summaryrefslogtreecommitdiffstats
path: root/arch/xtensa/kernel/process.c
diff options
context:
space:
mode:
Diffstat (limited to 'arch/xtensa/kernel/process.c')
-rw-r--r--arch/xtensa/kernel/process.c399
1 files changed, 399 insertions, 0 deletions
diff --git a/arch/xtensa/kernel/process.c b/arch/xtensa/kernel/process.c
new file mode 100644
index 0000000000..a815577d25
--- /dev/null
+++ b/arch/xtensa/kernel/process.c
@@ -0,0 +1,399 @@
+/*
+ * arch/xtensa/kernel/process.c
+ *
+ * Xtensa Processor version.
+ *
+ * This file is subject to the terms and conditions of the GNU General Public
+ * License. See the file "COPYING" in the main directory of this archive
+ * for more details.
+ *
+ * Copyright (C) 2001 - 2005 Tensilica Inc.
+ *
+ * Joe Taylor <joe@tensilica.com, joetylr@yahoo.com>
+ * Chris Zankel <chris@zankel.net>
+ * Marc Gauthier <marc@tensilica.com, marc@alumni.uwaterloo.ca>
+ * Kevin Chea
+ */
+
+#include <linux/errno.h>
+#include <linux/sched.h>
+#include <linux/sched/debug.h>
+#include <linux/sched/task.h>
+#include <linux/sched/task_stack.h>
+#include <linux/kernel.h>
+#include <linux/mm.h>
+#include <linux/smp.h>
+#include <linux/stddef.h>
+#include <linux/unistd.h>
+#include <linux/ptrace.h>
+#include <linux/elf.h>
+#include <linux/hw_breakpoint.h>
+#include <linux/init.h>
+#include <linux/prctl.h>
+#include <linux/init_task.h>
+#include <linux/module.h>
+#include <linux/mqueue.h>
+#include <linux/fs.h>
+#include <linux/slab.h>
+#include <linux/rcupdate.h>
+
+#include <linux/uaccess.h>
+#include <asm/io.h>
+#include <asm/processor.h>
+#include <asm/platform.h>
+#include <asm/mmu.h>
+#include <asm/irq.h>
+#include <linux/atomic.h>
+#include <asm/asm-offsets.h>
+#include <asm/regs.h>
+#include <asm/hw_breakpoint.h>
+#include <asm/traps.h>
+
+extern void ret_from_fork(void);
+extern void ret_from_kernel_thread(void);
+
+void (*pm_power_off)(void) = NULL;
+EXPORT_SYMBOL(pm_power_off);
+
+
+#ifdef CONFIG_STACKPROTECTOR
+#include <linux/stackprotector.h>
+unsigned long __stack_chk_guard __read_mostly;
+EXPORT_SYMBOL(__stack_chk_guard);
+#endif
+
+#if XTENSA_HAVE_COPROCESSORS
+
+void local_coprocessors_flush_release_all(void)
+{
+ struct thread_info **coprocessor_owner;
+ struct thread_info *unique_owner[XCHAL_CP_MAX];
+ int n = 0;
+ int i, j;
+
+ coprocessor_owner = this_cpu_ptr(&exc_table)->coprocessor_owner;
+ xtensa_set_sr(XCHAL_CP_MASK, cpenable);
+
+ for (i = 0; i < XCHAL_CP_MAX; i++) {
+ struct thread_info *ti = coprocessor_owner[i];
+
+ if (ti) {
+ coprocessor_flush(ti, i);
+
+ for (j = 0; j < n; j++)
+ if (unique_owner[j] == ti)
+ break;
+ if (j == n)
+ unique_owner[n++] = ti;
+
+ coprocessor_owner[i] = NULL;
+ }
+ }
+ for (i = 0; i < n; i++) {
+ /* pairs with memw (1) in fast_coprocessor and memw in switch_to */
+ smp_wmb();
+ unique_owner[i]->cpenable = 0;
+ }
+ xtensa_set_sr(0, cpenable);
+}
+
+static void local_coprocessor_release_all(void *info)
+{
+ struct thread_info *ti = info;
+ struct thread_info **coprocessor_owner;
+ int i;
+
+ coprocessor_owner = this_cpu_ptr(&exc_table)->coprocessor_owner;
+
+ /* Walk through all cp owners and release it for the requested one. */
+
+ for (i = 0; i < XCHAL_CP_MAX; i++) {
+ if (coprocessor_owner[i] == ti)
+ coprocessor_owner[i] = NULL;
+ }
+ /* pairs with memw (1) in fast_coprocessor and memw in switch_to */
+ smp_wmb();
+ ti->cpenable = 0;
+ if (ti == current_thread_info())
+ xtensa_set_sr(0, cpenable);
+}
+
+void coprocessor_release_all(struct thread_info *ti)
+{
+ if (ti->cpenable) {
+ /* pairs with memw (2) in fast_coprocessor */
+ smp_rmb();
+ smp_call_function_single(ti->cp_owner_cpu,
+ local_coprocessor_release_all,
+ ti, true);
+ }
+}
+
+static void local_coprocessor_flush_all(void *info)
+{
+ struct thread_info *ti = info;
+ struct thread_info **coprocessor_owner;
+ unsigned long old_cpenable;
+ int i;
+
+ coprocessor_owner = this_cpu_ptr(&exc_table)->coprocessor_owner;
+ old_cpenable = xtensa_xsr(ti->cpenable, cpenable);
+
+ for (i = 0; i < XCHAL_CP_MAX; i++) {
+ if (coprocessor_owner[i] == ti)
+ coprocessor_flush(ti, i);
+ }
+ xtensa_set_sr(old_cpenable, cpenable);
+}
+
+void coprocessor_flush_all(struct thread_info *ti)
+{
+ if (ti->cpenable) {
+ /* pairs with memw (2) in fast_coprocessor */
+ smp_rmb();
+ smp_call_function_single(ti->cp_owner_cpu,
+ local_coprocessor_flush_all,
+ ti, true);
+ }
+}
+
+static void local_coprocessor_flush_release_all(void *info)
+{
+ local_coprocessor_flush_all(info);
+ local_coprocessor_release_all(info);
+}
+
+void coprocessor_flush_release_all(struct thread_info *ti)
+{
+ if (ti->cpenable) {
+ /* pairs with memw (2) in fast_coprocessor */
+ smp_rmb();
+ smp_call_function_single(ti->cp_owner_cpu,
+ local_coprocessor_flush_release_all,
+ ti, true);
+ }
+}
+
+#endif
+
+
+/*
+ * Powermanagement idle function, if any is provided by the platform.
+ */
+void arch_cpu_idle(void)
+{
+ platform_idle();
+ raw_local_irq_disable();
+}
+
+/*
+ * This is called when the thread calls exit().
+ */
+void exit_thread(struct task_struct *tsk)
+{
+#if XTENSA_HAVE_COPROCESSORS
+ coprocessor_release_all(task_thread_info(tsk));
+#endif
+}
+
+/*
+ * Flush thread state. This is called when a thread does an execve()
+ * Note that we flush coprocessor registers for the case execve fails.
+ */
+void flush_thread(void)
+{
+#if XTENSA_HAVE_COPROCESSORS
+ struct thread_info *ti = current_thread_info();
+ coprocessor_flush_release_all(ti);
+#endif
+ flush_ptrace_hw_breakpoint(current);
+}
+
+/*
+ * this gets called so that we can store coprocessor state into memory and
+ * copy the current task into the new thread.
+ */
+int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
+{
+#if XTENSA_HAVE_COPROCESSORS
+ coprocessor_flush_all(task_thread_info(src));
+#endif
+ *dst = *src;
+ return 0;
+}
+
+/*
+ * Copy thread.
+ *
+ * There are two modes in which this function is called:
+ * 1) Userspace thread creation,
+ * regs != NULL, usp_thread_fn is userspace stack pointer.
+ * It is expected to copy parent regs (in case CLONE_VM is not set
+ * in the clone_flags) and set up passed usp in the childregs.
+ * 2) Kernel thread creation,
+ * regs == NULL, usp_thread_fn is the function to run in the new thread
+ * and thread_fn_arg is its parameter.
+ * childregs are not used for the kernel threads.
+ *
+ * The stack layout for the new thread looks like this:
+ *
+ * +------------------------+
+ * | childregs |
+ * +------------------------+ <- thread.sp = sp in dummy-frame
+ * | dummy-frame | (saved in dummy-frame spill-area)
+ * +------------------------+
+ *
+ * We create a dummy frame to return to either ret_from_fork or
+ * ret_from_kernel_thread:
+ * a0 points to ret_from_fork/ret_from_kernel_thread (simulating a call4)
+ * sp points to itself (thread.sp)
+ * a2, a3 are unused for userspace threads,
+ * a2 points to thread_fn, a3 holds thread_fn arg for kernel threads.
+ *
+ * Note: This is a pristine frame, so we don't need any spill region on top of
+ * childregs.
+ *
+ * The fun part: if we're keeping the same VM (i.e. cloning a thread,
+ * not an entire process), we're normally given a new usp, and we CANNOT share
+ * any live address register windows. If we just copy those live frames over,
+ * the two threads (parent and child) will overflow the same frames onto the
+ * parent stack at different times, likely corrupting the parent stack (esp.
+ * if the parent returns from functions that called clone() and calls new
+ * ones, before the child overflows its now old copies of its parent windows).
+ * One solution is to spill windows to the parent stack, but that's fairly
+ * involved. Much simpler to just not copy those live frames across.
+ */
+
+int copy_thread(struct task_struct *p, const struct kernel_clone_args *args)
+{
+ unsigned long clone_flags = args->flags;
+ unsigned long usp_thread_fn = args->stack;
+ unsigned long tls = args->tls;
+ struct pt_regs *childregs = task_pt_regs(p);
+
+#if (XTENSA_HAVE_COPROCESSORS || XTENSA_HAVE_IO_PORTS)
+ struct thread_info *ti;
+#endif
+
+#if defined(__XTENSA_WINDOWED_ABI__)
+ /* Create a call4 dummy-frame: a0 = 0, a1 = childregs. */
+ SPILL_SLOT(childregs, 1) = (unsigned long)childregs;
+ SPILL_SLOT(childregs, 0) = 0;
+
+ p->thread.sp = (unsigned long)childregs;
+#elif defined(__XTENSA_CALL0_ABI__)
+ /* Reserve 16 bytes for the _switch_to stack frame. */
+ p->thread.sp = (unsigned long)childregs - 16;
+#else
+#error Unsupported Xtensa ABI
+#endif
+
+ if (!args->fn) {
+ struct pt_regs *regs = current_pt_regs();
+ unsigned long usp = usp_thread_fn ?
+ usp_thread_fn : regs->areg[1];
+
+ p->thread.ra = MAKE_RA_FOR_CALL(
+ (unsigned long)ret_from_fork, 0x1);
+
+ *childregs = *regs;
+ childregs->areg[1] = usp;
+ childregs->areg[2] = 0;
+
+ /* When sharing memory with the parent thread, the child
+ usually starts on a pristine stack, so we have to reset
+ windowbase, windowstart and wmask.
+ (Note that such a new thread is required to always create
+ an initial call4 frame)
+ The exception is vfork, where the new thread continues to
+ run on the parent's stack until it calls execve. This could
+ be a call8 or call12, which requires a legal stack frame
+ of the previous caller for the overflow handlers to work.
+ (Note that it's always legal to overflow live registers).
+ In this case, ensure to spill at least the stack pointer
+ of that frame. */
+
+ if (clone_flags & CLONE_VM) {
+ /* check that caller window is live and same stack */
+ int len = childregs->wmask & ~0xf;
+ if (regs->areg[1] == usp && len != 0) {
+ int callinc = (regs->areg[0] >> 30) & 3;
+ int caller_ars = XCHAL_NUM_AREGS - callinc * 4;
+ put_user(regs->areg[caller_ars+1],
+ (unsigned __user*)(usp - 12));
+ }
+ childregs->wmask = 1;
+ childregs->windowstart = 1;
+ childregs->windowbase = 0;
+ }
+
+ if (clone_flags & CLONE_SETTLS)
+ childregs->threadptr = tls;
+ } else {
+ p->thread.ra = MAKE_RA_FOR_CALL(
+ (unsigned long)ret_from_kernel_thread, 1);
+
+ /* pass parameters to ret_from_kernel_thread: */
+#if defined(__XTENSA_WINDOWED_ABI__)
+ /*
+ * a2 = thread_fn, a3 = thread_fn arg.
+ * Window underflow will load registers from the
+ * spill slots on the stack on return from _switch_to.
+ */
+ SPILL_SLOT(childregs, 2) = (unsigned long)args->fn;
+ SPILL_SLOT(childregs, 3) = (unsigned long)args->fn_arg;
+#elif defined(__XTENSA_CALL0_ABI__)
+ /*
+ * a12 = thread_fn, a13 = thread_fn arg.
+ * _switch_to epilogue will load registers from the stack.
+ */
+ ((unsigned long *)p->thread.sp)[0] = (unsigned long)args->fn;
+ ((unsigned long *)p->thread.sp)[1] = (unsigned long)args->fn_arg;
+#else
+#error Unsupported Xtensa ABI
+#endif
+
+ /* Childregs are only used when we're going to userspace
+ * in which case start_thread will set them up.
+ */
+ }
+
+#if (XTENSA_HAVE_COPROCESSORS || XTENSA_HAVE_IO_PORTS)
+ ti = task_thread_info(p);
+ ti->cpenable = 0;
+#endif
+
+ clear_ptrace_hw_breakpoint(p);
+
+ return 0;
+}
+
+
+/*
+ * These bracket the sleeping functions..
+ */
+
+unsigned long __get_wchan(struct task_struct *p)
+{
+ unsigned long sp, pc;
+ unsigned long stack_page = (unsigned long) task_stack_page(p);
+ int count = 0;
+
+ sp = p->thread.sp;
+ pc = MAKE_PC_FROM_RA(p->thread.ra, p->thread.sp);
+
+ do {
+ if (sp < stack_page + sizeof(struct task_struct) ||
+ sp >= (stack_page + THREAD_SIZE) ||
+ pc == 0)
+ return 0;
+ if (!in_sched_functions(pc))
+ return pc;
+
+ /* Stack layout: sp-4: ra, sp-3: sp' */
+
+ pc = MAKE_PC_FROM_RA(SPILL_SLOT(sp, 0), sp);
+ sp = SPILL_SLOT(sp, 1);
+ } while (count++ < 16);
+ return 0;
+}