summaryrefslogtreecommitdiffstats
path: root/arch/powerpc/mm/init_64.c
diff options
context:
space:
mode:
Diffstat (limited to '')
-rw-r--r--arch/powerpc/mm/init_64.c676
1 files changed, 676 insertions, 0 deletions
diff --git a/arch/powerpc/mm/init_64.c b/arch/powerpc/mm/init_64.c
new file mode 100644
index 0000000000..d96bbc001e
--- /dev/null
+++ b/arch/powerpc/mm/init_64.c
@@ -0,0 +1,676 @@
+// SPDX-License-Identifier: GPL-2.0-or-later
+/*
+ * PowerPC version
+ * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
+ *
+ * Modifications by Paul Mackerras (PowerMac) (paulus@cs.anu.edu.au)
+ * and Cort Dougan (PReP) (cort@cs.nmt.edu)
+ * Copyright (C) 1996 Paul Mackerras
+ *
+ * Derived from "arch/i386/mm/init.c"
+ * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
+ *
+ * Dave Engebretsen <engebret@us.ibm.com>
+ * Rework for PPC64 port.
+ */
+
+#undef DEBUG
+
+#include <linux/signal.h>
+#include <linux/sched.h>
+#include <linux/kernel.h>
+#include <linux/errno.h>
+#include <linux/string.h>
+#include <linux/types.h>
+#include <linux/mman.h>
+#include <linux/mm.h>
+#include <linux/swap.h>
+#include <linux/stddef.h>
+#include <linux/vmalloc.h>
+#include <linux/init.h>
+#include <linux/delay.h>
+#include <linux/highmem.h>
+#include <linux/idr.h>
+#include <linux/nodemask.h>
+#include <linux/module.h>
+#include <linux/poison.h>
+#include <linux/memblock.h>
+#include <linux/hugetlb.h>
+#include <linux/slab.h>
+#include <linux/of_fdt.h>
+#include <linux/libfdt.h>
+#include <linux/memremap.h>
+#include <linux/memory.h>
+
+#include <asm/pgalloc.h>
+#include <asm/page.h>
+#include <asm/prom.h>
+#include <asm/rtas.h>
+#include <asm/io.h>
+#include <asm/mmu_context.h>
+#include <asm/mmu.h>
+#include <linux/uaccess.h>
+#include <asm/smp.h>
+#include <asm/machdep.h>
+#include <asm/tlb.h>
+#include <asm/eeh.h>
+#include <asm/processor.h>
+#include <asm/mmzone.h>
+#include <asm/cputable.h>
+#include <asm/sections.h>
+#include <asm/iommu.h>
+#include <asm/vdso.h>
+#include <asm/hugetlb.h>
+
+#include <mm/mmu_decl.h>
+
+#ifdef CONFIG_SPARSEMEM_VMEMMAP
+/*
+ * Given an address within the vmemmap, determine the page that
+ * represents the start of the subsection it is within. Note that we have to
+ * do this by hand as the proffered address may not be correctly aligned.
+ * Subtraction of non-aligned pointers produces undefined results.
+ */
+static struct page * __meminit vmemmap_subsection_start(unsigned long vmemmap_addr)
+{
+ unsigned long start_pfn;
+ unsigned long offset = vmemmap_addr - ((unsigned long)(vmemmap));
+
+ /* Return the pfn of the start of the section. */
+ start_pfn = (offset / sizeof(struct page)) & PAGE_SUBSECTION_MASK;
+ return pfn_to_page(start_pfn);
+}
+
+/*
+ * Since memory is added in sub-section chunks, before creating a new vmemmap
+ * mapping, the kernel should check whether there is an existing memmap mapping
+ * covering the new subsection added. This is needed because kernel can map
+ * vmemmap area using 16MB pages which will cover a memory range of 16G. Such
+ * a range covers multiple subsections (2M)
+ *
+ * If any subsection in the 16G range mapped by vmemmap is valid we consider the
+ * vmemmap populated (There is a page table entry already present). We can't do
+ * a page table lookup here because with the hash translation we don't keep
+ * vmemmap details in linux page table.
+ */
+int __meminit vmemmap_populated(unsigned long vmemmap_addr, int vmemmap_map_size)
+{
+ struct page *start;
+ unsigned long vmemmap_end = vmemmap_addr + vmemmap_map_size;
+ start = vmemmap_subsection_start(vmemmap_addr);
+
+ for (; (unsigned long)start < vmemmap_end; start += PAGES_PER_SUBSECTION)
+ /*
+ * pfn valid check here is intended to really check
+ * whether we have any subsection already initialized
+ * in this range.
+ */
+ if (pfn_valid(page_to_pfn(start)))
+ return 1;
+
+ return 0;
+}
+
+/*
+ * vmemmap virtual address space management does not have a traditional page
+ * table to track which virtual struct pages are backed by physical mapping.
+ * The virtual to physical mappings are tracked in a simple linked list
+ * format. 'vmemmap_list' maintains the entire vmemmap physical mapping at
+ * all times where as the 'next' list maintains the available
+ * vmemmap_backing structures which have been deleted from the
+ * 'vmemmap_global' list during system runtime (memory hotplug remove
+ * operation). The freed 'vmemmap_backing' structures are reused later when
+ * new requests come in without allocating fresh memory. This pointer also
+ * tracks the allocated 'vmemmap_backing' structures as we allocate one
+ * full page memory at a time when we dont have any.
+ */
+struct vmemmap_backing *vmemmap_list;
+static struct vmemmap_backing *next;
+
+/*
+ * The same pointer 'next' tracks individual chunks inside the allocated
+ * full page during the boot time and again tracks the freed nodes during
+ * runtime. It is racy but it does not happen as they are separated by the
+ * boot process. Will create problem if some how we have memory hotplug
+ * operation during boot !!
+ */
+static int num_left;
+static int num_freed;
+
+static __meminit struct vmemmap_backing * vmemmap_list_alloc(int node)
+{
+ struct vmemmap_backing *vmem_back;
+ /* get from freed entries first */
+ if (num_freed) {
+ num_freed--;
+ vmem_back = next;
+ next = next->list;
+
+ return vmem_back;
+ }
+
+ /* allocate a page when required and hand out chunks */
+ if (!num_left) {
+ next = vmemmap_alloc_block(PAGE_SIZE, node);
+ if (unlikely(!next)) {
+ WARN_ON(1);
+ return NULL;
+ }
+ num_left = PAGE_SIZE / sizeof(struct vmemmap_backing);
+ }
+
+ num_left--;
+
+ return next++;
+}
+
+static __meminit int vmemmap_list_populate(unsigned long phys,
+ unsigned long start,
+ int node)
+{
+ struct vmemmap_backing *vmem_back;
+
+ vmem_back = vmemmap_list_alloc(node);
+ if (unlikely(!vmem_back)) {
+ pr_debug("vmemap list allocation failed\n");
+ return -ENOMEM;
+ }
+
+ vmem_back->phys = phys;
+ vmem_back->virt_addr = start;
+ vmem_back->list = vmemmap_list;
+
+ vmemmap_list = vmem_back;
+ return 0;
+}
+
+bool altmap_cross_boundary(struct vmem_altmap *altmap, unsigned long start,
+ unsigned long page_size)
+{
+ unsigned long nr_pfn = page_size / sizeof(struct page);
+ unsigned long start_pfn = page_to_pfn((struct page *)start);
+
+ if ((start_pfn + nr_pfn - 1) > altmap->end_pfn)
+ return true;
+
+ if (start_pfn < altmap->base_pfn)
+ return true;
+
+ return false;
+}
+
+static int __meminit __vmemmap_populate(unsigned long start, unsigned long end, int node,
+ struct vmem_altmap *altmap)
+{
+ bool altmap_alloc;
+ unsigned long page_size = 1 << mmu_psize_defs[mmu_vmemmap_psize].shift;
+
+ /* Align to the page size of the linear mapping. */
+ start = ALIGN_DOWN(start, page_size);
+
+ pr_debug("vmemmap_populate %lx..%lx, node %d\n", start, end, node);
+
+ for (; start < end; start += page_size) {
+ void *p = NULL;
+ int rc;
+
+ /*
+ * This vmemmap range is backing different subsections. If any
+ * of that subsection is marked valid, that means we already
+ * have initialized a page table covering this range and hence
+ * the vmemmap range is populated.
+ */
+ if (vmemmap_populated(start, page_size))
+ continue;
+
+ /*
+ * Allocate from the altmap first if we have one. This may
+ * fail due to alignment issues when using 16MB hugepages, so
+ * fall back to system memory if the altmap allocation fail.
+ */
+ if (altmap && !altmap_cross_boundary(altmap, start, page_size)) {
+ p = vmemmap_alloc_block_buf(page_size, node, altmap);
+ if (!p)
+ pr_debug("altmap block allocation failed, falling back to system memory");
+ else
+ altmap_alloc = true;
+ }
+ if (!p) {
+ p = vmemmap_alloc_block_buf(page_size, node, NULL);
+ altmap_alloc = false;
+ }
+ if (!p)
+ return -ENOMEM;
+
+ if (vmemmap_list_populate(__pa(p), start, node)) {
+ /*
+ * If we don't populate vmemap list, we don't have
+ * the ability to free the allocated vmemmap
+ * pages in section_deactivate. Hence free them
+ * here.
+ */
+ int nr_pfns = page_size >> PAGE_SHIFT;
+ unsigned long page_order = get_order(page_size);
+
+ if (altmap_alloc)
+ vmem_altmap_free(altmap, nr_pfns);
+ else
+ free_pages((unsigned long)p, page_order);
+ return -ENOMEM;
+ }
+
+ pr_debug(" * %016lx..%016lx allocated at %p\n",
+ start, start + page_size, p);
+
+ rc = vmemmap_create_mapping(start, page_size, __pa(p));
+ if (rc < 0) {
+ pr_warn("%s: Unable to create vmemmap mapping: %d\n",
+ __func__, rc);
+ return -EFAULT;
+ }
+ }
+
+ return 0;
+}
+
+int __meminit vmemmap_populate(unsigned long start, unsigned long end, int node,
+ struct vmem_altmap *altmap)
+{
+
+#ifdef CONFIG_PPC_BOOK3S_64
+ if (radix_enabled())
+ return radix__vmemmap_populate(start, end, node, altmap);
+#endif
+
+ return __vmemmap_populate(start, end, node, altmap);
+}
+
+#ifdef CONFIG_MEMORY_HOTPLUG
+static unsigned long vmemmap_list_free(unsigned long start)
+{
+ struct vmemmap_backing *vmem_back, *vmem_back_prev;
+
+ vmem_back_prev = vmem_back = vmemmap_list;
+
+ /* look for it with prev pointer recorded */
+ for (; vmem_back; vmem_back = vmem_back->list) {
+ if (vmem_back->virt_addr == start)
+ break;
+ vmem_back_prev = vmem_back;
+ }
+
+ if (unlikely(!vmem_back))
+ return 0;
+
+ /* remove it from vmemmap_list */
+ if (vmem_back == vmemmap_list) /* remove head */
+ vmemmap_list = vmem_back->list;
+ else
+ vmem_back_prev->list = vmem_back->list;
+
+ /* next point to this freed entry */
+ vmem_back->list = next;
+ next = vmem_back;
+ num_freed++;
+
+ return vmem_back->phys;
+}
+
+static void __ref __vmemmap_free(unsigned long start, unsigned long end,
+ struct vmem_altmap *altmap)
+{
+ unsigned long page_size = 1 << mmu_psize_defs[mmu_vmemmap_psize].shift;
+ unsigned long page_order = get_order(page_size);
+ unsigned long alt_start = ~0, alt_end = ~0;
+ unsigned long base_pfn;
+
+ start = ALIGN_DOWN(start, page_size);
+ if (altmap) {
+ alt_start = altmap->base_pfn;
+ alt_end = altmap->base_pfn + altmap->reserve + altmap->free;
+ }
+
+ pr_debug("vmemmap_free %lx...%lx\n", start, end);
+
+ for (; start < end; start += page_size) {
+ unsigned long nr_pages, addr;
+ struct page *page;
+
+ /*
+ * We have already marked the subsection we are trying to remove
+ * invalid. So if we want to remove the vmemmap range, we
+ * need to make sure there is no subsection marked valid
+ * in this range.
+ */
+ if (vmemmap_populated(start, page_size))
+ continue;
+
+ addr = vmemmap_list_free(start);
+ if (!addr)
+ continue;
+
+ page = pfn_to_page(addr >> PAGE_SHIFT);
+ nr_pages = 1 << page_order;
+ base_pfn = PHYS_PFN(addr);
+
+ if (base_pfn >= alt_start && base_pfn < alt_end) {
+ vmem_altmap_free(altmap, nr_pages);
+ } else if (PageReserved(page)) {
+ /* allocated from bootmem */
+ if (page_size < PAGE_SIZE) {
+ /*
+ * this shouldn't happen, but if it is
+ * the case, leave the memory there
+ */
+ WARN_ON_ONCE(1);
+ } else {
+ while (nr_pages--)
+ free_reserved_page(page++);
+ }
+ } else {
+ free_pages((unsigned long)(__va(addr)), page_order);
+ }
+
+ vmemmap_remove_mapping(start, page_size);
+ }
+}
+
+void __ref vmemmap_free(unsigned long start, unsigned long end,
+ struct vmem_altmap *altmap)
+{
+#ifdef CONFIG_PPC_BOOK3S_64
+ if (radix_enabled())
+ return radix__vmemmap_free(start, end, altmap);
+#endif
+ return __vmemmap_free(start, end, altmap);
+}
+
+#endif
+void register_page_bootmem_memmap(unsigned long section_nr,
+ struct page *start_page, unsigned long size)
+{
+}
+
+#endif /* CONFIG_SPARSEMEM_VMEMMAP */
+
+#ifdef CONFIG_PPC_BOOK3S_64
+unsigned int mmu_lpid_bits;
+#ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
+EXPORT_SYMBOL_GPL(mmu_lpid_bits);
+#endif
+unsigned int mmu_pid_bits;
+
+static bool disable_radix = !IS_ENABLED(CONFIG_PPC_RADIX_MMU_DEFAULT);
+
+static int __init parse_disable_radix(char *p)
+{
+ bool val;
+
+ if (!p)
+ val = true;
+ else if (kstrtobool(p, &val))
+ return -EINVAL;
+
+ disable_radix = val;
+
+ return 0;
+}
+early_param("disable_radix", parse_disable_radix);
+
+/*
+ * If we're running under a hypervisor, we need to check the contents of
+ * /chosen/ibm,architecture-vec-5 to see if the hypervisor is willing to do
+ * radix. If not, we clear the radix feature bit so we fall back to hash.
+ */
+static void __init early_check_vec5(void)
+{
+ unsigned long root, chosen;
+ int size;
+ const u8 *vec5;
+ u8 mmu_supported;
+
+ root = of_get_flat_dt_root();
+ chosen = of_get_flat_dt_subnode_by_name(root, "chosen");
+ if (chosen == -FDT_ERR_NOTFOUND) {
+ cur_cpu_spec->mmu_features &= ~MMU_FTR_TYPE_RADIX;
+ return;
+ }
+ vec5 = of_get_flat_dt_prop(chosen, "ibm,architecture-vec-5", &size);
+ if (!vec5) {
+ cur_cpu_spec->mmu_features &= ~MMU_FTR_TYPE_RADIX;
+ return;
+ }
+ if (size <= OV5_INDX(OV5_MMU_SUPPORT)) {
+ cur_cpu_spec->mmu_features &= ~MMU_FTR_TYPE_RADIX;
+ return;
+ }
+
+ /* Check for supported configuration */
+ mmu_supported = vec5[OV5_INDX(OV5_MMU_SUPPORT)] &
+ OV5_FEAT(OV5_MMU_SUPPORT);
+ if (mmu_supported == OV5_FEAT(OV5_MMU_RADIX)) {
+ /* Hypervisor only supports radix - check enabled && GTSE */
+ if (!early_radix_enabled()) {
+ pr_warn("WARNING: Ignoring cmdline option disable_radix\n");
+ }
+ if (!(vec5[OV5_INDX(OV5_RADIX_GTSE)] &
+ OV5_FEAT(OV5_RADIX_GTSE))) {
+ cur_cpu_spec->mmu_features &= ~MMU_FTR_GTSE;
+ } else
+ cur_cpu_spec->mmu_features |= MMU_FTR_GTSE;
+ /* Do radix anyway - the hypervisor said we had to */
+ cur_cpu_spec->mmu_features |= MMU_FTR_TYPE_RADIX;
+ } else if (mmu_supported == OV5_FEAT(OV5_MMU_HASH)) {
+ /* Hypervisor only supports hash - disable radix */
+ cur_cpu_spec->mmu_features &= ~MMU_FTR_TYPE_RADIX;
+ cur_cpu_spec->mmu_features &= ~MMU_FTR_GTSE;
+ }
+}
+
+static int __init dt_scan_mmu_pid_width(unsigned long node,
+ const char *uname, int depth,
+ void *data)
+{
+ int size = 0;
+ const __be32 *prop;
+ const char *type = of_get_flat_dt_prop(node, "device_type", NULL);
+
+ /* We are scanning "cpu" nodes only */
+ if (type == NULL || strcmp(type, "cpu") != 0)
+ return 0;
+
+ /* Find MMU LPID, PID register size */
+ prop = of_get_flat_dt_prop(node, "ibm,mmu-lpid-bits", &size);
+ if (prop && size == 4)
+ mmu_lpid_bits = be32_to_cpup(prop);
+
+ prop = of_get_flat_dt_prop(node, "ibm,mmu-pid-bits", &size);
+ if (prop && size == 4)
+ mmu_pid_bits = be32_to_cpup(prop);
+
+ if (!mmu_pid_bits && !mmu_lpid_bits)
+ return 0;
+
+ return 1;
+}
+
+/*
+ * Outside hotplug the kernel uses this value to map the kernel direct map
+ * with radix. To be compatible with older kernels, let's keep this value
+ * as 16M which is also SECTION_SIZE with SPARSEMEM. We can ideally map
+ * things with 1GB size in the case where we don't support hotplug.
+ */
+#ifndef CONFIG_MEMORY_HOTPLUG
+#define DEFAULT_MEMORY_BLOCK_SIZE SZ_16M
+#else
+#define DEFAULT_MEMORY_BLOCK_SIZE MIN_MEMORY_BLOCK_SIZE
+#endif
+
+static void update_memory_block_size(unsigned long *block_size, unsigned long mem_size)
+{
+ unsigned long min_memory_block_size = DEFAULT_MEMORY_BLOCK_SIZE;
+
+ for (; *block_size > min_memory_block_size; *block_size >>= 2) {
+ if ((mem_size & *block_size) == 0)
+ break;
+ }
+}
+
+static int __init probe_memory_block_size(unsigned long node, const char *uname, int
+ depth, void *data)
+{
+ const char *type;
+ unsigned long *block_size = (unsigned long *)data;
+ const __be32 *reg, *endp;
+ int l;
+
+ if (depth != 1)
+ return 0;
+ /*
+ * If we have dynamic-reconfiguration-memory node, use the
+ * lmb value.
+ */
+ if (strcmp(uname, "ibm,dynamic-reconfiguration-memory") == 0) {
+
+ const __be32 *prop;
+
+ prop = of_get_flat_dt_prop(node, "ibm,lmb-size", &l);
+
+ if (!prop || l < dt_root_size_cells * sizeof(__be32))
+ /*
+ * Nothing in the device tree
+ */
+ *block_size = DEFAULT_MEMORY_BLOCK_SIZE;
+ else
+ *block_size = of_read_number(prop, dt_root_size_cells);
+ /*
+ * We have found the final value. Don't probe further.
+ */
+ return 1;
+ }
+ /*
+ * Find all the device tree nodes of memory type and make sure
+ * the area can be mapped using the memory block size value
+ * we end up using. We start with 1G value and keep reducing
+ * it such that we can map the entire area using memory_block_size.
+ * This will be used on powernv and older pseries that don't
+ * have ibm,lmb-size node.
+ * For ex: with P5 we can end up with
+ * memory@0 -> 128MB
+ * memory@128M -> 64M
+ * This will end up using 64MB memory block size value.
+ */
+ type = of_get_flat_dt_prop(node, "device_type", NULL);
+ if (type == NULL || strcmp(type, "memory") != 0)
+ return 0;
+
+ reg = of_get_flat_dt_prop(node, "linux,usable-memory", &l);
+ if (!reg)
+ reg = of_get_flat_dt_prop(node, "reg", &l);
+ if (!reg)
+ return 0;
+
+ endp = reg + (l / sizeof(__be32));
+ while ((endp - reg) >= (dt_root_addr_cells + dt_root_size_cells)) {
+ const char *compatible;
+ u64 size;
+
+ dt_mem_next_cell(dt_root_addr_cells, &reg);
+ size = dt_mem_next_cell(dt_root_size_cells, &reg);
+
+ if (size) {
+ update_memory_block_size(block_size, size);
+ continue;
+ }
+ /*
+ * ibm,coherent-device-memory with linux,usable-memory = 0
+ * Force 256MiB block size. Work around for GPUs on P9 PowerNV
+ * linux,usable-memory == 0 implies driver managed memory and
+ * we can't use large memory block size due to hotplug/unplug
+ * limitations.
+ */
+ compatible = of_get_flat_dt_prop(node, "compatible", NULL);
+ if (compatible && !strcmp(compatible, "ibm,coherent-device-memory")) {
+ if (*block_size > SZ_256M)
+ *block_size = SZ_256M;
+ /*
+ * We keep 256M as the upper limit with GPU present.
+ */
+ return 0;
+ }
+ }
+ /* continue looking for other memory device types */
+ return 0;
+}
+
+/*
+ * start with 1G memory block size. Early init will
+ * fix this with correct value.
+ */
+unsigned long memory_block_size __ro_after_init = 1UL << 30;
+static void __init early_init_memory_block_size(void)
+{
+ /*
+ * We need to do memory_block_size probe early so that
+ * radix__early_init_mmu() can use this as limit for
+ * mapping page size.
+ */
+ of_scan_flat_dt(probe_memory_block_size, &memory_block_size);
+}
+
+void __init mmu_early_init_devtree(void)
+{
+ bool hvmode = !!(mfmsr() & MSR_HV);
+
+ /* Disable radix mode based on kernel command line. */
+ if (disable_radix) {
+ if (IS_ENABLED(CONFIG_PPC_64S_HASH_MMU))
+ cur_cpu_spec->mmu_features &= ~MMU_FTR_TYPE_RADIX;
+ else
+ pr_warn("WARNING: Ignoring cmdline option disable_radix\n");
+ }
+
+ of_scan_flat_dt(dt_scan_mmu_pid_width, NULL);
+ if (hvmode && !mmu_lpid_bits) {
+ if (early_cpu_has_feature(CPU_FTR_ARCH_207S))
+ mmu_lpid_bits = 12; /* POWER8-10 */
+ else
+ mmu_lpid_bits = 10; /* POWER7 */
+ }
+ if (!mmu_pid_bits) {
+ if (early_cpu_has_feature(CPU_FTR_ARCH_300))
+ mmu_pid_bits = 20; /* POWER9-10 */
+ }
+
+ /*
+ * Check /chosen/ibm,architecture-vec-5 if running as a guest.
+ * When running bare-metal, we can use radix if we like
+ * even though the ibm,architecture-vec-5 property created by
+ * skiboot doesn't have the necessary bits set.
+ */
+ if (!hvmode)
+ early_check_vec5();
+
+ early_init_memory_block_size();
+
+ if (early_radix_enabled()) {
+ radix__early_init_devtree();
+
+ /*
+ * We have finalized the translation we are going to use by now.
+ * Radix mode is not limited by RMA / VRMA addressing.
+ * Hence don't limit memblock allocations.
+ */
+ ppc64_rma_size = ULONG_MAX;
+ memblock_set_current_limit(MEMBLOCK_ALLOC_ANYWHERE);
+ } else
+ hash__early_init_devtree();
+
+ if (IS_ENABLED(CONFIG_HUGETLB_PAGE_SIZE_VARIABLE))
+ hugetlbpage_init_defaultsize();
+
+ if (!(cur_cpu_spec->mmu_features & MMU_FTR_HPTE_TABLE) &&
+ !(cur_cpu_spec->mmu_features & MMU_FTR_TYPE_RADIX))
+ panic("kernel does not support any MMU type offered by platform");
+}
+#endif /* CONFIG_PPC_BOOK3S_64 */