summaryrefslogtreecommitdiffstats
path: root/drivers/iommu/dma-iommu.c
diff options
context:
space:
mode:
Diffstat (limited to 'drivers/iommu/dma-iommu.c')
-rw-r--r--drivers/iommu/dma-iommu.c1758
1 files changed, 1758 insertions, 0 deletions
diff --git a/drivers/iommu/dma-iommu.c b/drivers/iommu/dma-iommu.c
new file mode 100644
index 000000000..e5d087bd6
--- /dev/null
+++ b/drivers/iommu/dma-iommu.c
@@ -0,0 +1,1758 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * A fairly generic DMA-API to IOMMU-API glue layer.
+ *
+ * Copyright (C) 2014-2015 ARM Ltd.
+ *
+ * based in part on arch/arm/mm/dma-mapping.c:
+ * Copyright (C) 2000-2004 Russell King
+ */
+
+#include <linux/acpi_iort.h>
+#include <linux/atomic.h>
+#include <linux/crash_dump.h>
+#include <linux/device.h>
+#include <linux/dma-direct.h>
+#include <linux/dma-map-ops.h>
+#include <linux/gfp.h>
+#include <linux/huge_mm.h>
+#include <linux/iommu.h>
+#include <linux/iova.h>
+#include <linux/irq.h>
+#include <linux/list_sort.h>
+#include <linux/memremap.h>
+#include <linux/mm.h>
+#include <linux/mutex.h>
+#include <linux/of_iommu.h>
+#include <linux/pci.h>
+#include <linux/scatterlist.h>
+#include <linux/spinlock.h>
+#include <linux/swiotlb.h>
+#include <linux/vmalloc.h>
+#include <trace/events/swiotlb.h>
+
+#include "dma-iommu.h"
+
+struct iommu_dma_msi_page {
+ struct list_head list;
+ dma_addr_t iova;
+ phys_addr_t phys;
+};
+
+enum iommu_dma_cookie_type {
+ IOMMU_DMA_IOVA_COOKIE,
+ IOMMU_DMA_MSI_COOKIE,
+};
+
+struct iommu_dma_cookie {
+ enum iommu_dma_cookie_type type;
+ union {
+ /* Full allocator for IOMMU_DMA_IOVA_COOKIE */
+ struct {
+ struct iova_domain iovad;
+
+ struct iova_fq __percpu *fq; /* Flush queue */
+ /* Number of TLB flushes that have been started */
+ atomic64_t fq_flush_start_cnt;
+ /* Number of TLB flushes that have been finished */
+ atomic64_t fq_flush_finish_cnt;
+ /* Timer to regularily empty the flush queues */
+ struct timer_list fq_timer;
+ /* 1 when timer is active, 0 when not */
+ atomic_t fq_timer_on;
+ };
+ /* Trivial linear page allocator for IOMMU_DMA_MSI_COOKIE */
+ dma_addr_t msi_iova;
+ };
+ struct list_head msi_page_list;
+
+ /* Domain for flush queue callback; NULL if flush queue not in use */
+ struct iommu_domain *fq_domain;
+ struct mutex mutex;
+};
+
+static DEFINE_STATIC_KEY_FALSE(iommu_deferred_attach_enabled);
+bool iommu_dma_forcedac __read_mostly;
+
+static int __init iommu_dma_forcedac_setup(char *str)
+{
+ int ret = kstrtobool(str, &iommu_dma_forcedac);
+
+ if (!ret && iommu_dma_forcedac)
+ pr_info("Forcing DAC for PCI devices\n");
+ return ret;
+}
+early_param("iommu.forcedac", iommu_dma_forcedac_setup);
+
+/* Number of entries per flush queue */
+#define IOVA_FQ_SIZE 256
+
+/* Timeout (in ms) after which entries are flushed from the queue */
+#define IOVA_FQ_TIMEOUT 10
+
+/* Flush queue entry for deferred flushing */
+struct iova_fq_entry {
+ unsigned long iova_pfn;
+ unsigned long pages;
+ struct list_head freelist;
+ u64 counter; /* Flush counter when this entry was added */
+};
+
+/* Per-CPU flush queue structure */
+struct iova_fq {
+ struct iova_fq_entry entries[IOVA_FQ_SIZE];
+ unsigned int head, tail;
+ spinlock_t lock;
+};
+
+#define fq_ring_for_each(i, fq) \
+ for ((i) = (fq)->head; (i) != (fq)->tail; (i) = ((i) + 1) % IOVA_FQ_SIZE)
+
+static inline bool fq_full(struct iova_fq *fq)
+{
+ assert_spin_locked(&fq->lock);
+ return (((fq->tail + 1) % IOVA_FQ_SIZE) == fq->head);
+}
+
+static inline unsigned int fq_ring_add(struct iova_fq *fq)
+{
+ unsigned int idx = fq->tail;
+
+ assert_spin_locked(&fq->lock);
+
+ fq->tail = (idx + 1) % IOVA_FQ_SIZE;
+
+ return idx;
+}
+
+static void fq_ring_free(struct iommu_dma_cookie *cookie, struct iova_fq *fq)
+{
+ u64 counter = atomic64_read(&cookie->fq_flush_finish_cnt);
+ unsigned int idx;
+
+ assert_spin_locked(&fq->lock);
+
+ fq_ring_for_each(idx, fq) {
+
+ if (fq->entries[idx].counter >= counter)
+ break;
+
+ put_pages_list(&fq->entries[idx].freelist);
+ free_iova_fast(&cookie->iovad,
+ fq->entries[idx].iova_pfn,
+ fq->entries[idx].pages);
+
+ fq->head = (fq->head + 1) % IOVA_FQ_SIZE;
+ }
+}
+
+static void fq_flush_iotlb(struct iommu_dma_cookie *cookie)
+{
+ atomic64_inc(&cookie->fq_flush_start_cnt);
+ cookie->fq_domain->ops->flush_iotlb_all(cookie->fq_domain);
+ atomic64_inc(&cookie->fq_flush_finish_cnt);
+}
+
+static void fq_flush_timeout(struct timer_list *t)
+{
+ struct iommu_dma_cookie *cookie = from_timer(cookie, t, fq_timer);
+ int cpu;
+
+ atomic_set(&cookie->fq_timer_on, 0);
+ fq_flush_iotlb(cookie);
+
+ for_each_possible_cpu(cpu) {
+ unsigned long flags;
+ struct iova_fq *fq;
+
+ fq = per_cpu_ptr(cookie->fq, cpu);
+ spin_lock_irqsave(&fq->lock, flags);
+ fq_ring_free(cookie, fq);
+ spin_unlock_irqrestore(&fq->lock, flags);
+ }
+}
+
+static void queue_iova(struct iommu_dma_cookie *cookie,
+ unsigned long pfn, unsigned long pages,
+ struct list_head *freelist)
+{
+ struct iova_fq *fq;
+ unsigned long flags;
+ unsigned int idx;
+
+ /*
+ * Order against the IOMMU driver's pagetable update from unmapping
+ * @pte, to guarantee that fq_flush_iotlb() observes that if called
+ * from a different CPU before we release the lock below. Full barrier
+ * so it also pairs with iommu_dma_init_fq() to avoid seeing partially
+ * written fq state here.
+ */
+ smp_mb();
+
+ fq = raw_cpu_ptr(cookie->fq);
+ spin_lock_irqsave(&fq->lock, flags);
+
+ /*
+ * First remove all entries from the flush queue that have already been
+ * flushed out on another CPU. This makes the fq_full() check below less
+ * likely to be true.
+ */
+ fq_ring_free(cookie, fq);
+
+ if (fq_full(fq)) {
+ fq_flush_iotlb(cookie);
+ fq_ring_free(cookie, fq);
+ }
+
+ idx = fq_ring_add(fq);
+
+ fq->entries[idx].iova_pfn = pfn;
+ fq->entries[idx].pages = pages;
+ fq->entries[idx].counter = atomic64_read(&cookie->fq_flush_start_cnt);
+ list_splice(freelist, &fq->entries[idx].freelist);
+
+ spin_unlock_irqrestore(&fq->lock, flags);
+
+ /* Avoid false sharing as much as possible. */
+ if (!atomic_read(&cookie->fq_timer_on) &&
+ !atomic_xchg(&cookie->fq_timer_on, 1))
+ mod_timer(&cookie->fq_timer,
+ jiffies + msecs_to_jiffies(IOVA_FQ_TIMEOUT));
+}
+
+static void iommu_dma_free_fq(struct iommu_dma_cookie *cookie)
+{
+ int cpu, idx;
+
+ if (!cookie->fq)
+ return;
+
+ del_timer_sync(&cookie->fq_timer);
+ /* The IOVAs will be torn down separately, so just free our queued pages */
+ for_each_possible_cpu(cpu) {
+ struct iova_fq *fq = per_cpu_ptr(cookie->fq, cpu);
+
+ fq_ring_for_each(idx, fq)
+ put_pages_list(&fq->entries[idx].freelist);
+ }
+
+ free_percpu(cookie->fq);
+}
+
+/* sysfs updates are serialised by the mutex of the group owning @domain */
+int iommu_dma_init_fq(struct iommu_domain *domain)
+{
+ struct iommu_dma_cookie *cookie = domain->iova_cookie;
+ struct iova_fq __percpu *queue;
+ int i, cpu;
+
+ if (cookie->fq_domain)
+ return 0;
+
+ atomic64_set(&cookie->fq_flush_start_cnt, 0);
+ atomic64_set(&cookie->fq_flush_finish_cnt, 0);
+
+ queue = alloc_percpu(struct iova_fq);
+ if (!queue) {
+ pr_warn("iova flush queue initialization failed\n");
+ return -ENOMEM;
+ }
+
+ for_each_possible_cpu(cpu) {
+ struct iova_fq *fq = per_cpu_ptr(queue, cpu);
+
+ fq->head = 0;
+ fq->tail = 0;
+
+ spin_lock_init(&fq->lock);
+
+ for (i = 0; i < IOVA_FQ_SIZE; i++)
+ INIT_LIST_HEAD(&fq->entries[i].freelist);
+ }
+
+ cookie->fq = queue;
+
+ timer_setup(&cookie->fq_timer, fq_flush_timeout, 0);
+ atomic_set(&cookie->fq_timer_on, 0);
+ /*
+ * Prevent incomplete fq state being observable. Pairs with path from
+ * __iommu_dma_unmap() through iommu_dma_free_iova() to queue_iova()
+ */
+ smp_wmb();
+ WRITE_ONCE(cookie->fq_domain, domain);
+ return 0;
+}
+
+static inline size_t cookie_msi_granule(struct iommu_dma_cookie *cookie)
+{
+ if (cookie->type == IOMMU_DMA_IOVA_COOKIE)
+ return cookie->iovad.granule;
+ return PAGE_SIZE;
+}
+
+static struct iommu_dma_cookie *cookie_alloc(enum iommu_dma_cookie_type type)
+{
+ struct iommu_dma_cookie *cookie;
+
+ cookie = kzalloc(sizeof(*cookie), GFP_KERNEL);
+ if (cookie) {
+ INIT_LIST_HEAD(&cookie->msi_page_list);
+ cookie->type = type;
+ }
+ return cookie;
+}
+
+/**
+ * iommu_get_dma_cookie - Acquire DMA-API resources for a domain
+ * @domain: IOMMU domain to prepare for DMA-API usage
+ */
+int iommu_get_dma_cookie(struct iommu_domain *domain)
+{
+ if (domain->iova_cookie)
+ return -EEXIST;
+
+ domain->iova_cookie = cookie_alloc(IOMMU_DMA_IOVA_COOKIE);
+ if (!domain->iova_cookie)
+ return -ENOMEM;
+
+ mutex_init(&domain->iova_cookie->mutex);
+ return 0;
+}
+
+/**
+ * iommu_get_msi_cookie - Acquire just MSI remapping resources
+ * @domain: IOMMU domain to prepare
+ * @base: Start address of IOVA region for MSI mappings
+ *
+ * Users who manage their own IOVA allocation and do not want DMA API support,
+ * but would still like to take advantage of automatic MSI remapping, can use
+ * this to initialise their own domain appropriately. Users should reserve a
+ * contiguous IOVA region, starting at @base, large enough to accommodate the
+ * number of PAGE_SIZE mappings necessary to cover every MSI doorbell address
+ * used by the devices attached to @domain.
+ */
+int iommu_get_msi_cookie(struct iommu_domain *domain, dma_addr_t base)
+{
+ struct iommu_dma_cookie *cookie;
+
+ if (domain->type != IOMMU_DOMAIN_UNMANAGED)
+ return -EINVAL;
+
+ if (domain->iova_cookie)
+ return -EEXIST;
+
+ cookie = cookie_alloc(IOMMU_DMA_MSI_COOKIE);
+ if (!cookie)
+ return -ENOMEM;
+
+ cookie->msi_iova = base;
+ domain->iova_cookie = cookie;
+ return 0;
+}
+EXPORT_SYMBOL(iommu_get_msi_cookie);
+
+/**
+ * iommu_put_dma_cookie - Release a domain's DMA mapping resources
+ * @domain: IOMMU domain previously prepared by iommu_get_dma_cookie() or
+ * iommu_get_msi_cookie()
+ */
+void iommu_put_dma_cookie(struct iommu_domain *domain)
+{
+ struct iommu_dma_cookie *cookie = domain->iova_cookie;
+ struct iommu_dma_msi_page *msi, *tmp;
+
+ if (!cookie)
+ return;
+
+ if (cookie->type == IOMMU_DMA_IOVA_COOKIE && cookie->iovad.granule) {
+ iommu_dma_free_fq(cookie);
+ put_iova_domain(&cookie->iovad);
+ }
+
+ list_for_each_entry_safe(msi, tmp, &cookie->msi_page_list, list) {
+ list_del(&msi->list);
+ kfree(msi);
+ }
+ kfree(cookie);
+ domain->iova_cookie = NULL;
+}
+
+/**
+ * iommu_dma_get_resv_regions - Reserved region driver helper
+ * @dev: Device from iommu_get_resv_regions()
+ * @list: Reserved region list from iommu_get_resv_regions()
+ *
+ * IOMMU drivers can use this to implement their .get_resv_regions callback
+ * for general non-IOMMU-specific reservations. Currently, this covers GICv3
+ * ITS region reservation on ACPI based ARM platforms that may require HW MSI
+ * reservation.
+ */
+void iommu_dma_get_resv_regions(struct device *dev, struct list_head *list)
+{
+
+ if (!is_of_node(dev_iommu_fwspec_get(dev)->iommu_fwnode))
+ iort_iommu_get_resv_regions(dev, list);
+
+ if (dev->of_node)
+ of_iommu_get_resv_regions(dev, list);
+}
+EXPORT_SYMBOL(iommu_dma_get_resv_regions);
+
+static int cookie_init_hw_msi_region(struct iommu_dma_cookie *cookie,
+ phys_addr_t start, phys_addr_t end)
+{
+ struct iova_domain *iovad = &cookie->iovad;
+ struct iommu_dma_msi_page *msi_page;
+ int i, num_pages;
+
+ start -= iova_offset(iovad, start);
+ num_pages = iova_align(iovad, end - start) >> iova_shift(iovad);
+
+ for (i = 0; i < num_pages; i++) {
+ msi_page = kmalloc(sizeof(*msi_page), GFP_KERNEL);
+ if (!msi_page)
+ return -ENOMEM;
+
+ msi_page->phys = start;
+ msi_page->iova = start;
+ INIT_LIST_HEAD(&msi_page->list);
+ list_add(&msi_page->list, &cookie->msi_page_list);
+ start += iovad->granule;
+ }
+
+ return 0;
+}
+
+static int iommu_dma_ranges_sort(void *priv, const struct list_head *a,
+ const struct list_head *b)
+{
+ struct resource_entry *res_a = list_entry(a, typeof(*res_a), node);
+ struct resource_entry *res_b = list_entry(b, typeof(*res_b), node);
+
+ return res_a->res->start > res_b->res->start;
+}
+
+static int iova_reserve_pci_windows(struct pci_dev *dev,
+ struct iova_domain *iovad)
+{
+ struct pci_host_bridge *bridge = pci_find_host_bridge(dev->bus);
+ struct resource_entry *window;
+ unsigned long lo, hi;
+ phys_addr_t start = 0, end;
+
+ resource_list_for_each_entry(window, &bridge->windows) {
+ if (resource_type(window->res) != IORESOURCE_MEM)
+ continue;
+
+ lo = iova_pfn(iovad, window->res->start - window->offset);
+ hi = iova_pfn(iovad, window->res->end - window->offset);
+ reserve_iova(iovad, lo, hi);
+ }
+
+ /* Get reserved DMA windows from host bridge */
+ list_sort(NULL, &bridge->dma_ranges, iommu_dma_ranges_sort);
+ resource_list_for_each_entry(window, &bridge->dma_ranges) {
+ end = window->res->start - window->offset;
+resv_iova:
+ if (end > start) {
+ lo = iova_pfn(iovad, start);
+ hi = iova_pfn(iovad, end);
+ reserve_iova(iovad, lo, hi);
+ } else if (end < start) {
+ /* DMA ranges should be non-overlapping */
+ dev_err(&dev->dev,
+ "Failed to reserve IOVA [%pa-%pa]\n",
+ &start, &end);
+ return -EINVAL;
+ }
+
+ start = window->res->end - window->offset + 1;
+ /* If window is last entry */
+ if (window->node.next == &bridge->dma_ranges &&
+ end != ~(phys_addr_t)0) {
+ end = ~(phys_addr_t)0;
+ goto resv_iova;
+ }
+ }
+
+ return 0;
+}
+
+static int iova_reserve_iommu_regions(struct device *dev,
+ struct iommu_domain *domain)
+{
+ struct iommu_dma_cookie *cookie = domain->iova_cookie;
+ struct iova_domain *iovad = &cookie->iovad;
+ struct iommu_resv_region *region;
+ LIST_HEAD(resv_regions);
+ int ret = 0;
+
+ if (dev_is_pci(dev)) {
+ ret = iova_reserve_pci_windows(to_pci_dev(dev), iovad);
+ if (ret)
+ return ret;
+ }
+
+ iommu_get_resv_regions(dev, &resv_regions);
+ list_for_each_entry(region, &resv_regions, list) {
+ unsigned long lo, hi;
+
+ /* We ARE the software that manages these! */
+ if (region->type == IOMMU_RESV_SW_MSI)
+ continue;
+
+ lo = iova_pfn(iovad, region->start);
+ hi = iova_pfn(iovad, region->start + region->length - 1);
+ reserve_iova(iovad, lo, hi);
+
+ if (region->type == IOMMU_RESV_MSI)
+ ret = cookie_init_hw_msi_region(cookie, region->start,
+ region->start + region->length);
+ if (ret)
+ break;
+ }
+ iommu_put_resv_regions(dev, &resv_regions);
+
+ return ret;
+}
+
+static bool dev_is_untrusted(struct device *dev)
+{
+ return dev_is_pci(dev) && to_pci_dev(dev)->untrusted;
+}
+
+static bool dev_use_swiotlb(struct device *dev, size_t size,
+ enum dma_data_direction dir)
+{
+ return IS_ENABLED(CONFIG_SWIOTLB) &&
+ (dev_is_untrusted(dev) ||
+ dma_kmalloc_needs_bounce(dev, size, dir));
+}
+
+static bool dev_use_sg_swiotlb(struct device *dev, struct scatterlist *sg,
+ int nents, enum dma_data_direction dir)
+{
+ struct scatterlist *s;
+ int i;
+
+ if (!IS_ENABLED(CONFIG_SWIOTLB))
+ return false;
+
+ if (dev_is_untrusted(dev))
+ return true;
+
+ /*
+ * If kmalloc() buffers are not DMA-safe for this device and
+ * direction, check the individual lengths in the sg list. If any
+ * element is deemed unsafe, use the swiotlb for bouncing.
+ */
+ if (!dma_kmalloc_safe(dev, dir)) {
+ for_each_sg(sg, s, nents, i)
+ if (!dma_kmalloc_size_aligned(s->length))
+ return true;
+ }
+
+ return false;
+}
+
+/**
+ * iommu_dma_init_domain - Initialise a DMA mapping domain
+ * @domain: IOMMU domain previously prepared by iommu_get_dma_cookie()
+ * @base: IOVA at which the mappable address space starts
+ * @limit: Last address of the IOVA space
+ * @dev: Device the domain is being initialised for
+ *
+ * @base and @limit + 1 should be exact multiples of IOMMU page granularity to
+ * avoid rounding surprises. If necessary, we reserve the page at address 0
+ * to ensure it is an invalid IOVA. It is safe to reinitialise a domain, but
+ * any change which could make prior IOVAs invalid will fail.
+ */
+static int iommu_dma_init_domain(struct iommu_domain *domain, dma_addr_t base,
+ dma_addr_t limit, struct device *dev)
+{
+ struct iommu_dma_cookie *cookie = domain->iova_cookie;
+ unsigned long order, base_pfn;
+ struct iova_domain *iovad;
+ int ret;
+
+ if (!cookie || cookie->type != IOMMU_DMA_IOVA_COOKIE)
+ return -EINVAL;
+
+ iovad = &cookie->iovad;
+
+ /* Use the smallest supported page size for IOVA granularity */
+ order = __ffs(domain->pgsize_bitmap);
+ base_pfn = max_t(unsigned long, 1, base >> order);
+
+ /* Check the domain allows at least some access to the device... */
+ if (domain->geometry.force_aperture) {
+ if (base > domain->geometry.aperture_end ||
+ limit < domain->geometry.aperture_start) {
+ pr_warn("specified DMA range outside IOMMU capability\n");
+ return -EFAULT;
+ }
+ /* ...then finally give it a kicking to make sure it fits */
+ base_pfn = max_t(unsigned long, base_pfn,
+ domain->geometry.aperture_start >> order);
+ }
+
+ /* start_pfn is always nonzero for an already-initialised domain */
+ mutex_lock(&cookie->mutex);
+ if (iovad->start_pfn) {
+ if (1UL << order != iovad->granule ||
+ base_pfn != iovad->start_pfn) {
+ pr_warn("Incompatible range for DMA domain\n");
+ ret = -EFAULT;
+ goto done_unlock;
+ }
+
+ ret = 0;
+ goto done_unlock;
+ }
+
+ init_iova_domain(iovad, 1UL << order, base_pfn);
+ ret = iova_domain_init_rcaches(iovad);
+ if (ret)
+ goto done_unlock;
+
+ /* If the FQ fails we can simply fall back to strict mode */
+ if (domain->type == IOMMU_DOMAIN_DMA_FQ &&
+ (!device_iommu_capable(dev, IOMMU_CAP_DEFERRED_FLUSH) || iommu_dma_init_fq(domain)))
+ domain->type = IOMMU_DOMAIN_DMA;
+
+ ret = iova_reserve_iommu_regions(dev, domain);
+
+done_unlock:
+ mutex_unlock(&cookie->mutex);
+ return ret;
+}
+
+/**
+ * dma_info_to_prot - Translate DMA API directions and attributes to IOMMU API
+ * page flags.
+ * @dir: Direction of DMA transfer
+ * @coherent: Is the DMA master cache-coherent?
+ * @attrs: DMA attributes for the mapping
+ *
+ * Return: corresponding IOMMU API page protection flags
+ */
+static int dma_info_to_prot(enum dma_data_direction dir, bool coherent,
+ unsigned long attrs)
+{
+ int prot = coherent ? IOMMU_CACHE : 0;
+
+ if (attrs & DMA_ATTR_PRIVILEGED)
+ prot |= IOMMU_PRIV;
+
+ switch (dir) {
+ case DMA_BIDIRECTIONAL:
+ return prot | IOMMU_READ | IOMMU_WRITE;
+ case DMA_TO_DEVICE:
+ return prot | IOMMU_READ;
+ case DMA_FROM_DEVICE:
+ return prot | IOMMU_WRITE;
+ default:
+ return 0;
+ }
+}
+
+static dma_addr_t iommu_dma_alloc_iova(struct iommu_domain *domain,
+ size_t size, u64 dma_limit, struct device *dev)
+{
+ struct iommu_dma_cookie *cookie = domain->iova_cookie;
+ struct iova_domain *iovad = &cookie->iovad;
+ unsigned long shift, iova_len, iova;
+
+ if (cookie->type == IOMMU_DMA_MSI_COOKIE) {
+ cookie->msi_iova += size;
+ return cookie->msi_iova - size;
+ }
+
+ shift = iova_shift(iovad);
+ iova_len = size >> shift;
+
+ dma_limit = min_not_zero(dma_limit, dev->bus_dma_limit);
+
+ if (domain->geometry.force_aperture)
+ dma_limit = min(dma_limit, (u64)domain->geometry.aperture_end);
+
+ /*
+ * Try to use all the 32-bit PCI addresses first. The original SAC vs.
+ * DAC reasoning loses relevance with PCIe, but enough hardware and
+ * firmware bugs are still lurking out there that it's safest not to
+ * venture into the 64-bit space until necessary.
+ *
+ * If your device goes wrong after seeing the notice then likely either
+ * its driver is not setting DMA masks accurately, the hardware has
+ * some inherent bug in handling >32-bit addresses, or not all the
+ * expected address bits are wired up between the device and the IOMMU.
+ */
+ if (dma_limit > DMA_BIT_MASK(32) && dev->iommu->pci_32bit_workaround) {
+ iova = alloc_iova_fast(iovad, iova_len,
+ DMA_BIT_MASK(32) >> shift, false);
+ if (iova)
+ goto done;
+
+ dev->iommu->pci_32bit_workaround = false;
+ dev_notice(dev, "Using %d-bit DMA addresses\n", bits_per(dma_limit));
+ }
+
+ iova = alloc_iova_fast(iovad, iova_len, dma_limit >> shift, true);
+done:
+ return (dma_addr_t)iova << shift;
+}
+
+static void iommu_dma_free_iova(struct iommu_dma_cookie *cookie,
+ dma_addr_t iova, size_t size, struct iommu_iotlb_gather *gather)
+{
+ struct iova_domain *iovad = &cookie->iovad;
+
+ /* The MSI case is only ever cleaning up its most recent allocation */
+ if (cookie->type == IOMMU_DMA_MSI_COOKIE)
+ cookie->msi_iova -= size;
+ else if (gather && gather->queued)
+ queue_iova(cookie, iova_pfn(iovad, iova),
+ size >> iova_shift(iovad),
+ &gather->freelist);
+ else
+ free_iova_fast(iovad, iova_pfn(iovad, iova),
+ size >> iova_shift(iovad));
+}
+
+static void __iommu_dma_unmap(struct device *dev, dma_addr_t dma_addr,
+ size_t size)
+{
+ struct iommu_domain *domain = iommu_get_dma_domain(dev);
+ struct iommu_dma_cookie *cookie = domain->iova_cookie;
+ struct iova_domain *iovad = &cookie->iovad;
+ size_t iova_off = iova_offset(iovad, dma_addr);
+ struct iommu_iotlb_gather iotlb_gather;
+ size_t unmapped;
+
+ dma_addr -= iova_off;
+ size = iova_align(iovad, size + iova_off);
+ iommu_iotlb_gather_init(&iotlb_gather);
+ iotlb_gather.queued = READ_ONCE(cookie->fq_domain);
+
+ unmapped = iommu_unmap_fast(domain, dma_addr, size, &iotlb_gather);
+ WARN_ON(unmapped != size);
+
+ if (!iotlb_gather.queued)
+ iommu_iotlb_sync(domain, &iotlb_gather);
+ iommu_dma_free_iova(cookie, dma_addr, size, &iotlb_gather);
+}
+
+static dma_addr_t __iommu_dma_map(struct device *dev, phys_addr_t phys,
+ size_t size, int prot, u64 dma_mask)
+{
+ struct iommu_domain *domain = iommu_get_dma_domain(dev);
+ struct iommu_dma_cookie *cookie = domain->iova_cookie;
+ struct iova_domain *iovad = &cookie->iovad;
+ size_t iova_off = iova_offset(iovad, phys);
+ dma_addr_t iova;
+
+ if (static_branch_unlikely(&iommu_deferred_attach_enabled) &&
+ iommu_deferred_attach(dev, domain))
+ return DMA_MAPPING_ERROR;
+
+ size = iova_align(iovad, size + iova_off);
+
+ iova = iommu_dma_alloc_iova(domain, size, dma_mask, dev);
+ if (!iova)
+ return DMA_MAPPING_ERROR;
+
+ if (iommu_map(domain, iova, phys - iova_off, size, prot, GFP_ATOMIC)) {
+ iommu_dma_free_iova(cookie, iova, size, NULL);
+ return DMA_MAPPING_ERROR;
+ }
+ return iova + iova_off;
+}
+
+static void __iommu_dma_free_pages(struct page **pages, int count)
+{
+ while (count--)
+ __free_page(pages[count]);
+ kvfree(pages);
+}
+
+static struct page **__iommu_dma_alloc_pages(struct device *dev,
+ unsigned int count, unsigned long order_mask, gfp_t gfp)
+{
+ struct page **pages;
+ unsigned int i = 0, nid = dev_to_node(dev);
+
+ order_mask &= GENMASK(MAX_ORDER, 0);
+ if (!order_mask)
+ return NULL;
+
+ pages = kvcalloc(count, sizeof(*pages), GFP_KERNEL);
+ if (!pages)
+ return NULL;
+
+ /* IOMMU can map any pages, so himem can also be used here */
+ gfp |= __GFP_NOWARN | __GFP_HIGHMEM;
+
+ while (count) {
+ struct page *page = NULL;
+ unsigned int order_size;
+
+ /*
+ * Higher-order allocations are a convenience rather
+ * than a necessity, hence using __GFP_NORETRY until
+ * falling back to minimum-order allocations.
+ */
+ for (order_mask &= GENMASK(__fls(count), 0);
+ order_mask; order_mask &= ~order_size) {
+ unsigned int order = __fls(order_mask);
+ gfp_t alloc_flags = gfp;
+
+ order_size = 1U << order;
+ if (order_mask > order_size)
+ alloc_flags |= __GFP_NORETRY;
+ page = alloc_pages_node(nid, alloc_flags, order);
+ if (!page)
+ continue;
+ if (order)
+ split_page(page, order);
+ break;
+ }
+ if (!page) {
+ __iommu_dma_free_pages(pages, i);
+ return NULL;
+ }
+ count -= order_size;
+ while (order_size--)
+ pages[i++] = page++;
+ }
+ return pages;
+}
+
+/*
+ * If size is less than PAGE_SIZE, then a full CPU page will be allocated,
+ * but an IOMMU which supports smaller pages might not map the whole thing.
+ */
+static struct page **__iommu_dma_alloc_noncontiguous(struct device *dev,
+ size_t size, struct sg_table *sgt, gfp_t gfp, pgprot_t prot,
+ unsigned long attrs)
+{
+ struct iommu_domain *domain = iommu_get_dma_domain(dev);
+ struct iommu_dma_cookie *cookie = domain->iova_cookie;
+ struct iova_domain *iovad = &cookie->iovad;
+ bool coherent = dev_is_dma_coherent(dev);
+ int ioprot = dma_info_to_prot(DMA_BIDIRECTIONAL, coherent, attrs);
+ unsigned int count, min_size, alloc_sizes = domain->pgsize_bitmap;
+ struct page **pages;
+ dma_addr_t iova;
+ ssize_t ret;
+
+ if (static_branch_unlikely(&iommu_deferred_attach_enabled) &&
+ iommu_deferred_attach(dev, domain))
+ return NULL;
+
+ min_size = alloc_sizes & -alloc_sizes;
+ if (min_size < PAGE_SIZE) {
+ min_size = PAGE_SIZE;
+ alloc_sizes |= PAGE_SIZE;
+ } else {
+ size = ALIGN(size, min_size);
+ }
+ if (attrs & DMA_ATTR_ALLOC_SINGLE_PAGES)
+ alloc_sizes = min_size;
+
+ count = PAGE_ALIGN(size) >> PAGE_SHIFT;
+ pages = __iommu_dma_alloc_pages(dev, count, alloc_sizes >> PAGE_SHIFT,
+ gfp);
+ if (!pages)
+ return NULL;
+
+ size = iova_align(iovad, size);
+ iova = iommu_dma_alloc_iova(domain, size, dev->coherent_dma_mask, dev);
+ if (!iova)
+ goto out_free_pages;
+
+ /*
+ * Remove the zone/policy flags from the GFP - these are applied to the
+ * __iommu_dma_alloc_pages() but are not used for the supporting
+ * internal allocations that follow.
+ */
+ gfp &= ~(__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM | __GFP_COMP);
+
+ if (sg_alloc_table_from_pages(sgt, pages, count, 0, size, gfp))
+ goto out_free_iova;
+
+ if (!(ioprot & IOMMU_CACHE)) {
+ struct scatterlist *sg;
+ int i;
+
+ for_each_sg(sgt->sgl, sg, sgt->orig_nents, i)
+ arch_dma_prep_coherent(sg_page(sg), sg->length);
+ }
+
+ ret = iommu_map_sg(domain, iova, sgt->sgl, sgt->orig_nents, ioprot,
+ gfp);
+ if (ret < 0 || ret < size)
+ goto out_free_sg;
+
+ sgt->sgl->dma_address = iova;
+ sgt->sgl->dma_length = size;
+ return pages;
+
+out_free_sg:
+ sg_free_table(sgt);
+out_free_iova:
+ iommu_dma_free_iova(cookie, iova, size, NULL);
+out_free_pages:
+ __iommu_dma_free_pages(pages, count);
+ return NULL;
+}
+
+static void *iommu_dma_alloc_remap(struct device *dev, size_t size,
+ dma_addr_t *dma_handle, gfp_t gfp, pgprot_t prot,
+ unsigned long attrs)
+{
+ struct page **pages;
+ struct sg_table sgt;
+ void *vaddr;
+
+ pages = __iommu_dma_alloc_noncontiguous(dev, size, &sgt, gfp, prot,
+ attrs);
+ if (!pages)
+ return NULL;
+ *dma_handle = sgt.sgl->dma_address;
+ sg_free_table(&sgt);
+ vaddr = dma_common_pages_remap(pages, size, prot,
+ __builtin_return_address(0));
+ if (!vaddr)
+ goto out_unmap;
+ return vaddr;
+
+out_unmap:
+ __iommu_dma_unmap(dev, *dma_handle, size);
+ __iommu_dma_free_pages(pages, PAGE_ALIGN(size) >> PAGE_SHIFT);
+ return NULL;
+}
+
+static struct sg_table *iommu_dma_alloc_noncontiguous(struct device *dev,
+ size_t size, enum dma_data_direction dir, gfp_t gfp,
+ unsigned long attrs)
+{
+ struct dma_sgt_handle *sh;
+
+ sh = kmalloc(sizeof(*sh), gfp);
+ if (!sh)
+ return NULL;
+
+ sh->pages = __iommu_dma_alloc_noncontiguous(dev, size, &sh->sgt, gfp,
+ PAGE_KERNEL, attrs);
+ if (!sh->pages) {
+ kfree(sh);
+ return NULL;
+ }
+ return &sh->sgt;
+}
+
+static void iommu_dma_free_noncontiguous(struct device *dev, size_t size,
+ struct sg_table *sgt, enum dma_data_direction dir)
+{
+ struct dma_sgt_handle *sh = sgt_handle(sgt);
+
+ __iommu_dma_unmap(dev, sgt->sgl->dma_address, size);
+ __iommu_dma_free_pages(sh->pages, PAGE_ALIGN(size) >> PAGE_SHIFT);
+ sg_free_table(&sh->sgt);
+ kfree(sh);
+}
+
+static void iommu_dma_sync_single_for_cpu(struct device *dev,
+ dma_addr_t dma_handle, size_t size, enum dma_data_direction dir)
+{
+ phys_addr_t phys;
+
+ if (dev_is_dma_coherent(dev) && !dev_use_swiotlb(dev, size, dir))
+ return;
+
+ phys = iommu_iova_to_phys(iommu_get_dma_domain(dev), dma_handle);
+ if (!dev_is_dma_coherent(dev))
+ arch_sync_dma_for_cpu(phys, size, dir);
+
+ if (is_swiotlb_buffer(dev, phys))
+ swiotlb_sync_single_for_cpu(dev, phys, size, dir);
+}
+
+static void iommu_dma_sync_single_for_device(struct device *dev,
+ dma_addr_t dma_handle, size_t size, enum dma_data_direction dir)
+{
+ phys_addr_t phys;
+
+ if (dev_is_dma_coherent(dev) && !dev_use_swiotlb(dev, size, dir))
+ return;
+
+ phys = iommu_iova_to_phys(iommu_get_dma_domain(dev), dma_handle);
+ if (is_swiotlb_buffer(dev, phys))
+ swiotlb_sync_single_for_device(dev, phys, size, dir);
+
+ if (!dev_is_dma_coherent(dev))
+ arch_sync_dma_for_device(phys, size, dir);
+}
+
+static void iommu_dma_sync_sg_for_cpu(struct device *dev,
+ struct scatterlist *sgl, int nelems,
+ enum dma_data_direction dir)
+{
+ struct scatterlist *sg;
+ int i;
+
+ if (sg_dma_is_swiotlb(sgl))
+ for_each_sg(sgl, sg, nelems, i)
+ iommu_dma_sync_single_for_cpu(dev, sg_dma_address(sg),
+ sg->length, dir);
+ else if (!dev_is_dma_coherent(dev))
+ for_each_sg(sgl, sg, nelems, i)
+ arch_sync_dma_for_cpu(sg_phys(sg), sg->length, dir);
+}
+
+static void iommu_dma_sync_sg_for_device(struct device *dev,
+ struct scatterlist *sgl, int nelems,
+ enum dma_data_direction dir)
+{
+ struct scatterlist *sg;
+ int i;
+
+ if (sg_dma_is_swiotlb(sgl))
+ for_each_sg(sgl, sg, nelems, i)
+ iommu_dma_sync_single_for_device(dev,
+ sg_dma_address(sg),
+ sg->length, dir);
+ else if (!dev_is_dma_coherent(dev))
+ for_each_sg(sgl, sg, nelems, i)
+ arch_sync_dma_for_device(sg_phys(sg), sg->length, dir);
+}
+
+static dma_addr_t iommu_dma_map_page(struct device *dev, struct page *page,
+ unsigned long offset, size_t size, enum dma_data_direction dir,
+ unsigned long attrs)
+{
+ phys_addr_t phys = page_to_phys(page) + offset;
+ bool coherent = dev_is_dma_coherent(dev);
+ int prot = dma_info_to_prot(dir, coherent, attrs);
+ struct iommu_domain *domain = iommu_get_dma_domain(dev);
+ struct iommu_dma_cookie *cookie = domain->iova_cookie;
+ struct iova_domain *iovad = &cookie->iovad;
+ dma_addr_t iova, dma_mask = dma_get_mask(dev);
+
+ /*
+ * If both the physical buffer start address and size are
+ * page aligned, we don't need to use a bounce page.
+ */
+ if (dev_use_swiotlb(dev, size, dir) &&
+ iova_offset(iovad, phys | size)) {
+ void *padding_start;
+ size_t padding_size, aligned_size;
+
+ if (!is_swiotlb_active(dev)) {
+ dev_warn_once(dev, "DMA bounce buffers are inactive, unable to map unaligned transaction.\n");
+ return DMA_MAPPING_ERROR;
+ }
+
+ trace_swiotlb_bounced(dev, phys, size);
+
+ aligned_size = iova_align(iovad, size);
+ phys = swiotlb_tbl_map_single(dev, phys, size, aligned_size,
+ iova_mask(iovad), dir, attrs);
+
+ if (phys == DMA_MAPPING_ERROR)
+ return DMA_MAPPING_ERROR;
+
+ /* Cleanup the padding area. */
+ padding_start = phys_to_virt(phys);
+ padding_size = aligned_size;
+
+ if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC) &&
+ (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL)) {
+ padding_start += size;
+ padding_size -= size;
+ }
+
+ memset(padding_start, 0, padding_size);
+ }
+
+ if (!coherent && !(attrs & DMA_ATTR_SKIP_CPU_SYNC))
+ arch_sync_dma_for_device(phys, size, dir);
+
+ iova = __iommu_dma_map(dev, phys, size, prot, dma_mask);
+ if (iova == DMA_MAPPING_ERROR && is_swiotlb_buffer(dev, phys))
+ swiotlb_tbl_unmap_single(dev, phys, size, dir, attrs);
+ return iova;
+}
+
+static void iommu_dma_unmap_page(struct device *dev, dma_addr_t dma_handle,
+ size_t size, enum dma_data_direction dir, unsigned long attrs)
+{
+ struct iommu_domain *domain = iommu_get_dma_domain(dev);
+ phys_addr_t phys;
+
+ phys = iommu_iova_to_phys(domain, dma_handle);
+ if (WARN_ON(!phys))
+ return;
+
+ if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC) && !dev_is_dma_coherent(dev))
+ arch_sync_dma_for_cpu(phys, size, dir);
+
+ __iommu_dma_unmap(dev, dma_handle, size);
+
+ if (unlikely(is_swiotlb_buffer(dev, phys)))
+ swiotlb_tbl_unmap_single(dev, phys, size, dir, attrs);
+}
+
+/*
+ * Prepare a successfully-mapped scatterlist to give back to the caller.
+ *
+ * At this point the segments are already laid out by iommu_dma_map_sg() to
+ * avoid individually crossing any boundaries, so we merely need to check a
+ * segment's start address to avoid concatenating across one.
+ */
+static int __finalise_sg(struct device *dev, struct scatterlist *sg, int nents,
+ dma_addr_t dma_addr)
+{
+ struct scatterlist *s, *cur = sg;
+ unsigned long seg_mask = dma_get_seg_boundary(dev);
+ unsigned int cur_len = 0, max_len = dma_get_max_seg_size(dev);
+ int i, count = 0;
+
+ for_each_sg(sg, s, nents, i) {
+ /* Restore this segment's original unaligned fields first */
+ dma_addr_t s_dma_addr = sg_dma_address(s);
+ unsigned int s_iova_off = sg_dma_address(s);
+ unsigned int s_length = sg_dma_len(s);
+ unsigned int s_iova_len = s->length;
+
+ sg_dma_address(s) = DMA_MAPPING_ERROR;
+ sg_dma_len(s) = 0;
+
+ if (sg_dma_is_bus_address(s)) {
+ if (i > 0)
+ cur = sg_next(cur);
+
+ sg_dma_unmark_bus_address(s);
+ sg_dma_address(cur) = s_dma_addr;
+ sg_dma_len(cur) = s_length;
+ sg_dma_mark_bus_address(cur);
+ count++;
+ cur_len = 0;
+ continue;
+ }
+
+ s->offset += s_iova_off;
+ s->length = s_length;
+
+ /*
+ * Now fill in the real DMA data. If...
+ * - there is a valid output segment to append to
+ * - and this segment starts on an IOVA page boundary
+ * - but doesn't fall at a segment boundary
+ * - and wouldn't make the resulting output segment too long
+ */
+ if (cur_len && !s_iova_off && (dma_addr & seg_mask) &&
+ (max_len - cur_len >= s_length)) {
+ /* ...then concatenate it with the previous one */
+ cur_len += s_length;
+ } else {
+ /* Otherwise start the next output segment */
+ if (i > 0)
+ cur = sg_next(cur);
+ cur_len = s_length;
+ count++;
+
+ sg_dma_address(cur) = dma_addr + s_iova_off;
+ }
+
+ sg_dma_len(cur) = cur_len;
+ dma_addr += s_iova_len;
+
+ if (s_length + s_iova_off < s_iova_len)
+ cur_len = 0;
+ }
+ return count;
+}
+
+/*
+ * If mapping failed, then just restore the original list,
+ * but making sure the DMA fields are invalidated.
+ */
+static void __invalidate_sg(struct scatterlist *sg, int nents)
+{
+ struct scatterlist *s;
+ int i;
+
+ for_each_sg(sg, s, nents, i) {
+ if (sg_dma_is_bus_address(s)) {
+ sg_dma_unmark_bus_address(s);
+ } else {
+ if (sg_dma_address(s) != DMA_MAPPING_ERROR)
+ s->offset += sg_dma_address(s);
+ if (sg_dma_len(s))
+ s->length = sg_dma_len(s);
+ }
+ sg_dma_address(s) = DMA_MAPPING_ERROR;
+ sg_dma_len(s) = 0;
+ }
+}
+
+static void iommu_dma_unmap_sg_swiotlb(struct device *dev, struct scatterlist *sg,
+ int nents, enum dma_data_direction dir, unsigned long attrs)
+{
+ struct scatterlist *s;
+ int i;
+
+ for_each_sg(sg, s, nents, i)
+ iommu_dma_unmap_page(dev, sg_dma_address(s),
+ sg_dma_len(s), dir, attrs);
+}
+
+static int iommu_dma_map_sg_swiotlb(struct device *dev, struct scatterlist *sg,
+ int nents, enum dma_data_direction dir, unsigned long attrs)
+{
+ struct scatterlist *s;
+ int i;
+
+ sg_dma_mark_swiotlb(sg);
+
+ for_each_sg(sg, s, nents, i) {
+ sg_dma_address(s) = iommu_dma_map_page(dev, sg_page(s),
+ s->offset, s->length, dir, attrs);
+ if (sg_dma_address(s) == DMA_MAPPING_ERROR)
+ goto out_unmap;
+ sg_dma_len(s) = s->length;
+ }
+
+ return nents;
+
+out_unmap:
+ iommu_dma_unmap_sg_swiotlb(dev, sg, i, dir, attrs | DMA_ATTR_SKIP_CPU_SYNC);
+ return -EIO;
+}
+
+/*
+ * The DMA API client is passing in a scatterlist which could describe
+ * any old buffer layout, but the IOMMU API requires everything to be
+ * aligned to IOMMU pages. Hence the need for this complicated bit of
+ * impedance-matching, to be able to hand off a suitably-aligned list,
+ * but still preserve the original offsets and sizes for the caller.
+ */
+static int iommu_dma_map_sg(struct device *dev, struct scatterlist *sg,
+ int nents, enum dma_data_direction dir, unsigned long attrs)
+{
+ struct iommu_domain *domain = iommu_get_dma_domain(dev);
+ struct iommu_dma_cookie *cookie = domain->iova_cookie;
+ struct iova_domain *iovad = &cookie->iovad;
+ struct scatterlist *s, *prev = NULL;
+ int prot = dma_info_to_prot(dir, dev_is_dma_coherent(dev), attrs);
+ struct pci_p2pdma_map_state p2pdma_state = {};
+ enum pci_p2pdma_map_type map;
+ dma_addr_t iova;
+ size_t iova_len = 0;
+ unsigned long mask = dma_get_seg_boundary(dev);
+ ssize_t ret;
+ int i;
+
+ if (static_branch_unlikely(&iommu_deferred_attach_enabled)) {
+ ret = iommu_deferred_attach(dev, domain);
+ if (ret)
+ goto out;
+ }
+
+ if (dev_use_sg_swiotlb(dev, sg, nents, dir))
+ return iommu_dma_map_sg_swiotlb(dev, sg, nents, dir, attrs);
+
+ if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC))
+ iommu_dma_sync_sg_for_device(dev, sg, nents, dir);
+
+ /*
+ * Work out how much IOVA space we need, and align the segments to
+ * IOVA granules for the IOMMU driver to handle. With some clever
+ * trickery we can modify the list in-place, but reversibly, by
+ * stashing the unaligned parts in the as-yet-unused DMA fields.
+ */
+ for_each_sg(sg, s, nents, i) {
+ size_t s_iova_off = iova_offset(iovad, s->offset);
+ size_t s_length = s->length;
+ size_t pad_len = (mask - iova_len + 1) & mask;
+
+ if (is_pci_p2pdma_page(sg_page(s))) {
+ map = pci_p2pdma_map_segment(&p2pdma_state, dev, s);
+ switch (map) {
+ case PCI_P2PDMA_MAP_BUS_ADDR:
+ /*
+ * iommu_map_sg() will skip this segment as
+ * it is marked as a bus address,
+ * __finalise_sg() will copy the dma address
+ * into the output segment.
+ */
+ continue;
+ case PCI_P2PDMA_MAP_THRU_HOST_BRIDGE:
+ /*
+ * Mapping through host bridge should be
+ * mapped with regular IOVAs, thus we
+ * do nothing here and continue below.
+ */
+ break;
+ default:
+ ret = -EREMOTEIO;
+ goto out_restore_sg;
+ }
+ }
+
+ sg_dma_address(s) = s_iova_off;
+ sg_dma_len(s) = s_length;
+ s->offset -= s_iova_off;
+ s_length = iova_align(iovad, s_length + s_iova_off);
+ s->length = s_length;
+
+ /*
+ * Due to the alignment of our single IOVA allocation, we can
+ * depend on these assumptions about the segment boundary mask:
+ * - If mask size >= IOVA size, then the IOVA range cannot
+ * possibly fall across a boundary, so we don't care.
+ * - If mask size < IOVA size, then the IOVA range must start
+ * exactly on a boundary, therefore we can lay things out
+ * based purely on segment lengths without needing to know
+ * the actual addresses beforehand.
+ * - The mask must be a power of 2, so pad_len == 0 if
+ * iova_len == 0, thus we cannot dereference prev the first
+ * time through here (i.e. before it has a meaningful value).
+ */
+ if (pad_len && pad_len < s_length - 1) {
+ prev->length += pad_len;
+ iova_len += pad_len;
+ }
+
+ iova_len += s_length;
+ prev = s;
+ }
+
+ if (!iova_len)
+ return __finalise_sg(dev, sg, nents, 0);
+
+ iova = iommu_dma_alloc_iova(domain, iova_len, dma_get_mask(dev), dev);
+ if (!iova) {
+ ret = -ENOMEM;
+ goto out_restore_sg;
+ }
+
+ /*
+ * We'll leave any physical concatenation to the IOMMU driver's
+ * implementation - it knows better than we do.
+ */
+ ret = iommu_map_sg(domain, iova, sg, nents, prot, GFP_ATOMIC);
+ if (ret < 0 || ret < iova_len)
+ goto out_free_iova;
+
+ return __finalise_sg(dev, sg, nents, iova);
+
+out_free_iova:
+ iommu_dma_free_iova(cookie, iova, iova_len, NULL);
+out_restore_sg:
+ __invalidate_sg(sg, nents);
+out:
+ if (ret != -ENOMEM && ret != -EREMOTEIO)
+ return -EINVAL;
+ return ret;
+}
+
+static void iommu_dma_unmap_sg(struct device *dev, struct scatterlist *sg,
+ int nents, enum dma_data_direction dir, unsigned long attrs)
+{
+ dma_addr_t end = 0, start;
+ struct scatterlist *tmp;
+ int i;
+
+ if (sg_dma_is_swiotlb(sg)) {
+ iommu_dma_unmap_sg_swiotlb(dev, sg, nents, dir, attrs);
+ return;
+ }
+
+ if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC))
+ iommu_dma_sync_sg_for_cpu(dev, sg, nents, dir);
+
+ /*
+ * The scatterlist segments are mapped into a single
+ * contiguous IOVA allocation, the start and end points
+ * just have to be determined.
+ */
+ for_each_sg(sg, tmp, nents, i) {
+ if (sg_dma_is_bus_address(tmp)) {
+ sg_dma_unmark_bus_address(tmp);
+ continue;
+ }
+
+ if (sg_dma_len(tmp) == 0)
+ break;
+
+ start = sg_dma_address(tmp);
+ break;
+ }
+
+ nents -= i;
+ for_each_sg(tmp, tmp, nents, i) {
+ if (sg_dma_is_bus_address(tmp)) {
+ sg_dma_unmark_bus_address(tmp);
+ continue;
+ }
+
+ if (sg_dma_len(tmp) == 0)
+ break;
+
+ end = sg_dma_address(tmp) + sg_dma_len(tmp);
+ }
+
+ if (end)
+ __iommu_dma_unmap(dev, start, end - start);
+}
+
+static dma_addr_t iommu_dma_map_resource(struct device *dev, phys_addr_t phys,
+ size_t size, enum dma_data_direction dir, unsigned long attrs)
+{
+ return __iommu_dma_map(dev, phys, size,
+ dma_info_to_prot(dir, false, attrs) | IOMMU_MMIO,
+ dma_get_mask(dev));
+}
+
+static void iommu_dma_unmap_resource(struct device *dev, dma_addr_t handle,
+ size_t size, enum dma_data_direction dir, unsigned long attrs)
+{
+ __iommu_dma_unmap(dev, handle, size);
+}
+
+static void __iommu_dma_free(struct device *dev, size_t size, void *cpu_addr)
+{
+ size_t alloc_size = PAGE_ALIGN(size);
+ int count = alloc_size >> PAGE_SHIFT;
+ struct page *page = NULL, **pages = NULL;
+
+ /* Non-coherent atomic allocation? Easy */
+ if (IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
+ dma_free_from_pool(dev, cpu_addr, alloc_size))
+ return;
+
+ if (is_vmalloc_addr(cpu_addr)) {
+ /*
+ * If it the address is remapped, then it's either non-coherent
+ * or highmem CMA, or an iommu_dma_alloc_remap() construction.
+ */
+ pages = dma_common_find_pages(cpu_addr);
+ if (!pages)
+ page = vmalloc_to_page(cpu_addr);
+ dma_common_free_remap(cpu_addr, alloc_size);
+ } else {
+ /* Lowmem means a coherent atomic or CMA allocation */
+ page = virt_to_page(cpu_addr);
+ }
+
+ if (pages)
+ __iommu_dma_free_pages(pages, count);
+ if (page)
+ dma_free_contiguous(dev, page, alloc_size);
+}
+
+static void iommu_dma_free(struct device *dev, size_t size, void *cpu_addr,
+ dma_addr_t handle, unsigned long attrs)
+{
+ __iommu_dma_unmap(dev, handle, size);
+ __iommu_dma_free(dev, size, cpu_addr);
+}
+
+static void *iommu_dma_alloc_pages(struct device *dev, size_t size,
+ struct page **pagep, gfp_t gfp, unsigned long attrs)
+{
+ bool coherent = dev_is_dma_coherent(dev);
+ size_t alloc_size = PAGE_ALIGN(size);
+ int node = dev_to_node(dev);
+ struct page *page = NULL;
+ void *cpu_addr;
+
+ page = dma_alloc_contiguous(dev, alloc_size, gfp);
+ if (!page)
+ page = alloc_pages_node(node, gfp, get_order(alloc_size));
+ if (!page)
+ return NULL;
+
+ if (!coherent || PageHighMem(page)) {
+ pgprot_t prot = dma_pgprot(dev, PAGE_KERNEL, attrs);
+
+ cpu_addr = dma_common_contiguous_remap(page, alloc_size,
+ prot, __builtin_return_address(0));
+ if (!cpu_addr)
+ goto out_free_pages;
+
+ if (!coherent)
+ arch_dma_prep_coherent(page, size);
+ } else {
+ cpu_addr = page_address(page);
+ }
+
+ *pagep = page;
+ memset(cpu_addr, 0, alloc_size);
+ return cpu_addr;
+out_free_pages:
+ dma_free_contiguous(dev, page, alloc_size);
+ return NULL;
+}
+
+static void *iommu_dma_alloc(struct device *dev, size_t size,
+ dma_addr_t *handle, gfp_t gfp, unsigned long attrs)
+{
+ bool coherent = dev_is_dma_coherent(dev);
+ int ioprot = dma_info_to_prot(DMA_BIDIRECTIONAL, coherent, attrs);
+ struct page *page = NULL;
+ void *cpu_addr;
+
+ gfp |= __GFP_ZERO;
+
+ if (gfpflags_allow_blocking(gfp) &&
+ !(attrs & DMA_ATTR_FORCE_CONTIGUOUS)) {
+ return iommu_dma_alloc_remap(dev, size, handle, gfp,
+ dma_pgprot(dev, PAGE_KERNEL, attrs), attrs);
+ }
+
+ if (IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
+ !gfpflags_allow_blocking(gfp) && !coherent)
+ page = dma_alloc_from_pool(dev, PAGE_ALIGN(size), &cpu_addr,
+ gfp, NULL);
+ else
+ cpu_addr = iommu_dma_alloc_pages(dev, size, &page, gfp, attrs);
+ if (!cpu_addr)
+ return NULL;
+
+ *handle = __iommu_dma_map(dev, page_to_phys(page), size, ioprot,
+ dev->coherent_dma_mask);
+ if (*handle == DMA_MAPPING_ERROR) {
+ __iommu_dma_free(dev, size, cpu_addr);
+ return NULL;
+ }
+
+ return cpu_addr;
+}
+
+static int iommu_dma_mmap(struct device *dev, struct vm_area_struct *vma,
+ void *cpu_addr, dma_addr_t dma_addr, size_t size,
+ unsigned long attrs)
+{
+ unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
+ unsigned long pfn, off = vma->vm_pgoff;
+ int ret;
+
+ vma->vm_page_prot = dma_pgprot(dev, vma->vm_page_prot, attrs);
+
+ if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret))
+ return ret;
+
+ if (off >= nr_pages || vma_pages(vma) > nr_pages - off)
+ return -ENXIO;
+
+ if (is_vmalloc_addr(cpu_addr)) {
+ struct page **pages = dma_common_find_pages(cpu_addr);
+
+ if (pages)
+ return vm_map_pages(vma, pages, nr_pages);
+ pfn = vmalloc_to_pfn(cpu_addr);
+ } else {
+ pfn = page_to_pfn(virt_to_page(cpu_addr));
+ }
+
+ return remap_pfn_range(vma, vma->vm_start, pfn + off,
+ vma->vm_end - vma->vm_start,
+ vma->vm_page_prot);
+}
+
+static int iommu_dma_get_sgtable(struct device *dev, struct sg_table *sgt,
+ void *cpu_addr, dma_addr_t dma_addr, size_t size,
+ unsigned long attrs)
+{
+ struct page *page;
+ int ret;
+
+ if (is_vmalloc_addr(cpu_addr)) {
+ struct page **pages = dma_common_find_pages(cpu_addr);
+
+ if (pages) {
+ return sg_alloc_table_from_pages(sgt, pages,
+ PAGE_ALIGN(size) >> PAGE_SHIFT,
+ 0, size, GFP_KERNEL);
+ }
+
+ page = vmalloc_to_page(cpu_addr);
+ } else {
+ page = virt_to_page(cpu_addr);
+ }
+
+ ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
+ if (!ret)
+ sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
+ return ret;
+}
+
+static unsigned long iommu_dma_get_merge_boundary(struct device *dev)
+{
+ struct iommu_domain *domain = iommu_get_dma_domain(dev);
+
+ return (1UL << __ffs(domain->pgsize_bitmap)) - 1;
+}
+
+static size_t iommu_dma_opt_mapping_size(void)
+{
+ return iova_rcache_range();
+}
+
+static const struct dma_map_ops iommu_dma_ops = {
+ .flags = DMA_F_PCI_P2PDMA_SUPPORTED,
+ .alloc = iommu_dma_alloc,
+ .free = iommu_dma_free,
+ .alloc_pages = dma_common_alloc_pages,
+ .free_pages = dma_common_free_pages,
+ .alloc_noncontiguous = iommu_dma_alloc_noncontiguous,
+ .free_noncontiguous = iommu_dma_free_noncontiguous,
+ .mmap = iommu_dma_mmap,
+ .get_sgtable = iommu_dma_get_sgtable,
+ .map_page = iommu_dma_map_page,
+ .unmap_page = iommu_dma_unmap_page,
+ .map_sg = iommu_dma_map_sg,
+ .unmap_sg = iommu_dma_unmap_sg,
+ .sync_single_for_cpu = iommu_dma_sync_single_for_cpu,
+ .sync_single_for_device = iommu_dma_sync_single_for_device,
+ .sync_sg_for_cpu = iommu_dma_sync_sg_for_cpu,
+ .sync_sg_for_device = iommu_dma_sync_sg_for_device,
+ .map_resource = iommu_dma_map_resource,
+ .unmap_resource = iommu_dma_unmap_resource,
+ .get_merge_boundary = iommu_dma_get_merge_boundary,
+ .opt_mapping_size = iommu_dma_opt_mapping_size,
+};
+
+/*
+ * The IOMMU core code allocates the default DMA domain, which the underlying
+ * IOMMU driver needs to support via the dma-iommu layer.
+ */
+void iommu_setup_dma_ops(struct device *dev, u64 dma_base, u64 dma_limit)
+{
+ struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
+
+ if (!domain)
+ goto out_err;
+
+ /*
+ * The IOMMU core code allocates the default DMA domain, which the
+ * underlying IOMMU driver needs to support via the dma-iommu layer.
+ */
+ if (iommu_is_dma_domain(domain)) {
+ if (iommu_dma_init_domain(domain, dma_base, dma_limit, dev))
+ goto out_err;
+ dev->dma_ops = &iommu_dma_ops;
+ }
+
+ return;
+out_err:
+ pr_warn("Failed to set up IOMMU for device %s; retaining platform DMA ops\n",
+ dev_name(dev));
+}
+EXPORT_SYMBOL_GPL(iommu_setup_dma_ops);
+
+static struct iommu_dma_msi_page *iommu_dma_get_msi_page(struct device *dev,
+ phys_addr_t msi_addr, struct iommu_domain *domain)
+{
+ struct iommu_dma_cookie *cookie = domain->iova_cookie;
+ struct iommu_dma_msi_page *msi_page;
+ dma_addr_t iova;
+ int prot = IOMMU_WRITE | IOMMU_NOEXEC | IOMMU_MMIO;
+ size_t size = cookie_msi_granule(cookie);
+
+ msi_addr &= ~(phys_addr_t)(size - 1);
+ list_for_each_entry(msi_page, &cookie->msi_page_list, list)
+ if (msi_page->phys == msi_addr)
+ return msi_page;
+
+ msi_page = kzalloc(sizeof(*msi_page), GFP_KERNEL);
+ if (!msi_page)
+ return NULL;
+
+ iova = iommu_dma_alloc_iova(domain, size, dma_get_mask(dev), dev);
+ if (!iova)
+ goto out_free_page;
+
+ if (iommu_map(domain, iova, msi_addr, size, prot, GFP_KERNEL))
+ goto out_free_iova;
+
+ INIT_LIST_HEAD(&msi_page->list);
+ msi_page->phys = msi_addr;
+ msi_page->iova = iova;
+ list_add(&msi_page->list, &cookie->msi_page_list);
+ return msi_page;
+
+out_free_iova:
+ iommu_dma_free_iova(cookie, iova, size, NULL);
+out_free_page:
+ kfree(msi_page);
+ return NULL;
+}
+
+/**
+ * iommu_dma_prepare_msi() - Map the MSI page in the IOMMU domain
+ * @desc: MSI descriptor, will store the MSI page
+ * @msi_addr: MSI target address to be mapped
+ *
+ * Return: 0 on success or negative error code if the mapping failed.
+ */
+int iommu_dma_prepare_msi(struct msi_desc *desc, phys_addr_t msi_addr)
+{
+ struct device *dev = msi_desc_to_dev(desc);
+ struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
+ struct iommu_dma_msi_page *msi_page;
+ static DEFINE_MUTEX(msi_prepare_lock); /* see below */
+
+ if (!domain || !domain->iova_cookie) {
+ desc->iommu_cookie = NULL;
+ return 0;
+ }
+
+ /*
+ * In fact the whole prepare operation should already be serialised by
+ * irq_domain_mutex further up the callchain, but that's pretty subtle
+ * on its own, so consider this locking as failsafe documentation...
+ */
+ mutex_lock(&msi_prepare_lock);
+ msi_page = iommu_dma_get_msi_page(dev, msi_addr, domain);
+ mutex_unlock(&msi_prepare_lock);
+
+ msi_desc_set_iommu_cookie(desc, msi_page);
+
+ if (!msi_page)
+ return -ENOMEM;
+ return 0;
+}
+
+/**
+ * iommu_dma_compose_msi_msg() - Apply translation to an MSI message
+ * @desc: MSI descriptor prepared by iommu_dma_prepare_msi()
+ * @msg: MSI message containing target physical address
+ */
+void iommu_dma_compose_msi_msg(struct msi_desc *desc, struct msi_msg *msg)
+{
+ struct device *dev = msi_desc_to_dev(desc);
+ const struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
+ const struct iommu_dma_msi_page *msi_page;
+
+ msi_page = msi_desc_get_iommu_cookie(desc);
+
+ if (!domain || !domain->iova_cookie || WARN_ON(!msi_page))
+ return;
+
+ msg->address_hi = upper_32_bits(msi_page->iova);
+ msg->address_lo &= cookie_msi_granule(domain->iova_cookie) - 1;
+ msg->address_lo += lower_32_bits(msi_page->iova);
+}
+
+static int iommu_dma_init(void)
+{
+ if (is_kdump_kernel())
+ static_branch_enable(&iommu_deferred_attach_enabled);
+
+ return iova_cache_get();
+}
+arch_initcall(iommu_dma_init);