diff options
Diffstat (limited to 'arch/x86/kernel/cpu/common.c')
-rw-r--r-- | arch/x86/kernel/cpu/common.c | 2419 |
1 files changed, 2419 insertions, 0 deletions
diff --git a/arch/x86/kernel/cpu/common.c b/arch/x86/kernel/cpu/common.c new file mode 100644 index 0000000000..4e5ffc8b0e --- /dev/null +++ b/arch/x86/kernel/cpu/common.c @@ -0,0 +1,2419 @@ +// SPDX-License-Identifier: GPL-2.0-only +/* cpu_feature_enabled() cannot be used this early */ +#define USE_EARLY_PGTABLE_L5 + +#include <linux/memblock.h> +#include <linux/linkage.h> +#include <linux/bitops.h> +#include <linux/kernel.h> +#include <linux/export.h> +#include <linux/percpu.h> +#include <linux/string.h> +#include <linux/ctype.h> +#include <linux/delay.h> +#include <linux/sched/mm.h> +#include <linux/sched/clock.h> +#include <linux/sched/task.h> +#include <linux/sched/smt.h> +#include <linux/init.h> +#include <linux/kprobes.h> +#include <linux/kgdb.h> +#include <linux/mem_encrypt.h> +#include <linux/smp.h> +#include <linux/cpu.h> +#include <linux/io.h> +#include <linux/syscore_ops.h> +#include <linux/pgtable.h> +#include <linux/stackprotector.h> +#include <linux/utsname.h> + +#include <asm/alternative.h> +#include <asm/cmdline.h> +#include <asm/perf_event.h> +#include <asm/mmu_context.h> +#include <asm/doublefault.h> +#include <asm/archrandom.h> +#include <asm/hypervisor.h> +#include <asm/processor.h> +#include <asm/tlbflush.h> +#include <asm/debugreg.h> +#include <asm/sections.h> +#include <asm/vsyscall.h> +#include <linux/topology.h> +#include <linux/cpumask.h> +#include <linux/atomic.h> +#include <asm/proto.h> +#include <asm/setup.h> +#include <asm/apic.h> +#include <asm/desc.h> +#include <asm/fpu/api.h> +#include <asm/mtrr.h> +#include <asm/hwcap2.h> +#include <linux/numa.h> +#include <asm/numa.h> +#include <asm/asm.h> +#include <asm/bugs.h> +#include <asm/cpu.h> +#include <asm/mce.h> +#include <asm/msr.h> +#include <asm/cacheinfo.h> +#include <asm/memtype.h> +#include <asm/microcode.h> +#include <asm/intel-family.h> +#include <asm/cpu_device_id.h> +#include <asm/uv/uv.h> +#include <asm/set_memory.h> +#include <asm/traps.h> +#include <asm/sev.h> + +#include "cpu.h" + +u32 elf_hwcap2 __read_mostly; + +/* Number of siblings per CPU package */ +int smp_num_siblings = 1; +EXPORT_SYMBOL(smp_num_siblings); + +/* Last level cache ID of each logical CPU */ +DEFINE_PER_CPU_READ_MOSTLY(u16, cpu_llc_id) = BAD_APICID; + +u16 get_llc_id(unsigned int cpu) +{ + return per_cpu(cpu_llc_id, cpu); +} +EXPORT_SYMBOL_GPL(get_llc_id); + +/* L2 cache ID of each logical CPU */ +DEFINE_PER_CPU_READ_MOSTLY(u16, cpu_l2c_id) = BAD_APICID; + +static struct ppin_info { + int feature; + int msr_ppin_ctl; + int msr_ppin; +} ppin_info[] = { + [X86_VENDOR_INTEL] = { + .feature = X86_FEATURE_INTEL_PPIN, + .msr_ppin_ctl = MSR_PPIN_CTL, + .msr_ppin = MSR_PPIN + }, + [X86_VENDOR_AMD] = { + .feature = X86_FEATURE_AMD_PPIN, + .msr_ppin_ctl = MSR_AMD_PPIN_CTL, + .msr_ppin = MSR_AMD_PPIN + }, +}; + +static const struct x86_cpu_id ppin_cpuids[] = { + X86_MATCH_FEATURE(X86_FEATURE_AMD_PPIN, &ppin_info[X86_VENDOR_AMD]), + X86_MATCH_FEATURE(X86_FEATURE_INTEL_PPIN, &ppin_info[X86_VENDOR_INTEL]), + + /* Legacy models without CPUID enumeration */ + X86_MATCH_INTEL_FAM6_MODEL(IVYBRIDGE_X, &ppin_info[X86_VENDOR_INTEL]), + X86_MATCH_INTEL_FAM6_MODEL(HASWELL_X, &ppin_info[X86_VENDOR_INTEL]), + X86_MATCH_INTEL_FAM6_MODEL(BROADWELL_D, &ppin_info[X86_VENDOR_INTEL]), + X86_MATCH_INTEL_FAM6_MODEL(BROADWELL_X, &ppin_info[X86_VENDOR_INTEL]), + X86_MATCH_INTEL_FAM6_MODEL(SKYLAKE_X, &ppin_info[X86_VENDOR_INTEL]), + X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_X, &ppin_info[X86_VENDOR_INTEL]), + X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_D, &ppin_info[X86_VENDOR_INTEL]), + X86_MATCH_INTEL_FAM6_MODEL(SAPPHIRERAPIDS_X, &ppin_info[X86_VENDOR_INTEL]), + X86_MATCH_INTEL_FAM6_MODEL(EMERALDRAPIDS_X, &ppin_info[X86_VENDOR_INTEL]), + X86_MATCH_INTEL_FAM6_MODEL(XEON_PHI_KNL, &ppin_info[X86_VENDOR_INTEL]), + X86_MATCH_INTEL_FAM6_MODEL(XEON_PHI_KNM, &ppin_info[X86_VENDOR_INTEL]), + + {} +}; + +static void ppin_init(struct cpuinfo_x86 *c) +{ + const struct x86_cpu_id *id; + unsigned long long val; + struct ppin_info *info; + + id = x86_match_cpu(ppin_cpuids); + if (!id) + return; + + /* + * Testing the presence of the MSR is not enough. Need to check + * that the PPIN_CTL allows reading of the PPIN. + */ + info = (struct ppin_info *)id->driver_data; + + if (rdmsrl_safe(info->msr_ppin_ctl, &val)) + goto clear_ppin; + + if ((val & 3UL) == 1UL) { + /* PPIN locked in disabled mode */ + goto clear_ppin; + } + + /* If PPIN is disabled, try to enable */ + if (!(val & 2UL)) { + wrmsrl_safe(info->msr_ppin_ctl, val | 2UL); + rdmsrl_safe(info->msr_ppin_ctl, &val); + } + + /* Is the enable bit set? */ + if (val & 2UL) { + c->ppin = __rdmsr(info->msr_ppin); + set_cpu_cap(c, info->feature); + return; + } + +clear_ppin: + clear_cpu_cap(c, info->feature); +} + +static void default_init(struct cpuinfo_x86 *c) +{ +#ifdef CONFIG_X86_64 + cpu_detect_cache_sizes(c); +#else + /* Not much we can do here... */ + /* Check if at least it has cpuid */ + if (c->cpuid_level == -1) { + /* No cpuid. It must be an ancient CPU */ + if (c->x86 == 4) + strcpy(c->x86_model_id, "486"); + else if (c->x86 == 3) + strcpy(c->x86_model_id, "386"); + } +#endif +} + +static const struct cpu_dev default_cpu = { + .c_init = default_init, + .c_vendor = "Unknown", + .c_x86_vendor = X86_VENDOR_UNKNOWN, +}; + +static const struct cpu_dev *this_cpu = &default_cpu; + +DEFINE_PER_CPU_PAGE_ALIGNED(struct gdt_page, gdt_page) = { .gdt = { +#ifdef CONFIG_X86_64 + /* + * We need valid kernel segments for data and code in long mode too + * IRET will check the segment types kkeil 2000/10/28 + * Also sysret mandates a special GDT layout + * + * TLS descriptors are currently at a different place compared to i386. + * Hopefully nobody expects them at a fixed place (Wine?) + */ + [GDT_ENTRY_KERNEL32_CS] = GDT_ENTRY_INIT(0xc09b, 0, 0xfffff), + [GDT_ENTRY_KERNEL_CS] = GDT_ENTRY_INIT(0xa09b, 0, 0xfffff), + [GDT_ENTRY_KERNEL_DS] = GDT_ENTRY_INIT(0xc093, 0, 0xfffff), + [GDT_ENTRY_DEFAULT_USER32_CS] = GDT_ENTRY_INIT(0xc0fb, 0, 0xfffff), + [GDT_ENTRY_DEFAULT_USER_DS] = GDT_ENTRY_INIT(0xc0f3, 0, 0xfffff), + [GDT_ENTRY_DEFAULT_USER_CS] = GDT_ENTRY_INIT(0xa0fb, 0, 0xfffff), +#else + [GDT_ENTRY_KERNEL_CS] = GDT_ENTRY_INIT(0xc09a, 0, 0xfffff), + [GDT_ENTRY_KERNEL_DS] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff), + [GDT_ENTRY_DEFAULT_USER_CS] = GDT_ENTRY_INIT(0xc0fa, 0, 0xfffff), + [GDT_ENTRY_DEFAULT_USER_DS] = GDT_ENTRY_INIT(0xc0f2, 0, 0xfffff), + /* + * Segments used for calling PnP BIOS have byte granularity. + * They code segments and data segments have fixed 64k limits, + * the transfer segment sizes are set at run time. + */ + /* 32-bit code */ + [GDT_ENTRY_PNPBIOS_CS32] = GDT_ENTRY_INIT(0x409a, 0, 0xffff), + /* 16-bit code */ + [GDT_ENTRY_PNPBIOS_CS16] = GDT_ENTRY_INIT(0x009a, 0, 0xffff), + /* 16-bit data */ + [GDT_ENTRY_PNPBIOS_DS] = GDT_ENTRY_INIT(0x0092, 0, 0xffff), + /* 16-bit data */ + [GDT_ENTRY_PNPBIOS_TS1] = GDT_ENTRY_INIT(0x0092, 0, 0), + /* 16-bit data */ + [GDT_ENTRY_PNPBIOS_TS2] = GDT_ENTRY_INIT(0x0092, 0, 0), + /* + * The APM segments have byte granularity and their bases + * are set at run time. All have 64k limits. + */ + /* 32-bit code */ + [GDT_ENTRY_APMBIOS_BASE] = GDT_ENTRY_INIT(0x409a, 0, 0xffff), + /* 16-bit code */ + [GDT_ENTRY_APMBIOS_BASE+1] = GDT_ENTRY_INIT(0x009a, 0, 0xffff), + /* data */ + [GDT_ENTRY_APMBIOS_BASE+2] = GDT_ENTRY_INIT(0x4092, 0, 0xffff), + + [GDT_ENTRY_ESPFIX_SS] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff), + [GDT_ENTRY_PERCPU] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff), +#endif +} }; +EXPORT_PER_CPU_SYMBOL_GPL(gdt_page); + +#ifdef CONFIG_X86_64 +static int __init x86_nopcid_setup(char *s) +{ + /* nopcid doesn't accept parameters */ + if (s) + return -EINVAL; + + /* do not emit a message if the feature is not present */ + if (!boot_cpu_has(X86_FEATURE_PCID)) + return 0; + + setup_clear_cpu_cap(X86_FEATURE_PCID); + pr_info("nopcid: PCID feature disabled\n"); + return 0; +} +early_param("nopcid", x86_nopcid_setup); +#endif + +static int __init x86_noinvpcid_setup(char *s) +{ + /* noinvpcid doesn't accept parameters */ + if (s) + return -EINVAL; + + /* do not emit a message if the feature is not present */ + if (!boot_cpu_has(X86_FEATURE_INVPCID)) + return 0; + + setup_clear_cpu_cap(X86_FEATURE_INVPCID); + pr_info("noinvpcid: INVPCID feature disabled\n"); + return 0; +} +early_param("noinvpcid", x86_noinvpcid_setup); + +#ifdef CONFIG_X86_32 +static int cachesize_override = -1; +static int disable_x86_serial_nr = 1; + +static int __init cachesize_setup(char *str) +{ + get_option(&str, &cachesize_override); + return 1; +} +__setup("cachesize=", cachesize_setup); + +/* Standard macro to see if a specific flag is changeable */ +static inline int flag_is_changeable_p(u32 flag) +{ + u32 f1, f2; + + /* + * Cyrix and IDT cpus allow disabling of CPUID + * so the code below may return different results + * when it is executed before and after enabling + * the CPUID. Add "volatile" to not allow gcc to + * optimize the subsequent calls to this function. + */ + asm volatile ("pushfl \n\t" + "pushfl \n\t" + "popl %0 \n\t" + "movl %0, %1 \n\t" + "xorl %2, %0 \n\t" + "pushl %0 \n\t" + "popfl \n\t" + "pushfl \n\t" + "popl %0 \n\t" + "popfl \n\t" + + : "=&r" (f1), "=&r" (f2) + : "ir" (flag)); + + return ((f1^f2) & flag) != 0; +} + +/* Probe for the CPUID instruction */ +int have_cpuid_p(void) +{ + return flag_is_changeable_p(X86_EFLAGS_ID); +} + +static void squash_the_stupid_serial_number(struct cpuinfo_x86 *c) +{ + unsigned long lo, hi; + + if (!cpu_has(c, X86_FEATURE_PN) || !disable_x86_serial_nr) + return; + + /* Disable processor serial number: */ + + rdmsr(MSR_IA32_BBL_CR_CTL, lo, hi); + lo |= 0x200000; + wrmsr(MSR_IA32_BBL_CR_CTL, lo, hi); + + pr_notice("CPU serial number disabled.\n"); + clear_cpu_cap(c, X86_FEATURE_PN); + + /* Disabling the serial number may affect the cpuid level */ + c->cpuid_level = cpuid_eax(0); +} + +static int __init x86_serial_nr_setup(char *s) +{ + disable_x86_serial_nr = 0; + return 1; +} +__setup("serialnumber", x86_serial_nr_setup); +#else +static inline int flag_is_changeable_p(u32 flag) +{ + return 1; +} +static inline void squash_the_stupid_serial_number(struct cpuinfo_x86 *c) +{ +} +#endif + +static __always_inline void setup_smep(struct cpuinfo_x86 *c) +{ + if (cpu_has(c, X86_FEATURE_SMEP)) + cr4_set_bits(X86_CR4_SMEP); +} + +static __always_inline void setup_smap(struct cpuinfo_x86 *c) +{ + unsigned long eflags = native_save_fl(); + + /* This should have been cleared long ago */ + BUG_ON(eflags & X86_EFLAGS_AC); + + if (cpu_has(c, X86_FEATURE_SMAP)) + cr4_set_bits(X86_CR4_SMAP); +} + +static __always_inline void setup_umip(struct cpuinfo_x86 *c) +{ + /* Check the boot processor, plus build option for UMIP. */ + if (!cpu_feature_enabled(X86_FEATURE_UMIP)) + goto out; + + /* Check the current processor's cpuid bits. */ + if (!cpu_has(c, X86_FEATURE_UMIP)) + goto out; + + cr4_set_bits(X86_CR4_UMIP); + + pr_info_once("x86/cpu: User Mode Instruction Prevention (UMIP) activated\n"); + + return; + +out: + /* + * Make sure UMIP is disabled in case it was enabled in a + * previous boot (e.g., via kexec). + */ + cr4_clear_bits(X86_CR4_UMIP); +} + +/* These bits should not change their value after CPU init is finished. */ +static const unsigned long cr4_pinned_mask = + X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_UMIP | + X86_CR4_FSGSBASE | X86_CR4_CET; +static DEFINE_STATIC_KEY_FALSE_RO(cr_pinning); +static unsigned long cr4_pinned_bits __ro_after_init; + +void native_write_cr0(unsigned long val) +{ + unsigned long bits_missing = 0; + +set_register: + asm volatile("mov %0,%%cr0": "+r" (val) : : "memory"); + + if (static_branch_likely(&cr_pinning)) { + if (unlikely((val & X86_CR0_WP) != X86_CR0_WP)) { + bits_missing = X86_CR0_WP; + val |= bits_missing; + goto set_register; + } + /* Warn after we've set the missing bits. */ + WARN_ONCE(bits_missing, "CR0 WP bit went missing!?\n"); + } +} +EXPORT_SYMBOL(native_write_cr0); + +void __no_profile native_write_cr4(unsigned long val) +{ + unsigned long bits_changed = 0; + +set_register: + asm volatile("mov %0,%%cr4": "+r" (val) : : "memory"); + + if (static_branch_likely(&cr_pinning)) { + if (unlikely((val & cr4_pinned_mask) != cr4_pinned_bits)) { + bits_changed = (val & cr4_pinned_mask) ^ cr4_pinned_bits; + val = (val & ~cr4_pinned_mask) | cr4_pinned_bits; + goto set_register; + } + /* Warn after we've corrected the changed bits. */ + WARN_ONCE(bits_changed, "pinned CR4 bits changed: 0x%lx!?\n", + bits_changed); + } +} +#if IS_MODULE(CONFIG_LKDTM) +EXPORT_SYMBOL_GPL(native_write_cr4); +#endif + +void cr4_update_irqsoff(unsigned long set, unsigned long clear) +{ + unsigned long newval, cr4 = this_cpu_read(cpu_tlbstate.cr4); + + lockdep_assert_irqs_disabled(); + + newval = (cr4 & ~clear) | set; + if (newval != cr4) { + this_cpu_write(cpu_tlbstate.cr4, newval); + __write_cr4(newval); + } +} +EXPORT_SYMBOL(cr4_update_irqsoff); + +/* Read the CR4 shadow. */ +unsigned long cr4_read_shadow(void) +{ + return this_cpu_read(cpu_tlbstate.cr4); +} +EXPORT_SYMBOL_GPL(cr4_read_shadow); + +void cr4_init(void) +{ + unsigned long cr4 = __read_cr4(); + + if (boot_cpu_has(X86_FEATURE_PCID)) + cr4 |= X86_CR4_PCIDE; + if (static_branch_likely(&cr_pinning)) + cr4 = (cr4 & ~cr4_pinned_mask) | cr4_pinned_bits; + + __write_cr4(cr4); + + /* Initialize cr4 shadow for this CPU. */ + this_cpu_write(cpu_tlbstate.cr4, cr4); +} + +/* + * Once CPU feature detection is finished (and boot params have been + * parsed), record any of the sensitive CR bits that are set, and + * enable CR pinning. + */ +static void __init setup_cr_pinning(void) +{ + cr4_pinned_bits = this_cpu_read(cpu_tlbstate.cr4) & cr4_pinned_mask; + static_key_enable(&cr_pinning.key); +} + +static __init int x86_nofsgsbase_setup(char *arg) +{ + /* Require an exact match without trailing characters. */ + if (strlen(arg)) + return 0; + + /* Do not emit a message if the feature is not present. */ + if (!boot_cpu_has(X86_FEATURE_FSGSBASE)) + return 1; + + setup_clear_cpu_cap(X86_FEATURE_FSGSBASE); + pr_info("FSGSBASE disabled via kernel command line\n"); + return 1; +} +__setup("nofsgsbase", x86_nofsgsbase_setup); + +/* + * Protection Keys are not available in 32-bit mode. + */ +static bool pku_disabled; + +static __always_inline void setup_pku(struct cpuinfo_x86 *c) +{ + if (c == &boot_cpu_data) { + if (pku_disabled || !cpu_feature_enabled(X86_FEATURE_PKU)) + return; + /* + * Setting CR4.PKE will cause the X86_FEATURE_OSPKE cpuid + * bit to be set. Enforce it. + */ + setup_force_cpu_cap(X86_FEATURE_OSPKE); + + } else if (!cpu_feature_enabled(X86_FEATURE_OSPKE)) { + return; + } + + cr4_set_bits(X86_CR4_PKE); + /* Load the default PKRU value */ + pkru_write_default(); +} + +#ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS +static __init int setup_disable_pku(char *arg) +{ + /* + * Do not clear the X86_FEATURE_PKU bit. All of the + * runtime checks are against OSPKE so clearing the + * bit does nothing. + * + * This way, we will see "pku" in cpuinfo, but not + * "ospke", which is exactly what we want. It shows + * that the CPU has PKU, but the OS has not enabled it. + * This happens to be exactly how a system would look + * if we disabled the config option. + */ + pr_info("x86: 'nopku' specified, disabling Memory Protection Keys\n"); + pku_disabled = true; + return 1; +} +__setup("nopku", setup_disable_pku); +#endif + +#ifdef CONFIG_X86_KERNEL_IBT + +__noendbr u64 ibt_save(bool disable) +{ + u64 msr = 0; + + if (cpu_feature_enabled(X86_FEATURE_IBT)) { + rdmsrl(MSR_IA32_S_CET, msr); + if (disable) + wrmsrl(MSR_IA32_S_CET, msr & ~CET_ENDBR_EN); + } + + return msr; +} + +__noendbr void ibt_restore(u64 save) +{ + u64 msr; + + if (cpu_feature_enabled(X86_FEATURE_IBT)) { + rdmsrl(MSR_IA32_S_CET, msr); + msr &= ~CET_ENDBR_EN; + msr |= (save & CET_ENDBR_EN); + wrmsrl(MSR_IA32_S_CET, msr); + } +} + +#endif + +static __always_inline void setup_cet(struct cpuinfo_x86 *c) +{ + bool user_shstk, kernel_ibt; + + if (!IS_ENABLED(CONFIG_X86_CET)) + return; + + kernel_ibt = HAS_KERNEL_IBT && cpu_feature_enabled(X86_FEATURE_IBT); + user_shstk = cpu_feature_enabled(X86_FEATURE_SHSTK) && + IS_ENABLED(CONFIG_X86_USER_SHADOW_STACK); + + if (!kernel_ibt && !user_shstk) + return; + + if (user_shstk) + set_cpu_cap(c, X86_FEATURE_USER_SHSTK); + + if (kernel_ibt) + wrmsrl(MSR_IA32_S_CET, CET_ENDBR_EN); + else + wrmsrl(MSR_IA32_S_CET, 0); + + cr4_set_bits(X86_CR4_CET); + + if (kernel_ibt && ibt_selftest()) { + pr_err("IBT selftest: Failed!\n"); + wrmsrl(MSR_IA32_S_CET, 0); + setup_clear_cpu_cap(X86_FEATURE_IBT); + } +} + +__noendbr void cet_disable(void) +{ + if (!(cpu_feature_enabled(X86_FEATURE_IBT) || + cpu_feature_enabled(X86_FEATURE_SHSTK))) + return; + + wrmsrl(MSR_IA32_S_CET, 0); + wrmsrl(MSR_IA32_U_CET, 0); +} + +/* + * Some CPU features depend on higher CPUID levels, which may not always + * be available due to CPUID level capping or broken virtualization + * software. Add those features to this table to auto-disable them. + */ +struct cpuid_dependent_feature { + u32 feature; + u32 level; +}; + +static const struct cpuid_dependent_feature +cpuid_dependent_features[] = { + { X86_FEATURE_MWAIT, 0x00000005 }, + { X86_FEATURE_DCA, 0x00000009 }, + { X86_FEATURE_XSAVE, 0x0000000d }, + { 0, 0 } +}; + +static void filter_cpuid_features(struct cpuinfo_x86 *c, bool warn) +{ + const struct cpuid_dependent_feature *df; + + for (df = cpuid_dependent_features; df->feature; df++) { + + if (!cpu_has(c, df->feature)) + continue; + /* + * Note: cpuid_level is set to -1 if unavailable, but + * extended_extended_level is set to 0 if unavailable + * and the legitimate extended levels are all negative + * when signed; hence the weird messing around with + * signs here... + */ + if (!((s32)df->level < 0 ? + (u32)df->level > (u32)c->extended_cpuid_level : + (s32)df->level > (s32)c->cpuid_level)) + continue; + + clear_cpu_cap(c, df->feature); + if (!warn) + continue; + + pr_warn("CPU: CPU feature " X86_CAP_FMT " disabled, no CPUID level 0x%x\n", + x86_cap_flag(df->feature), df->level); + } +} + +/* + * Naming convention should be: <Name> [(<Codename>)] + * This table only is used unless init_<vendor>() below doesn't set it; + * in particular, if CPUID levels 0x80000002..4 are supported, this + * isn't used + */ + +/* Look up CPU names by table lookup. */ +static const char *table_lookup_model(struct cpuinfo_x86 *c) +{ +#ifdef CONFIG_X86_32 + const struct legacy_cpu_model_info *info; + + if (c->x86_model >= 16) + return NULL; /* Range check */ + + if (!this_cpu) + return NULL; + + info = this_cpu->legacy_models; + + while (info->family) { + if (info->family == c->x86) + return info->model_names[c->x86_model]; + info++; + } +#endif + return NULL; /* Not found */ +} + +/* Aligned to unsigned long to avoid split lock in atomic bitmap ops */ +__u32 cpu_caps_cleared[NCAPINTS + NBUGINTS] __aligned(sizeof(unsigned long)); +__u32 cpu_caps_set[NCAPINTS + NBUGINTS] __aligned(sizeof(unsigned long)); + +#ifdef CONFIG_X86_32 +/* The 32-bit entry code needs to find cpu_entry_area. */ +DEFINE_PER_CPU(struct cpu_entry_area *, cpu_entry_area); +#endif + +/* Load the original GDT from the per-cpu structure */ +void load_direct_gdt(int cpu) +{ + struct desc_ptr gdt_descr; + + gdt_descr.address = (long)get_cpu_gdt_rw(cpu); + gdt_descr.size = GDT_SIZE - 1; + load_gdt(&gdt_descr); +} +EXPORT_SYMBOL_GPL(load_direct_gdt); + +/* Load a fixmap remapping of the per-cpu GDT */ +void load_fixmap_gdt(int cpu) +{ + struct desc_ptr gdt_descr; + + gdt_descr.address = (long)get_cpu_gdt_ro(cpu); + gdt_descr.size = GDT_SIZE - 1; + load_gdt(&gdt_descr); +} +EXPORT_SYMBOL_GPL(load_fixmap_gdt); + +/** + * switch_gdt_and_percpu_base - Switch to direct GDT and runtime per CPU base + * @cpu: The CPU number for which this is invoked + * + * Invoked during early boot to switch from early GDT and early per CPU to + * the direct GDT and the runtime per CPU area. On 32-bit the percpu base + * switch is implicit by loading the direct GDT. On 64bit this requires + * to update GSBASE. + */ +void __init switch_gdt_and_percpu_base(int cpu) +{ + load_direct_gdt(cpu); + +#ifdef CONFIG_X86_64 + /* + * No need to load %gs. It is already correct. + * + * Writing %gs on 64bit would zero GSBASE which would make any per + * CPU operation up to the point of the wrmsrl() fault. + * + * Set GSBASE to the new offset. Until the wrmsrl() happens the + * early mapping is still valid. That means the GSBASE update will + * lose any prior per CPU data which was not copied over in + * setup_per_cpu_areas(). + * + * This works even with stackprotector enabled because the + * per CPU stack canary is 0 in both per CPU areas. + */ + wrmsrl(MSR_GS_BASE, cpu_kernelmode_gs_base(cpu)); +#else + /* + * %fs is already set to __KERNEL_PERCPU, but after switching GDT + * it is required to load FS again so that the 'hidden' part is + * updated from the new GDT. Up to this point the early per CPU + * translation is active. Any content of the early per CPU data + * which was not copied over in setup_per_cpu_areas() is lost. + */ + loadsegment(fs, __KERNEL_PERCPU); +#endif +} + +static const struct cpu_dev *cpu_devs[X86_VENDOR_NUM] = {}; + +static void get_model_name(struct cpuinfo_x86 *c) +{ + unsigned int *v; + char *p, *q, *s; + + if (c->extended_cpuid_level < 0x80000004) + return; + + v = (unsigned int *)c->x86_model_id; + cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]); + cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]); + cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]); + c->x86_model_id[48] = 0; + + /* Trim whitespace */ + p = q = s = &c->x86_model_id[0]; + + while (*p == ' ') + p++; + + while (*p) { + /* Note the last non-whitespace index */ + if (!isspace(*p)) + s = q; + + *q++ = *p++; + } + + *(s + 1) = '\0'; +} + +void detect_num_cpu_cores(struct cpuinfo_x86 *c) +{ + unsigned int eax, ebx, ecx, edx; + + c->x86_max_cores = 1; + if (!IS_ENABLED(CONFIG_SMP) || c->cpuid_level < 4) + return; + + cpuid_count(4, 0, &eax, &ebx, &ecx, &edx); + if (eax & 0x1f) + c->x86_max_cores = (eax >> 26) + 1; +} + +void cpu_detect_cache_sizes(struct cpuinfo_x86 *c) +{ + unsigned int n, dummy, ebx, ecx, edx, l2size; + + n = c->extended_cpuid_level; + + if (n >= 0x80000005) { + cpuid(0x80000005, &dummy, &ebx, &ecx, &edx); + c->x86_cache_size = (ecx>>24) + (edx>>24); +#ifdef CONFIG_X86_64 + /* On K8 L1 TLB is inclusive, so don't count it */ + c->x86_tlbsize = 0; +#endif + } + + if (n < 0x80000006) /* Some chips just has a large L1. */ + return; + + cpuid(0x80000006, &dummy, &ebx, &ecx, &edx); + l2size = ecx >> 16; + +#ifdef CONFIG_X86_64 + c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff); +#else + /* do processor-specific cache resizing */ + if (this_cpu->legacy_cache_size) + l2size = this_cpu->legacy_cache_size(c, l2size); + + /* Allow user to override all this if necessary. */ + if (cachesize_override != -1) + l2size = cachesize_override; + + if (l2size == 0) + return; /* Again, no L2 cache is possible */ +#endif + + c->x86_cache_size = l2size; +} + +u16 __read_mostly tlb_lli_4k[NR_INFO]; +u16 __read_mostly tlb_lli_2m[NR_INFO]; +u16 __read_mostly tlb_lli_4m[NR_INFO]; +u16 __read_mostly tlb_lld_4k[NR_INFO]; +u16 __read_mostly tlb_lld_2m[NR_INFO]; +u16 __read_mostly tlb_lld_4m[NR_INFO]; +u16 __read_mostly tlb_lld_1g[NR_INFO]; + +static void cpu_detect_tlb(struct cpuinfo_x86 *c) +{ + if (this_cpu->c_detect_tlb) + this_cpu->c_detect_tlb(c); + + pr_info("Last level iTLB entries: 4KB %d, 2MB %d, 4MB %d\n", + tlb_lli_4k[ENTRIES], tlb_lli_2m[ENTRIES], + tlb_lli_4m[ENTRIES]); + + pr_info("Last level dTLB entries: 4KB %d, 2MB %d, 4MB %d, 1GB %d\n", + tlb_lld_4k[ENTRIES], tlb_lld_2m[ENTRIES], + tlb_lld_4m[ENTRIES], tlb_lld_1g[ENTRIES]); +} + +int detect_ht_early(struct cpuinfo_x86 *c) +{ +#ifdef CONFIG_SMP + u32 eax, ebx, ecx, edx; + + if (!cpu_has(c, X86_FEATURE_HT)) + return -1; + + if (cpu_has(c, X86_FEATURE_CMP_LEGACY)) + return -1; + + if (cpu_has(c, X86_FEATURE_XTOPOLOGY)) + return -1; + + cpuid(1, &eax, &ebx, &ecx, &edx); + + smp_num_siblings = (ebx & 0xff0000) >> 16; + if (smp_num_siblings == 1) + pr_info_once("CPU0: Hyper-Threading is disabled\n"); +#endif + return 0; +} + +void detect_ht(struct cpuinfo_x86 *c) +{ +#ifdef CONFIG_SMP + int index_msb, core_bits; + + if (detect_ht_early(c) < 0) + return; + + index_msb = get_count_order(smp_num_siblings); + c->phys_proc_id = apic->phys_pkg_id(c->initial_apicid, index_msb); + + smp_num_siblings = smp_num_siblings / c->x86_max_cores; + + index_msb = get_count_order(smp_num_siblings); + + core_bits = get_count_order(c->x86_max_cores); + + c->cpu_core_id = apic->phys_pkg_id(c->initial_apicid, index_msb) & + ((1 << core_bits) - 1); +#endif +} + +static void get_cpu_vendor(struct cpuinfo_x86 *c) +{ + char *v = c->x86_vendor_id; + int i; + + for (i = 0; i < X86_VENDOR_NUM; i++) { + if (!cpu_devs[i]) + break; + + if (!strcmp(v, cpu_devs[i]->c_ident[0]) || + (cpu_devs[i]->c_ident[1] && + !strcmp(v, cpu_devs[i]->c_ident[1]))) { + + this_cpu = cpu_devs[i]; + c->x86_vendor = this_cpu->c_x86_vendor; + return; + } + } + + pr_err_once("CPU: vendor_id '%s' unknown, using generic init.\n" \ + "CPU: Your system may be unstable.\n", v); + + c->x86_vendor = X86_VENDOR_UNKNOWN; + this_cpu = &default_cpu; +} + +void cpu_detect(struct cpuinfo_x86 *c) +{ + /* Get vendor name */ + cpuid(0x00000000, (unsigned int *)&c->cpuid_level, + (unsigned int *)&c->x86_vendor_id[0], + (unsigned int *)&c->x86_vendor_id[8], + (unsigned int *)&c->x86_vendor_id[4]); + + c->x86 = 4; + /* Intel-defined flags: level 0x00000001 */ + if (c->cpuid_level >= 0x00000001) { + u32 junk, tfms, cap0, misc; + + cpuid(0x00000001, &tfms, &misc, &junk, &cap0); + c->x86 = x86_family(tfms); + c->x86_model = x86_model(tfms); + c->x86_stepping = x86_stepping(tfms); + + if (cap0 & (1<<19)) { + c->x86_clflush_size = ((misc >> 8) & 0xff) * 8; + c->x86_cache_alignment = c->x86_clflush_size; + } + } +} + +static void apply_forced_caps(struct cpuinfo_x86 *c) +{ + int i; + + for (i = 0; i < NCAPINTS + NBUGINTS; i++) { + c->x86_capability[i] &= ~cpu_caps_cleared[i]; + c->x86_capability[i] |= cpu_caps_set[i]; + } +} + +static void init_speculation_control(struct cpuinfo_x86 *c) +{ + /* + * The Intel SPEC_CTRL CPUID bit implies IBRS and IBPB support, + * and they also have a different bit for STIBP support. Also, + * a hypervisor might have set the individual AMD bits even on + * Intel CPUs, for finer-grained selection of what's available. + */ + if (cpu_has(c, X86_FEATURE_SPEC_CTRL)) { + set_cpu_cap(c, X86_FEATURE_IBRS); + set_cpu_cap(c, X86_FEATURE_IBPB); + set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL); + } + + if (cpu_has(c, X86_FEATURE_INTEL_STIBP)) + set_cpu_cap(c, X86_FEATURE_STIBP); + + if (cpu_has(c, X86_FEATURE_SPEC_CTRL_SSBD) || + cpu_has(c, X86_FEATURE_VIRT_SSBD)) + set_cpu_cap(c, X86_FEATURE_SSBD); + + if (cpu_has(c, X86_FEATURE_AMD_IBRS)) { + set_cpu_cap(c, X86_FEATURE_IBRS); + set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL); + } + + if (cpu_has(c, X86_FEATURE_AMD_IBPB)) + set_cpu_cap(c, X86_FEATURE_IBPB); + + if (cpu_has(c, X86_FEATURE_AMD_STIBP)) { + set_cpu_cap(c, X86_FEATURE_STIBP); + set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL); + } + + if (cpu_has(c, X86_FEATURE_AMD_SSBD)) { + set_cpu_cap(c, X86_FEATURE_SSBD); + set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL); + clear_cpu_cap(c, X86_FEATURE_VIRT_SSBD); + } +} + +void get_cpu_cap(struct cpuinfo_x86 *c) +{ + u32 eax, ebx, ecx, edx; + + /* Intel-defined flags: level 0x00000001 */ + if (c->cpuid_level >= 0x00000001) { + cpuid(0x00000001, &eax, &ebx, &ecx, &edx); + + c->x86_capability[CPUID_1_ECX] = ecx; + c->x86_capability[CPUID_1_EDX] = edx; + } + + /* Thermal and Power Management Leaf: level 0x00000006 (eax) */ + if (c->cpuid_level >= 0x00000006) + c->x86_capability[CPUID_6_EAX] = cpuid_eax(0x00000006); + + /* Additional Intel-defined flags: level 0x00000007 */ + if (c->cpuid_level >= 0x00000007) { + cpuid_count(0x00000007, 0, &eax, &ebx, &ecx, &edx); + c->x86_capability[CPUID_7_0_EBX] = ebx; + c->x86_capability[CPUID_7_ECX] = ecx; + c->x86_capability[CPUID_7_EDX] = edx; + + /* Check valid sub-leaf index before accessing it */ + if (eax >= 1) { + cpuid_count(0x00000007, 1, &eax, &ebx, &ecx, &edx); + c->x86_capability[CPUID_7_1_EAX] = eax; + } + } + + /* Extended state features: level 0x0000000d */ + if (c->cpuid_level >= 0x0000000d) { + cpuid_count(0x0000000d, 1, &eax, &ebx, &ecx, &edx); + + c->x86_capability[CPUID_D_1_EAX] = eax; + } + + /* AMD-defined flags: level 0x80000001 */ + eax = cpuid_eax(0x80000000); + c->extended_cpuid_level = eax; + + if ((eax & 0xffff0000) == 0x80000000) { + if (eax >= 0x80000001) { + cpuid(0x80000001, &eax, &ebx, &ecx, &edx); + + c->x86_capability[CPUID_8000_0001_ECX] = ecx; + c->x86_capability[CPUID_8000_0001_EDX] = edx; + } + } + + if (c->extended_cpuid_level >= 0x80000007) { + cpuid(0x80000007, &eax, &ebx, &ecx, &edx); + + c->x86_capability[CPUID_8000_0007_EBX] = ebx; + c->x86_power = edx; + } + + if (c->extended_cpuid_level >= 0x80000008) { + cpuid(0x80000008, &eax, &ebx, &ecx, &edx); + c->x86_capability[CPUID_8000_0008_EBX] = ebx; + } + + if (c->extended_cpuid_level >= 0x8000000a) + c->x86_capability[CPUID_8000_000A_EDX] = cpuid_edx(0x8000000a); + + if (c->extended_cpuid_level >= 0x8000001f) + c->x86_capability[CPUID_8000_001F_EAX] = cpuid_eax(0x8000001f); + + if (c->extended_cpuid_level >= 0x80000021) + c->x86_capability[CPUID_8000_0021_EAX] = cpuid_eax(0x80000021); + + init_scattered_cpuid_features(c); + init_speculation_control(c); + + /* + * Clear/Set all flags overridden by options, after probe. + * This needs to happen each time we re-probe, which may happen + * several times during CPU initialization. + */ + apply_forced_caps(c); +} + +void get_cpu_address_sizes(struct cpuinfo_x86 *c) +{ + u32 eax, ebx, ecx, edx; + + if (c->extended_cpuid_level >= 0x80000008) { + cpuid(0x80000008, &eax, &ebx, &ecx, &edx); + + c->x86_virt_bits = (eax >> 8) & 0xff; + c->x86_phys_bits = eax & 0xff; + } +#ifdef CONFIG_X86_32 + else if (cpu_has(c, X86_FEATURE_PAE) || cpu_has(c, X86_FEATURE_PSE36)) + c->x86_phys_bits = 36; +#endif + c->x86_cache_bits = c->x86_phys_bits; +} + +static void identify_cpu_without_cpuid(struct cpuinfo_x86 *c) +{ +#ifdef CONFIG_X86_32 + int i; + + /* + * First of all, decide if this is a 486 or higher + * It's a 486 if we can modify the AC flag + */ + if (flag_is_changeable_p(X86_EFLAGS_AC)) + c->x86 = 4; + else + c->x86 = 3; + + for (i = 0; i < X86_VENDOR_NUM; i++) + if (cpu_devs[i] && cpu_devs[i]->c_identify) { + c->x86_vendor_id[0] = 0; + cpu_devs[i]->c_identify(c); + if (c->x86_vendor_id[0]) { + get_cpu_vendor(c); + break; + } + } +#endif +} + +#define NO_SPECULATION BIT(0) +#define NO_MELTDOWN BIT(1) +#define NO_SSB BIT(2) +#define NO_L1TF BIT(3) +#define NO_MDS BIT(4) +#define MSBDS_ONLY BIT(5) +#define NO_SWAPGS BIT(6) +#define NO_ITLB_MULTIHIT BIT(7) +#define NO_SPECTRE_V2 BIT(8) +#define NO_MMIO BIT(9) +#define NO_EIBRS_PBRSB BIT(10) + +#define VULNWL(vendor, family, model, whitelist) \ + X86_MATCH_VENDOR_FAM_MODEL(vendor, family, model, whitelist) + +#define VULNWL_INTEL(model, whitelist) \ + VULNWL(INTEL, 6, INTEL_FAM6_##model, whitelist) + +#define VULNWL_AMD(family, whitelist) \ + VULNWL(AMD, family, X86_MODEL_ANY, whitelist) + +#define VULNWL_HYGON(family, whitelist) \ + VULNWL(HYGON, family, X86_MODEL_ANY, whitelist) + +static const __initconst struct x86_cpu_id cpu_vuln_whitelist[] = { + VULNWL(ANY, 4, X86_MODEL_ANY, NO_SPECULATION), + VULNWL(CENTAUR, 5, X86_MODEL_ANY, NO_SPECULATION), + VULNWL(INTEL, 5, X86_MODEL_ANY, NO_SPECULATION), + VULNWL(NSC, 5, X86_MODEL_ANY, NO_SPECULATION), + VULNWL(VORTEX, 5, X86_MODEL_ANY, NO_SPECULATION), + VULNWL(VORTEX, 6, X86_MODEL_ANY, NO_SPECULATION), + + /* Intel Family 6 */ + VULNWL_INTEL(TIGERLAKE, NO_MMIO), + VULNWL_INTEL(TIGERLAKE_L, NO_MMIO), + VULNWL_INTEL(ALDERLAKE, NO_MMIO), + VULNWL_INTEL(ALDERLAKE_L, NO_MMIO), + + VULNWL_INTEL(ATOM_SALTWELL, NO_SPECULATION | NO_ITLB_MULTIHIT), + VULNWL_INTEL(ATOM_SALTWELL_TABLET, NO_SPECULATION | NO_ITLB_MULTIHIT), + VULNWL_INTEL(ATOM_SALTWELL_MID, NO_SPECULATION | NO_ITLB_MULTIHIT), + VULNWL_INTEL(ATOM_BONNELL, NO_SPECULATION | NO_ITLB_MULTIHIT), + VULNWL_INTEL(ATOM_BONNELL_MID, NO_SPECULATION | NO_ITLB_MULTIHIT), + + VULNWL_INTEL(ATOM_SILVERMONT, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT), + VULNWL_INTEL(ATOM_SILVERMONT_D, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT), + VULNWL_INTEL(ATOM_SILVERMONT_MID, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT), + VULNWL_INTEL(ATOM_AIRMONT, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT), + VULNWL_INTEL(XEON_PHI_KNL, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT), + VULNWL_INTEL(XEON_PHI_KNM, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT), + + VULNWL_INTEL(CORE_YONAH, NO_SSB), + + VULNWL_INTEL(ATOM_AIRMONT_MID, NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT), + VULNWL_INTEL(ATOM_AIRMONT_NP, NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT), + + VULNWL_INTEL(ATOM_GOLDMONT, NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO), + VULNWL_INTEL(ATOM_GOLDMONT_D, NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO), + VULNWL_INTEL(ATOM_GOLDMONT_PLUS, NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO | NO_EIBRS_PBRSB), + + /* + * Technically, swapgs isn't serializing on AMD (despite it previously + * being documented as such in the APM). But according to AMD, %gs is + * updated non-speculatively, and the issuing of %gs-relative memory + * operands will be blocked until the %gs update completes, which is + * good enough for our purposes. + */ + + VULNWL_INTEL(ATOM_TREMONT, NO_EIBRS_PBRSB), + VULNWL_INTEL(ATOM_TREMONT_L, NO_EIBRS_PBRSB), + VULNWL_INTEL(ATOM_TREMONT_D, NO_ITLB_MULTIHIT | NO_EIBRS_PBRSB), + + /* AMD Family 0xf - 0x12 */ + VULNWL_AMD(0x0f, NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO), + VULNWL_AMD(0x10, NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO), + VULNWL_AMD(0x11, NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO), + VULNWL_AMD(0x12, NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO), + + /* FAMILY_ANY must be last, otherwise 0x0f - 0x12 matches won't work */ + VULNWL_AMD(X86_FAMILY_ANY, NO_MELTDOWN | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO | NO_EIBRS_PBRSB), + VULNWL_HYGON(X86_FAMILY_ANY, NO_MELTDOWN | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO | NO_EIBRS_PBRSB), + + /* Zhaoxin Family 7 */ + VULNWL(CENTAUR, 7, X86_MODEL_ANY, NO_SPECTRE_V2 | NO_SWAPGS | NO_MMIO), + VULNWL(ZHAOXIN, 7, X86_MODEL_ANY, NO_SPECTRE_V2 | NO_SWAPGS | NO_MMIO), + {} +}; + +#define VULNBL(vendor, family, model, blacklist) \ + X86_MATCH_VENDOR_FAM_MODEL(vendor, family, model, blacklist) + +#define VULNBL_INTEL_STEPPINGS(model, steppings, issues) \ + X86_MATCH_VENDOR_FAM_MODEL_STEPPINGS_FEATURE(INTEL, 6, \ + INTEL_FAM6_##model, steppings, \ + X86_FEATURE_ANY, issues) + +#define VULNBL_AMD(family, blacklist) \ + VULNBL(AMD, family, X86_MODEL_ANY, blacklist) + +#define VULNBL_HYGON(family, blacklist) \ + VULNBL(HYGON, family, X86_MODEL_ANY, blacklist) + +#define SRBDS BIT(0) +/* CPU is affected by X86_BUG_MMIO_STALE_DATA */ +#define MMIO BIT(1) +/* CPU is affected by Shared Buffers Data Sampling (SBDS), a variant of X86_BUG_MMIO_STALE_DATA */ +#define MMIO_SBDS BIT(2) +/* CPU is affected by RETbleed, speculating where you would not expect it */ +#define RETBLEED BIT(3) +/* CPU is affected by SMT (cross-thread) return predictions */ +#define SMT_RSB BIT(4) +/* CPU is affected by SRSO */ +#define SRSO BIT(5) +/* CPU is affected by GDS */ +#define GDS BIT(6) + +static const struct x86_cpu_id cpu_vuln_blacklist[] __initconst = { + VULNBL_INTEL_STEPPINGS(IVYBRIDGE, X86_STEPPING_ANY, SRBDS), + VULNBL_INTEL_STEPPINGS(HASWELL, X86_STEPPING_ANY, SRBDS), + VULNBL_INTEL_STEPPINGS(HASWELL_L, X86_STEPPING_ANY, SRBDS), + VULNBL_INTEL_STEPPINGS(HASWELL_G, X86_STEPPING_ANY, SRBDS), + VULNBL_INTEL_STEPPINGS(HASWELL_X, X86_STEPPING_ANY, MMIO), + VULNBL_INTEL_STEPPINGS(BROADWELL_D, X86_STEPPING_ANY, MMIO), + VULNBL_INTEL_STEPPINGS(BROADWELL_G, X86_STEPPING_ANY, SRBDS), + VULNBL_INTEL_STEPPINGS(BROADWELL_X, X86_STEPPING_ANY, MMIO), + VULNBL_INTEL_STEPPINGS(BROADWELL, X86_STEPPING_ANY, SRBDS), + VULNBL_INTEL_STEPPINGS(SKYLAKE_X, X86_STEPPING_ANY, MMIO | RETBLEED | GDS), + VULNBL_INTEL_STEPPINGS(SKYLAKE_L, X86_STEPPING_ANY, MMIO | RETBLEED | GDS | SRBDS), + VULNBL_INTEL_STEPPINGS(SKYLAKE, X86_STEPPING_ANY, MMIO | RETBLEED | GDS | SRBDS), + VULNBL_INTEL_STEPPINGS(KABYLAKE_L, X86_STEPPING_ANY, MMIO | RETBLEED | GDS | SRBDS), + VULNBL_INTEL_STEPPINGS(KABYLAKE, X86_STEPPING_ANY, MMIO | RETBLEED | GDS | SRBDS), + VULNBL_INTEL_STEPPINGS(CANNONLAKE_L, X86_STEPPING_ANY, RETBLEED), + VULNBL_INTEL_STEPPINGS(ICELAKE_L, X86_STEPPING_ANY, MMIO | MMIO_SBDS | RETBLEED | GDS), + VULNBL_INTEL_STEPPINGS(ICELAKE_D, X86_STEPPING_ANY, MMIO | GDS), + VULNBL_INTEL_STEPPINGS(ICELAKE_X, X86_STEPPING_ANY, MMIO | GDS), + VULNBL_INTEL_STEPPINGS(COMETLAKE, X86_STEPPING_ANY, MMIO | MMIO_SBDS | RETBLEED | GDS), + VULNBL_INTEL_STEPPINGS(COMETLAKE_L, X86_STEPPINGS(0x0, 0x0), MMIO | RETBLEED), + VULNBL_INTEL_STEPPINGS(COMETLAKE_L, X86_STEPPING_ANY, MMIO | MMIO_SBDS | RETBLEED | GDS), + VULNBL_INTEL_STEPPINGS(TIGERLAKE_L, X86_STEPPING_ANY, GDS), + VULNBL_INTEL_STEPPINGS(TIGERLAKE, X86_STEPPING_ANY, GDS), + VULNBL_INTEL_STEPPINGS(LAKEFIELD, X86_STEPPING_ANY, MMIO | MMIO_SBDS | RETBLEED), + VULNBL_INTEL_STEPPINGS(ROCKETLAKE, X86_STEPPING_ANY, MMIO | RETBLEED | GDS), + VULNBL_INTEL_STEPPINGS(ATOM_TREMONT, X86_STEPPING_ANY, MMIO | MMIO_SBDS), + VULNBL_INTEL_STEPPINGS(ATOM_TREMONT_D, X86_STEPPING_ANY, MMIO), + VULNBL_INTEL_STEPPINGS(ATOM_TREMONT_L, X86_STEPPING_ANY, MMIO | MMIO_SBDS), + + VULNBL_AMD(0x15, RETBLEED), + VULNBL_AMD(0x16, RETBLEED), + VULNBL_AMD(0x17, RETBLEED | SMT_RSB | SRSO), + VULNBL_HYGON(0x18, RETBLEED | SMT_RSB | SRSO), + VULNBL_AMD(0x19, SRSO), + {} +}; + +static bool __init cpu_matches(const struct x86_cpu_id *table, unsigned long which) +{ + const struct x86_cpu_id *m = x86_match_cpu(table); + + return m && !!(m->driver_data & which); +} + +u64 x86_read_arch_cap_msr(void) +{ + u64 ia32_cap = 0; + + if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES)) + rdmsrl(MSR_IA32_ARCH_CAPABILITIES, ia32_cap); + + return ia32_cap; +} + +static bool arch_cap_mmio_immune(u64 ia32_cap) +{ + return (ia32_cap & ARCH_CAP_FBSDP_NO && + ia32_cap & ARCH_CAP_PSDP_NO && + ia32_cap & ARCH_CAP_SBDR_SSDP_NO); +} + +static void __init cpu_set_bug_bits(struct cpuinfo_x86 *c) +{ + u64 ia32_cap = x86_read_arch_cap_msr(); + + /* Set ITLB_MULTIHIT bug if cpu is not in the whitelist and not mitigated */ + if (!cpu_matches(cpu_vuln_whitelist, NO_ITLB_MULTIHIT) && + !(ia32_cap & ARCH_CAP_PSCHANGE_MC_NO)) + setup_force_cpu_bug(X86_BUG_ITLB_MULTIHIT); + + if (cpu_matches(cpu_vuln_whitelist, NO_SPECULATION)) + return; + + setup_force_cpu_bug(X86_BUG_SPECTRE_V1); + + if (!cpu_matches(cpu_vuln_whitelist, NO_SPECTRE_V2)) + setup_force_cpu_bug(X86_BUG_SPECTRE_V2); + + if (!cpu_matches(cpu_vuln_whitelist, NO_SSB) && + !(ia32_cap & ARCH_CAP_SSB_NO) && + !cpu_has(c, X86_FEATURE_AMD_SSB_NO)) + setup_force_cpu_bug(X86_BUG_SPEC_STORE_BYPASS); + + /* + * AMD's AutoIBRS is equivalent to Intel's eIBRS - use the Intel feature + * flag and protect from vendor-specific bugs via the whitelist. + */ + if ((ia32_cap & ARCH_CAP_IBRS_ALL) || cpu_has(c, X86_FEATURE_AUTOIBRS)) { + setup_force_cpu_cap(X86_FEATURE_IBRS_ENHANCED); + if (!cpu_matches(cpu_vuln_whitelist, NO_EIBRS_PBRSB) && + !(ia32_cap & ARCH_CAP_PBRSB_NO)) + setup_force_cpu_bug(X86_BUG_EIBRS_PBRSB); + } + + if (!cpu_matches(cpu_vuln_whitelist, NO_MDS) && + !(ia32_cap & ARCH_CAP_MDS_NO)) { + setup_force_cpu_bug(X86_BUG_MDS); + if (cpu_matches(cpu_vuln_whitelist, MSBDS_ONLY)) + setup_force_cpu_bug(X86_BUG_MSBDS_ONLY); + } + + if (!cpu_matches(cpu_vuln_whitelist, NO_SWAPGS)) + setup_force_cpu_bug(X86_BUG_SWAPGS); + + /* + * When the CPU is not mitigated for TAA (TAA_NO=0) set TAA bug when: + * - TSX is supported or + * - TSX_CTRL is present + * + * TSX_CTRL check is needed for cases when TSX could be disabled before + * the kernel boot e.g. kexec. + * TSX_CTRL check alone is not sufficient for cases when the microcode + * update is not present or running as guest that don't get TSX_CTRL. + */ + if (!(ia32_cap & ARCH_CAP_TAA_NO) && + (cpu_has(c, X86_FEATURE_RTM) || + (ia32_cap & ARCH_CAP_TSX_CTRL_MSR))) + setup_force_cpu_bug(X86_BUG_TAA); + + /* + * SRBDS affects CPUs which support RDRAND or RDSEED and are listed + * in the vulnerability blacklist. + * + * Some of the implications and mitigation of Shared Buffers Data + * Sampling (SBDS) are similar to SRBDS. Give SBDS same treatment as + * SRBDS. + */ + if ((cpu_has(c, X86_FEATURE_RDRAND) || + cpu_has(c, X86_FEATURE_RDSEED)) && + cpu_matches(cpu_vuln_blacklist, SRBDS | MMIO_SBDS)) + setup_force_cpu_bug(X86_BUG_SRBDS); + + /* + * Processor MMIO Stale Data bug enumeration + * + * Affected CPU list is generally enough to enumerate the vulnerability, + * but for virtualization case check for ARCH_CAP MSR bits also, VMM may + * not want the guest to enumerate the bug. + * + * Set X86_BUG_MMIO_UNKNOWN for CPUs that are neither in the blacklist, + * nor in the whitelist and also don't enumerate MSR ARCH_CAP MMIO bits. + */ + if (!arch_cap_mmio_immune(ia32_cap)) { + if (cpu_matches(cpu_vuln_blacklist, MMIO)) + setup_force_cpu_bug(X86_BUG_MMIO_STALE_DATA); + else if (!cpu_matches(cpu_vuln_whitelist, NO_MMIO)) + setup_force_cpu_bug(X86_BUG_MMIO_UNKNOWN); + } + + if (!cpu_has(c, X86_FEATURE_BTC_NO)) { + if (cpu_matches(cpu_vuln_blacklist, RETBLEED) || (ia32_cap & ARCH_CAP_RSBA)) + setup_force_cpu_bug(X86_BUG_RETBLEED); + } + + if (cpu_matches(cpu_vuln_blacklist, SMT_RSB)) + setup_force_cpu_bug(X86_BUG_SMT_RSB); + + if (!cpu_has(c, X86_FEATURE_SRSO_NO)) { + if (cpu_matches(cpu_vuln_blacklist, SRSO)) + setup_force_cpu_bug(X86_BUG_SRSO); + } + + /* + * Check if CPU is vulnerable to GDS. If running in a virtual machine on + * an affected processor, the VMM may have disabled the use of GATHER by + * disabling AVX2. The only way to do this in HW is to clear XCR0[2], + * which means that AVX will be disabled. + */ + if (cpu_matches(cpu_vuln_blacklist, GDS) && !(ia32_cap & ARCH_CAP_GDS_NO) && + boot_cpu_has(X86_FEATURE_AVX)) + setup_force_cpu_bug(X86_BUG_GDS); + + if (cpu_matches(cpu_vuln_whitelist, NO_MELTDOWN)) + return; + + /* Rogue Data Cache Load? No! */ + if (ia32_cap & ARCH_CAP_RDCL_NO) + return; + + setup_force_cpu_bug(X86_BUG_CPU_MELTDOWN); + + if (cpu_matches(cpu_vuln_whitelist, NO_L1TF)) + return; + + setup_force_cpu_bug(X86_BUG_L1TF); +} + +/* + * The NOPL instruction is supposed to exist on all CPUs of family >= 6; + * unfortunately, that's not true in practice because of early VIA + * chips and (more importantly) broken virtualizers that are not easy + * to detect. In the latter case it doesn't even *fail* reliably, so + * probing for it doesn't even work. Disable it completely on 32-bit + * unless we can find a reliable way to detect all the broken cases. + * Enable it explicitly on 64-bit for non-constant inputs of cpu_has(). + */ +static void detect_nopl(void) +{ +#ifdef CONFIG_X86_32 + setup_clear_cpu_cap(X86_FEATURE_NOPL); +#else + setup_force_cpu_cap(X86_FEATURE_NOPL); +#endif +} + +/* + * We parse cpu parameters early because fpu__init_system() is executed + * before parse_early_param(). + */ +static void __init cpu_parse_early_param(void) +{ + char arg[128]; + char *argptr = arg, *opt; + int arglen, taint = 0; + +#ifdef CONFIG_X86_32 + if (cmdline_find_option_bool(boot_command_line, "no387")) +#ifdef CONFIG_MATH_EMULATION + setup_clear_cpu_cap(X86_FEATURE_FPU); +#else + pr_err("Option 'no387' required CONFIG_MATH_EMULATION enabled.\n"); +#endif + + if (cmdline_find_option_bool(boot_command_line, "nofxsr")) + setup_clear_cpu_cap(X86_FEATURE_FXSR); +#endif + + if (cmdline_find_option_bool(boot_command_line, "noxsave")) + setup_clear_cpu_cap(X86_FEATURE_XSAVE); + + if (cmdline_find_option_bool(boot_command_line, "noxsaveopt")) + setup_clear_cpu_cap(X86_FEATURE_XSAVEOPT); + + if (cmdline_find_option_bool(boot_command_line, "noxsaves")) + setup_clear_cpu_cap(X86_FEATURE_XSAVES); + + if (cmdline_find_option_bool(boot_command_line, "nousershstk")) + setup_clear_cpu_cap(X86_FEATURE_USER_SHSTK); + + arglen = cmdline_find_option(boot_command_line, "clearcpuid", arg, sizeof(arg)); + if (arglen <= 0) + return; + + pr_info("Clearing CPUID bits:"); + + while (argptr) { + bool found __maybe_unused = false; + unsigned int bit; + + opt = strsep(&argptr, ","); + + /* + * Handle naked numbers first for feature flags which don't + * have names. + */ + if (!kstrtouint(opt, 10, &bit)) { + if (bit < NCAPINTS * 32) { + + /* empty-string, i.e., ""-defined feature flags */ + if (!x86_cap_flags[bit]) + pr_cont(" " X86_CAP_FMT_NUM, x86_cap_flag_num(bit)); + else + pr_cont(" " X86_CAP_FMT, x86_cap_flag(bit)); + + setup_clear_cpu_cap(bit); + taint++; + } + /* + * The assumption is that there are no feature names with only + * numbers in the name thus go to the next argument. + */ + continue; + } + + for (bit = 0; bit < 32 * NCAPINTS; bit++) { + if (!x86_cap_flag(bit)) + continue; + + if (strcmp(x86_cap_flag(bit), opt)) + continue; + + pr_cont(" %s", opt); + setup_clear_cpu_cap(bit); + taint++; + found = true; + break; + } + + if (!found) + pr_cont(" (unknown: %s)", opt); + } + pr_cont("\n"); + + if (taint) + add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK); +} + +/* + * Do minimum CPU detection early. + * Fields really needed: vendor, cpuid_level, family, model, mask, + * cache alignment. + * The others are not touched to avoid unwanted side effects. + * + * WARNING: this function is only called on the boot CPU. Don't add code + * here that is supposed to run on all CPUs. + */ +static void __init early_identify_cpu(struct cpuinfo_x86 *c) +{ +#ifdef CONFIG_X86_64 + c->x86_clflush_size = 64; + c->x86_phys_bits = 36; + c->x86_virt_bits = 48; +#else + c->x86_clflush_size = 32; + c->x86_phys_bits = 32; + c->x86_virt_bits = 32; +#endif + c->x86_cache_alignment = c->x86_clflush_size; + + memset(&c->x86_capability, 0, sizeof(c->x86_capability)); + c->extended_cpuid_level = 0; + + if (!have_cpuid_p()) + identify_cpu_without_cpuid(c); + + /* cyrix could have cpuid enabled via c_identify()*/ + if (have_cpuid_p()) { + cpu_detect(c); + get_cpu_vendor(c); + get_cpu_cap(c); + get_cpu_address_sizes(c); + setup_force_cpu_cap(X86_FEATURE_CPUID); + cpu_parse_early_param(); + + if (this_cpu->c_early_init) + this_cpu->c_early_init(c); + + c->cpu_index = 0; + filter_cpuid_features(c, false); + + if (this_cpu->c_bsp_init) + this_cpu->c_bsp_init(c); + } else { + setup_clear_cpu_cap(X86_FEATURE_CPUID); + } + + setup_force_cpu_cap(X86_FEATURE_ALWAYS); + + cpu_set_bug_bits(c); + + sld_setup(c); + +#ifdef CONFIG_X86_32 + /* + * Regardless of whether PCID is enumerated, the SDM says + * that it can't be enabled in 32-bit mode. + */ + setup_clear_cpu_cap(X86_FEATURE_PCID); +#endif + + /* + * Later in the boot process pgtable_l5_enabled() relies on + * cpu_feature_enabled(X86_FEATURE_LA57). If 5-level paging is not + * enabled by this point we need to clear the feature bit to avoid + * false-positives at the later stage. + * + * pgtable_l5_enabled() can be false here for several reasons: + * - 5-level paging is disabled compile-time; + * - it's 32-bit kernel; + * - machine doesn't support 5-level paging; + * - user specified 'no5lvl' in kernel command line. + */ + if (!pgtable_l5_enabled()) + setup_clear_cpu_cap(X86_FEATURE_LA57); + + detect_nopl(); +} + +void __init early_cpu_init(void) +{ + const struct cpu_dev *const *cdev; + int count = 0; + +#ifdef CONFIG_PROCESSOR_SELECT + pr_info("KERNEL supported cpus:\n"); +#endif + + for (cdev = __x86_cpu_dev_start; cdev < __x86_cpu_dev_end; cdev++) { + const struct cpu_dev *cpudev = *cdev; + + if (count >= X86_VENDOR_NUM) + break; + cpu_devs[count] = cpudev; + count++; + +#ifdef CONFIG_PROCESSOR_SELECT + { + unsigned int j; + + for (j = 0; j < 2; j++) { + if (!cpudev->c_ident[j]) + continue; + pr_info(" %s %s\n", cpudev->c_vendor, + cpudev->c_ident[j]); + } + } +#endif + } + early_identify_cpu(&boot_cpu_data); +} + +static bool detect_null_seg_behavior(void) +{ + /* + * Empirically, writing zero to a segment selector on AMD does + * not clear the base, whereas writing zero to a segment + * selector on Intel does clear the base. Intel's behavior + * allows slightly faster context switches in the common case + * where GS is unused by the prev and next threads. + * + * Since neither vendor documents this anywhere that I can see, + * detect it directly instead of hard-coding the choice by + * vendor. + * + * I've designated AMD's behavior as the "bug" because it's + * counterintuitive and less friendly. + */ + + unsigned long old_base, tmp; + rdmsrl(MSR_FS_BASE, old_base); + wrmsrl(MSR_FS_BASE, 1); + loadsegment(fs, 0); + rdmsrl(MSR_FS_BASE, tmp); + wrmsrl(MSR_FS_BASE, old_base); + return tmp == 0; +} + +void check_null_seg_clears_base(struct cpuinfo_x86 *c) +{ + /* BUG_NULL_SEG is only relevant with 64bit userspace */ + if (!IS_ENABLED(CONFIG_X86_64)) + return; + + if (cpu_has(c, X86_FEATURE_NULL_SEL_CLR_BASE)) + return; + + /* + * CPUID bit above wasn't set. If this kernel is still running + * as a HV guest, then the HV has decided not to advertize + * that CPUID bit for whatever reason. For example, one + * member of the migration pool might be vulnerable. Which + * means, the bug is present: set the BUG flag and return. + */ + if (cpu_has(c, X86_FEATURE_HYPERVISOR)) { + set_cpu_bug(c, X86_BUG_NULL_SEG); + return; + } + + /* + * Zen2 CPUs also have this behaviour, but no CPUID bit. + * 0x18 is the respective family for Hygon. + */ + if ((c->x86 == 0x17 || c->x86 == 0x18) && + detect_null_seg_behavior()) + return; + + /* All the remaining ones are affected */ + set_cpu_bug(c, X86_BUG_NULL_SEG); +} + +static void generic_identify(struct cpuinfo_x86 *c) +{ + c->extended_cpuid_level = 0; + + if (!have_cpuid_p()) + identify_cpu_without_cpuid(c); + + /* cyrix could have cpuid enabled via c_identify()*/ + if (!have_cpuid_p()) + return; + + cpu_detect(c); + + get_cpu_vendor(c); + + get_cpu_cap(c); + + get_cpu_address_sizes(c); + + if (c->cpuid_level >= 0x00000001) { + c->initial_apicid = (cpuid_ebx(1) >> 24) & 0xFF; +#ifdef CONFIG_X86_32 +# ifdef CONFIG_SMP + c->apicid = apic->phys_pkg_id(c->initial_apicid, 0); +# else + c->apicid = c->initial_apicid; +# endif +#endif + c->phys_proc_id = c->initial_apicid; + } + + get_model_name(c); /* Default name */ + + /* + * ESPFIX is a strange bug. All real CPUs have it. Paravirt + * systems that run Linux at CPL > 0 may or may not have the + * issue, but, even if they have the issue, there's absolutely + * nothing we can do about it because we can't use the real IRET + * instruction. + * + * NB: For the time being, only 32-bit kernels support + * X86_BUG_ESPFIX as such. 64-bit kernels directly choose + * whether to apply espfix using paravirt hooks. If any + * non-paravirt system ever shows up that does *not* have the + * ESPFIX issue, we can change this. + */ +#ifdef CONFIG_X86_32 + set_cpu_bug(c, X86_BUG_ESPFIX); +#endif +} + +/* + * Validate that ACPI/mptables have the same information about the + * effective APIC id and update the package map. + */ +static void validate_apic_and_package_id(struct cpuinfo_x86 *c) +{ +#ifdef CONFIG_SMP + unsigned int apicid, cpu = smp_processor_id(); + + apicid = apic->cpu_present_to_apicid(cpu); + + if (apicid != c->apicid) { + pr_err(FW_BUG "CPU%u: APIC id mismatch. Firmware: %x APIC: %x\n", + cpu, apicid, c->initial_apicid); + } + BUG_ON(topology_update_package_map(c->phys_proc_id, cpu)); + BUG_ON(topology_update_die_map(c->cpu_die_id, cpu)); +#else + c->logical_proc_id = 0; +#endif +} + +/* + * This does the hard work of actually picking apart the CPU stuff... + */ +static void identify_cpu(struct cpuinfo_x86 *c) +{ + int i; + + c->loops_per_jiffy = loops_per_jiffy; + c->x86_cache_size = 0; + c->x86_vendor = X86_VENDOR_UNKNOWN; + c->x86_model = c->x86_stepping = 0; /* So far unknown... */ + c->x86_vendor_id[0] = '\0'; /* Unset */ + c->x86_model_id[0] = '\0'; /* Unset */ + c->x86_max_cores = 1; + c->x86_coreid_bits = 0; + c->cu_id = 0xff; +#ifdef CONFIG_X86_64 + c->x86_clflush_size = 64; + c->x86_phys_bits = 36; + c->x86_virt_bits = 48; +#else + c->cpuid_level = -1; /* CPUID not detected */ + c->x86_clflush_size = 32; + c->x86_phys_bits = 32; + c->x86_virt_bits = 32; +#endif + c->x86_cache_alignment = c->x86_clflush_size; + memset(&c->x86_capability, 0, sizeof(c->x86_capability)); +#ifdef CONFIG_X86_VMX_FEATURE_NAMES + memset(&c->vmx_capability, 0, sizeof(c->vmx_capability)); +#endif + + generic_identify(c); + + if (this_cpu->c_identify) + this_cpu->c_identify(c); + + /* Clear/Set all flags overridden by options, after probe */ + apply_forced_caps(c); + +#ifdef CONFIG_X86_64 + c->apicid = apic->phys_pkg_id(c->initial_apicid, 0); +#endif + + /* + * Vendor-specific initialization. In this section we + * canonicalize the feature flags, meaning if there are + * features a certain CPU supports which CPUID doesn't + * tell us, CPUID claiming incorrect flags, or other bugs, + * we handle them here. + * + * At the end of this section, c->x86_capability better + * indicate the features this CPU genuinely supports! + */ + if (this_cpu->c_init) + this_cpu->c_init(c); + + /* Disable the PN if appropriate */ + squash_the_stupid_serial_number(c); + + /* Set up SMEP/SMAP/UMIP */ + setup_smep(c); + setup_smap(c); + setup_umip(c); + + /* Enable FSGSBASE instructions if available. */ + if (cpu_has(c, X86_FEATURE_FSGSBASE)) { + cr4_set_bits(X86_CR4_FSGSBASE); + elf_hwcap2 |= HWCAP2_FSGSBASE; + } + + /* + * The vendor-specific functions might have changed features. + * Now we do "generic changes." + */ + + /* Filter out anything that depends on CPUID levels we don't have */ + filter_cpuid_features(c, true); + + /* If the model name is still unset, do table lookup. */ + if (!c->x86_model_id[0]) { + const char *p; + p = table_lookup_model(c); + if (p) + strcpy(c->x86_model_id, p); + else + /* Last resort... */ + sprintf(c->x86_model_id, "%02x/%02x", + c->x86, c->x86_model); + } + +#ifdef CONFIG_X86_64 + detect_ht(c); +#endif + + x86_init_rdrand(c); + setup_pku(c); + setup_cet(c); + + /* + * Clear/Set all flags overridden by options, need do it + * before following smp all cpus cap AND. + */ + apply_forced_caps(c); + + /* + * On SMP, boot_cpu_data holds the common feature set between + * all CPUs; so make sure that we indicate which features are + * common between the CPUs. The first time this routine gets + * executed, c == &boot_cpu_data. + */ + if (c != &boot_cpu_data) { + /* AND the already accumulated flags with these */ + for (i = 0; i < NCAPINTS; i++) + boot_cpu_data.x86_capability[i] &= c->x86_capability[i]; + + /* OR, i.e. replicate the bug flags */ + for (i = NCAPINTS; i < NCAPINTS + NBUGINTS; i++) + c->x86_capability[i] |= boot_cpu_data.x86_capability[i]; + } + + ppin_init(c); + + /* Init Machine Check Exception if available. */ + mcheck_cpu_init(c); + + select_idle_routine(c); + +#ifdef CONFIG_NUMA + numa_add_cpu(smp_processor_id()); +#endif +} + +/* + * Set up the CPU state needed to execute SYSENTER/SYSEXIT instructions + * on 32-bit kernels: + */ +#ifdef CONFIG_X86_32 +void enable_sep_cpu(void) +{ + struct tss_struct *tss; + int cpu; + + if (!boot_cpu_has(X86_FEATURE_SEP)) + return; + + cpu = get_cpu(); + tss = &per_cpu(cpu_tss_rw, cpu); + + /* + * We cache MSR_IA32_SYSENTER_CS's value in the TSS's ss1 field -- + * see the big comment in struct x86_hw_tss's definition. + */ + + tss->x86_tss.ss1 = __KERNEL_CS; + wrmsr(MSR_IA32_SYSENTER_CS, tss->x86_tss.ss1, 0); + wrmsr(MSR_IA32_SYSENTER_ESP, (unsigned long)(cpu_entry_stack(cpu) + 1), 0); + wrmsr(MSR_IA32_SYSENTER_EIP, (unsigned long)entry_SYSENTER_32, 0); + + put_cpu(); +} +#endif + +static __init void identify_boot_cpu(void) +{ + identify_cpu(&boot_cpu_data); + if (HAS_KERNEL_IBT && cpu_feature_enabled(X86_FEATURE_IBT)) + pr_info("CET detected: Indirect Branch Tracking enabled\n"); +#ifdef CONFIG_X86_32 + enable_sep_cpu(); +#endif + cpu_detect_tlb(&boot_cpu_data); + setup_cr_pinning(); + + tsx_init(); + lkgs_init(); +} + +void identify_secondary_cpu(struct cpuinfo_x86 *c) +{ + BUG_ON(c == &boot_cpu_data); + identify_cpu(c); +#ifdef CONFIG_X86_32 + enable_sep_cpu(); +#endif + validate_apic_and_package_id(c); + x86_spec_ctrl_setup_ap(); + update_srbds_msr(); + if (boot_cpu_has_bug(X86_BUG_GDS)) + update_gds_msr(); + + tsx_ap_init(); +} + +void print_cpu_info(struct cpuinfo_x86 *c) +{ + const char *vendor = NULL; + + if (c->x86_vendor < X86_VENDOR_NUM) { + vendor = this_cpu->c_vendor; + } else { + if (c->cpuid_level >= 0) + vendor = c->x86_vendor_id; + } + + if (vendor && !strstr(c->x86_model_id, vendor)) + pr_cont("%s ", vendor); + + if (c->x86_model_id[0]) + pr_cont("%s", c->x86_model_id); + else + pr_cont("%d86", c->x86); + + pr_cont(" (family: 0x%x, model: 0x%x", c->x86, c->x86_model); + + if (c->x86_stepping || c->cpuid_level >= 0) + pr_cont(", stepping: 0x%x)\n", c->x86_stepping); + else + pr_cont(")\n"); +} + +/* + * clearcpuid= was already parsed in cpu_parse_early_param(). This dummy + * function prevents it from becoming an environment variable for init. + */ +static __init int setup_clearcpuid(char *arg) +{ + return 1; +} +__setup("clearcpuid=", setup_clearcpuid); + +DEFINE_PER_CPU_ALIGNED(struct pcpu_hot, pcpu_hot) = { + .current_task = &init_task, + .preempt_count = INIT_PREEMPT_COUNT, + .top_of_stack = TOP_OF_INIT_STACK, +}; +EXPORT_PER_CPU_SYMBOL(pcpu_hot); + +#ifdef CONFIG_X86_64 +DEFINE_PER_CPU_FIRST(struct fixed_percpu_data, + fixed_percpu_data) __aligned(PAGE_SIZE) __visible; +EXPORT_PER_CPU_SYMBOL_GPL(fixed_percpu_data); + +static void wrmsrl_cstar(unsigned long val) +{ + /* + * Intel CPUs do not support 32-bit SYSCALL. Writing to MSR_CSTAR + * is so far ignored by the CPU, but raises a #VE trap in a TDX + * guest. Avoid the pointless write on all Intel CPUs. + */ + if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) + wrmsrl(MSR_CSTAR, val); +} + +/* May not be marked __init: used by software suspend */ +void syscall_init(void) +{ + wrmsr(MSR_STAR, 0, (__USER32_CS << 16) | __KERNEL_CS); + wrmsrl(MSR_LSTAR, (unsigned long)entry_SYSCALL_64); + +#ifdef CONFIG_IA32_EMULATION + wrmsrl_cstar((unsigned long)entry_SYSCALL_compat); + /* + * This only works on Intel CPUs. + * On AMD CPUs these MSRs are 32-bit, CPU truncates MSR_IA32_SYSENTER_EIP. + * This does not cause SYSENTER to jump to the wrong location, because + * AMD doesn't allow SYSENTER in long mode (either 32- or 64-bit). + */ + wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)__KERNEL_CS); + wrmsrl_safe(MSR_IA32_SYSENTER_ESP, + (unsigned long)(cpu_entry_stack(smp_processor_id()) + 1)); + wrmsrl_safe(MSR_IA32_SYSENTER_EIP, (u64)entry_SYSENTER_compat); +#else + wrmsrl_cstar((unsigned long)ignore_sysret); + wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)GDT_ENTRY_INVALID_SEG); + wrmsrl_safe(MSR_IA32_SYSENTER_ESP, 0ULL); + wrmsrl_safe(MSR_IA32_SYSENTER_EIP, 0ULL); +#endif + + /* + * Flags to clear on syscall; clear as much as possible + * to minimize user space-kernel interference. + */ + wrmsrl(MSR_SYSCALL_MASK, + X86_EFLAGS_CF|X86_EFLAGS_PF|X86_EFLAGS_AF| + X86_EFLAGS_ZF|X86_EFLAGS_SF|X86_EFLAGS_TF| + X86_EFLAGS_IF|X86_EFLAGS_DF|X86_EFLAGS_OF| + X86_EFLAGS_IOPL|X86_EFLAGS_NT|X86_EFLAGS_RF| + X86_EFLAGS_AC|X86_EFLAGS_ID); +} + +#else /* CONFIG_X86_64 */ + +#ifdef CONFIG_STACKPROTECTOR +DEFINE_PER_CPU(unsigned long, __stack_chk_guard); +EXPORT_PER_CPU_SYMBOL(__stack_chk_guard); +#endif + +#endif /* CONFIG_X86_64 */ + +/* + * Clear all 6 debug registers: + */ +static void clear_all_debug_regs(void) +{ + int i; + + for (i = 0; i < 8; i++) { + /* Ignore db4, db5 */ + if ((i == 4) || (i == 5)) + continue; + + set_debugreg(0, i); + } +} + +#ifdef CONFIG_KGDB +/* + * Restore debug regs if using kgdbwait and you have a kernel debugger + * connection established. + */ +static void dbg_restore_debug_regs(void) +{ + if (unlikely(kgdb_connected && arch_kgdb_ops.correct_hw_break)) + arch_kgdb_ops.correct_hw_break(); +} +#else /* ! CONFIG_KGDB */ +#define dbg_restore_debug_regs() +#endif /* ! CONFIG_KGDB */ + +static inline void setup_getcpu(int cpu) +{ + unsigned long cpudata = vdso_encode_cpunode(cpu, early_cpu_to_node(cpu)); + struct desc_struct d = { }; + + if (boot_cpu_has(X86_FEATURE_RDTSCP) || boot_cpu_has(X86_FEATURE_RDPID)) + wrmsr(MSR_TSC_AUX, cpudata, 0); + + /* Store CPU and node number in limit. */ + d.limit0 = cpudata; + d.limit1 = cpudata >> 16; + + d.type = 5; /* RO data, expand down, accessed */ + d.dpl = 3; /* Visible to user code */ + d.s = 1; /* Not a system segment */ + d.p = 1; /* Present */ + d.d = 1; /* 32-bit */ + + write_gdt_entry(get_cpu_gdt_rw(cpu), GDT_ENTRY_CPUNODE, &d, DESCTYPE_S); +} + +#ifdef CONFIG_X86_64 +static inline void ucode_cpu_init(int cpu) { } + +static inline void tss_setup_ist(struct tss_struct *tss) +{ + /* Set up the per-CPU TSS IST stacks */ + tss->x86_tss.ist[IST_INDEX_DF] = __this_cpu_ist_top_va(DF); + tss->x86_tss.ist[IST_INDEX_NMI] = __this_cpu_ist_top_va(NMI); + tss->x86_tss.ist[IST_INDEX_DB] = __this_cpu_ist_top_va(DB); + tss->x86_tss.ist[IST_INDEX_MCE] = __this_cpu_ist_top_va(MCE); + /* Only mapped when SEV-ES is active */ + tss->x86_tss.ist[IST_INDEX_VC] = __this_cpu_ist_top_va(VC); +} + +#else /* CONFIG_X86_64 */ + +static inline void ucode_cpu_init(int cpu) +{ + show_ucode_info_early(); +} + +static inline void tss_setup_ist(struct tss_struct *tss) { } + +#endif /* !CONFIG_X86_64 */ + +static inline void tss_setup_io_bitmap(struct tss_struct *tss) +{ + tss->x86_tss.io_bitmap_base = IO_BITMAP_OFFSET_INVALID; + +#ifdef CONFIG_X86_IOPL_IOPERM + tss->io_bitmap.prev_max = 0; + tss->io_bitmap.prev_sequence = 0; + memset(tss->io_bitmap.bitmap, 0xff, sizeof(tss->io_bitmap.bitmap)); + /* + * Invalidate the extra array entry past the end of the all + * permission bitmap as required by the hardware. + */ + tss->io_bitmap.mapall[IO_BITMAP_LONGS] = ~0UL; +#endif +} + +/* + * Setup everything needed to handle exceptions from the IDT, including the IST + * exceptions which use paranoid_entry(). + */ +void cpu_init_exception_handling(void) +{ + struct tss_struct *tss = this_cpu_ptr(&cpu_tss_rw); + int cpu = raw_smp_processor_id(); + + /* paranoid_entry() gets the CPU number from the GDT */ + setup_getcpu(cpu); + + /* IST vectors need TSS to be set up. */ + tss_setup_ist(tss); + tss_setup_io_bitmap(tss); + set_tss_desc(cpu, &get_cpu_entry_area(cpu)->tss.x86_tss); + + load_TR_desc(); + + /* GHCB needs to be setup to handle #VC. */ + setup_ghcb(); + + /* Finally load the IDT */ + load_current_idt(); +} + +/* + * cpu_init() initializes state that is per-CPU. Some data is already + * initialized (naturally) in the bootstrap process, such as the GDT. We + * reload it nevertheless, this function acts as a 'CPU state barrier', + * nothing should get across. + */ +void cpu_init(void) +{ + struct task_struct *cur = current; + int cpu = raw_smp_processor_id(); + + ucode_cpu_init(cpu); + +#ifdef CONFIG_NUMA + if (this_cpu_read(numa_node) == 0 && + early_cpu_to_node(cpu) != NUMA_NO_NODE) + set_numa_node(early_cpu_to_node(cpu)); +#endif + pr_debug("Initializing CPU#%d\n", cpu); + + if (IS_ENABLED(CONFIG_X86_64) || cpu_feature_enabled(X86_FEATURE_VME) || + boot_cpu_has(X86_FEATURE_TSC) || boot_cpu_has(X86_FEATURE_DE)) + cr4_clear_bits(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE); + + if (IS_ENABLED(CONFIG_X86_64)) { + loadsegment(fs, 0); + memset(cur->thread.tls_array, 0, GDT_ENTRY_TLS_ENTRIES * 8); + syscall_init(); + + wrmsrl(MSR_FS_BASE, 0); + wrmsrl(MSR_KERNEL_GS_BASE, 0); + barrier(); + + x2apic_setup(); + } + + mmgrab(&init_mm); + cur->active_mm = &init_mm; + BUG_ON(cur->mm); + initialize_tlbstate_and_flush(); + enter_lazy_tlb(&init_mm, cur); + + /* + * sp0 points to the entry trampoline stack regardless of what task + * is running. + */ + load_sp0((unsigned long)(cpu_entry_stack(cpu) + 1)); + + load_mm_ldt(&init_mm); + + clear_all_debug_regs(); + dbg_restore_debug_regs(); + + doublefault_init_cpu_tss(); + + if (is_uv_system()) + uv_cpu_init(); + + load_fixmap_gdt(cpu); +} + +#ifdef CONFIG_MICROCODE_LATE_LOADING +/** + * store_cpu_caps() - Store a snapshot of CPU capabilities + * @curr_info: Pointer where to store it + * + * Returns: None + */ +void store_cpu_caps(struct cpuinfo_x86 *curr_info) +{ + /* Reload CPUID max function as it might've changed. */ + curr_info->cpuid_level = cpuid_eax(0); + + /* Copy all capability leafs and pick up the synthetic ones. */ + memcpy(&curr_info->x86_capability, &boot_cpu_data.x86_capability, + sizeof(curr_info->x86_capability)); + + /* Get the hardware CPUID leafs */ + get_cpu_cap(curr_info); +} + +/** + * microcode_check() - Check if any CPU capabilities changed after an update. + * @prev_info: CPU capabilities stored before an update. + * + * The microcode loader calls this upon late microcode load to recheck features, + * only when microcode has been updated. Caller holds and CPU hotplug lock. + * + * Return: None + */ +void microcode_check(struct cpuinfo_x86 *prev_info) +{ + struct cpuinfo_x86 curr_info; + + perf_check_microcode(); + + amd_check_microcode(); + + store_cpu_caps(&curr_info); + + if (!memcmp(&prev_info->x86_capability, &curr_info.x86_capability, + sizeof(prev_info->x86_capability))) + return; + + pr_warn("x86/CPU: CPU features have changed after loading microcode, but might not take effect.\n"); + pr_warn("x86/CPU: Please consider either early loading through initrd/built-in or a potential BIOS update.\n"); +} +#endif + +/* + * Invoked from core CPU hotplug code after hotplug operations + */ +void arch_smt_update(void) +{ + /* Handle the speculative execution misfeatures */ + cpu_bugs_smt_update(); + /* Check whether IPI broadcasting can be enabled */ + apic_smt_update(); +} + +void __init arch_cpu_finalize_init(void) +{ + identify_boot_cpu(); + + /* + * identify_boot_cpu() initialized SMT support information, let the + * core code know. + */ + cpu_smt_set_num_threads(smp_num_siblings, smp_num_siblings); + + if (!IS_ENABLED(CONFIG_SMP)) { + pr_info("CPU: "); + print_cpu_info(&boot_cpu_data); + } + + cpu_select_mitigations(); + + arch_smt_update(); + + if (IS_ENABLED(CONFIG_X86_32)) { + /* + * Check whether this is a real i386 which is not longer + * supported and fixup the utsname. + */ + if (boot_cpu_data.x86 < 4) + panic("Kernel requires i486+ for 'invlpg' and other features"); + + init_utsname()->machine[1] = + '0' + (boot_cpu_data.x86 > 6 ? 6 : boot_cpu_data.x86); + } + + /* + * Must be before alternatives because it might set or clear + * feature bits. + */ + fpu__init_system(); + fpu__init_cpu(); + + alternative_instructions(); + + if (IS_ENABLED(CONFIG_X86_64)) { + /* + * Make sure the first 2MB area is not mapped by huge pages + * There are typically fixed size MTRRs in there and overlapping + * MTRRs into large pages causes slow downs. + * + * Right now we don't do that with gbpages because there seems + * very little benefit for that case. + */ + if (!direct_gbpages) + set_memory_4k((unsigned long)__va(0), 1); + } else { + fpu__init_check_bugs(); + } + + /* + * This needs to be called before any devices perform DMA + * operations that might use the SWIOTLB bounce buffers. It will + * mark the bounce buffers as decrypted so that their usage will + * not cause "plain-text" data to be decrypted when accessed. It + * must be called after late_time_init() so that Hyper-V x86/x64 + * hypercalls work when the SWIOTLB bounce buffers are decrypted. + */ + mem_encrypt_init(); +} |