summaryrefslogtreecommitdiffstats
path: root/drivers/md/dm-vdo/dedupe.c
diff options
context:
space:
mode:
Diffstat (limited to 'drivers/md/dm-vdo/dedupe.c')
-rw-r--r--drivers/md/dm-vdo/dedupe.c3003
1 files changed, 3003 insertions, 0 deletions
diff --git a/drivers/md/dm-vdo/dedupe.c b/drivers/md/dm-vdo/dedupe.c
new file mode 100644
index 000000000..117266e1b
--- /dev/null
+++ b/drivers/md/dm-vdo/dedupe.c
@@ -0,0 +1,3003 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * Copyright 2023 Red Hat
+ */
+
+/**
+ * DOC:
+ *
+ * Hash Locks:
+ *
+ * A hash_lock controls and coordinates writing, index access, and dedupe among groups of data_vios
+ * concurrently writing identical blocks, allowing them to deduplicate not only against advice but
+ * also against each other. This saves on index queries and allows those data_vios to concurrently
+ * deduplicate against a single block instead of being serialized through a PBN read lock. Only one
+ * index query is needed for each hash_lock, instead of one for every data_vio.
+ *
+ * Hash_locks are assigned to hash_zones by computing a modulus on the hash itself. Each hash_zone
+ * has a single dedicated queue and thread for performing all operations on the hash_locks assigned
+ * to that zone. The concurrency guarantees of this single-threaded model allow the code to omit
+ * more fine-grained locking for the hash_lock structures.
+ *
+ * A hash_lock acts like a state machine perhaps more than as a lock. Other than the starting and
+ * ending states INITIALIZING and BYPASSING, every state represents and is held for the duration of
+ * an asynchronous operation. All state transitions are performed on the thread of the hash_zone
+ * containing the lock. An asynchronous operation is almost always performed upon entering a state,
+ * and the callback from that operation triggers exiting the state and entering a new state.
+ *
+ * In all states except DEDUPING, there is a single data_vio, called the lock agent, performing the
+ * asynchronous operations on behalf of the lock. The agent will change during the lifetime of the
+ * lock if the lock is shared by more than one data_vio. data_vios waiting to deduplicate are kept
+ * on a wait queue. Viewed a different way, the agent holds the lock exclusively until the lock
+ * enters the DEDUPING state, at which point it becomes a shared lock that all the waiters (and any
+ * new data_vios that arrive) use to share a PBN lock. In state DEDUPING, there is no agent. When
+ * the last data_vio in the lock calls back in DEDUPING, it becomes the agent and the lock becomes
+ * exclusive again. New data_vios that arrive in the lock will also go on the wait queue.
+ *
+ * The existence of lock waiters is a key factor controlling which state the lock transitions to
+ * next. When the lock is new or has waiters, it will always try to reach DEDUPING, and when it
+ * doesn't, it will try to clean up and exit.
+ *
+ * Deduping requires holding a PBN lock on a block that is known to contain data identical to the
+ * data_vios in the lock, so the lock will send the agent to the duplicate zone to acquire the PBN
+ * lock (LOCKING), to the kernel I/O threads to read and verify the data (VERIFYING), or to write a
+ * new copy of the data to a full data block or a slot in a compressed block (WRITING).
+ *
+ * Cleaning up consists of updating the index when the data location is different from the initial
+ * index query (UPDATING, triggered by stale advice, compression, and rollover), releasing the PBN
+ * lock on the duplicate block (UNLOCKING), and if the agent is the last data_vio referencing the
+ * lock, releasing the hash_lock itself back to the hash zone (BYPASSING).
+ *
+ * The shortest sequence of states is for non-concurrent writes of new data:
+ * INITIALIZING -> QUERYING -> WRITING -> BYPASSING
+ * This sequence is short because no PBN read lock or index update is needed.
+ *
+ * Non-concurrent, finding valid advice looks like this (endpoints elided):
+ * -> QUERYING -> LOCKING -> VERIFYING -> DEDUPING -> UNLOCKING ->
+ * Or with stale advice (endpoints elided):
+ * -> QUERYING -> LOCKING -> VERIFYING -> UNLOCKING -> WRITING -> UPDATING ->
+ *
+ * When there are not enough available reference count increments available on a PBN for a data_vio
+ * to deduplicate, a new lock is forked and the excess waiters roll over to the new lock (which
+ * goes directly to WRITING). The new lock takes the place of the old lock in the lock map so new
+ * data_vios will be directed to it. The two locks will proceed independently, but only the new
+ * lock will have the right to update the index (unless it also forks).
+ *
+ * Since rollover happens in a lock instance, once a valid data location has been selected, it will
+ * not change. QUERYING and WRITING are only performed once per lock lifetime. All other
+ * non-endpoint states can be re-entered.
+ *
+ * The function names in this module follow a convention referencing the states and transitions in
+ * the state machine. For example, for the LOCKING state, there are start_locking() and
+ * finish_locking() functions. start_locking() is invoked by the finish function of the state (or
+ * states) that transition to LOCKING. It performs the actual lock state change and must be invoked
+ * on the hash zone thread. finish_locking() is called by (or continued via callback from) the
+ * code actually obtaining the lock. It does any bookkeeping or decision-making required and
+ * invokes the appropriate start function of the state being transitioned to after LOCKING.
+ *
+ * ----------------------------------------------------------------------
+ *
+ * Index Queries:
+ *
+ * A query to the UDS index is handled asynchronously by the index's threads. When the query is
+ * complete, a callback supplied with the query will be called from one of the those threads. Under
+ * heavy system load, the index may be slower to respond than is desirable for reasonable I/O
+ * throughput. Since deduplication of writes is not necessary for correct operation of a VDO
+ * device, it is acceptable to timeout out slow index queries and proceed to fulfill a write
+ * request without deduplicating. However, because the uds_request struct itself is supplied by the
+ * caller, we can not simply reuse a uds_request object which we have chosen to timeout. Hence,
+ * each hash_zone maintains a pool of dedupe_contexts which each contain a uds_request along with a
+ * reference to the data_vio on behalf of which they are performing a query.
+ *
+ * When a hash_lock needs to query the index, it attempts to acquire an unused dedupe_context from
+ * its hash_zone's pool. If one is available, that context is prepared, associated with the
+ * hash_lock's agent, added to the list of pending contexts, and then sent to the index. The
+ * context's state will be transitioned from DEDUPE_CONTEXT_IDLE to DEDUPE_CONTEXT_PENDING. If all
+ * goes well, the dedupe callback will be called by the index which will change the context's state
+ * to DEDUPE_CONTEXT_COMPLETE, and the associated data_vio will be enqueued to run back in the hash
+ * zone where the query results will be processed and the context will be put back in the idle
+ * state and returned to the hash_zone's available list.
+ *
+ * The first time an index query is launched from a given hash_zone, a timer is started. When the
+ * timer fires, the hash_zone's completion is enqueued to run in the hash_zone where the zone's
+ * pending list will be searched for any contexts in the pending state which have been running for
+ * too long. Those contexts are transitioned to the DEDUPE_CONTEXT_TIMED_OUT state and moved to the
+ * zone's timed_out list where they won't be examined again if there is a subsequent time out). The
+ * data_vios associated with timed out contexts are sent to continue processing their write
+ * operation without deduplicating. The timer is also restarted.
+ *
+ * When the dedupe callback is run for a context which is in the timed out state, that context is
+ * moved to the DEDUPE_CONTEXT_TIMED_OUT_COMPLETE state. No other action need be taken as the
+ * associated data_vios have already been dispatched.
+ *
+ * If a hash_lock needs a dedupe context, and the available list is empty, the timed_out list will
+ * be searched for any contexts which are timed out and complete. One of these will be used
+ * immediately, and the rest will be returned to the available list and marked idle.
+ */
+
+#include "dedupe.h"
+
+#include <linux/atomic.h>
+#include <linux/jiffies.h>
+#include <linux/kernel.h>
+#include <linux/list.h>
+#include <linux/ratelimit.h>
+#include <linux/spinlock.h>
+#include <linux/timer.h>
+
+#include "logger.h"
+#include "memory-alloc.h"
+#include "numeric.h"
+#include "permassert.h"
+#include "string-utils.h"
+
+#include "indexer.h"
+
+#include "action-manager.h"
+#include "admin-state.h"
+#include "completion.h"
+#include "constants.h"
+#include "data-vio.h"
+#include "int-map.h"
+#include "io-submitter.h"
+#include "packer.h"
+#include "physical-zone.h"
+#include "slab-depot.h"
+#include "statistics.h"
+#include "types.h"
+#include "vdo.h"
+#include "wait-queue.h"
+
+struct uds_attribute {
+ struct attribute attr;
+ const char *(*show_string)(struct hash_zones *hash_zones);
+};
+
+#define DEDUPE_QUERY_TIMER_IDLE 0
+#define DEDUPE_QUERY_TIMER_RUNNING 1
+#define DEDUPE_QUERY_TIMER_FIRED 2
+
+enum dedupe_context_state {
+ DEDUPE_CONTEXT_IDLE,
+ DEDUPE_CONTEXT_PENDING,
+ DEDUPE_CONTEXT_TIMED_OUT,
+ DEDUPE_CONTEXT_COMPLETE,
+ DEDUPE_CONTEXT_TIMED_OUT_COMPLETE,
+};
+
+/* Possible index states: closed, opened, or transitioning between those two. */
+enum index_state {
+ IS_CLOSED,
+ IS_CHANGING,
+ IS_OPENED,
+};
+
+static const char *CLOSED = "closed";
+static const char *CLOSING = "closing";
+static const char *ERROR = "error";
+static const char *OFFLINE = "offline";
+static const char *ONLINE = "online";
+static const char *OPENING = "opening";
+static const char *SUSPENDED = "suspended";
+static const char *UNKNOWN = "unknown";
+
+/* Version 2 uses the kernel space UDS index and is limited to 16 bytes */
+#define UDS_ADVICE_VERSION 2
+/* version byte + state byte + 64-bit little-endian PBN */
+#define UDS_ADVICE_SIZE (1 + 1 + sizeof(u64))
+
+enum hash_lock_state {
+ /* State for locks that are not in use or are being initialized. */
+ VDO_HASH_LOCK_INITIALIZING,
+
+ /* This is the sequence of states typically used on the non-dedupe path. */
+ VDO_HASH_LOCK_QUERYING,
+ VDO_HASH_LOCK_WRITING,
+ VDO_HASH_LOCK_UPDATING,
+
+ /* The remaining states are typically used on the dedupe path in this order. */
+ VDO_HASH_LOCK_LOCKING,
+ VDO_HASH_LOCK_VERIFYING,
+ VDO_HASH_LOCK_DEDUPING,
+ VDO_HASH_LOCK_UNLOCKING,
+
+ /*
+ * Terminal state for locks returning to the pool. Must be last both because it's the final
+ * state, and also because it's used to count the states.
+ */
+ VDO_HASH_LOCK_BYPASSING,
+};
+
+static const char * const LOCK_STATE_NAMES[] = {
+ [VDO_HASH_LOCK_BYPASSING] = "BYPASSING",
+ [VDO_HASH_LOCK_DEDUPING] = "DEDUPING",
+ [VDO_HASH_LOCK_INITIALIZING] = "INITIALIZING",
+ [VDO_HASH_LOCK_LOCKING] = "LOCKING",
+ [VDO_HASH_LOCK_QUERYING] = "QUERYING",
+ [VDO_HASH_LOCK_UNLOCKING] = "UNLOCKING",
+ [VDO_HASH_LOCK_UPDATING] = "UPDATING",
+ [VDO_HASH_LOCK_VERIFYING] = "VERIFYING",
+ [VDO_HASH_LOCK_WRITING] = "WRITING",
+};
+
+struct hash_lock {
+ /* The block hash covered by this lock */
+ struct uds_record_name hash;
+
+ /* When the lock is unused, this list entry allows the lock to be pooled */
+ struct list_head pool_node;
+
+ /*
+ * A list containing the data VIOs sharing this lock, all having the same record name and
+ * data block contents, linked by their hash_lock_node fields.
+ */
+ struct list_head duplicate_ring;
+
+ /* The number of data_vios sharing this lock instance */
+ data_vio_count_t reference_count;
+
+ /* The maximum value of reference_count in the lifetime of this lock */
+ data_vio_count_t max_references;
+
+ /* The current state of this lock */
+ enum hash_lock_state state;
+
+ /* True if the UDS index should be updated with new advice */
+ bool update_advice;
+
+ /* True if the advice has been verified to be a true duplicate */
+ bool verified;
+
+ /* True if the lock has already accounted for an initial verification */
+ bool verify_counted;
+
+ /* True if this lock is registered in the lock map (cleared on rollover) */
+ bool registered;
+
+ /*
+ * If verified is false, this is the location of a possible duplicate. If verified is true,
+ * it is the verified location of a true duplicate.
+ */
+ struct zoned_pbn duplicate;
+
+ /* The PBN lock on the block containing the duplicate data */
+ struct pbn_lock *duplicate_lock;
+
+ /* The data_vio designated to act on behalf of the lock */
+ struct data_vio *agent;
+
+ /*
+ * Other data_vios with data identical to the agent who are currently waiting for the agent
+ * to get the information they all need to deduplicate--either against each other, or
+ * against an existing duplicate on disk.
+ */
+ struct vdo_wait_queue waiters;
+};
+
+#define LOCK_POOL_CAPACITY MAXIMUM_VDO_USER_VIOS
+
+struct hash_zones {
+ struct action_manager *manager;
+ struct uds_parameters parameters;
+ struct uds_index_session *index_session;
+ struct ratelimit_state ratelimiter;
+ atomic64_t timeouts;
+ atomic64_t dedupe_context_busy;
+
+ /* This spinlock protects the state fields and the starting of dedupe requests. */
+ spinlock_t lock;
+
+ /* The fields in the next block are all protected by the lock */
+ struct vdo_completion completion;
+ enum index_state index_state;
+ enum index_state index_target;
+ struct admin_state state;
+ bool changing;
+ bool create_flag;
+ bool dedupe_flag;
+ bool error_flag;
+ u64 reported_timeouts;
+
+ /* The number of zones */
+ zone_count_t zone_count;
+ /* The hash zones themselves */
+ struct hash_zone zones[];
+};
+
+/* These are in milliseconds. */
+unsigned int vdo_dedupe_index_timeout_interval = 5000;
+unsigned int vdo_dedupe_index_min_timer_interval = 100;
+/* Same two variables, in jiffies for easier consumption. */
+static u64 vdo_dedupe_index_timeout_jiffies;
+static u64 vdo_dedupe_index_min_timer_jiffies;
+
+static inline struct hash_zone *as_hash_zone(struct vdo_completion *completion)
+{
+ vdo_assert_completion_type(completion, VDO_HASH_ZONE_COMPLETION);
+ return container_of(completion, struct hash_zone, completion);
+}
+
+static inline struct hash_zones *as_hash_zones(struct vdo_completion *completion)
+{
+ vdo_assert_completion_type(completion, VDO_HASH_ZONES_COMPLETION);
+ return container_of(completion, struct hash_zones, completion);
+}
+
+static inline void assert_in_hash_zone(struct hash_zone *zone, const char *name)
+{
+ VDO_ASSERT_LOG_ONLY((vdo_get_callback_thread_id() == zone->thread_id),
+ "%s called on hash zone thread", name);
+}
+
+static inline bool change_context_state(struct dedupe_context *context, int old, int new)
+{
+ return (atomic_cmpxchg(&context->state, old, new) == old);
+}
+
+static inline bool change_timer_state(struct hash_zone *zone, int old, int new)
+{
+ return (atomic_cmpxchg(&zone->timer_state, old, new) == old);
+}
+
+/**
+ * return_hash_lock_to_pool() - (Re)initialize a hash lock and return it to its pool.
+ * @zone: The zone from which the lock was borrowed.
+ * @lock: The lock that is no longer in use.
+ */
+static void return_hash_lock_to_pool(struct hash_zone *zone, struct hash_lock *lock)
+{
+ memset(lock, 0, sizeof(*lock));
+ INIT_LIST_HEAD(&lock->pool_node);
+ INIT_LIST_HEAD(&lock->duplicate_ring);
+ vdo_waitq_init(&lock->waiters);
+ list_add_tail(&lock->pool_node, &zone->lock_pool);
+}
+
+/**
+ * vdo_get_duplicate_lock() - Get the PBN lock on the duplicate data location for a data_vio from
+ * the hash_lock the data_vio holds (if there is one).
+ * @data_vio: The data_vio to query.
+ *
+ * Return: The PBN lock on the data_vio's duplicate location.
+ */
+struct pbn_lock *vdo_get_duplicate_lock(struct data_vio *data_vio)
+{
+ if (data_vio->hash_lock == NULL)
+ return NULL;
+
+ return data_vio->hash_lock->duplicate_lock;
+}
+
+/**
+ * hash_lock_key() - Return hash_lock's record name as a hash code.
+ * @lock: The hash lock.
+ *
+ * Return: The key to use for the int map.
+ */
+static inline u64 hash_lock_key(struct hash_lock *lock)
+{
+ return get_unaligned_le64(&lock->hash.name);
+}
+
+/**
+ * get_hash_lock_state_name() - Get the string representation of a hash lock state.
+ * @state: The hash lock state.
+ *
+ * Return: The short string representing the state
+ */
+static const char *get_hash_lock_state_name(enum hash_lock_state state)
+{
+ /* Catch if a state has been added without updating the name array. */
+ BUILD_BUG_ON((VDO_HASH_LOCK_BYPASSING + 1) != ARRAY_SIZE(LOCK_STATE_NAMES));
+ return (state < ARRAY_SIZE(LOCK_STATE_NAMES)) ? LOCK_STATE_NAMES[state] : "INVALID";
+}
+
+/**
+ * assert_hash_lock_agent() - Assert that a data_vio is the agent of its hash lock, and that this
+ * is being called in the hash zone.
+ * @data_vio: The data_vio expected to be the lock agent.
+ * @where: A string describing the function making the assertion.
+ */
+static void assert_hash_lock_agent(struct data_vio *data_vio, const char *where)
+{
+ /* Not safe to access the agent field except from the hash zone. */
+ assert_data_vio_in_hash_zone(data_vio);
+ VDO_ASSERT_LOG_ONLY(data_vio == data_vio->hash_lock->agent,
+ "%s must be for the hash lock agent", where);
+}
+
+/**
+ * set_duplicate_lock() - Set the duplicate lock held by a hash lock. May only be called in the
+ * physical zone of the PBN lock.
+ * @hash_lock: The hash lock to update.
+ * @pbn_lock: The PBN read lock to use as the duplicate lock.
+ */
+static void set_duplicate_lock(struct hash_lock *hash_lock, struct pbn_lock *pbn_lock)
+{
+ VDO_ASSERT_LOG_ONLY((hash_lock->duplicate_lock == NULL),
+ "hash lock must not already hold a duplicate lock");
+ pbn_lock->holder_count += 1;
+ hash_lock->duplicate_lock = pbn_lock;
+}
+
+/**
+ * dequeue_lock_waiter() - Remove the first data_vio from the lock's waitq and return it.
+ * @lock: The lock containing the wait queue.
+ *
+ * Return: The first (oldest) waiter in the queue, or NULL if the queue is empty.
+ */
+static inline struct data_vio *dequeue_lock_waiter(struct hash_lock *lock)
+{
+ return vdo_waiter_as_data_vio(vdo_waitq_dequeue_waiter(&lock->waiters));
+}
+
+/**
+ * set_hash_lock() - Set, change, or clear the hash lock a data_vio is using.
+ * @data_vio: The data_vio to update.
+ * @new_lock: The hash lock the data_vio is joining.
+ *
+ * Updates the hash lock (or locks) to reflect the change in membership.
+ */
+static void set_hash_lock(struct data_vio *data_vio, struct hash_lock *new_lock)
+{
+ struct hash_lock *old_lock = data_vio->hash_lock;
+
+ if (old_lock != NULL) {
+ VDO_ASSERT_LOG_ONLY(data_vio->hash_zone != NULL,
+ "must have a hash zone when holding a hash lock");
+ VDO_ASSERT_LOG_ONLY(!list_empty(&data_vio->hash_lock_entry),
+ "must be on a hash lock ring when holding a hash lock");
+ VDO_ASSERT_LOG_ONLY(old_lock->reference_count > 0,
+ "hash lock reference must be counted");
+
+ if ((old_lock->state != VDO_HASH_LOCK_BYPASSING) &&
+ (old_lock->state != VDO_HASH_LOCK_UNLOCKING)) {
+ /*
+ * If the reference count goes to zero in a non-terminal state, we're most
+ * likely leaking this lock.
+ */
+ VDO_ASSERT_LOG_ONLY(old_lock->reference_count > 1,
+ "hash locks should only become unreferenced in a terminal state, not state %s",
+ get_hash_lock_state_name(old_lock->state));
+ }
+
+ list_del_init(&data_vio->hash_lock_entry);
+ old_lock->reference_count -= 1;
+
+ data_vio->hash_lock = NULL;
+ }
+
+ if (new_lock != NULL) {
+ /*
+ * Keep all data_vios sharing the lock on a ring since they can complete in any
+ * order and we'll always need a pointer to one to compare data.
+ */
+ list_move_tail(&data_vio->hash_lock_entry, &new_lock->duplicate_ring);
+ new_lock->reference_count += 1;
+ if (new_lock->max_references < new_lock->reference_count)
+ new_lock->max_references = new_lock->reference_count;
+
+ data_vio->hash_lock = new_lock;
+ }
+}
+
+/* There are loops in the state diagram, so some forward decl's are needed. */
+static void start_deduping(struct hash_lock *lock, struct data_vio *agent,
+ bool agent_is_done);
+static void start_locking(struct hash_lock *lock, struct data_vio *agent);
+static void start_writing(struct hash_lock *lock, struct data_vio *agent);
+static void unlock_duplicate_pbn(struct vdo_completion *completion);
+static void transfer_allocation_lock(struct data_vio *data_vio);
+
+/**
+ * exit_hash_lock() - Bottleneck for data_vios that have written or deduplicated and that are no
+ * longer needed to be an agent for the hash lock.
+ * @data_vio: The data_vio to complete and send to be cleaned up.
+ */
+static void exit_hash_lock(struct data_vio *data_vio)
+{
+ /* Release the hash lock now, saving a thread transition in cleanup. */
+ vdo_release_hash_lock(data_vio);
+
+ /* Complete the data_vio and start the clean-up path to release any locks it still holds. */
+ data_vio->vio.completion.callback = complete_data_vio;
+
+ continue_data_vio(data_vio);
+}
+
+/**
+ * set_duplicate_location() - Set the location of the duplicate block for data_vio, updating the
+ * is_duplicate and duplicate fields from a zoned_pbn.
+ * @data_vio: The data_vio to modify.
+ * @source: The location of the duplicate.
+ */
+static void set_duplicate_location(struct data_vio *data_vio,
+ const struct zoned_pbn source)
+{
+ data_vio->is_duplicate = (source.pbn != VDO_ZERO_BLOCK);
+ data_vio->duplicate = source;
+}
+
+/**
+ * retire_lock_agent() - Retire the active lock agent, replacing it with the first lock waiter, and
+ * make the retired agent exit the hash lock.
+ * @lock: The hash lock to update.
+ *
+ * Return: The new lock agent (which will be NULL if there was no waiter)
+ */
+static struct data_vio *retire_lock_agent(struct hash_lock *lock)
+{
+ struct data_vio *old_agent = lock->agent;
+ struct data_vio *new_agent = dequeue_lock_waiter(lock);
+
+ lock->agent = new_agent;
+ exit_hash_lock(old_agent);
+ if (new_agent != NULL)
+ set_duplicate_location(new_agent, lock->duplicate);
+ return new_agent;
+}
+
+/**
+ * wait_on_hash_lock() - Add a data_vio to the lock's queue of waiters.
+ * @lock: The hash lock on which to wait.
+ * @data_vio: The data_vio to add to the queue.
+ */
+static void wait_on_hash_lock(struct hash_lock *lock, struct data_vio *data_vio)
+{
+ vdo_waitq_enqueue_waiter(&lock->waiters, &data_vio->waiter);
+
+ /*
+ * Make sure the agent doesn't block indefinitely in the packer since it now has at least
+ * one other data_vio waiting on it.
+ */
+ if ((lock->state != VDO_HASH_LOCK_WRITING) || !cancel_data_vio_compression(lock->agent))
+ return;
+
+ /*
+ * Even though we're waiting, we also have to send ourselves as a one-way message to the
+ * packer to ensure the agent continues executing. This is safe because
+ * cancel_vio_compression() guarantees the agent won't continue executing until this
+ * message arrives in the packer, and because the wait queue link isn't used for sending
+ * the message.
+ */
+ data_vio->compression.lock_holder = lock->agent;
+ launch_data_vio_packer_callback(data_vio, vdo_remove_lock_holder_from_packer);
+}
+
+/**
+ * abort_waiter() - waiter_callback_fn function that shunts waiters to write their blocks without
+ * optimization.
+ * @waiter: The data_vio's waiter link.
+ * @context: Not used.
+ */
+static void abort_waiter(struct vdo_waiter *waiter, void *context __always_unused)
+{
+ write_data_vio(vdo_waiter_as_data_vio(waiter));
+}
+
+/**
+ * start_bypassing() - Stop using the hash lock.
+ * @lock: The hash lock.
+ * @agent: The data_vio acting as the agent for the lock.
+ *
+ * Stops using the hash lock. This is the final transition for hash locks which did not get an
+ * error.
+ */
+static void start_bypassing(struct hash_lock *lock, struct data_vio *agent)
+{
+ lock->state = VDO_HASH_LOCK_BYPASSING;
+ exit_hash_lock(agent);
+}
+
+void vdo_clean_failed_hash_lock(struct data_vio *data_vio)
+{
+ struct hash_lock *lock = data_vio->hash_lock;
+
+ if (lock->state == VDO_HASH_LOCK_BYPASSING) {
+ exit_hash_lock(data_vio);
+ return;
+ }
+
+ if (lock->agent == NULL) {
+ lock->agent = data_vio;
+ } else if (data_vio != lock->agent) {
+ exit_hash_lock(data_vio);
+ return;
+ }
+
+ lock->state = VDO_HASH_LOCK_BYPASSING;
+
+ /* Ensure we don't attempt to update advice when cleaning up. */
+ lock->update_advice = false;
+
+ vdo_waitq_notify_all_waiters(&lock->waiters, abort_waiter, NULL);
+
+ if (lock->duplicate_lock != NULL) {
+ /* The agent must reference the duplicate zone to launch it. */
+ data_vio->duplicate = lock->duplicate;
+ launch_data_vio_duplicate_zone_callback(data_vio, unlock_duplicate_pbn);
+ return;
+ }
+
+ lock->agent = NULL;
+ data_vio->is_duplicate = false;
+ exit_hash_lock(data_vio);
+}
+
+/**
+ * finish_unlocking() - Handle the result of the agent for the lock releasing a read lock on
+ * duplicate candidate.
+ * @completion: The completion of the data_vio acting as the lock's agent.
+ *
+ * This continuation is registered in unlock_duplicate_pbn().
+ */
+static void finish_unlocking(struct vdo_completion *completion)
+{
+ struct data_vio *agent = as_data_vio(completion);
+ struct hash_lock *lock = agent->hash_lock;
+
+ assert_hash_lock_agent(agent, __func__);
+
+ VDO_ASSERT_LOG_ONLY(lock->duplicate_lock == NULL,
+ "must have released the duplicate lock for the hash lock");
+
+ if (!lock->verified) {
+ /*
+ * UNLOCKING -> WRITING transition: The lock we released was on an unverified
+ * block, so it must have been a lock on advice we were verifying, not on a
+ * location that was used for deduplication. Go write (or compress) the block to
+ * get a location to dedupe against.
+ */
+ start_writing(lock, agent);
+ return;
+ }
+
+ /*
+ * With the lock released, the verified duplicate block may already have changed and will
+ * need to be re-verified if a waiter arrived.
+ */
+ lock->verified = false;
+
+ if (vdo_waitq_has_waiters(&lock->waiters)) {
+ /*
+ * UNLOCKING -> LOCKING transition: A new data_vio entered the hash lock while the
+ * agent was releasing the PBN lock. The current agent exits and the waiter has to
+ * re-lock and re-verify the duplicate location.
+ *
+ * TODO: If we used the current agent to re-acquire the PBN lock we wouldn't need
+ * to re-verify.
+ */
+ agent = retire_lock_agent(lock);
+ start_locking(lock, agent);
+ return;
+ }
+
+ /*
+ * UNLOCKING -> BYPASSING transition: The agent is done with the lock and no other
+ * data_vios reference it, so remove it from the lock map and return it to the pool.
+ */
+ start_bypassing(lock, agent);
+}
+
+/**
+ * unlock_duplicate_pbn() - Release a read lock on the PBN of the block that may or may not have
+ * contained duplicate data.
+ * @completion: The completion of the data_vio acting as the lock's agent.
+ *
+ * This continuation is launched by start_unlocking(), and calls back to finish_unlocking() on the
+ * hash zone thread.
+ */
+static void unlock_duplicate_pbn(struct vdo_completion *completion)
+{
+ struct data_vio *agent = as_data_vio(completion);
+ struct hash_lock *lock = agent->hash_lock;
+
+ assert_data_vio_in_duplicate_zone(agent);
+ VDO_ASSERT_LOG_ONLY(lock->duplicate_lock != NULL,
+ "must have a duplicate lock to release");
+
+ vdo_release_physical_zone_pbn_lock(agent->duplicate.zone, agent->duplicate.pbn,
+ vdo_forget(lock->duplicate_lock));
+ if (lock->state == VDO_HASH_LOCK_BYPASSING) {
+ complete_data_vio(completion);
+ return;
+ }
+
+ launch_data_vio_hash_zone_callback(agent, finish_unlocking);
+}
+
+/**
+ * start_unlocking() - Release a read lock on the PBN of the block that may or may not have
+ * contained duplicate data.
+ * @lock: The hash lock.
+ * @agent: The data_vio currently acting as the agent for the lock.
+ */
+static void start_unlocking(struct hash_lock *lock, struct data_vio *agent)
+{
+ lock->state = VDO_HASH_LOCK_UNLOCKING;
+ launch_data_vio_duplicate_zone_callback(agent, unlock_duplicate_pbn);
+}
+
+static void release_context(struct dedupe_context *context)
+{
+ struct hash_zone *zone = context->zone;
+
+ WRITE_ONCE(zone->active, zone->active - 1);
+ list_move(&context->list_entry, &zone->available);
+}
+
+static void process_update_result(struct data_vio *agent)
+{
+ struct dedupe_context *context = agent->dedupe_context;
+
+ if ((context == NULL) ||
+ !change_context_state(context, DEDUPE_CONTEXT_COMPLETE, DEDUPE_CONTEXT_IDLE))
+ return;
+
+ release_context(context);
+}
+
+/**
+ * finish_updating() - Process the result of a UDS update performed by the agent for the lock.
+ * @completion: The completion of the data_vio that performed the update
+ *
+ * This continuation is registered in start_querying().
+ */
+static void finish_updating(struct vdo_completion *completion)
+{
+ struct data_vio *agent = as_data_vio(completion);
+ struct hash_lock *lock = agent->hash_lock;
+
+ assert_hash_lock_agent(agent, __func__);
+
+ process_update_result(agent);
+
+ /*
+ * UDS was updated successfully, so don't update again unless the duplicate location
+ * changes due to rollover.
+ */
+ lock->update_advice = false;
+
+ if (vdo_waitq_has_waiters(&lock->waiters)) {
+ /*
+ * UPDATING -> DEDUPING transition: A new data_vio arrived during the UDS update.
+ * Send it on the verified dedupe path. The agent is done with the lock, but the
+ * lock may still need to use it to clean up after rollover.
+ */
+ start_deduping(lock, agent, true);
+ return;
+ }
+
+ if (lock->duplicate_lock != NULL) {
+ /*
+ * UPDATING -> UNLOCKING transition: No one is waiting to dedupe, but we hold a
+ * duplicate PBN lock, so go release it.
+ */
+ start_unlocking(lock, agent);
+ return;
+ }
+
+ /*
+ * UPDATING -> BYPASSING transition: No one is waiting to dedupe and there's no lock to
+ * release.
+ */
+ start_bypassing(lock, agent);
+}
+
+static void query_index(struct data_vio *data_vio, enum uds_request_type operation);
+
+/**
+ * start_updating() - Continue deduplication with the last step, updating UDS with the location of
+ * the duplicate that should be returned as advice in the future.
+ * @lock: The hash lock.
+ * @agent: The data_vio currently acting as the agent for the lock.
+ */
+static void start_updating(struct hash_lock *lock, struct data_vio *agent)
+{
+ lock->state = VDO_HASH_LOCK_UPDATING;
+
+ VDO_ASSERT_LOG_ONLY(lock->verified, "new advice should have been verified");
+ VDO_ASSERT_LOG_ONLY(lock->update_advice, "should only update advice if needed");
+
+ agent->last_async_operation = VIO_ASYNC_OP_UPDATE_DEDUPE_INDEX;
+ set_data_vio_hash_zone_callback(agent, finish_updating);
+ query_index(agent, UDS_UPDATE);
+}
+
+/**
+ * finish_deduping() - Handle a data_vio that has finished deduplicating against the block locked
+ * by the hash lock.
+ * @lock: The hash lock.
+ * @data_vio: The lock holder that has finished deduplicating.
+ *
+ * If there are other data_vios still sharing the lock, this will just release the data_vio's share
+ * of the lock and finish processing the data_vio. If this is the last data_vio holding the lock,
+ * this makes the data_vio the lock agent and uses it to advance the state of the lock so it can
+ * eventually be released.
+ */
+static void finish_deduping(struct hash_lock *lock, struct data_vio *data_vio)
+{
+ struct data_vio *agent = data_vio;
+
+ VDO_ASSERT_LOG_ONLY(lock->agent == NULL, "shouldn't have an agent in DEDUPING");
+ VDO_ASSERT_LOG_ONLY(!vdo_waitq_has_waiters(&lock->waiters),
+ "shouldn't have any lock waiters in DEDUPING");
+
+ /* Just release the lock reference if other data_vios are still deduping. */
+ if (lock->reference_count > 1) {
+ exit_hash_lock(data_vio);
+ return;
+ }
+
+ /* The hash lock must have an agent for all other lock states. */
+ lock->agent = agent;
+ if (lock->update_advice) {
+ /*
+ * DEDUPING -> UPDATING transition: The location of the duplicate block changed
+ * since the initial UDS query because of compression, rollover, or because the
+ * query agent didn't have an allocation. The UDS update was delayed in case there
+ * was another change in location, but with only this data_vio using the hash lock,
+ * it's time to update the advice.
+ */
+ start_updating(lock, agent);
+ } else {
+ /*
+ * DEDUPING -> UNLOCKING transition: Release the PBN read lock on the duplicate
+ * location so the hash lock itself can be released (contingent on no new data_vios
+ * arriving in the lock before the agent returns).
+ */
+ start_unlocking(lock, agent);
+ }
+}
+
+/**
+ * acquire_lock() - Get the lock for a record name.
+ * @zone: The zone responsible for the hash.
+ * @hash: The hash to lock.
+ * @replace_lock: If non-NULL, the lock already registered for the hash which should be replaced by
+ * the new lock.
+ * @lock_ptr: A pointer to receive the hash lock.
+ *
+ * Gets the lock for the hash (record name) of the data in a data_vio, or if one does not exist (or
+ * if we are explicitly rolling over), initialize a new lock for the hash and register it in the
+ * zone. This must only be called in the correct thread for the zone.
+ *
+ * Return: VDO_SUCCESS or an error code.
+ */
+static int __must_check acquire_lock(struct hash_zone *zone,
+ const struct uds_record_name *hash,
+ struct hash_lock *replace_lock,
+ struct hash_lock **lock_ptr)
+{
+ struct hash_lock *lock, *new_lock;
+ int result;
+
+ /*
+ * Borrow and prepare a lock from the pool so we don't have to do two int_map accesses
+ * in the common case of no lock contention.
+ */
+ result = VDO_ASSERT(!list_empty(&zone->lock_pool),
+ "never need to wait for a free hash lock");
+ if (result != VDO_SUCCESS)
+ return result;
+
+ new_lock = list_entry(zone->lock_pool.prev, struct hash_lock, pool_node);
+ list_del_init(&new_lock->pool_node);
+
+ /*
+ * Fill in the hash of the new lock so we can map it, since we have to use the hash as the
+ * map key.
+ */
+ new_lock->hash = *hash;
+
+ result = vdo_int_map_put(zone->hash_lock_map, hash_lock_key(new_lock),
+ new_lock, (replace_lock != NULL), (void **) &lock);
+ if (result != VDO_SUCCESS) {
+ return_hash_lock_to_pool(zone, vdo_forget(new_lock));
+ return result;
+ }
+
+ if (replace_lock != NULL) {
+ /* On mismatch put the old lock back and return a severe error */
+ VDO_ASSERT_LOG_ONLY(lock == replace_lock,
+ "old lock must have been in the lock map");
+ /* TODO: Check earlier and bail out? */
+ VDO_ASSERT_LOG_ONLY(replace_lock->registered,
+ "old lock must have been marked registered");
+ replace_lock->registered = false;
+ }
+
+ if (lock == replace_lock) {
+ lock = new_lock;
+ lock->registered = true;
+ } else {
+ /* There's already a lock for the hash, so we don't need the borrowed lock. */
+ return_hash_lock_to_pool(zone, vdo_forget(new_lock));
+ }
+
+ *lock_ptr = lock;
+ return VDO_SUCCESS;
+}
+
+/**
+ * enter_forked_lock() - Bind the data_vio to a new hash lock.
+ *
+ * Implements waiter_callback_fn. Binds the data_vio that was waiting to a new hash lock and waits
+ * on that lock.
+ */
+static void enter_forked_lock(struct vdo_waiter *waiter, void *context)
+{
+ struct data_vio *data_vio = vdo_waiter_as_data_vio(waiter);
+ struct hash_lock *new_lock = context;
+
+ set_hash_lock(data_vio, new_lock);
+ wait_on_hash_lock(new_lock, data_vio);
+}
+
+/**
+ * fork_hash_lock() - Fork a hash lock because it has run out of increments on the duplicate PBN.
+ * @old_lock: The hash lock to fork.
+ * @new_agent: The data_vio that will be the agent for the new lock.
+ *
+ * Transfers the new agent and any lock waiters to a new hash lock instance which takes the place
+ * of the old lock in the lock map. The old lock remains active, but will not update advice.
+ */
+static void fork_hash_lock(struct hash_lock *old_lock, struct data_vio *new_agent)
+{
+ struct hash_lock *new_lock;
+ int result;
+
+ result = acquire_lock(new_agent->hash_zone, &new_agent->record_name, old_lock,
+ &new_lock);
+ if (result != VDO_SUCCESS) {
+ continue_data_vio_with_error(new_agent, result);
+ return;
+ }
+
+ /*
+ * Only one of the two locks should update UDS. The old lock is out of references, so it
+ * would be poor dedupe advice in the short term.
+ */
+ old_lock->update_advice = false;
+ new_lock->update_advice = true;
+
+ set_hash_lock(new_agent, new_lock);
+ new_lock->agent = new_agent;
+
+ vdo_waitq_notify_all_waiters(&old_lock->waiters, enter_forked_lock, new_lock);
+
+ new_agent->is_duplicate = false;
+ start_writing(new_lock, new_agent);
+}
+
+/**
+ * launch_dedupe() - Reserve a reference count increment for a data_vio and launch it on the dedupe
+ * path.
+ * @lock: The hash lock.
+ * @data_vio: The data_vio to deduplicate using the hash lock.
+ * @has_claim: true if the data_vio already has claimed an increment from the duplicate lock.
+ *
+ * If no increments are available, this will roll over to a new hash lock and launch the data_vio
+ * as the writing agent for that lock.
+ */
+static void launch_dedupe(struct hash_lock *lock, struct data_vio *data_vio,
+ bool has_claim)
+{
+ if (!has_claim && !vdo_claim_pbn_lock_increment(lock->duplicate_lock)) {
+ /* Out of increments, so must roll over to a new lock. */
+ fork_hash_lock(lock, data_vio);
+ return;
+ }
+
+ /* Deduplicate against the lock's verified location. */
+ set_duplicate_location(data_vio, lock->duplicate);
+ data_vio->new_mapped = data_vio->duplicate;
+ update_metadata_for_data_vio_write(data_vio, lock->duplicate_lock);
+}
+
+/**
+ * start_deduping() - Enter the hash lock state where data_vios deduplicate in parallel against a
+ * true copy of their data on disk.
+ * @lock: The hash lock.
+ * @agent: The data_vio acting as the agent for the lock.
+ * @agent_is_done: true only if the agent has already written or deduplicated against its data.
+ *
+ * If the agent itself needs to deduplicate, an increment for it must already have been claimed
+ * from the duplicate lock, ensuring the hash lock will still have a data_vio holding it.
+ */
+static void start_deduping(struct hash_lock *lock, struct data_vio *agent,
+ bool agent_is_done)
+{
+ lock->state = VDO_HASH_LOCK_DEDUPING;
+
+ /*
+ * We don't take the downgraded allocation lock from the agent unless we actually need to
+ * deduplicate against it.
+ */
+ if (lock->duplicate_lock == NULL) {
+ VDO_ASSERT_LOG_ONLY(!vdo_is_state_compressed(agent->new_mapped.state),
+ "compression must have shared a lock");
+ VDO_ASSERT_LOG_ONLY(agent_is_done,
+ "agent must have written the new duplicate");
+ transfer_allocation_lock(agent);
+ }
+
+ VDO_ASSERT_LOG_ONLY(vdo_is_pbn_read_lock(lock->duplicate_lock),
+ "duplicate_lock must be a PBN read lock");
+
+ /*
+ * This state is not like any of the other states. There is no designated agent--the agent
+ * transitioning to this state and all the waiters will be launched to deduplicate in
+ * parallel.
+ */
+ lock->agent = NULL;
+
+ /*
+ * Launch the agent (if not already deduplicated) and as many lock waiters as we have
+ * available increments for on the dedupe path. If we run out of increments, rollover will
+ * be triggered and the remaining waiters will be transferred to the new lock.
+ */
+ if (!agent_is_done) {
+ launch_dedupe(lock, agent, true);
+ agent = NULL;
+ }
+ while (vdo_waitq_has_waiters(&lock->waiters))
+ launch_dedupe(lock, dequeue_lock_waiter(lock), false);
+
+ if (agent_is_done) {
+ /*
+ * In the degenerate case where all the waiters rolled over to a new lock, this
+ * will continue to use the old agent to clean up this lock, and otherwise it just
+ * lets the agent exit the lock.
+ */
+ finish_deduping(lock, agent);
+ }
+}
+
+/**
+ * increment_stat() - Increment a statistic counter in a non-atomic yet thread-safe manner.
+ * @stat: The statistic field to increment.
+ */
+static inline void increment_stat(u64 *stat)
+{
+ /*
+ * Must only be mutated on the hash zone thread. Prevents any compiler shenanigans from
+ * affecting other threads reading stats.
+ */
+ WRITE_ONCE(*stat, *stat + 1);
+}
+
+/**
+ * finish_verifying() - Handle the result of the agent for the lock comparing its data to the
+ * duplicate candidate.
+ * @completion: The completion of the data_vio used to verify dedupe
+ *
+ * This continuation is registered in start_verifying().
+ */
+static void finish_verifying(struct vdo_completion *completion)
+{
+ struct data_vio *agent = as_data_vio(completion);
+ struct hash_lock *lock = agent->hash_lock;
+
+ assert_hash_lock_agent(agent, __func__);
+
+ lock->verified = agent->is_duplicate;
+
+ /*
+ * Only count the result of the initial verification of the advice as valid or stale, and
+ * not any re-verifications due to PBN lock releases.
+ */
+ if (!lock->verify_counted) {
+ lock->verify_counted = true;
+ if (lock->verified)
+ increment_stat(&agent->hash_zone->statistics.dedupe_advice_valid);
+ else
+ increment_stat(&agent->hash_zone->statistics.dedupe_advice_stale);
+ }
+
+ /*
+ * Even if the block is a verified duplicate, we can't start to deduplicate unless we can
+ * claim a reference count increment for the agent.
+ */
+ if (lock->verified && !vdo_claim_pbn_lock_increment(lock->duplicate_lock)) {
+ agent->is_duplicate = false;
+ lock->verified = false;
+ }
+
+ if (lock->verified) {
+ /*
+ * VERIFYING -> DEDUPING transition: The advice is for a true duplicate, so start
+ * deduplicating against it, if references are available.
+ */
+ start_deduping(lock, agent, false);
+ } else {
+ /*
+ * VERIFYING -> UNLOCKING transition: Either the verify failed or we'd try to
+ * dedupe and roll over immediately, which would fail because it would leave the
+ * lock without an agent to release the PBN lock. In both cases, the data will have
+ * to be written or compressed, but first the advice PBN must be unlocked by the
+ * VERIFYING agent.
+ */
+ lock->update_advice = true;
+ start_unlocking(lock, agent);
+ }
+}
+
+static bool blocks_equal(char *block1, char *block2)
+{
+ int i;
+
+ for (i = 0; i < VDO_BLOCK_SIZE; i += sizeof(u64)) {
+ if (*((u64 *) &block1[i]) != *((u64 *) &block2[i]))
+ return false;
+ }
+
+ return true;
+}
+
+static void verify_callback(struct vdo_completion *completion)
+{
+ struct data_vio *agent = as_data_vio(completion);
+
+ agent->is_duplicate = blocks_equal(agent->vio.data, agent->scratch_block);
+ launch_data_vio_hash_zone_callback(agent, finish_verifying);
+}
+
+static void uncompress_and_verify(struct vdo_completion *completion)
+{
+ struct data_vio *agent = as_data_vio(completion);
+ int result;
+
+ result = uncompress_data_vio(agent, agent->duplicate.state,
+ agent->scratch_block);
+ if (result == VDO_SUCCESS) {
+ verify_callback(completion);
+ return;
+ }
+
+ agent->is_duplicate = false;
+ launch_data_vio_hash_zone_callback(agent, finish_verifying);
+}
+
+static void verify_endio(struct bio *bio)
+{
+ struct data_vio *agent = vio_as_data_vio(bio->bi_private);
+ int result = blk_status_to_errno(bio->bi_status);
+
+ vdo_count_completed_bios(bio);
+ if (result != VDO_SUCCESS) {
+ agent->is_duplicate = false;
+ launch_data_vio_hash_zone_callback(agent, finish_verifying);
+ return;
+ }
+
+ if (vdo_is_state_compressed(agent->duplicate.state)) {
+ launch_data_vio_cpu_callback(agent, uncompress_and_verify,
+ CPU_Q_COMPRESS_BLOCK_PRIORITY);
+ return;
+ }
+
+ launch_data_vio_cpu_callback(agent, verify_callback,
+ CPU_Q_COMPLETE_READ_PRIORITY);
+}
+
+/**
+ * start_verifying() - Begin the data verification phase.
+ * @lock: The hash lock (must be LOCKING).
+ * @agent: The data_vio to use to read and compare candidate data.
+ *
+ * Continue the deduplication path for a hash lock by using the agent to read (and possibly
+ * decompress) the data at the candidate duplicate location, comparing it to the data in the agent
+ * to verify that the candidate is identical to all the data_vios sharing the hash. If so, it can
+ * be deduplicated against, otherwise a data_vio allocation will have to be written to and used for
+ * dedupe.
+ */
+static void start_verifying(struct hash_lock *lock, struct data_vio *agent)
+{
+ int result;
+ struct vio *vio = &agent->vio;
+ char *buffer = (vdo_is_state_compressed(agent->duplicate.state) ?
+ (char *) agent->compression.block :
+ agent->scratch_block);
+
+ lock->state = VDO_HASH_LOCK_VERIFYING;
+ VDO_ASSERT_LOG_ONLY(!lock->verified, "hash lock only verifies advice once");
+
+ agent->last_async_operation = VIO_ASYNC_OP_VERIFY_DUPLICATION;
+ result = vio_reset_bio(vio, buffer, verify_endio, REQ_OP_READ,
+ agent->duplicate.pbn);
+ if (result != VDO_SUCCESS) {
+ set_data_vio_hash_zone_callback(agent, finish_verifying);
+ continue_data_vio_with_error(agent, result);
+ return;
+ }
+
+ set_data_vio_bio_zone_callback(agent, vdo_submit_vio);
+ vdo_launch_completion_with_priority(&vio->completion, BIO_Q_VERIFY_PRIORITY);
+}
+
+/**
+ * finish_locking() - Handle the result of the agent for the lock attempting to obtain a PBN read
+ * lock on the candidate duplicate block.
+ * @completion: The completion of the data_vio that attempted to get the read lock.
+ *
+ * This continuation is registered in lock_duplicate_pbn().
+ */
+static void finish_locking(struct vdo_completion *completion)
+{
+ struct data_vio *agent = as_data_vio(completion);
+ struct hash_lock *lock = agent->hash_lock;
+
+ assert_hash_lock_agent(agent, __func__);
+
+ if (!agent->is_duplicate) {
+ VDO_ASSERT_LOG_ONLY(lock->duplicate_lock == NULL,
+ "must not hold duplicate_lock if not flagged as a duplicate");
+ /*
+ * LOCKING -> WRITING transition: The advice block is being modified or has no
+ * available references, so try to write or compress the data, remembering to
+ * update UDS later with the new advice.
+ */
+ increment_stat(&agent->hash_zone->statistics.dedupe_advice_stale);
+ lock->update_advice = true;
+ start_writing(lock, agent);
+ return;
+ }
+
+ VDO_ASSERT_LOG_ONLY(lock->duplicate_lock != NULL,
+ "must hold duplicate_lock if flagged as a duplicate");
+
+ if (!lock->verified) {
+ /*
+ * LOCKING -> VERIFYING transition: Continue on the unverified dedupe path, reading
+ * the candidate duplicate and comparing it to the agent's data to decide whether
+ * it is a true duplicate or stale advice.
+ */
+ start_verifying(lock, agent);
+ return;
+ }
+
+ if (!vdo_claim_pbn_lock_increment(lock->duplicate_lock)) {
+ /*
+ * LOCKING -> UNLOCKING transition: The verified block was re-locked, but has no
+ * available increments left. Must first release the useless PBN read lock before
+ * rolling over to a new copy of the block.
+ */
+ agent->is_duplicate = false;
+ lock->verified = false;
+ lock->update_advice = true;
+ start_unlocking(lock, agent);
+ return;
+ }
+
+ /*
+ * LOCKING -> DEDUPING transition: Continue on the verified dedupe path, deduplicating
+ * against a location that was previously verified or written to.
+ */
+ start_deduping(lock, agent, false);
+}
+
+static bool acquire_provisional_reference(struct data_vio *agent, struct pbn_lock *lock,
+ struct slab_depot *depot)
+{
+ /* Ensure that the newly-locked block is referenced. */
+ struct vdo_slab *slab = vdo_get_slab(depot, agent->duplicate.pbn);
+ int result = vdo_acquire_provisional_reference(slab, agent->duplicate.pbn, lock);
+
+ if (result == VDO_SUCCESS)
+ return true;
+
+ vdo_log_warning_strerror(result,
+ "Error acquiring provisional reference for dedupe candidate; aborting dedupe");
+ agent->is_duplicate = false;
+ vdo_release_physical_zone_pbn_lock(agent->duplicate.zone,
+ agent->duplicate.pbn, lock);
+ continue_data_vio_with_error(agent, result);
+ return false;
+}
+
+/**
+ * lock_duplicate_pbn() - Acquire a read lock on the PBN of the block containing candidate
+ * duplicate data (compressed or uncompressed).
+ * @completion: The completion of the data_vio attempting to acquire the physical block lock on
+ * behalf of its hash lock.
+ *
+ * If the PBN is already locked for writing, the lock attempt is abandoned and is_duplicate will be
+ * cleared before calling back. This continuation is launched from start_locking(), and calls back
+ * to finish_locking() on the hash zone thread.
+ */
+static void lock_duplicate_pbn(struct vdo_completion *completion)
+{
+ unsigned int increment_limit;
+ struct pbn_lock *lock;
+ int result;
+
+ struct data_vio *agent = as_data_vio(completion);
+ struct slab_depot *depot = vdo_from_data_vio(agent)->depot;
+ struct physical_zone *zone = agent->duplicate.zone;
+
+ assert_data_vio_in_duplicate_zone(agent);
+
+ set_data_vio_hash_zone_callback(agent, finish_locking);
+
+ /*
+ * While in the zone that owns it, find out how many additional references can be made to
+ * the block if it turns out to truly be a duplicate.
+ */
+ increment_limit = vdo_get_increment_limit(depot, agent->duplicate.pbn);
+ if (increment_limit == 0) {
+ /*
+ * We could deduplicate against it later if a reference happened to be released
+ * during verification, but it's probably better to bail out now.
+ */
+ agent->is_duplicate = false;
+ continue_data_vio(agent);
+ return;
+ }
+
+ result = vdo_attempt_physical_zone_pbn_lock(zone, agent->duplicate.pbn,
+ VIO_READ_LOCK, &lock);
+ if (result != VDO_SUCCESS) {
+ continue_data_vio_with_error(agent, result);
+ return;
+ }
+
+ if (!vdo_is_pbn_read_lock(lock)) {
+ /*
+ * There are three cases of write locks: uncompressed data block writes, compressed
+ * (packed) block writes, and block map page writes. In all three cases, we give up
+ * on trying to verify the advice and don't bother to try deduplicate against the
+ * data in the write lock holder.
+ *
+ * 1) We don't ever want to try to deduplicate against a block map page.
+ *
+ * 2a) It's very unlikely we'd deduplicate against an entire packed block, both
+ * because of the chance of matching it, and because we don't record advice for it,
+ * but for the uncompressed representation of all the fragments it contains. The
+ * only way we'd be getting lock contention is if we've written the same
+ * representation coincidentally before, had it become unreferenced, and it just
+ * happened to be packed together from compressed writes when we go to verify the
+ * lucky advice. Giving up is a minuscule loss of potential dedupe.
+ *
+ * 2b) If the advice is for a slot of a compressed block, it's about to get
+ * smashed, and the write smashing it cannot contain our data--it would have to be
+ * writing on behalf of our hash lock, but that's impossible since we're the lock
+ * agent.
+ *
+ * 3a) If the lock is held by a data_vio with different data, the advice is already
+ * stale or is about to become stale.
+ *
+ * 3b) If the lock is held by a data_vio that matches us, we may as well either
+ * write it ourselves (or reference the copy we already wrote) instead of
+ * potentially having many duplicates wait for the lock holder to write, journal,
+ * hash, and finally arrive in the hash lock. We lose a chance to avoid a UDS
+ * update in the very rare case of advice for a free block that just happened to be
+ * allocated to a data_vio with the same hash. There's also a chance to save on a
+ * block write, at the cost of a block verify. Saving on a full block compare in
+ * all stale advice cases almost certainly outweighs saving a UDS update and
+ * trading a write for a read in a lucky case where advice would have been saved
+ * from becoming stale.
+ */
+ agent->is_duplicate = false;
+ continue_data_vio(agent);
+ return;
+ }
+
+ if (lock->holder_count == 0) {
+ if (!acquire_provisional_reference(agent, lock, depot))
+ return;
+
+ /*
+ * The increment limit we grabbed earlier is still valid. The lock now holds the
+ * rights to acquire all those references. Those rights will be claimed by hash
+ * locks sharing this read lock.
+ */
+ lock->increment_limit = increment_limit;
+ }
+
+ /*
+ * We've successfully acquired a read lock on behalf of the hash lock, so mark it as such.
+ */
+ set_duplicate_lock(agent->hash_lock, lock);
+
+ /*
+ * TODO: Optimization: We could directly launch the block verify, then switch to a hash
+ * thread.
+ */
+ continue_data_vio(agent);
+}
+
+/**
+ * start_locking() - Continue deduplication for a hash lock that has obtained valid advice of a
+ * potential duplicate through its agent.
+ * @lock: The hash lock (currently must be QUERYING).
+ * @agent: The data_vio bearing the dedupe advice.
+ */
+static void start_locking(struct hash_lock *lock, struct data_vio *agent)
+{
+ VDO_ASSERT_LOG_ONLY(lock->duplicate_lock == NULL,
+ "must not acquire a duplicate lock when already holding it");
+
+ lock->state = VDO_HASH_LOCK_LOCKING;
+
+ /*
+ * TODO: Optimization: If we arrange to continue on the duplicate zone thread when
+ * accepting the advice, and don't explicitly change lock states (or use an agent-local
+ * state, or an atomic), we can avoid a thread transition here.
+ */
+ agent->last_async_operation = VIO_ASYNC_OP_LOCK_DUPLICATE_PBN;
+ launch_data_vio_duplicate_zone_callback(agent, lock_duplicate_pbn);
+}
+
+/**
+ * finish_writing() - Re-entry point for the lock agent after it has finished writing or
+ * compressing its copy of the data block.
+ * @lock: The hash lock, which must be in state WRITING.
+ * @agent: The data_vio that wrote its data for the lock.
+ *
+ * The agent will never need to dedupe against anything, so it's done with the lock, but the lock
+ * may not be finished with it, as a UDS update might still be needed.
+ *
+ * If there are other lock holders, the agent will hand the job to one of them and exit, leaving
+ * the lock to deduplicate against the just-written block. If there are no other lock holders, the
+ * agent either exits (and later tears down the hash lock), or it remains the agent and updates
+ * UDS.
+ */
+static void finish_writing(struct hash_lock *lock, struct data_vio *agent)
+{
+ /*
+ * Dedupe against the data block or compressed block slot the agent wrote. Since we know
+ * the write succeeded, there's no need to verify it.
+ */
+ lock->duplicate = agent->new_mapped;
+ lock->verified = true;
+
+ if (vdo_is_state_compressed(lock->duplicate.state) && lock->registered) {
+ /*
+ * Compression means the location we gave in the UDS query is not the location
+ * we're using to deduplicate.
+ */
+ lock->update_advice = true;
+ }
+
+ /* If there are any waiters, we need to start deduping them. */
+ if (vdo_waitq_has_waiters(&lock->waiters)) {
+ /*
+ * WRITING -> DEDUPING transition: an asynchronously-written block failed to
+ * compress, so the PBN lock on the written copy was already transferred. The agent
+ * is done with the lock, but the lock may still need to use it to clean up after
+ * rollover.
+ */
+ start_deduping(lock, agent, true);
+ return;
+ }
+
+ /*
+ * There are no waiters and the agent has successfully written, so take a step towards
+ * being able to release the hash lock (or just release it).
+ */
+ if (lock->update_advice) {
+ /*
+ * WRITING -> UPDATING transition: There's no waiter and a UDS update is needed, so
+ * retain the WRITING agent and use it to launch the update. The happens on
+ * compression, rollover, or the QUERYING agent not having an allocation.
+ */
+ start_updating(lock, agent);
+ } else if (lock->duplicate_lock != NULL) {
+ /*
+ * WRITING -> UNLOCKING transition: There's no waiter and no update needed, but the
+ * compressed write gave us a shared duplicate lock that we must release.
+ */
+ set_duplicate_location(agent, lock->duplicate);
+ start_unlocking(lock, agent);
+ } else {
+ /*
+ * WRITING -> BYPASSING transition: There's no waiter, no update needed, and no
+ * duplicate lock held, so both the agent and lock have no more work to do. The
+ * agent will release its allocation lock in cleanup.
+ */
+ start_bypassing(lock, agent);
+ }
+}
+
+/**
+ * select_writing_agent() - Search through the lock waiters for a data_vio that has an allocation.
+ * @lock: The hash lock to modify.
+ *
+ * If an allocation is found, swap agents, put the old agent at the head of the wait queue, then
+ * return the new agent. Otherwise, just return the current agent.
+ */
+static struct data_vio *select_writing_agent(struct hash_lock *lock)
+{
+ struct vdo_wait_queue temp_queue;
+ struct data_vio *data_vio;
+
+ vdo_waitq_init(&temp_queue);
+
+ /*
+ * Move waiters to the temp queue one-by-one until we find an allocation. Not ideal to
+ * search, but it only happens when nearly out of space.
+ */
+ while (((data_vio = dequeue_lock_waiter(lock)) != NULL) &&
+ !data_vio_has_allocation(data_vio)) {
+ /* Use the lower-level enqueue since we're just moving waiters around. */
+ vdo_waitq_enqueue_waiter(&temp_queue, &data_vio->waiter);
+ }
+
+ if (data_vio != NULL) {
+ /*
+ * Move the rest of the waiters over to the temp queue, preserving the order they
+ * arrived at the lock.
+ */
+ vdo_waitq_transfer_all_waiters(&lock->waiters, &temp_queue);
+
+ /*
+ * The current agent is being replaced and will have to wait to dedupe; make it the
+ * first waiter since it was the first to reach the lock.
+ */
+ vdo_waitq_enqueue_waiter(&lock->waiters, &lock->agent->waiter);
+ lock->agent = data_vio;
+ } else {
+ /* No one has an allocation, so keep the current agent. */
+ data_vio = lock->agent;
+ }
+
+ /* Swap all the waiters back onto the lock's queue. */
+ vdo_waitq_transfer_all_waiters(&temp_queue, &lock->waiters);
+ return data_vio;
+}
+
+/**
+ * start_writing() - Begin the non-duplicate write path.
+ * @lock: The hash lock (currently must be QUERYING).
+ * @agent: The data_vio currently acting as the agent for the lock.
+ *
+ * Begins the non-duplicate write path for a hash lock that had no advice, selecting a data_vio
+ * with an allocation as a new agent, if necessary, then resuming the agent on the data_vio write
+ * path.
+ */
+static void start_writing(struct hash_lock *lock, struct data_vio *agent)
+{
+ lock->state = VDO_HASH_LOCK_WRITING;
+
+ /*
+ * The agent might not have received an allocation and so can't be used for writing, but
+ * it's entirely possible that one of the waiters did.
+ */
+ if (!data_vio_has_allocation(agent)) {
+ agent = select_writing_agent(lock);
+ /* If none of the waiters had an allocation, the writes all have to fail. */
+ if (!data_vio_has_allocation(agent)) {
+ /*
+ * TODO: Should we keep a variant of BYPASSING that causes new arrivals to
+ * fail immediately if they don't have an allocation? It might be possible
+ * that on some path there would be non-waiters still referencing the lock,
+ * so it would remain in the map as everything is currently spelled, even
+ * if the agent and all waiters release.
+ */
+ continue_data_vio_with_error(agent, VDO_NO_SPACE);
+ return;
+ }
+ }
+
+ /*
+ * If the agent compresses, it might wait indefinitely in the packer, which would be bad if
+ * there are any other data_vios waiting.
+ */
+ if (vdo_waitq_has_waiters(&lock->waiters))
+ cancel_data_vio_compression(agent);
+
+ /*
+ * Send the agent to the compress/pack/write path in vioWrite. If it succeeds, it will
+ * return to the hash lock via vdo_continue_hash_lock() and call finish_writing().
+ */
+ launch_compress_data_vio(agent);
+}
+
+/*
+ * Decode VDO duplicate advice from the old_metadata field of a UDS request.
+ * Returns true if valid advice was found and decoded
+ */
+static bool decode_uds_advice(struct dedupe_context *context)
+{
+ const struct uds_request *request = &context->request;
+ struct data_vio *data_vio = context->requestor;
+ size_t offset = 0;
+ const struct uds_record_data *encoding = &request->old_metadata;
+ struct vdo *vdo = vdo_from_data_vio(data_vio);
+ struct zoned_pbn *advice = &data_vio->duplicate;
+ u8 version;
+ int result;
+
+ if ((request->status != UDS_SUCCESS) || !request->found)
+ return false;
+
+ version = encoding->data[offset++];
+ if (version != UDS_ADVICE_VERSION) {
+ vdo_log_error("invalid UDS advice version code %u", version);
+ return false;
+ }
+
+ advice->state = encoding->data[offset++];
+ advice->pbn = get_unaligned_le64(&encoding->data[offset]);
+ offset += sizeof(u64);
+ BUG_ON(offset != UDS_ADVICE_SIZE);
+
+ /* Don't use advice that's clearly meaningless. */
+ if ((advice->state == VDO_MAPPING_STATE_UNMAPPED) || (advice->pbn == VDO_ZERO_BLOCK)) {
+ vdo_log_debug("Invalid advice from deduplication server: pbn %llu, state %u. Giving up on deduplication of logical block %llu",
+ (unsigned long long) advice->pbn, advice->state,
+ (unsigned long long) data_vio->logical.lbn);
+ atomic64_inc(&vdo->stats.invalid_advice_pbn_count);
+ return false;
+ }
+
+ result = vdo_get_physical_zone(vdo, advice->pbn, &advice->zone);
+ if ((result != VDO_SUCCESS) || (advice->zone == NULL)) {
+ vdo_log_debug("Invalid physical block number from deduplication server: %llu, giving up on deduplication of logical block %llu",
+ (unsigned long long) advice->pbn,
+ (unsigned long long) data_vio->logical.lbn);
+ atomic64_inc(&vdo->stats.invalid_advice_pbn_count);
+ return false;
+ }
+
+ return true;
+}
+
+static void process_query_result(struct data_vio *agent)
+{
+ struct dedupe_context *context = agent->dedupe_context;
+
+ if (context == NULL)
+ return;
+
+ if (change_context_state(context, DEDUPE_CONTEXT_COMPLETE, DEDUPE_CONTEXT_IDLE)) {
+ agent->is_duplicate = decode_uds_advice(context);
+ release_context(context);
+ }
+}
+
+/**
+ * finish_querying() - Process the result of a UDS query performed by the agent for the lock.
+ * @completion: The completion of the data_vio that performed the query.
+ *
+ * This continuation is registered in start_querying().
+ */
+static void finish_querying(struct vdo_completion *completion)
+{
+ struct data_vio *agent = as_data_vio(completion);
+ struct hash_lock *lock = agent->hash_lock;
+
+ assert_hash_lock_agent(agent, __func__);
+
+ process_query_result(agent);
+
+ if (agent->is_duplicate) {
+ lock->duplicate = agent->duplicate;
+ /*
+ * QUERYING -> LOCKING transition: Valid advice was obtained from UDS. Use the
+ * QUERYING agent to start the hash lock on the unverified dedupe path, verifying
+ * that the advice can be used.
+ */
+ start_locking(lock, agent);
+ } else {
+ /*
+ * The agent will be used as the duplicate if has an allocation; if it does, that
+ * location was posted to UDS, so no update will be needed.
+ */
+ lock->update_advice = !data_vio_has_allocation(agent);
+ /*
+ * QUERYING -> WRITING transition: There was no advice or the advice wasn't valid,
+ * so try to write or compress the data.
+ */
+ start_writing(lock, agent);
+ }
+}
+
+/**
+ * start_querying() - Start deduplication for a hash lock.
+ * @lock: The initialized hash lock.
+ * @data_vio: The data_vio that has just obtained the new lock.
+ *
+ * Starts deduplication for a hash lock that has finished initializing by making the data_vio that
+ * requested it the agent, entering the QUERYING state, and using the agent to perform the UDS
+ * query on behalf of the lock.
+ */
+static void start_querying(struct hash_lock *lock, struct data_vio *data_vio)
+{
+ lock->agent = data_vio;
+ lock->state = VDO_HASH_LOCK_QUERYING;
+ data_vio->last_async_operation = VIO_ASYNC_OP_CHECK_FOR_DUPLICATION;
+ set_data_vio_hash_zone_callback(data_vio, finish_querying);
+ query_index(data_vio,
+ (data_vio_has_allocation(data_vio) ? UDS_POST : UDS_QUERY));
+}
+
+/**
+ * report_bogus_lock_state() - Complain that a data_vio has entered a hash_lock that is in an
+ * unimplemented or unusable state and continue the data_vio with an
+ * error.
+ * @lock: The hash lock.
+ * @data_vio: The data_vio attempting to enter the lock.
+ */
+static void report_bogus_lock_state(struct hash_lock *lock, struct data_vio *data_vio)
+{
+ VDO_ASSERT_LOG_ONLY(false, "hash lock must not be in unimplemented state %s",
+ get_hash_lock_state_name(lock->state));
+ continue_data_vio_with_error(data_vio, VDO_LOCK_ERROR);
+}
+
+/**
+ * vdo_continue_hash_lock() - Continue the processing state after writing, compressing, or
+ * deduplicating.
+ * @data_vio: The data_vio to continue processing in its hash lock.
+ *
+ * Asynchronously continue processing a data_vio in its hash lock after it has finished writing,
+ * compressing, or deduplicating, so it can share the result with any data_vios waiting in the hash
+ * lock, or update the UDS index, or simply release its share of the lock.
+ *
+ * Context: This must only be called in the correct thread for the hash zone.
+ */
+void vdo_continue_hash_lock(struct vdo_completion *completion)
+{
+ struct data_vio *data_vio = as_data_vio(completion);
+ struct hash_lock *lock = data_vio->hash_lock;
+
+ switch (lock->state) {
+ case VDO_HASH_LOCK_WRITING:
+ VDO_ASSERT_LOG_ONLY(data_vio == lock->agent,
+ "only the lock agent may continue the lock");
+ finish_writing(lock, data_vio);
+ break;
+
+ case VDO_HASH_LOCK_DEDUPING:
+ finish_deduping(lock, data_vio);
+ break;
+
+ case VDO_HASH_LOCK_BYPASSING:
+ /* This data_vio has finished the write path and the lock doesn't need it. */
+ exit_hash_lock(data_vio);
+ break;
+
+ case VDO_HASH_LOCK_INITIALIZING:
+ case VDO_HASH_LOCK_QUERYING:
+ case VDO_HASH_LOCK_UPDATING:
+ case VDO_HASH_LOCK_LOCKING:
+ case VDO_HASH_LOCK_VERIFYING:
+ case VDO_HASH_LOCK_UNLOCKING:
+ /* A lock in this state should never be re-entered. */
+ report_bogus_lock_state(lock, data_vio);
+ break;
+
+ default:
+ report_bogus_lock_state(lock, data_vio);
+ }
+}
+
+/**
+ * is_hash_collision() - Check to see if a hash collision has occurred.
+ * @lock: The lock to check.
+ * @candidate: The data_vio seeking to share the lock.
+ *
+ * Check whether the data in data_vios sharing a lock is different than in a data_vio seeking to
+ * share the lock, which should only be possible in the extremely unlikely case of a hash
+ * collision.
+ *
+ * Return: true if the given data_vio must not share the lock because it doesn't have the same data
+ * as the lock holders.
+ */
+static bool is_hash_collision(struct hash_lock *lock, struct data_vio *candidate)
+{
+ struct data_vio *lock_holder;
+ struct hash_zone *zone;
+ bool collides;
+
+ if (list_empty(&lock->duplicate_ring))
+ return false;
+
+ lock_holder = list_first_entry(&lock->duplicate_ring, struct data_vio,
+ hash_lock_entry);
+ zone = candidate->hash_zone;
+ collides = !blocks_equal(lock_holder->vio.data, candidate->vio.data);
+ if (collides)
+ increment_stat(&zone->statistics.concurrent_hash_collisions);
+ else
+ increment_stat(&zone->statistics.concurrent_data_matches);
+
+ return collides;
+}
+
+static inline int assert_hash_lock_preconditions(const struct data_vio *data_vio)
+{
+ int result;
+
+ /* FIXME: BUG_ON() and/or enter read-only mode? */
+ result = VDO_ASSERT(data_vio->hash_lock == NULL,
+ "must not already hold a hash lock");
+ if (result != VDO_SUCCESS)
+ return result;
+
+ result = VDO_ASSERT(list_empty(&data_vio->hash_lock_entry),
+ "must not already be a member of a hash lock ring");
+ if (result != VDO_SUCCESS)
+ return result;
+
+ return VDO_ASSERT(data_vio->recovery_sequence_number == 0,
+ "must not hold a recovery lock when getting a hash lock");
+}
+
+/**
+ * vdo_acquire_hash_lock() - Acquire or share a lock on a record name.
+ * @data_vio: The data_vio acquiring a lock on its record name.
+ *
+ * Acquire or share a lock on the hash (record name) of the data in a data_vio, updating the
+ * data_vio to reference the lock. This must only be called in the correct thread for the zone. In
+ * the unlikely case of a hash collision, this function will succeed, but the data_vio will not get
+ * a lock reference.
+ */
+void vdo_acquire_hash_lock(struct vdo_completion *completion)
+{
+ struct data_vio *data_vio = as_data_vio(completion);
+ struct hash_lock *lock;
+ int result;
+
+ assert_data_vio_in_hash_zone(data_vio);
+
+ result = assert_hash_lock_preconditions(data_vio);
+ if (result != VDO_SUCCESS) {
+ continue_data_vio_with_error(data_vio, result);
+ return;
+ }
+
+ result = acquire_lock(data_vio->hash_zone, &data_vio->record_name, NULL, &lock);
+ if (result != VDO_SUCCESS) {
+ continue_data_vio_with_error(data_vio, result);
+ return;
+ }
+
+ if (is_hash_collision(lock, data_vio)) {
+ /*
+ * Hash collisions are extremely unlikely, but the bogus dedupe would be a data
+ * corruption. Bypass optimization entirely. We can't compress a data_vio without
+ * a hash_lock as the compressed write depends on the hash_lock to manage the
+ * references for the compressed block.
+ */
+ write_data_vio(data_vio);
+ return;
+ }
+
+ set_hash_lock(data_vio, lock);
+ switch (lock->state) {
+ case VDO_HASH_LOCK_INITIALIZING:
+ start_querying(lock, data_vio);
+ return;
+
+ case VDO_HASH_LOCK_QUERYING:
+ case VDO_HASH_LOCK_WRITING:
+ case VDO_HASH_LOCK_UPDATING:
+ case VDO_HASH_LOCK_LOCKING:
+ case VDO_HASH_LOCK_VERIFYING:
+ case VDO_HASH_LOCK_UNLOCKING:
+ /* The lock is busy, and can't be shared yet. */
+ wait_on_hash_lock(lock, data_vio);
+ return;
+
+ case VDO_HASH_LOCK_BYPASSING:
+ /* We can't use this lock, so bypass optimization entirely. */
+ vdo_release_hash_lock(data_vio);
+ write_data_vio(data_vio);
+ return;
+
+ case VDO_HASH_LOCK_DEDUPING:
+ launch_dedupe(lock, data_vio, false);
+ return;
+
+ default:
+ /* A lock in this state should not be acquired by new VIOs. */
+ report_bogus_lock_state(lock, data_vio);
+ }
+}
+
+/**
+ * vdo_release_hash_lock() - Release a data_vio's share of a hash lock, if held, and null out the
+ * data_vio's reference to it.
+ * @data_vio: The data_vio releasing its hash lock.
+ *
+ * If the data_vio is the only one holding the lock, this also releases any resources or locks used
+ * by the hash lock (such as a PBN read lock on a block containing data with the same hash) and
+ * returns the lock to the hash zone's lock pool.
+ *
+ * Context: This must only be called in the correct thread for the hash zone.
+ */
+void vdo_release_hash_lock(struct data_vio *data_vio)
+{
+ u64 lock_key;
+ struct hash_lock *lock = data_vio->hash_lock;
+ struct hash_zone *zone = data_vio->hash_zone;
+
+ if (lock == NULL)
+ return;
+
+ set_hash_lock(data_vio, NULL);
+
+ if (lock->reference_count > 0) {
+ /* The lock is still in use by other data_vios. */
+ return;
+ }
+
+ lock_key = hash_lock_key(lock);
+ if (lock->registered) {
+ struct hash_lock *removed;
+
+ removed = vdo_int_map_remove(zone->hash_lock_map, lock_key);
+ VDO_ASSERT_LOG_ONLY(lock == removed,
+ "hash lock being released must have been mapped");
+ } else {
+ VDO_ASSERT_LOG_ONLY(lock != vdo_int_map_get(zone->hash_lock_map, lock_key),
+ "unregistered hash lock must not be in the lock map");
+ }
+
+ VDO_ASSERT_LOG_ONLY(!vdo_waitq_has_waiters(&lock->waiters),
+ "hash lock returned to zone must have no waiters");
+ VDO_ASSERT_LOG_ONLY((lock->duplicate_lock == NULL),
+ "hash lock returned to zone must not reference a PBN lock");
+ VDO_ASSERT_LOG_ONLY((lock->state == VDO_HASH_LOCK_BYPASSING),
+ "returned hash lock must not be in use with state %s",
+ get_hash_lock_state_name(lock->state));
+ VDO_ASSERT_LOG_ONLY(list_empty(&lock->pool_node),
+ "hash lock returned to zone must not be in a pool ring");
+ VDO_ASSERT_LOG_ONLY(list_empty(&lock->duplicate_ring),
+ "hash lock returned to zone must not reference DataVIOs");
+
+ return_hash_lock_to_pool(zone, lock);
+}
+
+/**
+ * transfer_allocation_lock() - Transfer a data_vio's downgraded allocation PBN lock to the
+ * data_vio's hash lock, converting it to a duplicate PBN lock.
+ * @data_vio: The data_vio holding the allocation lock to transfer.
+ */
+static void transfer_allocation_lock(struct data_vio *data_vio)
+{
+ struct allocation *allocation = &data_vio->allocation;
+ struct hash_lock *hash_lock = data_vio->hash_lock;
+
+ VDO_ASSERT_LOG_ONLY(data_vio->new_mapped.pbn == allocation->pbn,
+ "transferred lock must be for the block written");
+
+ allocation->pbn = VDO_ZERO_BLOCK;
+
+ VDO_ASSERT_LOG_ONLY(vdo_is_pbn_read_lock(allocation->lock),
+ "must have downgraded the allocation lock before transfer");
+
+ hash_lock->duplicate = data_vio->new_mapped;
+ data_vio->duplicate = data_vio->new_mapped;
+
+ /*
+ * Since the lock is being transferred, the holder count doesn't change (and isn't even
+ * safe to examine on this thread).
+ */
+ hash_lock->duplicate_lock = vdo_forget(allocation->lock);
+}
+
+/**
+ * vdo_share_compressed_write_lock() - Make a data_vio's hash lock a shared holder of the PBN lock
+ * on the compressed block to which its data was just written.
+ * @data_vio: The data_vio which was just compressed.
+ * @pbn_lock: The PBN lock on the compressed block.
+ *
+ * If the lock is still a write lock (as it will be for the first share), it will be converted to a
+ * read lock. This also reserves a reference count increment for the data_vio.
+ */
+void vdo_share_compressed_write_lock(struct data_vio *data_vio,
+ struct pbn_lock *pbn_lock)
+{
+ bool claimed;
+
+ VDO_ASSERT_LOG_ONLY(vdo_get_duplicate_lock(data_vio) == NULL,
+ "a duplicate PBN lock should not exist when writing");
+ VDO_ASSERT_LOG_ONLY(vdo_is_state_compressed(data_vio->new_mapped.state),
+ "lock transfer must be for a compressed write");
+ assert_data_vio_in_new_mapped_zone(data_vio);
+
+ /* First sharer downgrades the lock. */
+ if (!vdo_is_pbn_read_lock(pbn_lock))
+ vdo_downgrade_pbn_write_lock(pbn_lock, true);
+
+ /*
+ * Get a share of the PBN lock, ensuring it cannot be released until after this data_vio
+ * has had a chance to journal a reference.
+ */
+ data_vio->duplicate = data_vio->new_mapped;
+ data_vio->hash_lock->duplicate = data_vio->new_mapped;
+ set_duplicate_lock(data_vio->hash_lock, pbn_lock);
+
+ /*
+ * Claim a reference for this data_vio. Necessary since another hash_lock might start
+ * deduplicating against it before our incRef.
+ */
+ claimed = vdo_claim_pbn_lock_increment(pbn_lock);
+ VDO_ASSERT_LOG_ONLY(claimed, "impossible to fail to claim an initial increment");
+}
+
+static void start_uds_queue(void *ptr)
+{
+ /*
+ * Allow the UDS dedupe worker thread to do memory allocations. It will only do allocations
+ * during the UDS calls that open or close an index, but those allocations can safely sleep
+ * while reserving a large amount of memory. We could use an allocations_allowed boolean
+ * (like the base threads do), but it would be an unnecessary embellishment.
+ */
+ struct vdo_thread *thread = vdo_get_work_queue_owner(vdo_get_current_work_queue());
+
+ vdo_register_allocating_thread(&thread->allocating_thread, NULL);
+}
+
+static void finish_uds_queue(void *ptr __always_unused)
+{
+ vdo_unregister_allocating_thread();
+}
+
+static void close_index(struct hash_zones *zones)
+ __must_hold(&zones->lock)
+{
+ int result;
+
+ /*
+ * Change the index state so that get_index_statistics() will not try to use the index
+ * session we are closing.
+ */
+ zones->index_state = IS_CHANGING;
+ /* Close the index session, while not holding the lock. */
+ spin_unlock(&zones->lock);
+ result = uds_close_index(zones->index_session);
+
+ if (result != UDS_SUCCESS)
+ vdo_log_error_strerror(result, "Error closing index");
+ spin_lock(&zones->lock);
+ zones->index_state = IS_CLOSED;
+ zones->error_flag |= result != UDS_SUCCESS;
+ /* ASSERTION: We leave in IS_CLOSED state. */
+}
+
+static void open_index(struct hash_zones *zones)
+ __must_hold(&zones->lock)
+{
+ /* ASSERTION: We enter in IS_CLOSED state. */
+ int result;
+ bool create_flag = zones->create_flag;
+
+ zones->create_flag = false;
+ /*
+ * Change the index state so that the it will be reported to the outside world as
+ * "opening".
+ */
+ zones->index_state = IS_CHANGING;
+ zones->error_flag = false;
+
+ /* Open the index session, while not holding the lock */
+ spin_unlock(&zones->lock);
+ result = uds_open_index(create_flag ? UDS_CREATE : UDS_LOAD,
+ &zones->parameters, zones->index_session);
+ if (result != UDS_SUCCESS)
+ vdo_log_error_strerror(result, "Error opening index");
+
+ spin_lock(&zones->lock);
+ if (!create_flag) {
+ switch (result) {
+ case -ENOENT:
+ /*
+ * Either there is no index, or there is no way we can recover the index.
+ * We will be called again and try to create a new index.
+ */
+ zones->index_state = IS_CLOSED;
+ zones->create_flag = true;
+ return;
+ default:
+ break;
+ }
+ }
+ if (result == UDS_SUCCESS) {
+ zones->index_state = IS_OPENED;
+ } else {
+ zones->index_state = IS_CLOSED;
+ zones->index_target = IS_CLOSED;
+ zones->error_flag = true;
+ spin_unlock(&zones->lock);
+ vdo_log_info("Setting UDS index target state to error");
+ spin_lock(&zones->lock);
+ }
+ /*
+ * ASSERTION: On success, we leave in IS_OPENED state.
+ * ASSERTION: On failure, we leave in IS_CLOSED state.
+ */
+}
+
+static void change_dedupe_state(struct vdo_completion *completion)
+{
+ struct hash_zones *zones = as_hash_zones(completion);
+
+ spin_lock(&zones->lock);
+
+ /* Loop until the index is in the target state and the create flag is clear. */
+ while (vdo_is_state_normal(&zones->state) &&
+ ((zones->index_state != zones->index_target) || zones->create_flag)) {
+ if (zones->index_state == IS_OPENED)
+ close_index(zones);
+ else
+ open_index(zones);
+ }
+
+ zones->changing = false;
+ spin_unlock(&zones->lock);
+}
+
+static void start_expiration_timer(struct dedupe_context *context)
+{
+ u64 start_time = context->submission_jiffies;
+ u64 end_time;
+
+ if (!change_timer_state(context->zone, DEDUPE_QUERY_TIMER_IDLE,
+ DEDUPE_QUERY_TIMER_RUNNING))
+ return;
+
+ end_time = max(start_time + vdo_dedupe_index_timeout_jiffies,
+ jiffies + vdo_dedupe_index_min_timer_jiffies);
+ mod_timer(&context->zone->timer, end_time);
+}
+
+/**
+ * report_dedupe_timeouts() - Record and eventually report that some dedupe requests reached their
+ * expiration time without getting answers, so we timed them out.
+ * @zones: the hash zones.
+ * @timeouts: the number of newly timed out requests.
+ */
+static void report_dedupe_timeouts(struct hash_zones *zones, unsigned int timeouts)
+{
+ atomic64_add(timeouts, &zones->timeouts);
+ spin_lock(&zones->lock);
+ if (__ratelimit(&zones->ratelimiter)) {
+ u64 unreported = atomic64_read(&zones->timeouts);
+
+ unreported -= zones->reported_timeouts;
+ vdo_log_debug("UDS index timeout on %llu requests",
+ (unsigned long long) unreported);
+ zones->reported_timeouts += unreported;
+ }
+ spin_unlock(&zones->lock);
+}
+
+static int initialize_index(struct vdo *vdo, struct hash_zones *zones)
+{
+ int result;
+ off_t uds_offset;
+ struct volume_geometry geometry = vdo->geometry;
+ static const struct vdo_work_queue_type uds_queue_type = {
+ .start = start_uds_queue,
+ .finish = finish_uds_queue,
+ .max_priority = UDS_Q_MAX_PRIORITY,
+ .default_priority = UDS_Q_PRIORITY,
+ };
+
+ vdo_set_dedupe_index_timeout_interval(vdo_dedupe_index_timeout_interval);
+ vdo_set_dedupe_index_min_timer_interval(vdo_dedupe_index_min_timer_interval);
+
+ /*
+ * Since we will save up the timeouts that would have been reported but were ratelimited,
+ * we don't need to report ratelimiting.
+ */
+ ratelimit_default_init(&zones->ratelimiter);
+ ratelimit_set_flags(&zones->ratelimiter, RATELIMIT_MSG_ON_RELEASE);
+ uds_offset = ((vdo_get_index_region_start(geometry) -
+ geometry.bio_offset) * VDO_BLOCK_SIZE);
+ zones->parameters = (struct uds_parameters) {
+ .bdev = vdo->device_config->owned_device->bdev,
+ .offset = uds_offset,
+ .size = (vdo_get_index_region_size(geometry) * VDO_BLOCK_SIZE),
+ .memory_size = geometry.index_config.mem,
+ .sparse = geometry.index_config.sparse,
+ .nonce = (u64) geometry.nonce,
+ };
+
+ result = uds_create_index_session(&zones->index_session);
+ if (result != UDS_SUCCESS)
+ return result;
+
+ result = vdo_make_thread(vdo, vdo->thread_config.dedupe_thread, &uds_queue_type,
+ 1, NULL);
+ if (result != VDO_SUCCESS) {
+ uds_destroy_index_session(vdo_forget(zones->index_session));
+ vdo_log_error("UDS index queue initialization failed (%d)", result);
+ return result;
+ }
+
+ vdo_initialize_completion(&zones->completion, vdo, VDO_HASH_ZONES_COMPLETION);
+ vdo_set_completion_callback(&zones->completion, change_dedupe_state,
+ vdo->thread_config.dedupe_thread);
+ return VDO_SUCCESS;
+}
+
+/**
+ * finish_index_operation() - This is the UDS callback for index queries.
+ * @request: The uds request which has just completed.
+ */
+static void finish_index_operation(struct uds_request *request)
+{
+ struct dedupe_context *context = container_of(request, struct dedupe_context,
+ request);
+
+ if (change_context_state(context, DEDUPE_CONTEXT_PENDING,
+ DEDUPE_CONTEXT_COMPLETE)) {
+ /*
+ * This query has not timed out, so send its data_vio back to its hash zone to
+ * process the results.
+ */
+ continue_data_vio(context->requestor);
+ return;
+ }
+
+ /*
+ * This query has timed out, so try to mark it complete and hence eligible for reuse. Its
+ * data_vio has already moved on.
+ */
+ if (!change_context_state(context, DEDUPE_CONTEXT_TIMED_OUT,
+ DEDUPE_CONTEXT_TIMED_OUT_COMPLETE)) {
+ VDO_ASSERT_LOG_ONLY(false, "uds request was timed out (state %d)",
+ atomic_read(&context->state));
+ }
+
+ vdo_funnel_queue_put(context->zone->timed_out_complete, &context->queue_entry);
+}
+
+/**
+ * check_for_drain_complete() - Check whether this zone has drained.
+ * @zone: The zone to check.
+ */
+static void check_for_drain_complete(struct hash_zone *zone)
+{
+ data_vio_count_t recycled = 0;
+
+ if (!vdo_is_state_draining(&zone->state))
+ return;
+
+ if ((atomic_read(&zone->timer_state) == DEDUPE_QUERY_TIMER_IDLE) ||
+ change_timer_state(zone, DEDUPE_QUERY_TIMER_RUNNING,
+ DEDUPE_QUERY_TIMER_IDLE)) {
+ del_timer_sync(&zone->timer);
+ } else {
+ /*
+ * There is an in flight time-out, which must get processed before we can continue.
+ */
+ return;
+ }
+
+ for (;;) {
+ struct dedupe_context *context;
+ struct funnel_queue_entry *entry;
+
+ entry = vdo_funnel_queue_poll(zone->timed_out_complete);
+ if (entry == NULL)
+ break;
+
+ context = container_of(entry, struct dedupe_context, queue_entry);
+ atomic_set(&context->state, DEDUPE_CONTEXT_IDLE);
+ list_add(&context->list_entry, &zone->available);
+ recycled++;
+ }
+
+ if (recycled > 0)
+ WRITE_ONCE(zone->active, zone->active - recycled);
+ VDO_ASSERT_LOG_ONLY(READ_ONCE(zone->active) == 0, "all contexts inactive");
+ vdo_finish_draining(&zone->state);
+}
+
+static void timeout_index_operations_callback(struct vdo_completion *completion)
+{
+ struct dedupe_context *context, *tmp;
+ struct hash_zone *zone = as_hash_zone(completion);
+ u64 timeout_jiffies = msecs_to_jiffies(vdo_dedupe_index_timeout_interval);
+ unsigned long cutoff = jiffies - timeout_jiffies;
+ unsigned int timed_out = 0;
+
+ atomic_set(&zone->timer_state, DEDUPE_QUERY_TIMER_IDLE);
+ list_for_each_entry_safe(context, tmp, &zone->pending, list_entry) {
+ if (cutoff <= context->submission_jiffies) {
+ /*
+ * We have reached the oldest query which has not timed out yet, so restart
+ * the timer.
+ */
+ start_expiration_timer(context);
+ break;
+ }
+
+ if (!change_context_state(context, DEDUPE_CONTEXT_PENDING,
+ DEDUPE_CONTEXT_TIMED_OUT)) {
+ /*
+ * This context completed between the time the timeout fired, and now. We
+ * can treat it as a successful query, its requestor is already enqueued
+ * to process it.
+ */
+ continue;
+ }
+
+ /*
+ * Remove this context from the pending list so we won't look at it again on a
+ * subsequent timeout. Once the index completes it, it will be reused. Meanwhile,
+ * send its requestor on its way.
+ */
+ list_del_init(&context->list_entry);
+ continue_data_vio(context->requestor);
+ timed_out++;
+ }
+
+ if (timed_out > 0)
+ report_dedupe_timeouts(completion->vdo->hash_zones, timed_out);
+
+ check_for_drain_complete(zone);
+}
+
+static void timeout_index_operations(struct timer_list *t)
+{
+ struct hash_zone *zone = from_timer(zone, t, timer);
+
+ if (change_timer_state(zone, DEDUPE_QUERY_TIMER_RUNNING,
+ DEDUPE_QUERY_TIMER_FIRED))
+ vdo_launch_completion(&zone->completion);
+}
+
+static int __must_check initialize_zone(struct vdo *vdo, struct hash_zones *zones,
+ zone_count_t zone_number)
+{
+ int result;
+ data_vio_count_t i;
+ struct hash_zone *zone = &zones->zones[zone_number];
+
+ result = vdo_int_map_create(VDO_LOCK_MAP_CAPACITY, &zone->hash_lock_map);
+ if (result != VDO_SUCCESS)
+ return result;
+
+ vdo_set_admin_state_code(&zone->state, VDO_ADMIN_STATE_NORMAL_OPERATION);
+ zone->zone_number = zone_number;
+ zone->thread_id = vdo->thread_config.hash_zone_threads[zone_number];
+ vdo_initialize_completion(&zone->completion, vdo, VDO_HASH_ZONE_COMPLETION);
+ vdo_set_completion_callback(&zone->completion, timeout_index_operations_callback,
+ zone->thread_id);
+ INIT_LIST_HEAD(&zone->lock_pool);
+ result = vdo_allocate(LOCK_POOL_CAPACITY, struct hash_lock, "hash_lock array",
+ &zone->lock_array);
+ if (result != VDO_SUCCESS)
+ return result;
+
+ for (i = 0; i < LOCK_POOL_CAPACITY; i++)
+ return_hash_lock_to_pool(zone, &zone->lock_array[i]);
+
+ INIT_LIST_HEAD(&zone->available);
+ INIT_LIST_HEAD(&zone->pending);
+ result = vdo_make_funnel_queue(&zone->timed_out_complete);
+ if (result != VDO_SUCCESS)
+ return result;
+
+ timer_setup(&zone->timer, timeout_index_operations, 0);
+
+ for (i = 0; i < MAXIMUM_VDO_USER_VIOS; i++) {
+ struct dedupe_context *context = &zone->contexts[i];
+
+ context->zone = zone;
+ context->request.callback = finish_index_operation;
+ context->request.session = zones->index_session;
+ list_add(&context->list_entry, &zone->available);
+ }
+
+ return vdo_make_default_thread(vdo, zone->thread_id);
+}
+
+/** get_thread_id_for_zone() - Implements vdo_zone_thread_getter_fn. */
+static thread_id_t get_thread_id_for_zone(void *context, zone_count_t zone_number)
+{
+ struct hash_zones *zones = context;
+
+ return zones->zones[zone_number].thread_id;
+}
+
+/**
+ * vdo_make_hash_zones() - Create the hash zones.
+ *
+ * @vdo: The vdo to which the zone will belong.
+ * @zones_ptr: A pointer to hold the zones.
+ *
+ * Return: VDO_SUCCESS or an error code.
+ */
+int vdo_make_hash_zones(struct vdo *vdo, struct hash_zones **zones_ptr)
+{
+ int result;
+ struct hash_zones *zones;
+ zone_count_t z;
+ zone_count_t zone_count = vdo->thread_config.hash_zone_count;
+
+ if (zone_count == 0)
+ return VDO_SUCCESS;
+
+ result = vdo_allocate_extended(struct hash_zones, zone_count, struct hash_zone,
+ __func__, &zones);
+ if (result != VDO_SUCCESS)
+ return result;
+
+ result = initialize_index(vdo, zones);
+ if (result != VDO_SUCCESS) {
+ vdo_free(zones);
+ return result;
+ }
+
+ vdo_set_admin_state_code(&zones->state, VDO_ADMIN_STATE_NEW);
+
+ zones->zone_count = zone_count;
+ for (z = 0; z < zone_count; z++) {
+ result = initialize_zone(vdo, zones, z);
+ if (result != VDO_SUCCESS) {
+ vdo_free_hash_zones(zones);
+ return result;
+ }
+ }
+
+ result = vdo_make_action_manager(zones->zone_count, get_thread_id_for_zone,
+ vdo->thread_config.admin_thread, zones, NULL,
+ vdo, &zones->manager);
+ if (result != VDO_SUCCESS) {
+ vdo_free_hash_zones(zones);
+ return result;
+ }
+
+ *zones_ptr = zones;
+ return VDO_SUCCESS;
+}
+
+void vdo_finish_dedupe_index(struct hash_zones *zones)
+{
+ if (zones == NULL)
+ return;
+
+ uds_destroy_index_session(vdo_forget(zones->index_session));
+}
+
+/**
+ * vdo_free_hash_zones() - Free the hash zones.
+ * @zones: The zone to free.
+ */
+void vdo_free_hash_zones(struct hash_zones *zones)
+{
+ zone_count_t i;
+
+ if (zones == NULL)
+ return;
+
+ vdo_free(vdo_forget(zones->manager));
+
+ for (i = 0; i < zones->zone_count; i++) {
+ struct hash_zone *zone = &zones->zones[i];
+
+ vdo_free_funnel_queue(vdo_forget(zone->timed_out_complete));
+ vdo_int_map_free(vdo_forget(zone->hash_lock_map));
+ vdo_free(vdo_forget(zone->lock_array));
+ }
+
+ if (zones->index_session != NULL)
+ vdo_finish_dedupe_index(zones);
+
+ ratelimit_state_exit(&zones->ratelimiter);
+ vdo_free(zones);
+}
+
+static void initiate_suspend_index(struct admin_state *state)
+{
+ struct hash_zones *zones = container_of(state, struct hash_zones, state);
+ enum index_state index_state;
+
+ spin_lock(&zones->lock);
+ index_state = zones->index_state;
+ spin_unlock(&zones->lock);
+
+ if (index_state != IS_CLOSED) {
+ bool save = vdo_is_state_saving(&zones->state);
+ int result;
+
+ result = uds_suspend_index_session(zones->index_session, save);
+ if (result != UDS_SUCCESS)
+ vdo_log_error_strerror(result, "Error suspending dedupe index");
+ }
+
+ vdo_finish_draining(state);
+}
+
+/**
+ * suspend_index() - Suspend the UDS index prior to draining hash zones.
+ *
+ * Implements vdo_action_preamble_fn
+ */
+static void suspend_index(void *context, struct vdo_completion *completion)
+{
+ struct hash_zones *zones = context;
+
+ vdo_start_draining(&zones->state,
+ vdo_get_current_manager_operation(zones->manager), completion,
+ initiate_suspend_index);
+}
+
+/**
+ * initiate_drain() - Initiate a drain.
+ *
+ * Implements vdo_admin_initiator_fn.
+ */
+static void initiate_drain(struct admin_state *state)
+{
+ check_for_drain_complete(container_of(state, struct hash_zone, state));
+}
+
+/**
+ * drain_hash_zone() - Drain a hash zone.
+ *
+ * Implements vdo_zone_action_fn.
+ */
+static void drain_hash_zone(void *context, zone_count_t zone_number,
+ struct vdo_completion *parent)
+{
+ struct hash_zones *zones = context;
+
+ vdo_start_draining(&zones->zones[zone_number].state,
+ vdo_get_current_manager_operation(zones->manager), parent,
+ initiate_drain);
+}
+
+/** vdo_drain_hash_zones() - Drain all hash zones. */
+void vdo_drain_hash_zones(struct hash_zones *zones, struct vdo_completion *parent)
+{
+ vdo_schedule_operation(zones->manager, parent->vdo->suspend_type, suspend_index,
+ drain_hash_zone, NULL, parent);
+}
+
+static void launch_dedupe_state_change(struct hash_zones *zones)
+ __must_hold(&zones->lock)
+{
+ /* ASSERTION: We enter with the lock held. */
+ if (zones->changing || !vdo_is_state_normal(&zones->state))
+ /* Either a change is already in progress, or changes are not allowed. */
+ return;
+
+ if (zones->create_flag || (zones->index_state != zones->index_target)) {
+ zones->changing = true;
+ vdo_launch_completion(&zones->completion);
+ return;
+ }
+
+ /* ASSERTION: We exit with the lock held. */
+}
+
+/**
+ * resume_index() - Resume the UDS index prior to resuming hash zones.
+ *
+ * Implements vdo_action_preamble_fn
+ */
+static void resume_index(void *context, struct vdo_completion *parent)
+{
+ struct hash_zones *zones = context;
+ struct device_config *config = parent->vdo->device_config;
+ int result;
+
+ zones->parameters.bdev = config->owned_device->bdev;
+ result = uds_resume_index_session(zones->index_session, zones->parameters.bdev);
+ if (result != UDS_SUCCESS)
+ vdo_log_error_strerror(result, "Error resuming dedupe index");
+
+ spin_lock(&zones->lock);
+ vdo_resume_if_quiescent(&zones->state);
+
+ if (config->deduplication) {
+ zones->index_target = IS_OPENED;
+ WRITE_ONCE(zones->dedupe_flag, true);
+ } else {
+ zones->index_target = IS_CLOSED;
+ }
+
+ launch_dedupe_state_change(zones);
+ spin_unlock(&zones->lock);
+
+ vdo_finish_completion(parent);
+}
+
+/**
+ * resume_hash_zone() - Resume a hash zone.
+ *
+ * Implements vdo_zone_action_fn.
+ */
+static void resume_hash_zone(void *context, zone_count_t zone_number,
+ struct vdo_completion *parent)
+{
+ struct hash_zone *zone = &(((struct hash_zones *) context)->zones[zone_number]);
+
+ vdo_fail_completion(parent, vdo_resume_if_quiescent(&zone->state));
+}
+
+/**
+ * vdo_resume_hash_zones() - Resume a set of hash zones.
+ * @zones: The hash zones to resume.
+ * @parent: The object to notify when the zones have resumed.
+ */
+void vdo_resume_hash_zones(struct hash_zones *zones, struct vdo_completion *parent)
+{
+ if (vdo_is_read_only(parent->vdo)) {
+ vdo_launch_completion(parent);
+ return;
+ }
+
+ vdo_schedule_operation(zones->manager, VDO_ADMIN_STATE_RESUMING, resume_index,
+ resume_hash_zone, NULL, parent);
+}
+
+/**
+ * get_hash_zone_statistics() - Add the statistics for this hash zone to the tally for all zones.
+ * @zone: The hash zone to query.
+ * @tally: The tally
+ */
+static void get_hash_zone_statistics(const struct hash_zone *zone,
+ struct hash_lock_statistics *tally)
+{
+ const struct hash_lock_statistics *stats = &zone->statistics;
+
+ tally->dedupe_advice_valid += READ_ONCE(stats->dedupe_advice_valid);
+ tally->dedupe_advice_stale += READ_ONCE(stats->dedupe_advice_stale);
+ tally->concurrent_data_matches += READ_ONCE(stats->concurrent_data_matches);
+ tally->concurrent_hash_collisions += READ_ONCE(stats->concurrent_hash_collisions);
+ tally->curr_dedupe_queries += READ_ONCE(zone->active);
+}
+
+static void get_index_statistics(struct hash_zones *zones,
+ struct index_statistics *stats)
+{
+ enum index_state state;
+ struct uds_index_stats index_stats;
+ int result;
+
+ spin_lock(&zones->lock);
+ state = zones->index_state;
+ spin_unlock(&zones->lock);
+
+ if (state != IS_OPENED)
+ return;
+
+ result = uds_get_index_session_stats(zones->index_session, &index_stats);
+ if (result != UDS_SUCCESS) {
+ vdo_log_error_strerror(result, "Error reading index stats");
+ return;
+ }
+
+ stats->entries_indexed = index_stats.entries_indexed;
+ stats->posts_found = index_stats.posts_found;
+ stats->posts_not_found = index_stats.posts_not_found;
+ stats->queries_found = index_stats.queries_found;
+ stats->queries_not_found = index_stats.queries_not_found;
+ stats->updates_found = index_stats.updates_found;
+ stats->updates_not_found = index_stats.updates_not_found;
+ stats->entries_discarded = index_stats.entries_discarded;
+}
+
+/**
+ * vdo_get_dedupe_statistics() - Tally the statistics from all the hash zones and the UDS index.
+ * @hash_zones: The hash zones to query
+ *
+ * Return: The sum of the hash lock statistics from all hash zones plus the statistics from the UDS
+ * index
+ */
+void vdo_get_dedupe_statistics(struct hash_zones *zones, struct vdo_statistics *stats)
+
+{
+ zone_count_t zone;
+
+ for (zone = 0; zone < zones->zone_count; zone++)
+ get_hash_zone_statistics(&zones->zones[zone], &stats->hash_lock);
+
+ get_index_statistics(zones, &stats->index);
+
+ /*
+ * zones->timeouts gives the number of timeouts, and dedupe_context_busy gives the number
+ * of queries not made because of earlier timeouts.
+ */
+ stats->dedupe_advice_timeouts =
+ (atomic64_read(&zones->timeouts) + atomic64_read(&zones->dedupe_context_busy));
+}
+
+/**
+ * vdo_select_hash_zone() - Select the hash zone responsible for locking a given record name.
+ * @zones: The hash_zones from which to select.
+ * @name: The record name.
+ *
+ * Return: The hash zone responsible for the record name.
+ */
+struct hash_zone *vdo_select_hash_zone(struct hash_zones *zones,
+ const struct uds_record_name *name)
+{
+ /*
+ * Use a fragment of the record name as a hash code. Eight bits of hash should suffice
+ * since the number of hash zones is small.
+ * TODO: Verify that the first byte is independent enough.
+ */
+ u32 hash = name->name[0];
+
+ /*
+ * Scale the 8-bit hash fragment to a zone index by treating it as a binary fraction and
+ * multiplying that by the zone count. If the hash is uniformly distributed over [0 ..
+ * 2^8-1], then (hash * count / 2^8) should be uniformly distributed over [0 .. count-1].
+ * The multiply and shift is much faster than a divide (modulus) on X86 CPUs.
+ */
+ hash = (hash * zones->zone_count) >> 8;
+ return &zones->zones[hash];
+}
+
+/**
+ * dump_hash_lock() - Dump a compact description of hash_lock to the log if the lock is not on the
+ * free list.
+ * @lock: The hash lock to dump.
+ */
+static void dump_hash_lock(const struct hash_lock *lock)
+{
+ const char *state;
+
+ if (!list_empty(&lock->pool_node)) {
+ /* This lock is on the free list. */
+ return;
+ }
+
+ /*
+ * Necessarily cryptic since we can log a lot of these. First three chars of state is
+ * unambiguous. 'U' indicates a lock not registered in the map.
+ */
+ state = get_hash_lock_state_name(lock->state);
+ vdo_log_info(" hl %px: %3.3s %c%llu/%u rc=%u wc=%zu agt=%px",
+ lock, state, (lock->registered ? 'D' : 'U'),
+ (unsigned long long) lock->duplicate.pbn,
+ lock->duplicate.state, lock->reference_count,
+ vdo_waitq_num_waiters(&lock->waiters), lock->agent);
+}
+
+static const char *index_state_to_string(struct hash_zones *zones,
+ enum index_state state)
+{
+ if (!vdo_is_state_normal(&zones->state))
+ return SUSPENDED;
+
+ switch (state) {
+ case IS_CLOSED:
+ return zones->error_flag ? ERROR : CLOSED;
+ case IS_CHANGING:
+ return zones->index_target == IS_OPENED ? OPENING : CLOSING;
+ case IS_OPENED:
+ return READ_ONCE(zones->dedupe_flag) ? ONLINE : OFFLINE;
+ default:
+ return UNKNOWN;
+ }
+}
+
+/**
+ * dump_hash_zone() - Dump information about a hash zone to the log for debugging.
+ * @zone: The zone to dump.
+ */
+static void dump_hash_zone(const struct hash_zone *zone)
+{
+ data_vio_count_t i;
+
+ if (zone->hash_lock_map == NULL) {
+ vdo_log_info("struct hash_zone %u: NULL map", zone->zone_number);
+ return;
+ }
+
+ vdo_log_info("struct hash_zone %u: mapSize=%zu",
+ zone->zone_number, vdo_int_map_size(zone->hash_lock_map));
+ for (i = 0; i < LOCK_POOL_CAPACITY; i++)
+ dump_hash_lock(&zone->lock_array[i]);
+}
+
+/**
+ * vdo_dump_hash_zones() - Dump information about the hash zones to the log for debugging.
+ * @zones: The zones to dump.
+ */
+void vdo_dump_hash_zones(struct hash_zones *zones)
+{
+ const char *state, *target;
+ zone_count_t zone;
+
+ spin_lock(&zones->lock);
+ state = index_state_to_string(zones, zones->index_state);
+ target = (zones->changing ? index_state_to_string(zones, zones->index_target) : NULL);
+ spin_unlock(&zones->lock);
+
+ vdo_log_info("UDS index: state: %s", state);
+ if (target != NULL)
+ vdo_log_info("UDS index: changing to state: %s", target);
+
+ for (zone = 0; zone < zones->zone_count; zone++)
+ dump_hash_zone(&zones->zones[zone]);
+}
+
+void vdo_set_dedupe_index_timeout_interval(unsigned int value)
+{
+ u64 alb_jiffies;
+
+ /* Arbitrary maximum value is two minutes */
+ if (value > 120000)
+ value = 120000;
+ /* Arbitrary minimum value is 2 jiffies */
+ alb_jiffies = msecs_to_jiffies(value);
+
+ if (alb_jiffies < 2) {
+ alb_jiffies = 2;
+ value = jiffies_to_msecs(alb_jiffies);
+ }
+ vdo_dedupe_index_timeout_interval = value;
+ vdo_dedupe_index_timeout_jiffies = alb_jiffies;
+}
+
+void vdo_set_dedupe_index_min_timer_interval(unsigned int value)
+{
+ u64 min_jiffies;
+
+ /* Arbitrary maximum value is one second */
+ if (value > 1000)
+ value = 1000;
+
+ /* Arbitrary minimum value is 2 jiffies */
+ min_jiffies = msecs_to_jiffies(value);
+
+ if (min_jiffies < 2) {
+ min_jiffies = 2;
+ value = jiffies_to_msecs(min_jiffies);
+ }
+
+ vdo_dedupe_index_min_timer_interval = value;
+ vdo_dedupe_index_min_timer_jiffies = min_jiffies;
+}
+
+/**
+ * acquire_context() - Acquire a dedupe context from a hash_zone if any are available.
+ * @zone: the hash zone
+ *
+ * Return: A dedupe_context or NULL if none are available
+ */
+static struct dedupe_context * __must_check acquire_context(struct hash_zone *zone)
+{
+ struct dedupe_context *context;
+ struct funnel_queue_entry *entry;
+
+ assert_in_hash_zone(zone, __func__);
+
+ if (!list_empty(&zone->available)) {
+ WRITE_ONCE(zone->active, zone->active + 1);
+ context = list_first_entry(&zone->available, struct dedupe_context,
+ list_entry);
+ list_del_init(&context->list_entry);
+ return context;
+ }
+
+ entry = vdo_funnel_queue_poll(zone->timed_out_complete);
+ return ((entry == NULL) ?
+ NULL : container_of(entry, struct dedupe_context, queue_entry));
+}
+
+static void prepare_uds_request(struct uds_request *request, struct data_vio *data_vio,
+ enum uds_request_type operation)
+{
+ request->record_name = data_vio->record_name;
+ request->type = operation;
+ if ((operation == UDS_POST) || (operation == UDS_UPDATE)) {
+ size_t offset = 0;
+ struct uds_record_data *encoding = &request->new_metadata;
+
+ encoding->data[offset++] = UDS_ADVICE_VERSION;
+ encoding->data[offset++] = data_vio->new_mapped.state;
+ put_unaligned_le64(data_vio->new_mapped.pbn, &encoding->data[offset]);
+ offset += sizeof(u64);
+ BUG_ON(offset != UDS_ADVICE_SIZE);
+ }
+}
+
+/*
+ * The index operation will inquire about data_vio.record_name, providing (if the operation is
+ * appropriate) advice from the data_vio's new_mapped fields. The advice found in the index (or
+ * NULL if none) will be returned via receive_data_vio_dedupe_advice(). dedupe_context.status is
+ * set to the return status code of any asynchronous index processing.
+ */
+static void query_index(struct data_vio *data_vio, enum uds_request_type operation)
+{
+ int result;
+ struct dedupe_context *context;
+ struct vdo *vdo = vdo_from_data_vio(data_vio);
+ struct hash_zone *zone = data_vio->hash_zone;
+
+ assert_data_vio_in_hash_zone(data_vio);
+
+ if (!READ_ONCE(vdo->hash_zones->dedupe_flag)) {
+ continue_data_vio(data_vio);
+ return;
+ }
+
+ context = acquire_context(zone);
+ if (context == NULL) {
+ atomic64_inc(&vdo->hash_zones->dedupe_context_busy);
+ continue_data_vio(data_vio);
+ return;
+ }
+
+ data_vio->dedupe_context = context;
+ context->requestor = data_vio;
+ context->submission_jiffies = jiffies;
+ prepare_uds_request(&context->request, data_vio, operation);
+ atomic_set(&context->state, DEDUPE_CONTEXT_PENDING);
+ list_add_tail(&context->list_entry, &zone->pending);
+ start_expiration_timer(context);
+ result = uds_launch_request(&context->request);
+ if (result != UDS_SUCCESS) {
+ context->request.status = result;
+ finish_index_operation(&context->request);
+ }
+}
+
+static void set_target_state(struct hash_zones *zones, enum index_state target,
+ bool change_dedupe, bool dedupe, bool set_create)
+{
+ const char *old_state, *new_state;
+
+ spin_lock(&zones->lock);
+ old_state = index_state_to_string(zones, zones->index_target);
+ if (change_dedupe)
+ WRITE_ONCE(zones->dedupe_flag, dedupe);
+
+ if (set_create)
+ zones->create_flag = true;
+
+ zones->index_target = target;
+ launch_dedupe_state_change(zones);
+ new_state = index_state_to_string(zones, zones->index_target);
+ spin_unlock(&zones->lock);
+
+ if (old_state != new_state)
+ vdo_log_info("Setting UDS index target state to %s", new_state);
+}
+
+const char *vdo_get_dedupe_index_state_name(struct hash_zones *zones)
+{
+ const char *state;
+
+ spin_lock(&zones->lock);
+ state = index_state_to_string(zones, zones->index_state);
+ spin_unlock(&zones->lock);
+
+ return state;
+}
+
+/* Handle a dmsetup message relevant to the index. */
+int vdo_message_dedupe_index(struct hash_zones *zones, const char *name)
+{
+ if (strcasecmp(name, "index-close") == 0) {
+ set_target_state(zones, IS_CLOSED, false, false, false);
+ return 0;
+ } else if (strcasecmp(name, "index-create") == 0) {
+ set_target_state(zones, IS_OPENED, false, false, true);
+ return 0;
+ } else if (strcasecmp(name, "index-disable") == 0) {
+ set_target_state(zones, IS_OPENED, true, false, false);
+ return 0;
+ } else if (strcasecmp(name, "index-enable") == 0) {
+ set_target_state(zones, IS_OPENED, true, true, false);
+ return 0;
+ }
+
+ return -EINVAL;
+}
+
+void vdo_set_dedupe_state_normal(struct hash_zones *zones)
+{
+ vdo_set_admin_state_code(&zones->state, VDO_ADMIN_STATE_NORMAL_OPERATION);
+}
+
+/* If create_flag, create a new index without first attempting to load an existing index. */
+void vdo_start_dedupe_index(struct hash_zones *zones, bool create_flag)
+{
+ set_target_state(zones, IS_OPENED, true, true, create_flag);
+}