diff options
Diffstat (limited to 'drivers/md/dm-vdo/memory-alloc.c')
-rw-r--r-- | drivers/md/dm-vdo/memory-alloc.c | 438 |
1 files changed, 438 insertions, 0 deletions
diff --git a/drivers/md/dm-vdo/memory-alloc.c b/drivers/md/dm-vdo/memory-alloc.c new file mode 100644 index 0000000000..185f259c72 --- /dev/null +++ b/drivers/md/dm-vdo/memory-alloc.c @@ -0,0 +1,438 @@ +// SPDX-License-Identifier: GPL-2.0-only +/* + * Copyright 2023 Red Hat + */ + +#include <linux/delay.h> +#include <linux/mm.h> +#include <linux/sched/mm.h> +#include <linux/slab.h> +#include <linux/vmalloc.h> + +#include "logger.h" +#include "memory-alloc.h" +#include "permassert.h" + +/* + * UDS and VDO keep track of which threads are allowed to allocate memory freely, and which threads + * must be careful to not do a memory allocation that does an I/O request. The 'allocating_threads' + * thread_registry and its associated methods implement this tracking. + */ +static struct thread_registry allocating_threads; + +static inline bool allocations_allowed(void) +{ + return vdo_lookup_thread(&allocating_threads) != NULL; +} + +/* + * Register the current thread as an allocating thread. + * + * An optional flag location can be supplied indicating whether, at any given point in time, the + * threads associated with that flag should be allocating storage. If the flag is false, a message + * will be logged. + * + * If no flag is supplied, the thread is always allowed to allocate storage without complaint. + * + * @new_thread: registered_thread structure to use for the current thread + * @flag_ptr: Location of the allocation-allowed flag + */ +void vdo_register_allocating_thread(struct registered_thread *new_thread, + const bool *flag_ptr) +{ + if (flag_ptr == NULL) { + static const bool allocation_always_allowed = true; + + flag_ptr = &allocation_always_allowed; + } + + vdo_register_thread(&allocating_threads, new_thread, flag_ptr); +} + +/* Unregister the current thread as an allocating thread. */ +void vdo_unregister_allocating_thread(void) +{ + vdo_unregister_thread(&allocating_threads); +} + +/* + * We track how much memory has been allocated and freed. When we unload the module, we log an + * error if we have not freed all the memory that we allocated. Nearly all memory allocation and + * freeing is done using this module. + * + * We do not use kernel functions like the kvasprintf() method, which allocate memory indirectly + * using kmalloc. + * + * These data structures and methods are used to track the amount of memory used. + */ + +/* + * We allocate very few large objects, and allocation/deallocation isn't done in a + * performance-critical stage for us, so a linked list should be fine. + */ +struct vmalloc_block_info { + void *ptr; + size_t size; + struct vmalloc_block_info *next; +}; + +static struct { + spinlock_t lock; + size_t kmalloc_blocks; + size_t kmalloc_bytes; + size_t vmalloc_blocks; + size_t vmalloc_bytes; + size_t peak_bytes; + struct vmalloc_block_info *vmalloc_list; +} memory_stats __cacheline_aligned; + +static void update_peak_usage(void) +{ + size_t total_bytes = memory_stats.kmalloc_bytes + memory_stats.vmalloc_bytes; + + if (total_bytes > memory_stats.peak_bytes) + memory_stats.peak_bytes = total_bytes; +} + +static void add_kmalloc_block(size_t size) +{ + unsigned long flags; + + spin_lock_irqsave(&memory_stats.lock, flags); + memory_stats.kmalloc_blocks++; + memory_stats.kmalloc_bytes += size; + update_peak_usage(); + spin_unlock_irqrestore(&memory_stats.lock, flags); +} + +static void remove_kmalloc_block(size_t size) +{ + unsigned long flags; + + spin_lock_irqsave(&memory_stats.lock, flags); + memory_stats.kmalloc_blocks--; + memory_stats.kmalloc_bytes -= size; + spin_unlock_irqrestore(&memory_stats.lock, flags); +} + +static void add_vmalloc_block(struct vmalloc_block_info *block) +{ + unsigned long flags; + + spin_lock_irqsave(&memory_stats.lock, flags); + block->next = memory_stats.vmalloc_list; + memory_stats.vmalloc_list = block; + memory_stats.vmalloc_blocks++; + memory_stats.vmalloc_bytes += block->size; + update_peak_usage(); + spin_unlock_irqrestore(&memory_stats.lock, flags); +} + +static void remove_vmalloc_block(void *ptr) +{ + struct vmalloc_block_info *block; + struct vmalloc_block_info **block_ptr; + unsigned long flags; + + spin_lock_irqsave(&memory_stats.lock, flags); + for (block_ptr = &memory_stats.vmalloc_list; + (block = *block_ptr) != NULL; + block_ptr = &block->next) { + if (block->ptr == ptr) { + *block_ptr = block->next; + memory_stats.vmalloc_blocks--; + memory_stats.vmalloc_bytes -= block->size; + break; + } + } + + spin_unlock_irqrestore(&memory_stats.lock, flags); + if (block != NULL) + vdo_free(block); + else + vdo_log_info("attempting to remove ptr %px not found in vmalloc list", ptr); +} + +/* + * Determine whether allocating a memory block should use kmalloc or __vmalloc. + * + * vmalloc can allocate any integral number of pages. + * + * kmalloc can allocate any number of bytes up to a configured limit, which defaults to 8 megabytes + * on some systems. kmalloc is especially good when memory is being both allocated and freed, and + * it does this efficiently in a multi CPU environment. + * + * kmalloc usually rounds the size of the block up to the next power of two, so when the requested + * block is bigger than PAGE_SIZE / 2 bytes, kmalloc will never give you less space than the + * corresponding vmalloc allocation. Sometimes vmalloc will use less overhead than kmalloc. + * + * The advantages of kmalloc do not help out UDS or VDO, because we allocate all our memory up + * front and do not free and reallocate it. Sometimes we have problems using kmalloc, because the + * Linux memory page map can become so fragmented that kmalloc will not give us a 32KB chunk. We + * have used vmalloc as a backup to kmalloc in the past, and a follow-up vmalloc of 32KB will work. + * But there is no strong case to be made for using kmalloc over vmalloc for these size chunks. + * + * The kmalloc/vmalloc boundary is set at 4KB, and kmalloc gets the 4KB requests. There is no + * strong reason for favoring either kmalloc or vmalloc for 4KB requests, except that tracking + * vmalloc statistics uses a linked list implementation. Using a simple test, this choice of + * boundary results in 132 vmalloc calls. Using vmalloc for requests of exactly 4KB results in an + * additional 6374 vmalloc calls, which is much less efficient for tracking. + * + * @size: How many bytes to allocate + */ +static inline bool use_kmalloc(size_t size) +{ + return size <= PAGE_SIZE; +} + +/* + * Allocate storage based on memory size and alignment, logging an error if the allocation fails. + * The memory will be zeroed. + * + * @size: The size of an object + * @align: The required alignment + * @what: What is being allocated (for error logging) + * @ptr: A pointer to hold the allocated memory + * + * Return: VDO_SUCCESS or an error code + */ +int vdo_allocate_memory(size_t size, size_t align, const char *what, void *ptr) +{ + /* + * The __GFP_RETRY_MAYFAIL flag means the VM implementation will retry memory reclaim + * procedures that have previously failed if there is some indication that progress has + * been made elsewhere. It can wait for other tasks to attempt high level approaches to + * freeing memory such as compaction (which removes fragmentation) and page-out. There is + * still a definite limit to the number of retries, but it is a larger limit than with + * __GFP_NORETRY. Allocations with this flag may fail, but only when there is genuinely + * little unused memory. While these allocations do not directly trigger the OOM killer, + * their failure indicates that the system is likely to need to use the OOM killer soon. + * The caller must handle failure, but can reasonably do so by failing a higher-level + * request, or completing it only in a much less efficient manner. + */ + const gfp_t gfp_flags = GFP_KERNEL | __GFP_ZERO | __GFP_RETRY_MAYFAIL; + unsigned int noio_flags; + bool allocations_restricted = !allocations_allowed(); + unsigned long start_time; + void *p = NULL; + + if (unlikely(ptr == NULL)) + return -EINVAL; + + if (size == 0) { + *((void **) ptr) = NULL; + return VDO_SUCCESS; + } + + if (allocations_restricted) + noio_flags = memalloc_noio_save(); + + start_time = jiffies; + if (use_kmalloc(size) && (align < PAGE_SIZE)) { + p = kmalloc(size, gfp_flags | __GFP_NOWARN); + if (p == NULL) { + /* + * It is possible for kmalloc to fail to allocate memory because there is + * no page available. A short sleep may allow the page reclaimer to + * free a page. + */ + fsleep(1000); + p = kmalloc(size, gfp_flags); + } + + if (p != NULL) + add_kmalloc_block(ksize(p)); + } else { + struct vmalloc_block_info *block; + + if (vdo_allocate(1, struct vmalloc_block_info, __func__, &block) == VDO_SUCCESS) { + /* + * It is possible for __vmalloc to fail to allocate memory because there + * are no pages available. A short sleep may allow the page reclaimer + * to free enough pages for a small allocation. + * + * For larger allocations, the page_alloc code is racing against the page + * reclaimer. If the page reclaimer can stay ahead of page_alloc, the + * __vmalloc will succeed. But if page_alloc overtakes the page reclaimer, + * the allocation fails. It is possible that more retries will succeed. + */ + for (;;) { + p = __vmalloc(size, gfp_flags | __GFP_NOWARN); + if (p != NULL) + break; + + if (jiffies_to_msecs(jiffies - start_time) > 1000) { + /* Try one more time, logging a failure for this call. */ + p = __vmalloc(size, gfp_flags); + break; + } + + fsleep(1000); + } + + if (p == NULL) { + vdo_free(block); + } else { + block->ptr = p; + block->size = PAGE_ALIGN(size); + add_vmalloc_block(block); + } + } + } + + if (allocations_restricted) + memalloc_noio_restore(noio_flags); + + if (unlikely(p == NULL)) { + vdo_log_error("Could not allocate %zu bytes for %s in %u msecs", + size, what, jiffies_to_msecs(jiffies - start_time)); + return -ENOMEM; + } + + *((void **) ptr) = p; + return VDO_SUCCESS; +} + +/* + * Allocate storage based on memory size, failing immediately if the required memory is not + * available. The memory will be zeroed. + * + * @size: The size of an object. + * @what: What is being allocated (for error logging) + * + * Return: pointer to the allocated memory, or NULL if the required space is not available. + */ +void *vdo_allocate_memory_nowait(size_t size, const char *what __maybe_unused) +{ + void *p = kmalloc(size, GFP_NOWAIT | __GFP_ZERO); + + if (p != NULL) + add_kmalloc_block(ksize(p)); + + return p; +} + +void vdo_free(void *ptr) +{ + if (ptr != NULL) { + if (is_vmalloc_addr(ptr)) { + remove_vmalloc_block(ptr); + vfree(ptr); + } else { + remove_kmalloc_block(ksize(ptr)); + kfree(ptr); + } + } +} + +/* + * Reallocate dynamically allocated memory. There are no alignment guarantees for the reallocated + * memory. If the new memory is larger than the old memory, the new space will be zeroed. + * + * @ptr: The memory to reallocate. + * @old_size: The old size of the memory + * @size: The new size to allocate + * @what: What is being allocated (for error logging) + * @new_ptr: A pointer to hold the reallocated pointer + * + * Return: VDO_SUCCESS or an error code + */ +int vdo_reallocate_memory(void *ptr, size_t old_size, size_t size, const char *what, + void *new_ptr) +{ + int result; + + if (size == 0) { + vdo_free(ptr); + *(void **) new_ptr = NULL; + return VDO_SUCCESS; + } + + result = vdo_allocate(size, char, what, new_ptr); + if (result != VDO_SUCCESS) + return result; + + if (ptr != NULL) { + if (old_size < size) + size = old_size; + + memcpy(*((void **) new_ptr), ptr, size); + vdo_free(ptr); + } + + return VDO_SUCCESS; +} + +int vdo_duplicate_string(const char *string, const char *what, char **new_string) +{ + int result; + u8 *dup; + + result = vdo_allocate(strlen(string) + 1, u8, what, &dup); + if (result != VDO_SUCCESS) + return result; + + memcpy(dup, string, strlen(string) + 1); + *new_string = dup; + return VDO_SUCCESS; +} + +void vdo_memory_init(void) +{ + spin_lock_init(&memory_stats.lock); + vdo_initialize_thread_registry(&allocating_threads); +} + +void vdo_memory_exit(void) +{ + VDO_ASSERT_LOG_ONLY(memory_stats.kmalloc_bytes == 0, + "kmalloc memory used (%zd bytes in %zd blocks) is returned to the kernel", + memory_stats.kmalloc_bytes, memory_stats.kmalloc_blocks); + VDO_ASSERT_LOG_ONLY(memory_stats.vmalloc_bytes == 0, + "vmalloc memory used (%zd bytes in %zd blocks) is returned to the kernel", + memory_stats.vmalloc_bytes, memory_stats.vmalloc_blocks); + vdo_log_debug("peak usage %zd bytes", memory_stats.peak_bytes); +} + +void vdo_get_memory_stats(u64 *bytes_used, u64 *peak_bytes_used) +{ + unsigned long flags; + + spin_lock_irqsave(&memory_stats.lock, flags); + *bytes_used = memory_stats.kmalloc_bytes + memory_stats.vmalloc_bytes; + *peak_bytes_used = memory_stats.peak_bytes; + spin_unlock_irqrestore(&memory_stats.lock, flags); +} + +/* + * Report stats on any allocated memory that we're tracking. Not all allocation types are + * guaranteed to be tracked in bytes (e.g., bios). + */ +void vdo_report_memory_usage(void) +{ + unsigned long flags; + u64 kmalloc_blocks; + u64 kmalloc_bytes; + u64 vmalloc_blocks; + u64 vmalloc_bytes; + u64 peak_usage; + u64 total_bytes; + + spin_lock_irqsave(&memory_stats.lock, flags); + kmalloc_blocks = memory_stats.kmalloc_blocks; + kmalloc_bytes = memory_stats.kmalloc_bytes; + vmalloc_blocks = memory_stats.vmalloc_blocks; + vmalloc_bytes = memory_stats.vmalloc_bytes; + peak_usage = memory_stats.peak_bytes; + spin_unlock_irqrestore(&memory_stats.lock, flags); + total_bytes = kmalloc_bytes + vmalloc_bytes; + vdo_log_info("current module memory tracking (actual allocation sizes, not requested):"); + vdo_log_info(" %llu bytes in %llu kmalloc blocks", + (unsigned long long) kmalloc_bytes, + (unsigned long long) kmalloc_blocks); + vdo_log_info(" %llu bytes in %llu vmalloc blocks", + (unsigned long long) vmalloc_bytes, + (unsigned long long) vmalloc_blocks); + vdo_log_info(" total %llu bytes, peak usage %llu bytes", + (unsigned long long) total_bytes, (unsigned long long) peak_usage); +} |