summaryrefslogtreecommitdiffstats
path: root/drivers/cpuidle/governors/menu.c
diff options
context:
space:
mode:
Diffstat (limited to 'drivers/cpuidle/governors/menu.c')
-rw-r--r--drivers/cpuidle/governors/menu.c590
1 files changed, 590 insertions, 0 deletions
diff --git a/drivers/cpuidle/governors/menu.c b/drivers/cpuidle/governors/menu.c
new file mode 100644
index 0000000000..b96e3da0fe
--- /dev/null
+++ b/drivers/cpuidle/governors/menu.c
@@ -0,0 +1,590 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * menu.c - the menu idle governor
+ *
+ * Copyright (C) 2006-2007 Adam Belay <abelay@novell.com>
+ * Copyright (C) 2009 Intel Corporation
+ * Author:
+ * Arjan van de Ven <arjan@linux.intel.com>
+ */
+
+#include <linux/kernel.h>
+#include <linux/cpuidle.h>
+#include <linux/time.h>
+#include <linux/ktime.h>
+#include <linux/hrtimer.h>
+#include <linux/tick.h>
+#include <linux/sched.h>
+#include <linux/sched/loadavg.h>
+#include <linux/sched/stat.h>
+#include <linux/math64.h>
+
+#include "gov.h"
+
+#define BUCKETS 12
+#define INTERVAL_SHIFT 3
+#define INTERVALS (1UL << INTERVAL_SHIFT)
+#define RESOLUTION 1024
+#define DECAY 8
+#define MAX_INTERESTING (50000 * NSEC_PER_USEC)
+
+/*
+ * Concepts and ideas behind the menu governor
+ *
+ * For the menu governor, there are 3 decision factors for picking a C
+ * state:
+ * 1) Energy break even point
+ * 2) Performance impact
+ * 3) Latency tolerance (from pmqos infrastructure)
+ * These three factors are treated independently.
+ *
+ * Energy break even point
+ * -----------------------
+ * C state entry and exit have an energy cost, and a certain amount of time in
+ * the C state is required to actually break even on this cost. CPUIDLE
+ * provides us this duration in the "target_residency" field. So all that we
+ * need is a good prediction of how long we'll be idle. Like the traditional
+ * menu governor, we start with the actual known "next timer event" time.
+ *
+ * Since there are other source of wakeups (interrupts for example) than
+ * the next timer event, this estimation is rather optimistic. To get a
+ * more realistic estimate, a correction factor is applied to the estimate,
+ * that is based on historic behavior. For example, if in the past the actual
+ * duration always was 50% of the next timer tick, the correction factor will
+ * be 0.5.
+ *
+ * menu uses a running average for this correction factor, however it uses a
+ * set of factors, not just a single factor. This stems from the realization
+ * that the ratio is dependent on the order of magnitude of the expected
+ * duration; if we expect 500 milliseconds of idle time the likelihood of
+ * getting an interrupt very early is much higher than if we expect 50 micro
+ * seconds of idle time. A second independent factor that has big impact on
+ * the actual factor is if there is (disk) IO outstanding or not.
+ * (as a special twist, we consider every sleep longer than 50 milliseconds
+ * as perfect; there are no power gains for sleeping longer than this)
+ *
+ * For these two reasons we keep an array of 12 independent factors, that gets
+ * indexed based on the magnitude of the expected duration as well as the
+ * "is IO outstanding" property.
+ *
+ * Repeatable-interval-detector
+ * ----------------------------
+ * There are some cases where "next timer" is a completely unusable predictor:
+ * Those cases where the interval is fixed, for example due to hardware
+ * interrupt mitigation, but also due to fixed transfer rate devices such as
+ * mice.
+ * For this, we use a different predictor: We track the duration of the last 8
+ * intervals and if the stand deviation of these 8 intervals is below a
+ * threshold value, we use the average of these intervals as prediction.
+ *
+ * Limiting Performance Impact
+ * ---------------------------
+ * C states, especially those with large exit latencies, can have a real
+ * noticeable impact on workloads, which is not acceptable for most sysadmins,
+ * and in addition, less performance has a power price of its own.
+ *
+ * As a general rule of thumb, menu assumes that the following heuristic
+ * holds:
+ * The busier the system, the less impact of C states is acceptable
+ *
+ * This rule-of-thumb is implemented using a performance-multiplier:
+ * If the exit latency times the performance multiplier is longer than
+ * the predicted duration, the C state is not considered a candidate
+ * for selection due to a too high performance impact. So the higher
+ * this multiplier is, the longer we need to be idle to pick a deep C
+ * state, and thus the less likely a busy CPU will hit such a deep
+ * C state.
+ *
+ * Two factors are used in determing this multiplier:
+ * a value of 10 is added for each point of "per cpu load average" we have.
+ * a value of 5 points is added for each process that is waiting for
+ * IO on this CPU.
+ * (these values are experimentally determined)
+ *
+ * The load average factor gives a longer term (few seconds) input to the
+ * decision, while the iowait value gives a cpu local instantanious input.
+ * The iowait factor may look low, but realize that this is also already
+ * represented in the system load average.
+ *
+ */
+
+struct menu_device {
+ int needs_update;
+ int tick_wakeup;
+
+ u64 next_timer_ns;
+ unsigned int bucket;
+ unsigned int correction_factor[BUCKETS];
+ unsigned int intervals[INTERVALS];
+ int interval_ptr;
+};
+
+static inline int which_bucket(u64 duration_ns, unsigned int nr_iowaiters)
+{
+ int bucket = 0;
+
+ /*
+ * We keep two groups of stats; one with no
+ * IO pending, one without.
+ * This allows us to calculate
+ * E(duration)|iowait
+ */
+ if (nr_iowaiters)
+ bucket = BUCKETS/2;
+
+ if (duration_ns < 10ULL * NSEC_PER_USEC)
+ return bucket;
+ if (duration_ns < 100ULL * NSEC_PER_USEC)
+ return bucket + 1;
+ if (duration_ns < 1000ULL * NSEC_PER_USEC)
+ return bucket + 2;
+ if (duration_ns < 10000ULL * NSEC_PER_USEC)
+ return bucket + 3;
+ if (duration_ns < 100000ULL * NSEC_PER_USEC)
+ return bucket + 4;
+ return bucket + 5;
+}
+
+/*
+ * Return a multiplier for the exit latency that is intended
+ * to take performance requirements into account.
+ * The more performance critical we estimate the system
+ * to be, the higher this multiplier, and thus the higher
+ * the barrier to go to an expensive C state.
+ */
+static inline int performance_multiplier(unsigned int nr_iowaiters)
+{
+ /* for IO wait tasks (per cpu!) we add 10x each */
+ return 1 + 10 * nr_iowaiters;
+}
+
+static DEFINE_PER_CPU(struct menu_device, menu_devices);
+
+static void menu_update(struct cpuidle_driver *drv, struct cpuidle_device *dev);
+
+/*
+ * Try detecting repeating patterns by keeping track of the last 8
+ * intervals, and checking if the standard deviation of that set
+ * of points is below a threshold. If it is... then use the
+ * average of these 8 points as the estimated value.
+ */
+static unsigned int get_typical_interval(struct menu_device *data)
+{
+ int i, divisor;
+ unsigned int min, max, thresh, avg;
+ uint64_t sum, variance;
+
+ thresh = INT_MAX; /* Discard outliers above this value */
+
+again:
+
+ /* First calculate the average of past intervals */
+ min = UINT_MAX;
+ max = 0;
+ sum = 0;
+ divisor = 0;
+ for (i = 0; i < INTERVALS; i++) {
+ unsigned int value = data->intervals[i];
+ if (value <= thresh) {
+ sum += value;
+ divisor++;
+ if (value > max)
+ max = value;
+
+ if (value < min)
+ min = value;
+ }
+ }
+
+ if (!max)
+ return UINT_MAX;
+
+ if (divisor == INTERVALS)
+ avg = sum >> INTERVAL_SHIFT;
+ else
+ avg = div_u64(sum, divisor);
+
+ /* Then try to determine variance */
+ variance = 0;
+ for (i = 0; i < INTERVALS; i++) {
+ unsigned int value = data->intervals[i];
+ if (value <= thresh) {
+ int64_t diff = (int64_t)value - avg;
+ variance += diff * diff;
+ }
+ }
+ if (divisor == INTERVALS)
+ variance >>= INTERVAL_SHIFT;
+ else
+ do_div(variance, divisor);
+
+ /*
+ * The typical interval is obtained when standard deviation is
+ * small (stddev <= 20 us, variance <= 400 us^2) or standard
+ * deviation is small compared to the average interval (avg >
+ * 6*stddev, avg^2 > 36*variance). The average is smaller than
+ * UINT_MAX aka U32_MAX, so computing its square does not
+ * overflow a u64. We simply reject this candidate average if
+ * the standard deviation is greater than 715 s (which is
+ * rather unlikely).
+ *
+ * Use this result only if there is no timer to wake us up sooner.
+ */
+ if (likely(variance <= U64_MAX/36)) {
+ if ((((u64)avg*avg > variance*36) && (divisor * 4 >= INTERVALS * 3))
+ || variance <= 400) {
+ return avg;
+ }
+ }
+
+ /*
+ * If we have outliers to the upside in our distribution, discard
+ * those by setting the threshold to exclude these outliers, then
+ * calculate the average and standard deviation again. Once we get
+ * down to the bottom 3/4 of our samples, stop excluding samples.
+ *
+ * This can deal with workloads that have long pauses interspersed
+ * with sporadic activity with a bunch of short pauses.
+ */
+ if ((divisor * 4) <= INTERVALS * 3)
+ return UINT_MAX;
+
+ thresh = max - 1;
+ goto again;
+}
+
+/**
+ * menu_select - selects the next idle state to enter
+ * @drv: cpuidle driver containing state data
+ * @dev: the CPU
+ * @stop_tick: indication on whether or not to stop the tick
+ */
+static int menu_select(struct cpuidle_driver *drv, struct cpuidle_device *dev,
+ bool *stop_tick)
+{
+ struct menu_device *data = this_cpu_ptr(&menu_devices);
+ s64 latency_req = cpuidle_governor_latency_req(dev->cpu);
+ u64 predicted_ns;
+ u64 interactivity_req;
+ unsigned int nr_iowaiters;
+ ktime_t delta, delta_tick;
+ int i, idx;
+
+ if (data->needs_update) {
+ menu_update(drv, dev);
+ data->needs_update = 0;
+ }
+
+ nr_iowaiters = nr_iowait_cpu(dev->cpu);
+
+ /* Find the shortest expected idle interval. */
+ predicted_ns = get_typical_interval(data) * NSEC_PER_USEC;
+ if (predicted_ns > RESIDENCY_THRESHOLD_NS) {
+ unsigned int timer_us;
+
+ /* Determine the time till the closest timer. */
+ delta = tick_nohz_get_sleep_length(&delta_tick);
+ if (unlikely(delta < 0)) {
+ delta = 0;
+ delta_tick = 0;
+ }
+
+ data->next_timer_ns = delta;
+ data->bucket = which_bucket(data->next_timer_ns, nr_iowaiters);
+
+ /* Round up the result for half microseconds. */
+ timer_us = div_u64((RESOLUTION * DECAY * NSEC_PER_USEC) / 2 +
+ data->next_timer_ns *
+ data->correction_factor[data->bucket],
+ RESOLUTION * DECAY * NSEC_PER_USEC);
+ /* Use the lowest expected idle interval to pick the idle state. */
+ predicted_ns = min((u64)timer_us * NSEC_PER_USEC, predicted_ns);
+ } else {
+ /*
+ * Because the next timer event is not going to be determined
+ * in this case, assume that without the tick the closest timer
+ * will be in distant future and that the closest tick will occur
+ * after 1/2 of the tick period.
+ */
+ data->next_timer_ns = KTIME_MAX;
+ delta_tick = TICK_NSEC / 2;
+ data->bucket = which_bucket(KTIME_MAX, nr_iowaiters);
+ }
+
+ if (unlikely(drv->state_count <= 1 || latency_req == 0) ||
+ ((data->next_timer_ns < drv->states[1].target_residency_ns ||
+ latency_req < drv->states[1].exit_latency_ns) &&
+ !dev->states_usage[0].disable)) {
+ /*
+ * In this case state[0] will be used no matter what, so return
+ * it right away and keep the tick running if state[0] is a
+ * polling one.
+ */
+ *stop_tick = !(drv->states[0].flags & CPUIDLE_FLAG_POLLING);
+ return 0;
+ }
+
+ if (tick_nohz_tick_stopped()) {
+ /*
+ * If the tick is already stopped, the cost of possible short
+ * idle duration misprediction is much higher, because the CPU
+ * may be stuck in a shallow idle state for a long time as a
+ * result of it. In that case say we might mispredict and use
+ * the known time till the closest timer event for the idle
+ * state selection.
+ */
+ if (predicted_ns < TICK_NSEC)
+ predicted_ns = data->next_timer_ns;
+ } else {
+ /*
+ * Use the performance multiplier and the user-configurable
+ * latency_req to determine the maximum exit latency.
+ */
+ interactivity_req = div64_u64(predicted_ns,
+ performance_multiplier(nr_iowaiters));
+ if (latency_req > interactivity_req)
+ latency_req = interactivity_req;
+ }
+
+ /*
+ * Find the idle state with the lowest power while satisfying
+ * our constraints.
+ */
+ idx = -1;
+ for (i = 0; i < drv->state_count; i++) {
+ struct cpuidle_state *s = &drv->states[i];
+
+ if (dev->states_usage[i].disable)
+ continue;
+
+ if (idx == -1)
+ idx = i; /* first enabled state */
+
+ if (s->target_residency_ns > predicted_ns) {
+ /*
+ * Use a physical idle state, not busy polling, unless
+ * a timer is going to trigger soon enough.
+ */
+ if ((drv->states[idx].flags & CPUIDLE_FLAG_POLLING) &&
+ s->exit_latency_ns <= latency_req &&
+ s->target_residency_ns <= data->next_timer_ns) {
+ predicted_ns = s->target_residency_ns;
+ idx = i;
+ break;
+ }
+ if (predicted_ns < TICK_NSEC)
+ break;
+
+ if (!tick_nohz_tick_stopped()) {
+ /*
+ * If the state selected so far is shallow,
+ * waking up early won't hurt, so retain the
+ * tick in that case and let the governor run
+ * again in the next iteration of the loop.
+ */
+ predicted_ns = drv->states[idx].target_residency_ns;
+ break;
+ }
+
+ /*
+ * If the state selected so far is shallow and this
+ * state's target residency matches the time till the
+ * closest timer event, select this one to avoid getting
+ * stuck in the shallow one for too long.
+ */
+ if (drv->states[idx].target_residency_ns < TICK_NSEC &&
+ s->target_residency_ns <= delta_tick)
+ idx = i;
+
+ return idx;
+ }
+ if (s->exit_latency_ns > latency_req)
+ break;
+
+ idx = i;
+ }
+
+ if (idx == -1)
+ idx = 0; /* No states enabled. Must use 0. */
+
+ /*
+ * Don't stop the tick if the selected state is a polling one or if the
+ * expected idle duration is shorter than the tick period length.
+ */
+ if (((drv->states[idx].flags & CPUIDLE_FLAG_POLLING) ||
+ predicted_ns < TICK_NSEC) && !tick_nohz_tick_stopped()) {
+ *stop_tick = false;
+
+ if (idx > 0 && drv->states[idx].target_residency_ns > delta_tick) {
+ /*
+ * The tick is not going to be stopped and the target
+ * residency of the state to be returned is not within
+ * the time until the next timer event including the
+ * tick, so try to correct that.
+ */
+ for (i = idx - 1; i >= 0; i--) {
+ if (dev->states_usage[i].disable)
+ continue;
+
+ idx = i;
+ if (drv->states[i].target_residency_ns <= delta_tick)
+ break;
+ }
+ }
+ }
+
+ return idx;
+}
+
+/**
+ * menu_reflect - records that data structures need update
+ * @dev: the CPU
+ * @index: the index of actual entered state
+ *
+ * NOTE: it's important to be fast here because this operation will add to
+ * the overall exit latency.
+ */
+static void menu_reflect(struct cpuidle_device *dev, int index)
+{
+ struct menu_device *data = this_cpu_ptr(&menu_devices);
+
+ dev->last_state_idx = index;
+ data->needs_update = 1;
+ data->tick_wakeup = tick_nohz_idle_got_tick();
+}
+
+/**
+ * menu_update - attempts to guess what happened after entry
+ * @drv: cpuidle driver containing state data
+ * @dev: the CPU
+ */
+static void menu_update(struct cpuidle_driver *drv, struct cpuidle_device *dev)
+{
+ struct menu_device *data = this_cpu_ptr(&menu_devices);
+ int last_idx = dev->last_state_idx;
+ struct cpuidle_state *target = &drv->states[last_idx];
+ u64 measured_ns;
+ unsigned int new_factor;
+
+ /*
+ * Try to figure out how much time passed between entry to low
+ * power state and occurrence of the wakeup event.
+ *
+ * If the entered idle state didn't support residency measurements,
+ * we use them anyway if they are short, and if long,
+ * truncate to the whole expected time.
+ *
+ * Any measured amount of time will include the exit latency.
+ * Since we are interested in when the wakeup begun, not when it
+ * was completed, we must subtract the exit latency. However, if
+ * the measured amount of time is less than the exit latency,
+ * assume the state was never reached and the exit latency is 0.
+ */
+
+ if (data->tick_wakeup && data->next_timer_ns > TICK_NSEC) {
+ /*
+ * The nohz code said that there wouldn't be any events within
+ * the tick boundary (if the tick was stopped), but the idle
+ * duration predictor had a differing opinion. Since the CPU
+ * was woken up by a tick (that wasn't stopped after all), the
+ * predictor was not quite right, so assume that the CPU could
+ * have been idle long (but not forever) to help the idle
+ * duration predictor do a better job next time.
+ */
+ measured_ns = 9 * MAX_INTERESTING / 10;
+ } else if ((drv->states[last_idx].flags & CPUIDLE_FLAG_POLLING) &&
+ dev->poll_time_limit) {
+ /*
+ * The CPU exited the "polling" state due to a time limit, so
+ * the idle duration prediction leading to the selection of that
+ * state was inaccurate. If a better prediction had been made,
+ * the CPU might have been woken up from idle by the next timer.
+ * Assume that to be the case.
+ */
+ measured_ns = data->next_timer_ns;
+ } else {
+ /* measured value */
+ measured_ns = dev->last_residency_ns;
+
+ /* Deduct exit latency */
+ if (measured_ns > 2 * target->exit_latency_ns)
+ measured_ns -= target->exit_latency_ns;
+ else
+ measured_ns /= 2;
+ }
+
+ /* Make sure our coefficients do not exceed unity */
+ if (measured_ns > data->next_timer_ns)
+ measured_ns = data->next_timer_ns;
+
+ /* Update our correction ratio */
+ new_factor = data->correction_factor[data->bucket];
+ new_factor -= new_factor / DECAY;
+
+ if (data->next_timer_ns > 0 && measured_ns < MAX_INTERESTING)
+ new_factor += div64_u64(RESOLUTION * measured_ns,
+ data->next_timer_ns);
+ else
+ /*
+ * we were idle so long that we count it as a perfect
+ * prediction
+ */
+ new_factor += RESOLUTION;
+
+ /*
+ * We don't want 0 as factor; we always want at least
+ * a tiny bit of estimated time. Fortunately, due to rounding,
+ * new_factor will stay nonzero regardless of measured_us values
+ * and the compiler can eliminate this test as long as DECAY > 1.
+ */
+ if (DECAY == 1 && unlikely(new_factor == 0))
+ new_factor = 1;
+
+ data->correction_factor[data->bucket] = new_factor;
+
+ /* update the repeating-pattern data */
+ data->intervals[data->interval_ptr++] = ktime_to_us(measured_ns);
+ if (data->interval_ptr >= INTERVALS)
+ data->interval_ptr = 0;
+}
+
+/**
+ * menu_enable_device - scans a CPU's states and does setup
+ * @drv: cpuidle driver
+ * @dev: the CPU
+ */
+static int menu_enable_device(struct cpuidle_driver *drv,
+ struct cpuidle_device *dev)
+{
+ struct menu_device *data = &per_cpu(menu_devices, dev->cpu);
+ int i;
+
+ memset(data, 0, sizeof(struct menu_device));
+
+ /*
+ * if the correction factor is 0 (eg first time init or cpu hotplug
+ * etc), we actually want to start out with a unity factor.
+ */
+ for(i = 0; i < BUCKETS; i++)
+ data->correction_factor[i] = RESOLUTION * DECAY;
+
+ return 0;
+}
+
+static struct cpuidle_governor menu_governor = {
+ .name = "menu",
+ .rating = 20,
+ .enable = menu_enable_device,
+ .select = menu_select,
+ .reflect = menu_reflect,
+};
+
+/**
+ * init_menu - initializes the governor
+ */
+static int __init init_menu(void)
+{
+ return cpuidle_register_governor(&menu_governor);
+}
+
+postcore_initcall(init_menu);