diff options
Diffstat (limited to 'drivers/media/i2c/aptina-pll.c')
-rw-r--r-- | drivers/media/i2c/aptina-pll.c | 159 |
1 files changed, 159 insertions, 0 deletions
diff --git a/drivers/media/i2c/aptina-pll.c b/drivers/media/i2c/aptina-pll.c new file mode 100644 index 0000000000..b1f89bbf9d --- /dev/null +++ b/drivers/media/i2c/aptina-pll.c @@ -0,0 +1,159 @@ +// SPDX-License-Identifier: GPL-2.0-only +/* + * Aptina Sensor PLL Configuration + * + * Copyright (C) 2012 Laurent Pinchart <laurent.pinchart@ideasonboard.com> + */ + +#include <linux/device.h> +#include <linux/gcd.h> +#include <linux/kernel.h> +#include <linux/module.h> + +#include "aptina-pll.h" + +int aptina_pll_calculate(struct device *dev, + const struct aptina_pll_limits *limits, + struct aptina_pll *pll) +{ + unsigned int mf_min; + unsigned int mf_max; + unsigned int p1_min; + unsigned int p1_max; + unsigned int p1; + unsigned int div; + + dev_dbg(dev, "PLL: ext clock %u pix clock %u\n", + pll->ext_clock, pll->pix_clock); + + if (pll->ext_clock < limits->ext_clock_min || + pll->ext_clock > limits->ext_clock_max) { + dev_err(dev, "pll: invalid external clock frequency.\n"); + return -EINVAL; + } + + if (pll->pix_clock == 0 || pll->pix_clock > limits->pix_clock_max) { + dev_err(dev, "pll: invalid pixel clock frequency.\n"); + return -EINVAL; + } + + /* Compute the multiplier M and combined N*P1 divisor. */ + div = gcd(pll->pix_clock, pll->ext_clock); + pll->m = pll->pix_clock / div; + div = pll->ext_clock / div; + + /* We now have the smallest M and N*P1 values that will result in the + * desired pixel clock frequency, but they might be out of the valid + * range. Compute the factor by which we should multiply them given the + * following constraints: + * + * - minimum/maximum multiplier + * - minimum/maximum multiplier output clock frequency assuming the + * minimum/maximum N value + * - minimum/maximum combined N*P1 divisor + */ + mf_min = DIV_ROUND_UP(limits->m_min, pll->m); + mf_min = max(mf_min, limits->out_clock_min / + (pll->ext_clock / limits->n_min * pll->m)); + mf_min = max(mf_min, limits->n_min * limits->p1_min / div); + mf_max = limits->m_max / pll->m; + mf_max = min(mf_max, limits->out_clock_max / + (pll->ext_clock / limits->n_max * pll->m)); + mf_max = min(mf_max, DIV_ROUND_UP(limits->n_max * limits->p1_max, div)); + + dev_dbg(dev, "pll: mf min %u max %u\n", mf_min, mf_max); + if (mf_min > mf_max) { + dev_err(dev, "pll: no valid combined N*P1 divisor.\n"); + return -EINVAL; + } + + /* + * We're looking for the highest acceptable P1 value for which a + * multiplier factor MF exists that fulfills the following conditions: + * + * 1. p1 is in the [p1_min, p1_max] range given by the limits and is + * even + * 2. mf is in the [mf_min, mf_max] range computed above + * 3. div * mf is a multiple of p1, in order to compute + * n = div * mf / p1 + * m = pll->m * mf + * 4. the internal clock frequency, given by ext_clock / n, is in the + * [int_clock_min, int_clock_max] range given by the limits + * 5. the output clock frequency, given by ext_clock / n * m, is in the + * [out_clock_min, out_clock_max] range given by the limits + * + * The first naive approach is to iterate over all p1 values acceptable + * according to (1) and all mf values acceptable according to (2), and + * stop at the first combination that fulfills (3), (4) and (5). This + * has a O(n^2) complexity. + * + * Instead of iterating over all mf values in the [mf_min, mf_max] range + * we can compute the mf increment between two acceptable values + * according to (3) with + * + * mf_inc = p1 / gcd(div, p1) (6) + * + * and round the minimum up to the nearest multiple of mf_inc. This will + * restrict the number of mf values to be checked. + * + * Furthermore, conditions (4) and (5) only restrict the range of + * acceptable p1 and mf values by modifying the minimum and maximum + * limits. (5) can be expressed as + * + * ext_clock / (div * mf / p1) * m * mf >= out_clock_min + * ext_clock / (div * mf / p1) * m * mf <= out_clock_max + * + * or + * + * p1 >= out_clock_min * div / (ext_clock * m) (7) + * p1 <= out_clock_max * div / (ext_clock * m) + * + * Similarly, (4) can be expressed as + * + * mf >= ext_clock * p1 / (int_clock_max * div) (8) + * mf <= ext_clock * p1 / (int_clock_min * div) + * + * We can thus iterate over the restricted p1 range defined by the + * combination of (1) and (7), and then compute the restricted mf range + * defined by the combination of (2), (6) and (8). If the resulting mf + * range is not empty, any value in the mf range is acceptable. We thus + * select the mf lwoer bound and the corresponding p1 value. + */ + if (limits->p1_min == 0) { + dev_err(dev, "pll: P1 minimum value must be >0.\n"); + return -EINVAL; + } + + p1_min = max(limits->p1_min, DIV_ROUND_UP(limits->out_clock_min * div, + pll->ext_clock * pll->m)); + p1_max = min(limits->p1_max, limits->out_clock_max * div / + (pll->ext_clock * pll->m)); + + for (p1 = p1_max & ~1; p1 >= p1_min; p1 -= 2) { + unsigned int mf_inc = p1 / gcd(div, p1); + unsigned int mf_high; + unsigned int mf_low; + + mf_low = roundup(max(mf_min, DIV_ROUND_UP(pll->ext_clock * p1, + limits->int_clock_max * div)), mf_inc); + mf_high = min(mf_max, pll->ext_clock * p1 / + (limits->int_clock_min * div)); + + if (mf_low > mf_high) + continue; + + pll->n = div * mf_low / p1; + pll->m *= mf_low; + pll->p1 = p1; + dev_dbg(dev, "PLL: N %u M %u P1 %u\n", pll->n, pll->m, pll->p1); + return 0; + } + + dev_err(dev, "pll: no valid N and P1 divisors found.\n"); + return -EINVAL; +} +EXPORT_SYMBOL_GPL(aptina_pll_calculate); + +MODULE_DESCRIPTION("Aptina PLL Helpers"); +MODULE_AUTHOR("Laurent Pinchart <laurent.pinchart@ideasonboard.com>"); +MODULE_LICENSE("GPL v2"); |