diff options
Diffstat (limited to 'arch/s390/crypto')
-rw-r--r-- | arch/s390/crypto/chacha-glue.c | 4 | ||||
-rw-r--r-- | arch/s390/crypto/chacha-s390.S | 2 | ||||
-rw-r--r-- | arch/s390/crypto/crc32-vx.c | 11 | ||||
-rw-r--r-- | arch/s390/crypto/crc32-vx.h | 12 | ||||
-rw-r--r-- | arch/s390/crypto/crc32be-vx.c (renamed from arch/s390/crypto/crc32be-vx.S) | 177 | ||||
-rw-r--r-- | arch/s390/crypto/crc32le-vx.c (renamed from arch/s390/crypto/crc32le-vx.S) | 249 | ||||
-rw-r--r-- | arch/s390/crypto/paes_s390.c | 11 |
7 files changed, 199 insertions, 267 deletions
diff --git a/arch/s390/crypto/chacha-glue.c b/arch/s390/crypto/chacha-glue.c index ed9959e6f7..f8b0c52e77 100644 --- a/arch/s390/crypto/chacha-glue.c +++ b/arch/s390/crypto/chacha-glue.c @@ -15,14 +15,14 @@ #include <linux/kernel.h> #include <linux/module.h> #include <linux/sizes.h> -#include <asm/fpu/api.h> +#include <asm/fpu.h> #include "chacha-s390.h" static void chacha20_crypt_s390(u32 *state, u8 *dst, const u8 *src, unsigned int nbytes, const u32 *key, u32 *counter) { - struct kernel_fpu vxstate; + DECLARE_KERNEL_FPU_ONSTACK32(vxstate); kernel_fpu_begin(&vxstate, KERNEL_VXR); chacha20_vx(dst, src, nbytes, key, counter); diff --git a/arch/s390/crypto/chacha-s390.S b/arch/s390/crypto/chacha-s390.S index 37cb63f25b..63f3102678 100644 --- a/arch/s390/crypto/chacha-s390.S +++ b/arch/s390/crypto/chacha-s390.S @@ -8,7 +8,7 @@ #include <linux/linkage.h> #include <asm/nospec-insn.h> -#include <asm/vx-insn.h> +#include <asm/fpu-insn.h> #define SP %r15 #define FRAME (16 * 8 + 4 * 8) diff --git a/arch/s390/crypto/crc32-vx.c b/arch/s390/crypto/crc32-vx.c index 017143e9ce..74f17c905d 100644 --- a/arch/s390/crypto/crc32-vx.c +++ b/arch/s390/crypto/crc32-vx.c @@ -13,8 +13,8 @@ #include <linux/cpufeature.h> #include <linux/crc32.h> #include <crypto/internal/hash.h> -#include <asm/fpu/api.h> - +#include <asm/fpu.h> +#include "crc32-vx.h" #define CRC32_BLOCK_SIZE 1 #define CRC32_DIGEST_SIZE 4 @@ -31,11 +31,6 @@ struct crc_desc_ctx { u32 crc; }; -/* Prototypes for functions in assembly files */ -u32 crc32_le_vgfm_16(u32 crc, unsigned char const *buf, size_t size); -u32 crc32_be_vgfm_16(u32 crc, unsigned char const *buf, size_t size); -u32 crc32c_le_vgfm_16(u32 crc, unsigned char const *buf, size_t size); - /* * DEFINE_CRC32_VX() - Define a CRC-32 function using the vector extension * @@ -49,8 +44,8 @@ u32 crc32c_le_vgfm_16(u32 crc, unsigned char const *buf, size_t size); static u32 __pure ___fname(u32 crc, \ unsigned char const *data, size_t datalen) \ { \ - struct kernel_fpu vxstate; \ unsigned long prealign, aligned, remaining; \ + DECLARE_KERNEL_FPU_ONSTACK16(vxstate); \ \ if (datalen < VX_MIN_LEN + VX_ALIGN_MASK) \ return ___crc32_sw(crc, data, datalen); \ diff --git a/arch/s390/crypto/crc32-vx.h b/arch/s390/crypto/crc32-vx.h new file mode 100644 index 0000000000..652c96e1a8 --- /dev/null +++ b/arch/s390/crypto/crc32-vx.h @@ -0,0 +1,12 @@ +/* SPDX-License-Identifier: GPL-2.0 */ + +#ifndef _CRC32_VX_S390_H +#define _CRC32_VX_S390_H + +#include <linux/types.h> + +u32 crc32_be_vgfm_16(u32 crc, unsigned char const *buf, size_t size); +u32 crc32_le_vgfm_16(u32 crc, unsigned char const *buf, size_t size); +u32 crc32c_le_vgfm_16(u32 crc, unsigned char const *buf, size_t size); + +#endif /* _CRC32_VX_S390_H */ diff --git a/arch/s390/crypto/crc32be-vx.S b/arch/s390/crypto/crc32be-vx.c index 34ee479268..fed7c9c70d 100644 --- a/arch/s390/crypto/crc32be-vx.S +++ b/arch/s390/crypto/crc32be-vx.c @@ -12,20 +12,17 @@ * Author(s): Hendrik Brueckner <brueckner@linux.vnet.ibm.com> */ -#include <linux/linkage.h> -#include <asm/nospec-insn.h> -#include <asm/vx-insn.h> +#include <linux/types.h> +#include <asm/fpu.h> +#include "crc32-vx.h" /* Vector register range containing CRC-32 constants */ -#define CONST_R1R2 %v9 -#define CONST_R3R4 %v10 -#define CONST_R5 %v11 -#define CONST_R6 %v12 -#define CONST_RU_POLY %v13 -#define CONST_CRC_POLY %v14 - - .data - .balign 8 +#define CONST_R1R2 9 +#define CONST_R3R4 10 +#define CONST_R5 11 +#define CONST_R6 12 +#define CONST_RU_POLY 13 +#define CONST_CRC_POLY 14 /* * The CRC-32 constant block contains reduction constants to fold and @@ -58,105 +55,74 @@ * P'(x) = 0xEDB88320 */ -SYM_DATA_START_LOCAL(constants_CRC_32_BE) - .quad 0x08833794c, 0x0e6228b11 # R1, R2 - .quad 0x0c5b9cd4c, 0x0e8a45605 # R3, R4 - .quad 0x0f200aa66, 1 << 32 # R5, x32 - .quad 0x0490d678d, 1 # R6, 1 - .quad 0x104d101df, 0 # u - .quad 0x104C11DB7, 0 # P(x) -SYM_DATA_END(constants_CRC_32_BE) - - .previous - - GEN_BR_THUNK %r14 - - .text -/* - * The CRC-32 function(s) use these calling conventions: - * - * Parameters: - * - * %r2: Initial CRC value, typically ~0; and final CRC (return) value. - * %r3: Input buffer pointer, performance might be improved if the - * buffer is on a doubleword boundary. - * %r4: Length of the buffer, must be 64 bytes or greater. +static unsigned long constants_CRC_32_BE[] = { + 0x08833794c, 0x0e6228b11, /* R1, R2 */ + 0x0c5b9cd4c, 0x0e8a45605, /* R3, R4 */ + 0x0f200aa66, 1UL << 32, /* R5, x32 */ + 0x0490d678d, 1, /* R6, 1 */ + 0x104d101df, 0, /* u */ + 0x104C11DB7, 0, /* P(x) */ +}; + +/** + * crc32_be_vgfm_16 - Compute CRC-32 (BE variant) with vector registers + * @crc: Initial CRC value, typically ~0. + * @buf: Input buffer pointer, performance might be improved if the + * buffer is on a doubleword boundary. + * @size: Size of the buffer, must be 64 bytes or greater. * * Register usage: - * - * %r5: CRC-32 constant pool base pointer. * V0: Initial CRC value and intermediate constants and results. * V1..V4: Data for CRC computation. * V5..V8: Next data chunks that are fetched from the input buffer. - * * V9..V14: CRC-32 constants. */ -SYM_FUNC_START(crc32_be_vgfm_16) +u32 crc32_be_vgfm_16(u32 crc, unsigned char const *buf, size_t size) +{ /* Load CRC-32 constants */ - larl %r5,constants_CRC_32_BE - VLM CONST_R1R2,CONST_CRC_POLY,0,%r5 + fpu_vlm(CONST_R1R2, CONST_CRC_POLY, &constants_CRC_32_BE); + fpu_vzero(0); /* Load the initial CRC value into the leftmost word of V0. */ - VZERO %v0 - VLVGF %v0,%r2,0 + fpu_vlvgf(0, crc, 0); /* Load a 64-byte data chunk and XOR with CRC */ - VLM %v1,%v4,0,%r3 /* 64-bytes into V1..V4 */ - VX %v1,%v0,%v1 /* V1 ^= CRC */ - aghi %r3,64 /* BUF = BUF + 64 */ - aghi %r4,-64 /* LEN = LEN - 64 */ - - /* Check remaining buffer size and jump to proper folding method */ - cghi %r4,64 - jl .Lless_than_64bytes - -.Lfold_64bytes_loop: - /* Load the next 64-byte data chunk into V5 to V8 */ - VLM %v5,%v8,0,%r3 + fpu_vlm(1, 4, buf); + fpu_vx(1, 0, 1); + buf += 64; + size -= 64; + + while (size >= 64) { + /* Load the next 64-byte data chunk into V5 to V8 */ + fpu_vlm(5, 8, buf); + + /* + * Perform a GF(2) multiplication of the doublewords in V1 with + * the reduction constants in V0. The intermediate result is + * then folded (accumulated) with the next data chunk in V5 and + * stored in V1. Repeat this step for the register contents + * in V2, V3, and V4 respectively. + */ + fpu_vgfmag(1, CONST_R1R2, 1, 5); + fpu_vgfmag(2, CONST_R1R2, 2, 6); + fpu_vgfmag(3, CONST_R1R2, 3, 7); + fpu_vgfmag(4, CONST_R1R2, 4, 8); + buf += 64; + size -= 64; + } - /* - * Perform a GF(2) multiplication of the doublewords in V1 with - * the reduction constants in V0. The intermediate result is - * then folded (accumulated) with the next data chunk in V5 and - * stored in V1. Repeat this step for the register contents - * in V2, V3, and V4 respectively. - */ - VGFMAG %v1,CONST_R1R2,%v1,%v5 - VGFMAG %v2,CONST_R1R2,%v2,%v6 - VGFMAG %v3,CONST_R1R2,%v3,%v7 - VGFMAG %v4,CONST_R1R2,%v4,%v8 - - /* Adjust buffer pointer and length for next loop */ - aghi %r3,64 /* BUF = BUF + 64 */ - aghi %r4,-64 /* LEN = LEN - 64 */ - - cghi %r4,64 - jnl .Lfold_64bytes_loop - -.Lless_than_64bytes: /* Fold V1 to V4 into a single 128-bit value in V1 */ - VGFMAG %v1,CONST_R3R4,%v1,%v2 - VGFMAG %v1,CONST_R3R4,%v1,%v3 - VGFMAG %v1,CONST_R3R4,%v1,%v4 - - /* Check whether to continue with 64-bit folding */ - cghi %r4,16 - jl .Lfinal_fold + fpu_vgfmag(1, CONST_R3R4, 1, 2); + fpu_vgfmag(1, CONST_R3R4, 1, 3); + fpu_vgfmag(1, CONST_R3R4, 1, 4); -.Lfold_16bytes_loop: + while (size >= 16) { + fpu_vl(2, buf); + fpu_vgfmag(1, CONST_R3R4, 1, 2); + buf += 16; + size -= 16; + } - VL %v2,0,,%r3 /* Load next data chunk */ - VGFMAG %v1,CONST_R3R4,%v1,%v2 /* Fold next data chunk */ - - /* Adjust buffer pointer and size for folding next data chunk */ - aghi %r3,16 - aghi %r4,-16 - - /* Process remaining data chunks */ - cghi %r4,16 - jnl .Lfold_16bytes_loop - -.Lfinal_fold: /* * The R5 constant is used to fold a 128-bit value into an 96-bit value * that is XORed with the next 96-bit input data chunk. To use a single @@ -164,7 +130,7 @@ SYM_FUNC_START(crc32_be_vgfm_16) * form an intermediate 96-bit value (with appended zeros) which is then * XORed with the intermediate reduction result. */ - VGFMG %v1,CONST_R5,%v1 + fpu_vgfmg(1, CONST_R5, 1); /* * Further reduce the remaining 96-bit value to a 64-bit value using a @@ -173,7 +139,7 @@ SYM_FUNC_START(crc32_be_vgfm_16) * doubleword with R6. The result is a 64-bit value and is subject to * the Barret reduction. */ - VGFMG %v1,CONST_R6,%v1 + fpu_vgfmg(1, CONST_R6, 1); /* * The input values to the Barret reduction are the degree-63 polynomial @@ -194,20 +160,15 @@ SYM_FUNC_START(crc32_be_vgfm_16) */ /* T1(x) = floor( R(x) / x^32 ) GF2MUL u */ - VUPLLF %v2,%v1 - VGFMG %v2,CONST_RU_POLY,%v2 + fpu_vupllf(2, 1); + fpu_vgfmg(2, CONST_RU_POLY, 2); /* * Compute the GF(2) product of the CRC polynomial in VO with T1(x) in * V2 and XOR the intermediate result, T2(x), with the value in V1. * The final result is in the rightmost word of V2. */ - VUPLLF %v2,%v2 - VGFMAG %v2,CONST_CRC_POLY,%v2,%v1 - -.Ldone: - VLGVF %r2,%v2,3 - BR_EX %r14 -SYM_FUNC_END(crc32_be_vgfm_16) - -.previous + fpu_vupllf(2, 2); + fpu_vgfmag(2, CONST_CRC_POLY, 2, 1); + return fpu_vlgvf(2, 3); +} diff --git a/arch/s390/crypto/crc32le-vx.S b/arch/s390/crypto/crc32le-vx.c index 5a819ae09a..2f629f394d 100644 --- a/arch/s390/crypto/crc32le-vx.S +++ b/arch/s390/crypto/crc32le-vx.c @@ -13,20 +13,17 @@ * Author(s): Hendrik Brueckner <brueckner@linux.vnet.ibm.com> */ -#include <linux/linkage.h> -#include <asm/nospec-insn.h> -#include <asm/vx-insn.h> +#include <linux/types.h> +#include <asm/fpu.h> +#include "crc32-vx.h" /* Vector register range containing CRC-32 constants */ -#define CONST_PERM_LE2BE %v9 -#define CONST_R2R1 %v10 -#define CONST_R4R3 %v11 -#define CONST_R5 %v12 -#define CONST_RU_POLY %v13 -#define CONST_CRC_POLY %v14 - - .data - .balign 8 +#define CONST_PERM_LE2BE 9 +#define CONST_R2R1 10 +#define CONST_R4R3 11 +#define CONST_R5 12 +#define CONST_RU_POLY 13 +#define CONST_CRC_POLY 14 /* * The CRC-32 constant block contains reduction constants to fold and @@ -59,64 +56,43 @@ * P'(x) = 0x82F63B78 */ -SYM_DATA_START_LOCAL(constants_CRC_32_LE) - .octa 0x0F0E0D0C0B0A09080706050403020100 # BE->LE mask - .quad 0x1c6e41596, 0x154442bd4 # R2, R1 - .quad 0x0ccaa009e, 0x1751997d0 # R4, R3 - .octa 0x163cd6124 # R5 - .octa 0x1F7011641 # u' - .octa 0x1DB710641 # P'(x) << 1 -SYM_DATA_END(constants_CRC_32_LE) - -SYM_DATA_START_LOCAL(constants_CRC_32C_LE) - .octa 0x0F0E0D0C0B0A09080706050403020100 # BE->LE mask - .quad 0x09e4addf8, 0x740eef02 # R2, R1 - .quad 0x14cd00bd6, 0xf20c0dfe # R4, R3 - .octa 0x0dd45aab8 # R5 - .octa 0x0dea713f1 # u' - .octa 0x105ec76f0 # P'(x) << 1 -SYM_DATA_END(constants_CRC_32C_LE) - - .previous - - GEN_BR_THUNK %r14 - - .text - -/* - * The CRC-32 functions use these calling conventions: - * - * Parameters: - * - * %r2: Initial CRC value, typically ~0; and final CRC (return) value. - * %r3: Input buffer pointer, performance might be improved if the - * buffer is on a doubleword boundary. - * %r4: Length of the buffer, must be 64 bytes or greater. +static unsigned long constants_CRC_32_LE[] = { + 0x0f0e0d0c0b0a0908, 0x0706050403020100, /* BE->LE mask */ + 0x1c6e41596, 0x154442bd4, /* R2, R1 */ + 0x0ccaa009e, 0x1751997d0, /* R4, R3 */ + 0x0, 0x163cd6124, /* R5 */ + 0x0, 0x1f7011641, /* u' */ + 0x0, 0x1db710641 /* P'(x) << 1 */ +}; + +static unsigned long constants_CRC_32C_LE[] = { + 0x0f0e0d0c0b0a0908, 0x0706050403020100, /* BE->LE mask */ + 0x09e4addf8, 0x740eef02, /* R2, R1 */ + 0x14cd00bd6, 0xf20c0dfe, /* R4, R3 */ + 0x0, 0x0dd45aab8, /* R5 */ + 0x0, 0x0dea713f1, /* u' */ + 0x0, 0x105ec76f0 /* P'(x) << 1 */ +}; + +/** + * crc32_le_vgfm_generic - Compute CRC-32 (LE variant) with vector registers + * @crc: Initial CRC value, typically ~0. + * @buf: Input buffer pointer, performance might be improved if the + * buffer is on a doubleword boundary. + * @size: Size of the buffer, must be 64 bytes or greater. + * @constants: CRC-32 constant pool base pointer. * * Register usage: - * - * %r5: CRC-32 constant pool base pointer. - * V0: Initial CRC value and intermediate constants and results. - * V1..V4: Data for CRC computation. - * V5..V8: Next data chunks that are fetched from the input buffer. - * V9: Constant for BE->LE conversion and shift operations - * + * V0: Initial CRC value and intermediate constants and results. + * V1..V4: Data for CRC computation. + * V5..V8: Next data chunks that are fetched from the input buffer. + * V9: Constant for BE->LE conversion and shift operations * V10..V14: CRC-32 constants. */ - -SYM_FUNC_START(crc32_le_vgfm_16) - larl %r5,constants_CRC_32_LE - j crc32_le_vgfm_generic -SYM_FUNC_END(crc32_le_vgfm_16) - -SYM_FUNC_START(crc32c_le_vgfm_16) - larl %r5,constants_CRC_32C_LE - j crc32_le_vgfm_generic -SYM_FUNC_END(crc32c_le_vgfm_16) - -SYM_FUNC_START(crc32_le_vgfm_generic) +static u32 crc32_le_vgfm_generic(u32 crc, unsigned char const *buf, size_t size, unsigned long *constants) +{ /* Load CRC-32 constants */ - VLM CONST_PERM_LE2BE,CONST_CRC_POLY,0,%r5 + fpu_vlm(CONST_PERM_LE2BE, CONST_CRC_POLY, constants); /* * Load the initial CRC value. @@ -125,90 +101,73 @@ SYM_FUNC_START(crc32_le_vgfm_generic) * vector register and is later XORed with the LSB portion * of the loaded input data. */ - VZERO %v0 /* Clear V0 */ - VLVGF %v0,%r2,3 /* Load CRC into rightmost word */ + fpu_vzero(0); /* Clear V0 */ + fpu_vlvgf(0, crc, 3); /* Load CRC into rightmost word */ /* Load a 64-byte data chunk and XOR with CRC */ - VLM %v1,%v4,0,%r3 /* 64-bytes into V1..V4 */ - VPERM %v1,%v1,%v1,CONST_PERM_LE2BE - VPERM %v2,%v2,%v2,CONST_PERM_LE2BE - VPERM %v3,%v3,%v3,CONST_PERM_LE2BE - VPERM %v4,%v4,%v4,CONST_PERM_LE2BE + fpu_vlm(1, 4, buf); + fpu_vperm(1, 1, 1, CONST_PERM_LE2BE); + fpu_vperm(2, 2, 2, CONST_PERM_LE2BE); + fpu_vperm(3, 3, 3, CONST_PERM_LE2BE); + fpu_vperm(4, 4, 4, CONST_PERM_LE2BE); + + fpu_vx(1, 0, 1); /* V1 ^= CRC */ + buf += 64; + size -= 64; + + while (size >= 64) { + fpu_vlm(5, 8, buf); + fpu_vperm(5, 5, 5, CONST_PERM_LE2BE); + fpu_vperm(6, 6, 6, CONST_PERM_LE2BE); + fpu_vperm(7, 7, 7, CONST_PERM_LE2BE); + fpu_vperm(8, 8, 8, CONST_PERM_LE2BE); + /* + * Perform a GF(2) multiplication of the doublewords in V1 with + * the R1 and R2 reduction constants in V0. The intermediate + * result is then folded (accumulated) with the next data chunk + * in V5 and stored in V1. Repeat this step for the register + * contents in V2, V3, and V4 respectively. + */ + fpu_vgfmag(1, CONST_R2R1, 1, 5); + fpu_vgfmag(2, CONST_R2R1, 2, 6); + fpu_vgfmag(3, CONST_R2R1, 3, 7); + fpu_vgfmag(4, CONST_R2R1, 4, 8); + buf += 64; + size -= 64; + } - VX %v1,%v0,%v1 /* V1 ^= CRC */ - aghi %r3,64 /* BUF = BUF + 64 */ - aghi %r4,-64 /* LEN = LEN - 64 */ - - cghi %r4,64 - jl .Lless_than_64bytes - -.Lfold_64bytes_loop: - /* Load the next 64-byte data chunk into V5 to V8 */ - VLM %v5,%v8,0,%r3 - VPERM %v5,%v5,%v5,CONST_PERM_LE2BE - VPERM %v6,%v6,%v6,CONST_PERM_LE2BE - VPERM %v7,%v7,%v7,CONST_PERM_LE2BE - VPERM %v8,%v8,%v8,CONST_PERM_LE2BE - - /* - * Perform a GF(2) multiplication of the doublewords in V1 with - * the R1 and R2 reduction constants in V0. The intermediate result - * is then folded (accumulated) with the next data chunk in V5 and - * stored in V1. Repeat this step for the register contents - * in V2, V3, and V4 respectively. - */ - VGFMAG %v1,CONST_R2R1,%v1,%v5 - VGFMAG %v2,CONST_R2R1,%v2,%v6 - VGFMAG %v3,CONST_R2R1,%v3,%v7 - VGFMAG %v4,CONST_R2R1,%v4,%v8 - - aghi %r3,64 /* BUF = BUF + 64 */ - aghi %r4,-64 /* LEN = LEN - 64 */ - - cghi %r4,64 - jnl .Lfold_64bytes_loop - -.Lless_than_64bytes: /* * Fold V1 to V4 into a single 128-bit value in V1. Multiply V1 with R3 * and R4 and accumulating the next 128-bit chunk until a single 128-bit * value remains. */ - VGFMAG %v1,CONST_R4R3,%v1,%v2 - VGFMAG %v1,CONST_R4R3,%v1,%v3 - VGFMAG %v1,CONST_R4R3,%v1,%v4 - - cghi %r4,16 - jl .Lfinal_fold - -.Lfold_16bytes_loop: - - VL %v2,0,,%r3 /* Load next data chunk */ - VPERM %v2,%v2,%v2,CONST_PERM_LE2BE - VGFMAG %v1,CONST_R4R3,%v1,%v2 /* Fold next data chunk */ + fpu_vgfmag(1, CONST_R4R3, 1, 2); + fpu_vgfmag(1, CONST_R4R3, 1, 3); + fpu_vgfmag(1, CONST_R4R3, 1, 4); + + while (size >= 16) { + fpu_vl(2, buf); + fpu_vperm(2, 2, 2, CONST_PERM_LE2BE); + fpu_vgfmag(1, CONST_R4R3, 1, 2); + buf += 16; + size -= 16; + } - aghi %r3,16 - aghi %r4,-16 - - cghi %r4,16 - jnl .Lfold_16bytes_loop - -.Lfinal_fold: /* * Set up a vector register for byte shifts. The shift value must * be loaded in bits 1-4 in byte element 7 of a vector register. * Shift by 8 bytes: 0x40 * Shift by 4 bytes: 0x20 */ - VLEIB %v9,0x40,7 + fpu_vleib(9, 0x40, 7); /* * Prepare V0 for the next GF(2) multiplication: shift V0 by 8 bytes * to move R4 into the rightmost doubleword and set the leftmost * doubleword to 0x1. */ - VSRLB %v0,CONST_R4R3,%v9 - VLEIG %v0,1,0 + fpu_vsrlb(0, CONST_R4R3, 9); + fpu_vleig(0, 1, 0); /* * Compute GF(2) product of V1 and V0. The rightmost doubleword @@ -216,7 +175,7 @@ SYM_FUNC_START(crc32_le_vgfm_generic) * multiplied by 0x1 and is then XORed with rightmost product. * Implicitly, the intermediate leftmost product becomes padded */ - VGFMG %v1,%v0,%v1 + fpu_vgfmg(1, 0, 1); /* * Now do the final 32-bit fold by multiplying the rightmost word @@ -231,10 +190,10 @@ SYM_FUNC_START(crc32_le_vgfm_generic) * rightmost doubleword and the leftmost doubleword is zero to ignore * the leftmost product of V1. */ - VLEIB %v9,0x20,7 /* Shift by words */ - VSRLB %v2,%v1,%v9 /* Store remaining bits in V2 */ - VUPLLF %v1,%v1 /* Split rightmost doubleword */ - VGFMAG %v1,CONST_R5,%v1,%v2 /* V1 = (V1 * R5) XOR V2 */ + fpu_vleib(9, 0x20, 7); /* Shift by words */ + fpu_vsrlb(2, 1, 9); /* Store remaining bits in V2 */ + fpu_vupllf(1, 1); /* Split rightmost doubleword */ + fpu_vgfmag(1, CONST_R5, 1, 2); /* V1 = (V1 * R5) XOR V2 */ /* * Apply a Barret reduction to compute the final 32-bit CRC value. @@ -256,20 +215,26 @@ SYM_FUNC_START(crc32_le_vgfm_generic) */ /* T1(x) = floor( R(x) / x^32 ) GF2MUL u */ - VUPLLF %v2,%v1 - VGFMG %v2,CONST_RU_POLY,%v2 + fpu_vupllf(2, 1); + fpu_vgfmg(2, CONST_RU_POLY, 2); /* * Compute the GF(2) product of the CRC polynomial with T1(x) in * V2 and XOR the intermediate result, T2(x), with the value in V1. * The final result is stored in word element 2 of V2. */ - VUPLLF %v2,%v2 - VGFMAG %v2,CONST_CRC_POLY,%v2,%v1 + fpu_vupllf(2, 2); + fpu_vgfmag(2, CONST_CRC_POLY, 2, 1); + + return fpu_vlgvf(2, 2); +} -.Ldone: - VLGVF %r2,%v2,2 - BR_EX %r14 -SYM_FUNC_END(crc32_le_vgfm_generic) +u32 crc32_le_vgfm_16(u32 crc, unsigned char const *buf, size_t size) +{ + return crc32_le_vgfm_generic(crc, buf, size, &constants_CRC_32_LE[0]); +} -.previous +u32 crc32c_le_vgfm_16(u32 crc, unsigned char const *buf, size_t size) +{ + return crc32_le_vgfm_generic(crc, buf, size, &constants_CRC_32C_LE[0]); +} diff --git a/arch/s390/crypto/paes_s390.c b/arch/s390/crypto/paes_s390.c index 55ee5567a5..99ea3f12c5 100644 --- a/arch/s390/crypto/paes_s390.c +++ b/arch/s390/crypto/paes_s390.c @@ -125,17 +125,16 @@ struct s390_pxts_ctx { static inline int __paes_keyblob2pkey(struct key_blob *kb, struct pkey_protkey *pk) { - int i, ret; + int i, ret = -EIO; - /* try three times in case of failure */ - for (i = 0; i < 3; i++) { - if (i > 0 && ret == -EAGAIN && in_task()) + /* try three times in case of busy card */ + for (i = 0; ret && i < 3; i++) { + if (ret == -EBUSY && in_task()) { if (msleep_interruptible(1000)) return -EINTR; + } ret = pkey_keyblob2pkey(kb->key, kb->keylen, pk->protkey, &pk->len, &pk->type); - if (ret == 0) - break; } return ret; |