diff options
Diffstat (limited to 'drivers/md/dm-vdo/indexer/delta-index.c')
-rw-r--r-- | drivers/md/dm-vdo/indexer/delta-index.c | 1970 |
1 files changed, 1970 insertions, 0 deletions
diff --git a/drivers/md/dm-vdo/indexer/delta-index.c b/drivers/md/dm-vdo/indexer/delta-index.c new file mode 100644 index 0000000000..0ac2443f0d --- /dev/null +++ b/drivers/md/dm-vdo/indexer/delta-index.c @@ -0,0 +1,1970 @@ +// SPDX-License-Identifier: GPL-2.0-only +/* + * Copyright 2023 Red Hat + */ +#include "delta-index.h" + +#include <linux/bitops.h> +#include <linux/bits.h> +#include <linux/compiler.h> +#include <linux/limits.h> +#include <linux/log2.h> + +#include "cpu.h" +#include "errors.h" +#include "logger.h" +#include "memory-alloc.h" +#include "numeric.h" +#include "permassert.h" +#include "string-utils.h" +#include "time-utils.h" + +#include "config.h" +#include "indexer.h" + +/* + * The entries in a delta index could be stored in a single delta list, but to reduce search times + * and update costs it uses multiple delta lists. These lists are stored in a single chunk of + * memory managed by the delta_zone structure. The delta_zone can move the data around within its + * memory, so the location of each delta list is recorded as a bit offset into the memory. Because + * the volume index can contain over a million delta lists, we want to be efficient with the size + * of the delta list header information. This information is encoded into 16 bytes per list. The + * volume index delta list memory can easily exceed 4 gigabits, so a 64 bit value is needed to + * address the memory. The volume index delta lists average around 6 kilobits, so 16 bits are + * sufficient to store the size of a delta list. + * + * Each delta list is stored as a bit stream. Within the delta list encoding, bits and bytes are + * numbered in little endian order. Within a byte, bit 0 is the least significant bit (0x1), and + * bit 7 is the most significant bit (0x80). Within a bit stream, bit 7 is the most significant bit + * of byte 0, and bit 8 is the least significant bit of byte 1. Within a byte array, a byte's + * number corresponds to its index in the array. + * + * A standard delta list entry is stored as a fixed length payload (the value) followed by a + * variable length key (the delta). A collision entry is used when two block names have the same + * delta list address. A collision entry always follows a standard entry for the hash with which it + * collides, and is encoded with DELTA == 0 with an additional 256 bits field at the end, + * containing the full block name. An entry with a delta of 0 at the beginning of a delta list + * indicates a normal entry. + * + * The delta in each entry is encoded with a variable-length Huffman code to minimize the memory + * used by small deltas. The Huffman code is specified by three parameters, which can be computed + * from the desired mean delta when the index is full. (See compute_coding_constants() for + * details.) + * + * The bit field utilities used to read and write delta entries assume that it is possible to read + * some bytes beyond the end of the bit field, so a delta_zone memory allocation is guarded by two + * invalid delta lists to prevent reading outside the delta_zone memory. The valid delta lists are + * numbered 1 to N, and the guard lists are numbered 0 and N+1. The function to decode the bit + * stream include a step that skips over bits set to 0 until the first 1 bit is found. A corrupted + * delta list could cause this step to run off the end of the delta_zone memory, so as extra + * protection against this happening, the tail guard list is set to all ones. + * + * The delta_index supports two different forms. The mutable form is created by + * uds_initialize_delta_index(), and is used for the volume index and for open chapter indexes. The + * immutable form is created by uds_initialize_delta_index_page(), and is used for closed (and + * cached) chapter index pages. The immutable form does not allocate delta list headers or + * temporary offsets, and thus is somewhat more memory efficient. + */ + +/* + * This is the largest field size supported by get_field() and set_field(). Any field that is + * larger is not guaranteed to fit in a single byte-aligned u32. + */ +#define MAX_FIELD_BITS ((sizeof(u32) - 1) * BITS_PER_BYTE + 1) + +/* + * This is the largest field size supported by get_big_field() and set_big_field(). Any field that + * is larger is not guaranteed to fit in a single byte-aligned u64. + */ +#define MAX_BIG_FIELD_BITS ((sizeof(u64) - 1) * BITS_PER_BYTE + 1) + +/* + * This is the number of guard bytes needed at the end of the memory byte array when using the bit + * utilities. These utilities call get_big_field() and set_big_field(), which can access up to 7 + * bytes beyond the end of the desired field. The definition is written to make it clear how this + * value is derived. + */ +#define POST_FIELD_GUARD_BYTES (sizeof(u64) - 1) + +/* The number of guard bits that are needed in the tail guard list */ +#define GUARD_BITS (POST_FIELD_GUARD_BYTES * BITS_PER_BYTE) + +/* + * The maximum size of a single delta list in bytes. We count guard bytes in this value because a + * buffer of this size can be used with move_bits(). + */ +#define DELTA_LIST_MAX_BYTE_COUNT \ + ((U16_MAX + BITS_PER_BYTE) / BITS_PER_BYTE + POST_FIELD_GUARD_BYTES) + +/* The number of extra bytes and bits needed to store a collision entry */ +#define COLLISION_BYTES UDS_RECORD_NAME_SIZE +#define COLLISION_BITS (COLLISION_BYTES * BITS_PER_BYTE) + +/* + * Immutable delta lists are packed into pages containing a header that encodes the delta list + * information into 19 bits per list (64KB bit offset). + */ +#define IMMUTABLE_HEADER_SIZE 19 + +/* + * Constants and structures for the saved delta index. "DI" is for delta_index, and -##### is a + * number to increment when the format of the data changes. + */ +#define MAGIC_SIZE 8 + +static const char DELTA_INDEX_MAGIC[] = "DI-00002"; + +struct delta_index_header { + char magic[MAGIC_SIZE]; + u32 zone_number; + u32 zone_count; + u32 first_list; + u32 list_count; + u64 record_count; + u64 collision_count; +}; + +/* + * Header data used for immutable delta index pages. This data is followed by the delta list offset + * table. + */ +struct delta_page_header { + /* Externally-defined nonce */ + u64 nonce; + /* The virtual chapter number */ + u64 virtual_chapter_number; + /* Index of the first delta list on the page */ + u16 first_list; + /* Number of delta lists on the page */ + u16 list_count; +} __packed; + +static inline u64 get_delta_list_byte_start(const struct delta_list *delta_list) +{ + return delta_list->start / BITS_PER_BYTE; +} + +static inline u16 get_delta_list_byte_size(const struct delta_list *delta_list) +{ + unsigned int bit_offset = delta_list->start % BITS_PER_BYTE; + + return BITS_TO_BYTES(bit_offset + delta_list->size); +} + +static void rebalance_delta_zone(const struct delta_zone *delta_zone, u32 first, + u32 last) +{ + struct delta_list *delta_list; + u64 new_start; + + if (first == last) { + /* Only one list is moving, and we know there is space. */ + delta_list = &delta_zone->delta_lists[first]; + new_start = delta_zone->new_offsets[first]; + if (delta_list->start != new_start) { + u64 source; + u64 destination; + + source = get_delta_list_byte_start(delta_list); + delta_list->start = new_start; + destination = get_delta_list_byte_start(delta_list); + memmove(delta_zone->memory + destination, + delta_zone->memory + source, + get_delta_list_byte_size(delta_list)); + } + } else { + /* + * There is more than one list. Divide the problem in half, and use recursive calls + * to process each half. Note that after this computation, first <= middle, and + * middle < last. + */ + u32 middle = (first + last) / 2; + + delta_list = &delta_zone->delta_lists[middle]; + new_start = delta_zone->new_offsets[middle]; + + /* + * The direction that our middle list is moving determines which half of the + * problem must be processed first. + */ + if (new_start > delta_list->start) { + rebalance_delta_zone(delta_zone, middle + 1, last); + rebalance_delta_zone(delta_zone, first, middle); + } else { + rebalance_delta_zone(delta_zone, first, middle); + rebalance_delta_zone(delta_zone, middle + 1, last); + } + } +} + +static inline size_t get_zone_memory_size(unsigned int zone_count, size_t memory_size) +{ + /* Round up so that each zone is a multiple of 64K in size. */ + size_t ALLOC_BOUNDARY = 64 * 1024; + + return (memory_size / zone_count + ALLOC_BOUNDARY - 1) & -ALLOC_BOUNDARY; +} + +void uds_reset_delta_index(const struct delta_index *delta_index) +{ + unsigned int z; + + /* + * Initialize all delta lists to be empty. We keep 2 extra delta list descriptors, one + * before the first real entry and one after so that we don't need to bounds check the + * array access when calculating preceding and following gap sizes. + */ + for (z = 0; z < delta_index->zone_count; z++) { + u64 list_bits; + u64 spacing; + u64 offset; + unsigned int i; + struct delta_zone *zone = &delta_index->delta_zones[z]; + struct delta_list *delta_lists = zone->delta_lists; + + /* Zeroing the delta list headers initializes the head guard list correctly. */ + memset(delta_lists, 0, + (zone->list_count + 2) * sizeof(struct delta_list)); + + /* Set all the bits in the end guard list. */ + list_bits = (u64) zone->size * BITS_PER_BYTE - GUARD_BITS; + delta_lists[zone->list_count + 1].start = list_bits; + delta_lists[zone->list_count + 1].size = GUARD_BITS; + memset(zone->memory + (list_bits / BITS_PER_BYTE), ~0, + POST_FIELD_GUARD_BYTES); + + /* Evenly space out the real delta lists by setting regular offsets. */ + spacing = list_bits / zone->list_count; + offset = spacing / 2; + for (i = 1; i <= zone->list_count; i++) { + delta_lists[i].start = offset; + offset += spacing; + } + + /* Update the statistics. */ + zone->discard_count += zone->record_count; + zone->record_count = 0; + zone->collision_count = 0; + } +} + +/* Compute the Huffman coding parameters for the given mean delta. The Huffman code is specified by + * three parameters: + * + * MINBITS The number of bits in the smallest code + * BASE The number of values coded using a code of length MINBITS + * INCR The number of values coded by using one additional bit + * + * These parameters are related by this equation: + * + * BASE + INCR == 1 << MINBITS + * + * The math for the Huffman code of an exponential distribution says that + * + * INCR = log(2) * MEAN_DELTA + * + * Then use the smallest MINBITS value so that + * + * (1 << MINBITS) > INCR + * + * And then + * + * BASE = (1 << MINBITS) - INCR + * + * Now the index can generate a code such that + * - The first BASE values code using MINBITS bits. + * - The next INCR values code using MINBITS+1 bits. + * - The next INCR values code using MINBITS+2 bits. + * - (and so on). + */ +static void compute_coding_constants(u32 mean_delta, u16 *min_bits, u32 *min_keys, u32 *incr_keys) +{ + /* + * We want to compute the rounded value of log(2) * mean_delta. Since we cannot always use + * floating point, use a really good integer approximation. + */ + *incr_keys = (836158UL * mean_delta + 603160UL) / 1206321UL; + *min_bits = bits_per(*incr_keys + 1); + *min_keys = (1 << *min_bits) - *incr_keys; +} + +void uds_uninitialize_delta_index(struct delta_index *delta_index) +{ + unsigned int z; + + if (delta_index->delta_zones == NULL) + return; + + for (z = 0; z < delta_index->zone_count; z++) { + vdo_free(vdo_forget(delta_index->delta_zones[z].new_offsets)); + vdo_free(vdo_forget(delta_index->delta_zones[z].delta_lists)); + vdo_free(vdo_forget(delta_index->delta_zones[z].memory)); + } + + vdo_free(delta_index->delta_zones); + memset(delta_index, 0, sizeof(struct delta_index)); +} + +static int initialize_delta_zone(struct delta_zone *delta_zone, size_t size, + u32 first_list, u32 list_count, u32 mean_delta, + u32 payload_bits, u8 tag) +{ + int result; + + result = vdo_allocate(size, u8, "delta list", &delta_zone->memory); + if (result != VDO_SUCCESS) + return result; + + result = vdo_allocate(list_count + 2, u64, "delta list temp", + &delta_zone->new_offsets); + if (result != VDO_SUCCESS) + return result; + + /* Allocate the delta lists. */ + result = vdo_allocate(list_count + 2, struct delta_list, "delta lists", + &delta_zone->delta_lists); + if (result != VDO_SUCCESS) + return result; + + compute_coding_constants(mean_delta, &delta_zone->min_bits, + &delta_zone->min_keys, &delta_zone->incr_keys); + delta_zone->value_bits = payload_bits; + delta_zone->buffered_writer = NULL; + delta_zone->size = size; + delta_zone->rebalance_time = 0; + delta_zone->rebalance_count = 0; + delta_zone->record_count = 0; + delta_zone->collision_count = 0; + delta_zone->discard_count = 0; + delta_zone->overflow_count = 0; + delta_zone->first_list = first_list; + delta_zone->list_count = list_count; + delta_zone->tag = tag; + + return UDS_SUCCESS; +} + +int uds_initialize_delta_index(struct delta_index *delta_index, unsigned int zone_count, + u32 list_count, u32 mean_delta, u32 payload_bits, + size_t memory_size, u8 tag) +{ + int result; + unsigned int z; + size_t zone_memory; + + result = vdo_allocate(zone_count, struct delta_zone, "Delta Index Zones", + &delta_index->delta_zones); + if (result != VDO_SUCCESS) + return result; + + delta_index->zone_count = zone_count; + delta_index->list_count = list_count; + delta_index->lists_per_zone = DIV_ROUND_UP(list_count, zone_count); + delta_index->memory_size = 0; + delta_index->mutable = true; + delta_index->tag = tag; + + for (z = 0; z < zone_count; z++) { + u32 lists_in_zone = delta_index->lists_per_zone; + u32 first_list_in_zone = z * lists_in_zone; + + if (z == zone_count - 1) { + /* + * The last zone gets fewer lists if zone_count doesn't evenly divide + * list_count. We'll have an underflow if the assertion below doesn't hold. + */ + if (delta_index->list_count <= first_list_in_zone) { + uds_uninitialize_delta_index(delta_index); + return vdo_log_error_strerror(UDS_INVALID_ARGUMENT, + "%u delta lists not enough for %u zones", + list_count, zone_count); + } + lists_in_zone = delta_index->list_count - first_list_in_zone; + } + + zone_memory = get_zone_memory_size(zone_count, memory_size); + result = initialize_delta_zone(&delta_index->delta_zones[z], zone_memory, + first_list_in_zone, lists_in_zone, + mean_delta, payload_bits, tag); + if (result != UDS_SUCCESS) { + uds_uninitialize_delta_index(delta_index); + return result; + } + + delta_index->memory_size += + (sizeof(struct delta_zone) + zone_memory + + (lists_in_zone + 2) * (sizeof(struct delta_list) + sizeof(u64))); + } + + uds_reset_delta_index(delta_index); + return UDS_SUCCESS; +} + +/* Read a bit field from an arbitrary bit boundary. */ +static inline u32 get_field(const u8 *memory, u64 offset, u8 size) +{ + const void *addr = memory + offset / BITS_PER_BYTE; + + return (get_unaligned_le32(addr) >> (offset % BITS_PER_BYTE)) & ((1 << size) - 1); +} + +/* Write a bit field to an arbitrary bit boundary. */ +static inline void set_field(u32 value, u8 *memory, u64 offset, u8 size) +{ + void *addr = memory + offset / BITS_PER_BYTE; + int shift = offset % BITS_PER_BYTE; + u32 data = get_unaligned_le32(addr); + + data &= ~(((1 << size) - 1) << shift); + data |= value << shift; + put_unaligned_le32(data, addr); +} + +/* Get the bit offset to the immutable delta list header. */ +static inline u32 get_immutable_header_offset(u32 list_number) +{ + return sizeof(struct delta_page_header) * BITS_PER_BYTE + + list_number * IMMUTABLE_HEADER_SIZE; +} + +/* Get the bit offset to the start of the immutable delta list bit stream. */ +static inline u32 get_immutable_start(const u8 *memory, u32 list_number) +{ + return get_field(memory, get_immutable_header_offset(list_number), + IMMUTABLE_HEADER_SIZE); +} + +/* Set the bit offset to the start of the immutable delta list bit stream. */ +static inline void set_immutable_start(u8 *memory, u32 list_number, u32 start) +{ + set_field(start, memory, get_immutable_header_offset(list_number), + IMMUTABLE_HEADER_SIZE); +} + +static bool verify_delta_index_page(u64 nonce, u16 list_count, u64 expected_nonce, + u8 *memory, size_t memory_size) +{ + unsigned int i; + + /* + * Verify the nonce. A mismatch can happen here during rebuild if we haven't written the + * entire volume at least once. + */ + if (nonce != expected_nonce) + return false; + + /* Verify that the number of delta lists can fit in the page. */ + if (list_count > ((memory_size - sizeof(struct delta_page_header)) * + BITS_PER_BYTE / IMMUTABLE_HEADER_SIZE)) + return false; + + /* + * Verify that the first delta list is immediately after the last delta + * list header. + */ + if (get_immutable_start(memory, 0) != get_immutable_header_offset(list_count + 1)) + return false; + + /* Verify that the lists are in the correct order. */ + for (i = 0; i < list_count; i++) { + if (get_immutable_start(memory, i) > get_immutable_start(memory, i + 1)) + return false; + } + + /* + * Verify that the last list ends on the page, and that there is room + * for the post-field guard bits. + */ + if (get_immutable_start(memory, list_count) > + (memory_size - POST_FIELD_GUARD_BYTES) * BITS_PER_BYTE) + return false; + + /* Verify that the guard bytes are correctly set to all ones. */ + for (i = 0; i < POST_FIELD_GUARD_BYTES; i++) { + if (memory[memory_size - POST_FIELD_GUARD_BYTES + i] != (u8) ~0) + return false; + } + + /* All verifications passed. */ + return true; +} + +/* Initialize a delta index page to refer to a supplied page. */ +int uds_initialize_delta_index_page(struct delta_index_page *delta_index_page, + u64 expected_nonce, u32 mean_delta, u32 payload_bits, + u8 *memory, size_t memory_size) +{ + u64 nonce; + u64 vcn; + u64 first_list; + u64 list_count; + struct delta_page_header *header = (struct delta_page_header *) memory; + struct delta_zone *delta_zone = &delta_index_page->delta_zone; + const u8 *nonce_addr = (const u8 *) &header->nonce; + const u8 *vcn_addr = (const u8 *) &header->virtual_chapter_number; + const u8 *first_list_addr = (const u8 *) &header->first_list; + const u8 *list_count_addr = (const u8 *) &header->list_count; + + /* First assume that the header is little endian. */ + nonce = get_unaligned_le64(nonce_addr); + vcn = get_unaligned_le64(vcn_addr); + first_list = get_unaligned_le16(first_list_addr); + list_count = get_unaligned_le16(list_count_addr); + if (!verify_delta_index_page(nonce, list_count, expected_nonce, memory, + memory_size)) { + /* If that fails, try big endian. */ + nonce = get_unaligned_be64(nonce_addr); + vcn = get_unaligned_be64(vcn_addr); + first_list = get_unaligned_be16(first_list_addr); + list_count = get_unaligned_be16(list_count_addr); + if (!verify_delta_index_page(nonce, list_count, expected_nonce, memory, + memory_size)) { + /* + * Both attempts failed. Do not log this as an error, because it can happen + * during a rebuild if we haven't written the entire volume at least once. + */ + return UDS_CORRUPT_DATA; + } + } + + delta_index_page->delta_index.delta_zones = delta_zone; + delta_index_page->delta_index.zone_count = 1; + delta_index_page->delta_index.list_count = list_count; + delta_index_page->delta_index.lists_per_zone = list_count; + delta_index_page->delta_index.mutable = false; + delta_index_page->delta_index.tag = 'p'; + delta_index_page->virtual_chapter_number = vcn; + delta_index_page->lowest_list_number = first_list; + delta_index_page->highest_list_number = first_list + list_count - 1; + + compute_coding_constants(mean_delta, &delta_zone->min_bits, + &delta_zone->min_keys, &delta_zone->incr_keys); + delta_zone->value_bits = payload_bits; + delta_zone->memory = memory; + delta_zone->delta_lists = NULL; + delta_zone->new_offsets = NULL; + delta_zone->buffered_writer = NULL; + delta_zone->size = memory_size; + delta_zone->rebalance_time = 0; + delta_zone->rebalance_count = 0; + delta_zone->record_count = 0; + delta_zone->collision_count = 0; + delta_zone->discard_count = 0; + delta_zone->overflow_count = 0; + delta_zone->first_list = 0; + delta_zone->list_count = list_count; + delta_zone->tag = 'p'; + + return UDS_SUCCESS; +} + +/* Read a large bit field from an arbitrary bit boundary. */ +static inline u64 get_big_field(const u8 *memory, u64 offset, u8 size) +{ + const void *addr = memory + offset / BITS_PER_BYTE; + + return (get_unaligned_le64(addr) >> (offset % BITS_PER_BYTE)) & ((1UL << size) - 1); +} + +/* Write a large bit field to an arbitrary bit boundary. */ +static inline void set_big_field(u64 value, u8 *memory, u64 offset, u8 size) +{ + void *addr = memory + offset / BITS_PER_BYTE; + u8 shift = offset % BITS_PER_BYTE; + u64 data = get_unaligned_le64(addr); + + data &= ~(((1UL << size) - 1) << shift); + data |= value << shift; + put_unaligned_le64(data, addr); +} + +/* Set a sequence of bits to all zeros. */ +static inline void set_zero(u8 *memory, u64 offset, u32 size) +{ + if (size > 0) { + u8 *addr = memory + offset / BITS_PER_BYTE; + u8 shift = offset % BITS_PER_BYTE; + u32 count = size + shift > BITS_PER_BYTE ? (u32) BITS_PER_BYTE - shift : size; + + *addr++ &= ~(((1 << count) - 1) << shift); + for (size -= count; size > BITS_PER_BYTE; size -= BITS_PER_BYTE) + *addr++ = 0; + + if (size > 0) + *addr &= 0xFF << size; + } +} + +/* + * Move several bits from a higher to a lower address, moving the lower addressed bits first. The + * size and memory offsets are measured in bits. + */ +static void move_bits_down(const u8 *from, u64 from_offset, u8 *to, u64 to_offset, u32 size) +{ + const u8 *source; + u8 *destination; + u8 offset; + u8 count; + u64 field; + + /* Start by moving one field that ends on a to int boundary. */ + count = (MAX_BIG_FIELD_BITS - ((to_offset + MAX_BIG_FIELD_BITS) % BITS_PER_TYPE(u32))); + field = get_big_field(from, from_offset, count); + set_big_field(field, to, to_offset, count); + from_offset += count; + to_offset += count; + size -= count; + + /* Now do the main loop to copy 32 bit chunks that are int-aligned at the destination. */ + offset = from_offset % BITS_PER_TYPE(u32); + source = from + (from_offset - offset) / BITS_PER_BYTE; + destination = to + to_offset / BITS_PER_BYTE; + while (size > MAX_BIG_FIELD_BITS) { + put_unaligned_le32(get_unaligned_le64(source) >> offset, destination); + source += sizeof(u32); + destination += sizeof(u32); + from_offset += BITS_PER_TYPE(u32); + to_offset += BITS_PER_TYPE(u32); + size -= BITS_PER_TYPE(u32); + } + + /* Finish up by moving any remaining bits. */ + if (size > 0) { + field = get_big_field(from, from_offset, size); + set_big_field(field, to, to_offset, size); + } +} + +/* + * Move several bits from a lower to a higher address, moving the higher addressed bits first. The + * size and memory offsets are measured in bits. + */ +static void move_bits_up(const u8 *from, u64 from_offset, u8 *to, u64 to_offset, u32 size) +{ + const u8 *source; + u8 *destination; + u8 offset; + u8 count; + u64 field; + + /* Start by moving one field that begins on a destination int boundary. */ + count = (to_offset + size) % BITS_PER_TYPE(u32); + if (count > 0) { + size -= count; + field = get_big_field(from, from_offset + size, count); + set_big_field(field, to, to_offset + size, count); + } + + /* Now do the main loop to copy 32 bit chunks that are int-aligned at the destination. */ + offset = (from_offset + size) % BITS_PER_TYPE(u32); + source = from + (from_offset + size - offset) / BITS_PER_BYTE; + destination = to + (to_offset + size) / BITS_PER_BYTE; + while (size > MAX_BIG_FIELD_BITS) { + source -= sizeof(u32); + destination -= sizeof(u32); + size -= BITS_PER_TYPE(u32); + put_unaligned_le32(get_unaligned_le64(source) >> offset, destination); + } + + /* Finish up by moving any remaining bits. */ + if (size > 0) { + field = get_big_field(from, from_offset, size); + set_big_field(field, to, to_offset, size); + } +} + +/* + * Move bits from one field to another. When the fields overlap, behave as if we first move all the + * bits from the source to a temporary value, and then move all the bits from the temporary value + * to the destination. The size and memory offsets are measured in bits. + */ +static void move_bits(const u8 *from, u64 from_offset, u8 *to, u64 to_offset, u32 size) +{ + u64 field; + + /* A small move doesn't require special handling. */ + if (size <= MAX_BIG_FIELD_BITS) { + if (size > 0) { + field = get_big_field(from, from_offset, size); + set_big_field(field, to, to_offset, size); + } + + return; + } + + if (from_offset > to_offset) + move_bits_down(from, from_offset, to, to_offset, size); + else + move_bits_up(from, from_offset, to, to_offset, size); +} + +/* + * Pack delta lists from a mutable delta index into an immutable delta index page. A range of delta + * lists (starting with a specified list index) is copied from the mutable delta index into a + * memory page used in the immutable index. The number of lists copied onto the page is returned in + * list_count. + */ +int uds_pack_delta_index_page(const struct delta_index *delta_index, u64 header_nonce, + u8 *memory, size_t memory_size, u64 virtual_chapter_number, + u32 first_list, u32 *list_count) +{ + const struct delta_zone *delta_zone; + struct delta_list *delta_lists; + u32 max_lists; + u32 n_lists = 0; + u32 offset; + u32 i; + int free_bits; + int bits; + struct delta_page_header *header; + + delta_zone = &delta_index->delta_zones[0]; + delta_lists = &delta_zone->delta_lists[first_list + 1]; + max_lists = delta_index->list_count - first_list; + + /* + * Compute how many lists will fit on the page. Subtract the size of the fixed header, one + * delta list offset, and the guard bytes from the page size to determine how much space is + * available for delta lists. + */ + free_bits = memory_size * BITS_PER_BYTE; + free_bits -= get_immutable_header_offset(1); + free_bits -= GUARD_BITS; + if (free_bits < IMMUTABLE_HEADER_SIZE) { + /* This page is too small to store any delta lists. */ + return vdo_log_error_strerror(UDS_OVERFLOW, + "Chapter Index Page of %zu bytes is too small", + memory_size); + } + + while (n_lists < max_lists) { + /* Each list requires a delta list offset and the list data. */ + bits = IMMUTABLE_HEADER_SIZE + delta_lists[n_lists].size; + if (bits > free_bits) + break; + + n_lists++; + free_bits -= bits; + } + + *list_count = n_lists; + + header = (struct delta_page_header *) memory; + put_unaligned_le64(header_nonce, (u8 *) &header->nonce); + put_unaligned_le64(virtual_chapter_number, + (u8 *) &header->virtual_chapter_number); + put_unaligned_le16(first_list, (u8 *) &header->first_list); + put_unaligned_le16(n_lists, (u8 *) &header->list_count); + + /* Construct the delta list offset table. */ + offset = get_immutable_header_offset(n_lists + 1); + set_immutable_start(memory, 0, offset); + for (i = 0; i < n_lists; i++) { + offset += delta_lists[i].size; + set_immutable_start(memory, i + 1, offset); + } + + /* Copy the delta list data onto the memory page. */ + for (i = 0; i < n_lists; i++) { + move_bits(delta_zone->memory, delta_lists[i].start, memory, + get_immutable_start(memory, i), delta_lists[i].size); + } + + /* Set all the bits in the guard bytes. */ + memset(memory + memory_size - POST_FIELD_GUARD_BYTES, ~0, + POST_FIELD_GUARD_BYTES); + return UDS_SUCCESS; +} + +/* Compute the new offsets of the delta lists. */ +static void compute_new_list_offsets(struct delta_zone *delta_zone, u32 growing_index, + size_t growing_size, size_t used_space) +{ + size_t spacing; + u32 i; + struct delta_list *delta_lists = delta_zone->delta_lists; + u32 tail_guard_index = delta_zone->list_count + 1; + + spacing = (delta_zone->size - used_space) / delta_zone->list_count; + delta_zone->new_offsets[0] = 0; + for (i = 0; i <= delta_zone->list_count; i++) { + delta_zone->new_offsets[i + 1] = + (delta_zone->new_offsets[i] + + get_delta_list_byte_size(&delta_lists[i]) + spacing); + delta_zone->new_offsets[i] *= BITS_PER_BYTE; + delta_zone->new_offsets[i] += delta_lists[i].start % BITS_PER_BYTE; + if (i == 0) + delta_zone->new_offsets[i + 1] -= spacing / 2; + if (i + 1 == growing_index) + delta_zone->new_offsets[i + 1] += growing_size; + } + + delta_zone->new_offsets[tail_guard_index] = + (delta_zone->size * BITS_PER_BYTE - delta_lists[tail_guard_index].size); +} + +static void rebalance_lists(struct delta_zone *delta_zone) +{ + struct delta_list *delta_lists; + u32 i; + size_t used_space = 0; + + /* Extend and balance memory to receive the delta lists */ + delta_lists = delta_zone->delta_lists; + for (i = 0; i <= delta_zone->list_count + 1; i++) + used_space += get_delta_list_byte_size(&delta_lists[i]); + + compute_new_list_offsets(delta_zone, 0, 0, used_space); + for (i = 1; i <= delta_zone->list_count + 1; i++) + delta_lists[i].start = delta_zone->new_offsets[i]; +} + +/* Start restoring a delta index from multiple input streams. */ +int uds_start_restoring_delta_index(struct delta_index *delta_index, + struct buffered_reader **buffered_readers, + unsigned int reader_count) +{ + int result; + unsigned int zone_count = reader_count; + u64 record_count = 0; + u64 collision_count = 0; + u32 first_list[MAX_ZONES]; + u32 list_count[MAX_ZONES]; + unsigned int z; + u32 list_next = 0; + const struct delta_zone *delta_zone; + + /* Read and validate each header. */ + for (z = 0; z < zone_count; z++) { + struct delta_index_header header; + u8 buffer[sizeof(struct delta_index_header)]; + size_t offset = 0; + + result = uds_read_from_buffered_reader(buffered_readers[z], buffer, + sizeof(buffer)); + if (result != UDS_SUCCESS) { + return vdo_log_warning_strerror(result, + "failed to read delta index header"); + } + + memcpy(&header.magic, buffer, MAGIC_SIZE); + offset += MAGIC_SIZE; + decode_u32_le(buffer, &offset, &header.zone_number); + decode_u32_le(buffer, &offset, &header.zone_count); + decode_u32_le(buffer, &offset, &header.first_list); + decode_u32_le(buffer, &offset, &header.list_count); + decode_u64_le(buffer, &offset, &header.record_count); + decode_u64_le(buffer, &offset, &header.collision_count); + + result = VDO_ASSERT(offset == sizeof(struct delta_index_header), + "%zu bytes decoded of %zu expected", offset, + sizeof(struct delta_index_header)); + if (result != VDO_SUCCESS) { + return vdo_log_warning_strerror(result, + "failed to read delta index header"); + } + + if (memcmp(header.magic, DELTA_INDEX_MAGIC, MAGIC_SIZE) != 0) { + return vdo_log_warning_strerror(UDS_CORRUPT_DATA, + "delta index file has bad magic number"); + } + + if (zone_count != header.zone_count) { + return vdo_log_warning_strerror(UDS_CORRUPT_DATA, + "delta index files contain mismatched zone counts (%u,%u)", + zone_count, header.zone_count); + } + + if (header.zone_number != z) { + return vdo_log_warning_strerror(UDS_CORRUPT_DATA, + "delta index zone %u found in slot %u", + header.zone_number, z); + } + + first_list[z] = header.first_list; + list_count[z] = header.list_count; + record_count += header.record_count; + collision_count += header.collision_count; + + if (first_list[z] != list_next) { + return vdo_log_warning_strerror(UDS_CORRUPT_DATA, + "delta index file for zone %u starts with list %u instead of list %u", + z, first_list[z], list_next); + } + + list_next += list_count[z]; + } + + if (list_next != delta_index->list_count) { + return vdo_log_warning_strerror(UDS_CORRUPT_DATA, + "delta index files contain %u delta lists instead of %u delta lists", + list_next, delta_index->list_count); + } + + if (collision_count > record_count) { + return vdo_log_warning_strerror(UDS_CORRUPT_DATA, + "delta index files contain %llu collisions and %llu records", + (unsigned long long) collision_count, + (unsigned long long) record_count); + } + + uds_reset_delta_index(delta_index); + delta_index->delta_zones[0].record_count = record_count; + delta_index->delta_zones[0].collision_count = collision_count; + + /* Read the delta lists and distribute them to the proper zones. */ + for (z = 0; z < zone_count; z++) { + u32 i; + + delta_index->load_lists[z] = 0; + for (i = 0; i < list_count[z]; i++) { + u16 delta_list_size; + u32 list_number; + unsigned int zone_number; + u8 size_data[sizeof(u16)]; + + result = uds_read_from_buffered_reader(buffered_readers[z], + size_data, + sizeof(size_data)); + if (result != UDS_SUCCESS) { + return vdo_log_warning_strerror(result, + "failed to read delta index size"); + } + + delta_list_size = get_unaligned_le16(size_data); + if (delta_list_size > 0) + delta_index->load_lists[z] += 1; + + list_number = first_list[z] + i; + zone_number = list_number / delta_index->lists_per_zone; + delta_zone = &delta_index->delta_zones[zone_number]; + list_number -= delta_zone->first_list; + delta_zone->delta_lists[list_number + 1].size = delta_list_size; + } + } + + /* Prepare each zone to start receiving the delta list data. */ + for (z = 0; z < delta_index->zone_count; z++) + rebalance_lists(&delta_index->delta_zones[z]); + + return UDS_SUCCESS; +} + +static int restore_delta_list_to_zone(struct delta_zone *delta_zone, + const struct delta_list_save_info *save_info, + const u8 *data) +{ + struct delta_list *delta_list; + u16 bit_count; + u16 byte_count; + u32 list_number = save_info->index - delta_zone->first_list; + + if (list_number >= delta_zone->list_count) { + return vdo_log_warning_strerror(UDS_CORRUPT_DATA, + "invalid delta list number %u not in range [%u,%u)", + save_info->index, delta_zone->first_list, + delta_zone->first_list + delta_zone->list_count); + } + + delta_list = &delta_zone->delta_lists[list_number + 1]; + if (delta_list->size == 0) { + return vdo_log_warning_strerror(UDS_CORRUPT_DATA, + "unexpected delta list number %u", + save_info->index); + } + + bit_count = delta_list->size + save_info->bit_offset; + byte_count = BITS_TO_BYTES(bit_count); + if (save_info->byte_count != byte_count) { + return vdo_log_warning_strerror(UDS_CORRUPT_DATA, + "unexpected delta list size %u != %u", + save_info->byte_count, byte_count); + } + + move_bits(data, save_info->bit_offset, delta_zone->memory, delta_list->start, + delta_list->size); + return UDS_SUCCESS; +} + +static int restore_delta_list_data(struct delta_index *delta_index, unsigned int load_zone, + struct buffered_reader *buffered_reader, u8 *data) +{ + int result; + struct delta_list_save_info save_info; + u8 buffer[sizeof(struct delta_list_save_info)]; + unsigned int new_zone; + + result = uds_read_from_buffered_reader(buffered_reader, buffer, sizeof(buffer)); + if (result != UDS_SUCCESS) { + return vdo_log_warning_strerror(result, + "failed to read delta list data"); + } + + save_info = (struct delta_list_save_info) { + .tag = buffer[0], + .bit_offset = buffer[1], + .byte_count = get_unaligned_le16(&buffer[2]), + .index = get_unaligned_le32(&buffer[4]), + }; + + if ((save_info.bit_offset >= BITS_PER_BYTE) || + (save_info.byte_count > DELTA_LIST_MAX_BYTE_COUNT)) { + return vdo_log_warning_strerror(UDS_CORRUPT_DATA, + "corrupt delta list data"); + } + + /* Make sure the data is intended for this delta index. */ + if (save_info.tag != delta_index->tag) + return UDS_CORRUPT_DATA; + + if (save_info.index >= delta_index->list_count) { + return vdo_log_warning_strerror(UDS_CORRUPT_DATA, + "invalid delta list number %u of %u", + save_info.index, + delta_index->list_count); + } + + result = uds_read_from_buffered_reader(buffered_reader, data, + save_info.byte_count); + if (result != UDS_SUCCESS) { + return vdo_log_warning_strerror(result, + "failed to read delta list data"); + } + + delta_index->load_lists[load_zone] -= 1; + new_zone = save_info.index / delta_index->lists_per_zone; + return restore_delta_list_to_zone(&delta_index->delta_zones[new_zone], + &save_info, data); +} + +/* Restore delta lists from saved data. */ +int uds_finish_restoring_delta_index(struct delta_index *delta_index, + struct buffered_reader **buffered_readers, + unsigned int reader_count) +{ + int result; + int saved_result = UDS_SUCCESS; + unsigned int z; + u8 *data; + + result = vdo_allocate(DELTA_LIST_MAX_BYTE_COUNT, u8, __func__, &data); + if (result != VDO_SUCCESS) + return result; + + for (z = 0; z < reader_count; z++) { + while (delta_index->load_lists[z] > 0) { + result = restore_delta_list_data(delta_index, z, + buffered_readers[z], data); + if (result != UDS_SUCCESS) { + saved_result = result; + break; + } + } + } + + vdo_free(data); + return saved_result; +} + +int uds_check_guard_delta_lists(struct buffered_reader **buffered_readers, + unsigned int reader_count) +{ + int result; + unsigned int z; + u8 buffer[sizeof(struct delta_list_save_info)]; + + for (z = 0; z < reader_count; z++) { + result = uds_read_from_buffered_reader(buffered_readers[z], buffer, + sizeof(buffer)); + if (result != UDS_SUCCESS) + return result; + + if (buffer[0] != 'z') + return UDS_CORRUPT_DATA; + } + + return UDS_SUCCESS; +} + +static int flush_delta_list(struct delta_zone *zone, u32 flush_index) +{ + struct delta_list *delta_list; + u8 buffer[sizeof(struct delta_list_save_info)]; + int result; + + delta_list = &zone->delta_lists[flush_index + 1]; + + buffer[0] = zone->tag; + buffer[1] = delta_list->start % BITS_PER_BYTE; + put_unaligned_le16(get_delta_list_byte_size(delta_list), &buffer[2]); + put_unaligned_le32(zone->first_list + flush_index, &buffer[4]); + + result = uds_write_to_buffered_writer(zone->buffered_writer, buffer, + sizeof(buffer)); + if (result != UDS_SUCCESS) { + vdo_log_warning_strerror(result, "failed to write delta list memory"); + return result; + } + + result = uds_write_to_buffered_writer(zone->buffered_writer, + zone->memory + get_delta_list_byte_start(delta_list), + get_delta_list_byte_size(delta_list)); + if (result != UDS_SUCCESS) + vdo_log_warning_strerror(result, "failed to write delta list memory"); + + return result; +} + +/* Start saving a delta index zone to a buffered output stream. */ +int uds_start_saving_delta_index(const struct delta_index *delta_index, + unsigned int zone_number, + struct buffered_writer *buffered_writer) +{ + int result; + u32 i; + struct delta_zone *delta_zone; + u8 buffer[sizeof(struct delta_index_header)]; + size_t offset = 0; + + delta_zone = &delta_index->delta_zones[zone_number]; + memcpy(buffer, DELTA_INDEX_MAGIC, MAGIC_SIZE); + offset += MAGIC_SIZE; + encode_u32_le(buffer, &offset, zone_number); + encode_u32_le(buffer, &offset, delta_index->zone_count); + encode_u32_le(buffer, &offset, delta_zone->first_list); + encode_u32_le(buffer, &offset, delta_zone->list_count); + encode_u64_le(buffer, &offset, delta_zone->record_count); + encode_u64_le(buffer, &offset, delta_zone->collision_count); + + result = VDO_ASSERT(offset == sizeof(struct delta_index_header), + "%zu bytes encoded of %zu expected", offset, + sizeof(struct delta_index_header)); + if (result != VDO_SUCCESS) + return result; + + result = uds_write_to_buffered_writer(buffered_writer, buffer, offset); + if (result != UDS_SUCCESS) + return vdo_log_warning_strerror(result, + "failed to write delta index header"); + + for (i = 0; i < delta_zone->list_count; i++) { + u8 data[sizeof(u16)]; + struct delta_list *delta_list; + + delta_list = &delta_zone->delta_lists[i + 1]; + put_unaligned_le16(delta_list->size, data); + result = uds_write_to_buffered_writer(buffered_writer, data, + sizeof(data)); + if (result != UDS_SUCCESS) + return vdo_log_warning_strerror(result, + "failed to write delta list size"); + } + + delta_zone->buffered_writer = buffered_writer; + return UDS_SUCCESS; +} + +int uds_finish_saving_delta_index(const struct delta_index *delta_index, + unsigned int zone_number) +{ + int result; + int first_error = UDS_SUCCESS; + u32 i; + struct delta_zone *delta_zone; + struct delta_list *delta_list; + + delta_zone = &delta_index->delta_zones[zone_number]; + for (i = 0; i < delta_zone->list_count; i++) { + delta_list = &delta_zone->delta_lists[i + 1]; + if (delta_list->size > 0) { + result = flush_delta_list(delta_zone, i); + if ((result != UDS_SUCCESS) && (first_error == UDS_SUCCESS)) + first_error = result; + } + } + + delta_zone->buffered_writer = NULL; + return first_error; +} + +int uds_write_guard_delta_list(struct buffered_writer *buffered_writer) +{ + int result; + u8 buffer[sizeof(struct delta_list_save_info)]; + + memset(buffer, 0, sizeof(struct delta_list_save_info)); + buffer[0] = 'z'; + + result = uds_write_to_buffered_writer(buffered_writer, buffer, sizeof(buffer)); + if (result != UDS_SUCCESS) + vdo_log_warning_strerror(result, "failed to write guard delta list"); + + return UDS_SUCCESS; +} + +size_t uds_compute_delta_index_save_bytes(u32 list_count, size_t memory_size) +{ + /* One zone will use at least as much memory as other zone counts. */ + return (sizeof(struct delta_index_header) + + list_count * (sizeof(struct delta_list_save_info) + 1) + + get_zone_memory_size(1, memory_size)); +} + +static int assert_not_at_end(const struct delta_index_entry *delta_entry) +{ + int result = VDO_ASSERT(!delta_entry->at_end, + "operation is invalid because the list entry is at the end of the delta list"); + if (result != VDO_SUCCESS) + result = UDS_BAD_STATE; + + return result; +} + +/* + * Prepare to search for an entry in the specified delta list. + * + * This is always the first function to be called when dealing with delta index entries. It is + * always followed by calls to uds_next_delta_index_entry() to iterate through a delta list. The + * fields of the delta_index_entry argument will be set up for iteration, but will not contain an + * entry from the list. + */ +int uds_start_delta_index_search(const struct delta_index *delta_index, u32 list_number, + u32 key, struct delta_index_entry *delta_entry) +{ + int result; + unsigned int zone_number; + struct delta_zone *delta_zone; + struct delta_list *delta_list; + + result = VDO_ASSERT((list_number < delta_index->list_count), + "Delta list number (%u) is out of range (%u)", list_number, + delta_index->list_count); + if (result != VDO_SUCCESS) + return UDS_CORRUPT_DATA; + + zone_number = list_number / delta_index->lists_per_zone; + delta_zone = &delta_index->delta_zones[zone_number]; + list_number -= delta_zone->first_list; + result = VDO_ASSERT((list_number < delta_zone->list_count), + "Delta list number (%u) is out of range (%u) for zone (%u)", + list_number, delta_zone->list_count, zone_number); + if (result != VDO_SUCCESS) + return UDS_CORRUPT_DATA; + + if (delta_index->mutable) { + delta_list = &delta_zone->delta_lists[list_number + 1]; + } else { + u32 end_offset; + + /* + * Translate the immutable delta list header into a temporary + * full delta list header. + */ + delta_list = &delta_entry->temp_delta_list; + delta_list->start = get_immutable_start(delta_zone->memory, list_number); + end_offset = get_immutable_start(delta_zone->memory, list_number + 1); + delta_list->size = end_offset - delta_list->start; + delta_list->save_key = 0; + delta_list->save_offset = 0; + } + + if (key > delta_list->save_key) { + delta_entry->key = delta_list->save_key; + delta_entry->offset = delta_list->save_offset; + } else { + delta_entry->key = 0; + delta_entry->offset = 0; + if (key == 0) { + /* + * This usually means we're about to walk the entire delta list, so get all + * of it into the CPU cache. + */ + uds_prefetch_range(&delta_zone->memory[delta_list->start / BITS_PER_BYTE], + delta_list->size / BITS_PER_BYTE, false); + } + } + + delta_entry->at_end = false; + delta_entry->delta_zone = delta_zone; + delta_entry->delta_list = delta_list; + delta_entry->entry_bits = 0; + delta_entry->is_collision = false; + delta_entry->list_number = list_number; + delta_entry->list_overflow = false; + delta_entry->value_bits = delta_zone->value_bits; + return UDS_SUCCESS; +} + +static inline u64 get_delta_entry_offset(const struct delta_index_entry *delta_entry) +{ + return delta_entry->delta_list->start + delta_entry->offset; +} + +/* + * Decode a delta index entry delta value. The delta_index_entry basically describes the previous + * list entry, and has had its offset field changed to point to the subsequent entry. We decode the + * bit stream and update the delta_list_entry to describe the entry. + */ +static inline void decode_delta(struct delta_index_entry *delta_entry) +{ + int key_bits; + u32 delta; + const struct delta_zone *delta_zone = delta_entry->delta_zone; + const u8 *memory = delta_zone->memory; + u64 delta_offset = get_delta_entry_offset(delta_entry) + delta_entry->value_bits; + const u8 *addr = memory + delta_offset / BITS_PER_BYTE; + int offset = delta_offset % BITS_PER_BYTE; + u32 data = get_unaligned_le32(addr) >> offset; + + addr += sizeof(u32); + key_bits = delta_zone->min_bits; + delta = data & ((1 << key_bits) - 1); + if (delta >= delta_zone->min_keys) { + data >>= key_bits; + if (data == 0) { + key_bits = sizeof(u32) * BITS_PER_BYTE - offset; + while ((data = get_unaligned_le32(addr)) == 0) { + addr += sizeof(u32); + key_bits += sizeof(u32) * BITS_PER_BYTE; + } + } + key_bits += ffs(data); + delta += ((key_bits - delta_zone->min_bits - 1) * delta_zone->incr_keys); + } + delta_entry->delta = delta; + delta_entry->key += delta; + + /* Check for a collision, a delta of zero after the start. */ + if (unlikely((delta == 0) && (delta_entry->offset > 0))) { + delta_entry->is_collision = true; + delta_entry->entry_bits = delta_entry->value_bits + key_bits + COLLISION_BITS; + } else { + delta_entry->is_collision = false; + delta_entry->entry_bits = delta_entry->value_bits + key_bits; + } +} + +noinline int uds_next_delta_index_entry(struct delta_index_entry *delta_entry) +{ + int result; + const struct delta_list *delta_list; + u32 next_offset; + u16 size; + + result = assert_not_at_end(delta_entry); + if (result != UDS_SUCCESS) + return result; + + delta_list = delta_entry->delta_list; + delta_entry->offset += delta_entry->entry_bits; + size = delta_list->size; + if (unlikely(delta_entry->offset >= size)) { + delta_entry->at_end = true; + delta_entry->delta = 0; + delta_entry->is_collision = false; + result = VDO_ASSERT((delta_entry->offset == size), + "next offset past end of delta list"); + if (result != VDO_SUCCESS) + result = UDS_CORRUPT_DATA; + + return result; + } + + decode_delta(delta_entry); + + next_offset = delta_entry->offset + delta_entry->entry_bits; + if (next_offset > size) { + /* + * This is not an assertion because uds_validate_chapter_index_page() wants to + * handle this error. + */ + vdo_log_warning("Decoded past the end of the delta list"); + return UDS_CORRUPT_DATA; + } + + return UDS_SUCCESS; +} + +int uds_remember_delta_index_offset(const struct delta_index_entry *delta_entry) +{ + int result; + struct delta_list *delta_list = delta_entry->delta_list; + + result = VDO_ASSERT(!delta_entry->is_collision, "entry is not a collision"); + if (result != VDO_SUCCESS) + return result; + + delta_list->save_key = delta_entry->key - delta_entry->delta; + delta_list->save_offset = delta_entry->offset; + return UDS_SUCCESS; +} + +static void set_delta(struct delta_index_entry *delta_entry, u32 delta) +{ + const struct delta_zone *delta_zone = delta_entry->delta_zone; + u32 key_bits = (delta_zone->min_bits + + ((delta_zone->incr_keys - delta_zone->min_keys + delta) / + delta_zone->incr_keys)); + + delta_entry->delta = delta; + delta_entry->entry_bits = delta_entry->value_bits + key_bits; +} + +static void get_collision_name(const struct delta_index_entry *entry, u8 *name) +{ + u64 offset = get_delta_entry_offset(entry) + entry->entry_bits - COLLISION_BITS; + const u8 *addr = entry->delta_zone->memory + offset / BITS_PER_BYTE; + int size = COLLISION_BYTES; + int shift = offset % BITS_PER_BYTE; + + while (--size >= 0) + *name++ = get_unaligned_le16(addr++) >> shift; +} + +static void set_collision_name(const struct delta_index_entry *entry, const u8 *name) +{ + u64 offset = get_delta_entry_offset(entry) + entry->entry_bits - COLLISION_BITS; + u8 *addr = entry->delta_zone->memory + offset / BITS_PER_BYTE; + int size = COLLISION_BYTES; + int shift = offset % BITS_PER_BYTE; + u16 mask = ~((u16) 0xFF << shift); + u16 data; + + while (--size >= 0) { + data = (get_unaligned_le16(addr) & mask) | (*name++ << shift); + put_unaligned_le16(data, addr++); + } +} + +int uds_get_delta_index_entry(const struct delta_index *delta_index, u32 list_number, + u32 key, const u8 *name, + struct delta_index_entry *delta_entry) +{ + int result; + + result = uds_start_delta_index_search(delta_index, list_number, key, + delta_entry); + if (result != UDS_SUCCESS) + return result; + + do { + result = uds_next_delta_index_entry(delta_entry); + if (result != UDS_SUCCESS) + return result; + } while (!delta_entry->at_end && (key > delta_entry->key)); + + result = uds_remember_delta_index_offset(delta_entry); + if (result != UDS_SUCCESS) + return result; + + if (!delta_entry->at_end && (key == delta_entry->key)) { + struct delta_index_entry collision_entry = *delta_entry; + + for (;;) { + u8 full_name[COLLISION_BYTES]; + + result = uds_next_delta_index_entry(&collision_entry); + if (result != UDS_SUCCESS) + return result; + + if (collision_entry.at_end || !collision_entry.is_collision) + break; + + get_collision_name(&collision_entry, full_name); + if (memcmp(full_name, name, COLLISION_BYTES) == 0) { + *delta_entry = collision_entry; + break; + } + } + } + + return UDS_SUCCESS; +} + +int uds_get_delta_entry_collision(const struct delta_index_entry *delta_entry, u8 *name) +{ + int result; + + result = assert_not_at_end(delta_entry); + if (result != UDS_SUCCESS) + return result; + + result = VDO_ASSERT(delta_entry->is_collision, + "Cannot get full block name from a non-collision delta index entry"); + if (result != VDO_SUCCESS) + return UDS_BAD_STATE; + + get_collision_name(delta_entry, name); + return UDS_SUCCESS; +} + +u32 uds_get_delta_entry_value(const struct delta_index_entry *delta_entry) +{ + return get_field(delta_entry->delta_zone->memory, + get_delta_entry_offset(delta_entry), delta_entry->value_bits); +} + +static int assert_mutable_entry(const struct delta_index_entry *delta_entry) +{ + int result = VDO_ASSERT((delta_entry->delta_list != &delta_entry->temp_delta_list), + "delta index is mutable"); + if (result != VDO_SUCCESS) + result = UDS_BAD_STATE; + + return result; +} + +int uds_set_delta_entry_value(const struct delta_index_entry *delta_entry, u32 value) +{ + int result; + u32 value_mask = (1 << delta_entry->value_bits) - 1; + + result = assert_mutable_entry(delta_entry); + if (result != UDS_SUCCESS) + return result; + + result = assert_not_at_end(delta_entry); + if (result != UDS_SUCCESS) + return result; + + result = VDO_ASSERT((value & value_mask) == value, + "Value (%u) being set in a delta index is too large (must fit in %u bits)", + value, delta_entry->value_bits); + if (result != VDO_SUCCESS) + return UDS_INVALID_ARGUMENT; + + set_field(value, delta_entry->delta_zone->memory, + get_delta_entry_offset(delta_entry), delta_entry->value_bits); + return UDS_SUCCESS; +} + +/* + * Extend the memory used by the delta lists by adding growing_size bytes before the list indicated + * by growing_index, then rebalancing the lists in the new chunk. + */ +static int extend_delta_zone(struct delta_zone *delta_zone, u32 growing_index, + size_t growing_size) +{ + ktime_t start_time; + ktime_t end_time; + struct delta_list *delta_lists; + u32 i; + size_t used_space; + + + /* Calculate the amount of space that is or will be in use. */ + start_time = current_time_ns(CLOCK_MONOTONIC); + delta_lists = delta_zone->delta_lists; + used_space = growing_size; + for (i = 0; i <= delta_zone->list_count + 1; i++) + used_space += get_delta_list_byte_size(&delta_lists[i]); + + if (delta_zone->size < used_space) + return UDS_OVERFLOW; + + /* Compute the new offsets of the delta lists. */ + compute_new_list_offsets(delta_zone, growing_index, growing_size, used_space); + + /* + * When we rebalance the delta list, we will include the end guard list in the rebalancing. + * It contains the end guard data, which must be copied. + */ + rebalance_delta_zone(delta_zone, 1, delta_zone->list_count + 1); + end_time = current_time_ns(CLOCK_MONOTONIC); + delta_zone->rebalance_count++; + delta_zone->rebalance_time += ktime_sub(end_time, start_time); + return UDS_SUCCESS; +} + +static int insert_bits(struct delta_index_entry *delta_entry, u16 size) +{ + u64 free_before; + u64 free_after; + u64 source; + u64 destination; + u32 count; + bool before_flag; + u8 *memory; + struct delta_zone *delta_zone = delta_entry->delta_zone; + struct delta_list *delta_list = delta_entry->delta_list; + /* Compute bits in use before and after the inserted bits. */ + u32 total_size = delta_list->size; + u32 before_size = delta_entry->offset; + u32 after_size = total_size - delta_entry->offset; + + if (total_size + size > U16_MAX) { + delta_entry->list_overflow = true; + delta_zone->overflow_count++; + return UDS_OVERFLOW; + } + + /* Compute bits available before and after the delta list. */ + free_before = (delta_list[0].start - (delta_list[-1].start + delta_list[-1].size)); + free_after = (delta_list[1].start - (delta_list[0].start + delta_list[0].size)); + + if ((size <= free_before) && (size <= free_after)) { + /* + * We have enough space to use either before or after the list. Select the smaller + * amount of data. If it is exactly the same, try to take from the larger amount of + * free space. + */ + if (before_size < after_size) + before_flag = true; + else if (after_size < before_size) + before_flag = false; + else + before_flag = free_before > free_after; + } else if (size <= free_before) { + /* There is space before but not after. */ + before_flag = true; + } else if (size <= free_after) { + /* There is space after but not before. */ + before_flag = false; + } else { + /* + * Neither of the surrounding spaces is large enough for this request. Extend + * and/or rebalance the delta list memory choosing to move the least amount of + * data. + */ + int result; + u32 growing_index = delta_entry->list_number + 1; + + before_flag = before_size < after_size; + if (!before_flag) + growing_index++; + result = extend_delta_zone(delta_zone, growing_index, + BITS_TO_BYTES(size)); + if (result != UDS_SUCCESS) + return result; + } + + delta_list->size += size; + if (before_flag) { + source = delta_list->start; + destination = source - size; + delta_list->start -= size; + count = before_size; + } else { + source = delta_list->start + delta_entry->offset; + destination = source + size; + count = after_size; + } + + memory = delta_zone->memory; + move_bits(memory, source, memory, destination, count); + return UDS_SUCCESS; +} + +static void encode_delta(const struct delta_index_entry *delta_entry) +{ + u32 temp; + u32 t1; + u32 t2; + u64 offset; + const struct delta_zone *delta_zone = delta_entry->delta_zone; + u8 *memory = delta_zone->memory; + + offset = get_delta_entry_offset(delta_entry) + delta_entry->value_bits; + if (delta_entry->delta < delta_zone->min_keys) { + set_field(delta_entry->delta, memory, offset, delta_zone->min_bits); + return; + } + + temp = delta_entry->delta - delta_zone->min_keys; + t1 = (temp % delta_zone->incr_keys) + delta_zone->min_keys; + t2 = temp / delta_zone->incr_keys; + set_field(t1, memory, offset, delta_zone->min_bits); + set_zero(memory, offset + delta_zone->min_bits, t2); + set_field(1, memory, offset + delta_zone->min_bits + t2, 1); +} + +static void encode_entry(const struct delta_index_entry *delta_entry, u32 value, + const u8 *name) +{ + u8 *memory = delta_entry->delta_zone->memory; + u64 offset = get_delta_entry_offset(delta_entry); + + set_field(value, memory, offset, delta_entry->value_bits); + encode_delta(delta_entry); + if (name != NULL) + set_collision_name(delta_entry, name); +} + +/* + * Create a new entry in the delta index. If the entry is a collision, the full 256 bit name must + * be provided. + */ +int uds_put_delta_index_entry(struct delta_index_entry *delta_entry, u32 key, u32 value, + const u8 *name) +{ + int result; + struct delta_zone *delta_zone; + + result = assert_mutable_entry(delta_entry); + if (result != UDS_SUCCESS) + return result; + + if (delta_entry->is_collision) { + /* + * The caller wants us to insert a collision entry onto a collision entry. This + * happens when we find a collision and attempt to add the name again to the index. + * This is normally a fatal error unless we are replaying a closed chapter while we + * are rebuilding a volume index. + */ + return UDS_DUPLICATE_NAME; + } + + if (delta_entry->offset < delta_entry->delta_list->save_offset) { + /* + * The saved entry offset is after the new entry and will no longer be valid, so + * replace it with the insertion point. + */ + result = uds_remember_delta_index_offset(delta_entry); + if (result != UDS_SUCCESS) + return result; + } + + if (name != NULL) { + /* Insert a collision entry which is placed after this entry. */ + result = assert_not_at_end(delta_entry); + if (result != UDS_SUCCESS) + return result; + + result = VDO_ASSERT((key == delta_entry->key), + "incorrect key for collision entry"); + if (result != VDO_SUCCESS) + return result; + + delta_entry->offset += delta_entry->entry_bits; + set_delta(delta_entry, 0); + delta_entry->is_collision = true; + delta_entry->entry_bits += COLLISION_BITS; + result = insert_bits(delta_entry, delta_entry->entry_bits); + } else if (delta_entry->at_end) { + /* Insert a new entry at the end of the delta list. */ + result = VDO_ASSERT((key >= delta_entry->key), "key past end of list"); + if (result != VDO_SUCCESS) + return result; + + set_delta(delta_entry, key - delta_entry->key); + delta_entry->key = key; + delta_entry->at_end = false; + result = insert_bits(delta_entry, delta_entry->entry_bits); + } else { + u16 old_entry_size; + u16 additional_size; + struct delta_index_entry next_entry; + u32 next_value; + + /* + * Insert a new entry which requires the delta in the following entry to be + * updated. + */ + result = VDO_ASSERT((key < delta_entry->key), + "key precedes following entry"); + if (result != VDO_SUCCESS) + return result; + + result = VDO_ASSERT((key >= delta_entry->key - delta_entry->delta), + "key effects following entry's delta"); + if (result != VDO_SUCCESS) + return result; + + old_entry_size = delta_entry->entry_bits; + next_entry = *delta_entry; + next_value = uds_get_delta_entry_value(&next_entry); + set_delta(delta_entry, key - (delta_entry->key - delta_entry->delta)); + delta_entry->key = key; + set_delta(&next_entry, next_entry.key - key); + next_entry.offset += delta_entry->entry_bits; + /* The two new entries are always bigger than the single entry being replaced. */ + additional_size = (delta_entry->entry_bits + + next_entry.entry_bits - old_entry_size); + result = insert_bits(delta_entry, additional_size); + if (result != UDS_SUCCESS) + return result; + + encode_entry(&next_entry, next_value, NULL); + } + + if (result != UDS_SUCCESS) + return result; + + encode_entry(delta_entry, value, name); + delta_zone = delta_entry->delta_zone; + delta_zone->record_count++; + delta_zone->collision_count += delta_entry->is_collision ? 1 : 0; + return UDS_SUCCESS; +} + +static void delete_bits(const struct delta_index_entry *delta_entry, int size) +{ + u64 source; + u64 destination; + u32 count; + bool before_flag; + struct delta_list *delta_list = delta_entry->delta_list; + u8 *memory = delta_entry->delta_zone->memory; + /* Compute bits retained before and after the deleted bits. */ + u32 total_size = delta_list->size; + u32 before_size = delta_entry->offset; + u32 after_size = total_size - delta_entry->offset - size; + + /* + * Determine whether to add to the available space either before or after the delta list. + * We prefer to move the least amount of data. If it is exactly the same, try to add to the + * smaller amount of free space. + */ + if (before_size < after_size) { + before_flag = true; + } else if (after_size < before_size) { + before_flag = false; + } else { + u64 free_before = + (delta_list[0].start - (delta_list[-1].start + delta_list[-1].size)); + u64 free_after = + (delta_list[1].start - (delta_list[0].start + delta_list[0].size)); + + before_flag = (free_before < free_after); + } + + delta_list->size -= size; + if (before_flag) { + source = delta_list->start; + destination = source + size; + delta_list->start += size; + count = before_size; + } else { + destination = delta_list->start + delta_entry->offset; + source = destination + size; + count = after_size; + } + + move_bits(memory, source, memory, destination, count); +} + +int uds_remove_delta_index_entry(struct delta_index_entry *delta_entry) +{ + int result; + struct delta_index_entry next_entry; + struct delta_zone *delta_zone; + struct delta_list *delta_list; + + result = assert_mutable_entry(delta_entry); + if (result != UDS_SUCCESS) + return result; + + next_entry = *delta_entry; + result = uds_next_delta_index_entry(&next_entry); + if (result != UDS_SUCCESS) + return result; + + delta_zone = delta_entry->delta_zone; + + if (delta_entry->is_collision) { + /* This is a collision entry, so just remove it. */ + delete_bits(delta_entry, delta_entry->entry_bits); + next_entry.offset = delta_entry->offset; + delta_zone->collision_count -= 1; + } else if (next_entry.at_end) { + /* This entry is at the end of the list, so just remove it. */ + delete_bits(delta_entry, delta_entry->entry_bits); + next_entry.key -= delta_entry->delta; + next_entry.offset = delta_entry->offset; + } else { + /* The delta in the next entry needs to be updated. */ + u32 next_value = uds_get_delta_entry_value(&next_entry); + u16 old_size = delta_entry->entry_bits + next_entry.entry_bits; + + if (next_entry.is_collision) { + next_entry.is_collision = false; + delta_zone->collision_count -= 1; + } + + set_delta(&next_entry, delta_entry->delta + next_entry.delta); + next_entry.offset = delta_entry->offset; + /* The one new entry is always smaller than the two entries being replaced. */ + delete_bits(delta_entry, old_size - next_entry.entry_bits); + encode_entry(&next_entry, next_value, NULL); + } + + delta_zone->record_count--; + delta_zone->discard_count++; + *delta_entry = next_entry; + + delta_list = delta_entry->delta_list; + if (delta_entry->offset < delta_list->save_offset) { + /* The saved entry offset is no longer valid. */ + delta_list->save_key = 0; + delta_list->save_offset = 0; + } + + return UDS_SUCCESS; +} + +void uds_get_delta_index_stats(const struct delta_index *delta_index, + struct delta_index_stats *stats) +{ + unsigned int z; + const struct delta_zone *delta_zone; + + memset(stats, 0, sizeof(struct delta_index_stats)); + for (z = 0; z < delta_index->zone_count; z++) { + delta_zone = &delta_index->delta_zones[z]; + stats->rebalance_time += delta_zone->rebalance_time; + stats->rebalance_count += delta_zone->rebalance_count; + stats->record_count += delta_zone->record_count; + stats->collision_count += delta_zone->collision_count; + stats->discard_count += delta_zone->discard_count; + stats->overflow_count += delta_zone->overflow_count; + stats->list_count += delta_zone->list_count; + } +} + +size_t uds_compute_delta_index_size(u32 entry_count, u32 mean_delta, u32 payload_bits) +{ + u16 min_bits; + u32 incr_keys; + u32 min_keys; + + compute_coding_constants(mean_delta, &min_bits, &min_keys, &incr_keys); + /* On average, each delta is encoded into about min_bits + 1.5 bits. */ + return entry_count * (payload_bits + min_bits + 1) + entry_count / 2; +} + +u32 uds_get_delta_index_page_count(u32 entry_count, u32 list_count, u32 mean_delta, + u32 payload_bits, size_t bytes_per_page) +{ + unsigned int bits_per_delta_list; + unsigned int bits_per_page; + size_t bits_per_index; + + /* Compute the expected number of bits needed for all the entries. */ + bits_per_index = uds_compute_delta_index_size(entry_count, mean_delta, + payload_bits); + bits_per_delta_list = bits_per_index / list_count; + + /* Add in the immutable delta list headers. */ + bits_per_index += list_count * IMMUTABLE_HEADER_SIZE; + /* Compute the number of usable bits on an immutable index page. */ + bits_per_page = ((bytes_per_page - sizeof(struct delta_page_header)) * BITS_PER_BYTE); + /* + * Reduce the bits per page by one immutable delta list header and one delta list to + * account for internal fragmentation. + */ + bits_per_page -= IMMUTABLE_HEADER_SIZE + bits_per_delta_list; + /* Now compute the number of pages needed. */ + return DIV_ROUND_UP(bits_per_index, bits_per_page); +} + +void uds_log_delta_index_entry(struct delta_index_entry *delta_entry) +{ + vdo_log_ratelimit(vdo_log_info, + "List 0x%X Key 0x%X Offset 0x%X%s%s List_size 0x%X%s", + delta_entry->list_number, delta_entry->key, + delta_entry->offset, delta_entry->at_end ? " end" : "", + delta_entry->is_collision ? " collision" : "", + delta_entry->delta_list->size, + delta_entry->list_overflow ? " overflow" : ""); + delta_entry->list_overflow = false; +} |