summaryrefslogtreecommitdiffstats
path: root/drivers/gpu/drm/i915/gem/i915_gem_execbuffer.c
diff options
context:
space:
mode:
Diffstat (limited to 'drivers/gpu/drm/i915/gem/i915_gem_execbuffer.c')
-rw-r--r--drivers/gpu/drm/i915/gem/i915_gem_execbuffer.c3652
1 files changed, 3652 insertions, 0 deletions
diff --git a/drivers/gpu/drm/i915/gem/i915_gem_execbuffer.c b/drivers/gpu/drm/i915/gem/i915_gem_execbuffer.c
new file mode 100644
index 000000000..5a687a368
--- /dev/null
+++ b/drivers/gpu/drm/i915/gem/i915_gem_execbuffer.c
@@ -0,0 +1,3652 @@
+/*
+ * SPDX-License-Identifier: MIT
+ *
+ * Copyright © 2008,2010 Intel Corporation
+ */
+
+#include <linux/dma-resv.h>
+#include <linux/highmem.h>
+#include <linux/sync_file.h>
+#include <linux/uaccess.h>
+
+#include <drm/drm_syncobj.h>
+
+#include "display/intel_frontbuffer.h"
+
+#include "gem/i915_gem_ioctls.h"
+#include "gt/intel_context.h"
+#include "gt/intel_gpu_commands.h"
+#include "gt/intel_gt.h"
+#include "gt/intel_gt_buffer_pool.h"
+#include "gt/intel_gt_pm.h"
+#include "gt/intel_ring.h"
+
+#include "pxp/intel_pxp.h"
+
+#include "i915_cmd_parser.h"
+#include "i915_drv.h"
+#include "i915_file_private.h"
+#include "i915_gem_clflush.h"
+#include "i915_gem_context.h"
+#include "i915_gem_evict.h"
+#include "i915_gem_ioctls.h"
+#include "i915_reg.h"
+#include "i915_trace.h"
+#include "i915_user_extensions.h"
+
+struct eb_vma {
+ struct i915_vma *vma;
+ unsigned int flags;
+
+ /** This vma's place in the execbuf reservation list */
+ struct drm_i915_gem_exec_object2 *exec;
+ struct list_head bind_link;
+ struct list_head reloc_link;
+
+ struct hlist_node node;
+ u32 handle;
+};
+
+enum {
+ FORCE_CPU_RELOC = 1,
+ FORCE_GTT_RELOC,
+ FORCE_GPU_RELOC,
+#define DBG_FORCE_RELOC 0 /* choose one of the above! */
+};
+
+/* __EXEC_OBJECT_ flags > BIT(29) defined in i915_vma.h */
+#define __EXEC_OBJECT_HAS_PIN BIT(29)
+#define __EXEC_OBJECT_HAS_FENCE BIT(28)
+#define __EXEC_OBJECT_USERPTR_INIT BIT(27)
+#define __EXEC_OBJECT_NEEDS_MAP BIT(26)
+#define __EXEC_OBJECT_NEEDS_BIAS BIT(25)
+#define __EXEC_OBJECT_INTERNAL_FLAGS (~0u << 25) /* all of the above + */
+#define __EXEC_OBJECT_RESERVED (__EXEC_OBJECT_HAS_PIN | __EXEC_OBJECT_HAS_FENCE)
+
+#define __EXEC_HAS_RELOC BIT(31)
+#define __EXEC_ENGINE_PINNED BIT(30)
+#define __EXEC_USERPTR_USED BIT(29)
+#define __EXEC_INTERNAL_FLAGS (~0u << 29)
+#define UPDATE PIN_OFFSET_FIXED
+
+#define BATCH_OFFSET_BIAS (256*1024)
+
+#define __I915_EXEC_ILLEGAL_FLAGS \
+ (__I915_EXEC_UNKNOWN_FLAGS | \
+ I915_EXEC_CONSTANTS_MASK | \
+ I915_EXEC_RESOURCE_STREAMER)
+
+/* Catch emission of unexpected errors for CI! */
+#if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)
+#undef EINVAL
+#define EINVAL ({ \
+ DRM_DEBUG_DRIVER("EINVAL at %s:%d\n", __func__, __LINE__); \
+ 22; \
+})
+#endif
+
+/**
+ * DOC: User command execution
+ *
+ * Userspace submits commands to be executed on the GPU as an instruction
+ * stream within a GEM object we call a batchbuffer. This instructions may
+ * refer to other GEM objects containing auxiliary state such as kernels,
+ * samplers, render targets and even secondary batchbuffers. Userspace does
+ * not know where in the GPU memory these objects reside and so before the
+ * batchbuffer is passed to the GPU for execution, those addresses in the
+ * batchbuffer and auxiliary objects are updated. This is known as relocation,
+ * or patching. To try and avoid having to relocate each object on the next
+ * execution, userspace is told the location of those objects in this pass,
+ * but this remains just a hint as the kernel may choose a new location for
+ * any object in the future.
+ *
+ * At the level of talking to the hardware, submitting a batchbuffer for the
+ * GPU to execute is to add content to a buffer from which the HW
+ * command streamer is reading.
+ *
+ * 1. Add a command to load the HW context. For Logical Ring Contexts, i.e.
+ * Execlists, this command is not placed on the same buffer as the
+ * remaining items.
+ *
+ * 2. Add a command to invalidate caches to the buffer.
+ *
+ * 3. Add a batchbuffer start command to the buffer; the start command is
+ * essentially a token together with the GPU address of the batchbuffer
+ * to be executed.
+ *
+ * 4. Add a pipeline flush to the buffer.
+ *
+ * 5. Add a memory write command to the buffer to record when the GPU
+ * is done executing the batchbuffer. The memory write writes the
+ * global sequence number of the request, ``i915_request::global_seqno``;
+ * the i915 driver uses the current value in the register to determine
+ * if the GPU has completed the batchbuffer.
+ *
+ * 6. Add a user interrupt command to the buffer. This command instructs
+ * the GPU to issue an interrupt when the command, pipeline flush and
+ * memory write are completed.
+ *
+ * 7. Inform the hardware of the additional commands added to the buffer
+ * (by updating the tail pointer).
+ *
+ * Processing an execbuf ioctl is conceptually split up into a few phases.
+ *
+ * 1. Validation - Ensure all the pointers, handles and flags are valid.
+ * 2. Reservation - Assign GPU address space for every object
+ * 3. Relocation - Update any addresses to point to the final locations
+ * 4. Serialisation - Order the request with respect to its dependencies
+ * 5. Construction - Construct a request to execute the batchbuffer
+ * 6. Submission (at some point in the future execution)
+ *
+ * Reserving resources for the execbuf is the most complicated phase. We
+ * neither want to have to migrate the object in the address space, nor do
+ * we want to have to update any relocations pointing to this object. Ideally,
+ * we want to leave the object where it is and for all the existing relocations
+ * to match. If the object is given a new address, or if userspace thinks the
+ * object is elsewhere, we have to parse all the relocation entries and update
+ * the addresses. Userspace can set the I915_EXEC_NORELOC flag to hint that
+ * all the target addresses in all of its objects match the value in the
+ * relocation entries and that they all match the presumed offsets given by the
+ * list of execbuffer objects. Using this knowledge, we know that if we haven't
+ * moved any buffers, all the relocation entries are valid and we can skip
+ * the update. (If userspace is wrong, the likely outcome is an impromptu GPU
+ * hang.) The requirement for using I915_EXEC_NO_RELOC are:
+ *
+ * The addresses written in the objects must match the corresponding
+ * reloc.presumed_offset which in turn must match the corresponding
+ * execobject.offset.
+ *
+ * Any render targets written to in the batch must be flagged with
+ * EXEC_OBJECT_WRITE.
+ *
+ * To avoid stalling, execobject.offset should match the current
+ * address of that object within the active context.
+ *
+ * The reservation is done is multiple phases. First we try and keep any
+ * object already bound in its current location - so as long as meets the
+ * constraints imposed by the new execbuffer. Any object left unbound after the
+ * first pass is then fitted into any available idle space. If an object does
+ * not fit, all objects are removed from the reservation and the process rerun
+ * after sorting the objects into a priority order (more difficult to fit
+ * objects are tried first). Failing that, the entire VM is cleared and we try
+ * to fit the execbuf once last time before concluding that it simply will not
+ * fit.
+ *
+ * A small complication to all of this is that we allow userspace not only to
+ * specify an alignment and a size for the object in the address space, but
+ * we also allow userspace to specify the exact offset. This objects are
+ * simpler to place (the location is known a priori) all we have to do is make
+ * sure the space is available.
+ *
+ * Once all the objects are in place, patching up the buried pointers to point
+ * to the final locations is a fairly simple job of walking over the relocation
+ * entry arrays, looking up the right address and rewriting the value into
+ * the object. Simple! ... The relocation entries are stored in user memory
+ * and so to access them we have to copy them into a local buffer. That copy
+ * has to avoid taking any pagefaults as they may lead back to a GEM object
+ * requiring the struct_mutex (i.e. recursive deadlock). So once again we split
+ * the relocation into multiple passes. First we try to do everything within an
+ * atomic context (avoid the pagefaults) which requires that we never wait. If
+ * we detect that we may wait, or if we need to fault, then we have to fallback
+ * to a slower path. The slowpath has to drop the mutex. (Can you hear alarm
+ * bells yet?) Dropping the mutex means that we lose all the state we have
+ * built up so far for the execbuf and we must reset any global data. However,
+ * we do leave the objects pinned in their final locations - which is a
+ * potential issue for concurrent execbufs. Once we have left the mutex, we can
+ * allocate and copy all the relocation entries into a large array at our
+ * leisure, reacquire the mutex, reclaim all the objects and other state and
+ * then proceed to update any incorrect addresses with the objects.
+ *
+ * As we process the relocation entries, we maintain a record of whether the
+ * object is being written to. Using NORELOC, we expect userspace to provide
+ * this information instead. We also check whether we can skip the relocation
+ * by comparing the expected value inside the relocation entry with the target's
+ * final address. If they differ, we have to map the current object and rewrite
+ * the 4 or 8 byte pointer within.
+ *
+ * Serialising an execbuf is quite simple according to the rules of the GEM
+ * ABI. Execution within each context is ordered by the order of submission.
+ * Writes to any GEM object are in order of submission and are exclusive. Reads
+ * from a GEM object are unordered with respect to other reads, but ordered by
+ * writes. A write submitted after a read cannot occur before the read, and
+ * similarly any read submitted after a write cannot occur before the write.
+ * Writes are ordered between engines such that only one write occurs at any
+ * time (completing any reads beforehand) - using semaphores where available
+ * and CPU serialisation otherwise. Other GEM access obey the same rules, any
+ * write (either via mmaps using set-domain, or via pwrite) must flush all GPU
+ * reads before starting, and any read (either using set-domain or pread) must
+ * flush all GPU writes before starting. (Note we only employ a barrier before,
+ * we currently rely on userspace not concurrently starting a new execution
+ * whilst reading or writing to an object. This may be an advantage or not
+ * depending on how much you trust userspace not to shoot themselves in the
+ * foot.) Serialisation may just result in the request being inserted into
+ * a DAG awaiting its turn, but most simple is to wait on the CPU until
+ * all dependencies are resolved.
+ *
+ * After all of that, is just a matter of closing the request and handing it to
+ * the hardware (well, leaving it in a queue to be executed). However, we also
+ * offer the ability for batchbuffers to be run with elevated privileges so
+ * that they access otherwise hidden registers. (Used to adjust L3 cache etc.)
+ * Before any batch is given extra privileges we first must check that it
+ * contains no nefarious instructions, we check that each instruction is from
+ * our whitelist and all registers are also from an allowed list. We first
+ * copy the user's batchbuffer to a shadow (so that the user doesn't have
+ * access to it, either by the CPU or GPU as we scan it) and then parse each
+ * instruction. If everything is ok, we set a flag telling the hardware to run
+ * the batchbuffer in trusted mode, otherwise the ioctl is rejected.
+ */
+
+struct eb_fence {
+ struct drm_syncobj *syncobj; /* Use with ptr_mask_bits() */
+ struct dma_fence *dma_fence;
+ u64 value;
+ struct dma_fence_chain *chain_fence;
+};
+
+struct i915_execbuffer {
+ struct drm_i915_private *i915; /** i915 backpointer */
+ struct drm_file *file; /** per-file lookup tables and limits */
+ struct drm_i915_gem_execbuffer2 *args; /** ioctl parameters */
+ struct drm_i915_gem_exec_object2 *exec; /** ioctl execobj[] */
+ struct eb_vma *vma;
+
+ struct intel_gt *gt; /* gt for the execbuf */
+ struct intel_context *context; /* logical state for the request */
+ struct i915_gem_context *gem_context; /** caller's context */
+
+ /** our requests to build */
+ struct i915_request *requests[MAX_ENGINE_INSTANCE + 1];
+ /** identity of the batch obj/vma */
+ struct eb_vma *batches[MAX_ENGINE_INSTANCE + 1];
+ struct i915_vma *trampoline; /** trampoline used for chaining */
+
+ /** used for excl fence in dma_resv objects when > 1 BB submitted */
+ struct dma_fence *composite_fence;
+
+ /** actual size of execobj[] as we may extend it for the cmdparser */
+ unsigned int buffer_count;
+
+ /* number of batches in execbuf IOCTL */
+ unsigned int num_batches;
+
+ /** list of vma not yet bound during reservation phase */
+ struct list_head unbound;
+
+ /** list of vma that have execobj.relocation_count */
+ struct list_head relocs;
+
+ struct i915_gem_ww_ctx ww;
+
+ /**
+ * Track the most recently used object for relocations, as we
+ * frequently have to perform multiple relocations within the same
+ * obj/page
+ */
+ struct reloc_cache {
+ struct drm_mm_node node; /** temporary GTT binding */
+ unsigned long vaddr; /** Current kmap address */
+ unsigned long page; /** Currently mapped page index */
+ unsigned int graphics_ver; /** Cached value of GRAPHICS_VER */
+ bool use_64bit_reloc : 1;
+ bool has_llc : 1;
+ bool has_fence : 1;
+ bool needs_unfenced : 1;
+ } reloc_cache;
+
+ u64 invalid_flags; /** Set of execobj.flags that are invalid */
+
+ /** Length of batch within object */
+ u64 batch_len[MAX_ENGINE_INSTANCE + 1];
+ u32 batch_start_offset; /** Location within object of batch */
+ u32 batch_flags; /** Flags composed for emit_bb_start() */
+ struct intel_gt_buffer_pool_node *batch_pool; /** pool node for batch buffer */
+
+ /**
+ * Indicate either the size of the hastable used to resolve
+ * relocation handles, or if negative that we are using a direct
+ * index into the execobj[].
+ */
+ int lut_size;
+ struct hlist_head *buckets; /** ht for relocation handles */
+
+ struct eb_fence *fences;
+ unsigned long num_fences;
+#if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR)
+ struct i915_capture_list *capture_lists[MAX_ENGINE_INSTANCE + 1];
+#endif
+};
+
+static int eb_parse(struct i915_execbuffer *eb);
+static int eb_pin_engine(struct i915_execbuffer *eb, bool throttle);
+static void eb_unpin_engine(struct i915_execbuffer *eb);
+static void eb_capture_release(struct i915_execbuffer *eb);
+
+static inline bool eb_use_cmdparser(const struct i915_execbuffer *eb)
+{
+ return intel_engine_requires_cmd_parser(eb->context->engine) ||
+ (intel_engine_using_cmd_parser(eb->context->engine) &&
+ eb->args->batch_len);
+}
+
+static int eb_create(struct i915_execbuffer *eb)
+{
+ if (!(eb->args->flags & I915_EXEC_HANDLE_LUT)) {
+ unsigned int size = 1 + ilog2(eb->buffer_count);
+
+ /*
+ * Without a 1:1 association between relocation handles and
+ * the execobject[] index, we instead create a hashtable.
+ * We size it dynamically based on available memory, starting
+ * first with 1:1 assocative hash and scaling back until
+ * the allocation succeeds.
+ *
+ * Later on we use a positive lut_size to indicate we are
+ * using this hashtable, and a negative value to indicate a
+ * direct lookup.
+ */
+ do {
+ gfp_t flags;
+
+ /* While we can still reduce the allocation size, don't
+ * raise a warning and allow the allocation to fail.
+ * On the last pass though, we want to try as hard
+ * as possible to perform the allocation and warn
+ * if it fails.
+ */
+ flags = GFP_KERNEL;
+ if (size > 1)
+ flags |= __GFP_NORETRY | __GFP_NOWARN;
+
+ eb->buckets = kzalloc(sizeof(struct hlist_head) << size,
+ flags);
+ if (eb->buckets)
+ break;
+ } while (--size);
+
+ if (unlikely(!size))
+ return -ENOMEM;
+
+ eb->lut_size = size;
+ } else {
+ eb->lut_size = -eb->buffer_count;
+ }
+
+ return 0;
+}
+
+static bool
+eb_vma_misplaced(const struct drm_i915_gem_exec_object2 *entry,
+ const struct i915_vma *vma,
+ unsigned int flags)
+{
+ const u64 start = i915_vma_offset(vma);
+ const u64 size = i915_vma_size(vma);
+
+ if (size < entry->pad_to_size)
+ return true;
+
+ if (entry->alignment && !IS_ALIGNED(start, entry->alignment))
+ return true;
+
+ if (flags & EXEC_OBJECT_PINNED &&
+ start != entry->offset)
+ return true;
+
+ if (flags & __EXEC_OBJECT_NEEDS_BIAS &&
+ start < BATCH_OFFSET_BIAS)
+ return true;
+
+ if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS) &&
+ (start + size + 4095) >> 32)
+ return true;
+
+ if (flags & __EXEC_OBJECT_NEEDS_MAP &&
+ !i915_vma_is_map_and_fenceable(vma))
+ return true;
+
+ return false;
+}
+
+static u64 eb_pin_flags(const struct drm_i915_gem_exec_object2 *entry,
+ unsigned int exec_flags)
+{
+ u64 pin_flags = 0;
+
+ if (exec_flags & EXEC_OBJECT_NEEDS_GTT)
+ pin_flags |= PIN_GLOBAL;
+
+ /*
+ * Wa32bitGeneralStateOffset & Wa32bitInstructionBaseOffset,
+ * limit address to the first 4GBs for unflagged objects.
+ */
+ if (!(exec_flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS))
+ pin_flags |= PIN_ZONE_4G;
+
+ if (exec_flags & __EXEC_OBJECT_NEEDS_MAP)
+ pin_flags |= PIN_MAPPABLE;
+
+ if (exec_flags & EXEC_OBJECT_PINNED)
+ pin_flags |= entry->offset | PIN_OFFSET_FIXED;
+ else if (exec_flags & __EXEC_OBJECT_NEEDS_BIAS)
+ pin_flags |= BATCH_OFFSET_BIAS | PIN_OFFSET_BIAS;
+
+ return pin_flags;
+}
+
+static inline int
+eb_pin_vma(struct i915_execbuffer *eb,
+ const struct drm_i915_gem_exec_object2 *entry,
+ struct eb_vma *ev)
+{
+ struct i915_vma *vma = ev->vma;
+ u64 pin_flags;
+ int err;
+
+ if (vma->node.size)
+ pin_flags = __i915_vma_offset(vma);
+ else
+ pin_flags = entry->offset & PIN_OFFSET_MASK;
+
+ pin_flags |= PIN_USER | PIN_NOEVICT | PIN_OFFSET_FIXED | PIN_VALIDATE;
+ if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_GTT))
+ pin_flags |= PIN_GLOBAL;
+
+ /* Attempt to reuse the current location if available */
+ err = i915_vma_pin_ww(vma, &eb->ww, 0, 0, pin_flags);
+ if (err == -EDEADLK)
+ return err;
+
+ if (unlikely(err)) {
+ if (entry->flags & EXEC_OBJECT_PINNED)
+ return err;
+
+ /* Failing that pick any _free_ space if suitable */
+ err = i915_vma_pin_ww(vma, &eb->ww,
+ entry->pad_to_size,
+ entry->alignment,
+ eb_pin_flags(entry, ev->flags) |
+ PIN_USER | PIN_NOEVICT | PIN_VALIDATE);
+ if (unlikely(err))
+ return err;
+ }
+
+ if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_FENCE)) {
+ err = i915_vma_pin_fence(vma);
+ if (unlikely(err))
+ return err;
+
+ if (vma->fence)
+ ev->flags |= __EXEC_OBJECT_HAS_FENCE;
+ }
+
+ ev->flags |= __EXEC_OBJECT_HAS_PIN;
+ if (eb_vma_misplaced(entry, vma, ev->flags))
+ return -EBADSLT;
+
+ return 0;
+}
+
+static inline void
+eb_unreserve_vma(struct eb_vma *ev)
+{
+ if (unlikely(ev->flags & __EXEC_OBJECT_HAS_FENCE))
+ __i915_vma_unpin_fence(ev->vma);
+
+ ev->flags &= ~__EXEC_OBJECT_RESERVED;
+}
+
+static int
+eb_validate_vma(struct i915_execbuffer *eb,
+ struct drm_i915_gem_exec_object2 *entry,
+ struct i915_vma *vma)
+{
+ /* Relocations are disallowed for all platforms after TGL-LP. This
+ * also covers all platforms with local memory.
+ */
+ if (entry->relocation_count &&
+ GRAPHICS_VER(eb->i915) >= 12 && !IS_TIGERLAKE(eb->i915))
+ return -EINVAL;
+
+ if (unlikely(entry->flags & eb->invalid_flags))
+ return -EINVAL;
+
+ if (unlikely(entry->alignment &&
+ !is_power_of_2_u64(entry->alignment)))
+ return -EINVAL;
+
+ /*
+ * Offset can be used as input (EXEC_OBJECT_PINNED), reject
+ * any non-page-aligned or non-canonical addresses.
+ */
+ if (unlikely(entry->flags & EXEC_OBJECT_PINNED &&
+ entry->offset != gen8_canonical_addr(entry->offset & I915_GTT_PAGE_MASK)))
+ return -EINVAL;
+
+ /* pad_to_size was once a reserved field, so sanitize it */
+ if (entry->flags & EXEC_OBJECT_PAD_TO_SIZE) {
+ if (unlikely(offset_in_page(entry->pad_to_size)))
+ return -EINVAL;
+ } else {
+ entry->pad_to_size = 0;
+ }
+ /*
+ * From drm_mm perspective address space is continuous,
+ * so from this point we're always using non-canonical
+ * form internally.
+ */
+ entry->offset = gen8_noncanonical_addr(entry->offset);
+
+ if (!eb->reloc_cache.has_fence) {
+ entry->flags &= ~EXEC_OBJECT_NEEDS_FENCE;
+ } else {
+ if ((entry->flags & EXEC_OBJECT_NEEDS_FENCE ||
+ eb->reloc_cache.needs_unfenced) &&
+ i915_gem_object_is_tiled(vma->obj))
+ entry->flags |= EXEC_OBJECT_NEEDS_GTT | __EXEC_OBJECT_NEEDS_MAP;
+ }
+
+ return 0;
+}
+
+static inline bool
+is_batch_buffer(struct i915_execbuffer *eb, unsigned int buffer_idx)
+{
+ return eb->args->flags & I915_EXEC_BATCH_FIRST ?
+ buffer_idx < eb->num_batches :
+ buffer_idx >= eb->args->buffer_count - eb->num_batches;
+}
+
+static int
+eb_add_vma(struct i915_execbuffer *eb,
+ unsigned int *current_batch,
+ unsigned int i,
+ struct i915_vma *vma)
+{
+ struct drm_i915_private *i915 = eb->i915;
+ struct drm_i915_gem_exec_object2 *entry = &eb->exec[i];
+ struct eb_vma *ev = &eb->vma[i];
+
+ ev->vma = vma;
+ ev->exec = entry;
+ ev->flags = entry->flags;
+
+ if (eb->lut_size > 0) {
+ ev->handle = entry->handle;
+ hlist_add_head(&ev->node,
+ &eb->buckets[hash_32(entry->handle,
+ eb->lut_size)]);
+ }
+
+ if (entry->relocation_count)
+ list_add_tail(&ev->reloc_link, &eb->relocs);
+
+ /*
+ * SNA is doing fancy tricks with compressing batch buffers, which leads
+ * to negative relocation deltas. Usually that works out ok since the
+ * relocate address is still positive, except when the batch is placed
+ * very low in the GTT. Ensure this doesn't happen.
+ *
+ * Note that actual hangs have only been observed on gen7, but for
+ * paranoia do it everywhere.
+ */
+ if (is_batch_buffer(eb, i)) {
+ if (entry->relocation_count &&
+ !(ev->flags & EXEC_OBJECT_PINNED))
+ ev->flags |= __EXEC_OBJECT_NEEDS_BIAS;
+ if (eb->reloc_cache.has_fence)
+ ev->flags |= EXEC_OBJECT_NEEDS_FENCE;
+
+ eb->batches[*current_batch] = ev;
+
+ if (unlikely(ev->flags & EXEC_OBJECT_WRITE)) {
+ drm_dbg(&i915->drm,
+ "Attempting to use self-modifying batch buffer\n");
+ return -EINVAL;
+ }
+
+ if (range_overflows_t(u64,
+ eb->batch_start_offset,
+ eb->args->batch_len,
+ ev->vma->size)) {
+ drm_dbg(&i915->drm, "Attempting to use out-of-bounds batch\n");
+ return -EINVAL;
+ }
+
+ if (eb->args->batch_len == 0)
+ eb->batch_len[*current_batch] = ev->vma->size -
+ eb->batch_start_offset;
+ else
+ eb->batch_len[*current_batch] = eb->args->batch_len;
+ if (unlikely(eb->batch_len[*current_batch] == 0)) { /* impossible! */
+ drm_dbg(&i915->drm, "Invalid batch length\n");
+ return -EINVAL;
+ }
+
+ ++*current_batch;
+ }
+
+ return 0;
+}
+
+static inline int use_cpu_reloc(const struct reloc_cache *cache,
+ const struct drm_i915_gem_object *obj)
+{
+ if (!i915_gem_object_has_struct_page(obj))
+ return false;
+
+ if (DBG_FORCE_RELOC == FORCE_CPU_RELOC)
+ return true;
+
+ if (DBG_FORCE_RELOC == FORCE_GTT_RELOC)
+ return false;
+
+ /*
+ * For objects created by userspace through GEM_CREATE with pat_index
+ * set by set_pat extension, i915_gem_object_has_cache_level() always
+ * return true, otherwise the call would fall back to checking whether
+ * the object is un-cached.
+ */
+ return (cache->has_llc ||
+ obj->cache_dirty ||
+ !i915_gem_object_has_cache_level(obj, I915_CACHE_NONE));
+}
+
+static int eb_reserve_vma(struct i915_execbuffer *eb,
+ struct eb_vma *ev,
+ u64 pin_flags)
+{
+ struct drm_i915_gem_exec_object2 *entry = ev->exec;
+ struct i915_vma *vma = ev->vma;
+ int err;
+
+ if (drm_mm_node_allocated(&vma->node) &&
+ eb_vma_misplaced(entry, vma, ev->flags)) {
+ err = i915_vma_unbind(vma);
+ if (err)
+ return err;
+ }
+
+ err = i915_vma_pin_ww(vma, &eb->ww,
+ entry->pad_to_size, entry->alignment,
+ eb_pin_flags(entry, ev->flags) | pin_flags);
+ if (err)
+ return err;
+
+ if (entry->offset != i915_vma_offset(vma)) {
+ entry->offset = i915_vma_offset(vma) | UPDATE;
+ eb->args->flags |= __EXEC_HAS_RELOC;
+ }
+
+ if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_FENCE)) {
+ err = i915_vma_pin_fence(vma);
+ if (unlikely(err))
+ return err;
+
+ if (vma->fence)
+ ev->flags |= __EXEC_OBJECT_HAS_FENCE;
+ }
+
+ ev->flags |= __EXEC_OBJECT_HAS_PIN;
+ GEM_BUG_ON(eb_vma_misplaced(entry, vma, ev->flags));
+
+ return 0;
+}
+
+static bool eb_unbind(struct i915_execbuffer *eb, bool force)
+{
+ const unsigned int count = eb->buffer_count;
+ unsigned int i;
+ struct list_head last;
+ bool unpinned = false;
+
+ /* Resort *all* the objects into priority order */
+ INIT_LIST_HEAD(&eb->unbound);
+ INIT_LIST_HEAD(&last);
+
+ for (i = 0; i < count; i++) {
+ struct eb_vma *ev = &eb->vma[i];
+ unsigned int flags = ev->flags;
+
+ if (!force && flags & EXEC_OBJECT_PINNED &&
+ flags & __EXEC_OBJECT_HAS_PIN)
+ continue;
+
+ unpinned = true;
+ eb_unreserve_vma(ev);
+
+ if (flags & EXEC_OBJECT_PINNED)
+ /* Pinned must have their slot */
+ list_add(&ev->bind_link, &eb->unbound);
+ else if (flags & __EXEC_OBJECT_NEEDS_MAP)
+ /* Map require the lowest 256MiB (aperture) */
+ list_add_tail(&ev->bind_link, &eb->unbound);
+ else if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS))
+ /* Prioritise 4GiB region for restricted bo */
+ list_add(&ev->bind_link, &last);
+ else
+ list_add_tail(&ev->bind_link, &last);
+ }
+
+ list_splice_tail(&last, &eb->unbound);
+ return unpinned;
+}
+
+static int eb_reserve(struct i915_execbuffer *eb)
+{
+ struct eb_vma *ev;
+ unsigned int pass;
+ int err = 0;
+
+ /*
+ * We have one more buffers that we couldn't bind, which could be due to
+ * various reasons. To resolve this we have 4 passes, with every next
+ * level turning the screws tighter:
+ *
+ * 0. Unbind all objects that do not match the GTT constraints for the
+ * execbuffer (fenceable, mappable, alignment etc). Bind all new
+ * objects. This avoids unnecessary unbinding of later objects in order
+ * to make room for the earlier objects *unless* we need to defragment.
+ *
+ * 1. Reorder the buffers, where objects with the most restrictive
+ * placement requirements go first (ignoring fixed location buffers for
+ * now). For example, objects needing the mappable aperture (the first
+ * 256M of GTT), should go first vs objects that can be placed just
+ * about anywhere. Repeat the previous pass.
+ *
+ * 2. Consider buffers that are pinned at a fixed location. Also try to
+ * evict the entire VM this time, leaving only objects that we were
+ * unable to lock. Try again to bind the buffers. (still using the new
+ * buffer order).
+ *
+ * 3. We likely have object lock contention for one or more stubborn
+ * objects in the VM, for which we need to evict to make forward
+ * progress (perhaps we are fighting the shrinker?). When evicting the
+ * VM this time around, anything that we can't lock we now track using
+ * the busy_bo, using the full lock (after dropping the vm->mutex to
+ * prevent deadlocks), instead of trylock. We then continue to evict the
+ * VM, this time with the stubborn object locked, which we can now
+ * hopefully unbind (if still bound in the VM). Repeat until the VM is
+ * evicted. Finally we should be able bind everything.
+ */
+ for (pass = 0; pass <= 3; pass++) {
+ int pin_flags = PIN_USER | PIN_VALIDATE;
+
+ if (pass == 0)
+ pin_flags |= PIN_NONBLOCK;
+
+ if (pass >= 1)
+ eb_unbind(eb, pass >= 2);
+
+ if (pass == 2) {
+ err = mutex_lock_interruptible(&eb->context->vm->mutex);
+ if (!err) {
+ err = i915_gem_evict_vm(eb->context->vm, &eb->ww, NULL);
+ mutex_unlock(&eb->context->vm->mutex);
+ }
+ if (err)
+ return err;
+ }
+
+ if (pass == 3) {
+retry:
+ err = mutex_lock_interruptible(&eb->context->vm->mutex);
+ if (!err) {
+ struct drm_i915_gem_object *busy_bo = NULL;
+
+ err = i915_gem_evict_vm(eb->context->vm, &eb->ww, &busy_bo);
+ mutex_unlock(&eb->context->vm->mutex);
+ if (err && busy_bo) {
+ err = i915_gem_object_lock(busy_bo, &eb->ww);
+ i915_gem_object_put(busy_bo);
+ if (!err)
+ goto retry;
+ }
+ }
+ if (err)
+ return err;
+ }
+
+ list_for_each_entry(ev, &eb->unbound, bind_link) {
+ err = eb_reserve_vma(eb, ev, pin_flags);
+ if (err)
+ break;
+ }
+
+ if (err != -ENOSPC)
+ break;
+ }
+
+ return err;
+}
+
+static int eb_select_context(struct i915_execbuffer *eb)
+{
+ struct i915_gem_context *ctx;
+
+ ctx = i915_gem_context_lookup(eb->file->driver_priv, eb->args->rsvd1);
+ if (unlikely(IS_ERR(ctx)))
+ return PTR_ERR(ctx);
+
+ eb->gem_context = ctx;
+ if (i915_gem_context_has_full_ppgtt(ctx))
+ eb->invalid_flags |= EXEC_OBJECT_NEEDS_GTT;
+
+ return 0;
+}
+
+static int __eb_add_lut(struct i915_execbuffer *eb,
+ u32 handle, struct i915_vma *vma)
+{
+ struct i915_gem_context *ctx = eb->gem_context;
+ struct i915_lut_handle *lut;
+ int err;
+
+ lut = i915_lut_handle_alloc();
+ if (unlikely(!lut))
+ return -ENOMEM;
+
+ i915_vma_get(vma);
+ if (!atomic_fetch_inc(&vma->open_count))
+ i915_vma_reopen(vma);
+ lut->handle = handle;
+ lut->ctx = ctx;
+
+ /* Check that the context hasn't been closed in the meantime */
+ err = -EINTR;
+ if (!mutex_lock_interruptible(&ctx->lut_mutex)) {
+ if (likely(!i915_gem_context_is_closed(ctx)))
+ err = radix_tree_insert(&ctx->handles_vma, handle, vma);
+ else
+ err = -ENOENT;
+ if (err == 0) { /* And nor has this handle */
+ struct drm_i915_gem_object *obj = vma->obj;
+
+ spin_lock(&obj->lut_lock);
+ if (idr_find(&eb->file->object_idr, handle) == obj) {
+ list_add(&lut->obj_link, &obj->lut_list);
+ } else {
+ radix_tree_delete(&ctx->handles_vma, handle);
+ err = -ENOENT;
+ }
+ spin_unlock(&obj->lut_lock);
+ }
+ mutex_unlock(&ctx->lut_mutex);
+ }
+ if (unlikely(err))
+ goto err;
+
+ return 0;
+
+err:
+ i915_vma_close(vma);
+ i915_vma_put(vma);
+ i915_lut_handle_free(lut);
+ return err;
+}
+
+static struct i915_vma *eb_lookup_vma(struct i915_execbuffer *eb, u32 handle)
+{
+ struct i915_address_space *vm = eb->context->vm;
+
+ do {
+ struct drm_i915_gem_object *obj;
+ struct i915_vma *vma;
+ int err;
+
+ rcu_read_lock();
+ vma = radix_tree_lookup(&eb->gem_context->handles_vma, handle);
+ if (likely(vma && vma->vm == vm))
+ vma = i915_vma_tryget(vma);
+ rcu_read_unlock();
+ if (likely(vma))
+ return vma;
+
+ obj = i915_gem_object_lookup(eb->file, handle);
+ if (unlikely(!obj))
+ return ERR_PTR(-ENOENT);
+
+ /*
+ * If the user has opted-in for protected-object tracking, make
+ * sure the object encryption can be used.
+ * We only need to do this when the object is first used with
+ * this context, because the context itself will be banned when
+ * the protected objects become invalid.
+ */
+ if (i915_gem_context_uses_protected_content(eb->gem_context) &&
+ i915_gem_object_is_protected(obj)) {
+ err = intel_pxp_key_check(eb->i915->pxp, obj, true);
+ if (err) {
+ i915_gem_object_put(obj);
+ return ERR_PTR(err);
+ }
+ }
+
+ vma = i915_vma_instance(obj, vm, NULL);
+ if (IS_ERR(vma)) {
+ i915_gem_object_put(obj);
+ return vma;
+ }
+
+ err = __eb_add_lut(eb, handle, vma);
+ if (likely(!err))
+ return vma;
+
+ i915_gem_object_put(obj);
+ if (err != -EEXIST)
+ return ERR_PTR(err);
+ } while (1);
+}
+
+static int eb_lookup_vmas(struct i915_execbuffer *eb)
+{
+ unsigned int i, current_batch = 0;
+ int err = 0;
+
+ INIT_LIST_HEAD(&eb->relocs);
+
+ for (i = 0; i < eb->buffer_count; i++) {
+ struct i915_vma *vma;
+
+ vma = eb_lookup_vma(eb, eb->exec[i].handle);
+ if (IS_ERR(vma)) {
+ err = PTR_ERR(vma);
+ goto err;
+ }
+
+ err = eb_validate_vma(eb, &eb->exec[i], vma);
+ if (unlikely(err)) {
+ i915_vma_put(vma);
+ goto err;
+ }
+
+ err = eb_add_vma(eb, &current_batch, i, vma);
+ if (err)
+ return err;
+
+ if (i915_gem_object_is_userptr(vma->obj)) {
+ err = i915_gem_object_userptr_submit_init(vma->obj);
+ if (err) {
+ if (i + 1 < eb->buffer_count) {
+ /*
+ * Execbuffer code expects last vma entry to be NULL,
+ * since we already initialized this entry,
+ * set the next value to NULL or we mess up
+ * cleanup handling.
+ */
+ eb->vma[i + 1].vma = NULL;
+ }
+
+ return err;
+ }
+
+ eb->vma[i].flags |= __EXEC_OBJECT_USERPTR_INIT;
+ eb->args->flags |= __EXEC_USERPTR_USED;
+ }
+ }
+
+ return 0;
+
+err:
+ eb->vma[i].vma = NULL;
+ return err;
+}
+
+static int eb_lock_vmas(struct i915_execbuffer *eb)
+{
+ unsigned int i;
+ int err;
+
+ for (i = 0; i < eb->buffer_count; i++) {
+ struct eb_vma *ev = &eb->vma[i];
+ struct i915_vma *vma = ev->vma;
+
+ err = i915_gem_object_lock(vma->obj, &eb->ww);
+ if (err)
+ return err;
+ }
+
+ return 0;
+}
+
+static int eb_validate_vmas(struct i915_execbuffer *eb)
+{
+ unsigned int i;
+ int err;
+
+ INIT_LIST_HEAD(&eb->unbound);
+
+ err = eb_lock_vmas(eb);
+ if (err)
+ return err;
+
+ for (i = 0; i < eb->buffer_count; i++) {
+ struct drm_i915_gem_exec_object2 *entry = &eb->exec[i];
+ struct eb_vma *ev = &eb->vma[i];
+ struct i915_vma *vma = ev->vma;
+
+ err = eb_pin_vma(eb, entry, ev);
+ if (err == -EDEADLK)
+ return err;
+
+ if (!err) {
+ if (entry->offset != i915_vma_offset(vma)) {
+ entry->offset = i915_vma_offset(vma) | UPDATE;
+ eb->args->flags |= __EXEC_HAS_RELOC;
+ }
+ } else {
+ eb_unreserve_vma(ev);
+
+ list_add_tail(&ev->bind_link, &eb->unbound);
+ if (drm_mm_node_allocated(&vma->node)) {
+ err = i915_vma_unbind(vma);
+ if (err)
+ return err;
+ }
+ }
+
+ /* Reserve enough slots to accommodate composite fences */
+ err = dma_resv_reserve_fences(vma->obj->base.resv, eb->num_batches);
+ if (err)
+ return err;
+
+ GEM_BUG_ON(drm_mm_node_allocated(&vma->node) &&
+ eb_vma_misplaced(&eb->exec[i], vma, ev->flags));
+ }
+
+ if (!list_empty(&eb->unbound))
+ return eb_reserve(eb);
+
+ return 0;
+}
+
+static struct eb_vma *
+eb_get_vma(const struct i915_execbuffer *eb, unsigned long handle)
+{
+ if (eb->lut_size < 0) {
+ if (handle >= -eb->lut_size)
+ return NULL;
+ return &eb->vma[handle];
+ } else {
+ struct hlist_head *head;
+ struct eb_vma *ev;
+
+ head = &eb->buckets[hash_32(handle, eb->lut_size)];
+ hlist_for_each_entry(ev, head, node) {
+ if (ev->handle == handle)
+ return ev;
+ }
+ return NULL;
+ }
+}
+
+static void eb_release_vmas(struct i915_execbuffer *eb, bool final)
+{
+ const unsigned int count = eb->buffer_count;
+ unsigned int i;
+
+ for (i = 0; i < count; i++) {
+ struct eb_vma *ev = &eb->vma[i];
+ struct i915_vma *vma = ev->vma;
+
+ if (!vma)
+ break;
+
+ eb_unreserve_vma(ev);
+
+ if (final)
+ i915_vma_put(vma);
+ }
+
+ eb_capture_release(eb);
+ eb_unpin_engine(eb);
+}
+
+static void eb_destroy(const struct i915_execbuffer *eb)
+{
+ if (eb->lut_size > 0)
+ kfree(eb->buckets);
+}
+
+static inline u64
+relocation_target(const struct drm_i915_gem_relocation_entry *reloc,
+ const struct i915_vma *target)
+{
+ return gen8_canonical_addr((int)reloc->delta + i915_vma_offset(target));
+}
+
+static void reloc_cache_init(struct reloc_cache *cache,
+ struct drm_i915_private *i915)
+{
+ cache->page = -1;
+ cache->vaddr = 0;
+ /* Must be a variable in the struct to allow GCC to unroll. */
+ cache->graphics_ver = GRAPHICS_VER(i915);
+ cache->has_llc = HAS_LLC(i915);
+ cache->use_64bit_reloc = HAS_64BIT_RELOC(i915);
+ cache->has_fence = cache->graphics_ver < 4;
+ cache->needs_unfenced = INTEL_INFO(i915)->unfenced_needs_alignment;
+ cache->node.flags = 0;
+}
+
+static inline void *unmask_page(unsigned long p)
+{
+ return (void *)(uintptr_t)(p & PAGE_MASK);
+}
+
+static inline unsigned int unmask_flags(unsigned long p)
+{
+ return p & ~PAGE_MASK;
+}
+
+#define KMAP 0x4 /* after CLFLUSH_FLAGS */
+
+static inline struct i915_ggtt *cache_to_ggtt(struct reloc_cache *cache)
+{
+ struct drm_i915_private *i915 =
+ container_of(cache, struct i915_execbuffer, reloc_cache)->i915;
+ return to_gt(i915)->ggtt;
+}
+
+static void reloc_cache_unmap(struct reloc_cache *cache)
+{
+ void *vaddr;
+
+ if (!cache->vaddr)
+ return;
+
+ vaddr = unmask_page(cache->vaddr);
+ if (cache->vaddr & KMAP)
+ kunmap_atomic(vaddr);
+ else
+ io_mapping_unmap_atomic((void __iomem *)vaddr);
+}
+
+static void reloc_cache_remap(struct reloc_cache *cache,
+ struct drm_i915_gem_object *obj)
+{
+ void *vaddr;
+
+ if (!cache->vaddr)
+ return;
+
+ if (cache->vaddr & KMAP) {
+ struct page *page = i915_gem_object_get_page(obj, cache->page);
+
+ vaddr = kmap_atomic(page);
+ cache->vaddr = unmask_flags(cache->vaddr) |
+ (unsigned long)vaddr;
+ } else {
+ struct i915_ggtt *ggtt = cache_to_ggtt(cache);
+ unsigned long offset;
+
+ offset = cache->node.start;
+ if (!drm_mm_node_allocated(&cache->node))
+ offset += cache->page << PAGE_SHIFT;
+
+ cache->vaddr = (unsigned long)
+ io_mapping_map_atomic_wc(&ggtt->iomap, offset);
+ }
+}
+
+static void reloc_cache_reset(struct reloc_cache *cache, struct i915_execbuffer *eb)
+{
+ void *vaddr;
+
+ if (!cache->vaddr)
+ return;
+
+ vaddr = unmask_page(cache->vaddr);
+ if (cache->vaddr & KMAP) {
+ struct drm_i915_gem_object *obj =
+ (struct drm_i915_gem_object *)cache->node.mm;
+ if (cache->vaddr & CLFLUSH_AFTER)
+ mb();
+
+ kunmap_atomic(vaddr);
+ i915_gem_object_finish_access(obj);
+ } else {
+ struct i915_ggtt *ggtt = cache_to_ggtt(cache);
+
+ intel_gt_flush_ggtt_writes(ggtt->vm.gt);
+ io_mapping_unmap_atomic((void __iomem *)vaddr);
+
+ if (drm_mm_node_allocated(&cache->node)) {
+ ggtt->vm.clear_range(&ggtt->vm,
+ cache->node.start,
+ cache->node.size);
+ mutex_lock(&ggtt->vm.mutex);
+ drm_mm_remove_node(&cache->node);
+ mutex_unlock(&ggtt->vm.mutex);
+ } else {
+ i915_vma_unpin((struct i915_vma *)cache->node.mm);
+ }
+ }
+
+ cache->vaddr = 0;
+ cache->page = -1;
+}
+
+static void *reloc_kmap(struct drm_i915_gem_object *obj,
+ struct reloc_cache *cache,
+ unsigned long pageno)
+{
+ void *vaddr;
+ struct page *page;
+
+ if (cache->vaddr) {
+ kunmap_atomic(unmask_page(cache->vaddr));
+ } else {
+ unsigned int flushes;
+ int err;
+
+ err = i915_gem_object_prepare_write(obj, &flushes);
+ if (err)
+ return ERR_PTR(err);
+
+ BUILD_BUG_ON(KMAP & CLFLUSH_FLAGS);
+ BUILD_BUG_ON((KMAP | CLFLUSH_FLAGS) & PAGE_MASK);
+
+ cache->vaddr = flushes | KMAP;
+ cache->node.mm = (void *)obj;
+ if (flushes)
+ mb();
+ }
+
+ page = i915_gem_object_get_page(obj, pageno);
+ if (!obj->mm.dirty)
+ set_page_dirty(page);
+
+ vaddr = kmap_atomic(page);
+ cache->vaddr = unmask_flags(cache->vaddr) | (unsigned long)vaddr;
+ cache->page = pageno;
+
+ return vaddr;
+}
+
+static void *reloc_iomap(struct i915_vma *batch,
+ struct i915_execbuffer *eb,
+ unsigned long page)
+{
+ struct drm_i915_gem_object *obj = batch->obj;
+ struct reloc_cache *cache = &eb->reloc_cache;
+ struct i915_ggtt *ggtt = cache_to_ggtt(cache);
+ unsigned long offset;
+ void *vaddr;
+
+ if (cache->vaddr) {
+ intel_gt_flush_ggtt_writes(ggtt->vm.gt);
+ io_mapping_unmap_atomic((void __force __iomem *) unmask_page(cache->vaddr));
+ } else {
+ struct i915_vma *vma = ERR_PTR(-ENODEV);
+ int err;
+
+ if (i915_gem_object_is_tiled(obj))
+ return ERR_PTR(-EINVAL);
+
+ if (use_cpu_reloc(cache, obj))
+ return NULL;
+
+ err = i915_gem_object_set_to_gtt_domain(obj, true);
+ if (err)
+ return ERR_PTR(err);
+
+ /*
+ * i915_gem_object_ggtt_pin_ww may attempt to remove the batch
+ * VMA from the object list because we no longer pin.
+ *
+ * Only attempt to pin the batch buffer to ggtt if the current batch
+ * is not inside ggtt, or the batch buffer is not misplaced.
+ */
+ if (!i915_is_ggtt(batch->vm) ||
+ !i915_vma_misplaced(batch, 0, 0, PIN_MAPPABLE)) {
+ vma = i915_gem_object_ggtt_pin_ww(obj, &eb->ww, NULL, 0, 0,
+ PIN_MAPPABLE |
+ PIN_NONBLOCK /* NOWARN */ |
+ PIN_NOEVICT);
+ }
+
+ if (vma == ERR_PTR(-EDEADLK))
+ return vma;
+
+ if (IS_ERR(vma)) {
+ memset(&cache->node, 0, sizeof(cache->node));
+ mutex_lock(&ggtt->vm.mutex);
+ err = drm_mm_insert_node_in_range
+ (&ggtt->vm.mm, &cache->node,
+ PAGE_SIZE, 0, I915_COLOR_UNEVICTABLE,
+ 0, ggtt->mappable_end,
+ DRM_MM_INSERT_LOW);
+ mutex_unlock(&ggtt->vm.mutex);
+ if (err) /* no inactive aperture space, use cpu reloc */
+ return NULL;
+ } else {
+ cache->node.start = i915_ggtt_offset(vma);
+ cache->node.mm = (void *)vma;
+ }
+ }
+
+ offset = cache->node.start;
+ if (drm_mm_node_allocated(&cache->node)) {
+ ggtt->vm.insert_page(&ggtt->vm,
+ i915_gem_object_get_dma_address(obj, page),
+ offset,
+ i915_gem_get_pat_index(ggtt->vm.i915,
+ I915_CACHE_NONE),
+ 0);
+ } else {
+ offset += page << PAGE_SHIFT;
+ }
+
+ vaddr = (void __force *)io_mapping_map_atomic_wc(&ggtt->iomap,
+ offset);
+ cache->page = page;
+ cache->vaddr = (unsigned long)vaddr;
+
+ return vaddr;
+}
+
+static void *reloc_vaddr(struct i915_vma *vma,
+ struct i915_execbuffer *eb,
+ unsigned long page)
+{
+ struct reloc_cache *cache = &eb->reloc_cache;
+ void *vaddr;
+
+ if (cache->page == page) {
+ vaddr = unmask_page(cache->vaddr);
+ } else {
+ vaddr = NULL;
+ if ((cache->vaddr & KMAP) == 0)
+ vaddr = reloc_iomap(vma, eb, page);
+ if (!vaddr)
+ vaddr = reloc_kmap(vma->obj, cache, page);
+ }
+
+ return vaddr;
+}
+
+static void clflush_write32(u32 *addr, u32 value, unsigned int flushes)
+{
+ if (unlikely(flushes & (CLFLUSH_BEFORE | CLFLUSH_AFTER))) {
+ if (flushes & CLFLUSH_BEFORE)
+ drm_clflush_virt_range(addr, sizeof(*addr));
+
+ *addr = value;
+
+ /*
+ * Writes to the same cacheline are serialised by the CPU
+ * (including clflush). On the write path, we only require
+ * that it hits memory in an orderly fashion and place
+ * mb barriers at the start and end of the relocation phase
+ * to ensure ordering of clflush wrt to the system.
+ */
+ if (flushes & CLFLUSH_AFTER)
+ drm_clflush_virt_range(addr, sizeof(*addr));
+ } else
+ *addr = value;
+}
+
+static u64
+relocate_entry(struct i915_vma *vma,
+ const struct drm_i915_gem_relocation_entry *reloc,
+ struct i915_execbuffer *eb,
+ const struct i915_vma *target)
+{
+ u64 target_addr = relocation_target(reloc, target);
+ u64 offset = reloc->offset;
+ bool wide = eb->reloc_cache.use_64bit_reloc;
+ void *vaddr;
+
+repeat:
+ vaddr = reloc_vaddr(vma, eb,
+ offset >> PAGE_SHIFT);
+ if (IS_ERR(vaddr))
+ return PTR_ERR(vaddr);
+
+ GEM_BUG_ON(!IS_ALIGNED(offset, sizeof(u32)));
+ clflush_write32(vaddr + offset_in_page(offset),
+ lower_32_bits(target_addr),
+ eb->reloc_cache.vaddr);
+
+ if (wide) {
+ offset += sizeof(u32);
+ target_addr >>= 32;
+ wide = false;
+ goto repeat;
+ }
+
+ return target->node.start | UPDATE;
+}
+
+static u64
+eb_relocate_entry(struct i915_execbuffer *eb,
+ struct eb_vma *ev,
+ const struct drm_i915_gem_relocation_entry *reloc)
+{
+ struct drm_i915_private *i915 = eb->i915;
+ struct eb_vma *target;
+ int err;
+
+ /* we've already hold a reference to all valid objects */
+ target = eb_get_vma(eb, reloc->target_handle);
+ if (unlikely(!target))
+ return -ENOENT;
+
+ /* Validate that the target is in a valid r/w GPU domain */
+ if (unlikely(reloc->write_domain & (reloc->write_domain - 1))) {
+ drm_dbg(&i915->drm, "reloc with multiple write domains: "
+ "target %d offset %d "
+ "read %08x write %08x",
+ reloc->target_handle,
+ (int) reloc->offset,
+ reloc->read_domains,
+ reloc->write_domain);
+ return -EINVAL;
+ }
+ if (unlikely((reloc->write_domain | reloc->read_domains)
+ & ~I915_GEM_GPU_DOMAINS)) {
+ drm_dbg(&i915->drm, "reloc with read/write non-GPU domains: "
+ "target %d offset %d "
+ "read %08x write %08x",
+ reloc->target_handle,
+ (int) reloc->offset,
+ reloc->read_domains,
+ reloc->write_domain);
+ return -EINVAL;
+ }
+
+ if (reloc->write_domain) {
+ target->flags |= EXEC_OBJECT_WRITE;
+
+ /*
+ * Sandybridge PPGTT errata: We need a global gtt mapping
+ * for MI and pipe_control writes because the gpu doesn't
+ * properly redirect them through the ppgtt for non_secure
+ * batchbuffers.
+ */
+ if (reloc->write_domain == I915_GEM_DOMAIN_INSTRUCTION &&
+ GRAPHICS_VER(eb->i915) == 6 &&
+ !i915_vma_is_bound(target->vma, I915_VMA_GLOBAL_BIND)) {
+ struct i915_vma *vma = target->vma;
+
+ reloc_cache_unmap(&eb->reloc_cache);
+ mutex_lock(&vma->vm->mutex);
+ err = i915_vma_bind(target->vma,
+ target->vma->obj->pat_index,
+ PIN_GLOBAL, NULL, NULL);
+ mutex_unlock(&vma->vm->mutex);
+ reloc_cache_remap(&eb->reloc_cache, ev->vma->obj);
+ if (err)
+ return err;
+ }
+ }
+
+ /*
+ * If the relocation already has the right value in it, no
+ * more work needs to be done.
+ */
+ if (!DBG_FORCE_RELOC &&
+ gen8_canonical_addr(i915_vma_offset(target->vma)) == reloc->presumed_offset)
+ return 0;
+
+ /* Check that the relocation address is valid... */
+ if (unlikely(reloc->offset >
+ ev->vma->size - (eb->reloc_cache.use_64bit_reloc ? 8 : 4))) {
+ drm_dbg(&i915->drm, "Relocation beyond object bounds: "
+ "target %d offset %d size %d.\n",
+ reloc->target_handle,
+ (int)reloc->offset,
+ (int)ev->vma->size);
+ return -EINVAL;
+ }
+ if (unlikely(reloc->offset & 3)) {
+ drm_dbg(&i915->drm, "Relocation not 4-byte aligned: "
+ "target %d offset %d.\n",
+ reloc->target_handle,
+ (int)reloc->offset);
+ return -EINVAL;
+ }
+
+ /*
+ * If we write into the object, we need to force the synchronisation
+ * barrier, either with an asynchronous clflush or if we executed the
+ * patching using the GPU (though that should be serialised by the
+ * timeline). To be completely sure, and since we are required to
+ * do relocations we are already stalling, disable the user's opt
+ * out of our synchronisation.
+ */
+ ev->flags &= ~EXEC_OBJECT_ASYNC;
+
+ /* and update the user's relocation entry */
+ return relocate_entry(ev->vma, reloc, eb, target->vma);
+}
+
+static int eb_relocate_vma(struct i915_execbuffer *eb, struct eb_vma *ev)
+{
+#define N_RELOC(x) ((x) / sizeof(struct drm_i915_gem_relocation_entry))
+ struct drm_i915_gem_relocation_entry stack[N_RELOC(512)];
+ const struct drm_i915_gem_exec_object2 *entry = ev->exec;
+ struct drm_i915_gem_relocation_entry __user *urelocs =
+ u64_to_user_ptr(entry->relocs_ptr);
+ unsigned long remain = entry->relocation_count;
+
+ if (unlikely(remain > N_RELOC(ULONG_MAX)))
+ return -EINVAL;
+
+ /*
+ * We must check that the entire relocation array is safe
+ * to read. However, if the array is not writable the user loses
+ * the updated relocation values.
+ */
+ if (unlikely(!access_ok(urelocs, remain * sizeof(*urelocs))))
+ return -EFAULT;
+
+ do {
+ struct drm_i915_gem_relocation_entry *r = stack;
+ unsigned int count =
+ min_t(unsigned long, remain, ARRAY_SIZE(stack));
+ unsigned int copied;
+
+ /*
+ * This is the fast path and we cannot handle a pagefault
+ * whilst holding the struct mutex lest the user pass in the
+ * relocations contained within a mmaped bo. For in such a case
+ * we, the page fault handler would call i915_gem_fault() and
+ * we would try to acquire the struct mutex again. Obviously
+ * this is bad and so lockdep complains vehemently.
+ */
+ pagefault_disable();
+ copied = __copy_from_user_inatomic(r, urelocs, count * sizeof(r[0]));
+ pagefault_enable();
+ if (unlikely(copied)) {
+ remain = -EFAULT;
+ goto out;
+ }
+
+ remain -= count;
+ do {
+ u64 offset = eb_relocate_entry(eb, ev, r);
+
+ if (likely(offset == 0)) {
+ } else if ((s64)offset < 0) {
+ remain = (int)offset;
+ goto out;
+ } else {
+ /*
+ * Note that reporting an error now
+ * leaves everything in an inconsistent
+ * state as we have *already* changed
+ * the relocation value inside the
+ * object. As we have not changed the
+ * reloc.presumed_offset or will not
+ * change the execobject.offset, on the
+ * call we may not rewrite the value
+ * inside the object, leaving it
+ * dangling and causing a GPU hang. Unless
+ * userspace dynamically rebuilds the
+ * relocations on each execbuf rather than
+ * presume a static tree.
+ *
+ * We did previously check if the relocations
+ * were writable (access_ok), an error now
+ * would be a strange race with mprotect,
+ * having already demonstrated that we
+ * can read from this userspace address.
+ */
+ offset = gen8_canonical_addr(offset & ~UPDATE);
+ __put_user(offset,
+ &urelocs[r - stack].presumed_offset);
+ }
+ } while (r++, --count);
+ urelocs += ARRAY_SIZE(stack);
+ } while (remain);
+out:
+ reloc_cache_reset(&eb->reloc_cache, eb);
+ return remain;
+}
+
+static int
+eb_relocate_vma_slow(struct i915_execbuffer *eb, struct eb_vma *ev)
+{
+ const struct drm_i915_gem_exec_object2 *entry = ev->exec;
+ struct drm_i915_gem_relocation_entry *relocs =
+ u64_to_ptr(typeof(*relocs), entry->relocs_ptr);
+ unsigned int i;
+ int err;
+
+ for (i = 0; i < entry->relocation_count; i++) {
+ u64 offset = eb_relocate_entry(eb, ev, &relocs[i]);
+
+ if ((s64)offset < 0) {
+ err = (int)offset;
+ goto err;
+ }
+ }
+ err = 0;
+err:
+ reloc_cache_reset(&eb->reloc_cache, eb);
+ return err;
+}
+
+static int check_relocations(const struct drm_i915_gem_exec_object2 *entry)
+{
+ const char __user *addr, *end;
+ unsigned long size;
+ char __maybe_unused c;
+
+ size = entry->relocation_count;
+ if (size == 0)
+ return 0;
+
+ if (size > N_RELOC(ULONG_MAX))
+ return -EINVAL;
+
+ addr = u64_to_user_ptr(entry->relocs_ptr);
+ size *= sizeof(struct drm_i915_gem_relocation_entry);
+ if (!access_ok(addr, size))
+ return -EFAULT;
+
+ end = addr + size;
+ for (; addr < end; addr += PAGE_SIZE) {
+ int err = __get_user(c, addr);
+ if (err)
+ return err;
+ }
+ return __get_user(c, end - 1);
+}
+
+static int eb_copy_relocations(const struct i915_execbuffer *eb)
+{
+ struct drm_i915_gem_relocation_entry *relocs;
+ const unsigned int count = eb->buffer_count;
+ unsigned int i;
+ int err;
+
+ for (i = 0; i < count; i++) {
+ const unsigned int nreloc = eb->exec[i].relocation_count;
+ struct drm_i915_gem_relocation_entry __user *urelocs;
+ unsigned long size;
+ unsigned long copied;
+
+ if (nreloc == 0)
+ continue;
+
+ err = check_relocations(&eb->exec[i]);
+ if (err)
+ goto err;
+
+ urelocs = u64_to_user_ptr(eb->exec[i].relocs_ptr);
+ size = nreloc * sizeof(*relocs);
+
+ relocs = kvmalloc_array(size, 1, GFP_KERNEL);
+ if (!relocs) {
+ err = -ENOMEM;
+ goto err;
+ }
+
+ /* copy_from_user is limited to < 4GiB */
+ copied = 0;
+ do {
+ unsigned int len =
+ min_t(u64, BIT_ULL(31), size - copied);
+
+ if (__copy_from_user((char *)relocs + copied,
+ (char __user *)urelocs + copied,
+ len))
+ goto end;
+
+ copied += len;
+ } while (copied < size);
+
+ /*
+ * As we do not update the known relocation offsets after
+ * relocating (due to the complexities in lock handling),
+ * we need to mark them as invalid now so that we force the
+ * relocation processing next time. Just in case the target
+ * object is evicted and then rebound into its old
+ * presumed_offset before the next execbuffer - if that
+ * happened we would make the mistake of assuming that the
+ * relocations were valid.
+ */
+ if (!user_access_begin(urelocs, size))
+ goto end;
+
+ for (copied = 0; copied < nreloc; copied++)
+ unsafe_put_user(-1,
+ &urelocs[copied].presumed_offset,
+ end_user);
+ user_access_end();
+
+ eb->exec[i].relocs_ptr = (uintptr_t)relocs;
+ }
+
+ return 0;
+
+end_user:
+ user_access_end();
+end:
+ kvfree(relocs);
+ err = -EFAULT;
+err:
+ while (i--) {
+ relocs = u64_to_ptr(typeof(*relocs), eb->exec[i].relocs_ptr);
+ if (eb->exec[i].relocation_count)
+ kvfree(relocs);
+ }
+ return err;
+}
+
+static int eb_prefault_relocations(const struct i915_execbuffer *eb)
+{
+ const unsigned int count = eb->buffer_count;
+ unsigned int i;
+
+ for (i = 0; i < count; i++) {
+ int err;
+
+ err = check_relocations(&eb->exec[i]);
+ if (err)
+ return err;
+ }
+
+ return 0;
+}
+
+static int eb_reinit_userptr(struct i915_execbuffer *eb)
+{
+ const unsigned int count = eb->buffer_count;
+ unsigned int i;
+ int ret;
+
+ if (likely(!(eb->args->flags & __EXEC_USERPTR_USED)))
+ return 0;
+
+ for (i = 0; i < count; i++) {
+ struct eb_vma *ev = &eb->vma[i];
+
+ if (!i915_gem_object_is_userptr(ev->vma->obj))
+ continue;
+
+ ret = i915_gem_object_userptr_submit_init(ev->vma->obj);
+ if (ret)
+ return ret;
+
+ ev->flags |= __EXEC_OBJECT_USERPTR_INIT;
+ }
+
+ return 0;
+}
+
+static noinline int eb_relocate_parse_slow(struct i915_execbuffer *eb)
+{
+ bool have_copy = false;
+ struct eb_vma *ev;
+ int err = 0;
+
+repeat:
+ if (signal_pending(current)) {
+ err = -ERESTARTSYS;
+ goto out;
+ }
+
+ /* We may process another execbuffer during the unlock... */
+ eb_release_vmas(eb, false);
+ i915_gem_ww_ctx_fini(&eb->ww);
+
+ /*
+ * We take 3 passes through the slowpatch.
+ *
+ * 1 - we try to just prefault all the user relocation entries and
+ * then attempt to reuse the atomic pagefault disabled fast path again.
+ *
+ * 2 - we copy the user entries to a local buffer here outside of the
+ * local and allow ourselves to wait upon any rendering before
+ * relocations
+ *
+ * 3 - we already have a local copy of the relocation entries, but
+ * were interrupted (EAGAIN) whilst waiting for the objects, try again.
+ */
+ if (!err) {
+ err = eb_prefault_relocations(eb);
+ } else if (!have_copy) {
+ err = eb_copy_relocations(eb);
+ have_copy = err == 0;
+ } else {
+ cond_resched();
+ err = 0;
+ }
+
+ if (!err)
+ err = eb_reinit_userptr(eb);
+
+ i915_gem_ww_ctx_init(&eb->ww, true);
+ if (err)
+ goto out;
+
+ /* reacquire the objects */
+repeat_validate:
+ err = eb_pin_engine(eb, false);
+ if (err)
+ goto err;
+
+ err = eb_validate_vmas(eb);
+ if (err)
+ goto err;
+
+ GEM_BUG_ON(!eb->batches[0]);
+
+ list_for_each_entry(ev, &eb->relocs, reloc_link) {
+ if (!have_copy) {
+ err = eb_relocate_vma(eb, ev);
+ if (err)
+ break;
+ } else {
+ err = eb_relocate_vma_slow(eb, ev);
+ if (err)
+ break;
+ }
+ }
+
+ if (err == -EDEADLK)
+ goto err;
+
+ if (err && !have_copy)
+ goto repeat;
+
+ if (err)
+ goto err;
+
+ /* as last step, parse the command buffer */
+ err = eb_parse(eb);
+ if (err)
+ goto err;
+
+ /*
+ * Leave the user relocations as are, this is the painfully slow path,
+ * and we want to avoid the complication of dropping the lock whilst
+ * having buffers reserved in the aperture and so causing spurious
+ * ENOSPC for random operations.
+ */
+
+err:
+ if (err == -EDEADLK) {
+ eb_release_vmas(eb, false);
+ err = i915_gem_ww_ctx_backoff(&eb->ww);
+ if (!err)
+ goto repeat_validate;
+ }
+
+ if (err == -EAGAIN)
+ goto repeat;
+
+out:
+ if (have_copy) {
+ const unsigned int count = eb->buffer_count;
+ unsigned int i;
+
+ for (i = 0; i < count; i++) {
+ const struct drm_i915_gem_exec_object2 *entry =
+ &eb->exec[i];
+ struct drm_i915_gem_relocation_entry *relocs;
+
+ if (!entry->relocation_count)
+ continue;
+
+ relocs = u64_to_ptr(typeof(*relocs), entry->relocs_ptr);
+ kvfree(relocs);
+ }
+ }
+
+ return err;
+}
+
+static int eb_relocate_parse(struct i915_execbuffer *eb)
+{
+ int err;
+ bool throttle = true;
+
+retry:
+ err = eb_pin_engine(eb, throttle);
+ if (err) {
+ if (err != -EDEADLK)
+ return err;
+
+ goto err;
+ }
+
+ /* only throttle once, even if we didn't need to throttle */
+ throttle = false;
+
+ err = eb_validate_vmas(eb);
+ if (err == -EAGAIN)
+ goto slow;
+ else if (err)
+ goto err;
+
+ /* The objects are in their final locations, apply the relocations. */
+ if (eb->args->flags & __EXEC_HAS_RELOC) {
+ struct eb_vma *ev;
+
+ list_for_each_entry(ev, &eb->relocs, reloc_link) {
+ err = eb_relocate_vma(eb, ev);
+ if (err)
+ break;
+ }
+
+ if (err == -EDEADLK)
+ goto err;
+ else if (err)
+ goto slow;
+ }
+
+ if (!err)
+ err = eb_parse(eb);
+
+err:
+ if (err == -EDEADLK) {
+ eb_release_vmas(eb, false);
+ err = i915_gem_ww_ctx_backoff(&eb->ww);
+ if (!err)
+ goto retry;
+ }
+
+ return err;
+
+slow:
+ err = eb_relocate_parse_slow(eb);
+ if (err)
+ /*
+ * If the user expects the execobject.offset and
+ * reloc.presumed_offset to be an exact match,
+ * as for using NO_RELOC, then we cannot update
+ * the execobject.offset until we have completed
+ * relocation.
+ */
+ eb->args->flags &= ~__EXEC_HAS_RELOC;
+
+ return err;
+}
+
+/*
+ * Using two helper loops for the order of which requests / batches are created
+ * and added the to backend. Requests are created in order from the parent to
+ * the last child. Requests are added in the reverse order, from the last child
+ * to parent. This is done for locking reasons as the timeline lock is acquired
+ * during request creation and released when the request is added to the
+ * backend. To make lockdep happy (see intel_context_timeline_lock) this must be
+ * the ordering.
+ */
+#define for_each_batch_create_order(_eb, _i) \
+ for ((_i) = 0; (_i) < (_eb)->num_batches; ++(_i))
+#define for_each_batch_add_order(_eb, _i) \
+ BUILD_BUG_ON(!typecheck(int, _i)); \
+ for ((_i) = (_eb)->num_batches - 1; (_i) >= 0; --(_i))
+
+static struct i915_request *
+eb_find_first_request_added(struct i915_execbuffer *eb)
+{
+ int i;
+
+ for_each_batch_add_order(eb, i)
+ if (eb->requests[i])
+ return eb->requests[i];
+
+ GEM_BUG_ON("Request not found");
+
+ return NULL;
+}
+
+#if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR)
+
+/* Stage with GFP_KERNEL allocations before we enter the signaling critical path */
+static int eb_capture_stage(struct i915_execbuffer *eb)
+{
+ const unsigned int count = eb->buffer_count;
+ unsigned int i = count, j;
+
+ while (i--) {
+ struct eb_vma *ev = &eb->vma[i];
+ struct i915_vma *vma = ev->vma;
+ unsigned int flags = ev->flags;
+
+ if (!(flags & EXEC_OBJECT_CAPTURE))
+ continue;
+
+ if (i915_gem_context_is_recoverable(eb->gem_context) &&
+ (IS_DGFX(eb->i915) || GRAPHICS_VER_FULL(eb->i915) > IP_VER(12, 0)))
+ return -EINVAL;
+
+ for_each_batch_create_order(eb, j) {
+ struct i915_capture_list *capture;
+
+ capture = kmalloc(sizeof(*capture), GFP_KERNEL);
+ if (!capture)
+ continue;
+
+ capture->next = eb->capture_lists[j];
+ capture->vma_res = i915_vma_resource_get(vma->resource);
+ eb->capture_lists[j] = capture;
+ }
+ }
+
+ return 0;
+}
+
+/* Commit once we're in the critical path */
+static void eb_capture_commit(struct i915_execbuffer *eb)
+{
+ unsigned int j;
+
+ for_each_batch_create_order(eb, j) {
+ struct i915_request *rq = eb->requests[j];
+
+ if (!rq)
+ break;
+
+ rq->capture_list = eb->capture_lists[j];
+ eb->capture_lists[j] = NULL;
+ }
+}
+
+/*
+ * Release anything that didn't get committed due to errors.
+ * The capture_list will otherwise be freed at request retire.
+ */
+static void eb_capture_release(struct i915_execbuffer *eb)
+{
+ unsigned int j;
+
+ for_each_batch_create_order(eb, j) {
+ if (eb->capture_lists[j]) {
+ i915_request_free_capture_list(eb->capture_lists[j]);
+ eb->capture_lists[j] = NULL;
+ }
+ }
+}
+
+static void eb_capture_list_clear(struct i915_execbuffer *eb)
+{
+ memset(eb->capture_lists, 0, sizeof(eb->capture_lists));
+}
+
+#else
+
+static int eb_capture_stage(struct i915_execbuffer *eb)
+{
+ return 0;
+}
+
+static void eb_capture_commit(struct i915_execbuffer *eb)
+{
+}
+
+static void eb_capture_release(struct i915_execbuffer *eb)
+{
+}
+
+static void eb_capture_list_clear(struct i915_execbuffer *eb)
+{
+}
+
+#endif
+
+static int eb_move_to_gpu(struct i915_execbuffer *eb)
+{
+ const unsigned int count = eb->buffer_count;
+ unsigned int i = count;
+ int err = 0, j;
+
+ while (i--) {
+ struct eb_vma *ev = &eb->vma[i];
+ struct i915_vma *vma = ev->vma;
+ unsigned int flags = ev->flags;
+ struct drm_i915_gem_object *obj = vma->obj;
+
+ assert_vma_held(vma);
+
+ /*
+ * If the GPU is not _reading_ through the CPU cache, we need
+ * to make sure that any writes (both previous GPU writes from
+ * before a change in snooping levels and normal CPU writes)
+ * caught in that cache are flushed to main memory.
+ *
+ * We want to say
+ * obj->cache_dirty &&
+ * !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ)
+ * but gcc's optimiser doesn't handle that as well and emits
+ * two jumps instead of one. Maybe one day...
+ *
+ * FIXME: There is also sync flushing in set_pages(), which
+ * serves a different purpose(some of the time at least).
+ *
+ * We should consider:
+ *
+ * 1. Rip out the async flush code.
+ *
+ * 2. Or make the sync flushing use the async clflush path
+ * using mandatory fences underneath. Currently the below
+ * async flush happens after we bind the object.
+ */
+ if (unlikely(obj->cache_dirty & ~obj->cache_coherent)) {
+ if (i915_gem_clflush_object(obj, 0))
+ flags &= ~EXEC_OBJECT_ASYNC;
+ }
+
+ /* We only need to await on the first request */
+ if (err == 0 && !(flags & EXEC_OBJECT_ASYNC)) {
+ err = i915_request_await_object
+ (eb_find_first_request_added(eb), obj,
+ flags & EXEC_OBJECT_WRITE);
+ }
+
+ for_each_batch_add_order(eb, j) {
+ if (err)
+ break;
+ if (!eb->requests[j])
+ continue;
+
+ err = _i915_vma_move_to_active(vma, eb->requests[j],
+ j ? NULL :
+ eb->composite_fence ?
+ eb->composite_fence :
+ &eb->requests[j]->fence,
+ flags | __EXEC_OBJECT_NO_RESERVE |
+ __EXEC_OBJECT_NO_REQUEST_AWAIT);
+ }
+ }
+
+#ifdef CONFIG_MMU_NOTIFIER
+ if (!err && (eb->args->flags & __EXEC_USERPTR_USED)) {
+ read_lock(&eb->i915->mm.notifier_lock);
+
+ /*
+ * count is always at least 1, otherwise __EXEC_USERPTR_USED
+ * could not have been set
+ */
+ for (i = 0; i < count; i++) {
+ struct eb_vma *ev = &eb->vma[i];
+ struct drm_i915_gem_object *obj = ev->vma->obj;
+
+ if (!i915_gem_object_is_userptr(obj))
+ continue;
+
+ err = i915_gem_object_userptr_submit_done(obj);
+ if (err)
+ break;
+ }
+
+ read_unlock(&eb->i915->mm.notifier_lock);
+ }
+#endif
+
+ if (unlikely(err))
+ goto err_skip;
+
+ /* Unconditionally flush any chipset caches (for streaming writes). */
+ intel_gt_chipset_flush(eb->gt);
+ eb_capture_commit(eb);
+
+ return 0;
+
+err_skip:
+ for_each_batch_create_order(eb, j) {
+ if (!eb->requests[j])
+ break;
+
+ i915_request_set_error_once(eb->requests[j], err);
+ }
+ return err;
+}
+
+static int i915_gem_check_execbuffer(struct drm_i915_private *i915,
+ struct drm_i915_gem_execbuffer2 *exec)
+{
+ if (exec->flags & __I915_EXEC_ILLEGAL_FLAGS)
+ return -EINVAL;
+
+ /* Kernel clipping was a DRI1 misfeature */
+ if (!(exec->flags & (I915_EXEC_FENCE_ARRAY |
+ I915_EXEC_USE_EXTENSIONS))) {
+ if (exec->num_cliprects || exec->cliprects_ptr)
+ return -EINVAL;
+ }
+
+ if (exec->DR4 == 0xffffffff) {
+ drm_dbg(&i915->drm, "UXA submitting garbage DR4, fixing up\n");
+ exec->DR4 = 0;
+ }
+ if (exec->DR1 || exec->DR4)
+ return -EINVAL;
+
+ if ((exec->batch_start_offset | exec->batch_len) & 0x7)
+ return -EINVAL;
+
+ return 0;
+}
+
+static int i915_reset_gen7_sol_offsets(struct i915_request *rq)
+{
+ u32 *cs;
+ int i;
+
+ if (GRAPHICS_VER(rq->i915) != 7 || rq->engine->id != RCS0) {
+ drm_dbg(&rq->i915->drm, "sol reset is gen7/rcs only\n");
+ return -EINVAL;
+ }
+
+ cs = intel_ring_begin(rq, 4 * 2 + 2);
+ if (IS_ERR(cs))
+ return PTR_ERR(cs);
+
+ *cs++ = MI_LOAD_REGISTER_IMM(4);
+ for (i = 0; i < 4; i++) {
+ *cs++ = i915_mmio_reg_offset(GEN7_SO_WRITE_OFFSET(i));
+ *cs++ = 0;
+ }
+ *cs++ = MI_NOOP;
+ intel_ring_advance(rq, cs);
+
+ return 0;
+}
+
+static struct i915_vma *
+shadow_batch_pin(struct i915_execbuffer *eb,
+ struct drm_i915_gem_object *obj,
+ struct i915_address_space *vm,
+ unsigned int flags)
+{
+ struct i915_vma *vma;
+ int err;
+
+ vma = i915_vma_instance(obj, vm, NULL);
+ if (IS_ERR(vma))
+ return vma;
+
+ err = i915_vma_pin_ww(vma, &eb->ww, 0, 0, flags | PIN_VALIDATE);
+ if (err)
+ return ERR_PTR(err);
+
+ return vma;
+}
+
+static struct i915_vma *eb_dispatch_secure(struct i915_execbuffer *eb, struct i915_vma *vma)
+{
+ /*
+ * snb/ivb/vlv conflate the "batch in ppgtt" bit with the "non-secure
+ * batch" bit. Hence we need to pin secure batches into the global gtt.
+ * hsw should have this fixed, but bdw mucks it up again. */
+ if (eb->batch_flags & I915_DISPATCH_SECURE)
+ return i915_gem_object_ggtt_pin_ww(vma->obj, &eb->ww, NULL, 0, 0, PIN_VALIDATE);
+
+ return NULL;
+}
+
+static int eb_parse(struct i915_execbuffer *eb)
+{
+ struct drm_i915_private *i915 = eb->i915;
+ struct intel_gt_buffer_pool_node *pool = eb->batch_pool;
+ struct i915_vma *shadow, *trampoline, *batch;
+ unsigned long len;
+ int err;
+
+ if (!eb_use_cmdparser(eb)) {
+ batch = eb_dispatch_secure(eb, eb->batches[0]->vma);
+ if (IS_ERR(batch))
+ return PTR_ERR(batch);
+
+ goto secure_batch;
+ }
+
+ if (intel_context_is_parallel(eb->context))
+ return -EINVAL;
+
+ len = eb->batch_len[0];
+ if (!CMDPARSER_USES_GGTT(eb->i915)) {
+ /*
+ * ppGTT backed shadow buffers must be mapped RO, to prevent
+ * post-scan tampering
+ */
+ if (!eb->context->vm->has_read_only) {
+ drm_dbg(&i915->drm,
+ "Cannot prevent post-scan tampering without RO capable vm\n");
+ return -EINVAL;
+ }
+ } else {
+ len += I915_CMD_PARSER_TRAMPOLINE_SIZE;
+ }
+ if (unlikely(len < eb->batch_len[0])) /* last paranoid check of overflow */
+ return -EINVAL;
+
+ if (!pool) {
+ pool = intel_gt_get_buffer_pool(eb->gt, len,
+ I915_MAP_WB);
+ if (IS_ERR(pool))
+ return PTR_ERR(pool);
+ eb->batch_pool = pool;
+ }
+
+ err = i915_gem_object_lock(pool->obj, &eb->ww);
+ if (err)
+ return err;
+
+ shadow = shadow_batch_pin(eb, pool->obj, eb->context->vm, PIN_USER);
+ if (IS_ERR(shadow))
+ return PTR_ERR(shadow);
+
+ intel_gt_buffer_pool_mark_used(pool);
+ i915_gem_object_set_readonly(shadow->obj);
+ shadow->private = pool;
+
+ trampoline = NULL;
+ if (CMDPARSER_USES_GGTT(eb->i915)) {
+ trampoline = shadow;
+
+ shadow = shadow_batch_pin(eb, pool->obj,
+ &eb->gt->ggtt->vm,
+ PIN_GLOBAL);
+ if (IS_ERR(shadow))
+ return PTR_ERR(shadow);
+
+ shadow->private = pool;
+
+ eb->batch_flags |= I915_DISPATCH_SECURE;
+ }
+
+ batch = eb_dispatch_secure(eb, shadow);
+ if (IS_ERR(batch))
+ return PTR_ERR(batch);
+
+ err = dma_resv_reserve_fences(shadow->obj->base.resv, 1);
+ if (err)
+ return err;
+
+ err = intel_engine_cmd_parser(eb->context->engine,
+ eb->batches[0]->vma,
+ eb->batch_start_offset,
+ eb->batch_len[0],
+ shadow, trampoline);
+ if (err)
+ return err;
+
+ eb->batches[0] = &eb->vma[eb->buffer_count++];
+ eb->batches[0]->vma = i915_vma_get(shadow);
+ eb->batches[0]->flags = __EXEC_OBJECT_HAS_PIN;
+
+ eb->trampoline = trampoline;
+ eb->batch_start_offset = 0;
+
+secure_batch:
+ if (batch) {
+ if (intel_context_is_parallel(eb->context))
+ return -EINVAL;
+
+ eb->batches[0] = &eb->vma[eb->buffer_count++];
+ eb->batches[0]->flags = __EXEC_OBJECT_HAS_PIN;
+ eb->batches[0]->vma = i915_vma_get(batch);
+ }
+ return 0;
+}
+
+static int eb_request_submit(struct i915_execbuffer *eb,
+ struct i915_request *rq,
+ struct i915_vma *batch,
+ u64 batch_len)
+{
+ int err;
+
+ if (intel_context_nopreempt(rq->context))
+ __set_bit(I915_FENCE_FLAG_NOPREEMPT, &rq->fence.flags);
+
+ if (eb->args->flags & I915_EXEC_GEN7_SOL_RESET) {
+ err = i915_reset_gen7_sol_offsets(rq);
+ if (err)
+ return err;
+ }
+
+ /*
+ * After we completed waiting for other engines (using HW semaphores)
+ * then we can signal that this request/batch is ready to run. This
+ * allows us to determine if the batch is still waiting on the GPU
+ * or actually running by checking the breadcrumb.
+ */
+ if (rq->context->engine->emit_init_breadcrumb) {
+ err = rq->context->engine->emit_init_breadcrumb(rq);
+ if (err)
+ return err;
+ }
+
+ err = rq->context->engine->emit_bb_start(rq,
+ i915_vma_offset(batch) +
+ eb->batch_start_offset,
+ batch_len,
+ eb->batch_flags);
+ if (err)
+ return err;
+
+ if (eb->trampoline) {
+ GEM_BUG_ON(intel_context_is_parallel(rq->context));
+ GEM_BUG_ON(eb->batch_start_offset);
+ err = rq->context->engine->emit_bb_start(rq,
+ i915_vma_offset(eb->trampoline) +
+ batch_len, 0, 0);
+ if (err)
+ return err;
+ }
+
+ return 0;
+}
+
+static int eb_submit(struct i915_execbuffer *eb)
+{
+ unsigned int i;
+ int err;
+
+ err = eb_move_to_gpu(eb);
+
+ for_each_batch_create_order(eb, i) {
+ if (!eb->requests[i])
+ break;
+
+ trace_i915_request_queue(eb->requests[i], eb->batch_flags);
+ if (!err)
+ err = eb_request_submit(eb, eb->requests[i],
+ eb->batches[i]->vma,
+ eb->batch_len[i]);
+ }
+
+ return err;
+}
+
+/*
+ * Find one BSD ring to dispatch the corresponding BSD command.
+ * The engine index is returned.
+ */
+static unsigned int
+gen8_dispatch_bsd_engine(struct drm_i915_private *dev_priv,
+ struct drm_file *file)
+{
+ struct drm_i915_file_private *file_priv = file->driver_priv;
+
+ /* Check whether the file_priv has already selected one ring. */
+ if ((int)file_priv->bsd_engine < 0)
+ file_priv->bsd_engine =
+ get_random_u32_below(dev_priv->engine_uabi_class_count[I915_ENGINE_CLASS_VIDEO]);
+
+ return file_priv->bsd_engine;
+}
+
+static const enum intel_engine_id user_ring_map[] = {
+ [I915_EXEC_DEFAULT] = RCS0,
+ [I915_EXEC_RENDER] = RCS0,
+ [I915_EXEC_BLT] = BCS0,
+ [I915_EXEC_BSD] = VCS0,
+ [I915_EXEC_VEBOX] = VECS0
+};
+
+static struct i915_request *eb_throttle(struct i915_execbuffer *eb, struct intel_context *ce)
+{
+ struct intel_ring *ring = ce->ring;
+ struct intel_timeline *tl = ce->timeline;
+ struct i915_request *rq;
+
+ /*
+ * Completely unscientific finger-in-the-air estimates for suitable
+ * maximum user request size (to avoid blocking) and then backoff.
+ */
+ if (intel_ring_update_space(ring) >= PAGE_SIZE)
+ return NULL;
+
+ /*
+ * Find a request that after waiting upon, there will be at least half
+ * the ring available. The hysteresis allows us to compete for the
+ * shared ring and should mean that we sleep less often prior to
+ * claiming our resources, but not so long that the ring completely
+ * drains before we can submit our next request.
+ */
+ list_for_each_entry(rq, &tl->requests, link) {
+ if (rq->ring != ring)
+ continue;
+
+ if (__intel_ring_space(rq->postfix,
+ ring->emit, ring->size) > ring->size / 2)
+ break;
+ }
+ if (&rq->link == &tl->requests)
+ return NULL; /* weird, we will check again later for real */
+
+ return i915_request_get(rq);
+}
+
+static int eb_pin_timeline(struct i915_execbuffer *eb, struct intel_context *ce,
+ bool throttle)
+{
+ struct intel_timeline *tl;
+ struct i915_request *rq = NULL;
+
+ /*
+ * Take a local wakeref for preparing to dispatch the execbuf as
+ * we expect to access the hardware fairly frequently in the
+ * process, and require the engine to be kept awake between accesses.
+ * Upon dispatch, we acquire another prolonged wakeref that we hold
+ * until the timeline is idle, which in turn releases the wakeref
+ * taken on the engine, and the parent device.
+ */
+ tl = intel_context_timeline_lock(ce);
+ if (IS_ERR(tl))
+ return PTR_ERR(tl);
+
+ intel_context_enter(ce);
+ if (throttle)
+ rq = eb_throttle(eb, ce);
+ intel_context_timeline_unlock(tl);
+
+ if (rq) {
+ bool nonblock = eb->file->filp->f_flags & O_NONBLOCK;
+ long timeout = nonblock ? 0 : MAX_SCHEDULE_TIMEOUT;
+
+ if (i915_request_wait(rq, I915_WAIT_INTERRUPTIBLE,
+ timeout) < 0) {
+ i915_request_put(rq);
+
+ /*
+ * Error path, cannot use intel_context_timeline_lock as
+ * that is user interruptable and this clean up step
+ * must be done.
+ */
+ mutex_lock(&ce->timeline->mutex);
+ intel_context_exit(ce);
+ mutex_unlock(&ce->timeline->mutex);
+
+ if (nonblock)
+ return -EWOULDBLOCK;
+ else
+ return -EINTR;
+ }
+ i915_request_put(rq);
+ }
+
+ return 0;
+}
+
+static int eb_pin_engine(struct i915_execbuffer *eb, bool throttle)
+{
+ struct intel_context *ce = eb->context, *child;
+ int err;
+ int i = 0, j = 0;
+
+ GEM_BUG_ON(eb->args->flags & __EXEC_ENGINE_PINNED);
+
+ if (unlikely(intel_context_is_banned(ce)))
+ return -EIO;
+
+ /*
+ * Pinning the contexts may generate requests in order to acquire
+ * GGTT space, so do this first before we reserve a seqno for
+ * ourselves.
+ */
+ err = intel_context_pin_ww(ce, &eb->ww);
+ if (err)
+ return err;
+ for_each_child(ce, child) {
+ err = intel_context_pin_ww(child, &eb->ww);
+ GEM_BUG_ON(err); /* perma-pinned should incr a counter */
+ }
+
+ for_each_child(ce, child) {
+ err = eb_pin_timeline(eb, child, throttle);
+ if (err)
+ goto unwind;
+ ++i;
+ }
+ err = eb_pin_timeline(eb, ce, throttle);
+ if (err)
+ goto unwind;
+
+ eb->args->flags |= __EXEC_ENGINE_PINNED;
+ return 0;
+
+unwind:
+ for_each_child(ce, child) {
+ if (j++ < i) {
+ mutex_lock(&child->timeline->mutex);
+ intel_context_exit(child);
+ mutex_unlock(&child->timeline->mutex);
+ }
+ }
+ for_each_child(ce, child)
+ intel_context_unpin(child);
+ intel_context_unpin(ce);
+ return err;
+}
+
+static void eb_unpin_engine(struct i915_execbuffer *eb)
+{
+ struct intel_context *ce = eb->context, *child;
+
+ if (!(eb->args->flags & __EXEC_ENGINE_PINNED))
+ return;
+
+ eb->args->flags &= ~__EXEC_ENGINE_PINNED;
+
+ for_each_child(ce, child) {
+ mutex_lock(&child->timeline->mutex);
+ intel_context_exit(child);
+ mutex_unlock(&child->timeline->mutex);
+
+ intel_context_unpin(child);
+ }
+
+ mutex_lock(&ce->timeline->mutex);
+ intel_context_exit(ce);
+ mutex_unlock(&ce->timeline->mutex);
+
+ intel_context_unpin(ce);
+}
+
+static unsigned int
+eb_select_legacy_ring(struct i915_execbuffer *eb)
+{
+ struct drm_i915_private *i915 = eb->i915;
+ struct drm_i915_gem_execbuffer2 *args = eb->args;
+ unsigned int user_ring_id = args->flags & I915_EXEC_RING_MASK;
+
+ if (user_ring_id != I915_EXEC_BSD &&
+ (args->flags & I915_EXEC_BSD_MASK)) {
+ drm_dbg(&i915->drm,
+ "execbuf with non bsd ring but with invalid "
+ "bsd dispatch flags: %d\n", (int)(args->flags));
+ return -1;
+ }
+
+ if (user_ring_id == I915_EXEC_BSD &&
+ i915->engine_uabi_class_count[I915_ENGINE_CLASS_VIDEO] > 1) {
+ unsigned int bsd_idx = args->flags & I915_EXEC_BSD_MASK;
+
+ if (bsd_idx == I915_EXEC_BSD_DEFAULT) {
+ bsd_idx = gen8_dispatch_bsd_engine(i915, eb->file);
+ } else if (bsd_idx >= I915_EXEC_BSD_RING1 &&
+ bsd_idx <= I915_EXEC_BSD_RING2) {
+ bsd_idx >>= I915_EXEC_BSD_SHIFT;
+ bsd_idx--;
+ } else {
+ drm_dbg(&i915->drm,
+ "execbuf with unknown bsd ring: %u\n",
+ bsd_idx);
+ return -1;
+ }
+
+ return _VCS(bsd_idx);
+ }
+
+ if (user_ring_id >= ARRAY_SIZE(user_ring_map)) {
+ drm_dbg(&i915->drm, "execbuf with unknown ring: %u\n",
+ user_ring_id);
+ return -1;
+ }
+
+ return user_ring_map[user_ring_id];
+}
+
+static int
+eb_select_engine(struct i915_execbuffer *eb)
+{
+ struct intel_context *ce, *child;
+ struct intel_gt *gt;
+ unsigned int idx;
+ int err;
+
+ if (i915_gem_context_user_engines(eb->gem_context))
+ idx = eb->args->flags & I915_EXEC_RING_MASK;
+ else
+ idx = eb_select_legacy_ring(eb);
+
+ ce = i915_gem_context_get_engine(eb->gem_context, idx);
+ if (IS_ERR(ce))
+ return PTR_ERR(ce);
+
+ if (intel_context_is_parallel(ce)) {
+ if (eb->buffer_count < ce->parallel.number_children + 1) {
+ intel_context_put(ce);
+ return -EINVAL;
+ }
+ if (eb->batch_start_offset || eb->args->batch_len) {
+ intel_context_put(ce);
+ return -EINVAL;
+ }
+ }
+ eb->num_batches = ce->parallel.number_children + 1;
+ gt = ce->engine->gt;
+
+ for_each_child(ce, child)
+ intel_context_get(child);
+ intel_gt_pm_get(gt);
+ /*
+ * Keep GT0 active on MTL so that i915_vma_parked() doesn't
+ * free VMAs while execbuf ioctl is validating VMAs.
+ */
+ if (gt->info.id)
+ intel_gt_pm_get(to_gt(gt->i915));
+
+ if (!test_bit(CONTEXT_ALLOC_BIT, &ce->flags)) {
+ err = intel_context_alloc_state(ce);
+ if (err)
+ goto err;
+ }
+ for_each_child(ce, child) {
+ if (!test_bit(CONTEXT_ALLOC_BIT, &child->flags)) {
+ err = intel_context_alloc_state(child);
+ if (err)
+ goto err;
+ }
+ }
+
+ /*
+ * ABI: Before userspace accesses the GPU (e.g. execbuffer), report
+ * EIO if the GPU is already wedged.
+ */
+ err = intel_gt_terminally_wedged(ce->engine->gt);
+ if (err)
+ goto err;
+
+ if (!i915_vm_tryget(ce->vm)) {
+ err = -ENOENT;
+ goto err;
+ }
+
+ eb->context = ce;
+ eb->gt = ce->engine->gt;
+
+ /*
+ * Make sure engine pool stays alive even if we call intel_context_put
+ * during ww handling. The pool is destroyed when last pm reference
+ * is dropped, which breaks our -EDEADLK handling.
+ */
+ return err;
+
+err:
+ if (gt->info.id)
+ intel_gt_pm_put(to_gt(gt->i915));
+
+ intel_gt_pm_put(gt);
+ for_each_child(ce, child)
+ intel_context_put(child);
+ intel_context_put(ce);
+ return err;
+}
+
+static void
+eb_put_engine(struct i915_execbuffer *eb)
+{
+ struct intel_context *child;
+
+ i915_vm_put(eb->context->vm);
+ /*
+ * This works in conjunction with eb_select_engine() to prevent
+ * i915_vma_parked() from interfering while execbuf validates vmas.
+ */
+ if (eb->gt->info.id)
+ intel_gt_pm_put(to_gt(eb->gt->i915));
+ intel_gt_pm_put(eb->gt);
+ for_each_child(eb->context, child)
+ intel_context_put(child);
+ intel_context_put(eb->context);
+}
+
+static void
+__free_fence_array(struct eb_fence *fences, unsigned int n)
+{
+ while (n--) {
+ drm_syncobj_put(ptr_mask_bits(fences[n].syncobj, 2));
+ dma_fence_put(fences[n].dma_fence);
+ dma_fence_chain_free(fences[n].chain_fence);
+ }
+ kvfree(fences);
+}
+
+static int
+add_timeline_fence_array(struct i915_execbuffer *eb,
+ const struct drm_i915_gem_execbuffer_ext_timeline_fences *timeline_fences)
+{
+ struct drm_i915_gem_exec_fence __user *user_fences;
+ u64 __user *user_values;
+ struct eb_fence *f;
+ u64 nfences;
+ int err = 0;
+
+ nfences = timeline_fences->fence_count;
+ if (!nfences)
+ return 0;
+
+ /* Check multiplication overflow for access_ok() and kvmalloc_array() */
+ BUILD_BUG_ON(sizeof(size_t) > sizeof(unsigned long));
+ if (nfences > min_t(unsigned long,
+ ULONG_MAX / sizeof(*user_fences),
+ SIZE_MAX / sizeof(*f)) - eb->num_fences)
+ return -EINVAL;
+
+ user_fences = u64_to_user_ptr(timeline_fences->handles_ptr);
+ if (!access_ok(user_fences, nfences * sizeof(*user_fences)))
+ return -EFAULT;
+
+ user_values = u64_to_user_ptr(timeline_fences->values_ptr);
+ if (!access_ok(user_values, nfences * sizeof(*user_values)))
+ return -EFAULT;
+
+ f = krealloc(eb->fences,
+ (eb->num_fences + nfences) * sizeof(*f),
+ __GFP_NOWARN | GFP_KERNEL);
+ if (!f)
+ return -ENOMEM;
+
+ eb->fences = f;
+ f += eb->num_fences;
+
+ BUILD_BUG_ON(~(ARCH_KMALLOC_MINALIGN - 1) &
+ ~__I915_EXEC_FENCE_UNKNOWN_FLAGS);
+
+ while (nfences--) {
+ struct drm_i915_gem_exec_fence user_fence;
+ struct drm_syncobj *syncobj;
+ struct dma_fence *fence = NULL;
+ u64 point;
+
+ if (__copy_from_user(&user_fence,
+ user_fences++,
+ sizeof(user_fence)))
+ return -EFAULT;
+
+ if (user_fence.flags & __I915_EXEC_FENCE_UNKNOWN_FLAGS)
+ return -EINVAL;
+
+ if (__get_user(point, user_values++))
+ return -EFAULT;
+
+ syncobj = drm_syncobj_find(eb->file, user_fence.handle);
+ if (!syncobj) {
+ drm_dbg(&eb->i915->drm,
+ "Invalid syncobj handle provided\n");
+ return -ENOENT;
+ }
+
+ fence = drm_syncobj_fence_get(syncobj);
+
+ if (!fence && user_fence.flags &&
+ !(user_fence.flags & I915_EXEC_FENCE_SIGNAL)) {
+ drm_dbg(&eb->i915->drm,
+ "Syncobj handle has no fence\n");
+ drm_syncobj_put(syncobj);
+ return -EINVAL;
+ }
+
+ if (fence)
+ err = dma_fence_chain_find_seqno(&fence, point);
+
+ if (err && !(user_fence.flags & I915_EXEC_FENCE_SIGNAL)) {
+ drm_dbg(&eb->i915->drm,
+ "Syncobj handle missing requested point %llu\n",
+ point);
+ dma_fence_put(fence);
+ drm_syncobj_put(syncobj);
+ return err;
+ }
+
+ /*
+ * A point might have been signaled already and
+ * garbage collected from the timeline. In this case
+ * just ignore the point and carry on.
+ */
+ if (!fence && !(user_fence.flags & I915_EXEC_FENCE_SIGNAL)) {
+ drm_syncobj_put(syncobj);
+ continue;
+ }
+
+ /*
+ * For timeline syncobjs we need to preallocate chains for
+ * later signaling.
+ */
+ if (point != 0 && user_fence.flags & I915_EXEC_FENCE_SIGNAL) {
+ /*
+ * Waiting and signaling the same point (when point !=
+ * 0) would break the timeline.
+ */
+ if (user_fence.flags & I915_EXEC_FENCE_WAIT) {
+ drm_dbg(&eb->i915->drm,
+ "Trying to wait & signal the same timeline point.\n");
+ dma_fence_put(fence);
+ drm_syncobj_put(syncobj);
+ return -EINVAL;
+ }
+
+ f->chain_fence = dma_fence_chain_alloc();
+ if (!f->chain_fence) {
+ drm_syncobj_put(syncobj);
+ dma_fence_put(fence);
+ return -ENOMEM;
+ }
+ } else {
+ f->chain_fence = NULL;
+ }
+
+ f->syncobj = ptr_pack_bits(syncobj, user_fence.flags, 2);
+ f->dma_fence = fence;
+ f->value = point;
+ f++;
+ eb->num_fences++;
+ }
+
+ return 0;
+}
+
+static int add_fence_array(struct i915_execbuffer *eb)
+{
+ struct drm_i915_gem_execbuffer2 *args = eb->args;
+ struct drm_i915_gem_exec_fence __user *user;
+ unsigned long num_fences = args->num_cliprects;
+ struct eb_fence *f;
+
+ if (!(args->flags & I915_EXEC_FENCE_ARRAY))
+ return 0;
+
+ if (!num_fences)
+ return 0;
+
+ /* Check multiplication overflow for access_ok() and kvmalloc_array() */
+ BUILD_BUG_ON(sizeof(size_t) > sizeof(unsigned long));
+ if (num_fences > min_t(unsigned long,
+ ULONG_MAX / sizeof(*user),
+ SIZE_MAX / sizeof(*f) - eb->num_fences))
+ return -EINVAL;
+
+ user = u64_to_user_ptr(args->cliprects_ptr);
+ if (!access_ok(user, num_fences * sizeof(*user)))
+ return -EFAULT;
+
+ f = krealloc(eb->fences,
+ (eb->num_fences + num_fences) * sizeof(*f),
+ __GFP_NOWARN | GFP_KERNEL);
+ if (!f)
+ return -ENOMEM;
+
+ eb->fences = f;
+ f += eb->num_fences;
+ while (num_fences--) {
+ struct drm_i915_gem_exec_fence user_fence;
+ struct drm_syncobj *syncobj;
+ struct dma_fence *fence = NULL;
+
+ if (__copy_from_user(&user_fence, user++, sizeof(user_fence)))
+ return -EFAULT;
+
+ if (user_fence.flags & __I915_EXEC_FENCE_UNKNOWN_FLAGS)
+ return -EINVAL;
+
+ syncobj = drm_syncobj_find(eb->file, user_fence.handle);
+ if (!syncobj) {
+ drm_dbg(&eb->i915->drm,
+ "Invalid syncobj handle provided\n");
+ return -ENOENT;
+ }
+
+ if (user_fence.flags & I915_EXEC_FENCE_WAIT) {
+ fence = drm_syncobj_fence_get(syncobj);
+ if (!fence) {
+ drm_dbg(&eb->i915->drm,
+ "Syncobj handle has no fence\n");
+ drm_syncobj_put(syncobj);
+ return -EINVAL;
+ }
+ }
+
+ BUILD_BUG_ON(~(ARCH_KMALLOC_MINALIGN - 1) &
+ ~__I915_EXEC_FENCE_UNKNOWN_FLAGS);
+
+ f->syncobj = ptr_pack_bits(syncobj, user_fence.flags, 2);
+ f->dma_fence = fence;
+ f->value = 0;
+ f->chain_fence = NULL;
+ f++;
+ eb->num_fences++;
+ }
+
+ return 0;
+}
+
+static void put_fence_array(struct eb_fence *fences, int num_fences)
+{
+ if (fences)
+ __free_fence_array(fences, num_fences);
+}
+
+static int
+await_fence_array(struct i915_execbuffer *eb,
+ struct i915_request *rq)
+{
+ unsigned int n;
+ int err;
+
+ for (n = 0; n < eb->num_fences; n++) {
+ if (!eb->fences[n].dma_fence)
+ continue;
+
+ err = i915_request_await_dma_fence(rq, eb->fences[n].dma_fence);
+ if (err < 0)
+ return err;
+ }
+
+ return 0;
+}
+
+static void signal_fence_array(const struct i915_execbuffer *eb,
+ struct dma_fence * const fence)
+{
+ unsigned int n;
+
+ for (n = 0; n < eb->num_fences; n++) {
+ struct drm_syncobj *syncobj;
+ unsigned int flags;
+
+ syncobj = ptr_unpack_bits(eb->fences[n].syncobj, &flags, 2);
+ if (!(flags & I915_EXEC_FENCE_SIGNAL))
+ continue;
+
+ if (eb->fences[n].chain_fence) {
+ drm_syncobj_add_point(syncobj,
+ eb->fences[n].chain_fence,
+ fence,
+ eb->fences[n].value);
+ /*
+ * The chain's ownership is transferred to the
+ * timeline.
+ */
+ eb->fences[n].chain_fence = NULL;
+ } else {
+ drm_syncobj_replace_fence(syncobj, fence);
+ }
+ }
+}
+
+static int
+parse_timeline_fences(struct i915_user_extension __user *ext, void *data)
+{
+ struct i915_execbuffer *eb = data;
+ struct drm_i915_gem_execbuffer_ext_timeline_fences timeline_fences;
+
+ if (copy_from_user(&timeline_fences, ext, sizeof(timeline_fences)))
+ return -EFAULT;
+
+ return add_timeline_fence_array(eb, &timeline_fences);
+}
+
+static void retire_requests(struct intel_timeline *tl, struct i915_request *end)
+{
+ struct i915_request *rq, *rn;
+
+ list_for_each_entry_safe(rq, rn, &tl->requests, link)
+ if (rq == end || !i915_request_retire(rq))
+ break;
+}
+
+static int eb_request_add(struct i915_execbuffer *eb, struct i915_request *rq,
+ int err, bool last_parallel)
+{
+ struct intel_timeline * const tl = i915_request_timeline(rq);
+ struct i915_sched_attr attr = {};
+ struct i915_request *prev;
+
+ lockdep_assert_held(&tl->mutex);
+ lockdep_unpin_lock(&tl->mutex, rq->cookie);
+
+ trace_i915_request_add(rq);
+
+ prev = __i915_request_commit(rq);
+
+ /* Check that the context wasn't destroyed before submission */
+ if (likely(!intel_context_is_closed(eb->context))) {
+ attr = eb->gem_context->sched;
+ } else {
+ /* Serialise with context_close via the add_to_timeline */
+ i915_request_set_error_once(rq, -ENOENT);
+ __i915_request_skip(rq);
+ err = -ENOENT; /* override any transient errors */
+ }
+
+ if (intel_context_is_parallel(eb->context)) {
+ if (err) {
+ __i915_request_skip(rq);
+ set_bit(I915_FENCE_FLAG_SKIP_PARALLEL,
+ &rq->fence.flags);
+ }
+ if (last_parallel)
+ set_bit(I915_FENCE_FLAG_SUBMIT_PARALLEL,
+ &rq->fence.flags);
+ }
+
+ __i915_request_queue(rq, &attr);
+
+ /* Try to clean up the client's timeline after submitting the request */
+ if (prev)
+ retire_requests(tl, prev);
+
+ mutex_unlock(&tl->mutex);
+
+ return err;
+}
+
+static int eb_requests_add(struct i915_execbuffer *eb, int err)
+{
+ int i;
+
+ /*
+ * We iterate in reverse order of creation to release timeline mutexes in
+ * same order.
+ */
+ for_each_batch_add_order(eb, i) {
+ struct i915_request *rq = eb->requests[i];
+
+ if (!rq)
+ continue;
+ err |= eb_request_add(eb, rq, err, i == 0);
+ }
+
+ return err;
+}
+
+static const i915_user_extension_fn execbuf_extensions[] = {
+ [DRM_I915_GEM_EXECBUFFER_EXT_TIMELINE_FENCES] = parse_timeline_fences,
+};
+
+static int
+parse_execbuf2_extensions(struct drm_i915_gem_execbuffer2 *args,
+ struct i915_execbuffer *eb)
+{
+ if (!(args->flags & I915_EXEC_USE_EXTENSIONS))
+ return 0;
+
+ /* The execbuf2 extension mechanism reuses cliprects_ptr. So we cannot
+ * have another flag also using it at the same time.
+ */
+ if (eb->args->flags & I915_EXEC_FENCE_ARRAY)
+ return -EINVAL;
+
+ if (args->num_cliprects != 0)
+ return -EINVAL;
+
+ return i915_user_extensions(u64_to_user_ptr(args->cliprects_ptr),
+ execbuf_extensions,
+ ARRAY_SIZE(execbuf_extensions),
+ eb);
+}
+
+static void eb_requests_get(struct i915_execbuffer *eb)
+{
+ unsigned int i;
+
+ for_each_batch_create_order(eb, i) {
+ if (!eb->requests[i])
+ break;
+
+ i915_request_get(eb->requests[i]);
+ }
+}
+
+static void eb_requests_put(struct i915_execbuffer *eb)
+{
+ unsigned int i;
+
+ for_each_batch_create_order(eb, i) {
+ if (!eb->requests[i])
+ break;
+
+ i915_request_put(eb->requests[i]);
+ }
+}
+
+static struct sync_file *
+eb_composite_fence_create(struct i915_execbuffer *eb, int out_fence_fd)
+{
+ struct sync_file *out_fence = NULL;
+ struct dma_fence_array *fence_array;
+ struct dma_fence **fences;
+ unsigned int i;
+
+ GEM_BUG_ON(!intel_context_is_parent(eb->context));
+
+ fences = kmalloc_array(eb->num_batches, sizeof(*fences), GFP_KERNEL);
+ if (!fences)
+ return ERR_PTR(-ENOMEM);
+
+ for_each_batch_create_order(eb, i) {
+ fences[i] = &eb->requests[i]->fence;
+ __set_bit(I915_FENCE_FLAG_COMPOSITE,
+ &eb->requests[i]->fence.flags);
+ }
+
+ fence_array = dma_fence_array_create(eb->num_batches,
+ fences,
+ eb->context->parallel.fence_context,
+ eb->context->parallel.seqno++,
+ false);
+ if (!fence_array) {
+ kfree(fences);
+ return ERR_PTR(-ENOMEM);
+ }
+
+ /* Move ownership to the dma_fence_array created above */
+ for_each_batch_create_order(eb, i)
+ dma_fence_get(fences[i]);
+
+ if (out_fence_fd != -1) {
+ out_fence = sync_file_create(&fence_array->base);
+ /* sync_file now owns fence_arry, drop creation ref */
+ dma_fence_put(&fence_array->base);
+ if (!out_fence)
+ return ERR_PTR(-ENOMEM);
+ }
+
+ eb->composite_fence = &fence_array->base;
+
+ return out_fence;
+}
+
+static struct sync_file *
+eb_fences_add(struct i915_execbuffer *eb, struct i915_request *rq,
+ struct dma_fence *in_fence, int out_fence_fd)
+{
+ struct sync_file *out_fence = NULL;
+ int err;
+
+ if (unlikely(eb->gem_context->syncobj)) {
+ struct dma_fence *fence;
+
+ fence = drm_syncobj_fence_get(eb->gem_context->syncobj);
+ err = i915_request_await_dma_fence(rq, fence);
+ dma_fence_put(fence);
+ if (err)
+ return ERR_PTR(err);
+ }
+
+ if (in_fence) {
+ if (eb->args->flags & I915_EXEC_FENCE_SUBMIT)
+ err = i915_request_await_execution(rq, in_fence);
+ else
+ err = i915_request_await_dma_fence(rq, in_fence);
+ if (err < 0)
+ return ERR_PTR(err);
+ }
+
+ if (eb->fences) {
+ err = await_fence_array(eb, rq);
+ if (err)
+ return ERR_PTR(err);
+ }
+
+ if (intel_context_is_parallel(eb->context)) {
+ out_fence = eb_composite_fence_create(eb, out_fence_fd);
+ if (IS_ERR(out_fence))
+ return ERR_PTR(-ENOMEM);
+ } else if (out_fence_fd != -1) {
+ out_fence = sync_file_create(&rq->fence);
+ if (!out_fence)
+ return ERR_PTR(-ENOMEM);
+ }
+
+ return out_fence;
+}
+
+static struct intel_context *
+eb_find_context(struct i915_execbuffer *eb, unsigned int context_number)
+{
+ struct intel_context *child;
+
+ if (likely(context_number == 0))
+ return eb->context;
+
+ for_each_child(eb->context, child)
+ if (!--context_number)
+ return child;
+
+ GEM_BUG_ON("Context not found");
+
+ return NULL;
+}
+
+static struct sync_file *
+eb_requests_create(struct i915_execbuffer *eb, struct dma_fence *in_fence,
+ int out_fence_fd)
+{
+ struct sync_file *out_fence = NULL;
+ unsigned int i;
+
+ for_each_batch_create_order(eb, i) {
+ /* Allocate a request for this batch buffer nice and early. */
+ eb->requests[i] = i915_request_create(eb_find_context(eb, i));
+ if (IS_ERR(eb->requests[i])) {
+ out_fence = ERR_CAST(eb->requests[i]);
+ eb->requests[i] = NULL;
+ return out_fence;
+ }
+
+ /*
+ * Only the first request added (committed to backend) has to
+ * take the in fences into account as all subsequent requests
+ * will have fences inserted inbetween them.
+ */
+ if (i + 1 == eb->num_batches) {
+ out_fence = eb_fences_add(eb, eb->requests[i],
+ in_fence, out_fence_fd);
+ if (IS_ERR(out_fence))
+ return out_fence;
+ }
+
+ /*
+ * Not really on stack, but we don't want to call
+ * kfree on the batch_snapshot when we put it, so use the
+ * _onstack interface.
+ */
+ if (eb->batches[i]->vma)
+ eb->requests[i]->batch_res =
+ i915_vma_resource_get(eb->batches[i]->vma->resource);
+ if (eb->batch_pool) {
+ GEM_BUG_ON(intel_context_is_parallel(eb->context));
+ intel_gt_buffer_pool_mark_active(eb->batch_pool,
+ eb->requests[i]);
+ }
+ }
+
+ return out_fence;
+}
+
+static int
+i915_gem_do_execbuffer(struct drm_device *dev,
+ struct drm_file *file,
+ struct drm_i915_gem_execbuffer2 *args,
+ struct drm_i915_gem_exec_object2 *exec)
+{
+ struct drm_i915_private *i915 = to_i915(dev);
+ struct i915_execbuffer eb;
+ struct dma_fence *in_fence = NULL;
+ struct sync_file *out_fence = NULL;
+ int out_fence_fd = -1;
+ int err;
+
+ BUILD_BUG_ON(__EXEC_INTERNAL_FLAGS & ~__I915_EXEC_ILLEGAL_FLAGS);
+ BUILD_BUG_ON(__EXEC_OBJECT_INTERNAL_FLAGS &
+ ~__EXEC_OBJECT_UNKNOWN_FLAGS);
+
+ eb.i915 = i915;
+ eb.file = file;
+ eb.args = args;
+ if (DBG_FORCE_RELOC || !(args->flags & I915_EXEC_NO_RELOC))
+ args->flags |= __EXEC_HAS_RELOC;
+
+ eb.exec = exec;
+ eb.vma = (struct eb_vma *)(exec + args->buffer_count + 1);
+ eb.vma[0].vma = NULL;
+ eb.batch_pool = NULL;
+
+ eb.invalid_flags = __EXEC_OBJECT_UNKNOWN_FLAGS;
+ reloc_cache_init(&eb.reloc_cache, eb.i915);
+
+ eb.buffer_count = args->buffer_count;
+ eb.batch_start_offset = args->batch_start_offset;
+ eb.trampoline = NULL;
+
+ eb.fences = NULL;
+ eb.num_fences = 0;
+
+ eb_capture_list_clear(&eb);
+
+ memset(eb.requests, 0, sizeof(struct i915_request *) *
+ ARRAY_SIZE(eb.requests));
+ eb.composite_fence = NULL;
+
+ eb.batch_flags = 0;
+ if (args->flags & I915_EXEC_SECURE) {
+ if (GRAPHICS_VER(i915) >= 11)
+ return -ENODEV;
+
+ /* Return -EPERM to trigger fallback code on old binaries. */
+ if (!HAS_SECURE_BATCHES(i915))
+ return -EPERM;
+
+ if (!drm_is_current_master(file) || !capable(CAP_SYS_ADMIN))
+ return -EPERM;
+
+ eb.batch_flags |= I915_DISPATCH_SECURE;
+ }
+ if (args->flags & I915_EXEC_IS_PINNED)
+ eb.batch_flags |= I915_DISPATCH_PINNED;
+
+ err = parse_execbuf2_extensions(args, &eb);
+ if (err)
+ goto err_ext;
+
+ err = add_fence_array(&eb);
+ if (err)
+ goto err_ext;
+
+#define IN_FENCES (I915_EXEC_FENCE_IN | I915_EXEC_FENCE_SUBMIT)
+ if (args->flags & IN_FENCES) {
+ if ((args->flags & IN_FENCES) == IN_FENCES)
+ return -EINVAL;
+
+ in_fence = sync_file_get_fence(lower_32_bits(args->rsvd2));
+ if (!in_fence) {
+ err = -EINVAL;
+ goto err_ext;
+ }
+ }
+#undef IN_FENCES
+
+ if (args->flags & I915_EXEC_FENCE_OUT) {
+ out_fence_fd = get_unused_fd_flags(O_CLOEXEC);
+ if (out_fence_fd < 0) {
+ err = out_fence_fd;
+ goto err_in_fence;
+ }
+ }
+
+ err = eb_create(&eb);
+ if (err)
+ goto err_out_fence;
+
+ GEM_BUG_ON(!eb.lut_size);
+
+ err = eb_select_context(&eb);
+ if (unlikely(err))
+ goto err_destroy;
+
+ err = eb_select_engine(&eb);
+ if (unlikely(err))
+ goto err_context;
+
+ err = eb_lookup_vmas(&eb);
+ if (err) {
+ eb_release_vmas(&eb, true);
+ goto err_engine;
+ }
+
+ i915_gem_ww_ctx_init(&eb.ww, true);
+
+ err = eb_relocate_parse(&eb);
+ if (err) {
+ /*
+ * If the user expects the execobject.offset and
+ * reloc.presumed_offset to be an exact match,
+ * as for using NO_RELOC, then we cannot update
+ * the execobject.offset until we have completed
+ * relocation.
+ */
+ args->flags &= ~__EXEC_HAS_RELOC;
+ goto err_vma;
+ }
+
+ ww_acquire_done(&eb.ww.ctx);
+ err = eb_capture_stage(&eb);
+ if (err)
+ goto err_vma;
+
+ out_fence = eb_requests_create(&eb, in_fence, out_fence_fd);
+ if (IS_ERR(out_fence)) {
+ err = PTR_ERR(out_fence);
+ out_fence = NULL;
+ if (eb.requests[0])
+ goto err_request;
+ else
+ goto err_vma;
+ }
+
+ err = eb_submit(&eb);
+
+err_request:
+ eb_requests_get(&eb);
+ err = eb_requests_add(&eb, err);
+
+ if (eb.fences)
+ signal_fence_array(&eb, eb.composite_fence ?
+ eb.composite_fence :
+ &eb.requests[0]->fence);
+
+ if (unlikely(eb.gem_context->syncobj)) {
+ drm_syncobj_replace_fence(eb.gem_context->syncobj,
+ eb.composite_fence ?
+ eb.composite_fence :
+ &eb.requests[0]->fence);
+ }
+
+ if (out_fence) {
+ if (err == 0) {
+ fd_install(out_fence_fd, out_fence->file);
+ args->rsvd2 &= GENMASK_ULL(31, 0); /* keep in-fence */
+ args->rsvd2 |= (u64)out_fence_fd << 32;
+ out_fence_fd = -1;
+ } else {
+ fput(out_fence->file);
+ }
+ }
+
+ if (!out_fence && eb.composite_fence)
+ dma_fence_put(eb.composite_fence);
+
+ eb_requests_put(&eb);
+
+err_vma:
+ eb_release_vmas(&eb, true);
+ WARN_ON(err == -EDEADLK);
+ i915_gem_ww_ctx_fini(&eb.ww);
+
+ if (eb.batch_pool)
+ intel_gt_buffer_pool_put(eb.batch_pool);
+err_engine:
+ eb_put_engine(&eb);
+err_context:
+ i915_gem_context_put(eb.gem_context);
+err_destroy:
+ eb_destroy(&eb);
+err_out_fence:
+ if (out_fence_fd != -1)
+ put_unused_fd(out_fence_fd);
+err_in_fence:
+ dma_fence_put(in_fence);
+err_ext:
+ put_fence_array(eb.fences, eb.num_fences);
+ return err;
+}
+
+static size_t eb_element_size(void)
+{
+ return sizeof(struct drm_i915_gem_exec_object2) + sizeof(struct eb_vma);
+}
+
+static bool check_buffer_count(size_t count)
+{
+ const size_t sz = eb_element_size();
+
+ /*
+ * When using LUT_HANDLE, we impose a limit of INT_MAX for the lookup
+ * array size (see eb_create()). Otherwise, we can accept an array as
+ * large as can be addressed (though use large arrays at your peril)!
+ */
+
+ return !(count < 1 || count > INT_MAX || count > SIZE_MAX / sz - 1);
+}
+
+int
+i915_gem_execbuffer2_ioctl(struct drm_device *dev, void *data,
+ struct drm_file *file)
+{
+ struct drm_i915_private *i915 = to_i915(dev);
+ struct drm_i915_gem_execbuffer2 *args = data;
+ struct drm_i915_gem_exec_object2 *exec2_list;
+ const size_t count = args->buffer_count;
+ int err;
+
+ if (!check_buffer_count(count)) {
+ drm_dbg(&i915->drm, "execbuf2 with %zd buffers\n", count);
+ return -EINVAL;
+ }
+
+ err = i915_gem_check_execbuffer(i915, args);
+ if (err)
+ return err;
+
+ /* Allocate extra slots for use by the command parser */
+ exec2_list = kvmalloc_array(count + 2, eb_element_size(),
+ __GFP_NOWARN | GFP_KERNEL);
+ if (exec2_list == NULL) {
+ drm_dbg(&i915->drm, "Failed to allocate exec list for %zd buffers\n",
+ count);
+ return -ENOMEM;
+ }
+ if (copy_from_user(exec2_list,
+ u64_to_user_ptr(args->buffers_ptr),
+ sizeof(*exec2_list) * count)) {
+ drm_dbg(&i915->drm, "copy %zd exec entries failed\n", count);
+ kvfree(exec2_list);
+ return -EFAULT;
+ }
+
+ err = i915_gem_do_execbuffer(dev, file, args, exec2_list);
+
+ /*
+ * Now that we have begun execution of the batchbuffer, we ignore
+ * any new error after this point. Also given that we have already
+ * updated the associated relocations, we try to write out the current
+ * object locations irrespective of any error.
+ */
+ if (args->flags & __EXEC_HAS_RELOC) {
+ struct drm_i915_gem_exec_object2 __user *user_exec_list =
+ u64_to_user_ptr(args->buffers_ptr);
+ unsigned int i;
+
+ /* Copy the new buffer offsets back to the user's exec list. */
+ /*
+ * Note: count * sizeof(*user_exec_list) does not overflow,
+ * because we checked 'count' in check_buffer_count().
+ *
+ * And this range already got effectively checked earlier
+ * when we did the "copy_from_user()" above.
+ */
+ if (!user_write_access_begin(user_exec_list,
+ count * sizeof(*user_exec_list)))
+ goto end;
+
+ for (i = 0; i < args->buffer_count; i++) {
+ if (!(exec2_list[i].offset & UPDATE))
+ continue;
+
+ exec2_list[i].offset =
+ gen8_canonical_addr(exec2_list[i].offset & PIN_OFFSET_MASK);
+ unsafe_put_user(exec2_list[i].offset,
+ &user_exec_list[i].offset,
+ end_user);
+ }
+end_user:
+ user_write_access_end();
+end:;
+ }
+
+ args->flags &= ~__I915_EXEC_UNKNOWN_FLAGS;
+ kvfree(exec2_list);
+ return err;
+}