diff options
Diffstat (limited to '')
-rw-r--r-- | drivers/mtd/nand/raw/denali.c | 1381 |
1 files changed, 1381 insertions, 0 deletions
diff --git a/drivers/mtd/nand/raw/denali.c b/drivers/mtd/nand/raw/denali.c new file mode 100644 index 0000000000..fa2439cb4d --- /dev/null +++ b/drivers/mtd/nand/raw/denali.c @@ -0,0 +1,1381 @@ +// SPDX-License-Identifier: GPL-2.0 +/* + * NAND Flash Controller Device Driver + * Copyright © 2009-2010, Intel Corporation and its suppliers. + * + * Copyright (c) 2017-2019 Socionext Inc. + * Reworked by Masahiro Yamada <yamada.masahiro@socionext.com> + */ + +#include <linux/bitfield.h> +#include <linux/completion.h> +#include <linux/dma-mapping.h> +#include <linux/interrupt.h> +#include <linux/io.h> +#include <linux/module.h> +#include <linux/mtd/mtd.h> +#include <linux/mtd/rawnand.h> +#include <linux/slab.h> +#include <linux/spinlock.h> + +#include "denali.h" + +#define DENALI_NAND_NAME "denali-nand" + +/* for Indexed Addressing */ +#define DENALI_INDEXED_CTRL 0x00 +#define DENALI_INDEXED_DATA 0x10 + +#define DENALI_MAP00 (0 << 26) /* direct access to buffer */ +#define DENALI_MAP01 (1 << 26) /* read/write pages in PIO */ +#define DENALI_MAP10 (2 << 26) /* high-level control plane */ +#define DENALI_MAP11 (3 << 26) /* direct controller access */ + +/* MAP11 access cycle type */ +#define DENALI_MAP11_CMD ((DENALI_MAP11) | 0) /* command cycle */ +#define DENALI_MAP11_ADDR ((DENALI_MAP11) | 1) /* address cycle */ +#define DENALI_MAP11_DATA ((DENALI_MAP11) | 2) /* data cycle */ + +#define DENALI_BANK(denali) ((denali)->active_bank << 24) + +#define DENALI_INVALID_BANK -1 + +static struct denali_chip *to_denali_chip(struct nand_chip *chip) +{ + return container_of(chip, struct denali_chip, chip); +} + +static struct denali_controller *to_denali_controller(struct nand_chip *chip) +{ + return container_of(chip->controller, struct denali_controller, + controller); +} + +/* + * Direct Addressing - the slave address forms the control information (command + * type, bank, block, and page address). The slave data is the actual data to + * be transferred. This mode requires 28 bits of address region allocated. + */ +static u32 denali_direct_read(struct denali_controller *denali, u32 addr) +{ + return ioread32(denali->host + addr); +} + +static void denali_direct_write(struct denali_controller *denali, u32 addr, + u32 data) +{ + iowrite32(data, denali->host + addr); +} + +/* + * Indexed Addressing - address translation module intervenes in passing the + * control information. This mode reduces the required address range. The + * control information and transferred data are latched by the registers in + * the translation module. + */ +static u32 denali_indexed_read(struct denali_controller *denali, u32 addr) +{ + iowrite32(addr, denali->host + DENALI_INDEXED_CTRL); + return ioread32(denali->host + DENALI_INDEXED_DATA); +} + +static void denali_indexed_write(struct denali_controller *denali, u32 addr, + u32 data) +{ + iowrite32(addr, denali->host + DENALI_INDEXED_CTRL); + iowrite32(data, denali->host + DENALI_INDEXED_DATA); +} + +static void denali_enable_irq(struct denali_controller *denali) +{ + int i; + + for (i = 0; i < denali->nbanks; i++) + iowrite32(U32_MAX, denali->reg + INTR_EN(i)); + iowrite32(GLOBAL_INT_EN_FLAG, denali->reg + GLOBAL_INT_ENABLE); +} + +static void denali_disable_irq(struct denali_controller *denali) +{ + int i; + + for (i = 0; i < denali->nbanks; i++) + iowrite32(0, denali->reg + INTR_EN(i)); + iowrite32(0, denali->reg + GLOBAL_INT_ENABLE); +} + +static void denali_clear_irq(struct denali_controller *denali, + int bank, u32 irq_status) +{ + /* write one to clear bits */ + iowrite32(irq_status, denali->reg + INTR_STATUS(bank)); +} + +static void denali_clear_irq_all(struct denali_controller *denali) +{ + int i; + + for (i = 0; i < denali->nbanks; i++) + denali_clear_irq(denali, i, U32_MAX); +} + +static irqreturn_t denali_isr(int irq, void *dev_id) +{ + struct denali_controller *denali = dev_id; + irqreturn_t ret = IRQ_NONE; + u32 irq_status; + int i; + + spin_lock(&denali->irq_lock); + + for (i = 0; i < denali->nbanks; i++) { + irq_status = ioread32(denali->reg + INTR_STATUS(i)); + if (irq_status) + ret = IRQ_HANDLED; + + denali_clear_irq(denali, i, irq_status); + + if (i != denali->active_bank) + continue; + + denali->irq_status |= irq_status; + + if (denali->irq_status & denali->irq_mask) + complete(&denali->complete); + } + + spin_unlock(&denali->irq_lock); + + return ret; +} + +static void denali_reset_irq(struct denali_controller *denali) +{ + unsigned long flags; + + spin_lock_irqsave(&denali->irq_lock, flags); + denali->irq_status = 0; + denali->irq_mask = 0; + spin_unlock_irqrestore(&denali->irq_lock, flags); +} + +static u32 denali_wait_for_irq(struct denali_controller *denali, u32 irq_mask) +{ + unsigned long time_left, flags; + u32 irq_status; + + spin_lock_irqsave(&denali->irq_lock, flags); + + irq_status = denali->irq_status; + + if (irq_mask & irq_status) { + /* return immediately if the IRQ has already happened. */ + spin_unlock_irqrestore(&denali->irq_lock, flags); + return irq_status; + } + + denali->irq_mask = irq_mask; + reinit_completion(&denali->complete); + spin_unlock_irqrestore(&denali->irq_lock, flags); + + time_left = wait_for_completion_timeout(&denali->complete, + msecs_to_jiffies(1000)); + if (!time_left) { + dev_err(denali->dev, "timeout while waiting for irq 0x%x\n", + irq_mask); + return 0; + } + + return denali->irq_status; +} + +static void denali_select_target(struct nand_chip *chip, int cs) +{ + struct denali_controller *denali = to_denali_controller(chip); + struct denali_chip_sel *sel = &to_denali_chip(chip)->sels[cs]; + struct mtd_info *mtd = nand_to_mtd(chip); + + denali->active_bank = sel->bank; + + iowrite32(1 << (chip->phys_erase_shift - chip->page_shift), + denali->reg + PAGES_PER_BLOCK); + iowrite32(chip->options & NAND_BUSWIDTH_16 ? 1 : 0, + denali->reg + DEVICE_WIDTH); + iowrite32(mtd->writesize, denali->reg + DEVICE_MAIN_AREA_SIZE); + iowrite32(mtd->oobsize, denali->reg + DEVICE_SPARE_AREA_SIZE); + iowrite32(chip->options & NAND_ROW_ADDR_3 ? + 0 : TWO_ROW_ADDR_CYCLES__FLAG, + denali->reg + TWO_ROW_ADDR_CYCLES); + iowrite32(FIELD_PREP(ECC_CORRECTION__ERASE_THRESHOLD, 1) | + FIELD_PREP(ECC_CORRECTION__VALUE, chip->ecc.strength), + denali->reg + ECC_CORRECTION); + iowrite32(chip->ecc.size, denali->reg + CFG_DATA_BLOCK_SIZE); + iowrite32(chip->ecc.size, denali->reg + CFG_LAST_DATA_BLOCK_SIZE); + iowrite32(chip->ecc.steps, denali->reg + CFG_NUM_DATA_BLOCKS); + + if (chip->options & NAND_KEEP_TIMINGS) + return; + + /* update timing registers unless NAND_KEEP_TIMINGS is set */ + iowrite32(sel->hwhr2_and_we_2_re, denali->reg + TWHR2_AND_WE_2_RE); + iowrite32(sel->tcwaw_and_addr_2_data, + denali->reg + TCWAW_AND_ADDR_2_DATA); + iowrite32(sel->re_2_we, denali->reg + RE_2_WE); + iowrite32(sel->acc_clks, denali->reg + ACC_CLKS); + iowrite32(sel->rdwr_en_lo_cnt, denali->reg + RDWR_EN_LO_CNT); + iowrite32(sel->rdwr_en_hi_cnt, denali->reg + RDWR_EN_HI_CNT); + iowrite32(sel->cs_setup_cnt, denali->reg + CS_SETUP_CNT); + iowrite32(sel->re_2_re, denali->reg + RE_2_RE); +} + +static int denali_change_column(struct nand_chip *chip, unsigned int offset, + void *buf, unsigned int len, bool write) +{ + if (write) + return nand_change_write_column_op(chip, offset, buf, len, + false); + else + return nand_change_read_column_op(chip, offset, buf, len, + false); +} + +static int denali_payload_xfer(struct nand_chip *chip, void *buf, bool write) +{ + struct denali_controller *denali = to_denali_controller(chip); + struct mtd_info *mtd = nand_to_mtd(chip); + struct nand_ecc_ctrl *ecc = &chip->ecc; + int writesize = mtd->writesize; + int oob_skip = denali->oob_skip_bytes; + int ret, i, pos, len; + + for (i = 0; i < ecc->steps; i++) { + pos = i * (ecc->size + ecc->bytes); + len = ecc->size; + + if (pos >= writesize) { + pos += oob_skip; + } else if (pos + len > writesize) { + /* This chunk overwraps the BBM area. Must be split */ + ret = denali_change_column(chip, pos, buf, + writesize - pos, write); + if (ret) + return ret; + + buf += writesize - pos; + len -= writesize - pos; + pos = writesize + oob_skip; + } + + ret = denali_change_column(chip, pos, buf, len, write); + if (ret) + return ret; + + buf += len; + } + + return 0; +} + +static int denali_oob_xfer(struct nand_chip *chip, void *buf, bool write) +{ + struct denali_controller *denali = to_denali_controller(chip); + struct mtd_info *mtd = nand_to_mtd(chip); + struct nand_ecc_ctrl *ecc = &chip->ecc; + int writesize = mtd->writesize; + int oobsize = mtd->oobsize; + int oob_skip = denali->oob_skip_bytes; + int ret, i, pos, len; + + /* BBM at the beginning of the OOB area */ + ret = denali_change_column(chip, writesize, buf, oob_skip, write); + if (ret) + return ret; + + buf += oob_skip; + + for (i = 0; i < ecc->steps; i++) { + pos = ecc->size + i * (ecc->size + ecc->bytes); + + if (i == ecc->steps - 1) + /* The last chunk includes OOB free */ + len = writesize + oobsize - pos - oob_skip; + else + len = ecc->bytes; + + if (pos >= writesize) { + pos += oob_skip; + } else if (pos + len > writesize) { + /* This chunk overwraps the BBM area. Must be split */ + ret = denali_change_column(chip, pos, buf, + writesize - pos, write); + if (ret) + return ret; + + buf += writesize - pos; + len -= writesize - pos; + pos = writesize + oob_skip; + } + + ret = denali_change_column(chip, pos, buf, len, write); + if (ret) + return ret; + + buf += len; + } + + return 0; +} + +static int denali_read_raw(struct nand_chip *chip, void *buf, void *oob_buf, + int page) +{ + int ret; + + if (!buf && !oob_buf) + return -EINVAL; + + ret = nand_read_page_op(chip, page, 0, NULL, 0); + if (ret) + return ret; + + if (buf) { + ret = denali_payload_xfer(chip, buf, false); + if (ret) + return ret; + } + + if (oob_buf) { + ret = denali_oob_xfer(chip, oob_buf, false); + if (ret) + return ret; + } + + return 0; +} + +static int denali_write_raw(struct nand_chip *chip, const void *buf, + const void *oob_buf, int page) +{ + int ret; + + if (!buf && !oob_buf) + return -EINVAL; + + ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0); + if (ret) + return ret; + + if (buf) { + ret = denali_payload_xfer(chip, (void *)buf, true); + if (ret) + return ret; + } + + if (oob_buf) { + ret = denali_oob_xfer(chip, (void *)oob_buf, true); + if (ret) + return ret; + } + + return nand_prog_page_end_op(chip); +} + +static int denali_read_page_raw(struct nand_chip *chip, u8 *buf, + int oob_required, int page) +{ + return denali_read_raw(chip, buf, oob_required ? chip->oob_poi : NULL, + page); +} + +static int denali_write_page_raw(struct nand_chip *chip, const u8 *buf, + int oob_required, int page) +{ + return denali_write_raw(chip, buf, oob_required ? chip->oob_poi : NULL, + page); +} + +static int denali_read_oob(struct nand_chip *chip, int page) +{ + return denali_read_raw(chip, NULL, chip->oob_poi, page); +} + +static int denali_write_oob(struct nand_chip *chip, int page) +{ + return denali_write_raw(chip, NULL, chip->oob_poi, page); +} + +static int denali_check_erased_page(struct nand_chip *chip, u8 *buf, + unsigned long uncor_ecc_flags, + unsigned int max_bitflips) +{ + struct denali_controller *denali = to_denali_controller(chip); + struct mtd_ecc_stats *ecc_stats = &nand_to_mtd(chip)->ecc_stats; + struct nand_ecc_ctrl *ecc = &chip->ecc; + u8 *ecc_code = chip->oob_poi + denali->oob_skip_bytes; + int i, stat; + + for (i = 0; i < ecc->steps; i++) { + if (!(uncor_ecc_flags & BIT(i))) + continue; + + stat = nand_check_erased_ecc_chunk(buf, ecc->size, ecc_code, + ecc->bytes, NULL, 0, + ecc->strength); + if (stat < 0) { + ecc_stats->failed++; + } else { + ecc_stats->corrected += stat; + max_bitflips = max_t(unsigned int, max_bitflips, stat); + } + + buf += ecc->size; + ecc_code += ecc->bytes; + } + + return max_bitflips; +} + +static int denali_hw_ecc_fixup(struct nand_chip *chip, + unsigned long *uncor_ecc_flags) +{ + struct denali_controller *denali = to_denali_controller(chip); + struct mtd_ecc_stats *ecc_stats = &nand_to_mtd(chip)->ecc_stats; + int bank = denali->active_bank; + u32 ecc_cor; + unsigned int max_bitflips; + + ecc_cor = ioread32(denali->reg + ECC_COR_INFO(bank)); + ecc_cor >>= ECC_COR_INFO__SHIFT(bank); + + if (ecc_cor & ECC_COR_INFO__UNCOR_ERR) { + /* + * This flag is set when uncorrectable error occurs at least in + * one ECC sector. We can not know "how many sectors", or + * "which sector(s)". We need erase-page check for all sectors. + */ + *uncor_ecc_flags = GENMASK(chip->ecc.steps - 1, 0); + return 0; + } + + max_bitflips = FIELD_GET(ECC_COR_INFO__MAX_ERRORS, ecc_cor); + + /* + * The register holds the maximum of per-sector corrected bitflips. + * This is suitable for the return value of the ->read_page() callback. + * Unfortunately, we can not know the total number of corrected bits in + * the page. Increase the stats by max_bitflips. (compromised solution) + */ + ecc_stats->corrected += max_bitflips; + + return max_bitflips; +} + +static int denali_sw_ecc_fixup(struct nand_chip *chip, + unsigned long *uncor_ecc_flags, u8 *buf) +{ + struct denali_controller *denali = to_denali_controller(chip); + struct mtd_ecc_stats *ecc_stats = &nand_to_mtd(chip)->ecc_stats; + unsigned int ecc_size = chip->ecc.size; + unsigned int bitflips = 0; + unsigned int max_bitflips = 0; + u32 err_addr, err_cor_info; + unsigned int err_byte, err_sector, err_device; + u8 err_cor_value; + unsigned int prev_sector = 0; + u32 irq_status; + + denali_reset_irq(denali); + + do { + err_addr = ioread32(denali->reg + ECC_ERROR_ADDRESS); + err_sector = FIELD_GET(ECC_ERROR_ADDRESS__SECTOR, err_addr); + err_byte = FIELD_GET(ECC_ERROR_ADDRESS__OFFSET, err_addr); + + err_cor_info = ioread32(denali->reg + ERR_CORRECTION_INFO); + err_cor_value = FIELD_GET(ERR_CORRECTION_INFO__BYTE, + err_cor_info); + err_device = FIELD_GET(ERR_CORRECTION_INFO__DEVICE, + err_cor_info); + + /* reset the bitflip counter when crossing ECC sector */ + if (err_sector != prev_sector) + bitflips = 0; + + if (err_cor_info & ERR_CORRECTION_INFO__UNCOR) { + /* + * Check later if this is a real ECC error, or + * an erased sector. + */ + *uncor_ecc_flags |= BIT(err_sector); + } else if (err_byte < ecc_size) { + /* + * If err_byte is larger than ecc_size, means error + * happened in OOB, so we ignore it. It's no need for + * us to correct it err_device is represented the NAND + * error bits are happened in if there are more than + * one NAND connected. + */ + int offset; + unsigned int flips_in_byte; + + offset = (err_sector * ecc_size + err_byte) * + denali->devs_per_cs + err_device; + + /* correct the ECC error */ + flips_in_byte = hweight8(buf[offset] ^ err_cor_value); + buf[offset] ^= err_cor_value; + ecc_stats->corrected += flips_in_byte; + bitflips += flips_in_byte; + + max_bitflips = max(max_bitflips, bitflips); + } + + prev_sector = err_sector; + } while (!(err_cor_info & ERR_CORRECTION_INFO__LAST_ERR)); + + /* + * Once handle all ECC errors, controller will trigger an + * ECC_TRANSACTION_DONE interrupt. + */ + irq_status = denali_wait_for_irq(denali, INTR__ECC_TRANSACTION_DONE); + if (!(irq_status & INTR__ECC_TRANSACTION_DONE)) + return -EIO; + + return max_bitflips; +} + +static void denali_setup_dma64(struct denali_controller *denali, + dma_addr_t dma_addr, int page, bool write) +{ + u32 mode; + const int page_count = 1; + + mode = DENALI_MAP10 | DENALI_BANK(denali) | page; + + /* DMA is a three step process */ + + /* + * 1. setup transfer type, interrupt when complete, + * burst len = 64 bytes, the number of pages + */ + denali->host_write(denali, mode, + 0x01002000 | (64 << 16) | + (write ? BIT(8) : 0) | page_count); + + /* 2. set memory low address */ + denali->host_write(denali, mode, lower_32_bits(dma_addr)); + + /* 3. set memory high address */ + denali->host_write(denali, mode, upper_32_bits(dma_addr)); +} + +static void denali_setup_dma32(struct denali_controller *denali, + dma_addr_t dma_addr, int page, bool write) +{ + u32 mode; + const int page_count = 1; + + mode = DENALI_MAP10 | DENALI_BANK(denali); + + /* DMA is a four step process */ + + /* 1. setup transfer type and # of pages */ + denali->host_write(denali, mode | page, + 0x2000 | (write ? BIT(8) : 0) | page_count); + + /* 2. set memory high address bits 23:8 */ + denali->host_write(denali, mode | ((dma_addr >> 16) << 8), 0x2200); + + /* 3. set memory low address bits 23:8 */ + denali->host_write(denali, mode | ((dma_addr & 0xffff) << 8), 0x2300); + + /* 4. interrupt when complete, burst len = 64 bytes */ + denali->host_write(denali, mode | 0x14000, 0x2400); +} + +static int denali_pio_read(struct denali_controller *denali, u32 *buf, + size_t size, int page) +{ + u32 addr = DENALI_MAP01 | DENALI_BANK(denali) | page; + u32 irq_status, ecc_err_mask; + int i; + + if (denali->caps & DENALI_CAP_HW_ECC_FIXUP) + ecc_err_mask = INTR__ECC_UNCOR_ERR; + else + ecc_err_mask = INTR__ECC_ERR; + + denali_reset_irq(denali); + + for (i = 0; i < size / 4; i++) + buf[i] = denali->host_read(denali, addr); + + irq_status = denali_wait_for_irq(denali, INTR__PAGE_XFER_INC); + if (!(irq_status & INTR__PAGE_XFER_INC)) + return -EIO; + + if (irq_status & INTR__ERASED_PAGE) + memset(buf, 0xff, size); + + return irq_status & ecc_err_mask ? -EBADMSG : 0; +} + +static int denali_pio_write(struct denali_controller *denali, const u32 *buf, + size_t size, int page) +{ + u32 addr = DENALI_MAP01 | DENALI_BANK(denali) | page; + u32 irq_status; + int i; + + denali_reset_irq(denali); + + for (i = 0; i < size / 4; i++) + denali->host_write(denali, addr, buf[i]); + + irq_status = denali_wait_for_irq(denali, + INTR__PROGRAM_COMP | + INTR__PROGRAM_FAIL); + if (!(irq_status & INTR__PROGRAM_COMP)) + return -EIO; + + return 0; +} + +static int denali_pio_xfer(struct denali_controller *denali, void *buf, + size_t size, int page, bool write) +{ + if (write) + return denali_pio_write(denali, buf, size, page); + else + return denali_pio_read(denali, buf, size, page); +} + +static int denali_dma_xfer(struct denali_controller *denali, void *buf, + size_t size, int page, bool write) +{ + dma_addr_t dma_addr; + u32 irq_mask, irq_status, ecc_err_mask; + enum dma_data_direction dir = write ? DMA_TO_DEVICE : DMA_FROM_DEVICE; + int ret = 0; + + dma_addr = dma_map_single(denali->dev, buf, size, dir); + if (dma_mapping_error(denali->dev, dma_addr)) { + dev_dbg(denali->dev, "Failed to DMA-map buffer. Trying PIO.\n"); + return denali_pio_xfer(denali, buf, size, page, write); + } + + if (write) { + /* + * INTR__PROGRAM_COMP is never asserted for the DMA transfer. + * We can use INTR__DMA_CMD_COMP instead. This flag is asserted + * when the page program is completed. + */ + irq_mask = INTR__DMA_CMD_COMP | INTR__PROGRAM_FAIL; + ecc_err_mask = 0; + } else if (denali->caps & DENALI_CAP_HW_ECC_FIXUP) { + irq_mask = INTR__DMA_CMD_COMP; + ecc_err_mask = INTR__ECC_UNCOR_ERR; + } else { + irq_mask = INTR__DMA_CMD_COMP; + ecc_err_mask = INTR__ECC_ERR; + } + + iowrite32(DMA_ENABLE__FLAG, denali->reg + DMA_ENABLE); + /* + * The ->setup_dma() hook kicks DMA by using the data/command + * interface, which belongs to a different AXI port from the + * register interface. Read back the register to avoid a race. + */ + ioread32(denali->reg + DMA_ENABLE); + + denali_reset_irq(denali); + denali->setup_dma(denali, dma_addr, page, write); + + irq_status = denali_wait_for_irq(denali, irq_mask); + if (!(irq_status & INTR__DMA_CMD_COMP)) + ret = -EIO; + else if (irq_status & ecc_err_mask) + ret = -EBADMSG; + + iowrite32(0, denali->reg + DMA_ENABLE); + + dma_unmap_single(denali->dev, dma_addr, size, dir); + + if (irq_status & INTR__ERASED_PAGE) + memset(buf, 0xff, size); + + return ret; +} + +static int denali_page_xfer(struct nand_chip *chip, void *buf, size_t size, + int page, bool write) +{ + struct denali_controller *denali = to_denali_controller(chip); + + denali_select_target(chip, chip->cur_cs); + + if (denali->dma_avail) + return denali_dma_xfer(denali, buf, size, page, write); + else + return denali_pio_xfer(denali, buf, size, page, write); +} + +static int denali_read_page(struct nand_chip *chip, u8 *buf, + int oob_required, int page) +{ + struct denali_controller *denali = to_denali_controller(chip); + struct mtd_info *mtd = nand_to_mtd(chip); + unsigned long uncor_ecc_flags = 0; + int stat = 0; + int ret; + + ret = denali_page_xfer(chip, buf, mtd->writesize, page, false); + if (ret && ret != -EBADMSG) + return ret; + + if (denali->caps & DENALI_CAP_HW_ECC_FIXUP) + stat = denali_hw_ecc_fixup(chip, &uncor_ecc_flags); + else if (ret == -EBADMSG) + stat = denali_sw_ecc_fixup(chip, &uncor_ecc_flags, buf); + + if (stat < 0) + return stat; + + if (uncor_ecc_flags) { + ret = denali_read_oob(chip, page); + if (ret) + return ret; + + stat = denali_check_erased_page(chip, buf, + uncor_ecc_flags, stat); + } + + return stat; +} + +static int denali_write_page(struct nand_chip *chip, const u8 *buf, + int oob_required, int page) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + + return denali_page_xfer(chip, (void *)buf, mtd->writesize, page, true); +} + +static int denali_setup_interface(struct nand_chip *chip, int chipnr, + const struct nand_interface_config *conf) +{ + static const unsigned int data_setup_on_host = 10000; + struct denali_controller *denali = to_denali_controller(chip); + struct denali_chip_sel *sel; + const struct nand_sdr_timings *timings; + unsigned long t_x, mult_x; + int acc_clks, re_2_we, re_2_re, we_2_re, addr_2_data; + int rdwr_en_lo, rdwr_en_hi, rdwr_en_lo_hi, cs_setup; + int addr_2_data_mask; + u32 tmp; + + timings = nand_get_sdr_timings(conf); + if (IS_ERR(timings)) + return PTR_ERR(timings); + + /* clk_x period in picoseconds */ + t_x = DIV_ROUND_DOWN_ULL(1000000000000ULL, denali->clk_x_rate); + if (!t_x) + return -EINVAL; + + /* + * The bus interface clock, clk_x, is phase aligned with the core clock. + * The clk_x is an integral multiple N of the core clk. The value N is + * configured at IP delivery time, and its available value is 4, 5, 6. + */ + mult_x = DIV_ROUND_CLOSEST_ULL(denali->clk_x_rate, denali->clk_rate); + if (mult_x < 4 || mult_x > 6) + return -EINVAL; + + if (chipnr == NAND_DATA_IFACE_CHECK_ONLY) + return 0; + + sel = &to_denali_chip(chip)->sels[chipnr]; + + /* tRWH -> RE_2_WE */ + re_2_we = DIV_ROUND_UP(timings->tRHW_min, t_x); + re_2_we = min_t(int, re_2_we, RE_2_WE__VALUE); + + tmp = ioread32(denali->reg + RE_2_WE); + tmp &= ~RE_2_WE__VALUE; + tmp |= FIELD_PREP(RE_2_WE__VALUE, re_2_we); + sel->re_2_we = tmp; + + /* tRHZ -> RE_2_RE */ + re_2_re = DIV_ROUND_UP(timings->tRHZ_max, t_x); + re_2_re = min_t(int, re_2_re, RE_2_RE__VALUE); + + tmp = ioread32(denali->reg + RE_2_RE); + tmp &= ~RE_2_RE__VALUE; + tmp |= FIELD_PREP(RE_2_RE__VALUE, re_2_re); + sel->re_2_re = tmp; + + /* + * tCCS, tWHR -> WE_2_RE + * + * With WE_2_RE properly set, the Denali controller automatically takes + * care of the delay; the driver need not set NAND_WAIT_TCCS. + */ + we_2_re = DIV_ROUND_UP(max(timings->tCCS_min, timings->tWHR_min), t_x); + we_2_re = min_t(int, we_2_re, TWHR2_AND_WE_2_RE__WE_2_RE); + + tmp = ioread32(denali->reg + TWHR2_AND_WE_2_RE); + tmp &= ~TWHR2_AND_WE_2_RE__WE_2_RE; + tmp |= FIELD_PREP(TWHR2_AND_WE_2_RE__WE_2_RE, we_2_re); + sel->hwhr2_and_we_2_re = tmp; + + /* tADL -> ADDR_2_DATA */ + + /* for older versions, ADDR_2_DATA is only 6 bit wide */ + addr_2_data_mask = TCWAW_AND_ADDR_2_DATA__ADDR_2_DATA; + if (denali->revision < 0x0501) + addr_2_data_mask >>= 1; + + addr_2_data = DIV_ROUND_UP(timings->tADL_min, t_x); + addr_2_data = min_t(int, addr_2_data, addr_2_data_mask); + + tmp = ioread32(denali->reg + TCWAW_AND_ADDR_2_DATA); + tmp &= ~TCWAW_AND_ADDR_2_DATA__ADDR_2_DATA; + tmp |= FIELD_PREP(TCWAW_AND_ADDR_2_DATA__ADDR_2_DATA, addr_2_data); + sel->tcwaw_and_addr_2_data = tmp; + + /* tREH, tWH -> RDWR_EN_HI_CNT */ + rdwr_en_hi = DIV_ROUND_UP(max(timings->tREH_min, timings->tWH_min), + t_x); + rdwr_en_hi = min_t(int, rdwr_en_hi, RDWR_EN_HI_CNT__VALUE); + + tmp = ioread32(denali->reg + RDWR_EN_HI_CNT); + tmp &= ~RDWR_EN_HI_CNT__VALUE; + tmp |= FIELD_PREP(RDWR_EN_HI_CNT__VALUE, rdwr_en_hi); + sel->rdwr_en_hi_cnt = tmp; + + /* + * tREA -> ACC_CLKS + * tRP, tWP, tRHOH, tRC, tWC -> RDWR_EN_LO_CNT + */ + + /* + * Determine the minimum of acc_clks to meet the setup timing when + * capturing the incoming data. + * + * The delay on the chip side is well-defined as tREA, but we need to + * take additional delay into account. This includes a certain degree + * of unknowledge, such as signal propagation delays on the PCB and + * in the SoC, load capacity of the I/O pins, etc. + */ + acc_clks = DIV_ROUND_UP(timings->tREA_max + data_setup_on_host, t_x); + + /* Determine the minimum of rdwr_en_lo_cnt from RE#/WE# pulse width */ + rdwr_en_lo = DIV_ROUND_UP(max(timings->tRP_min, timings->tWP_min), t_x); + + /* Extend rdwr_en_lo to meet the data hold timing */ + rdwr_en_lo = max_t(int, rdwr_en_lo, + acc_clks - timings->tRHOH_min / t_x); + + /* Extend rdwr_en_lo to meet the requirement for RE#/WE# cycle time */ + rdwr_en_lo_hi = DIV_ROUND_UP(max(timings->tRC_min, timings->tWC_min), + t_x); + rdwr_en_lo = max(rdwr_en_lo, rdwr_en_lo_hi - rdwr_en_hi); + rdwr_en_lo = min_t(int, rdwr_en_lo, RDWR_EN_LO_CNT__VALUE); + + /* Center the data latch timing for extra safety */ + acc_clks = (acc_clks + rdwr_en_lo + + DIV_ROUND_UP(timings->tRHOH_min, t_x)) / 2; + acc_clks = min_t(int, acc_clks, ACC_CLKS__VALUE); + + tmp = ioread32(denali->reg + ACC_CLKS); + tmp &= ~ACC_CLKS__VALUE; + tmp |= FIELD_PREP(ACC_CLKS__VALUE, acc_clks); + sel->acc_clks = tmp; + + tmp = ioread32(denali->reg + RDWR_EN_LO_CNT); + tmp &= ~RDWR_EN_LO_CNT__VALUE; + tmp |= FIELD_PREP(RDWR_EN_LO_CNT__VALUE, rdwr_en_lo); + sel->rdwr_en_lo_cnt = tmp; + + /* tCS, tCEA -> CS_SETUP_CNT */ + cs_setup = max3((int)DIV_ROUND_UP(timings->tCS_min, t_x) - rdwr_en_lo, + (int)DIV_ROUND_UP(timings->tCEA_max, t_x) - acc_clks, + 0); + cs_setup = min_t(int, cs_setup, CS_SETUP_CNT__VALUE); + + tmp = ioread32(denali->reg + CS_SETUP_CNT); + tmp &= ~CS_SETUP_CNT__VALUE; + tmp |= FIELD_PREP(CS_SETUP_CNT__VALUE, cs_setup); + sel->cs_setup_cnt = tmp; + + return 0; +} + +int denali_calc_ecc_bytes(int step_size, int strength) +{ + /* BCH code. Denali requires ecc.bytes to be multiple of 2 */ + return DIV_ROUND_UP(strength * fls(step_size * 8), 16) * 2; +} +EXPORT_SYMBOL(denali_calc_ecc_bytes); + +static int denali_ooblayout_ecc(struct mtd_info *mtd, int section, + struct mtd_oob_region *oobregion) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + struct denali_controller *denali = to_denali_controller(chip); + + if (section > 0) + return -ERANGE; + + oobregion->offset = denali->oob_skip_bytes; + oobregion->length = chip->ecc.total; + + return 0; +} + +static int denali_ooblayout_free(struct mtd_info *mtd, int section, + struct mtd_oob_region *oobregion) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + struct denali_controller *denali = to_denali_controller(chip); + + if (section > 0) + return -ERANGE; + + oobregion->offset = chip->ecc.total + denali->oob_skip_bytes; + oobregion->length = mtd->oobsize - oobregion->offset; + + return 0; +} + +static const struct mtd_ooblayout_ops denali_ooblayout_ops = { + .ecc = denali_ooblayout_ecc, + .free = denali_ooblayout_free, +}; + +static int denali_multidev_fixup(struct nand_chip *chip) +{ + struct denali_controller *denali = to_denali_controller(chip); + struct mtd_info *mtd = nand_to_mtd(chip); + struct nand_memory_organization *memorg; + + memorg = nanddev_get_memorg(&chip->base); + + /* + * Support for multi device: + * When the IP configuration is x16 capable and two x8 chips are + * connected in parallel, DEVICES_CONNECTED should be set to 2. + * In this case, the core framework knows nothing about this fact, + * so we should tell it the _logical_ pagesize and anything necessary. + */ + denali->devs_per_cs = ioread32(denali->reg + DEVICES_CONNECTED); + + /* + * On some SoCs, DEVICES_CONNECTED is not auto-detected. + * For those, DEVICES_CONNECTED is left to 0. Set 1 if it is the case. + */ + if (denali->devs_per_cs == 0) { + denali->devs_per_cs = 1; + iowrite32(1, denali->reg + DEVICES_CONNECTED); + } + + if (denali->devs_per_cs == 1) + return 0; + + if (denali->devs_per_cs != 2) { + dev_err(denali->dev, "unsupported number of devices %d\n", + denali->devs_per_cs); + return -EINVAL; + } + + /* 2 chips in parallel */ + memorg->pagesize <<= 1; + memorg->oobsize <<= 1; + mtd->size <<= 1; + mtd->erasesize <<= 1; + mtd->writesize <<= 1; + mtd->oobsize <<= 1; + chip->page_shift += 1; + chip->phys_erase_shift += 1; + chip->bbt_erase_shift += 1; + chip->chip_shift += 1; + chip->pagemask <<= 1; + chip->ecc.size <<= 1; + chip->ecc.bytes <<= 1; + chip->ecc.strength <<= 1; + denali->oob_skip_bytes <<= 1; + + return 0; +} + +static int denali_attach_chip(struct nand_chip *chip) +{ + struct denali_controller *denali = to_denali_controller(chip); + struct mtd_info *mtd = nand_to_mtd(chip); + int ret; + + ret = nand_ecc_choose_conf(chip, denali->ecc_caps, + mtd->oobsize - denali->oob_skip_bytes); + if (ret) { + dev_err(denali->dev, "Failed to setup ECC settings.\n"); + return ret; + } + + dev_dbg(denali->dev, + "chosen ECC settings: step=%d, strength=%d, bytes=%d\n", + chip->ecc.size, chip->ecc.strength, chip->ecc.bytes); + + ret = denali_multidev_fixup(chip); + if (ret) + return ret; + + return 0; +} + +static void denali_exec_in8(struct denali_controller *denali, u32 type, + u8 *buf, unsigned int len) +{ + int i; + + for (i = 0; i < len; i++) + buf[i] = denali->host_read(denali, type | DENALI_BANK(denali)); +} + +static void denali_exec_in16(struct denali_controller *denali, u32 type, + u8 *buf, unsigned int len) +{ + u32 data; + int i; + + for (i = 0; i < len; i += 2) { + data = denali->host_read(denali, type | DENALI_BANK(denali)); + /* bit 31:24 and 15:8 are used for DDR */ + buf[i] = data; + buf[i + 1] = data >> 16; + } +} + +static void denali_exec_in(struct denali_controller *denali, u32 type, + u8 *buf, unsigned int len, bool width16) +{ + if (width16) + denali_exec_in16(denali, type, buf, len); + else + denali_exec_in8(denali, type, buf, len); +} + +static void denali_exec_out8(struct denali_controller *denali, u32 type, + const u8 *buf, unsigned int len) +{ + int i; + + for (i = 0; i < len; i++) + denali->host_write(denali, type | DENALI_BANK(denali), buf[i]); +} + +static void denali_exec_out16(struct denali_controller *denali, u32 type, + const u8 *buf, unsigned int len) +{ + int i; + + for (i = 0; i < len; i += 2) + denali->host_write(denali, type | DENALI_BANK(denali), + buf[i + 1] << 16 | buf[i]); +} + +static void denali_exec_out(struct denali_controller *denali, u32 type, + const u8 *buf, unsigned int len, bool width16) +{ + if (width16) + denali_exec_out16(denali, type, buf, len); + else + denali_exec_out8(denali, type, buf, len); +} + +static int denali_exec_waitrdy(struct denali_controller *denali) +{ + u32 irq_stat; + + /* R/B# pin transitioned from low to high? */ + irq_stat = denali_wait_for_irq(denali, INTR__INT_ACT); + + /* Just in case nand_operation has multiple NAND_OP_WAITRDY_INSTR. */ + denali_reset_irq(denali); + + return irq_stat & INTR__INT_ACT ? 0 : -EIO; +} + +static int denali_exec_instr(struct nand_chip *chip, + const struct nand_op_instr *instr) +{ + struct denali_controller *denali = to_denali_controller(chip); + + switch (instr->type) { + case NAND_OP_CMD_INSTR: + denali_exec_out8(denali, DENALI_MAP11_CMD, + &instr->ctx.cmd.opcode, 1); + return 0; + case NAND_OP_ADDR_INSTR: + denali_exec_out8(denali, DENALI_MAP11_ADDR, + instr->ctx.addr.addrs, + instr->ctx.addr.naddrs); + return 0; + case NAND_OP_DATA_IN_INSTR: + denali_exec_in(denali, DENALI_MAP11_DATA, + instr->ctx.data.buf.in, + instr->ctx.data.len, + !instr->ctx.data.force_8bit && + chip->options & NAND_BUSWIDTH_16); + return 0; + case NAND_OP_DATA_OUT_INSTR: + denali_exec_out(denali, DENALI_MAP11_DATA, + instr->ctx.data.buf.out, + instr->ctx.data.len, + !instr->ctx.data.force_8bit && + chip->options & NAND_BUSWIDTH_16); + return 0; + case NAND_OP_WAITRDY_INSTR: + return denali_exec_waitrdy(denali); + default: + WARN_ONCE(1, "unsupported NAND instruction type: %d\n", + instr->type); + + return -EINVAL; + } +} + +static int denali_exec_op(struct nand_chip *chip, + const struct nand_operation *op, bool check_only) +{ + int i, ret; + + if (check_only) + return 0; + + denali_select_target(chip, op->cs); + + /* + * Some commands contain NAND_OP_WAITRDY_INSTR. + * irq must be cleared here to catch the R/B# interrupt there. + */ + denali_reset_irq(to_denali_controller(chip)); + + for (i = 0; i < op->ninstrs; i++) { + ret = denali_exec_instr(chip, &op->instrs[i]); + if (ret) + return ret; + } + + return 0; +} + +static const struct nand_controller_ops denali_controller_ops = { + .attach_chip = denali_attach_chip, + .exec_op = denali_exec_op, + .setup_interface = denali_setup_interface, +}; + +int denali_chip_init(struct denali_controller *denali, + struct denali_chip *dchip) +{ + struct nand_chip *chip = &dchip->chip; + struct mtd_info *mtd = nand_to_mtd(chip); + struct denali_chip *dchip2; + int i, j, ret; + + chip->controller = &denali->controller; + + /* sanity checks for bank numbers */ + for (i = 0; i < dchip->nsels; i++) { + unsigned int bank = dchip->sels[i].bank; + + if (bank >= denali->nbanks) { + dev_err(denali->dev, "unsupported bank %d\n", bank); + return -EINVAL; + } + + for (j = 0; j < i; j++) { + if (bank == dchip->sels[j].bank) { + dev_err(denali->dev, + "bank %d is assigned twice in the same chip\n", + bank); + return -EINVAL; + } + } + + list_for_each_entry(dchip2, &denali->chips, node) { + for (j = 0; j < dchip2->nsels; j++) { + if (bank == dchip2->sels[j].bank) { + dev_err(denali->dev, + "bank %d is already used\n", + bank); + return -EINVAL; + } + } + } + } + + mtd->dev.parent = denali->dev; + + /* + * Fallback to the default name if DT did not give "label" property. + * Use "label" property if multiple chips are connected. + */ + if (!mtd->name && list_empty(&denali->chips)) + mtd->name = "denali-nand"; + + if (denali->dma_avail) { + chip->options |= NAND_USES_DMA; + chip->buf_align = 16; + } + + /* clk rate info is needed for setup_interface */ + if (!denali->clk_rate || !denali->clk_x_rate) + chip->options |= NAND_KEEP_TIMINGS; + + chip->bbt_options |= NAND_BBT_USE_FLASH; + chip->bbt_options |= NAND_BBT_NO_OOB; + chip->options |= NAND_NO_SUBPAGE_WRITE; + chip->ecc.engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST; + chip->ecc.placement = NAND_ECC_PLACEMENT_INTERLEAVED; + chip->ecc.read_page = denali_read_page; + chip->ecc.write_page = denali_write_page; + chip->ecc.read_page_raw = denali_read_page_raw; + chip->ecc.write_page_raw = denali_write_page_raw; + chip->ecc.read_oob = denali_read_oob; + chip->ecc.write_oob = denali_write_oob; + + mtd_set_ooblayout(mtd, &denali_ooblayout_ops); + + ret = nand_scan(chip, dchip->nsels); + if (ret) + return ret; + + ret = mtd_device_register(mtd, NULL, 0); + if (ret) { + dev_err(denali->dev, "Failed to register MTD: %d\n", ret); + goto cleanup_nand; + } + + list_add_tail(&dchip->node, &denali->chips); + + return 0; + +cleanup_nand: + nand_cleanup(chip); + + return ret; +} +EXPORT_SYMBOL_GPL(denali_chip_init); + +int denali_init(struct denali_controller *denali) +{ + u32 features = ioread32(denali->reg + FEATURES); + int ret; + + nand_controller_init(&denali->controller); + denali->controller.ops = &denali_controller_ops; + init_completion(&denali->complete); + spin_lock_init(&denali->irq_lock); + INIT_LIST_HEAD(&denali->chips); + denali->active_bank = DENALI_INVALID_BANK; + + /* + * The REVISION register may not be reliable. Platforms are allowed to + * override it. + */ + if (!denali->revision) + denali->revision = swab16(ioread32(denali->reg + REVISION)); + + denali->nbanks = 1 << FIELD_GET(FEATURES__N_BANKS, features); + + /* the encoding changed from rev 5.0 to 5.1 */ + if (denali->revision < 0x0501) + denali->nbanks <<= 1; + + if (features & FEATURES__DMA) + denali->dma_avail = true; + + if (denali->dma_avail) { + int dma_bit = denali->caps & DENALI_CAP_DMA_64BIT ? 64 : 32; + + ret = dma_set_mask(denali->dev, DMA_BIT_MASK(dma_bit)); + if (ret) { + dev_info(denali->dev, + "Failed to set DMA mask. Disabling DMA.\n"); + denali->dma_avail = false; + } + } + + if (denali->dma_avail) { + if (denali->caps & DENALI_CAP_DMA_64BIT) + denali->setup_dma = denali_setup_dma64; + else + denali->setup_dma = denali_setup_dma32; + } + + if (features & FEATURES__INDEX_ADDR) { + denali->host_read = denali_indexed_read; + denali->host_write = denali_indexed_write; + } else { + denali->host_read = denali_direct_read; + denali->host_write = denali_direct_write; + } + + /* + * Set how many bytes should be skipped before writing data in OOB. + * If a platform requests a non-zero value, set it to the register. + * Otherwise, read the value out, expecting it has already been set up + * by firmware. + */ + if (denali->oob_skip_bytes) + iowrite32(denali->oob_skip_bytes, + denali->reg + SPARE_AREA_SKIP_BYTES); + else + denali->oob_skip_bytes = ioread32(denali->reg + + SPARE_AREA_SKIP_BYTES); + + iowrite32(0, denali->reg + TRANSFER_SPARE_REG); + iowrite32(GENMASK(denali->nbanks - 1, 0), denali->reg + RB_PIN_ENABLED); + iowrite32(CHIP_EN_DONT_CARE__FLAG, denali->reg + CHIP_ENABLE_DONT_CARE); + iowrite32(ECC_ENABLE__FLAG, denali->reg + ECC_ENABLE); + iowrite32(0xffff, denali->reg + SPARE_AREA_MARKER); + iowrite32(WRITE_PROTECT__FLAG, denali->reg + WRITE_PROTECT); + + denali_clear_irq_all(denali); + + ret = devm_request_irq(denali->dev, denali->irq, denali_isr, + IRQF_SHARED, DENALI_NAND_NAME, denali); + if (ret) { + dev_err(denali->dev, "Unable to request IRQ\n"); + return ret; + } + + denali_enable_irq(denali); + + return 0; +} +EXPORT_SYMBOL(denali_init); + +void denali_remove(struct denali_controller *denali) +{ + struct denali_chip *dchip, *tmp; + struct nand_chip *chip; + int ret; + + list_for_each_entry_safe(dchip, tmp, &denali->chips, node) { + chip = &dchip->chip; + ret = mtd_device_unregister(nand_to_mtd(chip)); + WARN_ON(ret); + nand_cleanup(chip); + list_del(&dchip->node); + } + + denali_disable_irq(denali); +} +EXPORT_SYMBOL(denali_remove); + +MODULE_DESCRIPTION("Driver core for Denali NAND controller"); +MODULE_AUTHOR("Intel Corporation and its suppliers"); +MODULE_LICENSE("GPL v2"); |