PSCI_1_0: + case KVM_ARM_PSCI_1_1: + if (!wants_02) + return -EINVAL; + vcpu->kvm->arch.psci_version = val; + return 0; + } + break; + } + + case KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_1: + case KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_3: + if (val & ~KVM_REG_FEATURE_LEVEL_MASK) + return -EINVAL; + + if (get_kernel_wa_level(reg->id) < val) + return -EINVAL; + + return 0; + + case KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2: + if (val & ~(KVM_REG_FEATURE_LEVEL_MASK | + KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2_ENABLED)) + return -EINVAL; + + /* The enabled bit must not be set unless the level is AVAIL. */ + if ((val & KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2_ENABLED) && + (val & KVM_REG_FEATURE_LEVEL_MASK) != KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2_AVAIL) + return -EINVAL; + + /* + * Map all the possible incoming states to the only two we + * really want to deal with. + */ + switch (val & KVM_REG_FEATURE_LEVEL_MASK) { + case KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2_NOT_AVAIL: + case KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2_UNKNOWN: + wa_level = KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2_NOT_AVAIL; + break; + case KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2_AVAIL: + case KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2_NOT_REQUIRED: + wa_level = KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2_NOT_REQUIRED; + break; + default: + return -EINVAL; + } + + /* + * We can deal with NOT_AVAIL on NOT_REQUIRED, but not the + * other way around. + */ + if (get_kernel_wa_level(reg->id) < wa_level) + return -EINVAL; + + return 0; + case KVM_REG_ARM_STD_BMAP: + case KVM_REG_ARM_STD_HYP_BMAP: + case KVM_REG_ARM_VENDOR_HYP_BMAP: + return kvm_arm_set_fw_reg_bmap(vcpu, reg->id, val); + default: + return -ENOENT; + } + + return -EINVAL; +} + +int kvm_vm_smccc_has_attr(struct kvm *kvm, struct kvm_device_attr *attr) +{ + switch (attr->attr) { + case KVM_ARM_VM_SMCCC_FILTER: + return 0; + default: + return -ENXIO; + } +} + +int kvm_vm_smccc_set_attr(struct kvm *kvm, struct kvm_device_attr *attr) +{ + void __user *uaddr = (void __user *)attr->addr; + + switch (attr->attr) { + case KVM_ARM_VM_SMCCC_FILTER: + return kvm_smccc_set_filter(kvm, uaddr); + default: + return -ENXIO; + } +} diff --git a/arch/arm64/kvm/inject_fault.c b/arch/arm64/kvm/inject_fault.c new file mode 100644 index 0000000000..0bd93a5f21 --- /dev/null +++ b/arch/arm64/kvm/inject_fault.c @@ -0,0 +1,254 @@ +// SPDX-License-Identifier: GPL-2.0-only +/* + * Fault injection for both 32 and 64bit guests. + * + * Copyright (C) 2012,2013 - ARM Ltd + * Author: Marc Zyngier <marc.zyngier@arm.com> + * + * Based on arch/arm/kvm/emulate.c + * Copyright (C) 2012 - Virtual Open Systems and Columbia University + * Author: Christoffer Dall <c.dall@virtualopensystems.com> + */ + +#include <linux/kvm_host.h> +#include <asm/kvm_emulate.h> +#include <asm/kvm_nested.h> +#include <asm/esr.h> + +static void pend_sync_exception(struct kvm_vcpu *vcpu) +{ + /* If not nesting, EL1 is the only possible exception target */ + if (likely(!vcpu_has_nv(vcpu))) { + kvm_pend_exception(vcpu, EXCEPT_AA64_EL1_SYNC); + return; + } + + /* + * With NV, we need to pick between EL1 and EL2. Note that we + * never deal with a nesting exception here, hence never + * changing context, and the exception itself can be delayed + * until the next entry. + */ + switch(*vcpu_cpsr(vcpu) & PSR_MODE_MASK) { + case PSR_MODE_EL2h: + case PSR_MODE_EL2t: + kvm_pend_exception(vcpu, EXCEPT_AA64_EL2_SYNC); + break; + case PSR_MODE_EL1h: + case PSR_MODE_EL1t: + kvm_pend_exception(vcpu, EXCEPT_AA64_EL1_SYNC); + break; + case PSR_MODE_EL0t: + if (vcpu_el2_tge_is_set(vcpu)) + kvm_pend_exception(vcpu, EXCEPT_AA64_EL2_SYNC); + else + kvm_pend_exception(vcpu, EXCEPT_AA64_EL1_SYNC); + break; + default: + BUG(); + } +} + +static bool match_target_el(struct kvm_vcpu *vcpu, unsigned long target) +{ + return (vcpu_get_flag(vcpu, EXCEPT_MASK) == target); +} + +static void inject_abt64(struct kvm_vcpu *vcpu, bool is_iabt, unsigned long addr) +{ + unsigned long cpsr = *vcpu_cpsr(vcpu); + bool is_aarch32 = vcpu_mode_is_32bit(vcpu); + u64 esr = 0; + + pend_sync_exception(vcpu); + + /* + * Build an {i,d}abort, depending on the level and the + * instruction set. Report an external synchronous abort. + */ + if (kvm_vcpu_trap_il_is32bit(vcpu)) + esr |= ESR_ELx_IL; + + /* + * Here, the guest runs in AArch64 mode when in EL1. If we get + * an AArch32 fault, it means we managed to trap an EL0 fault. + */ + if (is_aarch32 || (cpsr & PSR_MODE_MASK) == PSR_MODE_EL0t) + esr |= (ESR_ELx_EC_IABT_LOW << ESR_ELx_EC_SHIFT); + else + esr |= (ESR_ELx_EC_IABT_CUR << ESR_ELx_EC_SHIFT); + + if (!is_iabt) + esr |= ESR_ELx_EC_DABT_LOW << ESR_ELx_EC_SHIFT; + + esr |= ESR_ELx_FSC_EXTABT; + + if (match_target_el(vcpu, unpack_vcpu_flag(EXCEPT_AA64_EL1_SYNC))) { + vcpu_write_sys_reg(vcpu, addr, FAR_EL1); + vcpu_write_sys_reg(vcpu, esr, ESR_EL1); + } else { + vcpu_write_sys_reg(vcpu, addr, FAR_EL2); + vcpu_write_sys_reg(vcpu, esr, ESR_EL2); + } +} + +static void inject_undef64(struct kvm_vcpu *vcpu) +{ + u64 esr = (ESR_ELx_EC_UNKNOWN << ESR_ELx_EC_SHIFT); + + pend_sync_exception(vcpu); + + /* + * Build an unknown exception, depending on the instruction + * set. + */ + if (kvm_vcpu_trap_il_is32bit(vcpu)) + esr |= ESR_ELx_IL; + + if (match_target_el(vcpu, unpack_vcpu_flag(EXCEPT_AA64_EL1_SYNC))) + vcpu_write_sys_reg(vcpu, esr, ESR_EL1); + else + vcpu_write_sys_reg(vcpu, esr, ESR_EL2); +} + +#define DFSR_FSC_EXTABT_LPAE 0x10 +#define DFSR_FSC_EXTABT_nLPAE 0x08 +#define DFSR_LPAE BIT(9) +#define TTBCR_EAE BIT(31) + +static void inject_undef32(struct kvm_vcpu *vcpu) +{ + kvm_pend_exception(vcpu, EXCEPT_AA32_UND); +} + +/* + * Modelled after TakeDataAbortException() and TakePrefetchAbortException + * pseudocode. + */ +static void inject_abt32(struct kvm_vcpu *vcpu, bool is_pabt, u32 addr) +{ + u64 far; + u32 fsr; + + /* Give the guest an IMPLEMENTATION DEFINED exception */ + if (vcpu_read_sys_reg(vcpu, TCR_EL1) & TTBCR_EAE) { + fsr = DFSR_LPAE | DFSR_FSC_EXTABT_LPAE; + } else { + /* no need to shuffle FS[4] into DFSR[10] as its 0 */ + fsr = DFSR_FSC_EXTABT_nLPAE; + } + + far = vcpu_read_sys_reg(vcpu, FAR_EL1); + + if (is_pabt) { + kvm_pend_exception(vcpu, EXCEPT_AA32_IABT); + far &= GENMASK(31, 0); + far |= (u64)addr << 32; + vcpu_write_sys_reg(vcpu, fsr, IFSR32_EL2); + } else { /* !iabt */ + kvm_pend_exception(vcpu, EXCEPT_AA32_DABT); + far &= GENMASK(63, 32); + far |= addr; + vcpu_write_sys_reg(vcpu, fsr, ESR_EL1); + } + + vcpu_write_sys_reg(vcpu, far, FAR_EL1); +} + +/** + * kvm_inject_dabt - inject a data abort into the guest + * @vcpu: The VCPU to receive the data abort + * @addr: The address to report in the DFAR + * + * It is assumed that this code is called from the VCPU thread and that the + * VCPU therefore is not currently executing guest code. + */ +void kvm_inject_dabt(struct kvm_vcpu *vcpu, unsigned long addr) +{ + if (vcpu_el1_is_32bit(vcpu)) + inject_abt32(vcpu, false, addr); + else + inject_abt64(vcpu, false, addr); +} + +/** + * kvm_inject_pabt - inject a prefetch abort into the guest + * @vcpu: The VCPU to receive the prefetch abort + * @addr: The address to report in the DFAR + * + * It is assumed that this code is called from the VCPU thread and that the + * VCPU therefore is not currently executing guest code. + */ +void kvm_inject_pabt(struct kvm_vcpu *vcpu, unsigned long addr) +{ + if (vcpu_el1_is_32bit(vcpu)) + inject_abt32(vcpu, true, addr); + else + inject_abt64(vcpu, true, addr); +} + +void kvm_inject_size_fault(struct kvm_vcpu *vcpu) +{ + unsigned long addr, esr; + + addr = kvm_vcpu_get_fault_ipa(vcpu); + addr |= kvm_vcpu_get_hfar(vcpu) & GENMASK(11, 0); + + if (kvm_vcpu_trap_is_iabt(vcpu)) + kvm_inject_pabt(vcpu, addr); + else + kvm_inject_dabt(vcpu, addr); + + /* + * If AArch64 or LPAE, set FSC to 0 to indicate an Address + * Size Fault at level 0, as if exceeding PARange. + * + * Non-LPAE guests will only get the external abort, as there + * is no way to describe the ASF. + */ + if (vcpu_el1_is_32bit(vcpu) && + !(vcpu_read_sys_reg(vcpu, TCR_EL1) & TTBCR_EAE)) + return; + + esr = vcpu_read_sys_reg(vcpu, ESR_EL1); + esr &= ~GENMASK_ULL(5, 0); + vcpu_write_sys_reg(vcpu, esr, ESR_EL1); +} + +/** + * kvm_inject_undefined - inject an undefined instruction into the guest + * @vcpu: The vCPU in which to inject the exception + * + * It is assumed that this code is called from the VCPU thread and that the + * VCPU therefore is not currently executing guest code. + */ +void kvm_inject_undefined(struct kvm_vcpu *vcpu) +{ + if (vcpu_el1_is_32bit(vcpu)) + inject_undef32(vcpu); + else + inject_undef64(vcpu); +} + +void kvm_set_sei_esr(struct kvm_vcpu *vcpu, u64 esr) +{ + vcpu_set_vsesr(vcpu, esr & ESR_ELx_ISS_MASK); + *vcpu_hcr(vcpu) |= HCR_VSE; +} + +/** + * kvm_inject_vabt - inject an async abort / SError into the guest + * @vcpu: The VCPU to receive the exception + * + * It is assumed that this code is called from the VCPU thread and that the + * VCPU therefore is not currently executing guest code. + * + * Systems with the RAS Extensions specify an imp-def ESR (ISV/IDS = 1) with + * the remaining ISS all-zeros so that this error is not interpreted as an + * uncategorized RAS error. Without the RAS Extensions we can't specify an ESR + * value, so the CPU generates an imp-def value. + */ +void kvm_inject_vabt(struct kvm_vcpu *vcpu) +{ + kvm_set_sei_esr(vcpu, ESR_ELx_ISV); +} diff --git a/arch/arm64/kvm/mmio.c b/arch/arm64/kvm/mmio.c new file mode 100644 index 0000000000..3dd38a151d --- /dev/null +++ b/arch/arm64/kvm/mmio.c @@ -0,0 +1,196 @@ +// SPDX-License-Identifier: GPL-2.0-only +/* + * Copyright (C) 2012 - Virtual Open Systems and Columbia University + * Author: Christoffer Dall <c.dall@virtualopensystems.com> + */ + +#include <linux/kvm_host.h> +#include <asm/kvm_emulate.h> +#include <trace/events/kvm.h> + +#include "trace.h" + +void kvm_mmio_write_buf(void *buf, unsigned int len, unsigned long data) +{ + void *datap = NULL; + union { + u8 byte; + u16 hword; + u32 word; + u64 dword; + } tmp; + + switch (len) { + case 1: + tmp.byte = data; + datap = &tmp.byte; + break; + case 2: + tmp.hword = data; + datap = &tmp.hword; + break; + case 4: + tmp.word = data; + datap = &tmp.word; + break; + case 8: + tmp.dword = data; + datap = &tmp.dword; + break; + } + + memcpy(buf, datap, len); +} + +unsigned long kvm_mmio_read_buf(const void *buf, unsigned int len) +{ + unsigned long data = 0; + union { + u16 hword; + u32 word; + u64 dword; + } tmp; + + switch (len) { + case 1: + data = *(u8 *)buf; + break; + case 2: + memcpy(&tmp.hword, buf, len); + data = tmp.hword; + break; + case 4: + memcpy(&tmp.word, buf, len); + data = tmp.word; + break; + case 8: + memcpy(&tmp.dword, buf, len); + data = tmp.dword; + break; + } + + return data; +} + +/** + * kvm_handle_mmio_return -- Handle MMIO loads after user space emulation + * or in-kernel IO emulation + * + * @vcpu: The VCPU pointer + */ +int kvm_handle_mmio_return(struct kvm_vcpu *vcpu) +{ + unsigned long data; + unsigned int len; + int mask; + + /* Detect an already handled MMIO return */ + if (unlikely(!vcpu->mmio_needed)) + return 0; + + vcpu->mmio_needed = 0; + + if (!kvm_vcpu_dabt_iswrite(vcpu)) { + struct kvm_run *run = vcpu->run; + + len = kvm_vcpu_dabt_get_as(vcpu); + data = kvm_mmio_read_buf(run->mmio.data, len); + + if (kvm_vcpu_dabt_issext(vcpu) && + len < sizeof(unsigned long)) { + mask = 1U << ((len * 8) - 1); + data = (data ^ mask) - mask; + } + + if (!kvm_vcpu_dabt_issf(vcpu)) + data = data & 0xffffffff; + + trace_kvm_mmio(KVM_TRACE_MMIO_READ, len, run->mmio.phys_addr, + &data); + data = vcpu_data_host_to_guest(vcpu, data, len); + vcpu_set_reg(vcpu, kvm_vcpu_dabt_get_rd(vcpu), data); + } + + /* + * The MMIO instruction is emulated and should not be re-executed + * in the guest. + */ + kvm_incr_pc(vcpu); + + return 0; +} + +int io_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa) +{ + struct kvm_run *run = vcpu->run; + unsigned long data; + unsigned long rt; + int ret; + bool is_write; + int len; + u8 data_buf[8]; + + /* + * No valid syndrome? Ask userspace for help if it has + * volunteered to do so, and bail out otherwise. + */ + if (!kvm_vcpu_dabt_isvalid(vcpu)) { + if (test_bit(KVM_ARCH_FLAG_RETURN_NISV_IO_ABORT_TO_USER, + &vcpu->kvm->arch.flags)) { + run->exit_reason = KVM_EXIT_ARM_NISV; + run->arm_nisv.esr_iss = kvm_vcpu_dabt_iss_nisv_sanitized(vcpu); + run->arm_nisv.fault_ipa = fault_ipa; + return 0; + } + + kvm_pr_unimpl("Data abort outside memslots with no valid syndrome info\n"); + return -ENOSYS; + } + + /* + * Prepare MMIO operation. First decode the syndrome data we get + * from the CPU. Then try if some in-kernel emulation feels + * responsible, otherwise let user space do its magic. + */ + is_write = kvm_vcpu_dabt_iswrite(vcpu); + len = kvm_vcpu_dabt_get_as(vcpu); + rt = kvm_vcpu_dabt_get_rd(vcpu); + + if (is_write) { + data = vcpu_data_guest_to_host(vcpu, vcpu_get_reg(vcpu, rt), + len); + + trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, len, fault_ipa, &data); + kvm_mmio_write_buf(data_buf, len, data); + + ret = kvm_io_bus_write(vcpu, KVM_MMIO_BUS, fault_ipa, len, + data_buf); + } else { + trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, len, + fault_ipa, NULL); + + ret = kvm_io_bus_read(vcpu, KVM_MMIO_BUS, fault_ipa, len, + data_buf); + } + + /* Now prepare kvm_run for the potential return to userland. */ + run->mmio.is_write = is_write; + run->mmio.phys_addr = fault_ipa; + run->mmio.len = len; + vcpu->mmio_needed = 1; + + if (!ret) { + /* We handled the access successfully in the kernel. */ + if (!is_write) + memcpy(run->mmio.data, data_buf, len); + vcpu->stat.mmio_exit_kernel++; + kvm_handle_mmio_return(vcpu); + return 1; + } + + if (is_write) + memcpy(run->mmio.data, data_buf, len); + vcpu->stat.mmio_exit_user++; + run->exit_reason = KVM_EXIT_MMIO; + return 0; +} diff --git a/arch/arm64/kvm/mmu.c b/arch/arm64/kvm/mmu.c new file mode 100644 index 0000000000..482280fe22 --- /dev/null +++ b/arch/arm64/kvm/mmu.c @@ -0,0 +1,2158 @@ +// SPDX-License-Identifier: GPL-2.0-only +/* + * Copyright (C) 2012 - Virtual Open Systems and Columbia University + * Author: Christoffer Dall <c.dall@virtualopensystems.com> + */ + +#include <linux/mman.h> +#include <linux/kvm_host.h> +#include <linux/io.h> +#include <linux/hugetlb.h> +#include <linux/sched/signal.h> +#include <trace/events/kvm.h> +#include <asm/pgalloc.h> +#include <asm/cacheflush.h> +#include <asm/kvm_arm.h> +#include <asm/kvm_mmu.h> +#include <asm/kvm_pgtable.h> +#include <asm/kvm_ras.h> +#include <asm/kvm_asm.h> +#include <asm/kvm_emulate.h> +#include <asm/virt.h> + +#include "trace.h" + +static struct kvm_pgtable *hyp_pgtable; +static DEFINE_MUTEX(kvm_hyp_pgd_mutex); + +static unsigned long __ro_after_init hyp_idmap_start; +static unsigned long __ro_after_init hyp_idmap_end; +static phys_addr_t __ro_after_init hyp_idmap_vector; + +static unsigned long __ro_after_init io_map_base; + +static phys_addr_t __stage2_range_addr_end(phys_addr_t addr, phys_addr_t end, + phys_addr_t size) +{ + phys_addr_t boundary = ALIGN_DOWN(addr + size, size); + + return (boundary - 1 < end - 1) ? boundary : end; +} + +static phys_addr_t stage2_range_addr_end(phys_addr_t addr, phys_addr_t end) +{ + phys_addr_t size = kvm_granule_size(KVM_PGTABLE_MIN_BLOCK_LEVEL); + + return __stage2_range_addr_end(addr, end, size); +} + +/* + * Release kvm_mmu_lock periodically if the memory region is large. Otherwise, + * we may see kernel panics with CONFIG_DETECT_HUNG_TASK, + * CONFIG_LOCKUP_DETECTOR, CONFIG_LOCKDEP. Additionally, holding the lock too + * long will also starve other vCPUs. We have to also make sure that the page + * tables are not freed while we released the lock. + */ +static int stage2_apply_range(struct kvm_s2_mmu *mmu, phys_addr_t addr, + phys_addr_t end, + int (*fn)(struct kvm_pgtable *, u64, u64), + bool resched) +{ + struct kvm *kvm = kvm_s2_mmu_to_kvm(mmu); + int ret; + u64 next; + + do { + struct kvm_pgtable *pgt = mmu->pgt; + if (!pgt) + return -EINVAL; + + next = stage2_range_addr_end(addr, end); + ret = fn(pgt, addr, next - addr); + if (ret) + break; + + if (resched && next != end) + cond_resched_rwlock_write(&kvm->mmu_lock); + } while (addr = next, addr != end); + + return ret; +} + +#define stage2_apply_range_resched(mmu, addr, end, fn) \ + stage2_apply_range(mmu, addr, end, fn, true) + +/* + * Get the maximum number of page-tables pages needed to split a range + * of blocks into PAGE_SIZE PTEs. It assumes the range is already + * mapped at level 2, or at level 1 if allowed. + */ +static int kvm_mmu_split_nr_page_tables(u64 range) +{ + int n = 0; + + if (KVM_PGTABLE_MIN_BLOCK_LEVEL < 2) + n += DIV_ROUND_UP(range, PUD_SIZE); + n += DIV_ROUND_UP(range, PMD_SIZE); + return n; +} + +static bool need_split_memcache_topup_or_resched(struct kvm *kvm) +{ + struct kvm_mmu_memory_cache *cache; + u64 chunk_size, min; + + if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) + return true; + + chunk_size = kvm->arch.mmu.split_page_chunk_size; + min = kvm_mmu_split_nr_page_tables(chunk_size); + cache = &kvm->arch.mmu.split_page_cache; + return kvm_mmu_memory_cache_nr_free_objects(cache) < min; +} + +static int kvm_mmu_split_huge_pages(struct kvm *kvm, phys_addr_t addr, + phys_addr_t end) +{ + struct kvm_mmu_memory_cache *cache; + struct kvm_pgtable *pgt; + int ret, cache_capacity; + u64 next, chunk_size; + + lockdep_assert_held_write(&kvm->mmu_lock); + + chunk_size = kvm->arch.mmu.split_page_chunk_size; + cache_capacity = kvm_mmu_split_nr_page_tables(chunk_size); + + if (chunk_size == 0) + return 0; + + cache = &kvm->arch.mmu.split_page_cache; + + do { + if (need_split_memcache_topup_or_resched(kvm)) { + write_unlock(&kvm->mmu_lock); + cond_resched(); + /* Eager page splitting is best-effort. */ + ret = __kvm_mmu_topup_memory_cache(cache, + cache_capacity, + cache_capacity); + write_lock(&kvm->mmu_lock); + if (ret) + break; + } + + pgt = kvm->arch.mmu.pgt; + if (!pgt) + return -EINVAL; + + next = __stage2_range_addr_end(addr, end, chunk_size); + ret = kvm_pgtable_stage2_split(pgt, addr, next - addr, cache); + if (ret) + break; + } while (addr = next, addr != end); + + return ret; +} + +static bool memslot_is_logging(struct kvm_memory_slot *memslot) +{ + return memslot->dirty_bitmap && !(memslot->flags & KVM_MEM_READONLY); +} + +/** + * kvm_arch_flush_remote_tlbs() - flush all VM TLB entries for v7/8 + * @kvm: pointer to kvm structure. + * + * Interface to HYP function to flush all VM TLB entries + */ +int kvm_arch_flush_remote_tlbs(struct kvm *kvm) +{ + kvm_call_hyp(__kvm_tlb_flush_vmid, &kvm->arch.mmu); + return 0; +} + +int kvm_arch_flush_remote_tlbs_range(struct kvm *kvm, + gfn_t gfn, u64 nr_pages) +{ + kvm_tlb_flush_vmid_range(&kvm->arch.mmu, + gfn << PAGE_SHIFT, nr_pages << PAGE_SHIFT); + return 0; +} + +static bool kvm_is_device_pfn(unsigned long pfn) +{ + return !pfn_is_map_memory(pfn); +} + +static void *stage2_memcache_zalloc_page(void *arg) +{ + struct kvm_mmu_memory_cache *mc = arg; + void *virt; + + /* Allocated with __GFP_ZERO, so no need to zero */ + virt = kvm_mmu_memory_cache_alloc(mc); + if (virt) + kvm_account_pgtable_pages(virt, 1); + return virt; +} + +static void *kvm_host_zalloc_pages_exact(size_t size) +{ + return alloc_pages_exact(size, GFP_KERNEL_ACCOUNT | __GFP_ZERO); +} + +static void *kvm_s2_zalloc_pages_exact(size_t size) +{ + void *virt = kvm_host_zalloc_pages_exact(size); + + if (virt) + kvm_account_pgtable_pages(virt, (size >> PAGE_SHIFT)); + return virt; +} + +static void kvm_s2_free_pages_exact(void *virt, size_t size) +{ + kvm_account_pgtable_pages(virt, -(size >> PAGE_SHIFT)); + free_pages_exact(virt, size); +} + +static struct kvm_pgtable_mm_ops kvm_s2_mm_ops; + +static void stage2_free_unlinked_table_rcu_cb(struct rcu_head *head) +{ + struct page *page = container_of(head, struct page, rcu_head); + void *pgtable = page_to_virt(page); + u32 level = page_private(page); + + kvm_pgtable_stage2_free_unlinked(&kvm_s2_mm_ops, pgtable, level); +} + +static void stage2_free_unlinked_table(void *addr, u32 level) +{ + struct page *page = virt_to_page(addr); + + set_page_private(page, (unsigned long)level); + call_rcu(&page->rcu_head, stage2_free_unlinked_table_rcu_cb); +} + +static void kvm_host_get_page(void *addr) +{ + get_page(virt_to_page(addr)); +} + +static void kvm_host_put_page(void *addr) +{ + put_page(virt_to_page(addr)); +} + +static void kvm_s2_put_page(void *addr) +{ + struct page *p = virt_to_page(addr); + /* Dropping last refcount, the page will be freed */ + if (page_count(p) == 1) + kvm_account_pgtable_pages(addr, -1); + put_page(p); +} + +static int kvm_host_page_count(void *addr) +{ + return page_count(virt_to_page(addr)); +} + +static phys_addr_t kvm_host_pa(void *addr) +{ + return __pa(addr); +} + +static void *kvm_host_va(phys_addr_t phys) +{ + return __va(phys); +} + +static void clean_dcache_guest_page(void *va, size_t size) +{ + __clean_dcache_guest_page(va, size); +} + +static void invalidate_icache_guest_page(void *va, size_t size) +{ + __invalidate_icache_guest_page(va, size); +} + +/* + * Unmapping vs dcache management: + * + * If a guest maps certain memory pages as uncached, all writes will + * bypass the data cache and go directly to RAM. However, the CPUs + * can still speculate reads (not writes) and fill cache lines with + * data. + * + * Those cache lines will be *clean* cache lines though, so a + * clean+invalidate operation is equivalent to an invalidate + * operation, because no cache lines are marked dirty. + * + * Those clean cache lines could be filled prior to an uncached write + * by the guest, and the cache coherent IO subsystem would therefore + * end up writing old data to disk. + * + * This is why right after unmapping a page/section and invalidating + * the corresponding TLBs, we flush to make sure the IO subsystem will + * never hit in the cache. + * + * This is all avoided on systems that have ARM64_HAS_STAGE2_FWB, as + * we then fully enforce cacheability of RAM, no matter what the guest + * does. + */ +/** + * unmap_stage2_range -- Clear stage2 page table entries to unmap a range + * @mmu: The KVM stage-2 MMU pointer + * @start: The intermediate physical base address of the range to unmap + * @size: The size of the area to unmap + * @may_block: Whether or not we are permitted to block + * + * Clear a range of stage-2 mappings, lowering the various ref-counts. Must + * be called while holding mmu_lock (unless for freeing the stage2 pgd before + * destroying the VM), otherwise another faulting VCPU may come in and mess + * with things behind our backs. + */ +static void __unmap_stage2_range(struct kvm_s2_mmu *mmu, phys_addr_t start, u64 size, + bool may_block) +{ + struct kvm *kvm = kvm_s2_mmu_to_kvm(mmu); + phys_addr_t end = start + size; + + lockdep_assert_held_write(&kvm->mmu_lock); + WARN_ON(size & ~PAGE_MASK); + WARN_ON(stage2_apply_range(mmu, start, end, kvm_pgtable_stage2_unmap, + may_block)); +} + +static void unmap_stage2_range(struct kvm_s2_mmu *mmu, phys_addr_t start, u64 size) +{ + __unmap_stage2_range(mmu, start, size, true); +} + +static void stage2_flush_memslot(struct kvm *kvm, + struct kvm_memory_slot *memslot) +{ + phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT; + phys_addr_t end = addr + PAGE_SIZE * memslot->npages; + + stage2_apply_range_resched(&kvm->arch.mmu, addr, end, kvm_pgtable_stage2_flush); +} + +/** + * stage2_flush_vm - Invalidate cache for pages mapped in stage 2 + * @kvm: The struct kvm pointer + * + * Go through the stage 2 page tables and invalidate any cache lines + * backing memory already mapped to the VM. + */ +static void stage2_flush_vm(struct kvm *kvm) +{ + struct kvm_memslots *slots; + struct kvm_memory_slot *memslot; + int idx, bkt; + + idx = srcu_read_lock(&kvm->srcu); + write_lock(&kvm->mmu_lock); + + slots = kvm_memslots(kvm); + kvm_for_each_memslot(memslot, bkt, slots) + stage2_flush_memslot(kvm, memslot); + + write_unlock(&kvm->mmu_lock); + srcu_read_unlock(&kvm->srcu, idx); +} + +/** + * free_hyp_pgds - free Hyp-mode page tables + */ +void __init free_hyp_pgds(void) +{ + mutex_lock(&kvm_hyp_pgd_mutex); + if (hyp_pgtable) { + kvm_pgtable_hyp_destroy(hyp_pgtable); + kfree(hyp_pgtable); + hyp_pgtable = NULL; + } + mutex_unlock(&kvm_hyp_pgd_mutex); +} + +static bool kvm_host_owns_hyp_mappings(void) +{ + if (is_kernel_in_hyp_mode()) + return false; + + if (static_branch_likely(&kvm_protected_mode_initialized)) + return false; + + /* + * This can happen at boot time when __create_hyp_mappings() is called + * after the hyp protection has been enabled, but the static key has + * not been flipped yet. + */ + if (!hyp_pgtable && is_protected_kvm_enabled()) + return false; + + WARN_ON(!hyp_pgtable); + + return true; +} + +int __create_hyp_mappings(unsigned long start, unsigned long size, + unsigned long phys, enum kvm_pgtable_prot prot) +{ + int err; + + if (WARN_ON(!kvm_host_owns_hyp_mappings())) + return -EINVAL; + + mutex_lock(&kvm_hyp_pgd_mutex); + err = kvm_pgtable_hyp_map(hyp_pgtable, start, size, phys, prot); + mutex_unlock(&kvm_hyp_pgd_mutex); + + return err; +} + +static phys_addr_t kvm_kaddr_to_phys(void *kaddr) +{ + if (!is_vmalloc_addr(kaddr)) { + BUG_ON(!virt_addr_valid(kaddr)); + return __pa(kaddr); + } else { + return page_to_phys(vmalloc_to_page(kaddr)) + + offset_in_page(kaddr); + } +} + +struct hyp_shared_pfn { + u64 pfn; + int count; + struct rb_node node; +}; + +static DEFINE_MUTEX(hyp_shared_pfns_lock); +static struct rb_root hyp_shared_pfns = RB_ROOT; + +static struct hyp_shared_pfn *find_shared_pfn(u64 pfn, struct rb_node ***node, + struct rb_node **parent) +{ + struct hyp_shared_pfn *this; + + *node = &hyp_shared_pfns.rb_node; + *parent = NULL; + while (**node) { + this = container_of(**node, struct hyp_shared_pfn, node); + *parent = **node; + if (this->pfn < pfn) + *node = &((**node)->rb_left); + else if (this->pfn > pfn) + *node = &((**node)->rb_right); + else + return this; + } + + return NULL; +} + +static int share_pfn_hyp(u64 pfn) +{ + struct rb_node **node, *parent; + struct hyp_shared_pfn *this; + int ret = 0; + + mutex_lock(&hyp_shared_pfns_lock); + this = find_shared_pfn(pfn, &node, &parent); + if (this) { + this->count++; + goto unlock; + } + + this = kzalloc(sizeof(*this), GFP_KERNEL); + if (!this) { + ret = -ENOMEM; + goto unlock; + } + + this->pfn = pfn; + this->count = 1; + rb_link_node(&this->node, parent, node); + rb_insert_color(&this->node, &hyp_shared_pfns); + ret = kvm_call_hyp_nvhe(__pkvm_host_share_hyp, pfn, 1); +unlock: + mutex_unlock(&hyp_shared_pfns_lock); + + return ret; +} + +static int unshare_pfn_hyp(u64 pfn) +{ + struct rb_node **node, *parent; + struct hyp_shared_pfn *this; + int ret = 0; + + mutex_lock(&hyp_shared_pfns_lock); + this = find_shared_pfn(pfn, &node, &parent); + if (WARN_ON(!this)) { + ret = -ENOENT; + goto unlock; + } + + this->count--; + if (this->count) + goto unlock; + + rb_erase(&this->node, &hyp_shared_pfns); + kfree(this); + ret = kvm_call_hyp_nvhe(__pkvm_host_unshare_hyp, pfn, 1); +unlock: + mutex_unlock(&hyp_shared_pfns_lock); + + return ret; +} + +int kvm_share_hyp(void *from, void *to) +{ + phys_addr_t start, end, cur; + u64 pfn; + int ret; + + if (is_kernel_in_hyp_mode()) + return 0; + + /* + * The share hcall maps things in the 'fixed-offset' region of the hyp + * VA space, so we can only share physically contiguous data-structures + * for now. + */ + if (is_vmalloc_or_module_addr(from) || is_vmalloc_or_module_addr(to)) + return -EINVAL; + + if (kvm_host_owns_hyp_mappings()) + return create_hyp_mappings(from, to, PAGE_HYP); + + start = ALIGN_DOWN(__pa(from), PAGE_SIZE); + end = PAGE_ALIGN(__pa(to)); + for (cur = start; cur < end; cur += PAGE_SIZE) { + pfn = __phys_to_pfn(cur); + ret = share_pfn_hyp(pfn); + if (ret) + return ret; + } + + return 0; +} + +void kvm_unshare_hyp(void *from, void *to) +{ + phys_addr_t start, end, cur; + u64 pfn; + + if (is_kernel_in_hyp_mode() || kvm_host_owns_hyp_mappings() || !from) + return; + + start = ALIGN_DOWN(__pa(from), PAGE_SIZE); + end = PAGE_ALIGN(__pa(to)); + for (cur = start; cur < end; cur += PAGE_SIZE) { + pfn = __phys_to_pfn(cur); + WARN_ON(unshare_pfn_hyp(pfn)); + } +} + +/** + * create_hyp_mappings - duplicate a kernel virtual address range in Hyp mode + * @from: The virtual kernel start address of the range + * @to: The virtual kernel end address of the range (exclusive) + * @prot: The protection to be applied to this range + * + * The same virtual address as the kernel virtual address is also used + * in Hyp-mode mapping (modulo HYP_PAGE_OFFSET) to the same underlying + * physical pages. + */ +int create_hyp_mappings(void *from, void *to, enum kvm_pgtable_prot prot) +{ + phys_addr_t phys_addr; + unsigned long virt_addr; + unsigned long start = kern_hyp_va((unsigned long)from); + unsigned long end = kern_hyp_va((unsigned long)to); + + if (is_kernel_in_hyp_mode()) + return 0; + + if (!kvm_host_owns_hyp_mappings()) + return -EPERM; + + start = start & PAGE_MASK; + end = PAGE_ALIGN(end); + + for (virt_addr = start; virt_addr < end; virt_addr += PAGE_SIZE) { + int err; + + phys_addr = kvm_kaddr_to_phys(from + virt_addr - start); + err = __create_hyp_mappings(virt_addr, PAGE_SIZE, phys_addr, + prot); + if (err) + return err; + } + + return 0; +} + +static int __hyp_alloc_private_va_range(unsigned long base) +{ + lockdep_assert_held(&kvm_hyp_pgd_mutex); + + if (!PAGE_ALIGNED(base)) + return -EINVAL; + + /* + * Verify that BIT(VA_BITS - 1) hasn't been flipped by + * allocating the new area, as it would indicate we've + * overflowed the idmap/IO address range. + */ + if ((base ^ io_map_base) & BIT(VA_BITS - 1)) + return -ENOMEM; + + io_map_base = base; + + return 0; +} + +/** + * hyp_alloc_private_va_range - Allocates a private VA range. + * @size: The size of the VA range to reserve. + * @haddr: The hypervisor virtual start address of the allocation. + * + * The private virtual address (VA) range is allocated below io_map_base + * and aligned based on the order of @size. + * + * Return: 0 on success or negative error code on failure. + */ +int hyp_alloc_private_va_range(size_t size, unsigned long *haddr) +{ + unsigned long base; + int ret = 0; + + mutex_lock(&kvm_hyp_pgd_mutex); + + /* + * This assumes that we have enough space below the idmap + * page to allocate our VAs. If not, the check in + * __hyp_alloc_private_va_range() will kick. A potential + * alternative would be to detect that overflow and switch + * to an allocation above the idmap. + * + * The allocated size is always a multiple of PAGE_SIZE. + */ + size = PAGE_ALIGN(size); + base = io_map_base - size; + ret = __hyp_alloc_private_va_range(base); + + mutex_unlock(&kvm_hyp_pgd_mutex); + + if (!ret) + *haddr = base; + + return ret; +} + +static int __create_hyp_private_mapping(phys_addr_t phys_addr, size_t size, + unsigned long *haddr, + enum kvm_pgtable_prot prot) +{ + unsigned long addr; + int ret = 0; + + if (!kvm_host_owns_hyp_mappings()) { + addr = kvm_call_hyp_nvhe(__pkvm_create_private_mapping, + phys_addr, size, prot); + if (IS_ERR_VALUE(addr)) + return addr; + *haddr = addr; + + return 0; + } + + size = PAGE_ALIGN(size + offset_in_page(phys_addr)); + ret = hyp_alloc_private_va_range(size, &addr); + if (ret) + return ret; + + ret = __create_hyp_mappings(addr, size, phys_addr, prot); + if (ret) + return ret; + + *haddr = addr + offset_in_page(phys_addr); + return ret; +} + +int create_hyp_stack(phys_addr_t phys_addr, unsigned long *haddr) +{ + unsigned long base; + size_t size; + int ret; + + mutex_lock(&kvm_hyp_pgd_mutex); + /* + * Efficient stack verification using the PAGE_SHIFT bit implies + * an alignment of our allocation on the order of the size. + */ + size = PAGE_SIZE * 2; + base = ALIGN_DOWN(io_map_base - size, size); + + ret = __hyp_alloc_private_va_range(base); + + mutex_unlock(&kvm_hyp_pgd_mutex); + + if (ret) { + kvm_err("Cannot allocate hyp stack guard page\n"); + return ret; + } + + /* + * Since the stack grows downwards, map the stack to the page + * at the higher address and leave the lower guard page + * unbacked. + * + * Any valid stack address now has the PAGE_SHIFT bit as 1 + * and addresses corresponding to the guard page have the + * PAGE_SHIFT bit as 0 - this is used for overflow detection. + */ + ret = __create_hyp_mappings(base + PAGE_SIZE, PAGE_SIZE, phys_addr, + PAGE_HYP); + if (ret) + kvm_err("Cannot map hyp stack\n"); + + *haddr = base + size; + + return ret; +} + +/** + * create_hyp_io_mappings - Map IO into both kernel and HYP + * @phys_addr: The physical start address which gets mapped + * @size: Size of the region being mapped + * @kaddr: Kernel VA for this mapping + * @haddr: HYP VA for this mapping + */ +int create_hyp_io_mappings(phys_addr_t phys_addr, size_t size, + void __iomem **kaddr, + void __iomem **haddr) +{ + unsigned long addr; + int ret; + + if (is_protected_kvm_enabled()) + return -EPERM; + + *kaddr = ioremap(phys_addr, size); + if (!*kaddr) + return -ENOMEM; + + if (is_kernel_in_hyp_mode()) { + *haddr = *kaddr; + return 0; + } + + ret = __create_hyp_private_mapping(phys_addr, size, + &addr, PAGE_HYP_DEVICE); + if (ret) { + iounmap(*kaddr); + *kaddr = NULL; + *haddr = NULL; + return ret; + } + + *haddr = (void __iomem *)addr; + return 0; +} + +/** + * create_hyp_exec_mappings - Map an executable range into HYP + * @phys_addr: The physical start address which gets mapped + * @size: Size of the region being mapped + * @haddr: HYP VA for this mapping + */ +int create_hyp_exec_mappings(phys_addr_t phys_addr, size_t size, + void **haddr) +{ + unsigned long addr; + int ret; + + BUG_ON(is_kernel_in_hyp_mode()); + + ret = __create_hyp_private_mapping(phys_addr, size, + &addr, PAGE_HYP_EXEC); + if (ret) { + *haddr = NULL; + return ret; + } + + *haddr = (void *)addr; + return 0; +} + +static struct kvm_pgtable_mm_ops kvm_user_mm_ops = { + /* We shouldn't need any other callback to walk the PT */ + .phys_to_virt = kvm_host_va, +}; + +static int get_user_mapping_size(struct kvm *kvm, u64 addr) +{ + struct kvm_pgtable pgt = { + .pgd = (kvm_pteref_t)kvm->mm->pgd, + .ia_bits = vabits_actual, + .start_level = (KVM_PGTABLE_MAX_LEVELS - + CONFIG_PGTABLE_LEVELS), + .mm_ops = &kvm_user_mm_ops, + }; + unsigned long flags; + kvm_pte_t pte = 0; /* Keep GCC quiet... */ + u32 level = ~0; + int ret; + + /* + * Disable IRQs so that we hazard against a concurrent + * teardown of the userspace page tables (which relies on + * IPI-ing threads). + */ + local_irq_save(flags); + ret = kvm_pgtable_get_leaf(&pgt, addr, &pte, &level); + local_irq_restore(flags); + + if (ret) + return ret; + + /* + * Not seeing an error, but not updating level? Something went + * deeply wrong... + */ + if (WARN_ON(level >= KVM_PGTABLE_MAX_LEVELS)) + return -EFAULT; + + /* Oops, the userspace PTs are gone... Replay the fault */ + if (!kvm_pte_valid(pte)) + return -EAGAIN; + + return BIT(ARM64_HW_PGTABLE_LEVEL_SHIFT(level)); +} + +static struct kvm_pgtable_mm_ops kvm_s2_mm_ops = { + .zalloc_page = stage2_memcache_zalloc_page, + .zalloc_pages_exact = kvm_s2_zalloc_pages_exact, + .free_pages_exact = kvm_s2_free_pages_exact, + .free_unlinked_table = stage2_free_unlinked_table, + .get_page = kvm_host_get_page, + .put_page = kvm_s2_put_page, + .page_count = kvm_host_page_count, + .phys_to_virt = kvm_host_va, + .virt_to_phys = kvm_host_pa, + .dcache_clean_inval_poc = clean_dcache_guest_page, + .icache_inval_pou = invalidate_icache_guest_page, +}; + +/** + * kvm_init_stage2_mmu - Initialise a S2 MMU structure + * @kvm: The pointer to the KVM structure + * @mmu: The pointer to the s2 MMU structure + * @type: The machine type of the virtual machine + * + * Allocates only the stage-2 HW PGD level table(s). + * Note we don't need locking here as this is only called when the VM is + * created, which can only be done once. + */ +int kvm_init_stage2_mmu(struct kvm *kvm, struct kvm_s2_mmu *mmu, unsigned long type) +{ + u32 kvm_ipa_limit = get_kvm_ipa_limit(); + int cpu, err; + struct kvm_pgtable *pgt; + u64 mmfr0, mmfr1; + u32 phys_shift; + + if (type & ~KVM_VM_TYPE_ARM_IPA_SIZE_MASK) + return -EINVAL; + + phys_shift = KVM_VM_TYPE_ARM_IPA_SIZE(type); + if (is_protected_kvm_enabled()) { + phys_shift = kvm_ipa_limit; + } else if (phys_shift) { + if (phys_shift > kvm_ipa_limit || + phys_shift < ARM64_MIN_PARANGE_BITS) + return -EINVAL; + } else { + phys_shift = KVM_PHYS_SHIFT; + if (phys_shift > kvm_ipa_limit) { + pr_warn_once("%s using unsupported default IPA limit, upgrade your VMM\n", + current->comm); + return -EINVAL; + } + } + + mmfr0 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1); + mmfr1 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1); + kvm->arch.vtcr = kvm_get_vtcr(mmfr0, mmfr1, phys_shift); + + if (mmu->pgt != NULL) { + kvm_err("kvm_arch already initialized?\n"); + return -EINVAL; + } + + pgt = kzalloc(sizeof(*pgt), GFP_KERNEL_ACCOUNT); + if (!pgt) + return -ENOMEM; + + mmu->arch = &kvm->arch; + err = kvm_pgtable_stage2_init(pgt, mmu, &kvm_s2_mm_ops); + if (err) + goto out_free_pgtable; + + mmu->last_vcpu_ran = alloc_percpu(typeof(*mmu->last_vcpu_ran)); + if (!mmu->last_vcpu_ran) { + err = -ENOMEM; + goto out_destroy_pgtable; + } + + for_each_possible_cpu(cpu) + *per_cpu_ptr(mmu->last_vcpu_ran, cpu) = -1; + + /* The eager page splitting is disabled by default */ + mmu->split_page_chunk_size = KVM_ARM_EAGER_SPLIT_CHUNK_SIZE_DEFAULT; + mmu->split_page_cache.gfp_zero = __GFP_ZERO; + + mmu->pgt = pgt; + mmu->pgd_phys = __pa(pgt->pgd); + return 0; + +out_destroy_pgtable: + kvm_pgtable_stage2_destroy(pgt); +out_free_pgtable: + kfree(pgt); + return err; +} + +void kvm_uninit_stage2_mmu(struct kvm *kvm) +{ + kvm_free_stage2_pgd(&kvm->arch.mmu); + kvm_mmu_free_memory_cache(&kvm->arch.mmu.split_page_cache); +} + +static void stage2_unmap_memslot(struct kvm *kvm, + struct kvm_memory_slot *memslot) +{ + hva_t hva = memslot->userspace_addr; + phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT; + phys_addr_t size = PAGE_SIZE * memslot->npages; + hva_t reg_end = hva + size; + + /* + * A memory region could potentially cover multiple VMAs, and any holes + * between them, so iterate over all of them to find out if we should + * unmap any of them. + * + * +--------------------------------------------+ + * +---------------+----------------+ +----------------+ + * | : VMA 1 | VMA 2 | | VMA 3 : | + * +---------------+----------------+ +----------------+ + * | memory region | + * +--------------------------------------------+ + */ + do { + struct vm_area_struct *vma; + hva_t vm_start, vm_end; + + vma = find_vma_intersection(current->mm, hva, reg_end); + if (!vma) + break; + + /* + * Take the intersection of this VMA with the memory region + */ + vm_start = max(hva, vma->vm_start); + vm_end = min(reg_end, vma->vm_end); + + if (!(vma->vm_flags & VM_PFNMAP)) { + gpa_t gpa = addr + (vm_start - memslot->userspace_addr); + unmap_stage2_range(&kvm->arch.mmu, gpa, vm_end - vm_start); + } + hva = vm_end; + } while (hva < reg_end); +} + +/** + * stage2_unmap_vm - Unmap Stage-2 RAM mappings + * @kvm: The struct kvm pointer + * + * Go through the memregions and unmap any regular RAM + * backing memory already mapped to the VM. + */ +void stage2_unmap_vm(struct kvm *kvm) +{ + struct kvm_memslots *slots; + struct kvm_memory_slot *memslot; + int idx, bkt; + + idx = srcu_read_lock(&kvm->srcu); + mmap_read_lock(current->mm); + write_lock(&kvm->mmu_lock); + + slots = kvm_memslots(kvm); + kvm_for_each_memslot(memslot, bkt, slots) + stage2_unmap_memslot(kvm, memslot); + + write_unlock(&kvm->mmu_lock); + mmap_read_unlock(current->mm); + srcu_read_unlock(&kvm->srcu, idx); +} + +void kvm_free_stage2_pgd(struct kvm_s2_mmu *mmu) +{ + struct kvm *kvm = kvm_s2_mmu_to_kvm(mmu); + struct kvm_pgtable *pgt = NULL; + + write_lock(&kvm->mmu_lock); + pgt = mmu->pgt; + if (pgt) { + mmu->pgd_phys = 0; + mmu->pgt = NULL; + free_percpu(mmu->last_vcpu_ran); + } + write_unlock(&kvm->mmu_lock); + + if (pgt) { + kvm_pgtable_stage2_destroy(pgt); + kfree(pgt); + } +} + +static void hyp_mc_free_fn(void *addr, void *unused) +{ + free_page((unsigned long)addr); +} + +static void *hyp_mc_alloc_fn(void *unused) +{ + return (void *)__get_free_page(GFP_KERNEL_ACCOUNT); +} + +void free_hyp_memcache(struct kvm_hyp_memcache *mc) +{ + if (is_protected_kvm_enabled()) + __free_hyp_memcache(mc, hyp_mc_free_fn, + kvm_host_va, NULL); +} + +int topup_hyp_memcache(struct kvm_hyp_memcache *mc, unsigned long min_pages) +{ + if (!is_protected_kvm_enabled()) + return 0; + + return __topup_hyp_memcache(mc, min_pages, hyp_mc_alloc_fn, + kvm_host_pa, NULL); +} + +/** + * kvm_phys_addr_ioremap - map a device range to guest IPA + * + * @kvm: The KVM pointer + * @guest_ipa: The IPA at which to insert the mapping + * @pa: The physical address of the device + * @size: The size of the mapping + * @writable: Whether or not to create a writable mapping + */ +int kvm_phys_addr_ioremap(struct kvm *kvm, phys_addr_t guest_ipa, + phys_addr_t pa, unsigned long size, bool writable) +{ + phys_addr_t addr; + int ret = 0; + struct kvm_mmu_memory_cache cache = { .gfp_zero = __GFP_ZERO }; + struct kvm_pgtable *pgt = kvm->arch.mmu.pgt; + enum kvm_pgtable_prot prot = KVM_PGTABLE_PROT_DEVICE | + KVM_PGTABLE_PROT_R | + (writable ? KVM_PGTABLE_PROT_W : 0); + + if (is_protected_kvm_enabled()) + return -EPERM; + + size += offset_in_page(guest_ipa); + guest_ipa &= PAGE_MASK; + + for (addr = guest_ipa; addr < guest_ipa + size; addr += PAGE_SIZE) { + ret = kvm_mmu_topup_memory_cache(&cache, + kvm_mmu_cache_min_pages(kvm)); + if (ret) + break; + + write_lock(&kvm->mmu_lock); + ret = kvm_pgtable_stage2_map(pgt, addr, PAGE_SIZE, pa, prot, + &cache, 0); + write_unlock(&kvm->mmu_lock); + if (ret) + break; + + pa += PAGE_SIZE; + } + + kvm_mmu_free_memory_cache(&cache); + return ret; +} + +/** + * stage2_wp_range() - write protect stage2 memory region range + * @mmu: The KVM stage-2 MMU pointer + * @addr: Start address of range + * @end: End address of range + */ +static void stage2_wp_range(struct kvm_s2_mmu *mmu, phys_addr_t addr, phys_addr_t end) +{ + stage2_apply_range_resched(mmu, addr, end, kvm_pgtable_stage2_wrprotect); +} + +/** + * kvm_mmu_wp_memory_region() - write protect stage 2 entries for memory slot + * @kvm: The KVM pointer + * @slot: The memory slot to write protect + * + * Called to start logging dirty pages after memory region + * KVM_MEM_LOG_DIRTY_PAGES operation is called. After this function returns + * all present PUD, PMD and PTEs are write protected in the memory region. + * Afterwards read of dirty page log can be called. + * + * Acquires kvm_mmu_lock. Called with kvm->slots_lock mutex acquired, + * serializing operations for VM memory regions. + */ +static void kvm_mmu_wp_memory_region(struct kvm *kvm, int slot) +{ + struct kvm_memslots *slots = kvm_memslots(kvm); + struct kvm_memory_slot *memslot = id_to_memslot(slots, slot); + phys_addr_t start, end; + + if (WARN_ON_ONCE(!memslot)) + return; + + start = memslot->base_gfn << PAGE_SHIFT; + end = (memslot->base_gfn + memslot->npages) << PAGE_SHIFT; + + write_lock(&kvm->mmu_lock); + stage2_wp_range(&kvm->arch.mmu, start, end); + write_unlock(&kvm->mmu_lock); + kvm_flush_remote_tlbs_memslot(kvm, memslot); +} + +/** + * kvm_mmu_split_memory_region() - split the stage 2 blocks into PAGE_SIZE + * pages for memory slot + * @kvm: The KVM pointer + * @slot: The memory slot to split + * + * Acquires kvm->mmu_lock. Called with kvm->slots_lock mutex acquired, + * serializing operations for VM memory regions. + */ +static void kvm_mmu_split_memory_region(struct kvm *kvm, int slot) +{ + struct kvm_memslots *slots; + struct kvm_memory_slot *memslot; + phys_addr_t start, end; + + lockdep_assert_held(&kvm->slots_lock); + + slots = kvm_memslots(kvm); + memslot = id_to_memslot(slots, slot); + + start = memslot->base_gfn << PAGE_SHIFT; + end = (memslot->base_gfn + memslot->npages) << PAGE_SHIFT; + + write_lock(&kvm->mmu_lock); + kvm_mmu_split_huge_pages(kvm, start, end); + write_unlock(&kvm->mmu_lock); +} + +/* + * kvm_arch_mmu_enable_log_dirty_pt_masked() - enable dirty logging for selected pages. + * @kvm: The KVM pointer + * @slot: The memory slot associated with mask + * @gfn_offset: The gfn offset in memory slot + * @mask: The mask of pages at offset 'gfn_offset' in this memory + * slot to enable dirty logging on + * + * Writes protect selected pages to enable dirty logging, and then + * splits them to PAGE_SIZE. Caller must acquire kvm->mmu_lock. + */ +void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm, + struct kvm_memory_slot *slot, + gfn_t gfn_offset, unsigned long mask) +{ + phys_addr_t base_gfn = slot->base_gfn + gfn_offset; + phys_addr_t start = (base_gfn + __ffs(mask)) << PAGE_SHIFT; + phys_addr_t end = (base_gfn + __fls(mask) + 1) << PAGE_SHIFT; + + lockdep_assert_held_write(&kvm->mmu_lock); + + stage2_wp_range(&kvm->arch.mmu, start, end); + + /* + * Eager-splitting is done when manual-protect is set. We + * also check for initially-all-set because we can avoid + * eager-splitting if initially-all-set is false. + * Initially-all-set equal false implies that huge-pages were + * already split when enabling dirty logging: no need to do it + * again. + */ + if (kvm_dirty_log_manual_protect_and_init_set(kvm)) + kvm_mmu_split_huge_pages(kvm, start, end); +} + +static void kvm_send_hwpoison_signal(unsigned long address, short lsb) +{ + send_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, lsb, current); +} + +static bool fault_supports_stage2_huge_mapping(struct kvm_memory_slot *memslot, + unsigned long hva, + unsigned long map_size) +{ + gpa_t gpa_start; + hva_t uaddr_start, uaddr_end; + size_t size; + + /* The memslot and the VMA are guaranteed to be aligned to PAGE_SIZE */ + if (map_size == PAGE_SIZE) + return true; + + size = memslot->npages * PAGE_SIZE; + + gpa_start = memslot->base_gfn << PAGE_SHIFT; + + uaddr_start = memslot->userspace_addr; + uaddr_end = uaddr_start + size; + + /* + * Pages belonging to memslots that don't have the same alignment + * within a PMD/PUD for userspace and IPA cannot be mapped with stage-2 + * PMD/PUD entries, because we'll end up mapping the wrong pages. + * + * Consider a layout like the following: + * + * memslot->userspace_addr: + * +-----+--------------------+--------------------+---+ + * |abcde|fgh Stage-1 block | Stage-1 block tv|xyz| + * +-----+--------------------+--------------------+---+ + * + * memslot->base_gfn << PAGE_SHIFT: + * +---+--------------------+--------------------+-----+ + * |abc|def Stage-2 block | Stage-2 block |tvxyz| + * +---+--------------------+--------------------+-----+ + * + * If we create those stage-2 blocks, we'll end up with this incorrect + * mapping: + * d -> f + * e -> g + * f -> h + */ + if ((gpa_start & (map_size - 1)) != (uaddr_start & (map_size - 1))) + return false; + + /* + * Next, let's make sure we're not trying to map anything not covered + * by the memslot. This means we have to prohibit block size mappings + * for the beginning and end of a non-block aligned and non-block sized + * memory slot (illustrated by the head and tail parts of the + * userspace view above containing pages 'abcde' and 'xyz', + * respectively). + * + * Note that it doesn't matter if we do the check using the + * userspace_addr or the base_gfn, as both are equally aligned (per + * the check above) and equally sized. + */ + return (hva & ~(map_size - 1)) >= uaddr_start && + (hva & ~(map_size - 1)) + map_size <= uaddr_end; +} + +/* + * Check if the given hva is backed by a transparent huge page (THP) and + * whether it can be mapped using block mapping in stage2. If so, adjust + * the stage2 PFN and IPA accordingly. Only PMD_SIZE THPs are currently + * supported. This will need to be updated to support other THP sizes. + * + * Returns the size of the mapping. + */ +static long +transparent_hugepage_adjust(struct kvm *kvm, struct kvm_memory_slot *memslot, + unsigned long hva, kvm_pfn_t *pfnp, + phys_addr_t *ipap) +{ + kvm_pfn_t pfn = *pfnp; + + /* + * Make sure the adjustment is done only for THP pages. Also make + * sure that the HVA and IPA are sufficiently aligned and that the + * block map is contained within the memslot. + */ + if (fault_supports_stage2_huge_mapping(memslot, hva, PMD_SIZE)) { + int sz = get_user_mapping_size(kvm, hva); + + if (sz < 0) + return sz; + + if (sz < PMD_SIZE) + return PAGE_SIZE; + + /* + * The address we faulted on is backed by a transparent huge + * page. However, because we map the compound huge page and + * not the individual tail page, we need to transfer the + * refcount to the head page. We have to be careful that the + * THP doesn't start to split while we are adjusting the + * refcounts. + * + * We are sure this doesn't happen, because mmu_invalidate_retry + * was successful and we are holding the mmu_lock, so if this + * THP is trying to split, it will be blocked in the mmu + * notifier before touching any of the pages, specifically + * before being able to call __split_huge_page_refcount(). + * + * We can therefore safely transfer the refcount from PG_tail + * to PG_head and switch the pfn from a tail page to the head + * page accordingly. + */ + *ipap &= PMD_MASK; + kvm_release_pfn_clean(pfn); + pfn &= ~(PTRS_PER_PMD - 1); + get_page(pfn_to_page(pfn)); + *pfnp = pfn; + + return PMD_SIZE; + } + + /* Use page mapping if we cannot use block mapping. */ + return PAGE_SIZE; +} + +static int get_vma_page_shift(struct vm_area_struct *vma, unsigned long hva) +{ + unsigned long pa; + + if (is_vm_hugetlb_page(vma) && !(vma->vm_flags & VM_PFNMAP)) + return huge_page_shift(hstate_vma(vma)); + + if (!(vma->vm_flags & VM_PFNMAP)) + return PAGE_SHIFT; + + VM_BUG_ON(is_vm_hugetlb_page(vma)); + + pa = (vma->vm_pgoff << PAGE_SHIFT) + (hva - vma->vm_start); + +#ifndef __PAGETABLE_PMD_FOLDED + if ((hva & (PUD_SIZE - 1)) == (pa & (PUD_SIZE - 1)) && + ALIGN_DOWN(hva, PUD_SIZE) >= vma->vm_start && + ALIGN(hva, PUD_SIZE) <= vma->vm_end) + return PUD_SHIFT; +#endif + + if ((hva & (PMD_SIZE - 1)) == (pa & (PMD_SIZE - 1)) && + ALIGN_DOWN(hva, PMD_SIZE) >= vma->vm_start && + ALIGN(hva, PMD_SIZE) <= vma->vm_end) + return PMD_SHIFT; + + return PAGE_SHIFT; +} + +/* + * The page will be mapped in stage 2 as Normal Cacheable, so the VM will be + * able to see the page's tags and therefore they must be initialised first. If + * PG_mte_tagged is set, tags have already been initialised. + * + * The race in the test/set of the PG_mte_tagged flag is handled by: + * - preventing VM_SHARED mappings in a memslot with MTE preventing two VMs + * racing to santise the same page + * - mmap_lock protects between a VM faulting a page in and the VMM performing + * an mprotect() to add VM_MTE + */ +static void sanitise_mte_tags(struct kvm *kvm, kvm_pfn_t pfn, + unsigned long size) +{ + unsigned long i, nr_pages = size >> PAGE_SHIFT; + struct page *page = pfn_to_page(pfn); + + if (!kvm_has_mte(kvm)) + return; + + for (i = 0; i < nr_pages; i++, page++) { + if (try_page_mte_tagging(page)) { + mte_clear_page_tags(page_address(page)); + set_page_mte_tagged(page); + } + } +} + +static bool kvm_vma_mte_allowed(struct vm_area_struct *vma) +{ + return vma->vm_flags & VM_MTE_ALLOWED; +} + +static int user_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa, + struct kvm_memory_slot *memslot, unsigned long hva, + unsigned long fault_status) +{ + int ret = 0; + bool write_fault, writable, force_pte = false; + bool exec_fault, mte_allowed; + bool device = false; + unsigned long mmu_seq; + struct kvm *kvm = vcpu->kvm; + struct kvm_mmu_memory_cache *memcache = &vcpu->arch.mmu_page_cache; + struct vm_area_struct *vma; + short vma_shift; + gfn_t gfn; + kvm_pfn_t pfn; + bool logging_active = memslot_is_logging(memslot); + unsigned long fault_level = kvm_vcpu_trap_get_fault_level(vcpu); + long vma_pagesize, fault_granule; + enum kvm_pgtable_prot prot = KVM_PGTABLE_PROT_R; + struct kvm_pgtable *pgt; + + fault_granule = 1UL << ARM64_HW_PGTABLE_LEVEL_SHIFT(fault_level); + write_fault = kvm_is_write_fault(vcpu); + exec_fault = kvm_vcpu_trap_is_exec_fault(vcpu); + VM_BUG_ON(write_fault && exec_fault); + + if (fault_status == ESR_ELx_FSC_PERM && !write_fault && !exec_fault) { + kvm_err("Unexpected L2 read permission error\n"); + return -EFAULT; + } + + /* + * Permission faults just need to update the existing leaf entry, + * and so normally don't require allocations from the memcache. The + * only exception to this is when dirty logging is enabled at runtime + * and a write fault needs to collapse a block entry into a table. + */ + if (fault_status != ESR_ELx_FSC_PERM || + (logging_active && write_fault)) { + ret = kvm_mmu_topup_memory_cache(memcache, + kvm_mmu_cache_min_pages(kvm)); + if (ret) + return ret; + } + + /* + * Let's check if we will get back a huge page backed by hugetlbfs, or + * get block mapping for device MMIO region. + */ + mmap_read_lock(current->mm); + vma = vma_lookup(current->mm, hva); + if (unlikely(!vma)) { + kvm_err("Failed to find VMA for hva 0x%lx\n", hva); + mmap_read_unlock(current->mm); + return -EFAULT; + } + + /* + * logging_active is guaranteed to never be true for VM_PFNMAP + * memslots. + */ + if (logging_active) { + force_pte = true; + vma_shift = PAGE_SHIFT; + } else { + vma_shift = get_vma_page_shift(vma, hva); + } + + switch (vma_shift) { +#ifndef __PAGETABLE_PMD_FOLDED + case PUD_SHIFT: + if (fault_supports_stage2_huge_mapping(memslot, hva, PUD_SIZE)) + break; + fallthrough; +#endif + case CONT_PMD_SHIFT: + vma_shift = PMD_SHIFT; + fallthrough; + case PMD_SHIFT: + if (fault_supports_stage2_huge_mapping(memslot, hva, PMD_SIZE)) + break; + fallthrough; + case CONT_PTE_SHIFT: + vma_shift = PAGE_SHIFT; + force_pte = true; + fallthrough; + case PAGE_SHIFT: + break; + default: + WARN_ONCE(1, "Unknown vma_shift %d", vma_shift); + } + + vma_pagesize = 1UL << vma_shift; + if (vma_pagesize == PMD_SIZE || vma_pagesize == PUD_SIZE) + fault_ipa &= ~(vma_pagesize - 1); + + gfn = fault_ipa >> PAGE_SHIFT; + mte_allowed = kvm_vma_mte_allowed(vma); + + /* Don't use the VMA after the unlock -- it may have vanished */ + vma = NULL; + + /* + * Read mmu_invalidate_seq so that KVM can detect if the results of + * vma_lookup() or __gfn_to_pfn_memslot() become stale prior to + * acquiring kvm->mmu_lock. + * + * Rely on mmap_read_unlock() for an implicit smp_rmb(), which pairs + * with the smp_wmb() in kvm_mmu_invalidate_end(). + */ + mmu_seq = vcpu->kvm->mmu_invalidate_seq; + mmap_read_unlock(current->mm); + + pfn = __gfn_to_pfn_memslot(memslot, gfn, false, false, NULL, + write_fault, &writable, NULL); + if (pfn == KVM_PFN_ERR_HWPOISON) { + kvm_send_hwpoison_signal(hva, vma_shift); + return 0; + } + if (is_error_noslot_pfn(pfn)) + return -EFAULT; + + if (kvm_is_device_pfn(pfn)) { + /* + * If the page was identified as device early by looking at + * the VMA flags, vma_pagesize is already representing the + * largest quantity we can map. If instead it was mapped + * via gfn_to_pfn_prot(), vma_pagesize is set to PAGE_SIZE + * and must not be upgraded. + * + * In both cases, we don't let transparent_hugepage_adjust() + * change things at the last minute. + */ + device = true; + } else if (logging_active && !write_fault) { + /* + * Only actually map the page as writable if this was a write + * fault. + */ + writable = false; + } + + if (exec_fault && device) + return -ENOEXEC; + + read_lock(&kvm->mmu_lock); + pgt = vcpu->arch.hw_mmu->pgt; + if (mmu_invalidate_retry(kvm, mmu_seq)) + goto out_unlock; + + /* + * If we are not forced to use page mapping, check if we are + * backed by a THP and thus use block mapping if possible. + */ + if (vma_pagesize == PAGE_SIZE && !(force_pte || device)) { + if (fault_status == ESR_ELx_FSC_PERM && + fault_granule > PAGE_SIZE) + vma_pagesize = fault_granule; + else + vma_pagesize = transparent_hugepage_adjust(kvm, memslot, + hva, &pfn, + &fault_ipa); + + if (vma_pagesize < 0) { + ret = vma_pagesize; + goto out_unlock; + } + } + + if (fault_status != ESR_ELx_FSC_PERM && !device && kvm_has_mte(kvm)) { + /* Check the VMM hasn't introduced a new disallowed VMA */ + if (mte_allowed) { + sanitise_mte_tags(kvm, pfn, vma_pagesize); + } else { + ret = -EFAULT; + goto out_unlock; + } + } + + if (writable) + prot |= KVM_PGTABLE_PROT_W; + + if (exec_fault) + prot |= KVM_PGTABLE_PROT_X; + + if (device) + prot |= KVM_PGTABLE_PROT_DEVICE; + else if (cpus_have_const_cap(ARM64_HAS_CACHE_DIC)) + prot |= KVM_PGTABLE_PROT_X; + + /* + * Under the premise of getting a FSC_PERM fault, we just need to relax + * permissions only if vma_pagesize equals fault_granule. Otherwise, + * kvm_pgtable_stage2_map() should be called to change block size. + */ + if (fault_status == ESR_ELx_FSC_PERM && vma_pagesize == fault_granule) + ret = kvm_pgtable_stage2_relax_perms(pgt, fault_ipa, prot); + else + ret = kvm_pgtable_stage2_map(pgt, fault_ipa, vma_pagesize, + __pfn_to_phys(pfn), prot, + memcache, + KVM_PGTABLE_WALK_HANDLE_FAULT | + KVM_PGTABLE_WALK_SHARED); + + /* Mark the page dirty only if the fault is handled successfully */ + if (writable && !ret) { + kvm_set_pfn_dirty(pfn); + mark_page_dirty_in_slot(kvm, memslot, gfn); + } + +out_unlock: + read_unlock(&kvm->mmu_lock); + kvm_release_pfn_clean(pfn); + return ret != -EAGAIN ? ret : 0; +} + +/* Resolve the access fault by making the page young again. */ +static void handle_access_fault(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa) +{ + kvm_pte_t pte; + struct kvm_s2_mmu *mmu; + + trace_kvm_access_fault(fault_ipa); + + read_lock(&vcpu->kvm->mmu_lock); + mmu = vcpu->arch.hw_mmu; + pte = kvm_pgtable_stage2_mkyoung(mmu->pgt, fault_ipa); + read_unlock(&vcpu->kvm->mmu_lock); + + if (kvm_pte_valid(pte)) + kvm_set_pfn_accessed(kvm_pte_to_pfn(pte)); +} + +/** + * kvm_handle_guest_abort - handles all 2nd stage aborts + * @vcpu: the VCPU pointer + * + * Any abort that gets to the host is almost guaranteed to be caused by a + * missing second stage translation table entry, which can mean that either the + * guest simply needs more memory and we must allocate an appropriate page or it + * can mean that the guest tried to access I/O memory, which is emulated by user + * space. The distinction is based on the IPA causing the fault and whether this + * memory region has been registered as standard RAM by user space. + */ +int kvm_handle_guest_abort(struct kvm_vcpu *vcpu) +{ + unsigned long fault_status; + phys_addr_t fault_ipa; + struct kvm_memory_slot *memslot; + unsigned long hva; + bool is_iabt, write_fault, writable; + gfn_t gfn; + int ret, idx; + + fault_status = kvm_vcpu_trap_get_fault_type(vcpu); + + fault_ipa = kvm_vcpu_get_fault_ipa(vcpu); + is_iabt = kvm_vcpu_trap_is_iabt(vcpu); + + if (fault_status == ESR_ELx_FSC_FAULT) { + /* Beyond sanitised PARange (which is the IPA limit) */ + if (fault_ipa >= BIT_ULL(get_kvm_ipa_limit())) { + kvm_inject_size_fault(vcpu); + return 1; + } + + /* Falls between the IPA range and the PARange? */ + if (fault_ipa >= BIT_ULL(vcpu->arch.hw_mmu->pgt->ia_bits)) { + fault_ipa |= kvm_vcpu_get_hfar(vcpu) & GENMASK(11, 0); + + if (is_iabt) + kvm_inject_pabt(vcpu, fault_ipa); + else + kvm_inject_dabt(vcpu, fault_ipa); + return 1; + } + } + + /* Synchronous External Abort? */ + if (kvm_vcpu_abt_issea(vcpu)) { + /* + * For RAS the host kernel may handle this abort. + * There is no need to pass the error into the guest. + */ + if (kvm_handle_guest_sea(fault_ipa, kvm_vcpu_get_esr(vcpu))) + kvm_inject_vabt(vcpu); + + return 1; + } + + trace_kvm_guest_fault(*vcpu_pc(vcpu), kvm_vcpu_get_esr(vcpu), + kvm_vcpu_get_hfar(vcpu), fault_ipa); + + /* Check the stage-2 fault is trans. fault or write fault */ + if (fault_status != ESR_ELx_FSC_FAULT && + fault_status != ESR_ELx_FSC_PERM && + fault_status != ESR_ELx_FSC_ACCESS) { + kvm_err("Unsupported FSC: EC=%#x xFSC=%#lx ESR_EL2=%#lx\n", + kvm_vcpu_trap_get_class(vcpu), + (unsigned long)kvm_vcpu_trap_get_fault(vcpu), + (unsigned long)kvm_vcpu_get_esr(vcpu)); + return -EFAULT; + } + + idx = srcu_read_lock(&vcpu->kvm->srcu); + + gfn = fault_ipa >> PAGE_SHIFT; + memslot = gfn_to_memslot(vcpu->kvm, gfn); + hva = gfn_to_hva_memslot_prot(memslot, gfn, &writable); + write_fault = kvm_is_write_fault(vcpu); + if (kvm_is_error_hva(hva) || (write_fault && !writable)) { + /* + * The guest has put either its instructions or its page-tables + * somewhere it shouldn't have. Userspace won't be able to do + * anything about this (there's no syndrome for a start), so + * re-inject the abort back into the guest. + */ + if (is_iabt) { + ret = -ENOEXEC; + goto out; + } + + if (kvm_vcpu_abt_iss1tw(vcpu)) { + kvm_inject_dabt(vcpu, kvm_vcpu_get_hfar(vcpu)); + ret = 1; + goto out_unlock; + } + + /* + * Check for a cache maintenance operation. Since we + * ended-up here, we know it is outside of any memory + * slot. But we can't find out if that is for a device, + * or if the guest is just being stupid. The only thing + * we know for sure is that this range cannot be cached. + * + * So let's assume that the guest is just being + * cautious, and skip the instruction. + */ + if (kvm_is_error_hva(hva) && kvm_vcpu_dabt_is_cm(vcpu)) { + kvm_incr_pc(vcpu); + ret = 1; + goto out_unlock; + } + + /* + * The IPA is reported as [MAX:12], so we need to + * complement it with the bottom 12 bits from the + * faulting VA. This is always 12 bits, irrespective + * of the page size. + */ + fault_ipa |= kvm_vcpu_get_hfar(vcpu) & ((1 << 12) - 1); + ret = io_mem_abort(vcpu, fault_ipa); + goto out_unlock; + } + + /* Userspace should not be able to register out-of-bounds IPAs */ + VM_BUG_ON(fault_ipa >= kvm_phys_size(vcpu->kvm)); + + if (fault_status == ESR_ELx_FSC_ACCESS) { + handle_access_fault(vcpu, fault_ipa); + ret = 1; + goto out_unlock; + } + + ret = user_mem_abort(vcpu, fault_ipa, memslot, hva, fault_status); + if (ret == 0) + ret = 1; +out: + if (ret == -ENOEXEC) { + kvm_inject_pabt(vcpu, kvm_vcpu_get_hfar(vcpu)); + ret = 1; + } +out_unlock: + srcu_read_unlock(&vcpu->kvm->srcu, idx); + return ret; +} + +bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range) +{ + if (!kvm->arch.mmu.pgt) + return false; + + __unmap_stage2_range(&kvm->arch.mmu, range->start << PAGE_SHIFT, + (range->end - range->start) << PAGE_SHIFT, + range->may_block); + + return false; +} + +bool kvm_set_spte_gfn(struct kvm *kvm, struct kvm_gfn_range *range) +{ + kvm_pfn_t pfn = pte_pfn(range->arg.pte); + + if (!kvm->arch.mmu.pgt) + return false; + + WARN_ON(range->end - range->start != 1); + + /* + * If the page isn't tagged, defer to user_mem_abort() for sanitising + * the MTE tags. The S2 pte should have been unmapped by + * mmu_notifier_invalidate_range_end(). + */ + if (kvm_has_mte(kvm) && !page_mte_tagged(pfn_to_page(pfn))) + return false; + + /* + * We've moved a page around, probably through CoW, so let's treat + * it just like a translation fault and the map handler will clean + * the cache to the PoC. + * + * The MMU notifiers will have unmapped a huge PMD before calling + * ->change_pte() (which in turn calls kvm_set_spte_gfn()) and + * therefore we never need to clear out a huge PMD through this + * calling path and a memcache is not required. + */ + kvm_pgtable_stage2_map(kvm->arch.mmu.pgt, range->start << PAGE_SHIFT, + PAGE_SIZE, __pfn_to_phys(pfn), + KVM_PGTABLE_PROT_R, NULL, 0); + + return false; +} + +bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range) +{ + u64 size = (range->end - range->start) << PAGE_SHIFT; + + if (!kvm->arch.mmu.pgt) + return false; + + return kvm_pgtable_stage2_test_clear_young(kvm->arch.mmu.pgt, + range->start << PAGE_SHIFT, + size, true); +} + +bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range) +{ + u64 size = (range->end - range->start) << PAGE_SHIFT; + + if (!kvm->arch.mmu.pgt) + return false; + + return kvm_pgtable_stage2_test_clear_young(kvm->arch.mmu.pgt, + range->start << PAGE_SHIFT, + size, false); +} + +phys_addr_t kvm_mmu_get_httbr(void) +{ + return __pa(hyp_pgtable->pgd); +} + +phys_addr_t kvm_get_idmap_vector(void) +{ + return hyp_idmap_vector; +} + +static int kvm_map_idmap_text(void) +{ + unsigned long size = hyp_idmap_end - hyp_idmap_start; + int err = __create_hyp_mappings(hyp_idmap_start, size, hyp_idmap_start, + PAGE_HYP_EXEC); + if (err) + kvm_err("Failed to idmap %lx-%lx\n", + hyp_idmap_start, hyp_idmap_end); + + return err; +} + +static void *kvm_hyp_zalloc_page(void *arg) +{ + return (void *)get_zeroed_page(GFP_KERNEL); +} + +static struct kvm_pgtable_mm_ops kvm_hyp_mm_ops = { + .zalloc_page = kvm_hyp_zalloc_page, + .get_page = kvm_host_get_page, + .put_page = kvm_host_put_page, + .phys_to_virt = kvm_host_va, + .virt_to_phys = kvm_host_pa, +}; + +int __init kvm_mmu_init(u32 *hyp_va_bits) +{ + int err; + u32 idmap_bits; + u32 kernel_bits; + + hyp_idmap_start = __pa_symbol(__hyp_idmap_text_start); + hyp_idmap_start = ALIGN_DOWN(hyp_idmap_start, PAGE_SIZE); + hyp_idmap_end = __pa_symbol(__hyp_idmap_text_end); + hyp_idmap_end = ALIGN(hyp_idmap_end, PAGE_SIZE); + hyp_idmap_vector = __pa_symbol(__kvm_hyp_init); + + /* + * We rely on the linker script to ensure at build time that the HYP + * init code does not cross a page boundary. + */ + BUG_ON((hyp_idmap_start ^ (hyp_idmap_end - 1)) & PAGE_MASK); + + /* + * The ID map may be configured to use an extended virtual address + * range. This is only the case if system RAM is out of range for the + * currently configured page size and VA_BITS_MIN, in which case we will + * also need the extended virtual range for the HYP ID map, or we won't + * be able to enable the EL2 MMU. + * + * However, in some cases the ID map may be configured for fewer than + * the number of VA bits used by the regular kernel stage 1. This + * happens when VA_BITS=52 and the kernel image is placed in PA space + * below 48 bits. + * + * At EL2, there is only one TTBR register, and we can't switch between + * translation tables *and* update TCR_EL2.T0SZ at the same time. Bottom + * line: we need to use the extended range with *both* our translation + * tables. + * + * So use the maximum of the idmap VA bits and the regular kernel stage + * 1 VA bits to assure that the hypervisor can both ID map its code page + * and map any kernel memory. + */ + idmap_bits = 64 - ((idmap_t0sz & TCR_T0SZ_MASK) >> TCR_T0SZ_OFFSET); + kernel_bits = vabits_actual; + *hyp_va_bits = max(idmap_bits, kernel_bits); + + kvm_debug("Using %u-bit virtual addresses at EL2\n", *hyp_va_bits); + kvm_debug("IDMAP page: %lx\n", hyp_idmap_start); + kvm_debug("HYP VA range: %lx:%lx\n", + kern_hyp_va(PAGE_OFFSET), + kern_hyp_va((unsigned long)high_memory - 1)); + + if (hyp_idmap_start >= kern_hyp_va(PAGE_OFFSET) && + hyp_idmap_start < kern_hyp_va((unsigned long)high_memory - 1) && + hyp_idmap_start != (unsigned long)__hyp_idmap_text_start) { + /* + * The idmap page is intersecting with the VA space, + * it is not safe to continue further. + */ + kvm_err("IDMAP intersecting with HYP VA, unable to continue\n"); + err = -EINVAL; + goto out; + } + + hyp_pgtable = kzalloc(sizeof(*hyp_pgtable), GFP_KERNEL); + if (!hyp_pgtable) { + kvm_err("Hyp mode page-table not allocated\n"); + err = -ENOMEM; + goto out; + } + + err = kvm_pgtable_hyp_init(hyp_pgtable, *hyp_va_bits, &kvm_hyp_mm_ops); + if (err) + goto out_free_pgtable; + + err = kvm_map_idmap_text(); + if (err) + goto out_destroy_pgtable; + + io_map_base = hyp_idmap_start; + return 0; + +out_destroy_pgtable: + kvm_pgtable_hyp_destroy(hyp_pgtable); +out_free_pgtable: + kfree(hyp_pgtable); + hyp_pgtable = NULL; +out: + return err; +} + +void kvm_arch_commit_memory_region(struct kvm *kvm, + struct kvm_memory_slot *old, + const struct kvm_memory_slot *new, + enum kvm_mr_change change) +{ + bool log_dirty_pages = new && new->flags & KVM_MEM_LOG_DIRTY_PAGES; + + /* + * At this point memslot has been committed and there is an + * allocated dirty_bitmap[], dirty pages will be tracked while the + * memory slot is write protected. + */ + if (log_dirty_pages) { + + if (change == KVM_MR_DELETE) + return; + + /* + * Huge and normal pages are write-protected and split + * on either of these two cases: + * + * 1. with initial-all-set: gradually with CLEAR ioctls, + */ + if (kvm_dirty_log_manual_protect_and_init_set(kvm)) + return; + /* + * or + * 2. without initial-all-set: all in one shot when + * enabling dirty logging. + */ + kvm_mmu_wp_memory_region(kvm, new->id); + kvm_mmu_split_memory_region(kvm, new->id); + } else { + /* + * Free any leftovers from the eager page splitting cache. Do + * this when deleting, moving, disabling dirty logging, or + * creating the memslot (a nop). Doing it for deletes makes + * sure we don't leak memory, and there's no need to keep the + * cache around for any of the other cases. + */ + kvm_mmu_free_memory_cache(&kvm->arch.mmu.split_page_cache); + } +} + +int kvm_arch_prepare_memory_region(struct kvm *kvm, + const struct kvm_memory_slot *old, + struct kvm_memory_slot *new, + enum kvm_mr_change change) +{ + hva_t hva, reg_end; + int ret = 0; + + if (change != KVM_MR_CREATE && change != KVM_MR_MOVE && + change != KVM_MR_FLAGS_ONLY) + return 0; + + /* + * Prevent userspace from creating a memory region outside of the IPA + * space addressable by the KVM guest IPA space. + */ + if ((new->base_gfn + new->npages) > (kvm_phys_size(kvm) >> PAGE_SHIFT)) + return -EFAULT; + + hva = new->userspace_addr; + reg_end = hva + (new->npages << PAGE_SHIFT); + + mmap_read_lock(current->mm); + /* + * A memory region could potentially cover multiple VMAs, and any holes + * between them, so iterate over all of them. + * + * +--------------------------------------------+ + * +---------------+----------------+ +----------------+ + * | : VMA 1 | VMA 2 | | VMA 3 : | + * +---------------+----------------+ +----------------+ + * | memory region | + * +--------------------------------------------+ + */ + do { + struct vm_area_struct *vma; + + vma = find_vma_intersection(current->mm, hva, reg_end); + if (!vma) + break; + + if (kvm_has_mte(kvm) && !kvm_vma_mte_allowed(vma)) { + ret = -EINVAL; + break; + } + + if (vma->vm_flags & VM_PFNMAP) { + /* IO region dirty page logging not allowed */ + if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) { + ret = -EINVAL; + break; + } + } + hva = min(reg_end, vma->vm_end); + } while (hva < reg_end); + + mmap_read_unlock(current->mm); + return ret; +} + +void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot) +{ +} + +void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen) +{ +} + +void kvm_arch_flush_shadow_all(struct kvm *kvm) +{ + kvm_uninit_stage2_mmu(kvm); +} + +void kvm_arch_flush_shadow_memslot(struct kvm *kvm, + struct kvm_memory_slot *slot) +{ + gpa_t gpa = slot->base_gfn << PAGE_SHIFT; + phys_addr_t size = slot->npages << PAGE_SHIFT; + + write_lock(&kvm->mmu_lock); + unmap_stage2_range(&kvm->arch.mmu, gpa, size); + write_unlock(&kvm->mmu_lock); +} + +/* + * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized). + * + * Main problems: + * - S/W ops are local to a CPU (not broadcast) + * - We have line migration behind our back (speculation) + * - System caches don't support S/W at all (damn!) + * + * In the face of the above, the best we can do is to try and convert + * S/W ops to VA ops. Because the guest is not allowed to infer the + * S/W to PA mapping, it can only use S/W to nuke the whole cache, + * which is a rather good thing for us. + * + * Also, it is only used when turning caches on/off ("The expected + * usage of the cache maintenance instructions that operate by set/way + * is associated with the cache maintenance instructions associated + * with the powerdown and powerup of caches, if this is required by + * the implementation."). + * + * We use the following policy: + * + * - If we trap a S/W operation, we enable VM trapping to detect + * caches being turned on/off, and do a full clean. + * + * - We flush the caches on both caches being turned on and off. + * + * - Once the caches are enabled, we stop trapping VM ops. + */ +void kvm_set_way_flush(struct kvm_vcpu *vcpu) +{ + unsigned long hcr = *vcpu_hcr(vcpu); + + /* + * If this is the first time we do a S/W operation + * (i.e. HCR_TVM not set) flush the whole memory, and set the + * VM trapping. + * + * Otherwise, rely on the VM trapping to wait for the MMU + + * Caches to be turned off. At that point, we'll be able to + * clean the caches again. + */ + if (!(hcr & HCR_TVM)) { + trace_kvm_set_way_flush(*vcpu_pc(vcpu), + vcpu_has_cache_enabled(vcpu)); + stage2_flush_vm(vcpu->kvm); + *vcpu_hcr(vcpu) = hcr | HCR_TVM; + } +} + +void kvm_toggle_cache(struct kvm_vcpu *vcpu, bool was_enabled) +{ + bool now_enabled = vcpu_has_cache_enabled(vcpu); + + /* + * If switching the MMU+caches on, need to invalidate the caches. + * If switching it off, need to clean the caches. + * Clean + invalidate does the trick always. + */ + if (now_enabled != was_enabled) + stage2_flush_vm(vcpu->kvm); + + /* Caches are now on, stop trapping VM ops (until a S/W op) */ + if (now_enabled) + *vcpu_hcr(vcpu) &= ~HCR_TVM; + + trace_kvm_toggle_cache(*vcpu_pc(vcpu), was_enabled, now_enabled); +} diff --git a/arch/arm64/kvm/nested.c b/arch/arm64/kvm/nested.c new file mode 100644 index 0000000000..042695a210 --- /dev/null +++ b/arch/arm64/kvm/nested.c @@ -0,0 +1,162 @@ +// SPDX-License-Identifier: GPL-2.0-only +/* + * Copyright (C) 2017 - Columbia University and Linaro Ltd. + * Author: Jintack Lim <jintack.lim@linaro.org> + */ + +#include <linux/kvm.h> +#include <linux/kvm_host.h> + +#include <asm/kvm_emulate.h> +#include <asm/kvm_nested.h> +#include <asm/sysreg.h> + +#include "sys_regs.h" + +/* Protection against the sysreg repainting madness... */ +#define NV_FTR(r, f) ID_AA64##r##_EL1_##f + +/* + * Our emulated CPU doesn't support all the possible features. For the + * sake of simplicity (and probably mental sanity), wipe out a number + * of feature bits we don't intend to support for the time being. + * This list should get updated as new features get added to the NV + * support, and new extension to the architecture. + */ +void access_nested_id_reg(struct kvm_vcpu *v, struct sys_reg_params *p, + const struct sys_reg_desc *r) +{ + u32 id = reg_to_encoding(r); + u64 val, tmp; + + val = p->regval; + + switch (id) { + case SYS_ID_AA64ISAR0_EL1: + /* Support everything but TME, O.S. and Range TLBIs */ + val &= ~(NV_FTR(ISAR0, TLB) | + NV_FTR(ISAR0, TME)); + break; + + case SYS_ID_AA64ISAR1_EL1: + /* Support everything but PtrAuth and Spec Invalidation */ + val &= ~(GENMASK_ULL(63, 56) | + NV_FTR(ISAR1, SPECRES) | + NV_FTR(ISAR1, GPI) | + NV_FTR(ISAR1, GPA) | + NV_FTR(ISAR1, API) | + NV_FTR(ISAR1, APA)); + break; + + case SYS_ID_AA64PFR0_EL1: + /* No AMU, MPAM, S-EL2, RAS or SVE */ + val &= ~(GENMASK_ULL(55, 52) | + NV_FTR(PFR0, AMU) | + NV_FTR(PFR0, MPAM) | + NV_FTR(PFR0, SEL2) | + NV_FTR(PFR0, RAS) | + NV_FTR(PFR0, SVE) | + NV_FTR(PFR0, EL3) | + NV_FTR(PFR0, EL2) | + NV_FTR(PFR0, EL1)); + /* 64bit EL1/EL2/EL3 only */ + val |= FIELD_PREP(NV_FTR(PFR0, EL1), 0b0001); + val |= FIELD_PREP(NV_FTR(PFR0, EL2), 0b0001); + val |= FIELD_PREP(NV_FTR(PFR0, EL3), 0b0001); + break; + + case SYS_ID_AA64PFR1_EL1: + /* Only support SSBS */ + val &= NV_FTR(PFR1, SSBS); + break; + + case SYS_ID_AA64MMFR0_EL1: + /* Hide ECV, ExS, Secure Memory */ + val &= ~(NV_FTR(MMFR0, ECV) | + NV_FTR(MMFR0, EXS) | + NV_FTR(MMFR0, TGRAN4_2) | + NV_FTR(MMFR0, TGRAN16_2) | + NV_FTR(MMFR0, TGRAN64_2) | + NV_FTR(MMFR0, SNSMEM)); + + /* Disallow unsupported S2 page sizes */ + switch (PAGE_SIZE) { + case SZ_64K: + val |= FIELD_PREP(NV_FTR(MMFR0, TGRAN16_2), 0b0001); + fallthrough; + case SZ_16K: + val |= FIELD_PREP(NV_FTR(MMFR0, TGRAN4_2), 0b0001); + fallthrough; + case SZ_4K: + /* Support everything */ + break; + } + /* + * Since we can't support a guest S2 page size smaller than + * the host's own page size (due to KVM only populating its + * own S2 using the kernel's page size), advertise the + * limitation using FEAT_GTG. + */ + switch (PAGE_SIZE) { + case SZ_4K: + val |= FIELD_PREP(NV_FTR(MMFR0, TGRAN4_2), 0b0010); + fallthrough; + case SZ_16K: + val |= FIELD_PREP(NV_FTR(MMFR0, TGRAN16_2), 0b0010); + fallthrough; + case SZ_64K: + val |= FIELD_PREP(NV_FTR(MMFR0, TGRAN64_2), 0b0010); + break; + } + /* Cap PARange to 48bits */ + tmp = FIELD_GET(NV_FTR(MMFR0, PARANGE), val); + if (tmp > 0b0101) { + val &= ~NV_FTR(MMFR0, PARANGE); + val |= FIELD_PREP(NV_FTR(MMFR0, PARANGE), 0b0101); + } + break; + + case SYS_ID_AA64MMFR1_EL1: + val &= (NV_FTR(MMFR1, HCX) | + NV_FTR(MMFR1, PAN) | + NV_FTR(MMFR1, LO) | + NV_FTR(MMFR1, HPDS) | + NV_FTR(MMFR1, VH) | + NV_FTR(MMFR1, VMIDBits)); + break; + + case SYS_ID_AA64MMFR2_EL1: + val &= ~(NV_FTR(MMFR2, BBM) | + NV_FTR(MMFR2, TTL) | + GENMASK_ULL(47, 44) | + NV_FTR(MMFR2, ST) | + NV_FTR(MMFR2, CCIDX) | + NV_FTR(MMFR2, VARange)); + + /* Force TTL support */ + val |= FIELD_PREP(NV_FTR(MMFR2, TTL), 0b0001); + break; + + case SYS_ID_AA64DFR0_EL1: + /* Only limited support for PMU, Debug, BPs and WPs */ + val &= (NV_FTR(DFR0, PMUVer) | + NV_FTR(DFR0, WRPs) | + NV_FTR(DFR0, BRPs) | + NV_FTR(DFR0, DebugVer)); + + /* Cap Debug to ARMv8.1 */ + tmp = FIELD_GET(NV_FTR(DFR0, DebugVer), val); + if (tmp > 0b0111) { + val &= ~NV_FTR(DFR0, DebugVer); + val |= FIELD_PREP(NV_FTR(DFR0, DebugVer), 0b0111); + } + break; + + default: + /* Unknown register, just wipe it clean */ + val = 0; + break; + } + + p->regval = val; +} diff --git a/arch/arm64/kvm/pkvm.c b/arch/arm64/kvm/pkvm.c new file mode 100644 index 0000000000..6ff3ec18c9 --- /dev/null +++ b/arch/arm64/kvm/pkvm.c @@ -0,0 +1,263 @@ +// SPDX-License-Identifier: GPL-2.0 +/* + * Copyright (C) 2020 - Google LLC + * Author: Quentin Perret <qperret@google.com> + */ + +#include <linux/init.h> +#include <linux/kmemleak.h> +#include <linux/kvm_host.h> +#include <linux/memblock.h> +#include <linux/mutex.h> +#include <linux/sort.h> + +#include <asm/kvm_pkvm.h> + +#include "hyp_constants.h" + +DEFINE_STATIC_KEY_FALSE(kvm_protected_mode_initialized); + +static struct memblock_region *hyp_memory = kvm_nvhe_sym(hyp_memory); +static unsigned int *hyp_memblock_nr_ptr = &kvm_nvhe_sym(hyp_memblock_nr); + +phys_addr_t hyp_mem_base; +phys_addr_t hyp_mem_size; + +static int cmp_hyp_memblock(const void *p1, const void *p2) +{ + const struct memblock_region *r1 = p1; + const struct memblock_region *r2 = p2; + + return r1->base < r2->base ? -1 : (r1->base > r2->base); +} + +static void __init sort_memblock_regions(void) +{ + sort(hyp_memory, + *hyp_memblock_nr_ptr, + sizeof(struct memblock_region), + cmp_hyp_memblock, + NULL); +} + +static int __init register_memblock_regions(void) +{ + struct memblock_region *reg; + + for_each_mem_region(reg) { + if (*hyp_memblock_nr_ptr >= HYP_MEMBLOCK_REGIONS) + return -ENOMEM; + + hyp_memory[*hyp_memblock_nr_ptr] = *reg; + (*hyp_memblock_nr_ptr)++; + } + sort_memblock_regions(); + + return 0; +} + +void __init kvm_hyp_reserve(void) +{ + u64 hyp_mem_pages = 0; + int ret; + + if (!is_hyp_mode_available() || is_kernel_in_hyp_mode()) + return; + + if (kvm_get_mode() != KVM_MODE_PROTECTED) + return; + + ret = register_memblock_regions(); + if (ret) { + *hyp_memblock_nr_ptr = 0; + kvm_err("Failed to register hyp memblocks: %d\n", ret); + return; + } + + hyp_mem_pages += hyp_s1_pgtable_pages(); + hyp_mem_pages += host_s2_pgtable_pages(); + hyp_mem_pages += hyp_vm_table_pages(); + hyp_mem_pages += hyp_vmemmap_pages(STRUCT_HYP_PAGE_SIZE); + hyp_mem_pages += hyp_ffa_proxy_pages(); + + /* + * Try to allocate a PMD-aligned region to reduce TLB pressure once + * this is unmapped from the host stage-2, and fallback to PAGE_SIZE. + */ + hyp_mem_size = hyp_mem_pages << PAGE_SHIFT; + hyp_mem_base = memblock_phys_alloc(ALIGN(hyp_mem_size, PMD_SIZE), + PMD_SIZE); + if (!hyp_mem_base) + hyp_mem_base = memblock_phys_alloc(hyp_mem_size, PAGE_SIZE); + else + hyp_mem_size = ALIGN(hyp_mem_size, PMD_SIZE); + + if (!hyp_mem_base) { + kvm_err("Failed to reserve hyp memory\n"); + return; + } + + kvm_info("Reserved %lld MiB at 0x%llx\n", hyp_mem_size >> 20, + hyp_mem_base); +} + +/* + * Allocates and donates memory for hypervisor VM structs at EL2. + * + * Allocates space for the VM state, which includes the hyp vm as well as + * the hyp vcpus. + * + * Stores an opaque handler in the kvm struct for future reference. + * + * Return 0 on success, negative error code on failure. + */ +static int __pkvm_create_hyp_vm(struct kvm *host_kvm) +{ + size_t pgd_sz, hyp_vm_sz, hyp_vcpu_sz; + struct kvm_vcpu *host_vcpu; + pkvm_handle_t handle; + void *pgd, *hyp_vm; + unsigned long idx; + int ret; + + if (host_kvm->created_vcpus < 1) + return -EINVAL; + + pgd_sz = kvm_pgtable_stage2_pgd_size(host_kvm->arch.vtcr); + + /* + * The PGD pages will be reclaimed using a hyp_memcache which implies + * page granularity. So, use alloc_pages_exact() to get individual + * refcounts. + */ + pgd = alloc_pages_exact(pgd_sz, GFP_KERNEL_ACCOUNT); + if (!pgd) + return -ENOMEM; + + /* Allocate memory to donate to hyp for vm and vcpu pointers. */ + hyp_vm_sz = PAGE_ALIGN(size_add(PKVM_HYP_VM_SIZE, + size_mul(sizeof(void *), + host_kvm->created_vcpus))); + hyp_vm = alloc_pages_exact(hyp_vm_sz, GFP_KERNEL_ACCOUNT); + if (!hyp_vm) { + ret = -ENOMEM; + goto free_pgd; + } + + /* Donate the VM memory to hyp and let hyp initialize it. */ + ret = kvm_call_hyp_nvhe(__pkvm_init_vm, host_kvm, hyp_vm, pgd); + if (ret < 0) + goto free_vm; + + handle = ret; + + host_kvm->arch.pkvm.handle = handle; + + /* Donate memory for the vcpus at hyp and initialize it. */ + hyp_vcpu_sz = PAGE_ALIGN(PKVM_HYP_VCPU_SIZE); + kvm_for_each_vcpu(idx, host_vcpu, host_kvm) { + void *hyp_vcpu; + + /* Indexing of the vcpus to be sequential starting at 0. */ + if (WARN_ON(host_vcpu->vcpu_idx != idx)) { + ret = -EINVAL; + goto destroy_vm; + } + + hyp_vcpu = alloc_pages_exact(hyp_vcpu_sz, GFP_KERNEL_ACCOUNT); + if (!hyp_vcpu) { + ret = -ENOMEM; + goto destroy_vm; + } + + ret = kvm_call_hyp_nvhe(__pkvm_init_vcpu, handle, host_vcpu, + hyp_vcpu); + if (ret) { + free_pages_exact(hyp_vcpu, hyp_vcpu_sz); + goto destroy_vm; + } + } + + return 0; + +destroy_vm: + pkvm_destroy_hyp_vm(host_kvm); + return ret; +free_vm: + free_pages_exact(hyp_vm, hyp_vm_sz); +free_pgd: + free_pages_exact(pgd, pgd_sz); + return ret; +} + +int pkvm_create_hyp_vm(struct kvm *host_kvm) +{ + int ret = 0; + + mutex_lock(&host_kvm->lock); + if (!host_kvm->arch.pkvm.handle) + ret = __pkvm_create_hyp_vm(host_kvm); + mutex_unlock(&host_kvm->lock); + + return ret; +} + +void pkvm_destroy_hyp_vm(struct kvm *host_kvm) +{ + if (host_kvm->arch.pkvm.handle) { + WARN_ON(kvm_call_hyp_nvhe(__pkvm_teardown_vm, + host_kvm->arch.pkvm.handle)); + } + + host_kvm->arch.pkvm.handle = 0; + free_hyp_memcache(&host_kvm->arch.pkvm.teardown_mc); +} + +int pkvm_init_host_vm(struct kvm *host_kvm) +{ + mutex_init(&host_kvm->lock); + return 0; +} + +static void __init _kvm_host_prot_finalize(void *arg) +{ + int *err = arg; + + if (WARN_ON(kvm_call_hyp_nvhe(__pkvm_prot_finalize))) + WRITE_ONCE(*err, -EINVAL); +} + +static int __init pkvm_drop_host_privileges(void) +{ + int ret = 0; + + /* + * Flip the static key upfront as that may no longer be possible + * once the host stage 2 is installed. + */ + static_branch_enable(&kvm_protected_mode_initialized); + on_each_cpu(_kvm_host_prot_finalize, &ret, 1); + return ret; +} + +static int __init finalize_pkvm(void) +{ + int ret; + + if (!is_protected_kvm_enabled() || !is_kvm_arm_initialised()) + return 0; + + /* + * Exclude HYP sections from kmemleak so that they don't get peeked + * at, which would end badly once inaccessible. + */ + kmemleak_free_part(__hyp_bss_start, __hyp_bss_end - __hyp_bss_start); + kmemleak_free_part_phys(hyp_mem_base, hyp_mem_size); + + ret = pkvm_drop_host_privileges(); + if (ret) + pr_err("Failed to finalize Hyp protection: %d\n", ret); + + return ret; +} +device_initcall_sync(finalize_pkvm); diff --git a/arch/arm64/kvm/pmu-emul.c b/arch/arm64/kvm/pmu-emul.c new file mode 100644 index 0000000000..6b066e04dc --- /dev/null +++ b/arch/arm64/kvm/pmu-emul.c @@ -0,0 +1,1074 @@ +// SPDX-License-Identifier: GPL-2.0-only +/* + * Copyright (C) 2015 Linaro Ltd. + * Author: Shannon Zhao <shannon.zhao@linaro.org> + */ + +#include <linux/cpu.h> +#include <linux/kvm.h> +#include <linux/kvm_host.h> +#include <linux/list.h> +#include <linux/perf_event.h> +#include <linux/perf/arm_pmu.h> +#include <linux/uaccess.h> +#include <asm/kvm_emulate.h> +#include <kvm/arm_pmu.h> +#include <kvm/arm_vgic.h> +#include <asm/arm_pmuv3.h> + +#define PERF_ATTR_CFG1_COUNTER_64BIT BIT(0) + +DEFINE_STATIC_KEY_FALSE(kvm_arm_pmu_available); + +static LIST_HEAD(arm_pmus); +static DEFINE_MUTEX(arm_pmus_lock); + +static void kvm_pmu_create_perf_event(struct kvm_pmc *pmc); +static void kvm_pmu_release_perf_event(struct kvm_pmc *pmc); + +static struct kvm_vcpu *kvm_pmc_to_vcpu(const struct kvm_pmc *pmc) +{ + return container_of(pmc, struct kvm_vcpu, arch.pmu.pmc[pmc->idx]); +} + +static struct kvm_pmc *kvm_vcpu_idx_to_pmc(struct kvm_vcpu *vcpu, int cnt_idx) +{ + return &vcpu->arch.pmu.pmc[cnt_idx]; +} + +static u32 __kvm_pmu_event_mask(unsigned int pmuver) +{ + switch (pmuver) { + case ID_AA64DFR0_EL1_PMUVer_IMP: + return GENMASK(9, 0); + case ID_AA64DFR0_EL1_PMUVer_V3P1: + case ID_AA64DFR0_EL1_PMUVer_V3P4: + case ID_AA64DFR0_EL1_PMUVer_V3P5: + case ID_AA64DFR0_EL1_PMUVer_V3P7: + return GENMASK(15, 0); + default: /* Shouldn't be here, just for sanity */ + WARN_ONCE(1, "Unknown PMU version %d\n", pmuver); + return 0; + } +} + +static u32 kvm_pmu_event_mask(struct kvm *kvm) +{ + u64 dfr0 = IDREG(kvm, SYS_ID_AA64DFR0_EL1); + u8 pmuver = SYS_FIELD_GET(ID_AA64DFR0_EL1, PMUVer, dfr0); + + return __kvm_pmu_event_mask(pmuver); +} + +/** + * kvm_pmc_is_64bit - determine if counter is 64bit + * @pmc: counter context + */ +static bool kvm_pmc_is_64bit(struct kvm_pmc *pmc) +{ + return (pmc->idx == ARMV8_PMU_CYCLE_IDX || + kvm_pmu_is_3p5(kvm_pmc_to_vcpu(pmc))); +} + +static bool kvm_pmc_has_64bit_overflow(struct kvm_pmc *pmc) +{ + u64 val = __vcpu_sys_reg(kvm_pmc_to_vcpu(pmc), PMCR_EL0); + + return (pmc->idx < ARMV8_PMU_CYCLE_IDX && (val & ARMV8_PMU_PMCR_LP)) || + (pmc->idx == ARMV8_PMU_CYCLE_IDX && (val & ARMV8_PMU_PMCR_LC)); +} + +static bool kvm_pmu_counter_can_chain(struct kvm_pmc *pmc) +{ + return (!(pmc->idx & 1) && (pmc->idx + 1) < ARMV8_PMU_CYCLE_IDX && + !kvm_pmc_has_64bit_overflow(pmc)); +} + +static u32 counter_index_to_reg(u64 idx) +{ + return (idx == ARMV8_PMU_CYCLE_IDX) ? PMCCNTR_EL0 : PMEVCNTR0_EL0 + idx; +} + +static u32 counter_index_to_evtreg(u64 idx) +{ + return (idx == ARMV8_PMU_CYCLE_IDX) ? PMCCFILTR_EL0 : PMEVTYPER0_EL0 + idx; +} + +static u64 kvm_pmu_get_pmc_value(struct kvm_pmc *pmc) +{ + struct kvm_vcpu *vcpu = kvm_pmc_to_vcpu(pmc); + u64 counter, reg, enabled, running; + + reg = counter_index_to_reg(pmc->idx); + counter = __vcpu_sys_reg(vcpu, reg); + + /* + * The real counter value is equal to the value of counter register plus + * the value perf event counts. + */ + if (pmc->perf_event) + counter += perf_event_read_value(pmc->perf_event, &enabled, + &running); + + if (!kvm_pmc_is_64bit(pmc)) + counter = lower_32_bits(counter); + + return counter; +} + +/** + * kvm_pmu_get_counter_value - get PMU counter value + * @vcpu: The vcpu pointer + * @select_idx: The counter index + */ +u64 kvm_pmu_get_counter_value(struct kvm_vcpu *vcpu, u64 select_idx) +{ + if (!kvm_vcpu_has_pmu(vcpu)) + return 0; + + return kvm_pmu_get_pmc_value(kvm_vcpu_idx_to_pmc(vcpu, select_idx)); +} + +static void kvm_pmu_set_pmc_value(struct kvm_pmc *pmc, u64 val, bool force) +{ + struct kvm_vcpu *vcpu = kvm_pmc_to_vcpu(pmc); + u64 reg; + + kvm_pmu_release_perf_event(pmc); + + reg = counter_index_to_reg(pmc->idx); + + if (vcpu_mode_is_32bit(vcpu) && pmc->idx != ARMV8_PMU_CYCLE_IDX && + !force) { + /* + * Even with PMUv3p5, AArch32 cannot write to the top + * 32bit of the counters. The only possible course of + * action is to use PMCR.P, which will reset them to + * 0 (the only use of the 'force' parameter). + */ + val = __vcpu_sys_reg(vcpu, reg) & GENMASK(63, 32); + val |= lower_32_bits(val); + } + + __vcpu_sys_reg(vcpu, reg) = val; + + /* Recreate the perf event to reflect the updated sample_period */ + kvm_pmu_create_perf_event(pmc); +} + +/** + * kvm_pmu_set_counter_value - set PMU counter value + * @vcpu: The vcpu pointer + * @select_idx: The counter index + * @val: The counter value + */ +void kvm_pmu_set_counter_value(struct kvm_vcpu *vcpu, u64 select_idx, u64 val) +{ + if (!kvm_vcpu_has_pmu(vcpu)) + return; + + kvm_pmu_set_pmc_value(kvm_vcpu_idx_to_pmc(vcpu, select_idx), val, false); +} + +/** + * kvm_pmu_release_perf_event - remove the perf event + * @pmc: The PMU counter pointer + */ +static void kvm_pmu_release_perf_event(struct kvm_pmc *pmc) +{ + if (pmc->perf_event) { + perf_event_disable(pmc->perf_event); + perf_event_release_kernel(pmc->perf_event); + pmc->perf_event = NULL; + } +} + +/** + * kvm_pmu_stop_counter - stop PMU counter + * @pmc: The PMU counter pointer + * + * If this counter has been configured to monitor some event, release it here. + */ +static void kvm_pmu_stop_counter(struct kvm_pmc *pmc) +{ + struct kvm_vcpu *vcpu = kvm_pmc_to_vcpu(pmc); + u64 reg, val; + + if (!pmc->perf_event) + return; + + val = kvm_pmu_get_pmc_value(pmc); + + reg = counter_index_to_reg(pmc->idx); + + __vcpu_sys_reg(vcpu, reg) = val; + + kvm_pmu_release_perf_event(pmc); +} + +/** + * kvm_pmu_vcpu_init - assign pmu counter idx for cpu + * @vcpu: The vcpu pointer + * + */ +void kvm_pmu_vcpu_init(struct kvm_vcpu *vcpu) +{ + int i; + struct kvm_pmu *pmu = &vcpu->arch.pmu; + + for (i = 0; i < ARMV8_PMU_MAX_COUNTERS; i++) + pmu->pmc[i].idx = i; +} + +/** + * kvm_pmu_vcpu_reset - reset pmu state for cpu + * @vcpu: The vcpu pointer + * + */ +void kvm_pmu_vcpu_reset(struct kvm_vcpu *vcpu) +{ + unsigned long mask = kvm_pmu_valid_counter_mask(vcpu); + int i; + + for_each_set_bit(i, &mask, 32) + kvm_pmu_stop_counter(kvm_vcpu_idx_to_pmc(vcpu, i)); +} + +/** + * kvm_pmu_vcpu_destroy - free perf event of PMU for cpu + * @vcpu: The vcpu pointer + * + */ +void kvm_pmu_vcpu_destroy(struct kvm_vcpu *vcpu) +{ + int i; + + for (i = 0; i < ARMV8_PMU_MAX_COUNTERS; i++) + kvm_pmu_release_perf_event(kvm_vcpu_idx_to_pmc(vcpu, i)); + irq_work_sync(&vcpu->arch.pmu.overflow_work); +} + +u64 kvm_pmu_valid_counter_mask(struct kvm_vcpu *vcpu) +{ + u64 val = __vcpu_sys_reg(vcpu, PMCR_EL0) >> ARMV8_PMU_PMCR_N_SHIFT; + + val &= ARMV8_PMU_PMCR_N_MASK; + if (val == 0) + return BIT(ARMV8_PMU_CYCLE_IDX); + else + return GENMASK(val - 1, 0) | BIT(ARMV8_PMU_CYCLE_IDX); +} + +/** + * kvm_pmu_enable_counter_mask - enable selected PMU counters + * @vcpu: The vcpu pointer + * @val: the value guest writes to PMCNTENSET register + * + * Call perf_event_enable to start counting the perf event + */ +void kvm_pmu_enable_counter_mask(struct kvm_vcpu *vcpu, u64 val) +{ + int i; + if (!kvm_vcpu_has_pmu(vcpu)) + return; + + if (!(__vcpu_sys_reg(vcpu, PMCR_EL0) & ARMV8_PMU_PMCR_E) || !val) + return; + + for (i = 0; i < ARMV8_PMU_MAX_COUNTERS; i++) { + struct kvm_pmc *pmc; + + if (!(val & BIT(i))) + continue; + + pmc = kvm_vcpu_idx_to_pmc(vcpu, i); + + if (!pmc->perf_event) { + kvm_pmu_create_perf_event(pmc); + } else { + perf_event_enable(pmc->perf_event); + if (pmc->perf_event->state != PERF_EVENT_STATE_ACTIVE) + kvm_debug("fail to enable perf event\n"); + } + } +} + +/** + * kvm_pmu_disable_counter_mask - disable selected PMU counters + * @vcpu: The vcpu pointer + * @val: the value guest writes to PMCNTENCLR register + * + * Call perf_event_disable to stop counting the perf event + */ +void kvm_pmu_disable_counter_mask(struct kvm_vcpu *vcpu, u64 val) +{ + int i; + + if (!kvm_vcpu_has_pmu(vcpu) || !val) + return; + + for (i = 0; i < ARMV8_PMU_MAX_COUNTERS; i++) { + struct kvm_pmc *pmc; + + if (!(val & BIT(i))) + continue; + + pmc = kvm_vcpu_idx_to_pmc(vcpu, i); + + if (pmc->perf_event) + perf_event_disable(pmc->perf_event); + } +} + +static u64 kvm_pmu_overflow_status(struct kvm_vcpu *vcpu) +{ + u64 reg = 0; + + if ((__vcpu_sys_reg(vcpu, PMCR_EL0) & ARMV8_PMU_PMCR_E)) { + reg = __vcpu_sys_reg(vcpu, PMOVSSET_EL0); + reg &= __vcpu_sys_reg(vcpu, PMCNTENSET_EL0); + reg &= __vcpu_sys_reg(vcpu, PMINTENSET_EL1); + } + + return reg; +} + +static void kvm_pmu_update_state(struct kvm_vcpu *vcpu) +{ + struct kvm_pmu *pmu = &vcpu->arch.pmu; + bool overflow; + + if (!kvm_vcpu_has_pmu(vcpu)) + return; + + overflow = !!kvm_pmu_overflow_status(vcpu); + if (pmu->irq_level == overflow) + return; + + pmu->irq_level = overflow; + + if (likely(irqchip_in_kernel(vcpu->kvm))) { + int ret = kvm_vgic_inject_irq(vcpu->kvm, vcpu->vcpu_id, + pmu->irq_num, overflow, pmu); + WARN_ON(ret); + } +} + +bool kvm_pmu_should_notify_user(struct kvm_vcpu *vcpu) +{ + struct kvm_pmu *pmu = &vcpu->arch.pmu; + struct kvm_sync_regs *sregs = &vcpu->run->s.regs; + bool run_level = sregs->device_irq_level & KVM_ARM_DEV_PMU; + + if (likely(irqchip_in_kernel(vcpu->kvm))) + return false; + + return pmu->irq_level != run_level; +} + +/* + * Reflect the PMU overflow interrupt output level into the kvm_run structure + */ +void kvm_pmu_update_run(struct kvm_vcpu *vcpu) +{ + struct kvm_sync_regs *regs = &vcpu->run->s.regs; + + /* Populate the timer bitmap for user space */ + regs->device_irq_level &= ~KVM_ARM_DEV_PMU; + if (vcpu->arch.pmu.irq_level) + regs->device_irq_level |= KVM_ARM_DEV_PMU; +} + +/** + * kvm_pmu_flush_hwstate - flush pmu state to cpu + * @vcpu: The vcpu pointer + * + * Check if the PMU has overflowed while we were running in the host, and inject + * an interrupt if that was the case. + */ +void kvm_pmu_flush_hwstate(struct kvm_vcpu *vcpu) +{ + kvm_pmu_update_state(vcpu); +} + +/** + * kvm_pmu_sync_hwstate - sync pmu state from cpu + * @vcpu: The vcpu pointer + * + * Check if the PMU has overflowed while we were running in the guest, and + * inject an interrupt if that was the case. + */ +void kvm_pmu_sync_hwstate(struct kvm_vcpu *vcpu) +{ + kvm_pmu_update_state(vcpu); +} + +/** + * When perf interrupt is an NMI, we cannot safely notify the vcpu corresponding + * to the event. + * This is why we need a callback to do it once outside of the NMI context. + */ +static void kvm_pmu_perf_overflow_notify_vcpu(struct irq_work *work) +{ + struct kvm_vcpu *vcpu; + + vcpu = container_of(work, struct kvm_vcpu, arch.pmu.overflow_work); + kvm_vcpu_kick(vcpu); +} + +/* + * Perform an increment on any of the counters described in @mask, + * generating the overflow if required, and propagate it as a chained + * event if possible. + */ +static void kvm_pmu_counter_increment(struct kvm_vcpu *vcpu, + unsigned long mask, u32 event) +{ + int i; + + if (!(__vcpu_sys_reg(vcpu, PMCR_EL0) & ARMV8_PMU_PMCR_E)) + return; + + /* Weed out disabled counters */ + mask &= __vcpu_sys_reg(vcpu, PMCNTENSET_EL0); + + for_each_set_bit(i, &mask, ARMV8_PMU_CYCLE_IDX) { + struct kvm_pmc *pmc = kvm_vcpu_idx_to_pmc(vcpu, i); + u64 type, reg; + + /* Filter on event type */ + type = __vcpu_sys_reg(vcpu, counter_index_to_evtreg(i)); + type &= kvm_pmu_event_mask(vcpu->kvm); + if (type != event) + continue; + + /* Increment this counter */ + reg = __vcpu_sys_reg(vcpu, counter_index_to_reg(i)) + 1; + if (!kvm_pmc_is_64bit(pmc)) + reg = lower_32_bits(reg); + __vcpu_sys_reg(vcpu, counter_index_to_reg(i)) = reg; + + /* No overflow? move on */ + if (kvm_pmc_has_64bit_overflow(pmc) ? reg : lower_32_bits(reg)) + continue; + + /* Mark overflow */ + __vcpu_sys_reg(vcpu, PMOVSSET_EL0) |= BIT(i); + + if (kvm_pmu_counter_can_chain(pmc)) + kvm_pmu_counter_increment(vcpu, BIT(i + 1), + ARMV8_PMUV3_PERFCTR_CHAIN); + } +} + +/* Compute the sample period for a given counter value */ +static u64 compute_period(struct kvm_pmc *pmc, u64 counter) +{ + u64 val; + + if (kvm_pmc_is_64bit(pmc) && kvm_pmc_has_64bit_overflow(pmc)) + val = (-counter) & GENMASK(63, 0); + else + val = (-counter) & GENMASK(31, 0); + + return val; +} + +/** + * When the perf event overflows, set the overflow status and inform the vcpu. + */ +static void kvm_pmu_perf_overflow(struct perf_event *perf_event, + struct perf_sample_data *data, + struct pt_regs *regs) +{ + struct kvm_pmc *pmc = perf_event->overflow_handler_context; + struct arm_pmu *cpu_pmu = to_arm_pmu(perf_event->pmu); + struct kvm_vcpu *vcpu = kvm_pmc_to_vcpu(pmc); + int idx = pmc->idx; + u64 period; + + cpu_pmu->pmu.stop(perf_event, PERF_EF_UPDATE); + + /* + * Reset the sample period to the architectural limit, + * i.e. the point where the counter overflows. + */ + period = compute_period(pmc, local64_read(&perf_event->count)); + + local64_set(&perf_event->hw.period_left, 0); + perf_event->attr.sample_period = period; + perf_event->hw.sample_period = period; + + __vcpu_sys_reg(vcpu, PMOVSSET_EL0) |= BIT(idx); + + if (kvm_pmu_counter_can_chain(pmc)) + kvm_pmu_counter_increment(vcpu, BIT(idx + 1), + ARMV8_PMUV3_PERFCTR_CHAIN); + + if (kvm_pmu_overflow_status(vcpu)) { + kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu); + + if (!in_nmi()) + kvm_vcpu_kick(vcpu); + else + irq_work_queue(&vcpu->arch.pmu.overflow_work); + } + + cpu_pmu->pmu.start(perf_event, PERF_EF_RELOAD); +} + +/** + * kvm_pmu_software_increment - do software increment + * @vcpu: The vcpu pointer + * @val: the value guest writes to PMSWINC register + */ +void kvm_pmu_software_increment(struct kvm_vcpu *vcpu, u64 val) +{ + kvm_pmu_counter_increment(vcpu, val, ARMV8_PMUV3_PERFCTR_SW_INCR); +} + +/** + * kvm_pmu_handle_pmcr - handle PMCR register + * @vcpu: The vcpu pointer + * @val: the value guest writes to PMCR register + */ +void kvm_pmu_handle_pmcr(struct kvm_vcpu *vcpu, u64 val) +{ + int i; + + if (!kvm_vcpu_has_pmu(vcpu)) + return; + + /* Fixup PMCR_EL0 to reconcile the PMU version and the LP bit */ + if (!kvm_pmu_is_3p5(vcpu)) + val &= ~ARMV8_PMU_PMCR_LP; + + /* The reset bits don't indicate any state, and shouldn't be saved. */ + __vcpu_sys_reg(vcpu, PMCR_EL0) = val & ~(ARMV8_PMU_PMCR_C | ARMV8_PMU_PMCR_P); + + if (val & ARMV8_PMU_PMCR_E) { + kvm_pmu_enable_counter_mask(vcpu, + __vcpu_sys_reg(vcpu, PMCNTENSET_EL0)); + } else { + kvm_pmu_disable_counter_mask(vcpu, + __vcpu_sys_reg(vcpu, PMCNTENSET_EL0)); + } + + if (val & ARMV8_PMU_PMCR_C) + kvm_pmu_set_counter_value(vcpu, ARMV8_PMU_CYCLE_IDX, 0); + + if (val & ARMV8_PMU_PMCR_P) { + unsigned long mask = kvm_pmu_valid_counter_mask(vcpu); + mask &= ~BIT(ARMV8_PMU_CYCLE_IDX); + for_each_set_bit(i, &mask, 32) + kvm_pmu_set_pmc_value(kvm_vcpu_idx_to_pmc(vcpu, i), 0, true); + } + kvm_vcpu_pmu_restore_guest(vcpu); +} + +static bool kvm_pmu_counter_is_enabled(struct kvm_pmc *pmc) +{ + struct kvm_vcpu *vcpu = kvm_pmc_to_vcpu(pmc); + return (__vcpu_sys_reg(vcpu, PMCR_EL0) & ARMV8_PMU_PMCR_E) && + (__vcpu_sys_reg(vcpu, PMCNTENSET_EL0) & BIT(pmc->idx)); +} + +/** + * kvm_pmu_create_perf_event - create a perf event for a counter + * @pmc: Counter context + */ +static void kvm_pmu_create_perf_event(struct kvm_pmc *pmc) +{ + struct kvm_vcpu *vcpu = kvm_pmc_to_vcpu(pmc); + struct arm_pmu *arm_pmu = vcpu->kvm->arch.arm_pmu; + struct perf_event *event; + struct perf_event_attr attr; + u64 eventsel, reg, data; + + reg = counter_index_to_evtreg(pmc->idx); + data = __vcpu_sys_reg(vcpu, reg); + + kvm_pmu_stop_counter(pmc); + if (pmc->idx == ARMV8_PMU_CYCLE_IDX) + eventsel = ARMV8_PMUV3_PERFCTR_CPU_CYCLES; + else + eventsel = data & kvm_pmu_event_mask(vcpu->kvm); + + /* + * Neither SW increment nor chained events need to be backed + * by a perf event. + */ + if (eventsel == ARMV8_PMUV3_PERFCTR_SW_INCR || + eventsel == ARMV8_PMUV3_PERFCTR_CHAIN) + return; + + /* + * If we have a filter in place and that the event isn't allowed, do + * not install a perf event either. + */ + if (vcpu->kvm->arch.pmu_filter && + !test_bit(eventsel, vcpu->kvm->arch.pmu_filter)) + return; + + memset(&attr, 0, sizeof(struct perf_event_attr)); + attr.type = arm_pmu->pmu.type; + attr.size = sizeof(attr); + attr.pinned = 1; + attr.disabled = !kvm_pmu_counter_is_enabled(pmc); + attr.exclude_user = data & ARMV8_PMU_EXCLUDE_EL0 ? 1 : 0; + attr.exclude_kernel = data & ARMV8_PMU_EXCLUDE_EL1 ? 1 : 0; + attr.exclude_hv = 1; /* Don't count EL2 events */ + attr.exclude_host = 1; /* Don't count host events */ + attr.config = eventsel; + + /* + * If counting with a 64bit counter, advertise it to the perf + * code, carefully dealing with the initial sample period + * which also depends on the overflow. + */ + if (kvm_pmc_is_64bit(pmc)) + attr.config1 |= PERF_ATTR_CFG1_COUNTER_64BIT; + + attr.sample_period = compute_period(pmc, kvm_pmu_get_pmc_value(pmc)); + + event = perf_event_create_kernel_counter(&attr, -1, current, + kvm_pmu_perf_overflow, pmc); + + if (IS_ERR(event)) { + pr_err_once("kvm: pmu event creation failed %ld\n", + PTR_ERR(event)); + return; + } + + pmc->perf_event = event; +} + +/** + * kvm_pmu_set_counter_event_type - set selected counter to monitor some event + * @vcpu: The vcpu pointer + * @data: The data guest writes to PMXEVTYPER_EL0 + * @select_idx: The number of selected counter + * + * When OS accesses PMXEVTYPER_EL0, that means it wants to set a PMC to count an + * event with given hardware event number. Here we call perf_event API to + * emulate this action and create a kernel perf event for it. + */ +void kvm_pmu_set_counter_event_type(struct kvm_vcpu *vcpu, u64 data, + u64 select_idx) +{ + struct kvm_pmc *pmc = kvm_vcpu_idx_to_pmc(vcpu, select_idx); + u64 reg, mask; + + if (!kvm_vcpu_has_pmu(vcpu)) + return; + + mask = ARMV8_PMU_EVTYPE_MASK; + mask &= ~ARMV8_PMU_EVTYPE_EVENT; + mask |= kvm_pmu_event_mask(vcpu->kvm); + + reg = counter_index_to_evtreg(pmc->idx); + + __vcpu_sys_reg(vcpu, reg) = data & mask; + + kvm_pmu_create_perf_event(pmc); +} + +void kvm_host_pmu_init(struct arm_pmu *pmu) +{ + struct arm_pmu_entry *entry; + + /* + * Check the sanitised PMU version for the system, as KVM does not + * support implementations where PMUv3 exists on a subset of CPUs. + */ + if (!pmuv3_implemented(kvm_arm_pmu_get_pmuver_limit())) + return; + + mutex_lock(&arm_pmus_lock); + + entry = kmalloc(sizeof(*entry), GFP_KERNEL); + if (!entry) + goto out_unlock; + + entry->arm_pmu = pmu; + list_add_tail(&entry->entry, &arm_pmus); + + if (list_is_singular(&arm_pmus)) + static_branch_enable(&kvm_arm_pmu_available); + +out_unlock: + mutex_unlock(&arm_pmus_lock); +} + +static struct arm_pmu *kvm_pmu_probe_armpmu(void) +{ + struct arm_pmu *tmp, *pmu = NULL; + struct arm_pmu_entry *entry; + int cpu; + + mutex_lock(&arm_pmus_lock); + + /* + * It is safe to use a stale cpu to iterate the list of PMUs so long as + * the same value is used for the entirety of the loop. Given this, and + * the fact that no percpu data is used for the lookup there is no need + * to disable preemption. + * + * It is still necessary to get a valid cpu, though, to probe for the + * default PMU instance as userspace is not required to specify a PMU + * type. In order to uphold the preexisting behavior KVM selects the + * PMU instance for the core where the first call to the + * KVM_ARM_VCPU_PMU_V3_CTRL attribute group occurs. A dependent use case + * would be a user with disdain of all things big.LITTLE that affines + * the VMM to a particular cluster of cores. + * + * In any case, userspace should just do the sane thing and use the UAPI + * to select a PMU type directly. But, be wary of the baggage being + * carried here. + */ + cpu = raw_smp_processor_id(); + list_for_each_entry(entry, &arm_pmus, entry) { + tmp = entry->arm_pmu; + + if (cpumask_test_cpu(cpu, &tmp->supported_cpus)) { + pmu = tmp; + break; + } + } + + mutex_unlock(&arm_pmus_lock); + + return pmu; +} + +u64 kvm_pmu_get_pmceid(struct kvm_vcpu *vcpu, bool pmceid1) +{ + unsigned long *bmap = vcpu->kvm->arch.pmu_filter; + u64 val, mask = 0; + int base, i, nr_events; + + if (!kvm_vcpu_has_pmu(vcpu)) + return 0; + + if (!pmceid1) { + val = read_sysreg(pmceid0_el0); + /* always support CHAIN */ + val |= BIT(ARMV8_PMUV3_PERFCTR_CHAIN); + base = 0; + } else { + val = read_sysreg(pmceid1_el0); + /* + * Don't advertise STALL_SLOT*, as PMMIR_EL0 is handled + * as RAZ + */ + val &= ~(BIT_ULL(ARMV8_PMUV3_PERFCTR_STALL_SLOT - 32) | + BIT_ULL(ARMV8_PMUV3_PERFCTR_STALL_SLOT_FRONTEND - 32) | + BIT_ULL(ARMV8_PMUV3_PERFCTR_STALL_SLOT_BACKEND - 32)); + base = 32; + } + + if (!bmap) + return val; + + nr_events = kvm_pmu_event_mask(vcpu->kvm) + 1; + + for (i = 0; i < 32; i += 8) { + u64 byte; + + byte = bitmap_get_value8(bmap, base + i); + mask |= byte << i; + if (nr_events >= (0x4000 + base + 32)) { + byte = bitmap_get_value8(bmap, 0x4000 + base + i); + mask |= byte << (32 + i); + } + } + + return val & mask; +} + +int kvm_arm_pmu_v3_enable(struct kvm_vcpu *vcpu) +{ + if (!kvm_vcpu_has_pmu(vcpu)) + return 0; + + if (!vcpu->arch.pmu.created) + return -EINVAL; + + /* + * A valid interrupt configuration for the PMU is either to have a + * properly configured interrupt number and using an in-kernel + * irqchip, or to not have an in-kernel GIC and not set an IRQ. + */ + if (irqchip_in_kernel(vcpu->kvm)) { + int irq = vcpu->arch.pmu.irq_num; + /* + * If we are using an in-kernel vgic, at this point we know + * the vgic will be initialized, so we can check the PMU irq + * number against the dimensions of the vgic and make sure + * it's valid. + */ + if (!irq_is_ppi(irq) && !vgic_valid_spi(vcpu->kvm, irq)) + return -EINVAL; + } else if (kvm_arm_pmu_irq_initialized(vcpu)) { + return -EINVAL; + } + + /* One-off reload of the PMU on first run */ + kvm_make_request(KVM_REQ_RELOAD_PMU, vcpu); + + return 0; +} + +static int kvm_arm_pmu_v3_init(struct kvm_vcpu *vcpu) +{ + if (irqchip_in_kernel(vcpu->kvm)) { + int ret; + + /* + * If using the PMU with an in-kernel virtual GIC + * implementation, we require the GIC to be already + * initialized when initializing the PMU. + */ + if (!vgic_initialized(vcpu->kvm)) + return -ENODEV; + + if (!kvm_arm_pmu_irq_initialized(vcpu)) + return -ENXIO; + + ret = kvm_vgic_set_owner(vcpu, vcpu->arch.pmu.irq_num, + &vcpu->arch.pmu); + if (ret) + return ret; + } + + init_irq_work(&vcpu->arch.pmu.overflow_work, + kvm_pmu_perf_overflow_notify_vcpu); + + vcpu->arch.pmu.created = true; + return 0; +} + +/* + * For one VM the interrupt type must be same for each vcpu. + * As a PPI, the interrupt number is the same for all vcpus, + * while as an SPI it must be a separate number per vcpu. + */ +static bool pmu_irq_is_valid(struct kvm *kvm, int irq) +{ + unsigned long i; + struct kvm_vcpu *vcpu; + + kvm_for_each_vcpu(i, vcpu, kvm) { + if (!kvm_arm_pmu_irq_initialized(vcpu)) + continue; + + if (irq_is_ppi(irq)) { + if (vcpu->arch.pmu.irq_num != irq) + return false; + } else { + if (vcpu->arch.pmu.irq_num == irq) + return false; + } + } + + return true; +} + +static int kvm_arm_pmu_v3_set_pmu(struct kvm_vcpu *vcpu, int pmu_id) +{ + struct kvm *kvm = vcpu->kvm; + struct arm_pmu_entry *entry; + struct arm_pmu *arm_pmu; + int ret = -ENXIO; + + lockdep_assert_held(&kvm->arch.config_lock); + mutex_lock(&arm_pmus_lock); + + list_for_each_entry(entry, &arm_pmus, entry) { + arm_pmu = entry->arm_pmu; + if (arm_pmu->pmu.type == pmu_id) { + if (kvm_vm_has_ran_once(kvm) || + (kvm->arch.pmu_filter && kvm->arch.arm_pmu != arm_pmu)) { + ret = -EBUSY; + break; + } + + kvm->arch.arm_pmu = arm_pmu; + cpumask_copy(kvm->arch.supported_cpus, &arm_pmu->supported_cpus); + ret = 0; + break; + } + } + + mutex_unlock(&arm_pmus_lock); + return ret; +} + +int kvm_arm_pmu_v3_set_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr) +{ + struct kvm *kvm = vcpu->kvm; + + lockdep_assert_held(&kvm->arch.config_lock); + + if (!kvm_vcpu_has_pmu(vcpu)) + return -ENODEV; + + if (vcpu->arch.pmu.created) + return -EBUSY; + + if (!kvm->arch.arm_pmu) { + /* + * No PMU set, get the default one. + * + * The observant among you will notice that the supported_cpus + * mask does not get updated for the default PMU even though it + * is quite possible the selected instance supports only a + * subset of cores in the system. This is intentional, and + * upholds the preexisting behavior on heterogeneous systems + * where vCPUs can be scheduled on any core but the guest + * counters could stop working. + */ + kvm->arch.arm_pmu = kvm_pmu_probe_armpmu(); + if (!kvm->arch.arm_pmu) + return -ENODEV; + } + + switch (attr->attr) { + case KVM_ARM_VCPU_PMU_V3_IRQ: { + int __user *uaddr = (int __user *)(long)attr->addr; + int irq; + + if (!irqchip_in_kernel(kvm)) + return -EINVAL; + + if (get_user(irq, uaddr)) + return -EFAULT; + + /* The PMU overflow interrupt can be a PPI or a valid SPI. */ + if (!(irq_is_ppi(irq) || irq_is_spi(irq))) + return -EINVAL; + + if (!pmu_irq_is_valid(kvm, irq)) + return -EINVAL; + + if (kvm_arm_pmu_irq_initialized(vcpu)) + return -EBUSY; + + kvm_debug("Set kvm ARM PMU irq: %d\n", irq); + vcpu->arch.pmu.irq_num = irq; + return 0; + } + case KVM_ARM_VCPU_PMU_V3_FILTER: { + u8 pmuver = kvm_arm_pmu_get_pmuver_limit(); + struct kvm_pmu_event_filter __user *uaddr; + struct kvm_pmu_event_filter filter; + int nr_events; + + /* + * Allow userspace to specify an event filter for the entire + * event range supported by PMUVer of the hardware, rather + * than the guest's PMUVer for KVM backward compatibility. + */ + nr_events = __kvm_pmu_event_mask(pmuver) + 1; + + uaddr = (struct kvm_pmu_event_filter __user *)(long)attr->addr; + + if (copy_from_user(&filter, uaddr, sizeof(filter))) + return -EFAULT; + + if (((u32)filter.base_event + filter.nevents) > nr_events || + (filter.action != KVM_PMU_EVENT_ALLOW && + filter.action != KVM_PMU_EVENT_DENY)) + return -EINVAL; + + if (kvm_vm_has_ran_once(kvm)) + return -EBUSY; + + if (!kvm->arch.pmu_filter) { + kvm->arch.pmu_filter = bitmap_alloc(nr_events, GFP_KERNEL_ACCOUNT); + if (!kvm->arch.pmu_filter) + return -ENOMEM; + + /* + * The default depends on the first applied filter. + * If it allows events, the default is to deny. + * Conversely, if the first filter denies a set of + * events, the default is to allow. + */ + if (filter.action == KVM_PMU_EVENT_ALLOW) + bitmap_zero(kvm->arch.pmu_filter, nr_events); + else + bitmap_fill(kvm->arch.pmu_filter, nr_events); + } + + if (filter.action == KVM_PMU_EVENT_ALLOW) + bitmap_set(kvm->arch.pmu_filter, filter.base_event, filter.nevents); + else + bitmap_clear(kvm->arch.pmu_filter, filter.base_event, filter.nevents); + + return 0; + } + case KVM_ARM_VCPU_PMU_V3_SET_PMU: { + int __user *uaddr = (int __user *)(long)attr->addr; + int pmu_id; + + if (get_user(pmu_id, uaddr)) + return -EFAULT; + + return kvm_arm_pmu_v3_set_pmu(vcpu, pmu_id); + } + case KVM_ARM_VCPU_PMU_V3_INIT: + return kvm_arm_pmu_v3_init(vcpu); + } + + return -ENXIO; +} + +int kvm_arm_pmu_v3_get_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr) +{ + switch (attr->attr) { + case KVM_ARM_VCPU_PMU_V3_IRQ: { + int __user *uaddr = (int __user *)(long)attr->addr; + int irq; + + if (!irqchip_in_kernel(vcpu->kvm)) + return -EINVAL; + + if (!kvm_vcpu_has_pmu(vcpu)) + return -ENODEV; + + if (!kvm_arm_pmu_irq_initialized(vcpu)) + return -ENXIO; + + irq = vcpu->arch.pmu.irq_num; + return put_user(irq, uaddr); + } + } + + return -ENXIO; +} + +int kvm_arm_pmu_v3_has_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr) +{ + switch (attr->attr) { + case KVM_ARM_VCPU_PMU_V3_IRQ: + case KVM_ARM_VCPU_PMU_V3_INIT: + case KVM_ARM_VCPU_PMU_V3_FILTER: + case KVM_ARM_VCPU_PMU_V3_SET_PMU: + if (kvm_vcpu_has_pmu(vcpu)) + return 0; + } + + return -ENXIO; +} + +u8 kvm_arm_pmu_get_pmuver_limit(void) +{ + u64 tmp; + + tmp = read_sanitised_ftr_reg(SYS_ID_AA64DFR0_EL1); + tmp = cpuid_feature_cap_perfmon_field(tmp, + ID_AA64DFR0_EL1_PMUVer_SHIFT, + ID_AA64DFR0_EL1_PMUVer_V3P5); + return FIELD_GET(ARM64_FEATURE_MASK(ID_AA64DFR0_EL1_PMUVer), tmp); +} diff --git a/arch/arm64/kvm/pmu.c b/arch/arm64/kvm/pmu.c new file mode 100644 index 0000000000..a243934c55 --- /dev/null +++ b/arch/arm64/kvm/pmu.c @@ -0,0 +1,256 @@ +// SPDX-License-Identifier: GPL-2.0 +/* + * Copyright 2019 Arm Limited + * Author: Andrew Murray <Andrew.Murray@arm.com> + */ +#include <linux/kvm_host.h> +#include <linux/perf_event.h> + +static DEFINE_PER_CPU(struct kvm_pmu_events, kvm_pmu_events); + +/* + * Given the perf event attributes and system type, determine + * if we are going to need to switch counters at guest entry/exit. + */ +static bool kvm_pmu_switch_needed(struct perf_event_attr *attr) +{ + /** + * With VHE the guest kernel runs at EL1 and the host at EL2, + * where user (EL0) is excluded then we have no reason to switch + * counters. + */ + if (has_vhe() && attr->exclude_user) + return false; + + /* Only switch if attributes are different */ + return (attr->exclude_host != attr->exclude_guest); +} + +struct kvm_pmu_events *kvm_get_pmu_events(void) +{ + return this_cpu_ptr(&kvm_pmu_events); +} + +/* + * Add events to track that we may want to switch at guest entry/exit + * time. + */ +void kvm_set_pmu_events(u32 set, struct perf_event_attr *attr) +{ + struct kvm_pmu_events *pmu = kvm_get_pmu_events(); + + if (!kvm_arm_support_pmu_v3() || !kvm_pmu_switch_needed(attr)) + return; + + if (!attr->exclude_host) + pmu->events_host |= set; + if (!attr->exclude_guest) + pmu->events_guest |= set; +} + +/* + * Stop tracking events + */ +void kvm_clr_pmu_events(u32 clr) +{ + struct kvm_pmu_events *pmu = kvm_get_pmu_events(); + + if (!kvm_arm_support_pmu_v3()) + return; + + pmu->events_host &= ~clr; + pmu->events_guest &= ~clr; +} + +#define PMEVTYPER_READ_CASE(idx) \ + case idx: \ + return read_sysreg(pmevtyper##idx##_el0) + +#define PMEVTYPER_WRITE_CASE(idx) \ + case idx: \ + write_sysreg(val, pmevtyper##idx##_el0); \ + break + +#define PMEVTYPER_CASES(readwrite) \ + PMEVTYPER_##readwrite##_CASE(0); \ + PMEVTYPER_##readwrite##_CASE(1); \ + PMEVTYPER_##readwrite##_CASE(2); \ + PMEVTYPER_##readwrite##_CASE(3); \ + PMEVTYPER_##readwrite##_CASE(4); \ + PMEVTYPER_##readwrite##_CASE(5); \ + PMEVTYPER_##readwrite##_CASE(6); \ + PMEVTYPER_##readwrite##_CASE(7); \ + PMEVTYPER_##readwrite##_CASE(8); \ + PMEVTYPER_##readwrite##_CASE(9); \ + PMEVTYPER_##readwrite##_CASE(10); \ + PMEVTYPER_##readwrite##_CASE(11); \ + PMEVTYPER_##readwrite##_CASE(12); \ + PMEVTYPER_##readwrite##_CASE(13); \ + PMEVTYPER_##readwrite##_CASE(14); \ + PMEVTYPER_##readwrite##_CASE(15); \ + PMEVTYPER_##readwrite##_CASE(16); \ + PMEVTYPER_##readwrite##_CASE(17); \ + PMEVTYPER_##readwrite##_CASE(18); \ + PMEVTYPER_##readwrite##_CASE(19); \ + PMEVTYPER_##readwrite##_CASE(20); \ + PMEVTYPER_##readwrite##_CASE(21); \ + PMEVTYPER_##readwrite##_CASE(22); \ + PMEVTYPER_##readwrite##_CASE(23); \ + PMEVTYPER_##readwrite##_CASE(24); \ + PMEVTYPER_##readwrite##_CASE(25); \ + PMEVTYPER_##readwrite##_CASE(26); \ + PMEVTYPER_##readwrite##_CASE(27); \ + PMEVTYPER_##readwrite##_CASE(28); \ + PMEVTYPER_##readwrite##_CASE(29); \ + PMEVTYPER_##readwrite##_CASE(30) + +/* + * Read a value direct from PMEVTYPER<idx> where idx is 0-30 + * or PMCCFILTR_EL0 where idx is ARMV8_PMU_CYCLE_IDX (31). + */ +static u64 kvm_vcpu_pmu_read_evtype_direct(int idx) +{ + switch (idx) { + PMEVTYPER_CASES(READ); + case ARMV8_PMU_CYCLE_IDX: + return read_sysreg(pmccfiltr_el0); + default: + WARN_ON(1); + } + + return 0; +} + +/* + * Write a value direct to PMEVTYPER<idx> where idx is 0-30 + * or PMCCFILTR_EL0 where idx is ARMV8_PMU_CYCLE_IDX (31). + */ +static void kvm_vcpu_pmu_write_evtype_direct(int idx, u32 val) +{ + switch (idx) { + PMEVTYPER_CASES(WRITE); + case ARMV8_PMU_CYCLE_IDX: + write_sysreg(val, pmccfiltr_el0); + break; + default: + WARN_ON(1); + } +} + +/* + * Modify ARMv8 PMU events to include EL0 counting + */ +static void kvm_vcpu_pmu_enable_el0(unsigned long events) +{ + u64 typer; + u32 counter; + + for_each_set_bit(counter, &events, 32) { + typer = kvm_vcpu_pmu_read_evtype_direct(counter); + typer &= ~ARMV8_PMU_EXCLUDE_EL0; + kvm_vcpu_pmu_write_evtype_direct(counter, typer); + } +} + +/* + * Modify ARMv8 PMU events to exclude EL0 counting + */ +static void kvm_vcpu_pmu_disable_el0(unsigned long events) +{ + u64 typer; + u32 counter; + + for_each_set_bit(counter, &events, 32) { + typer = kvm_vcpu_pmu_read_evtype_direct(counter); + typer |= ARMV8_PMU_EXCLUDE_EL0; + kvm_vcpu_pmu_write_evtype_direct(counter, typer); + } +} + +/* + * On VHE ensure that only guest events have EL0 counting enabled. + * This is called from both vcpu_{load,put} and the sysreg handling. + * Since the latter is preemptible, special care must be taken to + * disable preemption. + */ +void kvm_vcpu_pmu_restore_guest(struct kvm_vcpu *vcpu) +{ + struct kvm_pmu_events *pmu; + u32 events_guest, events_host; + + if (!kvm_arm_support_pmu_v3() || !has_vhe()) + return; + + preempt_disable(); + pmu = kvm_get_pmu_events(); + events_guest = pmu->events_guest; + events_host = pmu->events_host; + + kvm_vcpu_pmu_enable_el0(events_guest); + kvm_vcpu_pmu_disable_el0(events_host); + preempt_enable(); +} + +/* + * On VHE ensure that only host events have EL0 counting enabled + */ +void kvm_vcpu_pmu_restore_host(struct kvm_vcpu *vcpu) +{ + struct kvm_pmu_events *pmu; + u32 events_guest, events_host; + + if (!kvm_arm_support_pmu_v3() || !has_vhe()) + return; + + pmu = kvm_get_pmu_events(); + events_guest = pmu->events_guest; + events_host = pmu->events_host; + + kvm_vcpu_pmu_enable_el0(events_host); + kvm_vcpu_pmu_disable_el0(events_guest); +} + +/* + * With VHE, keep track of the PMUSERENR_EL0 value for the host EL0 on the pCPU + * where PMUSERENR_EL0 for the guest is loaded, since PMUSERENR_EL0 is switched + * to the value for the guest on vcpu_load(). The value for the host EL0 + * will be restored on vcpu_put(), before returning to userspace. + * This isn't necessary for nVHE, as the register is context switched for + * every guest enter/exit. + * + * Return true if KVM takes care of the register. Otherwise return false. + */ +bool kvm_set_pmuserenr(u64 val) +{ + struct kvm_cpu_context *hctxt; + struct kvm_vcpu *vcpu; + + if (!kvm_arm_support_pmu_v3() || !has_vhe()) + return false; + + vcpu = kvm_get_running_vcpu(); + if (!vcpu || !vcpu_get_flag(vcpu, PMUSERENR_ON_CPU)) + return false; + + hctxt = &this_cpu_ptr(&kvm_host_data)->host_ctxt; + ctxt_sys_reg(hctxt, PMUSERENR_EL0) = val; + return true; +} + +/* + * If we interrupted the guest to update the host PMU context, make + * sure we re-apply the guest EL0 state. + */ +void kvm_vcpu_pmu_resync_el0(void) +{ + struct kvm_vcpu *vcpu; + + if (!has_vhe() || !in_interrupt()) + return; + + vcpu = kvm_get_running_vcpu(); + if (!vcpu) + return; + + kvm_make_request(KVM_REQ_RESYNC_PMU_EL0, vcpu); +} diff --git a/arch/arm64/kvm/psci.c b/arch/arm64/kvm/psci.c new file mode 100644 index 0000000000..1f69b66733 --- /dev/null +++ b/arch/arm64/kvm/psci.c @@ -0,0 +1,465 @@ +// SPDX-License-Identifier: GPL-2.0-only +/* + * Copyright (C) 2012 - ARM Ltd + * Author: Marc Zyngier <marc.zyngier@arm.com> + */ + +#include <linux/arm-smccc.h> +#include <linux/preempt.h> +#include <linux/kvm_host.h> +#include <linux/uaccess.h> +#include <linux/wait.h> + +#include <asm/cputype.h> +#include <asm/kvm_emulate.h> + +#include <kvm/arm_psci.h> +#include <kvm/arm_hypercalls.h> + +/* + * This is an implementation of the Power State Coordination Interface + * as described in ARM document number ARM DEN 0022A. + */ + +#define AFFINITY_MASK(level) ~((0x1UL << ((level) * MPIDR_LEVEL_BITS)) - 1) + +static unsigned long psci_affinity_mask(unsigned long affinity_level) +{ + if (affinity_level <= 3) + return MPIDR_HWID_BITMASK & AFFINITY_MASK(affinity_level); + + return 0; +} + +static unsigned long kvm_psci_vcpu_suspend(struct kvm_vcpu *vcpu) +{ + /* + * NOTE: For simplicity, we make VCPU suspend emulation to be + * same-as WFI (Wait-for-interrupt) emulation. + * + * This means for KVM the wakeup events are interrupts and + * this is consistent with intended use of StateID as described + * in section 5.4.1 of PSCI v0.2 specification (ARM DEN 0022A). + * + * Further, we also treat power-down request to be same as + * stand-by request as-per section 5.4.2 clause 3 of PSCI v0.2 + * specification (ARM DEN 0022A). This means all suspend states + * for KVM will preserve the register state. + */ + kvm_vcpu_wfi(vcpu); + + return PSCI_RET_SUCCESS; +} + +static inline bool kvm_psci_valid_affinity(struct kvm_vcpu *vcpu, + unsigned long affinity) +{ + return !(affinity & ~MPIDR_HWID_BITMASK); +} + +static unsigned long kvm_psci_vcpu_on(struct kvm_vcpu *source_vcpu) +{ + struct vcpu_reset_state *reset_state; + struct kvm *kvm = source_vcpu->kvm; + struct kvm_vcpu *vcpu = NULL; + int ret = PSCI_RET_SUCCESS; + unsigned long cpu_id; + + cpu_id = smccc_get_arg1(source_vcpu); + if (!kvm_psci_valid_affinity(source_vcpu, cpu_id)) + return PSCI_RET_INVALID_PARAMS; + + vcpu = kvm_mpidr_to_vcpu(kvm, cpu_id); + + /* + * Make sure the caller requested a valid CPU and that the CPU is + * turned off. + */ + if (!vcpu) + return PSCI_RET_INVALID_PARAMS; + + spin_lock(&vcpu->arch.mp_state_lock); + if (!kvm_arm_vcpu_stopped(vcpu)) { + if (kvm_psci_version(source_vcpu) != KVM_ARM_PSCI_0_1) + ret = PSCI_RET_ALREADY_ON; + else + ret = PSCI_RET_INVALID_PARAMS; + + goto out_unlock; + } + + reset_state = &vcpu->arch.reset_state; + + reset_state->pc = smccc_get_arg2(source_vcpu); + + /* Propagate caller endianness */ + reset_state->be = kvm_vcpu_is_be(source_vcpu); + + /* + * NOTE: We always update r0 (or x0) because for PSCI v0.1 + * the general purpose registers are undefined upon CPU_ON. + */ + reset_state->r0 = smccc_get_arg3(source_vcpu); + + reset_state->reset = true; + kvm_make_request(KVM_REQ_VCPU_RESET, vcpu); + + /* + * Make sure the reset request is observed if the RUNNABLE mp_state is + * observed. + */ + smp_wmb(); + + WRITE_ONCE(vcpu->arch.mp_state.mp_state, KVM_MP_STATE_RUNNABLE); + kvm_vcpu_wake_up(vcpu); + +out_unlock: + spin_unlock(&vcpu->arch.mp_state_lock); + return ret; +} + +static unsigned long kvm_psci_vcpu_affinity_info(struct kvm_vcpu *vcpu) +{ + int matching_cpus = 0; + unsigned long i, mpidr; + unsigned long target_affinity; + unsigned long target_affinity_mask; + unsigned long lowest_affinity_level; + struct kvm *kvm = vcpu->kvm; + struct kvm_vcpu *tmp; + + target_affinity = smccc_get_arg1(vcpu); + lowest_affinity_level = smccc_get_arg2(vcpu); + + if (!kvm_psci_valid_affinity(vcpu, target_affinity)) + return PSCI_RET_INVALID_PARAMS; + + /* Determine target affinity mask */ + target_affinity_mask = psci_affinity_mask(lowest_affinity_level); + if (!target_affinity_mask) + return PSCI_RET_INVALID_PARAMS; + + /* Ignore other bits of target affinity */ + target_affinity &= target_affinity_mask; + + /* + * If one or more VCPU matching target affinity are running + * then ON else OFF + */ + kvm_for_each_vcpu(i, tmp, kvm) { + mpidr = kvm_vcpu_get_mpidr_aff(tmp); + if ((mpidr & target_affinity_mask) == target_affinity) { + matching_cpus++; + if (!kvm_arm_vcpu_stopped(tmp)) + return PSCI_0_2_AFFINITY_LEVEL_ON; + } + } + + if (!matching_cpus) + return PSCI_RET_INVALID_PARAMS; + + return PSCI_0_2_AFFINITY_LEVEL_OFF; +} + +static void kvm_prepare_system_event(struct kvm_vcpu *vcpu, u32 type, u64 flags) +{ + unsigned long i; + struct kvm_vcpu *tmp; + + /* + * The KVM ABI specifies that a system event exit may call KVM_RUN + * again and may perform shutdown/reboot at a later time that when the + * actual request is made. Since we are implementing PSCI and a + * caller of PSCI reboot and shutdown expects that the system shuts + * down or reboots immediately, let's make sure that VCPUs are not run + * after this call is handled and before the VCPUs have been + * re-initialized. + */ + kvm_for_each_vcpu(i, tmp, vcpu->kvm) { + spin_lock(&tmp->arch.mp_state_lock); + WRITE_ONCE(tmp->arch.mp_state.mp_state, KVM_MP_STATE_STOPPED); + spin_unlock(&tmp->arch.mp_state_lock); + } + kvm_make_all_cpus_request(vcpu->kvm, KVM_REQ_SLEEP); + + memset(&vcpu->run->system_event, 0, sizeof(vcpu->run->system_event)); + vcpu->run->system_event.type = type; + vcpu->run->system_event.ndata = 1; + vcpu->run->system_event.data[0] = flags; + vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT; +} + +static void kvm_psci_system_off(struct kvm_vcpu *vcpu) +{ + kvm_prepare_system_event(vcpu, KVM_SYSTEM_EVENT_SHUTDOWN, 0); +} + +static void kvm_psci_system_reset(struct kvm_vcpu *vcpu) +{ + kvm_prepare_system_event(vcpu, KVM_SYSTEM_EVENT_RESET, 0); +} + +static void kvm_psci_system_reset2(struct kvm_vcpu *vcpu) +{ + kvm_prepare_system_event(vcpu, KVM_SYSTEM_EVENT_RESET, + KVM_SYSTEM_EVENT_RESET_FLAG_PSCI_RESET2); +} + +static void kvm_psci_system_suspend(struct kvm_vcpu *vcpu) +{ + struct kvm_run *run = vcpu->run; + + memset(&run->system_event, 0, sizeof(vcpu->run->system_event)); + run->system_event.type = KVM_SYSTEM_EVENT_SUSPEND; + run->exit_reason = KVM_EXIT_SYSTEM_EVENT; +} + +static void kvm_psci_narrow_to_32bit(struct kvm_vcpu *vcpu) +{ + int i; + + /* + * Zero the input registers' upper 32 bits. They will be fully + * zeroed on exit, so we're fine changing them in place. + */ + for (i = 1; i < 4; i++) + vcpu_set_reg(vcpu, i, lower_32_bits(vcpu_get_reg(vcpu, i))); +} + +static unsigned long kvm_psci_check_allowed_function(struct kvm_vcpu *vcpu, u32 fn) +{ + /* + * Prevent 32 bit guests from calling 64 bit PSCI functions. + */ + if ((fn & PSCI_0_2_64BIT) && vcpu_mode_is_32bit(vcpu)) + return PSCI_RET_NOT_SUPPORTED; + + return 0; +} + +static int kvm_psci_0_2_call(struct kvm_vcpu *vcpu) +{ + u32 psci_fn = smccc_get_function(vcpu); + unsigned long val; + int ret = 1; + + switch (psci_fn) { + case PSCI_0_2_FN_PSCI_VERSION: + /* + * Bits[31:16] = Major Version = 0 + * Bits[15:0] = Minor Version = 2 + */ + val = KVM_ARM_PSCI_0_2; + break; + case PSCI_0_2_FN_CPU_SUSPEND: + case PSCI_0_2_FN64_CPU_SUSPEND: + val = kvm_psci_vcpu_suspend(vcpu); + break; + case PSCI_0_2_FN_CPU_OFF: + kvm_arm_vcpu_power_off(vcpu); + val = PSCI_RET_SUCCESS; + break; + case PSCI_0_2_FN_CPU_ON: + kvm_psci_narrow_to_32bit(vcpu); + fallthrough; + case PSCI_0_2_FN64_CPU_ON: + val = kvm_psci_vcpu_on(vcpu); + break; + case PSCI_0_2_FN_AFFINITY_INFO: + kvm_psci_narrow_to_32bit(vcpu); + fallthrough; + case PSCI_0_2_FN64_AFFINITY_INFO: + val = kvm_psci_vcpu_affinity_info(vcpu); + break; + case PSCI_0_2_FN_MIGRATE_INFO_TYPE: + /* + * Trusted OS is MP hence does not require migration + * or + * Trusted OS is not present + */ + val = PSCI_0_2_TOS_MP; + break; + case PSCI_0_2_FN_SYSTEM_OFF: + kvm_psci_system_off(vcpu); + /* + * We shouldn't be going back to guest VCPU after + * receiving SYSTEM_OFF request. + * + * If user space accidentally/deliberately resumes + * guest VCPU after SYSTEM_OFF request then guest + * VCPU should see internal failure from PSCI return + * value. To achieve this, we preload r0 (or x0) with + * PSCI return value INTERNAL_FAILURE. + */ + val = PSCI_RET_INTERNAL_FAILURE; + ret = 0; + break; + case PSCI_0_2_FN_SYSTEM_RESET: + kvm_psci_system_reset(vcpu); + /* + * Same reason as SYSTEM_OFF for preloading r0 (or x0) + * with PSCI return value INTERNAL_FAILURE. + */ + val = PSCI_RET_INTERNAL_FAILURE; + ret = 0; + break; + default: + val = PSCI_RET_NOT_SUPPORTED; + break; + } + + smccc_set_retval(vcpu, val, 0, 0, 0); + return ret; +} + +static int kvm_psci_1_x_call(struct kvm_vcpu *vcpu, u32 minor) +{ + unsigned long val = PSCI_RET_NOT_SUPPORTED; + u32 psci_fn = smccc_get_function(vcpu); + struct kvm *kvm = vcpu->kvm; + u32 arg; + int ret = 1; + + switch(psci_fn) { + case PSCI_0_2_FN_PSCI_VERSION: + val = minor == 0 ? KVM_ARM_PSCI_1_0 : KVM_ARM_PSCI_1_1; + break; + case PSCI_1_0_FN_PSCI_FEATURES: + arg = smccc_get_arg1(vcpu); + val = kvm_psci_check_allowed_function(vcpu, arg); + if (val) + break; + + val = PSCI_RET_NOT_SUPPORTED; + + switch(arg) { + case PSCI_0_2_FN_PSCI_VERSION: + case PSCI_0_2_FN_CPU_SUSPEND: + case PSCI_0_2_FN64_CPU_SUSPEND: + case PSCI_0_2_FN_CPU_OFF: + case PSCI_0_2_FN_CPU_ON: + case PSCI_0_2_FN64_CPU_ON: + case PSCI_0_2_FN_AFFINITY_INFO: + case PSCI_0_2_FN64_AFFINITY_INFO: + case PSCI_0_2_FN_MIGRATE_INFO_TYPE: + case PSCI_0_2_FN_SYSTEM_OFF: + case PSCI_0_2_FN_SYSTEM_RESET: + case PSCI_1_0_FN_PSCI_FEATURES: + case ARM_SMCCC_VERSION_FUNC_ID: + val = 0; + break; + case PSCI_1_0_FN_SYSTEM_SUSPEND: + case PSCI_1_0_FN64_SYSTEM_SUSPEND: + if (test_bit(KVM_ARCH_FLAG_SYSTEM_SUSPEND_ENABLED, &kvm->arch.flags)) + val = 0; + break; + case PSCI_1_1_FN_SYSTEM_RESET2: + case PSCI_1_1_FN64_SYSTEM_RESET2: + if (minor >= 1) + val = 0; + break; + } + break; + case PSCI_1_0_FN_SYSTEM_SUSPEND: + kvm_psci_narrow_to_32bit(vcpu); + fallthrough; + case PSCI_1_0_FN64_SYSTEM_SUSPEND: + /* + * Return directly to userspace without changing the vCPU's + * registers. Userspace depends on reading the SMCCC parameters + * to implement SYSTEM_SUSPEND. + */ + if (test_bit(KVM_ARCH_FLAG_SYSTEM_SUSPEND_ENABLED, &kvm->arch.flags)) { + kvm_psci_system_suspend(vcpu); + return 0; + } + break; + case PSCI_1_1_FN_SYSTEM_RESET2: + kvm_psci_narrow_to_32bit(vcpu); + fallthrough; + case PSCI_1_1_FN64_SYSTEM_RESET2: + if (minor >= 1) { + arg = smccc_get_arg1(vcpu); + + if (arg <= PSCI_1_1_RESET_TYPE_SYSTEM_WARM_RESET || + arg >= PSCI_1_1_RESET_TYPE_VENDOR_START) { + kvm_psci_system_reset2(vcpu); + vcpu_set_reg(vcpu, 0, PSCI_RET_INTERNAL_FAILURE); + return 0; + } + + val = PSCI_RET_INVALID_PARAMS; + break; + } + break; + default: + return kvm_psci_0_2_call(vcpu); + } + + smccc_set_retval(vcpu, val, 0, 0, 0); + return ret; +} + +static int kvm_psci_0_1_call(struct kvm_vcpu *vcpu) +{ + u32 psci_fn = smccc_get_function(vcpu); + unsigned long val; + + switch (psci_fn) { + case KVM_PSCI_FN_CPU_OFF: + kvm_arm_vcpu_power_off(vcpu); + val = PSCI_RET_SUCCESS; + break; + case KVM_PSCI_FN_CPU_ON: + val = kvm_psci_vcpu_on(vcpu); + break; + default: + val = PSCI_RET_NOT_SUPPORTED; + break; + } + + smccc_set_retval(vcpu, val, 0, 0, 0); + return 1; +} + +/** + * kvm_psci_call - handle PSCI call if r0 value is in range + * @vcpu: Pointer to the VCPU struct + * + * Handle PSCI calls from guests through traps from HVC instructions. + * The calling convention is similar to SMC calls to the secure world + * where the function number is placed in r0. + * + * This function returns: > 0 (success), 0 (success but exit to user + * space), and < 0 (errors) + * + * Errors: + * -EINVAL: Unrecognized PSCI function + */ +int kvm_psci_call(struct kvm_vcpu *vcpu) +{ + u32 psci_fn = smccc_get_function(vcpu); + int version = kvm_psci_version(vcpu); + unsigned long val; + + val = kvm_psci_check_allowed_function(vcpu, psci_fn); + if (val) { + smccc_set_retval(vcpu, val, 0, 0, 0); + return 1; + } + + switch (version) { + case KVM_ARM_PSCI_1_1: + return kvm_psci_1_x_call(vcpu, 1); + case KVM_ARM_PSCI_1_0: + return kvm_psci_1_x_call(vcpu, 0); + case KVM_ARM_PSCI_0_2: + return kvm_psci_0_2_call(vcpu); + case KVM_ARM_PSCI_0_1: + return kvm_psci_0_1_call(vcpu); + default: + WARN_ONCE(1, "Unknown PSCI version %d", version); + smccc_set_retval(vcpu, SMCCC_RET_NOT_SUPPORTED, 0, 0, 0); + return 1; + } +} diff --git a/arch/arm64/kvm/pvtime.c b/arch/arm64/kvm/pvtime.c new file mode 100644 index 0000000000..4ceabaa4c3 --- /dev/null +++ b/arch/arm64/kvm/pvtime.c @@ -0,0 +1,133 @@ +// SPDX-License-Identifier: GPL-2.0 +// Copyright (C) 2019 Arm Ltd. + +#include <linux/arm-smccc.h> +#include <linux/kvm_host.h> +#include <linux/sched/stat.h> + +#include <asm/kvm_mmu.h> +#include <asm/pvclock-abi.h> + +#include <kvm/arm_hypercalls.h> + +void kvm_update_stolen_time(struct kvm_vcpu *vcpu) +{ + struct kvm *kvm = vcpu->kvm; + u64 base = vcpu->arch.steal.base; + u64 last_steal = vcpu->arch.steal.last_steal; + u64 offset = offsetof(struct pvclock_vcpu_stolen_time, stolen_time); + u64 steal = 0; + int idx; + + if (base == INVALID_GPA) + return; + + idx = srcu_read_lock(&kvm->srcu); + if (!kvm_get_guest(kvm, base + offset, steal)) { + steal = le64_to_cpu(steal); + vcpu->arch.steal.last_steal = READ_ONCE(current->sched_info.run_delay); + steal += vcpu->arch.steal.last_steal - last_steal; + kvm_put_guest(kvm, base + offset, cpu_to_le64(steal)); + } + srcu_read_unlock(&kvm->srcu, idx); +} + +long kvm_hypercall_pv_features(struct kvm_vcpu *vcpu) +{ + u32 feature = smccc_get_arg1(vcpu); + long val = SMCCC_RET_NOT_SUPPORTED; + + switch (feature) { + case ARM_SMCCC_HV_PV_TIME_FEATURES: + case ARM_SMCCC_HV_PV_TIME_ST: + if (vcpu->arch.steal.base != INVALID_GPA) + val = SMCCC_RET_SUCCESS; + break; + } + + return val; +} + +gpa_t kvm_init_stolen_time(struct kvm_vcpu *vcpu) +{ + struct pvclock_vcpu_stolen_time init_values = {}; + struct kvm *kvm = vcpu->kvm; + u64 base = vcpu->arch.steal.base; + + if (base == INVALID_GPA) + return base; + + /* + * Start counting stolen time from the time the guest requests + * the feature enabled. + */ + vcpu->arch.steal.last_steal = current->sched_info.run_delay; + kvm_write_guest_lock(kvm, base, &init_values, sizeof(init_values)); + + return base; +} + +bool kvm_arm_pvtime_supported(void) +{ + return !!sched_info_on(); +} + +int kvm_arm_pvtime_set_attr(struct kvm_vcpu *vcpu, + struct kvm_device_attr *attr) +{ + u64 __user *user = (u64 __user *)attr->addr; + struct kvm *kvm = vcpu->kvm; + u64 ipa; + int ret = 0; + int idx; + + if (!kvm_arm_pvtime_supported() || + attr->attr != KVM_ARM_VCPU_PVTIME_IPA) + return -ENXIO; + + if (get_user(ipa, user)) + return -EFAULT; + if (!IS_ALIGNED(ipa, 64)) + return -EINVAL; + if (vcpu->arch.steal.base != INVALID_GPA) + return -EEXIST; + + /* Check the address is in a valid memslot */ + idx = srcu_read_lock(&kvm->srcu); + if (kvm_is_error_hva(gfn_to_hva(kvm, ipa >> PAGE_SHIFT))) + ret = -EINVAL; + srcu_read_unlock(&kvm->srcu, idx); + + if (!ret) + vcpu->arch.steal.base = ipa; + + return ret; +} + +int kvm_arm_pvtime_get_attr(struct kvm_vcpu *vcpu, + struct kvm_device_attr *attr) +{ + u64 __user *user = (u64 __user *)attr->addr; + u64 ipa; + + if (!kvm_arm_pvtime_supported() || + attr->attr != KVM_ARM_VCPU_PVTIME_IPA) + return -ENXIO; + + ipa = vcpu->arch.steal.base; + + if (put_user(ipa, user)) + return -EFAULT; + return 0; +} + +int kvm_arm_pvtime_has_attr(struct kvm_vcpu *vcpu, + struct kvm_device_attr *attr) +{ + switch (attr->attr) { + case KVM_ARM_VCPU_PVTIME_IPA: + if (kvm_arm_pvtime_supported()) + return 0; + } + return -ENXIO; +} diff --git a/arch/arm64/kvm/reset.c b/arch/arm64/kvm/reset.c new file mode 100644 index 0000000000..7a65a35ee4 --- /dev/null +++ b/arch/arm64/kvm/reset.c @@ -0,0 +1,352 @@ +// SPDX-License-Identifier: GPL-2.0-only +/* + * Copyright (C) 2012,2013 - ARM Ltd + * Author: Marc Zyngier <marc.zyngier@arm.com> + * + * Derived from arch/arm/kvm/reset.c + * Copyright (C) 2012 - Virtual Open Systems and Columbia University + * Author: Christoffer Dall <c.dall@virtualopensystems.com> + */ + +#include <linux/errno.h> +#include <linux/kernel.h> +#include <linux/kvm_host.h> +#include <linux/kvm.h> +#include <linux/hw_breakpoint.h> +#include <linux/slab.h> +#include <linux/string.h> +#include <linux/types.h> + +#include <kvm/arm_arch_timer.h> + +#include <asm/cpufeature.h> +#include <asm/cputype.h> +#include <asm/fpsimd.h> +#include <asm/ptrace.h> +#include <asm/kvm_arm.h> +#include <asm/kvm_asm.h> +#include <asm/kvm_emulate.h> +#include <asm/kvm_mmu.h> +#include <asm/kvm_nested.h> +#include <asm/virt.h> + +/* Maximum phys_shift supported for any VM on this host */ +static u32 __ro_after_init kvm_ipa_limit; + +/* + * ARMv8 Reset Values + */ +#define VCPU_RESET_PSTATE_EL1 (PSR_MODE_EL1h | PSR_A_BIT | PSR_I_BIT | \ + PSR_F_BIT | PSR_D_BIT) + +#define VCPU_RESET_PSTATE_EL2 (PSR_MODE_EL2h | PSR_A_BIT | PSR_I_BIT | \ + PSR_F_BIT | PSR_D_BIT) + +#define VCPU_RESET_PSTATE_SVC (PSR_AA32_MODE_SVC | PSR_AA32_A_BIT | \ + PSR_AA32_I_BIT | PSR_AA32_F_BIT) + +unsigned int __ro_after_init kvm_sve_max_vl; + +int __init kvm_arm_init_sve(void) +{ + if (system_supports_sve()) { + kvm_sve_max_vl = sve_max_virtualisable_vl(); + + /* + * The get_sve_reg()/set_sve_reg() ioctl interface will need + * to be extended with multiple register slice support in + * order to support vector lengths greater than + * VL_ARCH_MAX: + */ + if (WARN_ON(kvm_sve_max_vl > VL_ARCH_MAX)) + kvm_sve_max_vl = VL_ARCH_MAX; + + /* + * Don't even try to make use of vector lengths that + * aren't available on all CPUs, for now: + */ + if (kvm_sve_max_vl < sve_max_vl()) + pr_warn("KVM: SVE vector length for guests limited to %u bytes\n", + kvm_sve_max_vl); + } + + return 0; +} + +static int kvm_vcpu_enable_sve(struct kvm_vcpu *vcpu) +{ + if (!system_supports_sve()) + return -EINVAL; + + vcpu->arch.sve_max_vl = kvm_sve_max_vl; + + /* + * Userspace can still customize the vector lengths by writing + * KVM_REG_ARM64_SVE_VLS. Allocation is deferred until + * kvm_arm_vcpu_finalize(), which freezes the configuration. + */ + vcpu_set_flag(vcpu, GUEST_HAS_SVE); + + return 0; +} + +/* + * Finalize vcpu's maximum SVE vector length, allocating + * vcpu->arch.sve_state as necessary. + */ +static int kvm_vcpu_finalize_sve(struct kvm_vcpu *vcpu) +{ + void *buf; + unsigned int vl; + size_t reg_sz; + int ret; + + vl = vcpu->arch.sve_max_vl; + + /* + * Responsibility for these properties is shared between + * kvm_arm_init_sve(), kvm_vcpu_enable_sve() and + * set_sve_vls(). Double-check here just to be sure: + */ + if (WARN_ON(!sve_vl_valid(vl) || vl > sve_max_virtualisable_vl() || + vl > VL_ARCH_MAX)) + return -EIO; + + reg_sz = vcpu_sve_state_size(vcpu); + buf = kzalloc(reg_sz, GFP_KERNEL_ACCOUNT); + if (!buf) + return -ENOMEM; + + ret = kvm_share_hyp(buf, buf + reg_sz); + if (ret) { + kfree(buf); + return ret; + } + + vcpu->arch.sve_state = buf; + vcpu_set_flag(vcpu, VCPU_SVE_FINALIZED); + return 0; +} + +int kvm_arm_vcpu_finalize(struct kvm_vcpu *vcpu, int feature) +{ + switch (feature) { + case KVM_ARM_VCPU_SVE: + if (!vcpu_has_sve(vcpu)) + return -EINVAL; + + if (kvm_arm_vcpu_sve_finalized(vcpu)) + return -EPERM; + + return kvm_vcpu_finalize_sve(vcpu); + } + + return -EINVAL; +} + +bool kvm_arm_vcpu_is_finalized(struct kvm_vcpu *vcpu) +{ + if (vcpu_has_sve(vcpu) && !kvm_arm_vcpu_sve_finalized(vcpu)) + return false; + + return true; +} + +void kvm_arm_vcpu_destroy(struct kvm_vcpu *vcpu) +{ + void *sve_state = vcpu->arch.sve_state; + + kvm_vcpu_unshare_task_fp(vcpu); + kvm_unshare_hyp(vcpu, vcpu + 1); + if (sve_state) + kvm_unshare_hyp(sve_state, sve_state + vcpu_sve_state_size(vcpu)); + kfree(sve_state); + kfree(vcpu->arch.ccsidr); +} + +static void kvm_vcpu_reset_sve(struct kvm_vcpu *vcpu) +{ + if (vcpu_has_sve(vcpu)) + memset(vcpu->arch.sve_state, 0, vcpu_sve_state_size(vcpu)); +} + +static int kvm_vcpu_enable_ptrauth(struct kvm_vcpu *vcpu) +{ + /* + * For now make sure that both address/generic pointer authentication + * features are requested by the userspace together and the system + * supports these capabilities. + */ + if (!test_bit(KVM_ARM_VCPU_PTRAUTH_ADDRESS, vcpu->arch.features) || + !test_bit(KVM_ARM_VCPU_PTRAUTH_GENERIC, vcpu->arch.features) || + !system_has_full_ptr_auth()) + return -EINVAL; + + vcpu_set_flag(vcpu, GUEST_HAS_PTRAUTH); + return 0; +} + +/** + * kvm_reset_vcpu - sets core registers and sys_regs to reset value + * @vcpu: The VCPU pointer + * + * This function sets the registers on the virtual CPU struct to their + * architecturally defined reset values, except for registers whose reset is + * deferred until kvm_arm_vcpu_finalize(). + * + * Note: This function can be called from two paths: The KVM_ARM_VCPU_INIT + * ioctl or as part of handling a request issued by another VCPU in the PSCI + * handling code. In the first case, the VCPU will not be loaded, and in the + * second case the VCPU will be loaded. Because this function operates purely + * on the memory-backed values of system registers, we want to do a full put if + * we were loaded (handling a request) and load the values back at the end of + * the function. Otherwise we leave the state alone. In both cases, we + * disable preemption around the vcpu reset as we would otherwise race with + * preempt notifiers which also call put/load. + */ +int kvm_reset_vcpu(struct kvm_vcpu *vcpu) +{ + struct vcpu_reset_state reset_state; + int ret; + bool loaded; + u32 pstate; + + spin_lock(&vcpu->arch.mp_state_lock); + reset_state = vcpu->arch.reset_state; + vcpu->arch.reset_state.reset = false; + spin_unlock(&vcpu->arch.mp_state_lock); + + /* Reset PMU outside of the non-preemptible section */ + kvm_pmu_vcpu_reset(vcpu); + + preempt_disable(); + loaded = (vcpu->cpu != -1); + if (loaded) + kvm_arch_vcpu_put(vcpu); + + /* Disallow NV+SVE for the time being */ + if (vcpu_has_nv(vcpu) && vcpu_has_feature(vcpu, KVM_ARM_VCPU_SVE)) { + ret = -EINVAL; + goto out; + } + + if (!kvm_arm_vcpu_sve_finalized(vcpu)) { + if (test_bit(KVM_ARM_VCPU_SVE, vcpu->arch.features)) { + ret = kvm_vcpu_enable_sve(vcpu); + if (ret) + goto out; + } + } else { + kvm_vcpu_reset_sve(vcpu); + } + + if (test_bit(KVM_ARM_VCPU_PTRAUTH_ADDRESS, vcpu->arch.features) || + test_bit(KVM_ARM_VCPU_PTRAUTH_GENERIC, vcpu->arch.features)) { + if (kvm_vcpu_enable_ptrauth(vcpu)) { + ret = -EINVAL; + goto out; + } + } + + if (vcpu_el1_is_32bit(vcpu)) + pstate = VCPU_RESET_PSTATE_SVC; + else if (vcpu_has_nv(vcpu)) + pstate = VCPU_RESET_PSTATE_EL2; + else + pstate = VCPU_RESET_PSTATE_EL1; + + if (kvm_vcpu_has_pmu(vcpu) && !kvm_arm_support_pmu_v3()) { + ret = -EINVAL; + goto out; + } + + /* Reset core registers */ + memset(vcpu_gp_regs(vcpu), 0, sizeof(*vcpu_gp_regs(vcpu))); + memset(&vcpu->arch.ctxt.fp_regs, 0, sizeof(vcpu->arch.ctxt.fp_regs)); + vcpu->arch.ctxt.spsr_abt = 0; + vcpu->arch.ctxt.spsr_und = 0; + vcpu->arch.ctxt.spsr_irq = 0; + vcpu->arch.ctxt.spsr_fiq = 0; + vcpu_gp_regs(vcpu)->pstate = pstate; + + /* Reset system registers */ + kvm_reset_sys_regs(vcpu); + + /* + * Additional reset state handling that PSCI may have imposed on us. + * Must be done after all the sys_reg reset. + */ + if (reset_state.reset) { + unsigned long target_pc = reset_state.pc; + + /* Gracefully handle Thumb2 entry point */ + if (vcpu_mode_is_32bit(vcpu) && (target_pc & 1)) { + target_pc &= ~1UL; + vcpu_set_thumb(vcpu); + } + + /* Propagate caller endianness */ + if (reset_state.be) + kvm_vcpu_set_be(vcpu); + + *vcpu_pc(vcpu) = target_pc; + vcpu_set_reg(vcpu, 0, reset_state.r0); + } + + /* Reset timer */ + ret = kvm_timer_vcpu_reset(vcpu); +out: + if (loaded) + kvm_arch_vcpu_load(vcpu, smp_processor_id()); + preempt_enable(); + return ret; +} + +u32 get_kvm_ipa_limit(void) +{ + return kvm_ipa_limit; +} + +int __init kvm_set_ipa_limit(void) +{ + unsigned int parange; + u64 mmfr0; + + mmfr0 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1); + parange = cpuid_feature_extract_unsigned_field(mmfr0, + ID_AA64MMFR0_EL1_PARANGE_SHIFT); + /* + * IPA size beyond 48 bits could not be supported + * on either 4K or 16K page size. Hence let's cap + * it to 48 bits, in case it's reported as larger + * on the system. + */ + if (PAGE_SIZE != SZ_64K) + parange = min(parange, (unsigned int)ID_AA64MMFR0_EL1_PARANGE_48); + + /* + * Check with ARMv8.5-GTG that our PAGE_SIZE is supported at + * Stage-2. If not, things will stop very quickly. + */ + switch (cpuid_feature_extract_unsigned_field(mmfr0, ID_AA64MMFR0_EL1_TGRAN_2_SHIFT)) { + case ID_AA64MMFR0_EL1_TGRAN_2_SUPPORTED_NONE: + kvm_err("PAGE_SIZE not supported at Stage-2, giving up\n"); + return -EINVAL; + case ID_AA64MMFR0_EL1_TGRAN_2_SUPPORTED_DEFAULT: + kvm_debug("PAGE_SIZE supported at Stage-2 (default)\n"); + break; + case ID_AA64MMFR0_EL1_TGRAN_2_SUPPORTED_MIN ... ID_AA64MMFR0_EL1_TGRAN_2_SUPPORTED_MAX: + kvm_debug("PAGE_SIZE supported at Stage-2 (advertised)\n"); + break; + default: + kvm_err("Unsupported value for TGRAN_2, giving up\n"); + return -EINVAL; + } + + kvm_ipa_limit = id_aa64mmfr0_parange_to_phys_shift(parange); + kvm_info("IPA Size Limit: %d bits%s\n", kvm_ipa_limit, + ((kvm_ipa_limit < KVM_PHYS_SHIFT) ? + " (Reduced IPA size, limited VM/VMM compatibility)" : "")); + + return 0; +} diff --git a/arch/arm64/kvm/stacktrace.c b/arch/arm64/kvm/stacktrace.c new file mode 100644 index 0000000000..3ace5b7581 --- /dev/null +++ b/arch/arm64/kvm/stacktrace.c @@ -0,0 +1,245 @@ +/* SPDX-License-Identifier: GPL-2.0-only */ +/* + * KVM nVHE hypervisor stack tracing support. + * + * The unwinder implementation depends on the nVHE mode: + * + * 1) Non-protected nVHE mode - the host can directly access the + * HYP stack pages and unwind the HYP stack in EL1. This saves having + * to allocate shared buffers for the host to read the unwinded + * stacktrace. + * + * 2) pKVM (protected nVHE) mode - the host cannot directly access + * the HYP memory. The stack is unwinded in EL2 and dumped to a shared + * buffer where the host can read and print the stacktrace. + * + * Copyright (C) 2022 Google LLC + */ + +#include <linux/kvm.h> +#include <linux/kvm_host.h> + +#include <asm/stacktrace/nvhe.h> + +static struct stack_info stackinfo_get_overflow(void) +{ + struct kvm_nvhe_stacktrace_info *stacktrace_info + = this_cpu_ptr_nvhe_sym(kvm_stacktrace_info); + unsigned long low = (unsigned long)stacktrace_info->overflow_stack_base; + unsigned long high = low + OVERFLOW_STACK_SIZE; + + return (struct stack_info) { + .low = low, + .high = high, + }; +} + +static struct stack_info stackinfo_get_overflow_kern_va(void) +{ + unsigned long low = (unsigned long)this_cpu_ptr_nvhe_sym(overflow_stack); + unsigned long high = low + OVERFLOW_STACK_SIZE; + + return (struct stack_info) { + .low = low, + .high = high, + }; +} + +static struct stack_info stackinfo_get_hyp(void) +{ + struct kvm_nvhe_stacktrace_info *stacktrace_info + = this_cpu_ptr_nvhe_sym(kvm_stacktrace_info); + unsigned long low = (unsigned long)stacktrace_info->stack_base; + unsigned long high = low + PAGE_SIZE; + + return (struct stack_info) { + .low = low, + .high = high, + }; +} + +static struct stack_info stackinfo_get_hyp_kern_va(void) +{ + unsigned long low = (unsigned long)*this_cpu_ptr(&kvm_arm_hyp_stack_page); + unsigned long high = low + PAGE_SIZE; + + return (struct stack_info) { + .low = low, + .high = high, + }; +} + +/* + * kvm_nvhe_stack_kern_va - Convert KVM nVHE HYP stack addresses to a kernel VAs + * + * The nVHE hypervisor stack is mapped in the flexible 'private' VA range, to + * allow for guard pages below the stack. Consequently, the fixed offset address + * translation macros won't work here. + * + * The kernel VA is calculated as an offset from the kernel VA of the hypervisor + * stack base. + * + * Returns true on success and updates @addr to its corresponding kernel VA; + * otherwise returns false. + */ +static bool kvm_nvhe_stack_kern_va(unsigned long *addr, unsigned long size) +{ + struct stack_info stack_hyp, stack_kern; + + stack_hyp = stackinfo_get_hyp(); + stack_kern = stackinfo_get_hyp_kern_va(); + if (stackinfo_on_stack(&stack_hyp, *addr, size)) + goto found; + + stack_hyp = stackinfo_get_overflow(); + stack_kern = stackinfo_get_overflow_kern_va(); + if (stackinfo_on_stack(&stack_hyp, *addr, size)) + goto found; + + return false; + +found: + *addr = *addr - stack_hyp.low + stack_kern.low; + return true; +} + +/* + * Convert a KVN nVHE HYP frame record address to a kernel VA + */ +static bool kvm_nvhe_stack_kern_record_va(unsigned long *addr) +{ + return kvm_nvhe_stack_kern_va(addr, 16); +} + +static int unwind_next(struct unwind_state *state) +{ + /* + * The FP is in the hypervisor VA space. Convert it to the kernel VA + * space so it can be unwound by the regular unwind functions. + */ + if (!kvm_nvhe_stack_kern_record_va(&state->fp)) + return -EINVAL; + + return unwind_next_frame_record(state); +} + +static void unwind(struct unwind_state *state, + stack_trace_consume_fn consume_entry, void *cookie) +{ + while (1) { + int ret; + + if (!consume_entry(cookie, state->pc)) + break; + ret = unwind_next(state); + if (ret < 0) + break; + } +} + +/* + * kvm_nvhe_dump_backtrace_entry - Symbolize and print an nVHE backtrace entry + * + * @arg : the hypervisor offset, used for address translation + * @where : the program counter corresponding to the stack frame + */ +static bool kvm_nvhe_dump_backtrace_entry(void *arg, unsigned long where) +{ + unsigned long va_mask = GENMASK_ULL(vabits_actual - 1, 0); + unsigned long hyp_offset = (unsigned long)arg; + + /* Mask tags and convert to kern addr */ + where = (where & va_mask) + hyp_offset; + kvm_err(" [<%016lx>] %pB\n", where, (void *)(where + kaslr_offset())); + + return true; +} + +static void kvm_nvhe_dump_backtrace_start(void) +{ + kvm_err("nVHE call trace:\n"); +} + +static void kvm_nvhe_dump_backtrace_end(void) +{ + kvm_err("---[ end nVHE call trace ]---\n"); +} + +/* + * hyp_dump_backtrace - Dump the non-protected nVHE backtrace. + * + * @hyp_offset: hypervisor offset, used for address translation. + * + * The host can directly access HYP stack pages in non-protected + * mode, so the unwinding is done directly from EL1. This removes + * the need for shared buffers between host and hypervisor for + * the stacktrace. + */ +static void hyp_dump_backtrace(unsigned long hyp_offset) +{ + struct kvm_nvhe_stacktrace_info *stacktrace_info; + struct stack_info stacks[] = { + stackinfo_get_overflow_kern_va(), + stackinfo_get_hyp_kern_va(), + }; + struct unwind_state state = { + .stacks = stacks, + .nr_stacks = ARRAY_SIZE(stacks), + }; + + stacktrace_info = this_cpu_ptr_nvhe_sym(kvm_stacktrace_info); + + kvm_nvhe_unwind_init(&state, stacktrace_info->fp, stacktrace_info->pc); + + kvm_nvhe_dump_backtrace_start(); + unwind(&state, kvm_nvhe_dump_backtrace_entry, (void *)hyp_offset); + kvm_nvhe_dump_backtrace_end(); +} + +#ifdef CONFIG_PROTECTED_NVHE_STACKTRACE +DECLARE_KVM_NVHE_PER_CPU(unsigned long [NVHE_STACKTRACE_SIZE/sizeof(long)], + pkvm_stacktrace); + +/* + * pkvm_dump_backtrace - Dump the protected nVHE HYP backtrace. + * + * @hyp_offset: hypervisor offset, used for address translation. + * + * Dumping of the pKVM HYP backtrace is done by reading the + * stack addresses from the shared stacktrace buffer, since the + * host cannot directly access hypervisor memory in protected + * mode. + */ +static void pkvm_dump_backtrace(unsigned long hyp_offset) +{ + unsigned long *stacktrace + = (unsigned long *) this_cpu_ptr_nvhe_sym(pkvm_stacktrace); + int i; + + kvm_nvhe_dump_backtrace_start(); + /* The saved stacktrace is terminated by a null entry */ + for (i = 0; + i < ARRAY_SIZE(kvm_nvhe_sym(pkvm_stacktrace)) && stacktrace[i]; + i++) + kvm_nvhe_dump_backtrace_entry((void *)hyp_offset, stacktrace[i]); + kvm_nvhe_dump_backtrace_end(); +} +#else /* !CONFIG_PROTECTED_NVHE_STACKTRACE */ +static void pkvm_dump_backtrace(unsigned long hyp_offset) +{ + kvm_err("Cannot dump pKVM nVHE stacktrace: !CONFIG_PROTECTED_NVHE_STACKTRACE\n"); +} +#endif /* CONFIG_PROTECTED_NVHE_STACKTRACE */ + +/* + * kvm_nvhe_dump_backtrace - Dump KVM nVHE hypervisor backtrace. + * + * @hyp_offset: hypervisor offset, used for address translation. + */ +void kvm_nvhe_dump_backtrace(unsigned long hyp_offset) +{ + if (is_protected_kvm_enabled()) + pkvm_dump_backtrace(hyp_offset); + else + hyp_dump_backtrace(hyp_offset); +} diff --git a/arch/arm64/kvm/sys_regs.c b/arch/arm64/kvm/sys_regs.c new file mode 100644 index 0000000000..0afd6136e2 --- /dev/null +++ b/arch/arm64/kvm/sys_regs.c @@ -0,0 +1,3606 @@ +// SPDX-License-Identifier: GPL-2.0-only +/* + * Copyright (C) 2012,2013 - ARM Ltd + * Author: Marc Zyngier <marc.zyngier@arm.com> + * + * Derived from arch/arm/kvm/coproc.c: + * Copyright (C) 2012 - Virtual Open Systems and Columbia University + * Authors: Rusty Russell <rusty@rustcorp.com.au> + * Christoffer Dall <c.dall@virtualopensystems.com> + */ + +#include <linux/bitfield.h> +#include <linux/bsearch.h> +#include <linux/cacheinfo.h> +#include <linux/kvm_host.h> +#include <linux/mm.h> +#include <linux/printk.h> +#include <linux/uaccess.h> + +#include <asm/cacheflush.h> +#include <asm/cputype.h> +#include <asm/debug-monitors.h> +#include <asm/esr.h> +#include <asm/kvm_arm.h> +#include <asm/kvm_emulate.h> +#include <asm/kvm_hyp.h> +#include <asm/kvm_mmu.h> +#include <asm/kvm_nested.h> +#include <asm/perf_event.h> +#include <asm/sysreg.h> + +#include <trace/events/kvm.h> + +#include "sys_regs.h" + +#include "trace.h" + +/* + * For AArch32, we only take care of what is being trapped. Anything + * that has to do with init and userspace access has to go via the + * 64bit interface. + */ + +static u64 sys_reg_to_index(const struct sys_reg_desc *reg); +static int set_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, + u64 val); + +static bool read_from_write_only(struct kvm_vcpu *vcpu, + struct sys_reg_params *params, + const struct sys_reg_desc *r) +{ + WARN_ONCE(1, "Unexpected sys_reg read to write-only register\n"); + print_sys_reg_instr(params); + kvm_inject_undefined(vcpu); + return false; +} + +static bool write_to_read_only(struct kvm_vcpu *vcpu, + struct sys_reg_params *params, + const struct sys_reg_desc *r) +{ + WARN_ONCE(1, "Unexpected sys_reg write to read-only register\n"); + print_sys_reg_instr(params); + kvm_inject_undefined(vcpu); + return false; +} + +u64 vcpu_read_sys_reg(const struct kvm_vcpu *vcpu, int reg) +{ + u64 val = 0x8badf00d8badf00d; + + if (vcpu_get_flag(vcpu, SYSREGS_ON_CPU) && + __vcpu_read_sys_reg_from_cpu(reg, &val)) + return val; + + return __vcpu_sys_reg(vcpu, reg); +} + +void vcpu_write_sys_reg(struct kvm_vcpu *vcpu, u64 val, int reg) +{ + if (vcpu_get_flag(vcpu, SYSREGS_ON_CPU) && + __vcpu_write_sys_reg_to_cpu(val, reg)) + return; + + __vcpu_sys_reg(vcpu, reg) = val; +} + +/* CSSELR values; used to index KVM_REG_ARM_DEMUX_ID_CCSIDR */ +#define CSSELR_MAX 14 + +/* + * Returns the minimum line size for the selected cache, expressed as + * Log2(bytes). + */ +static u8 get_min_cache_line_size(bool icache) +{ + u64 ctr = read_sanitised_ftr_reg(SYS_CTR_EL0); + u8 field; + + if (icache) + field = SYS_FIELD_GET(CTR_EL0, IminLine, ctr); + else + field = SYS_FIELD_GET(CTR_EL0, DminLine, ctr); + + /* + * Cache line size is represented as Log2(words) in CTR_EL0. + * Log2(bytes) can be derived with the following: + * + * Log2(words) + 2 = Log2(bytes / 4) + 2 + * = Log2(bytes) - 2 + 2 + * = Log2(bytes) + */ + return field + 2; +} + +/* Which cache CCSIDR represents depends on CSSELR value. */ +static u32 get_ccsidr(struct kvm_vcpu *vcpu, u32 csselr) +{ + u8 line_size; + + if (vcpu->arch.ccsidr) + return vcpu->arch.ccsidr[csselr]; + + line_size = get_min_cache_line_size(csselr & CSSELR_EL1_InD); + + /* + * Fabricate a CCSIDR value as the overriding value does not exist. + * The real CCSIDR value will not be used as it can vary by the + * physical CPU which the vcpu currently resides in. + * + * The line size is determined with get_min_cache_line_size(), which + * should be valid for all CPUs even if they have different cache + * configuration. + * + * The associativity bits are cleared, meaning the geometry of all data + * and unified caches (which are guaranteed to be PIPT and thus + * non-aliasing) are 1 set and 1 way. + * Guests should not be doing cache operations by set/way at all, and + * for this reason, we trap them and attempt to infer the intent, so + * that we can flush the entire guest's address space at the appropriate + * time. The exposed geometry minimizes the number of the traps. + * [If guests should attempt to infer aliasing properties from the + * geometry (which is not permitted by the architecture), they would + * only do so for virtually indexed caches.] + * + * We don't check if the cache level exists as it is allowed to return + * an UNKNOWN value if not. + */ + return SYS_FIELD_PREP(CCSIDR_EL1, LineSize, line_size - 4); +} + +static int set_ccsidr(struct kvm_vcpu *vcpu, u32 csselr, u32 val) +{ + u8 line_size = FIELD_GET(CCSIDR_EL1_LineSize, val) + 4; + u32 *ccsidr = vcpu->arch.ccsidr; + u32 i; + + if ((val & CCSIDR_EL1_RES0) || + line_size < get_min_cache_line_size(csselr & CSSELR_EL1_InD)) + return -EINVAL; + + if (!ccsidr) { + if (val == get_ccsidr(vcpu, csselr)) + return 0; + + ccsidr = kmalloc_array(CSSELR_MAX, sizeof(u32), GFP_KERNEL_ACCOUNT); + if (!ccsidr) + return -ENOMEM; + + for (i = 0; i < CSSELR_MAX; i++) + ccsidr[i] = get_ccsidr(vcpu, i); + + vcpu->arch.ccsidr = ccsidr; + } + + ccsidr[csselr] = val; + + return 0; +} + +static bool access_rw(struct kvm_vcpu *vcpu, + struct sys_reg_params *p, + const struct sys_reg_desc *r) +{ + if (p->is_write) + vcpu_write_sys_reg(vcpu, p->regval, r->reg); + else + p->regval = vcpu_read_sys_reg(vcpu, r->reg); + + return true; +} + +/* + * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized). + */ +static bool access_dcsw(struct kvm_vcpu *vcpu, + struct sys_reg_params *p, + const struct sys_reg_desc *r) +{ + if (!p->is_write) + return read_from_write_only(vcpu, p, r); + + /* + * Only track S/W ops if we don't have FWB. It still indicates + * that the guest is a bit broken (S/W operations should only + * be done by firmware, knowing that there is only a single + * CPU left in the system, and certainly not from non-secure + * software). + */ + if (!cpus_have_const_cap(ARM64_HAS_STAGE2_FWB)) + kvm_set_way_flush(vcpu); + + return true; +} + +static bool access_dcgsw(struct kvm_vcpu *vcpu, + struct sys_reg_params *p, + const struct sys_reg_desc *r) +{ + if (!kvm_has_mte(vcpu->kvm)) { + kvm_inject_undefined(vcpu); + return false; + } + + /* Treat MTE S/W ops as we treat the classic ones: with contempt */ + return access_dcsw(vcpu, p, r); +} + +static void get_access_mask(const struct sys_reg_desc *r, u64 *mask, u64 *shift) +{ + switch (r->aarch32_map) { + case AA32_LO: + *mask = GENMASK_ULL(31, 0); + *shift = 0; + break; + case AA32_HI: + *mask = GENMASK_ULL(63, 32); + *shift = 32; + break; + default: + *mask = GENMASK_ULL(63, 0); + *shift = 0; + break; + } +} + +/* + * Generic accessor for VM registers. Only called as long as HCR_TVM + * is set. If the guest enables the MMU, we stop trapping the VM + * sys_regs and leave it in complete control of the caches. + */ +static bool access_vm_reg(struct kvm_vcpu *vcpu, + struct sys_reg_params *p, + const struct sys_reg_desc *r) +{ + bool was_enabled = vcpu_has_cache_enabled(vcpu); + u64 val, mask, shift; + + BUG_ON(!p->is_write); + + get_access_mask(r, &mask, &shift); + + if (~mask) { + val = vcpu_read_sys_reg(vcpu, r->reg); + val &= ~mask; + } else { + val = 0; + } + + val |= (p->regval & (mask >> shift)) << shift; + vcpu_write_sys_reg(vcpu, val, r->reg); + + kvm_toggle_cache(vcpu, was_enabled); + return true; +} + +static bool access_actlr(struct kvm_vcpu *vcpu, + struct sys_reg_params *p, + const struct sys_reg_desc *r) +{ + u64 mask, shift; + + if (p->is_write) + return ignore_write(vcpu, p); + + get_access_mask(r, &mask, &shift); + p->regval = (vcpu_read_sys_reg(vcpu, r->reg) & mask) >> shift; + + return true; +} + +/* + * Trap handler for the GICv3 SGI generation system register. + * Forward the request to the VGIC emulation. + * The cp15_64 code makes sure this automatically works + * for both AArch64 and AArch32 accesses. + */ +static bool access_gic_sgi(struct kvm_vcpu *vcpu, + struct sys_reg_params *p, + const struct sys_reg_desc *r) +{ + bool g1; + + if (!p->is_write) + return read_from_write_only(vcpu, p, r); + + /* + * In a system where GICD_CTLR.DS=1, a ICC_SGI0R_EL1 access generates + * Group0 SGIs only, while ICC_SGI1R_EL1 can generate either group, + * depending on the SGI configuration. ICC_ASGI1R_EL1 is effectively + * equivalent to ICC_SGI0R_EL1, as there is no "alternative" secure + * group. + */ + if (p->Op0 == 0) { /* AArch32 */ + switch (p->Op1) { + default: /* Keep GCC quiet */ + case 0: /* ICC_SGI1R */ + g1 = true; + break; + case 1: /* ICC_ASGI1R */ + case 2: /* ICC_SGI0R */ + g1 = false; + break; + } + } else { /* AArch64 */ + switch (p->Op2) { + default: /* Keep GCC quiet */ + case 5: /* ICC_SGI1R_EL1 */ + g1 = true; + break; + case 6: /* ICC_ASGI1R_EL1 */ + case 7: /* ICC_SGI0R_EL1 */ + g1 = false; + break; + } + } + + vgic_v3_dispatch_sgi(vcpu, p->regval, g1); + + return true; +} + +static bool access_gic_sre(struct kvm_vcpu *vcpu, + struct sys_reg_params *p, + const struct sys_reg_desc *r) +{ + if (p->is_write) + return ignore_write(vcpu, p); + + p->regval = vcpu->arch.vgic_cpu.vgic_v3.vgic_sre; + return true; +} + +static bool trap_raz_wi(struct kvm_vcpu *vcpu, + struct sys_reg_params *p, + const struct sys_reg_desc *r) +{ + if (p->is_write) + return ignore_write(vcpu, p); + else + return read_zero(vcpu, p); +} + +static bool trap_undef(struct kvm_vcpu *vcpu, + struct sys_reg_params *p, + const struct sys_reg_desc *r) +{ + kvm_inject_undefined(vcpu); + return false; +} + +/* + * ARMv8.1 mandates at least a trivial LORegion implementation, where all the + * RW registers are RES0 (which we can implement as RAZ/WI). On an ARMv8.0 + * system, these registers should UNDEF. LORID_EL1 being a RO register, we + * treat it separately. + */ +static bool trap_loregion(struct kvm_vcpu *vcpu, + struct sys_reg_params *p, + const struct sys_reg_desc *r) +{ + u64 val = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1); + u32 sr = reg_to_encoding(r); + + if (!(val & (0xfUL << ID_AA64MMFR1_EL1_LO_SHIFT))) { + kvm_inject_undefined(vcpu); + return false; + } + + if (p->is_write && sr == SYS_LORID_EL1) + return write_to_read_only(vcpu, p, r); + + return trap_raz_wi(vcpu, p, r); +} + +static bool trap_oslar_el1(struct kvm_vcpu *vcpu, + struct sys_reg_params *p, + const struct sys_reg_desc *r) +{ + u64 oslsr; + + if (!p->is_write) + return read_from_write_only(vcpu, p, r); + + /* Forward the OSLK bit to OSLSR */ + oslsr = __vcpu_sys_reg(vcpu, OSLSR_EL1) & ~OSLSR_EL1_OSLK; + if (p->regval & OSLAR_EL1_OSLK) + oslsr |= OSLSR_EL1_OSLK; + + __vcpu_sys_reg(vcpu, OSLSR_EL1) = oslsr; + return true; +} + +static bool trap_oslsr_el1(struct kvm_vcpu *vcpu, + struct sys_reg_params *p, + const struct sys_reg_desc *r) +{ + if (p->is_write) + return write_to_read_only(vcpu, p, r); + + p->regval = __vcpu_sys_reg(vcpu, r->reg); + return true; +} + +static int set_oslsr_el1(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, + u64 val) +{ + /* + * The only modifiable bit is the OSLK bit. Refuse the write if + * userspace attempts to change any other bit in the register. + */ + if ((val ^ rd->val) & ~OSLSR_EL1_OSLK) + return -EINVAL; + + __vcpu_sys_reg(vcpu, rd->reg) = val; + return 0; +} + +static bool trap_dbgauthstatus_el1(struct kvm_vcpu *vcpu, + struct sys_reg_params *p, + const struct sys_reg_desc *r) +{ + if (p->is_write) { + return ignore_write(vcpu, p); + } else { + p->regval = read_sysreg(dbgauthstatus_el1); + return true; + } +} + +/* + * We want to avoid world-switching all the DBG registers all the + * time: + * + * - If we've touched any debug register, it is likely that we're + * going to touch more of them. It then makes sense to disable the + * traps and start doing the save/restore dance + * - If debug is active (DBG_MDSCR_KDE or DBG_MDSCR_MDE set), it is + * then mandatory to save/restore the registers, as the guest + * depends on them. + * + * For this, we use a DIRTY bit, indicating the guest has modified the + * debug registers, used as follow: + * + * On guest entry: + * - If the dirty bit is set (because we're coming back from trapping), + * disable the traps, save host registers, restore guest registers. + * - If debug is actively in use (DBG_MDSCR_KDE or DBG_MDSCR_MDE set), + * set the dirty bit, disable the traps, save host registers, + * restore guest registers. + * - Otherwise, enable the traps + * + * On guest exit: + * - If the dirty bit is set, save guest registers, restore host + * registers and clear the dirty bit. This ensure that the host can + * now use the debug registers. + */ +static bool trap_debug_regs(struct kvm_vcpu *vcpu, + struct sys_reg_params *p, + const struct sys_reg_desc *r) +{ + access_rw(vcpu, p, r); + if (p->is_write) + vcpu_set_flag(vcpu, DEBUG_DIRTY); + + trace_trap_reg(__func__, r->reg, p->is_write, p->regval); + + return true; +} + +/* + * reg_to_dbg/dbg_to_reg + * + * A 32 bit write to a debug register leave top bits alone + * A 32 bit read from a debug register only returns the bottom bits + * + * All writes will set the DEBUG_DIRTY flag to ensure the hyp code + * switches between host and guest values in future. + */ +static void reg_to_dbg(struct kvm_vcpu *vcpu, + struct sys_reg_params *p, + const struct sys_reg_desc *rd, + u64 *dbg_reg) +{ + u64 mask, shift, val; + + get_access_mask(rd, &mask, &shift); + + val = *dbg_reg; + val &= ~mask; + val |= (p->regval & (mask >> shift)) << shift; + *dbg_reg = val; + + vcpu_set_flag(vcpu, DEBUG_DIRTY); +} + +static void dbg_to_reg(struct kvm_vcpu *vcpu, + struct sys_reg_params *p, + const struct sys_reg_desc *rd, + u64 *dbg_reg) +{ + u64 mask, shift; + + get_access_mask(rd, &mask, &shift); + p->regval = (*dbg_reg & mask) >> shift; +} + +static bool trap_bvr(struct kvm_vcpu *vcpu, + struct sys_reg_params *p, + const struct sys_reg_desc *rd) +{ + u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->CRm]; + + if (p->is_write) + reg_to_dbg(vcpu, p, rd, dbg_reg); + else + dbg_to_reg(vcpu, p, rd, dbg_reg); + + trace_trap_reg(__func__, rd->CRm, p->is_write, *dbg_reg); + + return true; +} + +static int set_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, + u64 val) +{ + vcpu->arch.vcpu_debug_state.dbg_bvr[rd->CRm] = val; + return 0; +} + +static int get_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, + u64 *val) +{ + *val = vcpu->arch.vcpu_debug_state.dbg_bvr[rd->CRm]; + return 0; +} + +static u64 reset_bvr(struct kvm_vcpu *vcpu, + const struct sys_reg_desc *rd) +{ + vcpu->arch.vcpu_debug_state.dbg_bvr[rd->CRm] = rd->val; + return rd->val; +} + +static bool trap_bcr(struct kvm_vcpu *vcpu, + struct sys_reg_params *p, + const struct sys_reg_desc *rd) +{ + u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->CRm]; + + if (p->is_write) + reg_to_dbg(vcpu, p, rd, dbg_reg); + else + dbg_to_reg(vcpu, p, rd, dbg_reg); + + trace_trap_reg(__func__, rd->CRm, p->is_write, *dbg_reg); + + return true; +} + +static int set_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, + u64 val) +{ + vcpu->arch.vcpu_debug_state.dbg_bcr[rd->CRm] = val; + return 0; +} + +static int get_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, + u64 *val) +{ + *val = vcpu->arch.vcpu_debug_state.dbg_bcr[rd->CRm]; + return 0; +} + +static u64 reset_bcr(struct kvm_vcpu *vcpu, + const struct sys_reg_desc *rd) +{ + vcpu->arch.vcpu_debug_state.dbg_bcr[rd->CRm] = rd->val; + return rd->val; +} + +static bool trap_wvr(struct kvm_vcpu *vcpu, + struct sys_reg_params *p, + const struct sys_reg_desc *rd) +{ + u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm]; + + if (p->is_write) + reg_to_dbg(vcpu, p, rd, dbg_reg); + else + dbg_to_reg(vcpu, p, rd, dbg_reg); + + trace_trap_reg(__func__, rd->CRm, p->is_write, + vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm]); + + return true; +} + +static int set_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, + u64 val) +{ + vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm] = val; + return 0; +} + +static int get_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, + u64 *val) +{ + *val = vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm]; + return 0; +} + +static u64 reset_wvr(struct kvm_vcpu *vcpu, + const struct sys_reg_desc *rd) +{ + vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm] = rd->val; + return rd->val; +} + +static bool trap_wcr(struct kvm_vcpu *vcpu, + struct sys_reg_params *p, + const struct sys_reg_desc *rd) +{ + u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->CRm]; + + if (p->is_write) + reg_to_dbg(vcpu, p, rd, dbg_reg); + else + dbg_to_reg(vcpu, p, rd, dbg_reg); + + trace_trap_reg(__func__, rd->CRm, p->is_write, *dbg_reg); + + return true; +} + +static int set_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, + u64 val) +{ + vcpu->arch.vcpu_debug_state.dbg_wcr[rd->CRm] = val; + return 0; +} + +static int get_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, + u64 *val) +{ + *val = vcpu->arch.vcpu_debug_state.dbg_wcr[rd->CRm]; + return 0; +} + +static u64 reset_wcr(struct kvm_vcpu *vcpu, + const struct sys_reg_desc *rd) +{ + vcpu->arch.vcpu_debug_state.dbg_wcr[rd->CRm] = rd->val; + return rd->val; +} + +static u64 reset_amair_el1(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r) +{ + u64 amair = read_sysreg(amair_el1); + vcpu_write_sys_reg(vcpu, amair, AMAIR_EL1); + return amair; +} + +static u64 reset_actlr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r) +{ + u64 actlr = read_sysreg(actlr_el1); + vcpu_write_sys_reg(vcpu, actlr, ACTLR_EL1); + return actlr; +} + +static u64 reset_mpidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r) +{ + u64 mpidr; + + /* + * Map the vcpu_id into the first three affinity level fields of + * the MPIDR. We limit the number of VCPUs in level 0 due to a + * limitation to 16 CPUs in that level in the ICC_SGIxR registers + * of the GICv3 to be able to address each CPU directly when + * sending IPIs. + */ + mpidr = (vcpu->vcpu_id & 0x0f) << MPIDR_LEVEL_SHIFT(0); + mpidr |= ((vcpu->vcpu_id >> 4) & 0xff) << MPIDR_LEVEL_SHIFT(1); + mpidr |= ((vcpu->vcpu_id >> 12) & 0xff) << MPIDR_LEVEL_SHIFT(2); + mpidr |= (1ULL << 31); + vcpu_write_sys_reg(vcpu, mpidr, MPIDR_EL1); + + return mpidr; +} + +static unsigned int pmu_visibility(const struct kvm_vcpu *vcpu, + const struct sys_reg_desc *r) +{ + if (kvm_vcpu_has_pmu(vcpu)) + return 0; + + return REG_HIDDEN; +} + +static u64 reset_pmu_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r) +{ + u64 n, mask = BIT(ARMV8_PMU_CYCLE_IDX); + + /* No PMU available, any PMU reg may UNDEF... */ + if (!kvm_arm_support_pmu_v3()) + return 0; + + n = read_sysreg(pmcr_el0) >> ARMV8_PMU_PMCR_N_SHIFT; + n &= ARMV8_PMU_PMCR_N_MASK; + if (n) + mask |= GENMASK(n - 1, 0); + + reset_unknown(vcpu, r); + __vcpu_sys_reg(vcpu, r->reg) &= mask; + + return __vcpu_sys_reg(vcpu, r->reg); +} + +static u64 reset_pmevcntr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r) +{ + reset_unknown(vcpu, r); + __vcpu_sys_reg(vcpu, r->reg) &= GENMASK(31, 0); + + return __vcpu_sys_reg(vcpu, r->reg); +} + +static u64 reset_pmevtyper(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r) +{ + reset_unknown(vcpu, r); + __vcpu_sys_reg(vcpu, r->reg) &= ARMV8_PMU_EVTYPE_MASK; + + return __vcpu_sys_reg(vcpu, r->reg); +} + +static u64 reset_pmselr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r) +{ + reset_unknown(vcpu, r); + __vcpu_sys_reg(vcpu, r->reg) &= ARMV8_PMU_COUNTER_MASK; + + return __vcpu_sys_reg(vcpu, r->reg); +} + +static u64 reset_pmcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r) +{ + u64 pmcr; + + /* No PMU available, PMCR_EL0 may UNDEF... */ + if (!kvm_arm_support_pmu_v3()) + return 0; + + /* Only preserve PMCR_EL0.N, and reset the rest to 0 */ + pmcr = read_sysreg(pmcr_el0) & (ARMV8_PMU_PMCR_N_MASK << ARMV8_PMU_PMCR_N_SHIFT); + if (!kvm_supports_32bit_el0()) + pmcr |= ARMV8_PMU_PMCR_LC; + + __vcpu_sys_reg(vcpu, r->reg) = pmcr; + + return __vcpu_sys_reg(vcpu, r->reg); +} + +static bool check_pmu_access_disabled(struct kvm_vcpu *vcpu, u64 flags) +{ + u64 reg = __vcpu_sys_reg(vcpu, PMUSERENR_EL0); + bool enabled = (reg & flags) || vcpu_mode_priv(vcpu); + + if (!enabled) + kvm_inject_undefined(vcpu); + + return !enabled; +} + +static bool pmu_access_el0_disabled(struct kvm_vcpu *vcpu) +{ + return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_EN); +} + +static bool pmu_write_swinc_el0_disabled(struct kvm_vcpu *vcpu) +{ + return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_SW | ARMV8_PMU_USERENR_EN); +} + +static bool pmu_access_cycle_counter_el0_disabled(struct kvm_vcpu *vcpu) +{ + return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_CR | ARMV8_PMU_USERENR_EN); +} + +static bool pmu_access_event_counter_el0_disabled(struct kvm_vcpu *vcpu) +{ + return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_ER | ARMV8_PMU_USERENR_EN); +} + +static bool access_pmcr(struct kvm_vcpu *vcpu, struct sys_reg_params *p, + const struct sys_reg_desc *r) +{ + u64 val; + + if (pmu_access_el0_disabled(vcpu)) + return false; + + if (p->is_write) { + /* + * Only update writeable bits of PMCR (continuing into + * kvm_pmu_handle_pmcr() as well) + */ + val = __vcpu_sys_reg(vcpu, PMCR_EL0); + val &= ~ARMV8_PMU_PMCR_MASK; + val |= p->regval & ARMV8_PMU_PMCR_MASK; + if (!kvm_supports_32bit_el0()) + val |= ARMV8_PMU_PMCR_LC; + kvm_pmu_handle_pmcr(vcpu, val); + } else { + /* PMCR.P & PMCR.C are RAZ */ + val = __vcpu_sys_reg(vcpu, PMCR_EL0) + & ~(ARMV8_PMU_PMCR_P | ARMV8_PMU_PMCR_C); + p->regval = val; + } + + return true; +} + +static bool access_pmselr(struct kvm_vcpu *vcpu, struct sys_reg_params *p, + const struct sys_reg_desc *r) +{ + if (pmu_access_event_counter_el0_disabled(vcpu)) + return false; + + if (p->is_write) + __vcpu_sys_reg(vcpu, PMSELR_EL0) = p->regval; + else + /* return PMSELR.SEL field */ + p->regval = __vcpu_sys_reg(vcpu, PMSELR_EL0) + & ARMV8_PMU_COUNTER_MASK; + + return true; +} + +static bool access_pmceid(struct kvm_vcpu *vcpu, struct sys_reg_params *p, + const struct sys_reg_desc *r) +{ + u64 pmceid, mask, shift; + + BUG_ON(p->is_write); + + if (pmu_access_el0_disabled(vcpu)) + return false; + + get_access_mask(r, &mask, &shift); + + pmceid = kvm_pmu_get_pmceid(vcpu, (p->Op2 & 1)); + pmceid &= mask; + pmceid >>= shift; + + p->regval = pmceid; + + return true; +} + +static bool pmu_counter_idx_valid(struct kvm_vcpu *vcpu, u64 idx) +{ + u64 pmcr, val; + + pmcr = __vcpu_sys_reg(vcpu, PMCR_EL0); + val = (pmcr >> ARMV8_PMU_PMCR_N_SHIFT) & ARMV8_PMU_PMCR_N_MASK; + if (idx >= val && idx != ARMV8_PMU_CYCLE_IDX) { + kvm_inject_undefined(vcpu); + return false; + } + + return true; +} + +static int get_pmu_evcntr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r, + u64 *val) +{ + u64 idx; + + if (r->CRn == 9 && r->CRm == 13 && r->Op2 == 0) + /* PMCCNTR_EL0 */ + idx = ARMV8_PMU_CYCLE_IDX; + else + /* PMEVCNTRn_EL0 */ + idx = ((r->CRm & 3) << 3) | (r->Op2 & 7); + + *val = kvm_pmu_get_counter_value(vcpu, idx); + return 0; +} + +static bool access_pmu_evcntr(struct kvm_vcpu *vcpu, + struct sys_reg_params *p, + const struct sys_reg_desc *r) +{ + u64 idx = ~0UL; + + if (r->CRn == 9 && r->CRm == 13) { + if (r->Op2 == 2) { + /* PMXEVCNTR_EL0 */ + if (pmu_access_event_counter_el0_disabled(vcpu)) + return false; + + idx = __vcpu_sys_reg(vcpu, PMSELR_EL0) + & ARMV8_PMU_COUNTER_MASK; + } else if (r->Op2 == 0) { + /* PMCCNTR_EL0 */ + if (pmu_access_cycle_counter_el0_disabled(vcpu)) + return false; + + idx = ARMV8_PMU_CYCLE_IDX; + } + } else if (r->CRn == 0 && r->CRm == 9) { + /* PMCCNTR */ + if (pmu_access_event_counter_el0_disabled(vcpu)) + return false; + + idx = ARMV8_PMU_CYCLE_IDX; + } else if (r->CRn == 14 && (r->CRm & 12) == 8) { + /* PMEVCNTRn_EL0 */ + if (pmu_access_event_counter_el0_disabled(vcpu)) + return false; + + idx = ((r->CRm & 3) << 3) | (r->Op2 & 7); + } + + /* Catch any decoding mistake */ + WARN_ON(idx == ~0UL); + + if (!pmu_counter_idx_valid(vcpu, idx)) + return false; + + if (p->is_write) { + if (pmu_access_el0_disabled(vcpu)) + return false; + + kvm_pmu_set_counter_value(vcpu, idx, p->regval); + } else { + p->regval = kvm_pmu_get_counter_value(vcpu, idx); + } + + return true; +} + +static bool access_pmu_evtyper(struct kvm_vcpu *vcpu, struct sys_reg_params *p, + const struct sys_reg_desc *r) +{ + u64 idx, reg; + + if (pmu_access_el0_disabled(vcpu)) + return false; + + if (r->CRn == 9 && r->CRm == 13 && r->Op2 == 1) { + /* PMXEVTYPER_EL0 */ + idx = __vcpu_sys_reg(vcpu, PMSELR_EL0) & ARMV8_PMU_COUNTER_MASK; + reg = PMEVTYPER0_EL0 + idx; + } else if (r->CRn == 14 && (r->CRm & 12) == 12) { + idx = ((r->CRm & 3) << 3) | (r->Op2 & 7); + if (idx == ARMV8_PMU_CYCLE_IDX) + reg = PMCCFILTR_EL0; + else + /* PMEVTYPERn_EL0 */ + reg = PMEVTYPER0_EL0 + idx; + } else { + BUG(); + } + + if (!pmu_counter_idx_valid(vcpu, idx)) + return false; + + if (p->is_write) { + kvm_pmu_set_counter_event_type(vcpu, p->regval, idx); + kvm_vcpu_pmu_restore_guest(vcpu); + } else { + p->regval = __vcpu_sys_reg(vcpu, reg) & ARMV8_PMU_EVTYPE_MASK; + } + + return true; +} + +static bool access_pmcnten(struct kvm_vcpu *vcpu, struct sys_reg_params *p, + const struct sys_reg_desc *r) +{ + u64 val, mask; + + if (pmu_access_el0_disabled(vcpu)) + return false; + + mask = kvm_pmu_valid_counter_mask(vcpu); + if (p->is_write) { + val = p->regval & mask; + if (r->Op2 & 0x1) { + /* accessing PMCNTENSET_EL0 */ + __vcpu_sys_reg(vcpu, PMCNTENSET_EL0) |= val; + kvm_pmu_enable_counter_mask(vcpu, val); + kvm_vcpu_pmu_restore_guest(vcpu); + } else { + /* accessing PMCNTENCLR_EL0 */ + __vcpu_sys_reg(vcpu, PMCNTENSET_EL0) &= ~val; + kvm_pmu_disable_counter_mask(vcpu, val); + } + } else { + p->regval = __vcpu_sys_reg(vcpu, PMCNTENSET_EL0); + } + + return true; +} + +static bool access_pminten(struct kvm_vcpu *vcpu, struct sys_reg_params *p, + const struct sys_reg_desc *r) +{ + u64 mask = kvm_pmu_valid_counter_mask(vcpu); + + if (check_pmu_access_disabled(vcpu, 0)) + return false; + + if (p->is_write) { + u64 val = p->regval & mask; + + if (r->Op2 & 0x1) + /* accessing PMINTENSET_EL1 */ + __vcpu_sys_reg(vcpu, PMINTENSET_EL1) |= val; + else + /* accessing PMINTENCLR_EL1 */ + __vcpu_sys_reg(vcpu, PMINTENSET_EL1) &= ~val; + } else { + p->regval = __vcpu_sys_reg(vcpu, PMINTENSET_EL1); + } + + return true; +} + +static bool access_pmovs(struct kvm_vcpu *vcpu, struct sys_reg_params *p, + const struct sys_reg_desc *r) +{ + u64 mask = kvm_pmu_valid_counter_mask(vcpu); + + if (pmu_access_el0_disabled(vcpu)) + return false; + + if (p->is_write) { + if (r->CRm & 0x2) + /* accessing PMOVSSET_EL0 */ + __vcpu_sys_reg(vcpu, PMOVSSET_EL0) |= (p->regval & mask); + else + /* accessing PMOVSCLR_EL0 */ + __vcpu_sys_reg(vcpu, PMOVSSET_EL0) &= ~(p->regval & mask); + } else { + p->regval = __vcpu_sys_reg(vcpu, PMOVSSET_EL0); + } + + return true; +} + +static bool access_pmswinc(struct kvm_vcpu *vcpu, struct sys_reg_params *p, + const struct sys_reg_desc *r) +{ + u64 mask; + + if (!p->is_write) + return read_from_write_only(vcpu, p, r); + + if (pmu_write_swinc_el0_disabled(vcpu)) + return false; + + mask = kvm_pmu_valid_counter_mask(vcpu); + kvm_pmu_software_increment(vcpu, p->regval & mask); + return true; +} + +static bool access_pmuserenr(struct kvm_vcpu *vcpu, struct sys_reg_params *p, + const struct sys_reg_desc *r) +{ + if (p->is_write) { + if (!vcpu_mode_priv(vcpu)) { + kvm_inject_undefined(vcpu); + return false; + } + + __vcpu_sys_reg(vcpu, PMUSERENR_EL0) = + p->regval & ARMV8_PMU_USERENR_MASK; + } else { + p->regval = __vcpu_sys_reg(vcpu, PMUSERENR_EL0) + & ARMV8_PMU_USERENR_MASK; + } + + return true; +} + +/* Silly macro to expand the DBG{BCR,BVR,WVR,WCR}n_EL1 registers in one go */ +#define DBG_BCR_BVR_WCR_WVR_EL1(n) \ + { SYS_DESC(SYS_DBGBVRn_EL1(n)), \ + trap_bvr, reset_bvr, 0, 0, get_bvr, set_bvr }, \ + { SYS_DESC(SYS_DBGBCRn_EL1(n)), \ + trap_bcr, reset_bcr, 0, 0, get_bcr, set_bcr }, \ + { SYS_DESC(SYS_DBGWVRn_EL1(n)), \ + trap_wvr, reset_wvr, 0, 0, get_wvr, set_wvr }, \ + { SYS_DESC(SYS_DBGWCRn_EL1(n)), \ + trap_wcr, reset_wcr, 0, 0, get_wcr, set_wcr } + +#define PMU_SYS_REG(name) \ + SYS_DESC(SYS_##name), .reset = reset_pmu_reg, \ + .visibility = pmu_visibility + +/* Macro to expand the PMEVCNTRn_EL0 register */ +#define PMU_PMEVCNTR_EL0(n) \ + { PMU_SYS_REG(PMEVCNTRn_EL0(n)), \ + .reset = reset_pmevcntr, .get_user = get_pmu_evcntr, \ + .access = access_pmu_evcntr, .reg = (PMEVCNTR0_EL0 + n), } + +/* Macro to expand the PMEVTYPERn_EL0 register */ +#define PMU_PMEVTYPER_EL0(n) \ + { PMU_SYS_REG(PMEVTYPERn_EL0(n)), \ + .reset = reset_pmevtyper, \ + .access = access_pmu_evtyper, .reg = (PMEVTYPER0_EL0 + n), } + +static bool undef_access(struct kvm_vcpu *vcpu, struct sys_reg_params *p, + const struct sys_reg_desc *r) +{ + kvm_inject_undefined(vcpu); + + return false; +} + +/* Macro to expand the AMU counter and type registers*/ +#define AMU_AMEVCNTR0_EL0(n) { SYS_DESC(SYS_AMEVCNTR0_EL0(n)), undef_access } +#define AMU_AMEVTYPER0_EL0(n) { SYS_DESC(SYS_AMEVTYPER0_EL0(n)), undef_access } +#define AMU_AMEVCNTR1_EL0(n) { SYS_DESC(SYS_AMEVCNTR1_EL0(n)), undef_access } +#define AMU_AMEVTYPER1_EL0(n) { SYS_DESC(SYS_AMEVTYPER1_EL0(n)), undef_access } + +static unsigned int ptrauth_visibility(const struct kvm_vcpu *vcpu, + const struct sys_reg_desc *rd) +{ + return vcpu_has_ptrauth(vcpu) ? 0 : REG_HIDDEN; +} + +/* + * If we land here on a PtrAuth access, that is because we didn't + * fixup the access on exit by allowing the PtrAuth sysregs. The only + * way this happens is when the guest does not have PtrAuth support + * enabled. + */ +#define __PTRAUTH_KEY(k) \ + { SYS_DESC(SYS_## k), undef_access, reset_unknown, k, \ + .visibility = ptrauth_visibility} + +#define PTRAUTH_KEY(k) \ + __PTRAUTH_KEY(k ## KEYLO_EL1), \ + __PTRAUTH_KEY(k ## KEYHI_EL1) + +static bool access_arch_timer(struct kvm_vcpu *vcpu, + struct sys_reg_params *p, + const struct sys_reg_desc *r) +{ + enum kvm_arch_timers tmr; + enum kvm_arch_timer_regs treg; + u64 reg = reg_to_encoding(r); + + switch (reg) { + case SYS_CNTP_TVAL_EL0: + case SYS_AARCH32_CNTP_TVAL: + tmr = TIMER_PTIMER; + treg = TIMER_REG_TVAL; + break; + case SYS_CNTP_CTL_EL0: + case SYS_AARCH32_CNTP_CTL: + tmr = TIMER_PTIMER; + treg = TIMER_REG_CTL; + break; + case SYS_CNTP_CVAL_EL0: + case SYS_AARCH32_CNTP_CVAL: + tmr = TIMER_PTIMER; + treg = TIMER_REG_CVAL; + break; + case SYS_CNTPCT_EL0: + case SYS_CNTPCTSS_EL0: + case SYS_AARCH32_CNTPCT: + tmr = TIMER_PTIMER; + treg = TIMER_REG_CNT; + break; + default: + print_sys_reg_msg(p, "%s", "Unhandled trapped timer register"); + kvm_inject_undefined(vcpu); + return false; + } + + if (p->is_write) + kvm_arm_timer_write_sysreg(vcpu, tmr, treg, p->regval); + else + p->regval = kvm_arm_timer_read_sysreg(vcpu, tmr, treg); + + return true; +} + +static s64 kvm_arm64_ftr_safe_value(u32 id, const struct arm64_ftr_bits *ftrp, + s64 new, s64 cur) +{ + struct arm64_ftr_bits kvm_ftr = *ftrp; + + /* Some features have different safe value type in KVM than host features */ + switch (id) { + case SYS_ID_AA64DFR0_EL1: + if (kvm_ftr.shift == ID_AA64DFR0_EL1_PMUVer_SHIFT) + kvm_ftr.type = FTR_LOWER_SAFE; + break; + case SYS_ID_DFR0_EL1: + if (kvm_ftr.shift == ID_DFR0_EL1_PerfMon_SHIFT) + kvm_ftr.type = FTR_LOWER_SAFE; + break; + } + + return arm64_ftr_safe_value(&kvm_ftr, new, cur); +} + +/** + * arm64_check_features() - Check if a feature register value constitutes + * a subset of features indicated by the idreg's KVM sanitised limit. + * + * This function will check if each feature field of @val is the "safe" value + * against idreg's KVM sanitised limit return from reset() callback. + * If a field value in @val is the same as the one in limit, it is always + * considered the safe value regardless For register fields that are not in + * writable, only the value in limit is considered the safe value. + * + * Return: 0 if all the fields are safe. Otherwise, return negative errno. + */ +static int arm64_check_features(struct kvm_vcpu *vcpu, + const struct sys_reg_desc *rd, + u64 val) +{ + const struct arm64_ftr_reg *ftr_reg; + const struct arm64_ftr_bits *ftrp = NULL; + u32 id = reg_to_encoding(rd); + u64 writable_mask = rd->val; + u64 limit = rd->reset(vcpu, rd); + u64 mask = 0; + + /* + * Hidden and unallocated ID registers may not have a corresponding + * struct arm64_ftr_reg. Of course, if the register is RAZ we know the + * only safe value is 0. + */ + if (sysreg_visible_as_raz(vcpu, rd)) + return val ? -E2BIG : 0; + + ftr_reg = get_arm64_ftr_reg(id); + if (!ftr_reg) + return -EINVAL; + + ftrp = ftr_reg->ftr_bits; + + for (; ftrp && ftrp->width; ftrp++) { + s64 f_val, f_lim, safe_val; + u64 ftr_mask; + + ftr_mask = arm64_ftr_mask(ftrp); + if ((ftr_mask & writable_mask) != ftr_mask) + continue; + + f_val = arm64_ftr_value(ftrp, val); + f_lim = arm64_ftr_value(ftrp, limit); + mask |= ftr_mask; + + if (f_val == f_lim) + safe_val = f_val; + else + safe_val = kvm_arm64_ftr_safe_value(id, ftrp, f_val, f_lim); + + if (safe_val != f_val) + return -E2BIG; + } + + /* For fields that are not writable, values in limit are the safe values. */ + if ((val & ~mask) != (limit & ~mask)) + return -E2BIG; + + return 0; +} + +static u8 pmuver_to_perfmon(u8 pmuver) +{ + switch (pmuver) { + case ID_AA64DFR0_EL1_PMUVer_IMP: + return ID_DFR0_EL1_PerfMon_PMUv3; + case ID_AA64DFR0_EL1_PMUVer_IMP_DEF: + return ID_DFR0_EL1_PerfMon_IMPDEF; + default: + /* Anything ARMv8.1+ and NI have the same value. For now. */ + return pmuver; + } +} + +/* Read a sanitised cpufeature ID register by sys_reg_desc */ +static u64 __kvm_read_sanitised_id_reg(const struct kvm_vcpu *vcpu, + const struct sys_reg_desc *r) +{ + u32 id = reg_to_encoding(r); + u64 val; + + if (sysreg_visible_as_raz(vcpu, r)) + return 0; + + val = read_sanitised_ftr_reg(id); + + switch (id) { + case SYS_ID_AA64PFR1_EL1: + if (!kvm_has_mte(vcpu->kvm)) + val &= ~ARM64_FEATURE_MASK(ID_AA64PFR1_EL1_MTE); + + val &= ~ARM64_FEATURE_MASK(ID_AA64PFR1_EL1_SME); + break; + case SYS_ID_AA64ISAR1_EL1: + if (!vcpu_has_ptrauth(vcpu)) + val &= ~(ARM64_FEATURE_MASK(ID_AA64ISAR1_EL1_APA) | + ARM64_FEATURE_MASK(ID_AA64ISAR1_EL1_API) | + ARM64_FEATURE_MASK(ID_AA64ISAR1_EL1_GPA) | + ARM64_FEATURE_MASK(ID_AA64ISAR1_EL1_GPI)); + break; + case SYS_ID_AA64ISAR2_EL1: + if (!vcpu_has_ptrauth(vcpu)) + val &= ~(ARM64_FEATURE_MASK(ID_AA64ISAR2_EL1_APA3) | + ARM64_FEATURE_MASK(ID_AA64ISAR2_EL1_GPA3)); + if (!cpus_have_final_cap(ARM64_HAS_WFXT)) + val &= ~ARM64_FEATURE_MASK(ID_AA64ISAR2_EL1_WFxT); + val &= ~ARM64_FEATURE_MASK(ID_AA64ISAR2_EL1_MOPS); + break; + case SYS_ID_AA64MMFR2_EL1: + val &= ~ID_AA64MMFR2_EL1_CCIDX_MASK; + break; + case SYS_ID_MMFR4_EL1: + val &= ~ARM64_FEATURE_MASK(ID_MMFR4_EL1_CCIDX); + break; + } + + return val; +} + +static u64 kvm_read_sanitised_id_reg(struct kvm_vcpu *vcpu, + const struct sys_reg_desc *r) +{ + return __kvm_read_sanitised_id_reg(vcpu, r); +} + +static u64 read_id_reg(const struct kvm_vcpu *vcpu, const struct sys_reg_desc *r) +{ + return IDREG(vcpu->kvm, reg_to_encoding(r)); +} + +/* + * Return true if the register's (Op0, Op1, CRn, CRm, Op2) is + * (3, 0, 0, crm, op2), where 1<=crm<8, 0<=op2<8. + */ +static inline bool is_id_reg(u32 id) +{ + return (sys_reg_Op0(id) == 3 && sys_reg_Op1(id) == 0 && + sys_reg_CRn(id) == 0 && sys_reg_CRm(id) >= 1 && + sys_reg_CRm(id) < 8); +} + +static unsigned int id_visibility(const struct kvm_vcpu *vcpu, + const struct sys_reg_desc *r) +{ + u32 id = reg_to_encoding(r); + + switch (id) { + case SYS_ID_AA64ZFR0_EL1: + if (!vcpu_has_sve(vcpu)) + return REG_RAZ; + break; + } + + return 0; +} + +static unsigned int aa32_id_visibility(const struct kvm_vcpu *vcpu, + const struct sys_reg_desc *r) +{ + /* + * AArch32 ID registers are UNKNOWN if AArch32 isn't implemented at any + * EL. Promote to RAZ/WI in order to guarantee consistency between + * systems. + */ + if (!kvm_supports_32bit_el0()) + return REG_RAZ | REG_USER_WI; + + return id_visibility(vcpu, r); +} + +static unsigned int raz_visibility(const struct kvm_vcpu *vcpu, + const struct sys_reg_desc *r) +{ + return REG_RAZ; +} + +/* cpufeature ID register access trap handlers */ + +static bool access_id_reg(struct kvm_vcpu *vcpu, + struct sys_reg_params *p, + const struct sys_reg_desc *r) +{ + if (p->is_write) + return write_to_read_only(vcpu, p, r); + + p->regval = read_id_reg(vcpu, r); + if (vcpu_has_nv(vcpu)) + access_nested_id_reg(vcpu, p, r); + + return true; +} + +/* Visibility overrides for SVE-specific control registers */ +static unsigned int sve_visibility(const struct kvm_vcpu *vcpu, + const struct sys_reg_desc *rd) +{ + if (vcpu_has_sve(vcpu)) + return 0; + + return REG_HIDDEN; +} + +static u64 read_sanitised_id_aa64pfr0_el1(struct kvm_vcpu *vcpu, + const struct sys_reg_desc *rd) +{ + u64 val = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1); + + if (!vcpu_has_sve(vcpu)) + val &= ~ID_AA64PFR0_EL1_SVE_MASK; + + /* + * The default is to expose CSV2 == 1 if the HW isn't affected. + * Although this is a per-CPU feature, we make it global because + * asymmetric systems are just a nuisance. + * + * Userspace can override this as long as it doesn't promise + * the impossible. + */ + if (arm64_get_spectre_v2_state() == SPECTRE_UNAFFECTED) { + val &= ~ID_AA64PFR0_EL1_CSV2_MASK; + val |= SYS_FIELD_PREP_ENUM(ID_AA64PFR0_EL1, CSV2, IMP); + } + if (arm64_get_meltdown_state() == SPECTRE_UNAFFECTED) { + val &= ~ID_AA64PFR0_EL1_CSV3_MASK; + val |= SYS_FIELD_PREP_ENUM(ID_AA64PFR0_EL1, CSV3, IMP); + } + + if (kvm_vgic_global_state.type == VGIC_V3) { + val &= ~ID_AA64PFR0_EL1_GIC_MASK; + val |= SYS_FIELD_PREP_ENUM(ID_AA64PFR0_EL1, GIC, IMP); + } + + val &= ~ID_AA64PFR0_EL1_AMU_MASK; + + return val; +} + +static u64 read_sanitised_id_aa64dfr0_el1(struct kvm_vcpu *vcpu, + const struct sys_reg_desc *rd) +{ + u64 val = read_sanitised_ftr_reg(SYS_ID_AA64DFR0_EL1); + + /* Limit debug to ARMv8.0 */ + val &= ~ID_AA64DFR0_EL1_DebugVer_MASK; + val |= SYS_FIELD_PREP_ENUM(ID_AA64DFR0_EL1, DebugVer, IMP); + + /* + * Only initialize the PMU version if the vCPU was configured with one. + */ + val &= ~ID_AA64DFR0_EL1_PMUVer_MASK; + if (kvm_vcpu_has_pmu(vcpu)) + val |= SYS_FIELD_PREP(ID_AA64DFR0_EL1, PMUVer, + kvm_arm_pmu_get_pmuver_limit()); + + /* Hide SPE from guests */ + val &= ~ID_AA64DFR0_EL1_PMSVer_MASK; + + return val; +} + +static int set_id_aa64dfr0_el1(struct kvm_vcpu *vcpu, + const struct sys_reg_desc *rd, + u64 val) +{ + u8 pmuver = SYS_FIELD_GET(ID_AA64DFR0_EL1, PMUVer, val); + + /* + * Prior to commit 3d0dba5764b9 ("KVM: arm64: PMU: Move the + * ID_AA64DFR0_EL1.PMUver limit to VM creation"), KVM erroneously + * exposed an IMP_DEF PMU to userspace and the guest on systems w/ + * non-architectural PMUs. Of course, PMUv3 is the only game in town for + * PMU virtualization, so the IMP_DEF value was rather user-hostile. + * + * At minimum, we're on the hook to allow values that were given to + * userspace by KVM. Cover our tracks here and replace the IMP_DEF value + * with a more sensible NI. The value of an ID register changing under + * the nose of the guest is unfortunate, but is certainly no more + * surprising than an ill-guided PMU driver poking at impdef system + * registers that end in an UNDEF... + */ + if (pmuver == ID_AA64DFR0_EL1_PMUVer_IMP_DEF) + val &= ~ID_AA64DFR0_EL1_PMUVer_MASK; + + return set_id_reg(vcpu, rd, val); +} + +static u64 read_sanitised_id_dfr0_el1(struct kvm_vcpu *vcpu, + const struct sys_reg_desc *rd) +{ + u8 perfmon = pmuver_to_perfmon(kvm_arm_pmu_get_pmuver_limit()); + u64 val = read_sanitised_ftr_reg(SYS_ID_DFR0_EL1); + + val &= ~ID_DFR0_EL1_PerfMon_MASK; + if (kvm_vcpu_has_pmu(vcpu)) + val |= SYS_FIELD_PREP(ID_DFR0_EL1, PerfMon, perfmon); + + return val; +} + +static int set_id_dfr0_el1(struct kvm_vcpu *vcpu, + const struct sys_reg_desc *rd, + u64 val) +{ + u8 perfmon = SYS_FIELD_GET(ID_DFR0_EL1, PerfMon, val); + + if (perfmon == ID_DFR0_EL1_PerfMon_IMPDEF) { + val &= ~ID_DFR0_EL1_PerfMon_MASK; + perfmon = 0; + } + + /* + * Allow DFR0_EL1.PerfMon to be set from userspace as long as + * it doesn't promise more than what the HW gives us on the + * AArch64 side (as everything is emulated with that), and + * that this is a PMUv3. + */ + if (perfmon != 0 && perfmon < ID_DFR0_EL1_PerfMon_PMUv3) + return -EINVAL; + + return set_id_reg(vcpu, rd, val); +} + +/* + * cpufeature ID register user accessors + * + * For now, these registers are immutable for userspace, so no values + * are stored, and for set_id_reg() we don't allow the effective value + * to be changed. + */ +static int get_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, + u64 *val) +{ + /* + * Avoid locking if the VM has already started, as the ID registers are + * guaranteed to be invariant at that point. + */ + if (kvm_vm_has_ran_once(vcpu->kvm)) { + *val = read_id_reg(vcpu, rd); + return 0; + } + + mutex_lock(&vcpu->kvm->arch.config_lock); + *val = read_id_reg(vcpu, rd); + mutex_unlock(&vcpu->kvm->arch.config_lock); + + return 0; +} + +static int set_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, + u64 val) +{ + u32 id = reg_to_encoding(rd); + int ret; + + mutex_lock(&vcpu->kvm->arch.config_lock); + + /* + * Once the VM has started the ID registers are immutable. Reject any + * write that does not match the final register value. + */ + if (kvm_vm_has_ran_once(vcpu->kvm)) { + if (val != read_id_reg(vcpu, rd)) + ret = -EBUSY; + else + ret = 0; + + mutex_unlock(&vcpu->kvm->arch.config_lock); + return ret; + } + + ret = arm64_check_features(vcpu, rd, val); + if (!ret) + IDREG(vcpu->kvm, id) = val; + + mutex_unlock(&vcpu->kvm->arch.config_lock); + + /* + * arm64_check_features() returns -E2BIG to indicate the register's + * feature set is a superset of the maximally-allowed register value. + * While it would be nice to precisely describe this to userspace, the + * existing UAPI for KVM_SET_ONE_REG has it that invalid register + * writes return -EINVAL. + */ + if (ret == -E2BIG) + ret = -EINVAL; + return ret; +} + +static int get_raz_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, + u64 *val) +{ + *val = 0; + return 0; +} + +static int set_wi_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, + u64 val) +{ + return 0; +} + +static bool access_ctr(struct kvm_vcpu *vcpu, struct sys_reg_params *p, + const struct sys_reg_desc *r) +{ + if (p->is_write) + return write_to_read_only(vcpu, p, r); + + p->regval = read_sanitised_ftr_reg(SYS_CTR_EL0); + return true; +} + +static bool access_clidr(struct kvm_vcpu *vcpu, struct sys_reg_params *p, + const struct sys_reg_desc *r) +{ + if (p->is_write) + return write_to_read_only(vcpu, p, r); + + p->regval = __vcpu_sys_reg(vcpu, r->reg); + return true; +} + +/* + * Fabricate a CLIDR_EL1 value instead of using the real value, which can vary + * by the physical CPU which the vcpu currently resides in. + */ +static u64 reset_clidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r) +{ + u64 ctr_el0 = read_sanitised_ftr_reg(SYS_CTR_EL0); + u64 clidr; + u8 loc; + + if ((ctr_el0 & CTR_EL0_IDC)) { + /* + * Data cache clean to the PoU is not required so LoUU and LoUIS + * will not be set and a unified cache, which will be marked as + * LoC, will be added. + * + * If not DIC, let the unified cache L2 so that an instruction + * cache can be added as L1 later. + */ + loc = (ctr_el0 & CTR_EL0_DIC) ? 1 : 2; + clidr = CACHE_TYPE_UNIFIED << CLIDR_CTYPE_SHIFT(loc); + } else { + /* + * Data cache clean to the PoU is required so let L1 have a data + * cache and mark it as LoUU and LoUIS. As L1 has a data cache, + * it can be marked as LoC too. + */ + loc = 1; + clidr = 1 << CLIDR_LOUU_SHIFT; + clidr |= 1 << CLIDR_LOUIS_SHIFT; + clidr |= CACHE_TYPE_DATA << CLIDR_CTYPE_SHIFT(1); + } + + /* + * Instruction cache invalidation to the PoU is required so let L1 have + * an instruction cache. If L1 already has a data cache, it will be + * CACHE_TYPE_SEPARATE. + */ + if (!(ctr_el0 & CTR_EL0_DIC)) + clidr |= CACHE_TYPE_INST << CLIDR_CTYPE_SHIFT(1); + + clidr |= loc << CLIDR_LOC_SHIFT; + + /* + * Add tag cache unified to data cache. Allocation tags and data are + * unified in a cache line so that it looks valid even if there is only + * one cache line. + */ + if (kvm_has_mte(vcpu->kvm)) + clidr |= 2 << CLIDR_TTYPE_SHIFT(loc); + + __vcpu_sys_reg(vcpu, r->reg) = clidr; + + return __vcpu_sys_reg(vcpu, r->reg); +} + +static int set_clidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, + u64 val) +{ + u64 ctr_el0 = read_sanitised_ftr_reg(SYS_CTR_EL0); + u64 idc = !CLIDR_LOC(val) || (!CLIDR_LOUIS(val) && !CLIDR_LOUU(val)); + + if ((val & CLIDR_EL1_RES0) || (!(ctr_el0 & CTR_EL0_IDC) && idc)) + return -EINVAL; + + __vcpu_sys_reg(vcpu, rd->reg) = val; + + return 0; +} + +static bool access_csselr(struct kvm_vcpu *vcpu, struct sys_reg_params *p, + const struct sys_reg_desc *r) +{ + int reg = r->reg; + + if (p->is_write) + vcpu_write_sys_reg(vcpu, p->regval, reg); + else + p->regval = vcpu_read_sys_reg(vcpu, reg); + return true; +} + +static bool access_ccsidr(struct kvm_vcpu *vcpu, struct sys_reg_params *p, + const struct sys_reg_desc *r) +{ + u32 csselr; + + if (p->is_write) + return write_to_read_only(vcpu, p, r); + + csselr = vcpu_read_sys_reg(vcpu, CSSELR_EL1); + csselr &= CSSELR_EL1_Level | CSSELR_EL1_InD; + if (csselr < CSSELR_MAX) + p->regval = get_ccsidr(vcpu, csselr); + + return true; +} + +static unsigned int mte_visibility(const struct kvm_vcpu *vcpu, + const struct sys_reg_desc *rd) +{ + if (kvm_has_mte(vcpu->kvm)) + return 0; + + return REG_HIDDEN; +} + +#define MTE_REG(name) { \ + SYS_DESC(SYS_##name), \ + .access = undef_access, \ + .reset = reset_unknown, \ + .reg = name, \ + .visibility = mte_visibility, \ +} + +static unsigned int el2_visibility(const struct kvm_vcpu *vcpu, + const struct sys_reg_desc *rd) +{ + if (vcpu_has_nv(vcpu)) + return 0; + + return REG_HIDDEN; +} + +#define EL2_REG(name, acc, rst, v) { \ + SYS_DESC(SYS_##name), \ + .access = acc, \ + .reset = rst, \ + .reg = name, \ + .visibility = el2_visibility, \ + .val = v, \ +} + +/* + * EL{0,1}2 registers are the EL2 view on an EL0 or EL1 register when + * HCR_EL2.E2H==1, and only in the sysreg table for convenience of + * handling traps. Given that, they are always hidden from userspace. + */ +static unsigned int elx2_visibility(const struct kvm_vcpu *vcpu, + const struct sys_reg_desc *rd) +{ + return REG_HIDDEN_USER; +} + +#define EL12_REG(name, acc, rst, v) { \ + SYS_DESC(SYS_##name##_EL12), \ + .access = acc, \ + .reset = rst, \ + .reg = name##_EL1, \ + .val = v, \ + .visibility = elx2_visibility, \ +} + +/* + * Since reset() callback and field val are not used for idregs, they will be + * used for specific purposes for idregs. + * The reset() would return KVM sanitised register value. The value would be the + * same as the host kernel sanitised value if there is no KVM sanitisation. + * The val would be used as a mask indicating writable fields for the idreg. + * Only bits with 1 are writable from userspace. This mask might not be + * necessary in the future whenever all ID registers are enabled as writable + * from userspace. + */ + +/* sys_reg_desc initialiser for known cpufeature ID registers */ +#define ID_SANITISED(name) { \ + SYS_DESC(SYS_##name), \ + .access = access_id_reg, \ + .get_user = get_id_reg, \ + .set_user = set_id_reg, \ + .visibility = id_visibility, \ + .reset = kvm_read_sanitised_id_reg, \ + .val = 0, \ +} + +/* sys_reg_desc initialiser for known cpufeature ID registers */ +#define AA32_ID_SANITISED(name) { \ + SYS_DESC(SYS_##name), \ + .access = access_id_reg, \ + .get_user = get_id_reg, \ + .set_user = set_id_reg, \ + .visibility = aa32_id_visibility, \ + .reset = kvm_read_sanitised_id_reg, \ + .val = 0, \ +} + +/* + * sys_reg_desc initialiser for architecturally unallocated cpufeature ID + * register with encoding Op0=3, Op1=0, CRn=0, CRm=crm, Op2=op2 + * (1 <= crm < 8, 0 <= Op2 < 8). + */ +#define ID_UNALLOCATED(crm, op2) { \ + Op0(3), Op1(0), CRn(0), CRm(crm), Op2(op2), \ + .access = access_id_reg, \ + .get_user = get_id_reg, \ + .set_user = set_id_reg, \ + .visibility = raz_visibility, \ + .reset = kvm_read_sanitised_id_reg, \ + .val = 0, \ +} + +/* + * sys_reg_desc initialiser for known ID registers that we hide from guests. + * For now, these are exposed just like unallocated ID regs: they appear + * RAZ for the guest. + */ +#define ID_HIDDEN(name) { \ + SYS_DESC(SYS_##name), \ + .access = access_id_reg, \ + .get_user = get_id_reg, \ + .set_user = set_id_reg, \ + .visibility = raz_visibility, \ + .reset = kvm_read_sanitised_id_reg, \ + .val = 0, \ +} + +static bool access_sp_el1(struct kvm_vcpu *vcpu, + struct sys_reg_params *p, + const struct sys_reg_desc *r) +{ + if (p->is_write) + __vcpu_sys_reg(vcpu, SP_EL1) = p->regval; + else + p->regval = __vcpu_sys_reg(vcpu, SP_EL1); + + return true; +} + +static bool access_elr(struct kvm_vcpu *vcpu, + struct sys_reg_params *p, + const struct sys_reg_desc *r) +{ + if (p->is_write) + vcpu_write_sys_reg(vcpu, p->regval, ELR_EL1); + else + p->regval = vcpu_read_sys_reg(vcpu, ELR_EL1); + + return true; +} + +static bool access_spsr(struct kvm_vcpu *vcpu, + struct sys_reg_params *p, + const struct sys_reg_desc *r) +{ + if (p->is_write) + __vcpu_sys_reg(vcpu, SPSR_EL1) = p->regval; + else + p->regval = __vcpu_sys_reg(vcpu, SPSR_EL1); + + return true; +} + +/* + * Architected system registers. + * Important: Must be sorted ascending by Op0, Op1, CRn, CRm, Op2 + * + * Debug handling: We do trap most, if not all debug related system + * registers. The implementation is good enough to ensure that a guest + * can use these with minimal performance degradation. The drawback is + * that we don't implement any of the external debug architecture. + * This should be revisited if we ever encounter a more demanding + * guest... + */ +static const struct sys_reg_desc sys_reg_descs[] = { + { SYS_DESC(SYS_DC_ISW), access_dcsw }, + { SYS_DESC(SYS_DC_IGSW), access_dcgsw }, + { SYS_DESC(SYS_DC_IGDSW), access_dcgsw }, + { SYS_DESC(SYS_DC_CSW), access_dcsw }, + { SYS_DESC(SYS_DC_CGSW), access_dcgsw }, + { SYS_DESC(SYS_DC_CGDSW), access_dcgsw }, + { SYS_DESC(SYS_DC_CISW), access_dcsw }, + { SYS_DESC(SYS_DC_CIGSW), access_dcgsw }, + { SYS_DESC(SYS_DC_CIGDSW), access_dcgsw }, + + DBG_BCR_BVR_WCR_WVR_EL1(0), + DBG_BCR_BVR_WCR_WVR_EL1(1), + { SYS_DESC(SYS_MDCCINT_EL1), trap_debug_regs, reset_val, MDCCINT_EL1, 0 }, + { SYS_DESC(SYS_MDSCR_EL1), trap_debug_regs, reset_val, MDSCR_EL1, 0 }, + DBG_BCR_BVR_WCR_WVR_EL1(2), + DBG_BCR_BVR_WCR_WVR_EL1(3), + DBG_BCR_BVR_WCR_WVR_EL1(4), + DBG_BCR_BVR_WCR_WVR_EL1(5), + DBG_BCR_BVR_WCR_WVR_EL1(6), + DBG_BCR_BVR_WCR_WVR_EL1(7), + DBG_BCR_BVR_WCR_WVR_EL1(8), + DBG_BCR_BVR_WCR_WVR_EL1(9), + DBG_BCR_BVR_WCR_WVR_EL1(10), + DBG_BCR_BVR_WCR_WVR_EL1(11), + DBG_BCR_BVR_WCR_WVR_EL1(12), + DBG_BCR_BVR_WCR_WVR_EL1(13), + DBG_BCR_BVR_WCR_WVR_EL1(14), + DBG_BCR_BVR_WCR_WVR_EL1(15), + + { SYS_DESC(SYS_MDRAR_EL1), trap_raz_wi }, + { SYS_DESC(SYS_OSLAR_EL1), trap_oslar_el1 }, + { SYS_DESC(SYS_OSLSR_EL1), trap_oslsr_el1, reset_val, OSLSR_EL1, + OSLSR_EL1_OSLM_IMPLEMENTED, .set_user = set_oslsr_el1, }, + { SYS_DESC(SYS_OSDLR_EL1), trap_raz_wi }, + { SYS_DESC(SYS_DBGPRCR_EL1), trap_raz_wi }, + { SYS_DESC(SYS_DBGCLAIMSET_EL1), trap_raz_wi }, + { SYS_DESC(SYS_DBGCLAIMCLR_EL1), trap_raz_wi }, + { SYS_DESC(SYS_DBGAUTHSTATUS_EL1), trap_dbgauthstatus_el1 }, + + { SYS_DESC(SYS_MDCCSR_EL0), trap_raz_wi }, + { SYS_DESC(SYS_DBGDTR_EL0), trap_raz_wi }, + // DBGDTR[TR]X_EL0 share the same encoding + { SYS_DESC(SYS_DBGDTRTX_EL0), trap_raz_wi }, + + { SYS_DESC(SYS_DBGVCR32_EL2), NULL, reset_val, DBGVCR32_EL2, 0 }, + + { SYS_DESC(SYS_MPIDR_EL1), NULL, reset_mpidr, MPIDR_EL1 }, + + /* + * ID regs: all ID_SANITISED() entries here must have corresponding + * entries in arm64_ftr_regs[]. + */ + + /* AArch64 mappings of the AArch32 ID registers */ + /* CRm=1 */ + AA32_ID_SANITISED(ID_PFR0_EL1), + AA32_ID_SANITISED(ID_PFR1_EL1), + { SYS_DESC(SYS_ID_DFR0_EL1), + .access = access_id_reg, + .get_user = get_id_reg, + .set_user = set_id_dfr0_el1, + .visibility = aa32_id_visibility, + .reset = read_sanitised_id_dfr0_el1, + .val = ID_DFR0_EL1_PerfMon_MASK, }, + ID_HIDDEN(ID_AFR0_EL1), + AA32_ID_SANITISED(ID_MMFR0_EL1), + AA32_ID_SANITISED(ID_MMFR1_EL1), + AA32_ID_SANITISED(ID_MMFR2_EL1), + AA32_ID_SANITISED(ID_MMFR3_EL1), + + /* CRm=2 */ + AA32_ID_SANITISED(ID_ISAR0_EL1), + AA32_ID_SANITISED(ID_ISAR1_EL1), + AA32_ID_SANITISED(ID_ISAR2_EL1), + AA32_ID_SANITISED(ID_ISAR3_EL1), + AA32_ID_SANITISED(ID_ISAR4_EL1), + AA32_ID_SANITISED(ID_ISAR5_EL1), + AA32_ID_SANITISED(ID_MMFR4_EL1), + AA32_ID_SANITISED(ID_ISAR6_EL1), + + /* CRm=3 */ + AA32_ID_SANITISED(MVFR0_EL1), + AA32_ID_SANITISED(MVFR1_EL1), + AA32_ID_SANITISED(MVFR2_EL1), + ID_UNALLOCATED(3,3), + AA32_ID_SANITISED(ID_PFR2_EL1), + ID_HIDDEN(ID_DFR1_EL1), + AA32_ID_SANITISED(ID_MMFR5_EL1), + ID_UNALLOCATED(3,7), + + /* AArch64 ID registers */ + /* CRm=4 */ + { SYS_DESC(SYS_ID_AA64PFR0_EL1), + .access = access_id_reg, + .get_user = get_id_reg, + .set_user = set_id_reg, + .reset = read_sanitised_id_aa64pfr0_el1, + .val = ID_AA64PFR0_EL1_CSV2_MASK | ID_AA64PFR0_EL1_CSV3_MASK, }, + ID_SANITISED(ID_AA64PFR1_EL1), + ID_UNALLOCATED(4,2), + ID_UNALLOCATED(4,3), + ID_SANITISED(ID_AA64ZFR0_EL1), + ID_HIDDEN(ID_AA64SMFR0_EL1), + ID_UNALLOCATED(4,6), + ID_UNALLOCATED(4,7), + + /* CRm=5 */ + { SYS_DESC(SYS_ID_AA64DFR0_EL1), + .access = access_id_reg, + .get_user = get_id_reg, + .set_user = set_id_aa64dfr0_el1, + .reset = read_sanitised_id_aa64dfr0_el1, + .val = ID_AA64DFR0_EL1_PMUVer_MASK, }, + ID_SANITISED(ID_AA64DFR1_EL1), + ID_UNALLOCATED(5,2), + ID_UNALLOCATED(5,3), + ID_HIDDEN(ID_AA64AFR0_EL1), + ID_HIDDEN(ID_AA64AFR1_EL1), + ID_UNALLOCATED(5,6), + ID_UNALLOCATED(5,7), + + /* CRm=6 */ + ID_SANITISED(ID_AA64ISAR0_EL1), + ID_SANITISED(ID_AA64ISAR1_EL1), + ID_SANITISED(ID_AA64ISAR2_EL1), + ID_UNALLOCATED(6,3), + ID_UNALLOCATED(6,4), + ID_UNALLOCATED(6,5), + ID_UNALLOCATED(6,6), + ID_UNALLOCATED(6,7), + + /* CRm=7 */ + ID_SANITISED(ID_AA64MMFR0_EL1), + ID_SANITISED(ID_AA64MMFR1_EL1), + ID_SANITISED(ID_AA64MMFR2_EL1), + ID_SANITISED(ID_AA64MMFR3_EL1), + ID_UNALLOCATED(7,4), + ID_UNALLOCATED(7,5), + ID_UNALLOCATED(7,6), + ID_UNALLOCATED(7,7), + + { SYS_DESC(SYS_SCTLR_EL1), access_vm_reg, reset_val, SCTLR_EL1, 0x00C50078 }, + { SYS_DESC(SYS_ACTLR_EL1), access_actlr, reset_actlr, ACTLR_EL1 }, + { SYS_DESC(SYS_CPACR_EL1), NULL, reset_val, CPACR_EL1, 0 }, + + MTE_REG(RGSR_EL1), + MTE_REG(GCR_EL1), + + { SYS_DESC(SYS_ZCR_EL1), NULL, reset_val, ZCR_EL1, 0, .visibility = sve_visibility }, + { SYS_DESC(SYS_TRFCR_EL1), undef_access }, + { SYS_DESC(SYS_SMPRI_EL1), undef_access }, + { SYS_DESC(SYS_SMCR_EL1), undef_access }, + { SYS_DESC(SYS_TTBR0_EL1), access_vm_reg, reset_unknown, TTBR0_EL1 }, + { SYS_DESC(SYS_TTBR1_EL1), access_vm_reg, reset_unknown, TTBR1_EL1 }, + { SYS_DESC(SYS_TCR_EL1), access_vm_reg, reset_val, TCR_EL1, 0 }, + { SYS_DESC(SYS_TCR2_EL1), access_vm_reg, reset_val, TCR2_EL1, 0 }, + + PTRAUTH_KEY(APIA), + PTRAUTH_KEY(APIB), + PTRAUTH_KEY(APDA), + PTRAUTH_KEY(APDB), + PTRAUTH_KEY(APGA), + + { SYS_DESC(SYS_SPSR_EL1), access_spsr}, + { SYS_DESC(SYS_ELR_EL1), access_elr}, + + { SYS_DESC(SYS_AFSR0_EL1), access_vm_reg, reset_unknown, AFSR0_EL1 }, + { SYS_DESC(SYS_AFSR1_EL1), access_vm_reg, reset_unknown, AFSR1_EL1 }, + { SYS_DESC(SYS_ESR_EL1), access_vm_reg, reset_unknown, ESR_EL1 }, + + { SYS_DESC(SYS_ERRIDR_EL1), trap_raz_wi }, + { SYS_DESC(SYS_ERRSELR_EL1), trap_raz_wi }, + { SYS_DESC(SYS_ERXFR_EL1), trap_raz_wi }, + { SYS_DESC(SYS_ERXCTLR_EL1), trap_raz_wi }, + { SYS_DESC(SYS_ERXSTATUS_EL1), trap_raz_wi }, + { SYS_DESC(SYS_ERXADDR_EL1), trap_raz_wi }, + { SYS_DESC(SYS_ERXMISC0_EL1), trap_raz_wi }, + { SYS_DESC(SYS_ERXMISC1_EL1), trap_raz_wi }, + + MTE_REG(TFSR_EL1), + MTE_REG(TFSRE0_EL1), + + { SYS_DESC(SYS_FAR_EL1), access_vm_reg, reset_unknown, FAR_EL1 }, + { SYS_DESC(SYS_PAR_EL1), NULL, reset_unknown, PAR_EL1 }, + + { SYS_DESC(SYS_PMSCR_EL1), undef_access }, + { SYS_DESC(SYS_PMSNEVFR_EL1), undef_access }, + { SYS_DESC(SYS_PMSICR_EL1), undef_access }, + { SYS_DESC(SYS_PMSIRR_EL1), undef_access }, + { SYS_DESC(SYS_PMSFCR_EL1), undef_access }, + { SYS_DESC(SYS_PMSEVFR_EL1), undef_access }, + { SYS_DESC(SYS_PMSLATFR_EL1), undef_access }, + { SYS_DESC(SYS_PMSIDR_EL1), undef_access }, + { SYS_DESC(SYS_PMBLIMITR_EL1), undef_access }, + { SYS_DESC(SYS_PMBPTR_EL1), undef_access }, + { SYS_DESC(SYS_PMBSR_EL1), undef_access }, + /* PMBIDR_EL1 is not trapped */ + + { PMU_SYS_REG(PMINTENSET_EL1), + .access = access_pminten, .reg = PMINTENSET_EL1 }, + { PMU_SYS_REG(PMINTENCLR_EL1), + .access = access_pminten, .reg = PMINTENSET_EL1 }, + { SYS_DESC(SYS_PMMIR_EL1), trap_raz_wi }, + + { SYS_DESC(SYS_MAIR_EL1), access_vm_reg, reset_unknown, MAIR_EL1 }, + { SYS_DESC(SYS_PIRE0_EL1), NULL, reset_unknown, PIRE0_EL1 }, + { SYS_DESC(SYS_PIR_EL1), NULL, reset_unknown, PIR_EL1 }, + { SYS_DESC(SYS_AMAIR_EL1), access_vm_reg, reset_amair_el1, AMAIR_EL1 }, + + { SYS_DESC(SYS_LORSA_EL1), trap_loregion }, + { SYS_DESC(SYS_LOREA_EL1), trap_loregion }, + { SYS_DESC(SYS_LORN_EL1), trap_loregion }, + { SYS_DESC(SYS_LORC_EL1), trap_loregion }, + { SYS_DESC(SYS_LORID_EL1), trap_loregion }, + + { SYS_DESC(SYS_VBAR_EL1), access_rw, reset_val, VBAR_EL1, 0 }, + { SYS_DESC(SYS_DISR_EL1), NULL, reset_val, DISR_EL1, 0 }, + + { SYS_DESC(SYS_ICC_IAR0_EL1), write_to_read_only }, + { SYS_DESC(SYS_ICC_EOIR0_EL1), read_from_write_only }, + { SYS_DESC(SYS_ICC_HPPIR0_EL1), write_to_read_only }, + { SYS_DESC(SYS_ICC_DIR_EL1), read_from_write_only }, + { SYS_DESC(SYS_ICC_RPR_EL1), write_to_read_only }, + { SYS_DESC(SYS_ICC_SGI1R_EL1), access_gic_sgi }, + { SYS_DESC(SYS_ICC_ASGI1R_EL1), access_gic_sgi }, + { SYS_DESC(SYS_ICC_SGI0R_EL1), access_gic_sgi }, + { SYS_DESC(SYS_ICC_IAR1_EL1), write_to_read_only }, + { SYS_DESC(SYS_ICC_EOIR1_EL1), read_from_write_only }, + { SYS_DESC(SYS_ICC_HPPIR1_EL1), write_to_read_only }, + { SYS_DESC(SYS_ICC_SRE_EL1), access_gic_sre }, + + { SYS_DESC(SYS_CONTEXTIDR_EL1), access_vm_reg, reset_val, CONTEXTIDR_EL1, 0 }, + { SYS_DESC(SYS_TPIDR_EL1), NULL, reset_unknown, TPIDR_EL1 }, + + { SYS_DESC(SYS_ACCDATA_EL1), undef_access }, + + { SYS_DESC(SYS_SCXTNUM_EL1), undef_access }, + + { SYS_DESC(SYS_CNTKCTL_EL1), NULL, reset_val, CNTKCTL_EL1, 0}, + + { SYS_DESC(SYS_CCSIDR_EL1), access_ccsidr }, + { SYS_DESC(SYS_CLIDR_EL1), access_clidr, reset_clidr, CLIDR_EL1, + .set_user = set_clidr }, + { SYS_DESC(SYS_CCSIDR2_EL1), undef_access }, + { SYS_DESC(SYS_SMIDR_EL1), undef_access }, + { SYS_DESC(SYS_CSSELR_EL1), access_csselr, reset_unknown, CSSELR_EL1 }, + { SYS_DESC(SYS_CTR_EL0), access_ctr }, + { SYS_DESC(SYS_SVCR), undef_access }, + + { PMU_SYS_REG(PMCR_EL0), .access = access_pmcr, + .reset = reset_pmcr, .reg = PMCR_EL0 }, + { PMU_SYS_REG(PMCNTENSET_EL0), + .access = access_pmcnten, .reg = PMCNTENSET_EL0 }, + { PMU_SYS_REG(PMCNTENCLR_EL0), + .access = access_pmcnten, .reg = PMCNTENSET_EL0 }, + { PMU_SYS_REG(PMOVSCLR_EL0), + .access = access_pmovs, .reg = PMOVSSET_EL0 }, + /* + * PM_SWINC_EL0 is exposed to userspace as RAZ/WI, as it was + * previously (and pointlessly) advertised in the past... + */ + { PMU_SYS_REG(PMSWINC_EL0), + .get_user = get_raz_reg, .set_user = set_wi_reg, + .access = access_pmswinc, .reset = NULL }, + { PMU_SYS_REG(PMSELR_EL0), + .access = access_pmselr, .reset = reset_pmselr, .reg = PMSELR_EL0 }, + { PMU_SYS_REG(PMCEID0_EL0), + .access = access_pmceid, .reset = NULL }, + { PMU_SYS_REG(PMCEID1_EL0), + .access = access_pmceid, .reset = NULL }, + { PMU_SYS_REG(PMCCNTR_EL0), + .access = access_pmu_evcntr, .reset = reset_unknown, + .reg = PMCCNTR_EL0, .get_user = get_pmu_evcntr}, + { PMU_SYS_REG(PMXEVTYPER_EL0), + .access = access_pmu_evtyper, .reset = NULL }, + { PMU_SYS_REG(PMXEVCNTR_EL0), + .access = access_pmu_evcntr, .reset = NULL }, + /* + * PMUSERENR_EL0 resets as unknown in 64bit mode while it resets as zero + * in 32bit mode. Here we choose to reset it as zero for consistency. + */ + { PMU_SYS_REG(PMUSERENR_EL0), .access = access_pmuserenr, + .reset = reset_val, .reg = PMUSERENR_EL0, .val = 0 }, + { PMU_SYS_REG(PMOVSSET_EL0), + .access = access_pmovs, .reg = PMOVSSET_EL0 }, + + { SYS_DESC(SYS_TPIDR_EL0), NULL, reset_unknown, TPIDR_EL0 }, + { SYS_DESC(SYS_TPIDRRO_EL0), NULL, reset_unknown, TPIDRRO_EL0 }, + { SYS_DESC(SYS_TPIDR2_EL0), undef_access }, + + { SYS_DESC(SYS_SCXTNUM_EL0), undef_access }, + + { SYS_DESC(SYS_AMCR_EL0), undef_access }, + { SYS_DESC(SYS_AMCFGR_EL0), undef_access }, + { SYS_DESC(SYS_AMCGCR_EL0), undef_access }, + { SYS_DESC(SYS_AMUSERENR_EL0), undef_access }, + { SYS_DESC(SYS_AMCNTENCLR0_EL0), undef_access }, + { SYS_DESC(SYS_AMCNTENSET0_EL0), undef_access }, + { SYS_DESC(SYS_AMCNTENCLR1_EL0), undef_access }, + { SYS_DESC(SYS_AMCNTENSET1_EL0), undef_access }, + AMU_AMEVCNTR0_EL0(0), + AMU_AMEVCNTR0_EL0(1), + AMU_AMEVCNTR0_EL0(2), + AMU_AMEVCNTR0_EL0(3), + AMU_AMEVCNTR0_EL0(4), + AMU_AMEVCNTR0_EL0(5), + AMU_AMEVCNTR0_EL0(6), + AMU_AMEVCNTR0_EL0(7), + AMU_AMEVCNTR0_EL0(8), + AMU_AMEVCNTR0_EL0(9), + AMU_AMEVCNTR0_EL0(10), + AMU_AMEVCNTR0_EL0(11), + AMU_AMEVCNTR0_EL0(12), + AMU_AMEVCNTR0_EL0(13), + AMU_AMEVCNTR0_EL0(14), + AMU_AMEVCNTR0_EL0(15), + AMU_AMEVTYPER0_EL0(0), + AMU_AMEVTYPER0_EL0(1), + AMU_AMEVTYPER0_EL0(2), + AMU_AMEVTYPER0_EL0(3), + AMU_AMEVTYPER0_EL0(4), + AMU_AMEVTYPER0_EL0(5), + AMU_AMEVTYPER0_EL0(6), + AMU_AMEVTYPER0_EL0(7), + AMU_AMEVTYPER0_EL0(8), + AMU_AMEVTYPER0_EL0(9), + AMU_AMEVTYPER0_EL0(10), + AMU_AMEVTYPER0_EL0(11), + AMU_AMEVTYPER0_EL0(12), + AMU_AMEVTYPER0_EL0(13), + AMU_AMEVTYPER0_EL0(14), + AMU_AMEVTYPER0_EL0(15), + AMU_AMEVCNTR1_EL0(0), + AMU_AMEVCNTR1_EL0(1), + AMU_AMEVCNTR1_EL0(2), + AMU_AMEVCNTR1_EL0(3), + AMU_AMEVCNTR1_EL0(4), + AMU_AMEVCNTR1_EL0(5), + AMU_AMEVCNTR1_EL0(6), + AMU_AMEVCNTR1_EL0(7), + AMU_AMEVCNTR1_EL0(8), + AMU_AMEVCNTR1_EL0(9), + AMU_AMEVCNTR1_EL0(10), + AMU_AMEVCNTR1_EL0(11), + AMU_AMEVCNTR1_EL0(12), + AMU_AMEVCNTR1_EL0(13), + AMU_AMEVCNTR1_EL0(14), + AMU_AMEVCNTR1_EL0(15), + AMU_AMEVTYPER1_EL0(0), + AMU_AMEVTYPER1_EL0(1), + AMU_AMEVTYPER1_EL0(2), + AMU_AMEVTYPER1_EL0(3), + AMU_AMEVTYPER1_EL0(4), + AMU_AMEVTYPER1_EL0(5), + AMU_AMEVTYPER1_EL0(6), + AMU_AMEVTYPER1_EL0(7), + AMU_AMEVTYPER1_EL0(8), + AMU_AMEVTYPER1_EL0(9), + AMU_AMEVTYPER1_EL0(10), + AMU_AMEVTYPER1_EL0(11), + AMU_AMEVTYPER1_EL0(12), + AMU_AMEVTYPER1_EL0(13), + AMU_AMEVTYPER1_EL0(14), + AMU_AMEVTYPER1_EL0(15), + + { SYS_DESC(SYS_CNTPCT_EL0), access_arch_timer }, + { SYS_DESC(SYS_CNTPCTSS_EL0), access_arch_timer }, + { SYS_DESC(SYS_CNTP_TVAL_EL0), access_arch_timer }, + { SYS_DESC(SYS_CNTP_CTL_EL0), access_arch_timer }, + { SYS_DESC(SYS_CNTP_CVAL_EL0), access_arch_timer }, + + /* PMEVCNTRn_EL0 */ + PMU_PMEVCNTR_EL0(0), + PMU_PMEVCNTR_EL0(1), + PMU_PMEVCNTR_EL0(2), + PMU_PMEVCNTR_EL0(3), + PMU_PMEVCNTR_EL0(4), + PMU_PMEVCNTR_EL0(5), + PMU_PMEVCNTR_EL0(6), + PMU_PMEVCNTR_EL0(7), + PMU_PMEVCNTR_EL0(8), + PMU_PMEVCNTR_EL0(9), + PMU_PMEVCNTR_EL0(10), + PMU_PMEVCNTR_EL0(11), + PMU_PMEVCNTR_EL0(12), + PMU_PMEVCNTR_EL0(13), + PMU_PMEVCNTR_EL0(14), + PMU_PMEVCNTR_EL0(15), + PMU_PMEVCNTR_EL0(16), + PMU_PMEVCNTR_EL0(17), + PMU_PMEVCNTR_EL0(18), + PMU_PMEVCNTR_EL0(19), + PMU_PMEVCNTR_EL0(20), + PMU_PMEVCNTR_EL0(21), + PMU_PMEVCNTR_EL0(22), + PMU_PMEVCNTR_EL0(23), + PMU_PMEVCNTR_EL0(24), + PMU_PMEVCNTR_EL0(25), + PMU_PMEVCNTR_EL0(26), + PMU_PMEVCNTR_EL0(27), + PMU_PMEVCNTR_EL0(28), + PMU_PMEVCNTR_EL0(29), + PMU_PMEVCNTR_EL0(30), + /* PMEVTYPERn_EL0 */ + PMU_PMEVTYPER_EL0(0), + PMU_PMEVTYPER_EL0(1), + PMU_PMEVTYPER_EL0(2), + PMU_PMEVTYPER_EL0(3), + PMU_PMEVTYPER_EL0(4), + PMU_PMEVTYPER_EL0(5), + PMU_PMEVTYPER_EL0(6), + PMU_PMEVTYPER_EL0(7), + PMU_PMEVTYPER_EL0(8), + PMU_PMEVTYPER_EL0(9), + PMU_PMEVTYPER_EL0(10), + PMU_PMEVTYPER_EL0(11), + PMU_PMEVTYPER_EL0(12), + PMU_PMEVTYPER_EL0(13), + PMU_PMEVTYPER_EL0(14), + PMU_PMEVTYPER_EL0(15), + PMU_PMEVTYPER_EL0(16), + PMU_PMEVTYPER_EL0(17), + PMU_PMEVTYPER_EL0(18), + PMU_PMEVTYPER_EL0(19), + PMU_PMEVTYPER_EL0(20), + PMU_PMEVTYPER_EL0(21), + PMU_PMEVTYPER_EL0(22), + PMU_PMEVTYPER_EL0(23), + PMU_PMEVTYPER_EL0(24), + PMU_PMEVTYPER_EL0(25), + PMU_PMEVTYPER_EL0(26), + PMU_PMEVTYPER_EL0(27), + PMU_PMEVTYPER_EL0(28), + PMU_PMEVTYPER_EL0(29), + PMU_PMEVTYPER_EL0(30), + /* + * PMCCFILTR_EL0 resets as unknown in 64bit mode while it resets as zero + * in 32bit mode. Here we choose to reset it as zero for consistency. + */ + { PMU_SYS_REG(PMCCFILTR_EL0), .access = access_pmu_evtyper, + .reset = reset_val, .reg = PMCCFILTR_EL0, .val = 0 }, + + EL2_REG(VPIDR_EL2, access_rw, reset_unknown, 0), + EL2_REG(VMPIDR_EL2, access_rw, reset_unknown, 0), + EL2_REG(SCTLR_EL2, access_rw, reset_val, SCTLR_EL2_RES1), + EL2_REG(ACTLR_EL2, access_rw, reset_val, 0), + EL2_REG(HCR_EL2, access_rw, reset_val, 0), + EL2_REG(MDCR_EL2, access_rw, reset_val, 0), + EL2_REG(CPTR_EL2, access_rw, reset_val, CPTR_NVHE_EL2_RES1), + EL2_REG(HSTR_EL2, access_rw, reset_val, 0), + EL2_REG(HFGRTR_EL2, access_rw, reset_val, 0), + EL2_REG(HFGWTR_EL2, access_rw, reset_val, 0), + EL2_REG(HFGITR_EL2, access_rw, reset_val, 0), + EL2_REG(HACR_EL2, access_rw, reset_val, 0), + + EL2_REG(HCRX_EL2, access_rw, reset_val, 0), + + EL2_REG(TTBR0_EL2, access_rw, reset_val, 0), + EL2_REG(TTBR1_EL2, access_rw, reset_val, 0), + EL2_REG(TCR_EL2, access_rw, reset_val, TCR_EL2_RES1), + EL2_REG(VTTBR_EL2, access_rw, reset_val, 0), + EL2_REG(VTCR_EL2, access_rw, reset_val, 0), + + { SYS_DESC(SYS_DACR32_EL2), NULL, reset_unknown, DACR32_EL2 }, + EL2_REG(HDFGRTR_EL2, access_rw, reset_val, 0), + EL2_REG(HDFGWTR_EL2, access_rw, reset_val, 0), + EL2_REG(SPSR_EL2, access_rw, reset_val, 0), + EL2_REG(ELR_EL2, access_rw, reset_val, 0), + { SYS_DESC(SYS_SP_EL1), access_sp_el1}, + + { SYS_DESC(SYS_IFSR32_EL2), NULL, reset_unknown, IFSR32_EL2 }, + EL2_REG(AFSR0_EL2, access_rw, reset_val, 0), + EL2_REG(AFSR1_EL2, access_rw, reset_val, 0), + EL2_REG(ESR_EL2, access_rw, reset_val, 0), + { SYS_DESC(SYS_FPEXC32_EL2), NULL, reset_val, FPEXC32_EL2, 0x700 }, + + EL2_REG(FAR_EL2, access_rw, reset_val, 0), + EL2_REG(HPFAR_EL2, access_rw, reset_val, 0), + + EL2_REG(MAIR_EL2, access_rw, reset_val, 0), + EL2_REG(AMAIR_EL2, access_rw, reset_val, 0), + + EL2_REG(VBAR_EL2, access_rw, reset_val, 0), + EL2_REG(RVBAR_EL2, access_rw, reset_val, 0), + { SYS_DESC(SYS_RMR_EL2), trap_undef }, + + EL2_REG(CONTEXTIDR_EL2, access_rw, reset_val, 0), + EL2_REG(TPIDR_EL2, access_rw, reset_val, 0), + + EL2_REG(CNTVOFF_EL2, access_rw, reset_val, 0), + EL2_REG(CNTHCTL_EL2, access_rw, reset_val, 0), + + EL12_REG(SCTLR, access_vm_reg, reset_val, 0x00C50078), + EL12_REG(CPACR, access_rw, reset_val, 0), + EL12_REG(TTBR0, access_vm_reg, reset_unknown, 0), + EL12_REG(TTBR1, access_vm_reg, reset_unknown, 0), + EL12_REG(TCR, access_vm_reg, reset_val, 0), + { SYS_DESC(SYS_SPSR_EL12), access_spsr}, + { SYS_DESC(SYS_ELR_EL12), access_elr}, + EL12_REG(AFSR0, access_vm_reg, reset_unknown, 0), + EL12_REG(AFSR1, access_vm_reg, reset_unknown, 0), + EL12_REG(ESR, access_vm_reg, reset_unknown, 0), + EL12_REG(FAR, access_vm_reg, reset_unknown, 0), + EL12_REG(MAIR, access_vm_reg, reset_unknown, 0), + EL12_REG(AMAIR, access_vm_reg, reset_amair_el1, 0), + EL12_REG(VBAR, access_rw, reset_val, 0), + EL12_REG(CONTEXTIDR, access_vm_reg, reset_val, 0), + EL12_REG(CNTKCTL, access_rw, reset_val, 0), + + EL2_REG(SP_EL2, NULL, reset_unknown, 0), +}; + +static const struct sys_reg_desc *first_idreg; + +static bool trap_dbgdidr(struct kvm_vcpu *vcpu, + struct sys_reg_params *p, + const struct sys_reg_desc *r) +{ + if (p->is_write) { + return ignore_write(vcpu, p); + } else { + u64 dfr = read_sanitised_ftr_reg(SYS_ID_AA64DFR0_EL1); + u64 pfr = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1); + u32 el3 = !!cpuid_feature_extract_unsigned_field(pfr, ID_AA64PFR0_EL1_EL3_SHIFT); + + p->regval = ((((dfr >> ID_AA64DFR0_EL1_WRPs_SHIFT) & 0xf) << 28) | + (((dfr >> ID_AA64DFR0_EL1_BRPs_SHIFT) & 0xf) << 24) | + (((dfr >> ID_AA64DFR0_EL1_CTX_CMPs_SHIFT) & 0xf) << 20) + | (6 << 16) | (1 << 15) | (el3 << 14) | (el3 << 12)); + return true; + } +} + +/* + * AArch32 debug register mappings + * + * AArch32 DBGBVRn is mapped to DBGBVRn_EL1[31:0] + * AArch32 DBGBXVRn is mapped to DBGBVRn_EL1[63:32] + * + * None of the other registers share their location, so treat them as + * if they were 64bit. + */ +#define DBG_BCR_BVR_WCR_WVR(n) \ + /* DBGBVRn */ \ + { AA32(LO), Op1( 0), CRn( 0), CRm((n)), Op2( 4), trap_bvr, NULL, n }, \ + /* DBGBCRn */ \ + { Op1( 0), CRn( 0), CRm((n)), Op2( 5), trap_bcr, NULL, n }, \ + /* DBGWVRn */ \ + { Op1( 0), CRn( 0), CRm((n)), Op2( 6), trap_wvr, NULL, n }, \ + /* DBGWCRn */ \ + { Op1( 0), CRn( 0), CRm((n)), Op2( 7), trap_wcr, NULL, n } + +#define DBGBXVR(n) \ + { AA32(HI), Op1( 0), CRn( 1), CRm((n)), Op2( 1), trap_bvr, NULL, n } + +/* + * Trapped cp14 registers. We generally ignore most of the external + * debug, on the principle that they don't really make sense to a + * guest. Revisit this one day, would this principle change. + */ +static const struct sys_reg_desc cp14_regs[] = { + /* DBGDIDR */ + { Op1( 0), CRn( 0), CRm( 0), Op2( 0), trap_dbgdidr }, + /* DBGDTRRXext */ + { Op1( 0), CRn( 0), CRm( 0), Op2( 2), trap_raz_wi }, + + DBG_BCR_BVR_WCR_WVR(0), + /* DBGDSCRint */ + { Op1( 0), CRn( 0), CRm( 1), Op2( 0), trap_raz_wi }, + DBG_BCR_BVR_WCR_WVR(1), + /* DBGDCCINT */ + { Op1( 0), CRn( 0), CRm( 2), Op2( 0), trap_debug_regs, NULL, MDCCINT_EL1 }, + /* DBGDSCRext */ + { Op1( 0), CRn( 0), CRm( 2), Op2( 2), trap_debug_regs, NULL, MDSCR_EL1 }, + DBG_BCR_BVR_WCR_WVR(2), + /* DBGDTR[RT]Xint */ + { Op1( 0), CRn( 0), CRm( 3), Op2( 0), trap_raz_wi }, + /* DBGDTR[RT]Xext */ + { Op1( 0), CRn( 0), CRm( 3), Op2( 2), trap_raz_wi }, + DBG_BCR_BVR_WCR_WVR(3), + DBG_BCR_BVR_WCR_WVR(4), + DBG_BCR_BVR_WCR_WVR(5), + /* DBGWFAR */ + { Op1( 0), CRn( 0), CRm( 6), Op2( 0), trap_raz_wi }, + /* DBGOSECCR */ + { Op1( 0), CRn( 0), CRm( 6), Op2( 2), trap_raz_wi }, + DBG_BCR_BVR_WCR_WVR(6), + /* DBGVCR */ + { Op1( 0), CRn( 0), CRm( 7), Op2( 0), trap_debug_regs, NULL, DBGVCR32_EL2 }, + DBG_BCR_BVR_WCR_WVR(7), + DBG_BCR_BVR_WCR_WVR(8), + DBG_BCR_BVR_WCR_WVR(9), + DBG_BCR_BVR_WCR_WVR(10), + DBG_BCR_BVR_WCR_WVR(11), + DBG_BCR_BVR_WCR_WVR(12), + DBG_BCR_BVR_WCR_WVR(13), + DBG_BCR_BVR_WCR_WVR(14), + DBG_BCR_BVR_WCR_WVR(15), + + /* DBGDRAR (32bit) */ + { Op1( 0), CRn( 1), CRm( 0), Op2( 0), trap_raz_wi }, + + DBGBXVR(0), + /* DBGOSLAR */ + { Op1( 0), CRn( 1), CRm( 0), Op2( 4), trap_oslar_el1 }, + DBGBXVR(1), + /* DBGOSLSR */ + { Op1( 0), CRn( 1), CRm( 1), Op2( 4), trap_oslsr_el1, NULL, OSLSR_EL1 }, + DBGBXVR(2), + DBGBXVR(3), + /* DBGOSDLR */ + { Op1( 0), CRn( 1), CRm( 3), Op2( 4), trap_raz_wi }, + DBGBXVR(4), + /* DBGPRCR */ + { Op1( 0), CRn( 1), CRm( 4), Op2( 4), trap_raz_wi }, + DBGBXVR(5), + DBGBXVR(6), + DBGBXVR(7), + DBGBXVR(8), + DBGBXVR(9), + DBGBXVR(10), + DBGBXVR(11), + DBGBXVR(12), + DBGBXVR(13), + DBGBXVR(14), + DBGBXVR(15), + + /* DBGDSAR (32bit) */ + { Op1( 0), CRn( 2), CRm( 0), Op2( 0), trap_raz_wi }, + + /* DBGDEVID2 */ + { Op1( 0), CRn( 7), CRm( 0), Op2( 7), trap_raz_wi }, + /* DBGDEVID1 */ + { Op1( 0), CRn( 7), CRm( 1), Op2( 7), trap_raz_wi }, + /* DBGDEVID */ + { Op1( 0), CRn( 7), CRm( 2), Op2( 7), trap_raz_wi }, + /* DBGCLAIMSET */ + { Op1( 0), CRn( 7), CRm( 8), Op2( 6), trap_raz_wi }, + /* DBGCLAIMCLR */ + { Op1( 0), CRn( 7), CRm( 9), Op2( 6), trap_raz_wi }, + /* DBGAUTHSTATUS */ + { Op1( 0), CRn( 7), CRm(14), Op2( 6), trap_dbgauthstatus_el1 }, +}; + +/* Trapped cp14 64bit registers */ +static const struct sys_reg_desc cp14_64_regs[] = { + /* DBGDRAR (64bit) */ + { Op1( 0), CRm( 1), .access = trap_raz_wi }, + + /* DBGDSAR (64bit) */ + { Op1( 0), CRm( 2), .access = trap_raz_wi }, +}; + +#define CP15_PMU_SYS_REG(_map, _Op1, _CRn, _CRm, _Op2) \ + AA32(_map), \ + Op1(_Op1), CRn(_CRn), CRm(_CRm), Op2(_Op2), \ + .visibility = pmu_visibility + +/* Macro to expand the PMEVCNTRn register */ +#define PMU_PMEVCNTR(n) \ + { CP15_PMU_SYS_REG(DIRECT, 0, 0b1110, \ + (0b1000 | (((n) >> 3) & 0x3)), ((n) & 0x7)), \ + .access = access_pmu_evcntr } + +/* Macro to expand the PMEVTYPERn register */ +#define PMU_PMEVTYPER(n) \ + { CP15_PMU_SYS_REG(DIRECT, 0, 0b1110, \ + (0b1100 | (((n) >> 3) & 0x3)), ((n) & 0x7)), \ + .access = access_pmu_evtyper } +/* + * Trapped cp15 registers. TTBR0/TTBR1 get a double encoding, + * depending on the way they are accessed (as a 32bit or a 64bit + * register). + */ +static const struct sys_reg_desc cp15_regs[] = { + { Op1( 0), CRn( 0), CRm( 0), Op2( 1), access_ctr }, + { Op1( 0), CRn( 1), CRm( 0), Op2( 0), access_vm_reg, NULL, SCTLR_EL1 }, + /* ACTLR */ + { AA32(LO), Op1( 0), CRn( 1), CRm( 0), Op2( 1), access_actlr, NULL, ACTLR_EL1 }, + /* ACTLR2 */ + { AA32(HI), Op1( 0), CRn( 1), CRm( 0), Op2( 3), access_actlr, NULL, ACTLR_EL1 }, + { Op1( 0), CRn( 2), CRm( 0), Op2( 0), access_vm_reg, NULL, TTBR0_EL1 }, + { Op1( 0), CRn( 2), CRm( 0), Op2( 1), access_vm_reg, NULL, TTBR1_EL1 }, + /* TTBCR */ + { AA32(LO), Op1( 0), CRn( 2), CRm( 0), Op2( 2), access_vm_reg, NULL, TCR_EL1 }, + /* TTBCR2 */ + { AA32(HI), Op1( 0), CRn( 2), CRm( 0), Op2( 3), access_vm_reg, NULL, TCR_EL1 }, + { Op1( 0), CRn( 3), CRm( 0), Op2( 0), access_vm_reg, NULL, DACR32_EL2 }, + /* DFSR */ + { Op1( 0), CRn( 5), CRm( 0), Op2( 0), access_vm_reg, NULL, ESR_EL1 }, + { Op1( 0), CRn( 5), CRm( 0), Op2( 1), access_vm_reg, NULL, IFSR32_EL2 }, + /* ADFSR */ + { Op1( 0), CRn( 5), CRm( 1), Op2( 0), access_vm_reg, NULL, AFSR0_EL1 }, + /* AIFSR */ + { Op1( 0), CRn( 5), CRm( 1), Op2( 1), access_vm_reg, NULL, AFSR1_EL1 }, + /* DFAR */ + { AA32(LO), Op1( 0), CRn( 6), CRm( 0), Op2( 0), access_vm_reg, NULL, FAR_EL1 }, + /* IFAR */ + { AA32(HI), Op1( 0), CRn( 6), CRm( 0), Op2( 2), access_vm_reg, NULL, FAR_EL1 }, + + /* + * DC{C,I,CI}SW operations: + */ + { Op1( 0), CRn( 7), CRm( 6), Op2( 2), access_dcsw }, + { Op1( 0), CRn( 7), CRm(10), Op2( 2), access_dcsw }, + { Op1( 0), CRn( 7), CRm(14), Op2( 2), access_dcsw }, + + /* PMU */ + { CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 0), .access = access_pmcr }, + { CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 1), .access = access_pmcnten }, + { CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 2), .access = access_pmcnten }, + { CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 3), .access = access_pmovs }, + { CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 4), .access = access_pmswinc }, + { CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 5), .access = access_pmselr }, + { CP15_PMU_SYS_REG(LO, 0, 9, 12, 6), .access = access_pmceid }, + { CP15_PMU_SYS_REG(LO, 0, 9, 12, 7), .access = access_pmceid }, + { CP15_PMU_SYS_REG(DIRECT, 0, 9, 13, 0), .access = access_pmu_evcntr }, + { CP15_PMU_SYS_REG(DIRECT, 0, 9, 13, 1), .access = access_pmu_evtyper }, + { CP15_PMU_SYS_REG(DIRECT, 0, 9, 13, 2), .access = access_pmu_evcntr }, + { CP15_PMU_SYS_REG(DIRECT, 0, 9, 14, 0), .access = access_pmuserenr }, + { CP15_PMU_SYS_REG(DIRECT, 0, 9, 14, 1), .access = access_pminten }, + { CP15_PMU_SYS_REG(DIRECT, 0, 9, 14, 2), .access = access_pminten }, + { CP15_PMU_SYS_REG(DIRECT, 0, 9, 14, 3), .access = access_pmovs }, + { CP15_PMU_SYS_REG(HI, 0, 9, 14, 4), .access = access_pmceid }, + { CP15_PMU_SYS_REG(HI, 0, 9, 14, 5), .access = access_pmceid }, + /* PMMIR */ + { CP15_PMU_SYS_REG(DIRECT, 0, 9, 14, 6), .access = trap_raz_wi }, + + /* PRRR/MAIR0 */ + { AA32(LO), Op1( 0), CRn(10), CRm( 2), Op2( 0), access_vm_reg, NULL, MAIR_EL1 }, + /* NMRR/MAIR1 */ + { AA32(HI), Op1( 0), CRn(10), CRm( 2), Op2( 1), access_vm_reg, NULL, MAIR_EL1 }, + /* AMAIR0 */ + { AA32(LO), Op1( 0), CRn(10), CRm( 3), Op2( 0), access_vm_reg, NULL, AMAIR_EL1 }, + /* AMAIR1 */ + { AA32(HI), Op1( 0), CRn(10), CRm( 3), Op2( 1), access_vm_reg, NULL, AMAIR_EL1 }, + + /* ICC_SRE */ + { Op1( 0), CRn(12), CRm(12), Op2( 5), access_gic_sre }, + + { Op1( 0), CRn(13), CRm( 0), Op2( 1), access_vm_reg, NULL, CONTEXTIDR_EL1 }, + + /* Arch Tmers */ + { SYS_DESC(SYS_AARCH32_CNTP_TVAL), access_arch_timer }, + { SYS_DESC(SYS_AARCH32_CNTP_CTL), access_arch_timer }, + + /* PMEVCNTRn */ + PMU_PMEVCNTR(0), + PMU_PMEVCNTR(1), + PMU_PMEVCNTR(2), + PMU_PMEVCNTR(3), + PMU_PMEVCNTR(4), + PMU_PMEVCNTR(5), + PMU_PMEVCNTR(6), + PMU_PMEVCNTR(7), + PMU_PMEVCNTR(8), + PMU_PMEVCNTR(9), + PMU_PMEVCNTR(10), + PMU_PMEVCNTR(11), + PMU_PMEVCNTR(12), + PMU_PMEVCNTR(13), + PMU_PMEVCNTR(14), + PMU_PMEVCNTR(15), + PMU_PMEVCNTR(16), + PMU_PMEVCNTR(17), + PMU_PMEVCNTR(18), + PMU_PMEVCNTR(19), + PMU_PMEVCNTR(20), + PMU_PMEVCNTR(21), + PMU_PMEVCNTR(22), + PMU_PMEVCNTR(23), + PMU_PMEVCNTR(24), + PMU_PMEVCNTR(25), + PMU_PMEVCNTR(26), + PMU_PMEVCNTR(27), + PMU_PMEVCNTR(28), + PMU_PMEVCNTR(29), + PMU_PMEVCNTR(30), + /* PMEVTYPERn */ + PMU_PMEVTYPER(0), + PMU_PMEVTYPER(1), + PMU_PMEVTYPER(2), + PMU_PMEVTYPER(3), + PMU_PMEVTYPER(4), + PMU_PMEVTYPER(5), + PMU_PMEVTYPER(6), + PMU_PMEVTYPER(7), + PMU_PMEVTYPER(8), + PMU_PMEVTYPER(9), + PMU_PMEVTYPER(10), + PMU_PMEVTYPER(11), + PMU_PMEVTYPER(12), + PMU_PMEVTYPER(13), + PMU_PMEVTYPER(14), + PMU_PMEVTYPER(15), + PMU_PMEVTYPER(16), + PMU_PMEVTYPER(17), + PMU_PMEVTYPER(18), + PMU_PMEVTYPER(19), + PMU_PMEVTYPER(20), + PMU_PMEVTYPER(21), + PMU_PMEVTYPER(22), + PMU_PMEVTYPER(23), + PMU_PMEVTYPER(24), + PMU_PMEVTYPER(25), + PMU_PMEVTYPER(26), + PMU_PMEVTYPER(27), + PMU_PMEVTYPER(28), + PMU_PMEVTYPER(29), + PMU_PMEVTYPER(30), + /* PMCCFILTR */ + { CP15_PMU_SYS_REG(DIRECT, 0, 14, 15, 7), .access = access_pmu_evtyper }, + + { Op1(1), CRn( 0), CRm( 0), Op2(0), access_ccsidr }, + { Op1(1), CRn( 0), CRm( 0), Op2(1), access_clidr }, + + /* CCSIDR2 */ + { Op1(1), CRn( 0), CRm( 0), Op2(2), undef_access }, + + { Op1(2), CRn( 0), CRm( 0), Op2(0), access_csselr, NULL, CSSELR_EL1 }, +}; + +static const struct sys_reg_desc cp15_64_regs[] = { + { Op1( 0), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, TTBR0_EL1 }, + { CP15_PMU_SYS_REG(DIRECT, 0, 0, 9, 0), .access = access_pmu_evcntr }, + { Op1( 0), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_SGI1R */ + { SYS_DESC(SYS_AARCH32_CNTPCT), access_arch_timer }, + { Op1( 1), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, TTBR1_EL1 }, + { Op1( 1), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_ASGI1R */ + { Op1( 2), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_SGI0R */ + { SYS_DESC(SYS_AARCH32_CNTP_CVAL), access_arch_timer }, + { SYS_DESC(SYS_AARCH32_CNTPCTSS), access_arch_timer }, +}; + +static bool check_sysreg_table(const struct sys_reg_desc *table, unsigned int n, + bool is_32) +{ + unsigned int i; + + for (i = 0; i < n; i++) { + if (!is_32 && table[i].reg && !table[i].reset) { + kvm_err("sys_reg table %pS entry %d lacks reset\n", &table[i], i); + return false; + } + + if (i && cmp_sys_reg(&table[i-1], &table[i]) >= 0) { + kvm_err("sys_reg table %pS entry %d out of order\n", &table[i - 1], i - 1); + return false; + } + } + + return true; +} + +int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu) +{ + kvm_inject_undefined(vcpu); + return 1; +} + +static void perform_access(struct kvm_vcpu *vcpu, + struct sys_reg_params *params, + const struct sys_reg_desc *r) +{ + trace_kvm_sys_access(*vcpu_pc(vcpu), params, r); + + /* Check for regs disabled by runtime config */ + if (sysreg_hidden(vcpu, r)) { + kvm_inject_undefined(vcpu); + return; + } + + /* + * Not having an accessor means that we have configured a trap + * that we don't know how to handle. This certainly qualifies + * as a gross bug that should be fixed right away. + */ + BUG_ON(!r->access); + + /* Skip instruction if instructed so */ + if (likely(r->access(vcpu, params, r))) + kvm_incr_pc(vcpu); +} + +/* + * emulate_cp -- tries to match a sys_reg access in a handling table, and + * call the corresponding trap handler. + * + * @params: pointer to the descriptor of the access + * @table: array of trap descriptors + * @num: size of the trap descriptor array + * + * Return true if the access has been handled, false if not. + */ +static bool emulate_cp(struct kvm_vcpu *vcpu, + struct sys_reg_params *params, + const struct sys_reg_desc *table, + size_t num) +{ + const struct sys_reg_desc *r; + + if (!table) + return false; /* Not handled */ + + r = find_reg(params, table, num); + + if (r) { + perform_access(vcpu, params, r); + return true; + } + + /* Not handled */ + return false; +} + +static void unhandled_cp_access(struct kvm_vcpu *vcpu, + struct sys_reg_params *params) +{ + u8 esr_ec = kvm_vcpu_trap_get_class(vcpu); + int cp = -1; + + switch (esr_ec) { + case ESR_ELx_EC_CP15_32: + case ESR_ELx_EC_CP15_64: + cp = 15; + break; + case ESR_ELx_EC_CP14_MR: + case ESR_ELx_EC_CP14_64: + cp = 14; + break; + default: + WARN_ON(1); + } + + print_sys_reg_msg(params, + "Unsupported guest CP%d access at: %08lx [%08lx]\n", + cp, *vcpu_pc(vcpu), *vcpu_cpsr(vcpu)); + kvm_inject_undefined(vcpu); +} + +/** + * kvm_handle_cp_64 -- handles a mrrc/mcrr trap on a guest CP14/CP15 access + * @vcpu: The VCPU pointer + * @run: The kvm_run struct + */ +static int kvm_handle_cp_64(struct kvm_vcpu *vcpu, + const struct sys_reg_desc *global, + size_t nr_global) +{ + struct sys_reg_params params; + u64 esr = kvm_vcpu_get_esr(vcpu); + int Rt = kvm_vcpu_sys_get_rt(vcpu); + int Rt2 = (esr >> 10) & 0x1f; + + params.CRm = (esr >> 1) & 0xf; + params.is_write = ((esr & 1) == 0); + + params.Op0 = 0; + params.Op1 = (esr >> 16) & 0xf; + params.Op2 = 0; + params.CRn = 0; + + /* + * Make a 64-bit value out of Rt and Rt2. As we use the same trap + * backends between AArch32 and AArch64, we get away with it. + */ + if (params.is_write) { + params.regval = vcpu_get_reg(vcpu, Rt) & 0xffffffff; + params.regval |= vcpu_get_reg(vcpu, Rt2) << 32; + } + + /* + * If the table contains a handler, handle the + * potential register operation in the case of a read and return + * with success. + */ + if (emulate_cp(vcpu, ¶ms, global, nr_global)) { + /* Split up the value between registers for the read side */ + if (!params.is_write) { + vcpu_set_reg(vcpu, Rt, lower_32_bits(params.regval)); + vcpu_set_reg(vcpu, Rt2, upper_32_bits(params.regval)); + } + + return 1; + } + + unhandled_cp_access(vcpu, ¶ms); + return 1; +} + +static bool emulate_sys_reg(struct kvm_vcpu *vcpu, struct sys_reg_params *params); + +/* + * The CP10 ID registers are architecturally mapped to AArch64 feature + * registers. Abuse that fact so we can rely on the AArch64 handler for accesses + * from AArch32. + */ +static bool kvm_esr_cp10_id_to_sys64(u64 esr, struct sys_reg_params *params) +{ + u8 reg_id = (esr >> 10) & 0xf; + bool valid; + + params->is_write = ((esr & 1) == 0); + params->Op0 = 3; + params->Op1 = 0; + params->CRn = 0; + params->CRm = 3; + + /* CP10 ID registers are read-only */ + valid = !params->is_write; + + switch (reg_id) { + /* MVFR0 */ + case 0b0111: + params->Op2 = 0; + break; + /* MVFR1 */ + case 0b0110: + params->Op2 = 1; + break; + /* MVFR2 */ + case 0b0101: + params->Op2 = 2; + break; + default: + valid = false; + } + + if (valid) + return true; + + kvm_pr_unimpl("Unhandled cp10 register %s: %u\n", + params->is_write ? "write" : "read", reg_id); + return false; +} + +/** + * kvm_handle_cp10_id() - Handles a VMRS trap on guest access to a 'Media and + * VFP Register' from AArch32. + * @vcpu: The vCPU pointer + * + * MVFR{0-2} are architecturally mapped to the AArch64 MVFR{0-2}_EL1 registers. + * Work out the correct AArch64 system register encoding and reroute to the + * AArch64 system register emulation. + */ +int kvm_handle_cp10_id(struct kvm_vcpu *vcpu) +{ + int Rt = kvm_vcpu_sys_get_rt(vcpu); + u64 esr = kvm_vcpu_get_esr(vcpu); + struct sys_reg_params params; + + /* UNDEF on any unhandled register access */ + if (!kvm_esr_cp10_id_to_sys64(esr, ¶ms)) { + kvm_inject_undefined(vcpu); + return 1; + } + + if (emulate_sys_reg(vcpu, ¶ms)) + vcpu_set_reg(vcpu, Rt, params.regval); + + return 1; +} + +/** + * kvm_emulate_cp15_id_reg() - Handles an MRC trap on a guest CP15 access where + * CRn=0, which corresponds to the AArch32 feature + * registers. + * @vcpu: the vCPU pointer + * @params: the system register access parameters. + * + * Our cp15 system register tables do not enumerate the AArch32 feature + * registers. Conveniently, our AArch64 table does, and the AArch32 system + * register encoding can be trivially remapped into the AArch64 for the feature + * registers: Append op0=3, leaving op1, CRn, CRm, and op2 the same. + * + * According to DDI0487G.b G7.3.1, paragraph "Behavior of VMSAv8-32 32-bit + * System registers with (coproc=0b1111, CRn==c0)", read accesses from this + * range are either UNKNOWN or RES0. Rerouting remains architectural as we + * treat undefined registers in this range as RAZ. + */ +static int kvm_emulate_cp15_id_reg(struct kvm_vcpu *vcpu, + struct sys_reg_params *params) +{ + int Rt = kvm_vcpu_sys_get_rt(vcpu); + + /* Treat impossible writes to RO registers as UNDEFINED */ + if (params->is_write) { + unhandled_cp_access(vcpu, params); + return 1; + } + + params->Op0 = 3; + + /* + * All registers where CRm > 3 are known to be UNKNOWN/RAZ from AArch32. + * Avoid conflicting with future expansion of AArch64 feature registers + * and simply treat them as RAZ here. + */ + if (params->CRm > 3) + params->regval = 0; + else if (!emulate_sys_reg(vcpu, params)) + return 1; + + vcpu_set_reg(vcpu, Rt, params->regval); + return 1; +} + +/** + * kvm_handle_cp_32 -- handles a mrc/mcr trap on a guest CP14/CP15 access + * @vcpu: The VCPU pointer + * @run: The kvm_run struct + */ +static int kvm_handle_cp_32(struct kvm_vcpu *vcpu, + struct sys_reg_params *params, + const struct sys_reg_desc *global, + size_t nr_global) +{ + int Rt = kvm_vcpu_sys_get_rt(vcpu); + + params->regval = vcpu_get_reg(vcpu, Rt); + + if (emulate_cp(vcpu, params, global, nr_global)) { + if (!params->is_write) + vcpu_set_reg(vcpu, Rt, params->regval); + return 1; + } + + unhandled_cp_access(vcpu, params); + return 1; +} + +int kvm_handle_cp15_64(struct kvm_vcpu *vcpu) +{ + return kvm_handle_cp_64(vcpu, cp15_64_regs, ARRAY_SIZE(cp15_64_regs)); +} + +int kvm_handle_cp15_32(struct kvm_vcpu *vcpu) +{ + struct sys_reg_params params; + + params = esr_cp1x_32_to_params(kvm_vcpu_get_esr(vcpu)); + + /* + * Certain AArch32 ID registers are handled by rerouting to the AArch64 + * system register table. Registers in the ID range where CRm=0 are + * excluded from this scheme as they do not trivially map into AArch64 + * system register encodings. + */ + if (params.Op1 == 0 && params.CRn == 0 && params.CRm) + return kvm_emulate_cp15_id_reg(vcpu, ¶ms); + + return kvm_handle_cp_32(vcpu, ¶ms, cp15_regs, ARRAY_SIZE(cp15_regs)); +} + +int kvm_handle_cp14_64(struct kvm_vcpu *vcpu) +{ + return kvm_handle_cp_64(vcpu, cp14_64_regs, ARRAY_SIZE(cp14_64_regs)); +} + +int kvm_handle_cp14_32(struct kvm_vcpu *vcpu) +{ + struct sys_reg_params params; + + params = esr_cp1x_32_to_params(kvm_vcpu_get_esr(vcpu)); + + return kvm_handle_cp_32(vcpu, ¶ms, cp14_regs, ARRAY_SIZE(cp14_regs)); +} + +static bool is_imp_def_sys_reg(struct sys_reg_params *params) +{ + // See ARM DDI 0487E.a, section D12.3.2 + return params->Op0 == 3 && (params->CRn & 0b1011) == 0b1011; +} + +/** + * emulate_sys_reg - Emulate a guest access to an AArch64 system register + * @vcpu: The VCPU pointer + * @params: Decoded system register parameters + * + * Return: true if the system register access was successful, false otherwise. + */ +static bool emulate_sys_reg(struct kvm_vcpu *vcpu, + struct sys_reg_params *params) +{ + const struct sys_reg_desc *r; + + r = find_reg(params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs)); + + if (likely(r)) { + perform_access(vcpu, params, r); + return true; + } + + if (is_imp_def_sys_reg(params)) { + kvm_inject_undefined(vcpu); + } else { + print_sys_reg_msg(params, + "Unsupported guest sys_reg access at: %lx [%08lx]\n", + *vcpu_pc(vcpu), *vcpu_cpsr(vcpu)); + kvm_inject_undefined(vcpu); + } + return false; +} + +static void kvm_reset_id_regs(struct kvm_vcpu *vcpu) +{ + const struct sys_reg_desc *idreg = first_idreg; + u32 id = reg_to_encoding(idreg); + struct kvm *kvm = vcpu->kvm; + + if (test_bit(KVM_ARCH_FLAG_ID_REGS_INITIALIZED, &kvm->arch.flags)) + return; + + lockdep_assert_held(&kvm->arch.config_lock); + + /* Initialize all idregs */ + while (is_id_reg(id)) { + IDREG(kvm, id) = idreg->reset(vcpu, idreg); + + idreg++; + id = reg_to_encoding(idreg); + } + + set_bit(KVM_ARCH_FLAG_ID_REGS_INITIALIZED, &kvm->arch.flags); +} + +/** + * kvm_reset_sys_regs - sets system registers to reset value + * @vcpu: The VCPU pointer + * + * This function finds the right table above and sets the registers on the + * virtual CPU struct to their architecturally defined reset values. + */ +void kvm_reset_sys_regs(struct kvm_vcpu *vcpu) +{ + unsigned long i; + + kvm_reset_id_regs(vcpu); + + for (i = 0; i < ARRAY_SIZE(sys_reg_descs); i++) { + const struct sys_reg_desc *r = &sys_reg_descs[i]; + + if (is_id_reg(reg_to_encoding(r))) + continue; + + if (r->reset) + r->reset(vcpu, r); + } +} + +/** + * kvm_handle_sys_reg -- handles a mrs/msr trap on a guest sys_reg access + * @vcpu: The VCPU pointer + */ +int kvm_handle_sys_reg(struct kvm_vcpu *vcpu) +{ + struct sys_reg_params params; + unsigned long esr = kvm_vcpu_get_esr(vcpu); + int Rt = kvm_vcpu_sys_get_rt(vcpu); + + trace_kvm_handle_sys_reg(esr); + + if (__check_nv_sr_forward(vcpu)) + return 1; + + params = esr_sys64_to_params(esr); + params.regval = vcpu_get_reg(vcpu, Rt); + + if (!emulate_sys_reg(vcpu, ¶ms)) + return 1; + + if (!params.is_write) + vcpu_set_reg(vcpu, Rt, params.regval); + return 1; +} + +/****************************************************************************** + * Userspace API + *****************************************************************************/ + +static bool index_to_params(u64 id, struct sys_reg_params *params) +{ + switch (id & KVM_REG_SIZE_MASK) { + case KVM_REG_SIZE_U64: + /* Any unused index bits means it's not valid. */ + if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK + | KVM_REG_ARM_COPROC_MASK + | KVM_REG_ARM64_SYSREG_OP0_MASK + | KVM_REG_ARM64_SYSREG_OP1_MASK + | KVM_REG_ARM64_SYSREG_CRN_MASK + | KVM_REG_ARM64_SYSREG_CRM_MASK + | KVM_REG_ARM64_SYSREG_OP2_MASK)) + return false; + params->Op0 = ((id & KVM_REG_ARM64_SYSREG_OP0_MASK) + >> KVM_REG_ARM64_SYSREG_OP0_SHIFT); + params->Op1 = ((id & KVM_REG_ARM64_SYSREG_OP1_MASK) + >> KVM_REG_ARM64_SYSREG_OP1_SHIFT); + params->CRn = ((id & KVM_REG_ARM64_SYSREG_CRN_MASK) + >> KVM_REG_ARM64_SYSREG_CRN_SHIFT); + params->CRm = ((id & KVM_REG_ARM64_SYSREG_CRM_MASK) + >> KVM_REG_ARM64_SYSREG_CRM_SHIFT); + params->Op2 = ((id & KVM_REG_ARM64_SYSREG_OP2_MASK) + >> KVM_REG_ARM64_SYSREG_OP2_SHIFT); + return true; + default: + return false; + } +} + +const struct sys_reg_desc *get_reg_by_id(u64 id, + const struct sys_reg_desc table[], + unsigned int num) +{ + struct sys_reg_params params; + + if (!index_to_params(id, ¶ms)) + return NULL; + + return find_reg(¶ms, table, num); +} + +/* Decode an index value, and find the sys_reg_desc entry. */ +static const struct sys_reg_desc * +id_to_sys_reg_desc(struct kvm_vcpu *vcpu, u64 id, + const struct sys_reg_desc table[], unsigned int num) + +{ + const struct sys_reg_desc *r; + + /* We only do sys_reg for now. */ + if ((id & KVM_REG_ARM_COPROC_MASK) != KVM_REG_ARM64_SYSREG) + return NULL; + + r = get_reg_by_id(id, table, num); + + /* Not saved in the sys_reg array and not otherwise accessible? */ + if (r && (!(r->reg || r->get_user) || sysreg_hidden(vcpu, r))) + r = NULL; + + return r; +} + +/* + * These are the invariant sys_reg registers: we let the guest see the + * host versions of these, so they're part of the guest state. + * + * A future CPU may provide a mechanism to present different values to + * the guest, or a future kvm may trap them. + */ + +#define FUNCTION_INVARIANT(reg) \ + static u64 get_##reg(struct kvm_vcpu *v, \ + const struct sys_reg_desc *r) \ + { \ + ((struct sys_reg_desc *)r)->val = read_sysreg(reg); \ + return ((struct sys_reg_desc *)r)->val; \ + } + +FUNCTION_INVARIANT(midr_el1) +FUNCTION_INVARIANT(revidr_el1) +FUNCTION_INVARIANT(aidr_el1) + +static u64 get_ctr_el0(struct kvm_vcpu *v, const struct sys_reg_desc *r) +{ + ((struct sys_reg_desc *)r)->val = read_sanitised_ftr_reg(SYS_CTR_EL0); + return ((struct sys_reg_desc *)r)->val; +} + +/* ->val is filled in by kvm_sys_reg_table_init() */ +static struct sys_reg_desc invariant_sys_regs[] __ro_after_init = { + { SYS_DESC(SYS_MIDR_EL1), NULL, get_midr_el1 }, + { SYS_DESC(SYS_REVIDR_EL1), NULL, get_revidr_el1 }, + { SYS_DESC(SYS_AIDR_EL1), NULL, get_aidr_el1 }, + { SYS_DESC(SYS_CTR_EL0), NULL, get_ctr_el0 }, +}; + +static int get_invariant_sys_reg(u64 id, u64 __user *uaddr) +{ + const struct sys_reg_desc *r; + + r = get_reg_by_id(id, invariant_sys_regs, + ARRAY_SIZE(invariant_sys_regs)); + if (!r) + return -ENOENT; + + return put_user(r->val, uaddr); +} + +static int set_invariant_sys_reg(u64 id, u64 __user *uaddr) +{ + const struct sys_reg_desc *r; + u64 val; + + r = get_reg_by_id(id, invariant_sys_regs, + ARRAY_SIZE(invariant_sys_regs)); + if (!r) + return -ENOENT; + + if (get_user(val, uaddr)) + return -EFAULT; + + /* This is what we mean by invariant: you can't change it. */ + if (r->val != val) + return -EINVAL; + + return 0; +} + +static int demux_c15_get(struct kvm_vcpu *vcpu, u64 id, void __user *uaddr) +{ + u32 val; + u32 __user *uval = uaddr; + + /* Fail if we have unknown bits set. */ + if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK + | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1))) + return -ENOENT; + + switch (id & KVM_REG_ARM_DEMUX_ID_MASK) { + case KVM_REG_ARM_DEMUX_ID_CCSIDR: + if (KVM_REG_SIZE(id) != 4) + return -ENOENT; + val = (id & KVM_REG_ARM_DEMUX_VAL_MASK) + >> KVM_REG_ARM_DEMUX_VAL_SHIFT; + if (val >= CSSELR_MAX) + return -ENOENT; + + return put_user(get_ccsidr(vcpu, val), uval); + default: + return -ENOENT; + } +} + +static int demux_c15_set(struct kvm_vcpu *vcpu, u64 id, void __user *uaddr) +{ + u32 val, newval; + u32 __user *uval = uaddr; + + /* Fail if we have unknown bits set. */ + if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK + | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1))) + return -ENOENT; + + switch (id & KVM_REG_ARM_DEMUX_ID_MASK) { + case KVM_REG_ARM_DEMUX_ID_CCSIDR: + if (KVM_REG_SIZE(id) != 4) + return -ENOENT; + val = (id & KVM_REG_ARM_DEMUX_VAL_MASK) + >> KVM_REG_ARM_DEMUX_VAL_SHIFT; + if (val >= CSSELR_MAX) + return -ENOENT; + + if (get_user(newval, uval)) + return -EFAULT; + + return set_ccsidr(vcpu, val, newval); + default: + return -ENOENT; + } +} + +int kvm_sys_reg_get_user(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg, + const struct sys_reg_desc table[], unsigned int num) +{ + u64 __user *uaddr = (u64 __user *)(unsigned long)reg->addr; + const struct sys_reg_desc *r; + u64 val; + int ret; + + r = id_to_sys_reg_desc(vcpu, reg->id, table, num); + if (!r || sysreg_hidden_user(vcpu, r)) + return -ENOENT; + + if (r->get_user) { + ret = (r->get_user)(vcpu, r, &val); + } else { + val = __vcpu_sys_reg(vcpu, r->reg); + ret = 0; + } + + if (!ret) + ret = put_user(val, uaddr); + + return ret; +} + +int kvm_arm_sys_reg_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg) +{ + void __user *uaddr = (void __user *)(unsigned long)reg->addr; + int err; + + if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX) + return demux_c15_get(vcpu, reg->id, uaddr); + + err = get_invariant_sys_reg(reg->id, uaddr); + if (err != -ENOENT) + return err; + + return kvm_sys_reg_get_user(vcpu, reg, + sys_reg_descs, ARRAY_SIZE(sys_reg_descs)); +} + +int kvm_sys_reg_set_user(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg, + const struct sys_reg_desc table[], unsigned int num) +{ + u64 __user *uaddr = (u64 __user *)(unsigned long)reg->addr; + const struct sys_reg_desc *r; + u64 val; + int ret; + + if (get_user(val, uaddr)) + return -EFAULT; + + r = id_to_sys_reg_desc(vcpu, reg->id, table, num); + if (!r || sysreg_hidden_user(vcpu, r)) + return -ENOENT; + + if (sysreg_user_write_ignore(vcpu, r)) + return 0; + + if (r->set_user) { + ret = (r->set_user)(vcpu, r, val); + } else { + __vcpu_sys_reg(vcpu, r->reg) = val; + ret = 0; + } + + return ret; +} + +int kvm_arm_sys_reg_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg) +{ + void __user *uaddr = (void __user *)(unsigned long)reg->addr; + int err; + + if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX) + return demux_c15_set(vcpu, reg->id, uaddr); + + err = set_invariant_sys_reg(reg->id, uaddr); + if (err != -ENOENT) + return err; + + return kvm_sys_reg_set_user(vcpu, reg, + sys_reg_descs, ARRAY_SIZE(sys_reg_descs)); +} + +static unsigned int num_demux_regs(void) +{ + return CSSELR_MAX; +} + +static int write_demux_regids(u64 __user *uindices) +{ + u64 val = KVM_REG_ARM64 | KVM_REG_SIZE_U32 | KVM_REG_ARM_DEMUX; + unsigned int i; + + val |= KVM_REG_ARM_DEMUX_ID_CCSIDR; + for (i = 0; i < CSSELR_MAX; i++) { + if (put_user(val | i, uindices)) + return -EFAULT; + uindices++; + } + return 0; +} + +static u64 sys_reg_to_index(const struct sys_reg_desc *reg) +{ + return (KVM_REG_ARM64 | KVM_REG_SIZE_U64 | + KVM_REG_ARM64_SYSREG | + (reg->Op0 << KVM_REG_ARM64_SYSREG_OP0_SHIFT) | + (reg->Op1 << KVM_REG_ARM64_SYSREG_OP1_SHIFT) | + (reg->CRn << KVM_REG_ARM64_SYSREG_CRN_SHIFT) | + (reg->CRm << KVM_REG_ARM64_SYSREG_CRM_SHIFT) | + (reg->Op2 << KVM_REG_ARM64_SYSREG_OP2_SHIFT)); +} + +static bool copy_reg_to_user(const struct sys_reg_desc *reg, u64 __user **uind) +{ + if (!*uind) + return true; + + if (put_user(sys_reg_to_index(reg), *uind)) + return false; + + (*uind)++; + return true; +} + +static int walk_one_sys_reg(const struct kvm_vcpu *vcpu, + const struct sys_reg_desc *rd, + u64 __user **uind, + unsigned int *total) +{ + /* + * Ignore registers we trap but don't save, + * and for which no custom user accessor is provided. + */ + if (!(rd->reg || rd->get_user)) + return 0; + + if (sysreg_hidden_user(vcpu, rd)) + return 0; + + if (!copy_reg_to_user(rd, uind)) + return -EFAULT; + + (*total)++; + return 0; +} + +/* Assumed ordered tables, see kvm_sys_reg_table_init. */ +static int walk_sys_regs(struct kvm_vcpu *vcpu, u64 __user *uind) +{ + const struct sys_reg_desc *i2, *end2; + unsigned int total = 0; + int err; + + i2 = sys_reg_descs; + end2 = sys_reg_descs + ARRAY_SIZE(sys_reg_descs); + + while (i2 != end2) { + err = walk_one_sys_reg(vcpu, i2++, &uind, &total); + if (err) + return err; + } + return total; +} + +unsigned long kvm_arm_num_sys_reg_descs(struct kvm_vcpu *vcpu) +{ + return ARRAY_SIZE(invariant_sys_regs) + + num_demux_regs() + + walk_sys_regs(vcpu, (u64 __user *)NULL); +} + +int kvm_arm_copy_sys_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices) +{ + unsigned int i; + int err; + + /* Then give them all the invariant registers' indices. */ + for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++) { + if (put_user(sys_reg_to_index(&invariant_sys_regs[i]), uindices)) + return -EFAULT; + uindices++; + } + + err = walk_sys_regs(vcpu, uindices); + if (err < 0) + return err; + uindices += err; + + return write_demux_regids(uindices); +} + +int __init kvm_sys_reg_table_init(void) +{ + struct sys_reg_params params; + bool valid = true; + unsigned int i; + + /* Make sure tables are unique and in order. */ + valid &= check_sysreg_table(sys_reg_descs, ARRAY_SIZE(sys_reg_descs), false); + valid &= check_sysreg_table(cp14_regs, ARRAY_SIZE(cp14_regs), true); + valid &= check_sysreg_table(cp14_64_regs, ARRAY_SIZE(cp14_64_regs), true); + valid &= check_sysreg_table(cp15_regs, ARRAY_SIZE(cp15_regs), true); + valid &= check_sysreg_table(cp15_64_regs, ARRAY_SIZE(cp15_64_regs), true); + valid &= check_sysreg_table(invariant_sys_regs, ARRAY_SIZE(invariant_sys_regs), false); + + if (!valid) + return -EINVAL; + + /* We abuse the reset function to overwrite the table itself. */ + for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++) + invariant_sys_regs[i].reset(NULL, &invariant_sys_regs[i]); + + /* Find the first idreg (SYS_ID_PFR0_EL1) in sys_reg_descs. */ + params = encoding_to_params(SYS_ID_PFR0_EL1); + first_idreg = find_reg(¶ms, sys_reg_descs, ARRAY_SIZE(sys_reg_descs)); + if (!first_idreg) + return -EINVAL; + + if (kvm_get_mode() == KVM_MODE_NV) + return populate_nv_trap_config(); + + return 0; +} diff --git a/arch/arm64/kvm/sys_regs.h b/arch/arm64/kvm/sys_regs.h new file mode 100644 index 0000000000..c65c129b35 --- /dev/null +++ b/arch/arm64/kvm/sys_regs.h @@ -0,0 +1,249 @@ +/* SPDX-License-Identifier: GPL-2.0-only */ +/* + * Copyright (C) 2012,2013 - ARM Ltd + * Author: Marc Zyngier <marc.zyngier@arm.com> + * + * Derived from arch/arm/kvm/coproc.h + * Copyright (C) 2012 - Virtual Open Systems and Columbia University + * Authors: Christoffer Dall <c.dall@virtualopensystems.com> + */ + +#ifndef __ARM64_KVM_SYS_REGS_LOCAL_H__ +#define __ARM64_KVM_SYS_REGS_LOCAL_H__ + +#include <linux/bsearch.h> + +#define reg_to_encoding(x) \ + sys_reg((u32)(x)->Op0, (u32)(x)->Op1, \ + (u32)(x)->CRn, (u32)(x)->CRm, (u32)(x)->Op2) + +struct sys_reg_params { + u8 Op0; + u8 Op1; + u8 CRn; + u8 CRm; + u8 Op2; + u64 regval; + bool is_write; +}; + +#define encoding_to_params(reg) \ + ((struct sys_reg_params){ .Op0 = sys_reg_Op0(reg), \ + .Op1 = sys_reg_Op1(reg), \ + .CRn = sys_reg_CRn(reg), \ + .CRm = sys_reg_CRm(reg), \ + .Op2 = sys_reg_Op2(reg) }) + +#define esr_sys64_to_params(esr) \ + ((struct sys_reg_params){ .Op0 = ((esr) >> 20) & 3, \ + .Op1 = ((esr) >> 14) & 0x7, \ + .CRn = ((esr) >> 10) & 0xf, \ + .CRm = ((esr) >> 1) & 0xf, \ + .Op2 = ((esr) >> 17) & 0x7, \ + .is_write = !((esr) & 1) }) + +#define esr_cp1x_32_to_params(esr) \ + ((struct sys_reg_params){ .Op1 = ((esr) >> 14) & 0x7, \ + .CRn = ((esr) >> 10) & 0xf, \ + .CRm = ((esr) >> 1) & 0xf, \ + .Op2 = ((esr) >> 17) & 0x7, \ + .is_write = !((esr) & 1) }) + +struct sys_reg_desc { + /* Sysreg string for debug */ + const char *name; + + enum { + AA32_DIRECT, + AA32_LO, + AA32_HI, + } aarch32_map; + + /* MRS/MSR instruction which accesses it. */ + u8 Op0; + u8 Op1; + u8 CRn; + u8 CRm; + u8 Op2; + + /* Trapped access from guest, if non-NULL. */ + bool (*access)(struct kvm_vcpu *, + struct sys_reg_params *, + const struct sys_reg_desc *); + + /* + * Initialization for vcpu. Return initialized value, or KVM + * sanitized value for ID registers. + */ + u64 (*reset)(struct kvm_vcpu *, const struct sys_reg_desc *); + + /* Index into sys_reg[], or 0 if we don't need to save it. */ + int reg; + + /* Value (usually reset value), or write mask for idregs */ + u64 val; + + /* Custom get/set_user functions, fallback to generic if NULL */ + int (*get_user)(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, + u64 *val); + int (*set_user)(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, + u64 val); + + /* Return mask of REG_* runtime visibility overrides */ + unsigned int (*visibility)(const struct kvm_vcpu *vcpu, + const struct sys_reg_desc *rd); +}; + +#define REG_HIDDEN (1 << 0) /* hidden from userspace and guest */ +#define REG_HIDDEN_USER (1 << 1) /* hidden from userspace only */ +#define REG_RAZ (1 << 2) /* RAZ from userspace and guest */ +#define REG_USER_WI (1 << 3) /* WI from userspace only */ + +static __printf(2, 3) +inline void print_sys_reg_msg(const struct sys_reg_params *p, + char *fmt, ...) +{ + va_list va; + + va_start(va, fmt); + /* Look, we even formatted it for you to paste into the table! */ + kvm_pr_unimpl("%pV { Op0(%2u), Op1(%2u), CRn(%2u), CRm(%2u), Op2(%2u), func_%s },\n", + &(struct va_format){ fmt, &va }, + p->Op0, p->Op1, p->CRn, p->CRm, p->Op2, p->is_write ? "write" : "read"); + va_end(va); +} + +static inline void print_sys_reg_instr(const struct sys_reg_params *p) +{ + /* GCC warns on an empty format string */ + print_sys_reg_msg(p, "%s", ""); +} + +static inline bool ignore_write(struct kvm_vcpu *vcpu, + const struct sys_reg_params *p) +{ + return true; +} + +static inline bool read_zero(struct kvm_vcpu *vcpu, + struct sys_reg_params *p) +{ + p->regval = 0; + return true; +} + +/* Reset functions */ +static inline u64 reset_unknown(struct kvm_vcpu *vcpu, + const struct sys_reg_desc *r) +{ + BUG_ON(!r->reg); + BUG_ON(r->reg >= NR_SYS_REGS); + __vcpu_sys_reg(vcpu, r->reg) = 0x1de7ec7edbadc0deULL; + return __vcpu_sys_reg(vcpu, r->reg); +} + +static inline u64 reset_val(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r) +{ + BUG_ON(!r->reg); + BUG_ON(r->reg >= NR_SYS_REGS); + __vcpu_sys_reg(vcpu, r->reg) = r->val; + return __vcpu_sys_reg(vcpu, r->reg); +} + +static inline unsigned int sysreg_visibility(const struct kvm_vcpu *vcpu, + const struct sys_reg_desc *r) +{ + if (likely(!r->visibility)) + return 0; + + return r->visibility(vcpu, r); +} + +static inline bool sysreg_hidden(const struct kvm_vcpu *vcpu, + const struct sys_reg_desc *r) +{ + return sysreg_visibility(vcpu, r) & REG_HIDDEN; +} + +static inline bool sysreg_hidden_user(const struct kvm_vcpu *vcpu, + const struct sys_reg_desc *r) +{ + if (likely(!r->visibility)) + return false; + + return r->visibility(vcpu, r) & (REG_HIDDEN | REG_HIDDEN_USER); +} + +static inline bool sysreg_visible_as_raz(const struct kvm_vcpu *vcpu, + const struct sys_reg_desc *r) +{ + return sysreg_visibility(vcpu, r) & REG_RAZ; +} + +static inline bool sysreg_user_write_ignore(const struct kvm_vcpu *vcpu, + const struct sys_reg_desc *r) +{ + return sysreg_visibility(vcpu, r) & REG_USER_WI; +} + +static inline int cmp_sys_reg(const struct sys_reg_desc *i1, + const struct sys_reg_desc *i2) +{ + BUG_ON(i1 == i2); + if (!i1) + return 1; + else if (!i2) + return -1; + if (i1->Op0 != i2->Op0) + return i1->Op0 - i2->Op0; + if (i1->Op1 != i2->Op1) + return i1->Op1 - i2->Op1; + if (i1->CRn != i2->CRn) + return i1->CRn - i2->CRn; + if (i1->CRm != i2->CRm) + return i1->CRm - i2->CRm; + return i1->Op2 - i2->Op2; +} + +static inline int match_sys_reg(const void *key, const void *elt) +{ + const unsigned long pval = (unsigned long)key; + const struct sys_reg_desc *r = elt; + + return pval - reg_to_encoding(r); +} + +static inline const struct sys_reg_desc * +find_reg(const struct sys_reg_params *params, const struct sys_reg_desc table[], + unsigned int num) +{ + unsigned long pval = reg_to_encoding(params); + + return __inline_bsearch((void *)pval, table, num, sizeof(table[0]), match_sys_reg); +} + +const struct sys_reg_desc *get_reg_by_id(u64 id, + const struct sys_reg_desc table[], + unsigned int num); + +int kvm_arm_sys_reg_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *); +int kvm_arm_sys_reg_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *); +int kvm_sys_reg_get_user(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg, + const struct sys_reg_desc table[], unsigned int num); +int kvm_sys_reg_set_user(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg, + const struct sys_reg_desc table[], unsigned int num); + +#define AA32(_x) .aarch32_map = AA32_##_x +#define Op0(_x) .Op0 = _x +#define Op1(_x) .Op1 = _x +#define CRn(_x) .CRn = _x +#define CRm(_x) .CRm = _x +#define Op2(_x) .Op2 = _x + +#define SYS_DESC(reg) \ + .name = #reg, \ + Op0(sys_reg_Op0(reg)), Op1(sys_reg_Op1(reg)), \ + CRn(sys_reg_CRn(reg)), CRm(sys_reg_CRm(reg)), \ + Op2(sys_reg_Op2(reg)) + +#endif /* __ARM64_KVM_SYS_REGS_LOCAL_H__ */ diff --git a/arch/arm64/kvm/trace.h b/arch/arm64/kvm/trace.h new file mode 100644 index 0000000000..86f9ea47be --- /dev/null +++ b/arch/arm64/kvm/trace.h @@ -0,0 +1,8 @@ +/* SPDX-License-Identifier: GPL-2.0 */ +#ifndef _TRACE_ARM64_KVM_H +#define _TRACE_ARM64_KVM_H + +#include "trace_arm.h" +#include "trace_handle_exit.h" + +#endif /* _TRACE_ARM64_KVM_H */ diff --git a/arch/arm64/kvm/trace_arm.h b/arch/arm64/kvm/trace_arm.h new file mode 100644 index 0000000000..8ad5310493 --- /dev/null +++ b/arch/arm64/kvm/trace_arm.h @@ -0,0 +1,401 @@ +/* SPDX-License-Identifier: GPL-2.0 */ +#if !defined(_TRACE_ARM_ARM64_KVM_H) || defined(TRACE_HEADER_MULTI_READ) +#define _TRACE_ARM_ARM64_KVM_H + +#include <asm/kvm_emulate.h> +#include <kvm/arm_arch_timer.h> +#include <linux/tracepoint.h> + +#undef TRACE_SYSTEM +#define TRACE_SYSTEM kvm + +/* + * Tracepoints for entry/exit to guest + */ +TRACE_EVENT(kvm_entry, + TP_PROTO(unsigned long vcpu_pc), + TP_ARGS(vcpu_pc), + + TP_STRUCT__entry( + __field( unsigned long, vcpu_pc ) + ), + + TP_fast_assign( + __entry->vcpu_pc = vcpu_pc; + ), + + TP_printk("PC: 0x%016lx", __entry->vcpu_pc) +); + +TRACE_EVENT(kvm_exit, + TP_PROTO(int ret, unsigned int esr_ec, unsigned long vcpu_pc), + TP_ARGS(ret, esr_ec, vcpu_pc), + + TP_STRUCT__entry( + __field( int, ret ) + __field( unsigned int, esr_ec ) + __field( unsigned long, vcpu_pc ) + ), + + TP_fast_assign( + __entry->ret = ARM_EXCEPTION_CODE(ret); + __entry->esr_ec = ARM_EXCEPTION_IS_TRAP(ret) ? esr_ec : 0; + __entry->vcpu_pc = vcpu_pc; + ), + + TP_printk("%s: HSR_EC: 0x%04x (%s), PC: 0x%016lx", + __print_symbolic(__entry->ret, kvm_arm_exception_type), + __entry->esr_ec, + __print_symbolic(__entry->esr_ec, kvm_arm_exception_class), + __entry->vcpu_pc) +); + +TRACE_EVENT(kvm_guest_fault, + TP_PROTO(unsigned long vcpu_pc, unsigned long hsr, + unsigned long hxfar, + unsigned long long ipa), + TP_ARGS(vcpu_pc, hsr, hxfar, ipa), + + TP_STRUCT__entry( + __field( unsigned long, vcpu_pc ) + __field( unsigned long, hsr ) + __field( unsigned long, hxfar ) + __field( unsigned long long, ipa ) + ), + + TP_fast_assign( + __entry->vcpu_pc = vcpu_pc; + __entry->hsr = hsr; + __entry->hxfar = hxfar; + __entry->ipa = ipa; + ), + + TP_printk("ipa %#llx, hsr %#08lx, hxfar %#08lx, pc %#016lx", + __entry->ipa, __entry->hsr, + __entry->hxfar, __entry->vcpu_pc) +); + +TRACE_EVENT(kvm_access_fault, + TP_PROTO(unsigned long ipa), + TP_ARGS(ipa), + + TP_STRUCT__entry( + __field( unsigned long, ipa ) + ), + + TP_fast_assign( + __entry->ipa = ipa; + ), + + TP_printk("IPA: %lx", __entry->ipa) +); + +TRACE_EVENT(kvm_irq_line, + TP_PROTO(unsigned int type, int vcpu_idx, int irq_num, int level), + TP_ARGS(type, vcpu_idx, irq_num, level), + + TP_STRUCT__entry( + __field( unsigned int, type ) + __field( int, vcpu_idx ) + __field( int, irq_num ) + __field( int, level ) + ), + + TP_fast_assign( + __entry->type = type; + __entry->vcpu_idx = vcpu_idx; + __entry->irq_num = irq_num; + __entry->level = level; + ), + + TP_printk("Inject %s interrupt (%d), vcpu->idx: %d, num: %d, level: %d", + (__entry->type == KVM_ARM_IRQ_TYPE_CPU) ? "CPU" : + (__entry->type == KVM_ARM_IRQ_TYPE_PPI) ? "VGIC PPI" : + (__entry->type == KVM_ARM_IRQ_TYPE_SPI) ? "VGIC SPI" : "UNKNOWN", + __entry->type, __entry->vcpu_idx, __entry->irq_num, __entry->level) +); + +TRACE_EVENT(kvm_mmio_emulate, + TP_PROTO(unsigned long vcpu_pc, unsigned long instr, + unsigned long cpsr), + TP_ARGS(vcpu_pc, instr, cpsr), + + TP_STRUCT__entry( + __field( unsigned long, vcpu_pc ) + __field( unsigned long, instr ) + __field( unsigned long, cpsr ) + ), + + TP_fast_assign( + __entry->vcpu_pc = vcpu_pc; + __entry->instr = instr; + __entry->cpsr = cpsr; + ), + + TP_printk("Emulate MMIO at: 0x%016lx (instr: %08lx, cpsr: %08lx)", + __entry->vcpu_pc, __entry->instr, __entry->cpsr) +); + +TRACE_EVENT(kvm_set_way_flush, + TP_PROTO(unsigned long vcpu_pc, bool cache), + TP_ARGS(vcpu_pc, cache), + + TP_STRUCT__entry( + __field( unsigned long, vcpu_pc ) + __field( bool, cache ) + ), + + TP_fast_assign( + __entry->vcpu_pc = vcpu_pc; + __entry->cache = cache; + ), + + TP_printk("S/W flush at 0x%016lx (cache %s)", + __entry->vcpu_pc, __entry->cache ? "on" : "off") +); + +TRACE_EVENT(kvm_toggle_cache, + TP_PROTO(unsigned long vcpu_pc, bool was, bool now), + TP_ARGS(vcpu_pc, was, now), + + TP_STRUCT__entry( + __field( unsigned long, vcpu_pc ) + __field( bool, was ) + __field( bool, now ) + ), + + TP_fast_assign( + __entry->vcpu_pc = vcpu_pc; + __entry->was = was; + __entry->now = now; + ), + + TP_printk("VM op at 0x%016lx (cache was %s, now %s)", + __entry->vcpu_pc, __entry->was ? "on" : "off", + __entry->now ? "on" : "off") +); + +/* + * Tracepoints for arch_timer + */ +TRACE_EVENT(kvm_timer_update_irq, + TP_PROTO(unsigned long vcpu_id, __u32 irq, int level), + TP_ARGS(vcpu_id, irq, level), + + TP_STRUCT__entry( + __field( unsigned long, vcpu_id ) + __field( __u32, irq ) + __field( int, level ) + ), + + TP_fast_assign( + __entry->vcpu_id = vcpu_id; + __entry->irq = irq; + __entry->level = level; + ), + + TP_printk("VCPU: %ld, IRQ %d, level %d", + __entry->vcpu_id, __entry->irq, __entry->level) +); + +TRACE_EVENT(kvm_get_timer_map, + TP_PROTO(unsigned long vcpu_id, struct timer_map *map), + TP_ARGS(vcpu_id, map), + + TP_STRUCT__entry( + __field( unsigned long, vcpu_id ) + __field( int, direct_vtimer ) + __field( int, direct_ptimer ) + __field( int, emul_vtimer ) + __field( int, emul_ptimer ) + ), + + TP_fast_assign( + __entry->vcpu_id = vcpu_id; + __entry->direct_vtimer = arch_timer_ctx_index(map->direct_vtimer); + __entry->direct_ptimer = + (map->direct_ptimer) ? arch_timer_ctx_index(map->direct_ptimer) : -1; + __entry->emul_vtimer = + (map->emul_vtimer) ? arch_timer_ctx_index(map->emul_vtimer) : -1; + __entry->emul_ptimer = + (map->emul_ptimer) ? arch_timer_ctx_index(map->emul_ptimer) : -1; + ), + + TP_printk("VCPU: %ld, dv: %d, dp: %d, ev: %d, ep: %d", + __entry->vcpu_id, + __entry->direct_vtimer, + __entry->direct_ptimer, + __entry->emul_vtimer, + __entry->emul_ptimer) +); + +TRACE_EVENT(kvm_timer_save_state, + TP_PROTO(struct arch_timer_context *ctx), + TP_ARGS(ctx), + + TP_STRUCT__entry( + __field( unsigned long, ctl ) + __field( unsigned long long, cval ) + __field( int, timer_idx ) + ), + + TP_fast_assign( + __entry->ctl = timer_get_ctl(ctx); + __entry->cval = timer_get_cval(ctx); + __entry->timer_idx = arch_timer_ctx_index(ctx); + ), + + TP_printk(" CTL: %#08lx CVAL: %#16llx arch_timer_ctx_index: %d", + __entry->ctl, + __entry->cval, + __entry->timer_idx) +); + +TRACE_EVENT(kvm_timer_restore_state, + TP_PROTO(struct arch_timer_context *ctx), + TP_ARGS(ctx), + + TP_STRUCT__entry( + __field( unsigned long, ctl ) + __field( unsigned long long, cval ) + __field( int, timer_idx ) + ), + + TP_fast_assign( + __entry->ctl = timer_get_ctl(ctx); + __entry->cval = timer_get_cval(ctx); + __entry->timer_idx = arch_timer_ctx_index(ctx); + ), + + TP_printk("CTL: %#08lx CVAL: %#16llx arch_timer_ctx_index: %d", + __entry->ctl, + __entry->cval, + __entry->timer_idx) +); + +TRACE_EVENT(kvm_timer_hrtimer_expire, + TP_PROTO(struct arch_timer_context *ctx), + TP_ARGS(ctx), + + TP_STRUCT__entry( + __field( int, timer_idx ) + ), + + TP_fast_assign( + __entry->timer_idx = arch_timer_ctx_index(ctx); + ), + + TP_printk("arch_timer_ctx_index: %d", __entry->timer_idx) +); + +TRACE_EVENT(kvm_timer_emulate, + TP_PROTO(struct arch_timer_context *ctx, bool should_fire), + TP_ARGS(ctx, should_fire), + + TP_STRUCT__entry( + __field( int, timer_idx ) + __field( bool, should_fire ) + ), + + TP_fast_assign( + __entry->timer_idx = arch_timer_ctx_index(ctx); + __entry->should_fire = should_fire; + ), + + TP_printk("arch_timer_ctx_index: %d (should_fire: %d)", + __entry->timer_idx, __entry->should_fire) +); + +TRACE_EVENT(kvm_nested_eret, + TP_PROTO(struct kvm_vcpu *vcpu, unsigned long elr_el2, + unsigned long spsr_el2), + TP_ARGS(vcpu, elr_el2, spsr_el2), + + TP_STRUCT__entry( + __field(struct kvm_vcpu *, vcpu) + __field(unsigned long, elr_el2) + __field(unsigned long, spsr_el2) + __field(unsigned long, target_mode) + __field(unsigned long, hcr_el2) + ), + + TP_fast_assign( + __entry->vcpu = vcpu; + __entry->elr_el2 = elr_el2; + __entry->spsr_el2 = spsr_el2; + __entry->target_mode = spsr_el2 & (PSR_MODE_MASK | PSR_MODE32_BIT); + __entry->hcr_el2 = __vcpu_sys_reg(vcpu, HCR_EL2); + ), + + TP_printk("elr_el2: 0x%lx spsr_el2: 0x%08lx (M: %s) hcr_el2: %lx", + __entry->elr_el2, __entry->spsr_el2, + __print_symbolic(__entry->target_mode, kvm_mode_names), + __entry->hcr_el2) +); + +TRACE_EVENT(kvm_inject_nested_exception, + TP_PROTO(struct kvm_vcpu *vcpu, u64 esr_el2, int type), + TP_ARGS(vcpu, esr_el2, type), + + TP_STRUCT__entry( + __field(struct kvm_vcpu *, vcpu) + __field(unsigned long, esr_el2) + __field(int, type) + __field(unsigned long, spsr_el2) + __field(unsigned long, pc) + __field(unsigned long, source_mode) + __field(unsigned long, hcr_el2) + ), + + TP_fast_assign( + __entry->vcpu = vcpu; + __entry->esr_el2 = esr_el2; + __entry->type = type; + __entry->spsr_el2 = *vcpu_cpsr(vcpu); + __entry->pc = *vcpu_pc(vcpu); + __entry->source_mode = *vcpu_cpsr(vcpu) & (PSR_MODE_MASK | PSR_MODE32_BIT); + __entry->hcr_el2 = __vcpu_sys_reg(vcpu, HCR_EL2); + ), + + TP_printk("%s: esr_el2 0x%lx elr_el2: 0x%lx spsr_el2: 0x%08lx (M: %s) hcr_el2: %lx", + __print_symbolic(__entry->type, kvm_exception_type_names), + __entry->esr_el2, __entry->pc, __entry->spsr_el2, + __print_symbolic(__entry->source_mode, kvm_mode_names), + __entry->hcr_el2) +); + +TRACE_EVENT(kvm_forward_sysreg_trap, + TP_PROTO(struct kvm_vcpu *vcpu, u32 sysreg, bool is_read), + TP_ARGS(vcpu, sysreg, is_read), + + TP_STRUCT__entry( + __field(u64, pc) + __field(u32, sysreg) + __field(bool, is_read) + ), + + TP_fast_assign( + __entry->pc = *vcpu_pc(vcpu); + __entry->sysreg = sysreg; + __entry->is_read = is_read; + ), + + TP_printk("%llx %c (%d,%d,%d,%d,%d)", + __entry->pc, + __entry->is_read ? 'R' : 'W', + sys_reg_Op0(__entry->sysreg), + sys_reg_Op1(__entry->sysreg), + sys_reg_CRn(__entry->sysreg), + sys_reg_CRm(__entry->sysreg), + sys_reg_Op2(__entry->sysreg)) +); + +#endif /* _TRACE_ARM_ARM64_KVM_H */ + +#undef TRACE_INCLUDE_PATH +#define TRACE_INCLUDE_PATH . +#undef TRACE_INCLUDE_FILE +#define TRACE_INCLUDE_FILE trace_arm + +/* This part must be outside protection */ +#include <trace/define_trace.h> diff --git a/arch/arm64/kvm/trace_handle_exit.h b/arch/arm64/kvm/trace_handle_exit.h new file mode 100644 index 0000000000..064a58c19f --- /dev/null +++ b/arch/arm64/kvm/trace_handle_exit.h @@ -0,0 +1,219 @@ +/* SPDX-License-Identifier: GPL-2.0 */ +#if !defined(_TRACE_HANDLE_EXIT_ARM64_KVM_H) || defined(TRACE_HEADER_MULTI_READ) +#define _TRACE_HANDLE_EXIT_ARM64_KVM_H + +#include <linux/tracepoint.h> +#include "sys_regs.h" + +#undef TRACE_SYSTEM +#define TRACE_SYSTEM kvm + +TRACE_EVENT(kvm_wfx_arm64, + TP_PROTO(unsigned long vcpu_pc, bool is_wfe), + TP_ARGS(vcpu_pc, is_wfe), + + TP_STRUCT__entry( + __field(unsigned long, vcpu_pc) + __field(bool, is_wfe) + ), + + TP_fast_assign( + __entry->vcpu_pc = vcpu_pc; + __entry->is_wfe = is_wfe; + ), + + TP_printk("guest executed wf%c at: 0x%016lx", + __entry->is_wfe ? 'e' : 'i', __entry->vcpu_pc) +); + +TRACE_EVENT(kvm_hvc_arm64, + TP_PROTO(unsigned long vcpu_pc, unsigned long r0, unsigned long imm), + TP_ARGS(vcpu_pc, r0, imm), + + TP_STRUCT__entry( + __field(unsigned long, vcpu_pc) + __field(unsigned long, r0) + __field(unsigned long, imm) + ), + + TP_fast_assign( + __entry->vcpu_pc = vcpu_pc; + __entry->r0 = r0; + __entry->imm = imm; + ), + + TP_printk("HVC at 0x%016lx (r0: 0x%016lx, imm: 0x%lx)", + __entry->vcpu_pc, __entry->r0, __entry->imm) +); + +TRACE_EVENT(kvm_arm_setup_debug, + TP_PROTO(struct kvm_vcpu *vcpu, __u32 guest_debug), + TP_ARGS(vcpu, guest_debug), + + TP_STRUCT__entry( + __field(struct kvm_vcpu *, vcpu) + __field(__u32, guest_debug) + ), + + TP_fast_assign( + __entry->vcpu = vcpu; + __entry->guest_debug = guest_debug; + ), + + TP_printk("vcpu: %p, flags: 0x%08x", __entry->vcpu, __entry->guest_debug) +); + +TRACE_EVENT(kvm_arm_clear_debug, + TP_PROTO(__u32 guest_debug), + TP_ARGS(guest_debug), + + TP_STRUCT__entry( + __field(__u32, guest_debug) + ), + + TP_fast_assign( + __entry->guest_debug = guest_debug; + ), + + TP_printk("flags: 0x%08x", __entry->guest_debug) +); + +/* + * The dreg32 name is a leftover from a distant past. This will really + * output a 64bit value... + */ +TRACE_EVENT(kvm_arm_set_dreg32, + TP_PROTO(const char *name, __u64 value), + TP_ARGS(name, value), + + TP_STRUCT__entry( + __field(const char *, name) + __field(__u64, value) + ), + + TP_fast_assign( + __entry->name = name; + __entry->value = value; + ), + + TP_printk("%s: 0x%llx", __entry->name, __entry->value) +); + +TRACE_DEFINE_SIZEOF(__u64); + +TRACE_EVENT(kvm_arm_set_regset, + TP_PROTO(const char *type, int len, __u64 *control, __u64 *value), + TP_ARGS(type, len, control, value), + TP_STRUCT__entry( + __field(const char *, name) + __field(int, len) + __array(u64, ctrls, 16) + __array(u64, values, 16) + ), + TP_fast_assign( + __entry->name = type; + __entry->len = len; + memcpy(__entry->ctrls, control, len << 3); + memcpy(__entry->values, value, len << 3); + ), + TP_printk("%d %s CTRL:%s VALUE:%s", __entry->len, __entry->name, + __print_array(__entry->ctrls, __entry->len, sizeof(__u64)), + __print_array(__entry->values, __entry->len, sizeof(__u64))) +); + +TRACE_EVENT(trap_reg, + TP_PROTO(const char *fn, int reg, bool is_write, u64 write_value), + TP_ARGS(fn, reg, is_write, write_value), + + TP_STRUCT__entry( + __field(const char *, fn) + __field(int, reg) + __field(bool, is_write) + __field(u64, write_value) + ), + + TP_fast_assign( + __entry->fn = fn; + __entry->reg = reg; + __entry->is_write = is_write; + __entry->write_value = write_value; + ), + + TP_printk("%s %s reg %d (0x%016llx)", __entry->fn, __entry->is_write?"write to":"read from", __entry->reg, __entry->write_value) +); + +TRACE_EVENT(kvm_handle_sys_reg, + TP_PROTO(unsigned long hsr), + TP_ARGS(hsr), + + TP_STRUCT__entry( + __field(unsigned long, hsr) + ), + + TP_fast_assign( + __entry->hsr = hsr; + ), + + TP_printk("HSR 0x%08lx", __entry->hsr) +); + +TRACE_EVENT(kvm_sys_access, + TP_PROTO(unsigned long vcpu_pc, struct sys_reg_params *params, const struct sys_reg_desc *reg), + TP_ARGS(vcpu_pc, params, reg), + + TP_STRUCT__entry( + __field(unsigned long, vcpu_pc) + __field(bool, is_write) + __field(const char *, name) + __field(u8, Op0) + __field(u8, Op1) + __field(u8, CRn) + __field(u8, CRm) + __field(u8, Op2) + ), + + TP_fast_assign( + __entry->vcpu_pc = vcpu_pc; + __entry->is_write = params->is_write; + __entry->name = reg->name; + __entry->Op0 = reg->Op0; + __entry->Op0 = reg->Op0; + __entry->Op1 = reg->Op1; + __entry->CRn = reg->CRn; + __entry->CRm = reg->CRm; + __entry->Op2 = reg->Op2; + ), + + TP_printk("PC: %lx %s (%d,%d,%d,%d,%d) %s", + __entry->vcpu_pc, __entry->name ?: "UNKN", + __entry->Op0, __entry->Op1, __entry->CRn, + __entry->CRm, __entry->Op2, + __entry->is_write ? "write" : "read") +); + +TRACE_EVENT(kvm_set_guest_debug, + TP_PROTO(struct kvm_vcpu *vcpu, __u32 guest_debug), + TP_ARGS(vcpu, guest_debug), + + TP_STRUCT__entry( + __field(struct kvm_vcpu *, vcpu) + __field(__u32, guest_debug) + ), + + TP_fast_assign( + __entry->vcpu = vcpu; + __entry->guest_debug = guest_debug; + ), + + TP_printk("vcpu: %p, flags: 0x%08x", __entry->vcpu, __entry->guest_debug) +); + +#endif /* _TRACE_HANDLE_EXIT_ARM64_KVM_H */ + +#undef TRACE_INCLUDE_PATH +#define TRACE_INCLUDE_PATH . +#undef TRACE_INCLUDE_FILE +#define TRACE_INCLUDE_FILE trace_handle_exit + +/* This part must be outside protection */ +#include <trace/define_trace.h> diff --git a/arch/arm64/kvm/trng.c b/arch/arm64/kvm/trng.c new file mode 100644 index 0000000000..99bdd7103c --- /dev/null +++ b/arch/arm64/kvm/trng.c @@ -0,0 +1,85 @@ +// SPDX-License-Identifier: GPL-2.0 +// Copyright (C) 2020 Arm Ltd. + +#include <linux/arm-smccc.h> +#include <linux/kvm_host.h> + +#include <asm/kvm_emulate.h> + +#include <kvm/arm_hypercalls.h> + +#define ARM_SMCCC_TRNG_VERSION_1_0 0x10000UL + +/* Those values are deliberately separate from the generic SMCCC definitions. */ +#define TRNG_SUCCESS 0UL +#define TRNG_NOT_SUPPORTED ((unsigned long)-1) +#define TRNG_INVALID_PARAMETER ((unsigned long)-2) +#define TRNG_NO_ENTROPY ((unsigned long)-3) + +#define TRNG_MAX_BITS64 192 + +static const uuid_t arm_smc_trng_uuid __aligned(4) = UUID_INIT( + 0x0d21e000, 0x4384, 0x11eb, 0x80, 0x70, 0x52, 0x44, 0x55, 0x4e, 0x5a, 0x4c); + +static int kvm_trng_do_rnd(struct kvm_vcpu *vcpu, int size) +{ + DECLARE_BITMAP(bits, TRNG_MAX_BITS64); + u32 num_bits = smccc_get_arg1(vcpu); + int i; + + if (num_bits > 3 * size) { + smccc_set_retval(vcpu, TRNG_INVALID_PARAMETER, 0, 0, 0); + return 1; + } + + /* get as many bits as we need to fulfil the request */ + for (i = 0; i < DIV_ROUND_UP(num_bits, BITS_PER_LONG); i++) + bits[i] = get_random_long(); + + bitmap_clear(bits, num_bits, TRNG_MAX_BITS64 - num_bits); + + if (size == 32) + smccc_set_retval(vcpu, TRNG_SUCCESS, lower_32_bits(bits[1]), + upper_32_bits(bits[0]), lower_32_bits(bits[0])); + else + smccc_set_retval(vcpu, TRNG_SUCCESS, bits[2], bits[1], bits[0]); + + memzero_explicit(bits, sizeof(bits)); + return 1; +} + +int kvm_trng_call(struct kvm_vcpu *vcpu) +{ + const __le32 *u = (__le32 *)arm_smc_trng_uuid.b; + u32 func_id = smccc_get_function(vcpu); + unsigned long val = TRNG_NOT_SUPPORTED; + int size = 64; + + switch (func_id) { + case ARM_SMCCC_TRNG_VERSION: + val = ARM_SMCCC_TRNG_VERSION_1_0; + break; + case ARM_SMCCC_TRNG_FEATURES: + switch (smccc_get_arg1(vcpu)) { + case ARM_SMCCC_TRNG_VERSION: + case ARM_SMCCC_TRNG_FEATURES: + case ARM_SMCCC_TRNG_GET_UUID: + case ARM_SMCCC_TRNG_RND32: + case ARM_SMCCC_TRNG_RND64: + val = TRNG_SUCCESS; + } + break; + case ARM_SMCCC_TRNG_GET_UUID: + smccc_set_retval(vcpu, le32_to_cpu(u[0]), le32_to_cpu(u[1]), + le32_to_cpu(u[2]), le32_to_cpu(u[3])); + return 1; + case ARM_SMCCC_TRNG_RND32: + size = 32; + fallthrough; + case ARM_SMCCC_TRNG_RND64: + return kvm_trng_do_rnd(vcpu, size); + } + + smccc_set_retval(vcpu, val, 0, 0, 0); + return 1; +} diff --git a/arch/arm64/kvm/va_layout.c b/arch/arm64/kvm/va_layout.c new file mode 100644 index 0000000000..91b22a0146 --- /dev/null +++ b/arch/arm64/kvm/va_layout.c @@ -0,0 +1,298 @@ +// SPDX-License-Identifier: GPL-2.0-only +/* + * Copyright (C) 2017 ARM Ltd. + * Author: Marc Zyngier <marc.zyngier@arm.com> + */ + +#include <linux/kvm_host.h> +#include <linux/random.h> +#include <linux/memblock.h> +#include <asm/alternative.h> +#include <asm/debug-monitors.h> +#include <asm/insn.h> +#include <asm/kvm_mmu.h> +#include <asm/memory.h> + +/* + * The LSB of the HYP VA tag + */ +static u8 tag_lsb; +/* + * The HYP VA tag value with the region bit + */ +static u64 tag_val; +static u64 va_mask; + +/* + * Compute HYP VA by using the same computation as kern_hyp_va(). + */ +static u64 __early_kern_hyp_va(u64 addr) +{ + addr &= va_mask; + addr |= tag_val << tag_lsb; + return addr; +} + +/* + * Store a hyp VA <-> PA offset into a EL2-owned variable. + */ +static void init_hyp_physvirt_offset(void) +{ + u64 kern_va, hyp_va; + + /* Compute the offset from the hyp VA and PA of a random symbol. */ + kern_va = (u64)lm_alias(__hyp_text_start); + hyp_va = __early_kern_hyp_va(kern_va); + hyp_physvirt_offset = (s64)__pa(kern_va) - (s64)hyp_va; +} + +/* + * We want to generate a hyp VA with the following format (with V == + * vabits_actual): + * + * 63 ... V | V-1 | V-2 .. tag_lsb | tag_lsb - 1 .. 0 + * --------------------------------------------------------- + * | 0000000 | hyp_va_msb | random tag | kern linear VA | + * |--------- tag_val -----------|----- va_mask ---| + * + * which does not conflict with the idmap regions. + */ +__init void kvm_compute_layout(void) +{ + phys_addr_t idmap_addr = __pa_symbol(__hyp_idmap_text_start); + u64 hyp_va_msb; + + /* Where is my RAM region? */ + hyp_va_msb = idmap_addr & BIT(vabits_actual - 1); + hyp_va_msb ^= BIT(vabits_actual - 1); + + tag_lsb = fls64((u64)phys_to_virt(memblock_start_of_DRAM()) ^ + (u64)(high_memory - 1)); + + va_mask = GENMASK_ULL(tag_lsb - 1, 0); + tag_val = hyp_va_msb; + + if (IS_ENABLED(CONFIG_RANDOMIZE_BASE) && tag_lsb != (vabits_actual - 1)) { + /* We have some free bits to insert a random tag. */ + tag_val |= get_random_long() & GENMASK_ULL(vabits_actual - 2, tag_lsb); + } + tag_val >>= tag_lsb; + + init_hyp_physvirt_offset(); +} + +/* + * The .hyp.reloc ELF section contains a list of kimg positions that + * contains kimg VAs but will be accessed only in hyp execution context. + * Convert them to hyp VAs. See gen-hyprel.c for more details. + */ +__init void kvm_apply_hyp_relocations(void) +{ + int32_t *rel; + int32_t *begin = (int32_t *)__hyp_reloc_begin; + int32_t *end = (int32_t *)__hyp_reloc_end; + + for (rel = begin; rel < end; ++rel) { + uintptr_t *ptr, kimg_va; + + /* + * Each entry contains a 32-bit relative offset from itself + * to a kimg VA position. + */ + ptr = (uintptr_t *)lm_alias((char *)rel + *rel); + + /* Read the kimg VA value at the relocation address. */ + kimg_va = *ptr; + + /* Convert to hyp VA and store back to the relocation address. */ + *ptr = __early_kern_hyp_va((uintptr_t)lm_alias(kimg_va)); + } +} + +static u32 compute_instruction(int n, u32 rd, u32 rn) +{ + u32 insn = AARCH64_BREAK_FAULT; + + switch (n) { + case 0: + insn = aarch64_insn_gen_logical_immediate(AARCH64_INSN_LOGIC_AND, + AARCH64_INSN_VARIANT_64BIT, + rn, rd, va_mask); + break; + + case 1: + /* ROR is a variant of EXTR with Rm = Rn */ + insn = aarch64_insn_gen_extr(AARCH64_INSN_VARIANT_64BIT, + rn, rn, rd, + tag_lsb); + break; + + case 2: + insn = aarch64_insn_gen_add_sub_imm(rd, rn, + tag_val & GENMASK(11, 0), + AARCH64_INSN_VARIANT_64BIT, + AARCH64_INSN_ADSB_ADD); + break; + + case 3: + insn = aarch64_insn_gen_add_sub_imm(rd, rn, + tag_val & GENMASK(23, 12), + AARCH64_INSN_VARIANT_64BIT, + AARCH64_INSN_ADSB_ADD); + break; + + case 4: + /* ROR is a variant of EXTR with Rm = Rn */ + insn = aarch64_insn_gen_extr(AARCH64_INSN_VARIANT_64BIT, + rn, rn, rd, 64 - tag_lsb); + break; + } + + return insn; +} + +void __init kvm_update_va_mask(struct alt_instr *alt, + __le32 *origptr, __le32 *updptr, int nr_inst) +{ + int i; + + BUG_ON(nr_inst != 5); + + for (i = 0; i < nr_inst; i++) { + u32 rd, rn, insn, oinsn; + + /* + * VHE doesn't need any address translation, let's NOP + * everything. + * + * Alternatively, if the tag is zero (because the layout + * dictates it and we don't have any spare bits in the + * address), NOP everything after masking the kernel VA. + */ + if (cpus_have_cap(ARM64_HAS_VIRT_HOST_EXTN) || (!tag_val && i > 0)) { + updptr[i] = cpu_to_le32(aarch64_insn_gen_nop()); + continue; + } + + oinsn = le32_to_cpu(origptr[i]); + rd = aarch64_insn_decode_register(AARCH64_INSN_REGTYPE_RD, oinsn); + rn = aarch64_insn_decode_register(AARCH64_INSN_REGTYPE_RN, oinsn); + + insn = compute_instruction(i, rd, rn); + BUG_ON(insn == AARCH64_BREAK_FAULT); + + updptr[i] = cpu_to_le32(insn); + } +} + +void kvm_patch_vector_branch(struct alt_instr *alt, + __le32 *origptr, __le32 *updptr, int nr_inst) +{ + u64 addr; + u32 insn; + + BUG_ON(nr_inst != 4); + + if (!cpus_have_cap(ARM64_SPECTRE_V3A) || + WARN_ON_ONCE(cpus_have_cap(ARM64_HAS_VIRT_HOST_EXTN))) + return; + + /* + * Compute HYP VA by using the same computation as kern_hyp_va() + */ + addr = __early_kern_hyp_va((u64)kvm_ksym_ref(__kvm_hyp_vector)); + + /* Use PC[10:7] to branch to the same vector in KVM */ + addr |= ((u64)origptr & GENMASK_ULL(10, 7)); + + /* + * Branch over the preamble in order to avoid the initial store on + * the stack (which we already perform in the hardening vectors). + */ + addr += KVM_VECTOR_PREAMBLE; + + /* movz x0, #(addr & 0xffff) */ + insn = aarch64_insn_gen_movewide(AARCH64_INSN_REG_0, + (u16)addr, + 0, + AARCH64_INSN_VARIANT_64BIT, + AARCH64_INSN_MOVEWIDE_ZERO); + *updptr++ = cpu_to_le32(insn); + + /* movk x0, #((addr >> 16) & 0xffff), lsl #16 */ + insn = aarch64_insn_gen_movewide(AARCH64_INSN_REG_0, + (u16)(addr >> 16), + 16, + AARCH64_INSN_VARIANT_64BIT, + AARCH64_INSN_MOVEWIDE_KEEP); + *updptr++ = cpu_to_le32(insn); + + /* movk x0, #((addr >> 32) & 0xffff), lsl #32 */ + insn = aarch64_insn_gen_movewide(AARCH64_INSN_REG_0, + (u16)(addr >> 32), + 32, + AARCH64_INSN_VARIANT_64BIT, + AARCH64_INSN_MOVEWIDE_KEEP); + *updptr++ = cpu_to_le32(insn); + + /* br x0 */ + insn = aarch64_insn_gen_branch_reg(AARCH64_INSN_REG_0, + AARCH64_INSN_BRANCH_NOLINK); + *updptr++ = cpu_to_le32(insn); +} + +static void generate_mov_q(u64 val, __le32 *origptr, __le32 *updptr, int nr_inst) +{ + u32 insn, oinsn, rd; + + BUG_ON(nr_inst != 4); + + /* Compute target register */ + oinsn = le32_to_cpu(*origptr); + rd = aarch64_insn_decode_register(AARCH64_INSN_REGTYPE_RD, oinsn); + + /* movz rd, #(val & 0xffff) */ + insn = aarch64_insn_gen_movewide(rd, + (u16)val, + 0, + AARCH64_INSN_VARIANT_64BIT, + AARCH64_INSN_MOVEWIDE_ZERO); + *updptr++ = cpu_to_le32(insn); + + /* movk rd, #((val >> 16) & 0xffff), lsl #16 */ + insn = aarch64_insn_gen_movewide(rd, + (u16)(val >> 16), + 16, + AARCH64_INSN_VARIANT_64BIT, + AARCH64_INSN_MOVEWIDE_KEEP); + *updptr++ = cpu_to_le32(insn); + + /* movk rd, #((val >> 32) & 0xffff), lsl #32 */ + insn = aarch64_insn_gen_movewide(rd, + (u16)(val >> 32), + 32, + AARCH64_INSN_VARIANT_64BIT, + AARCH64_INSN_MOVEWIDE_KEEP); + *updptr++ = cpu_to_le32(insn); + + /* movk rd, #((val >> 48) & 0xffff), lsl #48 */ + insn = aarch64_insn_gen_movewide(rd, + (u16)(val >> 48), + 48, + AARCH64_INSN_VARIANT_64BIT, + AARCH64_INSN_MOVEWIDE_KEEP); + *updptr++ = cpu_to_le32(insn); +} + +void kvm_get_kimage_voffset(struct alt_instr *alt, + __le32 *origptr, __le32 *updptr, int nr_inst) +{ + generate_mov_q(kimage_voffset, origptr, updptr, nr_inst); +} + +void kvm_compute_final_ctr_el0(struct alt_instr *alt, + __le32 *origptr, __le32 *updptr, int nr_inst) +{ + generate_mov_q(read_sanitised_ftr_reg(SYS_CTR_EL0), + origptr, updptr, nr_inst); +} diff --git a/arch/arm64/kvm/vgic-sys-reg-v3.c b/arch/arm64/kvm/vgic-sys-reg-v3.c new file mode 100644 index 0000000000..9e7c486b48 --- /dev/null +++ b/arch/arm64/kvm/vgic-sys-reg-v3.c @@ -0,0 +1,366 @@ +// SPDX-License-Identifier: GPL-2.0-only +/* + * VGIC system registers handling functions for AArch64 mode + */ + +#include <linux/irqchip/arm-gic-v3.h> +#include <linux/kvm.h> +#include <linux/kvm_host.h> +#include <asm/kvm_emulate.h> +#include "vgic/vgic.h" +#include "sys_regs.h" + +static int set_gic_ctlr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r, + u64 val) +{ + u32 host_pri_bits, host_id_bits, host_seis, host_a3v, seis, a3v; + struct vgic_cpu *vgic_v3_cpu = &vcpu->arch.vgic_cpu; + struct vgic_vmcr vmcr; + + vgic_get_vmcr(vcpu, &vmcr); + + /* + * Disallow restoring VM state if not supported by this + * hardware. + */ + host_pri_bits = FIELD_GET(ICC_CTLR_EL1_PRI_BITS_MASK, val) + 1; + if (host_pri_bits > vgic_v3_cpu->num_pri_bits) + return -EINVAL; + + vgic_v3_cpu->num_pri_bits = host_pri_bits; + + host_id_bits = FIELD_GET(ICC_CTLR_EL1_ID_BITS_MASK, val); + if (host_id_bits > vgic_v3_cpu->num_id_bits) + return -EINVAL; + + vgic_v3_cpu->num_id_bits = host_id_bits; + + host_seis = FIELD_GET(ICH_VTR_SEIS_MASK, kvm_vgic_global_state.ich_vtr_el2); + seis = FIELD_GET(ICC_CTLR_EL1_SEIS_MASK, val); + if (host_seis != seis) + return -EINVAL; + + host_a3v = FIELD_GET(ICH_VTR_A3V_MASK, kvm_vgic_global_state.ich_vtr_el2); + a3v = FIELD_GET(ICC_CTLR_EL1_A3V_MASK, val); + if (host_a3v != a3v) + return -EINVAL; + + /* + * Here set VMCR.CTLR in ICC_CTLR_EL1 layout. + * The vgic_set_vmcr() will convert to ICH_VMCR layout. + */ + vmcr.cbpr = FIELD_GET(ICC_CTLR_EL1_CBPR_MASK, val); + vmcr.eoim = FIELD_GET(ICC_CTLR_EL1_EOImode_MASK, val); + vgic_set_vmcr(vcpu, &vmcr); + + return 0; +} + +static int get_gic_ctlr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r, + u64 *valp) +{ + struct vgic_cpu *vgic_v3_cpu = &vcpu->arch.vgic_cpu; + struct vgic_vmcr vmcr; + u64 val; + + vgic_get_vmcr(vcpu, &vmcr); + val = 0; + val |= FIELD_PREP(ICC_CTLR_EL1_PRI_BITS_MASK, vgic_v3_cpu->num_pri_bits - 1); + val |= FIELD_PREP(ICC_CTLR_EL1_ID_BITS_MASK, vgic_v3_cpu->num_id_bits); + val |= FIELD_PREP(ICC_CTLR_EL1_SEIS_MASK, + FIELD_GET(ICH_VTR_SEIS_MASK, + kvm_vgic_global_state.ich_vtr_el2)); + val |= FIELD_PREP(ICC_CTLR_EL1_A3V_MASK, + FIELD_GET(ICH_VTR_A3V_MASK, kvm_vgic_global_state.ich_vtr_el2)); + /* + * The VMCR.CTLR value is in ICC_CTLR_EL1 layout. + * Extract it directly using ICC_CTLR_EL1 reg definitions. + */ + val |= FIELD_PREP(ICC_CTLR_EL1_CBPR_MASK, vmcr.cbpr); + val |= FIELD_PREP(ICC_CTLR_EL1_EOImode_MASK, vmcr.eoim); + + *valp = val; + + return 0; +} + +static int set_gic_pmr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r, + u64 val) +{ + struct vgic_vmcr vmcr; + + vgic_get_vmcr(vcpu, &vmcr); + vmcr.pmr = FIELD_GET(ICC_PMR_EL1_MASK, val); + vgic_set_vmcr(vcpu, &vmcr); + + return 0; +} + +static int get_gic_pmr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r, + u64 *val) +{ + struct vgic_vmcr vmcr; + + vgic_get_vmcr(vcpu, &vmcr); + *val = FIELD_PREP(ICC_PMR_EL1_MASK, vmcr.pmr); + + return 0; +} + +static int set_gic_bpr0(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r, + u64 val) +{ + struct vgic_vmcr vmcr; + + vgic_get_vmcr(vcpu, &vmcr); + vmcr.bpr = FIELD_GET(ICC_BPR0_EL1_MASK, val); + vgic_set_vmcr(vcpu, &vmcr); + + return 0; +} + +static int get_gic_bpr0(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r, + u64 *val) +{ + struct vgic_vmcr vmcr; + + vgic_get_vmcr(vcpu, &vmcr); + *val = FIELD_PREP(ICC_BPR0_EL1_MASK, vmcr.bpr); + + return 0; +} + +static int set_gic_bpr1(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r, + u64 val) +{ + struct vgic_vmcr vmcr; + + vgic_get_vmcr(vcpu, &vmcr); + if (!vmcr.cbpr) { + vmcr.abpr = FIELD_GET(ICC_BPR1_EL1_MASK, val); + vgic_set_vmcr(vcpu, &vmcr); + } + + return 0; +} + +static int get_gic_bpr1(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r, + u64 *val) +{ + struct vgic_vmcr vmcr; + + vgic_get_vmcr(vcpu, &vmcr); + if (!vmcr.cbpr) + *val = FIELD_PREP(ICC_BPR1_EL1_MASK, vmcr.abpr); + else + *val = min((vmcr.bpr + 1), 7U); + + + return 0; +} + +static int set_gic_grpen0(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r, + u64 val) +{ + struct vgic_vmcr vmcr; + + vgic_get_vmcr(vcpu, &vmcr); + vmcr.grpen0 = FIELD_GET(ICC_IGRPEN0_EL1_MASK, val); + vgic_set_vmcr(vcpu, &vmcr); + + return 0; +} + +static int get_gic_grpen0(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r, + u64 *val) +{ + struct vgic_vmcr vmcr; + + vgic_get_vmcr(vcpu, &vmcr); + *val = FIELD_PREP(ICC_IGRPEN0_EL1_MASK, vmcr.grpen0); + + return 0; +} + +static int set_gic_grpen1(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r, + u64 val) +{ + struct vgic_vmcr vmcr; + + vgic_get_vmcr(vcpu, &vmcr); + vmcr.grpen1 = FIELD_GET(ICC_IGRPEN1_EL1_MASK, val); + vgic_set_vmcr(vcpu, &vmcr); + + return 0; +} + +static int get_gic_grpen1(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r, + u64 *val) +{ + struct vgic_vmcr vmcr; + + vgic_get_vmcr(vcpu, &vmcr); + *val = FIELD_GET(ICC_IGRPEN1_EL1_MASK, vmcr.grpen1); + + return 0; +} + +static void set_apr_reg(struct kvm_vcpu *vcpu, u64 val, u8 apr, u8 idx) +{ + struct vgic_v3_cpu_if *vgicv3 = &vcpu->arch.vgic_cpu.vgic_v3; + + if (apr) + vgicv3->vgic_ap1r[idx] = val; + else + vgicv3->vgic_ap0r[idx] = val; +} + +static u64 get_apr_reg(struct kvm_vcpu *vcpu, u8 apr, u8 idx) +{ + struct vgic_v3_cpu_if *vgicv3 = &vcpu->arch.vgic_cpu.vgic_v3; + + if (apr) + return vgicv3->vgic_ap1r[idx]; + else + return vgicv3->vgic_ap0r[idx]; +} + +static int set_gic_ap0r(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r, + u64 val) + +{ + u8 idx = r->Op2 & 3; + + if (idx > vgic_v3_max_apr_idx(vcpu)) + return -EINVAL; + + set_apr_reg(vcpu, val, 0, idx); + return 0; +} + +static int get_gic_ap0r(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r, + u64 *val) +{ + u8 idx = r->Op2 & 3; + + if (idx > vgic_v3_max_apr_idx(vcpu)) + return -EINVAL; + + *val = get_apr_reg(vcpu, 0, idx); + + return 0; +} + +static int set_gic_ap1r(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r, + u64 val) + +{ + u8 idx = r->Op2 & 3; + + if (idx > vgic_v3_max_apr_idx(vcpu)) + return -EINVAL; + + set_apr_reg(vcpu, val, 1, idx); + return 0; +} + +static int get_gic_ap1r(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r, + u64 *val) +{ + u8 idx = r->Op2 & 3; + + if (idx > vgic_v3_max_apr_idx(vcpu)) + return -EINVAL; + + *val = get_apr_reg(vcpu, 1, idx); + + return 0; +} + +static int set_gic_sre(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r, + u64 val) +{ + /* Validate SRE bit */ + if (!(val & ICC_SRE_EL1_SRE)) + return -EINVAL; + + return 0; +} + +static int get_gic_sre(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r, + u64 *val) +{ + struct vgic_v3_cpu_if *vgicv3 = &vcpu->arch.vgic_cpu.vgic_v3; + + *val = vgicv3->vgic_sre; + + return 0; +} + +static const struct sys_reg_desc gic_v3_icc_reg_descs[] = { + { SYS_DESC(SYS_ICC_PMR_EL1), + .set_user = set_gic_pmr, .get_user = get_gic_pmr, }, + { SYS_DESC(SYS_ICC_BPR0_EL1), + .set_user = set_gic_bpr0, .get_user = get_gic_bpr0, }, + { SYS_DESC(SYS_ICC_AP0R0_EL1), + .set_user = set_gic_ap0r, .get_user = get_gic_ap0r, }, + { SYS_DESC(SYS_ICC_AP0R1_EL1), + .set_user = set_gic_ap0r, .get_user = get_gic_ap0r, }, + { SYS_DESC(SYS_ICC_AP0R2_EL1), + .set_user = set_gic_ap0r, .get_user = get_gic_ap0r, }, + { SYS_DESC(SYS_ICC_AP0R3_EL1), + .set_user = set_gic_ap0r, .get_user = get_gic_ap0r, }, + { SYS_DESC(SYS_ICC_AP1R0_EL1), + .set_user = set_gic_ap1r, .get_user = get_gic_ap1r, }, + { SYS_DESC(SYS_ICC_AP1R1_EL1), + .set_user = set_gic_ap1r, .get_user = get_gic_ap1r, }, + { SYS_DESC(SYS_ICC_AP1R2_EL1), + .set_user = set_gic_ap1r, .get_user = get_gic_ap1r, }, + { SYS_DESC(SYS_ICC_AP1R3_EL1), + .set_user = set_gic_ap1r, .get_user = get_gic_ap1r, }, + { SYS_DESC(SYS_ICC_BPR1_EL1), + .set_user = set_gic_bpr1, .get_user = get_gic_bpr1, }, + { SYS_DESC(SYS_ICC_CTLR_EL1), + .set_user = set_gic_ctlr, .get_user = get_gic_ctlr, }, + { SYS_DESC(SYS_ICC_SRE_EL1), + .set_user = set_gic_sre, .get_user = get_gic_sre, }, + { SYS_DESC(SYS_ICC_IGRPEN0_EL1), + .set_user = set_gic_grpen0, .get_user = get_gic_grpen0, }, + { SYS_DESC(SYS_ICC_IGRPEN1_EL1), + .set_user = set_gic_grpen1, .get_user = get_gic_grpen1, }, +}; + +static u64 attr_to_id(u64 attr) +{ + return ARM64_SYS_REG(FIELD_GET(KVM_REG_ARM_VGIC_SYSREG_OP0_MASK, attr), + FIELD_GET(KVM_REG_ARM_VGIC_SYSREG_OP1_MASK, attr), + FIELD_GET(KVM_REG_ARM_VGIC_SYSREG_CRN_MASK, attr), + FIELD_GET(KVM_REG_ARM_VGIC_SYSREG_CRM_MASK, attr), + FIELD_GET(KVM_REG_ARM_VGIC_SYSREG_OP2_MASK, attr)); +} + +int vgic_v3_has_cpu_sysregs_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr) +{ + if (get_reg_by_id(attr_to_id(attr->attr), gic_v3_icc_reg_descs, + ARRAY_SIZE(gic_v3_icc_reg_descs))) + return 0; + + return -ENXIO; +} + +int vgic_v3_cpu_sysregs_uaccess(struct kvm_vcpu *vcpu, + struct kvm_device_attr *attr, + bool is_write) +{ + struct kvm_one_reg reg = { + .id = attr_to_id(attr->attr), + .addr = attr->addr, + }; + + if (is_write) + return kvm_sys_reg_set_user(vcpu, ®, gic_v3_icc_reg_descs, + ARRAY_SIZE(gic_v3_icc_reg_descs)); + else + return kvm_sys_reg_get_user(vcpu, ®, gic_v3_icc_reg_descs, + ARRAY_SIZE(gic_v3_icc_reg_descs)); +} diff --git a/arch/arm64/kvm/vgic/trace.h b/arch/arm64/kvm/vgic/trace.h new file mode 100644 index 0000000000..83c64401a7 --- /dev/null +++ b/arch/arm64/kvm/vgic/trace.h @@ -0,0 +1,38 @@ +/* SPDX-License-Identifier: GPL-2.0 */ +#if !defined(_TRACE_VGIC_H) || defined(TRACE_HEADER_MULTI_READ) +#define _TRACE_VGIC_H + +#include <linux/tracepoint.h> + +#undef TRACE_SYSTEM +#define TRACE_SYSTEM kvm + +TRACE_EVENT(vgic_update_irq_pending, + TP_PROTO(unsigned long vcpu_id, __u32 irq, bool level), + TP_ARGS(vcpu_id, irq, level), + + TP_STRUCT__entry( + __field( unsigned long, vcpu_id ) + __field( __u32, irq ) + __field( bool, level ) + ), + + TP_fast_assign( + __entry->vcpu_id = vcpu_id; + __entry->irq = irq; + __entry->level = level; + ), + + TP_printk("VCPU: %ld, IRQ %d, level: %d", + __entry->vcpu_id, __entry->irq, __entry->level) +); + +#endif /* _TRACE_VGIC_H */ + +#undef TRACE_INCLUDE_PATH +#define TRACE_INCLUDE_PATH ../../arch/arm64/kvm/vgic +#undef TRACE_INCLUDE_FILE +#define TRACE_INCLUDE_FILE trace + +/* This part must be outside protection */ +#include <trace/define_trace.h> diff --git a/arch/arm64/kvm/vgic/vgic-debug.c b/arch/arm64/kvm/vgic/vgic-debug.c new file mode 100644 index 0000000000..07aa043712 --- /dev/null +++ b/arch/arm64/kvm/vgic/vgic-debug.c @@ -0,0 +1,280 @@ +// SPDX-License-Identifier: GPL-2.0-only +/* + * Copyright (C) 2016 Linaro + * Author: Christoffer Dall <christoffer.dall@linaro.org> + */ + +#include <linux/cpu.h> +#include <linux/debugfs.h> +#include <linux/interrupt.h> +#include <linux/kvm_host.h> +#include <linux/seq_file.h> +#include <kvm/arm_vgic.h> +#include <asm/kvm_mmu.h> +#include "vgic.h" + +/* + * Structure to control looping through the entire vgic state. We start at + * zero for each field and move upwards. So, if dist_id is 0 we print the + * distributor info. When dist_id is 1, we have already printed it and move + * on. + * + * When vcpu_id < nr_cpus we print the vcpu info until vcpu_id == nr_cpus and + * so on. + */ +struct vgic_state_iter { + int nr_cpus; + int nr_spis; + int nr_lpis; + int dist_id; + int vcpu_id; + int intid; + int lpi_idx; + u32 *lpi_array; +}; + +static void iter_next(struct vgic_state_iter *iter) +{ + if (iter->dist_id == 0) { + iter->dist_id++; + return; + } + + iter->intid++; + if (iter->intid == VGIC_NR_PRIVATE_IRQS && + ++iter->vcpu_id < iter->nr_cpus) + iter->intid = 0; + + if (iter->intid >= (iter->nr_spis + VGIC_NR_PRIVATE_IRQS)) { + if (iter->lpi_idx < iter->nr_lpis) + iter->intid = iter->lpi_array[iter->lpi_idx]; + iter->lpi_idx++; + } +} + +static void iter_init(struct kvm *kvm, struct vgic_state_iter *iter, + loff_t pos) +{ + int nr_cpus = atomic_read(&kvm->online_vcpus); + + memset(iter, 0, sizeof(*iter)); + + iter->nr_cpus = nr_cpus; + iter->nr_spis = kvm->arch.vgic.nr_spis; + if (kvm->arch.vgic.vgic_model == KVM_DEV_TYPE_ARM_VGIC_V3) { + iter->nr_lpis = vgic_copy_lpi_list(kvm, NULL, &iter->lpi_array); + if (iter->nr_lpis < 0) + iter->nr_lpis = 0; + } + + /* Fast forward to the right position if needed */ + while (pos--) + iter_next(iter); +} + +static bool end_of_vgic(struct vgic_state_iter *iter) +{ + return iter->dist_id > 0 && + iter->vcpu_id == iter->nr_cpus && + iter->intid >= (iter->nr_spis + VGIC_NR_PRIVATE_IRQS) && + iter->lpi_idx > iter->nr_lpis; +} + +static void *vgic_debug_start(struct seq_file *s, loff_t *pos) +{ + struct kvm *kvm = s->private; + struct vgic_state_iter *iter; + + mutex_lock(&kvm->arch.config_lock); + iter = kvm->arch.vgic.iter; + if (iter) { + iter = ERR_PTR(-EBUSY); + goto out; + } + + iter = kmalloc(sizeof(*iter), GFP_KERNEL); + if (!iter) { + iter = ERR_PTR(-ENOMEM); + goto out; + } + + iter_init(kvm, iter, *pos); + kvm->arch.vgic.iter = iter; + + if (end_of_vgic(iter)) + iter = NULL; +out: + mutex_unlock(&kvm->arch.config_lock); + return iter; +} + +static void *vgic_debug_next(struct seq_file *s, void *v, loff_t *pos) +{ + struct kvm *kvm = s->private; + struct vgic_state_iter *iter = kvm->arch.vgic.iter; + + ++*pos; + iter_next(iter); + if (end_of_vgic(iter)) + iter = NULL; + return iter; +} + +static void vgic_debug_stop(struct seq_file *s, void *v) +{ + struct kvm *kvm = s->private; + struct vgic_state_iter *iter; + + /* + * If the seq file wasn't properly opened, there's nothing to clearn + * up. + */ + if (IS_ERR(v)) + return; + + mutex_lock(&kvm->arch.config_lock); + iter = kvm->arch.vgic.iter; + kfree(iter->lpi_array); + kfree(iter); + kvm->arch.vgic.iter = NULL; + mutex_unlock(&kvm->arch.config_lock); +} + +static void print_dist_state(struct seq_file *s, struct vgic_dist *dist) +{ + bool v3 = dist->vgic_model == KVM_DEV_TYPE_ARM_VGIC_V3; + + seq_printf(s, "Distributor\n"); + seq_printf(s, "===========\n"); + seq_printf(s, "vgic_model:\t%s\n", v3 ? "GICv3" : "GICv2"); + seq_printf(s, "nr_spis:\t%d\n", dist->nr_spis); + if (v3) + seq_printf(s, "nr_lpis:\t%d\n", dist->lpi_list_count); + seq_printf(s, "enabled:\t%d\n", dist->enabled); + seq_printf(s, "\n"); + + seq_printf(s, "P=pending_latch, L=line_level, A=active\n"); + seq_printf(s, "E=enabled, H=hw, C=config (level=1, edge=0)\n"); + seq_printf(s, "G=group\n"); +} + +static void print_header(struct seq_file *s, struct vgic_irq *irq, + struct kvm_vcpu *vcpu) +{ + int id = 0; + char *hdr = "SPI "; + + if (vcpu) { + hdr = "VCPU"; + id = vcpu->vcpu_id; + } + + seq_printf(s, "\n"); + seq_printf(s, "%s%2d TYP ID TGT_ID PLAEHCG HWID TARGET SRC PRI VCPU_ID\n", hdr, id); + seq_printf(s, "----------------------------------------------------------------\n"); +} + +static void print_irq_state(struct seq_file *s, struct vgic_irq *irq, + struct kvm_vcpu *vcpu) +{ + char *type; + bool pending; + + if (irq->intid < VGIC_NR_SGIS) + type = "SGI"; + else if (irq->intid < VGIC_NR_PRIVATE_IRQS) + type = "PPI"; + else if (irq->intid < VGIC_MAX_SPI) + type = "SPI"; + else + type = "LPI"; + + if (irq->intid ==0 || irq->intid == VGIC_NR_PRIVATE_IRQS) + print_header(s, irq, vcpu); + + pending = irq->pending_latch; + if (irq->hw && vgic_irq_is_sgi(irq->intid)) { + int err; + + err = irq_get_irqchip_state(irq->host_irq, + IRQCHIP_STATE_PENDING, + &pending); + WARN_ON_ONCE(err); + } + + seq_printf(s, " %s %4d " + " %2d " + "%d%d%d%d%d%d%d " + "%8d " + "%8x " + " %2x " + "%3d " + " %2d " + "\n", + type, irq->intid, + (irq->target_vcpu) ? irq->target_vcpu->vcpu_id : -1, + pending, + irq->line_level, + irq->active, + irq->enabled, + irq->hw, + irq->config == VGIC_CONFIG_LEVEL, + irq->group, + irq->hwintid, + irq->mpidr, + irq->source, + irq->priority, + (irq->vcpu) ? irq->vcpu->vcpu_id : -1); +} + +static int vgic_debug_show(struct seq_file *s, void *v) +{ + struct kvm *kvm = s->private; + struct vgic_state_iter *iter = v; + struct vgic_irq *irq; + struct kvm_vcpu *vcpu = NULL; + unsigned long flags; + + if (iter->dist_id == 0) { + print_dist_state(s, &kvm->arch.vgic); + return 0; + } + + if (!kvm->arch.vgic.initialized) + return 0; + + if (iter->vcpu_id < iter->nr_cpus) + vcpu = kvm_get_vcpu(kvm, iter->vcpu_id); + + irq = vgic_get_irq(kvm, vcpu, iter->intid); + if (!irq) { + seq_printf(s, " LPI %4d freed\n", iter->intid); + return 0; + } + + raw_spin_lock_irqsave(&irq->irq_lock, flags); + print_irq_state(s, irq, vcpu); + raw_spin_unlock_irqrestore(&irq->irq_lock, flags); + + vgic_put_irq(kvm, irq); + return 0; +} + +static const struct seq_operations vgic_debug_sops = { + .start = vgic_debug_start, + .next = vgic_debug_next, + .stop = vgic_debug_stop, + .show = vgic_debug_show +}; + +DEFINE_SEQ_ATTRIBUTE(vgic_debug); + +void vgic_debug_init(struct kvm *kvm) +{ + debugfs_create_file("vgic-state", 0444, kvm->debugfs_dentry, kvm, + &vgic_debug_fops); +} + +void vgic_debug_destroy(struct kvm *kvm) +{ +} diff --git a/arch/arm64/kvm/vgic/vgic-init.c b/arch/arm64/kvm/vgic/vgic-init.c new file mode 100644 index 0000000000..e949e1d0fd --- /dev/null +++ b/arch/arm64/kvm/vgic/vgic-init.c @@ -0,0 +1,626 @@ +// SPDX-License-Identifier: GPL-2.0-only +/* + * Copyright (C) 2015, 2016 ARM Ltd. + */ + +#include <linux/uaccess.h> +#include <linux/interrupt.h> +#include <linux/cpu.h> +#include <linux/kvm_host.h> +#include <kvm/arm_vgic.h> +#include <asm/kvm_emulate.h> +#include <asm/kvm_mmu.h> +#include "vgic.h" + +/* + * Initialization rules: there are multiple stages to the vgic + * initialization, both for the distributor and the CPU interfaces. The basic + * idea is that even though the VGIC is not functional or not requested from + * user space, the critical path of the run loop can still call VGIC functions + * that just won't do anything, without them having to check additional + * initialization flags to ensure they don't look at uninitialized data + * structures. + * + * Distributor: + * + * - kvm_vgic_early_init(): initialization of static data that doesn't + * depend on any sizing information or emulation type. No allocation + * is allowed there. + * + * - vgic_init(): allocation and initialization of the generic data + * structures that depend on sizing information (number of CPUs, + * number of interrupts). Also initializes the vcpu specific data + * structures. Can be executed lazily for GICv2. + * + * CPU Interface: + * + * - kvm_vgic_vcpu_init(): initialization of static data that + * doesn't depend on any sizing information or emulation type. No + * allocation is allowed there. + */ + +/* EARLY INIT */ + +/** + * kvm_vgic_early_init() - Initialize static VGIC VCPU data structures + * @kvm: The VM whose VGIC districutor should be initialized + * + * Only do initialization of static structures that don't require any + * allocation or sizing information from userspace. vgic_init() called + * kvm_vgic_dist_init() which takes care of the rest. + */ +void kvm_vgic_early_init(struct kvm *kvm) +{ + struct vgic_dist *dist = &kvm->arch.vgic; + + INIT_LIST_HEAD(&dist->lpi_list_head); + INIT_LIST_HEAD(&dist->lpi_translation_cache); + raw_spin_lock_init(&dist->lpi_list_lock); +} + +/* CREATION */ + +/** + * kvm_vgic_create: triggered by the instantiation of the VGIC device by + * user space, either through the legacy KVM_CREATE_IRQCHIP ioctl (v2 only) + * or through the generic KVM_CREATE_DEVICE API ioctl. + * irqchip_in_kernel() tells you if this function succeeded or not. + * @kvm: kvm struct pointer + * @type: KVM_DEV_TYPE_ARM_VGIC_V[23] + */ +int kvm_vgic_create(struct kvm *kvm, u32 type) +{ + struct kvm_vcpu *vcpu; + unsigned long i; + int ret; + + /* + * This function is also called by the KVM_CREATE_IRQCHIP handler, + * which had no chance yet to check the availability of the GICv2 + * emulation. So check this here again. KVM_CREATE_DEVICE does + * the proper checks already. + */ + if (type == KVM_DEV_TYPE_ARM_VGIC_V2 && + !kvm_vgic_global_state.can_emulate_gicv2) + return -ENODEV; + + /* Must be held to avoid race with vCPU creation */ + lockdep_assert_held(&kvm->lock); + + ret = -EBUSY; + if (!lock_all_vcpus(kvm)) + return ret; + + mutex_lock(&kvm->arch.config_lock); + + if (irqchip_in_kernel(kvm)) { + ret = -EEXIST; + goto out_unlock; + } + + kvm_for_each_vcpu(i, vcpu, kvm) { + if (vcpu_has_run_once(vcpu)) + goto out_unlock; + } + ret = 0; + + if (type == KVM_DEV_TYPE_ARM_VGIC_V2) + kvm->max_vcpus = VGIC_V2_MAX_CPUS; + else + kvm->max_vcpus = VGIC_V3_MAX_CPUS; + + if (atomic_read(&kvm->online_vcpus) > kvm->max_vcpus) { + ret = -E2BIG; + goto out_unlock; + } + + kvm->arch.vgic.in_kernel = true; + kvm->arch.vgic.vgic_model = type; + + kvm->arch.vgic.vgic_dist_base = VGIC_ADDR_UNDEF; + + if (type == KVM_DEV_TYPE_ARM_VGIC_V2) + kvm->arch.vgic.vgic_cpu_base = VGIC_ADDR_UNDEF; + else + INIT_LIST_HEAD(&kvm->arch.vgic.rd_regions); + +out_unlock: + mutex_unlock(&kvm->arch.config_lock); + unlock_all_vcpus(kvm); + return ret; +} + +/* INIT/DESTROY */ + +/** + * kvm_vgic_dist_init: initialize the dist data structures + * @kvm: kvm struct pointer + * @nr_spis: number of spis, frozen by caller + */ +static int kvm_vgic_dist_init(struct kvm *kvm, unsigned int nr_spis) +{ + struct vgic_dist *dist = &kvm->arch.vgic; + struct kvm_vcpu *vcpu0 = kvm_get_vcpu(kvm, 0); + int i; + + dist->spis = kcalloc(nr_spis, sizeof(struct vgic_irq), GFP_KERNEL_ACCOUNT); + if (!dist->spis) + return -ENOMEM; + + /* + * In the following code we do not take the irq struct lock since + * no other action on irq structs can happen while the VGIC is + * not initialized yet: + * If someone wants to inject an interrupt or does a MMIO access, we + * require prior initialization in case of a virtual GICv3 or trigger + * initialization when using a virtual GICv2. + */ + for (i = 0; i < nr_spis; i++) { + struct vgic_irq *irq = &dist->spis[i]; + + irq->intid = i + VGIC_NR_PRIVATE_IRQS; + INIT_LIST_HEAD(&irq->ap_list); + raw_spin_lock_init(&irq->irq_lock); + irq->vcpu = NULL; + irq->target_vcpu = vcpu0; + kref_init(&irq->refcount); + switch (dist->vgic_model) { + case KVM_DEV_TYPE_ARM_VGIC_V2: + irq->targets = 0; + irq->group = 0; + break; + case KVM_DEV_TYPE_ARM_VGIC_V3: + irq->mpidr = 0; + irq->group = 1; + break; + default: + kfree(dist->spis); + dist->spis = NULL; + return -EINVAL; + } + } + return 0; +} + +/** + * kvm_vgic_vcpu_init() - Initialize static VGIC VCPU data + * structures and register VCPU-specific KVM iodevs + * + * @vcpu: pointer to the VCPU being created and initialized + * + * Only do initialization, but do not actually enable the + * VGIC CPU interface + */ +int kvm_vgic_vcpu_init(struct kvm_vcpu *vcpu) +{ + struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu; + struct vgic_dist *dist = &vcpu->kvm->arch.vgic; + int ret = 0; + int i; + + vgic_cpu->rd_iodev.base_addr = VGIC_ADDR_UNDEF; + + INIT_LIST_HEAD(&vgic_cpu->ap_list_head); + raw_spin_lock_init(&vgic_cpu->ap_list_lock); + atomic_set(&vgic_cpu->vgic_v3.its_vpe.vlpi_count, 0); + + /* + * Enable and configure all SGIs to be edge-triggered and + * configure all PPIs as level-triggered. + */ + for (i = 0; i < VGIC_NR_PRIVATE_IRQS; i++) { + struct vgic_irq *irq = &vgic_cpu->private_irqs[i]; + + INIT_LIST_HEAD(&irq->ap_list); + raw_spin_lock_init(&irq->irq_lock); + irq->intid = i; + irq->vcpu = NULL; + irq->target_vcpu = vcpu; + kref_init(&irq->refcount); + if (vgic_irq_is_sgi(i)) { + /* SGIs */ + irq->enabled = 1; + irq->config = VGIC_CONFIG_EDGE; + } else { + /* PPIs */ + irq->config = VGIC_CONFIG_LEVEL; + } + } + + if (!irqchip_in_kernel(vcpu->kvm)) + return 0; + + /* + * If we are creating a VCPU with a GICv3 we must also register the + * KVM io device for the redistributor that belongs to this VCPU. + */ + if (dist->vgic_model == KVM_DEV_TYPE_ARM_VGIC_V3) { + mutex_lock(&vcpu->kvm->slots_lock); + ret = vgic_register_redist_iodev(vcpu); + mutex_unlock(&vcpu->kvm->slots_lock); + } + return ret; +} + +static void kvm_vgic_vcpu_enable(struct kvm_vcpu *vcpu) +{ + if (kvm_vgic_global_state.type == VGIC_V2) + vgic_v2_enable(vcpu); + else + vgic_v3_enable(vcpu); +} + +/* + * vgic_init: allocates and initializes dist and vcpu data structures + * depending on two dimensioning parameters: + * - the number of spis + * - the number of vcpus + * The function is generally called when nr_spis has been explicitly set + * by the guest through the KVM DEVICE API. If not nr_spis is set to 256. + * vgic_initialized() returns true when this function has succeeded. + */ +int vgic_init(struct kvm *kvm) +{ + struct vgic_dist *dist = &kvm->arch.vgic; + struct kvm_vcpu *vcpu; + int ret = 0, i; + unsigned long idx; + + lockdep_assert_held(&kvm->arch.config_lock); + + if (vgic_initialized(kvm)) + return 0; + + /* Are we also in the middle of creating a VCPU? */ + if (kvm->created_vcpus != atomic_read(&kvm->online_vcpus)) + return -EBUSY; + + /* freeze the number of spis */ + if (!dist->nr_spis) + dist->nr_spis = VGIC_NR_IRQS_LEGACY - VGIC_NR_PRIVATE_IRQS; + + ret = kvm_vgic_dist_init(kvm, dist->nr_spis); + if (ret) + goto out; + + /* Initialize groups on CPUs created before the VGIC type was known */ + kvm_for_each_vcpu(idx, vcpu, kvm) { + struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu; + + for (i = 0; i < VGIC_NR_PRIVATE_IRQS; i++) { + struct vgic_irq *irq = &vgic_cpu->private_irqs[i]; + switch (dist->vgic_model) { + case KVM_DEV_TYPE_ARM_VGIC_V3: + irq->group = 1; + irq->mpidr = kvm_vcpu_get_mpidr_aff(vcpu); + break; + case KVM_DEV_TYPE_ARM_VGIC_V2: + irq->group = 0; + irq->targets = 1U << idx; + break; + default: + ret = -EINVAL; + goto out; + } + } + } + + if (vgic_has_its(kvm)) + vgic_lpi_translation_cache_init(kvm); + + /* + * If we have GICv4.1 enabled, unconditionnaly request enable the + * v4 support so that we get HW-accelerated vSGIs. Otherwise, only + * enable it if we present a virtual ITS to the guest. + */ + if (vgic_supports_direct_msis(kvm)) { + ret = vgic_v4_init(kvm); + if (ret) + goto out; + } + + kvm_for_each_vcpu(idx, vcpu, kvm) + kvm_vgic_vcpu_enable(vcpu); + + ret = kvm_vgic_setup_default_irq_routing(kvm); + if (ret) + goto out; + + vgic_debug_init(kvm); + + /* + * If userspace didn't set the GIC implementation revision, + * default to the latest and greatest. You know want it. + */ + if (!dist->implementation_rev) + dist->implementation_rev = KVM_VGIC_IMP_REV_LATEST; + dist->initialized = true; + +out: + return ret; +} + +static void kvm_vgic_dist_destroy(struct kvm *kvm) +{ + struct vgic_dist *dist = &kvm->arch.vgic; + struct vgic_redist_region *rdreg, *next; + + dist->ready = false; + dist->initialized = false; + + kfree(dist->spis); + dist->spis = NULL; + dist->nr_spis = 0; + dist->vgic_dist_base = VGIC_ADDR_UNDEF; + + if (dist->vgic_model == KVM_DEV_TYPE_ARM_VGIC_V3) { + list_for_each_entry_safe(rdreg, next, &dist->rd_regions, list) + vgic_v3_free_redist_region(rdreg); + INIT_LIST_HEAD(&dist->rd_regions); + } else { + dist->vgic_cpu_base = VGIC_ADDR_UNDEF; + } + + if (vgic_has_its(kvm)) + vgic_lpi_translation_cache_destroy(kvm); + + if (vgic_supports_direct_msis(kvm)) + vgic_v4_teardown(kvm); +} + +static void __kvm_vgic_vcpu_destroy(struct kvm_vcpu *vcpu) +{ + struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu; + + /* + * Retire all pending LPIs on this vcpu anyway as we're + * going to destroy it. + */ + vgic_flush_pending_lpis(vcpu); + + INIT_LIST_HEAD(&vgic_cpu->ap_list_head); + if (vcpu->kvm->arch.vgic.vgic_model == KVM_DEV_TYPE_ARM_VGIC_V3) { + vgic_unregister_redist_iodev(vcpu); + vgic_cpu->rd_iodev.base_addr = VGIC_ADDR_UNDEF; + } +} + +void kvm_vgic_vcpu_destroy(struct kvm_vcpu *vcpu) +{ + struct kvm *kvm = vcpu->kvm; + + mutex_lock(&kvm->slots_lock); + __kvm_vgic_vcpu_destroy(vcpu); + mutex_unlock(&kvm->slots_lock); +} + +void kvm_vgic_destroy(struct kvm *kvm) +{ + struct kvm_vcpu *vcpu; + unsigned long i; + + mutex_lock(&kvm->slots_lock); + + vgic_debug_destroy(kvm); + + kvm_for_each_vcpu(i, vcpu, kvm) + __kvm_vgic_vcpu_destroy(vcpu); + + mutex_lock(&kvm->arch.config_lock); + + kvm_vgic_dist_destroy(kvm); + + mutex_unlock(&kvm->arch.config_lock); + mutex_unlock(&kvm->slots_lock); +} + +/** + * vgic_lazy_init: Lazy init is only allowed if the GIC exposed to the guest + * is a GICv2. A GICv3 must be explicitly initialized by userspace using the + * KVM_DEV_ARM_VGIC_GRP_CTRL KVM_DEVICE group. + * @kvm: kvm struct pointer + */ +int vgic_lazy_init(struct kvm *kvm) +{ + int ret = 0; + + if (unlikely(!vgic_initialized(kvm))) { + /* + * We only provide the automatic initialization of the VGIC + * for the legacy case of a GICv2. Any other type must + * be explicitly initialized once setup with the respective + * KVM device call. + */ + if (kvm->arch.vgic.vgic_model != KVM_DEV_TYPE_ARM_VGIC_V2) + return -EBUSY; + + mutex_lock(&kvm->arch.config_lock); + ret = vgic_init(kvm); + mutex_unlock(&kvm->arch.config_lock); + } + + return ret; +} + +/* RESOURCE MAPPING */ + +/** + * Map the MMIO regions depending on the VGIC model exposed to the guest + * called on the first VCPU run. + * Also map the virtual CPU interface into the VM. + * v2 calls vgic_init() if not already done. + * v3 and derivatives return an error if the VGIC is not initialized. + * vgic_ready() returns true if this function has succeeded. + * @kvm: kvm struct pointer + */ +int kvm_vgic_map_resources(struct kvm *kvm) +{ + struct vgic_dist *dist = &kvm->arch.vgic; + enum vgic_type type; + gpa_t dist_base; + int ret = 0; + + if (likely(vgic_ready(kvm))) + return 0; + + mutex_lock(&kvm->slots_lock); + mutex_lock(&kvm->arch.config_lock); + if (vgic_ready(kvm)) + goto out; + + if (!irqchip_in_kernel(kvm)) + goto out; + + if (dist->vgic_model == KVM_DEV_TYPE_ARM_VGIC_V2) { + ret = vgic_v2_map_resources(kvm); + type = VGIC_V2; + } else { + ret = vgic_v3_map_resources(kvm); + type = VGIC_V3; + } + + if (ret) + goto out; + + dist->ready = true; + dist_base = dist->vgic_dist_base; + mutex_unlock(&kvm->arch.config_lock); + + ret = vgic_register_dist_iodev(kvm, dist_base, type); + if (ret) + kvm_err("Unable to register VGIC dist MMIO regions\n"); + + goto out_slots; +out: + mutex_unlock(&kvm->arch.config_lock); +out_slots: + mutex_unlock(&kvm->slots_lock); + + if (ret) + kvm_vgic_destroy(kvm); + + return ret; +} + +/* GENERIC PROBE */ + +void kvm_vgic_cpu_up(void) +{ + enable_percpu_irq(kvm_vgic_global_state.maint_irq, 0); +} + + +void kvm_vgic_cpu_down(void) +{ + disable_percpu_irq(kvm_vgic_global_state.maint_irq); +} + +static irqreturn_t vgic_maintenance_handler(int irq, void *data) +{ + /* + * We cannot rely on the vgic maintenance interrupt to be + * delivered synchronously. This means we can only use it to + * exit the VM, and we perform the handling of EOIed + * interrupts on the exit path (see vgic_fold_lr_state). + */ + return IRQ_HANDLED; +} + +static struct gic_kvm_info *gic_kvm_info; + +void __init vgic_set_kvm_info(const struct gic_kvm_info *info) +{ + BUG_ON(gic_kvm_info != NULL); + gic_kvm_info = kmalloc(sizeof(*info), GFP_KERNEL); + if (gic_kvm_info) + *gic_kvm_info = *info; +} + +/** + * kvm_vgic_init_cpu_hardware - initialize the GIC VE hardware + * + * For a specific CPU, initialize the GIC VE hardware. + */ +void kvm_vgic_init_cpu_hardware(void) +{ + BUG_ON(preemptible()); + + /* + * We want to make sure the list registers start out clear so that we + * only have the program the used registers. + */ + if (kvm_vgic_global_state.type == VGIC_V2) + vgic_v2_init_lrs(); + else + kvm_call_hyp(__vgic_v3_init_lrs); +} + +/** + * kvm_vgic_hyp_init: populates the kvm_vgic_global_state variable + * according to the host GIC model. Accordingly calls either + * vgic_v2/v3_probe which registers the KVM_DEVICE that can be + * instantiated by a guest later on . + */ +int kvm_vgic_hyp_init(void) +{ + bool has_mask; + int ret; + + if (!gic_kvm_info) + return -ENODEV; + + has_mask = !gic_kvm_info->no_maint_irq_mask; + + if (has_mask && !gic_kvm_info->maint_irq) { + kvm_err("No vgic maintenance irq\n"); + return -ENXIO; + } + + /* + * If we get one of these oddball non-GICs, taint the kernel, + * as we have no idea of how they *really* behave. + */ + if (gic_kvm_info->no_hw_deactivation) { + kvm_info("Non-architectural vgic, tainting kernel\n"); + add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK); + kvm_vgic_global_state.no_hw_deactivation = true; + } + + switch (gic_kvm_info->type) { + case GIC_V2: + ret = vgic_v2_probe(gic_kvm_info); + break; + case GIC_V3: + ret = vgic_v3_probe(gic_kvm_info); + if (!ret) { + static_branch_enable(&kvm_vgic_global_state.gicv3_cpuif); + kvm_info("GIC system register CPU interface enabled\n"); + } + break; + default: + ret = -ENODEV; + } + + kvm_vgic_global_state.maint_irq = gic_kvm_info->maint_irq; + + kfree(gic_kvm_info); + gic_kvm_info = NULL; + + if (ret) + return ret; + + if (!has_mask && !kvm_vgic_global_state.maint_irq) + return 0; + + ret = request_percpu_irq(kvm_vgic_global_state.maint_irq, + vgic_maintenance_handler, + "vgic", kvm_get_running_vcpus()); + if (ret) { + kvm_err("Cannot register interrupt %d\n", + kvm_vgic_global_state.maint_irq); + return ret; + } + + kvm_info("vgic interrupt IRQ%d\n", kvm_vgic_global_state.maint_irq); + return 0; +} diff --git a/arch/arm64/kvm/vgic/vgic-irqfd.c b/arch/arm64/kvm/vgic/vgic-irqfd.c new file mode 100644 index 0000000000..475059bace --- /dev/null +++ b/arch/arm64/kvm/vgic/vgic-irqfd.c @@ -0,0 +1,155 @@ +// SPDX-License-Identifier: GPL-2.0-only +/* + * Copyright (C) 2015, 2016 ARM Ltd. + */ + +#include <linux/kvm.h> +#include <linux/kvm_host.h> +#include <trace/events/kvm.h> +#include <kvm/arm_vgic.h> +#include "vgic.h" + +/** + * vgic_irqfd_set_irq: inject the IRQ corresponding to the + * irqchip routing entry + * + * This is the entry point for irqfd IRQ injection + */ +static int vgic_irqfd_set_irq(struct kvm_kernel_irq_routing_entry *e, + struct kvm *kvm, int irq_source_id, + int level, bool line_status) +{ + unsigned int spi_id = e->irqchip.pin + VGIC_NR_PRIVATE_IRQS; + + if (!vgic_valid_spi(kvm, spi_id)) + return -EINVAL; + return kvm_vgic_inject_irq(kvm, 0, spi_id, level, NULL); +} + +/** + * kvm_set_routing_entry: populate a kvm routing entry + * from a user routing entry + * + * @kvm: the VM this entry is applied to + * @e: kvm kernel routing entry handle + * @ue: user api routing entry handle + * return 0 on success, -EINVAL on errors. + */ +int kvm_set_routing_entry(struct kvm *kvm, + struct kvm_kernel_irq_routing_entry *e, + const struct kvm_irq_routing_entry *ue) +{ + int r = -EINVAL; + + switch (ue->type) { + case KVM_IRQ_ROUTING_IRQCHIP: + e->set = vgic_irqfd_set_irq; + e->irqchip.irqchip = ue->u.irqchip.irqchip; + e->irqchip.pin = ue->u.irqchip.pin; + if ((e->irqchip.pin >= KVM_IRQCHIP_NUM_PINS) || + (e->irqchip.irqchip >= KVM_NR_IRQCHIPS)) + goto out; + break; + case KVM_IRQ_ROUTING_MSI: + e->set = kvm_set_msi; + e->msi.address_lo = ue->u.msi.address_lo; + e->msi.address_hi = ue->u.msi.address_hi; + e->msi.data = ue->u.msi.data; + e->msi.flags = ue->flags; + e->msi.devid = ue->u.msi.devid; + break; + default: + goto out; + } + r = 0; +out: + return r; +} + +static void kvm_populate_msi(struct kvm_kernel_irq_routing_entry *e, + struct kvm_msi *msi) +{ + msi->address_lo = e->msi.address_lo; + msi->address_hi = e->msi.address_hi; + msi->data = e->msi.data; + msi->flags = e->msi.flags; + msi->devid = e->msi.devid; +} +/** + * kvm_set_msi: inject the MSI corresponding to the + * MSI routing entry + * + * This is the entry point for irqfd MSI injection + * and userspace MSI injection. + */ +int kvm_set_msi(struct kvm_kernel_irq_routing_entry *e, + struct kvm *kvm, int irq_source_id, + int level, bool line_status) +{ + struct kvm_msi msi; + + if (!vgic_has_its(kvm)) + return -ENODEV; + + if (!level) + return -1; + + kvm_populate_msi(e, &msi); + return vgic_its_inject_msi(kvm, &msi); +} + +/** + * kvm_arch_set_irq_inatomic: fast-path for irqfd injection + */ +int kvm_arch_set_irq_inatomic(struct kvm_kernel_irq_routing_entry *e, + struct kvm *kvm, int irq_source_id, int level, + bool line_status) +{ + if (!level) + return -EWOULDBLOCK; + + switch (e->type) { + case KVM_IRQ_ROUTING_MSI: { + struct kvm_msi msi; + + if (!vgic_has_its(kvm)) + break; + + kvm_populate_msi(e, &msi); + return vgic_its_inject_cached_translation(kvm, &msi); + } + + case KVM_IRQ_ROUTING_IRQCHIP: + /* + * Injecting SPIs is always possible in atomic context + * as long as the damn vgic is initialized. + */ + if (unlikely(!vgic_initialized(kvm))) + break; + return vgic_irqfd_set_irq(e, kvm, irq_source_id, 1, line_status); + } + + return -EWOULDBLOCK; +} + +int kvm_vgic_setup_default_irq_routing(struct kvm *kvm) +{ + struct kvm_irq_routing_entry *entries; + struct vgic_dist *dist = &kvm->arch.vgic; + u32 nr = dist->nr_spis; + int i, ret; + + entries = kcalloc(nr, sizeof(*entries), GFP_KERNEL_ACCOUNT); + if (!entries) + return -ENOMEM; + + for (i = 0; i < nr; i++) { + entries[i].gsi = i; + entries[i].type = KVM_IRQ_ROUTING_IRQCHIP; + entries[i].u.irqchip.irqchip = 0; + entries[i].u.irqchip.pin = i; + } + ret = kvm_set_irq_routing(kvm, entries, nr, 0); + kfree(entries); + return ret; +} diff --git a/arch/arm64/kvm/vgic/vgic-its.c b/arch/arm64/kvm/vgic/vgic-its.c new file mode 100644 index 0000000000..c420723548 --- /dev/null +++ b/arch/arm64/kvm/vgic/vgic-its.c @@ -0,0 +1,2908 @@ +// SPDX-License-Identifier: GPL-2.0-only +/* + * GICv3 ITS emulation + * + * Copyright (C) 2015,2016 ARM Ltd. + * Author: Andre Przywara <andre.przywara@arm.com> + */ + +#include <linux/cpu.h> +#include <linux/kvm.h> +#include <linux/kvm_host.h> +#include <linux/interrupt.h> +#include <linux/list.h> +#include <linux/uaccess.h> +#include <linux/list_sort.h> + +#include <linux/irqchip/arm-gic-v3.h> + +#include <asm/kvm_emulate.h> +#include <asm/kvm_arm.h> +#include <asm/kvm_mmu.h> + +#include "vgic.h" +#include "vgic-mmio.h" + +static int vgic_its_save_tables_v0(struct vgic_its *its); +static int vgic_its_restore_tables_v0(struct vgic_its *its); +static int vgic_its_commit_v0(struct vgic_its *its); +static int update_lpi_config(struct kvm *kvm, struct vgic_irq *irq, + struct kvm_vcpu *filter_vcpu, bool needs_inv); + +/* + * Creates a new (reference to a) struct vgic_irq for a given LPI. + * If this LPI is already mapped on another ITS, we increase its refcount + * and return a pointer to the existing structure. + * If this is a "new" LPI, we allocate and initialize a new struct vgic_irq. + * This function returns a pointer to the _unlocked_ structure. + */ +static struct vgic_irq *vgic_add_lpi(struct kvm *kvm, u32 intid, + struct kvm_vcpu *vcpu) +{ + struct vgic_dist *dist = &kvm->arch.vgic; + struct vgic_irq *irq = vgic_get_irq(kvm, NULL, intid), *oldirq; + unsigned long flags; + int ret; + + /* In this case there is no put, since we keep the reference. */ + if (irq) + return irq; + + irq = kzalloc(sizeof(struct vgic_irq), GFP_KERNEL_ACCOUNT); + if (!irq) + return ERR_PTR(-ENOMEM); + + INIT_LIST_HEAD(&irq->lpi_list); + INIT_LIST_HEAD(&irq->ap_list); + raw_spin_lock_init(&irq->irq_lock); + + irq->config = VGIC_CONFIG_EDGE; + kref_init(&irq->refcount); + irq->intid = intid; + irq->target_vcpu = vcpu; + irq->group = 1; + + raw_spin_lock_irqsave(&dist->lpi_list_lock, flags); + + /* + * There could be a race with another vgic_add_lpi(), so we need to + * check that we don't add a second list entry with the same LPI. + */ + list_for_each_entry(oldirq, &dist->lpi_list_head, lpi_list) { + if (oldirq->intid != intid) + continue; + + /* Someone was faster with adding this LPI, lets use that. */ + kfree(irq); + irq = oldirq; + + /* + * This increases the refcount, the caller is expected to + * call vgic_put_irq() on the returned pointer once it's + * finished with the IRQ. + */ + vgic_get_irq_kref(irq); + + goto out_unlock; + } + + list_add_tail(&irq->lpi_list, &dist->lpi_list_head); + dist->lpi_list_count++; + +out_unlock: + raw_spin_unlock_irqrestore(&dist->lpi_list_lock, flags); + + /* + * We "cache" the configuration table entries in our struct vgic_irq's. + * However we only have those structs for mapped IRQs, so we read in + * the respective config data from memory here upon mapping the LPI. + * + * Should any of these fail, behave as if we couldn't create the LPI + * by dropping the refcount and returning the error. + */ + ret = update_lpi_config(kvm, irq, NULL, false); + if (ret) { + vgic_put_irq(kvm, irq); + return ERR_PTR(ret); + } + + ret = vgic_v3_lpi_sync_pending_status(kvm, irq); + if (ret) { + vgic_put_irq(kvm, irq); + return ERR_PTR(ret); + } + + return irq; +} + +struct its_device { + struct list_head dev_list; + + /* the head for the list of ITTEs */ + struct list_head itt_head; + u32 num_eventid_bits; + gpa_t itt_addr; + u32 device_id; +}; + +#define COLLECTION_NOT_MAPPED ((u32)~0) + +struct its_collection { + struct list_head coll_list; + + u32 collection_id; + u32 target_addr; +}; + +#define its_is_collection_mapped(coll) ((coll) && \ + ((coll)->target_addr != COLLECTION_NOT_MAPPED)) + +struct its_ite { + struct list_head ite_list; + + struct vgic_irq *irq; + struct its_collection *collection; + u32 event_id; +}; + +struct vgic_translation_cache_entry { + struct list_head entry; + phys_addr_t db; + u32 devid; + u32 eventid; + struct vgic_irq *irq; +}; + +/** + * struct vgic_its_abi - ITS abi ops and settings + * @cte_esz: collection table entry size + * @dte_esz: device table entry size + * @ite_esz: interrupt translation table entry size + * @save tables: save the ITS tables into guest RAM + * @restore_tables: restore the ITS internal structs from tables + * stored in guest RAM + * @commit: initialize the registers which expose the ABI settings, + * especially the entry sizes + */ +struct vgic_its_abi { + int cte_esz; + int dte_esz; + int ite_esz; + int (*save_tables)(struct vgic_its *its); + int (*restore_tables)(struct vgic_its *its); + int (*commit)(struct vgic_its *its); +}; + +#define ABI_0_ESZ 8 +#define ESZ_MAX ABI_0_ESZ + +static const struct vgic_its_abi its_table_abi_versions[] = { + [0] = { + .cte_esz = ABI_0_ESZ, + .dte_esz = ABI_0_ESZ, + .ite_esz = ABI_0_ESZ, + .save_tables = vgic_its_save_tables_v0, + .restore_tables = vgic_its_restore_tables_v0, + .commit = vgic_its_commit_v0, + }, +}; + +#define NR_ITS_ABIS ARRAY_SIZE(its_table_abi_versions) + +inline const struct vgic_its_abi *vgic_its_get_abi(struct vgic_its *its) +{ + return &its_table_abi_versions[its->abi_rev]; +} + +static int vgic_its_set_abi(struct vgic_its *its, u32 rev) +{ + const struct vgic_its_abi *abi; + + its->abi_rev = rev; + abi = vgic_its_get_abi(its); + return abi->commit(its); +} + +/* + * Find and returns a device in the device table for an ITS. + * Must be called with the its_lock mutex held. + */ +static struct its_device *find_its_device(struct vgic_its *its, u32 device_id) +{ + struct its_device *device; + + list_for_each_entry(device, &its->device_list, dev_list) + if (device_id == device->device_id) + return device; + + return NULL; +} + +/* + * Find and returns an interrupt translation table entry (ITTE) for a given + * Device ID/Event ID pair on an ITS. + * Must be called with the its_lock mutex held. + */ +static struct its_ite *find_ite(struct vgic_its *its, u32 device_id, + u32 event_id) +{ + struct its_device *device; + struct its_ite *ite; + + device = find_its_device(its, device_id); + if (device == NULL) + return NULL; + + list_for_each_entry(ite, &device->itt_head, ite_list) + if (ite->event_id == event_id) + return ite; + + return NULL; +} + +/* To be used as an iterator this macro misses the enclosing parentheses */ +#define for_each_lpi_its(dev, ite, its) \ + list_for_each_entry(dev, &(its)->device_list, dev_list) \ + list_for_each_entry(ite, &(dev)->itt_head, ite_list) + +#define GIC_LPI_OFFSET 8192 + +#define VITS_TYPER_IDBITS 16 +#define VITS_TYPER_DEVBITS 16 +#define VITS_DTE_MAX_DEVID_OFFSET (BIT(14) - 1) +#define VITS_ITE_MAX_EVENTID_OFFSET (BIT(16) - 1) + +/* + * Finds and returns a collection in the ITS collection table. + * Must be called with the its_lock mutex held. + */ +static struct its_collection *find_collection(struct vgic_its *its, int coll_id) +{ + struct its_collection *collection; + + list_for_each_entry(collection, &its->collection_list, coll_list) { + if (coll_id == collection->collection_id) + return collection; + } + + return NULL; +} + +#define LPI_PROP_ENABLE_BIT(p) ((p) & LPI_PROP_ENABLED) +#define LPI_PROP_PRIORITY(p) ((p) & 0xfc) + +/* + * Reads the configuration data for a given LPI from guest memory and + * updates the fields in struct vgic_irq. + * If filter_vcpu is not NULL, applies only if the IRQ is targeting this + * VCPU. Unconditionally applies if filter_vcpu is NULL. + */ +static int update_lpi_config(struct kvm *kvm, struct vgic_irq *irq, + struct kvm_vcpu *filter_vcpu, bool needs_inv) +{ + u64 propbase = GICR_PROPBASER_ADDRESS(kvm->arch.vgic.propbaser); + u8 prop; + int ret; + unsigned long flags; + + ret = kvm_read_guest_lock(kvm, propbase + irq->intid - GIC_LPI_OFFSET, + &prop, 1); + + if (ret) + return ret; + + raw_spin_lock_irqsave(&irq->irq_lock, flags); + + if (!filter_vcpu || filter_vcpu == irq->target_vcpu) { + irq->priority = LPI_PROP_PRIORITY(prop); + irq->enabled = LPI_PROP_ENABLE_BIT(prop); + + if (!irq->hw) { + vgic_queue_irq_unlock(kvm, irq, flags); + return 0; + } + } + + raw_spin_unlock_irqrestore(&irq->irq_lock, flags); + + if (irq->hw) + return its_prop_update_vlpi(irq->host_irq, prop, needs_inv); + + return 0; +} + +/* + * Create a snapshot of the current LPIs targeting @vcpu, so that we can + * enumerate those LPIs without holding any lock. + * Returns their number and puts the kmalloc'ed array into intid_ptr. + */ +int vgic_copy_lpi_list(struct kvm *kvm, struct kvm_vcpu *vcpu, u32 **intid_ptr) +{ + struct vgic_dist *dist = &kvm->arch.vgic; + struct vgic_irq *irq; + unsigned long flags; + u32 *intids; + int irq_count, i = 0; + + /* + * There is an obvious race between allocating the array and LPIs + * being mapped/unmapped. If we ended up here as a result of a + * command, we're safe (locks are held, preventing another + * command). If coming from another path (such as enabling LPIs), + * we must be careful not to overrun the array. + */ + irq_count = READ_ONCE(dist->lpi_list_count); + intids = kmalloc_array(irq_count, sizeof(intids[0]), GFP_KERNEL_ACCOUNT); + if (!intids) + return -ENOMEM; + + raw_spin_lock_irqsave(&dist->lpi_list_lock, flags); + list_for_each_entry(irq, &dist->lpi_list_head, lpi_list) { + if (i == irq_count) + break; + /* We don't need to "get" the IRQ, as we hold the list lock. */ + if (vcpu && irq->target_vcpu != vcpu) + continue; + intids[i++] = irq->intid; + } + raw_spin_unlock_irqrestore(&dist->lpi_list_lock, flags); + + *intid_ptr = intids; + return i; +} + +static int update_affinity(struct vgic_irq *irq, struct kvm_vcpu *vcpu) +{ + int ret = 0; + unsigned long flags; + + raw_spin_lock_irqsave(&irq->irq_lock, flags); + irq->target_vcpu = vcpu; + raw_spin_unlock_irqrestore(&irq->irq_lock, flags); + + if (irq->hw) { + struct its_vlpi_map map; + + ret = its_get_vlpi(irq->host_irq, &map); + if (ret) + return ret; + + if (map.vpe) + atomic_dec(&map.vpe->vlpi_count); + map.vpe = &vcpu->arch.vgic_cpu.vgic_v3.its_vpe; + atomic_inc(&map.vpe->vlpi_count); + + ret = its_map_vlpi(irq->host_irq, &map); + } + + return ret; +} + +/* + * Promotes the ITS view of affinity of an ITTE (which redistributor this LPI + * is targeting) to the VGIC's view, which deals with target VCPUs. + * Needs to be called whenever either the collection for a LPIs has + * changed or the collection itself got retargeted. + */ +static void update_affinity_ite(struct kvm *kvm, struct its_ite *ite) +{ + struct kvm_vcpu *vcpu; + + if (!its_is_collection_mapped(ite->collection)) + return; + + vcpu = kvm_get_vcpu(kvm, ite->collection->target_addr); + update_affinity(ite->irq, vcpu); +} + +/* + * Updates the target VCPU for every LPI targeting this collection. + * Must be called with the its_lock mutex held. + */ +static void update_affinity_collection(struct kvm *kvm, struct vgic_its *its, + struct its_collection *coll) +{ + struct its_device *device; + struct its_ite *ite; + + for_each_lpi_its(device, ite, its) { + if (ite->collection != coll) + continue; + + update_affinity_ite(kvm, ite); + } +} + +static u32 max_lpis_propbaser(u64 propbaser) +{ + int nr_idbits = (propbaser & 0x1f) + 1; + + return 1U << min(nr_idbits, INTERRUPT_ID_BITS_ITS); +} + +/* + * Sync the pending table pending bit of LPIs targeting @vcpu + * with our own data structures. This relies on the LPI being + * mapped before. + */ +static int its_sync_lpi_pending_table(struct kvm_vcpu *vcpu) +{ + gpa_t pendbase = GICR_PENDBASER_ADDRESS(vcpu->arch.vgic_cpu.pendbaser); + struct vgic_irq *irq; + int last_byte_offset = -1; + int ret = 0; + u32 *intids; + int nr_irqs, i; + unsigned long flags; + u8 pendmask; + + nr_irqs = vgic_copy_lpi_list(vcpu->kvm, vcpu, &intids); + if (nr_irqs < 0) + return nr_irqs; + + for (i = 0; i < nr_irqs; i++) { + int byte_offset, bit_nr; + + byte_offset = intids[i] / BITS_PER_BYTE; + bit_nr = intids[i] % BITS_PER_BYTE; + + /* + * For contiguously allocated LPIs chances are we just read + * this very same byte in the last iteration. Reuse that. + */ + if (byte_offset != last_byte_offset) { + ret = kvm_read_guest_lock(vcpu->kvm, + pendbase + byte_offset, + &pendmask, 1); + if (ret) { + kfree(intids); + return ret; + } + last_byte_offset = byte_offset; + } + + irq = vgic_get_irq(vcpu->kvm, NULL, intids[i]); + raw_spin_lock_irqsave(&irq->irq_lock, flags); + irq->pending_latch = pendmask & (1U << bit_nr); + vgic_queue_irq_unlock(vcpu->kvm, irq, flags); + vgic_put_irq(vcpu->kvm, irq); + } + + kfree(intids); + + return ret; +} + +static unsigned long vgic_mmio_read_its_typer(struct kvm *kvm, + struct vgic_its *its, + gpa_t addr, unsigned int len) +{ + const struct vgic_its_abi *abi = vgic_its_get_abi(its); + u64 reg = GITS_TYPER_PLPIS; + + /* + * We use linear CPU numbers for redistributor addressing, + * so GITS_TYPER.PTA is 0. + * Also we force all PROPBASER registers to be the same, so + * CommonLPIAff is 0 as well. + * To avoid memory waste in the guest, we keep the number of IDBits and + * DevBits low - as least for the time being. + */ + reg |= GIC_ENCODE_SZ(VITS_TYPER_DEVBITS, 5) << GITS_TYPER_DEVBITS_SHIFT; + reg |= GIC_ENCODE_SZ(VITS_TYPER_IDBITS, 5) << GITS_TYPER_IDBITS_SHIFT; + reg |= GIC_ENCODE_SZ(abi->ite_esz, 4) << GITS_TYPER_ITT_ENTRY_SIZE_SHIFT; + + return extract_bytes(reg, addr & 7, len); +} + +static unsigned long vgic_mmio_read_its_iidr(struct kvm *kvm, + struct vgic_its *its, + gpa_t addr, unsigned int len) +{ + u32 val; + + val = (its->abi_rev << GITS_IIDR_REV_SHIFT) & GITS_IIDR_REV_MASK; + val |= (PRODUCT_ID_KVM << GITS_IIDR_PRODUCTID_SHIFT) | IMPLEMENTER_ARM; + return val; +} + +static int vgic_mmio_uaccess_write_its_iidr(struct kvm *kvm, + struct vgic_its *its, + gpa_t addr, unsigned int len, + unsigned long val) +{ + u32 rev = GITS_IIDR_REV(val); + + if (rev >= NR_ITS_ABIS) + return -EINVAL; + return vgic_its_set_abi(its, rev); +} + +static unsigned long vgic_mmio_read_its_idregs(struct kvm *kvm, + struct vgic_its *its, + gpa_t addr, unsigned int len) +{ + switch (addr & 0xffff) { + case GITS_PIDR0: + return 0x92; /* part number, bits[7:0] */ + case GITS_PIDR1: + return 0xb4; /* part number, bits[11:8] */ + case GITS_PIDR2: + return GIC_PIDR2_ARCH_GICv3 | 0x0b; + case GITS_PIDR4: + return 0x40; /* This is a 64K software visible page */ + /* The following are the ID registers for (any) GIC. */ + case GITS_CIDR0: + return 0x0d; + case GITS_CIDR1: + return 0xf0; + case GITS_CIDR2: + return 0x05; + case GITS_CIDR3: + return 0xb1; + } + + return 0; +} + +static struct vgic_irq *__vgic_its_check_cache(struct vgic_dist *dist, + phys_addr_t db, + u32 devid, u32 eventid) +{ + struct vgic_translation_cache_entry *cte; + + list_for_each_entry(cte, &dist->lpi_translation_cache, entry) { + /* + * If we hit a NULL entry, there is nothing after this + * point. + */ + if (!cte->irq) + break; + + if (cte->db != db || cte->devid != devid || + cte->eventid != eventid) + continue; + + /* + * Move this entry to the head, as it is the most + * recently used. + */ + if (!list_is_first(&cte->entry, &dist->lpi_translation_cache)) + list_move(&cte->entry, &dist->lpi_translation_cache); + + return cte->irq; + } + + return NULL; +} + +static struct vgic_irq *vgic_its_check_cache(struct kvm *kvm, phys_addr_t db, + u32 devid, u32 eventid) +{ + struct vgic_dist *dist = &kvm->arch.vgic; + struct vgic_irq *irq; + unsigned long flags; + + raw_spin_lock_irqsave(&dist->lpi_list_lock, flags); + + irq = __vgic_its_check_cache(dist, db, devid, eventid); + if (irq) + vgic_get_irq_kref(irq); + + raw_spin_unlock_irqrestore(&dist->lpi_list_lock, flags); + + return irq; +} + +static void vgic_its_cache_translation(struct kvm *kvm, struct vgic_its *its, + u32 devid, u32 eventid, + struct vgic_irq *irq) +{ + struct vgic_dist *dist = &kvm->arch.vgic; + struct vgic_translation_cache_entry *cte; + unsigned long flags; + phys_addr_t db; + + /* Do not cache a directly injected interrupt */ + if (irq->hw) + return; + + raw_spin_lock_irqsave(&dist->lpi_list_lock, flags); + + if (unlikely(list_empty(&dist->lpi_translation_cache))) + goto out; + + /* + * We could have raced with another CPU caching the same + * translation behind our back, so let's check it is not in + * already + */ + db = its->vgic_its_base + GITS_TRANSLATER; + if (__vgic_its_check_cache(dist, db, devid, eventid)) + goto out; + + /* Always reuse the last entry (LRU policy) */ + cte = list_last_entry(&dist->lpi_translation_cache, + typeof(*cte), entry); + + /* + * Caching the translation implies having an extra reference + * to the interrupt, so drop the potential reference on what + * was in the cache, and increment it on the new interrupt. + */ + if (cte->irq) + __vgic_put_lpi_locked(kvm, cte->irq); + + vgic_get_irq_kref(irq); + + cte->db = db; + cte->devid = devid; + cte->eventid = eventid; + cte->irq = irq; + + /* Move the new translation to the head of the list */ + list_move(&cte->entry, &dist->lpi_translation_cache); + +out: + raw_spin_unlock_irqrestore(&dist->lpi_list_lock, flags); +} + +void vgic_its_invalidate_cache(struct kvm *kvm) +{ + struct vgic_dist *dist = &kvm->arch.vgic; + struct vgic_translation_cache_entry *cte; + unsigned long flags; + + raw_spin_lock_irqsave(&dist->lpi_list_lock, flags); + + list_for_each_entry(cte, &dist->lpi_translation_cache, entry) { + /* + * If we hit a NULL entry, there is nothing after this + * point. + */ + if (!cte->irq) + break; + + __vgic_put_lpi_locked(kvm, cte->irq); + cte->irq = NULL; + } + + raw_spin_unlock_irqrestore(&dist->lpi_list_lock, flags); +} + +int vgic_its_resolve_lpi(struct kvm *kvm, struct vgic_its *its, + u32 devid, u32 eventid, struct vgic_irq **irq) +{ + struct kvm_vcpu *vcpu; + struct its_ite *ite; + + if (!its->enabled) + return -EBUSY; + + ite = find_ite(its, devid, eventid); + if (!ite || !its_is_collection_mapped(ite->collection)) + return E_ITS_INT_UNMAPPED_INTERRUPT; + + vcpu = kvm_get_vcpu(kvm, ite->collection->target_addr); + if (!vcpu) + return E_ITS_INT_UNMAPPED_INTERRUPT; + + if (!vgic_lpis_enabled(vcpu)) + return -EBUSY; + + vgic_its_cache_translation(kvm, its, devid, eventid, ite->irq); + + *irq = ite->irq; + return 0; +} + +struct vgic_its *vgic_msi_to_its(struct kvm *kvm, struct kvm_msi *msi) +{ + u64 address; + struct kvm_io_device *kvm_io_dev; + struct vgic_io_device *iodev; + + if (!vgic_has_its(kvm)) + return ERR_PTR(-ENODEV); + + if (!(msi->flags & KVM_MSI_VALID_DEVID)) + return ERR_PTR(-EINVAL); + + address = (u64)msi->address_hi << 32 | msi->address_lo; + + kvm_io_dev = kvm_io_bus_get_dev(kvm, KVM_MMIO_BUS, address); + if (!kvm_io_dev) + return ERR_PTR(-EINVAL); + + if (kvm_io_dev->ops != &kvm_io_gic_ops) + return ERR_PTR(-EINVAL); + + iodev = container_of(kvm_io_dev, struct vgic_io_device, dev); + if (iodev->iodev_type != IODEV_ITS) + return ERR_PTR(-EINVAL); + + return iodev->its; +} + +/* + * Find the target VCPU and the LPI number for a given devid/eventid pair + * and make this IRQ pending, possibly injecting it. + * Must be called with the its_lock mutex held. + * Returns 0 on success, a positive error value for any ITS mapping + * related errors and negative error values for generic errors. + */ +static int vgic_its_trigger_msi(struct kvm *kvm, struct vgic_its *its, + u32 devid, u32 eventid) +{ + struct vgic_irq *irq = NULL; + unsigned long flags; + int err; + + err = vgic_its_resolve_lpi(kvm, its, devid, eventid, &irq); + if (err) + return err; + + if (irq->hw) + return irq_set_irqchip_state(irq->host_irq, + IRQCHIP_STATE_PENDING, true); + + raw_spin_lock_irqsave(&irq->irq_lock, flags); + irq->pending_latch = true; + vgic_queue_irq_unlock(kvm, irq, flags); + + return 0; +} + +int vgic_its_inject_cached_translation(struct kvm *kvm, struct kvm_msi *msi) +{ + struct vgic_irq *irq; + unsigned long flags; + phys_addr_t db; + + db = (u64)msi->address_hi << 32 | msi->address_lo; + irq = vgic_its_check_cache(kvm, db, msi->devid, msi->data); + if (!irq) + return -EWOULDBLOCK; + + raw_spin_lock_irqsave(&irq->irq_lock, flags); + irq->pending_latch = true; + vgic_queue_irq_unlock(kvm, irq, flags); + vgic_put_irq(kvm, irq); + + return 0; +} + +/* + * Queries the KVM IO bus framework to get the ITS pointer from the given + * doorbell address. + * We then call vgic_its_trigger_msi() with the decoded data. + * According to the KVM_SIGNAL_MSI API description returns 1 on success. + */ +int vgic_its_inject_msi(struct kvm *kvm, struct kvm_msi *msi) +{ + struct vgic_its *its; + int ret; + + if (!vgic_its_inject_cached_translation(kvm, msi)) + return 1; + + its = vgic_msi_to_its(kvm, msi); + if (IS_ERR(its)) + return PTR_ERR(its); + + mutex_lock(&its->its_lock); + ret = vgic_its_trigger_msi(kvm, its, msi->devid, msi->data); + mutex_unlock(&its->its_lock); + + if (ret < 0) + return ret; + + /* + * KVM_SIGNAL_MSI demands a return value > 0 for success and 0 + * if the guest has blocked the MSI. So we map any LPI mapping + * related error to that. + */ + if (ret) + return 0; + else + return 1; +} + +/* Requires the its_lock to be held. */ +static void its_free_ite(struct kvm *kvm, struct its_ite *ite) +{ + list_del(&ite->ite_list); + + /* This put matches the get in vgic_add_lpi. */ + if (ite->irq) { + if (ite->irq->hw) + WARN_ON(its_unmap_vlpi(ite->irq->host_irq)); + + vgic_put_irq(kvm, ite->irq); + } + + kfree(ite); +} + +static u64 its_cmd_mask_field(u64 *its_cmd, int word, int shift, int size) +{ + return (le64_to_cpu(its_cmd[word]) >> shift) & (BIT_ULL(size) - 1); +} + +#define its_cmd_get_command(cmd) its_cmd_mask_field(cmd, 0, 0, 8) +#define its_cmd_get_deviceid(cmd) its_cmd_mask_field(cmd, 0, 32, 32) +#define its_cmd_get_size(cmd) (its_cmd_mask_field(cmd, 1, 0, 5) + 1) +#define its_cmd_get_id(cmd) its_cmd_mask_field(cmd, 1, 0, 32) +#define its_cmd_get_physical_id(cmd) its_cmd_mask_field(cmd, 1, 32, 32) +#define its_cmd_get_collection(cmd) its_cmd_mask_field(cmd, 2, 0, 16) +#define its_cmd_get_ittaddr(cmd) (its_cmd_mask_field(cmd, 2, 8, 44) << 8) +#define its_cmd_get_target_addr(cmd) its_cmd_mask_field(cmd, 2, 16, 32) +#define its_cmd_get_validbit(cmd) its_cmd_mask_field(cmd, 2, 63, 1) + +/* + * The DISCARD command frees an Interrupt Translation Table Entry (ITTE). + * Must be called with the its_lock mutex held. + */ +static int vgic_its_cmd_handle_discard(struct kvm *kvm, struct vgic_its *its, + u64 *its_cmd) +{ + u32 device_id = its_cmd_get_deviceid(its_cmd); + u32 event_id = its_cmd_get_id(its_cmd); + struct its_ite *ite; + + ite = find_ite(its, device_id, event_id); + if (ite && its_is_collection_mapped(ite->collection)) { + /* + * Though the spec talks about removing the pending state, we + * don't bother here since we clear the ITTE anyway and the + * pending state is a property of the ITTE struct. + */ + vgic_its_invalidate_cache(kvm); + + its_free_ite(kvm, ite); + return 0; + } + + return E_ITS_DISCARD_UNMAPPED_INTERRUPT; +} + +/* + * The MOVI command moves an ITTE to a different collection. + * Must be called with the its_lock mutex held. + */ +static int vgic_its_cmd_handle_movi(struct kvm *kvm, struct vgic_its *its, + u64 *its_cmd) +{ + u32 device_id = its_cmd_get_deviceid(its_cmd); + u32 event_id = its_cmd_get_id(its_cmd); + u32 coll_id = its_cmd_get_collection(its_cmd); + struct kvm_vcpu *vcpu; + struct its_ite *ite; + struct its_collection *collection; + + ite = find_ite(its, device_id, event_id); + if (!ite) + return E_ITS_MOVI_UNMAPPED_INTERRUPT; + + if (!its_is_collection_mapped(ite->collection)) + return E_ITS_MOVI_UNMAPPED_COLLECTION; + + collection = find_collection(its, coll_id); + if (!its_is_collection_mapped(collection)) + return E_ITS_MOVI_UNMAPPED_COLLECTION; + + ite->collection = collection; + vcpu = kvm_get_vcpu(kvm, collection->target_addr); + + vgic_its_invalidate_cache(kvm); + + return update_affinity(ite->irq, vcpu); +} + +static bool __is_visible_gfn_locked(struct vgic_its *its, gpa_t gpa) +{ + gfn_t gfn = gpa >> PAGE_SHIFT; + int idx; + bool ret; + + idx = srcu_read_lock(&its->dev->kvm->srcu); + ret = kvm_is_visible_gfn(its->dev->kvm, gfn); + srcu_read_unlock(&its->dev->kvm->srcu, idx); + return ret; +} + +/* + * Check whether an ID can be stored into the corresponding guest table. + * For a direct table this is pretty easy, but gets a bit nasty for + * indirect tables. We check whether the resulting guest physical address + * is actually valid (covered by a memslot and guest accessible). + * For this we have to read the respective first level entry. + */ +static bool vgic_its_check_id(struct vgic_its *its, u64 baser, u32 id, + gpa_t *eaddr) +{ + int l1_tbl_size = GITS_BASER_NR_PAGES(baser) * SZ_64K; + u64 indirect_ptr, type = GITS_BASER_TYPE(baser); + phys_addr_t base = GITS_BASER_ADDR_48_to_52(baser); + int esz = GITS_BASER_ENTRY_SIZE(baser); + int index; + + switch (type) { + case GITS_BASER_TYPE_DEVICE: + if (id >= BIT_ULL(VITS_TYPER_DEVBITS)) + return false; + break; + case GITS_BASER_TYPE_COLLECTION: + /* as GITS_TYPER.CIL == 0, ITS supports 16-bit collection ID */ + if (id >= BIT_ULL(16)) + return false; + break; + default: + return false; + } + + if (!(baser & GITS_BASER_INDIRECT)) { + phys_addr_t addr; + + if (id >= (l1_tbl_size / esz)) + return false; + + addr = base + id * esz; + + if (eaddr) + *eaddr = addr; + + return __is_visible_gfn_locked(its, addr); + } + + /* calculate and check the index into the 1st level */ + index = id / (SZ_64K / esz); + if (index >= (l1_tbl_size / sizeof(u64))) + return false; + + /* Each 1st level entry is represented by a 64-bit value. */ + if (kvm_read_guest_lock(its->dev->kvm, + base + index * sizeof(indirect_ptr), + &indirect_ptr, sizeof(indirect_ptr))) + return false; + + indirect_ptr = le64_to_cpu(indirect_ptr); + + /* check the valid bit of the first level entry */ + if (!(indirect_ptr & BIT_ULL(63))) + return false; + + /* Mask the guest physical address and calculate the frame number. */ + indirect_ptr &= GENMASK_ULL(51, 16); + + /* Find the address of the actual entry */ + index = id % (SZ_64K / esz); + indirect_ptr += index * esz; + + if (eaddr) + *eaddr = indirect_ptr; + + return __is_visible_gfn_locked(its, indirect_ptr); +} + +/* + * Check whether an event ID can be stored in the corresponding Interrupt + * Translation Table, which starts at device->itt_addr. + */ +static bool vgic_its_check_event_id(struct vgic_its *its, struct its_device *device, + u32 event_id) +{ + const struct vgic_its_abi *abi = vgic_its_get_abi(its); + int ite_esz = abi->ite_esz; + gpa_t gpa; + + /* max table size is: BIT_ULL(device->num_eventid_bits) * ite_esz */ + if (event_id >= BIT_ULL(device->num_eventid_bits)) + return false; + + gpa = device->itt_addr + event_id * ite_esz; + return __is_visible_gfn_locked(its, gpa); +} + +/* + * Add a new collection into the ITS collection table. + * Returns 0 on success, and a negative error value for generic errors. + */ +static int vgic_its_alloc_collection(struct vgic_its *its, + struct its_collection **colp, + u32 coll_id) +{ + struct its_collection *collection; + + collection = kzalloc(sizeof(*collection), GFP_KERNEL_ACCOUNT); + if (!collection) + return -ENOMEM; + + collection->collection_id = coll_id; + collection->target_addr = COLLECTION_NOT_MAPPED; + + list_add_tail(&collection->coll_list, &its->collection_list); + *colp = collection; + + return 0; +} + +static void vgic_its_free_collection(struct vgic_its *its, u32 coll_id) +{ + struct its_collection *collection; + struct its_device *device; + struct its_ite *ite; + + /* + * Clearing the mapping for that collection ID removes the + * entry from the list. If there wasn't any before, we can + * go home early. + */ + collection = find_collection(its, coll_id); + if (!collection) + return; + + for_each_lpi_its(device, ite, its) + if (ite->collection && + ite->collection->collection_id == coll_id) + ite->collection = NULL; + + list_del(&collection->coll_list); + kfree(collection); +} + +/* Must be called with its_lock mutex held */ +static struct its_ite *vgic_its_alloc_ite(struct its_device *device, + struct its_collection *collection, + u32 event_id) +{ + struct its_ite *ite; + + ite = kzalloc(sizeof(*ite), GFP_KERNEL_ACCOUNT); + if (!ite) + return ERR_PTR(-ENOMEM); + + ite->event_id = event_id; + ite->collection = collection; + + list_add_tail(&ite->ite_list, &device->itt_head); + return ite; +} + +/* + * The MAPTI and MAPI commands map LPIs to ITTEs. + * Must be called with its_lock mutex held. + */ +static int vgic_its_cmd_handle_mapi(struct kvm *kvm, struct vgic_its *its, + u64 *its_cmd) +{ + u32 device_id = its_cmd_get_deviceid(its_cmd); + u32 event_id = its_cmd_get_id(its_cmd); + u32 coll_id = its_cmd_get_collection(its_cmd); + struct its_ite *ite; + struct kvm_vcpu *vcpu = NULL; + struct its_device *device; + struct its_collection *collection, *new_coll = NULL; + struct vgic_irq *irq; + int lpi_nr; + + device = find_its_device(its, device_id); + if (!device) + return E_ITS_MAPTI_UNMAPPED_DEVICE; + + if (!vgic_its_check_event_id(its, device, event_id)) + return E_ITS_MAPTI_ID_OOR; + + if (its_cmd_get_command(its_cmd) == GITS_CMD_MAPTI) + lpi_nr = its_cmd_get_physical_id(its_cmd); + else + lpi_nr = event_id; + if (lpi_nr < GIC_LPI_OFFSET || + lpi_nr >= max_lpis_propbaser(kvm->arch.vgic.propbaser)) + return E_ITS_MAPTI_PHYSICALID_OOR; + + /* If there is an existing mapping, behavior is UNPREDICTABLE. */ + if (find_ite(its, device_id, event_id)) + return 0; + + collection = find_collection(its, coll_id); + if (!collection) { + int ret; + + if (!vgic_its_check_id(its, its->baser_coll_table, coll_id, NULL)) + return E_ITS_MAPC_COLLECTION_OOR; + + ret = vgic_its_alloc_collection(its, &collection, coll_id); + if (ret) + return ret; + new_coll = collection; + } + + ite = vgic_its_alloc_ite(device, collection, event_id); + if (IS_ERR(ite)) { + if (new_coll) + vgic_its_free_collection(its, coll_id); + return PTR_ERR(ite); + } + + if (its_is_collection_mapped(collection)) + vcpu = kvm_get_vcpu(kvm, collection->target_addr); + + irq = vgic_add_lpi(kvm, lpi_nr, vcpu); + if (IS_ERR(irq)) { + if (new_coll) + vgic_its_free_collection(its, coll_id); + its_free_ite(kvm, ite); + return PTR_ERR(irq); + } + ite->irq = irq; + + return 0; +} + +/* Requires the its_lock to be held. */ +static void vgic_its_free_device(struct kvm *kvm, struct its_device *device) +{ + struct its_ite *ite, *temp; + + /* + * The spec says that unmapping a device with still valid + * ITTEs associated is UNPREDICTABLE. We remove all ITTEs, + * since we cannot leave the memory unreferenced. + */ + list_for_each_entry_safe(ite, temp, &device->itt_head, ite_list) + its_free_ite(kvm, ite); + + vgic_its_invalidate_cache(kvm); + + list_del(&device->dev_list); + kfree(device); +} + +/* its lock must be held */ +static void vgic_its_free_device_list(struct kvm *kvm, struct vgic_its *its) +{ + struct its_device *cur, *temp; + + list_for_each_entry_safe(cur, temp, &its->device_list, dev_list) + vgic_its_free_device(kvm, cur); +} + +/* its lock must be held */ +static void vgic_its_free_collection_list(struct kvm *kvm, struct vgic_its *its) +{ + struct its_collection *cur, *temp; + + list_for_each_entry_safe(cur, temp, &its->collection_list, coll_list) + vgic_its_free_collection(its, cur->collection_id); +} + +/* Must be called with its_lock mutex held */ +static struct its_device *vgic_its_alloc_device(struct vgic_its *its, + u32 device_id, gpa_t itt_addr, + u8 num_eventid_bits) +{ + struct its_device *device; + + device = kzalloc(sizeof(*device), GFP_KERNEL_ACCOUNT); + if (!device) + return ERR_PTR(-ENOMEM); + + device->device_id = device_id; + device->itt_addr = itt_addr; + device->num_eventid_bits = num_eventid_bits; + INIT_LIST_HEAD(&device->itt_head); + + list_add_tail(&device->dev_list, &its->device_list); + return device; +} + +/* + * MAPD maps or unmaps a device ID to Interrupt Translation Tables (ITTs). + * Must be called with the its_lock mutex held. + */ +static int vgic_its_cmd_handle_mapd(struct kvm *kvm, struct vgic_its *its, + u64 *its_cmd) +{ + u32 device_id = its_cmd_get_deviceid(its_cmd); + bool valid = its_cmd_get_validbit(its_cmd); + u8 num_eventid_bits = its_cmd_get_size(its_cmd); + gpa_t itt_addr = its_cmd_get_ittaddr(its_cmd); + struct its_device *device; + + if (!vgic_its_check_id(its, its->baser_device_table, device_id, NULL)) + return E_ITS_MAPD_DEVICE_OOR; + + if (valid && num_eventid_bits > VITS_TYPER_IDBITS) + return E_ITS_MAPD_ITTSIZE_OOR; + + device = find_its_device(its, device_id); + + /* + * The spec says that calling MAPD on an already mapped device + * invalidates all cached data for this device. We implement this + * by removing the mapping and re-establishing it. + */ + if (device) + vgic_its_free_device(kvm, device); + + /* + * The spec does not say whether unmapping a not-mapped device + * is an error, so we are done in any case. + */ + if (!valid) + return 0; + + device = vgic_its_alloc_device(its, device_id, itt_addr, + num_eventid_bits); + + return PTR_ERR_OR_ZERO(device); +} + +/* + * The MAPC command maps collection IDs to redistributors. + * Must be called with the its_lock mutex held. + */ +static int vgic_its_cmd_handle_mapc(struct kvm *kvm, struct vgic_its *its, + u64 *its_cmd) +{ + u16 coll_id; + u32 target_addr; + struct its_collection *collection; + bool valid; + + valid = its_cmd_get_validbit(its_cmd); + coll_id = its_cmd_get_collection(its_cmd); + target_addr = its_cmd_get_target_addr(its_cmd); + + if (target_addr >= atomic_read(&kvm->online_vcpus)) + return E_ITS_MAPC_PROCNUM_OOR; + + if (!valid) { + vgic_its_free_collection(its, coll_id); + vgic_its_invalidate_cache(kvm); + } else { + collection = find_collection(its, coll_id); + + if (!collection) { + int ret; + + if (!vgic_its_check_id(its, its->baser_coll_table, + coll_id, NULL)) + return E_ITS_MAPC_COLLECTION_OOR; + + ret = vgic_its_alloc_collection(its, &collection, + coll_id); + if (ret) + return ret; + collection->target_addr = target_addr; + } else { + collection->target_addr = target_addr; + update_affinity_collection(kvm, its, collection); + } + } + + return 0; +} + +/* + * The CLEAR command removes the pending state for a particular LPI. + * Must be called with the its_lock mutex held. + */ +static int vgic_its_cmd_handle_clear(struct kvm *kvm, struct vgic_its *its, + u64 *its_cmd) +{ + u32 device_id = its_cmd_get_deviceid(its_cmd); + u32 event_id = its_cmd_get_id(its_cmd); + struct its_ite *ite; + + + ite = find_ite(its, device_id, event_id); + if (!ite) + return E_ITS_CLEAR_UNMAPPED_INTERRUPT; + + ite->irq->pending_latch = false; + + if (ite->irq->hw) + return irq_set_irqchip_state(ite->irq->host_irq, + IRQCHIP_STATE_PENDING, false); + + return 0; +} + +int vgic_its_inv_lpi(struct kvm *kvm, struct vgic_irq *irq) +{ + return update_lpi_config(kvm, irq, NULL, true); +} + +/* + * The INV command syncs the configuration bits from the memory table. + * Must be called with the its_lock mutex held. + */ +static int vgic_its_cmd_handle_inv(struct kvm *kvm, struct vgic_its *its, + u64 *its_cmd) +{ + u32 device_id = its_cmd_get_deviceid(its_cmd); + u32 event_id = its_cmd_get_id(its_cmd); + struct its_ite *ite; + + + ite = find_ite(its, device_id, event_id); + if (!ite) + return E_ITS_INV_UNMAPPED_INTERRUPT; + + return vgic_its_inv_lpi(kvm, ite->irq); +} + +/** + * vgic_its_invall - invalidate all LPIs targetting a given vcpu + * @vcpu: the vcpu for which the RD is targetted by an invalidation + * + * Contrary to the INVALL command, this targets a RD instead of a + * collection, and we don't need to hold the its_lock, since no ITS is + * involved here. + */ +int vgic_its_invall(struct kvm_vcpu *vcpu) +{ + struct kvm *kvm = vcpu->kvm; + int irq_count, i = 0; + u32 *intids; + + irq_count = vgic_copy_lpi_list(kvm, vcpu, &intids); + if (irq_count < 0) + return irq_count; + + for (i = 0; i < irq_count; i++) { + struct vgic_irq *irq = vgic_get_irq(kvm, NULL, intids[i]); + if (!irq) + continue; + update_lpi_config(kvm, irq, vcpu, false); + vgic_put_irq(kvm, irq); + } + + kfree(intids); + + if (vcpu->arch.vgic_cpu.vgic_v3.its_vpe.its_vm) + its_invall_vpe(&vcpu->arch.vgic_cpu.vgic_v3.its_vpe); + + return 0; +} + +/* + * The INVALL command requests flushing of all IRQ data in this collection. + * Find the VCPU mapped to that collection, then iterate over the VM's list + * of mapped LPIs and update the configuration for each IRQ which targets + * the specified vcpu. The configuration will be read from the in-memory + * configuration table. + * Must be called with the its_lock mutex held. + */ +static int vgic_its_cmd_handle_invall(struct kvm *kvm, struct vgic_its *its, + u64 *its_cmd) +{ + u32 coll_id = its_cmd_get_collection(its_cmd); + struct its_collection *collection; + struct kvm_vcpu *vcpu; + + collection = find_collection(its, coll_id); + if (!its_is_collection_mapped(collection)) + return E_ITS_INVALL_UNMAPPED_COLLECTION; + + vcpu = kvm_get_vcpu(kvm, collection->target_addr); + vgic_its_invall(vcpu); + + return 0; +} + +/* + * The MOVALL command moves the pending state of all IRQs targeting one + * redistributor to another. We don't hold the pending state in the VCPUs, + * but in the IRQs instead, so there is really not much to do for us here. + * However the spec says that no IRQ must target the old redistributor + * afterwards, so we make sure that no LPI is using the associated target_vcpu. + * This command affects all LPIs in the system that target that redistributor. + */ +static int vgic_its_cmd_handle_movall(struct kvm *kvm, struct vgic_its *its, + u64 *its_cmd) +{ + u32 target1_addr = its_cmd_get_target_addr(its_cmd); + u32 target2_addr = its_cmd_mask_field(its_cmd, 3, 16, 32); + struct kvm_vcpu *vcpu1, *vcpu2; + struct vgic_irq *irq; + u32 *intids; + int irq_count, i; + + if (target1_addr >= atomic_read(&kvm->online_vcpus) || + target2_addr >= atomic_read(&kvm->online_vcpus)) + return E_ITS_MOVALL_PROCNUM_OOR; + + if (target1_addr == target2_addr) + return 0; + + vcpu1 = kvm_get_vcpu(kvm, target1_addr); + vcpu2 = kvm_get_vcpu(kvm, target2_addr); + + irq_count = vgic_copy_lpi_list(kvm, vcpu1, &intids); + if (irq_count < 0) + return irq_count; + + for (i = 0; i < irq_count; i++) { + irq = vgic_get_irq(kvm, NULL, intids[i]); + + update_affinity(irq, vcpu2); + + vgic_put_irq(kvm, irq); + } + + vgic_its_invalidate_cache(kvm); + + kfree(intids); + return 0; +} + +/* + * The INT command injects the LPI associated with that DevID/EvID pair. + * Must be called with the its_lock mutex held. + */ +static int vgic_its_cmd_handle_int(struct kvm *kvm, struct vgic_its *its, + u64 *its_cmd) +{ + u32 msi_data = its_cmd_get_id(its_cmd); + u64 msi_devid = its_cmd_get_deviceid(its_cmd); + + return vgic_its_trigger_msi(kvm, its, msi_devid, msi_data); +} + +/* + * This function is called with the its_cmd lock held, but the ITS data + * structure lock dropped. + */ +static int vgic_its_handle_command(struct kvm *kvm, struct vgic_its *its, + u64 *its_cmd) +{ + int ret = -ENODEV; + + mutex_lock(&its->its_lock); + switch (its_cmd_get_command(its_cmd)) { + case GITS_CMD_MAPD: + ret = vgic_its_cmd_handle_mapd(kvm, its, its_cmd); + break; + case GITS_CMD_MAPC: + ret = vgic_its_cmd_handle_mapc(kvm, its, its_cmd); + break; + case GITS_CMD_MAPI: + ret = vgic_its_cmd_handle_mapi(kvm, its, its_cmd); + break; + case GITS_CMD_MAPTI: + ret = vgic_its_cmd_handle_mapi(kvm, its, its_cmd); + break; + case GITS_CMD_MOVI: + ret = vgic_its_cmd_handle_movi(kvm, its, its_cmd); + break; + case GITS_CMD_DISCARD: + ret = vgic_its_cmd_handle_discard(kvm, its, its_cmd); + break; + case GITS_CMD_CLEAR: + ret = vgic_its_cmd_handle_clear(kvm, its, its_cmd); + break; + case GITS_CMD_MOVALL: + ret = vgic_its_cmd_handle_movall(kvm, its, its_cmd); + break; + case GITS_CMD_INT: + ret = vgic_its_cmd_handle_int(kvm, its, its_cmd); + break; + case GITS_CMD_INV: + ret = vgic_its_cmd_handle_inv(kvm, its, its_cmd); + break; + case GITS_CMD_INVALL: + ret = vgic_its_cmd_handle_invall(kvm, its, its_cmd); + break; + case GITS_CMD_SYNC: + /* we ignore this command: we are in sync all of the time */ + ret = 0; + break; + } + mutex_unlock(&its->its_lock); + + return ret; +} + +static u64 vgic_sanitise_its_baser(u64 reg) +{ + reg = vgic_sanitise_field(reg, GITS_BASER_SHAREABILITY_MASK, + GITS_BASER_SHAREABILITY_SHIFT, + vgic_sanitise_shareability); + reg = vgic_sanitise_field(reg, GITS_BASER_INNER_CACHEABILITY_MASK, + GITS_BASER_INNER_CACHEABILITY_SHIFT, + vgic_sanitise_inner_cacheability); + reg = vgic_sanitise_field(reg, GITS_BASER_OUTER_CACHEABILITY_MASK, + GITS_BASER_OUTER_CACHEABILITY_SHIFT, + vgic_sanitise_outer_cacheability); + + /* We support only one (ITS) page size: 64K */ + reg = (reg & ~GITS_BASER_PAGE_SIZE_MASK) | GITS_BASER_PAGE_SIZE_64K; + + return reg; +} + +static u64 vgic_sanitise_its_cbaser(u64 reg) +{ + reg = vgic_sanitise_field(reg, GITS_CBASER_SHAREABILITY_MASK, + GITS_CBASER_SHAREABILITY_SHIFT, + vgic_sanitise_shareability); + reg = vgic_sanitise_field(reg, GITS_CBASER_INNER_CACHEABILITY_MASK, + GITS_CBASER_INNER_CACHEABILITY_SHIFT, + vgic_sanitise_inner_cacheability); + reg = vgic_sanitise_field(reg, GITS_CBASER_OUTER_CACHEABILITY_MASK, + GITS_CBASER_OUTER_CACHEABILITY_SHIFT, + vgic_sanitise_outer_cacheability); + + /* Sanitise the physical address to be 64k aligned. */ + reg &= ~GENMASK_ULL(15, 12); + + return reg; +} + +static unsigned long vgic_mmio_read_its_cbaser(struct kvm *kvm, + struct vgic_its *its, + gpa_t addr, unsigned int len) +{ + return extract_bytes(its->cbaser, addr & 7, len); +} + +static void vgic_mmio_write_its_cbaser(struct kvm *kvm, struct vgic_its *its, + gpa_t addr, unsigned int len, + unsigned long val) +{ + /* When GITS_CTLR.Enable is 1, this register is RO. */ + if (its->enabled) + return; + + mutex_lock(&its->cmd_lock); + its->cbaser = update_64bit_reg(its->cbaser, addr & 7, len, val); + its->cbaser = vgic_sanitise_its_cbaser(its->cbaser); + its->creadr = 0; + /* + * CWRITER is architecturally UNKNOWN on reset, but we need to reset + * it to CREADR to make sure we start with an empty command buffer. + */ + its->cwriter = its->creadr; + mutex_unlock(&its->cmd_lock); +} + +#define ITS_CMD_BUFFER_SIZE(baser) ((((baser) & 0xff) + 1) << 12) +#define ITS_CMD_SIZE 32 +#define ITS_CMD_OFFSET(reg) ((reg) & GENMASK(19, 5)) + +/* Must be called with the cmd_lock held. */ +static void vgic_its_process_commands(struct kvm *kvm, struct vgic_its *its) +{ + gpa_t cbaser; + u64 cmd_buf[4]; + + /* Commands are only processed when the ITS is enabled. */ + if (!its->enabled) + return; + + cbaser = GITS_CBASER_ADDRESS(its->cbaser); + + while (its->cwriter != its->creadr) { + int ret = kvm_read_guest_lock(kvm, cbaser + its->creadr, + cmd_buf, ITS_CMD_SIZE); + /* + * If kvm_read_guest() fails, this could be due to the guest + * programming a bogus value in CBASER or something else going + * wrong from which we cannot easily recover. + * According to section 6.3.2 in the GICv3 spec we can just + * ignore that command then. + */ + if (!ret) + vgic_its_handle_command(kvm, its, cmd_buf); + + its->creadr += ITS_CMD_SIZE; + if (its->creadr == ITS_CMD_BUFFER_SIZE(its->cbaser)) + its->creadr = 0; + } +} + +/* + * By writing to CWRITER the guest announces new commands to be processed. + * To avoid any races in the first place, we take the its_cmd lock, which + * protects our ring buffer variables, so that there is only one user + * per ITS handling commands at a given time. + */ +static void vgic_mmio_write_its_cwriter(struct kvm *kvm, struct vgic_its *its, + gpa_t addr, unsigned int len, + unsigned long val) +{ + u64 reg; + + if (!its) + return; + + mutex_lock(&its->cmd_lock); + + reg = update_64bit_reg(its->cwriter, addr & 7, len, val); + reg = ITS_CMD_OFFSET(reg); + if (reg >= ITS_CMD_BUFFER_SIZE(its->cbaser)) { + mutex_unlock(&its->cmd_lock); + return; + } + its->cwriter = reg; + + vgic_its_process_commands(kvm, its); + + mutex_unlock(&its->cmd_lock); +} + +static unsigned long vgic_mmio_read_its_cwriter(struct kvm *kvm, + struct vgic_its *its, + gpa_t addr, unsigned int len) +{ + return extract_bytes(its->cwriter, addr & 0x7, len); +} + +static unsigned long vgic_mmio_read_its_creadr(struct kvm *kvm, + struct vgic_its *its, + gpa_t addr, unsigned int len) +{ + return extract_bytes(its->creadr, addr & 0x7, len); +} + +static int vgic_mmio_uaccess_write_its_creadr(struct kvm *kvm, + struct vgic_its *its, + gpa_t addr, unsigned int len, + unsigned long val) +{ + u32 cmd_offset; + int ret = 0; + + mutex_lock(&its->cmd_lock); + + if (its->enabled) { + ret = -EBUSY; + goto out; + } + + cmd_offset = ITS_CMD_OFFSET(val); + if (cmd_offset >= ITS_CMD_BUFFER_SIZE(its->cbaser)) { + ret = -EINVAL; + goto out; + } + + its->creadr = cmd_offset; +out: + mutex_unlock(&its->cmd_lock); + return ret; +} + +#define BASER_INDEX(addr) (((addr) / sizeof(u64)) & 0x7) +static unsigned long vgic_mmio_read_its_baser(struct kvm *kvm, + struct vgic_its *its, + gpa_t addr, unsigned int len) +{ + u64 reg; + + switch (BASER_INDEX(addr)) { + case 0: + reg = its->baser_device_table; + break; + case 1: + reg = its->baser_coll_table; + break; + default: + reg = 0; + break; + } + + return extract_bytes(reg, addr & 7, len); +} + +#define GITS_BASER_RO_MASK (GENMASK_ULL(52, 48) | GENMASK_ULL(58, 56)) +static void vgic_mmio_write_its_baser(struct kvm *kvm, + struct vgic_its *its, + gpa_t addr, unsigned int len, + unsigned long val) +{ + const struct vgic_its_abi *abi = vgic_its_get_abi(its); + u64 entry_size, table_type; + u64 reg, *regptr, clearbits = 0; + + /* When GITS_CTLR.Enable is 1, we ignore write accesses. */ + if (its->enabled) + return; + + switch (BASER_INDEX(addr)) { + case 0: + regptr = &its->baser_device_table; + entry_size = abi->dte_esz; + table_type = GITS_BASER_TYPE_DEVICE; + break; + case 1: + regptr = &its->baser_coll_table; + entry_size = abi->cte_esz; + table_type = GITS_BASER_TYPE_COLLECTION; + clearbits = GITS_BASER_INDIRECT; + break; + default: + return; + } + + reg = update_64bit_reg(*regptr, addr & 7, len, val); + reg &= ~GITS_BASER_RO_MASK; + reg &= ~clearbits; + + reg |= (entry_size - 1) << GITS_BASER_ENTRY_SIZE_SHIFT; + reg |= table_type << GITS_BASER_TYPE_SHIFT; + reg = vgic_sanitise_its_baser(reg); + + *regptr = reg; + + if (!(reg & GITS_BASER_VALID)) { + /* Take the its_lock to prevent a race with a save/restore */ + mutex_lock(&its->its_lock); + switch (table_type) { + case GITS_BASER_TYPE_DEVICE: + vgic_its_free_device_list(kvm, its); + break; + case GITS_BASER_TYPE_COLLECTION: + vgic_its_free_collection_list(kvm, its); + break; + } + mutex_unlock(&its->its_lock); + } +} + +static unsigned long vgic_mmio_read_its_ctlr(struct kvm *vcpu, + struct vgic_its *its, + gpa_t addr, unsigned int len) +{ + u32 reg = 0; + + mutex_lock(&its->cmd_lock); + if (its->creadr == its->cwriter) + reg |= GITS_CTLR_QUIESCENT; + if (its->enabled) + reg |= GITS_CTLR_ENABLE; + mutex_unlock(&its->cmd_lock); + + return reg; +} + +static void vgic_mmio_write_its_ctlr(struct kvm *kvm, struct vgic_its *its, + gpa_t addr, unsigned int len, + unsigned long val) +{ + mutex_lock(&its->cmd_lock); + + /* + * It is UNPREDICTABLE to enable the ITS if any of the CBASER or + * device/collection BASER are invalid + */ + if (!its->enabled && (val & GITS_CTLR_ENABLE) && + (!(its->baser_device_table & GITS_BASER_VALID) || + !(its->baser_coll_table & GITS_BASER_VALID) || + !(its->cbaser & GITS_CBASER_VALID))) + goto out; + + its->enabled = !!(val & GITS_CTLR_ENABLE); + if (!its->enabled) + vgic_its_invalidate_cache(kvm); + + /* + * Try to process any pending commands. This function bails out early + * if the ITS is disabled or no commands have been queued. + */ + vgic_its_process_commands(kvm, its); + +out: + mutex_unlock(&its->cmd_lock); +} + +#define REGISTER_ITS_DESC(off, rd, wr, length, acc) \ +{ \ + .reg_offset = off, \ + .len = length, \ + .access_flags = acc, \ + .its_read = rd, \ + .its_write = wr, \ +} + +#define REGISTER_ITS_DESC_UACCESS(off, rd, wr, uwr, length, acc)\ +{ \ + .reg_offset = off, \ + .len = length, \ + .access_flags = acc, \ + .its_read = rd, \ + .its_write = wr, \ + .uaccess_its_write = uwr, \ +} + +static void its_mmio_write_wi(struct kvm *kvm, struct vgic_its *its, + gpa_t addr, unsigned int len, unsigned long val) +{ + /* Ignore */ +} + +static struct vgic_register_region its_registers[] = { + REGISTER_ITS_DESC(GITS_CTLR, + vgic_mmio_read_its_ctlr, vgic_mmio_write_its_ctlr, 4, + VGIC_ACCESS_32bit), + REGISTER_ITS_DESC_UACCESS(GITS_IIDR, + vgic_mmio_read_its_iidr, its_mmio_write_wi, + vgic_mmio_uaccess_write_its_iidr, 4, + VGIC_ACCESS_32bit), + REGISTER_ITS_DESC(GITS_TYPER, + vgic_mmio_read_its_typer, its_mmio_write_wi, 8, + VGIC_ACCESS_64bit | VGIC_ACCESS_32bit), + REGISTER_ITS_DESC(GITS_CBASER, + vgic_mmio_read_its_cbaser, vgic_mmio_write_its_cbaser, 8, + VGIC_ACCESS_64bit | VGIC_ACCESS_32bit), + REGISTER_ITS_DESC(GITS_CWRITER, + vgic_mmio_read_its_cwriter, vgic_mmio_write_its_cwriter, 8, + VGIC_ACCESS_64bit | VGIC_ACCESS_32bit), + REGISTER_ITS_DESC_UACCESS(GITS_CREADR, + vgic_mmio_read_its_creadr, its_mmio_write_wi, + vgic_mmio_uaccess_write_its_creadr, 8, + VGIC_ACCESS_64bit | VGIC_ACCESS_32bit), + REGISTER_ITS_DESC(GITS_BASER, + vgic_mmio_read_its_baser, vgic_mmio_write_its_baser, 0x40, + VGIC_ACCESS_64bit | VGIC_ACCESS_32bit), + REGISTER_ITS_DESC(GITS_IDREGS_BASE, + vgic_mmio_read_its_idregs, its_mmio_write_wi, 0x30, + VGIC_ACCESS_32bit), +}; + +/* This is called on setting the LPI enable bit in the redistributor. */ +void vgic_enable_lpis(struct kvm_vcpu *vcpu) +{ + if (!(vcpu->arch.vgic_cpu.pendbaser & GICR_PENDBASER_PTZ)) + its_sync_lpi_pending_table(vcpu); +} + +static int vgic_register_its_iodev(struct kvm *kvm, struct vgic_its *its, + u64 addr) +{ + struct vgic_io_device *iodev = &its->iodev; + int ret; + + mutex_lock(&kvm->slots_lock); + if (!IS_VGIC_ADDR_UNDEF(its->vgic_its_base)) { + ret = -EBUSY; + goto out; + } + + its->vgic_its_base = addr; + iodev->regions = its_registers; + iodev->nr_regions = ARRAY_SIZE(its_registers); + kvm_iodevice_init(&iodev->dev, &kvm_io_gic_ops); + + iodev->base_addr = its->vgic_its_base; + iodev->iodev_type = IODEV_ITS; + iodev->its = its; + ret = kvm_io_bus_register_dev(kvm, KVM_MMIO_BUS, iodev->base_addr, + KVM_VGIC_V3_ITS_SIZE, &iodev->dev); +out: + mutex_unlock(&kvm->slots_lock); + + return ret; +} + +/* Default is 16 cached LPIs per vcpu */ +#define LPI_DEFAULT_PCPU_CACHE_SIZE 16 + +void vgic_lpi_translation_cache_init(struct kvm *kvm) +{ + struct vgic_dist *dist = &kvm->arch.vgic; + unsigned int sz; + int i; + + if (!list_empty(&dist->lpi_translation_cache)) + return; + + sz = atomic_read(&kvm->online_vcpus) * LPI_DEFAULT_PCPU_CACHE_SIZE; + + for (i = 0; i < sz; i++) { + struct vgic_translation_cache_entry *cte; + + /* An allocation failure is not fatal */ + cte = kzalloc(sizeof(*cte), GFP_KERNEL_ACCOUNT); + if (WARN_ON(!cte)) + break; + + INIT_LIST_HEAD(&cte->entry); + list_add(&cte->entry, &dist->lpi_translation_cache); + } +} + +void vgic_lpi_translation_cache_destroy(struct kvm *kvm) +{ + struct vgic_dist *dist = &kvm->arch.vgic; + struct vgic_translation_cache_entry *cte, *tmp; + + vgic_its_invalidate_cache(kvm); + + list_for_each_entry_safe(cte, tmp, + &dist->lpi_translation_cache, entry) { + list_del(&cte->entry); + kfree(cte); + } +} + +#define INITIAL_BASER_VALUE \ + (GIC_BASER_CACHEABILITY(GITS_BASER, INNER, RaWb) | \ + GIC_BASER_CACHEABILITY(GITS_BASER, OUTER, SameAsInner) | \ + GIC_BASER_SHAREABILITY(GITS_BASER, InnerShareable) | \ + GITS_BASER_PAGE_SIZE_64K) + +#define INITIAL_PROPBASER_VALUE \ + (GIC_BASER_CACHEABILITY(GICR_PROPBASER, INNER, RaWb) | \ + GIC_BASER_CACHEABILITY(GICR_PROPBASER, OUTER, SameAsInner) | \ + GIC_BASER_SHAREABILITY(GICR_PROPBASER, InnerShareable)) + +static int vgic_its_create(struct kvm_device *dev, u32 type) +{ + int ret; + struct vgic_its *its; + + if (type != KVM_DEV_TYPE_ARM_VGIC_ITS) + return -ENODEV; + + its = kzalloc(sizeof(struct vgic_its), GFP_KERNEL_ACCOUNT); + if (!its) + return -ENOMEM; + + mutex_lock(&dev->kvm->arch.config_lock); + + if (vgic_initialized(dev->kvm)) { + ret = vgic_v4_init(dev->kvm); + if (ret < 0) { + mutex_unlock(&dev->kvm->arch.config_lock); + kfree(its); + return ret; + } + + vgic_lpi_translation_cache_init(dev->kvm); + } + + mutex_init(&its->its_lock); + mutex_init(&its->cmd_lock); + + /* Yep, even more trickery for lock ordering... */ +#ifdef CONFIG_LOCKDEP + mutex_lock(&its->cmd_lock); + mutex_lock(&its->its_lock); + mutex_unlock(&its->its_lock); + mutex_unlock(&its->cmd_lock); +#endif + + its->vgic_its_base = VGIC_ADDR_UNDEF; + + INIT_LIST_HEAD(&its->device_list); + INIT_LIST_HEAD(&its->collection_list); + + dev->kvm->arch.vgic.msis_require_devid = true; + dev->kvm->arch.vgic.has_its = true; + its->enabled = false; + its->dev = dev; + + its->baser_device_table = INITIAL_BASER_VALUE | + ((u64)GITS_BASER_TYPE_DEVICE << GITS_BASER_TYPE_SHIFT); + its->baser_coll_table = INITIAL_BASER_VALUE | + ((u64)GITS_BASER_TYPE_COLLECTION << GITS_BASER_TYPE_SHIFT); + dev->kvm->arch.vgic.propbaser = INITIAL_PROPBASER_VALUE; + + dev->private = its; + + ret = vgic_its_set_abi(its, NR_ITS_ABIS - 1); + + mutex_unlock(&dev->kvm->arch.config_lock); + + return ret; +} + +static void vgic_its_destroy(struct kvm_device *kvm_dev) +{ + struct kvm *kvm = kvm_dev->kvm; + struct vgic_its *its = kvm_dev->private; + + mutex_lock(&its->its_lock); + + vgic_its_free_device_list(kvm, its); + vgic_its_free_collection_list(kvm, its); + + mutex_unlock(&its->its_lock); + kfree(its); + kfree(kvm_dev);/* alloc by kvm_ioctl_create_device, free by .destroy */ +} + +static int vgic_its_has_attr_regs(struct kvm_device *dev, + struct kvm_device_attr *attr) +{ + const struct vgic_register_region *region; + gpa_t offset = attr->attr; + int align; + + align = (offset < GITS_TYPER) || (offset >= GITS_PIDR4) ? 0x3 : 0x7; + + if (offset & align) + return -EINVAL; + + region = vgic_find_mmio_region(its_registers, + ARRAY_SIZE(its_registers), + offset); + if (!region) + return -ENXIO; + + return 0; +} + +static int vgic_its_attr_regs_access(struct kvm_device *dev, + struct kvm_device_attr *attr, + u64 *reg, bool is_write) +{ + const struct vgic_register_region *region; + struct vgic_its *its; + gpa_t addr, offset; + unsigned int len; + int align, ret = 0; + + its = dev->private; + offset = attr->attr; + + /* + * Although the spec supports upper/lower 32-bit accesses to + * 64-bit ITS registers, the userspace ABI requires 64-bit + * accesses to all 64-bit wide registers. We therefore only + * support 32-bit accesses to GITS_CTLR, GITS_IIDR and GITS ID + * registers + */ + if ((offset < GITS_TYPER) || (offset >= GITS_PIDR4)) + align = 0x3; + else + align = 0x7; + + if (offset & align) + return -EINVAL; + + mutex_lock(&dev->kvm->lock); + + if (!lock_all_vcpus(dev->kvm)) { + mutex_unlock(&dev->kvm->lock); + return -EBUSY; + } + + mutex_lock(&dev->kvm->arch.config_lock); + + if (IS_VGIC_ADDR_UNDEF(its->vgic_its_base)) { + ret = -ENXIO; + goto out; + } + + region = vgic_find_mmio_region(its_registers, + ARRAY_SIZE(its_registers), + offset); + if (!region) { + ret = -ENXIO; + goto out; + } + + addr = its->vgic_its_base + offset; + + len = region->access_flags & VGIC_ACCESS_64bit ? 8 : 4; + + if (is_write) { + if (region->uaccess_its_write) + ret = region->uaccess_its_write(dev->kvm, its, addr, + len, *reg); + else + region->its_write(dev->kvm, its, addr, len, *reg); + } else { + *reg = region->its_read(dev->kvm, its, addr, len); + } +out: + mutex_unlock(&dev->kvm->arch.config_lock); + unlock_all_vcpus(dev->kvm); + mutex_unlock(&dev->kvm->lock); + return ret; +} + +static u32 compute_next_devid_offset(struct list_head *h, + struct its_device *dev) +{ + struct its_device *next; + u32 next_offset; + + if (list_is_last(&dev->dev_list, h)) + return 0; + next = list_next_entry(dev, dev_list); + next_offset = next->device_id - dev->device_id; + + return min_t(u32, next_offset, VITS_DTE_MAX_DEVID_OFFSET); +} + +static u32 compute_next_eventid_offset(struct list_head *h, struct its_ite *ite) +{ + struct its_ite *next; + u32 next_offset; + + if (list_is_last(&ite->ite_list, h)) + return 0; + next = list_next_entry(ite, ite_list); + next_offset = next->event_id - ite->event_id; + + return min_t(u32, next_offset, VITS_ITE_MAX_EVENTID_OFFSET); +} + +/** + * entry_fn_t - Callback called on a table entry restore path + * @its: its handle + * @id: id of the entry + * @entry: pointer to the entry + * @opaque: pointer to an opaque data + * + * Return: < 0 on error, 0 if last element was identified, id offset to next + * element otherwise + */ +typedef int (*entry_fn_t)(struct vgic_its *its, u32 id, void *entry, + void *opaque); + +/** + * scan_its_table - Scan a contiguous table in guest RAM and applies a function + * to each entry + * + * @its: its handle + * @base: base gpa of the table + * @size: size of the table in bytes + * @esz: entry size in bytes + * @start_id: the ID of the first entry in the table + * (non zero for 2d level tables) + * @fn: function to apply on each entry + * + * Return: < 0 on error, 0 if last element was identified, 1 otherwise + * (the last element may not be found on second level tables) + */ +static int scan_its_table(struct vgic_its *its, gpa_t base, int size, u32 esz, + int start_id, entry_fn_t fn, void *opaque) +{ + struct kvm *kvm = its->dev->kvm; + unsigned long len = size; + int id = start_id; + gpa_t gpa = base; + char entry[ESZ_MAX]; + int ret; + + memset(entry, 0, esz); + + while (true) { + int next_offset; + size_t byte_offset; + + ret = kvm_read_guest_lock(kvm, gpa, entry, esz); + if (ret) + return ret; + + next_offset = fn(its, id, entry, opaque); + if (next_offset <= 0) + return next_offset; + + byte_offset = next_offset * esz; + if (byte_offset >= len) + break; + + id += next_offset; + gpa += byte_offset; + len -= byte_offset; + } + return 1; +} + +/** + * vgic_its_save_ite - Save an interrupt translation entry at @gpa + */ +static int vgic_its_save_ite(struct vgic_its *its, struct its_device *dev, + struct its_ite *ite, gpa_t gpa, int ite_esz) +{ + struct kvm *kvm = its->dev->kvm; + u32 next_offset; + u64 val; + + next_offset = compute_next_eventid_offset(&dev->itt_head, ite); + val = ((u64)next_offset << KVM_ITS_ITE_NEXT_SHIFT) | + ((u64)ite->irq->intid << KVM_ITS_ITE_PINTID_SHIFT) | + ite->collection->collection_id; + val = cpu_to_le64(val); + return vgic_write_guest_lock(kvm, gpa, &val, ite_esz); +} + +/** + * vgic_its_restore_ite - restore an interrupt translation entry + * @event_id: id used for indexing + * @ptr: pointer to the ITE entry + * @opaque: pointer to the its_device + */ +static int vgic_its_restore_ite(struct vgic_its *its, u32 event_id, + void *ptr, void *opaque) +{ + struct its_device *dev = opaque; + struct its_collection *collection; + struct kvm *kvm = its->dev->kvm; + struct kvm_vcpu *vcpu = NULL; + u64 val; + u64 *p = (u64 *)ptr; + struct vgic_irq *irq; + u32 coll_id, lpi_id; + struct its_ite *ite; + u32 offset; + + val = *p; + + val = le64_to_cpu(val); + + coll_id = val & KVM_ITS_ITE_ICID_MASK; + lpi_id = (val & KVM_ITS_ITE_PINTID_MASK) >> KVM_ITS_ITE_PINTID_SHIFT; + + if (!lpi_id) + return 1; /* invalid entry, no choice but to scan next entry */ + + if (lpi_id < VGIC_MIN_LPI) + return -EINVAL; + + offset = val >> KVM_ITS_ITE_NEXT_SHIFT; + if (event_id + offset >= BIT_ULL(dev->num_eventid_bits)) + return -EINVAL; + + collection = find_collection(its, coll_id); + if (!collection) + return -EINVAL; + + if (!vgic_its_check_event_id(its, dev, event_id)) + return -EINVAL; + + ite = vgic_its_alloc_ite(dev, collection, event_id); + if (IS_ERR(ite)) + return PTR_ERR(ite); + + if (its_is_collection_mapped(collection)) + vcpu = kvm_get_vcpu(kvm, collection->target_addr); + + irq = vgic_add_lpi(kvm, lpi_id, vcpu); + if (IS_ERR(irq)) { + its_free_ite(kvm, ite); + return PTR_ERR(irq); + } + ite->irq = irq; + + return offset; +} + +static int vgic_its_ite_cmp(void *priv, const struct list_head *a, + const struct list_head *b) +{ + struct its_ite *itea = container_of(a, struct its_ite, ite_list); + struct its_ite *iteb = container_of(b, struct its_ite, ite_list); + + if (itea->event_id < iteb->event_id) + return -1; + else + return 1; +} + +static int vgic_its_save_itt(struct vgic_its *its, struct its_device *device) +{ + const struct vgic_its_abi *abi = vgic_its_get_abi(its); + gpa_t base = device->itt_addr; + struct its_ite *ite; + int ret; + int ite_esz = abi->ite_esz; + + list_sort(NULL, &device->itt_head, vgic_its_ite_cmp); + + list_for_each_entry(ite, &device->itt_head, ite_list) { + gpa_t gpa = base + ite->event_id * ite_esz; + + /* + * If an LPI carries the HW bit, this means that this + * interrupt is controlled by GICv4, and we do not + * have direct access to that state without GICv4.1. + * Let's simply fail the save operation... + */ + if (ite->irq->hw && !kvm_vgic_global_state.has_gicv4_1) + return -EACCES; + + ret = vgic_its_save_ite(its, device, ite, gpa, ite_esz); + if (ret) + return ret; + } + return 0; +} + +/** + * vgic_its_restore_itt - restore the ITT of a device + * + * @its: its handle + * @dev: device handle + * + * Return 0 on success, < 0 on error + */ +static int vgic_its_restore_itt(struct vgic_its *its, struct its_device *dev) +{ + const struct vgic_its_abi *abi = vgic_its_get_abi(its); + gpa_t base = dev->itt_addr; + int ret; + int ite_esz = abi->ite_esz; + size_t max_size = BIT_ULL(dev->num_eventid_bits) * ite_esz; + + ret = scan_its_table(its, base, max_size, ite_esz, 0, + vgic_its_restore_ite, dev); + + /* scan_its_table returns +1 if all ITEs are invalid */ + if (ret > 0) + ret = 0; + + return ret; +} + +/** + * vgic_its_save_dte - Save a device table entry at a given GPA + * + * @its: ITS handle + * @dev: ITS device + * @ptr: GPA + */ +static int vgic_its_save_dte(struct vgic_its *its, struct its_device *dev, + gpa_t ptr, int dte_esz) +{ + struct kvm *kvm = its->dev->kvm; + u64 val, itt_addr_field; + u32 next_offset; + + itt_addr_field = dev->itt_addr >> 8; + next_offset = compute_next_devid_offset(&its->device_list, dev); + val = (1ULL << KVM_ITS_DTE_VALID_SHIFT | + ((u64)next_offset << KVM_ITS_DTE_NEXT_SHIFT) | + (itt_addr_field << KVM_ITS_DTE_ITTADDR_SHIFT) | + (dev->num_eventid_bits - 1)); + val = cpu_to_le64(val); + return vgic_write_guest_lock(kvm, ptr, &val, dte_esz); +} + +/** + * vgic_its_restore_dte - restore a device table entry + * + * @its: its handle + * @id: device id the DTE corresponds to + * @ptr: kernel VA where the 8 byte DTE is located + * @opaque: unused + * + * Return: < 0 on error, 0 if the dte is the last one, id offset to the + * next dte otherwise + */ +static int vgic_its_restore_dte(struct vgic_its *its, u32 id, + void *ptr, void *opaque) +{ + struct its_device *dev; + u64 baser = its->baser_device_table; + gpa_t itt_addr; + u8 num_eventid_bits; + u64 entry = *(u64 *)ptr; + bool valid; + u32 offset; + int ret; + + entry = le64_to_cpu(entry); + + valid = entry >> KVM_ITS_DTE_VALID_SHIFT; + num_eventid_bits = (entry & KVM_ITS_DTE_SIZE_MASK) + 1; + itt_addr = ((entry & KVM_ITS_DTE_ITTADDR_MASK) + >> KVM_ITS_DTE_ITTADDR_SHIFT) << 8; + + if (!valid) + return 1; + + /* dte entry is valid */ + offset = (entry & KVM_ITS_DTE_NEXT_MASK) >> KVM_ITS_DTE_NEXT_SHIFT; + + if (!vgic_its_check_id(its, baser, id, NULL)) + return -EINVAL; + + dev = vgic_its_alloc_device(its, id, itt_addr, num_eventid_bits); + if (IS_ERR(dev)) + return PTR_ERR(dev); + + ret = vgic_its_restore_itt(its, dev); + if (ret) { + vgic_its_free_device(its->dev->kvm, dev); + return ret; + } + + return offset; +} + +static int vgic_its_device_cmp(void *priv, const struct list_head *a, + const struct list_head *b) +{ + struct its_device *deva = container_of(a, struct its_device, dev_list); + struct its_device *devb = container_of(b, struct its_device, dev_list); + + if (deva->device_id < devb->device_id) + return -1; + else + return 1; +} + +/** + * vgic_its_save_device_tables - Save the device table and all ITT + * into guest RAM + * + * L1/L2 handling is hidden by vgic_its_check_id() helper which directly + * returns the GPA of the device entry + */ +static int vgic_its_save_device_tables(struct vgic_its *its) +{ + const struct vgic_its_abi *abi = vgic_its_get_abi(its); + u64 baser = its->baser_device_table; + struct its_device *dev; + int dte_esz = abi->dte_esz; + + if (!(baser & GITS_BASER_VALID)) + return 0; + + list_sort(NULL, &its->device_list, vgic_its_device_cmp); + + list_for_each_entry(dev, &its->device_list, dev_list) { + int ret; + gpa_t eaddr; + + if (!vgic_its_check_id(its, baser, + dev->device_id, &eaddr)) + return -EINVAL; + + ret = vgic_its_save_itt(its, dev); + if (ret) + return ret; + + ret = vgic_its_save_dte(its, dev, eaddr, dte_esz); + if (ret) + return ret; + } + return 0; +} + +/** + * handle_l1_dte - callback used for L1 device table entries (2 stage case) + * + * @its: its handle + * @id: index of the entry in the L1 table + * @addr: kernel VA + * @opaque: unused + * + * L1 table entries are scanned by steps of 1 entry + * Return < 0 if error, 0 if last dte was found when scanning the L2 + * table, +1 otherwise (meaning next L1 entry must be scanned) + */ +static int handle_l1_dte(struct vgic_its *its, u32 id, void *addr, + void *opaque) +{ + const struct vgic_its_abi *abi = vgic_its_get_abi(its); + int l2_start_id = id * (SZ_64K / abi->dte_esz); + u64 entry = *(u64 *)addr; + int dte_esz = abi->dte_esz; + gpa_t gpa; + int ret; + + entry = le64_to_cpu(entry); + + if (!(entry & KVM_ITS_L1E_VALID_MASK)) + return 1; + + gpa = entry & KVM_ITS_L1E_ADDR_MASK; + + ret = scan_its_table(its, gpa, SZ_64K, dte_esz, + l2_start_id, vgic_its_restore_dte, NULL); + + return ret; +} + +/** + * vgic_its_restore_device_tables - Restore the device table and all ITT + * from guest RAM to internal data structs + */ +static int vgic_its_restore_device_tables(struct vgic_its *its) +{ + const struct vgic_its_abi *abi = vgic_its_get_abi(its); + u64 baser = its->baser_device_table; + int l1_esz, ret; + int l1_tbl_size = GITS_BASER_NR_PAGES(baser) * SZ_64K; + gpa_t l1_gpa; + + if (!(baser & GITS_BASER_VALID)) + return 0; + + l1_gpa = GITS_BASER_ADDR_48_to_52(baser); + + if (baser & GITS_BASER_INDIRECT) { + l1_esz = GITS_LVL1_ENTRY_SIZE; + ret = scan_its_table(its, l1_gpa, l1_tbl_size, l1_esz, 0, + handle_l1_dte, NULL); + } else { + l1_esz = abi->dte_esz; + ret = scan_its_table(its, l1_gpa, l1_tbl_size, l1_esz, 0, + vgic_its_restore_dte, NULL); + } + + /* scan_its_table returns +1 if all entries are invalid */ + if (ret > 0) + ret = 0; + + if (ret < 0) + vgic_its_free_device_list(its->dev->kvm, its); + + return ret; +} + +static int vgic_its_save_cte(struct vgic_its *its, + struct its_collection *collection, + gpa_t gpa, int esz) +{ + u64 val; + + val = (1ULL << KVM_ITS_CTE_VALID_SHIFT | + ((u64)collection->target_addr << KVM_ITS_CTE_RDBASE_SHIFT) | + collection->collection_id); + val = cpu_to_le64(val); + return vgic_write_guest_lock(its->dev->kvm, gpa, &val, esz); +} + +/* + * Restore a collection entry into the ITS collection table. + * Return +1 on success, 0 if the entry was invalid (which should be + * interpreted as end-of-table), and a negative error value for generic errors. + */ +static int vgic_its_restore_cte(struct vgic_its *its, gpa_t gpa, int esz) +{ + struct its_collection *collection; + struct kvm *kvm = its->dev->kvm; + u32 target_addr, coll_id; + u64 val; + int ret; + + BUG_ON(esz > sizeof(val)); + ret = kvm_read_guest_lock(kvm, gpa, &val, esz); + if (ret) + return ret; + val = le64_to_cpu(val); + if (!(val & KVM_ITS_CTE_VALID_MASK)) + return 0; + + target_addr = (u32)(val >> KVM_ITS_CTE_RDBASE_SHIFT); + coll_id = val & KVM_ITS_CTE_ICID_MASK; + + if (target_addr != COLLECTION_NOT_MAPPED && + target_addr >= atomic_read(&kvm->online_vcpus)) + return -EINVAL; + + collection = find_collection(its, coll_id); + if (collection) + return -EEXIST; + + if (!vgic_its_check_id(its, its->baser_coll_table, coll_id, NULL)) + return -EINVAL; + + ret = vgic_its_alloc_collection(its, &collection, coll_id); + if (ret) + return ret; + collection->target_addr = target_addr; + return 1; +} + +/** + * vgic_its_save_collection_table - Save the collection table into + * guest RAM + */ +static int vgic_its_save_collection_table(struct vgic_its *its) +{ + const struct vgic_its_abi *abi = vgic_its_get_abi(its); + u64 baser = its->baser_coll_table; + gpa_t gpa = GITS_BASER_ADDR_48_to_52(baser); + struct its_collection *collection; + u64 val; + size_t max_size, filled = 0; + int ret, cte_esz = abi->cte_esz; + + if (!(baser & GITS_BASER_VALID)) + return 0; + + max_size = GITS_BASER_NR_PAGES(baser) * SZ_64K; + + list_for_each_entry(collection, &its->collection_list, coll_list) { + ret = vgic_its_save_cte(its, collection, gpa, cte_esz); + if (ret) + return ret; + gpa += cte_esz; + filled += cte_esz; + } + + if (filled == max_size) + return 0; + + /* + * table is not fully filled, add a last dummy element + * with valid bit unset + */ + val = 0; + BUG_ON(cte_esz > sizeof(val)); + ret = vgic_write_guest_lock(its->dev->kvm, gpa, &val, cte_esz); + return ret; +} + +/** + * vgic_its_restore_collection_table - reads the collection table + * in guest memory and restores the ITS internal state. Requires the + * BASER registers to be restored before. + */ +static int vgic_its_restore_collection_table(struct vgic_its *its) +{ + const struct vgic_its_abi *abi = vgic_its_get_abi(its); + u64 baser = its->baser_coll_table; + int cte_esz = abi->cte_esz; + size_t max_size, read = 0; + gpa_t gpa; + int ret; + + if (!(baser & GITS_BASER_VALID)) + return 0; + + gpa = GITS_BASER_ADDR_48_to_52(baser); + + max_size = GITS_BASER_NR_PAGES(baser) * SZ_64K; + + while (read < max_size) { + ret = vgic_its_restore_cte(its, gpa, cte_esz); + if (ret <= 0) + break; + gpa += cte_esz; + read += cte_esz; + } + + if (ret > 0) + return 0; + + if (ret < 0) + vgic_its_free_collection_list(its->dev->kvm, its); + + return ret; +} + +/** + * vgic_its_save_tables_v0 - Save the ITS tables into guest ARM + * according to v0 ABI + */ +static int vgic_its_save_tables_v0(struct vgic_its *its) +{ + int ret; + + ret = vgic_its_save_device_tables(its); + if (ret) + return ret; + + return vgic_its_save_collection_table(its); +} + +/** + * vgic_its_restore_tables_v0 - Restore the ITS tables from guest RAM + * to internal data structs according to V0 ABI + * + */ +static int vgic_its_restore_tables_v0(struct vgic_its *its) +{ + int ret; + + ret = vgic_its_restore_collection_table(its); + if (ret) + return ret; + + ret = vgic_its_restore_device_tables(its); + if (ret) + vgic_its_free_collection_list(its->dev->kvm, its); + return ret; +} + +static int vgic_its_commit_v0(struct vgic_its *its) +{ + const struct vgic_its_abi *abi; + + abi = vgic_its_get_abi(its); + its->baser_coll_table &= ~GITS_BASER_ENTRY_SIZE_MASK; + its->baser_device_table &= ~GITS_BASER_ENTRY_SIZE_MASK; + + its->baser_coll_table |= (GIC_ENCODE_SZ(abi->cte_esz, 5) + << GITS_BASER_ENTRY_SIZE_SHIFT); + + its->baser_device_table |= (GIC_ENCODE_SZ(abi->dte_esz, 5) + << GITS_BASER_ENTRY_SIZE_SHIFT); + return 0; +} + +static void vgic_its_reset(struct kvm *kvm, struct vgic_its *its) +{ + /* We need to keep the ABI specific field values */ + its->baser_coll_table &= ~GITS_BASER_VALID; + its->baser_device_table &= ~GITS_BASER_VALID; + its->cbaser = 0; + its->creadr = 0; + its->cwriter = 0; + its->enabled = 0; + vgic_its_free_device_list(kvm, its); + vgic_its_free_collection_list(kvm, its); +} + +static int vgic_its_has_attr(struct kvm_device *dev, + struct kvm_device_attr *attr) +{ + switch (attr->group) { + case KVM_DEV_ARM_VGIC_GRP_ADDR: + switch (attr->attr) { + case KVM_VGIC_ITS_ADDR_TYPE: + return 0; + } + break; + case KVM_DEV_ARM_VGIC_GRP_CTRL: + switch (attr->attr) { + case KVM_DEV_ARM_VGIC_CTRL_INIT: + return 0; + case KVM_DEV_ARM_ITS_CTRL_RESET: + return 0; + case KVM_DEV_ARM_ITS_SAVE_TABLES: + return 0; + case KVM_DEV_ARM_ITS_RESTORE_TABLES: + return 0; + } + break; + case KVM_DEV_ARM_VGIC_GRP_ITS_REGS: + return vgic_its_has_attr_regs(dev, attr); + } + return -ENXIO; +} + +static int vgic_its_ctrl(struct kvm *kvm, struct vgic_its *its, u64 attr) +{ + const struct vgic_its_abi *abi = vgic_its_get_abi(its); + int ret = 0; + + if (attr == KVM_DEV_ARM_VGIC_CTRL_INIT) /* Nothing to do */ + return 0; + + mutex_lock(&kvm->lock); + + if (!lock_all_vcpus(kvm)) { + mutex_unlock(&kvm->lock); + return -EBUSY; + } + + mutex_lock(&kvm->arch.config_lock); + mutex_lock(&its->its_lock); + + switch (attr) { + case KVM_DEV_ARM_ITS_CTRL_RESET: + vgic_its_reset(kvm, its); + break; + case KVM_DEV_ARM_ITS_SAVE_TABLES: + ret = abi->save_tables(its); + break; + case KVM_DEV_ARM_ITS_RESTORE_TABLES: + ret = abi->restore_tables(its); + break; + } + + mutex_unlock(&its->its_lock); + mutex_unlock(&kvm->arch.config_lock); + unlock_all_vcpus(kvm); + mutex_unlock(&kvm->lock); + return ret; +} + +/* + * kvm_arch_allow_write_without_running_vcpu - allow writing guest memory + * without the running VCPU when dirty ring is enabled. + * + * The running VCPU is required to track dirty guest pages when dirty ring + * is enabled. Otherwise, the backup bitmap should be used to track the + * dirty guest pages. When vgic/its tables are being saved, the backup + * bitmap is used to track the dirty guest pages due to the missed running + * VCPU in the period. + */ +bool kvm_arch_allow_write_without_running_vcpu(struct kvm *kvm) +{ + struct vgic_dist *dist = &kvm->arch.vgic; + + return dist->table_write_in_progress; +} + +static int vgic_its_set_attr(struct kvm_device *dev, + struct kvm_device_attr *attr) +{ + struct vgic_its *its = dev->private; + int ret; + + switch (attr->group) { + case KVM_DEV_ARM_VGIC_GRP_ADDR: { + u64 __user *uaddr = (u64 __user *)(long)attr->addr; + unsigned long type = (unsigned long)attr->attr; + u64 addr; + + if (type != KVM_VGIC_ITS_ADDR_TYPE) + return -ENODEV; + + if (copy_from_user(&addr, uaddr, sizeof(addr))) + return -EFAULT; + + ret = vgic_check_iorange(dev->kvm, its->vgic_its_base, + addr, SZ_64K, KVM_VGIC_V3_ITS_SIZE); + if (ret) + return ret; + + return vgic_register_its_iodev(dev->kvm, its, addr); + } + case KVM_DEV_ARM_VGIC_GRP_CTRL: + return vgic_its_ctrl(dev->kvm, its, attr->attr); + case KVM_DEV_ARM_VGIC_GRP_ITS_REGS: { + u64 __user *uaddr = (u64 __user *)(long)attr->addr; + u64 reg; + + if (get_user(reg, uaddr)) + return -EFAULT; + + return vgic_its_attr_regs_access(dev, attr, ®, true); + } + } + return -ENXIO; +} + +static int vgic_its_get_attr(struct kvm_device *dev, + struct kvm_device_attr *attr) +{ + switch (attr->group) { + case KVM_DEV_ARM_VGIC_GRP_ADDR: { + struct vgic_its *its = dev->private; + u64 addr = its->vgic_its_base; + u64 __user *uaddr = (u64 __user *)(long)attr->addr; + unsigned long type = (unsigned long)attr->attr; + + if (type != KVM_VGIC_ITS_ADDR_TYPE) + return -ENODEV; + + if (copy_to_user(uaddr, &addr, sizeof(addr))) + return -EFAULT; + break; + } + case KVM_DEV_ARM_VGIC_GRP_ITS_REGS: { + u64 __user *uaddr = (u64 __user *)(long)attr->addr; + u64 reg; + int ret; + + ret = vgic_its_attr_regs_access(dev, attr, ®, false); + if (ret) + return ret; + return put_user(reg, uaddr); + } + default: + return -ENXIO; + } + + return 0; +} + +static struct kvm_device_ops kvm_arm_vgic_its_ops = { + .name = "kvm-arm-vgic-its", + .create = vgic_its_create, + .destroy = vgic_its_destroy, + .set_attr = vgic_its_set_attr, + .get_attr = vgic_its_get_attr, + .has_attr = vgic_its_has_attr, +}; + +int kvm_vgic_register_its_device(void) +{ + return kvm_register_device_ops(&kvm_arm_vgic_its_ops, + KVM_DEV_TYPE_ARM_VGIC_ITS); +} diff --git a/arch/arm64/kvm/vgic/vgic-kvm-device.c b/arch/arm64/kvm/vgic/vgic-kvm-device.c new file mode 100644 index 0000000000..212b73a715 --- /dev/null +++ b/arch/arm64/kvm/vgic/vgic-kvm-device.c @@ -0,0 +1,672 @@ +// SPDX-License-Identifier: GPL-2.0-only +/* + * VGIC: KVM DEVICE API + * + * Copyright (C) 2015 ARM Ltd. + * Author: Marc Zyngier <marc.zyngier@arm.com> + */ +#include <linux/kvm_host.h> +#include <kvm/arm_vgic.h> +#include <linux/uaccess.h> +#include <asm/kvm_mmu.h> +#include <asm/cputype.h> +#include "vgic.h" + +/* common helpers */ + +int vgic_check_iorange(struct kvm *kvm, phys_addr_t ioaddr, + phys_addr_t addr, phys_addr_t alignment, + phys_addr_t size) +{ + if (!IS_VGIC_ADDR_UNDEF(ioaddr)) + return -EEXIST; + + if (!IS_ALIGNED(addr, alignment) || !IS_ALIGNED(size, alignment)) + return -EINVAL; + + if (addr + size < addr) + return -EINVAL; + + if (addr & ~kvm_phys_mask(kvm) || addr + size > kvm_phys_size(kvm)) + return -E2BIG; + + return 0; +} + +static int vgic_check_type(struct kvm *kvm, int type_needed) +{ + if (kvm->arch.vgic.vgic_model != type_needed) + return -ENODEV; + else + return 0; +} + +int kvm_set_legacy_vgic_v2_addr(struct kvm *kvm, struct kvm_arm_device_addr *dev_addr) +{ + struct vgic_dist *vgic = &kvm->arch.vgic; + int r; + + mutex_lock(&kvm->arch.config_lock); + switch (FIELD_GET(KVM_ARM_DEVICE_TYPE_MASK, dev_addr->id)) { + case KVM_VGIC_V2_ADDR_TYPE_DIST: + r = vgic_check_type(kvm, KVM_DEV_TYPE_ARM_VGIC_V2); + if (!r) + r = vgic_check_iorange(kvm, vgic->vgic_dist_base, dev_addr->addr, + SZ_4K, KVM_VGIC_V2_DIST_SIZE); + if (!r) + vgic->vgic_dist_base = dev_addr->addr; + break; + case KVM_VGIC_V2_ADDR_TYPE_CPU: + r = vgic_check_type(kvm, KVM_DEV_TYPE_ARM_VGIC_V2); + if (!r) + r = vgic_check_iorange(kvm, vgic->vgic_cpu_base, dev_addr->addr, + SZ_4K, KVM_VGIC_V2_CPU_SIZE); + if (!r) + vgic->vgic_cpu_base = dev_addr->addr; + break; + default: + r = -ENODEV; + } + + mutex_unlock(&kvm->arch.config_lock); + + return r; +} + +/** + * kvm_vgic_addr - set or get vgic VM base addresses + * @kvm: pointer to the vm struct + * @attr: pointer to the attribute being retrieved/updated + * @write: if true set the address in the VM address space, if false read the + * address + * + * Set or get the vgic base addresses for the distributor and the virtual CPU + * interface in the VM physical address space. These addresses are properties + * of the emulated core/SoC and therefore user space initially knows this + * information. + * Check them for sanity (alignment, double assignment). We can't check for + * overlapping regions in case of a virtual GICv3 here, since we don't know + * the number of VCPUs yet, so we defer this check to map_resources(). + */ +static int kvm_vgic_addr(struct kvm *kvm, struct kvm_device_attr *attr, bool write) +{ + u64 __user *uaddr = (u64 __user *)attr->addr; + struct vgic_dist *vgic = &kvm->arch.vgic; + phys_addr_t *addr_ptr, alignment, size; + u64 undef_value = VGIC_ADDR_UNDEF; + u64 addr; + int r; + + /* Reading a redistributor region addr implies getting the index */ + if (write || attr->attr == KVM_VGIC_V3_ADDR_TYPE_REDIST_REGION) + if (get_user(addr, uaddr)) + return -EFAULT; + + /* + * Since we can't hold config_lock while registering the redistributor + * iodevs, take the slots_lock immediately. + */ + mutex_lock(&kvm->slots_lock); + switch (attr->attr) { + case KVM_VGIC_V2_ADDR_TYPE_DIST: + r = vgic_check_type(kvm, KVM_DEV_TYPE_ARM_VGIC_V2); + addr_ptr = &vgic->vgic_dist_base; + alignment = SZ_4K; + size = KVM_VGIC_V2_DIST_SIZE; + break; + case KVM_VGIC_V2_ADDR_TYPE_CPU: + r = vgic_check_type(kvm, KVM_DEV_TYPE_ARM_VGIC_V2); + addr_ptr = &vgic->vgic_cpu_base; + alignment = SZ_4K; + size = KVM_VGIC_V2_CPU_SIZE; + break; + case KVM_VGIC_V3_ADDR_TYPE_DIST: + r = vgic_check_type(kvm, KVM_DEV_TYPE_ARM_VGIC_V3); + addr_ptr = &vgic->vgic_dist_base; + alignment = SZ_64K; + size = KVM_VGIC_V3_DIST_SIZE; + break; + case KVM_VGIC_V3_ADDR_TYPE_REDIST: { + struct vgic_redist_region *rdreg; + + r = vgic_check_type(kvm, KVM_DEV_TYPE_ARM_VGIC_V3); + if (r) + break; + if (write) { + r = vgic_v3_set_redist_base(kvm, 0, addr, 0); + goto out; + } + rdreg = list_first_entry_or_null(&vgic->rd_regions, + struct vgic_redist_region, list); + if (!rdreg) + addr_ptr = &undef_value; + else + addr_ptr = &rdreg->base; + break; + } + case KVM_VGIC_V3_ADDR_TYPE_REDIST_REGION: + { + struct vgic_redist_region *rdreg; + u8 index; + + r = vgic_check_type(kvm, KVM_DEV_TYPE_ARM_VGIC_V3); + if (r) + break; + + index = addr & KVM_VGIC_V3_RDIST_INDEX_MASK; + + if (write) { + gpa_t base = addr & KVM_VGIC_V3_RDIST_BASE_MASK; + u32 count = FIELD_GET(KVM_VGIC_V3_RDIST_COUNT_MASK, addr); + u8 flags = FIELD_GET(KVM_VGIC_V3_RDIST_FLAGS_MASK, addr); + + if (!count || flags) + r = -EINVAL; + else + r = vgic_v3_set_redist_base(kvm, index, + base, count); + goto out; + } + + rdreg = vgic_v3_rdist_region_from_index(kvm, index); + if (!rdreg) { + r = -ENOENT; + goto out; + } + + addr = index; + addr |= rdreg->base; + addr |= (u64)rdreg->count << KVM_VGIC_V3_RDIST_COUNT_SHIFT; + goto out; + } + default: + r = -ENODEV; + } + + if (r) + goto out; + + mutex_lock(&kvm->arch.config_lock); + if (write) { + r = vgic_check_iorange(kvm, *addr_ptr, addr, alignment, size); + if (!r) + *addr_ptr = addr; + } else { + addr = *addr_ptr; + } + mutex_unlock(&kvm->arch.config_lock); + +out: + mutex_unlock(&kvm->slots_lock); + + if (!r && !write) + r = put_user(addr, uaddr); + + return r; +} + +static int vgic_set_common_attr(struct kvm_device *dev, + struct kvm_device_attr *attr) +{ + int r; + + switch (attr->group) { + case KVM_DEV_ARM_VGIC_GRP_ADDR: + r = kvm_vgic_addr(dev->kvm, attr, true); + return (r == -ENODEV) ? -ENXIO : r; + case KVM_DEV_ARM_VGIC_GRP_NR_IRQS: { + u32 __user *uaddr = (u32 __user *)(long)attr->addr; + u32 val; + int ret = 0; + + if (get_user(val, uaddr)) + return -EFAULT; + + /* + * We require: + * - at least 32 SPIs on top of the 16 SGIs and 16 PPIs + * - at most 1024 interrupts + * - a multiple of 32 interrupts + */ + if (val < (VGIC_NR_PRIVATE_IRQS + 32) || + val > VGIC_MAX_RESERVED || + (val & 31)) + return -EINVAL; + + mutex_lock(&dev->kvm->arch.config_lock); + + if (vgic_ready(dev->kvm) || dev->kvm->arch.vgic.nr_spis) + ret = -EBUSY; + else + dev->kvm->arch.vgic.nr_spis = + val - VGIC_NR_PRIVATE_IRQS; + + mutex_unlock(&dev->kvm->arch.config_lock); + + return ret; + } + case KVM_DEV_ARM_VGIC_GRP_CTRL: { + switch (attr->attr) { + case KVM_DEV_ARM_VGIC_CTRL_INIT: + mutex_lock(&dev->kvm->arch.config_lock); + r = vgic_init(dev->kvm); + mutex_unlock(&dev->kvm->arch.config_lock); + return r; + case KVM_DEV_ARM_VGIC_SAVE_PENDING_TABLES: + /* + * OK, this one isn't common at all, but we + * want to handle all control group attributes + * in a single place. + */ + if (vgic_check_type(dev->kvm, KVM_DEV_TYPE_ARM_VGIC_V3)) + return -ENXIO; + mutex_lock(&dev->kvm->lock); + + if (!lock_all_vcpus(dev->kvm)) { + mutex_unlock(&dev->kvm->lock); + return -EBUSY; + } + + mutex_lock(&dev->kvm->arch.config_lock); + r = vgic_v3_save_pending_tables(dev->kvm); + mutex_unlock(&dev->kvm->arch.config_lock); + unlock_all_vcpus(dev->kvm); + mutex_unlock(&dev->kvm->lock); + return r; + } + break; + } + } + + return -ENXIO; +} + +static int vgic_get_common_attr(struct kvm_device *dev, + struct kvm_device_attr *attr) +{ + int r = -ENXIO; + + switch (attr->group) { + case KVM_DEV_ARM_VGIC_GRP_ADDR: + r = kvm_vgic_addr(dev->kvm, attr, false); + return (r == -ENODEV) ? -ENXIO : r; + case KVM_DEV_ARM_VGIC_GRP_NR_IRQS: { + u32 __user *uaddr = (u32 __user *)(long)attr->addr; + + r = put_user(dev->kvm->arch.vgic.nr_spis + + VGIC_NR_PRIVATE_IRQS, uaddr); + break; + } + } + + return r; +} + +static int vgic_create(struct kvm_device *dev, u32 type) +{ + return kvm_vgic_create(dev->kvm, type); +} + +static void vgic_destroy(struct kvm_device *dev) +{ + kfree(dev); +} + +int kvm_register_vgic_device(unsigned long type) +{ + int ret = -ENODEV; + + switch (type) { + case KVM_DEV_TYPE_ARM_VGIC_V2: + ret = kvm_register_device_ops(&kvm_arm_vgic_v2_ops, + KVM_DEV_TYPE_ARM_VGIC_V2); + break; + case KVM_DEV_TYPE_ARM_VGIC_V3: + ret = kvm_register_device_ops(&kvm_arm_vgic_v3_ops, + KVM_DEV_TYPE_ARM_VGIC_V3); + + if (ret) + break; + ret = kvm_vgic_register_its_device(); + break; + } + + return ret; +} + +int vgic_v2_parse_attr(struct kvm_device *dev, struct kvm_device_attr *attr, + struct vgic_reg_attr *reg_attr) +{ + int cpuid; + + cpuid = (attr->attr & KVM_DEV_ARM_VGIC_CPUID_MASK) >> + KVM_DEV_ARM_VGIC_CPUID_SHIFT; + + if (cpuid >= atomic_read(&dev->kvm->online_vcpus)) + return -EINVAL; + + reg_attr->vcpu = kvm_get_vcpu(dev->kvm, cpuid); + reg_attr->addr = attr->attr & KVM_DEV_ARM_VGIC_OFFSET_MASK; + + return 0; +} + +/** + * vgic_v2_attr_regs_access - allows user space to access VGIC v2 state + * + * @dev: kvm device handle + * @attr: kvm device attribute + * @is_write: true if userspace is writing a register + */ +static int vgic_v2_attr_regs_access(struct kvm_device *dev, + struct kvm_device_attr *attr, + bool is_write) +{ + u32 __user *uaddr = (u32 __user *)(unsigned long)attr->addr; + struct vgic_reg_attr reg_attr; + gpa_t addr; + struct kvm_vcpu *vcpu; + int ret; + u32 val; + + ret = vgic_v2_parse_attr(dev, attr, ®_attr); + if (ret) + return ret; + + vcpu = reg_attr.vcpu; + addr = reg_attr.addr; + + if (is_write) + if (get_user(val, uaddr)) + return -EFAULT; + + mutex_lock(&dev->kvm->lock); + + if (!lock_all_vcpus(dev->kvm)) { + mutex_unlock(&dev->kvm->lock); + return -EBUSY; + } + + mutex_lock(&dev->kvm->arch.config_lock); + + ret = vgic_init(dev->kvm); + if (ret) + goto out; + + switch (attr->group) { + case KVM_DEV_ARM_VGIC_GRP_CPU_REGS: + ret = vgic_v2_cpuif_uaccess(vcpu, is_write, addr, &val); + break; + case KVM_DEV_ARM_VGIC_GRP_DIST_REGS: + ret = vgic_v2_dist_uaccess(vcpu, is_write, addr, &val); + break; + default: + ret = -EINVAL; + break; + } + +out: + mutex_unlock(&dev->kvm->arch.config_lock); + unlock_all_vcpus(dev->kvm); + mutex_unlock(&dev->kvm->lock); + + if (!ret && !is_write) + ret = put_user(val, uaddr); + + return ret; +} + +static int vgic_v2_set_attr(struct kvm_device *dev, + struct kvm_device_attr *attr) +{ + switch (attr->group) { + case KVM_DEV_ARM_VGIC_GRP_DIST_REGS: + case KVM_DEV_ARM_VGIC_GRP_CPU_REGS: + return vgic_v2_attr_regs_access(dev, attr, true); + default: + return vgic_set_common_attr(dev, attr); + } +} + +static int vgic_v2_get_attr(struct kvm_device *dev, + struct kvm_device_attr *attr) +{ + switch (attr->group) { + case KVM_DEV_ARM_VGIC_GRP_DIST_REGS: + case KVM_DEV_ARM_VGIC_GRP_CPU_REGS: + return vgic_v2_attr_regs_access(dev, attr, false); + default: + return vgic_get_common_attr(dev, attr); + } +} + +static int vgic_v2_has_attr(struct kvm_device *dev, + struct kvm_device_attr *attr) +{ + switch (attr->group) { + case KVM_DEV_ARM_VGIC_GRP_ADDR: + switch (attr->attr) { + case KVM_VGIC_V2_ADDR_TYPE_DIST: + case KVM_VGIC_V2_ADDR_TYPE_CPU: + return 0; + } + break; + case KVM_DEV_ARM_VGIC_GRP_DIST_REGS: + case KVM_DEV_ARM_VGIC_GRP_CPU_REGS: + return vgic_v2_has_attr_regs(dev, attr); + case KVM_DEV_ARM_VGIC_GRP_NR_IRQS: + return 0; + case KVM_DEV_ARM_VGIC_GRP_CTRL: + switch (attr->attr) { + case KVM_DEV_ARM_VGIC_CTRL_INIT: + return 0; + } + } + return -ENXIO; +} + +struct kvm_device_ops kvm_arm_vgic_v2_ops = { + .name = "kvm-arm-vgic-v2", + .create = vgic_create, + .destroy = vgic_destroy, + .set_attr = vgic_v2_set_attr, + .get_attr = vgic_v2_get_attr, + .has_attr = vgic_v2_has_attr, +}; + +int vgic_v3_parse_attr(struct kvm_device *dev, struct kvm_device_attr *attr, + struct vgic_reg_attr *reg_attr) +{ + unsigned long vgic_mpidr, mpidr_reg; + + /* + * For KVM_DEV_ARM_VGIC_GRP_DIST_REGS group, + * attr might not hold MPIDR. Hence assume vcpu0. + */ + if (attr->group != KVM_DEV_ARM_VGIC_GRP_DIST_REGS) { + vgic_mpidr = (attr->attr & KVM_DEV_ARM_VGIC_V3_MPIDR_MASK) >> + KVM_DEV_ARM_VGIC_V3_MPIDR_SHIFT; + + mpidr_reg = VGIC_TO_MPIDR(vgic_mpidr); + reg_attr->vcpu = kvm_mpidr_to_vcpu(dev->kvm, mpidr_reg); + } else { + reg_attr->vcpu = kvm_get_vcpu(dev->kvm, 0); + } + + if (!reg_attr->vcpu) + return -EINVAL; + + reg_attr->addr = attr->attr & KVM_DEV_ARM_VGIC_OFFSET_MASK; + + return 0; +} + +/* + * vgic_v3_attr_regs_access - allows user space to access VGIC v3 state + * + * @dev: kvm device handle + * @attr: kvm device attribute + * @is_write: true if userspace is writing a register + */ +static int vgic_v3_attr_regs_access(struct kvm_device *dev, + struct kvm_device_attr *attr, + bool is_write) +{ + struct vgic_reg_attr reg_attr; + gpa_t addr; + struct kvm_vcpu *vcpu; + bool uaccess; + u32 val; + int ret; + + ret = vgic_v3_parse_attr(dev, attr, ®_attr); + if (ret) + return ret; + + vcpu = reg_attr.vcpu; + addr = reg_attr.addr; + + switch (attr->group) { + case KVM_DEV_ARM_VGIC_GRP_CPU_SYSREGS: + /* Sysregs uaccess is performed by the sysreg handling code */ + uaccess = false; + break; + default: + uaccess = true; + } + + if (uaccess && is_write) { + u32 __user *uaddr = (u32 __user *)(unsigned long)attr->addr; + if (get_user(val, uaddr)) + return -EFAULT; + } + + mutex_lock(&dev->kvm->lock); + + if (!lock_all_vcpus(dev->kvm)) { + mutex_unlock(&dev->kvm->lock); + return -EBUSY; + } + + mutex_lock(&dev->kvm->arch.config_lock); + + if (unlikely(!vgic_initialized(dev->kvm))) { + ret = -EBUSY; + goto out; + } + + switch (attr->group) { + case KVM_DEV_ARM_VGIC_GRP_DIST_REGS: + ret = vgic_v3_dist_uaccess(vcpu, is_write, addr, &val); + break; + case KVM_DEV_ARM_VGIC_GRP_REDIST_REGS: + ret = vgic_v3_redist_uaccess(vcpu, is_write, addr, &val); + break; + case KVM_DEV_ARM_VGIC_GRP_CPU_SYSREGS: + ret = vgic_v3_cpu_sysregs_uaccess(vcpu, attr, is_write); + break; + case KVM_DEV_ARM_VGIC_GRP_LEVEL_INFO: { + unsigned int info, intid; + + info = (attr->attr & KVM_DEV_ARM_VGIC_LINE_LEVEL_INFO_MASK) >> + KVM_DEV_ARM_VGIC_LINE_LEVEL_INFO_SHIFT; + if (info == VGIC_LEVEL_INFO_LINE_LEVEL) { + intid = attr->attr & + KVM_DEV_ARM_VGIC_LINE_LEVEL_INTID_MASK; + ret = vgic_v3_line_level_info_uaccess(vcpu, is_write, + intid, &val); + } else { + ret = -EINVAL; + } + break; + } + default: + ret = -EINVAL; + break; + } + +out: + mutex_unlock(&dev->kvm->arch.config_lock); + unlock_all_vcpus(dev->kvm); + mutex_unlock(&dev->kvm->lock); + + if (!ret && uaccess && !is_write) { + u32 __user *uaddr = (u32 __user *)(unsigned long)attr->addr; + ret = put_user(val, uaddr); + } + + return ret; +} + +static int vgic_v3_set_attr(struct kvm_device *dev, + struct kvm_device_attr *attr) +{ + switch (attr->group) { + case KVM_DEV_ARM_VGIC_GRP_DIST_REGS: + case KVM_DEV_ARM_VGIC_GRP_REDIST_REGS: + case KVM_DEV_ARM_VGIC_GRP_CPU_SYSREGS: + case KVM_DEV_ARM_VGIC_GRP_LEVEL_INFO: + return vgic_v3_attr_regs_access(dev, attr, true); + default: + return vgic_set_common_attr(dev, attr); + } +} + +static int vgic_v3_get_attr(struct kvm_device *dev, + struct kvm_device_attr *attr) +{ + switch (attr->group) { + case KVM_DEV_ARM_VGIC_GRP_DIST_REGS: + case KVM_DEV_ARM_VGIC_GRP_REDIST_REGS: + case KVM_DEV_ARM_VGIC_GRP_CPU_SYSREGS: + case KVM_DEV_ARM_VGIC_GRP_LEVEL_INFO: + return vgic_v3_attr_regs_access(dev, attr, false); + default: + return vgic_get_common_attr(dev, attr); + } +} + +static int vgic_v3_has_attr(struct kvm_device *dev, + struct kvm_device_attr *attr) +{ + switch (attr->group) { + case KVM_DEV_ARM_VGIC_GRP_ADDR: + switch (attr->attr) { + case KVM_VGIC_V3_ADDR_TYPE_DIST: + case KVM_VGIC_V3_ADDR_TYPE_REDIST: + case KVM_VGIC_V3_ADDR_TYPE_REDIST_REGION: + return 0; + } + break; + case KVM_DEV_ARM_VGIC_GRP_DIST_REGS: + case KVM_DEV_ARM_VGIC_GRP_REDIST_REGS: + case KVM_DEV_ARM_VGIC_GRP_CPU_SYSREGS: + return vgic_v3_has_attr_regs(dev, attr); + case KVM_DEV_ARM_VGIC_GRP_NR_IRQS: + return 0; + case KVM_DEV_ARM_VGIC_GRP_LEVEL_INFO: { + if (((attr->attr & KVM_DEV_ARM_VGIC_LINE_LEVEL_INFO_MASK) >> + KVM_DEV_ARM_VGIC_LINE_LEVEL_INFO_SHIFT) == + VGIC_LEVEL_INFO_LINE_LEVEL) + return 0; + break; + } + case KVM_DEV_ARM_VGIC_GRP_CTRL: + switch (attr->attr) { + case KVM_DEV_ARM_VGIC_CTRL_INIT: + return 0; + case KVM_DEV_ARM_VGIC_SAVE_PENDING_TABLES: + return 0; + } + } + return -ENXIO; +} + +struct kvm_device_ops kvm_arm_vgic_v3_ops = { + .name = "kvm-arm-vgic-v3", + .create = vgic_create, + .destroy = vgic_destroy, + .set_attr = vgic_v3_set_attr, + .get_attr = vgic_v3_get_attr, + .has_attr = vgic_v3_has_attr, +}; diff --git a/arch/arm64/kvm/vgic/vgic-mmio-v2.c b/arch/arm64/kvm/vgic/vgic-mmio-v2.c new file mode 100644 index 0000000000..e070cda86e --- /dev/null +++ b/arch/arm64/kvm/vgic/vgic-mmio-v2.c @@ -0,0 +1,561 @@ +// SPDX-License-Identifier: GPL-2.0-only +/* + * VGICv2 MMIO handling functions + */ + +#include <linux/irqchip/arm-gic.h> +#include <linux/kvm.h> +#include <linux/kvm_host.h> +#include <linux/nospec.h> + +#include <kvm/iodev.h> +#include <kvm/arm_vgic.h> + +#include "vgic.h" +#include "vgic-mmio.h" + +/* + * The Revision field in the IIDR have the following meanings: + * + * Revision 1: Report GICv2 interrupts as group 0 instead of group 1 + * Revision 2: Interrupt groups are guest-configurable and signaled using + * their configured groups. + */ + +static unsigned long vgic_mmio_read_v2_misc(struct kvm_vcpu *vcpu, + gpa_t addr, unsigned int len) +{ + struct vgic_dist *vgic = &vcpu->kvm->arch.vgic; + u32 value; + + switch (addr & 0x0c) { + case GIC_DIST_CTRL: + value = vgic->enabled ? GICD_ENABLE : 0; + break; + case GIC_DIST_CTR: + value = vgic->nr_spis + VGIC_NR_PRIVATE_IRQS; + value = (value >> 5) - 1; + value |= (atomic_read(&vcpu->kvm->online_vcpus) - 1) << 5; + break; + case GIC_DIST_IIDR: + value = (PRODUCT_ID_KVM << GICD_IIDR_PRODUCT_ID_SHIFT) | + (vgic->implementation_rev << GICD_IIDR_REVISION_SHIFT) | + (IMPLEMENTER_ARM << GICD_IIDR_IMPLEMENTER_SHIFT); + break; + default: + return 0; + } + + return value; +} + +static void vgic_mmio_write_v2_misc(struct kvm_vcpu *vcpu, + gpa_t addr, unsigned int len, + unsigned long val) +{ + struct vgic_dist *dist = &vcpu->kvm->arch.vgic; + bool was_enabled = dist->enabled; + + switch (addr & 0x0c) { + case GIC_DIST_CTRL: + dist->enabled = val & GICD_ENABLE; + if (!was_enabled && dist->enabled) + vgic_kick_vcpus(vcpu->kvm); + break; + case GIC_DIST_CTR: + case GIC_DIST_IIDR: + /* Nothing to do */ + return; + } +} + +static int vgic_mmio_uaccess_write_v2_misc(struct kvm_vcpu *vcpu, + gpa_t addr, unsigned int len, + unsigned long val) +{ + struct vgic_dist *dist = &vcpu->kvm->arch.vgic; + u32 reg; + + switch (addr & 0x0c) { + case GIC_DIST_IIDR: + reg = vgic_mmio_read_v2_misc(vcpu, addr, len); + if ((reg ^ val) & ~GICD_IIDR_REVISION_MASK) + return -EINVAL; + + /* + * If we observe a write to GICD_IIDR we know that userspace + * has been updated and has had a chance to cope with older + * kernels (VGICv2 IIDR.Revision == 0) incorrectly reporting + * interrupts as group 1, and therefore we now allow groups to + * be user writable. Doing this by default would break + * migration from old kernels to new kernels with legacy + * userspace. + */ + reg = FIELD_GET(GICD_IIDR_REVISION_MASK, reg); + switch (reg) { + case KVM_VGIC_IMP_REV_2: + case KVM_VGIC_IMP_REV_3: + vcpu->kvm->arch.vgic.v2_groups_user_writable = true; + dist->implementation_rev = reg; + return 0; + default: + return -EINVAL; + } + } + + vgic_mmio_write_v2_misc(vcpu, addr, len, val); + return 0; +} + +static int vgic_mmio_uaccess_write_v2_group(struct kvm_vcpu *vcpu, + gpa_t addr, unsigned int len, + unsigned long val) +{ + if (vcpu->kvm->arch.vgic.v2_groups_user_writable) + vgic_mmio_write_group(vcpu, addr, len, val); + + return 0; +} + +static void vgic_mmio_write_sgir(struct kvm_vcpu *source_vcpu, + gpa_t addr, unsigned int len, + unsigned long val) +{ + int nr_vcpus = atomic_read(&source_vcpu->kvm->online_vcpus); + int intid = val & 0xf; + int targets = (val >> 16) & 0xff; + int mode = (val >> 24) & 0x03; + struct kvm_vcpu *vcpu; + unsigned long flags, c; + + switch (mode) { + case 0x0: /* as specified by targets */ + break; + case 0x1: + targets = (1U << nr_vcpus) - 1; /* all, ... */ + targets &= ~(1U << source_vcpu->vcpu_id); /* but self */ + break; + case 0x2: /* this very vCPU only */ + targets = (1U << source_vcpu->vcpu_id); + break; + case 0x3: /* reserved */ + return; + } + + kvm_for_each_vcpu(c, vcpu, source_vcpu->kvm) { + struct vgic_irq *irq; + + if (!(targets & (1U << c))) + continue; + + irq = vgic_get_irq(source_vcpu->kvm, vcpu, intid); + + raw_spin_lock_irqsave(&irq->irq_lock, flags); + irq->pending_latch = true; + irq->source |= 1U << source_vcpu->vcpu_id; + + vgic_queue_irq_unlock(source_vcpu->kvm, irq, flags); + vgic_put_irq(source_vcpu->kvm, irq); + } +} + +static unsigned long vgic_mmio_read_target(struct kvm_vcpu *vcpu, + gpa_t addr, unsigned int len) +{ + u32 intid = VGIC_ADDR_TO_INTID(addr, 8); + int i; + u64 val = 0; + + for (i = 0; i < len; i++) { + struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i); + + val |= (u64)irq->targets << (i * 8); + + vgic_put_irq(vcpu->kvm, irq); + } + + return val; +} + +static void vgic_mmio_write_target(struct kvm_vcpu *vcpu, + gpa_t addr, unsigned int len, + unsigned long val) +{ + u32 intid = VGIC_ADDR_TO_INTID(addr, 8); + u8 cpu_mask = GENMASK(atomic_read(&vcpu->kvm->online_vcpus) - 1, 0); + int i; + unsigned long flags; + + /* GICD_ITARGETSR[0-7] are read-only */ + if (intid < VGIC_NR_PRIVATE_IRQS) + return; + + for (i = 0; i < len; i++) { + struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, NULL, intid + i); + int target; + + raw_spin_lock_irqsave(&irq->irq_lock, flags); + + irq->targets = (val >> (i * 8)) & cpu_mask; + target = irq->targets ? __ffs(irq->targets) : 0; + irq->target_vcpu = kvm_get_vcpu(vcpu->kvm, target); + + raw_spin_unlock_irqrestore(&irq->irq_lock, flags); + vgic_put_irq(vcpu->kvm, irq); + } +} + +static unsigned long vgic_mmio_read_sgipend(struct kvm_vcpu *vcpu, + gpa_t addr, unsigned int len) +{ + u32 intid = addr & 0x0f; + int i; + u64 val = 0; + + for (i = 0; i < len; i++) { + struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i); + + val |= (u64)irq->source << (i * 8); + + vgic_put_irq(vcpu->kvm, irq); + } + return val; +} + +static void vgic_mmio_write_sgipendc(struct kvm_vcpu *vcpu, + gpa_t addr, unsigned int len, + unsigned long val) +{ + u32 intid = addr & 0x0f; + int i; + unsigned long flags; + + for (i = 0; i < len; i++) { + struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i); + + raw_spin_lock_irqsave(&irq->irq_lock, flags); + + irq->source &= ~((val >> (i * 8)) & 0xff); + if (!irq->source) + irq->pending_latch = false; + + raw_spin_unlock_irqrestore(&irq->irq_lock, flags); + vgic_put_irq(vcpu->kvm, irq); + } +} + +static void vgic_mmio_write_sgipends(struct kvm_vcpu *vcpu, + gpa_t addr, unsigned int len, + unsigned long val) +{ + u32 intid = addr & 0x0f; + int i; + unsigned long flags; + + for (i = 0; i < len; i++) { + struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i); + + raw_spin_lock_irqsave(&irq->irq_lock, flags); + + irq->source |= (val >> (i * 8)) & 0xff; + + if (irq->source) { + irq->pending_latch = true; + vgic_queue_irq_unlock(vcpu->kvm, irq, flags); + } else { + raw_spin_unlock_irqrestore(&irq->irq_lock, flags); + } + vgic_put_irq(vcpu->kvm, irq); + } +} + +#define GICC_ARCH_VERSION_V2 0x2 + +/* These are for userland accesses only, there is no guest-facing emulation. */ +static unsigned long vgic_mmio_read_vcpuif(struct kvm_vcpu *vcpu, + gpa_t addr, unsigned int len) +{ + struct vgic_vmcr vmcr; + u32 val; + + vgic_get_vmcr(vcpu, &vmcr); + + switch (addr & 0xff) { + case GIC_CPU_CTRL: + val = vmcr.grpen0 << GIC_CPU_CTRL_EnableGrp0_SHIFT; + val |= vmcr.grpen1 << GIC_CPU_CTRL_EnableGrp1_SHIFT; + val |= vmcr.ackctl << GIC_CPU_CTRL_AckCtl_SHIFT; + val |= vmcr.fiqen << GIC_CPU_CTRL_FIQEn_SHIFT; + val |= vmcr.cbpr << GIC_CPU_CTRL_CBPR_SHIFT; + val |= vmcr.eoim << GIC_CPU_CTRL_EOImodeNS_SHIFT; + + break; + case GIC_CPU_PRIMASK: + /* + * Our KVM_DEV_TYPE_ARM_VGIC_V2 device ABI exports the + * PMR field as GICH_VMCR.VMPriMask rather than + * GICC_PMR.Priority, so we expose the upper five bits of + * priority mask to userspace using the lower bits in the + * unsigned long. + */ + val = (vmcr.pmr & GICV_PMR_PRIORITY_MASK) >> + GICV_PMR_PRIORITY_SHIFT; + break; + case GIC_CPU_BINPOINT: + val = vmcr.bpr; + break; + case GIC_CPU_ALIAS_BINPOINT: + val = vmcr.abpr; + break; + case GIC_CPU_IDENT: + val = ((PRODUCT_ID_KVM << 20) | + (GICC_ARCH_VERSION_V2 << 16) | + IMPLEMENTER_ARM); + break; + default: + return 0; + } + + return val; +} + +static void vgic_mmio_write_vcpuif(struct kvm_vcpu *vcpu, + gpa_t addr, unsigned int len, + unsigned long val) +{ + struct vgic_vmcr vmcr; + + vgic_get_vmcr(vcpu, &vmcr); + + switch (addr & 0xff) { + case GIC_CPU_CTRL: + vmcr.grpen0 = !!(val & GIC_CPU_CTRL_EnableGrp0); + vmcr.grpen1 = !!(val & GIC_CPU_CTRL_EnableGrp1); + vmcr.ackctl = !!(val & GIC_CPU_CTRL_AckCtl); + vmcr.fiqen = !!(val & GIC_CPU_CTRL_FIQEn); + vmcr.cbpr = !!(val & GIC_CPU_CTRL_CBPR); + vmcr.eoim = !!(val & GIC_CPU_CTRL_EOImodeNS); + + break; + case GIC_CPU_PRIMASK: + /* + * Our KVM_DEV_TYPE_ARM_VGIC_V2 device ABI exports the + * PMR field as GICH_VMCR.VMPriMask rather than + * GICC_PMR.Priority, so we expose the upper five bits of + * priority mask to userspace using the lower bits in the + * unsigned long. + */ + vmcr.pmr = (val << GICV_PMR_PRIORITY_SHIFT) & + GICV_PMR_PRIORITY_MASK; + break; + case GIC_CPU_BINPOINT: + vmcr.bpr = val; + break; + case GIC_CPU_ALIAS_BINPOINT: + vmcr.abpr = val; + break; + } + + vgic_set_vmcr(vcpu, &vmcr); +} + +static unsigned long vgic_mmio_read_apr(struct kvm_vcpu *vcpu, + gpa_t addr, unsigned int len) +{ + int n; /* which APRn is this */ + + n = (addr >> 2) & 0x3; + + if (kvm_vgic_global_state.type == VGIC_V2) { + /* GICv2 hardware systems support max. 32 groups */ + if (n != 0) + return 0; + return vcpu->arch.vgic_cpu.vgic_v2.vgic_apr; + } else { + struct vgic_v3_cpu_if *vgicv3 = &vcpu->arch.vgic_cpu.vgic_v3; + + if (n > vgic_v3_max_apr_idx(vcpu)) + return 0; + + n = array_index_nospec(n, 4); + + /* GICv3 only uses ICH_AP1Rn for memory mapped (GICv2) guests */ + return vgicv3->vgic_ap1r[n]; + } +} + +static void vgic_mmio_write_apr(struct kvm_vcpu *vcpu, + gpa_t addr, unsigned int len, + unsigned long val) +{ + int n; /* which APRn is this */ + + n = (addr >> 2) & 0x3; + + if (kvm_vgic_global_state.type == VGIC_V2) { + /* GICv2 hardware systems support max. 32 groups */ + if (n != 0) + return; + vcpu->arch.vgic_cpu.vgic_v2.vgic_apr = val; + } else { + struct vgic_v3_cpu_if *vgicv3 = &vcpu->arch.vgic_cpu.vgic_v3; + + if (n > vgic_v3_max_apr_idx(vcpu)) + return; + + n = array_index_nospec(n, 4); + + /* GICv3 only uses ICH_AP1Rn for memory mapped (GICv2) guests */ + vgicv3->vgic_ap1r[n] = val; + } +} + +static const struct vgic_register_region vgic_v2_dist_registers[] = { + REGISTER_DESC_WITH_LENGTH_UACCESS(GIC_DIST_CTRL, + vgic_mmio_read_v2_misc, vgic_mmio_write_v2_misc, + NULL, vgic_mmio_uaccess_write_v2_misc, + 12, VGIC_ACCESS_32bit), + REGISTER_DESC_WITH_BITS_PER_IRQ(GIC_DIST_IGROUP, + vgic_mmio_read_group, vgic_mmio_write_group, + NULL, vgic_mmio_uaccess_write_v2_group, 1, + VGIC_ACCESS_32bit), + REGISTER_DESC_WITH_BITS_PER_IRQ(GIC_DIST_ENABLE_SET, + vgic_mmio_read_enable, vgic_mmio_write_senable, + NULL, vgic_uaccess_write_senable, 1, + VGIC_ACCESS_32bit), + REGISTER_DESC_WITH_BITS_PER_IRQ(GIC_DIST_ENABLE_CLEAR, + vgic_mmio_read_enable, vgic_mmio_write_cenable, + NULL, vgic_uaccess_write_cenable, 1, + VGIC_ACCESS_32bit), + REGISTER_DESC_WITH_BITS_PER_IRQ(GIC_DIST_PENDING_SET, + vgic_mmio_read_pending, vgic_mmio_write_spending, + vgic_uaccess_read_pending, vgic_uaccess_write_spending, 1, + VGIC_ACCESS_32bit), + REGISTER_DESC_WITH_BITS_PER_IRQ(GIC_DIST_PENDING_CLEAR, + vgic_mmio_read_pending, vgic_mmio_write_cpending, + vgic_uaccess_read_pending, vgic_uaccess_write_cpending, 1, + VGIC_ACCESS_32bit), + REGISTER_DESC_WITH_BITS_PER_IRQ(GIC_DIST_ACTIVE_SET, + vgic_mmio_read_active, vgic_mmio_write_sactive, + vgic_uaccess_read_active, vgic_mmio_uaccess_write_sactive, 1, + VGIC_ACCESS_32bit), + REGISTER_DESC_WITH_BITS_PER_IRQ(GIC_DIST_ACTIVE_CLEAR, + vgic_mmio_read_active, vgic_mmio_write_cactive, + vgic_uaccess_read_active, vgic_mmio_uaccess_write_cactive, 1, + VGIC_ACCESS_32bit), + REGISTER_DESC_WITH_BITS_PER_IRQ(GIC_DIST_PRI, + vgic_mmio_read_priority, vgic_mmio_write_priority, NULL, NULL, + 8, VGIC_ACCESS_32bit | VGIC_ACCESS_8bit), + REGISTER_DESC_WITH_BITS_PER_IRQ(GIC_DIST_TARGET, + vgic_mmio_read_target, vgic_mmio_write_target, NULL, NULL, 8, + VGIC_ACCESS_32bit | VGIC_ACCESS_8bit), + REGISTER_DESC_WITH_BITS_PER_IRQ(GIC_DIST_CONFIG, + vgic_mmio_read_config, vgic_mmio_write_config, NULL, NULL, 2, + VGIC_ACCESS_32bit), + REGISTER_DESC_WITH_LENGTH(GIC_DIST_SOFTINT, + vgic_mmio_read_raz, vgic_mmio_write_sgir, 4, + VGIC_ACCESS_32bit), + REGISTER_DESC_WITH_LENGTH(GIC_DIST_SGI_PENDING_CLEAR, + vgic_mmio_read_sgipend, vgic_mmio_write_sgipendc, 16, + VGIC_ACCESS_32bit | VGIC_ACCESS_8bit), + REGISTER_DESC_WITH_LENGTH(GIC_DIST_SGI_PENDING_SET, + vgic_mmio_read_sgipend, vgic_mmio_write_sgipends, 16, + VGIC_ACCESS_32bit | VGIC_ACCESS_8bit), +}; + +static const struct vgic_register_region vgic_v2_cpu_registers[] = { + REGISTER_DESC_WITH_LENGTH(GIC_CPU_CTRL, + vgic_mmio_read_vcpuif, vgic_mmio_write_vcpuif, 4, + VGIC_ACCESS_32bit), + REGISTER_DESC_WITH_LENGTH(GIC_CPU_PRIMASK, + vgic_mmio_read_vcpuif, vgic_mmio_write_vcpuif, 4, + VGIC_ACCESS_32bit), + REGISTER_DESC_WITH_LENGTH(GIC_CPU_BINPOINT, + vgic_mmio_read_vcpuif, vgic_mmio_write_vcpuif, 4, + VGIC_ACCESS_32bit), + REGISTER_DESC_WITH_LENGTH(GIC_CPU_ALIAS_BINPOINT, + vgic_mmio_read_vcpuif, vgic_mmio_write_vcpuif, 4, + VGIC_ACCESS_32bit), + REGISTER_DESC_WITH_LENGTH(GIC_CPU_ACTIVEPRIO, + vgic_mmio_read_apr, vgic_mmio_write_apr, 16, + VGIC_ACCESS_32bit), + REGISTER_DESC_WITH_LENGTH(GIC_CPU_IDENT, + vgic_mmio_read_vcpuif, vgic_mmio_write_vcpuif, 4, + VGIC_ACCESS_32bit), +}; + +unsigned int vgic_v2_init_dist_iodev(struct vgic_io_device *dev) +{ + dev->regions = vgic_v2_dist_registers; + dev->nr_regions = ARRAY_SIZE(vgic_v2_dist_registers); + + kvm_iodevice_init(&dev->dev, &kvm_io_gic_ops); + + return SZ_4K; +} + +int vgic_v2_has_attr_regs(struct kvm_device *dev, struct kvm_device_attr *attr) +{ + const struct vgic_register_region *region; + struct vgic_io_device iodev; + struct vgic_reg_attr reg_attr; + struct kvm_vcpu *vcpu; + gpa_t addr; + int ret; + + ret = vgic_v2_parse_attr(dev, attr, ®_attr); + if (ret) + return ret; + + vcpu = reg_attr.vcpu; + addr = reg_attr.addr; + + switch (attr->group) { + case KVM_DEV_ARM_VGIC_GRP_DIST_REGS: + iodev.regions = vgic_v2_dist_registers; + iodev.nr_regions = ARRAY_SIZE(vgic_v2_dist_registers); + iodev.base_addr = 0; + break; + case KVM_DEV_ARM_VGIC_GRP_CPU_REGS: + iodev.regions = vgic_v2_cpu_registers; + iodev.nr_regions = ARRAY_SIZE(vgic_v2_cpu_registers); + iodev.base_addr = 0; + break; + default: + return -ENXIO; + } + + /* We only support aligned 32-bit accesses. */ + if (addr & 3) + return -ENXIO; + + region = vgic_get_mmio_region(vcpu, &iodev, addr, sizeof(u32)); + if (!region) + return -ENXIO; + + return 0; +} + +int vgic_v2_cpuif_uaccess(struct kvm_vcpu *vcpu, bool is_write, + int offset, u32 *val) +{ + struct vgic_io_device dev = { + .regions = vgic_v2_cpu_registers, + .nr_regions = ARRAY_SIZE(vgic_v2_cpu_registers), + .iodev_type = IODEV_CPUIF, + }; + + return vgic_uaccess(vcpu, &dev, is_write, offset, val); +} + +int vgic_v2_dist_uaccess(struct kvm_vcpu *vcpu, bool is_write, + int offset, u32 *val) +{ + struct vgic_io_device dev = { + .regions = vgic_v2_dist_registers, + .nr_regions = ARRAY_SIZE(vgic_v2_dist_registers), + .iodev_type = IODEV_DIST, + }; + + return vgic_uaccess(vcpu, &dev, is_write, offset, val); +} diff --git a/arch/arm64/kvm/vgic/vgic-mmio-v3.c b/arch/arm64/kvm/vgic/vgic-mmio-v3.c new file mode 100644 index 0000000000..ae5a3a7176 --- /dev/null +++ b/arch/arm64/kvm/vgic/vgic-mmio-v3.c @@ -0,0 +1,1186 @@ +// SPDX-License-Identifier: GPL-2.0-only +/* + * VGICv3 MMIO handling functions + */ + +#include <linux/bitfield.h> +#include <linux/irqchip/arm-gic-v3.h> +#include <linux/kvm.h> +#include <linux/kvm_host.h> +#include <linux/interrupt.h> +#include <kvm/iodev.h> +#include <kvm/arm_vgic.h> + +#include <asm/kvm_emulate.h> +#include <asm/kvm_arm.h> +#include <asm/kvm_mmu.h> + +#include "vgic.h" +#include "vgic-mmio.h" + +/* extract @num bytes at @offset bytes offset in data */ +unsigned long extract_bytes(u64 data, unsigned int offset, + unsigned int num) +{ + return (data >> (offset * 8)) & GENMASK_ULL(num * 8 - 1, 0); +} + +/* allows updates of any half of a 64-bit register (or the whole thing) */ +u64 update_64bit_reg(u64 reg, unsigned int offset, unsigned int len, + unsigned long val) +{ + int lower = (offset & 4) * 8; + int upper = lower + 8 * len - 1; + + reg &= ~GENMASK_ULL(upper, lower); + val &= GENMASK_ULL(len * 8 - 1, 0); + + return reg | ((u64)val << lower); +} + +bool vgic_has_its(struct kvm *kvm) +{ + struct vgic_dist *dist = &kvm->arch.vgic; + + if (dist->vgic_model != KVM_DEV_TYPE_ARM_VGIC_V3) + return false; + + return dist->has_its; +} + +bool vgic_supports_direct_msis(struct kvm *kvm) +{ + return (kvm_vgic_global_state.has_gicv4_1 || + (kvm_vgic_global_state.has_gicv4 && vgic_has_its(kvm))); +} + +/* + * The Revision field in the IIDR have the following meanings: + * + * Revision 2: Interrupt groups are guest-configurable and signaled using + * their configured groups. + */ + +static unsigned long vgic_mmio_read_v3_misc(struct kvm_vcpu *vcpu, + gpa_t addr, unsigned int len) +{ + struct vgic_dist *vgic = &vcpu->kvm->arch.vgic; + u32 value = 0; + + switch (addr & 0x0c) { + case GICD_CTLR: + if (vgic->enabled) + value |= GICD_CTLR_ENABLE_SS_G1; + value |= GICD_CTLR_ARE_NS | GICD_CTLR_DS; + if (vgic->nassgireq) + value |= GICD_CTLR_nASSGIreq; + break; + case GICD_TYPER: + value = vgic->nr_spis + VGIC_NR_PRIVATE_IRQS; + value = (value >> 5) - 1; + if (vgic_has_its(vcpu->kvm)) { + value |= (INTERRUPT_ID_BITS_ITS - 1) << 19; + value |= GICD_TYPER_LPIS; + } else { + value |= (INTERRUPT_ID_BITS_SPIS - 1) << 19; + } + break; + case GICD_TYPER2: + if (kvm_vgic_global_state.has_gicv4_1 && gic_cpuif_has_vsgi()) + value = GICD_TYPER2_nASSGIcap; + break; + case GICD_IIDR: + value = (PRODUCT_ID_KVM << GICD_IIDR_PRODUCT_ID_SHIFT) | + (vgic->implementation_rev << GICD_IIDR_REVISION_SHIFT) | + (IMPLEMENTER_ARM << GICD_IIDR_IMPLEMENTER_SHIFT); + break; + default: + return 0; + } + + return value; +} + +static void vgic_mmio_write_v3_misc(struct kvm_vcpu *vcpu, + gpa_t addr, unsigned int len, + unsigned long val) +{ + struct vgic_dist *dist = &vcpu->kvm->arch.vgic; + + switch (addr & 0x0c) { + case GICD_CTLR: { + bool was_enabled, is_hwsgi; + + mutex_lock(&vcpu->kvm->arch.config_lock); + + was_enabled = dist->enabled; + is_hwsgi = dist->nassgireq; + + dist->enabled = val & GICD_CTLR_ENABLE_SS_G1; + + /* Not a GICv4.1? No HW SGIs */ + if (!kvm_vgic_global_state.has_gicv4_1 || !gic_cpuif_has_vsgi()) + val &= ~GICD_CTLR_nASSGIreq; + + /* Dist stays enabled? nASSGIreq is RO */ + if (was_enabled && dist->enabled) { + val &= ~GICD_CTLR_nASSGIreq; + val |= FIELD_PREP(GICD_CTLR_nASSGIreq, is_hwsgi); + } + + /* Switching HW SGIs? */ + dist->nassgireq = val & GICD_CTLR_nASSGIreq; + if (is_hwsgi != dist->nassgireq) + vgic_v4_configure_vsgis(vcpu->kvm); + + if (kvm_vgic_global_state.has_gicv4_1 && + was_enabled != dist->enabled) + kvm_make_all_cpus_request(vcpu->kvm, KVM_REQ_RELOAD_GICv4); + else if (!was_enabled && dist->enabled) + vgic_kick_vcpus(vcpu->kvm); + + mutex_unlock(&vcpu->kvm->arch.config_lock); + break; + } + case GICD_TYPER: + case GICD_TYPER2: + case GICD_IIDR: + /* This is at best for documentation purposes... */ + return; + } +} + +static int vgic_mmio_uaccess_write_v3_misc(struct kvm_vcpu *vcpu, + gpa_t addr, unsigned int len, + unsigned long val) +{ + struct vgic_dist *dist = &vcpu->kvm->arch.vgic; + u32 reg; + + switch (addr & 0x0c) { + case GICD_TYPER2: + if (val != vgic_mmio_read_v3_misc(vcpu, addr, len)) + return -EINVAL; + return 0; + case GICD_IIDR: + reg = vgic_mmio_read_v3_misc(vcpu, addr, len); + if ((reg ^ val) & ~GICD_IIDR_REVISION_MASK) + return -EINVAL; + + reg = FIELD_GET(GICD_IIDR_REVISION_MASK, reg); + switch (reg) { + case KVM_VGIC_IMP_REV_2: + case KVM_VGIC_IMP_REV_3: + dist->implementation_rev = reg; + return 0; + default: + return -EINVAL; + } + case GICD_CTLR: + /* Not a GICv4.1? No HW SGIs */ + if (!kvm_vgic_global_state.has_gicv4_1) + val &= ~GICD_CTLR_nASSGIreq; + + dist->enabled = val & GICD_CTLR_ENABLE_SS_G1; + dist->nassgireq = val & GICD_CTLR_nASSGIreq; + return 0; + } + + vgic_mmio_write_v3_misc(vcpu, addr, len, val); + return 0; +} + +static unsigned long vgic_mmio_read_irouter(struct kvm_vcpu *vcpu, + gpa_t addr, unsigned int len) +{ + int intid = VGIC_ADDR_TO_INTID(addr, 64); + struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, NULL, intid); + unsigned long ret = 0; + + if (!irq) + return 0; + + /* The upper word is RAZ for us. */ + if (!(addr & 4)) + ret = extract_bytes(READ_ONCE(irq->mpidr), addr & 7, len); + + vgic_put_irq(vcpu->kvm, irq); + return ret; +} + +static void vgic_mmio_write_irouter(struct kvm_vcpu *vcpu, + gpa_t addr, unsigned int len, + unsigned long val) +{ + int intid = VGIC_ADDR_TO_INTID(addr, 64); + struct vgic_irq *irq; + unsigned long flags; + + /* The upper word is WI for us since we don't implement Aff3. */ + if (addr & 4) + return; + + irq = vgic_get_irq(vcpu->kvm, NULL, intid); + + if (!irq) + return; + + raw_spin_lock_irqsave(&irq->irq_lock, flags); + + /* We only care about and preserve Aff0, Aff1 and Aff2. */ + irq->mpidr = val & GENMASK(23, 0); + irq->target_vcpu = kvm_mpidr_to_vcpu(vcpu->kvm, irq->mpidr); + + raw_spin_unlock_irqrestore(&irq->irq_lock, flags); + vgic_put_irq(vcpu->kvm, irq); +} + +bool vgic_lpis_enabled(struct kvm_vcpu *vcpu) +{ + struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu; + + return atomic_read(&vgic_cpu->ctlr) == GICR_CTLR_ENABLE_LPIS; +} + +static unsigned long vgic_mmio_read_v3r_ctlr(struct kvm_vcpu *vcpu, + gpa_t addr, unsigned int len) +{ + struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu; + unsigned long val; + + val = atomic_read(&vgic_cpu->ctlr); + if (vgic_get_implementation_rev(vcpu) >= KVM_VGIC_IMP_REV_3) + val |= GICR_CTLR_IR | GICR_CTLR_CES; + + return val; +} + +static void vgic_mmio_write_v3r_ctlr(struct kvm_vcpu *vcpu, + gpa_t addr, unsigned int len, + unsigned long val) +{ + struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu; + u32 ctlr; + + if (!vgic_has_its(vcpu->kvm)) + return; + + if (!(val & GICR_CTLR_ENABLE_LPIS)) { + /* + * Don't disable if RWP is set, as there already an + * ongoing disable. Funky guest... + */ + ctlr = atomic_cmpxchg_acquire(&vgic_cpu->ctlr, + GICR_CTLR_ENABLE_LPIS, + GICR_CTLR_RWP); + if (ctlr != GICR_CTLR_ENABLE_LPIS) + return; + + vgic_flush_pending_lpis(vcpu); + vgic_its_invalidate_cache(vcpu->kvm); + atomic_set_release(&vgic_cpu->ctlr, 0); + } else { + ctlr = atomic_cmpxchg_acquire(&vgic_cpu->ctlr, 0, + GICR_CTLR_ENABLE_LPIS); + if (ctlr != 0) + return; + + vgic_enable_lpis(vcpu); + } +} + +static bool vgic_mmio_vcpu_rdist_is_last(struct kvm_vcpu *vcpu) +{ + struct vgic_dist *vgic = &vcpu->kvm->arch.vgic; + struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu; + struct vgic_redist_region *iter, *rdreg = vgic_cpu->rdreg; + + if (!rdreg) + return false; + + if (vgic_cpu->rdreg_index < rdreg->free_index - 1) { + return false; + } else if (rdreg->count && vgic_cpu->rdreg_index == (rdreg->count - 1)) { + struct list_head *rd_regions = &vgic->rd_regions; + gpa_t end = rdreg->base + rdreg->count * KVM_VGIC_V3_REDIST_SIZE; + + /* + * the rdist is the last one of the redist region, + * check whether there is no other contiguous rdist region + */ + list_for_each_entry(iter, rd_regions, list) { + if (iter->base == end && iter->free_index > 0) + return false; + } + } + return true; +} + +static unsigned long vgic_mmio_read_v3r_typer(struct kvm_vcpu *vcpu, + gpa_t addr, unsigned int len) +{ + unsigned long mpidr = kvm_vcpu_get_mpidr_aff(vcpu); + int target_vcpu_id = vcpu->vcpu_id; + u64 value; + + value = (u64)(mpidr & GENMASK(23, 0)) << 32; + value |= ((target_vcpu_id & 0xffff) << 8); + + if (vgic_has_its(vcpu->kvm)) + value |= GICR_TYPER_PLPIS; + + if (vgic_mmio_vcpu_rdist_is_last(vcpu)) + value |= GICR_TYPER_LAST; + + return extract_bytes(value, addr & 7, len); +} + +static unsigned long vgic_mmio_read_v3r_iidr(struct kvm_vcpu *vcpu, + gpa_t addr, unsigned int len) +{ + return (PRODUCT_ID_KVM << 24) | (IMPLEMENTER_ARM << 0); +} + +static unsigned long vgic_mmio_read_v3_idregs(struct kvm_vcpu *vcpu, + gpa_t addr, unsigned int len) +{ + switch (addr & 0xffff) { + case GICD_PIDR2: + /* report a GICv3 compliant implementation */ + return 0x3b; + } + + return 0; +} + +static int vgic_v3_uaccess_write_pending(struct kvm_vcpu *vcpu, + gpa_t addr, unsigned int len, + unsigned long val) +{ + u32 intid = VGIC_ADDR_TO_INTID(addr, 1); + int i; + unsigned long flags; + + for (i = 0; i < len * 8; i++) { + struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i); + + raw_spin_lock_irqsave(&irq->irq_lock, flags); + + /* + * pending_latch is set irrespective of irq type + * (level or edge) to avoid dependency that VM should + * restore irq config before pending info. + */ + irq->pending_latch = test_bit(i, &val); + + if (irq->hw && vgic_irq_is_sgi(irq->intid)) { + irq_set_irqchip_state(irq->host_irq, + IRQCHIP_STATE_PENDING, + irq->pending_latch); + irq->pending_latch = false; + } + + if (irq->pending_latch) + vgic_queue_irq_unlock(vcpu->kvm, irq, flags); + else + raw_spin_unlock_irqrestore(&irq->irq_lock, flags); + + vgic_put_irq(vcpu->kvm, irq); + } + + return 0; +} + +/* We want to avoid outer shareable. */ +u64 vgic_sanitise_shareability(u64 field) +{ + switch (field) { + case GIC_BASER_OuterShareable: + return GIC_BASER_InnerShareable; + default: + return field; + } +} + +/* Avoid any inner non-cacheable mapping. */ +u64 vgic_sanitise_inner_cacheability(u64 field) +{ + switch (field) { + case GIC_BASER_CACHE_nCnB: + case GIC_BASER_CACHE_nC: + return GIC_BASER_CACHE_RaWb; + default: + return field; + } +} + +/* Non-cacheable or same-as-inner are OK. */ +u64 vgic_sanitise_outer_cacheability(u64 field) +{ + switch (field) { + case GIC_BASER_CACHE_SameAsInner: + case GIC_BASER_CACHE_nC: + return field; + default: + return GIC_BASER_CACHE_SameAsInner; + } +} + +u64 vgic_sanitise_field(u64 reg, u64 field_mask, int field_shift, + u64 (*sanitise_fn)(u64)) +{ + u64 field = (reg & field_mask) >> field_shift; + + field = sanitise_fn(field) << field_shift; + return (reg & ~field_mask) | field; +} + +#define PROPBASER_RES0_MASK \ + (GENMASK_ULL(63, 59) | GENMASK_ULL(55, 52) | GENMASK_ULL(6, 5)) +#define PENDBASER_RES0_MASK \ + (BIT_ULL(63) | GENMASK_ULL(61, 59) | GENMASK_ULL(55, 52) | \ + GENMASK_ULL(15, 12) | GENMASK_ULL(6, 0)) + +static u64 vgic_sanitise_pendbaser(u64 reg) +{ + reg = vgic_sanitise_field(reg, GICR_PENDBASER_SHAREABILITY_MASK, + GICR_PENDBASER_SHAREABILITY_SHIFT, + vgic_sanitise_shareability); + reg = vgic_sanitise_field(reg, GICR_PENDBASER_INNER_CACHEABILITY_MASK, + GICR_PENDBASER_INNER_CACHEABILITY_SHIFT, + vgic_sanitise_inner_cacheability); + reg = vgic_sanitise_field(reg, GICR_PENDBASER_OUTER_CACHEABILITY_MASK, + GICR_PENDBASER_OUTER_CACHEABILITY_SHIFT, + vgic_sanitise_outer_cacheability); + + reg &= ~PENDBASER_RES0_MASK; + + return reg; +} + +static u64 vgic_sanitise_propbaser(u64 reg) +{ + reg = vgic_sanitise_field(reg, GICR_PROPBASER_SHAREABILITY_MASK, + GICR_PROPBASER_SHAREABILITY_SHIFT, + vgic_sanitise_shareability); + reg = vgic_sanitise_field(reg, GICR_PROPBASER_INNER_CACHEABILITY_MASK, + GICR_PROPBASER_INNER_CACHEABILITY_SHIFT, + vgic_sanitise_inner_cacheability); + reg = vgic_sanitise_field(reg, GICR_PROPBASER_OUTER_CACHEABILITY_MASK, + GICR_PROPBASER_OUTER_CACHEABILITY_SHIFT, + vgic_sanitise_outer_cacheability); + + reg &= ~PROPBASER_RES0_MASK; + return reg; +} + +static unsigned long vgic_mmio_read_propbase(struct kvm_vcpu *vcpu, + gpa_t addr, unsigned int len) +{ + struct vgic_dist *dist = &vcpu->kvm->arch.vgic; + + return extract_bytes(dist->propbaser, addr & 7, len); +} + +static void vgic_mmio_write_propbase(struct kvm_vcpu *vcpu, + gpa_t addr, unsigned int len, + unsigned long val) +{ + struct vgic_dist *dist = &vcpu->kvm->arch.vgic; + u64 old_propbaser, propbaser; + + /* Storing a value with LPIs already enabled is undefined */ + if (vgic_lpis_enabled(vcpu)) + return; + + do { + old_propbaser = READ_ONCE(dist->propbaser); + propbaser = old_propbaser; + propbaser = update_64bit_reg(propbaser, addr & 4, len, val); + propbaser = vgic_sanitise_propbaser(propbaser); + } while (cmpxchg64(&dist->propbaser, old_propbaser, + propbaser) != old_propbaser); +} + +static unsigned long vgic_mmio_read_pendbase(struct kvm_vcpu *vcpu, + gpa_t addr, unsigned int len) +{ + struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu; + u64 value = vgic_cpu->pendbaser; + + value &= ~GICR_PENDBASER_PTZ; + + return extract_bytes(value, addr & 7, len); +} + +static void vgic_mmio_write_pendbase(struct kvm_vcpu *vcpu, + gpa_t addr, unsigned int len, + unsigned long val) +{ + struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu; + u64 old_pendbaser, pendbaser; + + /* Storing a value with LPIs already enabled is undefined */ + if (vgic_lpis_enabled(vcpu)) + return; + + do { + old_pendbaser = READ_ONCE(vgic_cpu->pendbaser); + pendbaser = old_pendbaser; + pendbaser = update_64bit_reg(pendbaser, addr & 4, len, val); + pendbaser = vgic_sanitise_pendbaser(pendbaser); + } while (cmpxchg64(&vgic_cpu->pendbaser, old_pendbaser, + pendbaser) != old_pendbaser); +} + +static unsigned long vgic_mmio_read_sync(struct kvm_vcpu *vcpu, + gpa_t addr, unsigned int len) +{ + return !!atomic_read(&vcpu->arch.vgic_cpu.syncr_busy); +} + +static void vgic_set_rdist_busy(struct kvm_vcpu *vcpu, bool busy) +{ + if (busy) { + atomic_inc(&vcpu->arch.vgic_cpu.syncr_busy); + smp_mb__after_atomic(); + } else { + smp_mb__before_atomic(); + atomic_dec(&vcpu->arch.vgic_cpu.syncr_busy); + } +} + +static void vgic_mmio_write_invlpi(struct kvm_vcpu *vcpu, + gpa_t addr, unsigned int len, + unsigned long val) +{ + struct vgic_irq *irq; + + /* + * If the guest wrote only to the upper 32bit part of the + * register, drop the write on the floor, as it is only for + * vPEs (which we don't support for obvious reasons). + * + * Also discard the access if LPIs are not enabled. + */ + if ((addr & 4) || !vgic_lpis_enabled(vcpu)) + return; + + vgic_set_rdist_busy(vcpu, true); + + irq = vgic_get_irq(vcpu->kvm, NULL, lower_32_bits(val)); + if (irq) { + vgic_its_inv_lpi(vcpu->kvm, irq); + vgic_put_irq(vcpu->kvm, irq); + } + + vgic_set_rdist_busy(vcpu, false); +} + +static void vgic_mmio_write_invall(struct kvm_vcpu *vcpu, + gpa_t addr, unsigned int len, + unsigned long val) +{ + /* See vgic_mmio_write_invlpi() for the early return rationale */ + if ((addr & 4) || !vgic_lpis_enabled(vcpu)) + return; + + vgic_set_rdist_busy(vcpu, true); + vgic_its_invall(vcpu); + vgic_set_rdist_busy(vcpu, false); +} + +/* + * The GICv3 per-IRQ registers are split to control PPIs and SGIs in the + * redistributors, while SPIs are covered by registers in the distributor + * block. Trying to set private IRQs in this block gets ignored. + * We take some special care here to fix the calculation of the register + * offset. + */ +#define REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(off, rd, wr, ur, uw, bpi, acc) \ + { \ + .reg_offset = off, \ + .bits_per_irq = bpi, \ + .len = (bpi * VGIC_NR_PRIVATE_IRQS) / 8, \ + .access_flags = acc, \ + .read = vgic_mmio_read_raz, \ + .write = vgic_mmio_write_wi, \ + }, { \ + .reg_offset = off + (bpi * VGIC_NR_PRIVATE_IRQS) / 8, \ + .bits_per_irq = bpi, \ + .len = (bpi * (1024 - VGIC_NR_PRIVATE_IRQS)) / 8, \ + .access_flags = acc, \ + .read = rd, \ + .write = wr, \ + .uaccess_read = ur, \ + .uaccess_write = uw, \ + } + +static const struct vgic_register_region vgic_v3_dist_registers[] = { + REGISTER_DESC_WITH_LENGTH_UACCESS(GICD_CTLR, + vgic_mmio_read_v3_misc, vgic_mmio_write_v3_misc, + NULL, vgic_mmio_uaccess_write_v3_misc, + 16, VGIC_ACCESS_32bit), + REGISTER_DESC_WITH_LENGTH(GICD_STATUSR, + vgic_mmio_read_rao, vgic_mmio_write_wi, 4, + VGIC_ACCESS_32bit), + REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_IGROUPR, + vgic_mmio_read_group, vgic_mmio_write_group, NULL, NULL, 1, + VGIC_ACCESS_32bit), + REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ISENABLER, + vgic_mmio_read_enable, vgic_mmio_write_senable, + NULL, vgic_uaccess_write_senable, 1, + VGIC_ACCESS_32bit), + REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ICENABLER, + vgic_mmio_read_enable, vgic_mmio_write_cenable, + NULL, vgic_uaccess_write_cenable, 1, + VGIC_ACCESS_32bit), + REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ISPENDR, + vgic_mmio_read_pending, vgic_mmio_write_spending, + vgic_uaccess_read_pending, vgic_v3_uaccess_write_pending, 1, + VGIC_ACCESS_32bit), + REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ICPENDR, + vgic_mmio_read_pending, vgic_mmio_write_cpending, + vgic_mmio_read_raz, vgic_mmio_uaccess_write_wi, 1, + VGIC_ACCESS_32bit), + REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ISACTIVER, + vgic_mmio_read_active, vgic_mmio_write_sactive, + vgic_uaccess_read_active, vgic_mmio_uaccess_write_sactive, 1, + VGIC_ACCESS_32bit), + REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ICACTIVER, + vgic_mmio_read_active, vgic_mmio_write_cactive, + vgic_uaccess_read_active, vgic_mmio_uaccess_write_cactive, + 1, VGIC_ACCESS_32bit), + REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_IPRIORITYR, + vgic_mmio_read_priority, vgic_mmio_write_priority, NULL, NULL, + 8, VGIC_ACCESS_32bit | VGIC_ACCESS_8bit), + REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ITARGETSR, + vgic_mmio_read_raz, vgic_mmio_write_wi, NULL, NULL, 8, + VGIC_ACCESS_32bit | VGIC_ACCESS_8bit), + REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ICFGR, + vgic_mmio_read_config, vgic_mmio_write_config, NULL, NULL, 2, + VGIC_ACCESS_32bit), + REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_IGRPMODR, + vgic_mmio_read_raz, vgic_mmio_write_wi, NULL, NULL, 1, + VGIC_ACCESS_32bit), + REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_IROUTER, + vgic_mmio_read_irouter, vgic_mmio_write_irouter, NULL, NULL, 64, + VGIC_ACCESS_64bit | VGIC_ACCESS_32bit), + REGISTER_DESC_WITH_LENGTH(GICD_IDREGS, + vgic_mmio_read_v3_idregs, vgic_mmio_write_wi, 48, + VGIC_ACCESS_32bit), +}; + +static const struct vgic_register_region vgic_v3_rd_registers[] = { + /* RD_base registers */ + REGISTER_DESC_WITH_LENGTH(GICR_CTLR, + vgic_mmio_read_v3r_ctlr, vgic_mmio_write_v3r_ctlr, 4, + VGIC_ACCESS_32bit), + REGISTER_DESC_WITH_LENGTH(GICR_STATUSR, + vgic_mmio_read_raz, vgic_mmio_write_wi, 4, + VGIC_ACCESS_32bit), + REGISTER_DESC_WITH_LENGTH(GICR_IIDR, + vgic_mmio_read_v3r_iidr, vgic_mmio_write_wi, 4, + VGIC_ACCESS_32bit), + REGISTER_DESC_WITH_LENGTH_UACCESS(GICR_TYPER, + vgic_mmio_read_v3r_typer, vgic_mmio_write_wi, + NULL, vgic_mmio_uaccess_write_wi, 8, + VGIC_ACCESS_64bit | VGIC_ACCESS_32bit), + REGISTER_DESC_WITH_LENGTH(GICR_WAKER, + vgic_mmio_read_raz, vgic_mmio_write_wi, 4, + VGIC_ACCESS_32bit), + REGISTER_DESC_WITH_LENGTH(GICR_PROPBASER, + vgic_mmio_read_propbase, vgic_mmio_write_propbase, 8, + VGIC_ACCESS_64bit | VGIC_ACCESS_32bit), + REGISTER_DESC_WITH_LENGTH(GICR_PENDBASER, + vgic_mmio_read_pendbase, vgic_mmio_write_pendbase, 8, + VGIC_ACCESS_64bit | VGIC_ACCESS_32bit), + REGISTER_DESC_WITH_LENGTH(GICR_INVLPIR, + vgic_mmio_read_raz, vgic_mmio_write_invlpi, 8, + VGIC_ACCESS_64bit | VGIC_ACCESS_32bit), + REGISTER_DESC_WITH_LENGTH(GICR_INVALLR, + vgic_mmio_read_raz, vgic_mmio_write_invall, 8, + VGIC_ACCESS_64bit | VGIC_ACCESS_32bit), + REGISTER_DESC_WITH_LENGTH(GICR_SYNCR, + vgic_mmio_read_sync, vgic_mmio_write_wi, 4, + VGIC_ACCESS_32bit), + REGISTER_DESC_WITH_LENGTH(GICR_IDREGS, + vgic_mmio_read_v3_idregs, vgic_mmio_write_wi, 48, + VGIC_ACCESS_32bit), + /* SGI_base registers */ + REGISTER_DESC_WITH_LENGTH(SZ_64K + GICR_IGROUPR0, + vgic_mmio_read_group, vgic_mmio_write_group, 4, + VGIC_ACCESS_32bit), + REGISTER_DESC_WITH_LENGTH_UACCESS(SZ_64K + GICR_ISENABLER0, + vgic_mmio_read_enable, vgic_mmio_write_senable, + NULL, vgic_uaccess_write_senable, 4, + VGIC_ACCESS_32bit), + REGISTER_DESC_WITH_LENGTH_UACCESS(SZ_64K + GICR_ICENABLER0, + vgic_mmio_read_enable, vgic_mmio_write_cenable, + NULL, vgic_uaccess_write_cenable, 4, + VGIC_ACCESS_32bit), + REGISTER_DESC_WITH_LENGTH_UACCESS(SZ_64K + GICR_ISPENDR0, + vgic_mmio_read_pending, vgic_mmio_write_spending, + vgic_uaccess_read_pending, vgic_v3_uaccess_write_pending, 4, + VGIC_ACCESS_32bit), + REGISTER_DESC_WITH_LENGTH_UACCESS(SZ_64K + GICR_ICPENDR0, + vgic_mmio_read_pending, vgic_mmio_write_cpending, + vgic_mmio_read_raz, vgic_mmio_uaccess_write_wi, 4, + VGIC_ACCESS_32bit), + REGISTER_DESC_WITH_LENGTH_UACCESS(SZ_64K + GICR_ISACTIVER0, + vgic_mmio_read_active, vgic_mmio_write_sactive, + vgic_uaccess_read_active, vgic_mmio_uaccess_write_sactive, 4, + VGIC_ACCESS_32bit), + REGISTER_DESC_WITH_LENGTH_UACCESS(SZ_64K + GICR_ICACTIVER0, + vgic_mmio_read_active, vgic_mmio_write_cactive, + vgic_uaccess_read_active, vgic_mmio_uaccess_write_cactive, 4, + VGIC_ACCESS_32bit), + REGISTER_DESC_WITH_LENGTH(SZ_64K + GICR_IPRIORITYR0, + vgic_mmio_read_priority, vgic_mmio_write_priority, 32, + VGIC_ACCESS_32bit | VGIC_ACCESS_8bit), + REGISTER_DESC_WITH_LENGTH(SZ_64K + GICR_ICFGR0, + vgic_mmio_read_config, vgic_mmio_write_config, 8, + VGIC_ACCESS_32bit), + REGISTER_DESC_WITH_LENGTH(SZ_64K + GICR_IGRPMODR0, + vgic_mmio_read_raz, vgic_mmio_write_wi, 4, + VGIC_ACCESS_32bit), + REGISTER_DESC_WITH_LENGTH(SZ_64K + GICR_NSACR, + vgic_mmio_read_raz, vgic_mmio_write_wi, 4, + VGIC_ACCESS_32bit), +}; + +unsigned int vgic_v3_init_dist_iodev(struct vgic_io_device *dev) +{ + dev->regions = vgic_v3_dist_registers; + dev->nr_regions = ARRAY_SIZE(vgic_v3_dist_registers); + + kvm_iodevice_init(&dev->dev, &kvm_io_gic_ops); + + return SZ_64K; +} + +/** + * vgic_register_redist_iodev - register a single redist iodev + * @vcpu: The VCPU to which the redistributor belongs + * + * Register a KVM iodev for this VCPU's redistributor using the address + * provided. + * + * Return 0 on success, -ERRNO otherwise. + */ +int vgic_register_redist_iodev(struct kvm_vcpu *vcpu) +{ + struct kvm *kvm = vcpu->kvm; + struct vgic_dist *vgic = &kvm->arch.vgic; + struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu; + struct vgic_io_device *rd_dev = &vcpu->arch.vgic_cpu.rd_iodev; + struct vgic_redist_region *rdreg; + gpa_t rd_base; + int ret = 0; + + lockdep_assert_held(&kvm->slots_lock); + mutex_lock(&kvm->arch.config_lock); + + if (!IS_VGIC_ADDR_UNDEF(vgic_cpu->rd_iodev.base_addr)) + goto out_unlock; + + /* + * We may be creating VCPUs before having set the base address for the + * redistributor region, in which case we will come back to this + * function for all VCPUs when the base address is set. Just return + * without doing any work for now. + */ + rdreg = vgic_v3_rdist_free_slot(&vgic->rd_regions); + if (!rdreg) + goto out_unlock; + + if (!vgic_v3_check_base(kvm)) { + ret = -EINVAL; + goto out_unlock; + } + + vgic_cpu->rdreg = rdreg; + vgic_cpu->rdreg_index = rdreg->free_index; + + rd_base = rdreg->base + rdreg->free_index * KVM_VGIC_V3_REDIST_SIZE; + + kvm_iodevice_init(&rd_dev->dev, &kvm_io_gic_ops); + rd_dev->base_addr = rd_base; + rd_dev->iodev_type = IODEV_REDIST; + rd_dev->regions = vgic_v3_rd_registers; + rd_dev->nr_regions = ARRAY_SIZE(vgic_v3_rd_registers); + rd_dev->redist_vcpu = vcpu; + + mutex_unlock(&kvm->arch.config_lock); + + ret = kvm_io_bus_register_dev(kvm, KVM_MMIO_BUS, rd_base, + 2 * SZ_64K, &rd_dev->dev); + if (ret) + return ret; + + /* Protected by slots_lock */ + rdreg->free_index++; + return 0; + +out_unlock: + mutex_unlock(&kvm->arch.config_lock); + return ret; +} + +void vgic_unregister_redist_iodev(struct kvm_vcpu *vcpu) +{ + struct vgic_io_device *rd_dev = &vcpu->arch.vgic_cpu.rd_iodev; + + kvm_io_bus_unregister_dev(vcpu->kvm, KVM_MMIO_BUS, &rd_dev->dev); +} + +static int vgic_register_all_redist_iodevs(struct kvm *kvm) +{ + struct kvm_vcpu *vcpu; + unsigned long c; + int ret = 0; + + kvm_for_each_vcpu(c, vcpu, kvm) { + ret = vgic_register_redist_iodev(vcpu); + if (ret) + break; + } + + if (ret) { + /* The current c failed, so iterate over the previous ones. */ + int i; + + for (i = 0; i < c; i++) { + vcpu = kvm_get_vcpu(kvm, i); + vgic_unregister_redist_iodev(vcpu); + } + } + + return ret; +} + +/** + * vgic_v3_alloc_redist_region - Allocate a new redistributor region + * + * Performs various checks before inserting the rdist region in the list. + * Those tests depend on whether the size of the rdist region is known + * (ie. count != 0). The list is sorted by rdist region index. + * + * @kvm: kvm handle + * @index: redist region index + * @base: base of the new rdist region + * @count: number of redistributors the region is made of (0 in the old style + * single region, whose size is induced from the number of vcpus) + * + * Return 0 on success, < 0 otherwise + */ +static int vgic_v3_alloc_redist_region(struct kvm *kvm, uint32_t index, + gpa_t base, uint32_t count) +{ + struct vgic_dist *d = &kvm->arch.vgic; + struct vgic_redist_region *rdreg; + struct list_head *rd_regions = &d->rd_regions; + int nr_vcpus = atomic_read(&kvm->online_vcpus); + size_t size = count ? count * KVM_VGIC_V3_REDIST_SIZE + : nr_vcpus * KVM_VGIC_V3_REDIST_SIZE; + int ret; + + /* cross the end of memory ? */ + if (base + size < base) + return -EINVAL; + + if (list_empty(rd_regions)) { + if (index != 0) + return -EINVAL; + } else { + rdreg = list_last_entry(rd_regions, + struct vgic_redist_region, list); + + /* Don't mix single region and discrete redist regions */ + if (!count && rdreg->count) + return -EINVAL; + + if (!count) + return -EEXIST; + + if (index != rdreg->index + 1) + return -EINVAL; + } + + /* + * For legacy single-region redistributor regions (!count), + * check that the redistributor region does not overlap with the + * distributor's address space. + */ + if (!count && !IS_VGIC_ADDR_UNDEF(d->vgic_dist_base) && + vgic_dist_overlap(kvm, base, size)) + return -EINVAL; + + /* collision with any other rdist region? */ + if (vgic_v3_rdist_overlap(kvm, base, size)) + return -EINVAL; + + rdreg = kzalloc(sizeof(*rdreg), GFP_KERNEL_ACCOUNT); + if (!rdreg) + return -ENOMEM; + + rdreg->base = VGIC_ADDR_UNDEF; + + ret = vgic_check_iorange(kvm, rdreg->base, base, SZ_64K, size); + if (ret) + goto free; + + rdreg->base = base; + rdreg->count = count; + rdreg->free_index = 0; + rdreg->index = index; + + list_add_tail(&rdreg->list, rd_regions); + return 0; +free: + kfree(rdreg); + return ret; +} + +void vgic_v3_free_redist_region(struct vgic_redist_region *rdreg) +{ + list_del(&rdreg->list); + kfree(rdreg); +} + +int vgic_v3_set_redist_base(struct kvm *kvm, u32 index, u64 addr, u32 count) +{ + int ret; + + mutex_lock(&kvm->arch.config_lock); + ret = vgic_v3_alloc_redist_region(kvm, index, addr, count); + mutex_unlock(&kvm->arch.config_lock); + if (ret) + return ret; + + /* + * Register iodevs for each existing VCPU. Adding more VCPUs + * afterwards will register the iodevs when needed. + */ + ret = vgic_register_all_redist_iodevs(kvm); + if (ret) { + struct vgic_redist_region *rdreg; + + mutex_lock(&kvm->arch.config_lock); + rdreg = vgic_v3_rdist_region_from_index(kvm, index); + vgic_v3_free_redist_region(rdreg); + mutex_unlock(&kvm->arch.config_lock); + return ret; + } + + return 0; +} + +int vgic_v3_has_attr_regs(struct kvm_device *dev, struct kvm_device_attr *attr) +{ + const struct vgic_register_region *region; + struct vgic_io_device iodev; + struct vgic_reg_attr reg_attr; + struct kvm_vcpu *vcpu; + gpa_t addr; + int ret; + + ret = vgic_v3_parse_attr(dev, attr, ®_attr); + if (ret) + return ret; + + vcpu = reg_attr.vcpu; + addr = reg_attr.addr; + + switch (attr->group) { + case KVM_DEV_ARM_VGIC_GRP_DIST_REGS: + iodev.regions = vgic_v3_dist_registers; + iodev.nr_regions = ARRAY_SIZE(vgic_v3_dist_registers); + iodev.base_addr = 0; + break; + case KVM_DEV_ARM_VGIC_GRP_REDIST_REGS:{ + iodev.regions = vgic_v3_rd_registers; + iodev.nr_regions = ARRAY_SIZE(vgic_v3_rd_registers); + iodev.base_addr = 0; + break; + } + case KVM_DEV_ARM_VGIC_GRP_CPU_SYSREGS: + return vgic_v3_has_cpu_sysregs_attr(vcpu, attr); + default: + return -ENXIO; + } + + /* We only support aligned 32-bit accesses. */ + if (addr & 3) + return -ENXIO; + + region = vgic_get_mmio_region(vcpu, &iodev, addr, sizeof(u32)); + if (!region) + return -ENXIO; + + return 0; +} +/* + * Compare a given affinity (level 1-3 and a level 0 mask, from the SGI + * generation register ICC_SGI1R_EL1) with a given VCPU. + * If the VCPU's MPIDR matches, return the level0 affinity, otherwise + * return -1. + */ +static int match_mpidr(u64 sgi_aff, u16 sgi_cpu_mask, struct kvm_vcpu *vcpu) +{ + unsigned long affinity; + int level0; + + /* + * Split the current VCPU's MPIDR into affinity level 0 and the + * rest as this is what we have to compare against. + */ + affinity = kvm_vcpu_get_mpidr_aff(vcpu); + level0 = MPIDR_AFFINITY_LEVEL(affinity, 0); + affinity &= ~MPIDR_LEVEL_MASK; + + /* bail out if the upper three levels don't match */ + if (sgi_aff != affinity) + return -1; + + /* Is this VCPU's bit set in the mask ? */ + if (!(sgi_cpu_mask & BIT(level0))) + return -1; + + return level0; +} + +/* + * The ICC_SGI* registers encode the affinity differently from the MPIDR, + * so provide a wrapper to use the existing defines to isolate a certain + * affinity level. + */ +#define SGI_AFFINITY_LEVEL(reg, level) \ + ((((reg) & ICC_SGI1R_AFFINITY_## level ##_MASK) \ + >> ICC_SGI1R_AFFINITY_## level ##_SHIFT) << MPIDR_LEVEL_SHIFT(level)) + +/** + * vgic_v3_dispatch_sgi - handle SGI requests from VCPUs + * @vcpu: The VCPU requesting a SGI + * @reg: The value written into ICC_{ASGI1,SGI0,SGI1}R by that VCPU + * @allow_group1: Does the sysreg access allow generation of G1 SGIs + * + * With GICv3 (and ARE=1) CPUs trigger SGIs by writing to a system register. + * This will trap in sys_regs.c and call this function. + * This ICC_SGI1R_EL1 register contains the upper three affinity levels of the + * target processors as well as a bitmask of 16 Aff0 CPUs. + * If the interrupt routing mode bit is not set, we iterate over all VCPUs to + * check for matching ones. If this bit is set, we signal all, but not the + * calling VCPU. + */ +void vgic_v3_dispatch_sgi(struct kvm_vcpu *vcpu, u64 reg, bool allow_group1) +{ + struct kvm *kvm = vcpu->kvm; + struct kvm_vcpu *c_vcpu; + u16 target_cpus; + u64 mpidr; + int sgi; + int vcpu_id = vcpu->vcpu_id; + bool broadcast; + unsigned long c, flags; + + sgi = (reg & ICC_SGI1R_SGI_ID_MASK) >> ICC_SGI1R_SGI_ID_SHIFT; + broadcast = reg & BIT_ULL(ICC_SGI1R_IRQ_ROUTING_MODE_BIT); + target_cpus = (reg & ICC_SGI1R_TARGET_LIST_MASK) >> ICC_SGI1R_TARGET_LIST_SHIFT; + mpidr = SGI_AFFINITY_LEVEL(reg, 3); + mpidr |= SGI_AFFINITY_LEVEL(reg, 2); + mpidr |= SGI_AFFINITY_LEVEL(reg, 1); + + /* + * We iterate over all VCPUs to find the MPIDRs matching the request. + * If we have handled one CPU, we clear its bit to detect early + * if we are already finished. This avoids iterating through all + * VCPUs when most of the times we just signal a single VCPU. + */ + kvm_for_each_vcpu(c, c_vcpu, kvm) { + struct vgic_irq *irq; + + /* Exit early if we have dealt with all requested CPUs */ + if (!broadcast && target_cpus == 0) + break; + + /* Don't signal the calling VCPU */ + if (broadcast && c == vcpu_id) + continue; + + if (!broadcast) { + int level0; + + level0 = match_mpidr(mpidr, target_cpus, c_vcpu); + if (level0 == -1) + continue; + + /* remove this matching VCPU from the mask */ + target_cpus &= ~BIT(level0); + } + + irq = vgic_get_irq(vcpu->kvm, c_vcpu, sgi); + + raw_spin_lock_irqsave(&irq->irq_lock, flags); + + /* + * An access targeting Group0 SGIs can only generate + * those, while an access targeting Group1 SGIs can + * generate interrupts of either group. + */ + if (!irq->group || allow_group1) { + if (!irq->hw) { + irq->pending_latch = true; + vgic_queue_irq_unlock(vcpu->kvm, irq, flags); + } else { + /* HW SGI? Ask the GIC to inject it */ + int err; + err = irq_set_irqchip_state(irq->host_irq, + IRQCHIP_STATE_PENDING, + true); + WARN_RATELIMIT(err, "IRQ %d", irq->host_irq); + raw_spin_unlock_irqrestore(&irq->irq_lock, flags); + } + } else { + raw_spin_unlock_irqrestore(&irq->irq_lock, flags); + } + + vgic_put_irq(vcpu->kvm, irq); + } +} + +int vgic_v3_dist_uaccess(struct kvm_vcpu *vcpu, bool is_write, + int offset, u32 *val) +{ + struct vgic_io_device dev = { + .regions = vgic_v3_dist_registers, + .nr_regions = ARRAY_SIZE(vgic_v3_dist_registers), + }; + + return vgic_uaccess(vcpu, &dev, is_write, offset, val); +} + +int vgic_v3_redist_uaccess(struct kvm_vcpu *vcpu, bool is_write, + int offset, u32 *val) +{ + struct vgic_io_device rd_dev = { + .regions = vgic_v3_rd_registers, + .nr_regions = ARRAY_SIZE(vgic_v3_rd_registers), + }; + + return vgic_uaccess(vcpu, &rd_dev, is_write, offset, val); +} + +int vgic_v3_line_level_info_uaccess(struct kvm_vcpu *vcpu, bool is_write, + u32 intid, u32 *val) +{ + if (intid % 32) + return -EINVAL; + + if (is_write) + vgic_write_irq_line_level_info(vcpu, intid, *val); + else + *val = vgic_read_irq_line_level_info(vcpu, intid); + + return 0; +} diff --git a/arch/arm64/kvm/vgic/vgic-mmio.c b/arch/arm64/kvm/vgic/vgic-mmio.c new file mode 100644 index 0000000000..ff558c05e9 --- /dev/null +++ b/arch/arm64/kvm/vgic/vgic-mmio.c @@ -0,0 +1,1118 @@ +// SPDX-License-Identifier: GPL-2.0-only +/* + * VGIC MMIO handling functions + */ + +#include <linux/bitops.h> +#include <linux/bsearch.h> +#include <linux/interrupt.h> +#include <linux/irq.h> +#include <linux/kvm.h> +#include <linux/kvm_host.h> +#include <kvm/iodev.h> +#include <kvm/arm_arch_timer.h> +#include <kvm/arm_vgic.h> + +#include "vgic.h" +#include "vgic-mmio.h" + +unsigned long vgic_mmio_read_raz(struct kvm_vcpu *vcpu, + gpa_t addr, unsigned int len) +{ + return 0; +} + +unsigned long vgic_mmio_read_rao(struct kvm_vcpu *vcpu, + gpa_t addr, unsigned int len) +{ + return -1UL; +} + +void vgic_mmio_write_wi(struct kvm_vcpu *vcpu, gpa_t addr, + unsigned int len, unsigned long val) +{ + /* Ignore */ +} + +int vgic_mmio_uaccess_write_wi(struct kvm_vcpu *vcpu, gpa_t addr, + unsigned int len, unsigned long val) +{ + /* Ignore */ + return 0; +} + +unsigned long vgic_mmio_read_group(struct kvm_vcpu *vcpu, + gpa_t addr, unsigned int len) +{ + u32 intid = VGIC_ADDR_TO_INTID(addr, 1); + u32 value = 0; + int i; + + /* Loop over all IRQs affected by this read */ + for (i = 0; i < len * 8; i++) { + struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i); + + if (irq->group) + value |= BIT(i); + + vgic_put_irq(vcpu->kvm, irq); + } + + return value; +} + +static void vgic_update_vsgi(struct vgic_irq *irq) +{ + WARN_ON(its_prop_update_vsgi(irq->host_irq, irq->priority, irq->group)); +} + +void vgic_mmio_write_group(struct kvm_vcpu *vcpu, gpa_t addr, + unsigned int len, unsigned long val) +{ + u32 intid = VGIC_ADDR_TO_INTID(addr, 1); + int i; + unsigned long flags; + + for (i = 0; i < len * 8; i++) { + struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i); + + raw_spin_lock_irqsave(&irq->irq_lock, flags); + irq->group = !!(val & BIT(i)); + if (irq->hw && vgic_irq_is_sgi(irq->intid)) { + vgic_update_vsgi(irq); + raw_spin_unlock_irqrestore(&irq->irq_lock, flags); + } else { + vgic_queue_irq_unlock(vcpu->kvm, irq, flags); + } + + vgic_put_irq(vcpu->kvm, irq); + } +} + +/* + * Read accesses to both GICD_ICENABLER and GICD_ISENABLER return the value + * of the enabled bit, so there is only one function for both here. + */ +unsigned long vgic_mmio_read_enable(struct kvm_vcpu *vcpu, + gpa_t addr, unsigned int len) +{ + u32 intid = VGIC_ADDR_TO_INTID(addr, 1); + u32 value = 0; + int i; + + /* Loop over all IRQs affected by this read */ + for (i = 0; i < len * 8; i++) { + struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i); + + if (irq->enabled) + value |= (1U << i); + + vgic_put_irq(vcpu->kvm, irq); + } + + return value; +} + +void vgic_mmio_write_senable(struct kvm_vcpu *vcpu, + gpa_t addr, unsigned int len, + unsigned long val) +{ + u32 intid = VGIC_ADDR_TO_INTID(addr, 1); + int i; + unsigned long flags; + + for_each_set_bit(i, &val, len * 8) { + struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i); + + raw_spin_lock_irqsave(&irq->irq_lock, flags); + if (irq->hw && vgic_irq_is_sgi(irq->intid)) { + if (!irq->enabled) { + struct irq_data *data; + + irq->enabled = true; + data = &irq_to_desc(irq->host_irq)->irq_data; + while (irqd_irq_disabled(data)) + enable_irq(irq->host_irq); + } + + raw_spin_unlock_irqrestore(&irq->irq_lock, flags); + vgic_put_irq(vcpu->kvm, irq); + + continue; + } else if (vgic_irq_is_mapped_level(irq)) { + bool was_high = irq->line_level; + + /* + * We need to update the state of the interrupt because + * the guest might have changed the state of the device + * while the interrupt was disabled at the VGIC level. + */ + irq->line_level = vgic_get_phys_line_level(irq); + /* + * Deactivate the physical interrupt so the GIC will let + * us know when it is asserted again. + */ + if (!irq->active && was_high && !irq->line_level) + vgic_irq_set_phys_active(irq, false); + } + irq->enabled = true; + vgic_queue_irq_unlock(vcpu->kvm, irq, flags); + + vgic_put_irq(vcpu->kvm, irq); + } +} + +void vgic_mmio_write_cenable(struct kvm_vcpu *vcpu, + gpa_t addr, unsigned int len, + unsigned long val) +{ + u32 intid = VGIC_ADDR_TO_INTID(addr, 1); + int i; + unsigned long flags; + + for_each_set_bit(i, &val, len * 8) { + struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i); + + raw_spin_lock_irqsave(&irq->irq_lock, flags); + if (irq->hw && vgic_irq_is_sgi(irq->intid) && irq->enabled) + disable_irq_nosync(irq->host_irq); + + irq->enabled = false; + + raw_spin_unlock_irqrestore(&irq->irq_lock, flags); + vgic_put_irq(vcpu->kvm, irq); + } +} + +int vgic_uaccess_write_senable(struct kvm_vcpu *vcpu, + gpa_t addr, unsigned int len, + unsigned long val) +{ + u32 intid = VGIC_ADDR_TO_INTID(addr, 1); + int i; + unsigned long flags; + + for_each_set_bit(i, &val, len * 8) { + struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i); + + raw_spin_lock_irqsave(&irq->irq_lock, flags); + irq->enabled = true; + vgic_queue_irq_unlock(vcpu->kvm, irq, flags); + + vgic_put_irq(vcpu->kvm, irq); + } + + return 0; +} + +int vgic_uaccess_write_cenable(struct kvm_vcpu *vcpu, + gpa_t addr, unsigned int len, + unsigned long val) +{ + u32 intid = VGIC_ADDR_TO_INTID(addr, 1); + int i; + unsigned long flags; + + for_each_set_bit(i, &val, len * 8) { + struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i); + + raw_spin_lock_irqsave(&irq->irq_lock, flags); + irq->enabled = false; + raw_spin_unlock_irqrestore(&irq->irq_lock, flags); + + vgic_put_irq(vcpu->kvm, irq); + } + + return 0; +} + +static unsigned long __read_pending(struct kvm_vcpu *vcpu, + gpa_t addr, unsigned int len, + bool is_user) +{ + u32 intid = VGIC_ADDR_TO_INTID(addr, 1); + u32 value = 0; + int i; + + /* Loop over all IRQs affected by this read */ + for (i = 0; i < len * 8; i++) { + struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i); + unsigned long flags; + bool val; + + /* + * When used from userspace with a GICv3 model: + * + * Pending state of interrupt is latched in pending_latch + * variable. Userspace will save and restore pending state + * and line_level separately. + * Refer to Documentation/virt/kvm/devices/arm-vgic-v3.rst + * for handling of ISPENDR and ICPENDR. + */ + raw_spin_lock_irqsave(&irq->irq_lock, flags); + if (irq->hw && vgic_irq_is_sgi(irq->intid)) { + int err; + + val = false; + err = irq_get_irqchip_state(irq->host_irq, + IRQCHIP_STATE_PENDING, + &val); + WARN_RATELIMIT(err, "IRQ %d", irq->host_irq); + } else if (!is_user && vgic_irq_is_mapped_level(irq)) { + val = vgic_get_phys_line_level(irq); + } else { + switch (vcpu->kvm->arch.vgic.vgic_model) { + case KVM_DEV_TYPE_ARM_VGIC_V3: + if (is_user) { + val = irq->pending_latch; + break; + } + fallthrough; + default: + val = irq_is_pending(irq); + break; + } + } + + value |= ((u32)val << i); + raw_spin_unlock_irqrestore(&irq->irq_lock, flags); + + vgic_put_irq(vcpu->kvm, irq); + } + + return value; +} + +unsigned long vgic_mmio_read_pending(struct kvm_vcpu *vcpu, + gpa_t addr, unsigned int len) +{ + return __read_pending(vcpu, addr, len, false); +} + +unsigned long vgic_uaccess_read_pending(struct kvm_vcpu *vcpu, + gpa_t addr, unsigned int len) +{ + return __read_pending(vcpu, addr, len, true); +} + +static bool is_vgic_v2_sgi(struct kvm_vcpu *vcpu, struct vgic_irq *irq) +{ + return (vgic_irq_is_sgi(irq->intid) && + vcpu->kvm->arch.vgic.vgic_model == KVM_DEV_TYPE_ARM_VGIC_V2); +} + +void vgic_mmio_write_spending(struct kvm_vcpu *vcpu, + gpa_t addr, unsigned int len, + unsigned long val) +{ + u32 intid = VGIC_ADDR_TO_INTID(addr, 1); + int i; + unsigned long flags; + + for_each_set_bit(i, &val, len * 8) { + struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i); + + /* GICD_ISPENDR0 SGI bits are WI */ + if (is_vgic_v2_sgi(vcpu, irq)) { + vgic_put_irq(vcpu->kvm, irq); + continue; + } + + raw_spin_lock_irqsave(&irq->irq_lock, flags); + + if (irq->hw && vgic_irq_is_sgi(irq->intid)) { + /* HW SGI? Ask the GIC to inject it */ + int err; + err = irq_set_irqchip_state(irq->host_irq, + IRQCHIP_STATE_PENDING, + true); + WARN_RATELIMIT(err, "IRQ %d", irq->host_irq); + + raw_spin_unlock_irqrestore(&irq->irq_lock, flags); + vgic_put_irq(vcpu->kvm, irq); + + continue; + } + + irq->pending_latch = true; + if (irq->hw) + vgic_irq_set_phys_active(irq, true); + + vgic_queue_irq_unlock(vcpu->kvm, irq, flags); + vgic_put_irq(vcpu->kvm, irq); + } +} + +int vgic_uaccess_write_spending(struct kvm_vcpu *vcpu, + gpa_t addr, unsigned int len, + unsigned long val) +{ + u32 intid = VGIC_ADDR_TO_INTID(addr, 1); + int i; + unsigned long flags; + + for_each_set_bit(i, &val, len * 8) { + struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i); + + raw_spin_lock_irqsave(&irq->irq_lock, flags); + irq->pending_latch = true; + + /* + * GICv2 SGIs are terribly broken. We can't restore + * the source of the interrupt, so just pick the vcpu + * itself as the source... + */ + if (is_vgic_v2_sgi(vcpu, irq)) + irq->source |= BIT(vcpu->vcpu_id); + + vgic_queue_irq_unlock(vcpu->kvm, irq, flags); + + vgic_put_irq(vcpu->kvm, irq); + } + + return 0; +} + +/* Must be called with irq->irq_lock held */ +static void vgic_hw_irq_cpending(struct kvm_vcpu *vcpu, struct vgic_irq *irq) +{ + irq->pending_latch = false; + + /* + * We don't want the guest to effectively mask the physical + * interrupt by doing a write to SPENDR followed by a write to + * CPENDR for HW interrupts, so we clear the active state on + * the physical side if the virtual interrupt is not active. + * This may lead to taking an additional interrupt on the + * host, but that should not be a problem as the worst that + * can happen is an additional vgic injection. We also clear + * the pending state to maintain proper semantics for edge HW + * interrupts. + */ + vgic_irq_set_phys_pending(irq, false); + if (!irq->active) + vgic_irq_set_phys_active(irq, false); +} + +void vgic_mmio_write_cpending(struct kvm_vcpu *vcpu, + gpa_t addr, unsigned int len, + unsigned long val) +{ + u32 intid = VGIC_ADDR_TO_INTID(addr, 1); + int i; + unsigned long flags; + + for_each_set_bit(i, &val, len * 8) { + struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i); + + /* GICD_ICPENDR0 SGI bits are WI */ + if (is_vgic_v2_sgi(vcpu, irq)) { + vgic_put_irq(vcpu->kvm, irq); + continue; + } + + raw_spin_lock_irqsave(&irq->irq_lock, flags); + + if (irq->hw && vgic_irq_is_sgi(irq->intid)) { + /* HW SGI? Ask the GIC to clear its pending bit */ + int err; + err = irq_set_irqchip_state(irq->host_irq, + IRQCHIP_STATE_PENDING, + false); + WARN_RATELIMIT(err, "IRQ %d", irq->host_irq); + + raw_spin_unlock_irqrestore(&irq->irq_lock, flags); + vgic_put_irq(vcpu->kvm, irq); + + continue; + } + + if (irq->hw) + vgic_hw_irq_cpending(vcpu, irq); + else + irq->pending_latch = false; + + raw_spin_unlock_irqrestore(&irq->irq_lock, flags); + vgic_put_irq(vcpu->kvm, irq); + } +} + +int vgic_uaccess_write_cpending(struct kvm_vcpu *vcpu, + gpa_t addr, unsigned int len, + unsigned long val) +{ + u32 intid = VGIC_ADDR_TO_INTID(addr, 1); + int i; + unsigned long flags; + + for_each_set_bit(i, &val, len * 8) { + struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i); + + raw_spin_lock_irqsave(&irq->irq_lock, flags); + /* + * More fun with GICv2 SGIs! If we're clearing one of them + * from userspace, which source vcpu to clear? Let's not + * even think of it, and blow the whole set. + */ + if (is_vgic_v2_sgi(vcpu, irq)) + irq->source = 0; + + irq->pending_latch = false; + + raw_spin_unlock_irqrestore(&irq->irq_lock, flags); + + vgic_put_irq(vcpu->kvm, irq); + } + + return 0; +} + +/* + * If we are fiddling with an IRQ's active state, we have to make sure the IRQ + * is not queued on some running VCPU's LRs, because then the change to the + * active state can be overwritten when the VCPU's state is synced coming back + * from the guest. + * + * For shared interrupts as well as GICv3 private interrupts accessed from the + * non-owning CPU, we have to stop all the VCPUs because interrupts can be + * migrated while we don't hold the IRQ locks and we don't want to be chasing + * moving targets. + * + * For GICv2 private interrupts we don't have to do anything because + * userspace accesses to the VGIC state already require all VCPUs to be + * stopped, and only the VCPU itself can modify its private interrupts + * active state, which guarantees that the VCPU is not running. + */ +static void vgic_access_active_prepare(struct kvm_vcpu *vcpu, u32 intid) +{ + if ((vcpu->kvm->arch.vgic.vgic_model == KVM_DEV_TYPE_ARM_VGIC_V3 && + vcpu != kvm_get_running_vcpu()) || + intid >= VGIC_NR_PRIVATE_IRQS) + kvm_arm_halt_guest(vcpu->kvm); +} + +/* See vgic_access_active_prepare */ +static void vgic_access_active_finish(struct kvm_vcpu *vcpu, u32 intid) +{ + if ((vcpu->kvm->arch.vgic.vgic_model == KVM_DEV_TYPE_ARM_VGIC_V3 && + vcpu != kvm_get_running_vcpu()) || + intid >= VGIC_NR_PRIVATE_IRQS) + kvm_arm_resume_guest(vcpu->kvm); +} + +static unsigned long __vgic_mmio_read_active(struct kvm_vcpu *vcpu, + gpa_t addr, unsigned int len) +{ + u32 intid = VGIC_ADDR_TO_INTID(addr, 1); + u32 value = 0; + int i; + + /* Loop over all IRQs affected by this read */ + for (i = 0; i < len * 8; i++) { + struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i); + + /* + * Even for HW interrupts, don't evaluate the HW state as + * all the guest is interested in is the virtual state. + */ + if (irq->active) + value |= (1U << i); + + vgic_put_irq(vcpu->kvm, irq); + } + + return value; +} + +unsigned long vgic_mmio_read_active(struct kvm_vcpu *vcpu, + gpa_t addr, unsigned int len) +{ + u32 intid = VGIC_ADDR_TO_INTID(addr, 1); + u32 val; + + mutex_lock(&vcpu->kvm->arch.config_lock); + vgic_access_active_prepare(vcpu, intid); + + val = __vgic_mmio_read_active(vcpu, addr, len); + + vgic_access_active_finish(vcpu, intid); + mutex_unlock(&vcpu->kvm->arch.config_lock); + + return val; +} + +unsigned long vgic_uaccess_read_active(struct kvm_vcpu *vcpu, + gpa_t addr, unsigned int len) +{ + return __vgic_mmio_read_active(vcpu, addr, len); +} + +/* Must be called with irq->irq_lock held */ +static void vgic_hw_irq_change_active(struct kvm_vcpu *vcpu, struct vgic_irq *irq, + bool active, bool is_uaccess) +{ + if (is_uaccess) + return; + + irq->active = active; + vgic_irq_set_phys_active(irq, active); +} + +static void vgic_mmio_change_active(struct kvm_vcpu *vcpu, struct vgic_irq *irq, + bool active) +{ + unsigned long flags; + struct kvm_vcpu *requester_vcpu = kvm_get_running_vcpu(); + + raw_spin_lock_irqsave(&irq->irq_lock, flags); + + if (irq->hw && !vgic_irq_is_sgi(irq->intid)) { + vgic_hw_irq_change_active(vcpu, irq, active, !requester_vcpu); + } else if (irq->hw && vgic_irq_is_sgi(irq->intid)) { + /* + * GICv4.1 VSGI feature doesn't track an active state, + * so let's not kid ourselves, there is nothing we can + * do here. + */ + irq->active = false; + } else { + u32 model = vcpu->kvm->arch.vgic.vgic_model; + u8 active_source; + + irq->active = active; + + /* + * The GICv2 architecture indicates that the source CPUID for + * an SGI should be provided during an EOI which implies that + * the active state is stored somewhere, but at the same time + * this state is not architecturally exposed anywhere and we + * have no way of knowing the right source. + * + * This may lead to a VCPU not being able to receive + * additional instances of a particular SGI after migration + * for a GICv2 VM on some GIC implementations. Oh well. + */ + active_source = (requester_vcpu) ? requester_vcpu->vcpu_id : 0; + + if (model == KVM_DEV_TYPE_ARM_VGIC_V2 && + active && vgic_irq_is_sgi(irq->intid)) + irq->active_source = active_source; + } + + if (irq->active) + vgic_queue_irq_unlock(vcpu->kvm, irq, flags); + else + raw_spin_unlock_irqrestore(&irq->irq_lock, flags); +} + +static void __vgic_mmio_write_cactive(struct kvm_vcpu *vcpu, + gpa_t addr, unsigned int len, + unsigned long val) +{ + u32 intid = VGIC_ADDR_TO_INTID(addr, 1); + int i; + + for_each_set_bit(i, &val, len * 8) { + struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i); + vgic_mmio_change_active(vcpu, irq, false); + vgic_put_irq(vcpu->kvm, irq); + } +} + +void vgic_mmio_write_cactive(struct kvm_vcpu *vcpu, + gpa_t addr, unsigned int len, + unsigned long val) +{ + u32 intid = VGIC_ADDR_TO_INTID(addr, 1); + + mutex_lock(&vcpu->kvm->arch.config_lock); + vgic_access_active_prepare(vcpu, intid); + + __vgic_mmio_write_cactive(vcpu, addr, len, val); + + vgic_access_active_finish(vcpu, intid); + mutex_unlock(&vcpu->kvm->arch.config_lock); +} + +int vgic_mmio_uaccess_write_cactive(struct kvm_vcpu *vcpu, + gpa_t addr, unsigned int len, + unsigned long val) +{ + __vgic_mmio_write_cactive(vcpu, addr, len, val); + return 0; +} + +static void __vgic_mmio_write_sactive(struct kvm_vcpu *vcpu, + gpa_t addr, unsigned int len, + unsigned long val) +{ + u32 intid = VGIC_ADDR_TO_INTID(addr, 1); + int i; + + for_each_set_bit(i, &val, len * 8) { + struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i); + vgic_mmio_change_active(vcpu, irq, true); + vgic_put_irq(vcpu->kvm, irq); + } +} + +void vgic_mmio_write_sactive(struct kvm_vcpu *vcpu, + gpa_t addr, unsigned int len, + unsigned long val) +{ + u32 intid = VGIC_ADDR_TO_INTID(addr, 1); + + mutex_lock(&vcpu->kvm->arch.config_lock); + vgic_access_active_prepare(vcpu, intid); + + __vgic_mmio_write_sactive(vcpu, addr, len, val); + + vgic_access_active_finish(vcpu, intid); + mutex_unlock(&vcpu->kvm->arch.config_lock); +} + +int vgic_mmio_uaccess_write_sactive(struct kvm_vcpu *vcpu, + gpa_t addr, unsigned int len, + unsigned long val) +{ + __vgic_mmio_write_sactive(vcpu, addr, len, val); + return 0; +} + +unsigned long vgic_mmio_read_priority(struct kvm_vcpu *vcpu, + gpa_t addr, unsigned int len) +{ + u32 intid = VGIC_ADDR_TO_INTID(addr, 8); + int i; + u64 val = 0; + + for (i = 0; i < len; i++) { + struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i); + + val |= (u64)irq->priority << (i * 8); + + vgic_put_irq(vcpu->kvm, irq); + } + + return val; +} + +/* + * We currently don't handle changing the priority of an interrupt that + * is already pending on a VCPU. If there is a need for this, we would + * need to make this VCPU exit and re-evaluate the priorities, potentially + * leading to this interrupt getting presented now to the guest (if it has + * been masked by the priority mask before). + */ +void vgic_mmio_write_priority(struct kvm_vcpu *vcpu, + gpa_t addr, unsigned int len, + unsigned long val) +{ + u32 intid = VGIC_ADDR_TO_INTID(addr, 8); + int i; + unsigned long flags; + + for (i = 0; i < len; i++) { + struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i); + + raw_spin_lock_irqsave(&irq->irq_lock, flags); + /* Narrow the priority range to what we actually support */ + irq->priority = (val >> (i * 8)) & GENMASK(7, 8 - VGIC_PRI_BITS); + if (irq->hw && vgic_irq_is_sgi(irq->intid)) + vgic_update_vsgi(irq); + raw_spin_unlock_irqrestore(&irq->irq_lock, flags); + + vgic_put_irq(vcpu->kvm, irq); + } +} + +unsigned long vgic_mmio_read_config(struct kvm_vcpu *vcpu, + gpa_t addr, unsigned int len) +{ + u32 intid = VGIC_ADDR_TO_INTID(addr, 2); + u32 value = 0; + int i; + + for (i = 0; i < len * 4; i++) { + struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i); + + if (irq->config == VGIC_CONFIG_EDGE) + value |= (2U << (i * 2)); + + vgic_put_irq(vcpu->kvm, irq); + } + + return value; +} + +void vgic_mmio_write_config(struct kvm_vcpu *vcpu, + gpa_t addr, unsigned int len, + unsigned long val) +{ + u32 intid = VGIC_ADDR_TO_INTID(addr, 2); + int i; + unsigned long flags; + + for (i = 0; i < len * 4; i++) { + struct vgic_irq *irq; + + /* + * The configuration cannot be changed for SGIs in general, + * for PPIs this is IMPLEMENTATION DEFINED. The arch timer + * code relies on PPIs being level triggered, so we also + * make them read-only here. + */ + if (intid + i < VGIC_NR_PRIVATE_IRQS) + continue; + + irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i); + raw_spin_lock_irqsave(&irq->irq_lock, flags); + + if (test_bit(i * 2 + 1, &val)) + irq->config = VGIC_CONFIG_EDGE; + else + irq->config = VGIC_CONFIG_LEVEL; + + raw_spin_unlock_irqrestore(&irq->irq_lock, flags); + vgic_put_irq(vcpu->kvm, irq); + } +} + +u32 vgic_read_irq_line_level_info(struct kvm_vcpu *vcpu, u32 intid) +{ + int i; + u32 val = 0; + int nr_irqs = vcpu->kvm->arch.vgic.nr_spis + VGIC_NR_PRIVATE_IRQS; + + for (i = 0; i < 32; i++) { + struct vgic_irq *irq; + + if ((intid + i) < VGIC_NR_SGIS || (intid + i) >= nr_irqs) + continue; + + irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i); + if (irq->config == VGIC_CONFIG_LEVEL && irq->line_level) + val |= (1U << i); + + vgic_put_irq(vcpu->kvm, irq); + } + + return val; +} + +void vgic_write_irq_line_level_info(struct kvm_vcpu *vcpu, u32 intid, + const u32 val) +{ + int i; + int nr_irqs = vcpu->kvm->arch.vgic.nr_spis + VGIC_NR_PRIVATE_IRQS; + unsigned long flags; + + for (i = 0; i < 32; i++) { + struct vgic_irq *irq; + bool new_level; + + if ((intid + i) < VGIC_NR_SGIS || (intid + i) >= nr_irqs) + continue; + + irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i); + + /* + * Line level is set irrespective of irq type + * (level or edge) to avoid dependency that VM should + * restore irq config before line level. + */ + new_level = !!(val & (1U << i)); + raw_spin_lock_irqsave(&irq->irq_lock, flags); + irq->line_level = new_level; + if (new_level) + vgic_queue_irq_unlock(vcpu->kvm, irq, flags); + else + raw_spin_unlock_irqrestore(&irq->irq_lock, flags); + + vgic_put_irq(vcpu->kvm, irq); + } +} + +static int match_region(const void *key, const void *elt) +{ + const unsigned int offset = (unsigned long)key; + const struct vgic_register_region *region = elt; + + if (offset < region->reg_offset) + return -1; + + if (offset >= region->reg_offset + region->len) + return 1; + + return 0; +} + +const struct vgic_register_region * +vgic_find_mmio_region(const struct vgic_register_region *regions, + int nr_regions, unsigned int offset) +{ + return bsearch((void *)(uintptr_t)offset, regions, nr_regions, + sizeof(regions[0]), match_region); +} + +void vgic_set_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcr) +{ + if (kvm_vgic_global_state.type == VGIC_V2) + vgic_v2_set_vmcr(vcpu, vmcr); + else + vgic_v3_set_vmcr(vcpu, vmcr); +} + +void vgic_get_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcr) +{ + if (kvm_vgic_global_state.type == VGIC_V2) + vgic_v2_get_vmcr(vcpu, vmcr); + else + vgic_v3_get_vmcr(vcpu, vmcr); +} + +/* + * kvm_mmio_read_buf() returns a value in a format where it can be converted + * to a byte array and be directly observed as the guest wanted it to appear + * in memory if it had done the store itself, which is LE for the GIC, as the + * guest knows the GIC is always LE. + * + * We convert this value to the CPUs native format to deal with it as a data + * value. + */ +unsigned long vgic_data_mmio_bus_to_host(const void *val, unsigned int len) +{ + unsigned long data = kvm_mmio_read_buf(val, len); + + switch (len) { + case 1: + return data; + case 2: + return le16_to_cpu(data); + case 4: + return le32_to_cpu(data); + default: + return le64_to_cpu(data); + } +} + +/* + * kvm_mmio_write_buf() expects a value in a format such that if converted to + * a byte array it is observed as the guest would see it if it could perform + * the load directly. Since the GIC is LE, and the guest knows this, the + * guest expects a value in little endian format. + * + * We convert the data value from the CPUs native format to LE so that the + * value is returned in the proper format. + */ +void vgic_data_host_to_mmio_bus(void *buf, unsigned int len, + unsigned long data) +{ + switch (len) { + case 1: + break; + case 2: + data = cpu_to_le16(data); + break; + case 4: + data = cpu_to_le32(data); + break; + default: + data = cpu_to_le64(data); + } + + kvm_mmio_write_buf(buf, len, data); +} + +static +struct vgic_io_device *kvm_to_vgic_iodev(const struct kvm_io_device *dev) +{ + return container_of(dev, struct vgic_io_device, dev); +} + +static bool check_region(const struct kvm *kvm, + const struct vgic_register_region *region, + gpa_t addr, int len) +{ + int flags, nr_irqs = kvm->arch.vgic.nr_spis + VGIC_NR_PRIVATE_IRQS; + + switch (len) { + case sizeof(u8): + flags = VGIC_ACCESS_8bit; + break; + case sizeof(u32): + flags = VGIC_ACCESS_32bit; + break; + case sizeof(u64): + flags = VGIC_ACCESS_64bit; + break; + default: + return false; + } + + if ((region->access_flags & flags) && IS_ALIGNED(addr, len)) { + if (!region->bits_per_irq) + return true; + + /* Do we access a non-allocated IRQ? */ + return VGIC_ADDR_TO_INTID(addr, region->bits_per_irq) < nr_irqs; + } + + return false; +} + +const struct vgic_register_region * +vgic_get_mmio_region(struct kvm_vcpu *vcpu, struct vgic_io_device *iodev, + gpa_t addr, int len) +{ + const struct vgic_register_region *region; + + region = vgic_find_mmio_region(iodev->regions, iodev->nr_regions, + addr - iodev->base_addr); + if (!region || !check_region(vcpu->kvm, region, addr, len)) + return NULL; + + return region; +} + +static int vgic_uaccess_read(struct kvm_vcpu *vcpu, struct vgic_io_device *iodev, + gpa_t addr, u32 *val) +{ + const struct vgic_register_region *region; + struct kvm_vcpu *r_vcpu; + + region = vgic_get_mmio_region(vcpu, iodev, addr, sizeof(u32)); + if (!region) { + *val = 0; + return 0; + } + + r_vcpu = iodev->redist_vcpu ? iodev->redist_vcpu : vcpu; + if (region->uaccess_read) + *val = region->uaccess_read(r_vcpu, addr, sizeof(u32)); + else + *val = region->read(r_vcpu, addr, sizeof(u32)); + + return 0; +} + +static int vgic_uaccess_write(struct kvm_vcpu *vcpu, struct vgic_io_device *iodev, + gpa_t addr, const u32 *val) +{ + const struct vgic_register_region *region; + struct kvm_vcpu *r_vcpu; + + region = vgic_get_mmio_region(vcpu, iodev, addr, sizeof(u32)); + if (!region) + return 0; + + r_vcpu = iodev->redist_vcpu ? iodev->redist_vcpu : vcpu; + if (region->uaccess_write) + return region->uaccess_write(r_vcpu, addr, sizeof(u32), *val); + + region->write(r_vcpu, addr, sizeof(u32), *val); + return 0; +} + +/* + * Userland access to VGIC registers. + */ +int vgic_uaccess(struct kvm_vcpu *vcpu, struct vgic_io_device *dev, + bool is_write, int offset, u32 *val) +{ + if (is_write) + return vgic_uaccess_write(vcpu, dev, offset, val); + else + return vgic_uaccess_read(vcpu, dev, offset, val); +} + +static int dispatch_mmio_read(struct kvm_vcpu *vcpu, struct kvm_io_device *dev, + gpa_t addr, int len, void *val) +{ + struct vgic_io_device *iodev = kvm_to_vgic_iodev(dev); + const struct vgic_register_region *region; + unsigned long data = 0; + + region = vgic_get_mmio_region(vcpu, iodev, addr, len); + if (!region) { + memset(val, 0, len); + return 0; + } + + switch (iodev->iodev_type) { + case IODEV_CPUIF: + data = region->read(vcpu, addr, len); + break; + case IODEV_DIST: + data = region->read(vcpu, addr, len); + break; + case IODEV_REDIST: + data = region->read(iodev->redist_vcpu, addr, len); + break; + case IODEV_ITS: + data = region->its_read(vcpu->kvm, iodev->its, addr, len); + break; + } + + vgic_data_host_to_mmio_bus(val, len, data); + return 0; +} + +static int dispatch_mmio_write(struct kvm_vcpu *vcpu, struct kvm_io_device *dev, + gpa_t addr, int len, const void *val) +{ + struct vgic_io_device *iodev = kvm_to_vgic_iodev(dev); + const struct vgic_register_region *region; + unsigned long data = vgic_data_mmio_bus_to_host(val, len); + + region = vgic_get_mmio_region(vcpu, iodev, addr, len); + if (!region) + return 0; + + switch (iodev->iodev_type) { + case IODEV_CPUIF: + region->write(vcpu, addr, len, data); + break; + case IODEV_DIST: + region->write(vcpu, addr, len, data); + break; + case IODEV_REDIST: + region->write(iodev->redist_vcpu, addr, len, data); + break; + case IODEV_ITS: + region->its_write(vcpu->kvm, iodev->its, addr, len, data); + break; + } + + return 0; +} + +const struct kvm_io_device_ops kvm_io_gic_ops = { + .read = dispatch_mmio_read, + .write = dispatch_mmio_write, +}; + +int vgic_register_dist_iodev(struct kvm *kvm, gpa_t dist_base_address, + enum vgic_type type) +{ + struct vgic_io_device *io_device = &kvm->arch.vgic.dist_iodev; + unsigned int len; + + switch (type) { + case VGIC_V2: + len = vgic_v2_init_dist_iodev(io_device); + break; + case VGIC_V3: + len = vgic_v3_init_dist_iodev(io_device); + break; + default: + BUG_ON(1); + } + + io_device->base_addr = dist_base_address; + io_device->iodev_type = IODEV_DIST; + io_device->redist_vcpu = NULL; + + return kvm_io_bus_register_dev(kvm, KVM_MMIO_BUS, dist_base_address, + len, &io_device->dev); +} diff --git a/arch/arm64/kvm/vgic/vgic-mmio.h b/arch/arm64/kvm/vgic/vgic-mmio.h new file mode 100644 index 0000000000..5b490a4dfa --- /dev/null +++ b/arch/arm64/kvm/vgic/vgic-mmio.h @@ -0,0 +1,230 @@ +/* SPDX-License-Identifier: GPL-2.0-only */ +/* + * Copyright (C) 2015, 2016 ARM Ltd. + */ +#ifndef __KVM_ARM_VGIC_MMIO_H__ +#define __KVM_ARM_VGIC_MMIO_H__ + +struct vgic_register_region { + unsigned int reg_offset; + unsigned int len; + unsigned int bits_per_irq; + unsigned int access_flags; + union { + unsigned long (*read)(struct kvm_vcpu *vcpu, gpa_t addr, + unsigned int len); + unsigned long (*its_read)(struct kvm *kvm, struct vgic_its *its, + gpa_t addr, unsigned int len); + }; + union { + void (*write)(struct kvm_vcpu *vcpu, gpa_t addr, + unsigned int len, unsigned long val); + void (*its_write)(struct kvm *kvm, struct vgic_its *its, + gpa_t addr, unsigned int len, + unsigned long val); + }; + unsigned long (*uaccess_read)(struct kvm_vcpu *vcpu, gpa_t addr, + unsigned int len); + union { + int (*uaccess_write)(struct kvm_vcpu *vcpu, gpa_t addr, + unsigned int len, unsigned long val); + int (*uaccess_its_write)(struct kvm *kvm, struct vgic_its *its, + gpa_t addr, unsigned int len, + unsigned long val); + }; +}; + +extern const struct kvm_io_device_ops kvm_io_gic_ops; + +#define VGIC_ACCESS_8bit 1 +#define VGIC_ACCESS_32bit 2 +#define VGIC_ACCESS_64bit 4 + +/* + * Generate a mask that covers the number of bytes required to address + * up to 1024 interrupts, each represented by <bits> bits. This assumes + * that <bits> is a power of two. + */ +#define VGIC_ADDR_IRQ_MASK(bits) (((bits) * 1024 / 8) - 1) + +/* + * (addr & mask) gives us the _byte_ offset for the INT ID. + * We multiply this by 8 the get the _bit_ offset, then divide this by + * the number of bits to learn the actual INT ID. + * But instead of a division (which requires a "long long div" implementation), + * we shift by the binary logarithm of <bits>. + * This assumes that <bits> is a power of two. + */ +#define VGIC_ADDR_TO_INTID(addr, bits) (((addr) & VGIC_ADDR_IRQ_MASK(bits)) * \ + 8 >> ilog2(bits)) + +/* + * Some VGIC registers store per-IRQ information, with a different number + * of bits per IRQ. For those registers this macro is used. + * The _WITH_LENGTH version instantiates registers with a fixed length + * and is mutually exclusive with the _PER_IRQ version. + */ +#define REGISTER_DESC_WITH_BITS_PER_IRQ(off, rd, wr, ur, uw, bpi, acc) \ + { \ + .reg_offset = off, \ + .bits_per_irq = bpi, \ + .len = bpi * 1024 / 8, \ + .access_flags = acc, \ + .read = rd, \ + .write = wr, \ + .uaccess_read = ur, \ + .uaccess_write = uw, \ + } + +#define REGISTER_DESC_WITH_LENGTH(off, rd, wr, length, acc) \ + { \ + .reg_offset = off, \ + .bits_per_irq = 0, \ + .len = length, \ + .access_flags = acc, \ + .read = rd, \ + .write = wr, \ + } + +#define REGISTER_DESC_WITH_LENGTH_UACCESS(off, rd, wr, urd, uwr, length, acc) \ + { \ + .reg_offset = off, \ + .bits_per_irq = 0, \ + .len = length, \ + .access_flags = acc, \ + .read = rd, \ + .write = wr, \ + .uaccess_read = urd, \ + .uaccess_write = uwr, \ + } + +unsigned long vgic_data_mmio_bus_to_host(const void *val, unsigned int len); + +void vgic_data_host_to_mmio_bus(void *buf, unsigned int len, + unsigned long data); + +unsigned long extract_bytes(u64 data, unsigned int offset, + unsigned int num); + +u64 update_64bit_reg(u64 reg, unsigned int offset, unsigned int len, + unsigned long val); + +unsigned long vgic_mmio_read_raz(struct kvm_vcpu *vcpu, + gpa_t addr, unsigned int len); + +unsigned long vgic_mmio_read_rao(struct kvm_vcpu *vcpu, + gpa_t addr, unsigned int len); + +void vgic_mmio_write_wi(struct kvm_vcpu *vcpu, gpa_t addr, + unsigned int len, unsigned long val); + +int vgic_mmio_uaccess_write_wi(struct kvm_vcpu *vcpu, gpa_t addr, + unsigned int len, unsigned long val); + +unsigned long vgic_mmio_read_group(struct kvm_vcpu *vcpu, gpa_t addr, + unsigned int len); + +void vgic_mmio_write_group(struct kvm_vcpu *vcpu, gpa_t addr, + unsigned int len, unsigned long val); + +unsigned long vgic_mmio_read_enable(struct kvm_vcpu *vcpu, + gpa_t addr, unsigned int len); + +void vgic_mmio_write_senable(struct kvm_vcpu *vcpu, + gpa_t addr, unsigned int len, + unsigned long val); + +void vgic_mmio_write_cenable(struct kvm_vcpu *vcpu, + gpa_t addr, unsigned int len, + unsigned long val); + +int vgic_uaccess_write_senable(struct kvm_vcpu *vcpu, + gpa_t addr, unsigned int len, + unsigned long val); + +int vgic_uaccess_write_cenable(struct kvm_vcpu *vcpu, + gpa_t addr, unsigned int len, + unsigned long val); + +unsigned long vgic_mmio_read_pending(struct kvm_vcpu *vcpu, + gpa_t addr, unsigned int len); + +unsigned long vgic_uaccess_read_pending(struct kvm_vcpu *vcpu, + gpa_t addr, unsigned int len); + +void vgic_mmio_write_spending(struct kvm_vcpu *vcpu, + gpa_t addr, unsigned int len, + unsigned long val); + +void vgic_mmio_write_cpending(struct kvm_vcpu *vcpu, + gpa_t addr, unsigned int len, + unsigned long val); + +int vgic_uaccess_write_spending(struct kvm_vcpu *vcpu, + gpa_t addr, unsigned int len, + unsigned long val); + +int vgic_uaccess_write_cpending(struct kvm_vcpu *vcpu, + gpa_t addr, unsigned int len, + unsigned long val); + +unsigned long vgic_mmio_read_active(struct kvm_vcpu *vcpu, + gpa_t addr, unsigned int len); + +unsigned long vgic_uaccess_read_active(struct kvm_vcpu *vcpu, + gpa_t addr, unsigned int len); + +void vgic_mmio_write_cactive(struct kvm_vcpu *vcpu, + gpa_t addr, unsigned int len, + unsigned long val); + +void vgic_mmio_write_sactive(struct kvm_vcpu *vcpu, + gpa_t addr, unsigned int len, + unsigned long val); + +int vgic_mmio_uaccess_write_cactive(struct kvm_vcpu *vcpu, + gpa_t addr, unsigned int len, + unsigned long val); + +int vgic_mmio_uaccess_write_sactive(struct kvm_vcpu *vcpu, + gpa_t addr, unsigned int len, + unsigned long val); + +unsigned long vgic_mmio_read_priority(struct kvm_vcpu *vcpu, + gpa_t addr, unsigned int len); + +void vgic_mmio_write_priority(struct kvm_vcpu *vcpu, + gpa_t addr, unsigned int len, + unsigned long val); + +unsigned long vgic_mmio_read_config(struct kvm_vcpu *vcpu, + gpa_t addr, unsigned int len); + +void vgic_mmio_write_config(struct kvm_vcpu *vcpu, + gpa_t addr, unsigned int len, + unsigned long val); + +int vgic_uaccess(struct kvm_vcpu *vcpu, struct vgic_io_device *dev, + bool is_write, int offset, u32 *val); + +u32 vgic_read_irq_line_level_info(struct kvm_vcpu *vcpu, u32 intid); + +void vgic_write_irq_line_level_info(struct kvm_vcpu *vcpu, u32 intid, + const u32 val); + +unsigned int vgic_v2_init_dist_iodev(struct vgic_io_device *dev); + +unsigned int vgic_v3_init_dist_iodev(struct vgic_io_device *dev); + +u64 vgic_sanitise_outer_cacheability(u64 reg); +u64 vgic_sanitise_inner_cacheability(u64 reg); +u64 vgic_sanitise_shareability(u64 reg); +u64 vgic_sanitise_field(u64 reg, u64 field_mask, int field_shift, + u64 (*sanitise_fn)(u64)); + +/* Find the proper register handler entry given a certain address offset */ +const struct vgic_register_region * +vgic_find_mmio_region(const struct vgic_register_region *regions, + int nr_regions, unsigned int offset); + +#endif diff --git a/arch/arm64/kvm/vgic/vgic-v2.c b/arch/arm64/kvm/vgic/vgic-v2.c new file mode 100644 index 0000000000..7e9cdb78f7 --- /dev/null +++ b/arch/arm64/kvm/vgic/vgic-v2.c @@ -0,0 +1,480 @@ +// SPDX-License-Identifier: GPL-2.0-only +/* + * Copyright (C) 2015, 2016 ARM Ltd. + */ + +#include <linux/irqchip/arm-gic.h> +#include <linux/kvm.h> +#include <linux/kvm_host.h> +#include <kvm/arm_vgic.h> +#include <asm/kvm_mmu.h> + +#include "vgic.h" + +static inline void vgic_v2_write_lr(int lr, u32 val) +{ + void __iomem *base = kvm_vgic_global_state.vctrl_base; + + writel_relaxed(val, base + GICH_LR0 + (lr * 4)); +} + +void vgic_v2_init_lrs(void) +{ + int i; + + for (i = 0; i < kvm_vgic_global_state.nr_lr; i++) + vgic_v2_write_lr(i, 0); +} + +void vgic_v2_set_underflow(struct kvm_vcpu *vcpu) +{ + struct vgic_v2_cpu_if *cpuif = &vcpu->arch.vgic_cpu.vgic_v2; + + cpuif->vgic_hcr |= GICH_HCR_UIE; +} + +static bool lr_signals_eoi_mi(u32 lr_val) +{ + return !(lr_val & GICH_LR_STATE) && (lr_val & GICH_LR_EOI) && + !(lr_val & GICH_LR_HW); +} + +/* + * transfer the content of the LRs back into the corresponding ap_list: + * - active bit is transferred as is + * - pending bit is + * - transferred as is in case of edge sensitive IRQs + * - set to the line-level (resample time) for level sensitive IRQs + */ +void vgic_v2_fold_lr_state(struct kvm_vcpu *vcpu) +{ + struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu; + struct vgic_v2_cpu_if *cpuif = &vgic_cpu->vgic_v2; + int lr; + + DEBUG_SPINLOCK_BUG_ON(!irqs_disabled()); + + cpuif->vgic_hcr &= ~GICH_HCR_UIE; + + for (lr = 0; lr < vgic_cpu->vgic_v2.used_lrs; lr++) { + u32 val = cpuif->vgic_lr[lr]; + u32 cpuid, intid = val & GICH_LR_VIRTUALID; + struct vgic_irq *irq; + bool deactivated; + + /* Extract the source vCPU id from the LR */ + cpuid = val & GICH_LR_PHYSID_CPUID; + cpuid >>= GICH_LR_PHYSID_CPUID_SHIFT; + cpuid &= 7; + + /* Notify fds when the guest EOI'ed a level-triggered SPI */ + if (lr_signals_eoi_mi(val) && vgic_valid_spi(vcpu->kvm, intid)) + kvm_notify_acked_irq(vcpu->kvm, 0, + intid - VGIC_NR_PRIVATE_IRQS); + + irq = vgic_get_irq(vcpu->kvm, vcpu, intid); + + raw_spin_lock(&irq->irq_lock); + + /* Always preserve the active bit, note deactivation */ + deactivated = irq->active && !(val & GICH_LR_ACTIVE_BIT); + irq->active = !!(val & GICH_LR_ACTIVE_BIT); + + if (irq->active && vgic_irq_is_sgi(intid)) + irq->active_source = cpuid; + + /* Edge is the only case where we preserve the pending bit */ + if (irq->config == VGIC_CONFIG_EDGE && + (val & GICH_LR_PENDING_BIT)) { + irq->pending_latch = true; + + if (vgic_irq_is_sgi(intid)) + irq->source |= (1 << cpuid); + } + + /* + * Clear soft pending state when level irqs have been acked. + */ + if (irq->config == VGIC_CONFIG_LEVEL && !(val & GICH_LR_STATE)) + irq->pending_latch = false; + + /* Handle resampling for mapped interrupts if required */ + vgic_irq_handle_resampling(irq, deactivated, val & GICH_LR_PENDING_BIT); + + raw_spin_unlock(&irq->irq_lock); + vgic_put_irq(vcpu->kvm, irq); + } + + cpuif->used_lrs = 0; +} + +/* + * Populates the particular LR with the state of a given IRQ: + * - for an edge sensitive IRQ the pending state is cleared in struct vgic_irq + * - for a level sensitive IRQ the pending state value is unchanged; + * it is dictated directly by the input level + * + * If @irq describes an SGI with multiple sources, we choose the + * lowest-numbered source VCPU and clear that bit in the source bitmap. + * + * The irq_lock must be held by the caller. + */ +void vgic_v2_populate_lr(struct kvm_vcpu *vcpu, struct vgic_irq *irq, int lr) +{ + u32 val = irq->intid; + bool allow_pending = true; + + if (irq->active) { + val |= GICH_LR_ACTIVE_BIT; + if (vgic_irq_is_sgi(irq->intid)) + val |= irq->active_source << GICH_LR_PHYSID_CPUID_SHIFT; + if (vgic_irq_is_multi_sgi(irq)) { + allow_pending = false; + val |= GICH_LR_EOI; + } + } + + if (irq->group) + val |= GICH_LR_GROUP1; + + if (irq->hw && !vgic_irq_needs_resampling(irq)) { + val |= GICH_LR_HW; + val |= irq->hwintid << GICH_LR_PHYSID_CPUID_SHIFT; + /* + * Never set pending+active on a HW interrupt, as the + * pending state is kept at the physical distributor + * level. + */ + if (irq->active) + allow_pending = false; + } else { + if (irq->config == VGIC_CONFIG_LEVEL) { + val |= GICH_LR_EOI; + + /* + * Software resampling doesn't work very well + * if we allow P+A, so let's not do that. + */ + if (irq->active) + allow_pending = false; + } + } + + if (allow_pending && irq_is_pending(irq)) { + val |= GICH_LR_PENDING_BIT; + + if (irq->config == VGIC_CONFIG_EDGE) + irq->pending_latch = false; + + if (vgic_irq_is_sgi(irq->intid)) { + u32 src = ffs(irq->source); + + if (WARN_RATELIMIT(!src, "No SGI source for INTID %d\n", + irq->intid)) + return; + + val |= (src - 1) << GICH_LR_PHYSID_CPUID_SHIFT; + irq->source &= ~(1 << (src - 1)); + if (irq->source) { + irq->pending_latch = true; + val |= GICH_LR_EOI; + } + } + } + + /* + * Level-triggered mapped IRQs are special because we only observe + * rising edges as input to the VGIC. We therefore lower the line + * level here, so that we can take new virtual IRQs. See + * vgic_v2_fold_lr_state for more info. + */ + if (vgic_irq_is_mapped_level(irq) && (val & GICH_LR_PENDING_BIT)) + irq->line_level = false; + + /* The GICv2 LR only holds five bits of priority. */ + val |= (irq->priority >> 3) << GICH_LR_PRIORITY_SHIFT; + + vcpu->arch.vgic_cpu.vgic_v2.vgic_lr[lr] = val; +} + +void vgic_v2_clear_lr(struct kvm_vcpu *vcpu, int lr) +{ + vcpu->arch.vgic_cpu.vgic_v2.vgic_lr[lr] = 0; +} + +void vgic_v2_set_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcrp) +{ + struct vgic_v2_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v2; + u32 vmcr; + + vmcr = (vmcrp->grpen0 << GICH_VMCR_ENABLE_GRP0_SHIFT) & + GICH_VMCR_ENABLE_GRP0_MASK; + vmcr |= (vmcrp->grpen1 << GICH_VMCR_ENABLE_GRP1_SHIFT) & + GICH_VMCR_ENABLE_GRP1_MASK; + vmcr |= (vmcrp->ackctl << GICH_VMCR_ACK_CTL_SHIFT) & + GICH_VMCR_ACK_CTL_MASK; + vmcr |= (vmcrp->fiqen << GICH_VMCR_FIQ_EN_SHIFT) & + GICH_VMCR_FIQ_EN_MASK; + vmcr |= (vmcrp->cbpr << GICH_VMCR_CBPR_SHIFT) & + GICH_VMCR_CBPR_MASK; + vmcr |= (vmcrp->eoim << GICH_VMCR_EOI_MODE_SHIFT) & + GICH_VMCR_EOI_MODE_MASK; + vmcr |= (vmcrp->abpr << GICH_VMCR_ALIAS_BINPOINT_SHIFT) & + GICH_VMCR_ALIAS_BINPOINT_MASK; + vmcr |= (vmcrp->bpr << GICH_VMCR_BINPOINT_SHIFT) & + GICH_VMCR_BINPOINT_MASK; + vmcr |= ((vmcrp->pmr >> GICV_PMR_PRIORITY_SHIFT) << + GICH_VMCR_PRIMASK_SHIFT) & GICH_VMCR_PRIMASK_MASK; + + cpu_if->vgic_vmcr = vmcr; +} + +void vgic_v2_get_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcrp) +{ + struct vgic_v2_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v2; + u32 vmcr; + + vmcr = cpu_if->vgic_vmcr; + + vmcrp->grpen0 = (vmcr & GICH_VMCR_ENABLE_GRP0_MASK) >> + GICH_VMCR_ENABLE_GRP0_SHIFT; + vmcrp->grpen1 = (vmcr & GICH_VMCR_ENABLE_GRP1_MASK) >> + GICH_VMCR_ENABLE_GRP1_SHIFT; + vmcrp->ackctl = (vmcr & GICH_VMCR_ACK_CTL_MASK) >> + GICH_VMCR_ACK_CTL_SHIFT; + vmcrp->fiqen = (vmcr & GICH_VMCR_FIQ_EN_MASK) >> + GICH_VMCR_FIQ_EN_SHIFT; + vmcrp->cbpr = (vmcr & GICH_VMCR_CBPR_MASK) >> + GICH_VMCR_CBPR_SHIFT; + vmcrp->eoim = (vmcr & GICH_VMCR_EOI_MODE_MASK) >> + GICH_VMCR_EOI_MODE_SHIFT; + + vmcrp->abpr = (vmcr & GICH_VMCR_ALIAS_BINPOINT_MASK) >> + GICH_VMCR_ALIAS_BINPOINT_SHIFT; + vmcrp->bpr = (vmcr & GICH_VMCR_BINPOINT_MASK) >> + GICH_VMCR_BINPOINT_SHIFT; + vmcrp->pmr = ((vmcr & GICH_VMCR_PRIMASK_MASK) >> + GICH_VMCR_PRIMASK_SHIFT) << GICV_PMR_PRIORITY_SHIFT; +} + +void vgic_v2_enable(struct kvm_vcpu *vcpu) +{ + /* + * By forcing VMCR to zero, the GIC will restore the binary + * points to their reset values. Anything else resets to zero + * anyway. + */ + vcpu->arch.vgic_cpu.vgic_v2.vgic_vmcr = 0; + + /* Get the show on the road... */ + vcpu->arch.vgic_cpu.vgic_v2.vgic_hcr = GICH_HCR_EN; +} + +/* check for overlapping regions and for regions crossing the end of memory */ +static bool vgic_v2_check_base(gpa_t dist_base, gpa_t cpu_base) +{ + if (dist_base + KVM_VGIC_V2_DIST_SIZE < dist_base) + return false; + if (cpu_base + KVM_VGIC_V2_CPU_SIZE < cpu_base) + return false; + + if (dist_base + KVM_VGIC_V2_DIST_SIZE <= cpu_base) + return true; + if (cpu_base + KVM_VGIC_V2_CPU_SIZE <= dist_base) + return true; + + return false; +} + +int vgic_v2_map_resources(struct kvm *kvm) +{ + struct vgic_dist *dist = &kvm->arch.vgic; + int ret = 0; + + if (IS_VGIC_ADDR_UNDEF(dist->vgic_dist_base) || + IS_VGIC_ADDR_UNDEF(dist->vgic_cpu_base)) { + kvm_debug("Need to set vgic cpu and dist addresses first\n"); + return -ENXIO; + } + + if (!vgic_v2_check_base(dist->vgic_dist_base, dist->vgic_cpu_base)) { + kvm_debug("VGIC CPU and dist frames overlap\n"); + return -EINVAL; + } + + /* + * Initialize the vgic if this hasn't already been done on demand by + * accessing the vgic state from userspace. + */ + ret = vgic_init(kvm); + if (ret) { + kvm_err("Unable to initialize VGIC dynamic data structures\n"); + return ret; + } + + if (!static_branch_unlikely(&vgic_v2_cpuif_trap)) { + ret = kvm_phys_addr_ioremap(kvm, dist->vgic_cpu_base, + kvm_vgic_global_state.vcpu_base, + KVM_VGIC_V2_CPU_SIZE, true); + if (ret) { + kvm_err("Unable to remap VGIC CPU to VCPU\n"); + return ret; + } + } + + return 0; +} + +DEFINE_STATIC_KEY_FALSE(vgic_v2_cpuif_trap); + +/** + * vgic_v2_probe - probe for a VGICv2 compatible interrupt controller + * @info: pointer to the GIC description + * + * Returns 0 if the VGICv2 has been probed successfully, returns an error code + * otherwise + */ +int vgic_v2_probe(const struct gic_kvm_info *info) +{ + int ret; + u32 vtr; + + if (is_protected_kvm_enabled()) { + kvm_err("GICv2 not supported in protected mode\n"); + return -ENXIO; + } + + if (!info->vctrl.start) { + kvm_err("GICH not present in the firmware table\n"); + return -ENXIO; + } + + if (!PAGE_ALIGNED(info->vcpu.start) || + !PAGE_ALIGNED(resource_size(&info->vcpu))) { + kvm_info("GICV region size/alignment is unsafe, using trapping (reduced performance)\n"); + + ret = create_hyp_io_mappings(info->vcpu.start, + resource_size(&info->vcpu), + &kvm_vgic_global_state.vcpu_base_va, + &kvm_vgic_global_state.vcpu_hyp_va); + if (ret) { + kvm_err("Cannot map GICV into hyp\n"); + goto out; + } + + static_branch_enable(&vgic_v2_cpuif_trap); + } + + ret = create_hyp_io_mappings(info->vctrl.start, + resource_size(&info->vctrl), + &kvm_vgic_global_state.vctrl_base, + &kvm_vgic_global_state.vctrl_hyp); + if (ret) { + kvm_err("Cannot map VCTRL into hyp\n"); + goto out; + } + + vtr = readl_relaxed(kvm_vgic_global_state.vctrl_base + GICH_VTR); + kvm_vgic_global_state.nr_lr = (vtr & 0x3f) + 1; + + ret = kvm_register_vgic_device(KVM_DEV_TYPE_ARM_VGIC_V2); + if (ret) { + kvm_err("Cannot register GICv2 KVM device\n"); + goto out; + } + + kvm_vgic_global_state.can_emulate_gicv2 = true; + kvm_vgic_global_state.vcpu_base = info->vcpu.start; + kvm_vgic_global_state.type = VGIC_V2; + kvm_vgic_global_state.max_gic_vcpus = VGIC_V2_MAX_CPUS; + + kvm_debug("vgic-v2@%llx\n", info->vctrl.start); + + return 0; +out: + if (kvm_vgic_global_state.vctrl_base) + iounmap(kvm_vgic_global_state.vctrl_base); + if (kvm_vgic_global_state.vcpu_base_va) + iounmap(kvm_vgic_global_state.vcpu_base_va); + + return ret; +} + +static void save_lrs(struct kvm_vcpu *vcpu, void __iomem *base) +{ + struct vgic_v2_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v2; + u64 used_lrs = cpu_if->used_lrs; + u64 elrsr; + int i; + + elrsr = readl_relaxed(base + GICH_ELRSR0); + if (unlikely(used_lrs > 32)) + elrsr |= ((u64)readl_relaxed(base + GICH_ELRSR1)) << 32; + + for (i = 0; i < used_lrs; i++) { + if (elrsr & (1UL << i)) + cpu_if->vgic_lr[i] &= ~GICH_LR_STATE; + else + cpu_if->vgic_lr[i] = readl_relaxed(base + GICH_LR0 + (i * 4)); + + writel_relaxed(0, base + GICH_LR0 + (i * 4)); + } +} + +void vgic_v2_save_state(struct kvm_vcpu *vcpu) +{ + void __iomem *base = kvm_vgic_global_state.vctrl_base; + u64 used_lrs = vcpu->arch.vgic_cpu.vgic_v2.used_lrs; + + if (!base) + return; + + if (used_lrs) { + save_lrs(vcpu, base); + writel_relaxed(0, base + GICH_HCR); + } +} + +void vgic_v2_restore_state(struct kvm_vcpu *vcpu) +{ + struct vgic_v2_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v2; + void __iomem *base = kvm_vgic_global_state.vctrl_base; + u64 used_lrs = cpu_if->used_lrs; + int i; + + if (!base) + return; + + if (used_lrs) { + writel_relaxed(cpu_if->vgic_hcr, base + GICH_HCR); + for (i = 0; i < used_lrs; i++) { + writel_relaxed(cpu_if->vgic_lr[i], + base + GICH_LR0 + (i * 4)); + } + } +} + +void vgic_v2_load(struct kvm_vcpu *vcpu) +{ + struct vgic_v2_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v2; + + writel_relaxed(cpu_if->vgic_vmcr, + kvm_vgic_global_state.vctrl_base + GICH_VMCR); + writel_relaxed(cpu_if->vgic_apr, + kvm_vgic_global_state.vctrl_base + GICH_APR); +} + +void vgic_v2_vmcr_sync(struct kvm_vcpu *vcpu) +{ + struct vgic_v2_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v2; + + cpu_if->vgic_vmcr = readl_relaxed(kvm_vgic_global_state.vctrl_base + GICH_VMCR); +} + +void vgic_v2_put(struct kvm_vcpu *vcpu) +{ + struct vgic_v2_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v2; + + vgic_v2_vmcr_sync(vcpu); + cpu_if->vgic_apr = readl_relaxed(kvm_vgic_global_state.vctrl_base + GICH_APR); +} diff --git a/arch/arm64/kvm/vgic/vgic-v3.c b/arch/arm64/kvm/vgic/vgic-v3.c new file mode 100644 index 0000000000..3dfc8b84e0 --- /dev/null +++ b/arch/arm64/kvm/vgic/vgic-v3.c @@ -0,0 +1,760 @@ +// SPDX-License-Identifier: GPL-2.0-only + +#include <linux/irqchip/arm-gic-v3.h> +#include <linux/irq.h> +#include <linux/irqdomain.h> +#include <linux/kstrtox.h> +#include <linux/kvm.h> +#include <linux/kvm_host.h> +#include <kvm/arm_vgic.h> +#include <asm/kvm_hyp.h> +#include <asm/kvm_mmu.h> +#include <asm/kvm_asm.h> + +#include "vgic.h" + +static bool group0_trap; +static bool group1_trap; +static bool common_trap; +static bool dir_trap; +static bool gicv4_enable; + +void vgic_v3_set_underflow(struct kvm_vcpu *vcpu) +{ + struct vgic_v3_cpu_if *cpuif = &vcpu->arch.vgic_cpu.vgic_v3; + + cpuif->vgic_hcr |= ICH_HCR_UIE; +} + +static bool lr_signals_eoi_mi(u64 lr_val) +{ + return !(lr_val & ICH_LR_STATE) && (lr_val & ICH_LR_EOI) && + !(lr_val & ICH_LR_HW); +} + +void vgic_v3_fold_lr_state(struct kvm_vcpu *vcpu) +{ + struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu; + struct vgic_v3_cpu_if *cpuif = &vgic_cpu->vgic_v3; + u32 model = vcpu->kvm->arch.vgic.vgic_model; + int lr; + + DEBUG_SPINLOCK_BUG_ON(!irqs_disabled()); + + cpuif->vgic_hcr &= ~ICH_HCR_UIE; + + for (lr = 0; lr < cpuif->used_lrs; lr++) { + u64 val = cpuif->vgic_lr[lr]; + u32 intid, cpuid; + struct vgic_irq *irq; + bool is_v2_sgi = false; + bool deactivated; + + cpuid = val & GICH_LR_PHYSID_CPUID; + cpuid >>= GICH_LR_PHYSID_CPUID_SHIFT; + + if (model == KVM_DEV_TYPE_ARM_VGIC_V3) { + intid = val & ICH_LR_VIRTUAL_ID_MASK; + } else { + intid = val & GICH_LR_VIRTUALID; + is_v2_sgi = vgic_irq_is_sgi(intid); + } + + /* Notify fds when the guest EOI'ed a level-triggered IRQ */ + if (lr_signals_eoi_mi(val) && vgic_valid_spi(vcpu->kvm, intid)) + kvm_notify_acked_irq(vcpu->kvm, 0, + intid - VGIC_NR_PRIVATE_IRQS); + + irq = vgic_get_irq(vcpu->kvm, vcpu, intid); + if (!irq) /* An LPI could have been unmapped. */ + continue; + + raw_spin_lock(&irq->irq_lock); + + /* Always preserve the active bit, note deactivation */ + deactivated = irq->active && !(val & ICH_LR_ACTIVE_BIT); + irq->active = !!(val & ICH_LR_ACTIVE_BIT); + + if (irq->active && is_v2_sgi) + irq->active_source = cpuid; + + /* Edge is the only case where we preserve the pending bit */ + if (irq->config == VGIC_CONFIG_EDGE && + (val & ICH_LR_PENDING_BIT)) { + irq->pending_latch = true; + + if (is_v2_sgi) + irq->source |= (1 << cpuid); + } + + /* + * Clear soft pending state when level irqs have been acked. + */ + if (irq->config == VGIC_CONFIG_LEVEL && !(val & ICH_LR_STATE)) + irq->pending_latch = false; + + /* Handle resampling for mapped interrupts if required */ + vgic_irq_handle_resampling(irq, deactivated, val & ICH_LR_PENDING_BIT); + + raw_spin_unlock(&irq->irq_lock); + vgic_put_irq(vcpu->kvm, irq); + } + + cpuif->used_lrs = 0; +} + +/* Requires the irq to be locked already */ +void vgic_v3_populate_lr(struct kvm_vcpu *vcpu, struct vgic_irq *irq, int lr) +{ + u32 model = vcpu->kvm->arch.vgic.vgic_model; + u64 val = irq->intid; + bool allow_pending = true, is_v2_sgi; + + is_v2_sgi = (vgic_irq_is_sgi(irq->intid) && + model == KVM_DEV_TYPE_ARM_VGIC_V2); + + if (irq->active) { + val |= ICH_LR_ACTIVE_BIT; + if (is_v2_sgi) + val |= irq->active_source << GICH_LR_PHYSID_CPUID_SHIFT; + if (vgic_irq_is_multi_sgi(irq)) { + allow_pending = false; + val |= ICH_LR_EOI; + } + } + + if (irq->hw && !vgic_irq_needs_resampling(irq)) { + val |= ICH_LR_HW; + val |= ((u64)irq->hwintid) << ICH_LR_PHYS_ID_SHIFT; + /* + * Never set pending+active on a HW interrupt, as the + * pending state is kept at the physical distributor + * level. + */ + if (irq->active) + allow_pending = false; + } else { + if (irq->config == VGIC_CONFIG_LEVEL) { + val |= ICH_LR_EOI; + + /* + * Software resampling doesn't work very well + * if we allow P+A, so let's not do that. + */ + if (irq->active) + allow_pending = false; + } + } + + if (allow_pending && irq_is_pending(irq)) { + val |= ICH_LR_PENDING_BIT; + + if (irq->config == VGIC_CONFIG_EDGE) + irq->pending_latch = false; + + if (vgic_irq_is_sgi(irq->intid) && + model == KVM_DEV_TYPE_ARM_VGIC_V2) { + u32 src = ffs(irq->source); + + if (WARN_RATELIMIT(!src, "No SGI source for INTID %d\n", + irq->intid)) + return; + + val |= (src - 1) << GICH_LR_PHYSID_CPUID_SHIFT; + irq->source &= ~(1 << (src - 1)); + if (irq->source) { + irq->pending_latch = true; + val |= ICH_LR_EOI; + } + } + } + + /* + * Level-triggered mapped IRQs are special because we only observe + * rising edges as input to the VGIC. We therefore lower the line + * level here, so that we can take new virtual IRQs. See + * vgic_v3_fold_lr_state for more info. + */ + if (vgic_irq_is_mapped_level(irq) && (val & ICH_LR_PENDING_BIT)) + irq->line_level = false; + + if (irq->group) + val |= ICH_LR_GROUP; + + val |= (u64)irq->priority << ICH_LR_PRIORITY_SHIFT; + + vcpu->arch.vgic_cpu.vgic_v3.vgic_lr[lr] = val; +} + +void vgic_v3_clear_lr(struct kvm_vcpu *vcpu, int lr) +{ + vcpu->arch.vgic_cpu.vgic_v3.vgic_lr[lr] = 0; +} + +void vgic_v3_set_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcrp) +{ + struct vgic_v3_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v3; + u32 model = vcpu->kvm->arch.vgic.vgic_model; + u32 vmcr; + + if (model == KVM_DEV_TYPE_ARM_VGIC_V2) { + vmcr = (vmcrp->ackctl << ICH_VMCR_ACK_CTL_SHIFT) & + ICH_VMCR_ACK_CTL_MASK; + vmcr |= (vmcrp->fiqen << ICH_VMCR_FIQ_EN_SHIFT) & + ICH_VMCR_FIQ_EN_MASK; + } else { + /* + * When emulating GICv3 on GICv3 with SRE=1 on the + * VFIQEn bit is RES1 and the VAckCtl bit is RES0. + */ + vmcr = ICH_VMCR_FIQ_EN_MASK; + } + + vmcr |= (vmcrp->cbpr << ICH_VMCR_CBPR_SHIFT) & ICH_VMCR_CBPR_MASK; + vmcr |= (vmcrp->eoim << ICH_VMCR_EOIM_SHIFT) & ICH_VMCR_EOIM_MASK; + vmcr |= (vmcrp->abpr << ICH_VMCR_BPR1_SHIFT) & ICH_VMCR_BPR1_MASK; + vmcr |= (vmcrp->bpr << ICH_VMCR_BPR0_SHIFT) & ICH_VMCR_BPR0_MASK; + vmcr |= (vmcrp->pmr << ICH_VMCR_PMR_SHIFT) & ICH_VMCR_PMR_MASK; + vmcr |= (vmcrp->grpen0 << ICH_VMCR_ENG0_SHIFT) & ICH_VMCR_ENG0_MASK; + vmcr |= (vmcrp->grpen1 << ICH_VMCR_ENG1_SHIFT) & ICH_VMCR_ENG1_MASK; + + cpu_if->vgic_vmcr = vmcr; +} + +void vgic_v3_get_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcrp) +{ + struct vgic_v3_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v3; + u32 model = vcpu->kvm->arch.vgic.vgic_model; + u32 vmcr; + + vmcr = cpu_if->vgic_vmcr; + + if (model == KVM_DEV_TYPE_ARM_VGIC_V2) { + vmcrp->ackctl = (vmcr & ICH_VMCR_ACK_CTL_MASK) >> + ICH_VMCR_ACK_CTL_SHIFT; + vmcrp->fiqen = (vmcr & ICH_VMCR_FIQ_EN_MASK) >> + ICH_VMCR_FIQ_EN_SHIFT; + } else { + /* + * When emulating GICv3 on GICv3 with SRE=1 on the + * VFIQEn bit is RES1 and the VAckCtl bit is RES0. + */ + vmcrp->fiqen = 1; + vmcrp->ackctl = 0; + } + + vmcrp->cbpr = (vmcr & ICH_VMCR_CBPR_MASK) >> ICH_VMCR_CBPR_SHIFT; + vmcrp->eoim = (vmcr & ICH_VMCR_EOIM_MASK) >> ICH_VMCR_EOIM_SHIFT; + vmcrp->abpr = (vmcr & ICH_VMCR_BPR1_MASK) >> ICH_VMCR_BPR1_SHIFT; + vmcrp->bpr = (vmcr & ICH_VMCR_BPR0_MASK) >> ICH_VMCR_BPR0_SHIFT; + vmcrp->pmr = (vmcr & ICH_VMCR_PMR_MASK) >> ICH_VMCR_PMR_SHIFT; + vmcrp->grpen0 = (vmcr & ICH_VMCR_ENG0_MASK) >> ICH_VMCR_ENG0_SHIFT; + vmcrp->grpen1 = (vmcr & ICH_VMCR_ENG1_MASK) >> ICH_VMCR_ENG1_SHIFT; +} + +#define INITIAL_PENDBASER_VALUE \ + (GIC_BASER_CACHEABILITY(GICR_PENDBASER, INNER, RaWb) | \ + GIC_BASER_CACHEABILITY(GICR_PENDBASER, OUTER, SameAsInner) | \ + GIC_BASER_SHAREABILITY(GICR_PENDBASER, InnerShareable)) + +void vgic_v3_enable(struct kvm_vcpu *vcpu) +{ + struct vgic_v3_cpu_if *vgic_v3 = &vcpu->arch.vgic_cpu.vgic_v3; + + /* + * By forcing VMCR to zero, the GIC will restore the binary + * points to their reset values. Anything else resets to zero + * anyway. + */ + vgic_v3->vgic_vmcr = 0; + + /* + * If we are emulating a GICv3, we do it in an non-GICv2-compatible + * way, so we force SRE to 1 to demonstrate this to the guest. + * Also, we don't support any form of IRQ/FIQ bypass. + * This goes with the spec allowing the value to be RAO/WI. + */ + if (vcpu->kvm->arch.vgic.vgic_model == KVM_DEV_TYPE_ARM_VGIC_V3) { + vgic_v3->vgic_sre = (ICC_SRE_EL1_DIB | + ICC_SRE_EL1_DFB | + ICC_SRE_EL1_SRE); + vcpu->arch.vgic_cpu.pendbaser = INITIAL_PENDBASER_VALUE; + } else { + vgic_v3->vgic_sre = 0; + } + + vcpu->arch.vgic_cpu.num_id_bits = (kvm_vgic_global_state.ich_vtr_el2 & + ICH_VTR_ID_BITS_MASK) >> + ICH_VTR_ID_BITS_SHIFT; + vcpu->arch.vgic_cpu.num_pri_bits = ((kvm_vgic_global_state.ich_vtr_el2 & + ICH_VTR_PRI_BITS_MASK) >> + ICH_VTR_PRI_BITS_SHIFT) + 1; + + /* Get the show on the road... */ + vgic_v3->vgic_hcr = ICH_HCR_EN; + if (group0_trap) + vgic_v3->vgic_hcr |= ICH_HCR_TALL0; + if (group1_trap) + vgic_v3->vgic_hcr |= ICH_HCR_TALL1; + if (common_trap) + vgic_v3->vgic_hcr |= ICH_HCR_TC; + if (dir_trap) + vgic_v3->vgic_hcr |= ICH_HCR_TDIR; +} + +int vgic_v3_lpi_sync_pending_status(struct kvm *kvm, struct vgic_irq *irq) +{ + struct kvm_vcpu *vcpu; + int byte_offset, bit_nr; + gpa_t pendbase, ptr; + bool status; + u8 val; + int ret; + unsigned long flags; + +retry: + vcpu = irq->target_vcpu; + if (!vcpu) + return 0; + + pendbase = GICR_PENDBASER_ADDRESS(vcpu->arch.vgic_cpu.pendbaser); + + byte_offset = irq->intid / BITS_PER_BYTE; + bit_nr = irq->intid % BITS_PER_BYTE; + ptr = pendbase + byte_offset; + + ret = kvm_read_guest_lock(kvm, ptr, &val, 1); + if (ret) + return ret; + + status = val & (1 << bit_nr); + + raw_spin_lock_irqsave(&irq->irq_lock, flags); + if (irq->target_vcpu != vcpu) { + raw_spin_unlock_irqrestore(&irq->irq_lock, flags); + goto retry; + } + irq->pending_latch = status; + vgic_queue_irq_unlock(vcpu->kvm, irq, flags); + + if (status) { + /* clear consumed data */ + val &= ~(1 << bit_nr); + ret = vgic_write_guest_lock(kvm, ptr, &val, 1); + if (ret) + return ret; + } + return 0; +} + +/* + * The deactivation of the doorbell interrupt will trigger the + * unmapping of the associated vPE. + */ +static void unmap_all_vpes(struct kvm *kvm) +{ + struct vgic_dist *dist = &kvm->arch.vgic; + int i; + + for (i = 0; i < dist->its_vm.nr_vpes; i++) + free_irq(dist->its_vm.vpes[i]->irq, kvm_get_vcpu(kvm, i)); +} + +static void map_all_vpes(struct kvm *kvm) +{ + struct vgic_dist *dist = &kvm->arch.vgic; + int i; + + for (i = 0; i < dist->its_vm.nr_vpes; i++) + WARN_ON(vgic_v4_request_vpe_irq(kvm_get_vcpu(kvm, i), + dist->its_vm.vpes[i]->irq)); +} + +/** + * vgic_v3_save_pending_tables - Save the pending tables into guest RAM + * kvm lock and all vcpu lock must be held + */ +int vgic_v3_save_pending_tables(struct kvm *kvm) +{ + struct vgic_dist *dist = &kvm->arch.vgic; + struct vgic_irq *irq; + gpa_t last_ptr = ~(gpa_t)0; + bool vlpi_avail = false; + int ret = 0; + u8 val; + + if (unlikely(!vgic_initialized(kvm))) + return -ENXIO; + + /* + * A preparation for getting any VLPI states. + * The above vgic initialized check also ensures that the allocation + * and enabling of the doorbells have already been done. + */ + if (kvm_vgic_global_state.has_gicv4_1) { + unmap_all_vpes(kvm); + vlpi_avail = true; + } + + list_for_each_entry(irq, &dist->lpi_list_head, lpi_list) { + int byte_offset, bit_nr; + struct kvm_vcpu *vcpu; + gpa_t pendbase, ptr; + bool is_pending; + bool stored; + + vcpu = irq->target_vcpu; + if (!vcpu) + continue; + + pendbase = GICR_PENDBASER_ADDRESS(vcpu->arch.vgic_cpu.pendbaser); + + byte_offset = irq->intid / BITS_PER_BYTE; + bit_nr = irq->intid % BITS_PER_BYTE; + ptr = pendbase + byte_offset; + + if (ptr != last_ptr) { + ret = kvm_read_guest_lock(kvm, ptr, &val, 1); + if (ret) + goto out; + last_ptr = ptr; + } + + stored = val & (1U << bit_nr); + + is_pending = irq->pending_latch; + + if (irq->hw && vlpi_avail) + vgic_v4_get_vlpi_state(irq, &is_pending); + + if (stored == is_pending) + continue; + + if (is_pending) + val |= 1 << bit_nr; + else + val &= ~(1 << bit_nr); + + ret = vgic_write_guest_lock(kvm, ptr, &val, 1); + if (ret) + goto out; + } + +out: + if (vlpi_avail) + map_all_vpes(kvm); + + return ret; +} + +/** + * vgic_v3_rdist_overlap - check if a region overlaps with any + * existing redistributor region + * + * @kvm: kvm handle + * @base: base of the region + * @size: size of region + * + * Return: true if there is an overlap + */ +bool vgic_v3_rdist_overlap(struct kvm *kvm, gpa_t base, size_t size) +{ + struct vgic_dist *d = &kvm->arch.vgic; + struct vgic_redist_region *rdreg; + + list_for_each_entry(rdreg, &d->rd_regions, list) { + if ((base + size > rdreg->base) && + (base < rdreg->base + vgic_v3_rd_region_size(kvm, rdreg))) + return true; + } + return false; +} + +/* + * Check for overlapping regions and for regions crossing the end of memory + * for base addresses which have already been set. + */ +bool vgic_v3_check_base(struct kvm *kvm) +{ + struct vgic_dist *d = &kvm->arch.vgic; + struct vgic_redist_region *rdreg; + + if (!IS_VGIC_ADDR_UNDEF(d->vgic_dist_base) && + d->vgic_dist_base + KVM_VGIC_V3_DIST_SIZE < d->vgic_dist_base) + return false; + + list_for_each_entry(rdreg, &d->rd_regions, list) { + size_t sz = vgic_v3_rd_region_size(kvm, rdreg); + + if (vgic_check_iorange(kvm, VGIC_ADDR_UNDEF, + rdreg->base, SZ_64K, sz)) + return false; + } + + if (IS_VGIC_ADDR_UNDEF(d->vgic_dist_base)) + return true; + + return !vgic_v3_rdist_overlap(kvm, d->vgic_dist_base, + KVM_VGIC_V3_DIST_SIZE); +} + +/** + * vgic_v3_rdist_free_slot - Look up registered rdist regions and identify one + * which has free space to put a new rdist region. + * + * @rd_regions: redistributor region list head + * + * A redistributor regions maps n redistributors, n = region size / (2 x 64kB). + * Stride between redistributors is 0 and regions are filled in the index order. + * + * Return: the redist region handle, if any, that has space to map a new rdist + * region. + */ +struct vgic_redist_region *vgic_v3_rdist_free_slot(struct list_head *rd_regions) +{ + struct vgic_redist_region *rdreg; + + list_for_each_entry(rdreg, rd_regions, list) { + if (!vgic_v3_redist_region_full(rdreg)) + return rdreg; + } + return NULL; +} + +struct vgic_redist_region *vgic_v3_rdist_region_from_index(struct kvm *kvm, + u32 index) +{ + struct list_head *rd_regions = &kvm->arch.vgic.rd_regions; + struct vgic_redist_region *rdreg; + + list_for_each_entry(rdreg, rd_regions, list) { + if (rdreg->index == index) + return rdreg; + } + return NULL; +} + + +int vgic_v3_map_resources(struct kvm *kvm) +{ + struct vgic_dist *dist = &kvm->arch.vgic; + struct kvm_vcpu *vcpu; + unsigned long c; + + kvm_for_each_vcpu(c, vcpu, kvm) { + struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu; + + if (IS_VGIC_ADDR_UNDEF(vgic_cpu->rd_iodev.base_addr)) { + kvm_debug("vcpu %ld redistributor base not set\n", c); + return -ENXIO; + } + } + + if (IS_VGIC_ADDR_UNDEF(dist->vgic_dist_base)) { + kvm_debug("Need to set vgic distributor addresses first\n"); + return -ENXIO; + } + + if (!vgic_v3_check_base(kvm)) { + kvm_debug("VGIC redist and dist frames overlap\n"); + return -EINVAL; + } + + /* + * For a VGICv3 we require the userland to explicitly initialize + * the VGIC before we need to use it. + */ + if (!vgic_initialized(kvm)) { + return -EBUSY; + } + + if (kvm_vgic_global_state.has_gicv4_1) + vgic_v4_configure_vsgis(kvm); + + return 0; +} + +DEFINE_STATIC_KEY_FALSE(vgic_v3_cpuif_trap); + +static int __init early_group0_trap_cfg(char *buf) +{ + return kstrtobool(buf, &group0_trap); +} +early_param("kvm-arm.vgic_v3_group0_trap", early_group0_trap_cfg); + +static int __init early_group1_trap_cfg(char *buf) +{ + return kstrtobool(buf, &group1_trap); +} +early_param("kvm-arm.vgic_v3_group1_trap", early_group1_trap_cfg); + +static int __init early_common_trap_cfg(char *buf) +{ + return kstrtobool(buf, &common_trap); +} +early_param("kvm-arm.vgic_v3_common_trap", early_common_trap_cfg); + +static int __init early_gicv4_enable(char *buf) +{ + return kstrtobool(buf, &gicv4_enable); +} +early_param("kvm-arm.vgic_v4_enable", early_gicv4_enable); + +static const struct midr_range broken_seis[] = { + MIDR_ALL_VERSIONS(MIDR_APPLE_M1_ICESTORM), + MIDR_ALL_VERSIONS(MIDR_APPLE_M1_FIRESTORM), + MIDR_ALL_VERSIONS(MIDR_APPLE_M1_ICESTORM_PRO), + MIDR_ALL_VERSIONS(MIDR_APPLE_M1_FIRESTORM_PRO), + MIDR_ALL_VERSIONS(MIDR_APPLE_M1_ICESTORM_MAX), + MIDR_ALL_VERSIONS(MIDR_APPLE_M1_FIRESTORM_MAX), + MIDR_ALL_VERSIONS(MIDR_APPLE_M2_BLIZZARD), + MIDR_ALL_VERSIONS(MIDR_APPLE_M2_AVALANCHE), + MIDR_ALL_VERSIONS(MIDR_APPLE_M2_BLIZZARD_PRO), + MIDR_ALL_VERSIONS(MIDR_APPLE_M2_AVALANCHE_PRO), + MIDR_ALL_VERSIONS(MIDR_APPLE_M2_BLIZZARD_MAX), + MIDR_ALL_VERSIONS(MIDR_APPLE_M2_AVALANCHE_MAX), + {}, +}; + +static bool vgic_v3_broken_seis(void) +{ + return ((kvm_vgic_global_state.ich_vtr_el2 & ICH_VTR_SEIS_MASK) && + is_midr_in_range_list(read_cpuid_id(), broken_seis)); +} + +/** + * vgic_v3_probe - probe for a VGICv3 compatible interrupt controller + * @info: pointer to the GIC description + * + * Returns 0 if the VGICv3 has been probed successfully, returns an error code + * otherwise + */ +int vgic_v3_probe(const struct gic_kvm_info *info) +{ + u64 ich_vtr_el2 = kvm_call_hyp_ret(__vgic_v3_get_gic_config); + bool has_v2; + int ret; + + has_v2 = ich_vtr_el2 >> 63; + ich_vtr_el2 = (u32)ich_vtr_el2; + + /* + * The ListRegs field is 5 bits, but there is an architectural + * maximum of 16 list registers. Just ignore bit 4... + */ + kvm_vgic_global_state.nr_lr = (ich_vtr_el2 & 0xf) + 1; + kvm_vgic_global_state.can_emulate_gicv2 = false; + kvm_vgic_global_state.ich_vtr_el2 = ich_vtr_el2; + + /* GICv4 support? */ + if (info->has_v4) { + kvm_vgic_global_state.has_gicv4 = gicv4_enable; + kvm_vgic_global_state.has_gicv4_1 = info->has_v4_1 && gicv4_enable; + kvm_info("GICv4%s support %sabled\n", + kvm_vgic_global_state.has_gicv4_1 ? ".1" : "", + gicv4_enable ? "en" : "dis"); + } + + kvm_vgic_global_state.vcpu_base = 0; + + if (!info->vcpu.start) { + kvm_info("GICv3: no GICV resource entry\n"); + } else if (!has_v2) { + pr_warn(FW_BUG "CPU interface incapable of MMIO access\n"); + } else if (!PAGE_ALIGNED(info->vcpu.start)) { + pr_warn("GICV physical address 0x%llx not page aligned\n", + (unsigned long long)info->vcpu.start); + } else if (kvm_get_mode() != KVM_MODE_PROTECTED) { + kvm_vgic_global_state.vcpu_base = info->vcpu.start; + kvm_vgic_global_state.can_emulate_gicv2 = true; + ret = kvm_register_vgic_device(KVM_DEV_TYPE_ARM_VGIC_V2); + if (ret) { + kvm_err("Cannot register GICv2 KVM device.\n"); + return ret; + } + kvm_info("vgic-v2@%llx\n", info->vcpu.start); + } + ret = kvm_register_vgic_device(KVM_DEV_TYPE_ARM_VGIC_V3); + if (ret) { + kvm_err("Cannot register GICv3 KVM device.\n"); + kvm_unregister_device_ops(KVM_DEV_TYPE_ARM_VGIC_V2); + return ret; + } + + if (kvm_vgic_global_state.vcpu_base == 0) + kvm_info("disabling GICv2 emulation\n"); + + if (cpus_have_const_cap(ARM64_WORKAROUND_CAVIUM_30115)) { + group0_trap = true; + group1_trap = true; + } + + if (vgic_v3_broken_seis()) { + kvm_info("GICv3 with broken locally generated SEI\n"); + + kvm_vgic_global_state.ich_vtr_el2 &= ~ICH_VTR_SEIS_MASK; + group0_trap = true; + group1_trap = true; + if (ich_vtr_el2 & ICH_VTR_TDS_MASK) + dir_trap = true; + else + common_trap = true; + } + + if (group0_trap || group1_trap || common_trap | dir_trap) { + kvm_info("GICv3 sysreg trapping enabled ([%s%s%s%s], reduced performance)\n", + group0_trap ? "G0" : "", + group1_trap ? "G1" : "", + common_trap ? "C" : "", + dir_trap ? "D" : ""); + static_branch_enable(&vgic_v3_cpuif_trap); + } + + kvm_vgic_global_state.vctrl_base = NULL; + kvm_vgic_global_state.type = VGIC_V3; + kvm_vgic_global_state.max_gic_vcpus = VGIC_V3_MAX_CPUS; + + return 0; +} + +void vgic_v3_load(struct kvm_vcpu *vcpu) +{ + struct vgic_v3_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v3; + + /* + * If dealing with a GICv2 emulation on GICv3, VMCR_EL2.VFIQen + * is dependent on ICC_SRE_EL1.SRE, and we have to perform the + * VMCR_EL2 save/restore in the world switch. + */ + if (likely(cpu_if->vgic_sre)) + kvm_call_hyp(__vgic_v3_write_vmcr, cpu_if->vgic_vmcr); + + kvm_call_hyp(__vgic_v3_restore_aprs, cpu_if); + + if (has_vhe()) + __vgic_v3_activate_traps(cpu_if); + + WARN_ON(vgic_v4_load(vcpu)); +} + +void vgic_v3_vmcr_sync(struct kvm_vcpu *vcpu) +{ + struct vgic_v3_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v3; + + if (likely(cpu_if->vgic_sre)) + cpu_if->vgic_vmcr = kvm_call_hyp_ret(__vgic_v3_read_vmcr); +} + +void vgic_v3_put(struct kvm_vcpu *vcpu) +{ + struct vgic_v3_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v3; + + WARN_ON(vgic_v4_put(vcpu)); + + vgic_v3_vmcr_sync(vcpu); + + kvm_call_hyp(__vgic_v3_save_aprs, cpu_if); + + if (has_vhe()) + __vgic_v3_deactivate_traps(cpu_if); +} diff --git a/arch/arm64/kvm/vgic/vgic-v4.c b/arch/arm64/kvm/vgic/vgic-v4.c new file mode 100644 index 0000000000..339a55194b --- /dev/null +++ b/arch/arm64/kvm/vgic/vgic-v4.c @@ -0,0 +1,521 @@ +// SPDX-License-Identifier: GPL-2.0-only +/* + * Copyright (C) 2017 ARM Ltd. + * Author: Marc Zyngier <marc.zyngier@arm.com> + */ + +#include <linux/interrupt.h> +#include <linux/irq.h> +#include <linux/irqdomain.h> +#include <linux/kvm_host.h> +#include <linux/irqchip/arm-gic-v3.h> + +#include "vgic.h" + +/* + * How KVM uses GICv4 (insert rude comments here): + * + * The vgic-v4 layer acts as a bridge between several entities: + * - The GICv4 ITS representation offered by the ITS driver + * - VFIO, which is in charge of the PCI endpoint + * - The virtual ITS, which is the only thing the guest sees + * + * The configuration of VLPIs is triggered by a callback from VFIO, + * instructing KVM that a PCI device has been configured to deliver + * MSIs to a vITS. + * + * kvm_vgic_v4_set_forwarding() is thus called with the routing entry, + * and this is used to find the corresponding vITS data structures + * (ITS instance, device, event and irq) using a process that is + * extremely similar to the injection of an MSI. + * + * At this stage, we can link the guest's view of an LPI (uniquely + * identified by the routing entry) and the host irq, using the GICv4 + * driver mapping operation. Should the mapping succeed, we've then + * successfully upgraded the guest's LPI to a VLPI. We can then start + * with updating GICv4's view of the property table and generating an + * INValidation in order to kickstart the delivery of this VLPI to the + * guest directly, without software intervention. Well, almost. + * + * When the PCI endpoint is deconfigured, this operation is reversed + * with VFIO calling kvm_vgic_v4_unset_forwarding(). + * + * Once the VLPI has been mapped, it needs to follow any change the + * guest performs on its LPI through the vITS. For that, a number of + * command handlers have hooks to communicate these changes to the HW: + * - Any invalidation triggers a call to its_prop_update_vlpi() + * - The INT command results in a irq_set_irqchip_state(), which + * generates an INT on the corresponding VLPI. + * - The CLEAR command results in a irq_set_irqchip_state(), which + * generates an CLEAR on the corresponding VLPI. + * - DISCARD translates into an unmap, similar to a call to + * kvm_vgic_v4_unset_forwarding(). + * - MOVI is translated by an update of the existing mapping, changing + * the target vcpu, resulting in a VMOVI being generated. + * - MOVALL is translated by a string of mapping updates (similar to + * the handling of MOVI). MOVALL is horrible. + * + * Note that a DISCARD/MAPTI sequence emitted from the guest without + * reprogramming the PCI endpoint after MAPTI does not result in a + * VLPI being mapped, as there is no callback from VFIO (the guest + * will get the interrupt via the normal SW injection). Fixing this is + * not trivial, and requires some horrible messing with the VFIO + * internals. Not fun. Don't do that. + * + * Then there is the scheduling. Each time a vcpu is about to run on a + * physical CPU, KVM must tell the corresponding redistributor about + * it. And if we've migrated our vcpu from one CPU to another, we must + * tell the ITS (so that the messages reach the right redistributor). + * This is done in two steps: first issue a irq_set_affinity() on the + * irq corresponding to the vcpu, then call its_make_vpe_resident(). + * You must be in a non-preemptible context. On exit, a call to + * its_make_vpe_non_resident() tells the redistributor that we're done + * with the vcpu. + * + * Finally, the doorbell handling: Each vcpu is allocated an interrupt + * which will fire each time a VLPI is made pending whilst the vcpu is + * not running. Each time the vcpu gets blocked, the doorbell + * interrupt gets enabled. When the vcpu is unblocked (for whatever + * reason), the doorbell interrupt is disabled. + */ + +#define DB_IRQ_FLAGS (IRQ_NOAUTOEN | IRQ_DISABLE_UNLAZY | IRQ_NO_BALANCING) + +static irqreturn_t vgic_v4_doorbell_handler(int irq, void *info) +{ + struct kvm_vcpu *vcpu = info; + + /* We got the message, no need to fire again */ + if (!kvm_vgic_global_state.has_gicv4_1 && + !irqd_irq_disabled(&irq_to_desc(irq)->irq_data)) + disable_irq_nosync(irq); + + /* + * The v4.1 doorbell can fire concurrently with the vPE being + * made non-resident. Ensure we only update pending_last + * *after* the non-residency sequence has completed. + */ + raw_spin_lock(&vcpu->arch.vgic_cpu.vgic_v3.its_vpe.vpe_lock); + vcpu->arch.vgic_cpu.vgic_v3.its_vpe.pending_last = true; + raw_spin_unlock(&vcpu->arch.vgic_cpu.vgic_v3.its_vpe.vpe_lock); + + kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu); + kvm_vcpu_kick(vcpu); + + return IRQ_HANDLED; +} + +static void vgic_v4_sync_sgi_config(struct its_vpe *vpe, struct vgic_irq *irq) +{ + vpe->sgi_config[irq->intid].enabled = irq->enabled; + vpe->sgi_config[irq->intid].group = irq->group; + vpe->sgi_config[irq->intid].priority = irq->priority; +} + +static void vgic_v4_enable_vsgis(struct kvm_vcpu *vcpu) +{ + struct its_vpe *vpe = &vcpu->arch.vgic_cpu.vgic_v3.its_vpe; + int i; + + /* + * With GICv4.1, every virtual SGI can be directly injected. So + * let's pretend that they are HW interrupts, tied to a host + * IRQ. The SGI code will do its magic. + */ + for (i = 0; i < VGIC_NR_SGIS; i++) { + struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, i); + struct irq_desc *desc; + unsigned long flags; + int ret; + + raw_spin_lock_irqsave(&irq->irq_lock, flags); + + if (irq->hw) + goto unlock; + + irq->hw = true; + irq->host_irq = irq_find_mapping(vpe->sgi_domain, i); + + /* Transfer the full irq state to the vPE */ + vgic_v4_sync_sgi_config(vpe, irq); + desc = irq_to_desc(irq->host_irq); + ret = irq_domain_activate_irq(irq_desc_get_irq_data(desc), + false); + if (!WARN_ON(ret)) { + /* Transfer pending state */ + ret = irq_set_irqchip_state(irq->host_irq, + IRQCHIP_STATE_PENDING, + irq->pending_latch); + WARN_ON(ret); + irq->pending_latch = false; + } + unlock: + raw_spin_unlock_irqrestore(&irq->irq_lock, flags); + vgic_put_irq(vcpu->kvm, irq); + } +} + +static void vgic_v4_disable_vsgis(struct kvm_vcpu *vcpu) +{ + int i; + + for (i = 0; i < VGIC_NR_SGIS; i++) { + struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, i); + struct irq_desc *desc; + unsigned long flags; + int ret; + + raw_spin_lock_irqsave(&irq->irq_lock, flags); + + if (!irq->hw) + goto unlock; + + irq->hw = false; + ret = irq_get_irqchip_state(irq->host_irq, + IRQCHIP_STATE_PENDING, + &irq->pending_latch); + WARN_ON(ret); + + desc = irq_to_desc(irq->host_irq); + irq_domain_deactivate_irq(irq_desc_get_irq_data(desc)); + unlock: + raw_spin_unlock_irqrestore(&irq->irq_lock, flags); + vgic_put_irq(vcpu->kvm, irq); + } +} + +void vgic_v4_configure_vsgis(struct kvm *kvm) +{ + struct vgic_dist *dist = &kvm->arch.vgic; + struct kvm_vcpu *vcpu; + unsigned long i; + + lockdep_assert_held(&kvm->arch.config_lock); + + kvm_arm_halt_guest(kvm); + + kvm_for_each_vcpu(i, vcpu, kvm) { + if (dist->nassgireq) + vgic_v4_enable_vsgis(vcpu); + else + vgic_v4_disable_vsgis(vcpu); + } + + kvm_arm_resume_guest(kvm); +} + +/* + * Must be called with GICv4.1 and the vPE unmapped, which + * indicates the invalidation of any VPT caches associated + * with the vPE, thus we can get the VLPI state by peeking + * at the VPT. + */ +void vgic_v4_get_vlpi_state(struct vgic_irq *irq, bool *val) +{ + struct its_vpe *vpe = &irq->target_vcpu->arch.vgic_cpu.vgic_v3.its_vpe; + int mask = BIT(irq->intid % BITS_PER_BYTE); + void *va; + u8 *ptr; + + va = page_address(vpe->vpt_page); + ptr = va + irq->intid / BITS_PER_BYTE; + + *val = !!(*ptr & mask); +} + +int vgic_v4_request_vpe_irq(struct kvm_vcpu *vcpu, int irq) +{ + return request_irq(irq, vgic_v4_doorbell_handler, 0, "vcpu", vcpu); +} + +/** + * vgic_v4_init - Initialize the GICv4 data structures + * @kvm: Pointer to the VM being initialized + * + * We may be called each time a vITS is created, or when the + * vgic is initialized. In both cases, the number of vcpus + * should now be fixed. + */ +int vgic_v4_init(struct kvm *kvm) +{ + struct vgic_dist *dist = &kvm->arch.vgic; + struct kvm_vcpu *vcpu; + int nr_vcpus, ret; + unsigned long i; + + lockdep_assert_held(&kvm->arch.config_lock); + + if (!kvm_vgic_global_state.has_gicv4) + return 0; /* Nothing to see here... move along. */ + + if (dist->its_vm.vpes) + return 0; + + nr_vcpus = atomic_read(&kvm->online_vcpus); + + dist->its_vm.vpes = kcalloc(nr_vcpus, sizeof(*dist->its_vm.vpes), + GFP_KERNEL_ACCOUNT); + if (!dist->its_vm.vpes) + return -ENOMEM; + + dist->its_vm.nr_vpes = nr_vcpus; + + kvm_for_each_vcpu(i, vcpu, kvm) + dist->its_vm.vpes[i] = &vcpu->arch.vgic_cpu.vgic_v3.its_vpe; + + ret = its_alloc_vcpu_irqs(&dist->its_vm); + if (ret < 0) { + kvm_err("VPE IRQ allocation failure\n"); + kfree(dist->its_vm.vpes); + dist->its_vm.nr_vpes = 0; + dist->its_vm.vpes = NULL; + return ret; + } + + kvm_for_each_vcpu(i, vcpu, kvm) { + int irq = dist->its_vm.vpes[i]->irq; + unsigned long irq_flags = DB_IRQ_FLAGS; + + /* + * Don't automatically enable the doorbell, as we're + * flipping it back and forth when the vcpu gets + * blocked. Also disable the lazy disabling, as the + * doorbell could kick us out of the guest too + * early... + * + * On GICv4.1, the doorbell is managed in HW and must + * be left enabled. + */ + if (kvm_vgic_global_state.has_gicv4_1) + irq_flags &= ~IRQ_NOAUTOEN; + irq_set_status_flags(irq, irq_flags); + + ret = vgic_v4_request_vpe_irq(vcpu, irq); + if (ret) { + kvm_err("failed to allocate vcpu IRQ%d\n", irq); + /* + * Trick: adjust the number of vpes so we know + * how many to nuke on teardown... + */ + dist->its_vm.nr_vpes = i; + break; + } + } + + if (ret) + vgic_v4_teardown(kvm); + + return ret; +} + +/** + * vgic_v4_teardown - Free the GICv4 data structures + * @kvm: Pointer to the VM being destroyed + */ +void vgic_v4_teardown(struct kvm *kvm) +{ + struct its_vm *its_vm = &kvm->arch.vgic.its_vm; + int i; + + lockdep_assert_held(&kvm->arch.config_lock); + + if (!its_vm->vpes) + return; + + for (i = 0; i < its_vm->nr_vpes; i++) { + struct kvm_vcpu *vcpu = kvm_get_vcpu(kvm, i); + int irq = its_vm->vpes[i]->irq; + + irq_clear_status_flags(irq, DB_IRQ_FLAGS); + free_irq(irq, vcpu); + } + + its_free_vcpu_irqs(its_vm); + kfree(its_vm->vpes); + its_vm->nr_vpes = 0; + its_vm->vpes = NULL; +} + +int vgic_v4_put(struct kvm_vcpu *vcpu) +{ + struct its_vpe *vpe = &vcpu->arch.vgic_cpu.vgic_v3.its_vpe; + + if (!vgic_supports_direct_msis(vcpu->kvm) || !vpe->resident) + return 0; + + return its_make_vpe_non_resident(vpe, !!vcpu_get_flag(vcpu, IN_WFI)); +} + +int vgic_v4_load(struct kvm_vcpu *vcpu) +{ + struct its_vpe *vpe = &vcpu->arch.vgic_cpu.vgic_v3.its_vpe; + int err; + + if (!vgic_supports_direct_msis(vcpu->kvm) || vpe->resident) + return 0; + + if (vcpu_get_flag(vcpu, IN_WFI)) + return 0; + + /* + * Before making the VPE resident, make sure the redistributor + * corresponding to our current CPU expects us here. See the + * doc in drivers/irqchip/irq-gic-v4.c to understand how this + * turns into a VMOVP command at the ITS level. + */ + err = irq_set_affinity(vpe->irq, cpumask_of(smp_processor_id())); + if (err) + return err; + + err = its_make_vpe_resident(vpe, false, vcpu->kvm->arch.vgic.enabled); + if (err) + return err; + + /* + * Now that the VPE is resident, let's get rid of a potential + * doorbell interrupt that would still be pending. This is a + * GICv4.0 only "feature"... + */ + if (!kvm_vgic_global_state.has_gicv4_1) + err = irq_set_irqchip_state(vpe->irq, IRQCHIP_STATE_PENDING, false); + + return err; +} + +void vgic_v4_commit(struct kvm_vcpu *vcpu) +{ + struct its_vpe *vpe = &vcpu->arch.vgic_cpu.vgic_v3.its_vpe; + + /* + * No need to wait for the vPE to be ready across a shallow guest + * exit, as only a vcpu_put will invalidate it. + */ + if (!vpe->ready) + its_commit_vpe(vpe); +} + +static struct vgic_its *vgic_get_its(struct kvm *kvm, + struct kvm_kernel_irq_routing_entry *irq_entry) +{ + struct kvm_msi msi = (struct kvm_msi) { + .address_lo = irq_entry->msi.address_lo, + .address_hi = irq_entry->msi.address_hi, + .data = irq_entry->msi.data, + .flags = irq_entry->msi.flags, + .devid = irq_entry->msi.devid, + }; + + return vgic_msi_to_its(kvm, &msi); +} + +int kvm_vgic_v4_set_forwarding(struct kvm *kvm, int virq, + struct kvm_kernel_irq_routing_entry *irq_entry) +{ + struct vgic_its *its; + struct vgic_irq *irq; + struct its_vlpi_map map; + unsigned long flags; + int ret; + + if (!vgic_supports_direct_msis(kvm)) + return 0; + + /* + * Get the ITS, and escape early on error (not a valid + * doorbell for any of our vITSs). + */ + its = vgic_get_its(kvm, irq_entry); + if (IS_ERR(its)) + return 0; + + mutex_lock(&its->its_lock); + + /* Perform the actual DevID/EventID -> LPI translation. */ + ret = vgic_its_resolve_lpi(kvm, its, irq_entry->msi.devid, + irq_entry->msi.data, &irq); + if (ret) + goto out; + + /* + * Emit the mapping request. If it fails, the ITS probably + * isn't v4 compatible, so let's silently bail out. Holding + * the ITS lock should ensure that nothing can modify the + * target vcpu. + */ + map = (struct its_vlpi_map) { + .vm = &kvm->arch.vgic.its_vm, + .vpe = &irq->target_vcpu->arch.vgic_cpu.vgic_v3.its_vpe, + .vintid = irq->intid, + .properties = ((irq->priority & 0xfc) | + (irq->enabled ? LPI_PROP_ENABLED : 0) | + LPI_PROP_GROUP1), + .db_enabled = true, + }; + + ret = its_map_vlpi(virq, &map); + if (ret) + goto out; + + irq->hw = true; + irq->host_irq = virq; + atomic_inc(&map.vpe->vlpi_count); + + /* Transfer pending state */ + raw_spin_lock_irqsave(&irq->irq_lock, flags); + if (irq->pending_latch) { + ret = irq_set_irqchip_state(irq->host_irq, + IRQCHIP_STATE_PENDING, + irq->pending_latch); + WARN_RATELIMIT(ret, "IRQ %d", irq->host_irq); + + /* + * Clear pending_latch and communicate this state + * change via vgic_queue_irq_unlock. + */ + irq->pending_latch = false; + vgic_queue_irq_unlock(kvm, irq, flags); + } else { + raw_spin_unlock_irqrestore(&irq->irq_lock, flags); + } + +out: + mutex_unlock(&its->its_lock); + return ret; +} + +int kvm_vgic_v4_unset_forwarding(struct kvm *kvm, int virq, + struct kvm_kernel_irq_routing_entry *irq_entry) +{ + struct vgic_its *its; + struct vgic_irq *irq; + int ret; + + if (!vgic_supports_direct_msis(kvm)) + return 0; + + /* + * Get the ITS, and escape early on error (not a valid + * doorbell for any of our vITSs). + */ + its = vgic_get_its(kvm, irq_entry); + if (IS_ERR(its)) + return 0; + + mutex_lock(&its->its_lock); + + ret = vgic_its_resolve_lpi(kvm, its, irq_entry->msi.devid, + irq_entry->msi.data, &irq); + if (ret) + goto out; + + WARN_ON(!(irq->hw && irq->host_irq == virq)); + if (irq->hw) { + atomic_dec(&irq->target_vcpu->arch.vgic_cpu.vgic_v3.its_vpe.vlpi_count); + irq->hw = false; + ret = its_unmap_vlpi(virq); + } + +out: + mutex_unlock(&its->its_lock); + return ret; +} diff --git a/arch/arm64/kvm/vgic/vgic.c b/arch/arm64/kvm/vgic/vgic.c new file mode 100644 index 0000000000..8be4c1ebde --- /dev/null +++ b/arch/arm64/kvm/vgic/vgic.c @@ -0,0 +1,1078 @@ +// SPDX-License-Identifier: GPL-2.0-only +/* + * Copyright (C) 2015, 2016 ARM Ltd. + */ + +#include <linux/interrupt.h> +#include <linux/irq.h> +#include <linux/kvm.h> +#include <linux/kvm_host.h> +#include <linux/list_sort.h> +#include <linux/nospec.h> + +#include <asm/kvm_hyp.h> + +#include "vgic.h" + +#define CREATE_TRACE_POINTS +#include "trace.h" + +struct vgic_global kvm_vgic_global_state __ro_after_init = { + .gicv3_cpuif = STATIC_KEY_FALSE_INIT, +}; + +/* + * Locking order is always: + * kvm->lock (mutex) + * vcpu->mutex (mutex) + * kvm->arch.config_lock (mutex) + * its->cmd_lock (mutex) + * its->its_lock (mutex) + * vgic_cpu->ap_list_lock must be taken with IRQs disabled + * kvm->lpi_list_lock must be taken with IRQs disabled + * vgic_irq->irq_lock must be taken with IRQs disabled + * + * As the ap_list_lock might be taken from the timer interrupt handler, + * we have to disable IRQs before taking this lock and everything lower + * than it. + * + * If you need to take multiple locks, always take the upper lock first, + * then the lower ones, e.g. first take the its_lock, then the irq_lock. + * If you are already holding a lock and need to take a higher one, you + * have to drop the lower ranking lock first and re-acquire it after having + * taken the upper one. + * + * When taking more than one ap_list_lock at the same time, always take the + * lowest numbered VCPU's ap_list_lock first, so: + * vcpuX->vcpu_id < vcpuY->vcpu_id: + * raw_spin_lock(vcpuX->arch.vgic_cpu.ap_list_lock); + * raw_spin_lock(vcpuY->arch.vgic_cpu.ap_list_lock); + * + * Since the VGIC must support injecting virtual interrupts from ISRs, we have + * to use the raw_spin_lock_irqsave/raw_spin_unlock_irqrestore versions of outer + * spinlocks for any lock that may be taken while injecting an interrupt. + */ + +/* + * Iterate over the VM's list of mapped LPIs to find the one with a + * matching interrupt ID and return a reference to the IRQ structure. + */ +static struct vgic_irq *vgic_get_lpi(struct kvm *kvm, u32 intid) +{ + struct vgic_dist *dist = &kvm->arch.vgic; + struct vgic_irq *irq = NULL; + unsigned long flags; + + raw_spin_lock_irqsave(&dist->lpi_list_lock, flags); + + list_for_each_entry(irq, &dist->lpi_list_head, lpi_list) { + if (irq->intid != intid) + continue; + + /* + * This increases the refcount, the caller is expected to + * call vgic_put_irq() later once it's finished with the IRQ. + */ + vgic_get_irq_kref(irq); + goto out_unlock; + } + irq = NULL; + +out_unlock: + raw_spin_unlock_irqrestore(&dist->lpi_list_lock, flags); + + return irq; +} + +/* + * This looks up the virtual interrupt ID to get the corresponding + * struct vgic_irq. It also increases the refcount, so any caller is expected + * to call vgic_put_irq() once it's finished with this IRQ. + */ +struct vgic_irq *vgic_get_irq(struct kvm *kvm, struct kvm_vcpu *vcpu, + u32 intid) +{ + /* SGIs and PPIs */ + if (intid <= VGIC_MAX_PRIVATE) { + intid = array_index_nospec(intid, VGIC_MAX_PRIVATE + 1); + return &vcpu->arch.vgic_cpu.private_irqs[intid]; + } + + /* SPIs */ + if (intid < (kvm->arch.vgic.nr_spis + VGIC_NR_PRIVATE_IRQS)) { + intid = array_index_nospec(intid, kvm->arch.vgic.nr_spis + VGIC_NR_PRIVATE_IRQS); + return &kvm->arch.vgic.spis[intid - VGIC_NR_PRIVATE_IRQS]; + } + + /* LPIs */ + if (intid >= VGIC_MIN_LPI) + return vgic_get_lpi(kvm, intid); + + return NULL; +} + +/* + * We can't do anything in here, because we lack the kvm pointer to + * lock and remove the item from the lpi_list. So we keep this function + * empty and use the return value of kref_put() to trigger the freeing. + */ +static void vgic_irq_release(struct kref *ref) +{ +} + +/* + * Drop the refcount on the LPI. Must be called with lpi_list_lock held. + */ +void __vgic_put_lpi_locked(struct kvm *kvm, struct vgic_irq *irq) +{ + struct vgic_dist *dist = &kvm->arch.vgic; + + if (!kref_put(&irq->refcount, vgic_irq_release)) + return; + + list_del(&irq->lpi_list); + dist->lpi_list_count--; + + kfree(irq); +} + +void vgic_put_irq(struct kvm *kvm, struct vgic_irq *irq) +{ + struct vgic_dist *dist = &kvm->arch.vgic; + unsigned long flags; + + if (irq->intid < VGIC_MIN_LPI) + return; + + raw_spin_lock_irqsave(&dist->lpi_list_lock, flags); + __vgic_put_lpi_locked(kvm, irq); + raw_spin_unlock_irqrestore(&dist->lpi_list_lock, flags); +} + +void vgic_flush_pending_lpis(struct kvm_vcpu *vcpu) +{ + struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu; + struct vgic_irq *irq, *tmp; + unsigned long flags; + + raw_spin_lock_irqsave(&vgic_cpu->ap_list_lock, flags); + + list_for_each_entry_safe(irq, tmp, &vgic_cpu->ap_list_head, ap_list) { + if (irq->intid >= VGIC_MIN_LPI) { + raw_spin_lock(&irq->irq_lock); + list_del(&irq->ap_list); + irq->vcpu = NULL; + raw_spin_unlock(&irq->irq_lock); + vgic_put_irq(vcpu->kvm, irq); + } + } + + raw_spin_unlock_irqrestore(&vgic_cpu->ap_list_lock, flags); +} + +void vgic_irq_set_phys_pending(struct vgic_irq *irq, bool pending) +{ + WARN_ON(irq_set_irqchip_state(irq->host_irq, + IRQCHIP_STATE_PENDING, + pending)); +} + +bool vgic_get_phys_line_level(struct vgic_irq *irq) +{ + bool line_level; + + BUG_ON(!irq->hw); + + if (irq->ops && irq->ops->get_input_level) + return irq->ops->get_input_level(irq->intid); + + WARN_ON(irq_get_irqchip_state(irq->host_irq, + IRQCHIP_STATE_PENDING, + &line_level)); + return line_level; +} + +/* Set/Clear the physical active state */ +void vgic_irq_set_phys_active(struct vgic_irq *irq, bool active) +{ + + BUG_ON(!irq->hw); + WARN_ON(irq_set_irqchip_state(irq->host_irq, + IRQCHIP_STATE_ACTIVE, + active)); +} + +/** + * kvm_vgic_target_oracle - compute the target vcpu for an irq + * + * @irq: The irq to route. Must be already locked. + * + * Based on the current state of the interrupt (enabled, pending, + * active, vcpu and target_vcpu), compute the next vcpu this should be + * given to. Return NULL if this shouldn't be injected at all. + * + * Requires the IRQ lock to be held. + */ +static struct kvm_vcpu *vgic_target_oracle(struct vgic_irq *irq) +{ + lockdep_assert_held(&irq->irq_lock); + + /* If the interrupt is active, it must stay on the current vcpu */ + if (irq->active) + return irq->vcpu ? : irq->target_vcpu; + + /* + * If the IRQ is not active but enabled and pending, we should direct + * it to its configured target VCPU. + * If the distributor is disabled, pending interrupts shouldn't be + * forwarded. + */ + if (irq->enabled && irq_is_pending(irq)) { + if (unlikely(irq->target_vcpu && + !irq->target_vcpu->kvm->arch.vgic.enabled)) + return NULL; + + return irq->target_vcpu; + } + + /* If neither active nor pending and enabled, then this IRQ should not + * be queued to any VCPU. + */ + return NULL; +} + +/* + * The order of items in the ap_lists defines how we'll pack things in LRs as + * well, the first items in the list being the first things populated in the + * LRs. + * + * A hard rule is that active interrupts can never be pushed out of the LRs + * (and therefore take priority) since we cannot reliably trap on deactivation + * of IRQs and therefore they have to be present in the LRs. + * + * Otherwise things should be sorted by the priority field and the GIC + * hardware support will take care of preemption of priority groups etc. + * + * Return negative if "a" sorts before "b", 0 to preserve order, and positive + * to sort "b" before "a". + */ +static int vgic_irq_cmp(void *priv, const struct list_head *a, + const struct list_head *b) +{ + struct vgic_irq *irqa = container_of(a, struct vgic_irq, ap_list); + struct vgic_irq *irqb = container_of(b, struct vgic_irq, ap_list); + bool penda, pendb; + int ret; + + /* + * list_sort may call this function with the same element when + * the list is fairly long. + */ + if (unlikely(irqa == irqb)) + return 0; + + raw_spin_lock(&irqa->irq_lock); + raw_spin_lock_nested(&irqb->irq_lock, SINGLE_DEPTH_NESTING); + + if (irqa->active || irqb->active) { + ret = (int)irqb->active - (int)irqa->active; + goto out; + } + + penda = irqa->enabled && irq_is_pending(irqa); + pendb = irqb->enabled && irq_is_pending(irqb); + + if (!penda || !pendb) { + ret = (int)pendb - (int)penda; + goto out; + } + + /* Both pending and enabled, sort by priority */ + ret = irqa->priority - irqb->priority; +out: + raw_spin_unlock(&irqb->irq_lock); + raw_spin_unlock(&irqa->irq_lock); + return ret; +} + +/* Must be called with the ap_list_lock held */ +static void vgic_sort_ap_list(struct kvm_vcpu *vcpu) +{ + struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu; + + lockdep_assert_held(&vgic_cpu->ap_list_lock); + + list_sort(NULL, &vgic_cpu->ap_list_head, vgic_irq_cmp); +} + +/* + * Only valid injection if changing level for level-triggered IRQs or for a + * rising edge, and in-kernel connected IRQ lines can only be controlled by + * their owner. + */ +static bool vgic_validate_injection(struct vgic_irq *irq, bool level, void *owner) +{ + if (irq->owner != owner) + return false; + + switch (irq->config) { + case VGIC_CONFIG_LEVEL: + return irq->line_level != level; + case VGIC_CONFIG_EDGE: + return level; + } + + return false; +} + +/* + * Check whether an IRQ needs to (and can) be queued to a VCPU's ap list. + * Do the queuing if necessary, taking the right locks in the right order. + * Returns true when the IRQ was queued, false otherwise. + * + * Needs to be entered with the IRQ lock already held, but will return + * with all locks dropped. + */ +bool vgic_queue_irq_unlock(struct kvm *kvm, struct vgic_irq *irq, + unsigned long flags) +{ + struct kvm_vcpu *vcpu; + + lockdep_assert_held(&irq->irq_lock); + +retry: + vcpu = vgic_target_oracle(irq); + if (irq->vcpu || !vcpu) { + /* + * If this IRQ is already on a VCPU's ap_list, then it + * cannot be moved or modified and there is no more work for + * us to do. + * + * Otherwise, if the irq is not pending and enabled, it does + * not need to be inserted into an ap_list and there is also + * no more work for us to do. + */ + raw_spin_unlock_irqrestore(&irq->irq_lock, flags); + + /* + * We have to kick the VCPU here, because we could be + * queueing an edge-triggered interrupt for which we + * get no EOI maintenance interrupt. In that case, + * while the IRQ is already on the VCPU's AP list, the + * VCPU could have EOI'ed the original interrupt and + * won't see this one until it exits for some other + * reason. + */ + if (vcpu) { + kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu); + kvm_vcpu_kick(vcpu); + } + return false; + } + + /* + * We must unlock the irq lock to take the ap_list_lock where + * we are going to insert this new pending interrupt. + */ + raw_spin_unlock_irqrestore(&irq->irq_lock, flags); + + /* someone can do stuff here, which we re-check below */ + + raw_spin_lock_irqsave(&vcpu->arch.vgic_cpu.ap_list_lock, flags); + raw_spin_lock(&irq->irq_lock); + + /* + * Did something change behind our backs? + * + * There are two cases: + * 1) The irq lost its pending state or was disabled behind our + * backs and/or it was queued to another VCPU's ap_list. + * 2) Someone changed the affinity on this irq behind our + * backs and we are now holding the wrong ap_list_lock. + * + * In both cases, drop the locks and retry. + */ + + if (unlikely(irq->vcpu || vcpu != vgic_target_oracle(irq))) { + raw_spin_unlock(&irq->irq_lock); + raw_spin_unlock_irqrestore(&vcpu->arch.vgic_cpu.ap_list_lock, + flags); + + raw_spin_lock_irqsave(&irq->irq_lock, flags); + goto retry; + } + + /* + * Grab a reference to the irq to reflect the fact that it is + * now in the ap_list. + */ + vgic_get_irq_kref(irq); + list_add_tail(&irq->ap_list, &vcpu->arch.vgic_cpu.ap_list_head); + irq->vcpu = vcpu; + + raw_spin_unlock(&irq->irq_lock); + raw_spin_unlock_irqrestore(&vcpu->arch.vgic_cpu.ap_list_lock, flags); + + kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu); + kvm_vcpu_kick(vcpu); + + return true; +} + +/** + * kvm_vgic_inject_irq - Inject an IRQ from a device to the vgic + * @kvm: The VM structure pointer + * @cpuid: The CPU for PPIs + * @intid: The INTID to inject a new state to. + * @level: Edge-triggered: true: to trigger the interrupt + * false: to ignore the call + * Level-sensitive true: raise the input signal + * false: lower the input signal + * @owner: The opaque pointer to the owner of the IRQ being raised to verify + * that the caller is allowed to inject this IRQ. Userspace + * injections will have owner == NULL. + * + * The VGIC is not concerned with devices being active-LOW or active-HIGH for + * level-sensitive interrupts. You can think of the level parameter as 1 + * being HIGH and 0 being LOW and all devices being active-HIGH. + */ +int kvm_vgic_inject_irq(struct kvm *kvm, int cpuid, unsigned int intid, + bool level, void *owner) +{ + struct kvm_vcpu *vcpu; + struct vgic_irq *irq; + unsigned long flags; + int ret; + + trace_vgic_update_irq_pending(cpuid, intid, level); + + ret = vgic_lazy_init(kvm); + if (ret) + return ret; + + vcpu = kvm_get_vcpu(kvm, cpuid); + if (!vcpu && intid < VGIC_NR_PRIVATE_IRQS) + return -EINVAL; + + irq = vgic_get_irq(kvm, vcpu, intid); + if (!irq) + return -EINVAL; + + raw_spin_lock_irqsave(&irq->irq_lock, flags); + + if (!vgic_validate_injection(irq, level, owner)) { + /* Nothing to see here, move along... */ + raw_spin_unlock_irqrestore(&irq->irq_lock, flags); + vgic_put_irq(kvm, irq); + return 0; + } + + if (irq->config == VGIC_CONFIG_LEVEL) + irq->line_level = level; + else + irq->pending_latch = true; + + vgic_queue_irq_unlock(kvm, irq, flags); + vgic_put_irq(kvm, irq); + + return 0; +} + +/* @irq->irq_lock must be held */ +static int kvm_vgic_map_irq(struct kvm_vcpu *vcpu, struct vgic_irq *irq, + unsigned int host_irq, + struct irq_ops *ops) +{ + struct irq_desc *desc; + struct irq_data *data; + + /* + * Find the physical IRQ number corresponding to @host_irq + */ + desc = irq_to_desc(host_irq); + if (!desc) { + kvm_err("%s: no interrupt descriptor\n", __func__); + return -EINVAL; + } + data = irq_desc_get_irq_data(desc); + while (data->parent_data) + data = data->parent_data; + + irq->hw = true; + irq->host_irq = host_irq; + irq->hwintid = data->hwirq; + irq->ops = ops; + return 0; +} + +/* @irq->irq_lock must be held */ +static inline void kvm_vgic_unmap_irq(struct vgic_irq *irq) +{ + irq->hw = false; + irq->hwintid = 0; + irq->ops = NULL; +} + +int kvm_vgic_map_phys_irq(struct kvm_vcpu *vcpu, unsigned int host_irq, + u32 vintid, struct irq_ops *ops) +{ + struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, vintid); + unsigned long flags; + int ret; + + BUG_ON(!irq); + + raw_spin_lock_irqsave(&irq->irq_lock, flags); + ret = kvm_vgic_map_irq(vcpu, irq, host_irq, ops); + raw_spin_unlock_irqrestore(&irq->irq_lock, flags); + vgic_put_irq(vcpu->kvm, irq); + + return ret; +} + +/** + * kvm_vgic_reset_mapped_irq - Reset a mapped IRQ + * @vcpu: The VCPU pointer + * @vintid: The INTID of the interrupt + * + * Reset the active and pending states of a mapped interrupt. Kernel + * subsystems injecting mapped interrupts should reset their interrupt lines + * when we are doing a reset of the VM. + */ +void kvm_vgic_reset_mapped_irq(struct kvm_vcpu *vcpu, u32 vintid) +{ + struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, vintid); + unsigned long flags; + + if (!irq->hw) + goto out; + + raw_spin_lock_irqsave(&irq->irq_lock, flags); + irq->active = false; + irq->pending_latch = false; + irq->line_level = false; + raw_spin_unlock_irqrestore(&irq->irq_lock, flags); +out: + vgic_put_irq(vcpu->kvm, irq); +} + +int kvm_vgic_unmap_phys_irq(struct kvm_vcpu *vcpu, unsigned int vintid) +{ + struct vgic_irq *irq; + unsigned long flags; + + if (!vgic_initialized(vcpu->kvm)) + return -EAGAIN; + + irq = vgic_get_irq(vcpu->kvm, vcpu, vintid); + BUG_ON(!irq); + + raw_spin_lock_irqsave(&irq->irq_lock, flags); + kvm_vgic_unmap_irq(irq); + raw_spin_unlock_irqrestore(&irq->irq_lock, flags); + vgic_put_irq(vcpu->kvm, irq); + + return 0; +} + +int kvm_vgic_get_map(struct kvm_vcpu *vcpu, unsigned int vintid) +{ + struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, vintid); + unsigned long flags; + int ret = -1; + + raw_spin_lock_irqsave(&irq->irq_lock, flags); + if (irq->hw) + ret = irq->hwintid; + raw_spin_unlock_irqrestore(&irq->irq_lock, flags); + + vgic_put_irq(vcpu->kvm, irq); + return ret; +} + +/** + * kvm_vgic_set_owner - Set the owner of an interrupt for a VM + * + * @vcpu: Pointer to the VCPU (used for PPIs) + * @intid: The virtual INTID identifying the interrupt (PPI or SPI) + * @owner: Opaque pointer to the owner + * + * Returns 0 if intid is not already used by another in-kernel device and the + * owner is set, otherwise returns an error code. + */ +int kvm_vgic_set_owner(struct kvm_vcpu *vcpu, unsigned int intid, void *owner) +{ + struct vgic_irq *irq; + unsigned long flags; + int ret = 0; + + if (!vgic_initialized(vcpu->kvm)) + return -EAGAIN; + + /* SGIs and LPIs cannot be wired up to any device */ + if (!irq_is_ppi(intid) && !vgic_valid_spi(vcpu->kvm, intid)) + return -EINVAL; + + irq = vgic_get_irq(vcpu->kvm, vcpu, intid); + raw_spin_lock_irqsave(&irq->irq_lock, flags); + if (irq->owner && irq->owner != owner) + ret = -EEXIST; + else + irq->owner = owner; + raw_spin_unlock_irqrestore(&irq->irq_lock, flags); + + return ret; +} + +/** + * vgic_prune_ap_list - Remove non-relevant interrupts from the list + * + * @vcpu: The VCPU pointer + * + * Go over the list of "interesting" interrupts, and prune those that we + * won't have to consider in the near future. + */ +static void vgic_prune_ap_list(struct kvm_vcpu *vcpu) +{ + struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu; + struct vgic_irq *irq, *tmp; + + DEBUG_SPINLOCK_BUG_ON(!irqs_disabled()); + +retry: + raw_spin_lock(&vgic_cpu->ap_list_lock); + + list_for_each_entry_safe(irq, tmp, &vgic_cpu->ap_list_head, ap_list) { + struct kvm_vcpu *target_vcpu, *vcpuA, *vcpuB; + bool target_vcpu_needs_kick = false; + + raw_spin_lock(&irq->irq_lock); + + BUG_ON(vcpu != irq->vcpu); + + target_vcpu = vgic_target_oracle(irq); + + if (!target_vcpu) { + /* + * We don't need to process this interrupt any + * further, move it off the list. + */ + list_del(&irq->ap_list); + irq->vcpu = NULL; + raw_spin_unlock(&irq->irq_lock); + + /* + * This vgic_put_irq call matches the + * vgic_get_irq_kref in vgic_queue_irq_unlock, + * where we added the LPI to the ap_list. As + * we remove the irq from the list, we drop + * also drop the refcount. + */ + vgic_put_irq(vcpu->kvm, irq); + continue; + } + + if (target_vcpu == vcpu) { + /* We're on the right CPU */ + raw_spin_unlock(&irq->irq_lock); + continue; + } + + /* This interrupt looks like it has to be migrated. */ + + raw_spin_unlock(&irq->irq_lock); + raw_spin_unlock(&vgic_cpu->ap_list_lock); + + /* + * Ensure locking order by always locking the smallest + * ID first. + */ + if (vcpu->vcpu_id < target_vcpu->vcpu_id) { + vcpuA = vcpu; + vcpuB = target_vcpu; + } else { + vcpuA = target_vcpu; + vcpuB = vcpu; + } + + raw_spin_lock(&vcpuA->arch.vgic_cpu.ap_list_lock); + raw_spin_lock_nested(&vcpuB->arch.vgic_cpu.ap_list_lock, + SINGLE_DEPTH_NESTING); + raw_spin_lock(&irq->irq_lock); + + /* + * If the affinity has been preserved, move the + * interrupt around. Otherwise, it means things have + * changed while the interrupt was unlocked, and we + * need to replay this. + * + * In all cases, we cannot trust the list not to have + * changed, so we restart from the beginning. + */ + if (target_vcpu == vgic_target_oracle(irq)) { + struct vgic_cpu *new_cpu = &target_vcpu->arch.vgic_cpu; + + list_del(&irq->ap_list); + irq->vcpu = target_vcpu; + list_add_tail(&irq->ap_list, &new_cpu->ap_list_head); + target_vcpu_needs_kick = true; + } + + raw_spin_unlock(&irq->irq_lock); + raw_spin_unlock(&vcpuB->arch.vgic_cpu.ap_list_lock); + raw_spin_unlock(&vcpuA->arch.vgic_cpu.ap_list_lock); + + if (target_vcpu_needs_kick) { + kvm_make_request(KVM_REQ_IRQ_PENDING, target_vcpu); + kvm_vcpu_kick(target_vcpu); + } + + goto retry; + } + + raw_spin_unlock(&vgic_cpu->ap_list_lock); +} + +static inline void vgic_fold_lr_state(struct kvm_vcpu *vcpu) +{ + if (kvm_vgic_global_state.type == VGIC_V2) + vgic_v2_fold_lr_state(vcpu); + else + vgic_v3_fold_lr_state(vcpu); +} + +/* Requires the irq_lock to be held. */ +static inline void vgic_populate_lr(struct kvm_vcpu *vcpu, + struct vgic_irq *irq, int lr) +{ + lockdep_assert_held(&irq->irq_lock); + + if (kvm_vgic_global_state.type == VGIC_V2) + vgic_v2_populate_lr(vcpu, irq, lr); + else + vgic_v3_populate_lr(vcpu, irq, lr); +} + +static inline void vgic_clear_lr(struct kvm_vcpu *vcpu, int lr) +{ + if (kvm_vgic_global_state.type == VGIC_V2) + vgic_v2_clear_lr(vcpu, lr); + else + vgic_v3_clear_lr(vcpu, lr); +} + +static inline void vgic_set_underflow(struct kvm_vcpu *vcpu) +{ + if (kvm_vgic_global_state.type == VGIC_V2) + vgic_v2_set_underflow(vcpu); + else + vgic_v3_set_underflow(vcpu); +} + +/* Requires the ap_list_lock to be held. */ +static int compute_ap_list_depth(struct kvm_vcpu *vcpu, + bool *multi_sgi) +{ + struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu; + struct vgic_irq *irq; + int count = 0; + + *multi_sgi = false; + + lockdep_assert_held(&vgic_cpu->ap_list_lock); + + list_for_each_entry(irq, &vgic_cpu->ap_list_head, ap_list) { + int w; + + raw_spin_lock(&irq->irq_lock); + /* GICv2 SGIs can count for more than one... */ + w = vgic_irq_get_lr_count(irq); + raw_spin_unlock(&irq->irq_lock); + + count += w; + *multi_sgi |= (w > 1); + } + return count; +} + +/* Requires the VCPU's ap_list_lock to be held. */ +static void vgic_flush_lr_state(struct kvm_vcpu *vcpu) +{ + struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu; + struct vgic_irq *irq; + int count; + bool multi_sgi; + u8 prio = 0xff; + int i = 0; + + lockdep_assert_held(&vgic_cpu->ap_list_lock); + + count = compute_ap_list_depth(vcpu, &multi_sgi); + if (count > kvm_vgic_global_state.nr_lr || multi_sgi) + vgic_sort_ap_list(vcpu); + + count = 0; + + list_for_each_entry(irq, &vgic_cpu->ap_list_head, ap_list) { + raw_spin_lock(&irq->irq_lock); + + /* + * If we have multi-SGIs in the pipeline, we need to + * guarantee that they are all seen before any IRQ of + * lower priority. In that case, we need to filter out + * these interrupts by exiting early. This is easy as + * the AP list has been sorted already. + */ + if (multi_sgi && irq->priority > prio) { + _raw_spin_unlock(&irq->irq_lock); + break; + } + + if (likely(vgic_target_oracle(irq) == vcpu)) { + vgic_populate_lr(vcpu, irq, count++); + + if (irq->source) + prio = irq->priority; + } + + raw_spin_unlock(&irq->irq_lock); + + if (count == kvm_vgic_global_state.nr_lr) { + if (!list_is_last(&irq->ap_list, + &vgic_cpu->ap_list_head)) + vgic_set_underflow(vcpu); + break; + } + } + + /* Nuke remaining LRs */ + for (i = count ; i < kvm_vgic_global_state.nr_lr; i++) + vgic_clear_lr(vcpu, i); + + if (!static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif)) + vcpu->arch.vgic_cpu.vgic_v2.used_lrs = count; + else + vcpu->arch.vgic_cpu.vgic_v3.used_lrs = count; +} + +static inline bool can_access_vgic_from_kernel(void) +{ + /* + * GICv2 can always be accessed from the kernel because it is + * memory-mapped, and VHE systems can access GICv3 EL2 system + * registers. + */ + return !static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif) || has_vhe(); +} + +static inline void vgic_save_state(struct kvm_vcpu *vcpu) +{ + if (!static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif)) + vgic_v2_save_state(vcpu); + else + __vgic_v3_save_state(&vcpu->arch.vgic_cpu.vgic_v3); +} + +/* Sync back the hardware VGIC state into our emulation after a guest's run. */ +void kvm_vgic_sync_hwstate(struct kvm_vcpu *vcpu) +{ + int used_lrs; + + /* An empty ap_list_head implies used_lrs == 0 */ + if (list_empty(&vcpu->arch.vgic_cpu.ap_list_head)) + return; + + if (can_access_vgic_from_kernel()) + vgic_save_state(vcpu); + + if (!static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif)) + used_lrs = vcpu->arch.vgic_cpu.vgic_v2.used_lrs; + else + used_lrs = vcpu->arch.vgic_cpu.vgic_v3.used_lrs; + + if (used_lrs) + vgic_fold_lr_state(vcpu); + vgic_prune_ap_list(vcpu); +} + +static inline void vgic_restore_state(struct kvm_vcpu *vcpu) +{ + if (!static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif)) + vgic_v2_restore_state(vcpu); + else + __vgic_v3_restore_state(&vcpu->arch.vgic_cpu.vgic_v3); +} + +/* Flush our emulation state into the GIC hardware before entering the guest. */ +void kvm_vgic_flush_hwstate(struct kvm_vcpu *vcpu) +{ + /* + * If there are no virtual interrupts active or pending for this + * VCPU, then there is no work to do and we can bail out without + * taking any lock. There is a potential race with someone injecting + * interrupts to the VCPU, but it is a benign race as the VCPU will + * either observe the new interrupt before or after doing this check, + * and introducing additional synchronization mechanism doesn't change + * this. + * + * Note that we still need to go through the whole thing if anything + * can be directly injected (GICv4). + */ + if (list_empty(&vcpu->arch.vgic_cpu.ap_list_head) && + !vgic_supports_direct_msis(vcpu->kvm)) + return; + + DEBUG_SPINLOCK_BUG_ON(!irqs_disabled()); + + if (!list_empty(&vcpu->arch.vgic_cpu.ap_list_head)) { + raw_spin_lock(&vcpu->arch.vgic_cpu.ap_list_lock); + vgic_flush_lr_state(vcpu); + raw_spin_unlock(&vcpu->arch.vgic_cpu.ap_list_lock); + } + + if (can_access_vgic_from_kernel()) + vgic_restore_state(vcpu); + + if (vgic_supports_direct_msis(vcpu->kvm)) + vgic_v4_commit(vcpu); +} + +void kvm_vgic_load(struct kvm_vcpu *vcpu) +{ + if (unlikely(!vgic_initialized(vcpu->kvm))) + return; + + if (kvm_vgic_global_state.type == VGIC_V2) + vgic_v2_load(vcpu); + else + vgic_v3_load(vcpu); +} + +void kvm_vgic_put(struct kvm_vcpu *vcpu) +{ + if (unlikely(!vgic_initialized(vcpu->kvm))) + return; + + if (kvm_vgic_global_state.type == VGIC_V2) + vgic_v2_put(vcpu); + else + vgic_v3_put(vcpu); +} + +void kvm_vgic_vmcr_sync(struct kvm_vcpu *vcpu) +{ + if (unlikely(!irqchip_in_kernel(vcpu->kvm))) + return; + + if (kvm_vgic_global_state.type == VGIC_V2) + vgic_v2_vmcr_sync(vcpu); + else + vgic_v3_vmcr_sync(vcpu); +} + +int kvm_vgic_vcpu_pending_irq(struct kvm_vcpu *vcpu) +{ + struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu; + struct vgic_irq *irq; + bool pending = false; + unsigned long flags; + struct vgic_vmcr vmcr; + + if (!vcpu->kvm->arch.vgic.enabled) + return false; + + if (vcpu->arch.vgic_cpu.vgic_v3.its_vpe.pending_last) + return true; + + vgic_get_vmcr(vcpu, &vmcr); + + raw_spin_lock_irqsave(&vgic_cpu->ap_list_lock, flags); + + list_for_each_entry(irq, &vgic_cpu->ap_list_head, ap_list) { + raw_spin_lock(&irq->irq_lock); + pending = irq_is_pending(irq) && irq->enabled && + !irq->active && + irq->priority < vmcr.pmr; + raw_spin_unlock(&irq->irq_lock); + + if (pending) + break; + } + + raw_spin_unlock_irqrestore(&vgic_cpu->ap_list_lock, flags); + + return pending; +} + +void vgic_kick_vcpus(struct kvm *kvm) +{ + struct kvm_vcpu *vcpu; + unsigned long c; + + /* + * We've injected an interrupt, time to find out who deserves + * a good kick... + */ + kvm_for_each_vcpu(c, vcpu, kvm) { + if (kvm_vgic_vcpu_pending_irq(vcpu)) { + kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu); + kvm_vcpu_kick(vcpu); + } + } +} + +bool kvm_vgic_map_is_active(struct kvm_vcpu *vcpu, unsigned int vintid) +{ + struct vgic_irq *irq; + bool map_is_active; + unsigned long flags; + + if (!vgic_initialized(vcpu->kvm)) + return false; + + irq = vgic_get_irq(vcpu->kvm, vcpu, vintid); + raw_spin_lock_irqsave(&irq->irq_lock, flags); + map_is_active = irq->hw && irq->active; + raw_spin_unlock_irqrestore(&irq->irq_lock, flags); + vgic_put_irq(vcpu->kvm, irq); + + return map_is_active; +} + +/* + * Level-triggered mapped IRQs are special because we only observe rising + * edges as input to the VGIC. + * + * If the guest never acked the interrupt we have to sample the physical + * line and set the line level, because the device state could have changed + * or we simply need to process the still pending interrupt later. + * + * We could also have entered the guest with the interrupt active+pending. + * On the next exit, we need to re-evaluate the pending state, as it could + * otherwise result in a spurious interrupt by injecting a now potentially + * stale pending state. + * + * If this causes us to lower the level, we have to also clear the physical + * active state, since we will otherwise never be told when the interrupt + * becomes asserted again. + * + * Another case is when the interrupt requires a helping hand on + * deactivation (no HW deactivation, for example). + */ +void vgic_irq_handle_resampling(struct vgic_irq *irq, + bool lr_deactivated, bool lr_pending) +{ + if (vgic_irq_is_mapped_level(irq)) { + bool resample = false; + + if (unlikely(vgic_irq_needs_resampling(irq))) { + resample = !(irq->active || irq->pending_latch); + } else if (lr_pending || (lr_deactivated && irq->line_level)) { + irq->line_level = vgic_get_phys_line_level(irq); + resample = !irq->line_level; + } + + if (resample) + vgic_irq_set_phys_active(irq, false); + } +} diff --git a/arch/arm64/kvm/vgic/vgic.h b/arch/arm64/kvm/vgic/vgic.h new file mode 100644 index 0000000000..8d134569d0 --- /dev/null +++ b/arch/arm64/kvm/vgic/vgic.h @@ -0,0 +1,346 @@ +/* SPDX-License-Identifier: GPL-2.0-only */ +/* + * Copyright (C) 2015, 2016 ARM Ltd. + */ +#ifndef __KVM_ARM_VGIC_NEW_H__ +#define __KVM_ARM_VGIC_NEW_H__ + +#include <linux/irqchip/arm-gic-common.h> +#include <asm/kvm_mmu.h> + +#define PRODUCT_ID_KVM 0x4b /* ASCII code K */ +#define IMPLEMENTER_ARM 0x43b + +#define VGIC_ADDR_UNDEF (-1) +#define IS_VGIC_ADDR_UNDEF(_x) ((_x) == VGIC_ADDR_UNDEF) + +#define INTERRUPT_ID_BITS_SPIS 10 +#define INTERRUPT_ID_BITS_ITS 16 +#define VGIC_PRI_BITS 5 + +#define vgic_irq_is_sgi(intid) ((intid) < VGIC_NR_SGIS) + +#define VGIC_AFFINITY_0_SHIFT 0 +#define VGIC_AFFINITY_0_MASK (0xffUL << VGIC_AFFINITY_0_SHIFT) +#define VGIC_AFFINITY_1_SHIFT 8 +#define VGIC_AFFINITY_1_MASK (0xffUL << VGIC_AFFINITY_1_SHIFT) +#define VGIC_AFFINITY_2_SHIFT 16 +#define VGIC_AFFINITY_2_MASK (0xffUL << VGIC_AFFINITY_2_SHIFT) +#define VGIC_AFFINITY_3_SHIFT 24 +#define VGIC_AFFINITY_3_MASK (0xffUL << VGIC_AFFINITY_3_SHIFT) + +#define VGIC_AFFINITY_LEVEL(reg, level) \ + ((((reg) & VGIC_AFFINITY_## level ##_MASK) \ + >> VGIC_AFFINITY_## level ##_SHIFT) << MPIDR_LEVEL_SHIFT(level)) + +/* + * The Userspace encodes the affinity differently from the MPIDR, + * Below macro converts vgic userspace format to MPIDR reg format. + */ +#define VGIC_TO_MPIDR(val) (VGIC_AFFINITY_LEVEL(val, 0) | \ + VGIC_AFFINITY_LEVEL(val, 1) | \ + VGIC_AFFINITY_LEVEL(val, 2) | \ + VGIC_AFFINITY_LEVEL(val, 3)) + +/* + * As per Documentation/virt/kvm/devices/arm-vgic-v3.rst, + * below macros are defined for CPUREG encoding. + */ +#define KVM_REG_ARM_VGIC_SYSREG_OP0_MASK 0x000000000000c000 +#define KVM_REG_ARM_VGIC_SYSREG_OP0_SHIFT 14 +#define KVM_REG_ARM_VGIC_SYSREG_OP1_MASK 0x0000000000003800 +#define KVM_REG_ARM_VGIC_SYSREG_OP1_SHIFT 11 +#define KVM_REG_ARM_VGIC_SYSREG_CRN_MASK 0x0000000000000780 +#define KVM_REG_ARM_VGIC_SYSREG_CRN_SHIFT 7 +#define KVM_REG_ARM_VGIC_SYSREG_CRM_MASK 0x0000000000000078 +#define KVM_REG_ARM_VGIC_SYSREG_CRM_SHIFT 3 +#define KVM_REG_ARM_VGIC_SYSREG_OP2_MASK 0x0000000000000007 +#define KVM_REG_ARM_VGIC_SYSREG_OP2_SHIFT 0 + +#define KVM_DEV_ARM_VGIC_SYSREG_MASK (KVM_REG_ARM_VGIC_SYSREG_OP0_MASK | \ + KVM_REG_ARM_VGIC_SYSREG_OP1_MASK | \ + KVM_REG_ARM_VGIC_SYSREG_CRN_MASK | \ + KVM_REG_ARM_VGIC_SYSREG_CRM_MASK | \ + KVM_REG_ARM_VGIC_SYSREG_OP2_MASK) + +/* + * As per Documentation/virt/kvm/devices/arm-vgic-its.rst, + * below macros are defined for ITS table entry encoding. + */ +#define KVM_ITS_CTE_VALID_SHIFT 63 +#define KVM_ITS_CTE_VALID_MASK BIT_ULL(63) +#define KVM_ITS_CTE_RDBASE_SHIFT 16 +#define KVM_ITS_CTE_ICID_MASK GENMASK_ULL(15, 0) +#define KVM_ITS_ITE_NEXT_SHIFT 48 +#define KVM_ITS_ITE_PINTID_SHIFT 16 +#define KVM_ITS_ITE_PINTID_MASK GENMASK_ULL(47, 16) +#define KVM_ITS_ITE_ICID_MASK GENMASK_ULL(15, 0) +#define KVM_ITS_DTE_VALID_SHIFT 63 +#define KVM_ITS_DTE_VALID_MASK BIT_ULL(63) +#define KVM_ITS_DTE_NEXT_SHIFT 49 +#define KVM_ITS_DTE_NEXT_MASK GENMASK_ULL(62, 49) +#define KVM_ITS_DTE_ITTADDR_SHIFT 5 +#define KVM_ITS_DTE_ITTADDR_MASK GENMASK_ULL(48, 5) +#define KVM_ITS_DTE_SIZE_MASK GENMASK_ULL(4, 0) +#define KVM_ITS_L1E_VALID_MASK BIT_ULL(63) +/* we only support 64 kB translation table page size */ +#define KVM_ITS_L1E_ADDR_MASK GENMASK_ULL(51, 16) + +#define KVM_VGIC_V3_RDIST_INDEX_MASK GENMASK_ULL(11, 0) +#define KVM_VGIC_V3_RDIST_FLAGS_MASK GENMASK_ULL(15, 12) +#define KVM_VGIC_V3_RDIST_FLAGS_SHIFT 12 +#define KVM_VGIC_V3_RDIST_BASE_MASK GENMASK_ULL(51, 16) +#define KVM_VGIC_V3_RDIST_COUNT_MASK GENMASK_ULL(63, 52) +#define KVM_VGIC_V3_RDIST_COUNT_SHIFT 52 + +#ifdef CONFIG_DEBUG_SPINLOCK +#define DEBUG_SPINLOCK_BUG_ON(p) BUG_ON(p) +#else +#define DEBUG_SPINLOCK_BUG_ON(p) +#endif + +static inline u32 vgic_get_implementation_rev(struct kvm_vcpu *vcpu) +{ + return vcpu->kvm->arch.vgic.implementation_rev; +} + +/* Requires the irq_lock to be held by the caller. */ +static inline bool irq_is_pending(struct vgic_irq *irq) +{ + if (irq->config == VGIC_CONFIG_EDGE) + return irq->pending_latch; + else + return irq->pending_latch || irq->line_level; +} + +static inline bool vgic_irq_is_mapped_level(struct vgic_irq *irq) +{ + return irq->config == VGIC_CONFIG_LEVEL && irq->hw; +} + +static inline int vgic_irq_get_lr_count(struct vgic_irq *irq) +{ + /* Account for the active state as an interrupt */ + if (vgic_irq_is_sgi(irq->intid) && irq->source) + return hweight8(irq->source) + irq->active; + + return irq_is_pending(irq) || irq->active; +} + +static inline bool vgic_irq_is_multi_sgi(struct vgic_irq *irq) +{ + return vgic_irq_get_lr_count(irq) > 1; +} + +static inline int vgic_write_guest_lock(struct kvm *kvm, gpa_t gpa, + const void *data, unsigned long len) +{ + struct vgic_dist *dist = &kvm->arch.vgic; + int ret; + + dist->table_write_in_progress = true; + ret = kvm_write_guest_lock(kvm, gpa, data, len); + dist->table_write_in_progress = false; + + return ret; +} + +/* + * This struct provides an intermediate representation of the fields contained + * in the GICH_VMCR and ICH_VMCR registers, such that code exporting the GIC + * state to userspace can generate either GICv2 or GICv3 CPU interface + * registers regardless of the hardware backed GIC used. + */ +struct vgic_vmcr { + u32 grpen0; + u32 grpen1; + + u32 ackctl; + u32 fiqen; + u32 cbpr; + u32 eoim; + + u32 abpr; + u32 bpr; + u32 pmr; /* Priority mask field in the GICC_PMR and + * ICC_PMR_EL1 priority field format */ +}; + +struct vgic_reg_attr { + struct kvm_vcpu *vcpu; + gpa_t addr; +}; + +int vgic_v3_parse_attr(struct kvm_device *dev, struct kvm_device_attr *attr, + struct vgic_reg_attr *reg_attr); +int vgic_v2_parse_attr(struct kvm_device *dev, struct kvm_device_attr *attr, + struct vgic_reg_attr *reg_attr); +const struct vgic_register_region * +vgic_get_mmio_region(struct kvm_vcpu *vcpu, struct vgic_io_device *iodev, + gpa_t addr, int len); +struct vgic_irq *vgic_get_irq(struct kvm *kvm, struct kvm_vcpu *vcpu, + u32 intid); +void __vgic_put_lpi_locked(struct kvm *kvm, struct vgic_irq *irq); +void vgic_put_irq(struct kvm *kvm, struct vgic_irq *irq); +bool vgic_get_phys_line_level(struct vgic_irq *irq); +void vgic_irq_set_phys_pending(struct vgic_irq *irq, bool pending); +void vgic_irq_set_phys_active(struct vgic_irq *irq, bool active); +bool vgic_queue_irq_unlock(struct kvm *kvm, struct vgic_irq *irq, + unsigned long flags); +void vgic_kick_vcpus(struct kvm *kvm); +void vgic_irq_handle_resampling(struct vgic_irq *irq, + bool lr_deactivated, bool lr_pending); + +int vgic_check_iorange(struct kvm *kvm, phys_addr_t ioaddr, + phys_addr_t addr, phys_addr_t alignment, + phys_addr_t size); + +void vgic_v2_fold_lr_state(struct kvm_vcpu *vcpu); +void vgic_v2_populate_lr(struct kvm_vcpu *vcpu, struct vgic_irq *irq, int lr); +void vgic_v2_clear_lr(struct kvm_vcpu *vcpu, int lr); +void vgic_v2_set_underflow(struct kvm_vcpu *vcpu); +int vgic_v2_has_attr_regs(struct kvm_device *dev, struct kvm_device_attr *attr); +int vgic_v2_dist_uaccess(struct kvm_vcpu *vcpu, bool is_write, + int offset, u32 *val); +int vgic_v2_cpuif_uaccess(struct kvm_vcpu *vcpu, bool is_write, + int offset, u32 *val); +void vgic_v2_set_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcr); +void vgic_v2_get_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcr); +void vgic_v2_enable(struct kvm_vcpu *vcpu); +int vgic_v2_probe(const struct gic_kvm_info *info); +int vgic_v2_map_resources(struct kvm *kvm); +int vgic_register_dist_iodev(struct kvm *kvm, gpa_t dist_base_address, + enum vgic_type); + +void vgic_v2_init_lrs(void); +void vgic_v2_load(struct kvm_vcpu *vcpu); +void vgic_v2_put(struct kvm_vcpu *vcpu); +void vgic_v2_vmcr_sync(struct kvm_vcpu *vcpu); + +void vgic_v2_save_state(struct kvm_vcpu *vcpu); +void vgic_v2_restore_state(struct kvm_vcpu *vcpu); + +static inline void vgic_get_irq_kref(struct vgic_irq *irq) +{ + if (irq->intid < VGIC_MIN_LPI) + return; + + kref_get(&irq->refcount); +} + +void vgic_v3_fold_lr_state(struct kvm_vcpu *vcpu); +void vgic_v3_populate_lr(struct kvm_vcpu *vcpu, struct vgic_irq *irq, int lr); +void vgic_v3_clear_lr(struct kvm_vcpu *vcpu, int lr); +void vgic_v3_set_underflow(struct kvm_vcpu *vcpu); +void vgic_v3_set_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcr); +void vgic_v3_get_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcr); +void vgic_v3_enable(struct kvm_vcpu *vcpu); +int vgic_v3_probe(const struct gic_kvm_info *info); +int vgic_v3_map_resources(struct kvm *kvm); +int vgic_v3_lpi_sync_pending_status(struct kvm *kvm, struct vgic_irq *irq); +int vgic_v3_save_pending_tables(struct kvm *kvm); +int vgic_v3_set_redist_base(struct kvm *kvm, u32 index, u64 addr, u32 count); +int vgic_register_redist_iodev(struct kvm_vcpu *vcpu); +void vgic_unregister_redist_iodev(struct kvm_vcpu *vcpu); +bool vgic_v3_check_base(struct kvm *kvm); + +void vgic_v3_load(struct kvm_vcpu *vcpu); +void vgic_v3_put(struct kvm_vcpu *vcpu); +void vgic_v3_vmcr_sync(struct kvm_vcpu *vcpu); + +bool vgic_has_its(struct kvm *kvm); +int kvm_vgic_register_its_device(void); +void vgic_enable_lpis(struct kvm_vcpu *vcpu); +void vgic_flush_pending_lpis(struct kvm_vcpu *vcpu); +int vgic_its_inject_msi(struct kvm *kvm, struct kvm_msi *msi); +int vgic_v3_has_attr_regs(struct kvm_device *dev, struct kvm_device_attr *attr); +int vgic_v3_dist_uaccess(struct kvm_vcpu *vcpu, bool is_write, + int offset, u32 *val); +int vgic_v3_redist_uaccess(struct kvm_vcpu *vcpu, bool is_write, + int offset, u32 *val); +int vgic_v3_cpu_sysregs_uaccess(struct kvm_vcpu *vcpu, + struct kvm_device_attr *attr, bool is_write); +int vgic_v3_has_cpu_sysregs_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr); +int vgic_v3_line_level_info_uaccess(struct kvm_vcpu *vcpu, bool is_write, + u32 intid, u32 *val); +int kvm_register_vgic_device(unsigned long type); +void vgic_set_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcr); +void vgic_get_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcr); +int vgic_lazy_init(struct kvm *kvm); +int vgic_init(struct kvm *kvm); + +void vgic_debug_init(struct kvm *kvm); +void vgic_debug_destroy(struct kvm *kvm); + +static inline int vgic_v3_max_apr_idx(struct kvm_vcpu *vcpu) +{ + struct vgic_cpu *cpu_if = &vcpu->arch.vgic_cpu; + + /* + * num_pri_bits are initialized with HW supported values. + * We can rely safely on num_pri_bits even if VM has not + * restored ICC_CTLR_EL1 before restoring APnR registers. + */ + switch (cpu_if->num_pri_bits) { + case 7: return 3; + case 6: return 1; + default: return 0; + } +} + +static inline bool +vgic_v3_redist_region_full(struct vgic_redist_region *region) +{ + if (!region->count) + return false; + + return (region->free_index >= region->count); +} + +struct vgic_redist_region *vgic_v3_rdist_free_slot(struct list_head *rdregs); + +static inline size_t +vgic_v3_rd_region_size(struct kvm *kvm, struct vgic_redist_region *rdreg) +{ + if (!rdreg->count) + return atomic_read(&kvm->online_vcpus) * KVM_VGIC_V3_REDIST_SIZE; + else + return rdreg->count * KVM_VGIC_V3_REDIST_SIZE; +} + +struct vgic_redist_region *vgic_v3_rdist_region_from_index(struct kvm *kvm, + u32 index); +void vgic_v3_free_redist_region(struct vgic_redist_region *rdreg); + +bool vgic_v3_rdist_overlap(struct kvm *kvm, gpa_t base, size_t size); + +static inline bool vgic_dist_overlap(struct kvm *kvm, gpa_t base, size_t size) +{ + struct vgic_dist *d = &kvm->arch.vgic; + + return (base + size > d->vgic_dist_base) && + (base < d->vgic_dist_base + KVM_VGIC_V3_DIST_SIZE); +} + +bool vgic_lpis_enabled(struct kvm_vcpu *vcpu); +int vgic_copy_lpi_list(struct kvm *kvm, struct kvm_vcpu *vcpu, u32 **intid_ptr); +int vgic_its_resolve_lpi(struct kvm *kvm, struct vgic_its *its, + u32 devid, u32 eventid, struct vgic_irq **irq); +struct vgic_its *vgic_msi_to_its(struct kvm *kvm, struct kvm_msi *msi); +int vgic_its_inject_cached_translation(struct kvm *kvm, struct kvm_msi *msi); +void vgic_lpi_translation_cache_init(struct kvm *kvm); +void vgic_lpi_translation_cache_destroy(struct kvm *kvm); +void vgic_its_invalidate_cache(struct kvm *kvm); + +/* GICv4.1 MMIO interface */ +int vgic_its_inv_lpi(struct kvm *kvm, struct vgic_irq *irq); +int vgic_its_invall(struct kvm_vcpu *vcpu); + +bool vgic_supports_direct_msis(struct kvm *kvm); +int vgic_v4_init(struct kvm *kvm); +void vgic_v4_teardown(struct kvm *kvm); +void vgic_v4_configure_vsgis(struct kvm *kvm); +void vgic_v4_get_vlpi_state(struct vgic_irq *irq, bool *val); +int vgic_v4_request_vpe_irq(struct kvm_vcpu *vcpu, int irq); + +#endif diff --git a/arch/arm64/kvm/vmid.c b/arch/arm64/kvm/vmid.c new file mode 100644 index 0000000000..7fe8ba1a28 --- /dev/null +++ b/arch/arm64/kvm/vmid.c @@ -0,0 +1,195 @@ +// SPDX-License-Identifier: GPL-2.0 +/* + * VMID allocator. + * + * Based on Arm64 ASID allocator algorithm. + * Please refer arch/arm64/mm/context.c for detailed + * comments on algorithm. + * + * Copyright (C) 2002-2003 Deep Blue Solutions Ltd, all rights reserved. + * Copyright (C) 2012 ARM Ltd. + */ + +#include <linux/bitfield.h> +#include <linux/bitops.h> + +#include <asm/kvm_asm.h> +#include <asm/kvm_mmu.h> + +unsigned int __ro_after_init kvm_arm_vmid_bits; +static DEFINE_RAW_SPINLOCK(cpu_vmid_lock); + +static atomic64_t vmid_generation; +static unsigned long *vmid_map; + +static DEFINE_PER_CPU(atomic64_t, active_vmids); +static DEFINE_PER_CPU(u64, reserved_vmids); + +#define VMID_MASK (~GENMASK(kvm_arm_vmid_bits - 1, 0)) +#define VMID_FIRST_VERSION (1UL << kvm_arm_vmid_bits) + +#define NUM_USER_VMIDS VMID_FIRST_VERSION +#define vmid2idx(vmid) ((vmid) & ~VMID_MASK) +#define idx2vmid(idx) vmid2idx(idx) + +/* + * As vmid #0 is always reserved, we will never allocate one + * as below and can be treated as invalid. This is used to + * set the active_vmids on vCPU schedule out. + */ +#define VMID_ACTIVE_INVALID VMID_FIRST_VERSION + +#define vmid_gen_match(vmid) \ + (!(((vmid) ^ atomic64_read(&vmid_generation)) >> kvm_arm_vmid_bits)) + +static void flush_context(void) +{ + int cpu; + u64 vmid; + + bitmap_zero(vmid_map, NUM_USER_VMIDS); + + for_each_possible_cpu(cpu) { + vmid = atomic64_xchg_relaxed(&per_cpu(active_vmids, cpu), 0); + + /* Preserve reserved VMID */ + if (vmid == 0) + vmid = per_cpu(reserved_vmids, cpu); + __set_bit(vmid2idx(vmid), vmid_map); + per_cpu(reserved_vmids, cpu) = vmid; + } + + /* + * Unlike ASID allocator, we expect less frequent rollover in + * case of VMIDs. Hence, instead of marking the CPU as + * flush_pending and issuing a local context invalidation on + * the next context-switch, we broadcast TLB flush + I-cache + * invalidation over the inner shareable domain on rollover. + */ + kvm_call_hyp(__kvm_flush_vm_context); +} + +static bool check_update_reserved_vmid(u64 vmid, u64 newvmid) +{ + int cpu; + bool hit = false; + + /* + * Iterate over the set of reserved VMIDs looking for a match + * and update to use newvmid (i.e. the same VMID in the current + * generation). + */ + for_each_possible_cpu(cpu) { + if (per_cpu(reserved_vmids, cpu) == vmid) { + hit = true; + per_cpu(reserved_vmids, cpu) = newvmid; + } + } + + return hit; +} + +static u64 new_vmid(struct kvm_vmid *kvm_vmid) +{ + static u32 cur_idx = 1; + u64 vmid = atomic64_read(&kvm_vmid->id); + u64 generation = atomic64_read(&vmid_generation); + + if (vmid != 0) { + u64 newvmid = generation | (vmid & ~VMID_MASK); + + if (check_update_reserved_vmid(vmid, newvmid)) { + atomic64_set(&kvm_vmid->id, newvmid); + return newvmid; + } + + if (!__test_and_set_bit(vmid2idx(vmid), vmid_map)) { + atomic64_set(&kvm_vmid->id, newvmid); + return newvmid; + } + } + + vmid = find_next_zero_bit(vmid_map, NUM_USER_VMIDS, cur_idx); + if (vmid != NUM_USER_VMIDS) + goto set_vmid; + + /* We're out of VMIDs, so increment the global generation count */ + generation = atomic64_add_return_relaxed(VMID_FIRST_VERSION, + &vmid_generation); + flush_context(); + + /* We have more VMIDs than CPUs, so this will always succeed */ + vmid = find_next_zero_bit(vmid_map, NUM_USER_VMIDS, 1); + +set_vmid: + __set_bit(vmid, vmid_map); + cur_idx = vmid; + vmid = idx2vmid(vmid) | generation; + atomic64_set(&kvm_vmid->id, vmid); + return vmid; +} + +/* Called from vCPU sched out with preemption disabled */ +void kvm_arm_vmid_clear_active(void) +{ + atomic64_set(this_cpu_ptr(&active_vmids), VMID_ACTIVE_INVALID); +} + +void kvm_arm_vmid_update(struct kvm_vmid *kvm_vmid) +{ + unsigned long flags; + u64 vmid, old_active_vmid; + + vmid = atomic64_read(&kvm_vmid->id); + + /* + * Please refer comments in check_and_switch_context() in + * arch/arm64/mm/context.c. + * + * Unlike ASID allocator, we set the active_vmids to + * VMID_ACTIVE_INVALID on vCPU schedule out to avoid + * reserving the VMID space needlessly on rollover. + * Hence explicitly check here for a "!= 0" to + * handle the sync with a concurrent rollover. + */ + old_active_vmid = atomic64_read(this_cpu_ptr(&active_vmids)); + if (old_active_vmid != 0 && vmid_gen_match(vmid) && + 0 != atomic64_cmpxchg_relaxed(this_cpu_ptr(&active_vmids), + old_active_vmid, vmid)) + return; + + raw_spin_lock_irqsave(&cpu_vmid_lock, flags); + + /* Check that our VMID belongs to the current generation. */ + vmid = atomic64_read(&kvm_vmid->id); + if (!vmid_gen_match(vmid)) + vmid = new_vmid(kvm_vmid); + + atomic64_set(this_cpu_ptr(&active_vmids), vmid); + raw_spin_unlock_irqrestore(&cpu_vmid_lock, flags); +} + +/* + * Initialize the VMID allocator + */ +int __init kvm_arm_vmid_alloc_init(void) +{ + kvm_arm_vmid_bits = kvm_get_vmid_bits(); + + /* + * Expect allocation after rollover to fail if we don't have + * at least one more VMID than CPUs. VMID #0 is always reserved. + */ + WARN_ON(NUM_USER_VMIDS - 1 <= num_possible_cpus()); + atomic64_set(&vmid_generation, VMID_FIRST_VERSION); + vmid_map = bitmap_zalloc(NUM_USER_VMIDS, GFP_KERNEL); + if (!vmid_map) + return -ENOMEM; + + return 0; +} + +void __init kvm_arm_vmid_alloc_free(void) +{ + bitmap_free(vmid_map); +} |