diff options
Diffstat (limited to 'arch/ia64/kernel/unaligned.c')
-rw-r--r-- | arch/ia64/kernel/unaligned.c | 1560 |
1 files changed, 0 insertions, 1560 deletions
diff --git a/arch/ia64/kernel/unaligned.c b/arch/ia64/kernel/unaligned.c deleted file mode 100644 index 0acb5a0cd7..0000000000 --- a/arch/ia64/kernel/unaligned.c +++ /dev/null @@ -1,1560 +0,0 @@ -// SPDX-License-Identifier: GPL-2.0 -/* - * Architecture-specific unaligned trap handling. - * - * Copyright (C) 1999-2002, 2004 Hewlett-Packard Co - * Stephane Eranian <eranian@hpl.hp.com> - * David Mosberger-Tang <davidm@hpl.hp.com> - * - * 2002/12/09 Fix rotating register handling (off-by-1 error, missing fr-rotation). Fix - * get_rse_reg() to not leak kernel bits to user-level (reading an out-of-frame - * stacked register returns an undefined value; it does NOT trigger a - * "rsvd register fault"). - * 2001/10/11 Fix unaligned access to rotating registers in s/w pipelined loops. - * 2001/08/13 Correct size of extended floats (float_fsz) from 16 to 10 bytes. - * 2001/01/17 Add support emulation of unaligned kernel accesses. - */ -#include <linux/jiffies.h> -#include <linux/kernel.h> -#include <linux/sched/signal.h> -#include <linux/tty.h> -#include <linux/extable.h> -#include <linux/ratelimit.h> -#include <linux/uaccess.h> - -#include <asm/intrinsics.h> -#include <asm/processor.h> -#include <asm/rse.h> -#include <asm/exception.h> -#include <asm/unaligned.h> - -extern int die_if_kernel(char *str, struct pt_regs *regs, long err); - -#undef DEBUG_UNALIGNED_TRAP - -#ifdef DEBUG_UNALIGNED_TRAP -# define DPRINT(a...) do { printk("%s %u: ", __func__, __LINE__); printk (a); } while (0) -# define DDUMP(str,vp,len) dump(str, vp, len) - -static void -dump (const char *str, void *vp, size_t len) -{ - unsigned char *cp = vp; - int i; - - printk("%s", str); - for (i = 0; i < len; ++i) - printk (" %02x", *cp++); - printk("\n"); -} -#else -# define DPRINT(a...) -# define DDUMP(str,vp,len) -#endif - -#define IA64_FIRST_STACKED_GR 32 -#define IA64_FIRST_ROTATING_FR 32 -#define SIGN_EXT9 0xffffffffffffff00ul - -/* - * sysctl settable hook which tells the kernel whether to honor the - * IA64_THREAD_UAC_NOPRINT prctl. Because this is user settable, we want - * to allow the super user to enable/disable this for security reasons - * (i.e. don't allow attacker to fill up logs with unaligned accesses). - */ -int no_unaligned_warning; -int unaligned_dump_stack; - -/* - * For M-unit: - * - * opcode | m | x6 | - * --------|------|---------| - * [40-37] | [36] | [35:30] | - * --------|------|---------| - * 4 | 1 | 6 | = 11 bits - * -------------------------- - * However bits [31:30] are not directly useful to distinguish between - * load/store so we can use [35:32] instead, which gives the following - * mask ([40:32]) using 9 bits. The 'e' comes from the fact that we defer - * checking the m-bit until later in the load/store emulation. - */ -#define IA64_OPCODE_MASK 0x1ef -#define IA64_OPCODE_SHIFT 32 - -/* - * Table C-28 Integer Load/Store - * - * We ignore [35:32]= 0x6, 0x7, 0xE, 0xF - * - * ld8.fill, st8.fill MUST be aligned because the RNATs are based on - * the address (bits [8:3]), so we must failed. - */ -#define LD_OP 0x080 -#define LDS_OP 0x081 -#define LDA_OP 0x082 -#define LDSA_OP 0x083 -#define LDBIAS_OP 0x084 -#define LDACQ_OP 0x085 -/* 0x086, 0x087 are not relevant */ -#define LDCCLR_OP 0x088 -#define LDCNC_OP 0x089 -#define LDCCLRACQ_OP 0x08a -#define ST_OP 0x08c -#define STREL_OP 0x08d -/* 0x08e,0x8f are not relevant */ - -/* - * Table C-29 Integer Load +Reg - * - * we use the ld->m (bit [36:36]) field to determine whether or not we have - * a load/store of this form. - */ - -/* - * Table C-30 Integer Load/Store +Imm - * - * We ignore [35:32]= 0x6, 0x7, 0xE, 0xF - * - * ld8.fill, st8.fill must be aligned because the Nat register are based on - * the address, so we must fail and the program must be fixed. - */ -#define LD_IMM_OP 0x0a0 -#define LDS_IMM_OP 0x0a1 -#define LDA_IMM_OP 0x0a2 -#define LDSA_IMM_OP 0x0a3 -#define LDBIAS_IMM_OP 0x0a4 -#define LDACQ_IMM_OP 0x0a5 -/* 0x0a6, 0xa7 are not relevant */ -#define LDCCLR_IMM_OP 0x0a8 -#define LDCNC_IMM_OP 0x0a9 -#define LDCCLRACQ_IMM_OP 0x0aa -#define ST_IMM_OP 0x0ac -#define STREL_IMM_OP 0x0ad -/* 0x0ae,0xaf are not relevant */ - -/* - * Table C-32 Floating-point Load/Store - */ -#define LDF_OP 0x0c0 -#define LDFS_OP 0x0c1 -#define LDFA_OP 0x0c2 -#define LDFSA_OP 0x0c3 -/* 0x0c6 is irrelevant */ -#define LDFCCLR_OP 0x0c8 -#define LDFCNC_OP 0x0c9 -/* 0x0cb is irrelevant */ -#define STF_OP 0x0cc - -/* - * Table C-33 Floating-point Load +Reg - * - * we use the ld->m (bit [36:36]) field to determine whether or not we have - * a load/store of this form. - */ - -/* - * Table C-34 Floating-point Load/Store +Imm - */ -#define LDF_IMM_OP 0x0e0 -#define LDFS_IMM_OP 0x0e1 -#define LDFA_IMM_OP 0x0e2 -#define LDFSA_IMM_OP 0x0e3 -/* 0x0e6 is irrelevant */ -#define LDFCCLR_IMM_OP 0x0e8 -#define LDFCNC_IMM_OP 0x0e9 -#define STF_IMM_OP 0x0ec - -typedef struct { - unsigned long qp:6; /* [0:5] */ - unsigned long r1:7; /* [6:12] */ - unsigned long imm:7; /* [13:19] */ - unsigned long r3:7; /* [20:26] */ - unsigned long x:1; /* [27:27] */ - unsigned long hint:2; /* [28:29] */ - unsigned long x6_sz:2; /* [30:31] */ - unsigned long x6_op:4; /* [32:35], x6 = x6_sz|x6_op */ - unsigned long m:1; /* [36:36] */ - unsigned long op:4; /* [37:40] */ - unsigned long pad:23; /* [41:63] */ -} load_store_t; - - -typedef enum { - UPD_IMMEDIATE, /* ldXZ r1=[r3],imm(9) */ - UPD_REG /* ldXZ r1=[r3],r2 */ -} update_t; - -/* - * We use tables to keep track of the offsets of registers in the saved state. - * This way we save having big switch/case statements. - * - * We use bit 0 to indicate switch_stack or pt_regs. - * The offset is simply shifted by 1 bit. - * A 2-byte value should be enough to hold any kind of offset - * - * In case the calling convention changes (and thus pt_regs/switch_stack) - * simply use RSW instead of RPT or vice-versa. - */ - -#define RPO(x) ((size_t) &((struct pt_regs *)0)->x) -#define RSO(x) ((size_t) &((struct switch_stack *)0)->x) - -#define RPT(x) (RPO(x) << 1) -#define RSW(x) (1| RSO(x)<<1) - -#define GR_OFFS(x) (gr_info[x]>>1) -#define GR_IN_SW(x) (gr_info[x] & 0x1) - -#define FR_OFFS(x) (fr_info[x]>>1) -#define FR_IN_SW(x) (fr_info[x] & 0x1) - -static u16 gr_info[32]={ - 0, /* r0 is read-only : WE SHOULD NEVER GET THIS */ - - RPT(r1), RPT(r2), RPT(r3), - - RSW(r4), RSW(r5), RSW(r6), RSW(r7), - - RPT(r8), RPT(r9), RPT(r10), RPT(r11), - RPT(r12), RPT(r13), RPT(r14), RPT(r15), - - RPT(r16), RPT(r17), RPT(r18), RPT(r19), - RPT(r20), RPT(r21), RPT(r22), RPT(r23), - RPT(r24), RPT(r25), RPT(r26), RPT(r27), - RPT(r28), RPT(r29), RPT(r30), RPT(r31) -}; - -static u16 fr_info[32]={ - 0, /* constant : WE SHOULD NEVER GET THIS */ - 0, /* constant : WE SHOULD NEVER GET THIS */ - - RSW(f2), RSW(f3), RSW(f4), RSW(f5), - - RPT(f6), RPT(f7), RPT(f8), RPT(f9), - RPT(f10), RPT(f11), - - RSW(f12), RSW(f13), RSW(f14), - RSW(f15), RSW(f16), RSW(f17), RSW(f18), RSW(f19), - RSW(f20), RSW(f21), RSW(f22), RSW(f23), RSW(f24), - RSW(f25), RSW(f26), RSW(f27), RSW(f28), RSW(f29), - RSW(f30), RSW(f31) -}; - -/* Invalidate ALAT entry for integer register REGNO. */ -static void -invala_gr (int regno) -{ -# define F(reg) case reg: ia64_invala_gr(reg); break - - switch (regno) { - F( 0); F( 1); F( 2); F( 3); F( 4); F( 5); F( 6); F( 7); - F( 8); F( 9); F( 10); F( 11); F( 12); F( 13); F( 14); F( 15); - F( 16); F( 17); F( 18); F( 19); F( 20); F( 21); F( 22); F( 23); - F( 24); F( 25); F( 26); F( 27); F( 28); F( 29); F( 30); F( 31); - F( 32); F( 33); F( 34); F( 35); F( 36); F( 37); F( 38); F( 39); - F( 40); F( 41); F( 42); F( 43); F( 44); F( 45); F( 46); F( 47); - F( 48); F( 49); F( 50); F( 51); F( 52); F( 53); F( 54); F( 55); - F( 56); F( 57); F( 58); F( 59); F( 60); F( 61); F( 62); F( 63); - F( 64); F( 65); F( 66); F( 67); F( 68); F( 69); F( 70); F( 71); - F( 72); F( 73); F( 74); F( 75); F( 76); F( 77); F( 78); F( 79); - F( 80); F( 81); F( 82); F( 83); F( 84); F( 85); F( 86); F( 87); - F( 88); F( 89); F( 90); F( 91); F( 92); F( 93); F( 94); F( 95); - F( 96); F( 97); F( 98); F( 99); F(100); F(101); F(102); F(103); - F(104); F(105); F(106); F(107); F(108); F(109); F(110); F(111); - F(112); F(113); F(114); F(115); F(116); F(117); F(118); F(119); - F(120); F(121); F(122); F(123); F(124); F(125); F(126); F(127); - } -# undef F -} - -/* Invalidate ALAT entry for floating-point register REGNO. */ -static void -invala_fr (int regno) -{ -# define F(reg) case reg: ia64_invala_fr(reg); break - - switch (regno) { - F( 0); F( 1); F( 2); F( 3); F( 4); F( 5); F( 6); F( 7); - F( 8); F( 9); F( 10); F( 11); F( 12); F( 13); F( 14); F( 15); - F( 16); F( 17); F( 18); F( 19); F( 20); F( 21); F( 22); F( 23); - F( 24); F( 25); F( 26); F( 27); F( 28); F( 29); F( 30); F( 31); - F( 32); F( 33); F( 34); F( 35); F( 36); F( 37); F( 38); F( 39); - F( 40); F( 41); F( 42); F( 43); F( 44); F( 45); F( 46); F( 47); - F( 48); F( 49); F( 50); F( 51); F( 52); F( 53); F( 54); F( 55); - F( 56); F( 57); F( 58); F( 59); F( 60); F( 61); F( 62); F( 63); - F( 64); F( 65); F( 66); F( 67); F( 68); F( 69); F( 70); F( 71); - F( 72); F( 73); F( 74); F( 75); F( 76); F( 77); F( 78); F( 79); - F( 80); F( 81); F( 82); F( 83); F( 84); F( 85); F( 86); F( 87); - F( 88); F( 89); F( 90); F( 91); F( 92); F( 93); F( 94); F( 95); - F( 96); F( 97); F( 98); F( 99); F(100); F(101); F(102); F(103); - F(104); F(105); F(106); F(107); F(108); F(109); F(110); F(111); - F(112); F(113); F(114); F(115); F(116); F(117); F(118); F(119); - F(120); F(121); F(122); F(123); F(124); F(125); F(126); F(127); - } -# undef F -} - -static inline unsigned long -rotate_reg (unsigned long sor, unsigned long rrb, unsigned long reg) -{ - reg += rrb; - if (reg >= sor) - reg -= sor; - return reg; -} - -static void -set_rse_reg (struct pt_regs *regs, unsigned long r1, unsigned long val, int nat) -{ - struct switch_stack *sw = (struct switch_stack *) regs - 1; - unsigned long *bsp, *bspstore, *addr, *rnat_addr, *ubs_end; - unsigned long *kbs = (void *) current + IA64_RBS_OFFSET; - unsigned long rnats, nat_mask; - unsigned long on_kbs; - long sof = (regs->cr_ifs) & 0x7f; - long sor = 8 * ((regs->cr_ifs >> 14) & 0xf); - long rrb_gr = (regs->cr_ifs >> 18) & 0x7f; - long ridx = r1 - 32; - - if (ridx >= sof) { - /* this should never happen, as the "rsvd register fault" has higher priority */ - DPRINT("ignoring write to r%lu; only %lu registers are allocated!\n", r1, sof); - return; - } - - if (ridx < sor) - ridx = rotate_reg(sor, rrb_gr, ridx); - - DPRINT("r%lu, sw.bspstore=%lx pt.bspstore=%lx sof=%ld sol=%ld ridx=%ld\n", - r1, sw->ar_bspstore, regs->ar_bspstore, sof, (regs->cr_ifs >> 7) & 0x7f, ridx); - - on_kbs = ia64_rse_num_regs(kbs, (unsigned long *) sw->ar_bspstore); - addr = ia64_rse_skip_regs((unsigned long *) sw->ar_bspstore, -sof + ridx); - if (addr >= kbs) { - /* the register is on the kernel backing store: easy... */ - rnat_addr = ia64_rse_rnat_addr(addr); - if ((unsigned long) rnat_addr >= sw->ar_bspstore) - rnat_addr = &sw->ar_rnat; - nat_mask = 1UL << ia64_rse_slot_num(addr); - - *addr = val; - if (nat) - *rnat_addr |= nat_mask; - else - *rnat_addr &= ~nat_mask; - return; - } - - if (!user_stack(current, regs)) { - DPRINT("ignoring kernel write to r%lu; register isn't on the kernel RBS!", r1); - return; - } - - bspstore = (unsigned long *)regs->ar_bspstore; - ubs_end = ia64_rse_skip_regs(bspstore, on_kbs); - bsp = ia64_rse_skip_regs(ubs_end, -sof); - addr = ia64_rse_skip_regs(bsp, ridx); - - DPRINT("ubs_end=%p bsp=%p addr=%p\n", (void *) ubs_end, (void *) bsp, (void *) addr); - - ia64_poke(current, sw, (unsigned long) ubs_end, (unsigned long) addr, val); - - rnat_addr = ia64_rse_rnat_addr(addr); - - ia64_peek(current, sw, (unsigned long) ubs_end, (unsigned long) rnat_addr, &rnats); - DPRINT("rnat @%p = 0x%lx nat=%d old nat=%ld\n", - (void *) rnat_addr, rnats, nat, (rnats >> ia64_rse_slot_num(addr)) & 1); - - nat_mask = 1UL << ia64_rse_slot_num(addr); - if (nat) - rnats |= nat_mask; - else - rnats &= ~nat_mask; - ia64_poke(current, sw, (unsigned long) ubs_end, (unsigned long) rnat_addr, rnats); - - DPRINT("rnat changed to @%p = 0x%lx\n", (void *) rnat_addr, rnats); -} - - -static void -get_rse_reg (struct pt_regs *regs, unsigned long r1, unsigned long *val, int *nat) -{ - struct switch_stack *sw = (struct switch_stack *) regs - 1; - unsigned long *bsp, *addr, *rnat_addr, *ubs_end, *bspstore; - unsigned long *kbs = (void *) current + IA64_RBS_OFFSET; - unsigned long rnats, nat_mask; - unsigned long on_kbs; - long sof = (regs->cr_ifs) & 0x7f; - long sor = 8 * ((regs->cr_ifs >> 14) & 0xf); - long rrb_gr = (regs->cr_ifs >> 18) & 0x7f; - long ridx = r1 - 32; - - if (ridx >= sof) { - /* read of out-of-frame register returns an undefined value; 0 in our case. */ - DPRINT("ignoring read from r%lu; only %lu registers are allocated!\n", r1, sof); - goto fail; - } - - if (ridx < sor) - ridx = rotate_reg(sor, rrb_gr, ridx); - - DPRINT("r%lu, sw.bspstore=%lx pt.bspstore=%lx sof=%ld sol=%ld ridx=%ld\n", - r1, sw->ar_bspstore, regs->ar_bspstore, sof, (regs->cr_ifs >> 7) & 0x7f, ridx); - - on_kbs = ia64_rse_num_regs(kbs, (unsigned long *) sw->ar_bspstore); - addr = ia64_rse_skip_regs((unsigned long *) sw->ar_bspstore, -sof + ridx); - if (addr >= kbs) { - /* the register is on the kernel backing store: easy... */ - *val = *addr; - if (nat) { - rnat_addr = ia64_rse_rnat_addr(addr); - if ((unsigned long) rnat_addr >= sw->ar_bspstore) - rnat_addr = &sw->ar_rnat; - nat_mask = 1UL << ia64_rse_slot_num(addr); - *nat = (*rnat_addr & nat_mask) != 0; - } - return; - } - - if (!user_stack(current, regs)) { - DPRINT("ignoring kernel read of r%lu; register isn't on the RBS!", r1); - goto fail; - } - - bspstore = (unsigned long *)regs->ar_bspstore; - ubs_end = ia64_rse_skip_regs(bspstore, on_kbs); - bsp = ia64_rse_skip_regs(ubs_end, -sof); - addr = ia64_rse_skip_regs(bsp, ridx); - - DPRINT("ubs_end=%p bsp=%p addr=%p\n", (void *) ubs_end, (void *) bsp, (void *) addr); - - ia64_peek(current, sw, (unsigned long) ubs_end, (unsigned long) addr, val); - - if (nat) { - rnat_addr = ia64_rse_rnat_addr(addr); - nat_mask = 1UL << ia64_rse_slot_num(addr); - - DPRINT("rnat @%p = 0x%lx\n", (void *) rnat_addr, rnats); - - ia64_peek(current, sw, (unsigned long) ubs_end, (unsigned long) rnat_addr, &rnats); - *nat = (rnats & nat_mask) != 0; - } - return; - - fail: - *val = 0; - if (nat) - *nat = 0; - return; -} - - -static void -setreg (unsigned long regnum, unsigned long val, int nat, struct pt_regs *regs) -{ - struct switch_stack *sw = (struct switch_stack *) regs - 1; - unsigned long addr; - unsigned long bitmask; - unsigned long *unat; - - /* - * First takes care of stacked registers - */ - if (regnum >= IA64_FIRST_STACKED_GR) { - set_rse_reg(regs, regnum, val, nat); - return; - } - - /* - * Using r0 as a target raises a General Exception fault which has higher priority - * than the Unaligned Reference fault. - */ - - /* - * Now look at registers in [0-31] range and init correct UNAT - */ - if (GR_IN_SW(regnum)) { - addr = (unsigned long)sw; - unat = &sw->ar_unat; - } else { - addr = (unsigned long)regs; - unat = &sw->caller_unat; - } - DPRINT("tmp_base=%lx switch_stack=%s offset=%d\n", - addr, unat==&sw->ar_unat ? "yes":"no", GR_OFFS(regnum)); - /* - * add offset from base of struct - * and do it ! - */ - addr += GR_OFFS(regnum); - - *(unsigned long *)addr = val; - - /* - * We need to clear the corresponding UNAT bit to fully emulate the load - * UNAT bit_pos = GR[r3]{8:3} form EAS-2.4 - */ - bitmask = 1UL << (addr >> 3 & 0x3f); - DPRINT("*0x%lx=0x%lx NaT=%d prev_unat @%p=%lx\n", addr, val, nat, (void *) unat, *unat); - if (nat) { - *unat |= bitmask; - } else { - *unat &= ~bitmask; - } - DPRINT("*0x%lx=0x%lx NaT=%d new unat: %p=%lx\n", addr, val, nat, (void *) unat,*unat); -} - -/* - * Return the (rotated) index for floating point register REGNUM (REGNUM must be in the - * range from 32-127, result is in the range from 0-95. - */ -static inline unsigned long -fph_index (struct pt_regs *regs, long regnum) -{ - unsigned long rrb_fr = (regs->cr_ifs >> 25) & 0x7f; - return rotate_reg(96, rrb_fr, (regnum - IA64_FIRST_ROTATING_FR)); -} - -static void -setfpreg (unsigned long regnum, struct ia64_fpreg *fpval, struct pt_regs *regs) -{ - struct switch_stack *sw = (struct switch_stack *)regs - 1; - unsigned long addr; - - /* - * From EAS-2.5: FPDisableFault has higher priority than Unaligned - * Fault. Thus, when we get here, we know the partition is enabled. - * To update f32-f127, there are three choices: - * - * (1) save f32-f127 to thread.fph and update the values there - * (2) use a gigantic switch statement to directly access the registers - * (3) generate code on the fly to update the desired register - * - * For now, we are using approach (1). - */ - if (regnum >= IA64_FIRST_ROTATING_FR) { - ia64_sync_fph(current); - current->thread.fph[fph_index(regs, regnum)] = *fpval; - } else { - /* - * pt_regs or switch_stack ? - */ - if (FR_IN_SW(regnum)) { - addr = (unsigned long)sw; - } else { - addr = (unsigned long)regs; - } - - DPRINT("tmp_base=%lx offset=%d\n", addr, FR_OFFS(regnum)); - - addr += FR_OFFS(regnum); - *(struct ia64_fpreg *)addr = *fpval; - - /* - * mark the low partition as being used now - * - * It is highly unlikely that this bit is not already set, but - * let's do it for safety. - */ - regs->cr_ipsr |= IA64_PSR_MFL; - } -} - -/* - * Those 2 inline functions generate the spilled versions of the constant floating point - * registers which can be used with stfX - */ -static inline void -float_spill_f0 (struct ia64_fpreg *final) -{ - ia64_stf_spill(final, 0); -} - -static inline void -float_spill_f1 (struct ia64_fpreg *final) -{ - ia64_stf_spill(final, 1); -} - -static void -getfpreg (unsigned long regnum, struct ia64_fpreg *fpval, struct pt_regs *regs) -{ - struct switch_stack *sw = (struct switch_stack *) regs - 1; - unsigned long addr; - - /* - * From EAS-2.5: FPDisableFault has higher priority than - * Unaligned Fault. Thus, when we get here, we know the partition is - * enabled. - * - * When regnum > 31, the register is still live and we need to force a save - * to current->thread.fph to get access to it. See discussion in setfpreg() - * for reasons and other ways of doing this. - */ - if (regnum >= IA64_FIRST_ROTATING_FR) { - ia64_flush_fph(current); - *fpval = current->thread.fph[fph_index(regs, regnum)]; - } else { - /* - * f0 = 0.0, f1= 1.0. Those registers are constant and are thus - * not saved, we must generate their spilled form on the fly - */ - switch(regnum) { - case 0: - float_spill_f0(fpval); - break; - case 1: - float_spill_f1(fpval); - break; - default: - /* - * pt_regs or switch_stack ? - */ - addr = FR_IN_SW(regnum) ? (unsigned long)sw - : (unsigned long)regs; - - DPRINT("is_sw=%d tmp_base=%lx offset=0x%x\n", - FR_IN_SW(regnum), addr, FR_OFFS(regnum)); - - addr += FR_OFFS(regnum); - *fpval = *(struct ia64_fpreg *)addr; - } - } -} - - -static void -getreg (unsigned long regnum, unsigned long *val, int *nat, struct pt_regs *regs) -{ - struct switch_stack *sw = (struct switch_stack *) regs - 1; - unsigned long addr, *unat; - - if (regnum >= IA64_FIRST_STACKED_GR) { - get_rse_reg(regs, regnum, val, nat); - return; - } - - /* - * take care of r0 (read-only always evaluate to 0) - */ - if (regnum == 0) { - *val = 0; - if (nat) - *nat = 0; - return; - } - - /* - * Now look at registers in [0-31] range and init correct UNAT - */ - if (GR_IN_SW(regnum)) { - addr = (unsigned long)sw; - unat = &sw->ar_unat; - } else { - addr = (unsigned long)regs; - unat = &sw->caller_unat; - } - - DPRINT("addr_base=%lx offset=0x%x\n", addr, GR_OFFS(regnum)); - - addr += GR_OFFS(regnum); - - *val = *(unsigned long *)addr; - - /* - * do it only when requested - */ - if (nat) - *nat = (*unat >> (addr >> 3 & 0x3f)) & 0x1UL; -} - -static void -emulate_load_updates (update_t type, load_store_t ld, struct pt_regs *regs, unsigned long ifa) -{ - /* - * IMPORTANT: - * Given the way we handle unaligned speculative loads, we should - * not get to this point in the code but we keep this sanity check, - * just in case. - */ - if (ld.x6_op == 1 || ld.x6_op == 3) { - printk(KERN_ERR "%s: register update on speculative load, error\n", __func__); - if (die_if_kernel("unaligned reference on speculative load with register update\n", - regs, 30)) - return; - } - - - /* - * at this point, we know that the base register to update is valid i.e., - * it's not r0 - */ - if (type == UPD_IMMEDIATE) { - unsigned long imm; - - /* - * Load +Imm: ldXZ r1=[r3],imm(9) - * - * - * form imm9: [13:19] contain the first 7 bits - */ - imm = ld.x << 7 | ld.imm; - - /* - * sign extend (1+8bits) if m set - */ - if (ld.m) imm |= SIGN_EXT9; - - /* - * ifa == r3 and we know that the NaT bit on r3 was clear so - * we can directly use ifa. - */ - ifa += imm; - - setreg(ld.r3, ifa, 0, regs); - - DPRINT("ld.x=%d ld.m=%d imm=%ld r3=0x%lx\n", ld.x, ld.m, imm, ifa); - - } else if (ld.m) { - unsigned long r2; - int nat_r2; - - /* - * Load +Reg Opcode: ldXZ r1=[r3],r2 - * - * Note: that we update r3 even in the case of ldfX.a - * (where the load does not happen) - * - * The way the load algorithm works, we know that r3 does not - * have its NaT bit set (would have gotten NaT consumption - * before getting the unaligned fault). So we can use ifa - * which equals r3 at this point. - * - * IMPORTANT: - * The above statement holds ONLY because we know that we - * never reach this code when trying to do a ldX.s. - * If we ever make it to here on an ldfX.s then - */ - getreg(ld.imm, &r2, &nat_r2, regs); - - ifa += r2; - - /* - * propagate Nat r2 -> r3 - */ - setreg(ld.r3, ifa, nat_r2, regs); - - DPRINT("imm=%d r2=%ld r3=0x%lx nat_r2=%d\n",ld.imm, r2, ifa, nat_r2); - } -} - -static int emulate_store(unsigned long ifa, void *val, int len, bool kernel_mode) -{ - if (kernel_mode) - return copy_to_kernel_nofault((void *)ifa, val, len); - - return copy_to_user((void __user *)ifa, val, len); -} - -static int emulate_load(void *val, unsigned long ifa, int len, bool kernel_mode) -{ - if (kernel_mode) - return copy_from_kernel_nofault(val, (void *)ifa, len); - - return copy_from_user(val, (void __user *)ifa, len); -} - -static int -emulate_load_int (unsigned long ifa, load_store_t ld, struct pt_regs *regs, - bool kernel_mode) -{ - unsigned int len = 1 << ld.x6_sz; - unsigned long val = 0; - - /* - * r0, as target, doesn't need to be checked because Illegal Instruction - * faults have higher priority than unaligned faults. - * - * r0 cannot be found as the base as it would never generate an - * unaligned reference. - */ - - /* - * ldX.a we will emulate load and also invalidate the ALAT entry. - * See comment below for explanation on how we handle ldX.a - */ - - if (len != 2 && len != 4 && len != 8) { - DPRINT("unknown size: x6=%d\n", ld.x6_sz); - return -1; - } - /* this assumes little-endian byte-order: */ - if (emulate_load(&val, ifa, len, kernel_mode)) - return -1; - setreg(ld.r1, val, 0, regs); - - /* - * check for updates on any kind of loads - */ - if (ld.op == 0x5 || ld.m) - emulate_load_updates(ld.op == 0x5 ? UPD_IMMEDIATE: UPD_REG, ld, regs, ifa); - - /* - * handling of various loads (based on EAS2.4): - * - * ldX.acq (ordered load): - * - acquire semantics would have been used, so force fence instead. - * - * ldX.c.clr (check load and clear): - * - if we get to this handler, it's because the entry was not in the ALAT. - * Therefore the operation reverts to a normal load - * - * ldX.c.nc (check load no clear): - * - same as previous one - * - * ldX.c.clr.acq (ordered check load and clear): - * - same as above for c.clr part. The load needs to have acquire semantics. So - * we use the fence semantics which is stronger and thus ensures correctness. - * - * ldX.a (advanced load): - * - suppose ldX.a r1=[r3]. If we get to the unaligned trap it's because the - * address doesn't match requested size alignment. This means that we would - * possibly need more than one load to get the result. - * - * The load part can be handled just like a normal load, however the difficult - * part is to get the right thing into the ALAT. The critical piece of information - * in the base address of the load & size. To do that, a ld.a must be executed, - * clearly any address can be pushed into the table by using ld1.a r1=[r3]. Now - * if we use the same target register, we will be okay for the check.a instruction. - * If we look at the store, basically a stX [r3]=r1 checks the ALAT for any entry - * which would overlap within [r3,r3+X] (the size of the load was store in the - * ALAT). If such an entry is found the entry is invalidated. But this is not good - * enough, take the following example: - * r3=3 - * ld4.a r1=[r3] - * - * Could be emulated by doing: - * ld1.a r1=[r3],1 - * store to temporary; - * ld1.a r1=[r3],1 - * store & shift to temporary; - * ld1.a r1=[r3],1 - * store & shift to temporary; - * ld1.a r1=[r3] - * store & shift to temporary; - * r1=temporary - * - * So in this case, you would get the right value is r1 but the wrong info in - * the ALAT. Notice that you could do it in reverse to finish with address 3 - * but you would still get the size wrong. To get the size right, one needs to - * execute exactly the same kind of load. You could do it from a aligned - * temporary location, but you would get the address wrong. - * - * So no matter what, it is not possible to emulate an advanced load - * correctly. But is that really critical ? - * - * We will always convert ld.a into a normal load with ALAT invalidated. This - * will enable compiler to do optimization where certain code path after ld.a - * is not required to have ld.c/chk.a, e.g., code path with no intervening stores. - * - * If there is a store after the advanced load, one must either do a ld.c.* or - * chk.a.* to reuse the value stored in the ALAT. Both can "fail" (meaning no - * entry found in ALAT), and that's perfectly ok because: - * - * - ld.c.*, if the entry is not present a normal load is executed - * - chk.a.*, if the entry is not present, execution jumps to recovery code - * - * In either case, the load can be potentially retried in another form. - * - * ALAT must be invalidated for the register (so that chk.a or ld.c don't pick - * up a stale entry later). The register base update MUST also be performed. - */ - - /* - * when the load has the .acq completer then - * use ordering fence. - */ - if (ld.x6_op == 0x5 || ld.x6_op == 0xa) - mb(); - - /* - * invalidate ALAT entry in case of advanced load - */ - if (ld.x6_op == 0x2) - invala_gr(ld.r1); - - return 0; -} - -static int -emulate_store_int (unsigned long ifa, load_store_t ld, struct pt_regs *regs, - bool kernel_mode) -{ - unsigned long r2; - unsigned int len = 1 << ld.x6_sz; - - /* - * if we get to this handler, Nat bits on both r3 and r2 have already - * been checked. so we don't need to do it - * - * extract the value to be stored - */ - getreg(ld.imm, &r2, NULL, regs); - - /* - * we rely on the macros in unaligned.h for now i.e., - * we let the compiler figure out how to read memory gracefully. - * - * We need this switch/case because the way the inline function - * works. The code is optimized by the compiler and looks like - * a single switch/case. - */ - DPRINT("st%d [%lx]=%lx\n", len, ifa, r2); - - if (len != 2 && len != 4 && len != 8) { - DPRINT("unknown size: x6=%d\n", ld.x6_sz); - return -1; - } - - /* this assumes little-endian byte-order: */ - if (emulate_store(ifa, &r2, len, kernel_mode)) - return -1; - - /* - * stX [r3]=r2,imm(9) - * - * NOTE: - * ld.r3 can never be r0, because r0 would not generate an - * unaligned access. - */ - if (ld.op == 0x5) { - unsigned long imm; - - /* - * form imm9: [12:6] contain first 7bits - */ - imm = ld.x << 7 | ld.r1; - /* - * sign extend (8bits) if m set - */ - if (ld.m) imm |= SIGN_EXT9; - /* - * ifa == r3 (NaT is necessarily cleared) - */ - ifa += imm; - - DPRINT("imm=%lx r3=%lx\n", imm, ifa); - - setreg(ld.r3, ifa, 0, regs); - } - /* - * we don't have alat_invalidate_multiple() so we need - * to do the complete flush :-<< - */ - ia64_invala(); - - /* - * stX.rel: use fence instead of release - */ - if (ld.x6_op == 0xd) - mb(); - - return 0; -} - -/* - * floating point operations sizes in bytes - */ -static const unsigned char float_fsz[4]={ - 10, /* extended precision (e) */ - 8, /* integer (8) */ - 4, /* single precision (s) */ - 8 /* double precision (d) */ -}; - -static inline void -mem2float_extended (struct ia64_fpreg *init, struct ia64_fpreg *final) -{ - ia64_ldfe(6, init); - ia64_stop(); - ia64_stf_spill(final, 6); -} - -static inline void -mem2float_integer (struct ia64_fpreg *init, struct ia64_fpreg *final) -{ - ia64_ldf8(6, init); - ia64_stop(); - ia64_stf_spill(final, 6); -} - -static inline void -mem2float_single (struct ia64_fpreg *init, struct ia64_fpreg *final) -{ - ia64_ldfs(6, init); - ia64_stop(); - ia64_stf_spill(final, 6); -} - -static inline void -mem2float_double (struct ia64_fpreg *init, struct ia64_fpreg *final) -{ - ia64_ldfd(6, init); - ia64_stop(); - ia64_stf_spill(final, 6); -} - -static inline void -float2mem_extended (struct ia64_fpreg *init, struct ia64_fpreg *final) -{ - ia64_ldf_fill(6, init); - ia64_stop(); - ia64_stfe(final, 6); -} - -static inline void -float2mem_integer (struct ia64_fpreg *init, struct ia64_fpreg *final) -{ - ia64_ldf_fill(6, init); - ia64_stop(); - ia64_stf8(final, 6); -} - -static inline void -float2mem_single (struct ia64_fpreg *init, struct ia64_fpreg *final) -{ - ia64_ldf_fill(6, init); - ia64_stop(); - ia64_stfs(final, 6); -} - -static inline void -float2mem_double (struct ia64_fpreg *init, struct ia64_fpreg *final) -{ - ia64_ldf_fill(6, init); - ia64_stop(); - ia64_stfd(final, 6); -} - -static int -emulate_load_floatpair (unsigned long ifa, load_store_t ld, struct pt_regs *regs, bool kernel_mode) -{ - struct ia64_fpreg fpr_init[2]; - struct ia64_fpreg fpr_final[2]; - unsigned long len = float_fsz[ld.x6_sz]; - - /* - * fr0 & fr1 don't need to be checked because Illegal Instruction faults have - * higher priority than unaligned faults. - * - * r0 cannot be found as the base as it would never generate an unaligned - * reference. - */ - - /* - * make sure we get clean buffers - */ - memset(&fpr_init, 0, sizeof(fpr_init)); - memset(&fpr_final, 0, sizeof(fpr_final)); - - /* - * ldfpX.a: we don't try to emulate anything but we must - * invalidate the ALAT entry and execute updates, if any. - */ - if (ld.x6_op != 0x2) { - /* - * This assumes little-endian byte-order. Note that there is no "ldfpe" - * instruction: - */ - if (emulate_load(&fpr_init[0], ifa, len, kernel_mode) - || emulate_load(&fpr_init[1], (ifa + len), len, kernel_mode)) - return -1; - - DPRINT("ld.r1=%d ld.imm=%d x6_sz=%d\n", ld.r1, ld.imm, ld.x6_sz); - DDUMP("frp_init =", &fpr_init, 2*len); - /* - * XXX fixme - * Could optimize inlines by using ldfpX & 2 spills - */ - switch( ld.x6_sz ) { - case 0: - mem2float_extended(&fpr_init[0], &fpr_final[0]); - mem2float_extended(&fpr_init[1], &fpr_final[1]); - break; - case 1: - mem2float_integer(&fpr_init[0], &fpr_final[0]); - mem2float_integer(&fpr_init[1], &fpr_final[1]); - break; - case 2: - mem2float_single(&fpr_init[0], &fpr_final[0]); - mem2float_single(&fpr_init[1], &fpr_final[1]); - break; - case 3: - mem2float_double(&fpr_init[0], &fpr_final[0]); - mem2float_double(&fpr_init[1], &fpr_final[1]); - break; - } - DDUMP("fpr_final =", &fpr_final, 2*len); - /* - * XXX fixme - * - * A possible optimization would be to drop fpr_final and directly - * use the storage from the saved context i.e., the actual final - * destination (pt_regs, switch_stack or thread structure). - */ - setfpreg(ld.r1, &fpr_final[0], regs); - setfpreg(ld.imm, &fpr_final[1], regs); - } - - /* - * Check for updates: only immediate updates are available for this - * instruction. - */ - if (ld.m) { - /* - * the immediate is implicit given the ldsz of the operation: - * single: 8 (2x4) and for all others it's 16 (2x8) - */ - ifa += len<<1; - - /* - * IMPORTANT: - * the fact that we force the NaT of r3 to zero is ONLY valid - * as long as we don't come here with a ldfpX.s. - * For this reason we keep this sanity check - */ - if (ld.x6_op == 1 || ld.x6_op == 3) - printk(KERN_ERR "%s: register update on speculative load pair, error\n", - __func__); - - setreg(ld.r3, ifa, 0, regs); - } - - /* - * Invalidate ALAT entries, if any, for both registers. - */ - if (ld.x6_op == 0x2) { - invala_fr(ld.r1); - invala_fr(ld.imm); - } - return 0; -} - - -static int -emulate_load_float (unsigned long ifa, load_store_t ld, struct pt_regs *regs, - bool kernel_mode) -{ - struct ia64_fpreg fpr_init; - struct ia64_fpreg fpr_final; - unsigned long len = float_fsz[ld.x6_sz]; - - /* - * fr0 & fr1 don't need to be checked because Illegal Instruction - * faults have higher priority than unaligned faults. - * - * r0 cannot be found as the base as it would never generate an - * unaligned reference. - */ - - /* - * make sure we get clean buffers - */ - memset(&fpr_init,0, sizeof(fpr_init)); - memset(&fpr_final,0, sizeof(fpr_final)); - - /* - * ldfX.a we don't try to emulate anything but we must - * invalidate the ALAT entry. - * See comments in ldX for descriptions on how the various loads are handled. - */ - if (ld.x6_op != 0x2) { - if (emulate_load(&fpr_init, ifa, len, kernel_mode)) - return -1; - - DPRINT("ld.r1=%d x6_sz=%d\n", ld.r1, ld.x6_sz); - DDUMP("fpr_init =", &fpr_init, len); - /* - * we only do something for x6_op={0,8,9} - */ - switch( ld.x6_sz ) { - case 0: - mem2float_extended(&fpr_init, &fpr_final); - break; - case 1: - mem2float_integer(&fpr_init, &fpr_final); - break; - case 2: - mem2float_single(&fpr_init, &fpr_final); - break; - case 3: - mem2float_double(&fpr_init, &fpr_final); - break; - } - DDUMP("fpr_final =", &fpr_final, len); - /* - * XXX fixme - * - * A possible optimization would be to drop fpr_final and directly - * use the storage from the saved context i.e., the actual final - * destination (pt_regs, switch_stack or thread structure). - */ - setfpreg(ld.r1, &fpr_final, regs); - } - - /* - * check for updates on any loads - */ - if (ld.op == 0x7 || ld.m) - emulate_load_updates(ld.op == 0x7 ? UPD_IMMEDIATE: UPD_REG, ld, regs, ifa); - - /* - * invalidate ALAT entry in case of advanced floating point loads - */ - if (ld.x6_op == 0x2) - invala_fr(ld.r1); - - return 0; -} - - -static int -emulate_store_float (unsigned long ifa, load_store_t ld, struct pt_regs *regs, - bool kernel_mode) -{ - struct ia64_fpreg fpr_init; - struct ia64_fpreg fpr_final; - unsigned long len = float_fsz[ld.x6_sz]; - - /* - * make sure we get clean buffers - */ - memset(&fpr_init,0, sizeof(fpr_init)); - memset(&fpr_final,0, sizeof(fpr_final)); - - /* - * if we get to this handler, Nat bits on both r3 and r2 have already - * been checked. so we don't need to do it - * - * extract the value to be stored - */ - getfpreg(ld.imm, &fpr_init, regs); - /* - * during this step, we extract the spilled registers from the saved - * context i.e., we refill. Then we store (no spill) to temporary - * aligned location - */ - switch( ld.x6_sz ) { - case 0: - float2mem_extended(&fpr_init, &fpr_final); - break; - case 1: - float2mem_integer(&fpr_init, &fpr_final); - break; - case 2: - float2mem_single(&fpr_init, &fpr_final); - break; - case 3: - float2mem_double(&fpr_init, &fpr_final); - break; - } - DPRINT("ld.r1=%d x6_sz=%d\n", ld.r1, ld.x6_sz); - DDUMP("fpr_init =", &fpr_init, len); - DDUMP("fpr_final =", &fpr_final, len); - - if (emulate_store(ifa, &fpr_final, len, kernel_mode)) - return -1; - - /* - * stfX [r3]=r2,imm(9) - * - * NOTE: - * ld.r3 can never be r0, because r0 would not generate an - * unaligned access. - */ - if (ld.op == 0x7) { - unsigned long imm; - - /* - * form imm9: [12:6] contain first 7bits - */ - imm = ld.x << 7 | ld.r1; - /* - * sign extend (8bits) if m set - */ - if (ld.m) - imm |= SIGN_EXT9; - /* - * ifa == r3 (NaT is necessarily cleared) - */ - ifa += imm; - - DPRINT("imm=%lx r3=%lx\n", imm, ifa); - - setreg(ld.r3, ifa, 0, regs); - } - /* - * we don't have alat_invalidate_multiple() so we need - * to do the complete flush :-<< - */ - ia64_invala(); - - return 0; -} - -/* - * Make sure we log the unaligned access, so that user/sysadmin can notice it and - * eventually fix the program. However, we don't want to do that for every access so we - * pace it with jiffies. - */ -static DEFINE_RATELIMIT_STATE(logging_rate_limit, 5 * HZ, 5); - -void -ia64_handle_unaligned (unsigned long ifa, struct pt_regs *regs) -{ - struct ia64_psr *ipsr = ia64_psr(regs); - unsigned long bundle[2]; - unsigned long opcode; - const struct exception_table_entry *eh = NULL; - union { - unsigned long l; - load_store_t insn; - } u; - int ret = -1; - bool kernel_mode = false; - - if (ia64_psr(regs)->be) { - /* we don't support big-endian accesses */ - if (die_if_kernel("big-endian unaligned accesses are not supported", regs, 0)) - return; - goto force_sigbus; - } - - /* - * Treat kernel accesses for which there is an exception handler entry the same as - * user-level unaligned accesses. Otherwise, a clever program could trick this - * handler into reading an arbitrary kernel addresses... - */ - if (!user_mode(regs)) - eh = search_exception_tables(regs->cr_iip + ia64_psr(regs)->ri); - if (user_mode(regs) || eh) { - if ((current->thread.flags & IA64_THREAD_UAC_SIGBUS) != 0) - goto force_sigbus; - - if (!no_unaligned_warning && - !(current->thread.flags & IA64_THREAD_UAC_NOPRINT) && - __ratelimit(&logging_rate_limit)) - { - char buf[200]; /* comm[] is at most 16 bytes... */ - size_t len; - - len = sprintf(buf, "%s(%d): unaligned access to 0x%016lx, " - "ip=0x%016lx\n\r", current->comm, - task_pid_nr(current), - ifa, regs->cr_iip + ipsr->ri); - /* - * Don't call tty_write_message() if we're in the kernel; we might - * be holding locks... - */ - if (user_mode(regs)) { - struct tty_struct *tty = get_current_tty(); - tty_write_message(tty, buf); - tty_kref_put(tty); - } - buf[len-1] = '\0'; /* drop '\r' */ - /* watch for command names containing %s */ - printk(KERN_WARNING "%s", buf); - } else { - if (no_unaligned_warning) { - printk_once(KERN_WARNING "%s(%d) encountered an " - "unaligned exception which required\n" - "kernel assistance, which degrades " - "the performance of the application.\n" - "Unaligned exception warnings have " - "been disabled by the system " - "administrator\n" - "echo 0 > /proc/sys/kernel/ignore-" - "unaligned-usertrap to re-enable\n", - current->comm, task_pid_nr(current)); - } - } - } else { - if (__ratelimit(&logging_rate_limit)) { - printk(KERN_WARNING "kernel unaligned access to 0x%016lx, ip=0x%016lx\n", - ifa, regs->cr_iip + ipsr->ri); - if (unaligned_dump_stack) - dump_stack(); - } - kernel_mode = true; - } - - DPRINT("iip=%lx ifa=%lx isr=%lx (ei=%d, sp=%d)\n", - regs->cr_iip, ifa, regs->cr_ipsr, ipsr->ri, ipsr->it); - - if (emulate_load(bundle, regs->cr_iip, 16, kernel_mode)) - goto failure; - - /* - * extract the instruction from the bundle given the slot number - */ - switch (ipsr->ri) { - default: - case 0: u.l = (bundle[0] >> 5); break; - case 1: u.l = (bundle[0] >> 46) | (bundle[1] << 18); break; - case 2: u.l = (bundle[1] >> 23); break; - } - opcode = (u.l >> IA64_OPCODE_SHIFT) & IA64_OPCODE_MASK; - - DPRINT("opcode=%lx ld.qp=%d ld.r1=%d ld.imm=%d ld.r3=%d ld.x=%d ld.hint=%d " - "ld.x6=0x%x ld.m=%d ld.op=%d\n", opcode, u.insn.qp, u.insn.r1, u.insn.imm, - u.insn.r3, u.insn.x, u.insn.hint, u.insn.x6_sz, u.insn.m, u.insn.op); - - /* - * IMPORTANT: - * Notice that the switch statement DOES not cover all possible instructions - * that DO generate unaligned references. This is made on purpose because for some - * instructions it DOES NOT make sense to try and emulate the access. Sometimes it - * is WRONG to try and emulate. Here is a list of instruction we don't emulate i.e., - * the program will get a signal and die: - * - * load/store: - * - ldX.spill - * - stX.spill - * Reason: RNATs are based on addresses - * - ld16 - * - st16 - * Reason: ld16 and st16 are supposed to occur in a single - * memory op - * - * synchronization: - * - cmpxchg - * - fetchadd - * - xchg - * Reason: ATOMIC operations cannot be emulated properly using multiple - * instructions. - * - * speculative loads: - * - ldX.sZ - * Reason: side effects, code must be ready to deal with failure so simpler - * to let the load fail. - * --------------------------------------------------------------------------------- - * XXX fixme - * - * I would like to get rid of this switch case and do something - * more elegant. - */ - switch (opcode) { - case LDS_OP: - case LDSA_OP: - if (u.insn.x) - /* oops, really a semaphore op (cmpxchg, etc) */ - goto failure; - fallthrough; - case LDS_IMM_OP: - case LDSA_IMM_OP: - case LDFS_OP: - case LDFSA_OP: - case LDFS_IMM_OP: - /* - * The instruction will be retried with deferred exceptions turned on, and - * we should get Nat bit installed - * - * IMPORTANT: When PSR_ED is set, the register & immediate update forms - * are actually executed even though the operation failed. So we don't - * need to take care of this. - */ - DPRINT("forcing PSR_ED\n"); - regs->cr_ipsr |= IA64_PSR_ED; - goto done; - - case LD_OP: - case LDA_OP: - case LDBIAS_OP: - case LDACQ_OP: - case LDCCLR_OP: - case LDCNC_OP: - case LDCCLRACQ_OP: - if (u.insn.x) - /* oops, really a semaphore op (cmpxchg, etc) */ - goto failure; - fallthrough; - case LD_IMM_OP: - case LDA_IMM_OP: - case LDBIAS_IMM_OP: - case LDACQ_IMM_OP: - case LDCCLR_IMM_OP: - case LDCNC_IMM_OP: - case LDCCLRACQ_IMM_OP: - ret = emulate_load_int(ifa, u.insn, regs, kernel_mode); - break; - - case ST_OP: - case STREL_OP: - if (u.insn.x) - /* oops, really a semaphore op (cmpxchg, etc) */ - goto failure; - fallthrough; - case ST_IMM_OP: - case STREL_IMM_OP: - ret = emulate_store_int(ifa, u.insn, regs, kernel_mode); - break; - - case LDF_OP: - case LDFA_OP: - case LDFCCLR_OP: - case LDFCNC_OP: - if (u.insn.x) - ret = emulate_load_floatpair(ifa, u.insn, regs, kernel_mode); - else - ret = emulate_load_float(ifa, u.insn, regs, kernel_mode); - break; - - case LDF_IMM_OP: - case LDFA_IMM_OP: - case LDFCCLR_IMM_OP: - case LDFCNC_IMM_OP: - ret = emulate_load_float(ifa, u.insn, regs, kernel_mode); - break; - - case STF_OP: - case STF_IMM_OP: - ret = emulate_store_float(ifa, u.insn, regs, kernel_mode); - break; - - default: - goto failure; - } - DPRINT("ret=%d\n", ret); - if (ret) - goto failure; - - if (ipsr->ri == 2) - /* - * given today's architecture this case is not likely to happen because a - * memory access instruction (M) can never be in the last slot of a - * bundle. But let's keep it for now. - */ - regs->cr_iip += 16; - ipsr->ri = (ipsr->ri + 1) & 0x3; - - DPRINT("ipsr->ri=%d iip=%lx\n", ipsr->ri, regs->cr_iip); - done: - return; - - failure: - /* something went wrong... */ - if (!user_mode(regs)) { - if (eh) { - ia64_handle_exception(regs, eh); - goto done; - } - if (die_if_kernel("error during unaligned kernel access\n", regs, ret)) - return; - /* NOT_REACHED */ - } - force_sigbus: - force_sig_fault(SIGBUS, BUS_ADRALN, (void __user *) ifa, - 0, 0, 0); - goto done; -} |