summaryrefslogtreecommitdiffstats
path: root/drivers/md/dm-vdo/indexer/delta-index.c
diff options
context:
space:
mode:
Diffstat (limited to 'drivers/md/dm-vdo/indexer/delta-index.c')
-rw-r--r--drivers/md/dm-vdo/indexer/delta-index.c1970
1 files changed, 1970 insertions, 0 deletions
diff --git a/drivers/md/dm-vdo/indexer/delta-index.c b/drivers/md/dm-vdo/indexer/delta-index.c
new file mode 100644
index 000000000..0ac2443f0
--- /dev/null
+++ b/drivers/md/dm-vdo/indexer/delta-index.c
@@ -0,0 +1,1970 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * Copyright 2023 Red Hat
+ */
+#include "delta-index.h"
+
+#include <linux/bitops.h>
+#include <linux/bits.h>
+#include <linux/compiler.h>
+#include <linux/limits.h>
+#include <linux/log2.h>
+
+#include "cpu.h"
+#include "errors.h"
+#include "logger.h"
+#include "memory-alloc.h"
+#include "numeric.h"
+#include "permassert.h"
+#include "string-utils.h"
+#include "time-utils.h"
+
+#include "config.h"
+#include "indexer.h"
+
+/*
+ * The entries in a delta index could be stored in a single delta list, but to reduce search times
+ * and update costs it uses multiple delta lists. These lists are stored in a single chunk of
+ * memory managed by the delta_zone structure. The delta_zone can move the data around within its
+ * memory, so the location of each delta list is recorded as a bit offset into the memory. Because
+ * the volume index can contain over a million delta lists, we want to be efficient with the size
+ * of the delta list header information. This information is encoded into 16 bytes per list. The
+ * volume index delta list memory can easily exceed 4 gigabits, so a 64 bit value is needed to
+ * address the memory. The volume index delta lists average around 6 kilobits, so 16 bits are
+ * sufficient to store the size of a delta list.
+ *
+ * Each delta list is stored as a bit stream. Within the delta list encoding, bits and bytes are
+ * numbered in little endian order. Within a byte, bit 0 is the least significant bit (0x1), and
+ * bit 7 is the most significant bit (0x80). Within a bit stream, bit 7 is the most significant bit
+ * of byte 0, and bit 8 is the least significant bit of byte 1. Within a byte array, a byte's
+ * number corresponds to its index in the array.
+ *
+ * A standard delta list entry is stored as a fixed length payload (the value) followed by a
+ * variable length key (the delta). A collision entry is used when two block names have the same
+ * delta list address. A collision entry always follows a standard entry for the hash with which it
+ * collides, and is encoded with DELTA == 0 with an additional 256 bits field at the end,
+ * containing the full block name. An entry with a delta of 0 at the beginning of a delta list
+ * indicates a normal entry.
+ *
+ * The delta in each entry is encoded with a variable-length Huffman code to minimize the memory
+ * used by small deltas. The Huffman code is specified by three parameters, which can be computed
+ * from the desired mean delta when the index is full. (See compute_coding_constants() for
+ * details.)
+ *
+ * The bit field utilities used to read and write delta entries assume that it is possible to read
+ * some bytes beyond the end of the bit field, so a delta_zone memory allocation is guarded by two
+ * invalid delta lists to prevent reading outside the delta_zone memory. The valid delta lists are
+ * numbered 1 to N, and the guard lists are numbered 0 and N+1. The function to decode the bit
+ * stream include a step that skips over bits set to 0 until the first 1 bit is found. A corrupted
+ * delta list could cause this step to run off the end of the delta_zone memory, so as extra
+ * protection against this happening, the tail guard list is set to all ones.
+ *
+ * The delta_index supports two different forms. The mutable form is created by
+ * uds_initialize_delta_index(), and is used for the volume index and for open chapter indexes. The
+ * immutable form is created by uds_initialize_delta_index_page(), and is used for closed (and
+ * cached) chapter index pages. The immutable form does not allocate delta list headers or
+ * temporary offsets, and thus is somewhat more memory efficient.
+ */
+
+/*
+ * This is the largest field size supported by get_field() and set_field(). Any field that is
+ * larger is not guaranteed to fit in a single byte-aligned u32.
+ */
+#define MAX_FIELD_BITS ((sizeof(u32) - 1) * BITS_PER_BYTE + 1)
+
+/*
+ * This is the largest field size supported by get_big_field() and set_big_field(). Any field that
+ * is larger is not guaranteed to fit in a single byte-aligned u64.
+ */
+#define MAX_BIG_FIELD_BITS ((sizeof(u64) - 1) * BITS_PER_BYTE + 1)
+
+/*
+ * This is the number of guard bytes needed at the end of the memory byte array when using the bit
+ * utilities. These utilities call get_big_field() and set_big_field(), which can access up to 7
+ * bytes beyond the end of the desired field. The definition is written to make it clear how this
+ * value is derived.
+ */
+#define POST_FIELD_GUARD_BYTES (sizeof(u64) - 1)
+
+/* The number of guard bits that are needed in the tail guard list */
+#define GUARD_BITS (POST_FIELD_GUARD_BYTES * BITS_PER_BYTE)
+
+/*
+ * The maximum size of a single delta list in bytes. We count guard bytes in this value because a
+ * buffer of this size can be used with move_bits().
+ */
+#define DELTA_LIST_MAX_BYTE_COUNT \
+ ((U16_MAX + BITS_PER_BYTE) / BITS_PER_BYTE + POST_FIELD_GUARD_BYTES)
+
+/* The number of extra bytes and bits needed to store a collision entry */
+#define COLLISION_BYTES UDS_RECORD_NAME_SIZE
+#define COLLISION_BITS (COLLISION_BYTES * BITS_PER_BYTE)
+
+/*
+ * Immutable delta lists are packed into pages containing a header that encodes the delta list
+ * information into 19 bits per list (64KB bit offset).
+ */
+#define IMMUTABLE_HEADER_SIZE 19
+
+/*
+ * Constants and structures for the saved delta index. "DI" is for delta_index, and -##### is a
+ * number to increment when the format of the data changes.
+ */
+#define MAGIC_SIZE 8
+
+static const char DELTA_INDEX_MAGIC[] = "DI-00002";
+
+struct delta_index_header {
+ char magic[MAGIC_SIZE];
+ u32 zone_number;
+ u32 zone_count;
+ u32 first_list;
+ u32 list_count;
+ u64 record_count;
+ u64 collision_count;
+};
+
+/*
+ * Header data used for immutable delta index pages. This data is followed by the delta list offset
+ * table.
+ */
+struct delta_page_header {
+ /* Externally-defined nonce */
+ u64 nonce;
+ /* The virtual chapter number */
+ u64 virtual_chapter_number;
+ /* Index of the first delta list on the page */
+ u16 first_list;
+ /* Number of delta lists on the page */
+ u16 list_count;
+} __packed;
+
+static inline u64 get_delta_list_byte_start(const struct delta_list *delta_list)
+{
+ return delta_list->start / BITS_PER_BYTE;
+}
+
+static inline u16 get_delta_list_byte_size(const struct delta_list *delta_list)
+{
+ unsigned int bit_offset = delta_list->start % BITS_PER_BYTE;
+
+ return BITS_TO_BYTES(bit_offset + delta_list->size);
+}
+
+static void rebalance_delta_zone(const struct delta_zone *delta_zone, u32 first,
+ u32 last)
+{
+ struct delta_list *delta_list;
+ u64 new_start;
+
+ if (first == last) {
+ /* Only one list is moving, and we know there is space. */
+ delta_list = &delta_zone->delta_lists[first];
+ new_start = delta_zone->new_offsets[first];
+ if (delta_list->start != new_start) {
+ u64 source;
+ u64 destination;
+
+ source = get_delta_list_byte_start(delta_list);
+ delta_list->start = new_start;
+ destination = get_delta_list_byte_start(delta_list);
+ memmove(delta_zone->memory + destination,
+ delta_zone->memory + source,
+ get_delta_list_byte_size(delta_list));
+ }
+ } else {
+ /*
+ * There is more than one list. Divide the problem in half, and use recursive calls
+ * to process each half. Note that after this computation, first <= middle, and
+ * middle < last.
+ */
+ u32 middle = (first + last) / 2;
+
+ delta_list = &delta_zone->delta_lists[middle];
+ new_start = delta_zone->new_offsets[middle];
+
+ /*
+ * The direction that our middle list is moving determines which half of the
+ * problem must be processed first.
+ */
+ if (new_start > delta_list->start) {
+ rebalance_delta_zone(delta_zone, middle + 1, last);
+ rebalance_delta_zone(delta_zone, first, middle);
+ } else {
+ rebalance_delta_zone(delta_zone, first, middle);
+ rebalance_delta_zone(delta_zone, middle + 1, last);
+ }
+ }
+}
+
+static inline size_t get_zone_memory_size(unsigned int zone_count, size_t memory_size)
+{
+ /* Round up so that each zone is a multiple of 64K in size. */
+ size_t ALLOC_BOUNDARY = 64 * 1024;
+
+ return (memory_size / zone_count + ALLOC_BOUNDARY - 1) & -ALLOC_BOUNDARY;
+}
+
+void uds_reset_delta_index(const struct delta_index *delta_index)
+{
+ unsigned int z;
+
+ /*
+ * Initialize all delta lists to be empty. We keep 2 extra delta list descriptors, one
+ * before the first real entry and one after so that we don't need to bounds check the
+ * array access when calculating preceding and following gap sizes.
+ */
+ for (z = 0; z < delta_index->zone_count; z++) {
+ u64 list_bits;
+ u64 spacing;
+ u64 offset;
+ unsigned int i;
+ struct delta_zone *zone = &delta_index->delta_zones[z];
+ struct delta_list *delta_lists = zone->delta_lists;
+
+ /* Zeroing the delta list headers initializes the head guard list correctly. */
+ memset(delta_lists, 0,
+ (zone->list_count + 2) * sizeof(struct delta_list));
+
+ /* Set all the bits in the end guard list. */
+ list_bits = (u64) zone->size * BITS_PER_BYTE - GUARD_BITS;
+ delta_lists[zone->list_count + 1].start = list_bits;
+ delta_lists[zone->list_count + 1].size = GUARD_BITS;
+ memset(zone->memory + (list_bits / BITS_PER_BYTE), ~0,
+ POST_FIELD_GUARD_BYTES);
+
+ /* Evenly space out the real delta lists by setting regular offsets. */
+ spacing = list_bits / zone->list_count;
+ offset = spacing / 2;
+ for (i = 1; i <= zone->list_count; i++) {
+ delta_lists[i].start = offset;
+ offset += spacing;
+ }
+
+ /* Update the statistics. */
+ zone->discard_count += zone->record_count;
+ zone->record_count = 0;
+ zone->collision_count = 0;
+ }
+}
+
+/* Compute the Huffman coding parameters for the given mean delta. The Huffman code is specified by
+ * three parameters:
+ *
+ * MINBITS The number of bits in the smallest code
+ * BASE The number of values coded using a code of length MINBITS
+ * INCR The number of values coded by using one additional bit
+ *
+ * These parameters are related by this equation:
+ *
+ * BASE + INCR == 1 << MINBITS
+ *
+ * The math for the Huffman code of an exponential distribution says that
+ *
+ * INCR = log(2) * MEAN_DELTA
+ *
+ * Then use the smallest MINBITS value so that
+ *
+ * (1 << MINBITS) > INCR
+ *
+ * And then
+ *
+ * BASE = (1 << MINBITS) - INCR
+ *
+ * Now the index can generate a code such that
+ * - The first BASE values code using MINBITS bits.
+ * - The next INCR values code using MINBITS+1 bits.
+ * - The next INCR values code using MINBITS+2 bits.
+ * - (and so on).
+ */
+static void compute_coding_constants(u32 mean_delta, u16 *min_bits, u32 *min_keys, u32 *incr_keys)
+{
+ /*
+ * We want to compute the rounded value of log(2) * mean_delta. Since we cannot always use
+ * floating point, use a really good integer approximation.
+ */
+ *incr_keys = (836158UL * mean_delta + 603160UL) / 1206321UL;
+ *min_bits = bits_per(*incr_keys + 1);
+ *min_keys = (1 << *min_bits) - *incr_keys;
+}
+
+void uds_uninitialize_delta_index(struct delta_index *delta_index)
+{
+ unsigned int z;
+
+ if (delta_index->delta_zones == NULL)
+ return;
+
+ for (z = 0; z < delta_index->zone_count; z++) {
+ vdo_free(vdo_forget(delta_index->delta_zones[z].new_offsets));
+ vdo_free(vdo_forget(delta_index->delta_zones[z].delta_lists));
+ vdo_free(vdo_forget(delta_index->delta_zones[z].memory));
+ }
+
+ vdo_free(delta_index->delta_zones);
+ memset(delta_index, 0, sizeof(struct delta_index));
+}
+
+static int initialize_delta_zone(struct delta_zone *delta_zone, size_t size,
+ u32 first_list, u32 list_count, u32 mean_delta,
+ u32 payload_bits, u8 tag)
+{
+ int result;
+
+ result = vdo_allocate(size, u8, "delta list", &delta_zone->memory);
+ if (result != VDO_SUCCESS)
+ return result;
+
+ result = vdo_allocate(list_count + 2, u64, "delta list temp",
+ &delta_zone->new_offsets);
+ if (result != VDO_SUCCESS)
+ return result;
+
+ /* Allocate the delta lists. */
+ result = vdo_allocate(list_count + 2, struct delta_list, "delta lists",
+ &delta_zone->delta_lists);
+ if (result != VDO_SUCCESS)
+ return result;
+
+ compute_coding_constants(mean_delta, &delta_zone->min_bits,
+ &delta_zone->min_keys, &delta_zone->incr_keys);
+ delta_zone->value_bits = payload_bits;
+ delta_zone->buffered_writer = NULL;
+ delta_zone->size = size;
+ delta_zone->rebalance_time = 0;
+ delta_zone->rebalance_count = 0;
+ delta_zone->record_count = 0;
+ delta_zone->collision_count = 0;
+ delta_zone->discard_count = 0;
+ delta_zone->overflow_count = 0;
+ delta_zone->first_list = first_list;
+ delta_zone->list_count = list_count;
+ delta_zone->tag = tag;
+
+ return UDS_SUCCESS;
+}
+
+int uds_initialize_delta_index(struct delta_index *delta_index, unsigned int zone_count,
+ u32 list_count, u32 mean_delta, u32 payload_bits,
+ size_t memory_size, u8 tag)
+{
+ int result;
+ unsigned int z;
+ size_t zone_memory;
+
+ result = vdo_allocate(zone_count, struct delta_zone, "Delta Index Zones",
+ &delta_index->delta_zones);
+ if (result != VDO_SUCCESS)
+ return result;
+
+ delta_index->zone_count = zone_count;
+ delta_index->list_count = list_count;
+ delta_index->lists_per_zone = DIV_ROUND_UP(list_count, zone_count);
+ delta_index->memory_size = 0;
+ delta_index->mutable = true;
+ delta_index->tag = tag;
+
+ for (z = 0; z < zone_count; z++) {
+ u32 lists_in_zone = delta_index->lists_per_zone;
+ u32 first_list_in_zone = z * lists_in_zone;
+
+ if (z == zone_count - 1) {
+ /*
+ * The last zone gets fewer lists if zone_count doesn't evenly divide
+ * list_count. We'll have an underflow if the assertion below doesn't hold.
+ */
+ if (delta_index->list_count <= first_list_in_zone) {
+ uds_uninitialize_delta_index(delta_index);
+ return vdo_log_error_strerror(UDS_INVALID_ARGUMENT,
+ "%u delta lists not enough for %u zones",
+ list_count, zone_count);
+ }
+ lists_in_zone = delta_index->list_count - first_list_in_zone;
+ }
+
+ zone_memory = get_zone_memory_size(zone_count, memory_size);
+ result = initialize_delta_zone(&delta_index->delta_zones[z], zone_memory,
+ first_list_in_zone, lists_in_zone,
+ mean_delta, payload_bits, tag);
+ if (result != UDS_SUCCESS) {
+ uds_uninitialize_delta_index(delta_index);
+ return result;
+ }
+
+ delta_index->memory_size +=
+ (sizeof(struct delta_zone) + zone_memory +
+ (lists_in_zone + 2) * (sizeof(struct delta_list) + sizeof(u64)));
+ }
+
+ uds_reset_delta_index(delta_index);
+ return UDS_SUCCESS;
+}
+
+/* Read a bit field from an arbitrary bit boundary. */
+static inline u32 get_field(const u8 *memory, u64 offset, u8 size)
+{
+ const void *addr = memory + offset / BITS_PER_BYTE;
+
+ return (get_unaligned_le32(addr) >> (offset % BITS_PER_BYTE)) & ((1 << size) - 1);
+}
+
+/* Write a bit field to an arbitrary bit boundary. */
+static inline void set_field(u32 value, u8 *memory, u64 offset, u8 size)
+{
+ void *addr = memory + offset / BITS_PER_BYTE;
+ int shift = offset % BITS_PER_BYTE;
+ u32 data = get_unaligned_le32(addr);
+
+ data &= ~(((1 << size) - 1) << shift);
+ data |= value << shift;
+ put_unaligned_le32(data, addr);
+}
+
+/* Get the bit offset to the immutable delta list header. */
+static inline u32 get_immutable_header_offset(u32 list_number)
+{
+ return sizeof(struct delta_page_header) * BITS_PER_BYTE +
+ list_number * IMMUTABLE_HEADER_SIZE;
+}
+
+/* Get the bit offset to the start of the immutable delta list bit stream. */
+static inline u32 get_immutable_start(const u8 *memory, u32 list_number)
+{
+ return get_field(memory, get_immutable_header_offset(list_number),
+ IMMUTABLE_HEADER_SIZE);
+}
+
+/* Set the bit offset to the start of the immutable delta list bit stream. */
+static inline void set_immutable_start(u8 *memory, u32 list_number, u32 start)
+{
+ set_field(start, memory, get_immutable_header_offset(list_number),
+ IMMUTABLE_HEADER_SIZE);
+}
+
+static bool verify_delta_index_page(u64 nonce, u16 list_count, u64 expected_nonce,
+ u8 *memory, size_t memory_size)
+{
+ unsigned int i;
+
+ /*
+ * Verify the nonce. A mismatch can happen here during rebuild if we haven't written the
+ * entire volume at least once.
+ */
+ if (nonce != expected_nonce)
+ return false;
+
+ /* Verify that the number of delta lists can fit in the page. */
+ if (list_count > ((memory_size - sizeof(struct delta_page_header)) *
+ BITS_PER_BYTE / IMMUTABLE_HEADER_SIZE))
+ return false;
+
+ /*
+ * Verify that the first delta list is immediately after the last delta
+ * list header.
+ */
+ if (get_immutable_start(memory, 0) != get_immutable_header_offset(list_count + 1))
+ return false;
+
+ /* Verify that the lists are in the correct order. */
+ for (i = 0; i < list_count; i++) {
+ if (get_immutable_start(memory, i) > get_immutable_start(memory, i + 1))
+ return false;
+ }
+
+ /*
+ * Verify that the last list ends on the page, and that there is room
+ * for the post-field guard bits.
+ */
+ if (get_immutable_start(memory, list_count) >
+ (memory_size - POST_FIELD_GUARD_BYTES) * BITS_PER_BYTE)
+ return false;
+
+ /* Verify that the guard bytes are correctly set to all ones. */
+ for (i = 0; i < POST_FIELD_GUARD_BYTES; i++) {
+ if (memory[memory_size - POST_FIELD_GUARD_BYTES + i] != (u8) ~0)
+ return false;
+ }
+
+ /* All verifications passed. */
+ return true;
+}
+
+/* Initialize a delta index page to refer to a supplied page. */
+int uds_initialize_delta_index_page(struct delta_index_page *delta_index_page,
+ u64 expected_nonce, u32 mean_delta, u32 payload_bits,
+ u8 *memory, size_t memory_size)
+{
+ u64 nonce;
+ u64 vcn;
+ u64 first_list;
+ u64 list_count;
+ struct delta_page_header *header = (struct delta_page_header *) memory;
+ struct delta_zone *delta_zone = &delta_index_page->delta_zone;
+ const u8 *nonce_addr = (const u8 *) &header->nonce;
+ const u8 *vcn_addr = (const u8 *) &header->virtual_chapter_number;
+ const u8 *first_list_addr = (const u8 *) &header->first_list;
+ const u8 *list_count_addr = (const u8 *) &header->list_count;
+
+ /* First assume that the header is little endian. */
+ nonce = get_unaligned_le64(nonce_addr);
+ vcn = get_unaligned_le64(vcn_addr);
+ first_list = get_unaligned_le16(first_list_addr);
+ list_count = get_unaligned_le16(list_count_addr);
+ if (!verify_delta_index_page(nonce, list_count, expected_nonce, memory,
+ memory_size)) {
+ /* If that fails, try big endian. */
+ nonce = get_unaligned_be64(nonce_addr);
+ vcn = get_unaligned_be64(vcn_addr);
+ first_list = get_unaligned_be16(first_list_addr);
+ list_count = get_unaligned_be16(list_count_addr);
+ if (!verify_delta_index_page(nonce, list_count, expected_nonce, memory,
+ memory_size)) {
+ /*
+ * Both attempts failed. Do not log this as an error, because it can happen
+ * during a rebuild if we haven't written the entire volume at least once.
+ */
+ return UDS_CORRUPT_DATA;
+ }
+ }
+
+ delta_index_page->delta_index.delta_zones = delta_zone;
+ delta_index_page->delta_index.zone_count = 1;
+ delta_index_page->delta_index.list_count = list_count;
+ delta_index_page->delta_index.lists_per_zone = list_count;
+ delta_index_page->delta_index.mutable = false;
+ delta_index_page->delta_index.tag = 'p';
+ delta_index_page->virtual_chapter_number = vcn;
+ delta_index_page->lowest_list_number = first_list;
+ delta_index_page->highest_list_number = first_list + list_count - 1;
+
+ compute_coding_constants(mean_delta, &delta_zone->min_bits,
+ &delta_zone->min_keys, &delta_zone->incr_keys);
+ delta_zone->value_bits = payload_bits;
+ delta_zone->memory = memory;
+ delta_zone->delta_lists = NULL;
+ delta_zone->new_offsets = NULL;
+ delta_zone->buffered_writer = NULL;
+ delta_zone->size = memory_size;
+ delta_zone->rebalance_time = 0;
+ delta_zone->rebalance_count = 0;
+ delta_zone->record_count = 0;
+ delta_zone->collision_count = 0;
+ delta_zone->discard_count = 0;
+ delta_zone->overflow_count = 0;
+ delta_zone->first_list = 0;
+ delta_zone->list_count = list_count;
+ delta_zone->tag = 'p';
+
+ return UDS_SUCCESS;
+}
+
+/* Read a large bit field from an arbitrary bit boundary. */
+static inline u64 get_big_field(const u8 *memory, u64 offset, u8 size)
+{
+ const void *addr = memory + offset / BITS_PER_BYTE;
+
+ return (get_unaligned_le64(addr) >> (offset % BITS_PER_BYTE)) & ((1UL << size) - 1);
+}
+
+/* Write a large bit field to an arbitrary bit boundary. */
+static inline void set_big_field(u64 value, u8 *memory, u64 offset, u8 size)
+{
+ void *addr = memory + offset / BITS_PER_BYTE;
+ u8 shift = offset % BITS_PER_BYTE;
+ u64 data = get_unaligned_le64(addr);
+
+ data &= ~(((1UL << size) - 1) << shift);
+ data |= value << shift;
+ put_unaligned_le64(data, addr);
+}
+
+/* Set a sequence of bits to all zeros. */
+static inline void set_zero(u8 *memory, u64 offset, u32 size)
+{
+ if (size > 0) {
+ u8 *addr = memory + offset / BITS_PER_BYTE;
+ u8 shift = offset % BITS_PER_BYTE;
+ u32 count = size + shift > BITS_PER_BYTE ? (u32) BITS_PER_BYTE - shift : size;
+
+ *addr++ &= ~(((1 << count) - 1) << shift);
+ for (size -= count; size > BITS_PER_BYTE; size -= BITS_PER_BYTE)
+ *addr++ = 0;
+
+ if (size > 0)
+ *addr &= 0xFF << size;
+ }
+}
+
+/*
+ * Move several bits from a higher to a lower address, moving the lower addressed bits first. The
+ * size and memory offsets are measured in bits.
+ */
+static void move_bits_down(const u8 *from, u64 from_offset, u8 *to, u64 to_offset, u32 size)
+{
+ const u8 *source;
+ u8 *destination;
+ u8 offset;
+ u8 count;
+ u64 field;
+
+ /* Start by moving one field that ends on a to int boundary. */
+ count = (MAX_BIG_FIELD_BITS - ((to_offset + MAX_BIG_FIELD_BITS) % BITS_PER_TYPE(u32)));
+ field = get_big_field(from, from_offset, count);
+ set_big_field(field, to, to_offset, count);
+ from_offset += count;
+ to_offset += count;
+ size -= count;
+
+ /* Now do the main loop to copy 32 bit chunks that are int-aligned at the destination. */
+ offset = from_offset % BITS_PER_TYPE(u32);
+ source = from + (from_offset - offset) / BITS_PER_BYTE;
+ destination = to + to_offset / BITS_PER_BYTE;
+ while (size > MAX_BIG_FIELD_BITS) {
+ put_unaligned_le32(get_unaligned_le64(source) >> offset, destination);
+ source += sizeof(u32);
+ destination += sizeof(u32);
+ from_offset += BITS_PER_TYPE(u32);
+ to_offset += BITS_PER_TYPE(u32);
+ size -= BITS_PER_TYPE(u32);
+ }
+
+ /* Finish up by moving any remaining bits. */
+ if (size > 0) {
+ field = get_big_field(from, from_offset, size);
+ set_big_field(field, to, to_offset, size);
+ }
+}
+
+/*
+ * Move several bits from a lower to a higher address, moving the higher addressed bits first. The
+ * size and memory offsets are measured in bits.
+ */
+static void move_bits_up(const u8 *from, u64 from_offset, u8 *to, u64 to_offset, u32 size)
+{
+ const u8 *source;
+ u8 *destination;
+ u8 offset;
+ u8 count;
+ u64 field;
+
+ /* Start by moving one field that begins on a destination int boundary. */
+ count = (to_offset + size) % BITS_PER_TYPE(u32);
+ if (count > 0) {
+ size -= count;
+ field = get_big_field(from, from_offset + size, count);
+ set_big_field(field, to, to_offset + size, count);
+ }
+
+ /* Now do the main loop to copy 32 bit chunks that are int-aligned at the destination. */
+ offset = (from_offset + size) % BITS_PER_TYPE(u32);
+ source = from + (from_offset + size - offset) / BITS_PER_BYTE;
+ destination = to + (to_offset + size) / BITS_PER_BYTE;
+ while (size > MAX_BIG_FIELD_BITS) {
+ source -= sizeof(u32);
+ destination -= sizeof(u32);
+ size -= BITS_PER_TYPE(u32);
+ put_unaligned_le32(get_unaligned_le64(source) >> offset, destination);
+ }
+
+ /* Finish up by moving any remaining bits. */
+ if (size > 0) {
+ field = get_big_field(from, from_offset, size);
+ set_big_field(field, to, to_offset, size);
+ }
+}
+
+/*
+ * Move bits from one field to another. When the fields overlap, behave as if we first move all the
+ * bits from the source to a temporary value, and then move all the bits from the temporary value
+ * to the destination. The size and memory offsets are measured in bits.
+ */
+static void move_bits(const u8 *from, u64 from_offset, u8 *to, u64 to_offset, u32 size)
+{
+ u64 field;
+
+ /* A small move doesn't require special handling. */
+ if (size <= MAX_BIG_FIELD_BITS) {
+ if (size > 0) {
+ field = get_big_field(from, from_offset, size);
+ set_big_field(field, to, to_offset, size);
+ }
+
+ return;
+ }
+
+ if (from_offset > to_offset)
+ move_bits_down(from, from_offset, to, to_offset, size);
+ else
+ move_bits_up(from, from_offset, to, to_offset, size);
+}
+
+/*
+ * Pack delta lists from a mutable delta index into an immutable delta index page. A range of delta
+ * lists (starting with a specified list index) is copied from the mutable delta index into a
+ * memory page used in the immutable index. The number of lists copied onto the page is returned in
+ * list_count.
+ */
+int uds_pack_delta_index_page(const struct delta_index *delta_index, u64 header_nonce,
+ u8 *memory, size_t memory_size, u64 virtual_chapter_number,
+ u32 first_list, u32 *list_count)
+{
+ const struct delta_zone *delta_zone;
+ struct delta_list *delta_lists;
+ u32 max_lists;
+ u32 n_lists = 0;
+ u32 offset;
+ u32 i;
+ int free_bits;
+ int bits;
+ struct delta_page_header *header;
+
+ delta_zone = &delta_index->delta_zones[0];
+ delta_lists = &delta_zone->delta_lists[first_list + 1];
+ max_lists = delta_index->list_count - first_list;
+
+ /*
+ * Compute how many lists will fit on the page. Subtract the size of the fixed header, one
+ * delta list offset, and the guard bytes from the page size to determine how much space is
+ * available for delta lists.
+ */
+ free_bits = memory_size * BITS_PER_BYTE;
+ free_bits -= get_immutable_header_offset(1);
+ free_bits -= GUARD_BITS;
+ if (free_bits < IMMUTABLE_HEADER_SIZE) {
+ /* This page is too small to store any delta lists. */
+ return vdo_log_error_strerror(UDS_OVERFLOW,
+ "Chapter Index Page of %zu bytes is too small",
+ memory_size);
+ }
+
+ while (n_lists < max_lists) {
+ /* Each list requires a delta list offset and the list data. */
+ bits = IMMUTABLE_HEADER_SIZE + delta_lists[n_lists].size;
+ if (bits > free_bits)
+ break;
+
+ n_lists++;
+ free_bits -= bits;
+ }
+
+ *list_count = n_lists;
+
+ header = (struct delta_page_header *) memory;
+ put_unaligned_le64(header_nonce, (u8 *) &header->nonce);
+ put_unaligned_le64(virtual_chapter_number,
+ (u8 *) &header->virtual_chapter_number);
+ put_unaligned_le16(first_list, (u8 *) &header->first_list);
+ put_unaligned_le16(n_lists, (u8 *) &header->list_count);
+
+ /* Construct the delta list offset table. */
+ offset = get_immutable_header_offset(n_lists + 1);
+ set_immutable_start(memory, 0, offset);
+ for (i = 0; i < n_lists; i++) {
+ offset += delta_lists[i].size;
+ set_immutable_start(memory, i + 1, offset);
+ }
+
+ /* Copy the delta list data onto the memory page. */
+ for (i = 0; i < n_lists; i++) {
+ move_bits(delta_zone->memory, delta_lists[i].start, memory,
+ get_immutable_start(memory, i), delta_lists[i].size);
+ }
+
+ /* Set all the bits in the guard bytes. */
+ memset(memory + memory_size - POST_FIELD_GUARD_BYTES, ~0,
+ POST_FIELD_GUARD_BYTES);
+ return UDS_SUCCESS;
+}
+
+/* Compute the new offsets of the delta lists. */
+static void compute_new_list_offsets(struct delta_zone *delta_zone, u32 growing_index,
+ size_t growing_size, size_t used_space)
+{
+ size_t spacing;
+ u32 i;
+ struct delta_list *delta_lists = delta_zone->delta_lists;
+ u32 tail_guard_index = delta_zone->list_count + 1;
+
+ spacing = (delta_zone->size - used_space) / delta_zone->list_count;
+ delta_zone->new_offsets[0] = 0;
+ for (i = 0; i <= delta_zone->list_count; i++) {
+ delta_zone->new_offsets[i + 1] =
+ (delta_zone->new_offsets[i] +
+ get_delta_list_byte_size(&delta_lists[i]) + spacing);
+ delta_zone->new_offsets[i] *= BITS_PER_BYTE;
+ delta_zone->new_offsets[i] += delta_lists[i].start % BITS_PER_BYTE;
+ if (i == 0)
+ delta_zone->new_offsets[i + 1] -= spacing / 2;
+ if (i + 1 == growing_index)
+ delta_zone->new_offsets[i + 1] += growing_size;
+ }
+
+ delta_zone->new_offsets[tail_guard_index] =
+ (delta_zone->size * BITS_PER_BYTE - delta_lists[tail_guard_index].size);
+}
+
+static void rebalance_lists(struct delta_zone *delta_zone)
+{
+ struct delta_list *delta_lists;
+ u32 i;
+ size_t used_space = 0;
+
+ /* Extend and balance memory to receive the delta lists */
+ delta_lists = delta_zone->delta_lists;
+ for (i = 0; i <= delta_zone->list_count + 1; i++)
+ used_space += get_delta_list_byte_size(&delta_lists[i]);
+
+ compute_new_list_offsets(delta_zone, 0, 0, used_space);
+ for (i = 1; i <= delta_zone->list_count + 1; i++)
+ delta_lists[i].start = delta_zone->new_offsets[i];
+}
+
+/* Start restoring a delta index from multiple input streams. */
+int uds_start_restoring_delta_index(struct delta_index *delta_index,
+ struct buffered_reader **buffered_readers,
+ unsigned int reader_count)
+{
+ int result;
+ unsigned int zone_count = reader_count;
+ u64 record_count = 0;
+ u64 collision_count = 0;
+ u32 first_list[MAX_ZONES];
+ u32 list_count[MAX_ZONES];
+ unsigned int z;
+ u32 list_next = 0;
+ const struct delta_zone *delta_zone;
+
+ /* Read and validate each header. */
+ for (z = 0; z < zone_count; z++) {
+ struct delta_index_header header;
+ u8 buffer[sizeof(struct delta_index_header)];
+ size_t offset = 0;
+
+ result = uds_read_from_buffered_reader(buffered_readers[z], buffer,
+ sizeof(buffer));
+ if (result != UDS_SUCCESS) {
+ return vdo_log_warning_strerror(result,
+ "failed to read delta index header");
+ }
+
+ memcpy(&header.magic, buffer, MAGIC_SIZE);
+ offset += MAGIC_SIZE;
+ decode_u32_le(buffer, &offset, &header.zone_number);
+ decode_u32_le(buffer, &offset, &header.zone_count);
+ decode_u32_le(buffer, &offset, &header.first_list);
+ decode_u32_le(buffer, &offset, &header.list_count);
+ decode_u64_le(buffer, &offset, &header.record_count);
+ decode_u64_le(buffer, &offset, &header.collision_count);
+
+ result = VDO_ASSERT(offset == sizeof(struct delta_index_header),
+ "%zu bytes decoded of %zu expected", offset,
+ sizeof(struct delta_index_header));
+ if (result != VDO_SUCCESS) {
+ return vdo_log_warning_strerror(result,
+ "failed to read delta index header");
+ }
+
+ if (memcmp(header.magic, DELTA_INDEX_MAGIC, MAGIC_SIZE) != 0) {
+ return vdo_log_warning_strerror(UDS_CORRUPT_DATA,
+ "delta index file has bad magic number");
+ }
+
+ if (zone_count != header.zone_count) {
+ return vdo_log_warning_strerror(UDS_CORRUPT_DATA,
+ "delta index files contain mismatched zone counts (%u,%u)",
+ zone_count, header.zone_count);
+ }
+
+ if (header.zone_number != z) {
+ return vdo_log_warning_strerror(UDS_CORRUPT_DATA,
+ "delta index zone %u found in slot %u",
+ header.zone_number, z);
+ }
+
+ first_list[z] = header.first_list;
+ list_count[z] = header.list_count;
+ record_count += header.record_count;
+ collision_count += header.collision_count;
+
+ if (first_list[z] != list_next) {
+ return vdo_log_warning_strerror(UDS_CORRUPT_DATA,
+ "delta index file for zone %u starts with list %u instead of list %u",
+ z, first_list[z], list_next);
+ }
+
+ list_next += list_count[z];
+ }
+
+ if (list_next != delta_index->list_count) {
+ return vdo_log_warning_strerror(UDS_CORRUPT_DATA,
+ "delta index files contain %u delta lists instead of %u delta lists",
+ list_next, delta_index->list_count);
+ }
+
+ if (collision_count > record_count) {
+ return vdo_log_warning_strerror(UDS_CORRUPT_DATA,
+ "delta index files contain %llu collisions and %llu records",
+ (unsigned long long) collision_count,
+ (unsigned long long) record_count);
+ }
+
+ uds_reset_delta_index(delta_index);
+ delta_index->delta_zones[0].record_count = record_count;
+ delta_index->delta_zones[0].collision_count = collision_count;
+
+ /* Read the delta lists and distribute them to the proper zones. */
+ for (z = 0; z < zone_count; z++) {
+ u32 i;
+
+ delta_index->load_lists[z] = 0;
+ for (i = 0; i < list_count[z]; i++) {
+ u16 delta_list_size;
+ u32 list_number;
+ unsigned int zone_number;
+ u8 size_data[sizeof(u16)];
+
+ result = uds_read_from_buffered_reader(buffered_readers[z],
+ size_data,
+ sizeof(size_data));
+ if (result != UDS_SUCCESS) {
+ return vdo_log_warning_strerror(result,
+ "failed to read delta index size");
+ }
+
+ delta_list_size = get_unaligned_le16(size_data);
+ if (delta_list_size > 0)
+ delta_index->load_lists[z] += 1;
+
+ list_number = first_list[z] + i;
+ zone_number = list_number / delta_index->lists_per_zone;
+ delta_zone = &delta_index->delta_zones[zone_number];
+ list_number -= delta_zone->first_list;
+ delta_zone->delta_lists[list_number + 1].size = delta_list_size;
+ }
+ }
+
+ /* Prepare each zone to start receiving the delta list data. */
+ for (z = 0; z < delta_index->zone_count; z++)
+ rebalance_lists(&delta_index->delta_zones[z]);
+
+ return UDS_SUCCESS;
+}
+
+static int restore_delta_list_to_zone(struct delta_zone *delta_zone,
+ const struct delta_list_save_info *save_info,
+ const u8 *data)
+{
+ struct delta_list *delta_list;
+ u16 bit_count;
+ u16 byte_count;
+ u32 list_number = save_info->index - delta_zone->first_list;
+
+ if (list_number >= delta_zone->list_count) {
+ return vdo_log_warning_strerror(UDS_CORRUPT_DATA,
+ "invalid delta list number %u not in range [%u,%u)",
+ save_info->index, delta_zone->first_list,
+ delta_zone->first_list + delta_zone->list_count);
+ }
+
+ delta_list = &delta_zone->delta_lists[list_number + 1];
+ if (delta_list->size == 0) {
+ return vdo_log_warning_strerror(UDS_CORRUPT_DATA,
+ "unexpected delta list number %u",
+ save_info->index);
+ }
+
+ bit_count = delta_list->size + save_info->bit_offset;
+ byte_count = BITS_TO_BYTES(bit_count);
+ if (save_info->byte_count != byte_count) {
+ return vdo_log_warning_strerror(UDS_CORRUPT_DATA,
+ "unexpected delta list size %u != %u",
+ save_info->byte_count, byte_count);
+ }
+
+ move_bits(data, save_info->bit_offset, delta_zone->memory, delta_list->start,
+ delta_list->size);
+ return UDS_SUCCESS;
+}
+
+static int restore_delta_list_data(struct delta_index *delta_index, unsigned int load_zone,
+ struct buffered_reader *buffered_reader, u8 *data)
+{
+ int result;
+ struct delta_list_save_info save_info;
+ u8 buffer[sizeof(struct delta_list_save_info)];
+ unsigned int new_zone;
+
+ result = uds_read_from_buffered_reader(buffered_reader, buffer, sizeof(buffer));
+ if (result != UDS_SUCCESS) {
+ return vdo_log_warning_strerror(result,
+ "failed to read delta list data");
+ }
+
+ save_info = (struct delta_list_save_info) {
+ .tag = buffer[0],
+ .bit_offset = buffer[1],
+ .byte_count = get_unaligned_le16(&buffer[2]),
+ .index = get_unaligned_le32(&buffer[4]),
+ };
+
+ if ((save_info.bit_offset >= BITS_PER_BYTE) ||
+ (save_info.byte_count > DELTA_LIST_MAX_BYTE_COUNT)) {
+ return vdo_log_warning_strerror(UDS_CORRUPT_DATA,
+ "corrupt delta list data");
+ }
+
+ /* Make sure the data is intended for this delta index. */
+ if (save_info.tag != delta_index->tag)
+ return UDS_CORRUPT_DATA;
+
+ if (save_info.index >= delta_index->list_count) {
+ return vdo_log_warning_strerror(UDS_CORRUPT_DATA,
+ "invalid delta list number %u of %u",
+ save_info.index,
+ delta_index->list_count);
+ }
+
+ result = uds_read_from_buffered_reader(buffered_reader, data,
+ save_info.byte_count);
+ if (result != UDS_SUCCESS) {
+ return vdo_log_warning_strerror(result,
+ "failed to read delta list data");
+ }
+
+ delta_index->load_lists[load_zone] -= 1;
+ new_zone = save_info.index / delta_index->lists_per_zone;
+ return restore_delta_list_to_zone(&delta_index->delta_zones[new_zone],
+ &save_info, data);
+}
+
+/* Restore delta lists from saved data. */
+int uds_finish_restoring_delta_index(struct delta_index *delta_index,
+ struct buffered_reader **buffered_readers,
+ unsigned int reader_count)
+{
+ int result;
+ int saved_result = UDS_SUCCESS;
+ unsigned int z;
+ u8 *data;
+
+ result = vdo_allocate(DELTA_LIST_MAX_BYTE_COUNT, u8, __func__, &data);
+ if (result != VDO_SUCCESS)
+ return result;
+
+ for (z = 0; z < reader_count; z++) {
+ while (delta_index->load_lists[z] > 0) {
+ result = restore_delta_list_data(delta_index, z,
+ buffered_readers[z], data);
+ if (result != UDS_SUCCESS) {
+ saved_result = result;
+ break;
+ }
+ }
+ }
+
+ vdo_free(data);
+ return saved_result;
+}
+
+int uds_check_guard_delta_lists(struct buffered_reader **buffered_readers,
+ unsigned int reader_count)
+{
+ int result;
+ unsigned int z;
+ u8 buffer[sizeof(struct delta_list_save_info)];
+
+ for (z = 0; z < reader_count; z++) {
+ result = uds_read_from_buffered_reader(buffered_readers[z], buffer,
+ sizeof(buffer));
+ if (result != UDS_SUCCESS)
+ return result;
+
+ if (buffer[0] != 'z')
+ return UDS_CORRUPT_DATA;
+ }
+
+ return UDS_SUCCESS;
+}
+
+static int flush_delta_list(struct delta_zone *zone, u32 flush_index)
+{
+ struct delta_list *delta_list;
+ u8 buffer[sizeof(struct delta_list_save_info)];
+ int result;
+
+ delta_list = &zone->delta_lists[flush_index + 1];
+
+ buffer[0] = zone->tag;
+ buffer[1] = delta_list->start % BITS_PER_BYTE;
+ put_unaligned_le16(get_delta_list_byte_size(delta_list), &buffer[2]);
+ put_unaligned_le32(zone->first_list + flush_index, &buffer[4]);
+
+ result = uds_write_to_buffered_writer(zone->buffered_writer, buffer,
+ sizeof(buffer));
+ if (result != UDS_SUCCESS) {
+ vdo_log_warning_strerror(result, "failed to write delta list memory");
+ return result;
+ }
+
+ result = uds_write_to_buffered_writer(zone->buffered_writer,
+ zone->memory + get_delta_list_byte_start(delta_list),
+ get_delta_list_byte_size(delta_list));
+ if (result != UDS_SUCCESS)
+ vdo_log_warning_strerror(result, "failed to write delta list memory");
+
+ return result;
+}
+
+/* Start saving a delta index zone to a buffered output stream. */
+int uds_start_saving_delta_index(const struct delta_index *delta_index,
+ unsigned int zone_number,
+ struct buffered_writer *buffered_writer)
+{
+ int result;
+ u32 i;
+ struct delta_zone *delta_zone;
+ u8 buffer[sizeof(struct delta_index_header)];
+ size_t offset = 0;
+
+ delta_zone = &delta_index->delta_zones[zone_number];
+ memcpy(buffer, DELTA_INDEX_MAGIC, MAGIC_SIZE);
+ offset += MAGIC_SIZE;
+ encode_u32_le(buffer, &offset, zone_number);
+ encode_u32_le(buffer, &offset, delta_index->zone_count);
+ encode_u32_le(buffer, &offset, delta_zone->first_list);
+ encode_u32_le(buffer, &offset, delta_zone->list_count);
+ encode_u64_le(buffer, &offset, delta_zone->record_count);
+ encode_u64_le(buffer, &offset, delta_zone->collision_count);
+
+ result = VDO_ASSERT(offset == sizeof(struct delta_index_header),
+ "%zu bytes encoded of %zu expected", offset,
+ sizeof(struct delta_index_header));
+ if (result != VDO_SUCCESS)
+ return result;
+
+ result = uds_write_to_buffered_writer(buffered_writer, buffer, offset);
+ if (result != UDS_SUCCESS)
+ return vdo_log_warning_strerror(result,
+ "failed to write delta index header");
+
+ for (i = 0; i < delta_zone->list_count; i++) {
+ u8 data[sizeof(u16)];
+ struct delta_list *delta_list;
+
+ delta_list = &delta_zone->delta_lists[i + 1];
+ put_unaligned_le16(delta_list->size, data);
+ result = uds_write_to_buffered_writer(buffered_writer, data,
+ sizeof(data));
+ if (result != UDS_SUCCESS)
+ return vdo_log_warning_strerror(result,
+ "failed to write delta list size");
+ }
+
+ delta_zone->buffered_writer = buffered_writer;
+ return UDS_SUCCESS;
+}
+
+int uds_finish_saving_delta_index(const struct delta_index *delta_index,
+ unsigned int zone_number)
+{
+ int result;
+ int first_error = UDS_SUCCESS;
+ u32 i;
+ struct delta_zone *delta_zone;
+ struct delta_list *delta_list;
+
+ delta_zone = &delta_index->delta_zones[zone_number];
+ for (i = 0; i < delta_zone->list_count; i++) {
+ delta_list = &delta_zone->delta_lists[i + 1];
+ if (delta_list->size > 0) {
+ result = flush_delta_list(delta_zone, i);
+ if ((result != UDS_SUCCESS) && (first_error == UDS_SUCCESS))
+ first_error = result;
+ }
+ }
+
+ delta_zone->buffered_writer = NULL;
+ return first_error;
+}
+
+int uds_write_guard_delta_list(struct buffered_writer *buffered_writer)
+{
+ int result;
+ u8 buffer[sizeof(struct delta_list_save_info)];
+
+ memset(buffer, 0, sizeof(struct delta_list_save_info));
+ buffer[0] = 'z';
+
+ result = uds_write_to_buffered_writer(buffered_writer, buffer, sizeof(buffer));
+ if (result != UDS_SUCCESS)
+ vdo_log_warning_strerror(result, "failed to write guard delta list");
+
+ return UDS_SUCCESS;
+}
+
+size_t uds_compute_delta_index_save_bytes(u32 list_count, size_t memory_size)
+{
+ /* One zone will use at least as much memory as other zone counts. */
+ return (sizeof(struct delta_index_header) +
+ list_count * (sizeof(struct delta_list_save_info) + 1) +
+ get_zone_memory_size(1, memory_size));
+}
+
+static int assert_not_at_end(const struct delta_index_entry *delta_entry)
+{
+ int result = VDO_ASSERT(!delta_entry->at_end,
+ "operation is invalid because the list entry is at the end of the delta list");
+ if (result != VDO_SUCCESS)
+ result = UDS_BAD_STATE;
+
+ return result;
+}
+
+/*
+ * Prepare to search for an entry in the specified delta list.
+ *
+ * This is always the first function to be called when dealing with delta index entries. It is
+ * always followed by calls to uds_next_delta_index_entry() to iterate through a delta list. The
+ * fields of the delta_index_entry argument will be set up for iteration, but will not contain an
+ * entry from the list.
+ */
+int uds_start_delta_index_search(const struct delta_index *delta_index, u32 list_number,
+ u32 key, struct delta_index_entry *delta_entry)
+{
+ int result;
+ unsigned int zone_number;
+ struct delta_zone *delta_zone;
+ struct delta_list *delta_list;
+
+ result = VDO_ASSERT((list_number < delta_index->list_count),
+ "Delta list number (%u) is out of range (%u)", list_number,
+ delta_index->list_count);
+ if (result != VDO_SUCCESS)
+ return UDS_CORRUPT_DATA;
+
+ zone_number = list_number / delta_index->lists_per_zone;
+ delta_zone = &delta_index->delta_zones[zone_number];
+ list_number -= delta_zone->first_list;
+ result = VDO_ASSERT((list_number < delta_zone->list_count),
+ "Delta list number (%u) is out of range (%u) for zone (%u)",
+ list_number, delta_zone->list_count, zone_number);
+ if (result != VDO_SUCCESS)
+ return UDS_CORRUPT_DATA;
+
+ if (delta_index->mutable) {
+ delta_list = &delta_zone->delta_lists[list_number + 1];
+ } else {
+ u32 end_offset;
+
+ /*
+ * Translate the immutable delta list header into a temporary
+ * full delta list header.
+ */
+ delta_list = &delta_entry->temp_delta_list;
+ delta_list->start = get_immutable_start(delta_zone->memory, list_number);
+ end_offset = get_immutable_start(delta_zone->memory, list_number + 1);
+ delta_list->size = end_offset - delta_list->start;
+ delta_list->save_key = 0;
+ delta_list->save_offset = 0;
+ }
+
+ if (key > delta_list->save_key) {
+ delta_entry->key = delta_list->save_key;
+ delta_entry->offset = delta_list->save_offset;
+ } else {
+ delta_entry->key = 0;
+ delta_entry->offset = 0;
+ if (key == 0) {
+ /*
+ * This usually means we're about to walk the entire delta list, so get all
+ * of it into the CPU cache.
+ */
+ uds_prefetch_range(&delta_zone->memory[delta_list->start / BITS_PER_BYTE],
+ delta_list->size / BITS_PER_BYTE, false);
+ }
+ }
+
+ delta_entry->at_end = false;
+ delta_entry->delta_zone = delta_zone;
+ delta_entry->delta_list = delta_list;
+ delta_entry->entry_bits = 0;
+ delta_entry->is_collision = false;
+ delta_entry->list_number = list_number;
+ delta_entry->list_overflow = false;
+ delta_entry->value_bits = delta_zone->value_bits;
+ return UDS_SUCCESS;
+}
+
+static inline u64 get_delta_entry_offset(const struct delta_index_entry *delta_entry)
+{
+ return delta_entry->delta_list->start + delta_entry->offset;
+}
+
+/*
+ * Decode a delta index entry delta value. The delta_index_entry basically describes the previous
+ * list entry, and has had its offset field changed to point to the subsequent entry. We decode the
+ * bit stream and update the delta_list_entry to describe the entry.
+ */
+static inline void decode_delta(struct delta_index_entry *delta_entry)
+{
+ int key_bits;
+ u32 delta;
+ const struct delta_zone *delta_zone = delta_entry->delta_zone;
+ const u8 *memory = delta_zone->memory;
+ u64 delta_offset = get_delta_entry_offset(delta_entry) + delta_entry->value_bits;
+ const u8 *addr = memory + delta_offset / BITS_PER_BYTE;
+ int offset = delta_offset % BITS_PER_BYTE;
+ u32 data = get_unaligned_le32(addr) >> offset;
+
+ addr += sizeof(u32);
+ key_bits = delta_zone->min_bits;
+ delta = data & ((1 << key_bits) - 1);
+ if (delta >= delta_zone->min_keys) {
+ data >>= key_bits;
+ if (data == 0) {
+ key_bits = sizeof(u32) * BITS_PER_BYTE - offset;
+ while ((data = get_unaligned_le32(addr)) == 0) {
+ addr += sizeof(u32);
+ key_bits += sizeof(u32) * BITS_PER_BYTE;
+ }
+ }
+ key_bits += ffs(data);
+ delta += ((key_bits - delta_zone->min_bits - 1) * delta_zone->incr_keys);
+ }
+ delta_entry->delta = delta;
+ delta_entry->key += delta;
+
+ /* Check for a collision, a delta of zero after the start. */
+ if (unlikely((delta == 0) && (delta_entry->offset > 0))) {
+ delta_entry->is_collision = true;
+ delta_entry->entry_bits = delta_entry->value_bits + key_bits + COLLISION_BITS;
+ } else {
+ delta_entry->is_collision = false;
+ delta_entry->entry_bits = delta_entry->value_bits + key_bits;
+ }
+}
+
+noinline int uds_next_delta_index_entry(struct delta_index_entry *delta_entry)
+{
+ int result;
+ const struct delta_list *delta_list;
+ u32 next_offset;
+ u16 size;
+
+ result = assert_not_at_end(delta_entry);
+ if (result != UDS_SUCCESS)
+ return result;
+
+ delta_list = delta_entry->delta_list;
+ delta_entry->offset += delta_entry->entry_bits;
+ size = delta_list->size;
+ if (unlikely(delta_entry->offset >= size)) {
+ delta_entry->at_end = true;
+ delta_entry->delta = 0;
+ delta_entry->is_collision = false;
+ result = VDO_ASSERT((delta_entry->offset == size),
+ "next offset past end of delta list");
+ if (result != VDO_SUCCESS)
+ result = UDS_CORRUPT_DATA;
+
+ return result;
+ }
+
+ decode_delta(delta_entry);
+
+ next_offset = delta_entry->offset + delta_entry->entry_bits;
+ if (next_offset > size) {
+ /*
+ * This is not an assertion because uds_validate_chapter_index_page() wants to
+ * handle this error.
+ */
+ vdo_log_warning("Decoded past the end of the delta list");
+ return UDS_CORRUPT_DATA;
+ }
+
+ return UDS_SUCCESS;
+}
+
+int uds_remember_delta_index_offset(const struct delta_index_entry *delta_entry)
+{
+ int result;
+ struct delta_list *delta_list = delta_entry->delta_list;
+
+ result = VDO_ASSERT(!delta_entry->is_collision, "entry is not a collision");
+ if (result != VDO_SUCCESS)
+ return result;
+
+ delta_list->save_key = delta_entry->key - delta_entry->delta;
+ delta_list->save_offset = delta_entry->offset;
+ return UDS_SUCCESS;
+}
+
+static void set_delta(struct delta_index_entry *delta_entry, u32 delta)
+{
+ const struct delta_zone *delta_zone = delta_entry->delta_zone;
+ u32 key_bits = (delta_zone->min_bits +
+ ((delta_zone->incr_keys - delta_zone->min_keys + delta) /
+ delta_zone->incr_keys));
+
+ delta_entry->delta = delta;
+ delta_entry->entry_bits = delta_entry->value_bits + key_bits;
+}
+
+static void get_collision_name(const struct delta_index_entry *entry, u8 *name)
+{
+ u64 offset = get_delta_entry_offset(entry) + entry->entry_bits - COLLISION_BITS;
+ const u8 *addr = entry->delta_zone->memory + offset / BITS_PER_BYTE;
+ int size = COLLISION_BYTES;
+ int shift = offset % BITS_PER_BYTE;
+
+ while (--size >= 0)
+ *name++ = get_unaligned_le16(addr++) >> shift;
+}
+
+static void set_collision_name(const struct delta_index_entry *entry, const u8 *name)
+{
+ u64 offset = get_delta_entry_offset(entry) + entry->entry_bits - COLLISION_BITS;
+ u8 *addr = entry->delta_zone->memory + offset / BITS_PER_BYTE;
+ int size = COLLISION_BYTES;
+ int shift = offset % BITS_PER_BYTE;
+ u16 mask = ~((u16) 0xFF << shift);
+ u16 data;
+
+ while (--size >= 0) {
+ data = (get_unaligned_le16(addr) & mask) | (*name++ << shift);
+ put_unaligned_le16(data, addr++);
+ }
+}
+
+int uds_get_delta_index_entry(const struct delta_index *delta_index, u32 list_number,
+ u32 key, const u8 *name,
+ struct delta_index_entry *delta_entry)
+{
+ int result;
+
+ result = uds_start_delta_index_search(delta_index, list_number, key,
+ delta_entry);
+ if (result != UDS_SUCCESS)
+ return result;
+
+ do {
+ result = uds_next_delta_index_entry(delta_entry);
+ if (result != UDS_SUCCESS)
+ return result;
+ } while (!delta_entry->at_end && (key > delta_entry->key));
+
+ result = uds_remember_delta_index_offset(delta_entry);
+ if (result != UDS_SUCCESS)
+ return result;
+
+ if (!delta_entry->at_end && (key == delta_entry->key)) {
+ struct delta_index_entry collision_entry = *delta_entry;
+
+ for (;;) {
+ u8 full_name[COLLISION_BYTES];
+
+ result = uds_next_delta_index_entry(&collision_entry);
+ if (result != UDS_SUCCESS)
+ return result;
+
+ if (collision_entry.at_end || !collision_entry.is_collision)
+ break;
+
+ get_collision_name(&collision_entry, full_name);
+ if (memcmp(full_name, name, COLLISION_BYTES) == 0) {
+ *delta_entry = collision_entry;
+ break;
+ }
+ }
+ }
+
+ return UDS_SUCCESS;
+}
+
+int uds_get_delta_entry_collision(const struct delta_index_entry *delta_entry, u8 *name)
+{
+ int result;
+
+ result = assert_not_at_end(delta_entry);
+ if (result != UDS_SUCCESS)
+ return result;
+
+ result = VDO_ASSERT(delta_entry->is_collision,
+ "Cannot get full block name from a non-collision delta index entry");
+ if (result != VDO_SUCCESS)
+ return UDS_BAD_STATE;
+
+ get_collision_name(delta_entry, name);
+ return UDS_SUCCESS;
+}
+
+u32 uds_get_delta_entry_value(const struct delta_index_entry *delta_entry)
+{
+ return get_field(delta_entry->delta_zone->memory,
+ get_delta_entry_offset(delta_entry), delta_entry->value_bits);
+}
+
+static int assert_mutable_entry(const struct delta_index_entry *delta_entry)
+{
+ int result = VDO_ASSERT((delta_entry->delta_list != &delta_entry->temp_delta_list),
+ "delta index is mutable");
+ if (result != VDO_SUCCESS)
+ result = UDS_BAD_STATE;
+
+ return result;
+}
+
+int uds_set_delta_entry_value(const struct delta_index_entry *delta_entry, u32 value)
+{
+ int result;
+ u32 value_mask = (1 << delta_entry->value_bits) - 1;
+
+ result = assert_mutable_entry(delta_entry);
+ if (result != UDS_SUCCESS)
+ return result;
+
+ result = assert_not_at_end(delta_entry);
+ if (result != UDS_SUCCESS)
+ return result;
+
+ result = VDO_ASSERT((value & value_mask) == value,
+ "Value (%u) being set in a delta index is too large (must fit in %u bits)",
+ value, delta_entry->value_bits);
+ if (result != VDO_SUCCESS)
+ return UDS_INVALID_ARGUMENT;
+
+ set_field(value, delta_entry->delta_zone->memory,
+ get_delta_entry_offset(delta_entry), delta_entry->value_bits);
+ return UDS_SUCCESS;
+}
+
+/*
+ * Extend the memory used by the delta lists by adding growing_size bytes before the list indicated
+ * by growing_index, then rebalancing the lists in the new chunk.
+ */
+static int extend_delta_zone(struct delta_zone *delta_zone, u32 growing_index,
+ size_t growing_size)
+{
+ ktime_t start_time;
+ ktime_t end_time;
+ struct delta_list *delta_lists;
+ u32 i;
+ size_t used_space;
+
+
+ /* Calculate the amount of space that is or will be in use. */
+ start_time = current_time_ns(CLOCK_MONOTONIC);
+ delta_lists = delta_zone->delta_lists;
+ used_space = growing_size;
+ for (i = 0; i <= delta_zone->list_count + 1; i++)
+ used_space += get_delta_list_byte_size(&delta_lists[i]);
+
+ if (delta_zone->size < used_space)
+ return UDS_OVERFLOW;
+
+ /* Compute the new offsets of the delta lists. */
+ compute_new_list_offsets(delta_zone, growing_index, growing_size, used_space);
+
+ /*
+ * When we rebalance the delta list, we will include the end guard list in the rebalancing.
+ * It contains the end guard data, which must be copied.
+ */
+ rebalance_delta_zone(delta_zone, 1, delta_zone->list_count + 1);
+ end_time = current_time_ns(CLOCK_MONOTONIC);
+ delta_zone->rebalance_count++;
+ delta_zone->rebalance_time += ktime_sub(end_time, start_time);
+ return UDS_SUCCESS;
+}
+
+static int insert_bits(struct delta_index_entry *delta_entry, u16 size)
+{
+ u64 free_before;
+ u64 free_after;
+ u64 source;
+ u64 destination;
+ u32 count;
+ bool before_flag;
+ u8 *memory;
+ struct delta_zone *delta_zone = delta_entry->delta_zone;
+ struct delta_list *delta_list = delta_entry->delta_list;
+ /* Compute bits in use before and after the inserted bits. */
+ u32 total_size = delta_list->size;
+ u32 before_size = delta_entry->offset;
+ u32 after_size = total_size - delta_entry->offset;
+
+ if (total_size + size > U16_MAX) {
+ delta_entry->list_overflow = true;
+ delta_zone->overflow_count++;
+ return UDS_OVERFLOW;
+ }
+
+ /* Compute bits available before and after the delta list. */
+ free_before = (delta_list[0].start - (delta_list[-1].start + delta_list[-1].size));
+ free_after = (delta_list[1].start - (delta_list[0].start + delta_list[0].size));
+
+ if ((size <= free_before) && (size <= free_after)) {
+ /*
+ * We have enough space to use either before or after the list. Select the smaller
+ * amount of data. If it is exactly the same, try to take from the larger amount of
+ * free space.
+ */
+ if (before_size < after_size)
+ before_flag = true;
+ else if (after_size < before_size)
+ before_flag = false;
+ else
+ before_flag = free_before > free_after;
+ } else if (size <= free_before) {
+ /* There is space before but not after. */
+ before_flag = true;
+ } else if (size <= free_after) {
+ /* There is space after but not before. */
+ before_flag = false;
+ } else {
+ /*
+ * Neither of the surrounding spaces is large enough for this request. Extend
+ * and/or rebalance the delta list memory choosing to move the least amount of
+ * data.
+ */
+ int result;
+ u32 growing_index = delta_entry->list_number + 1;
+
+ before_flag = before_size < after_size;
+ if (!before_flag)
+ growing_index++;
+ result = extend_delta_zone(delta_zone, growing_index,
+ BITS_TO_BYTES(size));
+ if (result != UDS_SUCCESS)
+ return result;
+ }
+
+ delta_list->size += size;
+ if (before_flag) {
+ source = delta_list->start;
+ destination = source - size;
+ delta_list->start -= size;
+ count = before_size;
+ } else {
+ source = delta_list->start + delta_entry->offset;
+ destination = source + size;
+ count = after_size;
+ }
+
+ memory = delta_zone->memory;
+ move_bits(memory, source, memory, destination, count);
+ return UDS_SUCCESS;
+}
+
+static void encode_delta(const struct delta_index_entry *delta_entry)
+{
+ u32 temp;
+ u32 t1;
+ u32 t2;
+ u64 offset;
+ const struct delta_zone *delta_zone = delta_entry->delta_zone;
+ u8 *memory = delta_zone->memory;
+
+ offset = get_delta_entry_offset(delta_entry) + delta_entry->value_bits;
+ if (delta_entry->delta < delta_zone->min_keys) {
+ set_field(delta_entry->delta, memory, offset, delta_zone->min_bits);
+ return;
+ }
+
+ temp = delta_entry->delta - delta_zone->min_keys;
+ t1 = (temp % delta_zone->incr_keys) + delta_zone->min_keys;
+ t2 = temp / delta_zone->incr_keys;
+ set_field(t1, memory, offset, delta_zone->min_bits);
+ set_zero(memory, offset + delta_zone->min_bits, t2);
+ set_field(1, memory, offset + delta_zone->min_bits + t2, 1);
+}
+
+static void encode_entry(const struct delta_index_entry *delta_entry, u32 value,
+ const u8 *name)
+{
+ u8 *memory = delta_entry->delta_zone->memory;
+ u64 offset = get_delta_entry_offset(delta_entry);
+
+ set_field(value, memory, offset, delta_entry->value_bits);
+ encode_delta(delta_entry);
+ if (name != NULL)
+ set_collision_name(delta_entry, name);
+}
+
+/*
+ * Create a new entry in the delta index. If the entry is a collision, the full 256 bit name must
+ * be provided.
+ */
+int uds_put_delta_index_entry(struct delta_index_entry *delta_entry, u32 key, u32 value,
+ const u8 *name)
+{
+ int result;
+ struct delta_zone *delta_zone;
+
+ result = assert_mutable_entry(delta_entry);
+ if (result != UDS_SUCCESS)
+ return result;
+
+ if (delta_entry->is_collision) {
+ /*
+ * The caller wants us to insert a collision entry onto a collision entry. This
+ * happens when we find a collision and attempt to add the name again to the index.
+ * This is normally a fatal error unless we are replaying a closed chapter while we
+ * are rebuilding a volume index.
+ */
+ return UDS_DUPLICATE_NAME;
+ }
+
+ if (delta_entry->offset < delta_entry->delta_list->save_offset) {
+ /*
+ * The saved entry offset is after the new entry and will no longer be valid, so
+ * replace it with the insertion point.
+ */
+ result = uds_remember_delta_index_offset(delta_entry);
+ if (result != UDS_SUCCESS)
+ return result;
+ }
+
+ if (name != NULL) {
+ /* Insert a collision entry which is placed after this entry. */
+ result = assert_not_at_end(delta_entry);
+ if (result != UDS_SUCCESS)
+ return result;
+
+ result = VDO_ASSERT((key == delta_entry->key),
+ "incorrect key for collision entry");
+ if (result != VDO_SUCCESS)
+ return result;
+
+ delta_entry->offset += delta_entry->entry_bits;
+ set_delta(delta_entry, 0);
+ delta_entry->is_collision = true;
+ delta_entry->entry_bits += COLLISION_BITS;
+ result = insert_bits(delta_entry, delta_entry->entry_bits);
+ } else if (delta_entry->at_end) {
+ /* Insert a new entry at the end of the delta list. */
+ result = VDO_ASSERT((key >= delta_entry->key), "key past end of list");
+ if (result != VDO_SUCCESS)
+ return result;
+
+ set_delta(delta_entry, key - delta_entry->key);
+ delta_entry->key = key;
+ delta_entry->at_end = false;
+ result = insert_bits(delta_entry, delta_entry->entry_bits);
+ } else {
+ u16 old_entry_size;
+ u16 additional_size;
+ struct delta_index_entry next_entry;
+ u32 next_value;
+
+ /*
+ * Insert a new entry which requires the delta in the following entry to be
+ * updated.
+ */
+ result = VDO_ASSERT((key < delta_entry->key),
+ "key precedes following entry");
+ if (result != VDO_SUCCESS)
+ return result;
+
+ result = VDO_ASSERT((key >= delta_entry->key - delta_entry->delta),
+ "key effects following entry's delta");
+ if (result != VDO_SUCCESS)
+ return result;
+
+ old_entry_size = delta_entry->entry_bits;
+ next_entry = *delta_entry;
+ next_value = uds_get_delta_entry_value(&next_entry);
+ set_delta(delta_entry, key - (delta_entry->key - delta_entry->delta));
+ delta_entry->key = key;
+ set_delta(&next_entry, next_entry.key - key);
+ next_entry.offset += delta_entry->entry_bits;
+ /* The two new entries are always bigger than the single entry being replaced. */
+ additional_size = (delta_entry->entry_bits +
+ next_entry.entry_bits - old_entry_size);
+ result = insert_bits(delta_entry, additional_size);
+ if (result != UDS_SUCCESS)
+ return result;
+
+ encode_entry(&next_entry, next_value, NULL);
+ }
+
+ if (result != UDS_SUCCESS)
+ return result;
+
+ encode_entry(delta_entry, value, name);
+ delta_zone = delta_entry->delta_zone;
+ delta_zone->record_count++;
+ delta_zone->collision_count += delta_entry->is_collision ? 1 : 0;
+ return UDS_SUCCESS;
+}
+
+static void delete_bits(const struct delta_index_entry *delta_entry, int size)
+{
+ u64 source;
+ u64 destination;
+ u32 count;
+ bool before_flag;
+ struct delta_list *delta_list = delta_entry->delta_list;
+ u8 *memory = delta_entry->delta_zone->memory;
+ /* Compute bits retained before and after the deleted bits. */
+ u32 total_size = delta_list->size;
+ u32 before_size = delta_entry->offset;
+ u32 after_size = total_size - delta_entry->offset - size;
+
+ /*
+ * Determine whether to add to the available space either before or after the delta list.
+ * We prefer to move the least amount of data. If it is exactly the same, try to add to the
+ * smaller amount of free space.
+ */
+ if (before_size < after_size) {
+ before_flag = true;
+ } else if (after_size < before_size) {
+ before_flag = false;
+ } else {
+ u64 free_before =
+ (delta_list[0].start - (delta_list[-1].start + delta_list[-1].size));
+ u64 free_after =
+ (delta_list[1].start - (delta_list[0].start + delta_list[0].size));
+
+ before_flag = (free_before < free_after);
+ }
+
+ delta_list->size -= size;
+ if (before_flag) {
+ source = delta_list->start;
+ destination = source + size;
+ delta_list->start += size;
+ count = before_size;
+ } else {
+ destination = delta_list->start + delta_entry->offset;
+ source = destination + size;
+ count = after_size;
+ }
+
+ move_bits(memory, source, memory, destination, count);
+}
+
+int uds_remove_delta_index_entry(struct delta_index_entry *delta_entry)
+{
+ int result;
+ struct delta_index_entry next_entry;
+ struct delta_zone *delta_zone;
+ struct delta_list *delta_list;
+
+ result = assert_mutable_entry(delta_entry);
+ if (result != UDS_SUCCESS)
+ return result;
+
+ next_entry = *delta_entry;
+ result = uds_next_delta_index_entry(&next_entry);
+ if (result != UDS_SUCCESS)
+ return result;
+
+ delta_zone = delta_entry->delta_zone;
+
+ if (delta_entry->is_collision) {
+ /* This is a collision entry, so just remove it. */
+ delete_bits(delta_entry, delta_entry->entry_bits);
+ next_entry.offset = delta_entry->offset;
+ delta_zone->collision_count -= 1;
+ } else if (next_entry.at_end) {
+ /* This entry is at the end of the list, so just remove it. */
+ delete_bits(delta_entry, delta_entry->entry_bits);
+ next_entry.key -= delta_entry->delta;
+ next_entry.offset = delta_entry->offset;
+ } else {
+ /* The delta in the next entry needs to be updated. */
+ u32 next_value = uds_get_delta_entry_value(&next_entry);
+ u16 old_size = delta_entry->entry_bits + next_entry.entry_bits;
+
+ if (next_entry.is_collision) {
+ next_entry.is_collision = false;
+ delta_zone->collision_count -= 1;
+ }
+
+ set_delta(&next_entry, delta_entry->delta + next_entry.delta);
+ next_entry.offset = delta_entry->offset;
+ /* The one new entry is always smaller than the two entries being replaced. */
+ delete_bits(delta_entry, old_size - next_entry.entry_bits);
+ encode_entry(&next_entry, next_value, NULL);
+ }
+
+ delta_zone->record_count--;
+ delta_zone->discard_count++;
+ *delta_entry = next_entry;
+
+ delta_list = delta_entry->delta_list;
+ if (delta_entry->offset < delta_list->save_offset) {
+ /* The saved entry offset is no longer valid. */
+ delta_list->save_key = 0;
+ delta_list->save_offset = 0;
+ }
+
+ return UDS_SUCCESS;
+}
+
+void uds_get_delta_index_stats(const struct delta_index *delta_index,
+ struct delta_index_stats *stats)
+{
+ unsigned int z;
+ const struct delta_zone *delta_zone;
+
+ memset(stats, 0, sizeof(struct delta_index_stats));
+ for (z = 0; z < delta_index->zone_count; z++) {
+ delta_zone = &delta_index->delta_zones[z];
+ stats->rebalance_time += delta_zone->rebalance_time;
+ stats->rebalance_count += delta_zone->rebalance_count;
+ stats->record_count += delta_zone->record_count;
+ stats->collision_count += delta_zone->collision_count;
+ stats->discard_count += delta_zone->discard_count;
+ stats->overflow_count += delta_zone->overflow_count;
+ stats->list_count += delta_zone->list_count;
+ }
+}
+
+size_t uds_compute_delta_index_size(u32 entry_count, u32 mean_delta, u32 payload_bits)
+{
+ u16 min_bits;
+ u32 incr_keys;
+ u32 min_keys;
+
+ compute_coding_constants(mean_delta, &min_bits, &min_keys, &incr_keys);
+ /* On average, each delta is encoded into about min_bits + 1.5 bits. */
+ return entry_count * (payload_bits + min_bits + 1) + entry_count / 2;
+}
+
+u32 uds_get_delta_index_page_count(u32 entry_count, u32 list_count, u32 mean_delta,
+ u32 payload_bits, size_t bytes_per_page)
+{
+ unsigned int bits_per_delta_list;
+ unsigned int bits_per_page;
+ size_t bits_per_index;
+
+ /* Compute the expected number of bits needed for all the entries. */
+ bits_per_index = uds_compute_delta_index_size(entry_count, mean_delta,
+ payload_bits);
+ bits_per_delta_list = bits_per_index / list_count;
+
+ /* Add in the immutable delta list headers. */
+ bits_per_index += list_count * IMMUTABLE_HEADER_SIZE;
+ /* Compute the number of usable bits on an immutable index page. */
+ bits_per_page = ((bytes_per_page - sizeof(struct delta_page_header)) * BITS_PER_BYTE);
+ /*
+ * Reduce the bits per page by one immutable delta list header and one delta list to
+ * account for internal fragmentation.
+ */
+ bits_per_page -= IMMUTABLE_HEADER_SIZE + bits_per_delta_list;
+ /* Now compute the number of pages needed. */
+ return DIV_ROUND_UP(bits_per_index, bits_per_page);
+}
+
+void uds_log_delta_index_entry(struct delta_index_entry *delta_entry)
+{
+ vdo_log_ratelimit(vdo_log_info,
+ "List 0x%X Key 0x%X Offset 0x%X%s%s List_size 0x%X%s",
+ delta_entry->list_number, delta_entry->key,
+ delta_entry->offset, delta_entry->at_end ? " end" : "",
+ delta_entry->is_collision ? " collision" : "",
+ delta_entry->delta_list->size,
+ delta_entry->list_overflow ? " overflow" : "");
+ delta_entry->list_overflow = false;
+}