diff options
Diffstat (limited to '')
-rw-r--r-- | drivers/dma/amba-pl08x.c | 3073 |
1 files changed, 3073 insertions, 0 deletions
diff --git a/drivers/dma/amba-pl08x.c b/drivers/dma/amba-pl08x.c new file mode 100644 index 0000000000..eea8bd33b4 --- /dev/null +++ b/drivers/dma/amba-pl08x.c @@ -0,0 +1,3073 @@ +// SPDX-License-Identifier: GPL-2.0-or-later +/* + * Copyright (c) 2006 ARM Ltd. + * Copyright (c) 2010 ST-Ericsson SA + * Copyirght (c) 2017 Linaro Ltd. + * + * Author: Peter Pearse <peter.pearse@arm.com> + * Author: Linus Walleij <linus.walleij@linaro.org> + * + * Documentation: ARM DDI 0196G == PL080 + * Documentation: ARM DDI 0218E == PL081 + * Documentation: S3C6410 User's Manual == PL080S + * + * PL080 & PL081 both have 16 sets of DMA signals that can be routed to any + * channel. + * + * The PL080 has 8 channels available for simultaneous use, and the PL081 + * has only two channels. So on these DMA controllers the number of channels + * and the number of incoming DMA signals are two totally different things. + * It is usually not possible to theoretically handle all physical signals, + * so a multiplexing scheme with possible denial of use is necessary. + * + * The PL080 has a dual bus master, PL081 has a single master. + * + * PL080S is a version modified by Samsung and used in S3C64xx SoCs. + * It differs in following aspects: + * - CH_CONFIG register at different offset, + * - separate CH_CONTROL2 register for transfer size, + * - bigger maximum transfer size, + * - 8-word aligned LLI, instead of 4-word, due to extra CCTL2 word, + * - no support for peripheral flow control. + * + * Memory to peripheral transfer may be visualized as + * Get data from memory to DMAC + * Until no data left + * On burst request from peripheral + * Destination burst from DMAC to peripheral + * Clear burst request + * Raise terminal count interrupt + * + * For peripherals with a FIFO: + * Source burst size == half the depth of the peripheral FIFO + * Destination burst size == the depth of the peripheral FIFO + * + * (Bursts are irrelevant for mem to mem transfers - there are no burst + * signals, the DMA controller will simply facilitate its AHB master.) + * + * ASSUMES default (little) endianness for DMA transfers + * + * The PL08x has two flow control settings: + * - DMAC flow control: the transfer size defines the number of transfers + * which occur for the current LLI entry, and the DMAC raises TC at the + * end of every LLI entry. Observed behaviour shows the DMAC listening + * to both the BREQ and SREQ signals (contrary to documented), + * transferring data if either is active. The LBREQ and LSREQ signals + * are ignored. + * + * - Peripheral flow control: the transfer size is ignored (and should be + * zero). The data is transferred from the current LLI entry, until + * after the final transfer signalled by LBREQ or LSREQ. The DMAC + * will then move to the next LLI entry. Unsupported by PL080S. + */ +#include <linux/amba/bus.h> +#include <linux/amba/pl08x.h> +#include <linux/debugfs.h> +#include <linux/delay.h> +#include <linux/device.h> +#include <linux/dmaengine.h> +#include <linux/dmapool.h> +#include <linux/dma-mapping.h> +#include <linux/export.h> +#include <linux/init.h> +#include <linux/interrupt.h> +#include <linux/module.h> +#include <linux/of.h> +#include <linux/of_dma.h> +#include <linux/pm_runtime.h> +#include <linux/seq_file.h> +#include <linux/slab.h> +#include <linux/amba/pl080.h> + +#include "dmaengine.h" +#include "virt-dma.h" + +#define DRIVER_NAME "pl08xdmac" + +#define PL80X_DMA_BUSWIDTHS \ + BIT(DMA_SLAVE_BUSWIDTH_UNDEFINED) | \ + BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \ + BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \ + BIT(DMA_SLAVE_BUSWIDTH_4_BYTES) + +static struct amba_driver pl08x_amba_driver; +struct pl08x_driver_data; + +/** + * struct vendor_data - vendor-specific config parameters for PL08x derivatives + * @config_offset: offset to the configuration register + * @channels: the number of channels available in this variant + * @signals: the number of request signals available from the hardware + * @dualmaster: whether this version supports dual AHB masters or not. + * @nomadik: whether this variant is a ST Microelectronics Nomadik, where the + * channels have Nomadik security extension bits that need to be checked + * for permission before use and some registers are missing + * @pl080s: whether this variant is a Samsung PL080S, which has separate + * register and LLI word for transfer size. + * @ftdmac020: whether this variant is a Faraday Technology FTDMAC020 + * @max_transfer_size: the maximum single element transfer size for this + * PL08x variant. + */ +struct vendor_data { + u8 config_offset; + u8 channels; + u8 signals; + bool dualmaster; + bool nomadik; + bool pl080s; + bool ftdmac020; + u32 max_transfer_size; +}; + +/** + * struct pl08x_bus_data - information of source or destination + * busses for a transfer + * @addr: current address + * @maxwidth: the maximum width of a transfer on this bus + * @buswidth: the width of this bus in bytes: 1, 2 or 4 + */ +struct pl08x_bus_data { + dma_addr_t addr; + u8 maxwidth; + u8 buswidth; +}; + +#define IS_BUS_ALIGNED(bus) IS_ALIGNED((bus)->addr, (bus)->buswidth) + +/** + * struct pl08x_phy_chan - holder for the physical channels + * @id: physical index to this channel + * @base: memory base address for this physical channel + * @reg_config: configuration address for this physical channel + * @reg_control: control address for this physical channel + * @reg_src: transfer source address register + * @reg_dst: transfer destination address register + * @reg_lli: transfer LLI address register + * @reg_busy: if the variant has a special per-channel busy register, + * this contains a pointer to it + * @lock: a lock to use when altering an instance of this struct + * @serving: the virtual channel currently being served by this physical + * channel + * @locked: channel unavailable for the system, e.g. dedicated to secure + * world + * @ftdmac020: channel is on a FTDMAC020 + * @pl080s: channel is on a PL08s + */ +struct pl08x_phy_chan { + unsigned int id; + void __iomem *base; + void __iomem *reg_config; + void __iomem *reg_control; + void __iomem *reg_src; + void __iomem *reg_dst; + void __iomem *reg_lli; + void __iomem *reg_busy; + spinlock_t lock; + struct pl08x_dma_chan *serving; + bool locked; + bool ftdmac020; + bool pl080s; +}; + +/** + * struct pl08x_sg - structure containing data per sg + * @src_addr: src address of sg + * @dst_addr: dst address of sg + * @len: transfer len in bytes + * @node: node for txd's dsg_list + */ +struct pl08x_sg { + dma_addr_t src_addr; + dma_addr_t dst_addr; + size_t len; + struct list_head node; +}; + +/** + * struct pl08x_txd - wrapper for struct dma_async_tx_descriptor + * @vd: virtual DMA descriptor + * @dsg_list: list of children sg's + * @llis_bus: DMA memory address (physical) start for the LLIs + * @llis_va: virtual memory address start for the LLIs + * @cctl: control reg values for current txd + * @ccfg: config reg values for current txd + * @done: this marks completed descriptors, which should not have their + * mux released. + * @cyclic: indicate cyclic transfers + */ +struct pl08x_txd { + struct virt_dma_desc vd; + struct list_head dsg_list; + dma_addr_t llis_bus; + u32 *llis_va; + /* Default cctl value for LLIs */ + u32 cctl; + /* + * Settings to be put into the physical channel when we + * trigger this txd. Other registers are in llis_va[0]. + */ + u32 ccfg; + bool done; + bool cyclic; +}; + +/** + * enum pl08x_dma_chan_state - holds the PL08x specific virtual channel + * states + * @PL08X_CHAN_IDLE: the channel is idle + * @PL08X_CHAN_RUNNING: the channel has allocated a physical transport + * channel and is running a transfer on it + * @PL08X_CHAN_PAUSED: the channel has allocated a physical transport + * channel, but the transfer is currently paused + * @PL08X_CHAN_WAITING: the channel is waiting for a physical transport + * channel to become available (only pertains to memcpy channels) + */ +enum pl08x_dma_chan_state { + PL08X_CHAN_IDLE, + PL08X_CHAN_RUNNING, + PL08X_CHAN_PAUSED, + PL08X_CHAN_WAITING, +}; + +/** + * struct pl08x_dma_chan - this structure wraps a DMA ENGINE channel + * @vc: wrapped virtual channel + * @phychan: the physical channel utilized by this channel, if there is one + * @name: name of channel + * @cd: channel platform data + * @cfg: slave configuration + * @at: active transaction on this channel + * @host: a pointer to the host (internal use) + * @state: whether the channel is idle, paused, running etc + * @slave: whether this channel is a device (slave) or for memcpy + * @signal: the physical DMA request signal which this channel is using + * @mux_use: count of descriptors using this DMA request signal setting + * @waiting_at: time in jiffies when this channel moved to waiting state + */ +struct pl08x_dma_chan { + struct virt_dma_chan vc; + struct pl08x_phy_chan *phychan; + const char *name; + struct pl08x_channel_data *cd; + struct dma_slave_config cfg; + struct pl08x_txd *at; + struct pl08x_driver_data *host; + enum pl08x_dma_chan_state state; + bool slave; + int signal; + unsigned mux_use; + unsigned long waiting_at; +}; + +/** + * struct pl08x_driver_data - the local state holder for the PL08x + * @slave: optional slave engine for this instance + * @memcpy: memcpy engine for this instance + * @has_slave: the PL08x has a slave engine (routed signals) + * @base: virtual memory base (remapped) for the PL08x + * @adev: the corresponding AMBA (PrimeCell) bus entry + * @vd: vendor data for this PL08x variant + * @pd: platform data passed in from the platform/machine + * @phy_chans: array of data for the physical channels + * @pool: a pool for the LLI descriptors + * @lli_buses: bitmask to or in to LLI pointer selecting AHB port for LLI + * fetches + * @mem_buses: set to indicate memory transfers on AHB2. + * @lli_words: how many words are used in each LLI item for this variant + */ +struct pl08x_driver_data { + struct dma_device slave; + struct dma_device memcpy; + bool has_slave; + void __iomem *base; + struct amba_device *adev; + const struct vendor_data *vd; + struct pl08x_platform_data *pd; + struct pl08x_phy_chan *phy_chans; + struct dma_pool *pool; + u8 lli_buses; + u8 mem_buses; + u8 lli_words; +}; + +/* + * PL08X specific defines + */ + +/* The order of words in an LLI. */ +#define PL080_LLI_SRC 0 +#define PL080_LLI_DST 1 +#define PL080_LLI_LLI 2 +#define PL080_LLI_CCTL 3 +#define PL080S_LLI_CCTL2 4 + +/* Total words in an LLI. */ +#define PL080_LLI_WORDS 4 +#define PL080S_LLI_WORDS 8 + +/* + * Number of LLIs in each LLI buffer allocated for one transfer + * (maximum times we call dma_pool_alloc on this pool without freeing) + */ +#define MAX_NUM_TSFR_LLIS 512 +#define PL08X_ALIGN 8 + +static inline struct pl08x_dma_chan *to_pl08x_chan(struct dma_chan *chan) +{ + return container_of(chan, struct pl08x_dma_chan, vc.chan); +} + +static inline struct pl08x_txd *to_pl08x_txd(struct dma_async_tx_descriptor *tx) +{ + return container_of(tx, struct pl08x_txd, vd.tx); +} + +/* + * Mux handling. + * + * This gives us the DMA request input to the PL08x primecell which the + * peripheral described by the channel data will be routed to, possibly + * via a board/SoC specific external MUX. One important point to note + * here is that this does not depend on the physical channel. + */ +static int pl08x_request_mux(struct pl08x_dma_chan *plchan) +{ + const struct pl08x_platform_data *pd = plchan->host->pd; + int ret; + + if (plchan->mux_use++ == 0 && pd->get_xfer_signal) { + ret = pd->get_xfer_signal(plchan->cd); + if (ret < 0) { + plchan->mux_use = 0; + return ret; + } + + plchan->signal = ret; + } + return 0; +} + +static void pl08x_release_mux(struct pl08x_dma_chan *plchan) +{ + const struct pl08x_platform_data *pd = plchan->host->pd; + + if (plchan->signal >= 0) { + WARN_ON(plchan->mux_use == 0); + + if (--plchan->mux_use == 0 && pd->put_xfer_signal) { + pd->put_xfer_signal(plchan->cd, plchan->signal); + plchan->signal = -1; + } + } +} + +/* + * Physical channel handling + */ + +/* Whether a certain channel is busy or not */ +static int pl08x_phy_channel_busy(struct pl08x_phy_chan *ch) +{ + unsigned int val; + + /* If we have a special busy register, take a shortcut */ + if (ch->reg_busy) { + val = readl(ch->reg_busy); + return !!(val & BIT(ch->id)); + } + val = readl(ch->reg_config); + return val & PL080_CONFIG_ACTIVE; +} + +/* + * pl08x_write_lli() - Write an LLI into the DMA controller. + * + * The PL08x derivatives support linked lists, but the first item of the + * list containing the source, destination, control word and next LLI is + * ignored. Instead the driver has to write those values directly into the + * SRC, DST, LLI and control registers. On FTDMAC020 also the SIZE + * register need to be set up for the first transfer. + */ +static void pl08x_write_lli(struct pl08x_driver_data *pl08x, + struct pl08x_phy_chan *phychan, const u32 *lli, u32 ccfg) +{ + if (pl08x->vd->pl080s) + dev_vdbg(&pl08x->adev->dev, + "WRITE channel %d: csrc=0x%08x, cdst=0x%08x, " + "clli=0x%08x, cctl=0x%08x, cctl2=0x%08x, ccfg=0x%08x\n", + phychan->id, lli[PL080_LLI_SRC], lli[PL080_LLI_DST], + lli[PL080_LLI_LLI], lli[PL080_LLI_CCTL], + lli[PL080S_LLI_CCTL2], ccfg); + else + dev_vdbg(&pl08x->adev->dev, + "WRITE channel %d: csrc=0x%08x, cdst=0x%08x, " + "clli=0x%08x, cctl=0x%08x, ccfg=0x%08x\n", + phychan->id, lli[PL080_LLI_SRC], lli[PL080_LLI_DST], + lli[PL080_LLI_LLI], lli[PL080_LLI_CCTL], ccfg); + + writel_relaxed(lli[PL080_LLI_SRC], phychan->reg_src); + writel_relaxed(lli[PL080_LLI_DST], phychan->reg_dst); + writel_relaxed(lli[PL080_LLI_LLI], phychan->reg_lli); + + /* + * The FTMAC020 has a different layout in the CCTL word of the LLI + * and the CCTL register which is split in CSR and SIZE registers. + * Convert the LLI item CCTL into the proper values to write into + * the CSR and SIZE registers. + */ + if (phychan->ftdmac020) { + u32 llictl = lli[PL080_LLI_CCTL]; + u32 val = 0; + + /* Write the transfer size (12 bits) to the size register */ + writel_relaxed(llictl & FTDMAC020_LLI_TRANSFER_SIZE_MASK, + phychan->base + FTDMAC020_CH_SIZE); + /* + * Then write the control bits 28..16 to the control register + * by shuffleing the bits around to where they are in the + * main register. The mapping is as follows: + * Bit 28: TC_MSK - mask on all except last LLI + * Bit 27..25: SRC_WIDTH + * Bit 24..22: DST_WIDTH + * Bit 21..20: SRCAD_CTRL + * Bit 19..17: DSTAD_CTRL + * Bit 17: SRC_SEL + * Bit 16: DST_SEL + */ + if (llictl & FTDMAC020_LLI_TC_MSK) + val |= FTDMAC020_CH_CSR_TC_MSK; + val |= ((llictl & FTDMAC020_LLI_SRC_WIDTH_MSK) >> + (FTDMAC020_LLI_SRC_WIDTH_SHIFT - + FTDMAC020_CH_CSR_SRC_WIDTH_SHIFT)); + val |= ((llictl & FTDMAC020_LLI_DST_WIDTH_MSK) >> + (FTDMAC020_LLI_DST_WIDTH_SHIFT - + FTDMAC020_CH_CSR_DST_WIDTH_SHIFT)); + val |= ((llictl & FTDMAC020_LLI_SRCAD_CTL_MSK) >> + (FTDMAC020_LLI_SRCAD_CTL_SHIFT - + FTDMAC020_CH_CSR_SRCAD_CTL_SHIFT)); + val |= ((llictl & FTDMAC020_LLI_DSTAD_CTL_MSK) >> + (FTDMAC020_LLI_DSTAD_CTL_SHIFT - + FTDMAC020_CH_CSR_DSTAD_CTL_SHIFT)); + if (llictl & FTDMAC020_LLI_SRC_SEL) + val |= FTDMAC020_CH_CSR_SRC_SEL; + if (llictl & FTDMAC020_LLI_DST_SEL) + val |= FTDMAC020_CH_CSR_DST_SEL; + + /* + * Set up the bits that exist in the CSR but are not + * part the LLI, i.e. only gets written to the control + * register right here. + * + * FIXME: do not just handle memcpy, also handle slave DMA. + */ + switch (pl08x->pd->memcpy_burst_size) { + default: + case PL08X_BURST_SZ_1: + val |= PL080_BSIZE_1 << + FTDMAC020_CH_CSR_SRC_SIZE_SHIFT; + break; + case PL08X_BURST_SZ_4: + val |= PL080_BSIZE_4 << + FTDMAC020_CH_CSR_SRC_SIZE_SHIFT; + break; + case PL08X_BURST_SZ_8: + val |= PL080_BSIZE_8 << + FTDMAC020_CH_CSR_SRC_SIZE_SHIFT; + break; + case PL08X_BURST_SZ_16: + val |= PL080_BSIZE_16 << + FTDMAC020_CH_CSR_SRC_SIZE_SHIFT; + break; + case PL08X_BURST_SZ_32: + val |= PL080_BSIZE_32 << + FTDMAC020_CH_CSR_SRC_SIZE_SHIFT; + break; + case PL08X_BURST_SZ_64: + val |= PL080_BSIZE_64 << + FTDMAC020_CH_CSR_SRC_SIZE_SHIFT; + break; + case PL08X_BURST_SZ_128: + val |= PL080_BSIZE_128 << + FTDMAC020_CH_CSR_SRC_SIZE_SHIFT; + break; + case PL08X_BURST_SZ_256: + val |= PL080_BSIZE_256 << + FTDMAC020_CH_CSR_SRC_SIZE_SHIFT; + break; + } + + /* Protection flags */ + if (pl08x->pd->memcpy_prot_buff) + val |= FTDMAC020_CH_CSR_PROT2; + if (pl08x->pd->memcpy_prot_cache) + val |= FTDMAC020_CH_CSR_PROT3; + /* We are the kernel, so we are in privileged mode */ + val |= FTDMAC020_CH_CSR_PROT1; + + writel_relaxed(val, phychan->reg_control); + } else { + /* Bits are just identical */ + writel_relaxed(lli[PL080_LLI_CCTL], phychan->reg_control); + } + + /* Second control word on the PL080s */ + if (pl08x->vd->pl080s) + writel_relaxed(lli[PL080S_LLI_CCTL2], + phychan->base + PL080S_CH_CONTROL2); + + writel(ccfg, phychan->reg_config); +} + +/* + * Set the initial DMA register values i.e. those for the first LLI + * The next LLI pointer and the configuration interrupt bit have + * been set when the LLIs were constructed. Poke them into the hardware + * and start the transfer. + */ +static void pl08x_start_next_txd(struct pl08x_dma_chan *plchan) +{ + struct pl08x_driver_data *pl08x = plchan->host; + struct pl08x_phy_chan *phychan = plchan->phychan; + struct virt_dma_desc *vd = vchan_next_desc(&plchan->vc); + struct pl08x_txd *txd = to_pl08x_txd(&vd->tx); + u32 val; + + list_del(&txd->vd.node); + + plchan->at = txd; + + /* Wait for channel inactive */ + while (pl08x_phy_channel_busy(phychan)) + cpu_relax(); + + pl08x_write_lli(pl08x, phychan, &txd->llis_va[0], txd->ccfg); + + /* Enable the DMA channel */ + /* Do not access config register until channel shows as disabled */ + while (readl(pl08x->base + PL080_EN_CHAN) & BIT(phychan->id)) + cpu_relax(); + + /* Do not access config register until channel shows as inactive */ + if (phychan->ftdmac020) { + val = readl(phychan->reg_config); + while (val & FTDMAC020_CH_CFG_BUSY) + val = readl(phychan->reg_config); + + val = readl(phychan->reg_control); + while (val & FTDMAC020_CH_CSR_EN) + val = readl(phychan->reg_control); + + writel(val | FTDMAC020_CH_CSR_EN, + phychan->reg_control); + } else { + val = readl(phychan->reg_config); + while ((val & PL080_CONFIG_ACTIVE) || + (val & PL080_CONFIG_ENABLE)) + val = readl(phychan->reg_config); + + writel(val | PL080_CONFIG_ENABLE, phychan->reg_config); + } +} + +/* + * Pause the channel by setting the HALT bit. + * + * For M->P transfers, pause the DMAC first and then stop the peripheral - + * the FIFO can only drain if the peripheral is still requesting data. + * (note: this can still timeout if the DMAC FIFO never drains of data.) + * + * For P->M transfers, disable the peripheral first to stop it filling + * the DMAC FIFO, and then pause the DMAC. + */ +static void pl08x_pause_phy_chan(struct pl08x_phy_chan *ch) +{ + u32 val; + int timeout; + + if (ch->ftdmac020) { + /* Use the enable bit on the FTDMAC020 */ + val = readl(ch->reg_control); + val &= ~FTDMAC020_CH_CSR_EN; + writel(val, ch->reg_control); + return; + } + + /* Set the HALT bit and wait for the FIFO to drain */ + val = readl(ch->reg_config); + val |= PL080_CONFIG_HALT; + writel(val, ch->reg_config); + + /* Wait for channel inactive */ + for (timeout = 1000; timeout; timeout--) { + if (!pl08x_phy_channel_busy(ch)) + break; + udelay(1); + } + if (pl08x_phy_channel_busy(ch)) + pr_err("pl08x: channel%u timeout waiting for pause\n", ch->id); +} + +static void pl08x_resume_phy_chan(struct pl08x_phy_chan *ch) +{ + u32 val; + + /* Use the enable bit on the FTDMAC020 */ + if (ch->ftdmac020) { + val = readl(ch->reg_control); + val |= FTDMAC020_CH_CSR_EN; + writel(val, ch->reg_control); + return; + } + + /* Clear the HALT bit */ + val = readl(ch->reg_config); + val &= ~PL080_CONFIG_HALT; + writel(val, ch->reg_config); +} + +/* + * pl08x_terminate_phy_chan() stops the channel, clears the FIFO and + * clears any pending interrupt status. This should not be used for + * an on-going transfer, but as a method of shutting down a channel + * (eg, when it's no longer used) or terminating a transfer. + */ +static void pl08x_terminate_phy_chan(struct pl08x_driver_data *pl08x, + struct pl08x_phy_chan *ch) +{ + u32 val; + + /* The layout for the FTDMAC020 is different */ + if (ch->ftdmac020) { + /* Disable all interrupts */ + val = readl(ch->reg_config); + val |= (FTDMAC020_CH_CFG_INT_ABT_MASK | + FTDMAC020_CH_CFG_INT_ERR_MASK | + FTDMAC020_CH_CFG_INT_TC_MASK); + writel(val, ch->reg_config); + + /* Abort and disable channel */ + val = readl(ch->reg_control); + val &= ~FTDMAC020_CH_CSR_EN; + val |= FTDMAC020_CH_CSR_ABT; + writel(val, ch->reg_control); + + /* Clear ABT and ERR interrupt flags */ + writel(BIT(ch->id) | BIT(ch->id + 16), + pl08x->base + PL080_ERR_CLEAR); + writel(BIT(ch->id), pl08x->base + PL080_TC_CLEAR); + + return; + } + + val = readl(ch->reg_config); + val &= ~(PL080_CONFIG_ENABLE | PL080_CONFIG_ERR_IRQ_MASK | + PL080_CONFIG_TC_IRQ_MASK); + writel(val, ch->reg_config); + + writel(BIT(ch->id), pl08x->base + PL080_ERR_CLEAR); + writel(BIT(ch->id), pl08x->base + PL080_TC_CLEAR); +} + +static u32 get_bytes_in_phy_channel(struct pl08x_phy_chan *ch) +{ + u32 val; + u32 bytes; + + if (ch->ftdmac020) { + bytes = readl(ch->base + FTDMAC020_CH_SIZE); + + val = readl(ch->reg_control); + val &= FTDMAC020_CH_CSR_SRC_WIDTH_MSK; + val >>= FTDMAC020_CH_CSR_SRC_WIDTH_SHIFT; + } else if (ch->pl080s) { + val = readl(ch->base + PL080S_CH_CONTROL2); + bytes = val & PL080S_CONTROL_TRANSFER_SIZE_MASK; + + val = readl(ch->reg_control); + val &= PL080_CONTROL_SWIDTH_MASK; + val >>= PL080_CONTROL_SWIDTH_SHIFT; + } else { + /* Plain PL08x */ + val = readl(ch->reg_control); + bytes = val & PL080_CONTROL_TRANSFER_SIZE_MASK; + + val &= PL080_CONTROL_SWIDTH_MASK; + val >>= PL080_CONTROL_SWIDTH_SHIFT; + } + + switch (val) { + case PL080_WIDTH_8BIT: + break; + case PL080_WIDTH_16BIT: + bytes *= 2; + break; + case PL080_WIDTH_32BIT: + bytes *= 4; + break; + } + return bytes; +} + +static u32 get_bytes_in_lli(struct pl08x_phy_chan *ch, const u32 *llis_va) +{ + u32 val; + u32 bytes; + + if (ch->ftdmac020) { + val = llis_va[PL080_LLI_CCTL]; + bytes = val & FTDMAC020_LLI_TRANSFER_SIZE_MASK; + + val = llis_va[PL080_LLI_CCTL]; + val &= FTDMAC020_LLI_SRC_WIDTH_MSK; + val >>= FTDMAC020_LLI_SRC_WIDTH_SHIFT; + } else if (ch->pl080s) { + val = llis_va[PL080S_LLI_CCTL2]; + bytes = val & PL080S_CONTROL_TRANSFER_SIZE_MASK; + + val = llis_va[PL080_LLI_CCTL]; + val &= PL080_CONTROL_SWIDTH_MASK; + val >>= PL080_CONTROL_SWIDTH_SHIFT; + } else { + /* Plain PL08x */ + val = llis_va[PL080_LLI_CCTL]; + bytes = val & PL080_CONTROL_TRANSFER_SIZE_MASK; + + val &= PL080_CONTROL_SWIDTH_MASK; + val >>= PL080_CONTROL_SWIDTH_SHIFT; + } + + switch (val) { + case PL080_WIDTH_8BIT: + break; + case PL080_WIDTH_16BIT: + bytes *= 2; + break; + case PL080_WIDTH_32BIT: + bytes *= 4; + break; + } + return bytes; +} + +/* The channel should be paused when calling this */ +static u32 pl08x_getbytes_chan(struct pl08x_dma_chan *plchan) +{ + struct pl08x_driver_data *pl08x = plchan->host; + const u32 *llis_va, *llis_va_limit; + struct pl08x_phy_chan *ch; + dma_addr_t llis_bus; + struct pl08x_txd *txd; + u32 llis_max_words; + size_t bytes; + u32 clli; + + ch = plchan->phychan; + txd = plchan->at; + + if (!ch || !txd) + return 0; + + /* + * Follow the LLIs to get the number of remaining + * bytes in the currently active transaction. + */ + clli = readl(ch->reg_lli) & ~PL080_LLI_LM_AHB2; + + /* First get the remaining bytes in the active transfer */ + bytes = get_bytes_in_phy_channel(ch); + + if (!clli) + return bytes; + + llis_va = txd->llis_va; + llis_bus = txd->llis_bus; + + llis_max_words = pl08x->lli_words * MAX_NUM_TSFR_LLIS; + BUG_ON(clli < llis_bus || clli >= llis_bus + + sizeof(u32) * llis_max_words); + + /* + * Locate the next LLI - as this is an array, + * it's simple maths to find. + */ + llis_va += (clli - llis_bus) / sizeof(u32); + + llis_va_limit = llis_va + llis_max_words; + + for (; llis_va < llis_va_limit; llis_va += pl08x->lli_words) { + bytes += get_bytes_in_lli(ch, llis_va); + + /* + * A LLI pointer going backward terminates the LLI list + */ + if (llis_va[PL080_LLI_LLI] <= clli) + break; + } + + return bytes; +} + +/* + * Allocate a physical channel for a virtual channel + * + * Try to locate a physical channel to be used for this transfer. If all + * are taken return NULL and the requester will have to cope by using + * some fallback PIO mode or retrying later. + */ +static struct pl08x_phy_chan * +pl08x_get_phy_channel(struct pl08x_driver_data *pl08x, + struct pl08x_dma_chan *virt_chan) +{ + struct pl08x_phy_chan *ch = NULL; + unsigned long flags; + int i; + + for (i = 0; i < pl08x->vd->channels; i++) { + ch = &pl08x->phy_chans[i]; + + spin_lock_irqsave(&ch->lock, flags); + + if (!ch->locked && !ch->serving) { + ch->serving = virt_chan; + spin_unlock_irqrestore(&ch->lock, flags); + break; + } + + spin_unlock_irqrestore(&ch->lock, flags); + } + + if (i == pl08x->vd->channels) { + /* No physical channel available, cope with it */ + return NULL; + } + + return ch; +} + +/* Mark the physical channel as free. Note, this write is atomic. */ +static inline void pl08x_put_phy_channel(struct pl08x_driver_data *pl08x, + struct pl08x_phy_chan *ch) +{ + ch->serving = NULL; +} + +/* + * Try to allocate a physical channel. When successful, assign it to + * this virtual channel, and initiate the next descriptor. The + * virtual channel lock must be held at this point. + */ +static void pl08x_phy_alloc_and_start(struct pl08x_dma_chan *plchan) +{ + struct pl08x_driver_data *pl08x = plchan->host; + struct pl08x_phy_chan *ch; + + ch = pl08x_get_phy_channel(pl08x, plchan); + if (!ch) { + dev_dbg(&pl08x->adev->dev, "no physical channel available for xfer on %s\n", plchan->name); + plchan->state = PL08X_CHAN_WAITING; + plchan->waiting_at = jiffies; + return; + } + + dev_dbg(&pl08x->adev->dev, "allocated physical channel %d for xfer on %s\n", + ch->id, plchan->name); + + plchan->phychan = ch; + plchan->state = PL08X_CHAN_RUNNING; + pl08x_start_next_txd(plchan); +} + +static void pl08x_phy_reassign_start(struct pl08x_phy_chan *ch, + struct pl08x_dma_chan *plchan) +{ + struct pl08x_driver_data *pl08x = plchan->host; + + dev_dbg(&pl08x->adev->dev, "reassigned physical channel %d for xfer on %s\n", + ch->id, plchan->name); + + /* + * We do this without taking the lock; we're really only concerned + * about whether this pointer is NULL or not, and we're guaranteed + * that this will only be called when it _already_ is non-NULL. + */ + ch->serving = plchan; + plchan->phychan = ch; + plchan->state = PL08X_CHAN_RUNNING; + pl08x_start_next_txd(plchan); +} + +/* + * Free a physical DMA channel, potentially reallocating it to another + * virtual channel if we have any pending. + */ +static void pl08x_phy_free(struct pl08x_dma_chan *plchan) +{ + struct pl08x_driver_data *pl08x = plchan->host; + struct pl08x_dma_chan *p, *next; + unsigned long waiting_at; + retry: + next = NULL; + waiting_at = jiffies; + + /* + * Find a waiting virtual channel for the next transfer. + * To be fair, time when each channel reached waiting state is compared + * to select channel that is waiting for the longest time. + */ + list_for_each_entry(p, &pl08x->memcpy.channels, vc.chan.device_node) + if (p->state == PL08X_CHAN_WAITING && + p->waiting_at <= waiting_at) { + next = p; + waiting_at = p->waiting_at; + } + + if (!next && pl08x->has_slave) { + list_for_each_entry(p, &pl08x->slave.channels, vc.chan.device_node) + if (p->state == PL08X_CHAN_WAITING && + p->waiting_at <= waiting_at) { + next = p; + waiting_at = p->waiting_at; + } + } + + /* Ensure that the physical channel is stopped */ + pl08x_terminate_phy_chan(pl08x, plchan->phychan); + + if (next) { + bool success; + + /* + * Eww. We know this isn't going to deadlock + * but lockdep probably doesn't. + */ + spin_lock(&next->vc.lock); + /* Re-check the state now that we have the lock */ + success = next->state == PL08X_CHAN_WAITING; + if (success) + pl08x_phy_reassign_start(plchan->phychan, next); + spin_unlock(&next->vc.lock); + + /* If the state changed, try to find another channel */ + if (!success) + goto retry; + } else { + /* No more jobs, so free up the physical channel */ + pl08x_put_phy_channel(pl08x, plchan->phychan); + } + + plchan->phychan = NULL; + plchan->state = PL08X_CHAN_IDLE; +} + +/* + * LLI handling + */ + +static inline unsigned int +pl08x_get_bytes_for_lli(struct pl08x_driver_data *pl08x, + u32 cctl, + bool source) +{ + u32 val; + + if (pl08x->vd->ftdmac020) { + if (source) + val = (cctl & FTDMAC020_LLI_SRC_WIDTH_MSK) >> + FTDMAC020_LLI_SRC_WIDTH_SHIFT; + else + val = (cctl & FTDMAC020_LLI_DST_WIDTH_MSK) >> + FTDMAC020_LLI_DST_WIDTH_SHIFT; + } else { + if (source) + val = (cctl & PL080_CONTROL_SWIDTH_MASK) >> + PL080_CONTROL_SWIDTH_SHIFT; + else + val = (cctl & PL080_CONTROL_DWIDTH_MASK) >> + PL080_CONTROL_DWIDTH_SHIFT; + } + + switch (val) { + case PL080_WIDTH_8BIT: + return 1; + case PL080_WIDTH_16BIT: + return 2; + case PL080_WIDTH_32BIT: + return 4; + default: + break; + } + BUG(); + return 0; +} + +static inline u32 pl08x_lli_control_bits(struct pl08x_driver_data *pl08x, + u32 cctl, + u8 srcwidth, u8 dstwidth, + size_t tsize) +{ + u32 retbits = cctl; + + /* + * Remove all src, dst and transfer size bits, then set the + * width and size according to the parameters. The bit offsets + * are different in the FTDMAC020 so we need to accound for this. + */ + if (pl08x->vd->ftdmac020) { + retbits &= ~FTDMAC020_LLI_DST_WIDTH_MSK; + retbits &= ~FTDMAC020_LLI_SRC_WIDTH_MSK; + retbits &= ~FTDMAC020_LLI_TRANSFER_SIZE_MASK; + + switch (srcwidth) { + case 1: + retbits |= PL080_WIDTH_8BIT << + FTDMAC020_LLI_SRC_WIDTH_SHIFT; + break; + case 2: + retbits |= PL080_WIDTH_16BIT << + FTDMAC020_LLI_SRC_WIDTH_SHIFT; + break; + case 4: + retbits |= PL080_WIDTH_32BIT << + FTDMAC020_LLI_SRC_WIDTH_SHIFT; + break; + default: + BUG(); + break; + } + + switch (dstwidth) { + case 1: + retbits |= PL080_WIDTH_8BIT << + FTDMAC020_LLI_DST_WIDTH_SHIFT; + break; + case 2: + retbits |= PL080_WIDTH_16BIT << + FTDMAC020_LLI_DST_WIDTH_SHIFT; + break; + case 4: + retbits |= PL080_WIDTH_32BIT << + FTDMAC020_LLI_DST_WIDTH_SHIFT; + break; + default: + BUG(); + break; + } + + tsize &= FTDMAC020_LLI_TRANSFER_SIZE_MASK; + retbits |= tsize << FTDMAC020_LLI_TRANSFER_SIZE_SHIFT; + } else { + retbits &= ~PL080_CONTROL_DWIDTH_MASK; + retbits &= ~PL080_CONTROL_SWIDTH_MASK; + retbits &= ~PL080_CONTROL_TRANSFER_SIZE_MASK; + + switch (srcwidth) { + case 1: + retbits |= PL080_WIDTH_8BIT << + PL080_CONTROL_SWIDTH_SHIFT; + break; + case 2: + retbits |= PL080_WIDTH_16BIT << + PL080_CONTROL_SWIDTH_SHIFT; + break; + case 4: + retbits |= PL080_WIDTH_32BIT << + PL080_CONTROL_SWIDTH_SHIFT; + break; + default: + BUG(); + break; + } + + switch (dstwidth) { + case 1: + retbits |= PL080_WIDTH_8BIT << + PL080_CONTROL_DWIDTH_SHIFT; + break; + case 2: + retbits |= PL080_WIDTH_16BIT << + PL080_CONTROL_DWIDTH_SHIFT; + break; + case 4: + retbits |= PL080_WIDTH_32BIT << + PL080_CONTROL_DWIDTH_SHIFT; + break; + default: + BUG(); + break; + } + + tsize &= PL080_CONTROL_TRANSFER_SIZE_MASK; + retbits |= tsize << PL080_CONTROL_TRANSFER_SIZE_SHIFT; + } + + return retbits; +} + +struct pl08x_lli_build_data { + struct pl08x_txd *txd; + struct pl08x_bus_data srcbus; + struct pl08x_bus_data dstbus; + size_t remainder; + u32 lli_bus; +}; + +/* + * Autoselect a master bus to use for the transfer. Slave will be the chosen as + * victim in case src & dest are not similarly aligned. i.e. If after aligning + * masters address with width requirements of transfer (by sending few byte by + * byte data), slave is still not aligned, then its width will be reduced to + * BYTE. + * - prefers the destination bus if both available + * - prefers bus with fixed address (i.e. peripheral) + */ +static void pl08x_choose_master_bus(struct pl08x_driver_data *pl08x, + struct pl08x_lli_build_data *bd, + struct pl08x_bus_data **mbus, + struct pl08x_bus_data **sbus, + u32 cctl) +{ + bool dst_incr; + bool src_incr; + + /* + * The FTDMAC020 only supports memory-to-memory transfer, so + * source and destination always increase. + */ + if (pl08x->vd->ftdmac020) { + dst_incr = true; + src_incr = true; + } else { + dst_incr = !!(cctl & PL080_CONTROL_DST_INCR); + src_incr = !!(cctl & PL080_CONTROL_SRC_INCR); + } + + /* + * If either bus is not advancing, i.e. it is a peripheral, that + * one becomes master + */ + if (!dst_incr) { + *mbus = &bd->dstbus; + *sbus = &bd->srcbus; + } else if (!src_incr) { + *mbus = &bd->srcbus; + *sbus = &bd->dstbus; + } else { + if (bd->dstbus.buswidth >= bd->srcbus.buswidth) { + *mbus = &bd->dstbus; + *sbus = &bd->srcbus; + } else { + *mbus = &bd->srcbus; + *sbus = &bd->dstbus; + } + } +} + +/* + * Fills in one LLI for a certain transfer descriptor and advance the counter + */ +static void pl08x_fill_lli_for_desc(struct pl08x_driver_data *pl08x, + struct pl08x_lli_build_data *bd, + int num_llis, int len, u32 cctl, u32 cctl2) +{ + u32 offset = num_llis * pl08x->lli_words; + u32 *llis_va = bd->txd->llis_va + offset; + dma_addr_t llis_bus = bd->txd->llis_bus; + + BUG_ON(num_llis >= MAX_NUM_TSFR_LLIS); + + /* Advance the offset to next LLI. */ + offset += pl08x->lli_words; + + llis_va[PL080_LLI_SRC] = bd->srcbus.addr; + llis_va[PL080_LLI_DST] = bd->dstbus.addr; + llis_va[PL080_LLI_LLI] = (llis_bus + sizeof(u32) * offset); + llis_va[PL080_LLI_LLI] |= bd->lli_bus; + llis_va[PL080_LLI_CCTL] = cctl; + if (pl08x->vd->pl080s) + llis_va[PL080S_LLI_CCTL2] = cctl2; + + if (pl08x->vd->ftdmac020) { + /* FIXME: only memcpy so far so both increase */ + bd->srcbus.addr += len; + bd->dstbus.addr += len; + } else { + if (cctl & PL080_CONTROL_SRC_INCR) + bd->srcbus.addr += len; + if (cctl & PL080_CONTROL_DST_INCR) + bd->dstbus.addr += len; + } + + BUG_ON(bd->remainder < len); + + bd->remainder -= len; +} + +static inline void prep_byte_width_lli(struct pl08x_driver_data *pl08x, + struct pl08x_lli_build_data *bd, u32 *cctl, u32 len, + int num_llis, size_t *total_bytes) +{ + *cctl = pl08x_lli_control_bits(pl08x, *cctl, 1, 1, len); + pl08x_fill_lli_for_desc(pl08x, bd, num_llis, len, *cctl, len); + (*total_bytes) += len; +} + +#if 1 +static void pl08x_dump_lli(struct pl08x_driver_data *pl08x, + const u32 *llis_va, int num_llis) +{ + int i; + + if (pl08x->vd->pl080s) { + dev_vdbg(&pl08x->adev->dev, + "%-3s %-9s %-10s %-10s %-10s %-10s %s\n", + "lli", "", "csrc", "cdst", "clli", "cctl", "cctl2"); + for (i = 0; i < num_llis; i++) { + dev_vdbg(&pl08x->adev->dev, + "%3d @%p: 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x\n", + i, llis_va, llis_va[PL080_LLI_SRC], + llis_va[PL080_LLI_DST], llis_va[PL080_LLI_LLI], + llis_va[PL080_LLI_CCTL], + llis_va[PL080S_LLI_CCTL2]); + llis_va += pl08x->lli_words; + } + } else { + dev_vdbg(&pl08x->adev->dev, + "%-3s %-9s %-10s %-10s %-10s %s\n", + "lli", "", "csrc", "cdst", "clli", "cctl"); + for (i = 0; i < num_llis; i++) { + dev_vdbg(&pl08x->adev->dev, + "%3d @%p: 0x%08x 0x%08x 0x%08x 0x%08x\n", + i, llis_va, llis_va[PL080_LLI_SRC], + llis_va[PL080_LLI_DST], llis_va[PL080_LLI_LLI], + llis_va[PL080_LLI_CCTL]); + llis_va += pl08x->lli_words; + } + } +} +#else +static inline void pl08x_dump_lli(struct pl08x_driver_data *pl08x, + const u32 *llis_va, int num_llis) {} +#endif + +/* + * This fills in the table of LLIs for the transfer descriptor + * Note that we assume we never have to change the burst sizes + * Return 0 for error + */ +static int pl08x_fill_llis_for_desc(struct pl08x_driver_data *pl08x, + struct pl08x_txd *txd) +{ + struct pl08x_bus_data *mbus, *sbus; + struct pl08x_lli_build_data bd; + int num_llis = 0; + u32 cctl, early_bytes = 0; + size_t max_bytes_per_lli, total_bytes; + u32 *llis_va, *last_lli; + struct pl08x_sg *dsg; + + txd->llis_va = dma_pool_alloc(pl08x->pool, GFP_NOWAIT, &txd->llis_bus); + if (!txd->llis_va) { + dev_err(&pl08x->adev->dev, "%s no memory for llis\n", __func__); + return 0; + } + + bd.txd = txd; + bd.lli_bus = (pl08x->lli_buses & PL08X_AHB2) ? PL080_LLI_LM_AHB2 : 0; + cctl = txd->cctl; + + /* Find maximum width of the source bus */ + bd.srcbus.maxwidth = pl08x_get_bytes_for_lli(pl08x, cctl, true); + + /* Find maximum width of the destination bus */ + bd.dstbus.maxwidth = pl08x_get_bytes_for_lli(pl08x, cctl, false); + + list_for_each_entry(dsg, &txd->dsg_list, node) { + total_bytes = 0; + cctl = txd->cctl; + + bd.srcbus.addr = dsg->src_addr; + bd.dstbus.addr = dsg->dst_addr; + bd.remainder = dsg->len; + bd.srcbus.buswidth = bd.srcbus.maxwidth; + bd.dstbus.buswidth = bd.dstbus.maxwidth; + + pl08x_choose_master_bus(pl08x, &bd, &mbus, &sbus, cctl); + + dev_vdbg(&pl08x->adev->dev, + "src=0x%08llx%s/%u dst=0x%08llx%s/%u len=%zu\n", + (u64)bd.srcbus.addr, + cctl & PL080_CONTROL_SRC_INCR ? "+" : "", + bd.srcbus.buswidth, + (u64)bd.dstbus.addr, + cctl & PL080_CONTROL_DST_INCR ? "+" : "", + bd.dstbus.buswidth, + bd.remainder); + dev_vdbg(&pl08x->adev->dev, "mbus=%s sbus=%s\n", + mbus == &bd.srcbus ? "src" : "dst", + sbus == &bd.srcbus ? "src" : "dst"); + + /* + * Zero length is only allowed if all these requirements are + * met: + * - flow controller is peripheral. + * - src.addr is aligned to src.width + * - dst.addr is aligned to dst.width + * + * sg_len == 1 should be true, as there can be two cases here: + * + * - Memory addresses are contiguous and are not scattered. + * Here, Only one sg will be passed by user driver, with + * memory address and zero length. We pass this to controller + * and after the transfer it will receive the last burst + * request from peripheral and so transfer finishes. + * + * - Memory addresses are scattered and are not contiguous. + * Here, Obviously as DMA controller doesn't know when a lli's + * transfer gets over, it can't load next lli. So in this + * case, there has to be an assumption that only one lli is + * supported. Thus, we can't have scattered addresses. + */ + if (!bd.remainder) { + u32 fc; + + /* FTDMAC020 only does memory-to-memory */ + if (pl08x->vd->ftdmac020) + fc = PL080_FLOW_MEM2MEM; + else + fc = (txd->ccfg & PL080_CONFIG_FLOW_CONTROL_MASK) >> + PL080_CONFIG_FLOW_CONTROL_SHIFT; + if (!((fc >= PL080_FLOW_SRC2DST_DST) && + (fc <= PL080_FLOW_SRC2DST_SRC))) { + dev_err(&pl08x->adev->dev, "%s sg len can't be zero", + __func__); + return 0; + } + + if (!IS_BUS_ALIGNED(&bd.srcbus) || + !IS_BUS_ALIGNED(&bd.dstbus)) { + dev_err(&pl08x->adev->dev, + "%s src & dst address must be aligned to src" + " & dst width if peripheral is flow controller", + __func__); + return 0; + } + + cctl = pl08x_lli_control_bits(pl08x, cctl, + bd.srcbus.buswidth, bd.dstbus.buswidth, + 0); + pl08x_fill_lli_for_desc(pl08x, &bd, num_llis++, + 0, cctl, 0); + break; + } + + /* + * Send byte by byte for following cases + * - Less than a bus width available + * - until master bus is aligned + */ + if (bd.remainder < mbus->buswidth) + early_bytes = bd.remainder; + else if (!IS_BUS_ALIGNED(mbus)) { + early_bytes = mbus->buswidth - + (mbus->addr & (mbus->buswidth - 1)); + if ((bd.remainder - early_bytes) < mbus->buswidth) + early_bytes = bd.remainder; + } + + if (early_bytes) { + dev_vdbg(&pl08x->adev->dev, + "%s byte width LLIs (remain 0x%08zx)\n", + __func__, bd.remainder); + prep_byte_width_lli(pl08x, &bd, &cctl, early_bytes, + num_llis++, &total_bytes); + } + + if (bd.remainder) { + /* + * Master now aligned + * - if slave is not then we must set its width down + */ + if (!IS_BUS_ALIGNED(sbus)) { + dev_dbg(&pl08x->adev->dev, + "%s set down bus width to one byte\n", + __func__); + + sbus->buswidth = 1; + } + + /* + * Bytes transferred = tsize * src width, not + * MIN(buswidths) + */ + max_bytes_per_lli = bd.srcbus.buswidth * + pl08x->vd->max_transfer_size; + dev_vdbg(&pl08x->adev->dev, + "%s max bytes per lli = %zu\n", + __func__, max_bytes_per_lli); + + /* + * Make largest possible LLIs until less than one bus + * width left + */ + while (bd.remainder > (mbus->buswidth - 1)) { + size_t lli_len, tsize, width; + + /* + * If enough left try to send max possible, + * otherwise try to send the remainder + */ + lli_len = min(bd.remainder, max_bytes_per_lli); + + /* + * Check against maximum bus alignment: + * Calculate actual transfer size in relation to + * bus width an get a maximum remainder of the + * highest bus width - 1 + */ + width = max(mbus->buswidth, sbus->buswidth); + lli_len = (lli_len / width) * width; + tsize = lli_len / bd.srcbus.buswidth; + + dev_vdbg(&pl08x->adev->dev, + "%s fill lli with single lli chunk of " + "size 0x%08zx (remainder 0x%08zx)\n", + __func__, lli_len, bd.remainder); + + cctl = pl08x_lli_control_bits(pl08x, cctl, + bd.srcbus.buswidth, bd.dstbus.buswidth, + tsize); + pl08x_fill_lli_for_desc(pl08x, &bd, num_llis++, + lli_len, cctl, tsize); + total_bytes += lli_len; + } + + /* + * Send any odd bytes + */ + if (bd.remainder) { + dev_vdbg(&pl08x->adev->dev, + "%s align with boundary, send odd bytes (remain %zu)\n", + __func__, bd.remainder); + prep_byte_width_lli(pl08x, &bd, &cctl, + bd.remainder, num_llis++, &total_bytes); + } + } + + if (total_bytes != dsg->len) { + dev_err(&pl08x->adev->dev, + "%s size of encoded lli:s don't match total txd, transferred 0x%08zx from size 0x%08zx\n", + __func__, total_bytes, dsg->len); + return 0; + } + + if (num_llis >= MAX_NUM_TSFR_LLIS) { + dev_err(&pl08x->adev->dev, + "%s need to increase MAX_NUM_TSFR_LLIS from 0x%08x\n", + __func__, MAX_NUM_TSFR_LLIS); + return 0; + } + } + + llis_va = txd->llis_va; + last_lli = llis_va + (num_llis - 1) * pl08x->lli_words; + + if (txd->cyclic) { + /* Link back to the first LLI. */ + last_lli[PL080_LLI_LLI] = txd->llis_bus | bd.lli_bus; + } else { + /* The final LLI terminates the LLI. */ + last_lli[PL080_LLI_LLI] = 0; + /* The final LLI element shall also fire an interrupt. */ + if (pl08x->vd->ftdmac020) + last_lli[PL080_LLI_CCTL] &= ~FTDMAC020_LLI_TC_MSK; + else + last_lli[PL080_LLI_CCTL] |= PL080_CONTROL_TC_IRQ_EN; + } + + pl08x_dump_lli(pl08x, llis_va, num_llis); + + return num_llis; +} + +static void pl08x_free_txd(struct pl08x_driver_data *pl08x, + struct pl08x_txd *txd) +{ + struct pl08x_sg *dsg, *_dsg; + + if (txd->llis_va) + dma_pool_free(pl08x->pool, txd->llis_va, txd->llis_bus); + + list_for_each_entry_safe(dsg, _dsg, &txd->dsg_list, node) { + list_del(&dsg->node); + kfree(dsg); + } + + kfree(txd); +} + +static void pl08x_desc_free(struct virt_dma_desc *vd) +{ + struct pl08x_txd *txd = to_pl08x_txd(&vd->tx); + struct pl08x_dma_chan *plchan = to_pl08x_chan(vd->tx.chan); + + dma_descriptor_unmap(&vd->tx); + if (!txd->done) + pl08x_release_mux(plchan); + + pl08x_free_txd(plchan->host, txd); +} + +static void pl08x_free_txd_list(struct pl08x_driver_data *pl08x, + struct pl08x_dma_chan *plchan) +{ + LIST_HEAD(head); + + vchan_get_all_descriptors(&plchan->vc, &head); + vchan_dma_desc_free_list(&plchan->vc, &head); +} + +/* + * The DMA ENGINE API + */ +static void pl08x_free_chan_resources(struct dma_chan *chan) +{ + /* Ensure all queued descriptors are freed */ + vchan_free_chan_resources(to_virt_chan(chan)); +} + +/* + * Code accessing dma_async_is_complete() in a tight loop may give problems. + * If slaves are relying on interrupts to signal completion this function + * must not be called with interrupts disabled. + */ +static enum dma_status pl08x_dma_tx_status(struct dma_chan *chan, + dma_cookie_t cookie, struct dma_tx_state *txstate) +{ + struct pl08x_dma_chan *plchan = to_pl08x_chan(chan); + struct virt_dma_desc *vd; + unsigned long flags; + enum dma_status ret; + size_t bytes = 0; + + ret = dma_cookie_status(chan, cookie, txstate); + if (ret == DMA_COMPLETE) + return ret; + + /* + * There's no point calculating the residue if there's + * no txstate to store the value. + */ + if (!txstate) { + if (plchan->state == PL08X_CHAN_PAUSED) + ret = DMA_PAUSED; + return ret; + } + + spin_lock_irqsave(&plchan->vc.lock, flags); + ret = dma_cookie_status(chan, cookie, txstate); + if (ret != DMA_COMPLETE) { + vd = vchan_find_desc(&plchan->vc, cookie); + if (vd) { + /* On the issued list, so hasn't been processed yet */ + struct pl08x_txd *txd = to_pl08x_txd(&vd->tx); + struct pl08x_sg *dsg; + + list_for_each_entry(dsg, &txd->dsg_list, node) + bytes += dsg->len; + } else { + bytes = pl08x_getbytes_chan(plchan); + } + } + spin_unlock_irqrestore(&plchan->vc.lock, flags); + + /* + * This cookie not complete yet + * Get number of bytes left in the active transactions and queue + */ + dma_set_residue(txstate, bytes); + + if (plchan->state == PL08X_CHAN_PAUSED && ret == DMA_IN_PROGRESS) + ret = DMA_PAUSED; + + /* Whether waiting or running, we're in progress */ + return ret; +} + +/* PrimeCell DMA extension */ +struct burst_table { + u32 burstwords; + u32 reg; +}; + +static const struct burst_table burst_sizes[] = { + { + .burstwords = 256, + .reg = PL080_BSIZE_256, + }, + { + .burstwords = 128, + .reg = PL080_BSIZE_128, + }, + { + .burstwords = 64, + .reg = PL080_BSIZE_64, + }, + { + .burstwords = 32, + .reg = PL080_BSIZE_32, + }, + { + .burstwords = 16, + .reg = PL080_BSIZE_16, + }, + { + .burstwords = 8, + .reg = PL080_BSIZE_8, + }, + { + .burstwords = 4, + .reg = PL080_BSIZE_4, + }, + { + .burstwords = 0, + .reg = PL080_BSIZE_1, + }, +}; + +/* + * Given the source and destination available bus masks, select which + * will be routed to each port. We try to have source and destination + * on separate ports, but always respect the allowable settings. + */ +static u32 pl08x_select_bus(bool ftdmac020, u8 src, u8 dst) +{ + u32 cctl = 0; + u32 dst_ahb2; + u32 src_ahb2; + + /* The FTDMAC020 use different bits to indicate src/dst bus */ + if (ftdmac020) { + dst_ahb2 = FTDMAC020_LLI_DST_SEL; + src_ahb2 = FTDMAC020_LLI_SRC_SEL; + } else { + dst_ahb2 = PL080_CONTROL_DST_AHB2; + src_ahb2 = PL080_CONTROL_SRC_AHB2; + } + + if (!(dst & PL08X_AHB1) || ((dst & PL08X_AHB2) && (src & PL08X_AHB1))) + cctl |= dst_ahb2; + if (!(src & PL08X_AHB1) || ((src & PL08X_AHB2) && !(dst & PL08X_AHB2))) + cctl |= src_ahb2; + + return cctl; +} + +static u32 pl08x_cctl(u32 cctl) +{ + cctl &= ~(PL080_CONTROL_SRC_AHB2 | PL080_CONTROL_DST_AHB2 | + PL080_CONTROL_SRC_INCR | PL080_CONTROL_DST_INCR | + PL080_CONTROL_PROT_MASK); + + /* Access the cell in privileged mode, non-bufferable, non-cacheable */ + return cctl | PL080_CONTROL_PROT_SYS; +} + +static u32 pl08x_width(enum dma_slave_buswidth width) +{ + switch (width) { + case DMA_SLAVE_BUSWIDTH_1_BYTE: + return PL080_WIDTH_8BIT; + case DMA_SLAVE_BUSWIDTH_2_BYTES: + return PL080_WIDTH_16BIT; + case DMA_SLAVE_BUSWIDTH_4_BYTES: + return PL080_WIDTH_32BIT; + default: + return ~0; + } +} + +static u32 pl08x_burst(u32 maxburst) +{ + int i; + + for (i = 0; i < ARRAY_SIZE(burst_sizes); i++) + if (burst_sizes[i].burstwords <= maxburst) + break; + + return burst_sizes[i].reg; +} + +static u32 pl08x_get_cctl(struct pl08x_dma_chan *plchan, + enum dma_slave_buswidth addr_width, u32 maxburst) +{ + u32 width, burst, cctl = 0; + + width = pl08x_width(addr_width); + if (width == ~0) + return ~0; + + cctl |= width << PL080_CONTROL_SWIDTH_SHIFT; + cctl |= width << PL080_CONTROL_DWIDTH_SHIFT; + + /* + * If this channel will only request single transfers, set this + * down to ONE element. Also select one element if no maxburst + * is specified. + */ + if (plchan->cd->single) + maxburst = 1; + + burst = pl08x_burst(maxburst); + cctl |= burst << PL080_CONTROL_SB_SIZE_SHIFT; + cctl |= burst << PL080_CONTROL_DB_SIZE_SHIFT; + + return pl08x_cctl(cctl); +} + +/* + * Slave transactions callback to the slave device to allow + * synchronization of slave DMA signals with the DMAC enable + */ +static void pl08x_issue_pending(struct dma_chan *chan) +{ + struct pl08x_dma_chan *plchan = to_pl08x_chan(chan); + unsigned long flags; + + spin_lock_irqsave(&plchan->vc.lock, flags); + if (vchan_issue_pending(&plchan->vc)) { + if (!plchan->phychan && plchan->state != PL08X_CHAN_WAITING) + pl08x_phy_alloc_and_start(plchan); + } + spin_unlock_irqrestore(&plchan->vc.lock, flags); +} + +static struct pl08x_txd *pl08x_get_txd(struct pl08x_dma_chan *plchan) +{ + struct pl08x_txd *txd = kzalloc(sizeof(*txd), GFP_NOWAIT); + + if (txd) + INIT_LIST_HEAD(&txd->dsg_list); + return txd; +} + +static u32 pl08x_memcpy_cctl(struct pl08x_driver_data *pl08x) +{ + u32 cctl = 0; + + /* Conjure cctl */ + switch (pl08x->pd->memcpy_burst_size) { + default: + dev_err(&pl08x->adev->dev, + "illegal burst size for memcpy, set to 1\n"); + fallthrough; + case PL08X_BURST_SZ_1: + cctl |= PL080_BSIZE_1 << PL080_CONTROL_SB_SIZE_SHIFT | + PL080_BSIZE_1 << PL080_CONTROL_DB_SIZE_SHIFT; + break; + case PL08X_BURST_SZ_4: + cctl |= PL080_BSIZE_4 << PL080_CONTROL_SB_SIZE_SHIFT | + PL080_BSIZE_4 << PL080_CONTROL_DB_SIZE_SHIFT; + break; + case PL08X_BURST_SZ_8: + cctl |= PL080_BSIZE_8 << PL080_CONTROL_SB_SIZE_SHIFT | + PL080_BSIZE_8 << PL080_CONTROL_DB_SIZE_SHIFT; + break; + case PL08X_BURST_SZ_16: + cctl |= PL080_BSIZE_16 << PL080_CONTROL_SB_SIZE_SHIFT | + PL080_BSIZE_16 << PL080_CONTROL_DB_SIZE_SHIFT; + break; + case PL08X_BURST_SZ_32: + cctl |= PL080_BSIZE_32 << PL080_CONTROL_SB_SIZE_SHIFT | + PL080_BSIZE_32 << PL080_CONTROL_DB_SIZE_SHIFT; + break; + case PL08X_BURST_SZ_64: + cctl |= PL080_BSIZE_64 << PL080_CONTROL_SB_SIZE_SHIFT | + PL080_BSIZE_64 << PL080_CONTROL_DB_SIZE_SHIFT; + break; + case PL08X_BURST_SZ_128: + cctl |= PL080_BSIZE_128 << PL080_CONTROL_SB_SIZE_SHIFT | + PL080_BSIZE_128 << PL080_CONTROL_DB_SIZE_SHIFT; + break; + case PL08X_BURST_SZ_256: + cctl |= PL080_BSIZE_256 << PL080_CONTROL_SB_SIZE_SHIFT | + PL080_BSIZE_256 << PL080_CONTROL_DB_SIZE_SHIFT; + break; + } + + switch (pl08x->pd->memcpy_bus_width) { + default: + dev_err(&pl08x->adev->dev, + "illegal bus width for memcpy, set to 8 bits\n"); + fallthrough; + case PL08X_BUS_WIDTH_8_BITS: + cctl |= PL080_WIDTH_8BIT << PL080_CONTROL_SWIDTH_SHIFT | + PL080_WIDTH_8BIT << PL080_CONTROL_DWIDTH_SHIFT; + break; + case PL08X_BUS_WIDTH_16_BITS: + cctl |= PL080_WIDTH_16BIT << PL080_CONTROL_SWIDTH_SHIFT | + PL080_WIDTH_16BIT << PL080_CONTROL_DWIDTH_SHIFT; + break; + case PL08X_BUS_WIDTH_32_BITS: + cctl |= PL080_WIDTH_32BIT << PL080_CONTROL_SWIDTH_SHIFT | + PL080_WIDTH_32BIT << PL080_CONTROL_DWIDTH_SHIFT; + break; + } + + /* Protection flags */ + if (pl08x->pd->memcpy_prot_buff) + cctl |= PL080_CONTROL_PROT_BUFF; + if (pl08x->pd->memcpy_prot_cache) + cctl |= PL080_CONTROL_PROT_CACHE; + + /* We are the kernel, so we are in privileged mode */ + cctl |= PL080_CONTROL_PROT_SYS; + + /* Both to be incremented or the code will break */ + cctl |= PL080_CONTROL_SRC_INCR | PL080_CONTROL_DST_INCR; + + if (pl08x->vd->dualmaster) + cctl |= pl08x_select_bus(false, + pl08x->mem_buses, + pl08x->mem_buses); + + return cctl; +} + +static u32 pl08x_ftdmac020_memcpy_cctl(struct pl08x_driver_data *pl08x) +{ + u32 cctl = 0; + + /* Conjure cctl */ + switch (pl08x->pd->memcpy_bus_width) { + default: + dev_err(&pl08x->adev->dev, + "illegal bus width for memcpy, set to 8 bits\n"); + fallthrough; + case PL08X_BUS_WIDTH_8_BITS: + cctl |= PL080_WIDTH_8BIT << FTDMAC020_LLI_SRC_WIDTH_SHIFT | + PL080_WIDTH_8BIT << FTDMAC020_LLI_DST_WIDTH_SHIFT; + break; + case PL08X_BUS_WIDTH_16_BITS: + cctl |= PL080_WIDTH_16BIT << FTDMAC020_LLI_SRC_WIDTH_SHIFT | + PL080_WIDTH_16BIT << FTDMAC020_LLI_DST_WIDTH_SHIFT; + break; + case PL08X_BUS_WIDTH_32_BITS: + cctl |= PL080_WIDTH_32BIT << FTDMAC020_LLI_SRC_WIDTH_SHIFT | + PL080_WIDTH_32BIT << FTDMAC020_LLI_DST_WIDTH_SHIFT; + break; + } + + /* + * By default mask the TC IRQ on all LLIs, it will be unmasked on + * the last LLI item by other code. + */ + cctl |= FTDMAC020_LLI_TC_MSK; + + /* + * Both to be incremented so leave bits FTDMAC020_LLI_SRCAD_CTL + * and FTDMAC020_LLI_DSTAD_CTL as zero + */ + if (pl08x->vd->dualmaster) + cctl |= pl08x_select_bus(true, + pl08x->mem_buses, + pl08x->mem_buses); + + return cctl; +} + +/* + * Initialize a descriptor to be used by memcpy submit + */ +static struct dma_async_tx_descriptor *pl08x_prep_dma_memcpy( + struct dma_chan *chan, dma_addr_t dest, dma_addr_t src, + size_t len, unsigned long flags) +{ + struct pl08x_dma_chan *plchan = to_pl08x_chan(chan); + struct pl08x_driver_data *pl08x = plchan->host; + struct pl08x_txd *txd; + struct pl08x_sg *dsg; + int ret; + + txd = pl08x_get_txd(plchan); + if (!txd) { + dev_err(&pl08x->adev->dev, + "%s no memory for descriptor\n", __func__); + return NULL; + } + + dsg = kzalloc(sizeof(struct pl08x_sg), GFP_NOWAIT); + if (!dsg) { + pl08x_free_txd(pl08x, txd); + return NULL; + } + list_add_tail(&dsg->node, &txd->dsg_list); + + dsg->src_addr = src; + dsg->dst_addr = dest; + dsg->len = len; + if (pl08x->vd->ftdmac020) { + /* Writing CCFG zero ENABLES all interrupts */ + txd->ccfg = 0; + txd->cctl = pl08x_ftdmac020_memcpy_cctl(pl08x); + } else { + txd->ccfg = PL080_CONFIG_ERR_IRQ_MASK | + PL080_CONFIG_TC_IRQ_MASK | + PL080_FLOW_MEM2MEM << PL080_CONFIG_FLOW_CONTROL_SHIFT; + txd->cctl = pl08x_memcpy_cctl(pl08x); + } + + ret = pl08x_fill_llis_for_desc(plchan->host, txd); + if (!ret) { + pl08x_free_txd(pl08x, txd); + return NULL; + } + + return vchan_tx_prep(&plchan->vc, &txd->vd, flags); +} + +static struct pl08x_txd *pl08x_init_txd( + struct dma_chan *chan, + enum dma_transfer_direction direction, + dma_addr_t *slave_addr) +{ + struct pl08x_dma_chan *plchan = to_pl08x_chan(chan); + struct pl08x_driver_data *pl08x = plchan->host; + struct pl08x_txd *txd; + enum dma_slave_buswidth addr_width; + int ret, tmp; + u8 src_buses, dst_buses; + u32 maxburst, cctl; + + txd = pl08x_get_txd(plchan); + if (!txd) { + dev_err(&pl08x->adev->dev, "%s no txd\n", __func__); + return NULL; + } + + /* + * Set up addresses, the PrimeCell configured address + * will take precedence since this may configure the + * channel target address dynamically at runtime. + */ + if (direction == DMA_MEM_TO_DEV) { + cctl = PL080_CONTROL_SRC_INCR; + *slave_addr = plchan->cfg.dst_addr; + addr_width = plchan->cfg.dst_addr_width; + maxburst = plchan->cfg.dst_maxburst; + src_buses = pl08x->mem_buses; + dst_buses = plchan->cd->periph_buses; + } else if (direction == DMA_DEV_TO_MEM) { + cctl = PL080_CONTROL_DST_INCR; + *slave_addr = plchan->cfg.src_addr; + addr_width = plchan->cfg.src_addr_width; + maxburst = plchan->cfg.src_maxburst; + src_buses = plchan->cd->periph_buses; + dst_buses = pl08x->mem_buses; + } else { + pl08x_free_txd(pl08x, txd); + dev_err(&pl08x->adev->dev, + "%s direction unsupported\n", __func__); + return NULL; + } + + cctl |= pl08x_get_cctl(plchan, addr_width, maxburst); + if (cctl == ~0) { + pl08x_free_txd(pl08x, txd); + dev_err(&pl08x->adev->dev, + "DMA slave configuration botched?\n"); + return NULL; + } + + txd->cctl = cctl | pl08x_select_bus(false, src_buses, dst_buses); + + if (plchan->cfg.device_fc) + tmp = (direction == DMA_MEM_TO_DEV) ? PL080_FLOW_MEM2PER_PER : + PL080_FLOW_PER2MEM_PER; + else + tmp = (direction == DMA_MEM_TO_DEV) ? PL080_FLOW_MEM2PER : + PL080_FLOW_PER2MEM; + + txd->ccfg = PL080_CONFIG_ERR_IRQ_MASK | + PL080_CONFIG_TC_IRQ_MASK | + tmp << PL080_CONFIG_FLOW_CONTROL_SHIFT; + + ret = pl08x_request_mux(plchan); + if (ret < 0) { + pl08x_free_txd(pl08x, txd); + dev_dbg(&pl08x->adev->dev, + "unable to mux for transfer on %s due to platform restrictions\n", + plchan->name); + return NULL; + } + + dev_dbg(&pl08x->adev->dev, "allocated DMA request signal %d for xfer on %s\n", + plchan->signal, plchan->name); + + /* Assign the flow control signal to this channel */ + if (direction == DMA_MEM_TO_DEV) + txd->ccfg |= plchan->signal << PL080_CONFIG_DST_SEL_SHIFT; + else + txd->ccfg |= plchan->signal << PL080_CONFIG_SRC_SEL_SHIFT; + + return txd; +} + +static int pl08x_tx_add_sg(struct pl08x_txd *txd, + enum dma_transfer_direction direction, + dma_addr_t slave_addr, + dma_addr_t buf_addr, + unsigned int len) +{ + struct pl08x_sg *dsg; + + dsg = kzalloc(sizeof(struct pl08x_sg), GFP_NOWAIT); + if (!dsg) + return -ENOMEM; + + list_add_tail(&dsg->node, &txd->dsg_list); + + dsg->len = len; + if (direction == DMA_MEM_TO_DEV) { + dsg->src_addr = buf_addr; + dsg->dst_addr = slave_addr; + } else { + dsg->src_addr = slave_addr; + dsg->dst_addr = buf_addr; + } + + return 0; +} + +static struct dma_async_tx_descriptor *pl08x_prep_slave_sg( + struct dma_chan *chan, struct scatterlist *sgl, + unsigned int sg_len, enum dma_transfer_direction direction, + unsigned long flags, void *context) +{ + struct pl08x_dma_chan *plchan = to_pl08x_chan(chan); + struct pl08x_driver_data *pl08x = plchan->host; + struct pl08x_txd *txd; + struct scatterlist *sg; + int ret, tmp; + dma_addr_t slave_addr; + + dev_dbg(&pl08x->adev->dev, "%s prepare transaction of %d bytes from %s\n", + __func__, sg_dma_len(sgl), plchan->name); + + txd = pl08x_init_txd(chan, direction, &slave_addr); + if (!txd) + return NULL; + + for_each_sg(sgl, sg, sg_len, tmp) { + ret = pl08x_tx_add_sg(txd, direction, slave_addr, + sg_dma_address(sg), + sg_dma_len(sg)); + if (ret) { + pl08x_release_mux(plchan); + pl08x_free_txd(pl08x, txd); + dev_err(&pl08x->adev->dev, "%s no mem for pl080 sg\n", + __func__); + return NULL; + } + } + + ret = pl08x_fill_llis_for_desc(plchan->host, txd); + if (!ret) { + pl08x_release_mux(plchan); + pl08x_free_txd(pl08x, txd); + return NULL; + } + + return vchan_tx_prep(&plchan->vc, &txd->vd, flags); +} + +static struct dma_async_tx_descriptor *pl08x_prep_dma_cyclic( + struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len, + size_t period_len, enum dma_transfer_direction direction, + unsigned long flags) +{ + struct pl08x_dma_chan *plchan = to_pl08x_chan(chan); + struct pl08x_driver_data *pl08x = plchan->host; + struct pl08x_txd *txd; + int ret, tmp; + dma_addr_t slave_addr; + + dev_dbg(&pl08x->adev->dev, + "%s prepare cyclic transaction of %zd/%zd bytes %s %s\n", + __func__, period_len, buf_len, + direction == DMA_MEM_TO_DEV ? "to" : "from", + plchan->name); + + txd = pl08x_init_txd(chan, direction, &slave_addr); + if (!txd) + return NULL; + + txd->cyclic = true; + txd->cctl |= PL080_CONTROL_TC_IRQ_EN; + for (tmp = 0; tmp < buf_len; tmp += period_len) { + ret = pl08x_tx_add_sg(txd, direction, slave_addr, + buf_addr + tmp, period_len); + if (ret) { + pl08x_release_mux(plchan); + pl08x_free_txd(pl08x, txd); + return NULL; + } + } + + ret = pl08x_fill_llis_for_desc(plchan->host, txd); + if (!ret) { + pl08x_release_mux(plchan); + pl08x_free_txd(pl08x, txd); + return NULL; + } + + return vchan_tx_prep(&plchan->vc, &txd->vd, flags); +} + +static int pl08x_config(struct dma_chan *chan, + struct dma_slave_config *config) +{ + struct pl08x_dma_chan *plchan = to_pl08x_chan(chan); + struct pl08x_driver_data *pl08x = plchan->host; + + if (!plchan->slave) + return -EINVAL; + + /* Reject definitely invalid configurations */ + if (config->src_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES || + config->dst_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES) + return -EINVAL; + + if (config->device_fc && pl08x->vd->pl080s) { + dev_err(&pl08x->adev->dev, + "%s: PL080S does not support peripheral flow control\n", + __func__); + return -EINVAL; + } + + plchan->cfg = *config; + + return 0; +} + +static int pl08x_terminate_all(struct dma_chan *chan) +{ + struct pl08x_dma_chan *plchan = to_pl08x_chan(chan); + struct pl08x_driver_data *pl08x = plchan->host; + unsigned long flags; + + spin_lock_irqsave(&plchan->vc.lock, flags); + if (!plchan->phychan && !plchan->at) { + spin_unlock_irqrestore(&plchan->vc.lock, flags); + return 0; + } + + plchan->state = PL08X_CHAN_IDLE; + + if (plchan->phychan) { + /* + * Mark physical channel as free and free any slave + * signal + */ + pl08x_phy_free(plchan); + } + /* Dequeue jobs and free LLIs */ + if (plchan->at) { + vchan_terminate_vdesc(&plchan->at->vd); + plchan->at = NULL; + } + /* Dequeue jobs not yet fired as well */ + pl08x_free_txd_list(pl08x, plchan); + + spin_unlock_irqrestore(&plchan->vc.lock, flags); + + return 0; +} + +static void pl08x_synchronize(struct dma_chan *chan) +{ + struct pl08x_dma_chan *plchan = to_pl08x_chan(chan); + + vchan_synchronize(&plchan->vc); +} + +static int pl08x_pause(struct dma_chan *chan) +{ + struct pl08x_dma_chan *plchan = to_pl08x_chan(chan); + unsigned long flags; + + /* + * Anything succeeds on channels with no physical allocation and + * no queued transfers. + */ + spin_lock_irqsave(&plchan->vc.lock, flags); + if (!plchan->phychan && !plchan->at) { + spin_unlock_irqrestore(&plchan->vc.lock, flags); + return 0; + } + + pl08x_pause_phy_chan(plchan->phychan); + plchan->state = PL08X_CHAN_PAUSED; + + spin_unlock_irqrestore(&plchan->vc.lock, flags); + + return 0; +} + +static int pl08x_resume(struct dma_chan *chan) +{ + struct pl08x_dma_chan *plchan = to_pl08x_chan(chan); + unsigned long flags; + + /* + * Anything succeeds on channels with no physical allocation and + * no queued transfers. + */ + spin_lock_irqsave(&plchan->vc.lock, flags); + if (!plchan->phychan && !plchan->at) { + spin_unlock_irqrestore(&plchan->vc.lock, flags); + return 0; + } + + pl08x_resume_phy_chan(plchan->phychan); + plchan->state = PL08X_CHAN_RUNNING; + + spin_unlock_irqrestore(&plchan->vc.lock, flags); + + return 0; +} + +bool pl08x_filter_id(struct dma_chan *chan, void *chan_id) +{ + struct pl08x_dma_chan *plchan; + char *name = chan_id; + + /* Reject channels for devices not bound to this driver */ + if (chan->device->dev->driver != &pl08x_amba_driver.drv) + return false; + + plchan = to_pl08x_chan(chan); + + /* Check that the channel is not taken! */ + if (!strcmp(plchan->name, name)) + return true; + + return false; +} +EXPORT_SYMBOL_GPL(pl08x_filter_id); + +static bool pl08x_filter_fn(struct dma_chan *chan, void *chan_id) +{ + struct pl08x_dma_chan *plchan = to_pl08x_chan(chan); + + return plchan->cd == chan_id; +} + +/* + * Just check that the device is there and active + * TODO: turn this bit on/off depending on the number of physical channels + * actually used, if it is zero... well shut it off. That will save some + * power. Cut the clock at the same time. + */ +static void pl08x_ensure_on(struct pl08x_driver_data *pl08x) +{ + /* The Nomadik variant does not have the config register */ + if (pl08x->vd->nomadik) + return; + /* The FTDMAC020 variant does this in another register */ + if (pl08x->vd->ftdmac020) { + writel(PL080_CONFIG_ENABLE, pl08x->base + FTDMAC020_CSR); + return; + } + writel(PL080_CONFIG_ENABLE, pl08x->base + PL080_CONFIG); +} + +static irqreturn_t pl08x_irq(int irq, void *dev) +{ + struct pl08x_driver_data *pl08x = dev; + u32 mask = 0, err, tc, i; + + /* check & clear - ERR & TC interrupts */ + err = readl(pl08x->base + PL080_ERR_STATUS); + if (err) { + dev_err(&pl08x->adev->dev, "%s error interrupt, register value 0x%08x\n", + __func__, err); + writel(err, pl08x->base + PL080_ERR_CLEAR); + } + tc = readl(pl08x->base + PL080_TC_STATUS); + if (tc) + writel(tc, pl08x->base + PL080_TC_CLEAR); + + if (!err && !tc) + return IRQ_NONE; + + for (i = 0; i < pl08x->vd->channels; i++) { + if ((BIT(i) & err) || (BIT(i) & tc)) { + /* Locate physical channel */ + struct pl08x_phy_chan *phychan = &pl08x->phy_chans[i]; + struct pl08x_dma_chan *plchan = phychan->serving; + struct pl08x_txd *tx; + + if (!plchan) { + dev_err(&pl08x->adev->dev, + "%s Error TC interrupt on unused channel: 0x%08x\n", + __func__, i); + continue; + } + + spin_lock(&plchan->vc.lock); + tx = plchan->at; + if (tx && tx->cyclic) { + vchan_cyclic_callback(&tx->vd); + } else if (tx) { + plchan->at = NULL; + /* + * This descriptor is done, release its mux + * reservation. + */ + pl08x_release_mux(plchan); + tx->done = true; + vchan_cookie_complete(&tx->vd); + + /* + * And start the next descriptor (if any), + * otherwise free this channel. + */ + if (vchan_next_desc(&plchan->vc)) + pl08x_start_next_txd(plchan); + else + pl08x_phy_free(plchan); + } + spin_unlock(&plchan->vc.lock); + + mask |= BIT(i); + } + } + + return mask ? IRQ_HANDLED : IRQ_NONE; +} + +static void pl08x_dma_slave_init(struct pl08x_dma_chan *chan) +{ + chan->slave = true; + chan->name = chan->cd->bus_id; + chan->cfg.src_addr = chan->cd->addr; + chan->cfg.dst_addr = chan->cd->addr; +} + +/* + * Initialise the DMAC memcpy/slave channels. + * Make a local wrapper to hold required data + */ +static int pl08x_dma_init_virtual_channels(struct pl08x_driver_data *pl08x, + struct dma_device *dmadev, unsigned int channels, bool slave) +{ + struct pl08x_dma_chan *chan; + int i; + + INIT_LIST_HEAD(&dmadev->channels); + + /* + * Register as many memcpy as we have physical channels, + * we won't always be able to use all but the code will have + * to cope with that situation. + */ + for (i = 0; i < channels; i++) { + chan = kzalloc(sizeof(*chan), GFP_KERNEL); + if (!chan) + return -ENOMEM; + + chan->host = pl08x; + chan->state = PL08X_CHAN_IDLE; + chan->signal = -1; + + if (slave) { + chan->cd = &pl08x->pd->slave_channels[i]; + /* + * Some implementations have muxed signals, whereas some + * use a mux in front of the signals and need dynamic + * assignment of signals. + */ + chan->signal = i; + pl08x_dma_slave_init(chan); + } else { + chan->cd = kzalloc(sizeof(*chan->cd), GFP_KERNEL); + if (!chan->cd) { + kfree(chan); + return -ENOMEM; + } + chan->cd->bus_id = "memcpy"; + chan->cd->periph_buses = pl08x->pd->mem_buses; + chan->name = kasprintf(GFP_KERNEL, "memcpy%d", i); + if (!chan->name) { + kfree(chan->cd); + kfree(chan); + return -ENOMEM; + } + } + dev_dbg(&pl08x->adev->dev, + "initialize virtual channel \"%s\"\n", + chan->name); + + chan->vc.desc_free = pl08x_desc_free; + vchan_init(&chan->vc, dmadev); + } + dev_info(&pl08x->adev->dev, "initialized %d virtual %s channels\n", + i, slave ? "slave" : "memcpy"); + return i; +} + +static void pl08x_free_virtual_channels(struct dma_device *dmadev) +{ + struct pl08x_dma_chan *chan = NULL; + struct pl08x_dma_chan *next; + + list_for_each_entry_safe(chan, + next, &dmadev->channels, vc.chan.device_node) { + list_del(&chan->vc.chan.device_node); + kfree(chan); + } +} + +#ifdef CONFIG_DEBUG_FS +static const char *pl08x_state_str(enum pl08x_dma_chan_state state) +{ + switch (state) { + case PL08X_CHAN_IDLE: + return "idle"; + case PL08X_CHAN_RUNNING: + return "running"; + case PL08X_CHAN_PAUSED: + return "paused"; + case PL08X_CHAN_WAITING: + return "waiting"; + default: + break; + } + return "UNKNOWN STATE"; +} + +static int pl08x_debugfs_show(struct seq_file *s, void *data) +{ + struct pl08x_driver_data *pl08x = s->private; + struct pl08x_dma_chan *chan; + struct pl08x_phy_chan *ch; + unsigned long flags; + int i; + + seq_printf(s, "PL08x physical channels:\n"); + seq_printf(s, "CHANNEL:\tUSER:\n"); + seq_printf(s, "--------\t-----\n"); + for (i = 0; i < pl08x->vd->channels; i++) { + struct pl08x_dma_chan *virt_chan; + + ch = &pl08x->phy_chans[i]; + + spin_lock_irqsave(&ch->lock, flags); + virt_chan = ch->serving; + + seq_printf(s, "%d\t\t%s%s\n", + ch->id, + virt_chan ? virt_chan->name : "(none)", + ch->locked ? " LOCKED" : ""); + + spin_unlock_irqrestore(&ch->lock, flags); + } + + seq_printf(s, "\nPL08x virtual memcpy channels:\n"); + seq_printf(s, "CHANNEL:\tSTATE:\n"); + seq_printf(s, "--------\t------\n"); + list_for_each_entry(chan, &pl08x->memcpy.channels, vc.chan.device_node) { + seq_printf(s, "%s\t\t%s\n", chan->name, + pl08x_state_str(chan->state)); + } + + if (pl08x->has_slave) { + seq_printf(s, "\nPL08x virtual slave channels:\n"); + seq_printf(s, "CHANNEL:\tSTATE:\n"); + seq_printf(s, "--------\t------\n"); + list_for_each_entry(chan, &pl08x->slave.channels, + vc.chan.device_node) { + seq_printf(s, "%s\t\t%s\n", chan->name, + pl08x_state_str(chan->state)); + } + } + + return 0; +} + +DEFINE_SHOW_ATTRIBUTE(pl08x_debugfs); + +static void init_pl08x_debugfs(struct pl08x_driver_data *pl08x) +{ + /* Expose a simple debugfs interface to view all clocks */ + debugfs_create_file(dev_name(&pl08x->adev->dev), S_IFREG | S_IRUGO, + NULL, pl08x, &pl08x_debugfs_fops); +} + +#else +static inline void init_pl08x_debugfs(struct pl08x_driver_data *pl08x) +{ +} +#endif + +#ifdef CONFIG_OF +static struct dma_chan *pl08x_find_chan_id(struct pl08x_driver_data *pl08x, + u32 id) +{ + struct pl08x_dma_chan *chan; + + /* Trying to get a slave channel from something with no slave support */ + if (!pl08x->has_slave) + return NULL; + + list_for_each_entry(chan, &pl08x->slave.channels, vc.chan.device_node) { + if (chan->signal == id) + return &chan->vc.chan; + } + + return NULL; +} + +static struct dma_chan *pl08x_of_xlate(struct of_phandle_args *dma_spec, + struct of_dma *ofdma) +{ + struct pl08x_driver_data *pl08x = ofdma->of_dma_data; + struct dma_chan *dma_chan; + struct pl08x_dma_chan *plchan; + + if (!pl08x) + return NULL; + + if (dma_spec->args_count != 2) { + dev_err(&pl08x->adev->dev, + "DMA channel translation requires two cells\n"); + return NULL; + } + + dma_chan = pl08x_find_chan_id(pl08x, dma_spec->args[0]); + if (!dma_chan) { + dev_err(&pl08x->adev->dev, + "DMA slave channel not found\n"); + return NULL; + } + + plchan = to_pl08x_chan(dma_chan); + dev_dbg(&pl08x->adev->dev, + "translated channel for signal %d\n", + dma_spec->args[0]); + + /* Augment channel data for applicable AHB buses */ + plchan->cd->periph_buses = dma_spec->args[1]; + return dma_get_slave_channel(dma_chan); +} + +static int pl08x_of_probe(struct amba_device *adev, + struct pl08x_driver_data *pl08x, + struct device_node *np) +{ + struct pl08x_platform_data *pd; + struct pl08x_channel_data *chanp = NULL; + u32 val; + int ret; + int i; + + pd = devm_kzalloc(&adev->dev, sizeof(*pd), GFP_KERNEL); + if (!pd) + return -ENOMEM; + + /* Eligible bus masters for fetching LLIs */ + if (of_property_read_bool(np, "lli-bus-interface-ahb1")) + pd->lli_buses |= PL08X_AHB1; + if (of_property_read_bool(np, "lli-bus-interface-ahb2")) + pd->lli_buses |= PL08X_AHB2; + if (!pd->lli_buses) { + dev_info(&adev->dev, "no bus masters for LLIs stated, assume all\n"); + pd->lli_buses |= PL08X_AHB1 | PL08X_AHB2; + } + + /* Eligible bus masters for memory access */ + if (of_property_read_bool(np, "mem-bus-interface-ahb1")) + pd->mem_buses |= PL08X_AHB1; + if (of_property_read_bool(np, "mem-bus-interface-ahb2")) + pd->mem_buses |= PL08X_AHB2; + if (!pd->mem_buses) { + dev_info(&adev->dev, "no bus masters for memory stated, assume all\n"); + pd->mem_buses |= PL08X_AHB1 | PL08X_AHB2; + } + + /* Parse the memcpy channel properties */ + ret = of_property_read_u32(np, "memcpy-burst-size", &val); + if (ret) { + dev_info(&adev->dev, "no memcpy burst size specified, using 1 byte\n"); + val = 1; + } + switch (val) { + default: + dev_err(&adev->dev, "illegal burst size for memcpy, set to 1\n"); + fallthrough; + case 1: + pd->memcpy_burst_size = PL08X_BURST_SZ_1; + break; + case 4: + pd->memcpy_burst_size = PL08X_BURST_SZ_4; + break; + case 8: + pd->memcpy_burst_size = PL08X_BURST_SZ_8; + break; + case 16: + pd->memcpy_burst_size = PL08X_BURST_SZ_16; + break; + case 32: + pd->memcpy_burst_size = PL08X_BURST_SZ_32; + break; + case 64: + pd->memcpy_burst_size = PL08X_BURST_SZ_64; + break; + case 128: + pd->memcpy_burst_size = PL08X_BURST_SZ_128; + break; + case 256: + pd->memcpy_burst_size = PL08X_BURST_SZ_256; + break; + } + + ret = of_property_read_u32(np, "memcpy-bus-width", &val); + if (ret) { + dev_info(&adev->dev, "no memcpy bus width specified, using 8 bits\n"); + val = 8; + } + switch (val) { + default: + dev_err(&adev->dev, "illegal bus width for memcpy, set to 8 bits\n"); + fallthrough; + case 8: + pd->memcpy_bus_width = PL08X_BUS_WIDTH_8_BITS; + break; + case 16: + pd->memcpy_bus_width = PL08X_BUS_WIDTH_16_BITS; + break; + case 32: + pd->memcpy_bus_width = PL08X_BUS_WIDTH_32_BITS; + break; + } + + /* + * Allocate channel data for all possible slave channels (one + * for each possible signal), channels will then be allocated + * for a device and have it's AHB interfaces set up at + * translation time. + */ + if (pl08x->vd->signals) { + chanp = devm_kcalloc(&adev->dev, + pl08x->vd->signals, + sizeof(struct pl08x_channel_data), + GFP_KERNEL); + if (!chanp) + return -ENOMEM; + + pd->slave_channels = chanp; + for (i = 0; i < pl08x->vd->signals; i++) { + /* + * chanp->periph_buses will be assigned at translation + */ + chanp->bus_id = kasprintf(GFP_KERNEL, "slave%d", i); + chanp++; + } + pd->num_slave_channels = pl08x->vd->signals; + } + + pl08x->pd = pd; + + return of_dma_controller_register(adev->dev.of_node, pl08x_of_xlate, + pl08x); +} +#else +static inline int pl08x_of_probe(struct amba_device *adev, + struct pl08x_driver_data *pl08x, + struct device_node *np) +{ + return -EINVAL; +} +#endif + +static int pl08x_probe(struct amba_device *adev, const struct amba_id *id) +{ + struct pl08x_driver_data *pl08x; + struct vendor_data *vd = id->data; + struct device_node *np = adev->dev.of_node; + u32 tsfr_size; + int ret = 0; + int i; + + ret = amba_request_regions(adev, NULL); + if (ret) + return ret; + + /* Ensure that we can do DMA */ + ret = dma_set_mask_and_coherent(&adev->dev, DMA_BIT_MASK(32)); + if (ret) + goto out_no_pl08x; + + /* Create the driver state holder */ + pl08x = kzalloc(sizeof(*pl08x), GFP_KERNEL); + if (!pl08x) { + ret = -ENOMEM; + goto out_no_pl08x; + } + + /* Assign useful pointers to the driver state */ + pl08x->adev = adev; + pl08x->vd = vd; + + pl08x->base = ioremap(adev->res.start, resource_size(&adev->res)); + if (!pl08x->base) { + ret = -ENOMEM; + goto out_no_ioremap; + } + + if (vd->ftdmac020) { + u32 val; + + val = readl(pl08x->base + FTDMAC020_REVISION); + dev_info(&pl08x->adev->dev, "FTDMAC020 %d.%d rel %d\n", + (val >> 16) & 0xff, (val >> 8) & 0xff, val & 0xff); + val = readl(pl08x->base + FTDMAC020_FEATURE); + dev_info(&pl08x->adev->dev, "FTDMAC020 %d channels, " + "%s built-in bridge, %s, %s linked lists\n", + (val >> 12) & 0x0f, + (val & BIT(10)) ? "no" : "has", + (val & BIT(9)) ? "AHB0 and AHB1" : "AHB0", + (val & BIT(8)) ? "supports" : "does not support"); + + /* Vendor data from feature register */ + if (!(val & BIT(8))) + dev_warn(&pl08x->adev->dev, + "linked lists not supported, required\n"); + vd->channels = (val >> 12) & 0x0f; + vd->dualmaster = !!(val & BIT(9)); + } + + /* Initialize memcpy engine */ + dma_cap_set(DMA_MEMCPY, pl08x->memcpy.cap_mask); + pl08x->memcpy.dev = &adev->dev; + pl08x->memcpy.device_free_chan_resources = pl08x_free_chan_resources; + pl08x->memcpy.device_prep_dma_memcpy = pl08x_prep_dma_memcpy; + pl08x->memcpy.device_tx_status = pl08x_dma_tx_status; + pl08x->memcpy.device_issue_pending = pl08x_issue_pending; + pl08x->memcpy.device_config = pl08x_config; + pl08x->memcpy.device_pause = pl08x_pause; + pl08x->memcpy.device_resume = pl08x_resume; + pl08x->memcpy.device_terminate_all = pl08x_terminate_all; + pl08x->memcpy.device_synchronize = pl08x_synchronize; + pl08x->memcpy.src_addr_widths = PL80X_DMA_BUSWIDTHS; + pl08x->memcpy.dst_addr_widths = PL80X_DMA_BUSWIDTHS; + pl08x->memcpy.directions = BIT(DMA_MEM_TO_MEM); + pl08x->memcpy.residue_granularity = DMA_RESIDUE_GRANULARITY_SEGMENT; + if (vd->ftdmac020) + pl08x->memcpy.copy_align = DMAENGINE_ALIGN_4_BYTES; + + + /* + * Initialize slave engine, if the block has no signals, that means + * we have no slave support. + */ + if (vd->signals) { + pl08x->has_slave = true; + dma_cap_set(DMA_SLAVE, pl08x->slave.cap_mask); + dma_cap_set(DMA_CYCLIC, pl08x->slave.cap_mask); + pl08x->slave.dev = &adev->dev; + pl08x->slave.device_free_chan_resources = + pl08x_free_chan_resources; + pl08x->slave.device_tx_status = pl08x_dma_tx_status; + pl08x->slave.device_issue_pending = pl08x_issue_pending; + pl08x->slave.device_prep_slave_sg = pl08x_prep_slave_sg; + pl08x->slave.device_prep_dma_cyclic = pl08x_prep_dma_cyclic; + pl08x->slave.device_config = pl08x_config; + pl08x->slave.device_pause = pl08x_pause; + pl08x->slave.device_resume = pl08x_resume; + pl08x->slave.device_terminate_all = pl08x_terminate_all; + pl08x->slave.device_synchronize = pl08x_synchronize; + pl08x->slave.src_addr_widths = PL80X_DMA_BUSWIDTHS; + pl08x->slave.dst_addr_widths = PL80X_DMA_BUSWIDTHS; + pl08x->slave.directions = + BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV); + pl08x->slave.residue_granularity = + DMA_RESIDUE_GRANULARITY_SEGMENT; + } + + /* Get the platform data */ + pl08x->pd = dev_get_platdata(&adev->dev); + if (!pl08x->pd) { + if (np) { + ret = pl08x_of_probe(adev, pl08x, np); + if (ret) + goto out_no_platdata; + } else { + dev_err(&adev->dev, "no platform data supplied\n"); + ret = -EINVAL; + goto out_no_platdata; + } + } else { + pl08x->slave.filter.map = pl08x->pd->slave_map; + pl08x->slave.filter.mapcnt = pl08x->pd->slave_map_len; + pl08x->slave.filter.fn = pl08x_filter_fn; + } + + /* By default, AHB1 only. If dualmaster, from platform */ + pl08x->lli_buses = PL08X_AHB1; + pl08x->mem_buses = PL08X_AHB1; + if (pl08x->vd->dualmaster) { + pl08x->lli_buses = pl08x->pd->lli_buses; + pl08x->mem_buses = pl08x->pd->mem_buses; + } + + if (vd->pl080s) + pl08x->lli_words = PL080S_LLI_WORDS; + else + pl08x->lli_words = PL080_LLI_WORDS; + tsfr_size = MAX_NUM_TSFR_LLIS * pl08x->lli_words * sizeof(u32); + + /* A DMA memory pool for LLIs, align on 1-byte boundary */ + pl08x->pool = dma_pool_create(DRIVER_NAME, &pl08x->adev->dev, + tsfr_size, PL08X_ALIGN, 0); + if (!pl08x->pool) { + ret = -ENOMEM; + goto out_no_lli_pool; + } + + /* Turn on the PL08x */ + pl08x_ensure_on(pl08x); + + /* Clear any pending interrupts */ + if (vd->ftdmac020) + /* This variant has error IRQs in bits 16-19 */ + writel(0x0000FFFF, pl08x->base + PL080_ERR_CLEAR); + else + writel(0x000000FF, pl08x->base + PL080_ERR_CLEAR); + writel(0x000000FF, pl08x->base + PL080_TC_CLEAR); + + /* Attach the interrupt handler */ + ret = request_irq(adev->irq[0], pl08x_irq, 0, DRIVER_NAME, pl08x); + if (ret) { + dev_err(&adev->dev, "%s failed to request interrupt %d\n", + __func__, adev->irq[0]); + goto out_no_irq; + } + + /* Initialize physical channels */ + pl08x->phy_chans = kzalloc((vd->channels * sizeof(*pl08x->phy_chans)), + GFP_KERNEL); + if (!pl08x->phy_chans) { + ret = -ENOMEM; + goto out_no_phychans; + } + + for (i = 0; i < vd->channels; i++) { + struct pl08x_phy_chan *ch = &pl08x->phy_chans[i]; + + ch->id = i; + ch->base = pl08x->base + PL080_Cx_BASE(i); + if (vd->ftdmac020) { + /* FTDMA020 has a special channel busy register */ + ch->reg_busy = ch->base + FTDMAC020_CH_BUSY; + ch->reg_config = ch->base + FTDMAC020_CH_CFG; + ch->reg_control = ch->base + FTDMAC020_CH_CSR; + ch->reg_src = ch->base + FTDMAC020_CH_SRC_ADDR; + ch->reg_dst = ch->base + FTDMAC020_CH_DST_ADDR; + ch->reg_lli = ch->base + FTDMAC020_CH_LLP; + ch->ftdmac020 = true; + } else { + ch->reg_config = ch->base + vd->config_offset; + ch->reg_control = ch->base + PL080_CH_CONTROL; + ch->reg_src = ch->base + PL080_CH_SRC_ADDR; + ch->reg_dst = ch->base + PL080_CH_DST_ADDR; + ch->reg_lli = ch->base + PL080_CH_LLI; + } + if (vd->pl080s) + ch->pl080s = true; + + spin_lock_init(&ch->lock); + + /* + * Nomadik variants can have channels that are locked + * down for the secure world only. Lock up these channels + * by perpetually serving a dummy virtual channel. + */ + if (vd->nomadik) { + u32 val; + + val = readl(ch->reg_config); + if (val & (PL080N_CONFIG_ITPROT | PL080N_CONFIG_SECPROT)) { + dev_info(&adev->dev, "physical channel %d reserved for secure access only\n", i); + ch->locked = true; + } + } + + dev_dbg(&adev->dev, "physical channel %d is %s\n", + i, pl08x_phy_channel_busy(ch) ? "BUSY" : "FREE"); + } + + /* Register as many memcpy channels as there are physical channels */ + ret = pl08x_dma_init_virtual_channels(pl08x, &pl08x->memcpy, + pl08x->vd->channels, false); + if (ret <= 0) { + dev_warn(&pl08x->adev->dev, + "%s failed to enumerate memcpy channels - %d\n", + __func__, ret); + goto out_no_memcpy; + } + + /* Register slave channels */ + if (pl08x->has_slave) { + ret = pl08x_dma_init_virtual_channels(pl08x, &pl08x->slave, + pl08x->pd->num_slave_channels, true); + if (ret < 0) { + dev_warn(&pl08x->adev->dev, + "%s failed to enumerate slave channels - %d\n", + __func__, ret); + goto out_no_slave; + } + } + + ret = dma_async_device_register(&pl08x->memcpy); + if (ret) { + dev_warn(&pl08x->adev->dev, + "%s failed to register memcpy as an async device - %d\n", + __func__, ret); + goto out_no_memcpy_reg; + } + + if (pl08x->has_slave) { + ret = dma_async_device_register(&pl08x->slave); + if (ret) { + dev_warn(&pl08x->adev->dev, + "%s failed to register slave as an async device - %d\n", + __func__, ret); + goto out_no_slave_reg; + } + } + + amba_set_drvdata(adev, pl08x); + init_pl08x_debugfs(pl08x); + dev_info(&pl08x->adev->dev, "DMA: PL%03x%s rev%u at 0x%08llx irq %d\n", + amba_part(adev), pl08x->vd->pl080s ? "s" : "", amba_rev(adev), + (unsigned long long)adev->res.start, adev->irq[0]); + + return 0; + +out_no_slave_reg: + dma_async_device_unregister(&pl08x->memcpy); +out_no_memcpy_reg: + if (pl08x->has_slave) + pl08x_free_virtual_channels(&pl08x->slave); +out_no_slave: + pl08x_free_virtual_channels(&pl08x->memcpy); +out_no_memcpy: + kfree(pl08x->phy_chans); +out_no_phychans: + free_irq(adev->irq[0], pl08x); +out_no_irq: + dma_pool_destroy(pl08x->pool); +out_no_lli_pool: +out_no_platdata: + iounmap(pl08x->base); +out_no_ioremap: + kfree(pl08x); +out_no_pl08x: + amba_release_regions(adev); + return ret; +} + +/* PL080 has 8 channels and the PL080 have just 2 */ +static struct vendor_data vendor_pl080 = { + .config_offset = PL080_CH_CONFIG, + .channels = 8, + .signals = 16, + .dualmaster = true, + .max_transfer_size = PL080_CONTROL_TRANSFER_SIZE_MASK, +}; + +static struct vendor_data vendor_nomadik = { + .config_offset = PL080_CH_CONFIG, + .channels = 8, + .signals = 32, + .dualmaster = true, + .nomadik = true, + .max_transfer_size = PL080_CONTROL_TRANSFER_SIZE_MASK, +}; + +static struct vendor_data vendor_pl080s = { + .config_offset = PL080S_CH_CONFIG, + .channels = 8, + .signals = 32, + .pl080s = true, + .max_transfer_size = PL080S_CONTROL_TRANSFER_SIZE_MASK, +}; + +static struct vendor_data vendor_pl081 = { + .config_offset = PL080_CH_CONFIG, + .channels = 2, + .signals = 16, + .dualmaster = false, + .max_transfer_size = PL080_CONTROL_TRANSFER_SIZE_MASK, +}; + +static struct vendor_data vendor_ftdmac020 = { + .config_offset = PL080_CH_CONFIG, + .ftdmac020 = true, + .max_transfer_size = PL080_CONTROL_TRANSFER_SIZE_MASK, +}; + +static const struct amba_id pl08x_ids[] = { + /* Samsung PL080S variant */ + { + .id = 0x0a141080, + .mask = 0xffffffff, + .data = &vendor_pl080s, + }, + /* PL080 */ + { + .id = 0x00041080, + .mask = 0x000fffff, + .data = &vendor_pl080, + }, + /* PL081 */ + { + .id = 0x00041081, + .mask = 0x000fffff, + .data = &vendor_pl081, + }, + /* Nomadik 8815 PL080 variant */ + { + .id = 0x00280080, + .mask = 0x00ffffff, + .data = &vendor_nomadik, + }, + /* Faraday Technology FTDMAC020 */ + { + .id = 0x0003b080, + .mask = 0x000fffff, + .data = &vendor_ftdmac020, + }, + { 0, 0 }, +}; + +MODULE_DEVICE_TABLE(amba, pl08x_ids); + +static struct amba_driver pl08x_amba_driver = { + .drv.name = DRIVER_NAME, + .id_table = pl08x_ids, + .probe = pl08x_probe, +}; + +static int __init pl08x_init(void) +{ + int retval; + retval = amba_driver_register(&pl08x_amba_driver); + if (retval) + printk(KERN_WARNING DRIVER_NAME + "failed to register as an AMBA device (%d)\n", + retval); + return retval; +} +subsys_initcall(pl08x_init); |