diff options
Diffstat (limited to '')
322 files changed, 184575 insertions, 0 deletions
diff --git a/drivers/mtd/Kconfig b/drivers/mtd/Kconfig new file mode 100644 index 0000000000..796a2eccbe --- /dev/null +++ b/drivers/mtd/Kconfig @@ -0,0 +1,225 @@ +menuconfig MTD + tristate "Memory Technology Device (MTD) support" + imply NVMEM + help + Memory Technology Devices are flash, RAM and similar chips, often + used for solid state file systems on embedded devices. This option + will provide the generic support for MTD drivers to register + themselves with the kernel and for potential users of MTD devices + to enumerate the devices which are present and obtain a handle on + them. It will also allow you to select individual drivers for + particular hardware and users of MTD devices. If unsure, say N. + +if MTD + +config MTD_TESTS + tristate "MTD tests support (DANGEROUS)" + depends on m + help + This option includes various MTD tests into compilation. The tests + should normally be compiled as kernel modules. The modules perform + various checks and verifications when loaded. + + WARNING: some of the tests will ERASE entire MTD device which they + test. Do not use these tests unless you really know what you do. + +menu "Partition parsers" +source "drivers/mtd/parsers/Kconfig" +endmenu + +comment "User Modules And Translation Layers" + +# +# MTD block device support is select'ed if needed +# +config MTD_BLKDEVS + tristate + +config MTD_BLOCK + tristate "Caching block device access to MTD devices" + depends on BLOCK + select MTD_BLKDEVS + help + Although most flash chips have an erase size too large to be useful + as block devices, it is possible to use MTD devices which are based + on RAM chips in this manner. This block device is a user of MTD + devices performing that function. + + Note that mounting a JFFS2 filesystem doesn't require using mtdblock. + It's possible to mount a rootfs using the MTD device on the "root=" + bootargs as "root=mtd2" or "root=mtd:name_of_device". + + Later, it may be extended to perform read/erase/modify/write cycles + on flash chips to emulate a smaller block size. Needless to say, + this is very unsafe, but could be useful for file systems which are + almost never written to. + + You do not need this option for use with the DiskOnChip devices. For + those, enable NFTL support (CONFIG_NFTL) instead. + +config MTD_BLOCK_RO + tristate "Readonly block device access to MTD devices" + depends on MTD_BLOCK!=y && BLOCK + select MTD_BLKDEVS + help + This allows you to mount read-only file systems (such as cramfs) + from an MTD device, without the overhead (and danger) of the caching + driver. + + You do not need this option for use with the DiskOnChip devices. For + those, enable NFTL support (CONFIG_NFTL) instead. + +comment "Note that in some cases UBI block is preferred. See MTD_UBI_BLOCK." + depends on MTD_BLOCK || MTD_BLOCK_RO + +config FTL + tristate "FTL (Flash Translation Layer) support" + depends on BLOCK + select MTD_BLKDEVS + help + This provides support for the original Flash Translation Layer which + is part of the PCMCIA specification. It uses a kind of pseudo- + file system on a flash device to emulate a block device with + 512-byte sectors, on top of which you put a 'normal' file system. + + You may find that the algorithms used in this code are patented + unless you live in the Free World where software patents aren't + legal - in the USA you are only permitted to use this on PCMCIA + hardware, although under the terms of the GPL you're obviously + permitted to copy, modify and distribute the code as you wish. Just + not use it. + +config NFTL + tristate "NFTL (NAND Flash Translation Layer) support" + depends on BLOCK + select MTD_BLKDEVS + help + This provides support for the NAND Flash Translation Layer which is + used on M-Systems' DiskOnChip devices. It uses a kind of pseudo- + file system on a flash device to emulate a block device with + 512-byte sectors, on top of which you put a 'normal' file system. + + You may find that the algorithms used in this code are patented + unless you live in the Free World where software patents aren't + legal - in the USA you are only permitted to use this on DiskOnChip + hardware, although under the terms of the GPL you're obviously + permitted to copy, modify and distribute the code as you wish. Just + not use it. + +config NFTL_RW + bool "Write support for NFTL" + depends on NFTL + help + Support for writing to the NAND Flash Translation Layer, as used + on the DiskOnChip. + +config INFTL + tristate "INFTL (Inverse NAND Flash Translation Layer) support" + depends on BLOCK + select MTD_BLKDEVS + help + This provides support for the Inverse NAND Flash Translation + Layer which is used on M-Systems' newer DiskOnChip devices. It + uses a kind of pseudo-file system on a flash device to emulate + a block device with 512-byte sectors, on top of which you put + a 'normal' file system. + + You may find that the algorithms used in this code are patented + unless you live in the Free World where software patents aren't + legal - in the USA you are only permitted to use this on DiskOnChip + hardware, although under the terms of the GPL you're obviously + permitted to copy, modify and distribute the code as you wish. Just + not use it. + +config RFD_FTL + tristate "Resident Flash Disk (Flash Translation Layer) support" + depends on BLOCK + select MTD_BLKDEVS + help + This provides support for the flash translation layer known + as the Resident Flash Disk (RFD), as used by the Embedded BIOS + of General Software. There is a blurb at: + + http://www.gensw.com/pages/prod/bios/rfd.htm + +config SSFDC + tristate "NAND SSFDC (SmartMedia) read only translation layer" + depends on BLOCK + select MTD_BLKDEVS + help + This enables read only access to SmartMedia formatted NAND + flash. You can mount it with FAT file system. + +config SM_FTL + tristate "SmartMedia/xD new translation layer" + depends on BLOCK + select MTD_BLKDEVS + select MTD_NAND_CORE + select MTD_NAND_ECC_SW_HAMMING + help + This enables EXPERIMENTAL R/W support for SmartMedia/xD + FTL (Flash translation layer). + Write support is only lightly tested, therefore this driver + isn't recommended to use with valuable data (anyway if you have + valuable data, do backups regardless of software/hardware you + use, because you never know what will eat your data...) + If you only need R/O access, you can use older R/O driver + (CONFIG_SSFDC) + +config MTD_OOPS + tristate "Log panic/oops to an MTD buffer" + help + This enables panic and oops messages to be logged to a circular + buffer in a flash partition where it can be read back at some + later point. + +config MTD_PSTORE + tristate "Log panic/oops to an MTD buffer based on pstore" + depends on PSTORE_BLK + help + This enables panic and oops messages to be logged to a circular + buffer in a flash partition where it can be read back as files after + mounting pstore filesystem. + + If unsure, say N. + +config MTD_SWAP + tristate "Swap on MTD device support" + depends on MTD && SWAP + select MTD_BLKDEVS + help + Provides volatile block device driver on top of mtd partition + suitable for swapping. The mapping of written blocks is not saved. + The driver provides wear leveling by storing erase counter into the + OOB. + +config MTD_PARTITIONED_MASTER + bool "Retain master device when partitioned" + default n + depends on MTD + help + For historical reasons, by default, either a master is present or + several partitions are present, but not both. The concern was that + data listed in multiple partitions was dangerous; however, SCSI does + this and it is frequently useful for applications. This config option + leaves the master in even if the device is partitioned. It also makes + the parent of the partition device be the master device, rather than + what lies behind the master. + +source "drivers/mtd/chips/Kconfig" + +source "drivers/mtd/maps/Kconfig" + +source "drivers/mtd/devices/Kconfig" + +source "drivers/mtd/nand/Kconfig" + +source "drivers/mtd/lpddr/Kconfig" + +source "drivers/mtd/spi-nor/Kconfig" + +source "drivers/mtd/ubi/Kconfig" + +source "drivers/mtd/hyperbus/Kconfig" + +endif # MTD diff --git a/drivers/mtd/Makefile b/drivers/mtd/Makefile new file mode 100644 index 0000000000..593d0593a0 --- /dev/null +++ b/drivers/mtd/Makefile @@ -0,0 +1,33 @@ +# SPDX-License-Identifier: GPL-2.0 +# +# Makefile for the memory technology device drivers. +# + +# Core functionality. +obj-$(CONFIG_MTD) += mtd.o +mtd-y := mtdcore.o mtdsuper.o mtdconcat.o mtdpart.o mtdchar.o + +obj-y += parsers/ + +# 'Users' - code which presents functionality to userspace. +obj-$(CONFIG_MTD_BLKDEVS) += mtd_blkdevs.o +obj-$(CONFIG_MTD_BLOCK) += mtdblock.o +obj-$(CONFIG_MTD_BLOCK_RO) += mtdblock_ro.o +obj-$(CONFIG_FTL) += ftl.o +obj-$(CONFIG_NFTL) += nftl.o +obj-$(CONFIG_INFTL) += inftl.o +obj-$(CONFIG_RFD_FTL) += rfd_ftl.o +obj-$(CONFIG_SSFDC) += ssfdc.o +obj-$(CONFIG_SM_FTL) += sm_ftl.o +obj-$(CONFIG_MTD_OOPS) += mtdoops.o +obj-$(CONFIG_MTD_PSTORE) += mtdpstore.o +obj-$(CONFIG_MTD_SWAP) += mtdswap.o + +nftl-objs := nftlcore.o nftlmount.o +inftl-objs := inftlcore.o inftlmount.o + +obj-y += chips/ lpddr/ maps/ devices/ nand/ tests/ + +obj-$(CONFIG_MTD_SPI_NOR) += spi-nor/ +obj-$(CONFIG_MTD_UBI) += ubi/ +obj-$(CONFIG_MTD_HYPERBUS) += hyperbus/ diff --git a/drivers/mtd/chips/Kconfig b/drivers/mtd/chips/Kconfig new file mode 100644 index 0000000000..19726ebd97 --- /dev/null +++ b/drivers/mtd/chips/Kconfig @@ -0,0 +1,243 @@ +# SPDX-License-Identifier: GPL-2.0-only +menu "RAM/ROM/Flash chip drivers" + depends on MTD!=n + +config MTD_CFI + tristate "Detect flash chips by Common Flash Interface (CFI) probe" + select MTD_GEN_PROBE + select MTD_CFI_UTIL + help + The Common Flash Interface specification was developed by Intel, + AMD and other flash manufactures that provides a universal method + for probing the capabilities of flash devices. If you wish to + support any device that is CFI-compliant, you need to enable this + option. Visit <https://www.amd.com/products/nvd/overview/cfi.html> + for more information on CFI. + +config MTD_JEDECPROBE + tristate "Detect non-CFI AMD/JEDEC-compatible flash chips" + select MTD_GEN_PROBE + select MTD_CFI_UTIL + help + This option enables JEDEC-style probing of flash chips which are not + compatible with the Common Flash Interface, but will use the common + CFI-targeted flash drivers for any chips which are identified which + are in fact compatible in all but the probe method. This actually + covers most AMD/Fujitsu-compatible chips and also non-CFI + Intel chips. + +config MTD_GEN_PROBE + tristate + +config MTD_CFI_ADV_OPTIONS + bool "Flash chip driver advanced configuration options" + depends on MTD_GEN_PROBE + help + If you need to specify a specific endianness for access to flash + chips, or if you wish to reduce the size of the kernel by including + support for only specific arrangements of flash chips, say 'Y'. This + option does not directly affect the code, but will enable other + configuration options which allow you to do so. + + If unsure, say 'N'. + +choice + prompt "Flash cmd/query data swapping" + depends on MTD_CFI_ADV_OPTIONS + default MTD_CFI_NOSWAP + help + This option defines the way in which the CPU attempts to arrange + data bits when writing the 'magic' commands to the chips. Saying + 'NO', which is the default when CONFIG_MTD_CFI_ADV_OPTIONS isn't + enabled, means that the CPU will not do any swapping; the chips + are expected to be wired to the CPU in 'host-endian' form. + Specific arrangements are possible with the BIG_ENDIAN_BYTE and + LITTLE_ENDIAN_BYTE, if the bytes are reversed. + +config MTD_CFI_NOSWAP + depends on !ARCH_IXP4XX || CPU_BIG_ENDIAN + bool "NO" + +config MTD_CFI_BE_BYTE_SWAP + bool "BIG_ENDIAN_BYTE" + +config MTD_CFI_LE_BYTE_SWAP + depends on !ARCH_IXP4XX + bool "LITTLE_ENDIAN_BYTE" + +endchoice + +config MTD_CFI_GEOMETRY + bool "Specific CFI Flash geometry selection" + depends on MTD_CFI_ADV_OPTIONS + select MTD_MAP_BANK_WIDTH_1 if !(MTD_MAP_BANK_WIDTH_2 || \ + MTD_MAP_BANK_WIDTH_4 || MTD_MAP_BANK_WIDTH_8 || \ + MTD_MAP_BANK_WIDTH_16 || MTD_MAP_BANK_WIDTH_32) + select MTD_CFI_I1 if !(MTD_CFI_I2 || MTD_CFI_I4 || MTD_CFI_I8) + help + This option does not affect the code directly, but will enable + some other configuration options which would allow you to reduce + the size of the kernel by including support for only certain + arrangements of CFI chips. If unsure, say 'N' and all options + which are supported by the current code will be enabled. + +config MTD_MAP_BANK_WIDTH_1 + bool "Support 8-bit buswidth" if MTD_CFI_GEOMETRY + default y + help + If you wish to support CFI devices on a physical bus which is + 8 bits wide, say 'Y'. + +config MTD_MAP_BANK_WIDTH_2 + bool "Support 16-bit buswidth" if MTD_CFI_GEOMETRY + default y + help + If you wish to support CFI devices on a physical bus which is + 16 bits wide, say 'Y'. + +config MTD_MAP_BANK_WIDTH_4 + bool "Support 32-bit buswidth" if MTD_CFI_GEOMETRY + default y + help + If you wish to support CFI devices on a physical bus which is + 32 bits wide, say 'Y'. + +config MTD_MAP_BANK_WIDTH_8 + bool "Support 64-bit buswidth" if MTD_CFI_GEOMETRY + default n + help + If you wish to support CFI devices on a physical bus which is + 64 bits wide, say 'Y'. + +config MTD_MAP_BANK_WIDTH_16 + bool "Support 128-bit buswidth" if MTD_CFI_GEOMETRY + default n + help + If you wish to support CFI devices on a physical bus which is + 128 bits wide, say 'Y'. + +config MTD_MAP_BANK_WIDTH_32 + bool "Support 256-bit buswidth" if MTD_CFI_GEOMETRY + select MTD_COMPLEX_MAPPINGS if HAS_IOMEM + default n + help + If you wish to support CFI devices on a physical bus which is + 256 bits wide, say 'Y'. + +config MTD_CFI_I1 + bool "Support 1-chip flash interleave" if MTD_CFI_GEOMETRY + default y + help + If your flash chips are not interleaved - i.e. you only have one + flash chip addressed by each bus cycle, then say 'Y'. + +config MTD_CFI_I2 + bool "Support 2-chip flash interleave" if MTD_CFI_GEOMETRY + default y + help + If your flash chips are interleaved in pairs - i.e. you have two + flash chips addressed by each bus cycle, then say 'Y'. + +config MTD_CFI_I4 + bool "Support 4-chip flash interleave" if MTD_CFI_GEOMETRY + default n + help + If your flash chips are interleaved in fours - i.e. you have four + flash chips addressed by each bus cycle, then say 'Y'. + +config MTD_CFI_I8 + bool "Support 8-chip flash interleave" if MTD_CFI_GEOMETRY + default n + help + If your flash chips are interleaved in eights - i.e. you have eight + flash chips addressed by each bus cycle, then say 'Y'. + +config MTD_OTP + bool "Protection Registers aka one-time programmable (OTP) bits" + depends on MTD_CFI_ADV_OPTIONS + default n + help + This enables support for reading, writing and locking so called + "Protection Registers" present on some flash chips. + A subset of them are pre-programmed at the factory with a + unique set of values. The rest is user-programmable. + + The user-programmable Protection Registers contain one-time + programmable (OTP) bits; when programmed, register bits cannot be + erased. Each Protection Register can be accessed multiple times to + program individual bits, as long as the register remains unlocked. + + Each Protection Register has an associated Lock Register bit. When a + Lock Register bit is programmed, the associated Protection Register + can only be read; it can no longer be programmed. Additionally, + because the Lock Register bits themselves are OTP, when programmed, + Lock Register bits cannot be erased. Therefore, when a Protection + Register is locked, it cannot be unlocked. + + This feature should therefore be used with extreme care. Any mistake + in the programming of OTP bits will waste them. + +config MTD_CFI_INTELEXT + tristate "Support for CFI command set 0001 (Intel/Sharp chips)" + depends on MTD_GEN_PROBE + select MTD_CFI_UTIL + help + The Common Flash Interface defines a number of different command + sets which a CFI-compliant chip may claim to implement. This code + provides support for command set 0001, used on Intel StrataFlash + and other parts. + +config MTD_CFI_AMDSTD + tristate "Support for CFI command set 0002 (AMD/Fujitsu/Spansion chips)" + depends on MTD_GEN_PROBE + select MTD_CFI_UTIL + help + The Common Flash Interface defines a number of different command + sets which a CFI-compliant chip may claim to implement. This code + provides support for command set 0002, used on chips including + the AMD Am29LV320. + +config MTD_CFI_STAA + tristate "Support for CFI command set 0020 (ST (Advanced Architecture) chips)" + depends on MTD_GEN_PROBE + select MTD_CFI_UTIL + help + The Common Flash Interface defines a number of different command + sets which a CFI-compliant chip may claim to implement. This code + provides support for command set 0020. + +config MTD_CFI_UTIL + tristate + +config MTD_RAM + tristate "Support for RAM chips in bus mapping" + help + This option enables basic support for RAM chips accessed through + a bus mapping driver. + +config MTD_ROM + tristate "Support for ROM chips in bus mapping" + help + This option enables basic support for ROM chips accessed through + a bus mapping driver. + +config MTD_ABSENT + tristate "Support for absent chips in bus mapping" + help + This option enables support for a dummy probing driver used to + allocated placeholder MTD devices on systems that have socketed + or removable media. Use of this driver as a fallback chip probe + preserves the expected registration order of MTD device nodes on + the system regardless of media presence. Device nodes created + with this driver will return -ENODEV upon access. + +config MTD_XIP + bool "XIP aware MTD support" + depends on !SMP && (MTD_CFI_INTELEXT || MTD_CFI_AMDSTD) && ARCH_MTD_XIP + default y if XIP_KERNEL + help + This allows MTD support to work with flash memory which is also + used for XIP purposes. If you're not sure what this is all about + then say N. + +endmenu diff --git a/drivers/mtd/chips/Makefile b/drivers/mtd/chips/Makefile new file mode 100644 index 0000000000..1f4e84f1cd --- /dev/null +++ b/drivers/mtd/chips/Makefile @@ -0,0 +1,16 @@ +# SPDX-License-Identifier: GPL-2.0 +# +# linux/drivers/chips/Makefile +# + +obj-$(CONFIG_MTD) += chipreg.o +obj-$(CONFIG_MTD_CFI) += cfi_probe.o +obj-$(CONFIG_MTD_CFI_UTIL) += cfi_util.o +obj-$(CONFIG_MTD_CFI_STAA) += cfi_cmdset_0020.o +obj-$(CONFIG_MTD_CFI_AMDSTD) += cfi_cmdset_0002.o +obj-$(CONFIG_MTD_CFI_INTELEXT) += cfi_cmdset_0001.o +obj-$(CONFIG_MTD_GEN_PROBE) += gen_probe.o +obj-$(CONFIG_MTD_JEDECPROBE) += jedec_probe.o +obj-$(CONFIG_MTD_RAM) += map_ram.o +obj-$(CONFIG_MTD_ROM) += map_rom.o +obj-$(CONFIG_MTD_ABSENT) += map_absent.o diff --git a/drivers/mtd/chips/cfi_cmdset_0001.c b/drivers/mtd/chips/cfi_cmdset_0001.c new file mode 100644 index 0000000000..c10693ba26 --- /dev/null +++ b/drivers/mtd/chips/cfi_cmdset_0001.c @@ -0,0 +1,2709 @@ +// SPDX-License-Identifier: GPL-2.0 +/* + * Common Flash Interface support: + * Intel Extended Vendor Command Set (ID 0x0001) + * + * (C) 2000 Red Hat. + * + * + * 10/10/2000 Nicolas Pitre <nico@fluxnic.net> + * - completely revamped method functions so they are aware and + * independent of the flash geometry (buswidth, interleave, etc.) + * - scalability vs code size is completely set at compile-time + * (see include/linux/mtd/cfi.h for selection) + * - optimized write buffer method + * 02/05/2002 Christopher Hoover <ch@hpl.hp.com>/<ch@murgatroid.com> + * - reworked lock/unlock/erase support for var size flash + * 21/03/2007 Rodolfo Giometti <giometti@linux.it> + * - auto unlock sectors on resume for auto locking flash on power up + */ + +#include <linux/module.h> +#include <linux/types.h> +#include <linux/kernel.h> +#include <linux/sched.h> +#include <asm/io.h> +#include <asm/byteorder.h> + +#include <linux/errno.h> +#include <linux/slab.h> +#include <linux/delay.h> +#include <linux/interrupt.h> +#include <linux/reboot.h> +#include <linux/bitmap.h> +#include <linux/mtd/xip.h> +#include <linux/mtd/map.h> +#include <linux/mtd/mtd.h> +#include <linux/mtd/cfi.h> + +/* #define CMDSET0001_DISABLE_ERASE_SUSPEND_ON_WRITE */ +/* #define CMDSET0001_DISABLE_WRITE_SUSPEND */ + +// debugging, turns off buffer write mode if set to 1 +#define FORCE_WORD_WRITE 0 + +/* Intel chips */ +#define I82802AB 0x00ad +#define I82802AC 0x00ac +#define PF38F4476 0x881c +#define M28F00AP30 0x8963 +/* STMicroelectronics chips */ +#define M50LPW080 0x002F +#define M50FLW080A 0x0080 +#define M50FLW080B 0x0081 +/* Atmel chips */ +#define AT49BV640D 0x02de +#define AT49BV640DT 0x02db +/* Sharp chips */ +#define LH28F640BFHE_PTTL90 0x00b0 +#define LH28F640BFHE_PBTL90 0x00b1 +#define LH28F640BFHE_PTTL70A 0x00b2 +#define LH28F640BFHE_PBTL70A 0x00b3 + +static int cfi_intelext_read (struct mtd_info *, loff_t, size_t, size_t *, u_char *); +static int cfi_intelext_write_words(struct mtd_info *, loff_t, size_t, size_t *, const u_char *); +static int cfi_intelext_write_buffers(struct mtd_info *, loff_t, size_t, size_t *, const u_char *); +static int cfi_intelext_writev(struct mtd_info *, const struct kvec *, unsigned long, loff_t, size_t *); +static int cfi_intelext_erase_varsize(struct mtd_info *, struct erase_info *); +static void cfi_intelext_sync (struct mtd_info *); +static int cfi_intelext_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len); +static int cfi_intelext_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len); +static int cfi_intelext_is_locked(struct mtd_info *mtd, loff_t ofs, + uint64_t len); +#ifdef CONFIG_MTD_OTP +static int cfi_intelext_read_fact_prot_reg (struct mtd_info *, loff_t, size_t, size_t *, u_char *); +static int cfi_intelext_read_user_prot_reg (struct mtd_info *, loff_t, size_t, size_t *, u_char *); +static int cfi_intelext_write_user_prot_reg(struct mtd_info *, loff_t, size_t, + size_t *, const u_char *); +static int cfi_intelext_lock_user_prot_reg (struct mtd_info *, loff_t, size_t); +static int cfi_intelext_get_fact_prot_info(struct mtd_info *, size_t, + size_t *, struct otp_info *); +static int cfi_intelext_get_user_prot_info(struct mtd_info *, size_t, + size_t *, struct otp_info *); +#endif +static int cfi_intelext_suspend (struct mtd_info *); +static void cfi_intelext_resume (struct mtd_info *); +static int cfi_intelext_reboot (struct notifier_block *, unsigned long, void *); + +static void cfi_intelext_destroy(struct mtd_info *); + +struct mtd_info *cfi_cmdset_0001(struct map_info *, int); + +static struct mtd_info *cfi_intelext_setup (struct mtd_info *); +static int cfi_intelext_partition_fixup(struct mtd_info *, struct cfi_private **); + +static int cfi_intelext_point (struct mtd_info *mtd, loff_t from, size_t len, + size_t *retlen, void **virt, resource_size_t *phys); +static int cfi_intelext_unpoint(struct mtd_info *mtd, loff_t from, size_t len); + +static int chip_ready (struct map_info *map, struct flchip *chip, unsigned long adr, int mode); +static int get_chip(struct map_info *map, struct flchip *chip, unsigned long adr, int mode); +static void put_chip(struct map_info *map, struct flchip *chip, unsigned long adr); +#include "fwh_lock.h" + + + +/* + * *********** SETUP AND PROBE BITS *********** + */ + +static struct mtd_chip_driver cfi_intelext_chipdrv = { + .probe = NULL, /* Not usable directly */ + .destroy = cfi_intelext_destroy, + .name = "cfi_cmdset_0001", + .module = THIS_MODULE +}; + +/* #define DEBUG_LOCK_BITS */ +/* #define DEBUG_CFI_FEATURES */ + +#ifdef DEBUG_CFI_FEATURES +static void cfi_tell_features(struct cfi_pri_intelext *extp) +{ + int i; + printk(" Extended Query version %c.%c\n", extp->MajorVersion, extp->MinorVersion); + printk(" Feature/Command Support: %4.4X\n", extp->FeatureSupport); + printk(" - Chip Erase: %s\n", extp->FeatureSupport&1?"supported":"unsupported"); + printk(" - Suspend Erase: %s\n", extp->FeatureSupport&2?"supported":"unsupported"); + printk(" - Suspend Program: %s\n", extp->FeatureSupport&4?"supported":"unsupported"); + printk(" - Legacy Lock/Unlock: %s\n", extp->FeatureSupport&8?"supported":"unsupported"); + printk(" - Queued Erase: %s\n", extp->FeatureSupport&16?"supported":"unsupported"); + printk(" - Instant block lock: %s\n", extp->FeatureSupport&32?"supported":"unsupported"); + printk(" - Protection Bits: %s\n", extp->FeatureSupport&64?"supported":"unsupported"); + printk(" - Page-mode read: %s\n", extp->FeatureSupport&128?"supported":"unsupported"); + printk(" - Synchronous read: %s\n", extp->FeatureSupport&256?"supported":"unsupported"); + printk(" - Simultaneous operations: %s\n", extp->FeatureSupport&512?"supported":"unsupported"); + printk(" - Extended Flash Array: %s\n", extp->FeatureSupport&1024?"supported":"unsupported"); + for (i=11; i<32; i++) { + if (extp->FeatureSupport & (1<<i)) + printk(" - Unknown Bit %X: supported\n", i); + } + + printk(" Supported functions after Suspend: %2.2X\n", extp->SuspendCmdSupport); + printk(" - Program after Erase Suspend: %s\n", extp->SuspendCmdSupport&1?"supported":"unsupported"); + for (i=1; i<8; i++) { + if (extp->SuspendCmdSupport & (1<<i)) + printk(" - Unknown Bit %X: supported\n", i); + } + + printk(" Block Status Register Mask: %4.4X\n", extp->BlkStatusRegMask); + printk(" - Lock Bit Active: %s\n", extp->BlkStatusRegMask&1?"yes":"no"); + printk(" - Lock-Down Bit Active: %s\n", extp->BlkStatusRegMask&2?"yes":"no"); + for (i=2; i<3; i++) { + if (extp->BlkStatusRegMask & (1<<i)) + printk(" - Unknown Bit %X Active: yes\n",i); + } + printk(" - EFA Lock Bit: %s\n", extp->BlkStatusRegMask&16?"yes":"no"); + printk(" - EFA Lock-Down Bit: %s\n", extp->BlkStatusRegMask&32?"yes":"no"); + for (i=6; i<16; i++) { + if (extp->BlkStatusRegMask & (1<<i)) + printk(" - Unknown Bit %X Active: yes\n",i); + } + + printk(" Vcc Logic Supply Optimum Program/Erase Voltage: %d.%d V\n", + extp->VccOptimal >> 4, extp->VccOptimal & 0xf); + if (extp->VppOptimal) + printk(" Vpp Programming Supply Optimum Program/Erase Voltage: %d.%d V\n", + extp->VppOptimal >> 4, extp->VppOptimal & 0xf); +} +#endif + +/* Atmel chips don't use the same PRI format as Intel chips */ +static void fixup_convert_atmel_pri(struct mtd_info *mtd) +{ + struct map_info *map = mtd->priv; + struct cfi_private *cfi = map->fldrv_priv; + struct cfi_pri_intelext *extp = cfi->cmdset_priv; + struct cfi_pri_atmel atmel_pri; + uint32_t features = 0; + + /* Reverse byteswapping */ + extp->FeatureSupport = cpu_to_le32(extp->FeatureSupport); + extp->BlkStatusRegMask = cpu_to_le16(extp->BlkStatusRegMask); + extp->ProtRegAddr = cpu_to_le16(extp->ProtRegAddr); + + memcpy(&atmel_pri, extp, sizeof(atmel_pri)); + memset((char *)extp + 5, 0, sizeof(*extp) - 5); + + printk(KERN_ERR "atmel Features: %02x\n", atmel_pri.Features); + + if (atmel_pri.Features & 0x01) /* chip erase supported */ + features |= (1<<0); + if (atmel_pri.Features & 0x02) /* erase suspend supported */ + features |= (1<<1); + if (atmel_pri.Features & 0x04) /* program suspend supported */ + features |= (1<<2); + if (atmel_pri.Features & 0x08) /* simultaneous operations supported */ + features |= (1<<9); + if (atmel_pri.Features & 0x20) /* page mode read supported */ + features |= (1<<7); + if (atmel_pri.Features & 0x40) /* queued erase supported */ + features |= (1<<4); + if (atmel_pri.Features & 0x80) /* Protection bits supported */ + features |= (1<<6); + + extp->FeatureSupport = features; + + /* burst write mode not supported */ + cfi->cfiq->BufWriteTimeoutTyp = 0; + cfi->cfiq->BufWriteTimeoutMax = 0; +} + +static void fixup_at49bv640dx_lock(struct mtd_info *mtd) +{ + struct map_info *map = mtd->priv; + struct cfi_private *cfi = map->fldrv_priv; + struct cfi_pri_intelext *cfip = cfi->cmdset_priv; + + cfip->FeatureSupport |= (1 << 5); + mtd->flags |= MTD_POWERUP_LOCK; +} + +#ifdef CMDSET0001_DISABLE_ERASE_SUSPEND_ON_WRITE +/* Some Intel Strata Flash prior to FPO revision C has bugs in this area */ +static void fixup_intel_strataflash(struct mtd_info *mtd) +{ + struct map_info *map = mtd->priv; + struct cfi_private *cfi = map->fldrv_priv; + struct cfi_pri_intelext *extp = cfi->cmdset_priv; + + printk(KERN_WARNING "cfi_cmdset_0001: Suspend " + "erase on write disabled.\n"); + extp->SuspendCmdSupport &= ~1; +} +#endif + +#ifdef CMDSET0001_DISABLE_WRITE_SUSPEND +static void fixup_no_write_suspend(struct mtd_info *mtd) +{ + struct map_info *map = mtd->priv; + struct cfi_private *cfi = map->fldrv_priv; + struct cfi_pri_intelext *cfip = cfi->cmdset_priv; + + if (cfip && (cfip->FeatureSupport&4)) { + cfip->FeatureSupport &= ~4; + printk(KERN_WARNING "cfi_cmdset_0001: write suspend disabled\n"); + } +} +#endif + +static void fixup_st_m28w320ct(struct mtd_info *mtd) +{ + struct map_info *map = mtd->priv; + struct cfi_private *cfi = map->fldrv_priv; + + cfi->cfiq->BufWriteTimeoutTyp = 0; /* Not supported */ + cfi->cfiq->BufWriteTimeoutMax = 0; /* Not supported */ +} + +static void fixup_st_m28w320cb(struct mtd_info *mtd) +{ + struct map_info *map = mtd->priv; + struct cfi_private *cfi = map->fldrv_priv; + + /* Note this is done after the region info is endian swapped */ + cfi->cfiq->EraseRegionInfo[1] = + (cfi->cfiq->EraseRegionInfo[1] & 0xffff0000) | 0x3e; +}; + +static int is_LH28F640BF(struct cfi_private *cfi) +{ + /* Sharp LH28F640BF Family */ + if (cfi->mfr == CFI_MFR_SHARP && ( + cfi->id == LH28F640BFHE_PTTL90 || cfi->id == LH28F640BFHE_PBTL90 || + cfi->id == LH28F640BFHE_PTTL70A || cfi->id == LH28F640BFHE_PBTL70A)) + return 1; + return 0; +} + +static void fixup_LH28F640BF(struct mtd_info *mtd) +{ + struct map_info *map = mtd->priv; + struct cfi_private *cfi = map->fldrv_priv; + struct cfi_pri_intelext *extp = cfi->cmdset_priv; + + /* Reset the Partition Configuration Register on LH28F640BF + * to a single partition (PCR = 0x000): PCR is embedded into A0-A15. */ + if (is_LH28F640BF(cfi)) { + printk(KERN_INFO "Reset Partition Config. Register: 1 Partition of 4 planes\n"); + map_write(map, CMD(0x60), 0); + map_write(map, CMD(0x04), 0); + + /* We have set one single partition thus + * Simultaneous Operations are not allowed */ + printk(KERN_INFO "cfi_cmdset_0001: Simultaneous Operations disabled\n"); + extp->FeatureSupport &= ~512; + } +} + +static void fixup_use_point(struct mtd_info *mtd) +{ + struct map_info *map = mtd->priv; + if (!mtd->_point && map_is_linear(map)) { + mtd->_point = cfi_intelext_point; + mtd->_unpoint = cfi_intelext_unpoint; + } +} + +static void fixup_use_write_buffers(struct mtd_info *mtd) +{ + struct map_info *map = mtd->priv; + struct cfi_private *cfi = map->fldrv_priv; + if (cfi->cfiq->BufWriteTimeoutTyp) { + printk(KERN_INFO "Using buffer write method\n" ); + mtd->_write = cfi_intelext_write_buffers; + mtd->_writev = cfi_intelext_writev; + } +} + +/* + * Some chips power-up with all sectors locked by default. + */ +static void fixup_unlock_powerup_lock(struct mtd_info *mtd) +{ + struct map_info *map = mtd->priv; + struct cfi_private *cfi = map->fldrv_priv; + struct cfi_pri_intelext *cfip = cfi->cmdset_priv; + + if (cfip->FeatureSupport&32) { + printk(KERN_INFO "Using auto-unlock on power-up/resume\n" ); + mtd->flags |= MTD_POWERUP_LOCK; + } +} + +static struct cfi_fixup cfi_fixup_table[] = { + { CFI_MFR_ATMEL, CFI_ID_ANY, fixup_convert_atmel_pri }, + { CFI_MFR_ATMEL, AT49BV640D, fixup_at49bv640dx_lock }, + { CFI_MFR_ATMEL, AT49BV640DT, fixup_at49bv640dx_lock }, +#ifdef CMDSET0001_DISABLE_ERASE_SUSPEND_ON_WRITE + { CFI_MFR_ANY, CFI_ID_ANY, fixup_intel_strataflash }, +#endif +#ifdef CMDSET0001_DISABLE_WRITE_SUSPEND + { CFI_MFR_ANY, CFI_ID_ANY, fixup_no_write_suspend }, +#endif +#if !FORCE_WORD_WRITE + { CFI_MFR_ANY, CFI_ID_ANY, fixup_use_write_buffers }, +#endif + { CFI_MFR_ST, 0x00ba, /* M28W320CT */ fixup_st_m28w320ct }, + { CFI_MFR_ST, 0x00bb, /* M28W320CB */ fixup_st_m28w320cb }, + { CFI_MFR_INTEL, CFI_ID_ANY, fixup_unlock_powerup_lock }, + { CFI_MFR_SHARP, CFI_ID_ANY, fixup_unlock_powerup_lock }, + { CFI_MFR_SHARP, CFI_ID_ANY, fixup_LH28F640BF }, + { 0, 0, NULL } +}; + +static struct cfi_fixup jedec_fixup_table[] = { + { CFI_MFR_INTEL, I82802AB, fixup_use_fwh_lock }, + { CFI_MFR_INTEL, I82802AC, fixup_use_fwh_lock }, + { CFI_MFR_ST, M50LPW080, fixup_use_fwh_lock }, + { CFI_MFR_ST, M50FLW080A, fixup_use_fwh_lock }, + { CFI_MFR_ST, M50FLW080B, fixup_use_fwh_lock }, + { 0, 0, NULL } +}; +static struct cfi_fixup fixup_table[] = { + /* The CFI vendor ids and the JEDEC vendor IDs appear + * to be common. It is like the devices id's are as + * well. This table is to pick all cases where + * we know that is the case. + */ + { CFI_MFR_ANY, CFI_ID_ANY, fixup_use_point }, + { 0, 0, NULL } +}; + +static void cfi_fixup_major_minor(struct cfi_private *cfi, + struct cfi_pri_intelext *extp) +{ + if (cfi->mfr == CFI_MFR_INTEL && + cfi->id == PF38F4476 && extp->MinorVersion == '3') + extp->MinorVersion = '1'; +} + +static int cfi_is_micron_28F00AP30(struct cfi_private *cfi, struct flchip *chip) +{ + /* + * Micron(was Numonyx) 1Gbit bottom boot are buggy w.r.t + * Erase Supend for their small Erase Blocks(0x8000) + */ + if (cfi->mfr == CFI_MFR_INTEL && cfi->id == M28F00AP30) + return 1; + return 0; +} + +static inline struct cfi_pri_intelext * +read_pri_intelext(struct map_info *map, __u16 adr) +{ + struct cfi_private *cfi = map->fldrv_priv; + struct cfi_pri_intelext *extp; + unsigned int extra_size = 0; + unsigned int extp_size = sizeof(*extp); + + again: + extp = (struct cfi_pri_intelext *)cfi_read_pri(map, adr, extp_size, "Intel/Sharp"); + if (!extp) + return NULL; + + cfi_fixup_major_minor(cfi, extp); + + if (extp->MajorVersion != '1' || + (extp->MinorVersion < '0' || extp->MinorVersion > '5')) { + printk(KERN_ERR " Unknown Intel/Sharp Extended Query " + "version %c.%c.\n", extp->MajorVersion, + extp->MinorVersion); + kfree(extp); + return NULL; + } + + /* Do some byteswapping if necessary */ + extp->FeatureSupport = le32_to_cpu(extp->FeatureSupport); + extp->BlkStatusRegMask = le16_to_cpu(extp->BlkStatusRegMask); + extp->ProtRegAddr = le16_to_cpu(extp->ProtRegAddr); + + if (extp->MinorVersion >= '0') { + extra_size = 0; + + /* Protection Register info */ + if (extp->NumProtectionFields) { + struct cfi_intelext_otpinfo *otp = + (struct cfi_intelext_otpinfo *)&extp->extra[0]; + + extra_size += (extp->NumProtectionFields - 1) * + sizeof(struct cfi_intelext_otpinfo); + + if (extp_size >= sizeof(*extp) + extra_size) { + int i; + + /* Do some byteswapping if necessary */ + for (i = 0; i < extp->NumProtectionFields - 1; i++) { + otp->ProtRegAddr = le32_to_cpu(otp->ProtRegAddr); + otp->FactGroups = le16_to_cpu(otp->FactGroups); + otp->UserGroups = le16_to_cpu(otp->UserGroups); + otp++; + } + } + } + } + + if (extp->MinorVersion >= '1') { + /* Burst Read info */ + extra_size += 2; + if (extp_size < sizeof(*extp) + extra_size) + goto need_more; + extra_size += extp->extra[extra_size - 1]; + } + + if (extp->MinorVersion >= '3') { + int nb_parts, i; + + /* Number of hardware-partitions */ + extra_size += 1; + if (extp_size < sizeof(*extp) + extra_size) + goto need_more; + nb_parts = extp->extra[extra_size - 1]; + + /* skip the sizeof(partregion) field in CFI 1.4 */ + if (extp->MinorVersion >= '4') + extra_size += 2; + + for (i = 0; i < nb_parts; i++) { + struct cfi_intelext_regioninfo *rinfo; + rinfo = (struct cfi_intelext_regioninfo *)&extp->extra[extra_size]; + extra_size += sizeof(*rinfo); + if (extp_size < sizeof(*extp) + extra_size) + goto need_more; + rinfo->NumIdentPartitions=le16_to_cpu(rinfo->NumIdentPartitions); + extra_size += (rinfo->NumBlockTypes - 1) + * sizeof(struct cfi_intelext_blockinfo); + } + + if (extp->MinorVersion >= '4') + extra_size += sizeof(struct cfi_intelext_programming_regioninfo); + + if (extp_size < sizeof(*extp) + extra_size) { + need_more: + extp_size = sizeof(*extp) + extra_size; + kfree(extp); + if (extp_size > 4096) { + printk(KERN_ERR + "%s: cfi_pri_intelext is too fat\n", + __func__); + return NULL; + } + goto again; + } + } + + return extp; +} + +struct mtd_info *cfi_cmdset_0001(struct map_info *map, int primary) +{ + struct cfi_private *cfi = map->fldrv_priv; + struct mtd_info *mtd; + int i; + + mtd = kzalloc(sizeof(*mtd), GFP_KERNEL); + if (!mtd) + return NULL; + mtd->priv = map; + mtd->type = MTD_NORFLASH; + + /* Fill in the default mtd operations */ + mtd->_erase = cfi_intelext_erase_varsize; + mtd->_read = cfi_intelext_read; + mtd->_write = cfi_intelext_write_words; + mtd->_sync = cfi_intelext_sync; + mtd->_lock = cfi_intelext_lock; + mtd->_unlock = cfi_intelext_unlock; + mtd->_is_locked = cfi_intelext_is_locked; + mtd->_suspend = cfi_intelext_suspend; + mtd->_resume = cfi_intelext_resume; + mtd->flags = MTD_CAP_NORFLASH; + mtd->name = map->name; + mtd->writesize = 1; + mtd->writebufsize = cfi_interleave(cfi) << cfi->cfiq->MaxBufWriteSize; + + mtd->reboot_notifier.notifier_call = cfi_intelext_reboot; + + if (cfi->cfi_mode == CFI_MODE_CFI) { + /* + * It's a real CFI chip, not one for which the probe + * routine faked a CFI structure. So we read the feature + * table from it. + */ + __u16 adr = primary?cfi->cfiq->P_ADR:cfi->cfiq->A_ADR; + struct cfi_pri_intelext *extp; + + extp = read_pri_intelext(map, adr); + if (!extp) { + kfree(mtd); + return NULL; + } + + /* Install our own private info structure */ + cfi->cmdset_priv = extp; + + cfi_fixup(mtd, cfi_fixup_table); + +#ifdef DEBUG_CFI_FEATURES + /* Tell the user about it in lots of lovely detail */ + cfi_tell_features(extp); +#endif + + if(extp->SuspendCmdSupport & 1) { + printk(KERN_NOTICE "cfi_cmdset_0001: Erase suspend on write enabled\n"); + } + } + else if (cfi->cfi_mode == CFI_MODE_JEDEC) { + /* Apply jedec specific fixups */ + cfi_fixup(mtd, jedec_fixup_table); + } + /* Apply generic fixups */ + cfi_fixup(mtd, fixup_table); + + for (i=0; i< cfi->numchips; i++) { + if (cfi->cfiq->WordWriteTimeoutTyp) + cfi->chips[i].word_write_time = + 1<<cfi->cfiq->WordWriteTimeoutTyp; + else + cfi->chips[i].word_write_time = 50000; + + if (cfi->cfiq->BufWriteTimeoutTyp) + cfi->chips[i].buffer_write_time = + 1<<cfi->cfiq->BufWriteTimeoutTyp; + /* No default; if it isn't specified, we won't use it */ + + if (cfi->cfiq->BlockEraseTimeoutTyp) + cfi->chips[i].erase_time = + 1000<<cfi->cfiq->BlockEraseTimeoutTyp; + else + cfi->chips[i].erase_time = 2000000; + + if (cfi->cfiq->WordWriteTimeoutTyp && + cfi->cfiq->WordWriteTimeoutMax) + cfi->chips[i].word_write_time_max = + 1<<(cfi->cfiq->WordWriteTimeoutTyp + + cfi->cfiq->WordWriteTimeoutMax); + else + cfi->chips[i].word_write_time_max = 50000 * 8; + + if (cfi->cfiq->BufWriteTimeoutTyp && + cfi->cfiq->BufWriteTimeoutMax) + cfi->chips[i].buffer_write_time_max = + 1<<(cfi->cfiq->BufWriteTimeoutTyp + + cfi->cfiq->BufWriteTimeoutMax); + + if (cfi->cfiq->BlockEraseTimeoutTyp && + cfi->cfiq->BlockEraseTimeoutMax) + cfi->chips[i].erase_time_max = + 1000<<(cfi->cfiq->BlockEraseTimeoutTyp + + cfi->cfiq->BlockEraseTimeoutMax); + else + cfi->chips[i].erase_time_max = 2000000 * 8; + + cfi->chips[i].ref_point_counter = 0; + init_waitqueue_head(&(cfi->chips[i].wq)); + } + + map->fldrv = &cfi_intelext_chipdrv; + + return cfi_intelext_setup(mtd); +} +struct mtd_info *cfi_cmdset_0003(struct map_info *map, int primary) __attribute__((alias("cfi_cmdset_0001"))); +struct mtd_info *cfi_cmdset_0200(struct map_info *map, int primary) __attribute__((alias("cfi_cmdset_0001"))); +EXPORT_SYMBOL_GPL(cfi_cmdset_0001); +EXPORT_SYMBOL_GPL(cfi_cmdset_0003); +EXPORT_SYMBOL_GPL(cfi_cmdset_0200); + +static struct mtd_info *cfi_intelext_setup(struct mtd_info *mtd) +{ + struct map_info *map = mtd->priv; + struct cfi_private *cfi = map->fldrv_priv; + unsigned long offset = 0; + int i,j; + unsigned long devsize = (1<<cfi->cfiq->DevSize) * cfi->interleave; + + //printk(KERN_DEBUG "number of CFI chips: %d\n", cfi->numchips); + + mtd->size = devsize * cfi->numchips; + + mtd->numeraseregions = cfi->cfiq->NumEraseRegions * cfi->numchips; + mtd->eraseregions = kcalloc(mtd->numeraseregions, + sizeof(struct mtd_erase_region_info), + GFP_KERNEL); + if (!mtd->eraseregions) + goto setup_err; + + for (i=0; i<cfi->cfiq->NumEraseRegions; i++) { + unsigned long ernum, ersize; + ersize = ((cfi->cfiq->EraseRegionInfo[i] >> 8) & ~0xff) * cfi->interleave; + ernum = (cfi->cfiq->EraseRegionInfo[i] & 0xffff) + 1; + + if (mtd->erasesize < ersize) { + mtd->erasesize = ersize; + } + for (j=0; j<cfi->numchips; j++) { + mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].offset = (j*devsize)+offset; + mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].erasesize = ersize; + mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].numblocks = ernum; + mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].lockmap = kmalloc(ernum / 8 + 1, GFP_KERNEL); + if (!mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].lockmap) + goto setup_err; + } + offset += (ersize * ernum); + } + + if (offset != devsize) { + /* Argh */ + printk(KERN_WARNING "Sum of regions (%lx) != total size of set of interleaved chips (%lx)\n", offset, devsize); + goto setup_err; + } + + for (i=0; i<mtd->numeraseregions;i++){ + printk(KERN_DEBUG "erase region %d: offset=0x%llx,size=0x%x,blocks=%d\n", + i,(unsigned long long)mtd->eraseregions[i].offset, + mtd->eraseregions[i].erasesize, + mtd->eraseregions[i].numblocks); + } + +#ifdef CONFIG_MTD_OTP + mtd->_read_fact_prot_reg = cfi_intelext_read_fact_prot_reg; + mtd->_read_user_prot_reg = cfi_intelext_read_user_prot_reg; + mtd->_write_user_prot_reg = cfi_intelext_write_user_prot_reg; + mtd->_lock_user_prot_reg = cfi_intelext_lock_user_prot_reg; + mtd->_get_fact_prot_info = cfi_intelext_get_fact_prot_info; + mtd->_get_user_prot_info = cfi_intelext_get_user_prot_info; +#endif + + /* This function has the potential to distort the reality + a bit and therefore should be called last. */ + if (cfi_intelext_partition_fixup(mtd, &cfi) != 0) + goto setup_err; + + __module_get(THIS_MODULE); + register_reboot_notifier(&mtd->reboot_notifier); + return mtd; + + setup_err: + if (mtd->eraseregions) + for (i=0; i<cfi->cfiq->NumEraseRegions; i++) + for (j=0; j<cfi->numchips; j++) + kfree(mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].lockmap); + kfree(mtd->eraseregions); + kfree(mtd); + kfree(cfi->cmdset_priv); + return NULL; +} + +static int cfi_intelext_partition_fixup(struct mtd_info *mtd, + struct cfi_private **pcfi) +{ + struct map_info *map = mtd->priv; + struct cfi_private *cfi = *pcfi; + struct cfi_pri_intelext *extp = cfi->cmdset_priv; + + /* + * Probing of multi-partition flash chips. + * + * To support multiple partitions when available, we simply arrange + * for each of them to have their own flchip structure even if they + * are on the same physical chip. This means completely recreating + * a new cfi_private structure right here which is a blatent code + * layering violation, but this is still the least intrusive + * arrangement at this point. This can be rearranged in the future + * if someone feels motivated enough. --nico + */ + if (extp && extp->MajorVersion == '1' && extp->MinorVersion >= '3' + && extp->FeatureSupport & (1 << 9)) { + int offs = 0; + struct cfi_private *newcfi; + struct flchip *chip; + struct flchip_shared *shared; + int numregions, numparts, partshift, numvirtchips, i, j; + + /* Protection Register info */ + if (extp->NumProtectionFields) + offs = (extp->NumProtectionFields - 1) * + sizeof(struct cfi_intelext_otpinfo); + + /* Burst Read info */ + offs += extp->extra[offs+1]+2; + + /* Number of partition regions */ + numregions = extp->extra[offs]; + offs += 1; + + /* skip the sizeof(partregion) field in CFI 1.4 */ + if (extp->MinorVersion >= '4') + offs += 2; + + /* Number of hardware partitions */ + numparts = 0; + for (i = 0; i < numregions; i++) { + struct cfi_intelext_regioninfo *rinfo; + rinfo = (struct cfi_intelext_regioninfo *)&extp->extra[offs]; + numparts += rinfo->NumIdentPartitions; + offs += sizeof(*rinfo) + + (rinfo->NumBlockTypes - 1) * + sizeof(struct cfi_intelext_blockinfo); + } + + if (!numparts) + numparts = 1; + + /* Programming Region info */ + if (extp->MinorVersion >= '4') { + struct cfi_intelext_programming_regioninfo *prinfo; + prinfo = (struct cfi_intelext_programming_regioninfo *)&extp->extra[offs]; + mtd->writesize = cfi->interleave << prinfo->ProgRegShift; + mtd->flags &= ~MTD_BIT_WRITEABLE; + printk(KERN_DEBUG "%s: program region size/ctrl_valid/ctrl_inval = %d/%d/%d\n", + map->name, mtd->writesize, + cfi->interleave * prinfo->ControlValid, + cfi->interleave * prinfo->ControlInvalid); + } + + /* + * All functions below currently rely on all chips having + * the same geometry so we'll just assume that all hardware + * partitions are of the same size too. + */ + partshift = cfi->chipshift - __ffs(numparts); + + if ((1 << partshift) < mtd->erasesize) { + printk( KERN_ERR + "%s: bad number of hw partitions (%d)\n", + __func__, numparts); + return -EINVAL; + } + + numvirtchips = cfi->numchips * numparts; + newcfi = kmalloc(struct_size(newcfi, chips, numvirtchips), + GFP_KERNEL); + if (!newcfi) + return -ENOMEM; + shared = kmalloc_array(cfi->numchips, + sizeof(struct flchip_shared), + GFP_KERNEL); + if (!shared) { + kfree(newcfi); + return -ENOMEM; + } + memcpy(newcfi, cfi, sizeof(struct cfi_private)); + newcfi->numchips = numvirtchips; + newcfi->chipshift = partshift; + + chip = &newcfi->chips[0]; + for (i = 0; i < cfi->numchips; i++) { + shared[i].writing = shared[i].erasing = NULL; + mutex_init(&shared[i].lock); + for (j = 0; j < numparts; j++) { + *chip = cfi->chips[i]; + chip->start += j << partshift; + chip->priv = &shared[i]; + /* those should be reset too since + they create memory references. */ + init_waitqueue_head(&chip->wq); + mutex_init(&chip->mutex); + chip++; + } + } + + printk(KERN_DEBUG "%s: %d set(s) of %d interleaved chips " + "--> %d partitions of %d KiB\n", + map->name, cfi->numchips, cfi->interleave, + newcfi->numchips, 1<<(newcfi->chipshift-10)); + + map->fldrv_priv = newcfi; + *pcfi = newcfi; + kfree(cfi); + } + + return 0; +} + +/* + * *********** CHIP ACCESS FUNCTIONS *********** + */ +static int chip_ready (struct map_info *map, struct flchip *chip, unsigned long adr, int mode) +{ + DECLARE_WAITQUEUE(wait, current); + struct cfi_private *cfi = map->fldrv_priv; + map_word status, status_OK = CMD(0x80), status_PWS = CMD(0x01); + struct cfi_pri_intelext *cfip = cfi->cmdset_priv; + unsigned long timeo = jiffies + HZ; + + /* Prevent setting state FL_SYNCING for chip in suspended state. */ + if (mode == FL_SYNCING && chip->oldstate != FL_READY) + goto sleep; + + switch (chip->state) { + + case FL_STATUS: + for (;;) { + status = map_read(map, adr); + if (map_word_andequal(map, status, status_OK, status_OK)) + break; + + /* At this point we're fine with write operations + in other partitions as they don't conflict. */ + if (chip->priv && map_word_andequal(map, status, status_PWS, status_PWS)) + break; + + mutex_unlock(&chip->mutex); + cfi_udelay(1); + mutex_lock(&chip->mutex); + /* Someone else might have been playing with it. */ + return -EAGAIN; + } + fallthrough; + case FL_READY: + case FL_CFI_QUERY: + case FL_JEDEC_QUERY: + return 0; + + case FL_ERASING: + if (!cfip || + !(cfip->FeatureSupport & 2) || + !(mode == FL_READY || mode == FL_POINT || + (mode == FL_WRITING && (cfip->SuspendCmdSupport & 1)))) + goto sleep; + + /* Do not allow suspend iff read/write to EB address */ + if ((adr & chip->in_progress_block_mask) == + chip->in_progress_block_addr) + goto sleep; + + /* do not suspend small EBs, buggy Micron Chips */ + if (cfi_is_micron_28F00AP30(cfi, chip) && + (chip->in_progress_block_mask == ~(0x8000-1))) + goto sleep; + + /* Erase suspend */ + map_write(map, CMD(0xB0), chip->in_progress_block_addr); + + /* If the flash has finished erasing, then 'erase suspend' + * appears to make some (28F320) flash devices switch to + * 'read' mode. Make sure that we switch to 'read status' + * mode so we get the right data. --rmk + */ + map_write(map, CMD(0x70), chip->in_progress_block_addr); + chip->oldstate = FL_ERASING; + chip->state = FL_ERASE_SUSPENDING; + chip->erase_suspended = 1; + for (;;) { + status = map_read(map, chip->in_progress_block_addr); + if (map_word_andequal(map, status, status_OK, status_OK)) + break; + + if (time_after(jiffies, timeo)) { + /* Urgh. Resume and pretend we weren't here. + * Make sure we're in 'read status' mode if it had finished */ + put_chip(map, chip, adr); + printk(KERN_ERR "%s: Chip not ready after erase " + "suspended: status = 0x%lx\n", map->name, status.x[0]); + return -EIO; + } + + mutex_unlock(&chip->mutex); + cfi_udelay(1); + mutex_lock(&chip->mutex); + /* Nobody will touch it while it's in state FL_ERASE_SUSPENDING. + So we can just loop here. */ + } + chip->state = FL_STATUS; + return 0; + + case FL_XIP_WHILE_ERASING: + if (mode != FL_READY && mode != FL_POINT && + (mode != FL_WRITING || !cfip || !(cfip->SuspendCmdSupport&1))) + goto sleep; + chip->oldstate = chip->state; + chip->state = FL_READY; + return 0; + + case FL_SHUTDOWN: + /* The machine is rebooting now,so no one can get chip anymore */ + return -EIO; + case FL_POINT: + /* Only if there's no operation suspended... */ + if (mode == FL_READY && chip->oldstate == FL_READY) + return 0; + fallthrough; + default: + sleep: + set_current_state(TASK_UNINTERRUPTIBLE); + add_wait_queue(&chip->wq, &wait); + mutex_unlock(&chip->mutex); + schedule(); + remove_wait_queue(&chip->wq, &wait); + mutex_lock(&chip->mutex); + return -EAGAIN; + } +} + +static int get_chip(struct map_info *map, struct flchip *chip, unsigned long adr, int mode) +{ + int ret; + DECLARE_WAITQUEUE(wait, current); + + retry: + if (chip->priv && + (mode == FL_WRITING || mode == FL_ERASING || mode == FL_OTP_WRITE + || mode == FL_SHUTDOWN) && chip->state != FL_SYNCING) { + /* + * OK. We have possibility for contention on the write/erase + * operations which are global to the real chip and not per + * partition. So let's fight it over in the partition which + * currently has authority on the operation. + * + * The rules are as follows: + * + * - any write operation must own shared->writing. + * + * - any erase operation must own _both_ shared->writing and + * shared->erasing. + * + * - contention arbitration is handled in the owner's context. + * + * The 'shared' struct can be read and/or written only when + * its lock is taken. + */ + struct flchip_shared *shared = chip->priv; + struct flchip *contender; + mutex_lock(&shared->lock); + contender = shared->writing; + if (contender && contender != chip) { + /* + * The engine to perform desired operation on this + * partition is already in use by someone else. + * Let's fight over it in the context of the chip + * currently using it. If it is possible to suspend, + * that other partition will do just that, otherwise + * it'll happily send us to sleep. In any case, when + * get_chip returns success we're clear to go ahead. + */ + ret = mutex_trylock(&contender->mutex); + mutex_unlock(&shared->lock); + if (!ret) + goto retry; + mutex_unlock(&chip->mutex); + ret = chip_ready(map, contender, contender->start, mode); + mutex_lock(&chip->mutex); + + if (ret == -EAGAIN) { + mutex_unlock(&contender->mutex); + goto retry; + } + if (ret) { + mutex_unlock(&contender->mutex); + return ret; + } + mutex_lock(&shared->lock); + + /* We should not own chip if it is already + * in FL_SYNCING state. Put contender and retry. */ + if (chip->state == FL_SYNCING) { + put_chip(map, contender, contender->start); + mutex_unlock(&contender->mutex); + goto retry; + } + mutex_unlock(&contender->mutex); + } + + /* Check if we already have suspended erase + * on this chip. Sleep. */ + if (mode == FL_ERASING && shared->erasing + && shared->erasing->oldstate == FL_ERASING) { + mutex_unlock(&shared->lock); + set_current_state(TASK_UNINTERRUPTIBLE); + add_wait_queue(&chip->wq, &wait); + mutex_unlock(&chip->mutex); + schedule(); + remove_wait_queue(&chip->wq, &wait); + mutex_lock(&chip->mutex); + goto retry; + } + + /* We now own it */ + shared->writing = chip; + if (mode == FL_ERASING) + shared->erasing = chip; + mutex_unlock(&shared->lock); + } + ret = chip_ready(map, chip, adr, mode); + if (ret == -EAGAIN) + goto retry; + + return ret; +} + +static void put_chip(struct map_info *map, struct flchip *chip, unsigned long adr) +{ + struct cfi_private *cfi = map->fldrv_priv; + + if (chip->priv) { + struct flchip_shared *shared = chip->priv; + mutex_lock(&shared->lock); + if (shared->writing == chip && chip->oldstate == FL_READY) { + /* We own the ability to write, but we're done */ + shared->writing = shared->erasing; + if (shared->writing && shared->writing != chip) { + /* give back ownership to who we loaned it from */ + struct flchip *loaner = shared->writing; + mutex_lock(&loaner->mutex); + mutex_unlock(&shared->lock); + mutex_unlock(&chip->mutex); + put_chip(map, loaner, loaner->start); + mutex_lock(&chip->mutex); + mutex_unlock(&loaner->mutex); + wake_up(&chip->wq); + return; + } + shared->erasing = NULL; + shared->writing = NULL; + } else if (shared->erasing == chip && shared->writing != chip) { + /* + * We own the ability to erase without the ability + * to write, which means the erase was suspended + * and some other partition is currently writing. + * Don't let the switch below mess things up since + * we don't have ownership to resume anything. + */ + mutex_unlock(&shared->lock); + wake_up(&chip->wq); + return; + } + mutex_unlock(&shared->lock); + } + + switch(chip->oldstate) { + case FL_ERASING: + /* What if one interleaved chip has finished and the + other hasn't? The old code would leave the finished + one in READY mode. That's bad, and caused -EROFS + errors to be returned from do_erase_oneblock because + that's the only bit it checked for at the time. + As the state machine appears to explicitly allow + sending the 0x70 (Read Status) command to an erasing + chip and expecting it to be ignored, that's what we + do. */ + map_write(map, CMD(0xd0), chip->in_progress_block_addr); + map_write(map, CMD(0x70), chip->in_progress_block_addr); + chip->oldstate = FL_READY; + chip->state = FL_ERASING; + break; + + case FL_XIP_WHILE_ERASING: + chip->state = chip->oldstate; + chip->oldstate = FL_READY; + break; + + case FL_READY: + case FL_STATUS: + case FL_JEDEC_QUERY: + break; + default: + printk(KERN_ERR "%s: put_chip() called with oldstate %d!!\n", map->name, chip->oldstate); + } + wake_up(&chip->wq); +} + +#ifdef CONFIG_MTD_XIP + +/* + * No interrupt what so ever can be serviced while the flash isn't in array + * mode. This is ensured by the xip_disable() and xip_enable() functions + * enclosing any code path where the flash is known not to be in array mode. + * And within a XIP disabled code path, only functions marked with __xipram + * may be called and nothing else (it's a good thing to inspect generated + * assembly to make sure inline functions were actually inlined and that gcc + * didn't emit calls to its own support functions). Also configuring MTD CFI + * support to a single buswidth and a single interleave is also recommended. + */ + +static void xip_disable(struct map_info *map, struct flchip *chip, + unsigned long adr) +{ + /* TODO: chips with no XIP use should ignore and return */ + (void) map_read(map, adr); /* ensure mmu mapping is up to date */ + local_irq_disable(); +} + +static void __xipram xip_enable(struct map_info *map, struct flchip *chip, + unsigned long adr) +{ + struct cfi_private *cfi = map->fldrv_priv; + if (chip->state != FL_POINT && chip->state != FL_READY) { + map_write(map, CMD(0xff), adr); + chip->state = FL_READY; + } + (void) map_read(map, adr); + xip_iprefetch(); + local_irq_enable(); +} + +/* + * When a delay is required for the flash operation to complete, the + * xip_wait_for_operation() function is polling for both the given timeout + * and pending (but still masked) hardware interrupts. Whenever there is an + * interrupt pending then the flash erase or write operation is suspended, + * array mode restored and interrupts unmasked. Task scheduling might also + * happen at that point. The CPU eventually returns from the interrupt or + * the call to schedule() and the suspended flash operation is resumed for + * the remaining of the delay period. + * + * Warning: this function _will_ fool interrupt latency tracing tools. + */ + +static int __xipram xip_wait_for_operation( + struct map_info *map, struct flchip *chip, + unsigned long adr, unsigned int chip_op_time_max) +{ + struct cfi_private *cfi = map->fldrv_priv; + struct cfi_pri_intelext *cfip = cfi->cmdset_priv; + map_word status, OK = CMD(0x80); + unsigned long usec, suspended, start, done; + flstate_t oldstate, newstate; + + start = xip_currtime(); + usec = chip_op_time_max; + if (usec == 0) + usec = 500000; + done = 0; + + do { + cpu_relax(); + if (xip_irqpending() && cfip && + ((chip->state == FL_ERASING && (cfip->FeatureSupport&2)) || + (chip->state == FL_WRITING && (cfip->FeatureSupport&4))) && + (cfi_interleave_is_1(cfi) || chip->oldstate == FL_READY)) { + /* + * Let's suspend the erase or write operation when + * supported. Note that we currently don't try to + * suspend interleaved chips if there is already + * another operation suspended (imagine what happens + * when one chip was already done with the current + * operation while another chip suspended it, then + * we resume the whole thing at once). Yes, it + * can happen! + */ + usec -= done; + map_write(map, CMD(0xb0), adr); + map_write(map, CMD(0x70), adr); + suspended = xip_currtime(); + do { + if (xip_elapsed_since(suspended) > 100000) { + /* + * The chip doesn't want to suspend + * after waiting for 100 msecs. + * This is a critical error but there + * is not much we can do here. + */ + return -EIO; + } + status = map_read(map, adr); + } while (!map_word_andequal(map, status, OK, OK)); + + /* Suspend succeeded */ + oldstate = chip->state; + if (oldstate == FL_ERASING) { + if (!map_word_bitsset(map, status, CMD(0x40))) + break; + newstate = FL_XIP_WHILE_ERASING; + chip->erase_suspended = 1; + } else { + if (!map_word_bitsset(map, status, CMD(0x04))) + break; + newstate = FL_XIP_WHILE_WRITING; + chip->write_suspended = 1; + } + chip->state = newstate; + map_write(map, CMD(0xff), adr); + (void) map_read(map, adr); + xip_iprefetch(); + local_irq_enable(); + mutex_unlock(&chip->mutex); + xip_iprefetch(); + cond_resched(); + + /* + * We're back. However someone else might have + * decided to go write to the chip if we are in + * a suspended erase state. If so let's wait + * until it's done. + */ + mutex_lock(&chip->mutex); + while (chip->state != newstate) { + DECLARE_WAITQUEUE(wait, current); + set_current_state(TASK_UNINTERRUPTIBLE); + add_wait_queue(&chip->wq, &wait); + mutex_unlock(&chip->mutex); + schedule(); + remove_wait_queue(&chip->wq, &wait); + mutex_lock(&chip->mutex); + } + /* Disallow XIP again */ + local_irq_disable(); + + /* Resume the write or erase operation */ + map_write(map, CMD(0xd0), adr); + map_write(map, CMD(0x70), adr); + chip->state = oldstate; + start = xip_currtime(); + } else if (usec >= 1000000/HZ) { + /* + * Try to save on CPU power when waiting delay + * is at least a system timer tick period. + * No need to be extremely accurate here. + */ + xip_cpu_idle(); + } + status = map_read(map, adr); + done = xip_elapsed_since(start); + } while (!map_word_andequal(map, status, OK, OK) + && done < usec); + + return (done >= usec) ? -ETIME : 0; +} + +/* + * The INVALIDATE_CACHED_RANGE() macro is normally used in parallel while + * the flash is actively programming or erasing since we have to poll for + * the operation to complete anyway. We can't do that in a generic way with + * a XIP setup so do it before the actual flash operation in this case + * and stub it out from INVAL_CACHE_AND_WAIT. + */ +#define XIP_INVAL_CACHED_RANGE(map, from, size) \ + INVALIDATE_CACHED_RANGE(map, from, size) + +#define INVAL_CACHE_AND_WAIT(map, chip, cmd_adr, inval_adr, inval_len, usec, usec_max) \ + xip_wait_for_operation(map, chip, cmd_adr, usec_max) + +#else + +#define xip_disable(map, chip, adr) +#define xip_enable(map, chip, adr) +#define XIP_INVAL_CACHED_RANGE(x...) +#define INVAL_CACHE_AND_WAIT inval_cache_and_wait_for_operation + +static int inval_cache_and_wait_for_operation( + struct map_info *map, struct flchip *chip, + unsigned long cmd_adr, unsigned long inval_adr, int inval_len, + unsigned int chip_op_time, unsigned int chip_op_time_max) +{ + struct cfi_private *cfi = map->fldrv_priv; + map_word status, status_OK = CMD(0x80); + int chip_state = chip->state; + unsigned int timeo, sleep_time, reset_timeo; + + mutex_unlock(&chip->mutex); + if (inval_len) + INVALIDATE_CACHED_RANGE(map, inval_adr, inval_len); + mutex_lock(&chip->mutex); + + timeo = chip_op_time_max; + if (!timeo) + timeo = 500000; + reset_timeo = timeo; + sleep_time = chip_op_time / 2; + + for (;;) { + if (chip->state != chip_state) { + /* Someone's suspended the operation: sleep */ + DECLARE_WAITQUEUE(wait, current); + set_current_state(TASK_UNINTERRUPTIBLE); + add_wait_queue(&chip->wq, &wait); + mutex_unlock(&chip->mutex); + schedule(); + remove_wait_queue(&chip->wq, &wait); + mutex_lock(&chip->mutex); + continue; + } + + status = map_read(map, cmd_adr); + if (map_word_andequal(map, status, status_OK, status_OK)) + break; + + if (chip->erase_suspended && chip_state == FL_ERASING) { + /* Erase suspend occurred while sleep: reset timeout */ + timeo = reset_timeo; + chip->erase_suspended = 0; + } + if (chip->write_suspended && chip_state == FL_WRITING) { + /* Write suspend occurred while sleep: reset timeout */ + timeo = reset_timeo; + chip->write_suspended = 0; + } + if (!timeo) { + map_write(map, CMD(0x70), cmd_adr); + chip->state = FL_STATUS; + return -ETIME; + } + + /* OK Still waiting. Drop the lock, wait a while and retry. */ + mutex_unlock(&chip->mutex); + if (sleep_time >= 1000000/HZ) { + /* + * Half of the normal delay still remaining + * can be performed with a sleeping delay instead + * of busy waiting. + */ + msleep(sleep_time/1000); + timeo -= sleep_time; + sleep_time = 1000000/HZ; + } else { + udelay(1); + cond_resched(); + timeo--; + } + mutex_lock(&chip->mutex); + } + + /* Done and happy. */ + chip->state = FL_STATUS; + return 0; +} + +#endif + +#define WAIT_TIMEOUT(map, chip, adr, udelay, udelay_max) \ + INVAL_CACHE_AND_WAIT(map, chip, adr, 0, 0, udelay, udelay_max); + + +static int do_point_onechip (struct map_info *map, struct flchip *chip, loff_t adr, size_t len) +{ + unsigned long cmd_addr; + struct cfi_private *cfi = map->fldrv_priv; + int ret; + + adr += chip->start; + + /* Ensure cmd read/writes are aligned. */ + cmd_addr = adr & ~(map_bankwidth(map)-1); + + mutex_lock(&chip->mutex); + + ret = get_chip(map, chip, cmd_addr, FL_POINT); + + if (!ret) { + if (chip->state != FL_POINT && chip->state != FL_READY) + map_write(map, CMD(0xff), cmd_addr); + + chip->state = FL_POINT; + chip->ref_point_counter++; + } + mutex_unlock(&chip->mutex); + + return ret; +} + +static int cfi_intelext_point(struct mtd_info *mtd, loff_t from, size_t len, + size_t *retlen, void **virt, resource_size_t *phys) +{ + struct map_info *map = mtd->priv; + struct cfi_private *cfi = map->fldrv_priv; + unsigned long ofs, last_end = 0; + int chipnum; + int ret; + + if (!map->virt) + return -EINVAL; + + /* Now lock the chip(s) to POINT state */ + + /* ofs: offset within the first chip that the first read should start */ + chipnum = (from >> cfi->chipshift); + ofs = from - (chipnum << cfi->chipshift); + + *virt = map->virt + cfi->chips[chipnum].start + ofs; + if (phys) + *phys = map->phys + cfi->chips[chipnum].start + ofs; + + while (len) { + unsigned long thislen; + + if (chipnum >= cfi->numchips) + break; + + /* We cannot point across chips that are virtually disjoint */ + if (!last_end) + last_end = cfi->chips[chipnum].start; + else if (cfi->chips[chipnum].start != last_end) + break; + + if ((len + ofs -1) >> cfi->chipshift) + thislen = (1<<cfi->chipshift) - ofs; + else + thislen = len; + + ret = do_point_onechip(map, &cfi->chips[chipnum], ofs, thislen); + if (ret) + break; + + *retlen += thislen; + len -= thislen; + + ofs = 0; + last_end += 1 << cfi->chipshift; + chipnum++; + } + return 0; +} + +static int cfi_intelext_unpoint(struct mtd_info *mtd, loff_t from, size_t len) +{ + struct map_info *map = mtd->priv; + struct cfi_private *cfi = map->fldrv_priv; + unsigned long ofs; + int chipnum, err = 0; + + /* Now unlock the chip(s) POINT state */ + + /* ofs: offset within the first chip that the first read should start */ + chipnum = (from >> cfi->chipshift); + ofs = from - (chipnum << cfi->chipshift); + + while (len && !err) { + unsigned long thislen; + struct flchip *chip; + + chip = &cfi->chips[chipnum]; + if (chipnum >= cfi->numchips) + break; + + if ((len + ofs -1) >> cfi->chipshift) + thislen = (1<<cfi->chipshift) - ofs; + else + thislen = len; + + mutex_lock(&chip->mutex); + if (chip->state == FL_POINT) { + chip->ref_point_counter--; + if(chip->ref_point_counter == 0) + chip->state = FL_READY; + } else { + printk(KERN_ERR "%s: Error: unpoint called on non pointed region\n", map->name); + err = -EINVAL; + } + + put_chip(map, chip, chip->start); + mutex_unlock(&chip->mutex); + + len -= thislen; + ofs = 0; + chipnum++; + } + + return err; +} + +static inline int do_read_onechip(struct map_info *map, struct flchip *chip, loff_t adr, size_t len, u_char *buf) +{ + unsigned long cmd_addr; + struct cfi_private *cfi = map->fldrv_priv; + int ret; + + adr += chip->start; + + /* Ensure cmd read/writes are aligned. */ + cmd_addr = adr & ~(map_bankwidth(map)-1); + + mutex_lock(&chip->mutex); + ret = get_chip(map, chip, cmd_addr, FL_READY); + if (ret) { + mutex_unlock(&chip->mutex); + return ret; + } + + if (chip->state != FL_POINT && chip->state != FL_READY) { + map_write(map, CMD(0xff), cmd_addr); + + chip->state = FL_READY; + } + + map_copy_from(map, buf, adr, len); + + put_chip(map, chip, cmd_addr); + + mutex_unlock(&chip->mutex); + return 0; +} + +static int cfi_intelext_read (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf) +{ + struct map_info *map = mtd->priv; + struct cfi_private *cfi = map->fldrv_priv; + unsigned long ofs; + int chipnum; + int ret = 0; + + /* ofs: offset within the first chip that the first read should start */ + chipnum = (from >> cfi->chipshift); + ofs = from - (chipnum << cfi->chipshift); + + while (len) { + unsigned long thislen; + + if (chipnum >= cfi->numchips) + break; + + if ((len + ofs -1) >> cfi->chipshift) + thislen = (1<<cfi->chipshift) - ofs; + else + thislen = len; + + ret = do_read_onechip(map, &cfi->chips[chipnum], ofs, thislen, buf); + if (ret) + break; + + *retlen += thislen; + len -= thislen; + buf += thislen; + + ofs = 0; + chipnum++; + } + return ret; +} + +static int __xipram do_write_oneword(struct map_info *map, struct flchip *chip, + unsigned long adr, map_word datum, int mode) +{ + struct cfi_private *cfi = map->fldrv_priv; + map_word status, write_cmd; + int ret; + + adr += chip->start; + + switch (mode) { + case FL_WRITING: + write_cmd = (cfi->cfiq->P_ID != P_ID_INTEL_PERFORMANCE) ? CMD(0x40) : CMD(0x41); + break; + case FL_OTP_WRITE: + write_cmd = CMD(0xc0); + break; + default: + return -EINVAL; + } + + mutex_lock(&chip->mutex); + ret = get_chip(map, chip, adr, mode); + if (ret) { + mutex_unlock(&chip->mutex); + return ret; + } + + XIP_INVAL_CACHED_RANGE(map, adr, map_bankwidth(map)); + ENABLE_VPP(map); + xip_disable(map, chip, adr); + map_write(map, write_cmd, adr); + map_write(map, datum, adr); + chip->state = mode; + + ret = INVAL_CACHE_AND_WAIT(map, chip, adr, + adr, map_bankwidth(map), + chip->word_write_time, + chip->word_write_time_max); + if (ret) { + xip_enable(map, chip, adr); + printk(KERN_ERR "%s: word write error (status timeout)\n", map->name); + goto out; + } + + /* check for errors */ + status = map_read(map, adr); + if (map_word_bitsset(map, status, CMD(0x1a))) { + unsigned long chipstatus = MERGESTATUS(status); + + /* reset status */ + map_write(map, CMD(0x50), adr); + map_write(map, CMD(0x70), adr); + xip_enable(map, chip, adr); + + if (chipstatus & 0x02) { + ret = -EROFS; + } else if (chipstatus & 0x08) { + printk(KERN_ERR "%s: word write error (bad VPP)\n", map->name); + ret = -EIO; + } else { + printk(KERN_ERR "%s: word write error (status 0x%lx)\n", map->name, chipstatus); + ret = -EINVAL; + } + + goto out; + } + + xip_enable(map, chip, adr); + out: DISABLE_VPP(map); + put_chip(map, chip, adr); + mutex_unlock(&chip->mutex); + return ret; +} + + +static int cfi_intelext_write_words (struct mtd_info *mtd, loff_t to , size_t len, size_t *retlen, const u_char *buf) +{ + struct map_info *map = mtd->priv; + struct cfi_private *cfi = map->fldrv_priv; + int ret; + int chipnum; + unsigned long ofs; + + chipnum = to >> cfi->chipshift; + ofs = to - (chipnum << cfi->chipshift); + + /* If it's not bus-aligned, do the first byte write */ + if (ofs & (map_bankwidth(map)-1)) { + unsigned long bus_ofs = ofs & ~(map_bankwidth(map)-1); + int gap = ofs - bus_ofs; + int n; + map_word datum; + + n = min_t(int, len, map_bankwidth(map)-gap); + datum = map_word_ff(map); + datum = map_word_load_partial(map, datum, buf, gap, n); + + ret = do_write_oneword(map, &cfi->chips[chipnum], + bus_ofs, datum, FL_WRITING); + if (ret) + return ret; + + len -= n; + ofs += n; + buf += n; + (*retlen) += n; + + if (ofs >> cfi->chipshift) { + chipnum ++; + ofs = 0; + if (chipnum == cfi->numchips) + return 0; + } + } + + while(len >= map_bankwidth(map)) { + map_word datum = map_word_load(map, buf); + + ret = do_write_oneword(map, &cfi->chips[chipnum], + ofs, datum, FL_WRITING); + if (ret) + return ret; + + ofs += map_bankwidth(map); + buf += map_bankwidth(map); + (*retlen) += map_bankwidth(map); + len -= map_bankwidth(map); + + if (ofs >> cfi->chipshift) { + chipnum ++; + ofs = 0; + if (chipnum == cfi->numchips) + return 0; + } + } + + if (len & (map_bankwidth(map)-1)) { + map_word datum; + + datum = map_word_ff(map); + datum = map_word_load_partial(map, datum, buf, 0, len); + + ret = do_write_oneword(map, &cfi->chips[chipnum], + ofs, datum, FL_WRITING); + if (ret) + return ret; + + (*retlen) += len; + } + + return 0; +} + + +static int __xipram do_write_buffer(struct map_info *map, struct flchip *chip, + unsigned long adr, const struct kvec **pvec, + unsigned long *pvec_seek, int len) +{ + struct cfi_private *cfi = map->fldrv_priv; + map_word status, write_cmd, datum; + unsigned long cmd_adr; + int ret, wbufsize, word_gap, words; + const struct kvec *vec; + unsigned long vec_seek; + unsigned long initial_adr; + int initial_len = len; + + wbufsize = cfi_interleave(cfi) << cfi->cfiq->MaxBufWriteSize; + adr += chip->start; + initial_adr = adr; + cmd_adr = adr & ~(wbufsize-1); + + /* Sharp LH28F640BF chips need the first address for the + * Page Buffer Program command. See Table 5 of + * LH28F320BF, LH28F640BF, LH28F128BF Series (Appendix FUM00701) */ + if (is_LH28F640BF(cfi)) + cmd_adr = adr; + + /* Let's determine this according to the interleave only once */ + write_cmd = (cfi->cfiq->P_ID != P_ID_INTEL_PERFORMANCE) ? CMD(0xe8) : CMD(0xe9); + + mutex_lock(&chip->mutex); + ret = get_chip(map, chip, cmd_adr, FL_WRITING); + if (ret) { + mutex_unlock(&chip->mutex); + return ret; + } + + XIP_INVAL_CACHED_RANGE(map, initial_adr, initial_len); + ENABLE_VPP(map); + xip_disable(map, chip, cmd_adr); + + /* §4.8 of the 28FxxxJ3A datasheet says "Any time SR.4 and/or SR.5 is set + [...], the device will not accept any more Write to Buffer commands". + So we must check here and reset those bits if they're set. Otherwise + we're just pissing in the wind */ + if (chip->state != FL_STATUS) { + map_write(map, CMD(0x70), cmd_adr); + chip->state = FL_STATUS; + } + status = map_read(map, cmd_adr); + if (map_word_bitsset(map, status, CMD(0x30))) { + xip_enable(map, chip, cmd_adr); + printk(KERN_WARNING "SR.4 or SR.5 bits set in buffer write (status %lx). Clearing.\n", status.x[0]); + xip_disable(map, chip, cmd_adr); + map_write(map, CMD(0x50), cmd_adr); + map_write(map, CMD(0x70), cmd_adr); + } + + chip->state = FL_WRITING_TO_BUFFER; + map_write(map, write_cmd, cmd_adr); + ret = WAIT_TIMEOUT(map, chip, cmd_adr, 0, 0); + if (ret) { + /* Argh. Not ready for write to buffer */ + map_word Xstatus = map_read(map, cmd_adr); + map_write(map, CMD(0x70), cmd_adr); + chip->state = FL_STATUS; + status = map_read(map, cmd_adr); + map_write(map, CMD(0x50), cmd_adr); + map_write(map, CMD(0x70), cmd_adr); + xip_enable(map, chip, cmd_adr); + printk(KERN_ERR "%s: Chip not ready for buffer write. Xstatus = %lx, status = %lx\n", + map->name, Xstatus.x[0], status.x[0]); + goto out; + } + + /* Figure out the number of words to write */ + word_gap = (-adr & (map_bankwidth(map)-1)); + words = DIV_ROUND_UP(len - word_gap, map_bankwidth(map)); + if (!word_gap) { + words--; + } else { + word_gap = map_bankwidth(map) - word_gap; + adr -= word_gap; + datum = map_word_ff(map); + } + + /* Write length of data to come */ + map_write(map, CMD(words), cmd_adr ); + + /* Write data */ + vec = *pvec; + vec_seek = *pvec_seek; + do { + int n = map_bankwidth(map) - word_gap; + if (n > vec->iov_len - vec_seek) + n = vec->iov_len - vec_seek; + if (n > len) + n = len; + + if (!word_gap && len < map_bankwidth(map)) + datum = map_word_ff(map); + + datum = map_word_load_partial(map, datum, + vec->iov_base + vec_seek, + word_gap, n); + + len -= n; + word_gap += n; + if (!len || word_gap == map_bankwidth(map)) { + map_write(map, datum, adr); + adr += map_bankwidth(map); + word_gap = 0; + } + + vec_seek += n; + if (vec_seek == vec->iov_len) { + vec++; + vec_seek = 0; + } + } while (len); + *pvec = vec; + *pvec_seek = vec_seek; + + /* GO GO GO */ + map_write(map, CMD(0xd0), cmd_adr); + chip->state = FL_WRITING; + + ret = INVAL_CACHE_AND_WAIT(map, chip, cmd_adr, + initial_adr, initial_len, + chip->buffer_write_time, + chip->buffer_write_time_max); + if (ret) { + map_write(map, CMD(0x70), cmd_adr); + chip->state = FL_STATUS; + xip_enable(map, chip, cmd_adr); + printk(KERN_ERR "%s: buffer write error (status timeout)\n", map->name); + goto out; + } + + /* check for errors */ + status = map_read(map, cmd_adr); + if (map_word_bitsset(map, status, CMD(0x1a))) { + unsigned long chipstatus = MERGESTATUS(status); + + /* reset status */ + map_write(map, CMD(0x50), cmd_adr); + map_write(map, CMD(0x70), cmd_adr); + xip_enable(map, chip, cmd_adr); + + if (chipstatus & 0x02) { + ret = -EROFS; + } else if (chipstatus & 0x08) { + printk(KERN_ERR "%s: buffer write error (bad VPP)\n", map->name); + ret = -EIO; + } else { + printk(KERN_ERR "%s: buffer write error (status 0x%lx)\n", map->name, chipstatus); + ret = -EINVAL; + } + + goto out; + } + + xip_enable(map, chip, cmd_adr); + out: DISABLE_VPP(map); + put_chip(map, chip, cmd_adr); + mutex_unlock(&chip->mutex); + return ret; +} + +static int cfi_intelext_writev (struct mtd_info *mtd, const struct kvec *vecs, + unsigned long count, loff_t to, size_t *retlen) +{ + struct map_info *map = mtd->priv; + struct cfi_private *cfi = map->fldrv_priv; + int wbufsize = cfi_interleave(cfi) << cfi->cfiq->MaxBufWriteSize; + int ret; + int chipnum; + unsigned long ofs, vec_seek, i; + size_t len = 0; + + for (i = 0; i < count; i++) + len += vecs[i].iov_len; + + if (!len) + return 0; + + chipnum = to >> cfi->chipshift; + ofs = to - (chipnum << cfi->chipshift); + vec_seek = 0; + + do { + /* We must not cross write block boundaries */ + int size = wbufsize - (ofs & (wbufsize-1)); + + if (size > len) + size = len; + ret = do_write_buffer(map, &cfi->chips[chipnum], + ofs, &vecs, &vec_seek, size); + if (ret) + return ret; + + ofs += size; + (*retlen) += size; + len -= size; + + if (ofs >> cfi->chipshift) { + chipnum ++; + ofs = 0; + if (chipnum == cfi->numchips) + return 0; + } + + /* Be nice and reschedule with the chip in a usable state for other + processes. */ + cond_resched(); + + } while (len); + + return 0; +} + +static int cfi_intelext_write_buffers (struct mtd_info *mtd, loff_t to, + size_t len, size_t *retlen, const u_char *buf) +{ + struct kvec vec; + + vec.iov_base = (void *) buf; + vec.iov_len = len; + + return cfi_intelext_writev(mtd, &vec, 1, to, retlen); +} + +static int __xipram do_erase_oneblock(struct map_info *map, struct flchip *chip, + unsigned long adr, int len, void *thunk) +{ + struct cfi_private *cfi = map->fldrv_priv; + map_word status; + int retries = 3; + int ret; + + adr += chip->start; + + retry: + mutex_lock(&chip->mutex); + ret = get_chip(map, chip, adr, FL_ERASING); + if (ret) { + mutex_unlock(&chip->mutex); + return ret; + } + + XIP_INVAL_CACHED_RANGE(map, adr, len); + ENABLE_VPP(map); + xip_disable(map, chip, adr); + + /* Clear the status register first */ + map_write(map, CMD(0x50), adr); + + /* Now erase */ + map_write(map, CMD(0x20), adr); + map_write(map, CMD(0xD0), adr); + chip->state = FL_ERASING; + chip->erase_suspended = 0; + chip->in_progress_block_addr = adr; + chip->in_progress_block_mask = ~(len - 1); + + ret = INVAL_CACHE_AND_WAIT(map, chip, adr, + adr, len, + chip->erase_time, + chip->erase_time_max); + if (ret) { + map_write(map, CMD(0x70), adr); + chip->state = FL_STATUS; + xip_enable(map, chip, adr); + printk(KERN_ERR "%s: block erase error: (status timeout)\n", map->name); + goto out; + } + + /* We've broken this before. It doesn't hurt to be safe */ + map_write(map, CMD(0x70), adr); + chip->state = FL_STATUS; + status = map_read(map, adr); + + /* check for errors */ + if (map_word_bitsset(map, status, CMD(0x3a))) { + unsigned long chipstatus = MERGESTATUS(status); + + /* Reset the error bits */ + map_write(map, CMD(0x50), adr); + map_write(map, CMD(0x70), adr); + xip_enable(map, chip, adr); + + if ((chipstatus & 0x30) == 0x30) { + printk(KERN_ERR "%s: block erase error: (bad command sequence, status 0x%lx)\n", map->name, chipstatus); + ret = -EINVAL; + } else if (chipstatus & 0x02) { + /* Protection bit set */ + ret = -EROFS; + } else if (chipstatus & 0x8) { + /* Voltage */ + printk(KERN_ERR "%s: block erase error: (bad VPP)\n", map->name); + ret = -EIO; + } else if (chipstatus & 0x20 && retries--) { + printk(KERN_DEBUG "block erase failed at 0x%08lx: status 0x%lx. Retrying...\n", adr, chipstatus); + DISABLE_VPP(map); + put_chip(map, chip, adr); + mutex_unlock(&chip->mutex); + goto retry; + } else { + printk(KERN_ERR "%s: block erase failed at 0x%08lx (status 0x%lx)\n", map->name, adr, chipstatus); + ret = -EIO; + } + + goto out; + } + + xip_enable(map, chip, adr); + out: DISABLE_VPP(map); + put_chip(map, chip, adr); + mutex_unlock(&chip->mutex); + return ret; +} + +static int cfi_intelext_erase_varsize(struct mtd_info *mtd, struct erase_info *instr) +{ + return cfi_varsize_frob(mtd, do_erase_oneblock, instr->addr, + instr->len, NULL); +} + +static void cfi_intelext_sync (struct mtd_info *mtd) +{ + struct map_info *map = mtd->priv; + struct cfi_private *cfi = map->fldrv_priv; + int i; + struct flchip *chip; + int ret = 0; + + for (i=0; !ret && i<cfi->numchips; i++) { + chip = &cfi->chips[i]; + + mutex_lock(&chip->mutex); + ret = get_chip(map, chip, chip->start, FL_SYNCING); + + if (!ret) { + chip->oldstate = chip->state; + chip->state = FL_SYNCING; + /* No need to wake_up() on this state change - + * as the whole point is that nobody can do anything + * with the chip now anyway. + */ + } + mutex_unlock(&chip->mutex); + } + + /* Unlock the chips again */ + + for (i--; i >=0; i--) { + chip = &cfi->chips[i]; + + mutex_lock(&chip->mutex); + + if (chip->state == FL_SYNCING) { + chip->state = chip->oldstate; + chip->oldstate = FL_READY; + wake_up(&chip->wq); + } + mutex_unlock(&chip->mutex); + } +} + +static int __xipram do_getlockstatus_oneblock(struct map_info *map, + struct flchip *chip, + unsigned long adr, + int len, void *thunk) +{ + struct cfi_private *cfi = map->fldrv_priv; + int status, ofs_factor = cfi->interleave * cfi->device_type; + + adr += chip->start; + xip_disable(map, chip, adr+(2*ofs_factor)); + map_write(map, CMD(0x90), adr+(2*ofs_factor)); + chip->state = FL_JEDEC_QUERY; + status = cfi_read_query(map, adr+(2*ofs_factor)); + xip_enable(map, chip, 0); + return status; +} + +#ifdef DEBUG_LOCK_BITS +static int __xipram do_printlockstatus_oneblock(struct map_info *map, + struct flchip *chip, + unsigned long adr, + int len, void *thunk) +{ + printk(KERN_DEBUG "block status register for 0x%08lx is %x\n", + adr, do_getlockstatus_oneblock(map, chip, adr, len, thunk)); + return 0; +} +#endif + +#define DO_XXLOCK_ONEBLOCK_LOCK ((void *) 1) +#define DO_XXLOCK_ONEBLOCK_UNLOCK ((void *) 2) + +static int __xipram do_xxlock_oneblock(struct map_info *map, struct flchip *chip, + unsigned long adr, int len, void *thunk) +{ + struct cfi_private *cfi = map->fldrv_priv; + struct cfi_pri_intelext *extp = cfi->cmdset_priv; + int mdelay; + int ret; + + adr += chip->start; + + mutex_lock(&chip->mutex); + ret = get_chip(map, chip, adr, FL_LOCKING); + if (ret) { + mutex_unlock(&chip->mutex); + return ret; + } + + ENABLE_VPP(map); + xip_disable(map, chip, adr); + + map_write(map, CMD(0x60), adr); + if (thunk == DO_XXLOCK_ONEBLOCK_LOCK) { + map_write(map, CMD(0x01), adr); + chip->state = FL_LOCKING; + } else if (thunk == DO_XXLOCK_ONEBLOCK_UNLOCK) { + map_write(map, CMD(0xD0), adr); + chip->state = FL_UNLOCKING; + } else + BUG(); + + /* + * If Instant Individual Block Locking supported then no need + * to delay. + */ + /* + * Unlocking may take up to 1.4 seconds on some Intel flashes. So + * lets use a max of 1.5 seconds (1500ms) as timeout. + * + * See "Clear Block Lock-Bits Time" on page 40 in + * "3 Volt Intel StrataFlash Memory" 28F128J3,28F640J3,28F320J3 manual + * from February 2003 + */ + mdelay = (!extp || !(extp->FeatureSupport & (1 << 5))) ? 1500 : 0; + + ret = WAIT_TIMEOUT(map, chip, adr, mdelay, mdelay * 1000); + if (ret) { + map_write(map, CMD(0x70), adr); + chip->state = FL_STATUS; + xip_enable(map, chip, adr); + printk(KERN_ERR "%s: block unlock error: (status timeout)\n", map->name); + goto out; + } + + xip_enable(map, chip, adr); + out: DISABLE_VPP(map); + put_chip(map, chip, adr); + mutex_unlock(&chip->mutex); + return ret; +} + +static int cfi_intelext_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len) +{ + int ret; + +#ifdef DEBUG_LOCK_BITS + printk(KERN_DEBUG "%s: lock status before, ofs=0x%08llx, len=0x%08X\n", + __func__, ofs, len); + cfi_varsize_frob(mtd, do_printlockstatus_oneblock, + ofs, len, NULL); +#endif + + ret = cfi_varsize_frob(mtd, do_xxlock_oneblock, + ofs, len, DO_XXLOCK_ONEBLOCK_LOCK); + +#ifdef DEBUG_LOCK_BITS + printk(KERN_DEBUG "%s: lock status after, ret=%d\n", + __func__, ret); + cfi_varsize_frob(mtd, do_printlockstatus_oneblock, + ofs, len, NULL); +#endif + + return ret; +} + +static int cfi_intelext_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len) +{ + int ret; + +#ifdef DEBUG_LOCK_BITS + printk(KERN_DEBUG "%s: lock status before, ofs=0x%08llx, len=0x%08X\n", + __func__, ofs, len); + cfi_varsize_frob(mtd, do_printlockstatus_oneblock, + ofs, len, NULL); +#endif + + ret = cfi_varsize_frob(mtd, do_xxlock_oneblock, + ofs, len, DO_XXLOCK_ONEBLOCK_UNLOCK); + +#ifdef DEBUG_LOCK_BITS + printk(KERN_DEBUG "%s: lock status after, ret=%d\n", + __func__, ret); + cfi_varsize_frob(mtd, do_printlockstatus_oneblock, + ofs, len, NULL); +#endif + + return ret; +} + +static int cfi_intelext_is_locked(struct mtd_info *mtd, loff_t ofs, + uint64_t len) +{ + return cfi_varsize_frob(mtd, do_getlockstatus_oneblock, + ofs, len, NULL) ? 1 : 0; +} + +#ifdef CONFIG_MTD_OTP + +typedef int (*otp_op_t)(struct map_info *map, struct flchip *chip, + u_long data_offset, u_char *buf, u_int size, + u_long prot_offset, u_int groupno, u_int groupsize); + +static int __xipram +do_otp_read(struct map_info *map, struct flchip *chip, u_long offset, + u_char *buf, u_int size, u_long prot, u_int grpno, u_int grpsz) +{ + struct cfi_private *cfi = map->fldrv_priv; + int ret; + + mutex_lock(&chip->mutex); + ret = get_chip(map, chip, chip->start, FL_JEDEC_QUERY); + if (ret) { + mutex_unlock(&chip->mutex); + return ret; + } + + /* let's ensure we're not reading back cached data from array mode */ + INVALIDATE_CACHED_RANGE(map, chip->start + offset, size); + + xip_disable(map, chip, chip->start); + if (chip->state != FL_JEDEC_QUERY) { + map_write(map, CMD(0x90), chip->start); + chip->state = FL_JEDEC_QUERY; + } + map_copy_from(map, buf, chip->start + offset, size); + xip_enable(map, chip, chip->start); + + /* then ensure we don't keep OTP data in the cache */ + INVALIDATE_CACHED_RANGE(map, chip->start + offset, size); + + put_chip(map, chip, chip->start); + mutex_unlock(&chip->mutex); + return 0; +} + +static int +do_otp_write(struct map_info *map, struct flchip *chip, u_long offset, + u_char *buf, u_int size, u_long prot, u_int grpno, u_int grpsz) +{ + int ret; + + while (size) { + unsigned long bus_ofs = offset & ~(map_bankwidth(map)-1); + int gap = offset - bus_ofs; + int n = min_t(int, size, map_bankwidth(map)-gap); + map_word datum = map_word_ff(map); + + datum = map_word_load_partial(map, datum, buf, gap, n); + ret = do_write_oneword(map, chip, bus_ofs, datum, FL_OTP_WRITE); + if (ret) + return ret; + + offset += n; + buf += n; + size -= n; + } + + return 0; +} + +static int +do_otp_lock(struct map_info *map, struct flchip *chip, u_long offset, + u_char *buf, u_int size, u_long prot, u_int grpno, u_int grpsz) +{ + struct cfi_private *cfi = map->fldrv_priv; + map_word datum; + + /* make sure area matches group boundaries */ + if (size != grpsz) + return -EXDEV; + + datum = map_word_ff(map); + datum = map_word_clr(map, datum, CMD(1 << grpno)); + return do_write_oneword(map, chip, prot, datum, FL_OTP_WRITE); +} + +static int cfi_intelext_otp_walk(struct mtd_info *mtd, loff_t from, size_t len, + size_t *retlen, u_char *buf, + otp_op_t action, int user_regs) +{ + struct map_info *map = mtd->priv; + struct cfi_private *cfi = map->fldrv_priv; + struct cfi_pri_intelext *extp = cfi->cmdset_priv; + struct flchip *chip; + struct cfi_intelext_otpinfo *otp; + u_long devsize, reg_prot_offset, data_offset; + u_int chip_num, chip_step, field, reg_fact_size, reg_user_size; + u_int groups, groupno, groupsize, reg_fact_groups, reg_user_groups; + int ret; + + *retlen = 0; + + /* Check that we actually have some OTP registers */ + if (!extp || !(extp->FeatureSupport & 64) || !extp->NumProtectionFields) + return -ENODATA; + + /* we need real chips here not virtual ones */ + devsize = (1 << cfi->cfiq->DevSize) * cfi->interleave; + chip_step = devsize >> cfi->chipshift; + chip_num = 0; + + /* Some chips have OTP located in the _top_ partition only. + For example: Intel 28F256L18T (T means top-parameter device) */ + if (cfi->mfr == CFI_MFR_INTEL) { + switch (cfi->id) { + case 0x880b: + case 0x880c: + case 0x880d: + chip_num = chip_step - 1; + } + } + + for ( ; chip_num < cfi->numchips; chip_num += chip_step) { + chip = &cfi->chips[chip_num]; + otp = (struct cfi_intelext_otpinfo *)&extp->extra[0]; + + /* first OTP region */ + field = 0; + reg_prot_offset = extp->ProtRegAddr; + reg_fact_groups = 1; + reg_fact_size = 1 << extp->FactProtRegSize; + reg_user_groups = 1; + reg_user_size = 1 << extp->UserProtRegSize; + + while (len > 0) { + /* flash geometry fixup */ + data_offset = reg_prot_offset + 1; + data_offset *= cfi->interleave * cfi->device_type; + reg_prot_offset *= cfi->interleave * cfi->device_type; + reg_fact_size *= cfi->interleave; + reg_user_size *= cfi->interleave; + + if (user_regs) { + groups = reg_user_groups; + groupsize = reg_user_size; + /* skip over factory reg area */ + groupno = reg_fact_groups; + data_offset += reg_fact_groups * reg_fact_size; + } else { + groups = reg_fact_groups; + groupsize = reg_fact_size; + groupno = 0; + } + + while (len > 0 && groups > 0) { + if (!action) { + /* + * Special case: if action is NULL + * we fill buf with otp_info records. + */ + struct otp_info *otpinfo; + map_word lockword; + len -= sizeof(struct otp_info); + if (len <= 0) + return -ENOSPC; + ret = do_otp_read(map, chip, + reg_prot_offset, + (u_char *)&lockword, + map_bankwidth(map), + 0, 0, 0); + if (ret) + return ret; + otpinfo = (struct otp_info *)buf; + otpinfo->start = from; + otpinfo->length = groupsize; + otpinfo->locked = + !map_word_bitsset(map, lockword, + CMD(1 << groupno)); + from += groupsize; + buf += sizeof(*otpinfo); + *retlen += sizeof(*otpinfo); + } else if (from >= groupsize) { + from -= groupsize; + data_offset += groupsize; + } else { + int size = groupsize; + data_offset += from; + size -= from; + from = 0; + if (size > len) + size = len; + ret = action(map, chip, data_offset, + buf, size, reg_prot_offset, + groupno, groupsize); + if (ret < 0) + return ret; + buf += size; + len -= size; + *retlen += size; + data_offset += size; + } + groupno++; + groups--; + } + + /* next OTP region */ + if (++field == extp->NumProtectionFields) + break; + reg_prot_offset = otp->ProtRegAddr; + reg_fact_groups = otp->FactGroups; + reg_fact_size = 1 << otp->FactProtRegSize; + reg_user_groups = otp->UserGroups; + reg_user_size = 1 << otp->UserProtRegSize; + otp++; + } + } + + return 0; +} + +static int cfi_intelext_read_fact_prot_reg(struct mtd_info *mtd, loff_t from, + size_t len, size_t *retlen, + u_char *buf) +{ + return cfi_intelext_otp_walk(mtd, from, len, retlen, + buf, do_otp_read, 0); +} + +static int cfi_intelext_read_user_prot_reg(struct mtd_info *mtd, loff_t from, + size_t len, size_t *retlen, + u_char *buf) +{ + return cfi_intelext_otp_walk(mtd, from, len, retlen, + buf, do_otp_read, 1); +} + +static int cfi_intelext_write_user_prot_reg(struct mtd_info *mtd, loff_t from, + size_t len, size_t *retlen, + const u_char *buf) +{ + return cfi_intelext_otp_walk(mtd, from, len, retlen, + (u_char *)buf, do_otp_write, 1); +} + +static int cfi_intelext_lock_user_prot_reg(struct mtd_info *mtd, + loff_t from, size_t len) +{ + size_t retlen; + return cfi_intelext_otp_walk(mtd, from, len, &retlen, + NULL, do_otp_lock, 1); +} + +static int cfi_intelext_get_fact_prot_info(struct mtd_info *mtd, size_t len, + size_t *retlen, struct otp_info *buf) + +{ + return cfi_intelext_otp_walk(mtd, 0, len, retlen, (u_char *)buf, + NULL, 0); +} + +static int cfi_intelext_get_user_prot_info(struct mtd_info *mtd, size_t len, + size_t *retlen, struct otp_info *buf) +{ + return cfi_intelext_otp_walk(mtd, 0, len, retlen, (u_char *)buf, + NULL, 1); +} + +#endif + +static void cfi_intelext_save_locks(struct mtd_info *mtd) +{ + struct mtd_erase_region_info *region; + int block, status, i; + unsigned long adr; + size_t len; + + for (i = 0; i < mtd->numeraseregions; i++) { + region = &mtd->eraseregions[i]; + if (!region->lockmap) + continue; + + for (block = 0; block < region->numblocks; block++){ + len = region->erasesize; + adr = region->offset + block * len; + + status = cfi_varsize_frob(mtd, + do_getlockstatus_oneblock, adr, len, NULL); + if (status) + set_bit(block, region->lockmap); + else + clear_bit(block, region->lockmap); + } + } +} + +static int cfi_intelext_suspend(struct mtd_info *mtd) +{ + struct map_info *map = mtd->priv; + struct cfi_private *cfi = map->fldrv_priv; + struct cfi_pri_intelext *extp = cfi->cmdset_priv; + int i; + struct flchip *chip; + int ret = 0; + + if ((mtd->flags & MTD_POWERUP_LOCK) + && extp && (extp->FeatureSupport & (1 << 5))) + cfi_intelext_save_locks(mtd); + + for (i=0; !ret && i<cfi->numchips; i++) { + chip = &cfi->chips[i]; + + mutex_lock(&chip->mutex); + + switch (chip->state) { + case FL_READY: + case FL_STATUS: + case FL_CFI_QUERY: + case FL_JEDEC_QUERY: + if (chip->oldstate == FL_READY) { + /* place the chip in a known state before suspend */ + map_write(map, CMD(0xFF), cfi->chips[i].start); + chip->oldstate = chip->state; + chip->state = FL_PM_SUSPENDED; + /* No need to wake_up() on this state change - + * as the whole point is that nobody can do anything + * with the chip now anyway. + */ + } else { + /* There seems to be an operation pending. We must wait for it. */ + printk(KERN_NOTICE "Flash device refused suspend due to pending operation (oldstate %d)\n", chip->oldstate); + ret = -EAGAIN; + } + break; + default: + /* Should we actually wait? Once upon a time these routines weren't + allowed to. Or should we return -EAGAIN, because the upper layers + ought to have already shut down anything which was using the device + anyway? The latter for now. */ + printk(KERN_NOTICE "Flash device refused suspend due to active operation (state %d)\n", chip->state); + ret = -EAGAIN; + break; + case FL_PM_SUSPENDED: + break; + } + mutex_unlock(&chip->mutex); + } + + /* Unlock the chips again */ + + if (ret) { + for (i--; i >=0; i--) { + chip = &cfi->chips[i]; + + mutex_lock(&chip->mutex); + + if (chip->state == FL_PM_SUSPENDED) { + /* No need to force it into a known state here, + because we're returning failure, and it didn't + get power cycled */ + chip->state = chip->oldstate; + chip->oldstate = FL_READY; + wake_up(&chip->wq); + } + mutex_unlock(&chip->mutex); + } + } + + return ret; +} + +static void cfi_intelext_restore_locks(struct mtd_info *mtd) +{ + struct mtd_erase_region_info *region; + int block, i; + unsigned long adr; + size_t len; + + for (i = 0; i < mtd->numeraseregions; i++) { + region = &mtd->eraseregions[i]; + if (!region->lockmap) + continue; + + for_each_clear_bit(block, region->lockmap, region->numblocks) { + len = region->erasesize; + adr = region->offset + block * len; + cfi_intelext_unlock(mtd, adr, len); + } + } +} + +static void cfi_intelext_resume(struct mtd_info *mtd) +{ + struct map_info *map = mtd->priv; + struct cfi_private *cfi = map->fldrv_priv; + struct cfi_pri_intelext *extp = cfi->cmdset_priv; + int i; + struct flchip *chip; + + for (i=0; i<cfi->numchips; i++) { + + chip = &cfi->chips[i]; + + mutex_lock(&chip->mutex); + + /* Go to known state. Chip may have been power cycled */ + if (chip->state == FL_PM_SUSPENDED) { + /* Refresh LH28F640BF Partition Config. Register */ + fixup_LH28F640BF(mtd); + map_write(map, CMD(0xFF), cfi->chips[i].start); + chip->oldstate = chip->state = FL_READY; + wake_up(&chip->wq); + } + + mutex_unlock(&chip->mutex); + } + + if ((mtd->flags & MTD_POWERUP_LOCK) + && extp && (extp->FeatureSupport & (1 << 5))) + cfi_intelext_restore_locks(mtd); +} + +static int cfi_intelext_reset(struct mtd_info *mtd) +{ + struct map_info *map = mtd->priv; + struct cfi_private *cfi = map->fldrv_priv; + int i, ret; + + for (i=0; i < cfi->numchips; i++) { + struct flchip *chip = &cfi->chips[i]; + + /* force the completion of any ongoing operation + and switch to array mode so any bootloader in + flash is accessible for soft reboot. */ + mutex_lock(&chip->mutex); + ret = get_chip(map, chip, chip->start, FL_SHUTDOWN); + if (!ret) { + map_write(map, CMD(0xff), chip->start); + chip->state = FL_SHUTDOWN; + put_chip(map, chip, chip->start); + } + mutex_unlock(&chip->mutex); + } + + return 0; +} + +static int cfi_intelext_reboot(struct notifier_block *nb, unsigned long val, + void *v) +{ + struct mtd_info *mtd; + + mtd = container_of(nb, struct mtd_info, reboot_notifier); + cfi_intelext_reset(mtd); + return NOTIFY_DONE; +} + +static void cfi_intelext_destroy(struct mtd_info *mtd) +{ + struct map_info *map = mtd->priv; + struct cfi_private *cfi = map->fldrv_priv; + struct mtd_erase_region_info *region; + int i; + cfi_intelext_reset(mtd); + unregister_reboot_notifier(&mtd->reboot_notifier); + kfree(cfi->cmdset_priv); + kfree(cfi->cfiq); + kfree(cfi->chips[0].priv); + kfree(cfi); + for (i = 0; i < mtd->numeraseregions; i++) { + region = &mtd->eraseregions[i]; + kfree(region->lockmap); + } + kfree(mtd->eraseregions); +} + +MODULE_LICENSE("GPL"); +MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org> et al."); +MODULE_DESCRIPTION("MTD chip driver for Intel/Sharp flash chips"); +MODULE_ALIAS("cfi_cmdset_0003"); +MODULE_ALIAS("cfi_cmdset_0200"); diff --git a/drivers/mtd/chips/cfi_cmdset_0002.c b/drivers/mtd/chips/cfi_cmdset_0002.c new file mode 100644 index 0000000000..df589d9b4d --- /dev/null +++ b/drivers/mtd/chips/cfi_cmdset_0002.c @@ -0,0 +1,3114 @@ +// SPDX-License-Identifier: GPL-2.0 +/* + * Common Flash Interface support: + * AMD & Fujitsu Standard Vendor Command Set (ID 0x0002) + * + * Copyright (C) 2000 Crossnet Co. <info@crossnet.co.jp> + * Copyright (C) 2004 Arcom Control Systems Ltd <linux@arcom.com> + * Copyright (C) 2005 MontaVista Software Inc. <source@mvista.com> + * + * 2_by_8 routines added by Simon Munton + * + * 4_by_16 work by Carolyn J. Smith + * + * XIP support hooks by Vitaly Wool (based on code for Intel flash + * by Nicolas Pitre) + * + * 25/09/2008 Christopher Moore: TopBottom fixup for many Macronix with CFI V1.0 + * + * Occasionally maintained by Thayne Harbaugh tharbaugh at lnxi dot com + */ + +#include <linux/module.h> +#include <linux/types.h> +#include <linux/kernel.h> +#include <linux/sched.h> +#include <asm/io.h> +#include <asm/byteorder.h> + +#include <linux/errno.h> +#include <linux/slab.h> +#include <linux/delay.h> +#include <linux/interrupt.h> +#include <linux/reboot.h> +#include <linux/of.h> +#include <linux/mtd/map.h> +#include <linux/mtd/mtd.h> +#include <linux/mtd/cfi.h> +#include <linux/mtd/xip.h> + +#define AMD_BOOTLOC_BUG +#define FORCE_WORD_WRITE 0 + +#define MAX_RETRIES 3 + +#define SST49LF004B 0x0060 +#define SST49LF040B 0x0050 +#define SST49LF008A 0x005a +#define AT49BV6416 0x00d6 +#define S29GL064N_MN12 0x0c01 + +/* + * Status Register bit description. Used by flash devices that don't + * support DQ polling (e.g. HyperFlash) + */ +#define CFI_SR_DRB BIT(7) +#define CFI_SR_ESB BIT(5) +#define CFI_SR_PSB BIT(4) +#define CFI_SR_WBASB BIT(3) +#define CFI_SR_SLSB BIT(1) + +enum cfi_quirks { + CFI_QUIRK_DQ_TRUE_DATA = BIT(0), +}; + +static int cfi_amdstd_read (struct mtd_info *, loff_t, size_t, size_t *, u_char *); +static int cfi_amdstd_write_words(struct mtd_info *, loff_t, size_t, size_t *, const u_char *); +#if !FORCE_WORD_WRITE +static int cfi_amdstd_write_buffers(struct mtd_info *, loff_t, size_t, size_t *, const u_char *); +#endif +static int cfi_amdstd_erase_chip(struct mtd_info *, struct erase_info *); +static int cfi_amdstd_erase_varsize(struct mtd_info *, struct erase_info *); +static void cfi_amdstd_sync (struct mtd_info *); +static int cfi_amdstd_suspend (struct mtd_info *); +static void cfi_amdstd_resume (struct mtd_info *); +static int cfi_amdstd_reboot(struct notifier_block *, unsigned long, void *); +static int cfi_amdstd_get_fact_prot_info(struct mtd_info *, size_t, + size_t *, struct otp_info *); +static int cfi_amdstd_get_user_prot_info(struct mtd_info *, size_t, + size_t *, struct otp_info *); +static int cfi_amdstd_secsi_read (struct mtd_info *, loff_t, size_t, size_t *, u_char *); +static int cfi_amdstd_read_fact_prot_reg(struct mtd_info *, loff_t, size_t, + size_t *, u_char *); +static int cfi_amdstd_read_user_prot_reg(struct mtd_info *, loff_t, size_t, + size_t *, u_char *); +static int cfi_amdstd_write_user_prot_reg(struct mtd_info *, loff_t, size_t, + size_t *, const u_char *); +static int cfi_amdstd_lock_user_prot_reg(struct mtd_info *, loff_t, size_t); + +static int cfi_amdstd_panic_write(struct mtd_info *mtd, loff_t to, size_t len, + size_t *retlen, const u_char *buf); + +static void cfi_amdstd_destroy(struct mtd_info *); + +struct mtd_info *cfi_cmdset_0002(struct map_info *, int); +static struct mtd_info *cfi_amdstd_setup (struct mtd_info *); + +static int get_chip(struct map_info *map, struct flchip *chip, unsigned long adr, int mode); +static void put_chip(struct map_info *map, struct flchip *chip, unsigned long adr); +#include "fwh_lock.h" + +static int cfi_atmel_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len); +static int cfi_atmel_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len); + +static int cfi_ppb_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len); +static int cfi_ppb_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len); +static int cfi_ppb_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len); + +static struct mtd_chip_driver cfi_amdstd_chipdrv = { + .probe = NULL, /* Not usable directly */ + .destroy = cfi_amdstd_destroy, + .name = "cfi_cmdset_0002", + .module = THIS_MODULE +}; + +/* + * Use status register to poll for Erase/write completion when DQ is not + * supported. This is indicated by Bit[1:0] of SoftwareFeatures field in + * CFI Primary Vendor-Specific Extended Query table 1.5 + */ +static int cfi_use_status_reg(struct cfi_private *cfi) +{ + struct cfi_pri_amdstd *extp = cfi->cmdset_priv; + u8 poll_mask = CFI_POLL_STATUS_REG | CFI_POLL_DQ; + + return extp && extp->MinorVersion >= '5' && + (extp->SoftwareFeatures & poll_mask) == CFI_POLL_STATUS_REG; +} + +static int cfi_check_err_status(struct map_info *map, struct flchip *chip, + unsigned long adr) +{ + struct cfi_private *cfi = map->fldrv_priv; + map_word status; + + if (!cfi_use_status_reg(cfi)) + return 0; + + cfi_send_gen_cmd(0x70, cfi->addr_unlock1, chip->start, map, cfi, + cfi->device_type, NULL); + status = map_read(map, adr); + + /* The error bits are invalid while the chip's busy */ + if (!map_word_bitsset(map, status, CMD(CFI_SR_DRB))) + return 0; + + if (map_word_bitsset(map, status, CMD(0x3a))) { + unsigned long chipstatus = MERGESTATUS(status); + + if (chipstatus & CFI_SR_ESB) + pr_err("%s erase operation failed, status %lx\n", + map->name, chipstatus); + if (chipstatus & CFI_SR_PSB) + pr_err("%s program operation failed, status %lx\n", + map->name, chipstatus); + if (chipstatus & CFI_SR_WBASB) + pr_err("%s buffer program command aborted, status %lx\n", + map->name, chipstatus); + if (chipstatus & CFI_SR_SLSB) + pr_err("%s sector write protected, status %lx\n", + map->name, chipstatus); + + /* Erase/Program status bits are set on the operation failure */ + if (chipstatus & (CFI_SR_ESB | CFI_SR_PSB)) + return 1; + } + return 0; +} + +/* #define DEBUG_CFI_FEATURES */ + + +#ifdef DEBUG_CFI_FEATURES +static void cfi_tell_features(struct cfi_pri_amdstd *extp) +{ + const char* erase_suspend[3] = { + "Not supported", "Read only", "Read/write" + }; + const char* top_bottom[6] = { + "No WP", "8x8KiB sectors at top & bottom, no WP", + "Bottom boot", "Top boot", + "Uniform, Bottom WP", "Uniform, Top WP" + }; + + printk(" Silicon revision: %d\n", extp->SiliconRevision >> 1); + printk(" Address sensitive unlock: %s\n", + (extp->SiliconRevision & 1) ? "Not required" : "Required"); + + if (extp->EraseSuspend < ARRAY_SIZE(erase_suspend)) + printk(" Erase Suspend: %s\n", erase_suspend[extp->EraseSuspend]); + else + printk(" Erase Suspend: Unknown value %d\n", extp->EraseSuspend); + + if (extp->BlkProt == 0) + printk(" Block protection: Not supported\n"); + else + printk(" Block protection: %d sectors per group\n", extp->BlkProt); + + + printk(" Temporary block unprotect: %s\n", + extp->TmpBlkUnprotect ? "Supported" : "Not supported"); + printk(" Block protect/unprotect scheme: %d\n", extp->BlkProtUnprot); + printk(" Number of simultaneous operations: %d\n", extp->SimultaneousOps); + printk(" Burst mode: %s\n", + extp->BurstMode ? "Supported" : "Not supported"); + if (extp->PageMode == 0) + printk(" Page mode: Not supported\n"); + else + printk(" Page mode: %d word page\n", extp->PageMode << 2); + + printk(" Vpp Supply Minimum Program/Erase Voltage: %d.%d V\n", + extp->VppMin >> 4, extp->VppMin & 0xf); + printk(" Vpp Supply Maximum Program/Erase Voltage: %d.%d V\n", + extp->VppMax >> 4, extp->VppMax & 0xf); + + if (extp->TopBottom < ARRAY_SIZE(top_bottom)) + printk(" Top/Bottom Boot Block: %s\n", top_bottom[extp->TopBottom]); + else + printk(" Top/Bottom Boot Block: Unknown value %d\n", extp->TopBottom); +} +#endif + +#ifdef AMD_BOOTLOC_BUG +/* Wheee. Bring me the head of someone at AMD. */ +static void fixup_amd_bootblock(struct mtd_info *mtd) +{ + struct map_info *map = mtd->priv; + struct cfi_private *cfi = map->fldrv_priv; + struct cfi_pri_amdstd *extp = cfi->cmdset_priv; + __u8 major = extp->MajorVersion; + __u8 minor = extp->MinorVersion; + + if (((major << 8) | minor) < 0x3131) { + /* CFI version 1.0 => don't trust bootloc */ + + pr_debug("%s: JEDEC Vendor ID is 0x%02X Device ID is 0x%02X\n", + map->name, cfi->mfr, cfi->id); + + /* AFAICS all 29LV400 with a bottom boot block have a device ID + * of 0x22BA in 16-bit mode and 0xBA in 8-bit mode. + * These were badly detected as they have the 0x80 bit set + * so treat them as a special case. + */ + if (((cfi->id == 0xBA) || (cfi->id == 0x22BA)) && + + /* Macronix added CFI to their 2nd generation + * MX29LV400C B/T but AFAICS no other 29LV400 (AMD, + * Fujitsu, Spansion, EON, ESI and older Macronix) + * has CFI. + * + * Therefore also check the manufacturer. + * This reduces the risk of false detection due to + * the 8-bit device ID. + */ + (cfi->mfr == CFI_MFR_MACRONIX)) { + pr_debug("%s: Macronix MX29LV400C with bottom boot block" + " detected\n", map->name); + extp->TopBottom = 2; /* bottom boot */ + } else + if (cfi->id & 0x80) { + printk(KERN_WARNING "%s: JEDEC Device ID is 0x%02X. Assuming broken CFI table.\n", map->name, cfi->id); + extp->TopBottom = 3; /* top boot */ + } else { + extp->TopBottom = 2; /* bottom boot */ + } + + pr_debug("%s: AMD CFI PRI V%c.%c has no boot block field;" + " deduced %s from Device ID\n", map->name, major, minor, + extp->TopBottom == 2 ? "bottom" : "top"); + } +} +#endif + +#if !FORCE_WORD_WRITE +static void fixup_use_write_buffers(struct mtd_info *mtd) +{ + struct map_info *map = mtd->priv; + struct cfi_private *cfi = map->fldrv_priv; + + if (cfi->mfr == CFI_MFR_AMD && cfi->id == 0x2201) + return; + + if (cfi->cfiq->BufWriteTimeoutTyp) { + pr_debug("Using buffer write method\n"); + mtd->_write = cfi_amdstd_write_buffers; + } +} +#endif /* !FORCE_WORD_WRITE */ + +/* Atmel chips don't use the same PRI format as AMD chips */ +static void fixup_convert_atmel_pri(struct mtd_info *mtd) +{ + struct map_info *map = mtd->priv; + struct cfi_private *cfi = map->fldrv_priv; + struct cfi_pri_amdstd *extp = cfi->cmdset_priv; + struct cfi_pri_atmel atmel_pri; + + memcpy(&atmel_pri, extp, sizeof(atmel_pri)); + memset((char *)extp + 5, 0, sizeof(*extp) - 5); + + if (atmel_pri.Features & 0x02) + extp->EraseSuspend = 2; + + /* Some chips got it backwards... */ + if (cfi->id == AT49BV6416) { + if (atmel_pri.BottomBoot) + extp->TopBottom = 3; + else + extp->TopBottom = 2; + } else { + if (atmel_pri.BottomBoot) + extp->TopBottom = 2; + else + extp->TopBottom = 3; + } + + /* burst write mode not supported */ + cfi->cfiq->BufWriteTimeoutTyp = 0; + cfi->cfiq->BufWriteTimeoutMax = 0; +} + +static void fixup_use_secsi(struct mtd_info *mtd) +{ + /* Setup for chips with a secsi area */ + mtd->_read_user_prot_reg = cfi_amdstd_secsi_read; + mtd->_read_fact_prot_reg = cfi_amdstd_secsi_read; +} + +static void fixup_use_erase_chip(struct mtd_info *mtd) +{ + struct map_info *map = mtd->priv; + struct cfi_private *cfi = map->fldrv_priv; + if ((cfi->cfiq->NumEraseRegions == 1) && + ((cfi->cfiq->EraseRegionInfo[0] & 0xffff) == 0)) { + mtd->_erase = cfi_amdstd_erase_chip; + } + +} + +/* + * Some Atmel chips (e.g. the AT49BV6416) power-up with all sectors + * locked by default. + */ +static void fixup_use_atmel_lock(struct mtd_info *mtd) +{ + mtd->_lock = cfi_atmel_lock; + mtd->_unlock = cfi_atmel_unlock; + mtd->flags |= MTD_POWERUP_LOCK; +} + +static void fixup_old_sst_eraseregion(struct mtd_info *mtd) +{ + struct map_info *map = mtd->priv; + struct cfi_private *cfi = map->fldrv_priv; + + /* + * These flashes report two separate eraseblock regions based on the + * sector_erase-size and block_erase-size, although they both operate on the + * same memory. This is not allowed according to CFI, so we just pick the + * sector_erase-size. + */ + cfi->cfiq->NumEraseRegions = 1; +} + +static void fixup_sst39vf(struct mtd_info *mtd) +{ + struct map_info *map = mtd->priv; + struct cfi_private *cfi = map->fldrv_priv; + + fixup_old_sst_eraseregion(mtd); + + cfi->addr_unlock1 = 0x5555; + cfi->addr_unlock2 = 0x2AAA; +} + +static void fixup_sst39vf_rev_b(struct mtd_info *mtd) +{ + struct map_info *map = mtd->priv; + struct cfi_private *cfi = map->fldrv_priv; + + fixup_old_sst_eraseregion(mtd); + + cfi->addr_unlock1 = 0x555; + cfi->addr_unlock2 = 0x2AA; + + cfi->sector_erase_cmd = CMD(0x50); +} + +static void fixup_sst38vf640x_sectorsize(struct mtd_info *mtd) +{ + struct map_info *map = mtd->priv; + struct cfi_private *cfi = map->fldrv_priv; + + fixup_sst39vf_rev_b(mtd); + + /* + * CFI reports 1024 sectors (0x03ff+1) of 64KBytes (0x0100*256) where + * it should report a size of 8KBytes (0x0020*256). + */ + cfi->cfiq->EraseRegionInfo[0] = 0x002003ff; + pr_warn("%s: Bad 38VF640x CFI data; adjusting sector size from 64 to 8KiB\n", + mtd->name); +} + +static void fixup_s29gl064n_sectors(struct mtd_info *mtd) +{ + struct map_info *map = mtd->priv; + struct cfi_private *cfi = map->fldrv_priv; + + if ((cfi->cfiq->EraseRegionInfo[0] & 0xffff) == 0x003f) { + cfi->cfiq->EraseRegionInfo[0] |= 0x0040; + pr_warn("%s: Bad S29GL064N CFI data; adjust from 64 to 128 sectors\n", + mtd->name); + } +} + +static void fixup_s29gl032n_sectors(struct mtd_info *mtd) +{ + struct map_info *map = mtd->priv; + struct cfi_private *cfi = map->fldrv_priv; + + if ((cfi->cfiq->EraseRegionInfo[1] & 0xffff) == 0x007e) { + cfi->cfiq->EraseRegionInfo[1] &= ~0x0040; + pr_warn("%s: Bad S29GL032N CFI data; adjust from 127 to 63 sectors\n", + mtd->name); + } +} + +static void fixup_s29ns512p_sectors(struct mtd_info *mtd) +{ + struct map_info *map = mtd->priv; + struct cfi_private *cfi = map->fldrv_priv; + + /* + * S29NS512P flash uses more than 8bits to report number of sectors, + * which is not permitted by CFI. + */ + cfi->cfiq->EraseRegionInfo[0] = 0x020001ff; + pr_warn("%s: Bad S29NS512P CFI data; adjust to 512 sectors\n", + mtd->name); +} + +static void fixup_quirks(struct mtd_info *mtd) +{ + struct map_info *map = mtd->priv; + struct cfi_private *cfi = map->fldrv_priv; + + if (cfi->mfr == CFI_MFR_AMD && cfi->id == S29GL064N_MN12) + cfi->quirks |= CFI_QUIRK_DQ_TRUE_DATA; +} + +/* Used to fix CFI-Tables of chips without Extended Query Tables */ +static struct cfi_fixup cfi_nopri_fixup_table[] = { + { CFI_MFR_SST, 0x234a, fixup_sst39vf }, /* SST39VF1602 */ + { CFI_MFR_SST, 0x234b, fixup_sst39vf }, /* SST39VF1601 */ + { CFI_MFR_SST, 0x235a, fixup_sst39vf }, /* SST39VF3202 */ + { CFI_MFR_SST, 0x235b, fixup_sst39vf }, /* SST39VF3201 */ + { CFI_MFR_SST, 0x235c, fixup_sst39vf_rev_b }, /* SST39VF3202B */ + { CFI_MFR_SST, 0x235d, fixup_sst39vf_rev_b }, /* SST39VF3201B */ + { CFI_MFR_SST, 0x236c, fixup_sst39vf_rev_b }, /* SST39VF6402B */ + { CFI_MFR_SST, 0x236d, fixup_sst39vf_rev_b }, /* SST39VF6401B */ + { 0, 0, NULL } +}; + +static struct cfi_fixup cfi_fixup_table[] = { + { CFI_MFR_ATMEL, CFI_ID_ANY, fixup_convert_atmel_pri }, +#ifdef AMD_BOOTLOC_BUG + { CFI_MFR_AMD, CFI_ID_ANY, fixup_amd_bootblock }, + { CFI_MFR_AMIC, CFI_ID_ANY, fixup_amd_bootblock }, + { CFI_MFR_MACRONIX, CFI_ID_ANY, fixup_amd_bootblock }, +#endif + { CFI_MFR_AMD, 0x0050, fixup_use_secsi }, + { CFI_MFR_AMD, 0x0053, fixup_use_secsi }, + { CFI_MFR_AMD, 0x0055, fixup_use_secsi }, + { CFI_MFR_AMD, 0x0056, fixup_use_secsi }, + { CFI_MFR_AMD, 0x005C, fixup_use_secsi }, + { CFI_MFR_AMD, 0x005F, fixup_use_secsi }, + { CFI_MFR_AMD, S29GL064N_MN12, fixup_s29gl064n_sectors }, + { CFI_MFR_AMD, 0x1301, fixup_s29gl064n_sectors }, + { CFI_MFR_AMD, 0x1a00, fixup_s29gl032n_sectors }, + { CFI_MFR_AMD, 0x1a01, fixup_s29gl032n_sectors }, + { CFI_MFR_AMD, 0x3f00, fixup_s29ns512p_sectors }, + { CFI_MFR_SST, 0x536a, fixup_sst38vf640x_sectorsize }, /* SST38VF6402 */ + { CFI_MFR_SST, 0x536b, fixup_sst38vf640x_sectorsize }, /* SST38VF6401 */ + { CFI_MFR_SST, 0x536c, fixup_sst38vf640x_sectorsize }, /* SST38VF6404 */ + { CFI_MFR_SST, 0x536d, fixup_sst38vf640x_sectorsize }, /* SST38VF6403 */ +#if !FORCE_WORD_WRITE + { CFI_MFR_ANY, CFI_ID_ANY, fixup_use_write_buffers }, +#endif + { CFI_MFR_ANY, CFI_ID_ANY, fixup_quirks }, + { 0, 0, NULL } +}; +static struct cfi_fixup jedec_fixup_table[] = { + { CFI_MFR_SST, SST49LF004B, fixup_use_fwh_lock }, + { CFI_MFR_SST, SST49LF040B, fixup_use_fwh_lock }, + { CFI_MFR_SST, SST49LF008A, fixup_use_fwh_lock }, + { 0, 0, NULL } +}; + +static struct cfi_fixup fixup_table[] = { + /* The CFI vendor ids and the JEDEC vendor IDs appear + * to be common. It is like the devices id's are as + * well. This table is to pick all cases where + * we know that is the case. + */ + { CFI_MFR_ANY, CFI_ID_ANY, fixup_use_erase_chip }, + { CFI_MFR_ATMEL, AT49BV6416, fixup_use_atmel_lock }, + { 0, 0, NULL } +}; + + +static void cfi_fixup_major_minor(struct cfi_private *cfi, + struct cfi_pri_amdstd *extp) +{ + if (cfi->mfr == CFI_MFR_SAMSUNG) { + if ((extp->MajorVersion == '0' && extp->MinorVersion == '0') || + (extp->MajorVersion == '3' && extp->MinorVersion == '3')) { + /* + * Samsung K8P2815UQB and K8D6x16UxM chips + * report major=0 / minor=0. + * K8D3x16UxC chips report major=3 / minor=3. + */ + printk(KERN_NOTICE " Fixing Samsung's Amd/Fujitsu" + " Extended Query version to 1.%c\n", + extp->MinorVersion); + extp->MajorVersion = '1'; + } + } + + /* + * SST 38VF640x chips report major=0xFF / minor=0xFF. + */ + if (cfi->mfr == CFI_MFR_SST && (cfi->id >> 4) == 0x0536) { + extp->MajorVersion = '1'; + extp->MinorVersion = '0'; + } +} + +static int is_m29ew(struct cfi_private *cfi) +{ + if (cfi->mfr == CFI_MFR_INTEL && + ((cfi->device_type == CFI_DEVICETYPE_X8 && (cfi->id & 0xff) == 0x7e) || + (cfi->device_type == CFI_DEVICETYPE_X16 && cfi->id == 0x227e))) + return 1; + return 0; +} + +/* + * From TN-13-07: Patching the Linux Kernel and U-Boot for M29 Flash, page 20: + * Some revisions of the M29EW suffer from erase suspend hang ups. In + * particular, it can occur when the sequence + * Erase Confirm -> Suspend -> Program -> Resume + * causes a lockup due to internal timing issues. The consequence is that the + * erase cannot be resumed without inserting a dummy command after programming + * and prior to resuming. [...] The work-around is to issue a dummy write cycle + * that writes an F0 command code before the RESUME command. + */ +static void cfi_fixup_m29ew_erase_suspend(struct map_info *map, + unsigned long adr) +{ + struct cfi_private *cfi = map->fldrv_priv; + /* before resume, insert a dummy 0xF0 cycle for Micron M29EW devices */ + if (is_m29ew(cfi)) + map_write(map, CMD(0xF0), adr); +} + +/* + * From TN-13-07: Patching the Linux Kernel and U-Boot for M29 Flash, page 22: + * + * Some revisions of the M29EW (for example, A1 and A2 step revisions) + * are affected by a problem that could cause a hang up when an ERASE SUSPEND + * command is issued after an ERASE RESUME operation without waiting for a + * minimum delay. The result is that once the ERASE seems to be completed + * (no bits are toggling), the contents of the Flash memory block on which + * the erase was ongoing could be inconsistent with the expected values + * (typically, the array value is stuck to the 0xC0, 0xC4, 0x80, or 0x84 + * values), causing a consequent failure of the ERASE operation. + * The occurrence of this issue could be high, especially when file system + * operations on the Flash are intensive. As a result, it is recommended + * that a patch be applied. Intensive file system operations can cause many + * calls to the garbage routine to free Flash space (also by erasing physical + * Flash blocks) and as a result, many consecutive SUSPEND and RESUME + * commands can occur. The problem disappears when a delay is inserted after + * the RESUME command by using the udelay() function available in Linux. + * The DELAY value must be tuned based on the customer's platform. + * The maximum value that fixes the problem in all cases is 500us. + * But, in our experience, a delay of 30 µs to 50 µs is sufficient + * in most cases. + * We have chosen 500µs because this latency is acceptable. + */ +static void cfi_fixup_m29ew_delay_after_resume(struct cfi_private *cfi) +{ + /* + * Resolving the Delay After Resume Issue see Micron TN-13-07 + * Worst case delay must be 500µs but 30-50µs should be ok as well + */ + if (is_m29ew(cfi)) + cfi_udelay(500); +} + +struct mtd_info *cfi_cmdset_0002(struct map_info *map, int primary) +{ + struct cfi_private *cfi = map->fldrv_priv; + struct device_node __maybe_unused *np = map->device_node; + struct mtd_info *mtd; + int i; + + mtd = kzalloc(sizeof(*mtd), GFP_KERNEL); + if (!mtd) + return NULL; + mtd->priv = map; + mtd->type = MTD_NORFLASH; + + /* Fill in the default mtd operations */ + mtd->_erase = cfi_amdstd_erase_varsize; + mtd->_write = cfi_amdstd_write_words; + mtd->_read = cfi_amdstd_read; + mtd->_sync = cfi_amdstd_sync; + mtd->_suspend = cfi_amdstd_suspend; + mtd->_resume = cfi_amdstd_resume; + mtd->_read_user_prot_reg = cfi_amdstd_read_user_prot_reg; + mtd->_read_fact_prot_reg = cfi_amdstd_read_fact_prot_reg; + mtd->_get_fact_prot_info = cfi_amdstd_get_fact_prot_info; + mtd->_get_user_prot_info = cfi_amdstd_get_user_prot_info; + mtd->_write_user_prot_reg = cfi_amdstd_write_user_prot_reg; + mtd->_lock_user_prot_reg = cfi_amdstd_lock_user_prot_reg; + mtd->flags = MTD_CAP_NORFLASH; + mtd->name = map->name; + mtd->writesize = 1; + mtd->writebufsize = cfi_interleave(cfi) << cfi->cfiq->MaxBufWriteSize; + + pr_debug("MTD %s(): write buffer size %d\n", __func__, + mtd->writebufsize); + + mtd->_panic_write = cfi_amdstd_panic_write; + mtd->reboot_notifier.notifier_call = cfi_amdstd_reboot; + + if (cfi->cfi_mode==CFI_MODE_CFI){ + unsigned char bootloc; + __u16 adr = primary?cfi->cfiq->P_ADR:cfi->cfiq->A_ADR; + struct cfi_pri_amdstd *extp; + + extp = (struct cfi_pri_amdstd*)cfi_read_pri(map, adr, sizeof(*extp), "Amd/Fujitsu"); + if (extp) { + /* + * It's a real CFI chip, not one for which the probe + * routine faked a CFI structure. + */ + cfi_fixup_major_minor(cfi, extp); + + /* + * Valid primary extension versions are: 1.0, 1.1, 1.2, 1.3, 1.4, 1.5 + * see: http://cs.ozerki.net/zap/pub/axim-x5/docs/cfi_r20.pdf, page 19 + * http://www.spansion.com/Support/AppNotes/cfi_100_20011201.pdf + * http://www.spansion.com/Support/Datasheets/s29ws-p_00_a12_e.pdf + * http://www.spansion.com/Support/Datasheets/S29GL_128S_01GS_00_02_e.pdf + */ + if (extp->MajorVersion != '1' || + (extp->MajorVersion == '1' && (extp->MinorVersion < '0' || extp->MinorVersion > '5'))) { + printk(KERN_ERR " Unknown Amd/Fujitsu Extended Query " + "version %c.%c (%#02x/%#02x).\n", + extp->MajorVersion, extp->MinorVersion, + extp->MajorVersion, extp->MinorVersion); + kfree(extp); + kfree(mtd); + return NULL; + } + + printk(KERN_INFO " Amd/Fujitsu Extended Query version %c.%c.\n", + extp->MajorVersion, extp->MinorVersion); + + /* Install our own private info structure */ + cfi->cmdset_priv = extp; + + /* Apply cfi device specific fixups */ + cfi_fixup(mtd, cfi_fixup_table); + +#ifdef DEBUG_CFI_FEATURES + /* Tell the user about it in lots of lovely detail */ + cfi_tell_features(extp); +#endif + +#ifdef CONFIG_OF + if (np && of_property_read_bool( + np, "use-advanced-sector-protection") + && extp->BlkProtUnprot == 8) { + printk(KERN_INFO " Advanced Sector Protection (PPB Locking) supported\n"); + mtd->_lock = cfi_ppb_lock; + mtd->_unlock = cfi_ppb_unlock; + mtd->_is_locked = cfi_ppb_is_locked; + } +#endif + + bootloc = extp->TopBottom; + if ((bootloc < 2) || (bootloc > 5)) { + printk(KERN_WARNING "%s: CFI contains unrecognised boot " + "bank location (%d). Assuming bottom.\n", + map->name, bootloc); + bootloc = 2; + } + + if (bootloc == 3 && cfi->cfiq->NumEraseRegions > 1) { + printk(KERN_WARNING "%s: Swapping erase regions for top-boot CFI table.\n", map->name); + + for (i=0; i<cfi->cfiq->NumEraseRegions / 2; i++) { + int j = (cfi->cfiq->NumEraseRegions-1)-i; + + swap(cfi->cfiq->EraseRegionInfo[i], + cfi->cfiq->EraseRegionInfo[j]); + } + } + /* Set the default CFI lock/unlock addresses */ + cfi->addr_unlock1 = 0x555; + cfi->addr_unlock2 = 0x2aa; + } + cfi_fixup(mtd, cfi_nopri_fixup_table); + + if (!cfi->addr_unlock1 || !cfi->addr_unlock2) { + kfree(mtd); + return NULL; + } + + } /* CFI mode */ + else if (cfi->cfi_mode == CFI_MODE_JEDEC) { + /* Apply jedec specific fixups */ + cfi_fixup(mtd, jedec_fixup_table); + } + /* Apply generic fixups */ + cfi_fixup(mtd, fixup_table); + + for (i=0; i< cfi->numchips; i++) { + cfi->chips[i].word_write_time = 1<<cfi->cfiq->WordWriteTimeoutTyp; + cfi->chips[i].buffer_write_time = 1<<cfi->cfiq->BufWriteTimeoutTyp; + cfi->chips[i].erase_time = 1<<cfi->cfiq->BlockEraseTimeoutTyp; + /* + * First calculate the timeout max according to timeout field + * of struct cfi_ident that probed from chip's CFI aera, if + * available. Specify a minimum of 2000us, in case the CFI data + * is wrong. + */ + if (cfi->cfiq->BufWriteTimeoutTyp && + cfi->cfiq->BufWriteTimeoutMax) + cfi->chips[i].buffer_write_time_max = + 1 << (cfi->cfiq->BufWriteTimeoutTyp + + cfi->cfiq->BufWriteTimeoutMax); + else + cfi->chips[i].buffer_write_time_max = 0; + + cfi->chips[i].buffer_write_time_max = + max(cfi->chips[i].buffer_write_time_max, 2000); + + cfi->chips[i].ref_point_counter = 0; + init_waitqueue_head(&(cfi->chips[i].wq)); + } + + map->fldrv = &cfi_amdstd_chipdrv; + + return cfi_amdstd_setup(mtd); +} +struct mtd_info *cfi_cmdset_0006(struct map_info *map, int primary) __attribute__((alias("cfi_cmdset_0002"))); +struct mtd_info *cfi_cmdset_0701(struct map_info *map, int primary) __attribute__((alias("cfi_cmdset_0002"))); +EXPORT_SYMBOL_GPL(cfi_cmdset_0002); +EXPORT_SYMBOL_GPL(cfi_cmdset_0006); +EXPORT_SYMBOL_GPL(cfi_cmdset_0701); + +static struct mtd_info *cfi_amdstd_setup(struct mtd_info *mtd) +{ + struct map_info *map = mtd->priv; + struct cfi_private *cfi = map->fldrv_priv; + unsigned long devsize = (1<<cfi->cfiq->DevSize) * cfi->interleave; + unsigned long offset = 0; + int i,j; + + printk(KERN_NOTICE "number of %s chips: %d\n", + (cfi->cfi_mode == CFI_MODE_CFI)?"CFI":"JEDEC",cfi->numchips); + /* Select the correct geometry setup */ + mtd->size = devsize * cfi->numchips; + + mtd->numeraseregions = cfi->cfiq->NumEraseRegions * cfi->numchips; + mtd->eraseregions = kmalloc_array(mtd->numeraseregions, + sizeof(struct mtd_erase_region_info), + GFP_KERNEL); + if (!mtd->eraseregions) + goto setup_err; + + for (i=0; i<cfi->cfiq->NumEraseRegions; i++) { + unsigned long ernum, ersize; + ersize = ((cfi->cfiq->EraseRegionInfo[i] >> 8) & ~0xff) * cfi->interleave; + ernum = (cfi->cfiq->EraseRegionInfo[i] & 0xffff) + 1; + + if (mtd->erasesize < ersize) { + mtd->erasesize = ersize; + } + for (j=0; j<cfi->numchips; j++) { + mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].offset = (j*devsize)+offset; + mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].erasesize = ersize; + mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].numblocks = ernum; + } + offset += (ersize * ernum); + } + if (offset != devsize) { + /* Argh */ + printk(KERN_WARNING "Sum of regions (%lx) != total size of set of interleaved chips (%lx)\n", offset, devsize); + goto setup_err; + } + + __module_get(THIS_MODULE); + register_reboot_notifier(&mtd->reboot_notifier); + return mtd; + + setup_err: + kfree(mtd->eraseregions); + kfree(mtd); + kfree(cfi->cmdset_priv); + return NULL; +} + +/* + * Return true if the chip is ready and has the correct value. + * + * Ready is one of: read mode, query mode, erase-suspend-read mode (in any + * non-suspended sector) and is indicated by no toggle bits toggling. + * + * Error are indicated by toggling bits or bits held with the wrong value, + * or with bits toggling. + * + * Note that anything more complicated than checking if no bits are toggling + * (including checking DQ5 for an error status) is tricky to get working + * correctly and is therefore not done (particularly with interleaved chips + * as each chip must be checked independently of the others). + */ +static int __xipram chip_ready(struct map_info *map, struct flchip *chip, + unsigned long addr, map_word *expected) +{ + struct cfi_private *cfi = map->fldrv_priv; + map_word oldd, curd; + int ret; + + if (cfi_use_status_reg(cfi)) { + map_word ready = CMD(CFI_SR_DRB); + /* + * For chips that support status register, check device + * ready bit + */ + cfi_send_gen_cmd(0x70, cfi->addr_unlock1, chip->start, map, cfi, + cfi->device_type, NULL); + curd = map_read(map, addr); + + return map_word_andequal(map, curd, ready, ready); + } + + oldd = map_read(map, addr); + curd = map_read(map, addr); + + ret = map_word_equal(map, oldd, curd); + + if (!ret || !expected) + return ret; + + return map_word_equal(map, curd, *expected); +} + +static int __xipram chip_good(struct map_info *map, struct flchip *chip, + unsigned long addr, map_word *expected) +{ + struct cfi_private *cfi = map->fldrv_priv; + map_word *datum = expected; + + if (cfi->quirks & CFI_QUIRK_DQ_TRUE_DATA) + datum = NULL; + + return chip_ready(map, chip, addr, datum); +} + +static int get_chip(struct map_info *map, struct flchip *chip, unsigned long adr, int mode) +{ + DECLARE_WAITQUEUE(wait, current); + struct cfi_private *cfi = map->fldrv_priv; + unsigned long timeo; + struct cfi_pri_amdstd *cfip = (struct cfi_pri_amdstd *)cfi->cmdset_priv; + + resettime: + timeo = jiffies + HZ; + retry: + switch (chip->state) { + + case FL_STATUS: + for (;;) { + if (chip_ready(map, chip, adr, NULL)) + break; + + if (time_after(jiffies, timeo)) { + printk(KERN_ERR "Waiting for chip to be ready timed out.\n"); + return -EIO; + } + mutex_unlock(&chip->mutex); + cfi_udelay(1); + mutex_lock(&chip->mutex); + /* Someone else might have been playing with it. */ + goto retry; + } + return 0; + + case FL_READY: + case FL_CFI_QUERY: + case FL_JEDEC_QUERY: + return 0; + + case FL_ERASING: + if (!cfip || !(cfip->EraseSuspend & (0x1|0x2)) || + !(mode == FL_READY || mode == FL_POINT || + (mode == FL_WRITING && (cfip->EraseSuspend & 0x2)))) + goto sleep; + + /* Do not allow suspend iff read/write to EB address */ + if ((adr & chip->in_progress_block_mask) == + chip->in_progress_block_addr) + goto sleep; + + /* Erase suspend */ + /* It's harmless to issue the Erase-Suspend and Erase-Resume + * commands when the erase algorithm isn't in progress. */ + map_write(map, CMD(0xB0), chip->in_progress_block_addr); + chip->oldstate = FL_ERASING; + chip->state = FL_ERASE_SUSPENDING; + chip->erase_suspended = 1; + for (;;) { + if (chip_ready(map, chip, adr, NULL)) + break; + + if (time_after(jiffies, timeo)) { + /* Should have suspended the erase by now. + * Send an Erase-Resume command as either + * there was an error (so leave the erase + * routine to recover from it) or we trying to + * use the erase-in-progress sector. */ + put_chip(map, chip, adr); + printk(KERN_ERR "MTD %s(): chip not ready after erase suspend\n", __func__); + return -EIO; + } + + mutex_unlock(&chip->mutex); + cfi_udelay(1); + mutex_lock(&chip->mutex); + /* Nobody will touch it while it's in state FL_ERASE_SUSPENDING. + So we can just loop here. */ + } + chip->state = FL_READY; + return 0; + + case FL_XIP_WHILE_ERASING: + if (mode != FL_READY && mode != FL_POINT && + (!cfip || !(cfip->EraseSuspend&2))) + goto sleep; + chip->oldstate = chip->state; + chip->state = FL_READY; + return 0; + + case FL_SHUTDOWN: + /* The machine is rebooting */ + return -EIO; + + case FL_POINT: + /* Only if there's no operation suspended... */ + if (mode == FL_READY && chip->oldstate == FL_READY) + return 0; + fallthrough; + default: + sleep: + set_current_state(TASK_UNINTERRUPTIBLE); + add_wait_queue(&chip->wq, &wait); + mutex_unlock(&chip->mutex); + schedule(); + remove_wait_queue(&chip->wq, &wait); + mutex_lock(&chip->mutex); + goto resettime; + } +} + + +static void put_chip(struct map_info *map, struct flchip *chip, unsigned long adr) +{ + struct cfi_private *cfi = map->fldrv_priv; + + switch(chip->oldstate) { + case FL_ERASING: + cfi_fixup_m29ew_erase_suspend(map, + chip->in_progress_block_addr); + map_write(map, cfi->sector_erase_cmd, chip->in_progress_block_addr); + cfi_fixup_m29ew_delay_after_resume(cfi); + chip->oldstate = FL_READY; + chip->state = FL_ERASING; + break; + + case FL_XIP_WHILE_ERASING: + chip->state = chip->oldstate; + chip->oldstate = FL_READY; + break; + + case FL_READY: + case FL_STATUS: + break; + default: + printk(KERN_ERR "MTD: put_chip() called with oldstate %d!!\n", chip->oldstate); + } + wake_up(&chip->wq); +} + +#ifdef CONFIG_MTD_XIP + +/* + * No interrupt what so ever can be serviced while the flash isn't in array + * mode. This is ensured by the xip_disable() and xip_enable() functions + * enclosing any code path where the flash is known not to be in array mode. + * And within a XIP disabled code path, only functions marked with __xipram + * may be called and nothing else (it's a good thing to inspect generated + * assembly to make sure inline functions were actually inlined and that gcc + * didn't emit calls to its own support functions). Also configuring MTD CFI + * support to a single buswidth and a single interleave is also recommended. + */ + +static void xip_disable(struct map_info *map, struct flchip *chip, + unsigned long adr) +{ + /* TODO: chips with no XIP use should ignore and return */ + (void) map_read(map, adr); /* ensure mmu mapping is up to date */ + local_irq_disable(); +} + +static void __xipram xip_enable(struct map_info *map, struct flchip *chip, + unsigned long adr) +{ + struct cfi_private *cfi = map->fldrv_priv; + + if (chip->state != FL_POINT && chip->state != FL_READY) { + map_write(map, CMD(0xf0), adr); + chip->state = FL_READY; + } + (void) map_read(map, adr); + xip_iprefetch(); + local_irq_enable(); +} + +/* + * When a delay is required for the flash operation to complete, the + * xip_udelay() function is polling for both the given timeout and pending + * (but still masked) hardware interrupts. Whenever there is an interrupt + * pending then the flash erase operation is suspended, array mode restored + * and interrupts unmasked. Task scheduling might also happen at that + * point. The CPU eventually returns from the interrupt or the call to + * schedule() and the suspended flash operation is resumed for the remaining + * of the delay period. + * + * Warning: this function _will_ fool interrupt latency tracing tools. + */ + +static void __xipram xip_udelay(struct map_info *map, struct flchip *chip, + unsigned long adr, int usec) +{ + struct cfi_private *cfi = map->fldrv_priv; + struct cfi_pri_amdstd *extp = cfi->cmdset_priv; + map_word status, OK = CMD(0x80); + unsigned long suspended, start = xip_currtime(); + flstate_t oldstate; + + do { + cpu_relax(); + if (xip_irqpending() && extp && + ((chip->state == FL_ERASING && (extp->EraseSuspend & 2))) && + (cfi_interleave_is_1(cfi) || chip->oldstate == FL_READY)) { + /* + * Let's suspend the erase operation when supported. + * Note that we currently don't try to suspend + * interleaved chips if there is already another + * operation suspended (imagine what happens + * when one chip was already done with the current + * operation while another chip suspended it, then + * we resume the whole thing at once). Yes, it + * can happen! + */ + map_write(map, CMD(0xb0), adr); + usec -= xip_elapsed_since(start); + suspended = xip_currtime(); + do { + if (xip_elapsed_since(suspended) > 100000) { + /* + * The chip doesn't want to suspend + * after waiting for 100 msecs. + * This is a critical error but there + * is not much we can do here. + */ + return; + } + status = map_read(map, adr); + } while (!map_word_andequal(map, status, OK, OK)); + + /* Suspend succeeded */ + oldstate = chip->state; + if (!map_word_bitsset(map, status, CMD(0x40))) + break; + chip->state = FL_XIP_WHILE_ERASING; + chip->erase_suspended = 1; + map_write(map, CMD(0xf0), adr); + (void) map_read(map, adr); + xip_iprefetch(); + local_irq_enable(); + mutex_unlock(&chip->mutex); + xip_iprefetch(); + cond_resched(); + + /* + * We're back. However someone else might have + * decided to go write to the chip if we are in + * a suspended erase state. If so let's wait + * until it's done. + */ + mutex_lock(&chip->mutex); + while (chip->state != FL_XIP_WHILE_ERASING) { + DECLARE_WAITQUEUE(wait, current); + set_current_state(TASK_UNINTERRUPTIBLE); + add_wait_queue(&chip->wq, &wait); + mutex_unlock(&chip->mutex); + schedule(); + remove_wait_queue(&chip->wq, &wait); + mutex_lock(&chip->mutex); + } + /* Disallow XIP again */ + local_irq_disable(); + + /* Correct Erase Suspend Hangups for M29EW */ + cfi_fixup_m29ew_erase_suspend(map, adr); + /* Resume the write or erase operation */ + map_write(map, cfi->sector_erase_cmd, adr); + chip->state = oldstate; + start = xip_currtime(); + } else if (usec >= 1000000/HZ) { + /* + * Try to save on CPU power when waiting delay + * is at least a system timer tick period. + * No need to be extremely accurate here. + */ + xip_cpu_idle(); + } + status = map_read(map, adr); + } while (!map_word_andequal(map, status, OK, OK) + && xip_elapsed_since(start) < usec); +} + +#define UDELAY(map, chip, adr, usec) xip_udelay(map, chip, adr, usec) + +/* + * The INVALIDATE_CACHED_RANGE() macro is normally used in parallel while + * the flash is actively programming or erasing since we have to poll for + * the operation to complete anyway. We can't do that in a generic way with + * a XIP setup so do it before the actual flash operation in this case + * and stub it out from INVALIDATE_CACHE_UDELAY. + */ +#define XIP_INVAL_CACHED_RANGE(map, from, size) \ + INVALIDATE_CACHED_RANGE(map, from, size) + +#define INVALIDATE_CACHE_UDELAY(map, chip, adr, len, usec) \ + UDELAY(map, chip, adr, usec) + +/* + * Extra notes: + * + * Activating this XIP support changes the way the code works a bit. For + * example the code to suspend the current process when concurrent access + * happens is never executed because xip_udelay() will always return with the + * same chip state as it was entered with. This is why there is no care for + * the presence of add_wait_queue() or schedule() calls from within a couple + * xip_disable()'d areas of code, like in do_erase_oneblock for example. + * The queueing and scheduling are always happening within xip_udelay(). + * + * Similarly, get_chip() and put_chip() just happen to always be executed + * with chip->state set to FL_READY (or FL_XIP_WHILE_*) where flash state + * is in array mode, therefore never executing many cases therein and not + * causing any problem with XIP. + */ + +#else + +#define xip_disable(map, chip, adr) +#define xip_enable(map, chip, adr) +#define XIP_INVAL_CACHED_RANGE(x...) + +#define UDELAY(map, chip, adr, usec) \ +do { \ + mutex_unlock(&chip->mutex); \ + cfi_udelay(usec); \ + mutex_lock(&chip->mutex); \ +} while (0) + +#define INVALIDATE_CACHE_UDELAY(map, chip, adr, len, usec) \ +do { \ + mutex_unlock(&chip->mutex); \ + INVALIDATE_CACHED_RANGE(map, adr, len); \ + cfi_udelay(usec); \ + mutex_lock(&chip->mutex); \ +} while (0) + +#endif + +static inline int do_read_onechip(struct map_info *map, struct flchip *chip, loff_t adr, size_t len, u_char *buf) +{ + unsigned long cmd_addr; + struct cfi_private *cfi = map->fldrv_priv; + int ret; + + adr += chip->start; + + /* Ensure cmd read/writes are aligned. */ + cmd_addr = adr & ~(map_bankwidth(map)-1); + + mutex_lock(&chip->mutex); + ret = get_chip(map, chip, cmd_addr, FL_READY); + if (ret) { + mutex_unlock(&chip->mutex); + return ret; + } + + if (chip->state != FL_POINT && chip->state != FL_READY) { + map_write(map, CMD(0xf0), cmd_addr); + chip->state = FL_READY; + } + + map_copy_from(map, buf, adr, len); + + put_chip(map, chip, cmd_addr); + + mutex_unlock(&chip->mutex); + return 0; +} + + +static int cfi_amdstd_read (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf) +{ + struct map_info *map = mtd->priv; + struct cfi_private *cfi = map->fldrv_priv; + unsigned long ofs; + int chipnum; + int ret = 0; + + /* ofs: offset within the first chip that the first read should start */ + chipnum = (from >> cfi->chipshift); + ofs = from - (chipnum << cfi->chipshift); + + while (len) { + unsigned long thislen; + + if (chipnum >= cfi->numchips) + break; + + if ((len + ofs -1) >> cfi->chipshift) + thislen = (1<<cfi->chipshift) - ofs; + else + thislen = len; + + ret = do_read_onechip(map, &cfi->chips[chipnum], ofs, thislen, buf); + if (ret) + break; + + *retlen += thislen; + len -= thislen; + buf += thislen; + + ofs = 0; + chipnum++; + } + return ret; +} + +typedef int (*otp_op_t)(struct map_info *map, struct flchip *chip, + loff_t adr, size_t len, u_char *buf, size_t grouplen); + +static inline void otp_enter(struct map_info *map, struct flchip *chip, + loff_t adr, size_t len) +{ + struct cfi_private *cfi = map->fldrv_priv; + + cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, + cfi->device_type, NULL); + cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, + cfi->device_type, NULL); + cfi_send_gen_cmd(0x88, cfi->addr_unlock1, chip->start, map, cfi, + cfi->device_type, NULL); + + INVALIDATE_CACHED_RANGE(map, chip->start + adr, len); +} + +static inline void otp_exit(struct map_info *map, struct flchip *chip, + loff_t adr, size_t len) +{ + struct cfi_private *cfi = map->fldrv_priv; + + cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, + cfi->device_type, NULL); + cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, + cfi->device_type, NULL); + cfi_send_gen_cmd(0x90, cfi->addr_unlock1, chip->start, map, cfi, + cfi->device_type, NULL); + cfi_send_gen_cmd(0x00, cfi->addr_unlock1, chip->start, map, cfi, + cfi->device_type, NULL); + + INVALIDATE_CACHED_RANGE(map, chip->start + adr, len); +} + +static inline int do_read_secsi_onechip(struct map_info *map, + struct flchip *chip, loff_t adr, + size_t len, u_char *buf, + size_t grouplen) +{ + DECLARE_WAITQUEUE(wait, current); + + retry: + mutex_lock(&chip->mutex); + + if (chip->state != FL_READY){ + set_current_state(TASK_UNINTERRUPTIBLE); + add_wait_queue(&chip->wq, &wait); + + mutex_unlock(&chip->mutex); + + schedule(); + remove_wait_queue(&chip->wq, &wait); + + goto retry; + } + + adr += chip->start; + + chip->state = FL_READY; + + otp_enter(map, chip, adr, len); + map_copy_from(map, buf, adr, len); + otp_exit(map, chip, adr, len); + + wake_up(&chip->wq); + mutex_unlock(&chip->mutex); + + return 0; +} + +static int cfi_amdstd_secsi_read (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf) +{ + struct map_info *map = mtd->priv; + struct cfi_private *cfi = map->fldrv_priv; + unsigned long ofs; + int chipnum; + int ret = 0; + + /* ofs: offset within the first chip that the first read should start */ + /* 8 secsi bytes per chip */ + chipnum=from>>3; + ofs=from & 7; + + while (len) { + unsigned long thislen; + + if (chipnum >= cfi->numchips) + break; + + if ((len + ofs -1) >> 3) + thislen = (1<<3) - ofs; + else + thislen = len; + + ret = do_read_secsi_onechip(map, &cfi->chips[chipnum], ofs, + thislen, buf, 0); + if (ret) + break; + + *retlen += thislen; + len -= thislen; + buf += thislen; + + ofs = 0; + chipnum++; + } + return ret; +} + +static int __xipram do_write_oneword(struct map_info *map, struct flchip *chip, + unsigned long adr, map_word datum, + int mode); + +static int do_otp_write(struct map_info *map, struct flchip *chip, loff_t adr, + size_t len, u_char *buf, size_t grouplen) +{ + int ret; + while (len) { + unsigned long bus_ofs = adr & ~(map_bankwidth(map)-1); + int gap = adr - bus_ofs; + int n = min_t(int, len, map_bankwidth(map) - gap); + map_word datum = map_word_ff(map); + + if (n != map_bankwidth(map)) { + /* partial write of a word, load old contents */ + otp_enter(map, chip, bus_ofs, map_bankwidth(map)); + datum = map_read(map, bus_ofs); + otp_exit(map, chip, bus_ofs, map_bankwidth(map)); + } + + datum = map_word_load_partial(map, datum, buf, gap, n); + ret = do_write_oneword(map, chip, bus_ofs, datum, FL_OTP_WRITE); + if (ret) + return ret; + + adr += n; + buf += n; + len -= n; + } + + return 0; +} + +static int do_otp_lock(struct map_info *map, struct flchip *chip, loff_t adr, + size_t len, u_char *buf, size_t grouplen) +{ + struct cfi_private *cfi = map->fldrv_priv; + uint8_t lockreg; + unsigned long timeo; + int ret; + + /* make sure area matches group boundaries */ + if ((adr != 0) || (len != grouplen)) + return -EINVAL; + + mutex_lock(&chip->mutex); + ret = get_chip(map, chip, chip->start, FL_LOCKING); + if (ret) { + mutex_unlock(&chip->mutex); + return ret; + } + chip->state = FL_LOCKING; + + /* Enter lock register command */ + cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, + cfi->device_type, NULL); + cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, + cfi->device_type, NULL); + cfi_send_gen_cmd(0x40, cfi->addr_unlock1, chip->start, map, cfi, + cfi->device_type, NULL); + + /* read lock register */ + lockreg = cfi_read_query(map, 0); + + /* set bit 0 to protect extended memory block */ + lockreg &= ~0x01; + + /* set bit 0 to protect extended memory block */ + /* write lock register */ + map_write(map, CMD(0xA0), chip->start); + map_write(map, CMD(lockreg), chip->start); + + /* wait for chip to become ready */ + timeo = jiffies + msecs_to_jiffies(2); + for (;;) { + if (chip_ready(map, chip, adr, NULL)) + break; + + if (time_after(jiffies, timeo)) { + pr_err("Waiting for chip to be ready timed out.\n"); + ret = -EIO; + break; + } + UDELAY(map, chip, 0, 1); + } + + /* exit protection commands */ + map_write(map, CMD(0x90), chip->start); + map_write(map, CMD(0x00), chip->start); + + chip->state = FL_READY; + put_chip(map, chip, chip->start); + mutex_unlock(&chip->mutex); + + return ret; +} + +static int cfi_amdstd_otp_walk(struct mtd_info *mtd, loff_t from, size_t len, + size_t *retlen, u_char *buf, + otp_op_t action, int user_regs) +{ + struct map_info *map = mtd->priv; + struct cfi_private *cfi = map->fldrv_priv; + int ofs_factor = cfi->interleave * cfi->device_type; + unsigned long base; + int chipnum; + struct flchip *chip; + uint8_t otp, lockreg; + int ret; + + size_t user_size, factory_size, otpsize; + loff_t user_offset, factory_offset, otpoffset; + int user_locked = 0, otplocked; + + *retlen = 0; + + for (chipnum = 0; chipnum < cfi->numchips; chipnum++) { + chip = &cfi->chips[chipnum]; + factory_size = 0; + user_size = 0; + + /* Micron M29EW family */ + if (is_m29ew(cfi)) { + base = chip->start; + + /* check whether secsi area is factory locked + or user lockable */ + mutex_lock(&chip->mutex); + ret = get_chip(map, chip, base, FL_CFI_QUERY); + if (ret) { + mutex_unlock(&chip->mutex); + return ret; + } + cfi_qry_mode_on(base, map, cfi); + otp = cfi_read_query(map, base + 0x3 * ofs_factor); + cfi_qry_mode_off(base, map, cfi); + put_chip(map, chip, base); + mutex_unlock(&chip->mutex); + + if (otp & 0x80) { + /* factory locked */ + factory_offset = 0; + factory_size = 0x100; + } else { + /* customer lockable */ + user_offset = 0; + user_size = 0x100; + + mutex_lock(&chip->mutex); + ret = get_chip(map, chip, base, FL_LOCKING); + if (ret) { + mutex_unlock(&chip->mutex); + return ret; + } + + /* Enter lock register command */ + cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, + chip->start, map, cfi, + cfi->device_type, NULL); + cfi_send_gen_cmd(0x55, cfi->addr_unlock2, + chip->start, map, cfi, + cfi->device_type, NULL); + cfi_send_gen_cmd(0x40, cfi->addr_unlock1, + chip->start, map, cfi, + cfi->device_type, NULL); + /* read lock register */ + lockreg = cfi_read_query(map, 0); + /* exit protection commands */ + map_write(map, CMD(0x90), chip->start); + map_write(map, CMD(0x00), chip->start); + put_chip(map, chip, chip->start); + mutex_unlock(&chip->mutex); + + user_locked = ((lockreg & 0x01) == 0x00); + } + } + + otpsize = user_regs ? user_size : factory_size; + if (!otpsize) + continue; + otpoffset = user_regs ? user_offset : factory_offset; + otplocked = user_regs ? user_locked : 1; + + if (!action) { + /* return otpinfo */ + struct otp_info *otpinfo; + len -= sizeof(*otpinfo); + if (len <= 0) + return -ENOSPC; + otpinfo = (struct otp_info *)buf; + otpinfo->start = from; + otpinfo->length = otpsize; + otpinfo->locked = otplocked; + buf += sizeof(*otpinfo); + *retlen += sizeof(*otpinfo); + from += otpsize; + } else if ((from < otpsize) && (len > 0)) { + size_t size; + size = (len < otpsize - from) ? len : otpsize - from; + ret = action(map, chip, otpoffset + from, size, buf, + otpsize); + if (ret < 0) + return ret; + + buf += size; + len -= size; + *retlen += size; + from = 0; + } else { + from -= otpsize; + } + } + return 0; +} + +static int cfi_amdstd_get_fact_prot_info(struct mtd_info *mtd, size_t len, + size_t *retlen, struct otp_info *buf) +{ + return cfi_amdstd_otp_walk(mtd, 0, len, retlen, (u_char *)buf, + NULL, 0); +} + +static int cfi_amdstd_get_user_prot_info(struct mtd_info *mtd, size_t len, + size_t *retlen, struct otp_info *buf) +{ + return cfi_amdstd_otp_walk(mtd, 0, len, retlen, (u_char *)buf, + NULL, 1); +} + +static int cfi_amdstd_read_fact_prot_reg(struct mtd_info *mtd, loff_t from, + size_t len, size_t *retlen, + u_char *buf) +{ + return cfi_amdstd_otp_walk(mtd, from, len, retlen, + buf, do_read_secsi_onechip, 0); +} + +static int cfi_amdstd_read_user_prot_reg(struct mtd_info *mtd, loff_t from, + size_t len, size_t *retlen, + u_char *buf) +{ + return cfi_amdstd_otp_walk(mtd, from, len, retlen, + buf, do_read_secsi_onechip, 1); +} + +static int cfi_amdstd_write_user_prot_reg(struct mtd_info *mtd, loff_t from, + size_t len, size_t *retlen, + const u_char *buf) +{ + return cfi_amdstd_otp_walk(mtd, from, len, retlen, (u_char *)buf, + do_otp_write, 1); +} + +static int cfi_amdstd_lock_user_prot_reg(struct mtd_info *mtd, loff_t from, + size_t len) +{ + size_t retlen; + return cfi_amdstd_otp_walk(mtd, from, len, &retlen, NULL, + do_otp_lock, 1); +} + +static int __xipram do_write_oneword_once(struct map_info *map, + struct flchip *chip, + unsigned long adr, map_word datum, + int mode, struct cfi_private *cfi) +{ + unsigned long timeo; + /* + * We use a 1ms + 1 jiffies generic timeout for writes (most devices + * have a max write time of a few hundreds usec). However, we should + * use the maximum timeout value given by the chip at probe time + * instead. Unfortunately, struct flchip does have a field for + * maximum timeout, only for typical which can be far too short + * depending of the conditions. The ' + 1' is to avoid having a + * timeout of 0 jiffies if HZ is smaller than 1000. + */ + unsigned long uWriteTimeout = (HZ / 1000) + 1; + int ret = 0; + + cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL); + cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL); + cfi_send_gen_cmd(0xA0, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL); + map_write(map, datum, adr); + chip->state = mode; + + INVALIDATE_CACHE_UDELAY(map, chip, + adr, map_bankwidth(map), + chip->word_write_time); + + /* See comment above for timeout value. */ + timeo = jiffies + uWriteTimeout; + for (;;) { + if (chip->state != mode) { + /* Someone's suspended the write. Sleep */ + DECLARE_WAITQUEUE(wait, current); + + set_current_state(TASK_UNINTERRUPTIBLE); + add_wait_queue(&chip->wq, &wait); + mutex_unlock(&chip->mutex); + schedule(); + remove_wait_queue(&chip->wq, &wait); + timeo = jiffies + (HZ / 2); /* FIXME */ + mutex_lock(&chip->mutex); + continue; + } + + /* + * We check "time_after" and "!chip_good" before checking + * "chip_good" to avoid the failure due to scheduling. + */ + if (time_after(jiffies, timeo) && + !chip_good(map, chip, adr, &datum)) { + xip_enable(map, chip, adr); + printk(KERN_WARNING "MTD %s(): software timeout\n", __func__); + xip_disable(map, chip, adr); + ret = -EIO; + break; + } + + if (chip_good(map, chip, adr, &datum)) { + if (cfi_check_err_status(map, chip, adr)) + ret = -EIO; + break; + } + + /* Latency issues. Drop the lock, wait a while and retry */ + UDELAY(map, chip, adr, 1); + } + + return ret; +} + +static int __xipram do_write_oneword_start(struct map_info *map, + struct flchip *chip, + unsigned long adr, int mode) +{ + int ret; + + mutex_lock(&chip->mutex); + + ret = get_chip(map, chip, adr, mode); + if (ret) { + mutex_unlock(&chip->mutex); + return ret; + } + + if (mode == FL_OTP_WRITE) + otp_enter(map, chip, adr, map_bankwidth(map)); + + return ret; +} + +static void __xipram do_write_oneword_done(struct map_info *map, + struct flchip *chip, + unsigned long adr, int mode) +{ + if (mode == FL_OTP_WRITE) + otp_exit(map, chip, adr, map_bankwidth(map)); + + chip->state = FL_READY; + DISABLE_VPP(map); + put_chip(map, chip, adr); + + mutex_unlock(&chip->mutex); +} + +static int __xipram do_write_oneword_retry(struct map_info *map, + struct flchip *chip, + unsigned long adr, map_word datum, + int mode) +{ + struct cfi_private *cfi = map->fldrv_priv; + int ret = 0; + map_word oldd; + int retry_cnt = 0; + + /* + * Check for a NOP for the case when the datum to write is already + * present - it saves time and works around buggy chips that corrupt + * data at other locations when 0xff is written to a location that + * already contains 0xff. + */ + oldd = map_read(map, adr); + if (map_word_equal(map, oldd, datum)) { + pr_debug("MTD %s(): NOP\n", __func__); + return ret; + } + + XIP_INVAL_CACHED_RANGE(map, adr, map_bankwidth(map)); + ENABLE_VPP(map); + xip_disable(map, chip, adr); + + retry: + ret = do_write_oneword_once(map, chip, adr, datum, mode, cfi); + if (ret) { + /* reset on all failures. */ + map_write(map, CMD(0xF0), chip->start); + /* FIXME - should have reset delay before continuing */ + + if (++retry_cnt <= MAX_RETRIES) { + ret = 0; + goto retry; + } + } + xip_enable(map, chip, adr); + + return ret; +} + +static int __xipram do_write_oneword(struct map_info *map, struct flchip *chip, + unsigned long adr, map_word datum, + int mode) +{ + int ret; + + adr += chip->start; + + pr_debug("MTD %s(): WRITE 0x%.8lx(0x%.8lx)\n", __func__, adr, + datum.x[0]); + + ret = do_write_oneword_start(map, chip, adr, mode); + if (ret) + return ret; + + ret = do_write_oneword_retry(map, chip, adr, datum, mode); + + do_write_oneword_done(map, chip, adr, mode); + + return ret; +} + + +static int cfi_amdstd_write_words(struct mtd_info *mtd, loff_t to, size_t len, + size_t *retlen, const u_char *buf) +{ + struct map_info *map = mtd->priv; + struct cfi_private *cfi = map->fldrv_priv; + int ret; + int chipnum; + unsigned long ofs, chipstart; + DECLARE_WAITQUEUE(wait, current); + + chipnum = to >> cfi->chipshift; + ofs = to - (chipnum << cfi->chipshift); + chipstart = cfi->chips[chipnum].start; + + /* If it's not bus-aligned, do the first byte write */ + if (ofs & (map_bankwidth(map)-1)) { + unsigned long bus_ofs = ofs & ~(map_bankwidth(map)-1); + int i = ofs - bus_ofs; + int n = 0; + map_word tmp_buf; + + retry: + mutex_lock(&cfi->chips[chipnum].mutex); + + if (cfi->chips[chipnum].state != FL_READY) { + set_current_state(TASK_UNINTERRUPTIBLE); + add_wait_queue(&cfi->chips[chipnum].wq, &wait); + + mutex_unlock(&cfi->chips[chipnum].mutex); + + schedule(); + remove_wait_queue(&cfi->chips[chipnum].wq, &wait); + goto retry; + } + + /* Load 'tmp_buf' with old contents of flash */ + tmp_buf = map_read(map, bus_ofs+chipstart); + + mutex_unlock(&cfi->chips[chipnum].mutex); + + /* Number of bytes to copy from buffer */ + n = min_t(int, len, map_bankwidth(map)-i); + + tmp_buf = map_word_load_partial(map, tmp_buf, buf, i, n); + + ret = do_write_oneword(map, &cfi->chips[chipnum], + bus_ofs, tmp_buf, FL_WRITING); + if (ret) + return ret; + + ofs += n; + buf += n; + (*retlen) += n; + len -= n; + + if (ofs >> cfi->chipshift) { + chipnum ++; + ofs = 0; + if (chipnum == cfi->numchips) + return 0; + } + } + + /* We are now aligned, write as much as possible */ + while(len >= map_bankwidth(map)) { + map_word datum; + + datum = map_word_load(map, buf); + + ret = do_write_oneword(map, &cfi->chips[chipnum], + ofs, datum, FL_WRITING); + if (ret) + return ret; + + ofs += map_bankwidth(map); + buf += map_bankwidth(map); + (*retlen) += map_bankwidth(map); + len -= map_bankwidth(map); + + if (ofs >> cfi->chipshift) { + chipnum ++; + ofs = 0; + if (chipnum == cfi->numchips) + return 0; + chipstart = cfi->chips[chipnum].start; + } + } + + /* Write the trailing bytes if any */ + if (len & (map_bankwidth(map)-1)) { + map_word tmp_buf; + + retry1: + mutex_lock(&cfi->chips[chipnum].mutex); + + if (cfi->chips[chipnum].state != FL_READY) { + set_current_state(TASK_UNINTERRUPTIBLE); + add_wait_queue(&cfi->chips[chipnum].wq, &wait); + + mutex_unlock(&cfi->chips[chipnum].mutex); + + schedule(); + remove_wait_queue(&cfi->chips[chipnum].wq, &wait); + goto retry1; + } + + tmp_buf = map_read(map, ofs + chipstart); + + mutex_unlock(&cfi->chips[chipnum].mutex); + + tmp_buf = map_word_load_partial(map, tmp_buf, buf, 0, len); + + ret = do_write_oneword(map, &cfi->chips[chipnum], + ofs, tmp_buf, FL_WRITING); + if (ret) + return ret; + + (*retlen) += len; + } + + return 0; +} + +#if !FORCE_WORD_WRITE +static int __xipram do_write_buffer_wait(struct map_info *map, + struct flchip *chip, unsigned long adr, + map_word datum) +{ + unsigned long timeo; + unsigned long u_write_timeout; + int ret = 0; + + /* + * Timeout is calculated according to CFI data, if available. + * See more comments in cfi_cmdset_0002(). + */ + u_write_timeout = usecs_to_jiffies(chip->buffer_write_time_max); + timeo = jiffies + u_write_timeout; + + for (;;) { + if (chip->state != FL_WRITING) { + /* Someone's suspended the write. Sleep */ + DECLARE_WAITQUEUE(wait, current); + + set_current_state(TASK_UNINTERRUPTIBLE); + add_wait_queue(&chip->wq, &wait); + mutex_unlock(&chip->mutex); + schedule(); + remove_wait_queue(&chip->wq, &wait); + timeo = jiffies + (HZ / 2); /* FIXME */ + mutex_lock(&chip->mutex); + continue; + } + + /* + * We check "time_after" and "!chip_good" before checking + * "chip_good" to avoid the failure due to scheduling. + */ + if (time_after(jiffies, timeo) && + !chip_good(map, chip, adr, &datum)) { + pr_err("MTD %s(): software timeout, address:0x%.8lx.\n", + __func__, adr); + ret = -EIO; + break; + } + + if (chip_good(map, chip, adr, &datum)) { + if (cfi_check_err_status(map, chip, adr)) + ret = -EIO; + break; + } + + /* Latency issues. Drop the lock, wait a while and retry */ + UDELAY(map, chip, adr, 1); + } + + return ret; +} + +static void __xipram do_write_buffer_reset(struct map_info *map, + struct flchip *chip, + struct cfi_private *cfi) +{ + /* + * Recovery from write-buffer programming failures requires + * the write-to-buffer-reset sequence. Since the last part + * of the sequence also works as a normal reset, we can run + * the same commands regardless of why we are here. + * See e.g. + * http://www.spansion.com/Support/Application%20Notes/MirrorBit_Write_Buffer_Prog_Page_Buffer_Read_AN.pdf + */ + cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, + cfi->device_type, NULL); + cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, + cfi->device_type, NULL); + cfi_send_gen_cmd(0xF0, cfi->addr_unlock1, chip->start, map, cfi, + cfi->device_type, NULL); + + /* FIXME - should have reset delay before continuing */ +} + +/* + * FIXME: interleaved mode not tested, and probably not supported! + */ +static int __xipram do_write_buffer(struct map_info *map, struct flchip *chip, + unsigned long adr, const u_char *buf, + int len) +{ + struct cfi_private *cfi = map->fldrv_priv; + int ret; + unsigned long cmd_adr; + int z, words; + map_word datum; + + adr += chip->start; + cmd_adr = adr; + + mutex_lock(&chip->mutex); + ret = get_chip(map, chip, adr, FL_WRITING); + if (ret) { + mutex_unlock(&chip->mutex); + return ret; + } + + datum = map_word_load(map, buf); + + pr_debug("MTD %s(): WRITE 0x%.8lx(0x%.8lx)\n", + __func__, adr, datum.x[0]); + + XIP_INVAL_CACHED_RANGE(map, adr, len); + ENABLE_VPP(map); + xip_disable(map, chip, cmd_adr); + + cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL); + cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL); + + /* Write Buffer Load */ + map_write(map, CMD(0x25), cmd_adr); + + chip->state = FL_WRITING_TO_BUFFER; + + /* Write length of data to come */ + words = len / map_bankwidth(map); + map_write(map, CMD(words - 1), cmd_adr); + /* Write data */ + z = 0; + while(z < words * map_bankwidth(map)) { + datum = map_word_load(map, buf); + map_write(map, datum, adr + z); + + z += map_bankwidth(map); + buf += map_bankwidth(map); + } + z -= map_bankwidth(map); + + adr += z; + + /* Write Buffer Program Confirm: GO GO GO */ + map_write(map, CMD(0x29), cmd_adr); + chip->state = FL_WRITING; + + INVALIDATE_CACHE_UDELAY(map, chip, + adr, map_bankwidth(map), + chip->word_write_time); + + ret = do_write_buffer_wait(map, chip, adr, datum); + if (ret) + do_write_buffer_reset(map, chip, cfi); + + xip_enable(map, chip, adr); + + chip->state = FL_READY; + DISABLE_VPP(map); + put_chip(map, chip, adr); + mutex_unlock(&chip->mutex); + + return ret; +} + + +static int cfi_amdstd_write_buffers(struct mtd_info *mtd, loff_t to, size_t len, + size_t *retlen, const u_char *buf) +{ + struct map_info *map = mtd->priv; + struct cfi_private *cfi = map->fldrv_priv; + int wbufsize = cfi_interleave(cfi) << cfi->cfiq->MaxBufWriteSize; + int ret; + int chipnum; + unsigned long ofs; + + chipnum = to >> cfi->chipshift; + ofs = to - (chipnum << cfi->chipshift); + + /* If it's not bus-aligned, do the first word write */ + if (ofs & (map_bankwidth(map)-1)) { + size_t local_len = (-ofs)&(map_bankwidth(map)-1); + if (local_len > len) + local_len = len; + ret = cfi_amdstd_write_words(mtd, ofs + (chipnum<<cfi->chipshift), + local_len, retlen, buf); + if (ret) + return ret; + ofs += local_len; + buf += local_len; + len -= local_len; + + if (ofs >> cfi->chipshift) { + chipnum ++; + ofs = 0; + if (chipnum == cfi->numchips) + return 0; + } + } + + /* Write buffer is worth it only if more than one word to write... */ + while (len >= map_bankwidth(map) * 2) { + /* We must not cross write block boundaries */ + int size = wbufsize - (ofs & (wbufsize-1)); + + if (size > len) + size = len; + if (size % map_bankwidth(map)) + size -= size % map_bankwidth(map); + + ret = do_write_buffer(map, &cfi->chips[chipnum], + ofs, buf, size); + if (ret) + return ret; + + ofs += size; + buf += size; + (*retlen) += size; + len -= size; + + if (ofs >> cfi->chipshift) { + chipnum ++; + ofs = 0; + if (chipnum == cfi->numchips) + return 0; + } + } + + if (len) { + size_t retlen_dregs = 0; + + ret = cfi_amdstd_write_words(mtd, ofs + (chipnum<<cfi->chipshift), + len, &retlen_dregs, buf); + + *retlen += retlen_dregs; + return ret; + } + + return 0; +} +#endif /* !FORCE_WORD_WRITE */ + +/* + * Wait for the flash chip to become ready to write data + * + * This is only called during the panic_write() path. When panic_write() + * is called, the kernel is in the process of a panic, and will soon be + * dead. Therefore we don't take any locks, and attempt to get access + * to the chip as soon as possible. + */ +static int cfi_amdstd_panic_wait(struct map_info *map, struct flchip *chip, + unsigned long adr) +{ + struct cfi_private *cfi = map->fldrv_priv; + int retries = 10; + int i; + + /* + * If the driver thinks the chip is idle, and no toggle bits + * are changing, then the chip is actually idle for sure. + */ + if (chip->state == FL_READY && chip_ready(map, chip, adr, NULL)) + return 0; + + /* + * Try several times to reset the chip and then wait for it + * to become idle. The upper limit of a few milliseconds of + * delay isn't a big problem: the kernel is dying anyway. It + * is more important to save the messages. + */ + while (retries > 0) { + const unsigned long timeo = (HZ / 1000) + 1; + + /* send the reset command */ + map_write(map, CMD(0xF0), chip->start); + + /* wait for the chip to become ready */ + for (i = 0; i < jiffies_to_usecs(timeo); i++) { + if (chip_ready(map, chip, adr, NULL)) + return 0; + + udelay(1); + } + + retries--; + } + + /* the chip never became ready */ + return -EBUSY; +} + +/* + * Write out one word of data to a single flash chip during a kernel panic + * + * This is only called during the panic_write() path. When panic_write() + * is called, the kernel is in the process of a panic, and will soon be + * dead. Therefore we don't take any locks, and attempt to get access + * to the chip as soon as possible. + * + * The implementation of this routine is intentionally similar to + * do_write_oneword(), in order to ease code maintenance. + */ +static int do_panic_write_oneword(struct map_info *map, struct flchip *chip, + unsigned long adr, map_word datum) +{ + const unsigned long uWriteTimeout = (HZ / 1000) + 1; + struct cfi_private *cfi = map->fldrv_priv; + int retry_cnt = 0; + map_word oldd; + int ret; + int i; + + adr += chip->start; + + ret = cfi_amdstd_panic_wait(map, chip, adr); + if (ret) + return ret; + + pr_debug("MTD %s(): PANIC WRITE 0x%.8lx(0x%.8lx)\n", + __func__, adr, datum.x[0]); + + /* + * Check for a NOP for the case when the datum to write is already + * present - it saves time and works around buggy chips that corrupt + * data at other locations when 0xff is written to a location that + * already contains 0xff. + */ + oldd = map_read(map, adr); + if (map_word_equal(map, oldd, datum)) { + pr_debug("MTD %s(): NOP\n", __func__); + goto op_done; + } + + ENABLE_VPP(map); + +retry: + cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL); + cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL); + cfi_send_gen_cmd(0xA0, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL); + map_write(map, datum, adr); + + for (i = 0; i < jiffies_to_usecs(uWriteTimeout); i++) { + if (chip_ready(map, chip, adr, NULL)) + break; + + udelay(1); + } + + if (!chip_ready(map, chip, adr, &datum) || + cfi_check_err_status(map, chip, adr)) { + /* reset on all failures. */ + map_write(map, CMD(0xF0), chip->start); + /* FIXME - should have reset delay before continuing */ + + if (++retry_cnt <= MAX_RETRIES) + goto retry; + + ret = -EIO; + } + +op_done: + DISABLE_VPP(map); + return ret; +} + +/* + * Write out some data during a kernel panic + * + * This is used by the mtdoops driver to save the dying messages from a + * kernel which has panic'd. + * + * This routine ignores all of the locking used throughout the rest of the + * driver, in order to ensure that the data gets written out no matter what + * state this driver (and the flash chip itself) was in when the kernel crashed. + * + * The implementation of this routine is intentionally similar to + * cfi_amdstd_write_words(), in order to ease code maintenance. + */ +static int cfi_amdstd_panic_write(struct mtd_info *mtd, loff_t to, size_t len, + size_t *retlen, const u_char *buf) +{ + struct map_info *map = mtd->priv; + struct cfi_private *cfi = map->fldrv_priv; + unsigned long ofs, chipstart; + int ret; + int chipnum; + + chipnum = to >> cfi->chipshift; + ofs = to - (chipnum << cfi->chipshift); + chipstart = cfi->chips[chipnum].start; + + /* If it's not bus aligned, do the first byte write */ + if (ofs & (map_bankwidth(map) - 1)) { + unsigned long bus_ofs = ofs & ~(map_bankwidth(map) - 1); + int i = ofs - bus_ofs; + int n = 0; + map_word tmp_buf; + + ret = cfi_amdstd_panic_wait(map, &cfi->chips[chipnum], bus_ofs); + if (ret) + return ret; + + /* Load 'tmp_buf' with old contents of flash */ + tmp_buf = map_read(map, bus_ofs + chipstart); + + /* Number of bytes to copy from buffer */ + n = min_t(int, len, map_bankwidth(map) - i); + + tmp_buf = map_word_load_partial(map, tmp_buf, buf, i, n); + + ret = do_panic_write_oneword(map, &cfi->chips[chipnum], + bus_ofs, tmp_buf); + if (ret) + return ret; + + ofs += n; + buf += n; + (*retlen) += n; + len -= n; + + if (ofs >> cfi->chipshift) { + chipnum++; + ofs = 0; + if (chipnum == cfi->numchips) + return 0; + } + } + + /* We are now aligned, write as much as possible */ + while (len >= map_bankwidth(map)) { + map_word datum; + + datum = map_word_load(map, buf); + + ret = do_panic_write_oneword(map, &cfi->chips[chipnum], + ofs, datum); + if (ret) + return ret; + + ofs += map_bankwidth(map); + buf += map_bankwidth(map); + (*retlen) += map_bankwidth(map); + len -= map_bankwidth(map); + + if (ofs >> cfi->chipshift) { + chipnum++; + ofs = 0; + if (chipnum == cfi->numchips) + return 0; + + chipstart = cfi->chips[chipnum].start; + } + } + + /* Write the trailing bytes if any */ + if (len & (map_bankwidth(map) - 1)) { + map_word tmp_buf; + + ret = cfi_amdstd_panic_wait(map, &cfi->chips[chipnum], ofs); + if (ret) + return ret; + + tmp_buf = map_read(map, ofs + chipstart); + + tmp_buf = map_word_load_partial(map, tmp_buf, buf, 0, len); + + ret = do_panic_write_oneword(map, &cfi->chips[chipnum], + ofs, tmp_buf); + if (ret) + return ret; + + (*retlen) += len; + } + + return 0; +} + + +/* + * Handle devices with one erase region, that only implement + * the chip erase command. + */ +static int __xipram do_erase_chip(struct map_info *map, struct flchip *chip) +{ + struct cfi_private *cfi = map->fldrv_priv; + unsigned long timeo = jiffies + HZ; + unsigned long int adr; + DECLARE_WAITQUEUE(wait, current); + int ret; + int retry_cnt = 0; + map_word datum = map_word_ff(map); + + adr = cfi->addr_unlock1; + + mutex_lock(&chip->mutex); + ret = get_chip(map, chip, adr, FL_ERASING); + if (ret) { + mutex_unlock(&chip->mutex); + return ret; + } + + pr_debug("MTD %s(): ERASE 0x%.8lx\n", + __func__, chip->start); + + XIP_INVAL_CACHED_RANGE(map, adr, map->size); + ENABLE_VPP(map); + xip_disable(map, chip, adr); + + retry: + cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL); + cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL); + cfi_send_gen_cmd(0x80, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL); + cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL); + cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL); + cfi_send_gen_cmd(0x10, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL); + + chip->state = FL_ERASING; + chip->erase_suspended = 0; + chip->in_progress_block_addr = adr; + chip->in_progress_block_mask = ~(map->size - 1); + + INVALIDATE_CACHE_UDELAY(map, chip, + adr, map->size, + chip->erase_time*500); + + timeo = jiffies + (HZ*20); + + for (;;) { + if (chip->state != FL_ERASING) { + /* Someone's suspended the erase. Sleep */ + set_current_state(TASK_UNINTERRUPTIBLE); + add_wait_queue(&chip->wq, &wait); + mutex_unlock(&chip->mutex); + schedule(); + remove_wait_queue(&chip->wq, &wait); + mutex_lock(&chip->mutex); + continue; + } + if (chip->erase_suspended) { + /* This erase was suspended and resumed. + Adjust the timeout */ + timeo = jiffies + (HZ*20); /* FIXME */ + chip->erase_suspended = 0; + } + + if (chip_ready(map, chip, adr, &datum)) { + if (cfi_check_err_status(map, chip, adr)) + ret = -EIO; + break; + } + + if (time_after(jiffies, timeo)) { + printk(KERN_WARNING "MTD %s(): software timeout\n", + __func__); + ret = -EIO; + break; + } + + /* Latency issues. Drop the lock, wait a while and retry */ + UDELAY(map, chip, adr, 1000000/HZ); + } + /* Did we succeed? */ + if (ret) { + /* reset on all failures. */ + map_write(map, CMD(0xF0), chip->start); + /* FIXME - should have reset delay before continuing */ + + if (++retry_cnt <= MAX_RETRIES) { + ret = 0; + goto retry; + } + } + + chip->state = FL_READY; + xip_enable(map, chip, adr); + DISABLE_VPP(map); + put_chip(map, chip, adr); + mutex_unlock(&chip->mutex); + + return ret; +} + + +static int __xipram do_erase_oneblock(struct map_info *map, struct flchip *chip, unsigned long adr, int len, void *thunk) +{ + struct cfi_private *cfi = map->fldrv_priv; + unsigned long timeo = jiffies + HZ; + DECLARE_WAITQUEUE(wait, current); + int ret; + int retry_cnt = 0; + map_word datum = map_word_ff(map); + + adr += chip->start; + + mutex_lock(&chip->mutex); + ret = get_chip(map, chip, adr, FL_ERASING); + if (ret) { + mutex_unlock(&chip->mutex); + return ret; + } + + pr_debug("MTD %s(): ERASE 0x%.8lx\n", + __func__, adr); + + XIP_INVAL_CACHED_RANGE(map, adr, len); + ENABLE_VPP(map); + xip_disable(map, chip, adr); + + retry: + cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL); + cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL); + cfi_send_gen_cmd(0x80, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL); + cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL); + cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL); + map_write(map, cfi->sector_erase_cmd, adr); + + chip->state = FL_ERASING; + chip->erase_suspended = 0; + chip->in_progress_block_addr = adr; + chip->in_progress_block_mask = ~(len - 1); + + INVALIDATE_CACHE_UDELAY(map, chip, + adr, len, + chip->erase_time*500); + + timeo = jiffies + (HZ*20); + + for (;;) { + if (chip->state != FL_ERASING) { + /* Someone's suspended the erase. Sleep */ + set_current_state(TASK_UNINTERRUPTIBLE); + add_wait_queue(&chip->wq, &wait); + mutex_unlock(&chip->mutex); + schedule(); + remove_wait_queue(&chip->wq, &wait); + mutex_lock(&chip->mutex); + continue; + } + if (chip->erase_suspended) { + /* This erase was suspended and resumed. + Adjust the timeout */ + timeo = jiffies + (HZ*20); /* FIXME */ + chip->erase_suspended = 0; + } + + if (chip_ready(map, chip, adr, &datum)) { + if (cfi_check_err_status(map, chip, adr)) + ret = -EIO; + break; + } + + if (time_after(jiffies, timeo)) { + printk(KERN_WARNING "MTD %s(): software timeout\n", + __func__); + ret = -EIO; + break; + } + + /* Latency issues. Drop the lock, wait a while and retry */ + UDELAY(map, chip, adr, 1000000/HZ); + } + /* Did we succeed? */ + if (ret) { + /* reset on all failures. */ + map_write(map, CMD(0xF0), chip->start); + /* FIXME - should have reset delay before continuing */ + + if (++retry_cnt <= MAX_RETRIES) { + ret = 0; + goto retry; + } + } + + chip->state = FL_READY; + xip_enable(map, chip, adr); + DISABLE_VPP(map); + put_chip(map, chip, adr); + mutex_unlock(&chip->mutex); + return ret; +} + + +static int cfi_amdstd_erase_varsize(struct mtd_info *mtd, struct erase_info *instr) +{ + return cfi_varsize_frob(mtd, do_erase_oneblock, instr->addr, + instr->len, NULL); +} + + +static int cfi_amdstd_erase_chip(struct mtd_info *mtd, struct erase_info *instr) +{ + struct map_info *map = mtd->priv; + struct cfi_private *cfi = map->fldrv_priv; + + if (instr->addr != 0) + return -EINVAL; + + if (instr->len != mtd->size) + return -EINVAL; + + return do_erase_chip(map, &cfi->chips[0]); +} + +static int do_atmel_lock(struct map_info *map, struct flchip *chip, + unsigned long adr, int len, void *thunk) +{ + struct cfi_private *cfi = map->fldrv_priv; + int ret; + + mutex_lock(&chip->mutex); + ret = get_chip(map, chip, adr + chip->start, FL_LOCKING); + if (ret) + goto out_unlock; + chip->state = FL_LOCKING; + + pr_debug("MTD %s(): LOCK 0x%08lx len %d\n", __func__, adr, len); + + cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, + cfi->device_type, NULL); + cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, + cfi->device_type, NULL); + cfi_send_gen_cmd(0x80, cfi->addr_unlock1, chip->start, map, cfi, + cfi->device_type, NULL); + cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, + cfi->device_type, NULL); + cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, + cfi->device_type, NULL); + map_write(map, CMD(0x40), chip->start + adr); + + chip->state = FL_READY; + put_chip(map, chip, adr + chip->start); + ret = 0; + +out_unlock: + mutex_unlock(&chip->mutex); + return ret; +} + +static int do_atmel_unlock(struct map_info *map, struct flchip *chip, + unsigned long adr, int len, void *thunk) +{ + struct cfi_private *cfi = map->fldrv_priv; + int ret; + + mutex_lock(&chip->mutex); + ret = get_chip(map, chip, adr + chip->start, FL_UNLOCKING); + if (ret) + goto out_unlock; + chip->state = FL_UNLOCKING; + + pr_debug("MTD %s(): LOCK 0x%08lx len %d\n", __func__, adr, len); + + cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, + cfi->device_type, NULL); + map_write(map, CMD(0x70), adr); + + chip->state = FL_READY; + put_chip(map, chip, adr + chip->start); + ret = 0; + +out_unlock: + mutex_unlock(&chip->mutex); + return ret; +} + +static int cfi_atmel_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len) +{ + return cfi_varsize_frob(mtd, do_atmel_lock, ofs, len, NULL); +} + +static int cfi_atmel_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len) +{ + return cfi_varsize_frob(mtd, do_atmel_unlock, ofs, len, NULL); +} + +/* + * Advanced Sector Protection - PPB (Persistent Protection Bit) locking + */ + +struct ppb_lock { + struct flchip *chip; + unsigned long adr; + int locked; +}; + +#define DO_XXLOCK_ONEBLOCK_LOCK ((void *)1) +#define DO_XXLOCK_ONEBLOCK_UNLOCK ((void *)2) +#define DO_XXLOCK_ONEBLOCK_GETLOCK ((void *)3) + +static int __maybe_unused do_ppb_xxlock(struct map_info *map, + struct flchip *chip, + unsigned long adr, int len, void *thunk) +{ + struct cfi_private *cfi = map->fldrv_priv; + unsigned long timeo; + int ret; + + adr += chip->start; + mutex_lock(&chip->mutex); + ret = get_chip(map, chip, adr, FL_LOCKING); + if (ret) { + mutex_unlock(&chip->mutex); + return ret; + } + + pr_debug("MTD %s(): XXLOCK 0x%08lx len %d\n", __func__, adr, len); + + cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, + cfi->device_type, NULL); + cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, + cfi->device_type, NULL); + /* PPB entry command */ + cfi_send_gen_cmd(0xC0, cfi->addr_unlock1, chip->start, map, cfi, + cfi->device_type, NULL); + + if (thunk == DO_XXLOCK_ONEBLOCK_LOCK) { + chip->state = FL_LOCKING; + map_write(map, CMD(0xA0), adr); + map_write(map, CMD(0x00), adr); + } else if (thunk == DO_XXLOCK_ONEBLOCK_UNLOCK) { + /* + * Unlocking of one specific sector is not supported, so we + * have to unlock all sectors of this device instead + */ + chip->state = FL_UNLOCKING; + map_write(map, CMD(0x80), chip->start); + map_write(map, CMD(0x30), chip->start); + } else if (thunk == DO_XXLOCK_ONEBLOCK_GETLOCK) { + chip->state = FL_JEDEC_QUERY; + /* Return locked status: 0->locked, 1->unlocked */ + ret = !cfi_read_query(map, adr); + } else + BUG(); + + /* + * Wait for some time as unlocking of all sectors takes quite long + */ + timeo = jiffies + msecs_to_jiffies(2000); /* 2s max (un)locking */ + for (;;) { + if (chip_ready(map, chip, adr, NULL)) + break; + + if (time_after(jiffies, timeo)) { + printk(KERN_ERR "Waiting for chip to be ready timed out.\n"); + ret = -EIO; + break; + } + + UDELAY(map, chip, adr, 1); + } + + /* Exit BC commands */ + map_write(map, CMD(0x90), chip->start); + map_write(map, CMD(0x00), chip->start); + + chip->state = FL_READY; + put_chip(map, chip, adr); + mutex_unlock(&chip->mutex); + + return ret; +} + +static int __maybe_unused cfi_ppb_lock(struct mtd_info *mtd, loff_t ofs, + uint64_t len) +{ + return cfi_varsize_frob(mtd, do_ppb_xxlock, ofs, len, + DO_XXLOCK_ONEBLOCK_LOCK); +} + +static int __maybe_unused cfi_ppb_unlock(struct mtd_info *mtd, loff_t ofs, + uint64_t len) +{ + struct mtd_erase_region_info *regions = mtd->eraseregions; + struct map_info *map = mtd->priv; + struct cfi_private *cfi = map->fldrv_priv; + struct ppb_lock *sect; + unsigned long adr; + loff_t offset; + uint64_t length; + int chipnum; + int i; + int sectors; + int ret; + int max_sectors; + + /* + * PPB unlocking always unlocks all sectors of the flash chip. + * We need to re-lock all previously locked sectors. So lets + * first check the locking status of all sectors and save + * it for future use. + */ + max_sectors = 0; + for (i = 0; i < mtd->numeraseregions; i++) + max_sectors += regions[i].numblocks; + + sect = kcalloc(max_sectors, sizeof(struct ppb_lock), GFP_KERNEL); + if (!sect) + return -ENOMEM; + + /* + * This code to walk all sectors is a slightly modified version + * of the cfi_varsize_frob() code. + */ + i = 0; + chipnum = 0; + adr = 0; + sectors = 0; + offset = 0; + length = mtd->size; + + while (length) { + int size = regions[i].erasesize; + + /* + * Only test sectors that shall not be unlocked. The other + * sectors shall be unlocked, so lets keep their locking + * status at "unlocked" (locked=0) for the final re-locking. + */ + if ((offset < ofs) || (offset >= (ofs + len))) { + sect[sectors].chip = &cfi->chips[chipnum]; + sect[sectors].adr = adr; + sect[sectors].locked = do_ppb_xxlock( + map, &cfi->chips[chipnum], adr, 0, + DO_XXLOCK_ONEBLOCK_GETLOCK); + } + + adr += size; + offset += size; + length -= size; + + if (offset == regions[i].offset + size * regions[i].numblocks) + i++; + + if (adr >> cfi->chipshift) { + if (offset >= (ofs + len)) + break; + adr = 0; + chipnum++; + + if (chipnum >= cfi->numchips) + break; + } + + sectors++; + if (sectors >= max_sectors) { + printk(KERN_ERR "Only %d sectors for PPB locking supported!\n", + max_sectors); + kfree(sect); + return -EINVAL; + } + } + + /* Now unlock the whole chip */ + ret = cfi_varsize_frob(mtd, do_ppb_xxlock, ofs, len, + DO_XXLOCK_ONEBLOCK_UNLOCK); + if (ret) { + kfree(sect); + return ret; + } + + /* + * PPB unlocking always unlocks all sectors of the flash chip. + * We need to re-lock all previously locked sectors. + */ + for (i = 0; i < sectors; i++) { + if (sect[i].locked) + do_ppb_xxlock(map, sect[i].chip, sect[i].adr, 0, + DO_XXLOCK_ONEBLOCK_LOCK); + } + + kfree(sect); + return ret; +} + +static int __maybe_unused cfi_ppb_is_locked(struct mtd_info *mtd, loff_t ofs, + uint64_t len) +{ + return cfi_varsize_frob(mtd, do_ppb_xxlock, ofs, len, + DO_XXLOCK_ONEBLOCK_GETLOCK) ? 1 : 0; +} + +static void cfi_amdstd_sync (struct mtd_info *mtd) +{ + struct map_info *map = mtd->priv; + struct cfi_private *cfi = map->fldrv_priv; + int i; + struct flchip *chip; + int ret = 0; + DECLARE_WAITQUEUE(wait, current); + + for (i=0; !ret && i<cfi->numchips; i++) { + chip = &cfi->chips[i]; + + retry: + mutex_lock(&chip->mutex); + + switch(chip->state) { + case FL_READY: + case FL_STATUS: + case FL_CFI_QUERY: + case FL_JEDEC_QUERY: + chip->oldstate = chip->state; + chip->state = FL_SYNCING; + /* No need to wake_up() on this state change - + * as the whole point is that nobody can do anything + * with the chip now anyway. + */ + fallthrough; + case FL_SYNCING: + mutex_unlock(&chip->mutex); + break; + + default: + /* Not an idle state */ + set_current_state(TASK_UNINTERRUPTIBLE); + add_wait_queue(&chip->wq, &wait); + + mutex_unlock(&chip->mutex); + + schedule(); + + remove_wait_queue(&chip->wq, &wait); + + goto retry; + } + } + + /* Unlock the chips again */ + + for (i--; i >=0; i--) { + chip = &cfi->chips[i]; + + mutex_lock(&chip->mutex); + + if (chip->state == FL_SYNCING) { + chip->state = chip->oldstate; + wake_up(&chip->wq); + } + mutex_unlock(&chip->mutex); + } +} + + +static int cfi_amdstd_suspend(struct mtd_info *mtd) +{ + struct map_info *map = mtd->priv; + struct cfi_private *cfi = map->fldrv_priv; + int i; + struct flchip *chip; + int ret = 0; + + for (i=0; !ret && i<cfi->numchips; i++) { + chip = &cfi->chips[i]; + + mutex_lock(&chip->mutex); + + switch(chip->state) { + case FL_READY: + case FL_STATUS: + case FL_CFI_QUERY: + case FL_JEDEC_QUERY: + chip->oldstate = chip->state; + chip->state = FL_PM_SUSPENDED; + /* No need to wake_up() on this state change - + * as the whole point is that nobody can do anything + * with the chip now anyway. + */ + break; + case FL_PM_SUSPENDED: + break; + + default: + ret = -EAGAIN; + break; + } + mutex_unlock(&chip->mutex); + } + + /* Unlock the chips again */ + + if (ret) { + for (i--; i >=0; i--) { + chip = &cfi->chips[i]; + + mutex_lock(&chip->mutex); + + if (chip->state == FL_PM_SUSPENDED) { + chip->state = chip->oldstate; + wake_up(&chip->wq); + } + mutex_unlock(&chip->mutex); + } + } + + return ret; +} + + +static void cfi_amdstd_resume(struct mtd_info *mtd) +{ + struct map_info *map = mtd->priv; + struct cfi_private *cfi = map->fldrv_priv; + int i; + struct flchip *chip; + + for (i=0; i<cfi->numchips; i++) { + + chip = &cfi->chips[i]; + + mutex_lock(&chip->mutex); + + if (chip->state == FL_PM_SUSPENDED) { + chip->state = FL_READY; + map_write(map, CMD(0xF0), chip->start); + wake_up(&chip->wq); + } + else + printk(KERN_ERR "Argh. Chip not in PM_SUSPENDED state upon resume()\n"); + + mutex_unlock(&chip->mutex); + } +} + + +/* + * Ensure that the flash device is put back into read array mode before + * unloading the driver or rebooting. On some systems, rebooting while + * the flash is in query/program/erase mode will prevent the CPU from + * fetching the bootloader code, requiring a hard reset or power cycle. + */ +static int cfi_amdstd_reset(struct mtd_info *mtd) +{ + struct map_info *map = mtd->priv; + struct cfi_private *cfi = map->fldrv_priv; + int i, ret; + struct flchip *chip; + + for (i = 0; i < cfi->numchips; i++) { + + chip = &cfi->chips[i]; + + mutex_lock(&chip->mutex); + + ret = get_chip(map, chip, chip->start, FL_SHUTDOWN); + if (!ret) { + map_write(map, CMD(0xF0), chip->start); + chip->state = FL_SHUTDOWN; + put_chip(map, chip, chip->start); + } + + mutex_unlock(&chip->mutex); + } + + return 0; +} + + +static int cfi_amdstd_reboot(struct notifier_block *nb, unsigned long val, + void *v) +{ + struct mtd_info *mtd; + + mtd = container_of(nb, struct mtd_info, reboot_notifier); + cfi_amdstd_reset(mtd); + return NOTIFY_DONE; +} + + +static void cfi_amdstd_destroy(struct mtd_info *mtd) +{ + struct map_info *map = mtd->priv; + struct cfi_private *cfi = map->fldrv_priv; + + cfi_amdstd_reset(mtd); + unregister_reboot_notifier(&mtd->reboot_notifier); + kfree(cfi->cmdset_priv); + kfree(cfi->cfiq); + kfree(cfi); + kfree(mtd->eraseregions); +} + +MODULE_LICENSE("GPL"); +MODULE_AUTHOR("Crossnet Co. <info@crossnet.co.jp> et al."); +MODULE_DESCRIPTION("MTD chip driver for AMD/Fujitsu flash chips"); +MODULE_ALIAS("cfi_cmdset_0006"); +MODULE_ALIAS("cfi_cmdset_0701"); diff --git a/drivers/mtd/chips/cfi_cmdset_0020.c b/drivers/mtd/chips/cfi_cmdset_0020.c new file mode 100644 index 0000000000..60c7f6f751 --- /dev/null +++ b/drivers/mtd/chips/cfi_cmdset_0020.c @@ -0,0 +1,1402 @@ +// SPDX-License-Identifier: GPL-2.0 +/* + * Common Flash Interface support: + * ST Advanced Architecture Command Set (ID 0x0020) + * + * (C) 2000 Red Hat. + * + * 10/10/2000 Nicolas Pitre <nico@fluxnic.net> + * - completely revamped method functions so they are aware and + * independent of the flash geometry (buswidth, interleave, etc.) + * - scalability vs code size is completely set at compile-time + * (see include/linux/mtd/cfi.h for selection) + * - optimized write buffer method + * 06/21/2002 Joern Engel <joern@wh.fh-wedel.de> and others + * - modified Intel Command Set 0x0001 to support ST Advanced Architecture + * (command set 0x0020) + * - added a writev function + * 07/13/2005 Joern Engel <joern@wh.fh-wedel.de> + * - Plugged memory leak in cfi_staa_writev(). + */ + +#include <linux/module.h> +#include <linux/types.h> +#include <linux/kernel.h> +#include <linux/sched.h> +#include <asm/io.h> +#include <asm/byteorder.h> + +#include <linux/errno.h> +#include <linux/slab.h> +#include <linux/delay.h> +#include <linux/interrupt.h> +#include <linux/mtd/map.h> +#include <linux/mtd/cfi.h> +#include <linux/mtd/mtd.h> + + +static int cfi_staa_read(struct mtd_info *, loff_t, size_t, size_t *, u_char *); +static int cfi_staa_write_buffers(struct mtd_info *, loff_t, size_t, size_t *, const u_char *); +static int cfi_staa_writev(struct mtd_info *mtd, const struct kvec *vecs, + unsigned long count, loff_t to, size_t *retlen); +static int cfi_staa_erase_varsize(struct mtd_info *, struct erase_info *); +static void cfi_staa_sync (struct mtd_info *); +static int cfi_staa_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len); +static int cfi_staa_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len); +static int cfi_staa_suspend (struct mtd_info *); +static void cfi_staa_resume (struct mtd_info *); + +static void cfi_staa_destroy(struct mtd_info *); + +struct mtd_info *cfi_cmdset_0020(struct map_info *, int); + +static struct mtd_info *cfi_staa_setup (struct map_info *); + +static struct mtd_chip_driver cfi_staa_chipdrv = { + .probe = NULL, /* Not usable directly */ + .destroy = cfi_staa_destroy, + .name = "cfi_cmdset_0020", + .module = THIS_MODULE +}; + +/* #define DEBUG_LOCK_BITS */ +//#define DEBUG_CFI_FEATURES + +#ifdef DEBUG_CFI_FEATURES +static void cfi_tell_features(struct cfi_pri_intelext *extp) +{ + int i; + printk(" Feature/Command Support: %4.4X\n", extp->FeatureSupport); + printk(" - Chip Erase: %s\n", extp->FeatureSupport&1?"supported":"unsupported"); + printk(" - Suspend Erase: %s\n", extp->FeatureSupport&2?"supported":"unsupported"); + printk(" - Suspend Program: %s\n", extp->FeatureSupport&4?"supported":"unsupported"); + printk(" - Legacy Lock/Unlock: %s\n", extp->FeatureSupport&8?"supported":"unsupported"); + printk(" - Queued Erase: %s\n", extp->FeatureSupport&16?"supported":"unsupported"); + printk(" - Instant block lock: %s\n", extp->FeatureSupport&32?"supported":"unsupported"); + printk(" - Protection Bits: %s\n", extp->FeatureSupport&64?"supported":"unsupported"); + printk(" - Page-mode read: %s\n", extp->FeatureSupport&128?"supported":"unsupported"); + printk(" - Synchronous read: %s\n", extp->FeatureSupport&256?"supported":"unsupported"); + for (i=9; i<32; i++) { + if (extp->FeatureSupport & (1<<i)) + printk(" - Unknown Bit %X: supported\n", i); + } + + printk(" Supported functions after Suspend: %2.2X\n", extp->SuspendCmdSupport); + printk(" - Program after Erase Suspend: %s\n", extp->SuspendCmdSupport&1?"supported":"unsupported"); + for (i=1; i<8; i++) { + if (extp->SuspendCmdSupport & (1<<i)) + printk(" - Unknown Bit %X: supported\n", i); + } + + printk(" Block Status Register Mask: %4.4X\n", extp->BlkStatusRegMask); + printk(" - Lock Bit Active: %s\n", extp->BlkStatusRegMask&1?"yes":"no"); + printk(" - Valid Bit Active: %s\n", extp->BlkStatusRegMask&2?"yes":"no"); + for (i=2; i<16; i++) { + if (extp->BlkStatusRegMask & (1<<i)) + printk(" - Unknown Bit %X Active: yes\n",i); + } + + printk(" Vcc Logic Supply Optimum Program/Erase Voltage: %d.%d V\n", + extp->VccOptimal >> 8, extp->VccOptimal & 0xf); + if (extp->VppOptimal) + printk(" Vpp Programming Supply Optimum Program/Erase Voltage: %d.%d V\n", + extp->VppOptimal >> 8, extp->VppOptimal & 0xf); +} +#endif + +/* This routine is made available to other mtd code via + * inter_module_register. It must only be accessed through + * inter_module_get which will bump the use count of this module. The + * addresses passed back in cfi are valid as long as the use count of + * this module is non-zero, i.e. between inter_module_get and + * inter_module_put. Keith Owens <kaos@ocs.com.au> 29 Oct 2000. + */ +struct mtd_info *cfi_cmdset_0020(struct map_info *map, int primary) +{ + struct cfi_private *cfi = map->fldrv_priv; + int i; + + if (cfi->cfi_mode) { + /* + * It's a real CFI chip, not one for which the probe + * routine faked a CFI structure. So we read the feature + * table from it. + */ + __u16 adr = primary?cfi->cfiq->P_ADR:cfi->cfiq->A_ADR; + struct cfi_pri_intelext *extp; + + extp = (struct cfi_pri_intelext*)cfi_read_pri(map, adr, sizeof(*extp), "ST Microelectronics"); + if (!extp) + return NULL; + + if (extp->MajorVersion != '1' || + (extp->MinorVersion < '0' || extp->MinorVersion > '3')) { + printk(KERN_ERR " Unknown ST Microelectronics" + " Extended Query version %c.%c.\n", + extp->MajorVersion, extp->MinorVersion); + kfree(extp); + return NULL; + } + + /* Do some byteswapping if necessary */ + extp->FeatureSupport = cfi32_to_cpu(map, extp->FeatureSupport); + extp->BlkStatusRegMask = cfi32_to_cpu(map, + extp->BlkStatusRegMask); + +#ifdef DEBUG_CFI_FEATURES + /* Tell the user about it in lots of lovely detail */ + cfi_tell_features(extp); +#endif + + /* Install our own private info structure */ + cfi->cmdset_priv = extp; + } + + for (i=0; i< cfi->numchips; i++) { + cfi->chips[i].word_write_time = 128; + cfi->chips[i].buffer_write_time = 128; + cfi->chips[i].erase_time = 1024; + cfi->chips[i].ref_point_counter = 0; + init_waitqueue_head(&(cfi->chips[i].wq)); + } + + return cfi_staa_setup(map); +} +EXPORT_SYMBOL_GPL(cfi_cmdset_0020); + +static struct mtd_info *cfi_staa_setup(struct map_info *map) +{ + struct cfi_private *cfi = map->fldrv_priv; + struct mtd_info *mtd; + unsigned long offset = 0; + int i,j; + unsigned long devsize = (1<<cfi->cfiq->DevSize) * cfi->interleave; + + mtd = kzalloc(sizeof(*mtd), GFP_KERNEL); + //printk(KERN_DEBUG "number of CFI chips: %d\n", cfi->numchips); + + if (!mtd) { + kfree(cfi->cmdset_priv); + return NULL; + } + + mtd->priv = map; + mtd->type = MTD_NORFLASH; + mtd->size = devsize * cfi->numchips; + + mtd->numeraseregions = cfi->cfiq->NumEraseRegions * cfi->numchips; + mtd->eraseregions = kmalloc_array(mtd->numeraseregions, + sizeof(struct mtd_erase_region_info), + GFP_KERNEL); + if (!mtd->eraseregions) { + kfree(cfi->cmdset_priv); + kfree(mtd); + return NULL; + } + + for (i=0; i<cfi->cfiq->NumEraseRegions; i++) { + unsigned long ernum, ersize; + ersize = ((cfi->cfiq->EraseRegionInfo[i] >> 8) & ~0xff) * cfi->interleave; + ernum = (cfi->cfiq->EraseRegionInfo[i] & 0xffff) + 1; + + if (mtd->erasesize < ersize) { + mtd->erasesize = ersize; + } + for (j=0; j<cfi->numchips; j++) { + mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].offset = (j*devsize)+offset; + mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].erasesize = ersize; + mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].numblocks = ernum; + } + offset += (ersize * ernum); + } + + if (offset != devsize) { + /* Argh */ + printk(KERN_WARNING "Sum of regions (%lx) != total size of set of interleaved chips (%lx)\n", offset, devsize); + kfree(mtd->eraseregions); + kfree(cfi->cmdset_priv); + kfree(mtd); + return NULL; + } + + for (i=0; i<mtd->numeraseregions;i++){ + printk(KERN_DEBUG "%d: offset=0x%llx,size=0x%x,blocks=%d\n", + i, (unsigned long long)mtd->eraseregions[i].offset, + mtd->eraseregions[i].erasesize, + mtd->eraseregions[i].numblocks); + } + + /* Also select the correct geometry setup too */ + mtd->_erase = cfi_staa_erase_varsize; + mtd->_read = cfi_staa_read; + mtd->_write = cfi_staa_write_buffers; + mtd->_writev = cfi_staa_writev; + mtd->_sync = cfi_staa_sync; + mtd->_lock = cfi_staa_lock; + mtd->_unlock = cfi_staa_unlock; + mtd->_suspend = cfi_staa_suspend; + mtd->_resume = cfi_staa_resume; + mtd->flags = MTD_CAP_NORFLASH & ~MTD_BIT_WRITEABLE; + mtd->writesize = 8; /* FIXME: Should be 0 for STMicro flashes w/out ECC */ + mtd->writebufsize = cfi_interleave(cfi) << cfi->cfiq->MaxBufWriteSize; + map->fldrv = &cfi_staa_chipdrv; + __module_get(THIS_MODULE); + mtd->name = map->name; + return mtd; +} + + +static inline int do_read_onechip(struct map_info *map, struct flchip *chip, loff_t adr, size_t len, u_char *buf) +{ + map_word status, status_OK; + unsigned long timeo; + DECLARE_WAITQUEUE(wait, current); + int suspended = 0; + unsigned long cmd_addr; + struct cfi_private *cfi = map->fldrv_priv; + + adr += chip->start; + + /* Ensure cmd read/writes are aligned. */ + cmd_addr = adr & ~(map_bankwidth(map)-1); + + /* Let's determine this according to the interleave only once */ + status_OK = CMD(0x80); + + timeo = jiffies + HZ; + retry: + mutex_lock(&chip->mutex); + + /* Check that the chip's ready to talk to us. + * If it's in FL_ERASING state, suspend it and make it talk now. + */ + switch (chip->state) { + case FL_ERASING: + if (!(((struct cfi_pri_intelext *)cfi->cmdset_priv)->FeatureSupport & 2)) + goto sleep; /* We don't support erase suspend */ + + map_write (map, CMD(0xb0), cmd_addr); + /* If the flash has finished erasing, then 'erase suspend' + * appears to make some (28F320) flash devices switch to + * 'read' mode. Make sure that we switch to 'read status' + * mode so we get the right data. --rmk + */ + map_write(map, CMD(0x70), cmd_addr); + chip->oldstate = FL_ERASING; + chip->state = FL_ERASE_SUSPENDING; + // printk("Erase suspending at 0x%lx\n", cmd_addr); + for (;;) { + status = map_read(map, cmd_addr); + if (map_word_andequal(map, status, status_OK, status_OK)) + break; + + if (time_after(jiffies, timeo)) { + /* Urgh */ + map_write(map, CMD(0xd0), cmd_addr); + /* make sure we're in 'read status' mode */ + map_write(map, CMD(0x70), cmd_addr); + chip->state = FL_ERASING; + wake_up(&chip->wq); + mutex_unlock(&chip->mutex); + printk(KERN_ERR "Chip not ready after erase " + "suspended: status = 0x%lx\n", status.x[0]); + return -EIO; + } + + mutex_unlock(&chip->mutex); + cfi_udelay(1); + mutex_lock(&chip->mutex); + } + + suspended = 1; + map_write(map, CMD(0xff), cmd_addr); + chip->state = FL_READY; + break; + +#if 0 + case FL_WRITING: + /* Not quite yet */ +#endif + + case FL_READY: + break; + + case FL_CFI_QUERY: + case FL_JEDEC_QUERY: + map_write(map, CMD(0x70), cmd_addr); + chip->state = FL_STATUS; + fallthrough; + case FL_STATUS: + status = map_read(map, cmd_addr); + if (map_word_andequal(map, status, status_OK, status_OK)) { + map_write(map, CMD(0xff), cmd_addr); + chip->state = FL_READY; + break; + } + + /* Urgh. Chip not yet ready to talk to us. */ + if (time_after(jiffies, timeo)) { + mutex_unlock(&chip->mutex); + printk(KERN_ERR "waiting for chip to be ready timed out in read. WSM status = %lx\n", status.x[0]); + return -EIO; + } + + /* Latency issues. Drop the lock, wait a while and retry */ + mutex_unlock(&chip->mutex); + cfi_udelay(1); + goto retry; + + default: + sleep: + /* Stick ourselves on a wait queue to be woken when + someone changes the status */ + set_current_state(TASK_UNINTERRUPTIBLE); + add_wait_queue(&chip->wq, &wait); + mutex_unlock(&chip->mutex); + schedule(); + remove_wait_queue(&chip->wq, &wait); + timeo = jiffies + HZ; + goto retry; + } + + map_copy_from(map, buf, adr, len); + + if (suspended) { + chip->state = chip->oldstate; + /* What if one interleaved chip has finished and the + other hasn't? The old code would leave the finished + one in READY mode. That's bad, and caused -EROFS + errors to be returned from do_erase_oneblock because + that's the only bit it checked for at the time. + As the state machine appears to explicitly allow + sending the 0x70 (Read Status) command to an erasing + chip and expecting it to be ignored, that's what we + do. */ + map_write(map, CMD(0xd0), cmd_addr); + map_write(map, CMD(0x70), cmd_addr); + } + + wake_up(&chip->wq); + mutex_unlock(&chip->mutex); + return 0; +} + +static int cfi_staa_read (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf) +{ + struct map_info *map = mtd->priv; + struct cfi_private *cfi = map->fldrv_priv; + unsigned long ofs; + int chipnum; + int ret = 0; + + /* ofs: offset within the first chip that the first read should start */ + chipnum = (from >> cfi->chipshift); + ofs = from - (chipnum << cfi->chipshift); + + while (len) { + unsigned long thislen; + + if (chipnum >= cfi->numchips) + break; + + if ((len + ofs -1) >> cfi->chipshift) + thislen = (1<<cfi->chipshift) - ofs; + else + thislen = len; + + ret = do_read_onechip(map, &cfi->chips[chipnum], ofs, thislen, buf); + if (ret) + break; + + *retlen += thislen; + len -= thislen; + buf += thislen; + + ofs = 0; + chipnum++; + } + return ret; +} + +static int do_write_buffer(struct map_info *map, struct flchip *chip, + unsigned long adr, const u_char *buf, int len) +{ + struct cfi_private *cfi = map->fldrv_priv; + map_word status, status_OK; + unsigned long cmd_adr, timeo; + DECLARE_WAITQUEUE(wait, current); + int wbufsize, z; + + /* M58LW064A requires bus alignment for buffer wriets -- saw */ + if (adr & (map_bankwidth(map)-1)) + return -EINVAL; + + wbufsize = cfi_interleave(cfi) << cfi->cfiq->MaxBufWriteSize; + adr += chip->start; + cmd_adr = adr & ~(wbufsize-1); + + /* Let's determine this according to the interleave only once */ + status_OK = CMD(0x80); + + timeo = jiffies + HZ; + retry: + +#ifdef DEBUG_CFI_FEATURES + printk("%s: chip->state[%d]\n", __func__, chip->state); +#endif + mutex_lock(&chip->mutex); + + /* Check that the chip's ready to talk to us. + * Later, we can actually think about interrupting it + * if it's in FL_ERASING state. + * Not just yet, though. + */ + switch (chip->state) { + case FL_READY: + break; + + case FL_CFI_QUERY: + case FL_JEDEC_QUERY: + map_write(map, CMD(0x70), cmd_adr); + chip->state = FL_STATUS; +#ifdef DEBUG_CFI_FEATURES + printk("%s: 1 status[%x]\n", __func__, map_read(map, cmd_adr)); +#endif + fallthrough; + case FL_STATUS: + status = map_read(map, cmd_adr); + if (map_word_andequal(map, status, status_OK, status_OK)) + break; + /* Urgh. Chip not yet ready to talk to us. */ + if (time_after(jiffies, timeo)) { + mutex_unlock(&chip->mutex); + printk(KERN_ERR "waiting for chip to be ready timed out in buffer write Xstatus = %lx, status = %lx\n", + status.x[0], map_read(map, cmd_adr).x[0]); + return -EIO; + } + + /* Latency issues. Drop the lock, wait a while and retry */ + mutex_unlock(&chip->mutex); + cfi_udelay(1); + goto retry; + + default: + /* Stick ourselves on a wait queue to be woken when + someone changes the status */ + set_current_state(TASK_UNINTERRUPTIBLE); + add_wait_queue(&chip->wq, &wait); + mutex_unlock(&chip->mutex); + schedule(); + remove_wait_queue(&chip->wq, &wait); + timeo = jiffies + HZ; + goto retry; + } + + ENABLE_VPP(map); + map_write(map, CMD(0xe8), cmd_adr); + chip->state = FL_WRITING_TO_BUFFER; + + z = 0; + for (;;) { + status = map_read(map, cmd_adr); + if (map_word_andequal(map, status, status_OK, status_OK)) + break; + + mutex_unlock(&chip->mutex); + cfi_udelay(1); + mutex_lock(&chip->mutex); + + if (++z > 100) { + /* Argh. Not ready for write to buffer */ + DISABLE_VPP(map); + map_write(map, CMD(0x70), cmd_adr); + chip->state = FL_STATUS; + mutex_unlock(&chip->mutex); + printk(KERN_ERR "Chip not ready for buffer write. Xstatus = %lx\n", status.x[0]); + return -EIO; + } + } + + /* Write length of data to come */ + map_write(map, CMD(len/map_bankwidth(map)-1), cmd_adr ); + + /* Write data */ + for (z = 0; z < len; + z += map_bankwidth(map), buf += map_bankwidth(map)) { + map_word d; + d = map_word_load(map, buf); + map_write(map, d, adr+z); + } + /* GO GO GO */ + map_write(map, CMD(0xd0), cmd_adr); + chip->state = FL_WRITING; + + mutex_unlock(&chip->mutex); + cfi_udelay(chip->buffer_write_time); + mutex_lock(&chip->mutex); + + timeo = jiffies + (HZ/2); + z = 0; + for (;;) { + if (chip->state != FL_WRITING) { + /* Someone's suspended the write. Sleep */ + set_current_state(TASK_UNINTERRUPTIBLE); + add_wait_queue(&chip->wq, &wait); + mutex_unlock(&chip->mutex); + schedule(); + remove_wait_queue(&chip->wq, &wait); + timeo = jiffies + (HZ / 2); /* FIXME */ + mutex_lock(&chip->mutex); + continue; + } + + status = map_read(map, cmd_adr); + if (map_word_andequal(map, status, status_OK, status_OK)) + break; + + /* OK Still waiting */ + if (time_after(jiffies, timeo)) { + /* clear status */ + map_write(map, CMD(0x50), cmd_adr); + /* put back into read status register mode */ + map_write(map, CMD(0x70), adr); + chip->state = FL_STATUS; + DISABLE_VPP(map); + mutex_unlock(&chip->mutex); + printk(KERN_ERR "waiting for chip to be ready timed out in bufwrite\n"); + return -EIO; + } + + /* Latency issues. Drop the lock, wait a while and retry */ + mutex_unlock(&chip->mutex); + cfi_udelay(1); + z++; + mutex_lock(&chip->mutex); + } + if (!z) { + chip->buffer_write_time--; + if (!chip->buffer_write_time) + chip->buffer_write_time++; + } + if (z > 1) + chip->buffer_write_time++; + + /* Done and happy. */ + DISABLE_VPP(map); + chip->state = FL_STATUS; + + /* check for errors: 'lock bit', 'VPP', 'dead cell'/'unerased cell' or 'incorrect cmd' -- saw */ + if (map_word_bitsset(map, status, CMD(0x3a))) { +#ifdef DEBUG_CFI_FEATURES + printk("%s: 2 status[%lx]\n", __func__, status.x[0]); +#endif + /* clear status */ + map_write(map, CMD(0x50), cmd_adr); + /* put back into read status register mode */ + map_write(map, CMD(0x70), adr); + wake_up(&chip->wq); + mutex_unlock(&chip->mutex); + return map_word_bitsset(map, status, CMD(0x02)) ? -EROFS : -EIO; + } + wake_up(&chip->wq); + mutex_unlock(&chip->mutex); + + return 0; +} + +static int cfi_staa_write_buffers (struct mtd_info *mtd, loff_t to, + size_t len, size_t *retlen, const u_char *buf) +{ + struct map_info *map = mtd->priv; + struct cfi_private *cfi = map->fldrv_priv; + int wbufsize = cfi_interleave(cfi) << cfi->cfiq->MaxBufWriteSize; + int ret; + int chipnum; + unsigned long ofs; + + chipnum = to >> cfi->chipshift; + ofs = to - (chipnum << cfi->chipshift); + +#ifdef DEBUG_CFI_FEATURES + printk("%s: map_bankwidth(map)[%x]\n", __func__, map_bankwidth(map)); + printk("%s: chipnum[%x] wbufsize[%x]\n", __func__, chipnum, wbufsize); + printk("%s: ofs[%x] len[%x]\n", __func__, ofs, len); +#endif + + /* Write buffer is worth it only if more than one word to write... */ + while (len > 0) { + /* We must not cross write block boundaries */ + int size = wbufsize - (ofs & (wbufsize-1)); + + if (size > len) + size = len; + + ret = do_write_buffer(map, &cfi->chips[chipnum], + ofs, buf, size); + if (ret) + return ret; + + ofs += size; + buf += size; + (*retlen) += size; + len -= size; + + if (ofs >> cfi->chipshift) { + chipnum ++; + ofs = 0; + if (chipnum == cfi->numchips) + return 0; + } + } + + return 0; +} + +/* + * Writev for ECC-Flashes is a little more complicated. We need to maintain + * a small buffer for this. + * XXX: If the buffer size is not a multiple of 2, this will break + */ +#define ECCBUF_SIZE (mtd->writesize) +#define ECCBUF_DIV(x) ((x) & ~(ECCBUF_SIZE - 1)) +#define ECCBUF_MOD(x) ((x) & (ECCBUF_SIZE - 1)) +static int +cfi_staa_writev(struct mtd_info *mtd, const struct kvec *vecs, + unsigned long count, loff_t to, size_t *retlen) +{ + unsigned long i; + size_t totlen = 0, thislen; + int ret = 0; + size_t buflen = 0; + char *buffer; + + if (!ECCBUF_SIZE) { + /* We should fall back to a general writev implementation. + * Until that is written, just break. + */ + return -EIO; + } + buffer = kmalloc(ECCBUF_SIZE, GFP_KERNEL); + if (!buffer) + return -ENOMEM; + + for (i=0; i<count; i++) { + size_t elem_len = vecs[i].iov_len; + void *elem_base = vecs[i].iov_base; + if (!elem_len) /* FIXME: Might be unnecessary. Check that */ + continue; + if (buflen) { /* cut off head */ + if (buflen + elem_len < ECCBUF_SIZE) { /* just accumulate */ + memcpy(buffer+buflen, elem_base, elem_len); + buflen += elem_len; + continue; + } + memcpy(buffer+buflen, elem_base, ECCBUF_SIZE-buflen); + ret = mtd_write(mtd, to, ECCBUF_SIZE, &thislen, + buffer); + totlen += thislen; + if (ret || thislen != ECCBUF_SIZE) + goto write_error; + elem_len -= thislen-buflen; + elem_base += thislen-buflen; + to += ECCBUF_SIZE; + } + if (ECCBUF_DIV(elem_len)) { /* write clean aligned data */ + ret = mtd_write(mtd, to, ECCBUF_DIV(elem_len), + &thislen, elem_base); + totlen += thislen; + if (ret || thislen != ECCBUF_DIV(elem_len)) + goto write_error; + to += thislen; + } + buflen = ECCBUF_MOD(elem_len); /* cut off tail */ + if (buflen) { + memset(buffer, 0xff, ECCBUF_SIZE); + memcpy(buffer, elem_base + thislen, buflen); + } + } + if (buflen) { /* flush last page, even if not full */ + /* This is sometimes intended behaviour, really */ + ret = mtd_write(mtd, to, buflen, &thislen, buffer); + totlen += thislen; + if (ret || thislen != ECCBUF_SIZE) + goto write_error; + } +write_error: + if (retlen) + *retlen = totlen; + kfree(buffer); + return ret; +} + + +static inline int do_erase_oneblock(struct map_info *map, struct flchip *chip, unsigned long adr) +{ + struct cfi_private *cfi = map->fldrv_priv; + map_word status, status_OK; + unsigned long timeo; + int retries = 3; + DECLARE_WAITQUEUE(wait, current); + int ret = 0; + + adr += chip->start; + + /* Let's determine this according to the interleave only once */ + status_OK = CMD(0x80); + + timeo = jiffies + HZ; +retry: + mutex_lock(&chip->mutex); + + /* Check that the chip's ready to talk to us. */ + switch (chip->state) { + case FL_CFI_QUERY: + case FL_JEDEC_QUERY: + case FL_READY: + map_write(map, CMD(0x70), adr); + chip->state = FL_STATUS; + fallthrough; + case FL_STATUS: + status = map_read(map, adr); + if (map_word_andequal(map, status, status_OK, status_OK)) + break; + + /* Urgh. Chip not yet ready to talk to us. */ + if (time_after(jiffies, timeo)) { + mutex_unlock(&chip->mutex); + printk(KERN_ERR "waiting for chip to be ready timed out in erase\n"); + return -EIO; + } + + /* Latency issues. Drop the lock, wait a while and retry */ + mutex_unlock(&chip->mutex); + cfi_udelay(1); + goto retry; + + default: + /* Stick ourselves on a wait queue to be woken when + someone changes the status */ + set_current_state(TASK_UNINTERRUPTIBLE); + add_wait_queue(&chip->wq, &wait); + mutex_unlock(&chip->mutex); + schedule(); + remove_wait_queue(&chip->wq, &wait); + timeo = jiffies + HZ; + goto retry; + } + + ENABLE_VPP(map); + /* Clear the status register first */ + map_write(map, CMD(0x50), adr); + + /* Now erase */ + map_write(map, CMD(0x20), adr); + map_write(map, CMD(0xD0), adr); + chip->state = FL_ERASING; + + mutex_unlock(&chip->mutex); + msleep(1000); + mutex_lock(&chip->mutex); + + /* FIXME. Use a timer to check this, and return immediately. */ + /* Once the state machine's known to be working I'll do that */ + + timeo = jiffies + (HZ*20); + for (;;) { + if (chip->state != FL_ERASING) { + /* Someone's suspended the erase. Sleep */ + set_current_state(TASK_UNINTERRUPTIBLE); + add_wait_queue(&chip->wq, &wait); + mutex_unlock(&chip->mutex); + schedule(); + remove_wait_queue(&chip->wq, &wait); + timeo = jiffies + (HZ*20); /* FIXME */ + mutex_lock(&chip->mutex); + continue; + } + + status = map_read(map, adr); + if (map_word_andequal(map, status, status_OK, status_OK)) + break; + + /* OK Still waiting */ + if (time_after(jiffies, timeo)) { + map_write(map, CMD(0x70), adr); + chip->state = FL_STATUS; + printk(KERN_ERR "waiting for erase to complete timed out. Xstatus = %lx, status = %lx.\n", status.x[0], map_read(map, adr).x[0]); + DISABLE_VPP(map); + mutex_unlock(&chip->mutex); + return -EIO; + } + + /* Latency issues. Drop the lock, wait a while and retry */ + mutex_unlock(&chip->mutex); + cfi_udelay(1); + mutex_lock(&chip->mutex); + } + + DISABLE_VPP(map); + ret = 0; + + /* We've broken this before. It doesn't hurt to be safe */ + map_write(map, CMD(0x70), adr); + chip->state = FL_STATUS; + status = map_read(map, adr); + + /* check for lock bit */ + if (map_word_bitsset(map, status, CMD(0x3a))) { + unsigned char chipstatus = status.x[0]; + if (!map_word_equal(map, status, CMD(chipstatus))) { + int i, w; + for (w=0; w<map_words(map); w++) { + for (i = 0; i<cfi_interleave(cfi); i++) { + chipstatus |= status.x[w] >> (cfi->device_type * 8); + } + } + printk(KERN_WARNING "Status is not identical for all chips: 0x%lx. Merging to give 0x%02x\n", + status.x[0], chipstatus); + } + /* Reset the error bits */ + map_write(map, CMD(0x50), adr); + map_write(map, CMD(0x70), adr); + + if ((chipstatus & 0x30) == 0x30) { + printk(KERN_NOTICE "Chip reports improper command sequence: status 0x%x\n", chipstatus); + ret = -EIO; + } else if (chipstatus & 0x02) { + /* Protection bit set */ + ret = -EROFS; + } else if (chipstatus & 0x8) { + /* Voltage */ + printk(KERN_WARNING "Chip reports voltage low on erase: status 0x%x\n", chipstatus); + ret = -EIO; + } else if (chipstatus & 0x20) { + if (retries--) { + printk(KERN_DEBUG "Chip erase failed at 0x%08lx: status 0x%x. Retrying...\n", adr, chipstatus); + timeo = jiffies + HZ; + chip->state = FL_STATUS; + mutex_unlock(&chip->mutex); + goto retry; + } + printk(KERN_DEBUG "Chip erase failed at 0x%08lx: status 0x%x\n", adr, chipstatus); + ret = -EIO; + } + } + + wake_up(&chip->wq); + mutex_unlock(&chip->mutex); + return ret; +} + +static int cfi_staa_erase_varsize(struct mtd_info *mtd, + struct erase_info *instr) +{ struct map_info *map = mtd->priv; + struct cfi_private *cfi = map->fldrv_priv; + unsigned long adr, len; + int chipnum, ret; + int i, first; + struct mtd_erase_region_info *regions = mtd->eraseregions; + + /* Check that both start and end of the requested erase are + * aligned with the erasesize at the appropriate addresses. + */ + + i = 0; + + /* Skip all erase regions which are ended before the start of + the requested erase. Actually, to save on the calculations, + we skip to the first erase region which starts after the + start of the requested erase, and then go back one. + */ + + while (i < mtd->numeraseregions && instr->addr >= regions[i].offset) + i++; + i--; + + /* OK, now i is pointing at the erase region in which this + erase request starts. Check the start of the requested + erase range is aligned with the erase size which is in + effect here. + */ + + if (instr->addr & (regions[i].erasesize-1)) + return -EINVAL; + + /* Remember the erase region we start on */ + first = i; + + /* Next, check that the end of the requested erase is aligned + * with the erase region at that address. + */ + + while (i<mtd->numeraseregions && (instr->addr + instr->len) >= regions[i].offset) + i++; + + /* As before, drop back one to point at the region in which + the address actually falls + */ + i--; + + if ((instr->addr + instr->len) & (regions[i].erasesize-1)) + return -EINVAL; + + chipnum = instr->addr >> cfi->chipshift; + adr = instr->addr - (chipnum << cfi->chipshift); + len = instr->len; + + i=first; + + while(len) { + ret = do_erase_oneblock(map, &cfi->chips[chipnum], adr); + + if (ret) + return ret; + + adr += regions[i].erasesize; + len -= regions[i].erasesize; + + if (adr % (1<< cfi->chipshift) == (((unsigned long)regions[i].offset + (regions[i].erasesize * regions[i].numblocks)) %( 1<< cfi->chipshift))) + i++; + + if (adr >> cfi->chipshift) { + adr = 0; + chipnum++; + + if (chipnum >= cfi->numchips) + break; + } + } + + return 0; +} + +static void cfi_staa_sync (struct mtd_info *mtd) +{ + struct map_info *map = mtd->priv; + struct cfi_private *cfi = map->fldrv_priv; + int i; + struct flchip *chip; + int ret = 0; + DECLARE_WAITQUEUE(wait, current); + + for (i=0; !ret && i<cfi->numchips; i++) { + chip = &cfi->chips[i]; + + retry: + mutex_lock(&chip->mutex); + + switch(chip->state) { + case FL_READY: + case FL_STATUS: + case FL_CFI_QUERY: + case FL_JEDEC_QUERY: + chip->oldstate = chip->state; + chip->state = FL_SYNCING; + /* No need to wake_up() on this state change - + * as the whole point is that nobody can do anything + * with the chip now anyway. + */ + fallthrough; + case FL_SYNCING: + mutex_unlock(&chip->mutex); + break; + + default: + /* Not an idle state */ + set_current_state(TASK_UNINTERRUPTIBLE); + add_wait_queue(&chip->wq, &wait); + + mutex_unlock(&chip->mutex); + schedule(); + remove_wait_queue(&chip->wq, &wait); + + goto retry; + } + } + + /* Unlock the chips again */ + + for (i--; i >=0; i--) { + chip = &cfi->chips[i]; + + mutex_lock(&chip->mutex); + + if (chip->state == FL_SYNCING) { + chip->state = chip->oldstate; + wake_up(&chip->wq); + } + mutex_unlock(&chip->mutex); + } +} + +static inline int do_lock_oneblock(struct map_info *map, struct flchip *chip, unsigned long adr) +{ + struct cfi_private *cfi = map->fldrv_priv; + map_word status, status_OK; + unsigned long timeo = jiffies + HZ; + DECLARE_WAITQUEUE(wait, current); + + adr += chip->start; + + /* Let's determine this according to the interleave only once */ + status_OK = CMD(0x80); + + timeo = jiffies + HZ; +retry: + mutex_lock(&chip->mutex); + + /* Check that the chip's ready to talk to us. */ + switch (chip->state) { + case FL_CFI_QUERY: + case FL_JEDEC_QUERY: + case FL_READY: + map_write(map, CMD(0x70), adr); + chip->state = FL_STATUS; + fallthrough; + case FL_STATUS: + status = map_read(map, adr); + if (map_word_andequal(map, status, status_OK, status_OK)) + break; + + /* Urgh. Chip not yet ready to talk to us. */ + if (time_after(jiffies, timeo)) { + mutex_unlock(&chip->mutex); + printk(KERN_ERR "waiting for chip to be ready timed out in lock\n"); + return -EIO; + } + + /* Latency issues. Drop the lock, wait a while and retry */ + mutex_unlock(&chip->mutex); + cfi_udelay(1); + goto retry; + + default: + /* Stick ourselves on a wait queue to be woken when + someone changes the status */ + set_current_state(TASK_UNINTERRUPTIBLE); + add_wait_queue(&chip->wq, &wait); + mutex_unlock(&chip->mutex); + schedule(); + remove_wait_queue(&chip->wq, &wait); + timeo = jiffies + HZ; + goto retry; + } + + ENABLE_VPP(map); + map_write(map, CMD(0x60), adr); + map_write(map, CMD(0x01), adr); + chip->state = FL_LOCKING; + + mutex_unlock(&chip->mutex); + msleep(1000); + mutex_lock(&chip->mutex); + + /* FIXME. Use a timer to check this, and return immediately. */ + /* Once the state machine's known to be working I'll do that */ + + timeo = jiffies + (HZ*2); + for (;;) { + + status = map_read(map, adr); + if (map_word_andequal(map, status, status_OK, status_OK)) + break; + + /* OK Still waiting */ + if (time_after(jiffies, timeo)) { + map_write(map, CMD(0x70), adr); + chip->state = FL_STATUS; + printk(KERN_ERR "waiting for lock to complete timed out. Xstatus = %lx, status = %lx.\n", status.x[0], map_read(map, adr).x[0]); + DISABLE_VPP(map); + mutex_unlock(&chip->mutex); + return -EIO; + } + + /* Latency issues. Drop the lock, wait a while and retry */ + mutex_unlock(&chip->mutex); + cfi_udelay(1); + mutex_lock(&chip->mutex); + } + + /* Done and happy. */ + chip->state = FL_STATUS; + DISABLE_VPP(map); + wake_up(&chip->wq); + mutex_unlock(&chip->mutex); + return 0; +} +static int cfi_staa_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len) +{ + struct map_info *map = mtd->priv; + struct cfi_private *cfi = map->fldrv_priv; + unsigned long adr; + int chipnum, ret; +#ifdef DEBUG_LOCK_BITS + int ofs_factor = cfi->interleave * cfi->device_type; +#endif + + if (ofs & (mtd->erasesize - 1)) + return -EINVAL; + + if (len & (mtd->erasesize -1)) + return -EINVAL; + + chipnum = ofs >> cfi->chipshift; + adr = ofs - (chipnum << cfi->chipshift); + + while(len) { + +#ifdef DEBUG_LOCK_BITS + cfi_send_gen_cmd(0x90, 0x55, 0, map, cfi, cfi->device_type, NULL); + printk("before lock: block status register is %x\n",cfi_read_query(map, adr+(2*ofs_factor))); + cfi_send_gen_cmd(0xff, 0x55, 0, map, cfi, cfi->device_type, NULL); +#endif + + ret = do_lock_oneblock(map, &cfi->chips[chipnum], adr); + +#ifdef DEBUG_LOCK_BITS + cfi_send_gen_cmd(0x90, 0x55, 0, map, cfi, cfi->device_type, NULL); + printk("after lock: block status register is %x\n",cfi_read_query(map, adr+(2*ofs_factor))); + cfi_send_gen_cmd(0xff, 0x55, 0, map, cfi, cfi->device_type, NULL); +#endif + + if (ret) + return ret; + + adr += mtd->erasesize; + len -= mtd->erasesize; + + if (adr >> cfi->chipshift) { + adr = 0; + chipnum++; + + if (chipnum >= cfi->numchips) + break; + } + } + return 0; +} +static inline int do_unlock_oneblock(struct map_info *map, struct flchip *chip, unsigned long adr) +{ + struct cfi_private *cfi = map->fldrv_priv; + map_word status, status_OK; + unsigned long timeo = jiffies + HZ; + DECLARE_WAITQUEUE(wait, current); + + adr += chip->start; + + /* Let's determine this according to the interleave only once */ + status_OK = CMD(0x80); + + timeo = jiffies + HZ; +retry: + mutex_lock(&chip->mutex); + + /* Check that the chip's ready to talk to us. */ + switch (chip->state) { + case FL_CFI_QUERY: + case FL_JEDEC_QUERY: + case FL_READY: + map_write(map, CMD(0x70), adr); + chip->state = FL_STATUS; + fallthrough; + case FL_STATUS: + status = map_read(map, adr); + if (map_word_andequal(map, status, status_OK, status_OK)) + break; + + /* Urgh. Chip not yet ready to talk to us. */ + if (time_after(jiffies, timeo)) { + mutex_unlock(&chip->mutex); + printk(KERN_ERR "waiting for chip to be ready timed out in unlock\n"); + return -EIO; + } + + /* Latency issues. Drop the lock, wait a while and retry */ + mutex_unlock(&chip->mutex); + cfi_udelay(1); + goto retry; + + default: + /* Stick ourselves on a wait queue to be woken when + someone changes the status */ + set_current_state(TASK_UNINTERRUPTIBLE); + add_wait_queue(&chip->wq, &wait); + mutex_unlock(&chip->mutex); + schedule(); + remove_wait_queue(&chip->wq, &wait); + timeo = jiffies + HZ; + goto retry; + } + + ENABLE_VPP(map); + map_write(map, CMD(0x60), adr); + map_write(map, CMD(0xD0), adr); + chip->state = FL_UNLOCKING; + + mutex_unlock(&chip->mutex); + msleep(1000); + mutex_lock(&chip->mutex); + + /* FIXME. Use a timer to check this, and return immediately. */ + /* Once the state machine's known to be working I'll do that */ + + timeo = jiffies + (HZ*2); + for (;;) { + + status = map_read(map, adr); + if (map_word_andequal(map, status, status_OK, status_OK)) + break; + + /* OK Still waiting */ + if (time_after(jiffies, timeo)) { + map_write(map, CMD(0x70), adr); + chip->state = FL_STATUS; + printk(KERN_ERR "waiting for unlock to complete timed out. Xstatus = %lx, status = %lx.\n", status.x[0], map_read(map, adr).x[0]); + DISABLE_VPP(map); + mutex_unlock(&chip->mutex); + return -EIO; + } + + /* Latency issues. Drop the unlock, wait a while and retry */ + mutex_unlock(&chip->mutex); + cfi_udelay(1); + mutex_lock(&chip->mutex); + } + + /* Done and happy. */ + chip->state = FL_STATUS; + DISABLE_VPP(map); + wake_up(&chip->wq); + mutex_unlock(&chip->mutex); + return 0; +} +static int cfi_staa_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len) +{ + struct map_info *map = mtd->priv; + struct cfi_private *cfi = map->fldrv_priv; + unsigned long adr; + int chipnum, ret; +#ifdef DEBUG_LOCK_BITS + int ofs_factor = cfi->interleave * cfi->device_type; +#endif + + chipnum = ofs >> cfi->chipshift; + adr = ofs - (chipnum << cfi->chipshift); + +#ifdef DEBUG_LOCK_BITS + { + unsigned long temp_adr = adr; + unsigned long temp_len = len; + + cfi_send_gen_cmd(0x90, 0x55, 0, map, cfi, cfi->device_type, NULL); + while (temp_len) { + printk("before unlock %x: block status register is %x\n",temp_adr,cfi_read_query(map, temp_adr+(2*ofs_factor))); + temp_adr += mtd->erasesize; + temp_len -= mtd->erasesize; + } + cfi_send_gen_cmd(0xff, 0x55, 0, map, cfi, cfi->device_type, NULL); + } +#endif + + ret = do_unlock_oneblock(map, &cfi->chips[chipnum], adr); + +#ifdef DEBUG_LOCK_BITS + cfi_send_gen_cmd(0x90, 0x55, 0, map, cfi, cfi->device_type, NULL); + printk("after unlock: block status register is %x\n",cfi_read_query(map, adr+(2*ofs_factor))); + cfi_send_gen_cmd(0xff, 0x55, 0, map, cfi, cfi->device_type, NULL); +#endif + + return ret; +} + +static int cfi_staa_suspend(struct mtd_info *mtd) +{ + struct map_info *map = mtd->priv; + struct cfi_private *cfi = map->fldrv_priv; + int i; + struct flchip *chip; + int ret = 0; + + for (i=0; !ret && i<cfi->numchips; i++) { + chip = &cfi->chips[i]; + + mutex_lock(&chip->mutex); + + switch(chip->state) { + case FL_READY: + case FL_STATUS: + case FL_CFI_QUERY: + case FL_JEDEC_QUERY: + chip->oldstate = chip->state; + chip->state = FL_PM_SUSPENDED; + /* No need to wake_up() on this state change - + * as the whole point is that nobody can do anything + * with the chip now anyway. + */ + break; + + case FL_PM_SUSPENDED: + break; + + default: + ret = -EAGAIN; + break; + } + mutex_unlock(&chip->mutex); + } + + /* Unlock the chips again */ + + if (ret) { + for (i--; i >=0; i--) { + chip = &cfi->chips[i]; + + mutex_lock(&chip->mutex); + + if (chip->state == FL_PM_SUSPENDED) { + /* No need to force it into a known state here, + because we're returning failure, and it didn't + get power cycled */ + chip->state = chip->oldstate; + wake_up(&chip->wq); + } + mutex_unlock(&chip->mutex); + } + } + + return ret; +} + +static void cfi_staa_resume(struct mtd_info *mtd) +{ + struct map_info *map = mtd->priv; + struct cfi_private *cfi = map->fldrv_priv; + int i; + struct flchip *chip; + + for (i=0; i<cfi->numchips; i++) { + + chip = &cfi->chips[i]; + + mutex_lock(&chip->mutex); + + /* Go to known state. Chip may have been power cycled */ + if (chip->state == FL_PM_SUSPENDED) { + map_write(map, CMD(0xFF), 0); + chip->state = FL_READY; + wake_up(&chip->wq); + } + + mutex_unlock(&chip->mutex); + } +} + +static void cfi_staa_destroy(struct mtd_info *mtd) +{ + struct map_info *map = mtd->priv; + struct cfi_private *cfi = map->fldrv_priv; + kfree(cfi->cmdset_priv); + kfree(cfi); +} + +MODULE_LICENSE("GPL"); diff --git a/drivers/mtd/chips/cfi_probe.c b/drivers/mtd/chips/cfi_probe.c new file mode 100644 index 0000000000..a04b617418 --- /dev/null +++ b/drivers/mtd/chips/cfi_probe.c @@ -0,0 +1,463 @@ +// SPDX-License-Identifier: GPL-2.0 +/* + Common Flash Interface probe code. + (C) 2000 Red Hat. +*/ + +#include <linux/module.h> +#include <linux/types.h> +#include <linux/kernel.h> +#include <linux/init.h> +#include <asm/io.h> +#include <asm/byteorder.h> +#include <linux/errno.h> +#include <linux/slab.h> +#include <linux/interrupt.h> + +#include <linux/mtd/xip.h> +#include <linux/mtd/map.h> +#include <linux/mtd/cfi.h> +#include <linux/mtd/gen_probe.h> + +//#define DEBUG_CFI + +#ifdef DEBUG_CFI +static void print_cfi_ident(struct cfi_ident *); +#endif + +static int cfi_probe_chip(struct map_info *map, __u32 base, + unsigned long *chip_map, struct cfi_private *cfi); +static int cfi_chip_setup(struct map_info *map, struct cfi_private *cfi); + +struct mtd_info *cfi_probe(struct map_info *map); + +#ifdef CONFIG_MTD_XIP + +/* only needed for short periods, so this is rather simple */ +#define xip_disable() local_irq_disable() + +#define xip_allowed(base, map) \ +do { \ + (void) map_read(map, base); \ + xip_iprefetch(); \ + local_irq_enable(); \ +} while (0) + +#define xip_enable(base, map, cfi) \ +do { \ + cfi_qry_mode_off(base, map, cfi); \ + xip_allowed(base, map); \ +} while (0) + +#define xip_disable_qry(base, map, cfi) \ +do { \ + xip_disable(); \ + cfi_qry_mode_on(base, map, cfi); \ +} while (0) + +#else + +#define xip_disable() do { } while (0) +#define xip_allowed(base, map) do { } while (0) +#define xip_enable(base, map, cfi) do { } while (0) +#define xip_disable_qry(base, map, cfi) do { } while (0) + +#endif + +/* + * This fixup occurs immediately after reading the CFI structure and can affect + * the number of chips detected, unlike cfi_fixup, which occurs after an + * mtd_info structure has been created for the chip. + */ +struct cfi_early_fixup { + uint16_t mfr; + uint16_t id; + void (*fixup)(struct cfi_private *cfi); +}; + +static void cfi_early_fixup(struct cfi_private *cfi, + const struct cfi_early_fixup *fixups) +{ + const struct cfi_early_fixup *f; + + for (f = fixups; f->fixup; f++) { + if (((f->mfr == CFI_MFR_ANY) || (f->mfr == cfi->mfr)) && + ((f->id == CFI_ID_ANY) || (f->id == cfi->id))) { + f->fixup(cfi); + } + } +} + +/* check for QRY. + in: interleave,type,mode + ret: table index, <0 for error + */ + +static int __xipram cfi_probe_chip(struct map_info *map, __u32 base, + unsigned long *chip_map, struct cfi_private *cfi) +{ + int i; + + if ((base + 0) >= map->size) { + printk(KERN_NOTICE + "Probe at base[0x00](0x%08lx) past the end of the map(0x%08lx)\n", + (unsigned long)base, map->size -1); + return 0; + } + if ((base + 0xff) >= map->size) { + printk(KERN_NOTICE + "Probe at base[0x55](0x%08lx) past the end of the map(0x%08lx)\n", + (unsigned long)base + 0x55, map->size -1); + return 0; + } + + xip_disable(); + if (!cfi_qry_mode_on(base, map, cfi)) { + xip_enable(base, map, cfi); + return 0; + } + + if (!cfi->numchips) { + /* This is the first time we're called. Set up the CFI + stuff accordingly and return */ + return cfi_chip_setup(map, cfi); + } + + /* Check each previous chip to see if it's an alias */ + for (i=0; i < (base >> cfi->chipshift); i++) { + unsigned long start; + if(!test_bit(i, chip_map)) { + /* Skip location; no valid chip at this address */ + continue; + } + start = i << cfi->chipshift; + /* This chip should be in read mode if it's one + we've already touched. */ + if (cfi_qry_present(map, start, cfi)) { + /* Eep. This chip also had the QRY marker. + * Is it an alias for the new one? */ + cfi_qry_mode_off(start, map, cfi); + + /* If the QRY marker goes away, it's an alias */ + if (!cfi_qry_present(map, start, cfi)) { + xip_allowed(base, map); + printk(KERN_DEBUG "%s: Found an alias at 0x%x for the chip at 0x%lx\n", + map->name, base, start); + return 0; + } + /* Yes, it's actually got QRY for data. Most + * unfortunate. Stick the new chip in read mode + * too and if it's the same, assume it's an alias. */ + /* FIXME: Use other modes to do a proper check */ + cfi_qry_mode_off(base, map, cfi); + + if (cfi_qry_present(map, base, cfi)) { + xip_allowed(base, map); + printk(KERN_DEBUG "%s: Found an alias at 0x%x for the chip at 0x%lx\n", + map->name, base, start); + return 0; + } + } + } + + /* OK, if we got to here, then none of the previous chips appear to + be aliases for the current one. */ + set_bit((base >> cfi->chipshift), chip_map); /* Update chip map */ + cfi->numchips++; + + /* Put it back into Read Mode */ + cfi_qry_mode_off(base, map, cfi); + xip_allowed(base, map); + + printk(KERN_INFO "%s: Found %d x%d devices at 0x%x in %d-bit bank\n", + map->name, cfi->interleave, cfi->device_type*8, base, + map->bankwidth*8); + + return 1; +} + +static void fixup_s70gl02gs_chips(struct cfi_private *cfi) +{ + /* + * S70GL02GS flash reports a single 256 MiB chip, but is really made up + * of two 128 MiB chips with 1024 sectors each. + */ + cfi->cfiq->DevSize = 27; + cfi->cfiq->EraseRegionInfo[0] = 0x20003ff; + pr_warn("Bad S70GL02GS CFI data; adjust to detect 2 chips\n"); +} + +static const struct cfi_early_fixup cfi_early_fixup_table[] = { + { CFI_MFR_AMD, 0x4801, fixup_s70gl02gs_chips }, + { }, +}; + +static int __xipram cfi_chip_setup(struct map_info *map, + struct cfi_private *cfi) +{ + int ofs_factor = cfi->interleave*cfi->device_type; + __u32 base = 0; + int num_erase_regions = cfi_read_query(map, base + (0x10 + 28)*ofs_factor); + int i; + int addr_unlock1 = 0x555, addr_unlock2 = 0x2AA; + + xip_enable(base, map, cfi); +#ifdef DEBUG_CFI + printk("Number of erase regions: %d\n", num_erase_regions); +#endif + if (!num_erase_regions) + return 0; + + cfi->cfiq = kmalloc(sizeof(struct cfi_ident) + num_erase_regions * 4, GFP_KERNEL); + if (!cfi->cfiq) + return 0; + + memset(cfi->cfiq,0,sizeof(struct cfi_ident)); + + cfi->cfi_mode = CFI_MODE_CFI; + + cfi->sector_erase_cmd = CMD(0x30); + + /* Read the CFI info structure */ + xip_disable_qry(base, map, cfi); + for (i=0; i<(sizeof(struct cfi_ident) + num_erase_regions * 4); i++) + ((unsigned char *)cfi->cfiq)[i] = cfi_read_query(map,base + (0x10 + i)*ofs_factor); + + /* Do any necessary byteswapping */ + cfi->cfiq->P_ID = le16_to_cpu(cfi->cfiq->P_ID); + + cfi->cfiq->P_ADR = le16_to_cpu(cfi->cfiq->P_ADR); + cfi->cfiq->A_ID = le16_to_cpu(cfi->cfiq->A_ID); + cfi->cfiq->A_ADR = le16_to_cpu(cfi->cfiq->A_ADR); + cfi->cfiq->InterfaceDesc = le16_to_cpu(cfi->cfiq->InterfaceDesc); + cfi->cfiq->MaxBufWriteSize = le16_to_cpu(cfi->cfiq->MaxBufWriteSize); + +#ifdef DEBUG_CFI + /* Dump the information therein */ + print_cfi_ident(cfi->cfiq); +#endif + + for (i=0; i<cfi->cfiq->NumEraseRegions; i++) { + cfi->cfiq->EraseRegionInfo[i] = le32_to_cpu(cfi->cfiq->EraseRegionInfo[i]); + +#ifdef DEBUG_CFI + printk(" Erase Region #%d: BlockSize 0x%4.4X bytes, %d blocks\n", + i, (cfi->cfiq->EraseRegionInfo[i] >> 8) & ~0xff, + (cfi->cfiq->EraseRegionInfo[i] & 0xffff) + 1); +#endif + } + + if (cfi->cfiq->P_ID == P_ID_SST_OLD) { + addr_unlock1 = 0x5555; + addr_unlock2 = 0x2AAA; + } + + /* + * Note we put the device back into Read Mode BEFORE going into Auto + * Select Mode, as some devices support nesting of modes, others + * don't. This way should always work. + * On cmdset 0001 the writes of 0xaa and 0x55 are not needed, and + * so should be treated as nops or illegal (and so put the device + * back into Read Mode, which is a nop in this case). + */ + cfi_send_gen_cmd(0xf0, 0, base, map, cfi, cfi->device_type, NULL); + cfi_send_gen_cmd(0xaa, addr_unlock1, base, map, cfi, cfi->device_type, NULL); + cfi_send_gen_cmd(0x55, addr_unlock2, base, map, cfi, cfi->device_type, NULL); + cfi_send_gen_cmd(0x90, addr_unlock1, base, map, cfi, cfi->device_type, NULL); + cfi->mfr = cfi_read_query16(map, base); + cfi->id = cfi_read_query16(map, base + ofs_factor); + + /* Get AMD/Spansion extended JEDEC ID */ + if (cfi->mfr == CFI_MFR_AMD && (cfi->id & 0xff) == 0x7e) + cfi->id = cfi_read_query(map, base + 0xe * ofs_factor) << 8 | + cfi_read_query(map, base + 0xf * ofs_factor); + + /* Put it back into Read Mode */ + cfi_qry_mode_off(base, map, cfi); + xip_allowed(base, map); + + cfi_early_fixup(cfi, cfi_early_fixup_table); + + printk(KERN_INFO "%s: Found %d x%d devices at 0x%x in %d-bit bank. Manufacturer ID %#08x Chip ID %#08x\n", + map->name, cfi->interleave, cfi->device_type*8, base, + map->bankwidth*8, cfi->mfr, cfi->id); + + return 1; +} + +#ifdef DEBUG_CFI +static char *vendorname(__u16 vendor) +{ + switch (vendor) { + case P_ID_NONE: + return "None"; + + case P_ID_INTEL_EXT: + return "Intel/Sharp Extended"; + + case P_ID_AMD_STD: + return "AMD/Fujitsu Standard"; + + case P_ID_INTEL_STD: + return "Intel/Sharp Standard"; + + case P_ID_AMD_EXT: + return "AMD/Fujitsu Extended"; + + case P_ID_WINBOND: + return "Winbond Standard"; + + case P_ID_ST_ADV: + return "ST Advanced"; + + case P_ID_MITSUBISHI_STD: + return "Mitsubishi Standard"; + + case P_ID_MITSUBISHI_EXT: + return "Mitsubishi Extended"; + + case P_ID_SST_PAGE: + return "SST Page Write"; + + case P_ID_SST_OLD: + return "SST 39VF160x/39VF320x"; + + case P_ID_INTEL_PERFORMANCE: + return "Intel Performance Code"; + + case P_ID_INTEL_DATA: + return "Intel Data"; + + case P_ID_RESERVED: + return "Not Allowed / Reserved for Future Use"; + + default: + return "Unknown"; + } +} + + +static void print_cfi_ident(struct cfi_ident *cfip) +{ +#if 0 + if (cfip->qry[0] != 'Q' || cfip->qry[1] != 'R' || cfip->qry[2] != 'Y') { + printk("Invalid CFI ident structure.\n"); + return; + } +#endif + printk("Primary Vendor Command Set: %4.4X (%s)\n", cfip->P_ID, vendorname(cfip->P_ID)); + if (cfip->P_ADR) + printk("Primary Algorithm Table at %4.4X\n", cfip->P_ADR); + else + printk("No Primary Algorithm Table\n"); + + printk("Alternative Vendor Command Set: %4.4X (%s)\n", cfip->A_ID, vendorname(cfip->A_ID)); + if (cfip->A_ADR) + printk("Alternate Algorithm Table at %4.4X\n", cfip->A_ADR); + else + printk("No Alternate Algorithm Table\n"); + + + printk("Vcc Minimum: %2d.%d V\n", cfip->VccMin >> 4, cfip->VccMin & 0xf); + printk("Vcc Maximum: %2d.%d V\n", cfip->VccMax >> 4, cfip->VccMax & 0xf); + if (cfip->VppMin) { + printk("Vpp Minimum: %2d.%d V\n", cfip->VppMin >> 4, cfip->VppMin & 0xf); + printk("Vpp Maximum: %2d.%d V\n", cfip->VppMax >> 4, cfip->VppMax & 0xf); + } + else + printk("No Vpp line\n"); + + printk("Typical byte/word write timeout: %d µs\n", 1<<cfip->WordWriteTimeoutTyp); + printk("Maximum byte/word write timeout: %d µs\n", (1<<cfip->WordWriteTimeoutMax) * (1<<cfip->WordWriteTimeoutTyp)); + + if (cfip->BufWriteTimeoutTyp || cfip->BufWriteTimeoutMax) { + printk("Typical full buffer write timeout: %d µs\n", 1<<cfip->BufWriteTimeoutTyp); + printk("Maximum full buffer write timeout: %d µs\n", (1<<cfip->BufWriteTimeoutMax) * (1<<cfip->BufWriteTimeoutTyp)); + } + else + printk("Full buffer write not supported\n"); + + printk("Typical block erase timeout: %d ms\n", 1<<cfip->BlockEraseTimeoutTyp); + printk("Maximum block erase timeout: %d ms\n", (1<<cfip->BlockEraseTimeoutMax) * (1<<cfip->BlockEraseTimeoutTyp)); + if (cfip->ChipEraseTimeoutTyp || cfip->ChipEraseTimeoutMax) { + printk("Typical chip erase timeout: %d ms\n", 1<<cfip->ChipEraseTimeoutTyp); + printk("Maximum chip erase timeout: %d ms\n", (1<<cfip->ChipEraseTimeoutMax) * (1<<cfip->ChipEraseTimeoutTyp)); + } + else + printk("Chip erase not supported\n"); + + printk("Device size: 0x%X bytes (%d MiB)\n", 1 << cfip->DevSize, 1<< (cfip->DevSize - 20)); + printk("Flash Device Interface description: 0x%4.4X\n", cfip->InterfaceDesc); + switch(cfip->InterfaceDesc) { + case CFI_INTERFACE_X8_ASYNC: + printk(" - x8-only asynchronous interface\n"); + break; + + case CFI_INTERFACE_X16_ASYNC: + printk(" - x16-only asynchronous interface\n"); + break; + + case CFI_INTERFACE_X8_BY_X16_ASYNC: + printk(" - supports x8 and x16 via BYTE# with asynchronous interface\n"); + break; + + case CFI_INTERFACE_X32_ASYNC: + printk(" - x32-only asynchronous interface\n"); + break; + + case CFI_INTERFACE_X16_BY_X32_ASYNC: + printk(" - supports x16 and x32 via Word# with asynchronous interface\n"); + break; + + case CFI_INTERFACE_NOT_ALLOWED: + printk(" - Not Allowed / Reserved\n"); + break; + + default: + printk(" - Unknown\n"); + break; + } + + printk("Max. bytes in buffer write: 0x%x\n", 1<< cfip->MaxBufWriteSize); + printk("Number of Erase Block Regions: %d\n", cfip->NumEraseRegions); + +} +#endif /* DEBUG_CFI */ + +static struct chip_probe cfi_chip_probe = { + .name = "CFI", + .probe_chip = cfi_probe_chip +}; + +struct mtd_info *cfi_probe(struct map_info *map) +{ + /* + * Just use the generic probe stuff to call our CFI-specific + * chip_probe routine in all the possible permutations, etc. + */ + return mtd_do_chip_probe(map, &cfi_chip_probe); +} + +static struct mtd_chip_driver cfi_chipdrv = { + .probe = cfi_probe, + .name = "cfi_probe", + .module = THIS_MODULE +}; + +static int __init cfi_probe_init(void) +{ + register_mtd_chip_driver(&cfi_chipdrv); + return 0; +} + +static void __exit cfi_probe_exit(void) +{ + unregister_mtd_chip_driver(&cfi_chipdrv); +} + +module_init(cfi_probe_init); +module_exit(cfi_probe_exit); + +MODULE_LICENSE("GPL"); +MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org> et al."); +MODULE_DESCRIPTION("Probe code for CFI-compliant flash chips"); diff --git a/drivers/mtd/chips/cfi_util.c b/drivers/mtd/chips/cfi_util.c new file mode 100644 index 0000000000..140c69a67e --- /dev/null +++ b/drivers/mtd/chips/cfi_util.c @@ -0,0 +1,444 @@ +// SPDX-License-Identifier: GPL-2.0 +/* + * Common Flash Interface support: + * Generic utility functions not dependent on command set + * + * Copyright (C) 2002 Red Hat + * Copyright (C) 2003 STMicroelectronics Limited + */ + +#include <linux/module.h> +#include <linux/types.h> +#include <linux/kernel.h> +#include <asm/io.h> +#include <asm/byteorder.h> + +#include <linux/errno.h> +#include <linux/slab.h> +#include <linux/delay.h> +#include <linux/interrupt.h> +#include <linux/mtd/xip.h> +#include <linux/mtd/mtd.h> +#include <linux/mtd/map.h> +#include <linux/mtd/cfi.h> + +void cfi_udelay(int us) +{ + if (us >= 1000) { + msleep(DIV_ROUND_UP(us, 1000)); + } else { + udelay(us); + cond_resched(); + } +} +EXPORT_SYMBOL(cfi_udelay); + +/* + * Returns the command address according to the given geometry. + */ +uint32_t cfi_build_cmd_addr(uint32_t cmd_ofs, + struct map_info *map, struct cfi_private *cfi) +{ + unsigned bankwidth = map_bankwidth(map); + unsigned interleave = cfi_interleave(cfi); + unsigned type = cfi->device_type; + uint32_t addr; + + addr = (cmd_ofs * type) * interleave; + + /* Modify the unlock address if we are in compatibility mode. + * For 16bit devices on 8 bit busses + * and 32bit devices on 16 bit busses + * set the low bit of the alternating bit sequence of the address. + */ + if (((type * interleave) > bankwidth) && ((cmd_ofs & 0xff) == 0xaa)) + addr |= (type >> 1)*interleave; + + return addr; +} +EXPORT_SYMBOL(cfi_build_cmd_addr); + +/* + * Transforms the CFI command for the given geometry (bus width & interleave). + * It looks too long to be inline, but in the common case it should almost all + * get optimised away. + */ +map_word cfi_build_cmd(u_long cmd, struct map_info *map, struct cfi_private *cfi) +{ + map_word val = { {0} }; + int wordwidth, words_per_bus, chip_mode, chips_per_word; + unsigned long onecmd; + int i; + + /* We do it this way to give the compiler a fighting chance + of optimising away all the crap for 'bankwidth' larger than + an unsigned long, in the common case where that support is + disabled */ + if (map_bankwidth_is_large(map)) { + wordwidth = sizeof(unsigned long); + words_per_bus = (map_bankwidth(map)) / wordwidth; // i.e. normally 1 + } else { + wordwidth = map_bankwidth(map); + words_per_bus = 1; + } + + chip_mode = map_bankwidth(map) / cfi_interleave(cfi); + chips_per_word = wordwidth * cfi_interleave(cfi) / map_bankwidth(map); + + /* First, determine what the bit-pattern should be for a single + device, according to chip mode and endianness... */ + switch (chip_mode) { + default: BUG(); + case 1: + onecmd = cmd; + break; + case 2: + onecmd = cpu_to_cfi16(map, cmd); + break; + case 4: + onecmd = cpu_to_cfi32(map, cmd); + break; + } + + /* Now replicate it across the size of an unsigned long, or + just to the bus width as appropriate */ + switch (chips_per_word) { + default: BUG(); +#if BITS_PER_LONG >= 64 + case 8: + onecmd |= (onecmd << (chip_mode * 32)); + fallthrough; +#endif + case 4: + onecmd |= (onecmd << (chip_mode * 16)); + fallthrough; + case 2: + onecmd |= (onecmd << (chip_mode * 8)); + fallthrough; + case 1: + ; + } + + /* And finally, for the multi-word case, replicate it + in all words in the structure */ + for (i=0; i < words_per_bus; i++) { + val.x[i] = onecmd; + } + + return val; +} +EXPORT_SYMBOL(cfi_build_cmd); + +unsigned long cfi_merge_status(map_word val, struct map_info *map, + struct cfi_private *cfi) +{ + int wordwidth, words_per_bus, chip_mode, chips_per_word; + unsigned long onestat, res = 0; + int i; + + /* We do it this way to give the compiler a fighting chance + of optimising away all the crap for 'bankwidth' larger than + an unsigned long, in the common case where that support is + disabled */ + if (map_bankwidth_is_large(map)) { + wordwidth = sizeof(unsigned long); + words_per_bus = (map_bankwidth(map)) / wordwidth; // i.e. normally 1 + } else { + wordwidth = map_bankwidth(map); + words_per_bus = 1; + } + + chip_mode = map_bankwidth(map) / cfi_interleave(cfi); + chips_per_word = wordwidth * cfi_interleave(cfi) / map_bankwidth(map); + + onestat = val.x[0]; + /* Or all status words together */ + for (i=1; i < words_per_bus; i++) { + onestat |= val.x[i]; + } + + res = onestat; + switch(chips_per_word) { + default: BUG(); +#if BITS_PER_LONG >= 64 + case 8: + res |= (onestat >> (chip_mode * 32)); + fallthrough; +#endif + case 4: + res |= (onestat >> (chip_mode * 16)); + fallthrough; + case 2: + res |= (onestat >> (chip_mode * 8)); + fallthrough; + case 1: + ; + } + + /* Last, determine what the bit-pattern should be for a single + device, according to chip mode and endianness... */ + switch (chip_mode) { + case 1: + break; + case 2: + res = cfi16_to_cpu(map, res); + break; + case 4: + res = cfi32_to_cpu(map, res); + break; + default: BUG(); + } + return res; +} +EXPORT_SYMBOL(cfi_merge_status); + +/* + * Sends a CFI command to a bank of flash for the given geometry. + * + * Returns the offset in flash where the command was written. + * If prev_val is non-null, it will be set to the value at the command address, + * before the command was written. + */ +uint32_t cfi_send_gen_cmd(u_char cmd, uint32_t cmd_addr, uint32_t base, + struct map_info *map, struct cfi_private *cfi, + int type, map_word *prev_val) +{ + map_word val; + uint32_t addr = base + cfi_build_cmd_addr(cmd_addr, map, cfi); + val = cfi_build_cmd(cmd, map, cfi); + + if (prev_val) + *prev_val = map_read(map, addr); + + map_write(map, val, addr); + + return addr - base; +} +EXPORT_SYMBOL(cfi_send_gen_cmd); + +int __xipram cfi_qry_present(struct map_info *map, __u32 base, + struct cfi_private *cfi) +{ + int osf = cfi->interleave * cfi->device_type; /* scale factor */ + map_word val[3]; + map_word qry[3]; + + qry[0] = cfi_build_cmd('Q', map, cfi); + qry[1] = cfi_build_cmd('R', map, cfi); + qry[2] = cfi_build_cmd('Y', map, cfi); + + val[0] = map_read(map, base + osf*0x10); + val[1] = map_read(map, base + osf*0x11); + val[2] = map_read(map, base + osf*0x12); + + if (!map_word_equal(map, qry[0], val[0])) + return 0; + + if (!map_word_equal(map, qry[1], val[1])) + return 0; + + if (!map_word_equal(map, qry[2], val[2])) + return 0; + + return 1; /* "QRY" found */ +} +EXPORT_SYMBOL_GPL(cfi_qry_present); + +int __xipram cfi_qry_mode_on(uint32_t base, struct map_info *map, + struct cfi_private *cfi) +{ + cfi_send_gen_cmd(0xF0, 0, base, map, cfi, cfi->device_type, NULL); + cfi_send_gen_cmd(0x98, 0x55, base, map, cfi, cfi->device_type, NULL); + if (cfi_qry_present(map, base, cfi)) + return 1; + /* QRY not found probably we deal with some odd CFI chips */ + /* Some revisions of some old Intel chips? */ + cfi_send_gen_cmd(0xF0, 0, base, map, cfi, cfi->device_type, NULL); + cfi_send_gen_cmd(0xFF, 0, base, map, cfi, cfi->device_type, NULL); + cfi_send_gen_cmd(0x98, 0x55, base, map, cfi, cfi->device_type, NULL); + if (cfi_qry_present(map, base, cfi)) + return 1; + /* ST M29DW chips */ + cfi_send_gen_cmd(0xF0, 0, base, map, cfi, cfi->device_type, NULL); + cfi_send_gen_cmd(0x98, 0x555, base, map, cfi, cfi->device_type, NULL); + if (cfi_qry_present(map, base, cfi)) + return 1; + /* some old SST chips, e.g. 39VF160x/39VF320x */ + cfi_send_gen_cmd(0xF0, 0, base, map, cfi, cfi->device_type, NULL); + cfi_send_gen_cmd(0xAA, 0x5555, base, map, cfi, cfi->device_type, NULL); + cfi_send_gen_cmd(0x55, 0x2AAA, base, map, cfi, cfi->device_type, NULL); + cfi_send_gen_cmd(0x98, 0x5555, base, map, cfi, cfi->device_type, NULL); + if (cfi_qry_present(map, base, cfi)) + return 1; + /* SST 39VF640xB */ + cfi_send_gen_cmd(0xF0, 0, base, map, cfi, cfi->device_type, NULL); + cfi_send_gen_cmd(0xAA, 0x555, base, map, cfi, cfi->device_type, NULL); + cfi_send_gen_cmd(0x55, 0x2AA, base, map, cfi, cfi->device_type, NULL); + cfi_send_gen_cmd(0x98, 0x555, base, map, cfi, cfi->device_type, NULL); + if (cfi_qry_present(map, base, cfi)) + return 1; + /* QRY not found */ + return 0; +} +EXPORT_SYMBOL_GPL(cfi_qry_mode_on); + +void __xipram cfi_qry_mode_off(uint32_t base, struct map_info *map, + struct cfi_private *cfi) +{ + cfi_send_gen_cmd(0xF0, 0, base, map, cfi, cfi->device_type, NULL); + cfi_send_gen_cmd(0xFF, 0, base, map, cfi, cfi->device_type, NULL); + /* M29W128G flashes require an additional reset command + when exit qry mode */ + if ((cfi->mfr == CFI_MFR_ST) && (cfi->id == 0x227E || cfi->id == 0x7E)) + cfi_send_gen_cmd(0xF0, 0, base, map, cfi, cfi->device_type, NULL); +} +EXPORT_SYMBOL_GPL(cfi_qry_mode_off); + +struct cfi_extquery * +__xipram cfi_read_pri(struct map_info *map, __u16 adr, __u16 size, const char* name) +{ + struct cfi_private *cfi = map->fldrv_priv; + __u32 base = 0; // cfi->chips[0].start; + int ofs_factor = cfi->interleave * cfi->device_type; + int i; + struct cfi_extquery *extp = NULL; + + if (!adr) + goto out; + + printk(KERN_INFO "%s Extended Query Table at 0x%4.4X\n", name, adr); + + extp = kmalloc(size, GFP_KERNEL); + if (!extp) + goto out; + +#ifdef CONFIG_MTD_XIP + local_irq_disable(); +#endif + + /* Switch it into Query Mode */ + cfi_qry_mode_on(base, map, cfi); + /* Read in the Extended Query Table */ + for (i=0; i<size; i++) { + ((unsigned char *)extp)[i] = + cfi_read_query(map, base+((adr+i)*ofs_factor)); + } + + /* Make sure it returns to read mode */ + cfi_qry_mode_off(base, map, cfi); + +#ifdef CONFIG_MTD_XIP + (void) map_read(map, base); + xip_iprefetch(); + local_irq_enable(); +#endif + + out: return extp; +} + +EXPORT_SYMBOL(cfi_read_pri); + +void cfi_fixup(struct mtd_info *mtd, struct cfi_fixup *fixups) +{ + struct map_info *map = mtd->priv; + struct cfi_private *cfi = map->fldrv_priv; + struct cfi_fixup *f; + + for (f=fixups; f->fixup; f++) { + if (((f->mfr == CFI_MFR_ANY) || (f->mfr == cfi->mfr)) && + ((f->id == CFI_ID_ANY) || (f->id == cfi->id))) { + f->fixup(mtd); + } + } +} + +EXPORT_SYMBOL(cfi_fixup); + +int cfi_varsize_frob(struct mtd_info *mtd, varsize_frob_t frob, + loff_t ofs, size_t len, void *thunk) +{ + struct map_info *map = mtd->priv; + struct cfi_private *cfi = map->fldrv_priv; + unsigned long adr; + int chipnum, ret = 0; + int i, first; + struct mtd_erase_region_info *regions = mtd->eraseregions; + + /* Check that both start and end of the requested erase are + * aligned with the erasesize at the appropriate addresses. + */ + + i = 0; + + /* Skip all erase regions which are ended before the start of + the requested erase. Actually, to save on the calculations, + we skip to the first erase region which starts after the + start of the requested erase, and then go back one. + */ + + while (i < mtd->numeraseregions && ofs >= regions[i].offset) + i++; + i--; + + /* OK, now i is pointing at the erase region in which this + erase request starts. Check the start of the requested + erase range is aligned with the erase size which is in + effect here. + */ + + if (ofs & (regions[i].erasesize-1)) + return -EINVAL; + + /* Remember the erase region we start on */ + first = i; + + /* Next, check that the end of the requested erase is aligned + * with the erase region at that address. + */ + + while (i<mtd->numeraseregions && (ofs + len) >= regions[i].offset) + i++; + + /* As before, drop back one to point at the region in which + the address actually falls + */ + i--; + + if ((ofs + len) & (regions[i].erasesize-1)) + return -EINVAL; + + chipnum = ofs >> cfi->chipshift; + adr = ofs - (chipnum << cfi->chipshift); + + i=first; + + while(len) { + int size = regions[i].erasesize; + + ret = (*frob)(map, &cfi->chips[chipnum], adr, size, thunk); + + if (ret) + return ret; + + adr += size; + ofs += size; + len -= size; + + if (ofs == regions[i].offset + size * regions[i].numblocks) + i++; + + if (adr >> cfi->chipshift) { + adr = 0; + chipnum++; + + if (chipnum >= cfi->numchips) + break; + } + } + + return 0; +} + +EXPORT_SYMBOL(cfi_varsize_frob); + +MODULE_LICENSE("GPL"); diff --git a/drivers/mtd/chips/chipreg.c b/drivers/mtd/chips/chipreg.c new file mode 100644 index 0000000000..a05e103682 --- /dev/null +++ b/drivers/mtd/chips/chipreg.c @@ -0,0 +1,102 @@ +// SPDX-License-Identifier: GPL-2.0-only +/* + * Registration for chip drivers + * + */ + +#include <linux/kernel.h> +#include <linux/module.h> +#include <linux/kmod.h> +#include <linux/spinlock.h> +#include <linux/slab.h> +#include <linux/mtd/map.h> +#include <linux/mtd/mtd.h> + +static DEFINE_SPINLOCK(chip_drvs_lock); +static LIST_HEAD(chip_drvs_list); + +void register_mtd_chip_driver(struct mtd_chip_driver *drv) +{ + spin_lock(&chip_drvs_lock); + list_add(&drv->list, &chip_drvs_list); + spin_unlock(&chip_drvs_lock); +} + +void unregister_mtd_chip_driver(struct mtd_chip_driver *drv) +{ + spin_lock(&chip_drvs_lock); + list_del(&drv->list); + spin_unlock(&chip_drvs_lock); +} + +static struct mtd_chip_driver *get_mtd_chip_driver (const char *name) +{ + struct mtd_chip_driver *ret = NULL, *this; + + spin_lock(&chip_drvs_lock); + + list_for_each_entry(this, &chip_drvs_list, list) { + if (!strcmp(this->name, name)) { + ret = this; + break; + } + } + if (ret && !try_module_get(ret->module)) + ret = NULL; + + spin_unlock(&chip_drvs_lock); + + return ret; +} + + /* Hide all the horrid details, like some silly person taking + get_module_symbol() away from us, from the caller. */ + +struct mtd_info *do_map_probe(const char *name, struct map_info *map) +{ + struct mtd_chip_driver *drv; + struct mtd_info *ret; + + drv = get_mtd_chip_driver(name); + + if (!drv && !request_module("%s", name)) + drv = get_mtd_chip_driver(name); + + if (!drv) + return NULL; + + ret = drv->probe(map); + + /* We decrease the use count here. It may have been a + probe-only module, which is no longer required from this + point, having given us a handle on (and increased the use + count of) the actual driver code. + */ + module_put(drv->module); + + return ret; +} +/* + * Destroy an MTD device which was created for a map device. + * Make sure the MTD device is already unregistered before calling this + */ +void map_destroy(struct mtd_info *mtd) +{ + struct map_info *map = mtd->priv; + + if (map->fldrv->destroy) + map->fldrv->destroy(mtd); + + module_put(map->fldrv->module); + + kfree(mtd); +} + +EXPORT_SYMBOL(register_mtd_chip_driver); +EXPORT_SYMBOL(unregister_mtd_chip_driver); +EXPORT_SYMBOL(do_map_probe); +EXPORT_SYMBOL(map_destroy); + +MODULE_LICENSE("GPL"); +MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>"); +MODULE_DESCRIPTION("Core routines for registering and invoking MTD chip drivers"); diff --git a/drivers/mtd/chips/fwh_lock.h b/drivers/mtd/chips/fwh_lock.h new file mode 100644 index 0000000000..53e6b2d593 --- /dev/null +++ b/drivers/mtd/chips/fwh_lock.h @@ -0,0 +1,108 @@ +/* SPDX-License-Identifier: GPL-2.0 */ +#ifndef FWH_LOCK_H +#define FWH_LOCK_H + + +enum fwh_lock_state { + FWH_UNLOCKED = 0, + FWH_DENY_WRITE = 1, + FWH_IMMUTABLE = 2, + FWH_DENY_READ = 4, +}; + +struct fwh_xxlock_thunk { + enum fwh_lock_state val; + flstate_t state; +}; + + +#define FWH_XXLOCK_ONEBLOCK_LOCK ((struct fwh_xxlock_thunk){ FWH_DENY_WRITE, FL_LOCKING}) +#define FWH_XXLOCK_ONEBLOCK_UNLOCK ((struct fwh_xxlock_thunk){ FWH_UNLOCKED, FL_UNLOCKING}) + +/* + * This locking/unlock is specific to firmware hub parts. Only one + * is known that supports the Intel command set. Firmware + * hub parts cannot be interleaved as they are on the LPC bus + * so this code has not been tested with interleaved chips, + * and will likely fail in that context. + */ +static int fwh_xxlock_oneblock(struct map_info *map, struct flchip *chip, + unsigned long adr, int len, void *thunk) +{ + struct cfi_private *cfi = map->fldrv_priv; + struct fwh_xxlock_thunk *xxlt = (struct fwh_xxlock_thunk *)thunk; + int ret; + + /* Refuse the operation if the we cannot look behind the chip */ + if (chip->start < 0x400000) { + pr_debug( "MTD %s(): chip->start: %lx wanted >= 0x400000\n", + __func__, chip->start ); + return -EIO; + } + /* + * lock block registers: + * - on 64k boundariesand + * - bit 1 set high + * - block lock registers are 4MiB lower - overflow subtract (danger) + * + * The address manipulation is first done on the logical address + * which is 0 at the start of the chip, and then the offset of + * the individual chip is addted to it. Any other order a weird + * map offset could cause problems. + */ + adr = (adr & ~0xffffUL) | 0x2; + adr += chip->start - 0x400000; + + /* + * This is easy because these are writes to registers and not writes + * to flash memory - that means that we don't have to check status + * and timeout. + */ + mutex_lock(&chip->mutex); + ret = get_chip(map, chip, adr, FL_LOCKING); + if (ret) { + mutex_unlock(&chip->mutex); + return ret; + } + + chip->oldstate = chip->state; + chip->state = xxlt->state; + map_write(map, CMD(xxlt->val), adr); + + /* Done and happy. */ + chip->state = chip->oldstate; + put_chip(map, chip, adr); + mutex_unlock(&chip->mutex); + return 0; +} + + +static int fwh_lock_varsize(struct mtd_info *mtd, loff_t ofs, uint64_t len) +{ + int ret; + + ret = cfi_varsize_frob(mtd, fwh_xxlock_oneblock, ofs, len, + (void *)&FWH_XXLOCK_ONEBLOCK_LOCK); + + return ret; +} + + +static int fwh_unlock_varsize(struct mtd_info *mtd, loff_t ofs, uint64_t len) +{ + int ret; + + ret = cfi_varsize_frob(mtd, fwh_xxlock_oneblock, ofs, len, + (void *)&FWH_XXLOCK_ONEBLOCK_UNLOCK); + + return ret; +} + +static void fixup_use_fwh_lock(struct mtd_info *mtd) +{ + printk(KERN_NOTICE "using fwh lock/unlock method\n"); + /* Setup for the chips with the fwh lock method */ + mtd->_lock = fwh_lock_varsize; + mtd->_unlock = fwh_unlock_varsize; +} +#endif /* FWH_LOCK_H */ diff --git a/drivers/mtd/chips/gen_probe.c b/drivers/mtd/chips/gen_probe.c new file mode 100644 index 0000000000..9e53fcd760 --- /dev/null +++ b/drivers/mtd/chips/gen_probe.c @@ -0,0 +1,266 @@ +// SPDX-License-Identifier: GPL-2.0 +/* + * Routines common to all CFI-type probes. + * (C) 2001-2003 Red Hat, Inc. + */ + +#include <linux/kernel.h> +#include <linux/slab.h> +#include <linux/module.h> +#include <linux/mtd/mtd.h> +#include <linux/mtd/map.h> +#include <linux/mtd/cfi.h> +#include <linux/mtd/gen_probe.h> + +static struct mtd_info *check_cmd_set(struct map_info *, int); +static struct cfi_private *genprobe_ident_chips(struct map_info *map, + struct chip_probe *cp); +static int genprobe_new_chip(struct map_info *map, struct chip_probe *cp, + struct cfi_private *cfi); + +struct mtd_info *mtd_do_chip_probe(struct map_info *map, struct chip_probe *cp) +{ + struct mtd_info *mtd; + struct cfi_private *cfi; + + /* First probe the map to see if we have CFI stuff there. */ + cfi = genprobe_ident_chips(map, cp); + + if (!cfi) + return NULL; + + map->fldrv_priv = cfi; + /* OK we liked it. Now find a driver for the command set it talks */ + + mtd = check_cmd_set(map, 1); /* First the primary cmdset */ + if (!mtd) + mtd = check_cmd_set(map, 0); /* Then the secondary */ + + if (mtd) { + if (mtd->size > map->size) { + printk(KERN_WARNING "Reducing visibility of %ldKiB chip to %ldKiB\n", + (unsigned long)mtd->size >> 10, + (unsigned long)map->size >> 10); + mtd->size = map->size; + } + return mtd; + } + + printk(KERN_WARNING"gen_probe: No supported Vendor Command Set found\n"); + + kfree(cfi->cfiq); + kfree(cfi); + map->fldrv_priv = NULL; + return NULL; +} +EXPORT_SYMBOL(mtd_do_chip_probe); + + +static struct cfi_private *genprobe_ident_chips(struct map_info *map, struct chip_probe *cp) +{ + struct cfi_private cfi; + struct cfi_private *retcfi; + unsigned long *chip_map; + int max_chips; + int i, j; + + memset(&cfi, 0, sizeof(cfi)); + + /* Call the probetype-specific code with all permutations of + interleave and device type, etc. */ + if (!genprobe_new_chip(map, cp, &cfi)) { + /* The probe didn't like it */ + pr_debug("%s: Found no %s device at location zero\n", + cp->name, map->name); + return NULL; + } + +#if 0 /* Let the CFI probe routine do this sanity check. The Intel and AMD + probe routines won't ever return a broken CFI structure anyway, + because they make them up themselves. + */ + if (cfi.cfiq->NumEraseRegions == 0) { + printk(KERN_WARNING "Number of erase regions is zero\n"); + kfree(cfi.cfiq); + return NULL; + } +#endif + cfi.chipshift = cfi.cfiq->DevSize; + + if (cfi_interleave_is_1(&cfi)) { + ; + } else if (cfi_interleave_is_2(&cfi)) { + cfi.chipshift++; + } else if (cfi_interleave_is_4((&cfi))) { + cfi.chipshift += 2; + } else if (cfi_interleave_is_8(&cfi)) { + cfi.chipshift += 3; + } else { + BUG(); + } + + cfi.numchips = 1; + + /* + * Allocate memory for bitmap of valid chips. + * Align bitmap storage size to full byte. + */ + max_chips = map->size >> cfi.chipshift; + if (!max_chips) { + printk(KERN_WARNING "NOR chip too large to fit in mapping. Attempting to cope...\n"); + max_chips = 1; + } + + chip_map = bitmap_zalloc(max_chips, GFP_KERNEL); + if (!chip_map) { + kfree(cfi.cfiq); + return NULL; + } + + set_bit(0, chip_map); /* Mark first chip valid */ + + /* + * Now probe for other chips, checking sensibly for aliases while + * we're at it. The new_chip probe above should have let the first + * chip in read mode. + */ + + for (i = 1; i < max_chips; i++) { + cp->probe_chip(map, i << cfi.chipshift, chip_map, &cfi); + } + + /* + * Now allocate the space for the structures we need to return to + * our caller, and copy the appropriate data into them. + */ + + retcfi = kmalloc(struct_size(retcfi, chips, cfi.numchips), GFP_KERNEL); + + if (!retcfi) { + kfree(cfi.cfiq); + bitmap_free(chip_map); + return NULL; + } + + memcpy(retcfi, &cfi, sizeof(cfi)); + memset(&retcfi->chips[0], 0, sizeof(struct flchip) * cfi.numchips); + + for (i = 0, j = 0; (j < cfi.numchips) && (i < max_chips); i++) { + if(test_bit(i, chip_map)) { + struct flchip *pchip = &retcfi->chips[j++]; + + pchip->start = (i << cfi.chipshift); + pchip->state = FL_READY; + init_waitqueue_head(&pchip->wq); + mutex_init(&pchip->mutex); + } + } + + bitmap_free(chip_map); + return retcfi; +} + + +static int genprobe_new_chip(struct map_info *map, struct chip_probe *cp, + struct cfi_private *cfi) +{ + int min_chips = (map_bankwidth(map)/4?:1); /* At most 4-bytes wide. */ + int max_chips = map_bankwidth(map); /* And minimum 1 */ + int nr_chips, type; + + for (nr_chips = max_chips; nr_chips >= min_chips; nr_chips >>= 1) { + + if (!cfi_interleave_supported(nr_chips)) + continue; + + cfi->interleave = nr_chips; + + /* Minimum device size. Don't look for one 8-bit device + in a 16-bit bus, etc. */ + type = map_bankwidth(map) / nr_chips; + + for (; type <= CFI_DEVICETYPE_X32; type<<=1) { + cfi->device_type = type; + + if (cp->probe_chip(map, 0, NULL, cfi)) + return 1; + } + } + return 0; +} + +typedef struct mtd_info *cfi_cmdset_fn_t(struct map_info *, int); + +extern cfi_cmdset_fn_t cfi_cmdset_0001; +extern cfi_cmdset_fn_t cfi_cmdset_0002; +extern cfi_cmdset_fn_t cfi_cmdset_0020; + +static inline struct mtd_info *cfi_cmdset_unknown(struct map_info *map, + int primary) +{ + struct cfi_private *cfi = map->fldrv_priv; + __u16 type = primary?cfi->cfiq->P_ID:cfi->cfiq->A_ID; +#ifdef CONFIG_MODULES + cfi_cmdset_fn_t *probe_function; + char *probename; + + probename = kasprintf(GFP_KERNEL, "cfi_cmdset_%4.4X", type); + if (!probename) + return NULL; + + probe_function = __symbol_get(probename); + if (!probe_function) { + request_module("cfi_cmdset_%4.4X", type); + probe_function = __symbol_get(probename); + } + kfree(probename); + + if (probe_function) { + struct mtd_info *mtd; + + mtd = (*probe_function)(map, primary); + /* If it was happy, it'll have increased its own use count */ + symbol_put_addr(probe_function); + return mtd; + } +#endif + printk(KERN_NOTICE "Support for command set %04X not present\n", type); + + return NULL; +} + +static struct mtd_info *check_cmd_set(struct map_info *map, int primary) +{ + struct cfi_private *cfi = map->fldrv_priv; + __u16 type = primary?cfi->cfiq->P_ID:cfi->cfiq->A_ID; + + if (type == P_ID_NONE || type == P_ID_RESERVED) + return NULL; + + switch(type){ + /* We need these for the !CONFIG_MODULES case, + because symbol_get() doesn't work there */ +#ifdef CONFIG_MTD_CFI_INTELEXT + case P_ID_INTEL_EXT: + case P_ID_INTEL_STD: + case P_ID_INTEL_PERFORMANCE: + return cfi_cmdset_0001(map, primary); +#endif +#ifdef CONFIG_MTD_CFI_AMDSTD + case P_ID_AMD_STD: + case P_ID_SST_OLD: + case P_ID_WINBOND: + return cfi_cmdset_0002(map, primary); +#endif +#ifdef CONFIG_MTD_CFI_STAA + case P_ID_ST_ADV: + return cfi_cmdset_0020(map, primary); +#endif + default: + return cfi_cmdset_unknown(map, primary); + } +} + +MODULE_LICENSE("GPL"); +MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>"); +MODULE_DESCRIPTION("Helper routines for flash chip probe code"); diff --git a/drivers/mtd/chips/jedec_probe.c b/drivers/mtd/chips/jedec_probe.c new file mode 100644 index 0000000000..23c32fe584 --- /dev/null +++ b/drivers/mtd/chips/jedec_probe.c @@ -0,0 +1,2316 @@ +// SPDX-License-Identifier: GPL-2.0 +/* + Common Flash Interface probe code. + (C) 2000 Red Hat. + See JEDEC (http://www.jedec.org/) standard JESD21C (section 3.5) + for the standard this probe goes back to. + + Occasionally maintained by Thayne Harbaugh tharbaugh at lnxi dot com +*/ + +#include <linux/module.h> +#include <linux/init.h> +#include <linux/types.h> +#include <linux/kernel.h> +#include <asm/io.h> +#include <asm/byteorder.h> +#include <linux/errno.h> +#include <linux/slab.h> +#include <linux/interrupt.h> + +#include <linux/mtd/mtd.h> +#include <linux/mtd/map.h> +#include <linux/mtd/cfi.h> +#include <linux/mtd/gen_probe.h> + +/* AMD */ +#define AM29DL800BB 0x22CB +#define AM29DL800BT 0x224A + +#define AM29F800BB 0x2258 +#define AM29F800BT 0x22D6 +#define AM29LV400BB 0x22BA +#define AM29LV400BT 0x22B9 +#define AM29LV800BB 0x225B +#define AM29LV800BT 0x22DA +#define AM29LV160DT 0x22C4 +#define AM29LV160DB 0x2249 +#define AM29F017D 0x003D +#define AM29F016D 0x00AD +#define AM29F080 0x00D5 +#define AM29F040 0x00A4 +#define AM29LV040B 0x004F +#define AM29F032B 0x0041 +#define AM29F002T 0x00B0 +#define AM29SL800DB 0x226B +#define AM29SL800DT 0x22EA + +/* Atmel */ +#define AT49BV512 0x0003 +#define AT29LV512 0x003d +#define AT49BV16X 0x00C0 +#define AT49BV16XT 0x00C2 +#define AT49BV32X 0x00C8 +#define AT49BV32XT 0x00C9 + +/* Eon */ +#define EN29LV400AT 0x22B9 +#define EN29LV400AB 0x22BA +#define EN29SL800BB 0x226B +#define EN29SL800BT 0x22EA + +/* Fujitsu */ +#define MBM29F040C 0x00A4 +#define MBM29F800BA 0x2258 +#define MBM29LV650UE 0x22D7 +#define MBM29LV320TE 0x22F6 +#define MBM29LV320BE 0x22F9 +#define MBM29LV160TE 0x22C4 +#define MBM29LV160BE 0x2249 +#define MBM29LV800BA 0x225B +#define MBM29LV800TA 0x22DA +#define MBM29LV400TC 0x22B9 +#define MBM29LV400BC 0x22BA + +/* Hyundai */ +#define HY29F002T 0x00B0 + +/* Intel */ +#define I28F004B3T 0x00d4 +#define I28F004B3B 0x00d5 +#define I28F400B3T 0x8894 +#define I28F400B3B 0x8895 +#define I28F008S5 0x00a6 +#define I28F016S5 0x00a0 +#define I28F008SA 0x00a2 +#define I28F008B3T 0x00d2 +#define I28F008B3B 0x00d3 +#define I28F800B3T 0x8892 +#define I28F800B3B 0x8893 +#define I28F016S3 0x00aa +#define I28F016B3T 0x00d0 +#define I28F016B3B 0x00d1 +#define I28F160B3T 0x8890 +#define I28F160B3B 0x8891 +#define I28F320B3T 0x8896 +#define I28F320B3B 0x8897 +#define I28F640B3T 0x8898 +#define I28F640B3B 0x8899 +#define I28F640C3B 0x88CD +#define I28F160F3T 0x88F3 +#define I28F160F3B 0x88F4 +#define I28F160C3T 0x88C2 +#define I28F160C3B 0x88C3 +#define I82802AB 0x00ad +#define I82802AC 0x00ac + +/* Macronix */ +#define MX29LV040C 0x004F +#define MX29LV160T 0x22C4 +#define MX29LV160B 0x2249 +#define MX29F040 0x00A4 +#define MX29F016 0x00AD +#define MX29F002T 0x00B0 +#define MX29F004T 0x0045 +#define MX29F004B 0x0046 + +/* NEC */ +#define UPD29F064115 0x221C + +/* PMC */ +#define PM49FL002 0x006D +#define PM49FL004 0x006E +#define PM49FL008 0x006A + +/* Sharp */ +#define LH28F640BF 0x00B0 + +/* ST - www.st.com */ +#define M29F800AB 0x0058 +#define M29W800DT 0x22D7 +#define M29W800DB 0x225B +#define M29W400DT 0x00EE +#define M29W400DB 0x00EF +#define M29W160DT 0x22C4 +#define M29W160DB 0x2249 +#define M29W040B 0x00E3 +#define M50FW040 0x002C +#define M50FW080 0x002D +#define M50FW016 0x002E +#define M50LPW080 0x002F +#define M50FLW080A 0x0080 +#define M50FLW080B 0x0081 +#define PSD4256G6V 0x00e9 + +/* SST */ +#define SST29EE020 0x0010 +#define SST29LE020 0x0012 +#define SST29EE512 0x005d +#define SST29LE512 0x003d +#define SST39LF800 0x2781 +#define SST39LF160 0x2782 +#define SST39VF1601 0x234b +#define SST39VF3201 0x235b +#define SST39WF1601 0x274b +#define SST39WF1602 0x274a +#define SST39LF512 0x00D4 +#define SST39LF010 0x00D5 +#define SST39LF020 0x00D6 +#define SST39LF040 0x00D7 +#define SST39SF010A 0x00B5 +#define SST39SF020A 0x00B6 +#define SST39SF040 0x00B7 +#define SST49LF004B 0x0060 +#define SST49LF040B 0x0050 +#define SST49LF008A 0x005a +#define SST49LF030A 0x001C +#define SST49LF040A 0x0051 +#define SST49LF080A 0x005B +#define SST36VF3203 0x7354 + +/* Toshiba */ +#define TC58FVT160 0x00C2 +#define TC58FVB160 0x0043 +#define TC58FVT321 0x009A +#define TC58FVB321 0x009C +#define TC58FVT641 0x0093 +#define TC58FVB641 0x0095 + +/* Winbond */ +#define W49V002A 0x00b0 + + +/* + * Unlock address sets for AMD command sets. + * Intel command sets use the MTD_UADDR_UNNECESSARY. + * Each identifier, except MTD_UADDR_UNNECESSARY, and + * MTD_UADDR_NO_SUPPORT must be defined below in unlock_addrs[]. + * MTD_UADDR_NOT_SUPPORTED must be 0 so that structure + * initialization need not require initializing all of the + * unlock addresses for all bit widths. + */ +enum uaddr { + MTD_UADDR_NOT_SUPPORTED = 0, /* data width not supported */ + MTD_UADDR_0x0555_0x02AA, + MTD_UADDR_0x0555_0x0AAA, + MTD_UADDR_0x5555_0x2AAA, + MTD_UADDR_0x0AAA_0x0554, + MTD_UADDR_0x0AAA_0x0555, + MTD_UADDR_0xAAAA_0x5555, + MTD_UADDR_DONT_CARE, /* Requires an arbitrary address */ + MTD_UADDR_UNNECESSARY, /* Does not require any address */ +}; + + +struct unlock_addr { + uint32_t addr1; + uint32_t addr2; +}; + + +/* + * I don't like the fact that the first entry in unlock_addrs[] + * exists, but is for MTD_UADDR_NOT_SUPPORTED - and, therefore, + * should not be used. The problem is that structures with + * initializers have extra fields initialized to 0. It is _very_ + * desirable to have the unlock address entries for unsupported + * data widths automatically initialized - that means that + * MTD_UADDR_NOT_SUPPORTED must be 0 and the first entry here + * must go unused. + */ +static const struct unlock_addr unlock_addrs[] = { + [MTD_UADDR_NOT_SUPPORTED] = { + .addr1 = 0xffff, + .addr2 = 0xffff + }, + + [MTD_UADDR_0x0555_0x02AA] = { + .addr1 = 0x0555, + .addr2 = 0x02aa + }, + + [MTD_UADDR_0x0555_0x0AAA] = { + .addr1 = 0x0555, + .addr2 = 0x0aaa + }, + + [MTD_UADDR_0x5555_0x2AAA] = { + .addr1 = 0x5555, + .addr2 = 0x2aaa + }, + + [MTD_UADDR_0x0AAA_0x0554] = { + .addr1 = 0x0AAA, + .addr2 = 0x0554 + }, + + [MTD_UADDR_0x0AAA_0x0555] = { + .addr1 = 0x0AAA, + .addr2 = 0x0555 + }, + + [MTD_UADDR_0xAAAA_0x5555] = { + .addr1 = 0xaaaa, + .addr2 = 0x5555 + }, + + [MTD_UADDR_DONT_CARE] = { + .addr1 = 0x0000, /* Doesn't matter which address */ + .addr2 = 0x0000 /* is used - must be last entry */ + }, + + [MTD_UADDR_UNNECESSARY] = { + .addr1 = 0x0000, + .addr2 = 0x0000 + } +}; + +struct amd_flash_info { + const char *name; + const uint16_t mfr_id; + const uint16_t dev_id; + const uint8_t dev_size; + const uint8_t nr_regions; + const uint16_t cmd_set; + const uint32_t regions[6]; + const uint8_t devtypes; /* Bitmask for x8, x16 etc. */ + const uint8_t uaddr; /* unlock addrs for 8, 16, 32, 64 */ +}; + +#define ERASEINFO(size,blocks) (size<<8)|(blocks-1) + +#define SIZE_64KiB 16 +#define SIZE_128KiB 17 +#define SIZE_256KiB 18 +#define SIZE_512KiB 19 +#define SIZE_1MiB 20 +#define SIZE_2MiB 21 +#define SIZE_4MiB 22 +#define SIZE_8MiB 23 + + +/* + * Please keep this list ordered by manufacturer! + * Fortunately, the list isn't searched often and so a + * slow, linear search isn't so bad. + */ +static const struct amd_flash_info jedec_table[] = { + { + .mfr_id = CFI_MFR_AMD, + .dev_id = AM29F032B, + .name = "AMD AM29F032B", + .uaddr = MTD_UADDR_0x0555_0x02AA, + .devtypes = CFI_DEVICETYPE_X8, + .dev_size = SIZE_4MiB, + .cmd_set = P_ID_AMD_STD, + .nr_regions = 1, + .regions = { + ERASEINFO(0x10000,64) + } + }, { + .mfr_id = CFI_MFR_AMD, + .dev_id = AM29LV160DT, + .name = "AMD AM29LV160DT", + .devtypes = CFI_DEVICETYPE_X16|CFI_DEVICETYPE_X8, + .uaddr = MTD_UADDR_0x0AAA_0x0555, + .dev_size = SIZE_2MiB, + .cmd_set = P_ID_AMD_STD, + .nr_regions = 4, + .regions = { + ERASEINFO(0x10000,31), + ERASEINFO(0x08000,1), + ERASEINFO(0x02000,2), + ERASEINFO(0x04000,1) + } + }, { + .mfr_id = CFI_MFR_AMD, + .dev_id = AM29LV160DB, + .name = "AMD AM29LV160DB", + .devtypes = CFI_DEVICETYPE_X16|CFI_DEVICETYPE_X8, + .uaddr = MTD_UADDR_0x0AAA_0x0555, + .dev_size = SIZE_2MiB, + .cmd_set = P_ID_AMD_STD, + .nr_regions = 4, + .regions = { + ERASEINFO(0x04000,1), + ERASEINFO(0x02000,2), + ERASEINFO(0x08000,1), + ERASEINFO(0x10000,31) + } + }, { + .mfr_id = CFI_MFR_AMD, + .dev_id = AM29LV400BB, + .name = "AMD AM29LV400BB", + .devtypes = CFI_DEVICETYPE_X16|CFI_DEVICETYPE_X8, + .uaddr = MTD_UADDR_0x0AAA_0x0555, + .dev_size = SIZE_512KiB, + .cmd_set = P_ID_AMD_STD, + .nr_regions = 4, + .regions = { + ERASEINFO(0x04000,1), + ERASEINFO(0x02000,2), + ERASEINFO(0x08000,1), + ERASEINFO(0x10000,7) + } + }, { + .mfr_id = CFI_MFR_AMD, + .dev_id = AM29LV400BT, + .name = "AMD AM29LV400BT", + .devtypes = CFI_DEVICETYPE_X16|CFI_DEVICETYPE_X8, + .uaddr = MTD_UADDR_0x0AAA_0x0555, + .dev_size = SIZE_512KiB, + .cmd_set = P_ID_AMD_STD, + .nr_regions = 4, + .regions = { + ERASEINFO(0x10000,7), + ERASEINFO(0x08000,1), + ERASEINFO(0x02000,2), + ERASEINFO(0x04000,1) + } + }, { + .mfr_id = CFI_MFR_AMD, + .dev_id = AM29LV800BB, + .name = "AMD AM29LV800BB", + .devtypes = CFI_DEVICETYPE_X16|CFI_DEVICETYPE_X8, + .uaddr = MTD_UADDR_0x0AAA_0x0555, + .dev_size = SIZE_1MiB, + .cmd_set = P_ID_AMD_STD, + .nr_regions = 4, + .regions = { + ERASEINFO(0x04000,1), + ERASEINFO(0x02000,2), + ERASEINFO(0x08000,1), + ERASEINFO(0x10000,15), + } + }, { +/* add DL */ + .mfr_id = CFI_MFR_AMD, + .dev_id = AM29DL800BB, + .name = "AMD AM29DL800BB", + .devtypes = CFI_DEVICETYPE_X16|CFI_DEVICETYPE_X8, + .uaddr = MTD_UADDR_0x0AAA_0x0555, + .dev_size = SIZE_1MiB, + .cmd_set = P_ID_AMD_STD, + .nr_regions = 6, + .regions = { + ERASEINFO(0x04000,1), + ERASEINFO(0x08000,1), + ERASEINFO(0x02000,4), + ERASEINFO(0x08000,1), + ERASEINFO(0x04000,1), + ERASEINFO(0x10000,14) + } + }, { + .mfr_id = CFI_MFR_AMD, + .dev_id = AM29DL800BT, + .name = "AMD AM29DL800BT", + .devtypes = CFI_DEVICETYPE_X16|CFI_DEVICETYPE_X8, + .uaddr = MTD_UADDR_0x0AAA_0x0555, + .dev_size = SIZE_1MiB, + .cmd_set = P_ID_AMD_STD, + .nr_regions = 6, + .regions = { + ERASEINFO(0x10000,14), + ERASEINFO(0x04000,1), + ERASEINFO(0x08000,1), + ERASEINFO(0x02000,4), + ERASEINFO(0x08000,1), + ERASEINFO(0x04000,1) + } + }, { + .mfr_id = CFI_MFR_AMD, + .dev_id = AM29F800BB, + .name = "AMD AM29F800BB", + .devtypes = CFI_DEVICETYPE_X16|CFI_DEVICETYPE_X8, + .uaddr = MTD_UADDR_0x0AAA_0x0555, + .dev_size = SIZE_1MiB, + .cmd_set = P_ID_AMD_STD, + .nr_regions = 4, + .regions = { + ERASEINFO(0x04000,1), + ERASEINFO(0x02000,2), + ERASEINFO(0x08000,1), + ERASEINFO(0x10000,15), + } + }, { + .mfr_id = CFI_MFR_AMD, + .dev_id = AM29LV800BT, + .name = "AMD AM29LV800BT", + .devtypes = CFI_DEVICETYPE_X16|CFI_DEVICETYPE_X8, + .uaddr = MTD_UADDR_0x0AAA_0x0555, + .dev_size = SIZE_1MiB, + .cmd_set = P_ID_AMD_STD, + .nr_regions = 4, + .regions = { + ERASEINFO(0x10000,15), + ERASEINFO(0x08000,1), + ERASEINFO(0x02000,2), + ERASEINFO(0x04000,1) + } + }, { + .mfr_id = CFI_MFR_AMD, + .dev_id = AM29F800BT, + .name = "AMD AM29F800BT", + .devtypes = CFI_DEVICETYPE_X16|CFI_DEVICETYPE_X8, + .uaddr = MTD_UADDR_0x0AAA_0x0555, + .dev_size = SIZE_1MiB, + .cmd_set = P_ID_AMD_STD, + .nr_regions = 4, + .regions = { + ERASEINFO(0x10000,15), + ERASEINFO(0x08000,1), + ERASEINFO(0x02000,2), + ERASEINFO(0x04000,1) + } + }, { + .mfr_id = CFI_MFR_AMD, + .dev_id = AM29F017D, + .name = "AMD AM29F017D", + .devtypes = CFI_DEVICETYPE_X8, + .uaddr = MTD_UADDR_DONT_CARE, + .dev_size = SIZE_2MiB, + .cmd_set = P_ID_AMD_STD, + .nr_regions = 1, + .regions = { + ERASEINFO(0x10000,32), + } + }, { + .mfr_id = CFI_MFR_AMD, + .dev_id = AM29F016D, + .name = "AMD AM29F016D", + .devtypes = CFI_DEVICETYPE_X8, + .uaddr = MTD_UADDR_0x0555_0x02AA, + .dev_size = SIZE_2MiB, + .cmd_set = P_ID_AMD_STD, + .nr_regions = 1, + .regions = { + ERASEINFO(0x10000,32), + } + }, { + .mfr_id = CFI_MFR_AMD, + .dev_id = AM29F080, + .name = "AMD AM29F080", + .devtypes = CFI_DEVICETYPE_X8, + .uaddr = MTD_UADDR_0x0555_0x02AA, + .dev_size = SIZE_1MiB, + .cmd_set = P_ID_AMD_STD, + .nr_regions = 1, + .regions = { + ERASEINFO(0x10000,16), + } + }, { + .mfr_id = CFI_MFR_AMD, + .dev_id = AM29F040, + .name = "AMD AM29F040", + .devtypes = CFI_DEVICETYPE_X8, + .uaddr = MTD_UADDR_0x0555_0x02AA, + .dev_size = SIZE_512KiB, + .cmd_set = P_ID_AMD_STD, + .nr_regions = 1, + .regions = { + ERASEINFO(0x10000,8), + } + }, { + .mfr_id = CFI_MFR_AMD, + .dev_id = AM29LV040B, + .name = "AMD AM29LV040B", + .devtypes = CFI_DEVICETYPE_X8, + .uaddr = MTD_UADDR_0x0555_0x02AA, + .dev_size = SIZE_512KiB, + .cmd_set = P_ID_AMD_STD, + .nr_regions = 1, + .regions = { + ERASEINFO(0x10000,8), + } + }, { + .mfr_id = CFI_MFR_AMD, + .dev_id = AM29F002T, + .name = "AMD AM29F002T", + .devtypes = CFI_DEVICETYPE_X8, + .uaddr = MTD_UADDR_0x0555_0x02AA, + .dev_size = SIZE_256KiB, + .cmd_set = P_ID_AMD_STD, + .nr_regions = 4, + .regions = { + ERASEINFO(0x10000,3), + ERASEINFO(0x08000,1), + ERASEINFO(0x02000,2), + ERASEINFO(0x04000,1), + } + }, { + .mfr_id = CFI_MFR_AMD, + .dev_id = AM29SL800DT, + .name = "AMD AM29SL800DT", + .devtypes = CFI_DEVICETYPE_X16|CFI_DEVICETYPE_X8, + .uaddr = MTD_UADDR_0x0AAA_0x0555, + .dev_size = SIZE_1MiB, + .cmd_set = P_ID_AMD_STD, + .nr_regions = 4, + .regions = { + ERASEINFO(0x10000,15), + ERASEINFO(0x08000,1), + ERASEINFO(0x02000,2), + ERASEINFO(0x04000,1), + } + }, { + .mfr_id = CFI_MFR_AMD, + .dev_id = AM29SL800DB, + .name = "AMD AM29SL800DB", + .devtypes = CFI_DEVICETYPE_X16|CFI_DEVICETYPE_X8, + .uaddr = MTD_UADDR_0x0AAA_0x0555, + .dev_size = SIZE_1MiB, + .cmd_set = P_ID_AMD_STD, + .nr_regions = 4, + .regions = { + ERASEINFO(0x04000,1), + ERASEINFO(0x02000,2), + ERASEINFO(0x08000,1), + ERASEINFO(0x10000,15), + } + }, { + .mfr_id = CFI_MFR_ATMEL, + .dev_id = AT49BV512, + .name = "Atmel AT49BV512", + .devtypes = CFI_DEVICETYPE_X8, + .uaddr = MTD_UADDR_0x5555_0x2AAA, + .dev_size = SIZE_64KiB, + .cmd_set = P_ID_AMD_STD, + .nr_regions = 1, + .regions = { + ERASEINFO(0x10000,1) + } + }, { + .mfr_id = CFI_MFR_ATMEL, + .dev_id = AT29LV512, + .name = "Atmel AT29LV512", + .devtypes = CFI_DEVICETYPE_X8, + .uaddr = MTD_UADDR_0x5555_0x2AAA, + .dev_size = SIZE_64KiB, + .cmd_set = P_ID_AMD_STD, + .nr_regions = 1, + .regions = { + ERASEINFO(0x80,256), + ERASEINFO(0x80,256) + } + }, { + .mfr_id = CFI_MFR_ATMEL, + .dev_id = AT49BV16X, + .name = "Atmel AT49BV16X", + .devtypes = CFI_DEVICETYPE_X16|CFI_DEVICETYPE_X8, + .uaddr = MTD_UADDR_0x0555_0x0AAA, /* ???? */ + .dev_size = SIZE_2MiB, + .cmd_set = P_ID_AMD_STD, + .nr_regions = 2, + .regions = { + ERASEINFO(0x02000,8), + ERASEINFO(0x10000,31) + } + }, { + .mfr_id = CFI_MFR_ATMEL, + .dev_id = AT49BV16XT, + .name = "Atmel AT49BV16XT", + .devtypes = CFI_DEVICETYPE_X16|CFI_DEVICETYPE_X8, + .uaddr = MTD_UADDR_0x0555_0x0AAA, /* ???? */ + .dev_size = SIZE_2MiB, + .cmd_set = P_ID_AMD_STD, + .nr_regions = 2, + .regions = { + ERASEINFO(0x10000,31), + ERASEINFO(0x02000,8) + } + }, { + .mfr_id = CFI_MFR_ATMEL, + .dev_id = AT49BV32X, + .name = "Atmel AT49BV32X", + .devtypes = CFI_DEVICETYPE_X16|CFI_DEVICETYPE_X8, + .uaddr = MTD_UADDR_0x0555_0x0AAA, /* ???? */ + .dev_size = SIZE_4MiB, + .cmd_set = P_ID_AMD_STD, + .nr_regions = 2, + .regions = { + ERASEINFO(0x02000,8), + ERASEINFO(0x10000,63) + } + }, { + .mfr_id = CFI_MFR_ATMEL, + .dev_id = AT49BV32XT, + .name = "Atmel AT49BV32XT", + .devtypes = CFI_DEVICETYPE_X16|CFI_DEVICETYPE_X8, + .uaddr = MTD_UADDR_0x0555_0x0AAA, /* ???? */ + .dev_size = SIZE_4MiB, + .cmd_set = P_ID_AMD_STD, + .nr_regions = 2, + .regions = { + ERASEINFO(0x10000,63), + ERASEINFO(0x02000,8) + } + }, { + .mfr_id = CFI_MFR_EON, + .dev_id = EN29LV400AT, + .name = "Eon EN29LV400AT", + .devtypes = CFI_DEVICETYPE_X16|CFI_DEVICETYPE_X8, + .uaddr = MTD_UADDR_0x0AAA_0x0555, + .dev_size = SIZE_512KiB, + .cmd_set = P_ID_AMD_STD, + .nr_regions = 4, + .regions = { + ERASEINFO(0x10000,7), + ERASEINFO(0x08000,1), + ERASEINFO(0x02000,2), + ERASEINFO(0x04000,1), + } + }, { + .mfr_id = CFI_MFR_EON, + .dev_id = EN29LV400AB, + .name = "Eon EN29LV400AB", + .devtypes = CFI_DEVICETYPE_X16|CFI_DEVICETYPE_X8, + .uaddr = MTD_UADDR_0x0AAA_0x0555, + .dev_size = SIZE_512KiB, + .cmd_set = P_ID_AMD_STD, + .nr_regions = 4, + .regions = { + ERASEINFO(0x04000,1), + ERASEINFO(0x02000,2), + ERASEINFO(0x08000,1), + ERASEINFO(0x10000,7), + } + }, { + .mfr_id = CFI_MFR_EON, + .dev_id = EN29SL800BT, + .name = "Eon EN29SL800BT", + .devtypes = CFI_DEVICETYPE_X16|CFI_DEVICETYPE_X8, + .uaddr = MTD_UADDR_0x0AAA_0x0555, + .dev_size = SIZE_1MiB, + .cmd_set = P_ID_AMD_STD, + .nr_regions = 4, + .regions = { + ERASEINFO(0x10000,15), + ERASEINFO(0x08000,1), + ERASEINFO(0x02000,2), + ERASEINFO(0x04000,1), + } + }, { + .mfr_id = CFI_MFR_EON, + .dev_id = EN29SL800BB, + .name = "Eon EN29SL800BB", + .devtypes = CFI_DEVICETYPE_X16|CFI_DEVICETYPE_X8, + .uaddr = MTD_UADDR_0x0AAA_0x0555, + .dev_size = SIZE_1MiB, + .cmd_set = P_ID_AMD_STD, + .nr_regions = 4, + .regions = { + ERASEINFO(0x04000,1), + ERASEINFO(0x02000,2), + ERASEINFO(0x08000,1), + ERASEINFO(0x10000,15), + } + }, { + .mfr_id = CFI_MFR_FUJITSU, + .dev_id = MBM29F040C, + .name = "Fujitsu MBM29F040C", + .devtypes = CFI_DEVICETYPE_X8, + .uaddr = MTD_UADDR_0x0AAA_0x0555, + .dev_size = SIZE_512KiB, + .cmd_set = P_ID_AMD_STD, + .nr_regions = 1, + .regions = { + ERASEINFO(0x10000,8) + } + }, { + .mfr_id = CFI_MFR_FUJITSU, + .dev_id = MBM29F800BA, + .name = "Fujitsu MBM29F800BA", + .devtypes = CFI_DEVICETYPE_X16|CFI_DEVICETYPE_X8, + .uaddr = MTD_UADDR_0x0AAA_0x0555, + .dev_size = SIZE_1MiB, + .cmd_set = P_ID_AMD_STD, + .nr_regions = 4, + .regions = { + ERASEINFO(0x04000,1), + ERASEINFO(0x02000,2), + ERASEINFO(0x08000,1), + ERASEINFO(0x10000,15), + } + }, { + .mfr_id = CFI_MFR_FUJITSU, + .dev_id = MBM29LV650UE, + .name = "Fujitsu MBM29LV650UE", + .devtypes = CFI_DEVICETYPE_X8, + .uaddr = MTD_UADDR_DONT_CARE, + .dev_size = SIZE_8MiB, + .cmd_set = P_ID_AMD_STD, + .nr_regions = 1, + .regions = { + ERASEINFO(0x10000,128) + } + }, { + .mfr_id = CFI_MFR_FUJITSU, + .dev_id = MBM29LV320TE, + .name = "Fujitsu MBM29LV320TE", + .devtypes = CFI_DEVICETYPE_X16|CFI_DEVICETYPE_X8, + .uaddr = MTD_UADDR_0x0AAA_0x0555, + .dev_size = SIZE_4MiB, + .cmd_set = P_ID_AMD_STD, + .nr_regions = 2, + .regions = { + ERASEINFO(0x10000,63), + ERASEINFO(0x02000,8) + } + }, { + .mfr_id = CFI_MFR_FUJITSU, + .dev_id = MBM29LV320BE, + .name = "Fujitsu MBM29LV320BE", + .devtypes = CFI_DEVICETYPE_X16|CFI_DEVICETYPE_X8, + .uaddr = MTD_UADDR_0x0AAA_0x0555, + .dev_size = SIZE_4MiB, + .cmd_set = P_ID_AMD_STD, + .nr_regions = 2, + .regions = { + ERASEINFO(0x02000,8), + ERASEINFO(0x10000,63) + } + }, { + .mfr_id = CFI_MFR_FUJITSU, + .dev_id = MBM29LV160TE, + .name = "Fujitsu MBM29LV160TE", + .devtypes = CFI_DEVICETYPE_X16|CFI_DEVICETYPE_X8, + .uaddr = MTD_UADDR_0x0AAA_0x0555, + .dev_size = SIZE_2MiB, + .cmd_set = P_ID_AMD_STD, + .nr_regions = 4, + .regions = { + ERASEINFO(0x10000,31), + ERASEINFO(0x08000,1), + ERASEINFO(0x02000,2), + ERASEINFO(0x04000,1) + } + }, { + .mfr_id = CFI_MFR_FUJITSU, + .dev_id = MBM29LV160BE, + .name = "Fujitsu MBM29LV160BE", + .devtypes = CFI_DEVICETYPE_X16|CFI_DEVICETYPE_X8, + .uaddr = MTD_UADDR_0x0AAA_0x0555, + .dev_size = SIZE_2MiB, + .cmd_set = P_ID_AMD_STD, + .nr_regions = 4, + .regions = { + ERASEINFO(0x04000,1), + ERASEINFO(0x02000,2), + ERASEINFO(0x08000,1), + ERASEINFO(0x10000,31) + } + }, { + .mfr_id = CFI_MFR_FUJITSU, + .dev_id = MBM29LV800BA, + .name = "Fujitsu MBM29LV800BA", + .devtypes = CFI_DEVICETYPE_X16|CFI_DEVICETYPE_X8, + .uaddr = MTD_UADDR_0x0AAA_0x0555, + .dev_size = SIZE_1MiB, + .cmd_set = P_ID_AMD_STD, + .nr_regions = 4, + .regions = { + ERASEINFO(0x04000,1), + ERASEINFO(0x02000,2), + ERASEINFO(0x08000,1), + ERASEINFO(0x10000,15) + } + }, { + .mfr_id = CFI_MFR_FUJITSU, + .dev_id = MBM29LV800TA, + .name = "Fujitsu MBM29LV800TA", + .devtypes = CFI_DEVICETYPE_X16|CFI_DEVICETYPE_X8, + .uaddr = MTD_UADDR_0x0AAA_0x0555, + .dev_size = SIZE_1MiB, + .cmd_set = P_ID_AMD_STD, + .nr_regions = 4, + .regions = { + ERASEINFO(0x10000,15), + ERASEINFO(0x08000,1), + ERASEINFO(0x02000,2), + ERASEINFO(0x04000,1) + } + }, { + .mfr_id = CFI_MFR_FUJITSU, + .dev_id = MBM29LV400BC, + .name = "Fujitsu MBM29LV400BC", + .devtypes = CFI_DEVICETYPE_X16|CFI_DEVICETYPE_X8, + .uaddr = MTD_UADDR_0x0AAA_0x0555, + .dev_size = SIZE_512KiB, + .cmd_set = P_ID_AMD_STD, + .nr_regions = 4, + .regions = { + ERASEINFO(0x04000,1), + ERASEINFO(0x02000,2), + ERASEINFO(0x08000,1), + ERASEINFO(0x10000,7) + } + }, { + .mfr_id = CFI_MFR_FUJITSU, + .dev_id = MBM29LV400TC, + .name = "Fujitsu MBM29LV400TC", + .devtypes = CFI_DEVICETYPE_X16|CFI_DEVICETYPE_X8, + .uaddr = MTD_UADDR_0x0AAA_0x0555, + .dev_size = SIZE_512KiB, + .cmd_set = P_ID_AMD_STD, + .nr_regions = 4, + .regions = { + ERASEINFO(0x10000,7), + ERASEINFO(0x08000,1), + ERASEINFO(0x02000,2), + ERASEINFO(0x04000,1) + } + }, { + .mfr_id = CFI_MFR_HYUNDAI, + .dev_id = HY29F002T, + .name = "Hyundai HY29F002T", + .devtypes = CFI_DEVICETYPE_X8, + .uaddr = MTD_UADDR_0x0555_0x02AA, + .dev_size = SIZE_256KiB, + .cmd_set = P_ID_AMD_STD, + .nr_regions = 4, + .regions = { + ERASEINFO(0x10000,3), + ERASEINFO(0x08000,1), + ERASEINFO(0x02000,2), + ERASEINFO(0x04000,1), + } + }, { + .mfr_id = CFI_MFR_INTEL, + .dev_id = I28F004B3B, + .name = "Intel 28F004B3B", + .devtypes = CFI_DEVICETYPE_X8, + .uaddr = MTD_UADDR_UNNECESSARY, + .dev_size = SIZE_512KiB, + .cmd_set = P_ID_INTEL_STD, + .nr_regions = 2, + .regions = { + ERASEINFO(0x02000, 8), + ERASEINFO(0x10000, 7), + } + }, { + .mfr_id = CFI_MFR_INTEL, + .dev_id = I28F004B3T, + .name = "Intel 28F004B3T", + .devtypes = CFI_DEVICETYPE_X8, + .uaddr = MTD_UADDR_UNNECESSARY, + .dev_size = SIZE_512KiB, + .cmd_set = P_ID_INTEL_STD, + .nr_regions = 2, + .regions = { + ERASEINFO(0x10000, 7), + ERASEINFO(0x02000, 8), + } + }, { + .mfr_id = CFI_MFR_INTEL, + .dev_id = I28F400B3B, + .name = "Intel 28F400B3B", + .devtypes = CFI_DEVICETYPE_X16|CFI_DEVICETYPE_X8, + .uaddr = MTD_UADDR_UNNECESSARY, + .dev_size = SIZE_512KiB, + .cmd_set = P_ID_INTEL_STD, + .nr_regions = 2, + .regions = { + ERASEINFO(0x02000, 8), + ERASEINFO(0x10000, 7), + } + }, { + .mfr_id = CFI_MFR_INTEL, + .dev_id = I28F400B3T, + .name = "Intel 28F400B3T", + .devtypes = CFI_DEVICETYPE_X16|CFI_DEVICETYPE_X8, + .uaddr = MTD_UADDR_UNNECESSARY, + .dev_size = SIZE_512KiB, + .cmd_set = P_ID_INTEL_STD, + .nr_regions = 2, + .regions = { + ERASEINFO(0x10000, 7), + ERASEINFO(0x02000, 8), + } + }, { + .mfr_id = CFI_MFR_INTEL, + .dev_id = I28F008B3B, + .name = "Intel 28F008B3B", + .devtypes = CFI_DEVICETYPE_X8, + .uaddr = MTD_UADDR_UNNECESSARY, + .dev_size = SIZE_1MiB, + .cmd_set = P_ID_INTEL_STD, + .nr_regions = 2, + .regions = { + ERASEINFO(0x02000, 8), + ERASEINFO(0x10000, 15), + } + }, { + .mfr_id = CFI_MFR_INTEL, + .dev_id = I28F008B3T, + .name = "Intel 28F008B3T", + .devtypes = CFI_DEVICETYPE_X8, + .uaddr = MTD_UADDR_UNNECESSARY, + .dev_size = SIZE_1MiB, + .cmd_set = P_ID_INTEL_STD, + .nr_regions = 2, + .regions = { + ERASEINFO(0x10000, 15), + ERASEINFO(0x02000, 8), + } + }, { + .mfr_id = CFI_MFR_INTEL, + .dev_id = I28F008S5, + .name = "Intel 28F008S5", + .devtypes = CFI_DEVICETYPE_X8, + .uaddr = MTD_UADDR_UNNECESSARY, + .dev_size = SIZE_1MiB, + .cmd_set = P_ID_INTEL_EXT, + .nr_regions = 1, + .regions = { + ERASEINFO(0x10000,16), + } + }, { + .mfr_id = CFI_MFR_INTEL, + .dev_id = I28F016S5, + .name = "Intel 28F016S5", + .devtypes = CFI_DEVICETYPE_X8, + .uaddr = MTD_UADDR_UNNECESSARY, + .dev_size = SIZE_2MiB, + .cmd_set = P_ID_INTEL_EXT, + .nr_regions = 1, + .regions = { + ERASEINFO(0x10000,32), + } + }, { + .mfr_id = CFI_MFR_INTEL, + .dev_id = I28F008SA, + .name = "Intel 28F008SA", + .devtypes = CFI_DEVICETYPE_X8, + .uaddr = MTD_UADDR_UNNECESSARY, + .dev_size = SIZE_1MiB, + .cmd_set = P_ID_INTEL_STD, + .nr_regions = 1, + .regions = { + ERASEINFO(0x10000, 16), + } + }, { + .mfr_id = CFI_MFR_INTEL, + .dev_id = I28F800B3B, + .name = "Intel 28F800B3B", + .devtypes = CFI_DEVICETYPE_X16, + .uaddr = MTD_UADDR_UNNECESSARY, + .dev_size = SIZE_1MiB, + .cmd_set = P_ID_INTEL_STD, + .nr_regions = 2, + .regions = { + ERASEINFO(0x02000, 8), + ERASEINFO(0x10000, 15), + } + }, { + .mfr_id = CFI_MFR_INTEL, + .dev_id = I28F800B3T, + .name = "Intel 28F800B3T", + .devtypes = CFI_DEVICETYPE_X16, + .uaddr = MTD_UADDR_UNNECESSARY, + .dev_size = SIZE_1MiB, + .cmd_set = P_ID_INTEL_STD, + .nr_regions = 2, + .regions = { + ERASEINFO(0x10000, 15), + ERASEINFO(0x02000, 8), + } + }, { + .mfr_id = CFI_MFR_INTEL, + .dev_id = I28F016B3B, + .name = "Intel 28F016B3B", + .devtypes = CFI_DEVICETYPE_X8, + .uaddr = MTD_UADDR_UNNECESSARY, + .dev_size = SIZE_2MiB, + .cmd_set = P_ID_INTEL_STD, + .nr_regions = 2, + .regions = { + ERASEINFO(0x02000, 8), + ERASEINFO(0x10000, 31), + } + }, { + .mfr_id = CFI_MFR_INTEL, + .dev_id = I28F016S3, + .name = "Intel I28F016S3", + .devtypes = CFI_DEVICETYPE_X8, + .uaddr = MTD_UADDR_UNNECESSARY, + .dev_size = SIZE_2MiB, + .cmd_set = P_ID_INTEL_STD, + .nr_regions = 1, + .regions = { + ERASEINFO(0x10000, 32), + } + }, { + .mfr_id = CFI_MFR_INTEL, + .dev_id = I28F016B3T, + .name = "Intel 28F016B3T", + .devtypes = CFI_DEVICETYPE_X8, + .uaddr = MTD_UADDR_UNNECESSARY, + .dev_size = SIZE_2MiB, + .cmd_set = P_ID_INTEL_STD, + .nr_regions = 2, + .regions = { + ERASEINFO(0x10000, 31), + ERASEINFO(0x02000, 8), + } + }, { + .mfr_id = CFI_MFR_INTEL, + .dev_id = I28F160B3B, + .name = "Intel 28F160B3B", + .devtypes = CFI_DEVICETYPE_X16, + .uaddr = MTD_UADDR_UNNECESSARY, + .dev_size = SIZE_2MiB, + .cmd_set = P_ID_INTEL_STD, + .nr_regions = 2, + .regions = { + ERASEINFO(0x02000, 8), + ERASEINFO(0x10000, 31), + } + }, { + .mfr_id = CFI_MFR_INTEL, + .dev_id = I28F160B3T, + .name = "Intel 28F160B3T", + .devtypes = CFI_DEVICETYPE_X16, + .uaddr = MTD_UADDR_UNNECESSARY, + .dev_size = SIZE_2MiB, + .cmd_set = P_ID_INTEL_STD, + .nr_regions = 2, + .regions = { + ERASEINFO(0x10000, 31), + ERASEINFO(0x02000, 8), + } + }, { + .mfr_id = CFI_MFR_INTEL, + .dev_id = I28F320B3B, + .name = "Intel 28F320B3B", + .devtypes = CFI_DEVICETYPE_X16, + .uaddr = MTD_UADDR_UNNECESSARY, + .dev_size = SIZE_4MiB, + .cmd_set = P_ID_INTEL_STD, + .nr_regions = 2, + .regions = { + ERASEINFO(0x02000, 8), + ERASEINFO(0x10000, 63), + } + }, { + .mfr_id = CFI_MFR_INTEL, + .dev_id = I28F320B3T, + .name = "Intel 28F320B3T", + .devtypes = CFI_DEVICETYPE_X16, + .uaddr = MTD_UADDR_UNNECESSARY, + .dev_size = SIZE_4MiB, + .cmd_set = P_ID_INTEL_STD, + .nr_regions = 2, + .regions = { + ERASEINFO(0x10000, 63), + ERASEINFO(0x02000, 8), + } + }, { + .mfr_id = CFI_MFR_INTEL, + .dev_id = I28F640B3B, + .name = "Intel 28F640B3B", + .devtypes = CFI_DEVICETYPE_X16, + .uaddr = MTD_UADDR_UNNECESSARY, + .dev_size = SIZE_8MiB, + .cmd_set = P_ID_INTEL_STD, + .nr_regions = 2, + .regions = { + ERASEINFO(0x02000, 8), + ERASEINFO(0x10000, 127), + } + }, { + .mfr_id = CFI_MFR_INTEL, + .dev_id = I28F640B3T, + .name = "Intel 28F640B3T", + .devtypes = CFI_DEVICETYPE_X16, + .uaddr = MTD_UADDR_UNNECESSARY, + .dev_size = SIZE_8MiB, + .cmd_set = P_ID_INTEL_STD, + .nr_regions = 2, + .regions = { + ERASEINFO(0x10000, 127), + ERASEINFO(0x02000, 8), + } + }, { + .mfr_id = CFI_MFR_INTEL, + .dev_id = I28F640C3B, + .name = "Intel 28F640C3B", + .devtypes = CFI_DEVICETYPE_X16, + .uaddr = MTD_UADDR_UNNECESSARY, + .dev_size = SIZE_8MiB, + .cmd_set = P_ID_INTEL_STD, + .nr_regions = 2, + .regions = { + ERASEINFO(0x02000, 8), + ERASEINFO(0x10000, 127), + } + }, { + .mfr_id = CFI_MFR_INTEL, + .dev_id = I82802AB, + .name = "Intel 82802AB", + .devtypes = CFI_DEVICETYPE_X8, + .uaddr = MTD_UADDR_UNNECESSARY, + .dev_size = SIZE_512KiB, + .cmd_set = P_ID_INTEL_EXT, + .nr_regions = 1, + .regions = { + ERASEINFO(0x10000,8), + } + }, { + .mfr_id = CFI_MFR_INTEL, + .dev_id = I82802AC, + .name = "Intel 82802AC", + .devtypes = CFI_DEVICETYPE_X8, + .uaddr = MTD_UADDR_UNNECESSARY, + .dev_size = SIZE_1MiB, + .cmd_set = P_ID_INTEL_EXT, + .nr_regions = 1, + .regions = { + ERASEINFO(0x10000,16), + } + }, { + .mfr_id = CFI_MFR_MACRONIX, + .dev_id = MX29LV040C, + .name = "Macronix MX29LV040C", + .devtypes = CFI_DEVICETYPE_X8, + .uaddr = MTD_UADDR_0x0555_0x02AA, + .dev_size = SIZE_512KiB, + .cmd_set = P_ID_AMD_STD, + .nr_regions = 1, + .regions = { + ERASEINFO(0x10000,8), + } + }, { + .mfr_id = CFI_MFR_MACRONIX, + .dev_id = MX29LV160T, + .name = "MXIC MX29LV160T", + .devtypes = CFI_DEVICETYPE_X16|CFI_DEVICETYPE_X8, + .uaddr = MTD_UADDR_0x0AAA_0x0555, + .dev_size = SIZE_2MiB, + .cmd_set = P_ID_AMD_STD, + .nr_regions = 4, + .regions = { + ERASEINFO(0x10000,31), + ERASEINFO(0x08000,1), + ERASEINFO(0x02000,2), + ERASEINFO(0x04000,1) + } + }, { + .mfr_id = CFI_MFR_NEC, + .dev_id = UPD29F064115, + .name = "NEC uPD29F064115", + .devtypes = CFI_DEVICETYPE_X16, + .uaddr = MTD_UADDR_0xAAAA_0x5555, + .dev_size = SIZE_8MiB, + .cmd_set = P_ID_AMD_STD, + .nr_regions = 3, + .regions = { + ERASEINFO(0x2000,8), + ERASEINFO(0x10000,126), + ERASEINFO(0x2000,8), + } + }, { + .mfr_id = CFI_MFR_MACRONIX, + .dev_id = MX29LV160B, + .name = "MXIC MX29LV160B", + .devtypes = CFI_DEVICETYPE_X16|CFI_DEVICETYPE_X8, + .uaddr = MTD_UADDR_0x0AAA_0x0555, + .dev_size = SIZE_2MiB, + .cmd_set = P_ID_AMD_STD, + .nr_regions = 4, + .regions = { + ERASEINFO(0x04000,1), + ERASEINFO(0x02000,2), + ERASEINFO(0x08000,1), + ERASEINFO(0x10000,31) + } + }, { + .mfr_id = CFI_MFR_MACRONIX, + .dev_id = MX29F040, + .name = "Macronix MX29F040", + .devtypes = CFI_DEVICETYPE_X8, + .uaddr = MTD_UADDR_0x0555_0x02AA, + .dev_size = SIZE_512KiB, + .cmd_set = P_ID_AMD_STD, + .nr_regions = 1, + .regions = { + ERASEINFO(0x10000,8), + } + }, { + .mfr_id = CFI_MFR_MACRONIX, + .dev_id = MX29F016, + .name = "Macronix MX29F016", + .devtypes = CFI_DEVICETYPE_X8, + .uaddr = MTD_UADDR_0x0555_0x02AA, + .dev_size = SIZE_2MiB, + .cmd_set = P_ID_AMD_STD, + .nr_regions = 1, + .regions = { + ERASEINFO(0x10000,32), + } + }, { + .mfr_id = CFI_MFR_MACRONIX, + .dev_id = MX29F004T, + .name = "Macronix MX29F004T", + .devtypes = CFI_DEVICETYPE_X8, + .uaddr = MTD_UADDR_0x0555_0x02AA, + .dev_size = SIZE_512KiB, + .cmd_set = P_ID_AMD_STD, + .nr_regions = 4, + .regions = { + ERASEINFO(0x10000,7), + ERASEINFO(0x08000,1), + ERASEINFO(0x02000,2), + ERASEINFO(0x04000,1), + } + }, { + .mfr_id = CFI_MFR_MACRONIX, + .dev_id = MX29F004B, + .name = "Macronix MX29F004B", + .devtypes = CFI_DEVICETYPE_X8, + .uaddr = MTD_UADDR_0x0555_0x02AA, + .dev_size = SIZE_512KiB, + .cmd_set = P_ID_AMD_STD, + .nr_regions = 4, + .regions = { + ERASEINFO(0x04000,1), + ERASEINFO(0x02000,2), + ERASEINFO(0x08000,1), + ERASEINFO(0x10000,7), + } + }, { + .mfr_id = CFI_MFR_MACRONIX, + .dev_id = MX29F002T, + .name = "Macronix MX29F002T", + .devtypes = CFI_DEVICETYPE_X8, + .uaddr = MTD_UADDR_0x0555_0x02AA, + .dev_size = SIZE_256KiB, + .cmd_set = P_ID_AMD_STD, + .nr_regions = 4, + .regions = { + ERASEINFO(0x10000,3), + ERASEINFO(0x08000,1), + ERASEINFO(0x02000,2), + ERASEINFO(0x04000,1), + } + }, { + .mfr_id = CFI_MFR_PMC, + .dev_id = PM49FL002, + .name = "PMC Pm49FL002", + .devtypes = CFI_DEVICETYPE_X8, + .uaddr = MTD_UADDR_0x5555_0x2AAA, + .dev_size = SIZE_256KiB, + .cmd_set = P_ID_AMD_STD, + .nr_regions = 1, + .regions = { + ERASEINFO( 0x01000, 64 ) + } + }, { + .mfr_id = CFI_MFR_PMC, + .dev_id = PM49FL004, + .name = "PMC Pm49FL004", + .devtypes = CFI_DEVICETYPE_X8, + .uaddr = MTD_UADDR_0x5555_0x2AAA, + .dev_size = SIZE_512KiB, + .cmd_set = P_ID_AMD_STD, + .nr_regions = 1, + .regions = { + ERASEINFO( 0x01000, 128 ) + } + }, { + .mfr_id = CFI_MFR_PMC, + .dev_id = PM49FL008, + .name = "PMC Pm49FL008", + .devtypes = CFI_DEVICETYPE_X8, + .uaddr = MTD_UADDR_0x5555_0x2AAA, + .dev_size = SIZE_1MiB, + .cmd_set = P_ID_AMD_STD, + .nr_regions = 1, + .regions = { + ERASEINFO( 0x01000, 256 ) + } + }, { + .mfr_id = CFI_MFR_SHARP, + .dev_id = LH28F640BF, + .name = "LH28F640BF", + .devtypes = CFI_DEVICETYPE_X16, + .uaddr = MTD_UADDR_UNNECESSARY, + .dev_size = SIZE_8MiB, + .cmd_set = P_ID_INTEL_EXT, + .nr_regions = 2, + .regions = { + ERASEINFO(0x10000, 127), + ERASEINFO(0x02000, 8), + } + }, { + .mfr_id = CFI_MFR_SST, + .dev_id = SST39LF512, + .name = "SST 39LF512", + .devtypes = CFI_DEVICETYPE_X8, + .uaddr = MTD_UADDR_0x5555_0x2AAA, + .dev_size = SIZE_64KiB, + .cmd_set = P_ID_AMD_STD, + .nr_regions = 1, + .regions = { + ERASEINFO(0x01000,16), + } + }, { + .mfr_id = CFI_MFR_SST, + .dev_id = SST39LF010, + .name = "SST 39LF010", + .devtypes = CFI_DEVICETYPE_X8, + .uaddr = MTD_UADDR_0x5555_0x2AAA, + .dev_size = SIZE_128KiB, + .cmd_set = P_ID_AMD_STD, + .nr_regions = 1, + .regions = { + ERASEINFO(0x01000,32), + } + }, { + .mfr_id = CFI_MFR_SST, + .dev_id = SST29EE020, + .name = "SST 29EE020", + .devtypes = CFI_DEVICETYPE_X8, + .uaddr = MTD_UADDR_0x5555_0x2AAA, + .dev_size = SIZE_256KiB, + .cmd_set = P_ID_SST_PAGE, + .nr_regions = 1, + .regions = {ERASEINFO(0x01000,64), + } + }, { + .mfr_id = CFI_MFR_SST, + .dev_id = SST29LE020, + .name = "SST 29LE020", + .devtypes = CFI_DEVICETYPE_X8, + .uaddr = MTD_UADDR_0x5555_0x2AAA, + .dev_size = SIZE_256KiB, + .cmd_set = P_ID_SST_PAGE, + .nr_regions = 1, + .regions = {ERASEINFO(0x01000,64), + } + }, { + .mfr_id = CFI_MFR_SST, + .dev_id = SST39LF020, + .name = "SST 39LF020", + .devtypes = CFI_DEVICETYPE_X8, + .uaddr = MTD_UADDR_0x5555_0x2AAA, + .dev_size = SIZE_256KiB, + .cmd_set = P_ID_AMD_STD, + .nr_regions = 1, + .regions = { + ERASEINFO(0x01000,64), + } + }, { + .mfr_id = CFI_MFR_SST, + .dev_id = SST39LF040, + .name = "SST 39LF040", + .devtypes = CFI_DEVICETYPE_X8, + .uaddr = MTD_UADDR_0x5555_0x2AAA, + .dev_size = SIZE_512KiB, + .cmd_set = P_ID_AMD_STD, + .nr_regions = 1, + .regions = { + ERASEINFO(0x01000,128), + } + }, { + .mfr_id = CFI_MFR_SST, + .dev_id = SST39SF010A, + .name = "SST 39SF010A", + .devtypes = CFI_DEVICETYPE_X8, + .uaddr = MTD_UADDR_0x5555_0x2AAA, + .dev_size = SIZE_128KiB, + .cmd_set = P_ID_AMD_STD, + .nr_regions = 1, + .regions = { + ERASEINFO(0x01000,32), + } + }, { + .mfr_id = CFI_MFR_SST, + .dev_id = SST39SF020A, + .name = "SST 39SF020A", + .devtypes = CFI_DEVICETYPE_X8, + .uaddr = MTD_UADDR_0x5555_0x2AAA, + .dev_size = SIZE_256KiB, + .cmd_set = P_ID_AMD_STD, + .nr_regions = 1, + .regions = { + ERASEINFO(0x01000,64), + } + }, { + .mfr_id = CFI_MFR_SST, + .dev_id = SST39SF040, + .name = "SST 39SF040", + .devtypes = CFI_DEVICETYPE_X8, + .uaddr = MTD_UADDR_0x5555_0x2AAA, + .dev_size = SIZE_512KiB, + .cmd_set = P_ID_AMD_STD, + .nr_regions = 1, + .regions = { + ERASEINFO(0x01000,128), + } + }, { + .mfr_id = CFI_MFR_SST, + .dev_id = SST49LF040B, + .name = "SST 49LF040B", + .devtypes = CFI_DEVICETYPE_X8, + .uaddr = MTD_UADDR_0x5555_0x2AAA, + .dev_size = SIZE_512KiB, + .cmd_set = P_ID_AMD_STD, + .nr_regions = 1, + .regions = { + ERASEINFO(0x01000,128), + } + }, { + + .mfr_id = CFI_MFR_SST, + .dev_id = SST49LF004B, + .name = "SST 49LF004B", + .devtypes = CFI_DEVICETYPE_X8, + .uaddr = MTD_UADDR_0x5555_0x2AAA, + .dev_size = SIZE_512KiB, + .cmd_set = P_ID_AMD_STD, + .nr_regions = 1, + .regions = { + ERASEINFO(0x01000,128), + } + }, { + .mfr_id = CFI_MFR_SST, + .dev_id = SST49LF008A, + .name = "SST 49LF008A", + .devtypes = CFI_DEVICETYPE_X8, + .uaddr = MTD_UADDR_0x5555_0x2AAA, + .dev_size = SIZE_1MiB, + .cmd_set = P_ID_AMD_STD, + .nr_regions = 1, + .regions = { + ERASEINFO(0x01000,256), + } + }, { + .mfr_id = CFI_MFR_SST, + .dev_id = SST49LF030A, + .name = "SST 49LF030A", + .devtypes = CFI_DEVICETYPE_X8, + .uaddr = MTD_UADDR_0x5555_0x2AAA, + .dev_size = SIZE_512KiB, + .cmd_set = P_ID_AMD_STD, + .nr_regions = 1, + .regions = { + ERASEINFO(0x01000,96), + } + }, { + .mfr_id = CFI_MFR_SST, + .dev_id = SST49LF040A, + .name = "SST 49LF040A", + .devtypes = CFI_DEVICETYPE_X8, + .uaddr = MTD_UADDR_0x5555_0x2AAA, + .dev_size = SIZE_512KiB, + .cmd_set = P_ID_AMD_STD, + .nr_regions = 1, + .regions = { + ERASEINFO(0x01000,128), + } + }, { + .mfr_id = CFI_MFR_SST, + .dev_id = SST49LF080A, + .name = "SST 49LF080A", + .devtypes = CFI_DEVICETYPE_X8, + .uaddr = MTD_UADDR_0x5555_0x2AAA, + .dev_size = SIZE_1MiB, + .cmd_set = P_ID_AMD_STD, + .nr_regions = 1, + .regions = { + ERASEINFO(0x01000,256), + } + }, { + .mfr_id = CFI_MFR_SST, /* should be CFI */ + .dev_id = SST39LF160, + .name = "SST 39LF160", + .devtypes = CFI_DEVICETYPE_X16, + .uaddr = MTD_UADDR_0xAAAA_0x5555, + .dev_size = SIZE_2MiB, + .cmd_set = P_ID_AMD_STD, + .nr_regions = 2, + .regions = { + ERASEINFO(0x1000,256), + ERASEINFO(0x1000,256) + } + }, { + .mfr_id = CFI_MFR_SST, /* should be CFI */ + .dev_id = SST39VF1601, + .name = "SST 39VF1601", + .devtypes = CFI_DEVICETYPE_X16, + .uaddr = MTD_UADDR_0xAAAA_0x5555, + .dev_size = SIZE_2MiB, + .cmd_set = P_ID_AMD_STD, + .nr_regions = 2, + .regions = { + ERASEINFO(0x1000,256), + ERASEINFO(0x1000,256) + } + }, { + /* CFI is broken: reports AMD_STD, but needs custom uaddr */ + .mfr_id = CFI_MFR_SST, + .dev_id = SST39WF1601, + .name = "SST 39WF1601", + .devtypes = CFI_DEVICETYPE_X16, + .uaddr = MTD_UADDR_0xAAAA_0x5555, + .dev_size = SIZE_2MiB, + .cmd_set = P_ID_AMD_STD, + .nr_regions = 2, + .regions = { + ERASEINFO(0x1000,256), + ERASEINFO(0x1000,256) + } + }, { + /* CFI is broken: reports AMD_STD, but needs custom uaddr */ + .mfr_id = CFI_MFR_SST, + .dev_id = SST39WF1602, + .name = "SST 39WF1602", + .devtypes = CFI_DEVICETYPE_X16, + .uaddr = MTD_UADDR_0xAAAA_0x5555, + .dev_size = SIZE_2MiB, + .cmd_set = P_ID_AMD_STD, + .nr_regions = 2, + .regions = { + ERASEINFO(0x1000,256), + ERASEINFO(0x1000,256) + } + }, { + .mfr_id = CFI_MFR_SST, /* should be CFI */ + .dev_id = SST39VF3201, + .name = "SST 39VF3201", + .devtypes = CFI_DEVICETYPE_X16, + .uaddr = MTD_UADDR_0xAAAA_0x5555, + .dev_size = SIZE_4MiB, + .cmd_set = P_ID_AMD_STD, + .nr_regions = 4, + .regions = { + ERASEINFO(0x1000,256), + ERASEINFO(0x1000,256), + ERASEINFO(0x1000,256), + ERASEINFO(0x1000,256) + } + }, { + .mfr_id = CFI_MFR_SST, + .dev_id = SST36VF3203, + .name = "SST 36VF3203", + .devtypes = CFI_DEVICETYPE_X16|CFI_DEVICETYPE_X8, + .uaddr = MTD_UADDR_0x0AAA_0x0555, + .dev_size = SIZE_4MiB, + .cmd_set = P_ID_AMD_STD, + .nr_regions = 1, + .regions = { + ERASEINFO(0x10000,64), + } + }, { + .mfr_id = CFI_MFR_ST, + .dev_id = M29F800AB, + .name = "ST M29F800AB", + .devtypes = CFI_DEVICETYPE_X16|CFI_DEVICETYPE_X8, + .uaddr = MTD_UADDR_0x0AAA_0x0555, + .dev_size = SIZE_1MiB, + .cmd_set = P_ID_AMD_STD, + .nr_regions = 4, + .regions = { + ERASEINFO(0x04000,1), + ERASEINFO(0x02000,2), + ERASEINFO(0x08000,1), + ERASEINFO(0x10000,15), + } + }, { + .mfr_id = CFI_MFR_ST, /* FIXME - CFI device? */ + .dev_id = M29W800DT, + .name = "ST M29W800DT", + .devtypes = CFI_DEVICETYPE_X16|CFI_DEVICETYPE_X8, + .uaddr = MTD_UADDR_0x0AAA_0x0555, + .dev_size = SIZE_1MiB, + .cmd_set = P_ID_AMD_STD, + .nr_regions = 4, + .regions = { + ERASEINFO(0x10000,15), + ERASEINFO(0x08000,1), + ERASEINFO(0x02000,2), + ERASEINFO(0x04000,1) + } + }, { + .mfr_id = CFI_MFR_ST, /* FIXME - CFI device? */ + .dev_id = M29W800DB, + .name = "ST M29W800DB", + .devtypes = CFI_DEVICETYPE_X16|CFI_DEVICETYPE_X8, + .uaddr = MTD_UADDR_0x0AAA_0x0555, + .dev_size = SIZE_1MiB, + .cmd_set = P_ID_AMD_STD, + .nr_regions = 4, + .regions = { + ERASEINFO(0x04000,1), + ERASEINFO(0x02000,2), + ERASEINFO(0x08000,1), + ERASEINFO(0x10000,15) + } + }, { + .mfr_id = CFI_MFR_ST, + .dev_id = M29W400DT, + .name = "ST M29W400DT", + .devtypes = CFI_DEVICETYPE_X16|CFI_DEVICETYPE_X8, + .uaddr = MTD_UADDR_0x0AAA_0x0555, + .dev_size = SIZE_512KiB, + .cmd_set = P_ID_AMD_STD, + .nr_regions = 4, + .regions = { + ERASEINFO(0x04000,7), + ERASEINFO(0x02000,1), + ERASEINFO(0x08000,2), + ERASEINFO(0x10000,1) + } + }, { + .mfr_id = CFI_MFR_ST, + .dev_id = M29W400DB, + .name = "ST M29W400DB", + .devtypes = CFI_DEVICETYPE_X16|CFI_DEVICETYPE_X8, + .uaddr = MTD_UADDR_0x0AAA_0x0555, + .dev_size = SIZE_512KiB, + .cmd_set = P_ID_AMD_STD, + .nr_regions = 4, + .regions = { + ERASEINFO(0x04000,1), + ERASEINFO(0x02000,2), + ERASEINFO(0x08000,1), + ERASEINFO(0x10000,7) + } + }, { + .mfr_id = CFI_MFR_ST, /* FIXME - CFI device? */ + .dev_id = M29W160DT, + .name = "ST M29W160DT", + .devtypes = CFI_DEVICETYPE_X16|CFI_DEVICETYPE_X8, + .uaddr = MTD_UADDR_0x0555_0x02AA, /* ???? */ + .dev_size = SIZE_2MiB, + .cmd_set = P_ID_AMD_STD, + .nr_regions = 4, + .regions = { + ERASEINFO(0x10000,31), + ERASEINFO(0x08000,1), + ERASEINFO(0x02000,2), + ERASEINFO(0x04000,1) + } + }, { + .mfr_id = CFI_MFR_ST, /* FIXME - CFI device? */ + .dev_id = M29W160DB, + .name = "ST M29W160DB", + .devtypes = CFI_DEVICETYPE_X16|CFI_DEVICETYPE_X8, + .uaddr = MTD_UADDR_0x0555_0x02AA, /* ???? */ + .dev_size = SIZE_2MiB, + .cmd_set = P_ID_AMD_STD, + .nr_regions = 4, + .regions = { + ERASEINFO(0x04000,1), + ERASEINFO(0x02000,2), + ERASEINFO(0x08000,1), + ERASEINFO(0x10000,31) + } + }, { + .mfr_id = CFI_MFR_ST, + .dev_id = M29W040B, + .name = "ST M29W040B", + .devtypes = CFI_DEVICETYPE_X8, + .uaddr = MTD_UADDR_0x0555_0x02AA, + .dev_size = SIZE_512KiB, + .cmd_set = P_ID_AMD_STD, + .nr_regions = 1, + .regions = { + ERASEINFO(0x10000,8), + } + }, { + .mfr_id = CFI_MFR_ST, + .dev_id = M50FW040, + .name = "ST M50FW040", + .devtypes = CFI_DEVICETYPE_X8, + .uaddr = MTD_UADDR_UNNECESSARY, + .dev_size = SIZE_512KiB, + .cmd_set = P_ID_INTEL_EXT, + .nr_regions = 1, + .regions = { + ERASEINFO(0x10000,8), + } + }, { + .mfr_id = CFI_MFR_ST, + .dev_id = M50FW080, + .name = "ST M50FW080", + .devtypes = CFI_DEVICETYPE_X8, + .uaddr = MTD_UADDR_UNNECESSARY, + .dev_size = SIZE_1MiB, + .cmd_set = P_ID_INTEL_EXT, + .nr_regions = 1, + .regions = { + ERASEINFO(0x10000,16), + } + }, { + .mfr_id = CFI_MFR_ST, + .dev_id = M50FW016, + .name = "ST M50FW016", + .devtypes = CFI_DEVICETYPE_X8, + .uaddr = MTD_UADDR_UNNECESSARY, + .dev_size = SIZE_2MiB, + .cmd_set = P_ID_INTEL_EXT, + .nr_regions = 1, + .regions = { + ERASEINFO(0x10000,32), + } + }, { + .mfr_id = CFI_MFR_ST, + .dev_id = M50LPW080, + .name = "ST M50LPW080", + .devtypes = CFI_DEVICETYPE_X8, + .uaddr = MTD_UADDR_UNNECESSARY, + .dev_size = SIZE_1MiB, + .cmd_set = P_ID_INTEL_EXT, + .nr_regions = 1, + .regions = { + ERASEINFO(0x10000,16), + }, + }, { + .mfr_id = CFI_MFR_ST, + .dev_id = M50FLW080A, + .name = "ST M50FLW080A", + .devtypes = CFI_DEVICETYPE_X8, + .uaddr = MTD_UADDR_UNNECESSARY, + .dev_size = SIZE_1MiB, + .cmd_set = P_ID_INTEL_EXT, + .nr_regions = 4, + .regions = { + ERASEINFO(0x1000,16), + ERASEINFO(0x10000,13), + ERASEINFO(0x1000,16), + ERASEINFO(0x1000,16), + } + }, { + .mfr_id = CFI_MFR_ST, + .dev_id = M50FLW080B, + .name = "ST M50FLW080B", + .devtypes = CFI_DEVICETYPE_X8, + .uaddr = MTD_UADDR_UNNECESSARY, + .dev_size = SIZE_1MiB, + .cmd_set = P_ID_INTEL_EXT, + .nr_regions = 4, + .regions = { + ERASEINFO(0x1000,16), + ERASEINFO(0x1000,16), + ERASEINFO(0x10000,13), + ERASEINFO(0x1000,16), + } + }, { + .mfr_id = 0xff00 | CFI_MFR_ST, + .dev_id = 0xff00 | PSD4256G6V, + .name = "ST PSD4256G6V", + .devtypes = CFI_DEVICETYPE_X16, + .uaddr = MTD_UADDR_0x0AAA_0x0554, + .dev_size = SIZE_1MiB, + .cmd_set = P_ID_AMD_STD, + .nr_regions = 1, + .regions = { + ERASEINFO(0x10000,16), + } + }, { + .mfr_id = CFI_MFR_TOSHIBA, + .dev_id = TC58FVT160, + .name = "Toshiba TC58FVT160", + .devtypes = CFI_DEVICETYPE_X16|CFI_DEVICETYPE_X8, + .uaddr = MTD_UADDR_0x0AAA_0x0555, + .dev_size = SIZE_2MiB, + .cmd_set = P_ID_AMD_STD, + .nr_regions = 4, + .regions = { + ERASEINFO(0x10000,31), + ERASEINFO(0x08000,1), + ERASEINFO(0x02000,2), + ERASEINFO(0x04000,1) + } + }, { + .mfr_id = CFI_MFR_TOSHIBA, + .dev_id = TC58FVB160, + .name = "Toshiba TC58FVB160", + .devtypes = CFI_DEVICETYPE_X16|CFI_DEVICETYPE_X8, + .uaddr = MTD_UADDR_0x0AAA_0x0555, + .dev_size = SIZE_2MiB, + .cmd_set = P_ID_AMD_STD, + .nr_regions = 4, + .regions = { + ERASEINFO(0x04000,1), + ERASEINFO(0x02000,2), + ERASEINFO(0x08000,1), + ERASEINFO(0x10000,31) + } + }, { + .mfr_id = CFI_MFR_TOSHIBA, + .dev_id = TC58FVB321, + .name = "Toshiba TC58FVB321", + .devtypes = CFI_DEVICETYPE_X16|CFI_DEVICETYPE_X8, + .uaddr = MTD_UADDR_0x0AAA_0x0555, + .dev_size = SIZE_4MiB, + .cmd_set = P_ID_AMD_STD, + .nr_regions = 2, + .regions = { + ERASEINFO(0x02000,8), + ERASEINFO(0x10000,63) + } + }, { + .mfr_id = CFI_MFR_TOSHIBA, + .dev_id = TC58FVT321, + .name = "Toshiba TC58FVT321", + .devtypes = CFI_DEVICETYPE_X16|CFI_DEVICETYPE_X8, + .uaddr = MTD_UADDR_0x0AAA_0x0555, + .dev_size = SIZE_4MiB, + .cmd_set = P_ID_AMD_STD, + .nr_regions = 2, + .regions = { + ERASEINFO(0x10000,63), + ERASEINFO(0x02000,8) + } + }, { + .mfr_id = CFI_MFR_TOSHIBA, + .dev_id = TC58FVB641, + .name = "Toshiba TC58FVB641", + .devtypes = CFI_DEVICETYPE_X16|CFI_DEVICETYPE_X8, + .uaddr = MTD_UADDR_0x0AAA_0x0555, + .dev_size = SIZE_8MiB, + .cmd_set = P_ID_AMD_STD, + .nr_regions = 2, + .regions = { + ERASEINFO(0x02000,8), + ERASEINFO(0x10000,127) + } + }, { + .mfr_id = CFI_MFR_TOSHIBA, + .dev_id = TC58FVT641, + .name = "Toshiba TC58FVT641", + .devtypes = CFI_DEVICETYPE_X16|CFI_DEVICETYPE_X8, + .uaddr = MTD_UADDR_0x0AAA_0x0555, + .dev_size = SIZE_8MiB, + .cmd_set = P_ID_AMD_STD, + .nr_regions = 2, + .regions = { + ERASEINFO(0x10000,127), + ERASEINFO(0x02000,8) + } + }, { + .mfr_id = CFI_MFR_WINBOND, + .dev_id = W49V002A, + .name = "Winbond W49V002A", + .devtypes = CFI_DEVICETYPE_X8, + .uaddr = MTD_UADDR_0x5555_0x2AAA, + .dev_size = SIZE_256KiB, + .cmd_set = P_ID_AMD_STD, + .nr_regions = 4, + .regions = { + ERASEINFO(0x10000, 3), + ERASEINFO(0x08000, 1), + ERASEINFO(0x02000, 2), + ERASEINFO(0x04000, 1), + } + } +}; + +static inline u32 jedec_read_mfr(struct map_info *map, uint32_t base, + struct cfi_private *cfi) +{ + map_word result; + unsigned long mask; + int bank = 0; + + /* According to JEDEC "Standard Manufacturer's Identification Code" + * (http://www.jedec.org/download/search/jep106W.pdf) + * several first banks can contain 0x7f instead of actual ID + */ + do { + uint32_t ofs = cfi_build_cmd_addr(0 + (bank << 8), map, cfi); + mask = (1 << (cfi->device_type * 8)) - 1; + if (ofs >= map->size) + return 0; + result = map_read(map, base + ofs); + bank++; + } while ((result.x[0] & mask) == CFI_MFR_CONTINUATION); + + return result.x[0] & mask; +} + +static inline u32 jedec_read_id(struct map_info *map, uint32_t base, + struct cfi_private *cfi) +{ + map_word result; + unsigned long mask; + u32 ofs = cfi_build_cmd_addr(1, map, cfi); + mask = (1 << (cfi->device_type * 8)) -1; + result = map_read(map, base + ofs); + return result.x[0] & mask; +} + +static void jedec_reset(u32 base, struct map_info *map, struct cfi_private *cfi) +{ + /* Reset */ + + /* after checking the datasheets for SST, MACRONIX and ATMEL + * (oh and incidentaly the jedec spec - 3.5.3.3) the reset + * sequence is *supposed* to be 0xaa at 0x5555, 0x55 at + * 0x2aaa, 0xF0 at 0x5555 this will not affect the AMD chips + * as they will ignore the writes and don't care what address + * the F0 is written to */ + if (cfi->addr_unlock1) { + pr_debug( "reset unlock called %x %x \n", + cfi->addr_unlock1,cfi->addr_unlock2); + cfi_send_gen_cmd(0xaa, cfi->addr_unlock1, base, map, cfi, cfi->device_type, NULL); + cfi_send_gen_cmd(0x55, cfi->addr_unlock2, base, map, cfi, cfi->device_type, NULL); + } + + cfi_send_gen_cmd(0xF0, cfi->addr_unlock1, base, map, cfi, cfi->device_type, NULL); + /* Some misdesigned Intel chips do not respond for 0xF0 for a reset, + * so ensure we're in read mode. Send both the Intel and the AMD command + * for this. Intel uses 0xff for this, AMD uses 0xff for NOP, so + * this should be safe. + */ + cfi_send_gen_cmd(0xFF, 0, base, map, cfi, cfi->device_type, NULL); + /* FIXME - should have reset delay before continuing */ +} + + +static int cfi_jedec_setup(struct map_info *map, struct cfi_private *cfi, int index) +{ + int i,num_erase_regions; + uint8_t uaddr; + + if (!(jedec_table[index].devtypes & cfi->device_type)) { + pr_debug("Rejecting potential %s with incompatible %d-bit device type\n", + jedec_table[index].name, 4 * (1<<cfi->device_type)); + return 0; + } + + printk(KERN_INFO "Found: %s\n",jedec_table[index].name); + + num_erase_regions = jedec_table[index].nr_regions; + + cfi->cfiq = kmalloc(sizeof(struct cfi_ident) + num_erase_regions * 4, GFP_KERNEL); + if (!cfi->cfiq) { + //xx printk(KERN_WARNING "%s: kmalloc failed for CFI ident structure\n", map->name); + return 0; + } + + memset(cfi->cfiq, 0, sizeof(struct cfi_ident)); + + cfi->cfiq->P_ID = jedec_table[index].cmd_set; + cfi->cfiq->NumEraseRegions = jedec_table[index].nr_regions; + cfi->cfiq->DevSize = jedec_table[index].dev_size; + cfi->cfi_mode = CFI_MODE_JEDEC; + cfi->sector_erase_cmd = CMD(0x30); + + for (i=0; i<num_erase_regions; i++){ + cfi->cfiq->EraseRegionInfo[i] = jedec_table[index].regions[i]; + } + cfi->cmdset_priv = NULL; + + /* This may be redundant for some cases, but it doesn't hurt */ + cfi->mfr = jedec_table[index].mfr_id; + cfi->id = jedec_table[index].dev_id; + + uaddr = jedec_table[index].uaddr; + + /* The table has unlock addresses in _bytes_, and we try not to let + our brains explode when we see the datasheets talking about address + lines numbered from A-1 to A18. The CFI table has unlock addresses + in device-words according to the mode the device is connected in */ + cfi->addr_unlock1 = unlock_addrs[uaddr].addr1 / cfi->device_type; + cfi->addr_unlock2 = unlock_addrs[uaddr].addr2 / cfi->device_type; + + return 1; /* ok */ +} + + +/* + * There is a BIG problem properly ID'ing the JEDEC device and guaranteeing + * the mapped address, unlock addresses, and proper chip ID. This function + * attempts to minimize errors. It is doubtfull that this probe will ever + * be perfect - consequently there should be some module parameters that + * could be manually specified to force the chip info. + */ +static inline int jedec_match( uint32_t base, + struct map_info *map, + struct cfi_private *cfi, + const struct amd_flash_info *finfo ) +{ + int rc = 0; /* failure until all tests pass */ + u32 mfr, id; + uint8_t uaddr; + + /* + * The IDs must match. For X16 and X32 devices operating in + * a lower width ( X8 or X16 ), the device ID's are usually just + * the lower byte(s) of the larger device ID for wider mode. If + * a part is found that doesn't fit this assumption (device id for + * smaller width mode is completely unrealated to full-width mode) + * then the jedec_table[] will have to be augmented with the IDs + * for different widths. + */ + switch (cfi->device_type) { + case CFI_DEVICETYPE_X8: + mfr = (uint8_t)finfo->mfr_id; + id = (uint8_t)finfo->dev_id; + + /* bjd: it seems that if we do this, we can end up + * detecting 16bit flashes as an 8bit device, even though + * there aren't. + */ + if (finfo->dev_id > 0xff) { + pr_debug("%s(): ID is not 8bit\n", + __func__); + goto match_done; + } + break; + case CFI_DEVICETYPE_X16: + mfr = (uint16_t)finfo->mfr_id; + id = (uint16_t)finfo->dev_id; + break; + case CFI_DEVICETYPE_X32: + mfr = (uint16_t)finfo->mfr_id; + id = (uint32_t)finfo->dev_id; + break; + default: + printk(KERN_WARNING + "MTD %s(): Unsupported device type %d\n", + __func__, cfi->device_type); + goto match_done; + } + if ( cfi->mfr != mfr || cfi->id != id ) { + goto match_done; + } + + /* the part size must fit in the memory window */ + pr_debug("MTD %s(): Check fit 0x%.8x + 0x%.8x = 0x%.8x\n", + __func__, base, 1 << finfo->dev_size, base + (1 << finfo->dev_size) ); + if ( base + cfi_interleave(cfi) * ( 1 << finfo->dev_size ) > map->size ) { + pr_debug("MTD %s(): 0x%.4x 0x%.4x %dKiB doesn't fit\n", + __func__, finfo->mfr_id, finfo->dev_id, + 1 << finfo->dev_size ); + goto match_done; + } + + if (! (finfo->devtypes & cfi->device_type)) + goto match_done; + + uaddr = finfo->uaddr; + + pr_debug("MTD %s(): check unlock addrs 0x%.4x 0x%.4x\n", + __func__, cfi->addr_unlock1, cfi->addr_unlock2 ); + if ( MTD_UADDR_UNNECESSARY != uaddr && MTD_UADDR_DONT_CARE != uaddr + && ( unlock_addrs[uaddr].addr1 / cfi->device_type != cfi->addr_unlock1 || + unlock_addrs[uaddr].addr2 / cfi->device_type != cfi->addr_unlock2 ) ) { + pr_debug("MTD %s(): 0x%.4x 0x%.4x did not match\n", + __func__, + unlock_addrs[uaddr].addr1, + unlock_addrs[uaddr].addr2); + goto match_done; + } + + /* + * Make sure the ID's disappear when the device is taken out of + * ID mode. The only time this should fail when it should succeed + * is when the ID's are written as data to the same + * addresses. For this rare and unfortunate case the chip + * cannot be probed correctly. + * FIXME - write a driver that takes all of the chip info as + * module parameters, doesn't probe but forces a load. + */ + pr_debug("MTD %s(): check ID's disappear when not in ID mode\n", + __func__ ); + jedec_reset( base, map, cfi ); + mfr = jedec_read_mfr( map, base, cfi ); + id = jedec_read_id( map, base, cfi ); + if ( mfr == cfi->mfr && id == cfi->id ) { + pr_debug("MTD %s(): ID 0x%.2x:0x%.2x did not change after reset:\n" + "You might need to manually specify JEDEC parameters.\n", + __func__, cfi->mfr, cfi->id ); + goto match_done; + } + + /* all tests passed - mark as success */ + rc = 1; + + /* + * Put the device back in ID mode - only need to do this if we + * were truly frobbing a real device. + */ + pr_debug("MTD %s(): return to ID mode\n", __func__ ); + if (cfi->addr_unlock1) { + cfi_send_gen_cmd(0xaa, cfi->addr_unlock1, base, map, cfi, cfi->device_type, NULL); + cfi_send_gen_cmd(0x55, cfi->addr_unlock2, base, map, cfi, cfi->device_type, NULL); + } + cfi_send_gen_cmd(0x90, cfi->addr_unlock1, base, map, cfi, cfi->device_type, NULL); + /* FIXME - should have a delay before continuing */ + + match_done: + return rc; +} + + +static int jedec_probe_chip(struct map_info *map, __u32 base, + unsigned long *chip_map, struct cfi_private *cfi) +{ + int i; + enum uaddr uaddr_idx = MTD_UADDR_NOT_SUPPORTED; + u32 probe_offset1, probe_offset2; + + retry: + if (!cfi->numchips) { + uaddr_idx++; + + if (MTD_UADDR_UNNECESSARY == uaddr_idx) + return 0; + + cfi->addr_unlock1 = unlock_addrs[uaddr_idx].addr1 / cfi->device_type; + cfi->addr_unlock2 = unlock_addrs[uaddr_idx].addr2 / cfi->device_type; + } + + /* Make certain we aren't probing past the end of map */ + if (base >= map->size) { + printk(KERN_NOTICE + "Probe at base(0x%08x) past the end of the map(0x%08lx)\n", + base, map->size -1); + return 0; + + } + /* Ensure the unlock addresses we try stay inside the map */ + probe_offset1 = cfi_build_cmd_addr(cfi->addr_unlock1, map, cfi); + probe_offset2 = cfi_build_cmd_addr(cfi->addr_unlock2, map, cfi); + if ( ((base + probe_offset1 + map_bankwidth(map)) >= map->size) || + ((base + probe_offset2 + map_bankwidth(map)) >= map->size)) + goto retry; + + /* Reset */ + jedec_reset(base, map, cfi); + + /* Autoselect Mode */ + if(cfi->addr_unlock1) { + cfi_send_gen_cmd(0xaa, cfi->addr_unlock1, base, map, cfi, cfi->device_type, NULL); + cfi_send_gen_cmd(0x55, cfi->addr_unlock2, base, map, cfi, cfi->device_type, NULL); + } + cfi_send_gen_cmd(0x90, cfi->addr_unlock1, base, map, cfi, cfi->device_type, NULL); + /* FIXME - should have a delay before continuing */ + + if (!cfi->numchips) { + /* This is the first time we're called. Set up the CFI + stuff accordingly and return */ + + cfi->mfr = jedec_read_mfr(map, base, cfi); + cfi->id = jedec_read_id(map, base, cfi); + pr_debug("Search for id:(%02x %02x) interleave(%d) type(%d)\n", + cfi->mfr, cfi->id, cfi_interleave(cfi), cfi->device_type); + for (i = 0; i < ARRAY_SIZE(jedec_table); i++) { + if ( jedec_match( base, map, cfi, &jedec_table[i] ) ) { + pr_debug("MTD %s(): matched device 0x%x,0x%x unlock_addrs: 0x%.4x 0x%.4x\n", + __func__, cfi->mfr, cfi->id, + cfi->addr_unlock1, cfi->addr_unlock2 ); + if (!cfi_jedec_setup(map, cfi, i)) + return 0; + goto ok_out; + } + } + goto retry; + } else { + uint16_t mfr; + uint16_t id; + + /* Make sure it is a chip of the same manufacturer and id */ + mfr = jedec_read_mfr(map, base, cfi); + id = jedec_read_id(map, base, cfi); + + if ((mfr != cfi->mfr) || (id != cfi->id)) { + printk(KERN_DEBUG "%s: Found different chip or no chip at all (mfr 0x%x, id 0x%x) at 0x%x\n", + map->name, mfr, id, base); + jedec_reset(base, map, cfi); + return 0; + } + } + + /* Check each previous chip locations to see if it's an alias */ + for (i=0; i < (base >> cfi->chipshift); i++) { + unsigned long start; + if(!test_bit(i, chip_map)) { + continue; /* Skip location; no valid chip at this address */ + } + start = i << cfi->chipshift; + if (jedec_read_mfr(map, start, cfi) == cfi->mfr && + jedec_read_id(map, start, cfi) == cfi->id) { + /* Eep. This chip also looks like it's in autoselect mode. + Is it an alias for the new one? */ + jedec_reset(start, map, cfi); + + /* If the device IDs go away, it's an alias */ + if (jedec_read_mfr(map, base, cfi) != cfi->mfr || + jedec_read_id(map, base, cfi) != cfi->id) { + printk(KERN_DEBUG "%s: Found an alias at 0x%x for the chip at 0x%lx\n", + map->name, base, start); + return 0; + } + + /* Yes, it's actually got the device IDs as data. Most + * unfortunate. Stick the new chip in read mode + * too and if it's the same, assume it's an alias. */ + /* FIXME: Use other modes to do a proper check */ + jedec_reset(base, map, cfi); + if (jedec_read_mfr(map, base, cfi) == cfi->mfr && + jedec_read_id(map, base, cfi) == cfi->id) { + printk(KERN_DEBUG "%s: Found an alias at 0x%x for the chip at 0x%lx\n", + map->name, base, start); + return 0; + } + } + } + + /* OK, if we got to here, then none of the previous chips appear to + be aliases for the current one. */ + set_bit((base >> cfi->chipshift), chip_map); /* Update chip map */ + cfi->numchips++; + +ok_out: + /* Put it back into Read Mode */ + jedec_reset(base, map, cfi); + + printk(KERN_INFO "%s: Found %d x%d devices at 0x%x in %d-bit bank\n", + map->name, cfi_interleave(cfi), cfi->device_type*8, base, + map->bankwidth*8); + + return 1; +} + +static struct chip_probe jedec_chip_probe = { + .name = "JEDEC", + .probe_chip = jedec_probe_chip +}; + +static struct mtd_info *jedec_probe(struct map_info *map) +{ + /* + * Just use the generic probe stuff to call our CFI-specific + * chip_probe routine in all the possible permutations, etc. + */ + return mtd_do_chip_probe(map, &jedec_chip_probe); +} + +static struct mtd_chip_driver jedec_chipdrv = { + .probe = jedec_probe, + .name = "jedec_probe", + .module = THIS_MODULE +}; + +static int __init jedec_probe_init(void) +{ + register_mtd_chip_driver(&jedec_chipdrv); + return 0; +} + +static void __exit jedec_probe_exit(void) +{ + unregister_mtd_chip_driver(&jedec_chipdrv); +} + +module_init(jedec_probe_init); +module_exit(jedec_probe_exit); + +MODULE_LICENSE("GPL"); +MODULE_AUTHOR("Erwin Authried <eauth@softsys.co.at> et al."); +MODULE_DESCRIPTION("Probe code for JEDEC-compliant flash chips"); diff --git a/drivers/mtd/chips/map_absent.c b/drivers/mtd/chips/map_absent.c new file mode 100644 index 0000000000..fc68557f49 --- /dev/null +++ b/drivers/mtd/chips/map_absent.c @@ -0,0 +1,113 @@ +// SPDX-License-Identifier: GPL-2.0-only +/* + * Common code to handle absent "placeholder" devices + * Copyright 2001 Resilience Corporation <ebrower@resilience.com> + * + * This map driver is used to allocate "placeholder" MTD + * devices on systems that have socketed/removable media. + * Use of this driver as a fallback preserves the expected + * registration of MTD device nodes regardless of probe outcome. + * A usage example is as follows: + * + * my_dev[i] = do_map_probe("cfi", &my_map[i]); + * if(NULL == my_dev[i]) { + * my_dev[i] = do_map_probe("map_absent", &my_map[i]); + * } + * + * Any device 'probed' with this driver will return -ENODEV + * upon open. + */ + +#include <linux/module.h> +#include <linux/types.h> +#include <linux/kernel.h> +#include <linux/errno.h> +#include <linux/slab.h> +#include <linux/init.h> +#include <linux/mtd/mtd.h> +#include <linux/mtd/map.h> + +static int map_absent_read (struct mtd_info *, loff_t, size_t, size_t *, u_char *); +static int map_absent_write (struct mtd_info *, loff_t, size_t, size_t *, const u_char *); +static int map_absent_erase (struct mtd_info *, struct erase_info *); +static void map_absent_sync (struct mtd_info *); +static struct mtd_info *map_absent_probe(struct map_info *map); +static void map_absent_destroy (struct mtd_info *); + + +static struct mtd_chip_driver map_absent_chipdrv = { + .probe = map_absent_probe, + .destroy = map_absent_destroy, + .name = "map_absent", + .module = THIS_MODULE +}; + +static struct mtd_info *map_absent_probe(struct map_info *map) +{ + struct mtd_info *mtd; + + mtd = kzalloc(sizeof(*mtd), GFP_KERNEL); + if (!mtd) { + return NULL; + } + + map->fldrv = &map_absent_chipdrv; + mtd->priv = map; + mtd->name = map->name; + mtd->type = MTD_ABSENT; + mtd->size = map->size; + mtd->_erase = map_absent_erase; + mtd->_read = map_absent_read; + mtd->_write = map_absent_write; + mtd->_sync = map_absent_sync; + mtd->flags = 0; + mtd->erasesize = PAGE_SIZE; + mtd->writesize = 1; + + __module_get(THIS_MODULE); + return mtd; +} + + +static int map_absent_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf) +{ + return -ENODEV; +} + +static int map_absent_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen, const u_char *buf) +{ + return -ENODEV; +} + +static int map_absent_erase(struct mtd_info *mtd, struct erase_info *instr) +{ + return -ENODEV; +} + +static void map_absent_sync(struct mtd_info *mtd) +{ + /* nop */ +} + +static void map_absent_destroy(struct mtd_info *mtd) +{ + /* nop */ +} + +static int __init map_absent_init(void) +{ + register_mtd_chip_driver(&map_absent_chipdrv); + return 0; +} + +static void __exit map_absent_exit(void) +{ + unregister_mtd_chip_driver(&map_absent_chipdrv); +} + +module_init(map_absent_init); +module_exit(map_absent_exit); + +MODULE_LICENSE("GPL"); +MODULE_AUTHOR("Resilience Corporation - Eric Brower <ebrower@resilience.com>"); +MODULE_DESCRIPTION("Placeholder MTD chip driver for 'absent' chips"); diff --git a/drivers/mtd/chips/map_ram.c b/drivers/mtd/chips/map_ram.c new file mode 100644 index 0000000000..e8dd649692 --- /dev/null +++ b/drivers/mtd/chips/map_ram.c @@ -0,0 +1,159 @@ +// SPDX-License-Identifier: GPL-2.0 +/* + * Common code to handle map devices which are simple RAM + * (C) 2000 Red Hat. + */ + +#include <linux/module.h> +#include <linux/types.h> +#include <linux/kernel.h> +#include <asm/io.h> +#include <asm/byteorder.h> +#include <linux/errno.h> +#include <linux/slab.h> +#include <linux/init.h> +#include <linux/mtd/mtd.h> +#include <linux/mtd/map.h> + + +static int mapram_read (struct mtd_info *, loff_t, size_t, size_t *, u_char *); +static int mapram_write (struct mtd_info *, loff_t, size_t, size_t *, const u_char *); +static int mapram_erase (struct mtd_info *, struct erase_info *); +static void mapram_nop (struct mtd_info *); +static struct mtd_info *map_ram_probe(struct map_info *map); +static int mapram_point (struct mtd_info *mtd, loff_t from, size_t len, + size_t *retlen, void **virt, resource_size_t *phys); +static int mapram_unpoint(struct mtd_info *mtd, loff_t from, size_t len); + + +static struct mtd_chip_driver mapram_chipdrv = { + .probe = map_ram_probe, + .name = "map_ram", + .module = THIS_MODULE +}; + +static struct mtd_info *map_ram_probe(struct map_info *map) +{ + struct mtd_info *mtd; + + /* Check the first byte is RAM */ +#if 0 + map_write8(map, 0x55, 0); + if (map_read8(map, 0) != 0x55) + return NULL; + + map_write8(map, 0xAA, 0); + if (map_read8(map, 0) != 0xAA) + return NULL; + + /* Check the last byte is RAM */ + map_write8(map, 0x55, map->size-1); + if (map_read8(map, map->size-1) != 0x55) + return NULL; + + map_write8(map, 0xAA, map->size-1); + if (map_read8(map, map->size-1) != 0xAA) + return NULL; +#endif + /* OK. It seems to be RAM. */ + + mtd = kzalloc(sizeof(*mtd), GFP_KERNEL); + if (!mtd) + return NULL; + + map->fldrv = &mapram_chipdrv; + mtd->priv = map; + mtd->name = map->name; + mtd->type = MTD_RAM; + mtd->size = map->size; + mtd->_erase = mapram_erase; + mtd->_read = mapram_read; + mtd->_write = mapram_write; + mtd->_panic_write = mapram_write; + mtd->_point = mapram_point; + mtd->_sync = mapram_nop; + mtd->_unpoint = mapram_unpoint; + mtd->flags = MTD_CAP_RAM; + mtd->writesize = 1; + + mtd->erasesize = PAGE_SIZE; + while(mtd->size & (mtd->erasesize - 1)) + mtd->erasesize >>= 1; + + __module_get(THIS_MODULE); + return mtd; +} + +static int mapram_point(struct mtd_info *mtd, loff_t from, size_t len, + size_t *retlen, void **virt, resource_size_t *phys) +{ + struct map_info *map = mtd->priv; + + if (!map->virt) + return -EINVAL; + *virt = map->virt + from; + if (phys) + *phys = map->phys + from; + *retlen = len; + return 0; +} + +static int mapram_unpoint(struct mtd_info *mtd, loff_t from, size_t len) +{ + return 0; +} + +static int mapram_read (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf) +{ + struct map_info *map = mtd->priv; + + map_copy_from(map, buf, from, len); + *retlen = len; + return 0; +} + +static int mapram_write (struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen, const u_char *buf) +{ + struct map_info *map = mtd->priv; + + map_copy_to(map, to, buf, len); + *retlen = len; + return 0; +} + +static int mapram_erase (struct mtd_info *mtd, struct erase_info *instr) +{ + /* Yeah, it's inefficient. Who cares? It's faster than a _real_ + flash erase. */ + struct map_info *map = mtd->priv; + map_word allff; + unsigned long i; + + allff = map_word_ff(map); + for (i=0; i<instr->len; i += map_bankwidth(map)) + map_write(map, allff, instr->addr + i); + return 0; +} + +static void mapram_nop(struct mtd_info *mtd) +{ + /* Nothing to see here */ +} + +static int __init map_ram_init(void) +{ + register_mtd_chip_driver(&mapram_chipdrv); + return 0; +} + +static void __exit map_ram_exit(void) +{ + unregister_mtd_chip_driver(&mapram_chipdrv); +} + +module_init(map_ram_init); +module_exit(map_ram_exit); + +MODULE_LICENSE("GPL"); +MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>"); +MODULE_DESCRIPTION("MTD chip driver for RAM chips"); diff --git a/drivers/mtd/chips/map_rom.c b/drivers/mtd/chips/map_rom.c new file mode 100644 index 0000000000..0823b15aaa --- /dev/null +++ b/drivers/mtd/chips/map_rom.c @@ -0,0 +1,133 @@ +// SPDX-License-Identifier: GPL-2.0 +/* + * Common code to handle map devices which are simple ROM + * (C) 2000 Red Hat. + */ + +#include <linux/module.h> +#include <linux/types.h> +#include <linux/kernel.h> +#include <asm/io.h> +#include <asm/byteorder.h> +#include <linux/errno.h> +#include <linux/slab.h> +#include <linux/init.h> +#include <linux/of.h> +#include <linux/mtd/mtd.h> +#include <linux/mtd/map.h> + +static int maprom_read (struct mtd_info *, loff_t, size_t, size_t *, u_char *); +static int maprom_write (struct mtd_info *, loff_t, size_t, size_t *, const u_char *); +static void maprom_nop (struct mtd_info *); +static struct mtd_info *map_rom_probe(struct map_info *map); +static int maprom_erase (struct mtd_info *mtd, struct erase_info *info); +static int maprom_point (struct mtd_info *mtd, loff_t from, size_t len, + size_t *retlen, void **virt, resource_size_t *phys); +static int maprom_unpoint(struct mtd_info *mtd, loff_t from, size_t len); + + +static struct mtd_chip_driver maprom_chipdrv = { + .probe = map_rom_probe, + .name = "map_rom", + .module = THIS_MODULE +}; + +static unsigned int default_erasesize(struct map_info *map) +{ + const __be32 *erase_size = NULL; + + erase_size = of_get_property(map->device_node, "erase-size", NULL); + + return !erase_size ? map->size : be32_to_cpu(*erase_size); +} + +static struct mtd_info *map_rom_probe(struct map_info *map) +{ + struct mtd_info *mtd; + + mtd = kzalloc(sizeof(*mtd), GFP_KERNEL); + if (!mtd) + return NULL; + + map->fldrv = &maprom_chipdrv; + mtd->priv = map; + mtd->name = map->name; + mtd->type = MTD_ROM; + mtd->size = map->size; + mtd->_point = maprom_point; + mtd->_unpoint = maprom_unpoint; + mtd->_read = maprom_read; + mtd->_write = maprom_write; + mtd->_sync = maprom_nop; + mtd->_erase = maprom_erase; + mtd->flags = MTD_CAP_ROM; + mtd->erasesize = default_erasesize(map); + mtd->writesize = 1; + mtd->writebufsize = 1; + + __module_get(THIS_MODULE); + return mtd; +} + + +static int maprom_point(struct mtd_info *mtd, loff_t from, size_t len, + size_t *retlen, void **virt, resource_size_t *phys) +{ + struct map_info *map = mtd->priv; + + if (!map->virt) + return -EINVAL; + *virt = map->virt + from; + if (phys) + *phys = map->phys + from; + *retlen = len; + return 0; +} + +static int maprom_unpoint(struct mtd_info *mtd, loff_t from, size_t len) +{ + return 0; +} + +static int maprom_read (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf) +{ + struct map_info *map = mtd->priv; + + map_copy_from(map, buf, from, len); + *retlen = len; + return 0; +} + +static void maprom_nop(struct mtd_info *mtd) +{ + /* Nothing to see here */ +} + +static int maprom_write (struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen, const u_char *buf) +{ + return -EROFS; +} + +static int maprom_erase (struct mtd_info *mtd, struct erase_info *info) +{ + /* We do our best 8) */ + return -EROFS; +} + +static int __init map_rom_init(void) +{ + register_mtd_chip_driver(&maprom_chipdrv); + return 0; +} + +static void __exit map_rom_exit(void) +{ + unregister_mtd_chip_driver(&maprom_chipdrv); +} + +module_init(map_rom_init); +module_exit(map_rom_exit); + +MODULE_LICENSE("GPL"); +MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>"); +MODULE_DESCRIPTION("MTD chip driver for ROM chips"); diff --git a/drivers/mtd/devices/Kconfig b/drivers/mtd/devices/Kconfig new file mode 100644 index 0000000000..ff2f9e55ef --- /dev/null +++ b/drivers/mtd/devices/Kconfig @@ -0,0 +1,216 @@ +# SPDX-License-Identifier: GPL-2.0-only +menu "Self-contained MTD device drivers" + depends on MTD!=n + depends on HAS_IOMEM + +config MTD_PMC551 + tristate "Ramix PMC551 PCI Mezzanine RAM card support" + depends on PCI + help + This provides a MTD device driver for the Ramix PMC551 RAM PCI card + from Ramix Inc. <http://www.ramix.com/products/memory/pmc551.html>. + These devices come in memory configurations from 32M - 1G. If you + have one, you probably want to enable this. + + If this driver is compiled as a module you get the ability to select + the size of the aperture window pointing into the devices memory. + What this means is that if you have a 1G card, normally the kernel + will use a 1G memory map as its view of the device. As a module, + you can select a 1M window into the memory and the driver will + "slide" the window around the PMC551's memory. This was + particularly useful on the 2.2 kernels on PPC architectures as there + was limited kernel space to deal with. + +config MTD_PMC551_BUGFIX + bool "PMC551 256M DRAM Bugfix" + depends on MTD_PMC551 + help + Some of Ramix's PMC551 boards with 256M configurations have invalid + column and row mux values. This option will fix them, but will + break other memory configurations. If unsure say N. + +config MTD_PMC551_DEBUG + bool "PMC551 Debugging" + depends on MTD_PMC551 + help + This option makes the PMC551 more verbose during its operation and + is only really useful if you are developing on this driver or + suspect a possible hardware or driver bug. If unsure say N. + +config MTD_MS02NV + tristate "DEC MS02-NV NVRAM module support" + depends on MACH_DECSTATION + help + This is an MTD driver for the DEC's MS02-NV (54-20948-01) battery + backed-up NVRAM module. The module was originally meant as an NFS + accelerator. Say Y here if you have a DECstation 5000/2x0 or a + DECsystem 5900 equipped with such a module. + + If you want to compile this driver as a module ( = code which can be + inserted in and removed from the running kernel whenever you want), + say M here and read <file:Documentation/kbuild/modules.rst>. + The module will be called ms02-nv. + +config MTD_DATAFLASH + tristate "Support for AT45xxx DataFlash" + depends on SPI_MASTER + help + This enables access to AT45xxx DataFlash chips, using SPI. + Sometimes DataFlash chips are packaged inside MMC-format + cards; at this writing, the MMC stack won't handle those. + +config MTD_DATAFLASH_WRITE_VERIFY + bool "Verify DataFlash page writes" + depends on MTD_DATAFLASH + help + This adds an extra check when data is written to the flash. + It may help if you are verifying chip setup (timings etc) on + your board. There is a rare possibility that even though the + device thinks the write was successful, a bit could have been + flipped accidentally due to device wear or something else. + +config MTD_DATAFLASH_OTP + bool "DataFlash OTP support (Security Register)" + depends on MTD_DATAFLASH + help + Newer DataFlash chips (revisions C and D) support 128 bytes of + one-time-programmable (OTP) data. The first half may be written + (once) with up to 64 bytes of data, such as a serial number or + other key product data. The second half is programmed with a + unique-to-each-chip bit pattern at the factory. + +config MTD_MCHP23K256 + tristate "Microchip 23K256 SRAM" + depends on SPI_MASTER + help + This enables access to Microchip 23K256 SRAM chips, using SPI. + + Set up your spi devices with the right board-specific + platform data, or a device tree description if you want to + specify device partitioning + +config MTD_MCHP48L640 + tristate "Microchip 48L640 EERAM" + depends on SPI_MASTER + help + This enables access to Microchip 48L640 EERAM chips, using SPI. + +config MTD_SPEAR_SMI + tristate "SPEAR MTD NOR Support through SMI controller" + depends on PLAT_SPEAR || COMPILE_TEST + default y + help + This enable SNOR support on SPEAR platforms using SMI controller + +config MTD_SST25L + tristate "Support SST25L (non JEDEC) SPI Flash chips" + depends on SPI_MASTER + help + This enables access to the non JEDEC SST25L SPI flash chips, used + for program and data storage. + + Set up your spi devices with the right board-specific platform data, + if you want to specify device partitioning. + +config MTD_BCM47XXSFLASH + tristate "Support for serial flash on BCMA bus" + depends on BCMA_SFLASH && (MIPS || ARM) + help + BCMA bus can have various flash memories attached, they are + registered by bcma as platform devices. This enables driver for + serial flash memories. + +config MTD_SLRAM + tristate "Uncached system RAM" + help + If your CPU cannot cache all of the physical memory in your machine, + you can still use it for storage or swap by using this driver to + present it to the system as a Memory Technology Device. + +config MTD_PHRAM + tristate "Physical system RAM" + help + This is a re-implementation of the slram driver above. + + Use this driver to access physical memory that the kernel proper + doesn't have access to, memory beyond the mem=xxx limit, nvram, + memory on the video card, etc... + +config MTD_MTDRAM + tristate "Test driver using RAM" + help + This enables a test MTD device driver which uses vmalloc() to + provide storage. You probably want to say 'N' unless you're + testing stuff. + +config MTDRAM_TOTAL_SIZE + int "MTDRAM device size in KiB" + depends on MTD_MTDRAM + default "4096" + help + This allows you to configure the total size of the MTD device + emulated by the MTDRAM driver. If the MTDRAM driver is built + as a module, it is also possible to specify this as a parameter when + loading the module. + +config MTDRAM_ERASE_SIZE + int "MTDRAM erase block size in KiB" + depends on MTD_MTDRAM + default "128" + help + This allows you to configure the size of the erase blocks in the + device emulated by the MTDRAM driver. If the MTDRAM driver is built + as a module, it is also possible to specify this as a parameter when + loading the module. + +config MTD_BLOCK2MTD + tristate "MTD using block device" + depends on BLOCK + help + This driver allows a block device to appear as an MTD. It would + generally be used in the following cases: + + Using Compact Flash as an MTD, these usually present themselves to + the system as an ATA drive. + Testing MTD users (eg JFFS2) on large media and media that might + be removed during a write (using the floppy drive). + +config MTD_POWERNV_FLASH + tristate "powernv flash MTD driver" + depends on PPC_POWERNV + help + This provides an MTD device to access flash on powernv OPAL + platforms from Linux. This device abstracts away the + firmware interface for flash access. + +comment "Disk-On-Chip Device Drivers" + +config MTD_DOCG3 + tristate "M-Systems Disk-On-Chip G3" + select BCH + select BCH_CONST_PARAMS if !MTD_NAND_ECC_SW_BCH + select BITREVERSE + help + This provides an MTD device driver for the M-Systems DiskOnChip + G3 devices. + + The driver provides access to G3 DiskOnChip, distributed by + M-Systems and now Sandisk. The support is very experimental, + and doesn't give access to any write operations. + +config MTD_ST_SPI_FSM + tristate "ST Microelectronics SPI FSM Serial Flash Controller" + depends on ARCH_STI + help + This provides an MTD device driver for the ST Microelectronics + SPI Fast Sequence Mode (FSM) Serial Flash Controller and support + for a subset of connected Serial Flash devices. + +if MTD_DOCG3 +config BCH_CONST_M + default 14 +config BCH_CONST_T + default 4 +endif + +endmenu diff --git a/drivers/mtd/devices/Makefile b/drivers/mtd/devices/Makefile new file mode 100644 index 0000000000..d11eb2b8b6 --- /dev/null +++ b/drivers/mtd/devices/Makefile @@ -0,0 +1,23 @@ +# SPDX-License-Identifier: GPL-2.0 +# +# linux/drivers/mtd/devices/Makefile +# + +obj-$(CONFIG_MTD_DOCG3) += docg3.o +obj-$(CONFIG_MTD_SLRAM) += slram.o +obj-$(CONFIG_MTD_PHRAM) += phram.o +obj-$(CONFIG_MTD_PMC551) += pmc551.o +obj-$(CONFIG_MTD_MS02NV) += ms02-nv.o +obj-$(CONFIG_MTD_MTDRAM) += mtdram.o +obj-$(CONFIG_MTD_BLOCK2MTD) += block2mtd.o +obj-$(CONFIG_MTD_DATAFLASH) += mtd_dataflash.o +obj-$(CONFIG_MTD_MCHP23K256) += mchp23k256.o +obj-$(CONFIG_MTD_MCHP48L640) += mchp48l640.o +obj-$(CONFIG_MTD_SPEAR_SMI) += spear_smi.o +obj-$(CONFIG_MTD_SST25L) += sst25l.o +obj-$(CONFIG_MTD_BCM47XXSFLASH) += bcm47xxsflash.o +obj-$(CONFIG_MTD_ST_SPI_FSM) += st_spi_fsm.o +obj-$(CONFIG_MTD_POWERNV_FLASH) += powernv_flash.o + + +CFLAGS_docg3.o += -I$(src) diff --git a/drivers/mtd/devices/bcm47xxsflash.c b/drivers/mtd/devices/bcm47xxsflash.c new file mode 100644 index 0000000000..3af50db8b2 --- /dev/null +++ b/drivers/mtd/devices/bcm47xxsflash.c @@ -0,0 +1,382 @@ +// SPDX-License-Identifier: GPL-2.0-only +#include <linux/kernel.h> +#include <linux/module.h> +#include <linux/slab.h> +#include <linux/delay.h> +#include <linux/ioport.h> +#include <linux/mtd/mtd.h> +#include <linux/platform_device.h> +#include <linux/bcma/bcma.h> + +#include "bcm47xxsflash.h" + +MODULE_LICENSE("GPL"); +MODULE_DESCRIPTION("Serial flash driver for BCMA bus"); + +static const char * const probes[] = { "bcm47xxpart", NULL }; + +/************************************************** + * Various helpers + **************************************************/ + +static void bcm47xxsflash_cmd(struct bcm47xxsflash *b47s, u32 opcode) +{ + int i; + + b47s->cc_write(b47s, BCMA_CC_FLASHCTL, BCMA_CC_FLASHCTL_START | opcode); + for (i = 0; i < 1000; i++) { + if (!(b47s->cc_read(b47s, BCMA_CC_FLASHCTL) & + BCMA_CC_FLASHCTL_BUSY)) + return; + cpu_relax(); + } + pr_err("Control command failed (timeout)!\n"); +} + +static int bcm47xxsflash_poll(struct bcm47xxsflash *b47s, int timeout) +{ + unsigned long deadline = jiffies + timeout; + + do { + switch (b47s->type) { + case BCM47XXSFLASH_TYPE_ST: + bcm47xxsflash_cmd(b47s, OPCODE_ST_RDSR); + if (!(b47s->cc_read(b47s, BCMA_CC_FLASHDATA) & + SR_ST_WIP)) + return 0; + break; + case BCM47XXSFLASH_TYPE_ATMEL: + bcm47xxsflash_cmd(b47s, OPCODE_AT_STATUS); + if (b47s->cc_read(b47s, BCMA_CC_FLASHDATA) & + SR_AT_READY) + return 0; + break; + } + + cpu_relax(); + udelay(1); + } while (!time_after_eq(jiffies, deadline)); + + pr_err("Timeout waiting for flash to be ready!\n"); + + return -EBUSY; +} + +/************************************************** + * MTD ops + **************************************************/ + +static int bcm47xxsflash_erase(struct mtd_info *mtd, struct erase_info *erase) +{ + struct bcm47xxsflash *b47s = mtd->priv; + + switch (b47s->type) { + case BCM47XXSFLASH_TYPE_ST: + bcm47xxsflash_cmd(b47s, OPCODE_ST_WREN); + b47s->cc_write(b47s, BCMA_CC_FLASHADDR, erase->addr); + /* Newer flashes have "sub-sectors" which can be erased + * independently with a new command: ST_SSE. The ST_SE command + * erases 64KB just as before. + */ + if (b47s->blocksize < (64 * 1024)) + bcm47xxsflash_cmd(b47s, OPCODE_ST_SSE); + else + bcm47xxsflash_cmd(b47s, OPCODE_ST_SE); + break; + case BCM47XXSFLASH_TYPE_ATMEL: + b47s->cc_write(b47s, BCMA_CC_FLASHADDR, erase->addr << 1); + bcm47xxsflash_cmd(b47s, OPCODE_AT_PAGE_ERASE); + break; + } + + return bcm47xxsflash_poll(b47s, HZ); +} + +static int bcm47xxsflash_read(struct mtd_info *mtd, loff_t from, size_t len, + size_t *retlen, u_char *buf) +{ + struct bcm47xxsflash *b47s = mtd->priv; + size_t orig_len = len; + + /* Check address range */ + if ((from + len) > mtd->size) + return -EINVAL; + + /* Read as much as possible using fast MMIO window */ + if (from < BCM47XXSFLASH_WINDOW_SZ) { + size_t memcpy_len; + + memcpy_len = min(len, (size_t)(BCM47XXSFLASH_WINDOW_SZ - from)); + memcpy_fromio(buf, b47s->window + from, memcpy_len); + from += memcpy_len; + len -= memcpy_len; + buf += memcpy_len; + } + + /* Use indirect access for content out of the window */ + for (; len; len--) { + b47s->cc_write(b47s, BCMA_CC_FLASHADDR, from++); + bcm47xxsflash_cmd(b47s, OPCODE_ST_READ4B); + *buf++ = b47s->cc_read(b47s, BCMA_CC_FLASHDATA); + } + + *retlen = orig_len; + + return orig_len; +} + +static int bcm47xxsflash_write_st(struct mtd_info *mtd, u32 offset, size_t len, + const u_char *buf) +{ + struct bcm47xxsflash *b47s = mtd->priv; + int written = 0; + + /* Enable writes */ + bcm47xxsflash_cmd(b47s, OPCODE_ST_WREN); + + /* Write first byte */ + b47s->cc_write(b47s, BCMA_CC_FLASHADDR, offset); + b47s->cc_write(b47s, BCMA_CC_FLASHDATA, *buf++); + + /* Program page */ + if (b47s->bcma_cc->core->id.rev < 20) { + bcm47xxsflash_cmd(b47s, OPCODE_ST_PP); + return 1; /* 1B written */ + } + + /* Program page and set CSA (on newer chips we can continue writing) */ + bcm47xxsflash_cmd(b47s, OPCODE_ST_CSA | OPCODE_ST_PP); + offset++; + len--; + written++; + + while (len > 0) { + /* Page boundary, another function call is needed */ + if ((offset & 0xFF) == 0) + break; + + bcm47xxsflash_cmd(b47s, OPCODE_ST_CSA | *buf++); + offset++; + len--; + written++; + } + + /* All done, drop CSA & poll */ + b47s->cc_write(b47s, BCMA_CC_FLASHCTL, 0); + udelay(1); + if (bcm47xxsflash_poll(b47s, HZ / 10)) + pr_err("Flash rejected dropping CSA\n"); + + return written; +} + +static int bcm47xxsflash_write_at(struct mtd_info *mtd, u32 offset, size_t len, + const u_char *buf) +{ + struct bcm47xxsflash *b47s = mtd->priv; + u32 mask = b47s->blocksize - 1; + u32 page = (offset & ~mask) << 1; + u32 byte = offset & mask; + int written = 0; + + /* If we don't overwrite whole page, read it to the buffer first */ + if (byte || (len < b47s->blocksize)) { + int err; + + b47s->cc_write(b47s, BCMA_CC_FLASHADDR, page); + bcm47xxsflash_cmd(b47s, OPCODE_AT_BUF1_LOAD); + /* 250 us for AT45DB321B */ + err = bcm47xxsflash_poll(b47s, HZ / 1000); + if (err) { + pr_err("Timeout reading page 0x%X info buffer\n", page); + return err; + } + } + + /* Change buffer content with our data */ + while (len > 0) { + /* Page boundary, another function call is needed */ + if (byte == b47s->blocksize) + break; + + b47s->cc_write(b47s, BCMA_CC_FLASHADDR, byte++); + b47s->cc_write(b47s, BCMA_CC_FLASHDATA, *buf++); + bcm47xxsflash_cmd(b47s, OPCODE_AT_BUF1_WRITE); + len--; + written++; + } + + /* Program page with the buffer content */ + b47s->cc_write(b47s, BCMA_CC_FLASHADDR, page); + bcm47xxsflash_cmd(b47s, OPCODE_AT_BUF1_PROGRAM); + + return written; +} + +static int bcm47xxsflash_write(struct mtd_info *mtd, loff_t to, size_t len, + size_t *retlen, const u_char *buf) +{ + struct bcm47xxsflash *b47s = mtd->priv; + int written; + + /* Writing functions can return without writing all passed data, for + * example when the hardware is too old or when we git page boundary. + */ + while (len > 0) { + switch (b47s->type) { + case BCM47XXSFLASH_TYPE_ST: + written = bcm47xxsflash_write_st(mtd, to, len, buf); + break; + case BCM47XXSFLASH_TYPE_ATMEL: + written = bcm47xxsflash_write_at(mtd, to, len, buf); + break; + default: + BUG_ON(1); + } + if (written < 0) { + pr_err("Error writing at offset 0x%llX\n", to); + return written; + } + to += (loff_t)written; + len -= written; + *retlen += written; + buf += written; + } + + return 0; +} + +static void bcm47xxsflash_fill_mtd(struct bcm47xxsflash *b47s, + struct device *dev) +{ + struct mtd_info *mtd = &b47s->mtd; + + mtd->priv = b47s; + mtd->dev.parent = dev; + mtd->name = "bcm47xxsflash"; + + mtd->type = MTD_NORFLASH; + mtd->flags = MTD_CAP_NORFLASH; + mtd->size = b47s->size; + mtd->erasesize = b47s->blocksize; + mtd->writesize = 1; + mtd->writebufsize = 1; + + mtd->_erase = bcm47xxsflash_erase; + mtd->_read = bcm47xxsflash_read; + mtd->_write = bcm47xxsflash_write; +} + +/************************************************** + * BCMA + **************************************************/ + +static int bcm47xxsflash_bcma_cc_read(struct bcm47xxsflash *b47s, u16 offset) +{ + return bcma_cc_read32(b47s->bcma_cc, offset); +} + +static void bcm47xxsflash_bcma_cc_write(struct bcm47xxsflash *b47s, u16 offset, + u32 value) +{ + bcma_cc_write32(b47s->bcma_cc, offset, value); +} + +static int bcm47xxsflash_bcma_probe(struct platform_device *pdev) +{ + struct device *dev = &pdev->dev; + struct bcma_sflash *sflash = dev_get_platdata(dev); + struct bcm47xxsflash *b47s; + struct resource *res; + int err; + + b47s = devm_kzalloc(dev, sizeof(*b47s), GFP_KERNEL); + if (!b47s) + return -ENOMEM; + + res = platform_get_resource(pdev, IORESOURCE_MEM, 0); + if (!res) { + dev_err(dev, "invalid resource\n"); + return -EINVAL; + } + if (!devm_request_mem_region(dev, res->start, resource_size(res), + res->name)) { + dev_err(dev, "can't request region for resource %pR\n", res); + return -EBUSY; + } + + b47s->bcma_cc = container_of(sflash, struct bcma_drv_cc, sflash); + b47s->cc_read = bcm47xxsflash_bcma_cc_read; + b47s->cc_write = bcm47xxsflash_bcma_cc_write; + + /* + * On old MIPS devices cache was magically invalidated when needed, + * allowing us to use cached access and gain some performance. Trying + * the same on ARM based BCM53573 results in flash corruptions, we need + * to use uncached access for it. + * + * It may be arch specific, but right now there is only 1 ARM SoC using + * this driver, so let's follow Broadcom's reference code and check + * ChipCommon revision. + */ + if (b47s->bcma_cc->core->id.rev == 54) + b47s->window = ioremap(res->start, resource_size(res)); + else + b47s->window = ioremap_cache(res->start, resource_size(res)); + if (!b47s->window) { + dev_err(dev, "ioremap failed for resource %pR\n", res); + return -ENOMEM; + } + + switch (b47s->bcma_cc->capabilities & BCMA_CC_CAP_FLASHT) { + case BCMA_CC_FLASHT_STSER: + b47s->type = BCM47XXSFLASH_TYPE_ST; + break; + case BCMA_CC_FLASHT_ATSER: + b47s->type = BCM47XXSFLASH_TYPE_ATMEL; + break; + } + + b47s->blocksize = sflash->blocksize; + b47s->numblocks = sflash->numblocks; + b47s->size = sflash->size; + bcm47xxsflash_fill_mtd(b47s, &pdev->dev); + + platform_set_drvdata(pdev, b47s); + + err = mtd_device_parse_register(&b47s->mtd, probes, NULL, NULL, 0); + if (err) { + pr_err("Failed to register MTD device: %d\n", err); + iounmap(b47s->window); + return err; + } + + if (bcm47xxsflash_poll(b47s, HZ / 10)) + pr_warn("Serial flash busy\n"); + + return 0; +} + +static int bcm47xxsflash_bcma_remove(struct platform_device *pdev) +{ + struct bcm47xxsflash *b47s = platform_get_drvdata(pdev); + + mtd_device_unregister(&b47s->mtd); + iounmap(b47s->window); + + return 0; +} + +static struct platform_driver bcma_sflash_driver = { + .probe = bcm47xxsflash_bcma_probe, + .remove = bcm47xxsflash_bcma_remove, + .driver = { + .name = "bcma_sflash", + }, +}; + +/************************************************** + * Init + **************************************************/ + +module_platform_driver(bcma_sflash_driver); diff --git a/drivers/mtd/devices/bcm47xxsflash.h b/drivers/mtd/devices/bcm47xxsflash.h new file mode 100644 index 0000000000..fef0d5e42e --- /dev/null +++ b/drivers/mtd/devices/bcm47xxsflash.h @@ -0,0 +1,81 @@ +/* SPDX-License-Identifier: GPL-2.0 */ +#ifndef __BCM47XXSFLASH_H +#define __BCM47XXSFLASH_H + +#include <linux/mtd/mtd.h> + +#define BCM47XXSFLASH_WINDOW_SZ SZ_16M + +/* Used for ST flashes only. */ +#define OPCODE_ST_WREN 0x0006 /* Write Enable */ +#define OPCODE_ST_WRDIS 0x0004 /* Write Disable */ +#define OPCODE_ST_RDSR 0x0105 /* Read Status Register */ +#define OPCODE_ST_WRSR 0x0101 /* Write Status Register */ +#define OPCODE_ST_READ 0x0303 /* Read Data Bytes */ +#define OPCODE_ST_PP 0x0302 /* Page Program */ +#define OPCODE_ST_SE 0x02d8 /* Sector Erase */ +#define OPCODE_ST_BE 0x00c7 /* Bulk Erase */ +#define OPCODE_ST_DP 0x00b9 /* Deep Power-down */ +#define OPCODE_ST_RES 0x03ab /* Read Electronic Signature */ +#define OPCODE_ST_CSA 0x1000 /* Keep chip select asserted */ +#define OPCODE_ST_SSE 0x0220 /* Sub-sector Erase */ +#define OPCODE_ST_READ4B 0x6313 /* Read Data Bytes in 4Byte addressing mode */ + +/* Used for Atmel flashes only. */ +#define OPCODE_AT_READ 0x07e8 +#define OPCODE_AT_PAGE_READ 0x07d2 +#define OPCODE_AT_STATUS 0x01d7 +#define OPCODE_AT_BUF1_WRITE 0x0384 +#define OPCODE_AT_BUF2_WRITE 0x0387 +#define OPCODE_AT_BUF1_ERASE_PROGRAM 0x0283 +#define OPCODE_AT_BUF2_ERASE_PROGRAM 0x0286 +#define OPCODE_AT_BUF1_PROGRAM 0x0288 +#define OPCODE_AT_BUF2_PROGRAM 0x0289 +#define OPCODE_AT_PAGE_ERASE 0x0281 +#define OPCODE_AT_BLOCK_ERASE 0x0250 +#define OPCODE_AT_BUF1_WRITE_ERASE_PROGRAM 0x0382 +#define OPCODE_AT_BUF2_WRITE_ERASE_PROGRAM 0x0385 +#define OPCODE_AT_BUF1_LOAD 0x0253 +#define OPCODE_AT_BUF2_LOAD 0x0255 +#define OPCODE_AT_BUF1_COMPARE 0x0260 +#define OPCODE_AT_BUF2_COMPARE 0x0261 +#define OPCODE_AT_BUF1_REPROGRAM 0x0258 +#define OPCODE_AT_BUF2_REPROGRAM 0x0259 + +/* Status register bits for ST flashes */ +#define SR_ST_WIP 0x01 /* Write In Progress */ +#define SR_ST_WEL 0x02 /* Write Enable Latch */ +#define SR_ST_BP_MASK 0x1c /* Block Protect */ +#define SR_ST_BP_SHIFT 2 +#define SR_ST_SRWD 0x80 /* Status Register Write Disable */ + +/* Status register bits for Atmel flashes */ +#define SR_AT_READY 0x80 +#define SR_AT_MISMATCH 0x40 +#define SR_AT_ID_MASK 0x38 +#define SR_AT_ID_SHIFT 3 + +struct bcma_drv_cc; + +enum bcm47xxsflash_type { + BCM47XXSFLASH_TYPE_ATMEL, + BCM47XXSFLASH_TYPE_ST, +}; + +struct bcm47xxsflash { + struct bcma_drv_cc *bcma_cc; + int (*cc_read)(struct bcm47xxsflash *b47s, u16 offset); + void (*cc_write)(struct bcm47xxsflash *b47s, u16 offset, u32 value); + + enum bcm47xxsflash_type type; + + void __iomem *window; + + u32 blocksize; + u16 numblocks; + u32 size; + + struct mtd_info mtd; +}; + +#endif /* BCM47XXSFLASH */ diff --git a/drivers/mtd/devices/block2mtd.c b/drivers/mtd/devices/block2mtd.c new file mode 100644 index 0000000000..be106dc20f --- /dev/null +++ b/drivers/mtd/devices/block2mtd.c @@ -0,0 +1,527 @@ +/* + * block2mtd.c - create an mtd from a block device + * + * Copyright (C) 2001,2002 Simon Evans <spse@secret.org.uk> + * Copyright (C) 2004-2006 Joern Engel <joern@wh.fh-wedel.de> + * + * Licence: GPL + */ + +#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt + +/* + * When the first attempt at device initialization fails, we may need to + * wait a little bit and retry. This timeout, by default 3 seconds, gives + * device time to start up. Required on BCM2708 and a few other chipsets. + */ +#define MTD_DEFAULT_TIMEOUT 3 + +#include <linux/module.h> +#include <linux/delay.h> +#include <linux/fs.h> +#include <linux/blkdev.h> +#include <linux/backing-dev.h> +#include <linux/bio.h> +#include <linux/pagemap.h> +#include <linux/list.h> +#include <linux/init.h> +#include <linux/mtd/mtd.h> +#include <linux/mutex.h> +#include <linux/mount.h> +#include <linux/slab.h> +#include <linux/major.h> + +/* Maximum number of comma-separated items in the 'block2mtd=' parameter */ +#define BLOCK2MTD_PARAM_MAX_COUNT 3 + +/* Info for the block device */ +struct block2mtd_dev { + struct list_head list; + struct block_device *blkdev; + struct mtd_info mtd; + struct mutex write_mutex; +}; + + +/* Static info about the MTD, used in cleanup_module */ +static LIST_HEAD(blkmtd_device_list); + + +static struct page *page_read(struct address_space *mapping, pgoff_t index) +{ + return read_mapping_page(mapping, index, NULL); +} + +/* erase a specified part of the device */ +static int _block2mtd_erase(struct block2mtd_dev *dev, loff_t to, size_t len) +{ + struct address_space *mapping = dev->blkdev->bd_inode->i_mapping; + struct page *page; + pgoff_t index = to >> PAGE_SHIFT; // page index + int pages = len >> PAGE_SHIFT; + u_long *p; + u_long *max; + + while (pages) { + page = page_read(mapping, index); + if (IS_ERR(page)) + return PTR_ERR(page); + + max = page_address(page) + PAGE_SIZE; + for (p=page_address(page); p<max; p++) + if (*p != -1UL) { + lock_page(page); + memset(page_address(page), 0xff, PAGE_SIZE); + set_page_dirty(page); + unlock_page(page); + balance_dirty_pages_ratelimited(mapping); + break; + } + + put_page(page); + pages--; + index++; + } + return 0; +} +static int block2mtd_erase(struct mtd_info *mtd, struct erase_info *instr) +{ + struct block2mtd_dev *dev = mtd->priv; + size_t from = instr->addr; + size_t len = instr->len; + int err; + + mutex_lock(&dev->write_mutex); + err = _block2mtd_erase(dev, from, len); + mutex_unlock(&dev->write_mutex); + if (err) + pr_err("erase failed err = %d\n", err); + + return err; +} + + +static int block2mtd_read(struct mtd_info *mtd, loff_t from, size_t len, + size_t *retlen, u_char *buf) +{ + struct block2mtd_dev *dev = mtd->priv; + struct page *page; + pgoff_t index = from >> PAGE_SHIFT; + int offset = from & (PAGE_SIZE-1); + int cpylen; + + while (len) { + if ((offset + len) > PAGE_SIZE) + cpylen = PAGE_SIZE - offset; // multiple pages + else + cpylen = len; // this page + len = len - cpylen; + + page = page_read(dev->blkdev->bd_inode->i_mapping, index); + if (IS_ERR(page)) + return PTR_ERR(page); + + memcpy(buf, page_address(page) + offset, cpylen); + put_page(page); + + if (retlen) + *retlen += cpylen; + buf += cpylen; + offset = 0; + index++; + } + return 0; +} + + +/* write data to the underlying device */ +static int _block2mtd_write(struct block2mtd_dev *dev, const u_char *buf, + loff_t to, size_t len, size_t *retlen) +{ + struct page *page; + struct address_space *mapping = dev->blkdev->bd_inode->i_mapping; + pgoff_t index = to >> PAGE_SHIFT; // page index + int offset = to & ~PAGE_MASK; // page offset + int cpylen; + + while (len) { + if ((offset+len) > PAGE_SIZE) + cpylen = PAGE_SIZE - offset; // multiple pages + else + cpylen = len; // this page + len = len - cpylen; + + page = page_read(mapping, index); + if (IS_ERR(page)) + return PTR_ERR(page); + + if (memcmp(page_address(page)+offset, buf, cpylen)) { + lock_page(page); + memcpy(page_address(page) + offset, buf, cpylen); + set_page_dirty(page); + unlock_page(page); + balance_dirty_pages_ratelimited(mapping); + } + put_page(page); + + if (retlen) + *retlen += cpylen; + + buf += cpylen; + offset = 0; + index++; + } + return 0; +} + + +static int block2mtd_write(struct mtd_info *mtd, loff_t to, size_t len, + size_t *retlen, const u_char *buf) +{ + struct block2mtd_dev *dev = mtd->priv; + int err; + + mutex_lock(&dev->write_mutex); + err = _block2mtd_write(dev, buf, to, len, retlen); + mutex_unlock(&dev->write_mutex); + if (err > 0) + err = 0; + return err; +} + + +/* sync the device - wait until the write queue is empty */ +static void block2mtd_sync(struct mtd_info *mtd) +{ + struct block2mtd_dev *dev = mtd->priv; + sync_blockdev(dev->blkdev); + return; +} + + +static void block2mtd_free_device(struct block2mtd_dev *dev) +{ + if (!dev) + return; + + kfree(dev->mtd.name); + + if (dev->blkdev) { + invalidate_mapping_pages(dev->blkdev->bd_inode->i_mapping, + 0, -1); + blkdev_put(dev->blkdev, NULL); + } + + kfree(dev); +} + +/* + * This function is marked __ref because it calls the __init marked + * early_lookup_bdev when called from the early boot code. + */ +static struct block_device __ref *mdtblock_early_get_bdev(const char *devname, + blk_mode_t mode, int timeout, struct block2mtd_dev *dev) +{ + struct block_device *bdev = ERR_PTR(-ENODEV); +#ifndef MODULE + int i; + + /* + * We can't use early_lookup_bdev from a running system. + */ + if (system_state >= SYSTEM_RUNNING) + return bdev; + + /* + * We might not have the root device mounted at this point. + * Try to resolve the device name by other means. + */ + for (i = 0; i <= timeout; i++) { + dev_t devt; + + if (i) + /* + * Calling wait_for_device_probe in the first loop + * was not enough, sleep for a bit in subsequent + * go-arounds. + */ + msleep(1000); + wait_for_device_probe(); + + if (!early_lookup_bdev(devname, &devt)) { + bdev = blkdev_get_by_dev(devt, mode, dev, NULL); + if (!IS_ERR(bdev)) + break; + } + } +#endif + return bdev; +} + +static struct block2mtd_dev *add_device(char *devname, int erase_size, + char *label, int timeout) +{ + const blk_mode_t mode = BLK_OPEN_READ | BLK_OPEN_WRITE; + struct block_device *bdev; + struct block2mtd_dev *dev; + char *name; + + if (!devname) + return NULL; + + dev = kzalloc(sizeof(struct block2mtd_dev), GFP_KERNEL); + if (!dev) + return NULL; + + /* Get a handle on the device */ + bdev = blkdev_get_by_path(devname, mode, dev, NULL); + if (IS_ERR(bdev)) + bdev = mdtblock_early_get_bdev(devname, mode, timeout, dev); + if (IS_ERR(bdev)) { + pr_err("error: cannot open device %s\n", devname); + goto err_free_block2mtd; + } + dev->blkdev = bdev; + + if (MAJOR(bdev->bd_dev) == MTD_BLOCK_MAJOR) { + pr_err("attempting to use an MTD device as a block device\n"); + goto err_free_block2mtd; + } + + if ((long)dev->blkdev->bd_inode->i_size % erase_size) { + pr_err("erasesize must be a divisor of device size\n"); + goto err_free_block2mtd; + } + + mutex_init(&dev->write_mutex); + + /* Setup the MTD structure */ + /* make the name contain the block device in */ + if (!label) + name = kasprintf(GFP_KERNEL, "block2mtd: %s", devname); + else + name = kstrdup(label, GFP_KERNEL); + if (!name) + goto err_destroy_mutex; + + dev->mtd.name = name; + + dev->mtd.size = dev->blkdev->bd_inode->i_size & PAGE_MASK; + dev->mtd.erasesize = erase_size; + dev->mtd.writesize = 1; + dev->mtd.writebufsize = PAGE_SIZE; + dev->mtd.type = MTD_RAM; + dev->mtd.flags = MTD_CAP_RAM; + dev->mtd._erase = block2mtd_erase; + dev->mtd._write = block2mtd_write; + dev->mtd._sync = block2mtd_sync; + dev->mtd._read = block2mtd_read; + dev->mtd.priv = dev; + dev->mtd.owner = THIS_MODULE; + + if (mtd_device_register(&dev->mtd, NULL, 0)) { + /* Device didn't get added, so free the entry */ + goto err_destroy_mutex; + } + + list_add(&dev->list, &blkmtd_device_list); + pr_info("mtd%d: [%s] erase_size = %dKiB [%d]\n", + dev->mtd.index, + label ? label : dev->mtd.name + strlen("block2mtd: "), + dev->mtd.erasesize >> 10, dev->mtd.erasesize); + return dev; + +err_destroy_mutex: + mutex_destroy(&dev->write_mutex); +err_free_block2mtd: + block2mtd_free_device(dev); + return NULL; +} + + +/* This function works similar to reguler strtoul. In addition, it + * allows some suffixes for a more human-readable number format: + * ki, Ki, kiB, KiB - multiply result with 1024 + * Mi, MiB - multiply result with 1024^2 + * Gi, GiB - multiply result with 1024^3 + */ +static int ustrtoul(const char *cp, char **endp, unsigned int base) +{ + unsigned long result = simple_strtoul(cp, endp, base); + switch (**endp) { + case 'G' : + result *= 1024; + fallthrough; + case 'M': + result *= 1024; + fallthrough; + case 'K': + case 'k': + result *= 1024; + /* By dwmw2 editorial decree, "ki", "Mi" or "Gi" are to be used. */ + if ((*endp)[1] == 'i') { + if ((*endp)[2] == 'B') + (*endp) += 3; + else + (*endp) += 2; + } + } + return result; +} + + +static int parse_num(size_t *num, const char *token) +{ + char *endp; + size_t n; + + n = (size_t) ustrtoul(token, &endp, 0); + if (*endp) + return -EINVAL; + + *num = n; + return 0; +} + + +static inline void kill_final_newline(char *str) +{ + char *newline = strrchr(str, '\n'); + if (newline && !newline[1]) + *newline = 0; +} + + +#ifndef MODULE +static int block2mtd_init_called = 0; +/* 80 for device, 12 for erase size */ +static char block2mtd_paramline[80 + 12]; +#endif + +static int block2mtd_setup2(const char *val) +{ + /* 80 for device, 12 for erase size, 80 for name, 8 for timeout */ + char buf[80 + 12 + 80 + 8]; + char *str = buf; + char *token[BLOCK2MTD_PARAM_MAX_COUNT]; + char *name; + char *label = NULL; + size_t erase_size = PAGE_SIZE; + unsigned long timeout = MTD_DEFAULT_TIMEOUT; + int i, ret; + + if (strnlen(val, sizeof(buf)) >= sizeof(buf)) { + pr_err("parameter too long\n"); + return 0; + } + + strcpy(str, val); + kill_final_newline(str); + + for (i = 0; i < BLOCK2MTD_PARAM_MAX_COUNT; i++) + token[i] = strsep(&str, ","); + + if (str) { + pr_err("too many arguments\n"); + return 0; + } + + if (!token[0]) { + pr_err("no argument\n"); + return 0; + } + + name = token[0]; + if (strlen(name) + 1 > 80) { + pr_err("device name too long\n"); + return 0; + } + + /* Optional argument when custom label is used */ + if (token[1] && strlen(token[1])) { + ret = parse_num(&erase_size, token[1]); + if (ret) { + pr_err("illegal erase size\n"); + return 0; + } + } + + if (token[2]) { + label = token[2]; + pr_info("Using custom MTD label '%s' for dev %s\n", label, name); + } + + add_device(name, erase_size, label, timeout); + + return 0; +} + + +static int block2mtd_setup(const char *val, const struct kernel_param *kp) +{ +#ifdef MODULE + return block2mtd_setup2(val); +#else + /* If more parameters are later passed in via + /sys/module/block2mtd/parameters/block2mtd + and block2mtd_init() has already been called, + we can parse the argument now. */ + + if (block2mtd_init_called) + return block2mtd_setup2(val); + + /* During early boot stage, we only save the parameters + here. We must parse them later: if the param passed + from kernel boot command line, block2mtd_setup() is + called so early that it is not possible to resolve + the device (even kmalloc() fails). Deter that work to + block2mtd_setup2(). */ + + strscpy(block2mtd_paramline, val, sizeof(block2mtd_paramline)); + + return 0; +#endif +} + + +module_param_call(block2mtd, block2mtd_setup, NULL, NULL, 0200); +MODULE_PARM_DESC(block2mtd, "Device to use. \"block2mtd=<dev>[,[<erasesize>][,<label>]]\""); + +static int __init block2mtd_init(void) +{ + int ret = 0; + +#ifndef MODULE + if (strlen(block2mtd_paramline)) + ret = block2mtd_setup2(block2mtd_paramline); + block2mtd_init_called = 1; +#endif + + return ret; +} + + +static void block2mtd_exit(void) +{ + struct list_head *pos, *next; + + /* Remove the MTD devices */ + list_for_each_safe(pos, next, &blkmtd_device_list) { + struct block2mtd_dev *dev = list_entry(pos, typeof(*dev), list); + block2mtd_sync(&dev->mtd); + mtd_device_unregister(&dev->mtd); + mutex_destroy(&dev->write_mutex); + pr_info("mtd%d: [%s] removed\n", + dev->mtd.index, + dev->mtd.name + strlen("block2mtd: ")); + list_del(&dev->list); + block2mtd_free_device(dev); + } +} + +late_initcall(block2mtd_init); +module_exit(block2mtd_exit); + +MODULE_LICENSE("GPL"); +MODULE_AUTHOR("Joern Engel <joern@lazybastard.org>"); +MODULE_DESCRIPTION("Emulate an MTD using a block device"); diff --git a/drivers/mtd/devices/docg3.c b/drivers/mtd/devices/docg3.c new file mode 100644 index 0000000000..22e73dd611 --- /dev/null +++ b/drivers/mtd/devices/docg3.c @@ -0,0 +1,2086 @@ +// SPDX-License-Identifier: GPL-2.0-or-later +/* + * Handles the M-Systems DiskOnChip G3 chip + * + * Copyright (C) 2011 Robert Jarzmik + */ + +#include <linux/kernel.h> +#include <linux/module.h> +#include <linux/errno.h> +#include <linux/of.h> +#include <linux/platform_device.h> +#include <linux/string.h> +#include <linux/slab.h> +#include <linux/io.h> +#include <linux/delay.h> +#include <linux/mtd/mtd.h> +#include <linux/mtd/partitions.h> +#include <linux/bitmap.h> +#include <linux/bitrev.h> +#include <linux/bch.h> + +#include <linux/debugfs.h> +#include <linux/seq_file.h> + +#define CREATE_TRACE_POINTS +#include "docg3.h" + +/* + * This driver handles the DiskOnChip G3 flash memory. + * + * As no specification is available from M-Systems/Sandisk, this drivers lacks + * several functions available on the chip, as : + * - IPL write + * + * The bus data width (8bits versus 16bits) is not handled (if_cfg flag), and + * the driver assumes a 16bits data bus. + * + * DocG3 relies on 2 ECC algorithms, which are handled in hardware : + * - a 1 byte Hamming code stored in the OOB for each page + * - a 7 bytes BCH code stored in the OOB for each page + * The BCH ECC is : + * - BCH is in GF(2^14) + * - BCH is over data of 520 bytes (512 page + 7 page_info bytes + * + 1 hamming byte) + * - BCH can correct up to 4 bits (t = 4) + * - BCH syndroms are calculated in hardware, and checked in hardware as well + * + */ + +static unsigned int reliable_mode; +module_param(reliable_mode, uint, 0); +MODULE_PARM_DESC(reliable_mode, "Set the docg3 mode (0=normal MLC, 1=fast, " + "2=reliable) : MLC normal operations are in normal mode"); + +static int docg3_ooblayout_ecc(struct mtd_info *mtd, int section, + struct mtd_oob_region *oobregion) +{ + if (section) + return -ERANGE; + + /* byte 7 is Hamming ECC, byte 8-14 are BCH ECC */ + oobregion->offset = 7; + oobregion->length = 8; + + return 0; +} + +static int docg3_ooblayout_free(struct mtd_info *mtd, int section, + struct mtd_oob_region *oobregion) +{ + if (section > 1) + return -ERANGE; + + /* free bytes: byte 0 until byte 6, byte 15 */ + if (!section) { + oobregion->offset = 0; + oobregion->length = 7; + } else { + oobregion->offset = 15; + oobregion->length = 1; + } + + return 0; +} + +static const struct mtd_ooblayout_ops nand_ooblayout_docg3_ops = { + .ecc = docg3_ooblayout_ecc, + .free = docg3_ooblayout_free, +}; + +static inline u8 doc_readb(struct docg3 *docg3, u16 reg) +{ + u8 val = readb(docg3->cascade->base + reg); + + trace_docg3_io(0, 8, reg, (int)val); + return val; +} + +static inline u16 doc_readw(struct docg3 *docg3, u16 reg) +{ + u16 val = readw(docg3->cascade->base + reg); + + trace_docg3_io(0, 16, reg, (int)val); + return val; +} + +static inline void doc_writeb(struct docg3 *docg3, u8 val, u16 reg) +{ + writeb(val, docg3->cascade->base + reg); + trace_docg3_io(1, 8, reg, val); +} + +static inline void doc_writew(struct docg3 *docg3, u16 val, u16 reg) +{ + writew(val, docg3->cascade->base + reg); + trace_docg3_io(1, 16, reg, val); +} + +static inline void doc_flash_command(struct docg3 *docg3, u8 cmd) +{ + doc_writeb(docg3, cmd, DOC_FLASHCOMMAND); +} + +static inline void doc_flash_sequence(struct docg3 *docg3, u8 seq) +{ + doc_writeb(docg3, seq, DOC_FLASHSEQUENCE); +} + +static inline void doc_flash_address(struct docg3 *docg3, u8 addr) +{ + doc_writeb(docg3, addr, DOC_FLASHADDRESS); +} + +static char const * const part_probes[] = { "cmdlinepart", "saftlpart", NULL }; + +static int doc_register_readb(struct docg3 *docg3, int reg) +{ + u8 val; + + doc_writew(docg3, reg, DOC_READADDRESS); + val = doc_readb(docg3, reg); + doc_vdbg("Read register %04x : %02x\n", reg, val); + return val; +} + +static int doc_register_readw(struct docg3 *docg3, int reg) +{ + u16 val; + + doc_writew(docg3, reg, DOC_READADDRESS); + val = doc_readw(docg3, reg); + doc_vdbg("Read register %04x : %04x\n", reg, val); + return val; +} + +/** + * doc_delay - delay docg3 operations + * @docg3: the device + * @nbNOPs: the number of NOPs to issue + * + * As no specification is available, the right timings between chip commands are + * unknown. The only available piece of information are the observed nops on a + * working docg3 chip. + * Therefore, doc_delay relies on a busy loop of NOPs, instead of scheduler + * friendlier msleep() functions or blocking mdelay(). + */ +static void doc_delay(struct docg3 *docg3, int nbNOPs) +{ + int i; + + doc_vdbg("NOP x %d\n", nbNOPs); + for (i = 0; i < nbNOPs; i++) + doc_writeb(docg3, 0, DOC_NOP); +} + +static int is_prot_seq_error(struct docg3 *docg3) +{ + int ctrl; + + ctrl = doc_register_readb(docg3, DOC_FLASHCONTROL); + return ctrl & (DOC_CTRL_PROTECTION_ERROR | DOC_CTRL_SEQUENCE_ERROR); +} + +static int doc_is_ready(struct docg3 *docg3) +{ + int ctrl; + + ctrl = doc_register_readb(docg3, DOC_FLASHCONTROL); + return ctrl & DOC_CTRL_FLASHREADY; +} + +static int doc_wait_ready(struct docg3 *docg3) +{ + int maxWaitCycles = 100; + + do { + doc_delay(docg3, 4); + cpu_relax(); + } while (!doc_is_ready(docg3) && maxWaitCycles--); + doc_delay(docg3, 2); + if (maxWaitCycles > 0) + return 0; + else + return -EIO; +} + +static int doc_reset_seq(struct docg3 *docg3) +{ + int ret; + + doc_writeb(docg3, 0x10, DOC_FLASHCONTROL); + doc_flash_sequence(docg3, DOC_SEQ_RESET); + doc_flash_command(docg3, DOC_CMD_RESET); + doc_delay(docg3, 2); + ret = doc_wait_ready(docg3); + + doc_dbg("doc_reset_seq() -> isReady=%s\n", ret ? "false" : "true"); + return ret; +} + +/** + * doc_read_data_area - Read data from data area + * @docg3: the device + * @buf: the buffer to fill in (might be NULL is dummy reads) + * @len: the length to read + * @first: first time read, DOC_READADDRESS should be set + * + * Reads bytes from flash data. Handles the single byte / even bytes reads. + */ +static void doc_read_data_area(struct docg3 *docg3, void *buf, int len, + int first) +{ + int i, cdr, len4; + u16 data16, *dst16; + u8 data8, *dst8; + + doc_dbg("doc_read_data_area(buf=%p, len=%d)\n", buf, len); + cdr = len & 0x1; + len4 = len - cdr; + + if (first) + doc_writew(docg3, DOC_IOSPACE_DATA, DOC_READADDRESS); + dst16 = buf; + for (i = 0; i < len4; i += 2) { + data16 = doc_readw(docg3, DOC_IOSPACE_DATA); + if (dst16) { + *dst16 = data16; + dst16++; + } + } + + if (cdr) { + doc_writew(docg3, DOC_IOSPACE_DATA | DOC_READADDR_ONE_BYTE, + DOC_READADDRESS); + doc_delay(docg3, 1); + dst8 = (u8 *)dst16; + for (i = 0; i < cdr; i++) { + data8 = doc_readb(docg3, DOC_IOSPACE_DATA); + if (dst8) { + *dst8 = data8; + dst8++; + } + } + } +} + +/** + * doc_write_data_area - Write data into data area + * @docg3: the device + * @buf: the buffer to get input bytes from + * @len: the length to write + * + * Writes bytes into flash data. Handles the single byte / even bytes writes. + */ +static void doc_write_data_area(struct docg3 *docg3, const void *buf, int len) +{ + int i, cdr, len4; + u16 *src16; + u8 *src8; + + doc_dbg("doc_write_data_area(buf=%p, len=%d)\n", buf, len); + cdr = len & 0x3; + len4 = len - cdr; + + doc_writew(docg3, DOC_IOSPACE_DATA, DOC_READADDRESS); + src16 = (u16 *)buf; + for (i = 0; i < len4; i += 2) { + doc_writew(docg3, *src16, DOC_IOSPACE_DATA); + src16++; + } + + src8 = (u8 *)src16; + for (i = 0; i < cdr; i++) { + doc_writew(docg3, DOC_IOSPACE_DATA | DOC_READADDR_ONE_BYTE, + DOC_READADDRESS); + doc_writeb(docg3, *src8, DOC_IOSPACE_DATA); + src8++; + } +} + +/** + * doc_set_reliable_mode - Sets the flash to normal or reliable data mode + * @docg3: the device + * + * The reliable data mode is a bit slower than the fast mode, but less errors + * occur. Entering the reliable mode cannot be done without entering the fast + * mode first. + * + * In reliable mode, pages 2*n and 2*n+1 are clones. Writing to page 0 of blocks + * (4,5) make the hardware write also to page 1 of blocks blocks(4,5). Reading + * from page 0 of blocks (4,5) or from page 1 of blocks (4,5) gives the same + * result, which is a logical and between bytes from page 0 and page 1 (which is + * consistent with the fact that writing to a page is _clearing_ bits of that + * page). + */ +static void doc_set_reliable_mode(struct docg3 *docg3) +{ + static char *strmode[] = { "normal", "fast", "reliable", "invalid" }; + + doc_dbg("doc_set_reliable_mode(%s)\n", strmode[docg3->reliable]); + switch (docg3->reliable) { + case 0: + break; + case 1: + doc_flash_sequence(docg3, DOC_SEQ_SET_FASTMODE); + doc_flash_command(docg3, DOC_CMD_FAST_MODE); + break; + case 2: + doc_flash_sequence(docg3, DOC_SEQ_SET_RELIABLEMODE); + doc_flash_command(docg3, DOC_CMD_FAST_MODE); + doc_flash_command(docg3, DOC_CMD_RELIABLE_MODE); + break; + default: + doc_err("doc_set_reliable_mode(): invalid mode\n"); + break; + } + doc_delay(docg3, 2); +} + +/** + * doc_set_asic_mode - Set the ASIC mode + * @docg3: the device + * @mode: the mode + * + * The ASIC can work in 3 modes : + * - RESET: all registers are zeroed + * - NORMAL: receives and handles commands + * - POWERDOWN: minimal poweruse, flash parts shut off + */ +static void doc_set_asic_mode(struct docg3 *docg3, u8 mode) +{ + int i; + + for (i = 0; i < 12; i++) + doc_readb(docg3, DOC_IOSPACE_IPL); + + mode |= DOC_ASICMODE_MDWREN; + doc_dbg("doc_set_asic_mode(%02x)\n", mode); + doc_writeb(docg3, mode, DOC_ASICMODE); + doc_writeb(docg3, ~mode, DOC_ASICMODECONFIRM); + doc_delay(docg3, 1); +} + +/** + * doc_set_device_id - Sets the devices id for cascaded G3 chips + * @docg3: the device + * @id: the chip to select (amongst 0, 1, 2, 3) + * + * There can be 4 cascaded G3 chips. This function selects the one which will + * should be the active one. + */ +static void doc_set_device_id(struct docg3 *docg3, int id) +{ + u8 ctrl; + + doc_dbg("doc_set_device_id(%d)\n", id); + doc_writeb(docg3, id, DOC_DEVICESELECT); + ctrl = doc_register_readb(docg3, DOC_FLASHCONTROL); + + ctrl &= ~DOC_CTRL_VIOLATION; + ctrl |= DOC_CTRL_CE; + doc_writeb(docg3, ctrl, DOC_FLASHCONTROL); +} + +/** + * doc_set_extra_page_mode - Change flash page layout + * @docg3: the device + * + * Normally, the flash page is split into the data (512 bytes) and the out of + * band data (16 bytes). For each, 4 more bytes can be accessed, where the wear + * leveling counters are stored. To access this last area of 4 bytes, a special + * mode must be input to the flash ASIC. + * + * Returns 0 if no error occurred, -EIO else. + */ +static int doc_set_extra_page_mode(struct docg3 *docg3) +{ + int fctrl; + + doc_dbg("doc_set_extra_page_mode()\n"); + doc_flash_sequence(docg3, DOC_SEQ_PAGE_SIZE_532); + doc_flash_command(docg3, DOC_CMD_PAGE_SIZE_532); + doc_delay(docg3, 2); + + fctrl = doc_register_readb(docg3, DOC_FLASHCONTROL); + if (fctrl & (DOC_CTRL_PROTECTION_ERROR | DOC_CTRL_SEQUENCE_ERROR)) + return -EIO; + else + return 0; +} + +/** + * doc_setup_addr_sector - Setup blocks/page/ofs address for one plane + * @docg3: the device + * @sector: the sector + */ +static void doc_setup_addr_sector(struct docg3 *docg3, int sector) +{ + doc_delay(docg3, 1); + doc_flash_address(docg3, sector & 0xff); + doc_flash_address(docg3, (sector >> 8) & 0xff); + doc_flash_address(docg3, (sector >> 16) & 0xff); + doc_delay(docg3, 1); +} + +/** + * doc_setup_writeaddr_sector - Setup blocks/page/ofs address for one plane + * @docg3: the device + * @sector: the sector + * @ofs: the offset in the page, between 0 and (512 + 16 + 512) + */ +static void doc_setup_writeaddr_sector(struct docg3 *docg3, int sector, int ofs) +{ + ofs = ofs >> 2; + doc_delay(docg3, 1); + doc_flash_address(docg3, ofs & 0xff); + doc_flash_address(docg3, sector & 0xff); + doc_flash_address(docg3, (sector >> 8) & 0xff); + doc_flash_address(docg3, (sector >> 16) & 0xff); + doc_delay(docg3, 1); +} + +/** + * doc_read_seek - Set both flash planes to the specified block, page for reading + * @docg3: the device + * @block0: the first plane block index + * @block1: the second plane block index + * @page: the page index within the block + * @wear: if true, read will occur on the 4 extra bytes of the wear area + * @ofs: offset in page to read + * + * Programs the flash even and odd planes to the specific block and page. + * Alternatively, programs the flash to the wear area of the specified page. + */ +static int doc_read_seek(struct docg3 *docg3, int block0, int block1, int page, + int wear, int ofs) +{ + int sector, ret = 0; + + doc_dbg("doc_seek(blocks=(%d,%d), page=%d, ofs=%d, wear=%d)\n", + block0, block1, page, ofs, wear); + + if (!wear && (ofs < 2 * DOC_LAYOUT_PAGE_SIZE)) { + doc_flash_sequence(docg3, DOC_SEQ_SET_PLANE1); + doc_flash_command(docg3, DOC_CMD_READ_PLANE1); + doc_delay(docg3, 2); + } else { + doc_flash_sequence(docg3, DOC_SEQ_SET_PLANE2); + doc_flash_command(docg3, DOC_CMD_READ_PLANE2); + doc_delay(docg3, 2); + } + + doc_set_reliable_mode(docg3); + if (wear) + ret = doc_set_extra_page_mode(docg3); + if (ret) + goto out; + + doc_flash_sequence(docg3, DOC_SEQ_READ); + sector = (block0 << DOC_ADDR_BLOCK_SHIFT) + (page & DOC_ADDR_PAGE_MASK); + doc_flash_command(docg3, DOC_CMD_PROG_BLOCK_ADDR); + doc_setup_addr_sector(docg3, sector); + + sector = (block1 << DOC_ADDR_BLOCK_SHIFT) + (page & DOC_ADDR_PAGE_MASK); + doc_flash_command(docg3, DOC_CMD_PROG_BLOCK_ADDR); + doc_setup_addr_sector(docg3, sector); + doc_delay(docg3, 1); + +out: + return ret; +} + +/** + * doc_write_seek - Set both flash planes to the specified block, page for writing + * @docg3: the device + * @block0: the first plane block index + * @block1: the second plane block index + * @page: the page index within the block + * @ofs: offset in page to write + * + * Programs the flash even and odd planes to the specific block and page. + * Alternatively, programs the flash to the wear area of the specified page. + */ +static int doc_write_seek(struct docg3 *docg3, int block0, int block1, int page, + int ofs) +{ + int ret = 0, sector; + + doc_dbg("doc_write_seek(blocks=(%d,%d), page=%d, ofs=%d)\n", + block0, block1, page, ofs); + + doc_set_reliable_mode(docg3); + + if (ofs < 2 * DOC_LAYOUT_PAGE_SIZE) { + doc_flash_sequence(docg3, DOC_SEQ_SET_PLANE1); + doc_flash_command(docg3, DOC_CMD_READ_PLANE1); + doc_delay(docg3, 2); + } else { + doc_flash_sequence(docg3, DOC_SEQ_SET_PLANE2); + doc_flash_command(docg3, DOC_CMD_READ_PLANE2); + doc_delay(docg3, 2); + } + + doc_flash_sequence(docg3, DOC_SEQ_PAGE_SETUP); + doc_flash_command(docg3, DOC_CMD_PROG_CYCLE1); + + sector = (block0 << DOC_ADDR_BLOCK_SHIFT) + (page & DOC_ADDR_PAGE_MASK); + doc_setup_writeaddr_sector(docg3, sector, ofs); + + doc_flash_command(docg3, DOC_CMD_PROG_CYCLE3); + doc_delay(docg3, 2); + ret = doc_wait_ready(docg3); + if (ret) + goto out; + + doc_flash_command(docg3, DOC_CMD_PROG_CYCLE1); + sector = (block1 << DOC_ADDR_BLOCK_SHIFT) + (page & DOC_ADDR_PAGE_MASK); + doc_setup_writeaddr_sector(docg3, sector, ofs); + doc_delay(docg3, 1); + +out: + return ret; +} + + +/** + * doc_read_page_ecc_init - Initialize hardware ECC engine + * @docg3: the device + * @len: the number of bytes covered by the ECC (BCH covered) + * + * The function does initialize the hardware ECC engine to compute the Hamming + * ECC (on 1 byte) and the BCH hardware ECC (on 7 bytes). + * + * Return 0 if succeeded, -EIO on error + */ +static int doc_read_page_ecc_init(struct docg3 *docg3, int len) +{ + doc_writew(docg3, DOC_ECCCONF0_READ_MODE + | DOC_ECCCONF0_BCH_ENABLE | DOC_ECCCONF0_HAMMING_ENABLE + | (len & DOC_ECCCONF0_DATA_BYTES_MASK), + DOC_ECCCONF0); + doc_delay(docg3, 4); + doc_register_readb(docg3, DOC_FLASHCONTROL); + return doc_wait_ready(docg3); +} + +/** + * doc_write_page_ecc_init - Initialize hardware BCH ECC engine + * @docg3: the device + * @len: the number of bytes covered by the ECC (BCH covered) + * + * The function does initialize the hardware ECC engine to compute the Hamming + * ECC (on 1 byte) and the BCH hardware ECC (on 7 bytes). + * + * Return 0 if succeeded, -EIO on error + */ +static int doc_write_page_ecc_init(struct docg3 *docg3, int len) +{ + doc_writew(docg3, DOC_ECCCONF0_WRITE_MODE + | DOC_ECCCONF0_BCH_ENABLE | DOC_ECCCONF0_HAMMING_ENABLE + | (len & DOC_ECCCONF0_DATA_BYTES_MASK), + DOC_ECCCONF0); + doc_delay(docg3, 4); + doc_register_readb(docg3, DOC_FLASHCONTROL); + return doc_wait_ready(docg3); +} + +/** + * doc_ecc_disable - Disable Hamming and BCH ECC hardware calculator + * @docg3: the device + * + * Disables the hardware ECC generator and checker, for unchecked reads (as when + * reading OOB only or write status byte). + */ +static void doc_ecc_disable(struct docg3 *docg3) +{ + doc_writew(docg3, DOC_ECCCONF0_READ_MODE, DOC_ECCCONF0); + doc_delay(docg3, 4); +} + +/** + * doc_hamming_ecc_init - Initialize hardware Hamming ECC engine + * @docg3: the device + * @nb_bytes: the number of bytes covered by the ECC (Hamming covered) + * + * This function programs the ECC hardware to compute the hamming code on the + * last provided N bytes to the hardware generator. + */ +static void doc_hamming_ecc_init(struct docg3 *docg3, int nb_bytes) +{ + u8 ecc_conf1; + + ecc_conf1 = doc_register_readb(docg3, DOC_ECCCONF1); + ecc_conf1 &= ~DOC_ECCCONF1_HAMMING_BITS_MASK; + ecc_conf1 |= (nb_bytes & DOC_ECCCONF1_HAMMING_BITS_MASK); + doc_writeb(docg3, ecc_conf1, DOC_ECCCONF1); +} + +/** + * doc_ecc_bch_fix_data - Fix if need be read data from flash + * @docg3: the device + * @buf: the buffer of read data (512 + 7 + 1 bytes) + * @hwecc: the hardware calculated ECC. + * It's in fact recv_ecc ^ calc_ecc, where recv_ecc was read from OOB + * area data, and calc_ecc the ECC calculated by the hardware generator. + * + * Checks if the received data matches the ECC, and if an error is detected, + * tries to fix the bit flips (at most 4) in the buffer buf. As the docg3 + * understands the (data, ecc, syndroms) in an inverted order in comparison to + * the BCH library, the function reverses the order of bits (ie. bit7 and bit0, + * bit6 and bit 1, ...) for all ECC data. + * + * The hardware ecc unit produces oob_ecc ^ calc_ecc. The kernel's bch + * algorithm is used to decode this. However the hw operates on page + * data in a bit order that is the reverse of that of the bch alg, + * requiring that the bits be reversed on the result. Thanks to Ivan + * Djelic for his analysis. + * + * Returns number of fixed bits (0, 1, 2, 3, 4) or -EBADMSG if too many bit + * errors were detected and cannot be fixed. + */ +static int doc_ecc_bch_fix_data(struct docg3 *docg3, void *buf, u8 *hwecc) +{ + u8 ecc[DOC_ECC_BCH_SIZE]; + int errorpos[DOC_ECC_BCH_T], i, numerrs; + + for (i = 0; i < DOC_ECC_BCH_SIZE; i++) + ecc[i] = bitrev8(hwecc[i]); + numerrs = bch_decode(docg3->cascade->bch, NULL, + DOC_ECC_BCH_COVERED_BYTES, + NULL, ecc, NULL, errorpos); + BUG_ON(numerrs == -EINVAL); + if (numerrs < 0) + goto out; + + for (i = 0; i < numerrs; i++) + errorpos[i] = (errorpos[i] & ~7) | (7 - (errorpos[i] & 7)); + for (i = 0; i < numerrs; i++) + if (errorpos[i] < DOC_ECC_BCH_COVERED_BYTES*8) + /* error is located in data, correct it */ + change_bit(errorpos[i], buf); +out: + doc_dbg("doc_ecc_bch_fix_data: flipped %d bits\n", numerrs); + return numerrs; +} + + +/** + * doc_read_page_prepare - Prepares reading data from a flash page + * @docg3: the device + * @block0: the first plane block index on flash memory + * @block1: the second plane block index on flash memory + * @page: the page index in the block + * @offset: the offset in the page (must be a multiple of 4) + * + * Prepares the page to be read in the flash memory : + * - tell ASIC to map the flash pages + * - tell ASIC to be in read mode + * + * After a call to this method, a call to doc_read_page_finish is mandatory, + * to end the read cycle of the flash. + * + * Read data from a flash page. The length to be read must be between 0 and + * (page_size + oob_size + wear_size), ie. 532, and a multiple of 4 (because + * the extra bytes reading is not implemented). + * + * As pages are grouped by 2 (in 2 planes), reading from a page must be done + * in two steps: + * - one read of 512 bytes at offset 0 + * - one read of 512 bytes at offset 512 + 16 + * + * Returns 0 if successful, -EIO if a read error occurred. + */ +static int doc_read_page_prepare(struct docg3 *docg3, int block0, int block1, + int page, int offset) +{ + int wear_area = 0, ret = 0; + + doc_dbg("doc_read_page_prepare(blocks=(%d,%d), page=%d, ofsInPage=%d)\n", + block0, block1, page, offset); + if (offset >= DOC_LAYOUT_WEAR_OFFSET) + wear_area = 1; + if (!wear_area && offset > (DOC_LAYOUT_PAGE_OOB_SIZE * 2)) + return -EINVAL; + + doc_set_device_id(docg3, docg3->device_id); + ret = doc_reset_seq(docg3); + if (ret) + goto err; + + /* Program the flash address block and page */ + ret = doc_read_seek(docg3, block0, block1, page, wear_area, offset); + if (ret) + goto err; + + doc_flash_command(docg3, DOC_CMD_READ_ALL_PLANES); + doc_delay(docg3, 2); + doc_wait_ready(docg3); + + doc_flash_command(docg3, DOC_CMD_SET_ADDR_READ); + doc_delay(docg3, 1); + if (offset >= DOC_LAYOUT_PAGE_SIZE * 2) + offset -= 2 * DOC_LAYOUT_PAGE_SIZE; + doc_flash_address(docg3, offset >> 2); + doc_delay(docg3, 1); + doc_wait_ready(docg3); + + doc_flash_command(docg3, DOC_CMD_READ_FLASH); + + return 0; +err: + doc_writeb(docg3, 0, DOC_DATAEND); + doc_delay(docg3, 2); + return -EIO; +} + +/** + * doc_read_page_getbytes - Reads bytes from a prepared page + * @docg3: the device + * @len: the number of bytes to be read (must be a multiple of 4) + * @buf: the buffer to be filled in (or NULL is forget bytes) + * @first: 1 if first time read, DOC_READADDRESS should be set + * @last_odd: 1 if last read ended up on an odd byte + * + * Reads bytes from a prepared page. There is a trickery here : if the last read + * ended up on an odd offset in the 1024 bytes double page, ie. between the 2 + * planes, the first byte must be read apart. If a word (16bit) read was used, + * the read would return the byte of plane 2 as low *and* high endian, which + * will mess the read. + * + */ +static int doc_read_page_getbytes(struct docg3 *docg3, int len, u_char *buf, + int first, int last_odd) +{ + if (last_odd && len > 0) { + doc_read_data_area(docg3, buf, 1, first); + doc_read_data_area(docg3, buf ? buf + 1 : buf, len - 1, 0); + } else { + doc_read_data_area(docg3, buf, len, first); + } + doc_delay(docg3, 2); + return len; +} + +/** + * doc_write_page_putbytes - Writes bytes into a prepared page + * @docg3: the device + * @len: the number of bytes to be written + * @buf: the buffer of input bytes + * + */ +static void doc_write_page_putbytes(struct docg3 *docg3, int len, + const u_char *buf) +{ + doc_write_data_area(docg3, buf, len); + doc_delay(docg3, 2); +} + +/** + * doc_get_bch_hw_ecc - Get hardware calculated BCH ECC + * @docg3: the device + * @hwecc: the array of 7 integers where the hardware ecc will be stored + */ +static void doc_get_bch_hw_ecc(struct docg3 *docg3, u8 *hwecc) +{ + int i; + + for (i = 0; i < DOC_ECC_BCH_SIZE; i++) + hwecc[i] = doc_register_readb(docg3, DOC_BCH_HW_ECC(i)); +} + +/** + * doc_page_finish - Ends reading/writing of a flash page + * @docg3: the device + */ +static void doc_page_finish(struct docg3 *docg3) +{ + doc_writeb(docg3, 0, DOC_DATAEND); + doc_delay(docg3, 2); +} + +/** + * doc_read_page_finish - Ends reading of a flash page + * @docg3: the device + * + * As a side effect, resets the chip selector to 0. This ensures that after each + * read operation, the floor 0 is selected. Therefore, if the systems halts, the + * reboot will boot on floor 0, where the IPL is. + */ +static void doc_read_page_finish(struct docg3 *docg3) +{ + doc_page_finish(docg3); + doc_set_device_id(docg3, 0); +} + +/** + * calc_block_sector - Calculate blocks, pages and ofs. + * + * @from: offset in flash + * @block0: first plane block index calculated + * @block1: second plane block index calculated + * @page: page calculated + * @ofs: offset in page + * @reliable: 0 if docg3 in normal mode, 1 if docg3 in fast mode, 2 if docg3 in + * reliable mode. + * + * The calculation is based on the reliable/normal mode. In normal mode, the 64 + * pages of a block are available. In reliable mode, as pages 2*n and 2*n+1 are + * clones, only 32 pages per block are available. + */ +static void calc_block_sector(loff_t from, int *block0, int *block1, int *page, + int *ofs, int reliable) +{ + uint sector, pages_biblock; + + pages_biblock = DOC_LAYOUT_PAGES_PER_BLOCK * DOC_LAYOUT_NBPLANES; + if (reliable == 1 || reliable == 2) + pages_biblock /= 2; + + sector = from / DOC_LAYOUT_PAGE_SIZE; + *block0 = sector / pages_biblock * DOC_LAYOUT_NBPLANES; + *block1 = *block0 + 1; + *page = sector % pages_biblock; + *page /= DOC_LAYOUT_NBPLANES; + if (reliable == 1 || reliable == 2) + *page *= 2; + if (sector % 2) + *ofs = DOC_LAYOUT_PAGE_OOB_SIZE; + else + *ofs = 0; +} + +/** + * doc_read_oob - Read out of band bytes from flash + * @mtd: the device + * @from: the offset from first block and first page, in bytes, aligned on page + * size + * @ops: the mtd oob structure + * + * Reads flash memory OOB area of pages. + * + * Returns 0 if read successful, of -EIO, -EINVAL if an error occurred + */ +static int doc_read_oob(struct mtd_info *mtd, loff_t from, + struct mtd_oob_ops *ops) +{ + struct docg3 *docg3 = mtd->priv; + int block0, block1, page, ret, skip, ofs = 0; + u8 *oobbuf = ops->oobbuf; + u8 *buf = ops->datbuf; + size_t len, ooblen, nbdata, nboob; + u8 hwecc[DOC_ECC_BCH_SIZE], eccconf1; + struct mtd_ecc_stats old_stats; + int max_bitflips = 0; + + if (buf) + len = ops->len; + else + len = 0; + if (oobbuf) + ooblen = ops->ooblen; + else + ooblen = 0; + + if (oobbuf && ops->mode == MTD_OPS_PLACE_OOB) + oobbuf += ops->ooboffs; + + doc_dbg("doc_read_oob(from=%lld, mode=%d, data=(%p:%zu), oob=(%p:%zu))\n", + from, ops->mode, buf, len, oobbuf, ooblen); + if (ooblen % DOC_LAYOUT_OOB_SIZE) + return -EINVAL; + + ops->oobretlen = 0; + ops->retlen = 0; + ret = 0; + skip = from % DOC_LAYOUT_PAGE_SIZE; + mutex_lock(&docg3->cascade->lock); + old_stats = mtd->ecc_stats; + while (ret >= 0 && (len > 0 || ooblen > 0)) { + calc_block_sector(from - skip, &block0, &block1, &page, &ofs, + docg3->reliable); + nbdata = min_t(size_t, len, DOC_LAYOUT_PAGE_SIZE - skip); + nboob = min_t(size_t, ooblen, (size_t)DOC_LAYOUT_OOB_SIZE); + ret = doc_read_page_prepare(docg3, block0, block1, page, ofs); + if (ret < 0) + goto out; + ret = doc_read_page_ecc_init(docg3, DOC_ECC_BCH_TOTAL_BYTES); + if (ret < 0) + goto err_in_read; + ret = doc_read_page_getbytes(docg3, skip, NULL, 1, 0); + if (ret < skip) + goto err_in_read; + ret = doc_read_page_getbytes(docg3, nbdata, buf, 0, skip % 2); + if (ret < nbdata) + goto err_in_read; + doc_read_page_getbytes(docg3, + DOC_LAYOUT_PAGE_SIZE - nbdata - skip, + NULL, 0, (skip + nbdata) % 2); + ret = doc_read_page_getbytes(docg3, nboob, oobbuf, 0, 0); + if (ret < nboob) + goto err_in_read; + doc_read_page_getbytes(docg3, DOC_LAYOUT_OOB_SIZE - nboob, + NULL, 0, nboob % 2); + + doc_get_bch_hw_ecc(docg3, hwecc); + eccconf1 = doc_register_readb(docg3, DOC_ECCCONF1); + + if (nboob >= DOC_LAYOUT_OOB_SIZE) { + doc_dbg("OOB - INFO: %*phC\n", 7, oobbuf); + doc_dbg("OOB - HAMMING: %02x\n", oobbuf[7]); + doc_dbg("OOB - BCH_ECC: %*phC\n", 7, oobbuf + 8); + doc_dbg("OOB - UNUSED: %02x\n", oobbuf[15]); + } + doc_dbg("ECC checks: ECCConf1=%x\n", eccconf1); + doc_dbg("ECC HW_ECC: %*phC\n", 7, hwecc); + + ret = -EIO; + if (is_prot_seq_error(docg3)) + goto err_in_read; + ret = 0; + if ((block0 >= DOC_LAYOUT_BLOCK_FIRST_DATA) && + (eccconf1 & DOC_ECCCONF1_BCH_SYNDROM_ERR) && + (eccconf1 & DOC_ECCCONF1_PAGE_IS_WRITTEN) && + (ops->mode != MTD_OPS_RAW) && + (nbdata == DOC_LAYOUT_PAGE_SIZE)) { + ret = doc_ecc_bch_fix_data(docg3, buf, hwecc); + if (ret < 0) { + mtd->ecc_stats.failed++; + ret = -EBADMSG; + } + if (ret > 0) { + mtd->ecc_stats.corrected += ret; + max_bitflips = max(max_bitflips, ret); + ret = max_bitflips; + } + } + + doc_read_page_finish(docg3); + ops->retlen += nbdata; + ops->oobretlen += nboob; + buf += nbdata; + oobbuf += nboob; + len -= nbdata; + ooblen -= nboob; + from += DOC_LAYOUT_PAGE_SIZE; + skip = 0; + } + +out: + if (ops->stats) { + ops->stats->uncorrectable_errors += + mtd->ecc_stats.failed - old_stats.failed; + ops->stats->corrected_bitflips += + mtd->ecc_stats.corrected - old_stats.corrected; + } + mutex_unlock(&docg3->cascade->lock); + return ret; +err_in_read: + doc_read_page_finish(docg3); + goto out; +} + +static int doc_reload_bbt(struct docg3 *docg3) +{ + int block = DOC_LAYOUT_BLOCK_BBT; + int ret = 0, nbpages, page; + u_char *buf = docg3->bbt; + + nbpages = DIV_ROUND_UP(docg3->max_block + 1, 8 * DOC_LAYOUT_PAGE_SIZE); + for (page = 0; !ret && (page < nbpages); page++) { + ret = doc_read_page_prepare(docg3, block, block + 1, + page + DOC_LAYOUT_PAGE_BBT, 0); + if (!ret) + ret = doc_read_page_ecc_init(docg3, + DOC_LAYOUT_PAGE_SIZE); + if (!ret) + doc_read_page_getbytes(docg3, DOC_LAYOUT_PAGE_SIZE, + buf, 1, 0); + buf += DOC_LAYOUT_PAGE_SIZE; + } + doc_read_page_finish(docg3); + return ret; +} + +/** + * doc_block_isbad - Checks whether a block is good or not + * @mtd: the device + * @from: the offset to find the correct block + * + * Returns 1 if block is bad, 0 if block is good + */ +static int doc_block_isbad(struct mtd_info *mtd, loff_t from) +{ + struct docg3 *docg3 = mtd->priv; + int block0, block1, page, ofs, is_good; + + calc_block_sector(from, &block0, &block1, &page, &ofs, + docg3->reliable); + doc_dbg("doc_block_isbad(from=%lld) => block=(%d,%d), page=%d, ofs=%d\n", + from, block0, block1, page, ofs); + + if (block0 < DOC_LAYOUT_BLOCK_FIRST_DATA) + return 0; + if (block1 > docg3->max_block) + return -EINVAL; + + is_good = docg3->bbt[block0 >> 3] & (1 << (block0 & 0x7)); + return !is_good; +} + +#if 0 +/** + * doc_get_erase_count - Get block erase count + * @docg3: the device + * @from: the offset in which the block is. + * + * Get the number of times a block was erased. The number is the maximum of + * erase times between first and second plane (which should be equal normally). + * + * Returns The number of erases, or -EINVAL or -EIO on error. + */ +static int doc_get_erase_count(struct docg3 *docg3, loff_t from) +{ + u8 buf[DOC_LAYOUT_WEAR_SIZE]; + int ret, plane1_erase_count, plane2_erase_count; + int block0, block1, page, ofs; + + doc_dbg("doc_get_erase_count(from=%lld, buf=%p)\n", from, buf); + if (from % DOC_LAYOUT_PAGE_SIZE) + return -EINVAL; + calc_block_sector(from, &block0, &block1, &page, &ofs, docg3->reliable); + if (block1 > docg3->max_block) + return -EINVAL; + + ret = doc_reset_seq(docg3); + if (!ret) + ret = doc_read_page_prepare(docg3, block0, block1, page, + ofs + DOC_LAYOUT_WEAR_OFFSET, 0); + if (!ret) + ret = doc_read_page_getbytes(docg3, DOC_LAYOUT_WEAR_SIZE, + buf, 1, 0); + doc_read_page_finish(docg3); + + if (ret || (buf[0] != DOC_ERASE_MARK) || (buf[2] != DOC_ERASE_MARK)) + return -EIO; + plane1_erase_count = (u8)(~buf[1]) | ((u8)(~buf[4]) << 8) + | ((u8)(~buf[5]) << 16); + plane2_erase_count = (u8)(~buf[3]) | ((u8)(~buf[6]) << 8) + | ((u8)(~buf[7]) << 16); + + return max(plane1_erase_count, plane2_erase_count); +} +#endif + +/** + * doc_get_op_status - get erase/write operation status + * @docg3: the device + * + * Queries the status from the chip, and returns it + * + * Returns the status (bits DOC_PLANES_STATUS_*) + */ +static int doc_get_op_status(struct docg3 *docg3) +{ + u8 status; + + doc_flash_sequence(docg3, DOC_SEQ_PLANES_STATUS); + doc_flash_command(docg3, DOC_CMD_PLANES_STATUS); + doc_delay(docg3, 5); + + doc_ecc_disable(docg3); + doc_read_data_area(docg3, &status, 1, 1); + return status; +} + +/** + * doc_write_erase_wait_status - wait for write or erase completion + * @docg3: the device + * + * Wait for the chip to be ready again after erase or write operation, and check + * erase/write status. + * + * Returns 0 if erase successful, -EIO if erase/write issue, -ETIMEOUT if + * timeout + */ +static int doc_write_erase_wait_status(struct docg3 *docg3) +{ + int i, status, ret = 0; + + for (i = 0; !doc_is_ready(docg3) && i < 5; i++) + msleep(20); + if (!doc_is_ready(docg3)) { + doc_dbg("Timeout reached and the chip is still not ready\n"); + ret = -EAGAIN; + goto out; + } + + status = doc_get_op_status(docg3); + if (status & DOC_PLANES_STATUS_FAIL) { + doc_dbg("Erase/Write failed on (a) plane(s), status = %x\n", + status); + ret = -EIO; + } + +out: + doc_page_finish(docg3); + return ret; +} + +/** + * doc_erase_block - Erase a couple of blocks + * @docg3: the device + * @block0: the first block to erase (leftmost plane) + * @block1: the second block to erase (rightmost plane) + * + * Erase both blocks, and return operation status + * + * Returns 0 if erase successful, -EIO if erase issue, -ETIMEOUT if chip not + * ready for too long + */ +static int doc_erase_block(struct docg3 *docg3, int block0, int block1) +{ + int ret, sector; + + doc_dbg("doc_erase_block(blocks=(%d,%d))\n", block0, block1); + ret = doc_reset_seq(docg3); + if (ret) + return -EIO; + + doc_set_reliable_mode(docg3); + doc_flash_sequence(docg3, DOC_SEQ_ERASE); + + sector = block0 << DOC_ADDR_BLOCK_SHIFT; + doc_flash_command(docg3, DOC_CMD_PROG_BLOCK_ADDR); + doc_setup_addr_sector(docg3, sector); + sector = block1 << DOC_ADDR_BLOCK_SHIFT; + doc_flash_command(docg3, DOC_CMD_PROG_BLOCK_ADDR); + doc_setup_addr_sector(docg3, sector); + doc_delay(docg3, 1); + + doc_flash_command(docg3, DOC_CMD_ERASECYCLE2); + doc_delay(docg3, 2); + + if (is_prot_seq_error(docg3)) { + doc_err("Erase blocks %d,%d error\n", block0, block1); + return -EIO; + } + + return doc_write_erase_wait_status(docg3); +} + +/** + * doc_erase - Erase a portion of the chip + * @mtd: the device + * @info: the erase info + * + * Erase a bunch of contiguous blocks, by pairs, as a "mtd" page of 1024 is + * split into 2 pages of 512 bytes on 2 contiguous blocks. + * + * Returns 0 if erase successful, -EINVAL if addressing error, -EIO if erase + * issue + */ +static int doc_erase(struct mtd_info *mtd, struct erase_info *info) +{ + struct docg3 *docg3 = mtd->priv; + uint64_t len; + int block0, block1, page, ret = 0, ofs = 0; + + doc_dbg("doc_erase(from=%lld, len=%lld\n", info->addr, info->len); + + calc_block_sector(info->addr + info->len, &block0, &block1, &page, + &ofs, docg3->reliable); + if (info->addr + info->len > mtd->size || page || ofs) + return -EINVAL; + + calc_block_sector(info->addr, &block0, &block1, &page, &ofs, + docg3->reliable); + mutex_lock(&docg3->cascade->lock); + doc_set_device_id(docg3, docg3->device_id); + doc_set_reliable_mode(docg3); + for (len = info->len; !ret && len > 0; len -= mtd->erasesize) { + ret = doc_erase_block(docg3, block0, block1); + block0 += 2; + block1 += 2; + } + mutex_unlock(&docg3->cascade->lock); + + return ret; +} + +/** + * doc_write_page - Write a single page to the chip + * @docg3: the device + * @to: the offset from first block and first page, in bytes, aligned on page + * size + * @buf: buffer to get bytes from + * @oob: buffer to get out of band bytes from (can be NULL if no OOB should be + * written) + * @autoecc: if 0, all 16 bytes from OOB are taken, regardless of HW Hamming or + * BCH computations. If 1, only bytes 0-7 and byte 15 are taken, + * remaining ones are filled with hardware Hamming and BCH + * computations. Its value is not meaningfull is oob == NULL. + * + * Write one full page (ie. 1 page split on two planes), of 512 bytes, with the + * OOB data. The OOB ECC is automatically computed by the hardware Hamming and + * BCH generator if autoecc is not null. + * + * Returns 0 if write successful, -EIO if write error, -EAGAIN if timeout + */ +static int doc_write_page(struct docg3 *docg3, loff_t to, const u_char *buf, + const u_char *oob, int autoecc) +{ + int block0, block1, page, ret, ofs = 0; + u8 hwecc[DOC_ECC_BCH_SIZE], hamming; + + doc_dbg("doc_write_page(to=%lld)\n", to); + calc_block_sector(to, &block0, &block1, &page, &ofs, docg3->reliable); + + doc_set_device_id(docg3, docg3->device_id); + ret = doc_reset_seq(docg3); + if (ret) + goto err; + + /* Program the flash address block and page */ + ret = doc_write_seek(docg3, block0, block1, page, ofs); + if (ret) + goto err; + + doc_write_page_ecc_init(docg3, DOC_ECC_BCH_TOTAL_BYTES); + doc_delay(docg3, 2); + doc_write_page_putbytes(docg3, DOC_LAYOUT_PAGE_SIZE, buf); + + if (oob && autoecc) { + doc_write_page_putbytes(docg3, DOC_LAYOUT_OOB_PAGEINFO_SZ, oob); + doc_delay(docg3, 2); + oob += DOC_LAYOUT_OOB_UNUSED_OFS; + + hamming = doc_register_readb(docg3, DOC_HAMMINGPARITY); + doc_delay(docg3, 2); + doc_write_page_putbytes(docg3, DOC_LAYOUT_OOB_HAMMING_SZ, + &hamming); + doc_delay(docg3, 2); + + doc_get_bch_hw_ecc(docg3, hwecc); + doc_write_page_putbytes(docg3, DOC_LAYOUT_OOB_BCH_SZ, hwecc); + doc_delay(docg3, 2); + + doc_write_page_putbytes(docg3, DOC_LAYOUT_OOB_UNUSED_SZ, oob); + } + if (oob && !autoecc) + doc_write_page_putbytes(docg3, DOC_LAYOUT_OOB_SIZE, oob); + + doc_delay(docg3, 2); + doc_page_finish(docg3); + doc_delay(docg3, 2); + doc_flash_command(docg3, DOC_CMD_PROG_CYCLE2); + doc_delay(docg3, 2); + + /* + * The wait status will perform another doc_page_finish() call, but that + * seems to please the docg3, so leave it. + */ + ret = doc_write_erase_wait_status(docg3); + return ret; +err: + doc_read_page_finish(docg3); + return ret; +} + +/** + * doc_guess_autoecc - Guess autoecc mode from mbd_oob_ops + * @ops: the oob operations + * + * Returns 0 or 1 if success, -EINVAL if invalid oob mode + */ +static int doc_guess_autoecc(struct mtd_oob_ops *ops) +{ + int autoecc; + + switch (ops->mode) { + case MTD_OPS_PLACE_OOB: + case MTD_OPS_AUTO_OOB: + autoecc = 1; + break; + case MTD_OPS_RAW: + autoecc = 0; + break; + default: + autoecc = -EINVAL; + } + return autoecc; +} + +/** + * doc_fill_autooob - Fill a 16 bytes OOB from 8 non-ECC bytes + * @dst: the target 16 bytes OOB buffer + * @oobsrc: the source 8 bytes non-ECC OOB buffer + * + */ +static void doc_fill_autooob(u8 *dst, u8 *oobsrc) +{ + memcpy(dst, oobsrc, DOC_LAYOUT_OOB_PAGEINFO_SZ); + dst[DOC_LAYOUT_OOB_UNUSED_OFS] = oobsrc[DOC_LAYOUT_OOB_PAGEINFO_SZ]; +} + +/** + * doc_backup_oob - Backup OOB into docg3 structure + * @docg3: the device + * @to: the page offset in the chip + * @ops: the OOB size and buffer + * + * As the docg3 should write a page with its OOB in one pass, and some userland + * applications do write_oob() to setup the OOB and then write(), store the OOB + * into a temporary storage. This is very dangerous, as 2 concurrent + * applications could store an OOB, and then write their pages (which will + * result into one having its OOB corrupted). + * + * The only reliable way would be for userland to call doc_write_oob() with both + * the page data _and_ the OOB area. + * + * Returns 0 if success, -EINVAL if ops content invalid + */ +static int doc_backup_oob(struct docg3 *docg3, loff_t to, + struct mtd_oob_ops *ops) +{ + int ooblen = ops->ooblen, autoecc; + + if (ooblen != DOC_LAYOUT_OOB_SIZE) + return -EINVAL; + autoecc = doc_guess_autoecc(ops); + if (autoecc < 0) + return autoecc; + + docg3->oob_write_ofs = to; + docg3->oob_autoecc = autoecc; + if (ops->mode == MTD_OPS_AUTO_OOB) { + doc_fill_autooob(docg3->oob_write_buf, ops->oobbuf); + ops->oobretlen = 8; + } else { + memcpy(docg3->oob_write_buf, ops->oobbuf, DOC_LAYOUT_OOB_SIZE); + ops->oobretlen = DOC_LAYOUT_OOB_SIZE; + } + return 0; +} + +/** + * doc_write_oob - Write out of band bytes to flash + * @mtd: the device + * @ofs: the offset from first block and first page, in bytes, aligned on page + * size + * @ops: the mtd oob structure + * + * Either write OOB data into a temporary buffer, for the subsequent write + * page. The provided OOB should be 16 bytes long. If a data buffer is provided + * as well, issue the page write. + * Or provide data without OOB, and then a all zeroed OOB will be used (ECC will + * still be filled in if asked for). + * + * Returns 0 is successful, EINVAL if length is not 14 bytes + */ +static int doc_write_oob(struct mtd_info *mtd, loff_t ofs, + struct mtd_oob_ops *ops) +{ + struct docg3 *docg3 = mtd->priv; + int ret, autoecc, oobdelta; + u8 *oobbuf = ops->oobbuf; + u8 *buf = ops->datbuf; + size_t len, ooblen; + u8 oob[DOC_LAYOUT_OOB_SIZE]; + + if (buf) + len = ops->len; + else + len = 0; + if (oobbuf) + ooblen = ops->ooblen; + else + ooblen = 0; + + if (oobbuf && ops->mode == MTD_OPS_PLACE_OOB) + oobbuf += ops->ooboffs; + + doc_dbg("doc_write_oob(from=%lld, mode=%d, data=(%p:%zu), oob=(%p:%zu))\n", + ofs, ops->mode, buf, len, oobbuf, ooblen); + switch (ops->mode) { + case MTD_OPS_PLACE_OOB: + case MTD_OPS_RAW: + oobdelta = mtd->oobsize; + break; + case MTD_OPS_AUTO_OOB: + oobdelta = mtd->oobavail; + break; + default: + return -EINVAL; + } + if ((len % DOC_LAYOUT_PAGE_SIZE) || (ooblen % oobdelta) || + (ofs % DOC_LAYOUT_PAGE_SIZE)) + return -EINVAL; + if (len && ooblen && + (len / DOC_LAYOUT_PAGE_SIZE) != (ooblen / oobdelta)) + return -EINVAL; + + ops->oobretlen = 0; + ops->retlen = 0; + ret = 0; + if (len == 0 && ooblen == 0) + return -EINVAL; + if (len == 0 && ooblen > 0) + return doc_backup_oob(docg3, ofs, ops); + + autoecc = doc_guess_autoecc(ops); + if (autoecc < 0) + return autoecc; + + mutex_lock(&docg3->cascade->lock); + while (!ret && len > 0) { + memset(oob, 0, sizeof(oob)); + if (ofs == docg3->oob_write_ofs) + memcpy(oob, docg3->oob_write_buf, DOC_LAYOUT_OOB_SIZE); + else if (ooblen > 0 && ops->mode == MTD_OPS_AUTO_OOB) + doc_fill_autooob(oob, oobbuf); + else if (ooblen > 0) + memcpy(oob, oobbuf, DOC_LAYOUT_OOB_SIZE); + ret = doc_write_page(docg3, ofs, buf, oob, autoecc); + + ofs += DOC_LAYOUT_PAGE_SIZE; + len -= DOC_LAYOUT_PAGE_SIZE; + buf += DOC_LAYOUT_PAGE_SIZE; + if (ooblen) { + oobbuf += oobdelta; + ooblen -= oobdelta; + ops->oobretlen += oobdelta; + } + ops->retlen += DOC_LAYOUT_PAGE_SIZE; + } + + doc_set_device_id(docg3, 0); + mutex_unlock(&docg3->cascade->lock); + return ret; +} + +static struct docg3 *sysfs_dev2docg3(struct device *dev, + struct device_attribute *attr) +{ + int floor; + struct mtd_info **docg3_floors = dev_get_drvdata(dev); + + floor = attr->attr.name[1] - '0'; + if (floor < 0 || floor >= DOC_MAX_NBFLOORS) + return NULL; + else + return docg3_floors[floor]->priv; +} + +static ssize_t dps0_is_key_locked(struct device *dev, + struct device_attribute *attr, char *buf) +{ + struct docg3 *docg3 = sysfs_dev2docg3(dev, attr); + int dps0; + + mutex_lock(&docg3->cascade->lock); + doc_set_device_id(docg3, docg3->device_id); + dps0 = doc_register_readb(docg3, DOC_DPS0_STATUS); + doc_set_device_id(docg3, 0); + mutex_unlock(&docg3->cascade->lock); + + return sprintf(buf, "%d\n", !(dps0 & DOC_DPS_KEY_OK)); +} + +static ssize_t dps1_is_key_locked(struct device *dev, + struct device_attribute *attr, char *buf) +{ + struct docg3 *docg3 = sysfs_dev2docg3(dev, attr); + int dps1; + + mutex_lock(&docg3->cascade->lock); + doc_set_device_id(docg3, docg3->device_id); + dps1 = doc_register_readb(docg3, DOC_DPS1_STATUS); + doc_set_device_id(docg3, 0); + mutex_unlock(&docg3->cascade->lock); + + return sprintf(buf, "%d\n", !(dps1 & DOC_DPS_KEY_OK)); +} + +static ssize_t dps0_insert_key(struct device *dev, + struct device_attribute *attr, + const char *buf, size_t count) +{ + struct docg3 *docg3 = sysfs_dev2docg3(dev, attr); + int i; + + if (count != DOC_LAYOUT_DPS_KEY_LENGTH) + return -EINVAL; + + mutex_lock(&docg3->cascade->lock); + doc_set_device_id(docg3, docg3->device_id); + for (i = 0; i < DOC_LAYOUT_DPS_KEY_LENGTH; i++) + doc_writeb(docg3, buf[i], DOC_DPS0_KEY); + doc_set_device_id(docg3, 0); + mutex_unlock(&docg3->cascade->lock); + return count; +} + +static ssize_t dps1_insert_key(struct device *dev, + struct device_attribute *attr, + const char *buf, size_t count) +{ + struct docg3 *docg3 = sysfs_dev2docg3(dev, attr); + int i; + + if (count != DOC_LAYOUT_DPS_KEY_LENGTH) + return -EINVAL; + + mutex_lock(&docg3->cascade->lock); + doc_set_device_id(docg3, docg3->device_id); + for (i = 0; i < DOC_LAYOUT_DPS_KEY_LENGTH; i++) + doc_writeb(docg3, buf[i], DOC_DPS1_KEY); + doc_set_device_id(docg3, 0); + mutex_unlock(&docg3->cascade->lock); + return count; +} + +#define FLOOR_SYSFS(id) { \ + __ATTR(f##id##_dps0_is_keylocked, S_IRUGO, dps0_is_key_locked, NULL), \ + __ATTR(f##id##_dps1_is_keylocked, S_IRUGO, dps1_is_key_locked, NULL), \ + __ATTR(f##id##_dps0_protection_key, S_IWUSR|S_IWGRP, NULL, dps0_insert_key), \ + __ATTR(f##id##_dps1_protection_key, S_IWUSR|S_IWGRP, NULL, dps1_insert_key), \ +} + +static struct device_attribute doc_sys_attrs[DOC_MAX_NBFLOORS][4] = { + FLOOR_SYSFS(0), FLOOR_SYSFS(1), FLOOR_SYSFS(2), FLOOR_SYSFS(3) +}; + +static int doc_register_sysfs(struct platform_device *pdev, + struct docg3_cascade *cascade) +{ + struct device *dev = &pdev->dev; + int floor; + int ret; + int i; + + for (floor = 0; + floor < DOC_MAX_NBFLOORS && cascade->floors[floor]; + floor++) { + for (i = 0; i < 4; i++) { + ret = device_create_file(dev, &doc_sys_attrs[floor][i]); + if (ret) + goto remove_files; + } + } + + return 0; + +remove_files: + do { + while (--i >= 0) + device_remove_file(dev, &doc_sys_attrs[floor][i]); + i = 4; + } while (--floor >= 0); + + return ret; +} + +static void doc_unregister_sysfs(struct platform_device *pdev, + struct docg3_cascade *cascade) +{ + struct device *dev = &pdev->dev; + int floor, i; + + for (floor = 0; floor < DOC_MAX_NBFLOORS && cascade->floors[floor]; + floor++) + for (i = 0; i < 4; i++) + device_remove_file(dev, &doc_sys_attrs[floor][i]); +} + +/* + * Debug sysfs entries + */ +static int flashcontrol_show(struct seq_file *s, void *p) +{ + struct docg3 *docg3 = s->private; + + u8 fctrl; + + mutex_lock(&docg3->cascade->lock); + fctrl = doc_register_readb(docg3, DOC_FLASHCONTROL); + mutex_unlock(&docg3->cascade->lock); + + seq_printf(s, "FlashControl : 0x%02x (%s,CE# %s,%s,%s,flash %s)\n", + fctrl, + fctrl & DOC_CTRL_VIOLATION ? "protocol violation" : "-", + fctrl & DOC_CTRL_CE ? "active" : "inactive", + fctrl & DOC_CTRL_PROTECTION_ERROR ? "protection error" : "-", + fctrl & DOC_CTRL_SEQUENCE_ERROR ? "sequence error" : "-", + fctrl & DOC_CTRL_FLASHREADY ? "ready" : "not ready"); + + return 0; +} +DEFINE_SHOW_ATTRIBUTE(flashcontrol); + +static int asic_mode_show(struct seq_file *s, void *p) +{ + struct docg3 *docg3 = s->private; + + int pctrl, mode; + + mutex_lock(&docg3->cascade->lock); + pctrl = doc_register_readb(docg3, DOC_ASICMODE); + mode = pctrl & 0x03; + mutex_unlock(&docg3->cascade->lock); + + seq_printf(s, + "%04x : RAM_WE=%d,RSTIN_RESET=%d,BDETCT_RESET=%d,WRITE_ENABLE=%d,POWERDOWN=%d,MODE=%d%d (", + pctrl, + pctrl & DOC_ASICMODE_RAM_WE ? 1 : 0, + pctrl & DOC_ASICMODE_RSTIN_RESET ? 1 : 0, + pctrl & DOC_ASICMODE_BDETCT_RESET ? 1 : 0, + pctrl & DOC_ASICMODE_MDWREN ? 1 : 0, + pctrl & DOC_ASICMODE_POWERDOWN ? 1 : 0, + mode >> 1, mode & 0x1); + + switch (mode) { + case DOC_ASICMODE_RESET: + seq_puts(s, "reset"); + break; + case DOC_ASICMODE_NORMAL: + seq_puts(s, "normal"); + break; + case DOC_ASICMODE_POWERDOWN: + seq_puts(s, "powerdown"); + break; + } + seq_puts(s, ")\n"); + return 0; +} +DEFINE_SHOW_ATTRIBUTE(asic_mode); + +static int device_id_show(struct seq_file *s, void *p) +{ + struct docg3 *docg3 = s->private; + int id; + + mutex_lock(&docg3->cascade->lock); + id = doc_register_readb(docg3, DOC_DEVICESELECT); + mutex_unlock(&docg3->cascade->lock); + + seq_printf(s, "DeviceId = %d\n", id); + return 0; +} +DEFINE_SHOW_ATTRIBUTE(device_id); + +static int protection_show(struct seq_file *s, void *p) +{ + struct docg3 *docg3 = s->private; + int protect, dps0, dps0_low, dps0_high, dps1, dps1_low, dps1_high; + + mutex_lock(&docg3->cascade->lock); + protect = doc_register_readb(docg3, DOC_PROTECTION); + dps0 = doc_register_readb(docg3, DOC_DPS0_STATUS); + dps0_low = doc_register_readw(docg3, DOC_DPS0_ADDRLOW); + dps0_high = doc_register_readw(docg3, DOC_DPS0_ADDRHIGH); + dps1 = doc_register_readb(docg3, DOC_DPS1_STATUS); + dps1_low = doc_register_readw(docg3, DOC_DPS1_ADDRLOW); + dps1_high = doc_register_readw(docg3, DOC_DPS1_ADDRHIGH); + mutex_unlock(&docg3->cascade->lock); + + seq_printf(s, "Protection = 0x%02x (", protect); + if (protect & DOC_PROTECT_FOUNDRY_OTP_LOCK) + seq_puts(s, "FOUNDRY_OTP_LOCK,"); + if (protect & DOC_PROTECT_CUSTOMER_OTP_LOCK) + seq_puts(s, "CUSTOMER_OTP_LOCK,"); + if (protect & DOC_PROTECT_LOCK_INPUT) + seq_puts(s, "LOCK_INPUT,"); + if (protect & DOC_PROTECT_STICKY_LOCK) + seq_puts(s, "STICKY_LOCK,"); + if (protect & DOC_PROTECT_PROTECTION_ENABLED) + seq_puts(s, "PROTECTION ON,"); + if (protect & DOC_PROTECT_IPL_DOWNLOAD_LOCK) + seq_puts(s, "IPL_DOWNLOAD_LOCK,"); + if (protect & DOC_PROTECT_PROTECTION_ERROR) + seq_puts(s, "PROTECT_ERR,"); + else + seq_puts(s, "NO_PROTECT_ERR"); + seq_puts(s, ")\n"); + + seq_printf(s, "DPS0 = 0x%02x : Protected area [0x%x - 0x%x] : OTP=%d, READ=%d, WRITE=%d, HW_LOCK=%d, KEY_OK=%d\n", + dps0, dps0_low, dps0_high, + !!(dps0 & DOC_DPS_OTP_PROTECTED), + !!(dps0 & DOC_DPS_READ_PROTECTED), + !!(dps0 & DOC_DPS_WRITE_PROTECTED), + !!(dps0 & DOC_DPS_HW_LOCK_ENABLED), + !!(dps0 & DOC_DPS_KEY_OK)); + seq_printf(s, "DPS1 = 0x%02x : Protected area [0x%x - 0x%x] : OTP=%d, READ=%d, WRITE=%d, HW_LOCK=%d, KEY_OK=%d\n", + dps1, dps1_low, dps1_high, + !!(dps1 & DOC_DPS_OTP_PROTECTED), + !!(dps1 & DOC_DPS_READ_PROTECTED), + !!(dps1 & DOC_DPS_WRITE_PROTECTED), + !!(dps1 & DOC_DPS_HW_LOCK_ENABLED), + !!(dps1 & DOC_DPS_KEY_OK)); + return 0; +} +DEFINE_SHOW_ATTRIBUTE(protection); + +static void __init doc_dbg_register(struct mtd_info *floor) +{ + struct dentry *root = floor->dbg.dfs_dir; + struct docg3 *docg3 = floor->priv; + + if (IS_ERR_OR_NULL(root)) { + if (IS_ENABLED(CONFIG_DEBUG_FS) && + !IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER)) + dev_warn(floor->dev.parent, + "CONFIG_MTD_PARTITIONED_MASTER must be enabled to expose debugfs stuff\n"); + return; + } + + debugfs_create_file("docg3_flashcontrol", S_IRUSR, root, docg3, + &flashcontrol_fops); + debugfs_create_file("docg3_asic_mode", S_IRUSR, root, docg3, + &asic_mode_fops); + debugfs_create_file("docg3_device_id", S_IRUSR, root, docg3, + &device_id_fops); + debugfs_create_file("docg3_protection", S_IRUSR, root, docg3, + &protection_fops); +} + +/** + * doc_set_driver_info - Fill the mtd_info structure and docg3 structure + * @chip_id: The chip ID of the supported chip + * @mtd: The structure to fill + */ +static int __init doc_set_driver_info(int chip_id, struct mtd_info *mtd) +{ + struct docg3 *docg3 = mtd->priv; + int cfg; + + cfg = doc_register_readb(docg3, DOC_CONFIGURATION); + docg3->if_cfg = (cfg & DOC_CONF_IF_CFG ? 1 : 0); + docg3->reliable = reliable_mode; + + switch (chip_id) { + case DOC_CHIPID_G3: + mtd->name = devm_kasprintf(docg3->dev, GFP_KERNEL, "docg3.%d", + docg3->device_id); + if (!mtd->name) + return -ENOMEM; + docg3->max_block = 2047; + break; + } + mtd->type = MTD_NANDFLASH; + mtd->flags = MTD_CAP_NANDFLASH; + mtd->size = (docg3->max_block + 1) * DOC_LAYOUT_BLOCK_SIZE; + if (docg3->reliable == 2) + mtd->size /= 2; + mtd->erasesize = DOC_LAYOUT_BLOCK_SIZE * DOC_LAYOUT_NBPLANES; + if (docg3->reliable == 2) + mtd->erasesize /= 2; + mtd->writebufsize = mtd->writesize = DOC_LAYOUT_PAGE_SIZE; + mtd->oobsize = DOC_LAYOUT_OOB_SIZE; + mtd->_erase = doc_erase; + mtd->_read_oob = doc_read_oob; + mtd->_write_oob = doc_write_oob; + mtd->_block_isbad = doc_block_isbad; + mtd_set_ooblayout(mtd, &nand_ooblayout_docg3_ops); + mtd->oobavail = 8; + mtd->ecc_strength = DOC_ECC_BCH_T; + + return 0; +} + +/** + * doc_probe_device - Check if a device is available + * @cascade: the cascade of chips this devices will belong to + * @floor: the floor of the probed device + * @dev: the device + * + * Checks whether a device at the specified IO range, and floor is available. + * + * Returns a mtd_info struct if there is a device, ENODEV if none found, ENOMEM + * if a memory allocation failed. If floor 0 is checked, a reset of the ASIC is + * launched. + */ +static struct mtd_info * __init +doc_probe_device(struct docg3_cascade *cascade, int floor, struct device *dev) +{ + int ret, bbt_nbpages; + u16 chip_id, chip_id_inv; + struct docg3 *docg3; + struct mtd_info *mtd; + + ret = -ENOMEM; + docg3 = kzalloc(sizeof(struct docg3), GFP_KERNEL); + if (!docg3) + goto nomem1; + mtd = kzalloc(sizeof(struct mtd_info), GFP_KERNEL); + if (!mtd) + goto nomem2; + mtd->priv = docg3; + mtd->dev.parent = dev; + bbt_nbpages = DIV_ROUND_UP(docg3->max_block + 1, + 8 * DOC_LAYOUT_PAGE_SIZE); + docg3->bbt = kcalloc(DOC_LAYOUT_PAGE_SIZE, bbt_nbpages, GFP_KERNEL); + if (!docg3->bbt) + goto nomem3; + + docg3->dev = dev; + docg3->device_id = floor; + docg3->cascade = cascade; + doc_set_device_id(docg3, docg3->device_id); + if (!floor) + doc_set_asic_mode(docg3, DOC_ASICMODE_RESET); + doc_set_asic_mode(docg3, DOC_ASICMODE_NORMAL); + + chip_id = doc_register_readw(docg3, DOC_CHIPID); + chip_id_inv = doc_register_readw(docg3, DOC_CHIPID_INV); + + ret = 0; + if (chip_id != (u16)(~chip_id_inv)) { + goto nomem4; + } + + switch (chip_id) { + case DOC_CHIPID_G3: + doc_info("Found a G3 DiskOnChip at addr %p, floor %d\n", + docg3->cascade->base, floor); + break; + default: + doc_err("Chip id %04x is not a DiskOnChip G3 chip\n", chip_id); + goto nomem4; + } + + ret = doc_set_driver_info(chip_id, mtd); + if (ret) + goto nomem4; + + doc_hamming_ecc_init(docg3, DOC_LAYOUT_OOB_PAGEINFO_SZ); + doc_reload_bbt(docg3); + return mtd; + +nomem4: + kfree(docg3->bbt); +nomem3: + kfree(mtd); +nomem2: + kfree(docg3); +nomem1: + return ret ? ERR_PTR(ret) : NULL; +} + +/** + * doc_release_device - Release a docg3 floor + * @mtd: the device + */ +static void doc_release_device(struct mtd_info *mtd) +{ + struct docg3 *docg3 = mtd->priv; + + mtd_device_unregister(mtd); + kfree(docg3->bbt); + kfree(docg3); + kfree(mtd); +} + +/** + * docg3_resume - Awakens docg3 floor + * @pdev: platfrom device + * + * Returns 0 (always successful) + */ +static int docg3_resume(struct platform_device *pdev) +{ + int i; + struct docg3_cascade *cascade; + struct mtd_info **docg3_floors, *mtd; + struct docg3 *docg3; + + cascade = platform_get_drvdata(pdev); + docg3_floors = cascade->floors; + mtd = docg3_floors[0]; + docg3 = mtd->priv; + + doc_dbg("docg3_resume()\n"); + for (i = 0; i < 12; i++) + doc_readb(docg3, DOC_IOSPACE_IPL); + return 0; +} + +/** + * docg3_suspend - Put in low power mode the docg3 floor + * @pdev: platform device + * @state: power state + * + * Shuts off most of docg3 circuitery to lower power consumption. + * + * Returns 0 if suspend succeeded, -EIO if chip refused suspend + */ +static int docg3_suspend(struct platform_device *pdev, pm_message_t state) +{ + int floor, i; + struct docg3_cascade *cascade; + struct mtd_info **docg3_floors, *mtd; + struct docg3 *docg3; + u8 ctrl, pwr_down; + + cascade = platform_get_drvdata(pdev); + docg3_floors = cascade->floors; + for (floor = 0; floor < DOC_MAX_NBFLOORS; floor++) { + mtd = docg3_floors[floor]; + if (!mtd) + continue; + docg3 = mtd->priv; + + doc_writeb(docg3, floor, DOC_DEVICESELECT); + ctrl = doc_register_readb(docg3, DOC_FLASHCONTROL); + ctrl &= ~DOC_CTRL_VIOLATION & ~DOC_CTRL_CE; + doc_writeb(docg3, ctrl, DOC_FLASHCONTROL); + + for (i = 0; i < 10; i++) { + usleep_range(3000, 4000); + pwr_down = doc_register_readb(docg3, DOC_POWERMODE); + if (pwr_down & DOC_POWERDOWN_READY) + break; + } + if (pwr_down & DOC_POWERDOWN_READY) { + doc_dbg("docg3_suspend(): floor %d powerdown ok\n", + floor); + } else { + doc_err("docg3_suspend(): floor %d powerdown failed\n", + floor); + return -EIO; + } + } + + mtd = docg3_floors[0]; + docg3 = mtd->priv; + doc_set_asic_mode(docg3, DOC_ASICMODE_POWERDOWN); + return 0; +} + +/** + * docg3_probe - Probe the IO space for a DiskOnChip G3 chip + * @pdev: platform device + * + * Probes for a G3 chip at the specified IO space in the platform data + * ressources. The floor 0 must be available. + * + * Returns 0 on success, -ENOMEM, -ENXIO on error + */ +static int __init docg3_probe(struct platform_device *pdev) +{ + struct device *dev = &pdev->dev; + struct mtd_info *mtd; + struct resource *ress; + void __iomem *base; + int ret, floor; + struct docg3_cascade *cascade; + + ret = -ENXIO; + ress = platform_get_resource(pdev, IORESOURCE_MEM, 0); + if (!ress) { + dev_err(dev, "No I/O memory resource defined\n"); + return ret; + } + + ret = -ENOMEM; + base = devm_ioremap(dev, ress->start, DOC_IOSPACE_SIZE); + if (!base) { + dev_err(dev, "devm_ioremap dev failed\n"); + return ret; + } + + cascade = devm_kcalloc(dev, DOC_MAX_NBFLOORS, sizeof(*cascade), + GFP_KERNEL); + if (!cascade) + return ret; + cascade->base = base; + mutex_init(&cascade->lock); + cascade->bch = bch_init(DOC_ECC_BCH_M, DOC_ECC_BCH_T, + DOC_ECC_BCH_PRIMPOLY, false); + if (!cascade->bch) + return ret; + + for (floor = 0; floor < DOC_MAX_NBFLOORS; floor++) { + mtd = doc_probe_device(cascade, floor, dev); + if (IS_ERR(mtd)) { + ret = PTR_ERR(mtd); + goto err_probe; + } + if (!mtd) { + if (floor == 0) + goto notfound; + else + continue; + } + cascade->floors[floor] = mtd; + ret = mtd_device_parse_register(mtd, part_probes, NULL, NULL, + 0); + if (ret) + goto err_probe; + + doc_dbg_register(cascade->floors[floor]); + } + + ret = doc_register_sysfs(pdev, cascade); + if (ret) + goto err_probe; + + platform_set_drvdata(pdev, cascade); + return 0; + +notfound: + ret = -ENODEV; + dev_info(dev, "No supported DiskOnChip found\n"); +err_probe: + bch_free(cascade->bch); + for (floor = 0; floor < DOC_MAX_NBFLOORS; floor++) + if (cascade->floors[floor]) + doc_release_device(cascade->floors[floor]); + return ret; +} + +/** + * docg3_release - Release the driver + * @pdev: the platform device + * + * Returns 0 + */ +static int docg3_release(struct platform_device *pdev) +{ + struct docg3_cascade *cascade = platform_get_drvdata(pdev); + struct docg3 *docg3 = cascade->floors[0]->priv; + int floor; + + doc_unregister_sysfs(pdev, cascade); + for (floor = 0; floor < DOC_MAX_NBFLOORS; floor++) + if (cascade->floors[floor]) + doc_release_device(cascade->floors[floor]); + + bch_free(docg3->cascade->bch); + return 0; +} + +#ifdef CONFIG_OF +static const struct of_device_id docg3_dt_ids[] = { + { .compatible = "m-systems,diskonchip-g3" }, + {} +}; +MODULE_DEVICE_TABLE(of, docg3_dt_ids); +#endif + +static struct platform_driver g3_driver = { + .driver = { + .name = "docg3", + .of_match_table = of_match_ptr(docg3_dt_ids), + }, + .suspend = docg3_suspend, + .resume = docg3_resume, + .remove = docg3_release, +}; + +module_platform_driver_probe(g3_driver, docg3_probe); + +MODULE_LICENSE("GPL"); +MODULE_AUTHOR("Robert Jarzmik <robert.jarzmik@free.fr>"); +MODULE_DESCRIPTION("MTD driver for DiskOnChip G3"); diff --git a/drivers/mtd/devices/docg3.h b/drivers/mtd/devices/docg3.h new file mode 100644 index 0000000000..2c0c5114e4 --- /dev/null +++ b/drivers/mtd/devices/docg3.h @@ -0,0 +1,343 @@ +/* SPDX-License-Identifier: GPL-2.0-or-later */ +/* + * Handles the M-Systems DiskOnChip G3 chip + * + * Copyright (C) 2011 Robert Jarzmik + */ + +#ifndef _MTD_DOCG3_H +#define _MTD_DOCG3_H + +#include <linux/mtd/mtd.h> + +/* + * Flash memory areas : + * - 0x0000 .. 0x07ff : IPL + * - 0x0800 .. 0x0fff : Data area + * - 0x1000 .. 0x17ff : Registers + * - 0x1800 .. 0x1fff : Unknown + */ +#define DOC_IOSPACE_IPL 0x0000 +#define DOC_IOSPACE_DATA 0x0800 +#define DOC_IOSPACE_SIZE 0x2000 + +/* + * DOC G3 layout and adressing scheme + * A page address for the block "b", plane "P" and page "p": + * address = [bbbb bPpp pppp] + */ + +#define DOC_ADDR_PAGE_MASK 0x3f +#define DOC_ADDR_BLOCK_SHIFT 6 +#define DOC_LAYOUT_NBPLANES 2 +#define DOC_LAYOUT_PAGES_PER_BLOCK 64 +#define DOC_LAYOUT_PAGE_SIZE 512 +#define DOC_LAYOUT_OOB_SIZE 16 +#define DOC_LAYOUT_WEAR_SIZE 8 +#define DOC_LAYOUT_PAGE_OOB_SIZE \ + (DOC_LAYOUT_PAGE_SIZE + DOC_LAYOUT_OOB_SIZE) +#define DOC_LAYOUT_WEAR_OFFSET (DOC_LAYOUT_PAGE_OOB_SIZE * 2) +#define DOC_LAYOUT_BLOCK_SIZE \ + (DOC_LAYOUT_PAGES_PER_BLOCK * DOC_LAYOUT_PAGE_SIZE) + +/* + * ECC related constants + */ +#define DOC_ECC_BCH_M 14 +#define DOC_ECC_BCH_T 4 +#define DOC_ECC_BCH_PRIMPOLY 0x4443 +#define DOC_ECC_BCH_SIZE 7 +#define DOC_ECC_BCH_COVERED_BYTES \ + (DOC_LAYOUT_PAGE_SIZE + DOC_LAYOUT_OOB_PAGEINFO_SZ + \ + DOC_LAYOUT_OOB_HAMMING_SZ) +#define DOC_ECC_BCH_TOTAL_BYTES \ + (DOC_ECC_BCH_COVERED_BYTES + DOC_LAYOUT_OOB_BCH_SZ) + +/* + * Blocks distribution + */ +#define DOC_LAYOUT_BLOCK_BBT 0 +#define DOC_LAYOUT_BLOCK_OTP 0 +#define DOC_LAYOUT_BLOCK_FIRST_DATA 6 + +#define DOC_LAYOUT_PAGE_BBT 4 + +/* + * Extra page OOB (16 bytes wide) layout + */ +#define DOC_LAYOUT_OOB_PAGEINFO_OFS 0 +#define DOC_LAYOUT_OOB_HAMMING_OFS 7 +#define DOC_LAYOUT_OOB_BCH_OFS 8 +#define DOC_LAYOUT_OOB_UNUSED_OFS 15 +#define DOC_LAYOUT_OOB_PAGEINFO_SZ 7 +#define DOC_LAYOUT_OOB_HAMMING_SZ 1 +#define DOC_LAYOUT_OOB_BCH_SZ 7 +#define DOC_LAYOUT_OOB_UNUSED_SZ 1 + + +#define DOC_CHIPID_G3 0x200 +#define DOC_ERASE_MARK 0xaa +#define DOC_MAX_NBFLOORS 4 +/* + * Flash registers + */ +#define DOC_CHIPID 0x1000 +#define DOC_TEST 0x1004 +#define DOC_BUSLOCK 0x1006 +#define DOC_ENDIANCONTROL 0x1008 +#define DOC_DEVICESELECT 0x100a +#define DOC_ASICMODE 0x100c +#define DOC_CONFIGURATION 0x100e +#define DOC_INTERRUPTCONTROL 0x1010 +#define DOC_READADDRESS 0x101a +#define DOC_DATAEND 0x101e +#define DOC_INTERRUPTSTATUS 0x1020 + +#define DOC_FLASHSEQUENCE 0x1032 +#define DOC_FLASHCOMMAND 0x1034 +#define DOC_FLASHADDRESS 0x1036 +#define DOC_FLASHCONTROL 0x1038 +#define DOC_NOP 0x103e + +#define DOC_ECCCONF0 0x1040 +#define DOC_ECCCONF1 0x1042 +#define DOC_ECCPRESET 0x1044 +#define DOC_HAMMINGPARITY 0x1046 +#define DOC_BCH_HW_ECC(idx) (0x1048 + idx) + +#define DOC_PROTECTION 0x1056 +#define DOC_DPS0_KEY 0x105c +#define DOC_DPS1_KEY 0x105e +#define DOC_DPS0_ADDRLOW 0x1060 +#define DOC_DPS0_ADDRHIGH 0x1062 +#define DOC_DPS1_ADDRLOW 0x1064 +#define DOC_DPS1_ADDRHIGH 0x1066 +#define DOC_DPS0_STATUS 0x106c +#define DOC_DPS1_STATUS 0x106e + +#define DOC_ASICMODECONFIRM 0x1072 +#define DOC_CHIPID_INV 0x1074 +#define DOC_POWERMODE 0x107c + +/* + * Flash sequences + * A sequence is preset before one or more commands are input to the chip. + */ +#define DOC_SEQ_RESET 0x00 +#define DOC_SEQ_PAGE_SIZE_532 0x03 +#define DOC_SEQ_SET_FASTMODE 0x05 +#define DOC_SEQ_SET_RELIABLEMODE 0x09 +#define DOC_SEQ_READ 0x12 +#define DOC_SEQ_SET_PLANE1 0x0e +#define DOC_SEQ_SET_PLANE2 0x10 +#define DOC_SEQ_PAGE_SETUP 0x1d +#define DOC_SEQ_ERASE 0x27 +#define DOC_SEQ_PLANES_STATUS 0x31 + +/* + * Flash commands + */ +#define DOC_CMD_READ_PLANE1 0x00 +#define DOC_CMD_SET_ADDR_READ 0x05 +#define DOC_CMD_READ_ALL_PLANES 0x30 +#define DOC_CMD_READ_PLANE2 0x50 +#define DOC_CMD_READ_FLASH 0xe0 +#define DOC_CMD_PAGE_SIZE_532 0x3c + +#define DOC_CMD_PROG_BLOCK_ADDR 0x60 +#define DOC_CMD_PROG_CYCLE1 0x80 +#define DOC_CMD_PROG_CYCLE2 0x10 +#define DOC_CMD_PROG_CYCLE3 0x11 +#define DOC_CMD_ERASECYCLE2 0xd0 +#define DOC_CMD_READ_STATUS 0x70 +#define DOC_CMD_PLANES_STATUS 0x71 + +#define DOC_CMD_RELIABLE_MODE 0x22 +#define DOC_CMD_FAST_MODE 0xa2 + +#define DOC_CMD_RESET 0xff + +/* + * Flash register : DOC_FLASHCONTROL + */ +#define DOC_CTRL_VIOLATION 0x20 +#define DOC_CTRL_CE 0x10 +#define DOC_CTRL_UNKNOWN_BITS 0x08 +#define DOC_CTRL_PROTECTION_ERROR 0x04 +#define DOC_CTRL_SEQUENCE_ERROR 0x02 +#define DOC_CTRL_FLASHREADY 0x01 + +/* + * Flash register : DOC_ASICMODE + */ +#define DOC_ASICMODE_RESET 0x00 +#define DOC_ASICMODE_NORMAL 0x01 +#define DOC_ASICMODE_POWERDOWN 0x02 +#define DOC_ASICMODE_MDWREN 0x04 +#define DOC_ASICMODE_BDETCT_RESET 0x08 +#define DOC_ASICMODE_RSTIN_RESET 0x10 +#define DOC_ASICMODE_RAM_WE 0x20 + +/* + * Flash register : DOC_ECCCONF0 + */ +#define DOC_ECCCONF0_WRITE_MODE 0x0000 +#define DOC_ECCCONF0_READ_MODE 0x8000 +#define DOC_ECCCONF0_AUTO_ECC_ENABLE 0x4000 +#define DOC_ECCCONF0_HAMMING_ENABLE 0x1000 +#define DOC_ECCCONF0_BCH_ENABLE 0x0800 +#define DOC_ECCCONF0_DATA_BYTES_MASK 0x07ff + +/* + * Flash register : DOC_ECCCONF1 + */ +#define DOC_ECCCONF1_BCH_SYNDROM_ERR 0x80 +#define DOC_ECCCONF1_UNKOWN1 0x40 +#define DOC_ECCCONF1_PAGE_IS_WRITTEN 0x20 +#define DOC_ECCCONF1_UNKOWN3 0x10 +#define DOC_ECCCONF1_HAMMING_BITS_MASK 0x0f + +/* + * Flash register : DOC_PROTECTION + */ +#define DOC_PROTECT_FOUNDRY_OTP_LOCK 0x01 +#define DOC_PROTECT_CUSTOMER_OTP_LOCK 0x02 +#define DOC_PROTECT_LOCK_INPUT 0x04 +#define DOC_PROTECT_STICKY_LOCK 0x08 +#define DOC_PROTECT_PROTECTION_ENABLED 0x10 +#define DOC_PROTECT_IPL_DOWNLOAD_LOCK 0x20 +#define DOC_PROTECT_PROTECTION_ERROR 0x80 + +/* + * Flash register : DOC_DPS0_STATUS and DOC_DPS1_STATUS + */ +#define DOC_DPS_OTP_PROTECTED 0x01 +#define DOC_DPS_READ_PROTECTED 0x02 +#define DOC_DPS_WRITE_PROTECTED 0x04 +#define DOC_DPS_HW_LOCK_ENABLED 0x08 +#define DOC_DPS_KEY_OK 0x80 + +/* + * Flash register : DOC_CONFIGURATION + */ +#define DOC_CONF_IF_CFG 0x80 +#define DOC_CONF_MAX_ID_MASK 0x30 +#define DOC_CONF_VCCQ_3V 0x01 + +/* + * Flash register : DOC_READADDRESS + */ +#define DOC_READADDR_INC 0x8000 +#define DOC_READADDR_ONE_BYTE 0x4000 +#define DOC_READADDR_ADDR_MASK 0x1fff + +/* + * Flash register : DOC_POWERMODE + */ +#define DOC_POWERDOWN_READY 0x80 + +/* + * Status of erase and write operation + */ +#define DOC_PLANES_STATUS_FAIL 0x01 +#define DOC_PLANES_STATUS_PLANE0_KO 0x02 +#define DOC_PLANES_STATUS_PLANE1_KO 0x04 + +/* + * DPS key management + * + * Each floor of docg3 has 2 protection areas: DPS0 and DPS1. These areas span + * across block boundaries, and define whether these blocks can be read or + * written. + * The definition is dynamically stored in page 0 of blocks (2,3) for DPS0, and + * page 0 of blocks (4,5) for DPS1. + */ +#define DOC_LAYOUT_DPS_KEY_LENGTH 8 + +/** + * struct docg3_cascade - Cascade of 1 to 4 docg3 chips + * @floors: floors (ie. one physical docg3 chip is one floor) + * @base: IO space to access all chips in the cascade + * @bch: the BCH correcting control structure + * @lock: lock to protect docg3 IO space from concurrent accesses + */ +struct docg3_cascade { + struct mtd_info *floors[DOC_MAX_NBFLOORS]; + void __iomem *base; + struct bch_control *bch; + struct mutex lock; +}; + +/** + * struct docg3 - DiskOnChip driver private data + * @dev: the device currently under control + * @cascade: the cascade this device belongs to + * @device_id: number of the cascaded DoCG3 device (0, 1, 2 or 3) + * @if_cfg: if true, reads are on 16bits, else reads are on 8bits + + * @reliable: if 0, docg3 in normal mode, if 1 docg3 in fast mode, if 2 in + * reliable mode + * Fast mode implies more errors than normal mode. + * Reliable mode implies that page 2*n and 2*n+1 are clones. + * @bbt: bad block table cache + * @oob_write_ofs: offset of the MTD where this OOB should belong (ie. in next + * page_write) + * @oob_autoecc: if 1, use only bytes 0-7, 15, and fill the others with HW ECC + * if 0, use all the 16 bytes. + * @oob_write_buf: prepared OOB for next page_write + */ +struct docg3 { + struct device *dev; + struct docg3_cascade *cascade; + unsigned int device_id:4; + unsigned int if_cfg:1; + unsigned int reliable:2; + int max_block; + u8 *bbt; + loff_t oob_write_ofs; + int oob_autoecc; + u8 oob_write_buf[DOC_LAYOUT_OOB_SIZE]; +}; + +#define doc_err(fmt, arg...) dev_err(docg3->dev, (fmt), ## arg) +#define doc_info(fmt, arg...) dev_info(docg3->dev, (fmt), ## arg) +#define doc_dbg(fmt, arg...) dev_dbg(docg3->dev, (fmt), ## arg) +#define doc_vdbg(fmt, arg...) dev_vdbg(docg3->dev, (fmt), ## arg) +#endif + +/* + * Trace events part + */ +#undef TRACE_SYSTEM +#define TRACE_SYSTEM docg3 + +#if !defined(_MTD_DOCG3_TRACE) || defined(TRACE_HEADER_MULTI_READ) +#define _MTD_DOCG3_TRACE + +#include <linux/tracepoint.h> + +TRACE_EVENT(docg3_io, + TP_PROTO(int op, int width, u16 reg, int val), + TP_ARGS(op, width, reg, val), + TP_STRUCT__entry( + __field(int, op) + __field(unsigned char, width) + __field(u16, reg) + __field(int, val)), + TP_fast_assign( + __entry->op = op; + __entry->width = width; + __entry->reg = reg; + __entry->val = val;), + TP_printk("docg3: %s%02d reg=%04x, val=%04x", + __entry->op ? "write" : "read", __entry->width, + __entry->reg, __entry->val) + ); +#endif + +/* This part must be outside protection */ +#undef TRACE_INCLUDE_PATH +#undef TRACE_INCLUDE_FILE +#define TRACE_INCLUDE_PATH . +#define TRACE_INCLUDE_FILE docg3 +#include <trace/define_trace.h> diff --git a/drivers/mtd/devices/mchp23k256.c b/drivers/mtd/devices/mchp23k256.c new file mode 100644 index 0000000000..d533475fda --- /dev/null +++ b/drivers/mtd/devices/mchp23k256.c @@ -0,0 +1,260 @@ +// SPDX-License-Identifier: GPL-2.0-only +/* + * mchp23k256.c + * + * Driver for Microchip 23k256 SPI RAM chips + * + * Copyright © 2016 Andrew Lunn <andrew@lunn.ch> + */ +#include <linux/device.h> +#include <linux/module.h> +#include <linux/mtd/mtd.h> +#include <linux/mtd/partitions.h> +#include <linux/mutex.h> +#include <linux/sched.h> +#include <linux/sizes.h> +#include <linux/spi/flash.h> +#include <linux/spi/spi.h> +#include <linux/of.h> + +#define MAX_CMD_SIZE 4 + +struct mchp23_caps { + u8 addr_width; + unsigned int size; +}; + +struct mchp23k256_flash { + struct spi_device *spi; + struct mutex lock; + struct mtd_info mtd; + const struct mchp23_caps *caps; +}; + +#define MCHP23K256_CMD_WRITE_STATUS 0x01 +#define MCHP23K256_CMD_WRITE 0x02 +#define MCHP23K256_CMD_READ 0x03 +#define MCHP23K256_MODE_SEQ BIT(6) + +#define to_mchp23k256_flash(x) container_of(x, struct mchp23k256_flash, mtd) + +static void mchp23k256_addr2cmd(struct mchp23k256_flash *flash, + unsigned int addr, u8 *cmd) +{ + int i; + + /* + * Address is sent in big endian (MSB first) and we skip + * the first entry of the cmd array which contains the cmd + * opcode. + */ + for (i = flash->caps->addr_width; i > 0; i--, addr >>= 8) + cmd[i] = addr; +} + +static int mchp23k256_cmdsz(struct mchp23k256_flash *flash) +{ + return 1 + flash->caps->addr_width; +} + +static int mchp23k256_write(struct mtd_info *mtd, loff_t to, size_t len, + size_t *retlen, const unsigned char *buf) +{ + struct mchp23k256_flash *flash = to_mchp23k256_flash(mtd); + struct spi_transfer transfer[2] = {}; + struct spi_message message; + unsigned char command[MAX_CMD_SIZE]; + int ret, cmd_len; + + spi_message_init(&message); + + cmd_len = mchp23k256_cmdsz(flash); + + command[0] = MCHP23K256_CMD_WRITE; + mchp23k256_addr2cmd(flash, to, command); + + transfer[0].tx_buf = command; + transfer[0].len = cmd_len; + spi_message_add_tail(&transfer[0], &message); + + transfer[1].tx_buf = buf; + transfer[1].len = len; + spi_message_add_tail(&transfer[1], &message); + + mutex_lock(&flash->lock); + + ret = spi_sync(flash->spi, &message); + + mutex_unlock(&flash->lock); + + if (ret) + return ret; + + if (retlen && message.actual_length > cmd_len) + *retlen += message.actual_length - cmd_len; + + return 0; +} + +static int mchp23k256_read(struct mtd_info *mtd, loff_t from, size_t len, + size_t *retlen, unsigned char *buf) +{ + struct mchp23k256_flash *flash = to_mchp23k256_flash(mtd); + struct spi_transfer transfer[2] = {}; + struct spi_message message; + unsigned char command[MAX_CMD_SIZE]; + int ret, cmd_len; + + spi_message_init(&message); + + cmd_len = mchp23k256_cmdsz(flash); + + memset(&transfer, 0, sizeof(transfer)); + command[0] = MCHP23K256_CMD_READ; + mchp23k256_addr2cmd(flash, from, command); + + transfer[0].tx_buf = command; + transfer[0].len = cmd_len; + spi_message_add_tail(&transfer[0], &message); + + transfer[1].rx_buf = buf; + transfer[1].len = len; + spi_message_add_tail(&transfer[1], &message); + + mutex_lock(&flash->lock); + + ret = spi_sync(flash->spi, &message); + + mutex_unlock(&flash->lock); + + if (ret) + return ret; + + if (retlen && message.actual_length > cmd_len) + *retlen += message.actual_length - cmd_len; + + return 0; +} + +/* + * Set the device into sequential mode. This allows read/writes to the + * entire SRAM in a single operation + */ +static int mchp23k256_set_mode(struct spi_device *spi) +{ + struct spi_transfer transfer = {}; + struct spi_message message; + unsigned char command[2]; + + spi_message_init(&message); + + command[0] = MCHP23K256_CMD_WRITE_STATUS; + command[1] = MCHP23K256_MODE_SEQ; + + transfer.tx_buf = command; + transfer.len = sizeof(command); + spi_message_add_tail(&transfer, &message); + + return spi_sync(spi, &message); +} + +static const struct mchp23_caps mchp23k256_caps = { + .size = SZ_32K, + .addr_width = 2, +}; + +static const struct mchp23_caps mchp23lcv1024_caps = { + .size = SZ_128K, + .addr_width = 3, +}; + +static int mchp23k256_probe(struct spi_device *spi) +{ + struct mchp23k256_flash *flash; + struct flash_platform_data *data; + int err; + + flash = devm_kzalloc(&spi->dev, sizeof(*flash), GFP_KERNEL); + if (!flash) + return -ENOMEM; + + flash->spi = spi; + mutex_init(&flash->lock); + spi_set_drvdata(spi, flash); + + err = mchp23k256_set_mode(spi); + if (err) + return err; + + data = dev_get_platdata(&spi->dev); + + flash->caps = of_device_get_match_data(&spi->dev); + if (!flash->caps) + flash->caps = &mchp23k256_caps; + + mtd_set_of_node(&flash->mtd, spi->dev.of_node); + flash->mtd.dev.parent = &spi->dev; + flash->mtd.type = MTD_RAM; + flash->mtd.flags = MTD_CAP_RAM; + flash->mtd.writesize = 1; + flash->mtd.size = flash->caps->size; + flash->mtd._read = mchp23k256_read; + flash->mtd._write = mchp23k256_write; + + err = mtd_device_register(&flash->mtd, data ? data->parts : NULL, + data ? data->nr_parts : 0); + if (err) + return err; + + return 0; +} + +static void mchp23k256_remove(struct spi_device *spi) +{ + struct mchp23k256_flash *flash = spi_get_drvdata(spi); + + WARN_ON(mtd_device_unregister(&flash->mtd)); +} + +static const struct of_device_id mchp23k256_of_table[] = { + { + .compatible = "microchip,mchp23k256", + .data = &mchp23k256_caps, + }, + { + .compatible = "microchip,mchp23lcv1024", + .data = &mchp23lcv1024_caps, + }, + {} +}; +MODULE_DEVICE_TABLE(of, mchp23k256_of_table); + +static const struct spi_device_id mchp23k256_spi_ids[] = { + { + .name = "mchp23k256", + .driver_data = (kernel_ulong_t)&mchp23k256_caps, + }, + { + .name = "mchp23lcv1024", + .driver_data = (kernel_ulong_t)&mchp23lcv1024_caps, + }, + {} +}; +MODULE_DEVICE_TABLE(spi, mchp23k256_spi_ids); + +static struct spi_driver mchp23k256_driver = { + .driver = { + .name = "mchp23k256", + .of_match_table = mchp23k256_of_table, + }, + .probe = mchp23k256_probe, + .remove = mchp23k256_remove, + .id_table = mchp23k256_spi_ids, +}; + +module_spi_driver(mchp23k256_driver); + +MODULE_DESCRIPTION("MTD SPI driver for MCHP23K256 RAM chips"); +MODULE_AUTHOR("Andrew Lunn <andre@lunn.ch>"); +MODULE_LICENSE("GPL v2"); +MODULE_ALIAS("spi:mchp23k256"); diff --git a/drivers/mtd/devices/mchp48l640.c b/drivers/mtd/devices/mchp48l640.c new file mode 100644 index 0000000000..f576e6a890 --- /dev/null +++ b/drivers/mtd/devices/mchp48l640.c @@ -0,0 +1,384 @@ +// SPDX-License-Identifier: GPL-2.0 +/* + * Driver for Microchip 48L640 64 Kb SPI Serial EERAM + * + * Copyright Heiko Schocher <hs@denx.de> + * + * datasheet: http://ww1.microchip.com/downloads/en/DeviceDoc/20006055B.pdf + * + * we set continuous mode but reading/writing more bytes than + * pagesize seems to bring chip into state where readden values + * are wrong ... no idea why. + * + */ +#include <linux/delay.h> +#include <linux/device.h> +#include <linux/jiffies.h> +#include <linux/module.h> +#include <linux/mtd/mtd.h> +#include <linux/mtd/partitions.h> +#include <linux/mutex.h> +#include <linux/sched.h> +#include <linux/sizes.h> +#include <linux/spi/flash.h> +#include <linux/spi/spi.h> +#include <linux/of.h> + +struct mchp48_caps { + unsigned int size; + unsigned int page_size; +}; + +struct mchp48l640_flash { + struct spi_device *spi; + struct mutex lock; + struct mtd_info mtd; + const struct mchp48_caps *caps; +}; + +#define MCHP48L640_CMD_WREN 0x06 +#define MCHP48L640_CMD_WRDI 0x04 +#define MCHP48L640_CMD_WRITE 0x02 +#define MCHP48L640_CMD_READ 0x03 +#define MCHP48L640_CMD_WRSR 0x01 +#define MCHP48L640_CMD_RDSR 0x05 + +#define MCHP48L640_STATUS_RDY 0x01 +#define MCHP48L640_STATUS_WEL 0x02 +#define MCHP48L640_STATUS_BP0 0x04 +#define MCHP48L640_STATUS_BP1 0x08 +#define MCHP48L640_STATUS_SWM 0x10 +#define MCHP48L640_STATUS_PRO 0x20 +#define MCHP48L640_STATUS_ASE 0x40 + +#define MCHP48L640_TIMEOUT 100 + +#define MAX_CMD_SIZE 0x10 + +#define to_mchp48l640_flash(x) container_of(x, struct mchp48l640_flash, mtd) + +static int mchp48l640_mkcmd(struct mchp48l640_flash *flash, u8 cmd, loff_t addr, char *buf) +{ + buf[0] = cmd; + buf[1] = addr >> 8; + buf[2] = addr; + + return 3; +} + +static int mchp48l640_read_status(struct mchp48l640_flash *flash, int *status) +{ + unsigned char cmd[2]; + int ret; + + cmd[0] = MCHP48L640_CMD_RDSR; + cmd[1] = 0x00; + mutex_lock(&flash->lock); + ret = spi_write_then_read(flash->spi, &cmd[0], 1, &cmd[1], 1); + mutex_unlock(&flash->lock); + if (!ret) + *status = cmd[1]; + dev_dbg(&flash->spi->dev, "read status ret: %d status: %x", ret, *status); + + return ret; +} + +static int mchp48l640_waitforbit(struct mchp48l640_flash *flash, int bit, bool set) +{ + int ret, status; + unsigned long deadline; + + deadline = jiffies + msecs_to_jiffies(MCHP48L640_TIMEOUT); + do { + ret = mchp48l640_read_status(flash, &status); + dev_dbg(&flash->spi->dev, "read status ret: %d bit: %x %sset status: %x", + ret, bit, (set ? "" : "not"), status); + if (ret) + return ret; + + if (set) { + if ((status & bit) == bit) + return 0; + } else { + if ((status & bit) == 0) + return 0; + } + + usleep_range(1000, 2000); + } while (!time_after_eq(jiffies, deadline)); + + dev_err(&flash->spi->dev, "Timeout waiting for bit %x %s set in status register.", + bit, (set ? "" : "not")); + return -ETIMEDOUT; +} + +static int mchp48l640_write_prepare(struct mchp48l640_flash *flash, bool enable) +{ + unsigned char cmd[2]; + int ret; + + if (enable) + cmd[0] = MCHP48L640_CMD_WREN; + else + cmd[0] = MCHP48L640_CMD_WRDI; + + mutex_lock(&flash->lock); + ret = spi_write(flash->spi, cmd, 1); + mutex_unlock(&flash->lock); + + if (ret) + dev_err(&flash->spi->dev, "write %sable failed ret: %d", + (enable ? "en" : "dis"), ret); + + dev_dbg(&flash->spi->dev, "write %sable success ret: %d", + (enable ? "en" : "dis"), ret); + if (enable) + return mchp48l640_waitforbit(flash, MCHP48L640_STATUS_WEL, true); + + return ret; +} + +static int mchp48l640_set_mode(struct mchp48l640_flash *flash) +{ + unsigned char cmd[2]; + int ret; + + ret = mchp48l640_write_prepare(flash, true); + if (ret) + return ret; + + cmd[0] = MCHP48L640_CMD_WRSR; + cmd[1] = MCHP48L640_STATUS_PRO; + + mutex_lock(&flash->lock); + ret = spi_write(flash->spi, cmd, 2); + mutex_unlock(&flash->lock); + if (ret) + dev_err(&flash->spi->dev, "Could not set continuous mode ret: %d", ret); + + return mchp48l640_waitforbit(flash, MCHP48L640_STATUS_PRO, true); +} + +static int mchp48l640_wait_rdy(struct mchp48l640_flash *flash) +{ + return mchp48l640_waitforbit(flash, MCHP48L640_STATUS_RDY, false); +}; + +static int mchp48l640_write_page(struct mtd_info *mtd, loff_t to, size_t len, + size_t *retlen, const unsigned char *buf) +{ + struct mchp48l640_flash *flash = to_mchp48l640_flash(mtd); + unsigned char *cmd; + int ret; + int cmdlen; + + cmd = kmalloc((3 + len), GFP_KERNEL | GFP_DMA); + if (!cmd) + return -ENOMEM; + + ret = mchp48l640_wait_rdy(flash); + if (ret) + goto fail; + + ret = mchp48l640_write_prepare(flash, true); + if (ret) + goto fail; + + mutex_lock(&flash->lock); + cmdlen = mchp48l640_mkcmd(flash, MCHP48L640_CMD_WRITE, to, cmd); + memcpy(&cmd[cmdlen], buf, len); + ret = spi_write(flash->spi, cmd, cmdlen + len); + mutex_unlock(&flash->lock); + if (!ret) + *retlen += len; + else + goto fail; + + ret = mchp48l640_waitforbit(flash, MCHP48L640_STATUS_WEL, false); + if (ret) + goto fail; + + kfree(cmd); + return 0; +fail: + kfree(cmd); + dev_err(&flash->spi->dev, "write fail with: %d", ret); + return ret; +}; + +static int mchp48l640_write(struct mtd_info *mtd, loff_t to, size_t len, + size_t *retlen, const unsigned char *buf) +{ + struct mchp48l640_flash *flash = to_mchp48l640_flash(mtd); + int ret; + size_t wlen = 0; + loff_t woff = to; + size_t ws; + size_t page_sz = flash->caps->page_size; + + /* + * we set PRO bit (page rollover), but writing length > page size + * does result in total chaos, so write in 32 byte chunks. + */ + while (wlen < len) { + ws = min((len - wlen), page_sz); + ret = mchp48l640_write_page(mtd, woff, ws, retlen, &buf[wlen]); + if (ret) + return ret; + wlen += ws; + woff += ws; + } + + return 0; +} + +static int mchp48l640_read_page(struct mtd_info *mtd, loff_t from, size_t len, + size_t *retlen, unsigned char *buf) +{ + struct mchp48l640_flash *flash = to_mchp48l640_flash(mtd); + unsigned char *cmd; + int ret; + int cmdlen; + + cmd = kmalloc((3 + len), GFP_KERNEL | GFP_DMA); + if (!cmd) + return -ENOMEM; + + ret = mchp48l640_wait_rdy(flash); + if (ret) + goto fail; + + mutex_lock(&flash->lock); + cmdlen = mchp48l640_mkcmd(flash, MCHP48L640_CMD_READ, from, cmd); + ret = spi_write_then_read(flash->spi, cmd, cmdlen, buf, len); + mutex_unlock(&flash->lock); + if (!ret) + *retlen += len; + + kfree(cmd); + return ret; + +fail: + kfree(cmd); + dev_err(&flash->spi->dev, "read fail with: %d", ret); + return ret; +} + +static int mchp48l640_read(struct mtd_info *mtd, loff_t from, size_t len, + size_t *retlen, unsigned char *buf) +{ + struct mchp48l640_flash *flash = to_mchp48l640_flash(mtd); + int ret; + size_t wlen = 0; + loff_t woff = from; + size_t ws; + size_t page_sz = flash->caps->page_size; + + /* + * we set PRO bit (page rollover), but if read length > page size + * does result in total chaos in result ... + */ + while (wlen < len) { + ws = min((len - wlen), page_sz); + ret = mchp48l640_read_page(mtd, woff, ws, retlen, &buf[wlen]); + if (ret) + return ret; + wlen += ws; + woff += ws; + } + + return 0; +}; + +static const struct mchp48_caps mchp48l640_caps = { + .size = SZ_8K, + .page_size = 32, +}; + +static int mchp48l640_probe(struct spi_device *spi) +{ + struct mchp48l640_flash *flash; + struct flash_platform_data *data; + int err; + int status; + + flash = devm_kzalloc(&spi->dev, sizeof(*flash), GFP_KERNEL); + if (!flash) + return -ENOMEM; + + flash->spi = spi; + mutex_init(&flash->lock); + spi_set_drvdata(spi, flash); + + err = mchp48l640_read_status(flash, &status); + if (err) + return err; + + err = mchp48l640_set_mode(flash); + if (err) + return err; + + data = dev_get_platdata(&spi->dev); + + flash->caps = of_device_get_match_data(&spi->dev); + if (!flash->caps) + flash->caps = &mchp48l640_caps; + + mtd_set_of_node(&flash->mtd, spi->dev.of_node); + flash->mtd.dev.parent = &spi->dev; + flash->mtd.type = MTD_RAM; + flash->mtd.flags = MTD_CAP_RAM; + flash->mtd.writesize = flash->caps->page_size; + flash->mtd.size = flash->caps->size; + flash->mtd._read = mchp48l640_read; + flash->mtd._write = mchp48l640_write; + + err = mtd_device_register(&flash->mtd, data ? data->parts : NULL, + data ? data->nr_parts : 0); + if (err) + return err; + + return 0; +} + +static void mchp48l640_remove(struct spi_device *spi) +{ + struct mchp48l640_flash *flash = spi_get_drvdata(spi); + + WARN_ON(mtd_device_unregister(&flash->mtd)); +} + +static const struct of_device_id mchp48l640_of_table[] = { + { + .compatible = "microchip,48l640", + .data = &mchp48l640_caps, + }, + {} +}; +MODULE_DEVICE_TABLE(of, mchp48l640_of_table); + +static const struct spi_device_id mchp48l640_spi_ids[] = { + { + .name = "48l640", + .driver_data = (kernel_ulong_t)&mchp48l640_caps, + }, + {} +}; +MODULE_DEVICE_TABLE(spi, mchp48l640_spi_ids); + +static struct spi_driver mchp48l640_driver = { + .driver = { + .name = "mchp48l640", + .of_match_table = mchp48l640_of_table, + }, + .probe = mchp48l640_probe, + .remove = mchp48l640_remove, + .id_table = mchp48l640_spi_ids, +}; + +module_spi_driver(mchp48l640_driver); + +MODULE_DESCRIPTION("MTD SPI driver for Microchip 48l640 EERAM chips"); +MODULE_AUTHOR("Heiko Schocher <hs@denx.de>"); +MODULE_LICENSE("GPL v2"); +MODULE_ALIAS("spi:mchp48l640"); diff --git a/drivers/mtd/devices/ms02-nv.c b/drivers/mtd/devices/ms02-nv.c new file mode 100644 index 0000000000..08f76ff839 --- /dev/null +++ b/drivers/mtd/devices/ms02-nv.c @@ -0,0 +1,306 @@ +// SPDX-License-Identifier: GPL-2.0-or-later +/* + * Copyright (c) 2001 Maciej W. Rozycki + */ + +#include <linux/init.h> +#include <linux/ioport.h> +#include <linux/kernel.h> +#include <linux/module.h> +#include <linux/mtd/mtd.h> +#include <linux/slab.h> +#include <linux/types.h> + +#include <asm/addrspace.h> +#include <asm/bootinfo.h> +#include <asm/dec/ioasic_addrs.h> +#include <asm/dec/kn02.h> +#include <asm/dec/kn03.h> +#include <asm/io.h> +#include <asm/paccess.h> + +#include "ms02-nv.h" + + +static char version[] __initdata = + "ms02-nv.c: v.1.0.0 13 Aug 2001 Maciej W. Rozycki.\n"; + +MODULE_AUTHOR("Maciej W. Rozycki <macro@linux-mips.org>"); +MODULE_DESCRIPTION("DEC MS02-NV NVRAM module driver"); +MODULE_LICENSE("GPL"); + + +/* + * Addresses we probe for an MS02-NV at. Modules may be located + * at any 8MiB boundary within a 0MiB up to 112MiB range or at any 32MiB + * boundary within a 0MiB up to 448MiB range. We don't support a module + * at 0MiB, though. + */ +static ulong ms02nv_addrs[] __initdata = { + 0x07000000, 0x06800000, 0x06000000, 0x05800000, 0x05000000, + 0x04800000, 0x04000000, 0x03800000, 0x03000000, 0x02800000, + 0x02000000, 0x01800000, 0x01000000, 0x00800000 +}; + +static const char ms02nv_name[] = "DEC MS02-NV NVRAM"; +static const char ms02nv_res_diag_ram[] = "Diagnostic RAM"; +static const char ms02nv_res_user_ram[] = "General-purpose RAM"; +static const char ms02nv_res_csr[] = "Control and status register"; + +static struct mtd_info *root_ms02nv_mtd; + + +static int ms02nv_read(struct mtd_info *mtd, loff_t from, + size_t len, size_t *retlen, u_char *buf) +{ + struct ms02nv_private *mp = mtd->priv; + + memcpy(buf, mp->uaddr + from, len); + *retlen = len; + return 0; +} + +static int ms02nv_write(struct mtd_info *mtd, loff_t to, + size_t len, size_t *retlen, const u_char *buf) +{ + struct ms02nv_private *mp = mtd->priv; + + memcpy(mp->uaddr + to, buf, len); + *retlen = len; + return 0; +} + + +static inline uint ms02nv_probe_one(ulong addr) +{ + ms02nv_uint *ms02nv_diagp; + ms02nv_uint *ms02nv_magicp; + uint ms02nv_diag; + uint ms02nv_magic; + size_t size; + + int err; + + /* + * The firmware writes MS02NV_ID at MS02NV_MAGIC and also + * a diagnostic status at MS02NV_DIAG. + */ + ms02nv_diagp = (ms02nv_uint *)(CKSEG1ADDR(addr + MS02NV_DIAG)); + ms02nv_magicp = (ms02nv_uint *)(CKSEG1ADDR(addr + MS02NV_MAGIC)); + err = get_dbe(ms02nv_magic, ms02nv_magicp); + if (err) + return 0; + if (ms02nv_magic != MS02NV_ID) + return 0; + + ms02nv_diag = *ms02nv_diagp; + size = (ms02nv_diag & MS02NV_DIAG_SIZE_MASK) << MS02NV_DIAG_SIZE_SHIFT; + if (size > MS02NV_CSR) + size = MS02NV_CSR; + + return size; +} + +static int __init ms02nv_init_one(ulong addr) +{ + struct mtd_info *mtd; + struct ms02nv_private *mp; + struct resource *mod_res; + struct resource *diag_res; + struct resource *user_res; + struct resource *csr_res; + ulong fixaddr; + size_t size, fixsize; + + static int version_printed; + + int ret = -ENODEV; + + /* The module decodes 8MiB of address space. */ + mod_res = kzalloc(sizeof(*mod_res), GFP_KERNEL); + if (!mod_res) + return -ENOMEM; + + mod_res->name = ms02nv_name; + mod_res->start = addr; + mod_res->end = addr + MS02NV_SLOT_SIZE - 1; + mod_res->flags = IORESOURCE_MEM | IORESOURCE_BUSY; + if (request_resource(&iomem_resource, mod_res) < 0) + goto err_out_mod_res; + + size = ms02nv_probe_one(addr); + if (!size) + goto err_out_mod_res_rel; + + if (!version_printed) { + printk(KERN_INFO "%s", version); + version_printed = 1; + } + + ret = -ENOMEM; + mtd = kzalloc(sizeof(*mtd), GFP_KERNEL); + if (!mtd) + goto err_out_mod_res_rel; + mp = kzalloc(sizeof(*mp), GFP_KERNEL); + if (!mp) + goto err_out_mtd; + + mtd->priv = mp; + mp->resource.module = mod_res; + + /* Firmware's diagnostic NVRAM area. */ + diag_res = kzalloc(sizeof(*diag_res), GFP_KERNEL); + if (!diag_res) + goto err_out_mp; + + diag_res->name = ms02nv_res_diag_ram; + diag_res->start = addr; + diag_res->end = addr + MS02NV_RAM - 1; + diag_res->flags = IORESOURCE_BUSY; + request_resource(mod_res, diag_res); + + mp->resource.diag_ram = diag_res; + + /* User-available general-purpose NVRAM area. */ + user_res = kzalloc(sizeof(*user_res), GFP_KERNEL); + if (!user_res) + goto err_out_diag_res; + + user_res->name = ms02nv_res_user_ram; + user_res->start = addr + MS02NV_RAM; + user_res->end = addr + size - 1; + user_res->flags = IORESOURCE_BUSY; + request_resource(mod_res, user_res); + + mp->resource.user_ram = user_res; + + /* Control and status register. */ + csr_res = kzalloc(sizeof(*csr_res), GFP_KERNEL); + if (!csr_res) + goto err_out_user_res; + + csr_res->name = ms02nv_res_csr; + csr_res->start = addr + MS02NV_CSR; + csr_res->end = addr + MS02NV_CSR + 3; + csr_res->flags = IORESOURCE_BUSY; + request_resource(mod_res, csr_res); + + mp->resource.csr = csr_res; + + mp->addr = phys_to_virt(addr); + mp->size = size; + + /* + * Hide the firmware's diagnostic area. It may get destroyed + * upon a reboot. Take paging into account for mapping support. + */ + fixaddr = (addr + MS02NV_RAM + PAGE_SIZE - 1) & ~(PAGE_SIZE - 1); + fixsize = (size - (fixaddr - addr)) & ~(PAGE_SIZE - 1); + mp->uaddr = phys_to_virt(fixaddr); + + mtd->type = MTD_RAM; + mtd->flags = MTD_CAP_RAM; + mtd->size = fixsize; + mtd->name = ms02nv_name; + mtd->owner = THIS_MODULE; + mtd->_read = ms02nv_read; + mtd->_write = ms02nv_write; + mtd->writesize = 1; + + ret = -EIO; + if (mtd_device_register(mtd, NULL, 0)) { + printk(KERN_ERR + "ms02-nv: Unable to register MTD device, aborting!\n"); + goto err_out_csr_res; + } + + printk(KERN_INFO "mtd%d: %s at 0x%08lx, size %zuMiB.\n", + mtd->index, ms02nv_name, addr, size >> 20); + + mp->next = root_ms02nv_mtd; + root_ms02nv_mtd = mtd; + + return 0; + + +err_out_csr_res: + release_resource(csr_res); + kfree(csr_res); +err_out_user_res: + release_resource(user_res); + kfree(user_res); +err_out_diag_res: + release_resource(diag_res); + kfree(diag_res); +err_out_mp: + kfree(mp); +err_out_mtd: + kfree(mtd); +err_out_mod_res_rel: + release_resource(mod_res); +err_out_mod_res: + kfree(mod_res); + return ret; +} + +static void __exit ms02nv_remove_one(void) +{ + struct mtd_info *mtd = root_ms02nv_mtd; + struct ms02nv_private *mp = mtd->priv; + + root_ms02nv_mtd = mp->next; + + mtd_device_unregister(mtd); + + release_resource(mp->resource.csr); + kfree(mp->resource.csr); + release_resource(mp->resource.user_ram); + kfree(mp->resource.user_ram); + release_resource(mp->resource.diag_ram); + kfree(mp->resource.diag_ram); + release_resource(mp->resource.module); + kfree(mp->resource.module); + kfree(mp); + kfree(mtd); +} + + +static int __init ms02nv_init(void) +{ + volatile u32 *csr; + uint stride = 0; + int count = 0; + int i; + + switch (mips_machtype) { + case MACH_DS5000_200: + csr = (volatile u32 *)CKSEG1ADDR(KN02_SLOT_BASE + KN02_CSR); + if (*csr & KN02_CSR_BNK32M) + stride = 2; + break; + case MACH_DS5000_2X0: + case MACH_DS5900: + csr = (volatile u32 *)CKSEG1ADDR(KN03_SLOT_BASE + IOASIC_MCR); + if (*csr & KN03_MCR_BNK32M) + stride = 2; + break; + default: + return -ENODEV; + } + + for (i = 0; i < ARRAY_SIZE(ms02nv_addrs); i++) + if (!ms02nv_init_one(ms02nv_addrs[i] << stride)) + count++; + + return (count > 0) ? 0 : -ENODEV; +} + +static void __exit ms02nv_cleanup(void) +{ + while (root_ms02nv_mtd) + ms02nv_remove_one(); +} + + +module_init(ms02nv_init); +module_exit(ms02nv_cleanup); diff --git a/drivers/mtd/devices/ms02-nv.h b/drivers/mtd/devices/ms02-nv.h new file mode 100644 index 0000000000..737e4735db --- /dev/null +++ b/drivers/mtd/devices/ms02-nv.h @@ -0,0 +1,101 @@ +/* SPDX-License-Identifier: GPL-2.0-or-later */ +/* + * Copyright (c) 2001, 2003 Maciej W. Rozycki + * + * DEC MS02-NV (54-20948-01) battery backed-up NVRAM module for + * DECstation/DECsystem 5000/2x0 and DECsystem 5900 and 5900/260 + * systems. + */ + +#include <linux/ioport.h> +#include <linux/mtd/mtd.h> + +/* + * Addresses are decoded as follows: + * + * 0x000000 - 0x3fffff SRAM + * 0x400000 - 0x7fffff CSR + * + * Within the SRAM area the following ranges are forced by the system + * firmware: + * + * 0x000000 - 0x0003ff diagnostic area, destroyed upon a reboot + * 0x000400 - ENDofRAM storage area, available to operating systems + * + * but we can't really use the available area right from 0x000400 as + * the first word is used by the firmware as a status flag passed + * from an operating system. If anything but the valid data magic + * ID value is found, the firmware considers the SRAM clean, i.e. + * containing no valid data, and disables the battery resulting in + * data being erased as soon as power is switched off. So the choice + * for the start address of the user-available is 0x001000 which is + * nicely page aligned. The area between 0x000404 and 0x000fff may + * be used by the driver for own needs. + * + * The diagnostic area defines two status words to be read by an + * operating system, a magic ID to distinguish a MS02-NV board from + * anything else and a status information providing results of tests + * as well as the size of SRAM available, which can be 1MiB or 2MiB + * (that's what the firmware handles; no idea if 2MiB modules ever + * existed). + * + * The firmware only handles the MS02-NV board if installed in the + * last (15th) slot, so for any other location the status information + * stored in the SRAM cannot be relied upon. But from the hardware + * point of view there is no problem using up to 14 such boards in a + * system -- only the 1st slot needs to be filled with a DRAM module. + * The MS02-NV board is ECC-protected, like other MS02 memory boards. + * + * The state of the battery as provided by the CSR is reflected on + * the two onboard LEDs. When facing the battery side of the board, + * with the LEDs at the top left and the battery at the bottom right + * (i.e. looking from the back side of the system box), their meaning + * is as follows (the system has to be powered on): + * + * left LED battery disable status: lit = enabled + * right LED battery condition status: lit = OK + */ + +/* MS02-NV iomem register offsets. */ +#define MS02NV_CSR 0x400000 /* control & status register */ + +/* MS02-NV CSR status bits. */ +#define MS02NV_CSR_BATT_OK 0x01 /* battery OK */ +#define MS02NV_CSR_BATT_OFF 0x02 /* battery disabled */ + + +/* MS02-NV memory offsets. */ +#define MS02NV_DIAG 0x0003f8 /* diagnostic status */ +#define MS02NV_MAGIC 0x0003fc /* MS02-NV magic ID */ +#define MS02NV_VALID 0x000400 /* valid data magic ID */ +#define MS02NV_RAM 0x001000 /* user-exposed RAM start */ + +/* MS02-NV diagnostic status bits. */ +#define MS02NV_DIAG_TEST 0x01 /* SRAM test done (?) */ +#define MS02NV_DIAG_RO 0x02 /* SRAM r/o test done */ +#define MS02NV_DIAG_RW 0x04 /* SRAM r/w test done */ +#define MS02NV_DIAG_FAIL 0x08 /* SRAM test failed */ +#define MS02NV_DIAG_SIZE_MASK 0xf0 /* SRAM size mask */ +#define MS02NV_DIAG_SIZE_SHIFT 0x10 /* SRAM size shift (left) */ + +/* MS02-NV general constants. */ +#define MS02NV_ID 0x03021966 /* MS02-NV magic ID value */ +#define MS02NV_VALID_ID 0xbd100248 /* valid data magic ID value */ +#define MS02NV_SLOT_SIZE 0x800000 /* size of the address space + decoded by the module */ + + +typedef volatile u32 ms02nv_uint; + +struct ms02nv_private { + struct mtd_info *next; + struct { + struct resource *module; + struct resource *diag_ram; + struct resource *user_ram; + struct resource *csr; + } resource; + u_char *addr; + size_t size; + u_char *uaddr; +}; diff --git a/drivers/mtd/devices/mtd_dataflash.c b/drivers/mtd/devices/mtd_dataflash.c new file mode 100644 index 0000000000..0c1b933036 --- /dev/null +++ b/drivers/mtd/devices/mtd_dataflash.c @@ -0,0 +1,946 @@ +// SPDX-License-Identifier: GPL-2.0-or-later +/* + * Atmel AT45xxx DataFlash MTD driver for lightweight SPI framework + * + * Largely derived from at91_dataflash.c: + * Copyright (C) 2003-2005 SAN People (Pty) Ltd +*/ +#include <linux/module.h> +#include <linux/slab.h> +#include <linux/delay.h> +#include <linux/device.h> +#include <linux/mutex.h> +#include <linux/err.h> +#include <linux/math64.h> +#include <linux/of.h> + +#include <linux/spi/spi.h> +#include <linux/spi/flash.h> + +#include <linux/mtd/mtd.h> +#include <linux/mtd/partitions.h> + +/* + * DataFlash is a kind of SPI flash. Most AT45 chips have two buffers in + * each chip, which may be used for double buffered I/O; but this driver + * doesn't (yet) use these for any kind of i/o overlap or prefetching. + * + * Sometimes DataFlash is packaged in MMC-format cards, although the + * MMC stack can't (yet?) distinguish between MMC and DataFlash + * protocols during enumeration. + */ + +/* reads can bypass the buffers */ +#define OP_READ_CONTINUOUS 0xE8 +#define OP_READ_PAGE 0xD2 + +/* group B requests can run even while status reports "busy" */ +#define OP_READ_STATUS 0xD7 /* group B */ + +/* move data between host and buffer */ +#define OP_READ_BUFFER1 0xD4 /* group B */ +#define OP_READ_BUFFER2 0xD6 /* group B */ +#define OP_WRITE_BUFFER1 0x84 /* group B */ +#define OP_WRITE_BUFFER2 0x87 /* group B */ + +/* erasing flash */ +#define OP_ERASE_PAGE 0x81 +#define OP_ERASE_BLOCK 0x50 + +/* move data between buffer and flash */ +#define OP_TRANSFER_BUF1 0x53 +#define OP_TRANSFER_BUF2 0x55 +#define OP_MREAD_BUFFER1 0xD4 +#define OP_MREAD_BUFFER2 0xD6 +#define OP_MWERASE_BUFFER1 0x83 +#define OP_MWERASE_BUFFER2 0x86 +#define OP_MWRITE_BUFFER1 0x88 /* sector must be pre-erased */ +#define OP_MWRITE_BUFFER2 0x89 /* sector must be pre-erased */ + +/* write to buffer, then write-erase to flash */ +#define OP_PROGRAM_VIA_BUF1 0x82 +#define OP_PROGRAM_VIA_BUF2 0x85 + +/* compare buffer to flash */ +#define OP_COMPARE_BUF1 0x60 +#define OP_COMPARE_BUF2 0x61 + +/* read flash to buffer, then write-erase to flash */ +#define OP_REWRITE_VIA_BUF1 0x58 +#define OP_REWRITE_VIA_BUF2 0x59 + +/* newer chips report JEDEC manufacturer and device IDs; chip + * serial number and OTP bits; and per-sector writeprotect. + */ +#define OP_READ_ID 0x9F +#define OP_READ_SECURITY 0x77 +#define OP_WRITE_SECURITY_REVC 0x9A +#define OP_WRITE_SECURITY 0x9B /* revision D */ + +#define CFI_MFR_ATMEL 0x1F + +#define DATAFLASH_SHIFT_EXTID 24 +#define DATAFLASH_SHIFT_ID 40 + +struct dataflash { + u8 command[4]; + char name[24]; + + unsigned short page_offset; /* offset in flash address */ + unsigned int page_size; /* of bytes per page */ + + struct mutex lock; + struct spi_device *spi; + + struct mtd_info mtd; +}; + +#ifdef CONFIG_OF +static const struct of_device_id dataflash_dt_ids[] = { + { .compatible = "atmel,at45", }, + { .compatible = "atmel,dataflash", }, + { /* sentinel */ } +}; +MODULE_DEVICE_TABLE(of, dataflash_dt_ids); +#endif + +static const struct spi_device_id dataflash_spi_ids[] = { + { .name = "at45", }, + { .name = "dataflash", }, + { /* sentinel */ } +}; +MODULE_DEVICE_TABLE(spi, dataflash_spi_ids); + +/* ......................................................................... */ + +/* + * Return the status of the DataFlash device. + */ +static inline int dataflash_status(struct spi_device *spi) +{ + /* NOTE: at45db321c over 25 MHz wants to write + * a dummy byte after the opcode... + */ + return spi_w8r8(spi, OP_READ_STATUS); +} + +/* + * Poll the DataFlash device until it is READY. + * This usually takes 5-20 msec or so; more for sector erase. + */ +static int dataflash_waitready(struct spi_device *spi) +{ + int status; + + for (;;) { + status = dataflash_status(spi); + if (status < 0) { + dev_dbg(&spi->dev, "status %d?\n", status); + status = 0; + } + + if (status & (1 << 7)) /* RDY/nBSY */ + return status; + + usleep_range(3000, 4000); + } +} + +/* ......................................................................... */ + +/* + * Erase pages of flash. + */ +static int dataflash_erase(struct mtd_info *mtd, struct erase_info *instr) +{ + struct dataflash *priv = mtd->priv; + struct spi_device *spi = priv->spi; + struct spi_transfer x = { }; + struct spi_message msg; + unsigned blocksize = priv->page_size << 3; + u8 *command; + u32 rem; + + dev_dbg(&spi->dev, "erase addr=0x%llx len 0x%llx\n", + (long long)instr->addr, (long long)instr->len); + + div_u64_rem(instr->len, priv->page_size, &rem); + if (rem) + return -EINVAL; + div_u64_rem(instr->addr, priv->page_size, &rem); + if (rem) + return -EINVAL; + + spi_message_init(&msg); + + x.tx_buf = command = priv->command; + x.len = 4; + spi_message_add_tail(&x, &msg); + + mutex_lock(&priv->lock); + while (instr->len > 0) { + unsigned int pageaddr; + int status; + int do_block; + + /* Calculate flash page address; use block erase (for speed) if + * we're at a block boundary and need to erase the whole block. + */ + pageaddr = div_u64(instr->addr, priv->page_size); + do_block = (pageaddr & 0x7) == 0 && instr->len >= blocksize; + pageaddr = pageaddr << priv->page_offset; + + command[0] = do_block ? OP_ERASE_BLOCK : OP_ERASE_PAGE; + command[1] = (u8)(pageaddr >> 16); + command[2] = (u8)(pageaddr >> 8); + command[3] = 0; + + dev_dbg(&spi->dev, "ERASE %s: (%x) %x %x %x [%i]\n", + do_block ? "block" : "page", + command[0], command[1], command[2], command[3], + pageaddr); + + status = spi_sync(spi, &msg); + (void) dataflash_waitready(spi); + + if (status < 0) { + dev_err(&spi->dev, "erase %x, err %d\n", + pageaddr, status); + /* REVISIT: can retry instr->retries times; or + * giveup and instr->fail_addr = instr->addr; + */ + continue; + } + + if (do_block) { + instr->addr += blocksize; + instr->len -= blocksize; + } else { + instr->addr += priv->page_size; + instr->len -= priv->page_size; + } + } + mutex_unlock(&priv->lock); + + return 0; +} + +/* + * Read from the DataFlash device. + * from : Start offset in flash device + * len : Amount to read + * retlen : About of data actually read + * buf : Buffer containing the data + */ +static int dataflash_read(struct mtd_info *mtd, loff_t from, size_t len, + size_t *retlen, u_char *buf) +{ + struct dataflash *priv = mtd->priv; + struct spi_transfer x[2] = { }; + struct spi_message msg; + unsigned int addr; + u8 *command; + int status; + + dev_dbg(&priv->spi->dev, "read 0x%x..0x%x\n", + (unsigned int)from, (unsigned int)(from + len)); + + /* Calculate flash page/byte address */ + addr = (((unsigned)from / priv->page_size) << priv->page_offset) + + ((unsigned)from % priv->page_size); + + command = priv->command; + + dev_dbg(&priv->spi->dev, "READ: (%x) %x %x %x\n", + command[0], command[1], command[2], command[3]); + + spi_message_init(&msg); + + x[0].tx_buf = command; + x[0].len = 8; + spi_message_add_tail(&x[0], &msg); + + x[1].rx_buf = buf; + x[1].len = len; + spi_message_add_tail(&x[1], &msg); + + mutex_lock(&priv->lock); + + /* Continuous read, max clock = f(car) which may be less than + * the peak rate available. Some chips support commands with + * fewer "don't care" bytes. Both buffers stay unchanged. + */ + command[0] = OP_READ_CONTINUOUS; + command[1] = (u8)(addr >> 16); + command[2] = (u8)(addr >> 8); + command[3] = (u8)(addr >> 0); + /* plus 4 "don't care" bytes */ + + status = spi_sync(priv->spi, &msg); + mutex_unlock(&priv->lock); + + if (status >= 0) { + *retlen = msg.actual_length - 8; + status = 0; + } else + dev_dbg(&priv->spi->dev, "read %x..%x --> %d\n", + (unsigned)from, (unsigned)(from + len), + status); + return status; +} + +/* + * Write to the DataFlash device. + * to : Start offset in flash device + * len : Amount to write + * retlen : Amount of data actually written + * buf : Buffer containing the data + */ +static int dataflash_write(struct mtd_info *mtd, loff_t to, size_t len, + size_t * retlen, const u_char * buf) +{ + struct dataflash *priv = mtd->priv; + struct spi_device *spi = priv->spi; + struct spi_transfer x[2] = { }; + struct spi_message msg; + unsigned int pageaddr, addr, offset, writelen; + size_t remaining = len; + u_char *writebuf = (u_char *) buf; + int status = -EINVAL; + u8 *command; + + dev_dbg(&spi->dev, "write 0x%x..0x%x\n", + (unsigned int)to, (unsigned int)(to + len)); + + spi_message_init(&msg); + + x[0].tx_buf = command = priv->command; + x[0].len = 4; + spi_message_add_tail(&x[0], &msg); + + pageaddr = ((unsigned)to / priv->page_size); + offset = ((unsigned)to % priv->page_size); + if (offset + len > priv->page_size) + writelen = priv->page_size - offset; + else + writelen = len; + + mutex_lock(&priv->lock); + while (remaining > 0) { + dev_dbg(&spi->dev, "write @ %i:%i len=%i\n", + pageaddr, offset, writelen); + + /* REVISIT: + * (a) each page in a sector must be rewritten at least + * once every 10K sibling erase/program operations. + * (b) for pages that are already erased, we could + * use WRITE+MWRITE not PROGRAM for ~30% speedup. + * (c) WRITE to buffer could be done while waiting for + * a previous MWRITE/MWERASE to complete ... + * (d) error handling here seems to be mostly missing. + * + * Two persistent bits per page, plus a per-sector counter, + * could support (a) and (b) ... we might consider using + * the second half of sector zero, which is just one block, + * to track that state. (On AT91, that sector should also + * support boot-from-DataFlash.) + */ + + addr = pageaddr << priv->page_offset; + + /* (1) Maybe transfer partial page to Buffer1 */ + if (writelen != priv->page_size) { + command[0] = OP_TRANSFER_BUF1; + command[1] = (addr & 0x00FF0000) >> 16; + command[2] = (addr & 0x0000FF00) >> 8; + command[3] = 0; + + dev_dbg(&spi->dev, "TRANSFER: (%x) %x %x %x\n", + command[0], command[1], command[2], command[3]); + + status = spi_sync(spi, &msg); + if (status < 0) + dev_dbg(&spi->dev, "xfer %u -> %d\n", + addr, status); + + (void) dataflash_waitready(priv->spi); + } + + /* (2) Program full page via Buffer1 */ + addr += offset; + command[0] = OP_PROGRAM_VIA_BUF1; + command[1] = (addr & 0x00FF0000) >> 16; + command[2] = (addr & 0x0000FF00) >> 8; + command[3] = (addr & 0x000000FF); + + dev_dbg(&spi->dev, "PROGRAM: (%x) %x %x %x\n", + command[0], command[1], command[2], command[3]); + + x[1].tx_buf = writebuf; + x[1].len = writelen; + spi_message_add_tail(x + 1, &msg); + status = spi_sync(spi, &msg); + spi_transfer_del(x + 1); + if (status < 0) + dev_dbg(&spi->dev, "pgm %u/%u -> %d\n", + addr, writelen, status); + + (void) dataflash_waitready(priv->spi); + + +#ifdef CONFIG_MTD_DATAFLASH_WRITE_VERIFY + + /* (3) Compare to Buffer1 */ + addr = pageaddr << priv->page_offset; + command[0] = OP_COMPARE_BUF1; + command[1] = (addr & 0x00FF0000) >> 16; + command[2] = (addr & 0x0000FF00) >> 8; + command[3] = 0; + + dev_dbg(&spi->dev, "COMPARE: (%x) %x %x %x\n", + command[0], command[1], command[2], command[3]); + + status = spi_sync(spi, &msg); + if (status < 0) + dev_dbg(&spi->dev, "compare %u -> %d\n", + addr, status); + + status = dataflash_waitready(priv->spi); + + /* Check result of the compare operation */ + if (status & (1 << 6)) { + dev_err(&spi->dev, "compare page %u, err %d\n", + pageaddr, status); + remaining = 0; + status = -EIO; + break; + } else + status = 0; + +#endif /* CONFIG_MTD_DATAFLASH_WRITE_VERIFY */ + + remaining = remaining - writelen; + pageaddr++; + offset = 0; + writebuf += writelen; + *retlen += writelen; + + if (remaining > priv->page_size) + writelen = priv->page_size; + else + writelen = remaining; + } + mutex_unlock(&priv->lock); + + return status; +} + +/* ......................................................................... */ + +#ifdef CONFIG_MTD_DATAFLASH_OTP + +static int dataflash_get_otp_info(struct mtd_info *mtd, size_t len, + size_t *retlen, struct otp_info *info) +{ + /* Report both blocks as identical: bytes 0..64, locked. + * Unless the user block changed from all-ones, we can't + * tell whether it's still writable; so we assume it isn't. + */ + info->start = 0; + info->length = 64; + info->locked = 1; + *retlen = sizeof(*info); + return 0; +} + +static ssize_t otp_read(struct spi_device *spi, unsigned base, + u8 *buf, loff_t off, size_t len) +{ + struct spi_message m; + size_t l; + u8 *scratch; + struct spi_transfer t; + int status; + + if (off > 64) + return -EINVAL; + + if ((off + len) > 64) + len = 64 - off; + + spi_message_init(&m); + + l = 4 + base + off + len; + scratch = kzalloc(l, GFP_KERNEL); + if (!scratch) + return -ENOMEM; + + /* OUT: OP_READ_SECURITY, 3 don't-care bytes, zeroes + * IN: ignore 4 bytes, data bytes 0..N (max 127) + */ + scratch[0] = OP_READ_SECURITY; + + memset(&t, 0, sizeof t); + t.tx_buf = scratch; + t.rx_buf = scratch; + t.len = l; + spi_message_add_tail(&t, &m); + + dataflash_waitready(spi); + + status = spi_sync(spi, &m); + if (status >= 0) { + memcpy(buf, scratch + 4 + base + off, len); + status = len; + } + + kfree(scratch); + return status; +} + +static int dataflash_read_fact_otp(struct mtd_info *mtd, + loff_t from, size_t len, size_t *retlen, u_char *buf) +{ + struct dataflash *priv = mtd->priv; + int status; + + /* 64 bytes, from 0..63 ... start at 64 on-chip */ + mutex_lock(&priv->lock); + status = otp_read(priv->spi, 64, buf, from, len); + mutex_unlock(&priv->lock); + + if (status < 0) + return status; + *retlen = status; + return 0; +} + +static int dataflash_read_user_otp(struct mtd_info *mtd, + loff_t from, size_t len, size_t *retlen, u_char *buf) +{ + struct dataflash *priv = mtd->priv; + int status; + + /* 64 bytes, from 0..63 ... start at 0 on-chip */ + mutex_lock(&priv->lock); + status = otp_read(priv->spi, 0, buf, from, len); + mutex_unlock(&priv->lock); + + if (status < 0) + return status; + *retlen = status; + return 0; +} + +static int dataflash_write_user_otp(struct mtd_info *mtd, + loff_t from, size_t len, size_t *retlen, const u_char *buf) +{ + struct spi_message m; + const size_t l = 4 + 64; + u8 *scratch; + struct spi_transfer t; + struct dataflash *priv = mtd->priv; + int status; + + if (from >= 64) { + /* + * Attempting to write beyond the end of OTP memory, + * no data can be written. + */ + *retlen = 0; + return 0; + } + + /* Truncate the write to fit into OTP memory. */ + if ((from + len) > 64) + len = 64 - from; + + /* OUT: OP_WRITE_SECURITY, 3 zeroes, 64 data-or-zero bytes + * IN: ignore all + */ + scratch = kzalloc(l, GFP_KERNEL); + if (!scratch) + return -ENOMEM; + scratch[0] = OP_WRITE_SECURITY; + memcpy(scratch + 4 + from, buf, len); + + spi_message_init(&m); + + memset(&t, 0, sizeof t); + t.tx_buf = scratch; + t.len = l; + spi_message_add_tail(&t, &m); + + /* Write the OTP bits, if they've not yet been written. + * This modifies SRAM buffer1. + */ + mutex_lock(&priv->lock); + dataflash_waitready(priv->spi); + status = spi_sync(priv->spi, &m); + mutex_unlock(&priv->lock); + + kfree(scratch); + + if (status >= 0) { + status = 0; + *retlen = len; + } + return status; +} + +static char *otp_setup(struct mtd_info *device, char revision) +{ + device->_get_fact_prot_info = dataflash_get_otp_info; + device->_read_fact_prot_reg = dataflash_read_fact_otp; + device->_get_user_prot_info = dataflash_get_otp_info; + device->_read_user_prot_reg = dataflash_read_user_otp; + + /* rev c parts (at45db321c and at45db1281 only!) use a + * different write procedure; not (yet?) implemented. + */ + if (revision > 'c') + device->_write_user_prot_reg = dataflash_write_user_otp; + + return ", OTP"; +} + +#else + +static char *otp_setup(struct mtd_info *device, char revision) +{ + return " (OTP)"; +} + +#endif + +/* ......................................................................... */ + +/* + * Register DataFlash device with MTD subsystem. + */ +static int add_dataflash_otp(struct spi_device *spi, char *name, int nr_pages, + int pagesize, int pageoffset, char revision) +{ + struct dataflash *priv; + struct mtd_info *device; + struct flash_platform_data *pdata = dev_get_platdata(&spi->dev); + char *otp_tag = ""; + int err = 0; + + priv = kzalloc(sizeof *priv, GFP_KERNEL); + if (!priv) + return -ENOMEM; + + mutex_init(&priv->lock); + priv->spi = spi; + priv->page_size = pagesize; + priv->page_offset = pageoffset; + + /* name must be usable with cmdlinepart */ + sprintf(priv->name, "spi%d.%d-%s", + spi->master->bus_num, spi_get_chipselect(spi, 0), + name); + + device = &priv->mtd; + device->name = (pdata && pdata->name) ? pdata->name : priv->name; + device->size = nr_pages * pagesize; + device->erasesize = pagesize; + device->writesize = pagesize; + device->type = MTD_DATAFLASH; + device->flags = MTD_WRITEABLE; + device->_erase = dataflash_erase; + device->_read = dataflash_read; + device->_write = dataflash_write; + device->priv = priv; + + device->dev.parent = &spi->dev; + mtd_set_of_node(device, spi->dev.of_node); + + if (revision >= 'c') + otp_tag = otp_setup(device, revision); + + dev_info(&spi->dev, "%s (%lld KBytes) pagesize %d bytes%s\n", + name, (long long)((device->size + 1023) >> 10), + pagesize, otp_tag); + spi_set_drvdata(spi, priv); + + err = mtd_device_register(device, + pdata ? pdata->parts : NULL, + pdata ? pdata->nr_parts : 0); + + if (!err) + return 0; + + kfree(priv); + return err; +} + +static inline int add_dataflash(struct spi_device *spi, char *name, + int nr_pages, int pagesize, int pageoffset) +{ + return add_dataflash_otp(spi, name, nr_pages, pagesize, + pageoffset, 0); +} + +struct flash_info { + char *name; + + /* JEDEC id has a high byte of zero plus three data bytes: + * the manufacturer id, then a two byte device id. + */ + u64 jedec_id; + + /* The size listed here is what works with OP_ERASE_PAGE. */ + unsigned nr_pages; + u16 pagesize; + u16 pageoffset; + + u16 flags; +#define SUP_EXTID 0x0004 /* supports extended ID data */ +#define SUP_POW2PS 0x0002 /* supports 2^N byte pages */ +#define IS_POW2PS 0x0001 /* uses 2^N byte pages */ +}; + +static struct flash_info dataflash_data[] = { + + /* + * NOTE: chips with SUP_POW2PS (rev D and up) need two entries, + * one with IS_POW2PS and the other without. The entry with the + * non-2^N byte page size can't name exact chip revisions without + * losing backwards compatibility for cmdlinepart. + * + * These newer chips also support 128-byte security registers (with + * 64 bytes one-time-programmable) and software write-protection. + */ + { "AT45DB011B", 0x1f2200, 512, 264, 9, SUP_POW2PS}, + { "at45db011d", 0x1f2200, 512, 256, 8, SUP_POW2PS | IS_POW2PS}, + + { "AT45DB021B", 0x1f2300, 1024, 264, 9, SUP_POW2PS}, + { "at45db021d", 0x1f2300, 1024, 256, 8, SUP_POW2PS | IS_POW2PS}, + + { "AT45DB041x", 0x1f2400, 2048, 264, 9, SUP_POW2PS}, + { "at45db041d", 0x1f2400, 2048, 256, 8, SUP_POW2PS | IS_POW2PS}, + + { "AT45DB081B", 0x1f2500, 4096, 264, 9, SUP_POW2PS}, + { "at45db081d", 0x1f2500, 4096, 256, 8, SUP_POW2PS | IS_POW2PS}, + + { "AT45DB161x", 0x1f2600, 4096, 528, 10, SUP_POW2PS}, + { "at45db161d", 0x1f2600, 4096, 512, 9, SUP_POW2PS | IS_POW2PS}, + + { "AT45DB321x", 0x1f2700, 8192, 528, 10, 0}, /* rev C */ + + { "AT45DB321x", 0x1f2701, 8192, 528, 10, SUP_POW2PS}, + { "at45db321d", 0x1f2701, 8192, 512, 9, SUP_POW2PS | IS_POW2PS}, + + { "AT45DB642x", 0x1f2800, 8192, 1056, 11, SUP_POW2PS}, + { "at45db642d", 0x1f2800, 8192, 1024, 10, SUP_POW2PS | IS_POW2PS}, + + { "AT45DB641E", 0x1f28000100ULL, 32768, 264, 9, SUP_EXTID | SUP_POW2PS}, + { "at45db641e", 0x1f28000100ULL, 32768, 256, 8, SUP_EXTID | SUP_POW2PS | IS_POW2PS}, +}; + +static struct flash_info *jedec_lookup(struct spi_device *spi, + u64 jedec, bool use_extid) +{ + struct flash_info *info; + int status; + + for (info = dataflash_data; + info < dataflash_data + ARRAY_SIZE(dataflash_data); + info++) { + if (use_extid && !(info->flags & SUP_EXTID)) + continue; + + if (info->jedec_id == jedec) { + dev_dbg(&spi->dev, "OTP, sector protect%s\n", + (info->flags & SUP_POW2PS) ? + ", binary pagesize" : ""); + if (info->flags & SUP_POW2PS) { + status = dataflash_status(spi); + if (status < 0) { + dev_dbg(&spi->dev, "status error %d\n", + status); + return ERR_PTR(status); + } + if (status & 0x1) { + if (info->flags & IS_POW2PS) + return info; + } else { + if (!(info->flags & IS_POW2PS)) + return info; + } + } else + return info; + } + } + + return ERR_PTR(-ENODEV); +} + +static struct flash_info *jedec_probe(struct spi_device *spi) +{ + int ret; + u8 code = OP_READ_ID; + u64 jedec; + u8 id[sizeof(jedec)] = {0}; + const unsigned int id_size = 5; + struct flash_info *info; + + /* + * JEDEC also defines an optional "extended device information" + * string for after vendor-specific data, after the three bytes + * we use here. Supporting some chips might require using it. + * + * If the vendor ID isn't Atmel's (0x1f), assume this call failed. + * That's not an error; only rev C and newer chips handle it, and + * only Atmel sells these chips. + */ + ret = spi_write_then_read(spi, &code, 1, id, id_size); + if (ret < 0) { + dev_dbg(&spi->dev, "error %d reading JEDEC ID\n", ret); + return ERR_PTR(ret); + } + + if (id[0] != CFI_MFR_ATMEL) + return NULL; + + jedec = be64_to_cpup((__be64 *)id); + + /* + * First, try to match device using extended device + * information + */ + info = jedec_lookup(spi, jedec >> DATAFLASH_SHIFT_EXTID, true); + if (!IS_ERR(info)) + return info; + /* + * If that fails, make another pass using regular ID + * information + */ + info = jedec_lookup(spi, jedec >> DATAFLASH_SHIFT_ID, false); + if (!IS_ERR(info)) + return info; + /* + * Treat other chips as errors ... we won't know the right page + * size (it might be binary) even when we can tell which density + * class is involved (legacy chip id scheme). + */ + dev_warn(&spi->dev, "JEDEC id %016llx not handled\n", jedec); + return ERR_PTR(-ENODEV); +} + +/* + * Detect and initialize DataFlash device, using JEDEC IDs on newer chips + * or else the ID code embedded in the status bits: + * + * Device Density ID code #Pages PageSize Offset + * AT45DB011B 1Mbit (128K) xx0011xx (0x0c) 512 264 9 + * AT45DB021B 2Mbit (256K) xx0101xx (0x14) 1024 264 9 + * AT45DB041B 4Mbit (512K) xx0111xx (0x1c) 2048 264 9 + * AT45DB081B 8Mbit (1M) xx1001xx (0x24) 4096 264 9 + * AT45DB0161B 16Mbit (2M) xx1011xx (0x2c) 4096 528 10 + * AT45DB0321B 32Mbit (4M) xx1101xx (0x34) 8192 528 10 + * AT45DB0642 64Mbit (8M) xx111xxx (0x3c) 8192 1056 11 + * AT45DB1282 128Mbit (16M) xx0100xx (0x10) 16384 1056 11 + */ +static int dataflash_probe(struct spi_device *spi) +{ + int status; + struct flash_info *info; + + /* + * Try to detect dataflash by JEDEC ID. + * If it succeeds we know we have either a C or D part. + * D will support power of 2 pagesize option. + * Both support the security register, though with different + * write procedures. + */ + info = jedec_probe(spi); + if (IS_ERR(info)) + return PTR_ERR(info); + if (info != NULL) + return add_dataflash_otp(spi, info->name, info->nr_pages, + info->pagesize, info->pageoffset, + (info->flags & SUP_POW2PS) ? 'd' : 'c'); + + /* + * Older chips support only legacy commands, identifing + * capacity using bits in the status byte. + */ + status = dataflash_status(spi); + if (status <= 0 || status == 0xff) { + dev_dbg(&spi->dev, "status error %d\n", status); + if (status == 0 || status == 0xff) + status = -ENODEV; + return status; + } + + /* if there's a device there, assume it's dataflash. + * board setup should have set spi->max_speed_max to + * match f(car) for continuous reads, mode 0 or 3. + */ + switch (status & 0x3c) { + case 0x0c: /* 0 0 1 1 x x */ + status = add_dataflash(spi, "AT45DB011B", 512, 264, 9); + break; + case 0x14: /* 0 1 0 1 x x */ + status = add_dataflash(spi, "AT45DB021B", 1024, 264, 9); + break; + case 0x1c: /* 0 1 1 1 x x */ + status = add_dataflash(spi, "AT45DB041x", 2048, 264, 9); + break; + case 0x24: /* 1 0 0 1 x x */ + status = add_dataflash(spi, "AT45DB081B", 4096, 264, 9); + break; + case 0x2c: /* 1 0 1 1 x x */ + status = add_dataflash(spi, "AT45DB161x", 4096, 528, 10); + break; + case 0x34: /* 1 1 0 1 x x */ + status = add_dataflash(spi, "AT45DB321x", 8192, 528, 10); + break; + case 0x38: /* 1 1 1 x x x */ + case 0x3c: + status = add_dataflash(spi, "AT45DB642x", 8192, 1056, 11); + break; + /* obsolete AT45DB1282 not (yet?) supported */ + default: + dev_info(&spi->dev, "unsupported device (%x)\n", + status & 0x3c); + status = -ENODEV; + } + + if (status < 0) + dev_dbg(&spi->dev, "add_dataflash --> %d\n", status); + + return status; +} + +static void dataflash_remove(struct spi_device *spi) +{ + struct dataflash *flash = spi_get_drvdata(spi); + + dev_dbg(&spi->dev, "remove\n"); + + WARN_ON(mtd_device_unregister(&flash->mtd)); + + kfree(flash); +} + +static struct spi_driver dataflash_driver = { + .driver = { + .name = "mtd_dataflash", + .of_match_table = of_match_ptr(dataflash_dt_ids), + }, + .probe = dataflash_probe, + .remove = dataflash_remove, + .id_table = dataflash_spi_ids, + + /* FIXME: investigate suspend and resume... */ +}; + +module_spi_driver(dataflash_driver); + +MODULE_LICENSE("GPL"); +MODULE_AUTHOR("Andrew Victor, David Brownell"); +MODULE_DESCRIPTION("MTD DataFlash driver"); +MODULE_ALIAS("spi:mtd_dataflash"); diff --git a/drivers/mtd/devices/mtdram.c b/drivers/mtd/devices/mtdram.c new file mode 100644 index 0000000000..1c97fabc4b --- /dev/null +++ b/drivers/mtd/devices/mtdram.c @@ -0,0 +1,187 @@ +/* + * mtdram - a test mtd device + * Author: Alexander Larsson <alex@cendio.se> + * + * Copyright (c) 1999 Alexander Larsson <alex@cendio.se> + * Copyright (c) 2005 Joern Engel <joern@wh.fh-wedel.de> + * + * This code is GPL + * + */ + +#include <linux/module.h> +#include <linux/slab.h> +#include <linux/ioport.h> +#include <linux/vmalloc.h> +#include <linux/mm.h> +#include <linux/init.h> +#include <linux/mtd/mtd.h> +#include <linux/mtd/mtdram.h> + +static unsigned long total_size = CONFIG_MTDRAM_TOTAL_SIZE; +static unsigned long erase_size = CONFIG_MTDRAM_ERASE_SIZE; +static unsigned long writebuf_size = 64; +#define MTDRAM_TOTAL_SIZE (total_size * 1024) +#define MTDRAM_ERASE_SIZE (erase_size * 1024) + +module_param(total_size, ulong, 0); +MODULE_PARM_DESC(total_size, "Total device size in KiB"); +module_param(erase_size, ulong, 0); +MODULE_PARM_DESC(erase_size, "Device erase block size in KiB"); +module_param(writebuf_size, ulong, 0); +MODULE_PARM_DESC(writebuf_size, "Device write buf size in Bytes (Default: 64)"); + +// We could store these in the mtd structure, but we only support 1 device.. +static struct mtd_info *mtd_info; + +static int check_offs_len(struct mtd_info *mtd, loff_t ofs, uint64_t len) +{ + int ret = 0; + + /* Start address must align on block boundary */ + if (mtd_mod_by_eb(ofs, mtd)) { + pr_debug("%s: unaligned address\n", __func__); + ret = -EINVAL; + } + + /* Length must align on block boundary */ + if (mtd_mod_by_eb(len, mtd)) { + pr_debug("%s: length not block aligned\n", __func__); + ret = -EINVAL; + } + + return ret; +} + +static int ram_erase(struct mtd_info *mtd, struct erase_info *instr) +{ + if (check_offs_len(mtd, instr->addr, instr->len)) + return -EINVAL; + memset((char *)mtd->priv + instr->addr, 0xff, instr->len); + + return 0; +} + +static int ram_point(struct mtd_info *mtd, loff_t from, size_t len, + size_t *retlen, void **virt, resource_size_t *phys) +{ + *virt = mtd->priv + from; + *retlen = len; + + if (phys) { + /* limit retlen to the number of contiguous physical pages */ + unsigned long page_ofs = offset_in_page(*virt); + void *addr = *virt - page_ofs; + unsigned long pfn1, pfn0 = vmalloc_to_pfn(addr); + + *phys = __pfn_to_phys(pfn0) + page_ofs; + len += page_ofs; + while (len > PAGE_SIZE) { + len -= PAGE_SIZE; + addr += PAGE_SIZE; + pfn0++; + pfn1 = vmalloc_to_pfn(addr); + if (pfn1 != pfn0) { + *retlen = addr - *virt; + break; + } + } + } + + return 0; +} + +static int ram_unpoint(struct mtd_info *mtd, loff_t from, size_t len) +{ + return 0; +} + +static int ram_read(struct mtd_info *mtd, loff_t from, size_t len, + size_t *retlen, u_char *buf) +{ + memcpy(buf, mtd->priv + from, len); + *retlen = len; + return 0; +} + +static int ram_write(struct mtd_info *mtd, loff_t to, size_t len, + size_t *retlen, const u_char *buf) +{ + memcpy((char *)mtd->priv + to, buf, len); + *retlen = len; + return 0; +} + +static void __exit cleanup_mtdram(void) +{ + if (mtd_info) { + mtd_device_unregister(mtd_info); + vfree(mtd_info->priv); + kfree(mtd_info); + } +} + +int mtdram_init_device(struct mtd_info *mtd, void *mapped_address, + unsigned long size, const char *name) +{ + memset(mtd, 0, sizeof(*mtd)); + + /* Setup the MTD structure */ + mtd->name = name; + mtd->type = MTD_RAM; + mtd->flags = MTD_CAP_RAM; + mtd->size = size; + mtd->writesize = 1; + mtd->writebufsize = writebuf_size; + mtd->erasesize = MTDRAM_ERASE_SIZE; + mtd->priv = mapped_address; + + mtd->owner = THIS_MODULE; + mtd->_erase = ram_erase; + mtd->_point = ram_point; + mtd->_unpoint = ram_unpoint; + mtd->_read = ram_read; + mtd->_write = ram_write; + + if (mtd_device_register(mtd, NULL, 0)) + return -EIO; + + return 0; +} + +static int __init init_mtdram(void) +{ + void *addr; + int err; + + if (!total_size) + return -EINVAL; + + /* Allocate some memory */ + mtd_info = kmalloc(sizeof(struct mtd_info), GFP_KERNEL); + if (!mtd_info) + return -ENOMEM; + + addr = vmalloc(MTDRAM_TOTAL_SIZE); + if (!addr) { + kfree(mtd_info); + mtd_info = NULL; + return -ENOMEM; + } + err = mtdram_init_device(mtd_info, addr, MTDRAM_TOTAL_SIZE, "mtdram test device"); + if (err) { + vfree(addr); + kfree(mtd_info); + mtd_info = NULL; + return err; + } + memset(mtd_info->priv, 0xff, MTDRAM_TOTAL_SIZE); + return err; +} + +module_init(init_mtdram); +module_exit(cleanup_mtdram); + +MODULE_LICENSE("GPL"); +MODULE_AUTHOR("Alexander Larsson <alexl@redhat.com>"); +MODULE_DESCRIPTION("Simulated MTD driver for testing"); diff --git a/drivers/mtd/devices/phram.c b/drivers/mtd/devices/phram.c new file mode 100644 index 0000000000..208bd4d871 --- /dev/null +++ b/drivers/mtd/devices/phram.c @@ -0,0 +1,442 @@ +// SPDX-License-Identifier: GPL-2.0-only +/* + * Copyright (c) ???? Jochen Schäuble <psionic@psionic.de> + * Copyright (c) 2003-2004 Joern Engel <joern@wh.fh-wedel.de> + * + * Usage: + * + * one commend line parameter per device, each in the form: + * phram=<name>,<start>,<len>[,<erasesize>] + * <name> may be up to 63 characters. + * <start>, <len>, and <erasesize> can be octal, decimal or hexadecimal. If followed + * by "ki", "Mi" or "Gi", the numbers will be interpreted as kilo, mega or + * gigabytes. <erasesize> is optional and defaults to PAGE_SIZE. + * + * Example: + * phram=swap,64Mi,128Mi phram=test,900Mi,1Mi,64Ki + */ + +#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt + +#include <linux/io.h> +#include <linux/init.h> +#include <linux/kernel.h> +#include <linux/list.h> +#include <linux/module.h> +#include <linux/moduleparam.h> +#include <linux/slab.h> +#include <linux/mtd/mtd.h> +#include <asm/div64.h> +#include <linux/platform_device.h> +#include <linux/of_address.h> +#include <linux/of.h> + +struct phram_mtd_list { + struct mtd_info mtd; + struct list_head list; + bool cached; +}; + +static LIST_HEAD(phram_list); + +static int phram_erase(struct mtd_info *mtd, struct erase_info *instr) +{ + u_char *start = mtd->priv; + + memset(start + instr->addr, 0xff, instr->len); + + return 0; +} + +static int phram_point(struct mtd_info *mtd, loff_t from, size_t len, + size_t *retlen, void **virt, resource_size_t *phys) +{ + *virt = mtd->priv + from; + *retlen = len; + return 0; +} + +static int phram_unpoint(struct mtd_info *mtd, loff_t from, size_t len) +{ + return 0; +} + +static int phram_read(struct mtd_info *mtd, loff_t from, size_t len, + size_t *retlen, u_char *buf) +{ + u_char *start = mtd->priv; + + memcpy(buf, start + from, len); + *retlen = len; + return 0; +} + +static int phram_write(struct mtd_info *mtd, loff_t to, size_t len, + size_t *retlen, const u_char *buf) +{ + u_char *start = mtd->priv; + + memcpy(start + to, buf, len); + *retlen = len; + return 0; +} + +static int phram_map(struct phram_mtd_list *phram, phys_addr_t start, size_t len) +{ + void *addr = NULL; + + if (phram->cached) + addr = memremap(start, len, MEMREMAP_WB); + else + addr = (void __force *)ioremap(start, len); + if (!addr) + return -EIO; + + phram->mtd.priv = addr; + + return 0; +} + +static void phram_unmap(struct phram_mtd_list *phram) +{ + void *addr = phram->mtd.priv; + + if (phram->cached) { + memunmap(addr); + return; + } + + iounmap((void __iomem *)addr); +} + +static void unregister_devices(void) +{ + struct phram_mtd_list *this, *safe; + + list_for_each_entry_safe(this, safe, &phram_list, list) { + mtd_device_unregister(&this->mtd); + phram_unmap(this); + kfree(this->mtd.name); + kfree(this); + } +} + +static int register_device(struct platform_device *pdev, const char *name, + phys_addr_t start, size_t len, uint32_t erasesize) +{ + struct device_node *np = pdev ? pdev->dev.of_node : NULL; + bool cached = np ? !of_property_read_bool(np, "no-map") : false; + struct phram_mtd_list *new; + int ret = -ENOMEM; + + new = kzalloc(sizeof(*new), GFP_KERNEL); + if (!new) + goto out0; + + new->cached = cached; + + ret = phram_map(new, start, len); + if (ret) { + pr_err("ioremap failed\n"); + goto out1; + } + + + new->mtd.name = name; + new->mtd.size = len; + new->mtd.flags = MTD_CAP_RAM; + new->mtd._erase = phram_erase; + new->mtd._point = phram_point; + new->mtd._unpoint = phram_unpoint; + new->mtd._read = phram_read; + new->mtd._write = phram_write; + new->mtd.owner = THIS_MODULE; + new->mtd.type = MTD_RAM; + new->mtd.erasesize = erasesize; + new->mtd.writesize = 1; + + mtd_set_of_node(&new->mtd, np); + + ret = -EAGAIN; + if (mtd_device_register(&new->mtd, NULL, 0)) { + pr_err("Failed to register new device\n"); + goto out2; + } + + if (pdev) + platform_set_drvdata(pdev, new); + else + list_add_tail(&new->list, &phram_list); + + return 0; + +out2: + phram_unmap(new); +out1: + kfree(new); +out0: + return ret; +} + +static int parse_num64(uint64_t *num64, char *token) +{ + size_t len; + int shift = 0; + int ret; + + len = strlen(token); + /* By dwmw2 editorial decree, "ki", "Mi" or "Gi" are to be used. */ + if (len > 2) { + if (token[len - 1] == 'i') { + switch (token[len - 2]) { + case 'G': + shift += 10; + fallthrough; + case 'M': + shift += 10; + fallthrough; + case 'k': + shift += 10; + token[len - 2] = 0; + break; + default: + return -EINVAL; + } + } + } + + ret = kstrtou64(token, 0, num64); + *num64 <<= shift; + + return ret; +} + +static int parse_name(char **pname, const char *token) +{ + size_t len; + char *name; + + len = strlen(token) + 1; + if (len > 64) + return -ENOSPC; + + name = kstrdup(token, GFP_KERNEL); + if (!name) + return -ENOMEM; + + *pname = name; + return 0; +} + + +static inline void kill_final_newline(char *str) +{ + char *newline = strrchr(str, '\n'); + + if (newline && !newline[1]) + *newline = 0; +} + + +#define parse_err(fmt, args...) do { \ + pr_err(fmt , ## args); \ + return 1; \ +} while (0) + +#ifndef MODULE +static int phram_init_called; +/* + * This shall contain the module parameter if any. It is of the form: + * - phram=<device>,<address>,<size>[,<erasesize>] for module case + * - phram.phram=<device>,<address>,<size>[,<erasesize>] for built-in case + * We leave 64 bytes for the device name, 20 for the address , 20 for the + * size and 20 for the erasesize. + * Example: phram.phram=rootfs,0xa0000000,512Mi,65536 + */ +static char phram_paramline[64 + 20 + 20 + 20]; +#endif + +static int phram_setup(const char *val) +{ + char buf[64 + 20 + 20 + 20], *str = buf; + char *token[4]; + char *name; + uint64_t start; + uint64_t len; + uint64_t erasesize = PAGE_SIZE; + uint32_t rem; + int i, ret; + + if (strnlen(val, sizeof(buf)) >= sizeof(buf)) + parse_err("parameter too long\n"); + + strcpy(str, val); + kill_final_newline(str); + + for (i = 0; i < 4; i++) + token[i] = strsep(&str, ","); + + if (str) + parse_err("too many arguments\n"); + + if (!token[2]) + parse_err("not enough arguments\n"); + + ret = parse_name(&name, token[0]); + if (ret) + return ret; + + ret = parse_num64(&start, token[1]); + if (ret) { + parse_err("illegal start address\n"); + goto error; + } + + ret = parse_num64(&len, token[2]); + if (ret) { + parse_err("illegal device length\n"); + goto error; + } + + if (token[3]) { + ret = parse_num64(&erasesize, token[3]); + if (ret) { + parse_err("illegal erasesize\n"); + goto error; + } + } + + if (len == 0 || erasesize == 0 || erasesize > len + || erasesize > UINT_MAX) { + parse_err("illegal erasesize or len\n"); + ret = -EINVAL; + goto error; + } + + div_u64_rem(len, (uint32_t)erasesize, &rem); + if (rem) { + parse_err("len is not multiple of erasesize\n"); + ret = -EINVAL; + goto error; + } + + ret = register_device(NULL, name, start, len, (uint32_t)erasesize); + if (ret) + goto error; + + pr_info("%s device: %#llx at %#llx for erasesize %#llx\n", name, len, start, erasesize); + return 0; + +error: + kfree(name); + return ret; +} + +static int phram_param_call(const char *val, const struct kernel_param *kp) +{ +#ifdef MODULE + return phram_setup(val); +#else + /* + * If more parameters are later passed in via + * /sys/module/phram/parameters/phram + * and init_phram() has already been called, + * we can parse the argument now. + */ + + if (phram_init_called) + return phram_setup(val); + + /* + * During early boot stage, we only save the parameters + * here. We must parse them later: if the param passed + * from kernel boot command line, phram_param_call() is + * called so early that it is not possible to resolve + * the device (even kmalloc() fails). Defer that work to + * phram_setup(). + */ + + if (strlen(val) >= sizeof(phram_paramline)) + return -ENOSPC; + strcpy(phram_paramline, val); + + return 0; +#endif +} + +module_param_call(phram, phram_param_call, NULL, NULL, 0200); +MODULE_PARM_DESC(phram, "Memory region to map. \"phram=<name>,<start>,<length>[,<erasesize>]\""); + +#ifdef CONFIG_OF +static const struct of_device_id phram_of_match[] = { + { .compatible = "phram" }, + {} +}; +MODULE_DEVICE_TABLE(of, phram_of_match); +#endif + +static int phram_probe(struct platform_device *pdev) +{ + struct resource *res; + + res = platform_get_resource(pdev, IORESOURCE_MEM, 0); + if (!res) + return -ENOMEM; + + /* mtd_set_of_node() reads name from "label" */ + return register_device(pdev, NULL, res->start, resource_size(res), + PAGE_SIZE); +} + +static int phram_remove(struct platform_device *pdev) +{ + struct phram_mtd_list *phram = platform_get_drvdata(pdev); + + mtd_device_unregister(&phram->mtd); + phram_unmap(phram); + kfree(phram); + + return 0; +} + +static struct platform_driver phram_driver = { + .probe = phram_probe, + .remove = phram_remove, + .driver = { + .name = "phram", + .of_match_table = of_match_ptr(phram_of_match), + }, +}; + +static int __init init_phram(void) +{ + int ret; + + ret = platform_driver_register(&phram_driver); + if (ret) + return ret; + +#ifndef MODULE + if (phram_paramline[0]) + ret = phram_setup(phram_paramline); + phram_init_called = 1; +#endif + + if (ret) + platform_driver_unregister(&phram_driver); + + return ret; +} + +static void __exit cleanup_phram(void) +{ + unregister_devices(); + platform_driver_unregister(&phram_driver); +} + +module_init(init_phram); +module_exit(cleanup_phram); + +MODULE_LICENSE("GPL"); +MODULE_AUTHOR("Joern Engel <joern@wh.fh-wedel.de>"); +MODULE_DESCRIPTION("MTD driver for physical RAM"); diff --git a/drivers/mtd/devices/pmc551.c b/drivers/mtd/devices/pmc551.c new file mode 100644 index 0000000000..6597fc2aad --- /dev/null +++ b/drivers/mtd/devices/pmc551.c @@ -0,0 +1,847 @@ +// SPDX-License-Identifier: GPL-2.0-only +/* + * PMC551 PCI Mezzanine Ram Device + * + * Author: + * Mark Ferrell <mferrell@mvista.com> + * Copyright 1999,2000 Nortel Networks + * + * Description: + * This driver is intended to support the PMC551 PCI Ram device + * from Ramix Inc. The PMC551 is a PMC Mezzanine module for + * cPCI embedded systems. The device contains a single SROM + * that initially programs the V370PDC chipset onboard the + * device, and various banks of DRAM/SDRAM onboard. This driver + * implements this PCI Ram device as an MTD (Memory Technology + * Device) so that it can be used to hold a file system, or for + * added swap space in embedded systems. Since the memory on + * this board isn't as fast as main memory we do not try to hook + * it into main memory as that would simply reduce performance + * on the system. Using it as a block device allows us to use + * it as high speed swap or for a high speed disk device of some + * sort. Which becomes very useful on diskless systems in the + * embedded market I might add. + * + * Notes: + * Due to what I assume is more buggy SROM, the 64M PMC551 I + * have available claims that all 4 of its DRAM banks have 64MiB + * of ram configured (making a grand total of 256MiB onboard). + * This is slightly annoying since the BAR0 size reflects the + * aperture size, not the dram size, and the V370PDC supplies no + * other method for memory size discovery. This problem is + * mostly only relevant when compiled as a module, as the + * unloading of the module with an aperture size smaller than + * the ram will cause the driver to detect the onboard memory + * size to be equal to the aperture size when the module is + * reloaded. Soooo, to help, the module supports an msize + * option to allow the specification of the onboard memory, and + * an asize option, to allow the specification of the aperture + * size. The aperture must be equal to or less then the memory + * size, the driver will correct this if you screw it up. This + * problem is not relevant for compiled in drivers as compiled + * in drivers only init once. + * + * Credits: + * Saeed Karamooz <saeed@ramix.com> of Ramix INC. for the + * initial example code of how to initialize this device and for + * help with questions I had concerning operation of the device. + * + * Most of the MTD code for this driver was originally written + * for the slram.o module in the MTD drivers package which + * allows the mapping of system memory into an MTD device. + * Since the PMC551 memory module is accessed in the same + * fashion as system memory, the slram.c code became a very nice + * fit to the needs of this driver. All we added was PCI + * detection/initialization to the driver and automatically figure + * out the size via the PCI detection.o, later changes by Corey + * Minyard set up the card to utilize a 1M sliding apature. + * + * Corey Minyard <minyard@nortelnetworks.com> + * * Modified driver to utilize a sliding aperture instead of + * mapping all memory into kernel space which turned out to + * be very wasteful. + * * Located a bug in the SROM's initialization sequence that + * made the memory unusable, added a fix to code to touch up + * the DRAM some. + * + * Bugs/FIXMEs: + * * MUST fix the init function to not spin on a register + * waiting for it to set .. this does not safely handle busted + * devices that never reset the register correctly which will + * cause the system to hang w/ a reboot being the only chance at + * recover. [sort of fixed, could be better] + * * Add I2C handling of the SROM so we can read the SROM's information + * about the aperture size. This should always accurately reflect the + * onboard memory size. + * * Comb the init routine. It's still a bit cludgy on a few things. + */ + +#include <linux/kernel.h> +#include <linux/module.h> +#include <linux/uaccess.h> +#include <linux/types.h> +#include <linux/init.h> +#include <linux/ptrace.h> +#include <linux/slab.h> +#include <linux/string.h> +#include <linux/timer.h> +#include <linux/major.h> +#include <linux/fs.h> +#include <linux/ioctl.h> +#include <asm/io.h> +#include <linux/pci.h> +#include <linux/mtd/mtd.h> + +#define PMC551_VERSION \ + "Ramix PMC551 PCI Mezzanine Ram Driver. (C) 1999,2000 Nortel Networks.\n" + +#define PCI_VENDOR_ID_V3_SEMI 0x11b0 +#define PCI_DEVICE_ID_V3_SEMI_V370PDC 0x0200 + +#define PMC551_PCI_MEM_MAP0 0x50 +#define PMC551_PCI_MEM_MAP1 0x54 +#define PMC551_PCI_MEM_MAP_MAP_ADDR_MASK 0x3ff00000 +#define PMC551_PCI_MEM_MAP_APERTURE_MASK 0x000000f0 +#define PMC551_PCI_MEM_MAP_REG_EN 0x00000002 +#define PMC551_PCI_MEM_MAP_ENABLE 0x00000001 + +#define PMC551_SDRAM_MA 0x60 +#define PMC551_SDRAM_CMD 0x62 +#define PMC551_DRAM_CFG 0x64 +#define PMC551_SYS_CTRL_REG 0x78 + +#define PMC551_DRAM_BLK0 0x68 +#define PMC551_DRAM_BLK1 0x6c +#define PMC551_DRAM_BLK2 0x70 +#define PMC551_DRAM_BLK3 0x74 +#define PMC551_DRAM_BLK_GET_SIZE(x) (524288 << ((x >> 4) & 0x0f)) +#define PMC551_DRAM_BLK_SET_COL_MUX(x, v) (((x) & ~0x00007000) | (((v) & 0x7) << 12)) +#define PMC551_DRAM_BLK_SET_ROW_MUX(x, v) (((x) & ~0x00000f00) | (((v) & 0xf) << 8)) + +struct mypriv { + struct pci_dev *dev; + u_char *start; + u32 base_map0; + u32 curr_map0; + u32 asize; + struct mtd_info *nextpmc551; +}; + +static struct mtd_info *pmc551list; + +static int pmc551_point(struct mtd_info *mtd, loff_t from, size_t len, + size_t *retlen, void **virt, resource_size_t *phys); + +static int pmc551_erase(struct mtd_info *mtd, struct erase_info *instr) +{ + struct mypriv *priv = mtd->priv; + u32 soff_hi; /* start address offset hi */ + u32 eoff_hi, eoff_lo; /* end address offset hi/lo */ + unsigned long end; + u_char *ptr; + size_t retlen; + +#ifdef CONFIG_MTD_PMC551_DEBUG + printk(KERN_DEBUG "pmc551_erase(pos:%ld, len:%ld)\n", (long)instr->addr, + (long)instr->len); +#endif + + end = instr->addr + instr->len - 1; + eoff_hi = end & ~(priv->asize - 1); + soff_hi = instr->addr & ~(priv->asize - 1); + eoff_lo = end & (priv->asize - 1); + + pmc551_point(mtd, instr->addr, instr->len, &retlen, + (void **)&ptr, NULL); + + if (soff_hi == eoff_hi || mtd->size == priv->asize) { + /* The whole thing fits within one access, so just one shot + will do it. */ + memset(ptr, 0xff, instr->len); + } else { + /* We have to do multiple writes to get all the data + written. */ + while (soff_hi != eoff_hi) { +#ifdef CONFIG_MTD_PMC551_DEBUG + printk(KERN_DEBUG "pmc551_erase() soff_hi: %ld, " + "eoff_hi: %ld\n", (long)soff_hi, (long)eoff_hi); +#endif + memset(ptr, 0xff, priv->asize); + if (soff_hi + priv->asize >= mtd->size) { + goto out; + } + soff_hi += priv->asize; + pmc551_point(mtd, (priv->base_map0 | soff_hi), + priv->asize, &retlen, + (void **)&ptr, NULL); + } + memset(ptr, 0xff, eoff_lo); + } + + out: +#ifdef CONFIG_MTD_PMC551_DEBUG + printk(KERN_DEBUG "pmc551_erase() done\n"); +#endif + + return 0; +} + +static int pmc551_point(struct mtd_info *mtd, loff_t from, size_t len, + size_t *retlen, void **virt, resource_size_t *phys) +{ + struct mypriv *priv = mtd->priv; + u32 soff_hi; + u32 soff_lo; + +#ifdef CONFIG_MTD_PMC551_DEBUG + printk(KERN_DEBUG "pmc551_point(%ld, %ld)\n", (long)from, (long)len); +#endif + + soff_hi = from & ~(priv->asize - 1); + soff_lo = from & (priv->asize - 1); + + /* Cheap hack optimization */ + if (priv->curr_map0 != from) { + pci_write_config_dword(priv->dev, PMC551_PCI_MEM_MAP0, + (priv->base_map0 | soff_hi)); + priv->curr_map0 = soff_hi; + } + + *virt = priv->start + soff_lo; + *retlen = len; + return 0; +} + +static int pmc551_unpoint(struct mtd_info *mtd, loff_t from, size_t len) +{ +#ifdef CONFIG_MTD_PMC551_DEBUG + printk(KERN_DEBUG "pmc551_unpoint()\n"); +#endif + return 0; +} + +static int pmc551_read(struct mtd_info *mtd, loff_t from, size_t len, + size_t * retlen, u_char * buf) +{ + struct mypriv *priv = mtd->priv; + u32 soff_hi; /* start address offset hi */ + u32 eoff_hi, eoff_lo; /* end address offset hi/lo */ + unsigned long end; + u_char *ptr; + u_char *copyto = buf; + +#ifdef CONFIG_MTD_PMC551_DEBUG + printk(KERN_DEBUG "pmc551_read(pos:%ld, len:%ld) asize: %ld\n", + (long)from, (long)len, (long)priv->asize); +#endif + + end = from + len - 1; + soff_hi = from & ~(priv->asize - 1); + eoff_hi = end & ~(priv->asize - 1); + eoff_lo = end & (priv->asize - 1); + + pmc551_point(mtd, from, len, retlen, (void **)&ptr, NULL); + + if (soff_hi == eoff_hi) { + /* The whole thing fits within one access, so just one shot + will do it. */ + memcpy(copyto, ptr, len); + copyto += len; + } else { + /* We have to do multiple writes to get all the data + written. */ + while (soff_hi != eoff_hi) { +#ifdef CONFIG_MTD_PMC551_DEBUG + printk(KERN_DEBUG "pmc551_read() soff_hi: %ld, " + "eoff_hi: %ld\n", (long)soff_hi, (long)eoff_hi); +#endif + memcpy(copyto, ptr, priv->asize); + copyto += priv->asize; + if (soff_hi + priv->asize >= mtd->size) { + goto out; + } + soff_hi += priv->asize; + pmc551_point(mtd, soff_hi, priv->asize, retlen, + (void **)&ptr, NULL); + } + memcpy(copyto, ptr, eoff_lo); + copyto += eoff_lo; + } + + out: +#ifdef CONFIG_MTD_PMC551_DEBUG + printk(KERN_DEBUG "pmc551_read() done\n"); +#endif + *retlen = copyto - buf; + return 0; +} + +static int pmc551_write(struct mtd_info *mtd, loff_t to, size_t len, + size_t * retlen, const u_char * buf) +{ + struct mypriv *priv = mtd->priv; + u32 soff_hi; /* start address offset hi */ + u32 eoff_hi, eoff_lo; /* end address offset hi/lo */ + unsigned long end; + u_char *ptr; + const u_char *copyfrom = buf; + +#ifdef CONFIG_MTD_PMC551_DEBUG + printk(KERN_DEBUG "pmc551_write(pos:%ld, len:%ld) asize:%ld\n", + (long)to, (long)len, (long)priv->asize); +#endif + + end = to + len - 1; + soff_hi = to & ~(priv->asize - 1); + eoff_hi = end & ~(priv->asize - 1); + eoff_lo = end & (priv->asize - 1); + + pmc551_point(mtd, to, len, retlen, (void **)&ptr, NULL); + + if (soff_hi == eoff_hi) { + /* The whole thing fits within one access, so just one shot + will do it. */ + memcpy(ptr, copyfrom, len); + copyfrom += len; + } else { + /* We have to do multiple writes to get all the data + written. */ + while (soff_hi != eoff_hi) { +#ifdef CONFIG_MTD_PMC551_DEBUG + printk(KERN_DEBUG "pmc551_write() soff_hi: %ld, " + "eoff_hi: %ld\n", (long)soff_hi, (long)eoff_hi); +#endif + memcpy(ptr, copyfrom, priv->asize); + copyfrom += priv->asize; + if (soff_hi >= mtd->size) { + goto out; + } + soff_hi += priv->asize; + pmc551_point(mtd, soff_hi, priv->asize, retlen, + (void **)&ptr, NULL); + } + memcpy(ptr, copyfrom, eoff_lo); + copyfrom += eoff_lo; + } + + out: +#ifdef CONFIG_MTD_PMC551_DEBUG + printk(KERN_DEBUG "pmc551_write() done\n"); +#endif + *retlen = copyfrom - buf; + return 0; +} + +/* + * Fixup routines for the V370PDC + * PCI device ID 0x020011b0 + * + * This function basically kick starts the DRAM oboard the card and gets it + * ready to be used. Before this is done the device reads VERY erratic, so + * much that it can crash the Linux 2.2.x series kernels when a user cat's + * /proc/pci .. though that is mainly a kernel bug in handling the PCI DEVSEL + * register. FIXME: stop spinning on registers .. must implement a timeout + * mechanism + * returns the size of the memory region found. + */ +static int __init fixup_pmc551(struct pci_dev *dev) +{ +#ifdef CONFIG_MTD_PMC551_BUGFIX + u32 dram_data; +#endif + u32 size, dcmd, cfg, dtmp; + u16 cmd, tmp, i; + u8 bcmd, counter; + + /* Sanity Check */ + if (!dev) { + return -ENODEV; + } + + /* + * Attempt to reset the card + * FIXME: Stop Spinning registers + */ + counter = 0; + /* unlock registers */ + pci_write_config_byte(dev, PMC551_SYS_CTRL_REG, 0xA5); + /* read in old data */ + pci_read_config_byte(dev, PMC551_SYS_CTRL_REG, &bcmd); + /* bang the reset line up and down for a few */ + for (i = 0; i < 10; i++) { + counter = 0; + bcmd &= ~0x80; + while (counter++ < 100) { + pci_write_config_byte(dev, PMC551_SYS_CTRL_REG, bcmd); + } + counter = 0; + bcmd |= 0x80; + while (counter++ < 100) { + pci_write_config_byte(dev, PMC551_SYS_CTRL_REG, bcmd); + } + } + bcmd |= (0x40 | 0x20); + pci_write_config_byte(dev, PMC551_SYS_CTRL_REG, bcmd); + + /* + * Take care and turn off the memory on the device while we + * tweak the configurations + */ + pci_read_config_word(dev, PCI_COMMAND, &cmd); + tmp = cmd & ~(PCI_COMMAND_IO | PCI_COMMAND_MEMORY); + pci_write_config_word(dev, PCI_COMMAND, tmp); + + /* + * Disable existing aperture before probing memory size + */ + pci_read_config_dword(dev, PMC551_PCI_MEM_MAP0, &dcmd); + dtmp = (dcmd | PMC551_PCI_MEM_MAP_ENABLE | PMC551_PCI_MEM_MAP_REG_EN); + pci_write_config_dword(dev, PMC551_PCI_MEM_MAP0, dtmp); + /* + * Grab old BAR0 config so that we can figure out memory size + * This is another bit of kludge going on. The reason for the + * redundancy is I am hoping to retain the original configuration + * previously assigned to the card by the BIOS or some previous + * fixup routine in the kernel. So we read the old config into cfg, + * then write all 1's to the memory space, read back the result into + * "size", and then write back all the old config. + */ + pci_read_config_dword(dev, PCI_BASE_ADDRESS_0, &cfg); +#ifndef CONFIG_MTD_PMC551_BUGFIX + pci_write_config_dword(dev, PCI_BASE_ADDRESS_0, ~0); + pci_read_config_dword(dev, PCI_BASE_ADDRESS_0, &size); + size = (size & PCI_BASE_ADDRESS_MEM_MASK); + size &= ~(size - 1); + pci_write_config_dword(dev, PCI_BASE_ADDRESS_0, cfg); +#else + /* + * Get the size of the memory by reading all the DRAM size values + * and adding them up. + * + * KLUDGE ALERT: the boards we are using have invalid column and + * row mux values. We fix them here, but this will break other + * memory configurations. + */ + pci_read_config_dword(dev, PMC551_DRAM_BLK0, &dram_data); + size = PMC551_DRAM_BLK_GET_SIZE(dram_data); + dram_data = PMC551_DRAM_BLK_SET_COL_MUX(dram_data, 0x5); + dram_data = PMC551_DRAM_BLK_SET_ROW_MUX(dram_data, 0x9); + pci_write_config_dword(dev, PMC551_DRAM_BLK0, dram_data); + + pci_read_config_dword(dev, PMC551_DRAM_BLK1, &dram_data); + size += PMC551_DRAM_BLK_GET_SIZE(dram_data); + dram_data = PMC551_DRAM_BLK_SET_COL_MUX(dram_data, 0x5); + dram_data = PMC551_DRAM_BLK_SET_ROW_MUX(dram_data, 0x9); + pci_write_config_dword(dev, PMC551_DRAM_BLK1, dram_data); + + pci_read_config_dword(dev, PMC551_DRAM_BLK2, &dram_data); + size += PMC551_DRAM_BLK_GET_SIZE(dram_data); + dram_data = PMC551_DRAM_BLK_SET_COL_MUX(dram_data, 0x5); + dram_data = PMC551_DRAM_BLK_SET_ROW_MUX(dram_data, 0x9); + pci_write_config_dword(dev, PMC551_DRAM_BLK2, dram_data); + + pci_read_config_dword(dev, PMC551_DRAM_BLK3, &dram_data); + size += PMC551_DRAM_BLK_GET_SIZE(dram_data); + dram_data = PMC551_DRAM_BLK_SET_COL_MUX(dram_data, 0x5); + dram_data = PMC551_DRAM_BLK_SET_ROW_MUX(dram_data, 0x9); + pci_write_config_dword(dev, PMC551_DRAM_BLK3, dram_data); + + /* + * Oops .. something went wrong + */ + if ((size &= PCI_BASE_ADDRESS_MEM_MASK) == 0) { + return -ENODEV; + } +#endif /* CONFIG_MTD_PMC551_BUGFIX */ + + if ((cfg & PCI_BASE_ADDRESS_SPACE) != PCI_BASE_ADDRESS_SPACE_MEMORY) { + return -ENODEV; + } + + /* + * Precharge Dram + */ + pci_write_config_word(dev, PMC551_SDRAM_MA, 0x0400); + pci_write_config_word(dev, PMC551_SDRAM_CMD, 0x00bf); + + /* + * Wait until command has gone through + * FIXME: register spinning issue + */ + do { + pci_read_config_word(dev, PMC551_SDRAM_CMD, &cmd); + if (counter++ > 100) + break; + } while ((PCI_COMMAND_IO) & cmd); + + /* + * Turn on auto refresh + * The loop is taken directly from Ramix's example code. I assume that + * this must be held high for some duration of time, but I can find no + * documentation refrencing the reasons why. + */ + for (i = 1; i <= 8; i++) { + pci_write_config_word(dev, PMC551_SDRAM_CMD, 0x0df); + + /* + * Make certain command has gone through + * FIXME: register spinning issue + */ + counter = 0; + do { + pci_read_config_word(dev, PMC551_SDRAM_CMD, &cmd); + if (counter++ > 100) + break; + } while ((PCI_COMMAND_IO) & cmd); + } + + pci_write_config_word(dev, PMC551_SDRAM_MA, 0x0020); + pci_write_config_word(dev, PMC551_SDRAM_CMD, 0x0ff); + + /* + * Wait until command completes + * FIXME: register spinning issue + */ + counter = 0; + do { + pci_read_config_word(dev, PMC551_SDRAM_CMD, &cmd); + if (counter++ > 100) + break; + } while ((PCI_COMMAND_IO) & cmd); + + pci_read_config_dword(dev, PMC551_DRAM_CFG, &dcmd); + dcmd |= 0x02000000; + pci_write_config_dword(dev, PMC551_DRAM_CFG, dcmd); + + /* + * Check to make certain fast back-to-back, if not + * then set it so + */ + pci_read_config_word(dev, PCI_STATUS, &cmd); + if ((cmd & PCI_COMMAND_FAST_BACK) == 0) { + cmd |= PCI_COMMAND_FAST_BACK; + pci_write_config_word(dev, PCI_STATUS, cmd); + } + + /* + * Check to make certain the DEVSEL is set correctly, this device + * has a tendency to assert DEVSEL and TRDY when a write is performed + * to the memory when memory is read-only + */ + if ((cmd & PCI_STATUS_DEVSEL_MASK) != 0x0) { + cmd &= ~PCI_STATUS_DEVSEL_MASK; + pci_write_config_word(dev, PCI_STATUS, cmd); + } + /* + * Set to be prefetchable and put everything back based on old cfg. + * it's possible that the reset of the V370PDC nuked the original + * setup + */ + /* + cfg |= PCI_BASE_ADDRESS_MEM_PREFETCH; + pci_write_config_dword( dev, PCI_BASE_ADDRESS_0, cfg ); + */ + + /* + * Turn PCI memory and I/O bus access back on + */ + pci_write_config_word(dev, PCI_COMMAND, + PCI_COMMAND_MEMORY | PCI_COMMAND_IO); +#ifdef CONFIG_MTD_PMC551_DEBUG + /* + * Some screen fun + */ + printk(KERN_DEBUG "pmc551: %d%sB (0x%x) of %sprefetchable memory at " + "0x%llx\n", (size < 1024) ? size : (size < 1048576) ? + size >> 10 : size >> 20, + (size < 1024) ? "" : (size < 1048576) ? "Ki" : "Mi", size, + ((dcmd & (0x1 << 3)) == 0) ? "non-" : "", + (unsigned long long)pci_resource_start(dev, 0)); + + /* + * Check to see the state of the memory + */ + pci_read_config_dword(dev, PMC551_DRAM_BLK0, &dcmd); + printk(KERN_DEBUG "pmc551: DRAM_BLK0 Flags: %s,%s\n" + "pmc551: DRAM_BLK0 Size: %d at %d\n" + "pmc551: DRAM_BLK0 Row MUX: %d, Col MUX: %d\n", + (((0x1 << 1) & dcmd) == 0) ? "RW" : "RO", + (((0x1 << 0) & dcmd) == 0) ? "Off" : "On", + PMC551_DRAM_BLK_GET_SIZE(dcmd), + ((dcmd >> 20) & 0x7FF), ((dcmd >> 13) & 0x7), + ((dcmd >> 9) & 0xF)); + + pci_read_config_dword(dev, PMC551_DRAM_BLK1, &dcmd); + printk(KERN_DEBUG "pmc551: DRAM_BLK1 Flags: %s,%s\n" + "pmc551: DRAM_BLK1 Size: %d at %d\n" + "pmc551: DRAM_BLK1 Row MUX: %d, Col MUX: %d\n", + (((0x1 << 1) & dcmd) == 0) ? "RW" : "RO", + (((0x1 << 0) & dcmd) == 0) ? "Off" : "On", + PMC551_DRAM_BLK_GET_SIZE(dcmd), + ((dcmd >> 20) & 0x7FF), ((dcmd >> 13) & 0x7), + ((dcmd >> 9) & 0xF)); + + pci_read_config_dword(dev, PMC551_DRAM_BLK2, &dcmd); + printk(KERN_DEBUG "pmc551: DRAM_BLK2 Flags: %s,%s\n" + "pmc551: DRAM_BLK2 Size: %d at %d\n" + "pmc551: DRAM_BLK2 Row MUX: %d, Col MUX: %d\n", + (((0x1 << 1) & dcmd) == 0) ? "RW" : "RO", + (((0x1 << 0) & dcmd) == 0) ? "Off" : "On", + PMC551_DRAM_BLK_GET_SIZE(dcmd), + ((dcmd >> 20) & 0x7FF), ((dcmd >> 13) & 0x7), + ((dcmd >> 9) & 0xF)); + + pci_read_config_dword(dev, PMC551_DRAM_BLK3, &dcmd); + printk(KERN_DEBUG "pmc551: DRAM_BLK3 Flags: %s,%s\n" + "pmc551: DRAM_BLK3 Size: %d at %d\n" + "pmc551: DRAM_BLK3 Row MUX: %d, Col MUX: %d\n", + (((0x1 << 1) & dcmd) == 0) ? "RW" : "RO", + (((0x1 << 0) & dcmd) == 0) ? "Off" : "On", + PMC551_DRAM_BLK_GET_SIZE(dcmd), + ((dcmd >> 20) & 0x7FF), ((dcmd >> 13) & 0x7), + ((dcmd >> 9) & 0xF)); + + pci_read_config_word(dev, PCI_COMMAND, &cmd); + printk(KERN_DEBUG "pmc551: Memory Access %s\n", + (((0x1 << 1) & cmd) == 0) ? "off" : "on"); + printk(KERN_DEBUG "pmc551: I/O Access %s\n", + (((0x1 << 0) & cmd) == 0) ? "off" : "on"); + + pci_read_config_word(dev, PCI_STATUS, &cmd); + printk(KERN_DEBUG "pmc551: Devsel %s\n", + ((PCI_STATUS_DEVSEL_MASK & cmd) == 0x000) ? "Fast" : + ((PCI_STATUS_DEVSEL_MASK & cmd) == 0x200) ? "Medium" : + ((PCI_STATUS_DEVSEL_MASK & cmd) == 0x400) ? "Slow" : "Invalid"); + + printk(KERN_DEBUG "pmc551: %sFast Back-to-Back\n", + ((PCI_COMMAND_FAST_BACK & cmd) == 0) ? "Not " : ""); + + pci_read_config_byte(dev, PMC551_SYS_CTRL_REG, &bcmd); + printk(KERN_DEBUG "pmc551: EEPROM is under %s control\n" + "pmc551: System Control Register is %slocked to PCI access\n" + "pmc551: System Control Register is %slocked to EEPROM access\n", + (bcmd & 0x1) ? "software" : "hardware", + (bcmd & 0x20) ? "" : "un", (bcmd & 0x40) ? "" : "un"); +#endif + return size; +} + +/* + * Kernel version specific module stuffages + */ + +MODULE_LICENSE("GPL"); +MODULE_AUTHOR("Mark Ferrell <mferrell@mvista.com>"); +MODULE_DESCRIPTION(PMC551_VERSION); + +/* + * Stuff these outside the ifdef so as to not bust compiled in driver support + */ +static int msize = 0; +static int asize = 0; + +module_param(msize, int, 0); +MODULE_PARM_DESC(msize, "memory size in MiB [1 - 1024]"); +module_param(asize, int, 0); +MODULE_PARM_DESC(asize, "aperture size, must be <= memsize [1-1024]"); + +/* + * PMC551 Card Initialization + */ +static int __init init_pmc551(void) +{ + struct pci_dev *PCI_Device = NULL; + struct mypriv *priv; + int found = 0; + struct mtd_info *mtd; + int length = 0; + + if (msize) { + msize = (1 << (ffs(msize) - 1)) << 20; + if (msize > (1 << 30)) { + printk(KERN_NOTICE "pmc551: Invalid memory size [%d]\n", + msize); + return -EINVAL; + } + } + + if (asize) { + asize = (1 << (ffs(asize) - 1)) << 20; + if (asize > (1 << 30)) { + printk(KERN_NOTICE "pmc551: Invalid aperture size " + "[%d]\n", asize); + return -EINVAL; + } + } + + printk(KERN_INFO PMC551_VERSION); + + /* + * PCU-bus chipset probe. + */ + for (;;) { + + if ((PCI_Device = pci_get_device(PCI_VENDOR_ID_V3_SEMI, + PCI_DEVICE_ID_V3_SEMI_V370PDC, + PCI_Device)) == NULL) { + break; + } + + printk(KERN_NOTICE "pmc551: Found PCI V370PDC at 0x%llx\n", + (unsigned long long)pci_resource_start(PCI_Device, 0)); + + /* + * The PMC551 device acts VERY weird if you don't init it + * first. i.e. it will not correctly report devsel. If for + * some reason the sdram is in a wrote-protected state the + * device will DEVSEL when it is written to causing problems + * with the oldproc.c driver in + * some kernels (2.2.*) + */ + if ((length = fixup_pmc551(PCI_Device)) <= 0) { + printk(KERN_NOTICE "pmc551: Cannot init SDRAM\n"); + break; + } + + /* + * This is needed until the driver is capable of reading the + * onboard I2C SROM to discover the "real" memory size. + */ + if (msize) { + length = msize; + printk(KERN_NOTICE "pmc551: Using specified memory " + "size 0x%x\n", length); + } else { + msize = length; + } + + mtd = kzalloc(sizeof(struct mtd_info), GFP_KERNEL); + if (!mtd) + break; + + priv = kzalloc(sizeof(struct mypriv), GFP_KERNEL); + if (!priv) { + kfree(mtd); + break; + } + mtd->priv = priv; + priv->dev = PCI_Device; + + if (asize > length) { + printk(KERN_NOTICE "pmc551: reducing aperture size to " + "fit %dM\n", length >> 20); + priv->asize = asize = length; + } else if (asize == 0 || asize == length) { + printk(KERN_NOTICE "pmc551: Using existing aperture " + "size %dM\n", length >> 20); + priv->asize = asize = length; + } else { + printk(KERN_NOTICE "pmc551: Using specified aperture " + "size %dM\n", asize >> 20); + priv->asize = asize; + } + priv->start = pci_iomap(PCI_Device, 0, priv->asize); + + if (!priv->start) { + printk(KERN_NOTICE "pmc551: Unable to map IO space\n"); + kfree(mtd->priv); + kfree(mtd); + break; + } +#ifdef CONFIG_MTD_PMC551_DEBUG + printk(KERN_DEBUG "pmc551: setting aperture to %d\n", + ffs(priv->asize >> 20) - 1); +#endif + + priv->base_map0 = (PMC551_PCI_MEM_MAP_REG_EN + | PMC551_PCI_MEM_MAP_ENABLE + | (ffs(priv->asize >> 20) - 1) << 4); + priv->curr_map0 = priv->base_map0; + pci_write_config_dword(priv->dev, PMC551_PCI_MEM_MAP0, + priv->curr_map0); + +#ifdef CONFIG_MTD_PMC551_DEBUG + printk(KERN_DEBUG "pmc551: aperture set to %d\n", + (priv->base_map0 & 0xF0) >> 4); +#endif + + mtd->size = msize; + mtd->flags = MTD_CAP_RAM; + mtd->_erase = pmc551_erase; + mtd->_read = pmc551_read; + mtd->_write = pmc551_write; + mtd->_point = pmc551_point; + mtd->_unpoint = pmc551_unpoint; + mtd->type = MTD_RAM; + mtd->name = "PMC551 RAM board"; + mtd->erasesize = 0x10000; + mtd->writesize = 1; + mtd->owner = THIS_MODULE; + + if (mtd_device_register(mtd, NULL, 0)) { + printk(KERN_NOTICE "pmc551: Failed to register new device\n"); + pci_iounmap(PCI_Device, priv->start); + kfree(mtd->priv); + kfree(mtd); + break; + } + + /* Keep a reference as the mtd_device_register worked */ + pci_dev_get(PCI_Device); + + printk(KERN_NOTICE "Registered pmc551 memory device.\n"); + printk(KERN_NOTICE "Mapped %dMiB of memory from 0x%p to 0x%p\n", + priv->asize >> 20, + priv->start, priv->start + priv->asize); + printk(KERN_NOTICE "Total memory is %d%sB\n", + (length < 1024) ? length : + (length < 1048576) ? length >> 10 : length >> 20, + (length < 1024) ? "" : (length < 1048576) ? "Ki" : "Mi"); + priv->nextpmc551 = pmc551list; + pmc551list = mtd; + found++; + } + + /* Exited early, reference left over */ + pci_dev_put(PCI_Device); + + if (!pmc551list) { + printk(KERN_NOTICE "pmc551: not detected\n"); + return -ENODEV; + } else { + printk(KERN_NOTICE "pmc551: %d pmc551 devices loaded\n", found); + return 0; + } +} + +/* + * PMC551 Card Cleanup + */ +static void __exit cleanup_pmc551(void) +{ + int found = 0; + struct mtd_info *mtd; + struct mypriv *priv; + + while ((mtd = pmc551list)) { + priv = mtd->priv; + pmc551list = priv->nextpmc551; + + if (priv->start) { + printk(KERN_DEBUG "pmc551: unmapping %dMiB starting at " + "0x%p\n", priv->asize >> 20, priv->start); + pci_iounmap(priv->dev, priv->start); + } + pci_dev_put(priv->dev); + + kfree(mtd->priv); + mtd_device_unregister(mtd); + kfree(mtd); + found++; + } + + printk(KERN_NOTICE "pmc551: %d pmc551 devices unloaded\n", found); +} + +module_init(init_pmc551); +module_exit(cleanup_pmc551); diff --git a/drivers/mtd/devices/powernv_flash.c b/drivers/mtd/devices/powernv_flash.c new file mode 100644 index 0000000000..36e060386e --- /dev/null +++ b/drivers/mtd/devices/powernv_flash.c @@ -0,0 +1,297 @@ +// SPDX-License-Identifier: GPL-2.0-or-later +/* + * OPAL PNOR flash MTD abstraction + * + * Copyright IBM 2015 + */ + +#include <linux/kernel.h> +#include <linux/module.h> +#include <linux/errno.h> +#include <linux/of.h> +#include <linux/of_address.h> +#include <linux/platform_device.h> +#include <linux/string.h> +#include <linux/slab.h> +#include <linux/mtd/mtd.h> +#include <linux/mtd/partitions.h> + +#include <linux/debugfs.h> +#include <linux/seq_file.h> + +#include <asm/opal.h> + + +/* + * This driver creates the a Linux MTD abstraction for platform PNOR flash + * backed by OPAL calls + */ + +struct powernv_flash { + struct mtd_info mtd; + u32 id; +}; + +enum flash_op { + FLASH_OP_READ, + FLASH_OP_WRITE, + FLASH_OP_ERASE, +}; + +/* + * Don't return -ERESTARTSYS if we can't get a token, the MTD core + * might have split up the call from userspace and called into the + * driver more than once, we'll already have done some amount of work. + */ +static int powernv_flash_async_op(struct mtd_info *mtd, enum flash_op op, + loff_t offset, size_t len, size_t *retlen, u_char *buf) +{ + struct powernv_flash *info = (struct powernv_flash *)mtd->priv; + struct device *dev = &mtd->dev; + int token; + struct opal_msg msg; + int rc; + + dev_dbg(dev, "%s(op=%d, offset=0x%llx, len=%zu)\n", + __func__, op, offset, len); + + token = opal_async_get_token_interruptible(); + if (token < 0) { + if (token != -ERESTARTSYS) + dev_err(dev, "Failed to get an async token\n"); + else + token = -EINTR; + return token; + } + + switch (op) { + case FLASH_OP_READ: + rc = opal_flash_read(info->id, offset, __pa(buf), len, token); + break; + case FLASH_OP_WRITE: + rc = opal_flash_write(info->id, offset, __pa(buf), len, token); + break; + case FLASH_OP_ERASE: + rc = opal_flash_erase(info->id, offset, len, token); + break; + default: + WARN_ON_ONCE(1); + opal_async_release_token(token); + return -EIO; + } + + if (rc == OPAL_ASYNC_COMPLETION) { + rc = opal_async_wait_response_interruptible(token, &msg); + if (rc) { + /* + * If we return the mtd core will free the + * buffer we've just passed to OPAL but OPAL + * will continue to read or write from that + * memory. + * It may be tempting to ultimately return 0 + * if we're doing a read or a write since we + * are going to end up waiting until OPAL is + * done. However, because the MTD core sends + * us the userspace request in chunks, we need + * it to know we've been interrupted. + */ + rc = -EINTR; + if (opal_async_wait_response(token, &msg)) + dev_err(dev, "opal_async_wait_response() failed\n"); + goto out; + } + rc = opal_get_async_rc(msg); + } + + /* + * OPAL does mutual exclusion on the flash, it will return + * OPAL_BUSY. + * During firmware updates by the service processor OPAL may + * be (temporarily) prevented from accessing the flash, in + * this case OPAL will also return OPAL_BUSY. + * Both cases aren't errors exactly but the flash could have + * changed, userspace should be informed. + */ + if (rc != OPAL_SUCCESS && rc != OPAL_BUSY) + dev_err(dev, "opal_flash_async_op(op=%d) failed (rc %d)\n", + op, rc); + + if (rc == OPAL_SUCCESS && retlen) + *retlen = len; + + rc = opal_error_code(rc); +out: + opal_async_release_token(token); + return rc; +} + +/** + * powernv_flash_read + * @mtd: the device + * @from: the offset to read from + * @len: the number of bytes to read + * @retlen: the number of bytes actually read + * @buf: the filled in buffer + * + * Returns 0 if read successful, or -ERRNO if an error occurred + */ +static int powernv_flash_read(struct mtd_info *mtd, loff_t from, size_t len, + size_t *retlen, u_char *buf) +{ + return powernv_flash_async_op(mtd, FLASH_OP_READ, from, + len, retlen, buf); +} + +/** + * powernv_flash_write + * @mtd: the device + * @to: the offset to write to + * @len: the number of bytes to write + * @retlen: the number of bytes actually written + * @buf: the buffer to get bytes from + * + * Returns 0 if write successful, -ERRNO if error occurred + */ +static int powernv_flash_write(struct mtd_info *mtd, loff_t to, size_t len, + size_t *retlen, const u_char *buf) +{ + return powernv_flash_async_op(mtd, FLASH_OP_WRITE, to, + len, retlen, (u_char *)buf); +} + +/** + * powernv_flash_erase + * @mtd: the device + * @erase: the erase info + * Returns 0 if erase successful or -ERRNO if an error occurred + */ +static int powernv_flash_erase(struct mtd_info *mtd, struct erase_info *erase) +{ + int rc; + + rc = powernv_flash_async_op(mtd, FLASH_OP_ERASE, erase->addr, + erase->len, NULL, NULL); + if (rc) + erase->fail_addr = erase->addr; + + return rc; +} + +/** + * powernv_flash_set_driver_info - Fill the mtd_info structure and docg3 + * @dev: The device structure + * @mtd: The structure to fill + */ +static int powernv_flash_set_driver_info(struct device *dev, + struct mtd_info *mtd) +{ + u64 size; + u32 erase_size; + int rc; + + rc = of_property_read_u32(dev->of_node, "ibm,flash-block-size", + &erase_size); + if (rc) { + dev_err(dev, "couldn't get resource block size information\n"); + return rc; + } + + rc = of_property_read_u64(dev->of_node, "reg", &size); + if (rc) { + dev_err(dev, "couldn't get resource size information\n"); + return rc; + } + + /* + * Going to have to check what details I need to set and how to + * get them + */ + mtd->name = devm_kasprintf(dev, GFP_KERNEL, "%pOFP", dev->of_node); + mtd->type = MTD_NORFLASH; + mtd->flags = MTD_WRITEABLE; + mtd->size = size; + mtd->erasesize = erase_size; + mtd->writebufsize = mtd->writesize = 1; + mtd->owner = THIS_MODULE; + mtd->_erase = powernv_flash_erase; + mtd->_read = powernv_flash_read; + mtd->_write = powernv_flash_write; + mtd->dev.parent = dev; + mtd_set_of_node(mtd, dev->of_node); + return 0; +} + +/** + * powernv_flash_probe + * @pdev: platform device + * + * Returns 0 on success, -ENOMEM, -ENXIO on error + */ +static int powernv_flash_probe(struct platform_device *pdev) +{ + struct device *dev = &pdev->dev; + struct powernv_flash *data; + int ret; + + data = devm_kzalloc(dev, sizeof(*data), GFP_KERNEL); + if (!data) + return -ENOMEM; + + data->mtd.priv = data; + + ret = of_property_read_u32(dev->of_node, "ibm,opal-id", &(data->id)); + if (ret) { + dev_err(dev, "no device property 'ibm,opal-id'\n"); + return ret; + } + + ret = powernv_flash_set_driver_info(dev, &data->mtd); + if (ret) + return ret; + + dev_set_drvdata(dev, data); + + /* + * The current flash that skiboot exposes is one contiguous flash chip + * with an ffs partition at the start, it should prove easier for users + * to deal with partitions or not as they see fit + */ + return mtd_device_register(&data->mtd, NULL, 0); +} + +/** + * op_release - Release the driver + * @pdev: the platform device + * + * Returns 0 + */ +static int powernv_flash_release(struct platform_device *pdev) +{ + struct powernv_flash *data = dev_get_drvdata(&(pdev->dev)); + + /* All resources should be freed automatically */ + WARN_ON(mtd_device_unregister(&data->mtd)); + + return 0; +} + +static const struct of_device_id powernv_flash_match[] = { + { .compatible = "ibm,opal-flash" }, + {} +}; + +static struct platform_driver powernv_flash_driver = { + .driver = { + .name = "powernv_flash", + .of_match_table = powernv_flash_match, + }, + .remove = powernv_flash_release, + .probe = powernv_flash_probe, +}; + +module_platform_driver(powernv_flash_driver); + +MODULE_DEVICE_TABLE(of, powernv_flash_match); +MODULE_LICENSE("GPL"); +MODULE_AUTHOR("Cyril Bur <cyril.bur@au1.ibm.com>"); +MODULE_DESCRIPTION("MTD abstraction for OPAL flash"); diff --git a/drivers/mtd/devices/serial_flash_cmds.h b/drivers/mtd/devices/serial_flash_cmds.h new file mode 100644 index 0000000000..8b51a872fd --- /dev/null +++ b/drivers/mtd/devices/serial_flash_cmds.h @@ -0,0 +1,49 @@ +/* SPDX-License-Identifier: GPL-2.0-only */ +/* + * Generic/SFDP Flash Commands and Device Capabilities + * + * Copyright (C) 2013 Lee Jones <lee.jones@lianro.org> + */ + +#ifndef _MTD_SERIAL_FLASH_CMDS_H +#define _MTD_SERIAL_FLASH_CMDS_H + +/* Generic Flash Commands/OPCODEs */ +#define SPINOR_OP_WRVCR 0x81 +#define SPINOR_OP_RDVCR 0x85 + +/* JEDEC Standard - Serial Flash Discoverable Parmeters (SFDP) Commands */ +#define SPINOR_OP_WRITE 0x02 /* PAGE PROGRAM */ +#define SPINOR_OP_WRITE_1_1_2 0xa2 /* DUAL INPUT PROGRAM */ +#define SPINOR_OP_WRITE_1_2_2 0xd2 /* DUAL INPUT EXT PROGRAM */ +#define SPINOR_OP_WRITE_1_1_4 0x32 /* QUAD INPUT PROGRAM */ +#define SPINOR_OP_WRITE_1_4_4 0x12 /* QUAD INPUT EXT PROGRAM */ + +/* Configuration flags */ +#define FLASH_FLAG_SINGLE 0x000000ff +#define FLASH_FLAG_READ_WRITE 0x00000001 +#define FLASH_FLAG_READ_FAST 0x00000002 +#define FLASH_FLAG_SE_4K 0x00000004 +#define FLASH_FLAG_SE_32K 0x00000008 +#define FLASH_FLAG_CE 0x00000010 +#define FLASH_FLAG_32BIT_ADDR 0x00000020 +#define FLASH_FLAG_RESET 0x00000040 +#define FLASH_FLAG_DYB_LOCKING 0x00000080 + +#define FLASH_FLAG_DUAL 0x0000ff00 +#define FLASH_FLAG_READ_1_1_2 0x00000100 +#define FLASH_FLAG_READ_1_2_2 0x00000200 +#define FLASH_FLAG_READ_2_2_2 0x00000400 +#define FLASH_FLAG_WRITE_1_1_2 0x00001000 +#define FLASH_FLAG_WRITE_1_2_2 0x00002000 +#define FLASH_FLAG_WRITE_2_2_2 0x00004000 + +#define FLASH_FLAG_QUAD 0x00ff0000 +#define FLASH_FLAG_READ_1_1_4 0x00010000 +#define FLASH_FLAG_READ_1_4_4 0x00020000 +#define FLASH_FLAG_READ_4_4_4 0x00040000 +#define FLASH_FLAG_WRITE_1_1_4 0x00100000 +#define FLASH_FLAG_WRITE_1_4_4 0x00200000 +#define FLASH_FLAG_WRITE_4_4_4 0x00400000 + +#endif /* _MTD_SERIAL_FLASH_CMDS_H */ diff --git a/drivers/mtd/devices/slram.c b/drivers/mtd/devices/slram.c new file mode 100644 index 0000000000..28131a127d --- /dev/null +++ b/drivers/mtd/devices/slram.c @@ -0,0 +1,344 @@ +// SPDX-License-Identifier: GPL-2.0-only +/*====================================================================== + + This driver provides a method to access memory not used by the kernel + itself (i.e. if the kernel commandline mem=xxx is used). To actually + use slram at least mtdblock or mtdchar is required (for block or + character device access). + + Usage: + + if compiled as loadable module: + modprobe slram map=<name>,<start>,<end/offset> + if statically linked into the kernel use the following kernel cmd.line + slram=<name>,<start>,<end/offset> + + <name>: name of the device that will be listed in /proc/mtd + <start>: start of the memory region, decimal or hex (0xabcdef) + <end/offset>: end of the memory region. It's possible to use +0x1234 + to specify the offset instead of the absolute address + + NOTE: + With slram it's only possible to map a contiguous memory region. Therefore + if there's a device mapped somewhere in the region specified slram will + fail to load (see kernel log if modprobe fails). + + - + + Jochen Schaeuble <psionic@psionic.de> + +======================================================================*/ + + +#include <linux/module.h> +#include <linux/uaccess.h> +#include <linux/types.h> +#include <linux/kernel.h> +#include <linux/ptrace.h> +#include <linux/slab.h> +#include <linux/string.h> +#include <linux/timer.h> +#include <linux/major.h> +#include <linux/fs.h> +#include <linux/ioctl.h> +#include <linux/init.h> +#include <linux/io.h> + +#include <linux/mtd/mtd.h> + +#define SLRAM_MAX_DEVICES_PARAMS 6 /* 3 parameters / device */ +#define SLRAM_BLK_SZ 0x4000 + +#define T(fmt, args...) printk(KERN_DEBUG fmt, ## args) +#define E(fmt, args...) printk(KERN_NOTICE fmt, ## args) + +typedef struct slram_priv { + u_char *start; + u_char *end; +} slram_priv_t; + +typedef struct slram_mtd_list { + struct mtd_info *mtdinfo; + struct slram_mtd_list *next; +} slram_mtd_list_t; + +#ifdef MODULE +static char *map[SLRAM_MAX_DEVICES_PARAMS]; + +module_param_array(map, charp, NULL, 0); +MODULE_PARM_DESC(map, "List of memory regions to map. \"map=<name>, <start>, <length / end>\""); +#else +static char *map; +#endif + +static slram_mtd_list_t *slram_mtdlist = NULL; + +static int slram_erase(struct mtd_info *, struct erase_info *); +static int slram_point(struct mtd_info *, loff_t, size_t, size_t *, void **, + resource_size_t *); +static int slram_unpoint(struct mtd_info *, loff_t, size_t); +static int slram_read(struct mtd_info *, loff_t, size_t, size_t *, u_char *); +static int slram_write(struct mtd_info *, loff_t, size_t, size_t *, const u_char *); + +static int slram_erase(struct mtd_info *mtd, struct erase_info *instr) +{ + slram_priv_t *priv = mtd->priv; + + memset(priv->start + instr->addr, 0xff, instr->len); + + return(0); +} + +static int slram_point(struct mtd_info *mtd, loff_t from, size_t len, + size_t *retlen, void **virt, resource_size_t *phys) +{ + slram_priv_t *priv = mtd->priv; + + *virt = priv->start + from; + *retlen = len; + return(0); +} + +static int slram_unpoint(struct mtd_info *mtd, loff_t from, size_t len) +{ + return 0; +} + +static int slram_read(struct mtd_info *mtd, loff_t from, size_t len, + size_t *retlen, u_char *buf) +{ + slram_priv_t *priv = mtd->priv; + + memcpy(buf, priv->start + from, len); + *retlen = len; + return(0); +} + +static int slram_write(struct mtd_info *mtd, loff_t to, size_t len, + size_t *retlen, const u_char *buf) +{ + slram_priv_t *priv = mtd->priv; + + memcpy(priv->start + to, buf, len); + *retlen = len; + return(0); +} + +/*====================================================================*/ + +static int register_device(char *name, unsigned long start, unsigned long length) +{ + slram_mtd_list_t **curmtd; + + curmtd = &slram_mtdlist; + while (*curmtd) { + curmtd = &(*curmtd)->next; + } + + *curmtd = kmalloc(sizeof(slram_mtd_list_t), GFP_KERNEL); + if (!(*curmtd)) { + E("slram: Cannot allocate new MTD device.\n"); + return(-ENOMEM); + } + (*curmtd)->mtdinfo = kzalloc(sizeof(struct mtd_info), GFP_KERNEL); + (*curmtd)->next = NULL; + + if ((*curmtd)->mtdinfo) { + (*curmtd)->mtdinfo->priv = + kzalloc(sizeof(slram_priv_t), GFP_KERNEL); + + if (!(*curmtd)->mtdinfo->priv) { + kfree((*curmtd)->mtdinfo); + (*curmtd)->mtdinfo = NULL; + } + } + + if (!(*curmtd)->mtdinfo) { + E("slram: Cannot allocate new MTD device.\n"); + return(-ENOMEM); + } + + if (!(((slram_priv_t *)(*curmtd)->mtdinfo->priv)->start = + memremap(start, length, + MEMREMAP_WB | MEMREMAP_WT | MEMREMAP_WC))) { + E("slram: memremap failed\n"); + return -EIO; + } + ((slram_priv_t *)(*curmtd)->mtdinfo->priv)->end = + ((slram_priv_t *)(*curmtd)->mtdinfo->priv)->start + length; + + + (*curmtd)->mtdinfo->name = name; + (*curmtd)->mtdinfo->size = length; + (*curmtd)->mtdinfo->flags = MTD_CAP_RAM; + (*curmtd)->mtdinfo->_erase = slram_erase; + (*curmtd)->mtdinfo->_point = slram_point; + (*curmtd)->mtdinfo->_unpoint = slram_unpoint; + (*curmtd)->mtdinfo->_read = slram_read; + (*curmtd)->mtdinfo->_write = slram_write; + (*curmtd)->mtdinfo->owner = THIS_MODULE; + (*curmtd)->mtdinfo->type = MTD_RAM; + (*curmtd)->mtdinfo->erasesize = SLRAM_BLK_SZ; + (*curmtd)->mtdinfo->writesize = 1; + + if (mtd_device_register((*curmtd)->mtdinfo, NULL, 0)) { + E("slram: Failed to register new device\n"); + memunmap(((slram_priv_t *)(*curmtd)->mtdinfo->priv)->start); + kfree((*curmtd)->mtdinfo->priv); + kfree((*curmtd)->mtdinfo); + return(-EAGAIN); + } + T("slram: Registered device %s from %luKiB to %luKiB\n", name, + (start / 1024), ((start + length) / 1024)); + T("slram: Mapped from 0x%p to 0x%p\n", + ((slram_priv_t *)(*curmtd)->mtdinfo->priv)->start, + ((slram_priv_t *)(*curmtd)->mtdinfo->priv)->end); + return(0); +} + +static void unregister_devices(void) +{ + slram_mtd_list_t *nextitem; + + while (slram_mtdlist) { + nextitem = slram_mtdlist->next; + mtd_device_unregister(slram_mtdlist->mtdinfo); + memunmap(((slram_priv_t *)slram_mtdlist->mtdinfo->priv)->start); + kfree(slram_mtdlist->mtdinfo->priv); + kfree(slram_mtdlist->mtdinfo); + kfree(slram_mtdlist); + slram_mtdlist = nextitem; + } +} + +static unsigned long handle_unit(unsigned long value, char *unit) +{ + if ((*unit == 'M') || (*unit == 'm')) { + return(value * 1024 * 1024); + } else if ((*unit == 'K') || (*unit == 'k')) { + return(value * 1024); + } + return(value); +} + +static int parse_cmdline(char *devname, char *szstart, char *szlength) +{ + char *buffer; + unsigned long devstart; + unsigned long devlength; + + if ((!devname) || (!szstart) || (!szlength)) { + unregister_devices(); + return(-EINVAL); + } + + devstart = simple_strtoul(szstart, &buffer, 0); + devstart = handle_unit(devstart, buffer); + + if (*(szlength) != '+') { + devlength = simple_strtoul(szlength, &buffer, 0); + devlength = handle_unit(devlength, buffer); + if (devlength < devstart) + goto err_out; + + devlength -= devstart; + } else { + devlength = simple_strtoul(szlength + 1, &buffer, 0); + devlength = handle_unit(devlength, buffer); + } + T("slram: devname=%s, devstart=0x%lx, devlength=0x%lx\n", + devname, devstart, devlength); + if (devlength % SLRAM_BLK_SZ != 0) + goto err_out; + + if ((devstart = register_device(devname, devstart, devlength))){ + unregister_devices(); + return((int)devstart); + } + return(0); + +err_out: + E("slram: Illegal length parameter.\n"); + return(-EINVAL); +} + +#ifndef MODULE + +static int __init mtd_slram_setup(char *str) +{ + map = str; + return(1); +} + +__setup("slram=", mtd_slram_setup); + +#endif + +static int __init init_slram(void) +{ + char *devname; + +#ifndef MODULE + char *devstart; + char *devlength; + + if (!map) { + E("slram: not enough parameters.\n"); + return(-EINVAL); + } + while (map) { + devname = devstart = devlength = NULL; + + if (!(devname = strsep(&map, ","))) { + E("slram: No devicename specified.\n"); + break; + } + T("slram: devname = %s\n", devname); + if ((!map) || (!(devstart = strsep(&map, ",")))) { + E("slram: No devicestart specified.\n"); + } + T("slram: devstart = %s\n", devstart); + if ((!map) || (!(devlength = strsep(&map, ",")))) { + E("slram: No devicelength / -end specified.\n"); + } + T("slram: devlength = %s\n", devlength); + if (parse_cmdline(devname, devstart, devlength) != 0) { + return(-EINVAL); + } + } +#else + int count; + int i; + + for (count = 0; count < SLRAM_MAX_DEVICES_PARAMS && map[count]; + count++) { + } + + if ((count % 3 != 0) || (count == 0)) { + E("slram: not enough parameters.\n"); + return(-EINVAL); + } + for (i = 0; i < (count / 3); i++) { + devname = map[i * 3]; + + if (parse_cmdline(devname, map[i * 3 + 1], map[i * 3 + 2])!=0) { + return(-EINVAL); + } + + } +#endif /* !MODULE */ + + return(0); +} + +static void __exit cleanup_slram(void) +{ + unregister_devices(); +} + +module_init(init_slram); +module_exit(cleanup_slram); + +MODULE_LICENSE("GPL"); +MODULE_AUTHOR("Jochen Schaeuble <psionic@psionic.de>"); +MODULE_DESCRIPTION("MTD driver for uncached system RAM"); diff --git a/drivers/mtd/devices/spear_smi.c b/drivers/mtd/devices/spear_smi.c new file mode 100644 index 0000000000..0a35e5236a --- /dev/null +++ b/drivers/mtd/devices/spear_smi.c @@ -0,0 +1,1104 @@ +/* + * SMI (Serial Memory Controller) device driver for Serial NOR Flash on + * SPEAr platform + * The serial nor interface is largely based on m25p80.c, however the SPI + * interface has been replaced by SMI. + * + * Copyright © 2010 STMicroelectronics. + * Ashish Priyadarshi + * Shiraz Hashim <shiraz.linux.kernel@gmail.com> + * + * This file is licensed under the terms of the GNU General Public + * License version 2. This program is licensed "as is" without any + * warranty of any kind, whether express or implied. + */ + +#include <linux/clk.h> +#include <linux/delay.h> +#include <linux/device.h> +#include <linux/err.h> +#include <linux/errno.h> +#include <linux/interrupt.h> +#include <linux/io.h> +#include <linux/ioport.h> +#include <linux/jiffies.h> +#include <linux/kernel.h> +#include <linux/module.h> +#include <linux/param.h> +#include <linux/platform_device.h> +#include <linux/pm.h> +#include <linux/mtd/mtd.h> +#include <linux/mtd/partitions.h> +#include <linux/mtd/spear_smi.h> +#include <linux/mutex.h> +#include <linux/sched.h> +#include <linux/slab.h> +#include <linux/wait.h> +#include <linux/of.h> +#include <linux/of_address.h> + +/* SMI clock rate */ +#define SMI_MAX_CLOCK_FREQ 50000000 /* 50 MHz */ + +/* MAX time out to safely come out of a erase or write busy conditions */ +#define SMI_PROBE_TIMEOUT (HZ / 10) +#define SMI_MAX_TIME_OUT (3 * HZ) + +/* timeout for command completion */ +#define SMI_CMD_TIMEOUT (HZ / 10) + +/* registers of smi */ +#define SMI_CR1 0x0 /* SMI control register 1 */ +#define SMI_CR2 0x4 /* SMI control register 2 */ +#define SMI_SR 0x8 /* SMI status register */ +#define SMI_TR 0xC /* SMI transmit register */ +#define SMI_RR 0x10 /* SMI receive register */ + +/* defines for control_reg 1 */ +#define BANK_EN (0xF << 0) /* enables all banks */ +#define DSEL_TIME (0x6 << 4) /* Deselect time 6 + 1 SMI_CK periods */ +#define SW_MODE (0x1 << 28) /* enables SW Mode */ +#define WB_MODE (0x1 << 29) /* Write Burst Mode */ +#define FAST_MODE (0x1 << 15) /* Fast Mode */ +#define HOLD1 (0x1 << 16) /* Clock Hold period selection */ + +/* defines for control_reg 2 */ +#define SEND (0x1 << 7) /* Send data */ +#define TFIE (0x1 << 8) /* Transmission Flag Interrupt Enable */ +#define WCIE (0x1 << 9) /* Write Complete Interrupt Enable */ +#define RD_STATUS_REG (0x1 << 10) /* reads status reg */ +#define WE (0x1 << 11) /* Write Enable */ + +#define TX_LEN_SHIFT 0 +#define RX_LEN_SHIFT 4 +#define BANK_SHIFT 12 + +/* defines for status register */ +#define SR_WIP 0x1 /* Write in progress */ +#define SR_WEL 0x2 /* Write enable latch */ +#define SR_BP0 0x4 /* Block protect 0 */ +#define SR_BP1 0x8 /* Block protect 1 */ +#define SR_BP2 0x10 /* Block protect 2 */ +#define SR_SRWD 0x80 /* SR write protect */ +#define TFF 0x100 /* Transfer Finished Flag */ +#define WCF 0x200 /* Transfer Finished Flag */ +#define ERF1 0x400 /* Forbidden Write Request */ +#define ERF2 0x800 /* Forbidden Access */ + +#define WM_SHIFT 12 + +/* flash opcodes */ +#define OPCODE_RDID 0x9f /* Read JEDEC ID */ + +/* Flash Device Ids maintenance section */ + +/* data structure to maintain flash ids from different vendors */ +struct flash_device { + char *name; + u8 erase_cmd; + u32 device_id; + u32 pagesize; + unsigned long sectorsize; + unsigned long size_in_bytes; +}; + +#define FLASH_ID(n, es, id, psize, ssize, size) \ +{ \ + .name = n, \ + .erase_cmd = es, \ + .device_id = id, \ + .pagesize = psize, \ + .sectorsize = ssize, \ + .size_in_bytes = size \ +} + +static struct flash_device flash_devices[] = { + FLASH_ID("st m25p16" , 0xd8, 0x00152020, 0x100, 0x10000, 0x200000), + FLASH_ID("st m25p32" , 0xd8, 0x00162020, 0x100, 0x10000, 0x400000), + FLASH_ID("st m25p64" , 0xd8, 0x00172020, 0x100, 0x10000, 0x800000), + FLASH_ID("st m25p128" , 0xd8, 0x00182020, 0x100, 0x40000, 0x1000000), + FLASH_ID("st m25p05" , 0xd8, 0x00102020, 0x80 , 0x8000 , 0x10000), + FLASH_ID("st m25p10" , 0xd8, 0x00112020, 0x80 , 0x8000 , 0x20000), + FLASH_ID("st m25p20" , 0xd8, 0x00122020, 0x100, 0x10000, 0x40000), + FLASH_ID("st m25p40" , 0xd8, 0x00132020, 0x100, 0x10000, 0x80000), + FLASH_ID("st m25p80" , 0xd8, 0x00142020, 0x100, 0x10000, 0x100000), + FLASH_ID("st m45pe10" , 0xd8, 0x00114020, 0x100, 0x10000, 0x20000), + FLASH_ID("st m45pe20" , 0xd8, 0x00124020, 0x100, 0x10000, 0x40000), + FLASH_ID("st m45pe40" , 0xd8, 0x00134020, 0x100, 0x10000, 0x80000), + FLASH_ID("st m45pe80" , 0xd8, 0x00144020, 0x100, 0x10000, 0x100000), + FLASH_ID("sp s25fl004" , 0xd8, 0x00120201, 0x100, 0x10000, 0x80000), + FLASH_ID("sp s25fl008" , 0xd8, 0x00130201, 0x100, 0x10000, 0x100000), + FLASH_ID("sp s25fl016" , 0xd8, 0x00140201, 0x100, 0x10000, 0x200000), + FLASH_ID("sp s25fl032" , 0xd8, 0x00150201, 0x100, 0x10000, 0x400000), + FLASH_ID("sp s25fl064" , 0xd8, 0x00160201, 0x100, 0x10000, 0x800000), + FLASH_ID("atmel 25f512" , 0x52, 0x0065001F, 0x80 , 0x8000 , 0x10000), + FLASH_ID("atmel 25f1024" , 0x52, 0x0060001F, 0x100, 0x8000 , 0x20000), + FLASH_ID("atmel 25f2048" , 0x52, 0x0063001F, 0x100, 0x10000, 0x40000), + FLASH_ID("atmel 25f4096" , 0x52, 0x0064001F, 0x100, 0x10000, 0x80000), + FLASH_ID("atmel 25fs040" , 0xd7, 0x0004661F, 0x100, 0x10000, 0x80000), + FLASH_ID("mac 25l512" , 0xd8, 0x001020C2, 0x010, 0x10000, 0x10000), + FLASH_ID("mac 25l1005" , 0xd8, 0x001120C2, 0x010, 0x10000, 0x20000), + FLASH_ID("mac 25l2005" , 0xd8, 0x001220C2, 0x010, 0x10000, 0x40000), + FLASH_ID("mac 25l4005" , 0xd8, 0x001320C2, 0x010, 0x10000, 0x80000), + FLASH_ID("mac 25l4005a" , 0xd8, 0x001320C2, 0x010, 0x10000, 0x80000), + FLASH_ID("mac 25l8005" , 0xd8, 0x001420C2, 0x010, 0x10000, 0x100000), + FLASH_ID("mac 25l1605" , 0xd8, 0x001520C2, 0x100, 0x10000, 0x200000), + FLASH_ID("mac 25l1605a" , 0xd8, 0x001520C2, 0x010, 0x10000, 0x200000), + FLASH_ID("mac 25l3205" , 0xd8, 0x001620C2, 0x100, 0x10000, 0x400000), + FLASH_ID("mac 25l3205a" , 0xd8, 0x001620C2, 0x100, 0x10000, 0x400000), + FLASH_ID("mac 25l6405" , 0xd8, 0x001720C2, 0x100, 0x10000, 0x800000), +}; + +/* Define spear specific structures */ + +struct spear_snor_flash; + +/** + * struct spear_smi - Structure for SMI Device + * + * @clk: functional clock + * @status: current status register of SMI. + * @clk_rate: functional clock rate of SMI (default: SMI_MAX_CLOCK_FREQ) + * @lock: lock to prevent parallel access of SMI. + * @io_base: base address for registers of SMI. + * @pdev: platform device + * @cmd_complete: queue to wait for command completion of NOR-flash. + * @num_flashes: number of flashes actually present on board. + * @flash: separate structure for each Serial NOR-flash attached to SMI. + */ +struct spear_smi { + struct clk *clk; + u32 status; + unsigned long clk_rate; + struct mutex lock; + void __iomem *io_base; + struct platform_device *pdev; + wait_queue_head_t cmd_complete; + u32 num_flashes; + struct spear_snor_flash *flash[MAX_NUM_FLASH_CHIP]; +}; + +/** + * struct spear_snor_flash - Structure for Serial NOR Flash + * + * @bank: Bank number(0, 1, 2, 3) for each NOR-flash. + * @dev_id: Device ID of NOR-flash. + * @lock: lock to manage flash read, write and erase operations + * @mtd: MTD info for each NOR-flash. + * @num_parts: Total number of partition in each bank of NOR-flash. + * @parts: Partition info for each bank of NOR-flash. + * @page_size: Page size of NOR-flash. + * @base_addr: Base address of NOR-flash. + * @erase_cmd: erase command may vary on different flash types + * @fast_mode: flash supports read in fast mode + */ +struct spear_snor_flash { + u32 bank; + u32 dev_id; + struct mutex lock; + struct mtd_info mtd; + u32 num_parts; + struct mtd_partition *parts; + u32 page_size; + void __iomem *base_addr; + u8 erase_cmd; + u8 fast_mode; +}; + +static inline struct spear_snor_flash *get_flash_data(struct mtd_info *mtd) +{ + return container_of(mtd, struct spear_snor_flash, mtd); +} + +/** + * spear_smi_read_sr - Read status register of flash through SMI + * @dev: structure of SMI information. + * @bank: bank to which flash is connected + * + * This routine will return the status register of the flash chip present at the + * given bank. + */ +static int spear_smi_read_sr(struct spear_smi *dev, u32 bank) +{ + int ret; + u32 ctrlreg1; + + mutex_lock(&dev->lock); + dev->status = 0; /* Will be set in interrupt handler */ + + ctrlreg1 = readl(dev->io_base + SMI_CR1); + /* program smi in hw mode */ + writel(ctrlreg1 & ~(SW_MODE | WB_MODE), dev->io_base + SMI_CR1); + + /* performing a rsr instruction in hw mode */ + writel((bank << BANK_SHIFT) | RD_STATUS_REG | TFIE, + dev->io_base + SMI_CR2); + + /* wait for tff */ + ret = wait_event_interruptible_timeout(dev->cmd_complete, + dev->status & TFF, SMI_CMD_TIMEOUT); + + /* copy dev->status (lower 16 bits) in order to release lock */ + if (ret > 0) + ret = dev->status & 0xffff; + else if (ret == 0) + ret = -ETIMEDOUT; + + /* restore the ctrl regs state */ + writel(ctrlreg1, dev->io_base + SMI_CR1); + writel(0, dev->io_base + SMI_CR2); + mutex_unlock(&dev->lock); + + return ret; +} + +/** + * spear_smi_wait_till_ready - wait till flash is ready + * @dev: structure of SMI information. + * @bank: flash corresponding to this bank + * @timeout: timeout for busy wait condition + * + * This routine checks for WIP (write in progress) bit in Status register + * If successful the routine returns 0 else -EBUSY + */ +static int spear_smi_wait_till_ready(struct spear_smi *dev, u32 bank, + unsigned long timeout) +{ + unsigned long finish; + int status; + + finish = jiffies + timeout; + do { + status = spear_smi_read_sr(dev, bank); + if (status < 0) { + if (status == -ETIMEDOUT) + continue; /* try till finish */ + return status; + } else if (!(status & SR_WIP)) { + return 0; + } + + cond_resched(); + } while (!time_after_eq(jiffies, finish)); + + dev_err(&dev->pdev->dev, "smi controller is busy, timeout\n"); + return -EBUSY; +} + +/** + * spear_smi_int_handler - SMI Interrupt Handler. + * @irq: irq number + * @dev_id: structure of SMI device, embedded in dev_id. + * + * The handler clears all interrupt conditions and records the status in + * dev->status which is used by the driver later. + */ +static irqreturn_t spear_smi_int_handler(int irq, void *dev_id) +{ + u32 status = 0; + struct spear_smi *dev = dev_id; + + status = readl(dev->io_base + SMI_SR); + + if (unlikely(!status)) + return IRQ_NONE; + + /* clear all interrupt conditions */ + writel(0, dev->io_base + SMI_SR); + + /* copy the status register in dev->status */ + dev->status |= status; + + /* send the completion */ + wake_up_interruptible(&dev->cmd_complete); + + return IRQ_HANDLED; +} + +/** + * spear_smi_hw_init - initializes the smi controller. + * @dev: structure of smi device + * + * this routine initializes the smi controller wit the default values + */ +static void spear_smi_hw_init(struct spear_smi *dev) +{ + unsigned long rate = 0; + u32 prescale = 0; + u32 val; + + rate = clk_get_rate(dev->clk); + + /* functional clock of smi */ + prescale = DIV_ROUND_UP(rate, dev->clk_rate); + + /* + * setting the standard values, fast mode, prescaler for + * SMI_MAX_CLOCK_FREQ (50MHz) operation and bank enable + */ + val = HOLD1 | BANK_EN | DSEL_TIME | (prescale << 8); + + mutex_lock(&dev->lock); + /* clear all interrupt conditions */ + writel(0, dev->io_base + SMI_SR); + + writel(val, dev->io_base + SMI_CR1); + mutex_unlock(&dev->lock); +} + +/** + * get_flash_index - match chip id from a flash list. + * @flash_id: a valid nor flash chip id obtained from board. + * + * try to validate the chip id by matching from a list, if not found then simply + * returns negative. In case of success returns index in to the flash devices + * array. + */ +static int get_flash_index(u32 flash_id) +{ + int index; + + /* Matches chip-id to entire list of 'serial-nor flash' ids */ + for (index = 0; index < ARRAY_SIZE(flash_devices); index++) { + if (flash_devices[index].device_id == flash_id) + return index; + } + + /* Memory chip is not listed and not supported */ + return -ENODEV; +} + +/** + * spear_smi_write_enable - Enable the flash to do write operation + * @dev: structure of SMI device + * @bank: enable write for flash connected to this bank + * + * Set write enable latch with Write Enable command. + * Returns 0 on success. + */ +static int spear_smi_write_enable(struct spear_smi *dev, u32 bank) +{ + int ret; + u32 ctrlreg1; + + mutex_lock(&dev->lock); + dev->status = 0; /* Will be set in interrupt handler */ + + ctrlreg1 = readl(dev->io_base + SMI_CR1); + /* program smi in h/w mode */ + writel(ctrlreg1 & ~SW_MODE, dev->io_base + SMI_CR1); + + /* give the flash, write enable command */ + writel((bank << BANK_SHIFT) | WE | TFIE, dev->io_base + SMI_CR2); + + ret = wait_event_interruptible_timeout(dev->cmd_complete, + dev->status & TFF, SMI_CMD_TIMEOUT); + + /* restore the ctrl regs state */ + writel(ctrlreg1, dev->io_base + SMI_CR1); + writel(0, dev->io_base + SMI_CR2); + + if (ret == 0) { + ret = -EIO; + dev_err(&dev->pdev->dev, + "smi controller failed on write enable\n"); + } else if (ret > 0) { + /* check whether write mode status is set for required bank */ + if (dev->status & (1 << (bank + WM_SHIFT))) + ret = 0; + else { + dev_err(&dev->pdev->dev, "couldn't enable write\n"); + ret = -EIO; + } + } + + mutex_unlock(&dev->lock); + return ret; +} + +static inline u32 +get_sector_erase_cmd(struct spear_snor_flash *flash, u32 offset) +{ + u32 cmd; + u8 *x = (u8 *)&cmd; + + x[0] = flash->erase_cmd; + x[1] = offset >> 16; + x[2] = offset >> 8; + x[3] = offset; + + return cmd; +} + +/** + * spear_smi_erase_sector - erase one sector of flash + * @dev: structure of SMI information + * @command: erase command to be send + * @bank: bank to which this command needs to be send + * @bytes: size of command + * + * Erase one sector of flash memory at offset ``offset'' which is any + * address within the sector which should be erased. + * Returns 0 if successful, non-zero otherwise. + */ +static int spear_smi_erase_sector(struct spear_smi *dev, + u32 bank, u32 command, u32 bytes) +{ + u32 ctrlreg1 = 0; + int ret; + + ret = spear_smi_wait_till_ready(dev, bank, SMI_MAX_TIME_OUT); + if (ret) + return ret; + + ret = spear_smi_write_enable(dev, bank); + if (ret) + return ret; + + mutex_lock(&dev->lock); + + ctrlreg1 = readl(dev->io_base + SMI_CR1); + writel((ctrlreg1 | SW_MODE) & ~WB_MODE, dev->io_base + SMI_CR1); + + /* send command in sw mode */ + writel(command, dev->io_base + SMI_TR); + + writel((bank << BANK_SHIFT) | SEND | TFIE | (bytes << TX_LEN_SHIFT), + dev->io_base + SMI_CR2); + + ret = wait_event_interruptible_timeout(dev->cmd_complete, + dev->status & TFF, SMI_CMD_TIMEOUT); + + if (ret == 0) { + ret = -EIO; + dev_err(&dev->pdev->dev, "sector erase failed\n"); + } else if (ret > 0) + ret = 0; /* success */ + + /* restore ctrl regs */ + writel(ctrlreg1, dev->io_base + SMI_CR1); + writel(0, dev->io_base + SMI_CR2); + + mutex_unlock(&dev->lock); + return ret; +} + +/** + * spear_mtd_erase - perform flash erase operation as requested by user + * @mtd: Provides the memory characteristics + * @e_info: Provides the erase information + * + * Erase an address range on the flash chip. The address range may extend + * one or more erase sectors. Return an error is there is a problem erasing. + */ +static int spear_mtd_erase(struct mtd_info *mtd, struct erase_info *e_info) +{ + struct spear_snor_flash *flash = get_flash_data(mtd); + struct spear_smi *dev = mtd->priv; + u32 addr, command, bank; + int len, ret; + + if (!flash || !dev) + return -ENODEV; + + bank = flash->bank; + if (bank > dev->num_flashes - 1) { + dev_err(&dev->pdev->dev, "Invalid Bank Num"); + return -EINVAL; + } + + addr = e_info->addr; + len = e_info->len; + + mutex_lock(&flash->lock); + + /* now erase sectors in loop */ + while (len) { + command = get_sector_erase_cmd(flash, addr); + /* preparing the command for flash */ + ret = spear_smi_erase_sector(dev, bank, command, 4); + if (ret) { + mutex_unlock(&flash->lock); + return ret; + } + addr += mtd->erasesize; + len -= mtd->erasesize; + } + + mutex_unlock(&flash->lock); + + return 0; +} + +/** + * spear_mtd_read - performs flash read operation as requested by the user + * @mtd: MTD information of the memory bank + * @from: Address from which to start read + * @len: Number of bytes to be read + * @retlen: Fills the Number of bytes actually read + * @buf: Fills this after reading + * + * Read an address range from the flash chip. The address range + * may be any size provided it is within the physical boundaries. + * Returns 0 on success, non zero otherwise + */ +static int spear_mtd_read(struct mtd_info *mtd, loff_t from, size_t len, + size_t *retlen, u8 *buf) +{ + struct spear_snor_flash *flash = get_flash_data(mtd); + struct spear_smi *dev = mtd->priv; + void __iomem *src; + u32 ctrlreg1, val; + int ret; + + if (!flash || !dev) + return -ENODEV; + + if (flash->bank > dev->num_flashes - 1) { + dev_err(&dev->pdev->dev, "Invalid Bank Num"); + return -EINVAL; + } + + /* select address as per bank number */ + src = flash->base_addr + from; + + mutex_lock(&flash->lock); + + /* wait till previous write/erase is done. */ + ret = spear_smi_wait_till_ready(dev, flash->bank, SMI_MAX_TIME_OUT); + if (ret) { + mutex_unlock(&flash->lock); + return ret; + } + + mutex_lock(&dev->lock); + /* put smi in hw mode not wbt mode */ + ctrlreg1 = val = readl(dev->io_base + SMI_CR1); + val &= ~(SW_MODE | WB_MODE); + if (flash->fast_mode) + val |= FAST_MODE; + + writel(val, dev->io_base + SMI_CR1); + + memcpy_fromio(buf, src, len); + + /* restore ctrl reg1 */ + writel(ctrlreg1, dev->io_base + SMI_CR1); + mutex_unlock(&dev->lock); + + *retlen = len; + mutex_unlock(&flash->lock); + + return 0; +} + +/* + * The purpose of this function is to ensure a memcpy_toio() with byte writes + * only. Its structure is inspired from the ARM implementation of _memcpy_toio() + * which also does single byte writes but cannot be used here as this is just an + * implementation detail and not part of the API. Not mentioning the comment + * stating that _memcpy_toio() should be optimized. + */ +static void spear_smi_memcpy_toio_b(volatile void __iomem *dest, + const void *src, size_t len) +{ + const unsigned char *from = src; + + while (len) { + len--; + writeb(*from, dest); + from++; + dest++; + } +} + +static inline int spear_smi_cpy_toio(struct spear_smi *dev, u32 bank, + void __iomem *dest, const void *src, size_t len) +{ + int ret; + u32 ctrlreg1; + + /* wait until finished previous write command. */ + ret = spear_smi_wait_till_ready(dev, bank, SMI_MAX_TIME_OUT); + if (ret) + return ret; + + /* put smi in write enable */ + ret = spear_smi_write_enable(dev, bank); + if (ret) + return ret; + + /* put smi in hw, write burst mode */ + mutex_lock(&dev->lock); + + ctrlreg1 = readl(dev->io_base + SMI_CR1); + writel((ctrlreg1 | WB_MODE) & ~SW_MODE, dev->io_base + SMI_CR1); + + /* + * In Write Burst mode (WB_MODE), the specs states that writes must be: + * - incremental + * - of the same size + * The ARM implementation of memcpy_toio() will optimize the number of + * I/O by using as much 4-byte writes as possible, surrounded by + * 2-byte/1-byte access if: + * - the destination is not 4-byte aligned + * - the length is not a multiple of 4-byte. + * Avoid this alternance of write access size by using our own 'byte + * access' helper if at least one of the two conditions above is true. + */ + if (IS_ALIGNED(len, sizeof(u32)) && + IS_ALIGNED((uintptr_t)dest, sizeof(u32))) + memcpy_toio(dest, src, len); + else + spear_smi_memcpy_toio_b(dest, src, len); + + writel(ctrlreg1, dev->io_base + SMI_CR1); + + mutex_unlock(&dev->lock); + return 0; +} + +/** + * spear_mtd_write - performs write operation as requested by the user. + * @mtd: MTD information of the memory bank. + * @to: Address to write. + * @len: Number of bytes to be written. + * @retlen: Number of bytes actually wrote. + * @buf: Buffer from which the data to be taken. + * + * Write an address range to the flash chip. Data must be written in + * flash_page_size chunks. The address range may be any size provided + * it is within the physical boundaries. + * Returns 0 on success, non zero otherwise + */ +static int spear_mtd_write(struct mtd_info *mtd, loff_t to, size_t len, + size_t *retlen, const u8 *buf) +{ + struct spear_snor_flash *flash = get_flash_data(mtd); + struct spear_smi *dev = mtd->priv; + void __iomem *dest; + u32 page_offset, page_size; + int ret; + + if (!flash || !dev) + return -ENODEV; + + if (flash->bank > dev->num_flashes - 1) { + dev_err(&dev->pdev->dev, "Invalid Bank Num"); + return -EINVAL; + } + + /* select address as per bank number */ + dest = flash->base_addr + to; + mutex_lock(&flash->lock); + + page_offset = (u32)to % flash->page_size; + + /* do if all the bytes fit onto one page */ + if (page_offset + len <= flash->page_size) { + ret = spear_smi_cpy_toio(dev, flash->bank, dest, buf, len); + if (!ret) + *retlen += len; + } else { + u32 i; + + /* the size of data remaining on the first page */ + page_size = flash->page_size - page_offset; + + ret = spear_smi_cpy_toio(dev, flash->bank, dest, buf, + page_size); + if (ret) + goto err_write; + else + *retlen += page_size; + + /* write everything in pagesize chunks */ + for (i = page_size; i < len; i += page_size) { + page_size = len - i; + if (page_size > flash->page_size) + page_size = flash->page_size; + + ret = spear_smi_cpy_toio(dev, flash->bank, dest + i, + buf + i, page_size); + if (ret) + break; + else + *retlen += page_size; + } + } + +err_write: + mutex_unlock(&flash->lock); + + return ret; +} + +/** + * spear_smi_probe_flash - Detects the NOR Flash chip. + * @dev: structure of SMI information. + * @bank: bank on which flash must be probed + * + * This routine will check whether there exists a flash chip on a given memory + * bank ID. + * Return index of the probed flash in flash devices structure + */ +static int spear_smi_probe_flash(struct spear_smi *dev, u32 bank) +{ + int ret; + u32 val = 0; + + ret = spear_smi_wait_till_ready(dev, bank, SMI_PROBE_TIMEOUT); + if (ret) + return ret; + + mutex_lock(&dev->lock); + + dev->status = 0; /* Will be set in interrupt handler */ + /* put smi in sw mode */ + val = readl(dev->io_base + SMI_CR1); + writel(val | SW_MODE, dev->io_base + SMI_CR1); + + /* send readid command in sw mode */ + writel(OPCODE_RDID, dev->io_base + SMI_TR); + + val = (bank << BANK_SHIFT) | SEND | (1 << TX_LEN_SHIFT) | + (3 << RX_LEN_SHIFT) | TFIE; + writel(val, dev->io_base + SMI_CR2); + + /* wait for TFF */ + ret = wait_event_interruptible_timeout(dev->cmd_complete, + dev->status & TFF, SMI_CMD_TIMEOUT); + if (ret <= 0) { + ret = -ENODEV; + goto err_probe; + } + + /* get memory chip id */ + val = readl(dev->io_base + SMI_RR); + val &= 0x00ffffff; + ret = get_flash_index(val); + +err_probe: + /* clear sw mode */ + val = readl(dev->io_base + SMI_CR1); + writel(val & ~SW_MODE, dev->io_base + SMI_CR1); + + mutex_unlock(&dev->lock); + return ret; +} + + +#ifdef CONFIG_OF +static int spear_smi_probe_config_dt(struct platform_device *pdev, + struct device_node *np) +{ + struct spear_smi_plat_data *pdata = dev_get_platdata(&pdev->dev); + struct device_node *pp; + const __be32 *addr; + u32 val; + int len; + int i = 0; + + if (!np) + return -ENODEV; + + of_property_read_u32(np, "clock-rate", &val); + pdata->clk_rate = val; + + pdata->board_flash_info = devm_kzalloc(&pdev->dev, + sizeof(*pdata->board_flash_info), + GFP_KERNEL); + if (!pdata->board_flash_info) + return -ENOMEM; + + /* Fill structs for each subnode (flash device) */ + for_each_child_of_node(np, pp) { + pdata->np[i] = pp; + + /* Read base-addr and size from DT */ + addr = of_get_property(pp, "reg", &len); + pdata->board_flash_info->mem_base = be32_to_cpup(&addr[0]); + pdata->board_flash_info->size = be32_to_cpup(&addr[1]); + + pdata->board_flash_info->fast_mode = + of_property_read_bool(pp, "st,smi-fast-mode"); + + i++; + } + + pdata->num_flashes = i; + + return 0; +} +#else +static int spear_smi_probe_config_dt(struct platform_device *pdev, + struct device_node *np) +{ + return -ENOSYS; +} +#endif + +static int spear_smi_setup_banks(struct platform_device *pdev, + u32 bank, struct device_node *np) +{ + struct spear_smi *dev = platform_get_drvdata(pdev); + struct spear_smi_flash_info *flash_info; + struct spear_smi_plat_data *pdata; + struct spear_snor_flash *flash; + struct mtd_partition *parts = NULL; + int count = 0; + int flash_index; + int ret = 0; + + pdata = dev_get_platdata(&pdev->dev); + if (bank > pdata->num_flashes - 1) + return -EINVAL; + + flash_info = &pdata->board_flash_info[bank]; + if (!flash_info) + return -ENODEV; + + flash = devm_kzalloc(&pdev->dev, sizeof(*flash), GFP_ATOMIC); + if (!flash) + return -ENOMEM; + flash->bank = bank; + flash->fast_mode = flash_info->fast_mode ? 1 : 0; + mutex_init(&flash->lock); + + /* verify whether nor flash is really present on board */ + flash_index = spear_smi_probe_flash(dev, bank); + if (flash_index < 0) { + dev_info(&dev->pdev->dev, "smi-nor%d not found\n", bank); + return flash_index; + } + /* map the memory for nor flash chip */ + flash->base_addr = devm_ioremap(&pdev->dev, flash_info->mem_base, + flash_info->size); + if (!flash->base_addr) + return -EIO; + + dev->flash[bank] = flash; + flash->mtd.priv = dev; + + if (flash_info->name) + flash->mtd.name = flash_info->name; + else + flash->mtd.name = flash_devices[flash_index].name; + + flash->mtd.dev.parent = &pdev->dev; + mtd_set_of_node(&flash->mtd, np); + flash->mtd.type = MTD_NORFLASH; + flash->mtd.writesize = 1; + flash->mtd.flags = MTD_CAP_NORFLASH; + flash->mtd.size = flash_info->size; + flash->mtd.erasesize = flash_devices[flash_index].sectorsize; + flash->page_size = flash_devices[flash_index].pagesize; + flash->mtd.writebufsize = flash->page_size; + flash->erase_cmd = flash_devices[flash_index].erase_cmd; + flash->mtd._erase = spear_mtd_erase; + flash->mtd._read = spear_mtd_read; + flash->mtd._write = spear_mtd_write; + flash->dev_id = flash_devices[flash_index].device_id; + + dev_info(&dev->pdev->dev, "mtd .name=%s .size=%llx(%lluM)\n", + flash->mtd.name, flash->mtd.size, + flash->mtd.size / (1024 * 1024)); + + dev_info(&dev->pdev->dev, ".erasesize = 0x%x(%uK)\n", + flash->mtd.erasesize, flash->mtd.erasesize / 1024); + +#ifndef CONFIG_OF + if (flash_info->partitions) { + parts = flash_info->partitions; + count = flash_info->nr_partitions; + } +#endif + + ret = mtd_device_register(&flash->mtd, parts, count); + if (ret) { + dev_err(&dev->pdev->dev, "Err MTD partition=%d\n", ret); + return ret; + } + + return 0; +} + +/** + * spear_smi_probe - Entry routine + * @pdev: platform device structure + * + * This is the first routine which gets invoked during booting and does all + * initialization/allocation work. The routine looks for available memory banks, + * and do proper init for any found one. + * Returns 0 on success, non zero otherwise + */ +static int spear_smi_probe(struct platform_device *pdev) +{ + struct device_node *np = pdev->dev.of_node; + struct spear_smi_plat_data *pdata = NULL; + struct spear_smi *dev; + int irq, ret = 0; + int i; + + if (np) { + pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL); + if (!pdata) { + ret = -ENOMEM; + goto err; + } + pdev->dev.platform_data = pdata; + ret = spear_smi_probe_config_dt(pdev, np); + if (ret) { + ret = -ENODEV; + dev_err(&pdev->dev, "no platform data\n"); + goto err; + } + } else { + pdata = dev_get_platdata(&pdev->dev); + if (!pdata) { + ret = -ENODEV; + dev_err(&pdev->dev, "no platform data\n"); + goto err; + } + } + + irq = platform_get_irq(pdev, 0); + if (irq < 0) { + ret = -ENODEV; + goto err; + } + + dev = devm_kzalloc(&pdev->dev, sizeof(*dev), GFP_KERNEL); + if (!dev) { + ret = -ENOMEM; + goto err; + } + + dev->io_base = devm_platform_ioremap_resource(pdev, 0); + if (IS_ERR(dev->io_base)) { + ret = PTR_ERR(dev->io_base); + goto err; + } + + dev->pdev = pdev; + dev->clk_rate = pdata->clk_rate; + + if (dev->clk_rate > SMI_MAX_CLOCK_FREQ) + dev->clk_rate = SMI_MAX_CLOCK_FREQ; + + dev->num_flashes = pdata->num_flashes; + + if (dev->num_flashes > MAX_NUM_FLASH_CHIP) { + dev_err(&pdev->dev, "exceeding max number of flashes\n"); + dev->num_flashes = MAX_NUM_FLASH_CHIP; + } + + dev->clk = devm_clk_get_enabled(&pdev->dev, NULL); + if (IS_ERR(dev->clk)) { + ret = PTR_ERR(dev->clk); + goto err; + } + + ret = devm_request_irq(&pdev->dev, irq, spear_smi_int_handler, 0, + pdev->name, dev); + if (ret) { + dev_err(&dev->pdev->dev, "SMI IRQ allocation failed\n"); + goto err; + } + + mutex_init(&dev->lock); + init_waitqueue_head(&dev->cmd_complete); + spear_smi_hw_init(dev); + platform_set_drvdata(pdev, dev); + + /* loop for each serial nor-flash which is connected to smi */ + for (i = 0; i < dev->num_flashes; i++) { + ret = spear_smi_setup_banks(pdev, i, pdata->np[i]); + if (ret) { + dev_err(&dev->pdev->dev, "bank setup failed\n"); + goto err; + } + } + + return 0; +err: + return ret; +} + +/** + * spear_smi_remove - Exit routine + * @pdev: platform device structure + * + * free all allocations and delete the partitions. + */ +static int spear_smi_remove(struct platform_device *pdev) +{ + struct spear_smi *dev; + struct spear_snor_flash *flash; + int i; + + dev = platform_get_drvdata(pdev); + + /* clean up for all nor flash */ + for (i = 0; i < dev->num_flashes; i++) { + flash = dev->flash[i]; + if (!flash) + continue; + + /* clean up mtd stuff */ + WARN_ON(mtd_device_unregister(&flash->mtd)); + } + + return 0; +} + +#ifdef CONFIG_PM_SLEEP +static int spear_smi_suspend(struct device *dev) +{ + struct spear_smi *sdev = dev_get_drvdata(dev); + + if (sdev && sdev->clk) + clk_disable_unprepare(sdev->clk); + + return 0; +} + +static int spear_smi_resume(struct device *dev) +{ + struct spear_smi *sdev = dev_get_drvdata(dev); + int ret = -EPERM; + + if (sdev && sdev->clk) + ret = clk_prepare_enable(sdev->clk); + + if (!ret) + spear_smi_hw_init(sdev); + return ret; +} +#endif + +static SIMPLE_DEV_PM_OPS(spear_smi_pm_ops, spear_smi_suspend, spear_smi_resume); + +#ifdef CONFIG_OF +static const struct of_device_id spear_smi_id_table[] = { + { .compatible = "st,spear600-smi" }, + {} +}; +MODULE_DEVICE_TABLE(of, spear_smi_id_table); +#endif + +static struct platform_driver spear_smi_driver = { + .driver = { + .name = "smi", + .bus = &platform_bus_type, + .of_match_table = of_match_ptr(spear_smi_id_table), + .pm = &spear_smi_pm_ops, + }, + .probe = spear_smi_probe, + .remove = spear_smi_remove, +}; +module_platform_driver(spear_smi_driver); + +MODULE_LICENSE("GPL"); +MODULE_AUTHOR("Ashish Priyadarshi, Shiraz Hashim <shiraz.linux.kernel@gmail.com>"); +MODULE_DESCRIPTION("MTD SMI driver for serial nor flash chips"); diff --git a/drivers/mtd/devices/sst25l.c b/drivers/mtd/devices/sst25l.c new file mode 100644 index 0000000000..8813994ce9 --- /dev/null +++ b/drivers/mtd/devices/sst25l.c @@ -0,0 +1,421 @@ +// SPDX-License-Identifier: GPL-2.0-only +/* + * sst25l.c + * + * Driver for SST25L SPI Flash chips + * + * Copyright © 2009 Bluewater Systems Ltd + * Author: Andre Renaud <andre@bluewatersys.com> + * Author: Ryan Mallon + * + * Based on m25p80.c + */ + +#include <linux/module.h> +#include <linux/device.h> +#include <linux/mutex.h> +#include <linux/interrupt.h> +#include <linux/slab.h> +#include <linux/sched.h> + +#include <linux/mtd/mtd.h> +#include <linux/mtd/partitions.h> + +#include <linux/spi/spi.h> +#include <linux/spi/flash.h> + +/* Erases can take up to 3 seconds! */ +#define MAX_READY_WAIT_JIFFIES msecs_to_jiffies(3000) + +#define SST25L_CMD_WRSR 0x01 /* Write status register */ +#define SST25L_CMD_WRDI 0x04 /* Write disable */ +#define SST25L_CMD_RDSR 0x05 /* Read status register */ +#define SST25L_CMD_WREN 0x06 /* Write enable */ +#define SST25L_CMD_READ 0x03 /* High speed read */ + +#define SST25L_CMD_EWSR 0x50 /* Enable write status register */ +#define SST25L_CMD_SECTOR_ERASE 0x20 /* Erase sector */ +#define SST25L_CMD_READ_ID 0x90 /* Read device ID */ +#define SST25L_CMD_AAI_PROGRAM 0xaf /* Auto address increment */ + +#define SST25L_STATUS_BUSY (1 << 0) /* Chip is busy */ +#define SST25L_STATUS_WREN (1 << 1) /* Write enabled */ +#define SST25L_STATUS_BP0 (1 << 2) /* Block protection 0 */ +#define SST25L_STATUS_BP1 (1 << 3) /* Block protection 1 */ + +struct sst25l_flash { + struct spi_device *spi; + struct mutex lock; + struct mtd_info mtd; +}; + +struct flash_info { + const char *name; + uint16_t device_id; + unsigned page_size; + unsigned nr_pages; + unsigned erase_size; +}; + +#define to_sst25l_flash(x) container_of(x, struct sst25l_flash, mtd) + +static struct flash_info sst25l_flash_info[] = { + {"sst25lf020a", 0xbf43, 256, 1024, 4096}, + {"sst25lf040a", 0xbf44, 256, 2048, 4096}, +}; + +static int sst25l_status(struct sst25l_flash *flash, int *status) +{ + struct spi_message m; + struct spi_transfer t; + unsigned char cmd_resp[2]; + int err; + + spi_message_init(&m); + memset(&t, 0, sizeof(struct spi_transfer)); + + cmd_resp[0] = SST25L_CMD_RDSR; + cmd_resp[1] = 0xff; + t.tx_buf = cmd_resp; + t.rx_buf = cmd_resp; + t.len = sizeof(cmd_resp); + spi_message_add_tail(&t, &m); + err = spi_sync(flash->spi, &m); + if (err < 0) + return err; + + *status = cmd_resp[1]; + return 0; +} + +static int sst25l_write_enable(struct sst25l_flash *flash, int enable) +{ + unsigned char command[2]; + int status, err; + + command[0] = enable ? SST25L_CMD_WREN : SST25L_CMD_WRDI; + err = spi_write(flash->spi, command, 1); + if (err) + return err; + + command[0] = SST25L_CMD_EWSR; + err = spi_write(flash->spi, command, 1); + if (err) + return err; + + command[0] = SST25L_CMD_WRSR; + command[1] = enable ? 0 : SST25L_STATUS_BP0 | SST25L_STATUS_BP1; + err = spi_write(flash->spi, command, 2); + if (err) + return err; + + if (enable) { + err = sst25l_status(flash, &status); + if (err) + return err; + if (!(status & SST25L_STATUS_WREN)) + return -EROFS; + } + + return 0; +} + +static int sst25l_wait_till_ready(struct sst25l_flash *flash) +{ + unsigned long deadline; + int status, err; + + deadline = jiffies + MAX_READY_WAIT_JIFFIES; + do { + err = sst25l_status(flash, &status); + if (err) + return err; + if (!(status & SST25L_STATUS_BUSY)) + return 0; + + cond_resched(); + } while (!time_after_eq(jiffies, deadline)); + + return -ETIMEDOUT; +} + +static int sst25l_erase_sector(struct sst25l_flash *flash, uint32_t offset) +{ + unsigned char command[4]; + int err; + + err = sst25l_write_enable(flash, 1); + if (err) + return err; + + command[0] = SST25L_CMD_SECTOR_ERASE; + command[1] = offset >> 16; + command[2] = offset >> 8; + command[3] = offset; + err = spi_write(flash->spi, command, 4); + if (err) + return err; + + err = sst25l_wait_till_ready(flash); + if (err) + return err; + + return sst25l_write_enable(flash, 0); +} + +static int sst25l_erase(struct mtd_info *mtd, struct erase_info *instr) +{ + struct sst25l_flash *flash = to_sst25l_flash(mtd); + uint32_t addr, end; + int err; + + /* Sanity checks */ + if ((uint32_t)instr->len % mtd->erasesize) + return -EINVAL; + + if ((uint32_t)instr->addr % mtd->erasesize) + return -EINVAL; + + addr = instr->addr; + end = addr + instr->len; + + mutex_lock(&flash->lock); + + err = sst25l_wait_till_ready(flash); + if (err) { + mutex_unlock(&flash->lock); + return err; + } + + while (addr < end) { + err = sst25l_erase_sector(flash, addr); + if (err) { + mutex_unlock(&flash->lock); + dev_err(&flash->spi->dev, "Erase failed\n"); + return err; + } + + addr += mtd->erasesize; + } + + mutex_unlock(&flash->lock); + + return 0; +} + +static int sst25l_read(struct mtd_info *mtd, loff_t from, size_t len, + size_t *retlen, unsigned char *buf) +{ + struct sst25l_flash *flash = to_sst25l_flash(mtd); + struct spi_transfer transfer[2]; + struct spi_message message; + unsigned char command[4]; + int ret; + + spi_message_init(&message); + memset(&transfer, 0, sizeof(transfer)); + + command[0] = SST25L_CMD_READ; + command[1] = from >> 16; + command[2] = from >> 8; + command[3] = from; + + transfer[0].tx_buf = command; + transfer[0].len = sizeof(command); + spi_message_add_tail(&transfer[0], &message); + + transfer[1].rx_buf = buf; + transfer[1].len = len; + spi_message_add_tail(&transfer[1], &message); + + mutex_lock(&flash->lock); + + /* Wait for previous write/erase to complete */ + ret = sst25l_wait_till_ready(flash); + if (ret) { + mutex_unlock(&flash->lock); + return ret; + } + + spi_sync(flash->spi, &message); + + if (retlen && message.actual_length > sizeof(command)) + *retlen += message.actual_length - sizeof(command); + + mutex_unlock(&flash->lock); + return 0; +} + +static int sst25l_write(struct mtd_info *mtd, loff_t to, size_t len, + size_t *retlen, const unsigned char *buf) +{ + struct sst25l_flash *flash = to_sst25l_flash(mtd); + int i, j, ret, bytes, copied = 0; + unsigned char command[5]; + + if ((uint32_t)to % mtd->writesize) + return -EINVAL; + + mutex_lock(&flash->lock); + + ret = sst25l_write_enable(flash, 1); + if (ret) + goto out; + + for (i = 0; i < len; i += mtd->writesize) { + ret = sst25l_wait_till_ready(flash); + if (ret) + goto out; + + /* Write the first byte of the page */ + command[0] = SST25L_CMD_AAI_PROGRAM; + command[1] = (to + i) >> 16; + command[2] = (to + i) >> 8; + command[3] = (to + i); + command[4] = buf[i]; + ret = spi_write(flash->spi, command, 5); + if (ret < 0) + goto out; + copied++; + + /* + * Write the remaining bytes using auto address + * increment mode + */ + bytes = min_t(uint32_t, mtd->writesize, len - i); + for (j = 1; j < bytes; j++, copied++) { + ret = sst25l_wait_till_ready(flash); + if (ret) + goto out; + + command[1] = buf[i + j]; + ret = spi_write(flash->spi, command, 2); + if (ret) + goto out; + } + } + +out: + ret = sst25l_write_enable(flash, 0); + + if (retlen) + *retlen = copied; + + mutex_unlock(&flash->lock); + return ret; +} + +static struct flash_info *sst25l_match_device(struct spi_device *spi) +{ + struct flash_info *flash_info = NULL; + struct spi_message m; + struct spi_transfer t; + unsigned char cmd_resp[6]; + int i, err; + uint16_t id; + + spi_message_init(&m); + memset(&t, 0, sizeof(struct spi_transfer)); + + cmd_resp[0] = SST25L_CMD_READ_ID; + cmd_resp[1] = 0; + cmd_resp[2] = 0; + cmd_resp[3] = 0; + cmd_resp[4] = 0xff; + cmd_resp[5] = 0xff; + t.tx_buf = cmd_resp; + t.rx_buf = cmd_resp; + t.len = sizeof(cmd_resp); + spi_message_add_tail(&t, &m); + err = spi_sync(spi, &m); + if (err < 0) { + dev_err(&spi->dev, "error reading device id\n"); + return NULL; + } + + id = (cmd_resp[4] << 8) | cmd_resp[5]; + + for (i = 0; i < ARRAY_SIZE(sst25l_flash_info); i++) + if (sst25l_flash_info[i].device_id == id) + flash_info = &sst25l_flash_info[i]; + + if (!flash_info) + dev_err(&spi->dev, "unknown id %.4x\n", id); + + return flash_info; +} + +static int sst25l_probe(struct spi_device *spi) +{ + struct flash_info *flash_info; + struct sst25l_flash *flash; + struct flash_platform_data *data; + int ret; + + flash_info = sst25l_match_device(spi); + if (!flash_info) + return -ENODEV; + + flash = devm_kzalloc(&spi->dev, sizeof(*flash), GFP_KERNEL); + if (!flash) + return -ENOMEM; + + flash->spi = spi; + mutex_init(&flash->lock); + spi_set_drvdata(spi, flash); + + data = dev_get_platdata(&spi->dev); + if (data && data->name) + flash->mtd.name = data->name; + + flash->mtd.dev.parent = &spi->dev; + flash->mtd.type = MTD_NORFLASH; + flash->mtd.flags = MTD_CAP_NORFLASH; + flash->mtd.erasesize = flash_info->erase_size; + flash->mtd.writesize = flash_info->page_size; + flash->mtd.writebufsize = flash_info->page_size; + flash->mtd.size = flash_info->page_size * flash_info->nr_pages; + flash->mtd._erase = sst25l_erase; + flash->mtd._read = sst25l_read; + flash->mtd._write = sst25l_write; + + dev_info(&spi->dev, "%s (%lld KiB)\n", flash_info->name, + (long long)flash->mtd.size >> 10); + + pr_debug("mtd .name = %s, .size = 0x%llx (%lldMiB) " + ".erasesize = 0x%.8x (%uKiB) .numeraseregions = %d\n", + flash->mtd.name, + (long long)flash->mtd.size, (long long)(flash->mtd.size >> 20), + flash->mtd.erasesize, flash->mtd.erasesize / 1024, + flash->mtd.numeraseregions); + + + ret = mtd_device_register(&flash->mtd, data ? data->parts : NULL, + data ? data->nr_parts : 0); + if (ret) + return -ENODEV; + + return 0; +} + +static void sst25l_remove(struct spi_device *spi) +{ + struct sst25l_flash *flash = spi_get_drvdata(spi); + + WARN_ON(mtd_device_unregister(&flash->mtd)); +} + +static struct spi_driver sst25l_driver = { + .driver = { + .name = "sst25l", + }, + .probe = sst25l_probe, + .remove = sst25l_remove, +}; + +module_spi_driver(sst25l_driver); + +MODULE_DESCRIPTION("MTD SPI driver for SST25L Flash chips"); +MODULE_AUTHOR("Andre Renaud <andre@bluewatersys.com>, " + "Ryan Mallon"); +MODULE_LICENSE("GPL"); diff --git a/drivers/mtd/devices/st_spi_fsm.c b/drivers/mtd/devices/st_spi_fsm.c new file mode 100644 index 0000000000..95530cbbb1 --- /dev/null +++ b/drivers/mtd/devices/st_spi_fsm.c @@ -0,0 +1,2148 @@ +// SPDX-License-Identifier: GPL-2.0-only +/* + * st_spi_fsm.c - ST Fast Sequence Mode (FSM) Serial Flash Controller + * + * Author: Angus Clark <angus.clark@st.com> + * + * Copyright (C) 2010-2014 STMicroelectronics Limited + * + * JEDEC probe based on drivers/mtd/devices/m25p80.c + */ +#include <linux/kernel.h> +#include <linux/module.h> +#include <linux/regmap.h> +#include <linux/platform_device.h> +#include <linux/mfd/syscon.h> +#include <linux/mtd/mtd.h> +#include <linux/mtd/partitions.h> +#include <linux/mtd/spi-nor.h> +#include <linux/sched.h> +#include <linux/delay.h> +#include <linux/io.h> +#include <linux/of.h> +#include <linux/clk.h> + +#include "serial_flash_cmds.h" + +/* + * FSM SPI Controller Registers + */ +#define SPI_CLOCKDIV 0x0010 +#define SPI_MODESELECT 0x0018 +#define SPI_CONFIGDATA 0x0020 +#define SPI_STA_MODE_CHANGE 0x0028 +#define SPI_FAST_SEQ_TRANSFER_SIZE 0x0100 +#define SPI_FAST_SEQ_ADD1 0x0104 +#define SPI_FAST_SEQ_ADD2 0x0108 +#define SPI_FAST_SEQ_ADD_CFG 0x010c +#define SPI_FAST_SEQ_OPC1 0x0110 +#define SPI_FAST_SEQ_OPC2 0x0114 +#define SPI_FAST_SEQ_OPC3 0x0118 +#define SPI_FAST_SEQ_OPC4 0x011c +#define SPI_FAST_SEQ_OPC5 0x0120 +#define SPI_MODE_BITS 0x0124 +#define SPI_DUMMY_BITS 0x0128 +#define SPI_FAST_SEQ_FLASH_STA_DATA 0x012c +#define SPI_FAST_SEQ_1 0x0130 +#define SPI_FAST_SEQ_2 0x0134 +#define SPI_FAST_SEQ_3 0x0138 +#define SPI_FAST_SEQ_4 0x013c +#define SPI_FAST_SEQ_CFG 0x0140 +#define SPI_FAST_SEQ_STA 0x0144 +#define SPI_QUAD_BOOT_SEQ_INIT_1 0x0148 +#define SPI_QUAD_BOOT_SEQ_INIT_2 0x014c +#define SPI_QUAD_BOOT_READ_SEQ_1 0x0150 +#define SPI_QUAD_BOOT_READ_SEQ_2 0x0154 +#define SPI_PROGRAM_ERASE_TIME 0x0158 +#define SPI_MULT_PAGE_REPEAT_SEQ_1 0x015c +#define SPI_MULT_PAGE_REPEAT_SEQ_2 0x0160 +#define SPI_STATUS_WR_TIME_REG 0x0164 +#define SPI_FAST_SEQ_DATA_REG 0x0300 + +/* + * Register: SPI_MODESELECT + */ +#define SPI_MODESELECT_CONTIG 0x01 +#define SPI_MODESELECT_FASTREAD 0x02 +#define SPI_MODESELECT_DUALIO 0x04 +#define SPI_MODESELECT_FSM 0x08 +#define SPI_MODESELECT_QUADBOOT 0x10 + +/* + * Register: SPI_CONFIGDATA + */ +#define SPI_CFG_DEVICE_ST 0x1 +#define SPI_CFG_DEVICE_ATMEL 0x4 +#define SPI_CFG_MIN_CS_HIGH(x) (((x) & 0xfff) << 4) +#define SPI_CFG_CS_SETUPHOLD(x) (((x) & 0xff) << 16) +#define SPI_CFG_DATA_HOLD(x) (((x) & 0xff) << 24) + +#define SPI_CFG_DEFAULT_MIN_CS_HIGH SPI_CFG_MIN_CS_HIGH(0x0AA) +#define SPI_CFG_DEFAULT_CS_SETUPHOLD SPI_CFG_CS_SETUPHOLD(0xA0) +#define SPI_CFG_DEFAULT_DATA_HOLD SPI_CFG_DATA_HOLD(0x00) + +/* + * Register: SPI_FAST_SEQ_TRANSFER_SIZE + */ +#define TRANSFER_SIZE(x) ((x) * 8) + +/* + * Register: SPI_FAST_SEQ_ADD_CFG + */ +#define ADR_CFG_CYCLES_ADD1(x) ((x) << 0) +#define ADR_CFG_PADS_1_ADD1 (0x0 << 6) +#define ADR_CFG_PADS_2_ADD1 (0x1 << 6) +#define ADR_CFG_PADS_4_ADD1 (0x3 << 6) +#define ADR_CFG_CSDEASSERT_ADD1 (1 << 8) +#define ADR_CFG_CYCLES_ADD2(x) ((x) << (0+16)) +#define ADR_CFG_PADS_1_ADD2 (0x0 << (6+16)) +#define ADR_CFG_PADS_2_ADD2 (0x1 << (6+16)) +#define ADR_CFG_PADS_4_ADD2 (0x3 << (6+16)) +#define ADR_CFG_CSDEASSERT_ADD2 (1 << (8+16)) + +/* + * Register: SPI_FAST_SEQ_n + */ +#define SEQ_OPC_OPCODE(x) ((x) << 0) +#define SEQ_OPC_CYCLES(x) ((x) << 8) +#define SEQ_OPC_PADS_1 (0x0 << 14) +#define SEQ_OPC_PADS_2 (0x1 << 14) +#define SEQ_OPC_PADS_4 (0x3 << 14) +#define SEQ_OPC_CSDEASSERT (1 << 16) + +/* + * Register: SPI_FAST_SEQ_CFG + */ +#define SEQ_CFG_STARTSEQ (1 << 0) +#define SEQ_CFG_SWRESET (1 << 5) +#define SEQ_CFG_CSDEASSERT (1 << 6) +#define SEQ_CFG_READNOTWRITE (1 << 7) +#define SEQ_CFG_ERASE (1 << 8) +#define SEQ_CFG_PADS_1 (0x0 << 16) +#define SEQ_CFG_PADS_2 (0x1 << 16) +#define SEQ_CFG_PADS_4 (0x3 << 16) + +/* + * Register: SPI_MODE_BITS + */ +#define MODE_DATA(x) (x & 0xff) +#define MODE_CYCLES(x) ((x & 0x3f) << 16) +#define MODE_PADS_1 (0x0 << 22) +#define MODE_PADS_2 (0x1 << 22) +#define MODE_PADS_4 (0x3 << 22) +#define DUMMY_CSDEASSERT (1 << 24) + +/* + * Register: SPI_DUMMY_BITS + */ +#define DUMMY_CYCLES(x) ((x & 0x3f) << 16) +#define DUMMY_PADS_1 (0x0 << 22) +#define DUMMY_PADS_2 (0x1 << 22) +#define DUMMY_PADS_4 (0x3 << 22) +#define DUMMY_CSDEASSERT (1 << 24) + +/* + * Register: SPI_FAST_SEQ_FLASH_STA_DATA + */ +#define STA_DATA_BYTE1(x) ((x & 0xff) << 0) +#define STA_DATA_BYTE2(x) ((x & 0xff) << 8) +#define STA_PADS_1 (0x0 << 16) +#define STA_PADS_2 (0x1 << 16) +#define STA_PADS_4 (0x3 << 16) +#define STA_CSDEASSERT (0x1 << 20) +#define STA_RDNOTWR (0x1 << 21) + +/* + * FSM SPI Instruction Opcodes + */ +#define STFSM_OPC_CMD 0x1 +#define STFSM_OPC_ADD 0x2 +#define STFSM_OPC_STA 0x3 +#define STFSM_OPC_MODE 0x4 +#define STFSM_OPC_DUMMY 0x5 +#define STFSM_OPC_DATA 0x6 +#define STFSM_OPC_WAIT 0x7 +#define STFSM_OPC_JUMP 0x8 +#define STFSM_OPC_GOTO 0x9 +#define STFSM_OPC_STOP 0xF + +/* + * FSM SPI Instructions (== opcode + operand). + */ +#define STFSM_INSTR(cmd, op) ((cmd) | ((op) << 4)) + +#define STFSM_INST_CMD1 STFSM_INSTR(STFSM_OPC_CMD, 1) +#define STFSM_INST_CMD2 STFSM_INSTR(STFSM_OPC_CMD, 2) +#define STFSM_INST_CMD3 STFSM_INSTR(STFSM_OPC_CMD, 3) +#define STFSM_INST_CMD4 STFSM_INSTR(STFSM_OPC_CMD, 4) +#define STFSM_INST_CMD5 STFSM_INSTR(STFSM_OPC_CMD, 5) +#define STFSM_INST_ADD1 STFSM_INSTR(STFSM_OPC_ADD, 1) +#define STFSM_INST_ADD2 STFSM_INSTR(STFSM_OPC_ADD, 2) + +#define STFSM_INST_DATA_WRITE STFSM_INSTR(STFSM_OPC_DATA, 1) +#define STFSM_INST_DATA_READ STFSM_INSTR(STFSM_OPC_DATA, 2) + +#define STFSM_INST_STA_RD1 STFSM_INSTR(STFSM_OPC_STA, 0x1) +#define STFSM_INST_STA_WR1 STFSM_INSTR(STFSM_OPC_STA, 0x1) +#define STFSM_INST_STA_RD2 STFSM_INSTR(STFSM_OPC_STA, 0x2) +#define STFSM_INST_STA_WR1_2 STFSM_INSTR(STFSM_OPC_STA, 0x3) + +#define STFSM_INST_MODE STFSM_INSTR(STFSM_OPC_MODE, 0) +#define STFSM_INST_DUMMY STFSM_INSTR(STFSM_OPC_DUMMY, 0) +#define STFSM_INST_WAIT STFSM_INSTR(STFSM_OPC_WAIT, 0) +#define STFSM_INST_STOP STFSM_INSTR(STFSM_OPC_STOP, 0) + +#define STFSM_DEFAULT_EMI_FREQ 100000000UL /* 100 MHz */ +#define STFSM_DEFAULT_WR_TIME (STFSM_DEFAULT_EMI_FREQ * (15/1000)) /* 15ms */ + +#define STFSM_FLASH_SAFE_FREQ 10000000UL /* 10 MHz */ + +#define STFSM_MAX_WAIT_SEQ_MS 1000 /* FSM execution time */ + +/* S25FLxxxS commands */ +#define S25FL_CMD_WRITE4_1_1_4 0x34 +#define S25FL_CMD_SE4 0xdc +#define S25FL_CMD_CLSR 0x30 +#define S25FL_CMD_DYBWR 0xe1 +#define S25FL_CMD_DYBRD 0xe0 +#define S25FL_CMD_WRITE4 0x12 /* Note, opcode clashes with + * 'SPINOR_OP_WRITE_1_4_4' + * as found on N25Qxxx devices! */ + +/* Status register */ +#define FLASH_STATUS_BUSY 0x01 +#define FLASH_STATUS_WEL 0x02 +#define FLASH_STATUS_BP0 0x04 +#define FLASH_STATUS_BP1 0x08 +#define FLASH_STATUS_BP2 0x10 +#define FLASH_STATUS_SRWP0 0x80 +#define FLASH_STATUS_TIMEOUT 0xff +/* S25FL Error Flags */ +#define S25FL_STATUS_E_ERR 0x20 +#define S25FL_STATUS_P_ERR 0x40 + +#define N25Q_CMD_WRVCR 0x81 +#define N25Q_CMD_RDVCR 0x85 +#define N25Q_CMD_RDVECR 0x65 +#define N25Q_CMD_RDNVCR 0xb5 +#define N25Q_CMD_WRNVCR 0xb1 + +#define FLASH_PAGESIZE 256 /* In Bytes */ +#define FLASH_PAGESIZE_32 (FLASH_PAGESIZE / 4) /* In uint32_t */ +#define FLASH_MAX_BUSY_WAIT (300 * HZ) /* Maximum 'CHIPERASE' time */ + +/* + * Flags to tweak operation of default read/write/erase routines + */ +#define CFG_READ_TOGGLE_32BIT_ADDR 0x00000001 +#define CFG_WRITE_TOGGLE_32BIT_ADDR 0x00000002 +#define CFG_ERASESEC_TOGGLE_32BIT_ADDR 0x00000008 +#define CFG_S25FL_CHECK_ERROR_FLAGS 0x00000010 + +struct stfsm_seq { + uint32_t data_size; + uint32_t addr1; + uint32_t addr2; + uint32_t addr_cfg; + uint32_t seq_opc[5]; + uint32_t mode; + uint32_t dummy; + uint32_t status; + uint8_t seq[16]; + uint32_t seq_cfg; +} __packed __aligned(4); + +struct stfsm { + struct device *dev; + void __iomem *base; + struct mtd_info mtd; + struct mutex lock; + struct flash_info *info; + struct clk *clk; + + uint32_t configuration; + uint32_t fifo_dir_delay; + bool booted_from_spi; + bool reset_signal; + bool reset_por; + + struct stfsm_seq stfsm_seq_read; + struct stfsm_seq stfsm_seq_write; + struct stfsm_seq stfsm_seq_en_32bit_addr; +}; + +/* Parameters to configure a READ or WRITE FSM sequence */ +struct seq_rw_config { + uint32_t flags; /* flags to support config */ + uint8_t cmd; /* FLASH command */ + int write; /* Write Sequence */ + uint8_t addr_pads; /* No. of addr pads (MODE & DUMMY) */ + uint8_t data_pads; /* No. of data pads */ + uint8_t mode_data; /* MODE data */ + uint8_t mode_cycles; /* No. of MODE cycles */ + uint8_t dummy_cycles; /* No. of DUMMY cycles */ +}; + +/* SPI Flash Device Table */ +struct flash_info { + char *name; + /* + * JEDEC id zero means "no ID" (most older chips); otherwise it has + * a high byte of zero plus three data bytes: the manufacturer id, + * then a two byte device id. + */ + u32 jedec_id; + u16 ext_id; + /* + * The size listed here is what works with SPINOR_OP_SE, which isn't + * necessarily called a "sector" by the vendor. + */ + unsigned sector_size; + u16 n_sectors; + u32 flags; + /* + * Note, where FAST_READ is supported, freq_max specifies the + * FAST_READ frequency, not the READ frequency. + */ + u32 max_freq; + int (*config)(struct stfsm *); +}; + +static int stfsm_n25q_config(struct stfsm *fsm); +static int stfsm_mx25_config(struct stfsm *fsm); +static int stfsm_s25fl_config(struct stfsm *fsm); +static int stfsm_w25q_config(struct stfsm *fsm); + +static struct flash_info flash_types[] = { + /* + * ST Microelectronics/Numonyx -- + * (newer production versions may have feature updates + * (eg faster operating frequency) + */ +#define M25P_FLAG (FLASH_FLAG_READ_WRITE | FLASH_FLAG_READ_FAST) + { "m25p40", 0x202013, 0, 64 * 1024, 8, M25P_FLAG, 25, NULL }, + { "m25p80", 0x202014, 0, 64 * 1024, 16, M25P_FLAG, 25, NULL }, + { "m25p16", 0x202015, 0, 64 * 1024, 32, M25P_FLAG, 25, NULL }, + { "m25p32", 0x202016, 0, 64 * 1024, 64, M25P_FLAG, 50, NULL }, + { "m25p64", 0x202017, 0, 64 * 1024, 128, M25P_FLAG, 50, NULL }, + { "m25p128", 0x202018, 0, 256 * 1024, 64, M25P_FLAG, 50, NULL }, + +#define M25PX_FLAG (FLASH_FLAG_READ_WRITE | \ + FLASH_FLAG_READ_FAST | \ + FLASH_FLAG_READ_1_1_2 | \ + FLASH_FLAG_WRITE_1_1_2) + { "m25px32", 0x207116, 0, 64 * 1024, 64, M25PX_FLAG, 75, NULL }, + { "m25px64", 0x207117, 0, 64 * 1024, 128, M25PX_FLAG, 75, NULL }, + + /* Macronix MX25xxx + * - Support for 'FLASH_FLAG_WRITE_1_4_4' is omitted for devices + * where operating frequency must be reduced. + */ +#define MX25_FLAG (FLASH_FLAG_READ_WRITE | \ + FLASH_FLAG_READ_FAST | \ + FLASH_FLAG_READ_1_1_2 | \ + FLASH_FLAG_READ_1_2_2 | \ + FLASH_FLAG_READ_1_1_4 | \ + FLASH_FLAG_SE_4K | \ + FLASH_FLAG_SE_32K) + { "mx25l3255e", 0xc29e16, 0, 64 * 1024, 64, + (MX25_FLAG | FLASH_FLAG_WRITE_1_4_4), 86, + stfsm_mx25_config}, + { "mx25l25635e", 0xc22019, 0, 64*1024, 512, + (MX25_FLAG | FLASH_FLAG_32BIT_ADDR | FLASH_FLAG_RESET), 70, + stfsm_mx25_config }, + { "mx25l25655e", 0xc22619, 0, 64*1024, 512, + (MX25_FLAG | FLASH_FLAG_32BIT_ADDR | FLASH_FLAG_RESET), 70, + stfsm_mx25_config}, + +#define N25Q_FLAG (FLASH_FLAG_READ_WRITE | \ + FLASH_FLAG_READ_FAST | \ + FLASH_FLAG_READ_1_1_2 | \ + FLASH_FLAG_READ_1_2_2 | \ + FLASH_FLAG_READ_1_1_4 | \ + FLASH_FLAG_READ_1_4_4 | \ + FLASH_FLAG_WRITE_1_1_2 | \ + FLASH_FLAG_WRITE_1_2_2 | \ + FLASH_FLAG_WRITE_1_1_4 | \ + FLASH_FLAG_WRITE_1_4_4) + { "n25q128", 0x20ba18, 0, 64 * 1024, 256, N25Q_FLAG, 108, + stfsm_n25q_config }, + { "n25q256", 0x20ba19, 0, 64 * 1024, 512, + N25Q_FLAG | FLASH_FLAG_32BIT_ADDR, 108, stfsm_n25q_config }, + + /* + * Spansion S25FLxxxP + * - 256KiB and 64KiB sector variants (identified by ext. JEDEC) + */ +#define S25FLXXXP_FLAG (FLASH_FLAG_READ_WRITE | \ + FLASH_FLAG_READ_1_1_2 | \ + FLASH_FLAG_READ_1_2_2 | \ + FLASH_FLAG_READ_1_1_4 | \ + FLASH_FLAG_READ_1_4_4 | \ + FLASH_FLAG_WRITE_1_1_4 | \ + FLASH_FLAG_READ_FAST) + { "s25fl032p", 0x010215, 0x4d00, 64 * 1024, 64, S25FLXXXP_FLAG, 80, + stfsm_s25fl_config}, + { "s25fl129p0", 0x012018, 0x4d00, 256 * 1024, 64, S25FLXXXP_FLAG, 80, + stfsm_s25fl_config }, + { "s25fl129p1", 0x012018, 0x4d01, 64 * 1024, 256, S25FLXXXP_FLAG, 80, + stfsm_s25fl_config }, + + /* + * Spansion S25FLxxxS + * - 256KiB and 64KiB sector variants (identified by ext. JEDEC) + * - RESET# signal supported by die but not bristled out on all + * package types. The package type is a function of board design, + * so this information is captured in the board's flags. + * - Supports 'DYB' sector protection. Depending on variant, sectors + * may default to locked state on power-on. + */ +#define S25FLXXXS_FLAG (S25FLXXXP_FLAG | \ + FLASH_FLAG_RESET | \ + FLASH_FLAG_DYB_LOCKING) + { "s25fl128s0", 0x012018, 0x0300, 256 * 1024, 64, S25FLXXXS_FLAG, 80, + stfsm_s25fl_config }, + { "s25fl128s1", 0x012018, 0x0301, 64 * 1024, 256, S25FLXXXS_FLAG, 80, + stfsm_s25fl_config }, + { "s25fl256s0", 0x010219, 0x4d00, 256 * 1024, 128, + S25FLXXXS_FLAG | FLASH_FLAG_32BIT_ADDR, 80, stfsm_s25fl_config }, + { "s25fl256s1", 0x010219, 0x4d01, 64 * 1024, 512, + S25FLXXXS_FLAG | FLASH_FLAG_32BIT_ADDR, 80, stfsm_s25fl_config }, + + /* Winbond -- w25x "blocks" are 64K, "sectors" are 4KiB */ +#define W25X_FLAG (FLASH_FLAG_READ_WRITE | \ + FLASH_FLAG_READ_FAST | \ + FLASH_FLAG_READ_1_1_2 | \ + FLASH_FLAG_WRITE_1_1_2) + { "w25x40", 0xef3013, 0, 64 * 1024, 8, W25X_FLAG, 75, NULL }, + { "w25x80", 0xef3014, 0, 64 * 1024, 16, W25X_FLAG, 75, NULL }, + { "w25x16", 0xef3015, 0, 64 * 1024, 32, W25X_FLAG, 75, NULL }, + { "w25x32", 0xef3016, 0, 64 * 1024, 64, W25X_FLAG, 75, NULL }, + { "w25x64", 0xef3017, 0, 64 * 1024, 128, W25X_FLAG, 75, NULL }, + + /* Winbond -- w25q "blocks" are 64K, "sectors" are 4KiB */ +#define W25Q_FLAG (FLASH_FLAG_READ_WRITE | \ + FLASH_FLAG_READ_FAST | \ + FLASH_FLAG_READ_1_1_2 | \ + FLASH_FLAG_READ_1_2_2 | \ + FLASH_FLAG_READ_1_1_4 | \ + FLASH_FLAG_READ_1_4_4 | \ + FLASH_FLAG_WRITE_1_1_4) + { "w25q80", 0xef4014, 0, 64 * 1024, 16, W25Q_FLAG, 80, + stfsm_w25q_config }, + { "w25q16", 0xef4015, 0, 64 * 1024, 32, W25Q_FLAG, 80, + stfsm_w25q_config }, + { "w25q32", 0xef4016, 0, 64 * 1024, 64, W25Q_FLAG, 80, + stfsm_w25q_config }, + { "w25q64", 0xef4017, 0, 64 * 1024, 128, W25Q_FLAG, 80, + stfsm_w25q_config }, + + /* Sentinel */ + { NULL, 0x000000, 0, 0, 0, 0, 0, NULL }, +}; + +/* + * FSM message sequence configurations: + * + * All configs are presented in order of preference + */ + +/* Default READ configurations, in order of preference */ +static struct seq_rw_config default_read_configs[] = { + {FLASH_FLAG_READ_1_4_4, SPINOR_OP_READ_1_4_4, 0, 4, 4, 0x00, 2, 4}, + {FLASH_FLAG_READ_1_1_4, SPINOR_OP_READ_1_1_4, 0, 1, 4, 0x00, 4, 0}, + {FLASH_FLAG_READ_1_2_2, SPINOR_OP_READ_1_2_2, 0, 2, 2, 0x00, 4, 0}, + {FLASH_FLAG_READ_1_1_2, SPINOR_OP_READ_1_1_2, 0, 1, 2, 0x00, 0, 8}, + {FLASH_FLAG_READ_FAST, SPINOR_OP_READ_FAST, 0, 1, 1, 0x00, 0, 8}, + {FLASH_FLAG_READ_WRITE, SPINOR_OP_READ, 0, 1, 1, 0x00, 0, 0}, + {0x00, 0, 0, 0, 0, 0x00, 0, 0}, +}; + +/* Default WRITE configurations */ +static struct seq_rw_config default_write_configs[] = { + {FLASH_FLAG_WRITE_1_4_4, SPINOR_OP_WRITE_1_4_4, 1, 4, 4, 0x00, 0, 0}, + {FLASH_FLAG_WRITE_1_1_4, SPINOR_OP_WRITE_1_1_4, 1, 1, 4, 0x00, 0, 0}, + {FLASH_FLAG_WRITE_1_2_2, SPINOR_OP_WRITE_1_2_2, 1, 2, 2, 0x00, 0, 0}, + {FLASH_FLAG_WRITE_1_1_2, SPINOR_OP_WRITE_1_1_2, 1, 1, 2, 0x00, 0, 0}, + {FLASH_FLAG_READ_WRITE, SPINOR_OP_WRITE, 1, 1, 1, 0x00, 0, 0}, + {0x00, 0, 0, 0, 0, 0x00, 0, 0}, +}; + +/* + * [N25Qxxx] Configuration + */ +#define N25Q_VCR_DUMMY_CYCLES(x) (((x) & 0xf) << 4) +#define N25Q_VCR_XIP_DISABLED ((uint8_t)0x1 << 3) +#define N25Q_VCR_WRAP_CONT 0x3 + +/* N25Q 3-byte Address READ configurations + * - 'FAST' variants configured for 8 dummy cycles. + * + * Note, the number of dummy cycles used for 'FAST' READ operations is + * configurable and would normally be tuned according to the READ command and + * operating frequency. However, this applies universally to all 'FAST' READ + * commands, including those used by the SPIBoot controller, and remains in + * force until the device is power-cycled. Since the SPIBoot controller is + * hard-wired to use 8 dummy cycles, we must configure the device to also use 8 + * cycles. + */ +static struct seq_rw_config n25q_read3_configs[] = { + {FLASH_FLAG_READ_1_4_4, SPINOR_OP_READ_1_4_4, 0, 4, 4, 0x00, 0, 8}, + {FLASH_FLAG_READ_1_1_4, SPINOR_OP_READ_1_1_4, 0, 1, 4, 0x00, 0, 8}, + {FLASH_FLAG_READ_1_2_2, SPINOR_OP_READ_1_2_2, 0, 2, 2, 0x00, 0, 8}, + {FLASH_FLAG_READ_1_1_2, SPINOR_OP_READ_1_1_2, 0, 1, 2, 0x00, 0, 8}, + {FLASH_FLAG_READ_FAST, SPINOR_OP_READ_FAST, 0, 1, 1, 0x00, 0, 8}, + {FLASH_FLAG_READ_WRITE, SPINOR_OP_READ, 0, 1, 1, 0x00, 0, 0}, + {0x00, 0, 0, 0, 0, 0x00, 0, 0}, +}; + +/* N25Q 4-byte Address READ configurations + * - use special 4-byte address READ commands (reduces overheads, and + * reduces risk of hitting watchdog reset issues). + * - 'FAST' variants configured for 8 dummy cycles (see note above.) + */ +static struct seq_rw_config n25q_read4_configs[] = { + {FLASH_FLAG_READ_1_4_4, SPINOR_OP_READ_1_4_4_4B, 0, 4, 4, 0x00, 0, 8}, + {FLASH_FLAG_READ_1_1_4, SPINOR_OP_READ_1_1_4_4B, 0, 1, 4, 0x00, 0, 8}, + {FLASH_FLAG_READ_1_2_2, SPINOR_OP_READ_1_2_2_4B, 0, 2, 2, 0x00, 0, 8}, + {FLASH_FLAG_READ_1_1_2, SPINOR_OP_READ_1_1_2_4B, 0, 1, 2, 0x00, 0, 8}, + {FLASH_FLAG_READ_FAST, SPINOR_OP_READ_FAST_4B, 0, 1, 1, 0x00, 0, 8}, + {FLASH_FLAG_READ_WRITE, SPINOR_OP_READ_4B, 0, 1, 1, 0x00, 0, 0}, + {0x00, 0, 0, 0, 0, 0x00, 0, 0}, +}; + +/* + * [MX25xxx] Configuration + */ +#define MX25_STATUS_QE (0x1 << 6) + +static int stfsm_mx25_en_32bit_addr_seq(struct stfsm_seq *seq) +{ + seq->seq_opc[0] = (SEQ_OPC_PADS_1 | + SEQ_OPC_CYCLES(8) | + SEQ_OPC_OPCODE(SPINOR_OP_EN4B) | + SEQ_OPC_CSDEASSERT); + + seq->seq[0] = STFSM_INST_CMD1; + seq->seq[1] = STFSM_INST_WAIT; + seq->seq[2] = STFSM_INST_STOP; + + seq->seq_cfg = (SEQ_CFG_PADS_1 | + SEQ_CFG_ERASE | + SEQ_CFG_READNOTWRITE | + SEQ_CFG_CSDEASSERT | + SEQ_CFG_STARTSEQ); + + return 0; +} + +/* + * [S25FLxxx] Configuration + */ +#define STFSM_S25FL_CONFIG_QE (0x1 << 1) + +/* + * S25FLxxxS devices provide three ways of supporting 32-bit addressing: Bank + * Register, Extended Address Modes, and a 32-bit address command set. The + * 32-bit address command set is used here, since it avoids any problems with + * entering a state that is incompatible with the SPIBoot Controller. + */ +static struct seq_rw_config stfsm_s25fl_read4_configs[] = { + {FLASH_FLAG_READ_1_4_4, SPINOR_OP_READ_1_4_4_4B, 0, 4, 4, 0x00, 2, 4}, + {FLASH_FLAG_READ_1_1_4, SPINOR_OP_READ_1_1_4_4B, 0, 1, 4, 0x00, 0, 8}, + {FLASH_FLAG_READ_1_2_2, SPINOR_OP_READ_1_2_2_4B, 0, 2, 2, 0x00, 4, 0}, + {FLASH_FLAG_READ_1_1_2, SPINOR_OP_READ_1_1_2_4B, 0, 1, 2, 0x00, 0, 8}, + {FLASH_FLAG_READ_FAST, SPINOR_OP_READ_FAST_4B, 0, 1, 1, 0x00, 0, 8}, + {FLASH_FLAG_READ_WRITE, SPINOR_OP_READ_4B, 0, 1, 1, 0x00, 0, 0}, + {0x00, 0, 0, 0, 0, 0x00, 0, 0}, +}; + +static struct seq_rw_config stfsm_s25fl_write4_configs[] = { + {FLASH_FLAG_WRITE_1_1_4, S25FL_CMD_WRITE4_1_1_4, 1, 1, 4, 0x00, 0, 0}, + {FLASH_FLAG_READ_WRITE, S25FL_CMD_WRITE4, 1, 1, 1, 0x00, 0, 0}, + {0x00, 0, 0, 0, 0, 0x00, 0, 0}, +}; + +/* + * [W25Qxxx] Configuration + */ +#define W25Q_STATUS_QE (0x1 << 1) + +static struct stfsm_seq stfsm_seq_read_jedec = { + .data_size = TRANSFER_SIZE(8), + .seq_opc[0] = (SEQ_OPC_PADS_1 | + SEQ_OPC_CYCLES(8) | + SEQ_OPC_OPCODE(SPINOR_OP_RDID)), + .seq = { + STFSM_INST_CMD1, + STFSM_INST_DATA_READ, + STFSM_INST_STOP, + }, + .seq_cfg = (SEQ_CFG_PADS_1 | + SEQ_CFG_READNOTWRITE | + SEQ_CFG_CSDEASSERT | + SEQ_CFG_STARTSEQ), +}; + +static struct stfsm_seq stfsm_seq_read_status_fifo = { + .data_size = TRANSFER_SIZE(4), + .seq_opc[0] = (SEQ_OPC_PADS_1 | + SEQ_OPC_CYCLES(8) | + SEQ_OPC_OPCODE(SPINOR_OP_RDSR)), + .seq = { + STFSM_INST_CMD1, + STFSM_INST_DATA_READ, + STFSM_INST_STOP, + }, + .seq_cfg = (SEQ_CFG_PADS_1 | + SEQ_CFG_READNOTWRITE | + SEQ_CFG_CSDEASSERT | + SEQ_CFG_STARTSEQ), +}; + +static struct stfsm_seq stfsm_seq_erase_sector = { + /* 'addr_cfg' configured during initialisation */ + .seq_opc = { + (SEQ_OPC_PADS_1 | SEQ_OPC_CYCLES(8) | + SEQ_OPC_OPCODE(SPINOR_OP_WREN) | SEQ_OPC_CSDEASSERT), + + (SEQ_OPC_PADS_1 | SEQ_OPC_CYCLES(8) | + SEQ_OPC_OPCODE(SPINOR_OP_SE)), + }, + .seq = { + STFSM_INST_CMD1, + STFSM_INST_CMD2, + STFSM_INST_ADD1, + STFSM_INST_ADD2, + STFSM_INST_STOP, + }, + .seq_cfg = (SEQ_CFG_PADS_1 | + SEQ_CFG_READNOTWRITE | + SEQ_CFG_CSDEASSERT | + SEQ_CFG_STARTSEQ), +}; + +static struct stfsm_seq stfsm_seq_erase_chip = { + .seq_opc = { + (SEQ_OPC_PADS_1 | SEQ_OPC_CYCLES(8) | + SEQ_OPC_OPCODE(SPINOR_OP_WREN) | SEQ_OPC_CSDEASSERT), + + (SEQ_OPC_PADS_1 | SEQ_OPC_CYCLES(8) | + SEQ_OPC_OPCODE(SPINOR_OP_CHIP_ERASE) | SEQ_OPC_CSDEASSERT), + }, + .seq = { + STFSM_INST_CMD1, + STFSM_INST_CMD2, + STFSM_INST_WAIT, + STFSM_INST_STOP, + }, + .seq_cfg = (SEQ_CFG_PADS_1 | + SEQ_CFG_ERASE | + SEQ_CFG_READNOTWRITE | + SEQ_CFG_CSDEASSERT | + SEQ_CFG_STARTSEQ), +}; + +static struct stfsm_seq stfsm_seq_write_status = { + .seq_opc[0] = (SEQ_OPC_PADS_1 | SEQ_OPC_CYCLES(8) | + SEQ_OPC_OPCODE(SPINOR_OP_WREN) | SEQ_OPC_CSDEASSERT), + .seq_opc[1] = (SEQ_OPC_PADS_1 | SEQ_OPC_CYCLES(8) | + SEQ_OPC_OPCODE(SPINOR_OP_WRSR)), + .seq = { + STFSM_INST_CMD1, + STFSM_INST_CMD2, + STFSM_INST_STA_WR1, + STFSM_INST_STOP, + }, + .seq_cfg = (SEQ_CFG_PADS_1 | + SEQ_CFG_READNOTWRITE | + SEQ_CFG_CSDEASSERT | + SEQ_CFG_STARTSEQ), +}; + +/* Dummy sequence to read one byte of data from flash into the FIFO */ +static const struct stfsm_seq stfsm_seq_load_fifo_byte = { + .data_size = TRANSFER_SIZE(1), + .seq_opc[0] = (SEQ_OPC_PADS_1 | + SEQ_OPC_CYCLES(8) | + SEQ_OPC_OPCODE(SPINOR_OP_RDID)), + .seq = { + STFSM_INST_CMD1, + STFSM_INST_DATA_READ, + STFSM_INST_STOP, + }, + .seq_cfg = (SEQ_CFG_PADS_1 | + SEQ_CFG_READNOTWRITE | + SEQ_CFG_CSDEASSERT | + SEQ_CFG_STARTSEQ), +}; + +static int stfsm_n25q_en_32bit_addr_seq(struct stfsm_seq *seq) +{ + seq->seq_opc[0] = (SEQ_OPC_PADS_1 | SEQ_OPC_CYCLES(8) | + SEQ_OPC_OPCODE(SPINOR_OP_EN4B)); + seq->seq_opc[1] = (SEQ_OPC_PADS_1 | SEQ_OPC_CYCLES(8) | + SEQ_OPC_OPCODE(SPINOR_OP_WREN) | + SEQ_OPC_CSDEASSERT); + + seq->seq[0] = STFSM_INST_CMD2; + seq->seq[1] = STFSM_INST_CMD1; + seq->seq[2] = STFSM_INST_WAIT; + seq->seq[3] = STFSM_INST_STOP; + + seq->seq_cfg = (SEQ_CFG_PADS_1 | + SEQ_CFG_ERASE | + SEQ_CFG_READNOTWRITE | + SEQ_CFG_CSDEASSERT | + SEQ_CFG_STARTSEQ); + + return 0; +} + +static inline int stfsm_is_idle(struct stfsm *fsm) +{ + return readl(fsm->base + SPI_FAST_SEQ_STA) & 0x10; +} + +static inline uint32_t stfsm_fifo_available(struct stfsm *fsm) +{ + return (readl(fsm->base + SPI_FAST_SEQ_STA) >> 5) & 0x7f; +} + +static inline void stfsm_load_seq(struct stfsm *fsm, + const struct stfsm_seq *seq) +{ + void __iomem *dst = fsm->base + SPI_FAST_SEQ_TRANSFER_SIZE; + const uint32_t *src = (const uint32_t *)seq; + int words = sizeof(*seq) / sizeof(*src); + + BUG_ON(!stfsm_is_idle(fsm)); + + while (words--) { + writel(*src, dst); + src++; + dst += 4; + } +} + +static void stfsm_wait_seq(struct stfsm *fsm) +{ + unsigned long deadline; + int timeout = 0; + + deadline = jiffies + msecs_to_jiffies(STFSM_MAX_WAIT_SEQ_MS); + + while (!timeout) { + if (time_after_eq(jiffies, deadline)) + timeout = 1; + + if (stfsm_is_idle(fsm)) + return; + + cond_resched(); + } + + dev_err(fsm->dev, "timeout on sequence completion\n"); +} + +static void stfsm_read_fifo(struct stfsm *fsm, uint32_t *buf, uint32_t size) +{ + uint32_t remaining = size >> 2; + uint32_t avail; + uint32_t words; + + dev_dbg(fsm->dev, "Reading %d bytes from FIFO\n", size); + + BUG_ON((((uintptr_t)buf) & 0x3) || (size & 0x3)); + + while (remaining) { + for (;;) { + avail = stfsm_fifo_available(fsm); + if (avail) + break; + udelay(1); + } + words = min(avail, remaining); + remaining -= words; + + readsl(fsm->base + SPI_FAST_SEQ_DATA_REG, buf, words); + buf += words; + } +} + +/* + * Clear the data FIFO + * + * Typically, this is only required during driver initialisation, where no + * assumptions can be made regarding the state of the FIFO. + * + * The process of clearing the FIFO is complicated by fact that while it is + * possible for the FIFO to contain an arbitrary number of bytes [1], the + * SPI_FAST_SEQ_STA register only reports the number of complete 32-bit words + * present. Furthermore, data can only be drained from the FIFO by reading + * complete 32-bit words. + * + * With this in mind, a two stage process is used to the clear the FIFO: + * + * 1. Read any complete 32-bit words from the FIFO, as reported by the + * SPI_FAST_SEQ_STA register. + * + * 2. Mop up any remaining bytes. At this point, it is not known if there + * are 0, 1, 2, or 3 bytes in the FIFO. To handle all cases, a dummy FSM + * sequence is used to load one byte at a time, until a complete 32-bit + * word is formed; at most, 4 bytes will need to be loaded. + * + * [1] It is theoretically possible for the FIFO to contain an arbitrary number + * of bits. However, since there are no known use-cases that leave + * incomplete bytes in the FIFO, only words and bytes are considered here. + */ +static void stfsm_clear_fifo(struct stfsm *fsm) +{ + const struct stfsm_seq *seq = &stfsm_seq_load_fifo_byte; + uint32_t words, i; + + /* 1. Clear any 32-bit words */ + words = stfsm_fifo_available(fsm); + if (words) { + for (i = 0; i < words; i++) + readl(fsm->base + SPI_FAST_SEQ_DATA_REG); + dev_dbg(fsm->dev, "cleared %d words from FIFO\n", words); + } + + /* + * 2. Clear any remaining bytes + * - Load the FIFO, one byte at a time, until a complete 32-bit word + * is available. + */ + for (i = 0, words = 0; i < 4 && !words; i++) { + stfsm_load_seq(fsm, seq); + stfsm_wait_seq(fsm); + words = stfsm_fifo_available(fsm); + } + + /* - A single word must be available now */ + if (words != 1) { + dev_err(fsm->dev, "failed to clear bytes from the data FIFO\n"); + return; + } + + /* - Read the 32-bit word */ + readl(fsm->base + SPI_FAST_SEQ_DATA_REG); + + dev_dbg(fsm->dev, "cleared %d byte(s) from the data FIFO\n", 4 - i); +} + +static int stfsm_write_fifo(struct stfsm *fsm, const uint32_t *buf, + uint32_t size) +{ + uint32_t words = size >> 2; + + dev_dbg(fsm->dev, "writing %d bytes to FIFO\n", size); + + BUG_ON((((uintptr_t)buf) & 0x3) || (size & 0x3)); + + writesl(fsm->base + SPI_FAST_SEQ_DATA_REG, buf, words); + + return size; +} + +static int stfsm_enter_32bit_addr(struct stfsm *fsm, int enter) +{ + struct stfsm_seq *seq = &fsm->stfsm_seq_en_32bit_addr; + uint32_t cmd = enter ? SPINOR_OP_EN4B : SPINOR_OP_EX4B; + + seq->seq_opc[0] = (SEQ_OPC_PADS_1 | + SEQ_OPC_CYCLES(8) | + SEQ_OPC_OPCODE(cmd) | + SEQ_OPC_CSDEASSERT); + + stfsm_load_seq(fsm, seq); + + stfsm_wait_seq(fsm); + + return 0; +} + +static uint8_t stfsm_wait_busy(struct stfsm *fsm) +{ + struct stfsm_seq *seq = &stfsm_seq_read_status_fifo; + unsigned long deadline; + uint32_t status; + int timeout = 0; + + /* Use RDRS1 */ + seq->seq_opc[0] = (SEQ_OPC_PADS_1 | + SEQ_OPC_CYCLES(8) | + SEQ_OPC_OPCODE(SPINOR_OP_RDSR)); + + /* Load read_status sequence */ + stfsm_load_seq(fsm, seq); + + /* + * Repeat until busy bit is deasserted, or timeout, or error (S25FLxxxS) + */ + deadline = jiffies + FLASH_MAX_BUSY_WAIT; + while (!timeout) { + if (time_after_eq(jiffies, deadline)) + timeout = 1; + + stfsm_wait_seq(fsm); + + stfsm_read_fifo(fsm, &status, 4); + + if ((status & FLASH_STATUS_BUSY) == 0) + return 0; + + if ((fsm->configuration & CFG_S25FL_CHECK_ERROR_FLAGS) && + ((status & S25FL_STATUS_P_ERR) || + (status & S25FL_STATUS_E_ERR))) + return (uint8_t)(status & 0xff); + + if (!timeout) + /* Restart */ + writel(seq->seq_cfg, fsm->base + SPI_FAST_SEQ_CFG); + + cond_resched(); + } + + dev_err(fsm->dev, "timeout on wait_busy\n"); + + return FLASH_STATUS_TIMEOUT; +} + +static int stfsm_read_status(struct stfsm *fsm, uint8_t cmd, + uint8_t *data, int bytes) +{ + struct stfsm_seq *seq = &stfsm_seq_read_status_fifo; + uint32_t tmp; + uint8_t *t = (uint8_t *)&tmp; + int i; + + dev_dbg(fsm->dev, "read 'status' register [0x%02x], %d byte(s)\n", + cmd, bytes); + + BUG_ON(bytes != 1 && bytes != 2); + + seq->seq_opc[0] = (SEQ_OPC_PADS_1 | SEQ_OPC_CYCLES(8) | + SEQ_OPC_OPCODE(cmd)); + + stfsm_load_seq(fsm, seq); + + stfsm_read_fifo(fsm, &tmp, 4); + + for (i = 0; i < bytes; i++) + data[i] = t[i]; + + stfsm_wait_seq(fsm); + + return 0; +} + +static int stfsm_write_status(struct stfsm *fsm, uint8_t cmd, + uint16_t data, int bytes, int wait_busy) +{ + struct stfsm_seq *seq = &stfsm_seq_write_status; + + dev_dbg(fsm->dev, + "write 'status' register [0x%02x], %d byte(s), 0x%04x\n" + " %s wait-busy\n", cmd, bytes, data, wait_busy ? "with" : "no"); + + BUG_ON(bytes != 1 && bytes != 2); + + seq->seq_opc[1] = (SEQ_OPC_PADS_1 | SEQ_OPC_CYCLES(8) | + SEQ_OPC_OPCODE(cmd)); + + seq->status = (uint32_t)data | STA_PADS_1 | STA_CSDEASSERT; + seq->seq[2] = (bytes == 1) ? STFSM_INST_STA_WR1 : STFSM_INST_STA_WR1_2; + + stfsm_load_seq(fsm, seq); + + stfsm_wait_seq(fsm); + + if (wait_busy) + stfsm_wait_busy(fsm); + + return 0; +} + +/* + * SoC reset on 'boot-from-spi' systems + * + * Certain modes of operation cause the Flash device to enter a particular state + * for a period of time (e.g. 'Erase Sector', 'Quad Enable', and 'Enter 32-bit + * Addr' commands). On boot-from-spi systems, it is important to consider what + * happens if a warm reset occurs during this period. The SPIBoot controller + * assumes that Flash device is in its default reset state, 24-bit address mode, + * and ready to accept commands. This can be achieved using some form of + * on-board logic/controller to force a device POR in response to a SoC-level + * reset or by making use of the device reset signal if available (limited + * number of devices only). + * + * Failure to take such precautions can cause problems following a warm reset. + * For some operations (e.g. ERASE), there is little that can be done. For + * other modes of operation (e.g. 32-bit addressing), options are often + * available that can help minimise the window in which a reset could cause a + * problem. + * + */ +static bool stfsm_can_handle_soc_reset(struct stfsm *fsm) +{ + /* Reset signal is available on the board and supported by the device */ + if (fsm->reset_signal && fsm->info->flags & FLASH_FLAG_RESET) + return true; + + /* Board-level logic forces a power-on-reset */ + if (fsm->reset_por) + return true; + + /* Reset is not properly handled and may result in failure to reboot */ + return false; +} + +/* Configure 'addr_cfg' according to addressing mode */ +static void stfsm_prepare_erasesec_seq(struct stfsm *fsm, + struct stfsm_seq *seq) +{ + int addr1_cycles = fsm->info->flags & FLASH_FLAG_32BIT_ADDR ? 16 : 8; + + seq->addr_cfg = (ADR_CFG_CYCLES_ADD1(addr1_cycles) | + ADR_CFG_PADS_1_ADD1 | + ADR_CFG_CYCLES_ADD2(16) | + ADR_CFG_PADS_1_ADD2 | + ADR_CFG_CSDEASSERT_ADD2); +} + +/* Search for preferred configuration based on available flags */ +static struct seq_rw_config * +stfsm_search_seq_rw_configs(struct stfsm *fsm, + struct seq_rw_config cfgs[]) +{ + struct seq_rw_config *config; + int flags = fsm->info->flags; + + for (config = cfgs; config->cmd != 0; config++) + if ((config->flags & flags) == config->flags) + return config; + + return NULL; +} + +/* Prepare a READ/WRITE sequence according to configuration parameters */ +static void stfsm_prepare_rw_seq(struct stfsm *fsm, + struct stfsm_seq *seq, + struct seq_rw_config *cfg) +{ + int addr1_cycles, addr2_cycles; + int i = 0; + + memset(seq, 0, sizeof(*seq)); + + /* Add READ/WRITE OPC */ + seq->seq_opc[i++] = (SEQ_OPC_PADS_1 | + SEQ_OPC_CYCLES(8) | + SEQ_OPC_OPCODE(cfg->cmd)); + + /* Add WREN OPC for a WRITE sequence */ + if (cfg->write) + seq->seq_opc[i++] = (SEQ_OPC_PADS_1 | + SEQ_OPC_CYCLES(8) | + SEQ_OPC_OPCODE(SPINOR_OP_WREN) | + SEQ_OPC_CSDEASSERT); + + /* Address configuration (24 or 32-bit addresses) */ + addr1_cycles = (fsm->info->flags & FLASH_FLAG_32BIT_ADDR) ? 16 : 8; + addr1_cycles /= cfg->addr_pads; + addr2_cycles = 16 / cfg->addr_pads; + seq->addr_cfg = ((addr1_cycles & 0x3f) << 0 | /* ADD1 cycles */ + (cfg->addr_pads - 1) << 6 | /* ADD1 pads */ + (addr2_cycles & 0x3f) << 16 | /* ADD2 cycles */ + ((cfg->addr_pads - 1) << 22)); /* ADD2 pads */ + + /* Data/Sequence configuration */ + seq->seq_cfg = ((cfg->data_pads - 1) << 16 | + SEQ_CFG_STARTSEQ | + SEQ_CFG_CSDEASSERT); + if (!cfg->write) + seq->seq_cfg |= SEQ_CFG_READNOTWRITE; + + /* Mode configuration (no. of pads taken from addr cfg) */ + seq->mode = ((cfg->mode_data & 0xff) << 0 | /* data */ + (cfg->mode_cycles & 0x3f) << 16 | /* cycles */ + (cfg->addr_pads - 1) << 22); /* pads */ + + /* Dummy configuration (no. of pads taken from addr cfg) */ + seq->dummy = ((cfg->dummy_cycles & 0x3f) << 16 | /* cycles */ + (cfg->addr_pads - 1) << 22); /* pads */ + + + /* Instruction sequence */ + i = 0; + if (cfg->write) + seq->seq[i++] = STFSM_INST_CMD2; + + seq->seq[i++] = STFSM_INST_CMD1; + + seq->seq[i++] = STFSM_INST_ADD1; + seq->seq[i++] = STFSM_INST_ADD2; + + if (cfg->mode_cycles) + seq->seq[i++] = STFSM_INST_MODE; + + if (cfg->dummy_cycles) + seq->seq[i++] = STFSM_INST_DUMMY; + + seq->seq[i++] = + cfg->write ? STFSM_INST_DATA_WRITE : STFSM_INST_DATA_READ; + seq->seq[i++] = STFSM_INST_STOP; +} + +static int stfsm_search_prepare_rw_seq(struct stfsm *fsm, + struct stfsm_seq *seq, + struct seq_rw_config *cfgs) +{ + struct seq_rw_config *config; + + config = stfsm_search_seq_rw_configs(fsm, cfgs); + if (!config) { + dev_err(fsm->dev, "failed to find suitable config\n"); + return -EINVAL; + } + + stfsm_prepare_rw_seq(fsm, seq, config); + + return 0; +} + +/* Prepare a READ/WRITE/ERASE 'default' sequences */ +static int stfsm_prepare_rwe_seqs_default(struct stfsm *fsm) +{ + uint32_t flags = fsm->info->flags; + int ret; + + /* Configure 'READ' sequence */ + ret = stfsm_search_prepare_rw_seq(fsm, &fsm->stfsm_seq_read, + default_read_configs); + if (ret) { + dev_err(fsm->dev, + "failed to prep READ sequence with flags [0x%08x]\n", + flags); + return ret; + } + + /* Configure 'WRITE' sequence */ + ret = stfsm_search_prepare_rw_seq(fsm, &fsm->stfsm_seq_write, + default_write_configs); + if (ret) { + dev_err(fsm->dev, + "failed to prep WRITE sequence with flags [0x%08x]\n", + flags); + return ret; + } + + /* Configure 'ERASE_SECTOR' sequence */ + stfsm_prepare_erasesec_seq(fsm, &stfsm_seq_erase_sector); + + return 0; +} + +static int stfsm_mx25_config(struct stfsm *fsm) +{ + uint32_t flags = fsm->info->flags; + uint32_t data_pads; + uint8_t sta; + int ret; + bool soc_reset; + + /* + * Use default READ/WRITE sequences + */ + ret = stfsm_prepare_rwe_seqs_default(fsm); + if (ret) + return ret; + + /* + * Configure 32-bit Address Support + */ + if (flags & FLASH_FLAG_32BIT_ADDR) { + /* Configure 'enter_32bitaddr' FSM sequence */ + stfsm_mx25_en_32bit_addr_seq(&fsm->stfsm_seq_en_32bit_addr); + + soc_reset = stfsm_can_handle_soc_reset(fsm); + if (soc_reset || !fsm->booted_from_spi) + /* If we can handle SoC resets, we enable 32-bit address + * mode pervasively */ + stfsm_enter_32bit_addr(fsm, 1); + + else + /* Else, enable/disable 32-bit addressing before/after + * each operation */ + fsm->configuration = (CFG_READ_TOGGLE_32BIT_ADDR | + CFG_WRITE_TOGGLE_32BIT_ADDR | + CFG_ERASESEC_TOGGLE_32BIT_ADDR); + } + + /* Check status of 'QE' bit, update if required. */ + stfsm_read_status(fsm, SPINOR_OP_RDSR, &sta, 1); + data_pads = ((fsm->stfsm_seq_read.seq_cfg >> 16) & 0x3) + 1; + if (data_pads == 4) { + if (!(sta & MX25_STATUS_QE)) { + /* Set 'QE' */ + sta |= MX25_STATUS_QE; + + stfsm_write_status(fsm, SPINOR_OP_WRSR, sta, 1, 1); + } + } else { + if (sta & MX25_STATUS_QE) { + /* Clear 'QE' */ + sta &= ~MX25_STATUS_QE; + + stfsm_write_status(fsm, SPINOR_OP_WRSR, sta, 1, 1); + } + } + + return 0; +} + +static int stfsm_n25q_config(struct stfsm *fsm) +{ + uint32_t flags = fsm->info->flags; + uint8_t vcr; + int ret = 0; + bool soc_reset; + + /* Configure 'READ' sequence */ + if (flags & FLASH_FLAG_32BIT_ADDR) + ret = stfsm_search_prepare_rw_seq(fsm, &fsm->stfsm_seq_read, + n25q_read4_configs); + else + ret = stfsm_search_prepare_rw_seq(fsm, &fsm->stfsm_seq_read, + n25q_read3_configs); + if (ret) { + dev_err(fsm->dev, + "failed to prepare READ sequence with flags [0x%08x]\n", + flags); + return ret; + } + + /* Configure 'WRITE' sequence (default configs) */ + ret = stfsm_search_prepare_rw_seq(fsm, &fsm->stfsm_seq_write, + default_write_configs); + if (ret) { + dev_err(fsm->dev, + "preparing WRITE sequence using flags [0x%08x] failed\n", + flags); + return ret; + } + + /* * Configure 'ERASE_SECTOR' sequence */ + stfsm_prepare_erasesec_seq(fsm, &stfsm_seq_erase_sector); + + /* Configure 32-bit address support */ + if (flags & FLASH_FLAG_32BIT_ADDR) { + stfsm_n25q_en_32bit_addr_seq(&fsm->stfsm_seq_en_32bit_addr); + + soc_reset = stfsm_can_handle_soc_reset(fsm); + if (soc_reset || !fsm->booted_from_spi) { + /* + * If we can handle SoC resets, we enable 32-bit + * address mode pervasively + */ + stfsm_enter_32bit_addr(fsm, 1); + } else { + /* + * If not, enable/disable for WRITE and ERASE + * operations (READ uses special commands) + */ + fsm->configuration = (CFG_WRITE_TOGGLE_32BIT_ADDR | + CFG_ERASESEC_TOGGLE_32BIT_ADDR); + } + } + + /* + * Configure device to use 8 dummy cycles + */ + vcr = (N25Q_VCR_DUMMY_CYCLES(8) | N25Q_VCR_XIP_DISABLED | + N25Q_VCR_WRAP_CONT); + stfsm_write_status(fsm, N25Q_CMD_WRVCR, vcr, 1, 0); + + return 0; +} + +static void stfsm_s25fl_prepare_erasesec_seq_32(struct stfsm_seq *seq) +{ + seq->seq_opc[1] = (SEQ_OPC_PADS_1 | + SEQ_OPC_CYCLES(8) | + SEQ_OPC_OPCODE(S25FL_CMD_SE4)); + + seq->addr_cfg = (ADR_CFG_CYCLES_ADD1(16) | + ADR_CFG_PADS_1_ADD1 | + ADR_CFG_CYCLES_ADD2(16) | + ADR_CFG_PADS_1_ADD2 | + ADR_CFG_CSDEASSERT_ADD2); +} + +static void stfsm_s25fl_read_dyb(struct stfsm *fsm, uint32_t offs, uint8_t *dby) +{ + uint32_t tmp; + struct stfsm_seq seq = { + .data_size = TRANSFER_SIZE(4), + .seq_opc[0] = (SEQ_OPC_PADS_1 | + SEQ_OPC_CYCLES(8) | + SEQ_OPC_OPCODE(S25FL_CMD_DYBRD)), + .addr_cfg = (ADR_CFG_CYCLES_ADD1(16) | + ADR_CFG_PADS_1_ADD1 | + ADR_CFG_CYCLES_ADD2(16) | + ADR_CFG_PADS_1_ADD2), + .addr1 = (offs >> 16) & 0xffff, + .addr2 = offs & 0xffff, + .seq = { + STFSM_INST_CMD1, + STFSM_INST_ADD1, + STFSM_INST_ADD2, + STFSM_INST_DATA_READ, + STFSM_INST_STOP, + }, + .seq_cfg = (SEQ_CFG_PADS_1 | + SEQ_CFG_READNOTWRITE | + SEQ_CFG_CSDEASSERT | + SEQ_CFG_STARTSEQ), + }; + + stfsm_load_seq(fsm, &seq); + + stfsm_read_fifo(fsm, &tmp, 4); + + *dby = (uint8_t)(tmp >> 24); + + stfsm_wait_seq(fsm); +} + +static void stfsm_s25fl_write_dyb(struct stfsm *fsm, uint32_t offs, uint8_t dby) +{ + struct stfsm_seq seq = { + .seq_opc[0] = (SEQ_OPC_PADS_1 | SEQ_OPC_CYCLES(8) | + SEQ_OPC_OPCODE(SPINOR_OP_WREN) | + SEQ_OPC_CSDEASSERT), + .seq_opc[1] = (SEQ_OPC_PADS_1 | SEQ_OPC_CYCLES(8) | + SEQ_OPC_OPCODE(S25FL_CMD_DYBWR)), + .addr_cfg = (ADR_CFG_CYCLES_ADD1(16) | + ADR_CFG_PADS_1_ADD1 | + ADR_CFG_CYCLES_ADD2(16) | + ADR_CFG_PADS_1_ADD2), + .status = (uint32_t)dby | STA_PADS_1 | STA_CSDEASSERT, + .addr1 = (offs >> 16) & 0xffff, + .addr2 = offs & 0xffff, + .seq = { + STFSM_INST_CMD1, + STFSM_INST_CMD2, + STFSM_INST_ADD1, + STFSM_INST_ADD2, + STFSM_INST_STA_WR1, + STFSM_INST_STOP, + }, + .seq_cfg = (SEQ_CFG_PADS_1 | + SEQ_CFG_READNOTWRITE | + SEQ_CFG_CSDEASSERT | + SEQ_CFG_STARTSEQ), + }; + + stfsm_load_seq(fsm, &seq); + stfsm_wait_seq(fsm); + + stfsm_wait_busy(fsm); +} + +static int stfsm_s25fl_clear_status_reg(struct stfsm *fsm) +{ + struct stfsm_seq seq = { + .seq_opc[0] = (SEQ_OPC_PADS_1 | + SEQ_OPC_CYCLES(8) | + SEQ_OPC_OPCODE(S25FL_CMD_CLSR) | + SEQ_OPC_CSDEASSERT), + .seq_opc[1] = (SEQ_OPC_PADS_1 | + SEQ_OPC_CYCLES(8) | + SEQ_OPC_OPCODE(SPINOR_OP_WRDI) | + SEQ_OPC_CSDEASSERT), + .seq = { + STFSM_INST_CMD1, + STFSM_INST_CMD2, + STFSM_INST_WAIT, + STFSM_INST_STOP, + }, + .seq_cfg = (SEQ_CFG_PADS_1 | + SEQ_CFG_ERASE | + SEQ_CFG_READNOTWRITE | + SEQ_CFG_CSDEASSERT | + SEQ_CFG_STARTSEQ), + }; + + stfsm_load_seq(fsm, &seq); + + stfsm_wait_seq(fsm); + + return 0; +} + +static int stfsm_s25fl_config(struct stfsm *fsm) +{ + struct flash_info *info = fsm->info; + uint32_t flags = info->flags; + uint32_t data_pads; + uint32_t offs; + uint16_t sta_wr; + uint8_t sr1, cr1, dyb; + int update_sr = 0; + int ret; + + if (flags & FLASH_FLAG_32BIT_ADDR) { + /* + * Prepare Read/Write/Erase sequences according to S25FLxxx + * 32-bit address command set + */ + ret = stfsm_search_prepare_rw_seq(fsm, &fsm->stfsm_seq_read, + stfsm_s25fl_read4_configs); + if (ret) + return ret; + + ret = stfsm_search_prepare_rw_seq(fsm, &fsm->stfsm_seq_write, + stfsm_s25fl_write4_configs); + if (ret) + return ret; + + stfsm_s25fl_prepare_erasesec_seq_32(&stfsm_seq_erase_sector); + + } else { + /* Use default configurations for 24-bit addressing */ + ret = stfsm_prepare_rwe_seqs_default(fsm); + if (ret) + return ret; + } + + /* + * For devices that support 'DYB' sector locking, check lock status and + * unlock sectors if necessary (some variants power-on with sectors + * locked by default) + */ + if (flags & FLASH_FLAG_DYB_LOCKING) { + offs = 0; + for (offs = 0; offs < info->sector_size * info->n_sectors;) { + stfsm_s25fl_read_dyb(fsm, offs, &dyb); + if (dyb == 0x00) + stfsm_s25fl_write_dyb(fsm, offs, 0xff); + + /* Handle bottom/top 4KiB parameter sectors */ + if ((offs < info->sector_size * 2) || + (offs >= (info->sector_size - info->n_sectors * 4))) + offs += 0x1000; + else + offs += 0x10000; + } + } + + /* Check status of 'QE' bit, update if required. */ + stfsm_read_status(fsm, SPINOR_OP_RDCR, &cr1, 1); + data_pads = ((fsm->stfsm_seq_read.seq_cfg >> 16) & 0x3) + 1; + if (data_pads == 4) { + if (!(cr1 & STFSM_S25FL_CONFIG_QE)) { + /* Set 'QE' */ + cr1 |= STFSM_S25FL_CONFIG_QE; + + update_sr = 1; + } + } else { + if (cr1 & STFSM_S25FL_CONFIG_QE) { + /* Clear 'QE' */ + cr1 &= ~STFSM_S25FL_CONFIG_QE; + + update_sr = 1; + } + } + if (update_sr) { + stfsm_read_status(fsm, SPINOR_OP_RDSR, &sr1, 1); + sta_wr = ((uint16_t)cr1 << 8) | sr1; + stfsm_write_status(fsm, SPINOR_OP_WRSR, sta_wr, 2, 1); + } + + /* + * S25FLxxx devices support Program and Error error flags. + * Configure driver to check flags and clear if necessary. + */ + fsm->configuration |= CFG_S25FL_CHECK_ERROR_FLAGS; + + return 0; +} + +static int stfsm_w25q_config(struct stfsm *fsm) +{ + uint32_t data_pads; + uint8_t sr1, sr2; + uint16_t sr_wr; + int update_sr = 0; + int ret; + + ret = stfsm_prepare_rwe_seqs_default(fsm); + if (ret) + return ret; + + /* Check status of 'QE' bit, update if required. */ + stfsm_read_status(fsm, SPINOR_OP_RDCR, &sr2, 1); + data_pads = ((fsm->stfsm_seq_read.seq_cfg >> 16) & 0x3) + 1; + if (data_pads == 4) { + if (!(sr2 & W25Q_STATUS_QE)) { + /* Set 'QE' */ + sr2 |= W25Q_STATUS_QE; + update_sr = 1; + } + } else { + if (sr2 & W25Q_STATUS_QE) { + /* Clear 'QE' */ + sr2 &= ~W25Q_STATUS_QE; + update_sr = 1; + } + } + if (update_sr) { + /* Write status register */ + stfsm_read_status(fsm, SPINOR_OP_RDSR, &sr1, 1); + sr_wr = ((uint16_t)sr2 << 8) | sr1; + stfsm_write_status(fsm, SPINOR_OP_WRSR, sr_wr, 2, 1); + } + + return 0; +} + +static int stfsm_read(struct stfsm *fsm, uint8_t *buf, uint32_t size, + uint32_t offset) +{ + struct stfsm_seq *seq = &fsm->stfsm_seq_read; + uint32_t data_pads; + uint32_t read_mask; + uint32_t size_ub; + uint32_t size_lb; + uint32_t size_mop; + uint32_t tmp[4]; + uint32_t page_buf[FLASH_PAGESIZE_32]; + uint8_t *p; + + dev_dbg(fsm->dev, "reading %d bytes from 0x%08x\n", size, offset); + + /* Enter 32-bit address mode, if required */ + if (fsm->configuration & CFG_READ_TOGGLE_32BIT_ADDR) + stfsm_enter_32bit_addr(fsm, 1); + + /* Must read in multiples of 32 cycles (or 32*pads/8 Bytes) */ + data_pads = ((seq->seq_cfg >> 16) & 0x3) + 1; + read_mask = (data_pads << 2) - 1; + + /* Handle non-aligned buf */ + p = ((uintptr_t)buf & 0x3) ? (uint8_t *)page_buf : buf; + + /* Handle non-aligned size */ + size_ub = (size + read_mask) & ~read_mask; + size_lb = size & ~read_mask; + size_mop = size & read_mask; + + seq->data_size = TRANSFER_SIZE(size_ub); + seq->addr1 = (offset >> 16) & 0xffff; + seq->addr2 = offset & 0xffff; + + stfsm_load_seq(fsm, seq); + + if (size_lb) + stfsm_read_fifo(fsm, (uint32_t *)p, size_lb); + + if (size_mop) { + stfsm_read_fifo(fsm, tmp, read_mask + 1); + memcpy(p + size_lb, &tmp, size_mop); + } + + /* Handle non-aligned buf */ + if ((uintptr_t)buf & 0x3) + memcpy(buf, page_buf, size); + + /* Wait for sequence to finish */ + stfsm_wait_seq(fsm); + + stfsm_clear_fifo(fsm); + + /* Exit 32-bit address mode, if required */ + if (fsm->configuration & CFG_READ_TOGGLE_32BIT_ADDR) + stfsm_enter_32bit_addr(fsm, 0); + + return 0; +} + +static int stfsm_write(struct stfsm *fsm, const uint8_t *buf, + uint32_t size, uint32_t offset) +{ + struct stfsm_seq *seq = &fsm->stfsm_seq_write; + uint32_t data_pads; + uint32_t write_mask; + uint32_t size_ub; + uint32_t size_lb; + uint32_t size_mop; + uint32_t tmp[4]; + uint32_t i; + uint32_t page_buf[FLASH_PAGESIZE_32]; + uint8_t *t = (uint8_t *)&tmp; + const uint8_t *p; + int ret; + + dev_dbg(fsm->dev, "writing %d bytes to 0x%08x\n", size, offset); + + /* Enter 32-bit address mode, if required */ + if (fsm->configuration & CFG_WRITE_TOGGLE_32BIT_ADDR) + stfsm_enter_32bit_addr(fsm, 1); + + /* Must write in multiples of 32 cycles (or 32*pads/8 bytes) */ + data_pads = ((seq->seq_cfg >> 16) & 0x3) + 1; + write_mask = (data_pads << 2) - 1; + + /* Handle non-aligned buf */ + if ((uintptr_t)buf & 0x3) { + memcpy(page_buf, buf, size); + p = (uint8_t *)page_buf; + } else { + p = buf; + } + + /* Handle non-aligned size */ + size_ub = (size + write_mask) & ~write_mask; + size_lb = size & ~write_mask; + size_mop = size & write_mask; + + seq->data_size = TRANSFER_SIZE(size_ub); + seq->addr1 = (offset >> 16) & 0xffff; + seq->addr2 = offset & 0xffff; + + /* Need to set FIFO to write mode, before writing data to FIFO (see + * GNBvb79594) + */ + writel(0x00040000, fsm->base + SPI_FAST_SEQ_CFG); + + /* + * Before writing data to the FIFO, apply a small delay to allow a + * potential change of FIFO direction to complete. + */ + if (fsm->fifo_dir_delay == 0) + readl(fsm->base + SPI_FAST_SEQ_CFG); + else + udelay(fsm->fifo_dir_delay); + + + /* Write data to FIFO, before starting sequence (see GNBvd79593) */ + if (size_lb) { + stfsm_write_fifo(fsm, (uint32_t *)p, size_lb); + p += size_lb; + } + + /* Handle non-aligned size */ + if (size_mop) { + memset(t, 0xff, write_mask + 1); /* fill with 0xff's */ + for (i = 0; i < size_mop; i++) + t[i] = *p++; + + stfsm_write_fifo(fsm, tmp, write_mask + 1); + } + + /* Start sequence */ + stfsm_load_seq(fsm, seq); + + /* Wait for sequence to finish */ + stfsm_wait_seq(fsm); + + /* Wait for completion */ + ret = stfsm_wait_busy(fsm); + if (ret && fsm->configuration & CFG_S25FL_CHECK_ERROR_FLAGS) + stfsm_s25fl_clear_status_reg(fsm); + + /* Exit 32-bit address mode, if required */ + if (fsm->configuration & CFG_WRITE_TOGGLE_32BIT_ADDR) + stfsm_enter_32bit_addr(fsm, 0); + + return 0; +} + +/* + * Read an address range from the flash chip. The address range + * may be any size provided it is within the physical boundaries. + */ +static int stfsm_mtd_read(struct mtd_info *mtd, loff_t from, size_t len, + size_t *retlen, u_char *buf) +{ + struct stfsm *fsm = dev_get_drvdata(mtd->dev.parent); + uint32_t bytes; + + dev_dbg(fsm->dev, "%s from 0x%08x, len %zd\n", + __func__, (u32)from, len); + + mutex_lock(&fsm->lock); + + while (len > 0) { + bytes = min_t(size_t, len, FLASH_PAGESIZE); + + stfsm_read(fsm, buf, bytes, from); + + buf += bytes; + from += bytes; + len -= bytes; + + *retlen += bytes; + } + + mutex_unlock(&fsm->lock); + + return 0; +} + +static int stfsm_erase_sector(struct stfsm *fsm, uint32_t offset) +{ + struct stfsm_seq *seq = &stfsm_seq_erase_sector; + int ret; + + dev_dbg(fsm->dev, "erasing sector at 0x%08x\n", offset); + + /* Enter 32-bit address mode, if required */ + if (fsm->configuration & CFG_ERASESEC_TOGGLE_32BIT_ADDR) + stfsm_enter_32bit_addr(fsm, 1); + + seq->addr1 = (offset >> 16) & 0xffff; + seq->addr2 = offset & 0xffff; + + stfsm_load_seq(fsm, seq); + + stfsm_wait_seq(fsm); + + /* Wait for completion */ + ret = stfsm_wait_busy(fsm); + if (ret && fsm->configuration & CFG_S25FL_CHECK_ERROR_FLAGS) + stfsm_s25fl_clear_status_reg(fsm); + + /* Exit 32-bit address mode, if required */ + if (fsm->configuration & CFG_ERASESEC_TOGGLE_32BIT_ADDR) + stfsm_enter_32bit_addr(fsm, 0); + + return ret; +} + +static int stfsm_erase_chip(struct stfsm *fsm) +{ + const struct stfsm_seq *seq = &stfsm_seq_erase_chip; + + dev_dbg(fsm->dev, "erasing chip\n"); + + stfsm_load_seq(fsm, seq); + + stfsm_wait_seq(fsm); + + return stfsm_wait_busy(fsm); +} + +/* + * Write an address range to the flash chip. Data must be written in + * FLASH_PAGESIZE chunks. The address range may be any size provided + * it is within the physical boundaries. + */ +static int stfsm_mtd_write(struct mtd_info *mtd, loff_t to, size_t len, + size_t *retlen, const u_char *buf) +{ + struct stfsm *fsm = dev_get_drvdata(mtd->dev.parent); + + u32 page_offs; + u32 bytes; + uint8_t *b = (uint8_t *)buf; + int ret = 0; + + dev_dbg(fsm->dev, "%s to 0x%08x, len %zd\n", __func__, (u32)to, len); + + /* Offset within page */ + page_offs = to % FLASH_PAGESIZE; + + mutex_lock(&fsm->lock); + + while (len) { + /* Write up to page boundary */ + bytes = min_t(size_t, FLASH_PAGESIZE - page_offs, len); + + ret = stfsm_write(fsm, b, bytes, to); + if (ret) + goto out1; + + b += bytes; + len -= bytes; + to += bytes; + + /* We are now page-aligned */ + page_offs = 0; + + *retlen += bytes; + + } + +out1: + mutex_unlock(&fsm->lock); + + return ret; +} + +/* + * Erase an address range on the flash chip. The address range may extend + * one or more erase sectors. Return an error is there is a problem erasing. + */ +static int stfsm_mtd_erase(struct mtd_info *mtd, struct erase_info *instr) +{ + struct stfsm *fsm = dev_get_drvdata(mtd->dev.parent); + u32 addr, len; + int ret; + + dev_dbg(fsm->dev, "%s at 0x%llx, len %lld\n", __func__, + (long long)instr->addr, (long long)instr->len); + + addr = instr->addr; + len = instr->len; + + mutex_lock(&fsm->lock); + + /* Whole-chip erase? */ + if (len == mtd->size) { + ret = stfsm_erase_chip(fsm); + if (ret) + goto out1; + } else { + while (len) { + ret = stfsm_erase_sector(fsm, addr); + if (ret) + goto out1; + + addr += mtd->erasesize; + len -= mtd->erasesize; + } + } + + mutex_unlock(&fsm->lock); + + return 0; + +out1: + mutex_unlock(&fsm->lock); + + return ret; +} + +static void stfsm_read_jedec(struct stfsm *fsm, uint8_t *jedec) +{ + const struct stfsm_seq *seq = &stfsm_seq_read_jedec; + uint32_t tmp[2]; + + stfsm_load_seq(fsm, seq); + + stfsm_read_fifo(fsm, tmp, 8); + + memcpy(jedec, tmp, 5); + + stfsm_wait_seq(fsm); +} + +static struct flash_info *stfsm_jedec_probe(struct stfsm *fsm) +{ + struct flash_info *info; + u16 ext_jedec; + u32 jedec; + u8 id[5]; + + stfsm_read_jedec(fsm, id); + + jedec = id[0] << 16 | id[1] << 8 | id[2]; + /* + * JEDEC also defines an optional "extended device information" + * string for after vendor-specific data, after the three bytes + * we use here. Supporting some chips might require using it. + */ + ext_jedec = id[3] << 8 | id[4]; + + dev_dbg(fsm->dev, "JEDEC = 0x%08x [%5ph]\n", jedec, id); + + for (info = flash_types; info->name; info++) { + if (info->jedec_id == jedec) { + if (info->ext_id && info->ext_id != ext_jedec) + continue; + return info; + } + } + dev_err(fsm->dev, "Unrecognized JEDEC id %06x\n", jedec); + + return NULL; +} + +static int stfsm_set_mode(struct stfsm *fsm, uint32_t mode) +{ + int ret, timeout = 10; + + /* Wait for controller to accept mode change */ + while (--timeout) { + ret = readl(fsm->base + SPI_STA_MODE_CHANGE); + if (ret & 0x1) + break; + udelay(1); + } + + if (!timeout) + return -EBUSY; + + writel(mode, fsm->base + SPI_MODESELECT); + + return 0; +} + +static void stfsm_set_freq(struct stfsm *fsm, uint32_t spi_freq) +{ + uint32_t emi_freq; + uint32_t clk_div; + + emi_freq = clk_get_rate(fsm->clk); + + /* + * Calculate clk_div - values between 2 and 128 + * Multiple of 2, rounded up + */ + clk_div = 2 * DIV_ROUND_UP(emi_freq, 2 * spi_freq); + if (clk_div < 2) + clk_div = 2; + else if (clk_div > 128) + clk_div = 128; + + /* + * Determine a suitable delay for the IP to complete a change of + * direction of the FIFO. The required delay is related to the clock + * divider used. The following heuristics are based on empirical tests, + * using a 100MHz EMI clock. + */ + if (clk_div <= 4) + fsm->fifo_dir_delay = 0; + else if (clk_div <= 10) + fsm->fifo_dir_delay = 1; + else + fsm->fifo_dir_delay = DIV_ROUND_UP(clk_div, 10); + + dev_dbg(fsm->dev, "emi_clk = %uHZ, spi_freq = %uHZ, clk_div = %u\n", + emi_freq, spi_freq, clk_div); + + writel(clk_div, fsm->base + SPI_CLOCKDIV); +} + +static int stfsm_init(struct stfsm *fsm) +{ + int ret; + + /* Perform a soft reset of the FSM controller */ + writel(SEQ_CFG_SWRESET, fsm->base + SPI_FAST_SEQ_CFG); + udelay(1); + writel(0, fsm->base + SPI_FAST_SEQ_CFG); + + /* Set clock to 'safe' frequency initially */ + stfsm_set_freq(fsm, STFSM_FLASH_SAFE_FREQ); + + /* Switch to FSM */ + ret = stfsm_set_mode(fsm, SPI_MODESELECT_FSM); + if (ret) + return ret; + + /* Set timing parameters */ + writel(SPI_CFG_DEVICE_ST | + SPI_CFG_DEFAULT_MIN_CS_HIGH | + SPI_CFG_DEFAULT_CS_SETUPHOLD | + SPI_CFG_DEFAULT_DATA_HOLD, + fsm->base + SPI_CONFIGDATA); + writel(STFSM_DEFAULT_WR_TIME, fsm->base + SPI_STATUS_WR_TIME_REG); + + /* + * Set the FSM 'WAIT' delay to the minimum workable value. Note, for + * our purposes, the WAIT instruction is used purely to achieve + * "sequence validity" rather than actually implement a delay. + */ + writel(0x00000001, fsm->base + SPI_PROGRAM_ERASE_TIME); + + /* Clear FIFO, just in case */ + stfsm_clear_fifo(fsm); + + return 0; +} + +static void stfsm_fetch_platform_configs(struct platform_device *pdev) +{ + struct stfsm *fsm = platform_get_drvdata(pdev); + struct device_node *np = pdev->dev.of_node; + struct regmap *regmap; + uint32_t boot_device_reg; + uint32_t boot_device_spi; + uint32_t boot_device; /* Value we read from *boot_device_reg */ + int ret; + + /* Booting from SPI NOR Flash is the default */ + fsm->booted_from_spi = true; + + regmap = syscon_regmap_lookup_by_phandle(np, "st,syscfg"); + if (IS_ERR(regmap)) + goto boot_device_fail; + + fsm->reset_signal = of_property_read_bool(np, "st,reset-signal"); + + fsm->reset_por = of_property_read_bool(np, "st,reset-por"); + + /* Where in the syscon the boot device information lives */ + ret = of_property_read_u32(np, "st,boot-device-reg", &boot_device_reg); + if (ret) + goto boot_device_fail; + + /* Boot device value when booted from SPI NOR */ + ret = of_property_read_u32(np, "st,boot-device-spi", &boot_device_spi); + if (ret) + goto boot_device_fail; + + ret = regmap_read(regmap, boot_device_reg, &boot_device); + if (ret) + goto boot_device_fail; + + if (boot_device != boot_device_spi) + fsm->booted_from_spi = false; + + return; + +boot_device_fail: + dev_warn(&pdev->dev, + "failed to fetch boot device, assuming boot from SPI\n"); +} + +static int stfsm_probe(struct platform_device *pdev) +{ + struct device_node *np = pdev->dev.of_node; + struct flash_info *info; + struct stfsm *fsm; + int ret; + + if (!np) { + dev_err(&pdev->dev, "No DT found\n"); + return -EINVAL; + } + + fsm = devm_kzalloc(&pdev->dev, sizeof(*fsm), GFP_KERNEL); + if (!fsm) + return -ENOMEM; + + fsm->dev = &pdev->dev; + + platform_set_drvdata(pdev, fsm); + + fsm->base = devm_platform_ioremap_resource(pdev, 0); + if (IS_ERR(fsm->base)) + return PTR_ERR(fsm->base); + + fsm->clk = devm_clk_get_enabled(&pdev->dev, NULL); + if (IS_ERR(fsm->clk)) { + dev_err(fsm->dev, "Couldn't find EMI clock.\n"); + return PTR_ERR(fsm->clk); + } + + mutex_init(&fsm->lock); + + ret = stfsm_init(fsm); + if (ret) { + dev_err(&pdev->dev, "Failed to initialise FSM Controller\n"); + return ret; + } + + stfsm_fetch_platform_configs(pdev); + + /* Detect SPI FLASH device */ + info = stfsm_jedec_probe(fsm); + if (!info) + return -ENODEV; + fsm->info = info; + + /* Use device size to determine address width */ + if (info->sector_size * info->n_sectors > 0x1000000) + info->flags |= FLASH_FLAG_32BIT_ADDR; + + /* + * Configure READ/WRITE/ERASE sequences according to platform and + * device flags. + */ + if (info->config) + ret = info->config(fsm); + else + ret = stfsm_prepare_rwe_seqs_default(fsm); + if (ret) + return ret; + + fsm->mtd.name = info->name; + fsm->mtd.dev.parent = &pdev->dev; + mtd_set_of_node(&fsm->mtd, np); + fsm->mtd.type = MTD_NORFLASH; + fsm->mtd.writesize = 4; + fsm->mtd.writebufsize = fsm->mtd.writesize; + fsm->mtd.flags = MTD_CAP_NORFLASH; + fsm->mtd.size = info->sector_size * info->n_sectors; + fsm->mtd.erasesize = info->sector_size; + + fsm->mtd._read = stfsm_mtd_read; + fsm->mtd._write = stfsm_mtd_write; + fsm->mtd._erase = stfsm_mtd_erase; + + dev_info(&pdev->dev, + "Found serial flash device: %s\n" + " size = %llx (%lldMiB) erasesize = 0x%08x (%uKiB)\n", + info->name, + (long long)fsm->mtd.size, (long long)(fsm->mtd.size >> 20), + fsm->mtd.erasesize, (fsm->mtd.erasesize >> 10)); + + return mtd_device_register(&fsm->mtd, NULL, 0); +} + +static int stfsm_remove(struct platform_device *pdev) +{ + struct stfsm *fsm = platform_get_drvdata(pdev); + + WARN_ON(mtd_device_unregister(&fsm->mtd)); + + return 0; +} + +#ifdef CONFIG_PM_SLEEP +static int stfsmfsm_suspend(struct device *dev) +{ + struct stfsm *fsm = dev_get_drvdata(dev); + + clk_disable_unprepare(fsm->clk); + + return 0; +} + +static int stfsmfsm_resume(struct device *dev) +{ + struct stfsm *fsm = dev_get_drvdata(dev); + + return clk_prepare_enable(fsm->clk); +} +#endif + +static SIMPLE_DEV_PM_OPS(stfsm_pm_ops, stfsmfsm_suspend, stfsmfsm_resume); + +static const struct of_device_id stfsm_match[] = { + { .compatible = "st,spi-fsm", }, + {}, +}; +MODULE_DEVICE_TABLE(of, stfsm_match); + +static struct platform_driver stfsm_driver = { + .probe = stfsm_probe, + .remove = stfsm_remove, + .driver = { + .name = "st-spi-fsm", + .of_match_table = stfsm_match, + .pm = &stfsm_pm_ops, + }, +}; +module_platform_driver(stfsm_driver); + +MODULE_AUTHOR("Angus Clark <angus.clark@st.com>"); +MODULE_DESCRIPTION("ST SPI FSM driver"); +MODULE_LICENSE("GPL"); diff --git a/drivers/mtd/ftl.c b/drivers/mtd/ftl.c new file mode 100644 index 0000000000..8c22064ead --- /dev/null +++ b/drivers/mtd/ftl.c @@ -0,0 +1,1063 @@ +/* This version ported to the Linux-MTD system by dwmw2@infradead.org + * + * Fixes: Arnaldo Carvalho de Melo <acme@conectiva.com.br> + * - fixes some leaks on failure in build_maps and ftl_notify_add, cleanups + * + * Based on: + */ +/*====================================================================== + + A Flash Translation Layer memory card driver + + This driver implements a disk-like block device driver with an + apparent block size of 512 bytes for flash memory cards. + + ftl_cs.c 1.62 2000/02/01 00:59:04 + + The contents of this file are subject to the Mozilla Public + License Version 1.1 (the "License"); you may not use this file + except in compliance with the License. You may obtain a copy of + the License at http://www.mozilla.org/MPL/ + + Software distributed under the License is distributed on an "AS + IS" basis, WITHOUT WARRANTY OF ANY KIND, either express or + implied. See the License for the specific language governing + rights and limitations under the License. + + The initial developer of the original code is David A. Hinds + <dahinds@users.sourceforge.net>. Portions created by David A. Hinds + are Copyright © 1999 David A. Hinds. All Rights Reserved. + + Alternatively, the contents of this file may be used under the + terms of the GNU General Public License version 2 (the "GPL"), in + which case the provisions of the GPL are applicable instead of the + above. If you wish to allow the use of your version of this file + only under the terms of the GPL and not to allow others to use + your version of this file under the MPL, indicate your decision + by deleting the provisions above and replace them with the notice + and other provisions required by the GPL. If you do not delete + the provisions above, a recipient may use your version of this + file under either the MPL or the GPL. + + LEGAL NOTE: The FTL format is patented by M-Systems. They have + granted a license for its use with PCMCIA devices: + + "M-Systems grants a royalty-free, non-exclusive license under + any presently existing M-Systems intellectual property rights + necessary for the design and development of FTL-compatible + drivers, file systems and utilities using the data formats with + PCMCIA PC Cards as described in the PCMCIA Flash Translation + Layer (FTL) Specification." + + Use of the FTL format for non-PCMCIA applications may be an + infringement of these patents. For additional information, + contact M-Systems directly. M-Systems since acquired by Sandisk. + +======================================================================*/ +#include <linux/mtd/blktrans.h> +#include <linux/module.h> +#include <linux/mtd/mtd.h> +/*#define PSYCHO_DEBUG */ + +#include <linux/kernel.h> +#include <linux/ptrace.h> +#include <linux/slab.h> +#include <linux/string.h> +#include <linux/timer.h> +#include <linux/major.h> +#include <linux/fs.h> +#include <linux/init.h> +#include <linux/hdreg.h> +#include <linux/vmalloc.h> +#include <linux/blkpg.h> +#include <linux/uaccess.h> + +#include <linux/mtd/ftl.h> + +/*====================================================================*/ + +/* Parameters that can be set with 'insmod' */ +static int shuffle_freq = 50; +module_param(shuffle_freq, int, 0); + +/*====================================================================*/ + +/* Major device # for FTL device */ +#ifndef FTL_MAJOR +#define FTL_MAJOR 44 +#endif + + +/*====================================================================*/ + +/* Maximum number of separate memory devices we'll allow */ +#define MAX_DEV 4 + +/* Maximum number of regions per device */ +#define MAX_REGION 4 + +/* Maximum number of partitions in an FTL region */ +#define PART_BITS 4 + +/* Maximum number of outstanding erase requests per socket */ +#define MAX_ERASE 8 + +/* Sector size -- shouldn't need to change */ +#define SECTOR_SIZE 512 + + +/* Each memory region corresponds to a minor device */ +typedef struct partition_t { + struct mtd_blktrans_dev mbd; + uint32_t state; + uint32_t *VirtualBlockMap; + uint32_t FreeTotal; + struct eun_info_t { + uint32_t Offset; + uint32_t EraseCount; + uint32_t Free; + uint32_t Deleted; + } *EUNInfo; + struct xfer_info_t { + uint32_t Offset; + uint32_t EraseCount; + uint16_t state; + } *XferInfo; + uint16_t bam_index; + uint32_t *bam_cache; + uint16_t DataUnits; + uint32_t BlocksPerUnit; + erase_unit_header_t header; +} partition_t; + +/* Partition state flags */ +#define FTL_FORMATTED 0x01 + +/* Transfer unit states */ +#define XFER_UNKNOWN 0x00 +#define XFER_ERASING 0x01 +#define XFER_ERASED 0x02 +#define XFER_PREPARED 0x03 +#define XFER_FAILED 0x04 + +/*====================================================================== + + Scan_header() checks to see if a memory region contains an FTL + partition. build_maps() reads all the erase unit headers, builds + the erase unit map, and then builds the virtual page map. + +======================================================================*/ + +static int scan_header(partition_t *part) +{ + erase_unit_header_t header; + loff_t offset, max_offset; + size_t ret; + int err; + part->header.FormattedSize = 0; + max_offset = (0x100000<part->mbd.mtd->size)?0x100000:part->mbd.mtd->size; + /* Search first megabyte for a valid FTL header */ + for (offset = 0; + (offset + sizeof(header)) < max_offset; + offset += part->mbd.mtd->erasesize ? : 0x2000) { + + err = mtd_read(part->mbd.mtd, offset, sizeof(header), &ret, + (unsigned char *)&header); + + if (err) + return err; + + if (strcmp(header.DataOrgTuple+3, "FTL100") == 0) break; + } + + if (offset == max_offset) { + printk(KERN_NOTICE "ftl_cs: FTL header not found.\n"); + return -ENOENT; + } + if (header.BlockSize != 9 || + (header.EraseUnitSize < 10) || (header.EraseUnitSize > 31) || + (header.NumTransferUnits >= le16_to_cpu(header.NumEraseUnits))) { + printk(KERN_NOTICE "ftl_cs: FTL header corrupt!\n"); + return -1; + } + if ((1 << header.EraseUnitSize) != part->mbd.mtd->erasesize) { + printk(KERN_NOTICE "ftl: FTL EraseUnitSize %x != MTD erasesize %x\n", + 1 << header.EraseUnitSize,part->mbd.mtd->erasesize); + return -1; + } + part->header = header; + return 0; +} + +static int build_maps(partition_t *part) +{ + erase_unit_header_t header; + uint16_t xvalid, xtrans, i; + unsigned blocks, j; + int hdr_ok, ret = -1; + ssize_t retval; + loff_t offset; + + /* Set up erase unit maps */ + part->DataUnits = le16_to_cpu(part->header.NumEraseUnits) - + part->header.NumTransferUnits; + part->EUNInfo = kmalloc_array(part->DataUnits, sizeof(struct eun_info_t), + GFP_KERNEL); + if (!part->EUNInfo) + goto out; + for (i = 0; i < part->DataUnits; i++) + part->EUNInfo[i].Offset = 0xffffffff; + part->XferInfo = + kmalloc_array(part->header.NumTransferUnits, + sizeof(struct xfer_info_t), + GFP_KERNEL); + if (!part->XferInfo) + goto out_EUNInfo; + + xvalid = xtrans = 0; + for (i = 0; i < le16_to_cpu(part->header.NumEraseUnits); i++) { + offset = ((i + le16_to_cpu(part->header.FirstPhysicalEUN)) + << part->header.EraseUnitSize); + ret = mtd_read(part->mbd.mtd, offset, sizeof(header), &retval, + (unsigned char *)&header); + + if (ret) + goto out_XferInfo; + + ret = -1; + /* Is this a transfer partition? */ + hdr_ok = (strcmp(header.DataOrgTuple+3, "FTL100") == 0); + if (hdr_ok && (le16_to_cpu(header.LogicalEUN) < part->DataUnits) && + (part->EUNInfo[le16_to_cpu(header.LogicalEUN)].Offset == 0xffffffff)) { + part->EUNInfo[le16_to_cpu(header.LogicalEUN)].Offset = offset; + part->EUNInfo[le16_to_cpu(header.LogicalEUN)].EraseCount = + le32_to_cpu(header.EraseCount); + xvalid++; + } else { + if (xtrans == part->header.NumTransferUnits) { + printk(KERN_NOTICE "ftl_cs: format error: too many " + "transfer units!\n"); + goto out_XferInfo; + } + if (hdr_ok && (le16_to_cpu(header.LogicalEUN) == 0xffff)) { + part->XferInfo[xtrans].state = XFER_PREPARED; + part->XferInfo[xtrans].EraseCount = le32_to_cpu(header.EraseCount); + } else { + part->XferInfo[xtrans].state = XFER_UNKNOWN; + /* Pick anything reasonable for the erase count */ + part->XferInfo[xtrans].EraseCount = + le32_to_cpu(part->header.EraseCount); + } + part->XferInfo[xtrans].Offset = offset; + xtrans++; + } + } + /* Check for format trouble */ + header = part->header; + if ((xtrans != header.NumTransferUnits) || + (xvalid+xtrans != le16_to_cpu(header.NumEraseUnits))) { + printk(KERN_NOTICE "ftl_cs: format error: erase units " + "don't add up!\n"); + goto out_XferInfo; + } + + /* Set up virtual page map */ + blocks = le32_to_cpu(header.FormattedSize) >> header.BlockSize; + part->VirtualBlockMap = vmalloc(array_size(blocks, sizeof(uint32_t))); + if (!part->VirtualBlockMap) + goto out_XferInfo; + + memset(part->VirtualBlockMap, 0xff, blocks * sizeof(uint32_t)); + part->BlocksPerUnit = (1 << header.EraseUnitSize) >> header.BlockSize; + + part->bam_cache = kmalloc_array(part->BlocksPerUnit, sizeof(uint32_t), + GFP_KERNEL); + if (!part->bam_cache) + goto out_VirtualBlockMap; + + part->bam_index = 0xffff; + part->FreeTotal = 0; + + for (i = 0; i < part->DataUnits; i++) { + part->EUNInfo[i].Free = 0; + part->EUNInfo[i].Deleted = 0; + offset = part->EUNInfo[i].Offset + le32_to_cpu(header.BAMOffset); + + ret = mtd_read(part->mbd.mtd, offset, + part->BlocksPerUnit * sizeof(uint32_t), &retval, + (unsigned char *)part->bam_cache); + + if (ret) + goto out_bam_cache; + + for (j = 0; j < part->BlocksPerUnit; j++) { + if (BLOCK_FREE(le32_to_cpu(part->bam_cache[j]))) { + part->EUNInfo[i].Free++; + part->FreeTotal++; + } else if ((BLOCK_TYPE(le32_to_cpu(part->bam_cache[j])) == BLOCK_DATA) && + (BLOCK_NUMBER(le32_to_cpu(part->bam_cache[j])) < blocks)) + part->VirtualBlockMap[BLOCK_NUMBER(le32_to_cpu(part->bam_cache[j]))] = + (i << header.EraseUnitSize) + (j << header.BlockSize); + else if (BLOCK_DELETED(le32_to_cpu(part->bam_cache[j]))) + part->EUNInfo[i].Deleted++; + } + } + + ret = 0; + goto out; + +out_bam_cache: + kfree(part->bam_cache); +out_VirtualBlockMap: + vfree(part->VirtualBlockMap); +out_XferInfo: + kfree(part->XferInfo); +out_EUNInfo: + kfree(part->EUNInfo); +out: + return ret; +} /* build_maps */ + +/*====================================================================== + + Erase_xfer() schedules an asynchronous erase operation for a + transfer unit. + +======================================================================*/ + +static int erase_xfer(partition_t *part, + uint16_t xfernum) +{ + int ret; + struct xfer_info_t *xfer; + struct erase_info *erase; + + xfer = &part->XferInfo[xfernum]; + pr_debug("ftl_cs: erasing xfer unit at 0x%x\n", xfer->Offset); + xfer->state = XFER_ERASING; + + /* Is there a free erase slot? Always in MTD. */ + + + erase=kmalloc(sizeof(struct erase_info), GFP_KERNEL); + if (!erase) + return -ENOMEM; + + erase->addr = xfer->Offset; + erase->len = 1 << part->header.EraseUnitSize; + + ret = mtd_erase(part->mbd.mtd, erase); + if (!ret) { + xfer->state = XFER_ERASED; + xfer->EraseCount++; + } else { + xfer->state = XFER_FAILED; + pr_notice("ftl_cs: erase failed: err = %d\n", ret); + } + + kfree(erase); + + return ret; +} /* erase_xfer */ + +/*====================================================================== + + Prepare_xfer() takes a freshly erased transfer unit and gives + it an appropriate header. + +======================================================================*/ + +static int prepare_xfer(partition_t *part, int i) +{ + erase_unit_header_t header; + struct xfer_info_t *xfer; + int nbam, ret; + uint32_t ctl; + ssize_t retlen; + loff_t offset; + + xfer = &part->XferInfo[i]; + xfer->state = XFER_FAILED; + + pr_debug("ftl_cs: preparing xfer unit at 0x%x\n", xfer->Offset); + + /* Write the transfer unit header */ + header = part->header; + header.LogicalEUN = cpu_to_le16(0xffff); + header.EraseCount = cpu_to_le32(xfer->EraseCount); + + ret = mtd_write(part->mbd.mtd, xfer->Offset, sizeof(header), &retlen, + (u_char *)&header); + + if (ret) { + return ret; + } + + /* Write the BAM stub */ + nbam = DIV_ROUND_UP(part->BlocksPerUnit * sizeof(uint32_t) + + le32_to_cpu(part->header.BAMOffset), SECTOR_SIZE); + + offset = xfer->Offset + le32_to_cpu(part->header.BAMOffset); + ctl = cpu_to_le32(BLOCK_CONTROL); + + for (i = 0; i < nbam; i++, offset += sizeof(uint32_t)) { + + ret = mtd_write(part->mbd.mtd, offset, sizeof(uint32_t), &retlen, + (u_char *)&ctl); + + if (ret) + return ret; + } + xfer->state = XFER_PREPARED; + return 0; + +} /* prepare_xfer */ + +/*====================================================================== + + Copy_erase_unit() takes a full erase block and a transfer unit, + copies everything to the transfer unit, then swaps the block + pointers. + + All data blocks are copied to the corresponding blocks in the + target unit, so the virtual block map does not need to be + updated. + +======================================================================*/ + +static int copy_erase_unit(partition_t *part, uint16_t srcunit, + uint16_t xferunit) +{ + u_char buf[SECTOR_SIZE]; + struct eun_info_t *eun; + struct xfer_info_t *xfer; + uint32_t src, dest, free, i; + uint16_t unit; + int ret; + ssize_t retlen; + loff_t offset; + uint16_t srcunitswap = cpu_to_le16(srcunit); + + eun = &part->EUNInfo[srcunit]; + xfer = &part->XferInfo[xferunit]; + pr_debug("ftl_cs: copying block 0x%x to 0x%x\n", + eun->Offset, xfer->Offset); + + + /* Read current BAM */ + if (part->bam_index != srcunit) { + + offset = eun->Offset + le32_to_cpu(part->header.BAMOffset); + + ret = mtd_read(part->mbd.mtd, offset, + part->BlocksPerUnit * sizeof(uint32_t), &retlen, + (u_char *)(part->bam_cache)); + + /* mark the cache bad, in case we get an error later */ + part->bam_index = 0xffff; + + if (ret) { + printk( KERN_WARNING "ftl: Failed to read BAM cache in copy_erase_unit()!\n"); + return ret; + } + } + + /* Write the LogicalEUN for the transfer unit */ + xfer->state = XFER_UNKNOWN; + offset = xfer->Offset + 20; /* Bad! */ + unit = cpu_to_le16(0x7fff); + + ret = mtd_write(part->mbd.mtd, offset, sizeof(uint16_t), &retlen, + (u_char *)&unit); + + if (ret) { + printk( KERN_WARNING "ftl: Failed to write back to BAM cache in copy_erase_unit()!\n"); + return ret; + } + + /* Copy all data blocks from source unit to transfer unit */ + src = eun->Offset; dest = xfer->Offset; + + free = 0; + ret = 0; + for (i = 0; i < part->BlocksPerUnit; i++) { + switch (BLOCK_TYPE(le32_to_cpu(part->bam_cache[i]))) { + case BLOCK_CONTROL: + /* This gets updated later */ + break; + case BLOCK_DATA: + case BLOCK_REPLACEMENT: + ret = mtd_read(part->mbd.mtd, src, SECTOR_SIZE, &retlen, + (u_char *)buf); + if (ret) { + printk(KERN_WARNING "ftl: Error reading old xfer unit in copy_erase_unit\n"); + return ret; + } + + + ret = mtd_write(part->mbd.mtd, dest, SECTOR_SIZE, &retlen, + (u_char *)buf); + if (ret) { + printk(KERN_WARNING "ftl: Error writing new xfer unit in copy_erase_unit\n"); + return ret; + } + + break; + default: + /* All other blocks must be free */ + part->bam_cache[i] = cpu_to_le32(0xffffffff); + free++; + break; + } + src += SECTOR_SIZE; + dest += SECTOR_SIZE; + } + + /* Write the BAM to the transfer unit */ + ret = mtd_write(part->mbd.mtd, + xfer->Offset + le32_to_cpu(part->header.BAMOffset), + part->BlocksPerUnit * sizeof(int32_t), + &retlen, + (u_char *)part->bam_cache); + if (ret) { + printk( KERN_WARNING "ftl: Error writing BAM in copy_erase_unit\n"); + return ret; + } + + + /* All clear? Then update the LogicalEUN again */ + ret = mtd_write(part->mbd.mtd, xfer->Offset + 20, sizeof(uint16_t), + &retlen, (u_char *)&srcunitswap); + + if (ret) { + printk(KERN_WARNING "ftl: Error writing new LogicalEUN in copy_erase_unit\n"); + return ret; + } + + + /* Update the maps and usage stats*/ + swap(xfer->EraseCount, eun->EraseCount); + swap(xfer->Offset, eun->Offset); + part->FreeTotal -= eun->Free; + part->FreeTotal += free; + eun->Free = free; + eun->Deleted = 0; + + /* Now, the cache should be valid for the new block */ + part->bam_index = srcunit; + + return 0; +} /* copy_erase_unit */ + +/*====================================================================== + + reclaim_block() picks a full erase unit and a transfer unit and + then calls copy_erase_unit() to copy one to the other. Then, it + schedules an erase on the expired block. + + What's a good way to decide which transfer unit and which erase + unit to use? Beats me. My way is to always pick the transfer + unit with the fewest erases, and usually pick the data unit with + the most deleted blocks. But with a small probability, pick the + oldest data unit instead. This means that we generally postpone + the next reclamation as long as possible, but shuffle static + stuff around a bit for wear leveling. + +======================================================================*/ + +static int reclaim_block(partition_t *part) +{ + uint16_t i, eun, xfer; + uint32_t best; + int queued, ret; + + pr_debug("ftl_cs: reclaiming space...\n"); + pr_debug("NumTransferUnits == %x\n", part->header.NumTransferUnits); + /* Pick the least erased transfer unit */ + best = 0xffffffff; xfer = 0xffff; + do { + queued = 0; + for (i = 0; i < part->header.NumTransferUnits; i++) { + int n=0; + if (part->XferInfo[i].state == XFER_UNKNOWN) { + pr_debug("XferInfo[%d].state == XFER_UNKNOWN\n",i); + n=1; + erase_xfer(part, i); + } + if (part->XferInfo[i].state == XFER_ERASING) { + pr_debug("XferInfo[%d].state == XFER_ERASING\n",i); + n=1; + queued = 1; + } + else if (part->XferInfo[i].state == XFER_ERASED) { + pr_debug("XferInfo[%d].state == XFER_ERASED\n",i); + n=1; + prepare_xfer(part, i); + } + if (part->XferInfo[i].state == XFER_PREPARED) { + pr_debug("XferInfo[%d].state == XFER_PREPARED\n",i); + n=1; + if (part->XferInfo[i].EraseCount <= best) { + best = part->XferInfo[i].EraseCount; + xfer = i; + } + } + if (!n) + pr_debug("XferInfo[%d].state == %x\n",i, part->XferInfo[i].state); + + } + if (xfer == 0xffff) { + if (queued) { + pr_debug("ftl_cs: waiting for transfer " + "unit to be prepared...\n"); + mtd_sync(part->mbd.mtd); + } else { + static int ne = 0; + if (++ne < 5) + printk(KERN_NOTICE "ftl_cs: reclaim failed: no " + "suitable transfer units!\n"); + else + pr_debug("ftl_cs: reclaim failed: no " + "suitable transfer units!\n"); + + return -EIO; + } + } + } while (xfer == 0xffff); + + eun = 0; + if ((jiffies % shuffle_freq) == 0) { + pr_debug("ftl_cs: recycling freshest block...\n"); + best = 0xffffffff; + for (i = 0; i < part->DataUnits; i++) + if (part->EUNInfo[i].EraseCount <= best) { + best = part->EUNInfo[i].EraseCount; + eun = i; + } + } else { + best = 0; + for (i = 0; i < part->DataUnits; i++) + if (part->EUNInfo[i].Deleted >= best) { + best = part->EUNInfo[i].Deleted; + eun = i; + } + if (best == 0) { + static int ne = 0; + if (++ne < 5) + printk(KERN_NOTICE "ftl_cs: reclaim failed: " + "no free blocks!\n"); + else + pr_debug("ftl_cs: reclaim failed: " + "no free blocks!\n"); + + return -EIO; + } + } + ret = copy_erase_unit(part, eun, xfer); + if (!ret) + erase_xfer(part, xfer); + else + printk(KERN_NOTICE "ftl_cs: copy_erase_unit failed!\n"); + return ret; +} /* reclaim_block */ + +/*====================================================================== + + Find_free() searches for a free block. If necessary, it updates + the BAM cache for the erase unit containing the free block. It + returns the block index -- the erase unit is just the currently + cached unit. If there are no free blocks, it returns 0 -- this + is never a valid data block because it contains the header. + +======================================================================*/ + +#ifdef PSYCHO_DEBUG +static void dump_lists(partition_t *part) +{ + int i; + printk(KERN_DEBUG "ftl_cs: Free total = %d\n", part->FreeTotal); + for (i = 0; i < part->DataUnits; i++) + printk(KERN_DEBUG "ftl_cs: unit %d: %d phys, %d free, " + "%d deleted\n", i, + part->EUNInfo[i].Offset >> part->header.EraseUnitSize, + part->EUNInfo[i].Free, part->EUNInfo[i].Deleted); +} +#endif + +static uint32_t find_free(partition_t *part) +{ + uint16_t stop, eun; + uint32_t blk; + size_t retlen; + int ret; + + /* Find an erase unit with some free space */ + stop = (part->bam_index == 0xffff) ? 0 : part->bam_index; + eun = stop; + do { + if (part->EUNInfo[eun].Free != 0) break; + /* Wrap around at end of table */ + if (++eun == part->DataUnits) eun = 0; + } while (eun != stop); + + if (part->EUNInfo[eun].Free == 0) + return 0; + + /* Is this unit's BAM cached? */ + if (eun != part->bam_index) { + /* Invalidate cache */ + part->bam_index = 0xffff; + + ret = mtd_read(part->mbd.mtd, + part->EUNInfo[eun].Offset + le32_to_cpu(part->header.BAMOffset), + part->BlocksPerUnit * sizeof(uint32_t), + &retlen, + (u_char *)(part->bam_cache)); + + if (ret) { + printk(KERN_WARNING"ftl: Error reading BAM in find_free\n"); + return 0; + } + part->bam_index = eun; + } + + /* Find a free block */ + for (blk = 0; blk < part->BlocksPerUnit; blk++) + if (BLOCK_FREE(le32_to_cpu(part->bam_cache[blk]))) break; + if (blk == part->BlocksPerUnit) { +#ifdef PSYCHO_DEBUG + static int ne = 0; + if (++ne == 1) + dump_lists(part); +#endif + printk(KERN_NOTICE "ftl_cs: bad free list!\n"); + return 0; + } + pr_debug("ftl_cs: found free block at %d in %d\n", blk, eun); + return blk; + +} /* find_free */ + + +/*====================================================================== + + Read a series of sectors from an FTL partition. + +======================================================================*/ + +static int ftl_read(partition_t *part, caddr_t buffer, + u_long sector, u_long nblocks) +{ + uint32_t log_addr, bsize; + u_long i; + int ret; + size_t offset, retlen; + + pr_debug("ftl_cs: ftl_read(0x%p, 0x%lx, %ld)\n", + part, sector, nblocks); + if (!(part->state & FTL_FORMATTED)) { + printk(KERN_NOTICE "ftl_cs: bad partition\n"); + return -EIO; + } + bsize = 1 << part->header.EraseUnitSize; + + for (i = 0; i < nblocks; i++) { + if (((sector+i) * SECTOR_SIZE) >= le32_to_cpu(part->header.FormattedSize)) { + printk(KERN_NOTICE "ftl_cs: bad read offset\n"); + return -EIO; + } + log_addr = part->VirtualBlockMap[sector+i]; + if (log_addr == 0xffffffff) + memset(buffer, 0, SECTOR_SIZE); + else { + offset = (part->EUNInfo[log_addr / bsize].Offset + + (log_addr % bsize)); + ret = mtd_read(part->mbd.mtd, offset, SECTOR_SIZE, &retlen, + (u_char *)buffer); + + if (ret) { + printk(KERN_WARNING "Error reading MTD device in ftl_read()\n"); + return ret; + } + } + buffer += SECTOR_SIZE; + } + return 0; +} /* ftl_read */ + +/*====================================================================== + + Write a series of sectors to an FTL partition + +======================================================================*/ + +static int set_bam_entry(partition_t *part, uint32_t log_addr, + uint32_t virt_addr) +{ + uint32_t bsize, blk, le_virt_addr; +#ifdef PSYCHO_DEBUG + uint32_t old_addr; +#endif + uint16_t eun; + int ret; + size_t retlen, offset; + + pr_debug("ftl_cs: set_bam_entry(0x%p, 0x%x, 0x%x)\n", + part, log_addr, virt_addr); + bsize = 1 << part->header.EraseUnitSize; + eun = log_addr / bsize; + blk = (log_addr % bsize) / SECTOR_SIZE; + offset = (part->EUNInfo[eun].Offset + blk * sizeof(uint32_t) + + le32_to_cpu(part->header.BAMOffset)); + +#ifdef PSYCHO_DEBUG + ret = mtd_read(part->mbd.mtd, offset, sizeof(uint32_t), &retlen, + (u_char *)&old_addr); + if (ret) { + printk(KERN_WARNING"ftl: Error reading old_addr in set_bam_entry: %d\n",ret); + return ret; + } + old_addr = le32_to_cpu(old_addr); + + if (((virt_addr == 0xfffffffe) && !BLOCK_FREE(old_addr)) || + ((virt_addr == 0) && (BLOCK_TYPE(old_addr) != BLOCK_DATA)) || + (!BLOCK_DELETED(virt_addr) && (old_addr != 0xfffffffe))) { + static int ne = 0; + if (++ne < 5) { + printk(KERN_NOTICE "ftl_cs: set_bam_entry() inconsistency!\n"); + printk(KERN_NOTICE "ftl_cs: log_addr = 0x%x, old = 0x%x" + ", new = 0x%x\n", log_addr, old_addr, virt_addr); + } + return -EIO; + } +#endif + le_virt_addr = cpu_to_le32(virt_addr); + if (part->bam_index == eun) { +#ifdef PSYCHO_DEBUG + if (le32_to_cpu(part->bam_cache[blk]) != old_addr) { + static int ne = 0; + if (++ne < 5) { + printk(KERN_NOTICE "ftl_cs: set_bam_entry() " + "inconsistency!\n"); + printk(KERN_NOTICE "ftl_cs: log_addr = 0x%x, cache" + " = 0x%x\n", + le32_to_cpu(part->bam_cache[blk]), old_addr); + } + return -EIO; + } +#endif + part->bam_cache[blk] = le_virt_addr; + } + ret = mtd_write(part->mbd.mtd, offset, sizeof(uint32_t), &retlen, + (u_char *)&le_virt_addr); + + if (ret) { + printk(KERN_NOTICE "ftl_cs: set_bam_entry() failed!\n"); + printk(KERN_NOTICE "ftl_cs: log_addr = 0x%x, new = 0x%x\n", + log_addr, virt_addr); + } + return ret; +} /* set_bam_entry */ + +static int ftl_write(partition_t *part, caddr_t buffer, + u_long sector, u_long nblocks) +{ + uint32_t bsize, log_addr, virt_addr, old_addr, blk; + u_long i; + int ret; + size_t retlen, offset; + + pr_debug("ftl_cs: ftl_write(0x%p, %ld, %ld)\n", + part, sector, nblocks); + if (!(part->state & FTL_FORMATTED)) { + printk(KERN_NOTICE "ftl_cs: bad partition\n"); + return -EIO; + } + /* See if we need to reclaim space, before we start */ + while (part->FreeTotal < nblocks) { + ret = reclaim_block(part); + if (ret) + return ret; + } + + bsize = 1 << part->header.EraseUnitSize; + + virt_addr = sector * SECTOR_SIZE | BLOCK_DATA; + for (i = 0; i < nblocks; i++) { + if (virt_addr >= le32_to_cpu(part->header.FormattedSize)) { + printk(KERN_NOTICE "ftl_cs: bad write offset\n"); + return -EIO; + } + + /* Grab a free block */ + blk = find_free(part); + if (blk == 0) { + static int ne = 0; + if (++ne < 5) + printk(KERN_NOTICE "ftl_cs: internal error: " + "no free blocks!\n"); + return -ENOSPC; + } + + /* Tag the BAM entry, and write the new block */ + log_addr = part->bam_index * bsize + blk * SECTOR_SIZE; + part->EUNInfo[part->bam_index].Free--; + part->FreeTotal--; + if (set_bam_entry(part, log_addr, 0xfffffffe)) + return -EIO; + part->EUNInfo[part->bam_index].Deleted++; + offset = (part->EUNInfo[part->bam_index].Offset + + blk * SECTOR_SIZE); + ret = mtd_write(part->mbd.mtd, offset, SECTOR_SIZE, &retlen, buffer); + + if (ret) { + printk(KERN_NOTICE "ftl_cs: block write failed!\n"); + printk(KERN_NOTICE "ftl_cs: log_addr = 0x%x, virt_addr" + " = 0x%x, Offset = 0x%zx\n", log_addr, virt_addr, + offset); + return -EIO; + } + + /* Only delete the old entry when the new entry is ready */ + old_addr = part->VirtualBlockMap[sector+i]; + if (old_addr != 0xffffffff) { + part->VirtualBlockMap[sector+i] = 0xffffffff; + part->EUNInfo[old_addr/bsize].Deleted++; + if (set_bam_entry(part, old_addr, 0)) + return -EIO; + } + + /* Finally, set up the new pointers */ + if (set_bam_entry(part, log_addr, virt_addr)) + return -EIO; + part->VirtualBlockMap[sector+i] = log_addr; + part->EUNInfo[part->bam_index].Deleted--; + + buffer += SECTOR_SIZE; + virt_addr += SECTOR_SIZE; + } + return 0; +} /* ftl_write */ + +static int ftl_getgeo(struct mtd_blktrans_dev *dev, struct hd_geometry *geo) +{ + partition_t *part = container_of(dev, struct partition_t, mbd); + u_long sect; + + /* Sort of arbitrary: round size down to 4KiB boundary */ + sect = le32_to_cpu(part->header.FormattedSize)/SECTOR_SIZE; + + geo->heads = 1; + geo->sectors = 8; + geo->cylinders = sect >> 3; + + return 0; +} + +static int ftl_readsect(struct mtd_blktrans_dev *dev, + unsigned long block, char *buf) +{ + return ftl_read((void *)dev, buf, block, 1); +} + +static int ftl_writesect(struct mtd_blktrans_dev *dev, + unsigned long block, char *buf) +{ + return ftl_write((void *)dev, buf, block, 1); +} + +static int ftl_discardsect(struct mtd_blktrans_dev *dev, + unsigned long sector, unsigned nr_sects) +{ + partition_t *part = container_of(dev, struct partition_t, mbd); + uint32_t bsize = 1 << part->header.EraseUnitSize; + + pr_debug("FTL erase sector %ld for %d sectors\n", + sector, nr_sects); + + while (nr_sects) { + uint32_t old_addr = part->VirtualBlockMap[sector]; + if (old_addr != 0xffffffff) { + part->VirtualBlockMap[sector] = 0xffffffff; + part->EUNInfo[old_addr/bsize].Deleted++; + if (set_bam_entry(part, old_addr, 0)) + return -EIO; + } + nr_sects--; + sector++; + } + + return 0; +} +/*====================================================================*/ + +static void ftl_freepart(partition_t *part) +{ + vfree(part->VirtualBlockMap); + part->VirtualBlockMap = NULL; + kfree(part->EUNInfo); + part->EUNInfo = NULL; + kfree(part->XferInfo); + part->XferInfo = NULL; + kfree(part->bam_cache); + part->bam_cache = NULL; +} /* ftl_freepart */ + +static void ftl_add_mtd(struct mtd_blktrans_ops *tr, struct mtd_info *mtd) +{ + partition_t *partition; + + partition = kzalloc(sizeof(partition_t), GFP_KERNEL); + + if (!partition) { + printk(KERN_WARNING "No memory to scan for FTL on %s\n", + mtd->name); + return; + } + + partition->mbd.mtd = mtd; + + if ((scan_header(partition) == 0) && + (build_maps(partition) == 0)) { + + partition->state = FTL_FORMATTED; +#ifdef PCMCIA_DEBUG + printk(KERN_INFO "ftl_cs: opening %d KiB FTL partition\n", + le32_to_cpu(partition->header.FormattedSize) >> 10); +#endif + partition->mbd.size = le32_to_cpu(partition->header.FormattedSize) >> 9; + + partition->mbd.tr = tr; + partition->mbd.devnum = -1; + if (!add_mtd_blktrans_dev(&partition->mbd)) + return; + } + + kfree(partition); +} + +static void ftl_remove_dev(struct mtd_blktrans_dev *dev) +{ + del_mtd_blktrans_dev(dev); + ftl_freepart((partition_t *)dev); +} + +static struct mtd_blktrans_ops ftl_tr = { + .name = "ftl", + .major = FTL_MAJOR, + .part_bits = PART_BITS, + .blksize = SECTOR_SIZE, + .readsect = ftl_readsect, + .writesect = ftl_writesect, + .discard = ftl_discardsect, + .getgeo = ftl_getgeo, + .add_mtd = ftl_add_mtd, + .remove_dev = ftl_remove_dev, + .owner = THIS_MODULE, +}; + +module_mtd_blktrans(ftl_tr); + +MODULE_LICENSE("Dual MPL/GPL"); +MODULE_AUTHOR("David Hinds <dahinds@users.sourceforge.net>"); +MODULE_DESCRIPTION("Support code for Flash Translation Layer, used on PCMCIA devices"); diff --git a/drivers/mtd/hyperbus/Kconfig b/drivers/mtd/hyperbus/Kconfig new file mode 100644 index 0000000000..30ffc4c16e --- /dev/null +++ b/drivers/mtd/hyperbus/Kconfig @@ -0,0 +1,32 @@ +menuconfig MTD_HYPERBUS + tristate "HyperBus support" + depends on HAS_IOMEM + select MTD_CFI + select MTD_MAP_BANK_WIDTH_2 + select MTD_CFI_AMDSTD + select MTD_COMPLEX_MAPPINGS + help + This is the framework for the HyperBus which can be used by + the HyperBus Controller driver to communicate with + HyperFlash. See Cypress HyperBus specification for more + details + +if MTD_HYPERBUS + +config HBMC_AM654 + tristate "HyperBus controller driver for AM65x SoC" + depends on ARCH_K3 || COMPILE_TEST + select MULTIPLEXER + imply MUX_MMIO + help + This is the driver for HyperBus controller on TI's AM65x and + other SoCs + +config RPCIF_HYPERBUS + tristate "Renesas RPC-IF HyperBus driver" + depends on RENESAS_RPCIF + depends on MTD_CFI_BE_BYTE_SWAP + help + This option includes Renesas RPC-IF HyperBus support. + +endif # MTD_HYPERBUS diff --git a/drivers/mtd/hyperbus/Makefile b/drivers/mtd/hyperbus/Makefile new file mode 100644 index 0000000000..5fc2b51245 --- /dev/null +++ b/drivers/mtd/hyperbus/Makefile @@ -0,0 +1,5 @@ +# SPDX-License-Identifier: GPL-2.0 + +obj-$(CONFIG_MTD_HYPERBUS) += hyperbus-core.o +obj-$(CONFIG_HBMC_AM654) += hbmc-am654.o +obj-$(CONFIG_RPCIF_HYPERBUS) += rpc-if.o diff --git a/drivers/mtd/hyperbus/hbmc-am654.c b/drivers/mtd/hyperbus/hbmc-am654.c new file mode 100644 index 0000000000..a6161ce340 --- /dev/null +++ b/drivers/mtd/hyperbus/hbmc-am654.c @@ -0,0 +1,271 @@ +// SPDX-License-Identifier: GPL-2.0 +// +// Copyright (C) 2019 Texas Instruments Incorporated - https://www.ti.com/ +// Author: Vignesh Raghavendra <vigneshr@ti.com> + +#include <linux/completion.h> +#include <linux/dma-direction.h> +#include <linux/dma-mapping.h> +#include <linux/dmaengine.h> +#include <linux/err.h> +#include <linux/kernel.h> +#include <linux/module.h> +#include <linux/mtd/cfi.h> +#include <linux/mtd/hyperbus.h> +#include <linux/mtd/mtd.h> +#include <linux/mux/consumer.h> +#include <linux/of.h> +#include <linux/of_address.h> +#include <linux/platform_device.h> +#include <linux/sched/task_stack.h> +#include <linux/types.h> + +#define AM654_HBMC_CALIB_COUNT 25 + +struct am654_hbmc_device_priv { + struct completion rx_dma_complete; + phys_addr_t device_base; + struct hyperbus_ctlr *ctlr; + struct dma_chan *rx_chan; +}; + +struct am654_hbmc_priv { + struct hyperbus_ctlr ctlr; + struct hyperbus_device hbdev; + struct mux_control *mux_ctrl; +}; + +static int am654_hbmc_calibrate(struct hyperbus_device *hbdev) +{ + struct map_info *map = &hbdev->map; + struct cfi_private cfi; + int count = AM654_HBMC_CALIB_COUNT; + int pass_count = 0; + int ret; + + cfi.interleave = 1; + cfi.device_type = CFI_DEVICETYPE_X16; + cfi_send_gen_cmd(0xF0, 0, 0, map, &cfi, cfi.device_type, NULL); + cfi_send_gen_cmd(0x98, 0x55, 0, map, &cfi, cfi.device_type, NULL); + + while (count--) { + ret = cfi_qry_present(map, 0, &cfi); + if (ret) + pass_count++; + else + pass_count = 0; + if (pass_count == 5) + break; + } + + cfi_qry_mode_off(0, map, &cfi); + + return ret; +} + +static void am654_hbmc_dma_callback(void *param) +{ + struct am654_hbmc_device_priv *priv = param; + + complete(&priv->rx_dma_complete); +} + +static int am654_hbmc_dma_read(struct am654_hbmc_device_priv *priv, void *to, + unsigned long from, ssize_t len) + +{ + enum dma_ctrl_flags flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT; + struct dma_chan *rx_chan = priv->rx_chan; + struct dma_async_tx_descriptor *tx; + dma_addr_t dma_dst, dma_src; + dma_cookie_t cookie; + int ret; + + if (!priv->rx_chan || !virt_addr_valid(to) || object_is_on_stack(to)) + return -EINVAL; + + dma_dst = dma_map_single(rx_chan->device->dev, to, len, DMA_FROM_DEVICE); + if (dma_mapping_error(rx_chan->device->dev, dma_dst)) { + dev_dbg(priv->ctlr->dev, "DMA mapping failed\n"); + return -EIO; + } + + dma_src = priv->device_base + from; + tx = dmaengine_prep_dma_memcpy(rx_chan, dma_dst, dma_src, len, flags); + if (!tx) { + dev_err(priv->ctlr->dev, "device_prep_dma_memcpy error\n"); + ret = -EIO; + goto unmap_dma; + } + + reinit_completion(&priv->rx_dma_complete); + tx->callback = am654_hbmc_dma_callback; + tx->callback_param = priv; + cookie = dmaengine_submit(tx); + + ret = dma_submit_error(cookie); + if (ret) { + dev_err(priv->ctlr->dev, "dma_submit_error %d\n", cookie); + goto unmap_dma; + } + + dma_async_issue_pending(rx_chan); + if (!wait_for_completion_timeout(&priv->rx_dma_complete, msecs_to_jiffies(len + 1000))) { + dmaengine_terminate_sync(rx_chan); + dev_err(priv->ctlr->dev, "DMA wait_for_completion_timeout\n"); + ret = -ETIMEDOUT; + } + +unmap_dma: + dma_unmap_single(rx_chan->device->dev, dma_dst, len, DMA_FROM_DEVICE); + return ret; +} + +static void am654_hbmc_read(struct hyperbus_device *hbdev, void *to, + unsigned long from, ssize_t len) +{ + struct am654_hbmc_device_priv *priv = hbdev->priv; + + if (len < SZ_1K || am654_hbmc_dma_read(priv, to, from, len)) + memcpy_fromio(to, hbdev->map.virt + from, len); +} + +static const struct hyperbus_ops am654_hbmc_ops = { + .calibrate = am654_hbmc_calibrate, + .copy_from = am654_hbmc_read, +}; + +static int am654_hbmc_request_mmap_dma(struct am654_hbmc_device_priv *priv) +{ + struct dma_chan *rx_chan; + dma_cap_mask_t mask; + + dma_cap_zero(mask); + dma_cap_set(DMA_MEMCPY, mask); + + rx_chan = dma_request_chan_by_mask(&mask); + if (IS_ERR(rx_chan)) { + if (PTR_ERR(rx_chan) == -EPROBE_DEFER) + return -EPROBE_DEFER; + dev_dbg(priv->ctlr->dev, "No DMA channel available\n"); + return 0; + } + priv->rx_chan = rx_chan; + init_completion(&priv->rx_dma_complete); + + return 0; +} + +static int am654_hbmc_probe(struct platform_device *pdev) +{ + struct device_node *np = pdev->dev.of_node; + struct am654_hbmc_device_priv *dev_priv; + struct device *dev = &pdev->dev; + struct am654_hbmc_priv *priv; + struct resource res; + int ret; + + priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL); + if (!priv) + return -ENOMEM; + + platform_set_drvdata(pdev, priv); + + priv->hbdev.np = of_get_next_child(np, NULL); + ret = of_address_to_resource(priv->hbdev.np, 0, &res); + if (ret) + return ret; + + if (of_property_read_bool(dev->of_node, "mux-controls")) { + struct mux_control *control = devm_mux_control_get(dev, NULL); + + if (IS_ERR(control)) + return PTR_ERR(control); + + ret = mux_control_select(control, 1); + if (ret) { + dev_err(dev, "Failed to select HBMC mux\n"); + return ret; + } + priv->mux_ctrl = control; + } + + priv->hbdev.map.size = resource_size(&res); + priv->hbdev.map.virt = devm_ioremap_resource(dev, &res); + if (IS_ERR(priv->hbdev.map.virt)) + return PTR_ERR(priv->hbdev.map.virt); + + priv->ctlr.dev = dev; + priv->ctlr.ops = &am654_hbmc_ops; + priv->hbdev.ctlr = &priv->ctlr; + + dev_priv = devm_kzalloc(dev, sizeof(*dev_priv), GFP_KERNEL); + if (!dev_priv) { + ret = -ENOMEM; + goto disable_mux; + } + + priv->hbdev.priv = dev_priv; + dev_priv->device_base = res.start; + dev_priv->ctlr = &priv->ctlr; + + ret = am654_hbmc_request_mmap_dma(dev_priv); + if (ret) + goto disable_mux; + + ret = hyperbus_register_device(&priv->hbdev); + if (ret) { + dev_err(dev, "failed to register controller\n"); + goto release_dma; + } + + return 0; +release_dma: + if (dev_priv->rx_chan) + dma_release_channel(dev_priv->rx_chan); +disable_mux: + if (priv->mux_ctrl) + mux_control_deselect(priv->mux_ctrl); + return ret; +} + +static int am654_hbmc_remove(struct platform_device *pdev) +{ + struct am654_hbmc_priv *priv = platform_get_drvdata(pdev); + struct am654_hbmc_device_priv *dev_priv = priv->hbdev.priv; + + hyperbus_unregister_device(&priv->hbdev); + + if (priv->mux_ctrl) + mux_control_deselect(priv->mux_ctrl); + + if (dev_priv->rx_chan) + dma_release_channel(dev_priv->rx_chan); + + return 0; +} + +static const struct of_device_id am654_hbmc_dt_ids[] = { + { + .compatible = "ti,am654-hbmc", + }, + { /* end of table */ } +}; + +MODULE_DEVICE_TABLE(of, am654_hbmc_dt_ids); + +static struct platform_driver am654_hbmc_platform_driver = { + .probe = am654_hbmc_probe, + .remove = am654_hbmc_remove, + .driver = { + .name = "hbmc-am654", + .of_match_table = am654_hbmc_dt_ids, + }, +}; + +module_platform_driver(am654_hbmc_platform_driver); + +MODULE_DESCRIPTION("HBMC driver for AM654 SoC"); +MODULE_LICENSE("GPL v2"); +MODULE_ALIAS("platform:hbmc-am654"); +MODULE_AUTHOR("Vignesh Raghavendra <vigneshr@ti.com>"); diff --git a/drivers/mtd/hyperbus/hyperbus-core.c b/drivers/mtd/hyperbus/hyperbus-core.c new file mode 100644 index 0000000000..4d8047d43e --- /dev/null +++ b/drivers/mtd/hyperbus/hyperbus-core.c @@ -0,0 +1,140 @@ +// SPDX-License-Identifier: GPL-2.0 +// +// Copyright (C) 2019 Texas Instruments Incorporated - https://www.ti.com/ +// Author: Vignesh Raghavendra <vigneshr@ti.com> + +#include <linux/err.h> +#include <linux/kernel.h> +#include <linux/module.h> +#include <linux/mtd/hyperbus.h> +#include <linux/mtd/map.h> +#include <linux/mtd/mtd.h> +#include <linux/of.h> +#include <linux/types.h> + +static struct hyperbus_device *map_to_hbdev(struct map_info *map) +{ + return container_of(map, struct hyperbus_device, map); +} + +static map_word hyperbus_read16(struct map_info *map, unsigned long addr) +{ + struct hyperbus_device *hbdev = map_to_hbdev(map); + struct hyperbus_ctlr *ctlr = hbdev->ctlr; + map_word read_data; + + read_data.x[0] = ctlr->ops->read16(hbdev, addr); + + return read_data; +} + +static void hyperbus_write16(struct map_info *map, map_word d, + unsigned long addr) +{ + struct hyperbus_device *hbdev = map_to_hbdev(map); + struct hyperbus_ctlr *ctlr = hbdev->ctlr; + + ctlr->ops->write16(hbdev, addr, d.x[0]); +} + +static void hyperbus_copy_from(struct map_info *map, void *to, + unsigned long from, ssize_t len) +{ + struct hyperbus_device *hbdev = map_to_hbdev(map); + struct hyperbus_ctlr *ctlr = hbdev->ctlr; + + ctlr->ops->copy_from(hbdev, to, from, len); +} + +static void hyperbus_copy_to(struct map_info *map, unsigned long to, + const void *from, ssize_t len) +{ + struct hyperbus_device *hbdev = map_to_hbdev(map); + struct hyperbus_ctlr *ctlr = hbdev->ctlr; + + ctlr->ops->copy_to(hbdev, to, from, len); +} + +int hyperbus_register_device(struct hyperbus_device *hbdev) +{ + const struct hyperbus_ops *ops; + struct hyperbus_ctlr *ctlr; + struct device_node *np; + struct map_info *map; + struct device *dev; + int ret; + + if (!hbdev || !hbdev->np || !hbdev->ctlr || !hbdev->ctlr->dev) { + pr_err("hyperbus: please fill all the necessary fields!\n"); + return -EINVAL; + } + + np = hbdev->np; + ctlr = hbdev->ctlr; + if (!of_device_is_compatible(np, "cypress,hyperflash")) { + dev_err(ctlr->dev, "\"cypress,hyperflash\" compatible missing\n"); + return -ENODEV; + } + + hbdev->memtype = HYPERFLASH; + + dev = ctlr->dev; + map = &hbdev->map; + map->name = dev_name(dev); + map->bankwidth = 2; + map->device_node = np; + + simple_map_init(map); + ops = ctlr->ops; + if (ops) { + if (ops->read16) + map->read = hyperbus_read16; + if (ops->write16) + map->write = hyperbus_write16; + if (ops->copy_to) + map->copy_to = hyperbus_copy_to; + if (ops->copy_from) + map->copy_from = hyperbus_copy_from; + + if (ops->calibrate && !ctlr->calibrated) { + ret = ops->calibrate(hbdev); + if (!ret) { + dev_err(dev, "Calibration failed\n"); + return -ENODEV; + } + ctlr->calibrated = true; + } + } + + hbdev->mtd = do_map_probe("cfi_probe", map); + if (!hbdev->mtd) { + dev_err(dev, "probing of hyperbus device failed\n"); + return -ENODEV; + } + + hbdev->mtd->dev.parent = dev; + mtd_set_of_node(hbdev->mtd, np); + + ret = mtd_device_register(hbdev->mtd, NULL, 0); + if (ret) { + dev_err(dev, "failed to register mtd device\n"); + map_destroy(hbdev->mtd); + return ret; + } + + return 0; +} +EXPORT_SYMBOL_GPL(hyperbus_register_device); + +void hyperbus_unregister_device(struct hyperbus_device *hbdev) +{ + if (hbdev && hbdev->mtd) { + WARN_ON(mtd_device_unregister(hbdev->mtd)); + map_destroy(hbdev->mtd); + } +} +EXPORT_SYMBOL_GPL(hyperbus_unregister_device); + +MODULE_DESCRIPTION("HyperBus Framework"); +MODULE_LICENSE("GPL v2"); +MODULE_AUTHOR("Vignesh Raghavendra <vigneshr@ti.com>"); diff --git a/drivers/mtd/hyperbus/rpc-if.c b/drivers/mtd/hyperbus/rpc-if.c new file mode 100644 index 0000000000..ef32fca5f7 --- /dev/null +++ b/drivers/mtd/hyperbus/rpc-if.c @@ -0,0 +1,179 @@ +// SPDX-License-Identifier: GPL-2.0 +/* + * Linux driver for RPC-IF HyperFlash + * + * Copyright (C) 2019-2020 Cogent Embedded, Inc. + */ + +#include <linux/err.h> +#include <linux/kernel.h> +#include <linux/module.h> +#include <linux/mtd/hyperbus.h> +#include <linux/mtd/mtd.h> +#include <linux/mux/consumer.h> +#include <linux/of.h> +#include <linux/platform_device.h> +#include <linux/types.h> + +#include <memory/renesas-rpc-if.h> + +struct rpcif_hyperbus { + struct rpcif rpc; + struct hyperbus_ctlr ctlr; + struct hyperbus_device hbdev; +}; + +static const struct rpcif_op rpcif_op_tmpl = { + .cmd = { + .buswidth = 8, + .ddr = true, + }, + .ocmd = { + .buswidth = 8, + .ddr = true, + }, + .addr = { + .nbytes = 1, + .buswidth = 8, + .ddr = true, + }, + .data = { + .buswidth = 8, + .ddr = true, + }, +}; + +static void rpcif_hb_prepare_read(struct rpcif *rpc, void *to, + unsigned long from, ssize_t len) +{ + struct rpcif_op op = rpcif_op_tmpl; + + op.cmd.opcode = HYPERBUS_RW_READ | HYPERBUS_AS_MEM; + op.addr.val = from >> 1; + op.dummy.buswidth = 1; + op.dummy.ncycles = 15; + op.data.dir = RPCIF_DATA_IN; + op.data.nbytes = len; + op.data.buf.in = to; + + rpcif_prepare(rpc->dev, &op, NULL, NULL); +} + +static void rpcif_hb_prepare_write(struct rpcif *rpc, unsigned long to, + void *from, ssize_t len) +{ + struct rpcif_op op = rpcif_op_tmpl; + + op.cmd.opcode = HYPERBUS_RW_WRITE | HYPERBUS_AS_MEM; + op.addr.val = to >> 1; + op.data.dir = RPCIF_DATA_OUT; + op.data.nbytes = len; + op.data.buf.out = from; + + rpcif_prepare(rpc->dev, &op, NULL, NULL); +} + +static u16 rpcif_hb_read16(struct hyperbus_device *hbdev, unsigned long addr) +{ + struct rpcif_hyperbus *hyperbus = + container_of(hbdev, struct rpcif_hyperbus, hbdev); + map_word data; + + rpcif_hb_prepare_read(&hyperbus->rpc, &data, addr, 2); + + rpcif_manual_xfer(hyperbus->rpc.dev); + + return data.x[0]; +} + +static void rpcif_hb_write16(struct hyperbus_device *hbdev, unsigned long addr, + u16 data) +{ + struct rpcif_hyperbus *hyperbus = + container_of(hbdev, struct rpcif_hyperbus, hbdev); + + rpcif_hb_prepare_write(&hyperbus->rpc, addr, &data, 2); + + rpcif_manual_xfer(hyperbus->rpc.dev); +} + +static void rpcif_hb_copy_from(struct hyperbus_device *hbdev, void *to, + unsigned long from, ssize_t len) +{ + struct rpcif_hyperbus *hyperbus = + container_of(hbdev, struct rpcif_hyperbus, hbdev); + + rpcif_hb_prepare_read(&hyperbus->rpc, to, from, len); + + rpcif_dirmap_read(hyperbus->rpc.dev, from, len, to); +} + +static const struct hyperbus_ops rpcif_hb_ops = { + .read16 = rpcif_hb_read16, + .write16 = rpcif_hb_write16, + .copy_from = rpcif_hb_copy_from, +}; + +static int rpcif_hb_probe(struct platform_device *pdev) +{ + struct device *dev = &pdev->dev; + struct rpcif_hyperbus *hyperbus; + int error; + + hyperbus = devm_kzalloc(dev, sizeof(*hyperbus), GFP_KERNEL); + if (!hyperbus) + return -ENOMEM; + + error = rpcif_sw_init(&hyperbus->rpc, pdev->dev.parent); + if (error) + return error; + + platform_set_drvdata(pdev, hyperbus); + + pm_runtime_enable(hyperbus->rpc.dev); + + error = rpcif_hw_init(hyperbus->rpc.dev, true); + if (error) + goto out_disable_rpm; + + hyperbus->hbdev.map.size = hyperbus->rpc.size; + hyperbus->hbdev.map.virt = hyperbus->rpc.dirmap; + + hyperbus->ctlr.dev = dev; + hyperbus->ctlr.ops = &rpcif_hb_ops; + hyperbus->hbdev.ctlr = &hyperbus->ctlr; + hyperbus->hbdev.np = of_get_next_child(pdev->dev.parent->of_node, NULL); + error = hyperbus_register_device(&hyperbus->hbdev); + if (error) + goto out_disable_rpm; + + return 0; + +out_disable_rpm: + pm_runtime_disable(hyperbus->rpc.dev); + return error; +} + +static int rpcif_hb_remove(struct platform_device *pdev) +{ + struct rpcif_hyperbus *hyperbus = platform_get_drvdata(pdev); + + hyperbus_unregister_device(&hyperbus->hbdev); + + pm_runtime_disable(hyperbus->rpc.dev); + + return 0; +} + +static struct platform_driver rpcif_platform_driver = { + .probe = rpcif_hb_probe, + .remove = rpcif_hb_remove, + .driver = { + .name = "rpc-if-hyperflash", + }, +}; + +module_platform_driver(rpcif_platform_driver); + +MODULE_DESCRIPTION("Renesas RPC-IF HyperFlash driver"); +MODULE_LICENSE("GPL v2"); diff --git a/drivers/mtd/inftlcore.c b/drivers/mtd/inftlcore.c new file mode 100644 index 0000000000..9739387cff --- /dev/null +++ b/drivers/mtd/inftlcore.c @@ -0,0 +1,944 @@ +// SPDX-License-Identifier: GPL-2.0-or-later +/* + * inftlcore.c -- Linux driver for Inverse Flash Translation Layer (INFTL) + * + * Copyright © 2002, Greg Ungerer (gerg@snapgear.com) + * + * Based heavily on the nftlcore.c code which is: + * Copyright © 1999 Machine Vision Holdings, Inc. + * Copyright © 1999 David Woodhouse <dwmw2@infradead.org> + */ + +#include <linux/kernel.h> +#include <linux/module.h> +#include <linux/delay.h> +#include <linux/slab.h> +#include <linux/sched.h> +#include <linux/init.h> +#include <linux/kmod.h> +#include <linux/hdreg.h> +#include <linux/mtd/mtd.h> +#include <linux/mtd/nftl.h> +#include <linux/mtd/inftl.h> +#include <linux/mtd/rawnand.h> +#include <linux/uaccess.h> +#include <asm/errno.h> +#include <asm/io.h> + +/* + * Maximum number of loops while examining next block, to have a + * chance to detect consistency problems (they should never happen + * because of the checks done in the mounting. + */ +#define MAX_LOOPS 10000 + +static void inftl_add_mtd(struct mtd_blktrans_ops *tr, struct mtd_info *mtd) +{ + struct INFTLrecord *inftl; + unsigned long temp; + + if (!mtd_type_is_nand(mtd) || mtd->size > UINT_MAX) + return; + /* OK, this is moderately ugly. But probably safe. Alternatives? */ + if (memcmp(mtd->name, "DiskOnChip", 10)) + return; + + if (!mtd->_block_isbad) { + printk(KERN_ERR +"INFTL no longer supports the old DiskOnChip drivers loaded via docprobe.\n" +"Please use the new diskonchip driver under the NAND subsystem.\n"); + return; + } + + pr_debug("INFTL: add_mtd for %s\n", mtd->name); + + inftl = kzalloc(sizeof(*inftl), GFP_KERNEL); + + if (!inftl) + return; + + inftl->mbd.mtd = mtd; + inftl->mbd.devnum = -1; + + inftl->mbd.tr = tr; + + if (INFTL_mount(inftl) < 0) { + printk(KERN_WARNING "INFTL: could not mount device\n"); + kfree(inftl); + return; + } + + /* OK, it's a new one. Set up all the data structures. */ + + /* Calculate geometry */ + inftl->cylinders = 1024; + inftl->heads = 16; + + temp = inftl->cylinders * inftl->heads; + inftl->sectors = inftl->mbd.size / temp; + if (inftl->mbd.size % temp) { + inftl->sectors++; + temp = inftl->cylinders * inftl->sectors; + inftl->heads = inftl->mbd.size / temp; + + if (inftl->mbd.size % temp) { + inftl->heads++; + temp = inftl->heads * inftl->sectors; + inftl->cylinders = inftl->mbd.size / temp; + } + } + + if (inftl->mbd.size != inftl->heads * inftl->cylinders * inftl->sectors) { + /* + Oh no we don't have + mbd.size == heads * cylinders * sectors + */ + printk(KERN_WARNING "INFTL: cannot calculate a geometry to " + "match size of 0x%lx.\n", inftl->mbd.size); + printk(KERN_WARNING "INFTL: using C:%d H:%d S:%d " + "(== 0x%lx sects)\n", + inftl->cylinders, inftl->heads , inftl->sectors, + (long)inftl->cylinders * (long)inftl->heads * + (long)inftl->sectors ); + } + + if (add_mtd_blktrans_dev(&inftl->mbd)) { + kfree(inftl->PUtable); + kfree(inftl->VUtable); + kfree(inftl); + return; + } +#ifdef PSYCHO_DEBUG + printk(KERN_INFO "INFTL: Found new inftl%c\n", inftl->mbd.devnum + 'a'); +#endif + return; +} + +static void inftl_remove_dev(struct mtd_blktrans_dev *dev) +{ + struct INFTLrecord *inftl = (void *)dev; + + pr_debug("INFTL: remove_dev (i=%d)\n", dev->devnum); + + del_mtd_blktrans_dev(dev); + + kfree(inftl->PUtable); + kfree(inftl->VUtable); +} + +/* + * Actual INFTL access routines. + */ + +/* + * Read oob data from flash + */ +int inftl_read_oob(struct mtd_info *mtd, loff_t offs, size_t len, + size_t *retlen, uint8_t *buf) +{ + struct mtd_oob_ops ops = { }; + int res; + + ops.mode = MTD_OPS_PLACE_OOB; + ops.ooboffs = offs & (mtd->writesize - 1); + ops.ooblen = len; + ops.oobbuf = buf; + ops.datbuf = NULL; + + res = mtd_read_oob(mtd, offs & ~(mtd->writesize - 1), &ops); + *retlen = ops.oobretlen; + return res; +} + +/* + * Write oob data to flash + */ +int inftl_write_oob(struct mtd_info *mtd, loff_t offs, size_t len, + size_t *retlen, uint8_t *buf) +{ + struct mtd_oob_ops ops = { }; + int res; + + ops.mode = MTD_OPS_PLACE_OOB; + ops.ooboffs = offs & (mtd->writesize - 1); + ops.ooblen = len; + ops.oobbuf = buf; + ops.datbuf = NULL; + + res = mtd_write_oob(mtd, offs & ~(mtd->writesize - 1), &ops); + *retlen = ops.oobretlen; + return res; +} + +/* + * Write data and oob to flash + */ +static int inftl_write(struct mtd_info *mtd, loff_t offs, size_t len, + size_t *retlen, uint8_t *buf, uint8_t *oob) +{ + struct mtd_oob_ops ops = { }; + int res; + + ops.mode = MTD_OPS_PLACE_OOB; + ops.ooboffs = offs; + ops.ooblen = mtd->oobsize; + ops.oobbuf = oob; + ops.datbuf = buf; + ops.len = len; + + res = mtd_write_oob(mtd, offs & ~(mtd->writesize - 1), &ops); + *retlen = ops.retlen; + return res; +} + +/* + * INFTL_findfreeblock: Find a free Erase Unit on the INFTL partition. + * This function is used when the give Virtual Unit Chain. + */ +static u16 INFTL_findfreeblock(struct INFTLrecord *inftl, int desperate) +{ + u16 pot = inftl->LastFreeEUN; + int silly = inftl->nb_blocks; + + pr_debug("INFTL: INFTL_findfreeblock(inftl=%p,desperate=%d)\n", + inftl, desperate); + + /* + * Normally, we force a fold to happen before we run out of free + * blocks completely. + */ + if (!desperate && inftl->numfreeEUNs < 2) { + pr_debug("INFTL: there are too few free EUNs (%d)\n", + inftl->numfreeEUNs); + return BLOCK_NIL; + } + + /* Scan for a free block */ + do { + if (inftl->PUtable[pot] == BLOCK_FREE) { + inftl->LastFreeEUN = pot; + return pot; + } + + if (++pot > inftl->lastEUN) + pot = 0; + + if (!silly--) { + printk(KERN_WARNING "INFTL: no free blocks found! " + "EUN range = %d - %d\n", 0, inftl->LastFreeEUN); + return BLOCK_NIL; + } + } while (pot != inftl->LastFreeEUN); + + return BLOCK_NIL; +} + +static u16 INFTL_foldchain(struct INFTLrecord *inftl, unsigned thisVUC, unsigned pendingblock) +{ + u16 BlockMap[MAX_SECTORS_PER_UNIT]; + unsigned char BlockDeleted[MAX_SECTORS_PER_UNIT]; + unsigned int thisEUN, prevEUN, status; + struct mtd_info *mtd = inftl->mbd.mtd; + int block, silly; + unsigned int targetEUN; + struct inftl_oob oob; + size_t retlen; + + pr_debug("INFTL: INFTL_foldchain(inftl=%p,thisVUC=%d,pending=%d)\n", + inftl, thisVUC, pendingblock); + + memset(BlockMap, 0xff, sizeof(BlockMap)); + memset(BlockDeleted, 0, sizeof(BlockDeleted)); + + thisEUN = targetEUN = inftl->VUtable[thisVUC]; + + if (thisEUN == BLOCK_NIL) { + printk(KERN_WARNING "INFTL: trying to fold non-existent " + "Virtual Unit Chain %d!\n", thisVUC); + return BLOCK_NIL; + } + + /* + * Scan to find the Erase Unit which holds the actual data for each + * 512-byte block within the Chain. + */ + silly = MAX_LOOPS; + while (thisEUN < inftl->nb_blocks) { + for (block = 0; block < inftl->EraseSize/SECTORSIZE; block ++) { + if ((BlockMap[block] != BLOCK_NIL) || + BlockDeleted[block]) + continue; + + if (inftl_read_oob(mtd, (thisEUN * inftl->EraseSize) + + (block * SECTORSIZE), 16, &retlen, + (char *)&oob) < 0) + status = SECTOR_IGNORE; + else + status = oob.b.Status | oob.b.Status1; + + switch(status) { + case SECTOR_FREE: + case SECTOR_IGNORE: + break; + case SECTOR_USED: + BlockMap[block] = thisEUN; + continue; + case SECTOR_DELETED: + BlockDeleted[block] = 1; + continue; + default: + printk(KERN_WARNING "INFTL: unknown status " + "for block %d in EUN %d: %x\n", + block, thisEUN, status); + break; + } + } + + if (!silly--) { + printk(KERN_WARNING "INFTL: infinite loop in Virtual " + "Unit Chain 0x%x\n", thisVUC); + return BLOCK_NIL; + } + + thisEUN = inftl->PUtable[thisEUN]; + } + + /* + * OK. We now know the location of every block in the Virtual Unit + * Chain, and the Erase Unit into which we are supposed to be copying. + * Go for it. + */ + pr_debug("INFTL: folding chain %d into unit %d\n", thisVUC, targetEUN); + + for (block = 0; block < inftl->EraseSize/SECTORSIZE ; block++) { + unsigned char movebuf[SECTORSIZE]; + int ret; + + /* + * If it's in the target EUN already, or if it's pending write, + * do nothing. + */ + if (BlockMap[block] == targetEUN || (pendingblock == + (thisVUC * (inftl->EraseSize / SECTORSIZE) + block))) { + continue; + } + + /* + * Copy only in non free block (free blocks can only + * happen in case of media errors or deleted blocks). + */ + if (BlockMap[block] == BLOCK_NIL) + continue; + + ret = mtd_read(mtd, + (inftl->EraseSize * BlockMap[block]) + (block * SECTORSIZE), + SECTORSIZE, + &retlen, + movebuf); + if (ret < 0 && !mtd_is_bitflip(ret)) { + ret = mtd_read(mtd, + (inftl->EraseSize * BlockMap[block]) + (block * SECTORSIZE), + SECTORSIZE, + &retlen, + movebuf); + if (ret != -EIO) + pr_debug("INFTL: error went away on retry?\n"); + } + memset(&oob, 0xff, sizeof(struct inftl_oob)); + oob.b.Status = oob.b.Status1 = SECTOR_USED; + + inftl_write(inftl->mbd.mtd, (inftl->EraseSize * targetEUN) + + (block * SECTORSIZE), SECTORSIZE, &retlen, + movebuf, (char *)&oob); + } + + /* + * Newest unit in chain now contains data from _all_ older units. + * So go through and erase each unit in chain, oldest first. (This + * is important, by doing oldest first if we crash/reboot then it + * is relatively simple to clean up the mess). + */ + pr_debug("INFTL: want to erase virtual chain %d\n", thisVUC); + + for (;;) { + /* Find oldest unit in chain. */ + thisEUN = inftl->VUtable[thisVUC]; + prevEUN = BLOCK_NIL; + while (inftl->PUtable[thisEUN] != BLOCK_NIL) { + prevEUN = thisEUN; + thisEUN = inftl->PUtable[thisEUN]; + } + + /* Check if we are all done */ + if (thisEUN == targetEUN) + break; + + /* Unlink the last block from the chain. */ + inftl->PUtable[prevEUN] = BLOCK_NIL; + + /* Now try to erase it. */ + if (INFTL_formatblock(inftl, thisEUN) < 0) { + /* + * Could not erase : mark block as reserved. + */ + inftl->PUtable[thisEUN] = BLOCK_RESERVED; + } else { + /* Correctly erased : mark it as free */ + inftl->PUtable[thisEUN] = BLOCK_FREE; + inftl->numfreeEUNs++; + } + } + + return targetEUN; +} + +static u16 INFTL_makefreeblock(struct INFTLrecord *inftl, unsigned pendingblock) +{ + /* + * This is the part that needs some cleverness applied. + * For now, I'm doing the minimum applicable to actually + * get the thing to work. + * Wear-levelling and other clever stuff needs to be implemented + * and we also need to do some assessment of the results when + * the system loses power half-way through the routine. + */ + u16 LongestChain = 0; + u16 ChainLength = 0, thislen; + u16 chain, EUN; + + pr_debug("INFTL: INFTL_makefreeblock(inftl=%p," + "pending=%d)\n", inftl, pendingblock); + + for (chain = 0; chain < inftl->nb_blocks; chain++) { + EUN = inftl->VUtable[chain]; + thislen = 0; + + while (EUN <= inftl->lastEUN) { + thislen++; + EUN = inftl->PUtable[EUN]; + if (thislen > 0xff00) { + printk(KERN_WARNING "INFTL: endless loop in " + "Virtual Chain %d: Unit %x\n", + chain, EUN); + /* + * Actually, don't return failure. + * Just ignore this chain and get on with it. + */ + thislen = 0; + break; + } + } + + if (thislen > ChainLength) { + ChainLength = thislen; + LongestChain = chain; + } + } + + if (ChainLength < 2) { + printk(KERN_WARNING "INFTL: no Virtual Unit Chains available " + "for folding. Failing request\n"); + return BLOCK_NIL; + } + + return INFTL_foldchain(inftl, LongestChain, pendingblock); +} + +static int nrbits(unsigned int val, int bitcount) +{ + int i, total = 0; + + for (i = 0; (i < bitcount); i++) + total += (((0x1 << i) & val) ? 1 : 0); + return total; +} + +/* + * INFTL_findwriteunit: Return the unit number into which we can write + * for this block. Make it available if it isn't already. + */ +static inline u16 INFTL_findwriteunit(struct INFTLrecord *inftl, unsigned block) +{ + unsigned int thisVUC = block / (inftl->EraseSize / SECTORSIZE); + unsigned int thisEUN, writeEUN, prev_block, status; + unsigned long blockofs = (block * SECTORSIZE) & (inftl->EraseSize -1); + struct mtd_info *mtd = inftl->mbd.mtd; + struct inftl_oob oob; + struct inftl_bci bci; + unsigned char anac, nacs, parity; + size_t retlen; + int silly, silly2 = 3; + + pr_debug("INFTL: INFTL_findwriteunit(inftl=%p,block=%d)\n", + inftl, block); + + do { + /* + * Scan the media to find a unit in the VUC which has + * a free space for the block in question. + */ + writeEUN = BLOCK_NIL; + thisEUN = inftl->VUtable[thisVUC]; + silly = MAX_LOOPS; + + while (thisEUN <= inftl->lastEUN) { + inftl_read_oob(mtd, (thisEUN * inftl->EraseSize) + + blockofs, 8, &retlen, (char *)&bci); + + status = bci.Status | bci.Status1; + pr_debug("INFTL: status of block %d in EUN %d is %x\n", + block , writeEUN, status); + + switch(status) { + case SECTOR_FREE: + writeEUN = thisEUN; + break; + case SECTOR_DELETED: + case SECTOR_USED: + /* Can't go any further */ + goto hitused; + case SECTOR_IGNORE: + break; + default: + /* + * Invalid block. Don't use it any more. + * Must implement. + */ + break; + } + + if (!silly--) { + printk(KERN_WARNING "INFTL: infinite loop in " + "Virtual Unit Chain 0x%x\n", thisVUC); + return BLOCK_NIL; + } + + /* Skip to next block in chain */ + thisEUN = inftl->PUtable[thisEUN]; + } + +hitused: + if (writeEUN != BLOCK_NIL) + return writeEUN; + + + /* + * OK. We didn't find one in the existing chain, or there + * is no existing chain. Allocate a new one. + */ + writeEUN = INFTL_findfreeblock(inftl, 0); + + if (writeEUN == BLOCK_NIL) { + /* + * That didn't work - there were no free blocks just + * waiting to be picked up. We're going to have to fold + * a chain to make room. + */ + thisEUN = INFTL_makefreeblock(inftl, block); + + /* + * Hopefully we free something, lets try again. + * This time we are desperate... + */ + pr_debug("INFTL: using desperate==1 to find free EUN " + "to accommodate write to VUC %d\n", + thisVUC); + writeEUN = INFTL_findfreeblock(inftl, 1); + if (writeEUN == BLOCK_NIL) { + /* + * Ouch. This should never happen - we should + * always be able to make some room somehow. + * If we get here, we've allocated more storage + * space than actual media, or our makefreeblock + * routine is missing something. + */ + printk(KERN_WARNING "INFTL: cannot make free " + "space.\n"); +#ifdef DEBUG + INFTL_dumptables(inftl); + INFTL_dumpVUchains(inftl); +#endif + return BLOCK_NIL; + } + } + + /* + * Insert new block into virtual chain. Firstly update the + * block headers in flash... + */ + anac = 0; + nacs = 0; + thisEUN = inftl->VUtable[thisVUC]; + if (thisEUN != BLOCK_NIL) { + inftl_read_oob(mtd, thisEUN * inftl->EraseSize + + 8, 8, &retlen, (char *)&oob.u); + anac = oob.u.a.ANAC + 1; + nacs = oob.u.a.NACs + 1; + } + + prev_block = inftl->VUtable[thisVUC]; + if (prev_block < inftl->nb_blocks) + prev_block -= inftl->firstEUN; + + parity = (nrbits(thisVUC, 16) & 0x1) ? 0x1 : 0; + parity |= (nrbits(prev_block, 16) & 0x1) ? 0x2 : 0; + parity |= (nrbits(anac, 8) & 0x1) ? 0x4 : 0; + parity |= (nrbits(nacs, 8) & 0x1) ? 0x8 : 0; + + oob.u.a.virtualUnitNo = cpu_to_le16(thisVUC); + oob.u.a.prevUnitNo = cpu_to_le16(prev_block); + oob.u.a.ANAC = anac; + oob.u.a.NACs = nacs; + oob.u.a.parityPerField = parity; + oob.u.a.discarded = 0xaa; + + inftl_write_oob(mtd, writeEUN * inftl->EraseSize + 8, 8, + &retlen, (char *)&oob.u); + + /* Also back up header... */ + oob.u.b.virtualUnitNo = cpu_to_le16(thisVUC); + oob.u.b.prevUnitNo = cpu_to_le16(prev_block); + oob.u.b.ANAC = anac; + oob.u.b.NACs = nacs; + oob.u.b.parityPerField = parity; + oob.u.b.discarded = 0xaa; + + inftl_write_oob(mtd, writeEUN * inftl->EraseSize + + SECTORSIZE * 4 + 8, 8, &retlen, (char *)&oob.u); + + inftl->PUtable[writeEUN] = inftl->VUtable[thisVUC]; + inftl->VUtable[thisVUC] = writeEUN; + + inftl->numfreeEUNs--; + return writeEUN; + + } while (silly2--); + + printk(KERN_WARNING "INFTL: error folding to make room for Virtual " + "Unit Chain 0x%x\n", thisVUC); + return BLOCK_NIL; +} + +/* + * Given a Virtual Unit Chain, see if it can be deleted, and if so do it. + */ +static void INFTL_trydeletechain(struct INFTLrecord *inftl, unsigned thisVUC) +{ + struct mtd_info *mtd = inftl->mbd.mtd; + unsigned char BlockUsed[MAX_SECTORS_PER_UNIT]; + unsigned char BlockDeleted[MAX_SECTORS_PER_UNIT]; + unsigned int thisEUN, status; + int block, silly; + struct inftl_bci bci; + size_t retlen; + + pr_debug("INFTL: INFTL_trydeletechain(inftl=%p," + "thisVUC=%d)\n", inftl, thisVUC); + + memset(BlockUsed, 0, sizeof(BlockUsed)); + memset(BlockDeleted, 0, sizeof(BlockDeleted)); + + thisEUN = inftl->VUtable[thisVUC]; + if (thisEUN == BLOCK_NIL) { + printk(KERN_WARNING "INFTL: trying to delete non-existent " + "Virtual Unit Chain %d!\n", thisVUC); + return; + } + + /* + * Scan through the Erase Units to determine whether any data is in + * each of the 512-byte blocks within the Chain. + */ + silly = MAX_LOOPS; + while (thisEUN < inftl->nb_blocks) { + for (block = 0; block < inftl->EraseSize/SECTORSIZE; block++) { + if (BlockUsed[block] || BlockDeleted[block]) + continue; + + if (inftl_read_oob(mtd, (thisEUN * inftl->EraseSize) + + (block * SECTORSIZE), 8 , &retlen, + (char *)&bci) < 0) + status = SECTOR_IGNORE; + else + status = bci.Status | bci.Status1; + + switch(status) { + case SECTOR_FREE: + case SECTOR_IGNORE: + break; + case SECTOR_USED: + BlockUsed[block] = 1; + continue; + case SECTOR_DELETED: + BlockDeleted[block] = 1; + continue; + default: + printk(KERN_WARNING "INFTL: unknown status " + "for block %d in EUN %d: 0x%x\n", + block, thisEUN, status); + } + } + + if (!silly--) { + printk(KERN_WARNING "INFTL: infinite loop in Virtual " + "Unit Chain 0x%x\n", thisVUC); + return; + } + + thisEUN = inftl->PUtable[thisEUN]; + } + + for (block = 0; block < inftl->EraseSize/SECTORSIZE; block++) + if (BlockUsed[block]) + return; + + /* + * For each block in the chain free it and make it available + * for future use. Erase from the oldest unit first. + */ + pr_debug("INFTL: deleting empty VUC %d\n", thisVUC); + + for (;;) { + u16 *prevEUN = &inftl->VUtable[thisVUC]; + thisEUN = *prevEUN; + + /* If the chain is all gone already, we're done */ + if (thisEUN == BLOCK_NIL) { + pr_debug("INFTL: Empty VUC %d for deletion was already absent\n", thisEUN); + return; + } + + /* Find oldest unit in chain. */ + while (inftl->PUtable[thisEUN] != BLOCK_NIL) { + BUG_ON(thisEUN >= inftl->nb_blocks); + + prevEUN = &inftl->PUtable[thisEUN]; + thisEUN = *prevEUN; + } + + pr_debug("Deleting EUN %d from VUC %d\n", + thisEUN, thisVUC); + + if (INFTL_formatblock(inftl, thisEUN) < 0) { + /* + * Could not erase : mark block as reserved. + */ + inftl->PUtable[thisEUN] = BLOCK_RESERVED; + } else { + /* Correctly erased : mark it as free */ + inftl->PUtable[thisEUN] = BLOCK_FREE; + inftl->numfreeEUNs++; + } + + /* Now sort out whatever was pointing to it... */ + *prevEUN = BLOCK_NIL; + + /* Ideally we'd actually be responsive to new + requests while we're doing this -- if there's + free space why should others be made to wait? */ + cond_resched(); + } + + inftl->VUtable[thisVUC] = BLOCK_NIL; +} + +static int INFTL_deleteblock(struct INFTLrecord *inftl, unsigned block) +{ + unsigned int thisEUN = inftl->VUtable[block / (inftl->EraseSize / SECTORSIZE)]; + unsigned long blockofs = (block * SECTORSIZE) & (inftl->EraseSize - 1); + struct mtd_info *mtd = inftl->mbd.mtd; + unsigned int status; + int silly = MAX_LOOPS; + size_t retlen; + struct inftl_bci bci; + + pr_debug("INFTL: INFTL_deleteblock(inftl=%p," + "block=%d)\n", inftl, block); + + while (thisEUN < inftl->nb_blocks) { + if (inftl_read_oob(mtd, (thisEUN * inftl->EraseSize) + + blockofs, 8, &retlen, (char *)&bci) < 0) + status = SECTOR_IGNORE; + else + status = bci.Status | bci.Status1; + + switch (status) { + case SECTOR_FREE: + case SECTOR_IGNORE: + break; + case SECTOR_DELETED: + thisEUN = BLOCK_NIL; + goto foundit; + case SECTOR_USED: + goto foundit; + default: + printk(KERN_WARNING "INFTL: unknown status for " + "block %d in EUN %d: 0x%x\n", + block, thisEUN, status); + break; + } + + if (!silly--) { + printk(KERN_WARNING "INFTL: infinite loop in Virtual " + "Unit Chain 0x%x\n", + block / (inftl->EraseSize / SECTORSIZE)); + return 1; + } + thisEUN = inftl->PUtable[thisEUN]; + } + +foundit: + if (thisEUN != BLOCK_NIL) { + loff_t ptr = (thisEUN * inftl->EraseSize) + blockofs; + + if (inftl_read_oob(mtd, ptr, 8, &retlen, (char *)&bci) < 0) + return -EIO; + bci.Status = bci.Status1 = SECTOR_DELETED; + if (inftl_write_oob(mtd, ptr, 8, &retlen, (char *)&bci) < 0) + return -EIO; + INFTL_trydeletechain(inftl, block / (inftl->EraseSize / SECTORSIZE)); + } + return 0; +} + +static int inftl_writeblock(struct mtd_blktrans_dev *mbd, unsigned long block, + char *buffer) +{ + struct INFTLrecord *inftl = (void *)mbd; + unsigned int writeEUN; + unsigned long blockofs = (block * SECTORSIZE) & (inftl->EraseSize - 1); + size_t retlen; + struct inftl_oob oob; + char *p, *pend; + + pr_debug("INFTL: inftl_writeblock(inftl=%p,block=%ld," + "buffer=%p)\n", inftl, block, buffer); + + /* Is block all zero? */ + pend = buffer + SECTORSIZE; + for (p = buffer; p < pend && !*p; p++) + ; + + if (p < pend) { + writeEUN = INFTL_findwriteunit(inftl, block); + + if (writeEUN == BLOCK_NIL) { + printk(KERN_WARNING "inftl_writeblock(): cannot find " + "block to write to\n"); + /* + * If we _still_ haven't got a block to use, + * we're screwed. + */ + return 1; + } + + memset(&oob, 0xff, sizeof(struct inftl_oob)); + oob.b.Status = oob.b.Status1 = SECTOR_USED; + + inftl_write(inftl->mbd.mtd, (writeEUN * inftl->EraseSize) + + blockofs, SECTORSIZE, &retlen, (char *)buffer, + (char *)&oob); + /* + * need to write SECTOR_USED flags since they are not written + * in mtd_writeecc + */ + } else { + INFTL_deleteblock(inftl, block); + } + + return 0; +} + +static int inftl_readblock(struct mtd_blktrans_dev *mbd, unsigned long block, + char *buffer) +{ + struct INFTLrecord *inftl = (void *)mbd; + unsigned int thisEUN = inftl->VUtable[block / (inftl->EraseSize / SECTORSIZE)]; + unsigned long blockofs = (block * SECTORSIZE) & (inftl->EraseSize - 1); + struct mtd_info *mtd = inftl->mbd.mtd; + unsigned int status; + int silly = MAX_LOOPS; + struct inftl_bci bci; + size_t retlen; + + pr_debug("INFTL: inftl_readblock(inftl=%p,block=%ld," + "buffer=%p)\n", inftl, block, buffer); + + while (thisEUN < inftl->nb_blocks) { + if (inftl_read_oob(mtd, (thisEUN * inftl->EraseSize) + + blockofs, 8, &retlen, (char *)&bci) < 0) + status = SECTOR_IGNORE; + else + status = bci.Status | bci.Status1; + + switch (status) { + case SECTOR_DELETED: + thisEUN = BLOCK_NIL; + goto foundit; + case SECTOR_USED: + goto foundit; + case SECTOR_FREE: + case SECTOR_IGNORE: + break; + default: + printk(KERN_WARNING "INFTL: unknown status for " + "block %ld in EUN %d: 0x%04x\n", + block, thisEUN, status); + break; + } + + if (!silly--) { + printk(KERN_WARNING "INFTL: infinite loop in " + "Virtual Unit Chain 0x%lx\n", + block / (inftl->EraseSize / SECTORSIZE)); + return 1; + } + + thisEUN = inftl->PUtable[thisEUN]; + } + +foundit: + if (thisEUN == BLOCK_NIL) { + /* The requested block is not on the media, return all 0x00 */ + memset(buffer, 0, SECTORSIZE); + } else { + size_t retlen; + loff_t ptr = (thisEUN * inftl->EraseSize) + blockofs; + int ret = mtd_read(mtd, ptr, SECTORSIZE, &retlen, buffer); + + /* Handle corrected bit flips gracefully */ + if (ret < 0 && !mtd_is_bitflip(ret)) + return -EIO; + } + return 0; +} + +static int inftl_getgeo(struct mtd_blktrans_dev *dev, struct hd_geometry *geo) +{ + struct INFTLrecord *inftl = (void *)dev; + + geo->heads = inftl->heads; + geo->sectors = inftl->sectors; + geo->cylinders = inftl->cylinders; + + return 0; +} + +static struct mtd_blktrans_ops inftl_tr = { + .name = "inftl", + .major = INFTL_MAJOR, + .part_bits = INFTL_PARTN_BITS, + .blksize = 512, + .getgeo = inftl_getgeo, + .readsect = inftl_readblock, + .writesect = inftl_writeblock, + .add_mtd = inftl_add_mtd, + .remove_dev = inftl_remove_dev, + .owner = THIS_MODULE, +}; + +module_mtd_blktrans(inftl_tr); + +MODULE_LICENSE("GPL"); +MODULE_AUTHOR("Greg Ungerer <gerg@snapgear.com>, David Woodhouse <dwmw2@infradead.org>, Fabrice Bellard <fabrice.bellard@netgem.com> et al."); +MODULE_DESCRIPTION("Support code for Inverse Flash Translation Layer, used on M-Systems DiskOnChip 2000, Millennium and Millennium Plus"); diff --git a/drivers/mtd/inftlmount.c b/drivers/mtd/inftlmount.c new file mode 100644 index 0000000000..6276daa296 --- /dev/null +++ b/drivers/mtd/inftlmount.c @@ -0,0 +1,776 @@ +// SPDX-License-Identifier: GPL-2.0-or-later +/* + * inftlmount.c -- INFTL mount code with extensive checks. + * + * Author: Greg Ungerer (gerg@snapgear.com) + * Copyright © 2002-2003, Greg Ungerer (gerg@snapgear.com) + * + * Based heavily on the nftlmount.c code which is: + * Author: Fabrice Bellard (fabrice.bellard@netgem.com) + * Copyright © 2000 Netgem S.A. + */ + +#include <linux/kernel.h> +#include <linux/module.h> +#include <asm/errno.h> +#include <asm/io.h> +#include <linux/uaccess.h> +#include <linux/delay.h> +#include <linux/slab.h> +#include <linux/mtd/mtd.h> +#include <linux/mtd/nftl.h> +#include <linux/mtd/inftl.h> + +/* + * find_boot_record: Find the INFTL Media Header and its Spare copy which + * contains the various device information of the INFTL partition and + * Bad Unit Table. Update the PUtable[] table according to the Bad + * Unit Table. PUtable[] is used for management of Erase Unit in + * other routines in inftlcore.c and inftlmount.c. + */ +static int find_boot_record(struct INFTLrecord *inftl) +{ + struct inftl_unittail h1; + //struct inftl_oob oob; + unsigned int i, block; + u8 buf[SECTORSIZE]; + struct INFTLMediaHeader *mh = &inftl->MediaHdr; + struct mtd_info *mtd = inftl->mbd.mtd; + struct INFTLPartition *ip; + size_t retlen; + + pr_debug("INFTL: find_boot_record(inftl=%p)\n", inftl); + + /* + * Assume logical EraseSize == physical erasesize for starting the + * scan. We'll sort it out later if we find a MediaHeader which says + * otherwise. + */ + inftl->EraseSize = inftl->mbd.mtd->erasesize; + inftl->nb_blocks = (u32)inftl->mbd.mtd->size / inftl->EraseSize; + + inftl->MediaUnit = BLOCK_NIL; + + /* Search for a valid boot record */ + for (block = 0; block < inftl->nb_blocks; block++) { + int ret; + + /* + * Check for BNAND header first. Then whinge if it's found + * but later checks fail. + */ + ret = mtd_read(mtd, block * inftl->EraseSize, SECTORSIZE, + &retlen, buf); + /* We ignore ret in case the ECC of the MediaHeader is invalid + (which is apparently acceptable) */ + if (retlen != SECTORSIZE) { + static int warncount = 5; + + if (warncount) { + printk(KERN_WARNING "INFTL: block read at 0x%x " + "of mtd%d failed: %d\n", + block * inftl->EraseSize, + inftl->mbd.mtd->index, ret); + if (!--warncount) + printk(KERN_WARNING "INFTL: further " + "failures for this block will " + "not be printed\n"); + } + continue; + } + + if (retlen < 6 || memcmp(buf, "BNAND", 6)) { + /* BNAND\0 not found. Continue */ + continue; + } + + /* To be safer with BIOS, also use erase mark as discriminant */ + ret = inftl_read_oob(mtd, + block * inftl->EraseSize + SECTORSIZE + 8, + 8, &retlen,(char *)&h1); + if (ret < 0) { + printk(KERN_WARNING "INFTL: ANAND header found at " + "0x%x in mtd%d, but OOB data read failed " + "(err %d)\n", block * inftl->EraseSize, + inftl->mbd.mtd->index, ret); + continue; + } + + + /* + * This is the first we've seen. + * Copy the media header structure into place. + */ + memcpy(mh, buf, sizeof(struct INFTLMediaHeader)); + + /* Read the spare media header at offset 4096 */ + mtd_read(mtd, block * inftl->EraseSize + 4096, SECTORSIZE, + &retlen, buf); + if (retlen != SECTORSIZE) { + printk(KERN_WARNING "INFTL: Unable to read spare " + "Media Header\n"); + return -1; + } + /* Check if this one is the same as the first one we found. */ + if (memcmp(mh, buf, sizeof(struct INFTLMediaHeader))) { + printk(KERN_WARNING "INFTL: Primary and spare Media " + "Headers disagree.\n"); + return -1; + } + + mh->NoOfBootImageBlocks = le32_to_cpu(mh->NoOfBootImageBlocks); + mh->NoOfBinaryPartitions = le32_to_cpu(mh->NoOfBinaryPartitions); + mh->NoOfBDTLPartitions = le32_to_cpu(mh->NoOfBDTLPartitions); + mh->BlockMultiplierBits = le32_to_cpu(mh->BlockMultiplierBits); + mh->FormatFlags = le32_to_cpu(mh->FormatFlags); + mh->PercentUsed = le32_to_cpu(mh->PercentUsed); + + pr_debug("INFTL: Media Header ->\n" + " bootRecordID = %s\n" + " NoOfBootImageBlocks = %d\n" + " NoOfBinaryPartitions = %d\n" + " NoOfBDTLPartitions = %d\n" + " BlockMultiplierBits = %d\n" + " FormatFlgs = %d\n" + " OsakVersion = 0x%x\n" + " PercentUsed = %d\n", + mh->bootRecordID, mh->NoOfBootImageBlocks, + mh->NoOfBinaryPartitions, + mh->NoOfBDTLPartitions, + mh->BlockMultiplierBits, mh->FormatFlags, + mh->OsakVersion, mh->PercentUsed); + + if (mh->NoOfBDTLPartitions == 0) { + printk(KERN_WARNING "INFTL: Media Header sanity check " + "failed: NoOfBDTLPartitions (%d) == 0, " + "must be at least 1\n", mh->NoOfBDTLPartitions); + return -1; + } + + if ((mh->NoOfBDTLPartitions + mh->NoOfBinaryPartitions) > 4) { + printk(KERN_WARNING "INFTL: Media Header sanity check " + "failed: Total Partitions (%d) > 4, " + "BDTL=%d Binary=%d\n", mh->NoOfBDTLPartitions + + mh->NoOfBinaryPartitions, + mh->NoOfBDTLPartitions, + mh->NoOfBinaryPartitions); + return -1; + } + + if (mh->BlockMultiplierBits > 1) { + printk(KERN_WARNING "INFTL: sorry, we don't support " + "UnitSizeFactor 0x%02x\n", + mh->BlockMultiplierBits); + return -1; + } else if (mh->BlockMultiplierBits == 1) { + printk(KERN_WARNING "INFTL: support for INFTL with " + "UnitSizeFactor 0x%02x is experimental\n", + mh->BlockMultiplierBits); + inftl->EraseSize = inftl->mbd.mtd->erasesize << + mh->BlockMultiplierBits; + inftl->nb_blocks = (u32)inftl->mbd.mtd->size / inftl->EraseSize; + block >>= mh->BlockMultiplierBits; + } + + /* Scan the partitions */ + for (i = 0; (i < 4); i++) { + ip = &mh->Partitions[i]; + ip->virtualUnits = le32_to_cpu(ip->virtualUnits); + ip->firstUnit = le32_to_cpu(ip->firstUnit); + ip->lastUnit = le32_to_cpu(ip->lastUnit); + ip->flags = le32_to_cpu(ip->flags); + ip->spareUnits = le32_to_cpu(ip->spareUnits); + ip->Reserved0 = le32_to_cpu(ip->Reserved0); + + pr_debug(" PARTITION[%d] ->\n" + " virtualUnits = %d\n" + " firstUnit = %d\n" + " lastUnit = %d\n" + " flags = 0x%x\n" + " spareUnits = %d\n", + i, ip->virtualUnits, ip->firstUnit, + ip->lastUnit, ip->flags, + ip->spareUnits); + + if (ip->Reserved0 != ip->firstUnit) { + struct erase_info *instr = &inftl->instr; + + /* + * Most likely this is using the + * undocumented qiuck mount feature. + * We don't support that, we will need + * to erase the hidden block for full + * compatibility. + */ + instr->addr = ip->Reserved0 * inftl->EraseSize; + instr->len = inftl->EraseSize; + mtd_erase(mtd, instr); + } + if ((ip->lastUnit - ip->firstUnit + 1) < ip->virtualUnits) { + printk(KERN_WARNING "INFTL: Media Header " + "Partition %d sanity check failed\n" + " firstUnit %d : lastUnit %d > " + "virtualUnits %d\n", i, ip->lastUnit, + ip->firstUnit, ip->Reserved0); + return -1; + } + if (ip->Reserved1 != 0) { + printk(KERN_WARNING "INFTL: Media Header " + "Partition %d sanity check failed: " + "Reserved1 %d != 0\n", + i, ip->Reserved1); + return -1; + } + + if (ip->flags & INFTL_BDTL) + break; + } + + if (i >= 4) { + printk(KERN_WARNING "INFTL: Media Header Partition " + "sanity check failed:\n No partition " + "marked as Disk Partition\n"); + return -1; + } + + inftl->nb_boot_blocks = ip->firstUnit; + inftl->numvunits = ip->virtualUnits; + if (inftl->numvunits > (inftl->nb_blocks - + inftl->nb_boot_blocks - 2)) { + printk(KERN_WARNING "INFTL: Media Header sanity check " + "failed:\n numvunits (%d) > nb_blocks " + "(%d) - nb_boot_blocks(%d) - 2\n", + inftl->numvunits, inftl->nb_blocks, + inftl->nb_boot_blocks); + return -1; + } + + inftl->mbd.size = inftl->numvunits * + (inftl->EraseSize / SECTORSIZE); + + /* + * Block count is set to last used EUN (we won't need to keep + * any meta-data past that point). + */ + inftl->firstEUN = ip->firstUnit; + inftl->lastEUN = ip->lastUnit; + inftl->nb_blocks = ip->lastUnit + 1; + + /* Memory alloc */ + inftl->PUtable = kmalloc_array(inftl->nb_blocks, sizeof(u16), + GFP_KERNEL); + if (!inftl->PUtable) + return -ENOMEM; + + inftl->VUtable = kmalloc_array(inftl->nb_blocks, sizeof(u16), + GFP_KERNEL); + if (!inftl->VUtable) { + kfree(inftl->PUtable); + return -ENOMEM; + } + + /* Mark the blocks before INFTL MediaHeader as reserved */ + for (i = 0; i < inftl->nb_boot_blocks; i++) + inftl->PUtable[i] = BLOCK_RESERVED; + /* Mark all remaining blocks as potentially containing data */ + for (; i < inftl->nb_blocks; i++) + inftl->PUtable[i] = BLOCK_NOTEXPLORED; + + /* Mark this boot record (NFTL MediaHeader) block as reserved */ + inftl->PUtable[block] = BLOCK_RESERVED; + + /* Read Bad Erase Unit Table and modify PUtable[] accordingly */ + for (i = 0; i < inftl->nb_blocks; i++) { + int physblock; + /* If any of the physical eraseblocks are bad, don't + use the unit. */ + for (physblock = 0; physblock < inftl->EraseSize; physblock += inftl->mbd.mtd->erasesize) { + if (mtd_block_isbad(inftl->mbd.mtd, + i * inftl->EraseSize + physblock)) + inftl->PUtable[i] = BLOCK_RESERVED; + } + } + + inftl->MediaUnit = block; + return 0; + } + + /* Not found. */ + return -1; +} + +static int memcmpb(void *a, int c, int n) +{ + int i; + for (i = 0; i < n; i++) { + if (c != ((unsigned char *)a)[i]) + return 1; + } + return 0; +} + +/* + * check_free_sector: check if a free sector is actually FREE, + * i.e. All 0xff in data and oob area. + */ +static int check_free_sectors(struct INFTLrecord *inftl, unsigned int address, + int len, int check_oob) +{ + struct mtd_info *mtd = inftl->mbd.mtd; + size_t retlen; + int i, ret; + u8 *buf; + + buf = kmalloc(SECTORSIZE + mtd->oobsize, GFP_KERNEL); + if (!buf) + return -ENOMEM; + + ret = -1; + for (i = 0; i < len; i += SECTORSIZE) { + if (mtd_read(mtd, address, SECTORSIZE, &retlen, buf)) + goto out; + if (memcmpb(buf, 0xff, SECTORSIZE) != 0) + goto out; + + if (check_oob) { + if(inftl_read_oob(mtd, address, mtd->oobsize, + &retlen, &buf[SECTORSIZE]) < 0) + goto out; + if (memcmpb(buf + SECTORSIZE, 0xff, mtd->oobsize) != 0) + goto out; + } + address += SECTORSIZE; + } + + ret = 0; + +out: + kfree(buf); + return ret; +} + +/* + * INFTL_format: format a Erase Unit by erasing ALL Erase Zones in the Erase + * Unit and Update INFTL metadata. Each erase operation is + * checked with check_free_sectors. + * + * Return: 0 when succeed, -1 on error. + * + * ToDo: 1. Is it necessary to check_free_sector after erasing ?? + */ +int INFTL_formatblock(struct INFTLrecord *inftl, int block) +{ + size_t retlen; + struct inftl_unittail uci; + struct erase_info *instr = &inftl->instr; + struct mtd_info *mtd = inftl->mbd.mtd; + int physblock; + + pr_debug("INFTL: INFTL_formatblock(inftl=%p,block=%d)\n", inftl, block); + + memset(instr, 0, sizeof(struct erase_info)); + + /* FIXME: Shouldn't we be setting the 'discarded' flag to zero + _first_? */ + + /* Use async erase interface, test return code */ + instr->addr = block * inftl->EraseSize; + instr->len = inftl->mbd.mtd->erasesize; + /* Erase one physical eraseblock at a time, even though the NAND api + allows us to group them. This way we if we have a failure, we can + mark only the failed block in the bbt. */ + for (physblock = 0; physblock < inftl->EraseSize; + physblock += instr->len, instr->addr += instr->len) { + int ret; + + ret = mtd_erase(inftl->mbd.mtd, instr); + if (ret) { + printk(KERN_WARNING "INFTL: error while formatting block %d\n", + block); + goto fail; + } + + /* + * Check the "freeness" of Erase Unit before updating metadata. + * FixMe: is this check really necessary? Since we have check + * the return code after the erase operation. + */ + if (check_free_sectors(inftl, instr->addr, instr->len, 1) != 0) + goto fail; + } + + uci.EraseMark = cpu_to_le16(ERASE_MARK); + uci.EraseMark1 = cpu_to_le16(ERASE_MARK); + uci.Reserved[0] = 0; + uci.Reserved[1] = 0; + uci.Reserved[2] = 0; + uci.Reserved[3] = 0; + instr->addr = block * inftl->EraseSize + SECTORSIZE * 2; + if (inftl_write_oob(mtd, instr->addr + 8, 8, &retlen, (char *)&uci) < 0) + goto fail; + return 0; +fail: + /* could not format, update the bad block table (caller is responsible + for setting the PUtable to BLOCK_RESERVED on failure) */ + mtd_block_markbad(inftl->mbd.mtd, instr->addr); + return -1; +} + +/* + * format_chain: Format an invalid Virtual Unit chain. It frees all the Erase + * Units in a Virtual Unit Chain, i.e. all the units are disconnected. + * + * Since the chain is invalid then we will have to erase it from its + * head (normally for INFTL we go from the oldest). But if it has a + * loop then there is no oldest... + */ +static void format_chain(struct INFTLrecord *inftl, unsigned int first_block) +{ + unsigned int block = first_block, block1; + + printk(KERN_WARNING "INFTL: formatting chain at block %d\n", + first_block); + + for (;;) { + block1 = inftl->PUtable[block]; + + printk(KERN_WARNING "INFTL: formatting block %d\n", block); + if (INFTL_formatblock(inftl, block) < 0) { + /* + * Cannot format !!!! Mark it as Bad Unit, + */ + inftl->PUtable[block] = BLOCK_RESERVED; + } else { + inftl->PUtable[block] = BLOCK_FREE; + } + + /* Goto next block on the chain */ + block = block1; + + if (block == BLOCK_NIL || block >= inftl->lastEUN) + break; + } +} + +void INFTL_dumptables(struct INFTLrecord *s) +{ + int i; + + pr_debug("-------------------------------------------" + "----------------------------------\n"); + + pr_debug("VUtable[%d] ->", s->nb_blocks); + for (i = 0; i < s->nb_blocks; i++) { + if ((i % 8) == 0) + pr_debug("\n%04x: ", i); + pr_debug("%04x ", s->VUtable[i]); + } + + pr_debug("\n-------------------------------------------" + "----------------------------------\n"); + + pr_debug("PUtable[%d-%d=%d] ->", s->firstEUN, s->lastEUN, s->nb_blocks); + for (i = 0; i <= s->lastEUN; i++) { + if ((i % 8) == 0) + pr_debug("\n%04x: ", i); + pr_debug("%04x ", s->PUtable[i]); + } + + pr_debug("\n-------------------------------------------" + "----------------------------------\n"); + + pr_debug("INFTL ->\n" + " EraseSize = %d\n" + " h/s/c = %d/%d/%d\n" + " numvunits = %d\n" + " firstEUN = %d\n" + " lastEUN = %d\n" + " numfreeEUNs = %d\n" + " LastFreeEUN = %d\n" + " nb_blocks = %d\n" + " nb_boot_blocks = %d", + s->EraseSize, s->heads, s->sectors, s->cylinders, + s->numvunits, s->firstEUN, s->lastEUN, s->numfreeEUNs, + s->LastFreeEUN, s->nb_blocks, s->nb_boot_blocks); + + pr_debug("\n-------------------------------------------" + "----------------------------------\n"); +} + +void INFTL_dumpVUchains(struct INFTLrecord *s) +{ + int logical, block, i; + + pr_debug("-------------------------------------------" + "----------------------------------\n"); + + pr_debug("INFTL Virtual Unit Chains:\n"); + for (logical = 0; logical < s->nb_blocks; logical++) { + block = s->VUtable[logical]; + if (block >= s->nb_blocks) + continue; + pr_debug(" LOGICAL %d --> %d ", logical, block); + for (i = 0; i < s->nb_blocks; i++) { + if (s->PUtable[block] == BLOCK_NIL) + break; + block = s->PUtable[block]; + pr_debug("%d ", block); + } + pr_debug("\n"); + } + + pr_debug("-------------------------------------------" + "----------------------------------\n"); +} + +int INFTL_mount(struct INFTLrecord *s) +{ + struct mtd_info *mtd = s->mbd.mtd; + unsigned int block, first_block, prev_block, last_block; + unsigned int first_logical_block, logical_block, erase_mark; + int chain_length, do_format_chain; + struct inftl_unithead1 h0; + struct inftl_unittail h1; + size_t retlen; + int i; + u8 *ANACtable, ANAC; + + pr_debug("INFTL: INFTL_mount(inftl=%p)\n", s); + + /* Search for INFTL MediaHeader and Spare INFTL Media Header */ + if (find_boot_record(s) < 0) { + printk(KERN_WARNING "INFTL: could not find valid boot record?\n"); + return -ENXIO; + } + + /* Init the logical to physical table */ + for (i = 0; i < s->nb_blocks; i++) + s->VUtable[i] = BLOCK_NIL; + + logical_block = block = BLOCK_NIL; + + /* Temporary buffer to store ANAC numbers. */ + ANACtable = kcalloc(s->nb_blocks, sizeof(u8), GFP_KERNEL); + if (!ANACtable) + return -ENOMEM; + + /* + * First pass is to explore each physical unit, and construct the + * virtual chains that exist (newest physical unit goes into VUtable). + * Any block that is in any way invalid will be left in the + * NOTEXPLORED state. Then at the end we will try to format it and + * mark it as free. + */ + pr_debug("INFTL: pass 1, explore each unit\n"); + for (first_block = s->firstEUN; first_block <= s->lastEUN; first_block++) { + if (s->PUtable[first_block] != BLOCK_NOTEXPLORED) + continue; + + do_format_chain = 0; + first_logical_block = BLOCK_NIL; + last_block = BLOCK_NIL; + block = first_block; + + for (chain_length = 0; ; chain_length++) { + + if ((chain_length == 0) && + (s->PUtable[block] != BLOCK_NOTEXPLORED)) { + /* Nothing to do here, onto next block */ + break; + } + + if (inftl_read_oob(mtd, block * s->EraseSize + 8, + 8, &retlen, (char *)&h0) < 0 || + inftl_read_oob(mtd, block * s->EraseSize + + 2 * SECTORSIZE + 8, 8, &retlen, + (char *)&h1) < 0) { + /* Should never happen? */ + do_format_chain++; + break; + } + + logical_block = le16_to_cpu(h0.virtualUnitNo); + prev_block = le16_to_cpu(h0.prevUnitNo); + erase_mark = le16_to_cpu((h1.EraseMark | h1.EraseMark1)); + ANACtable[block] = h0.ANAC; + + /* Previous block is relative to start of Partition */ + if (prev_block < s->nb_blocks) + prev_block += s->firstEUN; + + /* Already explored partial chain? */ + if (s->PUtable[block] != BLOCK_NOTEXPLORED) { + /* Check if chain for this logical */ + if (logical_block == first_logical_block) { + if (last_block != BLOCK_NIL) + s->PUtable[last_block] = block; + } + break; + } + + /* Check for invalid block */ + if (erase_mark != ERASE_MARK) { + printk(KERN_WARNING "INFTL: corrupt block %d " + "in chain %d, chain length %d, erase " + "mark 0x%x?\n", block, first_block, + chain_length, erase_mark); + /* + * Assume end of chain, probably incomplete + * fold/erase... + */ + if (chain_length == 0) + do_format_chain++; + break; + } + + /* Check for it being free already then... */ + if ((logical_block == BLOCK_FREE) || + (logical_block == BLOCK_NIL)) { + s->PUtable[block] = BLOCK_FREE; + break; + } + + /* Sanity checks on block numbers */ + if ((logical_block >= s->nb_blocks) || + ((prev_block >= s->nb_blocks) && + (prev_block != BLOCK_NIL))) { + if (chain_length > 0) { + printk(KERN_WARNING "INFTL: corrupt " + "block %d in chain %d?\n", + block, first_block); + do_format_chain++; + } + break; + } + + if (first_logical_block == BLOCK_NIL) { + first_logical_block = logical_block; + } else { + if (first_logical_block != logical_block) { + /* Normal for folded chain... */ + break; + } + } + + /* + * Current block is valid, so if we followed a virtual + * chain to get here then we can set the previous + * block pointer in our PUtable now. Then move onto + * the previous block in the chain. + */ + s->PUtable[block] = BLOCK_NIL; + if (last_block != BLOCK_NIL) + s->PUtable[last_block] = block; + last_block = block; + block = prev_block; + + /* Check for end of chain */ + if (block == BLOCK_NIL) + break; + + /* Validate next block before following it... */ + if (block > s->lastEUN) { + printk(KERN_WARNING "INFTL: invalid previous " + "block %d in chain %d?\n", block, + first_block); + do_format_chain++; + break; + } + } + + if (do_format_chain) { + format_chain(s, first_block); + continue; + } + + /* + * Looks like a valid chain then. It may not really be the + * newest block in the chain, but it is the newest we have + * found so far. We might update it in later iterations of + * this loop if we find something newer. + */ + s->VUtable[first_logical_block] = first_block; + logical_block = BLOCK_NIL; + } + + INFTL_dumptables(s); + + /* + * Second pass, check for infinite loops in chains. These are + * possible because we don't update the previous pointers when + * we fold chains. No big deal, just fix them up in PUtable. + */ + pr_debug("INFTL: pass 2, validate virtual chains\n"); + for (logical_block = 0; logical_block < s->numvunits; logical_block++) { + block = s->VUtable[logical_block]; + last_block = BLOCK_NIL; + + /* Check for free/reserved/nil */ + if (block >= BLOCK_RESERVED) + continue; + + ANAC = ANACtable[block]; + for (i = 0; i < s->numvunits; i++) { + if (s->PUtable[block] == BLOCK_NIL) + break; + if (s->PUtable[block] > s->lastEUN) { + printk(KERN_WARNING "INFTL: invalid prev %d, " + "in virtual chain %d\n", + s->PUtable[block], logical_block); + s->PUtable[block] = BLOCK_NIL; + + } + if (ANACtable[block] != ANAC) { + /* + * Chain must point back to itself. This is ok, + * but we will need adjust the tables with this + * newest block and oldest block. + */ + s->VUtable[logical_block] = block; + s->PUtable[last_block] = BLOCK_NIL; + break; + } + + ANAC--; + last_block = block; + block = s->PUtable[block]; + } + + if (i >= s->nb_blocks) { + /* + * Uhoo, infinite chain with valid ANACS! + * Format whole chain... + */ + format_chain(s, first_block); + } + } + + INFTL_dumptables(s); + INFTL_dumpVUchains(s); + + /* + * Third pass, format unreferenced blocks and init free block count. + */ + s->numfreeEUNs = 0; + s->LastFreeEUN = BLOCK_NIL; + + pr_debug("INFTL: pass 3, format unused blocks\n"); + for (block = s->firstEUN; block <= s->lastEUN; block++) { + if (s->PUtable[block] == BLOCK_NOTEXPLORED) { + printk("INFTL: unreferenced block %d, formatting it\n", + block); + if (INFTL_formatblock(s, block) < 0) + s->PUtable[block] = BLOCK_RESERVED; + else + s->PUtable[block] = BLOCK_FREE; + } + if (s->PUtable[block] == BLOCK_FREE) { + s->numfreeEUNs++; + if (s->LastFreeEUN == BLOCK_NIL) + s->LastFreeEUN = block; + } + } + + kfree(ANACtable); + return 0; +} diff --git a/drivers/mtd/lpddr/Kconfig b/drivers/mtd/lpddr/Kconfig new file mode 100644 index 0000000000..0395aa6b68 --- /dev/null +++ b/drivers/mtd/lpddr/Kconfig @@ -0,0 +1,30 @@ +# SPDX-License-Identifier: GPL-2.0-only +menu "LPDDR & LPDDR2 PCM memory drivers" + depends on MTD + +config MTD_LPDDR + tristate "Support for LPDDR flash chips" + select MTD_QINFO_PROBE + help + This option enables support of LPDDR (Low power double data rate) + flash chips. Synonymous with Mobile-DDR. It is a new standard for + DDR memories, intended for battery-operated systems. + +config MTD_QINFO_PROBE + depends on MTD_LPDDR + tristate "Detect flash chips by QINFO probe" + help + Device Information for LPDDR chips is offered through the Overlay + Window QINFO interface, permits software to be used for entire + families of devices. This serves similar purpose of CFI on legacy + Flash products + +config MTD_LPDDR2_NVM + # ARM dependency is only for writel_relaxed() + depends on MTD && ARM + tristate "Support for LPDDR2-NVM flash chips" + help + This option enables support of PCM memories with a LPDDR2-NVM + (Low power double data rate 2) interface. + +endmenu diff --git a/drivers/mtd/lpddr/Makefile b/drivers/mtd/lpddr/Makefile new file mode 100644 index 0000000000..b217b828f4 --- /dev/null +++ b/drivers/mtd/lpddr/Makefile @@ -0,0 +1,8 @@ +# SPDX-License-Identifier: GPL-2.0-only +# +# linux/drivers/mtd/lpddr/Makefile +# + +obj-$(CONFIG_MTD_QINFO_PROBE) += qinfo_probe.o +obj-$(CONFIG_MTD_LPDDR) += lpddr_cmds.o +obj-$(CONFIG_MTD_LPDDR2_NVM) += lpddr2_nvm.o diff --git a/drivers/mtd/lpddr/lpddr2_nvm.c b/drivers/mtd/lpddr/lpddr2_nvm.c new file mode 100644 index 0000000000..f4e5174b24 --- /dev/null +++ b/drivers/mtd/lpddr/lpddr2_nvm.c @@ -0,0 +1,498 @@ +// SPDX-License-Identifier: GPL-2.0-or-later +/* + * LPDDR2-NVM MTD driver. This module provides read, write, erase, lock/unlock + * support for LPDDR2-NVM PCM memories + * + * Copyright © 2012 Micron Technology, Inc. + * + * Vincenzo Aliberti <vincenzo.aliberti@gmail.com> + * Domenico Manna <domenico.manna@gmail.com> + * Many thanks to Andrea Vigilante for initial enabling + */ + +#define pr_fmt(fmt) KBUILD_MODNAME ": %s: " fmt, __func__ + +#include <linux/init.h> +#include <linux/io.h> +#include <linux/module.h> +#include <linux/kernel.h> +#include <linux/mtd/map.h> +#include <linux/mtd/mtd.h> +#include <linux/mtd/partitions.h> +#include <linux/slab.h> +#include <linux/platform_device.h> +#include <linux/ioport.h> +#include <linux/err.h> + +/* Parameters */ +#define ERASE_BLOCKSIZE (0x00020000/2) /* in Word */ +#define WRITE_BUFFSIZE (0x00000400/2) /* in Word */ +#define OW_BASE_ADDRESS 0x00000000 /* OW offset */ +#define BUS_WIDTH 0x00000020 /* x32 devices */ + +/* PFOW symbols address offset */ +#define PFOW_QUERY_STRING_P (0x0000/2) /* in Word */ +#define PFOW_QUERY_STRING_F (0x0002/2) /* in Word */ +#define PFOW_QUERY_STRING_O (0x0004/2) /* in Word */ +#define PFOW_QUERY_STRING_W (0x0006/2) /* in Word */ + +/* OW registers address */ +#define CMD_CODE_OFS (0x0080/2) /* in Word */ +#define CMD_DATA_OFS (0x0084/2) /* in Word */ +#define CMD_ADD_L_OFS (0x0088/2) /* in Word */ +#define CMD_ADD_H_OFS (0x008A/2) /* in Word */ +#define MPR_L_OFS (0x0090/2) /* in Word */ +#define MPR_H_OFS (0x0092/2) /* in Word */ +#define CMD_EXEC_OFS (0x00C0/2) /* in Word */ +#define STATUS_REG_OFS (0x00CC/2) /* in Word */ +#define PRG_BUFFER_OFS (0x0010/2) /* in Word */ + +/* Datamask */ +#define MR_CFGMASK 0x8000 +#define SR_OK_DATAMASK 0x0080 + +/* LPDDR2-NVM Commands */ +#define LPDDR2_NVM_LOCK 0x0061 +#define LPDDR2_NVM_UNLOCK 0x0062 +#define LPDDR2_NVM_SW_PROGRAM 0x0041 +#define LPDDR2_NVM_SW_OVERWRITE 0x0042 +#define LPDDR2_NVM_BUF_PROGRAM 0x00E9 +#define LPDDR2_NVM_BUF_OVERWRITE 0x00EA +#define LPDDR2_NVM_ERASE 0x0020 + +/* LPDDR2-NVM Registers offset */ +#define LPDDR2_MODE_REG_DATA 0x0040 +#define LPDDR2_MODE_REG_CFG 0x0050 + +/* + * Internal Type Definitions + * pcm_int_data contains memory controller details: + * @reg_data : LPDDR2_MODE_REG_DATA register address after remapping + * @reg_cfg : LPDDR2_MODE_REG_CFG register address after remapping + * &bus_width: memory bus-width (eg: x16 2 Bytes, x32 4 Bytes) + */ +struct pcm_int_data { + void __iomem *ctl_regs; + int bus_width; +}; + +static DEFINE_MUTEX(lpdd2_nvm_mutex); + +/* + * Build a map_word starting from an u_long + */ +static inline map_word build_map_word(u_long myword) +{ + map_word val = { {0} }; + val.x[0] = myword; + return val; +} + +/* + * Build Mode Register Configuration DataMask based on device bus-width + */ +static inline u_int build_mr_cfgmask(u_int bus_width) +{ + u_int val = MR_CFGMASK; + + if (bus_width == 0x0004) /* x32 device */ + val = val << 16; + + return val; +} + +/* + * Build Status Register OK DataMask based on device bus-width + */ +static inline u_int build_sr_ok_datamask(u_int bus_width) +{ + u_int val = SR_OK_DATAMASK; + + if (bus_width == 0x0004) /* x32 device */ + val = (val << 16)+val; + + return val; +} + +/* + * Evaluates Overlay Window Control Registers address + */ +static inline u_long ow_reg_add(struct map_info *map, u_long offset) +{ + u_long val = 0; + struct pcm_int_data *pcm_data = map->fldrv_priv; + + val = map->pfow_base + offset*pcm_data->bus_width; + + return val; +} + +/* + * Enable lpddr2-nvm Overlay Window + * Overlay Window is a memory mapped area containing all LPDDR2-NVM registers + * used by device commands as well as uservisible resources like Device Status + * Register, Device ID, etc + */ +static inline void ow_enable(struct map_info *map) +{ + struct pcm_int_data *pcm_data = map->fldrv_priv; + + writel_relaxed(build_mr_cfgmask(pcm_data->bus_width) | 0x18, + pcm_data->ctl_regs + LPDDR2_MODE_REG_CFG); + writel_relaxed(0x01, pcm_data->ctl_regs + LPDDR2_MODE_REG_DATA); +} + +/* + * Disable lpddr2-nvm Overlay Window + * Overlay Window is a memory mapped area containing all LPDDR2-NVM registers + * used by device commands as well as uservisible resources like Device Status + * Register, Device ID, etc + */ +static inline void ow_disable(struct map_info *map) +{ + struct pcm_int_data *pcm_data = map->fldrv_priv; + + writel_relaxed(build_mr_cfgmask(pcm_data->bus_width) | 0x18, + pcm_data->ctl_regs + LPDDR2_MODE_REG_CFG); + writel_relaxed(0x02, pcm_data->ctl_regs + LPDDR2_MODE_REG_DATA); +} + +/* + * Execute lpddr2-nvm operations + */ +static int lpddr2_nvm_do_op(struct map_info *map, u_long cmd_code, + u_long cmd_data, u_long cmd_add, u_long cmd_mpr, u_char *buf) +{ + map_word add_l = { {0} }, add_h = { {0} }, mpr_l = { {0} }, + mpr_h = { {0} }, data_l = { {0} }, cmd = { {0} }, + exec_cmd = { {0} }, sr; + map_word data_h = { {0} }; /* only for 2x x16 devices stacked */ + u_long i, status_reg, prg_buff_ofs; + struct pcm_int_data *pcm_data = map->fldrv_priv; + u_int sr_ok_datamask = build_sr_ok_datamask(pcm_data->bus_width); + + /* Builds low and high words for OW Control Registers */ + add_l.x[0] = cmd_add & 0x0000FFFF; + add_h.x[0] = (cmd_add >> 16) & 0x0000FFFF; + mpr_l.x[0] = cmd_mpr & 0x0000FFFF; + mpr_h.x[0] = (cmd_mpr >> 16) & 0x0000FFFF; + cmd.x[0] = cmd_code & 0x0000FFFF; + exec_cmd.x[0] = 0x0001; + data_l.x[0] = cmd_data & 0x0000FFFF; + data_h.x[0] = (cmd_data >> 16) & 0x0000FFFF; /* only for 2x x16 */ + + /* Set Overlay Window Control Registers */ + map_write(map, cmd, ow_reg_add(map, CMD_CODE_OFS)); + map_write(map, data_l, ow_reg_add(map, CMD_DATA_OFS)); + map_write(map, add_l, ow_reg_add(map, CMD_ADD_L_OFS)); + map_write(map, add_h, ow_reg_add(map, CMD_ADD_H_OFS)); + map_write(map, mpr_l, ow_reg_add(map, MPR_L_OFS)); + map_write(map, mpr_h, ow_reg_add(map, MPR_H_OFS)); + if (pcm_data->bus_width == 0x0004) { /* 2x16 devices stacked */ + map_write(map, cmd, ow_reg_add(map, CMD_CODE_OFS) + 2); + map_write(map, data_h, ow_reg_add(map, CMD_DATA_OFS) + 2); + map_write(map, add_l, ow_reg_add(map, CMD_ADD_L_OFS) + 2); + map_write(map, add_h, ow_reg_add(map, CMD_ADD_H_OFS) + 2); + map_write(map, mpr_l, ow_reg_add(map, MPR_L_OFS) + 2); + map_write(map, mpr_h, ow_reg_add(map, MPR_H_OFS) + 2); + } + + /* Fill Program Buffer */ + if ((cmd_code == LPDDR2_NVM_BUF_PROGRAM) || + (cmd_code == LPDDR2_NVM_BUF_OVERWRITE)) { + prg_buff_ofs = (map_read(map, + ow_reg_add(map, PRG_BUFFER_OFS))).x[0]; + for (i = 0; i < cmd_mpr; i++) { + map_write(map, build_map_word(buf[i]), map->pfow_base + + prg_buff_ofs + i); + } + } + + /* Command Execute */ + map_write(map, exec_cmd, ow_reg_add(map, CMD_EXEC_OFS)); + if (pcm_data->bus_width == 0x0004) /* 2x16 devices stacked */ + map_write(map, exec_cmd, ow_reg_add(map, CMD_EXEC_OFS) + 2); + + /* Status Register Check */ + do { + sr = map_read(map, ow_reg_add(map, STATUS_REG_OFS)); + status_reg = sr.x[0]; + if (pcm_data->bus_width == 0x0004) {/* 2x16 devices stacked */ + sr = map_read(map, ow_reg_add(map, + STATUS_REG_OFS) + 2); + status_reg += sr.x[0] << 16; + } + } while ((status_reg & sr_ok_datamask) != sr_ok_datamask); + + return (((status_reg & sr_ok_datamask) == sr_ok_datamask) ? 0 : -EIO); +} + +/* + * Execute lpddr2-nvm operations @ block level + */ +static int lpddr2_nvm_do_block_op(struct mtd_info *mtd, loff_t start_add, + uint64_t len, u_char block_op) +{ + struct map_info *map = mtd->priv; + u_long add, end_add; + int ret = 0; + + mutex_lock(&lpdd2_nvm_mutex); + + ow_enable(map); + + add = start_add; + end_add = add + len; + + do { + ret = lpddr2_nvm_do_op(map, block_op, 0x00, add, add, NULL); + if (ret) + goto out; + add += mtd->erasesize; + } while (add < end_add); + +out: + ow_disable(map); + mutex_unlock(&lpdd2_nvm_mutex); + return ret; +} + +/* + * verify presence of PFOW string + */ +static int lpddr2_nvm_pfow_present(struct map_info *map) +{ + map_word pfow_val[4]; + unsigned int found = 1; + + mutex_lock(&lpdd2_nvm_mutex); + + ow_enable(map); + + /* Load string from array */ + pfow_val[0] = map_read(map, ow_reg_add(map, PFOW_QUERY_STRING_P)); + pfow_val[1] = map_read(map, ow_reg_add(map, PFOW_QUERY_STRING_F)); + pfow_val[2] = map_read(map, ow_reg_add(map, PFOW_QUERY_STRING_O)); + pfow_val[3] = map_read(map, ow_reg_add(map, PFOW_QUERY_STRING_W)); + + /* Verify the string loaded vs expected */ + if (!map_word_equal(map, build_map_word('P'), pfow_val[0])) + found = 0; + if (!map_word_equal(map, build_map_word('F'), pfow_val[1])) + found = 0; + if (!map_word_equal(map, build_map_word('O'), pfow_val[2])) + found = 0; + if (!map_word_equal(map, build_map_word('W'), pfow_val[3])) + found = 0; + + ow_disable(map); + + mutex_unlock(&lpdd2_nvm_mutex); + + return found; +} + +/* + * lpddr2_nvm driver read method + */ +static int lpddr2_nvm_read(struct mtd_info *mtd, loff_t start_add, + size_t len, size_t *retlen, u_char *buf) +{ + struct map_info *map = mtd->priv; + + mutex_lock(&lpdd2_nvm_mutex); + + *retlen = len; + + map_copy_from(map, buf, start_add, *retlen); + + mutex_unlock(&lpdd2_nvm_mutex); + return 0; +} + +/* + * lpddr2_nvm driver write method + */ +static int lpddr2_nvm_write(struct mtd_info *mtd, loff_t start_add, + size_t len, size_t *retlen, const u_char *buf) +{ + struct map_info *map = mtd->priv; + struct pcm_int_data *pcm_data = map->fldrv_priv; + u_long add, current_len, tot_len, target_len, my_data; + u_char *write_buf = (u_char *)buf; + int ret = 0; + + mutex_lock(&lpdd2_nvm_mutex); + + ow_enable(map); + + /* Set start value for the variables */ + add = start_add; + target_len = len; + tot_len = 0; + + while (tot_len < target_len) { + if (!(IS_ALIGNED(add, mtd->writesize))) { /* do sw program */ + my_data = write_buf[tot_len]; + my_data += (write_buf[tot_len+1]) << 8; + if (pcm_data->bus_width == 0x0004) {/* 2x16 devices */ + my_data += (write_buf[tot_len+2]) << 16; + my_data += (write_buf[tot_len+3]) << 24; + } + ret = lpddr2_nvm_do_op(map, LPDDR2_NVM_SW_OVERWRITE, + my_data, add, 0x00, NULL); + if (ret) + goto out; + + add += pcm_data->bus_width; + tot_len += pcm_data->bus_width; + } else { /* do buffer program */ + current_len = min(target_len - tot_len, + (u_long) mtd->writesize); + ret = lpddr2_nvm_do_op(map, LPDDR2_NVM_BUF_OVERWRITE, + 0x00, add, current_len, write_buf + tot_len); + if (ret) + goto out; + + add += current_len; + tot_len += current_len; + } + } + +out: + *retlen = tot_len; + ow_disable(map); + mutex_unlock(&lpdd2_nvm_mutex); + return ret; +} + +/* + * lpddr2_nvm driver erase method + */ +static int lpddr2_nvm_erase(struct mtd_info *mtd, struct erase_info *instr) +{ + return lpddr2_nvm_do_block_op(mtd, instr->addr, instr->len, + LPDDR2_NVM_ERASE); +} + +/* + * lpddr2_nvm driver unlock method + */ +static int lpddr2_nvm_unlock(struct mtd_info *mtd, loff_t start_add, + uint64_t len) +{ + return lpddr2_nvm_do_block_op(mtd, start_add, len, LPDDR2_NVM_UNLOCK); +} + +/* + * lpddr2_nvm driver lock method + */ +static int lpddr2_nvm_lock(struct mtd_info *mtd, loff_t start_add, + uint64_t len) +{ + return lpddr2_nvm_do_block_op(mtd, start_add, len, LPDDR2_NVM_LOCK); +} + +static const struct mtd_info lpddr2_nvm_mtd_info = { + .type = MTD_RAM, + .writesize = 1, + .flags = (MTD_CAP_NVRAM | MTD_POWERUP_LOCK), + ._read = lpddr2_nvm_read, + ._write = lpddr2_nvm_write, + ._erase = lpddr2_nvm_erase, + ._unlock = lpddr2_nvm_unlock, + ._lock = lpddr2_nvm_lock, +}; + +/* + * lpddr2_nvm driver probe method + */ +static int lpddr2_nvm_probe(struct platform_device *pdev) +{ + struct map_info *map; + struct mtd_info *mtd; + struct resource *add_range; + struct pcm_int_data *pcm_data; + + /* Allocate memory control_regs data structures */ + pcm_data = devm_kzalloc(&pdev->dev, sizeof(*pcm_data), GFP_KERNEL); + if (!pcm_data) + return -ENOMEM; + + pcm_data->bus_width = BUS_WIDTH; + + /* Allocate memory for map_info & mtd_info data structures */ + map = devm_kzalloc(&pdev->dev, sizeof(*map), GFP_KERNEL); + if (!map) + return -ENOMEM; + + mtd = devm_kzalloc(&pdev->dev, sizeof(*mtd), GFP_KERNEL); + if (!mtd) + return -ENOMEM; + + /* lpddr2_nvm address range */ + add_range = platform_get_resource(pdev, IORESOURCE_MEM, 0); + if (!add_range) + return -ENODEV; + + /* Populate map_info data structure */ + *map = (struct map_info) { + .virt = devm_ioremap_resource(&pdev->dev, add_range), + .name = pdev->dev.init_name, + .phys = add_range->start, + .size = resource_size(add_range), + .bankwidth = pcm_data->bus_width / 2, + .pfow_base = OW_BASE_ADDRESS, + .fldrv_priv = pcm_data, + }; + + if (IS_ERR(map->virt)) + return PTR_ERR(map->virt); + + simple_map_init(map); /* fill with default methods */ + + pcm_data->ctl_regs = devm_platform_ioremap_resource(pdev, 1); + if (IS_ERR(pcm_data->ctl_regs)) + return PTR_ERR(pcm_data->ctl_regs); + + /* Populate mtd_info data structure */ + *mtd = lpddr2_nvm_mtd_info; + mtd->dev.parent = &pdev->dev; + mtd->name = pdev->dev.init_name; + mtd->priv = map; + mtd->size = resource_size(add_range); + mtd->erasesize = ERASE_BLOCKSIZE * pcm_data->bus_width; + mtd->writebufsize = WRITE_BUFFSIZE * pcm_data->bus_width; + + /* Verify the presence of the device looking for PFOW string */ + if (!lpddr2_nvm_pfow_present(map)) { + pr_err("device not recognized\n"); + return -EINVAL; + } + /* Parse partitions and register the MTD device */ + return mtd_device_register(mtd, NULL, 0); +} + +/* + * lpddr2_nvm driver remove method + */ +static int lpddr2_nvm_remove(struct platform_device *pdev) +{ + WARN_ON(mtd_device_unregister(dev_get_drvdata(&pdev->dev))); + + return 0; +} + +/* Initialize platform_driver data structure for lpddr2_nvm */ +static struct platform_driver lpddr2_nvm_drv = { + .driver = { + .name = "lpddr2_nvm", + }, + .probe = lpddr2_nvm_probe, + .remove = lpddr2_nvm_remove, +}; + +module_platform_driver(lpddr2_nvm_drv); +MODULE_LICENSE("GPL"); +MODULE_AUTHOR("Vincenzo Aliberti <vincenzo.aliberti@gmail.com>"); +MODULE_DESCRIPTION("MTD driver for LPDDR2-NVM PCM memories"); diff --git a/drivers/mtd/lpddr/lpddr_cmds.c b/drivers/mtd/lpddr/lpddr_cmds.c new file mode 100644 index 0000000000..3c3939bc2d --- /dev/null +++ b/drivers/mtd/lpddr/lpddr_cmds.c @@ -0,0 +1,760 @@ +// SPDX-License-Identifier: GPL-2.0-or-later +/* + * LPDDR flash memory device operations. This module provides read, write, + * erase, lock/unlock support for LPDDR flash memories + * (C) 2008 Korolev Alexey <akorolev@infradead.org> + * (C) 2008 Vasiliy Leonenko <vasiliy.leonenko@gmail.com> + * Many thanks to Roman Borisov for initial enabling + * + * TODO: + * Implement VPP management + * Implement XIP support + * Implement OTP support + */ +#include <linux/mtd/pfow.h> +#include <linux/mtd/qinfo.h> +#include <linux/slab.h> +#include <linux/module.h> + +static int lpddr_read(struct mtd_info *mtd, loff_t adr, size_t len, + size_t *retlen, u_char *buf); +static int lpddr_write_buffers(struct mtd_info *mtd, loff_t to, + size_t len, size_t *retlen, const u_char *buf); +static int lpddr_writev(struct mtd_info *mtd, const struct kvec *vecs, + unsigned long count, loff_t to, size_t *retlen); +static int lpddr_erase(struct mtd_info *mtd, struct erase_info *instr); +static int lpddr_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len); +static int lpddr_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len); +static int lpddr_point(struct mtd_info *mtd, loff_t adr, size_t len, + size_t *retlen, void **mtdbuf, resource_size_t *phys); +static int lpddr_unpoint(struct mtd_info *mtd, loff_t adr, size_t len); +static int get_chip(struct map_info *map, struct flchip *chip, int mode); +static int chip_ready(struct map_info *map, struct flchip *chip, int mode); +static void put_chip(struct map_info *map, struct flchip *chip); + +struct mtd_info *lpddr_cmdset(struct map_info *map) +{ + struct lpddr_private *lpddr = map->fldrv_priv; + struct flchip_shared *shared; + struct flchip *chip; + struct mtd_info *mtd; + int numchips; + int i, j; + + mtd = kzalloc(sizeof(*mtd), GFP_KERNEL); + if (!mtd) + return NULL; + mtd->priv = map; + mtd->type = MTD_NORFLASH; + + /* Fill in the default mtd operations */ + mtd->_read = lpddr_read; + mtd->type = MTD_NORFLASH; + mtd->flags = MTD_CAP_NORFLASH; + mtd->flags &= ~MTD_BIT_WRITEABLE; + mtd->_erase = lpddr_erase; + mtd->_write = lpddr_write_buffers; + mtd->_writev = lpddr_writev; + mtd->_lock = lpddr_lock; + mtd->_unlock = lpddr_unlock; + if (map_is_linear(map)) { + mtd->_point = lpddr_point; + mtd->_unpoint = lpddr_unpoint; + } + mtd->size = 1 << lpddr->qinfo->DevSizeShift; + mtd->erasesize = 1 << lpddr->qinfo->UniformBlockSizeShift; + mtd->writesize = 1 << lpddr->qinfo->BufSizeShift; + + shared = kmalloc_array(lpddr->numchips, sizeof(struct flchip_shared), + GFP_KERNEL); + if (!shared) { + kfree(mtd); + return NULL; + } + + chip = &lpddr->chips[0]; + numchips = lpddr->numchips / lpddr->qinfo->HWPartsNum; + for (i = 0; i < numchips; i++) { + shared[i].writing = shared[i].erasing = NULL; + mutex_init(&shared[i].lock); + for (j = 0; j < lpddr->qinfo->HWPartsNum; j++) { + *chip = lpddr->chips[i]; + chip->start += j << lpddr->chipshift; + chip->oldstate = chip->state = FL_READY; + chip->priv = &shared[i]; + /* those should be reset too since + they create memory references. */ + init_waitqueue_head(&chip->wq); + mutex_init(&chip->mutex); + chip++; + } + } + + return mtd; +} +EXPORT_SYMBOL(lpddr_cmdset); + +static void print_drs_error(unsigned int dsr) +{ + int prog_status = (dsr & DSR_RPS) >> 8; + + if (!(dsr & DSR_AVAILABLE)) + pr_notice("DSR.15: (0) Device not Available\n"); + if ((prog_status & 0x03) == 0x03) + pr_notice("DSR.9,8: (11) Attempt to program invalid half with 41h command\n"); + else if (prog_status & 0x02) + pr_notice("DSR.9,8: (10) Object Mode Program attempt in region with Control Mode data\n"); + else if (prog_status & 0x01) + pr_notice("DSR.9,8: (01) Program attempt in region with Object Mode data\n"); + if (!(dsr & DSR_READY_STATUS)) + pr_notice("DSR.7: (0) Device is Busy\n"); + if (dsr & DSR_ESS) + pr_notice("DSR.6: (1) Erase Suspended\n"); + if (dsr & DSR_ERASE_STATUS) + pr_notice("DSR.5: (1) Erase/Blank check error\n"); + if (dsr & DSR_PROGRAM_STATUS) + pr_notice("DSR.4: (1) Program Error\n"); + if (dsr & DSR_VPPS) + pr_notice("DSR.3: (1) Vpp low detect, operation aborted\n"); + if (dsr & DSR_PSS) + pr_notice("DSR.2: (1) Program suspended\n"); + if (dsr & DSR_DPS) + pr_notice("DSR.1: (1) Aborted Erase/Program attempt on locked block\n"); +} + +static int wait_for_ready(struct map_info *map, struct flchip *chip, + unsigned int chip_op_time) +{ + unsigned int timeo, reset_timeo, sleep_time; + unsigned int dsr; + flstate_t chip_state = chip->state; + int ret = 0; + + /* set our timeout to 8 times the expected delay */ + timeo = chip_op_time * 8; + if (!timeo) + timeo = 500000; + reset_timeo = timeo; + sleep_time = chip_op_time / 2; + + for (;;) { + dsr = CMDVAL(map_read(map, map->pfow_base + PFOW_DSR)); + if (dsr & DSR_READY_STATUS) + break; + if (!timeo) { + printk(KERN_ERR "%s: Flash timeout error state %d \n", + map->name, chip_state); + ret = -ETIME; + break; + } + + /* OK Still waiting. Drop the lock, wait a while and retry. */ + mutex_unlock(&chip->mutex); + if (sleep_time >= 1000000/HZ) { + /* + * Half of the normal delay still remaining + * can be performed with a sleeping delay instead + * of busy waiting. + */ + msleep(sleep_time/1000); + timeo -= sleep_time; + sleep_time = 1000000/HZ; + } else { + udelay(1); + cond_resched(); + timeo--; + } + mutex_lock(&chip->mutex); + + while (chip->state != chip_state) { + /* Someone's suspended the operation: sleep */ + DECLARE_WAITQUEUE(wait, current); + set_current_state(TASK_UNINTERRUPTIBLE); + add_wait_queue(&chip->wq, &wait); + mutex_unlock(&chip->mutex); + schedule(); + remove_wait_queue(&chip->wq, &wait); + mutex_lock(&chip->mutex); + } + if (chip->erase_suspended || chip->write_suspended) { + /* Suspend has occurred while sleep: reset timeout */ + timeo = reset_timeo; + chip->erase_suspended = chip->write_suspended = 0; + } + } + /* check status for errors */ + if (dsr & DSR_ERR) { + /* Clear DSR*/ + map_write(map, CMD(~(DSR_ERR)), map->pfow_base + PFOW_DSR); + printk(KERN_WARNING"%s: Bad status on wait: 0x%x \n", + map->name, dsr); + print_drs_error(dsr); + ret = -EIO; + } + chip->state = FL_READY; + return ret; +} + +static int get_chip(struct map_info *map, struct flchip *chip, int mode) +{ + int ret; + DECLARE_WAITQUEUE(wait, current); + + retry: + if (chip->priv && (mode == FL_WRITING || mode == FL_ERASING) + && chip->state != FL_SYNCING) { + /* + * OK. We have possibility for contension on the write/erase + * operations which are global to the real chip and not per + * partition. So let's fight it over in the partition which + * currently has authority on the operation. + * + * The rules are as follows: + * + * - any write operation must own shared->writing. + * + * - any erase operation must own _both_ shared->writing and + * shared->erasing. + * + * - contension arbitration is handled in the owner's context. + * + * The 'shared' struct can be read and/or written only when + * its lock is taken. + */ + struct flchip_shared *shared = chip->priv; + struct flchip *contender; + mutex_lock(&shared->lock); + contender = shared->writing; + if (contender && contender != chip) { + /* + * The engine to perform desired operation on this + * partition is already in use by someone else. + * Let's fight over it in the context of the chip + * currently using it. If it is possible to suspend, + * that other partition will do just that, otherwise + * it'll happily send us to sleep. In any case, when + * get_chip returns success we're clear to go ahead. + */ + ret = mutex_trylock(&contender->mutex); + mutex_unlock(&shared->lock); + if (!ret) + goto retry; + mutex_unlock(&chip->mutex); + ret = chip_ready(map, contender, mode); + mutex_lock(&chip->mutex); + + if (ret == -EAGAIN) { + mutex_unlock(&contender->mutex); + goto retry; + } + if (ret) { + mutex_unlock(&contender->mutex); + return ret; + } + mutex_lock(&shared->lock); + + /* We should not own chip if it is already in FL_SYNCING + * state. Put contender and retry. */ + if (chip->state == FL_SYNCING) { + put_chip(map, contender); + mutex_unlock(&contender->mutex); + goto retry; + } + mutex_unlock(&contender->mutex); + } + + /* Check if we have suspended erase on this chip. + Must sleep in such a case. */ + if (mode == FL_ERASING && shared->erasing + && shared->erasing->oldstate == FL_ERASING) { + mutex_unlock(&shared->lock); + set_current_state(TASK_UNINTERRUPTIBLE); + add_wait_queue(&chip->wq, &wait); + mutex_unlock(&chip->mutex); + schedule(); + remove_wait_queue(&chip->wq, &wait); + mutex_lock(&chip->mutex); + goto retry; + } + + /* We now own it */ + shared->writing = chip; + if (mode == FL_ERASING) + shared->erasing = chip; + mutex_unlock(&shared->lock); + } + + ret = chip_ready(map, chip, mode); + if (ret == -EAGAIN) + goto retry; + + return ret; +} + +static int chip_ready(struct map_info *map, struct flchip *chip, int mode) +{ + struct lpddr_private *lpddr = map->fldrv_priv; + int ret = 0; + DECLARE_WAITQUEUE(wait, current); + + /* Prevent setting state FL_SYNCING for chip in suspended state. */ + if (FL_SYNCING == mode && FL_READY != chip->oldstate) + goto sleep; + + switch (chip->state) { + case FL_READY: + case FL_JEDEC_QUERY: + return 0; + + case FL_ERASING: + if (!lpddr->qinfo->SuspEraseSupp || + !(mode == FL_READY || mode == FL_POINT)) + goto sleep; + + map_write(map, CMD(LPDDR_SUSPEND), + map->pfow_base + PFOW_PROGRAM_ERASE_SUSPEND); + chip->oldstate = FL_ERASING; + chip->state = FL_ERASE_SUSPENDING; + ret = wait_for_ready(map, chip, 0); + if (ret) { + /* Oops. something got wrong. */ + /* Resume and pretend we weren't here. */ + put_chip(map, chip); + printk(KERN_ERR "%s: suspend operation failed." + "State may be wrong \n", map->name); + return -EIO; + } + chip->erase_suspended = 1; + chip->state = FL_READY; + return 0; + /* Erase suspend */ + case FL_POINT: + /* Only if there's no operation suspended... */ + if (mode == FL_READY && chip->oldstate == FL_READY) + return 0; + fallthrough; + default: +sleep: + set_current_state(TASK_UNINTERRUPTIBLE); + add_wait_queue(&chip->wq, &wait); + mutex_unlock(&chip->mutex); + schedule(); + remove_wait_queue(&chip->wq, &wait); + mutex_lock(&chip->mutex); + return -EAGAIN; + } +} + +static void put_chip(struct map_info *map, struct flchip *chip) +{ + if (chip->priv) { + struct flchip_shared *shared = chip->priv; + mutex_lock(&shared->lock); + if (shared->writing == chip && chip->oldstate == FL_READY) { + /* We own the ability to write, but we're done */ + shared->writing = shared->erasing; + if (shared->writing && shared->writing != chip) { + /* give back the ownership */ + struct flchip *loaner = shared->writing; + mutex_lock(&loaner->mutex); + mutex_unlock(&shared->lock); + mutex_unlock(&chip->mutex); + put_chip(map, loaner); + mutex_lock(&chip->mutex); + mutex_unlock(&loaner->mutex); + wake_up(&chip->wq); + return; + } + shared->erasing = NULL; + shared->writing = NULL; + } else if (shared->erasing == chip && shared->writing != chip) { + /* + * We own the ability to erase without the ability + * to write, which means the erase was suspended + * and some other partition is currently writing. + * Don't let the switch below mess things up since + * we don't have ownership to resume anything. + */ + mutex_unlock(&shared->lock); + wake_up(&chip->wq); + return; + } + mutex_unlock(&shared->lock); + } + + switch (chip->oldstate) { + case FL_ERASING: + map_write(map, CMD(LPDDR_RESUME), + map->pfow_base + PFOW_COMMAND_CODE); + map_write(map, CMD(LPDDR_START_EXECUTION), + map->pfow_base + PFOW_COMMAND_EXECUTE); + chip->oldstate = FL_READY; + chip->state = FL_ERASING; + break; + case FL_READY: + break; + default: + printk(KERN_ERR "%s: put_chip() called with oldstate %d!\n", + map->name, chip->oldstate); + } + wake_up(&chip->wq); +} + +static int do_write_buffer(struct map_info *map, struct flchip *chip, + unsigned long adr, const struct kvec **pvec, + unsigned long *pvec_seek, int len) +{ + struct lpddr_private *lpddr = map->fldrv_priv; + map_word datum; + int ret, wbufsize, word_gap; + const struct kvec *vec; + unsigned long vec_seek; + unsigned long prog_buf_ofs; + + wbufsize = 1 << lpddr->qinfo->BufSizeShift; + + mutex_lock(&chip->mutex); + ret = get_chip(map, chip, FL_WRITING); + if (ret) { + mutex_unlock(&chip->mutex); + return ret; + } + /* Figure out the number of words to write */ + word_gap = (-adr & (map_bankwidth(map)-1)); + if (word_gap) { + word_gap = map_bankwidth(map) - word_gap; + adr -= word_gap; + datum = map_word_ff(map); + } + /* Write data */ + /* Get the program buffer offset from PFOW register data first*/ + prog_buf_ofs = map->pfow_base + CMDVAL(map_read(map, + map->pfow_base + PFOW_PROGRAM_BUFFER_OFFSET)); + vec = *pvec; + vec_seek = *pvec_seek; + do { + int n = map_bankwidth(map) - word_gap; + + if (n > vec->iov_len - vec_seek) + n = vec->iov_len - vec_seek; + if (n > len) + n = len; + + if (!word_gap && (len < map_bankwidth(map))) + datum = map_word_ff(map); + + datum = map_word_load_partial(map, datum, + vec->iov_base + vec_seek, word_gap, n); + + len -= n; + word_gap += n; + if (!len || word_gap == map_bankwidth(map)) { + map_write(map, datum, prog_buf_ofs); + prog_buf_ofs += map_bankwidth(map); + word_gap = 0; + } + + vec_seek += n; + if (vec_seek == vec->iov_len) { + vec++; + vec_seek = 0; + } + } while (len); + *pvec = vec; + *pvec_seek = vec_seek; + + /* GO GO GO */ + send_pfow_command(map, LPDDR_BUFF_PROGRAM, adr, wbufsize, NULL); + chip->state = FL_WRITING; + ret = wait_for_ready(map, chip, (1<<lpddr->qinfo->ProgBufferTime)); + if (ret) { + printk(KERN_WARNING"%s Buffer program error: %d at %lx; \n", + map->name, ret, adr); + goto out; + } + + out: put_chip(map, chip); + mutex_unlock(&chip->mutex); + return ret; +} + +static int do_erase_oneblock(struct mtd_info *mtd, loff_t adr) +{ + struct map_info *map = mtd->priv; + struct lpddr_private *lpddr = map->fldrv_priv; + int chipnum = adr >> lpddr->chipshift; + struct flchip *chip = &lpddr->chips[chipnum]; + int ret; + + mutex_lock(&chip->mutex); + ret = get_chip(map, chip, FL_ERASING); + if (ret) { + mutex_unlock(&chip->mutex); + return ret; + } + send_pfow_command(map, LPDDR_BLOCK_ERASE, adr, 0, NULL); + chip->state = FL_ERASING; + ret = wait_for_ready(map, chip, (1<<lpddr->qinfo->BlockEraseTime)*1000); + if (ret) { + printk(KERN_WARNING"%s Erase block error %d at : %llx\n", + map->name, ret, adr); + goto out; + } + out: put_chip(map, chip); + mutex_unlock(&chip->mutex); + return ret; +} + +static int lpddr_read(struct mtd_info *mtd, loff_t adr, size_t len, + size_t *retlen, u_char *buf) +{ + struct map_info *map = mtd->priv; + struct lpddr_private *lpddr = map->fldrv_priv; + int chipnum = adr >> lpddr->chipshift; + struct flchip *chip = &lpddr->chips[chipnum]; + int ret = 0; + + mutex_lock(&chip->mutex); + ret = get_chip(map, chip, FL_READY); + if (ret) { + mutex_unlock(&chip->mutex); + return ret; + } + + map_copy_from(map, buf, adr, len); + *retlen = len; + + put_chip(map, chip); + mutex_unlock(&chip->mutex); + return ret; +} + +static int lpddr_point(struct mtd_info *mtd, loff_t adr, size_t len, + size_t *retlen, void **mtdbuf, resource_size_t *phys) +{ + struct map_info *map = mtd->priv; + struct lpddr_private *lpddr = map->fldrv_priv; + int chipnum = adr >> lpddr->chipshift; + unsigned long ofs, last_end = 0; + struct flchip *chip = &lpddr->chips[chipnum]; + int ret = 0; + + if (!map->virt) + return -EINVAL; + + /* ofs: offset within the first chip that the first read should start */ + ofs = adr - (chipnum << lpddr->chipshift); + *mtdbuf = (void *)map->virt + chip->start + ofs; + + while (len) { + unsigned long thislen; + + if (chipnum >= lpddr->numchips) + break; + + /* We cannot point across chips that are virtually disjoint */ + if (!last_end) + last_end = chip->start; + else if (chip->start != last_end) + break; + + if ((len + ofs - 1) >> lpddr->chipshift) + thislen = (1<<lpddr->chipshift) - ofs; + else + thislen = len; + /* get the chip */ + mutex_lock(&chip->mutex); + ret = get_chip(map, chip, FL_POINT); + mutex_unlock(&chip->mutex); + if (ret) + break; + + chip->state = FL_POINT; + chip->ref_point_counter++; + *retlen += thislen; + len -= thislen; + + ofs = 0; + last_end += 1 << lpddr->chipshift; + chipnum++; + chip = &lpddr->chips[chipnum]; + } + return 0; +} + +static int lpddr_unpoint (struct mtd_info *mtd, loff_t adr, size_t len) +{ + struct map_info *map = mtd->priv; + struct lpddr_private *lpddr = map->fldrv_priv; + int chipnum = adr >> lpddr->chipshift, err = 0; + unsigned long ofs; + + /* ofs: offset within the first chip that the first read should start */ + ofs = adr - (chipnum << lpddr->chipshift); + + while (len) { + unsigned long thislen; + struct flchip *chip; + + chip = &lpddr->chips[chipnum]; + if (chipnum >= lpddr->numchips) + break; + + if ((len + ofs - 1) >> lpddr->chipshift) + thislen = (1<<lpddr->chipshift) - ofs; + else + thislen = len; + + mutex_lock(&chip->mutex); + if (chip->state == FL_POINT) { + chip->ref_point_counter--; + if (chip->ref_point_counter == 0) + chip->state = FL_READY; + } else { + printk(KERN_WARNING "%s: Warning: unpoint called on non" + "pointed region\n", map->name); + err = -EINVAL; + } + + put_chip(map, chip); + mutex_unlock(&chip->mutex); + + len -= thislen; + ofs = 0; + chipnum++; + } + + return err; +} + +static int lpddr_write_buffers(struct mtd_info *mtd, loff_t to, size_t len, + size_t *retlen, const u_char *buf) +{ + struct kvec vec; + + vec.iov_base = (void *) buf; + vec.iov_len = len; + + return lpddr_writev(mtd, &vec, 1, to, retlen); +} + + +static int lpddr_writev(struct mtd_info *mtd, const struct kvec *vecs, + unsigned long count, loff_t to, size_t *retlen) +{ + struct map_info *map = mtd->priv; + struct lpddr_private *lpddr = map->fldrv_priv; + int ret = 0; + int chipnum; + unsigned long ofs, vec_seek, i; + int wbufsize = 1 << lpddr->qinfo->BufSizeShift; + size_t len = 0; + + for (i = 0; i < count; i++) + len += vecs[i].iov_len; + + if (!len) + return 0; + + chipnum = to >> lpddr->chipshift; + + ofs = to; + vec_seek = 0; + + do { + /* We must not cross write block boundaries */ + int size = wbufsize - (ofs & (wbufsize-1)); + + if (size > len) + size = len; + + ret = do_write_buffer(map, &lpddr->chips[chipnum], + ofs, &vecs, &vec_seek, size); + if (ret) + return ret; + + ofs += size; + (*retlen) += size; + len -= size; + + /* Be nice and reschedule with the chip in a usable + * state for other processes */ + cond_resched(); + + } while (len); + + return 0; +} + +static int lpddr_erase(struct mtd_info *mtd, struct erase_info *instr) +{ + unsigned long ofs, len; + int ret; + struct map_info *map = mtd->priv; + struct lpddr_private *lpddr = map->fldrv_priv; + int size = 1 << lpddr->qinfo->UniformBlockSizeShift; + + ofs = instr->addr; + len = instr->len; + + while (len > 0) { + ret = do_erase_oneblock(mtd, ofs); + if (ret) + return ret; + ofs += size; + len -= size; + } + + return 0; +} + +#define DO_XXLOCK_LOCK 1 +#define DO_XXLOCK_UNLOCK 2 +static int do_xxlock(struct mtd_info *mtd, loff_t adr, uint32_t len, int thunk) +{ + int ret = 0; + struct map_info *map = mtd->priv; + struct lpddr_private *lpddr = map->fldrv_priv; + int chipnum = adr >> lpddr->chipshift; + struct flchip *chip = &lpddr->chips[chipnum]; + + mutex_lock(&chip->mutex); + ret = get_chip(map, chip, FL_LOCKING); + if (ret) { + mutex_unlock(&chip->mutex); + return ret; + } + + if (thunk == DO_XXLOCK_LOCK) { + send_pfow_command(map, LPDDR_LOCK_BLOCK, adr, adr + len, NULL); + chip->state = FL_LOCKING; + } else if (thunk == DO_XXLOCK_UNLOCK) { + send_pfow_command(map, LPDDR_UNLOCK_BLOCK, adr, adr + len, NULL); + chip->state = FL_UNLOCKING; + } else + BUG(); + + ret = wait_for_ready(map, chip, 1); + if (ret) { + printk(KERN_ERR "%s: block unlock error status %d \n", + map->name, ret); + goto out; + } +out: put_chip(map, chip); + mutex_unlock(&chip->mutex); + return ret; +} + +static int lpddr_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len) +{ + return do_xxlock(mtd, ofs, len, DO_XXLOCK_LOCK); +} + +static int lpddr_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len) +{ + return do_xxlock(mtd, ofs, len, DO_XXLOCK_UNLOCK); +} + +MODULE_LICENSE("GPL"); +MODULE_AUTHOR("Alexey Korolev <akorolev@infradead.org>"); +MODULE_DESCRIPTION("MTD driver for LPDDR flash chips"); diff --git a/drivers/mtd/lpddr/qinfo_probe.c b/drivers/mtd/lpddr/qinfo_probe.c new file mode 100644 index 0000000000..137ae5f0a1 --- /dev/null +++ b/drivers/mtd/lpddr/qinfo_probe.c @@ -0,0 +1,235 @@ +// SPDX-License-Identifier: GPL-2.0-or-later +/* + * Probing flash chips with QINFO records. + * (C) 2008 Korolev Alexey <akorolev@infradead.org> + * (C) 2008 Vasiliy Leonenko <vasiliy.leonenko@gmail.com> + */ +#include <linux/module.h> +#include <linux/types.h> +#include <linux/kernel.h> +#include <linux/init.h> +#include <linux/errno.h> +#include <linux/slab.h> +#include <linux/interrupt.h> + +#include <linux/mtd/xip.h> +#include <linux/mtd/map.h> +#include <linux/mtd/pfow.h> +#include <linux/mtd/qinfo.h> + +static int lpddr_chip_setup(struct map_info *map, struct lpddr_private *lpddr); +struct mtd_info *lpddr_probe(struct map_info *map); +static struct lpddr_private *lpddr_probe_chip(struct map_info *map); +static int lpddr_pfow_present(struct map_info *map, + struct lpddr_private *lpddr); + +static struct qinfo_query_info qinfo_array[] = { + /* General device info */ + {0, 0, "DevSizeShift", "Device size 2^n bytes"}, + {0, 3, "BufSizeShift", "Program buffer size 2^n bytes"}, + /* Erase block information */ + {1, 1, "TotalBlocksNum", "Total number of blocks"}, + {1, 2, "UniformBlockSizeShift", "Uniform block size 2^n bytes"}, + /* Partition information */ + {2, 1, "HWPartsNum", "Number of hardware partitions"}, + /* Optional features */ + {5, 1, "SuspEraseSupp", "Suspend erase supported"}, + /* Operation typical time */ + {10, 0, "SingleWordProgTime", "Single word program 2^n u-sec"}, + {10, 1, "ProgBufferTime", "Program buffer write 2^n u-sec"}, + {10, 2, "BlockEraseTime", "Block erase 2^n m-sec"}, + {10, 3, "FullChipEraseTime", "Full chip erase 2^n m-sec"}, +}; + +static long lpddr_get_qinforec_pos(struct map_info *map, char *id_str) +{ + int qinfo_lines = ARRAY_SIZE(qinfo_array); + int i; + int bankwidth = map_bankwidth(map) * 8; + int major, minor; + + for (i = 0; i < qinfo_lines; i++) { + if (strcmp(id_str, qinfo_array[i].id_str) == 0) { + major = qinfo_array[i].major & ((1 << bankwidth) - 1); + minor = qinfo_array[i].minor & ((1 << bankwidth) - 1); + return minor | (major << bankwidth); + } + } + printk(KERN_ERR"%s qinfo id string is wrong! \n", map->name); + BUG(); + return -1; +} + +static uint16_t lpddr_info_query(struct map_info *map, char *id_str) +{ + unsigned int dsr, val; + int bits_per_chip = map_bankwidth(map) * 8; + unsigned long adr = lpddr_get_qinforec_pos(map, id_str); + int attempts = 20; + + /* Write a request for the PFOW record */ + map_write(map, CMD(LPDDR_INFO_QUERY), + map->pfow_base + PFOW_COMMAND_CODE); + map_write(map, CMD(adr & ((1 << bits_per_chip) - 1)), + map->pfow_base + PFOW_COMMAND_ADDRESS_L); + map_write(map, CMD(adr >> bits_per_chip), + map->pfow_base + PFOW_COMMAND_ADDRESS_H); + map_write(map, CMD(LPDDR_START_EXECUTION), + map->pfow_base + PFOW_COMMAND_EXECUTE); + + while ((attempts--) > 0) { + dsr = CMDVAL(map_read(map, map->pfow_base + PFOW_DSR)); + if (dsr & DSR_READY_STATUS) + break; + udelay(10); + } + + val = CMDVAL(map_read(map, map->pfow_base + PFOW_COMMAND_DATA)); + return val; +} + +static int lpddr_pfow_present(struct map_info *map, struct lpddr_private *lpddr) +{ + map_word pfow_val[4]; + + /* Check identification string */ + pfow_val[0] = map_read(map, map->pfow_base + PFOW_QUERY_STRING_P); + pfow_val[1] = map_read(map, map->pfow_base + PFOW_QUERY_STRING_F); + pfow_val[2] = map_read(map, map->pfow_base + PFOW_QUERY_STRING_O); + pfow_val[3] = map_read(map, map->pfow_base + PFOW_QUERY_STRING_W); + + if (!map_word_equal(map, CMD('P'), pfow_val[0])) + goto out; + + if (!map_word_equal(map, CMD('F'), pfow_val[1])) + goto out; + + if (!map_word_equal(map, CMD('O'), pfow_val[2])) + goto out; + + if (!map_word_equal(map, CMD('W'), pfow_val[3])) + goto out; + + return 1; /* "PFOW" is found */ +out: + printk(KERN_WARNING"%s: PFOW string at 0x%lx is not found \n", + map->name, map->pfow_base); + return 0; +} + +static int lpddr_chip_setup(struct map_info *map, struct lpddr_private *lpddr) +{ + + lpddr->qinfo = kzalloc(sizeof(struct qinfo_chip), GFP_KERNEL); + if (!lpddr->qinfo) + return 0; + + /* Get the ManuID */ + lpddr->ManufactId = CMDVAL(map_read(map, map->pfow_base + PFOW_MANUFACTURER_ID)); + /* Get the DeviceID */ + lpddr->DevId = CMDVAL(map_read(map, map->pfow_base + PFOW_DEVICE_ID)); + /* read parameters from chip qinfo table */ + lpddr->qinfo->DevSizeShift = lpddr_info_query(map, "DevSizeShift"); + lpddr->qinfo->TotalBlocksNum = lpddr_info_query(map, "TotalBlocksNum"); + lpddr->qinfo->BufSizeShift = lpddr_info_query(map, "BufSizeShift"); + lpddr->qinfo->HWPartsNum = lpddr_info_query(map, "HWPartsNum"); + lpddr->qinfo->UniformBlockSizeShift = + lpddr_info_query(map, "UniformBlockSizeShift"); + lpddr->qinfo->SuspEraseSupp = lpddr_info_query(map, "SuspEraseSupp"); + lpddr->qinfo->SingleWordProgTime = + lpddr_info_query(map, "SingleWordProgTime"); + lpddr->qinfo->ProgBufferTime = lpddr_info_query(map, "ProgBufferTime"); + lpddr->qinfo->BlockEraseTime = lpddr_info_query(map, "BlockEraseTime"); + return 1; +} +static struct lpddr_private *lpddr_probe_chip(struct map_info *map) +{ + struct lpddr_private lpddr; + struct lpddr_private *retlpddr; + int numvirtchips; + + + if ((map->pfow_base + 0x1000) >= map->size) { + printk(KERN_NOTICE"%s Probe at base (0x%08lx) past the end of" + "the map(0x%08lx)\n", map->name, + (unsigned long)map->pfow_base, map->size - 1); + return NULL; + } + memset(&lpddr, 0, sizeof(struct lpddr_private)); + if (!lpddr_pfow_present(map, &lpddr)) + return NULL; + + if (!lpddr_chip_setup(map, &lpddr)) + return NULL; + + /* Ok so we found a chip */ + lpddr.chipshift = lpddr.qinfo->DevSizeShift; + lpddr.numchips = 1; + + numvirtchips = lpddr.numchips * lpddr.qinfo->HWPartsNum; + retlpddr = kzalloc(struct_size(retlpddr, chips, numvirtchips), + GFP_KERNEL); + if (!retlpddr) + return NULL; + + memcpy(retlpddr, &lpddr, sizeof(struct lpddr_private)); + + retlpddr->numchips = numvirtchips; + retlpddr->chipshift = retlpddr->qinfo->DevSizeShift - + __ffs(retlpddr->qinfo->HWPartsNum); + + return retlpddr; +} + +struct mtd_info *lpddr_probe(struct map_info *map) +{ + struct mtd_info *mtd = NULL; + struct lpddr_private *lpddr; + + /* First probe the map to see if we havecan open PFOW here */ + lpddr = lpddr_probe_chip(map); + if (!lpddr) + return NULL; + + map->fldrv_priv = lpddr; + mtd = lpddr_cmdset(map); + if (mtd) { + if (mtd->size > map->size) { + printk(KERN_WARNING "Reducing visibility of %ldKiB chip" + "to %ldKiB\n", (unsigned long)mtd->size >> 10, + (unsigned long)map->size >> 10); + mtd->size = map->size; + } + return mtd; + } + + kfree(lpddr->qinfo); + kfree(lpddr); + map->fldrv_priv = NULL; + return NULL; +} + +static struct mtd_chip_driver lpddr_chipdrv = { + .probe = lpddr_probe, + .name = "qinfo_probe", + .module = THIS_MODULE +}; + +static int __init lpddr_probe_init(void) +{ + register_mtd_chip_driver(&lpddr_chipdrv); + return 0; +} + +static void __exit lpddr_probe_exit(void) +{ + unregister_mtd_chip_driver(&lpddr_chipdrv); +} + +module_init(lpddr_probe_init); +module_exit(lpddr_probe_exit); + +MODULE_LICENSE("GPL"); +MODULE_AUTHOR("Vasiliy Leonenko <vasiliy.leonenko@gmail.com>"); +MODULE_DESCRIPTION("Driver to probe qinfo flash chips"); + diff --git a/drivers/mtd/maps/Kconfig b/drivers/mtd/maps/Kconfig new file mode 100644 index 0000000000..e098ae937c --- /dev/null +++ b/drivers/mtd/maps/Kconfig @@ -0,0 +1,388 @@ +# SPDX-License-Identifier: GPL-2.0-only +menu "Mapping drivers for chip access" + depends on MTD!=n + depends on HAS_IOMEM + +config MTD_COMPLEX_MAPPINGS + bool "Support non-linear mappings of flash chips" + help + This causes the chip drivers to allow for complicated + paged mappings of flash chips. + +config MTD_PHYSMAP + tristate "Flash device in physical memory map" + depends on MTD_CFI || MTD_JEDECPROBE || MTD_ROM || MTD_RAM || MTD_LPDDR + help + This provides a 'mapping' driver which allows the NOR Flash and + ROM driver code to communicate with chips which are mapped + physically into the CPU's memory. You will need to configure + the physical address and size of the flash chips on your + particular board as well as the bus width, either statically + with config options or at run-time. + + To compile this driver as a module, choose M here: the + module will be called physmap. + +config MTD_PHYSMAP_COMPAT + bool "Physmap compat support" + depends on MTD_PHYSMAP + default n + help + Setup a simple mapping via the Kconfig options. Normally the + physmap configuration options are done via your board's + resource file. + + If unsure, say N here. + +config MTD_PHYSMAP_START + hex "Physical start address of flash mapping" + depends on MTD_PHYSMAP_COMPAT + default "0x8000000" + help + This is the physical memory location at which the flash chips + are mapped on your particular target board. Refer to the + memory map which should hopefully be in the documentation for + your board. + +config MTD_PHYSMAP_LEN + hex "Physical length of flash mapping" + depends on MTD_PHYSMAP_COMPAT + default "0" + help + This is the total length of the mapping of the flash chips on + your particular board. If there is space, or aliases, in the + physical memory map between the chips, this could be larger + than the total amount of flash present. Refer to the memory + map which should hopefully be in the documentation for your + board. + +config MTD_PHYSMAP_BANKWIDTH + int "Bank width in octets" + depends on MTD_PHYSMAP_COMPAT + default "2" + help + This is the total width of the data bus of the flash devices + in octets. For example, if you have a data bus width of 32 + bits, you would set the bus width octet value to 4. This is + used internally by the CFI drivers. + +config MTD_PHYSMAP_OF + bool "Memory device in physical memory map based on OF description" + depends on OF && MTD_PHYSMAP + help + This provides a 'mapping' driver which allows the NOR Flash, ROM + and RAM driver code to communicate with chips which are mapped + physically into the CPU's memory. The mapping description here is + taken from OF device tree. + +config MTD_PHYSMAP_BT1_ROM + bool "Baikal-T1 Boot ROMs OF-based physical memory map handling" + depends on MTD_PHYSMAP_OF + depends on MIPS_BAIKAL_T1 || COMPILE_TEST + select MTD_COMPLEX_MAPPINGS + select MULTIPLEXER + select MUX_MMIO + help + This provides some extra DT physmap parsing for the Baikal-T1 + platforms, some detection and setting up ROMs-specific accessors. + +config MTD_PHYSMAP_VERSATILE + bool "ARM Versatile OF-based physical memory map handling" + depends on MTD_PHYSMAP_OF + depends on MFD_SYSCON + default y if (ARCH_INTEGRATOR || ARCH_VERSATILE || ARCH_REALVIEW) + help + This provides some extra DT physmap parsing for the ARM Versatile + platforms, basically to add a VPP (write protection) callback so + the flash can be taken out of write protection. + +config MTD_PHYSMAP_GEMINI + bool "Cortina Gemini OF-based physical memory map handling" + depends on MTD_PHYSMAP_OF + depends on MFD_SYSCON + select MTD_COMPLEX_MAPPINGS + default ARCH_GEMINI + help + This provides some extra DT physmap parsing for the Gemini + platforms, some detection and setting up parallel mode on the + external interface. + +config MTD_PHYSMAP_IXP4XX + bool "Intel IXP4xx OF-based physical memory map handling" + depends on MTD_PHYSMAP_OF + depends on ARM + select MTD_COMPLEX_MAPPINGS + select MTD_CFI_BE_BYTE_SWAP if CPU_BIG_ENDIAN + default ARCH_IXP4XX + help + This provides some extra DT physmap parsing for the Intel IXP4xx + platforms, some elaborate endianness handling in particular. + +config MTD_PHYSMAP_GPIO_ADDR + bool "GPIO-assisted Flash Chip Support" + depends on MTD_PHYSMAP + depends on GPIOLIB || COMPILE_TEST + depends on MTD_COMPLEX_MAPPINGS + help + Extend the physmap driver to allow flashes to be partially + physically addressed and assisted by GPIOs. + +config MTD_SUN_UFLASH + tristate "Sun Microsystems userflash support" + depends on SPARC && MTD_CFI && PCI + help + This provides a 'mapping' driver which supports the way in + which user-programmable flash chips are connected on various + Sun Microsystems boardsets. This driver will require CFI support + in the kernel, so if you did not enable CFI previously, do that now. + +config MTD_SC520CDP + tristate "CFI Flash device mapped on AMD SC520 CDP" + depends on (MELAN || COMPILE_TEST) && MTD_CFI + help + The SC520 CDP board has two banks of CFI-compliant chips and one + Dual-in-line JEDEC chip. This 'mapping' driver supports that + arrangement, implementing three MTD devices. + +config MTD_NETSC520 + tristate "CFI Flash device mapped on AMD NetSc520" + depends on (MELAN || COMPILE_TEST) && MTD_CFI + help + This enables access routines for the flash chips on the AMD NetSc520 + demonstration board. If you have one of these boards and would like + to use the flash chips on it, say 'Y'. + +config MTD_TS5500 + tristate "JEDEC Flash device mapped on Technologic Systems TS-5500" + depends on TS5500 || COMPILE_TEST + select MTD_JEDECPROBE + select MTD_CFI_AMDSTD + help + This provides a driver for the on-board flash of the Technologic + System's TS-5500 board. The 2MB flash is split into 3 partitions + which are accessed as separate MTD devices. + + mtd0 and mtd2 are the two BIOS drives, which use the resident + flash disk (RFD) flash translation layer. + + mtd1 allows you to reprogram your BIOS. BE VERY CAREFUL. + + Note that jumper 3 ("Write Enable Drive A") must be set + otherwise detection won't succeed. + +config MTD_SBC_GXX + tristate "CFI Flash device mapped on Arcom SBC-GXx boards" + depends on X86 && MTD_CFI_INTELEXT && MTD_COMPLEX_MAPPINGS + help + This provides a driver for the on-board flash of Arcom Control + Systems' SBC-GXn family of boards, formerly known as SBC-MediaGX. + By default the flash is split into 3 partitions which are accessed + as separate MTD devices. This board utilizes Intel StrataFlash. + More info at + <http://www.arcomcontrols.com/products/icp/pc104/processors/SBC_GX1.htm>. + +config MTD_PXA2XX + tristate "CFI Flash device mapped on Intel XScale PXA2xx based boards" + depends on (PXA25x || PXA27x) && MTD_CFI_INTELEXT + help + This provides a driver for the NOR flash attached to a PXA2xx chip. + +config MTD_SCx200_DOCFLASH + tristate "Flash device mapped with DOCCS on NatSemi SCx200" + depends on SCx200 && MTD_CFI + help + Enable support for a flash chip mapped using the DOCCS signal on a + National Semiconductor SCx200 processor. + + If you don't know what to do here, say N. + + If compiled as a module, it will be called scx200_docflash. + +config MTD_AMD76XROM + tristate "BIOS flash chip on AMD76x southbridge" + depends on X86 && MTD_JEDECPROBE + help + Support for treating the BIOS flash chip on AMD76x motherboards + as an MTD device - with this you can reprogram your BIOS. + + BE VERY CAREFUL. + +config MTD_ICHXROM + tristate "BIOS flash chip on Intel Controller Hub 2/3/4/5" + depends on X86 && MTD_JEDECPROBE + help + Support for treating the BIOS flash chip on ICHX motherboards + as an MTD device - with this you can reprogram your BIOS. + + BE VERY CAREFUL. + +config MTD_ESB2ROM + tristate "BIOS flash chip on Intel ESB Controller Hub 2" + depends on X86 && MTD_JEDECPROBE && PCI + help + Support for treating the BIOS flash chip on ESB2 motherboards + as an MTD device - with this you can reprogram your BIOS. + + BE VERY CAREFUL. + +config MTD_CK804XROM + tristate "BIOS flash chip on Nvidia CK804" + depends on X86 && MTD_JEDECPROBE && PCI + help + Support for treating the BIOS flash chip on nvidia motherboards + as an MTD device - with this you can reprogram your BIOS. + + BE VERY CAREFUL. + +config MTD_SCB2_FLASH + tristate "BIOS flash chip on Intel SCB2 boards" + depends on X86 && MTD_JEDECPROBE && PCI + help + Support for treating the BIOS flash chip on Intel SCB2 boards + as an MTD device - with this you can reprogram your BIOS. + + BE VERY CAREFUL. + +config MTD_TSUNAMI + tristate "Flash chips on Tsunami TIG bus" + depends on ALPHA_TSUNAMI && MTD_COMPLEX_MAPPINGS + help + Support for the flash chip on Tsunami TIG bus. + +config MTD_NETtel + tristate "CFI flash device on SnapGear/SecureEdge" + depends on X86 && MTD_JEDECPROBE + help + Support for flash chips on NETtel/SecureEdge/SnapGear boards. + +config MTD_LANTIQ + tristate "Lantiq SoC NOR support" + depends on LANTIQ + help + Support for NOR flash attached to the Lantiq SoC's External Bus Unit. + +config MTD_L440GX + tristate "BIOS flash chip on Intel L440GX boards" + depends on X86 && MTD_JEDECPROBE + help + Support for treating the BIOS flash chip on Intel L440GX motherboards + as an MTD device - with this you can reprogram your BIOS. + + BE VERY CAREFUL. + +config MTD_CFI_FLAGADM + tristate "CFI Flash device mapping on FlagaDM" + depends on PPC_8xx && MTD_CFI + help + Mapping for the Flaga digital module. If you don't have one, ignore + this setting. + +config MTD_SOLUTIONENGINE + tristate "CFI Flash device mapped on Hitachi SolutionEngine" + depends on SOLUTION_ENGINE && MTD_CFI && MTD_REDBOOT_PARTS + help + This enables access to the flash chips on the Hitachi SolutionEngine and + similar boards. Say 'Y' if you are building a kernel for such a board. + +config MTD_SA1100 + tristate "CFI Flash device mapped on StrongARM SA11x0" + depends on MTD_CFI && ARCH_SA1100 + help + This enables access to the flash chips on most platforms based on + the SA1100 and SA1110, including the Assabet and the Compaq iPAQ. + If you have such a board, say 'Y'. + +config MTD_DC21285 + tristate "CFI Flash device mapped on DC21285 Footbridge" + depends on MTD_CFI && ARCH_FOOTBRIDGE && MTD_COMPLEX_MAPPINGS + help + This provides a driver for the flash accessed using Intel's + 21285 bridge used with Intel's StrongARM processors. More info at + <https://www.intel.com/design/bridge/docs/21285_documentation.htm>. + +config MTD_IMPA7 + tristate "JEDEC Flash device mapped on impA7" + depends on ARM && MTD_JEDECPROBE + help + This enables access to the NOR Flash on the impA7 board of + implementa GmbH. If you have such a board, say 'Y' here. + +# This needs CFI or JEDEC, depending on the cards found. +config MTD_PCI + tristate "PCI MTD driver" + depends on PCI && MTD_COMPLEX_MAPPINGS + help + Mapping for accessing flash devices on add-in cards like the Intel XScale + IQ80310 card, and the Intel EBSA285 card in blank ROM programming mode + (please see the manual for the link settings). + + If you are not sure, say N. + +config MTD_PCMCIA + tristate "PCMCIA MTD driver" + depends on PCMCIA && MTD_COMPLEX_MAPPINGS + help + Map driver for accessing PCMCIA linear flash memory cards. These + cards are usually around 4-16MiB in size. This does not include + Compact Flash cards which are treated as IDE devices. + +config MTD_PCMCIA_ANONYMOUS + bool "Use PCMCIA MTD drivers for anonymous PCMCIA cards" + depends on MTD_PCMCIA + help + If this option is enabled, PCMCIA cards which do not report + anything about themselves are assumed to be MTD cards. + + If unsure, say N. + +config MTD_UCLINUX + bool "Generic uClinux RAM/ROM filesystem support" + depends on (MTD_RAM=y || MTD_ROM=y) && (!MMU || COLDFIRE) + help + Map driver to support image based filesystems for uClinux. + +config MTD_INTEL_VR_NOR + tristate "NOR flash on Intel Vermilion Range Expansion Bus CS0" + depends on PCI + help + Map driver for a NOR flash bank located on the Expansion Bus of the + Intel Vermilion Range chipset. + +config MTD_PLATRAM + tristate "Map driver for platform device RAM (mtd-ram)" + select MTD_RAM + help + Map driver for RAM areas described via the platform device + system. + + This selection automatically selects the map_ram driver. + +config MTD_VMU + tristate "Map driver for Dreamcast VMU" + depends on MAPLE + help + This driver enables access to the Dreamcast Visual Memory Unit (VMU). + + Most Dreamcast users will want to say Y here. + + To build this as a module select M here, the module will be called + vmu-flash. + +config MTD_PISMO + tristate "MTD discovery driver for PISMO modules" + depends on I2C + depends on ARCH_VERSATILE + help + This driver allows for discovery of PISMO modules - see + <http://www.pismoworld.org/>. These are small modules containing + up to five memory devices (eg, SRAM, flash, DOC) described by an + I2C EEPROM. + + This driver does not create any MTD maps itself; instead it + creates MTD physmap and MTD SRAM platform devices. If you + enable this option, you should consider enabling MTD_PHYSMAP + and/or MTD_PLATRAM according to the devices on your module. + + When built as a module, it will be called pismo.ko + +endmenu diff --git a/drivers/mtd/maps/Makefile b/drivers/mtd/maps/Makefile new file mode 100644 index 0000000000..094cfb2440 --- /dev/null +++ b/drivers/mtd/maps/Makefile @@ -0,0 +1,45 @@ +# SPDX-License-Identifier: GPL-2.0 +# +# linux/drivers/maps/Makefile +# + +ifeq ($(CONFIG_MTD_COMPLEX_MAPPINGS),y) +obj-$(CONFIG_MTD) += map_funcs.o +endif + +# Chip mappings +obj-$(CONFIG_MTD_CFI_FLAGADM) += cfi_flagadm.o +obj-$(CONFIG_MTD_DC21285) += dc21285.o +obj-$(CONFIG_MTD_L440GX) += l440gx.o +obj-$(CONFIG_MTD_AMD76XROM) += amd76xrom.o +obj-$(CONFIG_MTD_ESB2ROM) += esb2rom.o +obj-$(CONFIG_MTD_ICHXROM) += ichxrom.o +obj-$(CONFIG_MTD_CK804XROM) += ck804xrom.o +obj-$(CONFIG_MTD_TSUNAMI) += tsunami_flash.o +obj-$(CONFIG_MTD_PXA2XX) += pxa2xx-flash.o +physmap-objs-y += physmap-core.o +physmap-objs-$(CONFIG_MTD_PHYSMAP_BT1_ROM) += physmap-bt1-rom.o +physmap-objs-$(CONFIG_MTD_PHYSMAP_VERSATILE) += physmap-versatile.o +physmap-objs-$(CONFIG_MTD_PHYSMAP_GEMINI) += physmap-gemini.o +physmap-objs-$(CONFIG_MTD_PHYSMAP_IXP4XX) += physmap-ixp4xx.o +physmap-objs := $(physmap-objs-y) +obj-$(CONFIG_MTD_PHYSMAP) += physmap.o +obj-$(CONFIG_MTD_PISMO) += pismo.o +obj-$(CONFIG_MTD_PCMCIA) += pcmciamtd.o +obj-$(CONFIG_MTD_SA1100) += sa1100-flash.o +obj-$(CONFIG_MTD_SBC_GXX) += sbc_gxx.o +obj-$(CONFIG_MTD_SC520CDP) += sc520cdp.o +obj-$(CONFIG_MTD_NETSC520) += netsc520.o +obj-$(CONFIG_MTD_TS5500) += ts5500_flash.o +obj-$(CONFIG_MTD_SUN_UFLASH) += sun_uflash.o +obj-$(CONFIG_MTD_SCx200_DOCFLASH)+= scx200_docflash.o +obj-$(CONFIG_MTD_SOLUTIONENGINE)+= solutionengine.o +obj-$(CONFIG_MTD_PCI) += pci.o +obj-$(CONFIG_MTD_IMPA7) += impa7.o +obj-$(CONFIG_MTD_UCLINUX) += uclinux.o +obj-$(CONFIG_MTD_NETtel) += nettel.o +obj-$(CONFIG_MTD_SCB2_FLASH) += scb2_flash.o +obj-$(CONFIG_MTD_PLATRAM) += plat-ram.o +obj-$(CONFIG_MTD_INTEL_VR_NOR) += intel_vr_nor.o +obj-$(CONFIG_MTD_VMU) += vmu-flash.o +obj-$(CONFIG_MTD_LANTIQ) += lantiq-flash.o diff --git a/drivers/mtd/maps/amd76xrom.c b/drivers/mtd/maps/amd76xrom.c new file mode 100644 index 0000000000..281fcbaa74 --- /dev/null +++ b/drivers/mtd/maps/amd76xrom.c @@ -0,0 +1,348 @@ +// SPDX-License-Identifier: GPL-2.0-only +/* + * amd76xrom.c + * + * Normal mappings of chips in physical memory + */ + +#include <linux/module.h> +#include <linux/types.h> +#include <linux/kernel.h> +#include <linux/init.h> +#include <linux/slab.h> +#include <asm/io.h> +#include <linux/mtd/mtd.h> +#include <linux/mtd/map.h> +#include <linux/mtd/cfi.h> +#include <linux/mtd/flashchip.h> +#include <linux/pci.h> +#include <linux/pci_ids.h> +#include <linux/list.h> + + +#define xstr(s) str(s) +#define str(s) #s +#define MOD_NAME xstr(KBUILD_BASENAME) + +#define ADDRESS_NAME_LEN 18 + +#define ROM_PROBE_STEP_SIZE (64*1024) /* 64KiB */ + +struct amd76xrom_window { + void __iomem *virt; + unsigned long phys; + unsigned long size; + struct list_head maps; + struct resource rsrc; + struct pci_dev *pdev; +}; + +struct amd76xrom_map_info { + struct list_head list; + struct map_info map; + struct mtd_info *mtd; + struct resource rsrc; + char map_name[sizeof(MOD_NAME) + 2 + ADDRESS_NAME_LEN]; +}; + +/* The 2 bits controlling the window size are often set to allow reading + * the BIOS, but too small to allow writing, since the lock registers are + * 4MiB lower in the address space than the data. + * + * This is intended to prevent flashing the bios, perhaps accidentally. + * + * This parameter allows the normal driver to over-ride the BIOS settings. + * + * The bits are 6 and 7. If both bits are set, it is a 5MiB window. + * If only the 7 Bit is set, it is a 4MiB window. Otherwise, a + * 64KiB window. + * + */ +static uint win_size_bits; +module_param(win_size_bits, uint, 0); +MODULE_PARM_DESC(win_size_bits, "ROM window size bits override for 0x43 byte, normally set by BIOS."); + +static struct amd76xrom_window amd76xrom_window = { + .maps = LIST_HEAD_INIT(amd76xrom_window.maps), +}; + +static void amd76xrom_cleanup(struct amd76xrom_window *window) +{ + struct amd76xrom_map_info *map, *scratch; + u8 byte; + + if (window->pdev) { + /* Disable writes through the rom window */ + pci_read_config_byte(window->pdev, 0x40, &byte); + pci_write_config_byte(window->pdev, 0x40, byte & ~1); + pci_dev_put(window->pdev); + } + + /* Free all of the mtd devices */ + list_for_each_entry_safe(map, scratch, &window->maps, list) { + if (map->rsrc.parent) { + release_resource(&map->rsrc); + } + mtd_device_unregister(map->mtd); + map_destroy(map->mtd); + list_del(&map->list); + kfree(map); + } + if (window->rsrc.parent) + release_resource(&window->rsrc); + + if (window->virt) { + iounmap(window->virt); + window->virt = NULL; + window->phys = 0; + window->size = 0; + window->pdev = NULL; + } +} + + +static int amd76xrom_init_one(struct pci_dev *pdev, + const struct pci_device_id *ent) +{ + static char *rom_probe_types[] = { "cfi_probe", "jedec_probe", NULL }; + u8 byte; + struct amd76xrom_window *window = &amd76xrom_window; + struct amd76xrom_map_info *map = NULL; + unsigned long map_top; + + /* Remember the pci dev I find the window in - already have a ref */ + window->pdev = pdev; + + /* Enable the selected rom window. This is often incorrectly + * set up by the BIOS, and the 4MiB offset for the lock registers + * requires the full 5MiB of window space. + * + * This 'write, then read' approach leaves the bits for + * other uses of the hardware info. + */ + pci_read_config_byte(pdev, 0x43, &byte); + pci_write_config_byte(pdev, 0x43, byte | win_size_bits ); + + /* Assume the rom window is properly setup, and find it's size */ + pci_read_config_byte(pdev, 0x43, &byte); + if ((byte & ((1<<7)|(1<<6))) == ((1<<7)|(1<<6))) { + window->phys = 0xffb00000; /* 5MiB */ + } + else if ((byte & (1<<7)) == (1<<7)) { + window->phys = 0xffc00000; /* 4MiB */ + } + else { + window->phys = 0xffff0000; /* 64KiB */ + } + window->size = 0xffffffffUL - window->phys + 1UL; + + /* + * Try to reserve the window mem region. If this fails then + * it is likely due to a fragment of the window being + * "reserved" by the BIOS. In the case that the + * request_mem_region() fails then once the rom size is + * discovered we will try to reserve the unreserved fragment. + */ + window->rsrc.name = MOD_NAME; + window->rsrc.start = window->phys; + window->rsrc.end = window->phys + window->size - 1; + window->rsrc.flags = IORESOURCE_MEM | IORESOURCE_BUSY; + if (request_resource(&iomem_resource, &window->rsrc)) { + window->rsrc.parent = NULL; + printk(KERN_ERR MOD_NAME + " %s(): Unable to register resource %pR - kernel bug?\n", + __func__, &window->rsrc); + return -EBUSY; + } + + + /* Enable writes through the rom window */ + pci_read_config_byte(pdev, 0x40, &byte); + pci_write_config_byte(pdev, 0x40, byte | 1); + + /* FIXME handle registers 0x80 - 0x8C the bios region locks */ + + /* For write accesses caches are useless */ + window->virt = ioremap(window->phys, window->size); + if (!window->virt) { + printk(KERN_ERR MOD_NAME ": ioremap(%08lx, %08lx) failed\n", + window->phys, window->size); + goto out; + } + + /* Get the first address to look for an rom chip at */ + map_top = window->phys; +#if 1 + /* The probe sequence run over the firmware hub lock + * registers sets them to 0x7 (no access). + * Probe at most the last 4M of the address space. + */ + if (map_top < 0xffc00000) { + map_top = 0xffc00000; + } +#endif + /* Loop through and look for rom chips */ + while((map_top - 1) < 0xffffffffUL) { + struct cfi_private *cfi; + unsigned long offset; + int i; + + if (!map) { + map = kmalloc(sizeof(*map), GFP_KERNEL); + if (!map) + goto out; + } + memset(map, 0, sizeof(*map)); + INIT_LIST_HEAD(&map->list); + map->map.name = map->map_name; + map->map.phys = map_top; + offset = map_top - window->phys; + map->map.virt = (void __iomem *) + (((unsigned long)(window->virt)) + offset); + map->map.size = 0xffffffffUL - map_top + 1UL; + /* Set the name of the map to the address I am trying */ + sprintf(map->map_name, "%s @%08Lx", + MOD_NAME, (unsigned long long)map->map.phys); + + /* There is no generic VPP support */ + for(map->map.bankwidth = 32; map->map.bankwidth; + map->map.bankwidth >>= 1) + { + char **probe_type; + /* Skip bankwidths that are not supported */ + if (!map_bankwidth_supported(map->map.bankwidth)) + continue; + + /* Setup the map methods */ + simple_map_init(&map->map); + + /* Try all of the probe methods */ + probe_type = rom_probe_types; + for(; *probe_type; probe_type++) { + map->mtd = do_map_probe(*probe_type, &map->map); + if (map->mtd) + goto found; + } + } + map_top += ROM_PROBE_STEP_SIZE; + continue; + found: + /* Trim the size if we are larger than the map */ + if (map->mtd->size > map->map.size) { + printk(KERN_WARNING MOD_NAME + " rom(%llu) larger than window(%lu). fixing...\n", + (unsigned long long)map->mtd->size, map->map.size); + map->mtd->size = map->map.size; + } + if (window->rsrc.parent) { + /* + * Registering the MTD device in iomem may not be possible + * if there is a BIOS "reserved" and BUSY range. If this + * fails then continue anyway. + */ + map->rsrc.name = map->map_name; + map->rsrc.start = map->map.phys; + map->rsrc.end = map->map.phys + map->mtd->size - 1; + map->rsrc.flags = IORESOURCE_MEM | IORESOURCE_BUSY; + if (request_resource(&window->rsrc, &map->rsrc)) { + printk(KERN_ERR MOD_NAME + ": cannot reserve MTD resource\n"); + map->rsrc.parent = NULL; + } + } + + /* Make the whole region visible in the map */ + map->map.virt = window->virt; + map->map.phys = window->phys; + cfi = map->map.fldrv_priv; + for(i = 0; i < cfi->numchips; i++) { + cfi->chips[i].start += offset; + } + + /* Now that the mtd devices is complete claim and export it */ + map->mtd->owner = THIS_MODULE; + if (mtd_device_register(map->mtd, NULL, 0)) { + map_destroy(map->mtd); + map->mtd = NULL; + goto out; + } + + + /* Calculate the new value of map_top */ + map_top += map->mtd->size; + + /* File away the map structure */ + list_add(&map->list, &window->maps); + map = NULL; + } + + out: + /* Free any left over map structures */ + kfree(map); + /* See if I have any map structures */ + if (list_empty(&window->maps)) { + amd76xrom_cleanup(window); + return -ENODEV; + } + return 0; +} + + +static void amd76xrom_remove_one(struct pci_dev *pdev) +{ + struct amd76xrom_window *window = &amd76xrom_window; + + amd76xrom_cleanup(window); +} + +static const struct pci_device_id amd76xrom_pci_tbl[] = { + { PCI_VENDOR_ID_AMD, PCI_DEVICE_ID_AMD_VIPER_7410, + PCI_ANY_ID, PCI_ANY_ID, }, + { PCI_VENDOR_ID_AMD, PCI_DEVICE_ID_AMD_VIPER_7440, + PCI_ANY_ID, PCI_ANY_ID, }, + { PCI_VENDOR_ID_AMD, 0x7468 }, /* amd8111 support */ + { 0, } +}; + +MODULE_DEVICE_TABLE(pci, amd76xrom_pci_tbl); + +#if 0 +static struct pci_driver amd76xrom_driver = { + .name = MOD_NAME, + .id_table = amd76xrom_pci_tbl, + .probe = amd76xrom_init_one, + .remove = amd76xrom_remove_one, +}; +#endif + +static int __init init_amd76xrom(void) +{ + struct pci_dev *pdev; + const struct pci_device_id *id; + pdev = NULL; + for(id = amd76xrom_pci_tbl; id->vendor; id++) { + pdev = pci_get_device(id->vendor, id->device, NULL); + if (pdev) { + break; + } + } + if (pdev) { + return amd76xrom_init_one(pdev, &amd76xrom_pci_tbl[0]); + } + return -ENXIO; +#if 0 + return pci_register_driver(&amd76xrom_driver); +#endif +} + +static void __exit cleanup_amd76xrom(void) +{ + amd76xrom_remove_one(amd76xrom_window.pdev); +} + +module_init(init_amd76xrom); +module_exit(cleanup_amd76xrom); + +MODULE_LICENSE("GPL"); +MODULE_AUTHOR("Eric Biederman <ebiederman@lnxi.com>"); +MODULE_DESCRIPTION("MTD map driver for BIOS chips on the AMD76X southbridge"); diff --git a/drivers/mtd/maps/cfi_flagadm.c b/drivers/mtd/maps/cfi_flagadm.c new file mode 100644 index 0000000000..70f4886284 --- /dev/null +++ b/drivers/mtd/maps/cfi_flagadm.c @@ -0,0 +1,137 @@ +/* + * Copyright © 2001 Flaga hf. Medical Devices, Kári Davíðsson <kd@flaga.is> + * + * This program is free software; you can redistribute it and/or modify it + * under the terms of the GNU General Public License as published by the + * Free Software Foundation; either version 2 of the License, or (at your + * option) any later version. + * + * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED + * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF + * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN + * NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, + * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT + * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF + * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON + * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT + * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF + * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + * + * You should have received a copy of the GNU General Public License along + * with this program; if not, write to the Free Software Foundation, Inc., + * 675 Mass Ave, Cambridge, MA 02139, USA. + */ + +#include <linux/module.h> +#include <linux/types.h> +#include <linux/kernel.h> +#include <linux/init.h> +#include <asm/io.h> +#include <linux/mtd/mtd.h> +#include <linux/mtd/map.h> +#include <linux/mtd/partitions.h> + + +/* We split the flash chip up into four parts. + * 1: bootloader first 128k (0x00000000 - 0x0001FFFF) size 0x020000 + * 2: kernel 640k (0x00020000 - 0x000BFFFF) size 0x0A0000 + * 3: compressed 1536k root ramdisk (0x000C0000 - 0x0023FFFF) size 0x180000 + * 4: writeable diskpartition (jffs)(0x00240000 - 0x003FFFFF) size 0x1C0000 + */ + +#define FLASH_PHYS_ADDR 0x40000000 +#define FLASH_SIZE 0x400000 + +#define FLASH_PARTITION0_ADDR 0x00000000 +#define FLASH_PARTITION0_SIZE 0x00020000 + +#define FLASH_PARTITION1_ADDR 0x00020000 +#define FLASH_PARTITION1_SIZE 0x000A0000 + +#define FLASH_PARTITION2_ADDR 0x000C0000 +#define FLASH_PARTITION2_SIZE 0x00180000 + +#define FLASH_PARTITION3_ADDR 0x00240000 +#define FLASH_PARTITION3_SIZE 0x001C0000 + + +static struct map_info flagadm_map = { + .name = "FlagaDM flash device", + .size = FLASH_SIZE, + .bankwidth = 2, +}; + +static const struct mtd_partition flagadm_parts[] = { + { + .name = "Bootloader", + .offset = FLASH_PARTITION0_ADDR, + .size = FLASH_PARTITION0_SIZE + }, + { + .name = "Kernel image", + .offset = FLASH_PARTITION1_ADDR, + .size = FLASH_PARTITION1_SIZE + }, + { + .name = "Initial ramdisk image", + .offset = FLASH_PARTITION2_ADDR, + .size = FLASH_PARTITION2_SIZE + }, + { + .name = "Persistent storage", + .offset = FLASH_PARTITION3_ADDR, + .size = FLASH_PARTITION3_SIZE + } +}; + +#define PARTITION_COUNT ARRAY_SIZE(flagadm_parts) + +static struct mtd_info *mymtd; + +static int __init init_flagadm(void) +{ + printk(KERN_NOTICE "FlagaDM flash device: %x at %x\n", + FLASH_SIZE, FLASH_PHYS_ADDR); + + flagadm_map.phys = FLASH_PHYS_ADDR; + flagadm_map.virt = ioremap(FLASH_PHYS_ADDR, + FLASH_SIZE); + + if (!flagadm_map.virt) { + printk("Failed to ioremap\n"); + return -EIO; + } + + simple_map_init(&flagadm_map); + + mymtd = do_map_probe("cfi_probe", &flagadm_map); + if (mymtd) { + mymtd->owner = THIS_MODULE; + mtd_device_register(mymtd, flagadm_parts, PARTITION_COUNT); + printk(KERN_NOTICE "FlagaDM flash device initialized\n"); + return 0; + } + + iounmap((void __iomem *)flagadm_map.virt); + return -ENXIO; +} + +static void __exit cleanup_flagadm(void) +{ + if (mymtd) { + mtd_device_unregister(mymtd); + map_destroy(mymtd); + } + if (flagadm_map.virt) { + iounmap((void __iomem *)flagadm_map.virt); + flagadm_map.virt = NULL; + } +} + +module_init(init_flagadm); +module_exit(cleanup_flagadm); + + +MODULE_LICENSE("GPL"); +MODULE_AUTHOR("Kári Davíðsson <kd@flaga.is>"); +MODULE_DESCRIPTION("MTD map driver for Flaga digital module"); diff --git a/drivers/mtd/maps/ck804xrom.c b/drivers/mtd/maps/ck804xrom.c new file mode 100644 index 0000000000..c0216bc740 --- /dev/null +++ b/drivers/mtd/maps/ck804xrom.c @@ -0,0 +1,386 @@ +// SPDX-License-Identifier: GPL-2.0-only +/* + * ck804xrom.c + * + * Normal mappings of chips in physical memory + * + * Dave Olsen <dolsen@lnxi.com> + * Ryan Jackson <rjackson@lnxi.com> + */ + +#include <linux/module.h> +#include <linux/types.h> +#include <linux/kernel.h> +#include <linux/init.h> +#include <linux/slab.h> +#include <asm/io.h> +#include <linux/mtd/mtd.h> +#include <linux/mtd/map.h> +#include <linux/mtd/cfi.h> +#include <linux/mtd/flashchip.h> +#include <linux/pci.h> +#include <linux/pci_ids.h> +#include <linux/list.h> + + +#define MOD_NAME KBUILD_BASENAME + +#define ADDRESS_NAME_LEN 18 + +#define ROM_PROBE_STEP_SIZE (64*1024) + +#define DEV_CK804 1 +#define DEV_MCP55 2 + +struct ck804xrom_window { + void __iomem *virt; + unsigned long phys; + unsigned long size; + struct list_head maps; + struct resource rsrc; + struct pci_dev *pdev; +}; + +struct ck804xrom_map_info { + struct list_head list; + struct map_info map; + struct mtd_info *mtd; + struct resource rsrc; + char map_name[sizeof(MOD_NAME) + 2 + ADDRESS_NAME_LEN]; +}; + +/* + * The following applies to ck804 only: + * The 2 bits controlling the window size are often set to allow reading + * the BIOS, but too small to allow writing, since the lock registers are + * 4MiB lower in the address space than the data. + * + * This is intended to prevent flashing the bios, perhaps accidentally. + * + * This parameter allows the normal driver to override the BIOS settings. + * + * The bits are 6 and 7. If both bits are set, it is a 5MiB window. + * If only the 7 Bit is set, it is a 4MiB window. Otherwise, a + * 64KiB window. + * + * The following applies to mcp55 only: + * The 15 bits controlling the window size are distributed as follows: + * byte @0x88: bit 0..7 + * byte @0x8c: bit 8..15 + * word @0x90: bit 16..30 + * If all bits are enabled, we have a 16? MiB window + * Please set win_size_bits to 0x7fffffff if you actually want to do something + */ +static uint win_size_bits = 0; +module_param(win_size_bits, uint, 0); +MODULE_PARM_DESC(win_size_bits, "ROM window size bits override, normally set by BIOS."); + +static struct ck804xrom_window ck804xrom_window = { + .maps = LIST_HEAD_INIT(ck804xrom_window.maps), +}; + +static void ck804xrom_cleanup(struct ck804xrom_window *window) +{ + struct ck804xrom_map_info *map, *scratch; + u8 byte; + + if (window->pdev) { + /* Disable writes through the rom window */ + pci_read_config_byte(window->pdev, 0x6d, &byte); + pci_write_config_byte(window->pdev, 0x6d, byte & ~1); + } + + /* Free all of the mtd devices */ + list_for_each_entry_safe(map, scratch, &window->maps, list) { + if (map->rsrc.parent) + release_resource(&map->rsrc); + + mtd_device_unregister(map->mtd); + map_destroy(map->mtd); + list_del(&map->list); + kfree(map); + } + if (window->rsrc.parent) + release_resource(&window->rsrc); + + if (window->virt) { + iounmap(window->virt); + window->virt = NULL; + window->phys = 0; + window->size = 0; + } + pci_dev_put(window->pdev); +} + + +static int __init ck804xrom_init_one(struct pci_dev *pdev, + const struct pci_device_id *ent) +{ + static char *rom_probe_types[] = { "cfi_probe", "jedec_probe", NULL }; + u8 byte; + u16 word; + struct ck804xrom_window *window = &ck804xrom_window; + struct ck804xrom_map_info *map = NULL; + unsigned long map_top; + + /* Remember the pci dev I find the window in */ + window->pdev = pci_dev_get(pdev); + + switch (ent->driver_data) { + case DEV_CK804: + /* Enable the selected rom window. This is often incorrectly + * set up by the BIOS, and the 4MiB offset for the lock registers + * requires the full 5MiB of window space. + * + * This 'write, then read' approach leaves the bits for + * other uses of the hardware info. + */ + pci_read_config_byte(pdev, 0x88, &byte); + pci_write_config_byte(pdev, 0x88, byte | win_size_bits ); + + /* Assume the rom window is properly setup, and find it's size */ + pci_read_config_byte(pdev, 0x88, &byte); + + if ((byte & ((1<<7)|(1<<6))) == ((1<<7)|(1<<6))) + window->phys = 0xffb00000; /* 5MiB */ + else if ((byte & (1<<7)) == (1<<7)) + window->phys = 0xffc00000; /* 4MiB */ + else + window->phys = 0xffff0000; /* 64KiB */ + break; + + case DEV_MCP55: + pci_read_config_byte(pdev, 0x88, &byte); + pci_write_config_byte(pdev, 0x88, byte | (win_size_bits & 0xff)); + + pci_read_config_byte(pdev, 0x8c, &byte); + pci_write_config_byte(pdev, 0x8c, byte | ((win_size_bits & 0xff00) >> 8)); + + pci_read_config_word(pdev, 0x90, &word); + pci_write_config_word(pdev, 0x90, word | ((win_size_bits & 0x7fff0000) >> 16)); + + window->phys = 0xff000000; /* 16MiB, hardcoded for now */ + break; + } + + window->size = 0xffffffffUL - window->phys + 1UL; + + /* + * Try to reserve the window mem region. If this fails then + * it is likely due to a fragment of the window being + * "reserved" by the BIOS. In the case that the + * request_mem_region() fails then once the rom size is + * discovered we will try to reserve the unreserved fragment. + */ + window->rsrc.name = MOD_NAME; + window->rsrc.start = window->phys; + window->rsrc.end = window->phys + window->size - 1; + window->rsrc.flags = IORESOURCE_MEM | IORESOURCE_BUSY; + if (request_resource(&iomem_resource, &window->rsrc)) { + window->rsrc.parent = NULL; + printk(KERN_ERR MOD_NAME + " %s(): Unable to register resource %pR - kernel bug?\n", + __func__, &window->rsrc); + } + + + /* Enable writes through the rom window */ + pci_read_config_byte(pdev, 0x6d, &byte); + pci_write_config_byte(pdev, 0x6d, byte | 1); + + /* FIXME handle registers 0x80 - 0x8C the bios region locks */ + + /* For write accesses caches are useless */ + window->virt = ioremap(window->phys, window->size); + if (!window->virt) { + printk(KERN_ERR MOD_NAME ": ioremap(%08lx, %08lx) failed\n", + window->phys, window->size); + goto out; + } + + /* Get the first address to look for a rom chip at */ + map_top = window->phys; +#if 1 + /* The probe sequence run over the firmware hub lock + * registers sets them to 0x7 (no access). + * Probe at most the last 4MiB of the address space. + */ + if (map_top < 0xffc00000) + map_top = 0xffc00000; +#endif + /* Loop through and look for rom chips. Since we don't know the + * starting address for each chip, probe every ROM_PROBE_STEP_SIZE + * bytes from the starting address of the window. + */ + while((map_top - 1) < 0xffffffffUL) { + struct cfi_private *cfi; + unsigned long offset; + int i; + + if (!map) { + map = kmalloc(sizeof(*map), GFP_KERNEL); + if (!map) + goto out; + } + memset(map, 0, sizeof(*map)); + INIT_LIST_HEAD(&map->list); + map->map.name = map->map_name; + map->map.phys = map_top; + offset = map_top - window->phys; + map->map.virt = (void __iomem *) + (((unsigned long)(window->virt)) + offset); + map->map.size = 0xffffffffUL - map_top + 1UL; + /* Set the name of the map to the address I am trying */ + sprintf(map->map_name, "%s @%08Lx", + MOD_NAME, (unsigned long long)map->map.phys); + + /* There is no generic VPP support */ + for(map->map.bankwidth = 32; map->map.bankwidth; + map->map.bankwidth >>= 1) + { + char **probe_type; + /* Skip bankwidths that are not supported */ + if (!map_bankwidth_supported(map->map.bankwidth)) + continue; + + /* Setup the map methods */ + simple_map_init(&map->map); + + /* Try all of the probe methods */ + probe_type = rom_probe_types; + for(; *probe_type; probe_type++) { + map->mtd = do_map_probe(*probe_type, &map->map); + if (map->mtd) + goto found; + } + } + map_top += ROM_PROBE_STEP_SIZE; + continue; + found: + /* Trim the size if we are larger than the map */ + if (map->mtd->size > map->map.size) { + printk(KERN_WARNING MOD_NAME + " rom(%llu) larger than window(%lu). fixing...\n", + (unsigned long long)map->mtd->size, map->map.size); + map->mtd->size = map->map.size; + } + if (window->rsrc.parent) { + /* + * Registering the MTD device in iomem may not be possible + * if there is a BIOS "reserved" and BUSY range. If this + * fails then continue anyway. + */ + map->rsrc.name = map->map_name; + map->rsrc.start = map->map.phys; + map->rsrc.end = map->map.phys + map->mtd->size - 1; + map->rsrc.flags = IORESOURCE_MEM | IORESOURCE_BUSY; + if (request_resource(&window->rsrc, &map->rsrc)) { + printk(KERN_ERR MOD_NAME + ": cannot reserve MTD resource\n"); + map->rsrc.parent = NULL; + } + } + + /* Make the whole region visible in the map */ + map->map.virt = window->virt; + map->map.phys = window->phys; + cfi = map->map.fldrv_priv; + for(i = 0; i < cfi->numchips; i++) + cfi->chips[i].start += offset; + + /* Now that the mtd devices is complete claim and export it */ + map->mtd->owner = THIS_MODULE; + if (mtd_device_register(map->mtd, NULL, 0)) { + map_destroy(map->mtd); + map->mtd = NULL; + goto out; + } + + + /* Calculate the new value of map_top */ + map_top += map->mtd->size; + + /* File away the map structure */ + list_add(&map->list, &window->maps); + map = NULL; + } + + out: + /* Free any left over map structures */ + kfree(map); + + /* See if I have any map structures */ + if (list_empty(&window->maps)) { + ck804xrom_cleanup(window); + return -ENODEV; + } + return 0; +} + + +static void ck804xrom_remove_one(struct pci_dev *pdev) +{ + struct ck804xrom_window *window = &ck804xrom_window; + + ck804xrom_cleanup(window); +} + +static const struct pci_device_id ck804xrom_pci_tbl[] = { + { PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, 0x0051), .driver_data = DEV_CK804 }, + { PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, 0x0360), .driver_data = DEV_MCP55 }, + { PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, 0x0361), .driver_data = DEV_MCP55 }, + { PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, 0x0362), .driver_data = DEV_MCP55 }, + { PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, 0x0363), .driver_data = DEV_MCP55 }, + { PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, 0x0364), .driver_data = DEV_MCP55 }, + { PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, 0x0365), .driver_data = DEV_MCP55 }, + { PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, 0x0366), .driver_data = DEV_MCP55 }, + { PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, 0x0367), .driver_data = DEV_MCP55 }, + { 0, } +}; + +#if 0 +MODULE_DEVICE_TABLE(pci, ck804xrom_pci_tbl); + +static struct pci_driver ck804xrom_driver = { + .name = MOD_NAME, + .id_table = ck804xrom_pci_tbl, + .probe = ck804xrom_init_one, + .remove = ck804xrom_remove_one, +}; +#endif + +static int __init init_ck804xrom(void) +{ + struct pci_dev *pdev; + const struct pci_device_id *id; + int retVal; + pdev = NULL; + + for(id = ck804xrom_pci_tbl; id->vendor; id++) { + pdev = pci_get_device(id->vendor, id->device, NULL); + if (pdev) + break; + } + if (pdev) { + retVal = ck804xrom_init_one(pdev, id); + pci_dev_put(pdev); + return retVal; + } + return -ENXIO; +#if 0 + return pci_register_driver(&ck804xrom_driver); +#endif +} + +static void __exit cleanup_ck804xrom(void) +{ + ck804xrom_remove_one(ck804xrom_window.pdev); +} + +module_init(init_ck804xrom); +module_exit(cleanup_ck804xrom); + +MODULE_LICENSE("GPL"); +MODULE_AUTHOR("Eric Biederman <ebiederman@lnxi.com>, Dave Olsen <dolsen@lnxi.com>"); +MODULE_DESCRIPTION("MTD map driver for BIOS chips on the Nvidia ck804 southbridge"); + diff --git a/drivers/mtd/maps/dc21285.c b/drivers/mtd/maps/dc21285.c new file mode 100644 index 0000000000..70a3db3ab8 --- /dev/null +++ b/drivers/mtd/maps/dc21285.c @@ -0,0 +1,231 @@ +/* + * MTD map driver for flash on the DC21285 (the StrongARM-110 companion chip) + * + * (C) 2000 Nicolas Pitre <nico@fluxnic.net> + * + * This code is GPL + */ +#include <linux/module.h> +#include <linux/types.h> +#include <linux/kernel.h> +#include <linux/init.h> +#include <linux/delay.h> +#include <linux/slab.h> + +#include <linux/mtd/mtd.h> +#include <linux/mtd/map.h> +#include <linux/mtd/partitions.h> + +#include <asm/io.h> +#include <asm/hardware/dec21285.h> +#include <asm/mach-types.h> + + +static struct mtd_info *dc21285_mtd; + +#ifdef CONFIG_ARCH_NETWINDER +/* + * This is really ugly, but it seams to be the only + * realiable way to do it, as the cpld state machine + * is unpredictible. So we have a 25us penalty per + * write access. + */ +static void nw_en_write(void) +{ + unsigned long flags; + + /* + * we want to write a bit pattern XXX1 to Xilinx to enable + * the write gate, which will be open for about the next 2ms. + */ + raw_spin_lock_irqsave(&nw_gpio_lock, flags); + nw_cpld_modify(CPLD_FLASH_WR_ENABLE, CPLD_FLASH_WR_ENABLE); + raw_spin_unlock_irqrestore(&nw_gpio_lock, flags); + + /* + * let the ISA bus to catch on... + */ + udelay(25); +} +#else +#define nw_en_write() do { } while (0) +#endif + +static map_word dc21285_read8(struct map_info *map, unsigned long ofs) +{ + map_word val; + val.x[0] = *(uint8_t*)(map->virt + ofs); + return val; +} + +static map_word dc21285_read16(struct map_info *map, unsigned long ofs) +{ + map_word val; + val.x[0] = *(uint16_t*)(map->virt + ofs); + return val; +} + +static map_word dc21285_read32(struct map_info *map, unsigned long ofs) +{ + map_word val; + val.x[0] = *(uint32_t*)(map->virt + ofs); + return val; +} + +static void dc21285_copy_from(struct map_info *map, void *to, unsigned long from, ssize_t len) +{ + memcpy(to, (void*)(map->virt + from), len); +} + +static void dc21285_write8(struct map_info *map, const map_word d, unsigned long adr) +{ + if (machine_is_netwinder()) + nw_en_write(); + *CSR_ROMWRITEREG = adr & 3; + adr &= ~3; + *(uint8_t*)(map->virt + adr) = d.x[0]; +} + +static void dc21285_write16(struct map_info *map, const map_word d, unsigned long adr) +{ + if (machine_is_netwinder()) + nw_en_write(); + *CSR_ROMWRITEREG = adr & 3; + adr &= ~3; + *(uint16_t*)(map->virt + adr) = d.x[0]; +} + +static void dc21285_write32(struct map_info *map, const map_word d, unsigned long adr) +{ + if (machine_is_netwinder()) + nw_en_write(); + *(uint32_t*)(map->virt + adr) = d.x[0]; +} + +static void dc21285_copy_to_32(struct map_info *map, unsigned long to, const void *from, ssize_t len) +{ + while (len > 0) { + map_word d; + d.x[0] = *((uint32_t*)from); + dc21285_write32(map, d, to); + from += 4; + to += 4; + len -= 4; + } +} + +static void dc21285_copy_to_16(struct map_info *map, unsigned long to, const void *from, ssize_t len) +{ + while (len > 0) { + map_word d; + d.x[0] = *((uint16_t*)from); + dc21285_write16(map, d, to); + from += 2; + to += 2; + len -= 2; + } +} + +static void dc21285_copy_to_8(struct map_info *map, unsigned long to, const void *from, ssize_t len) +{ + map_word d; + d.x[0] = *((uint8_t*)from); + dc21285_write8(map, d, to); + from++; + to++; + len--; +} + +static struct map_info dc21285_map = { + .name = "DC21285 flash", + .phys = NO_XIP, + .size = 16*1024*1024, + .copy_from = dc21285_copy_from, +}; + +/* Partition stuff */ +static const char * const probes[] = { "RedBoot", "cmdlinepart", NULL }; + +static int __init init_dc21285(void) +{ + /* Determine bankwidth */ + switch (*CSR_SA110_CNTL & (3<<14)) { + case SA110_CNTL_ROMWIDTH_8: + dc21285_map.bankwidth = 1; + dc21285_map.read = dc21285_read8; + dc21285_map.write = dc21285_write8; + dc21285_map.copy_to = dc21285_copy_to_8; + break; + case SA110_CNTL_ROMWIDTH_16: + dc21285_map.bankwidth = 2; + dc21285_map.read = dc21285_read16; + dc21285_map.write = dc21285_write16; + dc21285_map.copy_to = dc21285_copy_to_16; + break; + case SA110_CNTL_ROMWIDTH_32: + dc21285_map.bankwidth = 4; + dc21285_map.read = dc21285_read32; + dc21285_map.write = dc21285_write32; + dc21285_map.copy_to = dc21285_copy_to_32; + break; + default: + printk (KERN_ERR "DC21285 flash: undefined bankwidth\n"); + return -ENXIO; + } + printk (KERN_NOTICE "DC21285 flash support (%d-bit bankwidth)\n", + dc21285_map.bankwidth*8); + + /* Let's map the flash area */ + dc21285_map.virt = ioremap(DC21285_FLASH, 16*1024*1024); + if (!dc21285_map.virt) { + printk("Failed to ioremap\n"); + return -EIO; + } + + if (machine_is_ebsa285()) { + dc21285_mtd = do_map_probe("cfi_probe", &dc21285_map); + } else { + dc21285_mtd = do_map_probe("jedec_probe", &dc21285_map); + } + + if (!dc21285_mtd) { + iounmap(dc21285_map.virt); + return -ENXIO; + } + + dc21285_mtd->owner = THIS_MODULE; + + mtd_device_parse_register(dc21285_mtd, probes, NULL, NULL, 0); + + if(machine_is_ebsa285()) { + /* + * Flash timing is determined with bits 19-16 of the + * CSR_SA110_CNTL. The value is the number of wait cycles, or + * 0 for 16 cycles (the default). Cycles are 20 ns. + * Here we use 7 for 140 ns flash chips. + */ + /* access time */ + *CSR_SA110_CNTL = ((*CSR_SA110_CNTL & ~0x000f0000) | (7 << 16)); + /* burst time */ + *CSR_SA110_CNTL = ((*CSR_SA110_CNTL & ~0x00f00000) | (7 << 20)); + /* tristate time */ + *CSR_SA110_CNTL = ((*CSR_SA110_CNTL & ~0x0f000000) | (7 << 24)); + } + + return 0; +} + +static void __exit cleanup_dc21285(void) +{ + mtd_device_unregister(dc21285_mtd); + map_destroy(dc21285_mtd); + iounmap(dc21285_map.virt); +} + +module_init(init_dc21285); +module_exit(cleanup_dc21285); + + +MODULE_LICENSE("GPL"); +MODULE_AUTHOR("Nicolas Pitre <nico@fluxnic.net>"); +MODULE_DESCRIPTION("MTD map driver for DC21285 boards"); diff --git a/drivers/mtd/maps/esb2rom.c b/drivers/mtd/maps/esb2rom.c new file mode 100644 index 0000000000..15d5b76ff5 --- /dev/null +++ b/drivers/mtd/maps/esb2rom.c @@ -0,0 +1,452 @@ +// SPDX-License-Identifier: GPL-2.0-only +/* + * esb2rom.c + * + * Normal mappings of flash chips in physical memory + * through the Intel ESB2 Southbridge. + * + * This was derived from ichxrom.c in May 2006 by + * Lew Glendenning <lglendenning@lnxi.com> + * + * Eric Biederman, of course, was a major help in this effort. + */ + +#include <linux/module.h> +#include <linux/types.h> +#include <linux/kernel.h> +#include <linux/init.h> +#include <linux/slab.h> +#include <asm/io.h> +#include <linux/mtd/mtd.h> +#include <linux/mtd/map.h> +#include <linux/mtd/cfi.h> +#include <linux/mtd/flashchip.h> +#include <linux/pci.h> +#include <linux/pci_ids.h> +#include <linux/list.h> + +#define MOD_NAME KBUILD_BASENAME + +#define ADDRESS_NAME_LEN 18 + +#define ROM_PROBE_STEP_SIZE (64*1024) /* 64KiB */ + +#define BIOS_CNTL 0xDC +#define BIOS_LOCK_ENABLE 0x02 +#define BIOS_WRITE_ENABLE 0x01 + +/* This became a 16-bit register, and EN2 has disappeared */ +#define FWH_DEC_EN1 0xD8 +#define FWH_F8_EN 0x8000 +#define FWH_F0_EN 0x4000 +#define FWH_E8_EN 0x2000 +#define FWH_E0_EN 0x1000 +#define FWH_D8_EN 0x0800 +#define FWH_D0_EN 0x0400 +#define FWH_C8_EN 0x0200 +#define FWH_C0_EN 0x0100 +#define FWH_LEGACY_F_EN 0x0080 +#define FWH_LEGACY_E_EN 0x0040 +/* reserved 0x0020 and 0x0010 */ +#define FWH_70_EN 0x0008 +#define FWH_60_EN 0x0004 +#define FWH_50_EN 0x0002 +#define FWH_40_EN 0x0001 + +/* these are 32-bit values */ +#define FWH_SEL1 0xD0 +#define FWH_SEL2 0xD4 + +#define FWH_8MiB (FWH_F8_EN | FWH_F0_EN | FWH_E8_EN | FWH_E0_EN | \ + FWH_D8_EN | FWH_D0_EN | FWH_C8_EN | FWH_C0_EN | \ + FWH_70_EN | FWH_60_EN | FWH_50_EN | FWH_40_EN) + +#define FWH_7MiB (FWH_F8_EN | FWH_F0_EN | FWH_E8_EN | FWH_E0_EN | \ + FWH_D8_EN | FWH_D0_EN | FWH_C8_EN | FWH_C0_EN | \ + FWH_70_EN | FWH_60_EN | FWH_50_EN) + +#define FWH_6MiB (FWH_F8_EN | FWH_F0_EN | FWH_E8_EN | FWH_E0_EN | \ + FWH_D8_EN | FWH_D0_EN | FWH_C8_EN | FWH_C0_EN | \ + FWH_70_EN | FWH_60_EN) + +#define FWH_5MiB (FWH_F8_EN | FWH_F0_EN | FWH_E8_EN | FWH_E0_EN | \ + FWH_D8_EN | FWH_D0_EN | FWH_C8_EN | FWH_C0_EN | \ + FWH_70_EN) + +#define FWH_4MiB (FWH_F8_EN | FWH_F0_EN | FWH_E8_EN | FWH_E0_EN | \ + FWH_D8_EN | FWH_D0_EN | FWH_C8_EN | FWH_C0_EN) + +#define FWH_3_5MiB (FWH_F8_EN | FWH_F0_EN | FWH_E8_EN | FWH_E0_EN | \ + FWH_D8_EN | FWH_D0_EN | FWH_C8_EN) + +#define FWH_3MiB (FWH_F8_EN | FWH_F0_EN | FWH_E8_EN | FWH_E0_EN | \ + FWH_D8_EN | FWH_D0_EN) + +#define FWH_2_5MiB (FWH_F8_EN | FWH_F0_EN | FWH_E8_EN | FWH_E0_EN | \ + FWH_D8_EN) + +#define FWH_2MiB (FWH_F8_EN | FWH_F0_EN | FWH_E8_EN | FWH_E0_EN) + +#define FWH_1_5MiB (FWH_F8_EN | FWH_F0_EN | FWH_E8_EN) + +#define FWH_1MiB (FWH_F8_EN | FWH_F0_EN) + +#define FWH_0_5MiB (FWH_F8_EN) + + +struct esb2rom_window { + void __iomem* virt; + unsigned long phys; + unsigned long size; + struct list_head maps; + struct resource rsrc; + struct pci_dev *pdev; +}; + +struct esb2rom_map_info { + struct list_head list; + struct map_info map; + struct mtd_info *mtd; + struct resource rsrc; + char map_name[sizeof(MOD_NAME) + 2 + ADDRESS_NAME_LEN]; +}; + +static struct esb2rom_window esb2rom_window = { + .maps = LIST_HEAD_INIT(esb2rom_window.maps), +}; + +static void esb2rom_cleanup(struct esb2rom_window *window) +{ + struct esb2rom_map_info *map, *scratch; + u8 byte; + + /* Disable writes through the rom window */ + pci_read_config_byte(window->pdev, BIOS_CNTL, &byte); + pci_write_config_byte(window->pdev, BIOS_CNTL, + byte & ~BIOS_WRITE_ENABLE); + + /* Free all of the mtd devices */ + list_for_each_entry_safe(map, scratch, &window->maps, list) { + if (map->rsrc.parent) + release_resource(&map->rsrc); + mtd_device_unregister(map->mtd); + map_destroy(map->mtd); + list_del(&map->list); + kfree(map); + } + if (window->rsrc.parent) + release_resource(&window->rsrc); + if (window->virt) { + iounmap(window->virt); + window->virt = NULL; + window->phys = 0; + window->size = 0; + } + pci_dev_put(window->pdev); +} + +static int __init esb2rom_init_one(struct pci_dev *pdev, + const struct pci_device_id *ent) +{ + static char *rom_probe_types[] = { "cfi_probe", "jedec_probe", NULL }; + struct esb2rom_window *window = &esb2rom_window; + struct esb2rom_map_info *map = NULL; + unsigned long map_top; + u8 byte; + u16 word; + + /* For now I just handle the ecb2 and I assume there + * are not a lot of resources up at the top of the address + * space. It is possible to handle other devices in the + * top 16MiB but it is very painful. Also since + * you can only really attach a FWH to an ICHX there + * a number of simplifications you can make. + * + * Also you can page firmware hubs if an 8MiB window isn't enough + * but don't currently handle that case either. + */ + window->pdev = pci_dev_get(pdev); + + /* RLG: experiment 2. Force the window registers to the widest values */ + +/* + pci_read_config_word(pdev, FWH_DEC_EN1, &word); + printk(KERN_DEBUG "Original FWH_DEC_EN1 : %x\n", word); + pci_write_config_byte(pdev, FWH_DEC_EN1, 0xff); + pci_read_config_byte(pdev, FWH_DEC_EN1, &byte); + printk(KERN_DEBUG "New FWH_DEC_EN1 : %x\n", byte); + + pci_read_config_byte(pdev, FWH_DEC_EN2, &byte); + printk(KERN_DEBUG "Original FWH_DEC_EN2 : %x\n", byte); + pci_write_config_byte(pdev, FWH_DEC_EN2, 0x0f); + pci_read_config_byte(pdev, FWH_DEC_EN2, &byte); + printk(KERN_DEBUG "New FWH_DEC_EN2 : %x\n", byte); +*/ + + /* Find a region continuous to the end of the ROM window */ + window->phys = 0; + pci_read_config_word(pdev, FWH_DEC_EN1, &word); + printk(KERN_DEBUG "pci_read_config_word : %x\n", word); + + if ((word & FWH_8MiB) == FWH_8MiB) + window->phys = 0xff400000; + else if ((word & FWH_7MiB) == FWH_7MiB) + window->phys = 0xff500000; + else if ((word & FWH_6MiB) == FWH_6MiB) + window->phys = 0xff600000; + else if ((word & FWH_5MiB) == FWH_5MiB) + window->phys = 0xFF700000; + else if ((word & FWH_4MiB) == FWH_4MiB) + window->phys = 0xffc00000; + else if ((word & FWH_3_5MiB) == FWH_3_5MiB) + window->phys = 0xffc80000; + else if ((word & FWH_3MiB) == FWH_3MiB) + window->phys = 0xffd00000; + else if ((word & FWH_2_5MiB) == FWH_2_5MiB) + window->phys = 0xffd80000; + else if ((word & FWH_2MiB) == FWH_2MiB) + window->phys = 0xffe00000; + else if ((word & FWH_1_5MiB) == FWH_1_5MiB) + window->phys = 0xffe80000; + else if ((word & FWH_1MiB) == FWH_1MiB) + window->phys = 0xfff00000; + else if ((word & FWH_0_5MiB) == FWH_0_5MiB) + window->phys = 0xfff80000; + + if (window->phys == 0) { + printk(KERN_ERR MOD_NAME ": Rom window is closed\n"); + goto out; + } + + /* reserved 0x0020 and 0x0010 */ + window->phys -= 0x400000UL; + window->size = (0xffffffffUL - window->phys) + 1UL; + + /* Enable writes through the rom window */ + pci_read_config_byte(pdev, BIOS_CNTL, &byte); + if (!(byte & BIOS_WRITE_ENABLE) && (byte & (BIOS_LOCK_ENABLE))) { + /* The BIOS will generate an error if I enable + * this device, so don't even try. + */ + printk(KERN_ERR MOD_NAME ": firmware access control, I can't enable writes\n"); + goto out; + } + pci_write_config_byte(pdev, BIOS_CNTL, byte | BIOS_WRITE_ENABLE); + + /* + * Try to reserve the window mem region. If this fails then + * it is likely due to the window being "reserved" by the BIOS. + */ + window->rsrc.name = MOD_NAME; + window->rsrc.start = window->phys; + window->rsrc.end = window->phys + window->size - 1; + window->rsrc.flags = IORESOURCE_MEM | IORESOURCE_BUSY; + if (request_resource(&iomem_resource, &window->rsrc)) { + window->rsrc.parent = NULL; + printk(KERN_DEBUG MOD_NAME ": " + "%s(): Unable to register resource %pR - kernel bug?\n", + __func__, &window->rsrc); + } + + /* Map the firmware hub into my address space. */ + window->virt = ioremap(window->phys, window->size); + if (!window->virt) { + printk(KERN_ERR MOD_NAME ": ioremap(%08lx, %08lx) failed\n", + window->phys, window->size); + goto out; + } + + /* Get the first address to look for an rom chip at */ + map_top = window->phys; + if ((window->phys & 0x3fffff) != 0) { + /* if not aligned on 4MiB, look 4MiB lower in address space */ + map_top = window->phys + 0x400000; + } +#if 1 + /* The probe sequence run over the firmware hub lock + * registers sets them to 0x7 (no access). + * (Insane hardware design, but most copied Intel's.) + * ==> Probe at most the last 4M of the address space. + */ + if (map_top < 0xffc00000) + map_top = 0xffc00000; +#endif + /* Loop through and look for rom chips */ + while ((map_top - 1) < 0xffffffffUL) { + struct cfi_private *cfi; + unsigned long offset; + int i; + + if (!map) { + map = kmalloc(sizeof(*map), GFP_KERNEL); + if (!map) + goto out; + } + memset(map, 0, sizeof(*map)); + INIT_LIST_HEAD(&map->list); + map->map.name = map->map_name; + map->map.phys = map_top; + offset = map_top - window->phys; + map->map.virt = (void __iomem *) + (((unsigned long)(window->virt)) + offset); + map->map.size = 0xffffffffUL - map_top + 1UL; + /* Set the name of the map to the address I am trying */ + sprintf(map->map_name, "%s @%08Lx", + MOD_NAME, (unsigned long long)map->map.phys); + + /* Firmware hubs only use vpp when being programmed + * in a factory setting. So in-place programming + * needs to use a different method. + */ + for(map->map.bankwidth = 32; map->map.bankwidth; + map->map.bankwidth >>= 1) { + char **probe_type; + /* Skip bankwidths that are not supported */ + if (!map_bankwidth_supported(map->map.bankwidth)) + continue; + + /* Setup the map methods */ + simple_map_init(&map->map); + + /* Try all of the probe methods */ + probe_type = rom_probe_types; + for(; *probe_type; probe_type++) { + map->mtd = do_map_probe(*probe_type, &map->map); + if (map->mtd) + goto found; + } + } + map_top += ROM_PROBE_STEP_SIZE; + continue; + found: + /* Trim the size if we are larger than the map */ + if (map->mtd->size > map->map.size) { + printk(KERN_WARNING MOD_NAME + " rom(%llu) larger than window(%lu). fixing...\n", + (unsigned long long)map->mtd->size, map->map.size); + map->mtd->size = map->map.size; + } + if (window->rsrc.parent) { + /* + * Registering the MTD device in iomem may not be possible + * if there is a BIOS "reserved" and BUSY range. If this + * fails then continue anyway. + */ + map->rsrc.name = map->map_name; + map->rsrc.start = map->map.phys; + map->rsrc.end = map->map.phys + map->mtd->size - 1; + map->rsrc.flags = IORESOURCE_MEM | IORESOURCE_BUSY; + if (request_resource(&window->rsrc, &map->rsrc)) { + printk(KERN_ERR MOD_NAME + ": cannot reserve MTD resource\n"); + map->rsrc.parent = NULL; + } + } + + /* Make the whole region visible in the map */ + map->map.virt = window->virt; + map->map.phys = window->phys; + cfi = map->map.fldrv_priv; + for(i = 0; i < cfi->numchips; i++) + cfi->chips[i].start += offset; + + /* Now that the mtd devices is complete claim and export it */ + map->mtd->owner = THIS_MODULE; + if (mtd_device_register(map->mtd, NULL, 0)) { + map_destroy(map->mtd); + map->mtd = NULL; + goto out; + } + + /* Calculate the new value of map_top */ + map_top += map->mtd->size; + + /* File away the map structure */ + list_add(&map->list, &window->maps); + map = NULL; + } + + out: + /* Free any left over map structures */ + kfree(map); + + /* See if I have any map structures */ + if (list_empty(&window->maps)) { + esb2rom_cleanup(window); + return -ENODEV; + } + return 0; +} + +static void esb2rom_remove_one(struct pci_dev *pdev) +{ + struct esb2rom_window *window = &esb2rom_window; + esb2rom_cleanup(window); +} + +static const struct pci_device_id esb2rom_pci_tbl[] = { + { PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82801BA_0, + PCI_ANY_ID, PCI_ANY_ID, }, + { PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82801CA_0, + PCI_ANY_ID, PCI_ANY_ID, }, + { PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82801DB_0, + PCI_ANY_ID, PCI_ANY_ID, }, + { PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82801EB_0, + PCI_ANY_ID, PCI_ANY_ID, }, + { PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_ESB_1, + PCI_ANY_ID, PCI_ANY_ID, }, + { PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_ESB2_0, + PCI_ANY_ID, PCI_ANY_ID, }, + { 0, }, +}; + +#if 0 +MODULE_DEVICE_TABLE(pci, esb2rom_pci_tbl); + +static struct pci_driver esb2rom_driver = { + .name = MOD_NAME, + .id_table = esb2rom_pci_tbl, + .probe = esb2rom_init_one, + .remove = esb2rom_remove_one, +}; +#endif + +static int __init init_esb2rom(void) +{ + struct pci_dev *pdev; + const struct pci_device_id *id; + int retVal; + + pdev = NULL; + for (id = esb2rom_pci_tbl; id->vendor; id++) { + printk(KERN_DEBUG "device id = %x\n", id->device); + pdev = pci_get_device(id->vendor, id->device, NULL); + if (pdev) { + printk(KERN_DEBUG "matched device = %x\n", id->device); + break; + } + } + if (pdev) { + printk(KERN_DEBUG "matched device id %x\n", id->device); + retVal = esb2rom_init_one(pdev, &esb2rom_pci_tbl[0]); + pci_dev_put(pdev); + printk(KERN_DEBUG "retVal = %d\n", retVal); + return retVal; + } + return -ENXIO; +#if 0 + return pci_register_driver(&esb2rom_driver); +#endif +} + +static void __exit cleanup_esb2rom(void) +{ + esb2rom_remove_one(esb2rom_window.pdev); +} + +module_init(init_esb2rom); +module_exit(cleanup_esb2rom); + +MODULE_LICENSE("GPL"); +MODULE_AUTHOR("Lew Glendenning <lglendenning@lnxi.com>"); +MODULE_DESCRIPTION("MTD map driver for BIOS chips on the ESB2 southbridge"); diff --git a/drivers/mtd/maps/ichxrom.c b/drivers/mtd/maps/ichxrom.c new file mode 100644 index 0000000000..c8b2793691 --- /dev/null +++ b/drivers/mtd/maps/ichxrom.c @@ -0,0 +1,381 @@ +// SPDX-License-Identifier: GPL-2.0-only +/* + * ichxrom.c + * + * Normal mappings of chips in physical memory + */ + +#include <linux/module.h> +#include <linux/types.h> +#include <linux/kernel.h> +#include <linux/init.h> +#include <linux/slab.h> +#include <asm/io.h> +#include <linux/mtd/mtd.h> +#include <linux/mtd/map.h> +#include <linux/mtd/cfi.h> +#include <linux/mtd/flashchip.h> +#include <linux/pci.h> +#include <linux/pci_ids.h> +#include <linux/list.h> + +#define xstr(s) str(s) +#define str(s) #s +#define MOD_NAME xstr(KBUILD_BASENAME) + +#define ADDRESS_NAME_LEN 18 + +#define ROM_PROBE_STEP_SIZE (64*1024) /* 64KiB */ + +#define BIOS_CNTL 0x4e +#define FWH_DEC_EN1 0xE3 +#define FWH_DEC_EN2 0xF0 +#define FWH_SEL1 0xE8 +#define FWH_SEL2 0xEE + +struct ichxrom_window { + void __iomem* virt; + unsigned long phys; + unsigned long size; + struct list_head maps; + struct resource rsrc; + struct pci_dev *pdev; +}; + +struct ichxrom_map_info { + struct list_head list; + struct map_info map; + struct mtd_info *mtd; + struct resource rsrc; + char map_name[sizeof(MOD_NAME) + 2 + ADDRESS_NAME_LEN]; +}; + +static struct ichxrom_window ichxrom_window = { + .maps = LIST_HEAD_INIT(ichxrom_window.maps), +}; + +static void ichxrom_cleanup(struct ichxrom_window *window) +{ + struct ichxrom_map_info *map, *scratch; + u16 word; + int ret; + + /* Disable writes through the rom window */ + ret = pci_read_config_word(window->pdev, BIOS_CNTL, &word); + if (!ret) + pci_write_config_word(window->pdev, BIOS_CNTL, word & ~1); + pci_dev_put(window->pdev); + + /* Free all of the mtd devices */ + list_for_each_entry_safe(map, scratch, &window->maps, list) { + if (map->rsrc.parent) + release_resource(&map->rsrc); + mtd_device_unregister(map->mtd); + map_destroy(map->mtd); + list_del(&map->list); + kfree(map); + } + if (window->rsrc.parent) + release_resource(&window->rsrc); + if (window->virt) { + iounmap(window->virt); + window->virt = NULL; + window->phys = 0; + window->size = 0; + window->pdev = NULL; + } +} + + +static int __init ichxrom_init_one(struct pci_dev *pdev, + const struct pci_device_id *ent) +{ + static char *rom_probe_types[] = { "cfi_probe", "jedec_probe", NULL }; + struct ichxrom_window *window = &ichxrom_window; + struct ichxrom_map_info *map = NULL; + unsigned long map_top; + u8 byte; + u16 word; + + /* For now I just handle the ichx and I assume there + * are not a lot of resources up at the top of the address + * space. It is possible to handle other devices in the + * top 16MB but it is very painful. Also since + * you can only really attach a FWH to an ICHX there + * a number of simplifications you can make. + * + * Also you can page firmware hubs if an 8MB window isn't enough + * but don't currently handle that case either. + */ + window->pdev = pdev; + + /* Find a region continuous to the end of the ROM window */ + window->phys = 0; + pci_read_config_byte(pdev, FWH_DEC_EN1, &byte); + if (byte == 0xff) { + window->phys = 0xffc00000; + pci_read_config_byte(pdev, FWH_DEC_EN2, &byte); + if ((byte & 0x0f) == 0x0f) { + window->phys = 0xff400000; + } + else if ((byte & 0x0e) == 0x0e) { + window->phys = 0xff500000; + } + else if ((byte & 0x0c) == 0x0c) { + window->phys = 0xff600000; + } + else if ((byte & 0x08) == 0x08) { + window->phys = 0xff700000; + } + } + else if ((byte & 0xfe) == 0xfe) { + window->phys = 0xffc80000; + } + else if ((byte & 0xfc) == 0xfc) { + window->phys = 0xffd00000; + } + else if ((byte & 0xf8) == 0xf8) { + window->phys = 0xffd80000; + } + else if ((byte & 0xf0) == 0xf0) { + window->phys = 0xffe00000; + } + else if ((byte & 0xe0) == 0xe0) { + window->phys = 0xffe80000; + } + else if ((byte & 0xc0) == 0xc0) { + window->phys = 0xfff00000; + } + else if ((byte & 0x80) == 0x80) { + window->phys = 0xfff80000; + } + + if (window->phys == 0) { + printk(KERN_ERR MOD_NAME ": Rom window is closed\n"); + goto out; + } + window->phys -= 0x400000UL; + window->size = (0xffffffffUL - window->phys) + 1UL; + + /* Enable writes through the rom window */ + pci_read_config_word(pdev, BIOS_CNTL, &word); + if (!(word & 1) && (word & (1<<1))) { + /* The BIOS will generate an error if I enable + * this device, so don't even try. + */ + printk(KERN_ERR MOD_NAME ": firmware access control, I can't enable writes\n"); + goto out; + } + pci_write_config_word(pdev, BIOS_CNTL, word | 1); + + /* + * Try to reserve the window mem region. If this fails then + * it is likely due to the window being "reserved" by the BIOS. + */ + window->rsrc.name = MOD_NAME; + window->rsrc.start = window->phys; + window->rsrc.end = window->phys + window->size - 1; + window->rsrc.flags = IORESOURCE_MEM | IORESOURCE_BUSY; + if (request_resource(&iomem_resource, &window->rsrc)) { + window->rsrc.parent = NULL; + printk(KERN_DEBUG MOD_NAME ": " + "%s(): Unable to register resource %pR - kernel bug?\n", + __func__, &window->rsrc); + } + + /* Map the firmware hub into my address space. */ + window->virt = ioremap(window->phys, window->size); + if (!window->virt) { + printk(KERN_ERR MOD_NAME ": ioremap(%08lx, %08lx) failed\n", + window->phys, window->size); + goto out; + } + + /* Get the first address to look for an rom chip at */ + map_top = window->phys; + if ((window->phys & 0x3fffff) != 0) { + map_top = window->phys + 0x400000; + } +#if 1 + /* The probe sequence run over the firmware hub lock + * registers sets them to 0x7 (no access). + * Probe at most the last 4M of the address space. + */ + if (map_top < 0xffc00000) { + map_top = 0xffc00000; + } +#endif + /* Loop through and look for rom chips */ + while((map_top - 1) < 0xffffffffUL) { + struct cfi_private *cfi; + unsigned long offset; + int i; + + if (!map) { + map = kmalloc(sizeof(*map), GFP_KERNEL); + if (!map) + goto out; + } + memset(map, 0, sizeof(*map)); + INIT_LIST_HEAD(&map->list); + map->map.name = map->map_name; + map->map.phys = map_top; + offset = map_top - window->phys; + map->map.virt = (void __iomem *) + (((unsigned long)(window->virt)) + offset); + map->map.size = 0xffffffffUL - map_top + 1UL; + /* Set the name of the map to the address I am trying */ + sprintf(map->map_name, "%s @%08Lx", + MOD_NAME, (unsigned long long)map->map.phys); + + /* Firmware hubs only use vpp when being programmed + * in a factory setting. So in-place programming + * needs to use a different method. + */ + for(map->map.bankwidth = 32; map->map.bankwidth; + map->map.bankwidth >>= 1) + { + char **probe_type; + /* Skip bankwidths that are not supported */ + if (!map_bankwidth_supported(map->map.bankwidth)) + continue; + + /* Setup the map methods */ + simple_map_init(&map->map); + + /* Try all of the probe methods */ + probe_type = rom_probe_types; + for(; *probe_type; probe_type++) { + map->mtd = do_map_probe(*probe_type, &map->map); + if (map->mtd) + goto found; + } + } + map_top += ROM_PROBE_STEP_SIZE; + continue; + found: + /* Trim the size if we are larger than the map */ + if (map->mtd->size > map->map.size) { + printk(KERN_WARNING MOD_NAME + " rom(%llu) larger than window(%lu). fixing...\n", + (unsigned long long)map->mtd->size, map->map.size); + map->mtd->size = map->map.size; + } + if (window->rsrc.parent) { + /* + * Registering the MTD device in iomem may not be possible + * if there is a BIOS "reserved" and BUSY range. If this + * fails then continue anyway. + */ + map->rsrc.name = map->map_name; + map->rsrc.start = map->map.phys; + map->rsrc.end = map->map.phys + map->mtd->size - 1; + map->rsrc.flags = IORESOURCE_MEM | IORESOURCE_BUSY; + if (request_resource(&window->rsrc, &map->rsrc)) { + printk(KERN_ERR MOD_NAME + ": cannot reserve MTD resource\n"); + map->rsrc.parent = NULL; + } + } + + /* Make the whole region visible in the map */ + map->map.virt = window->virt; + map->map.phys = window->phys; + cfi = map->map.fldrv_priv; + for(i = 0; i < cfi->numchips; i++) { + cfi->chips[i].start += offset; + } + + /* Now that the mtd devices is complete claim and export it */ + map->mtd->owner = THIS_MODULE; + if (mtd_device_register(map->mtd, NULL, 0)) { + map_destroy(map->mtd); + map->mtd = NULL; + goto out; + } + + + /* Calculate the new value of map_top */ + map_top += map->mtd->size; + + /* File away the map structure */ + list_add(&map->list, &window->maps); + map = NULL; + } + + out: + /* Free any left over map structures */ + kfree(map); + + /* See if I have any map structures */ + if (list_empty(&window->maps)) { + ichxrom_cleanup(window); + return -ENODEV; + } + return 0; +} + + +static void ichxrom_remove_one(struct pci_dev *pdev) +{ + struct ichxrom_window *window = &ichxrom_window; + ichxrom_cleanup(window); +} + +static const struct pci_device_id ichxrom_pci_tbl[] = { + { PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82801BA_0, + PCI_ANY_ID, PCI_ANY_ID, }, + { PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82801CA_0, + PCI_ANY_ID, PCI_ANY_ID, }, + { PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82801DB_0, + PCI_ANY_ID, PCI_ANY_ID, }, + { PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82801EB_0, + PCI_ANY_ID, PCI_ANY_ID, }, + { PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_ESB_1, + PCI_ANY_ID, PCI_ANY_ID, }, + { 0, }, +}; + +#if 0 +MODULE_DEVICE_TABLE(pci, ichxrom_pci_tbl); + +static struct pci_driver ichxrom_driver = { + .name = MOD_NAME, + .id_table = ichxrom_pci_tbl, + .probe = ichxrom_init_one, + .remove = ichxrom_remove_one, +}; +#endif + +static int __init init_ichxrom(void) +{ + struct pci_dev *pdev; + const struct pci_device_id *id; + + pdev = NULL; + for (id = ichxrom_pci_tbl; id->vendor; id++) { + pdev = pci_get_device(id->vendor, id->device, NULL); + if (pdev) { + break; + } + } + if (pdev) { + return ichxrom_init_one(pdev, &ichxrom_pci_tbl[0]); + } + return -ENXIO; +#if 0 + return pci_register_driver(&ichxrom_driver); +#endif +} + +static void __exit cleanup_ichxrom(void) +{ + ichxrom_remove_one(ichxrom_window.pdev); +} + +module_init(init_ichxrom); +module_exit(cleanup_ichxrom); + +MODULE_LICENSE("GPL"); +MODULE_AUTHOR("Eric Biederman <ebiederman@lnxi.com>"); +MODULE_DESCRIPTION("MTD map driver for BIOS chips on the ICHX southbridge"); diff --git a/drivers/mtd/maps/impa7.c b/drivers/mtd/maps/impa7.c new file mode 100644 index 0000000000..b41401852f --- /dev/null +++ b/drivers/mtd/maps/impa7.c @@ -0,0 +1,115 @@ +// SPDX-License-Identifier: GPL-2.0-only +/* + * Handle mapping of the NOR flash on implementa A7 boards + * + * Copyright 2002 SYSGO Real-Time Solutions GmbH + */ + +#include <linux/module.h> +#include <linux/types.h> +#include <linux/kernel.h> +#include <linux/init.h> +#include <asm/io.h> +#include <linux/mtd/mtd.h> +#include <linux/mtd/map.h> +#include <linux/mtd/partitions.h> + +#define WINDOW_ADDR0 0x00000000 /* physical properties of flash */ +#define WINDOW_SIZE0 0x00800000 +#define WINDOW_ADDR1 0x10000000 /* physical properties of flash */ +#define WINDOW_SIZE1 0x00800000 +#define NUM_FLASHBANKS 2 +#define BUSWIDTH 4 + +#define MSG_PREFIX "impA7:" /* prefix for our printk()'s */ +#define MTDID "impa7-%d" /* for mtdparts= partitioning */ + +static struct mtd_info *impa7_mtd[NUM_FLASHBANKS]; + +static const char * const rom_probe_types[] = { "jedec_probe", NULL }; + +static struct map_info impa7_map[NUM_FLASHBANKS] = { + { + .name = "impA7 NOR Flash Bank #0", + .size = WINDOW_SIZE0, + .bankwidth = BUSWIDTH, + }, + { + .name = "impA7 NOR Flash Bank #1", + .size = WINDOW_SIZE1, + .bankwidth = BUSWIDTH, + }, +}; + +/* + * MTD partitioning stuff + */ +static const struct mtd_partition partitions[] = +{ + { + .name = "FileSystem", + .size = 0x800000, + .offset = 0x00000000 + }, +}; + +static int __init init_impa7(void) +{ + const char * const *type; + int i; + static struct { u_long addr; u_long size; } pt[NUM_FLASHBANKS] = { + { WINDOW_ADDR0, WINDOW_SIZE0 }, + { WINDOW_ADDR1, WINDOW_SIZE1 }, + }; + int devicesfound = 0; + + for(i=0; i<NUM_FLASHBANKS; i++) + { + printk(KERN_NOTICE MSG_PREFIX "probing 0x%08lx at 0x%08lx\n", + pt[i].size, pt[i].addr); + + impa7_map[i].phys = pt[i].addr; + impa7_map[i].virt = ioremap(pt[i].addr, pt[i].size); + if (!impa7_map[i].virt) { + printk(MSG_PREFIX "failed to ioremap\n"); + return -EIO; + } + simple_map_init(&impa7_map[i]); + + impa7_mtd[i] = NULL; + type = rom_probe_types; + for(; !impa7_mtd[i] && *type; type++) { + impa7_mtd[i] = do_map_probe(*type, &impa7_map[i]); + } + + if (impa7_mtd[i]) { + impa7_mtd[i]->owner = THIS_MODULE; + devicesfound++; + mtd_device_register(impa7_mtd[i], partitions, + ARRAY_SIZE(partitions)); + } else { + iounmap((void __iomem *)impa7_map[i].virt); + } + } + return devicesfound == 0 ? -ENXIO : 0; +} + +static void __exit cleanup_impa7(void) +{ + int i; + for (i=0; i<NUM_FLASHBANKS; i++) { + if (impa7_mtd[i]) { + mtd_device_unregister(impa7_mtd[i]); + map_destroy(impa7_mtd[i]); + iounmap((void __iomem *)impa7_map[i].virt); + impa7_map[i].virt = NULL; + } + } +} + +module_init(init_impa7); +module_exit(cleanup_impa7); + +MODULE_LICENSE("GPL"); +MODULE_AUTHOR("Pavel Bartusek <pba@sysgo.de>"); +MODULE_DESCRIPTION("MTD map driver for implementa impA7"); diff --git a/drivers/mtd/maps/intel_vr_nor.c b/drivers/mtd/maps/intel_vr_nor.c new file mode 100644 index 0000000000..d67b845b0e --- /dev/null +++ b/drivers/mtd/maps/intel_vr_nor.c @@ -0,0 +1,265 @@ +/* + * drivers/mtd/maps/intel_vr_nor.c + * + * An MTD map driver for a NOR flash bank on the Expansion Bus of the Intel + * Vermilion Range chipset. + * + * The Vermilion Range Expansion Bus supports four chip selects, each of which + * has 64MiB of address space. The 2nd BAR of the Expansion Bus PCI Device + * is a 256MiB memory region containing the address spaces for all four of the + * chip selects, with start addresses hardcoded on 64MiB boundaries. + * + * This map driver only supports NOR flash on chip select 0. The buswidth + * (either 8 bits or 16 bits) is determined by reading the Expansion Bus Timing + * and Control Register for Chip Select 0 (EXP_TIMING_CS0). This driver does + * not modify the value in the EXP_TIMING_CS0 register except to enable writing + * and disable boot acceleration. The timing parameters in the register are + * assumed to have been properly initialized by the BIOS. The reset default + * timing parameters are maximally conservative (slow), so access to the flash + * will be slower than it should be if the BIOS has not initialized the timing + * parameters. + * + * Author: Andy Lowe <alowe@mvista.com> + * + * 2006 (c) MontaVista Software, Inc. This file is licensed under + * the terms of the GNU General Public License version 2. This program + * is licensed "as is" without any warranty of any kind, whether express + * or implied. + */ + +#include <linux/module.h> +#include <linux/kernel.h> +#include <linux/slab.h> +#include <linux/pci.h> +#include <linux/mtd/mtd.h> +#include <linux/mtd/map.h> +#include <linux/mtd/partitions.h> +#include <linux/mtd/cfi.h> +#include <linux/mtd/flashchip.h> + +#define DRV_NAME "vr_nor" + +struct vr_nor_mtd { + void __iomem *csr_base; + struct map_info map; + struct mtd_info *info; + struct pci_dev *dev; +}; + +/* Expansion Bus Configuration and Status Registers are in BAR 0 */ +#define EXP_CSR_MBAR 0 +/* Expansion Bus Memory Window is BAR 1 */ +#define EXP_WIN_MBAR 1 +/* Maximum address space for Chip Select 0 is 64MiB */ +#define CS0_SIZE 0x04000000 +/* Chip Select 0 is at offset 0 in the Memory Window */ +#define CS0_START 0x0 +/* Chip Select 0 Timing Register is at offset 0 in CSR */ +#define EXP_TIMING_CS0 0x00 +#define TIMING_CS_EN (1 << 31) /* Chip Select Enable */ +#define TIMING_BOOT_ACCEL_DIS (1 << 8) /* Boot Acceleration Disable */ +#define TIMING_WR_EN (1 << 1) /* Write Enable */ +#define TIMING_BYTE_EN (1 << 0) /* 8-bit vs 16-bit bus */ +#define TIMING_MASK 0x3FFF0000 + +static void vr_nor_destroy_partitions(struct vr_nor_mtd *p) +{ + mtd_device_unregister(p->info); +} + +static int vr_nor_init_partitions(struct vr_nor_mtd *p) +{ + /* register the flash bank */ + /* partition the flash bank */ + return mtd_device_register(p->info, NULL, 0); +} + +static void vr_nor_destroy_mtd_setup(struct vr_nor_mtd *p) +{ + map_destroy(p->info); +} + +static int vr_nor_mtd_setup(struct vr_nor_mtd *p) +{ + static const char * const probe_types[] = + { "cfi_probe", "jedec_probe", NULL }; + const char * const *type; + + for (type = probe_types; !p->info && *type; type++) + p->info = do_map_probe(*type, &p->map); + if (!p->info) + return -ENODEV; + + p->info->dev.parent = &p->dev->dev; + + return 0; +} + +static void vr_nor_destroy_maps(struct vr_nor_mtd *p) +{ + unsigned int exp_timing_cs0; + + /* write-protect the flash bank */ + exp_timing_cs0 = readl(p->csr_base + EXP_TIMING_CS0); + exp_timing_cs0 &= ~TIMING_WR_EN; + writel(exp_timing_cs0, p->csr_base + EXP_TIMING_CS0); + + /* unmap the flash window */ + iounmap(p->map.virt); + + /* unmap the csr window */ + iounmap(p->csr_base); +} + +/* + * Initialize the map_info structure and map the flash. + * Returns 0 on success, nonzero otherwise. + */ +static int vr_nor_init_maps(struct vr_nor_mtd *p) +{ + unsigned long csr_phys, csr_len; + unsigned long win_phys, win_len; + unsigned int exp_timing_cs0; + int err; + + csr_phys = pci_resource_start(p->dev, EXP_CSR_MBAR); + csr_len = pci_resource_len(p->dev, EXP_CSR_MBAR); + win_phys = pci_resource_start(p->dev, EXP_WIN_MBAR); + win_len = pci_resource_len(p->dev, EXP_WIN_MBAR); + + if (!csr_phys || !csr_len || !win_phys || !win_len) + return -ENODEV; + + if (win_len < (CS0_START + CS0_SIZE)) + return -ENXIO; + + p->csr_base = ioremap(csr_phys, csr_len); + if (!p->csr_base) + return -ENOMEM; + + exp_timing_cs0 = readl(p->csr_base + EXP_TIMING_CS0); + if (!(exp_timing_cs0 & TIMING_CS_EN)) { + dev_warn(&p->dev->dev, "Expansion Bus Chip Select 0 " + "is disabled.\n"); + err = -ENODEV; + goto release; + } + if ((exp_timing_cs0 & TIMING_MASK) == TIMING_MASK) { + dev_warn(&p->dev->dev, "Expansion Bus Chip Select 0 " + "is configured for maximally slow access times.\n"); + } + p->map.name = DRV_NAME; + p->map.bankwidth = (exp_timing_cs0 & TIMING_BYTE_EN) ? 1 : 2; + p->map.phys = win_phys + CS0_START; + p->map.size = CS0_SIZE; + p->map.virt = ioremap(p->map.phys, p->map.size); + if (!p->map.virt) { + err = -ENOMEM; + goto release; + } + simple_map_init(&p->map); + + /* Enable writes to flash bank */ + exp_timing_cs0 |= TIMING_BOOT_ACCEL_DIS | TIMING_WR_EN; + writel(exp_timing_cs0, p->csr_base + EXP_TIMING_CS0); + + return 0; + + release: + iounmap(p->csr_base); + return err; +} + +static const struct pci_device_id vr_nor_pci_ids[] = { + {PCI_DEVICE(PCI_VENDOR_ID_INTEL, 0x500D)}, + {0,} +}; + +static void vr_nor_pci_remove(struct pci_dev *dev) +{ + struct vr_nor_mtd *p = pci_get_drvdata(dev); + + vr_nor_destroy_partitions(p); + vr_nor_destroy_mtd_setup(p); + vr_nor_destroy_maps(p); + kfree(p); + pci_release_regions(dev); + pci_disable_device(dev); +} + +static int vr_nor_pci_probe(struct pci_dev *dev, const struct pci_device_id *id) +{ + struct vr_nor_mtd *p = NULL; + unsigned int exp_timing_cs0; + int err; + + err = pci_enable_device(dev); + if (err) + goto out; + + err = pci_request_regions(dev, DRV_NAME); + if (err) + goto disable_dev; + + p = kzalloc(sizeof(*p), GFP_KERNEL); + err = -ENOMEM; + if (!p) + goto release; + + p->dev = dev; + + err = vr_nor_init_maps(p); + if (err) + goto release; + + err = vr_nor_mtd_setup(p); + if (err) + goto destroy_maps; + + err = vr_nor_init_partitions(p); + if (err) + goto destroy_mtd_setup; + + pci_set_drvdata(dev, p); + + return 0; + + destroy_mtd_setup: + map_destroy(p->info); + + destroy_maps: + /* write-protect the flash bank */ + exp_timing_cs0 = readl(p->csr_base + EXP_TIMING_CS0); + exp_timing_cs0 &= ~TIMING_WR_EN; + writel(exp_timing_cs0, p->csr_base + EXP_TIMING_CS0); + + /* unmap the flash window */ + iounmap(p->map.virt); + + /* unmap the csr window */ + iounmap(p->csr_base); + + release: + kfree(p); + pci_release_regions(dev); + + disable_dev: + pci_disable_device(dev); + + out: + return err; +} + +static struct pci_driver vr_nor_pci_driver = { + .name = DRV_NAME, + .probe = vr_nor_pci_probe, + .remove = vr_nor_pci_remove, + .id_table = vr_nor_pci_ids, +}; + +module_pci_driver(vr_nor_pci_driver); + +MODULE_AUTHOR("Andy Lowe"); +MODULE_DESCRIPTION("MTD map driver for NOR flash on Intel Vermilion Range"); +MODULE_LICENSE("GPL"); +MODULE_DEVICE_TABLE(pci, vr_nor_pci_ids); diff --git a/drivers/mtd/maps/l440gx.c b/drivers/mtd/maps/l440gx.c new file mode 100644 index 0000000000..832b880d1a --- /dev/null +++ b/drivers/mtd/maps/l440gx.c @@ -0,0 +1,167 @@ +// SPDX-License-Identifier: GPL-2.0-only +/* + * BIOS Flash chip on Intel 440GX board. + * + * Bugs this currently does not work under linuxBIOS. + */ + +#include <linux/module.h> +#include <linux/pci.h> +#include <linux/kernel.h> +#include <linux/init.h> +#include <asm/io.h> +#include <linux/mtd/mtd.h> +#include <linux/mtd/map.h> + +#define PIIXE_IOBASE_RESOURCE 11 + +#define WINDOW_ADDR 0xfff00000 +#define WINDOW_SIZE 0x00100000 +#define BUSWIDTH 1 + +static u32 iobase; +#define IOBASE iobase +#define TRIBUF_PORT (IOBASE+0x37) +#define VPP_PORT (IOBASE+0x28) + +static struct mtd_info *mymtd; + + +/* Is this really the vpp port? */ +static DEFINE_SPINLOCK(l440gx_vpp_lock); +static int l440gx_vpp_refcnt; +static void l440gx_set_vpp(struct map_info *map, int vpp) +{ + unsigned long flags; + + spin_lock_irqsave(&l440gx_vpp_lock, flags); + if (vpp) { + if (++l440gx_vpp_refcnt == 1) /* first nested 'on' */ + outl(inl(VPP_PORT) | 1, VPP_PORT); + } else { + if (--l440gx_vpp_refcnt == 0) /* last nested 'off' */ + outl(inl(VPP_PORT) & ~1, VPP_PORT); + } + spin_unlock_irqrestore(&l440gx_vpp_lock, flags); +} + +static struct map_info l440gx_map = { + .name = "L440GX BIOS", + .size = WINDOW_SIZE, + .bankwidth = BUSWIDTH, + .phys = WINDOW_ADDR, +#if 0 + /* FIXME verify that this is the + * appripriate code for vpp enable/disable + */ + .set_vpp = l440gx_set_vpp +#endif +}; + +static int __init init_l440gx(void) +{ + struct pci_dev *dev, *pm_dev; + struct resource *pm_iobase; + __u16 word; + + dev = pci_get_device(PCI_VENDOR_ID_INTEL, + PCI_DEVICE_ID_INTEL_82371AB_0, NULL); + + pm_dev = pci_get_device(PCI_VENDOR_ID_INTEL, + PCI_DEVICE_ID_INTEL_82371AB_3, NULL); + + pci_dev_put(dev); + + if (!dev || !pm_dev) { + printk(KERN_NOTICE "L440GX flash mapping: failed to find PIIX4 ISA bridge, cannot continue\n"); + pci_dev_put(pm_dev); + return -ENODEV; + } + + l440gx_map.virt = ioremap(WINDOW_ADDR, WINDOW_SIZE); + + if (!l440gx_map.virt) { + printk(KERN_WARNING "Failed to ioremap L440GX flash region\n"); + pci_dev_put(pm_dev); + return -ENOMEM; + } + simple_map_init(&l440gx_map); + pr_debug("window_addr = %p\n", l440gx_map.virt); + + /* Setup the pm iobase resource + * This code should move into some kind of generic bridge + * driver but for the moment I'm content with getting the + * allocation correct. + */ + pm_iobase = &pm_dev->resource[PIIXE_IOBASE_RESOURCE]; + if (!(pm_iobase->flags & IORESOURCE_IO)) { + pm_iobase->name = "pm iobase"; + pm_iobase->start = 0; + pm_iobase->end = 63; + pm_iobase->flags = IORESOURCE_IO; + + /* Put the current value in the resource */ + pci_read_config_dword(pm_dev, 0x40, &iobase); + iobase &= ~1; + pm_iobase->start += iobase & ~1; + pm_iobase->end += iobase & ~1; + + pci_dev_put(pm_dev); + + /* Allocate the resource region */ + if (pci_assign_resource(pm_dev, PIIXE_IOBASE_RESOURCE) != 0) { + pci_dev_put(dev); + pci_dev_put(pm_dev); + printk(KERN_WARNING "Could not allocate pm iobase resource\n"); + iounmap(l440gx_map.virt); + return -ENXIO; + } + } + /* Set the iobase */ + iobase = pm_iobase->start; + pci_write_config_dword(pm_dev, 0x40, iobase | 1); + + + /* Set XBCS# */ + pci_read_config_word(dev, 0x4e, &word); + word |= 0x4; + pci_write_config_word(dev, 0x4e, word); + + /* Supply write voltage to the chip */ + l440gx_set_vpp(&l440gx_map, 1); + + /* Enable the gate on the WE line */ + outb(inb(TRIBUF_PORT) & ~1, TRIBUF_PORT); + + printk(KERN_NOTICE "Enabled WE line to L440GX BIOS flash chip.\n"); + + mymtd = do_map_probe("jedec_probe", &l440gx_map); + if (!mymtd) { + printk(KERN_NOTICE "JEDEC probe on BIOS chip failed. Using ROM\n"); + mymtd = do_map_probe("map_rom", &l440gx_map); + } + if (mymtd) { + mymtd->owner = THIS_MODULE; + + mtd_device_register(mymtd, NULL, 0); + return 0; + } + + iounmap(l440gx_map.virt); + return -ENXIO; +} + +static void __exit cleanup_l440gx(void) +{ + mtd_device_unregister(mymtd); + map_destroy(mymtd); + + iounmap(l440gx_map.virt); +} + +module_init(init_l440gx); +module_exit(cleanup_l440gx); + +MODULE_LICENSE("GPL"); +MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>"); +MODULE_DESCRIPTION("MTD map driver for BIOS chips on Intel L440GX motherboards"); diff --git a/drivers/mtd/maps/lantiq-flash.c b/drivers/mtd/maps/lantiq-flash.c new file mode 100644 index 0000000000..a1da1c8973 --- /dev/null +++ b/drivers/mtd/maps/lantiq-flash.c @@ -0,0 +1,200 @@ +// SPDX-License-Identifier: GPL-2.0-only +/* + * + * Copyright (C) 2004 Liu Peng Infineon IFAP DC COM CPE + * Copyright (C) 2010 John Crispin <john@phrozen.org> + */ + +#include <linux/err.h> +#include <linux/module.h> +#include <linux/types.h> +#include <linux/kernel.h> +#include <linux/io.h> +#include <linux/slab.h> +#include <linux/mtd/mtd.h> +#include <linux/mtd/map.h> +#include <linux/mtd/partitions.h> +#include <linux/mtd/cfi.h> +#include <linux/platform_device.h> +#include <linux/mtd/physmap.h> +#include <linux/of.h> + +#include <lantiq_soc.h> + +/* + * The NOR flash is connected to the same external bus unit (EBU) as PCI. + * To make PCI work we need to enable the endianness swapping for the address + * written to the EBU. This endianness swapping works for PCI correctly but + * fails for attached NOR devices. To workaround this we need to use a complex + * map. The workaround involves swapping all addresses whilst probing the chip. + * Once probing is complete we stop swapping the addresses but swizzle the + * unlock addresses to ensure that access to the NOR device works correctly. + */ + +enum { + LTQ_NOR_PROBING, + LTQ_NOR_NORMAL +}; + +struct ltq_mtd { + struct resource *res; + struct mtd_info *mtd; + struct map_info *map; +}; + +static const char ltq_map_name[] = "ltq_nor"; + +static map_word +ltq_read16(struct map_info *map, unsigned long adr) +{ + unsigned long flags; + map_word temp; + + if (map->map_priv_1 == LTQ_NOR_PROBING) + adr ^= 2; + spin_lock_irqsave(&ebu_lock, flags); + temp.x[0] = *(u16 *)(map->virt + adr); + spin_unlock_irqrestore(&ebu_lock, flags); + return temp; +} + +static void +ltq_write16(struct map_info *map, map_word d, unsigned long adr) +{ + unsigned long flags; + + if (map->map_priv_1 == LTQ_NOR_PROBING) + adr ^= 2; + spin_lock_irqsave(&ebu_lock, flags); + *(u16 *)(map->virt + adr) = d.x[0]; + spin_unlock_irqrestore(&ebu_lock, flags); +} + +/* + * The following 2 functions copy data between iomem and a cached memory + * section. As memcpy() makes use of pre-fetching we cannot use it here. + * The normal alternative of using memcpy_{to,from}io also makes use of + * memcpy() on MIPS so it is not applicable either. We are therefore stuck + * with having to use our own loop. + */ +static void +ltq_copy_from(struct map_info *map, void *to, + unsigned long from, ssize_t len) +{ + unsigned char *f = (unsigned char *)map->virt + from; + unsigned char *t = (unsigned char *)to; + unsigned long flags; + + spin_lock_irqsave(&ebu_lock, flags); + while (len--) + *t++ = *f++; + spin_unlock_irqrestore(&ebu_lock, flags); +} + +static void +ltq_copy_to(struct map_info *map, unsigned long to, + const void *from, ssize_t len) +{ + unsigned char *f = (unsigned char *)from; + unsigned char *t = (unsigned char *)map->virt + to; + unsigned long flags; + + spin_lock_irqsave(&ebu_lock, flags); + while (len--) + *t++ = *f++; + spin_unlock_irqrestore(&ebu_lock, flags); +} + +static int +ltq_mtd_probe(struct platform_device *pdev) +{ + struct ltq_mtd *ltq_mtd; + struct cfi_private *cfi; + int err; + + ltq_mtd = devm_kzalloc(&pdev->dev, sizeof(struct ltq_mtd), GFP_KERNEL); + if (!ltq_mtd) + return -ENOMEM; + + platform_set_drvdata(pdev, ltq_mtd); + + ltq_mtd->map->virt = devm_platform_get_and_ioremap_resource(pdev, 0, <q_mtd->res); + if (IS_ERR(ltq_mtd->map->virt)) + return PTR_ERR(ltq_mtd->map->virt); + + ltq_mtd->map = devm_kzalloc(&pdev->dev, sizeof(struct map_info), + GFP_KERNEL); + if (!ltq_mtd->map) + return -ENOMEM; + + ltq_mtd->map->phys = ltq_mtd->res->start; + ltq_mtd->map->size = resource_size(ltq_mtd->res); + + ltq_mtd->map->name = ltq_map_name; + ltq_mtd->map->bankwidth = 2; + ltq_mtd->map->read = ltq_read16; + ltq_mtd->map->write = ltq_write16; + ltq_mtd->map->copy_from = ltq_copy_from; + ltq_mtd->map->copy_to = ltq_copy_to; + + ltq_mtd->map->map_priv_1 = LTQ_NOR_PROBING; + ltq_mtd->mtd = do_map_probe("cfi_probe", ltq_mtd->map); + ltq_mtd->map->map_priv_1 = LTQ_NOR_NORMAL; + + if (!ltq_mtd->mtd) { + dev_err(&pdev->dev, "probing failed\n"); + return -ENXIO; + } + + ltq_mtd->mtd->dev.parent = &pdev->dev; + mtd_set_of_node(ltq_mtd->mtd, pdev->dev.of_node); + + cfi = ltq_mtd->map->fldrv_priv; + cfi->addr_unlock1 ^= 1; + cfi->addr_unlock2 ^= 1; + + err = mtd_device_register(ltq_mtd->mtd, NULL, 0); + if (err) { + dev_err(&pdev->dev, "failed to add partitions\n"); + goto err_destroy; + } + + return 0; + +err_destroy: + map_destroy(ltq_mtd->mtd); + return err; +} + +static int +ltq_mtd_remove(struct platform_device *pdev) +{ + struct ltq_mtd *ltq_mtd = platform_get_drvdata(pdev); + + if (ltq_mtd && ltq_mtd->mtd) { + mtd_device_unregister(ltq_mtd->mtd); + map_destroy(ltq_mtd->mtd); + } + return 0; +} + +static const struct of_device_id ltq_mtd_match[] = { + { .compatible = "lantiq,nor" }, + {}, +}; +MODULE_DEVICE_TABLE(of, ltq_mtd_match); + +static struct platform_driver ltq_mtd_driver = { + .probe = ltq_mtd_probe, + .remove = ltq_mtd_remove, + .driver = { + .name = "ltq-nor", + .of_match_table = ltq_mtd_match, + }, +}; + +module_platform_driver(ltq_mtd_driver); + +MODULE_LICENSE("GPL"); +MODULE_AUTHOR("John Crispin <john@phrozen.org>"); +MODULE_DESCRIPTION("Lantiq SoC NOR"); diff --git a/drivers/mtd/maps/map_funcs.c b/drivers/mtd/maps/map_funcs.c new file mode 100644 index 0000000000..5b684c170d --- /dev/null +++ b/drivers/mtd/maps/map_funcs.c @@ -0,0 +1,44 @@ +// SPDX-License-Identifier: GPL-2.0-only +/* + * Out-of-line map I/O functions for simple maps when CONFIG_COMPLEX_MAPPINGS + * is enabled. + */ + +#include <linux/kernel.h> +#include <linux/module.h> + +#include <linux/mtd/map.h> +#include <linux/mtd/xip.h> + +static map_word __xipram simple_map_read(struct map_info *map, unsigned long ofs) +{ + return inline_map_read(map, ofs); +} + +static void __xipram simple_map_write(struct map_info *map, const map_word datum, unsigned long ofs) +{ + inline_map_write(map, datum, ofs); +} + +static void __xipram simple_map_copy_from(struct map_info *map, void *to, unsigned long from, ssize_t len) +{ + inline_map_copy_from(map, to, from, len); +} + +static void __xipram simple_map_copy_to(struct map_info *map, unsigned long to, const void *from, ssize_t len) +{ + inline_map_copy_to(map, to, from, len); +} + +void simple_map_init(struct map_info *map) +{ + BUG_ON(!map_bankwidth_supported(map->bankwidth)); + + map->read = simple_map_read; + map->write = simple_map_write; + map->copy_from = simple_map_copy_from; + map->copy_to = simple_map_copy_to; +} + +EXPORT_SYMBOL(simple_map_init); +MODULE_LICENSE("GPL"); diff --git a/drivers/mtd/maps/netsc520.c b/drivers/mtd/maps/netsc520.c new file mode 100644 index 0000000000..0bb651624f --- /dev/null +++ b/drivers/mtd/maps/netsc520.c @@ -0,0 +1,127 @@ +// SPDX-License-Identifier: GPL-2.0-or-later +/* netsc520.c -- MTD map driver for AMD NetSc520 Demonstration Board + * + * Copyright (C) 2001 Mark Langsdorf (mark.langsdorf@amd.com) + * based on sc520cdp.c by Sysgo Real-Time Solutions GmbH + * + * The NetSc520 is a demonstration board for the Elan Sc520 processor available + * from AMD. It has a single back of 16 megs of 32-bit Flash ROM and another + * 16 megs of SDRAM. + */ + +#include <linux/module.h> +#include <linux/types.h> +#include <linux/kernel.h> +#include <linux/init.h> +#include <asm/io.h> +#include <linux/mtd/mtd.h> +#include <linux/mtd/map.h> +#include <linux/mtd/partitions.h> + + +/* +** The single, 16 megabyte flash bank is divided into four virtual +** partitions. The first partition is 768 KiB and is intended to +** store the kernel image loaded by the bootstrap loader. The second +** partition is 256 KiB and holds the BIOS image. The third +** partition is 14.5 MiB and is intended for the flash file system +** image. The last partition is 512 KiB and contains another copy +** of the BIOS image and the reset vector. +** +** Only the third partition should be mounted. The first partition +** should not be mounted, but it can erased and written to using the +** MTD character routines. The second and fourth partitions should +** not be touched - it is possible to corrupt the BIOS image by +** mounting these partitions, and potentially the board will not be +** recoverable afterwards. +*/ + +/* partition_info gives details on the logical partitions that the split the + * single flash device into. If the size if zero we use up to the end of the + * device. */ +static const struct mtd_partition partition_info[] = { + { + .name = "NetSc520 boot kernel", + .offset = 0, + .size = 0xc0000 + }, + { + .name = "NetSc520 Low BIOS", + .offset = 0xc0000, + .size = 0x40000 + }, + { + .name = "NetSc520 file system", + .offset = 0x100000, + .size = 0xe80000 + }, + { + .name = "NetSc520 High BIOS", + .offset = 0xf80000, + .size = 0x80000 + }, +}; +#define NUM_PARTITIONS ARRAY_SIZE(partition_info) + +#define WINDOW_SIZE 0x00100000 +#define WINDOW_ADDR 0x00200000 + +static struct map_info netsc520_map = { + .name = "netsc520 Flash Bank", + .size = WINDOW_SIZE, + .bankwidth = 4, + .phys = WINDOW_ADDR, +}; + +#define NUM_FLASH_BANKS ARRAY_SIZE(netsc520_map) + +static struct mtd_info *mymtd; + +static int __init init_netsc520(void) +{ + printk(KERN_NOTICE "NetSc520 flash device: 0x%Lx at 0x%Lx\n", + (unsigned long long)netsc520_map.size, + (unsigned long long)netsc520_map.phys); + netsc520_map.virt = ioremap(netsc520_map.phys, netsc520_map.size); + + if (!netsc520_map.virt) { + printk("Failed to ioremap\n"); + return -EIO; + } + + simple_map_init(&netsc520_map); + + mymtd = do_map_probe("cfi_probe", &netsc520_map); + if(!mymtd) + mymtd = do_map_probe("map_ram", &netsc520_map); + if(!mymtd) + mymtd = do_map_probe("map_rom", &netsc520_map); + + if (!mymtd) { + iounmap(netsc520_map.virt); + return -ENXIO; + } + + mymtd->owner = THIS_MODULE; + mtd_device_register(mymtd, partition_info, NUM_PARTITIONS); + return 0; +} + +static void __exit cleanup_netsc520(void) +{ + if (mymtd) { + mtd_device_unregister(mymtd); + map_destroy(mymtd); + } + if (netsc520_map.virt) { + iounmap(netsc520_map.virt); + netsc520_map.virt = NULL; + } +} + +module_init(init_netsc520); +module_exit(cleanup_netsc520); + +MODULE_LICENSE("GPL"); +MODULE_AUTHOR("Mark Langsdorf <mark.langsdorf@amd.com>"); +MODULE_DESCRIPTION("MTD map driver for AMD NetSc520 Demonstration Board"); diff --git a/drivers/mtd/maps/nettel.c b/drivers/mtd/maps/nettel.c new file mode 100644 index 0000000000..7d349874ff --- /dev/null +++ b/drivers/mtd/maps/nettel.c @@ -0,0 +1,462 @@ +// SPDX-License-Identifier: GPL-2.0-only +/****************************************************************************/ + +/* + * nettel.c -- mappings for NETtel/SecureEdge/SnapGear (x86) boards. + * + * (C) Copyright 2000-2001, Greg Ungerer (gerg@snapgear.com) + * (C) Copyright 2001-2002, SnapGear (www.snapgear.com) + */ + +/****************************************************************************/ + +#include <linux/module.h> +#include <linux/init.h> +#include <linux/types.h> +#include <linux/kernel.h> +#include <linux/mtd/mtd.h> +#include <linux/mtd/map.h> +#include <linux/mtd/partitions.h> +#include <linux/mtd/cfi.h> +#include <linux/reboot.h> +#include <linux/err.h> +#include <linux/kdev_t.h> +#include <linux/root_dev.h> +#include <asm/io.h> + +/****************************************************************************/ + +#define INTEL_BUSWIDTH 1 +#define AMD_WINDOW_MAXSIZE 0x00200000 +#define AMD_BUSWIDTH 1 + +/* + * PAR masks and shifts, assuming 64K pages. + */ +#define SC520_PAR_ADDR_MASK 0x00003fff +#define SC520_PAR_ADDR_SHIFT 16 +#define SC520_PAR_TO_ADDR(par) \ + (((par)&SC520_PAR_ADDR_MASK) << SC520_PAR_ADDR_SHIFT) + +#define SC520_PAR_SIZE_MASK 0x01ffc000 +#define SC520_PAR_SIZE_SHIFT 2 +#define SC520_PAR_TO_SIZE(par) \ + ((((par)&SC520_PAR_SIZE_MASK) << SC520_PAR_SIZE_SHIFT) + (64*1024)) + +#define SC520_PAR(cs, addr, size) \ + ((cs) | \ + ((((size)-(64*1024)) >> SC520_PAR_SIZE_SHIFT) & SC520_PAR_SIZE_MASK) | \ + (((addr) >> SC520_PAR_ADDR_SHIFT) & SC520_PAR_ADDR_MASK)) + +#define SC520_PAR_BOOTCS 0x8a000000 +#define SC520_PAR_ROMCS1 0xaa000000 +#define SC520_PAR_ROMCS2 0xca000000 /* Cache disabled, 64K page */ + +static void *nettel_mmcrp = NULL; + +#ifdef CONFIG_MTD_CFI_INTELEXT +static struct mtd_info *intel_mtd; +#endif +static struct mtd_info *amd_mtd; + +/****************************************************************************/ + +/****************************************************************************/ + +#ifdef CONFIG_MTD_CFI_INTELEXT +static struct map_info nettel_intel_map = { + .name = "SnapGear Intel", + .size = 0, + .bankwidth = INTEL_BUSWIDTH, +}; + +static struct mtd_partition nettel_intel_partitions[] = { + { + .name = "SnapGear kernel", + .offset = 0, + .size = 0x000e0000 + }, + { + .name = "SnapGear filesystem", + .offset = 0x00100000, + }, + { + .name = "SnapGear config", + .offset = 0x000e0000, + .size = 0x00020000 + }, + { + .name = "SnapGear Intel", + .offset = 0 + }, + { + .name = "SnapGear BIOS Config", + .offset = 0x007e0000, + .size = 0x00020000 + }, + { + .name = "SnapGear BIOS", + .offset = 0x007e0000, + .size = 0x00020000 + }, +}; +#endif + +static struct map_info nettel_amd_map = { + .name = "SnapGear AMD", + .size = AMD_WINDOW_MAXSIZE, + .bankwidth = AMD_BUSWIDTH, +}; + +static const struct mtd_partition nettel_amd_partitions[] = { + { + .name = "SnapGear BIOS config", + .offset = 0x000e0000, + .size = 0x00010000 + }, + { + .name = "SnapGear BIOS", + .offset = 0x000f0000, + .size = 0x00010000 + }, + { + .name = "SnapGear AMD", + .offset = 0 + }, + { + .name = "SnapGear high BIOS", + .offset = 0x001f0000, + .size = 0x00010000 + } +}; + +#define NUM_AMD_PARTITIONS ARRAY_SIZE(nettel_amd_partitions) + +/****************************************************************************/ + +#ifdef CONFIG_MTD_CFI_INTELEXT + +/* + * Set the Intel flash back to read mode since some old boot + * loaders don't. + */ +static int nettel_reboot_notifier(struct notifier_block *nb, unsigned long val, void *v) +{ + struct cfi_private *cfi = nettel_intel_map.fldrv_priv; + unsigned long b; + + /* Make sure all FLASH chips are put back into read mode */ + for (b = 0; (b < nettel_intel_partitions[3].size); b += 0x100000) { + cfi_send_gen_cmd(0xff, 0x55, b, &nettel_intel_map, cfi, + cfi->device_type, NULL); + } + return(NOTIFY_OK); +} + +static struct notifier_block nettel_notifier_block = { + nettel_reboot_notifier, NULL, 0 +}; + +#endif + +/****************************************************************************/ + +static int __init nettel_init(void) +{ + volatile unsigned long *amdpar; + unsigned long amdaddr, maxsize; + int num_amd_partitions=0; +#ifdef CONFIG_MTD_CFI_INTELEXT + volatile unsigned long *intel0par, *intel1par; + unsigned long orig_bootcspar, orig_romcs1par; + unsigned long intel0addr, intel0size; + unsigned long intel1addr, intel1size; + int intelboot, intel0cs, intel1cs; + int num_intel_partitions; +#endif + int rc = 0; + + nettel_mmcrp = (void *) ioremap(0xfffef000, 4096); + if (nettel_mmcrp == NULL) { + printk("SNAPGEAR: failed to disable MMCR cache??\n"); + return(-EIO); + } + + /* Set CPU clock to be 33.000MHz */ + *((unsigned char *) (nettel_mmcrp + 0xc64)) = 0x01; + + amdpar = (volatile unsigned long *) (nettel_mmcrp + 0xc4); + +#ifdef CONFIG_MTD_CFI_INTELEXT + intelboot = 0; + intel0cs = SC520_PAR_ROMCS1; + intel0par = (volatile unsigned long *) (nettel_mmcrp + 0xc0); + intel1cs = SC520_PAR_ROMCS2; + intel1par = (volatile unsigned long *) (nettel_mmcrp + 0xbc); + + /* + * Save the CS settings then ensure ROMCS1 and ROMCS2 are off, + * otherwise they might clash with where we try to map BOOTCS. + */ + orig_bootcspar = *amdpar; + orig_romcs1par = *intel0par; + *intel0par = 0; + *intel1par = 0; +#endif + + /* + * The first thing to do is determine if we have a separate + * boot FLASH device. Typically this is a small (1 to 2MB) + * AMD FLASH part. It seems that device size is about the + * only way to tell if this is the case... + */ + amdaddr = 0x20000000; + maxsize = AMD_WINDOW_MAXSIZE; + + *amdpar = SC520_PAR(SC520_PAR_BOOTCS, amdaddr, maxsize); + __asm__ ("wbinvd"); + + nettel_amd_map.phys = amdaddr; + nettel_amd_map.virt = ioremap(amdaddr, maxsize); + if (!nettel_amd_map.virt) { + printk("SNAPGEAR: failed to ioremap() BOOTCS\n"); + iounmap(nettel_mmcrp); + return(-EIO); + } + simple_map_init(&nettel_amd_map); + + if ((amd_mtd = do_map_probe("jedec_probe", &nettel_amd_map))) { + printk(KERN_NOTICE "SNAPGEAR: AMD flash device size = %dK\n", + (int)(amd_mtd->size>>10)); + + amd_mtd->owner = THIS_MODULE; + + /* The high BIOS partition is only present for 2MB units */ + num_amd_partitions = NUM_AMD_PARTITIONS; + if (amd_mtd->size < AMD_WINDOW_MAXSIZE) + num_amd_partitions--; + /* Don't add the partition until after the primary INTEL's */ + +#ifdef CONFIG_MTD_CFI_INTELEXT + /* + * Map the Intel flash into memory after the AMD + * It has to start on a multiple of maxsize. + */ + maxsize = SC520_PAR_TO_SIZE(orig_romcs1par); + if (maxsize < (32 * 1024 * 1024)) + maxsize = (32 * 1024 * 1024); + intel0addr = amdaddr + maxsize; +#endif + } else { +#ifdef CONFIG_MTD_CFI_INTELEXT + /* INTEL boot FLASH */ + intelboot++; + + if (!orig_romcs1par) { + intel0cs = SC520_PAR_BOOTCS; + intel0par = (volatile unsigned long *) + (nettel_mmcrp + 0xc4); + intel1cs = SC520_PAR_ROMCS1; + intel1par = (volatile unsigned long *) + (nettel_mmcrp + 0xc0); + + intel0addr = SC520_PAR_TO_ADDR(orig_bootcspar); + maxsize = SC520_PAR_TO_SIZE(orig_bootcspar); + } else { + /* Kernel base is on ROMCS1, not BOOTCS */ + intel0cs = SC520_PAR_ROMCS1; + intel0par = (volatile unsigned long *) + (nettel_mmcrp + 0xc0); + intel1cs = SC520_PAR_BOOTCS; + intel1par = (volatile unsigned long *) + (nettel_mmcrp + 0xc4); + + intel0addr = SC520_PAR_TO_ADDR(orig_romcs1par); + maxsize = SC520_PAR_TO_SIZE(orig_romcs1par); + } + + /* Destroy useless AMD MTD mapping */ + amd_mtd = NULL; + iounmap(nettel_amd_map.virt); + nettel_amd_map.virt = NULL; +#else + /* Only AMD flash supported */ + rc = -ENXIO; + goto out_unmap2; +#endif + } + +#ifdef CONFIG_MTD_CFI_INTELEXT + /* + * We have determined the INTEL FLASH configuration, so lets + * go ahead and probe for them now. + */ + + /* Set PAR to the maximum size */ + if (maxsize < (32 * 1024 * 1024)) + maxsize = (32 * 1024 * 1024); + *intel0par = SC520_PAR(intel0cs, intel0addr, maxsize); + + /* Turn other PAR off so the first probe doesn't find it */ + *intel1par = 0; + + /* Probe for the size of the first Intel flash */ + nettel_intel_map.size = maxsize; + nettel_intel_map.phys = intel0addr; + nettel_intel_map.virt = ioremap(intel0addr, maxsize); + if (!nettel_intel_map.virt) { + printk("SNAPGEAR: failed to ioremap() ROMCS1\n"); + rc = -EIO; + goto out_unmap2; + } + simple_map_init(&nettel_intel_map); + + intel_mtd = do_map_probe("cfi_probe", &nettel_intel_map); + if (!intel_mtd) { + rc = -ENXIO; + goto out_unmap1; + } + + /* Set PAR to the detected size */ + intel0size = intel_mtd->size; + *intel0par = SC520_PAR(intel0cs, intel0addr, intel0size); + + /* + * Map second Intel FLASH right after first. Set its size to the + * same maxsize used for the first Intel FLASH. + */ + intel1addr = intel0addr + intel0size; + *intel1par = SC520_PAR(intel1cs, intel1addr, maxsize); + __asm__ ("wbinvd"); + + maxsize += intel0size; + + /* Delete the old map and probe again to do both chips */ + map_destroy(intel_mtd); + intel_mtd = NULL; + iounmap(nettel_intel_map.virt); + + nettel_intel_map.size = maxsize; + nettel_intel_map.virt = ioremap(intel0addr, maxsize); + if (!nettel_intel_map.virt) { + printk("SNAPGEAR: failed to ioremap() ROMCS1/2\n"); + rc = -EIO; + goto out_unmap2; + } + + intel_mtd = do_map_probe("cfi_probe", &nettel_intel_map); + if (! intel_mtd) { + rc = -ENXIO; + goto out_unmap1; + } + + intel1size = intel_mtd->size - intel0size; + if (intel1size > 0) { + *intel1par = SC520_PAR(intel1cs, intel1addr, intel1size); + __asm__ ("wbinvd"); + } else { + *intel1par = 0; + } + + printk(KERN_NOTICE "SNAPGEAR: Intel flash device size = %lldKiB\n", + (unsigned long long)(intel_mtd->size >> 10)); + + intel_mtd->owner = THIS_MODULE; + + num_intel_partitions = ARRAY_SIZE(nettel_intel_partitions); + + if (intelboot) { + /* + * Adjust offset and size of last boot partition. + * Must allow for BIOS region at end of FLASH. + */ + nettel_intel_partitions[1].size = (intel0size + intel1size) - + (1024*1024 + intel_mtd->erasesize); + nettel_intel_partitions[3].size = intel0size + intel1size; + nettel_intel_partitions[4].offset = + (intel0size + intel1size) - intel_mtd->erasesize; + nettel_intel_partitions[4].size = intel_mtd->erasesize; + nettel_intel_partitions[5].offset = + nettel_intel_partitions[4].offset; + nettel_intel_partitions[5].size = + nettel_intel_partitions[4].size; + } else { + /* No BIOS regions when AMD boot */ + num_intel_partitions -= 2; + } + rc = mtd_device_register(intel_mtd, nettel_intel_partitions, + num_intel_partitions); + if (rc) + goto out_map_destroy; +#endif + + if (amd_mtd) { + rc = mtd_device_register(amd_mtd, nettel_amd_partitions, + num_amd_partitions); + if (rc) + goto out_mtd_unreg; + } + +#ifdef CONFIG_MTD_CFI_INTELEXT + register_reboot_notifier(&nettel_notifier_block); +#endif + + return rc; + +out_mtd_unreg: +#ifdef CONFIG_MTD_CFI_INTELEXT + mtd_device_unregister(intel_mtd); +out_map_destroy: + map_destroy(intel_mtd); +out_unmap1: + iounmap(nettel_intel_map.virt); +#endif + +out_unmap2: + iounmap(nettel_mmcrp); + iounmap(nettel_amd_map.virt); + + return rc; +} + +/****************************************************************************/ + +static void __exit nettel_cleanup(void) +{ +#ifdef CONFIG_MTD_CFI_INTELEXT + unregister_reboot_notifier(&nettel_notifier_block); +#endif + if (amd_mtd) { + mtd_device_unregister(amd_mtd); + map_destroy(amd_mtd); + } + if (nettel_mmcrp) { + iounmap(nettel_mmcrp); + nettel_mmcrp = NULL; + } + if (nettel_amd_map.virt) { + iounmap(nettel_amd_map.virt); + nettel_amd_map.virt = NULL; + } +#ifdef CONFIG_MTD_CFI_INTELEXT + if (intel_mtd) { + mtd_device_unregister(intel_mtd); + map_destroy(intel_mtd); + } + if (nettel_intel_map.virt) { + iounmap(nettel_intel_map.virt); + nettel_intel_map.virt = NULL; + } +#endif +} + +/****************************************************************************/ + +module_init(nettel_init); +module_exit(nettel_cleanup); + +MODULE_LICENSE("GPL"); +MODULE_AUTHOR("Greg Ungerer <gerg@snapgear.com>"); +MODULE_DESCRIPTION("SnapGear/SecureEdge FLASH support"); + +/****************************************************************************/ diff --git a/drivers/mtd/maps/pci.c b/drivers/mtd/maps/pci.c new file mode 100644 index 0000000000..ca00d211e7 --- /dev/null +++ b/drivers/mtd/maps/pci.c @@ -0,0 +1,330 @@ +// SPDX-License-Identifier: GPL-2.0-only +/* + * linux/drivers/mtd/maps/pci.c + * + * Copyright (C) 2001 Russell King, All rights reserved. + * + * Generic PCI memory map driver. We support the following boards: + * - Intel IQ80310 ATU. + * - Intel EBSA285 (blank rom programming mode). Tested working 27/09/2001 + */ +#include <linux/module.h> +#include <linux/kernel.h> +#include <linux/pci.h> +#include <linux/slab.h> + +#include <linux/mtd/mtd.h> +#include <linux/mtd/map.h> +#include <linux/mtd/partitions.h> + +struct map_pci_info; + +struct mtd_pci_info { + int (*init)(struct pci_dev *dev, struct map_pci_info *map); + void (*exit)(struct pci_dev *dev, struct map_pci_info *map); + unsigned long (*translate)(struct map_pci_info *map, unsigned long ofs); + const char *map_name; +}; + +struct map_pci_info { + struct map_info map; + void __iomem *base; + void (*exit)(struct pci_dev *dev, struct map_pci_info *map); + unsigned long (*translate)(struct map_pci_info *map, unsigned long ofs); + struct pci_dev *dev; +}; + +static map_word mtd_pci_read8(struct map_info *_map, unsigned long ofs) +{ + struct map_pci_info *map = (struct map_pci_info *)_map; + map_word val; + val.x[0]= readb(map->base + map->translate(map, ofs)); + return val; +} + +static map_word mtd_pci_read32(struct map_info *_map, unsigned long ofs) +{ + struct map_pci_info *map = (struct map_pci_info *)_map; + map_word val; + val.x[0] = readl(map->base + map->translate(map, ofs)); + return val; +} + +static void mtd_pci_copyfrom(struct map_info *_map, void *to, unsigned long from, ssize_t len) +{ + struct map_pci_info *map = (struct map_pci_info *)_map; + memcpy_fromio(to, map->base + map->translate(map, from), len); +} + +static void mtd_pci_write8(struct map_info *_map, map_word val, unsigned long ofs) +{ + struct map_pci_info *map = (struct map_pci_info *)_map; + writeb(val.x[0], map->base + map->translate(map, ofs)); +} + +static void mtd_pci_write32(struct map_info *_map, map_word val, unsigned long ofs) +{ + struct map_pci_info *map = (struct map_pci_info *)_map; + writel(val.x[0], map->base + map->translate(map, ofs)); +} + +static void mtd_pci_copyto(struct map_info *_map, unsigned long to, const void *from, ssize_t len) +{ + struct map_pci_info *map = (struct map_pci_info *)_map; + memcpy_toio(map->base + map->translate(map, to), from, len); +} + +static const struct map_info mtd_pci_map = { + .phys = NO_XIP, + .copy_from = mtd_pci_copyfrom, + .copy_to = mtd_pci_copyto, +}; + +/* + * Intel IOP80310 Flash driver + */ + +static int +intel_iq80310_init(struct pci_dev *dev, struct map_pci_info *map) +{ + u32 win_base; + + map->map.bankwidth = 1; + map->map.read = mtd_pci_read8; + map->map.write = mtd_pci_write8; + + map->map.size = 0x00800000; + map->base = ioremap(pci_resource_start(dev, 0), + pci_resource_len(dev, 0)); + + if (!map->base) + return -ENOMEM; + + /* + * We want to base the memory window at Xscale + * bus address 0, not 0x1000. + */ + pci_read_config_dword(dev, 0x44, &win_base); + pci_write_config_dword(dev, 0x44, 0); + + map->map.map_priv_2 = win_base; + + return 0; +} + +static void +intel_iq80310_exit(struct pci_dev *dev, struct map_pci_info *map) +{ + if (map->base) + iounmap(map->base); + pci_write_config_dword(dev, 0x44, map->map.map_priv_2); +} + +static unsigned long +intel_iq80310_translate(struct map_pci_info *map, unsigned long ofs) +{ + unsigned long page_addr = ofs & 0x00400000; + + /* + * This mundges the flash location so we avoid + * the first 80 bytes (they appear to read nonsense). + */ + if (page_addr) { + writel(0x00000008, map->base + 0x1558); + writel(0x00000000, map->base + 0x1550); + } else { + writel(0x00000007, map->base + 0x1558); + writel(0x00800000, map->base + 0x1550); + ofs += 0x00800000; + } + + return ofs; +} + +static struct mtd_pci_info intel_iq80310_info = { + .init = intel_iq80310_init, + .exit = intel_iq80310_exit, + .translate = intel_iq80310_translate, + .map_name = "cfi_probe", +}; + +/* + * Intel DC21285 driver + */ + +static int +intel_dc21285_init(struct pci_dev *dev, struct map_pci_info *map) +{ + unsigned long base, len; + + base = pci_resource_start(dev, PCI_ROM_RESOURCE); + len = pci_resource_len(dev, PCI_ROM_RESOURCE); + + if (!len || !base) { + /* + * No ROM resource + */ + base = pci_resource_start(dev, 2); + len = pci_resource_len(dev, 2); + + /* + * We need to re-allocate PCI BAR2 address range to the + * PCI ROM BAR, and disable PCI BAR2. + */ + } else { + /* + * Hmm, if an address was allocated to the ROM resource, but + * not enabled, should we be allocating a new resource for it + * or simply enabling it? + */ + pci_enable_rom(dev); + printk("%s: enabling expansion ROM\n", pci_name(dev)); + } + + if (!len || !base) + return -ENXIO; + + map->map.bankwidth = 4; + map->map.read = mtd_pci_read32; + map->map.write = mtd_pci_write32; + map->map.size = len; + map->base = ioremap(base, len); + + if (!map->base) + return -ENOMEM; + + return 0; +} + +static void +intel_dc21285_exit(struct pci_dev *dev, struct map_pci_info *map) +{ + if (map->base) + iounmap(map->base); + + /* + * We need to undo the PCI BAR2/PCI ROM BAR address alteration. + */ + pci_disable_rom(dev); +} + +static unsigned long +intel_dc21285_translate(struct map_pci_info *map, unsigned long ofs) +{ + return ofs & 0x00ffffc0 ? ofs : (ofs ^ (1 << 5)); +} + +static struct mtd_pci_info intel_dc21285_info = { + .init = intel_dc21285_init, + .exit = intel_dc21285_exit, + .translate = intel_dc21285_translate, + .map_name = "jedec_probe", +}; + +/* + * PCI device ID table + */ + +static const struct pci_device_id mtd_pci_ids[] = { + { + .vendor = PCI_VENDOR_ID_INTEL, + .device = 0x530d, + .subvendor = PCI_ANY_ID, + .subdevice = PCI_ANY_ID, + .class = PCI_CLASS_MEMORY_OTHER << 8, + .class_mask = 0xffff00, + .driver_data = (unsigned long)&intel_iq80310_info, + }, + { + .vendor = PCI_VENDOR_ID_DEC, + .device = PCI_DEVICE_ID_DEC_21285, + .subvendor = 0, /* DC21285 defaults to 0 on reset */ + .subdevice = 0, /* DC21285 defaults to 0 on reset */ + .driver_data = (unsigned long)&intel_dc21285_info, + }, + { 0, } +}; + +/* + * Generic code follows. + */ + +static int mtd_pci_probe(struct pci_dev *dev, const struct pci_device_id *id) +{ + struct mtd_pci_info *info = (struct mtd_pci_info *)id->driver_data; + struct map_pci_info *map = NULL; + struct mtd_info *mtd = NULL; + int err; + + err = pci_enable_device(dev); + if (err) + goto out; + + err = pci_request_regions(dev, "pci mtd"); + if (err) + goto out; + + map = kmalloc(sizeof(*map), GFP_KERNEL); + err = -ENOMEM; + if (!map) + goto release; + + map->map = mtd_pci_map; + map->map.name = pci_name(dev); + map->dev = dev; + map->exit = info->exit; + map->translate = info->translate; + + err = info->init(dev, map); + if (err) + goto release; + + mtd = do_map_probe(info->map_name, &map->map); + err = -ENODEV; + if (!mtd) + goto release; + + mtd->owner = THIS_MODULE; + mtd_device_register(mtd, NULL, 0); + + pci_set_drvdata(dev, mtd); + + return 0; + +release: + if (map) { + map->exit(dev, map); + kfree(map); + } + + pci_release_regions(dev); +out: + return err; +} + +static void mtd_pci_remove(struct pci_dev *dev) +{ + struct mtd_info *mtd = pci_get_drvdata(dev); + struct map_pci_info *map = mtd->priv; + + mtd_device_unregister(mtd); + map_destroy(mtd); + map->exit(dev, map); + kfree(map); + + pci_release_regions(dev); +} + +static struct pci_driver mtd_pci_driver = { + .name = "MTD PCI", + .probe = mtd_pci_probe, + .remove = mtd_pci_remove, + .id_table = mtd_pci_ids, +}; + +module_pci_driver(mtd_pci_driver); + +MODULE_LICENSE("GPL"); +MODULE_AUTHOR("Russell King <rmk@arm.linux.org.uk>"); +MODULE_DESCRIPTION("Generic PCI map driver"); +MODULE_DEVICE_TABLE(pci, mtd_pci_ids); diff --git a/drivers/mtd/maps/pcmciamtd.c b/drivers/mtd/maps/pcmciamtd.c new file mode 100644 index 0000000000..2ac79e1ced --- /dev/null +++ b/drivers/mtd/maps/pcmciamtd.c @@ -0,0 +1,753 @@ +/* + * pcmciamtd.c - MTD driver for PCMCIA flash memory cards + * + * Author: Simon Evans <spse@secret.org.uk> + * + * Copyright (C) 2002 Simon Evans + * + * Licence: GPL + * + */ + +#include <linux/module.h> +#include <linux/slab.h> +#include <linux/timer.h> +#include <linux/init.h> +#include <asm/io.h> + +#include <pcmcia/cistpl.h> +#include <pcmcia/ds.h> + +#include <linux/mtd/map.h> +#include <linux/mtd/mtd.h> + +#define info(format, arg...) printk(KERN_INFO "pcmciamtd: " format "\n" , ## arg) + +#define DRIVER_DESC "PCMCIA Flash memory card driver" + +/* Size of the PCMCIA address space: 26 bits = 64 MB */ +#define MAX_PCMCIA_ADDR 0x4000000 + +struct pcmciamtd_dev { + struct pcmcia_device *p_dev; + void __iomem *win_base; /* ioremapped address of PCMCIA window */ + unsigned int win_size; /* size of window */ + unsigned int offset; /* offset into card the window currently points at */ + struct map_info pcmcia_map; + struct mtd_info *mtd_info; + int vpp; + char mtd_name[sizeof(struct cistpl_vers_1_t)]; +}; + + +/* Module parameters */ + +/* 2 = do 16-bit transfers, 1 = do 8-bit transfers */ +static int bankwidth = 2; + +/* Speed of memory accesses, in ns */ +static int mem_speed; + +/* Force the size of an SRAM card */ +static int force_size; + +/* Force Vpp */ +static int vpp; + +/* Set Vpp */ +static int setvpp; + +/* Force card to be treated as FLASH, ROM or RAM */ +static int mem_type; + +MODULE_LICENSE("GPL"); +MODULE_AUTHOR("Simon Evans <spse@secret.org.uk>"); +MODULE_DESCRIPTION(DRIVER_DESC); +module_param(bankwidth, int, 0); +MODULE_PARM_DESC(bankwidth, "Set bankwidth (1=8 bit, 2=16 bit, default=2)"); +module_param(mem_speed, int, 0); +MODULE_PARM_DESC(mem_speed, "Set memory access speed in ns"); +module_param(force_size, int, 0); +MODULE_PARM_DESC(force_size, "Force size of card in MiB (1-64)"); +module_param(setvpp, int, 0); +MODULE_PARM_DESC(setvpp, "Set Vpp (0=Never, 1=On writes, 2=Always on, default=0)"); +module_param(vpp, int, 0); +MODULE_PARM_DESC(vpp, "Vpp value in 1/10ths eg 33=3.3V 120=12V (Dangerous)"); +module_param(mem_type, int, 0); +MODULE_PARM_DESC(mem_type, "Set Memory type (0=Flash, 1=RAM, 2=ROM, default=0)"); + + +/* read/write{8,16} copy_{from,to} routines with window remapping + * to access whole card + */ +static void __iomem *remap_window(struct map_info *map, unsigned long to) +{ + struct pcmciamtd_dev *dev = (struct pcmciamtd_dev *)map->map_priv_1; + struct resource *win = (struct resource *) map->map_priv_2; + unsigned int offset; + int ret; + + if (!pcmcia_dev_present(dev->p_dev)) { + pr_debug("device removed\n"); + return NULL; + } + + offset = to & ~(dev->win_size-1); + if (offset != dev->offset) { + pr_debug("Remapping window from 0x%8.8x to 0x%8.8x\n", + dev->offset, offset); + ret = pcmcia_map_mem_page(dev->p_dev, win, offset); + if (ret != 0) + return NULL; + dev->offset = offset; + } + return dev->win_base + (to & (dev->win_size-1)); +} + + +static map_word pcmcia_read8_remap(struct map_info *map, unsigned long ofs) +{ + void __iomem *addr; + map_word d = {{0}}; + + addr = remap_window(map, ofs); + if(!addr) + return d; + + d.x[0] = readb(addr); + pr_debug("ofs = 0x%08lx (%p) data = 0x%02lx\n", ofs, addr, d.x[0]); + return d; +} + + +static map_word pcmcia_read16_remap(struct map_info *map, unsigned long ofs) +{ + void __iomem *addr; + map_word d = {{0}}; + + addr = remap_window(map, ofs); + if(!addr) + return d; + + d.x[0] = readw(addr); + pr_debug("ofs = 0x%08lx (%p) data = 0x%04lx\n", ofs, addr, d.x[0]); + return d; +} + + +static void pcmcia_copy_from_remap(struct map_info *map, void *to, unsigned long from, ssize_t len) +{ + struct pcmciamtd_dev *dev = (struct pcmciamtd_dev *)map->map_priv_1; + unsigned long win_size = dev->win_size; + + pr_debug("to = %p from = %lu len = %zd\n", to, from, len); + while(len) { + int toread = win_size - (from & (win_size-1)); + void __iomem *addr; + + if(toread > len) + toread = len; + + addr = remap_window(map, from); + if(!addr) + return; + + pr_debug("memcpy from %p to %p len = %d\n", addr, to, toread); + memcpy_fromio(to, addr, toread); + len -= toread; + to += toread; + from += toread; + } +} + + +static void pcmcia_write8_remap(struct map_info *map, map_word d, unsigned long adr) +{ + void __iomem *addr = remap_window(map, adr); + + if(!addr) + return; + + pr_debug("adr = 0x%08lx (%p) data = 0x%02lx\n", adr, addr, d.x[0]); + writeb(d.x[0], addr); +} + + +static void pcmcia_write16_remap(struct map_info *map, map_word d, unsigned long adr) +{ + void __iomem *addr = remap_window(map, adr); + if(!addr) + return; + + pr_debug("adr = 0x%08lx (%p) data = 0x%04lx\n", adr, addr, d.x[0]); + writew(d.x[0], addr); +} + + +static void pcmcia_copy_to_remap(struct map_info *map, unsigned long to, const void *from, ssize_t len) +{ + struct pcmciamtd_dev *dev = (struct pcmciamtd_dev *)map->map_priv_1; + unsigned long win_size = dev->win_size; + + pr_debug("to = %lu from = %p len = %zd\n", to, from, len); + while(len) { + int towrite = win_size - (to & (win_size-1)); + void __iomem *addr; + + if(towrite > len) + towrite = len; + + addr = remap_window(map, to); + if(!addr) + return; + + pr_debug("memcpy from %p to %p len = %d\n", from, addr, towrite); + memcpy_toio(addr, from, towrite); + len -= towrite; + to += towrite; + from += towrite; + } +} + + +/* read/write{8,16} copy_{from,to} routines with direct access */ + +#define DEV_REMOVED(x) (!(pcmcia_dev_present(((struct pcmciamtd_dev *)map->map_priv_1)->p_dev))) + +static map_word pcmcia_read8(struct map_info *map, unsigned long ofs) +{ + void __iomem *win_base = (void __iomem *)map->map_priv_2; + map_word d = {{0}}; + + if(DEV_REMOVED(map)) + return d; + + d.x[0] = readb(win_base + ofs); + pr_debug("ofs = 0x%08lx (%p) data = 0x%02lx\n", + ofs, win_base + ofs, d.x[0]); + return d; +} + + +static map_word pcmcia_read16(struct map_info *map, unsigned long ofs) +{ + void __iomem *win_base = (void __iomem *)map->map_priv_2; + map_word d = {{0}}; + + if(DEV_REMOVED(map)) + return d; + + d.x[0] = readw(win_base + ofs); + pr_debug("ofs = 0x%08lx (%p) data = 0x%04lx\n", + ofs, win_base + ofs, d.x[0]); + return d; +} + + +static void pcmcia_copy_from(struct map_info *map, void *to, unsigned long from, ssize_t len) +{ + void __iomem *win_base = (void __iomem *)map->map_priv_2; + + if(DEV_REMOVED(map)) + return; + + pr_debug("to = %p from = %lu len = %zd\n", to, from, len); + memcpy_fromio(to, win_base + from, len); +} + + +static void pcmcia_write8(struct map_info *map, map_word d, unsigned long adr) +{ + void __iomem *win_base = (void __iomem *)map->map_priv_2; + + if(DEV_REMOVED(map)) + return; + + pr_debug("adr = 0x%08lx (%p) data = 0x%02lx\n", + adr, win_base + adr, d.x[0]); + writeb(d.x[0], win_base + adr); +} + + +static void pcmcia_write16(struct map_info *map, map_word d, unsigned long adr) +{ + void __iomem *win_base = (void __iomem *)map->map_priv_2; + + if(DEV_REMOVED(map)) + return; + + pr_debug("adr = 0x%08lx (%p) data = 0x%04lx\n", + adr, win_base + adr, d.x[0]); + writew(d.x[0], win_base + adr); +} + + +static void pcmcia_copy_to(struct map_info *map, unsigned long to, const void *from, ssize_t len) +{ + void __iomem *win_base = (void __iomem *)map->map_priv_2; + + if(DEV_REMOVED(map)) + return; + + pr_debug("to = %lu from = %p len = %zd\n", to, from, len); + memcpy_toio(win_base + to, from, len); +} + + +static DEFINE_MUTEX(pcmcia_vpp_lock); +static int pcmcia_vpp_refcnt; +static void pcmciamtd_set_vpp(struct map_info *map, int on) +{ + struct pcmciamtd_dev *dev = (struct pcmciamtd_dev *)map->map_priv_1; + struct pcmcia_device *link = dev->p_dev; + + pr_debug("dev = %p on = %d vpp = %d\n\n", dev, on, dev->vpp); + mutex_lock(&pcmcia_vpp_lock); + if (on) { + if (++pcmcia_vpp_refcnt == 1) /* first nested 'on' */ + pcmcia_fixup_vpp(link, dev->vpp); + } else { + if (--pcmcia_vpp_refcnt == 0) /* last nested 'off' */ + pcmcia_fixup_vpp(link, 0); + } + mutex_unlock(&pcmcia_vpp_lock); +} + + +static void pcmciamtd_release(struct pcmcia_device *link) +{ + struct pcmciamtd_dev *dev = link->priv; + + pr_debug("link = 0x%p\n", link); + + if (link->resource[2]->end) { + if(dev->win_base) { + iounmap(dev->win_base); + dev->win_base = NULL; + } + } + pcmcia_disable_device(link); +} + + +static int pcmciamtd_cistpl_format(struct pcmcia_device *p_dev, + tuple_t *tuple, + void *priv_data) +{ + cisparse_t parse; + + if (!pcmcia_parse_tuple(tuple, &parse)) { + cistpl_format_t *t = &parse.format; + (void)t; /* Shut up, gcc */ + pr_debug("Format type: %u, Error Detection: %u, offset = %u, length =%u\n", + t->type, t->edc, t->offset, t->length); + } + return -ENOSPC; +} + +static int pcmciamtd_cistpl_jedec(struct pcmcia_device *p_dev, + tuple_t *tuple, + void *priv_data) +{ + cisparse_t parse; + int i; + + if (!pcmcia_parse_tuple(tuple, &parse)) { + cistpl_jedec_t *t = &parse.jedec; + for (i = 0; i < t->nid; i++) + pr_debug("JEDEC: 0x%02x 0x%02x\n", + t->id[i].mfr, t->id[i].info); + } + return -ENOSPC; +} + +static int pcmciamtd_cistpl_device(struct pcmcia_device *p_dev, + tuple_t *tuple, + void *priv_data) +{ + struct pcmciamtd_dev *dev = priv_data; + cisparse_t parse; + cistpl_device_t *t = &parse.device; + int i; + + if (pcmcia_parse_tuple(tuple, &parse)) + return -EINVAL; + + pr_debug("Common memory:\n"); + dev->pcmcia_map.size = t->dev[0].size; + /* from here on: DEBUG only */ + for (i = 0; i < t->ndev; i++) { + pr_debug("Region %d, type = %u\n", i, t->dev[i].type); + pr_debug("Region %d, wp = %u\n", i, t->dev[i].wp); + pr_debug("Region %d, speed = %u ns\n", i, t->dev[i].speed); + pr_debug("Region %d, size = %u bytes\n", i, t->dev[i].size); + } + return 0; +} + +static int pcmciamtd_cistpl_geo(struct pcmcia_device *p_dev, + tuple_t *tuple, + void *priv_data) +{ + struct pcmciamtd_dev *dev = priv_data; + cisparse_t parse; + cistpl_device_geo_t *t = &parse.device_geo; + int i; + + if (pcmcia_parse_tuple(tuple, &parse)) + return -EINVAL; + + dev->pcmcia_map.bankwidth = t->geo[0].buswidth; + /* from here on: DEBUG only */ + for (i = 0; i < t->ngeo; i++) { + pr_debug("region: %d bankwidth = %u\n", i, t->geo[i].buswidth); + pr_debug("region: %d erase_block = %u\n", i, t->geo[i].erase_block); + pr_debug("region: %d read_block = %u\n", i, t->geo[i].read_block); + pr_debug("region: %d write_block = %u\n", i, t->geo[i].write_block); + pr_debug("region: %d partition = %u\n", i, t->geo[i].partition); + pr_debug("region: %d interleave = %u\n", i, t->geo[i].interleave); + } + return 0; +} + + +static void card_settings(struct pcmciamtd_dev *dev, struct pcmcia_device *p_dev, int *new_name) +{ + int i; + + if (p_dev->prod_id[0]) { + dev->mtd_name[0] = '\0'; + for (i = 0; i < 4; i++) { + if (i) + strcat(dev->mtd_name, " "); + if (p_dev->prod_id[i]) + strcat(dev->mtd_name, p_dev->prod_id[i]); + } + pr_debug("Found name: %s\n", dev->mtd_name); + } + + pcmcia_loop_tuple(p_dev, CISTPL_FORMAT, pcmciamtd_cistpl_format, NULL); + pcmcia_loop_tuple(p_dev, CISTPL_JEDEC_C, pcmciamtd_cistpl_jedec, NULL); + pcmcia_loop_tuple(p_dev, CISTPL_DEVICE, pcmciamtd_cistpl_device, dev); + pcmcia_loop_tuple(p_dev, CISTPL_DEVICE_GEO, pcmciamtd_cistpl_geo, dev); + + if(!dev->pcmcia_map.size) + dev->pcmcia_map.size = MAX_PCMCIA_ADDR; + + if(!dev->pcmcia_map.bankwidth) + dev->pcmcia_map.bankwidth = 2; + + if(force_size) { + dev->pcmcia_map.size = force_size << 20; + pr_debug("size forced to %dM\n", force_size); + } + + if(bankwidth) { + dev->pcmcia_map.bankwidth = bankwidth; + pr_debug("bankwidth forced to %d\n", bankwidth); + } + + dev->pcmcia_map.name = dev->mtd_name; + if(!dev->mtd_name[0]) { + strcpy(dev->mtd_name, "PCMCIA Memory card"); + *new_name = 1; + } + + pr_debug("Device: Size: %lu Width:%d Name: %s\n", + dev->pcmcia_map.size, + dev->pcmcia_map.bankwidth << 3, dev->mtd_name); +} + + +static int pcmciamtd_config(struct pcmcia_device *link) +{ + struct pcmciamtd_dev *dev = link->priv; + struct mtd_info *mtd = NULL; + int ret; + int i, j = 0; + static char *probes[] = { "jedec_probe", "cfi_probe" }; + int new_name = 0; + + pr_debug("link=0x%p\n", link); + + card_settings(dev, link, &new_name); + + dev->pcmcia_map.phys = NO_XIP; + dev->pcmcia_map.copy_from = pcmcia_copy_from_remap; + dev->pcmcia_map.copy_to = pcmcia_copy_to_remap; + if (dev->pcmcia_map.bankwidth == 1) { + dev->pcmcia_map.read = pcmcia_read8_remap; + dev->pcmcia_map.write = pcmcia_write8_remap; + } else { + dev->pcmcia_map.read = pcmcia_read16_remap; + dev->pcmcia_map.write = pcmcia_write16_remap; + } + if(setvpp == 1) + dev->pcmcia_map.set_vpp = pcmciamtd_set_vpp; + + /* Request a memory window for PCMCIA. Some architeures can map windows + * up to the maximum that PCMCIA can support (64MiB) - this is ideal and + * we aim for a window the size of the whole card - otherwise we try + * smaller windows until we succeed + */ + + link->resource[2]->flags |= WIN_MEMORY_TYPE_CM | WIN_ENABLE; + link->resource[2]->flags |= (dev->pcmcia_map.bankwidth == 1) ? + WIN_DATA_WIDTH_8 : WIN_DATA_WIDTH_16; + link->resource[2]->start = 0; + link->resource[2]->end = (force_size) ? force_size << 20 : + MAX_PCMCIA_ADDR; + dev->win_size = 0; + + do { + int ret; + pr_debug("requesting window with size = %luKiB memspeed = %d\n", + (unsigned long) resource_size(link->resource[2]) >> 10, + mem_speed); + ret = pcmcia_request_window(link, link->resource[2], mem_speed); + pr_debug("ret = %d dev->win_size = %d\n", ret, dev->win_size); + if(ret) { + j++; + link->resource[2]->start = 0; + link->resource[2]->end = (force_size) ? + force_size << 20 : MAX_PCMCIA_ADDR; + link->resource[2]->end >>= j; + } else { + pr_debug("Got window of size %luKiB\n", (unsigned long) + resource_size(link->resource[2]) >> 10); + dev->win_size = resource_size(link->resource[2]); + break; + } + } while (link->resource[2]->end >= 0x1000); + + pr_debug("dev->win_size = %d\n", dev->win_size); + + if(!dev->win_size) { + dev_err(&dev->p_dev->dev, "Cannot allocate memory window\n"); + pcmciamtd_release(link); + return -ENODEV; + } + pr_debug("Allocated a window of %dKiB\n", dev->win_size >> 10); + + /* Get write protect status */ + dev->win_base = ioremap(link->resource[2]->start, + resource_size(link->resource[2])); + if(!dev->win_base) { + dev_err(&dev->p_dev->dev, "ioremap(%pR) failed\n", + link->resource[2]); + pcmciamtd_release(link); + return -ENODEV; + } + pr_debug("mapped window dev = %p @ %pR, base = %p\n", + dev, link->resource[2], dev->win_base); + + dev->offset = 0; + dev->pcmcia_map.map_priv_1 = (unsigned long)dev; + dev->pcmcia_map.map_priv_2 = (unsigned long)link->resource[2]; + + dev->vpp = (vpp) ? vpp : link->socket->socket.Vpp; + if(setvpp == 2) { + link->vpp = dev->vpp; + } else { + link->vpp = 0; + } + + link->config_index = 0; + pr_debug("Setting Configuration\n"); + ret = pcmcia_enable_device(link); + if (ret != 0) { + if (dev->win_base) { + iounmap(dev->win_base); + dev->win_base = NULL; + } + return -ENODEV; + } + + if(mem_type == 1) { + mtd = do_map_probe("map_ram", &dev->pcmcia_map); + } else if(mem_type == 2) { + mtd = do_map_probe("map_rom", &dev->pcmcia_map); + } else { + for(i = 0; i < ARRAY_SIZE(probes); i++) { + pr_debug("Trying %s\n", probes[i]); + mtd = do_map_probe(probes[i], &dev->pcmcia_map); + if(mtd) + break; + + pr_debug("FAILED: %s\n", probes[i]); + } + } + + if(!mtd) { + pr_debug("Can not find an MTD\n"); + pcmciamtd_release(link); + return -ENODEV; + } + + dev->mtd_info = mtd; + mtd->owner = THIS_MODULE; + + if(new_name) { + int size = 0; + char unit = ' '; + /* Since we are using a default name, make it better by adding + * in the size + */ + if(mtd->size < 1048576) { /* <1MiB in size, show size in KiB */ + size = mtd->size >> 10; + unit = 'K'; + } else { + size = mtd->size >> 20; + unit = 'M'; + } + snprintf(dev->mtd_name, sizeof(dev->mtd_name), "%d%ciB %s", size, unit, "PCMCIA Memory card"); + } + + /* If the memory found is fits completely into the mapped PCMCIA window, + use the faster non-remapping read/write functions */ + if(mtd->size <= dev->win_size) { + pr_debug("Using non remapping memory functions\n"); + dev->pcmcia_map.map_priv_2 = (unsigned long)dev->win_base; + if (dev->pcmcia_map.bankwidth == 1) { + dev->pcmcia_map.read = pcmcia_read8; + dev->pcmcia_map.write = pcmcia_write8; + } else { + dev->pcmcia_map.read = pcmcia_read16; + dev->pcmcia_map.write = pcmcia_write16; + } + dev->pcmcia_map.copy_from = pcmcia_copy_from; + dev->pcmcia_map.copy_to = pcmcia_copy_to; + } + + if (mtd_device_register(mtd, NULL, 0)) { + map_destroy(mtd); + dev->mtd_info = NULL; + dev_err(&dev->p_dev->dev, + "Could not register the MTD device\n"); + pcmciamtd_release(link); + return -ENODEV; + } + dev_info(&dev->p_dev->dev, "mtd%d: %s\n", mtd->index, mtd->name); + return 0; +} + + +static int pcmciamtd_suspend(struct pcmcia_device *dev) +{ + pr_debug("EVENT_PM_RESUME\n"); + + /* get_lock(link); */ + + return 0; +} + +static int pcmciamtd_resume(struct pcmcia_device *dev) +{ + pr_debug("EVENT_PM_SUSPEND\n"); + + /* free_lock(link); */ + + return 0; +} + + +static void pcmciamtd_detach(struct pcmcia_device *link) +{ + struct pcmciamtd_dev *dev = link->priv; + + pr_debug("link=0x%p\n", link); + + if(dev->mtd_info) { + mtd_device_unregister(dev->mtd_info); + dev_info(&dev->p_dev->dev, "mtd%d: Removing\n", + dev->mtd_info->index); + map_destroy(dev->mtd_info); + } + + pcmciamtd_release(link); +} + + +static int pcmciamtd_probe(struct pcmcia_device *link) +{ + struct pcmciamtd_dev *dev; + + /* Create new memory card device */ + dev = kzalloc(sizeof(*dev), GFP_KERNEL); + if (!dev) return -ENOMEM; + pr_debug("dev=0x%p\n", dev); + + dev->p_dev = link; + link->priv = dev; + + return pcmciamtd_config(link); +} + +static const struct pcmcia_device_id pcmciamtd_ids[] = { + PCMCIA_DEVICE_FUNC_ID(1), + PCMCIA_DEVICE_PROD_ID123("IO DATA", "PCS-2M", "2MB SRAM", 0x547e66dc, 0x1fed36cd, 0x36eadd21), + PCMCIA_DEVICE_PROD_ID12("IBM", "2MB SRAM", 0xb569a6e5, 0x36eadd21), + PCMCIA_DEVICE_PROD_ID12("IBM", "4MB FLASH", 0xb569a6e5, 0x8bc54d2a), + PCMCIA_DEVICE_PROD_ID12("IBM", "8MB FLASH", 0xb569a6e5, 0x6df1be3e), + PCMCIA_DEVICE_PROD_ID12("Intel", "S2E20SW", 0x816cc815, 0xd14c9dcf), + PCMCIA_DEVICE_PROD_ID12("Intel", "S2E8 SW", 0x816cc815, 0xa2d7dedb), + PCMCIA_DEVICE_PROD_ID12("intel", "SERIES2-02 ", 0x40ade711, 0x145cea5c), + PCMCIA_DEVICE_PROD_ID12("intel", "SERIES2-04 ", 0x40ade711, 0x42064dda), + PCMCIA_DEVICE_PROD_ID12("intel", "SERIES2-20 ", 0x40ade711, 0x25ee5cb0), + PCMCIA_DEVICE_PROD_ID12("intel", "VALUE SERIES 100 ", 0x40ade711, 0xdf8506d8), + PCMCIA_DEVICE_PROD_ID12("KINGMAX TECHNOLOGY INC.", "SRAM 256K Bytes", 0x54d0c69c, 0xad12c29c), + PCMCIA_DEVICE_PROD_ID12("Maxtor", "MAXFL MobileMax Flash Memory Card", 0xb68968c8, 0x2dfb47b0), + PCMCIA_DEVICE_PROD_ID123("M-Systems", "M-SYS Flash Memory Card", "(c) M-Systems", 0x7ed2ad87, 0x675dc3fb, 0x7aef3965), + PCMCIA_DEVICE_PROD_ID12("PRETEC", " 2MB SRAM CARD", 0xebf91155, 0x805360ca), + PCMCIA_DEVICE_PROD_ID12("PRETEC", " 4MB SRAM CARD", 0xebf91155, 0x20b6bf17), + PCMCIA_DEVICE_PROD_ID12("SEIKO EPSON", "WWB101EN20", 0xf9876baf, 0xad0b207b), + PCMCIA_DEVICE_PROD_ID12("SEIKO EPSON", "WWB513EN20", 0xf9876baf, 0xe8d884ad), + PCMCIA_DEVICE_PROD_ID12("SMART Modular Technologies", " 4MB FLASH Card", 0x96fd8277, 0x737a5b05), + PCMCIA_DEVICE_PROD_ID12("Starfish, Inc.", "REX-3000", 0x05ddca47, 0xe7d67bca), + PCMCIA_DEVICE_PROD_ID12("Starfish, Inc.", "REX-4100", 0x05ddca47, 0x7bc32944), + /* the following was commented out in pcmcia-cs-3.2.7 */ + /* PCMCIA_DEVICE_PROD_ID12("RATOC Systems,Inc.", "SmartMedia ADAPTER PC Card", 0xf4a2fefe, 0x5885b2ae), */ +#ifdef CONFIG_MTD_PCMCIA_ANONYMOUS + { .match_flags = PCMCIA_DEV_ID_MATCH_ANONYMOUS, }, +#endif + PCMCIA_DEVICE_NULL +}; +MODULE_DEVICE_TABLE(pcmcia, pcmciamtd_ids); + +static struct pcmcia_driver pcmciamtd_driver = { + .name = "pcmciamtd", + .probe = pcmciamtd_probe, + .remove = pcmciamtd_detach, + .owner = THIS_MODULE, + .id_table = pcmciamtd_ids, + .suspend = pcmciamtd_suspend, + .resume = pcmciamtd_resume, +}; + + +static int __init init_pcmciamtd(void) +{ + if(bankwidth && bankwidth != 1 && bankwidth != 2) { + info("bad bankwidth (%d), using default", bankwidth); + bankwidth = 2; + } + if(force_size && (force_size < 1 || force_size > 64)) { + info("bad force_size (%d), using default", force_size); + force_size = 0; + } + if(mem_type && mem_type != 1 && mem_type != 2) { + info("bad mem_type (%d), using default", mem_type); + mem_type = 0; + } + return pcmcia_register_driver(&pcmciamtd_driver); +} + + +static void __exit exit_pcmciamtd(void) +{ + pr_debug(DRIVER_DESC " unloading"); + pcmcia_unregister_driver(&pcmciamtd_driver); +} + +module_init(init_pcmciamtd); +module_exit(exit_pcmciamtd); diff --git a/drivers/mtd/maps/physmap-bt1-rom.c b/drivers/mtd/maps/physmap-bt1-rom.c new file mode 100644 index 0000000000..60dccc48f9 --- /dev/null +++ b/drivers/mtd/maps/physmap-bt1-rom.c @@ -0,0 +1,125 @@ +// SPDX-License-Identifier: GPL-2.0-only +/* + * Copyright (C) 2020 BAIKAL ELECTRONICS, JSC + * + * Authors: + * Serge Semin <Sergey.Semin@baikalelectronics.ru> + * + * Baikal-T1 Physically Mapped Internal ROM driver + */ +#include <linux/bits.h> +#include <linux/device.h> +#include <linux/kernel.h> +#include <linux/mtd/map.h> +#include <linux/mtd/xip.h> +#include <linux/mux/consumer.h> +#include <linux/of.h> +#include <linux/platform_device.h> +#include <linux/string.h> +#include <linux/types.h> + +#include "physmap-bt1-rom.h" + +/* + * Baikal-T1 SoC ROMs are only accessible by the dword-aligned instructions. + * We have to take this into account when implementing the data read-methods. + * Note there is no need in bothering with endianness, since both Baikal-T1 + * CPU and MMIO are LE. + */ +static map_word __xipram bt1_rom_map_read(struct map_info *map, + unsigned long ofs) +{ + void __iomem *src = map->virt + ofs; + unsigned int shift; + map_word ret; + u32 data; + + /* Read data within offset dword. */ + shift = (uintptr_t)src & 0x3; + data = readl_relaxed(src - shift); + if (!shift) { + ret.x[0] = data; + return ret; + } + ret.x[0] = data >> (shift * BITS_PER_BYTE); + + /* Read data from the next dword. */ + shift = 4 - shift; + if (ofs + shift >= map->size) + return ret; + + data = readl_relaxed(src + shift); + ret.x[0] |= data << (shift * BITS_PER_BYTE); + + return ret; +} + +static void __xipram bt1_rom_map_copy_from(struct map_info *map, + void *to, unsigned long from, + ssize_t len) +{ + void __iomem *src = map->virt + from; + unsigned int shift, chunk; + u32 data; + + if (len <= 0 || from >= map->size) + return; + + /* Make sure we don't go over the map limit. */ + len = min_t(ssize_t, map->size - from, len); + + /* + * Since requested data size can be pretty big we have to implement + * the copy procedure as optimal as possible. That's why it's split + * up into the next three stages: unaligned head, aligned body, + * unaligned tail. + */ + shift = (uintptr_t)src & 0x3; + if (shift) { + chunk = min_t(ssize_t, 4 - shift, len); + data = readl_relaxed(src - shift); + memcpy(to, (char *)&data + shift, chunk); + src += chunk; + to += chunk; + len -= chunk; + } + + while (len >= 4) { + data = readl_relaxed(src); + memcpy(to, &data, 4); + src += 4; + to += 4; + len -= 4; + } + + if (len) { + data = readl_relaxed(src); + memcpy(to, &data, len); + } +} + +int of_flash_probe_bt1_rom(struct platform_device *pdev, + struct device_node *np, + struct map_info *map) +{ + struct device *dev = &pdev->dev; + + /* It's supposed to be read-only MTD. */ + if (!of_device_is_compatible(np, "mtd-rom")) { + dev_info(dev, "No mtd-rom compatible string\n"); + return 0; + } + + /* Multiplatform guard. */ + if (!of_device_is_compatible(np, "baikal,bt1-int-rom")) + return 0; + + /* Sanity check the device parameters retrieved from DTB. */ + if (map->bankwidth != 4) + dev_warn(dev, "Bank width is supposed to be 32 bits wide\n"); + + map->read = bt1_rom_map_read; + map->copy_from = bt1_rom_map_copy_from; + + return 0; +} diff --git a/drivers/mtd/maps/physmap-bt1-rom.h b/drivers/mtd/maps/physmap-bt1-rom.h new file mode 100644 index 0000000000..6782899598 --- /dev/null +++ b/drivers/mtd/maps/physmap-bt1-rom.h @@ -0,0 +1,17 @@ +/* SPDX-License-Identifier: GPL-2.0-only */ +#include <linux/mtd/map.h> +#include <linux/of.h> + +#ifdef CONFIG_MTD_PHYSMAP_BT1_ROM +int of_flash_probe_bt1_rom(struct platform_device *pdev, + struct device_node *np, + struct map_info *map); +#else +static inline +int of_flash_probe_bt1_rom(struct platform_device *pdev, + struct device_node *np, + struct map_info *map) +{ + return 0; +} +#endif diff --git a/drivers/mtd/maps/physmap-core.c b/drivers/mtd/maps/physmap-core.c new file mode 100644 index 0000000000..fc87213392 --- /dev/null +++ b/drivers/mtd/maps/physmap-core.c @@ -0,0 +1,696 @@ +// SPDX-License-Identifier: GPL-2.0+ +/* + * Normal mappings of chips in physical memory + * + * Copyright (C) 2003 MontaVista Software Inc. + * Author: Jun Sun, jsun@mvista.com or jsun@junsun.net + * + * 031022 - [jsun] add run-time configure and partition setup + * + * Device tree support: + * Copyright (C) 2006 MontaVista Software Inc. + * Author: Vitaly Wool <vwool@ru.mvista.com> + * + * Revised to handle newer style flash binding by: + * Copyright (C) 2007 David Gibson, IBM Corporation. + * + * GPIO address extension: + * Handle the case where a flash device is mostly addressed using physical + * line and supplemented by GPIOs. This way you can hook up say a 8MiB flash + * to a 2MiB memory range and use the GPIOs to select a particular range. + * + * Copyright © 2000 Nicolas Pitre <nico@cam.org> + * Copyright © 2005-2009 Analog Devices Inc. + */ + +#include <linux/module.h> +#include <linux/types.h> +#include <linux/kernel.h> +#include <linux/init.h> +#include <linux/slab.h> +#include <linux/device.h> +#include <linux/platform_device.h> +#include <linux/mtd/mtd.h> +#include <linux/mtd/map.h> +#include <linux/mtd/partitions.h> +#include <linux/mtd/physmap.h> +#include <linux/mtd/concat.h> +#include <linux/mtd/cfi_endian.h> +#include <linux/io.h> +#include <linux/of_device.h> +#include <linux/pm_runtime.h> +#include <linux/gpio/consumer.h> + +#include "physmap-bt1-rom.h" +#include "physmap-gemini.h" +#include "physmap-ixp4xx.h" +#include "physmap-versatile.h" + +struct physmap_flash_info { + unsigned int nmaps; + struct mtd_info **mtds; + struct mtd_info *cmtd; + struct map_info *maps; + spinlock_t vpp_lock; + int vpp_refcnt; + const char *probe_type; + const char * const *part_types; + unsigned int nparts; + const struct mtd_partition *parts; + struct gpio_descs *gpios; + unsigned int gpio_values; + unsigned int win_order; +}; + +static int physmap_flash_remove(struct platform_device *dev) +{ + struct physmap_flash_info *info; + struct physmap_flash_data *physmap_data; + int i; + + info = platform_get_drvdata(dev); + + if (info->cmtd) { + WARN_ON(mtd_device_unregister(info->cmtd)); + + if (info->cmtd != info->mtds[0]) + mtd_concat_destroy(info->cmtd); + } + + for (i = 0; i < info->nmaps; i++) { + if (info->mtds[i]) + map_destroy(info->mtds[i]); + } + + physmap_data = dev_get_platdata(&dev->dev); + if (physmap_data && physmap_data->exit) + physmap_data->exit(dev); + + pm_runtime_put(&dev->dev); + pm_runtime_disable(&dev->dev); + return 0; +} + +static void physmap_set_vpp(struct map_info *map, int state) +{ + struct platform_device *pdev; + struct physmap_flash_data *physmap_data; + struct physmap_flash_info *info; + unsigned long flags; + + pdev = (struct platform_device *)map->map_priv_1; + physmap_data = dev_get_platdata(&pdev->dev); + + if (!physmap_data->set_vpp) + return; + + info = platform_get_drvdata(pdev); + + spin_lock_irqsave(&info->vpp_lock, flags); + if (state) { + if (++info->vpp_refcnt == 1) /* first nested 'on' */ + physmap_data->set_vpp(pdev, 1); + } else { + if (--info->vpp_refcnt == 0) /* last nested 'off' */ + physmap_data->set_vpp(pdev, 0); + } + spin_unlock_irqrestore(&info->vpp_lock, flags); +} + +#if IS_ENABLED(CONFIG_MTD_PHYSMAP_GPIO_ADDR) +static void physmap_set_addr_gpios(struct physmap_flash_info *info, + unsigned long ofs) +{ + unsigned int i; + + ofs >>= info->win_order; + if (info->gpio_values == ofs) + return; + + for (i = 0; i < info->gpios->ndescs; i++) { + if ((BIT(i) & ofs) == (BIT(i) & info->gpio_values)) + continue; + + gpiod_set_value(info->gpios->desc[i], !!(BIT(i) & ofs)); + } + + info->gpio_values = ofs; +} + +#define win_mask(order) (BIT(order) - 1) + +static map_word physmap_addr_gpios_read(struct map_info *map, + unsigned long ofs) +{ + struct platform_device *pdev; + struct physmap_flash_info *info; + map_word mw; + u16 word; + + pdev = (struct platform_device *)map->map_priv_1; + info = platform_get_drvdata(pdev); + physmap_set_addr_gpios(info, ofs); + + word = readw(map->virt + (ofs & win_mask(info->win_order))); + mw.x[0] = word; + return mw; +} + +static void physmap_addr_gpios_copy_from(struct map_info *map, void *buf, + unsigned long ofs, ssize_t len) +{ + struct platform_device *pdev; + struct physmap_flash_info *info; + + pdev = (struct platform_device *)map->map_priv_1; + info = platform_get_drvdata(pdev); + + while (len) { + unsigned int winofs = ofs & win_mask(info->win_order); + unsigned int chunklen = min_t(unsigned int, len, + BIT(info->win_order) - winofs); + + physmap_set_addr_gpios(info, ofs); + memcpy_fromio(buf, map->virt + winofs, chunklen); + len -= chunklen; + buf += chunklen; + ofs += chunklen; + } +} + +static void physmap_addr_gpios_write(struct map_info *map, map_word mw, + unsigned long ofs) +{ + struct platform_device *pdev; + struct physmap_flash_info *info; + u16 word; + + pdev = (struct platform_device *)map->map_priv_1; + info = platform_get_drvdata(pdev); + physmap_set_addr_gpios(info, ofs); + + word = mw.x[0]; + writew(word, map->virt + (ofs & win_mask(info->win_order))); +} + +static void physmap_addr_gpios_copy_to(struct map_info *map, unsigned long ofs, + const void *buf, ssize_t len) +{ + struct platform_device *pdev; + struct physmap_flash_info *info; + + pdev = (struct platform_device *)map->map_priv_1; + info = platform_get_drvdata(pdev); + + while (len) { + unsigned int winofs = ofs & win_mask(info->win_order); + unsigned int chunklen = min_t(unsigned int, len, + BIT(info->win_order) - winofs); + + physmap_set_addr_gpios(info, ofs); + memcpy_toio(map->virt + winofs, buf, chunklen); + len -= chunklen; + buf += chunklen; + ofs += chunklen; + } +} + +static int physmap_addr_gpios_map_init(struct map_info *map) +{ + map->phys = NO_XIP; + map->read = physmap_addr_gpios_read; + map->copy_from = physmap_addr_gpios_copy_from; + map->write = physmap_addr_gpios_write; + map->copy_to = physmap_addr_gpios_copy_to; + + return 0; +} +#else +static int physmap_addr_gpios_map_init(struct map_info *map) +{ + return -ENOTSUPP; +} +#endif + +#if IS_ENABLED(CONFIG_MTD_PHYSMAP_OF) +static const struct of_device_id of_flash_match[] = { + { + .compatible = "cfi-flash", + .data = "cfi_probe", + }, + { + /* + * FIXME: JEDEC chips can't be safely and reliably + * probed, although the mtd code gets it right in + * practice most of the time. We should use the + * vendor and device ids specified by the binding to + * bypass the heuristic probe code, but the mtd layer + * provides, at present, no interface for doing so + * :(. + */ + .compatible = "jedec-flash", + .data = "jedec_probe", + }, + { + .compatible = "mtd-ram", + .data = "map_ram", + }, + { + .compatible = "mtd-rom", + .data = "map_rom", + }, + { + .type = "rom", + .compatible = "direct-mapped" + }, + { /* sentinel */ }, +}; +MODULE_DEVICE_TABLE(of, of_flash_match); + +static const char * const of_default_part_probes[] = { + "cmdlinepart", "RedBoot", "ofpart", "ofoldpart", NULL +}; + +static const char * const *of_get_part_probes(struct platform_device *dev) +{ + struct device_node *dp = dev->dev.of_node; + const char **res; + int count; + + count = of_property_count_strings(dp, "linux,part-probe"); + if (count < 0) + return of_default_part_probes; + + res = devm_kcalloc(&dev->dev, count + 1, sizeof(*res), GFP_KERNEL); + if (!res) + return NULL; + + count = of_property_read_string_array(dp, "linux,part-probe", res, + count); + if (count < 0) + return NULL; + + return res; +} + +static const char *of_select_probe_type(struct platform_device *dev) +{ + struct device_node *dp = dev->dev.of_node; + const struct of_device_id *match; + const char *probe_type; + + match = of_match_device(of_flash_match, &dev->dev); + if (!match) + return NULL; + + probe_type = match->data; + if (probe_type) + return probe_type; + + dev_warn(&dev->dev, + "Device tree uses obsolete \"direct-mapped\" flash binding\n"); + + of_property_read_string(dp, "probe-type", &probe_type); + if (!probe_type) + return NULL; + + if (!strcmp(probe_type, "CFI")) { + probe_type = "cfi_probe"; + } else if (!strcmp(probe_type, "JEDEC")) { + probe_type = "jedec_probe"; + } else if (!strcmp(probe_type, "ROM")) { + probe_type = "map_rom"; + } else { + dev_warn(&dev->dev, + "obsolete_probe: don't know probe type '%s', mapping as rom\n", + probe_type); + probe_type = "map_rom"; + } + + return probe_type; +} + +static int physmap_flash_of_init(struct platform_device *dev) +{ + struct physmap_flash_info *info = platform_get_drvdata(dev); + struct device_node *dp = dev->dev.of_node; + const char *mtd_name = NULL; + int err, swap = 0; + bool map_indirect; + unsigned int i; + u32 bankwidth; + + if (!dp) + return -EINVAL; + + info->probe_type = of_select_probe_type(dev); + + info->part_types = of_get_part_probes(dev); + if (!info->part_types) + return -ENOMEM; + + of_property_read_string(dp, "linux,mtd-name", &mtd_name); + + map_indirect = of_property_read_bool(dp, "no-unaligned-direct-access"); + + err = of_property_read_u32(dp, "bank-width", &bankwidth); + if (err) { + dev_err(&dev->dev, "Can't get bank width from device tree\n"); + return err; + } + + if (of_property_read_bool(dp, "big-endian")) + swap = CFI_BIG_ENDIAN; + else if (of_property_read_bool(dp, "little-endian")) + swap = CFI_LITTLE_ENDIAN; + + for (i = 0; i < info->nmaps; i++) { + info->maps[i].name = mtd_name; + info->maps[i].swap = swap; + info->maps[i].bankwidth = bankwidth; + info->maps[i].device_node = dp; + + err = of_flash_probe_bt1_rom(dev, dp, &info->maps[i]); + if (err) + return err; + + err = of_flash_probe_gemini(dev, dp, &info->maps[i]); + if (err) + return err; + + err = of_flash_probe_ixp4xx(dev, dp, &info->maps[i]); + if (err) + return err; + + err = of_flash_probe_versatile(dev, dp, &info->maps[i]); + if (err) + return err; + + /* + * On some platforms (e.g. MPC5200) a direct 1:1 mapping + * may cause problems with JFFS2 usage, as the local bus (LPB) + * doesn't support unaligned accesses as implemented in the + * JFFS2 code via memcpy(). By setting NO_XIP, the + * flash will not be exposed directly to the MTD users + * (e.g. JFFS2) any more. + */ + if (map_indirect) + info->maps[i].phys = NO_XIP; + } + + return 0; +} +#else /* IS_ENABLED(CONFIG_MTD_PHYSMAP_OF) */ +#define of_flash_match NULL + +static int physmap_flash_of_init(struct platform_device *dev) +{ + return -ENOTSUPP; +} +#endif /* IS_ENABLED(CONFIG_MTD_PHYSMAP_OF) */ + +static const char * const rom_probe_types[] = { + "cfi_probe", "jedec_probe", "qinfo_probe", "map_rom", +}; + +static const char * const part_probe_types[] = { + "cmdlinepart", "RedBoot", "afs", NULL +}; + +static int physmap_flash_pdata_init(struct platform_device *dev) +{ + struct physmap_flash_info *info = platform_get_drvdata(dev); + struct physmap_flash_data *physmap_data; + unsigned int i; + int err; + + physmap_data = dev_get_platdata(&dev->dev); + if (!physmap_data) + return -EINVAL; + + info->probe_type = physmap_data->probe_type; + info->part_types = physmap_data->part_probe_types ? : part_probe_types; + info->parts = physmap_data->parts; + info->nparts = physmap_data->nr_parts; + + if (physmap_data->init) { + err = physmap_data->init(dev); + if (err) + return err; + } + + for (i = 0; i < info->nmaps; i++) { + info->maps[i].bankwidth = physmap_data->width; + info->maps[i].pfow_base = physmap_data->pfow_base; + info->maps[i].set_vpp = physmap_set_vpp; + } + + return 0; +} + +static int physmap_flash_probe(struct platform_device *dev) +{ + struct physmap_flash_info *info; + int err = 0; + int i; + + if (!dev->dev.of_node && !dev_get_platdata(&dev->dev)) + return -EINVAL; + + info = devm_kzalloc(&dev->dev, sizeof(*info), GFP_KERNEL); + if (!info) + return -ENOMEM; + + while (platform_get_resource(dev, IORESOURCE_MEM, info->nmaps)) + info->nmaps++; + + if (!info->nmaps) + return -ENODEV; + + info->maps = devm_kzalloc(&dev->dev, + sizeof(*info->maps) * info->nmaps, + GFP_KERNEL); + if (!info->maps) + return -ENOMEM; + + info->mtds = devm_kzalloc(&dev->dev, + sizeof(*info->mtds) * info->nmaps, + GFP_KERNEL); + if (!info->mtds) + return -ENOMEM; + + platform_set_drvdata(dev, info); + + info->gpios = devm_gpiod_get_array_optional(&dev->dev, "addr", + GPIOD_OUT_LOW); + if (IS_ERR(info->gpios)) + return PTR_ERR(info->gpios); + + if (info->gpios && info->nmaps > 1) { + dev_err(&dev->dev, "addr-gpios only supported for nmaps == 1\n"); + return -EINVAL; + } + + pm_runtime_enable(&dev->dev); + pm_runtime_get_sync(&dev->dev); + + if (dev->dev.of_node) + err = physmap_flash_of_init(dev); + else + err = physmap_flash_pdata_init(dev); + + if (err) { + pm_runtime_put(&dev->dev); + pm_runtime_disable(&dev->dev); + return err; + } + + for (i = 0; i < info->nmaps; i++) { + struct resource *res; + + info->maps[i].virt = devm_platform_get_and_ioremap_resource(dev, i, &res); + if (IS_ERR(info->maps[i].virt)) { + err = PTR_ERR(info->maps[i].virt); + goto err_out; + } + + dev_notice(&dev->dev, "physmap platform flash device: %pR\n", + res); + + if (!info->maps[i].name) + info->maps[i].name = dev_name(&dev->dev); + + if (!info->maps[i].phys) + info->maps[i].phys = res->start; + + info->win_order = get_bitmask_order(resource_size(res)) - 1; + info->maps[i].size = BIT(info->win_order + + (info->gpios ? + info->gpios->ndescs : 0)); + + info->maps[i].map_priv_1 = (unsigned long)dev; + + if (info->gpios) { + err = physmap_addr_gpios_map_init(&info->maps[i]); + if (err) + goto err_out; + } + +#ifdef CONFIG_MTD_COMPLEX_MAPPINGS + /* + * Only use the simple_map implementation if map hooks are not + * implemented. Since map->read() is mandatory checking for its + * presence is enough. + */ + if (!info->maps[i].read) + simple_map_init(&info->maps[i]); +#else + simple_map_init(&info->maps[i]); +#endif + + if (info->probe_type) { + info->mtds[i] = do_map_probe(info->probe_type, + &info->maps[i]); + + /* Fall back to mapping region as ROM */ + if (!info->mtds[i] && IS_ENABLED(CONFIG_MTD_ROM) && + strcmp(info->probe_type, "map_rom")) { + dev_warn(&dev->dev, + "map_probe() failed for type %s\n", + info->probe_type); + + info->mtds[i] = do_map_probe("map_rom", + &info->maps[i]); + } + } else { + int j; + + for (j = 0; j < ARRAY_SIZE(rom_probe_types); j++) { + info->mtds[i] = do_map_probe(rom_probe_types[j], + &info->maps[i]); + if (info->mtds[i]) + break; + } + } + + if (!info->mtds[i]) { + dev_err(&dev->dev, "map_probe failed\n"); + err = -ENXIO; + goto err_out; + } + info->mtds[i]->dev.parent = &dev->dev; + } + + if (info->nmaps == 1) { + info->cmtd = info->mtds[0]; + } else { + /* + * We detected multiple devices. Concatenate them together. + */ + info->cmtd = mtd_concat_create(info->mtds, info->nmaps, + dev_name(&dev->dev)); + if (!info->cmtd) + err = -ENXIO; + } + if (err) + goto err_out; + + spin_lock_init(&info->vpp_lock); + + mtd_set_of_node(info->cmtd, dev->dev.of_node); + err = mtd_device_parse_register(info->cmtd, info->part_types, NULL, + info->parts, info->nparts); + if (err) + goto err_out; + + return 0; + +err_out: + physmap_flash_remove(dev); + return err; +} + +#ifdef CONFIG_PM +static void physmap_flash_shutdown(struct platform_device *dev) +{ + struct physmap_flash_info *info = platform_get_drvdata(dev); + int i; + + for (i = 0; i < info->nmaps && info->mtds[i]; i++) + if (mtd_suspend(info->mtds[i]) == 0) + mtd_resume(info->mtds[i]); +} +#else +#define physmap_flash_shutdown NULL +#endif + +static struct platform_driver physmap_flash_driver = { + .probe = physmap_flash_probe, + .remove = physmap_flash_remove, + .shutdown = physmap_flash_shutdown, + .driver = { + .name = "physmap-flash", + .of_match_table = of_flash_match, + }, +}; + +#ifdef CONFIG_MTD_PHYSMAP_COMPAT +static struct physmap_flash_data physmap_flash_data = { + .width = CONFIG_MTD_PHYSMAP_BANKWIDTH, +}; + +static struct resource physmap_flash_resource = { + .start = CONFIG_MTD_PHYSMAP_START, + .end = CONFIG_MTD_PHYSMAP_START + CONFIG_MTD_PHYSMAP_LEN - 1, + .flags = IORESOURCE_MEM, +}; + +static struct platform_device physmap_flash = { + .name = "physmap-flash", + .id = 0, + .dev = { + .platform_data = &physmap_flash_data, + }, + .num_resources = 1, + .resource = &physmap_flash_resource, +}; +#endif + +static int __init physmap_init(void) +{ + int err; + + err = platform_driver_register(&physmap_flash_driver); +#ifdef CONFIG_MTD_PHYSMAP_COMPAT + if (err == 0) { + err = platform_device_register(&physmap_flash); + if (err) + platform_driver_unregister(&physmap_flash_driver); + } +#endif + + return err; +} + +static void __exit physmap_exit(void) +{ +#ifdef CONFIG_MTD_PHYSMAP_COMPAT + platform_device_unregister(&physmap_flash); +#endif + platform_driver_unregister(&physmap_flash_driver); +} + +module_init(physmap_init); +module_exit(physmap_exit); + +MODULE_LICENSE("GPL"); +MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>"); +MODULE_AUTHOR("Vitaly Wool <vwool@ru.mvista.com>"); +MODULE_AUTHOR("Mike Frysinger <vapier@gentoo.org>"); +MODULE_DESCRIPTION("Generic configurable MTD map driver"); + +/* legacy platform drivers can't hotplug or coldplg */ +#ifndef CONFIG_MTD_PHYSMAP_COMPAT +/* work with hotplug and coldplug */ +MODULE_ALIAS("platform:physmap-flash"); +#endif diff --git a/drivers/mtd/maps/physmap-gemini.c b/drivers/mtd/maps/physmap-gemini.c new file mode 100644 index 0000000000..9d3b4bf84a --- /dev/null +++ b/drivers/mtd/maps/physmap-gemini.c @@ -0,0 +1,200 @@ +// SPDX-License-Identifier: GPL-2.0 +/* + * Cortina Systems Gemini OF physmap add-on + * Copyright (C) 2017 Linus Walleij <linus.walleij@linaro.org> + * + * This SoC has an elaborate flash control register, so we need to + * detect and set it up when booting on this platform. + */ +#include <linux/export.h> +#include <linux/of.h> +#include <linux/mtd/map.h> +#include <linux/mtd/xip.h> +#include <linux/mfd/syscon.h> +#include <linux/platform_device.h> +#include <linux/regmap.h> +#include <linux/bitops.h> +#include <linux/pinctrl/consumer.h> +#include "physmap-gemini.h" + +/* + * The Flash-relevant parts of the global status register + * These would also be relevant for a NAND driver. + */ +#define GLOBAL_STATUS 0x04 +#define FLASH_TYPE_MASK (0x3 << 24) +#define FLASH_TYPE_NAND_2K (0x3 << 24) +#define FLASH_TYPE_NAND_512 (0x2 << 24) +#define FLASH_TYPE_PARALLEL (0x1 << 24) +#define FLASH_TYPE_SERIAL (0x0 << 24) +/* if parallel */ +#define FLASH_WIDTH_16BIT (1 << 23) /* else 8 bit */ +/* if serial */ +#define FLASH_ATMEL (1 << 23) /* else STM */ + +#define FLASH_SIZE_MASK (0x3 << 21) +#define NAND_256M (0x3 << 21) /* and more */ +#define NAND_128M (0x2 << 21) +#define NAND_64M (0x1 << 21) +#define NAND_32M (0x0 << 21) +#define ATMEL_16M (0x3 << 21) /* and more */ +#define ATMEL_8M (0x2 << 21) +#define ATMEL_4M_2M (0x1 << 21) +#define ATMEL_1M (0x0 << 21) /* and less */ +#define STM_32M (1 << 22) /* and more */ +#define STM_16M (0 << 22) /* and less */ + +#define FLASH_PARALLEL_HIGH_PIN_CNT (1 << 20) /* else low pin cnt */ + +struct gemini_flash { + struct device *dev; + struct pinctrl *p; + struct pinctrl_state *enabled_state; + struct pinctrl_state *disabled_state; +}; + +/* Static local state */ +static struct gemini_flash *gf; + +static void gemini_flash_enable_pins(void) +{ + int ret; + + if (IS_ERR(gf->enabled_state)) + return; + ret = pinctrl_select_state(gf->p, gf->enabled_state); + if (ret) + dev_err(gf->dev, "failed to enable pins\n"); +} + +static void gemini_flash_disable_pins(void) +{ + int ret; + + if (IS_ERR(gf->disabled_state)) + return; + ret = pinctrl_select_state(gf->p, gf->disabled_state); + if (ret) + dev_err(gf->dev, "failed to disable pins\n"); +} + +static map_word __xipram gemini_flash_map_read(struct map_info *map, + unsigned long ofs) +{ + map_word ret; + + gemini_flash_enable_pins(); + ret = inline_map_read(map, ofs); + gemini_flash_disable_pins(); + + return ret; +} + +static void __xipram gemini_flash_map_write(struct map_info *map, + const map_word datum, + unsigned long ofs) +{ + gemini_flash_enable_pins(); + inline_map_write(map, datum, ofs); + gemini_flash_disable_pins(); +} + +static void __xipram gemini_flash_map_copy_from(struct map_info *map, + void *to, unsigned long from, + ssize_t len) +{ + gemini_flash_enable_pins(); + inline_map_copy_from(map, to, from, len); + gemini_flash_disable_pins(); +} + +static void __xipram gemini_flash_map_copy_to(struct map_info *map, + unsigned long to, + const void *from, ssize_t len) +{ + gemini_flash_enable_pins(); + inline_map_copy_to(map, to, from, len); + gemini_flash_disable_pins(); +} + +int of_flash_probe_gemini(struct platform_device *pdev, + struct device_node *np, + struct map_info *map) +{ + struct regmap *rmap; + struct device *dev = &pdev->dev; + u32 val; + int ret; + + /* Multiplatform guard */ + if (!of_device_is_compatible(np, "cortina,gemini-flash")) + return 0; + + gf = devm_kzalloc(dev, sizeof(*gf), GFP_KERNEL); + if (!gf) + return -ENOMEM; + gf->dev = dev; + + rmap = syscon_regmap_lookup_by_phandle(np, "syscon"); + if (IS_ERR(rmap)) { + dev_err(dev, "no syscon\n"); + return PTR_ERR(rmap); + } + + ret = regmap_read(rmap, GLOBAL_STATUS, &val); + if (ret) { + dev_err(dev, "failed to read global status register\n"); + return -ENODEV; + } + dev_dbg(dev, "global status reg: %08x\n", val); + + /* + * It would be contradictory if a physmap flash was NOT parallel. + */ + if ((val & FLASH_TYPE_MASK) != FLASH_TYPE_PARALLEL) { + dev_err(dev, "flash is not parallel\n"); + return -ENODEV; + } + + /* + * Complain if DT data and hardware definition is different. + */ + if (val & FLASH_WIDTH_16BIT) { + if (map->bankwidth != 2) + dev_warn(dev, "flash hardware say flash is 16 bit wide but DT says it is %d bits wide\n", + map->bankwidth * 8); + } else { + if (map->bankwidth != 1) + dev_warn(dev, "flash hardware say flash is 8 bit wide but DT says it is %d bits wide\n", + map->bankwidth * 8); + } + + gf->p = devm_pinctrl_get(dev); + if (IS_ERR(gf->p)) { + dev_err(dev, "no pinctrl handle\n"); + ret = PTR_ERR(gf->p); + return ret; + } + + gf->enabled_state = pinctrl_lookup_state(gf->p, "enabled"); + if (IS_ERR(gf->enabled_state)) + dev_err(dev, "no enabled pin control state\n"); + + gf->disabled_state = pinctrl_lookup_state(gf->p, "disabled"); + if (IS_ERR(gf->enabled_state)) { + dev_err(dev, "no disabled pin control state\n"); + } else { + ret = pinctrl_select_state(gf->p, gf->disabled_state); + if (ret) + dev_err(gf->dev, "failed to disable pins\n"); + } + + map->read = gemini_flash_map_read; + map->write = gemini_flash_map_write; + map->copy_from = gemini_flash_map_copy_from; + map->copy_to = gemini_flash_map_copy_to; + + dev_info(dev, "initialized Gemini-specific physmap control\n"); + + return 0; +} diff --git a/drivers/mtd/maps/physmap-gemini.h b/drivers/mtd/maps/physmap-gemini.h new file mode 100644 index 0000000000..72bd04ce3f --- /dev/null +++ b/drivers/mtd/maps/physmap-gemini.h @@ -0,0 +1,17 @@ +/* SPDX-License-Identifier: GPL-2.0 */ +#include <linux/of.h> +#include <linux/mtd/map.h> + +#ifdef CONFIG_MTD_PHYSMAP_GEMINI +int of_flash_probe_gemini(struct platform_device *pdev, + struct device_node *np, + struct map_info *map); +#else +static inline +int of_flash_probe_gemini(struct platform_device *pdev, + struct device_node *np, + struct map_info *map) +{ + return 0; +} +#endif diff --git a/drivers/mtd/maps/physmap-ixp4xx.c b/drivers/mtd/maps/physmap-ixp4xx.c new file mode 100644 index 0000000000..c561468f95 --- /dev/null +++ b/drivers/mtd/maps/physmap-ixp4xx.c @@ -0,0 +1,132 @@ +// SPDX-License-Identifier: GPL-2.0 +/* + * Intel IXP4xx OF physmap add-on + * Copyright (C) 2019 Linus Walleij <linus.walleij@linaro.org> + * + * Based on the ixp4xx.c map driver, originally written by: + * Intel Corporation + * Deepak Saxena <dsaxena@mvista.com> + * Copyright (C) 2002 Intel Corporation + * Copyright (C) 2003-2004 MontaVista Software, Inc. + */ +#include <linux/export.h> +#include <linux/of.h> +#include <linux/platform_device.h> +#include <linux/mtd/map.h> +#include <linux/mtd/xip.h> +#include "physmap-ixp4xx.h" + +/* + * Read/write a 16 bit word from flash address 'addr'. + * + * When the cpu is in little-endian mode it swizzles the address lines + * ('address coherency') so we need to undo the swizzling to ensure commands + * and the like end up on the correct flash address. + * + * To further complicate matters, due to the way the expansion bus controller + * handles 32 bit reads, the byte stream ABCD is stored on the flash as: + * D15 D0 + * +---+---+ + * | A | B | 0 + * +---+---+ + * | C | D | 2 + * +---+---+ + * This means that on LE systems each 16 bit word must be swapped. Note that + * this requires CONFIG_MTD_CFI_BE_BYTE_SWAP to be enabled to 'unswap' the CFI + * data and other flash commands which are always in D7-D0. + */ +#ifndef CONFIG_CPU_BIG_ENDIAN + +static inline u16 flash_read16(void __iomem *addr) +{ + return be16_to_cpu(__raw_readw((void __iomem *)((unsigned long)addr ^ 0x2))); +} + +static inline void flash_write16(u16 d, void __iomem *addr) +{ + __raw_writew(cpu_to_be16(d), (void __iomem *)((unsigned long)addr ^ 0x2)); +} + +#define BYTE0(h) ((h) & 0xFF) +#define BYTE1(h) (((h) >> 8) & 0xFF) + +#else + +static inline u16 flash_read16(const void __iomem *addr) +{ + return __raw_readw(addr); +} + +static inline void flash_write16(u16 d, void __iomem *addr) +{ + __raw_writew(d, addr); +} + +#define BYTE0(h) (((h) >> 8) & 0xFF) +#define BYTE1(h) ((h) & 0xFF) +#endif + +static map_word ixp4xx_read16(struct map_info *map, unsigned long ofs) +{ + map_word val; + + val.x[0] = flash_read16(map->virt + ofs); + return val; +} + +/* + * The IXP4xx expansion bus only allows 16-bit wide acceses + * when attached to a 16-bit wide device (such as the 28F128J3A), + * so we can't just memcpy_fromio(). + */ +static void ixp4xx_copy_from(struct map_info *map, void *to, + unsigned long from, ssize_t len) +{ + u8 *dest = (u8 *) to; + void __iomem *src = map->virt + from; + + if (len <= 0) + return; + + if (from & 1) { + *dest++ = BYTE1(flash_read16(src-1)); + src++; + --len; + } + + while (len >= 2) { + u16 data = flash_read16(src); + *dest++ = BYTE0(data); + *dest++ = BYTE1(data); + src += 2; + len -= 2; + } + + if (len > 0) + *dest++ = BYTE0(flash_read16(src)); +} + +static void ixp4xx_write16(struct map_info *map, map_word d, unsigned long adr) +{ + flash_write16(d.x[0], map->virt + adr); +} + +int of_flash_probe_ixp4xx(struct platform_device *pdev, + struct device_node *np, + struct map_info *map) +{ + struct device *dev = &pdev->dev; + + /* Multiplatform guard */ + if (!of_device_is_compatible(np, "intel,ixp4xx-flash")) + return 0; + + map->read = ixp4xx_read16; + map->write = ixp4xx_write16; + map->copy_from = ixp4xx_copy_from; + map->copy_to = NULL; + + dev_info(dev, "initialized Intel IXP4xx-specific physmap control\n"); + + return 0; +} diff --git a/drivers/mtd/maps/physmap-ixp4xx.h b/drivers/mtd/maps/physmap-ixp4xx.h new file mode 100644 index 0000000000..46824c57e5 --- /dev/null +++ b/drivers/mtd/maps/physmap-ixp4xx.h @@ -0,0 +1,18 @@ +/* SPDX-License-Identifier: GPL-2.0 */ +#include <linux/of.h> +#include <linux/platform_device.h> +#include <linux/mtd/map.h> + +#ifdef CONFIG_MTD_PHYSMAP_IXP4XX +int of_flash_probe_ixp4xx(struct platform_device *pdev, + struct device_node *np, + struct map_info *map); +#else +static inline +int of_flash_probe_ixp4xx(struct platform_device *pdev, + struct device_node *np, + struct map_info *map) +{ + return 0; +} +#endif diff --git a/drivers/mtd/maps/physmap-versatile.c b/drivers/mtd/maps/physmap-versatile.c new file mode 100644 index 0000000000..2e779111bf --- /dev/null +++ b/drivers/mtd/maps/physmap-versatile.c @@ -0,0 +1,242 @@ +// SPDX-License-Identifier: GPL-2.0-or-later +/* + * Versatile OF physmap driver add-on + * + * Copyright (c) 2016, Linaro Limited + * Author: Linus Walleij <linus.walleij@linaro.org> + */ +#include <linux/export.h> +#include <linux/io.h> +#include <linux/of.h> +#include <linux/of_address.h> +#include <linux/mtd/map.h> +#include <linux/mfd/syscon.h> +#include <linux/platform_device.h> +#include <linux/regmap.h> +#include <linux/bitops.h> +#include "physmap-versatile.h" + +static struct regmap *syscon_regmap; + +enum versatile_flashprot { + INTEGRATOR_AP_FLASHPROT, + INTEGRATOR_CP_FLASHPROT, + VERSATILE_FLASHPROT, + REALVIEW_FLASHPROT, +}; + +static const struct of_device_id syscon_match[] = { + { + .compatible = "arm,integrator-ap-syscon", + .data = (void *)INTEGRATOR_AP_FLASHPROT, + }, + { + .compatible = "arm,integrator-cp-syscon", + .data = (void *)INTEGRATOR_CP_FLASHPROT, + }, + { + .compatible = "arm,core-module-versatile", + .data = (void *)VERSATILE_FLASHPROT, + }, + { + .compatible = "arm,realview-eb-syscon", + .data = (void *)REALVIEW_FLASHPROT, + }, + { + .compatible = "arm,realview-pb1176-syscon", + .data = (void *)REALVIEW_FLASHPROT, + }, + { + .compatible = "arm,realview-pb11mp-syscon", + .data = (void *)REALVIEW_FLASHPROT, + }, + { + .compatible = "arm,realview-pba8-syscon", + .data = (void *)REALVIEW_FLASHPROT, + }, + { + .compatible = "arm,realview-pbx-syscon", + .data = (void *)REALVIEW_FLASHPROT, + }, + {}, +}; + +/* + * Flash protection handling for the Integrator/AP + */ +#define INTEGRATOR_SC_CTRLS_OFFSET 0x08 +#define INTEGRATOR_SC_CTRLC_OFFSET 0x0C +#define INTEGRATOR_SC_CTRL_FLVPPEN BIT(1) +#define INTEGRATOR_SC_CTRL_FLWP BIT(2) + +#define INTEGRATOR_EBI_CSR1_OFFSET 0x04 +/* The manual says bit 2, the code says bit 3, trust the code */ +#define INTEGRATOR_EBI_WRITE_ENABLE BIT(3) +#define INTEGRATOR_EBI_LOCK_OFFSET 0x20 +#define INTEGRATOR_EBI_LOCK_VAL 0xA05F + +static const struct of_device_id ebi_match[] = { + { .compatible = "arm,external-bus-interface"}, + { }, +}; + +static int ap_flash_init(struct platform_device *pdev) +{ + struct device_node *ebi; + void __iomem *ebi_base; + u32 val; + int ret; + + /* Look up the EBI */ + ebi = of_find_matching_node(NULL, ebi_match); + if (!ebi) { + return -ENODEV; + } + ebi_base = of_iomap(ebi, 0); + of_node_put(ebi); + if (!ebi_base) + return -ENODEV; + + /* Clear VPP and write protection bits */ + ret = regmap_write(syscon_regmap, + INTEGRATOR_SC_CTRLC_OFFSET, + INTEGRATOR_SC_CTRL_FLVPPEN | INTEGRATOR_SC_CTRL_FLWP); + if (ret) + dev_err(&pdev->dev, "error clearing Integrator VPP/WP\n"); + + /* Unlock the EBI */ + writel(INTEGRATOR_EBI_LOCK_VAL, ebi_base + INTEGRATOR_EBI_LOCK_OFFSET); + + /* Enable write cycles on the EBI, CSR1 (flash) */ + val = readl(ebi_base + INTEGRATOR_EBI_CSR1_OFFSET); + val |= INTEGRATOR_EBI_WRITE_ENABLE; + writel(val, ebi_base + INTEGRATOR_EBI_CSR1_OFFSET); + + /* Lock the EBI again */ + writel(0, ebi_base + INTEGRATOR_EBI_LOCK_OFFSET); + iounmap(ebi_base); + + return 0; +} + +static void ap_flash_set_vpp(struct map_info *map, int on) +{ + int ret; + + if (on) { + ret = regmap_write(syscon_regmap, + INTEGRATOR_SC_CTRLS_OFFSET, + INTEGRATOR_SC_CTRL_FLVPPEN | INTEGRATOR_SC_CTRL_FLWP); + if (ret) + pr_err("error enabling AP VPP\n"); + } else { + ret = regmap_write(syscon_regmap, + INTEGRATOR_SC_CTRLC_OFFSET, + INTEGRATOR_SC_CTRL_FLVPPEN | INTEGRATOR_SC_CTRL_FLWP); + if (ret) + pr_err("error disabling AP VPP\n"); + } +} + +/* + * Flash protection handling for the Integrator/CP + */ + +#define INTCP_FLASHPROG_OFFSET 0x04 +#define CINTEGRATOR_FLVPPEN BIT(0) +#define CINTEGRATOR_FLWREN BIT(1) +#define CINTEGRATOR_FLMASK BIT(0)|BIT(1) + +static void cp_flash_set_vpp(struct map_info *map, int on) +{ + int ret; + + if (on) { + ret = regmap_update_bits(syscon_regmap, + INTCP_FLASHPROG_OFFSET, + CINTEGRATOR_FLMASK, + CINTEGRATOR_FLVPPEN | CINTEGRATOR_FLWREN); + if (ret) + pr_err("error setting CP VPP\n"); + } else { + ret = regmap_update_bits(syscon_regmap, + INTCP_FLASHPROG_OFFSET, + CINTEGRATOR_FLMASK, + 0); + if (ret) + pr_err("error setting CP VPP\n"); + } +} + +/* + * Flash protection handling for the Versatiles and RealViews + */ + +#define VERSATILE_SYS_FLASH_OFFSET 0x4C + +static void versatile_flash_set_vpp(struct map_info *map, int on) +{ + int ret; + + ret = regmap_update_bits(syscon_regmap, VERSATILE_SYS_FLASH_OFFSET, + 0x01, !!on); + if (ret) + pr_err("error setting Versatile VPP\n"); +} + +int of_flash_probe_versatile(struct platform_device *pdev, + struct device_node *np, + struct map_info *map) +{ + struct device_node *sysnp; + const struct of_device_id *devid; + struct regmap *rmap; + static enum versatile_flashprot versatile_flashprot; + int ret; + + /* Not all flash chips use this protection line */ + if (!of_device_is_compatible(np, "arm,versatile-flash")) + return 0; + + /* For first chip probed, look up the syscon regmap */ + if (!syscon_regmap) { + sysnp = of_find_matching_node_and_match(NULL, + syscon_match, + &devid); + if (!sysnp) + return -ENODEV; + + versatile_flashprot = (uintptr_t)devid->data; + rmap = syscon_node_to_regmap(sysnp); + of_node_put(sysnp); + if (IS_ERR(rmap)) + return PTR_ERR(rmap); + + syscon_regmap = rmap; + } + + switch (versatile_flashprot) { + case INTEGRATOR_AP_FLASHPROT: + ret = ap_flash_init(pdev); + if (ret) + return ret; + map->set_vpp = ap_flash_set_vpp; + dev_info(&pdev->dev, "Integrator/AP flash protection\n"); + break; + case INTEGRATOR_CP_FLASHPROT: + map->set_vpp = cp_flash_set_vpp; + dev_info(&pdev->dev, "Integrator/CP flash protection\n"); + break; + case VERSATILE_FLASHPROT: + case REALVIEW_FLASHPROT: + map->set_vpp = versatile_flash_set_vpp; + dev_info(&pdev->dev, "versatile/realview flash protection\n"); + break; + default: + dev_info(&pdev->dev, "device marked as Versatile flash " + "but no system controller was found\n"); + break; + } + + return 0; +} diff --git a/drivers/mtd/maps/physmap-versatile.h b/drivers/mtd/maps/physmap-versatile.h new file mode 100644 index 0000000000..9cf39d031f --- /dev/null +++ b/drivers/mtd/maps/physmap-versatile.h @@ -0,0 +1,17 @@ +/* SPDX-License-Identifier: GPL-2.0 */ +#include <linux/of.h> +#include <linux/mtd/map.h> + +#ifdef CONFIG_MTD_PHYSMAP_VERSATILE +int of_flash_probe_versatile(struct platform_device *pdev, + struct device_node *np, + struct map_info *map); +#else +static inline +int of_flash_probe_versatile(struct platform_device *pdev, + struct device_node *np, + struct map_info *map) +{ + return 0; +} +#endif diff --git a/drivers/mtd/maps/pismo.c b/drivers/mtd/maps/pismo.c new file mode 100644 index 0000000000..ecf68922da --- /dev/null +++ b/drivers/mtd/maps/pismo.c @@ -0,0 +1,284 @@ +// SPDX-License-Identifier: GPL-2.0-only +/* + * PISMO memory driver - http://www.pismoworld.org/ + * + * For ARM Realview and Versatile platforms + */ +#include <linux/init.h> +#include <linux/module.h> +#include <linux/i2c.h> +#include <linux/slab.h> +#include <linux/platform_device.h> +#include <linux/spinlock.h> +#include <linux/mutex.h> +#include <linux/mtd/physmap.h> +#include <linux/mtd/plat-ram.h> +#include <linux/mtd/pismo.h> + +#define PISMO_NUM_CS 5 + +struct pismo_cs_block { + u8 type; + u8 width; + __le16 access; + __le32 size; + u32 reserved[2]; + char device[32]; +} __packed; + +struct pismo_eeprom { + struct pismo_cs_block cs[PISMO_NUM_CS]; + char board[15]; + u8 sum; +} __packed; + +struct pismo_mem { + phys_addr_t base; + u32 size; + u16 access; + u8 width; + u8 type; +}; + +struct pismo_data { + struct i2c_client *client; + void (*vpp)(void *, int); + void *vpp_data; + struct platform_device *dev[PISMO_NUM_CS]; +}; + +static void pismo_set_vpp(struct platform_device *pdev, int on) +{ + struct i2c_client *client = to_i2c_client(pdev->dev.parent); + struct pismo_data *pismo = i2c_get_clientdata(client); + + pismo->vpp(pismo->vpp_data, on); +} + +static unsigned int pismo_width_to_bytes(unsigned int width) +{ + width &= 15; + if (width > 2) + return 0; + return 1 << width; +} + +static int pismo_eeprom_read(struct i2c_client *client, void *buf, u8 addr, + size_t size) +{ + int ret; + struct i2c_msg msg[] = { + { + .addr = client->addr, + .len = sizeof(addr), + .buf = &addr, + }, { + .addr = client->addr, + .flags = I2C_M_RD, + .len = size, + .buf = buf, + }, + }; + + ret = i2c_transfer(client->adapter, msg, ARRAY_SIZE(msg)); + + return ret == ARRAY_SIZE(msg) ? size : -EIO; +} + +static int pismo_add_device(struct pismo_data *pismo, int i, + struct pismo_mem *region, const char *name, + void *pdata, size_t psize) +{ + struct platform_device *dev; + struct resource res = { }; + phys_addr_t base = region->base; + int ret; + + if (base == ~0) + return -ENXIO; + + res.start = base; + res.end = base + region->size - 1; + res.flags = IORESOURCE_MEM; + + dev = platform_device_alloc(name, i); + if (!dev) + return -ENOMEM; + dev->dev.parent = &pismo->client->dev; + + do { + ret = platform_device_add_resources(dev, &res, 1); + if (ret) + break; + + ret = platform_device_add_data(dev, pdata, psize); + if (ret) + break; + + ret = platform_device_add(dev); + if (ret) + break; + + pismo->dev[i] = dev; + return 0; + } while (0); + + platform_device_put(dev); + return ret; +} + +static int pismo_add_nor(struct pismo_data *pismo, int i, + struct pismo_mem *region) +{ + struct physmap_flash_data data = { + .width = region->width, + }; + + if (pismo->vpp) + data.set_vpp = pismo_set_vpp; + + return pismo_add_device(pismo, i, region, "physmap-flash", + &data, sizeof(data)); +} + +static int pismo_add_sram(struct pismo_data *pismo, int i, + struct pismo_mem *region) +{ + struct platdata_mtd_ram data = { + .bankwidth = region->width, + }; + + return pismo_add_device(pismo, i, region, "mtd-ram", + &data, sizeof(data)); +} + +static void pismo_add_one(struct pismo_data *pismo, int i, + const struct pismo_cs_block *cs, phys_addr_t base) +{ + struct device *dev = &pismo->client->dev; + struct pismo_mem region; + + region.base = base; + region.type = cs->type; + region.width = pismo_width_to_bytes(cs->width); + region.access = le16_to_cpu(cs->access); + region.size = le32_to_cpu(cs->size); + + if (region.width == 0) { + dev_err(dev, "cs%u: bad width: %02x, ignoring\n", i, cs->width); + return; + } + + /* + * FIXME: may need to the platforms memory controller here, but at + * the moment we assume that it has already been correctly setup. + * The memory controller can also tell us the base address as well. + */ + + dev_info(dev, "cs%u: %.32s: type %02x access %u00ps size %uK\n", + i, cs->device, region.type, region.access, region.size / 1024); + + switch (region.type) { + case 0: + break; + case 1: + /* static DOC */ + break; + case 2: + /* static NOR */ + pismo_add_nor(pismo, i, ®ion); + break; + case 3: + /* static RAM */ + pismo_add_sram(pismo, i, ®ion); + break; + } +} + +static void pismo_remove(struct i2c_client *client) +{ + struct pismo_data *pismo = i2c_get_clientdata(client); + int i; + + for (i = 0; i < ARRAY_SIZE(pismo->dev); i++) + platform_device_unregister(pismo->dev[i]); + + kfree(pismo); +} + +static int pismo_probe(struct i2c_client *client) +{ + struct pismo_pdata *pdata = client->dev.platform_data; + struct pismo_eeprom eeprom; + struct pismo_data *pismo; + int ret, i; + + if (!i2c_check_functionality(client->adapter, I2C_FUNC_I2C)) { + dev_err(&client->dev, "functionality mismatch\n"); + return -EIO; + } + + pismo = kzalloc(sizeof(*pismo), GFP_KERNEL); + if (!pismo) + return -ENOMEM; + + pismo->client = client; + if (pdata) { + pismo->vpp = pdata->set_vpp; + pismo->vpp_data = pdata->vpp_data; + } + i2c_set_clientdata(client, pismo); + + ret = pismo_eeprom_read(client, &eeprom, 0, sizeof(eeprom)); + if (ret < 0) { + dev_err(&client->dev, "error reading EEPROM: %d\n", ret); + goto exit_free; + } + + dev_info(&client->dev, "%.15s board found\n", eeprom.board); + + for (i = 0; i < ARRAY_SIZE(eeprom.cs); i++) + if (eeprom.cs[i].type != 0xff) + pismo_add_one(pismo, i, &eeprom.cs[i], + pdata->cs_addrs[i]); + + return 0; + + exit_free: + kfree(pismo); + return ret; +} + +static const struct i2c_device_id pismo_id[] = { + { "pismo" }, + { }, +}; +MODULE_DEVICE_TABLE(i2c, pismo_id); + +static struct i2c_driver pismo_driver = { + .driver = { + .name = "pismo", + }, + .probe = pismo_probe, + .remove = pismo_remove, + .id_table = pismo_id, +}; + +static int __init pismo_init(void) +{ + BUILD_BUG_ON(sizeof(struct pismo_cs_block) != 48); + BUILD_BUG_ON(sizeof(struct pismo_eeprom) != 256); + + return i2c_add_driver(&pismo_driver); +} +module_init(pismo_init); + +static void __exit pismo_exit(void) +{ + i2c_del_driver(&pismo_driver); +} +module_exit(pismo_exit); + +MODULE_AUTHOR("Russell King <linux@arm.linux.org.uk>"); +MODULE_DESCRIPTION("PISMO memory driver"); +MODULE_LICENSE("GPL"); diff --git a/drivers/mtd/maps/plat-ram.c b/drivers/mtd/maps/plat-ram.c new file mode 100644 index 0000000000..4c921dce73 --- /dev/null +++ b/drivers/mtd/maps/plat-ram.c @@ -0,0 +1,220 @@ +// SPDX-License-Identifier: GPL-2.0-or-later +/* drivers/mtd/maps/plat-ram.c + * + * (c) 2004-2005 Simtec Electronics + * http://www.simtec.co.uk/products/SWLINUX/ + * Ben Dooks <ben@simtec.co.uk> + * + * Generic platform device based RAM map +*/ + +#include <linux/module.h> +#include <linux/types.h> +#include <linux/kernel.h> +#include <linux/string.h> +#include <linux/ioport.h> +#include <linux/device.h> +#include <linux/slab.h> +#include <linux/platform_device.h> + +#include <linux/mtd/mtd.h> +#include <linux/mtd/map.h> +#include <linux/mtd/partitions.h> +#include <linux/mtd/plat-ram.h> + +#include <asm/io.h> + +/* private structure for each mtd platform ram device created */ + +struct platram_info { + struct device *dev; + struct mtd_info *mtd; + struct map_info map; + struct platdata_mtd_ram *pdata; +}; + +/* to_platram_info() + * + * device private data to struct platram_info conversion +*/ + +static inline struct platram_info *to_platram_info(struct platform_device *dev) +{ + return platform_get_drvdata(dev); +} + +/* platram_setrw + * + * call the platform device's set rw/ro control + * + * to = 0 => read-only + * = 1 => read-write +*/ + +static inline void platram_setrw(struct platram_info *info, int to) +{ + if (info->pdata == NULL) + return; + + if (info->pdata->set_rw != NULL) + (info->pdata->set_rw)(info->dev, to); +} + +/* platram_remove + * + * called to remove the device from the driver's control +*/ + +static int platram_remove(struct platform_device *pdev) +{ + struct platram_info *info = to_platram_info(pdev); + + dev_dbg(&pdev->dev, "removing device\n"); + + if (info == NULL) + return 0; + + if (info->mtd) { + mtd_device_unregister(info->mtd); + map_destroy(info->mtd); + } + + /* ensure ram is left read-only */ + + platram_setrw(info, PLATRAM_RO); + + kfree(info); + + return 0; +} + +/* platram_probe + * + * called from device drive system when a device matching our + * driver is found. +*/ + +static int platram_probe(struct platform_device *pdev) +{ + struct platdata_mtd_ram *pdata; + struct platram_info *info; + struct resource *res; + int err = 0; + + dev_dbg(&pdev->dev, "probe entered\n"); + + if (dev_get_platdata(&pdev->dev) == NULL) { + dev_err(&pdev->dev, "no platform data supplied\n"); + err = -ENOENT; + goto exit_error; + } + + pdata = dev_get_platdata(&pdev->dev); + + info = kzalloc(sizeof(*info), GFP_KERNEL); + if (info == NULL) { + err = -ENOMEM; + goto exit_error; + } + + platform_set_drvdata(pdev, info); + + info->dev = &pdev->dev; + info->pdata = pdata; + + /* get the resource for the memory mapping */ + info->map.virt = devm_platform_get_and_ioremap_resource(pdev, 0, &res); + if (IS_ERR(info->map.virt)) { + err = PTR_ERR(info->map.virt); + goto exit_free; + } + + dev_dbg(&pdev->dev, "got platform resource %p (0x%llx)\n", res, + (unsigned long long)res->start); + + /* setup map parameters */ + + info->map.phys = res->start; + info->map.size = resource_size(res); + info->map.name = pdata->mapname != NULL ? + (char *)pdata->mapname : (char *)pdev->name; + info->map.bankwidth = pdata->bankwidth; + + dev_dbg(&pdev->dev, "virt %p, %lu bytes\n", info->map.virt, info->map.size); + + simple_map_init(&info->map); + + dev_dbg(&pdev->dev, "initialised map, probing for mtd\n"); + + /* probe for the right mtd map driver + * supplied by the platform_data struct */ + + if (pdata->map_probes) { + const char * const *map_probes = pdata->map_probes; + + for ( ; !info->mtd && *map_probes; map_probes++) + info->mtd = do_map_probe(*map_probes , &info->map); + } + /* fallback to map_ram */ + else + info->mtd = do_map_probe("map_ram", &info->map); + + if (info->mtd == NULL) { + dev_err(&pdev->dev, "failed to probe for map_ram\n"); + err = -ENOMEM; + goto exit_free; + } + + info->mtd->dev.parent = &pdev->dev; + + platram_setrw(info, PLATRAM_RW); + + /* check to see if there are any available partitions, or whether + * to add this device whole */ + + err = mtd_device_parse_register(info->mtd, pdata->probes, NULL, + pdata->partitions, + pdata->nr_partitions); + if (err) { + dev_err(&pdev->dev, "failed to register mtd device\n"); + goto exit_free; + } + + dev_info(&pdev->dev, "registered mtd device\n"); + + if (pdata->nr_partitions) { + /* add the whole device. */ + err = mtd_device_register(info->mtd, NULL, 0); + if (err) { + dev_err(&pdev->dev, + "failed to register the entire device\n"); + goto exit_free; + } + } + + return 0; + + exit_free: + platram_remove(pdev); + exit_error: + return err; +} + +/* device driver info */ + +/* work with hotplug and coldplug */ +MODULE_ALIAS("platform:mtd-ram"); + +static struct platform_driver platram_driver = { + .probe = platram_probe, + .remove = platram_remove, + .driver = { + .name = "mtd-ram", + }, +}; + +module_platform_driver(platram_driver); + +MODULE_LICENSE("GPL"); +MODULE_AUTHOR("Ben Dooks <ben@simtec.co.uk>"); +MODULE_DESCRIPTION("MTD platform RAM map driver"); diff --git a/drivers/mtd/maps/pxa2xx-flash.c b/drivers/mtd/maps/pxa2xx-flash.c new file mode 100644 index 0000000000..62a5bf41a6 --- /dev/null +++ b/drivers/mtd/maps/pxa2xx-flash.c @@ -0,0 +1,140 @@ +// SPDX-License-Identifier: GPL-2.0-only +/* + * Map driver for Intel XScale PXA2xx platforms. + * + * Author: Nicolas Pitre + * Copyright: (C) 2001 MontaVista Software Inc. + */ + +#include <linux/module.h> +#include <linux/types.h> +#include <linux/slab.h> +#include <linux/kernel.h> +#include <linux/platform_device.h> +#include <linux/mtd/mtd.h> +#include <linux/mtd/map.h> +#include <linux/mtd/partitions.h> + +#include <asm/io.h> +#include <asm/mach/flash.h> + +#define CACHELINESIZE 32 + +static void pxa2xx_map_inval_cache(struct map_info *map, unsigned long from, + ssize_t len) +{ + unsigned long start = (unsigned long)map->cached + from; + unsigned long end = start + len; + + start &= ~(CACHELINESIZE - 1); + while (start < end) { + /* invalidate D cache line */ + asm volatile ("mcr p15, 0, %0, c7, c6, 1" : : "r" (start)); + start += CACHELINESIZE; + } +} + +struct pxa2xx_flash_info { + struct mtd_info *mtd; + struct map_info map; +}; + +static const char * const probes[] = { "RedBoot", "cmdlinepart", NULL }; + +static int pxa2xx_flash_probe(struct platform_device *pdev) +{ + struct flash_platform_data *flash = dev_get_platdata(&pdev->dev); + struct pxa2xx_flash_info *info; + struct resource *res; + + res = platform_get_resource(pdev, IORESOURCE_MEM, 0); + if (!res) + return -ENODEV; + + info = kzalloc(sizeof(struct pxa2xx_flash_info), GFP_KERNEL); + if (!info) + return -ENOMEM; + + info->map.name = flash->name; + info->map.bankwidth = flash->width; + info->map.phys = res->start; + info->map.size = resource_size(res); + + info->map.virt = ioremap(info->map.phys, info->map.size); + if (!info->map.virt) { + printk(KERN_WARNING "Failed to ioremap %s\n", + info->map.name); + kfree(info); + return -ENOMEM; + } + info->map.cached = ioremap_cache(info->map.phys, info->map.size); + if (!info->map.cached) + printk(KERN_WARNING "Failed to ioremap cached %s\n", + info->map.name); + info->map.inval_cache = pxa2xx_map_inval_cache; + simple_map_init(&info->map); + + printk(KERN_NOTICE + "Probing %s at physical address 0x%08lx" + " (%d-bit bankwidth)\n", + info->map.name, (unsigned long)info->map.phys, + info->map.bankwidth * 8); + + info->mtd = do_map_probe(flash->map_name, &info->map); + + if (!info->mtd) { + iounmap((void *)info->map.virt); + if (info->map.cached) + iounmap(info->map.cached); + kfree(info); + return -EIO; + } + info->mtd->dev.parent = &pdev->dev; + + mtd_device_parse_register(info->mtd, probes, NULL, flash->parts, + flash->nr_parts); + + platform_set_drvdata(pdev, info); + return 0; +} + +static int pxa2xx_flash_remove(struct platform_device *dev) +{ + struct pxa2xx_flash_info *info = platform_get_drvdata(dev); + + mtd_device_unregister(info->mtd); + + map_destroy(info->mtd); + iounmap(info->map.virt); + if (info->map.cached) + iounmap(info->map.cached); + kfree(info); + return 0; +} + +#ifdef CONFIG_PM +static void pxa2xx_flash_shutdown(struct platform_device *dev) +{ + struct pxa2xx_flash_info *info = platform_get_drvdata(dev); + + if (info && mtd_suspend(info->mtd) == 0) + mtd_resume(info->mtd); +} +#else +#define pxa2xx_flash_shutdown NULL +#endif + +static struct platform_driver pxa2xx_flash_driver = { + .driver = { + .name = "pxa2xx-flash", + }, + .probe = pxa2xx_flash_probe, + .remove = pxa2xx_flash_remove, + .shutdown = pxa2xx_flash_shutdown, +}; + +module_platform_driver(pxa2xx_flash_driver); + +MODULE_LICENSE("GPL"); +MODULE_AUTHOR("Nicolas Pitre <nico@fluxnic.net>"); +MODULE_DESCRIPTION("MTD map driver for Intel XScale PXA2xx"); diff --git a/drivers/mtd/maps/sa1100-flash.c b/drivers/mtd/maps/sa1100-flash.c new file mode 100644 index 0000000000..d3d4e987c1 --- /dev/null +++ b/drivers/mtd/maps/sa1100-flash.c @@ -0,0 +1,311 @@ +// SPDX-License-Identifier: GPL-2.0-only +/* + * Flash memory access on SA11x0 based devices + * + * (C) 2000 Nicolas Pitre <nico@fluxnic.net> + */ +#include <linux/module.h> +#include <linux/types.h> +#include <linux/ioport.h> +#include <linux/kernel.h> +#include <linux/init.h> +#include <linux/errno.h> +#include <linux/slab.h> +#include <linux/platform_device.h> +#include <linux/err.h> +#include <linux/io.h> + +#include <linux/mtd/mtd.h> +#include <linux/mtd/map.h> +#include <linux/mtd/partitions.h> +#include <linux/mtd/concat.h> + +#include <mach/hardware.h> +#include <linux/sizes.h> +#include <asm/mach/flash.h> + +struct sa_subdev_info { + char name[16]; + struct map_info map; + struct mtd_info *mtd; + struct flash_platform_data *plat; +}; + +struct sa_info { + struct mtd_info *mtd; + int num_subdev; + struct sa_subdev_info subdev[]; +}; + +static DEFINE_SPINLOCK(sa1100_vpp_lock); +static int sa1100_vpp_refcnt; +static void sa1100_set_vpp(struct map_info *map, int on) +{ + struct sa_subdev_info *subdev = container_of(map, struct sa_subdev_info, map); + unsigned long flags; + + spin_lock_irqsave(&sa1100_vpp_lock, flags); + if (on) { + if (++sa1100_vpp_refcnt == 1) /* first nested 'on' */ + subdev->plat->set_vpp(1); + } else { + if (--sa1100_vpp_refcnt == 0) /* last nested 'off' */ + subdev->plat->set_vpp(0); + } + spin_unlock_irqrestore(&sa1100_vpp_lock, flags); +} + +static void sa1100_destroy_subdev(struct sa_subdev_info *subdev) +{ + if (subdev->mtd) + map_destroy(subdev->mtd); + if (subdev->map.virt) + iounmap(subdev->map.virt); + release_mem_region(subdev->map.phys, subdev->map.size); +} + +static int sa1100_probe_subdev(struct sa_subdev_info *subdev, struct resource *res) +{ + unsigned long phys; + unsigned int size; + int ret; + + phys = res->start; + size = res->end - phys + 1; + + /* + * Retrieve the bankwidth from the MSC registers. + * We currently only implement CS0 and CS1 here. + */ + switch (phys) { + default: + printk(KERN_WARNING "SA1100 flash: unknown base address " + "0x%08lx, assuming CS0\n", phys); + fallthrough; + case SA1100_CS0_PHYS: + subdev->map.bankwidth = (MSC0 & MSC_RBW) ? 2 : 4; + break; + + case SA1100_CS1_PHYS: + subdev->map.bankwidth = ((MSC0 >> 16) & MSC_RBW) ? 2 : 4; + break; + } + + if (!request_mem_region(phys, size, subdev->name)) { + ret = -EBUSY; + goto out; + } + + if (subdev->plat->set_vpp) + subdev->map.set_vpp = sa1100_set_vpp; + + subdev->map.phys = phys; + subdev->map.size = size; + subdev->map.virt = ioremap(phys, size); + if (!subdev->map.virt) { + ret = -ENOMEM; + goto err; + } + + simple_map_init(&subdev->map); + + /* + * Now let's probe for the actual flash. Do it here since + * specific machine settings might have been set above. + */ + subdev->mtd = do_map_probe(subdev->plat->map_name, &subdev->map); + if (subdev->mtd == NULL) { + ret = -ENXIO; + goto err; + } + + printk(KERN_INFO "SA1100 flash: CFI device at 0x%08lx, %uMiB, %d-bit\n", + phys, (unsigned)(subdev->mtd->size >> 20), + subdev->map.bankwidth * 8); + + return 0; + + err: + sa1100_destroy_subdev(subdev); + out: + return ret; +} + +static void sa1100_destroy(struct sa_info *info, struct flash_platform_data *plat) +{ + int i; + + if (info->mtd) { + mtd_device_unregister(info->mtd); + if (info->mtd != info->subdev[0].mtd) + mtd_concat_destroy(info->mtd); + } + + for (i = info->num_subdev - 1; i >= 0; i--) + sa1100_destroy_subdev(&info->subdev[i]); + kfree(info); + + if (plat->exit) + plat->exit(); +} + +static struct sa_info *sa1100_setup_mtd(struct platform_device *pdev, + struct flash_platform_data *plat) +{ + struct sa_info *info; + int nr, size, i, ret = 0; + + /* + * Count number of devices. + */ + for (nr = 0; ; nr++) + if (!platform_get_resource(pdev, IORESOURCE_MEM, nr)) + break; + + if (nr == 0) { + ret = -ENODEV; + goto out; + } + + size = sizeof(struct sa_info) + sizeof(struct sa_subdev_info) * nr; + + /* + * Allocate the map_info structs in one go. + */ + info = kzalloc(size, GFP_KERNEL); + if (!info) { + ret = -ENOMEM; + goto out; + } + + if (plat->init) { + ret = plat->init(); + if (ret) + goto err; + } + + /* + * Claim and then map the memory regions. + */ + for (i = 0; i < nr; i++) { + struct sa_subdev_info *subdev = &info->subdev[i]; + struct resource *res; + + res = platform_get_resource(pdev, IORESOURCE_MEM, i); + if (!res) + break; + + subdev->map.name = subdev->name; + sprintf(subdev->name, "%s-%d", plat->name, i); + subdev->plat = plat; + + ret = sa1100_probe_subdev(subdev, res); + if (ret) + break; + } + + info->num_subdev = i; + + /* + * ENXIO is special. It means we didn't find a chip when we probed. + */ + if (ret != 0 && !(ret == -ENXIO && info->num_subdev > 0)) + goto err; + + /* + * If we found one device, don't bother with concat support. If + * we found multiple devices, use concat if we have it available, + * otherwise fail. Either way, it'll be called "sa1100". + */ + if (info->num_subdev == 1) { + strcpy(info->subdev[0].name, plat->name); + info->mtd = info->subdev[0].mtd; + ret = 0; + } else if (info->num_subdev > 1) { + struct mtd_info **cdev; + + cdev = kmalloc_array(nr, sizeof(*cdev), GFP_KERNEL); + if (!cdev) { + ret = -ENOMEM; + goto err; + } + + /* + * We detected multiple devices. Concatenate them together. + */ + for (i = 0; i < info->num_subdev; i++) + cdev[i] = info->subdev[i].mtd; + + info->mtd = mtd_concat_create(cdev, info->num_subdev, + plat->name); + kfree(cdev); + if (info->mtd == NULL) { + ret = -ENXIO; + goto err; + } + } + info->mtd->dev.parent = &pdev->dev; + + if (ret == 0) + return info; + + err: + sa1100_destroy(info, plat); + out: + return ERR_PTR(ret); +} + +static const char * const part_probes[] = { "cmdlinepart", "RedBoot", NULL }; + +static int sa1100_mtd_probe(struct platform_device *pdev) +{ + struct flash_platform_data *plat = dev_get_platdata(&pdev->dev); + struct sa_info *info; + int err; + + if (!plat) + return -ENODEV; + + info = sa1100_setup_mtd(pdev, plat); + if (IS_ERR(info)) { + err = PTR_ERR(info); + goto out; + } + + /* + * Partition selection stuff. + */ + mtd_device_parse_register(info->mtd, part_probes, NULL, plat->parts, + plat->nr_parts); + + platform_set_drvdata(pdev, info); + err = 0; + + out: + return err; +} + +static int sa1100_mtd_remove(struct platform_device *pdev) +{ + struct sa_info *info = platform_get_drvdata(pdev); + struct flash_platform_data *plat = dev_get_platdata(&pdev->dev); + + sa1100_destroy(info, plat); + + return 0; +} + +static struct platform_driver sa1100_mtd_driver = { + .probe = sa1100_mtd_probe, + .remove = sa1100_mtd_remove, + .driver = { + .name = "sa1100-mtd", + }, +}; + +module_platform_driver(sa1100_mtd_driver); + +MODULE_AUTHOR("Nicolas Pitre"); +MODULE_DESCRIPTION("SA1100 CFI map driver"); +MODULE_LICENSE("GPL"); +MODULE_ALIAS("platform:sa1100-mtd"); diff --git a/drivers/mtd/maps/sbc_gxx.c b/drivers/mtd/maps/sbc_gxx.c new file mode 100644 index 0000000000..9d48a261c2 --- /dev/null +++ b/drivers/mtd/maps/sbc_gxx.c @@ -0,0 +1,224 @@ +// SPDX-License-Identifier: GPL-2.0-or-later +/* sbc_gxx.c -- MTD map driver for Arcom Control Systems SBC-MediaGX, + SBC-GXm and SBC-GX1 series boards. + + Copyright (C) 2001 Arcom Control System Ltd + + +The SBC-MediaGX / SBC-GXx has up to 16 MiB of +Intel StrataFlash (28F320/28F640) in x8 mode. + +This driver uses the CFI probe and Intel Extended Command Set drivers. + +The flash is accessed as follows: + + 16 KiB memory window at 0xdc000-0xdffff + + Two IO address locations for paging + + 0x258 + bit 0-7: address bit 14-21 + 0x259 + bit 0-1: address bit 22-23 + bit 7: 0 - reset/powered down + 1 - device enabled + +The single flash device is divided into 3 partition which appear as +separate MTD devices. + +25/04/2001 AJL (Arcom) Modified signon strings and partition sizes + (to support bzImages up to 638KiB-ish) +*/ + +// Includes + +#include <linux/module.h> +#include <linux/ioport.h> +#include <linux/init.h> +#include <asm/io.h> + +#include <linux/mtd/mtd.h> +#include <linux/mtd/map.h> +#include <linux/mtd/partitions.h> + +// Defines + +// - Hardware specific + +#define WINDOW_START 0xdc000 + +/* Number of bits in offset. */ +#define WINDOW_SHIFT 14 +#define WINDOW_LENGTH (1 << WINDOW_SHIFT) + +/* The bits for the offset into the window. */ +#define WINDOW_MASK (WINDOW_LENGTH-1) +#define PAGE_IO 0x258 +#define PAGE_IO_SIZE 2 + +/* bit 7 of 0x259 must be 1 to enable device. */ +#define DEVICE_ENABLE 0x8000 + +// - Flash / Partition sizing + +#define MAX_SIZE_KiB 16384 +#define BOOT_PARTITION_SIZE_KiB 768 +#define DATA_PARTITION_SIZE_KiB 1280 +#define APP_PARTITION_SIZE_KiB 6144 + +// Globals + +static volatile int page_in_window = -1; // Current page in window. +static void __iomem *iomapadr; +static DEFINE_SPINLOCK(sbc_gxx_spin); + +/* partition_info gives details on the logical partitions that the split the + * single flash device into. If the size if zero we use up to the end of the + * device. */ +static const struct mtd_partition partition_info[] = { + { .name = "SBC-GXx flash boot partition", + .offset = 0, + .size = BOOT_PARTITION_SIZE_KiB*1024 }, + { .name = "SBC-GXx flash data partition", + .offset = BOOT_PARTITION_SIZE_KiB*1024, + .size = (DATA_PARTITION_SIZE_KiB)*1024 }, + { .name = "SBC-GXx flash application partition", + .offset = (BOOT_PARTITION_SIZE_KiB+DATA_PARTITION_SIZE_KiB)*1024 } +}; + +#define NUM_PARTITIONS 3 + +static inline void sbc_gxx_page(struct map_info *map, unsigned long ofs) +{ + unsigned long page = ofs >> WINDOW_SHIFT; + + if( page!=page_in_window ) { + outw( page | DEVICE_ENABLE, PAGE_IO ); + page_in_window = page; + } +} + + +static map_word sbc_gxx_read8(struct map_info *map, unsigned long ofs) +{ + map_word ret; + spin_lock(&sbc_gxx_spin); + sbc_gxx_page(map, ofs); + ret.x[0] = readb(iomapadr + (ofs & WINDOW_MASK)); + spin_unlock(&sbc_gxx_spin); + return ret; +} + +static void sbc_gxx_copy_from(struct map_info *map, void *to, unsigned long from, ssize_t len) +{ + while(len) { + unsigned long thislen = len; + if (len > (WINDOW_LENGTH - (from & WINDOW_MASK))) + thislen = WINDOW_LENGTH-(from & WINDOW_MASK); + + spin_lock(&sbc_gxx_spin); + sbc_gxx_page(map, from); + memcpy_fromio(to, iomapadr + (from & WINDOW_MASK), thislen); + spin_unlock(&sbc_gxx_spin); + to += thislen; + from += thislen; + len -= thislen; + } +} + +static void sbc_gxx_write8(struct map_info *map, map_word d, unsigned long adr) +{ + spin_lock(&sbc_gxx_spin); + sbc_gxx_page(map, adr); + writeb(d.x[0], iomapadr + (adr & WINDOW_MASK)); + spin_unlock(&sbc_gxx_spin); +} + +static void sbc_gxx_copy_to(struct map_info *map, unsigned long to, const void *from, ssize_t len) +{ + while(len) { + unsigned long thislen = len; + if (len > (WINDOW_LENGTH - (to & WINDOW_MASK))) + thislen = WINDOW_LENGTH-(to & WINDOW_MASK); + + spin_lock(&sbc_gxx_spin); + sbc_gxx_page(map, to); + memcpy_toio(iomapadr + (to & WINDOW_MASK), from, thislen); + spin_unlock(&sbc_gxx_spin); + to += thislen; + from += thislen; + len -= thislen; + } +} + +static struct map_info sbc_gxx_map = { + .name = "SBC-GXx flash", + .phys = NO_XIP, + .size = MAX_SIZE_KiB*1024, /* this must be set to a maximum possible amount + of flash so the cfi probe routines find all + the chips */ + .bankwidth = 1, + .read = sbc_gxx_read8, + .copy_from = sbc_gxx_copy_from, + .write = sbc_gxx_write8, + .copy_to = sbc_gxx_copy_to +}; + +/* MTD device for all of the flash. */ +static struct mtd_info *all_mtd; + +static void cleanup_sbc_gxx(void) +{ + if( all_mtd ) { + mtd_device_unregister(all_mtd); + map_destroy( all_mtd ); + } + + iounmap(iomapadr); + release_region(PAGE_IO,PAGE_IO_SIZE); +} + +static int __init init_sbc_gxx(void) +{ + iomapadr = ioremap(WINDOW_START, WINDOW_LENGTH); + if (!iomapadr) { + printk( KERN_ERR"%s: failed to ioremap memory region\n", + sbc_gxx_map.name ); + return -EIO; + } + + if (!request_region( PAGE_IO, PAGE_IO_SIZE, "SBC-GXx flash")) { + printk( KERN_ERR"%s: IO ports 0x%x-0x%x in use\n", + sbc_gxx_map.name, + PAGE_IO, PAGE_IO+PAGE_IO_SIZE-1 ); + iounmap(iomapadr); + return -EAGAIN; + } + + + printk( KERN_INFO"%s: IO:0x%x-0x%x MEM:0x%x-0x%x\n", + sbc_gxx_map.name, + PAGE_IO, PAGE_IO+PAGE_IO_SIZE-1, + WINDOW_START, WINDOW_START+WINDOW_LENGTH-1 ); + + /* Probe for chip. */ + all_mtd = do_map_probe( "cfi_probe", &sbc_gxx_map ); + if( !all_mtd ) { + cleanup_sbc_gxx(); + return -ENXIO; + } + + all_mtd->owner = THIS_MODULE; + + /* Create MTD devices for each partition. */ + mtd_device_register(all_mtd, partition_info, NUM_PARTITIONS); + + return 0; +} + +module_init(init_sbc_gxx); +module_exit(cleanup_sbc_gxx); + +MODULE_LICENSE("GPL"); +MODULE_AUTHOR("Arcom Control Systems Ltd."); +MODULE_DESCRIPTION("MTD map driver for SBC-GXm and SBC-GX1 series boards"); diff --git a/drivers/mtd/maps/sc520cdp.c b/drivers/mtd/maps/sc520cdp.c new file mode 100644 index 0000000000..8ef7aec634 --- /dev/null +++ b/drivers/mtd/maps/sc520cdp.c @@ -0,0 +1,294 @@ +// SPDX-License-Identifier: GPL-2.0-or-later +/* sc520cdp.c -- MTD map driver for AMD SC520 Customer Development Platform + * + * Copyright (C) 2001 Sysgo Real-Time Solutions GmbH + * + * The SC520CDP is an evaluation board for the Elan SC520 processor available + * from AMD. It has two banks of 32-bit Flash ROM, each 8 Megabytes in size, + * and up to 512 KiB of 8-bit DIL Flash ROM. + * For details see https://www.amd.com/products/epd/desiging/evalboards/18.elansc520/520_cdp_brief/index.html + */ + +#include <linux/module.h> +#include <linux/types.h> +#include <linux/kernel.h> +#include <linux/init.h> +#include <asm/io.h> +#include <linux/mtd/mtd.h> +#include <linux/mtd/map.h> +#include <linux/mtd/concat.h> + +/* +** The Embedded Systems BIOS decodes the first FLASH starting at +** 0x8400000. This is a *terrible* place for it because accessing +** the flash at this location causes the A22 address line to be high +** (that's what 0x8400000 binary's ought to be). But this is the highest +** order address line on the raw flash devices themselves!! +** This causes the top HALF of the flash to be accessed first. Beyond +** the physical limits of the flash, the flash chip aliases over (to +** 0x880000 which causes the bottom half to be accessed. This splits the +** flash into two and inverts it! If you then try to access this from another +** program that does NOT do this insanity, then you *will* access the +** first half of the flash, but not find what you expect there. That +** stuff is in the *second* half! Similarly, the address used by the +** BIOS for the second FLASH bank is also quite a bad choice. +** If REPROGRAM_PAR is defined below (the default), then this driver will +** choose more useful addresses for the FLASH banks by reprogramming the +** responsible PARxx registers in the SC520's MMCR region. This will +** cause the settings to be incompatible with the BIOS's settings, which +** shouldn't be a problem since you are running Linux, (i.e. the BIOS is +** not much use anyway). However, if you need to be compatible with +** the BIOS for some reason, just undefine REPROGRAM_PAR. +*/ +#define REPROGRAM_PAR + + + +#ifdef REPROGRAM_PAR + +/* These are the addresses we want.. */ +#define WINDOW_ADDR_0 0x08800000 +#define WINDOW_ADDR_1 0x09000000 +#define WINDOW_ADDR_2 0x09800000 + +/* .. and these are the addresses the BIOS gives us */ +#define WINDOW_ADDR_0_BIOS 0x08400000 +#define WINDOW_ADDR_1_BIOS 0x08c00000 +#define WINDOW_ADDR_2_BIOS 0x09400000 + +#else + +#define WINDOW_ADDR_0 0x08400000 +#define WINDOW_ADDR_1 0x08C00000 +#define WINDOW_ADDR_2 0x09400000 + +#endif + +#define WINDOW_SIZE_0 0x00800000 +#define WINDOW_SIZE_1 0x00800000 +#define WINDOW_SIZE_2 0x00080000 + + +static struct map_info sc520cdp_map[] = { + { + .name = "SC520CDP Flash Bank #0", + .size = WINDOW_SIZE_0, + .bankwidth = 4, + .phys = WINDOW_ADDR_0 + }, + { + .name = "SC520CDP Flash Bank #1", + .size = WINDOW_SIZE_1, + .bankwidth = 4, + .phys = WINDOW_ADDR_1 + }, + { + .name = "SC520CDP DIL Flash", + .size = WINDOW_SIZE_2, + .bankwidth = 1, + .phys = WINDOW_ADDR_2 + }, +}; + +#define NUM_FLASH_BANKS ARRAY_SIZE(sc520cdp_map) + +static struct mtd_info *mymtd[NUM_FLASH_BANKS]; +static struct mtd_info *merged_mtd; + +#ifdef REPROGRAM_PAR + +/* +** The SC520 MMCR (memory mapped control register) region resides +** at 0xFFFEF000. The 16 Programmable Address Region (PAR) registers +** are at offset 0x88 in the MMCR: +*/ +#define SC520_MMCR_BASE 0xFFFEF000 +#define SC520_MMCR_EXTENT 0x1000 +#define SC520_PAR(x) ((0x88/sizeof(unsigned long)) + (x)) +#define NUM_SC520_PAR 16 /* total number of PAR registers */ + +/* +** The highest three bits in a PAR register determine what target +** device is controlled by this PAR. Here, only ROMCS? and BOOTCS +** devices are of interest. +*/ +#define SC520_PAR_BOOTCS (0x4<<29) +#define SC520_PAR_ROMCS0 (0x5<<29) +#define SC520_PAR_ROMCS1 (0x6<<29) +#define SC520_PAR_TRGDEV (0x7<<29) + +/* +** Bits 28 thru 26 determine some attributes for the +** region controlled by the PAR. (We only use non-cacheable) +*/ +#define SC520_PAR_WRPROT (1<<26) /* write protected */ +#define SC520_PAR_NOCACHE (1<<27) /* non-cacheable */ +#define SC520_PAR_NOEXEC (1<<28) /* code execution denied */ + + +/* +** Bit 25 determines the granularity: 4K or 64K +*/ +#define SC520_PAR_PG_SIZ4 (0<<25) +#define SC520_PAR_PG_SIZ64 (1<<25) + +/* +** Build a value to be written into a PAR register. +** We only need ROM entries, 64K page size: +*/ +#define SC520_PAR_ENTRY(trgdev, address, size) \ + ((trgdev) | SC520_PAR_NOCACHE | SC520_PAR_PG_SIZ64 | \ + (address) >> 16 | (((size) >> 16) - 1) << 14) + +struct sc520_par_table +{ + unsigned long trgdev; + unsigned long new_par; + unsigned long default_address; +}; + +static const struct sc520_par_table par_table[NUM_FLASH_BANKS] = +{ + { /* Flash Bank #0: selected by ROMCS0 */ + SC520_PAR_ROMCS0, + SC520_PAR_ENTRY(SC520_PAR_ROMCS0, WINDOW_ADDR_0, WINDOW_SIZE_0), + WINDOW_ADDR_0_BIOS + }, + { /* Flash Bank #1: selected by ROMCS1 */ + SC520_PAR_ROMCS1, + SC520_PAR_ENTRY(SC520_PAR_ROMCS1, WINDOW_ADDR_1, WINDOW_SIZE_1), + WINDOW_ADDR_1_BIOS + }, + { /* DIL (BIOS) Flash: selected by BOOTCS */ + SC520_PAR_BOOTCS, + SC520_PAR_ENTRY(SC520_PAR_BOOTCS, WINDOW_ADDR_2, WINDOW_SIZE_2), + WINDOW_ADDR_2_BIOS + } +}; + + +static void sc520cdp_setup_par(void) +{ + unsigned long __iomem *mmcr; + unsigned long mmcr_val; + int i, j; + + /* map in SC520's MMCR area */ + mmcr = ioremap(SC520_MMCR_BASE, SC520_MMCR_EXTENT); + if(!mmcr) { /* ioremap failed: skip the PAR reprogramming */ + /* force physical address fields to BIOS defaults: */ + for(i = 0; i < NUM_FLASH_BANKS; i++) + sc520cdp_map[i].phys = par_table[i].default_address; + return; + } + + /* + ** Find the PARxx registers that are responsible for activating + ** ROMCS0, ROMCS1 and BOOTCS. Reprogram each of these with a + ** new value from the table. + */ + for(i = 0; i < NUM_FLASH_BANKS; i++) { /* for each par_table entry */ + for(j = 0; j < NUM_SC520_PAR; j++) { /* for each PAR register */ + mmcr_val = readl(&mmcr[SC520_PAR(j)]); + /* if target device field matches, reprogram the PAR */ + if((mmcr_val & SC520_PAR_TRGDEV) == par_table[i].trgdev) + { + writel(par_table[i].new_par, &mmcr[SC520_PAR(j)]); + break; + } + } + if(j == NUM_SC520_PAR) + { /* no matching PAR found: try default BIOS address */ + printk(KERN_NOTICE "Could not find PAR responsible for %s\n", + sc520cdp_map[i].name); + printk(KERN_NOTICE "Trying default address 0x%lx\n", + par_table[i].default_address); + sc520cdp_map[i].phys = par_table[i].default_address; + } + } + iounmap(mmcr); +} +#endif + + +static int __init init_sc520cdp(void) +{ + int i, j, devices_found = 0; + +#ifdef REPROGRAM_PAR + /* reprogram PAR registers so flash appears at the desired addresses */ + sc520cdp_setup_par(); +#endif + + for (i = 0; i < NUM_FLASH_BANKS; i++) { + printk(KERN_NOTICE "SC520 CDP flash device: 0x%Lx at 0x%Lx\n", + (unsigned long long)sc520cdp_map[i].size, + (unsigned long long)sc520cdp_map[i].phys); + + sc520cdp_map[i].virt = ioremap(sc520cdp_map[i].phys, sc520cdp_map[i].size); + + if (!sc520cdp_map[i].virt) { + printk("Failed to ioremap\n"); + for (j = 0; j < i; j++) { + if (mymtd[j]) { + map_destroy(mymtd[j]); + iounmap(sc520cdp_map[j].virt); + } + } + return -EIO; + } + + simple_map_init(&sc520cdp_map[i]); + + mymtd[i] = do_map_probe("cfi_probe", &sc520cdp_map[i]); + if(!mymtd[i]) + mymtd[i] = do_map_probe("jedec_probe", &sc520cdp_map[i]); + if(!mymtd[i]) + mymtd[i] = do_map_probe("map_rom", &sc520cdp_map[i]); + + if (mymtd[i]) { + mymtd[i]->owner = THIS_MODULE; + ++devices_found; + } + else { + iounmap(sc520cdp_map[i].virt); + } + } + if(devices_found >= 2) { + /* Combine the two flash banks into a single MTD device & register it: */ + merged_mtd = mtd_concat_create(mymtd, 2, "SC520CDP Flash Banks #0 and #1"); + if(merged_mtd) + mtd_device_register(merged_mtd, NULL, 0); + } + if(devices_found == 3) /* register the third (DIL-Flash) device */ + mtd_device_register(mymtd[2], NULL, 0); + return(devices_found ? 0 : -ENXIO); +} + +static void __exit cleanup_sc520cdp(void) +{ + int i; + + if (merged_mtd) { + mtd_device_unregister(merged_mtd); + mtd_concat_destroy(merged_mtd); + } + if (mymtd[2]) + mtd_device_unregister(mymtd[2]); + + for (i = 0; i < NUM_FLASH_BANKS; i++) { + if (mymtd[i]) + map_destroy(mymtd[i]); + if (sc520cdp_map[i].virt) { + iounmap(sc520cdp_map[i].virt); + sc520cdp_map[i].virt = NULL; + } + } +} + +module_init(init_sc520cdp); +module_exit(cleanup_sc520cdp); + +MODULE_LICENSE("GPL"); +MODULE_AUTHOR("Sysgo Real-Time Solutions GmbH"); +MODULE_DESCRIPTION("MTD map driver for AMD SC520 Customer Development Platform"); diff --git a/drivers/mtd/maps/scb2_flash.c b/drivers/mtd/maps/scb2_flash.c new file mode 100644 index 0000000000..57303f904b --- /dev/null +++ b/drivers/mtd/maps/scb2_flash.c @@ -0,0 +1,239 @@ +// SPDX-License-Identifier: GPL-2.0-only +/* + * MTD map driver for BIOS Flash on Intel SCB2 boards + * Copyright (C) 2002 Sun Microsystems, Inc. + * Tim Hockin <thockin@sun.com> + * + * A few notes on this MTD map: + * + * This was developed with a small number of SCB2 boards to test on. + * Hopefully, Intel has not introducted too many unaccounted variables in the + * making of this board. + * + * The BIOS marks its own memory region as 'reserved' in the e820 map. We + * try to request it here, but if it fails, we carry on anyway. + * + * This is how the chip is attached, so said the schematic: + * * a 4 MiB (32 Mib) 16 bit chip + * * a 1 MiB memory region + * * A20 and A21 pulled up + * * D8-D15 ignored + * What this means is that, while we are addressing bytes linearly, we are + * really addressing words, and discarding the other byte. This means that + * the chip MUST BE at least 2 MiB. This also means that every block is + * actually half as big as the chip reports. It also means that accesses of + * logical address 0 hit higher-address sections of the chip, not physical 0. + * One can only hope that these 4MiB x16 chips were a lot cheaper than 1MiB x8 + * chips. + * + * This driver assumes the chip is not write-protected by an external signal. + * As of the this writing, that is true, but may change, just to spite me. + * + * The actual BIOS layout has been mostly reverse engineered. Intel BIOS + * updates for this board include 10 related (*.bio - &.bi9) binary files and + * another separate (*.bbo) binary file. The 10 files are 64k of data + a + * small header. If the headers are stripped off, the 10 64k files can be + * concatenated into a 640k image. This is your BIOS image, proper. The + * separate .bbo file also has a small header. It is the 'Boot Block' + * recovery BIOS. Once the header is stripped, no further prep is needed. + * As best I can tell, the BIOS is arranged as such: + * offset 0x00000 to 0x4ffff (320k): unknown - SCSI BIOS, etc? + * offset 0x50000 to 0xeffff (640k): BIOS proper + * offset 0xf0000 ty 0xfffff (64k): Boot Block region + * + * Intel's BIOS update program flashes the BIOS and Boot Block in separate + * steps. Probably a wise thing to do. + */ + +#include <linux/module.h> +#include <linux/types.h> +#include <linux/kernel.h> +#include <asm/io.h> +#include <linux/mtd/mtd.h> +#include <linux/mtd/map.h> +#include <linux/mtd/cfi.h> +#include <linux/pci.h> +#include <linux/pci_ids.h> + +#define MODNAME "scb2_flash" +#define SCB2_ADDR 0xfff00000 +#define SCB2_WINDOW 0x00100000 + + +static void __iomem *scb2_ioaddr; +static struct mtd_info *scb2_mtd; +static struct map_info scb2_map = { + .name = "SCB2 BIOS Flash", + .size = 0, + .bankwidth = 1, +}; +static int region_fail; + +static int scb2_fixup_mtd(struct mtd_info *mtd) +{ + int i; + int done = 0; + struct map_info *map = mtd->priv; + struct cfi_private *cfi = map->fldrv_priv; + + /* barf if this doesn't look right */ + if (cfi->cfiq->InterfaceDesc != CFI_INTERFACE_X16_ASYNC) { + printk(KERN_ERR MODNAME ": unsupported InterfaceDesc: %#x\n", + cfi->cfiq->InterfaceDesc); + return -1; + } + + /* I wasn't here. I didn't see. dwmw2. */ + + /* the chip is sometimes bigger than the map - what a waste */ + mtd->size = map->size; + + /* + * We only REALLY get half the chip, due to the way it is + * wired up - D8-D15 are tossed away. We read linear bytes, + * but in reality we are getting 1/2 of each 16-bit read, + * which LOOKS linear to us. Because CFI code accounts for + * things like lock/unlock/erase by eraseregions, we need to + * fudge them to reflect this. Erases go like this: + * * send an erase to an address + * * the chip samples the address and erases the block + * * add the block erasesize to the address and repeat + * -- the problem is that addresses are 16-bit addressable + * -- we end up erasing every-other block + */ + mtd->erasesize /= 2; + for (i = 0; i < mtd->numeraseregions; i++) { + struct mtd_erase_region_info *region = &mtd->eraseregions[i]; + region->erasesize /= 2; + } + + /* + * If the chip is bigger than the map, it is wired with the high + * address lines pulled up. This makes us access the top portion of + * the chip, so all our erase-region info is wrong. Start cutting from + * the bottom. + */ + for (i = 0; !done && i < mtd->numeraseregions; i++) { + struct mtd_erase_region_info *region = &mtd->eraseregions[i]; + + if (region->numblocks * region->erasesize > mtd->size) { + region->numblocks = ((unsigned long)mtd->size / + region->erasesize); + done = 1; + } else { + region->numblocks = 0; + } + region->offset = 0; + } + + return 0; +} + +/* CSB5's 'Function Control Register' has bits for decoding @ >= 0xffc00000 */ +#define CSB5_FCR 0x41 +#define CSB5_FCR_DECODE_ALL 0x0e +static int scb2_flash_probe(struct pci_dev *dev, + const struct pci_device_id *ent) +{ + u8 reg; + + /* enable decoding of the flash region in the south bridge */ + pci_read_config_byte(dev, CSB5_FCR, ®); + pci_write_config_byte(dev, CSB5_FCR, reg | CSB5_FCR_DECODE_ALL); + + if (!request_mem_region(SCB2_ADDR, SCB2_WINDOW, scb2_map.name)) { + /* + * The BIOS seems to mark the flash region as 'reserved' + * in the e820 map. Warn and go about our business. + */ + printk(KERN_WARNING MODNAME + ": warning - can't reserve rom window, continuing\n"); + region_fail = 1; + } + + /* remap the IO window (w/o caching) */ + scb2_ioaddr = ioremap(SCB2_ADDR, SCB2_WINDOW); + if (!scb2_ioaddr) { + printk(KERN_ERR MODNAME ": Failed to ioremap window!\n"); + if (!region_fail) + release_mem_region(SCB2_ADDR, SCB2_WINDOW); + return -ENOMEM; + } + + scb2_map.phys = SCB2_ADDR; + scb2_map.virt = scb2_ioaddr; + scb2_map.size = SCB2_WINDOW; + + simple_map_init(&scb2_map); + + /* try to find a chip */ + scb2_mtd = do_map_probe("cfi_probe", &scb2_map); + + if (!scb2_mtd) { + printk(KERN_ERR MODNAME ": flash probe failed!\n"); + iounmap(scb2_ioaddr); + if (!region_fail) + release_mem_region(SCB2_ADDR, SCB2_WINDOW); + return -ENODEV; + } + + scb2_mtd->owner = THIS_MODULE; + if (scb2_fixup_mtd(scb2_mtd) < 0) { + mtd_device_unregister(scb2_mtd); + map_destroy(scb2_mtd); + iounmap(scb2_ioaddr); + if (!region_fail) + release_mem_region(SCB2_ADDR, SCB2_WINDOW); + return -ENODEV; + } + + printk(KERN_NOTICE MODNAME ": chip size 0x%llx at offset 0x%llx\n", + (unsigned long long)scb2_mtd->size, + (unsigned long long)(SCB2_WINDOW - scb2_mtd->size)); + + mtd_device_register(scb2_mtd, NULL, 0); + + return 0; +} + +static void scb2_flash_remove(struct pci_dev *dev) +{ + if (!scb2_mtd) + return; + + /* disable flash writes */ + mtd_lock(scb2_mtd, 0, scb2_mtd->size); + + mtd_device_unregister(scb2_mtd); + map_destroy(scb2_mtd); + + iounmap(scb2_ioaddr); + scb2_ioaddr = NULL; + + if (!region_fail) + release_mem_region(SCB2_ADDR, SCB2_WINDOW); +} + +static struct pci_device_id scb2_flash_pci_ids[] = { + { + .vendor = PCI_VENDOR_ID_SERVERWORKS, + .device = PCI_DEVICE_ID_SERVERWORKS_CSB5, + .subvendor = PCI_ANY_ID, + .subdevice = PCI_ANY_ID + }, + { 0, } +}; + +static struct pci_driver scb2_flash_driver = { + .name = "Intel SCB2 BIOS Flash", + .id_table = scb2_flash_pci_ids, + .probe = scb2_flash_probe, + .remove = scb2_flash_remove, +}; + +module_pci_driver(scb2_flash_driver); + +MODULE_LICENSE("GPL"); +MODULE_AUTHOR("Tim Hockin <thockin@sun.com>"); +MODULE_DESCRIPTION("MTD map driver for Intel SCB2 BIOS Flash"); +MODULE_DEVICE_TABLE(pci, scb2_flash_pci_ids); diff --git a/drivers/mtd/maps/scx200_docflash.c b/drivers/mtd/maps/scx200_docflash.c new file mode 100644 index 0000000000..8462662b71 --- /dev/null +++ b/drivers/mtd/maps/scx200_docflash.c @@ -0,0 +1,219 @@ +// SPDX-License-Identifier: GPL-2.0-only +/* linux/drivers/mtd/maps/scx200_docflash.c + + Copyright (c) 2001,2002 Christer Weinigel <wingel@nano-system.com> + + National Semiconductor SCx200 flash mapped with DOCCS +*/ + +#include <linux/module.h> +#include <linux/types.h> +#include <linux/kernel.h> +#include <linux/init.h> +#include <asm/io.h> +#include <linux/mtd/mtd.h> +#include <linux/mtd/map.h> +#include <linux/mtd/partitions.h> + +#include <linux/pci.h> +#include <linux/scx200.h> + +#define NAME "scx200_docflash" + +MODULE_AUTHOR("Christer Weinigel <wingel@hack.org>"); +MODULE_DESCRIPTION("NatSemi SCx200 DOCCS Flash Driver"); +MODULE_LICENSE("GPL"); + +static int probe = 0; /* Don't autoprobe */ +static unsigned size = 0x1000000; /* 16 MiB the whole ISA address space */ +static unsigned width = 8; /* Default to 8 bits wide */ +static char *flashtype = "cfi_probe"; + +module_param(probe, int, 0); +MODULE_PARM_DESC(probe, "Probe for a BIOS mapping"); +module_param(size, int, 0); +MODULE_PARM_DESC(size, "Size of the flash mapping"); +module_param(width, int, 0); +MODULE_PARM_DESC(width, "Data width of the flash mapping (8/16)"); +module_param(flashtype, charp, 0); +MODULE_PARM_DESC(flashtype, "Type of MTD probe to do"); + +static struct resource docmem = { + .flags = IORESOURCE_MEM, + .name = "NatSemi SCx200 DOCCS Flash", +}; + +static struct mtd_info *mymtd; + +static struct mtd_partition partition_info[] = { + { + .name = "DOCCS Boot kernel", + .offset = 0, + .size = 0xc0000 + }, + { + .name = "DOCCS Low BIOS", + .offset = 0xc0000, + .size = 0x40000 + }, + { + .name = "DOCCS File system", + .offset = 0x100000, + .size = ~0 /* calculate from flash size */ + }, + { + .name = "DOCCS High BIOS", + .offset = ~0, /* calculate from flash size */ + .size = 0x80000 + }, +}; +#define NUM_PARTITIONS ARRAY_SIZE(partition_info) + +static struct map_info scx200_docflash_map = { + .name = "NatSemi SCx200 DOCCS Flash", +}; + +static int __init init_scx200_docflash(void) +{ + unsigned u; + unsigned base; + unsigned ctrl; + unsigned pmr; + struct pci_dev *bridge; + + printk(KERN_DEBUG NAME ": NatSemi SCx200 DOCCS Flash Driver\n"); + + if ((bridge = pci_get_device(PCI_VENDOR_ID_NS, + PCI_DEVICE_ID_NS_SCx200_BRIDGE, + NULL)) == NULL) + return -ENODEV; + + /* check that we have found the configuration block */ + if (!scx200_cb_present()) { + pci_dev_put(bridge); + return -ENODEV; + } + + if (probe) { + /* Try to use the present flash mapping if any */ + pci_read_config_dword(bridge, SCx200_DOCCS_BASE, &base); + pci_read_config_dword(bridge, SCx200_DOCCS_CTRL, &ctrl); + pci_dev_put(bridge); + + pmr = inl(scx200_cb_base + SCx200_PMR); + + if (base == 0 + || (ctrl & 0x07000000) != 0x07000000 + || (ctrl & 0x0007ffff) == 0) + return -ENODEV; + + size = ((ctrl&0x1fff)<<13) + (1<<13); + + for (u = size; u > 1; u >>= 1) + ; + if (u != 1) + return -ENODEV; + + if (pmr & (1<<6)) + width = 16; + else + width = 8; + + docmem.start = base; + docmem.end = base + size; + + if (request_resource(&iomem_resource, &docmem)) { + printk(KERN_ERR NAME ": unable to allocate memory for flash mapping\n"); + return -ENOMEM; + } + } else { + pci_dev_put(bridge); + for (u = size; u > 1; u >>= 1) + ; + if (u != 1) { + printk(KERN_ERR NAME ": invalid size for flash mapping\n"); + return -EINVAL; + } + + if (width != 8 && width != 16) { + printk(KERN_ERR NAME ": invalid bus width for flash mapping\n"); + return -EINVAL; + } + + if (allocate_resource(&iomem_resource, &docmem, + size, + 0xc0000000, 0xffffffff, + size, NULL, NULL)) { + printk(KERN_ERR NAME ": unable to allocate memory for flash mapping\n"); + return -ENOMEM; + } + + ctrl = 0x07000000 | ((size-1) >> 13); + + printk(KERN_INFO "DOCCS BASE=0x%08lx, CTRL=0x%08lx\n", (long)docmem.start, (long)ctrl); + + pci_write_config_dword(bridge, SCx200_DOCCS_BASE, docmem.start); + pci_write_config_dword(bridge, SCx200_DOCCS_CTRL, ctrl); + pmr = inl(scx200_cb_base + SCx200_PMR); + + if (width == 8) { + pmr &= ~(1<<6); + } else { + pmr |= (1<<6); + } + outl(pmr, scx200_cb_base + SCx200_PMR); + } + + printk(KERN_INFO NAME ": DOCCS mapped at %pR, width %d\n", + &docmem, width); + + scx200_docflash_map.size = size; + if (width == 8) + scx200_docflash_map.bankwidth = 1; + else + scx200_docflash_map.bankwidth = 2; + + simple_map_init(&scx200_docflash_map); + + scx200_docflash_map.phys = docmem.start; + scx200_docflash_map.virt = ioremap(docmem.start, scx200_docflash_map.size); + if (!scx200_docflash_map.virt) { + printk(KERN_ERR NAME ": failed to ioremap the flash\n"); + release_resource(&docmem); + return -EIO; + } + + mymtd = do_map_probe(flashtype, &scx200_docflash_map); + if (!mymtd) { + printk(KERN_ERR NAME ": unable to detect flash\n"); + iounmap(scx200_docflash_map.virt); + release_resource(&docmem); + return -ENXIO; + } + + if (size < mymtd->size) + printk(KERN_WARNING NAME ": warning, flash mapping is smaller than flash size\n"); + + mymtd->owner = THIS_MODULE; + + partition_info[3].offset = mymtd->size-partition_info[3].size; + partition_info[2].size = partition_info[3].offset-partition_info[2].offset; + mtd_device_register(mymtd, partition_info, NUM_PARTITIONS); + + return 0; +} + +static void __exit cleanup_scx200_docflash(void) +{ + if (mymtd) { + mtd_device_unregister(mymtd); + map_destroy(mymtd); + } + if (scx200_docflash_map.virt) { + iounmap(scx200_docflash_map.virt); + release_resource(&docmem); + } +} + +module_init(init_scx200_docflash); +module_exit(cleanup_scx200_docflash); diff --git a/drivers/mtd/maps/solutionengine.c b/drivers/mtd/maps/solutionengine.c new file mode 100644 index 0000000000..c07f21b204 --- /dev/null +++ b/drivers/mtd/maps/solutionengine.c @@ -0,0 +1,95 @@ +/* + * Flash and EPROM on Hitachi Solution Engine and similar boards. + * + * (C) 2001 Red Hat, Inc. + * + * GPL'd + */ + +#include <linux/module.h> +#include <linux/types.h> +#include <linux/kernel.h> +#include <linux/init.h> +#include <asm/io.h> +#include <linux/mtd/mtd.h> +#include <linux/mtd/map.h> +#include <linux/mtd/partitions.h> +#include <linux/errno.h> + +static struct mtd_info *flash_mtd; +static struct mtd_info *eprom_mtd; + +struct map_info soleng_eprom_map = { + .name = "Solution Engine EPROM", + .size = 0x400000, + .bankwidth = 4, +}; + +struct map_info soleng_flash_map = { + .name = "Solution Engine FLASH", + .size = 0x400000, + .bankwidth = 4, +}; + +static const char * const probes[] = { "RedBoot", "cmdlinepart", NULL }; + +static int __init init_soleng_maps(void) +{ + /* First probe at offset 0 */ + soleng_flash_map.phys = 0; + soleng_flash_map.virt = (void __iomem *)P2SEGADDR(0); + soleng_eprom_map.phys = 0x01000000; + soleng_eprom_map.virt = (void __iomem *)P1SEGADDR(0x01000000); + simple_map_init(&soleng_eprom_map); + simple_map_init(&soleng_flash_map); + + printk(KERN_NOTICE "Probing for flash chips at 0x00000000:\n"); + flash_mtd = do_map_probe("cfi_probe", &soleng_flash_map); + if (!flash_mtd) { + /* Not there. Try swapping */ + printk(KERN_NOTICE "Probing for flash chips at 0x01000000:\n"); + soleng_flash_map.phys = 0x01000000; + soleng_flash_map.virt = P2SEGADDR(0x01000000); + soleng_eprom_map.phys = 0; + soleng_eprom_map.virt = P1SEGADDR(0); + flash_mtd = do_map_probe("cfi_probe", &soleng_flash_map); + if (!flash_mtd) { + /* Eep. */ + printk(KERN_NOTICE "Flash chips not detected at either possible location.\n"); + return -ENXIO; + } + } + printk(KERN_NOTICE "Solution Engine: Flash at 0x%pap, EPROM at 0x%pap\n", + &soleng_flash_map.phys, + &soleng_eprom_map.phys); + flash_mtd->owner = THIS_MODULE; + + eprom_mtd = do_map_probe("map_rom", &soleng_eprom_map); + if (eprom_mtd) { + eprom_mtd->owner = THIS_MODULE; + mtd_device_register(eprom_mtd, NULL, 0); + } + + mtd_device_parse_register(flash_mtd, probes, NULL, NULL, 0); + + return 0; +} + +static void __exit cleanup_soleng_maps(void) +{ + if (eprom_mtd) { + mtd_device_unregister(eprom_mtd); + map_destroy(eprom_mtd); + } + + mtd_device_unregister(flash_mtd); + map_destroy(flash_mtd); +} + +module_init(init_soleng_maps); +module_exit(cleanup_soleng_maps); + +MODULE_LICENSE("GPL"); +MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>"); +MODULE_DESCRIPTION("MTD map driver for Hitachi SolutionEngine (and similar) boards"); + diff --git a/drivers/mtd/maps/sun_uflash.c b/drivers/mtd/maps/sun_uflash.c new file mode 100644 index 0000000000..2bfdf1b7e1 --- /dev/null +++ b/drivers/mtd/maps/sun_uflash.c @@ -0,0 +1,157 @@ +// SPDX-License-Identifier: GPL-2.0-only +/* sun_uflash.c - Driver for user-programmable flash on + * Sun Microsystems SME boardsets. + * + * This driver does NOT provide access to the OBP-flash for + * safety reasons-- use <linux>/drivers/sbus/char/flash.c instead. + * + * Copyright (c) 2001 Eric Brower (ebrower@usa.net) + */ + +#include <linux/kernel.h> +#include <linux/module.h> +#include <linux/fs.h> +#include <linux/errno.h> +#include <linux/ioport.h> +#include <linux/of.h> +#include <linux/platform_device.h> +#include <linux/slab.h> +#include <asm/prom.h> +#include <linux/uaccess.h> +#include <asm/io.h> + +#include <linux/mtd/mtd.h> +#include <linux/mtd/map.h> + +#define UFLASH_OBPNAME "flashprom" +#define DRIVER_NAME "sun_uflash" +#define PFX DRIVER_NAME ": " + +#define UFLASH_WINDOW_SIZE 0x200000 +#define UFLASH_BUSWIDTH 1 /* EBus is 8-bit */ + +MODULE_AUTHOR("Eric Brower <ebrower@usa.net>"); +MODULE_DESCRIPTION("User-programmable flash device on Sun Microsystems boardsets"); +MODULE_LICENSE("GPL"); +MODULE_VERSION("2.1"); + +struct uflash_dev { + const char *name; /* device name */ + struct map_info map; /* mtd map info */ + struct mtd_info *mtd; /* mtd info */ +}; + +struct map_info uflash_map_templ = { + .name = "SUNW,???-????", + .size = UFLASH_WINDOW_SIZE, + .bankwidth = UFLASH_BUSWIDTH, +}; + +int uflash_devinit(struct platform_device *op, struct device_node *dp) +{ + struct uflash_dev *up; + + if (op->resource[1].flags) { + /* Non-CFI userflash device-- once I find one we + * can work on supporting it. + */ + printk(KERN_ERR PFX "Unsupported device at %pOF, 0x%llx\n", + dp, (unsigned long long)op->resource[0].start); + + return -ENODEV; + } + + up = kzalloc(sizeof(struct uflash_dev), GFP_KERNEL); + if (!up) + return -ENOMEM; + + /* copy defaults and tweak parameters */ + memcpy(&up->map, &uflash_map_templ, sizeof(uflash_map_templ)); + + up->map.size = resource_size(&op->resource[0]); + + up->name = of_get_property(dp, "model", NULL); + if (up->name && 0 < strlen(up->name)) + up->map.name = up->name; + + up->map.phys = op->resource[0].start; + + up->map.virt = of_ioremap(&op->resource[0], 0, up->map.size, + DRIVER_NAME); + if (!up->map.virt) { + printk(KERN_ERR PFX "Failed to map device.\n"); + kfree(up); + + return -EINVAL; + } + + simple_map_init(&up->map); + + /* MTD registration */ + up->mtd = do_map_probe("cfi_probe", &up->map); + if (!up->mtd) { + of_iounmap(&op->resource[0], up->map.virt, up->map.size); + kfree(up); + + return -ENXIO; + } + + up->mtd->owner = THIS_MODULE; + + mtd_device_register(up->mtd, NULL, 0); + + dev_set_drvdata(&op->dev, up); + + return 0; +} + +static int uflash_probe(struct platform_device *op) +{ + struct device_node *dp = op->dev.of_node; + + /* Flashprom must have the "user" property in order to + * be used by this driver. + */ + if (!of_property_read_bool(dp, "user")) + return -ENODEV; + + return uflash_devinit(op, dp); +} + +static int uflash_remove(struct platform_device *op) +{ + struct uflash_dev *up = dev_get_drvdata(&op->dev); + + if (up->mtd) { + mtd_device_unregister(up->mtd); + map_destroy(up->mtd); + } + if (up->map.virt) { + of_iounmap(&op->resource[0], up->map.virt, up->map.size); + up->map.virt = NULL; + } + + kfree(up); + + return 0; +} + +static const struct of_device_id uflash_match[] = { + { + .name = UFLASH_OBPNAME, + }, + {}, +}; + +MODULE_DEVICE_TABLE(of, uflash_match); + +static struct platform_driver uflash_driver = { + .driver = { + .name = DRIVER_NAME, + .of_match_table = uflash_match, + }, + .probe = uflash_probe, + .remove = uflash_remove, +}; + +module_platform_driver(uflash_driver); diff --git a/drivers/mtd/maps/ts5500_flash.c b/drivers/mtd/maps/ts5500_flash.c new file mode 100644 index 0000000000..70d6e865f5 --- /dev/null +++ b/drivers/mtd/maps/ts5500_flash.c @@ -0,0 +1,108 @@ +// SPDX-License-Identifier: GPL-2.0-or-later +/* + * ts5500_flash.c -- MTD map driver for Technology Systems TS-5500 board + * + * Copyright (C) 2004 Sean Young <sean@mess.org> + * + * Note: + * - In order for detection to work, jumper 3 must be set. + * - Drive A and B use the resident flash disk (RFD) flash translation layer. + * - If you have created your own jffs file system and the bios overwrites + * it during boot, try disabling Drive A: and B: in the boot order. + */ + +#include <linux/init.h> +#include <linux/module.h> +#include <linux/kernel.h> +#include <linux/mtd/map.h> +#include <linux/mtd/mtd.h> +#include <linux/mtd/partitions.h> +#include <linux/types.h> + + +#define WINDOW_ADDR 0x09400000 +#define WINDOW_SIZE 0x00200000 + +static struct map_info ts5500_map = { + .name = "TS-5500 Flash", + .size = WINDOW_SIZE, + .bankwidth = 1, + .phys = WINDOW_ADDR +}; + +static const struct mtd_partition ts5500_partitions[] = { + { + .name = "Drive A", + .offset = 0, + .size = 0x0e0000 + }, + { + .name = "BIOS", + .offset = 0x0e0000, + .size = 0x020000, + }, + { + .name = "Drive B", + .offset = 0x100000, + .size = 0x100000 + } +}; + +#define NUM_PARTITIONS ARRAY_SIZE(ts5500_partitions) + +static struct mtd_info *mymtd; + +static int __init init_ts5500_map(void) +{ + int rc = 0; + + ts5500_map.virt = ioremap(ts5500_map.phys, ts5500_map.size); + + if (!ts5500_map.virt) { + printk(KERN_ERR "Failed to ioremap\n"); + rc = -EIO; + goto err2; + } + + simple_map_init(&ts5500_map); + + mymtd = do_map_probe("jedec_probe", &ts5500_map); + if (!mymtd) + mymtd = do_map_probe("map_rom", &ts5500_map); + + if (!mymtd) { + rc = -ENXIO; + goto err1; + } + + mymtd->owner = THIS_MODULE; + mtd_device_register(mymtd, ts5500_partitions, NUM_PARTITIONS); + + return 0; + +err1: + iounmap(ts5500_map.virt); +err2: + return rc; +} + +static void __exit cleanup_ts5500_map(void) +{ + if (mymtd) { + mtd_device_unregister(mymtd); + map_destroy(mymtd); + } + + if (ts5500_map.virt) { + iounmap(ts5500_map.virt); + ts5500_map.virt = NULL; + } +} + +module_init(init_ts5500_map); +module_exit(cleanup_ts5500_map); + +MODULE_LICENSE("GPL"); +MODULE_AUTHOR("Sean Young <sean@mess.org>"); +MODULE_DESCRIPTION("MTD map driver for Technology Systems TS-5500 board"); + diff --git a/drivers/mtd/maps/tsunami_flash.c b/drivers/mtd/maps/tsunami_flash.c new file mode 100644 index 0000000000..9fc1f727aa --- /dev/null +++ b/drivers/mtd/maps/tsunami_flash.c @@ -0,0 +1,109 @@ +// SPDX-License-Identifier: GPL-2.0 +/* + * tsunami_flash.c + * + * flash chip on alpha ds10... + */ +#include <asm/io.h> +#include <asm/core_tsunami.h> +#include <linux/init.h> +#include <linux/mtd/map.h> +#include <linux/mtd/mtd.h> + +#define FLASH_ENABLE_PORT 0x00C00001 +#define FLASH_ENABLE_BYTE 0x01 +#define FLASH_DISABLE_BYTE 0x00 + +#define MAX_TIG_FLASH_SIZE (12*1024*1024) +static inline map_word tsunami_flash_read8(struct map_info *map, unsigned long offset) +{ + map_word val; + val.x[0] = tsunami_tig_readb(offset); + return val; +} + +static void tsunami_flash_write8(struct map_info *map, map_word value, unsigned long offset) +{ + tsunami_tig_writeb(value.x[0], offset); +} + +static void tsunami_flash_copy_from( + struct map_info *map, void *addr, unsigned long offset, ssize_t len) +{ + unsigned char *dest; + dest = addr; + while(len && (offset < MAX_TIG_FLASH_SIZE)) { + *dest = tsunami_tig_readb(offset); + offset++; + dest++; + len--; + } +} + +static void tsunami_flash_copy_to( + struct map_info *map, unsigned long offset, + const void *addr, ssize_t len) +{ + const unsigned char *src; + src = addr; + while(len && (offset < MAX_TIG_FLASH_SIZE)) { + tsunami_tig_writeb(*src, offset); + offset++; + src++; + len--; + } +} + +/* + * Deliberately don't provide operations wider than 8 bits. I don't + * have then and it scares me to think how you could mess up if + * you tried to use them. Buswidth is correctly so I'm safe. + */ +static struct map_info tsunami_flash_map = { + .name = "flash chip on the Tsunami TIG bus", + .size = MAX_TIG_FLASH_SIZE, + .phys = NO_XIP, + .bankwidth = 1, + .read = tsunami_flash_read8, + .copy_from = tsunami_flash_copy_from, + .write = tsunami_flash_write8, + .copy_to = tsunami_flash_copy_to, +}; + +static struct mtd_info *tsunami_flash_mtd; + +static void __exit cleanup_tsunami_flash(void) +{ + struct mtd_info *mtd; + mtd = tsunami_flash_mtd; + if (mtd) { + mtd_device_unregister(mtd); + map_destroy(mtd); + } + tsunami_flash_mtd = 0; +} + +static const char * const rom_probe_types[] = { + "cfi_probe", "jedec_probe", "map_rom", NULL }; + +static int __init init_tsunami_flash(void) +{ + const char * const *type; + + tsunami_tig_writeb(FLASH_ENABLE_BYTE, FLASH_ENABLE_PORT); + + tsunami_flash_mtd = 0; + type = rom_probe_types; + for(; !tsunami_flash_mtd && *type; type++) { + tsunami_flash_mtd = do_map_probe(*type, &tsunami_flash_map); + } + if (tsunami_flash_mtd) { + tsunami_flash_mtd->owner = THIS_MODULE; + mtd_device_register(tsunami_flash_mtd, NULL, 0); + return 0; + } + return -ENXIO; +} + +module_init(init_tsunami_flash); +module_exit(cleanup_tsunami_flash); diff --git a/drivers/mtd/maps/uclinux.c b/drivers/mtd/maps/uclinux.c new file mode 100644 index 0000000000..de4c46318a --- /dev/null +++ b/drivers/mtd/maps/uclinux.c @@ -0,0 +1,118 @@ +/****************************************************************************/ + +/* + * uclinux.c -- generic memory mapped MTD driver for uclinux + * + * (C) Copyright 2002, Greg Ungerer (gerg@snapgear.com) + * + * License: GPL + */ + +/****************************************************************************/ + +#include <linux/moduleparam.h> +#include <linux/types.h> +#include <linux/init.h> +#include <linux/kernel.h> +#include <linux/fs.h> +#include <linux/mm.h> +#include <linux/major.h> +#include <linux/mtd/mtd.h> +#include <linux/mtd/map.h> +#include <linux/mtd/partitions.h> +#include <asm/io.h> +#include <asm/sections.h> + +/****************************************************************************/ + +#ifdef CONFIG_MTD_ROM +#define MAP_NAME "rom" +#else +#define MAP_NAME "ram" +#endif + +static struct map_info uclinux_ram_map = { + .name = MAP_NAME, + .size = 0, +}; + +static unsigned long physaddr = -1; +module_param(physaddr, ulong, S_IRUGO); + +static struct mtd_info *uclinux_ram_mtdinfo; + +/****************************************************************************/ + +static const struct mtd_partition uclinux_romfs[] = { + { .name = "ROMfs" } +}; + +#define NUM_PARTITIONS ARRAY_SIZE(uclinux_romfs) + +/****************************************************************************/ + +static int uclinux_point(struct mtd_info *mtd, loff_t from, size_t len, + size_t *retlen, void **virt, resource_size_t *phys) +{ + struct map_info *map = mtd->priv; + *virt = map->virt + from; + if (phys) + *phys = map->phys + from; + *retlen = len; + return(0); +} + +/****************************************************************************/ + +static int __init uclinux_mtd_init(void) +{ + struct mtd_info *mtd; + struct map_info *mapp; + + mapp = &uclinux_ram_map; + + if (physaddr == -1) + mapp->phys = (resource_size_t)__bss_stop; + else + mapp->phys = physaddr; + + if (!mapp->size) + mapp->size = PAGE_ALIGN(ntohl(*((unsigned long *)(mapp->phys + 8)))); + mapp->bankwidth = 4; + + printk("uclinux[mtd]: probe address=0x%x size=0x%x\n", + (int) mapp->phys, (int) mapp->size); + + /* + * The filesystem is guaranteed to be in direct mapped memory. It is + * directly following the kernels own bss region. Following the same + * mechanism used by architectures setting up traditional initrds we + * use phys_to_virt to get the virtual address of its start. + */ + mapp->virt = phys_to_virt(mapp->phys); + + if (mapp->virt == 0) { + printk("uclinux[mtd]: no virtual mapping?\n"); + return(-EIO); + } + + simple_map_init(mapp); + + mtd = do_map_probe("map_" MAP_NAME, mapp); + if (!mtd) { + printk("uclinux[mtd]: failed to find a mapping?\n"); + return(-ENXIO); + } + + mtd->owner = THIS_MODULE; + mtd->_point = uclinux_point; + mtd->priv = mapp; + + uclinux_ram_mtdinfo = mtd; + mtd_device_register(mtd, uclinux_romfs, NUM_PARTITIONS); + + return(0); +} +device_initcall(uclinux_mtd_init); + +/****************************************************************************/ diff --git a/drivers/mtd/maps/vmu-flash.c b/drivers/mtd/maps/vmu-flash.c new file mode 100644 index 0000000000..53019d313d --- /dev/null +++ b/drivers/mtd/maps/vmu-flash.c @@ -0,0 +1,817 @@ +// SPDX-License-Identifier: GPL-2.0-only +/* vmu-flash.c + * Driver for SEGA Dreamcast Visual Memory Unit + * + * Copyright (c) Adrian McMenamin 2002 - 2009 + * Copyright (c) Paul Mundt 2001 + */ +#include <linux/init.h> +#include <linux/slab.h> +#include <linux/sched.h> +#include <linux/delay.h> +#include <linux/maple.h> +#include <linux/mtd/mtd.h> +#include <linux/mtd/map.h> + +struct vmu_cache { + unsigned char *buffer; /* Cache */ + unsigned int block; /* Which block was cached */ + unsigned long jiffies_atc; /* When was it cached? */ + int valid; +}; + +struct mdev_part { + struct maple_device *mdev; + int partition; +}; + +struct vmupart { + u16 user_blocks; + u16 root_block; + u16 numblocks; + char *name; + struct vmu_cache *pcache; +}; + +struct memcard { + u16 tempA; + u16 tempB; + u32 partitions; + u32 blocklen; + u32 writecnt; + u32 readcnt; + u32 removable; + int partition; + int read; + unsigned char *blockread; + struct vmupart *parts; + struct mtd_info *mtd; +}; + +struct vmu_block { + unsigned int num; /* block number */ + unsigned int ofs; /* block offset */ +}; + +static struct vmu_block *ofs_to_block(unsigned long src_ofs, + struct mtd_info *mtd, int partition) +{ + struct vmu_block *vblock; + struct maple_device *mdev; + struct memcard *card; + struct mdev_part *mpart; + int num; + + mpart = mtd->priv; + mdev = mpart->mdev; + card = maple_get_drvdata(mdev); + + if (src_ofs >= card->parts[partition].numblocks * card->blocklen) + goto failed; + + num = src_ofs / card->blocklen; + if (num > card->parts[partition].numblocks) + goto failed; + + vblock = kmalloc(sizeof(struct vmu_block), GFP_KERNEL); + if (!vblock) + goto failed; + + vblock->num = num; + vblock->ofs = src_ofs % card->blocklen; + return vblock; + +failed: + return NULL; +} + +/* Maple bus callback function for reads */ +static void vmu_blockread(struct mapleq *mq) +{ + struct maple_device *mdev; + struct memcard *card; + + mdev = mq->dev; + card = maple_get_drvdata(mdev); + /* copy the read in data */ + + if (unlikely(!card->blockread)) + return; + + memcpy(card->blockread, mq->recvbuf->buf + 12, + card->blocklen/card->readcnt); + +} + +/* Interface with maple bus to read blocks + * caching the results so that other parts + * of the driver can access block reads */ +static int maple_vmu_read_block(unsigned int num, unsigned char *buf, + struct mtd_info *mtd) +{ + struct memcard *card; + struct mdev_part *mpart; + struct maple_device *mdev; + int partition, error = 0, x, wait; + unsigned char *blockread = NULL; + struct vmu_cache *pcache; + __be32 sendbuf; + + mpart = mtd->priv; + mdev = mpart->mdev; + partition = mpart->partition; + card = maple_get_drvdata(mdev); + pcache = card->parts[partition].pcache; + pcache->valid = 0; + + /* prepare the cache for this block */ + if (!pcache->buffer) { + pcache->buffer = kmalloc(card->blocklen, GFP_KERNEL); + if (!pcache->buffer) { + dev_err(&mdev->dev, "VMU at (%d, %d) - read fails due" + " to lack of memory\n", mdev->port, + mdev->unit); + error = -ENOMEM; + goto outB; + } + } + + /* + * Reads may be phased - again the hardware spec + * supports this - though may not be any devices in + * the wild that implement it, but we will here + */ + for (x = 0; x < card->readcnt; x++) { + sendbuf = cpu_to_be32(partition << 24 | x << 16 | num); + + if (atomic_read(&mdev->busy) == 1) { + wait_event_interruptible_timeout(mdev->maple_wait, + atomic_read(&mdev->busy) == 0, HZ); + if (atomic_read(&mdev->busy) == 1) { + dev_notice(&mdev->dev, "VMU at (%d, %d)" + " is busy\n", mdev->port, mdev->unit); + error = -EAGAIN; + goto outB; + } + } + + atomic_set(&mdev->busy, 1); + blockread = kmalloc(card->blocklen/card->readcnt, GFP_KERNEL); + if (!blockread) { + error = -ENOMEM; + atomic_set(&mdev->busy, 0); + goto outB; + } + card->blockread = blockread; + + maple_getcond_callback(mdev, vmu_blockread, 0, + MAPLE_FUNC_MEMCARD); + error = maple_add_packet(mdev, MAPLE_FUNC_MEMCARD, + MAPLE_COMMAND_BREAD, 2, &sendbuf); + /* Very long timeouts seem to be needed when box is stressed */ + wait = wait_event_interruptible_timeout(mdev->maple_wait, + (atomic_read(&mdev->busy) == 0 || + atomic_read(&mdev->busy) == 2), HZ * 3); + /* + * MTD layer does not handle hotplugging well + * so have to return errors when VMU is unplugged + * in the middle of a read (busy == 2) + */ + if (error || atomic_read(&mdev->busy) == 2) { + if (atomic_read(&mdev->busy) == 2) + error = -ENXIO; + atomic_set(&mdev->busy, 0); + card->blockread = NULL; + goto outA; + } + if (wait == 0 || wait == -ERESTARTSYS) { + card->blockread = NULL; + atomic_set(&mdev->busy, 0); + error = -EIO; + list_del_init(&(mdev->mq->list)); + kfree(mdev->mq->sendbuf); + mdev->mq->sendbuf = NULL; + if (wait == -ERESTARTSYS) { + dev_warn(&mdev->dev, "VMU read on (%d, %d)" + " interrupted on block 0x%X\n", + mdev->port, mdev->unit, num); + } else + dev_notice(&mdev->dev, "VMU read on (%d, %d)" + " timed out on block 0x%X\n", + mdev->port, mdev->unit, num); + goto outA; + } + + memcpy(buf + (card->blocklen/card->readcnt) * x, blockread, + card->blocklen/card->readcnt); + + memcpy(pcache->buffer + (card->blocklen/card->readcnt) * x, + card->blockread, card->blocklen/card->readcnt); + card->blockread = NULL; + pcache->block = num; + pcache->jiffies_atc = jiffies; + pcache->valid = 1; + kfree(blockread); + } + + return error; + +outA: + kfree(blockread); +outB: + return error; +} + +/* communicate with maple bus for phased writing */ +static int maple_vmu_write_block(unsigned int num, const unsigned char *buf, + struct mtd_info *mtd) +{ + struct memcard *card; + struct mdev_part *mpart; + struct maple_device *mdev; + int partition, error, locking, x, phaselen, wait; + __be32 *sendbuf; + + mpart = mtd->priv; + mdev = mpart->mdev; + partition = mpart->partition; + card = maple_get_drvdata(mdev); + + phaselen = card->blocklen/card->writecnt; + + sendbuf = kmalloc(phaselen + 4, GFP_KERNEL); + if (!sendbuf) { + error = -ENOMEM; + goto fail_nosendbuf; + } + for (x = 0; x < card->writecnt; x++) { + sendbuf[0] = cpu_to_be32(partition << 24 | x << 16 | num); + memcpy(&sendbuf[1], buf + phaselen * x, phaselen); + /* wait until the device is not busy doing something else + * or 1 second - which ever is longer */ + if (atomic_read(&mdev->busy) == 1) { + wait_event_interruptible_timeout(mdev->maple_wait, + atomic_read(&mdev->busy) == 0, HZ); + if (atomic_read(&mdev->busy) == 1) { + error = -EBUSY; + dev_notice(&mdev->dev, "VMU write at (%d, %d)" + "failed - device is busy\n", + mdev->port, mdev->unit); + goto fail_nolock; + } + } + atomic_set(&mdev->busy, 1); + + locking = maple_add_packet(mdev, MAPLE_FUNC_MEMCARD, + MAPLE_COMMAND_BWRITE, phaselen / 4 + 2, sendbuf); + wait = wait_event_interruptible_timeout(mdev->maple_wait, + atomic_read(&mdev->busy) == 0, HZ/10); + if (locking) { + error = -EIO; + atomic_set(&mdev->busy, 0); + goto fail_nolock; + } + if (atomic_read(&mdev->busy) == 2) { + atomic_set(&mdev->busy, 0); + } else if (wait == 0 || wait == -ERESTARTSYS) { + error = -EIO; + dev_warn(&mdev->dev, "Write at (%d, %d) of block" + " 0x%X at phase %d failed: could not" + " communicate with VMU", mdev->port, + mdev->unit, num, x); + atomic_set(&mdev->busy, 0); + kfree(mdev->mq->sendbuf); + mdev->mq->sendbuf = NULL; + list_del_init(&(mdev->mq->list)); + goto fail_nolock; + } + } + kfree(sendbuf); + + return card->blocklen; + +fail_nolock: + kfree(sendbuf); +fail_nosendbuf: + dev_err(&mdev->dev, "VMU (%d, %d): write failed\n", mdev->port, + mdev->unit); + return error; +} + +/* mtd function to simulate reading byte by byte */ +static unsigned char vmu_flash_read_char(unsigned long ofs, int *retval, + struct mtd_info *mtd) +{ + struct vmu_block *vblock; + struct memcard *card; + struct mdev_part *mpart; + struct maple_device *mdev; + unsigned char *buf, ret; + int partition, error; + + mpart = mtd->priv; + mdev = mpart->mdev; + partition = mpart->partition; + card = maple_get_drvdata(mdev); + *retval = 0; + + buf = kmalloc(card->blocklen, GFP_KERNEL); + if (!buf) { + *retval = 1; + ret = -ENOMEM; + goto finish; + } + + vblock = ofs_to_block(ofs, mtd, partition); + if (!vblock) { + *retval = 3; + ret = -ENOMEM; + goto out_buf; + } + + error = maple_vmu_read_block(vblock->num, buf, mtd); + if (error) { + ret = error; + *retval = 2; + goto out_vblock; + } + + ret = buf[vblock->ofs]; + +out_vblock: + kfree(vblock); +out_buf: + kfree(buf); +finish: + return ret; +} + +/* mtd higher order function to read flash */ +static int vmu_flash_read(struct mtd_info *mtd, loff_t from, size_t len, + size_t *retlen, u_char *buf) +{ + struct maple_device *mdev; + struct memcard *card; + struct mdev_part *mpart; + struct vmu_cache *pcache; + struct vmu_block *vblock; + int index = 0, retval, partition, leftover, numblocks; + unsigned char cx; + + mpart = mtd->priv; + mdev = mpart->mdev; + partition = mpart->partition; + card = maple_get_drvdata(mdev); + + numblocks = card->parts[partition].numblocks; + if (from + len > numblocks * card->blocklen) + len = numblocks * card->blocklen - from; + if (len == 0) + return -EIO; + /* Have we cached this bit already? */ + pcache = card->parts[partition].pcache; + do { + vblock = ofs_to_block(from + index, mtd, partition); + if (!vblock) + return -ENOMEM; + /* Have we cached this and is the cache valid and timely? */ + if (pcache->valid && + time_before(jiffies, pcache->jiffies_atc + HZ) && + (pcache->block == vblock->num)) { + /* we have cached it, so do necessary copying */ + leftover = card->blocklen - vblock->ofs; + if (vblock->ofs + len - index < card->blocklen) { + /* only a bit of this block to copy */ + memcpy(buf + index, + pcache->buffer + vblock->ofs, + len - index); + index = len; + } else { + /* otherwise copy remainder of whole block */ + memcpy(buf + index, pcache->buffer + + vblock->ofs, leftover); + index += leftover; + } + } else { + /* + * Not cached so read one byte - + * but cache the rest of the block + */ + cx = vmu_flash_read_char(from + index, &retval, mtd); + if (retval) { + *retlen = index; + kfree(vblock); + return cx; + } + memset(buf + index, cx, 1); + index++; + } + kfree(vblock); + } while (len > index); + *retlen = index; + + return 0; +} + +static int vmu_flash_write(struct mtd_info *mtd, loff_t to, size_t len, + size_t *retlen, const u_char *buf) +{ + struct maple_device *mdev; + struct memcard *card; + struct mdev_part *mpart; + int index = 0, partition, error = 0, numblocks; + struct vmu_cache *pcache; + struct vmu_block *vblock; + unsigned char *buffer; + + mpart = mtd->priv; + mdev = mpart->mdev; + partition = mpart->partition; + card = maple_get_drvdata(mdev); + + numblocks = card->parts[partition].numblocks; + if (to + len > numblocks * card->blocklen) + len = numblocks * card->blocklen - to; + if (len == 0) { + error = -EIO; + goto failed; + } + + vblock = ofs_to_block(to, mtd, partition); + if (!vblock) { + error = -ENOMEM; + goto failed; + } + + buffer = kmalloc(card->blocklen, GFP_KERNEL); + if (!buffer) { + error = -ENOMEM; + goto fail_buffer; + } + + do { + /* Read in the block we are to write to */ + error = maple_vmu_read_block(vblock->num, buffer, mtd); + if (error) + goto fail_io; + + do { + buffer[vblock->ofs] = buf[index]; + vblock->ofs++; + index++; + if (index >= len) + break; + } while (vblock->ofs < card->blocklen); + + /* write out new buffer */ + error = maple_vmu_write_block(vblock->num, buffer, mtd); + /* invalidate the cache */ + pcache = card->parts[partition].pcache; + pcache->valid = 0; + + if (error != card->blocklen) + goto fail_io; + + vblock->num++; + vblock->ofs = 0; + } while (len > index); + + kfree(buffer); + *retlen = index; + kfree(vblock); + return 0; + +fail_io: + kfree(buffer); +fail_buffer: + kfree(vblock); +failed: + dev_err(&mdev->dev, "VMU write failing with error %d\n", error); + return error; +} + +static void vmu_flash_sync(struct mtd_info *mtd) +{ + /* Do nothing here */ +} + +/* Maple bus callback function to recursively query hardware details */ +static void vmu_queryblocks(struct mapleq *mq) +{ + struct maple_device *mdev; + unsigned short *res; + struct memcard *card; + __be32 partnum; + struct vmu_cache *pcache; + struct mdev_part *mpart; + struct mtd_info *mtd_cur; + struct vmupart *part_cur; + int error; + + mdev = mq->dev; + card = maple_get_drvdata(mdev); + res = (unsigned short *) (mq->recvbuf->buf); + card->tempA = res[12]; + card->tempB = res[6]; + + dev_info(&mdev->dev, "VMU device at partition %d has %d user " + "blocks with a root block at %d\n", card->partition, + card->tempA, card->tempB); + + part_cur = &card->parts[card->partition]; + part_cur->user_blocks = card->tempA; + part_cur->root_block = card->tempB; + part_cur->numblocks = card->tempB + 1; + part_cur->name = kmalloc(12, GFP_KERNEL); + if (!part_cur->name) + goto fail_name; + + sprintf(part_cur->name, "vmu%d.%d.%d", + mdev->port, mdev->unit, card->partition); + mtd_cur = &card->mtd[card->partition]; + mtd_cur->name = part_cur->name; + mtd_cur->type = 8; + mtd_cur->flags = MTD_WRITEABLE|MTD_NO_ERASE; + mtd_cur->size = part_cur->numblocks * card->blocklen; + mtd_cur->erasesize = card->blocklen; + mtd_cur->_write = vmu_flash_write; + mtd_cur->_read = vmu_flash_read; + mtd_cur->_sync = vmu_flash_sync; + mtd_cur->writesize = card->blocklen; + + mpart = kmalloc(sizeof(struct mdev_part), GFP_KERNEL); + if (!mpart) + goto fail_mpart; + + mpart->mdev = mdev; + mpart->partition = card->partition; + mtd_cur->priv = mpart; + mtd_cur->owner = THIS_MODULE; + + pcache = kzalloc(sizeof(struct vmu_cache), GFP_KERNEL); + if (!pcache) + goto fail_cache_create; + part_cur->pcache = pcache; + + error = mtd_device_register(mtd_cur, NULL, 0); + if (error) + goto fail_mtd_register; + + maple_getcond_callback(mdev, NULL, 0, + MAPLE_FUNC_MEMCARD); + + /* + * Set up a recursive call to the (probably theoretical) + * second or more partition + */ + if (++card->partition < card->partitions) { + partnum = cpu_to_be32(card->partition << 24); + maple_getcond_callback(mdev, vmu_queryblocks, 0, + MAPLE_FUNC_MEMCARD); + maple_add_packet(mdev, MAPLE_FUNC_MEMCARD, + MAPLE_COMMAND_GETMINFO, 2, &partnum); + } + return; + +fail_mtd_register: + dev_err(&mdev->dev, "Could not register maple device at (%d, %d)" + "error is 0x%X\n", mdev->port, mdev->unit, error); + for (error = 0; error <= card->partition; error++) { + kfree(((card->parts)[error]).pcache); + ((card->parts)[error]).pcache = NULL; + } +fail_cache_create: +fail_mpart: + for (error = 0; error <= card->partition; error++) { + kfree(((card->mtd)[error]).priv); + ((card->mtd)[error]).priv = NULL; + } + maple_getcond_callback(mdev, NULL, 0, + MAPLE_FUNC_MEMCARD); + kfree(part_cur->name); +fail_name: + return; +} + +/* Handles very basic info about the flash, queries for details */ +static int vmu_connect(struct maple_device *mdev) +{ + unsigned long test_flash_data, basic_flash_data; + int c, error; + struct memcard *card; + u32 partnum = 0; + + test_flash_data = be32_to_cpu(mdev->devinfo.function); + /* Need to count how many bits are set - to find out which + * function_data element has details of the memory card + */ + c = hweight_long(test_flash_data); + + basic_flash_data = be32_to_cpu(mdev->devinfo.function_data[c - 1]); + + card = kmalloc(sizeof(struct memcard), GFP_KERNEL); + if (!card) { + error = -ENOMEM; + goto fail_nomem; + } + + card->partitions = (basic_flash_data >> 24 & 0xFF) + 1; + card->blocklen = ((basic_flash_data >> 16 & 0xFF) + 1) << 5; + card->writecnt = basic_flash_data >> 12 & 0xF; + card->readcnt = basic_flash_data >> 8 & 0xF; + card->removable = basic_flash_data >> 7 & 1; + + card->partition = 0; + + /* + * Not sure there are actually any multi-partition devices in the + * real world, but the hardware supports them, so, so will we + */ + card->parts = kmalloc_array(card->partitions, sizeof(struct vmupart), + GFP_KERNEL); + if (!card->parts) { + error = -ENOMEM; + goto fail_partitions; + } + + card->mtd = kmalloc_array(card->partitions, sizeof(struct mtd_info), + GFP_KERNEL); + if (!card->mtd) { + error = -ENOMEM; + goto fail_mtd_info; + } + + maple_set_drvdata(mdev, card); + + /* + * We want to trap meminfo not get cond + * so set interval to zero, but rely on maple bus + * driver to pass back the results of the meminfo + */ + maple_getcond_callback(mdev, vmu_queryblocks, 0, + MAPLE_FUNC_MEMCARD); + + /* Make sure we are clear to go */ + if (atomic_read(&mdev->busy) == 1) { + wait_event_interruptible_timeout(mdev->maple_wait, + atomic_read(&mdev->busy) == 0, HZ); + if (atomic_read(&mdev->busy) == 1) { + dev_notice(&mdev->dev, "VMU at (%d, %d) is busy\n", + mdev->port, mdev->unit); + error = -EAGAIN; + goto fail_device_busy; + } + } + + atomic_set(&mdev->busy, 1); + + /* + * Set up the minfo call: vmu_queryblocks will handle + * the information passed back + */ + error = maple_add_packet(mdev, MAPLE_FUNC_MEMCARD, + MAPLE_COMMAND_GETMINFO, 2, &partnum); + if (error) { + dev_err(&mdev->dev, "Could not lock VMU at (%d, %d)" + " error is 0x%X\n", mdev->port, mdev->unit, error); + goto fail_mtd_info; + } + return 0; + +fail_device_busy: + kfree(card->mtd); +fail_mtd_info: + kfree(card->parts); +fail_partitions: + kfree(card); +fail_nomem: + return error; +} + +static void vmu_disconnect(struct maple_device *mdev) +{ + struct memcard *card; + struct mdev_part *mpart; + int x; + + mdev->callback = NULL; + card = maple_get_drvdata(mdev); + for (x = 0; x < card->partitions; x++) { + mpart = ((card->mtd)[x]).priv; + mpart->mdev = NULL; + mtd_device_unregister(&((card->mtd)[x])); + kfree(((card->parts)[x]).name); + } + kfree(card->parts); + kfree(card->mtd); + kfree(card); +} + +/* Callback to handle eccentricities of both mtd subsystem + * and general flakyness of Dreamcast VMUs + */ +static int vmu_can_unload(struct maple_device *mdev) +{ + struct memcard *card; + int x; + struct mtd_info *mtd; + + card = maple_get_drvdata(mdev); + for (x = 0; x < card->partitions; x++) { + mtd = &((card->mtd)[x]); + if (kref_read(&mtd->refcnt)) + return 0; + } + return 1; +} + +#define ERRSTR "VMU at (%d, %d) file error -" + +static void vmu_file_error(struct maple_device *mdev, void *recvbuf) +{ + enum maple_file_errors error = ((int *)recvbuf)[1]; + + switch (error) { + + case MAPLE_FILEERR_INVALID_PARTITION: + dev_notice(&mdev->dev, ERRSTR " invalid partition number\n", + mdev->port, mdev->unit); + break; + + case MAPLE_FILEERR_PHASE_ERROR: + dev_notice(&mdev->dev, ERRSTR " phase error\n", + mdev->port, mdev->unit); + break; + + case MAPLE_FILEERR_INVALID_BLOCK: + dev_notice(&mdev->dev, ERRSTR " invalid block number\n", + mdev->port, mdev->unit); + break; + + case MAPLE_FILEERR_WRITE_ERROR: + dev_notice(&mdev->dev, ERRSTR " write error\n", + mdev->port, mdev->unit); + break; + + case MAPLE_FILEERR_INVALID_WRITE_LENGTH: + dev_notice(&mdev->dev, ERRSTR " invalid write length\n", + mdev->port, mdev->unit); + break; + + case MAPLE_FILEERR_BAD_CRC: + dev_notice(&mdev->dev, ERRSTR " bad CRC\n", + mdev->port, mdev->unit); + break; + + default: + dev_notice(&mdev->dev, ERRSTR " 0x%X\n", + mdev->port, mdev->unit, error); + } +} + + +static int probe_maple_vmu(struct device *dev) +{ + struct maple_device *mdev = to_maple_dev(dev); + struct maple_driver *mdrv = to_maple_driver(dev->driver); + + mdev->can_unload = vmu_can_unload; + mdev->fileerr_handler = vmu_file_error; + mdev->driver = mdrv; + + return vmu_connect(mdev); +} + +static int remove_maple_vmu(struct device *dev) +{ + struct maple_device *mdev = to_maple_dev(dev); + + vmu_disconnect(mdev); + return 0; +} + +static struct maple_driver vmu_flash_driver = { + .function = MAPLE_FUNC_MEMCARD, + .drv = { + .name = "Dreamcast_visual_memory", + .probe = probe_maple_vmu, + .remove = remove_maple_vmu, + }, +}; + +static int __init vmu_flash_map_init(void) +{ + return maple_driver_register(&vmu_flash_driver); +} + +static void __exit vmu_flash_map_exit(void) +{ + maple_driver_unregister(&vmu_flash_driver); +} + +module_init(vmu_flash_map_init); +module_exit(vmu_flash_map_exit); + +MODULE_LICENSE("GPL"); +MODULE_AUTHOR("Adrian McMenamin"); +MODULE_DESCRIPTION("Flash mapping for Sega Dreamcast visual memory"); diff --git a/drivers/mtd/mtd_blkdevs.c b/drivers/mtd/mtd_blkdevs.c new file mode 100644 index 0000000000..5bc32108ca --- /dev/null +++ b/drivers/mtd/mtd_blkdevs.c @@ -0,0 +1,548 @@ +// SPDX-License-Identifier: GPL-2.0-or-later +/* + * Interface to Linux block layer for MTD 'translation layers'. + * + * Copyright © 2003-2010 David Woodhouse <dwmw2@infradead.org> + */ + +#include <linux/kernel.h> +#include <linux/slab.h> +#include <linux/module.h> +#include <linux/list.h> +#include <linux/fs.h> +#include <linux/mtd/blktrans.h> +#include <linux/mtd/mtd.h> +#include <linux/blkdev.h> +#include <linux/blk-mq.h> +#include <linux/blkpg.h> +#include <linux/spinlock.h> +#include <linux/hdreg.h> +#include <linux/mutex.h> +#include <linux/uaccess.h> + +#include "mtdcore.h" + +static LIST_HEAD(blktrans_majors); + +static void blktrans_dev_release(struct kref *kref) +{ + struct mtd_blktrans_dev *dev = + container_of(kref, struct mtd_blktrans_dev, ref); + + put_disk(dev->disk); + blk_mq_free_tag_set(dev->tag_set); + kfree(dev->tag_set); + list_del(&dev->list); + kfree(dev); +} + +static void blktrans_dev_put(struct mtd_blktrans_dev *dev) +{ + kref_put(&dev->ref, blktrans_dev_release); +} + + +static blk_status_t do_blktrans_request(struct mtd_blktrans_ops *tr, + struct mtd_blktrans_dev *dev, + struct request *req) +{ + struct req_iterator iter; + struct bio_vec bvec; + unsigned long block, nsect; + char *buf; + + block = blk_rq_pos(req) << 9 >> tr->blkshift; + nsect = blk_rq_cur_bytes(req) >> tr->blkshift; + + switch (req_op(req)) { + case REQ_OP_FLUSH: + if (tr->flush(dev)) + return BLK_STS_IOERR; + return BLK_STS_OK; + case REQ_OP_DISCARD: + if (tr->discard(dev, block, nsect)) + return BLK_STS_IOERR; + return BLK_STS_OK; + case REQ_OP_READ: + buf = kmap(bio_page(req->bio)) + bio_offset(req->bio); + for (; nsect > 0; nsect--, block++, buf += tr->blksize) { + if (tr->readsect(dev, block, buf)) { + kunmap(bio_page(req->bio)); + return BLK_STS_IOERR; + } + } + kunmap(bio_page(req->bio)); + + rq_for_each_segment(bvec, req, iter) + flush_dcache_page(bvec.bv_page); + return BLK_STS_OK; + case REQ_OP_WRITE: + if (!tr->writesect) + return BLK_STS_IOERR; + + rq_for_each_segment(bvec, req, iter) + flush_dcache_page(bvec.bv_page); + + buf = kmap(bio_page(req->bio)) + bio_offset(req->bio); + for (; nsect > 0; nsect--, block++, buf += tr->blksize) { + if (tr->writesect(dev, block, buf)) { + kunmap(bio_page(req->bio)); + return BLK_STS_IOERR; + } + } + kunmap(bio_page(req->bio)); + return BLK_STS_OK; + default: + return BLK_STS_IOERR; + } +} + +int mtd_blktrans_cease_background(struct mtd_blktrans_dev *dev) +{ + return dev->bg_stop; +} +EXPORT_SYMBOL_GPL(mtd_blktrans_cease_background); + +static struct request *mtd_next_request(struct mtd_blktrans_dev *dev) +{ + struct request *rq; + + rq = list_first_entry_or_null(&dev->rq_list, struct request, queuelist); + if (rq) { + list_del_init(&rq->queuelist); + blk_mq_start_request(rq); + return rq; + } + + return NULL; +} + +static void mtd_blktrans_work(struct mtd_blktrans_dev *dev) + __releases(&dev->queue_lock) + __acquires(&dev->queue_lock) +{ + struct mtd_blktrans_ops *tr = dev->tr; + struct request *req = NULL; + int background_done = 0; + + while (1) { + blk_status_t res; + + dev->bg_stop = false; + if (!req && !(req = mtd_next_request(dev))) { + if (tr->background && !background_done) { + spin_unlock_irq(&dev->queue_lock); + mutex_lock(&dev->lock); + tr->background(dev); + mutex_unlock(&dev->lock); + spin_lock_irq(&dev->queue_lock); + /* + * Do background processing just once per idle + * period. + */ + background_done = !dev->bg_stop; + continue; + } + break; + } + + spin_unlock_irq(&dev->queue_lock); + + mutex_lock(&dev->lock); + res = do_blktrans_request(dev->tr, dev, req); + mutex_unlock(&dev->lock); + + if (!blk_update_request(req, res, blk_rq_cur_bytes(req))) { + __blk_mq_end_request(req, res); + req = NULL; + } + + background_done = 0; + cond_resched(); + spin_lock_irq(&dev->queue_lock); + } +} + +static blk_status_t mtd_queue_rq(struct blk_mq_hw_ctx *hctx, + const struct blk_mq_queue_data *bd) +{ + struct mtd_blktrans_dev *dev; + + dev = hctx->queue->queuedata; + if (!dev) { + blk_mq_start_request(bd->rq); + return BLK_STS_IOERR; + } + + spin_lock_irq(&dev->queue_lock); + list_add_tail(&bd->rq->queuelist, &dev->rq_list); + mtd_blktrans_work(dev); + spin_unlock_irq(&dev->queue_lock); + + return BLK_STS_OK; +} + +static int blktrans_open(struct gendisk *disk, blk_mode_t mode) +{ + struct mtd_blktrans_dev *dev = disk->private_data; + int ret = 0; + + kref_get(&dev->ref); + + mutex_lock(&dev->lock); + + if (dev->open) + goto unlock; + + __module_get(dev->tr->owner); + + if (!dev->mtd) + goto unlock; + + if (dev->tr->open) { + ret = dev->tr->open(dev); + if (ret) + goto error_put; + } + + ret = __get_mtd_device(dev->mtd); + if (ret) + goto error_release; + dev->writable = mode & BLK_OPEN_WRITE; + +unlock: + dev->open++; + mutex_unlock(&dev->lock); + return ret; + +error_release: + if (dev->tr->release) + dev->tr->release(dev); +error_put: + module_put(dev->tr->owner); + mutex_unlock(&dev->lock); + blktrans_dev_put(dev); + return ret; +} + +static void blktrans_release(struct gendisk *disk) +{ + struct mtd_blktrans_dev *dev = disk->private_data; + + mutex_lock(&dev->lock); + + if (--dev->open) + goto unlock; + + module_put(dev->tr->owner); + + if (dev->mtd) { + if (dev->tr->release) + dev->tr->release(dev); + __put_mtd_device(dev->mtd); + } +unlock: + mutex_unlock(&dev->lock); + blktrans_dev_put(dev); +} + +static int blktrans_getgeo(struct block_device *bdev, struct hd_geometry *geo) +{ + struct mtd_blktrans_dev *dev = bdev->bd_disk->private_data; + int ret = -ENXIO; + + mutex_lock(&dev->lock); + + if (!dev->mtd) + goto unlock; + + ret = dev->tr->getgeo ? dev->tr->getgeo(dev, geo) : -ENOTTY; +unlock: + mutex_unlock(&dev->lock); + return ret; +} + +static const struct block_device_operations mtd_block_ops = { + .owner = THIS_MODULE, + .open = blktrans_open, + .release = blktrans_release, + .getgeo = blktrans_getgeo, +}; + +static const struct blk_mq_ops mtd_mq_ops = { + .queue_rq = mtd_queue_rq, +}; + +int add_mtd_blktrans_dev(struct mtd_blktrans_dev *new) +{ + struct mtd_blktrans_ops *tr = new->tr; + struct mtd_blktrans_dev *d; + int last_devnum = -1; + struct gendisk *gd; + int ret; + + lockdep_assert_held(&mtd_table_mutex); + + list_for_each_entry(d, &tr->devs, list) { + if (new->devnum == -1) { + /* Use first free number */ + if (d->devnum != last_devnum+1) { + /* Found a free devnum. Plug it in here */ + new->devnum = last_devnum+1; + list_add_tail(&new->list, &d->list); + goto added; + } + } else if (d->devnum == new->devnum) { + /* Required number taken */ + return -EBUSY; + } else if (d->devnum > new->devnum) { + /* Required number was free */ + list_add_tail(&new->list, &d->list); + goto added; + } + last_devnum = d->devnum; + } + + ret = -EBUSY; + if (new->devnum == -1) + new->devnum = last_devnum+1; + + /* Check that the device and any partitions will get valid + * minor numbers and that the disk naming code below can cope + * with this number. */ + if (new->devnum > (MINORMASK >> tr->part_bits) || + (tr->part_bits && new->devnum >= 27 * 26)) + return ret; + + list_add_tail(&new->list, &tr->devs); + added: + + mutex_init(&new->lock); + kref_init(&new->ref); + if (!tr->writesect) + new->readonly = 1; + + ret = -ENOMEM; + new->tag_set = kzalloc(sizeof(*new->tag_set), GFP_KERNEL); + if (!new->tag_set) + goto out_list_del; + + ret = blk_mq_alloc_sq_tag_set(new->tag_set, &mtd_mq_ops, 2, + BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_BLOCKING); + if (ret) + goto out_kfree_tag_set; + + /* Create gendisk */ + gd = blk_mq_alloc_disk(new->tag_set, new); + if (IS_ERR(gd)) { + ret = PTR_ERR(gd); + goto out_free_tag_set; + } + + new->disk = gd; + new->rq = new->disk->queue; + gd->private_data = new; + gd->major = tr->major; + gd->first_minor = (new->devnum) << tr->part_bits; + gd->minors = 1 << tr->part_bits; + gd->fops = &mtd_block_ops; + + if (tr->part_bits) { + if (new->devnum < 26) + snprintf(gd->disk_name, sizeof(gd->disk_name), + "%s%c", tr->name, 'a' + new->devnum); + else + snprintf(gd->disk_name, sizeof(gd->disk_name), + "%s%c%c", tr->name, + 'a' - 1 + new->devnum / 26, + 'a' + new->devnum % 26); + } else { + snprintf(gd->disk_name, sizeof(gd->disk_name), + "%s%d", tr->name, new->devnum); + gd->flags |= GENHD_FL_NO_PART; + } + + set_capacity(gd, ((u64)new->size * tr->blksize) >> 9); + + /* Create the request queue */ + spin_lock_init(&new->queue_lock); + INIT_LIST_HEAD(&new->rq_list); + + if (tr->flush) + blk_queue_write_cache(new->rq, true, false); + + blk_queue_logical_block_size(new->rq, tr->blksize); + + blk_queue_flag_set(QUEUE_FLAG_NONROT, new->rq); + blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, new->rq); + + if (tr->discard) { + blk_queue_max_discard_sectors(new->rq, UINT_MAX); + new->rq->limits.discard_granularity = tr->blksize; + } + + gd->queue = new->rq; + + if (new->readonly) + set_disk_ro(gd, 1); + + ret = device_add_disk(&new->mtd->dev, gd, NULL); + if (ret) + goto out_cleanup_disk; + + if (new->disk_attributes) { + ret = sysfs_create_group(&disk_to_dev(gd)->kobj, + new->disk_attributes); + WARN_ON(ret); + } + return 0; + +out_cleanup_disk: + put_disk(new->disk); +out_free_tag_set: + blk_mq_free_tag_set(new->tag_set); +out_kfree_tag_set: + kfree(new->tag_set); +out_list_del: + list_del(&new->list); + return ret; +} + +int del_mtd_blktrans_dev(struct mtd_blktrans_dev *old) +{ + unsigned long flags; + + lockdep_assert_held(&mtd_table_mutex); + + if (old->disk_attributes) + sysfs_remove_group(&disk_to_dev(old->disk)->kobj, + old->disk_attributes); + + /* Stop new requests to arrive */ + del_gendisk(old->disk); + + /* Kill current requests */ + spin_lock_irqsave(&old->queue_lock, flags); + old->rq->queuedata = NULL; + spin_unlock_irqrestore(&old->queue_lock, flags); + + /* freeze+quiesce queue to ensure all requests are flushed */ + blk_mq_freeze_queue(old->rq); + blk_mq_quiesce_queue(old->rq); + blk_mq_unquiesce_queue(old->rq); + blk_mq_unfreeze_queue(old->rq); + + /* If the device is currently open, tell trans driver to close it, + then put mtd device, and don't touch it again */ + mutex_lock(&old->lock); + if (old->open) { + if (old->tr->release) + old->tr->release(old); + __put_mtd_device(old->mtd); + } + + old->mtd = NULL; + + mutex_unlock(&old->lock); + blktrans_dev_put(old); + return 0; +} + +static void blktrans_notify_remove(struct mtd_info *mtd) +{ + struct mtd_blktrans_ops *tr; + struct mtd_blktrans_dev *dev, *next; + + list_for_each_entry(tr, &blktrans_majors, list) + list_for_each_entry_safe(dev, next, &tr->devs, list) + if (dev->mtd == mtd) + tr->remove_dev(dev); +} + +static void blktrans_notify_add(struct mtd_info *mtd) +{ + struct mtd_blktrans_ops *tr; + + if (mtd->type == MTD_ABSENT || mtd->type == MTD_UBIVOLUME) + return; + + list_for_each_entry(tr, &blktrans_majors, list) + tr->add_mtd(tr, mtd); +} + +static struct mtd_notifier blktrans_notifier = { + .add = blktrans_notify_add, + .remove = blktrans_notify_remove, +}; + +int register_mtd_blktrans(struct mtd_blktrans_ops *tr) +{ + struct mtd_info *mtd; + int ret; + + /* Register the notifier if/when the first device type is + registered, to prevent the link/init ordering from fucking + us over. */ + if (!blktrans_notifier.list.next) + register_mtd_user(&blktrans_notifier); + + ret = register_blkdev(tr->major, tr->name); + if (ret < 0) { + printk(KERN_WARNING "Unable to register %s block device on major %d: %d\n", + tr->name, tr->major, ret); + return ret; + } + + if (ret) + tr->major = ret; + + tr->blkshift = ffs(tr->blksize) - 1; + + INIT_LIST_HEAD(&tr->devs); + + mutex_lock(&mtd_table_mutex); + list_add(&tr->list, &blktrans_majors); + mtd_for_each_device(mtd) + if (mtd->type != MTD_ABSENT && mtd->type != MTD_UBIVOLUME) + tr->add_mtd(tr, mtd); + mutex_unlock(&mtd_table_mutex); + return 0; +} + +int deregister_mtd_blktrans(struct mtd_blktrans_ops *tr) +{ + struct mtd_blktrans_dev *dev, *next; + + mutex_lock(&mtd_table_mutex); + + /* Remove it from the list of active majors */ + list_del(&tr->list); + + list_for_each_entry_safe(dev, next, &tr->devs, list) + tr->remove_dev(dev); + + mutex_unlock(&mtd_table_mutex); + unregister_blkdev(tr->major, tr->name); + + BUG_ON(!list_empty(&tr->devs)); + return 0; +} + +static void __exit mtd_blktrans_exit(void) +{ + /* No race here -- if someone's currently in register_mtd_blktrans + we're screwed anyway. */ + if (blktrans_notifier.list.next) + unregister_mtd_user(&blktrans_notifier); +} + +module_exit(mtd_blktrans_exit); + +EXPORT_SYMBOL_GPL(register_mtd_blktrans); +EXPORT_SYMBOL_GPL(deregister_mtd_blktrans); +EXPORT_SYMBOL_GPL(add_mtd_blktrans_dev); +EXPORT_SYMBOL_GPL(del_mtd_blktrans_dev); + +MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>"); +MODULE_LICENSE("GPL"); +MODULE_DESCRIPTION("Common interface to block layer for MTD 'translation layers'"); diff --git a/drivers/mtd/mtdblock.c b/drivers/mtd/mtdblock.c new file mode 100644 index 0000000000..9751416c2a --- /dev/null +++ b/drivers/mtd/mtdblock.c @@ -0,0 +1,361 @@ +// SPDX-License-Identifier: GPL-2.0-or-later +/* + * Direct MTD block device access + * + * Copyright © 1999-2010 David Woodhouse <dwmw2@infradead.org> + * Copyright © 2000-2003 Nicolas Pitre <nico@fluxnic.net> + */ + +#include <linux/fs.h> +#include <linux/init.h> +#include <linux/kernel.h> +#include <linux/module.h> +#include <linux/sched.h> +#include <linux/slab.h> +#include <linux/types.h> +#include <linux/vmalloc.h> + +#include <linux/mtd/mtd.h> +#include <linux/mtd/blktrans.h> +#include <linux/mutex.h> +#include <linux/major.h> + + +struct mtdblk_dev { + struct mtd_blktrans_dev mbd; + int count; + struct mutex cache_mutex; + unsigned char *cache_data; + unsigned long cache_offset; + unsigned int cache_size; + enum { STATE_EMPTY, STATE_CLEAN, STATE_DIRTY } cache_state; +}; + +/* + * Cache stuff... + * + * Since typical flash erasable sectors are much larger than what Linux's + * buffer cache can handle, we must implement read-modify-write on flash + * sectors for each block write requests. To avoid over-erasing flash sectors + * and to speed things up, we locally cache a whole flash sector while it is + * being written to until a different sector is required. + */ + +static int erase_write (struct mtd_info *mtd, unsigned long pos, + unsigned int len, const char *buf) +{ + struct erase_info erase; + size_t retlen; + int ret; + + /* + * First, let's erase the flash block. + */ + erase.addr = pos; + erase.len = len; + + ret = mtd_erase(mtd, &erase); + if (ret) { + printk (KERN_WARNING "mtdblock: erase of region [0x%lx, 0x%x] " + "on \"%s\" failed\n", + pos, len, mtd->name); + return ret; + } + + /* + * Next, write the data to flash. + */ + + ret = mtd_write(mtd, pos, len, &retlen, buf); + if (ret) + return ret; + if (retlen != len) + return -EIO; + return 0; +} + + +static int write_cached_data (struct mtdblk_dev *mtdblk) +{ + struct mtd_info *mtd = mtdblk->mbd.mtd; + int ret; + + if (mtdblk->cache_state != STATE_DIRTY) + return 0; + + pr_debug("mtdblock: writing cached data for \"%s\" " + "at 0x%lx, size 0x%x\n", mtd->name, + mtdblk->cache_offset, mtdblk->cache_size); + + ret = erase_write (mtd, mtdblk->cache_offset, + mtdblk->cache_size, mtdblk->cache_data); + + /* + * Here we could arguably set the cache state to STATE_CLEAN. + * However this could lead to inconsistency since we will not + * be notified if this content is altered on the flash by other + * means. Let's declare it empty and leave buffering tasks to + * the buffer cache instead. + * + * If this cache_offset points to a bad block, data cannot be + * written to the device. Clear cache_state to avoid writing to + * bad blocks repeatedly. + */ + if (ret == 0 || ret == -EIO) + mtdblk->cache_state = STATE_EMPTY; + return ret; +} + + +static int do_cached_write (struct mtdblk_dev *mtdblk, unsigned long pos, + int len, const char *buf) +{ + struct mtd_info *mtd = mtdblk->mbd.mtd; + unsigned int sect_size = mtdblk->cache_size; + size_t retlen; + int ret; + + pr_debug("mtdblock: write on \"%s\" at 0x%lx, size 0x%x\n", + mtd->name, pos, len); + + if (!sect_size) + return mtd_write(mtd, pos, len, &retlen, buf); + + while (len > 0) { + unsigned long sect_start = (pos/sect_size)*sect_size; + unsigned int offset = pos - sect_start; + unsigned int size = sect_size - offset; + if( size > len ) + size = len; + + if (size == sect_size) { + /* + * We are covering a whole sector. Thus there is no + * need to bother with the cache while it may still be + * useful for other partial writes. + */ + ret = erase_write (mtd, pos, size, buf); + if (ret) + return ret; + } else { + /* Partial sector: need to use the cache */ + + if (mtdblk->cache_state == STATE_DIRTY && + mtdblk->cache_offset != sect_start) { + ret = write_cached_data(mtdblk); + if (ret) + return ret; + } + + if (mtdblk->cache_state == STATE_EMPTY || + mtdblk->cache_offset != sect_start) { + /* fill the cache with the current sector */ + mtdblk->cache_state = STATE_EMPTY; + ret = mtd_read(mtd, sect_start, sect_size, + &retlen, mtdblk->cache_data); + if (ret && !mtd_is_bitflip(ret)) + return ret; + if (retlen != sect_size) + return -EIO; + + mtdblk->cache_offset = sect_start; + mtdblk->cache_size = sect_size; + mtdblk->cache_state = STATE_CLEAN; + } + + /* write data to our local cache */ + memcpy (mtdblk->cache_data + offset, buf, size); + mtdblk->cache_state = STATE_DIRTY; + } + + buf += size; + pos += size; + len -= size; + } + + return 0; +} + + +static int do_cached_read (struct mtdblk_dev *mtdblk, unsigned long pos, + int len, char *buf) +{ + struct mtd_info *mtd = mtdblk->mbd.mtd; + unsigned int sect_size = mtdblk->cache_size; + size_t retlen; + int ret; + + pr_debug("mtdblock: read on \"%s\" at 0x%lx, size 0x%x\n", + mtd->name, pos, len); + + if (!sect_size) { + ret = mtd_read(mtd, pos, len, &retlen, buf); + if (ret && !mtd_is_bitflip(ret)) + return ret; + return 0; + } + + while (len > 0) { + unsigned long sect_start = (pos/sect_size)*sect_size; + unsigned int offset = pos - sect_start; + unsigned int size = sect_size - offset; + if (size > len) + size = len; + + /* + * Check if the requested data is already cached + * Read the requested amount of data from our internal cache if it + * contains what we want, otherwise we read the data directly + * from flash. + */ + if (mtdblk->cache_state != STATE_EMPTY && + mtdblk->cache_offset == sect_start) { + memcpy (buf, mtdblk->cache_data + offset, size); + } else { + ret = mtd_read(mtd, pos, size, &retlen, buf); + if (ret && !mtd_is_bitflip(ret)) + return ret; + if (retlen != size) + return -EIO; + } + + buf += size; + pos += size; + len -= size; + } + + return 0; +} + +static int mtdblock_readsect(struct mtd_blktrans_dev *dev, + unsigned long block, char *buf) +{ + struct mtdblk_dev *mtdblk = container_of(dev, struct mtdblk_dev, mbd); + return do_cached_read(mtdblk, block<<9, 512, buf); +} + +static int mtdblock_writesect(struct mtd_blktrans_dev *dev, + unsigned long block, char *buf) +{ + struct mtdblk_dev *mtdblk = container_of(dev, struct mtdblk_dev, mbd); + if (unlikely(!mtdblk->cache_data && mtdblk->cache_size)) { + mtdblk->cache_data = vmalloc(mtdblk->mbd.mtd->erasesize); + if (!mtdblk->cache_data) + return -EINTR; + /* -EINTR is not really correct, but it is the best match + * documented in man 2 write for all cases. We could also + * return -EAGAIN sometimes, but why bother? + */ + } + return do_cached_write(mtdblk, block<<9, 512, buf); +} + +static int mtdblock_open(struct mtd_blktrans_dev *mbd) +{ + struct mtdblk_dev *mtdblk = container_of(mbd, struct mtdblk_dev, mbd); + + pr_debug("mtdblock_open\n"); + + if (mtdblk->count) { + mtdblk->count++; + return 0; + } + + if (mtd_type_is_nand(mbd->mtd)) + pr_warn_ratelimited("%s: MTD device '%s' is NAND, please consider using UBI block devices instead.\n", + mbd->tr->name, mbd->mtd->name); + + /* OK, it's not open. Create cache info for it */ + mtdblk->count = 1; + mutex_init(&mtdblk->cache_mutex); + mtdblk->cache_state = STATE_EMPTY; + if (!(mbd->mtd->flags & MTD_NO_ERASE) && mbd->mtd->erasesize) { + mtdblk->cache_size = mbd->mtd->erasesize; + mtdblk->cache_data = NULL; + } + + pr_debug("ok\n"); + + return 0; +} + +static void mtdblock_release(struct mtd_blktrans_dev *mbd) +{ + struct mtdblk_dev *mtdblk = container_of(mbd, struct mtdblk_dev, mbd); + + pr_debug("mtdblock_release\n"); + + mutex_lock(&mtdblk->cache_mutex); + write_cached_data(mtdblk); + mutex_unlock(&mtdblk->cache_mutex); + + if (!--mtdblk->count) { + /* + * It was the last usage. Free the cache, but only sync if + * opened for writing. + */ + if (mbd->writable) + mtd_sync(mbd->mtd); + vfree(mtdblk->cache_data); + } + + pr_debug("ok\n"); +} + +static int mtdblock_flush(struct mtd_blktrans_dev *dev) +{ + struct mtdblk_dev *mtdblk = container_of(dev, struct mtdblk_dev, mbd); + int ret; + + mutex_lock(&mtdblk->cache_mutex); + ret = write_cached_data(mtdblk); + mutex_unlock(&mtdblk->cache_mutex); + mtd_sync(dev->mtd); + return ret; +} + +static void mtdblock_add_mtd(struct mtd_blktrans_ops *tr, struct mtd_info *mtd) +{ + struct mtdblk_dev *dev = kzalloc(sizeof(*dev), GFP_KERNEL); + + if (!dev) + return; + + dev->mbd.mtd = mtd; + dev->mbd.devnum = mtd->index; + + dev->mbd.size = mtd->size >> 9; + dev->mbd.tr = tr; + + if (!(mtd->flags & MTD_WRITEABLE)) + dev->mbd.readonly = 1; + + if (add_mtd_blktrans_dev(&dev->mbd)) + kfree(dev); +} + +static void mtdblock_remove_dev(struct mtd_blktrans_dev *dev) +{ + del_mtd_blktrans_dev(dev); +} + +static struct mtd_blktrans_ops mtdblock_tr = { + .name = "mtdblock", + .major = MTD_BLOCK_MAJOR, + .part_bits = 0, + .blksize = 512, + .open = mtdblock_open, + .flush = mtdblock_flush, + .release = mtdblock_release, + .readsect = mtdblock_readsect, + .writesect = mtdblock_writesect, + .add_mtd = mtdblock_add_mtd, + .remove_dev = mtdblock_remove_dev, + .owner = THIS_MODULE, +}; + +module_mtd_blktrans(mtdblock_tr); + +MODULE_LICENSE("GPL"); +MODULE_AUTHOR("Nicolas Pitre <nico@fluxnic.net> et al."); +MODULE_DESCRIPTION("Caching read/erase/writeback block device emulation access to MTD devices"); diff --git a/drivers/mtd/mtdblock_ro.c b/drivers/mtd/mtdblock_ro.c new file mode 100644 index 0000000000..ef6299af60 --- /dev/null +++ b/drivers/mtd/mtdblock_ro.c @@ -0,0 +1,80 @@ +// SPDX-License-Identifier: GPL-2.0-or-later +/* + * Simple read-only (writable only for RAM) mtdblock driver + * + * Copyright © 2001-2010 David Woodhouse <dwmw2@infradead.org> + */ + +#include <linux/init.h> +#include <linux/slab.h> +#include <linux/mtd/mtd.h> +#include <linux/mtd/blktrans.h> +#include <linux/module.h> +#include <linux/major.h> + +static int mtdblock_readsect(struct mtd_blktrans_dev *dev, + unsigned long block, char *buf) +{ + size_t retlen; + int err; + + err = mtd_read(dev->mtd, (block * 512), 512, &retlen, buf); + if (err && !mtd_is_bitflip(err)) + return 1; + return 0; +} + +static int mtdblock_writesect(struct mtd_blktrans_dev *dev, + unsigned long block, char *buf) +{ + size_t retlen; + + if (mtd_write(dev->mtd, (block * 512), 512, &retlen, buf)) + return 1; + return 0; +} + +static void mtdblock_add_mtd(struct mtd_blktrans_ops *tr, struct mtd_info *mtd) +{ + struct mtd_blktrans_dev *dev = kzalloc(sizeof(*dev), GFP_KERNEL); + + if (!dev) + return; + + dev->mtd = mtd; + dev->devnum = mtd->index; + + dev->size = mtd->size >> 9; + dev->tr = tr; + dev->readonly = 1; + + if (mtd_type_is_nand(mtd)) + pr_warn_ratelimited("%s: MTD device '%s' is NAND, please consider using UBI block devices instead.\n", + tr->name, mtd->name); + + if (add_mtd_blktrans_dev(dev)) + kfree(dev); +} + +static void mtdblock_remove_dev(struct mtd_blktrans_dev *dev) +{ + del_mtd_blktrans_dev(dev); +} + +static struct mtd_blktrans_ops mtdblock_tr = { + .name = "mtdblock", + .major = MTD_BLOCK_MAJOR, + .part_bits = 0, + .blksize = 512, + .readsect = mtdblock_readsect, + .writesect = mtdblock_writesect, + .add_mtd = mtdblock_add_mtd, + .remove_dev = mtdblock_remove_dev, + .owner = THIS_MODULE, +}; + +module_mtd_blktrans(mtdblock_tr); + +MODULE_LICENSE("GPL"); +MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>"); +MODULE_DESCRIPTION("Simple read-only block device emulation access to MTD devices"); diff --git a/drivers/mtd/mtdchar.c b/drivers/mtd/mtdchar.c new file mode 100644 index 0000000000..8dc4f5c493 --- /dev/null +++ b/drivers/mtd/mtdchar.c @@ -0,0 +1,1439 @@ +// SPDX-License-Identifier: GPL-2.0-or-later +/* + * Copyright © 1999-2010 David Woodhouse <dwmw2@infradead.org> + */ + +#include <linux/device.h> +#include <linux/fs.h> +#include <linux/mm.h> +#include <linux/err.h> +#include <linux/init.h> +#include <linux/kernel.h> +#include <linux/module.h> +#include <linux/slab.h> +#include <linux/sched.h> +#include <linux/mutex.h> +#include <linux/backing-dev.h> +#include <linux/compat.h> +#include <linux/mount.h> +#include <linux/blkpg.h> +#include <linux/magic.h> +#include <linux/major.h> +#include <linux/mtd/mtd.h> +#include <linux/mtd/partitions.h> +#include <linux/mtd/map.h> + +#include <linux/uaccess.h> + +#include "mtdcore.h" + +/* + * Data structure to hold the pointer to the mtd device as well + * as mode information of various use cases. + */ +struct mtd_file_info { + struct mtd_info *mtd; + enum mtd_file_modes mode; +}; + +static loff_t mtdchar_lseek(struct file *file, loff_t offset, int orig) +{ + struct mtd_file_info *mfi = file->private_data; + return fixed_size_llseek(file, offset, orig, mfi->mtd->size); +} + +static int mtdchar_open(struct inode *inode, struct file *file) +{ + int minor = iminor(inode); + int devnum = minor >> 1; + int ret = 0; + struct mtd_info *mtd; + struct mtd_file_info *mfi; + + pr_debug("MTD_open\n"); + + /* You can't open the RO devices RW */ + if ((file->f_mode & FMODE_WRITE) && (minor & 1)) + return -EACCES; + + mtd = get_mtd_device(NULL, devnum); + + if (IS_ERR(mtd)) + return PTR_ERR(mtd); + + if (mtd->type == MTD_ABSENT) { + ret = -ENODEV; + goto out1; + } + + /* You can't open it RW if it's not a writeable device */ + if ((file->f_mode & FMODE_WRITE) && !(mtd->flags & MTD_WRITEABLE)) { + ret = -EACCES; + goto out1; + } + + mfi = kzalloc(sizeof(*mfi), GFP_KERNEL); + if (!mfi) { + ret = -ENOMEM; + goto out1; + } + mfi->mtd = mtd; + file->private_data = mfi; + return 0; + +out1: + put_mtd_device(mtd); + return ret; +} /* mtdchar_open */ + +/*====================================================================*/ + +static int mtdchar_close(struct inode *inode, struct file *file) +{ + struct mtd_file_info *mfi = file->private_data; + struct mtd_info *mtd = mfi->mtd; + + pr_debug("MTD_close\n"); + + /* Only sync if opened RW */ + if ((file->f_mode & FMODE_WRITE)) + mtd_sync(mtd); + + put_mtd_device(mtd); + file->private_data = NULL; + kfree(mfi); + + return 0; +} /* mtdchar_close */ + +/* Back in June 2001, dwmw2 wrote: + * + * FIXME: This _really_ needs to die. In 2.5, we should lock the + * userspace buffer down and use it directly with readv/writev. + * + * The implementation below, using mtd_kmalloc_up_to, mitigates + * allocation failures when the system is under low-memory situations + * or if memory is highly fragmented at the cost of reducing the + * performance of the requested transfer due to a smaller buffer size. + * + * A more complex but more memory-efficient implementation based on + * get_user_pages and iovecs to cover extents of those pages is a + * longer-term goal, as intimated by dwmw2 above. However, for the + * write case, this requires yet more complex head and tail transfer + * handling when those head and tail offsets and sizes are such that + * alignment requirements are not met in the NAND subdriver. + */ + +static ssize_t mtdchar_read(struct file *file, char __user *buf, size_t count, + loff_t *ppos) +{ + struct mtd_file_info *mfi = file->private_data; + struct mtd_info *mtd = mfi->mtd; + size_t retlen; + size_t total_retlen=0; + int ret=0; + int len; + size_t size = count; + char *kbuf; + + pr_debug("MTD_read\n"); + + if (*ppos + count > mtd->size) { + if (*ppos < mtd->size) + count = mtd->size - *ppos; + else + count = 0; + } + + if (!count) + return 0; + + kbuf = mtd_kmalloc_up_to(mtd, &size); + if (!kbuf) + return -ENOMEM; + + while (count) { + len = min_t(size_t, count, size); + + switch (mfi->mode) { + case MTD_FILE_MODE_OTP_FACTORY: + ret = mtd_read_fact_prot_reg(mtd, *ppos, len, + &retlen, kbuf); + break; + case MTD_FILE_MODE_OTP_USER: + ret = mtd_read_user_prot_reg(mtd, *ppos, len, + &retlen, kbuf); + break; + case MTD_FILE_MODE_RAW: + { + struct mtd_oob_ops ops = {}; + + ops.mode = MTD_OPS_RAW; + ops.datbuf = kbuf; + ops.oobbuf = NULL; + ops.len = len; + + ret = mtd_read_oob(mtd, *ppos, &ops); + retlen = ops.retlen; + break; + } + default: + ret = mtd_read(mtd, *ppos, len, &retlen, kbuf); + } + /* Nand returns -EBADMSG on ECC errors, but it returns + * the data. For our userspace tools it is important + * to dump areas with ECC errors! + * For kernel internal usage it also might return -EUCLEAN + * to signal the caller that a bitflip has occurred and has + * been corrected by the ECC algorithm. + * Userspace software which accesses NAND this way + * must be aware of the fact that it deals with NAND + */ + if (!ret || mtd_is_bitflip_or_eccerr(ret)) { + *ppos += retlen; + if (copy_to_user(buf, kbuf, retlen)) { + kfree(kbuf); + return -EFAULT; + } + else + total_retlen += retlen; + + count -= retlen; + buf += retlen; + if (retlen == 0) + count = 0; + } + else { + kfree(kbuf); + return ret; + } + + } + + kfree(kbuf); + return total_retlen; +} /* mtdchar_read */ + +static ssize_t mtdchar_write(struct file *file, const char __user *buf, size_t count, + loff_t *ppos) +{ + struct mtd_file_info *mfi = file->private_data; + struct mtd_info *mtd = mfi->mtd; + size_t size = count; + char *kbuf; + size_t retlen; + size_t total_retlen=0; + int ret=0; + int len; + + pr_debug("MTD_write\n"); + + if (*ppos >= mtd->size) + return -ENOSPC; + + if (*ppos + count > mtd->size) + count = mtd->size - *ppos; + + if (!count) + return 0; + + kbuf = mtd_kmalloc_up_to(mtd, &size); + if (!kbuf) + return -ENOMEM; + + while (count) { + len = min_t(size_t, count, size); + + if (copy_from_user(kbuf, buf, len)) { + kfree(kbuf); + return -EFAULT; + } + + switch (mfi->mode) { + case MTD_FILE_MODE_OTP_FACTORY: + ret = -EROFS; + break; + case MTD_FILE_MODE_OTP_USER: + ret = mtd_write_user_prot_reg(mtd, *ppos, len, + &retlen, kbuf); + break; + + case MTD_FILE_MODE_RAW: + { + struct mtd_oob_ops ops = {}; + + ops.mode = MTD_OPS_RAW; + ops.datbuf = kbuf; + ops.oobbuf = NULL; + ops.ooboffs = 0; + ops.len = len; + + ret = mtd_write_oob(mtd, *ppos, &ops); + retlen = ops.retlen; + break; + } + + default: + ret = mtd_write(mtd, *ppos, len, &retlen, kbuf); + } + + /* + * Return -ENOSPC only if no data could be written at all. + * Otherwise just return the number of bytes that actually + * have been written. + */ + if ((ret == -ENOSPC) && (total_retlen)) + break; + + if (!ret) { + *ppos += retlen; + total_retlen += retlen; + count -= retlen; + buf += retlen; + } + else { + kfree(kbuf); + return ret; + } + } + + kfree(kbuf); + return total_retlen; +} /* mtdchar_write */ + +/*====================================================================== + + IOCTL calls for getting device parameters. + +======================================================================*/ + +static int otp_select_filemode(struct mtd_file_info *mfi, int mode) +{ + struct mtd_info *mtd = mfi->mtd; + size_t retlen; + + switch (mode) { + case MTD_OTP_FACTORY: + if (mtd_read_fact_prot_reg(mtd, -1, 0, &retlen, NULL) == + -EOPNOTSUPP) + return -EOPNOTSUPP; + + mfi->mode = MTD_FILE_MODE_OTP_FACTORY; + break; + case MTD_OTP_USER: + if (mtd_read_user_prot_reg(mtd, -1, 0, &retlen, NULL) == + -EOPNOTSUPP) + return -EOPNOTSUPP; + + mfi->mode = MTD_FILE_MODE_OTP_USER; + break; + case MTD_OTP_OFF: + mfi->mode = MTD_FILE_MODE_NORMAL; + break; + default: + return -EINVAL; + } + + return 0; +} + +static int mtdchar_writeoob(struct file *file, struct mtd_info *mtd, + uint64_t start, uint32_t length, void __user *ptr, + uint32_t __user *retp) +{ + struct mtd_info *master = mtd_get_master(mtd); + struct mtd_file_info *mfi = file->private_data; + struct mtd_oob_ops ops = {}; + uint32_t retlen; + int ret = 0; + + if (length > 4096) + return -EINVAL; + + if (!master->_write_oob) + return -EOPNOTSUPP; + + ops.ooblen = length; + ops.ooboffs = start & (mtd->writesize - 1); + ops.datbuf = NULL; + ops.mode = (mfi->mode == MTD_FILE_MODE_RAW) ? MTD_OPS_RAW : + MTD_OPS_PLACE_OOB; + + if (ops.ooboffs && ops.ooblen > (mtd->oobsize - ops.ooboffs)) + return -EINVAL; + + ops.oobbuf = memdup_user(ptr, length); + if (IS_ERR(ops.oobbuf)) + return PTR_ERR(ops.oobbuf); + + start &= ~((uint64_t)mtd->writesize - 1); + ret = mtd_write_oob(mtd, start, &ops); + + if (ops.oobretlen > 0xFFFFFFFFU) + ret = -EOVERFLOW; + retlen = ops.oobretlen; + if (copy_to_user(retp, &retlen, sizeof(length))) + ret = -EFAULT; + + kfree(ops.oobbuf); + return ret; +} + +static int mtdchar_readoob(struct file *file, struct mtd_info *mtd, + uint64_t start, uint32_t length, void __user *ptr, + uint32_t __user *retp) +{ + struct mtd_file_info *mfi = file->private_data; + struct mtd_oob_ops ops = {}; + int ret = 0; + + if (length > 4096) + return -EINVAL; + + ops.ooblen = length; + ops.ooboffs = start & (mtd->writesize - 1); + ops.datbuf = NULL; + ops.mode = (mfi->mode == MTD_FILE_MODE_RAW) ? MTD_OPS_RAW : + MTD_OPS_PLACE_OOB; + + if (ops.ooboffs && ops.ooblen > (mtd->oobsize - ops.ooboffs)) + return -EINVAL; + + ops.oobbuf = kmalloc(length, GFP_KERNEL); + if (!ops.oobbuf) + return -ENOMEM; + + start &= ~((uint64_t)mtd->writesize - 1); + ret = mtd_read_oob(mtd, start, &ops); + + if (put_user(ops.oobretlen, retp)) + ret = -EFAULT; + else if (ops.oobretlen && copy_to_user(ptr, ops.oobbuf, + ops.oobretlen)) + ret = -EFAULT; + + kfree(ops.oobbuf); + + /* + * NAND returns -EBADMSG on ECC errors, but it returns the OOB + * data. For our userspace tools it is important to dump areas + * with ECC errors! + * For kernel internal usage it also might return -EUCLEAN + * to signal the caller that a bitflip has occurred and has + * been corrected by the ECC algorithm. + * + * Note: currently the standard NAND function, nand_read_oob_std, + * does not calculate ECC for the OOB area, so do not rely on + * this behavior unless you have replaced it with your own. + */ + if (mtd_is_bitflip_or_eccerr(ret)) + return 0; + + return ret; +} + +/* + * Copies (and truncates, if necessary) OOB layout information to the + * deprecated layout struct, nand_ecclayout_user. This is necessary only to + * support the deprecated API ioctl ECCGETLAYOUT while allowing all new + * functionality to use mtd_ooblayout_ops flexibly (i.e. mtd_ooblayout_ops + * can describe any kind of OOB layout with almost zero overhead from a + * memory usage point of view). + */ +static int shrink_ecclayout(struct mtd_info *mtd, + struct nand_ecclayout_user *to) +{ + struct mtd_oob_region oobregion; + int i, section = 0, ret; + + if (!mtd || !to) + return -EINVAL; + + memset(to, 0, sizeof(*to)); + + to->eccbytes = 0; + for (i = 0; i < MTD_MAX_ECCPOS_ENTRIES;) { + u32 eccpos; + + ret = mtd_ooblayout_ecc(mtd, section++, &oobregion); + if (ret < 0) { + if (ret != -ERANGE) + return ret; + + break; + } + + eccpos = oobregion.offset; + for (; i < MTD_MAX_ECCPOS_ENTRIES && + eccpos < oobregion.offset + oobregion.length; i++) { + to->eccpos[i] = eccpos++; + to->eccbytes++; + } + } + + for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES; i++) { + ret = mtd_ooblayout_free(mtd, i, &oobregion); + if (ret < 0) { + if (ret != -ERANGE) + return ret; + + break; + } + + to->oobfree[i].offset = oobregion.offset; + to->oobfree[i].length = oobregion.length; + to->oobavail += to->oobfree[i].length; + } + + return 0; +} + +static int get_oobinfo(struct mtd_info *mtd, struct nand_oobinfo *to) +{ + struct mtd_oob_region oobregion; + int i, section = 0, ret; + + if (!mtd || !to) + return -EINVAL; + + memset(to, 0, sizeof(*to)); + + to->eccbytes = 0; + for (i = 0; i < ARRAY_SIZE(to->eccpos);) { + u32 eccpos; + + ret = mtd_ooblayout_ecc(mtd, section++, &oobregion); + if (ret < 0) { + if (ret != -ERANGE) + return ret; + + break; + } + + if (oobregion.length + i > ARRAY_SIZE(to->eccpos)) + return -EINVAL; + + eccpos = oobregion.offset; + for (; eccpos < oobregion.offset + oobregion.length; i++) { + to->eccpos[i] = eccpos++; + to->eccbytes++; + } + } + + for (i = 0; i < 8; i++) { + ret = mtd_ooblayout_free(mtd, i, &oobregion); + if (ret < 0) { + if (ret != -ERANGE) + return ret; + + break; + } + + to->oobfree[i][0] = oobregion.offset; + to->oobfree[i][1] = oobregion.length; + } + + to->useecc = MTD_NANDECC_AUTOPLACE; + + return 0; +} + +static int mtdchar_blkpg_ioctl(struct mtd_info *mtd, + struct blkpg_ioctl_arg *arg) +{ + struct blkpg_partition p; + + if (!capable(CAP_SYS_ADMIN)) + return -EPERM; + + if (copy_from_user(&p, arg->data, sizeof(p))) + return -EFAULT; + + switch (arg->op) { + case BLKPG_ADD_PARTITION: + + /* Only master mtd device must be used to add partitions */ + if (mtd_is_partition(mtd)) + return -EINVAL; + + /* Sanitize user input */ + p.devname[BLKPG_DEVNAMELTH - 1] = '\0'; + + return mtd_add_partition(mtd, p.devname, p.start, p.length); + + case BLKPG_DEL_PARTITION: + + if (p.pno < 0) + return -EINVAL; + + return mtd_del_partition(mtd, p.pno); + + default: + return -EINVAL; + } +} + +static void adjust_oob_length(struct mtd_info *mtd, uint64_t start, + struct mtd_oob_ops *ops) +{ + uint32_t start_page, end_page; + u32 oob_per_page; + + if (ops->len == 0 || ops->ooblen == 0) + return; + + start_page = mtd_div_by_ws(start, mtd); + end_page = mtd_div_by_ws(start + ops->len - 1, mtd); + oob_per_page = mtd_oobavail(mtd, ops); + + ops->ooblen = min_t(size_t, ops->ooblen, + (end_page - start_page + 1) * oob_per_page); +} + +static noinline_for_stack int +mtdchar_write_ioctl(struct mtd_info *mtd, struct mtd_write_req __user *argp) +{ + struct mtd_info *master = mtd_get_master(mtd); + struct mtd_write_req req; + const void __user *usr_data, *usr_oob; + uint8_t *datbuf = NULL, *oobbuf = NULL; + size_t datbuf_len, oobbuf_len; + int ret = 0; + + if (copy_from_user(&req, argp, sizeof(req))) + return -EFAULT; + + usr_data = (const void __user *)(uintptr_t)req.usr_data; + usr_oob = (const void __user *)(uintptr_t)req.usr_oob; + + if (!master->_write_oob) + return -EOPNOTSUPP; + + if (!usr_data) + req.len = 0; + + if (!usr_oob) + req.ooblen = 0; + + req.len &= 0xffffffff; + req.ooblen &= 0xffffffff; + + if (req.start + req.len > mtd->size) + return -EINVAL; + + datbuf_len = min_t(size_t, req.len, mtd->erasesize); + if (datbuf_len > 0) { + datbuf = kvmalloc(datbuf_len, GFP_KERNEL); + if (!datbuf) + return -ENOMEM; + } + + oobbuf_len = min_t(size_t, req.ooblen, mtd->erasesize); + if (oobbuf_len > 0) { + oobbuf = kvmalloc(oobbuf_len, GFP_KERNEL); + if (!oobbuf) { + kvfree(datbuf); + return -ENOMEM; + } + } + + while (req.len > 0 || (!usr_data && req.ooblen > 0)) { + struct mtd_oob_ops ops = { + .mode = req.mode, + .len = min_t(size_t, req.len, datbuf_len), + .ooblen = min_t(size_t, req.ooblen, oobbuf_len), + .datbuf = datbuf, + .oobbuf = oobbuf, + }; + + /* + * Shorten non-page-aligned, eraseblock-sized writes so that + * the write ends on an eraseblock boundary. This is necessary + * for adjust_oob_length() to properly handle non-page-aligned + * writes. + */ + if (ops.len == mtd->erasesize) + ops.len -= mtd_mod_by_ws(req.start + ops.len, mtd); + + /* + * For writes which are not OOB-only, adjust the amount of OOB + * data written according to the number of data pages written. + * This is necessary to prevent OOB data from being skipped + * over in data+OOB writes requiring multiple mtd_write_oob() + * calls to be completed. + */ + adjust_oob_length(mtd, req.start, &ops); + + if (copy_from_user(datbuf, usr_data, ops.len) || + copy_from_user(oobbuf, usr_oob, ops.ooblen)) { + ret = -EFAULT; + break; + } + + ret = mtd_write_oob(mtd, req.start, &ops); + if (ret) + break; + + req.start += ops.retlen; + req.len -= ops.retlen; + usr_data += ops.retlen; + + req.ooblen -= ops.oobretlen; + usr_oob += ops.oobretlen; + } + + kvfree(datbuf); + kvfree(oobbuf); + + return ret; +} + +static noinline_for_stack int +mtdchar_read_ioctl(struct mtd_info *mtd, struct mtd_read_req __user *argp) +{ + struct mtd_info *master = mtd_get_master(mtd); + struct mtd_read_req req; + void __user *usr_data, *usr_oob; + uint8_t *datbuf = NULL, *oobbuf = NULL; + size_t datbuf_len, oobbuf_len; + size_t orig_len, orig_ooblen; + int ret = 0; + + if (copy_from_user(&req, argp, sizeof(req))) + return -EFAULT; + + orig_len = req.len; + orig_ooblen = req.ooblen; + + usr_data = (void __user *)(uintptr_t)req.usr_data; + usr_oob = (void __user *)(uintptr_t)req.usr_oob; + + if (!master->_read_oob) + return -EOPNOTSUPP; + + if (!usr_data) + req.len = 0; + + if (!usr_oob) + req.ooblen = 0; + + req.ecc_stats.uncorrectable_errors = 0; + req.ecc_stats.corrected_bitflips = 0; + req.ecc_stats.max_bitflips = 0; + + req.len &= 0xffffffff; + req.ooblen &= 0xffffffff; + + if (req.start + req.len > mtd->size) { + ret = -EINVAL; + goto out; + } + + datbuf_len = min_t(size_t, req.len, mtd->erasesize); + if (datbuf_len > 0) { + datbuf = kvmalloc(datbuf_len, GFP_KERNEL); + if (!datbuf) { + ret = -ENOMEM; + goto out; + } + } + + oobbuf_len = min_t(size_t, req.ooblen, mtd->erasesize); + if (oobbuf_len > 0) { + oobbuf = kvmalloc(oobbuf_len, GFP_KERNEL); + if (!oobbuf) { + ret = -ENOMEM; + goto out; + } + } + + while (req.len > 0 || (!usr_data && req.ooblen > 0)) { + struct mtd_req_stats stats; + struct mtd_oob_ops ops = { + .mode = req.mode, + .len = min_t(size_t, req.len, datbuf_len), + .ooblen = min_t(size_t, req.ooblen, oobbuf_len), + .datbuf = datbuf, + .oobbuf = oobbuf, + .stats = &stats, + }; + + /* + * Shorten non-page-aligned, eraseblock-sized reads so that the + * read ends on an eraseblock boundary. This is necessary in + * order to prevent OOB data for some pages from being + * duplicated in the output of non-page-aligned reads requiring + * multiple mtd_read_oob() calls to be completed. + */ + if (ops.len == mtd->erasesize) + ops.len -= mtd_mod_by_ws(req.start + ops.len, mtd); + + ret = mtd_read_oob(mtd, (loff_t)req.start, &ops); + + req.ecc_stats.uncorrectable_errors += + stats.uncorrectable_errors; + req.ecc_stats.corrected_bitflips += stats.corrected_bitflips; + req.ecc_stats.max_bitflips = + max(req.ecc_stats.max_bitflips, stats.max_bitflips); + + if (ret && !mtd_is_bitflip_or_eccerr(ret)) + break; + + if (copy_to_user(usr_data, ops.datbuf, ops.retlen) || + copy_to_user(usr_oob, ops.oobbuf, ops.oobretlen)) { + ret = -EFAULT; + break; + } + + req.start += ops.retlen; + req.len -= ops.retlen; + usr_data += ops.retlen; + + req.ooblen -= ops.oobretlen; + usr_oob += ops.oobretlen; + } + + /* + * As multiple iterations of the above loop (and therefore multiple + * mtd_read_oob() calls) may be necessary to complete the read request, + * adjust the final return code to ensure it accounts for all detected + * ECC errors. + */ + if (!ret || mtd_is_bitflip(ret)) { + if (req.ecc_stats.uncorrectable_errors > 0) + ret = -EBADMSG; + else if (req.ecc_stats.corrected_bitflips > 0) + ret = -EUCLEAN; + } + +out: + req.len = orig_len - req.len; + req.ooblen = orig_ooblen - req.ooblen; + + if (copy_to_user(argp, &req, sizeof(req))) + ret = -EFAULT; + + kvfree(datbuf); + kvfree(oobbuf); + + return ret; +} + +static int mtdchar_ioctl(struct file *file, u_int cmd, u_long arg) +{ + struct mtd_file_info *mfi = file->private_data; + struct mtd_info *mtd = mfi->mtd; + struct mtd_info *master = mtd_get_master(mtd); + void __user *argp = (void __user *)arg; + int ret = 0; + struct mtd_info_user info; + + pr_debug("MTD_ioctl\n"); + + /* + * Check the file mode to require "dangerous" commands to have write + * permissions. + */ + switch (cmd) { + /* "safe" commands */ + case MEMGETREGIONCOUNT: + case MEMGETREGIONINFO: + case MEMGETINFO: + case MEMREADOOB: + case MEMREADOOB64: + case MEMREAD: + case MEMISLOCKED: + case MEMGETOOBSEL: + case MEMGETBADBLOCK: + case OTPSELECT: + case OTPGETREGIONCOUNT: + case OTPGETREGIONINFO: + case ECCGETLAYOUT: + case ECCGETSTATS: + case MTDFILEMODE: + case BLKPG: + case BLKRRPART: + break; + + /* "dangerous" commands */ + case MEMERASE: + case MEMERASE64: + case MEMLOCK: + case MEMUNLOCK: + case MEMSETBADBLOCK: + case MEMWRITEOOB: + case MEMWRITEOOB64: + case MEMWRITE: + case OTPLOCK: + case OTPERASE: + if (!(file->f_mode & FMODE_WRITE)) + return -EPERM; + break; + + default: + return -ENOTTY; + } + + switch (cmd) { + case MEMGETREGIONCOUNT: + if (copy_to_user(argp, &(mtd->numeraseregions), sizeof(int))) + return -EFAULT; + break; + + case MEMGETREGIONINFO: + { + uint32_t ur_idx; + struct mtd_erase_region_info *kr; + struct region_info_user __user *ur = argp; + + if (get_user(ur_idx, &(ur->regionindex))) + return -EFAULT; + + if (ur_idx >= mtd->numeraseregions) + return -EINVAL; + + kr = &(mtd->eraseregions[ur_idx]); + + if (put_user(kr->offset, &(ur->offset)) + || put_user(kr->erasesize, &(ur->erasesize)) + || put_user(kr->numblocks, &(ur->numblocks))) + return -EFAULT; + + break; + } + + case MEMGETINFO: + memset(&info, 0, sizeof(info)); + info.type = mtd->type; + info.flags = mtd->flags; + info.size = mtd->size; + info.erasesize = mtd->erasesize; + info.writesize = mtd->writesize; + info.oobsize = mtd->oobsize; + /* The below field is obsolete */ + info.padding = 0; + if (copy_to_user(argp, &info, sizeof(struct mtd_info_user))) + return -EFAULT; + break; + + case MEMERASE: + case MEMERASE64: + { + struct erase_info *erase; + + erase=kzalloc(sizeof(struct erase_info),GFP_KERNEL); + if (!erase) + ret = -ENOMEM; + else { + if (cmd == MEMERASE64) { + struct erase_info_user64 einfo64; + + if (copy_from_user(&einfo64, argp, + sizeof(struct erase_info_user64))) { + kfree(erase); + return -EFAULT; + } + erase->addr = einfo64.start; + erase->len = einfo64.length; + } else { + struct erase_info_user einfo32; + + if (copy_from_user(&einfo32, argp, + sizeof(struct erase_info_user))) { + kfree(erase); + return -EFAULT; + } + erase->addr = einfo32.start; + erase->len = einfo32.length; + } + + ret = mtd_erase(mtd, erase); + kfree(erase); + } + break; + } + + case MEMWRITEOOB: + { + struct mtd_oob_buf buf; + struct mtd_oob_buf __user *buf_user = argp; + + /* NOTE: writes return length to buf_user->length */ + if (copy_from_user(&buf, argp, sizeof(buf))) + ret = -EFAULT; + else + ret = mtdchar_writeoob(file, mtd, buf.start, buf.length, + buf.ptr, &buf_user->length); + break; + } + + case MEMREADOOB: + { + struct mtd_oob_buf buf; + struct mtd_oob_buf __user *buf_user = argp; + + /* NOTE: writes return length to buf_user->start */ + if (copy_from_user(&buf, argp, sizeof(buf))) + ret = -EFAULT; + else + ret = mtdchar_readoob(file, mtd, buf.start, buf.length, + buf.ptr, &buf_user->start); + break; + } + + case MEMWRITEOOB64: + { + struct mtd_oob_buf64 buf; + struct mtd_oob_buf64 __user *buf_user = argp; + + if (copy_from_user(&buf, argp, sizeof(buf))) + ret = -EFAULT; + else + ret = mtdchar_writeoob(file, mtd, buf.start, buf.length, + (void __user *)(uintptr_t)buf.usr_ptr, + &buf_user->length); + break; + } + + case MEMREADOOB64: + { + struct mtd_oob_buf64 buf; + struct mtd_oob_buf64 __user *buf_user = argp; + + if (copy_from_user(&buf, argp, sizeof(buf))) + ret = -EFAULT; + else + ret = mtdchar_readoob(file, mtd, buf.start, buf.length, + (void __user *)(uintptr_t)buf.usr_ptr, + &buf_user->length); + break; + } + + case MEMWRITE: + { + ret = mtdchar_write_ioctl(mtd, + (struct mtd_write_req __user *)arg); + break; + } + + case MEMREAD: + { + ret = mtdchar_read_ioctl(mtd, + (struct mtd_read_req __user *)arg); + break; + } + + case MEMLOCK: + { + struct erase_info_user einfo; + + if (copy_from_user(&einfo, argp, sizeof(einfo))) + return -EFAULT; + + ret = mtd_lock(mtd, einfo.start, einfo.length); + break; + } + + case MEMUNLOCK: + { + struct erase_info_user einfo; + + if (copy_from_user(&einfo, argp, sizeof(einfo))) + return -EFAULT; + + ret = mtd_unlock(mtd, einfo.start, einfo.length); + break; + } + + case MEMISLOCKED: + { + struct erase_info_user einfo; + + if (copy_from_user(&einfo, argp, sizeof(einfo))) + return -EFAULT; + + ret = mtd_is_locked(mtd, einfo.start, einfo.length); + break; + } + + /* Legacy interface */ + case MEMGETOOBSEL: + { + struct nand_oobinfo oi; + + if (!master->ooblayout) + return -EOPNOTSUPP; + + ret = get_oobinfo(mtd, &oi); + if (ret) + return ret; + + if (copy_to_user(argp, &oi, sizeof(struct nand_oobinfo))) + return -EFAULT; + break; + } + + case MEMGETBADBLOCK: + { + loff_t offs; + + if (copy_from_user(&offs, argp, sizeof(loff_t))) + return -EFAULT; + return mtd_block_isbad(mtd, offs); + } + + case MEMSETBADBLOCK: + { + loff_t offs; + + if (copy_from_user(&offs, argp, sizeof(loff_t))) + return -EFAULT; + return mtd_block_markbad(mtd, offs); + } + + case OTPSELECT: + { + int mode; + if (copy_from_user(&mode, argp, sizeof(int))) + return -EFAULT; + + mfi->mode = MTD_FILE_MODE_NORMAL; + + ret = otp_select_filemode(mfi, mode); + + file->f_pos = 0; + break; + } + + case OTPGETREGIONCOUNT: + case OTPGETREGIONINFO: + { + struct otp_info *buf = kmalloc(4096, GFP_KERNEL); + size_t retlen; + if (!buf) + return -ENOMEM; + switch (mfi->mode) { + case MTD_FILE_MODE_OTP_FACTORY: + ret = mtd_get_fact_prot_info(mtd, 4096, &retlen, buf); + break; + case MTD_FILE_MODE_OTP_USER: + ret = mtd_get_user_prot_info(mtd, 4096, &retlen, buf); + break; + default: + ret = -EINVAL; + break; + } + if (!ret) { + if (cmd == OTPGETREGIONCOUNT) { + int nbr = retlen / sizeof(struct otp_info); + ret = copy_to_user(argp, &nbr, sizeof(int)); + } else + ret = copy_to_user(argp, buf, retlen); + if (ret) + ret = -EFAULT; + } + kfree(buf); + break; + } + + case OTPLOCK: + case OTPERASE: + { + struct otp_info oinfo; + + if (mfi->mode != MTD_FILE_MODE_OTP_USER) + return -EINVAL; + if (copy_from_user(&oinfo, argp, sizeof(oinfo))) + return -EFAULT; + if (cmd == OTPLOCK) + ret = mtd_lock_user_prot_reg(mtd, oinfo.start, oinfo.length); + else + ret = mtd_erase_user_prot_reg(mtd, oinfo.start, oinfo.length); + break; + } + + /* This ioctl is being deprecated - it truncates the ECC layout */ + case ECCGETLAYOUT: + { + struct nand_ecclayout_user *usrlay; + + if (!master->ooblayout) + return -EOPNOTSUPP; + + usrlay = kmalloc(sizeof(*usrlay), GFP_KERNEL); + if (!usrlay) + return -ENOMEM; + + shrink_ecclayout(mtd, usrlay); + + if (copy_to_user(argp, usrlay, sizeof(*usrlay))) + ret = -EFAULT; + kfree(usrlay); + break; + } + + case ECCGETSTATS: + { + if (copy_to_user(argp, &mtd->ecc_stats, + sizeof(struct mtd_ecc_stats))) + return -EFAULT; + break; + } + + case MTDFILEMODE: + { + mfi->mode = 0; + + switch(arg) { + case MTD_FILE_MODE_OTP_FACTORY: + case MTD_FILE_MODE_OTP_USER: + ret = otp_select_filemode(mfi, arg); + break; + + case MTD_FILE_MODE_RAW: + if (!mtd_has_oob(mtd)) + return -EOPNOTSUPP; + mfi->mode = arg; + break; + + case MTD_FILE_MODE_NORMAL: + break; + default: + ret = -EINVAL; + } + file->f_pos = 0; + break; + } + + case BLKPG: + { + struct blkpg_ioctl_arg __user *blk_arg = argp; + struct blkpg_ioctl_arg a; + + if (copy_from_user(&a, blk_arg, sizeof(a))) + ret = -EFAULT; + else + ret = mtdchar_blkpg_ioctl(mtd, &a); + break; + } + + case BLKRRPART: + { + /* No reread partition feature. Just return ok */ + ret = 0; + break; + } + } + + return ret; +} /* memory_ioctl */ + +static long mtdchar_unlocked_ioctl(struct file *file, u_int cmd, u_long arg) +{ + struct mtd_file_info *mfi = file->private_data; + struct mtd_info *mtd = mfi->mtd; + struct mtd_info *master = mtd_get_master(mtd); + int ret; + + mutex_lock(&master->master.chrdev_lock); + ret = mtdchar_ioctl(file, cmd, arg); + mutex_unlock(&master->master.chrdev_lock); + + return ret; +} + +#ifdef CONFIG_COMPAT + +struct mtd_oob_buf32 { + u_int32_t start; + u_int32_t length; + compat_caddr_t ptr; /* unsigned char* */ +}; + +#define MEMWRITEOOB32 _IOWR('M', 3, struct mtd_oob_buf32) +#define MEMREADOOB32 _IOWR('M', 4, struct mtd_oob_buf32) + +static long mtdchar_compat_ioctl(struct file *file, unsigned int cmd, + unsigned long arg) +{ + struct mtd_file_info *mfi = file->private_data; + struct mtd_info *mtd = mfi->mtd; + struct mtd_info *master = mtd_get_master(mtd); + void __user *argp = compat_ptr(arg); + int ret = 0; + + mutex_lock(&master->master.chrdev_lock); + + switch (cmd) { + case MEMWRITEOOB32: + { + struct mtd_oob_buf32 buf; + struct mtd_oob_buf32 __user *buf_user = argp; + + if (!(file->f_mode & FMODE_WRITE)) { + ret = -EPERM; + break; + } + + if (copy_from_user(&buf, argp, sizeof(buf))) + ret = -EFAULT; + else + ret = mtdchar_writeoob(file, mtd, buf.start, + buf.length, compat_ptr(buf.ptr), + &buf_user->length); + break; + } + + case MEMREADOOB32: + { + struct mtd_oob_buf32 buf; + struct mtd_oob_buf32 __user *buf_user = argp; + + /* NOTE: writes return length to buf->start */ + if (copy_from_user(&buf, argp, sizeof(buf))) + ret = -EFAULT; + else + ret = mtdchar_readoob(file, mtd, buf.start, + buf.length, compat_ptr(buf.ptr), + &buf_user->start); + break; + } + + case BLKPG: + { + /* Convert from blkpg_compat_ioctl_arg to blkpg_ioctl_arg */ + struct blkpg_compat_ioctl_arg __user *uarg = argp; + struct blkpg_compat_ioctl_arg compat_arg; + struct blkpg_ioctl_arg a; + + if (copy_from_user(&compat_arg, uarg, sizeof(compat_arg))) { + ret = -EFAULT; + break; + } + + memset(&a, 0, sizeof(a)); + a.op = compat_arg.op; + a.flags = compat_arg.flags; + a.datalen = compat_arg.datalen; + a.data = compat_ptr(compat_arg.data); + + ret = mtdchar_blkpg_ioctl(mtd, &a); + break; + } + + default: + ret = mtdchar_ioctl(file, cmd, (unsigned long)argp); + } + + mutex_unlock(&master->master.chrdev_lock); + + return ret; +} + +#endif /* CONFIG_COMPAT */ + +/* + * try to determine where a shared mapping can be made + * - only supported for NOMMU at the moment (MMU can't doesn't copy private + * mappings) + */ +#ifndef CONFIG_MMU +static unsigned long mtdchar_get_unmapped_area(struct file *file, + unsigned long addr, + unsigned long len, + unsigned long pgoff, + unsigned long flags) +{ + struct mtd_file_info *mfi = file->private_data; + struct mtd_info *mtd = mfi->mtd; + unsigned long offset; + int ret; + + if (addr != 0) + return (unsigned long) -EINVAL; + + if (len > mtd->size || pgoff >= (mtd->size >> PAGE_SHIFT)) + return (unsigned long) -EINVAL; + + offset = pgoff << PAGE_SHIFT; + if (offset > mtd->size - len) + return (unsigned long) -EINVAL; + + ret = mtd_get_unmapped_area(mtd, len, offset, flags); + return ret == -EOPNOTSUPP ? -ENODEV : ret; +} + +static unsigned mtdchar_mmap_capabilities(struct file *file) +{ + struct mtd_file_info *mfi = file->private_data; + + return mtd_mmap_capabilities(mfi->mtd); +} +#endif + +/* + * set up a mapping for shared memory segments + */ +static int mtdchar_mmap(struct file *file, struct vm_area_struct *vma) +{ +#ifdef CONFIG_MMU + struct mtd_file_info *mfi = file->private_data; + struct mtd_info *mtd = mfi->mtd; + struct map_info *map = mtd->priv; + + /* This is broken because it assumes the MTD device is map-based + and that mtd->priv is a valid struct map_info. It should be + replaced with something that uses the mtd_get_unmapped_area() + operation properly. */ + if (0 /*mtd->type == MTD_RAM || mtd->type == MTD_ROM*/) { +#ifdef pgprot_noncached + if (file->f_flags & O_DSYNC || map->phys >= __pa(high_memory)) + vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot); +#endif + return vm_iomap_memory(vma, map->phys, map->size); + } + return -ENODEV; +#else + return vma->vm_flags & VM_SHARED ? 0 : -EACCES; +#endif +} + +static const struct file_operations mtd_fops = { + .owner = THIS_MODULE, + .llseek = mtdchar_lseek, + .read = mtdchar_read, + .write = mtdchar_write, + .unlocked_ioctl = mtdchar_unlocked_ioctl, +#ifdef CONFIG_COMPAT + .compat_ioctl = mtdchar_compat_ioctl, +#endif + .open = mtdchar_open, + .release = mtdchar_close, + .mmap = mtdchar_mmap, +#ifndef CONFIG_MMU + .get_unmapped_area = mtdchar_get_unmapped_area, + .mmap_capabilities = mtdchar_mmap_capabilities, +#endif +}; + +int __init init_mtdchar(void) +{ + int ret; + + ret = __register_chrdev(MTD_CHAR_MAJOR, 0, 1 << MINORBITS, + "mtd", &mtd_fops); + if (ret < 0) { + pr_err("Can't allocate major number %d for MTD\n", + MTD_CHAR_MAJOR); + return ret; + } + + return ret; +} + +void __exit cleanup_mtdchar(void) +{ + __unregister_chrdev(MTD_CHAR_MAJOR, 0, 1 << MINORBITS, "mtd"); +} + +MODULE_ALIAS_CHARDEV_MAJOR(MTD_CHAR_MAJOR); diff --git a/drivers/mtd/mtdconcat.c b/drivers/mtd/mtdconcat.c new file mode 100644 index 0000000000..193428de6a --- /dev/null +++ b/drivers/mtd/mtdconcat.c @@ -0,0 +1,914 @@ +// SPDX-License-Identifier: GPL-2.0-or-later +/* + * MTD device concatenation layer + * + * Copyright © 2002 Robert Kaiser <rkaiser@sysgo.de> + * Copyright © 2002-2010 David Woodhouse <dwmw2@infradead.org> + * + * NAND support by Christian Gan <cgan@iders.ca> + */ + +#include <linux/kernel.h> +#include <linux/module.h> +#include <linux/slab.h> +#include <linux/sched.h> +#include <linux/types.h> +#include <linux/backing-dev.h> + +#include <linux/mtd/mtd.h> +#include <linux/mtd/concat.h> + +#include <asm/div64.h> + +/* + * Our storage structure: + * Subdev points to an array of pointers to struct mtd_info objects + * which is allocated along with this structure + * + */ +struct mtd_concat { + struct mtd_info mtd; + int num_subdev; + struct mtd_info **subdev; +}; + +/* + * how to calculate the size required for the above structure, + * including the pointer array subdev points to: + */ +#define SIZEOF_STRUCT_MTD_CONCAT(num_subdev) \ + ((sizeof(struct mtd_concat) + (num_subdev) * sizeof(struct mtd_info *))) + +/* + * Given a pointer to the MTD object in the mtd_concat structure, + * we can retrieve the pointer to that structure with this macro. + */ +#define CONCAT(x) ((struct mtd_concat *)(x)) + +/* + * MTD methods which look up the relevant subdevice, translate the + * effective address and pass through to the subdevice. + */ + +static int +concat_read(struct mtd_info *mtd, loff_t from, size_t len, + size_t * retlen, u_char * buf) +{ + struct mtd_concat *concat = CONCAT(mtd); + int ret = 0, err; + int i; + + for (i = 0; i < concat->num_subdev; i++) { + struct mtd_info *subdev = concat->subdev[i]; + size_t size, retsize; + + if (from >= subdev->size) { + /* Not destined for this subdev */ + size = 0; + from -= subdev->size; + continue; + } + if (from + len > subdev->size) + /* First part goes into this subdev */ + size = subdev->size - from; + else + /* Entire transaction goes into this subdev */ + size = len; + + err = mtd_read(subdev, from, size, &retsize, buf); + + /* Save information about bitflips! */ + if (unlikely(err)) { + if (mtd_is_eccerr(err)) { + mtd->ecc_stats.failed++; + ret = err; + } else if (mtd_is_bitflip(err)) { + mtd->ecc_stats.corrected++; + /* Do not overwrite -EBADMSG !! */ + if (!ret) + ret = err; + } else + return err; + } + + *retlen += retsize; + len -= size; + if (len == 0) + return ret; + + buf += size; + from = 0; + } + return -EINVAL; +} + +static int +concat_panic_write(struct mtd_info *mtd, loff_t to, size_t len, + size_t * retlen, const u_char * buf) +{ + struct mtd_concat *concat = CONCAT(mtd); + int err = -EINVAL; + int i; + for (i = 0; i < concat->num_subdev; i++) { + struct mtd_info *subdev = concat->subdev[i]; + size_t size, retsize; + + if (to >= subdev->size) { + to -= subdev->size; + continue; + } + if (to + len > subdev->size) + size = subdev->size - to; + else + size = len; + + err = mtd_panic_write(subdev, to, size, &retsize, buf); + if (err == -EOPNOTSUPP) { + printk(KERN_ERR "mtdconcat: Cannot write from panic without panic_write\n"); + return err; + } + if (err) + break; + + *retlen += retsize; + len -= size; + if (len == 0) + break; + + err = -EINVAL; + buf += size; + to = 0; + } + return err; +} + + +static int +concat_write(struct mtd_info *mtd, loff_t to, size_t len, + size_t * retlen, const u_char * buf) +{ + struct mtd_concat *concat = CONCAT(mtd); + int err = -EINVAL; + int i; + + for (i = 0; i < concat->num_subdev; i++) { + struct mtd_info *subdev = concat->subdev[i]; + size_t size, retsize; + + if (to >= subdev->size) { + size = 0; + to -= subdev->size; + continue; + } + if (to + len > subdev->size) + size = subdev->size - to; + else + size = len; + + err = mtd_write(subdev, to, size, &retsize, buf); + if (err) + break; + + *retlen += retsize; + len -= size; + if (len == 0) + break; + + err = -EINVAL; + buf += size; + to = 0; + } + return err; +} + +static int +concat_writev(struct mtd_info *mtd, const struct kvec *vecs, + unsigned long count, loff_t to, size_t * retlen) +{ + struct mtd_concat *concat = CONCAT(mtd); + struct kvec *vecs_copy; + unsigned long entry_low, entry_high; + size_t total_len = 0; + int i; + int err = -EINVAL; + + /* Calculate total length of data */ + for (i = 0; i < count; i++) + total_len += vecs[i].iov_len; + + /* Check alignment */ + if (mtd->writesize > 1) { + uint64_t __to = to; + if (do_div(__to, mtd->writesize) || (total_len % mtd->writesize)) + return -EINVAL; + } + + /* make a copy of vecs */ + vecs_copy = kmemdup(vecs, sizeof(struct kvec) * count, GFP_KERNEL); + if (!vecs_copy) + return -ENOMEM; + + entry_low = 0; + for (i = 0; i < concat->num_subdev; i++) { + struct mtd_info *subdev = concat->subdev[i]; + size_t size, wsize, retsize, old_iov_len; + + if (to >= subdev->size) { + to -= subdev->size; + continue; + } + + size = min_t(uint64_t, total_len, subdev->size - to); + wsize = size; /* store for future use */ + + entry_high = entry_low; + while (entry_high < count) { + if (size <= vecs_copy[entry_high].iov_len) + break; + size -= vecs_copy[entry_high++].iov_len; + } + + old_iov_len = vecs_copy[entry_high].iov_len; + vecs_copy[entry_high].iov_len = size; + + err = mtd_writev(subdev, &vecs_copy[entry_low], + entry_high - entry_low + 1, to, &retsize); + + vecs_copy[entry_high].iov_len = old_iov_len - size; + vecs_copy[entry_high].iov_base += size; + + entry_low = entry_high; + + if (err) + break; + + *retlen += retsize; + total_len -= wsize; + + if (total_len == 0) + break; + + err = -EINVAL; + to = 0; + } + + kfree(vecs_copy); + return err; +} + +static int +concat_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops) +{ + struct mtd_concat *concat = CONCAT(mtd); + struct mtd_oob_ops devops = *ops; + int i, err, ret = 0; + + ops->retlen = ops->oobretlen = 0; + + for (i = 0; i < concat->num_subdev; i++) { + struct mtd_info *subdev = concat->subdev[i]; + + if (from >= subdev->size) { + from -= subdev->size; + continue; + } + + /* partial read ? */ + if (from + devops.len > subdev->size) + devops.len = subdev->size - from; + + err = mtd_read_oob(subdev, from, &devops); + ops->retlen += devops.retlen; + ops->oobretlen += devops.oobretlen; + + /* Save information about bitflips! */ + if (unlikely(err)) { + if (mtd_is_eccerr(err)) { + mtd->ecc_stats.failed++; + ret = err; + } else if (mtd_is_bitflip(err)) { + mtd->ecc_stats.corrected++; + /* Do not overwrite -EBADMSG !! */ + if (!ret) + ret = err; + } else + return err; + } + + if (devops.datbuf) { + devops.len = ops->len - ops->retlen; + if (!devops.len) + return ret; + devops.datbuf += devops.retlen; + } + if (devops.oobbuf) { + devops.ooblen = ops->ooblen - ops->oobretlen; + if (!devops.ooblen) + return ret; + devops.oobbuf += ops->oobretlen; + } + + from = 0; + } + return -EINVAL; +} + +static int +concat_write_oob(struct mtd_info *mtd, loff_t to, struct mtd_oob_ops *ops) +{ + struct mtd_concat *concat = CONCAT(mtd); + struct mtd_oob_ops devops = *ops; + int i, err; + + if (!(mtd->flags & MTD_WRITEABLE)) + return -EROFS; + + ops->retlen = ops->oobretlen = 0; + + for (i = 0; i < concat->num_subdev; i++) { + struct mtd_info *subdev = concat->subdev[i]; + + if (to >= subdev->size) { + to -= subdev->size; + continue; + } + + /* partial write ? */ + if (to + devops.len > subdev->size) + devops.len = subdev->size - to; + + err = mtd_write_oob(subdev, to, &devops); + ops->retlen += devops.retlen; + ops->oobretlen += devops.oobretlen; + if (err) + return err; + + if (devops.datbuf) { + devops.len = ops->len - ops->retlen; + if (!devops.len) + return 0; + devops.datbuf += devops.retlen; + } + if (devops.oobbuf) { + devops.ooblen = ops->ooblen - ops->oobretlen; + if (!devops.ooblen) + return 0; + devops.oobbuf += devops.oobretlen; + } + to = 0; + } + return -EINVAL; +} + +static int concat_erase(struct mtd_info *mtd, struct erase_info *instr) +{ + struct mtd_concat *concat = CONCAT(mtd); + struct mtd_info *subdev; + int i, err; + uint64_t length, offset = 0; + struct erase_info *erase; + + /* + * Check for proper erase block alignment of the to-be-erased area. + * It is easier to do this based on the super device's erase + * region info rather than looking at each particular sub-device + * in turn. + */ + if (!concat->mtd.numeraseregions) { + /* the easy case: device has uniform erase block size */ + if (instr->addr & (concat->mtd.erasesize - 1)) + return -EINVAL; + if (instr->len & (concat->mtd.erasesize - 1)) + return -EINVAL; + } else { + /* device has variable erase size */ + struct mtd_erase_region_info *erase_regions = + concat->mtd.eraseregions; + + /* + * Find the erase region where the to-be-erased area begins: + */ + for (i = 0; i < concat->mtd.numeraseregions && + instr->addr >= erase_regions[i].offset; i++) ; + --i; + + /* + * Now erase_regions[i] is the region in which the + * to-be-erased area begins. Verify that the starting + * offset is aligned to this region's erase size: + */ + if (i < 0 || instr->addr & (erase_regions[i].erasesize - 1)) + return -EINVAL; + + /* + * now find the erase region where the to-be-erased area ends: + */ + for (; i < concat->mtd.numeraseregions && + (instr->addr + instr->len) >= erase_regions[i].offset; + ++i) ; + --i; + /* + * check if the ending offset is aligned to this region's erase size + */ + if (i < 0 || ((instr->addr + instr->len) & + (erase_regions[i].erasesize - 1))) + return -EINVAL; + } + + /* make a local copy of instr to avoid modifying the caller's struct */ + erase = kmalloc(sizeof (struct erase_info), GFP_KERNEL); + + if (!erase) + return -ENOMEM; + + *erase = *instr; + length = instr->len; + + /* + * find the subdevice where the to-be-erased area begins, adjust + * starting offset to be relative to the subdevice start + */ + for (i = 0; i < concat->num_subdev; i++) { + subdev = concat->subdev[i]; + if (subdev->size <= erase->addr) { + erase->addr -= subdev->size; + offset += subdev->size; + } else { + break; + } + } + + /* must never happen since size limit has been verified above */ + BUG_ON(i >= concat->num_subdev); + + /* now do the erase: */ + err = 0; + for (; length > 0; i++) { + /* loop for all subdevices affected by this request */ + subdev = concat->subdev[i]; /* get current subdevice */ + + /* limit length to subdevice's size: */ + if (erase->addr + length > subdev->size) + erase->len = subdev->size - erase->addr; + else + erase->len = length; + + length -= erase->len; + if ((err = mtd_erase(subdev, erase))) { + /* sanity check: should never happen since + * block alignment has been checked above */ + BUG_ON(err == -EINVAL); + if (erase->fail_addr != MTD_FAIL_ADDR_UNKNOWN) + instr->fail_addr = erase->fail_addr + offset; + break; + } + /* + * erase->addr specifies the offset of the area to be + * erased *within the current subdevice*. It can be + * non-zero only the first time through this loop, i.e. + * for the first subdevice where blocks need to be erased. + * All the following erases must begin at the start of the + * current subdevice, i.e. at offset zero. + */ + erase->addr = 0; + offset += subdev->size; + } + kfree(erase); + + return err; +} + +static int concat_xxlock(struct mtd_info *mtd, loff_t ofs, uint64_t len, + bool is_lock) +{ + struct mtd_concat *concat = CONCAT(mtd); + int i, err = -EINVAL; + + for (i = 0; i < concat->num_subdev; i++) { + struct mtd_info *subdev = concat->subdev[i]; + uint64_t size; + + if (ofs >= subdev->size) { + size = 0; + ofs -= subdev->size; + continue; + } + if (ofs + len > subdev->size) + size = subdev->size - ofs; + else + size = len; + + if (is_lock) + err = mtd_lock(subdev, ofs, size); + else + err = mtd_unlock(subdev, ofs, size); + if (err) + break; + + len -= size; + if (len == 0) + break; + + err = -EINVAL; + ofs = 0; + } + + return err; +} + +static int concat_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len) +{ + return concat_xxlock(mtd, ofs, len, true); +} + +static int concat_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len) +{ + return concat_xxlock(mtd, ofs, len, false); +} + +static int concat_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len) +{ + struct mtd_concat *concat = CONCAT(mtd); + int i, err = -EINVAL; + + for (i = 0; i < concat->num_subdev; i++) { + struct mtd_info *subdev = concat->subdev[i]; + + if (ofs >= subdev->size) { + ofs -= subdev->size; + continue; + } + + if (ofs + len > subdev->size) + break; + + return mtd_is_locked(subdev, ofs, len); + } + + return err; +} + +static void concat_sync(struct mtd_info *mtd) +{ + struct mtd_concat *concat = CONCAT(mtd); + int i; + + for (i = 0; i < concat->num_subdev; i++) { + struct mtd_info *subdev = concat->subdev[i]; + mtd_sync(subdev); + } +} + +static int concat_suspend(struct mtd_info *mtd) +{ + struct mtd_concat *concat = CONCAT(mtd); + int i, rc = 0; + + for (i = 0; i < concat->num_subdev; i++) { + struct mtd_info *subdev = concat->subdev[i]; + if ((rc = mtd_suspend(subdev)) < 0) + return rc; + } + return rc; +} + +static void concat_resume(struct mtd_info *mtd) +{ + struct mtd_concat *concat = CONCAT(mtd); + int i; + + for (i = 0; i < concat->num_subdev; i++) { + struct mtd_info *subdev = concat->subdev[i]; + mtd_resume(subdev); + } +} + +static int concat_block_isbad(struct mtd_info *mtd, loff_t ofs) +{ + struct mtd_concat *concat = CONCAT(mtd); + int i, res = 0; + + if (!mtd_can_have_bb(concat->subdev[0])) + return res; + + for (i = 0; i < concat->num_subdev; i++) { + struct mtd_info *subdev = concat->subdev[i]; + + if (ofs >= subdev->size) { + ofs -= subdev->size; + continue; + } + + res = mtd_block_isbad(subdev, ofs); + break; + } + + return res; +} + +static int concat_block_markbad(struct mtd_info *mtd, loff_t ofs) +{ + struct mtd_concat *concat = CONCAT(mtd); + int i, err = -EINVAL; + + for (i = 0; i < concat->num_subdev; i++) { + struct mtd_info *subdev = concat->subdev[i]; + + if (ofs >= subdev->size) { + ofs -= subdev->size; + continue; + } + + err = mtd_block_markbad(subdev, ofs); + if (!err) + mtd->ecc_stats.badblocks++; + break; + } + + return err; +} + +/* + * This function constructs a virtual MTD device by concatenating + * num_devs MTD devices. A pointer to the new device object is + * stored to *new_dev upon success. This function does _not_ + * register any devices: this is the caller's responsibility. + */ +struct mtd_info *mtd_concat_create(struct mtd_info *subdev[], /* subdevices to concatenate */ + int num_devs, /* number of subdevices */ + const char *name) +{ /* name for the new device */ + int i; + size_t size; + struct mtd_concat *concat; + struct mtd_info *subdev_master = NULL; + uint32_t max_erasesize, curr_erasesize; + int num_erase_region; + int max_writebufsize = 0; + + printk(KERN_NOTICE "Concatenating MTD devices:\n"); + for (i = 0; i < num_devs; i++) + printk(KERN_NOTICE "(%d): \"%s\"\n", i, subdev[i]->name); + printk(KERN_NOTICE "into device \"%s\"\n", name); + + /* allocate the device structure */ + size = SIZEOF_STRUCT_MTD_CONCAT(num_devs); + concat = kzalloc(size, GFP_KERNEL); + if (!concat) { + printk + ("memory allocation error while creating concatenated device \"%s\"\n", + name); + return NULL; + } + concat->subdev = (struct mtd_info **) (concat + 1); + + /* + * Set up the new "super" device's MTD object structure, check for + * incompatibilities between the subdevices. + */ + concat->mtd.type = subdev[0]->type; + concat->mtd.flags = subdev[0]->flags; + concat->mtd.size = subdev[0]->size; + concat->mtd.erasesize = subdev[0]->erasesize; + concat->mtd.writesize = subdev[0]->writesize; + + for (i = 0; i < num_devs; i++) + if (max_writebufsize < subdev[i]->writebufsize) + max_writebufsize = subdev[i]->writebufsize; + concat->mtd.writebufsize = max_writebufsize; + + concat->mtd.subpage_sft = subdev[0]->subpage_sft; + concat->mtd.oobsize = subdev[0]->oobsize; + concat->mtd.oobavail = subdev[0]->oobavail; + + subdev_master = mtd_get_master(subdev[0]); + if (subdev_master->_writev) + concat->mtd._writev = concat_writev; + if (subdev_master->_read_oob) + concat->mtd._read_oob = concat_read_oob; + if (subdev_master->_write_oob) + concat->mtd._write_oob = concat_write_oob; + if (subdev_master->_block_isbad) + concat->mtd._block_isbad = concat_block_isbad; + if (subdev_master->_block_markbad) + concat->mtd._block_markbad = concat_block_markbad; + if (subdev_master->_panic_write) + concat->mtd._panic_write = concat_panic_write; + if (subdev_master->_read) + concat->mtd._read = concat_read; + if (subdev_master->_write) + concat->mtd._write = concat_write; + + concat->mtd.ecc_stats.badblocks = subdev[0]->ecc_stats.badblocks; + + concat->subdev[0] = subdev[0]; + + for (i = 1; i < num_devs; i++) { + if (concat->mtd.type != subdev[i]->type) { + kfree(concat); + printk("Incompatible device type on \"%s\"\n", + subdev[i]->name); + return NULL; + } + if (concat->mtd.flags != subdev[i]->flags) { + /* + * Expect all flags except MTD_WRITEABLE to be + * equal on all subdevices. + */ + if ((concat->mtd.flags ^ subdev[i]-> + flags) & ~MTD_WRITEABLE) { + kfree(concat); + printk("Incompatible device flags on \"%s\"\n", + subdev[i]->name); + return NULL; + } else + /* if writeable attribute differs, + make super device writeable */ + concat->mtd.flags |= + subdev[i]->flags & MTD_WRITEABLE; + } + + subdev_master = mtd_get_master(subdev[i]); + concat->mtd.size += subdev[i]->size; + concat->mtd.ecc_stats.badblocks += + subdev[i]->ecc_stats.badblocks; + if (concat->mtd.writesize != subdev[i]->writesize || + concat->mtd.subpage_sft != subdev[i]->subpage_sft || + concat->mtd.oobsize != subdev[i]->oobsize || + !concat->mtd._read_oob != !subdev_master->_read_oob || + !concat->mtd._write_oob != !subdev_master->_write_oob) { + /* + * Check against subdev[i] for data members, because + * subdev's attributes may be different from master + * mtd device. Check against subdev's master mtd + * device for callbacks, because the existence of + * subdev's callbacks is decided by master mtd device. + */ + kfree(concat); + printk("Incompatible OOB or ECC data on \"%s\"\n", + subdev[i]->name); + return NULL; + } + concat->subdev[i] = subdev[i]; + + } + + mtd_set_ooblayout(&concat->mtd, subdev[0]->ooblayout); + + concat->num_subdev = num_devs; + concat->mtd.name = name; + + concat->mtd._erase = concat_erase; + concat->mtd._sync = concat_sync; + concat->mtd._lock = concat_lock; + concat->mtd._unlock = concat_unlock; + concat->mtd._is_locked = concat_is_locked; + concat->mtd._suspend = concat_suspend; + concat->mtd._resume = concat_resume; + + /* + * Combine the erase block size info of the subdevices: + * + * first, walk the map of the new device and see how + * many changes in erase size we have + */ + max_erasesize = curr_erasesize = subdev[0]->erasesize; + num_erase_region = 1; + for (i = 0; i < num_devs; i++) { + if (subdev[i]->numeraseregions == 0) { + /* current subdevice has uniform erase size */ + if (subdev[i]->erasesize != curr_erasesize) { + /* if it differs from the last subdevice's erase size, count it */ + ++num_erase_region; + curr_erasesize = subdev[i]->erasesize; + if (curr_erasesize > max_erasesize) + max_erasesize = curr_erasesize; + } + } else { + /* current subdevice has variable erase size */ + int j; + for (j = 0; j < subdev[i]->numeraseregions; j++) { + + /* walk the list of erase regions, count any changes */ + if (subdev[i]->eraseregions[j].erasesize != + curr_erasesize) { + ++num_erase_region; + curr_erasesize = + subdev[i]->eraseregions[j]. + erasesize; + if (curr_erasesize > max_erasesize) + max_erasesize = curr_erasesize; + } + } + } + } + + if (num_erase_region == 1) { + /* + * All subdevices have the same uniform erase size. + * This is easy: + */ + concat->mtd.erasesize = curr_erasesize; + concat->mtd.numeraseregions = 0; + } else { + uint64_t tmp64; + + /* + * erase block size varies across the subdevices: allocate + * space to store the data describing the variable erase regions + */ + struct mtd_erase_region_info *erase_region_p; + uint64_t begin, position; + + concat->mtd.erasesize = max_erasesize; + concat->mtd.numeraseregions = num_erase_region; + concat->mtd.eraseregions = erase_region_p = + kmalloc_array(num_erase_region, + sizeof(struct mtd_erase_region_info), + GFP_KERNEL); + if (!erase_region_p) { + kfree(concat); + printk + ("memory allocation error while creating erase region list" + " for device \"%s\"\n", name); + return NULL; + } + + /* + * walk the map of the new device once more and fill in + * erase region info: + */ + curr_erasesize = subdev[0]->erasesize; + begin = position = 0; + for (i = 0; i < num_devs; i++) { + if (subdev[i]->numeraseregions == 0) { + /* current subdevice has uniform erase size */ + if (subdev[i]->erasesize != curr_erasesize) { + /* + * fill in an mtd_erase_region_info structure for the area + * we have walked so far: + */ + erase_region_p->offset = begin; + erase_region_p->erasesize = + curr_erasesize; + tmp64 = position - begin; + do_div(tmp64, curr_erasesize); + erase_region_p->numblocks = tmp64; + begin = position; + + curr_erasesize = subdev[i]->erasesize; + ++erase_region_p; + } + position += subdev[i]->size; + } else { + /* current subdevice has variable erase size */ + int j; + for (j = 0; j < subdev[i]->numeraseregions; j++) { + /* walk the list of erase regions, count any changes */ + if (subdev[i]->eraseregions[j]. + erasesize != curr_erasesize) { + erase_region_p->offset = begin; + erase_region_p->erasesize = + curr_erasesize; + tmp64 = position - begin; + do_div(tmp64, curr_erasesize); + erase_region_p->numblocks = tmp64; + begin = position; + + curr_erasesize = + subdev[i]->eraseregions[j]. + erasesize; + ++erase_region_p; + } + position += + subdev[i]->eraseregions[j]. + numblocks * (uint64_t)curr_erasesize; + } + } + } + /* Now write the final entry */ + erase_region_p->offset = begin; + erase_region_p->erasesize = curr_erasesize; + tmp64 = position - begin; + do_div(tmp64, curr_erasesize); + erase_region_p->numblocks = tmp64; + } + + return &concat->mtd; +} + +/* Cleans the context obtained from mtd_concat_create() */ +void mtd_concat_destroy(struct mtd_info *mtd) +{ + struct mtd_concat *concat = CONCAT(mtd); + if (concat->mtd.numeraseregions) + kfree(concat->mtd.eraseregions); + kfree(concat); +} + +EXPORT_SYMBOL(mtd_concat_create); +EXPORT_SYMBOL(mtd_concat_destroy); + +MODULE_LICENSE("GPL"); +MODULE_AUTHOR("Robert Kaiser <rkaiser@sysgo.de>"); +MODULE_DESCRIPTION("Generic support for concatenating of MTD devices"); diff --git a/drivers/mtd/mtdcore.c b/drivers/mtd/mtdcore.c new file mode 100644 index 0000000000..9bd661be3a --- /dev/null +++ b/drivers/mtd/mtdcore.c @@ -0,0 +1,2560 @@ +// SPDX-License-Identifier: GPL-2.0-or-later +/* + * Core registration and callback routines for MTD + * drivers and users. + * + * Copyright © 1999-2010 David Woodhouse <dwmw2@infradead.org> + * Copyright © 2006 Red Hat UK Limited + */ + +#include <linux/module.h> +#include <linux/kernel.h> +#include <linux/ptrace.h> +#include <linux/seq_file.h> +#include <linux/string.h> +#include <linux/timer.h> +#include <linux/major.h> +#include <linux/fs.h> +#include <linux/err.h> +#include <linux/ioctl.h> +#include <linux/init.h> +#include <linux/of.h> +#include <linux/proc_fs.h> +#include <linux/idr.h> +#include <linux/backing-dev.h> +#include <linux/gfp.h> +#include <linux/random.h> +#include <linux/slab.h> +#include <linux/reboot.h> +#include <linux/leds.h> +#include <linux/debugfs.h> +#include <linux/nvmem-provider.h> +#include <linux/root_dev.h> + +#include <linux/mtd/mtd.h> +#include <linux/mtd/partitions.h> + +#include "mtdcore.h" + +struct backing_dev_info *mtd_bdi; + +#ifdef CONFIG_PM_SLEEP + +static int mtd_cls_suspend(struct device *dev) +{ + struct mtd_info *mtd = dev_get_drvdata(dev); + + return mtd ? mtd_suspend(mtd) : 0; +} + +static int mtd_cls_resume(struct device *dev) +{ + struct mtd_info *mtd = dev_get_drvdata(dev); + + if (mtd) + mtd_resume(mtd); + return 0; +} + +static SIMPLE_DEV_PM_OPS(mtd_cls_pm_ops, mtd_cls_suspend, mtd_cls_resume); +#define MTD_CLS_PM_OPS (&mtd_cls_pm_ops) +#else +#define MTD_CLS_PM_OPS NULL +#endif + +static struct class mtd_class = { + .name = "mtd", + .pm = MTD_CLS_PM_OPS, +}; + +static DEFINE_IDR(mtd_idr); + +/* These are exported solely for the purpose of mtd_blkdevs.c. You + should not use them for _anything_ else */ +DEFINE_MUTEX(mtd_table_mutex); +EXPORT_SYMBOL_GPL(mtd_table_mutex); + +struct mtd_info *__mtd_next_device(int i) +{ + return idr_get_next(&mtd_idr, &i); +} +EXPORT_SYMBOL_GPL(__mtd_next_device); + +static LIST_HEAD(mtd_notifiers); + + +#define MTD_DEVT(index) MKDEV(MTD_CHAR_MAJOR, (index)*2) + +/* REVISIT once MTD uses the driver model better, whoever allocates + * the mtd_info will probably want to use the release() hook... + */ +static void mtd_release(struct device *dev) +{ + struct mtd_info *mtd = dev_get_drvdata(dev); + dev_t index = MTD_DEVT(mtd->index); + + idr_remove(&mtd_idr, mtd->index); + of_node_put(mtd_get_of_node(mtd)); + + if (mtd_is_partition(mtd)) + release_mtd_partition(mtd); + + /* remove /dev/mtdXro node */ + device_destroy(&mtd_class, index + 1); +} + +static void mtd_device_release(struct kref *kref) +{ + struct mtd_info *mtd = container_of(kref, struct mtd_info, refcnt); + bool is_partition = mtd_is_partition(mtd); + + debugfs_remove_recursive(mtd->dbg.dfs_dir); + + /* Try to remove the NVMEM provider */ + nvmem_unregister(mtd->nvmem); + + device_unregister(&mtd->dev); + + /* + * Clear dev so mtd can be safely re-registered later if desired. + * Should not be done for partition, + * as it was already destroyed in device_unregister(). + */ + if (!is_partition) + memset(&mtd->dev, 0, sizeof(mtd->dev)); + + module_put(THIS_MODULE); +} + +#define MTD_DEVICE_ATTR_RO(name) \ +static DEVICE_ATTR(name, 0444, mtd_##name##_show, NULL) + +#define MTD_DEVICE_ATTR_RW(name) \ +static DEVICE_ATTR(name, 0644, mtd_##name##_show, mtd_##name##_store) + +static ssize_t mtd_type_show(struct device *dev, + struct device_attribute *attr, char *buf) +{ + struct mtd_info *mtd = dev_get_drvdata(dev); + char *type; + + switch (mtd->type) { + case MTD_ABSENT: + type = "absent"; + break; + case MTD_RAM: + type = "ram"; + break; + case MTD_ROM: + type = "rom"; + break; + case MTD_NORFLASH: + type = "nor"; + break; + case MTD_NANDFLASH: + type = "nand"; + break; + case MTD_DATAFLASH: + type = "dataflash"; + break; + case MTD_UBIVOLUME: + type = "ubi"; + break; + case MTD_MLCNANDFLASH: + type = "mlc-nand"; + break; + default: + type = "unknown"; + } + + return sysfs_emit(buf, "%s\n", type); +} +MTD_DEVICE_ATTR_RO(type); + +static ssize_t mtd_flags_show(struct device *dev, + struct device_attribute *attr, char *buf) +{ + struct mtd_info *mtd = dev_get_drvdata(dev); + + return sysfs_emit(buf, "0x%lx\n", (unsigned long)mtd->flags); +} +MTD_DEVICE_ATTR_RO(flags); + +static ssize_t mtd_size_show(struct device *dev, + struct device_attribute *attr, char *buf) +{ + struct mtd_info *mtd = dev_get_drvdata(dev); + + return sysfs_emit(buf, "%llu\n", (unsigned long long)mtd->size); +} +MTD_DEVICE_ATTR_RO(size); + +static ssize_t mtd_erasesize_show(struct device *dev, + struct device_attribute *attr, char *buf) +{ + struct mtd_info *mtd = dev_get_drvdata(dev); + + return sysfs_emit(buf, "%lu\n", (unsigned long)mtd->erasesize); +} +MTD_DEVICE_ATTR_RO(erasesize); + +static ssize_t mtd_writesize_show(struct device *dev, + struct device_attribute *attr, char *buf) +{ + struct mtd_info *mtd = dev_get_drvdata(dev); + + return sysfs_emit(buf, "%lu\n", (unsigned long)mtd->writesize); +} +MTD_DEVICE_ATTR_RO(writesize); + +static ssize_t mtd_subpagesize_show(struct device *dev, + struct device_attribute *attr, char *buf) +{ + struct mtd_info *mtd = dev_get_drvdata(dev); + unsigned int subpagesize = mtd->writesize >> mtd->subpage_sft; + + return sysfs_emit(buf, "%u\n", subpagesize); +} +MTD_DEVICE_ATTR_RO(subpagesize); + +static ssize_t mtd_oobsize_show(struct device *dev, + struct device_attribute *attr, char *buf) +{ + struct mtd_info *mtd = dev_get_drvdata(dev); + + return sysfs_emit(buf, "%lu\n", (unsigned long)mtd->oobsize); +} +MTD_DEVICE_ATTR_RO(oobsize); + +static ssize_t mtd_oobavail_show(struct device *dev, + struct device_attribute *attr, char *buf) +{ + struct mtd_info *mtd = dev_get_drvdata(dev); + + return sysfs_emit(buf, "%u\n", mtd->oobavail); +} +MTD_DEVICE_ATTR_RO(oobavail); + +static ssize_t mtd_numeraseregions_show(struct device *dev, + struct device_attribute *attr, char *buf) +{ + struct mtd_info *mtd = dev_get_drvdata(dev); + + return sysfs_emit(buf, "%u\n", mtd->numeraseregions); +} +MTD_DEVICE_ATTR_RO(numeraseregions); + +static ssize_t mtd_name_show(struct device *dev, + struct device_attribute *attr, char *buf) +{ + struct mtd_info *mtd = dev_get_drvdata(dev); + + return sysfs_emit(buf, "%s\n", mtd->name); +} +MTD_DEVICE_ATTR_RO(name); + +static ssize_t mtd_ecc_strength_show(struct device *dev, + struct device_attribute *attr, char *buf) +{ + struct mtd_info *mtd = dev_get_drvdata(dev); + + return sysfs_emit(buf, "%u\n", mtd->ecc_strength); +} +MTD_DEVICE_ATTR_RO(ecc_strength); + +static ssize_t mtd_bitflip_threshold_show(struct device *dev, + struct device_attribute *attr, + char *buf) +{ + struct mtd_info *mtd = dev_get_drvdata(dev); + + return sysfs_emit(buf, "%u\n", mtd->bitflip_threshold); +} + +static ssize_t mtd_bitflip_threshold_store(struct device *dev, + struct device_attribute *attr, + const char *buf, size_t count) +{ + struct mtd_info *mtd = dev_get_drvdata(dev); + unsigned int bitflip_threshold; + int retval; + + retval = kstrtouint(buf, 0, &bitflip_threshold); + if (retval) + return retval; + + mtd->bitflip_threshold = bitflip_threshold; + return count; +} +MTD_DEVICE_ATTR_RW(bitflip_threshold); + +static ssize_t mtd_ecc_step_size_show(struct device *dev, + struct device_attribute *attr, char *buf) +{ + struct mtd_info *mtd = dev_get_drvdata(dev); + + return sysfs_emit(buf, "%u\n", mtd->ecc_step_size); + +} +MTD_DEVICE_ATTR_RO(ecc_step_size); + +static ssize_t mtd_corrected_bits_show(struct device *dev, + struct device_attribute *attr, char *buf) +{ + struct mtd_info *mtd = dev_get_drvdata(dev); + struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats; + + return sysfs_emit(buf, "%u\n", ecc_stats->corrected); +} +MTD_DEVICE_ATTR_RO(corrected_bits); /* ecc stats corrected */ + +static ssize_t mtd_ecc_failures_show(struct device *dev, + struct device_attribute *attr, char *buf) +{ + struct mtd_info *mtd = dev_get_drvdata(dev); + struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats; + + return sysfs_emit(buf, "%u\n", ecc_stats->failed); +} +MTD_DEVICE_ATTR_RO(ecc_failures); /* ecc stats errors */ + +static ssize_t mtd_bad_blocks_show(struct device *dev, + struct device_attribute *attr, char *buf) +{ + struct mtd_info *mtd = dev_get_drvdata(dev); + struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats; + + return sysfs_emit(buf, "%u\n", ecc_stats->badblocks); +} +MTD_DEVICE_ATTR_RO(bad_blocks); + +static ssize_t mtd_bbt_blocks_show(struct device *dev, + struct device_attribute *attr, char *buf) +{ + struct mtd_info *mtd = dev_get_drvdata(dev); + struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats; + + return sysfs_emit(buf, "%u\n", ecc_stats->bbtblocks); +} +MTD_DEVICE_ATTR_RO(bbt_blocks); + +static struct attribute *mtd_attrs[] = { + &dev_attr_type.attr, + &dev_attr_flags.attr, + &dev_attr_size.attr, + &dev_attr_erasesize.attr, + &dev_attr_writesize.attr, + &dev_attr_subpagesize.attr, + &dev_attr_oobsize.attr, + &dev_attr_oobavail.attr, + &dev_attr_numeraseregions.attr, + &dev_attr_name.attr, + &dev_attr_ecc_strength.attr, + &dev_attr_ecc_step_size.attr, + &dev_attr_corrected_bits.attr, + &dev_attr_ecc_failures.attr, + &dev_attr_bad_blocks.attr, + &dev_attr_bbt_blocks.attr, + &dev_attr_bitflip_threshold.attr, + NULL, +}; +ATTRIBUTE_GROUPS(mtd); + +static const struct device_type mtd_devtype = { + .name = "mtd", + .groups = mtd_groups, + .release = mtd_release, +}; + +static bool mtd_expert_analysis_mode; + +#ifdef CONFIG_DEBUG_FS +bool mtd_check_expert_analysis_mode(void) +{ + const char *mtd_expert_analysis_warning = + "Bad block checks have been entirely disabled.\n" + "This is only reserved for post-mortem forensics and debug purposes.\n" + "Never enable this mode if you do not know what you are doing!\n"; + + return WARN_ONCE(mtd_expert_analysis_mode, mtd_expert_analysis_warning); +} +EXPORT_SYMBOL_GPL(mtd_check_expert_analysis_mode); +#endif + +static struct dentry *dfs_dir_mtd; + +static void mtd_debugfs_populate(struct mtd_info *mtd) +{ + struct device *dev = &mtd->dev; + + if (IS_ERR_OR_NULL(dfs_dir_mtd)) + return; + + mtd->dbg.dfs_dir = debugfs_create_dir(dev_name(dev), dfs_dir_mtd); +} + +#ifndef CONFIG_MMU +unsigned mtd_mmap_capabilities(struct mtd_info *mtd) +{ + switch (mtd->type) { + case MTD_RAM: + return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC | + NOMMU_MAP_READ | NOMMU_MAP_WRITE; + case MTD_ROM: + return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC | + NOMMU_MAP_READ; + default: + return NOMMU_MAP_COPY; + } +} +EXPORT_SYMBOL_GPL(mtd_mmap_capabilities); +#endif + +static int mtd_reboot_notifier(struct notifier_block *n, unsigned long state, + void *cmd) +{ + struct mtd_info *mtd; + + mtd = container_of(n, struct mtd_info, reboot_notifier); + mtd->_reboot(mtd); + + return NOTIFY_DONE; +} + +/** + * mtd_wunit_to_pairing_info - get pairing information of a wunit + * @mtd: pointer to new MTD device info structure + * @wunit: write unit we are interested in + * @info: returned pairing information + * + * Retrieve pairing information associated to the wunit. + * This is mainly useful when dealing with MLC/TLC NANDs where pages can be + * paired together, and where programming a page may influence the page it is + * paired with. + * The notion of page is replaced by the term wunit (write-unit) to stay + * consistent with the ->writesize field. + * + * The @wunit argument can be extracted from an absolute offset using + * mtd_offset_to_wunit(). @info is filled with the pairing information attached + * to @wunit. + * + * From the pairing info the MTD user can find all the wunits paired with + * @wunit using the following loop: + * + * for (i = 0; i < mtd_pairing_groups(mtd); i++) { + * info.pair = i; + * mtd_pairing_info_to_wunit(mtd, &info); + * ... + * } + */ +int mtd_wunit_to_pairing_info(struct mtd_info *mtd, int wunit, + struct mtd_pairing_info *info) +{ + struct mtd_info *master = mtd_get_master(mtd); + int npairs = mtd_wunit_per_eb(master) / mtd_pairing_groups(master); + + if (wunit < 0 || wunit >= npairs) + return -EINVAL; + + if (master->pairing && master->pairing->get_info) + return master->pairing->get_info(master, wunit, info); + + info->group = 0; + info->pair = wunit; + + return 0; +} +EXPORT_SYMBOL_GPL(mtd_wunit_to_pairing_info); + +/** + * mtd_pairing_info_to_wunit - get wunit from pairing information + * @mtd: pointer to new MTD device info structure + * @info: pairing information struct + * + * Returns a positive number representing the wunit associated to the info + * struct, or a negative error code. + * + * This is the reverse of mtd_wunit_to_pairing_info(), and can help one to + * iterate over all wunits of a given pair (see mtd_wunit_to_pairing_info() + * doc). + * + * It can also be used to only program the first page of each pair (i.e. + * page attached to group 0), which allows one to use an MLC NAND in + * software-emulated SLC mode: + * + * info.group = 0; + * npairs = mtd_wunit_per_eb(mtd) / mtd_pairing_groups(mtd); + * for (info.pair = 0; info.pair < npairs; info.pair++) { + * wunit = mtd_pairing_info_to_wunit(mtd, &info); + * mtd_write(mtd, mtd_wunit_to_offset(mtd, blkoffs, wunit), + * mtd->writesize, &retlen, buf + (i * mtd->writesize)); + * } + */ +int mtd_pairing_info_to_wunit(struct mtd_info *mtd, + const struct mtd_pairing_info *info) +{ + struct mtd_info *master = mtd_get_master(mtd); + int ngroups = mtd_pairing_groups(master); + int npairs = mtd_wunit_per_eb(master) / ngroups; + + if (!info || info->pair < 0 || info->pair >= npairs || + info->group < 0 || info->group >= ngroups) + return -EINVAL; + + if (master->pairing && master->pairing->get_wunit) + return mtd->pairing->get_wunit(master, info); + + return info->pair; +} +EXPORT_SYMBOL_GPL(mtd_pairing_info_to_wunit); + +/** + * mtd_pairing_groups - get the number of pairing groups + * @mtd: pointer to new MTD device info structure + * + * Returns the number of pairing groups. + * + * This number is usually equal to the number of bits exposed by a single + * cell, and can be used in conjunction with mtd_pairing_info_to_wunit() + * to iterate over all pages of a given pair. + */ +int mtd_pairing_groups(struct mtd_info *mtd) +{ + struct mtd_info *master = mtd_get_master(mtd); + + if (!master->pairing || !master->pairing->ngroups) + return 1; + + return master->pairing->ngroups; +} +EXPORT_SYMBOL_GPL(mtd_pairing_groups); + +static int mtd_nvmem_reg_read(void *priv, unsigned int offset, + void *val, size_t bytes) +{ + struct mtd_info *mtd = priv; + size_t retlen; + int err; + + err = mtd_read(mtd, offset, bytes, &retlen, val); + if (err && err != -EUCLEAN) + return err; + + return retlen == bytes ? 0 : -EIO; +} + +static int mtd_nvmem_add(struct mtd_info *mtd) +{ + struct device_node *node = mtd_get_of_node(mtd); + struct nvmem_config config = {}; + + config.id = NVMEM_DEVID_NONE; + config.dev = &mtd->dev; + config.name = dev_name(&mtd->dev); + config.owner = THIS_MODULE; + config.reg_read = mtd_nvmem_reg_read; + config.size = mtd->size; + config.word_size = 1; + config.stride = 1; + config.read_only = true; + config.root_only = true; + config.ignore_wp = true; + config.no_of_node = !of_device_is_compatible(node, "nvmem-cells"); + config.priv = mtd; + + mtd->nvmem = nvmem_register(&config); + if (IS_ERR(mtd->nvmem)) { + /* Just ignore if there is no NVMEM support in the kernel */ + if (PTR_ERR(mtd->nvmem) == -EOPNOTSUPP) + mtd->nvmem = NULL; + else + return dev_err_probe(&mtd->dev, PTR_ERR(mtd->nvmem), + "Failed to register NVMEM device\n"); + } + + return 0; +} + +static void mtd_check_of_node(struct mtd_info *mtd) +{ + struct device_node *partitions, *parent_dn, *mtd_dn = NULL; + const char *pname, *prefix = "partition-"; + int plen, mtd_name_len, offset, prefix_len; + + /* Check if MTD already has a device node */ + if (mtd_get_of_node(mtd)) + return; + + if (!mtd_is_partition(mtd)) + return; + + parent_dn = of_node_get(mtd_get_of_node(mtd->parent)); + if (!parent_dn) + return; + + if (mtd_is_partition(mtd->parent)) + partitions = of_node_get(parent_dn); + else + partitions = of_get_child_by_name(parent_dn, "partitions"); + if (!partitions) + goto exit_parent; + + prefix_len = strlen(prefix); + mtd_name_len = strlen(mtd->name); + + /* Search if a partition is defined with the same name */ + for_each_child_of_node(partitions, mtd_dn) { + /* Skip partition with no/wrong prefix */ + if (!of_node_name_prefix(mtd_dn, prefix)) + continue; + + /* Label have priority. Check that first */ + if (!of_property_read_string(mtd_dn, "label", &pname)) { + offset = 0; + } else { + pname = mtd_dn->name; + offset = prefix_len; + } + + plen = strlen(pname) - offset; + if (plen == mtd_name_len && + !strncmp(mtd->name, pname + offset, plen)) { + mtd_set_of_node(mtd, mtd_dn); + break; + } + } + + of_node_put(partitions); +exit_parent: + of_node_put(parent_dn); +} + +/** + * add_mtd_device - register an MTD device + * @mtd: pointer to new MTD device info structure + * + * Add a device to the list of MTD devices present in the system, and + * notify each currently active MTD 'user' of its arrival. Returns + * zero on success or non-zero on failure. + */ + +int add_mtd_device(struct mtd_info *mtd) +{ + struct device_node *np = mtd_get_of_node(mtd); + struct mtd_info *master = mtd_get_master(mtd); + struct mtd_notifier *not; + int i, error, ofidx; + + /* + * May occur, for instance, on buggy drivers which call + * mtd_device_parse_register() multiple times on the same master MTD, + * especially with CONFIG_MTD_PARTITIONED_MASTER=y. + */ + if (WARN_ONCE(mtd->dev.type, "MTD already registered\n")) + return -EEXIST; + + BUG_ON(mtd->writesize == 0); + + /* + * MTD drivers should implement ->_{write,read}() or + * ->_{write,read}_oob(), but not both. + */ + if (WARN_ON((mtd->_write && mtd->_write_oob) || + (mtd->_read && mtd->_read_oob))) + return -EINVAL; + + if (WARN_ON((!mtd->erasesize || !master->_erase) && + !(mtd->flags & MTD_NO_ERASE))) + return -EINVAL; + + /* + * MTD_SLC_ON_MLC_EMULATION can only be set on partitions, when the + * master is an MLC NAND and has a proper pairing scheme defined. + * We also reject masters that implement ->_writev() for now, because + * NAND controller drivers don't implement this hook, and adding the + * SLC -> MLC address/length conversion to this path is useless if we + * don't have a user. + */ + if (mtd->flags & MTD_SLC_ON_MLC_EMULATION && + (!mtd_is_partition(mtd) || master->type != MTD_MLCNANDFLASH || + !master->pairing || master->_writev)) + return -EINVAL; + + mutex_lock(&mtd_table_mutex); + + ofidx = -1; + if (np) + ofidx = of_alias_get_id(np, "mtd"); + if (ofidx >= 0) + i = idr_alloc(&mtd_idr, mtd, ofidx, ofidx + 1, GFP_KERNEL); + else + i = idr_alloc(&mtd_idr, mtd, 0, 0, GFP_KERNEL); + if (i < 0) { + error = i; + goto fail_locked; + } + + mtd->index = i; + kref_init(&mtd->refcnt); + + /* default value if not set by driver */ + if (mtd->bitflip_threshold == 0) + mtd->bitflip_threshold = mtd->ecc_strength; + + if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) { + int ngroups = mtd_pairing_groups(master); + + mtd->erasesize /= ngroups; + mtd->size = (u64)mtd_div_by_eb(mtd->size, master) * + mtd->erasesize; + } + + if (is_power_of_2(mtd->erasesize)) + mtd->erasesize_shift = ffs(mtd->erasesize) - 1; + else + mtd->erasesize_shift = 0; + + if (is_power_of_2(mtd->writesize)) + mtd->writesize_shift = ffs(mtd->writesize) - 1; + else + mtd->writesize_shift = 0; + + mtd->erasesize_mask = (1 << mtd->erasesize_shift) - 1; + mtd->writesize_mask = (1 << mtd->writesize_shift) - 1; + + /* Some chips always power up locked. Unlock them now */ + if ((mtd->flags & MTD_WRITEABLE) && (mtd->flags & MTD_POWERUP_LOCK)) { + error = mtd_unlock(mtd, 0, mtd->size); + if (error && error != -EOPNOTSUPP) + printk(KERN_WARNING + "%s: unlock failed, writes may not work\n", + mtd->name); + /* Ignore unlock failures? */ + error = 0; + } + + /* Caller should have set dev.parent to match the + * physical device, if appropriate. + */ + mtd->dev.type = &mtd_devtype; + mtd->dev.class = &mtd_class; + mtd->dev.devt = MTD_DEVT(i); + dev_set_name(&mtd->dev, "mtd%d", i); + dev_set_drvdata(&mtd->dev, mtd); + mtd_check_of_node(mtd); + of_node_get(mtd_get_of_node(mtd)); + error = device_register(&mtd->dev); + if (error) { + put_device(&mtd->dev); + goto fail_added; + } + + /* Add the nvmem provider */ + error = mtd_nvmem_add(mtd); + if (error) + goto fail_nvmem_add; + + mtd_debugfs_populate(mtd); + + device_create(&mtd_class, mtd->dev.parent, MTD_DEVT(i) + 1, NULL, + "mtd%dro", i); + + pr_debug("mtd: Giving out device %d to %s\n", i, mtd->name); + /* No need to get a refcount on the module containing + the notifier, since we hold the mtd_table_mutex */ + list_for_each_entry(not, &mtd_notifiers, list) + not->add(mtd); + + mutex_unlock(&mtd_table_mutex); + + if (of_property_read_bool(mtd_get_of_node(mtd), "linux,rootfs")) { + if (IS_BUILTIN(CONFIG_MTD)) { + pr_info("mtd: setting mtd%d (%s) as root device\n", mtd->index, mtd->name); + ROOT_DEV = MKDEV(MTD_BLOCK_MAJOR, mtd->index); + } else { + pr_warn("mtd: can't set mtd%d (%s) as root device - mtd must be builtin\n", + mtd->index, mtd->name); + } + } + + /* We _know_ we aren't being removed, because + our caller is still holding us here. So none + of this try_ nonsense, and no bitching about it + either. :) */ + __module_get(THIS_MODULE); + return 0; + +fail_nvmem_add: + device_unregister(&mtd->dev); +fail_added: + of_node_put(mtd_get_of_node(mtd)); + idr_remove(&mtd_idr, i); +fail_locked: + mutex_unlock(&mtd_table_mutex); + return error; +} + +/** + * del_mtd_device - unregister an MTD device + * @mtd: pointer to MTD device info structure + * + * Remove a device from the list of MTD devices present in the system, + * and notify each currently active MTD 'user' of its departure. + * Returns zero on success or 1 on failure, which currently will happen + * if the requested device does not appear to be present in the list. + */ + +int del_mtd_device(struct mtd_info *mtd) +{ + int ret; + struct mtd_notifier *not; + + mutex_lock(&mtd_table_mutex); + + if (idr_find(&mtd_idr, mtd->index) != mtd) { + ret = -ENODEV; + goto out_error; + } + + /* No need to get a refcount on the module containing + the notifier, since we hold the mtd_table_mutex */ + list_for_each_entry(not, &mtd_notifiers, list) + not->remove(mtd); + + kref_put(&mtd->refcnt, mtd_device_release); + ret = 0; + +out_error: + mutex_unlock(&mtd_table_mutex); + return ret; +} + +/* + * Set a few defaults based on the parent devices, if not provided by the + * driver + */ +static void mtd_set_dev_defaults(struct mtd_info *mtd) +{ + if (mtd->dev.parent) { + if (!mtd->owner && mtd->dev.parent->driver) + mtd->owner = mtd->dev.parent->driver->owner; + if (!mtd->name) + mtd->name = dev_name(mtd->dev.parent); + } else { + pr_debug("mtd device won't show a device symlink in sysfs\n"); + } + + INIT_LIST_HEAD(&mtd->partitions); + mutex_init(&mtd->master.partitions_lock); + mutex_init(&mtd->master.chrdev_lock); +} + +static ssize_t mtd_otp_size(struct mtd_info *mtd, bool is_user) +{ + struct otp_info *info; + ssize_t size = 0; + unsigned int i; + size_t retlen; + int ret; + + info = kmalloc(PAGE_SIZE, GFP_KERNEL); + if (!info) + return -ENOMEM; + + if (is_user) + ret = mtd_get_user_prot_info(mtd, PAGE_SIZE, &retlen, info); + else + ret = mtd_get_fact_prot_info(mtd, PAGE_SIZE, &retlen, info); + if (ret) + goto err; + + for (i = 0; i < retlen / sizeof(*info); i++) + size += info[i].length; + + kfree(info); + return size; + +err: + kfree(info); + + /* ENODATA means there is no OTP region. */ + return ret == -ENODATA ? 0 : ret; +} + +static struct nvmem_device *mtd_otp_nvmem_register(struct mtd_info *mtd, + const char *compatible, + int size, + nvmem_reg_read_t reg_read) +{ + struct nvmem_device *nvmem = NULL; + struct nvmem_config config = {}; + struct device_node *np; + + /* DT binding is optional */ + np = of_get_compatible_child(mtd->dev.of_node, compatible); + + /* OTP nvmem will be registered on the physical device */ + config.dev = mtd->dev.parent; + config.name = compatible; + config.id = NVMEM_DEVID_AUTO; + config.owner = THIS_MODULE; + config.type = NVMEM_TYPE_OTP; + config.root_only = true; + config.ignore_wp = true; + config.reg_read = reg_read; + config.size = size; + config.of_node = np; + config.priv = mtd; + + nvmem = nvmem_register(&config); + /* Just ignore if there is no NVMEM support in the kernel */ + if (IS_ERR(nvmem) && PTR_ERR(nvmem) == -EOPNOTSUPP) + nvmem = NULL; + + of_node_put(np); + + return nvmem; +} + +static int mtd_nvmem_user_otp_reg_read(void *priv, unsigned int offset, + void *val, size_t bytes) +{ + struct mtd_info *mtd = priv; + size_t retlen; + int ret; + + ret = mtd_read_user_prot_reg(mtd, offset, bytes, &retlen, val); + if (ret) + return ret; + + return retlen == bytes ? 0 : -EIO; +} + +static int mtd_nvmem_fact_otp_reg_read(void *priv, unsigned int offset, + void *val, size_t bytes) +{ + struct mtd_info *mtd = priv; + size_t retlen; + int ret; + + ret = mtd_read_fact_prot_reg(mtd, offset, bytes, &retlen, val); + if (ret) + return ret; + + return retlen == bytes ? 0 : -EIO; +} + +static int mtd_otp_nvmem_add(struct mtd_info *mtd) +{ + struct device *dev = mtd->dev.parent; + struct nvmem_device *nvmem; + ssize_t size; + int err; + + if (mtd->_get_user_prot_info && mtd->_read_user_prot_reg) { + size = mtd_otp_size(mtd, true); + if (size < 0) + return size; + + if (size > 0) { + nvmem = mtd_otp_nvmem_register(mtd, "user-otp", size, + mtd_nvmem_user_otp_reg_read); + if (IS_ERR(nvmem)) { + err = PTR_ERR(nvmem); + goto err; + } + mtd->otp_user_nvmem = nvmem; + } + } + + if (mtd->_get_fact_prot_info && mtd->_read_fact_prot_reg) { + size = mtd_otp_size(mtd, false); + if (size < 0) { + err = size; + goto err; + } + + if (size > 0) { + /* + * The factory OTP contains thing such as a unique serial + * number and is small, so let's read it out and put it + * into the entropy pool. + */ + void *otp; + + otp = kmalloc(size, GFP_KERNEL); + if (!otp) { + err = -ENOMEM; + goto err; + } + err = mtd_nvmem_fact_otp_reg_read(mtd, 0, otp, size); + if (err < 0) { + kfree(otp); + goto err; + } + add_device_randomness(otp, err); + kfree(otp); + + nvmem = mtd_otp_nvmem_register(mtd, "factory-otp", size, + mtd_nvmem_fact_otp_reg_read); + if (IS_ERR(nvmem)) { + err = PTR_ERR(nvmem); + goto err; + } + mtd->otp_factory_nvmem = nvmem; + } + } + + return 0; + +err: + nvmem_unregister(mtd->otp_user_nvmem); + return dev_err_probe(dev, err, "Failed to register OTP NVMEM device\n"); +} + +/** + * mtd_device_parse_register - parse partitions and register an MTD device. + * + * @mtd: the MTD device to register + * @types: the list of MTD partition probes to try, see + * 'parse_mtd_partitions()' for more information + * @parser_data: MTD partition parser-specific data + * @parts: fallback partition information to register, if parsing fails; + * only valid if %nr_parts > %0 + * @nr_parts: the number of partitions in parts, if zero then the full + * MTD device is registered if no partition info is found + * + * This function aggregates MTD partitions parsing (done by + * 'parse_mtd_partitions()') and MTD device and partitions registering. It + * basically follows the most common pattern found in many MTD drivers: + * + * * If the MTD_PARTITIONED_MASTER option is set, then the device as a whole is + * registered first. + * * Then It tries to probe partitions on MTD device @mtd using parsers + * specified in @types (if @types is %NULL, then the default list of parsers + * is used, see 'parse_mtd_partitions()' for more information). If none are + * found this functions tries to fallback to information specified in + * @parts/@nr_parts. + * * If no partitions were found this function just registers the MTD device + * @mtd and exits. + * + * Returns zero in case of success and a negative error code in case of failure. + */ +int mtd_device_parse_register(struct mtd_info *mtd, const char * const *types, + struct mtd_part_parser_data *parser_data, + const struct mtd_partition *parts, + int nr_parts) +{ + int ret; + + mtd_set_dev_defaults(mtd); + + ret = mtd_otp_nvmem_add(mtd); + if (ret) + goto out; + + if (IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER)) { + ret = add_mtd_device(mtd); + if (ret) + goto out; + } + + /* Prefer parsed partitions over driver-provided fallback */ + ret = parse_mtd_partitions(mtd, types, parser_data); + if (ret == -EPROBE_DEFER) + goto out; + + if (ret > 0) + ret = 0; + else if (nr_parts) + ret = add_mtd_partitions(mtd, parts, nr_parts); + else if (!device_is_registered(&mtd->dev)) + ret = add_mtd_device(mtd); + else + ret = 0; + + if (ret) + goto out; + + /* + * FIXME: some drivers unfortunately call this function more than once. + * So we have to check if we've already assigned the reboot notifier. + * + * Generally, we can make multiple calls work for most cases, but it + * does cause problems with parse_mtd_partitions() above (e.g., + * cmdlineparts will register partitions more than once). + */ + WARN_ONCE(mtd->_reboot && mtd->reboot_notifier.notifier_call, + "MTD already registered\n"); + if (mtd->_reboot && !mtd->reboot_notifier.notifier_call) { + mtd->reboot_notifier.notifier_call = mtd_reboot_notifier; + register_reboot_notifier(&mtd->reboot_notifier); + } + +out: + if (ret) { + nvmem_unregister(mtd->otp_user_nvmem); + nvmem_unregister(mtd->otp_factory_nvmem); + } + + if (ret && device_is_registered(&mtd->dev)) + del_mtd_device(mtd); + + return ret; +} +EXPORT_SYMBOL_GPL(mtd_device_parse_register); + +/** + * mtd_device_unregister - unregister an existing MTD device. + * + * @master: the MTD device to unregister. This will unregister both the master + * and any partitions if registered. + */ +int mtd_device_unregister(struct mtd_info *master) +{ + int err; + + if (master->_reboot) { + unregister_reboot_notifier(&master->reboot_notifier); + memset(&master->reboot_notifier, 0, sizeof(master->reboot_notifier)); + } + + nvmem_unregister(master->otp_user_nvmem); + nvmem_unregister(master->otp_factory_nvmem); + + err = del_mtd_partitions(master); + if (err) + return err; + + if (!device_is_registered(&master->dev)) + return 0; + + return del_mtd_device(master); +} +EXPORT_SYMBOL_GPL(mtd_device_unregister); + +/** + * register_mtd_user - register a 'user' of MTD devices. + * @new: pointer to notifier info structure + * + * Registers a pair of callbacks function to be called upon addition + * or removal of MTD devices. Causes the 'add' callback to be immediately + * invoked for each MTD device currently present in the system. + */ +void register_mtd_user (struct mtd_notifier *new) +{ + struct mtd_info *mtd; + + mutex_lock(&mtd_table_mutex); + + list_add(&new->list, &mtd_notifiers); + + __module_get(THIS_MODULE); + + mtd_for_each_device(mtd) + new->add(mtd); + + mutex_unlock(&mtd_table_mutex); +} +EXPORT_SYMBOL_GPL(register_mtd_user); + +/** + * unregister_mtd_user - unregister a 'user' of MTD devices. + * @old: pointer to notifier info structure + * + * Removes a callback function pair from the list of 'users' to be + * notified upon addition or removal of MTD devices. Causes the + * 'remove' callback to be immediately invoked for each MTD device + * currently present in the system. + */ +int unregister_mtd_user (struct mtd_notifier *old) +{ + struct mtd_info *mtd; + + mutex_lock(&mtd_table_mutex); + + module_put(THIS_MODULE); + + mtd_for_each_device(mtd) + old->remove(mtd); + + list_del(&old->list); + mutex_unlock(&mtd_table_mutex); + return 0; +} +EXPORT_SYMBOL_GPL(unregister_mtd_user); + +/** + * get_mtd_device - obtain a validated handle for an MTD device + * @mtd: last known address of the required MTD device + * @num: internal device number of the required MTD device + * + * Given a number and NULL address, return the num'th entry in the device + * table, if any. Given an address and num == -1, search the device table + * for a device with that address and return if it's still present. Given + * both, return the num'th driver only if its address matches. Return + * error code if not. + */ +struct mtd_info *get_mtd_device(struct mtd_info *mtd, int num) +{ + struct mtd_info *ret = NULL, *other; + int err = -ENODEV; + + mutex_lock(&mtd_table_mutex); + + if (num == -1) { + mtd_for_each_device(other) { + if (other == mtd) { + ret = mtd; + break; + } + } + } else if (num >= 0) { + ret = idr_find(&mtd_idr, num); + if (mtd && mtd != ret) + ret = NULL; + } + + if (!ret) { + ret = ERR_PTR(err); + goto out; + } + + err = __get_mtd_device(ret); + if (err) + ret = ERR_PTR(err); +out: + mutex_unlock(&mtd_table_mutex); + return ret; +} +EXPORT_SYMBOL_GPL(get_mtd_device); + + +int __get_mtd_device(struct mtd_info *mtd) +{ + struct mtd_info *master = mtd_get_master(mtd); + int err; + + if (master->_get_device) { + err = master->_get_device(mtd); + if (err) + return err; + } + + if (!try_module_get(master->owner)) { + if (master->_put_device) + master->_put_device(master); + return -ENODEV; + } + + while (mtd) { + if (mtd != master) + kref_get(&mtd->refcnt); + mtd = mtd->parent; + } + + if (IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER)) + kref_get(&master->refcnt); + + return 0; +} +EXPORT_SYMBOL_GPL(__get_mtd_device); + +/** + * of_get_mtd_device_by_node - obtain an MTD device associated with a given node + * + * @np: device tree node + */ +struct mtd_info *of_get_mtd_device_by_node(struct device_node *np) +{ + struct mtd_info *mtd = NULL; + struct mtd_info *tmp; + int err; + + mutex_lock(&mtd_table_mutex); + + err = -EPROBE_DEFER; + mtd_for_each_device(tmp) { + if (mtd_get_of_node(tmp) == np) { + mtd = tmp; + err = __get_mtd_device(mtd); + break; + } + } + + mutex_unlock(&mtd_table_mutex); + + return err ? ERR_PTR(err) : mtd; +} +EXPORT_SYMBOL_GPL(of_get_mtd_device_by_node); + +/** + * get_mtd_device_nm - obtain a validated handle for an MTD device by + * device name + * @name: MTD device name to open + * + * This function returns MTD device description structure in case of + * success and an error code in case of failure. + */ +struct mtd_info *get_mtd_device_nm(const char *name) +{ + int err = -ENODEV; + struct mtd_info *mtd = NULL, *other; + + mutex_lock(&mtd_table_mutex); + + mtd_for_each_device(other) { + if (!strcmp(name, other->name)) { + mtd = other; + break; + } + } + + if (!mtd) + goto out_unlock; + + err = __get_mtd_device(mtd); + if (err) + goto out_unlock; + + mutex_unlock(&mtd_table_mutex); + return mtd; + +out_unlock: + mutex_unlock(&mtd_table_mutex); + return ERR_PTR(err); +} +EXPORT_SYMBOL_GPL(get_mtd_device_nm); + +void put_mtd_device(struct mtd_info *mtd) +{ + mutex_lock(&mtd_table_mutex); + __put_mtd_device(mtd); + mutex_unlock(&mtd_table_mutex); + +} +EXPORT_SYMBOL_GPL(put_mtd_device); + +void __put_mtd_device(struct mtd_info *mtd) +{ + struct mtd_info *master = mtd_get_master(mtd); + + while (mtd) { + /* kref_put() can relese mtd, so keep a reference mtd->parent */ + struct mtd_info *parent = mtd->parent; + + if (mtd != master) + kref_put(&mtd->refcnt, mtd_device_release); + mtd = parent; + } + + if (IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER)) + kref_put(&master->refcnt, mtd_device_release); + + module_put(master->owner); + + /* must be the last as master can be freed in the _put_device */ + if (master->_put_device) + master->_put_device(master); +} +EXPORT_SYMBOL_GPL(__put_mtd_device); + +/* + * Erase is an synchronous operation. Device drivers are epected to return a + * negative error code if the operation failed and update instr->fail_addr + * to point the portion that was not properly erased. + */ +int mtd_erase(struct mtd_info *mtd, struct erase_info *instr) +{ + struct mtd_info *master = mtd_get_master(mtd); + u64 mst_ofs = mtd_get_master_ofs(mtd, 0); + struct erase_info adjinstr; + int ret; + + instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN; + adjinstr = *instr; + + if (!mtd->erasesize || !master->_erase) + return -ENOTSUPP; + + if (instr->addr >= mtd->size || instr->len > mtd->size - instr->addr) + return -EINVAL; + if (!(mtd->flags & MTD_WRITEABLE)) + return -EROFS; + + if (!instr->len) + return 0; + + ledtrig_mtd_activity(); + + if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) { + adjinstr.addr = (loff_t)mtd_div_by_eb(instr->addr, mtd) * + master->erasesize; + adjinstr.len = ((u64)mtd_div_by_eb(instr->addr + instr->len, mtd) * + master->erasesize) - + adjinstr.addr; + } + + adjinstr.addr += mst_ofs; + + ret = master->_erase(master, &adjinstr); + + if (adjinstr.fail_addr != MTD_FAIL_ADDR_UNKNOWN) { + instr->fail_addr = adjinstr.fail_addr - mst_ofs; + if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) { + instr->fail_addr = mtd_div_by_eb(instr->fail_addr, + master); + instr->fail_addr *= mtd->erasesize; + } + } + + return ret; +} +EXPORT_SYMBOL_GPL(mtd_erase); + +/* + * This stuff for eXecute-In-Place. phys is optional and may be set to NULL. + */ +int mtd_point(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, + void **virt, resource_size_t *phys) +{ + struct mtd_info *master = mtd_get_master(mtd); + + *retlen = 0; + *virt = NULL; + if (phys) + *phys = 0; + if (!master->_point) + return -EOPNOTSUPP; + if (from < 0 || from >= mtd->size || len > mtd->size - from) + return -EINVAL; + if (!len) + return 0; + + from = mtd_get_master_ofs(mtd, from); + return master->_point(master, from, len, retlen, virt, phys); +} +EXPORT_SYMBOL_GPL(mtd_point); + +/* We probably shouldn't allow XIP if the unpoint isn't a NULL */ +int mtd_unpoint(struct mtd_info *mtd, loff_t from, size_t len) +{ + struct mtd_info *master = mtd_get_master(mtd); + + if (!master->_unpoint) + return -EOPNOTSUPP; + if (from < 0 || from >= mtd->size || len > mtd->size - from) + return -EINVAL; + if (!len) + return 0; + return master->_unpoint(master, mtd_get_master_ofs(mtd, from), len); +} +EXPORT_SYMBOL_GPL(mtd_unpoint); + +/* + * Allow NOMMU mmap() to directly map the device (if not NULL) + * - return the address to which the offset maps + * - return -ENOSYS to indicate refusal to do the mapping + */ +unsigned long mtd_get_unmapped_area(struct mtd_info *mtd, unsigned long len, + unsigned long offset, unsigned long flags) +{ + size_t retlen; + void *virt; + int ret; + + ret = mtd_point(mtd, offset, len, &retlen, &virt, NULL); + if (ret) + return ret; + if (retlen != len) { + mtd_unpoint(mtd, offset, retlen); + return -ENOSYS; + } + return (unsigned long)virt; +} +EXPORT_SYMBOL_GPL(mtd_get_unmapped_area); + +static void mtd_update_ecc_stats(struct mtd_info *mtd, struct mtd_info *master, + const struct mtd_ecc_stats *old_stats) +{ + struct mtd_ecc_stats diff; + + if (master == mtd) + return; + + diff = master->ecc_stats; + diff.failed -= old_stats->failed; + diff.corrected -= old_stats->corrected; + + while (mtd->parent) { + mtd->ecc_stats.failed += diff.failed; + mtd->ecc_stats.corrected += diff.corrected; + mtd = mtd->parent; + } +} + +int mtd_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, + u_char *buf) +{ + struct mtd_oob_ops ops = { + .len = len, + .datbuf = buf, + }; + int ret; + + ret = mtd_read_oob(mtd, from, &ops); + *retlen = ops.retlen; + + return ret; +} +EXPORT_SYMBOL_GPL(mtd_read); + +int mtd_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen, + const u_char *buf) +{ + struct mtd_oob_ops ops = { + .len = len, + .datbuf = (u8 *)buf, + }; + int ret; + + ret = mtd_write_oob(mtd, to, &ops); + *retlen = ops.retlen; + + return ret; +} +EXPORT_SYMBOL_GPL(mtd_write); + +/* + * In blackbox flight recorder like scenarios we want to make successful writes + * in interrupt context. panic_write() is only intended to be called when its + * known the kernel is about to panic and we need the write to succeed. Since + * the kernel is not going to be running for much longer, this function can + * break locks and delay to ensure the write succeeds (but not sleep). + */ +int mtd_panic_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen, + const u_char *buf) +{ + struct mtd_info *master = mtd_get_master(mtd); + + *retlen = 0; + if (!master->_panic_write) + return -EOPNOTSUPP; + if (to < 0 || to >= mtd->size || len > mtd->size - to) + return -EINVAL; + if (!(mtd->flags & MTD_WRITEABLE)) + return -EROFS; + if (!len) + return 0; + if (!master->oops_panic_write) + master->oops_panic_write = true; + + return master->_panic_write(master, mtd_get_master_ofs(mtd, to), len, + retlen, buf); +} +EXPORT_SYMBOL_GPL(mtd_panic_write); + +static int mtd_check_oob_ops(struct mtd_info *mtd, loff_t offs, + struct mtd_oob_ops *ops) +{ + /* + * Some users are setting ->datbuf or ->oobbuf to NULL, but are leaving + * ->len or ->ooblen uninitialized. Force ->len and ->ooblen to 0 in + * this case. + */ + if (!ops->datbuf) + ops->len = 0; + + if (!ops->oobbuf) + ops->ooblen = 0; + + if (offs < 0 || offs + ops->len > mtd->size) + return -EINVAL; + + if (ops->ooblen) { + size_t maxooblen; + + if (ops->ooboffs >= mtd_oobavail(mtd, ops)) + return -EINVAL; + + maxooblen = ((size_t)(mtd_div_by_ws(mtd->size, mtd) - + mtd_div_by_ws(offs, mtd)) * + mtd_oobavail(mtd, ops)) - ops->ooboffs; + if (ops->ooblen > maxooblen) + return -EINVAL; + } + + return 0; +} + +static int mtd_read_oob_std(struct mtd_info *mtd, loff_t from, + struct mtd_oob_ops *ops) +{ + struct mtd_info *master = mtd_get_master(mtd); + int ret; + + from = mtd_get_master_ofs(mtd, from); + if (master->_read_oob) + ret = master->_read_oob(master, from, ops); + else + ret = master->_read(master, from, ops->len, &ops->retlen, + ops->datbuf); + + return ret; +} + +static int mtd_write_oob_std(struct mtd_info *mtd, loff_t to, + struct mtd_oob_ops *ops) +{ + struct mtd_info *master = mtd_get_master(mtd); + int ret; + + to = mtd_get_master_ofs(mtd, to); + if (master->_write_oob) + ret = master->_write_oob(master, to, ops); + else + ret = master->_write(master, to, ops->len, &ops->retlen, + ops->datbuf); + + return ret; +} + +static int mtd_io_emulated_slc(struct mtd_info *mtd, loff_t start, bool read, + struct mtd_oob_ops *ops) +{ + struct mtd_info *master = mtd_get_master(mtd); + int ngroups = mtd_pairing_groups(master); + int npairs = mtd_wunit_per_eb(master) / ngroups; + struct mtd_oob_ops adjops = *ops; + unsigned int wunit, oobavail; + struct mtd_pairing_info info; + int max_bitflips = 0; + u32 ebofs, pageofs; + loff_t base, pos; + + ebofs = mtd_mod_by_eb(start, mtd); + base = (loff_t)mtd_div_by_eb(start, mtd) * master->erasesize; + info.group = 0; + info.pair = mtd_div_by_ws(ebofs, mtd); + pageofs = mtd_mod_by_ws(ebofs, mtd); + oobavail = mtd_oobavail(mtd, ops); + + while (ops->retlen < ops->len || ops->oobretlen < ops->ooblen) { + int ret; + + if (info.pair >= npairs) { + info.pair = 0; + base += master->erasesize; + } + + wunit = mtd_pairing_info_to_wunit(master, &info); + pos = mtd_wunit_to_offset(mtd, base, wunit); + + adjops.len = ops->len - ops->retlen; + if (adjops.len > mtd->writesize - pageofs) + adjops.len = mtd->writesize - pageofs; + + adjops.ooblen = ops->ooblen - ops->oobretlen; + if (adjops.ooblen > oobavail - adjops.ooboffs) + adjops.ooblen = oobavail - adjops.ooboffs; + + if (read) { + ret = mtd_read_oob_std(mtd, pos + pageofs, &adjops); + if (ret > 0) + max_bitflips = max(max_bitflips, ret); + } else { + ret = mtd_write_oob_std(mtd, pos + pageofs, &adjops); + } + + if (ret < 0) + return ret; + + max_bitflips = max(max_bitflips, ret); + ops->retlen += adjops.retlen; + ops->oobretlen += adjops.oobretlen; + adjops.datbuf += adjops.retlen; + adjops.oobbuf += adjops.oobretlen; + adjops.ooboffs = 0; + pageofs = 0; + info.pair++; + } + + return max_bitflips; +} + +int mtd_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops) +{ + struct mtd_info *master = mtd_get_master(mtd); + struct mtd_ecc_stats old_stats = master->ecc_stats; + int ret_code; + + ops->retlen = ops->oobretlen = 0; + + ret_code = mtd_check_oob_ops(mtd, from, ops); + if (ret_code) + return ret_code; + + ledtrig_mtd_activity(); + + /* Check the validity of a potential fallback on mtd->_read */ + if (!master->_read_oob && (!master->_read || ops->oobbuf)) + return -EOPNOTSUPP; + + if (ops->stats) + memset(ops->stats, 0, sizeof(*ops->stats)); + + if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) + ret_code = mtd_io_emulated_slc(mtd, from, true, ops); + else + ret_code = mtd_read_oob_std(mtd, from, ops); + + mtd_update_ecc_stats(mtd, master, &old_stats); + + /* + * In cases where ops->datbuf != NULL, mtd->_read_oob() has semantics + * similar to mtd->_read(), returning a non-negative integer + * representing max bitflips. In other cases, mtd->_read_oob() may + * return -EUCLEAN. In all cases, perform similar logic to mtd_read(). + */ + if (unlikely(ret_code < 0)) + return ret_code; + if (mtd->ecc_strength == 0) + return 0; /* device lacks ecc */ + if (ops->stats) + ops->stats->max_bitflips = ret_code; + return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0; +} +EXPORT_SYMBOL_GPL(mtd_read_oob); + +int mtd_write_oob(struct mtd_info *mtd, loff_t to, + struct mtd_oob_ops *ops) +{ + struct mtd_info *master = mtd_get_master(mtd); + int ret; + + ops->retlen = ops->oobretlen = 0; + + if (!(mtd->flags & MTD_WRITEABLE)) + return -EROFS; + + ret = mtd_check_oob_ops(mtd, to, ops); + if (ret) + return ret; + + ledtrig_mtd_activity(); + + /* Check the validity of a potential fallback on mtd->_write */ + if (!master->_write_oob && (!master->_write || ops->oobbuf)) + return -EOPNOTSUPP; + + if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) + return mtd_io_emulated_slc(mtd, to, false, ops); + + return mtd_write_oob_std(mtd, to, ops); +} +EXPORT_SYMBOL_GPL(mtd_write_oob); + +/** + * mtd_ooblayout_ecc - Get the OOB region definition of a specific ECC section + * @mtd: MTD device structure + * @section: ECC section. Depending on the layout you may have all the ECC + * bytes stored in a single contiguous section, or one section + * per ECC chunk (and sometime several sections for a single ECC + * ECC chunk) + * @oobecc: OOB region struct filled with the appropriate ECC position + * information + * + * This function returns ECC section information in the OOB area. If you want + * to get all the ECC bytes information, then you should call + * mtd_ooblayout_ecc(mtd, section++, oobecc) until it returns -ERANGE. + * + * Returns zero on success, a negative error code otherwise. + */ +int mtd_ooblayout_ecc(struct mtd_info *mtd, int section, + struct mtd_oob_region *oobecc) +{ + struct mtd_info *master = mtd_get_master(mtd); + + memset(oobecc, 0, sizeof(*oobecc)); + + if (!master || section < 0) + return -EINVAL; + + if (!master->ooblayout || !master->ooblayout->ecc) + return -ENOTSUPP; + + return master->ooblayout->ecc(master, section, oobecc); +} +EXPORT_SYMBOL_GPL(mtd_ooblayout_ecc); + +/** + * mtd_ooblayout_free - Get the OOB region definition of a specific free + * section + * @mtd: MTD device structure + * @section: Free section you are interested in. Depending on the layout + * you may have all the free bytes stored in a single contiguous + * section, or one section per ECC chunk plus an extra section + * for the remaining bytes (or other funky layout). + * @oobfree: OOB region struct filled with the appropriate free position + * information + * + * This function returns free bytes position in the OOB area. If you want + * to get all the free bytes information, then you should call + * mtd_ooblayout_free(mtd, section++, oobfree) until it returns -ERANGE. + * + * Returns zero on success, a negative error code otherwise. + */ +int mtd_ooblayout_free(struct mtd_info *mtd, int section, + struct mtd_oob_region *oobfree) +{ + struct mtd_info *master = mtd_get_master(mtd); + + memset(oobfree, 0, sizeof(*oobfree)); + + if (!master || section < 0) + return -EINVAL; + + if (!master->ooblayout || !master->ooblayout->free) + return -ENOTSUPP; + + return master->ooblayout->free(master, section, oobfree); +} +EXPORT_SYMBOL_GPL(mtd_ooblayout_free); + +/** + * mtd_ooblayout_find_region - Find the region attached to a specific byte + * @mtd: mtd info structure + * @byte: the byte we are searching for + * @sectionp: pointer where the section id will be stored + * @oobregion: used to retrieve the ECC position + * @iter: iterator function. Should be either mtd_ooblayout_free or + * mtd_ooblayout_ecc depending on the region type you're searching for + * + * This function returns the section id and oobregion information of a + * specific byte. For example, say you want to know where the 4th ECC byte is + * stored, you'll use: + * + * mtd_ooblayout_find_region(mtd, 3, §ion, &oobregion, mtd_ooblayout_ecc); + * + * Returns zero on success, a negative error code otherwise. + */ +static int mtd_ooblayout_find_region(struct mtd_info *mtd, int byte, + int *sectionp, struct mtd_oob_region *oobregion, + int (*iter)(struct mtd_info *, + int section, + struct mtd_oob_region *oobregion)) +{ + int pos = 0, ret, section = 0; + + memset(oobregion, 0, sizeof(*oobregion)); + + while (1) { + ret = iter(mtd, section, oobregion); + if (ret) + return ret; + + if (pos + oobregion->length > byte) + break; + + pos += oobregion->length; + section++; + } + + /* + * Adjust region info to make it start at the beginning at the + * 'start' ECC byte. + */ + oobregion->offset += byte - pos; + oobregion->length -= byte - pos; + *sectionp = section; + + return 0; +} + +/** + * mtd_ooblayout_find_eccregion - Find the ECC region attached to a specific + * ECC byte + * @mtd: mtd info structure + * @eccbyte: the byte we are searching for + * @section: pointer where the section id will be stored + * @oobregion: OOB region information + * + * Works like mtd_ooblayout_find_region() except it searches for a specific ECC + * byte. + * + * Returns zero on success, a negative error code otherwise. + */ +int mtd_ooblayout_find_eccregion(struct mtd_info *mtd, int eccbyte, + int *section, + struct mtd_oob_region *oobregion) +{ + return mtd_ooblayout_find_region(mtd, eccbyte, section, oobregion, + mtd_ooblayout_ecc); +} +EXPORT_SYMBOL_GPL(mtd_ooblayout_find_eccregion); + +/** + * mtd_ooblayout_get_bytes - Extract OOB bytes from the oob buffer + * @mtd: mtd info structure + * @buf: destination buffer to store OOB bytes + * @oobbuf: OOB buffer + * @start: first byte to retrieve + * @nbytes: number of bytes to retrieve + * @iter: section iterator + * + * Extract bytes attached to a specific category (ECC or free) + * from the OOB buffer and copy them into buf. + * + * Returns zero on success, a negative error code otherwise. + */ +static int mtd_ooblayout_get_bytes(struct mtd_info *mtd, u8 *buf, + const u8 *oobbuf, int start, int nbytes, + int (*iter)(struct mtd_info *, + int section, + struct mtd_oob_region *oobregion)) +{ + struct mtd_oob_region oobregion; + int section, ret; + + ret = mtd_ooblayout_find_region(mtd, start, §ion, + &oobregion, iter); + + while (!ret) { + int cnt; + + cnt = min_t(int, nbytes, oobregion.length); + memcpy(buf, oobbuf + oobregion.offset, cnt); + buf += cnt; + nbytes -= cnt; + + if (!nbytes) + break; + + ret = iter(mtd, ++section, &oobregion); + } + + return ret; +} + +/** + * mtd_ooblayout_set_bytes - put OOB bytes into the oob buffer + * @mtd: mtd info structure + * @buf: source buffer to get OOB bytes from + * @oobbuf: OOB buffer + * @start: first OOB byte to set + * @nbytes: number of OOB bytes to set + * @iter: section iterator + * + * Fill the OOB buffer with data provided in buf. The category (ECC or free) + * is selected by passing the appropriate iterator. + * + * Returns zero on success, a negative error code otherwise. + */ +static int mtd_ooblayout_set_bytes(struct mtd_info *mtd, const u8 *buf, + u8 *oobbuf, int start, int nbytes, + int (*iter)(struct mtd_info *, + int section, + struct mtd_oob_region *oobregion)) +{ + struct mtd_oob_region oobregion; + int section, ret; + + ret = mtd_ooblayout_find_region(mtd, start, §ion, + &oobregion, iter); + + while (!ret) { + int cnt; + + cnt = min_t(int, nbytes, oobregion.length); + memcpy(oobbuf + oobregion.offset, buf, cnt); + buf += cnt; + nbytes -= cnt; + + if (!nbytes) + break; + + ret = iter(mtd, ++section, &oobregion); + } + + return ret; +} + +/** + * mtd_ooblayout_count_bytes - count the number of bytes in a OOB category + * @mtd: mtd info structure + * @iter: category iterator + * + * Count the number of bytes in a given category. + * + * Returns a positive value on success, a negative error code otherwise. + */ +static int mtd_ooblayout_count_bytes(struct mtd_info *mtd, + int (*iter)(struct mtd_info *, + int section, + struct mtd_oob_region *oobregion)) +{ + struct mtd_oob_region oobregion; + int section = 0, ret, nbytes = 0; + + while (1) { + ret = iter(mtd, section++, &oobregion); + if (ret) { + if (ret == -ERANGE) + ret = nbytes; + break; + } + + nbytes += oobregion.length; + } + + return ret; +} + +/** + * mtd_ooblayout_get_eccbytes - extract ECC bytes from the oob buffer + * @mtd: mtd info structure + * @eccbuf: destination buffer to store ECC bytes + * @oobbuf: OOB buffer + * @start: first ECC byte to retrieve + * @nbytes: number of ECC bytes to retrieve + * + * Works like mtd_ooblayout_get_bytes(), except it acts on ECC bytes. + * + * Returns zero on success, a negative error code otherwise. + */ +int mtd_ooblayout_get_eccbytes(struct mtd_info *mtd, u8 *eccbuf, + const u8 *oobbuf, int start, int nbytes) +{ + return mtd_ooblayout_get_bytes(mtd, eccbuf, oobbuf, start, nbytes, + mtd_ooblayout_ecc); +} +EXPORT_SYMBOL_GPL(mtd_ooblayout_get_eccbytes); + +/** + * mtd_ooblayout_set_eccbytes - set ECC bytes into the oob buffer + * @mtd: mtd info structure + * @eccbuf: source buffer to get ECC bytes from + * @oobbuf: OOB buffer + * @start: first ECC byte to set + * @nbytes: number of ECC bytes to set + * + * Works like mtd_ooblayout_set_bytes(), except it acts on ECC bytes. + * + * Returns zero on success, a negative error code otherwise. + */ +int mtd_ooblayout_set_eccbytes(struct mtd_info *mtd, const u8 *eccbuf, + u8 *oobbuf, int start, int nbytes) +{ + return mtd_ooblayout_set_bytes(mtd, eccbuf, oobbuf, start, nbytes, + mtd_ooblayout_ecc); +} +EXPORT_SYMBOL_GPL(mtd_ooblayout_set_eccbytes); + +/** + * mtd_ooblayout_get_databytes - extract data bytes from the oob buffer + * @mtd: mtd info structure + * @databuf: destination buffer to store ECC bytes + * @oobbuf: OOB buffer + * @start: first ECC byte to retrieve + * @nbytes: number of ECC bytes to retrieve + * + * Works like mtd_ooblayout_get_bytes(), except it acts on free bytes. + * + * Returns zero on success, a negative error code otherwise. + */ +int mtd_ooblayout_get_databytes(struct mtd_info *mtd, u8 *databuf, + const u8 *oobbuf, int start, int nbytes) +{ + return mtd_ooblayout_get_bytes(mtd, databuf, oobbuf, start, nbytes, + mtd_ooblayout_free); +} +EXPORT_SYMBOL_GPL(mtd_ooblayout_get_databytes); + +/** + * mtd_ooblayout_set_databytes - set data bytes into the oob buffer + * @mtd: mtd info structure + * @databuf: source buffer to get data bytes from + * @oobbuf: OOB buffer + * @start: first ECC byte to set + * @nbytes: number of ECC bytes to set + * + * Works like mtd_ooblayout_set_bytes(), except it acts on free bytes. + * + * Returns zero on success, a negative error code otherwise. + */ +int mtd_ooblayout_set_databytes(struct mtd_info *mtd, const u8 *databuf, + u8 *oobbuf, int start, int nbytes) +{ + return mtd_ooblayout_set_bytes(mtd, databuf, oobbuf, start, nbytes, + mtd_ooblayout_free); +} +EXPORT_SYMBOL_GPL(mtd_ooblayout_set_databytes); + +/** + * mtd_ooblayout_count_freebytes - count the number of free bytes in OOB + * @mtd: mtd info structure + * + * Works like mtd_ooblayout_count_bytes(), except it count free bytes. + * + * Returns zero on success, a negative error code otherwise. + */ +int mtd_ooblayout_count_freebytes(struct mtd_info *mtd) +{ + return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_free); +} +EXPORT_SYMBOL_GPL(mtd_ooblayout_count_freebytes); + +/** + * mtd_ooblayout_count_eccbytes - count the number of ECC bytes in OOB + * @mtd: mtd info structure + * + * Works like mtd_ooblayout_count_bytes(), except it count ECC bytes. + * + * Returns zero on success, a negative error code otherwise. + */ +int mtd_ooblayout_count_eccbytes(struct mtd_info *mtd) +{ + return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_ecc); +} +EXPORT_SYMBOL_GPL(mtd_ooblayout_count_eccbytes); + +/* + * Method to access the protection register area, present in some flash + * devices. The user data is one time programmable but the factory data is read + * only. + */ +int mtd_get_fact_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen, + struct otp_info *buf) +{ + struct mtd_info *master = mtd_get_master(mtd); + + if (!master->_get_fact_prot_info) + return -EOPNOTSUPP; + if (!len) + return 0; + return master->_get_fact_prot_info(master, len, retlen, buf); +} +EXPORT_SYMBOL_GPL(mtd_get_fact_prot_info); + +int mtd_read_fact_prot_reg(struct mtd_info *mtd, loff_t from, size_t len, + size_t *retlen, u_char *buf) +{ + struct mtd_info *master = mtd_get_master(mtd); + + *retlen = 0; + if (!master->_read_fact_prot_reg) + return -EOPNOTSUPP; + if (!len) + return 0; + return master->_read_fact_prot_reg(master, from, len, retlen, buf); +} +EXPORT_SYMBOL_GPL(mtd_read_fact_prot_reg); + +int mtd_get_user_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen, + struct otp_info *buf) +{ + struct mtd_info *master = mtd_get_master(mtd); + + if (!master->_get_user_prot_info) + return -EOPNOTSUPP; + if (!len) + return 0; + return master->_get_user_prot_info(master, len, retlen, buf); +} +EXPORT_SYMBOL_GPL(mtd_get_user_prot_info); + +int mtd_read_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len, + size_t *retlen, u_char *buf) +{ + struct mtd_info *master = mtd_get_master(mtd); + + *retlen = 0; + if (!master->_read_user_prot_reg) + return -EOPNOTSUPP; + if (!len) + return 0; + return master->_read_user_prot_reg(master, from, len, retlen, buf); +} +EXPORT_SYMBOL_GPL(mtd_read_user_prot_reg); + +int mtd_write_user_prot_reg(struct mtd_info *mtd, loff_t to, size_t len, + size_t *retlen, const u_char *buf) +{ + struct mtd_info *master = mtd_get_master(mtd); + int ret; + + *retlen = 0; + if (!master->_write_user_prot_reg) + return -EOPNOTSUPP; + if (!len) + return 0; + ret = master->_write_user_prot_reg(master, to, len, retlen, buf); + if (ret) + return ret; + + /* + * If no data could be written at all, we are out of memory and + * must return -ENOSPC. + */ + return (*retlen) ? 0 : -ENOSPC; +} +EXPORT_SYMBOL_GPL(mtd_write_user_prot_reg); + +int mtd_lock_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len) +{ + struct mtd_info *master = mtd_get_master(mtd); + + if (!master->_lock_user_prot_reg) + return -EOPNOTSUPP; + if (!len) + return 0; + return master->_lock_user_prot_reg(master, from, len); +} +EXPORT_SYMBOL_GPL(mtd_lock_user_prot_reg); + +int mtd_erase_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len) +{ + struct mtd_info *master = mtd_get_master(mtd); + + if (!master->_erase_user_prot_reg) + return -EOPNOTSUPP; + if (!len) + return 0; + return master->_erase_user_prot_reg(master, from, len); +} +EXPORT_SYMBOL_GPL(mtd_erase_user_prot_reg); + +/* Chip-supported device locking */ +int mtd_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len) +{ + struct mtd_info *master = mtd_get_master(mtd); + + if (!master->_lock) + return -EOPNOTSUPP; + if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs) + return -EINVAL; + if (!len) + return 0; + + if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) { + ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize; + len = (u64)mtd_div_by_eb(len, mtd) * master->erasesize; + } + + return master->_lock(master, mtd_get_master_ofs(mtd, ofs), len); +} +EXPORT_SYMBOL_GPL(mtd_lock); + +int mtd_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len) +{ + struct mtd_info *master = mtd_get_master(mtd); + + if (!master->_unlock) + return -EOPNOTSUPP; + if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs) + return -EINVAL; + if (!len) + return 0; + + if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) { + ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize; + len = (u64)mtd_div_by_eb(len, mtd) * master->erasesize; + } + + return master->_unlock(master, mtd_get_master_ofs(mtd, ofs), len); +} +EXPORT_SYMBOL_GPL(mtd_unlock); + +int mtd_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len) +{ + struct mtd_info *master = mtd_get_master(mtd); + + if (!master->_is_locked) + return -EOPNOTSUPP; + if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs) + return -EINVAL; + if (!len) + return 0; + + if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) { + ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize; + len = (u64)mtd_div_by_eb(len, mtd) * master->erasesize; + } + + return master->_is_locked(master, mtd_get_master_ofs(mtd, ofs), len); +} +EXPORT_SYMBOL_GPL(mtd_is_locked); + +int mtd_block_isreserved(struct mtd_info *mtd, loff_t ofs) +{ + struct mtd_info *master = mtd_get_master(mtd); + + if (ofs < 0 || ofs >= mtd->size) + return -EINVAL; + if (!master->_block_isreserved) + return 0; + + if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) + ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize; + + return master->_block_isreserved(master, mtd_get_master_ofs(mtd, ofs)); +} +EXPORT_SYMBOL_GPL(mtd_block_isreserved); + +int mtd_block_isbad(struct mtd_info *mtd, loff_t ofs) +{ + struct mtd_info *master = mtd_get_master(mtd); + + if (ofs < 0 || ofs >= mtd->size) + return -EINVAL; + if (!master->_block_isbad) + return 0; + + if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) + ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize; + + return master->_block_isbad(master, mtd_get_master_ofs(mtd, ofs)); +} +EXPORT_SYMBOL_GPL(mtd_block_isbad); + +int mtd_block_markbad(struct mtd_info *mtd, loff_t ofs) +{ + struct mtd_info *master = mtd_get_master(mtd); + int ret; + + if (!master->_block_markbad) + return -EOPNOTSUPP; + if (ofs < 0 || ofs >= mtd->size) + return -EINVAL; + if (!(mtd->flags & MTD_WRITEABLE)) + return -EROFS; + + if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) + ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize; + + ret = master->_block_markbad(master, mtd_get_master_ofs(mtd, ofs)); + if (ret) + return ret; + + while (mtd->parent) { + mtd->ecc_stats.badblocks++; + mtd = mtd->parent; + } + + return 0; +} +EXPORT_SYMBOL_GPL(mtd_block_markbad); + +/* + * default_mtd_writev - the default writev method + * @mtd: mtd device description object pointer + * @vecs: the vectors to write + * @count: count of vectors in @vecs + * @to: the MTD device offset to write to + * @retlen: on exit contains the count of bytes written to the MTD device. + * + * This function returns zero in case of success and a negative error code in + * case of failure. + */ +static int default_mtd_writev(struct mtd_info *mtd, const struct kvec *vecs, + unsigned long count, loff_t to, size_t *retlen) +{ + unsigned long i; + size_t totlen = 0, thislen; + int ret = 0; + + for (i = 0; i < count; i++) { + if (!vecs[i].iov_len) + continue; + ret = mtd_write(mtd, to, vecs[i].iov_len, &thislen, + vecs[i].iov_base); + totlen += thislen; + if (ret || thislen != vecs[i].iov_len) + break; + to += vecs[i].iov_len; + } + *retlen = totlen; + return ret; +} + +/* + * mtd_writev - the vector-based MTD write method + * @mtd: mtd device description object pointer + * @vecs: the vectors to write + * @count: count of vectors in @vecs + * @to: the MTD device offset to write to + * @retlen: on exit contains the count of bytes written to the MTD device. + * + * This function returns zero in case of success and a negative error code in + * case of failure. + */ +int mtd_writev(struct mtd_info *mtd, const struct kvec *vecs, + unsigned long count, loff_t to, size_t *retlen) +{ + struct mtd_info *master = mtd_get_master(mtd); + + *retlen = 0; + if (!(mtd->flags & MTD_WRITEABLE)) + return -EROFS; + + if (!master->_writev) + return default_mtd_writev(mtd, vecs, count, to, retlen); + + return master->_writev(master, vecs, count, + mtd_get_master_ofs(mtd, to), retlen); +} +EXPORT_SYMBOL_GPL(mtd_writev); + +/** + * mtd_kmalloc_up_to - allocate a contiguous buffer up to the specified size + * @mtd: mtd device description object pointer + * @size: a pointer to the ideal or maximum size of the allocation, points + * to the actual allocation size on success. + * + * This routine attempts to allocate a contiguous kernel buffer up to + * the specified size, backing off the size of the request exponentially + * until the request succeeds or until the allocation size falls below + * the system page size. This attempts to make sure it does not adversely + * impact system performance, so when allocating more than one page, we + * ask the memory allocator to avoid re-trying, swapping, writing back + * or performing I/O. + * + * Note, this function also makes sure that the allocated buffer is aligned to + * the MTD device's min. I/O unit, i.e. the "mtd->writesize" value. + * + * This is called, for example by mtd_{read,write} and jffs2_scan_medium, + * to handle smaller (i.e. degraded) buffer allocations under low- or + * fragmented-memory situations where such reduced allocations, from a + * requested ideal, are allowed. + * + * Returns a pointer to the allocated buffer on success; otherwise, NULL. + */ +void *mtd_kmalloc_up_to(const struct mtd_info *mtd, size_t *size) +{ + gfp_t flags = __GFP_NOWARN | __GFP_DIRECT_RECLAIM | __GFP_NORETRY; + size_t min_alloc = max_t(size_t, mtd->writesize, PAGE_SIZE); + void *kbuf; + + *size = min_t(size_t, *size, KMALLOC_MAX_SIZE); + + while (*size > min_alloc) { + kbuf = kmalloc(*size, flags); + if (kbuf) + return kbuf; + + *size >>= 1; + *size = ALIGN(*size, mtd->writesize); + } + + /* + * For the last resort allocation allow 'kmalloc()' to do all sorts of + * things (write-back, dropping caches, etc) by using GFP_KERNEL. + */ + return kmalloc(*size, GFP_KERNEL); +} +EXPORT_SYMBOL_GPL(mtd_kmalloc_up_to); + +#ifdef CONFIG_PROC_FS + +/*====================================================================*/ +/* Support for /proc/mtd */ + +static int mtd_proc_show(struct seq_file *m, void *v) +{ + struct mtd_info *mtd; + + seq_puts(m, "dev: size erasesize name\n"); + mutex_lock(&mtd_table_mutex); + mtd_for_each_device(mtd) { + seq_printf(m, "mtd%d: %8.8llx %8.8x \"%s\"\n", + mtd->index, (unsigned long long)mtd->size, + mtd->erasesize, mtd->name); + } + mutex_unlock(&mtd_table_mutex); + return 0; +} +#endif /* CONFIG_PROC_FS */ + +/*====================================================================*/ +/* Init code */ + +static struct backing_dev_info * __init mtd_bdi_init(const char *name) +{ + struct backing_dev_info *bdi; + int ret; + + bdi = bdi_alloc(NUMA_NO_NODE); + if (!bdi) + return ERR_PTR(-ENOMEM); + bdi->ra_pages = 0; + bdi->io_pages = 0; + + /* + * We put '-0' suffix to the name to get the same name format as we + * used to get. Since this is called only once, we get a unique name. + */ + ret = bdi_register(bdi, "%.28s-0", name); + if (ret) + bdi_put(bdi); + + return ret ? ERR_PTR(ret) : bdi; +} + +static struct proc_dir_entry *proc_mtd; + +static int __init init_mtd(void) +{ + int ret; + + ret = class_register(&mtd_class); + if (ret) + goto err_reg; + + mtd_bdi = mtd_bdi_init("mtd"); + if (IS_ERR(mtd_bdi)) { + ret = PTR_ERR(mtd_bdi); + goto err_bdi; + } + + proc_mtd = proc_create_single("mtd", 0, NULL, mtd_proc_show); + + ret = init_mtdchar(); + if (ret) + goto out_procfs; + + dfs_dir_mtd = debugfs_create_dir("mtd", NULL); + debugfs_create_bool("expert_analysis_mode", 0600, dfs_dir_mtd, + &mtd_expert_analysis_mode); + + return 0; + +out_procfs: + if (proc_mtd) + remove_proc_entry("mtd", NULL); + bdi_unregister(mtd_bdi); + bdi_put(mtd_bdi); +err_bdi: + class_unregister(&mtd_class); +err_reg: + pr_err("Error registering mtd class or bdi: %d\n", ret); + return ret; +} + +static void __exit cleanup_mtd(void) +{ + debugfs_remove_recursive(dfs_dir_mtd); + cleanup_mtdchar(); + if (proc_mtd) + remove_proc_entry("mtd", NULL); + class_unregister(&mtd_class); + bdi_unregister(mtd_bdi); + bdi_put(mtd_bdi); + idr_destroy(&mtd_idr); +} + +module_init(init_mtd); +module_exit(cleanup_mtd); + +MODULE_LICENSE("GPL"); +MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>"); +MODULE_DESCRIPTION("Core MTD registration and access routines"); diff --git a/drivers/mtd/mtdcore.h b/drivers/mtd/mtdcore.h new file mode 100644 index 0000000000..b014861a06 --- /dev/null +++ b/drivers/mtd/mtdcore.h @@ -0,0 +1,30 @@ +/* SPDX-License-Identifier: GPL-2.0 */ +/* + * These are exported solely for the purpose of mtd_blkdevs.c and mtdchar.c. + * You should not use them for _anything_ else. + */ + +extern struct mutex mtd_table_mutex; +extern struct backing_dev_info *mtd_bdi; + +struct mtd_info *__mtd_next_device(int i); +int __must_check add_mtd_device(struct mtd_info *mtd); +int del_mtd_device(struct mtd_info *mtd); +int add_mtd_partitions(struct mtd_info *, const struct mtd_partition *, int); +int del_mtd_partitions(struct mtd_info *); +void release_mtd_partition(struct mtd_info *mtd); + +struct mtd_partitions; + +int parse_mtd_partitions(struct mtd_info *master, const char * const *types, + struct mtd_part_parser_data *data); + +void mtd_part_parser_cleanup(struct mtd_partitions *parts); + +int __init init_mtdchar(void); +void __exit cleanup_mtdchar(void); + +#define mtd_for_each_device(mtd) \ + for ((mtd) = __mtd_next_device(0); \ + (mtd) != NULL; \ + (mtd) = __mtd_next_device(mtd->index + 1)) diff --git a/drivers/mtd/mtdoops.c b/drivers/mtd/mtdoops.c new file mode 100644 index 0000000000..2f11585b56 --- /dev/null +++ b/drivers/mtd/mtdoops.c @@ -0,0 +1,457 @@ +// SPDX-License-Identifier: GPL-2.0-only +/* + * MTD Oops/Panic logger + * + * Copyright © 2007 Nokia Corporation. All rights reserved. + * + * Author: Richard Purdie <rpurdie@openedhand.com> + */ + +#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt + +#include <linux/kernel.h> +#include <linux/module.h> +#include <linux/console.h> +#include <linux/vmalloc.h> +#include <linux/workqueue.h> +#include <linux/sched.h> +#include <linux/wait.h> +#include <linux/delay.h> +#include <linux/interrupt.h> +#include <linux/timekeeping.h> +#include <linux/mtd/mtd.h> +#include <linux/kmsg_dump.h> + +/* Maximum MTD partition size */ +#define MTDOOPS_MAX_MTD_SIZE (8 * 1024 * 1024) + +static unsigned long record_size = 4096; +module_param(record_size, ulong, 0400); +MODULE_PARM_DESC(record_size, + "record size for MTD OOPS pages in bytes (default 4096)"); + +static char mtddev[80]; +module_param_string(mtddev, mtddev, 80, 0400); +MODULE_PARM_DESC(mtddev, + "name or index number of the MTD device to use"); + +static int dump_oops = 1; +module_param(dump_oops, int, 0600); +MODULE_PARM_DESC(dump_oops, + "set to 1 to dump oopses, 0 to only dump panics (default 1)"); + +#define MTDOOPS_KERNMSG_MAGIC_v1 0x5d005d00 /* Original */ +#define MTDOOPS_KERNMSG_MAGIC_v2 0x5d005e00 /* Adds the timestamp */ + +struct mtdoops_hdr { + u32 seq; + u32 magic; + ktime_t timestamp; +} __packed; + +static struct mtdoops_context { + struct kmsg_dumper dump; + + int mtd_index; + struct work_struct work_erase; + struct work_struct work_write; + struct mtd_info *mtd; + int oops_pages; + int nextpage; + int nextcount; + unsigned long *oops_page_used; + + unsigned long oops_buf_busy; + void *oops_buf; +} oops_cxt; + +static void mark_page_used(struct mtdoops_context *cxt, int page) +{ + set_bit(page, cxt->oops_page_used); +} + +static void mark_page_unused(struct mtdoops_context *cxt, int page) +{ + clear_bit(page, cxt->oops_page_used); +} + +static int page_is_used(struct mtdoops_context *cxt, int page) +{ + return test_bit(page, cxt->oops_page_used); +} + +static int mtdoops_erase_block(struct mtdoops_context *cxt, int offset) +{ + struct mtd_info *mtd = cxt->mtd; + u32 start_page_offset = mtd_div_by_eb(offset, mtd) * mtd->erasesize; + u32 start_page = start_page_offset / record_size; + u32 erase_pages = mtd->erasesize / record_size; + struct erase_info erase; + int ret; + int page; + + erase.addr = offset; + erase.len = mtd->erasesize; + + ret = mtd_erase(mtd, &erase); + if (ret) { + pr_warn("erase of region [0x%llx, 0x%llx] on \"%s\" failed\n", + (unsigned long long)erase.addr, + (unsigned long long)erase.len, mtddev); + return ret; + } + + /* Mark pages as unused */ + for (page = start_page; page < start_page + erase_pages; page++) + mark_page_unused(cxt, page); + + return 0; +} + +static void mtdoops_erase(struct mtdoops_context *cxt) +{ + struct mtd_info *mtd = cxt->mtd; + int i = 0, j, ret, mod; + + /* We were unregistered */ + if (!mtd) + return; + + mod = (cxt->nextpage * record_size) % mtd->erasesize; + if (mod != 0) { + cxt->nextpage = cxt->nextpage + ((mtd->erasesize - mod) / record_size); + if (cxt->nextpage >= cxt->oops_pages) + cxt->nextpage = 0; + } + + while ((ret = mtd_block_isbad(mtd, cxt->nextpage * record_size)) > 0) { +badblock: + pr_warn("bad block at %08lx\n", + cxt->nextpage * record_size); + i++; + cxt->nextpage = cxt->nextpage + (mtd->erasesize / record_size); + if (cxt->nextpage >= cxt->oops_pages) + cxt->nextpage = 0; + if (i == cxt->oops_pages / (mtd->erasesize / record_size)) { + pr_err("all blocks bad!\n"); + return; + } + } + + if (ret < 0) { + pr_err("mtd_block_isbad failed, aborting\n"); + return; + } + + for (j = 0, ret = -1; (j < 3) && (ret < 0); j++) + ret = mtdoops_erase_block(cxt, cxt->nextpage * record_size); + + if (ret >= 0) { + pr_debug("ready %d, %d\n", + cxt->nextpage, cxt->nextcount); + return; + } + + if (ret == -EIO) { + ret = mtd_block_markbad(mtd, cxt->nextpage * record_size); + if (ret < 0 && ret != -EOPNOTSUPP) { + pr_err("block_markbad failed, aborting\n"); + return; + } + } + goto badblock; +} + +/* Scheduled work - when we can't proceed without erasing a block */ +static void mtdoops_workfunc_erase(struct work_struct *work) +{ + struct mtdoops_context *cxt = + container_of(work, struct mtdoops_context, work_erase); + mtdoops_erase(cxt); +} + +static void mtdoops_inc_counter(struct mtdoops_context *cxt, int panic) +{ + cxt->nextpage++; + if (cxt->nextpage >= cxt->oops_pages) + cxt->nextpage = 0; + cxt->nextcount++; + if (cxt->nextcount == 0xffffffff) + cxt->nextcount = 0; + + if (page_is_used(cxt, cxt->nextpage)) { + pr_debug("not ready %d, %d (erase %s)\n", + cxt->nextpage, cxt->nextcount, + panic ? "immediately" : "scheduled"); + if (panic) { + /* In case of panic, erase immediately */ + mtdoops_erase(cxt); + } else { + /* Otherwise, schedule work to erase it "nicely" */ + schedule_work(&cxt->work_erase); + } + } else { + pr_debug("ready %d, %d (no erase)\n", + cxt->nextpage, cxt->nextcount); + } +} + +static void mtdoops_write(struct mtdoops_context *cxt, int panic) +{ + struct mtd_info *mtd = cxt->mtd; + size_t retlen; + struct mtdoops_hdr *hdr; + int ret; + + if (test_and_set_bit(0, &cxt->oops_buf_busy)) + return; + + /* Add mtdoops header to the buffer */ + hdr = (struct mtdoops_hdr *)cxt->oops_buf; + hdr->seq = cxt->nextcount; + hdr->magic = MTDOOPS_KERNMSG_MAGIC_v2; + hdr->timestamp = ktime_get_real(); + + if (panic) { + ret = mtd_panic_write(mtd, cxt->nextpage * record_size, + record_size, &retlen, cxt->oops_buf); + if (ret == -EOPNOTSUPP) { + pr_err("Cannot write from panic without panic_write\n"); + goto out; + } + } else + ret = mtd_write(mtd, cxt->nextpage * record_size, + record_size, &retlen, cxt->oops_buf); + + if (retlen != record_size || ret < 0) + pr_err("write failure at %ld (%td of %ld written), error %d\n", + cxt->nextpage * record_size, retlen, record_size, ret); + mark_page_used(cxt, cxt->nextpage); + memset(cxt->oops_buf, 0xff, record_size); + + mtdoops_inc_counter(cxt, panic); +out: + clear_bit(0, &cxt->oops_buf_busy); +} + +static void mtdoops_workfunc_write(struct work_struct *work) +{ + struct mtdoops_context *cxt = + container_of(work, struct mtdoops_context, work_write); + + mtdoops_write(cxt, 0); +} + +static void find_next_position(struct mtdoops_context *cxt) +{ + struct mtd_info *mtd = cxt->mtd; + struct mtdoops_hdr hdr; + int ret, page, maxpos = 0; + u32 maxcount = 0xffffffff; + size_t retlen; + + for (page = 0; page < cxt->oops_pages; page++) { + if (mtd_block_isbad(mtd, page * record_size)) + continue; + /* Assume the page is used */ + mark_page_used(cxt, page); + ret = mtd_read(mtd, page * record_size, sizeof(hdr), + &retlen, (u_char *)&hdr); + if (retlen != sizeof(hdr) || + (ret < 0 && !mtd_is_bitflip(ret))) { + pr_err("read failure at %ld (%zu of %zu read), err %d\n", + page * record_size, retlen, sizeof(hdr), ret); + continue; + } + + if (hdr.seq == 0xffffffff && hdr.magic == 0xffffffff) + mark_page_unused(cxt, page); + if (hdr.seq == 0xffffffff || + (hdr.magic != MTDOOPS_KERNMSG_MAGIC_v1 && + hdr.magic != MTDOOPS_KERNMSG_MAGIC_v2)) + continue; + if (maxcount == 0xffffffff) { + maxcount = hdr.seq; + maxpos = page; + } else if (hdr.seq < 0x40000000 && maxcount > 0xc0000000) { + maxcount = hdr.seq; + maxpos = page; + } else if (hdr.seq > maxcount && hdr.seq < 0xc0000000) { + maxcount = hdr.seq; + maxpos = page; + } else if (hdr.seq > maxcount && hdr.seq > 0xc0000000 + && maxcount > 0x80000000) { + maxcount = hdr.seq; + maxpos = page; + } + } + if (maxcount == 0xffffffff) { + cxt->nextpage = cxt->oops_pages - 1; + cxt->nextcount = 0; + } + else { + cxt->nextpage = maxpos; + cxt->nextcount = maxcount; + } + + mtdoops_inc_counter(cxt, 0); +} + +static void mtdoops_do_dump(struct kmsg_dumper *dumper, + enum kmsg_dump_reason reason) +{ + struct mtdoops_context *cxt = container_of(dumper, + struct mtdoops_context, dump); + struct kmsg_dump_iter iter; + + /* Only dump oopses if dump_oops is set */ + if (reason == KMSG_DUMP_OOPS && !dump_oops) + return; + + kmsg_dump_rewind(&iter); + + if (test_and_set_bit(0, &cxt->oops_buf_busy)) + return; + kmsg_dump_get_buffer(&iter, true, + cxt->oops_buf + sizeof(struct mtdoops_hdr), + record_size - sizeof(struct mtdoops_hdr), NULL); + clear_bit(0, &cxt->oops_buf_busy); + + if (reason != KMSG_DUMP_OOPS) { + /* Panics must be written immediately */ + mtdoops_write(cxt, 1); + } else { + /* For other cases, schedule work to write it "nicely" */ + schedule_work(&cxt->work_write); + } +} + +static void mtdoops_notify_add(struct mtd_info *mtd) +{ + struct mtdoops_context *cxt = &oops_cxt; + u64 mtdoops_pages = div_u64(mtd->size, record_size); + int err; + + if (!strcmp(mtd->name, mtddev)) + cxt->mtd_index = mtd->index; + + if (mtd->index != cxt->mtd_index || cxt->mtd_index < 0) + return; + + if (mtd->size < mtd->erasesize * 2) { + pr_err("MTD partition %d not big enough for mtdoops\n", + mtd->index); + return; + } + if (mtd->erasesize < record_size) { + pr_err("eraseblock size of MTD partition %d too small\n", + mtd->index); + return; + } + if (mtd->size > MTDOOPS_MAX_MTD_SIZE) { + pr_err("mtd%d is too large (limit is %d MiB)\n", + mtd->index, MTDOOPS_MAX_MTD_SIZE / 1024 / 1024); + return; + } + + /* oops_page_used is a bit field */ + cxt->oops_page_used = + vmalloc(array_size(sizeof(unsigned long), + DIV_ROUND_UP(mtdoops_pages, + BITS_PER_LONG))); + if (!cxt->oops_page_used) { + pr_err("could not allocate page array\n"); + return; + } + + cxt->dump.max_reason = KMSG_DUMP_OOPS; + cxt->dump.dump = mtdoops_do_dump; + err = kmsg_dump_register(&cxt->dump); + if (err) { + pr_err("registering kmsg dumper failed, error %d\n", err); + vfree(cxt->oops_page_used); + cxt->oops_page_used = NULL; + return; + } + + cxt->mtd = mtd; + cxt->oops_pages = (int)mtd->size / record_size; + find_next_position(cxt); + pr_info("Attached to MTD device %d\n", mtd->index); +} + +static void mtdoops_notify_remove(struct mtd_info *mtd) +{ + struct mtdoops_context *cxt = &oops_cxt; + + if (mtd->index != cxt->mtd_index || cxt->mtd_index < 0) + return; + + if (kmsg_dump_unregister(&cxt->dump) < 0) + pr_warn("could not unregister kmsg_dumper\n"); + + cxt->mtd = NULL; + flush_work(&cxt->work_erase); + flush_work(&cxt->work_write); +} + + +static struct mtd_notifier mtdoops_notifier = { + .add = mtdoops_notify_add, + .remove = mtdoops_notify_remove, +}; + +static int __init mtdoops_init(void) +{ + struct mtdoops_context *cxt = &oops_cxt; + int mtd_index; + char *endp; + + if (strlen(mtddev) == 0) { + pr_err("mtd device (mtddev=name/number) must be supplied\n"); + return -EINVAL; + } + if ((record_size & 4095) != 0) { + pr_err("record_size must be a multiple of 4096\n"); + return -EINVAL; + } + if (record_size < 4096) { + pr_err("record_size must be over 4096 bytes\n"); + return -EINVAL; + } + + /* Setup the MTD device to use */ + cxt->mtd_index = -1; + mtd_index = simple_strtoul(mtddev, &endp, 0); + if (*endp == '\0') + cxt->mtd_index = mtd_index; + + cxt->oops_buf = vmalloc(record_size); + if (!cxt->oops_buf) + return -ENOMEM; + memset(cxt->oops_buf, 0xff, record_size); + cxt->oops_buf_busy = 0; + + INIT_WORK(&cxt->work_erase, mtdoops_workfunc_erase); + INIT_WORK(&cxt->work_write, mtdoops_workfunc_write); + + register_mtd_user(&mtdoops_notifier); + return 0; +} + +static void __exit mtdoops_exit(void) +{ + struct mtdoops_context *cxt = &oops_cxt; + + unregister_mtd_user(&mtdoops_notifier); + vfree(cxt->oops_buf); + vfree(cxt->oops_page_used); +} + + +module_init(mtdoops_init); +module_exit(mtdoops_exit); + +MODULE_LICENSE("GPL"); +MODULE_AUTHOR("Richard Purdie <rpurdie@openedhand.com>"); +MODULE_DESCRIPTION("MTD Oops/Panic console logger/driver"); diff --git a/drivers/mtd/mtdpart.c b/drivers/mtd/mtdpart.c new file mode 100644 index 0000000000..23483db8f3 --- /dev/null +++ b/drivers/mtd/mtdpart.c @@ -0,0 +1,737 @@ +// SPDX-License-Identifier: GPL-2.0-or-later +/* + * Simple MTD partitioning layer + * + * Copyright © 2000 Nicolas Pitre <nico@fluxnic.net> + * Copyright © 2002 Thomas Gleixner <gleixner@linutronix.de> + * Copyright © 2000-2010 David Woodhouse <dwmw2@infradead.org> + */ + +#include <linux/module.h> +#include <linux/types.h> +#include <linux/kernel.h> +#include <linux/slab.h> +#include <linux/list.h> +#include <linux/kmod.h> +#include <linux/mtd/mtd.h> +#include <linux/mtd/partitions.h> +#include <linux/err.h> +#include <linux/of.h> +#include <linux/of_platform.h> + +#include "mtdcore.h" + +/* + * MTD methods which simply translate the effective address and pass through + * to the _real_ device. + */ + +static inline void free_partition(struct mtd_info *mtd) +{ + kfree(mtd->name); + kfree(mtd); +} + +void release_mtd_partition(struct mtd_info *mtd) +{ + WARN_ON(!list_empty(&mtd->part.node)); + free_partition(mtd); +} + +static struct mtd_info *allocate_partition(struct mtd_info *parent, + const struct mtd_partition *part, + int partno, uint64_t cur_offset) +{ + struct mtd_info *master = mtd_get_master(parent); + int wr_alignment = (parent->flags & MTD_NO_ERASE) ? + master->writesize : master->erasesize; + u64 parent_size = mtd_is_partition(parent) ? + parent->part.size : parent->size; + struct mtd_info *child; + u32 remainder; + char *name; + u64 tmp; + + /* allocate the partition structure */ + child = kzalloc(sizeof(*child), GFP_KERNEL); + name = kstrdup(part->name, GFP_KERNEL); + if (!name || !child) { + printk(KERN_ERR"memory allocation error while creating partitions for \"%s\"\n", + parent->name); + kfree(name); + kfree(child); + return ERR_PTR(-ENOMEM); + } + + /* set up the MTD object for this partition */ + child->type = parent->type; + child->part.flags = parent->flags & ~part->mask_flags; + child->part.flags |= part->add_flags; + child->flags = child->part.flags; + child->part.size = part->size; + child->writesize = parent->writesize; + child->writebufsize = parent->writebufsize; + child->oobsize = parent->oobsize; + child->oobavail = parent->oobavail; + child->subpage_sft = parent->subpage_sft; + + child->name = name; + child->owner = parent->owner; + + /* NOTE: Historically, we didn't arrange MTDs as a tree out of + * concern for showing the same data in multiple partitions. + * However, it is very useful to have the master node present, + * so the MTD_PARTITIONED_MASTER option allows that. The master + * will have device nodes etc only if this is set, so make the + * parent conditional on that option. Note, this is a way to + * distinguish between the parent and its partitions in sysfs. + */ + child->dev.parent = IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER) || mtd_is_partition(parent) ? + &parent->dev : parent->dev.parent; + child->dev.of_node = part->of_node; + child->parent = parent; + child->part.offset = part->offset; + INIT_LIST_HEAD(&child->partitions); + + if (child->part.offset == MTDPART_OFS_APPEND) + child->part.offset = cur_offset; + if (child->part.offset == MTDPART_OFS_NXTBLK) { + tmp = cur_offset; + child->part.offset = cur_offset; + remainder = do_div(tmp, wr_alignment); + if (remainder) { + child->part.offset += wr_alignment - remainder; + printk(KERN_NOTICE "Moving partition %d: " + "0x%012llx -> 0x%012llx\n", partno, + (unsigned long long)cur_offset, + child->part.offset); + } + } + if (child->part.offset == MTDPART_OFS_RETAIN) { + child->part.offset = cur_offset; + if (parent_size - child->part.offset >= child->part.size) { + child->part.size = parent_size - child->part.offset - + child->part.size; + } else { + printk(KERN_ERR "mtd partition \"%s\" doesn't have enough space: %#llx < %#llx, disabled\n", + part->name, parent_size - child->part.offset, + child->part.size); + /* register to preserve ordering */ + goto out_register; + } + } + if (child->part.size == MTDPART_SIZ_FULL) + child->part.size = parent_size - child->part.offset; + + printk(KERN_NOTICE "0x%012llx-0x%012llx : \"%s\"\n", + child->part.offset, child->part.offset + child->part.size, + child->name); + + /* let's do some sanity checks */ + if (child->part.offset >= parent_size) { + /* let's register it anyway to preserve ordering */ + child->part.offset = 0; + child->part.size = 0; + + /* Initialize ->erasesize to make add_mtd_device() happy. */ + child->erasesize = parent->erasesize; + printk(KERN_ERR"mtd: partition \"%s\" is out of reach -- disabled\n", + part->name); + goto out_register; + } + if (child->part.offset + child->part.size > parent->size) { + child->part.size = parent_size - child->part.offset; + printk(KERN_WARNING"mtd: partition \"%s\" extends beyond the end of device \"%s\" -- size truncated to %#llx\n", + part->name, parent->name, child->part.size); + } + + if (parent->numeraseregions > 1) { + /* Deal with variable erase size stuff */ + int i, max = parent->numeraseregions; + u64 end = child->part.offset + child->part.size; + struct mtd_erase_region_info *regions = parent->eraseregions; + + /* Find the first erase regions which is part of this + * partition. */ + for (i = 0; i < max && regions[i].offset <= child->part.offset; + i++) + ; + /* The loop searched for the region _behind_ the first one */ + if (i > 0) + i--; + + /* Pick biggest erasesize */ + for (; i < max && regions[i].offset < end; i++) { + if (child->erasesize < regions[i].erasesize) + child->erasesize = regions[i].erasesize; + } + BUG_ON(child->erasesize == 0); + } else { + /* Single erase size */ + child->erasesize = master->erasesize; + } + + /* + * Child erasesize might differ from the parent one if the parent + * exposes several regions with different erasesize. Adjust + * wr_alignment accordingly. + */ + if (!(child->flags & MTD_NO_ERASE)) + wr_alignment = child->erasesize; + + tmp = mtd_get_master_ofs(child, 0); + remainder = do_div(tmp, wr_alignment); + if ((child->flags & MTD_WRITEABLE) && remainder) { + /* Doesn't start on a boundary of major erase size */ + /* FIXME: Let it be writable if it is on a boundary of + * _minor_ erase size though */ + child->flags &= ~MTD_WRITEABLE; + printk(KERN_WARNING"mtd: partition \"%s\" doesn't start on an erase/write block boundary -- force read-only\n", + part->name); + } + + tmp = mtd_get_master_ofs(child, 0) + child->part.size; + remainder = do_div(tmp, wr_alignment); + if ((child->flags & MTD_WRITEABLE) && remainder) { + child->flags &= ~MTD_WRITEABLE; + printk(KERN_WARNING"mtd: partition \"%s\" doesn't end on an erase/write block -- force read-only\n", + part->name); + } + + child->size = child->part.size; + child->ecc_step_size = parent->ecc_step_size; + child->ecc_strength = parent->ecc_strength; + child->bitflip_threshold = parent->bitflip_threshold; + + if (master->_block_isbad) { + uint64_t offs = 0; + + while (offs < child->part.size) { + if (mtd_block_isreserved(child, offs)) + child->ecc_stats.bbtblocks++; + else if (mtd_block_isbad(child, offs)) + child->ecc_stats.badblocks++; + offs += child->erasesize; + } + } + +out_register: + return child; +} + +static ssize_t offset_show(struct device *dev, + struct device_attribute *attr, char *buf) +{ + struct mtd_info *mtd = dev_get_drvdata(dev); + + return sysfs_emit(buf, "%lld\n", mtd->part.offset); +} +static DEVICE_ATTR_RO(offset); /* mtd partition offset */ + +static const struct attribute *mtd_partition_attrs[] = { + &dev_attr_offset.attr, + NULL +}; + +static int mtd_add_partition_attrs(struct mtd_info *new) +{ + int ret = sysfs_create_files(&new->dev.kobj, mtd_partition_attrs); + if (ret) + printk(KERN_WARNING + "mtd: failed to create partition attrs, err=%d\n", ret); + return ret; +} + +int mtd_add_partition(struct mtd_info *parent, const char *name, + long long offset, long long length) +{ + struct mtd_info *master = mtd_get_master(parent); + u64 parent_size = mtd_is_partition(parent) ? + parent->part.size : parent->size; + struct mtd_partition part; + struct mtd_info *child; + int ret = 0; + + /* the direct offset is expected */ + if (offset == MTDPART_OFS_APPEND || + offset == MTDPART_OFS_NXTBLK) + return -EINVAL; + + if (length == MTDPART_SIZ_FULL) + length = parent_size - offset; + + if (length <= 0) + return -EINVAL; + + memset(&part, 0, sizeof(part)); + part.name = name; + part.size = length; + part.offset = offset; + + child = allocate_partition(parent, &part, -1, offset); + if (IS_ERR(child)) + return PTR_ERR(child); + + mutex_lock(&master->master.partitions_lock); + list_add_tail(&child->part.node, &parent->partitions); + mutex_unlock(&master->master.partitions_lock); + + ret = add_mtd_device(child); + if (ret) + goto err_remove_part; + + mtd_add_partition_attrs(child); + + return 0; + +err_remove_part: + mutex_lock(&master->master.partitions_lock); + list_del(&child->part.node); + mutex_unlock(&master->master.partitions_lock); + + free_partition(child); + + return ret; +} +EXPORT_SYMBOL_GPL(mtd_add_partition); + +/** + * __mtd_del_partition - delete MTD partition + * + * @mtd: MTD structure to be deleted + * + * This function must be called with the partitions mutex locked. + */ +static int __mtd_del_partition(struct mtd_info *mtd) +{ + struct mtd_info *child, *next; + int err; + + list_for_each_entry_safe(child, next, &mtd->partitions, part.node) { + err = __mtd_del_partition(child); + if (err) + return err; + } + + sysfs_remove_files(&mtd->dev.kobj, mtd_partition_attrs); + + list_del_init(&mtd->part.node); + err = del_mtd_device(mtd); + if (err) + return err; + + return 0; +} + +/* + * This function unregisters and destroy all slave MTD objects which are + * attached to the given MTD object, recursively. + */ +static int __del_mtd_partitions(struct mtd_info *mtd) +{ + struct mtd_info *child, *next; + int ret, err = 0; + + list_for_each_entry_safe(child, next, &mtd->partitions, part.node) { + if (mtd_has_partitions(child)) + __del_mtd_partitions(child); + + pr_info("Deleting %s MTD partition\n", child->name); + list_del_init(&child->part.node); + ret = del_mtd_device(child); + if (ret < 0) { + pr_err("Error when deleting partition \"%s\" (%d)\n", + child->name, ret); + err = ret; + continue; + } + } + + return err; +} + +int del_mtd_partitions(struct mtd_info *mtd) +{ + struct mtd_info *master = mtd_get_master(mtd); + int ret; + + pr_info("Deleting MTD partitions on \"%s\":\n", mtd->name); + + mutex_lock(&master->master.partitions_lock); + ret = __del_mtd_partitions(mtd); + mutex_unlock(&master->master.partitions_lock); + + return ret; +} + +int mtd_del_partition(struct mtd_info *mtd, int partno) +{ + struct mtd_info *child, *master = mtd_get_master(mtd); + int ret = -EINVAL; + + mutex_lock(&master->master.partitions_lock); + list_for_each_entry(child, &mtd->partitions, part.node) { + if (child->index == partno) { + ret = __mtd_del_partition(child); + break; + } + } + mutex_unlock(&master->master.partitions_lock); + + return ret; +} +EXPORT_SYMBOL_GPL(mtd_del_partition); + +/* + * This function, given a parent MTD object and a partition table, creates + * and registers the child MTD objects which are bound to the parent according + * to the partition definitions. + * + * For historical reasons, this function's caller only registers the parent + * if the MTD_PARTITIONED_MASTER config option is set. + */ + +int add_mtd_partitions(struct mtd_info *parent, + const struct mtd_partition *parts, + int nbparts) +{ + struct mtd_info *child, *master = mtd_get_master(parent); + uint64_t cur_offset = 0; + int i, ret; + + printk(KERN_NOTICE "Creating %d MTD partitions on \"%s\":\n", + nbparts, parent->name); + + for (i = 0; i < nbparts; i++) { + child = allocate_partition(parent, parts + i, i, cur_offset); + if (IS_ERR(child)) { + ret = PTR_ERR(child); + goto err_del_partitions; + } + + mutex_lock(&master->master.partitions_lock); + list_add_tail(&child->part.node, &parent->partitions); + mutex_unlock(&master->master.partitions_lock); + + ret = add_mtd_device(child); + if (ret) { + mutex_lock(&master->master.partitions_lock); + list_del(&child->part.node); + mutex_unlock(&master->master.partitions_lock); + + free_partition(child); + goto err_del_partitions; + } + + mtd_add_partition_attrs(child); + + /* Look for subpartitions */ + parse_mtd_partitions(child, parts[i].types, NULL); + + cur_offset = child->part.offset + child->part.size; + } + + return 0; + +err_del_partitions: + del_mtd_partitions(master); + + return ret; +} + +static DEFINE_SPINLOCK(part_parser_lock); +static LIST_HEAD(part_parsers); + +static struct mtd_part_parser *mtd_part_parser_get(const char *name) +{ + struct mtd_part_parser *p, *ret = NULL; + + spin_lock(&part_parser_lock); + + list_for_each_entry(p, &part_parsers, list) + if (!strcmp(p->name, name) && try_module_get(p->owner)) { + ret = p; + break; + } + + spin_unlock(&part_parser_lock); + + return ret; +} + +static inline void mtd_part_parser_put(const struct mtd_part_parser *p) +{ + module_put(p->owner); +} + +/* + * Many partition parsers just expected the core to kfree() all their data in + * one chunk. Do that by default. + */ +static void mtd_part_parser_cleanup_default(const struct mtd_partition *pparts, + int nr_parts) +{ + kfree(pparts); +} + +int __register_mtd_parser(struct mtd_part_parser *p, struct module *owner) +{ + p->owner = owner; + + if (!p->cleanup) + p->cleanup = &mtd_part_parser_cleanup_default; + + spin_lock(&part_parser_lock); + list_add(&p->list, &part_parsers); + spin_unlock(&part_parser_lock); + + return 0; +} +EXPORT_SYMBOL_GPL(__register_mtd_parser); + +void deregister_mtd_parser(struct mtd_part_parser *p) +{ + spin_lock(&part_parser_lock); + list_del(&p->list); + spin_unlock(&part_parser_lock); +} +EXPORT_SYMBOL_GPL(deregister_mtd_parser); + +/* + * Do not forget to update 'parse_mtd_partitions()' kerneldoc comment if you + * are changing this array! + */ +static const char * const default_mtd_part_types[] = { + "cmdlinepart", + "ofpart", + NULL +}; + +/* Check DT only when looking for subpartitions. */ +static const char * const default_subpartition_types[] = { + "ofpart", + NULL +}; + +static int mtd_part_do_parse(struct mtd_part_parser *parser, + struct mtd_info *master, + struct mtd_partitions *pparts, + struct mtd_part_parser_data *data) +{ + int ret; + + ret = (*parser->parse_fn)(master, &pparts->parts, data); + pr_debug("%s: parser %s: %i\n", master->name, parser->name, ret); + if (ret <= 0) + return ret; + + pr_notice("%d %s partitions found on MTD device %s\n", ret, + parser->name, master->name); + + pparts->nr_parts = ret; + pparts->parser = parser; + + return ret; +} + +/** + * mtd_part_get_compatible_parser - find MTD parser by a compatible string + * + * @compat: compatible string describing partitions in a device tree + * + * MTD parsers can specify supported partitions by providing a table of + * compatibility strings. This function finds a parser that advertises support + * for a passed value of "compatible". + */ +static struct mtd_part_parser *mtd_part_get_compatible_parser(const char *compat) +{ + struct mtd_part_parser *p, *ret = NULL; + + spin_lock(&part_parser_lock); + + list_for_each_entry(p, &part_parsers, list) { + const struct of_device_id *matches; + + matches = p->of_match_table; + if (!matches) + continue; + + for (; matches->compatible[0]; matches++) { + if (!strcmp(matches->compatible, compat) && + try_module_get(p->owner)) { + ret = p; + break; + } + } + + if (ret) + break; + } + + spin_unlock(&part_parser_lock); + + return ret; +} + +static int mtd_part_of_parse(struct mtd_info *master, + struct mtd_partitions *pparts) +{ + struct mtd_part_parser *parser; + struct device_node *np; + struct device_node *child; + struct property *prop; + struct device *dev; + const char *compat; + const char *fixed = "fixed-partitions"; + int ret, err = 0; + + dev = &master->dev; + /* Use parent device (controller) if the top level MTD is not registered */ + if (!IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER) && !mtd_is_partition(master)) + dev = master->dev.parent; + + np = mtd_get_of_node(master); + if (mtd_is_partition(master)) + of_node_get(np); + else + np = of_get_child_by_name(np, "partitions"); + + /* + * Don't create devices that are added to a bus but will never get + * probed. That'll cause fw_devlink to block probing of consumers of + * this partition until the partition device is probed. + */ + for_each_child_of_node(np, child) + if (of_device_is_compatible(child, "nvmem-cells")) + of_node_set_flag(child, OF_POPULATED); + + of_property_for_each_string(np, "compatible", prop, compat) { + parser = mtd_part_get_compatible_parser(compat); + if (!parser) + continue; + ret = mtd_part_do_parse(parser, master, pparts, NULL); + if (ret > 0) { + of_platform_populate(np, NULL, NULL, dev); + of_node_put(np); + return ret; + } + mtd_part_parser_put(parser); + if (ret < 0 && !err) + err = ret; + } + of_platform_populate(np, NULL, NULL, dev); + of_node_put(np); + + /* + * For backward compatibility we have to try the "fixed-partitions" + * parser. It supports old DT format with partitions specified as a + * direct subnodes of a flash device DT node without any compatibility + * specified we could match. + */ + parser = mtd_part_parser_get(fixed); + if (!parser && !request_module("%s", fixed)) + parser = mtd_part_parser_get(fixed); + if (parser) { + ret = mtd_part_do_parse(parser, master, pparts, NULL); + if (ret > 0) + return ret; + mtd_part_parser_put(parser); + if (ret < 0 && !err) + err = ret; + } + + return err; +} + +/** + * parse_mtd_partitions - parse and register MTD partitions + * + * @master: the master partition (describes whole MTD device) + * @types: names of partition parsers to try or %NULL + * @data: MTD partition parser-specific data + * + * This function tries to find & register partitions on MTD device @master. It + * uses MTD partition parsers, specified in @types. However, if @types is %NULL, + * then the default list of parsers is used. The default list contains only the + * "cmdlinepart" and "ofpart" parsers ATM. + * Note: If there are more then one parser in @types, the kernel only takes the + * partitions parsed out by the first parser. + * + * This function may return: + * o a negative error code in case of failure + * o number of found partitions otherwise + */ +int parse_mtd_partitions(struct mtd_info *master, const char *const *types, + struct mtd_part_parser_data *data) +{ + struct mtd_partitions pparts = { }; + struct mtd_part_parser *parser; + int ret, err = 0; + + if (!types) + types = mtd_is_partition(master) ? default_subpartition_types : + default_mtd_part_types; + + for ( ; *types; types++) { + /* + * ofpart is a special type that means OF partitioning info + * should be used. It requires a bit different logic so it is + * handled in a separated function. + */ + if (!strcmp(*types, "ofpart")) { + ret = mtd_part_of_parse(master, &pparts); + } else { + pr_debug("%s: parsing partitions %s\n", master->name, + *types); + parser = mtd_part_parser_get(*types); + if (!parser && !request_module("%s", *types)) + parser = mtd_part_parser_get(*types); + pr_debug("%s: got parser %s\n", master->name, + parser ? parser->name : NULL); + if (!parser) + continue; + ret = mtd_part_do_parse(parser, master, &pparts, data); + if (ret <= 0) + mtd_part_parser_put(parser); + } + /* Found partitions! */ + if (ret > 0) { + err = add_mtd_partitions(master, pparts.parts, + pparts.nr_parts); + mtd_part_parser_cleanup(&pparts); + return err ? err : pparts.nr_parts; + } + /* + * Stash the first error we see; only report it if no parser + * succeeds + */ + if (ret < 0 && !err) + err = ret; + } + return err; +} + +void mtd_part_parser_cleanup(struct mtd_partitions *parts) +{ + const struct mtd_part_parser *parser; + + if (!parts) + return; + + parser = parts->parser; + if (parser) { + if (parser->cleanup) + parser->cleanup(parts->parts, parts->nr_parts); + + mtd_part_parser_put(parser); + } +} + +/* Returns the size of the entire flash chip */ +uint64_t mtd_get_device_size(const struct mtd_info *mtd) +{ + struct mtd_info *master = mtd_get_master((struct mtd_info *)mtd); + + return master->size; +} +EXPORT_SYMBOL_GPL(mtd_get_device_size); diff --git a/drivers/mtd/mtdpstore.c b/drivers/mtd/mtdpstore.c new file mode 100644 index 0000000000..7ac8ac9013 --- /dev/null +++ b/drivers/mtd/mtdpstore.c @@ -0,0 +1,579 @@ +// SPDX-License-Identifier: GPL-2.0 + +#define dev_fmt(fmt) "mtdoops-pstore: " fmt + +#include <linux/kernel.h> +#include <linux/module.h> +#include <linux/pstore_blk.h> +#include <linux/mtd/mtd.h> +#include <linux/bitops.h> +#include <linux/slab.h> + +static struct mtdpstore_context { + int index; + struct pstore_blk_config info; + struct pstore_device_info dev; + struct mtd_info *mtd; + unsigned long *rmmap; /* removed bit map */ + unsigned long *usedmap; /* used bit map */ + /* + * used for panic write + * As there are no block_isbad for panic case, we should keep this + * status before panic to ensure panic_write not failed. + */ + unsigned long *badmap; /* bad block bit map */ +} oops_cxt; + +static int mtdpstore_block_isbad(struct mtdpstore_context *cxt, loff_t off) +{ + int ret; + struct mtd_info *mtd = cxt->mtd; + u64 blknum; + + off = ALIGN_DOWN(off, mtd->erasesize); + blknum = div_u64(off, mtd->erasesize); + + if (test_bit(blknum, cxt->badmap)) + return true; + ret = mtd_block_isbad(mtd, off); + if (ret < 0) { + dev_err(&mtd->dev, "mtd_block_isbad failed, aborting\n"); + return ret; + } else if (ret > 0) { + set_bit(blknum, cxt->badmap); + return true; + } + return false; +} + +static inline int mtdpstore_panic_block_isbad(struct mtdpstore_context *cxt, + loff_t off) +{ + struct mtd_info *mtd = cxt->mtd; + u64 blknum; + + off = ALIGN_DOWN(off, mtd->erasesize); + blknum = div_u64(off, mtd->erasesize); + return test_bit(blknum, cxt->badmap); +} + +static inline void mtdpstore_mark_used(struct mtdpstore_context *cxt, + loff_t off) +{ + struct mtd_info *mtd = cxt->mtd; + u64 zonenum = div_u64(off, cxt->info.kmsg_size); + + dev_dbg(&mtd->dev, "mark zone %llu used\n", zonenum); + set_bit(zonenum, cxt->usedmap); +} + +static inline void mtdpstore_mark_unused(struct mtdpstore_context *cxt, + loff_t off) +{ + struct mtd_info *mtd = cxt->mtd; + u64 zonenum = div_u64(off, cxt->info.kmsg_size); + + dev_dbg(&mtd->dev, "mark zone %llu unused\n", zonenum); + clear_bit(zonenum, cxt->usedmap); +} + +static inline void mtdpstore_block_mark_unused(struct mtdpstore_context *cxt, + loff_t off) +{ + struct mtd_info *mtd = cxt->mtd; + u32 zonecnt = mtd->erasesize / cxt->info.kmsg_size; + u64 zonenum; + + off = ALIGN_DOWN(off, mtd->erasesize); + zonenum = div_u64(off, cxt->info.kmsg_size); + while (zonecnt > 0) { + dev_dbg(&mtd->dev, "mark zone %llu unused\n", zonenum); + clear_bit(zonenum, cxt->usedmap); + zonenum++; + zonecnt--; + } +} + +static inline int mtdpstore_is_used(struct mtdpstore_context *cxt, loff_t off) +{ + u64 zonenum = div_u64(off, cxt->info.kmsg_size); + u64 blknum = div_u64(off, cxt->mtd->erasesize); + + if (test_bit(blknum, cxt->badmap)) + return true; + return test_bit(zonenum, cxt->usedmap); +} + +static int mtdpstore_block_is_used(struct mtdpstore_context *cxt, + loff_t off) +{ + struct mtd_info *mtd = cxt->mtd; + u32 zonecnt = mtd->erasesize / cxt->info.kmsg_size; + u64 zonenum; + + off = ALIGN_DOWN(off, mtd->erasesize); + zonenum = div_u64(off, cxt->info.kmsg_size); + while (zonecnt > 0) { + if (test_bit(zonenum, cxt->usedmap)) + return true; + zonenum++; + zonecnt--; + } + return false; +} + +static int mtdpstore_is_empty(struct mtdpstore_context *cxt, char *buf, + size_t size) +{ + struct mtd_info *mtd = cxt->mtd; + size_t sz; + int i; + + sz = min_t(uint32_t, size, mtd->writesize / 4); + for (i = 0; i < sz; i++) { + if (buf[i] != (char)0xFF) + return false; + } + return true; +} + +static void mtdpstore_mark_removed(struct mtdpstore_context *cxt, loff_t off) +{ + struct mtd_info *mtd = cxt->mtd; + u64 zonenum = div_u64(off, cxt->info.kmsg_size); + + dev_dbg(&mtd->dev, "mark zone %llu removed\n", zonenum); + set_bit(zonenum, cxt->rmmap); +} + +static void mtdpstore_block_clear_removed(struct mtdpstore_context *cxt, + loff_t off) +{ + struct mtd_info *mtd = cxt->mtd; + u32 zonecnt = mtd->erasesize / cxt->info.kmsg_size; + u64 zonenum; + + off = ALIGN_DOWN(off, mtd->erasesize); + zonenum = div_u64(off, cxt->info.kmsg_size); + while (zonecnt > 0) { + clear_bit(zonenum, cxt->rmmap); + zonenum++; + zonecnt--; + } +} + +static int mtdpstore_block_is_removed(struct mtdpstore_context *cxt, + loff_t off) +{ + struct mtd_info *mtd = cxt->mtd; + u32 zonecnt = mtd->erasesize / cxt->info.kmsg_size; + u64 zonenum; + + off = ALIGN_DOWN(off, mtd->erasesize); + zonenum = div_u64(off, cxt->info.kmsg_size); + while (zonecnt > 0) { + if (test_bit(zonenum, cxt->rmmap)) + return true; + zonenum++; + zonecnt--; + } + return false; +} + +static int mtdpstore_erase_do(struct mtdpstore_context *cxt, loff_t off) +{ + struct mtd_info *mtd = cxt->mtd; + struct erase_info erase; + int ret; + + off = ALIGN_DOWN(off, cxt->mtd->erasesize); + dev_dbg(&mtd->dev, "try to erase off 0x%llx\n", off); + erase.len = cxt->mtd->erasesize; + erase.addr = off; + ret = mtd_erase(cxt->mtd, &erase); + if (!ret) + mtdpstore_block_clear_removed(cxt, off); + else + dev_err(&mtd->dev, "erase of region [0x%llx, 0x%llx] on \"%s\" failed\n", + (unsigned long long)erase.addr, + (unsigned long long)erase.len, cxt->info.device); + return ret; +} + +/* + * called while removing file + * + * Avoiding over erasing, do erase block only when the whole block is unused. + * If the block contains valid log, do erase lazily on flush_removed() when + * unregister. + */ +static ssize_t mtdpstore_erase(size_t size, loff_t off) +{ + struct mtdpstore_context *cxt = &oops_cxt; + + if (mtdpstore_block_isbad(cxt, off)) + return -EIO; + + mtdpstore_mark_unused(cxt, off); + + /* If the block still has valid data, mtdpstore do erase lazily */ + if (likely(mtdpstore_block_is_used(cxt, off))) { + mtdpstore_mark_removed(cxt, off); + return 0; + } + + /* all zones are unused, erase it */ + return mtdpstore_erase_do(cxt, off); +} + +/* + * What is security for mtdpstore? + * As there is no erase for panic case, we should ensure at least one zone + * is writable. Otherwise, panic write will fail. + * If zone is used, write operation will return -ENOMSG, which means that + * pstore/blk will try one by one until gets an empty zone. So, it is not + * needed to ensure the next zone is empty, but at least one. + */ +static int mtdpstore_security(struct mtdpstore_context *cxt, loff_t off) +{ + int ret = 0, i; + struct mtd_info *mtd = cxt->mtd; + u32 zonenum = (u32)div_u64(off, cxt->info.kmsg_size); + u32 zonecnt = (u32)div_u64(cxt->mtd->size, cxt->info.kmsg_size); + u32 blkcnt = (u32)div_u64(cxt->mtd->size, cxt->mtd->erasesize); + u32 erasesize = cxt->mtd->erasesize; + + for (i = 0; i < zonecnt; i++) { + u32 num = (zonenum + i) % zonecnt; + + /* found empty zone */ + if (!test_bit(num, cxt->usedmap)) + return 0; + } + + /* If there is no any empty zone, we have no way but to do erase */ + while (blkcnt--) { + div64_u64_rem(off + erasesize, cxt->mtd->size, (u64 *)&off); + + if (mtdpstore_block_isbad(cxt, off)) + continue; + + ret = mtdpstore_erase_do(cxt, off); + if (!ret) { + mtdpstore_block_mark_unused(cxt, off); + break; + } + } + + if (ret) + dev_err(&mtd->dev, "all blocks bad!\n"); + dev_dbg(&mtd->dev, "end security\n"); + return ret; +} + +static ssize_t mtdpstore_write(const char *buf, size_t size, loff_t off) +{ + struct mtdpstore_context *cxt = &oops_cxt; + struct mtd_info *mtd = cxt->mtd; + size_t retlen; + int ret; + + if (mtdpstore_block_isbad(cxt, off)) + return -ENOMSG; + + /* zone is used, please try next one */ + if (mtdpstore_is_used(cxt, off)) + return -ENOMSG; + + dev_dbg(&mtd->dev, "try to write off 0x%llx size %zu\n", off, size); + ret = mtd_write(cxt->mtd, off, size, &retlen, (u_char *)buf); + if (ret < 0 || retlen != size) { + dev_err(&mtd->dev, "write failure at %lld (%zu of %zu written), err %d\n", + off, retlen, size, ret); + return -EIO; + } + mtdpstore_mark_used(cxt, off); + + mtdpstore_security(cxt, off); + return retlen; +} + +static inline bool mtdpstore_is_io_error(int ret) +{ + return ret < 0 && !mtd_is_bitflip(ret) && !mtd_is_eccerr(ret); +} + +/* + * All zones will be read as pstore/blk will read zone one by one when do + * recover. + */ +static ssize_t mtdpstore_read(char *buf, size_t size, loff_t off) +{ + struct mtdpstore_context *cxt = &oops_cxt; + struct mtd_info *mtd = cxt->mtd; + size_t retlen, done; + int ret; + + if (mtdpstore_block_isbad(cxt, off)) + return -ENOMSG; + + dev_dbg(&mtd->dev, "try to read off 0x%llx size %zu\n", off, size); + for (done = 0, retlen = 0; done < size; done += retlen) { + retlen = 0; + + ret = mtd_read(cxt->mtd, off + done, size - done, &retlen, + (u_char *)buf + done); + if (mtdpstore_is_io_error(ret)) { + dev_err(&mtd->dev, "read failure at %lld (%zu of %zu read), err %d\n", + off + done, retlen, size - done, ret); + /* the zone may be broken, try next one */ + return -ENOMSG; + } + + /* + * ECC error. The impact on log data is so small. Maybe we can + * still read it and try to understand. So mtdpstore just hands + * over what it gets and user can judge whether the data is + * valid or not. + */ + if (mtd_is_eccerr(ret)) { + dev_err(&mtd->dev, "ecc error at %lld (%zu of %zu read), err %d\n", + off + done, retlen, size - done, ret); + /* driver may not set retlen when ecc error */ + retlen = retlen == 0 ? size - done : retlen; + } + } + + if (mtdpstore_is_empty(cxt, buf, size)) + mtdpstore_mark_unused(cxt, off); + else + mtdpstore_mark_used(cxt, off); + + mtdpstore_security(cxt, off); + return retlen; +} + +static ssize_t mtdpstore_panic_write(const char *buf, size_t size, loff_t off) +{ + struct mtdpstore_context *cxt = &oops_cxt; + struct mtd_info *mtd = cxt->mtd; + size_t retlen; + int ret; + + if (mtdpstore_panic_block_isbad(cxt, off)) + return -ENOMSG; + + /* zone is used, please try next one */ + if (mtdpstore_is_used(cxt, off)) + return -ENOMSG; + + ret = mtd_panic_write(cxt->mtd, off, size, &retlen, (u_char *)buf); + if (ret < 0 || size != retlen) { + dev_err(&mtd->dev, "panic write failure at %lld (%zu of %zu read), err %d\n", + off, retlen, size, ret); + return -EIO; + } + mtdpstore_mark_used(cxt, off); + + return retlen; +} + +static void mtdpstore_notify_add(struct mtd_info *mtd) +{ + int ret; + struct mtdpstore_context *cxt = &oops_cxt; + struct pstore_blk_config *info = &cxt->info; + unsigned long longcnt; + + if (!strcmp(mtd->name, info->device)) + cxt->index = mtd->index; + + if (mtd->index != cxt->index || cxt->index < 0) + return; + + dev_dbg(&mtd->dev, "found matching MTD device %s\n", mtd->name); + + if (mtd->size < info->kmsg_size * 2) { + dev_err(&mtd->dev, "MTD partition %d not big enough\n", + mtd->index); + return; + } + /* + * kmsg_size must be aligned to 4096 Bytes, which is limited by + * psblk. The default value of kmsg_size is 64KB. If kmsg_size + * is larger than erasesize, some errors will occur since mtdpstore + * is designed on it. + */ + if (mtd->erasesize < info->kmsg_size) { + dev_err(&mtd->dev, "eraseblock size of MTD partition %d too small\n", + mtd->index); + return; + } + if (unlikely(info->kmsg_size % mtd->writesize)) { + dev_err(&mtd->dev, "record size %lu KB must align to write size %d KB\n", + info->kmsg_size / 1024, + mtd->writesize / 1024); + return; + } + + longcnt = BITS_TO_LONGS(div_u64(mtd->size, info->kmsg_size)); + cxt->rmmap = kcalloc(longcnt, sizeof(long), GFP_KERNEL); + cxt->usedmap = kcalloc(longcnt, sizeof(long), GFP_KERNEL); + + longcnt = BITS_TO_LONGS(div_u64(mtd->size, mtd->erasesize)); + cxt->badmap = kcalloc(longcnt, sizeof(long), GFP_KERNEL); + + /* just support dmesg right now */ + cxt->dev.flags = PSTORE_FLAGS_DMESG; + cxt->dev.zone.read = mtdpstore_read; + cxt->dev.zone.write = mtdpstore_write; + cxt->dev.zone.erase = mtdpstore_erase; + cxt->dev.zone.panic_write = mtdpstore_panic_write; + cxt->dev.zone.total_size = mtd->size; + + ret = register_pstore_device(&cxt->dev); + if (ret) { + dev_err(&mtd->dev, "mtd%d register to psblk failed\n", + mtd->index); + return; + } + cxt->mtd = mtd; + dev_info(&mtd->dev, "Attached to MTD device %d\n", mtd->index); +} + +static int mtdpstore_flush_removed_do(struct mtdpstore_context *cxt, + loff_t off, size_t size) +{ + struct mtd_info *mtd = cxt->mtd; + u_char *buf; + int ret; + size_t retlen; + struct erase_info erase; + + buf = kmalloc(mtd->erasesize, GFP_KERNEL); + if (!buf) + return -ENOMEM; + + /* 1st. read to cache */ + ret = mtd_read(mtd, off, mtd->erasesize, &retlen, buf); + if (mtdpstore_is_io_error(ret)) + goto free; + + /* 2nd. erase block */ + erase.len = mtd->erasesize; + erase.addr = off; + ret = mtd_erase(mtd, &erase); + if (ret) + goto free; + + /* 3rd. write back */ + while (size) { + unsigned int zonesize = cxt->info.kmsg_size; + + /* there is valid data on block, write back */ + if (mtdpstore_is_used(cxt, off)) { + ret = mtd_write(mtd, off, zonesize, &retlen, buf); + if (ret) + dev_err(&mtd->dev, "write failure at %lld (%zu of %u written), err %d\n", + off, retlen, zonesize, ret); + } + + off += zonesize; + size -= min_t(unsigned int, zonesize, size); + } + +free: + kfree(buf); + return ret; +} + +/* + * What does mtdpstore_flush_removed() do? + * When user remove any log file on pstore filesystem, mtdpstore should do + * something to ensure log file removed. If the whole block is no longer used, + * it's nice to erase the block. However if the block still contains valid log, + * what mtdpstore can do is to erase and write the valid log back. + */ +static int mtdpstore_flush_removed(struct mtdpstore_context *cxt) +{ + struct mtd_info *mtd = cxt->mtd; + int ret; + loff_t off; + u32 blkcnt = (u32)div_u64(mtd->size, mtd->erasesize); + + for (off = 0; blkcnt > 0; blkcnt--, off += mtd->erasesize) { + ret = mtdpstore_block_isbad(cxt, off); + if (ret) + continue; + + ret = mtdpstore_block_is_removed(cxt, off); + if (!ret) + continue; + + ret = mtdpstore_flush_removed_do(cxt, off, mtd->erasesize); + if (ret) + return ret; + } + return 0; +} + +static void mtdpstore_notify_remove(struct mtd_info *mtd) +{ + struct mtdpstore_context *cxt = &oops_cxt; + + if (mtd->index != cxt->index || cxt->index < 0) + return; + + mtdpstore_flush_removed(cxt); + + unregister_pstore_device(&cxt->dev); + kfree(cxt->badmap); + kfree(cxt->usedmap); + kfree(cxt->rmmap); + cxt->mtd = NULL; + cxt->index = -1; +} + +static struct mtd_notifier mtdpstore_notifier = { + .add = mtdpstore_notify_add, + .remove = mtdpstore_notify_remove, +}; + +static int __init mtdpstore_init(void) +{ + int ret; + struct mtdpstore_context *cxt = &oops_cxt; + struct pstore_blk_config *info = &cxt->info; + + ret = pstore_blk_get_config(info); + if (unlikely(ret)) + return ret; + + if (strlen(info->device) == 0) { + pr_err("mtd device must be supplied (device name is empty)\n"); + return -EINVAL; + } + if (!info->kmsg_size) { + pr_err("no backend enabled (kmsg_size is 0)\n"); + return -EINVAL; + } + + /* Setup the MTD device to use */ + ret = kstrtoint((char *)info->device, 0, &cxt->index); + if (ret) + cxt->index = -1; + + register_mtd_user(&mtdpstore_notifier); + return 0; +} +module_init(mtdpstore_init); + +static void __exit mtdpstore_exit(void) +{ + unregister_mtd_user(&mtdpstore_notifier); +} +module_exit(mtdpstore_exit); + +MODULE_LICENSE("GPL"); +MODULE_AUTHOR("WeiXiong Liao <liaoweixiong@allwinnertech.com>"); +MODULE_DESCRIPTION("MTD backend for pstore/blk"); diff --git a/drivers/mtd/mtdsuper.c b/drivers/mtd/mtdsuper.c new file mode 100644 index 0000000000..b7e3763c47 --- /dev/null +++ b/drivers/mtd/mtdsuper.c @@ -0,0 +1,179 @@ +// SPDX-License-Identifier: GPL-2.0-or-later +/* MTD-based superblock management + * + * Copyright © 2001-2007 Red Hat, Inc. All Rights Reserved. + * Copyright © 2001-2010 David Woodhouse <dwmw2@infradead.org> + * + * Written by: David Howells <dhowells@redhat.com> + * David Woodhouse <dwmw2@infradead.org> + */ + +#include <linux/mtd/super.h> +#include <linux/namei.h> +#include <linux/export.h> +#include <linux/ctype.h> +#include <linux/slab.h> +#include <linux/major.h> +#include <linux/backing-dev.h> +#include <linux/blkdev.h> +#include <linux/fs_context.h> +#include "mtdcore.h" + +/* + * get a superblock on an MTD-backed filesystem + */ +static int mtd_get_sb(struct fs_context *fc, + struct mtd_info *mtd, + int (*fill_super)(struct super_block *, + struct fs_context *)) +{ + struct super_block *sb; + int ret; + + sb = sget_dev(fc, MKDEV(MTD_BLOCK_MAJOR, mtd->index)); + if (IS_ERR(sb)) + return PTR_ERR(sb); + + if (sb->s_root) { + /* new mountpoint for an already mounted superblock */ + pr_debug("MTDSB: Device %d (\"%s\") is already mounted\n", + mtd->index, mtd->name); + put_mtd_device(mtd); + } else { + /* fresh new superblock */ + pr_debug("MTDSB: New superblock for device %d (\"%s\")\n", + mtd->index, mtd->name); + + /* + * Would usually have been set with @sb_lock held but in + * contrast to sb->s_bdev that's checked with only + * @sb_lock held, nothing checks sb->s_mtd without also + * holding sb->s_umount and we're holding sb->s_umount + * here. + */ + sb->s_mtd = mtd; + sb->s_bdi = bdi_get(mtd_bdi); + + ret = fill_super(sb, fc); + if (ret < 0) + goto error_sb; + + sb->s_flags |= SB_ACTIVE; + } + + BUG_ON(fc->root); + fc->root = dget(sb->s_root); + return 0; + +error_sb: + deactivate_locked_super(sb); + return ret; +} + +/* + * get a superblock on an MTD-backed filesystem by MTD device number + */ +static int mtd_get_sb_by_nr(struct fs_context *fc, int mtdnr, + int (*fill_super)(struct super_block *, + struct fs_context *)) +{ + struct mtd_info *mtd; + + mtd = get_mtd_device(NULL, mtdnr); + if (IS_ERR(mtd)) { + errorf(fc, "MTDSB: Device #%u doesn't appear to exist\n", mtdnr); + return PTR_ERR(mtd); + } + + return mtd_get_sb(fc, mtd, fill_super); +} + +/** + * get_tree_mtd - Get a superblock based on a single MTD device + * @fc: The filesystem context holding the parameters + * @fill_super: Helper to initialise a new superblock + */ +int get_tree_mtd(struct fs_context *fc, + int (*fill_super)(struct super_block *sb, + struct fs_context *fc)) +{ +#ifdef CONFIG_BLOCK + dev_t dev; + int ret; +#endif + int mtdnr; + + if (!fc->source) + return invalf(fc, "No source specified"); + + pr_debug("MTDSB: dev_name \"%s\"\n", fc->source); + + /* the preferred way of mounting in future; especially when + * CONFIG_BLOCK=n - we specify the underlying MTD device by number or + * by name, so that we don't require block device support to be present + * in the kernel. + */ + if (fc->source[0] == 'm' && + fc->source[1] == 't' && + fc->source[2] == 'd') { + if (fc->source[3] == ':') { + struct mtd_info *mtd; + + /* mount by MTD device name */ + pr_debug("MTDSB: mtd:%%s, name \"%s\"\n", + fc->source + 4); + + mtd = get_mtd_device_nm(fc->source + 4); + if (!IS_ERR(mtd)) + return mtd_get_sb(fc, mtd, fill_super); + + errorf(fc, "MTD: MTD device with name \"%s\" not found", + fc->source + 4); + + } else if (isdigit(fc->source[3])) { + /* mount by MTD device number name */ + char *endptr; + + mtdnr = simple_strtoul(fc->source + 3, &endptr, 0); + if (!*endptr) { + /* It was a valid number */ + pr_debug("MTDSB: mtd%%d, mtdnr %d\n", mtdnr); + return mtd_get_sb_by_nr(fc, mtdnr, fill_super); + } + } + } + +#ifdef CONFIG_BLOCK + /* try the old way - the hack where we allowed users to mount + * /dev/mtdblock$(n) but didn't actually _use_ the blockdev + */ + ret = lookup_bdev(fc->source, &dev); + if (ret) { + errorf(fc, "MTD: Couldn't look up '%s': %d", fc->source, ret); + return ret; + } + pr_debug("MTDSB: lookup_bdev() returned 0\n"); + + if (MAJOR(dev) == MTD_BLOCK_MAJOR) + return mtd_get_sb_by_nr(fc, MINOR(dev), fill_super); + +#endif /* CONFIG_BLOCK */ + + if (!(fc->sb_flags & SB_SILENT)) + errorf(fc, "MTD: Attempt to mount non-MTD device \"%s\"", + fc->source); + return -EINVAL; +} +EXPORT_SYMBOL_GPL(get_tree_mtd); + +/* + * destroy an MTD-based superblock + */ +void kill_mtd_super(struct super_block *sb) +{ + generic_shutdown_super(sb); + put_mtd_device(sb->s_mtd); + sb->s_mtd = NULL; +} + +EXPORT_SYMBOL_GPL(kill_mtd_super); diff --git a/drivers/mtd/mtdswap.c b/drivers/mtd/mtdswap.c new file mode 100644 index 0000000000..680366616d --- /dev/null +++ b/drivers/mtd/mtdswap.c @@ -0,0 +1,1491 @@ +// SPDX-License-Identifier: GPL-2.0-only +/* + * Swap block device support for MTDs + * Turns an MTD device into a swap device with block wear leveling + * + * Copyright © 2007,2011 Nokia Corporation. All rights reserved. + * + * Authors: Jarkko Lavinen <jarkko.lavinen@nokia.com> + * + * Based on Richard Purdie's earlier implementation in 2007. Background + * support and lock-less operation written by Adrian Hunter. + */ + +#include <linux/kernel.h> +#include <linux/module.h> +#include <linux/mtd/mtd.h> +#include <linux/mtd/blktrans.h> +#include <linux/rbtree.h> +#include <linux/sched.h> +#include <linux/slab.h> +#include <linux/vmalloc.h> +#include <linux/blkdev.h> +#include <linux/swap.h> +#include <linux/debugfs.h> +#include <linux/seq_file.h> +#include <linux/device.h> +#include <linux/math64.h> + +#define MTDSWAP_PREFIX "mtdswap" + +/* + * The number of free eraseblocks when GC should stop + */ +#define CLEAN_BLOCK_THRESHOLD 20 + +/* + * Number of free eraseblocks below which GC can also collect low frag + * blocks. + */ +#define LOW_FRAG_GC_THRESHOLD 5 + +/* + * Wear level cost amortization. We want to do wear leveling on the background + * without disturbing gc too much. This is made by defining max GC frequency. + * Frequency value 6 means 1/6 of the GC passes will pick an erase block based + * on the biggest wear difference rather than the biggest dirtiness. + * + * The lower freq2 should be chosen so that it makes sure the maximum erase + * difference will decrease even if a malicious application is deliberately + * trying to make erase differences large. + */ +#define MAX_ERASE_DIFF 4000 +#define COLLECT_NONDIRTY_BASE MAX_ERASE_DIFF +#define COLLECT_NONDIRTY_FREQ1 6 +#define COLLECT_NONDIRTY_FREQ2 4 + +#define PAGE_UNDEF UINT_MAX +#define BLOCK_UNDEF UINT_MAX +#define BLOCK_ERROR (UINT_MAX - 1) +#define BLOCK_MAX (UINT_MAX - 2) + +#define EBLOCK_BAD (1 << 0) +#define EBLOCK_NOMAGIC (1 << 1) +#define EBLOCK_BITFLIP (1 << 2) +#define EBLOCK_FAILED (1 << 3) +#define EBLOCK_READERR (1 << 4) +#define EBLOCK_IDX_SHIFT 5 + +struct swap_eb { + struct rb_node rb; + struct rb_root *root; + + unsigned int flags; + unsigned int active_count; + unsigned int erase_count; + unsigned int pad; /* speeds up pointer decrement */ +}; + +#define MTDSWAP_ECNT_MIN(rbroot) (rb_entry(rb_first(rbroot), struct swap_eb, \ + rb)->erase_count) +#define MTDSWAP_ECNT_MAX(rbroot) (rb_entry(rb_last(rbroot), struct swap_eb, \ + rb)->erase_count) + +struct mtdswap_tree { + struct rb_root root; + unsigned int count; +}; + +enum { + MTDSWAP_CLEAN, + MTDSWAP_USED, + MTDSWAP_LOWFRAG, + MTDSWAP_HIFRAG, + MTDSWAP_DIRTY, + MTDSWAP_BITFLIP, + MTDSWAP_FAILING, + MTDSWAP_TREE_CNT, +}; + +struct mtdswap_dev { + struct mtd_blktrans_dev *mbd_dev; + struct mtd_info *mtd; + struct device *dev; + + unsigned int *page_data; + unsigned int *revmap; + + unsigned int eblks; + unsigned int spare_eblks; + unsigned int pages_per_eblk; + unsigned int max_erase_count; + struct swap_eb *eb_data; + + struct mtdswap_tree trees[MTDSWAP_TREE_CNT]; + + unsigned long long sect_read_count; + unsigned long long sect_write_count; + unsigned long long mtd_write_count; + unsigned long long mtd_read_count; + unsigned long long discard_count; + unsigned long long discard_page_count; + + unsigned int curr_write_pos; + struct swap_eb *curr_write; + + char *page_buf; + char *oob_buf; +}; + +struct mtdswap_oobdata { + __le16 magic; + __le32 count; +} __packed; + +#define MTDSWAP_MAGIC_CLEAN 0x2095 +#define MTDSWAP_MAGIC_DIRTY (MTDSWAP_MAGIC_CLEAN + 1) +#define MTDSWAP_TYPE_CLEAN 0 +#define MTDSWAP_TYPE_DIRTY 1 +#define MTDSWAP_OOBSIZE sizeof(struct mtdswap_oobdata) + +#define MTDSWAP_ERASE_RETRIES 3 /* Before marking erase block bad */ +#define MTDSWAP_IO_RETRIES 3 + +enum { + MTDSWAP_SCANNED_CLEAN, + MTDSWAP_SCANNED_DIRTY, + MTDSWAP_SCANNED_BITFLIP, + MTDSWAP_SCANNED_BAD, +}; + +/* + * In the worst case mtdswap_writesect() has allocated the last clean + * page from the current block and is then pre-empted by the GC + * thread. The thread can consume a full erase block when moving a + * block. + */ +#define MIN_SPARE_EBLOCKS 2 +#define MIN_ERASE_BLOCKS (MIN_SPARE_EBLOCKS + 1) + +#define TREE_ROOT(d, name) (&d->trees[MTDSWAP_ ## name].root) +#define TREE_EMPTY(d, name) (TREE_ROOT(d, name)->rb_node == NULL) +#define TREE_NONEMPTY(d, name) (!TREE_EMPTY(d, name)) +#define TREE_COUNT(d, name) (d->trees[MTDSWAP_ ## name].count) + +#define MTDSWAP_MBD_TO_MTDSWAP(dev) ((struct mtdswap_dev *)dev->priv) + +static char partitions[128] = ""; +module_param_string(partitions, partitions, sizeof(partitions), 0444); +MODULE_PARM_DESC(partitions, "MTD partition numbers to use as swap " + "partitions=\"1,3,5\""); + +static unsigned int spare_eblocks = 10; +module_param(spare_eblocks, uint, 0444); +MODULE_PARM_DESC(spare_eblocks, "Percentage of spare erase blocks for " + "garbage collection (default 10%)"); + +static bool header; /* false */ +module_param(header, bool, 0444); +MODULE_PARM_DESC(header, + "Include builtin swap header (default 0, without header)"); + +static int mtdswap_gc(struct mtdswap_dev *d, unsigned int background); + +static loff_t mtdswap_eb_offset(struct mtdswap_dev *d, struct swap_eb *eb) +{ + return (loff_t)(eb - d->eb_data) * d->mtd->erasesize; +} + +static void mtdswap_eb_detach(struct mtdswap_dev *d, struct swap_eb *eb) +{ + unsigned int oldidx; + struct mtdswap_tree *tp; + + if (eb->root) { + tp = container_of(eb->root, struct mtdswap_tree, root); + oldidx = tp - &d->trees[0]; + + d->trees[oldidx].count--; + rb_erase(&eb->rb, eb->root); + } +} + +static void __mtdswap_rb_add(struct rb_root *root, struct swap_eb *eb) +{ + struct rb_node **p, *parent = NULL; + struct swap_eb *cur; + + p = &root->rb_node; + while (*p) { + parent = *p; + cur = rb_entry(parent, struct swap_eb, rb); + if (eb->erase_count > cur->erase_count) + p = &(*p)->rb_right; + else + p = &(*p)->rb_left; + } + + rb_link_node(&eb->rb, parent, p); + rb_insert_color(&eb->rb, root); +} + +static void mtdswap_rb_add(struct mtdswap_dev *d, struct swap_eb *eb, int idx) +{ + struct rb_root *root; + + if (eb->root == &d->trees[idx].root) + return; + + mtdswap_eb_detach(d, eb); + root = &d->trees[idx].root; + __mtdswap_rb_add(root, eb); + eb->root = root; + d->trees[idx].count++; +} + +static struct rb_node *mtdswap_rb_index(struct rb_root *root, unsigned int idx) +{ + struct rb_node *p; + unsigned int i; + + p = rb_first(root); + i = 0; + while (i < idx && p) { + p = rb_next(p); + i++; + } + + return p; +} + +static int mtdswap_handle_badblock(struct mtdswap_dev *d, struct swap_eb *eb) +{ + int ret; + loff_t offset; + + d->spare_eblks--; + eb->flags |= EBLOCK_BAD; + mtdswap_eb_detach(d, eb); + eb->root = NULL; + + /* badblocks not supported */ + if (!mtd_can_have_bb(d->mtd)) + return 1; + + offset = mtdswap_eb_offset(d, eb); + dev_warn(d->dev, "Marking bad block at %08llx\n", offset); + ret = mtd_block_markbad(d->mtd, offset); + + if (ret) { + dev_warn(d->dev, "Mark block bad failed for block at %08llx " + "error %d\n", offset, ret); + return ret; + } + + return 1; + +} + +static int mtdswap_handle_write_error(struct mtdswap_dev *d, struct swap_eb *eb) +{ + unsigned int marked = eb->flags & EBLOCK_FAILED; + struct swap_eb *curr_write = d->curr_write; + + eb->flags |= EBLOCK_FAILED; + if (curr_write == eb) { + d->curr_write = NULL; + + if (!marked && d->curr_write_pos != 0) { + mtdswap_rb_add(d, eb, MTDSWAP_FAILING); + return 0; + } + } + + return mtdswap_handle_badblock(d, eb); +} + +static int mtdswap_read_oob(struct mtdswap_dev *d, loff_t from, + struct mtd_oob_ops *ops) +{ + int ret = mtd_read_oob(d->mtd, from, ops); + + if (mtd_is_bitflip(ret)) + return ret; + + if (ret) { + dev_warn(d->dev, "Read OOB failed %d for block at %08llx\n", + ret, from); + return ret; + } + + if (ops->oobretlen < ops->ooblen) { + dev_warn(d->dev, "Read OOB return short read (%zd bytes not " + "%zd) for block at %08llx\n", + ops->oobretlen, ops->ooblen, from); + return -EIO; + } + + return 0; +} + +static int mtdswap_read_markers(struct mtdswap_dev *d, struct swap_eb *eb) +{ + struct mtdswap_oobdata *data, *data2; + int ret; + loff_t offset; + struct mtd_oob_ops ops = { }; + + offset = mtdswap_eb_offset(d, eb); + + /* Check first if the block is bad. */ + if (mtd_can_have_bb(d->mtd) && mtd_block_isbad(d->mtd, offset)) + return MTDSWAP_SCANNED_BAD; + + ops.ooblen = 2 * d->mtd->oobavail; + ops.oobbuf = d->oob_buf; + ops.ooboffs = 0; + ops.datbuf = NULL; + ops.mode = MTD_OPS_AUTO_OOB; + + ret = mtdswap_read_oob(d, offset, &ops); + + if (ret && !mtd_is_bitflip(ret)) + return ret; + + data = (struct mtdswap_oobdata *)d->oob_buf; + data2 = (struct mtdswap_oobdata *) + (d->oob_buf + d->mtd->oobavail); + + if (le16_to_cpu(data->magic) == MTDSWAP_MAGIC_CLEAN) { + eb->erase_count = le32_to_cpu(data->count); + if (mtd_is_bitflip(ret)) + ret = MTDSWAP_SCANNED_BITFLIP; + else { + if (le16_to_cpu(data2->magic) == MTDSWAP_MAGIC_DIRTY) + ret = MTDSWAP_SCANNED_DIRTY; + else + ret = MTDSWAP_SCANNED_CLEAN; + } + } else { + eb->flags |= EBLOCK_NOMAGIC; + ret = MTDSWAP_SCANNED_DIRTY; + } + + return ret; +} + +static int mtdswap_write_marker(struct mtdswap_dev *d, struct swap_eb *eb, + u16 marker) +{ + struct mtdswap_oobdata n; + int ret; + loff_t offset; + struct mtd_oob_ops ops = { }; + + ops.ooboffs = 0; + ops.oobbuf = (uint8_t *)&n; + ops.mode = MTD_OPS_AUTO_OOB; + ops.datbuf = NULL; + + if (marker == MTDSWAP_TYPE_CLEAN) { + n.magic = cpu_to_le16(MTDSWAP_MAGIC_CLEAN); + n.count = cpu_to_le32(eb->erase_count); + ops.ooblen = MTDSWAP_OOBSIZE; + offset = mtdswap_eb_offset(d, eb); + } else { + n.magic = cpu_to_le16(MTDSWAP_MAGIC_DIRTY); + ops.ooblen = sizeof(n.magic); + offset = mtdswap_eb_offset(d, eb) + d->mtd->writesize; + } + + ret = mtd_write_oob(d->mtd, offset, &ops); + + if (ret) { + dev_warn(d->dev, "Write OOB failed for block at %08llx " + "error %d\n", offset, ret); + if (ret == -EIO || mtd_is_eccerr(ret)) + mtdswap_handle_write_error(d, eb); + return ret; + } + + if (ops.oobretlen != ops.ooblen) { + dev_warn(d->dev, "Short OOB write for block at %08llx: " + "%zd not %zd\n", + offset, ops.oobretlen, ops.ooblen); + return ret; + } + + return 0; +} + +/* + * Are there any erase blocks without MAGIC_CLEAN header, presumably + * because power was cut off after erase but before header write? We + * need to guestimate the erase count. + */ +static void mtdswap_check_counts(struct mtdswap_dev *d) +{ + struct rb_root hist_root = RB_ROOT; + struct rb_node *medrb; + struct swap_eb *eb; + unsigned int i, cnt, median; + + cnt = 0; + for (i = 0; i < d->eblks; i++) { + eb = d->eb_data + i; + + if (eb->flags & (EBLOCK_NOMAGIC | EBLOCK_BAD | EBLOCK_READERR)) + continue; + + __mtdswap_rb_add(&hist_root, eb); + cnt++; + } + + if (cnt == 0) + return; + + medrb = mtdswap_rb_index(&hist_root, cnt / 2); + median = rb_entry(medrb, struct swap_eb, rb)->erase_count; + + d->max_erase_count = MTDSWAP_ECNT_MAX(&hist_root); + + for (i = 0; i < d->eblks; i++) { + eb = d->eb_data + i; + + if (eb->flags & (EBLOCK_NOMAGIC | EBLOCK_READERR)) + eb->erase_count = median; + + if (eb->flags & (EBLOCK_NOMAGIC | EBLOCK_BAD | EBLOCK_READERR)) + continue; + + rb_erase(&eb->rb, &hist_root); + } +} + +static void mtdswap_scan_eblks(struct mtdswap_dev *d) +{ + int status; + unsigned int i, idx; + struct swap_eb *eb; + + for (i = 0; i < d->eblks; i++) { + eb = d->eb_data + i; + + status = mtdswap_read_markers(d, eb); + if (status < 0) + eb->flags |= EBLOCK_READERR; + else if (status == MTDSWAP_SCANNED_BAD) { + eb->flags |= EBLOCK_BAD; + continue; + } + + switch (status) { + case MTDSWAP_SCANNED_CLEAN: + idx = MTDSWAP_CLEAN; + break; + case MTDSWAP_SCANNED_DIRTY: + case MTDSWAP_SCANNED_BITFLIP: + idx = MTDSWAP_DIRTY; + break; + default: + idx = MTDSWAP_FAILING; + } + + eb->flags |= (idx << EBLOCK_IDX_SHIFT); + } + + mtdswap_check_counts(d); + + for (i = 0; i < d->eblks; i++) { + eb = d->eb_data + i; + + if (eb->flags & EBLOCK_BAD) + continue; + + idx = eb->flags >> EBLOCK_IDX_SHIFT; + mtdswap_rb_add(d, eb, idx); + } +} + +/* + * Place eblk into a tree corresponding to its number of active blocks + * it contains. + */ +static void mtdswap_store_eb(struct mtdswap_dev *d, struct swap_eb *eb) +{ + unsigned int weight = eb->active_count; + unsigned int maxweight = d->pages_per_eblk; + + if (eb == d->curr_write) + return; + + if (eb->flags & EBLOCK_BITFLIP) + mtdswap_rb_add(d, eb, MTDSWAP_BITFLIP); + else if (eb->flags & (EBLOCK_READERR | EBLOCK_FAILED)) + mtdswap_rb_add(d, eb, MTDSWAP_FAILING); + if (weight == maxweight) + mtdswap_rb_add(d, eb, MTDSWAP_USED); + else if (weight == 0) + mtdswap_rb_add(d, eb, MTDSWAP_DIRTY); + else if (weight > (maxweight/2)) + mtdswap_rb_add(d, eb, MTDSWAP_LOWFRAG); + else + mtdswap_rb_add(d, eb, MTDSWAP_HIFRAG); +} + +static int mtdswap_erase_block(struct mtdswap_dev *d, struct swap_eb *eb) +{ + struct mtd_info *mtd = d->mtd; + struct erase_info erase; + unsigned int retries = 0; + int ret; + + eb->erase_count++; + if (eb->erase_count > d->max_erase_count) + d->max_erase_count = eb->erase_count; + +retry: + memset(&erase, 0, sizeof(struct erase_info)); + erase.addr = mtdswap_eb_offset(d, eb); + erase.len = mtd->erasesize; + + ret = mtd_erase(mtd, &erase); + if (ret) { + if (retries++ < MTDSWAP_ERASE_RETRIES) { + dev_warn(d->dev, + "erase of erase block %#llx on %s failed", + erase.addr, mtd->name); + yield(); + goto retry; + } + + dev_err(d->dev, "Cannot erase erase block %#llx on %s\n", + erase.addr, mtd->name); + + mtdswap_handle_badblock(d, eb); + return -EIO; + } + + return 0; +} + +static int mtdswap_map_free_block(struct mtdswap_dev *d, unsigned int page, + unsigned int *block) +{ + int ret; + struct swap_eb *old_eb = d->curr_write; + struct rb_root *clean_root; + struct swap_eb *eb; + + if (old_eb == NULL || d->curr_write_pos >= d->pages_per_eblk) { + do { + if (TREE_EMPTY(d, CLEAN)) + return -ENOSPC; + + clean_root = TREE_ROOT(d, CLEAN); + eb = rb_entry(rb_first(clean_root), struct swap_eb, rb); + rb_erase(&eb->rb, clean_root); + eb->root = NULL; + TREE_COUNT(d, CLEAN)--; + + ret = mtdswap_write_marker(d, eb, MTDSWAP_TYPE_DIRTY); + } while (ret == -EIO || mtd_is_eccerr(ret)); + + if (ret) + return ret; + + d->curr_write_pos = 0; + d->curr_write = eb; + if (old_eb) + mtdswap_store_eb(d, old_eb); + } + + *block = (d->curr_write - d->eb_data) * d->pages_per_eblk + + d->curr_write_pos; + + d->curr_write->active_count++; + d->revmap[*block] = page; + d->curr_write_pos++; + + return 0; +} + +static unsigned int mtdswap_free_page_cnt(struct mtdswap_dev *d) +{ + return TREE_COUNT(d, CLEAN) * d->pages_per_eblk + + d->pages_per_eblk - d->curr_write_pos; +} + +static unsigned int mtdswap_enough_free_pages(struct mtdswap_dev *d) +{ + return mtdswap_free_page_cnt(d) > d->pages_per_eblk; +} + +static int mtdswap_write_block(struct mtdswap_dev *d, char *buf, + unsigned int page, unsigned int *bp, int gc_context) +{ + struct mtd_info *mtd = d->mtd; + struct swap_eb *eb; + size_t retlen; + loff_t writepos; + int ret; + +retry: + if (!gc_context) + while (!mtdswap_enough_free_pages(d)) + if (mtdswap_gc(d, 0) > 0) + return -ENOSPC; + + ret = mtdswap_map_free_block(d, page, bp); + eb = d->eb_data + (*bp / d->pages_per_eblk); + + if (ret == -EIO || mtd_is_eccerr(ret)) { + d->curr_write = NULL; + eb->active_count--; + d->revmap[*bp] = PAGE_UNDEF; + goto retry; + } + + if (ret < 0) + return ret; + + writepos = (loff_t)*bp << PAGE_SHIFT; + ret = mtd_write(mtd, writepos, PAGE_SIZE, &retlen, buf); + if (ret == -EIO || mtd_is_eccerr(ret)) { + d->curr_write_pos--; + eb->active_count--; + d->revmap[*bp] = PAGE_UNDEF; + mtdswap_handle_write_error(d, eb); + goto retry; + } + + if (ret < 0) { + dev_err(d->dev, "Write to MTD device failed: %d (%zd written)", + ret, retlen); + goto err; + } + + if (retlen != PAGE_SIZE) { + dev_err(d->dev, "Short write to MTD device: %zd written", + retlen); + ret = -EIO; + goto err; + } + + return ret; + +err: + d->curr_write_pos--; + eb->active_count--; + d->revmap[*bp] = PAGE_UNDEF; + + return ret; +} + +static int mtdswap_move_block(struct mtdswap_dev *d, unsigned int oldblock, + unsigned int *newblock) +{ + struct mtd_info *mtd = d->mtd; + struct swap_eb *eb, *oldeb; + int ret; + size_t retlen; + unsigned int page, retries; + loff_t readpos; + + page = d->revmap[oldblock]; + readpos = (loff_t) oldblock << PAGE_SHIFT; + retries = 0; + +retry: + ret = mtd_read(mtd, readpos, PAGE_SIZE, &retlen, d->page_buf); + + if (ret < 0 && !mtd_is_bitflip(ret)) { + oldeb = d->eb_data + oldblock / d->pages_per_eblk; + oldeb->flags |= EBLOCK_READERR; + + dev_err(d->dev, "Read Error: %d (block %u)\n", ret, + oldblock); + retries++; + if (retries < MTDSWAP_IO_RETRIES) + goto retry; + + goto read_error; + } + + if (retlen != PAGE_SIZE) { + dev_err(d->dev, "Short read: %zd (block %u)\n", retlen, + oldblock); + ret = -EIO; + goto read_error; + } + + ret = mtdswap_write_block(d, d->page_buf, page, newblock, 1); + if (ret < 0) { + d->page_data[page] = BLOCK_ERROR; + dev_err(d->dev, "Write error: %d\n", ret); + return ret; + } + + d->page_data[page] = *newblock; + d->revmap[oldblock] = PAGE_UNDEF; + eb = d->eb_data + oldblock / d->pages_per_eblk; + eb->active_count--; + + return 0; + +read_error: + d->page_data[page] = BLOCK_ERROR; + d->revmap[oldblock] = PAGE_UNDEF; + return ret; +} + +static int mtdswap_gc_eblock(struct mtdswap_dev *d, struct swap_eb *eb) +{ + unsigned int i, block, eblk_base, newblock; + int ret, errcode; + + errcode = 0; + eblk_base = (eb - d->eb_data) * d->pages_per_eblk; + + for (i = 0; i < d->pages_per_eblk; i++) { + if (d->spare_eblks < MIN_SPARE_EBLOCKS) + return -ENOSPC; + + block = eblk_base + i; + if (d->revmap[block] == PAGE_UNDEF) + continue; + + ret = mtdswap_move_block(d, block, &newblock); + if (ret < 0 && !errcode) + errcode = ret; + } + + return errcode; +} + +static int __mtdswap_choose_gc_tree(struct mtdswap_dev *d) +{ + int idx, stopat; + + if (TREE_COUNT(d, CLEAN) < LOW_FRAG_GC_THRESHOLD) + stopat = MTDSWAP_LOWFRAG; + else + stopat = MTDSWAP_HIFRAG; + + for (idx = MTDSWAP_BITFLIP; idx >= stopat; idx--) + if (d->trees[idx].root.rb_node != NULL) + return idx; + + return -1; +} + +static int mtdswap_wlfreq(unsigned int maxdiff) +{ + unsigned int h, x, y, dist, base; + + /* + * Calculate linear ramp down from f1 to f2 when maxdiff goes from + * MAX_ERASE_DIFF to MAX_ERASE_DIFF + COLLECT_NONDIRTY_BASE. Similar + * to triangle with height f1 - f1 and width COLLECT_NONDIRTY_BASE. + */ + + dist = maxdiff - MAX_ERASE_DIFF; + if (dist > COLLECT_NONDIRTY_BASE) + dist = COLLECT_NONDIRTY_BASE; + + /* + * Modelling the slop as right angular triangle with base + * COLLECT_NONDIRTY_BASE and height freq1 - freq2. The ratio y/x is + * equal to the ratio h/base. + */ + h = COLLECT_NONDIRTY_FREQ1 - COLLECT_NONDIRTY_FREQ2; + base = COLLECT_NONDIRTY_BASE; + + x = dist - base; + y = (x * h + base / 2) / base; + + return COLLECT_NONDIRTY_FREQ2 + y; +} + +static int mtdswap_choose_wl_tree(struct mtdswap_dev *d) +{ + static unsigned int pick_cnt; + unsigned int i, idx = -1, wear, max; + struct rb_root *root; + + max = 0; + for (i = 0; i <= MTDSWAP_DIRTY; i++) { + root = &d->trees[i].root; + if (root->rb_node == NULL) + continue; + + wear = d->max_erase_count - MTDSWAP_ECNT_MIN(root); + if (wear > max) { + max = wear; + idx = i; + } + } + + if (max > MAX_ERASE_DIFF && pick_cnt >= mtdswap_wlfreq(max) - 1) { + pick_cnt = 0; + return idx; + } + + pick_cnt++; + return -1; +} + +static int mtdswap_choose_gc_tree(struct mtdswap_dev *d, + unsigned int background) +{ + int idx; + + if (TREE_NONEMPTY(d, FAILING) && + (background || (TREE_EMPTY(d, CLEAN) && TREE_EMPTY(d, DIRTY)))) + return MTDSWAP_FAILING; + + idx = mtdswap_choose_wl_tree(d); + if (idx >= MTDSWAP_CLEAN) + return idx; + + return __mtdswap_choose_gc_tree(d); +} + +static struct swap_eb *mtdswap_pick_gc_eblk(struct mtdswap_dev *d, + unsigned int background) +{ + struct rb_root *rp = NULL; + struct swap_eb *eb = NULL; + int idx; + + if (background && TREE_COUNT(d, CLEAN) > CLEAN_BLOCK_THRESHOLD && + TREE_EMPTY(d, DIRTY) && TREE_EMPTY(d, FAILING)) + return NULL; + + idx = mtdswap_choose_gc_tree(d, background); + if (idx < 0) + return NULL; + + rp = &d->trees[idx].root; + eb = rb_entry(rb_first(rp), struct swap_eb, rb); + + rb_erase(&eb->rb, rp); + eb->root = NULL; + d->trees[idx].count--; + return eb; +} + +static unsigned int mtdswap_test_patt(unsigned int i) +{ + return i % 2 ? 0x55555555 : 0xAAAAAAAA; +} + +static unsigned int mtdswap_eblk_passes(struct mtdswap_dev *d, + struct swap_eb *eb) +{ + struct mtd_info *mtd = d->mtd; + unsigned int test, i, j, patt, mtd_pages; + loff_t base, pos; + unsigned int *p1 = (unsigned int *)d->page_buf; + unsigned char *p2 = (unsigned char *)d->oob_buf; + struct mtd_oob_ops ops = { }; + int ret; + + ops.mode = MTD_OPS_AUTO_OOB; + ops.len = mtd->writesize; + ops.ooblen = mtd->oobavail; + ops.ooboffs = 0; + ops.datbuf = d->page_buf; + ops.oobbuf = d->oob_buf; + base = mtdswap_eb_offset(d, eb); + mtd_pages = d->pages_per_eblk * PAGE_SIZE / mtd->writesize; + + for (test = 0; test < 2; test++) { + pos = base; + for (i = 0; i < mtd_pages; i++) { + patt = mtdswap_test_patt(test + i); + memset(d->page_buf, patt, mtd->writesize); + memset(d->oob_buf, patt, mtd->oobavail); + ret = mtd_write_oob(mtd, pos, &ops); + if (ret) + goto error; + + pos += mtd->writesize; + } + + pos = base; + for (i = 0; i < mtd_pages; i++) { + ret = mtd_read_oob(mtd, pos, &ops); + if (ret) + goto error; + + patt = mtdswap_test_patt(test + i); + for (j = 0; j < mtd->writesize/sizeof(int); j++) + if (p1[j] != patt) + goto error; + + for (j = 0; j < mtd->oobavail; j++) + if (p2[j] != (unsigned char)patt) + goto error; + + pos += mtd->writesize; + } + + ret = mtdswap_erase_block(d, eb); + if (ret) + goto error; + } + + eb->flags &= ~EBLOCK_READERR; + return 1; + +error: + mtdswap_handle_badblock(d, eb); + return 0; +} + +static int mtdswap_gc(struct mtdswap_dev *d, unsigned int background) +{ + struct swap_eb *eb; + int ret; + + if (d->spare_eblks < MIN_SPARE_EBLOCKS) + return 1; + + eb = mtdswap_pick_gc_eblk(d, background); + if (!eb) + return 1; + + ret = mtdswap_gc_eblock(d, eb); + if (ret == -ENOSPC) + return 1; + + if (eb->flags & EBLOCK_FAILED) { + mtdswap_handle_badblock(d, eb); + return 0; + } + + eb->flags &= ~EBLOCK_BITFLIP; + ret = mtdswap_erase_block(d, eb); + if ((eb->flags & EBLOCK_READERR) && + (ret || !mtdswap_eblk_passes(d, eb))) + return 0; + + if (ret == 0) + ret = mtdswap_write_marker(d, eb, MTDSWAP_TYPE_CLEAN); + + if (ret == 0) + mtdswap_rb_add(d, eb, MTDSWAP_CLEAN); + else if (ret != -EIO && !mtd_is_eccerr(ret)) + mtdswap_rb_add(d, eb, MTDSWAP_DIRTY); + + return 0; +} + +static void mtdswap_background(struct mtd_blktrans_dev *dev) +{ + struct mtdswap_dev *d = MTDSWAP_MBD_TO_MTDSWAP(dev); + int ret; + + while (1) { + ret = mtdswap_gc(d, 1); + if (ret || mtd_blktrans_cease_background(dev)) + return; + } +} + +static void mtdswap_cleanup(struct mtdswap_dev *d) +{ + vfree(d->eb_data); + vfree(d->revmap); + vfree(d->page_data); + kfree(d->oob_buf); + kfree(d->page_buf); +} + +static int mtdswap_flush(struct mtd_blktrans_dev *dev) +{ + struct mtdswap_dev *d = MTDSWAP_MBD_TO_MTDSWAP(dev); + + mtd_sync(d->mtd); + return 0; +} + +static unsigned int mtdswap_badblocks(struct mtd_info *mtd, uint64_t size) +{ + loff_t offset; + unsigned int badcnt; + + badcnt = 0; + + if (mtd_can_have_bb(mtd)) + for (offset = 0; offset < size; offset += mtd->erasesize) + if (mtd_block_isbad(mtd, offset)) + badcnt++; + + return badcnt; +} + +static int mtdswap_writesect(struct mtd_blktrans_dev *dev, + unsigned long page, char *buf) +{ + struct mtdswap_dev *d = MTDSWAP_MBD_TO_MTDSWAP(dev); + unsigned int newblock, mapped; + struct swap_eb *eb; + int ret; + + d->sect_write_count++; + + if (d->spare_eblks < MIN_SPARE_EBLOCKS) + return -ENOSPC; + + if (header) { + /* Ignore writes to the header page */ + if (unlikely(page == 0)) + return 0; + + page--; + } + + mapped = d->page_data[page]; + if (mapped <= BLOCK_MAX) { + eb = d->eb_data + (mapped / d->pages_per_eblk); + eb->active_count--; + mtdswap_store_eb(d, eb); + d->page_data[page] = BLOCK_UNDEF; + d->revmap[mapped] = PAGE_UNDEF; + } + + ret = mtdswap_write_block(d, buf, page, &newblock, 0); + d->mtd_write_count++; + + if (ret < 0) + return ret; + + d->page_data[page] = newblock; + + return 0; +} + +/* Provide a dummy swap header for the kernel */ +static int mtdswap_auto_header(struct mtdswap_dev *d, char *buf) +{ + union swap_header *hd = (union swap_header *)(buf); + + memset(buf, 0, PAGE_SIZE - 10); + + hd->info.version = 1; + hd->info.last_page = d->mbd_dev->size - 1; + hd->info.nr_badpages = 0; + + memcpy(buf + PAGE_SIZE - 10, "SWAPSPACE2", 10); + + return 0; +} + +static int mtdswap_readsect(struct mtd_blktrans_dev *dev, + unsigned long page, char *buf) +{ + struct mtdswap_dev *d = MTDSWAP_MBD_TO_MTDSWAP(dev); + struct mtd_info *mtd = d->mtd; + unsigned int realblock, retries; + loff_t readpos; + struct swap_eb *eb; + size_t retlen; + int ret; + + d->sect_read_count++; + + if (header) { + if (unlikely(page == 0)) + return mtdswap_auto_header(d, buf); + + page--; + } + + realblock = d->page_data[page]; + if (realblock > BLOCK_MAX) { + memset(buf, 0x0, PAGE_SIZE); + if (realblock == BLOCK_UNDEF) + return 0; + else + return -EIO; + } + + eb = d->eb_data + (realblock / d->pages_per_eblk); + BUG_ON(d->revmap[realblock] == PAGE_UNDEF); + + readpos = (loff_t)realblock << PAGE_SHIFT; + retries = 0; + +retry: + ret = mtd_read(mtd, readpos, PAGE_SIZE, &retlen, buf); + + d->mtd_read_count++; + if (mtd_is_bitflip(ret)) { + eb->flags |= EBLOCK_BITFLIP; + mtdswap_rb_add(d, eb, MTDSWAP_BITFLIP); + ret = 0; + } + + if (ret < 0) { + dev_err(d->dev, "Read error %d\n", ret); + eb->flags |= EBLOCK_READERR; + mtdswap_rb_add(d, eb, MTDSWAP_FAILING); + retries++; + if (retries < MTDSWAP_IO_RETRIES) + goto retry; + + return ret; + } + + if (retlen != PAGE_SIZE) { + dev_err(d->dev, "Short read %zd\n", retlen); + return -EIO; + } + + return 0; +} + +static int mtdswap_discard(struct mtd_blktrans_dev *dev, unsigned long first, + unsigned nr_pages) +{ + struct mtdswap_dev *d = MTDSWAP_MBD_TO_MTDSWAP(dev); + unsigned long page; + struct swap_eb *eb; + unsigned int mapped; + + d->discard_count++; + + for (page = first; page < first + nr_pages; page++) { + mapped = d->page_data[page]; + if (mapped <= BLOCK_MAX) { + eb = d->eb_data + (mapped / d->pages_per_eblk); + eb->active_count--; + mtdswap_store_eb(d, eb); + d->page_data[page] = BLOCK_UNDEF; + d->revmap[mapped] = PAGE_UNDEF; + d->discard_page_count++; + } else if (mapped == BLOCK_ERROR) { + d->page_data[page] = BLOCK_UNDEF; + d->discard_page_count++; + } + } + + return 0; +} + +static int mtdswap_show(struct seq_file *s, void *data) +{ + struct mtdswap_dev *d = (struct mtdswap_dev *) s->private; + unsigned long sum; + unsigned int count[MTDSWAP_TREE_CNT]; + unsigned int min[MTDSWAP_TREE_CNT]; + unsigned int max[MTDSWAP_TREE_CNT]; + unsigned int i, cw = 0, cwp = 0, cwecount = 0, bb_cnt, mapped, pages; + uint64_t use_size; + static const char * const name[] = { + "clean", "used", "low", "high", "dirty", "bitflip", "failing" + }; + + mutex_lock(&d->mbd_dev->lock); + + for (i = 0; i < MTDSWAP_TREE_CNT; i++) { + struct rb_root *root = &d->trees[i].root; + + if (root->rb_node) { + count[i] = d->trees[i].count; + min[i] = MTDSWAP_ECNT_MIN(root); + max[i] = MTDSWAP_ECNT_MAX(root); + } else + count[i] = 0; + } + + if (d->curr_write) { + cw = 1; + cwp = d->curr_write_pos; + cwecount = d->curr_write->erase_count; + } + + sum = 0; + for (i = 0; i < d->eblks; i++) + sum += d->eb_data[i].erase_count; + + use_size = (uint64_t)d->eblks * d->mtd->erasesize; + bb_cnt = mtdswap_badblocks(d->mtd, use_size); + + mapped = 0; + pages = d->mbd_dev->size; + for (i = 0; i < pages; i++) + if (d->page_data[i] != BLOCK_UNDEF) + mapped++; + + mutex_unlock(&d->mbd_dev->lock); + + for (i = 0; i < MTDSWAP_TREE_CNT; i++) { + if (!count[i]) + continue; + + if (min[i] != max[i]) + seq_printf(s, "%s:\t%5d erase blocks, erased min %d, " + "max %d times\n", + name[i], count[i], min[i], max[i]); + else + seq_printf(s, "%s:\t%5d erase blocks, all erased %d " + "times\n", name[i], count[i], min[i]); + } + + if (bb_cnt) + seq_printf(s, "bad:\t%5u erase blocks\n", bb_cnt); + + if (cw) + seq_printf(s, "current erase block: %u pages used, %u free, " + "erased %u times\n", + cwp, d->pages_per_eblk - cwp, cwecount); + + seq_printf(s, "total erasures: %lu\n", sum); + + seq_puts(s, "\n"); + + seq_printf(s, "mtdswap_readsect count: %llu\n", d->sect_read_count); + seq_printf(s, "mtdswap_writesect count: %llu\n", d->sect_write_count); + seq_printf(s, "mtdswap_discard count: %llu\n", d->discard_count); + seq_printf(s, "mtd read count: %llu\n", d->mtd_read_count); + seq_printf(s, "mtd write count: %llu\n", d->mtd_write_count); + seq_printf(s, "discarded pages count: %llu\n", d->discard_page_count); + + seq_puts(s, "\n"); + seq_printf(s, "total pages: %u\n", pages); + seq_printf(s, "pages mapped: %u\n", mapped); + + return 0; +} +DEFINE_SHOW_ATTRIBUTE(mtdswap); + +static int mtdswap_add_debugfs(struct mtdswap_dev *d) +{ + struct dentry *root = d->mtd->dbg.dfs_dir; + + if (!IS_ENABLED(CONFIG_DEBUG_FS)) + return 0; + + if (IS_ERR_OR_NULL(root)) + return -1; + + debugfs_create_file("mtdswap_stats", S_IRUSR, root, d, &mtdswap_fops); + + return 0; +} + +static int mtdswap_init(struct mtdswap_dev *d, unsigned int eblocks, + unsigned int spare_cnt) +{ + struct mtd_info *mtd = d->mbd_dev->mtd; + unsigned int i, eblk_bytes, pages, blocks; + int ret = -ENOMEM; + + d->mtd = mtd; + d->eblks = eblocks; + d->spare_eblks = spare_cnt; + d->pages_per_eblk = mtd->erasesize >> PAGE_SHIFT; + + pages = d->mbd_dev->size; + blocks = eblocks * d->pages_per_eblk; + + for (i = 0; i < MTDSWAP_TREE_CNT; i++) + d->trees[i].root = RB_ROOT; + + d->page_data = vmalloc(array_size(pages, sizeof(int))); + if (!d->page_data) + goto page_data_fail; + + d->revmap = vmalloc(array_size(blocks, sizeof(int))); + if (!d->revmap) + goto revmap_fail; + + eblk_bytes = sizeof(struct swap_eb)*d->eblks; + d->eb_data = vzalloc(eblk_bytes); + if (!d->eb_data) + goto eb_data_fail; + + for (i = 0; i < pages; i++) + d->page_data[i] = BLOCK_UNDEF; + + for (i = 0; i < blocks; i++) + d->revmap[i] = PAGE_UNDEF; + + d->page_buf = kmalloc(PAGE_SIZE, GFP_KERNEL); + if (!d->page_buf) + goto page_buf_fail; + + d->oob_buf = kmalloc_array(2, mtd->oobavail, GFP_KERNEL); + if (!d->oob_buf) + goto oob_buf_fail; + + mtdswap_scan_eblks(d); + + return 0; + +oob_buf_fail: + kfree(d->page_buf); +page_buf_fail: + vfree(d->eb_data); +eb_data_fail: + vfree(d->revmap); +revmap_fail: + vfree(d->page_data); +page_data_fail: + printk(KERN_ERR "%s: init failed (%d)\n", MTDSWAP_PREFIX, ret); + return ret; +} + +static void mtdswap_add_mtd(struct mtd_blktrans_ops *tr, struct mtd_info *mtd) +{ + struct mtdswap_dev *d; + struct mtd_blktrans_dev *mbd_dev; + char *parts; + char *this_opt; + unsigned long part; + unsigned int eblocks, eavailable, bad_blocks, spare_cnt; + uint64_t swap_size, use_size, size_limit; + int ret; + + parts = &partitions[0]; + if (!*parts) + return; + + while ((this_opt = strsep(&parts, ",")) != NULL) { + if (kstrtoul(this_opt, 0, &part) < 0) + return; + + if (mtd->index == part) + break; + } + + if (mtd->index != part) + return; + + if (mtd->erasesize < PAGE_SIZE || mtd->erasesize % PAGE_SIZE) { + printk(KERN_ERR "%s: Erase size %u not multiple of PAGE_SIZE " + "%lu\n", MTDSWAP_PREFIX, mtd->erasesize, PAGE_SIZE); + return; + } + + if (PAGE_SIZE % mtd->writesize || mtd->writesize > PAGE_SIZE) { + printk(KERN_ERR "%s: PAGE_SIZE %lu not multiple of write size" + " %u\n", MTDSWAP_PREFIX, PAGE_SIZE, mtd->writesize); + return; + } + + if (!mtd->oobsize || mtd->oobavail < MTDSWAP_OOBSIZE) { + printk(KERN_ERR "%s: Not enough free bytes in OOB, " + "%d available, %zu needed.\n", + MTDSWAP_PREFIX, mtd->oobavail, MTDSWAP_OOBSIZE); + return; + } + + if (spare_eblocks > 100) + spare_eblocks = 100; + + use_size = mtd->size; + size_limit = (uint64_t) BLOCK_MAX * PAGE_SIZE; + + if (mtd->size > size_limit) { + printk(KERN_WARNING "%s: Device too large. Limiting size to " + "%llu bytes\n", MTDSWAP_PREFIX, size_limit); + use_size = size_limit; + } + + eblocks = mtd_div_by_eb(use_size, mtd); + use_size = (uint64_t)eblocks * mtd->erasesize; + bad_blocks = mtdswap_badblocks(mtd, use_size); + eavailable = eblocks - bad_blocks; + + if (eavailable < MIN_ERASE_BLOCKS) { + printk(KERN_ERR "%s: Not enough erase blocks. %u available, " + "%d needed\n", MTDSWAP_PREFIX, eavailable, + MIN_ERASE_BLOCKS); + return; + } + + spare_cnt = div_u64((uint64_t)eavailable * spare_eblocks, 100); + + if (spare_cnt < MIN_SPARE_EBLOCKS) + spare_cnt = MIN_SPARE_EBLOCKS; + + if (spare_cnt > eavailable - 1) + spare_cnt = eavailable - 1; + + swap_size = (uint64_t)(eavailable - spare_cnt) * mtd->erasesize + + (header ? PAGE_SIZE : 0); + + printk(KERN_INFO "%s: Enabling MTD swap on device %lu, size %llu KB, " + "%u spare, %u bad blocks\n", + MTDSWAP_PREFIX, part, swap_size / 1024, spare_cnt, bad_blocks); + + d = kzalloc(sizeof(struct mtdswap_dev), GFP_KERNEL); + if (!d) + return; + + mbd_dev = kzalloc(sizeof(struct mtd_blktrans_dev), GFP_KERNEL); + if (!mbd_dev) { + kfree(d); + return; + } + + d->mbd_dev = mbd_dev; + mbd_dev->priv = d; + + mbd_dev->mtd = mtd; + mbd_dev->devnum = mtd->index; + mbd_dev->size = swap_size >> PAGE_SHIFT; + mbd_dev->tr = tr; + + if (!(mtd->flags & MTD_WRITEABLE)) + mbd_dev->readonly = 1; + + if (mtdswap_init(d, eblocks, spare_cnt) < 0) + goto init_failed; + + if (add_mtd_blktrans_dev(mbd_dev) < 0) + goto cleanup; + + d->dev = disk_to_dev(mbd_dev->disk); + + ret = mtdswap_add_debugfs(d); + if (ret < 0) + goto debugfs_failed; + + return; + +debugfs_failed: + del_mtd_blktrans_dev(mbd_dev); + +cleanup: + mtdswap_cleanup(d); + +init_failed: + kfree(mbd_dev); + kfree(d); +} + +static void mtdswap_remove_dev(struct mtd_blktrans_dev *dev) +{ + struct mtdswap_dev *d = MTDSWAP_MBD_TO_MTDSWAP(dev); + + del_mtd_blktrans_dev(dev); + mtdswap_cleanup(d); + kfree(d); +} + +static struct mtd_blktrans_ops mtdswap_ops = { + .name = "mtdswap", + .major = 0, + .part_bits = 0, + .blksize = PAGE_SIZE, + .flush = mtdswap_flush, + .readsect = mtdswap_readsect, + .writesect = mtdswap_writesect, + .discard = mtdswap_discard, + .background = mtdswap_background, + .add_mtd = mtdswap_add_mtd, + .remove_dev = mtdswap_remove_dev, + .owner = THIS_MODULE, +}; + +module_mtd_blktrans(mtdswap_ops); + +MODULE_LICENSE("GPL"); +MODULE_AUTHOR("Jarkko Lavinen <jarkko.lavinen@nokia.com>"); +MODULE_DESCRIPTION("Block device access to an MTD suitable for using as " + "swap space"); diff --git a/drivers/mtd/nand/Kconfig b/drivers/mtd/nand/Kconfig new file mode 100644 index 0000000000..5b0c2c95f1 --- /dev/null +++ b/drivers/mtd/nand/Kconfig @@ -0,0 +1,66 @@ +# SPDX-License-Identifier: GPL-2.0-only + +menu "NAND" + +config MTD_NAND_CORE + tristate + +source "drivers/mtd/nand/onenand/Kconfig" +source "drivers/mtd/nand/raw/Kconfig" +source "drivers/mtd/nand/spi/Kconfig" + +menu "ECC engine support" + +config MTD_NAND_ECC + bool + select MTD_NAND_CORE + +config MTD_NAND_ECC_SW_HAMMING + bool "Software Hamming ECC engine" + default y if MTD_RAW_NAND + select MTD_NAND_ECC + help + This enables support for software Hamming error + correction. This correction can correct up to 1 bit error + per chunk and detect up to 2 bit errors. While it used to be + widely used with old parts, newer NAND chips usually require + more strength correction and in this case BCH or RS will be + preferred. + +config MTD_NAND_ECC_SW_HAMMING_SMC + bool "NAND ECC Smart Media byte order" + depends on MTD_NAND_ECC_SW_HAMMING + default n + help + Software ECC according to the Smart Media Specification. + The original Linux implementation had byte 0 and 1 swapped. + +config MTD_NAND_ECC_SW_BCH + bool "Software BCH ECC engine" + select BCH + select MTD_NAND_ECC + default n + help + This enables support for software BCH error correction. Binary BCH + codes are more powerful and cpu intensive than traditional Hamming + ECC codes. They are used with NAND devices requiring more than 1 bit + of error correction. + +config MTD_NAND_ECC_MXIC + bool "Macronix external hardware ECC engine" + depends on HAS_IOMEM + select MTD_NAND_ECC + help + This enables support for the hardware ECC engine from Macronix. + +config MTD_NAND_ECC_MEDIATEK + tristate "Mediatek hardware ECC engine" + depends on HAS_IOMEM + depends on ARCH_MEDIATEK || COMPILE_TEST + select MTD_NAND_ECC + help + This enables support for the hardware ECC engine from Mediatek. + +endmenu + +endmenu diff --git a/drivers/mtd/nand/Makefile b/drivers/mtd/nand/Makefile new file mode 100644 index 0000000000..19e1291ac4 --- /dev/null +++ b/drivers/mtd/nand/Makefile @@ -0,0 +1,14 @@ +# SPDX-License-Identifier: GPL-2.0 + +nandcore-objs := core.o bbt.o +obj-$(CONFIG_MTD_NAND_CORE) += nandcore.o +obj-$(CONFIG_MTD_NAND_ECC_MEDIATEK) += ecc-mtk.o + +obj-y += onenand/ +obj-y += raw/ +obj-y += spi/ + +nandcore-$(CONFIG_MTD_NAND_ECC) += ecc.o +nandcore-$(CONFIG_MTD_NAND_ECC_SW_HAMMING) += ecc-sw-hamming.o +nandcore-$(CONFIG_MTD_NAND_ECC_SW_BCH) += ecc-sw-bch.o +nandcore-$(CONFIG_MTD_NAND_ECC_MXIC) += ecc-mxic.o diff --git a/drivers/mtd/nand/bbt.c b/drivers/mtd/nand/bbt.c new file mode 100644 index 0000000000..db4f93a903 --- /dev/null +++ b/drivers/mtd/nand/bbt.c @@ -0,0 +1,128 @@ +// SPDX-License-Identifier: GPL-2.0 +/* + * Copyright (c) 2017 Free Electrons + * + * Authors: + * Boris Brezillon <boris.brezillon@free-electrons.com> + * Peter Pan <peterpandong@micron.com> + */ + +#define pr_fmt(fmt) "nand-bbt: " fmt + +#include <linux/mtd/nand.h> +#include <linux/slab.h> + +/** + * nanddev_bbt_init() - Initialize the BBT (Bad Block Table) + * @nand: NAND device + * + * Initialize the in-memory BBT. + * + * Return: 0 in case of success, a negative error code otherwise. + */ +int nanddev_bbt_init(struct nand_device *nand) +{ + unsigned int bits_per_block = fls(NAND_BBT_BLOCK_NUM_STATUS); + unsigned int nblocks = nanddev_neraseblocks(nand); + + nand->bbt.cache = bitmap_zalloc(nblocks * bits_per_block, GFP_KERNEL); + if (!nand->bbt.cache) + return -ENOMEM; + + return 0; +} +EXPORT_SYMBOL_GPL(nanddev_bbt_init); + +/** + * nanddev_bbt_cleanup() - Cleanup the BBT (Bad Block Table) + * @nand: NAND device + * + * Undoes what has been done in nanddev_bbt_init() + */ +void nanddev_bbt_cleanup(struct nand_device *nand) +{ + bitmap_free(nand->bbt.cache); +} +EXPORT_SYMBOL_GPL(nanddev_bbt_cleanup); + +/** + * nanddev_bbt_update() - Update a BBT + * @nand: nand device + * + * Update the BBT. Currently a NOP function since on-flash bbt is not yet + * supported. + * + * Return: 0 in case of success, a negative error code otherwise. + */ +int nanddev_bbt_update(struct nand_device *nand) +{ + return 0; +} +EXPORT_SYMBOL_GPL(nanddev_bbt_update); + +/** + * nanddev_bbt_get_block_status() - Return the status of an eraseblock + * @nand: nand device + * @entry: the BBT entry + * + * Return: a positive number nand_bbt_block_status status or -%ERANGE if @entry + * is bigger than the BBT size. + */ +int nanddev_bbt_get_block_status(const struct nand_device *nand, + unsigned int entry) +{ + unsigned int bits_per_block = fls(NAND_BBT_BLOCK_NUM_STATUS); + unsigned long *pos = nand->bbt.cache + + ((entry * bits_per_block) / BITS_PER_LONG); + unsigned int offs = (entry * bits_per_block) % BITS_PER_LONG; + unsigned long status; + + if (entry >= nanddev_neraseblocks(nand)) + return -ERANGE; + + status = pos[0] >> offs; + if (bits_per_block + offs > BITS_PER_LONG) + status |= pos[1] << (BITS_PER_LONG - offs); + + return status & GENMASK(bits_per_block - 1, 0); +} +EXPORT_SYMBOL_GPL(nanddev_bbt_get_block_status); + +/** + * nanddev_bbt_set_block_status() - Update the status of an eraseblock in the + * in-memory BBT + * @nand: nand device + * @entry: the BBT entry to update + * @status: the new status + * + * Update an entry of the in-memory BBT. If you want to push the updated BBT + * the NAND you should call nanddev_bbt_update(). + * + * Return: 0 in case of success or -%ERANGE if @entry is bigger than the BBT + * size. + */ +int nanddev_bbt_set_block_status(struct nand_device *nand, unsigned int entry, + enum nand_bbt_block_status status) +{ + unsigned int bits_per_block = fls(NAND_BBT_BLOCK_NUM_STATUS); + unsigned long *pos = nand->bbt.cache + + ((entry * bits_per_block) / BITS_PER_LONG); + unsigned int offs = (entry * bits_per_block) % BITS_PER_LONG; + unsigned long val = status & GENMASK(bits_per_block - 1, 0); + + if (entry >= nanddev_neraseblocks(nand)) + return -ERANGE; + + pos[0] &= ~GENMASK(offs + bits_per_block - 1, offs); + pos[0] |= val << offs; + + if (bits_per_block + offs > BITS_PER_LONG) { + unsigned int rbits = bits_per_block + offs - BITS_PER_LONG; + + pos[1] &= ~GENMASK(rbits - 1, 0); + pos[1] |= val >> (bits_per_block - rbits); + } + + return 0; +} +EXPORT_SYMBOL_GPL(nanddev_bbt_set_block_status); diff --git a/drivers/mtd/nand/core.c b/drivers/mtd/nand/core.c new file mode 100644 index 0000000000..7737b1a4a1 --- /dev/null +++ b/drivers/mtd/nand/core.c @@ -0,0 +1,405 @@ +// SPDX-License-Identifier: GPL-2.0 +/* + * Copyright (c) 2017 Free Electrons + * + * Authors: + * Boris Brezillon <boris.brezillon@free-electrons.com> + * Peter Pan <peterpandong@micron.com> + */ + +#define pr_fmt(fmt) "nand: " fmt + +#include <linux/module.h> +#include <linux/mtd/nand.h> + +/** + * nanddev_isbad() - Check if a block is bad + * @nand: NAND device + * @pos: position pointing to the block we want to check + * + * Return: true if the block is bad, false otherwise. + */ +bool nanddev_isbad(struct nand_device *nand, const struct nand_pos *pos) +{ + if (mtd_check_expert_analysis_mode()) + return false; + + if (nanddev_bbt_is_initialized(nand)) { + unsigned int entry; + int status; + + entry = nanddev_bbt_pos_to_entry(nand, pos); + status = nanddev_bbt_get_block_status(nand, entry); + /* Lazy block status retrieval */ + if (status == NAND_BBT_BLOCK_STATUS_UNKNOWN) { + if (nand->ops->isbad(nand, pos)) + status = NAND_BBT_BLOCK_FACTORY_BAD; + else + status = NAND_BBT_BLOCK_GOOD; + + nanddev_bbt_set_block_status(nand, entry, status); + } + + if (status == NAND_BBT_BLOCK_WORN || + status == NAND_BBT_BLOCK_FACTORY_BAD) + return true; + + return false; + } + + return nand->ops->isbad(nand, pos); +} +EXPORT_SYMBOL_GPL(nanddev_isbad); + +/** + * nanddev_markbad() - Mark a block as bad + * @nand: NAND device + * @pos: position of the block to mark bad + * + * Mark a block bad. This function is updating the BBT if available and + * calls the low-level markbad hook (nand->ops->markbad()). + * + * Return: 0 in case of success, a negative error code otherwise. + */ +int nanddev_markbad(struct nand_device *nand, const struct nand_pos *pos) +{ + struct mtd_info *mtd = nanddev_to_mtd(nand); + unsigned int entry; + int ret = 0; + + if (nanddev_isbad(nand, pos)) + return 0; + + ret = nand->ops->markbad(nand, pos); + if (ret) + pr_warn("failed to write BBM to block @%llx (err = %d)\n", + nanddev_pos_to_offs(nand, pos), ret); + + if (!nanddev_bbt_is_initialized(nand)) + goto out; + + entry = nanddev_bbt_pos_to_entry(nand, pos); + ret = nanddev_bbt_set_block_status(nand, entry, NAND_BBT_BLOCK_WORN); + if (ret) + goto out; + + ret = nanddev_bbt_update(nand); + +out: + if (!ret) + mtd->ecc_stats.badblocks++; + + return ret; +} +EXPORT_SYMBOL_GPL(nanddev_markbad); + +/** + * nanddev_isreserved() - Check whether an eraseblock is reserved or not + * @nand: NAND device + * @pos: NAND position to test + * + * Checks whether the eraseblock pointed by @pos is reserved or not. + * + * Return: true if the eraseblock is reserved, false otherwise. + */ +bool nanddev_isreserved(struct nand_device *nand, const struct nand_pos *pos) +{ + unsigned int entry; + int status; + + if (!nanddev_bbt_is_initialized(nand)) + return false; + + /* Return info from the table */ + entry = nanddev_bbt_pos_to_entry(nand, pos); + status = nanddev_bbt_get_block_status(nand, entry); + return status == NAND_BBT_BLOCK_RESERVED; +} +EXPORT_SYMBOL_GPL(nanddev_isreserved); + +/** + * nanddev_erase() - Erase a NAND portion + * @nand: NAND device + * @pos: position of the block to erase + * + * Erases the block if it's not bad. + * + * Return: 0 in case of success, a negative error code otherwise. + */ +static int nanddev_erase(struct nand_device *nand, const struct nand_pos *pos) +{ + if (nanddev_isbad(nand, pos) || nanddev_isreserved(nand, pos)) { + pr_warn("attempt to erase a bad/reserved block @%llx\n", + nanddev_pos_to_offs(nand, pos)); + return -EIO; + } + + return nand->ops->erase(nand, pos); +} + +/** + * nanddev_mtd_erase() - Generic mtd->_erase() implementation for NAND devices + * @mtd: MTD device + * @einfo: erase request + * + * This is a simple mtd->_erase() implementation iterating over all blocks + * concerned by @einfo and calling nand->ops->erase() on each of them. + * + * Note that mtd->_erase should not be directly assigned to this helper, + * because there's no locking here. NAND specialized layers should instead + * implement there own wrapper around nanddev_mtd_erase() taking the + * appropriate lock before calling nanddev_mtd_erase(). + * + * Return: 0 in case of success, a negative error code otherwise. + */ +int nanddev_mtd_erase(struct mtd_info *mtd, struct erase_info *einfo) +{ + struct nand_device *nand = mtd_to_nanddev(mtd); + struct nand_pos pos, last; + int ret; + + nanddev_offs_to_pos(nand, einfo->addr, &pos); + nanddev_offs_to_pos(nand, einfo->addr + einfo->len - 1, &last); + while (nanddev_pos_cmp(&pos, &last) <= 0) { + ret = nanddev_erase(nand, &pos); + if (ret) { + einfo->fail_addr = nanddev_pos_to_offs(nand, &pos); + + return ret; + } + + nanddev_pos_next_eraseblock(nand, &pos); + } + + return 0; +} +EXPORT_SYMBOL_GPL(nanddev_mtd_erase); + +/** + * nanddev_mtd_max_bad_blocks() - Get the maximum number of bad eraseblock on + * a specific region of the NAND device + * @mtd: MTD device + * @offs: offset of the NAND region + * @len: length of the NAND region + * + * Default implementation for mtd->_max_bad_blocks(). Only works if + * nand->memorg.max_bad_eraseblocks_per_lun is > 0. + * + * Return: a positive number encoding the maximum number of eraseblocks on a + * portion of memory, a negative error code otherwise. + */ +int nanddev_mtd_max_bad_blocks(struct mtd_info *mtd, loff_t offs, size_t len) +{ + struct nand_device *nand = mtd_to_nanddev(mtd); + struct nand_pos pos, end; + unsigned int max_bb = 0; + + if (!nand->memorg.max_bad_eraseblocks_per_lun) + return -ENOTSUPP; + + nanddev_offs_to_pos(nand, offs, &pos); + nanddev_offs_to_pos(nand, offs + len, &end); + + for (nanddev_offs_to_pos(nand, offs, &pos); + nanddev_pos_cmp(&pos, &end) < 0; + nanddev_pos_next_lun(nand, &pos)) + max_bb += nand->memorg.max_bad_eraseblocks_per_lun; + + return max_bb; +} +EXPORT_SYMBOL_GPL(nanddev_mtd_max_bad_blocks); + +/** + * nanddev_get_ecc_engine() - Find and get a suitable ECC engine + * @nand: NAND device + */ +static int nanddev_get_ecc_engine(struct nand_device *nand) +{ + int engine_type; + + /* Read the user desires in terms of ECC engine/configuration */ + of_get_nand_ecc_user_config(nand); + + engine_type = nand->ecc.user_conf.engine_type; + if (engine_type == NAND_ECC_ENGINE_TYPE_INVALID) + engine_type = nand->ecc.defaults.engine_type; + + switch (engine_type) { + case NAND_ECC_ENGINE_TYPE_NONE: + return 0; + case NAND_ECC_ENGINE_TYPE_SOFT: + nand->ecc.engine = nand_ecc_get_sw_engine(nand); + break; + case NAND_ECC_ENGINE_TYPE_ON_DIE: + nand->ecc.engine = nand_ecc_get_on_die_hw_engine(nand); + break; + case NAND_ECC_ENGINE_TYPE_ON_HOST: + nand->ecc.engine = nand_ecc_get_on_host_hw_engine(nand); + if (PTR_ERR(nand->ecc.engine) == -EPROBE_DEFER) + return -EPROBE_DEFER; + break; + default: + pr_err("Missing ECC engine type\n"); + } + + if (!nand->ecc.engine) + return -EINVAL; + + return 0; +} + +/** + * nanddev_put_ecc_engine() - Dettach and put the in-use ECC engine + * @nand: NAND device + */ +static int nanddev_put_ecc_engine(struct nand_device *nand) +{ + switch (nand->ecc.ctx.conf.engine_type) { + case NAND_ECC_ENGINE_TYPE_ON_HOST: + nand_ecc_put_on_host_hw_engine(nand); + break; + case NAND_ECC_ENGINE_TYPE_NONE: + case NAND_ECC_ENGINE_TYPE_SOFT: + case NAND_ECC_ENGINE_TYPE_ON_DIE: + default: + break; + } + + return 0; +} + +/** + * nanddev_find_ecc_configuration() - Find a suitable ECC configuration + * @nand: NAND device + */ +static int nanddev_find_ecc_configuration(struct nand_device *nand) +{ + int ret; + + if (!nand->ecc.engine) + return -ENOTSUPP; + + ret = nand_ecc_init_ctx(nand); + if (ret) + return ret; + + if (!nand_ecc_is_strong_enough(nand)) + pr_warn("WARNING: %s: the ECC used on your system is too weak compared to the one required by the NAND chip\n", + nand->mtd.name); + + return 0; +} + +/** + * nanddev_ecc_engine_init() - Initialize an ECC engine for the chip + * @nand: NAND device + */ +int nanddev_ecc_engine_init(struct nand_device *nand) +{ + int ret; + + /* Look for the ECC engine to use */ + ret = nanddev_get_ecc_engine(nand); + if (ret) { + if (ret != -EPROBE_DEFER) + pr_err("No ECC engine found\n"); + + return ret; + } + + /* No ECC engine requested */ + if (!nand->ecc.engine) + return 0; + + /* Configure the engine: balance user input and chip requirements */ + ret = nanddev_find_ecc_configuration(nand); + if (ret) { + pr_err("No suitable ECC configuration\n"); + nanddev_put_ecc_engine(nand); + + return ret; + } + + return 0; +} +EXPORT_SYMBOL_GPL(nanddev_ecc_engine_init); + +/** + * nanddev_ecc_engine_cleanup() - Cleanup ECC engine initializations + * @nand: NAND device + */ +void nanddev_ecc_engine_cleanup(struct nand_device *nand) +{ + if (nand->ecc.engine) + nand_ecc_cleanup_ctx(nand); + + nanddev_put_ecc_engine(nand); +} +EXPORT_SYMBOL_GPL(nanddev_ecc_engine_cleanup); + +/** + * nanddev_init() - Initialize a NAND device + * @nand: NAND device + * @ops: NAND device operations + * @owner: NAND device owner + * + * Initializes a NAND device object. Consistency checks are done on @ops and + * @nand->memorg. Also takes care of initializing the BBT. + * + * Return: 0 in case of success, a negative error code otherwise. + */ +int nanddev_init(struct nand_device *nand, const struct nand_ops *ops, + struct module *owner) +{ + struct mtd_info *mtd = nanddev_to_mtd(nand); + struct nand_memory_organization *memorg = nanddev_get_memorg(nand); + + if (!nand || !ops) + return -EINVAL; + + if (!ops->erase || !ops->markbad || !ops->isbad) + return -EINVAL; + + if (!memorg->bits_per_cell || !memorg->pagesize || + !memorg->pages_per_eraseblock || !memorg->eraseblocks_per_lun || + !memorg->planes_per_lun || !memorg->luns_per_target || + !memorg->ntargets) + return -EINVAL; + + nand->rowconv.eraseblock_addr_shift = + fls(memorg->pages_per_eraseblock - 1); + nand->rowconv.lun_addr_shift = fls(memorg->eraseblocks_per_lun - 1) + + nand->rowconv.eraseblock_addr_shift; + + nand->ops = ops; + + mtd->type = memorg->bits_per_cell == 1 ? + MTD_NANDFLASH : MTD_MLCNANDFLASH; + mtd->flags = MTD_CAP_NANDFLASH; + mtd->erasesize = memorg->pagesize * memorg->pages_per_eraseblock; + mtd->writesize = memorg->pagesize; + mtd->writebufsize = memorg->pagesize; + mtd->oobsize = memorg->oobsize; + mtd->size = nanddev_size(nand); + mtd->owner = owner; + + return nanddev_bbt_init(nand); +} +EXPORT_SYMBOL_GPL(nanddev_init); + +/** + * nanddev_cleanup() - Release resources allocated in nanddev_init() + * @nand: NAND device + * + * Basically undoes what has been done in nanddev_init(). + */ +void nanddev_cleanup(struct nand_device *nand) +{ + if (nanddev_bbt_is_initialized(nand)) + nanddev_bbt_cleanup(nand); +} +EXPORT_SYMBOL_GPL(nanddev_cleanup); + +MODULE_DESCRIPTION("Generic NAND framework"); +MODULE_AUTHOR("Boris Brezillon <boris.brezillon@free-electrons.com>"); +MODULE_LICENSE("GPL v2"); diff --git a/drivers/mtd/nand/ecc-mtk.c b/drivers/mtd/nand/ecc-mtk.c new file mode 100644 index 0000000000..c75bb8b80c --- /dev/null +++ b/drivers/mtd/nand/ecc-mtk.c @@ -0,0 +1,621 @@ +// SPDX-License-Identifier: GPL-2.0 OR MIT +/* + * MTK ECC controller driver. + * Copyright (C) 2016 MediaTek Inc. + * Authors: Xiaolei Li <xiaolei.li@mediatek.com> + * Jorge Ramirez-Ortiz <jorge.ramirez-ortiz@linaro.org> + */ + +#include <linux/platform_device.h> +#include <linux/dma-mapping.h> +#include <linux/interrupt.h> +#include <linux/clk.h> +#include <linux/module.h> +#include <linux/iopoll.h> +#include <linux/of.h> +#include <linux/of_platform.h> +#include <linux/mutex.h> +#include <linux/mtd/nand-ecc-mtk.h> + +#define ECC_IDLE_MASK BIT(0) +#define ECC_IRQ_EN BIT(0) +#define ECC_PG_IRQ_SEL BIT(1) +#define ECC_OP_ENABLE (1) +#define ECC_OP_DISABLE (0) + +#define ECC_ENCCON (0x00) +#define ECC_ENCCNFG (0x04) +#define ECC_MS_SHIFT (16) +#define ECC_ENCDIADDR (0x08) +#define ECC_ENCIDLE (0x0C) +#define ECC_DECCON (0x100) +#define ECC_DECCNFG (0x104) +#define DEC_EMPTY_EN BIT(31) +#define DEC_CNFG_CORRECT (0x3 << 12) +#define ECC_DECIDLE (0x10C) +#define ECC_DECENUM0 (0x114) + +#define ECC_TIMEOUT (500000) + +#define ECC_IDLE_REG(op) ((op) == ECC_ENCODE ? ECC_ENCIDLE : ECC_DECIDLE) +#define ECC_CTL_REG(op) ((op) == ECC_ENCODE ? ECC_ENCCON : ECC_DECCON) + +#define ECC_ERRMASK_MT7622 GENMASK(4, 0) +#define ECC_ERRMASK_MT2701 GENMASK(5, 0) +#define ECC_ERRMASK_MT2712 GENMASK(6, 0) + +struct mtk_ecc_caps { + u32 err_mask; + u32 err_shift; + const u8 *ecc_strength; + const u32 *ecc_regs; + u8 num_ecc_strength; + u8 ecc_mode_shift; + u32 parity_bits; + int pg_irq_sel; +}; + +struct mtk_ecc { + struct device *dev; + const struct mtk_ecc_caps *caps; + void __iomem *regs; + struct clk *clk; + + struct completion done; + struct mutex lock; + u32 sectors; + + u8 *eccdata; +}; + +/* ecc strength that each IP supports */ +static const u8 ecc_strength_mt2701[] = { + 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 28, 32, 36, + 40, 44, 48, 52, 56, 60 +}; + +static const u8 ecc_strength_mt2712[] = { + 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 28, 32, 36, + 40, 44, 48, 52, 56, 60, 68, 72, 80 +}; + +static const u8 ecc_strength_mt7622[] = { + 4, 6, 8, 10, 12 +}; + +static const u8 ecc_strength_mt7986[] = { + 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24 +}; + +enum mtk_ecc_regs { + ECC_ENCPAR00, + ECC_ENCIRQ_EN, + ECC_ENCIRQ_STA, + ECC_DECDONE, + ECC_DECIRQ_EN, + ECC_DECIRQ_STA, +}; + +static int mt2701_ecc_regs[] = { + [ECC_ENCPAR00] = 0x10, + [ECC_ENCIRQ_EN] = 0x80, + [ECC_ENCIRQ_STA] = 0x84, + [ECC_DECDONE] = 0x124, + [ECC_DECIRQ_EN] = 0x200, + [ECC_DECIRQ_STA] = 0x204, +}; + +static int mt2712_ecc_regs[] = { + [ECC_ENCPAR00] = 0x300, + [ECC_ENCIRQ_EN] = 0x80, + [ECC_ENCIRQ_STA] = 0x84, + [ECC_DECDONE] = 0x124, + [ECC_DECIRQ_EN] = 0x200, + [ECC_DECIRQ_STA] = 0x204, +}; + +static int mt7622_ecc_regs[] = { + [ECC_ENCPAR00] = 0x10, + [ECC_ENCIRQ_EN] = 0x30, + [ECC_ENCIRQ_STA] = 0x34, + [ECC_DECDONE] = 0x11c, + [ECC_DECIRQ_EN] = 0x140, + [ECC_DECIRQ_STA] = 0x144, +}; + +static inline void mtk_ecc_wait_idle(struct mtk_ecc *ecc, + enum mtk_ecc_operation op) +{ + struct device *dev = ecc->dev; + u32 val; + int ret; + + ret = readl_poll_timeout_atomic(ecc->regs + ECC_IDLE_REG(op), val, + val & ECC_IDLE_MASK, + 10, ECC_TIMEOUT); + if (ret) + dev_warn(dev, "%s NOT idle\n", + op == ECC_ENCODE ? "encoder" : "decoder"); +} + +static irqreturn_t mtk_ecc_irq(int irq, void *id) +{ + struct mtk_ecc *ecc = id; + u32 dec, enc; + + dec = readw(ecc->regs + ecc->caps->ecc_regs[ECC_DECIRQ_STA]) + & ECC_IRQ_EN; + if (dec) { + dec = readw(ecc->regs + ecc->caps->ecc_regs[ECC_DECDONE]); + if (dec & ecc->sectors) { + /* + * Clear decode IRQ status once again to ensure that + * there will be no extra IRQ. + */ + readw(ecc->regs + ecc->caps->ecc_regs[ECC_DECIRQ_STA]); + ecc->sectors = 0; + complete(&ecc->done); + } else { + return IRQ_HANDLED; + } + } else { + enc = readl(ecc->regs + ecc->caps->ecc_regs[ECC_ENCIRQ_STA]) + & ECC_IRQ_EN; + if (enc) + complete(&ecc->done); + else + return IRQ_NONE; + } + + return IRQ_HANDLED; +} + +static int mtk_ecc_config(struct mtk_ecc *ecc, struct mtk_ecc_config *config) +{ + u32 ecc_bit, dec_sz, enc_sz; + u32 reg, i; + + for (i = 0; i < ecc->caps->num_ecc_strength; i++) { + if (ecc->caps->ecc_strength[i] == config->strength) + break; + } + + if (i == ecc->caps->num_ecc_strength) { + dev_err(ecc->dev, "invalid ecc strength %d\n", + config->strength); + return -EINVAL; + } + + ecc_bit = i; + + if (config->op == ECC_ENCODE) { + /* configure ECC encoder (in bits) */ + enc_sz = config->len << 3; + + reg = ecc_bit | (config->mode << ecc->caps->ecc_mode_shift); + reg |= (enc_sz << ECC_MS_SHIFT); + writel(reg, ecc->regs + ECC_ENCCNFG); + + if (config->mode != ECC_NFI_MODE) + writel(lower_32_bits(config->addr), + ecc->regs + ECC_ENCDIADDR); + + } else { + /* configure ECC decoder (in bits) */ + dec_sz = (config->len << 3) + + config->strength * ecc->caps->parity_bits; + + reg = ecc_bit | (config->mode << ecc->caps->ecc_mode_shift); + reg |= (dec_sz << ECC_MS_SHIFT) | DEC_CNFG_CORRECT; + reg |= DEC_EMPTY_EN; + writel(reg, ecc->regs + ECC_DECCNFG); + + if (config->sectors) + ecc->sectors = 1 << (config->sectors - 1); + } + + return 0; +} + +void mtk_ecc_get_stats(struct mtk_ecc *ecc, struct mtk_ecc_stats *stats, + int sectors) +{ + u32 offset, i, err; + u32 bitflips = 0; + + stats->corrected = 0; + stats->failed = 0; + + for (i = 0; i < sectors; i++) { + offset = (i >> 2) << 2; + err = readl(ecc->regs + ECC_DECENUM0 + offset); + err = err >> ((i % 4) * ecc->caps->err_shift); + err &= ecc->caps->err_mask; + if (err == ecc->caps->err_mask) { + /* uncorrectable errors */ + stats->failed++; + continue; + } + + stats->corrected += err; + bitflips = max_t(u32, bitflips, err); + } + + stats->bitflips = bitflips; +} +EXPORT_SYMBOL(mtk_ecc_get_stats); + +void mtk_ecc_release(struct mtk_ecc *ecc) +{ + clk_disable_unprepare(ecc->clk); + put_device(ecc->dev); +} +EXPORT_SYMBOL(mtk_ecc_release); + +static void mtk_ecc_hw_init(struct mtk_ecc *ecc) +{ + mtk_ecc_wait_idle(ecc, ECC_ENCODE); + writew(ECC_OP_DISABLE, ecc->regs + ECC_ENCCON); + + mtk_ecc_wait_idle(ecc, ECC_DECODE); + writel(ECC_OP_DISABLE, ecc->regs + ECC_DECCON); +} + +static struct mtk_ecc *mtk_ecc_get(struct device_node *np) +{ + struct platform_device *pdev; + struct mtk_ecc *ecc; + + pdev = of_find_device_by_node(np); + if (!pdev) + return ERR_PTR(-EPROBE_DEFER); + + ecc = platform_get_drvdata(pdev); + if (!ecc) { + put_device(&pdev->dev); + return ERR_PTR(-EPROBE_DEFER); + } + + clk_prepare_enable(ecc->clk); + mtk_ecc_hw_init(ecc); + + return ecc; +} + +struct mtk_ecc *of_mtk_ecc_get(struct device_node *of_node) +{ + struct mtk_ecc *ecc = NULL; + struct device_node *np; + + np = of_parse_phandle(of_node, "nand-ecc-engine", 0); + /* for backward compatibility */ + if (!np) + np = of_parse_phandle(of_node, "ecc-engine", 0); + if (np) { + ecc = mtk_ecc_get(np); + of_node_put(np); + } + + return ecc; +} +EXPORT_SYMBOL(of_mtk_ecc_get); + +int mtk_ecc_enable(struct mtk_ecc *ecc, struct mtk_ecc_config *config) +{ + enum mtk_ecc_operation op = config->op; + u16 reg_val; + int ret; + + ret = mutex_lock_interruptible(&ecc->lock); + if (ret) { + dev_err(ecc->dev, "interrupted when attempting to lock\n"); + return ret; + } + + mtk_ecc_wait_idle(ecc, op); + + ret = mtk_ecc_config(ecc, config); + if (ret) { + mutex_unlock(&ecc->lock); + return ret; + } + + if (config->mode != ECC_NFI_MODE || op != ECC_ENCODE) { + init_completion(&ecc->done); + reg_val = ECC_IRQ_EN; + /* + * For ECC_NFI_MODE, if ecc->caps->pg_irq_sel is 1, then it + * means this chip can only generate one ecc irq during page + * read / write. If is 0, generate one ecc irq each ecc step. + */ + if (ecc->caps->pg_irq_sel && config->mode == ECC_NFI_MODE) + reg_val |= ECC_PG_IRQ_SEL; + if (op == ECC_ENCODE) + writew(reg_val, ecc->regs + + ecc->caps->ecc_regs[ECC_ENCIRQ_EN]); + else + writew(reg_val, ecc->regs + + ecc->caps->ecc_regs[ECC_DECIRQ_EN]); + } + + writew(ECC_OP_ENABLE, ecc->regs + ECC_CTL_REG(op)); + + return 0; +} +EXPORT_SYMBOL(mtk_ecc_enable); + +void mtk_ecc_disable(struct mtk_ecc *ecc) +{ + enum mtk_ecc_operation op = ECC_ENCODE; + + /* find out the running operation */ + if (readw(ecc->regs + ECC_CTL_REG(op)) != ECC_OP_ENABLE) + op = ECC_DECODE; + + /* disable it */ + mtk_ecc_wait_idle(ecc, op); + if (op == ECC_DECODE) { + /* + * Clear decode IRQ status in case there is a timeout to wait + * decode IRQ. + */ + readw(ecc->regs + ecc->caps->ecc_regs[ECC_DECDONE]); + writew(0, ecc->regs + ecc->caps->ecc_regs[ECC_DECIRQ_EN]); + } else { + writew(0, ecc->regs + ecc->caps->ecc_regs[ECC_ENCIRQ_EN]); + } + + writew(ECC_OP_DISABLE, ecc->regs + ECC_CTL_REG(op)); + + mutex_unlock(&ecc->lock); +} +EXPORT_SYMBOL(mtk_ecc_disable); + +int mtk_ecc_wait_done(struct mtk_ecc *ecc, enum mtk_ecc_operation op) +{ + int ret; + + ret = wait_for_completion_timeout(&ecc->done, msecs_to_jiffies(500)); + if (!ret) { + dev_err(ecc->dev, "%s timeout - interrupt did not arrive)\n", + (op == ECC_ENCODE) ? "encoder" : "decoder"); + return -ETIMEDOUT; + } + + return 0; +} +EXPORT_SYMBOL(mtk_ecc_wait_done); + +int mtk_ecc_encode(struct mtk_ecc *ecc, struct mtk_ecc_config *config, + u8 *data, u32 bytes) +{ + dma_addr_t addr; + u32 len; + int ret; + + addr = dma_map_single(ecc->dev, data, bytes, DMA_TO_DEVICE); + ret = dma_mapping_error(ecc->dev, addr); + if (ret) { + dev_err(ecc->dev, "dma mapping error\n"); + return -EINVAL; + } + + config->op = ECC_ENCODE; + config->addr = addr; + ret = mtk_ecc_enable(ecc, config); + if (ret) { + dma_unmap_single(ecc->dev, addr, bytes, DMA_TO_DEVICE); + return ret; + } + + ret = mtk_ecc_wait_done(ecc, ECC_ENCODE); + if (ret) + goto timeout; + + mtk_ecc_wait_idle(ecc, ECC_ENCODE); + + /* Program ECC bytes to OOB: per sector oob = FDM + ECC + SPARE */ + len = (config->strength * ecc->caps->parity_bits + 7) >> 3; + + /* write the parity bytes generated by the ECC back to temp buffer */ + __ioread32_copy(ecc->eccdata, + ecc->regs + ecc->caps->ecc_regs[ECC_ENCPAR00], + round_up(len, 4)); + + /* copy into possibly unaligned OOB region with actual length */ + memcpy(data + bytes, ecc->eccdata, len); +timeout: + + dma_unmap_single(ecc->dev, addr, bytes, DMA_TO_DEVICE); + mtk_ecc_disable(ecc); + + return ret; +} +EXPORT_SYMBOL(mtk_ecc_encode); + +void mtk_ecc_adjust_strength(struct mtk_ecc *ecc, u32 *p) +{ + const u8 *ecc_strength = ecc->caps->ecc_strength; + int i; + + for (i = 0; i < ecc->caps->num_ecc_strength; i++) { + if (*p <= ecc_strength[i]) { + if (!i) + *p = ecc_strength[i]; + else if (*p != ecc_strength[i]) + *p = ecc_strength[i - 1]; + return; + } + } + + *p = ecc_strength[ecc->caps->num_ecc_strength - 1]; +} +EXPORT_SYMBOL(mtk_ecc_adjust_strength); + +unsigned int mtk_ecc_get_parity_bits(struct mtk_ecc *ecc) +{ + return ecc->caps->parity_bits; +} +EXPORT_SYMBOL(mtk_ecc_get_parity_bits); + +static const struct mtk_ecc_caps mtk_ecc_caps_mt2701 = { + .err_mask = ECC_ERRMASK_MT2701, + .err_shift = 8, + .ecc_strength = ecc_strength_mt2701, + .ecc_regs = mt2701_ecc_regs, + .num_ecc_strength = 20, + .ecc_mode_shift = 5, + .parity_bits = 14, + .pg_irq_sel = 0, +}; + +static const struct mtk_ecc_caps mtk_ecc_caps_mt2712 = { + .err_mask = ECC_ERRMASK_MT2712, + .err_shift = 8, + .ecc_strength = ecc_strength_mt2712, + .ecc_regs = mt2712_ecc_regs, + .num_ecc_strength = 23, + .ecc_mode_shift = 5, + .parity_bits = 14, + .pg_irq_sel = 1, +}; + +static const struct mtk_ecc_caps mtk_ecc_caps_mt7622 = { + .err_mask = ECC_ERRMASK_MT7622, + .err_shift = 5, + .ecc_strength = ecc_strength_mt7622, + .ecc_regs = mt7622_ecc_regs, + .num_ecc_strength = 5, + .ecc_mode_shift = 4, + .parity_bits = 13, + .pg_irq_sel = 0, +}; + +static const struct mtk_ecc_caps mtk_ecc_caps_mt7986 = { + .err_mask = ECC_ERRMASK_MT7622, + .err_shift = 8, + .ecc_strength = ecc_strength_mt7986, + .ecc_regs = mt2712_ecc_regs, + .num_ecc_strength = 11, + .ecc_mode_shift = 5, + .parity_bits = 14, + .pg_irq_sel = 1, +}; + +static const struct of_device_id mtk_ecc_dt_match[] = { + { + .compatible = "mediatek,mt2701-ecc", + .data = &mtk_ecc_caps_mt2701, + }, { + .compatible = "mediatek,mt2712-ecc", + .data = &mtk_ecc_caps_mt2712, + }, { + .compatible = "mediatek,mt7622-ecc", + .data = &mtk_ecc_caps_mt7622, + }, { + .compatible = "mediatek,mt7986-ecc", + .data = &mtk_ecc_caps_mt7986, + }, + {}, +}; + +static int mtk_ecc_probe(struct platform_device *pdev) +{ + struct device *dev = &pdev->dev; + struct mtk_ecc *ecc; + u32 max_eccdata_size; + int irq, ret; + + ecc = devm_kzalloc(dev, sizeof(*ecc), GFP_KERNEL); + if (!ecc) + return -ENOMEM; + + ecc->caps = of_device_get_match_data(dev); + + max_eccdata_size = ecc->caps->num_ecc_strength - 1; + max_eccdata_size = ecc->caps->ecc_strength[max_eccdata_size]; + max_eccdata_size = (max_eccdata_size * ecc->caps->parity_bits + 7) >> 3; + max_eccdata_size = round_up(max_eccdata_size, 4); + ecc->eccdata = devm_kzalloc(dev, max_eccdata_size, GFP_KERNEL); + if (!ecc->eccdata) + return -ENOMEM; + + ecc->regs = devm_platform_ioremap_resource(pdev, 0); + if (IS_ERR(ecc->regs)) + return PTR_ERR(ecc->regs); + + ecc->clk = devm_clk_get(dev, NULL); + if (IS_ERR(ecc->clk)) { + dev_err(dev, "failed to get clock: %ld\n", PTR_ERR(ecc->clk)); + return PTR_ERR(ecc->clk); + } + + irq = platform_get_irq(pdev, 0); + if (irq < 0) + return irq; + + ret = dma_set_mask(dev, DMA_BIT_MASK(32)); + if (ret) { + dev_err(dev, "failed to set DMA mask\n"); + return ret; + } + + ret = devm_request_irq(dev, irq, mtk_ecc_irq, 0x0, "mtk-ecc", ecc); + if (ret) { + dev_err(dev, "failed to request irq\n"); + return -EINVAL; + } + + ecc->dev = dev; + mutex_init(&ecc->lock); + platform_set_drvdata(pdev, ecc); + dev_info(dev, "probed\n"); + + return 0; +} + +#ifdef CONFIG_PM_SLEEP +static int mtk_ecc_suspend(struct device *dev) +{ + struct mtk_ecc *ecc = dev_get_drvdata(dev); + + clk_disable_unprepare(ecc->clk); + + return 0; +} + +static int mtk_ecc_resume(struct device *dev) +{ + struct mtk_ecc *ecc = dev_get_drvdata(dev); + int ret; + + ret = clk_prepare_enable(ecc->clk); + if (ret) { + dev_err(dev, "failed to enable clk\n"); + return ret; + } + + return 0; +} + +static SIMPLE_DEV_PM_OPS(mtk_ecc_pm_ops, mtk_ecc_suspend, mtk_ecc_resume); +#endif + +MODULE_DEVICE_TABLE(of, mtk_ecc_dt_match); + +static struct platform_driver mtk_ecc_driver = { + .probe = mtk_ecc_probe, + .driver = { + .name = "mtk-ecc", + .of_match_table = mtk_ecc_dt_match, +#ifdef CONFIG_PM_SLEEP + .pm = &mtk_ecc_pm_ops, +#endif + }, +}; + +module_platform_driver(mtk_ecc_driver); + +MODULE_AUTHOR("Xiaolei Li <xiaolei.li@mediatek.com>"); +MODULE_DESCRIPTION("MTK Nand ECC Driver"); +MODULE_LICENSE("Dual MIT/GPL"); diff --git a/drivers/mtd/nand/ecc-mxic.c b/drivers/mtd/nand/ecc-mxic.c new file mode 100644 index 0000000000..47e10945b8 --- /dev/null +++ b/drivers/mtd/nand/ecc-mxic.c @@ -0,0 +1,878 @@ +// SPDX-License-Identifier: GPL-2.0 +/* + * Support for Macronix external hardware ECC engine for NAND devices, also + * called DPE for Data Processing Engine. + * + * Copyright © 2019 Macronix + * Author: Miquel Raynal <miquel.raynal@bootlin.com> + */ + +#include <linux/dma-mapping.h> +#include <linux/init.h> +#include <linux/interrupt.h> +#include <linux/io.h> +#include <linux/iopoll.h> +#include <linux/kernel.h> +#include <linux/module.h> +#include <linux/mtd/mtd.h> +#include <linux/mtd/nand.h> +#include <linux/mtd/nand-ecc-mxic.h> +#include <linux/mutex.h> +#include <linux/of.h> +#include <linux/of_platform.h> +#include <linux/platform_device.h> +#include <linux/slab.h> + +/* DPE Configuration */ +#define DP_CONFIG 0x00 +#define ECC_EN BIT(0) +#define ECC_TYP(idx) (((idx) << 3) & GENMASK(6, 3)) +/* DPE Interrupt Status */ +#define INTRPT_STS 0x04 +#define TRANS_CMPLT BIT(0) +#define SDMA_MAIN BIT(1) +#define SDMA_SPARE BIT(2) +#define ECC_ERR BIT(3) +#define TO_SPARE BIT(4) +#define TO_MAIN BIT(5) +/* DPE Interrupt Status Enable */ +#define INTRPT_STS_EN 0x08 +/* DPE Interrupt Signal Enable */ +#define INTRPT_SIG_EN 0x0C +/* Host Controller Configuration */ +#define HC_CONFIG 0x10 +#define DEV2MEM 0 /* TRANS_TYP_DMA in the spec */ +#define MEM2MEM BIT(4) /* TRANS_TYP_IO in the spec */ +#define MAPPING BIT(5) /* TRANS_TYP_MAPPING in the spec */ +#define ECC_PACKED 0 /* LAYOUT_TYP_INTEGRATED in the spec */ +#define ECC_INTERLEAVED BIT(2) /* LAYOUT_TYP_DISTRIBUTED in the spec */ +#define BURST_TYP_FIXED 0 +#define BURST_TYP_INCREASING BIT(0) +/* Host Controller Slave Address */ +#define HC_SLV_ADDR 0x14 +/* ECC Chunk Size */ +#define CHUNK_SIZE 0x20 +/* Main Data Size */ +#define MAIN_SIZE 0x24 +/* Spare Data Size */ +#define SPARE_SIZE 0x28 +#define META_SZ(reg) ((reg) & GENMASK(7, 0)) +#define PARITY_SZ(reg) (((reg) & GENMASK(15, 8)) >> 8) +#define RSV_SZ(reg) (((reg) & GENMASK(23, 16)) >> 16) +#define SPARE_SZ(reg) ((reg) >> 24) +/* ECC Chunk Count */ +#define CHUNK_CNT 0x30 +/* SDMA Control */ +#define SDMA_CTRL 0x40 +#define WRITE_NAND 0 +#define READ_NAND BIT(1) +#define CONT_NAND BIT(29) +#define CONT_SYSM BIT(30) /* Continue System Memory? */ +#define SDMA_STRT BIT(31) +/* SDMA Address of Main Data */ +#define SDMA_MAIN_ADDR 0x44 +/* SDMA Address of Spare Data */ +#define SDMA_SPARE_ADDR 0x48 +/* DPE Version Number */ +#define DP_VER 0xD0 +#define DP_VER_OFFSET 16 + +/* Status bytes between each chunk of spare data */ +#define STAT_BYTES 4 +#define NO_ERR 0x00 +#define MAX_CORR_ERR 0x28 +#define UNCORR_ERR 0xFE +#define ERASED_CHUNK 0xFF + +struct mxic_ecc_engine { + struct device *dev; + void __iomem *regs; + int irq; + struct completion complete; + struct nand_ecc_engine external_engine; + struct nand_ecc_engine pipelined_engine; + struct mutex lock; +}; + +struct mxic_ecc_ctx { + /* ECC machinery */ + unsigned int data_step_sz; + unsigned int oob_step_sz; + unsigned int parity_sz; + unsigned int meta_sz; + u8 *status; + int steps; + + /* DMA boilerplate */ + struct nand_ecc_req_tweak_ctx req_ctx; + u8 *oobwithstat; + struct scatterlist sg[2]; + struct nand_page_io_req *req; + unsigned int pageoffs; +}; + +static struct mxic_ecc_engine *ext_ecc_eng_to_mxic(struct nand_ecc_engine *eng) +{ + return container_of(eng, struct mxic_ecc_engine, external_engine); +} + +static struct mxic_ecc_engine *pip_ecc_eng_to_mxic(struct nand_ecc_engine *eng) +{ + return container_of(eng, struct mxic_ecc_engine, pipelined_engine); +} + +static struct mxic_ecc_engine *nand_to_mxic(struct nand_device *nand) +{ + struct nand_ecc_engine *eng = nand->ecc.engine; + + if (eng->integration == NAND_ECC_ENGINE_INTEGRATION_EXTERNAL) + return ext_ecc_eng_to_mxic(eng); + else + return pip_ecc_eng_to_mxic(eng); +} + +static int mxic_ecc_ooblayout_ecc(struct mtd_info *mtd, int section, + struct mtd_oob_region *oobregion) +{ + struct nand_device *nand = mtd_to_nanddev(mtd); + struct mxic_ecc_ctx *ctx = nand_to_ecc_ctx(nand); + + if (section < 0 || section >= ctx->steps) + return -ERANGE; + + oobregion->offset = (section * ctx->oob_step_sz) + ctx->meta_sz; + oobregion->length = ctx->parity_sz; + + return 0; +} + +static int mxic_ecc_ooblayout_free(struct mtd_info *mtd, int section, + struct mtd_oob_region *oobregion) +{ + struct nand_device *nand = mtd_to_nanddev(mtd); + struct mxic_ecc_ctx *ctx = nand_to_ecc_ctx(nand); + + if (section < 0 || section >= ctx->steps) + return -ERANGE; + + if (!section) { + oobregion->offset = 2; + oobregion->length = ctx->meta_sz - 2; + } else { + oobregion->offset = section * ctx->oob_step_sz; + oobregion->length = ctx->meta_sz; + } + + return 0; +} + +static const struct mtd_ooblayout_ops mxic_ecc_ooblayout_ops = { + .ecc = mxic_ecc_ooblayout_ecc, + .free = mxic_ecc_ooblayout_free, +}; + +static void mxic_ecc_disable_engine(struct mxic_ecc_engine *mxic) +{ + u32 reg; + + reg = readl(mxic->regs + DP_CONFIG); + reg &= ~ECC_EN; + writel(reg, mxic->regs + DP_CONFIG); +} + +static void mxic_ecc_enable_engine(struct mxic_ecc_engine *mxic) +{ + u32 reg; + + reg = readl(mxic->regs + DP_CONFIG); + reg |= ECC_EN; + writel(reg, mxic->regs + DP_CONFIG); +} + +static void mxic_ecc_disable_int(struct mxic_ecc_engine *mxic) +{ + writel(0, mxic->regs + INTRPT_SIG_EN); +} + +static void mxic_ecc_enable_int(struct mxic_ecc_engine *mxic) +{ + writel(TRANS_CMPLT, mxic->regs + INTRPT_SIG_EN); +} + +static irqreturn_t mxic_ecc_isr(int irq, void *dev_id) +{ + struct mxic_ecc_engine *mxic = dev_id; + u32 sts; + + sts = readl(mxic->regs + INTRPT_STS); + if (!sts) + return IRQ_NONE; + + if (sts & TRANS_CMPLT) + complete(&mxic->complete); + + writel(sts, mxic->regs + INTRPT_STS); + + return IRQ_HANDLED; +} + +static int mxic_ecc_init_ctx(struct nand_device *nand, struct device *dev) +{ + struct mxic_ecc_engine *mxic = nand_to_mxic(nand); + struct nand_ecc_props *conf = &nand->ecc.ctx.conf; + struct nand_ecc_props *reqs = &nand->ecc.requirements; + struct nand_ecc_props *user = &nand->ecc.user_conf; + struct mtd_info *mtd = nanddev_to_mtd(nand); + int step_size = 0, strength = 0, desired_correction = 0, steps, idx; + static const int possible_strength[] = {4, 8, 40, 48}; + static const int spare_size[] = {32, 32, 96, 96}; + struct mxic_ecc_ctx *ctx; + u32 spare_reg; + int ret; + + ctx = devm_kzalloc(dev, sizeof(*ctx), GFP_KERNEL); + if (!ctx) + return -ENOMEM; + + nand->ecc.ctx.priv = ctx; + + /* Only large page NAND chips may use BCH */ + if (mtd->oobsize < 64) { + pr_err("BCH cannot be used with small page NAND chips\n"); + return -EINVAL; + } + + mtd_set_ooblayout(mtd, &mxic_ecc_ooblayout_ops); + + /* Enable all status bits */ + writel(TRANS_CMPLT | SDMA_MAIN | SDMA_SPARE | ECC_ERR | + TO_SPARE | TO_MAIN, mxic->regs + INTRPT_STS_EN); + + /* Configure the correction depending on the NAND device topology */ + if (user->step_size && user->strength) { + step_size = user->step_size; + strength = user->strength; + } else if (reqs->step_size && reqs->strength) { + step_size = reqs->step_size; + strength = reqs->strength; + } + + if (step_size && strength) { + steps = mtd->writesize / step_size; + desired_correction = steps * strength; + } + + /* Step size is fixed to 1kiB, strength may vary (4 possible values) */ + conf->step_size = SZ_1K; + steps = mtd->writesize / conf->step_size; + + ctx->status = devm_kzalloc(dev, steps * sizeof(u8), GFP_KERNEL); + if (!ctx->status) + return -ENOMEM; + + if (desired_correction) { + strength = desired_correction / steps; + + for (idx = 0; idx < ARRAY_SIZE(possible_strength); idx++) + if (possible_strength[idx] >= strength) + break; + + idx = min_t(unsigned int, idx, + ARRAY_SIZE(possible_strength) - 1); + } else { + /* Missing data, maximize the correction */ + idx = ARRAY_SIZE(possible_strength) - 1; + } + + /* Tune the selected strength until it fits in the OOB area */ + for (; idx >= 0; idx--) { + if (spare_size[idx] * steps <= mtd->oobsize) + break; + } + + /* This engine cannot be used with this NAND device */ + if (idx < 0) + return -EINVAL; + + /* Configure the engine for the desired strength */ + writel(ECC_TYP(idx), mxic->regs + DP_CONFIG); + conf->strength = possible_strength[idx]; + spare_reg = readl(mxic->regs + SPARE_SIZE); + + ctx->steps = steps; + ctx->data_step_sz = mtd->writesize / steps; + ctx->oob_step_sz = mtd->oobsize / steps; + ctx->parity_sz = PARITY_SZ(spare_reg); + ctx->meta_sz = META_SZ(spare_reg); + + /* Ensure buffers will contain enough bytes to store the STAT_BYTES */ + ctx->req_ctx.oob_buffer_size = nanddev_per_page_oobsize(nand) + + (ctx->steps * STAT_BYTES); + ret = nand_ecc_init_req_tweaking(&ctx->req_ctx, nand); + if (ret) + return ret; + + ctx->oobwithstat = kmalloc(mtd->oobsize + (ctx->steps * STAT_BYTES), + GFP_KERNEL); + if (!ctx->oobwithstat) { + ret = -ENOMEM; + goto cleanup_req_tweak; + } + + sg_init_table(ctx->sg, 2); + + /* Configuration dump and sanity checks */ + dev_err(dev, "DPE version number: %d\n", + readl(mxic->regs + DP_VER) >> DP_VER_OFFSET); + dev_err(dev, "Chunk size: %d\n", readl(mxic->regs + CHUNK_SIZE)); + dev_err(dev, "Main size: %d\n", readl(mxic->regs + MAIN_SIZE)); + dev_err(dev, "Spare size: %d\n", SPARE_SZ(spare_reg)); + dev_err(dev, "Rsv size: %ld\n", RSV_SZ(spare_reg)); + dev_err(dev, "Parity size: %d\n", ctx->parity_sz); + dev_err(dev, "Meta size: %d\n", ctx->meta_sz); + + if ((ctx->meta_sz + ctx->parity_sz + RSV_SZ(spare_reg)) != + SPARE_SZ(spare_reg)) { + dev_err(dev, "Wrong OOB configuration: %d + %d + %ld != %d\n", + ctx->meta_sz, ctx->parity_sz, RSV_SZ(spare_reg), + SPARE_SZ(spare_reg)); + ret = -EINVAL; + goto free_oobwithstat; + } + + if (ctx->oob_step_sz != SPARE_SZ(spare_reg)) { + dev_err(dev, "Wrong OOB configuration: %d != %d\n", + ctx->oob_step_sz, SPARE_SZ(spare_reg)); + ret = -EINVAL; + goto free_oobwithstat; + } + + return 0; + +free_oobwithstat: + kfree(ctx->oobwithstat); +cleanup_req_tweak: + nand_ecc_cleanup_req_tweaking(&ctx->req_ctx); + + return ret; +} + +static int mxic_ecc_init_ctx_external(struct nand_device *nand) +{ + struct mxic_ecc_engine *mxic = nand_to_mxic(nand); + struct device *dev = nand->ecc.engine->dev; + int ret; + + dev_info(dev, "Macronix ECC engine in external mode\n"); + + ret = mxic_ecc_init_ctx(nand, dev); + if (ret) + return ret; + + /* Trigger each step manually */ + writel(1, mxic->regs + CHUNK_CNT); + writel(BURST_TYP_INCREASING | ECC_PACKED | MEM2MEM, + mxic->regs + HC_CONFIG); + + return 0; +} + +static int mxic_ecc_init_ctx_pipelined(struct nand_device *nand) +{ + struct mxic_ecc_engine *mxic = nand_to_mxic(nand); + struct mxic_ecc_ctx *ctx; + struct device *dev; + int ret; + + dev = nand_ecc_get_engine_dev(nand->ecc.engine->dev); + if (!dev) + return -EINVAL; + + dev_info(dev, "Macronix ECC engine in pipelined/mapping mode\n"); + + ret = mxic_ecc_init_ctx(nand, dev); + if (ret) + return ret; + + ctx = nand_to_ecc_ctx(nand); + + /* All steps should be handled in one go directly by the internal DMA */ + writel(ctx->steps, mxic->regs + CHUNK_CNT); + + /* + * Interleaved ECC scheme cannot be used otherwise factory bad block + * markers would be lost. A packed layout is mandatory. + */ + writel(BURST_TYP_INCREASING | ECC_PACKED | MAPPING, + mxic->regs + HC_CONFIG); + + return 0; +} + +static void mxic_ecc_cleanup_ctx(struct nand_device *nand) +{ + struct mxic_ecc_ctx *ctx = nand_to_ecc_ctx(nand); + + if (ctx) { + nand_ecc_cleanup_req_tweaking(&ctx->req_ctx); + kfree(ctx->oobwithstat); + } +} + +static int mxic_ecc_data_xfer_wait_for_completion(struct mxic_ecc_engine *mxic) +{ + u32 val; + int ret; + + if (mxic->irq) { + reinit_completion(&mxic->complete); + mxic_ecc_enable_int(mxic); + ret = wait_for_completion_timeout(&mxic->complete, + msecs_to_jiffies(1000)); + ret = ret ? 0 : -ETIMEDOUT; + mxic_ecc_disable_int(mxic); + } else { + ret = readl_poll_timeout(mxic->regs + INTRPT_STS, val, + val & TRANS_CMPLT, 10, USEC_PER_SEC); + writel(val, mxic->regs + INTRPT_STS); + } + + if (ret) { + dev_err(mxic->dev, "Timeout on data xfer completion\n"); + return -ETIMEDOUT; + } + + return 0; +} + +static int mxic_ecc_process_data(struct mxic_ecc_engine *mxic, + unsigned int direction) +{ + unsigned int dir = (direction == NAND_PAGE_READ) ? + READ_NAND : WRITE_NAND; + int ret; + + mxic_ecc_enable_engine(mxic); + + /* Trigger processing */ + writel(SDMA_STRT | dir, mxic->regs + SDMA_CTRL); + + /* Wait for completion */ + ret = mxic_ecc_data_xfer_wait_for_completion(mxic); + + mxic_ecc_disable_engine(mxic); + + return ret; +} + +int mxic_ecc_process_data_pipelined(struct nand_ecc_engine *eng, + unsigned int direction, dma_addr_t dirmap) +{ + struct mxic_ecc_engine *mxic = pip_ecc_eng_to_mxic(eng); + + if (dirmap) + writel(dirmap, mxic->regs + HC_SLV_ADDR); + + return mxic_ecc_process_data(mxic, direction); +} +EXPORT_SYMBOL_GPL(mxic_ecc_process_data_pipelined); + +static void mxic_ecc_extract_status_bytes(struct mxic_ecc_ctx *ctx) +{ + u8 *buf = ctx->oobwithstat; + int next_stat_pos; + int step; + + /* Extract the ECC status */ + for (step = 0; step < ctx->steps; step++) { + next_stat_pos = ctx->oob_step_sz + + ((STAT_BYTES + ctx->oob_step_sz) * step); + + ctx->status[step] = buf[next_stat_pos]; + } +} + +static void mxic_ecc_reconstruct_oobbuf(struct mxic_ecc_ctx *ctx, + u8 *dst, const u8 *src) +{ + int step; + + /* Reconstruct the OOB buffer linearly (without the ECC status bytes) */ + for (step = 0; step < ctx->steps; step++) + memcpy(dst + (step * ctx->oob_step_sz), + src + (step * (ctx->oob_step_sz + STAT_BYTES)), + ctx->oob_step_sz); +} + +static void mxic_ecc_add_room_in_oobbuf(struct mxic_ecc_ctx *ctx, + u8 *dst, const u8 *src) +{ + int step; + + /* Add some space in the OOB buffer for the status bytes */ + for (step = 0; step < ctx->steps; step++) + memcpy(dst + (step * (ctx->oob_step_sz + STAT_BYTES)), + src + (step * ctx->oob_step_sz), + ctx->oob_step_sz); +} + +static int mxic_ecc_count_biterrs(struct mxic_ecc_engine *mxic, + struct nand_device *nand) +{ + struct mxic_ecc_ctx *ctx = nand_to_ecc_ctx(nand); + struct mtd_info *mtd = nanddev_to_mtd(nand); + struct device *dev = mxic->dev; + unsigned int max_bf = 0; + bool failure = false; + int step; + + for (step = 0; step < ctx->steps; step++) { + u8 stat = ctx->status[step]; + + if (stat == NO_ERR) { + dev_dbg(dev, "ECC step %d: no error\n", step); + } else if (stat == ERASED_CHUNK) { + dev_dbg(dev, "ECC step %d: erased\n", step); + } else if (stat == UNCORR_ERR || stat > MAX_CORR_ERR) { + dev_dbg(dev, "ECC step %d: uncorrectable\n", step); + mtd->ecc_stats.failed++; + failure = true; + } else { + dev_dbg(dev, "ECC step %d: %d bits corrected\n", + step, stat); + max_bf = max_t(unsigned int, max_bf, stat); + mtd->ecc_stats.corrected += stat; + } + } + + return failure ? -EBADMSG : max_bf; +} + +/* External ECC engine helpers */ +static int mxic_ecc_prepare_io_req_external(struct nand_device *nand, + struct nand_page_io_req *req) +{ + struct mxic_ecc_engine *mxic = nand_to_mxic(nand); + struct mxic_ecc_ctx *ctx = nand_to_ecc_ctx(nand); + struct mtd_info *mtd = nanddev_to_mtd(nand); + int offset, nents, step, ret; + + if (req->mode == MTD_OPS_RAW) + return 0; + + nand_ecc_tweak_req(&ctx->req_ctx, req); + ctx->req = req; + + if (req->type == NAND_PAGE_READ) + return 0; + + mxic_ecc_add_room_in_oobbuf(ctx, ctx->oobwithstat, + ctx->req->oobbuf.out); + + sg_set_buf(&ctx->sg[0], req->databuf.out, req->datalen); + sg_set_buf(&ctx->sg[1], ctx->oobwithstat, + req->ooblen + (ctx->steps * STAT_BYTES)); + + nents = dma_map_sg(mxic->dev, ctx->sg, 2, DMA_BIDIRECTIONAL); + if (!nents) + return -EINVAL; + + mutex_lock(&mxic->lock); + + for (step = 0; step < ctx->steps; step++) { + writel(sg_dma_address(&ctx->sg[0]) + (step * ctx->data_step_sz), + mxic->regs + SDMA_MAIN_ADDR); + writel(sg_dma_address(&ctx->sg[1]) + (step * (ctx->oob_step_sz + STAT_BYTES)), + mxic->regs + SDMA_SPARE_ADDR); + ret = mxic_ecc_process_data(mxic, ctx->req->type); + if (ret) + break; + } + + mutex_unlock(&mxic->lock); + + dma_unmap_sg(mxic->dev, ctx->sg, 2, DMA_BIDIRECTIONAL); + + if (ret) + return ret; + + /* Retrieve the calculated ECC bytes */ + for (step = 0; step < ctx->steps; step++) { + offset = ctx->meta_sz + (step * ctx->oob_step_sz); + mtd_ooblayout_get_eccbytes(mtd, + (u8 *)ctx->req->oobbuf.out + offset, + ctx->oobwithstat + (step * STAT_BYTES), + step * ctx->parity_sz, + ctx->parity_sz); + } + + return 0; +} + +static int mxic_ecc_finish_io_req_external(struct nand_device *nand, + struct nand_page_io_req *req) +{ + struct mxic_ecc_engine *mxic = nand_to_mxic(nand); + struct mxic_ecc_ctx *ctx = nand_to_ecc_ctx(nand); + int nents, step, ret; + + if (req->mode == MTD_OPS_RAW) + return 0; + + if (req->type == NAND_PAGE_WRITE) { + nand_ecc_restore_req(&ctx->req_ctx, req); + return 0; + } + + /* Copy the OOB buffer and add room for the ECC engine status bytes */ + mxic_ecc_add_room_in_oobbuf(ctx, ctx->oobwithstat, ctx->req->oobbuf.in); + + sg_set_buf(&ctx->sg[0], req->databuf.in, req->datalen); + sg_set_buf(&ctx->sg[1], ctx->oobwithstat, + req->ooblen + (ctx->steps * STAT_BYTES)); + nents = dma_map_sg(mxic->dev, ctx->sg, 2, DMA_BIDIRECTIONAL); + if (!nents) + return -EINVAL; + + mutex_lock(&mxic->lock); + + for (step = 0; step < ctx->steps; step++) { + writel(sg_dma_address(&ctx->sg[0]) + (step * ctx->data_step_sz), + mxic->regs + SDMA_MAIN_ADDR); + writel(sg_dma_address(&ctx->sg[1]) + (step * (ctx->oob_step_sz + STAT_BYTES)), + mxic->regs + SDMA_SPARE_ADDR); + ret = mxic_ecc_process_data(mxic, ctx->req->type); + if (ret) + break; + } + + mutex_unlock(&mxic->lock); + + dma_unmap_sg(mxic->dev, ctx->sg, 2, DMA_BIDIRECTIONAL); + + if (ret) { + nand_ecc_restore_req(&ctx->req_ctx, req); + return ret; + } + + /* Extract the status bytes and reconstruct the buffer */ + mxic_ecc_extract_status_bytes(ctx); + mxic_ecc_reconstruct_oobbuf(ctx, ctx->req->oobbuf.in, ctx->oobwithstat); + + nand_ecc_restore_req(&ctx->req_ctx, req); + + return mxic_ecc_count_biterrs(mxic, nand); +} + +/* Pipelined ECC engine helpers */ +static int mxic_ecc_prepare_io_req_pipelined(struct nand_device *nand, + struct nand_page_io_req *req) +{ + struct mxic_ecc_engine *mxic = nand_to_mxic(nand); + struct mxic_ecc_ctx *ctx = nand_to_ecc_ctx(nand); + int nents; + + if (req->mode == MTD_OPS_RAW) + return 0; + + nand_ecc_tweak_req(&ctx->req_ctx, req); + ctx->req = req; + + /* Copy the OOB buffer and add room for the ECC engine status bytes */ + mxic_ecc_add_room_in_oobbuf(ctx, ctx->oobwithstat, ctx->req->oobbuf.in); + + sg_set_buf(&ctx->sg[0], req->databuf.in, req->datalen); + sg_set_buf(&ctx->sg[1], ctx->oobwithstat, + req->ooblen + (ctx->steps * STAT_BYTES)); + + nents = dma_map_sg(mxic->dev, ctx->sg, 2, DMA_BIDIRECTIONAL); + if (!nents) + return -EINVAL; + + mutex_lock(&mxic->lock); + + writel(sg_dma_address(&ctx->sg[0]), mxic->regs + SDMA_MAIN_ADDR); + writel(sg_dma_address(&ctx->sg[1]), mxic->regs + SDMA_SPARE_ADDR); + + return 0; +} + +static int mxic_ecc_finish_io_req_pipelined(struct nand_device *nand, + struct nand_page_io_req *req) +{ + struct mxic_ecc_engine *mxic = nand_to_mxic(nand); + struct mxic_ecc_ctx *ctx = nand_to_ecc_ctx(nand); + int ret = 0; + + if (req->mode == MTD_OPS_RAW) + return 0; + + mutex_unlock(&mxic->lock); + + dma_unmap_sg(mxic->dev, ctx->sg, 2, DMA_BIDIRECTIONAL); + + if (req->type == NAND_PAGE_READ) { + mxic_ecc_extract_status_bytes(ctx); + mxic_ecc_reconstruct_oobbuf(ctx, ctx->req->oobbuf.in, + ctx->oobwithstat); + ret = mxic_ecc_count_biterrs(mxic, nand); + } + + nand_ecc_restore_req(&ctx->req_ctx, req); + + return ret; +} + +static struct nand_ecc_engine_ops mxic_ecc_engine_external_ops = { + .init_ctx = mxic_ecc_init_ctx_external, + .cleanup_ctx = mxic_ecc_cleanup_ctx, + .prepare_io_req = mxic_ecc_prepare_io_req_external, + .finish_io_req = mxic_ecc_finish_io_req_external, +}; + +static struct nand_ecc_engine_ops mxic_ecc_engine_pipelined_ops = { + .init_ctx = mxic_ecc_init_ctx_pipelined, + .cleanup_ctx = mxic_ecc_cleanup_ctx, + .prepare_io_req = mxic_ecc_prepare_io_req_pipelined, + .finish_io_req = mxic_ecc_finish_io_req_pipelined, +}; + +struct nand_ecc_engine_ops *mxic_ecc_get_pipelined_ops(void) +{ + return &mxic_ecc_engine_pipelined_ops; +} +EXPORT_SYMBOL_GPL(mxic_ecc_get_pipelined_ops); + +static struct platform_device * +mxic_ecc_get_pdev(struct platform_device *spi_pdev) +{ + struct platform_device *eng_pdev; + struct device_node *np; + + /* Retrieve the nand-ecc-engine phandle */ + np = of_parse_phandle(spi_pdev->dev.of_node, "nand-ecc-engine", 0); + if (!np) + return NULL; + + /* Jump to the engine's device node */ + eng_pdev = of_find_device_by_node(np); + of_node_put(np); + + return eng_pdev; +} + +void mxic_ecc_put_pipelined_engine(struct nand_ecc_engine *eng) +{ + struct mxic_ecc_engine *mxic = pip_ecc_eng_to_mxic(eng); + + platform_device_put(to_platform_device(mxic->dev)); +} +EXPORT_SYMBOL_GPL(mxic_ecc_put_pipelined_engine); + +struct nand_ecc_engine * +mxic_ecc_get_pipelined_engine(struct platform_device *spi_pdev) +{ + struct platform_device *eng_pdev; + struct mxic_ecc_engine *mxic; + + eng_pdev = mxic_ecc_get_pdev(spi_pdev); + if (!eng_pdev) + return ERR_PTR(-ENODEV); + + mxic = platform_get_drvdata(eng_pdev); + if (!mxic) { + platform_device_put(eng_pdev); + return ERR_PTR(-EPROBE_DEFER); + } + + return &mxic->pipelined_engine; +} +EXPORT_SYMBOL_GPL(mxic_ecc_get_pipelined_engine); + +/* + * Only the external ECC engine is exported as the pipelined is SoC specific, so + * it is registered directly by the drivers that wrap it. + */ +static int mxic_ecc_probe(struct platform_device *pdev) +{ + struct device *dev = &pdev->dev; + struct mxic_ecc_engine *mxic; + int ret; + + mxic = devm_kzalloc(&pdev->dev, sizeof(*mxic), GFP_KERNEL); + if (!mxic) + return -ENOMEM; + + mxic->dev = &pdev->dev; + + /* + * Both memory regions for the ECC engine itself and the AXI slave + * address are mandatory. + */ + mxic->regs = devm_platform_ioremap_resource(pdev, 0); + if (IS_ERR(mxic->regs)) { + dev_err(&pdev->dev, "Missing memory region\n"); + return PTR_ERR(mxic->regs); + } + + mxic_ecc_disable_engine(mxic); + mxic_ecc_disable_int(mxic); + + /* IRQ is optional yet much more efficient */ + mxic->irq = platform_get_irq_byname_optional(pdev, "ecc-engine"); + if (mxic->irq > 0) { + ret = devm_request_irq(&pdev->dev, mxic->irq, mxic_ecc_isr, 0, + "mxic-ecc", mxic); + if (ret) + return ret; + } else { + dev_info(dev, "Invalid or missing IRQ, fallback to polling\n"); + mxic->irq = 0; + } + + mutex_init(&mxic->lock); + + /* + * In external mode, the device is the ECC engine. In pipelined mode, + * the device is the host controller. The device is used to match the + * right ECC engine based on the DT properties. + */ + mxic->external_engine.dev = &pdev->dev; + mxic->external_engine.integration = NAND_ECC_ENGINE_INTEGRATION_EXTERNAL; + mxic->external_engine.ops = &mxic_ecc_engine_external_ops; + + nand_ecc_register_on_host_hw_engine(&mxic->external_engine); + + platform_set_drvdata(pdev, mxic); + + return 0; +} + +static void mxic_ecc_remove(struct platform_device *pdev) +{ + struct mxic_ecc_engine *mxic = platform_get_drvdata(pdev); + + nand_ecc_unregister_on_host_hw_engine(&mxic->external_engine); +} + +static const struct of_device_id mxic_ecc_of_ids[] = { + { + .compatible = "mxicy,nand-ecc-engine-rev3", + }, + { /* sentinel */ }, +}; +MODULE_DEVICE_TABLE(of, mxic_ecc_of_ids); + +static struct platform_driver mxic_ecc_driver = { + .driver = { + .name = "mxic-nand-ecc-engine", + .of_match_table = mxic_ecc_of_ids, + }, + .probe = mxic_ecc_probe, + .remove_new = mxic_ecc_remove, +}; +module_platform_driver(mxic_ecc_driver); + +MODULE_LICENSE("GPL"); +MODULE_AUTHOR("Miquel Raynal <miquel.raynal@bootlin.com>"); +MODULE_DESCRIPTION("Macronix NAND hardware ECC controller"); diff --git a/drivers/mtd/nand/ecc-sw-bch.c b/drivers/mtd/nand/ecc-sw-bch.c new file mode 100644 index 0000000000..405552d014 --- /dev/null +++ b/drivers/mtd/nand/ecc-sw-bch.c @@ -0,0 +1,406 @@ +// SPDX-License-Identifier: GPL-2.0-or-later +/* + * This file provides ECC correction for more than 1 bit per block of data, + * using binary BCH codes. It relies on the generic BCH library lib/bch.c. + * + * Copyright © 2011 Ivan Djelic <ivan.djelic@parrot.com> + */ + +#include <linux/types.h> +#include <linux/kernel.h> +#include <linux/module.h> +#include <linux/slab.h> +#include <linux/bitops.h> +#include <linux/mtd/nand.h> +#include <linux/mtd/nand-ecc-sw-bch.h> + +/** + * nand_ecc_sw_bch_calculate - Calculate the ECC corresponding to a data block + * @nand: NAND device + * @buf: Input buffer with raw data + * @code: Output buffer with ECC + */ +int nand_ecc_sw_bch_calculate(struct nand_device *nand, + const unsigned char *buf, unsigned char *code) +{ + struct nand_ecc_sw_bch_conf *engine_conf = nand->ecc.ctx.priv; + unsigned int i; + + memset(code, 0, engine_conf->code_size); + bch_encode(engine_conf->bch, buf, nand->ecc.ctx.conf.step_size, code); + + /* apply mask so that an erased page is a valid codeword */ + for (i = 0; i < engine_conf->code_size; i++) + code[i] ^= engine_conf->eccmask[i]; + + return 0; +} +EXPORT_SYMBOL(nand_ecc_sw_bch_calculate); + +/** + * nand_ecc_sw_bch_correct - Detect, correct and report bit error(s) + * @nand: NAND device + * @buf: Raw data read from the chip + * @read_ecc: ECC bytes from the chip + * @calc_ecc: ECC calculated from the raw data + * + * Detect and correct bit errors for a data block. + */ +int nand_ecc_sw_bch_correct(struct nand_device *nand, unsigned char *buf, + unsigned char *read_ecc, unsigned char *calc_ecc) +{ + struct nand_ecc_sw_bch_conf *engine_conf = nand->ecc.ctx.priv; + unsigned int step_size = nand->ecc.ctx.conf.step_size; + unsigned int *errloc = engine_conf->errloc; + int i, count; + + count = bch_decode(engine_conf->bch, NULL, step_size, read_ecc, + calc_ecc, NULL, errloc); + if (count > 0) { + for (i = 0; i < count; i++) { + if (errloc[i] < (step_size * 8)) + /* The error is in the data area: correct it */ + buf[errloc[i] >> 3] ^= (1 << (errloc[i] & 7)); + + /* Otherwise the error is in the ECC area: nothing to do */ + pr_debug("%s: corrected bitflip %u\n", __func__, + errloc[i]); + } + } else if (count < 0) { + pr_err("ECC unrecoverable error\n"); + count = -EBADMSG; + } + + return count; +} +EXPORT_SYMBOL(nand_ecc_sw_bch_correct); + +/** + * nand_ecc_sw_bch_cleanup - Cleanup software BCH ECC resources + * @nand: NAND device + */ +static void nand_ecc_sw_bch_cleanup(struct nand_device *nand) +{ + struct nand_ecc_sw_bch_conf *engine_conf = nand->ecc.ctx.priv; + + bch_free(engine_conf->bch); + kfree(engine_conf->errloc); + kfree(engine_conf->eccmask); +} + +/** + * nand_ecc_sw_bch_init - Initialize software BCH ECC engine + * @nand: NAND device + * + * Returns: a pointer to a new NAND BCH control structure, or NULL upon failure + * + * Initialize NAND BCH error correction. @nand.ecc parameters 'step_size' and + * 'bytes' are used to compute the following BCH parameters: + * m, the Galois field order + * t, the error correction capability + * 'bytes' should be equal to the number of bytes required to store m * t + * bits, where m is such that 2^m - 1 > step_size * 8. + * + * Example: to configure 4 bit correction per 512 bytes, you should pass + * step_size = 512 (thus, m = 13 is the smallest integer such that 2^m - 1 > 512 * 8) + * bytes = 7 (7 bytes are required to store m * t = 13 * 4 = 52 bits) + */ +static int nand_ecc_sw_bch_init(struct nand_device *nand) +{ + struct nand_ecc_sw_bch_conf *engine_conf = nand->ecc.ctx.priv; + unsigned int eccsize = nand->ecc.ctx.conf.step_size; + unsigned int eccbytes = engine_conf->code_size; + unsigned int m, t, i; + unsigned char *erased_page; + int ret; + + m = fls(1 + (8 * eccsize)); + t = (eccbytes * 8) / m; + + engine_conf->bch = bch_init(m, t, 0, false); + if (!engine_conf->bch) + return -EINVAL; + + engine_conf->eccmask = kzalloc(eccbytes, GFP_KERNEL); + engine_conf->errloc = kmalloc_array(t, sizeof(*engine_conf->errloc), + GFP_KERNEL); + if (!engine_conf->eccmask || !engine_conf->errloc) { + ret = -ENOMEM; + goto cleanup; + } + + /* Compute and store the inverted ECC of an erased step */ + erased_page = kmalloc(eccsize, GFP_KERNEL); + if (!erased_page) { + ret = -ENOMEM; + goto cleanup; + } + + memset(erased_page, 0xff, eccsize); + bch_encode(engine_conf->bch, erased_page, eccsize, + engine_conf->eccmask); + kfree(erased_page); + + for (i = 0; i < eccbytes; i++) + engine_conf->eccmask[i] ^= 0xff; + + /* Verify that the number of code bytes has the expected value */ + if (engine_conf->bch->ecc_bytes != eccbytes) { + pr_err("Invalid number of ECC bytes: %u, expected: %u\n", + eccbytes, engine_conf->bch->ecc_bytes); + ret = -EINVAL; + goto cleanup; + } + + /* Sanity checks */ + if (8 * (eccsize + eccbytes) >= (1 << m)) { + pr_err("ECC step size is too large (%u)\n", eccsize); + ret = -EINVAL; + goto cleanup; + } + + return 0; + +cleanup: + nand_ecc_sw_bch_cleanup(nand); + + return ret; +} + +int nand_ecc_sw_bch_init_ctx(struct nand_device *nand) +{ + struct nand_ecc_props *conf = &nand->ecc.ctx.conf; + struct mtd_info *mtd = nanddev_to_mtd(nand); + struct nand_ecc_sw_bch_conf *engine_conf; + unsigned int code_size = 0, nsteps; + int ret; + + /* Only large page NAND chips may use BCH */ + if (mtd->oobsize < 64) { + pr_err("BCH cannot be used with small page NAND chips\n"); + return -EINVAL; + } + + if (!mtd->ooblayout) + mtd_set_ooblayout(mtd, nand_get_large_page_ooblayout()); + + conf->engine_type = NAND_ECC_ENGINE_TYPE_SOFT; + conf->algo = NAND_ECC_ALGO_BCH; + conf->step_size = nand->ecc.user_conf.step_size; + conf->strength = nand->ecc.user_conf.strength; + + /* + * Board driver should supply ECC size and ECC strength + * values to select how many bits are correctable. + * Otherwise, default to 512 bytes for large page devices and 256 for + * small page devices. + */ + if (!conf->step_size) { + if (mtd->oobsize >= 64) + conf->step_size = 512; + else + conf->step_size = 256; + + conf->strength = 4; + } + + nsteps = mtd->writesize / conf->step_size; + + /* Maximize */ + if (nand->ecc.user_conf.flags & NAND_ECC_MAXIMIZE_STRENGTH) { + conf->step_size = 1024; + nsteps = mtd->writesize / conf->step_size; + /* Reserve 2 bytes for the BBM */ + code_size = (mtd->oobsize - 2) / nsteps; + conf->strength = code_size * 8 / fls(8 * conf->step_size); + } + + if (!code_size) + code_size = DIV_ROUND_UP(conf->strength * + fls(8 * conf->step_size), 8); + + if (!conf->strength) + conf->strength = (code_size * 8) / fls(8 * conf->step_size); + + if (!code_size && !conf->strength) { + pr_err("Missing ECC parameters\n"); + return -EINVAL; + } + + engine_conf = kzalloc(sizeof(*engine_conf), GFP_KERNEL); + if (!engine_conf) + return -ENOMEM; + + ret = nand_ecc_init_req_tweaking(&engine_conf->req_ctx, nand); + if (ret) + goto free_engine_conf; + + engine_conf->code_size = code_size; + engine_conf->calc_buf = kzalloc(mtd->oobsize, GFP_KERNEL); + engine_conf->code_buf = kzalloc(mtd->oobsize, GFP_KERNEL); + if (!engine_conf->calc_buf || !engine_conf->code_buf) { + ret = -ENOMEM; + goto free_bufs; + } + + nand->ecc.ctx.priv = engine_conf; + nand->ecc.ctx.nsteps = nsteps; + nand->ecc.ctx.total = nsteps * code_size; + + ret = nand_ecc_sw_bch_init(nand); + if (ret) + goto free_bufs; + + /* Verify the layout validity */ + if (mtd_ooblayout_count_eccbytes(mtd) != + nand->ecc.ctx.nsteps * engine_conf->code_size) { + pr_err("Invalid ECC layout\n"); + ret = -EINVAL; + goto cleanup_bch_ctx; + } + + return 0; + +cleanup_bch_ctx: + nand_ecc_sw_bch_cleanup(nand); +free_bufs: + nand_ecc_cleanup_req_tweaking(&engine_conf->req_ctx); + kfree(engine_conf->calc_buf); + kfree(engine_conf->code_buf); +free_engine_conf: + kfree(engine_conf); + + return ret; +} +EXPORT_SYMBOL(nand_ecc_sw_bch_init_ctx); + +void nand_ecc_sw_bch_cleanup_ctx(struct nand_device *nand) +{ + struct nand_ecc_sw_bch_conf *engine_conf = nand->ecc.ctx.priv; + + if (engine_conf) { + nand_ecc_sw_bch_cleanup(nand); + nand_ecc_cleanup_req_tweaking(&engine_conf->req_ctx); + kfree(engine_conf->calc_buf); + kfree(engine_conf->code_buf); + kfree(engine_conf); + } +} +EXPORT_SYMBOL(nand_ecc_sw_bch_cleanup_ctx); + +static int nand_ecc_sw_bch_prepare_io_req(struct nand_device *nand, + struct nand_page_io_req *req) +{ + struct nand_ecc_sw_bch_conf *engine_conf = nand->ecc.ctx.priv; + struct mtd_info *mtd = nanddev_to_mtd(nand); + int eccsize = nand->ecc.ctx.conf.step_size; + int eccbytes = engine_conf->code_size; + int eccsteps = nand->ecc.ctx.nsteps; + int total = nand->ecc.ctx.total; + u8 *ecccalc = engine_conf->calc_buf; + const u8 *data; + int i; + + /* Nothing to do for a raw operation */ + if (req->mode == MTD_OPS_RAW) + return 0; + + /* This engine does not provide BBM/free OOB bytes protection */ + if (!req->datalen) + return 0; + + nand_ecc_tweak_req(&engine_conf->req_ctx, req); + + /* No more preparation for page read */ + if (req->type == NAND_PAGE_READ) + return 0; + + /* Preparation for page write: derive the ECC bytes and place them */ + for (i = 0, data = req->databuf.out; + eccsteps; + eccsteps--, i += eccbytes, data += eccsize) + nand_ecc_sw_bch_calculate(nand, data, &ecccalc[i]); + + return mtd_ooblayout_set_eccbytes(mtd, ecccalc, (void *)req->oobbuf.out, + 0, total); +} + +static int nand_ecc_sw_bch_finish_io_req(struct nand_device *nand, + struct nand_page_io_req *req) +{ + struct nand_ecc_sw_bch_conf *engine_conf = nand->ecc.ctx.priv; + struct mtd_info *mtd = nanddev_to_mtd(nand); + int eccsize = nand->ecc.ctx.conf.step_size; + int total = nand->ecc.ctx.total; + int eccbytes = engine_conf->code_size; + int eccsteps = nand->ecc.ctx.nsteps; + u8 *ecccalc = engine_conf->calc_buf; + u8 *ecccode = engine_conf->code_buf; + unsigned int max_bitflips = 0; + u8 *data = req->databuf.in; + int i, ret; + + /* Nothing to do for a raw operation */ + if (req->mode == MTD_OPS_RAW) + return 0; + + /* This engine does not provide BBM/free OOB bytes protection */ + if (!req->datalen) + return 0; + + /* No more preparation for page write */ + if (req->type == NAND_PAGE_WRITE) { + nand_ecc_restore_req(&engine_conf->req_ctx, req); + return 0; + } + + /* Finish a page read: retrieve the (raw) ECC bytes*/ + ret = mtd_ooblayout_get_eccbytes(mtd, ecccode, req->oobbuf.in, 0, + total); + if (ret) + return ret; + + /* Calculate the ECC bytes */ + for (i = 0; eccsteps; eccsteps--, i += eccbytes, data += eccsize) + nand_ecc_sw_bch_calculate(nand, data, &ecccalc[i]); + + /* Finish a page read: compare and correct */ + for (eccsteps = nand->ecc.ctx.nsteps, i = 0, data = req->databuf.in; + eccsteps; + eccsteps--, i += eccbytes, data += eccsize) { + int stat = nand_ecc_sw_bch_correct(nand, data, + &ecccode[i], + &ecccalc[i]); + if (stat < 0) { + mtd->ecc_stats.failed++; + } else { + mtd->ecc_stats.corrected += stat; + max_bitflips = max_t(unsigned int, max_bitflips, stat); + } + } + + nand_ecc_restore_req(&engine_conf->req_ctx, req); + + return max_bitflips; +} + +static struct nand_ecc_engine_ops nand_ecc_sw_bch_engine_ops = { + .init_ctx = nand_ecc_sw_bch_init_ctx, + .cleanup_ctx = nand_ecc_sw_bch_cleanup_ctx, + .prepare_io_req = nand_ecc_sw_bch_prepare_io_req, + .finish_io_req = nand_ecc_sw_bch_finish_io_req, +}; + +static struct nand_ecc_engine nand_ecc_sw_bch_engine = { + .ops = &nand_ecc_sw_bch_engine_ops, +}; + +struct nand_ecc_engine *nand_ecc_sw_bch_get_engine(void) +{ + return &nand_ecc_sw_bch_engine; +} +EXPORT_SYMBOL(nand_ecc_sw_bch_get_engine); + +MODULE_LICENSE("GPL"); +MODULE_AUTHOR("Ivan Djelic <ivan.djelic@parrot.com>"); +MODULE_DESCRIPTION("NAND software BCH ECC support"); diff --git a/drivers/mtd/nand/ecc-sw-hamming.c b/drivers/mtd/nand/ecc-sw-hamming.c new file mode 100644 index 0000000000..254db2e7f8 --- /dev/null +++ b/drivers/mtd/nand/ecc-sw-hamming.c @@ -0,0 +1,660 @@ +// SPDX-License-Identifier: GPL-2.0-or-later +/* + * This file contains an ECC algorithm that detects and corrects 1 bit + * errors in a 256 byte block of data. + * + * Copyright © 2008 Koninklijke Philips Electronics NV. + * Author: Frans Meulenbroeks + * + * Completely replaces the previous ECC implementation which was written by: + * Steven J. Hill (sjhill@realitydiluted.com) + * Thomas Gleixner (tglx@linutronix.de) + * + * Information on how this algorithm works and how it was developed + * can be found in Documentation/driver-api/mtd/nand_ecc.rst + */ + +#include <linux/types.h> +#include <linux/kernel.h> +#include <linux/module.h> +#include <linux/mtd/nand.h> +#include <linux/mtd/nand-ecc-sw-hamming.h> +#include <linux/slab.h> +#include <asm/byteorder.h> + +/* + * invparity is a 256 byte table that contains the odd parity + * for each byte. So if the number of bits in a byte is even, + * the array element is 1, and when the number of bits is odd + * the array eleemnt is 0. + */ +static const char invparity[256] = { + 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, + 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, + 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, + 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, + 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, + 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, + 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, + 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, + 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, + 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, + 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, + 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, + 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, + 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, + 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, + 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1 +}; + +/* + * bitsperbyte contains the number of bits per byte + * this is only used for testing and repairing parity + * (a precalculated value slightly improves performance) + */ +static const char bitsperbyte[256] = { + 0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4, + 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, + 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, + 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, + 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, + 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, + 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, + 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, + 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, + 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, + 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, + 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, + 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, + 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, + 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, + 4, 5, 5, 6, 5, 6, 6, 7, 5, 6, 6, 7, 6, 7, 7, 8, +}; + +/* + * addressbits is a lookup table to filter out the bits from the xor-ed + * ECC data that identify the faulty location. + * this is only used for repairing parity + * see the comments in nand_ecc_sw_hamming_correct for more details + */ +static const char addressbits[256] = { + 0x00, 0x00, 0x01, 0x01, 0x00, 0x00, 0x01, 0x01, + 0x02, 0x02, 0x03, 0x03, 0x02, 0x02, 0x03, 0x03, + 0x00, 0x00, 0x01, 0x01, 0x00, 0x00, 0x01, 0x01, + 0x02, 0x02, 0x03, 0x03, 0x02, 0x02, 0x03, 0x03, + 0x04, 0x04, 0x05, 0x05, 0x04, 0x04, 0x05, 0x05, + 0x06, 0x06, 0x07, 0x07, 0x06, 0x06, 0x07, 0x07, + 0x04, 0x04, 0x05, 0x05, 0x04, 0x04, 0x05, 0x05, + 0x06, 0x06, 0x07, 0x07, 0x06, 0x06, 0x07, 0x07, + 0x00, 0x00, 0x01, 0x01, 0x00, 0x00, 0x01, 0x01, + 0x02, 0x02, 0x03, 0x03, 0x02, 0x02, 0x03, 0x03, + 0x00, 0x00, 0x01, 0x01, 0x00, 0x00, 0x01, 0x01, + 0x02, 0x02, 0x03, 0x03, 0x02, 0x02, 0x03, 0x03, + 0x04, 0x04, 0x05, 0x05, 0x04, 0x04, 0x05, 0x05, + 0x06, 0x06, 0x07, 0x07, 0x06, 0x06, 0x07, 0x07, + 0x04, 0x04, 0x05, 0x05, 0x04, 0x04, 0x05, 0x05, + 0x06, 0x06, 0x07, 0x07, 0x06, 0x06, 0x07, 0x07, + 0x08, 0x08, 0x09, 0x09, 0x08, 0x08, 0x09, 0x09, + 0x0a, 0x0a, 0x0b, 0x0b, 0x0a, 0x0a, 0x0b, 0x0b, + 0x08, 0x08, 0x09, 0x09, 0x08, 0x08, 0x09, 0x09, + 0x0a, 0x0a, 0x0b, 0x0b, 0x0a, 0x0a, 0x0b, 0x0b, + 0x0c, 0x0c, 0x0d, 0x0d, 0x0c, 0x0c, 0x0d, 0x0d, + 0x0e, 0x0e, 0x0f, 0x0f, 0x0e, 0x0e, 0x0f, 0x0f, + 0x0c, 0x0c, 0x0d, 0x0d, 0x0c, 0x0c, 0x0d, 0x0d, + 0x0e, 0x0e, 0x0f, 0x0f, 0x0e, 0x0e, 0x0f, 0x0f, + 0x08, 0x08, 0x09, 0x09, 0x08, 0x08, 0x09, 0x09, + 0x0a, 0x0a, 0x0b, 0x0b, 0x0a, 0x0a, 0x0b, 0x0b, + 0x08, 0x08, 0x09, 0x09, 0x08, 0x08, 0x09, 0x09, + 0x0a, 0x0a, 0x0b, 0x0b, 0x0a, 0x0a, 0x0b, 0x0b, + 0x0c, 0x0c, 0x0d, 0x0d, 0x0c, 0x0c, 0x0d, 0x0d, + 0x0e, 0x0e, 0x0f, 0x0f, 0x0e, 0x0e, 0x0f, 0x0f, + 0x0c, 0x0c, 0x0d, 0x0d, 0x0c, 0x0c, 0x0d, 0x0d, + 0x0e, 0x0e, 0x0f, 0x0f, 0x0e, 0x0e, 0x0f, 0x0f +}; + +int ecc_sw_hamming_calculate(const unsigned char *buf, unsigned int step_size, + unsigned char *code, bool sm_order) +{ + const u32 *bp = (uint32_t *)buf; + const u32 eccsize_mult = (step_size == 256) ? 1 : 2; + /* current value in buffer */ + u32 cur; + /* rp0..rp17 are the various accumulated parities (per byte) */ + u32 rp0, rp1, rp2, rp3, rp4, rp5, rp6, rp7, rp8, rp9, rp10, rp11, rp12, + rp13, rp14, rp15, rp16, rp17; + /* Cumulative parity for all data */ + u32 par; + /* Cumulative parity at the end of the loop (rp12, rp14, rp16) */ + u32 tmppar; + int i; + + par = 0; + rp4 = 0; + rp6 = 0; + rp8 = 0; + rp10 = 0; + rp12 = 0; + rp14 = 0; + rp16 = 0; + rp17 = 0; + + /* + * The loop is unrolled a number of times; + * This avoids if statements to decide on which rp value to update + * Also we process the data by longwords. + * Note: passing unaligned data might give a performance penalty. + * It is assumed that the buffers are aligned. + * tmppar is the cumulative sum of this iteration. + * needed for calculating rp12, rp14, rp16 and par + * also used as a performance improvement for rp6, rp8 and rp10 + */ + for (i = 0; i < eccsize_mult << 2; i++) { + cur = *bp++; + tmppar = cur; + rp4 ^= cur; + cur = *bp++; + tmppar ^= cur; + rp6 ^= tmppar; + cur = *bp++; + tmppar ^= cur; + rp4 ^= cur; + cur = *bp++; + tmppar ^= cur; + rp8 ^= tmppar; + + cur = *bp++; + tmppar ^= cur; + rp4 ^= cur; + rp6 ^= cur; + cur = *bp++; + tmppar ^= cur; + rp6 ^= cur; + cur = *bp++; + tmppar ^= cur; + rp4 ^= cur; + cur = *bp++; + tmppar ^= cur; + rp10 ^= tmppar; + + cur = *bp++; + tmppar ^= cur; + rp4 ^= cur; + rp6 ^= cur; + rp8 ^= cur; + cur = *bp++; + tmppar ^= cur; + rp6 ^= cur; + rp8 ^= cur; + cur = *bp++; + tmppar ^= cur; + rp4 ^= cur; + rp8 ^= cur; + cur = *bp++; + tmppar ^= cur; + rp8 ^= cur; + + cur = *bp++; + tmppar ^= cur; + rp4 ^= cur; + rp6 ^= cur; + cur = *bp++; + tmppar ^= cur; + rp6 ^= cur; + cur = *bp++; + tmppar ^= cur; + rp4 ^= cur; + cur = *bp++; + tmppar ^= cur; + + par ^= tmppar; + if ((i & 0x1) == 0) + rp12 ^= tmppar; + if ((i & 0x2) == 0) + rp14 ^= tmppar; + if (eccsize_mult == 2 && (i & 0x4) == 0) + rp16 ^= tmppar; + } + + /* + * handle the fact that we use longword operations + * we'll bring rp4..rp14..rp16 back to single byte entities by + * shifting and xoring first fold the upper and lower 16 bits, + * then the upper and lower 8 bits. + */ + rp4 ^= (rp4 >> 16); + rp4 ^= (rp4 >> 8); + rp4 &= 0xff; + rp6 ^= (rp6 >> 16); + rp6 ^= (rp6 >> 8); + rp6 &= 0xff; + rp8 ^= (rp8 >> 16); + rp8 ^= (rp8 >> 8); + rp8 &= 0xff; + rp10 ^= (rp10 >> 16); + rp10 ^= (rp10 >> 8); + rp10 &= 0xff; + rp12 ^= (rp12 >> 16); + rp12 ^= (rp12 >> 8); + rp12 &= 0xff; + rp14 ^= (rp14 >> 16); + rp14 ^= (rp14 >> 8); + rp14 &= 0xff; + if (eccsize_mult == 2) { + rp16 ^= (rp16 >> 16); + rp16 ^= (rp16 >> 8); + rp16 &= 0xff; + } + + /* + * we also need to calculate the row parity for rp0..rp3 + * This is present in par, because par is now + * rp3 rp3 rp2 rp2 in little endian and + * rp2 rp2 rp3 rp3 in big endian + * as well as + * rp1 rp0 rp1 rp0 in little endian and + * rp0 rp1 rp0 rp1 in big endian + * First calculate rp2 and rp3 + */ +#ifdef __BIG_ENDIAN + rp2 = (par >> 16); + rp2 ^= (rp2 >> 8); + rp2 &= 0xff; + rp3 = par & 0xffff; + rp3 ^= (rp3 >> 8); + rp3 &= 0xff; +#else + rp3 = (par >> 16); + rp3 ^= (rp3 >> 8); + rp3 &= 0xff; + rp2 = par & 0xffff; + rp2 ^= (rp2 >> 8); + rp2 &= 0xff; +#endif + + /* reduce par to 16 bits then calculate rp1 and rp0 */ + par ^= (par >> 16); +#ifdef __BIG_ENDIAN + rp0 = (par >> 8) & 0xff; + rp1 = (par & 0xff); +#else + rp1 = (par >> 8) & 0xff; + rp0 = (par & 0xff); +#endif + + /* finally reduce par to 8 bits */ + par ^= (par >> 8); + par &= 0xff; + + /* + * and calculate rp5..rp15..rp17 + * note that par = rp4 ^ rp5 and due to the commutative property + * of the ^ operator we can say: + * rp5 = (par ^ rp4); + * The & 0xff seems superfluous, but benchmarking learned that + * leaving it out gives slightly worse results. No idea why, probably + * it has to do with the way the pipeline in pentium is organized. + */ + rp5 = (par ^ rp4) & 0xff; + rp7 = (par ^ rp6) & 0xff; + rp9 = (par ^ rp8) & 0xff; + rp11 = (par ^ rp10) & 0xff; + rp13 = (par ^ rp12) & 0xff; + rp15 = (par ^ rp14) & 0xff; + if (eccsize_mult == 2) + rp17 = (par ^ rp16) & 0xff; + + /* + * Finally calculate the ECC bits. + * Again here it might seem that there are performance optimisations + * possible, but benchmarks showed that on the system this is developed + * the code below is the fastest + */ + if (sm_order) { + code[0] = (invparity[rp7] << 7) | (invparity[rp6] << 6) | + (invparity[rp5] << 5) | (invparity[rp4] << 4) | + (invparity[rp3] << 3) | (invparity[rp2] << 2) | + (invparity[rp1] << 1) | (invparity[rp0]); + code[1] = (invparity[rp15] << 7) | (invparity[rp14] << 6) | + (invparity[rp13] << 5) | (invparity[rp12] << 4) | + (invparity[rp11] << 3) | (invparity[rp10] << 2) | + (invparity[rp9] << 1) | (invparity[rp8]); + } else { + code[1] = (invparity[rp7] << 7) | (invparity[rp6] << 6) | + (invparity[rp5] << 5) | (invparity[rp4] << 4) | + (invparity[rp3] << 3) | (invparity[rp2] << 2) | + (invparity[rp1] << 1) | (invparity[rp0]); + code[0] = (invparity[rp15] << 7) | (invparity[rp14] << 6) | + (invparity[rp13] << 5) | (invparity[rp12] << 4) | + (invparity[rp11] << 3) | (invparity[rp10] << 2) | + (invparity[rp9] << 1) | (invparity[rp8]); + } + + if (eccsize_mult == 1) + code[2] = + (invparity[par & 0xf0] << 7) | + (invparity[par & 0x0f] << 6) | + (invparity[par & 0xcc] << 5) | + (invparity[par & 0x33] << 4) | + (invparity[par & 0xaa] << 3) | + (invparity[par & 0x55] << 2) | + 3; + else + code[2] = + (invparity[par & 0xf0] << 7) | + (invparity[par & 0x0f] << 6) | + (invparity[par & 0xcc] << 5) | + (invparity[par & 0x33] << 4) | + (invparity[par & 0xaa] << 3) | + (invparity[par & 0x55] << 2) | + (invparity[rp17] << 1) | + (invparity[rp16] << 0); + + return 0; +} +EXPORT_SYMBOL(ecc_sw_hamming_calculate); + +/** + * nand_ecc_sw_hamming_calculate - Calculate 3-byte ECC for 256/512-byte block + * @nand: NAND device + * @buf: Input buffer with raw data + * @code: Output buffer with ECC + */ +int nand_ecc_sw_hamming_calculate(struct nand_device *nand, + const unsigned char *buf, unsigned char *code) +{ + struct nand_ecc_sw_hamming_conf *engine_conf = nand->ecc.ctx.priv; + unsigned int step_size = nand->ecc.ctx.conf.step_size; + bool sm_order = engine_conf ? engine_conf->sm_order : false; + + return ecc_sw_hamming_calculate(buf, step_size, code, sm_order); +} +EXPORT_SYMBOL(nand_ecc_sw_hamming_calculate); + +int ecc_sw_hamming_correct(unsigned char *buf, unsigned char *read_ecc, + unsigned char *calc_ecc, unsigned int step_size, + bool sm_order) +{ + const u32 eccsize_mult = step_size >> 8; + unsigned char b0, b1, b2, bit_addr; + unsigned int byte_addr; + + /* + * b0 to b2 indicate which bit is faulty (if any) + * we might need the xor result more than once, + * so keep them in a local var + */ + if (sm_order) { + b0 = read_ecc[0] ^ calc_ecc[0]; + b1 = read_ecc[1] ^ calc_ecc[1]; + } else { + b0 = read_ecc[1] ^ calc_ecc[1]; + b1 = read_ecc[0] ^ calc_ecc[0]; + } + + b2 = read_ecc[2] ^ calc_ecc[2]; + + /* check if there are any bitfaults */ + + /* repeated if statements are slightly more efficient than switch ... */ + /* ordered in order of likelihood */ + + if ((b0 | b1 | b2) == 0) + return 0; /* no error */ + + if ((((b0 ^ (b0 >> 1)) & 0x55) == 0x55) && + (((b1 ^ (b1 >> 1)) & 0x55) == 0x55) && + ((eccsize_mult == 1 && ((b2 ^ (b2 >> 1)) & 0x54) == 0x54) || + (eccsize_mult == 2 && ((b2 ^ (b2 >> 1)) & 0x55) == 0x55))) { + /* single bit error */ + /* + * rp17/rp15/13/11/9/7/5/3/1 indicate which byte is the faulty + * byte, cp 5/3/1 indicate the faulty bit. + * A lookup table (called addressbits) is used to filter + * the bits from the byte they are in. + * A marginal optimisation is possible by having three + * different lookup tables. + * One as we have now (for b0), one for b2 + * (that would avoid the >> 1), and one for b1 (with all values + * << 4). However it was felt that introducing two more tables + * hardly justify the gain. + * + * The b2 shift is there to get rid of the lowest two bits. + * We could also do addressbits[b2] >> 1 but for the + * performance it does not make any difference + */ + if (eccsize_mult == 1) + byte_addr = (addressbits[b1] << 4) + addressbits[b0]; + else + byte_addr = (addressbits[b2 & 0x3] << 8) + + (addressbits[b1] << 4) + addressbits[b0]; + bit_addr = addressbits[b2 >> 2]; + /* flip the bit */ + buf[byte_addr] ^= (1 << bit_addr); + return 1; + + } + /* count nr of bits; use table lookup, faster than calculating it */ + if ((bitsperbyte[b0] + bitsperbyte[b1] + bitsperbyte[b2]) == 1) + return 1; /* error in ECC data; no action needed */ + + pr_err("%s: uncorrectable ECC error\n", __func__); + return -EBADMSG; +} +EXPORT_SYMBOL(ecc_sw_hamming_correct); + +/** + * nand_ecc_sw_hamming_correct - Detect and correct bit error(s) + * @nand: NAND device + * @buf: Raw data read from the chip + * @read_ecc: ECC bytes read from the chip + * @calc_ecc: ECC calculated from the raw data + * + * Detect and correct up to 1 bit error per 256/512-byte block. + */ +int nand_ecc_sw_hamming_correct(struct nand_device *nand, unsigned char *buf, + unsigned char *read_ecc, + unsigned char *calc_ecc) +{ + struct nand_ecc_sw_hamming_conf *engine_conf = nand->ecc.ctx.priv; + unsigned int step_size = nand->ecc.ctx.conf.step_size; + bool sm_order = engine_conf ? engine_conf->sm_order : false; + + return ecc_sw_hamming_correct(buf, read_ecc, calc_ecc, step_size, + sm_order); +} +EXPORT_SYMBOL(nand_ecc_sw_hamming_correct); + +int nand_ecc_sw_hamming_init_ctx(struct nand_device *nand) +{ + struct nand_ecc_props *conf = &nand->ecc.ctx.conf; + struct nand_ecc_sw_hamming_conf *engine_conf; + struct mtd_info *mtd = nanddev_to_mtd(nand); + int ret; + + if (!mtd->ooblayout) { + switch (mtd->oobsize) { + case 8: + case 16: + mtd_set_ooblayout(mtd, nand_get_small_page_ooblayout()); + break; + case 64: + case 128: + mtd_set_ooblayout(mtd, + nand_get_large_page_hamming_ooblayout()); + break; + default: + return -ENOTSUPP; + } + } + + conf->engine_type = NAND_ECC_ENGINE_TYPE_SOFT; + conf->algo = NAND_ECC_ALGO_HAMMING; + conf->step_size = nand->ecc.user_conf.step_size; + conf->strength = 1; + + /* Use the strongest configuration by default */ + if (conf->step_size != 256 && conf->step_size != 512) + conf->step_size = 256; + + engine_conf = kzalloc(sizeof(*engine_conf), GFP_KERNEL); + if (!engine_conf) + return -ENOMEM; + + ret = nand_ecc_init_req_tweaking(&engine_conf->req_ctx, nand); + if (ret) + goto free_engine_conf; + + engine_conf->code_size = 3; + engine_conf->calc_buf = kzalloc(mtd->oobsize, GFP_KERNEL); + engine_conf->code_buf = kzalloc(mtd->oobsize, GFP_KERNEL); + if (!engine_conf->calc_buf || !engine_conf->code_buf) { + ret = -ENOMEM; + goto free_bufs; + } + + nand->ecc.ctx.priv = engine_conf; + nand->ecc.ctx.nsteps = mtd->writesize / conf->step_size; + nand->ecc.ctx.total = nand->ecc.ctx.nsteps * engine_conf->code_size; + + return 0; + +free_bufs: + nand_ecc_cleanup_req_tweaking(&engine_conf->req_ctx); + kfree(engine_conf->calc_buf); + kfree(engine_conf->code_buf); +free_engine_conf: + kfree(engine_conf); + + return ret; +} +EXPORT_SYMBOL(nand_ecc_sw_hamming_init_ctx); + +void nand_ecc_sw_hamming_cleanup_ctx(struct nand_device *nand) +{ + struct nand_ecc_sw_hamming_conf *engine_conf = nand->ecc.ctx.priv; + + if (engine_conf) { + nand_ecc_cleanup_req_tweaking(&engine_conf->req_ctx); + kfree(engine_conf->calc_buf); + kfree(engine_conf->code_buf); + kfree(engine_conf); + } +} +EXPORT_SYMBOL(nand_ecc_sw_hamming_cleanup_ctx); + +static int nand_ecc_sw_hamming_prepare_io_req(struct nand_device *nand, + struct nand_page_io_req *req) +{ + struct nand_ecc_sw_hamming_conf *engine_conf = nand->ecc.ctx.priv; + struct mtd_info *mtd = nanddev_to_mtd(nand); + int eccsize = nand->ecc.ctx.conf.step_size; + int eccbytes = engine_conf->code_size; + int eccsteps = nand->ecc.ctx.nsteps; + int total = nand->ecc.ctx.total; + u8 *ecccalc = engine_conf->calc_buf; + const u8 *data; + int i; + + /* Nothing to do for a raw operation */ + if (req->mode == MTD_OPS_RAW) + return 0; + + /* This engine does not provide BBM/free OOB bytes protection */ + if (!req->datalen) + return 0; + + nand_ecc_tweak_req(&engine_conf->req_ctx, req); + + /* No more preparation for page read */ + if (req->type == NAND_PAGE_READ) + return 0; + + /* Preparation for page write: derive the ECC bytes and place them */ + for (i = 0, data = req->databuf.out; + eccsteps; + eccsteps--, i += eccbytes, data += eccsize) + nand_ecc_sw_hamming_calculate(nand, data, &ecccalc[i]); + + return mtd_ooblayout_set_eccbytes(mtd, ecccalc, (void *)req->oobbuf.out, + 0, total); +} + +static int nand_ecc_sw_hamming_finish_io_req(struct nand_device *nand, + struct nand_page_io_req *req) +{ + struct nand_ecc_sw_hamming_conf *engine_conf = nand->ecc.ctx.priv; + struct mtd_info *mtd = nanddev_to_mtd(nand); + int eccsize = nand->ecc.ctx.conf.step_size; + int total = nand->ecc.ctx.total; + int eccbytes = engine_conf->code_size; + int eccsteps = nand->ecc.ctx.nsteps; + u8 *ecccalc = engine_conf->calc_buf; + u8 *ecccode = engine_conf->code_buf; + unsigned int max_bitflips = 0; + u8 *data = req->databuf.in; + int i, ret; + + /* Nothing to do for a raw operation */ + if (req->mode == MTD_OPS_RAW) + return 0; + + /* This engine does not provide BBM/free OOB bytes protection */ + if (!req->datalen) + return 0; + + /* No more preparation for page write */ + if (req->type == NAND_PAGE_WRITE) { + nand_ecc_restore_req(&engine_conf->req_ctx, req); + return 0; + } + + /* Finish a page read: retrieve the (raw) ECC bytes*/ + ret = mtd_ooblayout_get_eccbytes(mtd, ecccode, req->oobbuf.in, 0, + total); + if (ret) + return ret; + + /* Calculate the ECC bytes */ + for (i = 0; eccsteps; eccsteps--, i += eccbytes, data += eccsize) + nand_ecc_sw_hamming_calculate(nand, data, &ecccalc[i]); + + /* Finish a page read: compare and correct */ + for (eccsteps = nand->ecc.ctx.nsteps, i = 0, data = req->databuf.in; + eccsteps; + eccsteps--, i += eccbytes, data += eccsize) { + int stat = nand_ecc_sw_hamming_correct(nand, data, + &ecccode[i], + &ecccalc[i]); + if (stat < 0) { + mtd->ecc_stats.failed++; + } else { + mtd->ecc_stats.corrected += stat; + max_bitflips = max_t(unsigned int, max_bitflips, stat); + } + } + + nand_ecc_restore_req(&engine_conf->req_ctx, req); + + return max_bitflips; +} + +static struct nand_ecc_engine_ops nand_ecc_sw_hamming_engine_ops = { + .init_ctx = nand_ecc_sw_hamming_init_ctx, + .cleanup_ctx = nand_ecc_sw_hamming_cleanup_ctx, + .prepare_io_req = nand_ecc_sw_hamming_prepare_io_req, + .finish_io_req = nand_ecc_sw_hamming_finish_io_req, +}; + +static struct nand_ecc_engine nand_ecc_sw_hamming_engine = { + .ops = &nand_ecc_sw_hamming_engine_ops, +}; + +struct nand_ecc_engine *nand_ecc_sw_hamming_get_engine(void) +{ + return &nand_ecc_sw_hamming_engine; +} +EXPORT_SYMBOL(nand_ecc_sw_hamming_get_engine); + +MODULE_LICENSE("GPL"); +MODULE_AUTHOR("Frans Meulenbroeks <fransmeulenbroeks@gmail.com>"); +MODULE_DESCRIPTION("NAND software Hamming ECC support"); diff --git a/drivers/mtd/nand/ecc.c b/drivers/mtd/nand/ecc.c new file mode 100644 index 0000000000..8f996e8d61 --- /dev/null +++ b/drivers/mtd/nand/ecc.c @@ -0,0 +1,735 @@ +// SPDX-License-Identifier: GPL-2.0+ +/* + * Generic Error-Correcting Code (ECC) engine + * + * Copyright (C) 2019 Macronix + * Author: + * Miquèl RAYNAL <miquel.raynal@bootlin.com> + * + * + * This file describes the abstraction of any NAND ECC engine. It has been + * designed to fit most cases, including parallel NANDs and SPI-NANDs. + * + * There are three main situations where instantiating this ECC engine makes + * sense: + * - external: The ECC engine is outside the NAND pipeline, typically this + * is a software ECC engine, or an hardware engine that is + * outside the NAND controller pipeline. + * - pipelined: The ECC engine is inside the NAND pipeline, ie. on the + * controller's side. This is the case of most of the raw NAND + * controllers. In the pipeline case, the ECC bytes are + * generated/data corrected on the fly when a page is + * written/read. + * - ondie: The ECC engine is inside the NAND pipeline, on the chip's side. + * Some NAND chips can correct themselves the data. + * + * Besides the initial setup and final cleanups, the interfaces are rather + * simple: + * - prepare: Prepare an I/O request. Enable/disable the ECC engine based on + * the I/O request type. In case of software correction or external + * engine, this step may involve to derive the ECC bytes and place + * them in the OOB area before a write. + * - finish: Finish an I/O request. Correct the data in case of a read + * request and report the number of corrected bits/uncorrectable + * errors. Most likely empty for write operations, unless you have + * hardware specific stuff to do, like shutting down the engine to + * save power. + * + * The I/O request should be enclosed in a prepare()/finish() pair of calls + * and will behave differently depending on the requested I/O type: + * - raw: Correction disabled + * - ecc: Correction enabled + * + * The request direction is impacting the logic as well: + * - read: Load data from the NAND chip + * - write: Store data in the NAND chip + * + * Mixing all this combinations together gives the following behavior. + * Those are just examples, drivers are free to add custom steps in their + * prepare/finish hook. + * + * [external ECC engine] + * - external + prepare + raw + read: do nothing + * - external + finish + raw + read: do nothing + * - external + prepare + raw + write: do nothing + * - external + finish + raw + write: do nothing + * - external + prepare + ecc + read: do nothing + * - external + finish + ecc + read: calculate expected ECC bytes, extract + * ECC bytes from OOB buffer, correct + * and report any bitflip/error + * - external + prepare + ecc + write: calculate ECC bytes and store them at + * the right place in the OOB buffer based + * on the OOB layout + * - external + finish + ecc + write: do nothing + * + * [pipelined ECC engine] + * - pipelined + prepare + raw + read: disable the controller's ECC engine if + * activated + * - pipelined + finish + raw + read: do nothing + * - pipelined + prepare + raw + write: disable the controller's ECC engine if + * activated + * - pipelined + finish + raw + write: do nothing + * - pipelined + prepare + ecc + read: enable the controller's ECC engine if + * deactivated + * - pipelined + finish + ecc + read: check the status, report any + * error/bitflip + * - pipelined + prepare + ecc + write: enable the controller's ECC engine if + * deactivated + * - pipelined + finish + ecc + write: do nothing + * + * [ondie ECC engine] + * - ondie + prepare + raw + read: send commands to disable the on-chip ECC + * engine if activated + * - ondie + finish + raw + read: do nothing + * - ondie + prepare + raw + write: send commands to disable the on-chip ECC + * engine if activated + * - ondie + finish + raw + write: do nothing + * - ondie + prepare + ecc + read: send commands to enable the on-chip ECC + * engine if deactivated + * - ondie + finish + ecc + read: send commands to check the status, report + * any error/bitflip + * - ondie + prepare + ecc + write: send commands to enable the on-chip ECC + * engine if deactivated + * - ondie + finish + ecc + write: do nothing + */ + +#include <linux/module.h> +#include <linux/mtd/nand.h> +#include <linux/platform_device.h> +#include <linux/slab.h> +#include <linux/of.h> +#include <linux/of_platform.h> + +static LIST_HEAD(on_host_hw_engines); +static DEFINE_MUTEX(on_host_hw_engines_mutex); + +/** + * nand_ecc_init_ctx - Init the ECC engine context + * @nand: the NAND device + * + * On success, the caller is responsible of calling @nand_ecc_cleanup_ctx(). + */ +int nand_ecc_init_ctx(struct nand_device *nand) +{ + if (!nand->ecc.engine || !nand->ecc.engine->ops->init_ctx) + return 0; + + return nand->ecc.engine->ops->init_ctx(nand); +} +EXPORT_SYMBOL(nand_ecc_init_ctx); + +/** + * nand_ecc_cleanup_ctx - Cleanup the ECC engine context + * @nand: the NAND device + */ +void nand_ecc_cleanup_ctx(struct nand_device *nand) +{ + if (nand->ecc.engine && nand->ecc.engine->ops->cleanup_ctx) + nand->ecc.engine->ops->cleanup_ctx(nand); +} +EXPORT_SYMBOL(nand_ecc_cleanup_ctx); + +/** + * nand_ecc_prepare_io_req - Prepare an I/O request + * @nand: the NAND device + * @req: the I/O request + */ +int nand_ecc_prepare_io_req(struct nand_device *nand, + struct nand_page_io_req *req) +{ + if (!nand->ecc.engine || !nand->ecc.engine->ops->prepare_io_req) + return 0; + + return nand->ecc.engine->ops->prepare_io_req(nand, req); +} +EXPORT_SYMBOL(nand_ecc_prepare_io_req); + +/** + * nand_ecc_finish_io_req - Finish an I/O request + * @nand: the NAND device + * @req: the I/O request + */ +int nand_ecc_finish_io_req(struct nand_device *nand, + struct nand_page_io_req *req) +{ + if (!nand->ecc.engine || !nand->ecc.engine->ops->finish_io_req) + return 0; + + return nand->ecc.engine->ops->finish_io_req(nand, req); +} +EXPORT_SYMBOL(nand_ecc_finish_io_req); + +/* Define default OOB placement schemes for large and small page devices */ +static int nand_ooblayout_ecc_sp(struct mtd_info *mtd, int section, + struct mtd_oob_region *oobregion) +{ + struct nand_device *nand = mtd_to_nanddev(mtd); + unsigned int total_ecc_bytes = nand->ecc.ctx.total; + + if (section > 1) + return -ERANGE; + + if (!section) { + oobregion->offset = 0; + if (mtd->oobsize == 16) + oobregion->length = 4; + else + oobregion->length = 3; + } else { + if (mtd->oobsize == 8) + return -ERANGE; + + oobregion->offset = 6; + oobregion->length = total_ecc_bytes - 4; + } + + return 0; +} + +static int nand_ooblayout_free_sp(struct mtd_info *mtd, int section, + struct mtd_oob_region *oobregion) +{ + if (section > 1) + return -ERANGE; + + if (mtd->oobsize == 16) { + if (section) + return -ERANGE; + + oobregion->length = 8; + oobregion->offset = 8; + } else { + oobregion->length = 2; + if (!section) + oobregion->offset = 3; + else + oobregion->offset = 6; + } + + return 0; +} + +static const struct mtd_ooblayout_ops nand_ooblayout_sp_ops = { + .ecc = nand_ooblayout_ecc_sp, + .free = nand_ooblayout_free_sp, +}; + +const struct mtd_ooblayout_ops *nand_get_small_page_ooblayout(void) +{ + return &nand_ooblayout_sp_ops; +} +EXPORT_SYMBOL_GPL(nand_get_small_page_ooblayout); + +static int nand_ooblayout_ecc_lp(struct mtd_info *mtd, int section, + struct mtd_oob_region *oobregion) +{ + struct nand_device *nand = mtd_to_nanddev(mtd); + unsigned int total_ecc_bytes = nand->ecc.ctx.total; + + if (section || !total_ecc_bytes) + return -ERANGE; + + oobregion->length = total_ecc_bytes; + oobregion->offset = mtd->oobsize - oobregion->length; + + return 0; +} + +static int nand_ooblayout_free_lp(struct mtd_info *mtd, int section, + struct mtd_oob_region *oobregion) +{ + struct nand_device *nand = mtd_to_nanddev(mtd); + unsigned int total_ecc_bytes = nand->ecc.ctx.total; + + if (section) + return -ERANGE; + + oobregion->length = mtd->oobsize - total_ecc_bytes - 2; + oobregion->offset = 2; + + return 0; +} + +static const struct mtd_ooblayout_ops nand_ooblayout_lp_ops = { + .ecc = nand_ooblayout_ecc_lp, + .free = nand_ooblayout_free_lp, +}; + +const struct mtd_ooblayout_ops *nand_get_large_page_ooblayout(void) +{ + return &nand_ooblayout_lp_ops; +} +EXPORT_SYMBOL_GPL(nand_get_large_page_ooblayout); + +/* + * Support the old "large page" layout used for 1-bit Hamming ECC where ECC + * are placed at a fixed offset. + */ +static int nand_ooblayout_ecc_lp_hamming(struct mtd_info *mtd, int section, + struct mtd_oob_region *oobregion) +{ + struct nand_device *nand = mtd_to_nanddev(mtd); + unsigned int total_ecc_bytes = nand->ecc.ctx.total; + + if (section) + return -ERANGE; + + switch (mtd->oobsize) { + case 64: + oobregion->offset = 40; + break; + case 128: + oobregion->offset = 80; + break; + default: + return -EINVAL; + } + + oobregion->length = total_ecc_bytes; + if (oobregion->offset + oobregion->length > mtd->oobsize) + return -ERANGE; + + return 0; +} + +static int nand_ooblayout_free_lp_hamming(struct mtd_info *mtd, int section, + struct mtd_oob_region *oobregion) +{ + struct nand_device *nand = mtd_to_nanddev(mtd); + unsigned int total_ecc_bytes = nand->ecc.ctx.total; + int ecc_offset = 0; + + if (section < 0 || section > 1) + return -ERANGE; + + switch (mtd->oobsize) { + case 64: + ecc_offset = 40; + break; + case 128: + ecc_offset = 80; + break; + default: + return -EINVAL; + } + + if (section == 0) { + oobregion->offset = 2; + oobregion->length = ecc_offset - 2; + } else { + oobregion->offset = ecc_offset + total_ecc_bytes; + oobregion->length = mtd->oobsize - oobregion->offset; + } + + return 0; +} + +static const struct mtd_ooblayout_ops nand_ooblayout_lp_hamming_ops = { + .ecc = nand_ooblayout_ecc_lp_hamming, + .free = nand_ooblayout_free_lp_hamming, +}; + +const struct mtd_ooblayout_ops *nand_get_large_page_hamming_ooblayout(void) +{ + return &nand_ooblayout_lp_hamming_ops; +} +EXPORT_SYMBOL_GPL(nand_get_large_page_hamming_ooblayout); + +static enum nand_ecc_engine_type +of_get_nand_ecc_engine_type(struct device_node *np) +{ + struct device_node *eng_np; + + if (of_property_read_bool(np, "nand-no-ecc-engine")) + return NAND_ECC_ENGINE_TYPE_NONE; + + if (of_property_read_bool(np, "nand-use-soft-ecc-engine")) + return NAND_ECC_ENGINE_TYPE_SOFT; + + eng_np = of_parse_phandle(np, "nand-ecc-engine", 0); + of_node_put(eng_np); + + if (eng_np) { + if (eng_np == np) + return NAND_ECC_ENGINE_TYPE_ON_DIE; + else + return NAND_ECC_ENGINE_TYPE_ON_HOST; + } + + return NAND_ECC_ENGINE_TYPE_INVALID; +} + +static const char * const nand_ecc_placement[] = { + [NAND_ECC_PLACEMENT_OOB] = "oob", + [NAND_ECC_PLACEMENT_INTERLEAVED] = "interleaved", +}; + +static enum nand_ecc_placement of_get_nand_ecc_placement(struct device_node *np) +{ + enum nand_ecc_placement placement; + const char *pm; + int err; + + err = of_property_read_string(np, "nand-ecc-placement", &pm); + if (!err) { + for (placement = NAND_ECC_PLACEMENT_OOB; + placement < ARRAY_SIZE(nand_ecc_placement); placement++) { + if (!strcasecmp(pm, nand_ecc_placement[placement])) + return placement; + } + } + + return NAND_ECC_PLACEMENT_UNKNOWN; +} + +static const char * const nand_ecc_algos[] = { + [NAND_ECC_ALGO_HAMMING] = "hamming", + [NAND_ECC_ALGO_BCH] = "bch", + [NAND_ECC_ALGO_RS] = "rs", +}; + +static enum nand_ecc_algo of_get_nand_ecc_algo(struct device_node *np) +{ + enum nand_ecc_algo ecc_algo; + const char *pm; + int err; + + err = of_property_read_string(np, "nand-ecc-algo", &pm); + if (!err) { + for (ecc_algo = NAND_ECC_ALGO_HAMMING; + ecc_algo < ARRAY_SIZE(nand_ecc_algos); + ecc_algo++) { + if (!strcasecmp(pm, nand_ecc_algos[ecc_algo])) + return ecc_algo; + } + } + + return NAND_ECC_ALGO_UNKNOWN; +} + +static int of_get_nand_ecc_step_size(struct device_node *np) +{ + int ret; + u32 val; + + ret = of_property_read_u32(np, "nand-ecc-step-size", &val); + return ret ? ret : val; +} + +static int of_get_nand_ecc_strength(struct device_node *np) +{ + int ret; + u32 val; + + ret = of_property_read_u32(np, "nand-ecc-strength", &val); + return ret ? ret : val; +} + +void of_get_nand_ecc_user_config(struct nand_device *nand) +{ + struct device_node *dn = nanddev_get_of_node(nand); + int strength, size; + + nand->ecc.user_conf.engine_type = of_get_nand_ecc_engine_type(dn); + nand->ecc.user_conf.algo = of_get_nand_ecc_algo(dn); + nand->ecc.user_conf.placement = of_get_nand_ecc_placement(dn); + + strength = of_get_nand_ecc_strength(dn); + if (strength >= 0) + nand->ecc.user_conf.strength = strength; + + size = of_get_nand_ecc_step_size(dn); + if (size >= 0) + nand->ecc.user_conf.step_size = size; + + if (of_property_read_bool(dn, "nand-ecc-maximize")) + nand->ecc.user_conf.flags |= NAND_ECC_MAXIMIZE_STRENGTH; +} +EXPORT_SYMBOL(of_get_nand_ecc_user_config); + +/** + * nand_ecc_is_strong_enough - Check if the chip configuration meets the + * datasheet requirements. + * + * @nand: Device to check + * + * If our configuration corrects A bits per B bytes and the minimum + * required correction level is X bits per Y bytes, then we must ensure + * both of the following are true: + * + * (1) A / B >= X / Y + * (2) A >= X + * + * Requirement (1) ensures we can correct for the required bitflip density. + * Requirement (2) ensures we can correct even when all bitflips are clumped + * in the same sector. + */ +bool nand_ecc_is_strong_enough(struct nand_device *nand) +{ + const struct nand_ecc_props *reqs = nanddev_get_ecc_requirements(nand); + const struct nand_ecc_props *conf = nanddev_get_ecc_conf(nand); + struct mtd_info *mtd = nanddev_to_mtd(nand); + int corr, ds_corr; + + if (conf->step_size == 0 || reqs->step_size == 0) + /* Not enough information */ + return true; + + /* + * We get the number of corrected bits per page to compare + * the correction density. + */ + corr = (mtd->writesize * conf->strength) / conf->step_size; + ds_corr = (mtd->writesize * reqs->strength) / reqs->step_size; + + return corr >= ds_corr && conf->strength >= reqs->strength; +} +EXPORT_SYMBOL(nand_ecc_is_strong_enough); + +/* ECC engine driver internal helpers */ +int nand_ecc_init_req_tweaking(struct nand_ecc_req_tweak_ctx *ctx, + struct nand_device *nand) +{ + unsigned int total_buffer_size; + + ctx->nand = nand; + + /* Let the user decide the exact length of each buffer */ + if (!ctx->page_buffer_size) + ctx->page_buffer_size = nanddev_page_size(nand); + if (!ctx->oob_buffer_size) + ctx->oob_buffer_size = nanddev_per_page_oobsize(nand); + + total_buffer_size = ctx->page_buffer_size + ctx->oob_buffer_size; + + ctx->spare_databuf = kzalloc(total_buffer_size, GFP_KERNEL); + if (!ctx->spare_databuf) + return -ENOMEM; + + ctx->spare_oobbuf = ctx->spare_databuf + ctx->page_buffer_size; + + return 0; +} +EXPORT_SYMBOL_GPL(nand_ecc_init_req_tweaking); + +void nand_ecc_cleanup_req_tweaking(struct nand_ecc_req_tweak_ctx *ctx) +{ + kfree(ctx->spare_databuf); +} +EXPORT_SYMBOL_GPL(nand_ecc_cleanup_req_tweaking); + +/* + * Ensure data and OOB area is fully read/written otherwise the correction might + * not work as expected. + */ +void nand_ecc_tweak_req(struct nand_ecc_req_tweak_ctx *ctx, + struct nand_page_io_req *req) +{ + struct nand_device *nand = ctx->nand; + struct nand_page_io_req *orig, *tweak; + + /* Save the original request */ + ctx->orig_req = *req; + ctx->bounce_data = false; + ctx->bounce_oob = false; + orig = &ctx->orig_req; + tweak = req; + + /* Ensure the request covers the entire page */ + if (orig->datalen < nanddev_page_size(nand)) { + ctx->bounce_data = true; + tweak->dataoffs = 0; + tweak->datalen = nanddev_page_size(nand); + tweak->databuf.in = ctx->spare_databuf; + memset(tweak->databuf.in, 0xFF, ctx->page_buffer_size); + } + + if (orig->ooblen < nanddev_per_page_oobsize(nand)) { + ctx->bounce_oob = true; + tweak->ooboffs = 0; + tweak->ooblen = nanddev_per_page_oobsize(nand); + tweak->oobbuf.in = ctx->spare_oobbuf; + memset(tweak->oobbuf.in, 0xFF, ctx->oob_buffer_size); + } + + /* Copy the data that must be writen in the bounce buffers, if needed */ + if (orig->type == NAND_PAGE_WRITE) { + if (ctx->bounce_data) + memcpy((void *)tweak->databuf.out + orig->dataoffs, + orig->databuf.out, orig->datalen); + + if (ctx->bounce_oob) + memcpy((void *)tweak->oobbuf.out + orig->ooboffs, + orig->oobbuf.out, orig->ooblen); + } +} +EXPORT_SYMBOL_GPL(nand_ecc_tweak_req); + +void nand_ecc_restore_req(struct nand_ecc_req_tweak_ctx *ctx, + struct nand_page_io_req *req) +{ + struct nand_page_io_req *orig, *tweak; + + orig = &ctx->orig_req; + tweak = req; + + /* Restore the data read from the bounce buffers, if needed */ + if (orig->type == NAND_PAGE_READ) { + if (ctx->bounce_data) + memcpy(orig->databuf.in, + tweak->databuf.in + orig->dataoffs, + orig->datalen); + + if (ctx->bounce_oob) + memcpy(orig->oobbuf.in, + tweak->oobbuf.in + orig->ooboffs, + orig->ooblen); + } + + /* Ensure the original request is restored */ + *req = *orig; +} +EXPORT_SYMBOL_GPL(nand_ecc_restore_req); + +struct nand_ecc_engine *nand_ecc_get_sw_engine(struct nand_device *nand) +{ + unsigned int algo = nand->ecc.user_conf.algo; + + if (algo == NAND_ECC_ALGO_UNKNOWN) + algo = nand->ecc.defaults.algo; + + switch (algo) { + case NAND_ECC_ALGO_HAMMING: + return nand_ecc_sw_hamming_get_engine(); + case NAND_ECC_ALGO_BCH: + return nand_ecc_sw_bch_get_engine(); + default: + break; + } + + return NULL; +} +EXPORT_SYMBOL(nand_ecc_get_sw_engine); + +struct nand_ecc_engine *nand_ecc_get_on_die_hw_engine(struct nand_device *nand) +{ + return nand->ecc.ondie_engine; +} +EXPORT_SYMBOL(nand_ecc_get_on_die_hw_engine); + +int nand_ecc_register_on_host_hw_engine(struct nand_ecc_engine *engine) +{ + struct nand_ecc_engine *item; + + if (!engine) + return -EINVAL; + + /* Prevent multiple registrations of one engine */ + list_for_each_entry(item, &on_host_hw_engines, node) + if (item == engine) + return 0; + + mutex_lock(&on_host_hw_engines_mutex); + list_add_tail(&engine->node, &on_host_hw_engines); + mutex_unlock(&on_host_hw_engines_mutex); + + return 0; +} +EXPORT_SYMBOL(nand_ecc_register_on_host_hw_engine); + +int nand_ecc_unregister_on_host_hw_engine(struct nand_ecc_engine *engine) +{ + if (!engine) + return -EINVAL; + + mutex_lock(&on_host_hw_engines_mutex); + list_del(&engine->node); + mutex_unlock(&on_host_hw_engines_mutex); + + return 0; +} +EXPORT_SYMBOL(nand_ecc_unregister_on_host_hw_engine); + +static struct nand_ecc_engine *nand_ecc_match_on_host_hw_engine(struct device *dev) +{ + struct nand_ecc_engine *item; + + list_for_each_entry(item, &on_host_hw_engines, node) + if (item->dev == dev) + return item; + + return NULL; +} + +struct nand_ecc_engine *nand_ecc_get_on_host_hw_engine(struct nand_device *nand) +{ + struct nand_ecc_engine *engine = NULL; + struct device *dev = &nand->mtd.dev; + struct platform_device *pdev; + struct device_node *np; + + if (list_empty(&on_host_hw_engines)) + return NULL; + + /* Check for an explicit nand-ecc-engine property */ + np = of_parse_phandle(dev->of_node, "nand-ecc-engine", 0); + if (np) { + pdev = of_find_device_by_node(np); + if (!pdev) + return ERR_PTR(-EPROBE_DEFER); + + engine = nand_ecc_match_on_host_hw_engine(&pdev->dev); + platform_device_put(pdev); + of_node_put(np); + + if (!engine) + return ERR_PTR(-EPROBE_DEFER); + } + + if (engine) + get_device(engine->dev); + + return engine; +} +EXPORT_SYMBOL(nand_ecc_get_on_host_hw_engine); + +void nand_ecc_put_on_host_hw_engine(struct nand_device *nand) +{ + put_device(nand->ecc.engine->dev); +} +EXPORT_SYMBOL(nand_ecc_put_on_host_hw_engine); + +/* + * In the case of a pipelined engine, the device registering the ECC + * engine is not necessarily the ECC engine itself but may be a host controller. + * It is then useful to provide a helper to retrieve the right device object + * which actually represents the ECC engine. + */ +struct device *nand_ecc_get_engine_dev(struct device *host) +{ + struct platform_device *ecc_pdev; + struct device_node *np; + + /* + * If the device node contains this property, it means we need to follow + * it in order to get the right ECC engine device we are looking for. + */ + np = of_parse_phandle(host->of_node, "nand-ecc-engine", 0); + if (!np) + return host; + + ecc_pdev = of_find_device_by_node(np); + if (!ecc_pdev) { + of_node_put(np); + return NULL; + } + + platform_device_put(ecc_pdev); + of_node_put(np); + + return &ecc_pdev->dev; +} + +MODULE_LICENSE("GPL"); +MODULE_AUTHOR("Miquel Raynal <miquel.raynal@bootlin.com>"); +MODULE_DESCRIPTION("Generic ECC engine"); diff --git a/drivers/mtd/nand/onenand/Kconfig b/drivers/mtd/nand/onenand/Kconfig new file mode 100644 index 0000000000..7d57836bf3 --- /dev/null +++ b/drivers/mtd/nand/onenand/Kconfig @@ -0,0 +1,73 @@ +# SPDX-License-Identifier: GPL-2.0-only +menuconfig MTD_ONENAND + tristate "OneNAND Device Support" + depends on HAS_IOMEM + help + This enables support for accessing all type of OneNAND flash + devices. + +if MTD_ONENAND + +config MTD_ONENAND_VERIFY_WRITE + bool "Verify OneNAND page writes" + help + This adds an extra check when data is written to the flash. The + OneNAND flash device internally checks only bits transitioning + from 1 to 0. There is a rare possibility that even though the + device thinks the write was successful, a bit could have been + flipped accidentally due to device wear or something else. + +config MTD_ONENAND_GENERIC + tristate "OneNAND Flash device via platform device driver" + help + Support for OneNAND flash via platform device driver. + +config MTD_ONENAND_OMAP2 + tristate "OneNAND on OMAP2/OMAP3 support" + depends on ARCH_OMAP2 || ARCH_OMAP3 || (COMPILE_TEST && ARM) + depends on OF + depends on OMAP_GPMC + help + Support for a OneNAND flash device connected to an OMAP2/OMAP3 SoC + via the GPMC memory controller. + Enable dmaengine and gpiolib for better performance. + +config MTD_ONENAND_SAMSUNG + tristate "OneNAND on Samsung SOC controller support" + depends on ARCH_S3C64XX || ARCH_S5PV210 || COMPILE_TEST + help + Support for a OneNAND flash device connected to Samsung S3C64XX + (using command mapping method) and S5PC110/S5PC210 (using generic + OneNAND method) SoCs. + Choose Y here only if you build for such Samsung SoC. + +config MTD_ONENAND_OTP + bool "OneNAND OTP Support" + help + One Block of the NAND Flash Array memory is reserved as + a One-Time Programmable Block memory area. + Also, 1st Block of NAND Flash Array can be used as OTP. + + The OTP block can be read, programmed and locked using the same + operations as any other NAND Flash Array memory block. + OTP block cannot be erased. + + OTP block is fully-guaranteed to be a valid block. + +config MTD_ONENAND_2X_PROGRAM + bool "OneNAND 2X program support" + help + The 2X Program is an extension of Program Operation. + Since the device is equipped with two DataRAMs, and two-plane NAND + Flash memory array, these two component enables simultaneous program + of 4KiB. Plane1 has only even blocks such as block0, block2, block4 + while Plane2 has only odd blocks such as block1, block3, block5. + So MTD regards it as 4KiB page size and 256KiB block size + + Now the following chips support it. (KFXXX16Q2M) + Demux: KFG2G16Q2M, KFH4G16Q2M, KFW8G16Q2M, + Mux: KFM2G16Q2M, KFN4G16Q2M, + + And more recent chips + +endif # MTD_ONENAND diff --git a/drivers/mtd/nand/onenand/Makefile b/drivers/mtd/nand/onenand/Makefile new file mode 100644 index 0000000000..a0761c7e02 --- /dev/null +++ b/drivers/mtd/nand/onenand/Makefile @@ -0,0 +1,14 @@ +# SPDX-License-Identifier: GPL-2.0 +# +# Makefile for the OneNAND MTD +# + +# Core functionality. +obj-$(CONFIG_MTD_ONENAND) += onenand.o + +# Board specific. +obj-$(CONFIG_MTD_ONENAND_GENERIC) += generic.o +obj-$(CONFIG_MTD_ONENAND_OMAP2) += onenand_omap2.o +obj-$(CONFIG_MTD_ONENAND_SAMSUNG) += onenand_samsung.o + +onenand-objs = onenand_base.o onenand_bbt.o diff --git a/drivers/mtd/nand/onenand/generic.c b/drivers/mtd/nand/onenand/generic.c new file mode 100644 index 0000000000..4e7de48f07 --- /dev/null +++ b/drivers/mtd/nand/onenand/generic.c @@ -0,0 +1,115 @@ +// SPDX-License-Identifier: GPL-2.0-only +/* + * Copyright (c) 2005 Samsung Electronics + * Kyungmin Park <kyungmin.park@samsung.com> + * + * Overview: + * This is a device driver for the OneNAND flash for generic boards. + */ + +#include <linux/module.h> +#include <linux/slab.h> +#include <linux/platform_device.h> +#include <linux/mtd/mtd.h> +#include <linux/mtd/onenand.h> +#include <linux/mtd/partitions.h> +#include <linux/io.h> + +/* + * Note: Driver name and platform data format have been updated! + * + * This version of the driver is named "onenand-flash" and takes struct + * onenand_platform_data as platform data. The old ARM-specific version + * with the name "onenand" used to take struct flash_platform_data. + */ +#define DRIVER_NAME "onenand-flash" + +struct onenand_info { + struct mtd_info mtd; + struct onenand_chip onenand; +}; + +static int generic_onenand_probe(struct platform_device *pdev) +{ + struct onenand_info *info; + struct onenand_platform_data *pdata = dev_get_platdata(&pdev->dev); + struct resource *res = pdev->resource; + unsigned long size = resource_size(res); + int err; + + info = kzalloc(sizeof(struct onenand_info), GFP_KERNEL); + if (!info) + return -ENOMEM; + + if (!request_mem_region(res->start, size, dev_name(&pdev->dev))) { + err = -EBUSY; + goto out_free_info; + } + + info->onenand.base = ioremap(res->start, size); + if (!info->onenand.base) { + err = -ENOMEM; + goto out_release_mem_region; + } + + info->onenand.mmcontrol = pdata ? pdata->mmcontrol : NULL; + + err = platform_get_irq(pdev, 0); + if (err < 0) + goto out_iounmap; + + info->onenand.irq = err; + + info->mtd.dev.parent = &pdev->dev; + info->mtd.priv = &info->onenand; + + if (onenand_scan(&info->mtd, 1)) { + err = -ENXIO; + goto out_iounmap; + } + + err = mtd_device_register(&info->mtd, pdata ? pdata->parts : NULL, + pdata ? pdata->nr_parts : 0); + + platform_set_drvdata(pdev, info); + + return 0; + +out_iounmap: + iounmap(info->onenand.base); +out_release_mem_region: + release_mem_region(res->start, size); +out_free_info: + kfree(info); + + return err; +} + +static void generic_onenand_remove(struct platform_device *pdev) +{ + struct onenand_info *info = platform_get_drvdata(pdev); + struct resource *res = pdev->resource; + unsigned long size = resource_size(res); + + if (info) { + onenand_release(&info->mtd); + release_mem_region(res->start, size); + iounmap(info->onenand.base); + kfree(info); + } +} + +static struct platform_driver generic_onenand_driver = { + .driver = { + .name = DRIVER_NAME, + }, + .probe = generic_onenand_probe, + .remove_new = generic_onenand_remove, +}; + +module_platform_driver(generic_onenand_driver); + +MODULE_LICENSE("GPL"); +MODULE_AUTHOR("Kyungmin Park <kyungmin.park@samsung.com>"); +MODULE_DESCRIPTION("Glue layer for OneNAND flash on generic boards"); +MODULE_ALIAS("platform:" DRIVER_NAME); diff --git a/drivers/mtd/nand/onenand/onenand_base.c b/drivers/mtd/nand/onenand/onenand_base.c new file mode 100644 index 0000000000..f66385faf6 --- /dev/null +++ b/drivers/mtd/nand/onenand/onenand_base.c @@ -0,0 +1,4027 @@ +// SPDX-License-Identifier: GPL-2.0-only +/* + * Copyright © 2005-2009 Samsung Electronics + * Copyright © 2007 Nokia Corporation + * + * Kyungmin Park <kyungmin.park@samsung.com> + * + * Credits: + * Adrian Hunter <ext-adrian.hunter@nokia.com>: + * auto-placement support, read-while load support, various fixes + * + * Vishak G <vishak.g at samsung.com>, Rohit Hagargundgi <h.rohit at samsung.com> + * Flex-OneNAND support + * Amul Kumar Saha <amul.saha at samsung.com> + * OTP support + */ + +#include <linux/kernel.h> +#include <linux/module.h> +#include <linux/moduleparam.h> +#include <linux/slab.h> +#include <linux/sched.h> +#include <linux/delay.h> +#include <linux/interrupt.h> +#include <linux/jiffies.h> +#include <linux/mtd/mtd.h> +#include <linux/mtd/onenand.h> +#include <linux/mtd/partitions.h> + +#include <asm/io.h> + +/* + * Multiblock erase if number of blocks to erase is 2 or more. + * Maximum number of blocks for simultaneous erase is 64. + */ +#define MB_ERASE_MIN_BLK_COUNT 2 +#define MB_ERASE_MAX_BLK_COUNT 64 + +/* Default Flex-OneNAND boundary and lock respectively */ +static int flex_bdry[MAX_DIES * 2] = { -1, 0, -1, 0 }; + +module_param_array(flex_bdry, int, NULL, 0400); +MODULE_PARM_DESC(flex_bdry, "SLC Boundary information for Flex-OneNAND" + "Syntax:flex_bdry=DIE_BDRY,LOCK,..." + "DIE_BDRY: SLC boundary of the die" + "LOCK: Locking information for SLC boundary" + " : 0->Set boundary in unlocked status" + " : 1->Set boundary in locked status"); + +/* Default OneNAND/Flex-OneNAND OTP options*/ +static int otp; + +module_param(otp, int, 0400); +MODULE_PARM_DESC(otp, "Corresponding behaviour of OneNAND in OTP" + "Syntax : otp=LOCK_TYPE" + "LOCK_TYPE : Keys issued, for specific OTP Lock type" + " : 0 -> Default (No Blocks Locked)" + " : 1 -> OTP Block lock" + " : 2 -> 1st Block lock" + " : 3 -> BOTH OTP Block and 1st Block lock"); + +/* + * flexonenand_oob_128 - oob info for Flex-Onenand with 4KB page + * For now, we expose only 64 out of 80 ecc bytes + */ +static int flexonenand_ooblayout_ecc(struct mtd_info *mtd, int section, + struct mtd_oob_region *oobregion) +{ + if (section > 7) + return -ERANGE; + + oobregion->offset = (section * 16) + 6; + oobregion->length = 10; + + return 0; +} + +static int flexonenand_ooblayout_free(struct mtd_info *mtd, int section, + struct mtd_oob_region *oobregion) +{ + if (section > 7) + return -ERANGE; + + oobregion->offset = (section * 16) + 2; + oobregion->length = 4; + + return 0; +} + +static const struct mtd_ooblayout_ops flexonenand_ooblayout_ops = { + .ecc = flexonenand_ooblayout_ecc, + .free = flexonenand_ooblayout_free, +}; + +/* + * onenand_oob_128 - oob info for OneNAND with 4KB page + * + * Based on specification: + * 4Gb M-die OneNAND Flash (KFM4G16Q4M, KFN8G16Q4M). Rev. 1.3, Apr. 2010 + * + */ +static int onenand_ooblayout_128_ecc(struct mtd_info *mtd, int section, + struct mtd_oob_region *oobregion) +{ + if (section > 7) + return -ERANGE; + + oobregion->offset = (section * 16) + 7; + oobregion->length = 9; + + return 0; +} + +static int onenand_ooblayout_128_free(struct mtd_info *mtd, int section, + struct mtd_oob_region *oobregion) +{ + if (section >= 8) + return -ERANGE; + + /* + * free bytes are using the spare area fields marked as + * "Managed by internal ECC logic for Logical Sector Number area" + */ + oobregion->offset = (section * 16) + 2; + oobregion->length = 3; + + return 0; +} + +static const struct mtd_ooblayout_ops onenand_oob_128_ooblayout_ops = { + .ecc = onenand_ooblayout_128_ecc, + .free = onenand_ooblayout_128_free, +}; + +/* + * onenand_oob_32_64 - oob info for large (2KB) page + */ +static int onenand_ooblayout_32_64_ecc(struct mtd_info *mtd, int section, + struct mtd_oob_region *oobregion) +{ + if (section > 3) + return -ERANGE; + + oobregion->offset = (section * 16) + 8; + oobregion->length = 5; + + return 0; +} + +static int onenand_ooblayout_32_64_free(struct mtd_info *mtd, int section, + struct mtd_oob_region *oobregion) +{ + int sections = (mtd->oobsize / 32) * 2; + + if (section >= sections) + return -ERANGE; + + if (section & 1) { + oobregion->offset = ((section - 1) * 16) + 14; + oobregion->length = 2; + } else { + oobregion->offset = (section * 16) + 2; + oobregion->length = 3; + } + + return 0; +} + +static const struct mtd_ooblayout_ops onenand_oob_32_64_ooblayout_ops = { + .ecc = onenand_ooblayout_32_64_ecc, + .free = onenand_ooblayout_32_64_free, +}; + +static const unsigned char ffchars[] = { + 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, + 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 16 */ + 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, + 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 32 */ + 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, + 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 48 */ + 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, + 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 64 */ + 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, + 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 80 */ + 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, + 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 96 */ + 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, + 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 112 */ + 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, + 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 128 */ +}; + +/** + * onenand_readw - [OneNAND Interface] Read OneNAND register + * @addr: address to read + * + * Read OneNAND register + */ +static unsigned short onenand_readw(void __iomem *addr) +{ + return readw(addr); +} + +/** + * onenand_writew - [OneNAND Interface] Write OneNAND register with value + * @value: value to write + * @addr: address to write + * + * Write OneNAND register with value + */ +static void onenand_writew(unsigned short value, void __iomem *addr) +{ + writew(value, addr); +} + +/** + * onenand_block_address - [DEFAULT] Get block address + * @this: onenand chip data structure + * @block: the block + * @return translated block address if DDP, otherwise same + * + * Setup Start Address 1 Register (F100h) + */ +static int onenand_block_address(struct onenand_chip *this, int block) +{ + /* Device Flash Core select, NAND Flash Block Address */ + if (block & this->density_mask) + return ONENAND_DDP_CHIP1 | (block ^ this->density_mask); + + return block; +} + +/** + * onenand_bufferram_address - [DEFAULT] Get bufferram address + * @this: onenand chip data structure + * @block: the block + * @return set DBS value if DDP, otherwise 0 + * + * Setup Start Address 2 Register (F101h) for DDP + */ +static int onenand_bufferram_address(struct onenand_chip *this, int block) +{ + /* Device BufferRAM Select */ + if (block & this->density_mask) + return ONENAND_DDP_CHIP1; + + return ONENAND_DDP_CHIP0; +} + +/** + * onenand_page_address - [DEFAULT] Get page address + * @page: the page address + * @sector: the sector address + * @return combined page and sector address + * + * Setup Start Address 8 Register (F107h) + */ +static int onenand_page_address(int page, int sector) +{ + /* Flash Page Address, Flash Sector Address */ + int fpa, fsa; + + fpa = page & ONENAND_FPA_MASK; + fsa = sector & ONENAND_FSA_MASK; + + return ((fpa << ONENAND_FPA_SHIFT) | fsa); +} + +/** + * onenand_buffer_address - [DEFAULT] Get buffer address + * @dataram1: DataRAM index + * @sectors: the sector address + * @count: the number of sectors + * Return: the start buffer value + * + * Setup Start Buffer Register (F200h) + */ +static int onenand_buffer_address(int dataram1, int sectors, int count) +{ + int bsa, bsc; + + /* BufferRAM Sector Address */ + bsa = sectors & ONENAND_BSA_MASK; + + if (dataram1) + bsa |= ONENAND_BSA_DATARAM1; /* DataRAM1 */ + else + bsa |= ONENAND_BSA_DATARAM0; /* DataRAM0 */ + + /* BufferRAM Sector Count */ + bsc = count & ONENAND_BSC_MASK; + + return ((bsa << ONENAND_BSA_SHIFT) | bsc); +} + +/** + * flexonenand_block- For given address return block number + * @this: - OneNAND device structure + * @addr: - Address for which block number is needed + */ +static unsigned flexonenand_block(struct onenand_chip *this, loff_t addr) +{ + unsigned boundary, blk, die = 0; + + if (ONENAND_IS_DDP(this) && addr >= this->diesize[0]) { + die = 1; + addr -= this->diesize[0]; + } + + boundary = this->boundary[die]; + + blk = addr >> (this->erase_shift - 1); + if (blk > boundary) + blk = (blk + boundary + 1) >> 1; + + blk += die ? this->density_mask : 0; + return blk; +} + +inline unsigned onenand_block(struct onenand_chip *this, loff_t addr) +{ + if (!FLEXONENAND(this)) + return addr >> this->erase_shift; + return flexonenand_block(this, addr); +} + +/** + * flexonenand_addr - Return address of the block + * @this: OneNAND device structure + * @block: Block number on Flex-OneNAND + * + * Return address of the block + */ +static loff_t flexonenand_addr(struct onenand_chip *this, int block) +{ + loff_t ofs = 0; + int die = 0, boundary; + + if (ONENAND_IS_DDP(this) && block >= this->density_mask) { + block -= this->density_mask; + die = 1; + ofs = this->diesize[0]; + } + + boundary = this->boundary[die]; + ofs += (loff_t)block << (this->erase_shift - 1); + if (block > (boundary + 1)) + ofs += (loff_t)(block - boundary - 1) << (this->erase_shift - 1); + return ofs; +} + +loff_t onenand_addr(struct onenand_chip *this, int block) +{ + if (!FLEXONENAND(this)) + return (loff_t)block << this->erase_shift; + return flexonenand_addr(this, block); +} +EXPORT_SYMBOL(onenand_addr); + +/** + * onenand_get_density - [DEFAULT] Get OneNAND density + * @dev_id: OneNAND device ID + * + * Get OneNAND density from device ID + */ +static inline int onenand_get_density(int dev_id) +{ + int density = dev_id >> ONENAND_DEVICE_DENSITY_SHIFT; + return (density & ONENAND_DEVICE_DENSITY_MASK); +} + +/** + * flexonenand_region - [Flex-OneNAND] Return erase region of addr + * @mtd: MTD device structure + * @addr: address whose erase region needs to be identified + */ +int flexonenand_region(struct mtd_info *mtd, loff_t addr) +{ + int i; + + for (i = 0; i < mtd->numeraseregions; i++) + if (addr < mtd->eraseregions[i].offset) + break; + return i - 1; +} +EXPORT_SYMBOL(flexonenand_region); + +/** + * onenand_command - [DEFAULT] Send command to OneNAND device + * @mtd: MTD device structure + * @cmd: the command to be sent + * @addr: offset to read from or write to + * @len: number of bytes to read or write + * + * Send command to OneNAND device. This function is used for middle/large page + * devices (1KB/2KB Bytes per page) + */ +static int onenand_command(struct mtd_info *mtd, int cmd, loff_t addr, size_t len) +{ + struct onenand_chip *this = mtd->priv; + int value, block, page; + + /* Address translation */ + switch (cmd) { + case ONENAND_CMD_UNLOCK: + case ONENAND_CMD_LOCK: + case ONENAND_CMD_LOCK_TIGHT: + case ONENAND_CMD_UNLOCK_ALL: + block = -1; + page = -1; + break; + + case FLEXONENAND_CMD_PI_ACCESS: + /* addr contains die index */ + block = addr * this->density_mask; + page = -1; + break; + + case ONENAND_CMD_ERASE: + case ONENAND_CMD_MULTIBLOCK_ERASE: + case ONENAND_CMD_ERASE_VERIFY: + case ONENAND_CMD_BUFFERRAM: + case ONENAND_CMD_OTP_ACCESS: + block = onenand_block(this, addr); + page = -1; + break; + + case FLEXONENAND_CMD_READ_PI: + cmd = ONENAND_CMD_READ; + block = addr * this->density_mask; + page = 0; + break; + + default: + block = onenand_block(this, addr); + if (FLEXONENAND(this)) + page = (int) (addr - onenand_addr(this, block))>>\ + this->page_shift; + else + page = (int) (addr >> this->page_shift); + if (ONENAND_IS_2PLANE(this)) { + /* Make the even block number */ + block &= ~1; + /* Is it the odd plane? */ + if (addr & this->writesize) + block++; + page >>= 1; + } + page &= this->page_mask; + break; + } + + /* NOTE: The setting order of the registers is very important! */ + if (cmd == ONENAND_CMD_BUFFERRAM) { + /* Select DataRAM for DDP */ + value = onenand_bufferram_address(this, block); + this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2); + + if (ONENAND_IS_2PLANE(this) || ONENAND_IS_4KB_PAGE(this)) + /* It is always BufferRAM0 */ + ONENAND_SET_BUFFERRAM0(this); + else + /* Switch to the next data buffer */ + ONENAND_SET_NEXT_BUFFERRAM(this); + + return 0; + } + + if (block != -1) { + /* Write 'DFS, FBA' of Flash */ + value = onenand_block_address(this, block); + this->write_word(value, this->base + ONENAND_REG_START_ADDRESS1); + + /* Select DataRAM for DDP */ + value = onenand_bufferram_address(this, block); + this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2); + } + + if (page != -1) { + /* Now we use page size operation */ + int sectors = 0, count = 0; + int dataram; + + switch (cmd) { + case FLEXONENAND_CMD_RECOVER_LSB: + case ONENAND_CMD_READ: + case ONENAND_CMD_READOOB: + if (ONENAND_IS_4KB_PAGE(this)) + /* It is always BufferRAM0 */ + dataram = ONENAND_SET_BUFFERRAM0(this); + else + dataram = ONENAND_SET_NEXT_BUFFERRAM(this); + break; + + default: + if (ONENAND_IS_2PLANE(this) && cmd == ONENAND_CMD_PROG) + cmd = ONENAND_CMD_2X_PROG; + dataram = ONENAND_CURRENT_BUFFERRAM(this); + break; + } + + /* Write 'FPA, FSA' of Flash */ + value = onenand_page_address(page, sectors); + this->write_word(value, this->base + ONENAND_REG_START_ADDRESS8); + + /* Write 'BSA, BSC' of DataRAM */ + value = onenand_buffer_address(dataram, sectors, count); + this->write_word(value, this->base + ONENAND_REG_START_BUFFER); + } + + /* Interrupt clear */ + this->write_word(ONENAND_INT_CLEAR, this->base + ONENAND_REG_INTERRUPT); + + /* Write command */ + this->write_word(cmd, this->base + ONENAND_REG_COMMAND); + + return 0; +} + +/** + * onenand_read_ecc - return ecc status + * @this: onenand chip structure + */ +static inline int onenand_read_ecc(struct onenand_chip *this) +{ + int ecc, i, result = 0; + + if (!FLEXONENAND(this) && !ONENAND_IS_4KB_PAGE(this)) + return this->read_word(this->base + ONENAND_REG_ECC_STATUS); + + for (i = 0; i < 4; i++) { + ecc = this->read_word(this->base + ONENAND_REG_ECC_STATUS + i*2); + if (likely(!ecc)) + continue; + if (ecc & FLEXONENAND_UNCORRECTABLE_ERROR) + return ONENAND_ECC_2BIT_ALL; + else + result = ONENAND_ECC_1BIT_ALL; + } + + return result; +} + +/** + * onenand_wait - [DEFAULT] wait until the command is done + * @mtd: MTD device structure + * @state: state to select the max. timeout value + * + * Wait for command done. This applies to all OneNAND command + * Read can take up to 30us, erase up to 2ms and program up to 350us + * according to general OneNAND specs + */ +static int onenand_wait(struct mtd_info *mtd, int state) +{ + struct onenand_chip * this = mtd->priv; + unsigned long timeout; + unsigned int flags = ONENAND_INT_MASTER; + unsigned int interrupt = 0; + unsigned int ctrl; + + /* The 20 msec is enough */ + timeout = jiffies + msecs_to_jiffies(20); + while (time_before(jiffies, timeout)) { + interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT); + + if (interrupt & flags) + break; + + if (state != FL_READING && state != FL_PREPARING_ERASE) + cond_resched(); + } + /* To get correct interrupt status in timeout case */ + interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT); + + ctrl = this->read_word(this->base + ONENAND_REG_CTRL_STATUS); + + /* + * In the Spec. it checks the controller status first + * However if you get the correct information in case of + * power off recovery (POR) test, it should read ECC status first + */ + if (interrupt & ONENAND_INT_READ) { + int ecc = onenand_read_ecc(this); + if (ecc) { + if (ecc & ONENAND_ECC_2BIT_ALL) { + printk(KERN_ERR "%s: ECC error = 0x%04x\n", + __func__, ecc); + mtd->ecc_stats.failed++; + return -EBADMSG; + } else if (ecc & ONENAND_ECC_1BIT_ALL) { + printk(KERN_DEBUG "%s: correctable ECC error = 0x%04x\n", + __func__, ecc); + mtd->ecc_stats.corrected++; + } + } + } else if (state == FL_READING) { + printk(KERN_ERR "%s: read timeout! ctrl=0x%04x intr=0x%04x\n", + __func__, ctrl, interrupt); + return -EIO; + } + + if (state == FL_PREPARING_ERASE && !(interrupt & ONENAND_INT_ERASE)) { + printk(KERN_ERR "%s: mb erase timeout! ctrl=0x%04x intr=0x%04x\n", + __func__, ctrl, interrupt); + return -EIO; + } + + if (!(interrupt & ONENAND_INT_MASTER)) { + printk(KERN_ERR "%s: timeout! ctrl=0x%04x intr=0x%04x\n", + __func__, ctrl, interrupt); + return -EIO; + } + + /* If there's controller error, it's a real error */ + if (ctrl & ONENAND_CTRL_ERROR) { + printk(KERN_ERR "%s: controller error = 0x%04x\n", + __func__, ctrl); + if (ctrl & ONENAND_CTRL_LOCK) + printk(KERN_ERR "%s: it's locked error.\n", __func__); + return -EIO; + } + + return 0; +} + +/* + * onenand_interrupt - [DEFAULT] onenand interrupt handler + * @irq: onenand interrupt number + * @dev_id: interrupt data + * + * complete the work + */ +static irqreturn_t onenand_interrupt(int irq, void *data) +{ + struct onenand_chip *this = data; + + /* To handle shared interrupt */ + if (!this->complete.done) + complete(&this->complete); + + return IRQ_HANDLED; +} + +/* + * onenand_interrupt_wait - [DEFAULT] wait until the command is done + * @mtd: MTD device structure + * @state: state to select the max. timeout value + * + * Wait for command done. + */ +static int onenand_interrupt_wait(struct mtd_info *mtd, int state) +{ + struct onenand_chip *this = mtd->priv; + + wait_for_completion(&this->complete); + + return onenand_wait(mtd, state); +} + +/* + * onenand_try_interrupt_wait - [DEFAULT] try interrupt wait + * @mtd: MTD device structure + * @state: state to select the max. timeout value + * + * Try interrupt based wait (It is used one-time) + */ +static int onenand_try_interrupt_wait(struct mtd_info *mtd, int state) +{ + struct onenand_chip *this = mtd->priv; + unsigned long remain, timeout; + + /* We use interrupt wait first */ + this->wait = onenand_interrupt_wait; + + timeout = msecs_to_jiffies(100); + remain = wait_for_completion_timeout(&this->complete, timeout); + if (!remain) { + printk(KERN_INFO "OneNAND: There's no interrupt. " + "We use the normal wait\n"); + + /* Release the irq */ + free_irq(this->irq, this); + + this->wait = onenand_wait; + } + + return onenand_wait(mtd, state); +} + +/* + * onenand_setup_wait - [OneNAND Interface] setup onenand wait method + * @mtd: MTD device structure + * + * There's two method to wait onenand work + * 1. polling - read interrupt status register + * 2. interrupt - use the kernel interrupt method + */ +static void onenand_setup_wait(struct mtd_info *mtd) +{ + struct onenand_chip *this = mtd->priv; + int syscfg; + + init_completion(&this->complete); + + if (this->irq <= 0) { + this->wait = onenand_wait; + return; + } + + if (request_irq(this->irq, &onenand_interrupt, + IRQF_SHARED, "onenand", this)) { + /* If we can't get irq, use the normal wait */ + this->wait = onenand_wait; + return; + } + + /* Enable interrupt */ + syscfg = this->read_word(this->base + ONENAND_REG_SYS_CFG1); + syscfg |= ONENAND_SYS_CFG1_IOBE; + this->write_word(syscfg, this->base + ONENAND_REG_SYS_CFG1); + + this->wait = onenand_try_interrupt_wait; +} + +/** + * onenand_bufferram_offset - [DEFAULT] BufferRAM offset + * @mtd: MTD data structure + * @area: BufferRAM area + * @return offset given area + * + * Return BufferRAM offset given area + */ +static inline int onenand_bufferram_offset(struct mtd_info *mtd, int area) +{ + struct onenand_chip *this = mtd->priv; + + if (ONENAND_CURRENT_BUFFERRAM(this)) { + /* Note: the 'this->writesize' is a real page size */ + if (area == ONENAND_DATARAM) + return this->writesize; + if (area == ONENAND_SPARERAM) + return mtd->oobsize; + } + + return 0; +} + +/** + * onenand_read_bufferram - [OneNAND Interface] Read the bufferram area + * @mtd: MTD data structure + * @area: BufferRAM area + * @buffer: the databuffer to put/get data + * @offset: offset to read from or write to + * @count: number of bytes to read/write + * + * Read the BufferRAM area + */ +static int onenand_read_bufferram(struct mtd_info *mtd, int area, + unsigned char *buffer, int offset, size_t count) +{ + struct onenand_chip *this = mtd->priv; + void __iomem *bufferram; + + bufferram = this->base + area; + + bufferram += onenand_bufferram_offset(mtd, area); + + if (ONENAND_CHECK_BYTE_ACCESS(count)) { + unsigned short word; + + /* Align with word(16-bit) size */ + count--; + + /* Read word and save byte */ + word = this->read_word(bufferram + offset + count); + buffer[count] = (word & 0xff); + } + + memcpy(buffer, bufferram + offset, count); + + return 0; +} + +/** + * onenand_sync_read_bufferram - [OneNAND Interface] Read the bufferram area with Sync. Burst mode + * @mtd: MTD data structure + * @area: BufferRAM area + * @buffer: the databuffer to put/get data + * @offset: offset to read from or write to + * @count: number of bytes to read/write + * + * Read the BufferRAM area with Sync. Burst Mode + */ +static int onenand_sync_read_bufferram(struct mtd_info *mtd, int area, + unsigned char *buffer, int offset, size_t count) +{ + struct onenand_chip *this = mtd->priv; + void __iomem *bufferram; + + bufferram = this->base + area; + + bufferram += onenand_bufferram_offset(mtd, area); + + this->mmcontrol(mtd, ONENAND_SYS_CFG1_SYNC_READ); + + if (ONENAND_CHECK_BYTE_ACCESS(count)) { + unsigned short word; + + /* Align with word(16-bit) size */ + count--; + + /* Read word and save byte */ + word = this->read_word(bufferram + offset + count); + buffer[count] = (word & 0xff); + } + + memcpy(buffer, bufferram + offset, count); + + this->mmcontrol(mtd, 0); + + return 0; +} + +/** + * onenand_write_bufferram - [OneNAND Interface] Write the bufferram area + * @mtd: MTD data structure + * @area: BufferRAM area + * @buffer: the databuffer to put/get data + * @offset: offset to read from or write to + * @count: number of bytes to read/write + * + * Write the BufferRAM area + */ +static int onenand_write_bufferram(struct mtd_info *mtd, int area, + const unsigned char *buffer, int offset, size_t count) +{ + struct onenand_chip *this = mtd->priv; + void __iomem *bufferram; + + bufferram = this->base + area; + + bufferram += onenand_bufferram_offset(mtd, area); + + if (ONENAND_CHECK_BYTE_ACCESS(count)) { + unsigned short word; + int byte_offset; + + /* Align with word(16-bit) size */ + count--; + + /* Calculate byte access offset */ + byte_offset = offset + count; + + /* Read word and save byte */ + word = this->read_word(bufferram + byte_offset); + word = (word & ~0xff) | buffer[count]; + this->write_word(word, bufferram + byte_offset); + } + + memcpy(bufferram + offset, buffer, count); + + return 0; +} + +/** + * onenand_get_2x_blockpage - [GENERIC] Get blockpage at 2x program mode + * @mtd: MTD data structure + * @addr: address to check + * @return blockpage address + * + * Get blockpage address at 2x program mode + */ +static int onenand_get_2x_blockpage(struct mtd_info *mtd, loff_t addr) +{ + struct onenand_chip *this = mtd->priv; + int blockpage, block, page; + + /* Calculate the even block number */ + block = (int) (addr >> this->erase_shift) & ~1; + /* Is it the odd plane? */ + if (addr & this->writesize) + block++; + page = (int) (addr >> (this->page_shift + 1)) & this->page_mask; + blockpage = (block << 7) | page; + + return blockpage; +} + +/** + * onenand_check_bufferram - [GENERIC] Check BufferRAM information + * @mtd: MTD data structure + * @addr: address to check + * @return 1 if there are valid data, otherwise 0 + * + * Check bufferram if there is data we required + */ +static int onenand_check_bufferram(struct mtd_info *mtd, loff_t addr) +{ + struct onenand_chip *this = mtd->priv; + int blockpage, found = 0; + unsigned int i; + + if (ONENAND_IS_2PLANE(this)) + blockpage = onenand_get_2x_blockpage(mtd, addr); + else + blockpage = (int) (addr >> this->page_shift); + + /* Is there valid data? */ + i = ONENAND_CURRENT_BUFFERRAM(this); + if (this->bufferram[i].blockpage == blockpage) + found = 1; + else { + /* Check another BufferRAM */ + i = ONENAND_NEXT_BUFFERRAM(this); + if (this->bufferram[i].blockpage == blockpage) { + ONENAND_SET_NEXT_BUFFERRAM(this); + found = 1; + } + } + + if (found && ONENAND_IS_DDP(this)) { + /* Select DataRAM for DDP */ + int block = onenand_block(this, addr); + int value = onenand_bufferram_address(this, block); + this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2); + } + + return found; +} + +/** + * onenand_update_bufferram - [GENERIC] Update BufferRAM information + * @mtd: MTD data structure + * @addr: address to update + * @valid: valid flag + * + * Update BufferRAM information + */ +static void onenand_update_bufferram(struct mtd_info *mtd, loff_t addr, + int valid) +{ + struct onenand_chip *this = mtd->priv; + int blockpage; + unsigned int i; + + if (ONENAND_IS_2PLANE(this)) + blockpage = onenand_get_2x_blockpage(mtd, addr); + else + blockpage = (int) (addr >> this->page_shift); + + /* Invalidate another BufferRAM */ + i = ONENAND_NEXT_BUFFERRAM(this); + if (this->bufferram[i].blockpage == blockpage) + this->bufferram[i].blockpage = -1; + + /* Update BufferRAM */ + i = ONENAND_CURRENT_BUFFERRAM(this); + if (valid) + this->bufferram[i].blockpage = blockpage; + else + this->bufferram[i].blockpage = -1; +} + +/** + * onenand_invalidate_bufferram - [GENERIC] Invalidate BufferRAM information + * @mtd: MTD data structure + * @addr: start address to invalidate + * @len: length to invalidate + * + * Invalidate BufferRAM information + */ +static void onenand_invalidate_bufferram(struct mtd_info *mtd, loff_t addr, + unsigned int len) +{ + struct onenand_chip *this = mtd->priv; + int i; + loff_t end_addr = addr + len; + + /* Invalidate BufferRAM */ + for (i = 0; i < MAX_BUFFERRAM; i++) { + loff_t buf_addr = this->bufferram[i].blockpage << this->page_shift; + if (buf_addr >= addr && buf_addr < end_addr) + this->bufferram[i].blockpage = -1; + } +} + +/** + * onenand_get_device - [GENERIC] Get chip for selected access + * @mtd: MTD device structure + * @new_state: the state which is requested + * + * Get the device and lock it for exclusive access + */ +static int onenand_get_device(struct mtd_info *mtd, int new_state) +{ + struct onenand_chip *this = mtd->priv; + DECLARE_WAITQUEUE(wait, current); + + /* + * Grab the lock and see if the device is available + */ + while (1) { + spin_lock(&this->chip_lock); + if (this->state == FL_READY) { + this->state = new_state; + spin_unlock(&this->chip_lock); + if (new_state != FL_PM_SUSPENDED && this->enable) + this->enable(mtd); + break; + } + if (new_state == FL_PM_SUSPENDED) { + spin_unlock(&this->chip_lock); + return (this->state == FL_PM_SUSPENDED) ? 0 : -EAGAIN; + } + set_current_state(TASK_UNINTERRUPTIBLE); + add_wait_queue(&this->wq, &wait); + spin_unlock(&this->chip_lock); + schedule(); + remove_wait_queue(&this->wq, &wait); + } + + return 0; +} + +/** + * onenand_release_device - [GENERIC] release chip + * @mtd: MTD device structure + * + * Deselect, release chip lock and wake up anyone waiting on the device + */ +static void onenand_release_device(struct mtd_info *mtd) +{ + struct onenand_chip *this = mtd->priv; + + if (this->state != FL_PM_SUSPENDED && this->disable) + this->disable(mtd); + /* Release the chip */ + spin_lock(&this->chip_lock); + this->state = FL_READY; + wake_up(&this->wq); + spin_unlock(&this->chip_lock); +} + +/** + * onenand_transfer_auto_oob - [INTERN] oob auto-placement transfer + * @mtd: MTD device structure + * @buf: destination address + * @column: oob offset to read from + * @thislen: oob length to read + */ +static int onenand_transfer_auto_oob(struct mtd_info *mtd, uint8_t *buf, int column, + int thislen) +{ + struct onenand_chip *this = mtd->priv; + + this->read_bufferram(mtd, ONENAND_SPARERAM, this->oob_buf, 0, + mtd->oobsize); + return mtd_ooblayout_get_databytes(mtd, buf, this->oob_buf, + column, thislen); +} + +/** + * onenand_recover_lsb - [Flex-OneNAND] Recover LSB page data + * @mtd: MTD device structure + * @addr: address to recover + * @status: return value from onenand_wait / onenand_bbt_wait + * + * MLC NAND Flash cell has paired pages - LSB page and MSB page. LSB page has + * lower page address and MSB page has higher page address in paired pages. + * If power off occurs during MSB page program, the paired LSB page data can + * become corrupt. LSB page recovery read is a way to read LSB page though page + * data are corrupted. When uncorrectable error occurs as a result of LSB page + * read after power up, issue LSB page recovery read. + */ +static int onenand_recover_lsb(struct mtd_info *mtd, loff_t addr, int status) +{ + struct onenand_chip *this = mtd->priv; + int i; + + /* Recovery is only for Flex-OneNAND */ + if (!FLEXONENAND(this)) + return status; + + /* check if we failed due to uncorrectable error */ + if (!mtd_is_eccerr(status) && status != ONENAND_BBT_READ_ECC_ERROR) + return status; + + /* check if address lies in MLC region */ + i = flexonenand_region(mtd, addr); + if (mtd->eraseregions[i].erasesize < (1 << this->erase_shift)) + return status; + + /* We are attempting to reread, so decrement stats.failed + * which was incremented by onenand_wait due to read failure + */ + printk(KERN_INFO "%s: Attempting to recover from uncorrectable read\n", + __func__); + mtd->ecc_stats.failed--; + + /* Issue the LSB page recovery command */ + this->command(mtd, FLEXONENAND_CMD_RECOVER_LSB, addr, this->writesize); + return this->wait(mtd, FL_READING); +} + +/** + * onenand_mlc_read_ops_nolock - MLC OneNAND read main and/or out-of-band + * @mtd: MTD device structure + * @from: offset to read from + * @ops: oob operation description structure + * + * MLC OneNAND / Flex-OneNAND has 4KB page size and 4KB dataram. + * So, read-while-load is not present. + */ +static int onenand_mlc_read_ops_nolock(struct mtd_info *mtd, loff_t from, + struct mtd_oob_ops *ops) +{ + struct onenand_chip *this = mtd->priv; + struct mtd_ecc_stats stats; + size_t len = ops->len; + size_t ooblen = ops->ooblen; + u_char *buf = ops->datbuf; + u_char *oobbuf = ops->oobbuf; + int read = 0, column, thislen; + int oobread = 0, oobcolumn, thisooblen, oobsize; + int ret = 0; + int writesize = this->writesize; + + pr_debug("%s: from = 0x%08x, len = %i\n", __func__, (unsigned int)from, + (int)len); + + oobsize = mtd_oobavail(mtd, ops); + oobcolumn = from & (mtd->oobsize - 1); + + /* Do not allow reads past end of device */ + if (from + len > mtd->size) { + printk(KERN_ERR "%s: Attempt read beyond end of device\n", + __func__); + ops->retlen = 0; + ops->oobretlen = 0; + return -EINVAL; + } + + stats = mtd->ecc_stats; + + while (read < len) { + cond_resched(); + + thislen = min_t(int, writesize, len - read); + + column = from & (writesize - 1); + if (column + thislen > writesize) + thislen = writesize - column; + + if (!onenand_check_bufferram(mtd, from)) { + this->command(mtd, ONENAND_CMD_READ, from, writesize); + + ret = this->wait(mtd, FL_READING); + if (unlikely(ret)) + ret = onenand_recover_lsb(mtd, from, ret); + onenand_update_bufferram(mtd, from, !ret); + if (mtd_is_eccerr(ret)) + ret = 0; + if (ret) + break; + } + + this->read_bufferram(mtd, ONENAND_DATARAM, buf, column, thislen); + if (oobbuf) { + thisooblen = oobsize - oobcolumn; + thisooblen = min_t(int, thisooblen, ooblen - oobread); + + if (ops->mode == MTD_OPS_AUTO_OOB) + onenand_transfer_auto_oob(mtd, oobbuf, oobcolumn, thisooblen); + else + this->read_bufferram(mtd, ONENAND_SPARERAM, oobbuf, oobcolumn, thisooblen); + oobread += thisooblen; + oobbuf += thisooblen; + oobcolumn = 0; + } + + read += thislen; + if (read == len) + break; + + from += thislen; + buf += thislen; + } + + /* + * Return success, if no ECC failures, else -EBADMSG + * fs driver will take care of that, because + * retlen == desired len and result == -EBADMSG + */ + ops->retlen = read; + ops->oobretlen = oobread; + + if (ret) + return ret; + + if (mtd->ecc_stats.failed - stats.failed) + return -EBADMSG; + + /* return max bitflips per ecc step; ONENANDs correct 1 bit only */ + return mtd->ecc_stats.corrected != stats.corrected ? 1 : 0; +} + +/** + * onenand_read_ops_nolock - [OneNAND Interface] OneNAND read main and/or out-of-band + * @mtd: MTD device structure + * @from: offset to read from + * @ops: oob operation description structure + * + * OneNAND read main and/or out-of-band data + */ +static int onenand_read_ops_nolock(struct mtd_info *mtd, loff_t from, + struct mtd_oob_ops *ops) +{ + struct onenand_chip *this = mtd->priv; + struct mtd_ecc_stats stats; + size_t len = ops->len; + size_t ooblen = ops->ooblen; + u_char *buf = ops->datbuf; + u_char *oobbuf = ops->oobbuf; + int read = 0, column, thislen; + int oobread = 0, oobcolumn, thisooblen, oobsize; + int ret = 0, boundary = 0; + int writesize = this->writesize; + + pr_debug("%s: from = 0x%08x, len = %i\n", __func__, (unsigned int)from, + (int)len); + + oobsize = mtd_oobavail(mtd, ops); + oobcolumn = from & (mtd->oobsize - 1); + + /* Do not allow reads past end of device */ + if ((from + len) > mtd->size) { + printk(KERN_ERR "%s: Attempt read beyond end of device\n", + __func__); + ops->retlen = 0; + ops->oobretlen = 0; + return -EINVAL; + } + + stats = mtd->ecc_stats; + + /* Read-while-load method */ + + /* Do first load to bufferRAM */ + if (read < len) { + if (!onenand_check_bufferram(mtd, from)) { + this->command(mtd, ONENAND_CMD_READ, from, writesize); + ret = this->wait(mtd, FL_READING); + onenand_update_bufferram(mtd, from, !ret); + if (mtd_is_eccerr(ret)) + ret = 0; + } + } + + thislen = min_t(int, writesize, len - read); + column = from & (writesize - 1); + if (column + thislen > writesize) + thislen = writesize - column; + + while (!ret) { + /* If there is more to load then start next load */ + from += thislen; + if (read + thislen < len) { + this->command(mtd, ONENAND_CMD_READ, from, writesize); + /* + * Chip boundary handling in DDP + * Now we issued chip 1 read and pointed chip 1 + * bufferram so we have to point chip 0 bufferram. + */ + if (ONENAND_IS_DDP(this) && + unlikely(from == (this->chipsize >> 1))) { + this->write_word(ONENAND_DDP_CHIP0, this->base + ONENAND_REG_START_ADDRESS2); + boundary = 1; + } else + boundary = 0; + ONENAND_SET_PREV_BUFFERRAM(this); + } + /* While load is going, read from last bufferRAM */ + this->read_bufferram(mtd, ONENAND_DATARAM, buf, column, thislen); + + /* Read oob area if needed */ + if (oobbuf) { + thisooblen = oobsize - oobcolumn; + thisooblen = min_t(int, thisooblen, ooblen - oobread); + + if (ops->mode == MTD_OPS_AUTO_OOB) + onenand_transfer_auto_oob(mtd, oobbuf, oobcolumn, thisooblen); + else + this->read_bufferram(mtd, ONENAND_SPARERAM, oobbuf, oobcolumn, thisooblen); + oobread += thisooblen; + oobbuf += thisooblen; + oobcolumn = 0; + } + + /* See if we are done */ + read += thislen; + if (read == len) + break; + /* Set up for next read from bufferRAM */ + if (unlikely(boundary)) + this->write_word(ONENAND_DDP_CHIP1, this->base + ONENAND_REG_START_ADDRESS2); + ONENAND_SET_NEXT_BUFFERRAM(this); + buf += thislen; + thislen = min_t(int, writesize, len - read); + column = 0; + cond_resched(); + /* Now wait for load */ + ret = this->wait(mtd, FL_READING); + onenand_update_bufferram(mtd, from, !ret); + if (mtd_is_eccerr(ret)) + ret = 0; + } + + /* + * Return success, if no ECC failures, else -EBADMSG + * fs driver will take care of that, because + * retlen == desired len and result == -EBADMSG + */ + ops->retlen = read; + ops->oobretlen = oobread; + + if (ret) + return ret; + + if (mtd->ecc_stats.failed - stats.failed) + return -EBADMSG; + + /* return max bitflips per ecc step; ONENANDs correct 1 bit only */ + return mtd->ecc_stats.corrected != stats.corrected ? 1 : 0; +} + +/** + * onenand_read_oob_nolock - [MTD Interface] OneNAND read out-of-band + * @mtd: MTD device structure + * @from: offset to read from + * @ops: oob operation description structure + * + * OneNAND read out-of-band data from the spare area + */ +static int onenand_read_oob_nolock(struct mtd_info *mtd, loff_t from, + struct mtd_oob_ops *ops) +{ + struct onenand_chip *this = mtd->priv; + struct mtd_ecc_stats stats; + int read = 0, thislen, column, oobsize; + size_t len = ops->ooblen; + unsigned int mode = ops->mode; + u_char *buf = ops->oobbuf; + int ret = 0, readcmd; + + from += ops->ooboffs; + + pr_debug("%s: from = 0x%08x, len = %i\n", __func__, (unsigned int)from, + (int)len); + + /* Initialize return length value */ + ops->oobretlen = 0; + + if (mode == MTD_OPS_AUTO_OOB) + oobsize = mtd->oobavail; + else + oobsize = mtd->oobsize; + + column = from & (mtd->oobsize - 1); + + if (unlikely(column >= oobsize)) { + printk(KERN_ERR "%s: Attempted to start read outside oob\n", + __func__); + return -EINVAL; + } + + stats = mtd->ecc_stats; + + readcmd = ONENAND_IS_4KB_PAGE(this) ? ONENAND_CMD_READ : ONENAND_CMD_READOOB; + + while (read < len) { + cond_resched(); + + thislen = oobsize - column; + thislen = min_t(int, thislen, len); + + this->command(mtd, readcmd, from, mtd->oobsize); + + onenand_update_bufferram(mtd, from, 0); + + ret = this->wait(mtd, FL_READING); + if (unlikely(ret)) + ret = onenand_recover_lsb(mtd, from, ret); + + if (ret && !mtd_is_eccerr(ret)) { + printk(KERN_ERR "%s: read failed = 0x%x\n", + __func__, ret); + break; + } + + if (mode == MTD_OPS_AUTO_OOB) + onenand_transfer_auto_oob(mtd, buf, column, thislen); + else + this->read_bufferram(mtd, ONENAND_SPARERAM, buf, column, thislen); + + read += thislen; + + if (read == len) + break; + + buf += thislen; + + /* Read more? */ + if (read < len) { + /* Page size */ + from += mtd->writesize; + column = 0; + } + } + + ops->oobretlen = read; + + if (ret) + return ret; + + if (mtd->ecc_stats.failed - stats.failed) + return -EBADMSG; + + return 0; +} + +/** + * onenand_read_oob - [MTD Interface] Read main and/or out-of-band + * @mtd: MTD device structure + * @from: offset to read from + * @ops: oob operation description structure + * + * Read main and/or out-of-band + */ +static int onenand_read_oob(struct mtd_info *mtd, loff_t from, + struct mtd_oob_ops *ops) +{ + struct onenand_chip *this = mtd->priv; + struct mtd_ecc_stats old_stats; + int ret; + + switch (ops->mode) { + case MTD_OPS_PLACE_OOB: + case MTD_OPS_AUTO_OOB: + break; + case MTD_OPS_RAW: + /* Not implemented yet */ + default: + return -EINVAL; + } + + onenand_get_device(mtd, FL_READING); + + old_stats = mtd->ecc_stats; + + if (ops->datbuf) + ret = ONENAND_IS_4KB_PAGE(this) ? + onenand_mlc_read_ops_nolock(mtd, from, ops) : + onenand_read_ops_nolock(mtd, from, ops); + else + ret = onenand_read_oob_nolock(mtd, from, ops); + + if (ops->stats) { + ops->stats->uncorrectable_errors += + mtd->ecc_stats.failed - old_stats.failed; + ops->stats->corrected_bitflips += + mtd->ecc_stats.corrected - old_stats.corrected; + } + + onenand_release_device(mtd); + + return ret; +} + +/** + * onenand_bbt_wait - [DEFAULT] wait until the command is done + * @mtd: MTD device structure + * @state: state to select the max. timeout value + * + * Wait for command done. + */ +static int onenand_bbt_wait(struct mtd_info *mtd, int state) +{ + struct onenand_chip *this = mtd->priv; + unsigned long timeout; + unsigned int interrupt, ctrl, ecc, addr1, addr8; + + /* The 20 msec is enough */ + timeout = jiffies + msecs_to_jiffies(20); + while (time_before(jiffies, timeout)) { + interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT); + if (interrupt & ONENAND_INT_MASTER) + break; + } + /* To get correct interrupt status in timeout case */ + interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT); + ctrl = this->read_word(this->base + ONENAND_REG_CTRL_STATUS); + addr1 = this->read_word(this->base + ONENAND_REG_START_ADDRESS1); + addr8 = this->read_word(this->base + ONENAND_REG_START_ADDRESS8); + + if (interrupt & ONENAND_INT_READ) { + ecc = onenand_read_ecc(this); + if (ecc & ONENAND_ECC_2BIT_ALL) { + printk(KERN_DEBUG "%s: ecc 0x%04x ctrl 0x%04x " + "intr 0x%04x addr1 %#x addr8 %#x\n", + __func__, ecc, ctrl, interrupt, addr1, addr8); + return ONENAND_BBT_READ_ECC_ERROR; + } + } else { + printk(KERN_ERR "%s: read timeout! ctrl 0x%04x " + "intr 0x%04x addr1 %#x addr8 %#x\n", + __func__, ctrl, interrupt, addr1, addr8); + return ONENAND_BBT_READ_FATAL_ERROR; + } + + /* Initial bad block case: 0x2400 or 0x0400 */ + if (ctrl & ONENAND_CTRL_ERROR) { + printk(KERN_DEBUG "%s: ctrl 0x%04x intr 0x%04x addr1 %#x " + "addr8 %#x\n", __func__, ctrl, interrupt, addr1, addr8); + return ONENAND_BBT_READ_ERROR; + } + + return 0; +} + +/** + * onenand_bbt_read_oob - [MTD Interface] OneNAND read out-of-band for bbt scan + * @mtd: MTD device structure + * @from: offset to read from + * @ops: oob operation description structure + * + * OneNAND read out-of-band data from the spare area for bbt scan + */ +int onenand_bbt_read_oob(struct mtd_info *mtd, loff_t from, + struct mtd_oob_ops *ops) +{ + struct onenand_chip *this = mtd->priv; + int read = 0, thislen, column; + int ret = 0, readcmd; + size_t len = ops->ooblen; + u_char *buf = ops->oobbuf; + + pr_debug("%s: from = 0x%08x, len = %zi\n", __func__, (unsigned int)from, + len); + + /* Initialize return value */ + ops->oobretlen = 0; + + /* Do not allow reads past end of device */ + if (unlikely((from + len) > mtd->size)) { + printk(KERN_ERR "%s: Attempt read beyond end of device\n", + __func__); + return ONENAND_BBT_READ_FATAL_ERROR; + } + + /* Grab the lock and see if the device is available */ + onenand_get_device(mtd, FL_READING); + + column = from & (mtd->oobsize - 1); + + readcmd = ONENAND_IS_4KB_PAGE(this) ? ONENAND_CMD_READ : ONENAND_CMD_READOOB; + + while (read < len) { + cond_resched(); + + thislen = mtd->oobsize - column; + thislen = min_t(int, thislen, len); + + this->command(mtd, readcmd, from, mtd->oobsize); + + onenand_update_bufferram(mtd, from, 0); + + ret = this->bbt_wait(mtd, FL_READING); + if (unlikely(ret)) + ret = onenand_recover_lsb(mtd, from, ret); + + if (ret) + break; + + this->read_bufferram(mtd, ONENAND_SPARERAM, buf, column, thislen); + read += thislen; + if (read == len) + break; + + buf += thislen; + + /* Read more? */ + if (read < len) { + /* Update Page size */ + from += this->writesize; + column = 0; + } + } + + /* Deselect and wake up anyone waiting on the device */ + onenand_release_device(mtd); + + ops->oobretlen = read; + return ret; +} + +#ifdef CONFIG_MTD_ONENAND_VERIFY_WRITE +/** + * onenand_verify_oob - [GENERIC] verify the oob contents after a write + * @mtd: MTD device structure + * @buf: the databuffer to verify + * @to: offset to read from + */ +static int onenand_verify_oob(struct mtd_info *mtd, const u_char *buf, loff_t to) +{ + struct onenand_chip *this = mtd->priv; + u_char *oob_buf = this->oob_buf; + int status, i, readcmd; + + readcmd = ONENAND_IS_4KB_PAGE(this) ? ONENAND_CMD_READ : ONENAND_CMD_READOOB; + + this->command(mtd, readcmd, to, mtd->oobsize); + onenand_update_bufferram(mtd, to, 0); + status = this->wait(mtd, FL_READING); + if (status) + return status; + + this->read_bufferram(mtd, ONENAND_SPARERAM, oob_buf, 0, mtd->oobsize); + for (i = 0; i < mtd->oobsize; i++) + if (buf[i] != 0xFF && buf[i] != oob_buf[i]) + return -EBADMSG; + + return 0; +} + +/** + * onenand_verify - [GENERIC] verify the chip contents after a write + * @mtd: MTD device structure + * @buf: the databuffer to verify + * @addr: offset to read from + * @len: number of bytes to read and compare + */ +static int onenand_verify(struct mtd_info *mtd, const u_char *buf, loff_t addr, size_t len) +{ + struct onenand_chip *this = mtd->priv; + int ret = 0; + int thislen, column; + + column = addr & (this->writesize - 1); + + while (len != 0) { + thislen = min_t(int, this->writesize - column, len); + + this->command(mtd, ONENAND_CMD_READ, addr, this->writesize); + + onenand_update_bufferram(mtd, addr, 0); + + ret = this->wait(mtd, FL_READING); + if (ret) + return ret; + + onenand_update_bufferram(mtd, addr, 1); + + this->read_bufferram(mtd, ONENAND_DATARAM, this->verify_buf, 0, mtd->writesize); + + if (memcmp(buf, this->verify_buf + column, thislen)) + return -EBADMSG; + + len -= thislen; + buf += thislen; + addr += thislen; + column = 0; + } + + return 0; +} +#else +#define onenand_verify(...) (0) +#define onenand_verify_oob(...) (0) +#endif + +#define NOTALIGNED(x) ((x & (this->subpagesize - 1)) != 0) + +static void onenand_panic_wait(struct mtd_info *mtd) +{ + struct onenand_chip *this = mtd->priv; + unsigned int interrupt; + int i; + + for (i = 0; i < 2000; i++) { + interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT); + if (interrupt & ONENAND_INT_MASTER) + break; + udelay(10); + } +} + +/** + * onenand_panic_write - [MTD Interface] write buffer to FLASH in a panic context + * @mtd: MTD device structure + * @to: offset to write to + * @len: number of bytes to write + * @retlen: pointer to variable to store the number of written bytes + * @buf: the data to write + * + * Write with ECC + */ +static int onenand_panic_write(struct mtd_info *mtd, loff_t to, size_t len, + size_t *retlen, const u_char *buf) +{ + struct onenand_chip *this = mtd->priv; + int column, subpage; + int written = 0; + + if (this->state == FL_PM_SUSPENDED) + return -EBUSY; + + /* Wait for any existing operation to clear */ + onenand_panic_wait(mtd); + + pr_debug("%s: to = 0x%08x, len = %i\n", __func__, (unsigned int)to, + (int)len); + + /* Reject writes, which are not page aligned */ + if (unlikely(NOTALIGNED(to) || NOTALIGNED(len))) { + printk(KERN_ERR "%s: Attempt to write not page aligned data\n", + __func__); + return -EINVAL; + } + + column = to & (mtd->writesize - 1); + + /* Loop until all data write */ + while (written < len) { + int thislen = min_t(int, mtd->writesize - column, len - written); + u_char *wbuf = (u_char *) buf; + + this->command(mtd, ONENAND_CMD_BUFFERRAM, to, thislen); + + /* Partial page write */ + subpage = thislen < mtd->writesize; + if (subpage) { + memset(this->page_buf, 0xff, mtd->writesize); + memcpy(this->page_buf + column, buf, thislen); + wbuf = this->page_buf; + } + + this->write_bufferram(mtd, ONENAND_DATARAM, wbuf, 0, mtd->writesize); + this->write_bufferram(mtd, ONENAND_SPARERAM, ffchars, 0, mtd->oobsize); + + this->command(mtd, ONENAND_CMD_PROG, to, mtd->writesize); + + onenand_panic_wait(mtd); + + /* In partial page write we don't update bufferram */ + onenand_update_bufferram(mtd, to, !subpage); + if (ONENAND_IS_2PLANE(this)) { + ONENAND_SET_BUFFERRAM1(this); + onenand_update_bufferram(mtd, to + this->writesize, !subpage); + } + + written += thislen; + + if (written == len) + break; + + column = 0; + to += thislen; + buf += thislen; + } + + *retlen = written; + return 0; +} + +/** + * onenand_fill_auto_oob - [INTERN] oob auto-placement transfer + * @mtd: MTD device structure + * @oob_buf: oob buffer + * @buf: source address + * @column: oob offset to write to + * @thislen: oob length to write + */ +static int onenand_fill_auto_oob(struct mtd_info *mtd, u_char *oob_buf, + const u_char *buf, int column, int thislen) +{ + return mtd_ooblayout_set_databytes(mtd, buf, oob_buf, column, thislen); +} + +/** + * onenand_write_ops_nolock - [OneNAND Interface] write main and/or out-of-band + * @mtd: MTD device structure + * @to: offset to write to + * @ops: oob operation description structure + * + * Write main and/or oob with ECC + */ +static int onenand_write_ops_nolock(struct mtd_info *mtd, loff_t to, + struct mtd_oob_ops *ops) +{ + struct onenand_chip *this = mtd->priv; + int written = 0, column, thislen = 0, subpage = 0; + int prev = 0, prevlen = 0, prev_subpage = 0, first = 1; + int oobwritten = 0, oobcolumn, thisooblen, oobsize; + size_t len = ops->len; + size_t ooblen = ops->ooblen; + const u_char *buf = ops->datbuf; + const u_char *oob = ops->oobbuf; + u_char *oobbuf; + int ret = 0, cmd; + + pr_debug("%s: to = 0x%08x, len = %i\n", __func__, (unsigned int)to, + (int)len); + + /* Initialize retlen, in case of early exit */ + ops->retlen = 0; + ops->oobretlen = 0; + + /* Reject writes, which are not page aligned */ + if (unlikely(NOTALIGNED(to) || NOTALIGNED(len))) { + printk(KERN_ERR "%s: Attempt to write not page aligned data\n", + __func__); + return -EINVAL; + } + + /* Check zero length */ + if (!len) + return 0; + oobsize = mtd_oobavail(mtd, ops); + oobcolumn = to & (mtd->oobsize - 1); + + column = to & (mtd->writesize - 1); + + /* Loop until all data write */ + while (1) { + if (written < len) { + u_char *wbuf = (u_char *) buf; + + thislen = min_t(int, mtd->writesize - column, len - written); + thisooblen = min_t(int, oobsize - oobcolumn, ooblen - oobwritten); + + cond_resched(); + + this->command(mtd, ONENAND_CMD_BUFFERRAM, to, thislen); + + /* Partial page write */ + subpage = thislen < mtd->writesize; + if (subpage) { + memset(this->page_buf, 0xff, mtd->writesize); + memcpy(this->page_buf + column, buf, thislen); + wbuf = this->page_buf; + } + + this->write_bufferram(mtd, ONENAND_DATARAM, wbuf, 0, mtd->writesize); + + if (oob) { + oobbuf = this->oob_buf; + + /* We send data to spare ram with oobsize + * to prevent byte access */ + memset(oobbuf, 0xff, mtd->oobsize); + if (ops->mode == MTD_OPS_AUTO_OOB) + onenand_fill_auto_oob(mtd, oobbuf, oob, oobcolumn, thisooblen); + else + memcpy(oobbuf + oobcolumn, oob, thisooblen); + + oobwritten += thisooblen; + oob += thisooblen; + oobcolumn = 0; + } else + oobbuf = (u_char *) ffchars; + + this->write_bufferram(mtd, ONENAND_SPARERAM, oobbuf, 0, mtd->oobsize); + } else + ONENAND_SET_NEXT_BUFFERRAM(this); + + /* + * 2 PLANE, MLC, and Flex-OneNAND do not support + * write-while-program feature. + */ + if (!ONENAND_IS_2PLANE(this) && !ONENAND_IS_4KB_PAGE(this) && !first) { + ONENAND_SET_PREV_BUFFERRAM(this); + + ret = this->wait(mtd, FL_WRITING); + + /* In partial page write we don't update bufferram */ + onenand_update_bufferram(mtd, prev, !ret && !prev_subpage); + if (ret) { + written -= prevlen; + printk(KERN_ERR "%s: write failed %d\n", + __func__, ret); + break; + } + + if (written == len) { + /* Only check verify write turn on */ + ret = onenand_verify(mtd, buf - len, to - len, len); + if (ret) + printk(KERN_ERR "%s: verify failed %d\n", + __func__, ret); + break; + } + + ONENAND_SET_NEXT_BUFFERRAM(this); + } + + this->ongoing = 0; + cmd = ONENAND_CMD_PROG; + + /* Exclude 1st OTP and OTP blocks for cache program feature */ + if (ONENAND_IS_CACHE_PROGRAM(this) && + likely(onenand_block(this, to) != 0) && + ONENAND_IS_4KB_PAGE(this) && + ((written + thislen) < len)) { + cmd = ONENAND_CMD_2X_CACHE_PROG; + this->ongoing = 1; + } + + this->command(mtd, cmd, to, mtd->writesize); + + /* + * 2 PLANE, MLC, and Flex-OneNAND wait here + */ + if (ONENAND_IS_2PLANE(this) || ONENAND_IS_4KB_PAGE(this)) { + ret = this->wait(mtd, FL_WRITING); + + /* In partial page write we don't update bufferram */ + onenand_update_bufferram(mtd, to, !ret && !subpage); + if (ret) { + printk(KERN_ERR "%s: write failed %d\n", + __func__, ret); + break; + } + + /* Only check verify write turn on */ + ret = onenand_verify(mtd, buf, to, thislen); + if (ret) { + printk(KERN_ERR "%s: verify failed %d\n", + __func__, ret); + break; + } + + written += thislen; + + if (written == len) + break; + + } else + written += thislen; + + column = 0; + prev_subpage = subpage; + prev = to; + prevlen = thislen; + to += thislen; + buf += thislen; + first = 0; + } + + /* In error case, clear all bufferrams */ + if (written != len) + onenand_invalidate_bufferram(mtd, 0, -1); + + ops->retlen = written; + ops->oobretlen = oobwritten; + + return ret; +} + + +/** + * onenand_write_oob_nolock - [INTERN] OneNAND write out-of-band + * @mtd: MTD device structure + * @to: offset to write to + * @ops: oob operation description structure + * + * OneNAND write out-of-band + */ +static int onenand_write_oob_nolock(struct mtd_info *mtd, loff_t to, + struct mtd_oob_ops *ops) +{ + struct onenand_chip *this = mtd->priv; + int column, ret = 0, oobsize; + int written = 0, oobcmd; + u_char *oobbuf; + size_t len = ops->ooblen; + const u_char *buf = ops->oobbuf; + unsigned int mode = ops->mode; + + to += ops->ooboffs; + + pr_debug("%s: to = 0x%08x, len = %i\n", __func__, (unsigned int)to, + (int)len); + + /* Initialize retlen, in case of early exit */ + ops->oobretlen = 0; + + if (mode == MTD_OPS_AUTO_OOB) + oobsize = mtd->oobavail; + else + oobsize = mtd->oobsize; + + column = to & (mtd->oobsize - 1); + + if (unlikely(column >= oobsize)) { + printk(KERN_ERR "%s: Attempted to start write outside oob\n", + __func__); + return -EINVAL; + } + + /* For compatibility with NAND: Do not allow write past end of page */ + if (unlikely(column + len > oobsize)) { + printk(KERN_ERR "%s: Attempt to write past end of page\n", + __func__); + return -EINVAL; + } + + oobbuf = this->oob_buf; + + oobcmd = ONENAND_IS_4KB_PAGE(this) ? ONENAND_CMD_PROG : ONENAND_CMD_PROGOOB; + + /* Loop until all data write */ + while (written < len) { + int thislen = min_t(int, oobsize, len - written); + + cond_resched(); + + this->command(mtd, ONENAND_CMD_BUFFERRAM, to, mtd->oobsize); + + /* We send data to spare ram with oobsize + * to prevent byte access */ + memset(oobbuf, 0xff, mtd->oobsize); + if (mode == MTD_OPS_AUTO_OOB) + onenand_fill_auto_oob(mtd, oobbuf, buf, column, thislen); + else + memcpy(oobbuf + column, buf, thislen); + this->write_bufferram(mtd, ONENAND_SPARERAM, oobbuf, 0, mtd->oobsize); + + if (ONENAND_IS_4KB_PAGE(this)) { + /* Set main area of DataRAM to 0xff*/ + memset(this->page_buf, 0xff, mtd->writesize); + this->write_bufferram(mtd, ONENAND_DATARAM, + this->page_buf, 0, mtd->writesize); + } + + this->command(mtd, oobcmd, to, mtd->oobsize); + + onenand_update_bufferram(mtd, to, 0); + if (ONENAND_IS_2PLANE(this)) { + ONENAND_SET_BUFFERRAM1(this); + onenand_update_bufferram(mtd, to + this->writesize, 0); + } + + ret = this->wait(mtd, FL_WRITING); + if (ret) { + printk(KERN_ERR "%s: write failed %d\n", __func__, ret); + break; + } + + ret = onenand_verify_oob(mtd, oobbuf, to); + if (ret) { + printk(KERN_ERR "%s: verify failed %d\n", + __func__, ret); + break; + } + + written += thislen; + if (written == len) + break; + + to += mtd->writesize; + buf += thislen; + column = 0; + } + + ops->oobretlen = written; + + return ret; +} + +/** + * onenand_write_oob - [MTD Interface] NAND write data and/or out-of-band + * @mtd: MTD device structure + * @to: offset to write + * @ops: oob operation description structure + */ +static int onenand_write_oob(struct mtd_info *mtd, loff_t to, + struct mtd_oob_ops *ops) +{ + int ret; + + switch (ops->mode) { + case MTD_OPS_PLACE_OOB: + case MTD_OPS_AUTO_OOB: + break; + case MTD_OPS_RAW: + /* Not implemented yet */ + default: + return -EINVAL; + } + + onenand_get_device(mtd, FL_WRITING); + if (ops->datbuf) + ret = onenand_write_ops_nolock(mtd, to, ops); + else + ret = onenand_write_oob_nolock(mtd, to, ops); + onenand_release_device(mtd); + + return ret; +} + +/** + * onenand_block_isbad_nolock - [GENERIC] Check if a block is marked bad + * @mtd: MTD device structure + * @ofs: offset from device start + * @allowbbt: 1, if its allowed to access the bbt area + * + * Check, if the block is bad. Either by reading the bad block table or + * calling of the scan function. + */ +static int onenand_block_isbad_nolock(struct mtd_info *mtd, loff_t ofs, int allowbbt) +{ + struct onenand_chip *this = mtd->priv; + struct bbm_info *bbm = this->bbm; + + /* Return info from the table */ + return bbm->isbad_bbt(mtd, ofs, allowbbt); +} + + +static int onenand_multiblock_erase_verify(struct mtd_info *mtd, + struct erase_info *instr) +{ + struct onenand_chip *this = mtd->priv; + loff_t addr = instr->addr; + int len = instr->len; + unsigned int block_size = (1 << this->erase_shift); + int ret = 0; + + while (len) { + this->command(mtd, ONENAND_CMD_ERASE_VERIFY, addr, block_size); + ret = this->wait(mtd, FL_VERIFYING_ERASE); + if (ret) { + printk(KERN_ERR "%s: Failed verify, block %d\n", + __func__, onenand_block(this, addr)); + instr->fail_addr = addr; + return -1; + } + len -= block_size; + addr += block_size; + } + return 0; +} + +/** + * onenand_multiblock_erase - [INTERN] erase block(s) using multiblock erase + * @mtd: MTD device structure + * @instr: erase instruction + * @block_size: block size + * + * Erase one or more blocks up to 64 block at a time + */ +static int onenand_multiblock_erase(struct mtd_info *mtd, + struct erase_info *instr, + unsigned int block_size) +{ + struct onenand_chip *this = mtd->priv; + loff_t addr = instr->addr; + int len = instr->len; + int eb_count = 0; + int ret = 0; + int bdry_block = 0; + + if (ONENAND_IS_DDP(this)) { + loff_t bdry_addr = this->chipsize >> 1; + if (addr < bdry_addr && (addr + len) > bdry_addr) + bdry_block = bdry_addr >> this->erase_shift; + } + + /* Pre-check bbs */ + while (len) { + /* Check if we have a bad block, we do not erase bad blocks */ + if (onenand_block_isbad_nolock(mtd, addr, 0)) { + printk(KERN_WARNING "%s: attempt to erase a bad block " + "at addr 0x%012llx\n", + __func__, (unsigned long long) addr); + return -EIO; + } + len -= block_size; + addr += block_size; + } + + len = instr->len; + addr = instr->addr; + + /* loop over 64 eb batches */ + while (len) { + struct erase_info verify_instr = *instr; + int max_eb_count = MB_ERASE_MAX_BLK_COUNT; + + verify_instr.addr = addr; + verify_instr.len = 0; + + /* do not cross chip boundary */ + if (bdry_block) { + int this_block = (addr >> this->erase_shift); + + if (this_block < bdry_block) { + max_eb_count = min(max_eb_count, + (bdry_block - this_block)); + } + } + + eb_count = 0; + + while (len > block_size && eb_count < (max_eb_count - 1)) { + this->command(mtd, ONENAND_CMD_MULTIBLOCK_ERASE, + addr, block_size); + onenand_invalidate_bufferram(mtd, addr, block_size); + + ret = this->wait(mtd, FL_PREPARING_ERASE); + if (ret) { + printk(KERN_ERR "%s: Failed multiblock erase, " + "block %d\n", __func__, + onenand_block(this, addr)); + instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN; + return -EIO; + } + + len -= block_size; + addr += block_size; + eb_count++; + } + + /* last block of 64-eb series */ + cond_resched(); + this->command(mtd, ONENAND_CMD_ERASE, addr, block_size); + onenand_invalidate_bufferram(mtd, addr, block_size); + + ret = this->wait(mtd, FL_ERASING); + /* Check if it is write protected */ + if (ret) { + printk(KERN_ERR "%s: Failed erase, block %d\n", + __func__, onenand_block(this, addr)); + instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN; + return -EIO; + } + + len -= block_size; + addr += block_size; + eb_count++; + + /* verify */ + verify_instr.len = eb_count * block_size; + if (onenand_multiblock_erase_verify(mtd, &verify_instr)) { + instr->fail_addr = verify_instr.fail_addr; + return -EIO; + } + + } + return 0; +} + + +/** + * onenand_block_by_block_erase - [INTERN] erase block(s) using regular erase + * @mtd: MTD device structure + * @instr: erase instruction + * @region: erase region + * @block_size: erase block size + * + * Erase one or more blocks one block at a time + */ +static int onenand_block_by_block_erase(struct mtd_info *mtd, + struct erase_info *instr, + struct mtd_erase_region_info *region, + unsigned int block_size) +{ + struct onenand_chip *this = mtd->priv; + loff_t addr = instr->addr; + int len = instr->len; + loff_t region_end = 0; + int ret = 0; + + if (region) { + /* region is set for Flex-OneNAND */ + region_end = region->offset + region->erasesize * region->numblocks; + } + + /* Loop through the blocks */ + while (len) { + cond_resched(); + + /* Check if we have a bad block, we do not erase bad blocks */ + if (onenand_block_isbad_nolock(mtd, addr, 0)) { + printk(KERN_WARNING "%s: attempt to erase a bad block " + "at addr 0x%012llx\n", + __func__, (unsigned long long) addr); + return -EIO; + } + + this->command(mtd, ONENAND_CMD_ERASE, addr, block_size); + + onenand_invalidate_bufferram(mtd, addr, block_size); + + ret = this->wait(mtd, FL_ERASING); + /* Check, if it is write protected */ + if (ret) { + printk(KERN_ERR "%s: Failed erase, block %d\n", + __func__, onenand_block(this, addr)); + instr->fail_addr = addr; + return -EIO; + } + + len -= block_size; + addr += block_size; + + if (region && addr == region_end) { + if (!len) + break; + region++; + + block_size = region->erasesize; + region_end = region->offset + region->erasesize * region->numblocks; + + if (len & (block_size - 1)) { + /* FIXME: This should be handled at MTD partitioning level. */ + printk(KERN_ERR "%s: Unaligned address\n", + __func__); + return -EIO; + } + } + } + return 0; +} + +/** + * onenand_erase - [MTD Interface] erase block(s) + * @mtd: MTD device structure + * @instr: erase instruction + * + * Erase one or more blocks + */ +static int onenand_erase(struct mtd_info *mtd, struct erase_info *instr) +{ + struct onenand_chip *this = mtd->priv; + unsigned int block_size; + loff_t addr = instr->addr; + loff_t len = instr->len; + int ret = 0; + struct mtd_erase_region_info *region = NULL; + loff_t region_offset = 0; + + pr_debug("%s: start=0x%012llx, len=%llu\n", __func__, + (unsigned long long)instr->addr, + (unsigned long long)instr->len); + + if (FLEXONENAND(this)) { + /* Find the eraseregion of this address */ + int i = flexonenand_region(mtd, addr); + + region = &mtd->eraseregions[i]; + block_size = region->erasesize; + + /* Start address within region must align on block boundary. + * Erase region's start offset is always block start address. + */ + region_offset = region->offset; + } else + block_size = 1 << this->erase_shift; + + /* Start address must align on block boundary */ + if (unlikely((addr - region_offset) & (block_size - 1))) { + printk(KERN_ERR "%s: Unaligned address\n", __func__); + return -EINVAL; + } + + /* Length must align on block boundary */ + if (unlikely(len & (block_size - 1))) { + printk(KERN_ERR "%s: Length not block aligned\n", __func__); + return -EINVAL; + } + + /* Grab the lock and see if the device is available */ + onenand_get_device(mtd, FL_ERASING); + + if (ONENAND_IS_4KB_PAGE(this) || region || + instr->len < MB_ERASE_MIN_BLK_COUNT * block_size) { + /* region is set for Flex-OneNAND (no mb erase) */ + ret = onenand_block_by_block_erase(mtd, instr, + region, block_size); + } else { + ret = onenand_multiblock_erase(mtd, instr, block_size); + } + + /* Deselect and wake up anyone waiting on the device */ + onenand_release_device(mtd); + + return ret; +} + +/** + * onenand_sync - [MTD Interface] sync + * @mtd: MTD device structure + * + * Sync is actually a wait for chip ready function + */ +static void onenand_sync(struct mtd_info *mtd) +{ + pr_debug("%s: called\n", __func__); + + /* Grab the lock and see if the device is available */ + onenand_get_device(mtd, FL_SYNCING); + + /* Release it and go back */ + onenand_release_device(mtd); +} + +/** + * onenand_block_isbad - [MTD Interface] Check whether the block at the given offset is bad + * @mtd: MTD device structure + * @ofs: offset relative to mtd start + * + * Check whether the block is bad + */ +static int onenand_block_isbad(struct mtd_info *mtd, loff_t ofs) +{ + int ret; + + onenand_get_device(mtd, FL_READING); + ret = onenand_block_isbad_nolock(mtd, ofs, 0); + onenand_release_device(mtd); + return ret; +} + +/** + * onenand_default_block_markbad - [DEFAULT] mark a block bad + * @mtd: MTD device structure + * @ofs: offset from device start + * + * This is the default implementation, which can be overridden by + * a hardware specific driver. + */ +static int onenand_default_block_markbad(struct mtd_info *mtd, loff_t ofs) +{ + struct onenand_chip *this = mtd->priv; + struct bbm_info *bbm = this->bbm; + u_char buf[2] = {0, 0}; + struct mtd_oob_ops ops = { + .mode = MTD_OPS_PLACE_OOB, + .ooblen = 2, + .oobbuf = buf, + .ooboffs = 0, + }; + int block; + + /* Get block number */ + block = onenand_block(this, ofs); + if (bbm->bbt) + bbm->bbt[block >> 2] |= 0x01 << ((block & 0x03) << 1); + + /* We write two bytes, so we don't have to mess with 16-bit access */ + ofs += mtd->oobsize + (this->badblockpos & ~0x01); + /* FIXME : What to do when marking SLC block in partition + * with MLC erasesize? For now, it is not advisable to + * create partitions containing both SLC and MLC regions. + */ + return onenand_write_oob_nolock(mtd, ofs, &ops); +} + +/** + * onenand_block_markbad - [MTD Interface] Mark the block at the given offset as bad + * @mtd: MTD device structure + * @ofs: offset relative to mtd start + * + * Mark the block as bad + */ +static int onenand_block_markbad(struct mtd_info *mtd, loff_t ofs) +{ + struct onenand_chip *this = mtd->priv; + int ret; + + ret = onenand_block_isbad(mtd, ofs); + if (ret) { + /* If it was bad already, return success and do nothing */ + if (ret > 0) + return 0; + return ret; + } + + onenand_get_device(mtd, FL_WRITING); + ret = this->block_markbad(mtd, ofs); + onenand_release_device(mtd); + return ret; +} + +/** + * onenand_do_lock_cmd - [OneNAND Interface] Lock or unlock block(s) + * @mtd: MTD device structure + * @ofs: offset relative to mtd start + * @len: number of bytes to lock or unlock + * @cmd: lock or unlock command + * + * Lock or unlock one or more blocks + */ +static int onenand_do_lock_cmd(struct mtd_info *mtd, loff_t ofs, size_t len, int cmd) +{ + struct onenand_chip *this = mtd->priv; + int start, end, block, value, status; + int wp_status_mask; + + start = onenand_block(this, ofs); + end = onenand_block(this, ofs + len) - 1; + + if (cmd == ONENAND_CMD_LOCK) + wp_status_mask = ONENAND_WP_LS; + else + wp_status_mask = ONENAND_WP_US; + + /* Continuous lock scheme */ + if (this->options & ONENAND_HAS_CONT_LOCK) { + /* Set start block address */ + this->write_word(start, this->base + ONENAND_REG_START_BLOCK_ADDRESS); + /* Set end block address */ + this->write_word(end, this->base + ONENAND_REG_END_BLOCK_ADDRESS); + /* Write lock command */ + this->command(mtd, cmd, 0, 0); + + /* There's no return value */ + this->wait(mtd, FL_LOCKING); + + /* Sanity check */ + while (this->read_word(this->base + ONENAND_REG_CTRL_STATUS) + & ONENAND_CTRL_ONGO) + continue; + + /* Check lock status */ + status = this->read_word(this->base + ONENAND_REG_WP_STATUS); + if (!(status & wp_status_mask)) + printk(KERN_ERR "%s: wp status = 0x%x\n", + __func__, status); + + return 0; + } + + /* Block lock scheme */ + for (block = start; block < end + 1; block++) { + /* Set block address */ + value = onenand_block_address(this, block); + this->write_word(value, this->base + ONENAND_REG_START_ADDRESS1); + /* Select DataRAM for DDP */ + value = onenand_bufferram_address(this, block); + this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2); + /* Set start block address */ + this->write_word(block, this->base + ONENAND_REG_START_BLOCK_ADDRESS); + /* Write lock command */ + this->command(mtd, cmd, 0, 0); + + /* There's no return value */ + this->wait(mtd, FL_LOCKING); + + /* Sanity check */ + while (this->read_word(this->base + ONENAND_REG_CTRL_STATUS) + & ONENAND_CTRL_ONGO) + continue; + + /* Check lock status */ + status = this->read_word(this->base + ONENAND_REG_WP_STATUS); + if (!(status & wp_status_mask)) + printk(KERN_ERR "%s: block = %d, wp status = 0x%x\n", + __func__, block, status); + } + + return 0; +} + +/** + * onenand_lock - [MTD Interface] Lock block(s) + * @mtd: MTD device structure + * @ofs: offset relative to mtd start + * @len: number of bytes to unlock + * + * Lock one or more blocks + */ +static int onenand_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len) +{ + int ret; + + onenand_get_device(mtd, FL_LOCKING); + ret = onenand_do_lock_cmd(mtd, ofs, len, ONENAND_CMD_LOCK); + onenand_release_device(mtd); + return ret; +} + +/** + * onenand_unlock - [MTD Interface] Unlock block(s) + * @mtd: MTD device structure + * @ofs: offset relative to mtd start + * @len: number of bytes to unlock + * + * Unlock one or more blocks + */ +static int onenand_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len) +{ + int ret; + + onenand_get_device(mtd, FL_LOCKING); + ret = onenand_do_lock_cmd(mtd, ofs, len, ONENAND_CMD_UNLOCK); + onenand_release_device(mtd); + return ret; +} + +/** + * onenand_check_lock_status - [OneNAND Interface] Check lock status + * @this: onenand chip data structure + * + * Check lock status + */ +static int onenand_check_lock_status(struct onenand_chip *this) +{ + unsigned int value, block, status; + unsigned int end; + + end = this->chipsize >> this->erase_shift; + for (block = 0; block < end; block++) { + /* Set block address */ + value = onenand_block_address(this, block); + this->write_word(value, this->base + ONENAND_REG_START_ADDRESS1); + /* Select DataRAM for DDP */ + value = onenand_bufferram_address(this, block); + this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2); + /* Set start block address */ + this->write_word(block, this->base + ONENAND_REG_START_BLOCK_ADDRESS); + + /* Check lock status */ + status = this->read_word(this->base + ONENAND_REG_WP_STATUS); + if (!(status & ONENAND_WP_US)) { + printk(KERN_ERR "%s: block = %d, wp status = 0x%x\n", + __func__, block, status); + return 0; + } + } + + return 1; +} + +/** + * onenand_unlock_all - [OneNAND Interface] unlock all blocks + * @mtd: MTD device structure + * + * Unlock all blocks + */ +static void onenand_unlock_all(struct mtd_info *mtd) +{ + struct onenand_chip *this = mtd->priv; + loff_t ofs = 0; + loff_t len = mtd->size; + + if (this->options & ONENAND_HAS_UNLOCK_ALL) { + /* Set start block address */ + this->write_word(0, this->base + ONENAND_REG_START_BLOCK_ADDRESS); + /* Write unlock command */ + this->command(mtd, ONENAND_CMD_UNLOCK_ALL, 0, 0); + + /* There's no return value */ + this->wait(mtd, FL_LOCKING); + + /* Sanity check */ + while (this->read_word(this->base + ONENAND_REG_CTRL_STATUS) + & ONENAND_CTRL_ONGO) + continue; + + /* Don't check lock status */ + if (this->options & ONENAND_SKIP_UNLOCK_CHECK) + return; + + /* Check lock status */ + if (onenand_check_lock_status(this)) + return; + + /* Workaround for all block unlock in DDP */ + if (ONENAND_IS_DDP(this) && !FLEXONENAND(this)) { + /* All blocks on another chip */ + ofs = this->chipsize >> 1; + len = this->chipsize >> 1; + } + } + + onenand_do_lock_cmd(mtd, ofs, len, ONENAND_CMD_UNLOCK); +} + +#ifdef CONFIG_MTD_ONENAND_OTP + +/** + * onenand_otp_command - Send OTP specific command to OneNAND device + * @mtd: MTD device structure + * @cmd: the command to be sent + * @addr: offset to read from or write to + * @len: number of bytes to read or write + */ +static int onenand_otp_command(struct mtd_info *mtd, int cmd, loff_t addr, + size_t len) +{ + struct onenand_chip *this = mtd->priv; + int value, block, page; + + /* Address translation */ + switch (cmd) { + case ONENAND_CMD_OTP_ACCESS: + block = (int) (addr >> this->erase_shift); + page = -1; + break; + + default: + block = (int) (addr >> this->erase_shift); + page = (int) (addr >> this->page_shift); + + if (ONENAND_IS_2PLANE(this)) { + /* Make the even block number */ + block &= ~1; + /* Is it the odd plane? */ + if (addr & this->writesize) + block++; + page >>= 1; + } + page &= this->page_mask; + break; + } + + if (block != -1) { + /* Write 'DFS, FBA' of Flash */ + value = onenand_block_address(this, block); + this->write_word(value, this->base + + ONENAND_REG_START_ADDRESS1); + } + + if (page != -1) { + /* Now we use page size operation */ + int sectors = 4, count = 4; + int dataram; + + switch (cmd) { + default: + if (ONENAND_IS_2PLANE(this) && cmd == ONENAND_CMD_PROG) + cmd = ONENAND_CMD_2X_PROG; + dataram = ONENAND_CURRENT_BUFFERRAM(this); + break; + } + + /* Write 'FPA, FSA' of Flash */ + value = onenand_page_address(page, sectors); + this->write_word(value, this->base + + ONENAND_REG_START_ADDRESS8); + + /* Write 'BSA, BSC' of DataRAM */ + value = onenand_buffer_address(dataram, sectors, count); + this->write_word(value, this->base + ONENAND_REG_START_BUFFER); + } + + /* Interrupt clear */ + this->write_word(ONENAND_INT_CLEAR, this->base + ONENAND_REG_INTERRUPT); + + /* Write command */ + this->write_word(cmd, this->base + ONENAND_REG_COMMAND); + + return 0; +} + +/** + * onenand_otp_write_oob_nolock - [INTERN] OneNAND write out-of-band, specific to OTP + * @mtd: MTD device structure + * @to: offset to write to + * @ops: oob operation description structure + * + * OneNAND write out-of-band only for OTP + */ +static int onenand_otp_write_oob_nolock(struct mtd_info *mtd, loff_t to, + struct mtd_oob_ops *ops) +{ + struct onenand_chip *this = mtd->priv; + int column, ret = 0, oobsize; + int written = 0; + u_char *oobbuf; + size_t len = ops->ooblen; + const u_char *buf = ops->oobbuf; + int block, value, status; + + to += ops->ooboffs; + + /* Initialize retlen, in case of early exit */ + ops->oobretlen = 0; + + oobsize = mtd->oobsize; + + column = to & (mtd->oobsize - 1); + + oobbuf = this->oob_buf; + + /* Loop until all data write */ + while (written < len) { + int thislen = min_t(int, oobsize, len - written); + + cond_resched(); + + block = (int) (to >> this->erase_shift); + /* + * Write 'DFS, FBA' of Flash + * Add: F100h DQ=DFS, FBA + */ + + value = onenand_block_address(this, block); + this->write_word(value, this->base + + ONENAND_REG_START_ADDRESS1); + + /* + * Select DataRAM for DDP + * Add: F101h DQ=DBS + */ + + value = onenand_bufferram_address(this, block); + this->write_word(value, this->base + + ONENAND_REG_START_ADDRESS2); + ONENAND_SET_NEXT_BUFFERRAM(this); + + /* + * Enter OTP access mode + */ + this->command(mtd, ONENAND_CMD_OTP_ACCESS, 0, 0); + this->wait(mtd, FL_OTPING); + + /* We send data to spare ram with oobsize + * to prevent byte access */ + memcpy(oobbuf + column, buf, thislen); + + /* + * Write Data into DataRAM + * Add: 8th Word + * in sector0/spare/page0 + * DQ=XXFCh + */ + this->write_bufferram(mtd, ONENAND_SPARERAM, + oobbuf, 0, mtd->oobsize); + + onenand_otp_command(mtd, ONENAND_CMD_PROGOOB, to, mtd->oobsize); + onenand_update_bufferram(mtd, to, 0); + if (ONENAND_IS_2PLANE(this)) { + ONENAND_SET_BUFFERRAM1(this); + onenand_update_bufferram(mtd, to + this->writesize, 0); + } + + ret = this->wait(mtd, FL_WRITING); + if (ret) { + printk(KERN_ERR "%s: write failed %d\n", __func__, ret); + break; + } + + /* Exit OTP access mode */ + this->command(mtd, ONENAND_CMD_RESET, 0, 0); + this->wait(mtd, FL_RESETTING); + + status = this->read_word(this->base + ONENAND_REG_CTRL_STATUS); + status &= 0x60; + + if (status == 0x60) { + printk(KERN_DEBUG "\nBLOCK\tSTATUS\n"); + printk(KERN_DEBUG "1st Block\tLOCKED\n"); + printk(KERN_DEBUG "OTP Block\tLOCKED\n"); + } else if (status == 0x20) { + printk(KERN_DEBUG "\nBLOCK\tSTATUS\n"); + printk(KERN_DEBUG "1st Block\tLOCKED\n"); + printk(KERN_DEBUG "OTP Block\tUN-LOCKED\n"); + } else if (status == 0x40) { + printk(KERN_DEBUG "\nBLOCK\tSTATUS\n"); + printk(KERN_DEBUG "1st Block\tUN-LOCKED\n"); + printk(KERN_DEBUG "OTP Block\tLOCKED\n"); + } else { + printk(KERN_DEBUG "Reboot to check\n"); + } + + written += thislen; + if (written == len) + break; + + to += mtd->writesize; + buf += thislen; + column = 0; + } + + ops->oobretlen = written; + + return ret; +} + +/* Internal OTP operation */ +typedef int (*otp_op_t)(struct mtd_info *mtd, loff_t form, size_t len, + size_t *retlen, u_char *buf); + +/** + * do_otp_read - [DEFAULT] Read OTP block area + * @mtd: MTD device structure + * @from: The offset to read + * @len: number of bytes to read + * @retlen: pointer to variable to store the number of readbytes + * @buf: the databuffer to put/get data + * + * Read OTP block area. + */ +static int do_otp_read(struct mtd_info *mtd, loff_t from, size_t len, + size_t *retlen, u_char *buf) +{ + struct onenand_chip *this = mtd->priv; + struct mtd_oob_ops ops = { + .len = len, + .ooblen = 0, + .datbuf = buf, + .oobbuf = NULL, + }; + int ret; + + /* Enter OTP access mode */ + this->command(mtd, ONENAND_CMD_OTP_ACCESS, 0, 0); + this->wait(mtd, FL_OTPING); + + ret = ONENAND_IS_4KB_PAGE(this) ? + onenand_mlc_read_ops_nolock(mtd, from, &ops) : + onenand_read_ops_nolock(mtd, from, &ops); + + /* Exit OTP access mode */ + this->command(mtd, ONENAND_CMD_RESET, 0, 0); + this->wait(mtd, FL_RESETTING); + + return ret; +} + +/** + * do_otp_write - [DEFAULT] Write OTP block area + * @mtd: MTD device structure + * @to: The offset to write + * @len: number of bytes to write + * @retlen: pointer to variable to store the number of write bytes + * @buf: the databuffer to put/get data + * + * Write OTP block area. + */ +static int do_otp_write(struct mtd_info *mtd, loff_t to, size_t len, + size_t *retlen, u_char *buf) +{ + struct onenand_chip *this = mtd->priv; + unsigned char *pbuf = buf; + int ret; + struct mtd_oob_ops ops = { }; + + /* Force buffer page aligned */ + if (len < mtd->writesize) { + memcpy(this->page_buf, buf, len); + memset(this->page_buf + len, 0xff, mtd->writesize - len); + pbuf = this->page_buf; + len = mtd->writesize; + } + + /* Enter OTP access mode */ + this->command(mtd, ONENAND_CMD_OTP_ACCESS, 0, 0); + this->wait(mtd, FL_OTPING); + + ops.len = len; + ops.ooblen = 0; + ops.datbuf = pbuf; + ops.oobbuf = NULL; + ret = onenand_write_ops_nolock(mtd, to, &ops); + *retlen = ops.retlen; + + /* Exit OTP access mode */ + this->command(mtd, ONENAND_CMD_RESET, 0, 0); + this->wait(mtd, FL_RESETTING); + + return ret; +} + +/** + * do_otp_lock - [DEFAULT] Lock OTP block area + * @mtd: MTD device structure + * @from: The offset to lock + * @len: number of bytes to lock + * @retlen: pointer to variable to store the number of lock bytes + * @buf: the databuffer to put/get data + * + * Lock OTP block area. + */ +static int do_otp_lock(struct mtd_info *mtd, loff_t from, size_t len, + size_t *retlen, u_char *buf) +{ + struct onenand_chip *this = mtd->priv; + struct mtd_oob_ops ops = { }; + int ret; + + if (FLEXONENAND(this)) { + + /* Enter OTP access mode */ + this->command(mtd, ONENAND_CMD_OTP_ACCESS, 0, 0); + this->wait(mtd, FL_OTPING); + /* + * For Flex-OneNAND, we write lock mark to 1st word of sector 4 of + * main area of page 49. + */ + ops.len = mtd->writesize; + ops.ooblen = 0; + ops.datbuf = buf; + ops.oobbuf = NULL; + ret = onenand_write_ops_nolock(mtd, mtd->writesize * 49, &ops); + *retlen = ops.retlen; + + /* Exit OTP access mode */ + this->command(mtd, ONENAND_CMD_RESET, 0, 0); + this->wait(mtd, FL_RESETTING); + } else { + ops.mode = MTD_OPS_PLACE_OOB; + ops.ooblen = len; + ops.oobbuf = buf; + ops.ooboffs = 0; + ret = onenand_otp_write_oob_nolock(mtd, from, &ops); + *retlen = ops.oobretlen; + } + + return ret; +} + +/** + * onenand_otp_walk - [DEFAULT] Handle OTP operation + * @mtd: MTD device structure + * @from: The offset to read/write + * @len: number of bytes to read/write + * @retlen: pointer to variable to store the number of read bytes + * @buf: the databuffer to put/get data + * @action: do given action + * @mode: specify user and factory + * + * Handle OTP operation. + */ +static int onenand_otp_walk(struct mtd_info *mtd, loff_t from, size_t len, + size_t *retlen, u_char *buf, + otp_op_t action, int mode) +{ + struct onenand_chip *this = mtd->priv; + int otp_pages; + int density; + int ret = 0; + + *retlen = 0; + + density = onenand_get_density(this->device_id); + if (density < ONENAND_DEVICE_DENSITY_512Mb) + otp_pages = 20; + else + otp_pages = 50; + + if (mode == MTD_OTP_FACTORY) { + from += mtd->writesize * otp_pages; + otp_pages = ONENAND_PAGES_PER_BLOCK - otp_pages; + } + + /* Check User/Factory boundary */ + if (mode == MTD_OTP_USER) { + if (mtd->writesize * otp_pages < from + len) + return 0; + } else { + if (mtd->writesize * otp_pages < len) + return 0; + } + + onenand_get_device(mtd, FL_OTPING); + while (len > 0 && otp_pages > 0) { + if (!action) { /* OTP Info functions */ + struct otp_info *otpinfo; + + len -= sizeof(struct otp_info); + if (len <= 0) { + ret = -ENOSPC; + break; + } + + otpinfo = (struct otp_info *) buf; + otpinfo->start = from; + otpinfo->length = mtd->writesize; + otpinfo->locked = 0; + + from += mtd->writesize; + buf += sizeof(struct otp_info); + *retlen += sizeof(struct otp_info); + } else { + size_t tmp_retlen; + + ret = action(mtd, from, len, &tmp_retlen, buf); + if (ret) + break; + + buf += tmp_retlen; + len -= tmp_retlen; + *retlen += tmp_retlen; + + } + otp_pages--; + } + onenand_release_device(mtd); + + return ret; +} + +/** + * onenand_get_fact_prot_info - [MTD Interface] Read factory OTP info + * @mtd: MTD device structure + * @len: number of bytes to read + * @retlen: pointer to variable to store the number of read bytes + * @buf: the databuffer to put/get data + * + * Read factory OTP info. + */ +static int onenand_get_fact_prot_info(struct mtd_info *mtd, size_t len, + size_t *retlen, struct otp_info *buf) +{ + return onenand_otp_walk(mtd, 0, len, retlen, (u_char *) buf, NULL, + MTD_OTP_FACTORY); +} + +/** + * onenand_read_fact_prot_reg - [MTD Interface] Read factory OTP area + * @mtd: MTD device structure + * @from: The offset to read + * @len: number of bytes to read + * @retlen: pointer to variable to store the number of read bytes + * @buf: the databuffer to put/get data + * + * Read factory OTP area. + */ +static int onenand_read_fact_prot_reg(struct mtd_info *mtd, loff_t from, + size_t len, size_t *retlen, u_char *buf) +{ + return onenand_otp_walk(mtd, from, len, retlen, buf, do_otp_read, MTD_OTP_FACTORY); +} + +/** + * onenand_get_user_prot_info - [MTD Interface] Read user OTP info + * @mtd: MTD device structure + * @retlen: pointer to variable to store the number of read bytes + * @len: number of bytes to read + * @buf: the databuffer to put/get data + * + * Read user OTP info. + */ +static int onenand_get_user_prot_info(struct mtd_info *mtd, size_t len, + size_t *retlen, struct otp_info *buf) +{ + return onenand_otp_walk(mtd, 0, len, retlen, (u_char *) buf, NULL, + MTD_OTP_USER); +} + +/** + * onenand_read_user_prot_reg - [MTD Interface] Read user OTP area + * @mtd: MTD device structure + * @from: The offset to read + * @len: number of bytes to read + * @retlen: pointer to variable to store the number of read bytes + * @buf: the databuffer to put/get data + * + * Read user OTP area. + */ +static int onenand_read_user_prot_reg(struct mtd_info *mtd, loff_t from, + size_t len, size_t *retlen, u_char *buf) +{ + return onenand_otp_walk(mtd, from, len, retlen, buf, do_otp_read, MTD_OTP_USER); +} + +/** + * onenand_write_user_prot_reg - [MTD Interface] Write user OTP area + * @mtd: MTD device structure + * @from: The offset to write + * @len: number of bytes to write + * @retlen: pointer to variable to store the number of write bytes + * @buf: the databuffer to put/get data + * + * Write user OTP area. + */ +static int onenand_write_user_prot_reg(struct mtd_info *mtd, loff_t from, + size_t len, size_t *retlen, const u_char *buf) +{ + return onenand_otp_walk(mtd, from, len, retlen, (u_char *)buf, + do_otp_write, MTD_OTP_USER); +} + +/** + * onenand_lock_user_prot_reg - [MTD Interface] Lock user OTP area + * @mtd: MTD device structure + * @from: The offset to lock + * @len: number of bytes to unlock + * + * Write lock mark on spare area in page 0 in OTP block + */ +static int onenand_lock_user_prot_reg(struct mtd_info *mtd, loff_t from, + size_t len) +{ + struct onenand_chip *this = mtd->priv; + u_char *buf = FLEXONENAND(this) ? this->page_buf : this->oob_buf; + size_t retlen; + int ret; + unsigned int otp_lock_offset = ONENAND_OTP_LOCK_OFFSET; + + memset(buf, 0xff, FLEXONENAND(this) ? this->writesize + : mtd->oobsize); + /* + * Write lock mark to 8th word of sector0 of page0 of the spare0. + * We write 16 bytes spare area instead of 2 bytes. + * For Flex-OneNAND, we write lock mark to 1st word of sector 4 of + * main area of page 49. + */ + + from = 0; + len = FLEXONENAND(this) ? mtd->writesize : 16; + + /* + * Note: OTP lock operation + * OTP block : 0xXXFC XX 1111 1100 + * 1st block : 0xXXF3 (If chip support) XX 1111 0011 + * Both : 0xXXF0 (If chip support) XX 1111 0000 + */ + if (FLEXONENAND(this)) + otp_lock_offset = FLEXONENAND_OTP_LOCK_OFFSET; + + /* ONENAND_OTP_AREA | ONENAND_OTP_BLOCK0 | ONENAND_OTP_AREA_BLOCK0 */ + if (otp == 1) + buf[otp_lock_offset] = 0xFC; + else if (otp == 2) + buf[otp_lock_offset] = 0xF3; + else if (otp == 3) + buf[otp_lock_offset] = 0xF0; + else if (otp != 0) + printk(KERN_DEBUG "[OneNAND] Invalid option selected for OTP\n"); + + ret = onenand_otp_walk(mtd, from, len, &retlen, buf, do_otp_lock, MTD_OTP_USER); + + return ret ? : retlen; +} + +#endif /* CONFIG_MTD_ONENAND_OTP */ + +/** + * onenand_check_features - Check and set OneNAND features + * @mtd: MTD data structure + * + * Check and set OneNAND features + * - lock scheme + * - two plane + */ +static void onenand_check_features(struct mtd_info *mtd) +{ + struct onenand_chip *this = mtd->priv; + unsigned int density, process, numbufs; + + /* Lock scheme depends on density and process */ + density = onenand_get_density(this->device_id); + process = this->version_id >> ONENAND_VERSION_PROCESS_SHIFT; + numbufs = this->read_word(this->base + ONENAND_REG_NUM_BUFFERS) >> 8; + + /* Lock scheme */ + switch (density) { + case ONENAND_DEVICE_DENSITY_8Gb: + this->options |= ONENAND_HAS_NOP_1; + fallthrough; + case ONENAND_DEVICE_DENSITY_4Gb: + if (ONENAND_IS_DDP(this)) + this->options |= ONENAND_HAS_2PLANE; + else if (numbufs == 1) { + this->options |= ONENAND_HAS_4KB_PAGE; + this->options |= ONENAND_HAS_CACHE_PROGRAM; + /* + * There are two different 4KiB pagesize chips + * and no way to detect it by H/W config values. + * + * To detect the correct NOP for each chips, + * It should check the version ID as workaround. + * + * Now it has as following + * KFM4G16Q4M has NOP 4 with version ID 0x0131 + * KFM4G16Q5M has NOP 1 with versoin ID 0x013e + */ + if ((this->version_id & 0xf) == 0xe) + this->options |= ONENAND_HAS_NOP_1; + } + this->options |= ONENAND_HAS_UNLOCK_ALL; + break; + + case ONENAND_DEVICE_DENSITY_2Gb: + /* 2Gb DDP does not have 2 plane */ + if (!ONENAND_IS_DDP(this)) + this->options |= ONENAND_HAS_2PLANE; + this->options |= ONENAND_HAS_UNLOCK_ALL; + break; + + case ONENAND_DEVICE_DENSITY_1Gb: + /* A-Die has all block unlock */ + if (process) + this->options |= ONENAND_HAS_UNLOCK_ALL; + break; + + default: + /* Some OneNAND has continuous lock scheme */ + if (!process) + this->options |= ONENAND_HAS_CONT_LOCK; + break; + } + + /* The MLC has 4KiB pagesize. */ + if (ONENAND_IS_MLC(this)) + this->options |= ONENAND_HAS_4KB_PAGE; + + if (ONENAND_IS_4KB_PAGE(this)) + this->options &= ~ONENAND_HAS_2PLANE; + + if (FLEXONENAND(this)) { + this->options &= ~ONENAND_HAS_CONT_LOCK; + this->options |= ONENAND_HAS_UNLOCK_ALL; + } + + if (this->options & ONENAND_HAS_CONT_LOCK) + printk(KERN_DEBUG "Lock scheme is Continuous Lock\n"); + if (this->options & ONENAND_HAS_UNLOCK_ALL) + printk(KERN_DEBUG "Chip support all block unlock\n"); + if (this->options & ONENAND_HAS_2PLANE) + printk(KERN_DEBUG "Chip has 2 plane\n"); + if (this->options & ONENAND_HAS_4KB_PAGE) + printk(KERN_DEBUG "Chip has 4KiB pagesize\n"); + if (this->options & ONENAND_HAS_CACHE_PROGRAM) + printk(KERN_DEBUG "Chip has cache program feature\n"); +} + +/** + * onenand_print_device_info - Print device & version ID + * @device: device ID + * @version: version ID + * + * Print device & version ID + */ +static void onenand_print_device_info(int device, int version) +{ + int vcc, demuxed, ddp, density, flexonenand; + + vcc = device & ONENAND_DEVICE_VCC_MASK; + demuxed = device & ONENAND_DEVICE_IS_DEMUX; + ddp = device & ONENAND_DEVICE_IS_DDP; + density = onenand_get_density(device); + flexonenand = device & DEVICE_IS_FLEXONENAND; + printk(KERN_INFO "%s%sOneNAND%s %dMB %sV 16-bit (0x%02x)\n", + demuxed ? "" : "Muxed ", + flexonenand ? "Flex-" : "", + ddp ? "(DDP)" : "", + (16 << density), + vcc ? "2.65/3.3" : "1.8", + device); + printk(KERN_INFO "OneNAND version = 0x%04x\n", version); +} + +static const struct onenand_manufacturers onenand_manuf_ids[] = { + {ONENAND_MFR_SAMSUNG, "Samsung"}, + {ONENAND_MFR_NUMONYX, "Numonyx"}, +}; + +/** + * onenand_check_maf - Check manufacturer ID + * @manuf: manufacturer ID + * + * Check manufacturer ID + */ +static int onenand_check_maf(int manuf) +{ + int size = ARRAY_SIZE(onenand_manuf_ids); + char *name; + int i; + + for (i = 0; i < size; i++) + if (manuf == onenand_manuf_ids[i].id) + break; + + if (i < size) + name = onenand_manuf_ids[i].name; + else + name = "Unknown"; + + printk(KERN_DEBUG "OneNAND Manufacturer: %s (0x%0x)\n", name, manuf); + + return (i == size); +} + +/** + * flexonenand_get_boundary - Reads the SLC boundary + * @mtd: MTD data structure + */ +static int flexonenand_get_boundary(struct mtd_info *mtd) +{ + struct onenand_chip *this = mtd->priv; + unsigned die, bdry; + int syscfg, locked; + + /* Disable ECC */ + syscfg = this->read_word(this->base + ONENAND_REG_SYS_CFG1); + this->write_word((syscfg | 0x0100), this->base + ONENAND_REG_SYS_CFG1); + + for (die = 0; die < this->dies; die++) { + this->command(mtd, FLEXONENAND_CMD_PI_ACCESS, die, 0); + this->wait(mtd, FL_SYNCING); + + this->command(mtd, FLEXONENAND_CMD_READ_PI, die, 0); + this->wait(mtd, FL_READING); + + bdry = this->read_word(this->base + ONENAND_DATARAM); + if ((bdry >> FLEXONENAND_PI_UNLOCK_SHIFT) == 3) + locked = 0; + else + locked = 1; + this->boundary[die] = bdry & FLEXONENAND_PI_MASK; + + this->command(mtd, ONENAND_CMD_RESET, 0, 0); + this->wait(mtd, FL_RESETTING); + + printk(KERN_INFO "Die %d boundary: %d%s\n", die, + this->boundary[die], locked ? "(Locked)" : "(Unlocked)"); + } + + /* Enable ECC */ + this->write_word(syscfg, this->base + ONENAND_REG_SYS_CFG1); + return 0; +} + +/** + * flexonenand_get_size - Fill up fields in onenand_chip and mtd_info + * boundary[], diesize[], mtd->size, mtd->erasesize + * @mtd: - MTD device structure + */ +static void flexonenand_get_size(struct mtd_info *mtd) +{ + struct onenand_chip *this = mtd->priv; + int die, i, eraseshift, density; + int blksperdie, maxbdry; + loff_t ofs; + + density = onenand_get_density(this->device_id); + blksperdie = ((loff_t)(16 << density) << 20) >> (this->erase_shift); + blksperdie >>= ONENAND_IS_DDP(this) ? 1 : 0; + maxbdry = blksperdie - 1; + eraseshift = this->erase_shift - 1; + + mtd->numeraseregions = this->dies << 1; + + /* This fills up the device boundary */ + flexonenand_get_boundary(mtd); + die = ofs = 0; + i = -1; + for (; die < this->dies; die++) { + if (!die || this->boundary[die-1] != maxbdry) { + i++; + mtd->eraseregions[i].offset = ofs; + mtd->eraseregions[i].erasesize = 1 << eraseshift; + mtd->eraseregions[i].numblocks = + this->boundary[die] + 1; + ofs += mtd->eraseregions[i].numblocks << eraseshift; + eraseshift++; + } else { + mtd->numeraseregions -= 1; + mtd->eraseregions[i].numblocks += + this->boundary[die] + 1; + ofs += (this->boundary[die] + 1) << (eraseshift - 1); + } + if (this->boundary[die] != maxbdry) { + i++; + mtd->eraseregions[i].offset = ofs; + mtd->eraseregions[i].erasesize = 1 << eraseshift; + mtd->eraseregions[i].numblocks = maxbdry ^ + this->boundary[die]; + ofs += mtd->eraseregions[i].numblocks << eraseshift; + eraseshift--; + } else + mtd->numeraseregions -= 1; + } + + /* Expose MLC erase size except when all blocks are SLC */ + mtd->erasesize = 1 << this->erase_shift; + if (mtd->numeraseregions == 1) + mtd->erasesize >>= 1; + + printk(KERN_INFO "Device has %d eraseregions\n", mtd->numeraseregions); + for (i = 0; i < mtd->numeraseregions; i++) + printk(KERN_INFO "[offset: 0x%08x, erasesize: 0x%05x," + " numblocks: %04u]\n", + (unsigned int) mtd->eraseregions[i].offset, + mtd->eraseregions[i].erasesize, + mtd->eraseregions[i].numblocks); + + for (die = 0, mtd->size = 0; die < this->dies; die++) { + this->diesize[die] = (loff_t)blksperdie << this->erase_shift; + this->diesize[die] -= (loff_t)(this->boundary[die] + 1) + << (this->erase_shift - 1); + mtd->size += this->diesize[die]; + } +} + +/** + * flexonenand_check_blocks_erased - Check if blocks are erased + * @mtd: mtd info structure + * @start: first erase block to check + * @end: last erase block to check + * + * Converting an unerased block from MLC to SLC + * causes byte values to change. Since both data and its ECC + * have changed, reads on the block give uncorrectable error. + * This might lead to the block being detected as bad. + * + * Avoid this by ensuring that the block to be converted is + * erased. + */ +static int flexonenand_check_blocks_erased(struct mtd_info *mtd, int start, int end) +{ + struct onenand_chip *this = mtd->priv; + int i, ret; + int block; + struct mtd_oob_ops ops = { + .mode = MTD_OPS_PLACE_OOB, + .ooboffs = 0, + .ooblen = mtd->oobsize, + .datbuf = NULL, + .oobbuf = this->oob_buf, + }; + loff_t addr; + + printk(KERN_DEBUG "Check blocks from %d to %d\n", start, end); + + for (block = start; block <= end; block++) { + addr = flexonenand_addr(this, block); + if (onenand_block_isbad_nolock(mtd, addr, 0)) + continue; + + /* + * Since main area write results in ECC write to spare, + * it is sufficient to check only ECC bytes for change. + */ + ret = onenand_read_oob_nolock(mtd, addr, &ops); + if (ret) + return ret; + + for (i = 0; i < mtd->oobsize; i++) + if (this->oob_buf[i] != 0xff) + break; + + if (i != mtd->oobsize) { + printk(KERN_WARNING "%s: Block %d not erased.\n", + __func__, block); + return 1; + } + } + + return 0; +} + +/* + * flexonenand_set_boundary - Writes the SLC boundary + */ +static int flexonenand_set_boundary(struct mtd_info *mtd, int die, + int boundary, int lock) +{ + struct onenand_chip *this = mtd->priv; + int ret, density, blksperdie, old, new, thisboundary; + loff_t addr; + + /* Change only once for SDP Flex-OneNAND */ + if (die && (!ONENAND_IS_DDP(this))) + return 0; + + /* boundary value of -1 indicates no required change */ + if (boundary < 0 || boundary == this->boundary[die]) + return 0; + + density = onenand_get_density(this->device_id); + blksperdie = ((16 << density) << 20) >> this->erase_shift; + blksperdie >>= ONENAND_IS_DDP(this) ? 1 : 0; + + if (boundary >= blksperdie) { + printk(KERN_ERR "%s: Invalid boundary value. " + "Boundary not changed.\n", __func__); + return -EINVAL; + } + + /* Check if converting blocks are erased */ + old = this->boundary[die] + (die * this->density_mask); + new = boundary + (die * this->density_mask); + ret = flexonenand_check_blocks_erased(mtd, min(old, new) + 1, max(old, new)); + if (ret) { + printk(KERN_ERR "%s: Please erase blocks " + "before boundary change\n", __func__); + return ret; + } + + this->command(mtd, FLEXONENAND_CMD_PI_ACCESS, die, 0); + this->wait(mtd, FL_SYNCING); + + /* Check is boundary is locked */ + this->command(mtd, FLEXONENAND_CMD_READ_PI, die, 0); + this->wait(mtd, FL_READING); + + thisboundary = this->read_word(this->base + ONENAND_DATARAM); + if ((thisboundary >> FLEXONENAND_PI_UNLOCK_SHIFT) != 3) { + printk(KERN_ERR "%s: boundary locked\n", __func__); + ret = 1; + goto out; + } + + printk(KERN_INFO "Changing die %d boundary: %d%s\n", + die, boundary, lock ? "(Locked)" : "(Unlocked)"); + + addr = die ? this->diesize[0] : 0; + + boundary &= FLEXONENAND_PI_MASK; + boundary |= lock ? 0 : (3 << FLEXONENAND_PI_UNLOCK_SHIFT); + + this->command(mtd, ONENAND_CMD_ERASE, addr, 0); + ret = this->wait(mtd, FL_ERASING); + if (ret) { + printk(KERN_ERR "%s: Failed PI erase for Die %d\n", + __func__, die); + goto out; + } + + this->write_word(boundary, this->base + ONENAND_DATARAM); + this->command(mtd, ONENAND_CMD_PROG, addr, 0); + ret = this->wait(mtd, FL_WRITING); + if (ret) { + printk(KERN_ERR "%s: Failed PI write for Die %d\n", + __func__, die); + goto out; + } + + this->command(mtd, FLEXONENAND_CMD_PI_UPDATE, die, 0); + ret = this->wait(mtd, FL_WRITING); +out: + this->write_word(ONENAND_CMD_RESET, this->base + ONENAND_REG_COMMAND); + this->wait(mtd, FL_RESETTING); + if (!ret) + /* Recalculate device size on boundary change*/ + flexonenand_get_size(mtd); + + return ret; +} + +/** + * onenand_chip_probe - [OneNAND Interface] The generic chip probe + * @mtd: MTD device structure + * + * OneNAND detection method: + * Compare the values from command with ones from register + */ +static int onenand_chip_probe(struct mtd_info *mtd) +{ + struct onenand_chip *this = mtd->priv; + int bram_maf_id, bram_dev_id, maf_id, dev_id; + int syscfg; + + /* Save system configuration 1 */ + syscfg = this->read_word(this->base + ONENAND_REG_SYS_CFG1); + /* Clear Sync. Burst Read mode to read BootRAM */ + this->write_word((syscfg & ~ONENAND_SYS_CFG1_SYNC_READ & ~ONENAND_SYS_CFG1_SYNC_WRITE), this->base + ONENAND_REG_SYS_CFG1); + + /* Send the command for reading device ID from BootRAM */ + this->write_word(ONENAND_CMD_READID, this->base + ONENAND_BOOTRAM); + + /* Read manufacturer and device IDs from BootRAM */ + bram_maf_id = this->read_word(this->base + ONENAND_BOOTRAM + 0x0); + bram_dev_id = this->read_word(this->base + ONENAND_BOOTRAM + 0x2); + + /* Reset OneNAND to read default register values */ + this->write_word(ONENAND_CMD_RESET, this->base + ONENAND_BOOTRAM); + /* Wait reset */ + this->wait(mtd, FL_RESETTING); + + /* Restore system configuration 1 */ + this->write_word(syscfg, this->base + ONENAND_REG_SYS_CFG1); + + /* Check manufacturer ID */ + if (onenand_check_maf(bram_maf_id)) + return -ENXIO; + + /* Read manufacturer and device IDs from Register */ + maf_id = this->read_word(this->base + ONENAND_REG_MANUFACTURER_ID); + dev_id = this->read_word(this->base + ONENAND_REG_DEVICE_ID); + + /* Check OneNAND device */ + if (maf_id != bram_maf_id || dev_id != bram_dev_id) + return -ENXIO; + + return 0; +} + +/** + * onenand_probe - [OneNAND Interface] Probe the OneNAND device + * @mtd: MTD device structure + */ +static int onenand_probe(struct mtd_info *mtd) +{ + struct onenand_chip *this = mtd->priv; + int dev_id, ver_id; + int density; + int ret; + + ret = this->chip_probe(mtd); + if (ret) + return ret; + + /* Device and version IDs from Register */ + dev_id = this->read_word(this->base + ONENAND_REG_DEVICE_ID); + ver_id = this->read_word(this->base + ONENAND_REG_VERSION_ID); + this->technology = this->read_word(this->base + ONENAND_REG_TECHNOLOGY); + + /* Flash device information */ + onenand_print_device_info(dev_id, ver_id); + this->device_id = dev_id; + this->version_id = ver_id; + + /* Check OneNAND features */ + onenand_check_features(mtd); + + density = onenand_get_density(dev_id); + if (FLEXONENAND(this)) { + this->dies = ONENAND_IS_DDP(this) ? 2 : 1; + /* Maximum possible erase regions */ + mtd->numeraseregions = this->dies << 1; + mtd->eraseregions = + kcalloc(this->dies << 1, + sizeof(struct mtd_erase_region_info), + GFP_KERNEL); + if (!mtd->eraseregions) + return -ENOMEM; + } + + /* + * For Flex-OneNAND, chipsize represents maximum possible device size. + * mtd->size represents the actual device size. + */ + this->chipsize = (16 << density) << 20; + + /* OneNAND page size & block size */ + /* The data buffer size is equal to page size */ + mtd->writesize = this->read_word(this->base + ONENAND_REG_DATA_BUFFER_SIZE); + /* We use the full BufferRAM */ + if (ONENAND_IS_4KB_PAGE(this)) + mtd->writesize <<= 1; + + mtd->oobsize = mtd->writesize >> 5; + /* Pages per a block are always 64 in OneNAND */ + mtd->erasesize = mtd->writesize << 6; + /* + * Flex-OneNAND SLC area has 64 pages per block. + * Flex-OneNAND MLC area has 128 pages per block. + * Expose MLC erase size to find erase_shift and page_mask. + */ + if (FLEXONENAND(this)) + mtd->erasesize <<= 1; + + this->erase_shift = ffs(mtd->erasesize) - 1; + this->page_shift = ffs(mtd->writesize) - 1; + this->page_mask = (1 << (this->erase_shift - this->page_shift)) - 1; + /* Set density mask. it is used for DDP */ + if (ONENAND_IS_DDP(this)) + this->density_mask = this->chipsize >> (this->erase_shift + 1); + /* It's real page size */ + this->writesize = mtd->writesize; + + /* REVISIT: Multichip handling */ + + if (FLEXONENAND(this)) + flexonenand_get_size(mtd); + else + mtd->size = this->chipsize; + + /* + * We emulate the 4KiB page and 256KiB erase block size + * But oobsize is still 64 bytes. + * It is only valid if you turn on 2X program support, + * Otherwise it will be ignored by compiler. + */ + if (ONENAND_IS_2PLANE(this)) { + mtd->writesize <<= 1; + mtd->erasesize <<= 1; + } + + return 0; +} + +/** + * onenand_suspend - [MTD Interface] Suspend the OneNAND flash + * @mtd: MTD device structure + */ +static int onenand_suspend(struct mtd_info *mtd) +{ + return onenand_get_device(mtd, FL_PM_SUSPENDED); +} + +/** + * onenand_resume - [MTD Interface] Resume the OneNAND flash + * @mtd: MTD device structure + */ +static void onenand_resume(struct mtd_info *mtd) +{ + struct onenand_chip *this = mtd->priv; + + if (this->state == FL_PM_SUSPENDED) + onenand_release_device(mtd); + else + printk(KERN_ERR "%s: resume() called for the chip which is not " + "in suspended state\n", __func__); +} + +/** + * onenand_scan - [OneNAND Interface] Scan for the OneNAND device + * @mtd: MTD device structure + * @maxchips: Number of chips to scan for + * + * This fills out all the not initialized function pointers + * with the defaults. + * The flash ID is read and the mtd/chip structures are + * filled with the appropriate values. + */ +int onenand_scan(struct mtd_info *mtd, int maxchips) +{ + int i, ret; + struct onenand_chip *this = mtd->priv; + + if (!this->read_word) + this->read_word = onenand_readw; + if (!this->write_word) + this->write_word = onenand_writew; + + if (!this->command) + this->command = onenand_command; + if (!this->wait) + onenand_setup_wait(mtd); + if (!this->bbt_wait) + this->bbt_wait = onenand_bbt_wait; + if (!this->unlock_all) + this->unlock_all = onenand_unlock_all; + + if (!this->chip_probe) + this->chip_probe = onenand_chip_probe; + + if (!this->read_bufferram) + this->read_bufferram = onenand_read_bufferram; + if (!this->write_bufferram) + this->write_bufferram = onenand_write_bufferram; + + if (!this->block_markbad) + this->block_markbad = onenand_default_block_markbad; + if (!this->scan_bbt) + this->scan_bbt = onenand_default_bbt; + + if (onenand_probe(mtd)) + return -ENXIO; + + /* Set Sync. Burst Read after probing */ + if (this->mmcontrol) { + printk(KERN_INFO "OneNAND Sync. Burst Read support\n"); + this->read_bufferram = onenand_sync_read_bufferram; + } + + /* Allocate buffers, if necessary */ + if (!this->page_buf) { + this->page_buf = kzalloc(mtd->writesize, GFP_KERNEL); + if (!this->page_buf) + return -ENOMEM; +#ifdef CONFIG_MTD_ONENAND_VERIFY_WRITE + this->verify_buf = kzalloc(mtd->writesize, GFP_KERNEL); + if (!this->verify_buf) { + kfree(this->page_buf); + return -ENOMEM; + } +#endif + this->options |= ONENAND_PAGEBUF_ALLOC; + } + if (!this->oob_buf) { + this->oob_buf = kzalloc(mtd->oobsize, GFP_KERNEL); + if (!this->oob_buf) { + if (this->options & ONENAND_PAGEBUF_ALLOC) { + this->options &= ~ONENAND_PAGEBUF_ALLOC; +#ifdef CONFIG_MTD_ONENAND_VERIFY_WRITE + kfree(this->verify_buf); +#endif + kfree(this->page_buf); + } + return -ENOMEM; + } + this->options |= ONENAND_OOBBUF_ALLOC; + } + + this->state = FL_READY; + init_waitqueue_head(&this->wq); + spin_lock_init(&this->chip_lock); + + /* + * Allow subpage writes up to oobsize. + */ + switch (mtd->oobsize) { + case 128: + if (FLEXONENAND(this)) { + mtd_set_ooblayout(mtd, &flexonenand_ooblayout_ops); + mtd->subpage_sft = 0; + } else { + mtd_set_ooblayout(mtd, &onenand_oob_128_ooblayout_ops); + mtd->subpage_sft = 2; + } + if (ONENAND_IS_NOP_1(this)) + mtd->subpage_sft = 0; + break; + case 64: + mtd_set_ooblayout(mtd, &onenand_oob_32_64_ooblayout_ops); + mtd->subpage_sft = 2; + break; + + case 32: + mtd_set_ooblayout(mtd, &onenand_oob_32_64_ooblayout_ops); + mtd->subpage_sft = 1; + break; + + default: + printk(KERN_WARNING "%s: No OOB scheme defined for oobsize %d\n", + __func__, mtd->oobsize); + mtd->subpage_sft = 0; + /* To prevent kernel oops */ + mtd_set_ooblayout(mtd, &onenand_oob_32_64_ooblayout_ops); + break; + } + + this->subpagesize = mtd->writesize >> mtd->subpage_sft; + + /* + * The number of bytes available for a client to place data into + * the out of band area + */ + ret = mtd_ooblayout_count_freebytes(mtd); + if (ret < 0) + ret = 0; + + mtd->oobavail = ret; + + mtd->ecc_strength = 1; + + /* Fill in remaining MTD driver data */ + mtd->type = ONENAND_IS_MLC(this) ? MTD_MLCNANDFLASH : MTD_NANDFLASH; + mtd->flags = MTD_CAP_NANDFLASH; + mtd->_erase = onenand_erase; + mtd->_point = NULL; + mtd->_unpoint = NULL; + mtd->_read_oob = onenand_read_oob; + mtd->_write_oob = onenand_write_oob; + mtd->_panic_write = onenand_panic_write; +#ifdef CONFIG_MTD_ONENAND_OTP + mtd->_get_fact_prot_info = onenand_get_fact_prot_info; + mtd->_read_fact_prot_reg = onenand_read_fact_prot_reg; + mtd->_get_user_prot_info = onenand_get_user_prot_info; + mtd->_read_user_prot_reg = onenand_read_user_prot_reg; + mtd->_write_user_prot_reg = onenand_write_user_prot_reg; + mtd->_lock_user_prot_reg = onenand_lock_user_prot_reg; +#endif + mtd->_sync = onenand_sync; + mtd->_lock = onenand_lock; + mtd->_unlock = onenand_unlock; + mtd->_suspend = onenand_suspend; + mtd->_resume = onenand_resume; + mtd->_block_isbad = onenand_block_isbad; + mtd->_block_markbad = onenand_block_markbad; + mtd->owner = THIS_MODULE; + mtd->writebufsize = mtd->writesize; + + /* Unlock whole block */ + if (!(this->options & ONENAND_SKIP_INITIAL_UNLOCKING)) + this->unlock_all(mtd); + + /* Set the bad block marker position */ + this->badblockpos = ONENAND_BADBLOCK_POS; + + ret = this->scan_bbt(mtd); + if ((!FLEXONENAND(this)) || ret) + return ret; + + /* Change Flex-OneNAND boundaries if required */ + for (i = 0; i < MAX_DIES; i++) + flexonenand_set_boundary(mtd, i, flex_bdry[2 * i], + flex_bdry[(2 * i) + 1]); + + return 0; +} + +/** + * onenand_release - [OneNAND Interface] Free resources held by the OneNAND device + * @mtd: MTD device structure + */ +void onenand_release(struct mtd_info *mtd) +{ + struct onenand_chip *this = mtd->priv; + + /* Deregister partitions */ + mtd_device_unregister(mtd); + + /* Free bad block table memory, if allocated */ + if (this->bbm) { + struct bbm_info *bbm = this->bbm; + kfree(bbm->bbt); + kfree(this->bbm); + } + /* Buffers allocated by onenand_scan */ + if (this->options & ONENAND_PAGEBUF_ALLOC) { + kfree(this->page_buf); +#ifdef CONFIG_MTD_ONENAND_VERIFY_WRITE + kfree(this->verify_buf); +#endif + } + if (this->options & ONENAND_OOBBUF_ALLOC) + kfree(this->oob_buf); + kfree(mtd->eraseregions); +} + +EXPORT_SYMBOL_GPL(onenand_scan); +EXPORT_SYMBOL_GPL(onenand_release); + +MODULE_LICENSE("GPL"); +MODULE_AUTHOR("Kyungmin Park <kyungmin.park@samsung.com>"); +MODULE_DESCRIPTION("Generic OneNAND flash driver code"); diff --git a/drivers/mtd/nand/onenand/onenand_bbt.c b/drivers/mtd/nand/onenand/onenand_bbt.c new file mode 100644 index 0000000000..d7fe35bc45 --- /dev/null +++ b/drivers/mtd/nand/onenand/onenand_bbt.c @@ -0,0 +1,245 @@ +// SPDX-License-Identifier: GPL-2.0 +/* + * Bad Block Table support for the OneNAND driver + * + * Copyright(c) 2005 Samsung Electronics + * Kyungmin Park <kyungmin.park@samsung.com> + * + * Derived from nand_bbt.c + * + * TODO: + * Split BBT core and chip specific BBT. + */ + +#include <linux/slab.h> +#include <linux/mtd/mtd.h> +#include <linux/mtd/onenand.h> +#include <linux/export.h> + +/** + * check_short_pattern - [GENERIC] check if a pattern is in the buffer + * @buf: the buffer to search + * @len: the length of buffer to search + * @paglen: the pagelength + * @td: search pattern descriptor + * + * Check for a pattern at the given place. Used to search bad block + * tables and good / bad block identifiers. Same as check_pattern, but + * no optional empty check and the pattern is expected to start + * at offset 0. + * + */ +static int check_short_pattern(uint8_t *buf, int len, int paglen, struct nand_bbt_descr *td) +{ + int i; + uint8_t *p = buf; + + /* Compare the pattern */ + for (i = 0; i < td->len; i++) { + if (p[i] != td->pattern[i]) + return -1; + } + return 0; +} + +/** + * create_bbt - [GENERIC] Create a bad block table by scanning the device + * @mtd: MTD device structure + * @buf: temporary buffer + * @bd: descriptor for the good/bad block search pattern + * @chip: create the table for a specific chip, -1 read all chips. + * Applies only if NAND_BBT_PERCHIP option is set + * + * Create a bad block table by scanning the device + * for the given good/bad block identify pattern + */ +static int create_bbt(struct mtd_info *mtd, uint8_t *buf, struct nand_bbt_descr *bd, int chip) +{ + struct onenand_chip *this = mtd->priv; + struct bbm_info *bbm = this->bbm; + int i, j, numblocks, len, scanlen; + int startblock; + loff_t from; + size_t readlen; + struct mtd_oob_ops ops = { }; + int rgn; + + printk(KERN_INFO "Scanning device for bad blocks\n"); + + len = 2; + + /* We need only read few bytes from the OOB area */ + scanlen = 0; + readlen = bd->len; + + /* chip == -1 case only */ + /* Note that numblocks is 2 * (real numblocks) here; + * see i += 2 below as it makses shifting and masking less painful + */ + numblocks = this->chipsize >> (bbm->bbt_erase_shift - 1); + startblock = 0; + from = 0; + + ops.mode = MTD_OPS_PLACE_OOB; + ops.ooblen = readlen; + ops.oobbuf = buf; + ops.len = ops.ooboffs = ops.retlen = ops.oobretlen = 0; + + for (i = startblock; i < numblocks; ) { + int ret; + + for (j = 0; j < len; j++) { + /* No need to read pages fully, + * just read required OOB bytes */ + ret = onenand_bbt_read_oob(mtd, + from + j * this->writesize + bd->offs, &ops); + + /* If it is a initial bad block, just ignore it */ + if (ret == ONENAND_BBT_READ_FATAL_ERROR) + return -EIO; + + if (ret || check_short_pattern(&buf[j * scanlen], + scanlen, this->writesize, bd)) { + bbm->bbt[i >> 3] |= 0x03 << (i & 0x6); + printk(KERN_INFO "OneNAND eraseblock %d is an " + "initial bad block\n", i >> 1); + mtd->ecc_stats.badblocks++; + break; + } + } + i += 2; + + if (FLEXONENAND(this)) { + rgn = flexonenand_region(mtd, from); + from += mtd->eraseregions[rgn].erasesize; + } else + from += (1 << bbm->bbt_erase_shift); + } + + return 0; +} + + +/** + * onenand_memory_bbt - [GENERIC] create a memory based bad block table + * @mtd: MTD device structure + * @bd: descriptor for the good/bad block search pattern + * + * The function creates a memory based bbt by scanning the device + * for manufacturer / software marked good / bad blocks + */ +static inline int onenand_memory_bbt (struct mtd_info *mtd, struct nand_bbt_descr *bd) +{ + struct onenand_chip *this = mtd->priv; + + return create_bbt(mtd, this->page_buf, bd, -1); +} + +/** + * onenand_isbad_bbt - [OneNAND Interface] Check if a block is bad + * @mtd: MTD device structure + * @offs: offset in the device + * @allowbbt: allow access to bad block table region + */ +static int onenand_isbad_bbt(struct mtd_info *mtd, loff_t offs, int allowbbt) +{ + struct onenand_chip *this = mtd->priv; + struct bbm_info *bbm = this->bbm; + int block; + uint8_t res; + + /* Get block number * 2 */ + block = (int) (onenand_block(this, offs) << 1); + res = (bbm->bbt[block >> 3] >> (block & 0x06)) & 0x03; + + pr_debug("onenand_isbad_bbt: bbt info for offs 0x%08x: (block %d) 0x%02x\n", + (unsigned int) offs, block >> 1, res); + + switch ((int) res) { + case 0x00: return 0; + case 0x01: return 1; + case 0x02: return allowbbt ? 0 : 1; + } + + return 1; +} + +/** + * onenand_scan_bbt - [OneNAND Interface] scan, find, read and maybe create bad block table(s) + * @mtd: MTD device structure + * @bd: descriptor for the good/bad block search pattern + * + * The function checks, if a bad block table(s) is/are already + * available. If not it scans the device for manufacturer + * marked good / bad blocks and writes the bad block table(s) to + * the selected place. + * + * The bad block table memory is allocated here. It is freed + * by the onenand_release function. + * + */ +static int onenand_scan_bbt(struct mtd_info *mtd, struct nand_bbt_descr *bd) +{ + struct onenand_chip *this = mtd->priv; + struct bbm_info *bbm = this->bbm; + int len, ret = 0; + + len = this->chipsize >> (this->erase_shift + 2); + /* Allocate memory (2bit per block) and clear the memory bad block table */ + bbm->bbt = kzalloc(len, GFP_KERNEL); + if (!bbm->bbt) + return -ENOMEM; + + /* Set erase shift */ + bbm->bbt_erase_shift = this->erase_shift; + + if (!bbm->isbad_bbt) + bbm->isbad_bbt = onenand_isbad_bbt; + + /* Scan the device to build a memory based bad block table */ + if ((ret = onenand_memory_bbt(mtd, bd))) { + printk(KERN_ERR "onenand_scan_bbt: Can't scan flash and build the RAM-based BBT\n"); + kfree(bbm->bbt); + bbm->bbt = NULL; + } + + return ret; +} + +/* + * Define some generic bad / good block scan pattern which are used + * while scanning a device for factory marked good / bad blocks. + */ +static uint8_t scan_ff_pattern[] = { 0xff, 0xff }; + +static struct nand_bbt_descr largepage_memorybased = { + .options = 0, + .offs = 0, + .len = 2, + .pattern = scan_ff_pattern, +}; + +/** + * onenand_default_bbt - [OneNAND Interface] Select a default bad block table for the device + * @mtd: MTD device structure + * + * This function selects the default bad block table + * support for the device and calls the onenand_scan_bbt function + */ +int onenand_default_bbt(struct mtd_info *mtd) +{ + struct onenand_chip *this = mtd->priv; + struct bbm_info *bbm; + + this->bbm = kzalloc(sizeof(struct bbm_info), GFP_KERNEL); + if (!this->bbm) + return -ENOMEM; + + bbm = this->bbm; + + /* 1KB page has same configuration as 2KB page */ + if (!bbm->badblock_pattern) + bbm->badblock_pattern = &largepage_memorybased; + + return onenand_scan_bbt(mtd, bbm->badblock_pattern); +} diff --git a/drivers/mtd/nand/onenand/onenand_omap2.c b/drivers/mtd/nand/onenand/onenand_omap2.c new file mode 100644 index 0000000000..a12f8f3efd --- /dev/null +++ b/drivers/mtd/nand/onenand/onenand_omap2.c @@ -0,0 +1,609 @@ +// SPDX-License-Identifier: GPL-2.0-only +/* + * OneNAND driver for OMAP2 / OMAP3 + * + * Copyright © 2005-2006 Nokia Corporation + * + * Author: Jarkko Lavinen <jarkko.lavinen@nokia.com> and Juha Yrjölä + * IRQ and DMA support written by Timo Teras + */ + +#include <linux/device.h> +#include <linux/module.h> +#include <linux/mtd/mtd.h> +#include <linux/mtd/onenand.h> +#include <linux/mtd/partitions.h> +#include <linux/of.h> +#include <linux/omap-gpmc.h> +#include <linux/platform_device.h> +#include <linux/interrupt.h> +#include <linux/delay.h> +#include <linux/dma-mapping.h> +#include <linux/dmaengine.h> +#include <linux/io.h> +#include <linux/slab.h> +#include <linux/gpio/consumer.h> + +#include <asm/mach/flash.h> + +#define DRIVER_NAME "omap2-onenand" + +#define ONENAND_BUFRAM_SIZE (1024 * 5) + +struct omap2_onenand { + struct platform_device *pdev; + int gpmc_cs; + unsigned long phys_base; + struct gpio_desc *int_gpiod; + struct mtd_info mtd; + struct onenand_chip onenand; + struct completion irq_done; + struct completion dma_done; + struct dma_chan *dma_chan; +}; + +static void omap2_onenand_dma_complete_func(void *completion) +{ + complete(completion); +} + +static irqreturn_t omap2_onenand_interrupt(int irq, void *dev_id) +{ + struct omap2_onenand *c = dev_id; + + complete(&c->irq_done); + + return IRQ_HANDLED; +} + +static inline unsigned short read_reg(struct omap2_onenand *c, int reg) +{ + return readw(c->onenand.base + reg); +} + +static inline void write_reg(struct omap2_onenand *c, unsigned short value, + int reg) +{ + writew(value, c->onenand.base + reg); +} + +static int omap2_onenand_set_cfg(struct omap2_onenand *c, + bool sr, bool sw, + int latency, int burst_len) +{ + unsigned short reg = ONENAND_SYS_CFG1_RDY | ONENAND_SYS_CFG1_INT; + + reg |= latency << ONENAND_SYS_CFG1_BRL_SHIFT; + + switch (burst_len) { + case 0: /* continuous */ + break; + case 4: + reg |= ONENAND_SYS_CFG1_BL_4; + break; + case 8: + reg |= ONENAND_SYS_CFG1_BL_8; + break; + case 16: + reg |= ONENAND_SYS_CFG1_BL_16; + break; + case 32: + reg |= ONENAND_SYS_CFG1_BL_32; + break; + default: + return -EINVAL; + } + + if (latency > 5) + reg |= ONENAND_SYS_CFG1_HF; + if (latency > 7) + reg |= ONENAND_SYS_CFG1_VHF; + if (sr) + reg |= ONENAND_SYS_CFG1_SYNC_READ; + if (sw) + reg |= ONENAND_SYS_CFG1_SYNC_WRITE; + + write_reg(c, reg, ONENAND_REG_SYS_CFG1); + + return 0; +} + +static int omap2_onenand_get_freq(int ver) +{ + switch ((ver >> 4) & 0xf) { + case 0: + return 40; + case 1: + return 54; + case 2: + return 66; + case 3: + return 83; + case 4: + return 104; + } + + return -EINVAL; +} + +static void wait_err(char *msg, int state, unsigned int ctrl, unsigned int intr) +{ + printk(KERN_ERR "onenand_wait: %s! state %d ctrl 0x%04x intr 0x%04x\n", + msg, state, ctrl, intr); +} + +static void wait_warn(char *msg, int state, unsigned int ctrl, + unsigned int intr) +{ + printk(KERN_WARNING "onenand_wait: %s! state %d ctrl 0x%04x " + "intr 0x%04x\n", msg, state, ctrl, intr); +} + +static int omap2_onenand_wait(struct mtd_info *mtd, int state) +{ + struct omap2_onenand *c = container_of(mtd, struct omap2_onenand, mtd); + struct onenand_chip *this = mtd->priv; + unsigned int intr = 0; + unsigned int ctrl, ctrl_mask; + unsigned long timeout; + u32 syscfg; + + if (state == FL_RESETTING || state == FL_PREPARING_ERASE || + state == FL_VERIFYING_ERASE) { + int i = 21; + unsigned int intr_flags = ONENAND_INT_MASTER; + + switch (state) { + case FL_RESETTING: + intr_flags |= ONENAND_INT_RESET; + break; + case FL_PREPARING_ERASE: + intr_flags |= ONENAND_INT_ERASE; + break; + case FL_VERIFYING_ERASE: + i = 101; + break; + } + + while (--i) { + udelay(1); + intr = read_reg(c, ONENAND_REG_INTERRUPT); + if (intr & ONENAND_INT_MASTER) + break; + } + ctrl = read_reg(c, ONENAND_REG_CTRL_STATUS); + if (ctrl & ONENAND_CTRL_ERROR) { + wait_err("controller error", state, ctrl, intr); + return -EIO; + } + if ((intr & intr_flags) == intr_flags) + return 0; + /* Continue in wait for interrupt branch */ + } + + if (state != FL_READING) { + int result; + + /* Turn interrupts on */ + syscfg = read_reg(c, ONENAND_REG_SYS_CFG1); + if (!(syscfg & ONENAND_SYS_CFG1_IOBE)) { + syscfg |= ONENAND_SYS_CFG1_IOBE; + write_reg(c, syscfg, ONENAND_REG_SYS_CFG1); + /* Add a delay to let GPIO settle */ + syscfg = read_reg(c, ONENAND_REG_SYS_CFG1); + } + + reinit_completion(&c->irq_done); + result = gpiod_get_value(c->int_gpiod); + if (result < 0) { + ctrl = read_reg(c, ONENAND_REG_CTRL_STATUS); + intr = read_reg(c, ONENAND_REG_INTERRUPT); + wait_err("gpio error", state, ctrl, intr); + return result; + } else if (result == 0) { + int retry_cnt = 0; +retry: + if (!wait_for_completion_io_timeout(&c->irq_done, + msecs_to_jiffies(20))) { + /* Timeout after 20ms */ + ctrl = read_reg(c, ONENAND_REG_CTRL_STATUS); + if (ctrl & ONENAND_CTRL_ONGO && + !this->ongoing) { + /* + * The operation seems to be still going + * so give it some more time. + */ + retry_cnt += 1; + if (retry_cnt < 3) + goto retry; + intr = read_reg(c, + ONENAND_REG_INTERRUPT); + wait_err("timeout", state, ctrl, intr); + return -EIO; + } + intr = read_reg(c, ONENAND_REG_INTERRUPT); + if ((intr & ONENAND_INT_MASTER) == 0) + wait_warn("timeout", state, ctrl, intr); + } + } + } else { + int retry_cnt = 0; + + /* Turn interrupts off */ + syscfg = read_reg(c, ONENAND_REG_SYS_CFG1); + syscfg &= ~ONENAND_SYS_CFG1_IOBE; + write_reg(c, syscfg, ONENAND_REG_SYS_CFG1); + + timeout = jiffies + msecs_to_jiffies(20); + while (1) { + if (time_before(jiffies, timeout)) { + intr = read_reg(c, ONENAND_REG_INTERRUPT); + if (intr & ONENAND_INT_MASTER) + break; + } else { + /* Timeout after 20ms */ + ctrl = read_reg(c, ONENAND_REG_CTRL_STATUS); + if (ctrl & ONENAND_CTRL_ONGO) { + /* + * The operation seems to be still going + * so give it some more time. + */ + retry_cnt += 1; + if (retry_cnt < 3) { + timeout = jiffies + + msecs_to_jiffies(20); + continue; + } + } + break; + } + } + } + + intr = read_reg(c, ONENAND_REG_INTERRUPT); + ctrl = read_reg(c, ONENAND_REG_CTRL_STATUS); + + if (intr & ONENAND_INT_READ) { + int ecc = read_reg(c, ONENAND_REG_ECC_STATUS); + + if (ecc) { + unsigned int addr1, addr8; + + addr1 = read_reg(c, ONENAND_REG_START_ADDRESS1); + addr8 = read_reg(c, ONENAND_REG_START_ADDRESS8); + if (ecc & ONENAND_ECC_2BIT_ALL) { + printk(KERN_ERR "onenand_wait: ECC error = " + "0x%04x, addr1 %#x, addr8 %#x\n", + ecc, addr1, addr8); + mtd->ecc_stats.failed++; + return -EBADMSG; + } else if (ecc & ONENAND_ECC_1BIT_ALL) { + printk(KERN_NOTICE "onenand_wait: correctable " + "ECC error = 0x%04x, addr1 %#x, " + "addr8 %#x\n", ecc, addr1, addr8); + mtd->ecc_stats.corrected++; + } + } + } else if (state == FL_READING) { + wait_err("timeout", state, ctrl, intr); + return -EIO; + } + + if (ctrl & ONENAND_CTRL_ERROR) { + wait_err("controller error", state, ctrl, intr); + if (ctrl & ONENAND_CTRL_LOCK) + printk(KERN_ERR "onenand_wait: " + "Device is write protected!!!\n"); + return -EIO; + } + + ctrl_mask = 0xFE9F; + if (this->ongoing) + ctrl_mask &= ~0x8000; + + if (ctrl & ctrl_mask) + wait_warn("unexpected controller status", state, ctrl, intr); + + return 0; +} + +static inline int omap2_onenand_bufferram_offset(struct mtd_info *mtd, int area) +{ + struct onenand_chip *this = mtd->priv; + + if (ONENAND_CURRENT_BUFFERRAM(this)) { + if (area == ONENAND_DATARAM) + return this->writesize; + if (area == ONENAND_SPARERAM) + return mtd->oobsize; + } + + return 0; +} + +static inline int omap2_onenand_dma_transfer(struct omap2_onenand *c, + dma_addr_t src, dma_addr_t dst, + size_t count) +{ + struct dma_async_tx_descriptor *tx; + dma_cookie_t cookie; + + tx = dmaengine_prep_dma_memcpy(c->dma_chan, dst, src, count, + DMA_CTRL_ACK | DMA_PREP_INTERRUPT); + if (!tx) { + dev_err(&c->pdev->dev, "Failed to prepare DMA memcpy\n"); + return -EIO; + } + + reinit_completion(&c->dma_done); + + tx->callback = omap2_onenand_dma_complete_func; + tx->callback_param = &c->dma_done; + + cookie = tx->tx_submit(tx); + if (dma_submit_error(cookie)) { + dev_err(&c->pdev->dev, "Failed to do DMA tx_submit\n"); + return -EIO; + } + + dma_async_issue_pending(c->dma_chan); + + if (!wait_for_completion_io_timeout(&c->dma_done, + msecs_to_jiffies(20))) { + dmaengine_terminate_sync(c->dma_chan); + return -ETIMEDOUT; + } + + return 0; +} + +static int omap2_onenand_read_bufferram(struct mtd_info *mtd, int area, + unsigned char *buffer, int offset, + size_t count) +{ + struct omap2_onenand *c = container_of(mtd, struct omap2_onenand, mtd); + struct onenand_chip *this = mtd->priv; + struct device *dev = &c->pdev->dev; + void *buf = (void *)buffer; + dma_addr_t dma_src, dma_dst; + int bram_offset, err; + size_t xtra; + + bram_offset = omap2_onenand_bufferram_offset(mtd, area) + area + offset; + /* + * If the buffer address is not DMA-able, len is not long enough to + * make DMA transfers profitable or if invoked from panic_write() + * fallback to PIO mode. + */ + if (!virt_addr_valid(buf) || bram_offset & 3 || (size_t)buf & 3 || + count < 384 || mtd->oops_panic_write) + goto out_copy; + + xtra = count & 3; + if (xtra) { + count -= xtra; + memcpy(buf + count, this->base + bram_offset + count, xtra); + } + + dma_dst = dma_map_single(dev, buf, count, DMA_FROM_DEVICE); + dma_src = c->phys_base + bram_offset; + + if (dma_mapping_error(dev, dma_dst)) { + dev_err(dev, "Couldn't DMA map a %d byte buffer\n", count); + goto out_copy; + } + + err = omap2_onenand_dma_transfer(c, dma_src, dma_dst, count); + dma_unmap_single(dev, dma_dst, count, DMA_FROM_DEVICE); + if (!err) + return 0; + + dev_err(dev, "timeout waiting for DMA\n"); + +out_copy: + memcpy(buf, this->base + bram_offset, count); + return 0; +} + +static int omap2_onenand_write_bufferram(struct mtd_info *mtd, int area, + const unsigned char *buffer, + int offset, size_t count) +{ + struct omap2_onenand *c = container_of(mtd, struct omap2_onenand, mtd); + struct onenand_chip *this = mtd->priv; + struct device *dev = &c->pdev->dev; + void *buf = (void *)buffer; + dma_addr_t dma_src, dma_dst; + int bram_offset, err; + + bram_offset = omap2_onenand_bufferram_offset(mtd, area) + area + offset; + /* + * If the buffer address is not DMA-able, len is not long enough to + * make DMA transfers profitable or if invoked from panic_write() + * fallback to PIO mode. + */ + if (!virt_addr_valid(buf) || bram_offset & 3 || (size_t)buf & 3 || + count < 384 || mtd->oops_panic_write) + goto out_copy; + + dma_src = dma_map_single(dev, buf, count, DMA_TO_DEVICE); + dma_dst = c->phys_base + bram_offset; + if (dma_mapping_error(dev, dma_src)) { + dev_err(dev, "Couldn't DMA map a %d byte buffer\n", count); + goto out_copy; + } + + err = omap2_onenand_dma_transfer(c, dma_src, dma_dst, count); + dma_unmap_page(dev, dma_src, count, DMA_TO_DEVICE); + if (!err) + return 0; + + dev_err(dev, "timeout waiting for DMA\n"); + +out_copy: + memcpy(this->base + bram_offset, buf, count); + return 0; +} + +static void omap2_onenand_shutdown(struct platform_device *pdev) +{ + struct omap2_onenand *c = dev_get_drvdata(&pdev->dev); + + /* With certain content in the buffer RAM, the OMAP boot ROM code + * can recognize the flash chip incorrectly. Zero it out before + * soft reset. + */ + memset((__force void *)c->onenand.base, 0, ONENAND_BUFRAM_SIZE); +} + +static int omap2_onenand_probe(struct platform_device *pdev) +{ + u32 val; + dma_cap_mask_t mask; + int freq, latency, r; + struct resource *res; + struct omap2_onenand *c; + struct gpmc_onenand_info info; + struct device *dev = &pdev->dev; + struct device_node *np = dev->of_node; + + r = of_property_read_u32(np, "reg", &val); + if (r) { + dev_err(dev, "reg not found in DT\n"); + return r; + } + + c = devm_kzalloc(dev, sizeof(struct omap2_onenand), GFP_KERNEL); + if (!c) + return -ENOMEM; + + init_completion(&c->irq_done); + init_completion(&c->dma_done); + c->gpmc_cs = val; + + c->onenand.base = devm_platform_get_and_ioremap_resource(pdev, 0, &res); + if (IS_ERR(c->onenand.base)) + return PTR_ERR(c->onenand.base); + c->phys_base = res->start; + + c->int_gpiod = devm_gpiod_get_optional(dev, "int", GPIOD_IN); + if (IS_ERR(c->int_gpiod)) { + /* Just try again if this happens */ + return dev_err_probe(dev, PTR_ERR(c->int_gpiod), "error getting gpio\n"); + } + + if (c->int_gpiod) { + r = devm_request_irq(dev, gpiod_to_irq(c->int_gpiod), + omap2_onenand_interrupt, + IRQF_TRIGGER_RISING, "onenand", c); + if (r) + return r; + + c->onenand.wait = omap2_onenand_wait; + } + + dma_cap_zero(mask); + dma_cap_set(DMA_MEMCPY, mask); + + c->dma_chan = dma_request_channel(mask, NULL, NULL); + if (c->dma_chan) { + c->onenand.read_bufferram = omap2_onenand_read_bufferram; + c->onenand.write_bufferram = omap2_onenand_write_bufferram; + } + + c->pdev = pdev; + c->mtd.priv = &c->onenand; + c->mtd.dev.parent = dev; + mtd_set_of_node(&c->mtd, dev->of_node); + + dev_info(dev, "initializing on CS%d (0x%08lx), va %p, %s mode\n", + c->gpmc_cs, c->phys_base, c->onenand.base, + c->dma_chan ? "DMA" : "PIO"); + + r = onenand_scan(&c->mtd, 1); + if (r < 0) + goto err_release_dma; + + freq = omap2_onenand_get_freq(c->onenand.version_id); + if (freq > 0) { + switch (freq) { + case 104: + latency = 7; + break; + case 83: + latency = 6; + break; + case 66: + latency = 5; + break; + case 56: + latency = 4; + break; + default: /* 40 MHz or lower */ + latency = 3; + break; + } + + r = gpmc_omap_onenand_set_timings(dev, c->gpmc_cs, + freq, latency, &info); + if (r) + goto err_release_onenand; + + r = omap2_onenand_set_cfg(c, info.sync_read, info.sync_write, + latency, info.burst_len); + if (r) + goto err_release_onenand; + + if (info.sync_read || info.sync_write) + dev_info(dev, "optimized timings for %d MHz\n", freq); + } + + r = mtd_device_register(&c->mtd, NULL, 0); + if (r) + goto err_release_onenand; + + platform_set_drvdata(pdev, c); + + return 0; + +err_release_onenand: + onenand_release(&c->mtd); +err_release_dma: + if (c->dma_chan) + dma_release_channel(c->dma_chan); + + return r; +} + +static void omap2_onenand_remove(struct platform_device *pdev) +{ + struct omap2_onenand *c = dev_get_drvdata(&pdev->dev); + + onenand_release(&c->mtd); + if (c->dma_chan) + dma_release_channel(c->dma_chan); + omap2_onenand_shutdown(pdev); +} + +static const struct of_device_id omap2_onenand_id_table[] = { + { .compatible = "ti,omap2-onenand", }, + {}, +}; +MODULE_DEVICE_TABLE(of, omap2_onenand_id_table); + +static struct platform_driver omap2_onenand_driver = { + .probe = omap2_onenand_probe, + .remove_new = omap2_onenand_remove, + .shutdown = omap2_onenand_shutdown, + .driver = { + .name = DRIVER_NAME, + .of_match_table = omap2_onenand_id_table, + }, +}; + +module_platform_driver(omap2_onenand_driver); + +MODULE_ALIAS("platform:" DRIVER_NAME); +MODULE_LICENSE("GPL"); +MODULE_AUTHOR("Jarkko Lavinen <jarkko.lavinen@nokia.com>"); +MODULE_DESCRIPTION("Glue layer for OneNAND flash on OMAP2 / OMAP3"); diff --git a/drivers/mtd/nand/onenand/onenand_samsung.c b/drivers/mtd/nand/onenand/onenand_samsung.c new file mode 100644 index 0000000000..fd6890a03d --- /dev/null +++ b/drivers/mtd/nand/onenand/onenand_samsung.c @@ -0,0 +1,1001 @@ +// SPDX-License-Identifier: GPL-2.0-only +/* + * Samsung S3C64XX/S5PC1XX OneNAND driver + * + * Copyright © 2008-2010 Samsung Electronics + * Kyungmin Park <kyungmin.park@samsung.com> + * Marek Szyprowski <m.szyprowski@samsung.com> + * + * Implementation: + * S3C64XX: emulate the pseudo BufferRAM + * S5PC110: use DMA + */ + +#include <linux/module.h> +#include <linux/platform_device.h> +#include <linux/sched.h> +#include <linux/slab.h> +#include <linux/mtd/mtd.h> +#include <linux/mtd/onenand.h> +#include <linux/mtd/partitions.h> +#include <linux/dma-mapping.h> +#include <linux/interrupt.h> +#include <linux/io.h> + +#include "samsung.h" + +enum soc_type { + TYPE_S3C6400, + TYPE_S3C6410, + TYPE_S5PC110, +}; + +#define ONENAND_ERASE_STATUS 0x00 +#define ONENAND_MULTI_ERASE_SET 0x01 +#define ONENAND_ERASE_START 0x03 +#define ONENAND_UNLOCK_START 0x08 +#define ONENAND_UNLOCK_END 0x09 +#define ONENAND_LOCK_START 0x0A +#define ONENAND_LOCK_END 0x0B +#define ONENAND_LOCK_TIGHT_START 0x0C +#define ONENAND_LOCK_TIGHT_END 0x0D +#define ONENAND_UNLOCK_ALL 0x0E +#define ONENAND_OTP_ACCESS 0x12 +#define ONENAND_SPARE_ACCESS_ONLY 0x13 +#define ONENAND_MAIN_ACCESS_ONLY 0x14 +#define ONENAND_ERASE_VERIFY 0x15 +#define ONENAND_MAIN_SPARE_ACCESS 0x16 +#define ONENAND_PIPELINE_READ 0x4000 + +#define MAP_00 (0x0) +#define MAP_01 (0x1) +#define MAP_10 (0x2) +#define MAP_11 (0x3) + +#define S3C64XX_CMD_MAP_SHIFT 24 + +#define S3C6400_FBA_SHIFT 10 +#define S3C6400_FPA_SHIFT 4 +#define S3C6400_FSA_SHIFT 2 + +#define S3C6410_FBA_SHIFT 12 +#define S3C6410_FPA_SHIFT 6 +#define S3C6410_FSA_SHIFT 4 + +/* S5PC110 specific definitions */ +#define S5PC110_DMA_SRC_ADDR 0x400 +#define S5PC110_DMA_SRC_CFG 0x404 +#define S5PC110_DMA_DST_ADDR 0x408 +#define S5PC110_DMA_DST_CFG 0x40C +#define S5PC110_DMA_TRANS_SIZE 0x414 +#define S5PC110_DMA_TRANS_CMD 0x418 +#define S5PC110_DMA_TRANS_STATUS 0x41C +#define S5PC110_DMA_TRANS_DIR 0x420 +#define S5PC110_INTC_DMA_CLR 0x1004 +#define S5PC110_INTC_ONENAND_CLR 0x1008 +#define S5PC110_INTC_DMA_MASK 0x1024 +#define S5PC110_INTC_ONENAND_MASK 0x1028 +#define S5PC110_INTC_DMA_PEND 0x1044 +#define S5PC110_INTC_ONENAND_PEND 0x1048 +#define S5PC110_INTC_DMA_STATUS 0x1064 +#define S5PC110_INTC_ONENAND_STATUS 0x1068 + +#define S5PC110_INTC_DMA_TD (1 << 24) +#define S5PC110_INTC_DMA_TE (1 << 16) + +#define S5PC110_DMA_CFG_SINGLE (0x0 << 16) +#define S5PC110_DMA_CFG_4BURST (0x2 << 16) +#define S5PC110_DMA_CFG_8BURST (0x3 << 16) +#define S5PC110_DMA_CFG_16BURST (0x4 << 16) + +#define S5PC110_DMA_CFG_INC (0x0 << 8) +#define S5PC110_DMA_CFG_CNT (0x1 << 8) + +#define S5PC110_DMA_CFG_8BIT (0x0 << 0) +#define S5PC110_DMA_CFG_16BIT (0x1 << 0) +#define S5PC110_DMA_CFG_32BIT (0x2 << 0) + +#define S5PC110_DMA_SRC_CFG_READ (S5PC110_DMA_CFG_16BURST | \ + S5PC110_DMA_CFG_INC | \ + S5PC110_DMA_CFG_16BIT) +#define S5PC110_DMA_DST_CFG_READ (S5PC110_DMA_CFG_16BURST | \ + S5PC110_DMA_CFG_INC | \ + S5PC110_DMA_CFG_32BIT) +#define S5PC110_DMA_SRC_CFG_WRITE (S5PC110_DMA_CFG_16BURST | \ + S5PC110_DMA_CFG_INC | \ + S5PC110_DMA_CFG_32BIT) +#define S5PC110_DMA_DST_CFG_WRITE (S5PC110_DMA_CFG_16BURST | \ + S5PC110_DMA_CFG_INC | \ + S5PC110_DMA_CFG_16BIT) + +#define S5PC110_DMA_TRANS_CMD_TDC (0x1 << 18) +#define S5PC110_DMA_TRANS_CMD_TEC (0x1 << 16) +#define S5PC110_DMA_TRANS_CMD_TR (0x1 << 0) + +#define S5PC110_DMA_TRANS_STATUS_TD (0x1 << 18) +#define S5PC110_DMA_TRANS_STATUS_TB (0x1 << 17) +#define S5PC110_DMA_TRANS_STATUS_TE (0x1 << 16) + +#define S5PC110_DMA_DIR_READ 0x0 +#define S5PC110_DMA_DIR_WRITE 0x1 + +struct s3c_onenand { + struct mtd_info *mtd; + struct platform_device *pdev; + enum soc_type type; + void __iomem *base; + void __iomem *ahb_addr; + int bootram_command; + void *page_buf; + void *oob_buf; + unsigned int (*mem_addr)(int fba, int fpa, int fsa); + unsigned int (*cmd_map)(unsigned int type, unsigned int val); + void __iomem *dma_addr; + unsigned long phys_base; + struct completion complete; +}; + +#define CMD_MAP_00(dev, addr) (dev->cmd_map(MAP_00, ((addr) << 1))) +#define CMD_MAP_01(dev, mem_addr) (dev->cmd_map(MAP_01, (mem_addr))) +#define CMD_MAP_10(dev, mem_addr) (dev->cmd_map(MAP_10, (mem_addr))) +#define CMD_MAP_11(dev, addr) (dev->cmd_map(MAP_11, ((addr) << 2))) + +static struct s3c_onenand *onenand; + +static inline int s3c_read_reg(int offset) +{ + return readl(onenand->base + offset); +} + +static inline void s3c_write_reg(int value, int offset) +{ + writel(value, onenand->base + offset); +} + +static inline int s3c_read_cmd(unsigned int cmd) +{ + return readl(onenand->ahb_addr + cmd); +} + +static inline void s3c_write_cmd(int value, unsigned int cmd) +{ + writel(value, onenand->ahb_addr + cmd); +} + +#ifdef SAMSUNG_DEBUG +static void s3c_dump_reg(void) +{ + int i; + + for (i = 0; i < 0x400; i += 0x40) { + printk(KERN_INFO "0x%08X: 0x%08x 0x%08x 0x%08x 0x%08x\n", + (unsigned int) onenand->base + i, + s3c_read_reg(i), s3c_read_reg(i + 0x10), + s3c_read_reg(i + 0x20), s3c_read_reg(i + 0x30)); + } +} +#endif + +static unsigned int s3c64xx_cmd_map(unsigned type, unsigned val) +{ + return (type << S3C64XX_CMD_MAP_SHIFT) | val; +} + +static unsigned int s3c6400_mem_addr(int fba, int fpa, int fsa) +{ + return (fba << S3C6400_FBA_SHIFT) | (fpa << S3C6400_FPA_SHIFT) | + (fsa << S3C6400_FSA_SHIFT); +} + +static unsigned int s3c6410_mem_addr(int fba, int fpa, int fsa) +{ + return (fba << S3C6410_FBA_SHIFT) | (fpa << S3C6410_FPA_SHIFT) | + (fsa << S3C6410_FSA_SHIFT); +} + +static void s3c_onenand_reset(void) +{ + unsigned long timeout = 0x10000; + int stat; + + s3c_write_reg(ONENAND_MEM_RESET_COLD, MEM_RESET_OFFSET); + while (1 && timeout--) { + stat = s3c_read_reg(INT_ERR_STAT_OFFSET); + if (stat & RST_CMP) + break; + } + stat = s3c_read_reg(INT_ERR_STAT_OFFSET); + s3c_write_reg(stat, INT_ERR_ACK_OFFSET); + + /* Clear interrupt */ + s3c_write_reg(0x0, INT_ERR_ACK_OFFSET); + /* Clear the ECC status */ + s3c_write_reg(0x0, ECC_ERR_STAT_OFFSET); +} + +static unsigned short s3c_onenand_readw(void __iomem *addr) +{ + struct onenand_chip *this = onenand->mtd->priv; + struct device *dev = &onenand->pdev->dev; + int reg = addr - this->base; + int word_addr = reg >> 1; + int value; + + /* It's used for probing time */ + switch (reg) { + case ONENAND_REG_MANUFACTURER_ID: + return s3c_read_reg(MANUFACT_ID_OFFSET); + case ONENAND_REG_DEVICE_ID: + return s3c_read_reg(DEVICE_ID_OFFSET); + case ONENAND_REG_VERSION_ID: + return s3c_read_reg(FLASH_VER_ID_OFFSET); + case ONENAND_REG_DATA_BUFFER_SIZE: + return s3c_read_reg(DATA_BUF_SIZE_OFFSET); + case ONENAND_REG_TECHNOLOGY: + return s3c_read_reg(TECH_OFFSET); + case ONENAND_REG_SYS_CFG1: + return s3c_read_reg(MEM_CFG_OFFSET); + + /* Used at unlock all status */ + case ONENAND_REG_CTRL_STATUS: + return 0; + + case ONENAND_REG_WP_STATUS: + return ONENAND_WP_US; + + default: + break; + } + + /* BootRAM access control */ + if ((unsigned long)addr < ONENAND_DATARAM && onenand->bootram_command) { + if (word_addr == 0) + return s3c_read_reg(MANUFACT_ID_OFFSET); + if (word_addr == 1) + return s3c_read_reg(DEVICE_ID_OFFSET); + if (word_addr == 2) + return s3c_read_reg(FLASH_VER_ID_OFFSET); + } + + value = s3c_read_cmd(CMD_MAP_11(onenand, word_addr)) & 0xffff; + dev_info(dev, "%s: Illegal access at reg 0x%x, value 0x%x\n", __func__, + word_addr, value); + return value; +} + +static void s3c_onenand_writew(unsigned short value, void __iomem *addr) +{ + struct onenand_chip *this = onenand->mtd->priv; + struct device *dev = &onenand->pdev->dev; + unsigned int reg = addr - this->base; + unsigned int word_addr = reg >> 1; + + /* It's used for probing time */ + switch (reg) { + case ONENAND_REG_SYS_CFG1: + s3c_write_reg(value, MEM_CFG_OFFSET); + return; + + case ONENAND_REG_START_ADDRESS1: + case ONENAND_REG_START_ADDRESS2: + return; + + /* Lock/lock-tight/unlock/unlock_all */ + case ONENAND_REG_START_BLOCK_ADDRESS: + return; + + default: + break; + } + + /* BootRAM access control */ + if ((unsigned long)addr < ONENAND_DATARAM) { + if (value == ONENAND_CMD_READID) { + onenand->bootram_command = 1; + return; + } + if (value == ONENAND_CMD_RESET) { + s3c_write_reg(ONENAND_MEM_RESET_COLD, MEM_RESET_OFFSET); + onenand->bootram_command = 0; + return; + } + } + + dev_info(dev, "%s: Illegal access at reg 0x%x, value 0x%x\n", __func__, + word_addr, value); + + s3c_write_cmd(value, CMD_MAP_11(onenand, word_addr)); +} + +static int s3c_onenand_wait(struct mtd_info *mtd, int state) +{ + struct device *dev = &onenand->pdev->dev; + unsigned int flags = INT_ACT; + unsigned int stat, ecc; + unsigned long timeout; + + switch (state) { + case FL_READING: + flags |= BLK_RW_CMP | LOAD_CMP; + break; + case FL_WRITING: + flags |= BLK_RW_CMP | PGM_CMP; + break; + case FL_ERASING: + flags |= BLK_RW_CMP | ERS_CMP; + break; + case FL_LOCKING: + flags |= BLK_RW_CMP; + break; + default: + break; + } + + /* The 20 msec is enough */ + timeout = jiffies + msecs_to_jiffies(20); + while (time_before(jiffies, timeout)) { + stat = s3c_read_reg(INT_ERR_STAT_OFFSET); + if (stat & flags) + break; + + if (state != FL_READING) + cond_resched(); + } + /* To get correct interrupt status in timeout case */ + stat = s3c_read_reg(INT_ERR_STAT_OFFSET); + s3c_write_reg(stat, INT_ERR_ACK_OFFSET); + + /* + * In the Spec. it checks the controller status first + * However if you get the correct information in case of + * power off recovery (POR) test, it should read ECC status first + */ + if (stat & LOAD_CMP) { + ecc = s3c_read_reg(ECC_ERR_STAT_OFFSET); + if (ecc & ONENAND_ECC_4BIT_UNCORRECTABLE) { + dev_info(dev, "%s: ECC error = 0x%04x\n", __func__, + ecc); + mtd->ecc_stats.failed++; + return -EBADMSG; + } + } + + if (stat & (LOCKED_BLK | ERS_FAIL | PGM_FAIL | LD_FAIL_ECC_ERR)) { + dev_info(dev, "%s: controller error = 0x%04x\n", __func__, + stat); + if (stat & LOCKED_BLK) + dev_info(dev, "%s: it's locked error = 0x%04x\n", + __func__, stat); + + return -EIO; + } + + return 0; +} + +static int s3c_onenand_command(struct mtd_info *mtd, int cmd, loff_t addr, + size_t len) +{ + struct onenand_chip *this = mtd->priv; + unsigned int *m, *s; + int fba, fpa, fsa = 0; + unsigned int mem_addr, cmd_map_01, cmd_map_10; + int i, mcount, scount; + int index; + + fba = (int) (addr >> this->erase_shift); + fpa = (int) (addr >> this->page_shift); + fpa &= this->page_mask; + + mem_addr = onenand->mem_addr(fba, fpa, fsa); + cmd_map_01 = CMD_MAP_01(onenand, mem_addr); + cmd_map_10 = CMD_MAP_10(onenand, mem_addr); + + switch (cmd) { + case ONENAND_CMD_READ: + case ONENAND_CMD_READOOB: + case ONENAND_CMD_BUFFERRAM: + ONENAND_SET_NEXT_BUFFERRAM(this); + break; + default: + break; + } + + index = ONENAND_CURRENT_BUFFERRAM(this); + + /* + * Emulate Two BufferRAMs and access with 4 bytes pointer + */ + m = onenand->page_buf; + s = onenand->oob_buf; + + if (index) { + m += (this->writesize >> 2); + s += (mtd->oobsize >> 2); + } + + mcount = mtd->writesize >> 2; + scount = mtd->oobsize >> 2; + + switch (cmd) { + case ONENAND_CMD_READ: + /* Main */ + for (i = 0; i < mcount; i++) + *m++ = s3c_read_cmd(cmd_map_01); + return 0; + + case ONENAND_CMD_READOOB: + s3c_write_reg(TSRF, TRANS_SPARE_OFFSET); + /* Main */ + for (i = 0; i < mcount; i++) + *m++ = s3c_read_cmd(cmd_map_01); + + /* Spare */ + for (i = 0; i < scount; i++) + *s++ = s3c_read_cmd(cmd_map_01); + + s3c_write_reg(0, TRANS_SPARE_OFFSET); + return 0; + + case ONENAND_CMD_PROG: + /* Main */ + for (i = 0; i < mcount; i++) + s3c_write_cmd(*m++, cmd_map_01); + return 0; + + case ONENAND_CMD_PROGOOB: + s3c_write_reg(TSRF, TRANS_SPARE_OFFSET); + + /* Main - dummy write */ + for (i = 0; i < mcount; i++) + s3c_write_cmd(0xffffffff, cmd_map_01); + + /* Spare */ + for (i = 0; i < scount; i++) + s3c_write_cmd(*s++, cmd_map_01); + + s3c_write_reg(0, TRANS_SPARE_OFFSET); + return 0; + + case ONENAND_CMD_UNLOCK_ALL: + s3c_write_cmd(ONENAND_UNLOCK_ALL, cmd_map_10); + return 0; + + case ONENAND_CMD_ERASE: + s3c_write_cmd(ONENAND_ERASE_START, cmd_map_10); + return 0; + + default: + break; + } + + return 0; +} + +static unsigned char *s3c_get_bufferram(struct mtd_info *mtd, int area) +{ + struct onenand_chip *this = mtd->priv; + int index = ONENAND_CURRENT_BUFFERRAM(this); + unsigned char *p; + + if (area == ONENAND_DATARAM) { + p = onenand->page_buf; + if (index == 1) + p += this->writesize; + } else { + p = onenand->oob_buf; + if (index == 1) + p += mtd->oobsize; + } + + return p; +} + +static int onenand_read_bufferram(struct mtd_info *mtd, int area, + unsigned char *buffer, int offset, + size_t count) +{ + unsigned char *p; + + p = s3c_get_bufferram(mtd, area); + memcpy(buffer, p + offset, count); + return 0; +} + +static int onenand_write_bufferram(struct mtd_info *mtd, int area, + const unsigned char *buffer, int offset, + size_t count) +{ + unsigned char *p; + + p = s3c_get_bufferram(mtd, area); + memcpy(p + offset, buffer, count); + return 0; +} + +static int (*s5pc110_dma_ops)(dma_addr_t dst, dma_addr_t src, size_t count, int direction); + +static int s5pc110_dma_poll(dma_addr_t dst, dma_addr_t src, size_t count, int direction) +{ + void __iomem *base = onenand->dma_addr; + int status; + unsigned long timeout; + + writel(src, base + S5PC110_DMA_SRC_ADDR); + writel(dst, base + S5PC110_DMA_DST_ADDR); + + if (direction == S5PC110_DMA_DIR_READ) { + writel(S5PC110_DMA_SRC_CFG_READ, base + S5PC110_DMA_SRC_CFG); + writel(S5PC110_DMA_DST_CFG_READ, base + S5PC110_DMA_DST_CFG); + } else { + writel(S5PC110_DMA_SRC_CFG_WRITE, base + S5PC110_DMA_SRC_CFG); + writel(S5PC110_DMA_DST_CFG_WRITE, base + S5PC110_DMA_DST_CFG); + } + + writel(count, base + S5PC110_DMA_TRANS_SIZE); + writel(direction, base + S5PC110_DMA_TRANS_DIR); + + writel(S5PC110_DMA_TRANS_CMD_TR, base + S5PC110_DMA_TRANS_CMD); + + /* + * There's no exact timeout values at Spec. + * In real case it takes under 1 msec. + * So 20 msecs are enough. + */ + timeout = jiffies + msecs_to_jiffies(20); + + do { + status = readl(base + S5PC110_DMA_TRANS_STATUS); + if (status & S5PC110_DMA_TRANS_STATUS_TE) { + writel(S5PC110_DMA_TRANS_CMD_TEC, + base + S5PC110_DMA_TRANS_CMD); + return -EIO; + } + } while (!(status & S5PC110_DMA_TRANS_STATUS_TD) && + time_before(jiffies, timeout)); + + writel(S5PC110_DMA_TRANS_CMD_TDC, base + S5PC110_DMA_TRANS_CMD); + + return 0; +} + +static irqreturn_t s5pc110_onenand_irq(int irq, void *data) +{ + void __iomem *base = onenand->dma_addr; + int status, cmd = 0; + + status = readl(base + S5PC110_INTC_DMA_STATUS); + + if (likely(status & S5PC110_INTC_DMA_TD)) + cmd = S5PC110_DMA_TRANS_CMD_TDC; + + if (unlikely(status & S5PC110_INTC_DMA_TE)) + cmd = S5PC110_DMA_TRANS_CMD_TEC; + + writel(cmd, base + S5PC110_DMA_TRANS_CMD); + writel(status, base + S5PC110_INTC_DMA_CLR); + + if (!onenand->complete.done) + complete(&onenand->complete); + + return IRQ_HANDLED; +} + +static int s5pc110_dma_irq(dma_addr_t dst, dma_addr_t src, size_t count, int direction) +{ + void __iomem *base = onenand->dma_addr; + int status; + + status = readl(base + S5PC110_INTC_DMA_MASK); + if (status) { + status &= ~(S5PC110_INTC_DMA_TD | S5PC110_INTC_DMA_TE); + writel(status, base + S5PC110_INTC_DMA_MASK); + } + + writel(src, base + S5PC110_DMA_SRC_ADDR); + writel(dst, base + S5PC110_DMA_DST_ADDR); + + if (direction == S5PC110_DMA_DIR_READ) { + writel(S5PC110_DMA_SRC_CFG_READ, base + S5PC110_DMA_SRC_CFG); + writel(S5PC110_DMA_DST_CFG_READ, base + S5PC110_DMA_DST_CFG); + } else { + writel(S5PC110_DMA_SRC_CFG_WRITE, base + S5PC110_DMA_SRC_CFG); + writel(S5PC110_DMA_DST_CFG_WRITE, base + S5PC110_DMA_DST_CFG); + } + + writel(count, base + S5PC110_DMA_TRANS_SIZE); + writel(direction, base + S5PC110_DMA_TRANS_DIR); + + writel(S5PC110_DMA_TRANS_CMD_TR, base + S5PC110_DMA_TRANS_CMD); + + wait_for_completion_timeout(&onenand->complete, msecs_to_jiffies(20)); + + return 0; +} + +static int s5pc110_read_bufferram(struct mtd_info *mtd, int area, + unsigned char *buffer, int offset, size_t count) +{ + struct onenand_chip *this = mtd->priv; + void __iomem *p; + void *buf = (void *) buffer; + dma_addr_t dma_src, dma_dst; + int err, ofs, page_dma = 0; + struct device *dev = &onenand->pdev->dev; + + p = this->base + area; + if (ONENAND_CURRENT_BUFFERRAM(this)) { + if (area == ONENAND_DATARAM) + p += this->writesize; + else + p += mtd->oobsize; + } + + if (offset & 3 || (size_t) buf & 3 || + !onenand->dma_addr || count != mtd->writesize) + goto normal; + + /* Handle vmalloc address */ + if (buf >= high_memory) { + struct page *page; + + if (((size_t) buf & PAGE_MASK) != + ((size_t) (buf + count - 1) & PAGE_MASK)) + goto normal; + page = vmalloc_to_page(buf); + if (!page) + goto normal; + + /* Page offset */ + ofs = ((size_t) buf & ~PAGE_MASK); + page_dma = 1; + + /* DMA routine */ + dma_src = onenand->phys_base + (p - this->base); + dma_dst = dma_map_page(dev, page, ofs, count, DMA_FROM_DEVICE); + } else { + /* DMA routine */ + dma_src = onenand->phys_base + (p - this->base); + dma_dst = dma_map_single(dev, buf, count, DMA_FROM_DEVICE); + } + if (dma_mapping_error(dev, dma_dst)) { + dev_err(dev, "Couldn't map a %zu byte buffer for DMA\n", count); + goto normal; + } + err = s5pc110_dma_ops(dma_dst, dma_src, + count, S5PC110_DMA_DIR_READ); + + if (page_dma) + dma_unmap_page(dev, dma_dst, count, DMA_FROM_DEVICE); + else + dma_unmap_single(dev, dma_dst, count, DMA_FROM_DEVICE); + + if (!err) + return 0; + +normal: + if (count != mtd->writesize) { + /* Copy the bufferram to memory to prevent unaligned access */ + memcpy_fromio(this->page_buf, p, mtd->writesize); + memcpy(buffer, this->page_buf + offset, count); + } else { + memcpy_fromio(buffer, p, count); + } + + return 0; +} + +static int s5pc110_chip_probe(struct mtd_info *mtd) +{ + /* Now just return 0 */ + return 0; +} + +static int s3c_onenand_bbt_wait(struct mtd_info *mtd, int state) +{ + unsigned int flags = INT_ACT | LOAD_CMP; + unsigned int stat; + unsigned long timeout; + + /* The 20 msec is enough */ + timeout = jiffies + msecs_to_jiffies(20); + while (time_before(jiffies, timeout)) { + stat = s3c_read_reg(INT_ERR_STAT_OFFSET); + if (stat & flags) + break; + } + /* To get correct interrupt status in timeout case */ + stat = s3c_read_reg(INT_ERR_STAT_OFFSET); + s3c_write_reg(stat, INT_ERR_ACK_OFFSET); + + if (stat & LD_FAIL_ECC_ERR) { + s3c_onenand_reset(); + return ONENAND_BBT_READ_ERROR; + } + + if (stat & LOAD_CMP) { + int ecc = s3c_read_reg(ECC_ERR_STAT_OFFSET); + if (ecc & ONENAND_ECC_4BIT_UNCORRECTABLE) { + s3c_onenand_reset(); + return ONENAND_BBT_READ_ERROR; + } + } + + return 0; +} + +static void s3c_onenand_check_lock_status(struct mtd_info *mtd) +{ + struct onenand_chip *this = mtd->priv; + struct device *dev = &onenand->pdev->dev; + unsigned int block, end; + + end = this->chipsize >> this->erase_shift; + + for (block = 0; block < end; block++) { + unsigned int mem_addr = onenand->mem_addr(block, 0, 0); + s3c_read_cmd(CMD_MAP_01(onenand, mem_addr)); + + if (s3c_read_reg(INT_ERR_STAT_OFFSET) & LOCKED_BLK) { + dev_err(dev, "block %d is write-protected!\n", block); + s3c_write_reg(LOCKED_BLK, INT_ERR_ACK_OFFSET); + } + } +} + +static void s3c_onenand_do_lock_cmd(struct mtd_info *mtd, loff_t ofs, + size_t len, int cmd) +{ + struct onenand_chip *this = mtd->priv; + int start, end, start_mem_addr, end_mem_addr; + + start = ofs >> this->erase_shift; + start_mem_addr = onenand->mem_addr(start, 0, 0); + end = start + (len >> this->erase_shift) - 1; + end_mem_addr = onenand->mem_addr(end, 0, 0); + + if (cmd == ONENAND_CMD_LOCK) { + s3c_write_cmd(ONENAND_LOCK_START, CMD_MAP_10(onenand, + start_mem_addr)); + s3c_write_cmd(ONENAND_LOCK_END, CMD_MAP_10(onenand, + end_mem_addr)); + } else { + s3c_write_cmd(ONENAND_UNLOCK_START, CMD_MAP_10(onenand, + start_mem_addr)); + s3c_write_cmd(ONENAND_UNLOCK_END, CMD_MAP_10(onenand, + end_mem_addr)); + } + + this->wait(mtd, FL_LOCKING); +} + +static void s3c_unlock_all(struct mtd_info *mtd) +{ + struct onenand_chip *this = mtd->priv; + loff_t ofs = 0; + size_t len = this->chipsize; + + if (this->options & ONENAND_HAS_UNLOCK_ALL) { + /* Write unlock command */ + this->command(mtd, ONENAND_CMD_UNLOCK_ALL, 0, 0); + + /* No need to check return value */ + this->wait(mtd, FL_LOCKING); + + /* Workaround for all block unlock in DDP */ + if (!ONENAND_IS_DDP(this)) { + s3c_onenand_check_lock_status(mtd); + return; + } + + /* All blocks on another chip */ + ofs = this->chipsize >> 1; + len = this->chipsize >> 1; + } + + s3c_onenand_do_lock_cmd(mtd, ofs, len, ONENAND_CMD_UNLOCK); + + s3c_onenand_check_lock_status(mtd); +} + +static void s3c_onenand_setup(struct mtd_info *mtd) +{ + struct onenand_chip *this = mtd->priv; + + onenand->mtd = mtd; + + if (onenand->type == TYPE_S3C6400) { + onenand->mem_addr = s3c6400_mem_addr; + onenand->cmd_map = s3c64xx_cmd_map; + } else if (onenand->type == TYPE_S3C6410) { + onenand->mem_addr = s3c6410_mem_addr; + onenand->cmd_map = s3c64xx_cmd_map; + } else if (onenand->type == TYPE_S5PC110) { + /* Use generic onenand functions */ + this->read_bufferram = s5pc110_read_bufferram; + this->chip_probe = s5pc110_chip_probe; + return; + } else { + BUG(); + } + + this->read_word = s3c_onenand_readw; + this->write_word = s3c_onenand_writew; + + this->wait = s3c_onenand_wait; + this->bbt_wait = s3c_onenand_bbt_wait; + this->unlock_all = s3c_unlock_all; + this->command = s3c_onenand_command; + + this->read_bufferram = onenand_read_bufferram; + this->write_bufferram = onenand_write_bufferram; +} + +static int s3c_onenand_probe(struct platform_device *pdev) +{ + struct onenand_platform_data *pdata; + struct onenand_chip *this; + struct mtd_info *mtd; + struct resource *r; + int size, err; + + pdata = dev_get_platdata(&pdev->dev); + /* No need to check pdata. the platform data is optional */ + + size = sizeof(struct mtd_info) + sizeof(struct onenand_chip); + mtd = devm_kzalloc(&pdev->dev, size, GFP_KERNEL); + if (!mtd) + return -ENOMEM; + + onenand = devm_kzalloc(&pdev->dev, sizeof(struct s3c_onenand), + GFP_KERNEL); + if (!onenand) + return -ENOMEM; + + this = (struct onenand_chip *) &mtd[1]; + mtd->priv = this; + mtd->dev.parent = &pdev->dev; + onenand->pdev = pdev; + onenand->type = platform_get_device_id(pdev)->driver_data; + + s3c_onenand_setup(mtd); + + onenand->base = devm_platform_get_and_ioremap_resource(pdev, 0, &r); + if (IS_ERR(onenand->base)) + return PTR_ERR(onenand->base); + + onenand->phys_base = r->start; + + /* Set onenand_chip also */ + this->base = onenand->base; + + /* Use runtime badblock check */ + this->options |= ONENAND_SKIP_UNLOCK_CHECK; + + if (onenand->type != TYPE_S5PC110) { + onenand->ahb_addr = devm_platform_ioremap_resource(pdev, 1); + if (IS_ERR(onenand->ahb_addr)) + return PTR_ERR(onenand->ahb_addr); + + /* Allocate 4KiB BufferRAM */ + onenand->page_buf = devm_kzalloc(&pdev->dev, SZ_4K, + GFP_KERNEL); + if (!onenand->page_buf) + return -ENOMEM; + + /* Allocate 128 SpareRAM */ + onenand->oob_buf = devm_kzalloc(&pdev->dev, 128, GFP_KERNEL); + if (!onenand->oob_buf) + return -ENOMEM; + + /* S3C doesn't handle subpage write */ + mtd->subpage_sft = 0; + this->subpagesize = mtd->writesize; + + } else { /* S5PC110 */ + onenand->dma_addr = devm_platform_ioremap_resource(pdev, 1); + if (IS_ERR(onenand->dma_addr)) + return PTR_ERR(onenand->dma_addr); + + s5pc110_dma_ops = s5pc110_dma_poll; + /* Interrupt support */ + r = platform_get_resource(pdev, IORESOURCE_IRQ, 0); + if (r) { + init_completion(&onenand->complete); + s5pc110_dma_ops = s5pc110_dma_irq; + err = devm_request_irq(&pdev->dev, r->start, + s5pc110_onenand_irq, + IRQF_SHARED, "onenand", + &onenand); + if (err) { + dev_err(&pdev->dev, "failed to get irq\n"); + return err; + } + } + } + + err = onenand_scan(mtd, 1); + if (err) + return err; + + if (onenand->type != TYPE_S5PC110) { + /* S3C doesn't handle subpage write */ + mtd->subpage_sft = 0; + this->subpagesize = mtd->writesize; + } + + if (s3c_read_reg(MEM_CFG_OFFSET) & ONENAND_SYS_CFG1_SYNC_READ) + dev_info(&onenand->pdev->dev, "OneNAND Sync. Burst Read enabled\n"); + + err = mtd_device_register(mtd, pdata ? pdata->parts : NULL, + pdata ? pdata->nr_parts : 0); + if (err) { + dev_err(&pdev->dev, "failed to parse partitions and register the MTD device\n"); + onenand_release(mtd); + return err; + } + + platform_set_drvdata(pdev, mtd); + + return 0; +} + +static void s3c_onenand_remove(struct platform_device *pdev) +{ + struct mtd_info *mtd = platform_get_drvdata(pdev); + + onenand_release(mtd); +} + +static int s3c_pm_ops_suspend(struct device *dev) +{ + struct mtd_info *mtd = dev_get_drvdata(dev); + struct onenand_chip *this = mtd->priv; + + this->wait(mtd, FL_PM_SUSPENDED); + return 0; +} + +static int s3c_pm_ops_resume(struct device *dev) +{ + struct mtd_info *mtd = dev_get_drvdata(dev); + struct onenand_chip *this = mtd->priv; + + this->unlock_all(mtd); + return 0; +} + +static const struct dev_pm_ops s3c_pm_ops = { + .suspend = s3c_pm_ops_suspend, + .resume = s3c_pm_ops_resume, +}; + +static const struct platform_device_id s3c_onenand_driver_ids[] = { + { + .name = "s3c6400-onenand", + .driver_data = TYPE_S3C6400, + }, { + .name = "s3c6410-onenand", + .driver_data = TYPE_S3C6410, + }, { + .name = "s5pc110-onenand", + .driver_data = TYPE_S5PC110, + }, { }, +}; +MODULE_DEVICE_TABLE(platform, s3c_onenand_driver_ids); + +static struct platform_driver s3c_onenand_driver = { + .driver = { + .name = "samsung-onenand", + .pm = &s3c_pm_ops, + }, + .id_table = s3c_onenand_driver_ids, + .probe = s3c_onenand_probe, + .remove_new = s3c_onenand_remove, +}; + +module_platform_driver(s3c_onenand_driver); + +MODULE_LICENSE("GPL"); +MODULE_AUTHOR("Kyungmin Park <kyungmin.park@samsung.com>"); +MODULE_DESCRIPTION("Samsung OneNAND controller support"); diff --git a/drivers/mtd/nand/onenand/samsung.h b/drivers/mtd/nand/onenand/samsung.h new file mode 100644 index 0000000000..892bbb6ca4 --- /dev/null +++ b/drivers/mtd/nand/onenand/samsung.h @@ -0,0 +1,56 @@ +/* SPDX-License-Identifier: GPL-2.0-only */ +/* + * Copyright (C) 2008-2010 Samsung Electronics + * Kyungmin Park <kyungmin.park@samsung.com> + */ +#ifndef __SAMSUNG_ONENAND_H__ +#define __SAMSUNG_ONENAND_H__ + +/* + * OneNAND Controller + */ +#define MEM_CFG_OFFSET 0x0000 +#define BURST_LEN_OFFSET 0x0010 +#define MEM_RESET_OFFSET 0x0020 +#define INT_ERR_STAT_OFFSET 0x0030 +#define INT_ERR_MASK_OFFSET 0x0040 +#define INT_ERR_ACK_OFFSET 0x0050 +#define ECC_ERR_STAT_OFFSET 0x0060 +#define MANUFACT_ID_OFFSET 0x0070 +#define DEVICE_ID_OFFSET 0x0080 +#define DATA_BUF_SIZE_OFFSET 0x0090 +#define BOOT_BUF_SIZE_OFFSET 0x00A0 +#define BUF_AMOUNT_OFFSET 0x00B0 +#define TECH_OFFSET 0x00C0 +#define FBA_WIDTH_OFFSET 0x00D0 +#define FPA_WIDTH_OFFSET 0x00E0 +#define FSA_WIDTH_OFFSET 0x00F0 +#define TRANS_SPARE_OFFSET 0x0140 +#define DBS_DFS_WIDTH_OFFSET 0x0160 +#define INT_PIN_ENABLE_OFFSET 0x01A0 +#define ACC_CLOCK_OFFSET 0x01C0 +#define FLASH_VER_ID_OFFSET 0x01F0 +#define FLASH_AUX_CNTRL_OFFSET 0x0300 /* s3c64xx only */ + +#define ONENAND_MEM_RESET_HOT 0x3 +#define ONENAND_MEM_RESET_COLD 0x2 +#define ONENAND_MEM_RESET_WARM 0x1 + +#define CACHE_OP_ERR (1 << 13) +#define RST_CMP (1 << 12) +#define RDY_ACT (1 << 11) +#define INT_ACT (1 << 10) +#define UNSUP_CMD (1 << 9) +#define LOCKED_BLK (1 << 8) +#define BLK_RW_CMP (1 << 7) +#define ERS_CMP (1 << 6) +#define PGM_CMP (1 << 5) +#define LOAD_CMP (1 << 4) +#define ERS_FAIL (1 << 3) +#define PGM_FAIL (1 << 2) +#define INT_TO (1 << 1) +#define LD_FAIL_ECC_ERR (1 << 0) + +#define TSRF (1 << 0) + +#endif diff --git a/drivers/mtd/nand/raw/Kconfig b/drivers/mtd/nand/raw/Kconfig new file mode 100644 index 0000000000..cbf8ae85e1 --- /dev/null +++ b/drivers/mtd/nand/raw/Kconfig @@ -0,0 +1,546 @@ +# SPDX-License-Identifier: GPL-2.0-only +menuconfig MTD_RAW_NAND + tristate "Raw/Parallel NAND Device Support" + select MTD_NAND_CORE + select MTD_NAND_ECC + help + This enables support for accessing all type of raw/parallel + NAND flash devices. For further information see + <http://www.linux-mtd.infradead.org/doc/nand.html>. + +if MTD_RAW_NAND + +comment "Raw/parallel NAND flash controllers" + +config MTD_NAND_DENALI + tristate + +config MTD_NAND_DENALI_PCI + tristate "Denali NAND controller on Intel Moorestown" + select MTD_NAND_DENALI + depends on PCI + help + Enable the driver for NAND flash on Intel Moorestown, using the + Denali NAND controller core. + +config MTD_NAND_DENALI_DT + tristate "Denali NAND controller as a DT device" + select MTD_NAND_DENALI + depends on HAS_DMA && HAVE_CLK && OF && HAS_IOMEM + help + Enable the driver for NAND flash on platforms using a Denali NAND + controller as a DT device. + +config MTD_NAND_AMS_DELTA + tristate "Amstrad E3 NAND controller" + depends on MACH_AMS_DELTA || COMPILE_TEST + default y + help + Support for NAND flash on Amstrad E3 (Delta). + +config MTD_NAND_OMAP2 + tristate "OMAP2, OMAP3, OMAP4 and Keystone NAND controller" + depends on ARCH_OMAP2PLUS || ARCH_KEYSTONE || ARCH_K3 || COMPILE_TEST + depends on HAS_IOMEM + depends on OMAP_GPMC + help + Support for NAND flash on Texas Instruments OMAP2, OMAP3, OMAP4 + and Keystone platforms. + +config MTD_NAND_OMAP_BCH + depends on MTD_NAND_OMAP2 + bool "Support hardware based BCH error correction" + default n + select BCH + help + This config enables the ELM hardware engine, which can be used to + locate and correct errors when using BCH ECC scheme. This offloads + the cpu from doing ECC error searching and correction. However some + legacy OMAP families like OMAP2xxx, OMAP3xxx do not have ELM engine + so this is optional for them. + +config MTD_NAND_OMAP_BCH_BUILD + def_tristate MTD_NAND_OMAP2 && MTD_NAND_OMAP_BCH + +config MTD_NAND_AU1550 + tristate "Au1550/1200 NAND support" + depends on MIPS_ALCHEMY + help + This enables the driver for the NAND flash controller on the + AMD/Alchemy 1550 SOC. + +config MTD_NAND_NDFC + tristate "IBM/MCC 4xx NAND controller" + depends on 4xx + select MTD_NAND_ECC_SW_HAMMING + select MTD_NAND_ECC_SW_HAMMING_SMC + help + NDFC Nand Flash Controllers are integrated in IBM/AMCC's 4xx SoCs + +config MTD_NAND_S3C2410 + tristate "Samsung S3C NAND controller" + depends on ARCH_S3C64XX + help + This enables the NAND flash controller on the S3C24xx and S3C64xx + SoCs + + No board specific support is done by this driver, each board + must advertise a platform_device for the driver to attach. + +config MTD_NAND_S3C2410_DEBUG + bool "Samsung S3C NAND controller debug" + depends on MTD_NAND_S3C2410 + help + Enable debugging of the S3C NAND driver + +config MTD_NAND_S3C2410_CLKSTOP + bool "Samsung S3C NAND IDLE clock stop" + depends on MTD_NAND_S3C2410 + default n + help + Stop the clock to the NAND controller when there is no chip + selected to save power. This will mean there is a small delay + when the is NAND chip selected or released, but will save + approximately 5mA of power when there is nothing happening. + +config MTD_NAND_SHARPSL + tristate "Sharp SL Series (C7xx + others) NAND controller" + depends on ARCH_PXA || COMPILE_TEST + depends on HAS_IOMEM + +config MTD_NAND_CAFE + tristate "OLPC CAFÉ NAND controller" + depends on PCI + select REED_SOLOMON + select REED_SOLOMON_DEC16 + help + Use NAND flash attached to the CAFÉ chip designed for the OLPC + laptop. + +config MTD_NAND_CS553X + tristate "CS5535/CS5536 (AMD Geode companion) NAND controller" + depends on X86_32 + depends on !UML && HAS_IOMEM + help + The CS553x companion chips for the AMD Geode processor + include NAND flash controllers with built-in hardware ECC + capabilities; enabling this option will allow you to use + these. The driver will check the MSRs to verify that the + controller is enabled for NAND, and currently requires that + the controller be in MMIO mode. + + If you say "m", the module will be called cs553x_nand. + +config MTD_NAND_ATMEL + tristate "Atmel AT91 NAND Flash/SmartMedia NAND controller" + depends on ARCH_AT91 || COMPILE_TEST + depends on HAS_IOMEM + select GENERIC_ALLOCATOR + select MFD_ATMEL_SMC + help + Enables support for NAND Flash / Smart Media Card interface + on Atmel AT91 processors. + +config MTD_NAND_ORION + tristate "Marvell Orion NAND controller" + depends on PLAT_ORION + help + This enables the NAND flash controller on Orion machines. + + No board specific support is done by this driver, each board + must advertise a platform_device for the driver to attach. + +config MTD_NAND_MARVELL + tristate "Marvell EBU NAND controller" + depends on PXA3xx || ARCH_MMP || PLAT_ORION || ARCH_MVEBU || \ + COMPILE_TEST + depends on HAS_IOMEM + help + This enables the NAND flash controller driver for Marvell boards, + including: + - PXA3xx processors (NFCv1) + - 32-bit Armada platforms (XP, 37x, 38x, 39x) (NFCv2) + - 64-bit Aramda platforms (7k, 8k, ac5) (NFCv2) + +config MTD_NAND_SLC_LPC32XX + tristate "NXP LPC32xx SLC NAND controller" + depends on ARCH_LPC32XX || COMPILE_TEST + depends on HAS_IOMEM + help + Enables support for NXP's LPC32XX SLC (i.e. for Single Level Cell + chips) NAND controller. This is the default for the PHYTEC 3250 + reference board which contains a NAND256R3A2CZA6 chip. + + Please check the actual NAND chip connected and its support + by the SLC NAND controller. + +config MTD_NAND_MLC_LPC32XX + tristate "NXP LPC32xx MLC NAND controller" + depends on ARCH_LPC32XX || COMPILE_TEST + depends on HAS_IOMEM + help + Uses the LPC32XX MLC (i.e. for Multi Level Cell chips) NAND + controller. This is the default for the WORK92105 controller + board. + + Please check the actual NAND chip connected and its support + by the MLC NAND controller. + +config MTD_NAND_PASEMI + tristate "PA Semi PWRficient NAND controller" + depends on PPC_PASEMI + help + Enables support for NAND Flash interface on PA Semi PWRficient + based boards + +source "drivers/mtd/nand/raw/brcmnand/Kconfig" + +config MTD_NAND_BCM47XXNFLASH + tristate "BCM4706 BCMA NAND controller" + depends on BCMA_NFLASH + depends on BCMA + help + BCMA bus can have various flash memories attached, they are + registered by bcma as platform devices. This enables driver for + NAND flash memories. For now only BCM4706 is supported. + +config MTD_NAND_MPC5121_NFC + tristate "MPC5121 NAND controller" + depends on PPC_MPC512x + help + This enables the driver for the NAND flash controller on the + MPC5121 SoC. + +config MTD_NAND_GPMI_NAND + tristate "Freescale GPMI NAND controller" + depends on MXS_DMA + help + Enables NAND Flash support for IMX23, IMX28 or IMX6. + The GPMI controller is very powerful, with the help of BCH + module, it can do the hardware ECC. The GPMI supports several + NAND flashs at the same time. + +config MTD_NAND_FSL_ELBC + tristate "Freescale eLBC NAND controller" + depends on FSL_SOC + select FSL_LBC + help + Various Freescale chips, including the 8313, include a NAND Flash + Controller Module with built-in hardware ECC capabilities. + Enabling this option will enable you to use this to control + external NAND devices. + +config MTD_NAND_FSL_IFC + tristate "Freescale IFC NAND controller" + depends on FSL_SOC || ARCH_LAYERSCAPE || SOC_LS1021A || COMPILE_TEST + depends on HAS_IOMEM + select FSL_IFC + select MEMORY + help + Various Freescale chips e.g P1010, include a NAND Flash machine + with built-in hardware ECC capabilities. + Enabling this option will enable you to use this to control + external NAND devices. + +config MTD_NAND_FSL_UPM + tristate "Freescale UPM NAND controller" + depends on PPC_83xx || PPC_85xx + select FSL_LBC + help + Enables support for NAND Flash chips wired onto Freescale PowerPC + processor localbus with User-Programmable Machine support. + +config MTD_NAND_VF610_NFC + tristate "Freescale VF610/MPC5125 NAND controller" + depends on (SOC_VF610 || COMPILE_TEST) + depends on HAS_IOMEM + help + Enables support for NAND Flash Controller on some Freescale + processors like the VF610, MPC5125, MCF54418 or Kinetis K70. + The driver supports a maximum 2k page size. With 2k pages and + 64 bytes or more of OOB, hardware ECC with up to 32-bit error + correction is supported. Hardware ECC is only enabled through + device tree. + +config MTD_NAND_MXC + tristate "Freescale MXC NAND controller" + depends on ARCH_MXC || COMPILE_TEST + depends on HAS_IOMEM && OF + help + This enables the driver for the NAND flash controller on the + MXC processors. + +config MTD_NAND_SH_FLCTL + tristate "Renesas SuperH FLCTL NAND controller" + depends on SUPERH || COMPILE_TEST + depends on HAS_IOMEM + help + Several Renesas SuperH CPU has FLCTL. This option enables support + for NAND Flash using FLCTL. + +config MTD_NAND_DAVINCI + tristate "DaVinci/Keystone NAND controller" + depends on ARCH_DAVINCI || (ARCH_KEYSTONE && TI_AEMIF) || COMPILE_TEST + depends on HAS_IOMEM + help + Enable the driver for NAND flash chips on Texas Instruments + DaVinci/Keystone processors. + +config MTD_NAND_TXX9NDFMC + tristate "TXx9 NAND controller" + depends on SOC_TX4938 || COMPILE_TEST + depends on HAS_IOMEM + help + This enables the NAND flash controller on the TXx9 SoCs. + +config MTD_NAND_SOCRATES + tristate "Socrates NAND controller" + depends on SOCRATES + help + Enables support for NAND Flash chips wired onto Socrates board. + +source "drivers/mtd/nand/raw/ingenic/Kconfig" + +config MTD_NAND_FSMC + tristate "ST Micros FSMC NAND controller" + depends on OF && HAS_IOMEM + depends on PLAT_SPEAR || ARCH_NOMADIK || ARCH_U8500 || COMPILE_TEST + help + Enables support for NAND Flash chips on the ST Microelectronics + Flexible Static Memory Controller (FSMC) + +config MTD_NAND_XWAY + bool "Lantiq XWAY NAND controller" + depends on LANTIQ && SOC_TYPE_XWAY + help + Enables support for NAND Flash chips on Lantiq XWAY SoCs. NAND is attached + to the External Bus Unit (EBU). + +config MTD_NAND_SUNXI + tristate "Allwinner NAND controller" + depends on ARCH_SUNXI || COMPILE_TEST + depends on HAS_IOMEM + help + Enables support for NAND Flash chips on Allwinner SoCs. + +config MTD_NAND_HISI504 + tristate "Hisilicon Hip04 NAND controller" + depends on ARCH_HISI || COMPILE_TEST + depends on HAS_IOMEM + help + Enables support for NAND controller on Hisilicon SoC Hip04. + +config MTD_NAND_QCOM + tristate "QCOM NAND controller" + depends on ARCH_QCOM || COMPILE_TEST + depends on HAS_IOMEM + help + Enables support for NAND flash chips on SoCs containing the EBI2 NAND + controller. This controller is found on IPQ806x SoC. + +config MTD_NAND_MTK + tristate "MTK NAND controller" + depends on MTD_NAND_ECC_MEDIATEK + depends on ARCH_MEDIATEK || COMPILE_TEST + depends on HAS_IOMEM + help + Enables support for NAND controller on MTK SoCs. + This controller is found on mt27xx, mt81xx, mt65xx SoCs. + +config MTD_NAND_MXIC + tristate "Macronix raw NAND controller" + depends on HAS_IOMEM || COMPILE_TEST + help + This selects the Macronix raw NAND controller driver. + +config MTD_NAND_TEGRA + tristate "NVIDIA Tegra NAND controller" + depends on ARCH_TEGRA || COMPILE_TEST + depends on HAS_IOMEM + help + Enables support for NAND flash controller on NVIDIA Tegra SoC. + The driver has been developed and tested on a Tegra 2 SoC. DMA + support, raw read/write page as well as HW ECC read/write page + is supported. Extra OOB bytes when using HW ECC are currently + not supported. + +config MTD_NAND_STM32_FMC2 + tristate "Support for NAND controller on STM32MP SoCs" + depends on ARCH_STM32 || COMPILE_TEST + select MFD_SYSCON + help + Enables support for NAND Flash chips on SoCs containing the FMC2 + NAND controller. This controller is found on STM32MP SoCs. + The controller supports a maximum 8k page size and supports + a maximum 8-bit correction error per sector of 512 bytes. + +config MTD_NAND_MESON + tristate "Support for NAND controller on Amlogic's Meson SoCs" + depends on COMMON_CLK && (ARCH_MESON || COMPILE_TEST) + select MFD_SYSCON + help + Enables support for NAND controller on Amlogic's Meson SoCs. + This controller is found on Meson SoCs. + +config MTD_NAND_GPIO + tristate "GPIO assisted NAND controller" + depends on GPIOLIB || COMPILE_TEST + depends on HAS_IOMEM + help + This enables a NAND flash driver where control signals are + connected to GPIO pins, and commands and data are communicated + via a memory mapped interface. + +config MTD_NAND_PLATFORM + tristate "Generic NAND controller" + depends on HAS_IOMEM + help + This implements a generic NAND driver for on-SOC platform + devices. You will need to provide platform-specific functions + via platform_data. + +config MTD_NAND_CADENCE + tristate "Support Cadence NAND (HPNFC) controller" + depends on OF && HAS_IOMEM + help + Enable the driver for NAND flash on platforms using a Cadence NAND + controller. + +config MTD_NAND_ARASAN + tristate "Support for Arasan NAND flash controller" + depends on HAS_IOMEM && HAS_DMA + select BCH + help + Enables the driver for the Arasan NAND flash controller on + Zynq Ultrascale+ MPSoC. + +config MTD_NAND_INTEL_LGM + tristate "Support for NAND controller on Intel LGM SoC" + depends on OF + depends on HAS_IOMEM + help + Enables support for NAND Flash chips on Intel's LGM SoC. + NAND flash controller interfaced through the External Bus Unit. + +config MTD_NAND_ROCKCHIP + tristate "Rockchip NAND controller" + depends on ARCH_ROCKCHIP && HAS_IOMEM + help + Enables support for NAND controller on Rockchip SoCs. + There are four different versions of NAND FLASH Controllers, + including: + NFC v600: RK2928, RK3066, RK3188 + NFC v622: RK3036, RK3128 + NFC v800: RK3308, RV1108 + NFC v900: PX30, RK3326 + +config MTD_NAND_PL35X + tristate "ARM PL35X NAND controller" + depends on OF + depends on PL353_SMC + help + Enables support for PrimeCell SMC PL351 and PL353 NAND + controller found on Zynq7000. + +config MTD_NAND_RENESAS + tristate "Renesas R-Car Gen3 & RZ/N1 NAND controller" + depends on ARCH_RENESAS || COMPILE_TEST + help + Enables support for the NAND controller found on Renesas R-Car + Gen3 and RZ/N1 SoC families. + +comment "Misc" + +config MTD_SM_COMMON + tristate + default n + +config MTD_NAND_NANDSIM + tristate "Support for NAND Flash Simulator" + help + The simulator may simulate various NAND flash chips for the + MTD nand layer. + +config MTD_NAND_RICOH + tristate "Ricoh xD card reader" + default n + depends on PCI + select MTD_SM_COMMON + help + Enable support for Ricoh R5C852 xD card reader + You also need to enable either + NAND SSFDC (SmartMedia) read only translation layer' or new + experimental, readwrite + 'SmartMedia/xD new translation layer' + +config MTD_NAND_DISKONCHIP + tristate "DiskOnChip 2000, Millennium and Millennium Plus (NAND reimplementation)" + depends on HAS_IOMEM + select REED_SOLOMON + select REED_SOLOMON_DEC16 + help + This is a reimplementation of M-Systems DiskOnChip 2000, + Millennium and Millennium Plus as a standard NAND device driver, + as opposed to the earlier self-contained MTD device drivers. + This should enable, among other things, proper JFFS2 operation on + these devices. + +config MTD_NAND_DISKONCHIP_PROBE_ADVANCED + bool "Advanced detection options for DiskOnChip" + depends on MTD_NAND_DISKONCHIP + help + This option allows you to specify nonstandard address at which to + probe for a DiskOnChip, or to change the detection options. You + are unlikely to need any of this unless you are using LinuxBIOS. + Say 'N'. + +config MTD_NAND_DISKONCHIP_PROBE_ADDRESS + hex "Physical address of DiskOnChip" if MTD_NAND_DISKONCHIP_PROBE_ADVANCED + depends on MTD_NAND_DISKONCHIP + default "0" + help + By default, the probe for DiskOnChip devices will look for a + DiskOnChip at every multiple of 0x2000 between 0xC8000 and 0xEE000. + This option allows you to specify a single address at which to probe + for the device, which is useful if you have other devices in that + range which get upset when they are probed. + + (Note that on PowerPC, the normal probe will only check at + 0xE4000000.) + + Normally, you should leave this set to zero, to allow the probe at + the normal addresses. + +config MTD_NAND_DISKONCHIP_PROBE_HIGH + bool "Probe high addresses" + depends on MTD_NAND_DISKONCHIP_PROBE_ADVANCED + help + By default, the probe for DiskOnChip devices will look for a + DiskOnChip at every multiple of 0x2000 between 0xC8000 and 0xEE000. + This option changes to make it probe between 0xFFFC8000 and + 0xFFFEE000. Unless you are using LinuxBIOS, this is unlikely to be + useful to you. Say 'N'. + +config MTD_NAND_DISKONCHIP_BBTWRITE + bool "Allow BBT writes on DiskOnChip Millennium and 2000TSOP" + depends on MTD_NAND_DISKONCHIP + help + On DiskOnChip devices shipped with the INFTL filesystem (Millennium + and 2000 TSOP/Alon), Linux reserves some space at the end of the + device for the Bad Block Table (BBT). If you have existing INFTL + data on your device (created by non-Linux tools such as M-Systems' + DOS drivers), your data might overlap the area Linux wants to use for + the BBT. If this is a concern for you, leave this option disabled and + Linux will not write BBT data into this area. + The downside of leaving this option disabled is that if bad blocks + are detected by Linux, they will not be recorded in the BBT, which + could cause future problems. + Once you enable this option, new filesystems (INFTL or others, created + in Linux or other operating systems) will not use the reserved area. + The only reason not to enable this option is to prevent damage to + preexisting filesystems. + Even if you leave this disabled, you can enable BBT writes at module + load time (assuming you build diskonchip as a module) with the module + parameter "inftl_bbt_write=1". + +endif # MTD_RAW_NAND diff --git a/drivers/mtd/nand/raw/Makefile b/drivers/mtd/nand/raw/Makefile new file mode 100644 index 0000000000..25120a4afa --- /dev/null +++ b/drivers/mtd/nand/raw/Makefile @@ -0,0 +1,71 @@ +# SPDX-License-Identifier: GPL-2.0 + +obj-$(CONFIG_MTD_RAW_NAND) += nand.o +obj-$(CONFIG_MTD_SM_COMMON) += sm_common.o + +obj-$(CONFIG_MTD_NAND_CAFE) += cafe_nand.o +obj-$(CONFIG_MTD_NAND_AMS_DELTA) += ams-delta.o +obj-$(CONFIG_MTD_NAND_DENALI) += denali.o +obj-$(CONFIG_MTD_NAND_DENALI_PCI) += denali_pci.o +obj-$(CONFIG_MTD_NAND_DENALI_DT) += denali_dt.o +obj-$(CONFIG_MTD_NAND_AU1550) += au1550nd.o +obj-$(CONFIG_MTD_NAND_S3C2410) += s3c2410.o +obj-$(CONFIG_MTD_NAND_DAVINCI) += davinci_nand.o +obj-$(CONFIG_MTD_NAND_DISKONCHIP) += diskonchip.o +obj-$(CONFIG_MTD_NAND_FSMC) += fsmc_nand.o +obj-$(CONFIG_MTD_NAND_SHARPSL) += sharpsl.o +obj-$(CONFIG_MTD_NAND_NANDSIM) += nandsim.o +obj-$(CONFIG_MTD_NAND_CS553X) += cs553x_nand.o +obj-$(CONFIG_MTD_NAND_NDFC) += ndfc.o +obj-$(CONFIG_MTD_NAND_ATMEL) += atmel/ +obj-$(CONFIG_MTD_NAND_GPIO) += gpio.o +omap2_nand-objs := omap2.o +obj-$(CONFIG_MTD_NAND_OMAP2) += omap2_nand.o +obj-$(CONFIG_MTD_NAND_OMAP_BCH_BUILD) += omap_elm.o +obj-$(CONFIG_MTD_NAND_MARVELL) += marvell_nand.o +obj-$(CONFIG_MTD_NAND_PLATFORM) += plat_nand.o +obj-$(CONFIG_MTD_NAND_PASEMI) += pasemi_nand.o +obj-$(CONFIG_MTD_NAND_ORION) += orion_nand.o +obj-$(CONFIG_MTD_NAND_FSL_ELBC) += fsl_elbc_nand.o +obj-$(CONFIG_MTD_NAND_FSL_IFC) += fsl_ifc_nand.o +obj-$(CONFIG_MTD_NAND_FSL_UPM) += fsl_upm.o +obj-$(CONFIG_MTD_NAND_SLC_LPC32XX) += lpc32xx_slc.o +obj-$(CONFIG_MTD_NAND_MLC_LPC32XX) += lpc32xx_mlc.o +obj-$(CONFIG_MTD_NAND_SH_FLCTL) += sh_flctl.o +obj-$(CONFIG_MTD_NAND_MXC) += mxc_nand.o +obj-$(CONFIG_MTD_NAND_SOCRATES) += socrates_nand.o +obj-$(CONFIG_MTD_NAND_TXX9NDFMC) += txx9ndfmc.o +obj-$(CONFIG_MTD_NAND_MPC5121_NFC) += mpc5121_nfc.o +obj-$(CONFIG_MTD_NAND_VF610_NFC) += vf610_nfc.o +obj-$(CONFIG_MTD_NAND_RICOH) += r852.o +obj-y += ingenic/ +obj-$(CONFIG_MTD_NAND_GPMI_NAND) += gpmi-nand/ +obj-$(CONFIG_MTD_NAND_XWAY) += xway_nand.o +obj-$(CONFIG_MTD_NAND_BCM47XXNFLASH) += bcm47xxnflash/ +obj-$(CONFIG_MTD_NAND_SUNXI) += sunxi_nand.o +obj-$(CONFIG_MTD_NAND_HISI504) += hisi504_nand.o +obj-$(CONFIG_MTD_NAND_BRCMNAND) += brcmnand/ +obj-$(CONFIG_MTD_NAND_QCOM) += qcom_nandc.o +obj-$(CONFIG_MTD_NAND_MTK) += mtk_nand.o +obj-$(CONFIG_MTD_NAND_MXIC) += mxic_nand.o +obj-$(CONFIG_MTD_NAND_TEGRA) += tegra_nand.o +obj-$(CONFIG_MTD_NAND_STM32_FMC2) += stm32_fmc2_nand.o +obj-$(CONFIG_MTD_NAND_MESON) += meson_nand.o +obj-$(CONFIG_MTD_NAND_CADENCE) += cadence-nand-controller.o +obj-$(CONFIG_MTD_NAND_ARASAN) += arasan-nand-controller.o +obj-$(CONFIG_MTD_NAND_INTEL_LGM) += intel-nand-controller.o +obj-$(CONFIG_MTD_NAND_ROCKCHIP) += rockchip-nand-controller.o +obj-$(CONFIG_MTD_NAND_PL35X) += pl35x-nand-controller.o +obj-$(CONFIG_MTD_NAND_RENESAS) += renesas-nand-controller.o + +nand-objs := nand_base.o nand_legacy.o nand_bbt.o nand_timings.o nand_ids.o +nand-objs += nand_onfi.o +nand-objs += nand_jedec.o +nand-objs += nand_amd.o +nand-objs += nand_esmt.o +nand-objs += nand_hynix.o +nand-objs += nand_macronix.o +nand-objs += nand_micron.o +nand-objs += nand_sandisk.o +nand-objs += nand_samsung.o +nand-objs += nand_toshiba.o diff --git a/drivers/mtd/nand/raw/ams-delta.c b/drivers/mtd/nand/raw/ams-delta.c new file mode 100644 index 0000000000..919816a7ac --- /dev/null +++ b/drivers/mtd/nand/raw/ams-delta.c @@ -0,0 +1,447 @@ +// SPDX-License-Identifier: GPL-2.0 +/* + * Copyright (C) 2006 Jonathan McDowell <noodles@earth.li> + * + * Derived from drivers/mtd/nand/toto.c (removed in v2.6.28) + * Copyright (c) 2003 Texas Instruments + * Copyright (c) 2002 Thomas Gleixner <tgxl@linutronix.de> + * + * Converted to platform driver by Janusz Krzysztofik <jkrzyszt@tis.icnet.pl> + * Partially stolen from plat_nand.c + * + * Overview: + * This is a device driver for the NAND flash device found on the + * Amstrad E3 (Delta). + */ + +#include <linux/slab.h> +#include <linux/module.h> +#include <linux/delay.h> +#include <linux/gpio/consumer.h> +#include <linux/mtd/mtd.h> +#include <linux/mtd/nand-gpio.h> +#include <linux/mtd/rawnand.h> +#include <linux/mtd/partitions.h> +#include <linux/of.h> +#include <linux/platform_device.h> +#include <linux/sizes.h> + +/* + * MTD structure for E3 (Delta) + */ +struct gpio_nand { + struct nand_controller base; + struct nand_chip nand_chip; + struct gpio_desc *gpiod_rdy; + struct gpio_desc *gpiod_nce; + struct gpio_desc *gpiod_nre; + struct gpio_desc *gpiod_nwp; + struct gpio_desc *gpiod_nwe; + struct gpio_desc *gpiod_ale; + struct gpio_desc *gpiod_cle; + struct gpio_descs *data_gpiods; + bool data_in; + unsigned int tRP; + unsigned int tWP; + u8 (*io_read)(struct gpio_nand *this); + void (*io_write)(struct gpio_nand *this, u8 byte); +}; + +static void gpio_nand_write_commit(struct gpio_nand *priv) +{ + gpiod_set_value(priv->gpiod_nwe, 1); + ndelay(priv->tWP); + gpiod_set_value(priv->gpiod_nwe, 0); +} + +static void gpio_nand_io_write(struct gpio_nand *priv, u8 byte) +{ + struct gpio_descs *data_gpiods = priv->data_gpiods; + DECLARE_BITMAP(values, BITS_PER_TYPE(byte)) = { byte, }; + + gpiod_set_raw_array_value(data_gpiods->ndescs, data_gpiods->desc, + data_gpiods->info, values); + + gpio_nand_write_commit(priv); +} + +static void gpio_nand_dir_output(struct gpio_nand *priv, u8 byte) +{ + struct gpio_descs *data_gpiods = priv->data_gpiods; + DECLARE_BITMAP(values, BITS_PER_TYPE(byte)) = { byte, }; + int i; + + for (i = 0; i < data_gpiods->ndescs; i++) + gpiod_direction_output_raw(data_gpiods->desc[i], + test_bit(i, values)); + + gpio_nand_write_commit(priv); + + priv->data_in = false; +} + +static u8 gpio_nand_io_read(struct gpio_nand *priv) +{ + u8 res; + struct gpio_descs *data_gpiods = priv->data_gpiods; + DECLARE_BITMAP(values, BITS_PER_TYPE(res)) = { 0, }; + + gpiod_set_value(priv->gpiod_nre, 1); + ndelay(priv->tRP); + + gpiod_get_raw_array_value(data_gpiods->ndescs, data_gpiods->desc, + data_gpiods->info, values); + + gpiod_set_value(priv->gpiod_nre, 0); + + res = values[0]; + return res; +} + +static void gpio_nand_dir_input(struct gpio_nand *priv) +{ + struct gpio_descs *data_gpiods = priv->data_gpiods; + int i; + + for (i = 0; i < data_gpiods->ndescs; i++) + gpiod_direction_input(data_gpiods->desc[i]); + + priv->data_in = true; +} + +static void gpio_nand_write_buf(struct gpio_nand *priv, const u8 *buf, int len) +{ + int i = 0; + + if (len > 0 && priv->data_in) + gpio_nand_dir_output(priv, buf[i++]); + + while (i < len) + priv->io_write(priv, buf[i++]); +} + +static void gpio_nand_read_buf(struct gpio_nand *priv, u8 *buf, int len) +{ + int i; + + if (priv->data_gpiods && !priv->data_in) + gpio_nand_dir_input(priv); + + for (i = 0; i < len; i++) + buf[i] = priv->io_read(priv); +} + +static void gpio_nand_ctrl_cs(struct gpio_nand *priv, bool assert) +{ + gpiod_set_value(priv->gpiod_nce, assert); +} + +static int gpio_nand_exec_op(struct nand_chip *this, + const struct nand_operation *op, bool check_only) +{ + struct gpio_nand *priv = nand_get_controller_data(this); + const struct nand_op_instr *instr; + int ret = 0; + + if (check_only) + return 0; + + gpio_nand_ctrl_cs(priv, 1); + + for (instr = op->instrs; instr < op->instrs + op->ninstrs; instr++) { + switch (instr->type) { + case NAND_OP_CMD_INSTR: + gpiod_set_value(priv->gpiod_cle, 1); + gpio_nand_write_buf(priv, &instr->ctx.cmd.opcode, 1); + gpiod_set_value(priv->gpiod_cle, 0); + break; + + case NAND_OP_ADDR_INSTR: + gpiod_set_value(priv->gpiod_ale, 1); + gpio_nand_write_buf(priv, instr->ctx.addr.addrs, + instr->ctx.addr.naddrs); + gpiod_set_value(priv->gpiod_ale, 0); + break; + + case NAND_OP_DATA_IN_INSTR: + gpio_nand_read_buf(priv, instr->ctx.data.buf.in, + instr->ctx.data.len); + break; + + case NAND_OP_DATA_OUT_INSTR: + gpio_nand_write_buf(priv, instr->ctx.data.buf.out, + instr->ctx.data.len); + break; + + case NAND_OP_WAITRDY_INSTR: + ret = priv->gpiod_rdy ? + nand_gpio_waitrdy(this, priv->gpiod_rdy, + instr->ctx.waitrdy.timeout_ms) : + nand_soft_waitrdy(this, + instr->ctx.waitrdy.timeout_ms); + break; + } + + if (ret) + break; + } + + gpio_nand_ctrl_cs(priv, 0); + + return ret; +} + +static int gpio_nand_setup_interface(struct nand_chip *this, int csline, + const struct nand_interface_config *cf) +{ + struct gpio_nand *priv = nand_get_controller_data(this); + const struct nand_sdr_timings *sdr = nand_get_sdr_timings(cf); + struct device *dev = &nand_to_mtd(this)->dev; + + if (IS_ERR(sdr)) + return PTR_ERR(sdr); + + if (csline == NAND_DATA_IFACE_CHECK_ONLY) + return 0; + + if (priv->gpiod_nre) { + priv->tRP = DIV_ROUND_UP(sdr->tRP_min, 1000); + dev_dbg(dev, "using %u ns read pulse width\n", priv->tRP); + } + + priv->tWP = DIV_ROUND_UP(sdr->tWP_min, 1000); + dev_dbg(dev, "using %u ns write pulse width\n", priv->tWP); + + return 0; +} + +static int gpio_nand_attach_chip(struct nand_chip *chip) +{ + if (chip->ecc.engine_type == NAND_ECC_ENGINE_TYPE_SOFT && + chip->ecc.algo == NAND_ECC_ALGO_UNKNOWN) + chip->ecc.algo = NAND_ECC_ALGO_HAMMING; + + return 0; +} + +static const struct nand_controller_ops gpio_nand_ops = { + .exec_op = gpio_nand_exec_op, + .attach_chip = gpio_nand_attach_chip, + .setup_interface = gpio_nand_setup_interface, +}; + +/* + * Main initialization routine + */ +static int gpio_nand_probe(struct platform_device *pdev) +{ + struct gpio_nand_platdata *pdata = dev_get_platdata(&pdev->dev); + const struct mtd_partition *partitions = NULL; + int num_partitions = 0; + struct gpio_nand *priv; + struct nand_chip *this; + struct mtd_info *mtd; + int (*probe)(struct platform_device *pdev, struct gpio_nand *priv); + int err = 0; + + if (pdata) { + partitions = pdata->parts; + num_partitions = pdata->num_parts; + } + + /* Allocate memory for MTD device structure and private data */ + priv = devm_kzalloc(&pdev->dev, sizeof(struct gpio_nand), + GFP_KERNEL); + if (!priv) + return -ENOMEM; + + this = &priv->nand_chip; + + mtd = nand_to_mtd(this); + mtd->dev.parent = &pdev->dev; + + nand_set_controller_data(this, priv); + nand_set_flash_node(this, pdev->dev.of_node); + + priv->gpiod_rdy = devm_gpiod_get_optional(&pdev->dev, "rdy", GPIOD_IN); + if (IS_ERR(priv->gpiod_rdy)) { + err = PTR_ERR(priv->gpiod_rdy); + dev_warn(&pdev->dev, "RDY GPIO request failed (%d)\n", err); + return err; + } + + platform_set_drvdata(pdev, priv); + + /* Set chip enabled but write protected */ + priv->gpiod_nwp = devm_gpiod_get_optional(&pdev->dev, "nwp", + GPIOD_OUT_HIGH); + if (IS_ERR(priv->gpiod_nwp)) { + err = PTR_ERR(priv->gpiod_nwp); + dev_err(&pdev->dev, "NWP GPIO request failed (%d)\n", err); + return err; + } + + priv->gpiod_nce = devm_gpiod_get_optional(&pdev->dev, "nce", + GPIOD_OUT_LOW); + if (IS_ERR(priv->gpiod_nce)) { + err = PTR_ERR(priv->gpiod_nce); + dev_err(&pdev->dev, "NCE GPIO request failed (%d)\n", err); + return err; + } + + priv->gpiod_nre = devm_gpiod_get_optional(&pdev->dev, "nre", + GPIOD_OUT_LOW); + if (IS_ERR(priv->gpiod_nre)) { + err = PTR_ERR(priv->gpiod_nre); + dev_err(&pdev->dev, "NRE GPIO request failed (%d)\n", err); + return err; + } + + priv->gpiod_nwe = devm_gpiod_get_optional(&pdev->dev, "nwe", + GPIOD_OUT_LOW); + if (IS_ERR(priv->gpiod_nwe)) { + err = PTR_ERR(priv->gpiod_nwe); + dev_err(&pdev->dev, "NWE GPIO request failed (%d)\n", err); + return err; + } + + priv->gpiod_ale = devm_gpiod_get(&pdev->dev, "ale", GPIOD_OUT_LOW); + if (IS_ERR(priv->gpiod_ale)) { + err = PTR_ERR(priv->gpiod_ale); + dev_err(&pdev->dev, "ALE GPIO request failed (%d)\n", err); + return err; + } + + priv->gpiod_cle = devm_gpiod_get(&pdev->dev, "cle", GPIOD_OUT_LOW); + if (IS_ERR(priv->gpiod_cle)) { + err = PTR_ERR(priv->gpiod_cle); + dev_err(&pdev->dev, "CLE GPIO request failed (%d)\n", err); + return err; + } + + /* Request array of data pins, initialize them as input */ + priv->data_gpiods = devm_gpiod_get_array_optional(&pdev->dev, "data", + GPIOD_IN); + if (IS_ERR(priv->data_gpiods)) { + err = PTR_ERR(priv->data_gpiods); + dev_err(&pdev->dev, "data GPIO request failed: %d\n", err); + return err; + } + if (priv->data_gpiods) { + if (!priv->gpiod_nwe) { + dev_err(&pdev->dev, + "mandatory NWE pin not provided by platform\n"); + return -ENODEV; + } + + priv->io_read = gpio_nand_io_read; + priv->io_write = gpio_nand_io_write; + priv->data_in = true; + } + + if (pdev->id_entry) + probe = (void *) pdev->id_entry->driver_data; + else + probe = of_device_get_match_data(&pdev->dev); + if (probe) + err = probe(pdev, priv); + if (err) + return err; + + if (!priv->io_read || !priv->io_write) { + dev_err(&pdev->dev, "incomplete device configuration\n"); + return -ENODEV; + } + + /* Initialize the NAND controller object embedded in gpio_nand. */ + priv->base.ops = &gpio_nand_ops; + nand_controller_init(&priv->base); + this->controller = &priv->base; + + /* + * FIXME: We should release write protection only after nand_scan() to + * be on the safe side but we can't do that until we have a generic way + * to assert/deassert WP from the core. Even if the core shouldn't + * write things in the nand_scan() path, it should have control on this + * pin just in case we ever need to disable write protection during + * chip detection/initialization. + */ + /* Release write protection */ + gpiod_set_value(priv->gpiod_nwp, 0); + + /* + * This driver assumes that the default ECC engine should be TYPE_SOFT. + * Set ->engine_type before registering the NAND devices in order to + * provide a driver specific default value. + */ + this->ecc.engine_type = NAND_ECC_ENGINE_TYPE_SOFT; + + /* Scan to find existence of the device */ + err = nand_scan(this, 1); + if (err) + return err; + + /* Register the partitions */ + err = mtd_device_register(mtd, partitions, num_partitions); + if (err) + goto err_nand_cleanup; + + return 0; + +err_nand_cleanup: + nand_cleanup(this); + + return err; +} + +/* + * Clean up routine + */ +static void gpio_nand_remove(struct platform_device *pdev) +{ + struct gpio_nand *priv = platform_get_drvdata(pdev); + struct mtd_info *mtd = nand_to_mtd(&priv->nand_chip); + int ret; + + /* Apply write protection */ + gpiod_set_value(priv->gpiod_nwp, 1); + + /* Unregister device */ + ret = mtd_device_unregister(mtd); + WARN_ON(ret); + nand_cleanup(mtd_to_nand(mtd)); +} + +#ifdef CONFIG_OF +static const struct of_device_id gpio_nand_of_id_table[] = { + { + /* sentinel */ + }, +}; +MODULE_DEVICE_TABLE(of, gpio_nand_of_id_table); +#endif + +static const struct platform_device_id gpio_nand_plat_id_table[] = { + { + .name = "ams-delta-nand", + }, { + /* sentinel */ + }, +}; +MODULE_DEVICE_TABLE(platform, gpio_nand_plat_id_table); + +static struct platform_driver gpio_nand_driver = { + .probe = gpio_nand_probe, + .remove_new = gpio_nand_remove, + .id_table = gpio_nand_plat_id_table, + .driver = { + .name = "ams-delta-nand", + .of_match_table = of_match_ptr(gpio_nand_of_id_table), + }, +}; + +module_platform_driver(gpio_nand_driver); + +MODULE_LICENSE("GPL v2"); +MODULE_AUTHOR("Jonathan McDowell <noodles@earth.li>"); +MODULE_DESCRIPTION("Glue layer for NAND flash on Amstrad E3 (Delta)"); diff --git a/drivers/mtd/nand/raw/arasan-nand-controller.c b/drivers/mtd/nand/raw/arasan-nand-controller.c new file mode 100644 index 0000000000..a492051c46 --- /dev/null +++ b/drivers/mtd/nand/raw/arasan-nand-controller.c @@ -0,0 +1,1512 @@ +// SPDX-License-Identifier: GPL-2.0 +/* + * Arasan NAND Flash Controller Driver + * + * Copyright (C) 2014 - 2020 Xilinx, Inc. + * Author: + * Miquel Raynal <miquel.raynal@bootlin.com> + * Original work (fully rewritten): + * Punnaiah Choudary Kalluri <punnaia@xilinx.com> + * Naga Sureshkumar Relli <nagasure@xilinx.com> + */ + +#include <linux/bch.h> +#include <linux/bitfield.h> +#include <linux/clk.h> +#include <linux/delay.h> +#include <linux/dma-mapping.h> +#include <linux/gpio/consumer.h> +#include <linux/interrupt.h> +#include <linux/iopoll.h> +#include <linux/module.h> +#include <linux/mtd/mtd.h> +#include <linux/mtd/partitions.h> +#include <linux/mtd/rawnand.h> +#include <linux/of.h> +#include <linux/platform_device.h> +#include <linux/slab.h> + +#define PKT_REG 0x00 +#define PKT_SIZE(x) FIELD_PREP(GENMASK(10, 0), (x)) +#define PKT_STEPS(x) FIELD_PREP(GENMASK(23, 12), (x)) + +#define MEM_ADDR1_REG 0x04 + +#define MEM_ADDR2_REG 0x08 +#define ADDR2_STRENGTH(x) FIELD_PREP(GENMASK(27, 25), (x)) +#define ADDR2_CS(x) FIELD_PREP(GENMASK(31, 30), (x)) + +#define CMD_REG 0x0C +#define CMD_1(x) FIELD_PREP(GENMASK(7, 0), (x)) +#define CMD_2(x) FIELD_PREP(GENMASK(15, 8), (x)) +#define CMD_PAGE_SIZE(x) FIELD_PREP(GENMASK(25, 23), (x)) +#define CMD_DMA_ENABLE BIT(27) +#define CMD_NADDRS(x) FIELD_PREP(GENMASK(30, 28), (x)) +#define CMD_ECC_ENABLE BIT(31) + +#define PROG_REG 0x10 +#define PROG_PGRD BIT(0) +#define PROG_ERASE BIT(2) +#define PROG_STATUS BIT(3) +#define PROG_PGPROG BIT(4) +#define PROG_RDID BIT(6) +#define PROG_RDPARAM BIT(7) +#define PROG_RST BIT(8) +#define PROG_GET_FEATURE BIT(9) +#define PROG_SET_FEATURE BIT(10) +#define PROG_CHG_RD_COL_ENH BIT(14) + +#define INTR_STS_EN_REG 0x14 +#define INTR_SIG_EN_REG 0x18 +#define INTR_STS_REG 0x1C +#define WRITE_READY BIT(0) +#define READ_READY BIT(1) +#define XFER_COMPLETE BIT(2) +#define DMA_BOUNDARY BIT(6) +#define EVENT_MASK GENMASK(7, 0) + +#define READY_STS_REG 0x20 + +#define DMA_ADDR0_REG 0x50 +#define DMA_ADDR1_REG 0x24 + +#define FLASH_STS_REG 0x28 + +#define TIMING_REG 0x2C +#define TCCS_TIME_500NS 0 +#define TCCS_TIME_300NS 3 +#define TCCS_TIME_200NS 2 +#define TCCS_TIME_100NS 1 +#define FAST_TCAD BIT(2) +#define DQS_BUFF_SEL_IN(x) FIELD_PREP(GENMASK(6, 3), (x)) +#define DQS_BUFF_SEL_OUT(x) FIELD_PREP(GENMASK(18, 15), (x)) + +#define DATA_PORT_REG 0x30 + +#define ECC_CONF_REG 0x34 +#define ECC_CONF_COL(x) FIELD_PREP(GENMASK(15, 0), (x)) +#define ECC_CONF_LEN(x) FIELD_PREP(GENMASK(26, 16), (x)) +#define ECC_CONF_BCH_EN BIT(27) + +#define ECC_ERR_CNT_REG 0x38 +#define GET_PKT_ERR_CNT(x) FIELD_GET(GENMASK(7, 0), (x)) +#define GET_PAGE_ERR_CNT(x) FIELD_GET(GENMASK(16, 8), (x)) + +#define ECC_SP_REG 0x3C +#define ECC_SP_CMD1(x) FIELD_PREP(GENMASK(7, 0), (x)) +#define ECC_SP_CMD2(x) FIELD_PREP(GENMASK(15, 8), (x)) +#define ECC_SP_ADDRS(x) FIELD_PREP(GENMASK(30, 28), (x)) + +#define ECC_1ERR_CNT_REG 0x40 +#define ECC_2ERR_CNT_REG 0x44 + +#define DATA_INTERFACE_REG 0x6C +#define DIFACE_SDR_MODE(x) FIELD_PREP(GENMASK(2, 0), (x)) +#define DIFACE_DDR_MODE(x) FIELD_PREP(GENMASK(5, 3), (x)) +#define DIFACE_SDR 0 +#define DIFACE_NVDDR BIT(9) + +#define ANFC_MAX_CS 2 +#define ANFC_DFLT_TIMEOUT_US 1000000 +#define ANFC_MAX_CHUNK_SIZE SZ_1M +#define ANFC_MAX_PARAM_SIZE SZ_4K +#define ANFC_MAX_STEPS SZ_2K +#define ANFC_MAX_PKT_SIZE (SZ_2K - 1) +#define ANFC_MAX_ADDR_CYC 5U +#define ANFC_RSVD_ECC_BYTES 21 + +#define ANFC_XLNX_SDR_DFLT_CORE_CLK 100000000 +#define ANFC_XLNX_SDR_HS_CORE_CLK 80000000 + +static struct gpio_desc *anfc_default_cs_array[2] = {NULL, NULL}; + +/** + * struct anfc_op - Defines how to execute an operation + * @pkt_reg: Packet register + * @addr1_reg: Memory address 1 register + * @addr2_reg: Memory address 2 register + * @cmd_reg: Command register + * @prog_reg: Program register + * @steps: Number of "packets" to read/write + * @rdy_timeout_ms: Timeout for waits on Ready/Busy pin + * @len: Data transfer length + * @read: Data transfer direction from the controller point of view + * @buf: Data buffer + */ +struct anfc_op { + u32 pkt_reg; + u32 addr1_reg; + u32 addr2_reg; + u32 cmd_reg; + u32 prog_reg; + int steps; + unsigned int rdy_timeout_ms; + unsigned int len; + bool read; + u8 *buf; +}; + +/** + * struct anand - Defines the NAND chip related information + * @node: Used to store NAND chips into a list + * @chip: NAND chip information structure + * @rb: Ready-busy line + * @page_sz: Register value of the page_sz field to use + * @clk: Expected clock frequency to use + * @data_iface: Data interface timing mode to use + * @timings: NV-DDR specific timings to use + * @ecc_conf: Hardware ECC configuration value + * @strength: Register value of the ECC strength + * @raddr_cycles: Row address cycle information + * @caddr_cycles: Column address cycle information + * @ecc_bits: Exact number of ECC bits per syndrome + * @ecc_total: Total number of ECC bytes + * @errloc: Array of errors located with soft BCH + * @hw_ecc: Buffer to store syndromes computed by hardware + * @bch: BCH structure + * @cs_idx: Array of chip-select for this device, values are indexes + * of the controller structure @gpio_cs array + * @ncs_idx: Size of the @cs_idx array + */ +struct anand { + struct list_head node; + struct nand_chip chip; + unsigned int rb; + unsigned int page_sz; + unsigned long clk; + u32 data_iface; + u32 timings; + u32 ecc_conf; + u32 strength; + u16 raddr_cycles; + u16 caddr_cycles; + unsigned int ecc_bits; + unsigned int ecc_total; + unsigned int *errloc; + u8 *hw_ecc; + struct bch_control *bch; + int *cs_idx; + int ncs_idx; +}; + +/** + * struct arasan_nfc - Defines the Arasan NAND flash controller driver instance + * @dev: Pointer to the device structure + * @base: Remapped register area + * @controller_clk: Pointer to the system clock + * @bus_clk: Pointer to the flash clock + * @controller: Base controller structure + * @chips: List of all NAND chips attached to the controller + * @cur_clk: Current clock rate + * @cs_array: CS array. Native CS are left empty, the other cells are + * populated with their corresponding GPIO descriptor. + * @ncs: Size of @cs_array + * @cur_cs: Index in @cs_array of the currently in use CS + * @native_cs: Currently selected native CS + * @spare_cs: Native CS that is not wired (may be selected when a GPIO + * CS is in use) + */ +struct arasan_nfc { + struct device *dev; + void __iomem *base; + struct clk *controller_clk; + struct clk *bus_clk; + struct nand_controller controller; + struct list_head chips; + unsigned int cur_clk; + struct gpio_desc **cs_array; + unsigned int ncs; + int cur_cs; + unsigned int native_cs; + unsigned int spare_cs; +}; + +static struct anand *to_anand(struct nand_chip *nand) +{ + return container_of(nand, struct anand, chip); +} + +static struct arasan_nfc *to_anfc(struct nand_controller *ctrl) +{ + return container_of(ctrl, struct arasan_nfc, controller); +} + +static int anfc_wait_for_event(struct arasan_nfc *nfc, unsigned int event) +{ + u32 val; + int ret; + + ret = readl_relaxed_poll_timeout(nfc->base + INTR_STS_REG, val, + val & event, 0, + ANFC_DFLT_TIMEOUT_US); + if (ret) { + dev_err(nfc->dev, "Timeout waiting for event 0x%x\n", event); + return -ETIMEDOUT; + } + + writel_relaxed(event, nfc->base + INTR_STS_REG); + + return 0; +} + +static int anfc_wait_for_rb(struct arasan_nfc *nfc, struct nand_chip *chip, + unsigned int timeout_ms) +{ + struct anand *anand = to_anand(chip); + u32 val; + int ret; + + /* There is no R/B interrupt, we must poll a register */ + ret = readl_relaxed_poll_timeout(nfc->base + READY_STS_REG, val, + val & BIT(anand->rb), + 1, timeout_ms * 1000); + if (ret) { + dev_err(nfc->dev, "Timeout waiting for R/B 0x%x\n", + readl_relaxed(nfc->base + READY_STS_REG)); + return -ETIMEDOUT; + } + + return 0; +} + +static void anfc_trigger_op(struct arasan_nfc *nfc, struct anfc_op *nfc_op) +{ + writel_relaxed(nfc_op->pkt_reg, nfc->base + PKT_REG); + writel_relaxed(nfc_op->addr1_reg, nfc->base + MEM_ADDR1_REG); + writel_relaxed(nfc_op->addr2_reg, nfc->base + MEM_ADDR2_REG); + writel_relaxed(nfc_op->cmd_reg, nfc->base + CMD_REG); + writel_relaxed(nfc_op->prog_reg, nfc->base + PROG_REG); +} + +static int anfc_pkt_len_config(unsigned int len, unsigned int *steps, + unsigned int *pktsize) +{ + unsigned int nb, sz; + + for (nb = 1; nb < ANFC_MAX_STEPS; nb *= 2) { + sz = len / nb; + if (sz <= ANFC_MAX_PKT_SIZE) + break; + } + + if (sz * nb != len) + return -ENOTSUPP; + + if (steps) + *steps = nb; + + if (pktsize) + *pktsize = sz; + + return 0; +} + +static bool anfc_is_gpio_cs(struct arasan_nfc *nfc, int nfc_cs) +{ + return nfc_cs >= 0 && nfc->cs_array[nfc_cs]; +} + +static int anfc_relative_to_absolute_cs(struct anand *anand, int num) +{ + return anand->cs_idx[num]; +} + +static void anfc_assert_cs(struct arasan_nfc *nfc, unsigned int nfc_cs_idx) +{ + /* CS did not change: do nothing */ + if (nfc->cur_cs == nfc_cs_idx) + return; + + /* Deassert the previous CS if it was a GPIO */ + if (anfc_is_gpio_cs(nfc, nfc->cur_cs)) + gpiod_set_value_cansleep(nfc->cs_array[nfc->cur_cs], 1); + + /* Assert the new one */ + if (anfc_is_gpio_cs(nfc, nfc_cs_idx)) { + nfc->native_cs = nfc->spare_cs; + gpiod_set_value_cansleep(nfc->cs_array[nfc_cs_idx], 0); + } else { + nfc->native_cs = nfc_cs_idx; + } + + nfc->cur_cs = nfc_cs_idx; +} + +static int anfc_select_target(struct nand_chip *chip, int target) +{ + struct anand *anand = to_anand(chip); + struct arasan_nfc *nfc = to_anfc(chip->controller); + unsigned int nfc_cs_idx = anfc_relative_to_absolute_cs(anand, target); + int ret; + + anfc_assert_cs(nfc, nfc_cs_idx); + + /* Update the controller timings and the potential ECC configuration */ + writel_relaxed(anand->data_iface, nfc->base + DATA_INTERFACE_REG); + writel_relaxed(anand->timings, nfc->base + TIMING_REG); + + /* Update clock frequency */ + if (nfc->cur_clk != anand->clk) { + clk_disable_unprepare(nfc->bus_clk); + ret = clk_set_rate(nfc->bus_clk, anand->clk); + if (ret) { + dev_err(nfc->dev, "Failed to change clock rate\n"); + return ret; + } + + ret = clk_prepare_enable(nfc->bus_clk); + if (ret) { + dev_err(nfc->dev, + "Failed to re-enable the bus clock\n"); + return ret; + } + + nfc->cur_clk = anand->clk; + } + + return 0; +} + +/* + * When using the embedded hardware ECC engine, the controller is in charge of + * feeding the engine with, first, the ECC residue present in the data array. + * A typical read operation is: + * 1/ Assert the read operation by sending the relevant command/address cycles + * but targeting the column of the first ECC bytes in the OOB area instead of + * the main data directly. + * 2/ After having read the relevant number of ECC bytes, the controller uses + * the RNDOUT/RNDSTART commands which are set into the "ECC Spare Command + * Register" to move the pointer back at the beginning of the main data. + * 3/ It will read the content of the main area for a given size (pktsize) and + * will feed the ECC engine with this buffer again. + * 4/ The ECC engine derives the ECC bytes for the given data and compare them + * with the ones already received. It eventually trigger status flags and + * then set the "Buffer Read Ready" flag. + * 5/ The corrected data is then available for reading from the data port + * register. + * + * The hardware BCH ECC engine is known to be inconstent in BCH mode and never + * reports uncorrectable errors. Because of this bug, we have to use the + * software BCH implementation in the read path. + */ +static int anfc_read_page_hw_ecc(struct nand_chip *chip, u8 *buf, + int oob_required, int page) +{ + struct arasan_nfc *nfc = to_anfc(chip->controller); + struct mtd_info *mtd = nand_to_mtd(chip); + struct anand *anand = to_anand(chip); + unsigned int len = mtd->writesize + (oob_required ? mtd->oobsize : 0); + unsigned int max_bitflips = 0; + dma_addr_t dma_addr; + int step, ret; + struct anfc_op nfc_op = { + .pkt_reg = + PKT_SIZE(chip->ecc.size) | + PKT_STEPS(chip->ecc.steps), + .addr1_reg = + (page & 0xFF) << (8 * (anand->caddr_cycles)) | + (((page >> 8) & 0xFF) << (8 * (1 + anand->caddr_cycles))), + .addr2_reg = + ((page >> 16) & 0xFF) | + ADDR2_STRENGTH(anand->strength) | + ADDR2_CS(nfc->native_cs), + .cmd_reg = + CMD_1(NAND_CMD_READ0) | + CMD_2(NAND_CMD_READSTART) | + CMD_PAGE_SIZE(anand->page_sz) | + CMD_DMA_ENABLE | + CMD_NADDRS(anand->caddr_cycles + + anand->raddr_cycles), + .prog_reg = PROG_PGRD, + }; + + dma_addr = dma_map_single(nfc->dev, (void *)buf, len, DMA_FROM_DEVICE); + if (dma_mapping_error(nfc->dev, dma_addr)) { + dev_err(nfc->dev, "Buffer mapping error"); + return -EIO; + } + + writel_relaxed(lower_32_bits(dma_addr), nfc->base + DMA_ADDR0_REG); + writel_relaxed(upper_32_bits(dma_addr), nfc->base + DMA_ADDR1_REG); + + anfc_trigger_op(nfc, &nfc_op); + + ret = anfc_wait_for_event(nfc, XFER_COMPLETE); + dma_unmap_single(nfc->dev, dma_addr, len, DMA_FROM_DEVICE); + if (ret) { + dev_err(nfc->dev, "Error reading page %d\n", page); + return ret; + } + + /* Store the raw OOB bytes as well */ + ret = nand_change_read_column_op(chip, mtd->writesize, chip->oob_poi, + mtd->oobsize, 0); + if (ret) + return ret; + + /* + * For each step, compute by softare the BCH syndrome over the raw data. + * Compare the theoretical amount of errors and compare with the + * hardware engine feedback. + */ + for (step = 0; step < chip->ecc.steps; step++) { + u8 *raw_buf = &buf[step * chip->ecc.size]; + unsigned int bit, byte; + int bf, i; + + /* Extract the syndrome, it is not necessarily aligned */ + memset(anand->hw_ecc, 0, chip->ecc.bytes); + nand_extract_bits(anand->hw_ecc, 0, + &chip->oob_poi[mtd->oobsize - anand->ecc_total], + anand->ecc_bits * step, anand->ecc_bits); + + bf = bch_decode(anand->bch, raw_buf, chip->ecc.size, + anand->hw_ecc, NULL, NULL, anand->errloc); + if (!bf) { + continue; + } else if (bf > 0) { + for (i = 0; i < bf; i++) { + /* Only correct the data, not the syndrome */ + if (anand->errloc[i] < (chip->ecc.size * 8)) { + bit = BIT(anand->errloc[i] & 7); + byte = anand->errloc[i] >> 3; + raw_buf[byte] ^= bit; + } + } + + mtd->ecc_stats.corrected += bf; + max_bitflips = max_t(unsigned int, max_bitflips, bf); + + continue; + } + + bf = nand_check_erased_ecc_chunk(raw_buf, chip->ecc.size, + NULL, 0, NULL, 0, + chip->ecc.strength); + if (bf > 0) { + mtd->ecc_stats.corrected += bf; + max_bitflips = max_t(unsigned int, max_bitflips, bf); + memset(raw_buf, 0xFF, chip->ecc.size); + } else if (bf < 0) { + mtd->ecc_stats.failed++; + } + } + + return 0; +} + +static int anfc_sel_read_page_hw_ecc(struct nand_chip *chip, u8 *buf, + int oob_required, int page) +{ + int ret; + + ret = anfc_select_target(chip, chip->cur_cs); + if (ret) + return ret; + + return anfc_read_page_hw_ecc(chip, buf, oob_required, page); +}; + +static int anfc_write_page_hw_ecc(struct nand_chip *chip, const u8 *buf, + int oob_required, int page) +{ + struct anand *anand = to_anand(chip); + struct arasan_nfc *nfc = to_anfc(chip->controller); + struct mtd_info *mtd = nand_to_mtd(chip); + unsigned int len = mtd->writesize + (oob_required ? mtd->oobsize : 0); + dma_addr_t dma_addr; + u8 status; + int ret; + struct anfc_op nfc_op = { + .pkt_reg = + PKT_SIZE(chip->ecc.size) | + PKT_STEPS(chip->ecc.steps), + .addr1_reg = + (page & 0xFF) << (8 * (anand->caddr_cycles)) | + (((page >> 8) & 0xFF) << (8 * (1 + anand->caddr_cycles))), + .addr2_reg = + ((page >> 16) & 0xFF) | + ADDR2_STRENGTH(anand->strength) | + ADDR2_CS(nfc->native_cs), + .cmd_reg = + CMD_1(NAND_CMD_SEQIN) | + CMD_2(NAND_CMD_PAGEPROG) | + CMD_PAGE_SIZE(anand->page_sz) | + CMD_DMA_ENABLE | + CMD_NADDRS(anand->caddr_cycles + + anand->raddr_cycles) | + CMD_ECC_ENABLE, + .prog_reg = PROG_PGPROG, + }; + + writel_relaxed(anand->ecc_conf, nfc->base + ECC_CONF_REG); + writel_relaxed(ECC_SP_CMD1(NAND_CMD_RNDIN) | + ECC_SP_ADDRS(anand->caddr_cycles), + nfc->base + ECC_SP_REG); + + dma_addr = dma_map_single(nfc->dev, (void *)buf, len, DMA_TO_DEVICE); + if (dma_mapping_error(nfc->dev, dma_addr)) { + dev_err(nfc->dev, "Buffer mapping error"); + return -EIO; + } + + writel_relaxed(lower_32_bits(dma_addr), nfc->base + DMA_ADDR0_REG); + writel_relaxed(upper_32_bits(dma_addr), nfc->base + DMA_ADDR1_REG); + + anfc_trigger_op(nfc, &nfc_op); + ret = anfc_wait_for_event(nfc, XFER_COMPLETE); + dma_unmap_single(nfc->dev, dma_addr, len, DMA_TO_DEVICE); + if (ret) { + dev_err(nfc->dev, "Error writing page %d\n", page); + return ret; + } + + /* Spare data is not protected */ + if (oob_required) { + ret = nand_write_oob_std(chip, page); + if (ret) + return ret; + } + + /* Check write status on the chip side */ + ret = nand_status_op(chip, &status); + if (ret) + return ret; + + if (status & NAND_STATUS_FAIL) + return -EIO; + + return 0; +} + +static int anfc_sel_write_page_hw_ecc(struct nand_chip *chip, const u8 *buf, + int oob_required, int page) +{ + int ret; + + ret = anfc_select_target(chip, chip->cur_cs); + if (ret) + return ret; + + return anfc_write_page_hw_ecc(chip, buf, oob_required, page); +}; + +/* NAND framework ->exec_op() hooks and related helpers */ +static int anfc_parse_instructions(struct nand_chip *chip, + const struct nand_subop *subop, + struct anfc_op *nfc_op) +{ + struct arasan_nfc *nfc = to_anfc(chip->controller); + struct anand *anand = to_anand(chip); + const struct nand_op_instr *instr = NULL; + bool first_cmd = true; + unsigned int op_id; + int ret, i; + + memset(nfc_op, 0, sizeof(*nfc_op)); + nfc_op->addr2_reg = ADDR2_CS(nfc->native_cs); + nfc_op->cmd_reg = CMD_PAGE_SIZE(anand->page_sz); + + for (op_id = 0; op_id < subop->ninstrs; op_id++) { + unsigned int offset, naddrs, pktsize; + const u8 *addrs; + u8 *buf; + + instr = &subop->instrs[op_id]; + + switch (instr->type) { + case NAND_OP_CMD_INSTR: + if (first_cmd) + nfc_op->cmd_reg |= CMD_1(instr->ctx.cmd.opcode); + else + nfc_op->cmd_reg |= CMD_2(instr->ctx.cmd.opcode); + + first_cmd = false; + break; + + case NAND_OP_ADDR_INSTR: + offset = nand_subop_get_addr_start_off(subop, op_id); + naddrs = nand_subop_get_num_addr_cyc(subop, op_id); + addrs = &instr->ctx.addr.addrs[offset]; + nfc_op->cmd_reg |= CMD_NADDRS(naddrs); + + for (i = 0; i < min(ANFC_MAX_ADDR_CYC, naddrs); i++) { + if (i < 4) + nfc_op->addr1_reg |= (u32)addrs[i] << i * 8; + else + nfc_op->addr2_reg |= addrs[i]; + } + + break; + case NAND_OP_DATA_IN_INSTR: + nfc_op->read = true; + fallthrough; + case NAND_OP_DATA_OUT_INSTR: + offset = nand_subop_get_data_start_off(subop, op_id); + buf = instr->ctx.data.buf.in; + nfc_op->buf = &buf[offset]; + nfc_op->len = nand_subop_get_data_len(subop, op_id); + ret = anfc_pkt_len_config(nfc_op->len, &nfc_op->steps, + &pktsize); + if (ret) + return ret; + + /* + * Number of DATA cycles must be aligned on 4, this + * means the controller might read/write more than + * requested. This is harmless most of the time as extra + * DATA are discarded in the write path and read pointer + * adjusted in the read path. + * + * FIXME: The core should mark operations where + * reading/writing more is allowed so the exec_op() + * implementation can take the right decision when the + * alignment constraint is not met: adjust the number of + * DATA cycles when it's allowed, reject the operation + * otherwise. + */ + nfc_op->pkt_reg |= PKT_SIZE(round_up(pktsize, 4)) | + PKT_STEPS(nfc_op->steps); + break; + case NAND_OP_WAITRDY_INSTR: + nfc_op->rdy_timeout_ms = instr->ctx.waitrdy.timeout_ms; + break; + } + } + + return 0; +} + +static int anfc_rw_pio_op(struct arasan_nfc *nfc, struct anfc_op *nfc_op) +{ + unsigned int dwords = (nfc_op->len / 4) / nfc_op->steps; + unsigned int last_len = nfc_op->len % 4; + unsigned int offset, dir; + u8 *buf = nfc_op->buf; + int ret, i; + + for (i = 0; i < nfc_op->steps; i++) { + dir = nfc_op->read ? READ_READY : WRITE_READY; + ret = anfc_wait_for_event(nfc, dir); + if (ret) { + dev_err(nfc->dev, "PIO %s ready signal not received\n", + nfc_op->read ? "Read" : "Write"); + return ret; + } + + offset = i * (dwords * 4); + if (nfc_op->read) + ioread32_rep(nfc->base + DATA_PORT_REG, &buf[offset], + dwords); + else + iowrite32_rep(nfc->base + DATA_PORT_REG, &buf[offset], + dwords); + } + + if (last_len) { + u32 remainder; + + offset = nfc_op->len - last_len; + + if (nfc_op->read) { + remainder = readl_relaxed(nfc->base + DATA_PORT_REG); + memcpy(&buf[offset], &remainder, last_len); + } else { + memcpy(&remainder, &buf[offset], last_len); + writel_relaxed(remainder, nfc->base + DATA_PORT_REG); + } + } + + return anfc_wait_for_event(nfc, XFER_COMPLETE); +} + +static int anfc_misc_data_type_exec(struct nand_chip *chip, + const struct nand_subop *subop, + u32 prog_reg) +{ + struct arasan_nfc *nfc = to_anfc(chip->controller); + struct anfc_op nfc_op = {}; + int ret; + + ret = anfc_parse_instructions(chip, subop, &nfc_op); + if (ret) + return ret; + + nfc_op.prog_reg = prog_reg; + anfc_trigger_op(nfc, &nfc_op); + + if (nfc_op.rdy_timeout_ms) { + ret = anfc_wait_for_rb(nfc, chip, nfc_op.rdy_timeout_ms); + if (ret) + return ret; + } + + return anfc_rw_pio_op(nfc, &nfc_op); +} + +static int anfc_param_read_type_exec(struct nand_chip *chip, + const struct nand_subop *subop) +{ + return anfc_misc_data_type_exec(chip, subop, PROG_RDPARAM); +} + +static int anfc_data_read_type_exec(struct nand_chip *chip, + const struct nand_subop *subop) +{ + u32 prog_reg = PROG_PGRD; + + /* + * Experience shows that while in SDR mode sending a CHANGE READ COLUMN + * command through the READ PAGE "type" always works fine, when in + * NV-DDR mode the same command simply fails. However, it was also + * spotted that any CHANGE READ COLUMN command sent through the CHANGE + * READ COLUMN ENHANCED "type" would correctly work in both cases (SDR + * and NV-DDR). So, for simplicity, let's program the controller with + * the CHANGE READ COLUMN ENHANCED "type" whenever we are requested to + * perform a CHANGE READ COLUMN operation. + */ + if (subop->instrs[0].ctx.cmd.opcode == NAND_CMD_RNDOUT && + subop->instrs[2].ctx.cmd.opcode == NAND_CMD_RNDOUTSTART) + prog_reg = PROG_CHG_RD_COL_ENH; + + return anfc_misc_data_type_exec(chip, subop, prog_reg); +} + +static int anfc_param_write_type_exec(struct nand_chip *chip, + const struct nand_subop *subop) +{ + return anfc_misc_data_type_exec(chip, subop, PROG_SET_FEATURE); +} + +static int anfc_data_write_type_exec(struct nand_chip *chip, + const struct nand_subop *subop) +{ + return anfc_misc_data_type_exec(chip, subop, PROG_PGPROG); +} + +static int anfc_misc_zerolen_type_exec(struct nand_chip *chip, + const struct nand_subop *subop, + u32 prog_reg) +{ + struct arasan_nfc *nfc = to_anfc(chip->controller); + struct anfc_op nfc_op = {}; + int ret; + + ret = anfc_parse_instructions(chip, subop, &nfc_op); + if (ret) + return ret; + + nfc_op.prog_reg = prog_reg; + anfc_trigger_op(nfc, &nfc_op); + + ret = anfc_wait_for_event(nfc, XFER_COMPLETE); + if (ret) + return ret; + + if (nfc_op.rdy_timeout_ms) + ret = anfc_wait_for_rb(nfc, chip, nfc_op.rdy_timeout_ms); + + return ret; +} + +static int anfc_status_type_exec(struct nand_chip *chip, + const struct nand_subop *subop) +{ + struct arasan_nfc *nfc = to_anfc(chip->controller); + u32 tmp; + int ret; + + /* See anfc_check_op() for details about this constraint */ + if (subop->instrs[0].ctx.cmd.opcode != NAND_CMD_STATUS) + return -ENOTSUPP; + + ret = anfc_misc_zerolen_type_exec(chip, subop, PROG_STATUS); + if (ret) + return ret; + + tmp = readl_relaxed(nfc->base + FLASH_STS_REG); + memcpy(subop->instrs[1].ctx.data.buf.in, &tmp, 1); + + return 0; +} + +static int anfc_reset_type_exec(struct nand_chip *chip, + const struct nand_subop *subop) +{ + return anfc_misc_zerolen_type_exec(chip, subop, PROG_RST); +} + +static int anfc_erase_type_exec(struct nand_chip *chip, + const struct nand_subop *subop) +{ + return anfc_misc_zerolen_type_exec(chip, subop, PROG_ERASE); +} + +static int anfc_wait_type_exec(struct nand_chip *chip, + const struct nand_subop *subop) +{ + struct arasan_nfc *nfc = to_anfc(chip->controller); + struct anfc_op nfc_op = {}; + int ret; + + ret = anfc_parse_instructions(chip, subop, &nfc_op); + if (ret) + return ret; + + return anfc_wait_for_rb(nfc, chip, nfc_op.rdy_timeout_ms); +} + +static const struct nand_op_parser anfc_op_parser = NAND_OP_PARSER( + NAND_OP_PARSER_PATTERN( + anfc_param_read_type_exec, + NAND_OP_PARSER_PAT_CMD_ELEM(false), + NAND_OP_PARSER_PAT_ADDR_ELEM(false, ANFC_MAX_ADDR_CYC), + NAND_OP_PARSER_PAT_WAITRDY_ELEM(true), + NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, ANFC_MAX_CHUNK_SIZE)), + NAND_OP_PARSER_PATTERN( + anfc_param_write_type_exec, + NAND_OP_PARSER_PAT_CMD_ELEM(false), + NAND_OP_PARSER_PAT_ADDR_ELEM(false, ANFC_MAX_ADDR_CYC), + NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, ANFC_MAX_PARAM_SIZE)), + NAND_OP_PARSER_PATTERN( + anfc_data_read_type_exec, + NAND_OP_PARSER_PAT_CMD_ELEM(false), + NAND_OP_PARSER_PAT_ADDR_ELEM(false, ANFC_MAX_ADDR_CYC), + NAND_OP_PARSER_PAT_CMD_ELEM(false), + NAND_OP_PARSER_PAT_WAITRDY_ELEM(true), + NAND_OP_PARSER_PAT_DATA_IN_ELEM(true, ANFC_MAX_CHUNK_SIZE)), + NAND_OP_PARSER_PATTERN( + anfc_data_write_type_exec, + NAND_OP_PARSER_PAT_CMD_ELEM(false), + NAND_OP_PARSER_PAT_ADDR_ELEM(false, ANFC_MAX_ADDR_CYC), + NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, ANFC_MAX_CHUNK_SIZE), + NAND_OP_PARSER_PAT_CMD_ELEM(false)), + NAND_OP_PARSER_PATTERN( + anfc_reset_type_exec, + NAND_OP_PARSER_PAT_CMD_ELEM(false), + NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)), + NAND_OP_PARSER_PATTERN( + anfc_erase_type_exec, + NAND_OP_PARSER_PAT_CMD_ELEM(false), + NAND_OP_PARSER_PAT_ADDR_ELEM(false, ANFC_MAX_ADDR_CYC), + NAND_OP_PARSER_PAT_CMD_ELEM(false), + NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)), + NAND_OP_PARSER_PATTERN( + anfc_status_type_exec, + NAND_OP_PARSER_PAT_CMD_ELEM(false), + NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, ANFC_MAX_CHUNK_SIZE)), + NAND_OP_PARSER_PATTERN( + anfc_wait_type_exec, + NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)), + ); + +static int anfc_check_op(struct nand_chip *chip, + const struct nand_operation *op) +{ + const struct nand_op_instr *instr; + int op_id; + + /* + * The controller abstracts all the NAND operations and do not support + * data only operations. + * + * TODO: The nand_op_parser framework should be extended to + * support custom checks on DATA instructions. + */ + for (op_id = 0; op_id < op->ninstrs; op_id++) { + instr = &op->instrs[op_id]; + + switch (instr->type) { + case NAND_OP_ADDR_INSTR: + if (instr->ctx.addr.naddrs > ANFC_MAX_ADDR_CYC) + return -ENOTSUPP; + + break; + case NAND_OP_DATA_IN_INSTR: + case NAND_OP_DATA_OUT_INSTR: + if (instr->ctx.data.len > ANFC_MAX_CHUNK_SIZE) + return -ENOTSUPP; + + if (anfc_pkt_len_config(instr->ctx.data.len, NULL, NULL)) + return -ENOTSUPP; + + break; + default: + break; + } + } + + /* + * The controller does not allow to proceed with a CMD+DATA_IN cycle + * manually on the bus by reading data from the data register. Instead, + * the controller abstract a status read operation with its own status + * register after ordering a read status operation. Hence, we cannot + * support any CMD+DATA_IN operation other than a READ STATUS. + * + * TODO: The nand_op_parser() framework should be extended to describe + * fixed patterns instead of open-coding this check here. + */ + if (op->ninstrs == 2 && + op->instrs[0].type == NAND_OP_CMD_INSTR && + op->instrs[0].ctx.cmd.opcode != NAND_CMD_STATUS && + op->instrs[1].type == NAND_OP_DATA_IN_INSTR) + return -ENOTSUPP; + + return nand_op_parser_exec_op(chip, &anfc_op_parser, op, true); +} + +static int anfc_exec_op(struct nand_chip *chip, + const struct nand_operation *op, + bool check_only) +{ + int ret; + + if (check_only) + return anfc_check_op(chip, op); + + ret = anfc_select_target(chip, op->cs); + if (ret) + return ret; + + return nand_op_parser_exec_op(chip, &anfc_op_parser, op, check_only); +} + +static int anfc_setup_interface(struct nand_chip *chip, int target, + const struct nand_interface_config *conf) +{ + struct anand *anand = to_anand(chip); + struct arasan_nfc *nfc = to_anfc(chip->controller); + struct device_node *np = nfc->dev->of_node; + const struct nand_sdr_timings *sdr; + const struct nand_nvddr_timings *nvddr; + unsigned int tccs_min, dqs_mode, fast_tcad; + + if (nand_interface_is_nvddr(conf)) { + nvddr = nand_get_nvddr_timings(conf); + if (IS_ERR(nvddr)) + return PTR_ERR(nvddr); + } else { + sdr = nand_get_sdr_timings(conf); + if (IS_ERR(sdr)) + return PTR_ERR(sdr); + } + + if (target < 0) + return 0; + + if (nand_interface_is_sdr(conf)) { + anand->data_iface = DIFACE_SDR | + DIFACE_SDR_MODE(conf->timings.mode); + anand->timings = 0; + } else { + anand->data_iface = DIFACE_NVDDR | + DIFACE_DDR_MODE(conf->timings.mode); + + if (conf->timings.nvddr.tCCS_min <= 100000) + tccs_min = TCCS_TIME_100NS; + else if (conf->timings.nvddr.tCCS_min <= 200000) + tccs_min = TCCS_TIME_200NS; + else if (conf->timings.nvddr.tCCS_min <= 300000) + tccs_min = TCCS_TIME_300NS; + else + tccs_min = TCCS_TIME_500NS; + + fast_tcad = 0; + if (conf->timings.nvddr.tCAD_min < 45000) + fast_tcad = FAST_TCAD; + + switch (conf->timings.mode) { + case 5: + case 4: + dqs_mode = 2; + break; + case 3: + dqs_mode = 3; + break; + case 2: + dqs_mode = 4; + break; + case 1: + dqs_mode = 5; + break; + case 0: + default: + dqs_mode = 6; + break; + } + + anand->timings = tccs_min | fast_tcad | + DQS_BUFF_SEL_IN(dqs_mode) | + DQS_BUFF_SEL_OUT(dqs_mode); + } + + if (nand_interface_is_sdr(conf)) { + anand->clk = ANFC_XLNX_SDR_DFLT_CORE_CLK; + } else { + /* ONFI timings are defined in picoseconds */ + anand->clk = div_u64((u64)NSEC_PER_SEC * 1000, + conf->timings.nvddr.tCK_min); + } + + /* + * Due to a hardware bug in the ZynqMP SoC, SDR timing modes 0-1 work + * with f > 90MHz (default clock is 100MHz) but signals are unstable + * with higher modes. Hence we decrease a little bit the clock rate to + * 80MHz when using SDR modes 2-5 with this SoC. + */ + if (of_device_is_compatible(np, "xlnx,zynqmp-nand-controller") && + nand_interface_is_sdr(conf) && conf->timings.mode >= 2) + anand->clk = ANFC_XLNX_SDR_HS_CORE_CLK; + + return 0; +} + +static int anfc_calc_hw_ecc_bytes(int step_size, int strength) +{ + unsigned int bch_gf_mag, ecc_bits; + + switch (step_size) { + case SZ_512: + bch_gf_mag = 13; + break; + case SZ_1K: + bch_gf_mag = 14; + break; + default: + return -EINVAL; + } + + ecc_bits = bch_gf_mag * strength; + + return DIV_ROUND_UP(ecc_bits, 8); +} + +static const int anfc_hw_ecc_512_strengths[] = {4, 8, 12}; + +static const int anfc_hw_ecc_1024_strengths[] = {24}; + +static const struct nand_ecc_step_info anfc_hw_ecc_step_infos[] = { + { + .stepsize = SZ_512, + .strengths = anfc_hw_ecc_512_strengths, + .nstrengths = ARRAY_SIZE(anfc_hw_ecc_512_strengths), + }, + { + .stepsize = SZ_1K, + .strengths = anfc_hw_ecc_1024_strengths, + .nstrengths = ARRAY_SIZE(anfc_hw_ecc_1024_strengths), + }, +}; + +static const struct nand_ecc_caps anfc_hw_ecc_caps = { + .stepinfos = anfc_hw_ecc_step_infos, + .nstepinfos = ARRAY_SIZE(anfc_hw_ecc_step_infos), + .calc_ecc_bytes = anfc_calc_hw_ecc_bytes, +}; + +static int anfc_init_hw_ecc_controller(struct arasan_nfc *nfc, + struct nand_chip *chip) +{ + struct anand *anand = to_anand(chip); + struct mtd_info *mtd = nand_to_mtd(chip); + struct nand_ecc_ctrl *ecc = &chip->ecc; + unsigned int bch_prim_poly = 0, bch_gf_mag = 0, ecc_offset; + int ret; + + switch (mtd->writesize) { + case SZ_512: + case SZ_2K: + case SZ_4K: + case SZ_8K: + case SZ_16K: + break; + default: + dev_err(nfc->dev, "Unsupported page size %d\n", mtd->writesize); + return -EINVAL; + } + + ret = nand_ecc_choose_conf(chip, &anfc_hw_ecc_caps, mtd->oobsize); + if (ret) + return ret; + + switch (ecc->strength) { + case 12: + anand->strength = 0x1; + break; + case 8: + anand->strength = 0x2; + break; + case 4: + anand->strength = 0x3; + break; + case 24: + anand->strength = 0x4; + break; + default: + dev_err(nfc->dev, "Unsupported strength %d\n", ecc->strength); + return -EINVAL; + } + + switch (ecc->size) { + case SZ_512: + bch_gf_mag = 13; + bch_prim_poly = 0x201b; + break; + case SZ_1K: + bch_gf_mag = 14; + bch_prim_poly = 0x4443; + break; + default: + dev_err(nfc->dev, "Unsupported step size %d\n", ecc->strength); + return -EINVAL; + } + + mtd_set_ooblayout(mtd, nand_get_large_page_ooblayout()); + + ecc->steps = mtd->writesize / ecc->size; + ecc->algo = NAND_ECC_ALGO_BCH; + anand->ecc_bits = bch_gf_mag * ecc->strength; + ecc->bytes = DIV_ROUND_UP(anand->ecc_bits, 8); + anand->ecc_total = DIV_ROUND_UP(anand->ecc_bits * ecc->steps, 8); + ecc_offset = mtd->writesize + mtd->oobsize - anand->ecc_total; + anand->ecc_conf = ECC_CONF_COL(ecc_offset) | + ECC_CONF_LEN(anand->ecc_total) | + ECC_CONF_BCH_EN; + + anand->errloc = devm_kmalloc_array(nfc->dev, ecc->strength, + sizeof(*anand->errloc), GFP_KERNEL); + if (!anand->errloc) + return -ENOMEM; + + anand->hw_ecc = devm_kmalloc(nfc->dev, ecc->bytes, GFP_KERNEL); + if (!anand->hw_ecc) + return -ENOMEM; + + /* Enforce bit swapping to fit the hardware */ + anand->bch = bch_init(bch_gf_mag, ecc->strength, bch_prim_poly, true); + if (!anand->bch) + return -EINVAL; + + ecc->read_page = anfc_sel_read_page_hw_ecc; + ecc->write_page = anfc_sel_write_page_hw_ecc; + + return 0; +} + +static int anfc_attach_chip(struct nand_chip *chip) +{ + struct anand *anand = to_anand(chip); + struct arasan_nfc *nfc = to_anfc(chip->controller); + struct mtd_info *mtd = nand_to_mtd(chip); + int ret = 0; + + if (mtd->writesize <= SZ_512) + anand->caddr_cycles = 1; + else + anand->caddr_cycles = 2; + + if (chip->options & NAND_ROW_ADDR_3) + anand->raddr_cycles = 3; + else + anand->raddr_cycles = 2; + + switch (mtd->writesize) { + case 512: + anand->page_sz = 0; + break; + case 1024: + anand->page_sz = 5; + break; + case 2048: + anand->page_sz = 1; + break; + case 4096: + anand->page_sz = 2; + break; + case 8192: + anand->page_sz = 3; + break; + case 16384: + anand->page_sz = 4; + break; + default: + return -EINVAL; + } + + /* These hooks are valid for all ECC providers */ + chip->ecc.read_page_raw = nand_monolithic_read_page_raw; + chip->ecc.write_page_raw = nand_monolithic_write_page_raw; + + switch (chip->ecc.engine_type) { + case NAND_ECC_ENGINE_TYPE_NONE: + case NAND_ECC_ENGINE_TYPE_SOFT: + case NAND_ECC_ENGINE_TYPE_ON_DIE: + break; + case NAND_ECC_ENGINE_TYPE_ON_HOST: + ret = anfc_init_hw_ecc_controller(nfc, chip); + break; + default: + dev_err(nfc->dev, "Unsupported ECC mode: %d\n", + chip->ecc.engine_type); + return -EINVAL; + } + + return ret; +} + +static void anfc_detach_chip(struct nand_chip *chip) +{ + struct anand *anand = to_anand(chip); + + if (anand->bch) + bch_free(anand->bch); +} + +static const struct nand_controller_ops anfc_ops = { + .exec_op = anfc_exec_op, + .setup_interface = anfc_setup_interface, + .attach_chip = anfc_attach_chip, + .detach_chip = anfc_detach_chip, +}; + +static int anfc_chip_init(struct arasan_nfc *nfc, struct device_node *np) +{ + struct anand *anand; + struct nand_chip *chip; + struct mtd_info *mtd; + int rb, ret, i; + + anand = devm_kzalloc(nfc->dev, sizeof(*anand), GFP_KERNEL); + if (!anand) + return -ENOMEM; + + /* Chip-select init */ + anand->ncs_idx = of_property_count_elems_of_size(np, "reg", sizeof(u32)); + if (anand->ncs_idx <= 0 || anand->ncs_idx > nfc->ncs) { + dev_err(nfc->dev, "Invalid reg property\n"); + return -EINVAL; + } + + anand->cs_idx = devm_kcalloc(nfc->dev, anand->ncs_idx, + sizeof(*anand->cs_idx), GFP_KERNEL); + if (!anand->cs_idx) + return -ENOMEM; + + for (i = 0; i < anand->ncs_idx; i++) { + ret = of_property_read_u32_index(np, "reg", i, + &anand->cs_idx[i]); + if (ret) { + dev_err(nfc->dev, "invalid CS property: %d\n", ret); + return ret; + } + } + + /* Ready-busy init */ + ret = of_property_read_u32(np, "nand-rb", &rb); + if (ret) + return ret; + + if (rb >= ANFC_MAX_CS) { + dev_err(nfc->dev, "Wrong RB %d\n", rb); + return -EINVAL; + } + + anand->rb = rb; + + chip = &anand->chip; + mtd = nand_to_mtd(chip); + mtd->dev.parent = nfc->dev; + chip->controller = &nfc->controller; + chip->options = NAND_BUSWIDTH_AUTO | NAND_NO_SUBPAGE_WRITE | + NAND_USES_DMA; + + nand_set_flash_node(chip, np); + if (!mtd->name) { + dev_err(nfc->dev, "NAND label property is mandatory\n"); + return -EINVAL; + } + + ret = nand_scan(chip, anand->ncs_idx); + if (ret) { + dev_err(nfc->dev, "Scan operation failed\n"); + return ret; + } + + ret = mtd_device_register(mtd, NULL, 0); + if (ret) { + nand_cleanup(chip); + return ret; + } + + list_add_tail(&anand->node, &nfc->chips); + + return 0; +} + +static void anfc_chips_cleanup(struct arasan_nfc *nfc) +{ + struct anand *anand, *tmp; + struct nand_chip *chip; + int ret; + + list_for_each_entry_safe(anand, tmp, &nfc->chips, node) { + chip = &anand->chip; + ret = mtd_device_unregister(nand_to_mtd(chip)); + WARN_ON(ret); + nand_cleanup(chip); + list_del(&anand->node); + } +} + +static int anfc_chips_init(struct arasan_nfc *nfc) +{ + struct device_node *np = nfc->dev->of_node, *nand_np; + int nchips = of_get_child_count(np); + int ret; + + if (!nchips) { + dev_err(nfc->dev, "Incorrect number of NAND chips (%d)\n", + nchips); + return -EINVAL; + } + + for_each_child_of_node(np, nand_np) { + ret = anfc_chip_init(nfc, nand_np); + if (ret) { + of_node_put(nand_np); + anfc_chips_cleanup(nfc); + break; + } + } + + return ret; +} + +static void anfc_reset(struct arasan_nfc *nfc) +{ + /* Disable interrupt signals */ + writel_relaxed(0, nfc->base + INTR_SIG_EN_REG); + + /* Enable interrupt status */ + writel_relaxed(EVENT_MASK, nfc->base + INTR_STS_EN_REG); + + nfc->cur_cs = -1; +} + +static int anfc_parse_cs(struct arasan_nfc *nfc) +{ + int ret; + + /* Check the gpio-cs property */ + ret = rawnand_dt_parse_gpio_cs(nfc->dev, &nfc->cs_array, &nfc->ncs); + if (ret) + return ret; + + /* + * The controller native CS cannot be both disabled at the same time. + * Hence, only one native CS can be used if GPIO CS are needed, so that + * the other is selected when a non-native CS must be asserted (not + * wired physically or configured as GPIO instead of NAND CS). In this + * case, the "not" chosen CS is assigned to nfc->spare_cs and selected + * whenever a GPIO CS must be asserted. + */ + if (nfc->cs_array && nfc->ncs > 2) { + if (!nfc->cs_array[0] && !nfc->cs_array[1]) { + dev_err(nfc->dev, + "Assign a single native CS when using GPIOs\n"); + return -EINVAL; + } + + if (nfc->cs_array[0]) + nfc->spare_cs = 0; + else + nfc->spare_cs = 1; + } + + if (!nfc->cs_array) { + nfc->cs_array = anfc_default_cs_array; + nfc->ncs = ANFC_MAX_CS; + return 0; + } + + return 0; +} + +static int anfc_probe(struct platform_device *pdev) +{ + struct arasan_nfc *nfc; + int ret; + + nfc = devm_kzalloc(&pdev->dev, sizeof(*nfc), GFP_KERNEL); + if (!nfc) + return -ENOMEM; + + nfc->dev = &pdev->dev; + nand_controller_init(&nfc->controller); + nfc->controller.ops = &anfc_ops; + INIT_LIST_HEAD(&nfc->chips); + + nfc->base = devm_platform_ioremap_resource(pdev, 0); + if (IS_ERR(nfc->base)) + return PTR_ERR(nfc->base); + + anfc_reset(nfc); + + nfc->controller_clk = devm_clk_get_enabled(&pdev->dev, "controller"); + if (IS_ERR(nfc->controller_clk)) + return PTR_ERR(nfc->controller_clk); + + nfc->bus_clk = devm_clk_get_enabled(&pdev->dev, "bus"); + if (IS_ERR(nfc->bus_clk)) + return PTR_ERR(nfc->bus_clk); + + ret = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64)); + if (ret) + return ret; + + ret = anfc_parse_cs(nfc); + if (ret) + return ret; + + ret = anfc_chips_init(nfc); + if (ret) + return ret; + + platform_set_drvdata(pdev, nfc); + + return 0; +} + +static void anfc_remove(struct platform_device *pdev) +{ + struct arasan_nfc *nfc = platform_get_drvdata(pdev); + + anfc_chips_cleanup(nfc); +} + +static const struct of_device_id anfc_ids[] = { + { + .compatible = "xlnx,zynqmp-nand-controller", + }, + { + .compatible = "arasan,nfc-v3p10", + }, + {} +}; +MODULE_DEVICE_TABLE(of, anfc_ids); + +static struct platform_driver anfc_driver = { + .driver = { + .name = "arasan-nand-controller", + .of_match_table = anfc_ids, + }, + .probe = anfc_probe, + .remove_new = anfc_remove, +}; +module_platform_driver(anfc_driver); + +MODULE_LICENSE("GPL v2"); +MODULE_AUTHOR("Punnaiah Choudary Kalluri <punnaia@xilinx.com>"); +MODULE_AUTHOR("Naga Sureshkumar Relli <nagasure@xilinx.com>"); +MODULE_AUTHOR("Miquel Raynal <miquel.raynal@bootlin.com>"); +MODULE_DESCRIPTION("Arasan NAND Flash Controller Driver"); diff --git a/drivers/mtd/nand/raw/atmel/Makefile b/drivers/mtd/nand/raw/atmel/Makefile new file mode 100644 index 0000000000..27c2dd50e8 --- /dev/null +++ b/drivers/mtd/nand/raw/atmel/Makefile @@ -0,0 +1,5 @@ +# SPDX-License-Identifier: GPL-2.0-only +obj-$(CONFIG_MTD_NAND_ATMEL) += atmel-nand-controller.o atmel-pmecc.o + +atmel-nand-controller-objs := nand-controller.o +atmel-pmecc-objs := pmecc.o diff --git a/drivers/mtd/nand/raw/atmel/nand-controller.c b/drivers/mtd/nand/raw/atmel/nand-controller.c new file mode 100644 index 0000000000..3f494f7c7e --- /dev/null +++ b/drivers/mtd/nand/raw/atmel/nand-controller.c @@ -0,0 +1,2670 @@ +// SPDX-License-Identifier: GPL-2.0 +/* + * Copyright 2017 ATMEL + * Copyright 2017 Free Electrons + * + * Author: Boris Brezillon <boris.brezillon@free-electrons.com> + * + * Derived from the atmel_nand.c driver which contained the following + * copyrights: + * + * Copyright 2003 Rick Bronson + * + * Derived from drivers/mtd/nand/autcpu12.c (removed in v3.8) + * Copyright 2001 Thomas Gleixner (gleixner@autronix.de) + * + * Derived from drivers/mtd/spia.c (removed in v3.8) + * Copyright 2000 Steven J. Hill (sjhill@cotw.com) + * + * + * Add Hardware ECC support for AT91SAM9260 / AT91SAM9263 + * Richard Genoud (richard.genoud@gmail.com), Adeneo Copyright 2007 + * + * Derived from Das U-Boot source code + * (u-boot-1.1.5/board/atmel/at91sam9263ek/nand.c) + * Copyright 2006 ATMEL Rousset, Lacressonniere Nicolas + * + * Add Programmable Multibit ECC support for various AT91 SoC + * Copyright 2012 ATMEL, Hong Xu + * + * Add Nand Flash Controller support for SAMA5 SoC + * Copyright 2013 ATMEL, Josh Wu (josh.wu@atmel.com) + * + * A few words about the naming convention in this file. This convention + * applies to structure and function names. + * + * Prefixes: + * + * - atmel_nand_: all generic structures/functions + * - atmel_smc_nand_: all structures/functions specific to the SMC interface + * (at91sam9 and avr32 SoCs) + * - atmel_hsmc_nand_: all structures/functions specific to the HSMC interface + * (sama5 SoCs and later) + * - atmel_nfc_: all structures/functions used to manipulate the NFC sub-block + * that is available in the HSMC block + * - <soc>_nand_: all SoC specific structures/functions + */ + +#include <linux/clk.h> +#include <linux/dma-mapping.h> +#include <linux/dmaengine.h> +#include <linux/genalloc.h> +#include <linux/gpio/consumer.h> +#include <linux/interrupt.h> +#include <linux/mfd/syscon.h> +#include <linux/mfd/syscon/atmel-matrix.h> +#include <linux/mfd/syscon/atmel-smc.h> +#include <linux/module.h> +#include <linux/mtd/rawnand.h> +#include <linux/of_address.h> +#include <linux/of_irq.h> +#include <linux/of_platform.h> +#include <linux/iopoll.h> +#include <linux/platform_device.h> +#include <linux/regmap.h> +#include <soc/at91/atmel-sfr.h> + +#include "pmecc.h" + +#define ATMEL_HSMC_NFC_CFG 0x0 +#define ATMEL_HSMC_NFC_CFG_SPARESIZE(x) (((x) / 4) << 24) +#define ATMEL_HSMC_NFC_CFG_SPARESIZE_MASK GENMASK(30, 24) +#define ATMEL_HSMC_NFC_CFG_DTO(cyc, mul) (((cyc) << 16) | ((mul) << 20)) +#define ATMEL_HSMC_NFC_CFG_DTO_MAX GENMASK(22, 16) +#define ATMEL_HSMC_NFC_CFG_RBEDGE BIT(13) +#define ATMEL_HSMC_NFC_CFG_FALLING_EDGE BIT(12) +#define ATMEL_HSMC_NFC_CFG_RSPARE BIT(9) +#define ATMEL_HSMC_NFC_CFG_WSPARE BIT(8) +#define ATMEL_HSMC_NFC_CFG_PAGESIZE_MASK GENMASK(2, 0) +#define ATMEL_HSMC_NFC_CFG_PAGESIZE(x) (fls((x) / 512) - 1) + +#define ATMEL_HSMC_NFC_CTRL 0x4 +#define ATMEL_HSMC_NFC_CTRL_EN BIT(0) +#define ATMEL_HSMC_NFC_CTRL_DIS BIT(1) + +#define ATMEL_HSMC_NFC_SR 0x8 +#define ATMEL_HSMC_NFC_IER 0xc +#define ATMEL_HSMC_NFC_IDR 0x10 +#define ATMEL_HSMC_NFC_IMR 0x14 +#define ATMEL_HSMC_NFC_SR_ENABLED BIT(1) +#define ATMEL_HSMC_NFC_SR_RB_RISE BIT(4) +#define ATMEL_HSMC_NFC_SR_RB_FALL BIT(5) +#define ATMEL_HSMC_NFC_SR_BUSY BIT(8) +#define ATMEL_HSMC_NFC_SR_WR BIT(11) +#define ATMEL_HSMC_NFC_SR_CSID GENMASK(14, 12) +#define ATMEL_HSMC_NFC_SR_XFRDONE BIT(16) +#define ATMEL_HSMC_NFC_SR_CMDDONE BIT(17) +#define ATMEL_HSMC_NFC_SR_DTOE BIT(20) +#define ATMEL_HSMC_NFC_SR_UNDEF BIT(21) +#define ATMEL_HSMC_NFC_SR_AWB BIT(22) +#define ATMEL_HSMC_NFC_SR_NFCASE BIT(23) +#define ATMEL_HSMC_NFC_SR_ERRORS (ATMEL_HSMC_NFC_SR_DTOE | \ + ATMEL_HSMC_NFC_SR_UNDEF | \ + ATMEL_HSMC_NFC_SR_AWB | \ + ATMEL_HSMC_NFC_SR_NFCASE) +#define ATMEL_HSMC_NFC_SR_RBEDGE(x) BIT((x) + 24) + +#define ATMEL_HSMC_NFC_ADDR 0x18 +#define ATMEL_HSMC_NFC_BANK 0x1c + +#define ATMEL_NFC_MAX_RB_ID 7 + +#define ATMEL_NFC_SRAM_SIZE 0x2400 + +#define ATMEL_NFC_CMD(pos, cmd) ((cmd) << (((pos) * 8) + 2)) +#define ATMEL_NFC_VCMD2 BIT(18) +#define ATMEL_NFC_ACYCLE(naddrs) ((naddrs) << 19) +#define ATMEL_NFC_CSID(cs) ((cs) << 22) +#define ATMEL_NFC_DATAEN BIT(25) +#define ATMEL_NFC_NFCWR BIT(26) + +#define ATMEL_NFC_MAX_ADDR_CYCLES 5 + +#define ATMEL_NAND_ALE_OFFSET BIT(21) +#define ATMEL_NAND_CLE_OFFSET BIT(22) + +#define DEFAULT_TIMEOUT_MS 1000 +#define MIN_DMA_LEN 128 + +static bool atmel_nand_avoid_dma __read_mostly; + +MODULE_PARM_DESC(avoiddma, "Avoid using DMA"); +module_param_named(avoiddma, atmel_nand_avoid_dma, bool, 0400); + +enum atmel_nand_rb_type { + ATMEL_NAND_NO_RB, + ATMEL_NAND_NATIVE_RB, + ATMEL_NAND_GPIO_RB, +}; + +struct atmel_nand_rb { + enum atmel_nand_rb_type type; + union { + struct gpio_desc *gpio; + int id; + }; +}; + +struct atmel_nand_cs { + int id; + struct atmel_nand_rb rb; + struct gpio_desc *csgpio; + struct { + void __iomem *virt; + dma_addr_t dma; + } io; + + struct atmel_smc_cs_conf smcconf; +}; + +struct atmel_nand { + struct list_head node; + struct device *dev; + struct nand_chip base; + struct atmel_nand_cs *activecs; + struct atmel_pmecc_user *pmecc; + struct gpio_desc *cdgpio; + int numcs; + struct atmel_nand_cs cs[]; +}; + +static inline struct atmel_nand *to_atmel_nand(struct nand_chip *chip) +{ + return container_of(chip, struct atmel_nand, base); +} + +enum atmel_nfc_data_xfer { + ATMEL_NFC_NO_DATA, + ATMEL_NFC_READ_DATA, + ATMEL_NFC_WRITE_DATA, +}; + +struct atmel_nfc_op { + u8 cs; + u8 ncmds; + u8 cmds[2]; + u8 naddrs; + u8 addrs[5]; + enum atmel_nfc_data_xfer data; + u32 wait; + u32 errors; +}; + +struct atmel_nand_controller; +struct atmel_nand_controller_caps; + +struct atmel_nand_controller_ops { + int (*probe)(struct platform_device *pdev, + const struct atmel_nand_controller_caps *caps); + int (*remove)(struct atmel_nand_controller *nc); + void (*nand_init)(struct atmel_nand_controller *nc, + struct atmel_nand *nand); + int (*ecc_init)(struct nand_chip *chip); + int (*setup_interface)(struct atmel_nand *nand, int csline, + const struct nand_interface_config *conf); + int (*exec_op)(struct atmel_nand *nand, + const struct nand_operation *op, bool check_only); +}; + +struct atmel_nand_controller_caps { + bool has_dma; + bool legacy_of_bindings; + u32 ale_offs; + u32 cle_offs; + const char *ebi_csa_regmap_name; + const struct atmel_nand_controller_ops *ops; +}; + +struct atmel_nand_controller { + struct nand_controller base; + const struct atmel_nand_controller_caps *caps; + struct device *dev; + struct regmap *smc; + struct dma_chan *dmac; + struct atmel_pmecc *pmecc; + struct list_head chips; + struct clk *mck; +}; + +static inline struct atmel_nand_controller * +to_nand_controller(struct nand_controller *ctl) +{ + return container_of(ctl, struct atmel_nand_controller, base); +} + +struct atmel_smc_nand_ebi_csa_cfg { + u32 offs; + u32 nfd0_on_d16; +}; + +struct atmel_smc_nand_controller { + struct atmel_nand_controller base; + struct regmap *ebi_csa_regmap; + struct atmel_smc_nand_ebi_csa_cfg *ebi_csa; +}; + +static inline struct atmel_smc_nand_controller * +to_smc_nand_controller(struct nand_controller *ctl) +{ + return container_of(to_nand_controller(ctl), + struct atmel_smc_nand_controller, base); +} + +struct atmel_hsmc_nand_controller { + struct atmel_nand_controller base; + struct { + struct gen_pool *pool; + void __iomem *virt; + dma_addr_t dma; + } sram; + const struct atmel_hsmc_reg_layout *hsmc_layout; + struct regmap *io; + struct atmel_nfc_op op; + struct completion complete; + u32 cfg; + int irq; + + /* Only used when instantiating from legacy DT bindings. */ + struct clk *clk; +}; + +static inline struct atmel_hsmc_nand_controller * +to_hsmc_nand_controller(struct nand_controller *ctl) +{ + return container_of(to_nand_controller(ctl), + struct atmel_hsmc_nand_controller, base); +} + +static bool atmel_nfc_op_done(struct atmel_nfc_op *op, u32 status) +{ + op->errors |= status & ATMEL_HSMC_NFC_SR_ERRORS; + op->wait ^= status & op->wait; + + return !op->wait || op->errors; +} + +static irqreturn_t atmel_nfc_interrupt(int irq, void *data) +{ + struct atmel_hsmc_nand_controller *nc = data; + u32 sr, rcvd; + bool done; + + regmap_read(nc->base.smc, ATMEL_HSMC_NFC_SR, &sr); + + rcvd = sr & (nc->op.wait | ATMEL_HSMC_NFC_SR_ERRORS); + done = atmel_nfc_op_done(&nc->op, sr); + + if (rcvd) + regmap_write(nc->base.smc, ATMEL_HSMC_NFC_IDR, rcvd); + + if (done) + complete(&nc->complete); + + return rcvd ? IRQ_HANDLED : IRQ_NONE; +} + +static int atmel_nfc_wait(struct atmel_hsmc_nand_controller *nc, bool poll, + unsigned int timeout_ms) +{ + int ret; + + if (!timeout_ms) + timeout_ms = DEFAULT_TIMEOUT_MS; + + if (poll) { + u32 status; + + ret = regmap_read_poll_timeout(nc->base.smc, + ATMEL_HSMC_NFC_SR, status, + atmel_nfc_op_done(&nc->op, + status), + 0, timeout_ms * 1000); + } else { + init_completion(&nc->complete); + regmap_write(nc->base.smc, ATMEL_HSMC_NFC_IER, + nc->op.wait | ATMEL_HSMC_NFC_SR_ERRORS); + ret = wait_for_completion_timeout(&nc->complete, + msecs_to_jiffies(timeout_ms)); + if (!ret) + ret = -ETIMEDOUT; + else + ret = 0; + + regmap_write(nc->base.smc, ATMEL_HSMC_NFC_IDR, 0xffffffff); + } + + if (nc->op.errors & ATMEL_HSMC_NFC_SR_DTOE) { + dev_err(nc->base.dev, "Waiting NAND R/B Timeout\n"); + ret = -ETIMEDOUT; + } + + if (nc->op.errors & ATMEL_HSMC_NFC_SR_UNDEF) { + dev_err(nc->base.dev, "Access to an undefined area\n"); + ret = -EIO; + } + + if (nc->op.errors & ATMEL_HSMC_NFC_SR_AWB) { + dev_err(nc->base.dev, "Access while busy\n"); + ret = -EIO; + } + + if (nc->op.errors & ATMEL_HSMC_NFC_SR_NFCASE) { + dev_err(nc->base.dev, "Wrong access size\n"); + ret = -EIO; + } + + return ret; +} + +static void atmel_nand_dma_transfer_finished(void *data) +{ + struct completion *finished = data; + + complete(finished); +} + +static int atmel_nand_dma_transfer(struct atmel_nand_controller *nc, + void *buf, dma_addr_t dev_dma, size_t len, + enum dma_data_direction dir) +{ + DECLARE_COMPLETION_ONSTACK(finished); + dma_addr_t src_dma, dst_dma, buf_dma; + struct dma_async_tx_descriptor *tx; + dma_cookie_t cookie; + + buf_dma = dma_map_single(nc->dev, buf, len, dir); + if (dma_mapping_error(nc->dev, dev_dma)) { + dev_err(nc->dev, + "Failed to prepare a buffer for DMA access\n"); + goto err; + } + + if (dir == DMA_FROM_DEVICE) { + src_dma = dev_dma; + dst_dma = buf_dma; + } else { + src_dma = buf_dma; + dst_dma = dev_dma; + } + + tx = dmaengine_prep_dma_memcpy(nc->dmac, dst_dma, src_dma, len, + DMA_CTRL_ACK | DMA_PREP_INTERRUPT); + if (!tx) { + dev_err(nc->dev, "Failed to prepare DMA memcpy\n"); + goto err_unmap; + } + + tx->callback = atmel_nand_dma_transfer_finished; + tx->callback_param = &finished; + + cookie = dmaengine_submit(tx); + if (dma_submit_error(cookie)) { + dev_err(nc->dev, "Failed to do DMA tx_submit\n"); + goto err_unmap; + } + + dma_async_issue_pending(nc->dmac); + wait_for_completion(&finished); + dma_unmap_single(nc->dev, buf_dma, len, dir); + + return 0; + +err_unmap: + dma_unmap_single(nc->dev, buf_dma, len, dir); + +err: + dev_dbg(nc->dev, "Fall back to CPU I/O\n"); + + return -EIO; +} + +static int atmel_nfc_exec_op(struct atmel_hsmc_nand_controller *nc, bool poll) +{ + u8 *addrs = nc->op.addrs; + unsigned int op = 0; + u32 addr, val; + int i, ret; + + nc->op.wait = ATMEL_HSMC_NFC_SR_CMDDONE; + + for (i = 0; i < nc->op.ncmds; i++) + op |= ATMEL_NFC_CMD(i, nc->op.cmds[i]); + + if (nc->op.naddrs == ATMEL_NFC_MAX_ADDR_CYCLES) + regmap_write(nc->base.smc, ATMEL_HSMC_NFC_ADDR, *addrs++); + + op |= ATMEL_NFC_CSID(nc->op.cs) | + ATMEL_NFC_ACYCLE(nc->op.naddrs); + + if (nc->op.ncmds > 1) + op |= ATMEL_NFC_VCMD2; + + addr = addrs[0] | (addrs[1] << 8) | (addrs[2] << 16) | + (addrs[3] << 24); + + if (nc->op.data != ATMEL_NFC_NO_DATA) { + op |= ATMEL_NFC_DATAEN; + nc->op.wait |= ATMEL_HSMC_NFC_SR_XFRDONE; + + if (nc->op.data == ATMEL_NFC_WRITE_DATA) + op |= ATMEL_NFC_NFCWR; + } + + /* Clear all flags. */ + regmap_read(nc->base.smc, ATMEL_HSMC_NFC_SR, &val); + + /* Send the command. */ + regmap_write(nc->io, op, addr); + + ret = atmel_nfc_wait(nc, poll, 0); + if (ret) + dev_err(nc->base.dev, + "Failed to send NAND command (err = %d)!", + ret); + + /* Reset the op state. */ + memset(&nc->op, 0, sizeof(nc->op)); + + return ret; +} + +static void atmel_nand_data_in(struct atmel_nand *nand, void *buf, + unsigned int len, bool force_8bit) +{ + struct atmel_nand_controller *nc; + + nc = to_nand_controller(nand->base.controller); + + /* + * If the controller supports DMA, the buffer address is DMA-able and + * len is long enough to make DMA transfers profitable, let's trigger + * a DMA transfer. If it fails, fallback to PIO mode. + */ + if (nc->dmac && virt_addr_valid(buf) && + len >= MIN_DMA_LEN && !force_8bit && + !atmel_nand_dma_transfer(nc, buf, nand->activecs->io.dma, len, + DMA_FROM_DEVICE)) + return; + + if ((nand->base.options & NAND_BUSWIDTH_16) && !force_8bit) + ioread16_rep(nand->activecs->io.virt, buf, len / 2); + else + ioread8_rep(nand->activecs->io.virt, buf, len); +} + +static void atmel_nand_data_out(struct atmel_nand *nand, const void *buf, + unsigned int len, bool force_8bit) +{ + struct atmel_nand_controller *nc; + + nc = to_nand_controller(nand->base.controller); + + /* + * If the controller supports DMA, the buffer address is DMA-able and + * len is long enough to make DMA transfers profitable, let's trigger + * a DMA transfer. If it fails, fallback to PIO mode. + */ + if (nc->dmac && virt_addr_valid(buf) && + len >= MIN_DMA_LEN && !force_8bit && + !atmel_nand_dma_transfer(nc, (void *)buf, nand->activecs->io.dma, + len, DMA_TO_DEVICE)) + return; + + if ((nand->base.options & NAND_BUSWIDTH_16) && !force_8bit) + iowrite16_rep(nand->activecs->io.virt, buf, len / 2); + else + iowrite8_rep(nand->activecs->io.virt, buf, len); +} + +static int atmel_nand_waitrdy(struct atmel_nand *nand, unsigned int timeout_ms) +{ + if (nand->activecs->rb.type == ATMEL_NAND_NO_RB) + return nand_soft_waitrdy(&nand->base, timeout_ms); + + return nand_gpio_waitrdy(&nand->base, nand->activecs->rb.gpio, + timeout_ms); +} + +static int atmel_hsmc_nand_waitrdy(struct atmel_nand *nand, + unsigned int timeout_ms) +{ + struct atmel_hsmc_nand_controller *nc; + u32 status, mask; + + if (nand->activecs->rb.type != ATMEL_NAND_NATIVE_RB) + return atmel_nand_waitrdy(nand, timeout_ms); + + nc = to_hsmc_nand_controller(nand->base.controller); + mask = ATMEL_HSMC_NFC_SR_RBEDGE(nand->activecs->rb.id); + return regmap_read_poll_timeout_atomic(nc->base.smc, ATMEL_HSMC_NFC_SR, + status, status & mask, + 10, timeout_ms * 1000); +} + +static void atmel_nand_select_target(struct atmel_nand *nand, + unsigned int cs) +{ + nand->activecs = &nand->cs[cs]; +} + +static void atmel_hsmc_nand_select_target(struct atmel_nand *nand, + unsigned int cs) +{ + struct mtd_info *mtd = nand_to_mtd(&nand->base); + struct atmel_hsmc_nand_controller *nc; + u32 cfg = ATMEL_HSMC_NFC_CFG_PAGESIZE(mtd->writesize) | + ATMEL_HSMC_NFC_CFG_SPARESIZE(mtd->oobsize) | + ATMEL_HSMC_NFC_CFG_RSPARE; + + nand->activecs = &nand->cs[cs]; + nc = to_hsmc_nand_controller(nand->base.controller); + if (nc->cfg == cfg) + return; + + regmap_update_bits(nc->base.smc, ATMEL_HSMC_NFC_CFG, + ATMEL_HSMC_NFC_CFG_PAGESIZE_MASK | + ATMEL_HSMC_NFC_CFG_SPARESIZE_MASK | + ATMEL_HSMC_NFC_CFG_RSPARE | + ATMEL_HSMC_NFC_CFG_WSPARE, + cfg); + nc->cfg = cfg; +} + +static int atmel_smc_nand_exec_instr(struct atmel_nand *nand, + const struct nand_op_instr *instr) +{ + struct atmel_nand_controller *nc; + unsigned int i; + + nc = to_nand_controller(nand->base.controller); + switch (instr->type) { + case NAND_OP_CMD_INSTR: + writeb(instr->ctx.cmd.opcode, + nand->activecs->io.virt + nc->caps->cle_offs); + return 0; + case NAND_OP_ADDR_INSTR: + for (i = 0; i < instr->ctx.addr.naddrs; i++) + writeb(instr->ctx.addr.addrs[i], + nand->activecs->io.virt + nc->caps->ale_offs); + return 0; + case NAND_OP_DATA_IN_INSTR: + atmel_nand_data_in(nand, instr->ctx.data.buf.in, + instr->ctx.data.len, + instr->ctx.data.force_8bit); + return 0; + case NAND_OP_DATA_OUT_INSTR: + atmel_nand_data_out(nand, instr->ctx.data.buf.out, + instr->ctx.data.len, + instr->ctx.data.force_8bit); + return 0; + case NAND_OP_WAITRDY_INSTR: + return atmel_nand_waitrdy(nand, + instr->ctx.waitrdy.timeout_ms); + default: + break; + } + + return -EINVAL; +} + +static int atmel_smc_nand_exec_op(struct atmel_nand *nand, + const struct nand_operation *op, + bool check_only) +{ + unsigned int i; + int ret = 0; + + if (check_only) + return 0; + + atmel_nand_select_target(nand, op->cs); + gpiod_set_value(nand->activecs->csgpio, 0); + for (i = 0; i < op->ninstrs; i++) { + ret = atmel_smc_nand_exec_instr(nand, &op->instrs[i]); + if (ret) + break; + } + gpiod_set_value(nand->activecs->csgpio, 1); + + return ret; +} + +static int atmel_hsmc_exec_cmd_addr(struct nand_chip *chip, + const struct nand_subop *subop) +{ + struct atmel_nand *nand = to_atmel_nand(chip); + struct atmel_hsmc_nand_controller *nc; + unsigned int i, j; + + nc = to_hsmc_nand_controller(chip->controller); + + nc->op.cs = nand->activecs->id; + for (i = 0; i < subop->ninstrs; i++) { + const struct nand_op_instr *instr = &subop->instrs[i]; + + if (instr->type == NAND_OP_CMD_INSTR) { + nc->op.cmds[nc->op.ncmds++] = instr->ctx.cmd.opcode; + continue; + } + + for (j = nand_subop_get_addr_start_off(subop, i); + j < nand_subop_get_num_addr_cyc(subop, i); j++) { + nc->op.addrs[nc->op.naddrs] = instr->ctx.addr.addrs[j]; + nc->op.naddrs++; + } + } + + return atmel_nfc_exec_op(nc, true); +} + +static int atmel_hsmc_exec_rw(struct nand_chip *chip, + const struct nand_subop *subop) +{ + const struct nand_op_instr *instr = subop->instrs; + struct atmel_nand *nand = to_atmel_nand(chip); + + if (instr->type == NAND_OP_DATA_IN_INSTR) + atmel_nand_data_in(nand, instr->ctx.data.buf.in, + instr->ctx.data.len, + instr->ctx.data.force_8bit); + else + atmel_nand_data_out(nand, instr->ctx.data.buf.out, + instr->ctx.data.len, + instr->ctx.data.force_8bit); + + return 0; +} + +static int atmel_hsmc_exec_waitrdy(struct nand_chip *chip, + const struct nand_subop *subop) +{ + const struct nand_op_instr *instr = subop->instrs; + struct atmel_nand *nand = to_atmel_nand(chip); + + return atmel_hsmc_nand_waitrdy(nand, instr->ctx.waitrdy.timeout_ms); +} + +static const struct nand_op_parser atmel_hsmc_op_parser = NAND_OP_PARSER( + NAND_OP_PARSER_PATTERN(atmel_hsmc_exec_cmd_addr, + NAND_OP_PARSER_PAT_CMD_ELEM(true), + NAND_OP_PARSER_PAT_ADDR_ELEM(true, 5), + NAND_OP_PARSER_PAT_CMD_ELEM(true)), + NAND_OP_PARSER_PATTERN(atmel_hsmc_exec_rw, + NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, 0)), + NAND_OP_PARSER_PATTERN(atmel_hsmc_exec_rw, + NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, 0)), + NAND_OP_PARSER_PATTERN(atmel_hsmc_exec_waitrdy, + NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)), +); + +static int atmel_hsmc_nand_exec_op(struct atmel_nand *nand, + const struct nand_operation *op, + bool check_only) +{ + int ret; + + if (check_only) + return nand_op_parser_exec_op(&nand->base, + &atmel_hsmc_op_parser, op, true); + + atmel_hsmc_nand_select_target(nand, op->cs); + ret = nand_op_parser_exec_op(&nand->base, &atmel_hsmc_op_parser, op, + false); + + return ret; +} + +static void atmel_nfc_copy_to_sram(struct nand_chip *chip, const u8 *buf, + bool oob_required) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + struct atmel_hsmc_nand_controller *nc; + int ret = -EIO; + + nc = to_hsmc_nand_controller(chip->controller); + + if (nc->base.dmac) + ret = atmel_nand_dma_transfer(&nc->base, (void *)buf, + nc->sram.dma, mtd->writesize, + DMA_TO_DEVICE); + + /* Falling back to CPU copy. */ + if (ret) + memcpy_toio(nc->sram.virt, buf, mtd->writesize); + + if (oob_required) + memcpy_toio(nc->sram.virt + mtd->writesize, chip->oob_poi, + mtd->oobsize); +} + +static void atmel_nfc_copy_from_sram(struct nand_chip *chip, u8 *buf, + bool oob_required) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + struct atmel_hsmc_nand_controller *nc; + int ret = -EIO; + + nc = to_hsmc_nand_controller(chip->controller); + + if (nc->base.dmac) + ret = atmel_nand_dma_transfer(&nc->base, buf, nc->sram.dma, + mtd->writesize, DMA_FROM_DEVICE); + + /* Falling back to CPU copy. */ + if (ret) + memcpy_fromio(buf, nc->sram.virt, mtd->writesize); + + if (oob_required) + memcpy_fromio(chip->oob_poi, nc->sram.virt + mtd->writesize, + mtd->oobsize); +} + +static void atmel_nfc_set_op_addr(struct nand_chip *chip, int page, int column) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + struct atmel_hsmc_nand_controller *nc; + + nc = to_hsmc_nand_controller(chip->controller); + + if (column >= 0) { + nc->op.addrs[nc->op.naddrs++] = column; + + /* + * 2 address cycles for the column offset on large page NANDs. + */ + if (mtd->writesize > 512) + nc->op.addrs[nc->op.naddrs++] = column >> 8; + } + + if (page >= 0) { + nc->op.addrs[nc->op.naddrs++] = page; + nc->op.addrs[nc->op.naddrs++] = page >> 8; + + if (chip->options & NAND_ROW_ADDR_3) + nc->op.addrs[nc->op.naddrs++] = page >> 16; + } +} + +static int atmel_nand_pmecc_enable(struct nand_chip *chip, int op, bool raw) +{ + struct atmel_nand *nand = to_atmel_nand(chip); + struct atmel_nand_controller *nc; + int ret; + + nc = to_nand_controller(chip->controller); + + if (raw) + return 0; + + ret = atmel_pmecc_enable(nand->pmecc, op); + if (ret) + dev_err(nc->dev, + "Failed to enable ECC engine (err = %d)\n", ret); + + return ret; +} + +static void atmel_nand_pmecc_disable(struct nand_chip *chip, bool raw) +{ + struct atmel_nand *nand = to_atmel_nand(chip); + + if (!raw) + atmel_pmecc_disable(nand->pmecc); +} + +static int atmel_nand_pmecc_generate_eccbytes(struct nand_chip *chip, bool raw) +{ + struct atmel_nand *nand = to_atmel_nand(chip); + struct mtd_info *mtd = nand_to_mtd(chip); + struct atmel_nand_controller *nc; + struct mtd_oob_region oobregion; + void *eccbuf; + int ret, i; + + nc = to_nand_controller(chip->controller); + + if (raw) + return 0; + + ret = atmel_pmecc_wait_rdy(nand->pmecc); + if (ret) { + dev_err(nc->dev, + "Failed to transfer NAND page data (err = %d)\n", + ret); + return ret; + } + + mtd_ooblayout_ecc(mtd, 0, &oobregion); + eccbuf = chip->oob_poi + oobregion.offset; + + for (i = 0; i < chip->ecc.steps; i++) { + atmel_pmecc_get_generated_eccbytes(nand->pmecc, i, + eccbuf); + eccbuf += chip->ecc.bytes; + } + + return 0; +} + +static int atmel_nand_pmecc_correct_data(struct nand_chip *chip, void *buf, + bool raw) +{ + struct atmel_nand *nand = to_atmel_nand(chip); + struct mtd_info *mtd = nand_to_mtd(chip); + struct atmel_nand_controller *nc; + struct mtd_oob_region oobregion; + int ret, i, max_bitflips = 0; + void *databuf, *eccbuf; + + nc = to_nand_controller(chip->controller); + + if (raw) + return 0; + + ret = atmel_pmecc_wait_rdy(nand->pmecc); + if (ret) { + dev_err(nc->dev, + "Failed to read NAND page data (err = %d)\n", + ret); + return ret; + } + + mtd_ooblayout_ecc(mtd, 0, &oobregion); + eccbuf = chip->oob_poi + oobregion.offset; + databuf = buf; + + for (i = 0; i < chip->ecc.steps; i++) { + ret = atmel_pmecc_correct_sector(nand->pmecc, i, databuf, + eccbuf); + if (ret < 0 && !atmel_pmecc_correct_erased_chunks(nand->pmecc)) + ret = nand_check_erased_ecc_chunk(databuf, + chip->ecc.size, + eccbuf, + chip->ecc.bytes, + NULL, 0, + chip->ecc.strength); + + if (ret >= 0) { + mtd->ecc_stats.corrected += ret; + max_bitflips = max(ret, max_bitflips); + } else { + mtd->ecc_stats.failed++; + } + + databuf += chip->ecc.size; + eccbuf += chip->ecc.bytes; + } + + return max_bitflips; +} + +static int atmel_nand_pmecc_write_pg(struct nand_chip *chip, const u8 *buf, + bool oob_required, int page, bool raw) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + struct atmel_nand *nand = to_atmel_nand(chip); + int ret; + + nand_prog_page_begin_op(chip, page, 0, NULL, 0); + + ret = atmel_nand_pmecc_enable(chip, NAND_ECC_WRITE, raw); + if (ret) + return ret; + + nand_write_data_op(chip, buf, mtd->writesize, false); + + ret = atmel_nand_pmecc_generate_eccbytes(chip, raw); + if (ret) { + atmel_pmecc_disable(nand->pmecc); + return ret; + } + + atmel_nand_pmecc_disable(chip, raw); + + nand_write_data_op(chip, chip->oob_poi, mtd->oobsize, false); + + return nand_prog_page_end_op(chip); +} + +static int atmel_nand_pmecc_write_page(struct nand_chip *chip, const u8 *buf, + int oob_required, int page) +{ + return atmel_nand_pmecc_write_pg(chip, buf, oob_required, page, false); +} + +static int atmel_nand_pmecc_write_page_raw(struct nand_chip *chip, + const u8 *buf, int oob_required, + int page) +{ + return atmel_nand_pmecc_write_pg(chip, buf, oob_required, page, true); +} + +static int atmel_nand_pmecc_read_pg(struct nand_chip *chip, u8 *buf, + bool oob_required, int page, bool raw) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + int ret; + + nand_read_page_op(chip, page, 0, NULL, 0); + + ret = atmel_nand_pmecc_enable(chip, NAND_ECC_READ, raw); + if (ret) + return ret; + + ret = nand_read_data_op(chip, buf, mtd->writesize, false, false); + if (ret) + goto out_disable; + + ret = nand_read_data_op(chip, chip->oob_poi, mtd->oobsize, false, false); + if (ret) + goto out_disable; + + ret = atmel_nand_pmecc_correct_data(chip, buf, raw); + +out_disable: + atmel_nand_pmecc_disable(chip, raw); + + return ret; +} + +static int atmel_nand_pmecc_read_page(struct nand_chip *chip, u8 *buf, + int oob_required, int page) +{ + return atmel_nand_pmecc_read_pg(chip, buf, oob_required, page, false); +} + +static int atmel_nand_pmecc_read_page_raw(struct nand_chip *chip, u8 *buf, + int oob_required, int page) +{ + return atmel_nand_pmecc_read_pg(chip, buf, oob_required, page, true); +} + +static int atmel_hsmc_nand_pmecc_write_pg(struct nand_chip *chip, + const u8 *buf, bool oob_required, + int page, bool raw) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + struct atmel_nand *nand = to_atmel_nand(chip); + struct atmel_hsmc_nand_controller *nc; + int ret; + + atmel_hsmc_nand_select_target(nand, chip->cur_cs); + nc = to_hsmc_nand_controller(chip->controller); + + atmel_nfc_copy_to_sram(chip, buf, false); + + nc->op.cmds[0] = NAND_CMD_SEQIN; + nc->op.ncmds = 1; + atmel_nfc_set_op_addr(chip, page, 0x0); + nc->op.cs = nand->activecs->id; + nc->op.data = ATMEL_NFC_WRITE_DATA; + + ret = atmel_nand_pmecc_enable(chip, NAND_ECC_WRITE, raw); + if (ret) + return ret; + + ret = atmel_nfc_exec_op(nc, false); + if (ret) { + atmel_nand_pmecc_disable(chip, raw); + dev_err(nc->base.dev, + "Failed to transfer NAND page data (err = %d)\n", + ret); + return ret; + } + + ret = atmel_nand_pmecc_generate_eccbytes(chip, raw); + + atmel_nand_pmecc_disable(chip, raw); + + if (ret) + return ret; + + nand_write_data_op(chip, chip->oob_poi, mtd->oobsize, false); + + return nand_prog_page_end_op(chip); +} + +static int atmel_hsmc_nand_pmecc_write_page(struct nand_chip *chip, + const u8 *buf, int oob_required, + int page) +{ + return atmel_hsmc_nand_pmecc_write_pg(chip, buf, oob_required, page, + false); +} + +static int atmel_hsmc_nand_pmecc_write_page_raw(struct nand_chip *chip, + const u8 *buf, + int oob_required, int page) +{ + return atmel_hsmc_nand_pmecc_write_pg(chip, buf, oob_required, page, + true); +} + +static int atmel_hsmc_nand_pmecc_read_pg(struct nand_chip *chip, u8 *buf, + bool oob_required, int page, + bool raw) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + struct atmel_nand *nand = to_atmel_nand(chip); + struct atmel_hsmc_nand_controller *nc; + int ret; + + atmel_hsmc_nand_select_target(nand, chip->cur_cs); + nc = to_hsmc_nand_controller(chip->controller); + + /* + * Optimized read page accessors only work when the NAND R/B pin is + * connected to a native SoC R/B pin. If that's not the case, fallback + * to the non-optimized one. + */ + if (nand->activecs->rb.type != ATMEL_NAND_NATIVE_RB) + return atmel_nand_pmecc_read_pg(chip, buf, oob_required, page, + raw); + + nc->op.cmds[nc->op.ncmds++] = NAND_CMD_READ0; + + if (mtd->writesize > 512) + nc->op.cmds[nc->op.ncmds++] = NAND_CMD_READSTART; + + atmel_nfc_set_op_addr(chip, page, 0x0); + nc->op.cs = nand->activecs->id; + nc->op.data = ATMEL_NFC_READ_DATA; + + ret = atmel_nand_pmecc_enable(chip, NAND_ECC_READ, raw); + if (ret) + return ret; + + ret = atmel_nfc_exec_op(nc, false); + if (ret) { + atmel_nand_pmecc_disable(chip, raw); + dev_err(nc->base.dev, + "Failed to load NAND page data (err = %d)\n", + ret); + return ret; + } + + atmel_nfc_copy_from_sram(chip, buf, true); + + ret = atmel_nand_pmecc_correct_data(chip, buf, raw); + + atmel_nand_pmecc_disable(chip, raw); + + return ret; +} + +static int atmel_hsmc_nand_pmecc_read_page(struct nand_chip *chip, u8 *buf, + int oob_required, int page) +{ + return atmel_hsmc_nand_pmecc_read_pg(chip, buf, oob_required, page, + false); +} + +static int atmel_hsmc_nand_pmecc_read_page_raw(struct nand_chip *chip, + u8 *buf, int oob_required, + int page) +{ + return atmel_hsmc_nand_pmecc_read_pg(chip, buf, oob_required, page, + true); +} + +static int atmel_nand_pmecc_init(struct nand_chip *chip) +{ + const struct nand_ecc_props *requirements = + nanddev_get_ecc_requirements(&chip->base); + struct mtd_info *mtd = nand_to_mtd(chip); + struct nand_device *nanddev = mtd_to_nanddev(mtd); + struct atmel_nand *nand = to_atmel_nand(chip); + struct atmel_nand_controller *nc; + struct atmel_pmecc_user_req req; + + nc = to_nand_controller(chip->controller); + + if (!nc->pmecc) { + dev_err(nc->dev, "HW ECC not supported\n"); + return -ENOTSUPP; + } + + if (nc->caps->legacy_of_bindings) { + u32 val; + + if (!of_property_read_u32(nc->dev->of_node, "atmel,pmecc-cap", + &val)) + chip->ecc.strength = val; + + if (!of_property_read_u32(nc->dev->of_node, + "atmel,pmecc-sector-size", + &val)) + chip->ecc.size = val; + } + + if (nanddev->ecc.user_conf.flags & NAND_ECC_MAXIMIZE_STRENGTH) + req.ecc.strength = ATMEL_PMECC_MAXIMIZE_ECC_STRENGTH; + else if (chip->ecc.strength) + req.ecc.strength = chip->ecc.strength; + else if (requirements->strength) + req.ecc.strength = requirements->strength; + else + req.ecc.strength = ATMEL_PMECC_MAXIMIZE_ECC_STRENGTH; + + if (chip->ecc.size) + req.ecc.sectorsize = chip->ecc.size; + else if (requirements->step_size) + req.ecc.sectorsize = requirements->step_size; + else + req.ecc.sectorsize = ATMEL_PMECC_SECTOR_SIZE_AUTO; + + req.pagesize = mtd->writesize; + req.oobsize = mtd->oobsize; + + if (mtd->writesize <= 512) { + req.ecc.bytes = 4; + req.ecc.ooboffset = 0; + } else { + req.ecc.bytes = mtd->oobsize - 2; + req.ecc.ooboffset = ATMEL_PMECC_OOBOFFSET_AUTO; + } + + nand->pmecc = atmel_pmecc_create_user(nc->pmecc, &req); + if (IS_ERR(nand->pmecc)) + return PTR_ERR(nand->pmecc); + + chip->ecc.algo = NAND_ECC_ALGO_BCH; + chip->ecc.size = req.ecc.sectorsize; + chip->ecc.bytes = req.ecc.bytes / req.ecc.nsectors; + chip->ecc.strength = req.ecc.strength; + + chip->options |= NAND_NO_SUBPAGE_WRITE; + + mtd_set_ooblayout(mtd, nand_get_large_page_ooblayout()); + + return 0; +} + +static int atmel_nand_ecc_init(struct nand_chip *chip) +{ + struct atmel_nand_controller *nc; + int ret; + + nc = to_nand_controller(chip->controller); + + switch (chip->ecc.engine_type) { + case NAND_ECC_ENGINE_TYPE_NONE: + case NAND_ECC_ENGINE_TYPE_SOFT: + /* + * Nothing to do, the core will initialize everything for us. + */ + break; + + case NAND_ECC_ENGINE_TYPE_ON_HOST: + ret = atmel_nand_pmecc_init(chip); + if (ret) + return ret; + + chip->ecc.read_page = atmel_nand_pmecc_read_page; + chip->ecc.write_page = atmel_nand_pmecc_write_page; + chip->ecc.read_page_raw = atmel_nand_pmecc_read_page_raw; + chip->ecc.write_page_raw = atmel_nand_pmecc_write_page_raw; + break; + + default: + /* Other modes are not supported. */ + dev_err(nc->dev, "Unsupported ECC mode: %d\n", + chip->ecc.engine_type); + return -ENOTSUPP; + } + + return 0; +} + +static int atmel_hsmc_nand_ecc_init(struct nand_chip *chip) +{ + int ret; + + ret = atmel_nand_ecc_init(chip); + if (ret) + return ret; + + if (chip->ecc.engine_type != NAND_ECC_ENGINE_TYPE_ON_HOST) + return 0; + + /* Adjust the ECC operations for the HSMC IP. */ + chip->ecc.read_page = atmel_hsmc_nand_pmecc_read_page; + chip->ecc.write_page = atmel_hsmc_nand_pmecc_write_page; + chip->ecc.read_page_raw = atmel_hsmc_nand_pmecc_read_page_raw; + chip->ecc.write_page_raw = atmel_hsmc_nand_pmecc_write_page_raw; + + return 0; +} + +static int atmel_smc_nand_prepare_smcconf(struct atmel_nand *nand, + const struct nand_interface_config *conf, + struct atmel_smc_cs_conf *smcconf) +{ + u32 ncycles, totalcycles, timeps, mckperiodps; + struct atmel_nand_controller *nc; + int ret; + + nc = to_nand_controller(nand->base.controller); + + /* DDR interface not supported. */ + if (!nand_interface_is_sdr(conf)) + return -ENOTSUPP; + + /* + * tRC < 30ns implies EDO mode. This controller does not support this + * mode. + */ + if (conf->timings.sdr.tRC_min < 30000) + return -ENOTSUPP; + + atmel_smc_cs_conf_init(smcconf); + + mckperiodps = NSEC_PER_SEC / clk_get_rate(nc->mck); + mckperiodps *= 1000; + + /* + * Set write pulse timing. This one is easy to extract: + * + * NWE_PULSE = tWP + */ + ncycles = DIV_ROUND_UP(conf->timings.sdr.tWP_min, mckperiodps); + totalcycles = ncycles; + ret = atmel_smc_cs_conf_set_pulse(smcconf, ATMEL_SMC_NWE_SHIFT, + ncycles); + if (ret) + return ret; + + /* + * The write setup timing depends on the operation done on the NAND. + * All operations goes through the same data bus, but the operation + * type depends on the address we are writing to (ALE/CLE address + * lines). + * Since we have no way to differentiate the different operations at + * the SMC level, we must consider the worst case (the biggest setup + * time among all operation types): + * + * NWE_SETUP = max(tCLS, tCS, tALS, tDS) - NWE_PULSE + */ + timeps = max3(conf->timings.sdr.tCLS_min, conf->timings.sdr.tCS_min, + conf->timings.sdr.tALS_min); + timeps = max(timeps, conf->timings.sdr.tDS_min); + ncycles = DIV_ROUND_UP(timeps, mckperiodps); + ncycles = ncycles > totalcycles ? ncycles - totalcycles : 0; + totalcycles += ncycles; + ret = atmel_smc_cs_conf_set_setup(smcconf, ATMEL_SMC_NWE_SHIFT, + ncycles); + if (ret) + return ret; + + /* + * As for the write setup timing, the write hold timing depends on the + * operation done on the NAND: + * + * NWE_HOLD = max(tCLH, tCH, tALH, tDH, tWH) + */ + timeps = max3(conf->timings.sdr.tCLH_min, conf->timings.sdr.tCH_min, + conf->timings.sdr.tALH_min); + timeps = max3(timeps, conf->timings.sdr.tDH_min, + conf->timings.sdr.tWH_min); + ncycles = DIV_ROUND_UP(timeps, mckperiodps); + totalcycles += ncycles; + + /* + * The write cycle timing is directly matching tWC, but is also + * dependent on the other timings on the setup and hold timings we + * calculated earlier, which gives: + * + * NWE_CYCLE = max(tWC, NWE_SETUP + NWE_PULSE + NWE_HOLD) + */ + ncycles = DIV_ROUND_UP(conf->timings.sdr.tWC_min, mckperiodps); + ncycles = max(totalcycles, ncycles); + ret = atmel_smc_cs_conf_set_cycle(smcconf, ATMEL_SMC_NWE_SHIFT, + ncycles); + if (ret) + return ret; + + /* + * We don't want the CS line to be toggled between each byte/word + * transfer to the NAND. The only way to guarantee that is to have the + * NCS_{WR,RD}_{SETUP,HOLD} timings set to 0, which in turn means: + * + * NCS_WR_PULSE = NWE_CYCLE + */ + ret = atmel_smc_cs_conf_set_pulse(smcconf, ATMEL_SMC_NCS_WR_SHIFT, + ncycles); + if (ret) + return ret; + + /* + * As for the write setup timing, the read hold timing depends on the + * operation done on the NAND: + * + * NRD_HOLD = max(tREH, tRHOH) + */ + timeps = max(conf->timings.sdr.tREH_min, conf->timings.sdr.tRHOH_min); + ncycles = DIV_ROUND_UP(timeps, mckperiodps); + totalcycles = ncycles; + + /* + * TDF = tRHZ - NRD_HOLD + */ + ncycles = DIV_ROUND_UP(conf->timings.sdr.tRHZ_max, mckperiodps); + ncycles -= totalcycles; + + /* + * In ONFI 4.0 specs, tRHZ has been increased to support EDO NANDs and + * we might end up with a config that does not fit in the TDF field. + * Just take the max value in this case and hope that the NAND is more + * tolerant than advertised. + */ + if (ncycles > ATMEL_SMC_MODE_TDF_MAX) + ncycles = ATMEL_SMC_MODE_TDF_MAX; + else if (ncycles < ATMEL_SMC_MODE_TDF_MIN) + ncycles = ATMEL_SMC_MODE_TDF_MIN; + + smcconf->mode |= ATMEL_SMC_MODE_TDF(ncycles) | + ATMEL_SMC_MODE_TDFMODE_OPTIMIZED; + + /* + * Read pulse timing directly matches tRP: + * + * NRD_PULSE = tRP + */ + ncycles = DIV_ROUND_UP(conf->timings.sdr.tRP_min, mckperiodps); + totalcycles += ncycles; + ret = atmel_smc_cs_conf_set_pulse(smcconf, ATMEL_SMC_NRD_SHIFT, + ncycles); + if (ret) + return ret; + + /* + * The write cycle timing is directly matching tWC, but is also + * dependent on the setup and hold timings we calculated earlier, + * which gives: + * + * NRD_CYCLE = max(tRC, NRD_PULSE + NRD_HOLD) + * + * NRD_SETUP is always 0. + */ + ncycles = DIV_ROUND_UP(conf->timings.sdr.tRC_min, mckperiodps); + ncycles = max(totalcycles, ncycles); + ret = atmel_smc_cs_conf_set_cycle(smcconf, ATMEL_SMC_NRD_SHIFT, + ncycles); + if (ret) + return ret; + + /* + * We don't want the CS line to be toggled between each byte/word + * transfer from the NAND. The only way to guarantee that is to have + * the NCS_{WR,RD}_{SETUP,HOLD} timings set to 0, which in turn means: + * + * NCS_RD_PULSE = NRD_CYCLE + */ + ret = atmel_smc_cs_conf_set_pulse(smcconf, ATMEL_SMC_NCS_RD_SHIFT, + ncycles); + if (ret) + return ret; + + /* Txxx timings are directly matching tXXX ones. */ + ncycles = DIV_ROUND_UP(conf->timings.sdr.tCLR_min, mckperiodps); + ret = atmel_smc_cs_conf_set_timing(smcconf, + ATMEL_HSMC_TIMINGS_TCLR_SHIFT, + ncycles); + if (ret) + return ret; + + ncycles = DIV_ROUND_UP(conf->timings.sdr.tADL_min, mckperiodps); + ret = atmel_smc_cs_conf_set_timing(smcconf, + ATMEL_HSMC_TIMINGS_TADL_SHIFT, + ncycles); + /* + * Version 4 of the ONFI spec mandates that tADL be at least 400 + * nanoseconds, but, depending on the master clock rate, 400 ns may not + * fit in the tADL field of the SMC reg. We need to relax the check and + * accept the -ERANGE return code. + * + * Note that previous versions of the ONFI spec had a lower tADL_min + * (100 or 200 ns). It's not clear why this timing constraint got + * increased but it seems most NANDs are fine with values lower than + * 400ns, so we should be safe. + */ + if (ret && ret != -ERANGE) + return ret; + + ncycles = DIV_ROUND_UP(conf->timings.sdr.tAR_min, mckperiodps); + ret = atmel_smc_cs_conf_set_timing(smcconf, + ATMEL_HSMC_TIMINGS_TAR_SHIFT, + ncycles); + if (ret) + return ret; + + ncycles = DIV_ROUND_UP(conf->timings.sdr.tRR_min, mckperiodps); + ret = atmel_smc_cs_conf_set_timing(smcconf, + ATMEL_HSMC_TIMINGS_TRR_SHIFT, + ncycles); + if (ret) + return ret; + + ncycles = DIV_ROUND_UP(conf->timings.sdr.tWB_max, mckperiodps); + ret = atmel_smc_cs_conf_set_timing(smcconf, + ATMEL_HSMC_TIMINGS_TWB_SHIFT, + ncycles); + if (ret) + return ret; + + /* Attach the CS line to the NFC logic. */ + smcconf->timings |= ATMEL_HSMC_TIMINGS_NFSEL; + + /* Set the appropriate data bus width. */ + if (nand->base.options & NAND_BUSWIDTH_16) + smcconf->mode |= ATMEL_SMC_MODE_DBW_16; + + /* Operate in NRD/NWE READ/WRITEMODE. */ + smcconf->mode |= ATMEL_SMC_MODE_READMODE_NRD | + ATMEL_SMC_MODE_WRITEMODE_NWE; + + return 0; +} + +static int atmel_smc_nand_setup_interface(struct atmel_nand *nand, + int csline, + const struct nand_interface_config *conf) +{ + struct atmel_nand_controller *nc; + struct atmel_smc_cs_conf smcconf; + struct atmel_nand_cs *cs; + int ret; + + nc = to_nand_controller(nand->base.controller); + + ret = atmel_smc_nand_prepare_smcconf(nand, conf, &smcconf); + if (ret) + return ret; + + if (csline == NAND_DATA_IFACE_CHECK_ONLY) + return 0; + + cs = &nand->cs[csline]; + cs->smcconf = smcconf; + atmel_smc_cs_conf_apply(nc->smc, cs->id, &cs->smcconf); + + return 0; +} + +static int atmel_hsmc_nand_setup_interface(struct atmel_nand *nand, + int csline, + const struct nand_interface_config *conf) +{ + struct atmel_hsmc_nand_controller *nc; + struct atmel_smc_cs_conf smcconf; + struct atmel_nand_cs *cs; + int ret; + + nc = to_hsmc_nand_controller(nand->base.controller); + + ret = atmel_smc_nand_prepare_smcconf(nand, conf, &smcconf); + if (ret) + return ret; + + if (csline == NAND_DATA_IFACE_CHECK_ONLY) + return 0; + + cs = &nand->cs[csline]; + cs->smcconf = smcconf; + + if (cs->rb.type == ATMEL_NAND_NATIVE_RB) + cs->smcconf.timings |= ATMEL_HSMC_TIMINGS_RBNSEL(cs->rb.id); + + atmel_hsmc_cs_conf_apply(nc->base.smc, nc->hsmc_layout, cs->id, + &cs->smcconf); + + return 0; +} + +static int atmel_nand_setup_interface(struct nand_chip *chip, int csline, + const struct nand_interface_config *conf) +{ + struct atmel_nand *nand = to_atmel_nand(chip); + const struct nand_sdr_timings *sdr; + struct atmel_nand_controller *nc; + + sdr = nand_get_sdr_timings(conf); + if (IS_ERR(sdr)) + return PTR_ERR(sdr); + + nc = to_nand_controller(nand->base.controller); + + if (csline >= nand->numcs || + (csline < 0 && csline != NAND_DATA_IFACE_CHECK_ONLY)) + return -EINVAL; + + return nc->caps->ops->setup_interface(nand, csline, conf); +} + +static int atmel_nand_exec_op(struct nand_chip *chip, + const struct nand_operation *op, + bool check_only) +{ + struct atmel_nand *nand = to_atmel_nand(chip); + struct atmel_nand_controller *nc; + + nc = to_nand_controller(nand->base.controller); + + return nc->caps->ops->exec_op(nand, op, check_only); +} + +static void atmel_nand_init(struct atmel_nand_controller *nc, + struct atmel_nand *nand) +{ + struct nand_chip *chip = &nand->base; + struct mtd_info *mtd = nand_to_mtd(chip); + + mtd->dev.parent = nc->dev; + nand->base.controller = &nc->base; + + if (!nc->mck || !nc->caps->ops->setup_interface) + chip->options |= NAND_KEEP_TIMINGS; + + /* + * Use a bounce buffer when the buffer passed by the MTD user is not + * suitable for DMA. + */ + if (nc->dmac) + chip->options |= NAND_USES_DMA; + + /* Default to HW ECC if pmecc is available. */ + if (nc->pmecc) + chip->ecc.engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST; +} + +static void atmel_smc_nand_init(struct atmel_nand_controller *nc, + struct atmel_nand *nand) +{ + struct nand_chip *chip = &nand->base; + struct atmel_smc_nand_controller *smc_nc; + int i; + + atmel_nand_init(nc, nand); + + smc_nc = to_smc_nand_controller(chip->controller); + if (!smc_nc->ebi_csa_regmap) + return; + + /* Attach the CS to the NAND Flash logic. */ + for (i = 0; i < nand->numcs; i++) + regmap_update_bits(smc_nc->ebi_csa_regmap, + smc_nc->ebi_csa->offs, + BIT(nand->cs[i].id), BIT(nand->cs[i].id)); + + if (smc_nc->ebi_csa->nfd0_on_d16) + regmap_update_bits(smc_nc->ebi_csa_regmap, + smc_nc->ebi_csa->offs, + smc_nc->ebi_csa->nfd0_on_d16, + smc_nc->ebi_csa->nfd0_on_d16); +} + +static int atmel_nand_controller_remove_nand(struct atmel_nand *nand) +{ + struct nand_chip *chip = &nand->base; + struct mtd_info *mtd = nand_to_mtd(chip); + int ret; + + ret = mtd_device_unregister(mtd); + if (ret) + return ret; + + nand_cleanup(chip); + list_del(&nand->node); + + return 0; +} + +static struct atmel_nand *atmel_nand_create(struct atmel_nand_controller *nc, + struct device_node *np, + int reg_cells) +{ + struct atmel_nand *nand; + struct gpio_desc *gpio; + int numcs, ret, i; + + numcs = of_property_count_elems_of_size(np, "reg", + reg_cells * sizeof(u32)); + if (numcs < 1) { + dev_err(nc->dev, "Missing or invalid reg property\n"); + return ERR_PTR(-EINVAL); + } + + nand = devm_kzalloc(nc->dev, struct_size(nand, cs, numcs), GFP_KERNEL); + if (!nand) + return ERR_PTR(-ENOMEM); + + nand->numcs = numcs; + + gpio = devm_fwnode_gpiod_get(nc->dev, of_fwnode_handle(np), + "det", GPIOD_IN, "nand-det"); + if (IS_ERR(gpio) && PTR_ERR(gpio) != -ENOENT) { + dev_err(nc->dev, + "Failed to get detect gpio (err = %ld)\n", + PTR_ERR(gpio)); + return ERR_CAST(gpio); + } + + if (!IS_ERR(gpio)) + nand->cdgpio = gpio; + + for (i = 0; i < numcs; i++) { + struct resource res; + u32 val; + + ret = of_address_to_resource(np, 0, &res); + if (ret) { + dev_err(nc->dev, "Invalid reg property (err = %d)\n", + ret); + return ERR_PTR(ret); + } + + ret = of_property_read_u32_index(np, "reg", i * reg_cells, + &val); + if (ret) { + dev_err(nc->dev, "Invalid reg property (err = %d)\n", + ret); + return ERR_PTR(ret); + } + + nand->cs[i].id = val; + + nand->cs[i].io.dma = res.start; + nand->cs[i].io.virt = devm_ioremap_resource(nc->dev, &res); + if (IS_ERR(nand->cs[i].io.virt)) + return ERR_CAST(nand->cs[i].io.virt); + + if (!of_property_read_u32(np, "atmel,rb", &val)) { + if (val > ATMEL_NFC_MAX_RB_ID) + return ERR_PTR(-EINVAL); + + nand->cs[i].rb.type = ATMEL_NAND_NATIVE_RB; + nand->cs[i].rb.id = val; + } else { + gpio = devm_fwnode_gpiod_get_index(nc->dev, + of_fwnode_handle(np), + "rb", i, GPIOD_IN, + "nand-rb"); + if (IS_ERR(gpio) && PTR_ERR(gpio) != -ENOENT) { + dev_err(nc->dev, + "Failed to get R/B gpio (err = %ld)\n", + PTR_ERR(gpio)); + return ERR_CAST(gpio); + } + + if (!IS_ERR(gpio)) { + nand->cs[i].rb.type = ATMEL_NAND_GPIO_RB; + nand->cs[i].rb.gpio = gpio; + } + } + + gpio = devm_fwnode_gpiod_get_index(nc->dev, + of_fwnode_handle(np), + "cs", i, GPIOD_OUT_HIGH, + "nand-cs"); + if (IS_ERR(gpio) && PTR_ERR(gpio) != -ENOENT) { + dev_err(nc->dev, + "Failed to get CS gpio (err = %ld)\n", + PTR_ERR(gpio)); + return ERR_CAST(gpio); + } + + if (!IS_ERR(gpio)) + nand->cs[i].csgpio = gpio; + } + + nand_set_flash_node(&nand->base, np); + + return nand; +} + +static int +atmel_nand_controller_add_nand(struct atmel_nand_controller *nc, + struct atmel_nand *nand) +{ + struct nand_chip *chip = &nand->base; + struct mtd_info *mtd = nand_to_mtd(chip); + int ret; + + /* No card inserted, skip this NAND. */ + if (nand->cdgpio && gpiod_get_value(nand->cdgpio)) { + dev_info(nc->dev, "No SmartMedia card inserted.\n"); + return 0; + } + + nc->caps->ops->nand_init(nc, nand); + + ret = nand_scan(chip, nand->numcs); + if (ret) { + dev_err(nc->dev, "NAND scan failed: %d\n", ret); + return ret; + } + + ret = mtd_device_register(mtd, NULL, 0); + if (ret) { + dev_err(nc->dev, "Failed to register mtd device: %d\n", ret); + nand_cleanup(chip); + return ret; + } + + list_add_tail(&nand->node, &nc->chips); + + return 0; +} + +static int +atmel_nand_controller_remove_nands(struct atmel_nand_controller *nc) +{ + struct atmel_nand *nand, *tmp; + int ret; + + list_for_each_entry_safe(nand, tmp, &nc->chips, node) { + ret = atmel_nand_controller_remove_nand(nand); + if (ret) + return ret; + } + + return 0; +} + +static int +atmel_nand_controller_legacy_add_nands(struct atmel_nand_controller *nc) +{ + struct device *dev = nc->dev; + struct platform_device *pdev = to_platform_device(dev); + struct atmel_nand *nand; + struct gpio_desc *gpio; + struct resource *res; + + /* + * Legacy bindings only allow connecting a single NAND with a unique CS + * line to the controller. + */ + nand = devm_kzalloc(nc->dev, sizeof(*nand) + sizeof(*nand->cs), + GFP_KERNEL); + if (!nand) + return -ENOMEM; + + nand->numcs = 1; + + nand->cs[0].io.virt = devm_platform_get_and_ioremap_resource(pdev, 0, &res); + if (IS_ERR(nand->cs[0].io.virt)) + return PTR_ERR(nand->cs[0].io.virt); + + nand->cs[0].io.dma = res->start; + + /* + * The old driver was hardcoding the CS id to 3 for all sama5 + * controllers. Since this id is only meaningful for the sama5 + * controller we can safely assign this id to 3 no matter the + * controller. + * If one wants to connect a NAND to a different CS line, he will + * have to use the new bindings. + */ + nand->cs[0].id = 3; + + /* R/B GPIO. */ + gpio = devm_gpiod_get_index_optional(dev, NULL, 0, GPIOD_IN); + if (IS_ERR(gpio)) { + dev_err(dev, "Failed to get R/B gpio (err = %ld)\n", + PTR_ERR(gpio)); + return PTR_ERR(gpio); + } + + if (gpio) { + nand->cs[0].rb.type = ATMEL_NAND_GPIO_RB; + nand->cs[0].rb.gpio = gpio; + } + + /* CS GPIO. */ + gpio = devm_gpiod_get_index_optional(dev, NULL, 1, GPIOD_OUT_HIGH); + if (IS_ERR(gpio)) { + dev_err(dev, "Failed to get CS gpio (err = %ld)\n", + PTR_ERR(gpio)); + return PTR_ERR(gpio); + } + + nand->cs[0].csgpio = gpio; + + /* Card detect GPIO. */ + gpio = devm_gpiod_get_index_optional(nc->dev, NULL, 2, GPIOD_IN); + if (IS_ERR(gpio)) { + dev_err(dev, + "Failed to get detect gpio (err = %ld)\n", + PTR_ERR(gpio)); + return PTR_ERR(gpio); + } + + nand->cdgpio = gpio; + + nand_set_flash_node(&nand->base, nc->dev->of_node); + + return atmel_nand_controller_add_nand(nc, nand); +} + +static int atmel_nand_controller_add_nands(struct atmel_nand_controller *nc) +{ + struct device_node *np, *nand_np; + struct device *dev = nc->dev; + int ret, reg_cells; + u32 val; + + /* We do not retrieve the SMC syscon when parsing old DTs. */ + if (nc->caps->legacy_of_bindings) + return atmel_nand_controller_legacy_add_nands(nc); + + np = dev->of_node; + + ret = of_property_read_u32(np, "#address-cells", &val); + if (ret) { + dev_err(dev, "missing #address-cells property\n"); + return ret; + } + + reg_cells = val; + + ret = of_property_read_u32(np, "#size-cells", &val); + if (ret) { + dev_err(dev, "missing #size-cells property\n"); + return ret; + } + + reg_cells += val; + + for_each_child_of_node(np, nand_np) { + struct atmel_nand *nand; + + nand = atmel_nand_create(nc, nand_np, reg_cells); + if (IS_ERR(nand)) { + ret = PTR_ERR(nand); + goto err; + } + + ret = atmel_nand_controller_add_nand(nc, nand); + if (ret) + goto err; + } + + return 0; + +err: + atmel_nand_controller_remove_nands(nc); + + return ret; +} + +static void atmel_nand_controller_cleanup(struct atmel_nand_controller *nc) +{ + if (nc->dmac) + dma_release_channel(nc->dmac); + + clk_put(nc->mck); +} + +static const struct atmel_smc_nand_ebi_csa_cfg at91sam9260_ebi_csa = { + .offs = AT91SAM9260_MATRIX_EBICSA, +}; + +static const struct atmel_smc_nand_ebi_csa_cfg at91sam9261_ebi_csa = { + .offs = AT91SAM9261_MATRIX_EBICSA, +}; + +static const struct atmel_smc_nand_ebi_csa_cfg at91sam9263_ebi_csa = { + .offs = AT91SAM9263_MATRIX_EBI0CSA, +}; + +static const struct atmel_smc_nand_ebi_csa_cfg at91sam9rl_ebi_csa = { + .offs = AT91SAM9RL_MATRIX_EBICSA, +}; + +static const struct atmel_smc_nand_ebi_csa_cfg at91sam9g45_ebi_csa = { + .offs = AT91SAM9G45_MATRIX_EBICSA, +}; + +static const struct atmel_smc_nand_ebi_csa_cfg at91sam9n12_ebi_csa = { + .offs = AT91SAM9N12_MATRIX_EBICSA, +}; + +static const struct atmel_smc_nand_ebi_csa_cfg at91sam9x5_ebi_csa = { + .offs = AT91SAM9X5_MATRIX_EBICSA, +}; + +static const struct atmel_smc_nand_ebi_csa_cfg sam9x60_ebi_csa = { + .offs = AT91_SFR_CCFG_EBICSA, + .nfd0_on_d16 = AT91_SFR_CCFG_NFD0_ON_D16, +}; + +static const struct of_device_id __maybe_unused atmel_ebi_csa_regmap_of_ids[] = { + { + .compatible = "atmel,at91sam9260-matrix", + .data = &at91sam9260_ebi_csa, + }, + { + .compatible = "atmel,at91sam9261-matrix", + .data = &at91sam9261_ebi_csa, + }, + { + .compatible = "atmel,at91sam9263-matrix", + .data = &at91sam9263_ebi_csa, + }, + { + .compatible = "atmel,at91sam9rl-matrix", + .data = &at91sam9rl_ebi_csa, + }, + { + .compatible = "atmel,at91sam9g45-matrix", + .data = &at91sam9g45_ebi_csa, + }, + { + .compatible = "atmel,at91sam9n12-matrix", + .data = &at91sam9n12_ebi_csa, + }, + { + .compatible = "atmel,at91sam9x5-matrix", + .data = &at91sam9x5_ebi_csa, + }, + { + .compatible = "microchip,sam9x60-sfr", + .data = &sam9x60_ebi_csa, + }, + { /* sentinel */ }, +}; + +static int atmel_nand_attach_chip(struct nand_chip *chip) +{ + struct atmel_nand_controller *nc = to_nand_controller(chip->controller); + struct atmel_nand *nand = to_atmel_nand(chip); + struct mtd_info *mtd = nand_to_mtd(chip); + int ret; + + ret = nc->caps->ops->ecc_init(chip); + if (ret) + return ret; + + if (nc->caps->legacy_of_bindings || !nc->dev->of_node) { + /* + * We keep the MTD name unchanged to avoid breaking platforms + * where the MTD cmdline parser is used and the bootloader + * has not been updated to use the new naming scheme. + */ + mtd->name = "atmel_nand"; + } else if (!mtd->name) { + /* + * If the new bindings are used and the bootloader has not been + * updated to pass a new mtdparts parameter on the cmdline, you + * should define the following property in your nand node: + * + * label = "atmel_nand"; + * + * This way, mtd->name will be set by the core when + * nand_set_flash_node() is called. + */ + mtd->name = devm_kasprintf(nc->dev, GFP_KERNEL, + "%s:nand.%d", dev_name(nc->dev), + nand->cs[0].id); + if (!mtd->name) { + dev_err(nc->dev, "Failed to allocate mtd->name\n"); + return -ENOMEM; + } + } + + return 0; +} + +static const struct nand_controller_ops atmel_nand_controller_ops = { + .attach_chip = atmel_nand_attach_chip, + .setup_interface = atmel_nand_setup_interface, + .exec_op = atmel_nand_exec_op, +}; + +static int atmel_nand_controller_init(struct atmel_nand_controller *nc, + struct platform_device *pdev, + const struct atmel_nand_controller_caps *caps) +{ + struct device *dev = &pdev->dev; + struct device_node *np = dev->of_node; + int ret; + + nand_controller_init(&nc->base); + nc->base.ops = &atmel_nand_controller_ops; + INIT_LIST_HEAD(&nc->chips); + nc->dev = dev; + nc->caps = caps; + + platform_set_drvdata(pdev, nc); + + nc->pmecc = devm_atmel_pmecc_get(dev); + if (IS_ERR(nc->pmecc)) + return dev_err_probe(dev, PTR_ERR(nc->pmecc), + "Could not get PMECC object\n"); + + if (nc->caps->has_dma && !atmel_nand_avoid_dma) { + dma_cap_mask_t mask; + + dma_cap_zero(mask); + dma_cap_set(DMA_MEMCPY, mask); + + nc->dmac = dma_request_channel(mask, NULL, NULL); + if (!nc->dmac) + dev_err(nc->dev, "Failed to request DMA channel\n"); + } + + /* We do not retrieve the SMC syscon when parsing old DTs. */ + if (nc->caps->legacy_of_bindings) + return 0; + + nc->mck = of_clk_get(dev->parent->of_node, 0); + if (IS_ERR(nc->mck)) { + dev_err(dev, "Failed to retrieve MCK clk\n"); + ret = PTR_ERR(nc->mck); + goto out_release_dma; + } + + np = of_parse_phandle(dev->parent->of_node, "atmel,smc", 0); + if (!np) { + dev_err(dev, "Missing or invalid atmel,smc property\n"); + ret = -EINVAL; + goto out_release_dma; + } + + nc->smc = syscon_node_to_regmap(np); + of_node_put(np); + if (IS_ERR(nc->smc)) { + ret = PTR_ERR(nc->smc); + dev_err(dev, "Could not get SMC regmap (err = %d)\n", ret); + goto out_release_dma; + } + + return 0; + +out_release_dma: + if (nc->dmac) + dma_release_channel(nc->dmac); + + return ret; +} + +static int +atmel_smc_nand_controller_init(struct atmel_smc_nand_controller *nc) +{ + struct device *dev = nc->base.dev; + const struct of_device_id *match; + struct device_node *np; + int ret; + + /* We do not retrieve the EBICSA regmap when parsing old DTs. */ + if (nc->base.caps->legacy_of_bindings) + return 0; + + np = of_parse_phandle(dev->parent->of_node, + nc->base.caps->ebi_csa_regmap_name, 0); + if (!np) + return 0; + + match = of_match_node(atmel_ebi_csa_regmap_of_ids, np); + if (!match) { + of_node_put(np); + return 0; + } + + nc->ebi_csa_regmap = syscon_node_to_regmap(np); + of_node_put(np); + if (IS_ERR(nc->ebi_csa_regmap)) { + ret = PTR_ERR(nc->ebi_csa_regmap); + dev_err(dev, "Could not get EBICSA regmap (err = %d)\n", ret); + return ret; + } + + nc->ebi_csa = (struct atmel_smc_nand_ebi_csa_cfg *)match->data; + + /* + * The at91sam9263 has 2 EBIs, if the NAND controller is under EBI1 + * add 4 to ->ebi_csa->offs. + */ + if (of_device_is_compatible(dev->parent->of_node, + "atmel,at91sam9263-ebi1")) + nc->ebi_csa->offs += 4; + + return 0; +} + +static int +atmel_hsmc_nand_controller_legacy_init(struct atmel_hsmc_nand_controller *nc) +{ + struct regmap_config regmap_conf = { + .reg_bits = 32, + .val_bits = 32, + .reg_stride = 4, + }; + + struct device *dev = nc->base.dev; + struct device_node *nand_np, *nfc_np; + void __iomem *iomem; + struct resource res; + int ret; + + nand_np = dev->of_node; + nfc_np = of_get_compatible_child(dev->of_node, "atmel,sama5d3-nfc"); + if (!nfc_np) { + dev_err(dev, "Could not find device node for sama5d3-nfc\n"); + return -ENODEV; + } + + nc->clk = of_clk_get(nfc_np, 0); + if (IS_ERR(nc->clk)) { + ret = PTR_ERR(nc->clk); + dev_err(dev, "Failed to retrieve HSMC clock (err = %d)\n", + ret); + goto out; + } + + ret = clk_prepare_enable(nc->clk); + if (ret) { + dev_err(dev, "Failed to enable the HSMC clock (err = %d)\n", + ret); + goto out; + } + + nc->irq = of_irq_get(nand_np, 0); + if (nc->irq <= 0) { + ret = nc->irq ?: -ENXIO; + if (ret != -EPROBE_DEFER) + dev_err(dev, "Failed to get IRQ number (err = %d)\n", + ret); + goto out; + } + + ret = of_address_to_resource(nfc_np, 0, &res); + if (ret) { + dev_err(dev, "Invalid or missing NFC IO resource (err = %d)\n", + ret); + goto out; + } + + iomem = devm_ioremap_resource(dev, &res); + if (IS_ERR(iomem)) { + ret = PTR_ERR(iomem); + goto out; + } + + regmap_conf.name = "nfc-io"; + regmap_conf.max_register = resource_size(&res) - 4; + nc->io = devm_regmap_init_mmio(dev, iomem, ®map_conf); + if (IS_ERR(nc->io)) { + ret = PTR_ERR(nc->io); + dev_err(dev, "Could not create NFC IO regmap (err = %d)\n", + ret); + goto out; + } + + ret = of_address_to_resource(nfc_np, 1, &res); + if (ret) { + dev_err(dev, "Invalid or missing HSMC resource (err = %d)\n", + ret); + goto out; + } + + iomem = devm_ioremap_resource(dev, &res); + if (IS_ERR(iomem)) { + ret = PTR_ERR(iomem); + goto out; + } + + regmap_conf.name = "smc"; + regmap_conf.max_register = resource_size(&res) - 4; + nc->base.smc = devm_regmap_init_mmio(dev, iomem, ®map_conf); + if (IS_ERR(nc->base.smc)) { + ret = PTR_ERR(nc->base.smc); + dev_err(dev, "Could not create NFC IO regmap (err = %d)\n", + ret); + goto out; + } + + ret = of_address_to_resource(nfc_np, 2, &res); + if (ret) { + dev_err(dev, "Invalid or missing SRAM resource (err = %d)\n", + ret); + goto out; + } + + nc->sram.virt = devm_ioremap_resource(dev, &res); + if (IS_ERR(nc->sram.virt)) { + ret = PTR_ERR(nc->sram.virt); + goto out; + } + + nc->sram.dma = res.start; + +out: + of_node_put(nfc_np); + + return ret; +} + +static int +atmel_hsmc_nand_controller_init(struct atmel_hsmc_nand_controller *nc) +{ + struct device *dev = nc->base.dev; + struct device_node *np; + int ret; + + np = of_parse_phandle(dev->parent->of_node, "atmel,smc", 0); + if (!np) { + dev_err(dev, "Missing or invalid atmel,smc property\n"); + return -EINVAL; + } + + nc->hsmc_layout = atmel_hsmc_get_reg_layout(np); + + nc->irq = of_irq_get(np, 0); + of_node_put(np); + if (nc->irq <= 0) { + ret = nc->irq ?: -ENXIO; + if (ret != -EPROBE_DEFER) + dev_err(dev, "Failed to get IRQ number (err = %d)\n", + ret); + return ret; + } + + np = of_parse_phandle(dev->of_node, "atmel,nfc-io", 0); + if (!np) { + dev_err(dev, "Missing or invalid atmel,nfc-io property\n"); + return -EINVAL; + } + + nc->io = syscon_node_to_regmap(np); + of_node_put(np); + if (IS_ERR(nc->io)) { + ret = PTR_ERR(nc->io); + dev_err(dev, "Could not get NFC IO regmap (err = %d)\n", ret); + return ret; + } + + nc->sram.pool = of_gen_pool_get(nc->base.dev->of_node, + "atmel,nfc-sram", 0); + if (!nc->sram.pool) { + dev_err(nc->base.dev, "Missing SRAM\n"); + return -ENOMEM; + } + + nc->sram.virt = (void __iomem *)gen_pool_dma_alloc(nc->sram.pool, + ATMEL_NFC_SRAM_SIZE, + &nc->sram.dma); + if (!nc->sram.virt) { + dev_err(nc->base.dev, + "Could not allocate memory from the NFC SRAM pool\n"); + return -ENOMEM; + } + + return 0; +} + +static int +atmel_hsmc_nand_controller_remove(struct atmel_nand_controller *nc) +{ + struct atmel_hsmc_nand_controller *hsmc_nc; + int ret; + + ret = atmel_nand_controller_remove_nands(nc); + if (ret) + return ret; + + hsmc_nc = container_of(nc, struct atmel_hsmc_nand_controller, base); + regmap_write(hsmc_nc->base.smc, ATMEL_HSMC_NFC_CTRL, + ATMEL_HSMC_NFC_CTRL_DIS); + + if (hsmc_nc->sram.pool) + gen_pool_free(hsmc_nc->sram.pool, + (unsigned long)hsmc_nc->sram.virt, + ATMEL_NFC_SRAM_SIZE); + + if (hsmc_nc->clk) { + clk_disable_unprepare(hsmc_nc->clk); + clk_put(hsmc_nc->clk); + } + + atmel_nand_controller_cleanup(nc); + + return 0; +} + +static int atmel_hsmc_nand_controller_probe(struct platform_device *pdev, + const struct atmel_nand_controller_caps *caps) +{ + struct device *dev = &pdev->dev; + struct atmel_hsmc_nand_controller *nc; + int ret; + + nc = devm_kzalloc(dev, sizeof(*nc), GFP_KERNEL); + if (!nc) + return -ENOMEM; + + ret = atmel_nand_controller_init(&nc->base, pdev, caps); + if (ret) + return ret; + + if (caps->legacy_of_bindings) + ret = atmel_hsmc_nand_controller_legacy_init(nc); + else + ret = atmel_hsmc_nand_controller_init(nc); + + if (ret) + return ret; + + /* Make sure all irqs are masked before registering our IRQ handler. */ + regmap_write(nc->base.smc, ATMEL_HSMC_NFC_IDR, 0xffffffff); + ret = devm_request_irq(dev, nc->irq, atmel_nfc_interrupt, + IRQF_SHARED, "nfc", nc); + if (ret) { + dev_err(dev, + "Could not get register NFC interrupt handler (err = %d)\n", + ret); + goto err; + } + + /* Initial NFC configuration. */ + regmap_write(nc->base.smc, ATMEL_HSMC_NFC_CFG, + ATMEL_HSMC_NFC_CFG_DTO_MAX); + regmap_write(nc->base.smc, ATMEL_HSMC_NFC_CTRL, + ATMEL_HSMC_NFC_CTRL_EN); + + ret = atmel_nand_controller_add_nands(&nc->base); + if (ret) + goto err; + + return 0; + +err: + atmel_hsmc_nand_controller_remove(&nc->base); + + return ret; +} + +static const struct atmel_nand_controller_ops atmel_hsmc_nc_ops = { + .probe = atmel_hsmc_nand_controller_probe, + .remove = atmel_hsmc_nand_controller_remove, + .ecc_init = atmel_hsmc_nand_ecc_init, + .nand_init = atmel_nand_init, + .setup_interface = atmel_hsmc_nand_setup_interface, + .exec_op = atmel_hsmc_nand_exec_op, +}; + +static const struct atmel_nand_controller_caps atmel_sama5_nc_caps = { + .has_dma = true, + .ale_offs = BIT(21), + .cle_offs = BIT(22), + .ops = &atmel_hsmc_nc_ops, +}; + +/* Only used to parse old bindings. */ +static const struct atmel_nand_controller_caps atmel_sama5_nand_caps = { + .has_dma = true, + .ale_offs = BIT(21), + .cle_offs = BIT(22), + .ops = &atmel_hsmc_nc_ops, + .legacy_of_bindings = true, +}; + +static int atmel_smc_nand_controller_probe(struct platform_device *pdev, + const struct atmel_nand_controller_caps *caps) +{ + struct device *dev = &pdev->dev; + struct atmel_smc_nand_controller *nc; + int ret; + + nc = devm_kzalloc(dev, sizeof(*nc), GFP_KERNEL); + if (!nc) + return -ENOMEM; + + ret = atmel_nand_controller_init(&nc->base, pdev, caps); + if (ret) + return ret; + + ret = atmel_smc_nand_controller_init(nc); + if (ret) + return ret; + + return atmel_nand_controller_add_nands(&nc->base); +} + +static int +atmel_smc_nand_controller_remove(struct atmel_nand_controller *nc) +{ + int ret; + + ret = atmel_nand_controller_remove_nands(nc); + if (ret) + return ret; + + atmel_nand_controller_cleanup(nc); + + return 0; +} + +/* + * The SMC reg layout of at91rm9200 is completely different which prevents us + * from re-using atmel_smc_nand_setup_interface() for the + * ->setup_interface() hook. + * At this point, there's no support for the at91rm9200 SMC IP, so we leave + * ->setup_interface() unassigned. + */ +static const struct atmel_nand_controller_ops at91rm9200_nc_ops = { + .probe = atmel_smc_nand_controller_probe, + .remove = atmel_smc_nand_controller_remove, + .ecc_init = atmel_nand_ecc_init, + .nand_init = atmel_smc_nand_init, + .exec_op = atmel_smc_nand_exec_op, +}; + +static const struct atmel_nand_controller_caps atmel_rm9200_nc_caps = { + .ale_offs = BIT(21), + .cle_offs = BIT(22), + .ebi_csa_regmap_name = "atmel,matrix", + .ops = &at91rm9200_nc_ops, +}; + +static const struct atmel_nand_controller_ops atmel_smc_nc_ops = { + .probe = atmel_smc_nand_controller_probe, + .remove = atmel_smc_nand_controller_remove, + .ecc_init = atmel_nand_ecc_init, + .nand_init = atmel_smc_nand_init, + .setup_interface = atmel_smc_nand_setup_interface, + .exec_op = atmel_smc_nand_exec_op, +}; + +static const struct atmel_nand_controller_caps atmel_sam9260_nc_caps = { + .ale_offs = BIT(21), + .cle_offs = BIT(22), + .ebi_csa_regmap_name = "atmel,matrix", + .ops = &atmel_smc_nc_ops, +}; + +static const struct atmel_nand_controller_caps atmel_sam9261_nc_caps = { + .ale_offs = BIT(22), + .cle_offs = BIT(21), + .ebi_csa_regmap_name = "atmel,matrix", + .ops = &atmel_smc_nc_ops, +}; + +static const struct atmel_nand_controller_caps atmel_sam9g45_nc_caps = { + .has_dma = true, + .ale_offs = BIT(21), + .cle_offs = BIT(22), + .ebi_csa_regmap_name = "atmel,matrix", + .ops = &atmel_smc_nc_ops, +}; + +static const struct atmel_nand_controller_caps microchip_sam9x60_nc_caps = { + .has_dma = true, + .ale_offs = BIT(21), + .cle_offs = BIT(22), + .ebi_csa_regmap_name = "microchip,sfr", + .ops = &atmel_smc_nc_ops, +}; + +/* Only used to parse old bindings. */ +static const struct atmel_nand_controller_caps atmel_rm9200_nand_caps = { + .ale_offs = BIT(21), + .cle_offs = BIT(22), + .ops = &atmel_smc_nc_ops, + .legacy_of_bindings = true, +}; + +static const struct atmel_nand_controller_caps atmel_sam9261_nand_caps = { + .ale_offs = BIT(22), + .cle_offs = BIT(21), + .ops = &atmel_smc_nc_ops, + .legacy_of_bindings = true, +}; + +static const struct atmel_nand_controller_caps atmel_sam9g45_nand_caps = { + .has_dma = true, + .ale_offs = BIT(21), + .cle_offs = BIT(22), + .ops = &atmel_smc_nc_ops, + .legacy_of_bindings = true, +}; + +static const struct of_device_id atmel_nand_controller_of_ids[] = { + { + .compatible = "atmel,at91rm9200-nand-controller", + .data = &atmel_rm9200_nc_caps, + }, + { + .compatible = "atmel,at91sam9260-nand-controller", + .data = &atmel_sam9260_nc_caps, + }, + { + .compatible = "atmel,at91sam9261-nand-controller", + .data = &atmel_sam9261_nc_caps, + }, + { + .compatible = "atmel,at91sam9g45-nand-controller", + .data = &atmel_sam9g45_nc_caps, + }, + { + .compatible = "atmel,sama5d3-nand-controller", + .data = &atmel_sama5_nc_caps, + }, + { + .compatible = "microchip,sam9x60-nand-controller", + .data = µchip_sam9x60_nc_caps, + }, + /* Support for old/deprecated bindings: */ + { + .compatible = "atmel,at91rm9200-nand", + .data = &atmel_rm9200_nand_caps, + }, + { + .compatible = "atmel,sama5d4-nand", + .data = &atmel_rm9200_nand_caps, + }, + { + .compatible = "atmel,sama5d2-nand", + .data = &atmel_rm9200_nand_caps, + }, + { /* sentinel */ }, +}; +MODULE_DEVICE_TABLE(of, atmel_nand_controller_of_ids); + +static int atmel_nand_controller_probe(struct platform_device *pdev) +{ + const struct atmel_nand_controller_caps *caps; + + if (pdev->id_entry) + caps = (void *)pdev->id_entry->driver_data; + else + caps = of_device_get_match_data(&pdev->dev); + + if (!caps) { + dev_err(&pdev->dev, "Could not retrieve NFC caps\n"); + return -EINVAL; + } + + if (caps->legacy_of_bindings) { + struct device_node *nfc_node; + u32 ale_offs = 21; + + /* + * If we are parsing legacy DT props and the DT contains a + * valid NFC node, forward the request to the sama5 logic. + */ + nfc_node = of_get_compatible_child(pdev->dev.of_node, + "atmel,sama5d3-nfc"); + if (nfc_node) { + caps = &atmel_sama5_nand_caps; + of_node_put(nfc_node); + } + + /* + * Even if the compatible says we are dealing with an + * at91rm9200 controller, the atmel,nand-has-dma specify that + * this controller supports DMA, which means we are in fact + * dealing with an at91sam9g45+ controller. + */ + if (!caps->has_dma && + of_property_read_bool(pdev->dev.of_node, + "atmel,nand-has-dma")) + caps = &atmel_sam9g45_nand_caps; + + /* + * All SoCs except the at91sam9261 are assigning ALE to A21 and + * CLE to A22. If atmel,nand-addr-offset != 21 this means we're + * actually dealing with an at91sam9261 controller. + */ + of_property_read_u32(pdev->dev.of_node, + "atmel,nand-addr-offset", &ale_offs); + if (ale_offs != 21) + caps = &atmel_sam9261_nand_caps; + } + + return caps->ops->probe(pdev, caps); +} + +static void atmel_nand_controller_remove(struct platform_device *pdev) +{ + struct atmel_nand_controller *nc = platform_get_drvdata(pdev); + + WARN_ON(nc->caps->ops->remove(nc)); +} + +static __maybe_unused int atmel_nand_controller_resume(struct device *dev) +{ + struct atmel_nand_controller *nc = dev_get_drvdata(dev); + struct atmel_nand *nand; + + if (nc->pmecc) + atmel_pmecc_reset(nc->pmecc); + + list_for_each_entry(nand, &nc->chips, node) { + int i; + + for (i = 0; i < nand->numcs; i++) + nand_reset(&nand->base, i); + } + + return 0; +} + +static SIMPLE_DEV_PM_OPS(atmel_nand_controller_pm_ops, NULL, + atmel_nand_controller_resume); + +static struct platform_driver atmel_nand_controller_driver = { + .driver = { + .name = "atmel-nand-controller", + .of_match_table = atmel_nand_controller_of_ids, + .pm = &atmel_nand_controller_pm_ops, + }, + .probe = atmel_nand_controller_probe, + .remove_new = atmel_nand_controller_remove, +}; +module_platform_driver(atmel_nand_controller_driver); + +MODULE_LICENSE("GPL"); +MODULE_AUTHOR("Boris Brezillon <boris.brezillon@free-electrons.com>"); +MODULE_DESCRIPTION("NAND Flash Controller driver for Atmel SoCs"); +MODULE_ALIAS("platform:atmel-nand-controller"); diff --git a/drivers/mtd/nand/raw/atmel/pmecc.c b/drivers/mtd/nand/raw/atmel/pmecc.c new file mode 100644 index 0000000000..4d7dc8a9c3 --- /dev/null +++ b/drivers/mtd/nand/raw/atmel/pmecc.c @@ -0,0 +1,1015 @@ +// SPDX-License-Identifier: GPL-2.0 +/* + * Copyright 2017 ATMEL + * Copyright 2017 Free Electrons + * + * Author: Boris Brezillon <boris.brezillon@free-electrons.com> + * + * Derived from the atmel_nand.c driver which contained the following + * copyrights: + * + * Copyright 2003 Rick Bronson + * + * Derived from drivers/mtd/nand/autcpu12.c (removed in v3.8) + * Copyright 2001 Thomas Gleixner (gleixner@autronix.de) + * + * Derived from drivers/mtd/spia.c (removed in v3.8) + * Copyright 2000 Steven J. Hill (sjhill@cotw.com) + * + * Add Hardware ECC support for AT91SAM9260 / AT91SAM9263 + * Richard Genoud (richard.genoud@gmail.com), Adeneo Copyright 2007 + * + * Derived from Das U-Boot source code + * (u-boot-1.1.5/board/atmel/at91sam9263ek/nand.c) + * Copyright 2006 ATMEL Rousset, Lacressonniere Nicolas + * + * Add Programmable Multibit ECC support for various AT91 SoC + * Copyright 2012 ATMEL, Hong Xu + * + * Add Nand Flash Controller support for SAMA5 SoC + * Copyright 2013 ATMEL, Josh Wu (josh.wu@atmel.com) + * + * The PMECC is an hardware assisted BCH engine, which means part of the + * ECC algorithm is left to the software. The hardware/software repartition + * is explained in the "PMECC Controller Functional Description" chapter in + * Atmel datasheets, and some of the functions in this file are directly + * implementing the algorithms described in the "Software Implementation" + * sub-section. + * + * TODO: it seems that the software BCH implementation in lib/bch.c is already + * providing some of the logic we are implementing here. It would be smart + * to expose the needed lib/bch.c helpers/functions and re-use them here. + */ + +#include <linux/genalloc.h> +#include <linux/iopoll.h> +#include <linux/module.h> +#include <linux/mtd/rawnand.h> +#include <linux/of_irq.h> +#include <linux/of_platform.h> +#include <linux/platform_device.h> +#include <linux/slab.h> + +#include "pmecc.h" + +/* Galois field dimension */ +#define PMECC_GF_DIMENSION_13 13 +#define PMECC_GF_DIMENSION_14 14 + +/* Primitive Polynomial used by PMECC */ +#define PMECC_GF_13_PRIMITIVE_POLY 0x201b +#define PMECC_GF_14_PRIMITIVE_POLY 0x4443 + +#define PMECC_LOOKUP_TABLE_SIZE_512 0x2000 +#define PMECC_LOOKUP_TABLE_SIZE_1024 0x4000 + +/* Time out value for reading PMECC status register */ +#define PMECC_MAX_TIMEOUT_MS 100 + +/* PMECC Register Definitions */ +#define ATMEL_PMECC_CFG 0x0 +#define PMECC_CFG_BCH_STRENGTH(x) (x) +#define PMECC_CFG_BCH_STRENGTH_MASK GENMASK(2, 0) +#define PMECC_CFG_SECTOR512 (0 << 4) +#define PMECC_CFG_SECTOR1024 (1 << 4) +#define PMECC_CFG_NSECTORS(x) ((fls(x) - 1) << 8) +#define PMECC_CFG_READ_OP (0 << 12) +#define PMECC_CFG_WRITE_OP (1 << 12) +#define PMECC_CFG_SPARE_ENABLE BIT(16) +#define PMECC_CFG_AUTO_ENABLE BIT(20) + +#define ATMEL_PMECC_SAREA 0x4 +#define ATMEL_PMECC_SADDR 0x8 +#define ATMEL_PMECC_EADDR 0xc + +#define ATMEL_PMECC_CLK 0x10 +#define PMECC_CLK_133MHZ (2 << 0) + +#define ATMEL_PMECC_CTRL 0x14 +#define PMECC_CTRL_RST BIT(0) +#define PMECC_CTRL_DATA BIT(1) +#define PMECC_CTRL_USER BIT(2) +#define PMECC_CTRL_ENABLE BIT(4) +#define PMECC_CTRL_DISABLE BIT(5) + +#define ATMEL_PMECC_SR 0x18 +#define PMECC_SR_BUSY BIT(0) +#define PMECC_SR_ENABLE BIT(4) + +#define ATMEL_PMECC_IER 0x1c +#define ATMEL_PMECC_IDR 0x20 +#define ATMEL_PMECC_IMR 0x24 +#define ATMEL_PMECC_ISR 0x28 +#define PMECC_ERROR_INT BIT(0) + +#define ATMEL_PMECC_ECC(sector, n) \ + ((((sector) + 1) * 0x40) + (n)) + +#define ATMEL_PMECC_REM(sector, n) \ + ((((sector) + 1) * 0x40) + ((n) * 4) + 0x200) + +/* PMERRLOC Register Definitions */ +#define ATMEL_PMERRLOC_ELCFG 0x0 +#define PMERRLOC_ELCFG_SECTOR_512 (0 << 0) +#define PMERRLOC_ELCFG_SECTOR_1024 (1 << 0) +#define PMERRLOC_ELCFG_NUM_ERRORS(n) ((n) << 16) + +#define ATMEL_PMERRLOC_ELPRIM 0x4 +#define ATMEL_PMERRLOC_ELEN 0x8 +#define ATMEL_PMERRLOC_ELDIS 0xc +#define PMERRLOC_DISABLE BIT(0) + +#define ATMEL_PMERRLOC_ELSR 0x10 +#define PMERRLOC_ELSR_BUSY BIT(0) + +#define ATMEL_PMERRLOC_ELIER 0x14 +#define ATMEL_PMERRLOC_ELIDR 0x18 +#define ATMEL_PMERRLOC_ELIMR 0x1c +#define ATMEL_PMERRLOC_ELISR 0x20 +#define PMERRLOC_ERR_NUM_MASK GENMASK(12, 8) +#define PMERRLOC_CALC_DONE BIT(0) + +#define ATMEL_PMERRLOC_SIGMA(x) (((x) * 0x4) + 0x28) + +#define ATMEL_PMERRLOC_EL(offs, x) (((x) * 0x4) + (offs)) + +struct atmel_pmecc_gf_tables { + u16 *alpha_to; + u16 *index_of; +}; + +struct atmel_pmecc_caps { + const int *strengths; + int nstrengths; + int el_offset; + bool correct_erased_chunks; +}; + +struct atmel_pmecc { + struct device *dev; + const struct atmel_pmecc_caps *caps; + + struct { + void __iomem *base; + void __iomem *errloc; + } regs; + + struct mutex lock; +}; + +struct atmel_pmecc_user_conf_cache { + u32 cfg; + u32 sarea; + u32 saddr; + u32 eaddr; +}; + +struct atmel_pmecc_user { + struct atmel_pmecc_user_conf_cache cache; + struct atmel_pmecc *pmecc; + const struct atmel_pmecc_gf_tables *gf_tables; + int eccbytes; + s16 *partial_syn; + s16 *si; + s16 *lmu; + s16 *smu; + s32 *mu; + s32 *dmu; + s32 *delta; + u32 isr; +}; + +static DEFINE_MUTEX(pmecc_gf_tables_lock); +static const struct atmel_pmecc_gf_tables *pmecc_gf_tables_512; +static const struct atmel_pmecc_gf_tables *pmecc_gf_tables_1024; + +static inline int deg(unsigned int poly) +{ + /* polynomial degree is the most-significant bit index */ + return fls(poly) - 1; +} + +static int atmel_pmecc_build_gf_tables(int mm, unsigned int poly, + struct atmel_pmecc_gf_tables *gf_tables) +{ + unsigned int i, x = 1; + const unsigned int k = BIT(deg(poly)); + unsigned int nn = BIT(mm) - 1; + + /* primitive polynomial must be of degree m */ + if (k != (1u << mm)) + return -EINVAL; + + for (i = 0; i < nn; i++) { + gf_tables->alpha_to[i] = x; + gf_tables->index_of[x] = i; + if (i && (x == 1)) + /* polynomial is not primitive (a^i=1 with 0<i<2^m-1) */ + return -EINVAL; + x <<= 1; + if (x & k) + x ^= poly; + } + gf_tables->alpha_to[nn] = 1; + gf_tables->index_of[0] = 0; + + return 0; +} + +static const struct atmel_pmecc_gf_tables * +atmel_pmecc_create_gf_tables(const struct atmel_pmecc_user_req *req) +{ + struct atmel_pmecc_gf_tables *gf_tables; + unsigned int poly, degree, table_size; + int ret; + + if (req->ecc.sectorsize == 512) { + degree = PMECC_GF_DIMENSION_13; + poly = PMECC_GF_13_PRIMITIVE_POLY; + table_size = PMECC_LOOKUP_TABLE_SIZE_512; + } else { + degree = PMECC_GF_DIMENSION_14; + poly = PMECC_GF_14_PRIMITIVE_POLY; + table_size = PMECC_LOOKUP_TABLE_SIZE_1024; + } + + gf_tables = kzalloc(sizeof(*gf_tables) + + (2 * table_size * sizeof(u16)), + GFP_KERNEL); + if (!gf_tables) + return ERR_PTR(-ENOMEM); + + gf_tables->alpha_to = (void *)(gf_tables + 1); + gf_tables->index_of = gf_tables->alpha_to + table_size; + + ret = atmel_pmecc_build_gf_tables(degree, poly, gf_tables); + if (ret) { + kfree(gf_tables); + return ERR_PTR(ret); + } + + return gf_tables; +} + +static const struct atmel_pmecc_gf_tables * +atmel_pmecc_get_gf_tables(const struct atmel_pmecc_user_req *req) +{ + const struct atmel_pmecc_gf_tables **gf_tables, *ret; + + mutex_lock(&pmecc_gf_tables_lock); + if (req->ecc.sectorsize == 512) + gf_tables = &pmecc_gf_tables_512; + else + gf_tables = &pmecc_gf_tables_1024; + + ret = *gf_tables; + + if (!ret) { + ret = atmel_pmecc_create_gf_tables(req); + if (!IS_ERR(ret)) + *gf_tables = ret; + } + mutex_unlock(&pmecc_gf_tables_lock); + + return ret; +} + +static int atmel_pmecc_prepare_user_req(struct atmel_pmecc *pmecc, + struct atmel_pmecc_user_req *req) +{ + int i, max_eccbytes, eccbytes = 0, eccstrength = 0; + + if (req->pagesize <= 0 || req->oobsize <= 0 || req->ecc.bytes <= 0) + return -EINVAL; + + if (req->ecc.ooboffset >= 0 && + req->ecc.ooboffset + req->ecc.bytes > req->oobsize) + return -EINVAL; + + if (req->ecc.sectorsize == ATMEL_PMECC_SECTOR_SIZE_AUTO) { + if (req->ecc.strength != ATMEL_PMECC_MAXIMIZE_ECC_STRENGTH) + return -EINVAL; + + if (req->pagesize > 512) + req->ecc.sectorsize = 1024; + else + req->ecc.sectorsize = 512; + } + + if (req->ecc.sectorsize != 512 && req->ecc.sectorsize != 1024) + return -EINVAL; + + if (req->pagesize % req->ecc.sectorsize) + return -EINVAL; + + req->ecc.nsectors = req->pagesize / req->ecc.sectorsize; + + max_eccbytes = req->ecc.bytes; + + for (i = 0; i < pmecc->caps->nstrengths; i++) { + int nbytes, strength = pmecc->caps->strengths[i]; + + if (req->ecc.strength != ATMEL_PMECC_MAXIMIZE_ECC_STRENGTH && + strength < req->ecc.strength) + continue; + + nbytes = DIV_ROUND_UP(strength * fls(8 * req->ecc.sectorsize), + 8); + nbytes *= req->ecc.nsectors; + + if (nbytes > max_eccbytes) + break; + + eccstrength = strength; + eccbytes = nbytes; + + if (req->ecc.strength != ATMEL_PMECC_MAXIMIZE_ECC_STRENGTH) + break; + } + + if (!eccstrength) + return -EINVAL; + + req->ecc.bytes = eccbytes; + req->ecc.strength = eccstrength; + + if (req->ecc.ooboffset < 0) + req->ecc.ooboffset = req->oobsize - eccbytes; + + return 0; +} + +struct atmel_pmecc_user * +atmel_pmecc_create_user(struct atmel_pmecc *pmecc, + struct atmel_pmecc_user_req *req) +{ + struct atmel_pmecc_user *user; + const struct atmel_pmecc_gf_tables *gf_tables; + int strength, size, ret; + + ret = atmel_pmecc_prepare_user_req(pmecc, req); + if (ret) + return ERR_PTR(ret); + + size = sizeof(*user); + size = ALIGN(size, sizeof(u16)); + /* Reserve space for partial_syn, si and smu */ + size += ((2 * req->ecc.strength) + 1) * sizeof(u16) * + (2 + req->ecc.strength + 2); + /* Reserve space for lmu. */ + size += (req->ecc.strength + 1) * sizeof(u16); + /* Reserve space for mu, dmu and delta. */ + size = ALIGN(size, sizeof(s32)); + size += (req->ecc.strength + 1) * sizeof(s32) * 3; + + user = kzalloc(size, GFP_KERNEL); + if (!user) + return ERR_PTR(-ENOMEM); + + user->pmecc = pmecc; + + user->partial_syn = (s16 *)PTR_ALIGN(user + 1, sizeof(u16)); + user->si = user->partial_syn + ((2 * req->ecc.strength) + 1); + user->lmu = user->si + ((2 * req->ecc.strength) + 1); + user->smu = user->lmu + (req->ecc.strength + 1); + user->mu = (s32 *)PTR_ALIGN(user->smu + + (((2 * req->ecc.strength) + 1) * + (req->ecc.strength + 2)), + sizeof(s32)); + user->dmu = user->mu + req->ecc.strength + 1; + user->delta = user->dmu + req->ecc.strength + 1; + + gf_tables = atmel_pmecc_get_gf_tables(req); + if (IS_ERR(gf_tables)) { + kfree(user); + return ERR_CAST(gf_tables); + } + + user->gf_tables = gf_tables; + + user->eccbytes = req->ecc.bytes / req->ecc.nsectors; + + for (strength = 0; strength < pmecc->caps->nstrengths; strength++) { + if (pmecc->caps->strengths[strength] == req->ecc.strength) + break; + } + + user->cache.cfg = PMECC_CFG_BCH_STRENGTH(strength) | + PMECC_CFG_NSECTORS(req->ecc.nsectors); + + if (req->ecc.sectorsize == 1024) + user->cache.cfg |= PMECC_CFG_SECTOR1024; + + user->cache.sarea = req->oobsize - 1; + user->cache.saddr = req->ecc.ooboffset; + user->cache.eaddr = req->ecc.ooboffset + req->ecc.bytes - 1; + + return user; +} +EXPORT_SYMBOL_GPL(atmel_pmecc_create_user); + +void atmel_pmecc_destroy_user(struct atmel_pmecc_user *user) +{ + kfree(user); +} +EXPORT_SYMBOL_GPL(atmel_pmecc_destroy_user); + +static int get_strength(struct atmel_pmecc_user *user) +{ + const int *strengths = user->pmecc->caps->strengths; + + return strengths[user->cache.cfg & PMECC_CFG_BCH_STRENGTH_MASK]; +} + +static int get_sectorsize(struct atmel_pmecc_user *user) +{ + return user->cache.cfg & PMECC_CFG_SECTOR1024 ? 1024 : 512; +} + +static void atmel_pmecc_gen_syndrome(struct atmel_pmecc_user *user, int sector) +{ + int strength = get_strength(user); + u32 value; + int i; + + /* Fill odd syndromes */ + for (i = 0; i < strength; i++) { + value = readl_relaxed(user->pmecc->regs.base + + ATMEL_PMECC_REM(sector, i / 2)); + if (i & 1) + value >>= 16; + + user->partial_syn[(2 * i) + 1] = value; + } +} + +static void atmel_pmecc_substitute(struct atmel_pmecc_user *user) +{ + int degree = get_sectorsize(user) == 512 ? 13 : 14; + int cw_len = BIT(degree) - 1; + int strength = get_strength(user); + s16 *alpha_to = user->gf_tables->alpha_to; + s16 *index_of = user->gf_tables->index_of; + s16 *partial_syn = user->partial_syn; + s16 *si; + int i, j; + + /* + * si[] is a table that holds the current syndrome value, + * an element of that table belongs to the field + */ + si = user->si; + + memset(&si[1], 0, sizeof(s16) * ((2 * strength) - 1)); + + /* Computation 2t syndromes based on S(x) */ + /* Odd syndromes */ + for (i = 1; i < 2 * strength; i += 2) { + for (j = 0; j < degree; j++) { + if (partial_syn[i] & BIT(j)) + si[i] = alpha_to[i * j] ^ si[i]; + } + } + /* Even syndrome = (Odd syndrome) ** 2 */ + for (i = 2, j = 1; j <= strength; i = ++j << 1) { + if (si[j] == 0) { + si[i] = 0; + } else { + s16 tmp; + + tmp = index_of[si[j]]; + tmp = (tmp * 2) % cw_len; + si[i] = alpha_to[tmp]; + } + } +} + +static void atmel_pmecc_get_sigma(struct atmel_pmecc_user *user) +{ + s16 *lmu = user->lmu; + s16 *si = user->si; + s32 *mu = user->mu; + s32 *dmu = user->dmu; + s32 *delta = user->delta; + int degree = get_sectorsize(user) == 512 ? 13 : 14; + int cw_len = BIT(degree) - 1; + int strength = get_strength(user); + int num = 2 * strength + 1; + s16 *index_of = user->gf_tables->index_of; + s16 *alpha_to = user->gf_tables->alpha_to; + int i, j, k; + u32 dmu_0_count, tmp; + s16 *smu = user->smu; + + /* index of largest delta */ + int ro; + int largest; + int diff; + + dmu_0_count = 0; + + /* First Row */ + + /* Mu */ + mu[0] = -1; + + memset(smu, 0, sizeof(s16) * num); + smu[0] = 1; + + /* discrepancy set to 1 */ + dmu[0] = 1; + /* polynom order set to 0 */ + lmu[0] = 0; + delta[0] = (mu[0] * 2 - lmu[0]) >> 1; + + /* Second Row */ + + /* Mu */ + mu[1] = 0; + /* Sigma(x) set to 1 */ + memset(&smu[num], 0, sizeof(s16) * num); + smu[num] = 1; + + /* discrepancy set to S1 */ + dmu[1] = si[1]; + + /* polynom order set to 0 */ + lmu[1] = 0; + + delta[1] = (mu[1] * 2 - lmu[1]) >> 1; + + /* Init the Sigma(x) last row */ + memset(&smu[(strength + 1) * num], 0, sizeof(s16) * num); + + for (i = 1; i <= strength; i++) { + mu[i + 1] = i << 1; + /* Begin Computing Sigma (Mu+1) and L(mu) */ + /* check if discrepancy is set to 0 */ + if (dmu[i] == 0) { + dmu_0_count++; + + tmp = ((strength - (lmu[i] >> 1) - 1) / 2); + if ((strength - (lmu[i] >> 1) - 1) & 0x1) + tmp += 2; + else + tmp += 1; + + if (dmu_0_count == tmp) { + for (j = 0; j <= (lmu[i] >> 1) + 1; j++) + smu[(strength + 1) * num + j] = + smu[i * num + j]; + + lmu[strength + 1] = lmu[i]; + return; + } + + /* copy polynom */ + for (j = 0; j <= lmu[i] >> 1; j++) + smu[(i + 1) * num + j] = smu[i * num + j]; + + /* copy previous polynom order to the next */ + lmu[i + 1] = lmu[i]; + } else { + ro = 0; + largest = -1; + /* find largest delta with dmu != 0 */ + for (j = 0; j < i; j++) { + if ((dmu[j]) && (delta[j] > largest)) { + largest = delta[j]; + ro = j; + } + } + + /* compute difference */ + diff = (mu[i] - mu[ro]); + + /* Compute degree of the new smu polynomial */ + if ((lmu[i] >> 1) > ((lmu[ro] >> 1) + diff)) + lmu[i + 1] = lmu[i]; + else + lmu[i + 1] = ((lmu[ro] >> 1) + diff) * 2; + + /* Init smu[i+1] with 0 */ + for (k = 0; k < num; k++) + smu[(i + 1) * num + k] = 0; + + /* Compute smu[i+1] */ + for (k = 0; k <= lmu[ro] >> 1; k++) { + s16 a, b, c; + + if (!(smu[ro * num + k] && dmu[i])) + continue; + + a = index_of[dmu[i]]; + b = index_of[dmu[ro]]; + c = index_of[smu[ro * num + k]]; + tmp = a + (cw_len - b) + c; + a = alpha_to[tmp % cw_len]; + smu[(i + 1) * num + (k + diff)] = a; + } + + for (k = 0; k <= lmu[i] >> 1; k++) + smu[(i + 1) * num + k] ^= smu[i * num + k]; + } + + /* End Computing Sigma (Mu+1) and L(mu) */ + /* In either case compute delta */ + delta[i + 1] = (mu[i + 1] * 2 - lmu[i + 1]) >> 1; + + /* Do not compute discrepancy for the last iteration */ + if (i >= strength) + continue; + + for (k = 0; k <= (lmu[i + 1] >> 1); k++) { + tmp = 2 * (i - 1); + if (k == 0) { + dmu[i + 1] = si[tmp + 3]; + } else if (smu[(i + 1) * num + k] && si[tmp + 3 - k]) { + s16 a, b, c; + + a = index_of[smu[(i + 1) * num + k]]; + b = si[2 * (i - 1) + 3 - k]; + c = index_of[b]; + tmp = a + c; + tmp %= cw_len; + dmu[i + 1] = alpha_to[tmp] ^ dmu[i + 1]; + } + } + } +} + +static int atmel_pmecc_err_location(struct atmel_pmecc_user *user) +{ + int sector_size = get_sectorsize(user); + int degree = sector_size == 512 ? 13 : 14; + struct atmel_pmecc *pmecc = user->pmecc; + int strength = get_strength(user); + int ret, roots_nbr, i, err_nbr = 0; + int num = (2 * strength) + 1; + s16 *smu = user->smu; + u32 val; + + writel(PMERRLOC_DISABLE, pmecc->regs.errloc + ATMEL_PMERRLOC_ELDIS); + + for (i = 0; i <= user->lmu[strength + 1] >> 1; i++) { + writel_relaxed(smu[(strength + 1) * num + i], + pmecc->regs.errloc + ATMEL_PMERRLOC_SIGMA(i)); + err_nbr++; + } + + val = (err_nbr - 1) << 16; + if (sector_size == 1024) + val |= 1; + + writel(val, pmecc->regs.errloc + ATMEL_PMERRLOC_ELCFG); + writel((sector_size * 8) + (degree * strength), + pmecc->regs.errloc + ATMEL_PMERRLOC_ELEN); + + ret = readl_relaxed_poll_timeout(pmecc->regs.errloc + + ATMEL_PMERRLOC_ELISR, + val, val & PMERRLOC_CALC_DONE, 0, + PMECC_MAX_TIMEOUT_MS * 1000); + if (ret) { + dev_err(pmecc->dev, + "PMECC: Timeout to calculate error location.\n"); + return ret; + } + + roots_nbr = (val & PMERRLOC_ERR_NUM_MASK) >> 8; + /* Number of roots == degree of smu hence <= cap */ + if (roots_nbr == user->lmu[strength + 1] >> 1) + return err_nbr - 1; + + /* + * Number of roots does not match the degree of smu + * unable to correct error. + */ + return -EBADMSG; +} + +int atmel_pmecc_correct_sector(struct atmel_pmecc_user *user, int sector, + void *data, void *ecc) +{ + struct atmel_pmecc *pmecc = user->pmecc; + int sectorsize = get_sectorsize(user); + int eccbytes = user->eccbytes; + int i, nerrors; + + if (!(user->isr & BIT(sector))) + return 0; + + atmel_pmecc_gen_syndrome(user, sector); + atmel_pmecc_substitute(user); + atmel_pmecc_get_sigma(user); + + nerrors = atmel_pmecc_err_location(user); + if (nerrors < 0) + return nerrors; + + for (i = 0; i < nerrors; i++) { + const char *area; + int byte, bit; + u32 errpos; + u8 *ptr; + + errpos = readl_relaxed(pmecc->regs.errloc + + ATMEL_PMERRLOC_EL(pmecc->caps->el_offset, i)); + errpos--; + + byte = errpos / 8; + bit = errpos % 8; + + if (byte < sectorsize) { + ptr = data + byte; + area = "data"; + } else if (byte < sectorsize + eccbytes) { + ptr = ecc + byte - sectorsize; + area = "ECC"; + } else { + dev_dbg(pmecc->dev, + "Invalid errpos value (%d, max is %d)\n", + errpos, (sectorsize + eccbytes) * 8); + return -EINVAL; + } + + dev_dbg(pmecc->dev, + "Bit flip in %s area, byte %d: 0x%02x -> 0x%02x\n", + area, byte, *ptr, (unsigned int)(*ptr ^ BIT(bit))); + + *ptr ^= BIT(bit); + } + + return nerrors; +} +EXPORT_SYMBOL_GPL(atmel_pmecc_correct_sector); + +bool atmel_pmecc_correct_erased_chunks(struct atmel_pmecc_user *user) +{ + return user->pmecc->caps->correct_erased_chunks; +} +EXPORT_SYMBOL_GPL(atmel_pmecc_correct_erased_chunks); + +void atmel_pmecc_get_generated_eccbytes(struct atmel_pmecc_user *user, + int sector, void *ecc) +{ + struct atmel_pmecc *pmecc = user->pmecc; + u8 *ptr = ecc; + int i; + + for (i = 0; i < user->eccbytes; i++) + ptr[i] = readb_relaxed(pmecc->regs.base + + ATMEL_PMECC_ECC(sector, i)); +} +EXPORT_SYMBOL_GPL(atmel_pmecc_get_generated_eccbytes); + +void atmel_pmecc_reset(struct atmel_pmecc *pmecc) +{ + writel(PMECC_CTRL_RST, pmecc->regs.base + ATMEL_PMECC_CTRL); + writel(PMECC_CTRL_DISABLE, pmecc->regs.base + ATMEL_PMECC_CTRL); +} +EXPORT_SYMBOL_GPL(atmel_pmecc_reset); + +int atmel_pmecc_enable(struct atmel_pmecc_user *user, int op) +{ + struct atmel_pmecc *pmecc = user->pmecc; + u32 cfg; + + if (op != NAND_ECC_READ && op != NAND_ECC_WRITE) { + dev_err(pmecc->dev, "Bad ECC operation!"); + return -EINVAL; + } + + mutex_lock(&user->pmecc->lock); + + cfg = user->cache.cfg; + if (op == NAND_ECC_WRITE) + cfg |= PMECC_CFG_WRITE_OP; + else + cfg |= PMECC_CFG_AUTO_ENABLE; + + writel(cfg, pmecc->regs.base + ATMEL_PMECC_CFG); + writel(user->cache.sarea, pmecc->regs.base + ATMEL_PMECC_SAREA); + writel(user->cache.saddr, pmecc->regs.base + ATMEL_PMECC_SADDR); + writel(user->cache.eaddr, pmecc->regs.base + ATMEL_PMECC_EADDR); + + writel(PMECC_CTRL_ENABLE, pmecc->regs.base + ATMEL_PMECC_CTRL); + writel(PMECC_CTRL_DATA, pmecc->regs.base + ATMEL_PMECC_CTRL); + + return 0; +} +EXPORT_SYMBOL_GPL(atmel_pmecc_enable); + +void atmel_pmecc_disable(struct atmel_pmecc_user *user) +{ + atmel_pmecc_reset(user->pmecc); + mutex_unlock(&user->pmecc->lock); +} +EXPORT_SYMBOL_GPL(atmel_pmecc_disable); + +int atmel_pmecc_wait_rdy(struct atmel_pmecc_user *user) +{ + struct atmel_pmecc *pmecc = user->pmecc; + u32 status; + int ret; + + ret = readl_relaxed_poll_timeout(pmecc->regs.base + + ATMEL_PMECC_SR, + status, !(status & PMECC_SR_BUSY), 0, + PMECC_MAX_TIMEOUT_MS * 1000); + if (ret) { + dev_err(pmecc->dev, + "Timeout while waiting for PMECC ready.\n"); + return ret; + } + + user->isr = readl_relaxed(pmecc->regs.base + ATMEL_PMECC_ISR); + + return 0; +} +EXPORT_SYMBOL_GPL(atmel_pmecc_wait_rdy); + +static struct atmel_pmecc *atmel_pmecc_create(struct platform_device *pdev, + const struct atmel_pmecc_caps *caps, + int pmecc_res_idx, int errloc_res_idx) +{ + struct device *dev = &pdev->dev; + struct atmel_pmecc *pmecc; + + pmecc = devm_kzalloc(dev, sizeof(*pmecc), GFP_KERNEL); + if (!pmecc) + return ERR_PTR(-ENOMEM); + + pmecc->caps = caps; + pmecc->dev = dev; + mutex_init(&pmecc->lock); + + pmecc->regs.base = devm_platform_ioremap_resource(pdev, pmecc_res_idx); + if (IS_ERR(pmecc->regs.base)) + return ERR_CAST(pmecc->regs.base); + + pmecc->regs.errloc = devm_platform_ioremap_resource(pdev, errloc_res_idx); + if (IS_ERR(pmecc->regs.errloc)) + return ERR_CAST(pmecc->regs.errloc); + + /* Disable all interrupts before registering the PMECC handler. */ + writel(0xffffffff, pmecc->regs.base + ATMEL_PMECC_IDR); + atmel_pmecc_reset(pmecc); + + return pmecc; +} + +static void devm_atmel_pmecc_put(struct device *dev, void *res) +{ + struct atmel_pmecc **pmecc = res; + + put_device((*pmecc)->dev); +} + +static struct atmel_pmecc *atmel_pmecc_get_by_node(struct device *userdev, + struct device_node *np) +{ + struct platform_device *pdev; + struct atmel_pmecc *pmecc, **ptr; + int ret; + + pdev = of_find_device_by_node(np); + if (!pdev) + return ERR_PTR(-EPROBE_DEFER); + pmecc = platform_get_drvdata(pdev); + if (!pmecc) { + ret = -EPROBE_DEFER; + goto err_put_device; + } + + ptr = devres_alloc(devm_atmel_pmecc_put, sizeof(*ptr), GFP_KERNEL); + if (!ptr) { + ret = -ENOMEM; + goto err_put_device; + } + + *ptr = pmecc; + + devres_add(userdev, ptr); + + return pmecc; + +err_put_device: + put_device(&pdev->dev); + return ERR_PTR(ret); +} + +static const int atmel_pmecc_strengths[] = { 2, 4, 8, 12, 24, 32 }; + +static struct atmel_pmecc_caps at91sam9g45_caps = { + .strengths = atmel_pmecc_strengths, + .nstrengths = 5, + .el_offset = 0x8c, +}; + +static struct atmel_pmecc_caps sama5d4_caps = { + .strengths = atmel_pmecc_strengths, + .nstrengths = 5, + .el_offset = 0x8c, + .correct_erased_chunks = true, +}; + +static struct atmel_pmecc_caps sama5d2_caps = { + .strengths = atmel_pmecc_strengths, + .nstrengths = 6, + .el_offset = 0xac, + .correct_erased_chunks = true, +}; + +static const struct of_device_id __maybe_unused atmel_pmecc_legacy_match[] = { + { .compatible = "atmel,sama5d4-nand", &sama5d4_caps }, + { .compatible = "atmel,sama5d2-nand", &sama5d2_caps }, + { /* sentinel */ } +}; + +struct atmel_pmecc *devm_atmel_pmecc_get(struct device *userdev) +{ + struct atmel_pmecc *pmecc; + struct device_node *np; + + if (!userdev) + return ERR_PTR(-EINVAL); + + if (!userdev->of_node) + return NULL; + + np = of_parse_phandle(userdev->of_node, "ecc-engine", 0); + if (np) { + pmecc = atmel_pmecc_get_by_node(userdev, np); + of_node_put(np); + } else { + /* + * Support old DT bindings: in this case the PMECC iomem + * resources are directly defined in the user pdev at position + * 1 and 2. Extract all relevant information from there. + */ + struct platform_device *pdev = to_platform_device(userdev); + const struct atmel_pmecc_caps *caps; + const struct of_device_id *match; + + /* No PMECC engine available. */ + if (!of_property_read_bool(userdev->of_node, + "atmel,has-pmecc")) + return NULL; + + caps = &at91sam9g45_caps; + + /* Find the caps associated to the NAND dev node. */ + match = of_match_node(atmel_pmecc_legacy_match, + userdev->of_node); + if (match && match->data) + caps = match->data; + + pmecc = atmel_pmecc_create(pdev, caps, 1, 2); + } + + return pmecc; +} +EXPORT_SYMBOL(devm_atmel_pmecc_get); + +static const struct of_device_id atmel_pmecc_match[] = { + { .compatible = "atmel,at91sam9g45-pmecc", &at91sam9g45_caps }, + { .compatible = "atmel,sama5d4-pmecc", &sama5d4_caps }, + { .compatible = "atmel,sama5d2-pmecc", &sama5d2_caps }, + { /* sentinel */ } +}; +MODULE_DEVICE_TABLE(of, atmel_pmecc_match); + +static int atmel_pmecc_probe(struct platform_device *pdev) +{ + struct device *dev = &pdev->dev; + const struct atmel_pmecc_caps *caps; + struct atmel_pmecc *pmecc; + + caps = of_device_get_match_data(&pdev->dev); + if (!caps) { + dev_err(dev, "Invalid caps\n"); + return -EINVAL; + } + + pmecc = atmel_pmecc_create(pdev, caps, 0, 1); + if (IS_ERR(pmecc)) + return PTR_ERR(pmecc); + + platform_set_drvdata(pdev, pmecc); + + return 0; +} + +static struct platform_driver atmel_pmecc_driver = { + .driver = { + .name = "atmel-pmecc", + .of_match_table = atmel_pmecc_match, + }, + .probe = atmel_pmecc_probe, +}; +module_platform_driver(atmel_pmecc_driver); + +MODULE_LICENSE("GPL"); +MODULE_AUTHOR("Boris Brezillon <boris.brezillon@free-electrons.com>"); +MODULE_DESCRIPTION("PMECC engine driver"); +MODULE_ALIAS("platform:atmel_pmecc"); diff --git a/drivers/mtd/nand/raw/atmel/pmecc.h b/drivers/mtd/nand/raw/atmel/pmecc.h new file mode 100644 index 0000000000..7851c05126 --- /dev/null +++ b/drivers/mtd/nand/raw/atmel/pmecc.h @@ -0,0 +1,70 @@ +/* SPDX-License-Identifier: GPL-2.0 */ +/* + * © Copyright 2016 ATMEL + * © Copyright 2016 Free Electrons + * + * Author: Boris Brezillon <boris.brezillon@free-electrons.com> + * + * Derived from the atmel_nand.c driver which contained the following + * copyrights: + * + * Copyright © 2003 Rick Bronson + * + * Derived from drivers/mtd/nand/autcpu12.c (removed in v3.8) + * Copyright © 2001 Thomas Gleixner (gleixner@autronix.de) + * + * Derived from drivers/mtd/spia.c (removed in v3.8) + * Copyright © 2000 Steven J. Hill (sjhill@cotw.com) + * + * + * Add Hardware ECC support for AT91SAM9260 / AT91SAM9263 + * Richard Genoud (richard.genoud@gmail.com), Adeneo Copyright © 2007 + * + * Derived from Das U-Boot source code + * (u-boot-1.1.5/board/atmel/at91sam9263ek/nand.c) + * © Copyright 2006 ATMEL Rousset, Lacressonniere Nicolas + * + * Add Programmable Multibit ECC support for various AT91 SoC + * © Copyright 2012 ATMEL, Hong Xu + * + * Add Nand Flash Controller support for SAMA5 SoC + * © Copyright 2013 ATMEL, Josh Wu (josh.wu@atmel.com) + */ + +#ifndef ATMEL_PMECC_H +#define ATMEL_PMECC_H + +#define ATMEL_PMECC_MAXIMIZE_ECC_STRENGTH 0 +#define ATMEL_PMECC_SECTOR_SIZE_AUTO 0 +#define ATMEL_PMECC_OOBOFFSET_AUTO -1 + +struct atmel_pmecc_user_req { + int pagesize; + int oobsize; + struct { + int strength; + int bytes; + int sectorsize; + int nsectors; + int ooboffset; + } ecc; +}; + +struct atmel_pmecc *devm_atmel_pmecc_get(struct device *dev); + +struct atmel_pmecc_user * +atmel_pmecc_create_user(struct atmel_pmecc *pmecc, + struct atmel_pmecc_user_req *req); +void atmel_pmecc_destroy_user(struct atmel_pmecc_user *user); + +void atmel_pmecc_reset(struct atmel_pmecc *pmecc); +int atmel_pmecc_enable(struct atmel_pmecc_user *user, int op); +void atmel_pmecc_disable(struct atmel_pmecc_user *user); +int atmel_pmecc_wait_rdy(struct atmel_pmecc_user *user); +int atmel_pmecc_correct_sector(struct atmel_pmecc_user *user, int sector, + void *data, void *ecc); +bool atmel_pmecc_correct_erased_chunks(struct atmel_pmecc_user *user); +void atmel_pmecc_get_generated_eccbytes(struct atmel_pmecc_user *user, + int sector, void *ecc); + +#endif /* ATMEL_PMECC_H */ diff --git a/drivers/mtd/nand/raw/au1550nd.c b/drivers/mtd/nand/raw/au1550nd.c new file mode 100644 index 0000000000..063a5e0b8d --- /dev/null +++ b/drivers/mtd/nand/raw/au1550nd.c @@ -0,0 +1,367 @@ +// SPDX-License-Identifier: GPL-2.0-only +/* + * Copyright (C) 2004 Embedded Edge, LLC + */ + +#include <linux/delay.h> +#include <linux/slab.h> +#include <linux/module.h> +#include <linux/interrupt.h> +#include <linux/mtd/mtd.h> +#include <linux/mtd/rawnand.h> +#include <linux/mtd/partitions.h> +#include <linux/platform_device.h> +#include <asm/io.h> +#include <asm/mach-au1x00/au1000.h> +#include <asm/mach-au1x00/au1550nd.h> + + +struct au1550nd_ctx { + struct nand_controller controller; + struct nand_chip chip; + + int cs; + void __iomem *base; +}; + +static struct au1550nd_ctx *chip_to_au_ctx(struct nand_chip *this) +{ + return container_of(this, struct au1550nd_ctx, chip); +} + +/** + * au_write_buf - write buffer to chip + * @this: NAND chip object + * @buf: data buffer + * @len: number of bytes to write + * + * write function for 8bit buswidth + */ +static void au_write_buf(struct nand_chip *this, const void *buf, + unsigned int len) +{ + struct au1550nd_ctx *ctx = chip_to_au_ctx(this); + const u8 *p = buf; + int i; + + for (i = 0; i < len; i++) { + writeb(p[i], ctx->base + MEM_STNAND_DATA); + wmb(); /* drain writebuffer */ + } +} + +/** + * au_read_buf - read chip data into buffer + * @this: NAND chip object + * @buf: buffer to store date + * @len: number of bytes to read + * + * read function for 8bit buswidth + */ +static void au_read_buf(struct nand_chip *this, void *buf, + unsigned int len) +{ + struct au1550nd_ctx *ctx = chip_to_au_ctx(this); + u8 *p = buf; + int i; + + for (i = 0; i < len; i++) { + p[i] = readb(ctx->base + MEM_STNAND_DATA); + wmb(); /* drain writebuffer */ + } +} + +/** + * au_write_buf16 - write buffer to chip + * @this: NAND chip object + * @buf: data buffer + * @len: number of bytes to write + * + * write function for 16bit buswidth + */ +static void au_write_buf16(struct nand_chip *this, const void *buf, + unsigned int len) +{ + struct au1550nd_ctx *ctx = chip_to_au_ctx(this); + const u16 *p = buf; + unsigned int i; + + len >>= 1; + for (i = 0; i < len; i++) { + writew(p[i], ctx->base + MEM_STNAND_DATA); + wmb(); /* drain writebuffer */ + } +} + +/** + * au_read_buf16 - read chip data into buffer + * @this: NAND chip object + * @buf: buffer to store date + * @len: number of bytes to read + * + * read function for 16bit buswidth + */ +static void au_read_buf16(struct nand_chip *this, void *buf, unsigned int len) +{ + struct au1550nd_ctx *ctx = chip_to_au_ctx(this); + unsigned int i; + u16 *p = buf; + + len >>= 1; + for (i = 0; i < len; i++) { + p[i] = readw(ctx->base + MEM_STNAND_DATA); + wmb(); /* drain writebuffer */ + } +} + +static int find_nand_cs(unsigned long nand_base) +{ + void __iomem *base = + (void __iomem *)KSEG1ADDR(AU1000_STATIC_MEM_PHYS_ADDR); + unsigned long addr, staddr, start, mask, end; + int i; + + for (i = 0; i < 4; i++) { + addr = 0x1000 + (i * 0x10); /* CSx */ + staddr = __raw_readl(base + addr + 0x08); /* STADDRx */ + /* figure out the decoded range of this CS */ + start = (staddr << 4) & 0xfffc0000; + mask = (staddr << 18) & 0xfffc0000; + end = (start | (start - 1)) & ~(start ^ mask); + if ((nand_base >= start) && (nand_base < end)) + return i; + } + + return -ENODEV; +} + +static int au1550nd_waitrdy(struct nand_chip *this, unsigned int timeout_ms) +{ + unsigned long timeout_jiffies = jiffies; + + timeout_jiffies += msecs_to_jiffies(timeout_ms) + 1; + do { + if (alchemy_rdsmem(AU1000_MEM_STSTAT) & 0x1) + return 0; + + usleep_range(10, 100); + } while (time_before(jiffies, timeout_jiffies)); + + return -ETIMEDOUT; +} + +static int au1550nd_exec_instr(struct nand_chip *this, + const struct nand_op_instr *instr) +{ + struct au1550nd_ctx *ctx = chip_to_au_ctx(this); + unsigned int i; + int ret = 0; + + switch (instr->type) { + case NAND_OP_CMD_INSTR: + writeb(instr->ctx.cmd.opcode, + ctx->base + MEM_STNAND_CMD); + /* Drain the writebuffer */ + wmb(); + break; + + case NAND_OP_ADDR_INSTR: + for (i = 0; i < instr->ctx.addr.naddrs; i++) { + writeb(instr->ctx.addr.addrs[i], + ctx->base + MEM_STNAND_ADDR); + /* Drain the writebuffer */ + wmb(); + } + break; + + case NAND_OP_DATA_IN_INSTR: + if ((this->options & NAND_BUSWIDTH_16) && + !instr->ctx.data.force_8bit) + au_read_buf16(this, instr->ctx.data.buf.in, + instr->ctx.data.len); + else + au_read_buf(this, instr->ctx.data.buf.in, + instr->ctx.data.len); + break; + + case NAND_OP_DATA_OUT_INSTR: + if ((this->options & NAND_BUSWIDTH_16) && + !instr->ctx.data.force_8bit) + au_write_buf16(this, instr->ctx.data.buf.out, + instr->ctx.data.len); + else + au_write_buf(this, instr->ctx.data.buf.out, + instr->ctx.data.len); + break; + + case NAND_OP_WAITRDY_INSTR: + ret = au1550nd_waitrdy(this, instr->ctx.waitrdy.timeout_ms); + break; + default: + return -EINVAL; + } + + if (instr->delay_ns) + ndelay(instr->delay_ns); + + return ret; +} + +static int au1550nd_exec_op(struct nand_chip *this, + const struct nand_operation *op, + bool check_only) +{ + struct au1550nd_ctx *ctx = chip_to_au_ctx(this); + unsigned int i; + int ret; + + if (check_only) + return 0; + + /* assert (force assert) chip enable */ + alchemy_wrsmem((1 << (4 + ctx->cs)), AU1000_MEM_STNDCTL); + /* Drain the writebuffer */ + wmb(); + + for (i = 0; i < op->ninstrs; i++) { + ret = au1550nd_exec_instr(this, &op->instrs[i]); + if (ret) + break; + } + + /* deassert chip enable */ + alchemy_wrsmem(0, AU1000_MEM_STNDCTL); + /* Drain the writebuffer */ + wmb(); + + return ret; +} + +static int au1550nd_attach_chip(struct nand_chip *chip) +{ + if (chip->ecc.engine_type == NAND_ECC_ENGINE_TYPE_SOFT && + chip->ecc.algo == NAND_ECC_ALGO_UNKNOWN) + chip->ecc.algo = NAND_ECC_ALGO_HAMMING; + + return 0; +} + +static const struct nand_controller_ops au1550nd_ops = { + .exec_op = au1550nd_exec_op, + .attach_chip = au1550nd_attach_chip, +}; + +static int au1550nd_probe(struct platform_device *pdev) +{ + struct au1550nd_platdata *pd; + struct au1550nd_ctx *ctx; + struct nand_chip *this; + struct mtd_info *mtd; + struct resource *r; + int ret, cs; + + pd = dev_get_platdata(&pdev->dev); + if (!pd) { + dev_err(&pdev->dev, "missing platform data\n"); + return -ENODEV; + } + + ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); + if (!ctx) + return -ENOMEM; + + r = platform_get_resource(pdev, IORESOURCE_MEM, 0); + if (!r) { + dev_err(&pdev->dev, "no NAND memory resource\n"); + ret = -ENODEV; + goto out1; + } + if (request_mem_region(r->start, resource_size(r), "au1550-nand")) { + dev_err(&pdev->dev, "cannot claim NAND memory area\n"); + ret = -ENOMEM; + goto out1; + } + + ctx->base = ioremap(r->start, 0x1000); + if (!ctx->base) { + dev_err(&pdev->dev, "cannot remap NAND memory area\n"); + ret = -ENODEV; + goto out2; + } + + this = &ctx->chip; + mtd = nand_to_mtd(this); + mtd->dev.parent = &pdev->dev; + + /* figure out which CS# r->start belongs to */ + cs = find_nand_cs(r->start); + if (cs < 0) { + dev_err(&pdev->dev, "cannot detect NAND chipselect\n"); + ret = -ENODEV; + goto out3; + } + ctx->cs = cs; + + nand_controller_init(&ctx->controller); + ctx->controller.ops = &au1550nd_ops; + this->controller = &ctx->controller; + + if (pd->devwidth) + this->options |= NAND_BUSWIDTH_16; + + /* + * This driver assumes that the default ECC engine should be TYPE_SOFT. + * Set ->engine_type before registering the NAND devices in order to + * provide a driver specific default value. + */ + this->ecc.engine_type = NAND_ECC_ENGINE_TYPE_SOFT; + + ret = nand_scan(this, 1); + if (ret) { + dev_err(&pdev->dev, "NAND scan failed with %d\n", ret); + goto out3; + } + + mtd_device_register(mtd, pd->parts, pd->num_parts); + + platform_set_drvdata(pdev, ctx); + + return 0; + +out3: + iounmap(ctx->base); +out2: + release_mem_region(r->start, resource_size(r)); +out1: + kfree(ctx); + return ret; +} + +static void au1550nd_remove(struct platform_device *pdev) +{ + struct au1550nd_ctx *ctx = platform_get_drvdata(pdev); + struct resource *r = platform_get_resource(pdev, IORESOURCE_MEM, 0); + struct nand_chip *chip = &ctx->chip; + int ret; + + ret = mtd_device_unregister(nand_to_mtd(chip)); + WARN_ON(ret); + nand_cleanup(chip); + iounmap(ctx->base); + release_mem_region(r->start, 0x1000); + kfree(ctx); +} + +static struct platform_driver au1550nd_driver = { + .driver = { + .name = "au1550-nand", + }, + .probe = au1550nd_probe, + .remove_new = au1550nd_remove, +}; + +module_platform_driver(au1550nd_driver); + +MODULE_LICENSE("GPL"); +MODULE_AUTHOR("Embedded Edge, LLC"); +MODULE_DESCRIPTION("Board-specific glue layer for NAND flash on Pb1550 board"); diff --git a/drivers/mtd/nand/raw/bcm47xxnflash/Makefile b/drivers/mtd/nand/raw/bcm47xxnflash/Makefile new file mode 100644 index 0000000000..b531a630c9 --- /dev/null +++ b/drivers/mtd/nand/raw/bcm47xxnflash/Makefile @@ -0,0 +1,5 @@ +# SPDX-License-Identifier: GPL-2.0-only +bcm47xxnflash-y += main.o +bcm47xxnflash-y += ops_bcm4706.o + +obj-$(CONFIG_MTD_NAND_BCM47XXNFLASH) += bcm47xxnflash.o diff --git a/drivers/mtd/nand/raw/bcm47xxnflash/bcm47xxnflash.h b/drivers/mtd/nand/raw/bcm47xxnflash/bcm47xxnflash.h new file mode 100644 index 0000000000..201b9baa52 --- /dev/null +++ b/drivers/mtd/nand/raw/bcm47xxnflash/bcm47xxnflash.h @@ -0,0 +1,26 @@ +/* SPDX-License-Identifier: GPL-2.0 */ +#ifndef __BCM47XXNFLASH_H +#define __BCM47XXNFLASH_H + +#ifndef pr_fmt +#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt +#endif + +#include <linux/mtd/mtd.h> +#include <linux/mtd/rawnand.h> + +struct bcm47xxnflash { + struct bcma_drv_cc *cc; + + struct nand_chip nand_chip; + + unsigned curr_command; + int curr_page_addr; + int curr_column; + + u8 id_data[8]; +}; + +int bcm47xxnflash_ops_bcm4706_init(struct bcm47xxnflash *b47n); + +#endif /* BCM47XXNFLASH */ diff --git a/drivers/mtd/nand/raw/bcm47xxnflash/main.c b/drivers/mtd/nand/raw/bcm47xxnflash/main.c new file mode 100644 index 0000000000..ebcf508e06 --- /dev/null +++ b/drivers/mtd/nand/raw/bcm47xxnflash/main.c @@ -0,0 +1,79 @@ +// SPDX-License-Identifier: GPL-2.0-only +/* + * BCM47XX NAND flash driver + * + * Copyright (C) 2012 Rafał Miłecki <zajec5@gmail.com> + */ + +#include "bcm47xxnflash.h" + +#include <linux/module.h> +#include <linux/kernel.h> +#include <linux/slab.h> +#include <linux/platform_device.h> +#include <linux/bcma/bcma.h> + +MODULE_DESCRIPTION("NAND flash driver for BCMA bus"); +MODULE_LICENSE("GPL"); +MODULE_AUTHOR("Rafał Miłecki"); + +static const char *probes[] = { "bcm47xxpart", NULL }; + +static int bcm47xxnflash_probe(struct platform_device *pdev) +{ + struct bcma_nflash *nflash = dev_get_platdata(&pdev->dev); + struct bcm47xxnflash *b47n; + struct mtd_info *mtd; + int err = 0; + + b47n = devm_kzalloc(&pdev->dev, sizeof(*b47n), GFP_KERNEL); + if (!b47n) + return -ENOMEM; + + nand_set_controller_data(&b47n->nand_chip, b47n); + mtd = nand_to_mtd(&b47n->nand_chip); + mtd->dev.parent = &pdev->dev; + b47n->cc = container_of(nflash, struct bcma_drv_cc, nflash); + + if (b47n->cc->core->bus->chipinfo.id == BCMA_CHIP_ID_BCM4706) { + err = bcm47xxnflash_ops_bcm4706_init(b47n); + } else { + pr_err("Device not supported\n"); + err = -ENOTSUPP; + } + if (err) { + pr_err("Initialization failed: %d\n", err); + return err; + } + + platform_set_drvdata(pdev, b47n); + + err = mtd_device_parse_register(mtd, probes, NULL, NULL, 0); + if (err) { + pr_err("Failed to register MTD device: %d\n", err); + return err; + } + + return 0; +} + +static void bcm47xxnflash_remove(struct platform_device *pdev) +{ + struct bcm47xxnflash *nflash = platform_get_drvdata(pdev); + struct nand_chip *chip = &nflash->nand_chip; + int ret; + + ret = mtd_device_unregister(nand_to_mtd(chip)); + WARN_ON(ret); + nand_cleanup(chip); +} + +static struct platform_driver bcm47xxnflash_driver = { + .probe = bcm47xxnflash_probe, + .remove_new = bcm47xxnflash_remove, + .driver = { + .name = "bcma_nflash", + }, +}; + +module_platform_driver(bcm47xxnflash_driver); diff --git a/drivers/mtd/nand/raw/bcm47xxnflash/ops_bcm4706.c b/drivers/mtd/nand/raw/bcm47xxnflash/ops_bcm4706.c new file mode 100644 index 0000000000..6487dfc642 --- /dev/null +++ b/drivers/mtd/nand/raw/bcm47xxnflash/ops_bcm4706.c @@ -0,0 +1,451 @@ +// SPDX-License-Identifier: GPL-2.0-only +/* + * BCM47XX NAND flash driver + * + * Copyright (C) 2012 Rafał Miłecki <zajec5@gmail.com> + */ + +#include "bcm47xxnflash.h" + +#include <linux/module.h> +#include <linux/kernel.h> +#include <linux/slab.h> +#include <linux/delay.h> +#include <linux/bcma/bcma.h> + +/* Broadcom uses 1'000'000 but it seems to be too many. Tests on WNDR4500 has + * shown ~1000 retries as maximum. */ +#define NFLASH_READY_RETRIES 10000 + +#define NFLASH_SECTOR_SIZE 512 + +#define NCTL_CMD0 0x00010000 +#define NCTL_COL 0x00020000 /* Update column with value from BCMA_CC_NFLASH_COL_ADDR */ +#define NCTL_ROW 0x00040000 /* Update row (page) with value from BCMA_CC_NFLASH_ROW_ADDR */ +#define NCTL_CMD1W 0x00080000 +#define NCTL_READ 0x00100000 +#define NCTL_WRITE 0x00200000 +#define NCTL_SPECADDR 0x01000000 +#define NCTL_READY 0x04000000 +#define NCTL_ERR 0x08000000 +#define NCTL_CSA 0x40000000 +#define NCTL_START 0x80000000 + +/************************************************** + * Various helpers + **************************************************/ + +static inline u8 bcm47xxnflash_ops_bcm4706_ns_to_cycle(u16 ns, u16 clock) +{ + return ((ns * 1000 * clock) / 1000000) + 1; +} + +static int bcm47xxnflash_ops_bcm4706_ctl_cmd(struct bcma_drv_cc *cc, u32 code) +{ + int i = 0; + + bcma_cc_write32(cc, BCMA_CC_NFLASH_CTL, NCTL_START | code); + for (i = 0; i < NFLASH_READY_RETRIES; i++) { + if (!(bcma_cc_read32(cc, BCMA_CC_NFLASH_CTL) & NCTL_START)) { + i = 0; + break; + } + } + if (i) { + pr_err("NFLASH control command not ready!\n"); + return -EBUSY; + } + return 0; +} + +static int bcm47xxnflash_ops_bcm4706_poll(struct bcma_drv_cc *cc) +{ + int i; + + for (i = 0; i < NFLASH_READY_RETRIES; i++) { + if (bcma_cc_read32(cc, BCMA_CC_NFLASH_CTL) & NCTL_READY) { + if (bcma_cc_read32(cc, BCMA_CC_NFLASH_CTL) & + BCMA_CC_NFLASH_CTL_ERR) { + pr_err("Error on polling\n"); + return -EBUSY; + } else { + return 0; + } + } + } + + pr_err("Polling timeout!\n"); + return -EBUSY; +} + +/************************************************** + * R/W + **************************************************/ + +static void bcm47xxnflash_ops_bcm4706_read(struct mtd_info *mtd, uint8_t *buf, + int len) +{ + struct nand_chip *nand_chip = mtd_to_nand(mtd); + struct bcm47xxnflash *b47n = nand_get_controller_data(nand_chip); + + u32 ctlcode; + u32 *dest = (u32 *)buf; + int i; + int toread; + + BUG_ON(b47n->curr_page_addr & ~nand_chip->pagemask); + /* Don't validate column using nand_chip->page_shift, it may be bigger + * when accessing OOB */ + + while (len) { + /* We can read maximum of 0x200 bytes at once */ + toread = min(len, 0x200); + + /* Set page and column */ + bcma_cc_write32(b47n->cc, BCMA_CC_NFLASH_COL_ADDR, + b47n->curr_column); + bcma_cc_write32(b47n->cc, BCMA_CC_NFLASH_ROW_ADDR, + b47n->curr_page_addr); + + /* Prepare to read */ + ctlcode = NCTL_CSA | NCTL_CMD1W | NCTL_ROW | NCTL_COL | + NCTL_CMD0; + ctlcode |= NAND_CMD_READSTART << 8; + if (bcm47xxnflash_ops_bcm4706_ctl_cmd(b47n->cc, ctlcode)) + return; + if (bcm47xxnflash_ops_bcm4706_poll(b47n->cc)) + return; + + /* Eventually read some data :) */ + for (i = 0; i < toread; i += 4, dest++) { + ctlcode = NCTL_CSA | 0x30000000 | NCTL_READ; + if (i == toread - 4) /* Last read goes without that */ + ctlcode &= ~NCTL_CSA; + if (bcm47xxnflash_ops_bcm4706_ctl_cmd(b47n->cc, + ctlcode)) + return; + *dest = bcma_cc_read32(b47n->cc, BCMA_CC_NFLASH_DATA); + } + + b47n->curr_column += toread; + len -= toread; + } +} + +static void bcm47xxnflash_ops_bcm4706_write(struct mtd_info *mtd, + const uint8_t *buf, int len) +{ + struct nand_chip *nand_chip = mtd_to_nand(mtd); + struct bcm47xxnflash *b47n = nand_get_controller_data(nand_chip); + struct bcma_drv_cc *cc = b47n->cc; + + u32 ctlcode; + const u32 *data = (u32 *)buf; + int i; + + BUG_ON(b47n->curr_page_addr & ~nand_chip->pagemask); + /* Don't validate column using nand_chip->page_shift, it may be bigger + * when accessing OOB */ + + for (i = 0; i < len; i += 4, data++) { + bcma_cc_write32(cc, BCMA_CC_NFLASH_DATA, *data); + + ctlcode = NCTL_CSA | 0x30000000 | NCTL_WRITE; + if (i == len - 4) /* Last read goes without that */ + ctlcode &= ~NCTL_CSA; + if (bcm47xxnflash_ops_bcm4706_ctl_cmd(cc, ctlcode)) { + pr_err("%s ctl_cmd didn't work!\n", __func__); + return; + } + } + + b47n->curr_column += len; +} + +/************************************************** + * NAND chip ops + **************************************************/ + +static void bcm47xxnflash_ops_bcm4706_cmd_ctrl(struct nand_chip *nand_chip, + int cmd, unsigned int ctrl) +{ + struct bcm47xxnflash *b47n = nand_get_controller_data(nand_chip); + u32 code = 0; + + if (cmd == NAND_CMD_NONE) + return; + + if (cmd & NAND_CTRL_CLE) + code = cmd | NCTL_CMD0; + + /* nCS is not needed for reset command */ + if (cmd != NAND_CMD_RESET) + code |= NCTL_CSA; + + bcm47xxnflash_ops_bcm4706_ctl_cmd(b47n->cc, code); +} + +/* Default nand_select_chip calls cmd_ctrl, which is not used in BCM4706 */ +static void bcm47xxnflash_ops_bcm4706_select_chip(struct nand_chip *chip, + int cs) +{ + return; +} + +static int bcm47xxnflash_ops_bcm4706_dev_ready(struct nand_chip *nand_chip) +{ + struct bcm47xxnflash *b47n = nand_get_controller_data(nand_chip); + + return !!(bcma_cc_read32(b47n->cc, BCMA_CC_NFLASH_CTL) & NCTL_READY); +} + +/* + * Default nand_command and nand_command_lp don't match BCM4706 hardware layout. + * For example, reading chip id is performed in a non-standard way. + * Setting column and page is also handled differently, we use a special + * registers of ChipCommon core. Hacking cmd_ctrl to understand and convert + * standard commands would be much more complicated. + */ +static void bcm47xxnflash_ops_bcm4706_cmdfunc(struct nand_chip *nand_chip, + unsigned command, int column, + int page_addr) +{ + struct mtd_info *mtd = nand_to_mtd(nand_chip); + struct bcm47xxnflash *b47n = nand_get_controller_data(nand_chip); + struct bcma_drv_cc *cc = b47n->cc; + u32 ctlcode; + int i; + + if (column != -1) + b47n->curr_column = column; + if (page_addr != -1) + b47n->curr_page_addr = page_addr; + + switch (command) { + case NAND_CMD_RESET: + nand_chip->legacy.cmd_ctrl(nand_chip, command, NAND_CTRL_CLE); + + ndelay(100); + nand_wait_ready(nand_chip); + break; + case NAND_CMD_READID: + ctlcode = NCTL_CSA | 0x01000000 | NCTL_CMD1W | NCTL_CMD0; + ctlcode |= NAND_CMD_READID; + if (bcm47xxnflash_ops_bcm4706_ctl_cmd(b47n->cc, ctlcode)) { + pr_err("READID error\n"); + break; + } + + /* + * Reading is specific, last one has to go without NCTL_CSA + * bit. We don't know how many reads NAND subsystem is going + * to perform, so cache everything. + */ + for (i = 0; i < ARRAY_SIZE(b47n->id_data); i++) { + ctlcode = NCTL_CSA | NCTL_READ; + if (i == ARRAY_SIZE(b47n->id_data) - 1) + ctlcode &= ~NCTL_CSA; + if (bcm47xxnflash_ops_bcm4706_ctl_cmd(b47n->cc, + ctlcode)) { + pr_err("READID error\n"); + break; + } + b47n->id_data[i] = + bcma_cc_read32(b47n->cc, BCMA_CC_NFLASH_DATA) + & 0xFF; + } + + break; + case NAND_CMD_STATUS: + ctlcode = NCTL_CSA | NCTL_CMD0 | NAND_CMD_STATUS; + if (bcm47xxnflash_ops_bcm4706_ctl_cmd(cc, ctlcode)) + pr_err("STATUS command error\n"); + break; + case NAND_CMD_READ0: + break; + case NAND_CMD_READOOB: + if (page_addr != -1) + b47n->curr_column += mtd->writesize; + break; + case NAND_CMD_ERASE1: + bcma_cc_write32(cc, BCMA_CC_NFLASH_ROW_ADDR, + b47n->curr_page_addr); + ctlcode = NCTL_ROW | NCTL_CMD1W | NCTL_CMD0 | + NAND_CMD_ERASE1 | (NAND_CMD_ERASE2 << 8); + if (bcm47xxnflash_ops_bcm4706_ctl_cmd(cc, ctlcode)) + pr_err("ERASE1 failed\n"); + break; + case NAND_CMD_ERASE2: + break; + case NAND_CMD_SEQIN: + /* Set page and column */ + bcma_cc_write32(cc, BCMA_CC_NFLASH_COL_ADDR, + b47n->curr_column); + bcma_cc_write32(cc, BCMA_CC_NFLASH_ROW_ADDR, + b47n->curr_page_addr); + + /* Prepare to write */ + ctlcode = 0x40000000 | NCTL_ROW | NCTL_COL | NCTL_CMD0; + ctlcode |= NAND_CMD_SEQIN; + if (bcm47xxnflash_ops_bcm4706_ctl_cmd(cc, ctlcode)) + pr_err("SEQIN failed\n"); + break; + case NAND_CMD_PAGEPROG: + if (bcm47xxnflash_ops_bcm4706_ctl_cmd(cc, NCTL_CMD0 | + NAND_CMD_PAGEPROG)) + pr_err("PAGEPROG failed\n"); + if (bcm47xxnflash_ops_bcm4706_poll(cc)) + pr_err("PAGEPROG not ready\n"); + break; + default: + pr_err("Command 0x%X unsupported\n", command); + break; + } + b47n->curr_command = command; +} + +static u8 bcm47xxnflash_ops_bcm4706_read_byte(struct nand_chip *nand_chip) +{ + struct mtd_info *mtd = nand_to_mtd(nand_chip); + struct bcm47xxnflash *b47n = nand_get_controller_data(nand_chip); + struct bcma_drv_cc *cc = b47n->cc; + u32 tmp = 0; + + switch (b47n->curr_command) { + case NAND_CMD_READID: + if (b47n->curr_column >= ARRAY_SIZE(b47n->id_data)) { + pr_err("Requested invalid id_data: %d\n", + b47n->curr_column); + return 0; + } + return b47n->id_data[b47n->curr_column++]; + case NAND_CMD_STATUS: + if (bcm47xxnflash_ops_bcm4706_ctl_cmd(cc, NCTL_READ)) + return 0; + return bcma_cc_read32(cc, BCMA_CC_NFLASH_DATA) & 0xff; + case NAND_CMD_READOOB: + bcm47xxnflash_ops_bcm4706_read(mtd, (u8 *)&tmp, 4); + return tmp & 0xFF; + } + + pr_err("Invalid command for byte read: 0x%X\n", b47n->curr_command); + return 0; +} + +static void bcm47xxnflash_ops_bcm4706_read_buf(struct nand_chip *nand_chip, + uint8_t *buf, int len) +{ + struct bcm47xxnflash *b47n = nand_get_controller_data(nand_chip); + + switch (b47n->curr_command) { + case NAND_CMD_READ0: + case NAND_CMD_READOOB: + bcm47xxnflash_ops_bcm4706_read(nand_to_mtd(nand_chip), buf, + len); + return; + } + + pr_err("Invalid command for buf read: 0x%X\n", b47n->curr_command); +} + +static void bcm47xxnflash_ops_bcm4706_write_buf(struct nand_chip *nand_chip, + const uint8_t *buf, int len) +{ + struct bcm47xxnflash *b47n = nand_get_controller_data(nand_chip); + + switch (b47n->curr_command) { + case NAND_CMD_SEQIN: + bcm47xxnflash_ops_bcm4706_write(nand_to_mtd(nand_chip), buf, + len); + return; + } + + pr_err("Invalid command for buf write: 0x%X\n", b47n->curr_command); +} + +/************************************************** + * Init + **************************************************/ + +int bcm47xxnflash_ops_bcm4706_init(struct bcm47xxnflash *b47n) +{ + struct nand_chip *nand_chip = (struct nand_chip *)&b47n->nand_chip; + int err; + u32 freq; + u16 clock; + u8 w0, w1, w2, w3, w4; + + unsigned long chipsize; /* MiB */ + u8 tbits, col_bits, col_size, row_bits, row_bsize; + u32 val; + + nand_chip->legacy.select_chip = bcm47xxnflash_ops_bcm4706_select_chip; + nand_chip->legacy.cmd_ctrl = bcm47xxnflash_ops_bcm4706_cmd_ctrl; + nand_chip->legacy.dev_ready = bcm47xxnflash_ops_bcm4706_dev_ready; + b47n->nand_chip.legacy.cmdfunc = bcm47xxnflash_ops_bcm4706_cmdfunc; + b47n->nand_chip.legacy.read_byte = bcm47xxnflash_ops_bcm4706_read_byte; + b47n->nand_chip.legacy.read_buf = bcm47xxnflash_ops_bcm4706_read_buf; + b47n->nand_chip.legacy.write_buf = bcm47xxnflash_ops_bcm4706_write_buf; + b47n->nand_chip.legacy.set_features = nand_get_set_features_notsupp; + b47n->nand_chip.legacy.get_features = nand_get_set_features_notsupp; + + nand_chip->legacy.chip_delay = 50; + b47n->nand_chip.bbt_options = NAND_BBT_USE_FLASH; + /* TODO: implement ECC */ + b47n->nand_chip.ecc.engine_type = NAND_ECC_ENGINE_TYPE_NONE; + + /* Enable NAND flash access */ + bcma_cc_set32(b47n->cc, BCMA_CC_4706_FLASHSCFG, + BCMA_CC_4706_FLASHSCFG_NF1); + + /* Configure wait counters */ + if (b47n->cc->status & BCMA_CC_CHIPST_4706_PKG_OPTION) { + /* 400 MHz */ + freq = 400000000 / 4; + } else { + freq = bcma_chipco_pll_read(b47n->cc, 4); + freq = (freq & 0xFFF) >> 3; + /* Fixed reference clock 25 MHz and m = 2 */ + freq = (freq * 25000000 / 2) / 4; + } + clock = freq / 1000000; + w0 = bcm47xxnflash_ops_bcm4706_ns_to_cycle(15, clock); + w1 = bcm47xxnflash_ops_bcm4706_ns_to_cycle(20, clock); + w2 = bcm47xxnflash_ops_bcm4706_ns_to_cycle(10, clock); + w3 = bcm47xxnflash_ops_bcm4706_ns_to_cycle(10, clock); + w4 = bcm47xxnflash_ops_bcm4706_ns_to_cycle(100, clock); + bcma_cc_write32(b47n->cc, BCMA_CC_NFLASH_WAITCNT0, + (w4 << 24 | w3 << 18 | w2 << 12 | w1 << 6 | w0)); + + /* Scan NAND */ + err = nand_scan(&b47n->nand_chip, 1); + if (err) { + pr_err("Could not scan NAND flash: %d\n", err); + goto exit; + } + + /* Configure FLASH */ + chipsize = nanddev_target_size(&b47n->nand_chip.base) >> 20; + tbits = ffs(chipsize); /* find first bit set */ + if (!tbits || tbits != fls(chipsize)) { + pr_err("Invalid flash size: 0x%lX\n", chipsize); + err = -ENOTSUPP; + goto exit; + } + tbits += 19; /* Broadcom increases *index* by 20, we increase *pos* */ + + col_bits = b47n->nand_chip.page_shift + 1; + col_size = (col_bits + 7) / 8; + + row_bits = tbits - col_bits + 1; + row_bsize = (row_bits + 7) / 8; + + val = ((row_bsize - 1) << 6) | ((col_size - 1) << 4) | 2; + bcma_cc_write32(b47n->cc, BCMA_CC_NFLASH_CONF, val); + +exit: + if (err) + bcma_cc_mask32(b47n->cc, BCMA_CC_4706_FLASHSCFG, + ~BCMA_CC_4706_FLASHSCFG_NF1); + return err; +} diff --git a/drivers/mtd/nand/raw/brcmnand/Kconfig b/drivers/mtd/nand/raw/brcmnand/Kconfig new file mode 100644 index 0000000000..4bc51bf60a --- /dev/null +++ b/drivers/mtd/nand/raw/brcmnand/Kconfig @@ -0,0 +1,49 @@ +config MTD_NAND_BRCMNAND + tristate "Broadcom STB NAND controller" + depends on ARM || ARM64 || MIPS || COMPILE_TEST + depends on HAS_IOMEM + help + Enables the Broadcom NAND controller driver. The controller was + originally designed for Set-Top Box but is used on various BCM7xxx, + BCM3xxx, BCM63xxx, iProc/Cygnus and more. + +if MTD_NAND_BRCMNAND + +config MTD_NAND_BRCMNAND_BCM63XX + tristate "Broadcom BCM63xx NAND controller glue" + default BCM63XX + help + Enables the BRCMNAND glue driver to register the NAND controller + on Broadcom BCM63xx MIPS-based DSL platforms. + +config MTD_NAND_BRCMNAND_BCMA + tristate "Broadcom BCMA NAND controller" + depends on BCMA_NFLASH + depends on BCMA + help + Enables the BRCMNAND controller over BCMA on BCM47186/BCM5358 SoCs. + The glue driver will take care of performing the low-level I/O + operations to interface the BRCMNAND controller over the BCMA bus. + +config MTD_NAND_BRCMNAND_BCMBCA + tristate "Broadcom BCMBCA NAND controller glue" + default ARCH_BCMBCA + help + Enables the BRCMNAND glue driver to register the NAND controller + on Broadcom BCA platforms. + +config MTD_NAND_BRCMNAND_BRCMSTB + tristate "Broadcom STB Nand controller glue" + default ARCH_BRCMSTB + help + Enables the BRCMNAND glue driver to register the NAND controller + on Broadcom STB platforms. + +config MTD_NAND_BRCMNAND_IPROC + tristate "Broadcom iProc NAND controller glue" + default ARCH_BCM_IPROC + help + Enables the BRCMNAND controller glue driver to register the NAND + controller on Broadcom iProc platforms. + +endif # MTD_NAND_BRCMNAND diff --git a/drivers/mtd/nand/raw/brcmnand/Makefile b/drivers/mtd/nand/raw/brcmnand/Makefile new file mode 100644 index 0000000000..9907e3ec4b --- /dev/null +++ b/drivers/mtd/nand/raw/brcmnand/Makefile @@ -0,0 +1,10 @@ +# SPDX-License-Identifier: GPL-2.0 +# link order matters; don't link the more generic brcmstb_nand.o before the +# more specific iproc_nand.o, for instance +obj-$(CONFIG_MTD_NAND_BRCMNAND_IPROC) += iproc_nand.o +obj-$(CONFIG_MTD_NAND_BRCMNAND_BCMBCA) += bcm63138_nand.o +obj-$(CONFIG_MTD_NAND_BRCMNAND_BCM63XX) += bcm6368_nand.o +obj-$(CONFIG_MTD_NAND_BRCMNAND_BRCMSTB) += brcmstb_nand.o +obj-$(CONFIG_MTD_NAND_BRCMNAND) += brcmnand.o + +obj-$(CONFIG_MTD_NAND_BRCMNAND_BCMA) += bcma_nand.o diff --git a/drivers/mtd/nand/raw/brcmnand/bcm63138_nand.c b/drivers/mtd/nand/raw/brcmnand/bcm63138_nand.c new file mode 100644 index 0000000000..9596629000 --- /dev/null +++ b/drivers/mtd/nand/raw/brcmnand/bcm63138_nand.c @@ -0,0 +1,99 @@ +// SPDX-License-Identifier: GPL-2.0-only +/* + * Copyright © 2015 Broadcom Corporation + */ + +#include <linux/device.h> +#include <linux/io.h> +#include <linux/ioport.h> +#include <linux/module.h> +#include <linux/of.h> +#include <linux/of_address.h> +#include <linux/platform_device.h> +#include <linux/slab.h> + +#include "brcmnand.h" + +struct bcm63138_nand_soc { + struct brcmnand_soc soc; + void __iomem *base; +}; + +#define BCM63138_NAND_INT_STATUS 0x00 +#define BCM63138_NAND_INT_EN 0x04 + +enum { + BCM63138_CTLRDY = BIT(4), +}; + +static bool bcm63138_nand_intc_ack(struct brcmnand_soc *soc) +{ + struct bcm63138_nand_soc *priv = + container_of(soc, struct bcm63138_nand_soc, soc); + void __iomem *mmio = priv->base + BCM63138_NAND_INT_STATUS; + u32 val = brcmnand_readl(mmio); + + if (val & BCM63138_CTLRDY) { + brcmnand_writel(val & ~BCM63138_CTLRDY, mmio); + return true; + } + + return false; +} + +static void bcm63138_nand_intc_set(struct brcmnand_soc *soc, bool en) +{ + struct bcm63138_nand_soc *priv = + container_of(soc, struct bcm63138_nand_soc, soc); + void __iomem *mmio = priv->base + BCM63138_NAND_INT_EN; + u32 val = brcmnand_readl(mmio); + + if (en) + val |= BCM63138_CTLRDY; + else + val &= ~BCM63138_CTLRDY; + + brcmnand_writel(val, mmio); +} + +static int bcm63138_nand_probe(struct platform_device *pdev) +{ + struct device *dev = &pdev->dev; + struct bcm63138_nand_soc *priv; + struct brcmnand_soc *soc; + + priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL); + if (!priv) + return -ENOMEM; + soc = &priv->soc; + + priv->base = devm_platform_ioremap_resource_byname(pdev, "nand-int-base"); + if (IS_ERR(priv->base)) + return PTR_ERR(priv->base); + + soc->ctlrdy_ack = bcm63138_nand_intc_ack; + soc->ctlrdy_set_enabled = bcm63138_nand_intc_set; + + return brcmnand_probe(pdev, soc); +} + +static const struct of_device_id bcm63138_nand_of_match[] = { + { .compatible = "brcm,nand-bcm63138" }, + {}, +}; +MODULE_DEVICE_TABLE(of, bcm63138_nand_of_match); + +static struct platform_driver bcm63138_nand_driver = { + .probe = bcm63138_nand_probe, + .remove = brcmnand_remove, + .driver = { + .name = "bcm63138_nand", + .pm = &brcmnand_pm_ops, + .of_match_table = bcm63138_nand_of_match, + } +}; +module_platform_driver(bcm63138_nand_driver); + +MODULE_LICENSE("GPL v2"); +MODULE_AUTHOR("Brian Norris"); +MODULE_DESCRIPTION("NAND driver for BCM63138"); diff --git a/drivers/mtd/nand/raw/brcmnand/bcm6368_nand.c b/drivers/mtd/nand/raw/brcmnand/bcm6368_nand.c new file mode 100644 index 0000000000..a06cd87f83 --- /dev/null +++ b/drivers/mtd/nand/raw/brcmnand/bcm6368_nand.c @@ -0,0 +1,131 @@ +// SPDX-License-Identifier: GPL-2.0-only +/* + * Copyright 2015 Simon Arlott + * + * Derived from bcm63138_nand.c: + * Copyright © 2015 Broadcom Corporation + * + * Derived from bcm963xx_4.12L.06B_consumer/shared/opensource/include/bcm963xx/63268_map_part.h: + * Copyright 2000-2010 Broadcom Corporation + * + * Derived from bcm963xx_4.12L.06B_consumer/shared/opensource/flash/nandflash.c: + * Copyright 2000-2010 Broadcom Corporation + */ + +#include <linux/device.h> +#include <linux/io.h> +#include <linux/ioport.h> +#include <linux/module.h> +#include <linux/of.h> +#include <linux/of_address.h> +#include <linux/platform_device.h> +#include <linux/slab.h> + +#include "brcmnand.h" + +struct bcm6368_nand_soc { + struct brcmnand_soc soc; + void __iomem *base; +}; + +#define BCM6368_NAND_INT 0x00 +#define BCM6368_NAND_STATUS_SHIFT 0 +#define BCM6368_NAND_STATUS_MASK (0xfff << BCM6368_NAND_STATUS_SHIFT) +#define BCM6368_NAND_ENABLE_SHIFT 16 +#define BCM6368_NAND_ENABLE_MASK (0xffff << BCM6368_NAND_ENABLE_SHIFT) +#define BCM6368_NAND_BASE_ADDR0 0x04 +#define BCM6368_NAND_BASE_ADDR1 0x0c + +enum { + BCM6368_NP_READ = BIT(0), + BCM6368_BLOCK_ERASE = BIT(1), + BCM6368_COPY_BACK = BIT(2), + BCM6368_PAGE_PGM = BIT(3), + BCM6368_CTRL_READY = BIT(4), + BCM6368_DEV_RBPIN = BIT(5), + BCM6368_ECC_ERR_UNC = BIT(6), + BCM6368_ECC_ERR_CORR = BIT(7), +}; + +static bool bcm6368_nand_intc_ack(struct brcmnand_soc *soc) +{ + struct bcm6368_nand_soc *priv = + container_of(soc, struct bcm6368_nand_soc, soc); + void __iomem *mmio = priv->base + BCM6368_NAND_INT; + u32 val = brcmnand_readl(mmio); + + if (val & (BCM6368_CTRL_READY << BCM6368_NAND_STATUS_SHIFT)) { + /* Ack interrupt */ + val &= ~BCM6368_NAND_STATUS_MASK; + val |= BCM6368_CTRL_READY << BCM6368_NAND_STATUS_SHIFT; + brcmnand_writel(val, mmio); + return true; + } + + return false; +} + +static void bcm6368_nand_intc_set(struct brcmnand_soc *soc, bool en) +{ + struct bcm6368_nand_soc *priv = + container_of(soc, struct bcm6368_nand_soc, soc); + void __iomem *mmio = priv->base + BCM6368_NAND_INT; + u32 val = brcmnand_readl(mmio); + + /* Don't ack any interrupts */ + val &= ~BCM6368_NAND_STATUS_MASK; + + if (en) + val |= BCM6368_CTRL_READY << BCM6368_NAND_ENABLE_SHIFT; + else + val &= ~(BCM6368_CTRL_READY << BCM6368_NAND_ENABLE_SHIFT); + + brcmnand_writel(val, mmio); +} + +static int bcm6368_nand_probe(struct platform_device *pdev) +{ + struct device *dev = &pdev->dev; + struct bcm6368_nand_soc *priv; + struct brcmnand_soc *soc; + + priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL); + if (!priv) + return -ENOMEM; + soc = &priv->soc; + + priv->base = devm_platform_ioremap_resource_byname(pdev, "nand-int-base"); + if (IS_ERR(priv->base)) + return PTR_ERR(priv->base); + + soc->ctlrdy_ack = bcm6368_nand_intc_ack; + soc->ctlrdy_set_enabled = bcm6368_nand_intc_set; + + /* Disable and ack all interrupts */ + brcmnand_writel(0, priv->base + BCM6368_NAND_INT); + brcmnand_writel(BCM6368_NAND_STATUS_MASK, + priv->base + BCM6368_NAND_INT); + + return brcmnand_probe(pdev, soc); +} + +static const struct of_device_id bcm6368_nand_of_match[] = { + { .compatible = "brcm,nand-bcm6368" }, + {}, +}; +MODULE_DEVICE_TABLE(of, bcm6368_nand_of_match); + +static struct platform_driver bcm6368_nand_driver = { + .probe = bcm6368_nand_probe, + .remove = brcmnand_remove, + .driver = { + .name = "bcm6368_nand", + .pm = &brcmnand_pm_ops, + .of_match_table = bcm6368_nand_of_match, + } +}; +module_platform_driver(bcm6368_nand_driver); + +MODULE_LICENSE("GPL"); +MODULE_AUTHOR("Simon Arlott"); +MODULE_DESCRIPTION("NAND driver for BCM6368"); diff --git a/drivers/mtd/nand/raw/brcmnand/bcma_nand.c b/drivers/mtd/nand/raw/brcmnand/bcma_nand.c new file mode 100644 index 0000000000..dd27977919 --- /dev/null +++ b/drivers/mtd/nand/raw/brcmnand/bcma_nand.c @@ -0,0 +1,132 @@ +// SPDX-License-Identifier: GPL-2.0-only +/* + * Copyright © 2021 Broadcom + */ +#include <linux/bcma/bcma.h> +#include <linux/bcma/bcma_driver_chipcommon.h> +#include <linux/device.h> +#include <linux/module.h> +#include <linux/platform_device.h> + +#include "brcmnand.h" + +struct brcmnand_bcma_soc { + struct brcmnand_soc soc; + struct bcma_drv_cc *cc; +}; + +static inline bool brcmnand_bcma_needs_swapping(u32 offset) +{ + switch (offset) { + case BCMA_CC_NAND_SPARE_RD0: + case BCMA_CC_NAND_SPARE_RD4: + case BCMA_CC_NAND_SPARE_RD8: + case BCMA_CC_NAND_SPARE_RD12: + case BCMA_CC_NAND_SPARE_WR0: + case BCMA_CC_NAND_SPARE_WR4: + case BCMA_CC_NAND_SPARE_WR8: + case BCMA_CC_NAND_SPARE_WR12: + case BCMA_CC_NAND_DEVID: + case BCMA_CC_NAND_DEVID_X: + case BCMA_CC_NAND_SPARE_RD16: + case BCMA_CC_NAND_SPARE_RD20: + case BCMA_CC_NAND_SPARE_RD24: + case BCMA_CC_NAND_SPARE_RD28: + return true; + } + + return false; +} + +static inline struct brcmnand_bcma_soc *to_bcma_soc(struct brcmnand_soc *soc) +{ + return container_of(soc, struct brcmnand_bcma_soc, soc); +} + +static u32 brcmnand_bcma_read_reg(struct brcmnand_soc *soc, u32 offset) +{ + struct brcmnand_bcma_soc *sc = to_bcma_soc(soc); + u32 val; + + /* Offset into the NAND block and deal with the flash cache separately */ + if (offset == BRCMNAND_NON_MMIO_FC_ADDR) + offset = BCMA_CC_NAND_CACHE_DATA; + else + offset += BCMA_CC_NAND_REVISION; + + val = bcma_cc_read32(sc->cc, offset); + + /* Swap if necessary */ + if (brcmnand_bcma_needs_swapping(offset)) + val = be32_to_cpu((__force __be32)val); + return val; +} + +static void brcmnand_bcma_write_reg(struct brcmnand_soc *soc, u32 val, + u32 offset) +{ + struct brcmnand_bcma_soc *sc = to_bcma_soc(soc); + + /* Offset into the NAND block */ + if (offset == BRCMNAND_NON_MMIO_FC_ADDR) + offset = BCMA_CC_NAND_CACHE_DATA; + else + offset += BCMA_CC_NAND_REVISION; + + /* Swap if necessary */ + if (brcmnand_bcma_needs_swapping(offset)) + val = (__force u32)cpu_to_be32(val); + + bcma_cc_write32(sc->cc, offset, val); +} + +static struct brcmnand_io_ops brcmnand_bcma_io_ops = { + .read_reg = brcmnand_bcma_read_reg, + .write_reg = brcmnand_bcma_write_reg, +}; + +static void brcmnand_bcma_prepare_data_bus(struct brcmnand_soc *soc, bool prepare, + bool is_param) +{ + struct brcmnand_bcma_soc *sc = to_bcma_soc(soc); + + /* Reset the cache address to ensure we are already accessing the + * beginning of a sub-page. + */ + bcma_cc_write32(sc->cc, BCMA_CC_NAND_CACHE_ADDR, 0); +} + +static int brcmnand_bcma_nand_probe(struct platform_device *pdev) +{ + struct bcma_nflash *nflash = dev_get_platdata(&pdev->dev); + struct brcmnand_bcma_soc *soc; + + soc = devm_kzalloc(&pdev->dev, sizeof(*soc), GFP_KERNEL); + if (!soc) + return -ENOMEM; + + soc->cc = container_of(nflash, struct bcma_drv_cc, nflash); + soc->soc.prepare_data_bus = brcmnand_bcma_prepare_data_bus; + soc->soc.ops = &brcmnand_bcma_io_ops; + + if (soc->cc->core->bus->chipinfo.id == BCMA_CHIP_ID_BCM4706) { + dev_err(&pdev->dev, "Use bcm47xxnflash for 4706!\n"); + return -ENODEV; + } + + return brcmnand_probe(pdev, &soc->soc); +} + +static struct platform_driver brcmnand_bcma_nand_driver = { + .probe = brcmnand_bcma_nand_probe, + .remove = brcmnand_remove, + .driver = { + .name = "bcma_brcmnand", + .pm = &brcmnand_pm_ops, + } +}; +module_platform_driver(brcmnand_bcma_nand_driver); + +MODULE_LICENSE("GPL v2"); +MODULE_AUTHOR("Broadcom"); +MODULE_DESCRIPTION("NAND controller driver glue for BCMA chips"); diff --git a/drivers/mtd/nand/raw/brcmnand/brcmnand.c b/drivers/mtd/nand/raw/brcmnand/brcmnand.c new file mode 100644 index 0000000000..440bef4779 --- /dev/null +++ b/drivers/mtd/nand/raw/brcmnand/brcmnand.c @@ -0,0 +1,3328 @@ +// SPDX-License-Identifier: GPL-2.0-only +/* + * Copyright © 2010-2015 Broadcom Corporation + */ + +#include <linux/clk.h> +#include <linux/module.h> +#include <linux/init.h> +#include <linux/delay.h> +#include <linux/device.h> +#include <linux/platform_device.h> +#include <linux/platform_data/brcmnand.h> +#include <linux/err.h> +#include <linux/completion.h> +#include <linux/interrupt.h> +#include <linux/spinlock.h> +#include <linux/dma-mapping.h> +#include <linux/ioport.h> +#include <linux/bug.h> +#include <linux/kernel.h> +#include <linux/bitops.h> +#include <linux/mm.h> +#include <linux/mtd/mtd.h> +#include <linux/mtd/rawnand.h> +#include <linux/mtd/partitions.h> +#include <linux/of.h> +#include <linux/of_platform.h> +#include <linux/slab.h> +#include <linux/static_key.h> +#include <linux/list.h> +#include <linux/log2.h> + +#include "brcmnand.h" + +/* + * This flag controls if WP stays on between erase/write commands to mitigate + * flash corruption due to power glitches. Values: + * 0: NAND_WP is not used or not available + * 1: NAND_WP is set by default, cleared for erase/write operations + * 2: NAND_WP is always cleared + */ +static int wp_on = 1; +module_param(wp_on, int, 0444); + +/*********************************************************************** + * Definitions + ***********************************************************************/ + +#define DRV_NAME "brcmnand" + +#define CMD_NULL 0x00 +#define CMD_PAGE_READ 0x01 +#define CMD_SPARE_AREA_READ 0x02 +#define CMD_STATUS_READ 0x03 +#define CMD_PROGRAM_PAGE 0x04 +#define CMD_PROGRAM_SPARE_AREA 0x05 +#define CMD_COPY_BACK 0x06 +#define CMD_DEVICE_ID_READ 0x07 +#define CMD_BLOCK_ERASE 0x08 +#define CMD_FLASH_RESET 0x09 +#define CMD_BLOCKS_LOCK 0x0a +#define CMD_BLOCKS_LOCK_DOWN 0x0b +#define CMD_BLOCKS_UNLOCK 0x0c +#define CMD_READ_BLOCKS_LOCK_STATUS 0x0d +#define CMD_PARAMETER_READ 0x0e +#define CMD_PARAMETER_CHANGE_COL 0x0f +#define CMD_LOW_LEVEL_OP 0x10 + +struct brcm_nand_dma_desc { + u32 next_desc; + u32 next_desc_ext; + u32 cmd_irq; + u32 dram_addr; + u32 dram_addr_ext; + u32 tfr_len; + u32 total_len; + u32 flash_addr; + u32 flash_addr_ext; + u32 cs; + u32 pad2[5]; + u32 status_valid; +} __packed; + +/* Bitfields for brcm_nand_dma_desc::status_valid */ +#define FLASH_DMA_ECC_ERROR (1 << 8) +#define FLASH_DMA_CORR_ERROR (1 << 9) + +/* Bitfields for DMA_MODE */ +#define FLASH_DMA_MODE_STOP_ON_ERROR BIT(1) /* stop in Uncorr ECC error */ +#define FLASH_DMA_MODE_MODE BIT(0) /* link list */ +#define FLASH_DMA_MODE_MASK (FLASH_DMA_MODE_STOP_ON_ERROR | \ + FLASH_DMA_MODE_MODE) + +/* 512B flash cache in the NAND controller HW */ +#define FC_SHIFT 9U +#define FC_BYTES 512U +#define FC_WORDS (FC_BYTES >> 2) + +#define BRCMNAND_MIN_PAGESIZE 512 +#define BRCMNAND_MIN_BLOCKSIZE (8 * 1024) +#define BRCMNAND_MIN_DEVSIZE (4ULL * 1024 * 1024) + +#define NAND_CTRL_RDY (INTFC_CTLR_READY | INTFC_FLASH_READY) +#define NAND_POLL_STATUS_TIMEOUT_MS 100 + +#define EDU_CMD_WRITE 0x00 +#define EDU_CMD_READ 0x01 +#define EDU_STATUS_ACTIVE BIT(0) +#define EDU_ERR_STATUS_ERRACK BIT(0) +#define EDU_DONE_MASK GENMASK(1, 0) + +#define EDU_CONFIG_MODE_NAND BIT(0) +#define EDU_CONFIG_SWAP_BYTE BIT(1) +#ifdef CONFIG_CPU_BIG_ENDIAN +#define EDU_CONFIG_SWAP_CFG EDU_CONFIG_SWAP_BYTE +#else +#define EDU_CONFIG_SWAP_CFG 0 +#endif + +/* edu registers */ +enum edu_reg { + EDU_CONFIG = 0, + EDU_DRAM_ADDR, + EDU_EXT_ADDR, + EDU_LENGTH, + EDU_CMD, + EDU_STOP, + EDU_STATUS, + EDU_DONE, + EDU_ERR_STATUS, +}; + +static const u16 edu_regs[] = { + [EDU_CONFIG] = 0x00, + [EDU_DRAM_ADDR] = 0x04, + [EDU_EXT_ADDR] = 0x08, + [EDU_LENGTH] = 0x0c, + [EDU_CMD] = 0x10, + [EDU_STOP] = 0x14, + [EDU_STATUS] = 0x18, + [EDU_DONE] = 0x1c, + [EDU_ERR_STATUS] = 0x20, +}; + +/* flash_dma registers */ +enum flash_dma_reg { + FLASH_DMA_REVISION = 0, + FLASH_DMA_FIRST_DESC, + FLASH_DMA_FIRST_DESC_EXT, + FLASH_DMA_CTRL, + FLASH_DMA_MODE, + FLASH_DMA_STATUS, + FLASH_DMA_INTERRUPT_DESC, + FLASH_DMA_INTERRUPT_DESC_EXT, + FLASH_DMA_ERROR_STATUS, + FLASH_DMA_CURRENT_DESC, + FLASH_DMA_CURRENT_DESC_EXT, +}; + +/* flash_dma registers v0*/ +static const u16 flash_dma_regs_v0[] = { + [FLASH_DMA_REVISION] = 0x00, + [FLASH_DMA_FIRST_DESC] = 0x04, + [FLASH_DMA_CTRL] = 0x08, + [FLASH_DMA_MODE] = 0x0c, + [FLASH_DMA_STATUS] = 0x10, + [FLASH_DMA_INTERRUPT_DESC] = 0x14, + [FLASH_DMA_ERROR_STATUS] = 0x18, + [FLASH_DMA_CURRENT_DESC] = 0x1c, +}; + +/* flash_dma registers v1*/ +static const u16 flash_dma_regs_v1[] = { + [FLASH_DMA_REVISION] = 0x00, + [FLASH_DMA_FIRST_DESC] = 0x04, + [FLASH_DMA_FIRST_DESC_EXT] = 0x08, + [FLASH_DMA_CTRL] = 0x0c, + [FLASH_DMA_MODE] = 0x10, + [FLASH_DMA_STATUS] = 0x14, + [FLASH_DMA_INTERRUPT_DESC] = 0x18, + [FLASH_DMA_INTERRUPT_DESC_EXT] = 0x1c, + [FLASH_DMA_ERROR_STATUS] = 0x20, + [FLASH_DMA_CURRENT_DESC] = 0x24, + [FLASH_DMA_CURRENT_DESC_EXT] = 0x28, +}; + +/* flash_dma registers v4 */ +static const u16 flash_dma_regs_v4[] = { + [FLASH_DMA_REVISION] = 0x00, + [FLASH_DMA_FIRST_DESC] = 0x08, + [FLASH_DMA_FIRST_DESC_EXT] = 0x0c, + [FLASH_DMA_CTRL] = 0x10, + [FLASH_DMA_MODE] = 0x14, + [FLASH_DMA_STATUS] = 0x18, + [FLASH_DMA_INTERRUPT_DESC] = 0x20, + [FLASH_DMA_INTERRUPT_DESC_EXT] = 0x24, + [FLASH_DMA_ERROR_STATUS] = 0x28, + [FLASH_DMA_CURRENT_DESC] = 0x30, + [FLASH_DMA_CURRENT_DESC_EXT] = 0x34, +}; + +/* Controller feature flags */ +enum { + BRCMNAND_HAS_1K_SECTORS = BIT(0), + BRCMNAND_HAS_PREFETCH = BIT(1), + BRCMNAND_HAS_CACHE_MODE = BIT(2), + BRCMNAND_HAS_WP = BIT(3), +}; + +struct brcmnand_host; + +static DEFINE_STATIC_KEY_FALSE(brcmnand_soc_has_ops_key); + +struct brcmnand_controller { + struct device *dev; + struct nand_controller controller; + void __iomem *nand_base; + void __iomem *nand_fc; /* flash cache */ + void __iomem *flash_dma_base; + int irq; + unsigned int dma_irq; + int nand_version; + + /* Some SoCs provide custom interrupt status register(s) */ + struct brcmnand_soc *soc; + + /* Some SoCs have a gateable clock for the controller */ + struct clk *clk; + + int cmd_pending; + bool dma_pending; + bool edu_pending; + struct completion done; + struct completion dma_done; + struct completion edu_done; + + /* List of NAND hosts (one for each chip-select) */ + struct list_head host_list; + + /* EDU info, per-transaction */ + const u16 *edu_offsets; + void __iomem *edu_base; + int edu_irq; + int edu_count; + u64 edu_dram_addr; + u32 edu_ext_addr; + u32 edu_cmd; + u32 edu_config; + int sas; /* spare area size, per flash cache */ + int sector_size_1k; + u8 *oob; + + /* flash_dma reg */ + const u16 *flash_dma_offsets; + struct brcm_nand_dma_desc *dma_desc; + dma_addr_t dma_pa; + + int (*dma_trans)(struct brcmnand_host *host, u64 addr, u32 *buf, + u8 *oob, u32 len, u8 dma_cmd); + + /* in-memory cache of the FLASH_CACHE, used only for some commands */ + u8 flash_cache[FC_BYTES]; + + /* Controller revision details */ + const u16 *reg_offsets; + unsigned int reg_spacing; /* between CS1, CS2, ... regs */ + const u8 *cs_offsets; /* within each chip-select */ + const u8 *cs0_offsets; /* within CS0, if different */ + unsigned int max_block_size; + const unsigned int *block_sizes; + unsigned int max_page_size; + const unsigned int *page_sizes; + unsigned int page_size_shift; + unsigned int max_oob; + u32 ecc_level_shift; + u32 features; + + /* for low-power standby/resume only */ + u32 nand_cs_nand_select; + u32 nand_cs_nand_xor; + u32 corr_stat_threshold; + u32 flash_dma_mode; + u32 flash_edu_mode; + bool pio_poll_mode; +}; + +struct brcmnand_cfg { + u64 device_size; + unsigned int block_size; + unsigned int page_size; + unsigned int spare_area_size; + unsigned int device_width; + unsigned int col_adr_bytes; + unsigned int blk_adr_bytes; + unsigned int ful_adr_bytes; + unsigned int sector_size_1k; + unsigned int ecc_level; + /* use for low-power standby/resume only */ + u32 acc_control; + u32 config; + u32 config_ext; + u32 timing_1; + u32 timing_2; +}; + +struct brcmnand_host { + struct list_head node; + + struct nand_chip chip; + struct platform_device *pdev; + int cs; + + unsigned int last_cmd; + unsigned int last_byte; + u64 last_addr; + struct brcmnand_cfg hwcfg; + struct brcmnand_controller *ctrl; +}; + +enum brcmnand_reg { + BRCMNAND_CMD_START = 0, + BRCMNAND_CMD_EXT_ADDRESS, + BRCMNAND_CMD_ADDRESS, + BRCMNAND_INTFC_STATUS, + BRCMNAND_CS_SELECT, + BRCMNAND_CS_XOR, + BRCMNAND_LL_OP, + BRCMNAND_CS0_BASE, + BRCMNAND_CS1_BASE, /* CS1 regs, if non-contiguous */ + BRCMNAND_CORR_THRESHOLD, + BRCMNAND_CORR_THRESHOLD_EXT, + BRCMNAND_UNCORR_COUNT, + BRCMNAND_CORR_COUNT, + BRCMNAND_CORR_EXT_ADDR, + BRCMNAND_CORR_ADDR, + BRCMNAND_UNCORR_EXT_ADDR, + BRCMNAND_UNCORR_ADDR, + BRCMNAND_SEMAPHORE, + BRCMNAND_ID, + BRCMNAND_ID_EXT, + BRCMNAND_LL_RDATA, + BRCMNAND_OOB_READ_BASE, + BRCMNAND_OOB_READ_10_BASE, /* offset 0x10, if non-contiguous */ + BRCMNAND_OOB_WRITE_BASE, + BRCMNAND_OOB_WRITE_10_BASE, /* offset 0x10, if non-contiguous */ + BRCMNAND_FC_BASE, +}; + +/* BRCMNAND v2.1-v2.2 */ +static const u16 brcmnand_regs_v21[] = { + [BRCMNAND_CMD_START] = 0x04, + [BRCMNAND_CMD_EXT_ADDRESS] = 0x08, + [BRCMNAND_CMD_ADDRESS] = 0x0c, + [BRCMNAND_INTFC_STATUS] = 0x5c, + [BRCMNAND_CS_SELECT] = 0x14, + [BRCMNAND_CS_XOR] = 0x18, + [BRCMNAND_LL_OP] = 0, + [BRCMNAND_CS0_BASE] = 0x40, + [BRCMNAND_CS1_BASE] = 0, + [BRCMNAND_CORR_THRESHOLD] = 0, + [BRCMNAND_CORR_THRESHOLD_EXT] = 0, + [BRCMNAND_UNCORR_COUNT] = 0, + [BRCMNAND_CORR_COUNT] = 0, + [BRCMNAND_CORR_EXT_ADDR] = 0x60, + [BRCMNAND_CORR_ADDR] = 0x64, + [BRCMNAND_UNCORR_EXT_ADDR] = 0x68, + [BRCMNAND_UNCORR_ADDR] = 0x6c, + [BRCMNAND_SEMAPHORE] = 0x50, + [BRCMNAND_ID] = 0x54, + [BRCMNAND_ID_EXT] = 0, + [BRCMNAND_LL_RDATA] = 0, + [BRCMNAND_OOB_READ_BASE] = 0x20, + [BRCMNAND_OOB_READ_10_BASE] = 0, + [BRCMNAND_OOB_WRITE_BASE] = 0x30, + [BRCMNAND_OOB_WRITE_10_BASE] = 0, + [BRCMNAND_FC_BASE] = 0x200, +}; + +/* BRCMNAND v3.3-v4.0 */ +static const u16 brcmnand_regs_v33[] = { + [BRCMNAND_CMD_START] = 0x04, + [BRCMNAND_CMD_EXT_ADDRESS] = 0x08, + [BRCMNAND_CMD_ADDRESS] = 0x0c, + [BRCMNAND_INTFC_STATUS] = 0x6c, + [BRCMNAND_CS_SELECT] = 0x14, + [BRCMNAND_CS_XOR] = 0x18, + [BRCMNAND_LL_OP] = 0x178, + [BRCMNAND_CS0_BASE] = 0x40, + [BRCMNAND_CS1_BASE] = 0xd0, + [BRCMNAND_CORR_THRESHOLD] = 0x84, + [BRCMNAND_CORR_THRESHOLD_EXT] = 0, + [BRCMNAND_UNCORR_COUNT] = 0, + [BRCMNAND_CORR_COUNT] = 0, + [BRCMNAND_CORR_EXT_ADDR] = 0x70, + [BRCMNAND_CORR_ADDR] = 0x74, + [BRCMNAND_UNCORR_EXT_ADDR] = 0x78, + [BRCMNAND_UNCORR_ADDR] = 0x7c, + [BRCMNAND_SEMAPHORE] = 0x58, + [BRCMNAND_ID] = 0x60, + [BRCMNAND_ID_EXT] = 0x64, + [BRCMNAND_LL_RDATA] = 0x17c, + [BRCMNAND_OOB_READ_BASE] = 0x20, + [BRCMNAND_OOB_READ_10_BASE] = 0x130, + [BRCMNAND_OOB_WRITE_BASE] = 0x30, + [BRCMNAND_OOB_WRITE_10_BASE] = 0, + [BRCMNAND_FC_BASE] = 0x200, +}; + +/* BRCMNAND v5.0 */ +static const u16 brcmnand_regs_v50[] = { + [BRCMNAND_CMD_START] = 0x04, + [BRCMNAND_CMD_EXT_ADDRESS] = 0x08, + [BRCMNAND_CMD_ADDRESS] = 0x0c, + [BRCMNAND_INTFC_STATUS] = 0x6c, + [BRCMNAND_CS_SELECT] = 0x14, + [BRCMNAND_CS_XOR] = 0x18, + [BRCMNAND_LL_OP] = 0x178, + [BRCMNAND_CS0_BASE] = 0x40, + [BRCMNAND_CS1_BASE] = 0xd0, + [BRCMNAND_CORR_THRESHOLD] = 0x84, + [BRCMNAND_CORR_THRESHOLD_EXT] = 0, + [BRCMNAND_UNCORR_COUNT] = 0, + [BRCMNAND_CORR_COUNT] = 0, + [BRCMNAND_CORR_EXT_ADDR] = 0x70, + [BRCMNAND_CORR_ADDR] = 0x74, + [BRCMNAND_UNCORR_EXT_ADDR] = 0x78, + [BRCMNAND_UNCORR_ADDR] = 0x7c, + [BRCMNAND_SEMAPHORE] = 0x58, + [BRCMNAND_ID] = 0x60, + [BRCMNAND_ID_EXT] = 0x64, + [BRCMNAND_LL_RDATA] = 0x17c, + [BRCMNAND_OOB_READ_BASE] = 0x20, + [BRCMNAND_OOB_READ_10_BASE] = 0x130, + [BRCMNAND_OOB_WRITE_BASE] = 0x30, + [BRCMNAND_OOB_WRITE_10_BASE] = 0x140, + [BRCMNAND_FC_BASE] = 0x200, +}; + +/* BRCMNAND v6.0 - v7.1 */ +static const u16 brcmnand_regs_v60[] = { + [BRCMNAND_CMD_START] = 0x04, + [BRCMNAND_CMD_EXT_ADDRESS] = 0x08, + [BRCMNAND_CMD_ADDRESS] = 0x0c, + [BRCMNAND_INTFC_STATUS] = 0x14, + [BRCMNAND_CS_SELECT] = 0x18, + [BRCMNAND_CS_XOR] = 0x1c, + [BRCMNAND_LL_OP] = 0x20, + [BRCMNAND_CS0_BASE] = 0x50, + [BRCMNAND_CS1_BASE] = 0, + [BRCMNAND_CORR_THRESHOLD] = 0xc0, + [BRCMNAND_CORR_THRESHOLD_EXT] = 0xc4, + [BRCMNAND_UNCORR_COUNT] = 0xfc, + [BRCMNAND_CORR_COUNT] = 0x100, + [BRCMNAND_CORR_EXT_ADDR] = 0x10c, + [BRCMNAND_CORR_ADDR] = 0x110, + [BRCMNAND_UNCORR_EXT_ADDR] = 0x114, + [BRCMNAND_UNCORR_ADDR] = 0x118, + [BRCMNAND_SEMAPHORE] = 0x150, + [BRCMNAND_ID] = 0x194, + [BRCMNAND_ID_EXT] = 0x198, + [BRCMNAND_LL_RDATA] = 0x19c, + [BRCMNAND_OOB_READ_BASE] = 0x200, + [BRCMNAND_OOB_READ_10_BASE] = 0, + [BRCMNAND_OOB_WRITE_BASE] = 0x280, + [BRCMNAND_OOB_WRITE_10_BASE] = 0, + [BRCMNAND_FC_BASE] = 0x400, +}; + +/* BRCMNAND v7.1 */ +static const u16 brcmnand_regs_v71[] = { + [BRCMNAND_CMD_START] = 0x04, + [BRCMNAND_CMD_EXT_ADDRESS] = 0x08, + [BRCMNAND_CMD_ADDRESS] = 0x0c, + [BRCMNAND_INTFC_STATUS] = 0x14, + [BRCMNAND_CS_SELECT] = 0x18, + [BRCMNAND_CS_XOR] = 0x1c, + [BRCMNAND_LL_OP] = 0x20, + [BRCMNAND_CS0_BASE] = 0x50, + [BRCMNAND_CS1_BASE] = 0, + [BRCMNAND_CORR_THRESHOLD] = 0xdc, + [BRCMNAND_CORR_THRESHOLD_EXT] = 0xe0, + [BRCMNAND_UNCORR_COUNT] = 0xfc, + [BRCMNAND_CORR_COUNT] = 0x100, + [BRCMNAND_CORR_EXT_ADDR] = 0x10c, + [BRCMNAND_CORR_ADDR] = 0x110, + [BRCMNAND_UNCORR_EXT_ADDR] = 0x114, + [BRCMNAND_UNCORR_ADDR] = 0x118, + [BRCMNAND_SEMAPHORE] = 0x150, + [BRCMNAND_ID] = 0x194, + [BRCMNAND_ID_EXT] = 0x198, + [BRCMNAND_LL_RDATA] = 0x19c, + [BRCMNAND_OOB_READ_BASE] = 0x200, + [BRCMNAND_OOB_READ_10_BASE] = 0, + [BRCMNAND_OOB_WRITE_BASE] = 0x280, + [BRCMNAND_OOB_WRITE_10_BASE] = 0, + [BRCMNAND_FC_BASE] = 0x400, +}; + +/* BRCMNAND v7.2 */ +static const u16 brcmnand_regs_v72[] = { + [BRCMNAND_CMD_START] = 0x04, + [BRCMNAND_CMD_EXT_ADDRESS] = 0x08, + [BRCMNAND_CMD_ADDRESS] = 0x0c, + [BRCMNAND_INTFC_STATUS] = 0x14, + [BRCMNAND_CS_SELECT] = 0x18, + [BRCMNAND_CS_XOR] = 0x1c, + [BRCMNAND_LL_OP] = 0x20, + [BRCMNAND_CS0_BASE] = 0x50, + [BRCMNAND_CS1_BASE] = 0, + [BRCMNAND_CORR_THRESHOLD] = 0xdc, + [BRCMNAND_CORR_THRESHOLD_EXT] = 0xe0, + [BRCMNAND_UNCORR_COUNT] = 0xfc, + [BRCMNAND_CORR_COUNT] = 0x100, + [BRCMNAND_CORR_EXT_ADDR] = 0x10c, + [BRCMNAND_CORR_ADDR] = 0x110, + [BRCMNAND_UNCORR_EXT_ADDR] = 0x114, + [BRCMNAND_UNCORR_ADDR] = 0x118, + [BRCMNAND_SEMAPHORE] = 0x150, + [BRCMNAND_ID] = 0x194, + [BRCMNAND_ID_EXT] = 0x198, + [BRCMNAND_LL_RDATA] = 0x19c, + [BRCMNAND_OOB_READ_BASE] = 0x200, + [BRCMNAND_OOB_READ_10_BASE] = 0, + [BRCMNAND_OOB_WRITE_BASE] = 0x400, + [BRCMNAND_OOB_WRITE_10_BASE] = 0, + [BRCMNAND_FC_BASE] = 0x600, +}; + +enum brcmnand_cs_reg { + BRCMNAND_CS_CFG_EXT = 0, + BRCMNAND_CS_CFG, + BRCMNAND_CS_ACC_CONTROL, + BRCMNAND_CS_TIMING1, + BRCMNAND_CS_TIMING2, +}; + +/* Per chip-select offsets for v7.1 */ +static const u8 brcmnand_cs_offsets_v71[] = { + [BRCMNAND_CS_ACC_CONTROL] = 0x00, + [BRCMNAND_CS_CFG_EXT] = 0x04, + [BRCMNAND_CS_CFG] = 0x08, + [BRCMNAND_CS_TIMING1] = 0x0c, + [BRCMNAND_CS_TIMING2] = 0x10, +}; + +/* Per chip-select offsets for pre v7.1, except CS0 on <= v5.0 */ +static const u8 brcmnand_cs_offsets[] = { + [BRCMNAND_CS_ACC_CONTROL] = 0x00, + [BRCMNAND_CS_CFG_EXT] = 0x04, + [BRCMNAND_CS_CFG] = 0x04, + [BRCMNAND_CS_TIMING1] = 0x08, + [BRCMNAND_CS_TIMING2] = 0x0c, +}; + +/* Per chip-select offset for <= v5.0 on CS0 only */ +static const u8 brcmnand_cs_offsets_cs0[] = { + [BRCMNAND_CS_ACC_CONTROL] = 0x00, + [BRCMNAND_CS_CFG_EXT] = 0x08, + [BRCMNAND_CS_CFG] = 0x08, + [BRCMNAND_CS_TIMING1] = 0x10, + [BRCMNAND_CS_TIMING2] = 0x14, +}; + +/* + * Bitfields for the CFG and CFG_EXT registers. Pre-v7.1 controllers only had + * one config register, but once the bitfields overflowed, newer controllers + * (v7.1 and newer) added a CFG_EXT register and shuffled a few fields around. + */ +enum { + CFG_BLK_ADR_BYTES_SHIFT = 8, + CFG_COL_ADR_BYTES_SHIFT = 12, + CFG_FUL_ADR_BYTES_SHIFT = 16, + CFG_BUS_WIDTH_SHIFT = 23, + CFG_BUS_WIDTH = BIT(CFG_BUS_WIDTH_SHIFT), + CFG_DEVICE_SIZE_SHIFT = 24, + + /* Only for v2.1 */ + CFG_PAGE_SIZE_SHIFT_v2_1 = 30, + + /* Only for pre-v7.1 (with no CFG_EXT register) */ + CFG_PAGE_SIZE_SHIFT = 20, + CFG_BLK_SIZE_SHIFT = 28, + + /* Only for v7.1+ (with CFG_EXT register) */ + CFG_EXT_PAGE_SIZE_SHIFT = 0, + CFG_EXT_BLK_SIZE_SHIFT = 4, +}; + +/* BRCMNAND_INTFC_STATUS */ +enum { + INTFC_FLASH_STATUS = GENMASK(7, 0), + + INTFC_ERASED = BIT(27), + INTFC_OOB_VALID = BIT(28), + INTFC_CACHE_VALID = BIT(29), + INTFC_FLASH_READY = BIT(30), + INTFC_CTLR_READY = BIT(31), +}; + +/*********************************************************************** + * NAND ACC CONTROL bitfield + * + * Some bits have remained constant throughout hardware revision, while + * others have shifted around. + ***********************************************************************/ + +/* Constant for all versions (where supported) */ +enum { + /* See BRCMNAND_HAS_CACHE_MODE */ + ACC_CONTROL_CACHE_MODE = BIT(22), + + /* See BRCMNAND_HAS_PREFETCH */ + ACC_CONTROL_PREFETCH = BIT(23), + + ACC_CONTROL_PAGE_HIT = BIT(24), + ACC_CONTROL_WR_PREEMPT = BIT(25), + ACC_CONTROL_PARTIAL_PAGE = BIT(26), + ACC_CONTROL_RD_ERASED = BIT(27), + ACC_CONTROL_FAST_PGM_RDIN = BIT(28), + ACC_CONTROL_WR_ECC = BIT(30), + ACC_CONTROL_RD_ECC = BIT(31), +}; + +#define ACC_CONTROL_ECC_SHIFT 16 +/* Only for v7.2 */ +#define ACC_CONTROL_ECC_EXT_SHIFT 13 + +static inline bool brcmnand_non_mmio_ops(struct brcmnand_controller *ctrl) +{ +#if IS_ENABLED(CONFIG_MTD_NAND_BRCMNAND_BCMA) + return static_branch_unlikely(&brcmnand_soc_has_ops_key); +#else + return false; +#endif +} + +static inline u32 nand_readreg(struct brcmnand_controller *ctrl, u32 offs) +{ + if (brcmnand_non_mmio_ops(ctrl)) + return brcmnand_soc_read(ctrl->soc, offs); + return brcmnand_readl(ctrl->nand_base + offs); +} + +static inline void nand_writereg(struct brcmnand_controller *ctrl, u32 offs, + u32 val) +{ + if (brcmnand_non_mmio_ops(ctrl)) + brcmnand_soc_write(ctrl->soc, val, offs); + else + brcmnand_writel(val, ctrl->nand_base + offs); +} + +static int brcmnand_revision_init(struct brcmnand_controller *ctrl) +{ + static const unsigned int block_sizes_v6[] = { 8, 16, 128, 256, 512, 1024, 2048, 0 }; + static const unsigned int block_sizes_v4[] = { 16, 128, 8, 512, 256, 1024, 2048, 0 }; + static const unsigned int block_sizes_v2_2[] = { 16, 128, 8, 512, 256, 0 }; + static const unsigned int block_sizes_v2_1[] = { 16, 128, 8, 512, 0 }; + static const unsigned int page_sizes_v3_4[] = { 512, 2048, 4096, 8192, 0 }; + static const unsigned int page_sizes_v2_2[] = { 512, 2048, 4096, 0 }; + static const unsigned int page_sizes_v2_1[] = { 512, 2048, 0 }; + + ctrl->nand_version = nand_readreg(ctrl, 0) & 0xffff; + + /* Only support v2.1+ */ + if (ctrl->nand_version < 0x0201) { + dev_err(ctrl->dev, "version %#x not supported\n", + ctrl->nand_version); + return -ENODEV; + } + + /* Register offsets */ + if (ctrl->nand_version >= 0x0702) + ctrl->reg_offsets = brcmnand_regs_v72; + else if (ctrl->nand_version == 0x0701) + ctrl->reg_offsets = brcmnand_regs_v71; + else if (ctrl->nand_version >= 0x0600) + ctrl->reg_offsets = brcmnand_regs_v60; + else if (ctrl->nand_version >= 0x0500) + ctrl->reg_offsets = brcmnand_regs_v50; + else if (ctrl->nand_version >= 0x0303) + ctrl->reg_offsets = brcmnand_regs_v33; + else if (ctrl->nand_version >= 0x0201) + ctrl->reg_offsets = brcmnand_regs_v21; + + /* Chip-select stride */ + if (ctrl->nand_version >= 0x0701) + ctrl->reg_spacing = 0x14; + else + ctrl->reg_spacing = 0x10; + + /* Per chip-select registers */ + if (ctrl->nand_version >= 0x0701) { + ctrl->cs_offsets = brcmnand_cs_offsets_v71; + } else { + ctrl->cs_offsets = brcmnand_cs_offsets; + + /* v3.3-5.0 have a different CS0 offset layout */ + if (ctrl->nand_version >= 0x0303 && + ctrl->nand_version <= 0x0500) + ctrl->cs0_offsets = brcmnand_cs_offsets_cs0; + } + + /* Page / block sizes */ + if (ctrl->nand_version >= 0x0701) { + /* >= v7.1 use nice power-of-2 values! */ + ctrl->max_page_size = 16 * 1024; + ctrl->max_block_size = 2 * 1024 * 1024; + } else { + if (ctrl->nand_version >= 0x0304) + ctrl->page_sizes = page_sizes_v3_4; + else if (ctrl->nand_version >= 0x0202) + ctrl->page_sizes = page_sizes_v2_2; + else + ctrl->page_sizes = page_sizes_v2_1; + + if (ctrl->nand_version >= 0x0202) + ctrl->page_size_shift = CFG_PAGE_SIZE_SHIFT; + else + ctrl->page_size_shift = CFG_PAGE_SIZE_SHIFT_v2_1; + + if (ctrl->nand_version >= 0x0600) + ctrl->block_sizes = block_sizes_v6; + else if (ctrl->nand_version >= 0x0400) + ctrl->block_sizes = block_sizes_v4; + else if (ctrl->nand_version >= 0x0202) + ctrl->block_sizes = block_sizes_v2_2; + else + ctrl->block_sizes = block_sizes_v2_1; + + if (ctrl->nand_version < 0x0400) { + if (ctrl->nand_version < 0x0202) + ctrl->max_page_size = 2048; + else + ctrl->max_page_size = 4096; + ctrl->max_block_size = 512 * 1024; + } + } + + /* Maximum spare area sector size (per 512B) */ + if (ctrl->nand_version == 0x0702) + ctrl->max_oob = 128; + else if (ctrl->nand_version >= 0x0600) + ctrl->max_oob = 64; + else if (ctrl->nand_version >= 0x0500) + ctrl->max_oob = 32; + else + ctrl->max_oob = 16; + + /* v6.0 and newer (except v6.1) have prefetch support */ + if (ctrl->nand_version >= 0x0600 && ctrl->nand_version != 0x0601) + ctrl->features |= BRCMNAND_HAS_PREFETCH; + + /* + * v6.x has cache mode, but it's implemented differently. Ignore it for + * now. + */ + if (ctrl->nand_version >= 0x0700) + ctrl->features |= BRCMNAND_HAS_CACHE_MODE; + + if (ctrl->nand_version >= 0x0500) + ctrl->features |= BRCMNAND_HAS_1K_SECTORS; + + if (ctrl->nand_version >= 0x0700) + ctrl->features |= BRCMNAND_HAS_WP; + else if (of_property_read_bool(ctrl->dev->of_node, "brcm,nand-has-wp")) + ctrl->features |= BRCMNAND_HAS_WP; + + /* v7.2 has different ecc level shift in the acc register */ + if (ctrl->nand_version == 0x0702) + ctrl->ecc_level_shift = ACC_CONTROL_ECC_EXT_SHIFT; + else + ctrl->ecc_level_shift = ACC_CONTROL_ECC_SHIFT; + + return 0; +} + +static void brcmnand_flash_dma_revision_init(struct brcmnand_controller *ctrl) +{ + /* flash_dma register offsets */ + if (ctrl->nand_version >= 0x0703) + ctrl->flash_dma_offsets = flash_dma_regs_v4; + else if (ctrl->nand_version == 0x0602) + ctrl->flash_dma_offsets = flash_dma_regs_v0; + else + ctrl->flash_dma_offsets = flash_dma_regs_v1; +} + +static inline u32 brcmnand_read_reg(struct brcmnand_controller *ctrl, + enum brcmnand_reg reg) +{ + u16 offs = ctrl->reg_offsets[reg]; + + if (offs) + return nand_readreg(ctrl, offs); + else + return 0; +} + +static inline void brcmnand_write_reg(struct brcmnand_controller *ctrl, + enum brcmnand_reg reg, u32 val) +{ + u16 offs = ctrl->reg_offsets[reg]; + + if (offs) + nand_writereg(ctrl, offs, val); +} + +static inline void brcmnand_rmw_reg(struct brcmnand_controller *ctrl, + enum brcmnand_reg reg, u32 mask, unsigned + int shift, u32 val) +{ + u32 tmp = brcmnand_read_reg(ctrl, reg); + + tmp &= ~mask; + tmp |= val << shift; + brcmnand_write_reg(ctrl, reg, tmp); +} + +static inline u32 brcmnand_read_fc(struct brcmnand_controller *ctrl, int word) +{ + if (brcmnand_non_mmio_ops(ctrl)) + return brcmnand_soc_read(ctrl->soc, BRCMNAND_NON_MMIO_FC_ADDR); + return __raw_readl(ctrl->nand_fc + word * 4); +} + +static inline void brcmnand_write_fc(struct brcmnand_controller *ctrl, + int word, u32 val) +{ + if (brcmnand_non_mmio_ops(ctrl)) + brcmnand_soc_write(ctrl->soc, val, BRCMNAND_NON_MMIO_FC_ADDR); + else + __raw_writel(val, ctrl->nand_fc + word * 4); +} + +static inline void edu_writel(struct brcmnand_controller *ctrl, + enum edu_reg reg, u32 val) +{ + u16 offs = ctrl->edu_offsets[reg]; + + brcmnand_writel(val, ctrl->edu_base + offs); +} + +static inline u32 edu_readl(struct brcmnand_controller *ctrl, + enum edu_reg reg) +{ + u16 offs = ctrl->edu_offsets[reg]; + + return brcmnand_readl(ctrl->edu_base + offs); +} + +static void brcmnand_clear_ecc_addr(struct brcmnand_controller *ctrl) +{ + + /* Clear error addresses */ + brcmnand_write_reg(ctrl, BRCMNAND_UNCORR_ADDR, 0); + brcmnand_write_reg(ctrl, BRCMNAND_CORR_ADDR, 0); + brcmnand_write_reg(ctrl, BRCMNAND_UNCORR_EXT_ADDR, 0); + brcmnand_write_reg(ctrl, BRCMNAND_CORR_EXT_ADDR, 0); +} + +static u64 brcmnand_get_uncorrecc_addr(struct brcmnand_controller *ctrl) +{ + u64 err_addr; + + err_addr = brcmnand_read_reg(ctrl, BRCMNAND_UNCORR_ADDR); + err_addr |= ((u64)(brcmnand_read_reg(ctrl, + BRCMNAND_UNCORR_EXT_ADDR) + & 0xffff) << 32); + + return err_addr; +} + +static u64 brcmnand_get_correcc_addr(struct brcmnand_controller *ctrl) +{ + u64 err_addr; + + err_addr = brcmnand_read_reg(ctrl, BRCMNAND_CORR_ADDR); + err_addr |= ((u64)(brcmnand_read_reg(ctrl, + BRCMNAND_CORR_EXT_ADDR) + & 0xffff) << 32); + + return err_addr; +} + +static void brcmnand_set_cmd_addr(struct mtd_info *mtd, u64 addr) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + struct brcmnand_host *host = nand_get_controller_data(chip); + struct brcmnand_controller *ctrl = host->ctrl; + + brcmnand_write_reg(ctrl, BRCMNAND_CMD_EXT_ADDRESS, + (host->cs << 16) | ((addr >> 32) & 0xffff)); + (void)brcmnand_read_reg(ctrl, BRCMNAND_CMD_EXT_ADDRESS); + brcmnand_write_reg(ctrl, BRCMNAND_CMD_ADDRESS, + lower_32_bits(addr)); + (void)brcmnand_read_reg(ctrl, BRCMNAND_CMD_ADDRESS); +} + +static inline u16 brcmnand_cs_offset(struct brcmnand_controller *ctrl, int cs, + enum brcmnand_cs_reg reg) +{ + u16 offs_cs0 = ctrl->reg_offsets[BRCMNAND_CS0_BASE]; + u16 offs_cs1 = ctrl->reg_offsets[BRCMNAND_CS1_BASE]; + u8 cs_offs; + + if (cs == 0 && ctrl->cs0_offsets) + cs_offs = ctrl->cs0_offsets[reg]; + else + cs_offs = ctrl->cs_offsets[reg]; + + if (cs && offs_cs1) + return offs_cs1 + (cs - 1) * ctrl->reg_spacing + cs_offs; + + return offs_cs0 + cs * ctrl->reg_spacing + cs_offs; +} + +static inline u32 brcmnand_count_corrected(struct brcmnand_controller *ctrl) +{ + if (ctrl->nand_version < 0x0600) + return 1; + return brcmnand_read_reg(ctrl, BRCMNAND_CORR_COUNT); +} + +static void brcmnand_wr_corr_thresh(struct brcmnand_host *host, u8 val) +{ + struct brcmnand_controller *ctrl = host->ctrl; + unsigned int shift = 0, bits; + enum brcmnand_reg reg = BRCMNAND_CORR_THRESHOLD; + int cs = host->cs; + + if (!ctrl->reg_offsets[reg]) + return; + + if (ctrl->nand_version == 0x0702) + bits = 7; + else if (ctrl->nand_version >= 0x0600) + bits = 6; + else if (ctrl->nand_version >= 0x0500) + bits = 5; + else + bits = 4; + + if (ctrl->nand_version >= 0x0702) { + if (cs >= 4) + reg = BRCMNAND_CORR_THRESHOLD_EXT; + shift = (cs % 4) * bits; + } else if (ctrl->nand_version >= 0x0600) { + if (cs >= 5) + reg = BRCMNAND_CORR_THRESHOLD_EXT; + shift = (cs % 5) * bits; + } + brcmnand_rmw_reg(ctrl, reg, (bits - 1) << shift, shift, val); +} + +static inline int brcmnand_cmd_shift(struct brcmnand_controller *ctrl) +{ + /* Kludge for the BCMA-based NAND controller which does not actually + * shift the command + */ + if (ctrl->nand_version == 0x0304 && brcmnand_non_mmio_ops(ctrl)) + return 0; + + if (ctrl->nand_version < 0x0602) + return 24; + return 0; +} + +static inline u32 brcmnand_spare_area_mask(struct brcmnand_controller *ctrl) +{ + if (ctrl->nand_version == 0x0702) + return GENMASK(7, 0); + else if (ctrl->nand_version >= 0x0600) + return GENMASK(6, 0); + else if (ctrl->nand_version >= 0x0303) + return GENMASK(5, 0); + else + return GENMASK(4, 0); +} + +static inline u32 brcmnand_ecc_level_mask(struct brcmnand_controller *ctrl) +{ + u32 mask = (ctrl->nand_version >= 0x0600) ? 0x1f : 0x0f; + + mask <<= ACC_CONTROL_ECC_SHIFT; + + /* v7.2 includes additional ECC levels */ + if (ctrl->nand_version == 0x0702) + mask |= 0x7 << ACC_CONTROL_ECC_EXT_SHIFT; + + return mask; +} + +static void brcmnand_set_ecc_enabled(struct brcmnand_host *host, int en) +{ + struct brcmnand_controller *ctrl = host->ctrl; + u16 offs = brcmnand_cs_offset(ctrl, host->cs, BRCMNAND_CS_ACC_CONTROL); + u32 acc_control = nand_readreg(ctrl, offs); + u32 ecc_flags = ACC_CONTROL_WR_ECC | ACC_CONTROL_RD_ECC; + + if (en) { + acc_control |= ecc_flags; /* enable RD/WR ECC */ + acc_control &= ~brcmnand_ecc_level_mask(ctrl); + acc_control |= host->hwcfg.ecc_level << ctrl->ecc_level_shift; + } else { + acc_control &= ~ecc_flags; /* disable RD/WR ECC */ + acc_control &= ~brcmnand_ecc_level_mask(ctrl); + } + + nand_writereg(ctrl, offs, acc_control); +} + +static inline int brcmnand_sector_1k_shift(struct brcmnand_controller *ctrl) +{ + if (ctrl->nand_version >= 0x0702) + return 9; + else if (ctrl->nand_version >= 0x0600) + return 7; + else if (ctrl->nand_version >= 0x0500) + return 6; + else + return -1; +} + +static int brcmnand_get_sector_size_1k(struct brcmnand_host *host) +{ + struct brcmnand_controller *ctrl = host->ctrl; + int shift = brcmnand_sector_1k_shift(ctrl); + u16 acc_control_offs = brcmnand_cs_offset(ctrl, host->cs, + BRCMNAND_CS_ACC_CONTROL); + + if (shift < 0) + return 0; + + return (nand_readreg(ctrl, acc_control_offs) >> shift) & 0x1; +} + +static void brcmnand_set_sector_size_1k(struct brcmnand_host *host, int val) +{ + struct brcmnand_controller *ctrl = host->ctrl; + int shift = brcmnand_sector_1k_shift(ctrl); + u16 acc_control_offs = brcmnand_cs_offset(ctrl, host->cs, + BRCMNAND_CS_ACC_CONTROL); + u32 tmp; + + if (shift < 0) + return; + + tmp = nand_readreg(ctrl, acc_control_offs); + tmp &= ~(1 << shift); + tmp |= (!!val) << shift; + nand_writereg(ctrl, acc_control_offs, tmp); +} + +/*********************************************************************** + * CS_NAND_SELECT + ***********************************************************************/ + +enum { + CS_SELECT_NAND_WP = BIT(29), + CS_SELECT_AUTO_DEVICE_ID_CFG = BIT(30), +}; + +static int bcmnand_ctrl_poll_status(struct brcmnand_controller *ctrl, + u32 mask, u32 expected_val, + unsigned long timeout_ms) +{ + unsigned long limit; + u32 val; + + if (!timeout_ms) + timeout_ms = NAND_POLL_STATUS_TIMEOUT_MS; + + limit = jiffies + msecs_to_jiffies(timeout_ms); + do { + val = brcmnand_read_reg(ctrl, BRCMNAND_INTFC_STATUS); + if ((val & mask) == expected_val) + return 0; + + cpu_relax(); + } while (time_after(limit, jiffies)); + + /* + * do a final check after time out in case the CPU was busy and the driver + * did not get enough time to perform the polling to avoid false alarms + */ + val = brcmnand_read_reg(ctrl, BRCMNAND_INTFC_STATUS); + if ((val & mask) == expected_val) + return 0; + + dev_warn(ctrl->dev, "timeout on status poll (expected %x got %x)\n", + expected_val, val & mask); + + return -ETIMEDOUT; +} + +static inline void brcmnand_set_wp(struct brcmnand_controller *ctrl, bool en) +{ + u32 val = en ? CS_SELECT_NAND_WP : 0; + + brcmnand_rmw_reg(ctrl, BRCMNAND_CS_SELECT, CS_SELECT_NAND_WP, 0, val); +} + +/*********************************************************************** + * Flash DMA + ***********************************************************************/ + +static inline bool has_flash_dma(struct brcmnand_controller *ctrl) +{ + return ctrl->flash_dma_base; +} + +static inline bool has_edu(struct brcmnand_controller *ctrl) +{ + return ctrl->edu_base; +} + +static inline bool use_dma(struct brcmnand_controller *ctrl) +{ + return has_flash_dma(ctrl) || has_edu(ctrl); +} + +static inline void disable_ctrl_irqs(struct brcmnand_controller *ctrl) +{ + if (ctrl->pio_poll_mode) + return; + + if (has_flash_dma(ctrl)) { + ctrl->flash_dma_base = NULL; + disable_irq(ctrl->dma_irq); + } + + disable_irq(ctrl->irq); + ctrl->pio_poll_mode = true; +} + +static inline bool flash_dma_buf_ok(const void *buf) +{ + return buf && !is_vmalloc_addr(buf) && + likely(IS_ALIGNED((uintptr_t)buf, 4)); +} + +static inline void flash_dma_writel(struct brcmnand_controller *ctrl, + enum flash_dma_reg dma_reg, u32 val) +{ + u16 offs = ctrl->flash_dma_offsets[dma_reg]; + + brcmnand_writel(val, ctrl->flash_dma_base + offs); +} + +static inline u32 flash_dma_readl(struct brcmnand_controller *ctrl, + enum flash_dma_reg dma_reg) +{ + u16 offs = ctrl->flash_dma_offsets[dma_reg]; + + return brcmnand_readl(ctrl->flash_dma_base + offs); +} + +/* Low-level operation types: command, address, write, or read */ +enum brcmnand_llop_type { + LL_OP_CMD, + LL_OP_ADDR, + LL_OP_WR, + LL_OP_RD, +}; + +/*********************************************************************** + * Internal support functions + ***********************************************************************/ + +static inline bool is_hamming_ecc(struct brcmnand_controller *ctrl, + struct brcmnand_cfg *cfg) +{ + if (ctrl->nand_version <= 0x0701) + return cfg->sector_size_1k == 0 && cfg->spare_area_size == 16 && + cfg->ecc_level == 15; + else + return cfg->sector_size_1k == 0 && ((cfg->spare_area_size == 16 && + cfg->ecc_level == 15) || + (cfg->spare_area_size == 28 && cfg->ecc_level == 16)); +} + +/* + * Set mtd->ooblayout to the appropriate mtd_ooblayout_ops given + * the layout/configuration. + * Returns -ERRCODE on failure. + */ +static int brcmnand_hamming_ooblayout_ecc(struct mtd_info *mtd, int section, + struct mtd_oob_region *oobregion) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + struct brcmnand_host *host = nand_get_controller_data(chip); + struct brcmnand_cfg *cfg = &host->hwcfg; + int sas = cfg->spare_area_size << cfg->sector_size_1k; + int sectors = cfg->page_size / (512 << cfg->sector_size_1k); + + if (section >= sectors) + return -ERANGE; + + oobregion->offset = (section * sas) + 6; + oobregion->length = 3; + + return 0; +} + +static int brcmnand_hamming_ooblayout_free(struct mtd_info *mtd, int section, + struct mtd_oob_region *oobregion) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + struct brcmnand_host *host = nand_get_controller_data(chip); + struct brcmnand_cfg *cfg = &host->hwcfg; + int sas = cfg->spare_area_size << cfg->sector_size_1k; + int sectors = cfg->page_size / (512 << cfg->sector_size_1k); + u32 next; + + if (section > sectors) + return -ERANGE; + + next = (section * sas); + if (section < sectors) + next += 6; + + if (section) { + oobregion->offset = ((section - 1) * sas) + 9; + } else { + if (cfg->page_size > 512) { + /* Large page NAND uses first 2 bytes for BBI */ + oobregion->offset = 2; + } else { + /* Small page NAND uses last byte before ECC for BBI */ + oobregion->offset = 0; + next--; + } + } + + oobregion->length = next - oobregion->offset; + + return 0; +} + +static const struct mtd_ooblayout_ops brcmnand_hamming_ooblayout_ops = { + .ecc = brcmnand_hamming_ooblayout_ecc, + .free = brcmnand_hamming_ooblayout_free, +}; + +static int brcmnand_bch_ooblayout_ecc(struct mtd_info *mtd, int section, + struct mtd_oob_region *oobregion) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + struct brcmnand_host *host = nand_get_controller_data(chip); + struct brcmnand_cfg *cfg = &host->hwcfg; + int sas = cfg->spare_area_size << cfg->sector_size_1k; + int sectors = cfg->page_size / (512 << cfg->sector_size_1k); + + if (section >= sectors) + return -ERANGE; + + oobregion->offset = ((section + 1) * sas) - chip->ecc.bytes; + oobregion->length = chip->ecc.bytes; + + return 0; +} + +static int brcmnand_bch_ooblayout_free_lp(struct mtd_info *mtd, int section, + struct mtd_oob_region *oobregion) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + struct brcmnand_host *host = nand_get_controller_data(chip); + struct brcmnand_cfg *cfg = &host->hwcfg; + int sas = cfg->spare_area_size << cfg->sector_size_1k; + int sectors = cfg->page_size / (512 << cfg->sector_size_1k); + + if (section >= sectors) + return -ERANGE; + + if (sas <= chip->ecc.bytes) + return 0; + + oobregion->offset = section * sas; + oobregion->length = sas - chip->ecc.bytes; + + if (!section) { + oobregion->offset++; + oobregion->length--; + } + + return 0; +} + +static int brcmnand_bch_ooblayout_free_sp(struct mtd_info *mtd, int section, + struct mtd_oob_region *oobregion) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + struct brcmnand_host *host = nand_get_controller_data(chip); + struct brcmnand_cfg *cfg = &host->hwcfg; + int sas = cfg->spare_area_size << cfg->sector_size_1k; + + if (section > 1 || sas - chip->ecc.bytes < 6 || + (section && sas - chip->ecc.bytes == 6)) + return -ERANGE; + + if (!section) { + oobregion->offset = 0; + oobregion->length = 5; + } else { + oobregion->offset = 6; + oobregion->length = sas - chip->ecc.bytes - 6; + } + + return 0; +} + +static const struct mtd_ooblayout_ops brcmnand_bch_lp_ooblayout_ops = { + .ecc = brcmnand_bch_ooblayout_ecc, + .free = brcmnand_bch_ooblayout_free_lp, +}; + +static const struct mtd_ooblayout_ops brcmnand_bch_sp_ooblayout_ops = { + .ecc = brcmnand_bch_ooblayout_ecc, + .free = brcmnand_bch_ooblayout_free_sp, +}; + +static int brcmstb_choose_ecc_layout(struct brcmnand_host *host) +{ + struct brcmnand_cfg *p = &host->hwcfg; + struct mtd_info *mtd = nand_to_mtd(&host->chip); + struct nand_ecc_ctrl *ecc = &host->chip.ecc; + unsigned int ecc_level = p->ecc_level; + int sas = p->spare_area_size << p->sector_size_1k; + int sectors = p->page_size / (512 << p->sector_size_1k); + + if (p->sector_size_1k) + ecc_level <<= 1; + + if (is_hamming_ecc(host->ctrl, p)) { + ecc->bytes = 3 * sectors; + mtd_set_ooblayout(mtd, &brcmnand_hamming_ooblayout_ops); + return 0; + } + + /* + * CONTROLLER_VERSION: + * < v5.0: ECC_REQ = ceil(BCH_T * 13/8) + * >= v5.0: ECC_REQ = ceil(BCH_T * 14/8) + * But we will just be conservative. + */ + ecc->bytes = DIV_ROUND_UP(ecc_level * 14, 8); + if (p->page_size == 512) + mtd_set_ooblayout(mtd, &brcmnand_bch_sp_ooblayout_ops); + else + mtd_set_ooblayout(mtd, &brcmnand_bch_lp_ooblayout_ops); + + if (ecc->bytes >= sas) { + dev_err(&host->pdev->dev, + "error: ECC too large for OOB (ECC bytes %d, spare sector %d)\n", + ecc->bytes, sas); + return -EINVAL; + } + + return 0; +} + +static void brcmnand_wp(struct mtd_info *mtd, int wp) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + struct brcmnand_host *host = nand_get_controller_data(chip); + struct brcmnand_controller *ctrl = host->ctrl; + + if ((ctrl->features & BRCMNAND_HAS_WP) && wp_on == 1) { + static int old_wp = -1; + int ret; + + if (old_wp != wp) { + dev_dbg(ctrl->dev, "WP %s\n", wp ? "on" : "off"); + old_wp = wp; + } + + /* + * make sure ctrl/flash ready before and after + * changing state of #WP pin + */ + ret = bcmnand_ctrl_poll_status(ctrl, NAND_CTRL_RDY | + NAND_STATUS_READY, + NAND_CTRL_RDY | + NAND_STATUS_READY, 0); + if (ret) + return; + + brcmnand_set_wp(ctrl, wp); + nand_status_op(chip, NULL); + /* NAND_STATUS_WP 0x00 = protected, 0x80 = not protected */ + ret = bcmnand_ctrl_poll_status(ctrl, + NAND_CTRL_RDY | + NAND_STATUS_READY | + NAND_STATUS_WP, + NAND_CTRL_RDY | + NAND_STATUS_READY | + (wp ? 0 : NAND_STATUS_WP), 0); + + if (ret) + dev_err_ratelimited(&host->pdev->dev, + "nand #WP expected %s\n", + wp ? "on" : "off"); + } +} + +/* Helper functions for reading and writing OOB registers */ +static inline u8 oob_reg_read(struct brcmnand_controller *ctrl, u32 offs) +{ + u16 offset0, offset10, reg_offs; + + offset0 = ctrl->reg_offsets[BRCMNAND_OOB_READ_BASE]; + offset10 = ctrl->reg_offsets[BRCMNAND_OOB_READ_10_BASE]; + + if (offs >= ctrl->max_oob) + return 0x77; + + if (offs >= 16 && offset10) + reg_offs = offset10 + ((offs - 0x10) & ~0x03); + else + reg_offs = offset0 + (offs & ~0x03); + + return nand_readreg(ctrl, reg_offs) >> (24 - ((offs & 0x03) << 3)); +} + +static inline void oob_reg_write(struct brcmnand_controller *ctrl, u32 offs, + u32 data) +{ + u16 offset0, offset10, reg_offs; + + offset0 = ctrl->reg_offsets[BRCMNAND_OOB_WRITE_BASE]; + offset10 = ctrl->reg_offsets[BRCMNAND_OOB_WRITE_10_BASE]; + + if (offs >= ctrl->max_oob) + return; + + if (offs >= 16 && offset10) + reg_offs = offset10 + ((offs - 0x10) & ~0x03); + else + reg_offs = offset0 + (offs & ~0x03); + + nand_writereg(ctrl, reg_offs, data); +} + +/* + * read_oob_from_regs - read data from OOB registers + * @ctrl: NAND controller + * @i: sub-page sector index + * @oob: buffer to read to + * @sas: spare area sector size (i.e., OOB size per FLASH_CACHE) + * @sector_1k: 1 for 1KiB sectors, 0 for 512B, other values are illegal + */ +static int read_oob_from_regs(struct brcmnand_controller *ctrl, int i, u8 *oob, + int sas, int sector_1k) +{ + int tbytes = sas << sector_1k; + int j; + + /* Adjust OOB values for 1K sector size */ + if (sector_1k && (i & 0x01)) + tbytes = max(0, tbytes - (int)ctrl->max_oob); + tbytes = min_t(int, tbytes, ctrl->max_oob); + + for (j = 0; j < tbytes; j++) + oob[j] = oob_reg_read(ctrl, j); + return tbytes; +} + +/* + * write_oob_to_regs - write data to OOB registers + * @i: sub-page sector index + * @oob: buffer to write from + * @sas: spare area sector size (i.e., OOB size per FLASH_CACHE) + * @sector_1k: 1 for 1KiB sectors, 0 for 512B, other values are illegal + */ +static int write_oob_to_regs(struct brcmnand_controller *ctrl, int i, + const u8 *oob, int sas, int sector_1k) +{ + int tbytes = sas << sector_1k; + int j, k = 0; + u32 last = 0xffffffff; + u8 *plast = (u8 *)&last; + + /* Adjust OOB values for 1K sector size */ + if (sector_1k && (i & 0x01)) + tbytes = max(0, tbytes - (int)ctrl->max_oob); + tbytes = min_t(int, tbytes, ctrl->max_oob); + + /* + * tbytes may not be multiple of words. Make sure we don't read out of + * the boundary and stop at last word. + */ + for (j = 0; (j + 3) < tbytes; j += 4) + oob_reg_write(ctrl, j, + (oob[j + 0] << 24) | + (oob[j + 1] << 16) | + (oob[j + 2] << 8) | + (oob[j + 3] << 0)); + + /* handle the remaing bytes */ + while (j < tbytes) + plast[k++] = oob[j++]; + + if (tbytes & 0x3) + oob_reg_write(ctrl, (tbytes & ~0x3), (__force u32)cpu_to_be32(last)); + + return tbytes; +} + +static void brcmnand_edu_init(struct brcmnand_controller *ctrl) +{ + /* initialize edu */ + edu_writel(ctrl, EDU_ERR_STATUS, 0); + edu_readl(ctrl, EDU_ERR_STATUS); + edu_writel(ctrl, EDU_DONE, 0); + edu_writel(ctrl, EDU_DONE, 0); + edu_writel(ctrl, EDU_DONE, 0); + edu_writel(ctrl, EDU_DONE, 0); + edu_readl(ctrl, EDU_DONE); +} + +/* edu irq */ +static irqreturn_t brcmnand_edu_irq(int irq, void *data) +{ + struct brcmnand_controller *ctrl = data; + + if (ctrl->edu_count) { + ctrl->edu_count--; + while (!(edu_readl(ctrl, EDU_DONE) & EDU_DONE_MASK)) + udelay(1); + edu_writel(ctrl, EDU_DONE, 0); + edu_readl(ctrl, EDU_DONE); + } + + if (ctrl->edu_count) { + ctrl->edu_dram_addr += FC_BYTES; + ctrl->edu_ext_addr += FC_BYTES; + + edu_writel(ctrl, EDU_DRAM_ADDR, (u32)ctrl->edu_dram_addr); + edu_readl(ctrl, EDU_DRAM_ADDR); + edu_writel(ctrl, EDU_EXT_ADDR, ctrl->edu_ext_addr); + edu_readl(ctrl, EDU_EXT_ADDR); + + if (ctrl->oob) { + if (ctrl->edu_cmd == EDU_CMD_READ) { + ctrl->oob += read_oob_from_regs(ctrl, + ctrl->edu_count + 1, + ctrl->oob, ctrl->sas, + ctrl->sector_size_1k); + } else { + brcmnand_write_reg(ctrl, BRCMNAND_CMD_ADDRESS, + ctrl->edu_ext_addr); + brcmnand_read_reg(ctrl, BRCMNAND_CMD_ADDRESS); + ctrl->oob += write_oob_to_regs(ctrl, + ctrl->edu_count, + ctrl->oob, ctrl->sas, + ctrl->sector_size_1k); + } + } + + mb(); /* flush previous writes */ + edu_writel(ctrl, EDU_CMD, ctrl->edu_cmd); + edu_readl(ctrl, EDU_CMD); + + return IRQ_HANDLED; + } + + complete(&ctrl->edu_done); + + return IRQ_HANDLED; +} + +static irqreturn_t brcmnand_ctlrdy_irq(int irq, void *data) +{ + struct brcmnand_controller *ctrl = data; + + /* Discard all NAND_CTLRDY interrupts during DMA */ + if (ctrl->dma_pending) + return IRQ_HANDLED; + + /* check if you need to piggy back on the ctrlrdy irq */ + if (ctrl->edu_pending) { + if (irq == ctrl->irq && ((int)ctrl->edu_irq >= 0)) + /* Discard interrupts while using dedicated edu irq */ + return IRQ_HANDLED; + + /* no registered edu irq, call handler */ + return brcmnand_edu_irq(irq, data); + } + + complete(&ctrl->done); + return IRQ_HANDLED; +} + +/* Handle SoC-specific interrupt hardware */ +static irqreturn_t brcmnand_irq(int irq, void *data) +{ + struct brcmnand_controller *ctrl = data; + + if (ctrl->soc->ctlrdy_ack(ctrl->soc)) + return brcmnand_ctlrdy_irq(irq, data); + + return IRQ_NONE; +} + +static irqreturn_t brcmnand_dma_irq(int irq, void *data) +{ + struct brcmnand_controller *ctrl = data; + + complete(&ctrl->dma_done); + + return IRQ_HANDLED; +} + +static void brcmnand_send_cmd(struct brcmnand_host *host, int cmd) +{ + struct brcmnand_controller *ctrl = host->ctrl; + int ret; + u64 cmd_addr; + + cmd_addr = brcmnand_read_reg(ctrl, BRCMNAND_CMD_ADDRESS); + + dev_dbg(ctrl->dev, "send native cmd %d addr 0x%llx\n", cmd, cmd_addr); + + /* + * If we came here through _panic_write and there is a pending + * command, try to wait for it. If it times out, rather than + * hitting BUG_ON, just return so we don't crash while crashing. + */ + if (oops_in_progress) { + if (ctrl->cmd_pending && + bcmnand_ctrl_poll_status(ctrl, NAND_CTRL_RDY, NAND_CTRL_RDY, 0)) + return; + } else + BUG_ON(ctrl->cmd_pending != 0); + ctrl->cmd_pending = cmd; + + ret = bcmnand_ctrl_poll_status(ctrl, NAND_CTRL_RDY, NAND_CTRL_RDY, 0); + WARN_ON(ret); + + mb(); /* flush previous writes */ + brcmnand_write_reg(ctrl, BRCMNAND_CMD_START, + cmd << brcmnand_cmd_shift(ctrl)); +} + +/*********************************************************************** + * NAND MTD API: read/program/erase + ***********************************************************************/ + +static void brcmnand_cmd_ctrl(struct nand_chip *chip, int dat, + unsigned int ctrl) +{ + /* intentionally left blank */ +} + +static bool brcmstb_nand_wait_for_completion(struct nand_chip *chip) +{ + struct brcmnand_host *host = nand_get_controller_data(chip); + struct brcmnand_controller *ctrl = host->ctrl; + struct mtd_info *mtd = nand_to_mtd(chip); + bool err = false; + int sts; + + if (mtd->oops_panic_write || ctrl->irq < 0) { + /* switch to interrupt polling and PIO mode */ + disable_ctrl_irqs(ctrl); + sts = bcmnand_ctrl_poll_status(ctrl, NAND_CTRL_RDY, + NAND_CTRL_RDY, 0); + err = sts < 0; + } else { + unsigned long timeo = msecs_to_jiffies( + NAND_POLL_STATUS_TIMEOUT_MS); + /* wait for completion interrupt */ + sts = wait_for_completion_timeout(&ctrl->done, timeo); + err = !sts; + } + + return err; +} + +static int brcmnand_waitfunc(struct nand_chip *chip) +{ + struct brcmnand_host *host = nand_get_controller_data(chip); + struct brcmnand_controller *ctrl = host->ctrl; + bool err = false; + + dev_dbg(ctrl->dev, "wait on native cmd %d\n", ctrl->cmd_pending); + if (ctrl->cmd_pending) + err = brcmstb_nand_wait_for_completion(chip); + + ctrl->cmd_pending = 0; + if (err) { + u32 cmd = brcmnand_read_reg(ctrl, BRCMNAND_CMD_START) + >> brcmnand_cmd_shift(ctrl); + + dev_err_ratelimited(ctrl->dev, + "timeout waiting for command %#02x\n", cmd); + dev_err_ratelimited(ctrl->dev, "intfc status %08x\n", + brcmnand_read_reg(ctrl, BRCMNAND_INTFC_STATUS)); + return -ETIMEDOUT; + } + return brcmnand_read_reg(ctrl, BRCMNAND_INTFC_STATUS) & + INTFC_FLASH_STATUS; +} + +enum { + LLOP_RE = BIT(16), + LLOP_WE = BIT(17), + LLOP_ALE = BIT(18), + LLOP_CLE = BIT(19), + LLOP_RETURN_IDLE = BIT(31), + + LLOP_DATA_MASK = GENMASK(15, 0), +}; + +static int brcmnand_low_level_op(struct brcmnand_host *host, + enum brcmnand_llop_type type, u32 data, + bool last_op) +{ + struct nand_chip *chip = &host->chip; + struct brcmnand_controller *ctrl = host->ctrl; + u32 tmp; + + tmp = data & LLOP_DATA_MASK; + switch (type) { + case LL_OP_CMD: + tmp |= LLOP_WE | LLOP_CLE; + break; + case LL_OP_ADDR: + /* WE | ALE */ + tmp |= LLOP_WE | LLOP_ALE; + break; + case LL_OP_WR: + /* WE */ + tmp |= LLOP_WE; + break; + case LL_OP_RD: + /* RE */ + tmp |= LLOP_RE; + break; + } + if (last_op) + /* RETURN_IDLE */ + tmp |= LLOP_RETURN_IDLE; + + dev_dbg(ctrl->dev, "ll_op cmd %#x\n", tmp); + + brcmnand_write_reg(ctrl, BRCMNAND_LL_OP, tmp); + (void)brcmnand_read_reg(ctrl, BRCMNAND_LL_OP); + + brcmnand_send_cmd(host, CMD_LOW_LEVEL_OP); + return brcmnand_waitfunc(chip); +} + +static void brcmnand_cmdfunc(struct nand_chip *chip, unsigned command, + int column, int page_addr) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + struct brcmnand_host *host = nand_get_controller_data(chip); + struct brcmnand_controller *ctrl = host->ctrl; + u64 addr = (u64)page_addr << chip->page_shift; + int native_cmd = 0; + + if (command == NAND_CMD_READID || command == NAND_CMD_PARAM || + command == NAND_CMD_RNDOUT) + addr = (u64)column; + /* Avoid propagating a negative, don't-care address */ + else if (page_addr < 0) + addr = 0; + + dev_dbg(ctrl->dev, "cmd 0x%x addr 0x%llx\n", command, + (unsigned long long)addr); + + host->last_cmd = command; + host->last_byte = 0; + host->last_addr = addr; + + switch (command) { + case NAND_CMD_RESET: + native_cmd = CMD_FLASH_RESET; + break; + case NAND_CMD_STATUS: + native_cmd = CMD_STATUS_READ; + break; + case NAND_CMD_READID: + native_cmd = CMD_DEVICE_ID_READ; + break; + case NAND_CMD_READOOB: + native_cmd = CMD_SPARE_AREA_READ; + break; + case NAND_CMD_ERASE1: + native_cmd = CMD_BLOCK_ERASE; + brcmnand_wp(mtd, 0); + break; + case NAND_CMD_PARAM: + native_cmd = CMD_PARAMETER_READ; + break; + case NAND_CMD_SET_FEATURES: + case NAND_CMD_GET_FEATURES: + brcmnand_low_level_op(host, LL_OP_CMD, command, false); + brcmnand_low_level_op(host, LL_OP_ADDR, column, false); + break; + case NAND_CMD_RNDOUT: + native_cmd = CMD_PARAMETER_CHANGE_COL; + addr &= ~((u64)(FC_BYTES - 1)); + /* + * HW quirk: PARAMETER_CHANGE_COL requires SECTOR_SIZE_1K=0 + * NB: hwcfg.sector_size_1k may not be initialized yet + */ + if (brcmnand_get_sector_size_1k(host)) { + host->hwcfg.sector_size_1k = + brcmnand_get_sector_size_1k(host); + brcmnand_set_sector_size_1k(host, 0); + } + break; + } + + if (!native_cmd) + return; + + brcmnand_set_cmd_addr(mtd, addr); + brcmnand_send_cmd(host, native_cmd); + brcmnand_waitfunc(chip); + + if (native_cmd == CMD_PARAMETER_READ || + native_cmd == CMD_PARAMETER_CHANGE_COL) { + /* Copy flash cache word-wise */ + u32 *flash_cache = (u32 *)ctrl->flash_cache; + int i; + + brcmnand_soc_data_bus_prepare(ctrl->soc, true); + + /* + * Must cache the FLASH_CACHE now, since changes in + * SECTOR_SIZE_1K may invalidate it + */ + for (i = 0; i < FC_WORDS; i++) + /* + * Flash cache is big endian for parameter pages, at + * least on STB SoCs + */ + flash_cache[i] = be32_to_cpu(brcmnand_read_fc(ctrl, i)); + + brcmnand_soc_data_bus_unprepare(ctrl->soc, true); + + /* Cleanup from HW quirk: restore SECTOR_SIZE_1K */ + if (host->hwcfg.sector_size_1k) + brcmnand_set_sector_size_1k(host, + host->hwcfg.sector_size_1k); + } + + /* Re-enable protection is necessary only after erase */ + if (command == NAND_CMD_ERASE1) + brcmnand_wp(mtd, 1); +} + +static uint8_t brcmnand_read_byte(struct nand_chip *chip) +{ + struct brcmnand_host *host = nand_get_controller_data(chip); + struct brcmnand_controller *ctrl = host->ctrl; + uint8_t ret = 0; + int addr, offs; + + switch (host->last_cmd) { + case NAND_CMD_READID: + if (host->last_byte < 4) + ret = brcmnand_read_reg(ctrl, BRCMNAND_ID) >> + (24 - (host->last_byte << 3)); + else if (host->last_byte < 8) + ret = brcmnand_read_reg(ctrl, BRCMNAND_ID_EXT) >> + (56 - (host->last_byte << 3)); + break; + + case NAND_CMD_READOOB: + ret = oob_reg_read(ctrl, host->last_byte); + break; + + case NAND_CMD_STATUS: + ret = brcmnand_read_reg(ctrl, BRCMNAND_INTFC_STATUS) & + INTFC_FLASH_STATUS; + if (wp_on) /* hide WP status */ + ret |= NAND_STATUS_WP; + break; + + case NAND_CMD_PARAM: + case NAND_CMD_RNDOUT: + addr = host->last_addr + host->last_byte; + offs = addr & (FC_BYTES - 1); + + /* At FC_BYTES boundary, switch to next column */ + if (host->last_byte > 0 && offs == 0) + nand_change_read_column_op(chip, addr, NULL, 0, false); + + ret = ctrl->flash_cache[offs]; + break; + case NAND_CMD_GET_FEATURES: + if (host->last_byte >= ONFI_SUBFEATURE_PARAM_LEN) { + ret = 0; + } else { + bool last = host->last_byte == + ONFI_SUBFEATURE_PARAM_LEN - 1; + brcmnand_low_level_op(host, LL_OP_RD, 0, last); + ret = brcmnand_read_reg(ctrl, BRCMNAND_LL_RDATA) & 0xff; + } + } + + dev_dbg(ctrl->dev, "read byte = 0x%02x\n", ret); + host->last_byte++; + + return ret; +} + +static void brcmnand_read_buf(struct nand_chip *chip, uint8_t *buf, int len) +{ + int i; + + for (i = 0; i < len; i++, buf++) + *buf = brcmnand_read_byte(chip); +} + +static void brcmnand_write_buf(struct nand_chip *chip, const uint8_t *buf, + int len) +{ + int i; + struct brcmnand_host *host = nand_get_controller_data(chip); + + switch (host->last_cmd) { + case NAND_CMD_SET_FEATURES: + for (i = 0; i < len; i++) + brcmnand_low_level_op(host, LL_OP_WR, buf[i], + (i + 1) == len); + break; + default: + BUG(); + break; + } +} + +/* + * Kick EDU engine + */ +static int brcmnand_edu_trans(struct brcmnand_host *host, u64 addr, u32 *buf, + u8 *oob, u32 len, u8 cmd) +{ + struct brcmnand_controller *ctrl = host->ctrl; + struct brcmnand_cfg *cfg = &host->hwcfg; + unsigned long timeo = msecs_to_jiffies(200); + int ret = 0; + int dir = (cmd == CMD_PAGE_READ ? DMA_FROM_DEVICE : DMA_TO_DEVICE); + u8 edu_cmd = (cmd == CMD_PAGE_READ ? EDU_CMD_READ : EDU_CMD_WRITE); + unsigned int trans = len >> FC_SHIFT; + dma_addr_t pa; + + dev_dbg(ctrl->dev, "EDU %s %p:%p\n", ((edu_cmd == EDU_CMD_READ) ? + "read" : "write"), buf, oob); + + pa = dma_map_single(ctrl->dev, buf, len, dir); + if (dma_mapping_error(ctrl->dev, pa)) { + dev_err(ctrl->dev, "unable to map buffer for EDU DMA\n"); + return -ENOMEM; + } + + ctrl->edu_pending = true; + ctrl->edu_dram_addr = pa; + ctrl->edu_ext_addr = addr; + ctrl->edu_cmd = edu_cmd; + ctrl->edu_count = trans; + ctrl->sas = cfg->spare_area_size; + ctrl->oob = oob; + + edu_writel(ctrl, EDU_DRAM_ADDR, (u32)ctrl->edu_dram_addr); + edu_readl(ctrl, EDU_DRAM_ADDR); + edu_writel(ctrl, EDU_EXT_ADDR, ctrl->edu_ext_addr); + edu_readl(ctrl, EDU_EXT_ADDR); + edu_writel(ctrl, EDU_LENGTH, FC_BYTES); + edu_readl(ctrl, EDU_LENGTH); + + if (ctrl->oob && (ctrl->edu_cmd == EDU_CMD_WRITE)) { + brcmnand_write_reg(ctrl, BRCMNAND_CMD_ADDRESS, + ctrl->edu_ext_addr); + brcmnand_read_reg(ctrl, BRCMNAND_CMD_ADDRESS); + ctrl->oob += write_oob_to_regs(ctrl, + 1, + ctrl->oob, ctrl->sas, + ctrl->sector_size_1k); + } + + /* Start edu engine */ + mb(); /* flush previous writes */ + edu_writel(ctrl, EDU_CMD, ctrl->edu_cmd); + edu_readl(ctrl, EDU_CMD); + + if (wait_for_completion_timeout(&ctrl->edu_done, timeo) <= 0) { + dev_err(ctrl->dev, + "timeout waiting for EDU; status %#x, error status %#x\n", + edu_readl(ctrl, EDU_STATUS), + edu_readl(ctrl, EDU_ERR_STATUS)); + } + + dma_unmap_single(ctrl->dev, pa, len, dir); + + /* read last subpage oob */ + if (ctrl->oob && (ctrl->edu_cmd == EDU_CMD_READ)) { + ctrl->oob += read_oob_from_regs(ctrl, + 1, + ctrl->oob, ctrl->sas, + ctrl->sector_size_1k); + } + + /* for program page check NAND status */ + if (((brcmnand_read_reg(ctrl, BRCMNAND_INTFC_STATUS) & + INTFC_FLASH_STATUS) & NAND_STATUS_FAIL) && + edu_cmd == EDU_CMD_WRITE) { + dev_info(ctrl->dev, "program failed at %llx\n", + (unsigned long long)addr); + ret = -EIO; + } + + /* Make sure the EDU status is clean */ + if (edu_readl(ctrl, EDU_STATUS) & EDU_STATUS_ACTIVE) + dev_warn(ctrl->dev, "EDU still active: %#x\n", + edu_readl(ctrl, EDU_STATUS)); + + if (unlikely(edu_readl(ctrl, EDU_ERR_STATUS) & EDU_ERR_STATUS_ERRACK)) { + dev_warn(ctrl->dev, "EDU RBUS error at addr %llx\n", + (unsigned long long)addr); + ret = -EIO; + } + + ctrl->edu_pending = false; + brcmnand_edu_init(ctrl); + edu_writel(ctrl, EDU_STOP, 0); /* force stop */ + edu_readl(ctrl, EDU_STOP); + + if (!ret && edu_cmd == EDU_CMD_READ) { + u64 err_addr = 0; + + /* + * check for ECC errors here, subpage ECC errors are + * retained in ECC error address register + */ + err_addr = brcmnand_get_uncorrecc_addr(ctrl); + if (!err_addr) { + err_addr = brcmnand_get_correcc_addr(ctrl); + if (err_addr) + ret = -EUCLEAN; + } else + ret = -EBADMSG; + } + + return ret; +} + +/* + * Construct a FLASH_DMA descriptor as part of a linked list. You must know the + * following ahead of time: + * - Is this descriptor the beginning or end of a linked list? + * - What is the (DMA) address of the next descriptor in the linked list? + */ +static int brcmnand_fill_dma_desc(struct brcmnand_host *host, + struct brcm_nand_dma_desc *desc, u64 addr, + dma_addr_t buf, u32 len, u8 dma_cmd, + bool begin, bool end, + dma_addr_t next_desc) +{ + memset(desc, 0, sizeof(*desc)); + /* Descriptors are written in native byte order (wordwise) */ + desc->next_desc = lower_32_bits(next_desc); + desc->next_desc_ext = upper_32_bits(next_desc); + desc->cmd_irq = (dma_cmd << 24) | + (end ? (0x03 << 8) : 0) | /* IRQ | STOP */ + (!!begin) | ((!!end) << 1); /* head, tail */ +#ifdef CONFIG_CPU_BIG_ENDIAN + desc->cmd_irq |= 0x01 << 12; +#endif + desc->dram_addr = lower_32_bits(buf); + desc->dram_addr_ext = upper_32_bits(buf); + desc->tfr_len = len; + desc->total_len = len; + desc->flash_addr = lower_32_bits(addr); + desc->flash_addr_ext = upper_32_bits(addr); + desc->cs = host->cs; + desc->status_valid = 0x01; + return 0; +} + +/* + * Kick the FLASH_DMA engine, with a given DMA descriptor + */ +static void brcmnand_dma_run(struct brcmnand_host *host, dma_addr_t desc) +{ + struct brcmnand_controller *ctrl = host->ctrl; + unsigned long timeo = msecs_to_jiffies(100); + + flash_dma_writel(ctrl, FLASH_DMA_FIRST_DESC, lower_32_bits(desc)); + (void)flash_dma_readl(ctrl, FLASH_DMA_FIRST_DESC); + if (ctrl->nand_version > 0x0602) { + flash_dma_writel(ctrl, FLASH_DMA_FIRST_DESC_EXT, + upper_32_bits(desc)); + (void)flash_dma_readl(ctrl, FLASH_DMA_FIRST_DESC_EXT); + } + + /* Start FLASH_DMA engine */ + ctrl->dma_pending = true; + mb(); /* flush previous writes */ + flash_dma_writel(ctrl, FLASH_DMA_CTRL, 0x03); /* wake | run */ + + if (wait_for_completion_timeout(&ctrl->dma_done, timeo) <= 0) { + dev_err(ctrl->dev, + "timeout waiting for DMA; status %#x, error status %#x\n", + flash_dma_readl(ctrl, FLASH_DMA_STATUS), + flash_dma_readl(ctrl, FLASH_DMA_ERROR_STATUS)); + } + ctrl->dma_pending = false; + flash_dma_writel(ctrl, FLASH_DMA_CTRL, 0); /* force stop */ +} + +static int brcmnand_dma_trans(struct brcmnand_host *host, u64 addr, u32 *buf, + u8 *oob, u32 len, u8 dma_cmd) +{ + struct brcmnand_controller *ctrl = host->ctrl; + dma_addr_t buf_pa; + int dir = dma_cmd == CMD_PAGE_READ ? DMA_FROM_DEVICE : DMA_TO_DEVICE; + + buf_pa = dma_map_single(ctrl->dev, buf, len, dir); + if (dma_mapping_error(ctrl->dev, buf_pa)) { + dev_err(ctrl->dev, "unable to map buffer for DMA\n"); + return -ENOMEM; + } + + brcmnand_fill_dma_desc(host, ctrl->dma_desc, addr, buf_pa, len, + dma_cmd, true, true, 0); + + brcmnand_dma_run(host, ctrl->dma_pa); + + dma_unmap_single(ctrl->dev, buf_pa, len, dir); + + if (ctrl->dma_desc->status_valid & FLASH_DMA_ECC_ERROR) + return -EBADMSG; + else if (ctrl->dma_desc->status_valid & FLASH_DMA_CORR_ERROR) + return -EUCLEAN; + + return 0; +} + +/* + * Assumes proper CS is already set + */ +static int brcmnand_read_by_pio(struct mtd_info *mtd, struct nand_chip *chip, + u64 addr, unsigned int trans, u32 *buf, + u8 *oob, u64 *err_addr) +{ + struct brcmnand_host *host = nand_get_controller_data(chip); + struct brcmnand_controller *ctrl = host->ctrl; + int i, j, ret = 0; + + brcmnand_clear_ecc_addr(ctrl); + + for (i = 0; i < trans; i++, addr += FC_BYTES) { + brcmnand_set_cmd_addr(mtd, addr); + /* SPARE_AREA_READ does not use ECC, so just use PAGE_READ */ + brcmnand_send_cmd(host, CMD_PAGE_READ); + brcmnand_waitfunc(chip); + + if (likely(buf)) { + brcmnand_soc_data_bus_prepare(ctrl->soc, false); + + for (j = 0; j < FC_WORDS; j++, buf++) + *buf = brcmnand_read_fc(ctrl, j); + + brcmnand_soc_data_bus_unprepare(ctrl->soc, false); + } + + if (oob) + oob += read_oob_from_regs(ctrl, i, oob, + mtd->oobsize / trans, + host->hwcfg.sector_size_1k); + + if (ret != -EBADMSG) { + *err_addr = brcmnand_get_uncorrecc_addr(ctrl); + + if (*err_addr) + ret = -EBADMSG; + } + + if (!ret) { + *err_addr = brcmnand_get_correcc_addr(ctrl); + + if (*err_addr) + ret = -EUCLEAN; + } + } + + return ret; +} + +/* + * Check a page to see if it is erased (w/ bitflips) after an uncorrectable ECC + * error + * + * Because the HW ECC signals an ECC error if an erase paged has even a single + * bitflip, we must check each ECC error to see if it is actually an erased + * page with bitflips, not a truly corrupted page. + * + * On a real error, return a negative error code (-EBADMSG for ECC error), and + * buf will contain raw data. + * Otherwise, buf gets filled with 0xffs and return the maximum number of + * bitflips-per-ECC-sector to the caller. + * + */ +static int brcmstb_nand_verify_erased_page(struct mtd_info *mtd, + struct nand_chip *chip, void *buf, u64 addr) +{ + struct mtd_oob_region ecc; + int i; + int bitflips = 0; + int page = addr >> chip->page_shift; + int ret; + void *ecc_bytes; + void *ecc_chunk; + + if (!buf) + buf = nand_get_data_buf(chip); + + /* read without ecc for verification */ + ret = chip->ecc.read_page_raw(chip, buf, true, page); + if (ret) + return ret; + + for (i = 0; i < chip->ecc.steps; i++) { + ecc_chunk = buf + chip->ecc.size * i; + + mtd_ooblayout_ecc(mtd, i, &ecc); + ecc_bytes = chip->oob_poi + ecc.offset; + + ret = nand_check_erased_ecc_chunk(ecc_chunk, chip->ecc.size, + ecc_bytes, ecc.length, + NULL, 0, + chip->ecc.strength); + if (ret < 0) + return ret; + + bitflips = max(bitflips, ret); + } + + return bitflips; +} + +static int brcmnand_read(struct mtd_info *mtd, struct nand_chip *chip, + u64 addr, unsigned int trans, u32 *buf, u8 *oob) +{ + struct brcmnand_host *host = nand_get_controller_data(chip); + struct brcmnand_controller *ctrl = host->ctrl; + u64 err_addr = 0; + int err; + bool retry = true; + bool edu_err = false; + + dev_dbg(ctrl->dev, "read %llx -> %p\n", (unsigned long long)addr, buf); + +try_dmaread: + brcmnand_clear_ecc_addr(ctrl); + + if (ctrl->dma_trans && (has_edu(ctrl) || !oob) && + flash_dma_buf_ok(buf)) { + err = ctrl->dma_trans(host, addr, buf, oob, + trans * FC_BYTES, + CMD_PAGE_READ); + + if (err) { + if (mtd_is_bitflip_or_eccerr(err)) + err_addr = addr; + else + return -EIO; + } + + if (has_edu(ctrl) && err_addr) + edu_err = true; + + } else { + if (oob) + memset(oob, 0x99, mtd->oobsize); + + err = brcmnand_read_by_pio(mtd, chip, addr, trans, buf, + oob, &err_addr); + } + + if (mtd_is_eccerr(err)) { + /* + * On controller version and 7.0, 7.1 , DMA read after a + * prior PIO read that reported uncorrectable error, + * the DMA engine captures this error following DMA read + * cleared only on subsequent DMA read, so just retry once + * to clear a possible false error reported for current DMA + * read + */ + if ((ctrl->nand_version == 0x0700) || + (ctrl->nand_version == 0x0701)) { + if (retry) { + retry = false; + goto try_dmaread; + } + } + + /* + * Controller version 7.2 has hw encoder to detect erased page + * bitflips, apply sw verification for older controllers only + */ + if (ctrl->nand_version < 0x0702) { + err = brcmstb_nand_verify_erased_page(mtd, chip, buf, + addr); + /* erased page bitflips corrected */ + if (err >= 0) + return err; + } + + dev_dbg(ctrl->dev, "uncorrectable error at 0x%llx\n", + (unsigned long long)err_addr); + mtd->ecc_stats.failed++; + /* NAND layer expects zero on ECC errors */ + return 0; + } + + if (mtd_is_bitflip(err)) { + unsigned int corrected = brcmnand_count_corrected(ctrl); + + /* in case of EDU correctable error we read again using PIO */ + if (edu_err) + err = brcmnand_read_by_pio(mtd, chip, addr, trans, buf, + oob, &err_addr); + + dev_dbg(ctrl->dev, "corrected error at 0x%llx\n", + (unsigned long long)err_addr); + mtd->ecc_stats.corrected += corrected; + /* Always exceed the software-imposed threshold */ + return max(mtd->bitflip_threshold, corrected); + } + + return 0; +} + +static int brcmnand_read_page(struct nand_chip *chip, uint8_t *buf, + int oob_required, int page) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + struct brcmnand_host *host = nand_get_controller_data(chip); + u8 *oob = oob_required ? (u8 *)chip->oob_poi : NULL; + + nand_read_page_op(chip, page, 0, NULL, 0); + + return brcmnand_read(mtd, chip, host->last_addr, + mtd->writesize >> FC_SHIFT, (u32 *)buf, oob); +} + +static int brcmnand_read_page_raw(struct nand_chip *chip, uint8_t *buf, + int oob_required, int page) +{ + struct brcmnand_host *host = nand_get_controller_data(chip); + struct mtd_info *mtd = nand_to_mtd(chip); + u8 *oob = oob_required ? (u8 *)chip->oob_poi : NULL; + int ret; + + nand_read_page_op(chip, page, 0, NULL, 0); + + brcmnand_set_ecc_enabled(host, 0); + ret = brcmnand_read(mtd, chip, host->last_addr, + mtd->writesize >> FC_SHIFT, (u32 *)buf, oob); + brcmnand_set_ecc_enabled(host, 1); + return ret; +} + +static int brcmnand_read_oob(struct nand_chip *chip, int page) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + + return brcmnand_read(mtd, chip, (u64)page << chip->page_shift, + mtd->writesize >> FC_SHIFT, + NULL, (u8 *)chip->oob_poi); +} + +static int brcmnand_read_oob_raw(struct nand_chip *chip, int page) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + struct brcmnand_host *host = nand_get_controller_data(chip); + + brcmnand_set_ecc_enabled(host, 0); + brcmnand_read(mtd, chip, (u64)page << chip->page_shift, + mtd->writesize >> FC_SHIFT, + NULL, (u8 *)chip->oob_poi); + brcmnand_set_ecc_enabled(host, 1); + return 0; +} + +static int brcmnand_write(struct mtd_info *mtd, struct nand_chip *chip, + u64 addr, const u32 *buf, u8 *oob) +{ + struct brcmnand_host *host = nand_get_controller_data(chip); + struct brcmnand_controller *ctrl = host->ctrl; + unsigned int i, j, trans = mtd->writesize >> FC_SHIFT; + int status, ret = 0; + + dev_dbg(ctrl->dev, "write %llx <- %p\n", (unsigned long long)addr, buf); + + if (unlikely((unsigned long)buf & 0x03)) { + dev_warn(ctrl->dev, "unaligned buffer: %p\n", buf); + buf = (u32 *)((unsigned long)buf & ~0x03); + } + + brcmnand_wp(mtd, 0); + + for (i = 0; i < ctrl->max_oob; i += 4) + oob_reg_write(ctrl, i, 0xffffffff); + + if (mtd->oops_panic_write) + /* switch to interrupt polling and PIO mode */ + disable_ctrl_irqs(ctrl); + + if (use_dma(ctrl) && (has_edu(ctrl) || !oob) && flash_dma_buf_ok(buf)) { + if (ctrl->dma_trans(host, addr, (u32 *)buf, oob, mtd->writesize, + CMD_PROGRAM_PAGE)) + + ret = -EIO; + + goto out; + } + + for (i = 0; i < trans; i++, addr += FC_BYTES) { + /* full address MUST be set before populating FC */ + brcmnand_set_cmd_addr(mtd, addr); + + if (buf) { + brcmnand_soc_data_bus_prepare(ctrl->soc, false); + + for (j = 0; j < FC_WORDS; j++, buf++) + brcmnand_write_fc(ctrl, j, *buf); + + brcmnand_soc_data_bus_unprepare(ctrl->soc, false); + } else if (oob) { + for (j = 0; j < FC_WORDS; j++) + brcmnand_write_fc(ctrl, j, 0xffffffff); + } + + if (oob) { + oob += write_oob_to_regs(ctrl, i, oob, + mtd->oobsize / trans, + host->hwcfg.sector_size_1k); + } + + /* we cannot use SPARE_AREA_PROGRAM when PARTIAL_PAGE_EN=0 */ + brcmnand_send_cmd(host, CMD_PROGRAM_PAGE); + status = brcmnand_waitfunc(chip); + + if (status & NAND_STATUS_FAIL) { + dev_info(ctrl->dev, "program failed at %llx\n", + (unsigned long long)addr); + ret = -EIO; + goto out; + } + } +out: + brcmnand_wp(mtd, 1); + return ret; +} + +static int brcmnand_write_page(struct nand_chip *chip, const uint8_t *buf, + int oob_required, int page) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + struct brcmnand_host *host = nand_get_controller_data(chip); + void *oob = oob_required ? chip->oob_poi : NULL; + + nand_prog_page_begin_op(chip, page, 0, NULL, 0); + brcmnand_write(mtd, chip, host->last_addr, (const u32 *)buf, oob); + + return nand_prog_page_end_op(chip); +} + +static int brcmnand_write_page_raw(struct nand_chip *chip, const uint8_t *buf, + int oob_required, int page) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + struct brcmnand_host *host = nand_get_controller_data(chip); + void *oob = oob_required ? chip->oob_poi : NULL; + + nand_prog_page_begin_op(chip, page, 0, NULL, 0); + brcmnand_set_ecc_enabled(host, 0); + brcmnand_write(mtd, chip, host->last_addr, (const u32 *)buf, oob); + brcmnand_set_ecc_enabled(host, 1); + + return nand_prog_page_end_op(chip); +} + +static int brcmnand_write_oob(struct nand_chip *chip, int page) +{ + return brcmnand_write(nand_to_mtd(chip), chip, + (u64)page << chip->page_shift, NULL, + chip->oob_poi); +} + +static int brcmnand_write_oob_raw(struct nand_chip *chip, int page) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + struct brcmnand_host *host = nand_get_controller_data(chip); + int ret; + + brcmnand_set_ecc_enabled(host, 0); + ret = brcmnand_write(mtd, chip, (u64)page << chip->page_shift, NULL, + (u8 *)chip->oob_poi); + brcmnand_set_ecc_enabled(host, 1); + + return ret; +} + +/*********************************************************************** + * Per-CS setup (1 NAND device) + ***********************************************************************/ + +static int brcmnand_set_cfg(struct brcmnand_host *host, + struct brcmnand_cfg *cfg) +{ + struct brcmnand_controller *ctrl = host->ctrl; + struct nand_chip *chip = &host->chip; + u16 cfg_offs = brcmnand_cs_offset(ctrl, host->cs, BRCMNAND_CS_CFG); + u16 cfg_ext_offs = brcmnand_cs_offset(ctrl, host->cs, + BRCMNAND_CS_CFG_EXT); + u16 acc_control_offs = brcmnand_cs_offset(ctrl, host->cs, + BRCMNAND_CS_ACC_CONTROL); + u8 block_size = 0, page_size = 0, device_size = 0; + u32 tmp; + + if (ctrl->block_sizes) { + int i, found; + + for (i = 0, found = 0; ctrl->block_sizes[i]; i++) + if (ctrl->block_sizes[i] * 1024 == cfg->block_size) { + block_size = i; + found = 1; + } + if (!found) { + dev_warn(ctrl->dev, "invalid block size %u\n", + cfg->block_size); + return -EINVAL; + } + } else { + block_size = ffs(cfg->block_size) - ffs(BRCMNAND_MIN_BLOCKSIZE); + } + + if (cfg->block_size < BRCMNAND_MIN_BLOCKSIZE || (ctrl->max_block_size && + cfg->block_size > ctrl->max_block_size)) { + dev_warn(ctrl->dev, "invalid block size %u\n", + cfg->block_size); + block_size = 0; + } + + if (ctrl->page_sizes) { + int i, found; + + for (i = 0, found = 0; ctrl->page_sizes[i]; i++) + if (ctrl->page_sizes[i] == cfg->page_size) { + page_size = i; + found = 1; + } + if (!found) { + dev_warn(ctrl->dev, "invalid page size %u\n", + cfg->page_size); + return -EINVAL; + } + } else { + page_size = ffs(cfg->page_size) - ffs(BRCMNAND_MIN_PAGESIZE); + } + + if (cfg->page_size < BRCMNAND_MIN_PAGESIZE || (ctrl->max_page_size && + cfg->page_size > ctrl->max_page_size)) { + dev_warn(ctrl->dev, "invalid page size %u\n", cfg->page_size); + return -EINVAL; + } + + if (fls64(cfg->device_size) < fls64(BRCMNAND_MIN_DEVSIZE)) { + dev_warn(ctrl->dev, "invalid device size 0x%llx\n", + (unsigned long long)cfg->device_size); + return -EINVAL; + } + device_size = fls64(cfg->device_size) - fls64(BRCMNAND_MIN_DEVSIZE); + + tmp = (cfg->blk_adr_bytes << CFG_BLK_ADR_BYTES_SHIFT) | + (cfg->col_adr_bytes << CFG_COL_ADR_BYTES_SHIFT) | + (cfg->ful_adr_bytes << CFG_FUL_ADR_BYTES_SHIFT) | + (!!(cfg->device_width == 16) << CFG_BUS_WIDTH_SHIFT) | + (device_size << CFG_DEVICE_SIZE_SHIFT); + if (cfg_offs == cfg_ext_offs) { + tmp |= (page_size << ctrl->page_size_shift) | + (block_size << CFG_BLK_SIZE_SHIFT); + nand_writereg(ctrl, cfg_offs, tmp); + } else { + nand_writereg(ctrl, cfg_offs, tmp); + tmp = (page_size << CFG_EXT_PAGE_SIZE_SHIFT) | + (block_size << CFG_EXT_BLK_SIZE_SHIFT); + nand_writereg(ctrl, cfg_ext_offs, tmp); + } + + tmp = nand_readreg(ctrl, acc_control_offs); + tmp &= ~brcmnand_ecc_level_mask(ctrl); + tmp &= ~brcmnand_spare_area_mask(ctrl); + if (ctrl->nand_version >= 0x0302) { + tmp |= cfg->ecc_level << ctrl->ecc_level_shift; + tmp |= cfg->spare_area_size; + } + nand_writereg(ctrl, acc_control_offs, tmp); + + brcmnand_set_sector_size_1k(host, cfg->sector_size_1k); + + /* threshold = ceil(BCH-level * 0.75) */ + brcmnand_wr_corr_thresh(host, DIV_ROUND_UP(chip->ecc.strength * 3, 4)); + + return 0; +} + +static void brcmnand_print_cfg(struct brcmnand_host *host, + char *buf, struct brcmnand_cfg *cfg) +{ + buf += sprintf(buf, + "%lluMiB total, %uKiB blocks, %u%s pages, %uB OOB, %u-bit", + (unsigned long long)cfg->device_size >> 20, + cfg->block_size >> 10, + cfg->page_size >= 1024 ? cfg->page_size >> 10 : cfg->page_size, + cfg->page_size >= 1024 ? "KiB" : "B", + cfg->spare_area_size, cfg->device_width); + + /* Account for Hamming ECC and for BCH 512B vs 1KiB sectors */ + if (is_hamming_ecc(host->ctrl, cfg)) + sprintf(buf, ", Hamming ECC"); + else if (cfg->sector_size_1k) + sprintf(buf, ", BCH-%u (1KiB sector)", cfg->ecc_level << 1); + else + sprintf(buf, ", BCH-%u", cfg->ecc_level); +} + +/* + * Minimum number of bytes to address a page. Calculated as: + * roundup(log2(size / page-size) / 8) + * + * NB: the following does not "round up" for non-power-of-2 'size'; but this is + * OK because many other things will break if 'size' is irregular... + */ +static inline int get_blk_adr_bytes(u64 size, u32 writesize) +{ + return ALIGN(ilog2(size) - ilog2(writesize), 8) >> 3; +} + +static int brcmnand_setup_dev(struct brcmnand_host *host) +{ + struct mtd_info *mtd = nand_to_mtd(&host->chip); + struct nand_chip *chip = &host->chip; + const struct nand_ecc_props *requirements = + nanddev_get_ecc_requirements(&chip->base); + struct nand_memory_organization *memorg = + nanddev_get_memorg(&chip->base); + struct brcmnand_controller *ctrl = host->ctrl; + struct brcmnand_cfg *cfg = &host->hwcfg; + char msg[128]; + u32 offs, tmp, oob_sector; + int ret; + + memset(cfg, 0, sizeof(*cfg)); + + ret = of_property_read_u32(nand_get_flash_node(chip), + "brcm,nand-oob-sector-size", + &oob_sector); + if (ret) { + /* Use detected size */ + cfg->spare_area_size = mtd->oobsize / + (mtd->writesize >> FC_SHIFT); + } else { + cfg->spare_area_size = oob_sector; + } + if (cfg->spare_area_size > ctrl->max_oob) + cfg->spare_area_size = ctrl->max_oob; + /* + * Set mtd and memorg oobsize to be consistent with controller's + * spare_area_size, as the rest is inaccessible. + */ + mtd->oobsize = cfg->spare_area_size * (mtd->writesize >> FC_SHIFT); + memorg->oobsize = mtd->oobsize; + + cfg->device_size = mtd->size; + cfg->block_size = mtd->erasesize; + cfg->page_size = mtd->writesize; + cfg->device_width = (chip->options & NAND_BUSWIDTH_16) ? 16 : 8; + cfg->col_adr_bytes = 2; + cfg->blk_adr_bytes = get_blk_adr_bytes(mtd->size, mtd->writesize); + + if (chip->ecc.engine_type != NAND_ECC_ENGINE_TYPE_ON_HOST) { + dev_err(ctrl->dev, "only HW ECC supported; selected: %d\n", + chip->ecc.engine_type); + return -EINVAL; + } + + if (chip->ecc.algo == NAND_ECC_ALGO_UNKNOWN) { + if (chip->ecc.strength == 1 && chip->ecc.size == 512) + /* Default to Hamming for 1-bit ECC, if unspecified */ + chip->ecc.algo = NAND_ECC_ALGO_HAMMING; + else + /* Otherwise, BCH */ + chip->ecc.algo = NAND_ECC_ALGO_BCH; + } + + if (chip->ecc.algo == NAND_ECC_ALGO_HAMMING && + (chip->ecc.strength != 1 || chip->ecc.size != 512)) { + dev_err(ctrl->dev, "invalid Hamming params: %d bits per %d bytes\n", + chip->ecc.strength, chip->ecc.size); + return -EINVAL; + } + + if (chip->ecc.engine_type != NAND_ECC_ENGINE_TYPE_NONE && + (!chip->ecc.size || !chip->ecc.strength)) { + if (requirements->step_size && requirements->strength) { + /* use detected ECC parameters */ + chip->ecc.size = requirements->step_size; + chip->ecc.strength = requirements->strength; + dev_info(ctrl->dev, "Using ECC step-size %d, strength %d\n", + chip->ecc.size, chip->ecc.strength); + } + } + + switch (chip->ecc.size) { + case 512: + if (chip->ecc.algo == NAND_ECC_ALGO_HAMMING) + cfg->ecc_level = 15; + else + cfg->ecc_level = chip->ecc.strength; + cfg->sector_size_1k = 0; + break; + case 1024: + if (!(ctrl->features & BRCMNAND_HAS_1K_SECTORS)) { + dev_err(ctrl->dev, "1KB sectors not supported\n"); + return -EINVAL; + } + if (chip->ecc.strength & 0x1) { + dev_err(ctrl->dev, + "odd ECC not supported with 1KB sectors\n"); + return -EINVAL; + } + + cfg->ecc_level = chip->ecc.strength >> 1; + cfg->sector_size_1k = 1; + break; + default: + dev_err(ctrl->dev, "unsupported ECC size: %d\n", + chip->ecc.size); + return -EINVAL; + } + + cfg->ful_adr_bytes = cfg->blk_adr_bytes; + if (mtd->writesize > 512) + cfg->ful_adr_bytes += cfg->col_adr_bytes; + else + cfg->ful_adr_bytes += 1; + + ret = brcmnand_set_cfg(host, cfg); + if (ret) + return ret; + + brcmnand_set_ecc_enabled(host, 1); + + brcmnand_print_cfg(host, msg, cfg); + dev_info(ctrl->dev, "detected %s\n", msg); + + /* Configure ACC_CONTROL */ + offs = brcmnand_cs_offset(ctrl, host->cs, BRCMNAND_CS_ACC_CONTROL); + tmp = nand_readreg(ctrl, offs); + tmp &= ~ACC_CONTROL_PARTIAL_PAGE; + tmp &= ~ACC_CONTROL_RD_ERASED; + + /* We need to turn on Read from erased paged protected by ECC */ + if (ctrl->nand_version >= 0x0702) + tmp |= ACC_CONTROL_RD_ERASED; + tmp &= ~ACC_CONTROL_FAST_PGM_RDIN; + if (ctrl->features & BRCMNAND_HAS_PREFETCH) + tmp &= ~ACC_CONTROL_PREFETCH; + + nand_writereg(ctrl, offs, tmp); + + return 0; +} + +static int brcmnand_attach_chip(struct nand_chip *chip) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + struct brcmnand_host *host = nand_get_controller_data(chip); + int ret; + + chip->options |= NAND_NO_SUBPAGE_WRITE; + /* + * Avoid (for instance) kmap()'d buffers from JFFS2, which we can't DMA + * to/from, and have nand_base pass us a bounce buffer instead, as + * needed. + */ + chip->options |= NAND_USES_DMA; + + if (chip->bbt_options & NAND_BBT_USE_FLASH) + chip->bbt_options |= NAND_BBT_NO_OOB; + + if (brcmnand_setup_dev(host)) + return -ENXIO; + + chip->ecc.size = host->hwcfg.sector_size_1k ? 1024 : 512; + + /* only use our internal HW threshold */ + mtd->bitflip_threshold = 1; + + ret = brcmstb_choose_ecc_layout(host); + + /* If OOB is written with ECC enabled it will cause ECC errors */ + if (is_hamming_ecc(host->ctrl, &host->hwcfg)) { + chip->ecc.write_oob = brcmnand_write_oob_raw; + chip->ecc.read_oob = brcmnand_read_oob_raw; + } + + return ret; +} + +static const struct nand_controller_ops brcmnand_controller_ops = { + .attach_chip = brcmnand_attach_chip, +}; + +static int brcmnand_init_cs(struct brcmnand_host *host, + const char * const *part_probe_types) +{ + struct brcmnand_controller *ctrl = host->ctrl; + struct device *dev = ctrl->dev; + struct mtd_info *mtd; + struct nand_chip *chip; + int ret; + u16 cfg_offs; + + mtd = nand_to_mtd(&host->chip); + chip = &host->chip; + + nand_set_controller_data(chip, host); + mtd->name = devm_kasprintf(dev, GFP_KERNEL, "brcmnand.%d", + host->cs); + if (!mtd->name) + return -ENOMEM; + + mtd->owner = THIS_MODULE; + mtd->dev.parent = dev; + + chip->legacy.cmd_ctrl = brcmnand_cmd_ctrl; + chip->legacy.cmdfunc = brcmnand_cmdfunc; + chip->legacy.waitfunc = brcmnand_waitfunc; + chip->legacy.read_byte = brcmnand_read_byte; + chip->legacy.read_buf = brcmnand_read_buf; + chip->legacy.write_buf = brcmnand_write_buf; + + chip->ecc.engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST; + chip->ecc.read_page = brcmnand_read_page; + chip->ecc.write_page = brcmnand_write_page; + chip->ecc.read_page_raw = brcmnand_read_page_raw; + chip->ecc.write_page_raw = brcmnand_write_page_raw; + chip->ecc.write_oob_raw = brcmnand_write_oob_raw; + chip->ecc.read_oob_raw = brcmnand_read_oob_raw; + chip->ecc.read_oob = brcmnand_read_oob; + chip->ecc.write_oob = brcmnand_write_oob; + + chip->controller = &ctrl->controller; + + /* + * The bootloader might have configured 16bit mode but + * NAND READID command only works in 8bit mode. We force + * 8bit mode here to ensure that NAND READID commands works. + */ + cfg_offs = brcmnand_cs_offset(ctrl, host->cs, BRCMNAND_CS_CFG); + nand_writereg(ctrl, cfg_offs, + nand_readreg(ctrl, cfg_offs) & ~CFG_BUS_WIDTH); + + ret = nand_scan(chip, 1); + if (ret) + return ret; + + ret = mtd_device_parse_register(mtd, part_probe_types, NULL, NULL, 0); + if (ret) + nand_cleanup(chip); + + return ret; +} + +static void brcmnand_save_restore_cs_config(struct brcmnand_host *host, + int restore) +{ + struct brcmnand_controller *ctrl = host->ctrl; + u16 cfg_offs = brcmnand_cs_offset(ctrl, host->cs, BRCMNAND_CS_CFG); + u16 cfg_ext_offs = brcmnand_cs_offset(ctrl, host->cs, + BRCMNAND_CS_CFG_EXT); + u16 acc_control_offs = brcmnand_cs_offset(ctrl, host->cs, + BRCMNAND_CS_ACC_CONTROL); + u16 t1_offs = brcmnand_cs_offset(ctrl, host->cs, BRCMNAND_CS_TIMING1); + u16 t2_offs = brcmnand_cs_offset(ctrl, host->cs, BRCMNAND_CS_TIMING2); + + if (restore) { + nand_writereg(ctrl, cfg_offs, host->hwcfg.config); + if (cfg_offs != cfg_ext_offs) + nand_writereg(ctrl, cfg_ext_offs, + host->hwcfg.config_ext); + nand_writereg(ctrl, acc_control_offs, host->hwcfg.acc_control); + nand_writereg(ctrl, t1_offs, host->hwcfg.timing_1); + nand_writereg(ctrl, t2_offs, host->hwcfg.timing_2); + } else { + host->hwcfg.config = nand_readreg(ctrl, cfg_offs); + if (cfg_offs != cfg_ext_offs) + host->hwcfg.config_ext = + nand_readreg(ctrl, cfg_ext_offs); + host->hwcfg.acc_control = nand_readreg(ctrl, acc_control_offs); + host->hwcfg.timing_1 = nand_readreg(ctrl, t1_offs); + host->hwcfg.timing_2 = nand_readreg(ctrl, t2_offs); + } +} + +static int brcmnand_suspend(struct device *dev) +{ + struct brcmnand_controller *ctrl = dev_get_drvdata(dev); + struct brcmnand_host *host; + + list_for_each_entry(host, &ctrl->host_list, node) + brcmnand_save_restore_cs_config(host, 0); + + ctrl->nand_cs_nand_select = brcmnand_read_reg(ctrl, BRCMNAND_CS_SELECT); + ctrl->nand_cs_nand_xor = brcmnand_read_reg(ctrl, BRCMNAND_CS_XOR); + ctrl->corr_stat_threshold = + brcmnand_read_reg(ctrl, BRCMNAND_CORR_THRESHOLD); + + if (has_flash_dma(ctrl)) + ctrl->flash_dma_mode = flash_dma_readl(ctrl, FLASH_DMA_MODE); + else if (has_edu(ctrl)) + ctrl->edu_config = edu_readl(ctrl, EDU_CONFIG); + + return 0; +} + +static int brcmnand_resume(struct device *dev) +{ + struct brcmnand_controller *ctrl = dev_get_drvdata(dev); + struct brcmnand_host *host; + + if (has_flash_dma(ctrl)) { + flash_dma_writel(ctrl, FLASH_DMA_MODE, ctrl->flash_dma_mode); + flash_dma_writel(ctrl, FLASH_DMA_ERROR_STATUS, 0); + } + + if (has_edu(ctrl)) { + ctrl->edu_config = edu_readl(ctrl, EDU_CONFIG); + edu_writel(ctrl, EDU_CONFIG, ctrl->edu_config); + edu_readl(ctrl, EDU_CONFIG); + brcmnand_edu_init(ctrl); + } + + brcmnand_write_reg(ctrl, BRCMNAND_CS_SELECT, ctrl->nand_cs_nand_select); + brcmnand_write_reg(ctrl, BRCMNAND_CS_XOR, ctrl->nand_cs_nand_xor); + brcmnand_write_reg(ctrl, BRCMNAND_CORR_THRESHOLD, + ctrl->corr_stat_threshold); + if (ctrl->soc) { + /* Clear/re-enable interrupt */ + ctrl->soc->ctlrdy_ack(ctrl->soc); + ctrl->soc->ctlrdy_set_enabled(ctrl->soc, true); + } + + list_for_each_entry(host, &ctrl->host_list, node) { + struct nand_chip *chip = &host->chip; + + brcmnand_save_restore_cs_config(host, 1); + + /* Reset the chip, required by some chips after power-up */ + nand_reset_op(chip); + } + + return 0; +} + +const struct dev_pm_ops brcmnand_pm_ops = { + .suspend = brcmnand_suspend, + .resume = brcmnand_resume, +}; +EXPORT_SYMBOL_GPL(brcmnand_pm_ops); + +static const struct of_device_id __maybe_unused brcmnand_of_match[] = { + { .compatible = "brcm,brcmnand-v2.1" }, + { .compatible = "brcm,brcmnand-v2.2" }, + { .compatible = "brcm,brcmnand-v4.0" }, + { .compatible = "brcm,brcmnand-v5.0" }, + { .compatible = "brcm,brcmnand-v6.0" }, + { .compatible = "brcm,brcmnand-v6.1" }, + { .compatible = "brcm,brcmnand-v6.2" }, + { .compatible = "brcm,brcmnand-v7.0" }, + { .compatible = "brcm,brcmnand-v7.1" }, + { .compatible = "brcm,brcmnand-v7.2" }, + { .compatible = "brcm,brcmnand-v7.3" }, + {}, +}; +MODULE_DEVICE_TABLE(of, brcmnand_of_match); + +/*********************************************************************** + * Platform driver setup (per controller) + ***********************************************************************/ +static int brcmnand_edu_setup(struct platform_device *pdev) +{ + struct device *dev = &pdev->dev; + struct brcmnand_controller *ctrl = dev_get_drvdata(&pdev->dev); + struct resource *res; + int ret; + + res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "flash-edu"); + if (res) { + ctrl->edu_base = devm_ioremap_resource(dev, res); + if (IS_ERR(ctrl->edu_base)) + return PTR_ERR(ctrl->edu_base); + + ctrl->edu_offsets = edu_regs; + + edu_writel(ctrl, EDU_CONFIG, EDU_CONFIG_MODE_NAND | + EDU_CONFIG_SWAP_CFG); + edu_readl(ctrl, EDU_CONFIG); + + /* initialize edu */ + brcmnand_edu_init(ctrl); + + ctrl->edu_irq = platform_get_irq_optional(pdev, 1); + if (ctrl->edu_irq < 0) { + dev_warn(dev, + "FLASH EDU enabled, using ctlrdy irq\n"); + } else { + ret = devm_request_irq(dev, ctrl->edu_irq, + brcmnand_edu_irq, 0, + "brcmnand-edu", ctrl); + if (ret < 0) { + dev_err(ctrl->dev, "can't allocate IRQ %d: error %d\n", + ctrl->edu_irq, ret); + return ret; + } + + dev_info(dev, "FLASH EDU enabled using irq %u\n", + ctrl->edu_irq); + } + } + + return 0; +} + +int brcmnand_probe(struct platform_device *pdev, struct brcmnand_soc *soc) +{ + struct brcmnand_platform_data *pd = dev_get_platdata(&pdev->dev); + struct device *dev = &pdev->dev; + struct device_node *dn = dev->of_node, *child; + struct brcmnand_controller *ctrl; + struct brcmnand_host *host; + struct resource *res; + int ret; + + if (dn && !of_match_node(brcmnand_of_match, dn)) + return -ENODEV; + + ctrl = devm_kzalloc(dev, sizeof(*ctrl), GFP_KERNEL); + if (!ctrl) + return -ENOMEM; + + dev_set_drvdata(dev, ctrl); + ctrl->dev = dev; + ctrl->soc = soc; + + /* Enable the static key if the soc provides I/O operations indicating + * that a non-memory mapped IO access path must be used + */ + if (brcmnand_soc_has_ops(ctrl->soc)) + static_branch_enable(&brcmnand_soc_has_ops_key); + + init_completion(&ctrl->done); + init_completion(&ctrl->dma_done); + init_completion(&ctrl->edu_done); + nand_controller_init(&ctrl->controller); + ctrl->controller.ops = &brcmnand_controller_ops; + INIT_LIST_HEAD(&ctrl->host_list); + + /* NAND register range */ + res = platform_get_resource(pdev, IORESOURCE_MEM, 0); + ctrl->nand_base = devm_ioremap_resource(dev, res); + if (IS_ERR(ctrl->nand_base) && !brcmnand_soc_has_ops(soc)) + return PTR_ERR(ctrl->nand_base); + + /* Enable clock before using NAND registers */ + ctrl->clk = devm_clk_get(dev, "nand"); + if (!IS_ERR(ctrl->clk)) { + ret = clk_prepare_enable(ctrl->clk); + if (ret) + return ret; + } else { + ret = PTR_ERR(ctrl->clk); + if (ret == -EPROBE_DEFER) + return ret; + + ctrl->clk = NULL; + } + + /* Initialize NAND revision */ + ret = brcmnand_revision_init(ctrl); + if (ret) + goto err; + + /* + * Most chips have this cache at a fixed offset within 'nand' block. + * Some must specify this region separately. + */ + res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "nand-cache"); + if (res) { + ctrl->nand_fc = devm_ioremap_resource(dev, res); + if (IS_ERR(ctrl->nand_fc)) { + ret = PTR_ERR(ctrl->nand_fc); + goto err; + } + } else { + ctrl->nand_fc = ctrl->nand_base + + ctrl->reg_offsets[BRCMNAND_FC_BASE]; + } + + /* FLASH_DMA */ + res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "flash-dma"); + if (res) { + ctrl->flash_dma_base = devm_ioremap_resource(dev, res); + if (IS_ERR(ctrl->flash_dma_base)) { + ret = PTR_ERR(ctrl->flash_dma_base); + goto err; + } + + /* initialize the dma version */ + brcmnand_flash_dma_revision_init(ctrl); + + ret = -EIO; + if (ctrl->nand_version >= 0x0700) + ret = dma_set_mask_and_coherent(&pdev->dev, + DMA_BIT_MASK(40)); + if (ret) + ret = dma_set_mask_and_coherent(&pdev->dev, + DMA_BIT_MASK(32)); + if (ret) + goto err; + + /* linked-list and stop on error */ + flash_dma_writel(ctrl, FLASH_DMA_MODE, FLASH_DMA_MODE_MASK); + flash_dma_writel(ctrl, FLASH_DMA_ERROR_STATUS, 0); + + /* Allocate descriptor(s) */ + ctrl->dma_desc = dmam_alloc_coherent(dev, + sizeof(*ctrl->dma_desc), + &ctrl->dma_pa, GFP_KERNEL); + if (!ctrl->dma_desc) { + ret = -ENOMEM; + goto err; + } + + ctrl->dma_irq = platform_get_irq(pdev, 1); + if ((int)ctrl->dma_irq < 0) { + dev_err(dev, "missing FLASH_DMA IRQ\n"); + ret = -ENODEV; + goto err; + } + + ret = devm_request_irq(dev, ctrl->dma_irq, + brcmnand_dma_irq, 0, DRV_NAME, + ctrl); + if (ret < 0) { + dev_err(dev, "can't allocate IRQ %d: error %d\n", + ctrl->dma_irq, ret); + goto err; + } + + dev_info(dev, "enabling FLASH_DMA\n"); + /* set flash dma transfer function to call */ + ctrl->dma_trans = brcmnand_dma_trans; + } else { + ret = brcmnand_edu_setup(pdev); + if (ret < 0) + goto err; + + if (has_edu(ctrl)) + /* set edu transfer function to call */ + ctrl->dma_trans = brcmnand_edu_trans; + } + + /* Disable automatic device ID config, direct addressing */ + brcmnand_rmw_reg(ctrl, BRCMNAND_CS_SELECT, + CS_SELECT_AUTO_DEVICE_ID_CFG | 0xff, 0, 0); + /* Disable XOR addressing */ + brcmnand_rmw_reg(ctrl, BRCMNAND_CS_XOR, 0xff, 0, 0); + + if (ctrl->features & BRCMNAND_HAS_WP) { + /* Permanently disable write protection */ + if (wp_on == 2) + brcmnand_set_wp(ctrl, false); + } else { + wp_on = 0; + } + + /* IRQ */ + ctrl->irq = platform_get_irq_optional(pdev, 0); + if (ctrl->irq > 0) { + /* + * Some SoCs integrate this controller (e.g., its interrupt bits) in + * interesting ways + */ + if (soc) { + ret = devm_request_irq(dev, ctrl->irq, brcmnand_irq, 0, + DRV_NAME, ctrl); + + /* Enable interrupt */ + ctrl->soc->ctlrdy_ack(ctrl->soc); + ctrl->soc->ctlrdy_set_enabled(ctrl->soc, true); + } else { + /* Use standard interrupt infrastructure */ + ret = devm_request_irq(dev, ctrl->irq, brcmnand_ctlrdy_irq, 0, + DRV_NAME, ctrl); + } + if (ret < 0) { + dev_err(dev, "can't allocate IRQ %d: error %d\n", + ctrl->irq, ret); + goto err; + } + } + + for_each_available_child_of_node(dn, child) { + if (of_device_is_compatible(child, "brcm,nandcs")) { + + host = devm_kzalloc(dev, sizeof(*host), GFP_KERNEL); + if (!host) { + of_node_put(child); + ret = -ENOMEM; + goto err; + } + host->pdev = pdev; + host->ctrl = ctrl; + + ret = of_property_read_u32(child, "reg", &host->cs); + if (ret) { + dev_err(dev, "can't get chip-select\n"); + devm_kfree(dev, host); + continue; + } + + nand_set_flash_node(&host->chip, child); + + ret = brcmnand_init_cs(host, NULL); + if (ret) { + if (ret == -EPROBE_DEFER) { + of_node_put(child); + goto err; + } + devm_kfree(dev, host); + continue; /* Try all chip-selects */ + } + + list_add_tail(&host->node, &ctrl->host_list); + } + } + + if (!list_empty(&ctrl->host_list)) + return 0; + + if (!pd) { + ret = -ENODEV; + goto err; + } + + /* If we got there we must have been probing via platform data */ + host = devm_kzalloc(dev, sizeof(*host), GFP_KERNEL); + if (!host) { + ret = -ENOMEM; + goto err; + } + host->pdev = pdev; + host->ctrl = ctrl; + host->cs = pd->chip_select; + host->chip.ecc.size = pd->ecc_stepsize; + host->chip.ecc.strength = pd->ecc_strength; + + ret = brcmnand_init_cs(host, pd->part_probe_types); + if (ret) + goto err; + + list_add_tail(&host->node, &ctrl->host_list); + + /* No chip-selects could initialize properly */ + if (list_empty(&ctrl->host_list)) { + ret = -ENODEV; + goto err; + } + + return 0; + +err: + clk_disable_unprepare(ctrl->clk); + return ret; + +} +EXPORT_SYMBOL_GPL(brcmnand_probe); + +int brcmnand_remove(struct platform_device *pdev) +{ + struct brcmnand_controller *ctrl = dev_get_drvdata(&pdev->dev); + struct brcmnand_host *host; + struct nand_chip *chip; + int ret; + + list_for_each_entry(host, &ctrl->host_list, node) { + chip = &host->chip; + ret = mtd_device_unregister(nand_to_mtd(chip)); + WARN_ON(ret); + nand_cleanup(chip); + } + + clk_disable_unprepare(ctrl->clk); + + dev_set_drvdata(&pdev->dev, NULL); + + return 0; +} +EXPORT_SYMBOL_GPL(brcmnand_remove); + +MODULE_LICENSE("GPL v2"); +MODULE_AUTHOR("Kevin Cernekee"); +MODULE_AUTHOR("Brian Norris"); +MODULE_DESCRIPTION("NAND driver for Broadcom chips"); +MODULE_ALIAS("platform:brcmnand"); diff --git a/drivers/mtd/nand/raw/brcmnand/brcmnand.h b/drivers/mtd/nand/raw/brcmnand/brcmnand.h new file mode 100644 index 0000000000..f1f93d85f5 --- /dev/null +++ b/drivers/mtd/nand/raw/brcmnand/brcmnand.h @@ -0,0 +1,95 @@ +/* SPDX-License-Identifier: GPL-2.0-only */ +/* + * Copyright © 2015 Broadcom Corporation + */ + +#ifndef __BRCMNAND_H__ +#define __BRCMNAND_H__ + +#include <linux/types.h> +#include <linux/io.h> + +struct platform_device; +struct dev_pm_ops; +struct brcmnand_io_ops; + +/* Special register offset constant to intercept a non-MMIO access + * to the flash cache register space. This is intentionally large + * not to overlap with an existing offset. + */ +#define BRCMNAND_NON_MMIO_FC_ADDR 0xffffffff + +struct brcmnand_soc { + bool (*ctlrdy_ack)(struct brcmnand_soc *soc); + void (*ctlrdy_set_enabled)(struct brcmnand_soc *soc, bool en); + void (*prepare_data_bus)(struct brcmnand_soc *soc, bool prepare, + bool is_param); + const struct brcmnand_io_ops *ops; +}; + +struct brcmnand_io_ops { + u32 (*read_reg)(struct brcmnand_soc *soc, u32 offset); + void (*write_reg)(struct brcmnand_soc *soc, u32 val, u32 offset); +}; + +static inline void brcmnand_soc_data_bus_prepare(struct brcmnand_soc *soc, + bool is_param) +{ + if (soc && soc->prepare_data_bus) + soc->prepare_data_bus(soc, true, is_param); +} + +static inline void brcmnand_soc_data_bus_unprepare(struct brcmnand_soc *soc, + bool is_param) +{ + if (soc && soc->prepare_data_bus) + soc->prepare_data_bus(soc, false, is_param); +} + +static inline u32 brcmnand_readl(void __iomem *addr) +{ + /* + * MIPS endianness is configured by boot strap, which also reverses all + * bus endianness (i.e., big-endian CPU + big endian bus ==> native + * endian I/O). + * + * Other architectures (e.g., ARM) either do not support big endian, or + * else leave I/O in little endian mode. + */ + if (IS_ENABLED(CONFIG_MIPS) && IS_ENABLED(CONFIG_CPU_BIG_ENDIAN)) + return __raw_readl(addr); + else + return readl_relaxed(addr); +} + +static inline void brcmnand_writel(u32 val, void __iomem *addr) +{ + /* See brcmnand_readl() comments */ + if (IS_ENABLED(CONFIG_MIPS) && IS_ENABLED(CONFIG_CPU_BIG_ENDIAN)) + __raw_writel(val, addr); + else + writel_relaxed(val, addr); +} + +static inline bool brcmnand_soc_has_ops(struct brcmnand_soc *soc) +{ + return soc && soc->ops && soc->ops->read_reg && soc->ops->write_reg; +} + +static inline u32 brcmnand_soc_read(struct brcmnand_soc *soc, u32 offset) +{ + return soc->ops->read_reg(soc, offset); +} + +static inline void brcmnand_soc_write(struct brcmnand_soc *soc, u32 val, + u32 offset) +{ + soc->ops->write_reg(soc, val, offset); +} + +int brcmnand_probe(struct platform_device *pdev, struct brcmnand_soc *soc); +int brcmnand_remove(struct platform_device *pdev); + +extern const struct dev_pm_ops brcmnand_pm_ops; + +#endif /* __BRCMNAND_H__ */ diff --git a/drivers/mtd/nand/raw/brcmnand/brcmstb_nand.c b/drivers/mtd/nand/raw/brcmnand/brcmstb_nand.c new file mode 100644 index 0000000000..950923d977 --- /dev/null +++ b/drivers/mtd/nand/raw/brcmnand/brcmstb_nand.c @@ -0,0 +1,37 @@ +// SPDX-License-Identifier: GPL-2.0-only +/* + * Copyright © 2015 Broadcom Corporation + */ + +#include <linux/device.h> +#include <linux/module.h> +#include <linux/mod_devicetable.h> +#include <linux/platform_device.h> + +#include "brcmnand.h" + +static const struct of_device_id brcmstb_nand_of_match[] = { + { .compatible = "brcm,brcmnand" }, + {}, +}; +MODULE_DEVICE_TABLE(of, brcmstb_nand_of_match); + +static int brcmstb_nand_probe(struct platform_device *pdev) +{ + return brcmnand_probe(pdev, NULL); +} + +static struct platform_driver brcmstb_nand_driver = { + .probe = brcmstb_nand_probe, + .remove = brcmnand_remove, + .driver = { + .name = "brcmstb_nand", + .pm = &brcmnand_pm_ops, + .of_match_table = brcmstb_nand_of_match, + } +}; +module_platform_driver(brcmstb_nand_driver); + +MODULE_LICENSE("GPL v2"); +MODULE_AUTHOR("Brian Norris"); +MODULE_DESCRIPTION("NAND driver for Broadcom STB chips"); diff --git a/drivers/mtd/nand/raw/brcmnand/iproc_nand.c b/drivers/mtd/nand/raw/brcmnand/iproc_nand.c new file mode 100644 index 0000000000..089c70fc6e --- /dev/null +++ b/drivers/mtd/nand/raw/brcmnand/iproc_nand.c @@ -0,0 +1,149 @@ +// SPDX-License-Identifier: GPL-2.0-only +/* + * Copyright © 2015 Broadcom Corporation + */ + +#include <linux/device.h> +#include <linux/io.h> +#include <linux/ioport.h> +#include <linux/module.h> +#include <linux/of.h> +#include <linux/of_address.h> +#include <linux/platform_device.h> +#include <linux/slab.h> + +#include "brcmnand.h" + +struct iproc_nand_soc { + struct brcmnand_soc soc; + + void __iomem *idm_base; + void __iomem *ext_base; + spinlock_t idm_lock; +}; + +#define IPROC_NAND_CTLR_READY_OFFSET 0x10 +#define IPROC_NAND_CTLR_READY BIT(0) + +#define IPROC_NAND_IO_CTRL_OFFSET 0x00 +#define IPROC_NAND_APB_LE_MODE BIT(24) +#define IPROC_NAND_INT_CTRL_READ_ENABLE BIT(6) + +static bool iproc_nand_intc_ack(struct brcmnand_soc *soc) +{ + struct iproc_nand_soc *priv = + container_of(soc, struct iproc_nand_soc, soc); + void __iomem *mmio = priv->ext_base + IPROC_NAND_CTLR_READY_OFFSET; + u32 val = brcmnand_readl(mmio); + + if (val & IPROC_NAND_CTLR_READY) { + brcmnand_writel(IPROC_NAND_CTLR_READY, mmio); + return true; + } + + return false; +} + +static void iproc_nand_intc_set(struct brcmnand_soc *soc, bool en) +{ + struct iproc_nand_soc *priv = + container_of(soc, struct iproc_nand_soc, soc); + void __iomem *mmio = priv->idm_base + IPROC_NAND_IO_CTRL_OFFSET; + u32 val; + unsigned long flags; + + spin_lock_irqsave(&priv->idm_lock, flags); + + val = brcmnand_readl(mmio); + + if (en) + val |= IPROC_NAND_INT_CTRL_READ_ENABLE; + else + val &= ~IPROC_NAND_INT_CTRL_READ_ENABLE; + + brcmnand_writel(val, mmio); + + spin_unlock_irqrestore(&priv->idm_lock, flags); +} + +static void iproc_nand_apb_access(struct brcmnand_soc *soc, bool prepare, + bool is_param) +{ + struct iproc_nand_soc *priv = + container_of(soc, struct iproc_nand_soc, soc); + void __iomem *mmio = priv->idm_base + IPROC_NAND_IO_CTRL_OFFSET; + u32 val; + unsigned long flags; + + spin_lock_irqsave(&priv->idm_lock, flags); + + val = brcmnand_readl(mmio); + + /* + * In the case of BE or when dealing with NAND data, alway configure + * the APB bus to LE mode before accessing the FIFO and back to BE mode + * after the access is done + */ + if (IS_ENABLED(CONFIG_CPU_BIG_ENDIAN) || !is_param) { + if (prepare) + val |= IPROC_NAND_APB_LE_MODE; + else + val &= ~IPROC_NAND_APB_LE_MODE; + } else { /* when in LE accessing the parameter page, keep APB in BE */ + val &= ~IPROC_NAND_APB_LE_MODE; + } + + brcmnand_writel(val, mmio); + + spin_unlock_irqrestore(&priv->idm_lock, flags); +} + +static int iproc_nand_probe(struct platform_device *pdev) +{ + struct device *dev = &pdev->dev; + struct iproc_nand_soc *priv; + struct brcmnand_soc *soc; + + priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL); + if (!priv) + return -ENOMEM; + soc = &priv->soc; + + spin_lock_init(&priv->idm_lock); + + priv->idm_base = devm_platform_ioremap_resource_byname(pdev, "iproc-idm"); + if (IS_ERR(priv->idm_base)) + return PTR_ERR(priv->idm_base); + + priv->ext_base = devm_platform_ioremap_resource_byname(pdev, "iproc-ext"); + if (IS_ERR(priv->ext_base)) + return PTR_ERR(priv->ext_base); + + soc->ctlrdy_ack = iproc_nand_intc_ack; + soc->ctlrdy_set_enabled = iproc_nand_intc_set; + soc->prepare_data_bus = iproc_nand_apb_access; + + return brcmnand_probe(pdev, soc); +} + +static const struct of_device_id iproc_nand_of_match[] = { + { .compatible = "brcm,nand-iproc" }, + {}, +}; +MODULE_DEVICE_TABLE(of, iproc_nand_of_match); + +static struct platform_driver iproc_nand_driver = { + .probe = iproc_nand_probe, + .remove = brcmnand_remove, + .driver = { + .name = "iproc_nand", + .pm = &brcmnand_pm_ops, + .of_match_table = iproc_nand_of_match, + } +}; +module_platform_driver(iproc_nand_driver); + +MODULE_LICENSE("GPL v2"); +MODULE_AUTHOR("Brian Norris"); +MODULE_AUTHOR("Ray Jui"); +MODULE_DESCRIPTION("NAND driver for Broadcom IPROC-based SoCs"); diff --git a/drivers/mtd/nand/raw/cadence-nand-controller.c b/drivers/mtd/nand/raw/cadence-nand-controller.c new file mode 100644 index 0000000000..034ec564c2 --- /dev/null +++ b/drivers/mtd/nand/raw/cadence-nand-controller.c @@ -0,0 +1,3079 @@ +// SPDX-License-Identifier: GPL-2.0+ +/* + * Cadence NAND flash controller driver + * + * Copyright (C) 2019 Cadence + * + * Author: Piotr Sroka <piotrs@cadence.com> + */ + +#include <linux/bitfield.h> +#include <linux/clk.h> +#include <linux/dma-mapping.h> +#include <linux/dmaengine.h> +#include <linux/interrupt.h> +#include <linux/module.h> +#include <linux/mtd/mtd.h> +#include <linux/mtd/rawnand.h> +#include <linux/of_device.h> +#include <linux/iopoll.h> +#include <linux/slab.h> + +/* + * HPNFC can work in 3 modes: + * - PIO - can work in master or slave DMA + * - CDMA - needs Master DMA for accessing command descriptors. + * - Generic mode - can use only slave DMA. + * CDMA and PIO modes can be used to execute only base commands. + * Generic mode can be used to execute any command + * on NAND flash memory. Driver uses CDMA mode for + * block erasing, page reading, page programing. + * Generic mode is used for executing rest of commands. + */ + +#define MAX_ADDRESS_CYC 6 +#define MAX_ERASE_ADDRESS_CYC 3 +#define MAX_DATA_SIZE 0xFFFC +#define DMA_DATA_SIZE_ALIGN 8 + +/* Register definition. */ +/* + * Command register 0. + * Writing data to this register will initiate a new transaction + * of the NF controller. + */ +#define CMD_REG0 0x0000 +/* Command type field mask. */ +#define CMD_REG0_CT GENMASK(31, 30) +/* Command type CDMA. */ +#define CMD_REG0_CT_CDMA 0uL +/* Command type generic. */ +#define CMD_REG0_CT_GEN 3uL +/* Command thread number field mask. */ +#define CMD_REG0_TN GENMASK(27, 24) + +/* Command register 2. */ +#define CMD_REG2 0x0008 +/* Command register 3. */ +#define CMD_REG3 0x000C +/* Pointer register to select which thread status will be selected. */ +#define CMD_STATUS_PTR 0x0010 +/* Command status register for selected thread. */ +#define CMD_STATUS 0x0014 + +/* Interrupt status register. */ +#define INTR_STATUS 0x0110 +#define INTR_STATUS_SDMA_ERR BIT(22) +#define INTR_STATUS_SDMA_TRIGG BIT(21) +#define INTR_STATUS_UNSUPP_CMD BIT(19) +#define INTR_STATUS_DDMA_TERR BIT(18) +#define INTR_STATUS_CDMA_TERR BIT(17) +#define INTR_STATUS_CDMA_IDL BIT(16) + +/* Interrupt enable register. */ +#define INTR_ENABLE 0x0114 +#define INTR_ENABLE_INTR_EN BIT(31) +#define INTR_ENABLE_SDMA_ERR_EN BIT(22) +#define INTR_ENABLE_SDMA_TRIGG_EN BIT(21) +#define INTR_ENABLE_UNSUPP_CMD_EN BIT(19) +#define INTR_ENABLE_DDMA_TERR_EN BIT(18) +#define INTR_ENABLE_CDMA_TERR_EN BIT(17) +#define INTR_ENABLE_CDMA_IDLE_EN BIT(16) + +/* Controller internal state. */ +#define CTRL_STATUS 0x0118 +#define CTRL_STATUS_INIT_COMP BIT(9) +#define CTRL_STATUS_CTRL_BUSY BIT(8) + +/* Command Engine threads state. */ +#define TRD_STATUS 0x0120 + +/* Command Engine interrupt thread error status. */ +#define TRD_ERR_INT_STATUS 0x0128 +/* Command Engine interrupt thread error enable. */ +#define TRD_ERR_INT_STATUS_EN 0x0130 +/* Command Engine interrupt thread complete status. */ +#define TRD_COMP_INT_STATUS 0x0138 + +/* + * Transfer config 0 register. + * Configures data transfer parameters. + */ +#define TRAN_CFG_0 0x0400 +/* Offset value from the beginning of the page. */ +#define TRAN_CFG_0_OFFSET GENMASK(31, 16) +/* Numbers of sectors to transfer within singlNF device's page. */ +#define TRAN_CFG_0_SEC_CNT GENMASK(7, 0) + +/* + * Transfer config 1 register. + * Configures data transfer parameters. + */ +#define TRAN_CFG_1 0x0404 +/* Size of last data sector. */ +#define TRAN_CFG_1_LAST_SEC_SIZE GENMASK(31, 16) +/* Size of not-last data sector. */ +#define TRAN_CFG_1_SECTOR_SIZE GENMASK(15, 0) + +/* ECC engine configuration register 0. */ +#define ECC_CONFIG_0 0x0428 +/* Correction strength. */ +#define ECC_CONFIG_0_CORR_STR GENMASK(10, 8) +/* Enable erased pages detection mechanism. */ +#define ECC_CONFIG_0_ERASE_DET_EN BIT(1) +/* Enable controller ECC check bits generation and correction. */ +#define ECC_CONFIG_0_ECC_EN BIT(0) + +/* ECC engine configuration register 1. */ +#define ECC_CONFIG_1 0x042C + +/* Multiplane settings register. */ +#define MULTIPLANE_CFG 0x0434 +/* Cache operation settings. */ +#define CACHE_CFG 0x0438 + +/* DMA settings register. */ +#define DMA_SETINGS 0x043C +/* Enable SDMA error report on access unprepared slave DMA interface. */ +#define DMA_SETINGS_SDMA_ERR_RSP BIT(17) + +/* Transferred data block size for the slave DMA module. */ +#define SDMA_SIZE 0x0440 + +/* Thread number associated with transferred data block + * for the slave DMA module. + */ +#define SDMA_TRD_NUM 0x0444 +/* Thread number mask. */ +#define SDMA_TRD_NUM_SDMA_TRD GENMASK(2, 0) + +#define CONTROL_DATA_CTRL 0x0494 +/* Thread number mask. */ +#define CONTROL_DATA_CTRL_SIZE GENMASK(15, 0) + +#define CTRL_VERSION 0x800 +#define CTRL_VERSION_REV GENMASK(7, 0) + +/* Available hardware features of the controller. */ +#define CTRL_FEATURES 0x804 +/* Support for NV-DDR2/3 work mode. */ +#define CTRL_FEATURES_NVDDR_2_3 BIT(28) +/* Support for NV-DDR work mode. */ +#define CTRL_FEATURES_NVDDR BIT(27) +/* Support for asynchronous work mode. */ +#define CTRL_FEATURES_ASYNC BIT(26) +/* Support for asynchronous work mode. */ +#define CTRL_FEATURES_N_BANKS GENMASK(25, 24) +/* Slave and Master DMA data width. */ +#define CTRL_FEATURES_DMA_DWITH64 BIT(21) +/* Availability of Control Data feature.*/ +#define CTRL_FEATURES_CONTROL_DATA BIT(10) + +/* BCH Engine identification register 0 - correction strengths. */ +#define BCH_CFG_0 0x838 +#define BCH_CFG_0_CORR_CAP_0 GENMASK(7, 0) +#define BCH_CFG_0_CORR_CAP_1 GENMASK(15, 8) +#define BCH_CFG_0_CORR_CAP_2 GENMASK(23, 16) +#define BCH_CFG_0_CORR_CAP_3 GENMASK(31, 24) + +/* BCH Engine identification register 1 - correction strengths. */ +#define BCH_CFG_1 0x83C +#define BCH_CFG_1_CORR_CAP_4 GENMASK(7, 0) +#define BCH_CFG_1_CORR_CAP_5 GENMASK(15, 8) +#define BCH_CFG_1_CORR_CAP_6 GENMASK(23, 16) +#define BCH_CFG_1_CORR_CAP_7 GENMASK(31, 24) + +/* BCH Engine identification register 2 - sector sizes. */ +#define BCH_CFG_2 0x840 +#define BCH_CFG_2_SECT_0 GENMASK(15, 0) +#define BCH_CFG_2_SECT_1 GENMASK(31, 16) + +/* BCH Engine identification register 3. */ +#define BCH_CFG_3 0x844 +#define BCH_CFG_3_METADATA_SIZE GENMASK(23, 16) + +/* Ready/Busy# line status. */ +#define RBN_SETINGS 0x1004 + +/* Common settings. */ +#define COMMON_SET 0x1008 +/* 16 bit device connected to the NAND Flash interface. */ +#define COMMON_SET_DEVICE_16BIT BIT(8) + +/* Skip_bytes registers. */ +#define SKIP_BYTES_CONF 0x100C +#define SKIP_BYTES_MARKER_VALUE GENMASK(31, 16) +#define SKIP_BYTES_NUM_OF_BYTES GENMASK(7, 0) + +#define SKIP_BYTES_OFFSET 0x1010 +#define SKIP_BYTES_OFFSET_VALUE GENMASK(23, 0) + +/* Timings configuration. */ +#define ASYNC_TOGGLE_TIMINGS 0x101c +#define ASYNC_TOGGLE_TIMINGS_TRH GENMASK(28, 24) +#define ASYNC_TOGGLE_TIMINGS_TRP GENMASK(20, 16) +#define ASYNC_TOGGLE_TIMINGS_TWH GENMASK(12, 8) +#define ASYNC_TOGGLE_TIMINGS_TWP GENMASK(4, 0) + +#define TIMINGS0 0x1024 +#define TIMINGS0_TADL GENMASK(31, 24) +#define TIMINGS0_TCCS GENMASK(23, 16) +#define TIMINGS0_TWHR GENMASK(15, 8) +#define TIMINGS0_TRHW GENMASK(7, 0) + +#define TIMINGS1 0x1028 +#define TIMINGS1_TRHZ GENMASK(31, 24) +#define TIMINGS1_TWB GENMASK(23, 16) +#define TIMINGS1_TVDLY GENMASK(7, 0) + +#define TIMINGS2 0x102c +#define TIMINGS2_TFEAT GENMASK(25, 16) +#define TIMINGS2_CS_HOLD_TIME GENMASK(13, 8) +#define TIMINGS2_CS_SETUP_TIME GENMASK(5, 0) + +/* Configuration of the resynchronization of slave DLL of PHY. */ +#define DLL_PHY_CTRL 0x1034 +#define DLL_PHY_CTRL_DLL_RST_N BIT(24) +#define DLL_PHY_CTRL_EXTENDED_WR_MODE BIT(17) +#define DLL_PHY_CTRL_EXTENDED_RD_MODE BIT(16) +#define DLL_PHY_CTRL_RS_HIGH_WAIT_CNT GENMASK(11, 8) +#define DLL_PHY_CTRL_RS_IDLE_CNT GENMASK(7, 0) + +/* Register controlling DQ related timing. */ +#define PHY_DQ_TIMING 0x2000 +/* Register controlling DSQ related timing. */ +#define PHY_DQS_TIMING 0x2004 +#define PHY_DQS_TIMING_DQS_SEL_OE_END GENMASK(3, 0) +#define PHY_DQS_TIMING_PHONY_DQS_SEL BIT(16) +#define PHY_DQS_TIMING_USE_PHONY_DQS BIT(20) + +/* Register controlling the gate and loopback control related timing. */ +#define PHY_GATE_LPBK_CTRL 0x2008 +#define PHY_GATE_LPBK_CTRL_RDS GENMASK(24, 19) + +/* Register holds the control for the master DLL logic. */ +#define PHY_DLL_MASTER_CTRL 0x200C +#define PHY_DLL_MASTER_CTRL_BYPASS_MODE BIT(23) + +/* Register holds the control for the slave DLL logic. */ +#define PHY_DLL_SLAVE_CTRL 0x2010 + +/* This register handles the global control settings for the PHY. */ +#define PHY_CTRL 0x2080 +#define PHY_CTRL_SDR_DQS BIT(14) +#define PHY_CTRL_PHONY_DQS GENMASK(9, 4) + +/* + * This register handles the global control settings + * for the termination selects for reads. + */ +#define PHY_TSEL 0x2084 + +/* Generic command layout. */ +#define GCMD_LAY_CS GENMASK_ULL(11, 8) +/* + * This bit informs the minicotroller if it has to wait for tWB + * after sending the last CMD/ADDR/DATA in the sequence. + */ +#define GCMD_LAY_TWB BIT_ULL(6) +/* Type of generic instruction. */ +#define GCMD_LAY_INSTR GENMASK_ULL(5, 0) + +/* Generic CMD sequence type. */ +#define GCMD_LAY_INSTR_CMD 0 +/* Generic ADDR sequence type. */ +#define GCMD_LAY_INSTR_ADDR 1 +/* Generic data transfer sequence type. */ +#define GCMD_LAY_INSTR_DATA 2 + +/* Input part of generic command type of input is command. */ +#define GCMD_LAY_INPUT_CMD GENMASK_ULL(23, 16) + +/* Generic command address sequence - address fields. */ +#define GCMD_LAY_INPUT_ADDR GENMASK_ULL(63, 16) +/* Generic command address sequence - address size. */ +#define GCMD_LAY_INPUT_ADDR_SIZE GENMASK_ULL(13, 11) + +/* Transfer direction field of generic command data sequence. */ +#define GCMD_DIR BIT_ULL(11) +/* Read transfer direction of generic command data sequence. */ +#define GCMD_DIR_READ 0 +/* Write transfer direction of generic command data sequence. */ +#define GCMD_DIR_WRITE 1 + +/* ECC enabled flag of generic command data sequence - ECC enabled. */ +#define GCMD_ECC_EN BIT_ULL(12) +/* Generic command data sequence - sector size. */ +#define GCMD_SECT_SIZE GENMASK_ULL(31, 16) +/* Generic command data sequence - sector count. */ +#define GCMD_SECT_CNT GENMASK_ULL(39, 32) +/* Generic command data sequence - last sector size. */ +#define GCMD_LAST_SIZE GENMASK_ULL(55, 40) + +/* CDMA descriptor fields. */ +/* Erase command type of CDMA descriptor. */ +#define CDMA_CT_ERASE 0x1000 +/* Program page command type of CDMA descriptor. */ +#define CDMA_CT_WR 0x2100 +/* Read page command type of CDMA descriptor. */ +#define CDMA_CT_RD 0x2200 + +/* Flash pointer memory shift. */ +#define CDMA_CFPTR_MEM_SHIFT 24 +/* Flash pointer memory mask. */ +#define CDMA_CFPTR_MEM GENMASK(26, 24) + +/* + * Command DMA descriptor flags. If set causes issue interrupt after + * the completion of descriptor processing. + */ +#define CDMA_CF_INT BIT(8) +/* + * Command DMA descriptor flags - the next descriptor + * address field is valid and descriptor processing should continue. + */ +#define CDMA_CF_CONT BIT(9) +/* DMA master flag of command DMA descriptor. */ +#define CDMA_CF_DMA_MASTER BIT(10) + +/* Operation complete status of command descriptor. */ +#define CDMA_CS_COMP BIT(15) +/* Operation complete status of command descriptor. */ +/* Command descriptor status - operation fail. */ +#define CDMA_CS_FAIL BIT(14) +/* Command descriptor status - page erased. */ +#define CDMA_CS_ERP BIT(11) +/* Command descriptor status - timeout occurred. */ +#define CDMA_CS_TOUT BIT(10) +/* + * Maximum amount of correction applied to one ECC sector. + * It is part of command descriptor status. + */ +#define CDMA_CS_MAXERR GENMASK(9, 2) +/* Command descriptor status - uncorrectable ECC error. */ +#define CDMA_CS_UNCE BIT(1) +/* Command descriptor status - descriptor error. */ +#define CDMA_CS_ERR BIT(0) + +/* Status of operation - OK. */ +#define STAT_OK 0 +/* Status of operation - FAIL. */ +#define STAT_FAIL 2 +/* Status of operation - uncorrectable ECC error. */ +#define STAT_ECC_UNCORR 3 +/* Status of operation - page erased. */ +#define STAT_ERASED 5 +/* Status of operation - correctable ECC error. */ +#define STAT_ECC_CORR 6 +/* Status of operation - unsuspected state. */ +#define STAT_UNKNOWN 7 +/* Status of operation - operation is not completed yet. */ +#define STAT_BUSY 0xFF + +#define BCH_MAX_NUM_CORR_CAPS 8 +#define BCH_MAX_NUM_SECTOR_SIZES 2 + +struct cadence_nand_timings { + u32 async_toggle_timings; + u32 timings0; + u32 timings1; + u32 timings2; + u32 dll_phy_ctrl; + u32 phy_ctrl; + u32 phy_dqs_timing; + u32 phy_gate_lpbk_ctrl; +}; + +/* Command DMA descriptor. */ +struct cadence_nand_cdma_desc { + /* Next descriptor address. */ + u64 next_pointer; + + /* Flash address is a 32-bit address comprising of BANK and ROW ADDR. */ + u32 flash_pointer; + /*field appears in HPNFC version 13*/ + u16 bank; + u16 rsvd0; + + /* Operation the controller needs to perform. */ + u16 command_type; + u16 rsvd1; + /* Flags for operation of this command. */ + u16 command_flags; + u16 rsvd2; + + /* System/host memory address required for data DMA commands. */ + u64 memory_pointer; + + /* Status of operation. */ + u32 status; + u32 rsvd3; + + /* Address pointer to sync buffer location. */ + u64 sync_flag_pointer; + + /* Controls the buffer sync mechanism. */ + u32 sync_arguments; + u32 rsvd4; + + /* Control data pointer. */ + u64 ctrl_data_ptr; +}; + +/* Interrupt status. */ +struct cadence_nand_irq_status { + /* Thread operation complete status. */ + u32 trd_status; + /* Thread operation error. */ + u32 trd_error; + /* Controller status. */ + u32 status; +}; + +/* Cadence NAND flash controller capabilities get from driver data. */ +struct cadence_nand_dt_devdata { + /* Skew value of the output signals of the NAND Flash interface. */ + u32 if_skew; + /* It informs if slave DMA interface is connected to DMA engine. */ + unsigned int has_dma:1; +}; + +/* Cadence NAND flash controller capabilities read from registers. */ +struct cdns_nand_caps { + /* Maximum number of banks supported by hardware. */ + u8 max_banks; + /* Slave and Master DMA data width in bytes (4 or 8). */ + u8 data_dma_width; + /* Control Data feature supported. */ + bool data_control_supp; + /* Is PHY type DLL. */ + bool is_phy_type_dll; +}; + +struct cdns_nand_ctrl { + struct device *dev; + struct nand_controller controller; + struct cadence_nand_cdma_desc *cdma_desc; + /* IP capability. */ + const struct cadence_nand_dt_devdata *caps1; + struct cdns_nand_caps caps2; + u8 ctrl_rev; + dma_addr_t dma_cdma_desc; + u8 *buf; + u32 buf_size; + u8 curr_corr_str_idx; + + /* Register interface. */ + void __iomem *reg; + + struct { + void __iomem *virt; + dma_addr_t dma; + } io; + + int irq; + /* Interrupts that have happened. */ + struct cadence_nand_irq_status irq_status; + /* Interrupts we are waiting for. */ + struct cadence_nand_irq_status irq_mask; + struct completion complete; + /* Protect irq_mask and irq_status. */ + spinlock_t irq_lock; + + int ecc_strengths[BCH_MAX_NUM_CORR_CAPS]; + struct nand_ecc_step_info ecc_stepinfos[BCH_MAX_NUM_SECTOR_SIZES]; + struct nand_ecc_caps ecc_caps; + + int curr_trans_type; + + struct dma_chan *dmac; + + u32 nf_clk_rate; + /* + * Estimated Board delay. The value includes the total + * round trip delay for the signals and is used for deciding on values + * associated with data read capture. + */ + u32 board_delay; + + struct nand_chip *selected_chip; + + unsigned long assigned_cs; + struct list_head chips; + u8 bch_metadata_size; +}; + +struct cdns_nand_chip { + struct cadence_nand_timings timings; + struct nand_chip chip; + u8 nsels; + struct list_head node; + + /* + * part of oob area of NAND flash memory page. + * This part is available for user to read or write. + */ + u32 avail_oob_size; + + /* Sector size. There are few sectors per mtd->writesize */ + u32 sector_size; + u32 sector_count; + + /* Offset of BBM. */ + u8 bbm_offs; + /* Number of bytes reserved for BBM. */ + u8 bbm_len; + /* ECC strength index. */ + u8 corr_str_idx; + + u8 cs[]; +}; + +struct ecc_info { + int (*calc_ecc_bytes)(int step_size, int strength); + int max_step_size; +}; + +static inline struct +cdns_nand_chip *to_cdns_nand_chip(struct nand_chip *chip) +{ + return container_of(chip, struct cdns_nand_chip, chip); +} + +static inline struct +cdns_nand_ctrl *to_cdns_nand_ctrl(struct nand_controller *controller) +{ + return container_of(controller, struct cdns_nand_ctrl, controller); +} + +static bool +cadence_nand_dma_buf_ok(struct cdns_nand_ctrl *cdns_ctrl, const void *buf, + u32 buf_len) +{ + u8 data_dma_width = cdns_ctrl->caps2.data_dma_width; + + return buf && virt_addr_valid(buf) && + likely(IS_ALIGNED((uintptr_t)buf, data_dma_width)) && + likely(IS_ALIGNED(buf_len, DMA_DATA_SIZE_ALIGN)); +} + +static int cadence_nand_wait_for_value(struct cdns_nand_ctrl *cdns_ctrl, + u32 reg_offset, u32 timeout_us, + u32 mask, bool is_clear) +{ + u32 val; + int ret; + + ret = readl_relaxed_poll_timeout(cdns_ctrl->reg + reg_offset, + val, !(val & mask) == is_clear, + 10, timeout_us); + + if (ret < 0) { + dev_err(cdns_ctrl->dev, + "Timeout while waiting for reg %x with mask %x is clear %d\n", + reg_offset, mask, is_clear); + } + + return ret; +} + +static int cadence_nand_set_ecc_enable(struct cdns_nand_ctrl *cdns_ctrl, + bool enable) +{ + u32 reg; + + if (cadence_nand_wait_for_value(cdns_ctrl, CTRL_STATUS, + 1000000, + CTRL_STATUS_CTRL_BUSY, true)) + return -ETIMEDOUT; + + reg = readl_relaxed(cdns_ctrl->reg + ECC_CONFIG_0); + + if (enable) + reg |= ECC_CONFIG_0_ECC_EN; + else + reg &= ~ECC_CONFIG_0_ECC_EN; + + writel_relaxed(reg, cdns_ctrl->reg + ECC_CONFIG_0); + + return 0; +} + +static void cadence_nand_set_ecc_strength(struct cdns_nand_ctrl *cdns_ctrl, + u8 corr_str_idx) +{ + u32 reg; + + if (cdns_ctrl->curr_corr_str_idx == corr_str_idx) + return; + + reg = readl_relaxed(cdns_ctrl->reg + ECC_CONFIG_0); + reg &= ~ECC_CONFIG_0_CORR_STR; + reg |= FIELD_PREP(ECC_CONFIG_0_CORR_STR, corr_str_idx); + writel_relaxed(reg, cdns_ctrl->reg + ECC_CONFIG_0); + + cdns_ctrl->curr_corr_str_idx = corr_str_idx; +} + +static int cadence_nand_get_ecc_strength_idx(struct cdns_nand_ctrl *cdns_ctrl, + u8 strength) +{ + int i, corr_str_idx = -1; + + for (i = 0; i < BCH_MAX_NUM_CORR_CAPS; i++) { + if (cdns_ctrl->ecc_strengths[i] == strength) { + corr_str_idx = i; + break; + } + } + + return corr_str_idx; +} + +static int cadence_nand_set_skip_marker_val(struct cdns_nand_ctrl *cdns_ctrl, + u16 marker_value) +{ + u32 reg; + + if (cadence_nand_wait_for_value(cdns_ctrl, CTRL_STATUS, + 1000000, + CTRL_STATUS_CTRL_BUSY, true)) + return -ETIMEDOUT; + + reg = readl_relaxed(cdns_ctrl->reg + SKIP_BYTES_CONF); + reg &= ~SKIP_BYTES_MARKER_VALUE; + reg |= FIELD_PREP(SKIP_BYTES_MARKER_VALUE, + marker_value); + + writel_relaxed(reg, cdns_ctrl->reg + SKIP_BYTES_CONF); + + return 0; +} + +static int cadence_nand_set_skip_bytes_conf(struct cdns_nand_ctrl *cdns_ctrl, + u8 num_of_bytes, + u32 offset_value, + int enable) +{ + u32 reg, skip_bytes_offset; + + if (cadence_nand_wait_for_value(cdns_ctrl, CTRL_STATUS, + 1000000, + CTRL_STATUS_CTRL_BUSY, true)) + return -ETIMEDOUT; + + if (!enable) { + num_of_bytes = 0; + offset_value = 0; + } + + reg = readl_relaxed(cdns_ctrl->reg + SKIP_BYTES_CONF); + reg &= ~SKIP_BYTES_NUM_OF_BYTES; + reg |= FIELD_PREP(SKIP_BYTES_NUM_OF_BYTES, + num_of_bytes); + skip_bytes_offset = FIELD_PREP(SKIP_BYTES_OFFSET_VALUE, + offset_value); + + writel_relaxed(reg, cdns_ctrl->reg + SKIP_BYTES_CONF); + writel_relaxed(skip_bytes_offset, cdns_ctrl->reg + SKIP_BYTES_OFFSET); + + return 0; +} + +/* Functions enables/disables hardware detection of erased data */ +static void cadence_nand_set_erase_detection(struct cdns_nand_ctrl *cdns_ctrl, + bool enable, + u8 bitflips_threshold) +{ + u32 reg; + + reg = readl_relaxed(cdns_ctrl->reg + ECC_CONFIG_0); + + if (enable) + reg |= ECC_CONFIG_0_ERASE_DET_EN; + else + reg &= ~ECC_CONFIG_0_ERASE_DET_EN; + + writel_relaxed(reg, cdns_ctrl->reg + ECC_CONFIG_0); + writel_relaxed(bitflips_threshold, cdns_ctrl->reg + ECC_CONFIG_1); +} + +static int cadence_nand_set_access_width16(struct cdns_nand_ctrl *cdns_ctrl, + bool bit_bus16) +{ + u32 reg; + + if (cadence_nand_wait_for_value(cdns_ctrl, CTRL_STATUS, + 1000000, + CTRL_STATUS_CTRL_BUSY, true)) + return -ETIMEDOUT; + + reg = readl_relaxed(cdns_ctrl->reg + COMMON_SET); + + if (!bit_bus16) + reg &= ~COMMON_SET_DEVICE_16BIT; + else + reg |= COMMON_SET_DEVICE_16BIT; + writel_relaxed(reg, cdns_ctrl->reg + COMMON_SET); + + return 0; +} + +static void +cadence_nand_clear_interrupt(struct cdns_nand_ctrl *cdns_ctrl, + struct cadence_nand_irq_status *irq_status) +{ + writel_relaxed(irq_status->status, cdns_ctrl->reg + INTR_STATUS); + writel_relaxed(irq_status->trd_status, + cdns_ctrl->reg + TRD_COMP_INT_STATUS); + writel_relaxed(irq_status->trd_error, + cdns_ctrl->reg + TRD_ERR_INT_STATUS); +} + +static void +cadence_nand_read_int_status(struct cdns_nand_ctrl *cdns_ctrl, + struct cadence_nand_irq_status *irq_status) +{ + irq_status->status = readl_relaxed(cdns_ctrl->reg + INTR_STATUS); + irq_status->trd_status = readl_relaxed(cdns_ctrl->reg + + TRD_COMP_INT_STATUS); + irq_status->trd_error = readl_relaxed(cdns_ctrl->reg + + TRD_ERR_INT_STATUS); +} + +static u32 irq_detected(struct cdns_nand_ctrl *cdns_ctrl, + struct cadence_nand_irq_status *irq_status) +{ + cadence_nand_read_int_status(cdns_ctrl, irq_status); + + return irq_status->status || irq_status->trd_status || + irq_status->trd_error; +} + +static void cadence_nand_reset_irq(struct cdns_nand_ctrl *cdns_ctrl) +{ + unsigned long flags; + + spin_lock_irqsave(&cdns_ctrl->irq_lock, flags); + memset(&cdns_ctrl->irq_status, 0, sizeof(cdns_ctrl->irq_status)); + memset(&cdns_ctrl->irq_mask, 0, sizeof(cdns_ctrl->irq_mask)); + spin_unlock_irqrestore(&cdns_ctrl->irq_lock, flags); +} + +/* + * This is the interrupt service routine. It handles all interrupts + * sent to this device. + */ +static irqreturn_t cadence_nand_isr(int irq, void *dev_id) +{ + struct cdns_nand_ctrl *cdns_ctrl = dev_id; + struct cadence_nand_irq_status irq_status; + irqreturn_t result = IRQ_NONE; + + spin_lock(&cdns_ctrl->irq_lock); + + if (irq_detected(cdns_ctrl, &irq_status)) { + /* Handle interrupt. */ + /* First acknowledge it. */ + cadence_nand_clear_interrupt(cdns_ctrl, &irq_status); + /* Status in the device context for someone to read. */ + cdns_ctrl->irq_status.status |= irq_status.status; + cdns_ctrl->irq_status.trd_status |= irq_status.trd_status; + cdns_ctrl->irq_status.trd_error |= irq_status.trd_error; + /* Notify anyone who cares that it happened. */ + complete(&cdns_ctrl->complete); + /* Tell the OS that we've handled this. */ + result = IRQ_HANDLED; + } + spin_unlock(&cdns_ctrl->irq_lock); + + return result; +} + +static void cadence_nand_set_irq_mask(struct cdns_nand_ctrl *cdns_ctrl, + struct cadence_nand_irq_status *irq_mask) +{ + writel_relaxed(INTR_ENABLE_INTR_EN | irq_mask->status, + cdns_ctrl->reg + INTR_ENABLE); + + writel_relaxed(irq_mask->trd_error, + cdns_ctrl->reg + TRD_ERR_INT_STATUS_EN); +} + +static void +cadence_nand_wait_for_irq(struct cdns_nand_ctrl *cdns_ctrl, + struct cadence_nand_irq_status *irq_mask, + struct cadence_nand_irq_status *irq_status) +{ + unsigned long timeout = msecs_to_jiffies(10000); + unsigned long time_left; + + time_left = wait_for_completion_timeout(&cdns_ctrl->complete, + timeout); + + *irq_status = cdns_ctrl->irq_status; + if (time_left == 0) { + /* Timeout error. */ + dev_err(cdns_ctrl->dev, "timeout occurred:\n"); + dev_err(cdns_ctrl->dev, "\tstatus = 0x%x, mask = 0x%x\n", + irq_status->status, irq_mask->status); + dev_err(cdns_ctrl->dev, + "\ttrd_status = 0x%x, trd_status mask = 0x%x\n", + irq_status->trd_status, irq_mask->trd_status); + dev_err(cdns_ctrl->dev, + "\t trd_error = 0x%x, trd_error mask = 0x%x\n", + irq_status->trd_error, irq_mask->trd_error); + } +} + +/* Execute generic command on NAND controller. */ +static int cadence_nand_generic_cmd_send(struct cdns_nand_ctrl *cdns_ctrl, + u8 chip_nr, + u64 mini_ctrl_cmd) +{ + u32 mini_ctrl_cmd_l, mini_ctrl_cmd_h, reg; + + mini_ctrl_cmd |= FIELD_PREP(GCMD_LAY_CS, chip_nr); + mini_ctrl_cmd_l = mini_ctrl_cmd & 0xFFFFFFFF; + mini_ctrl_cmd_h = mini_ctrl_cmd >> 32; + + if (cadence_nand_wait_for_value(cdns_ctrl, CTRL_STATUS, + 1000000, + CTRL_STATUS_CTRL_BUSY, true)) + return -ETIMEDOUT; + + cadence_nand_reset_irq(cdns_ctrl); + + writel_relaxed(mini_ctrl_cmd_l, cdns_ctrl->reg + CMD_REG2); + writel_relaxed(mini_ctrl_cmd_h, cdns_ctrl->reg + CMD_REG3); + + /* Select generic command. */ + reg = FIELD_PREP(CMD_REG0_CT, CMD_REG0_CT_GEN); + /* Thread number. */ + reg |= FIELD_PREP(CMD_REG0_TN, 0); + + /* Issue command. */ + writel_relaxed(reg, cdns_ctrl->reg + CMD_REG0); + + return 0; +} + +/* Wait for data on slave DMA interface. */ +static int cadence_nand_wait_on_sdma(struct cdns_nand_ctrl *cdns_ctrl, + u8 *out_sdma_trd, + u32 *out_sdma_size) +{ + struct cadence_nand_irq_status irq_mask, irq_status; + + irq_mask.trd_status = 0; + irq_mask.trd_error = 0; + irq_mask.status = INTR_STATUS_SDMA_TRIGG + | INTR_STATUS_SDMA_ERR + | INTR_STATUS_UNSUPP_CMD; + + cadence_nand_set_irq_mask(cdns_ctrl, &irq_mask); + cadence_nand_wait_for_irq(cdns_ctrl, &irq_mask, &irq_status); + if (irq_status.status == 0) { + dev_err(cdns_ctrl->dev, "Timeout while waiting for SDMA\n"); + return -ETIMEDOUT; + } + + if (irq_status.status & INTR_STATUS_SDMA_TRIGG) { + *out_sdma_size = readl_relaxed(cdns_ctrl->reg + SDMA_SIZE); + *out_sdma_trd = readl_relaxed(cdns_ctrl->reg + SDMA_TRD_NUM); + *out_sdma_trd = + FIELD_GET(SDMA_TRD_NUM_SDMA_TRD, *out_sdma_trd); + } else { + dev_err(cdns_ctrl->dev, "SDMA error - irq_status %x\n", + irq_status.status); + return -EIO; + } + + return 0; +} + +static void cadence_nand_get_caps(struct cdns_nand_ctrl *cdns_ctrl) +{ + u32 reg; + + reg = readl_relaxed(cdns_ctrl->reg + CTRL_FEATURES); + + cdns_ctrl->caps2.max_banks = 1 << FIELD_GET(CTRL_FEATURES_N_BANKS, reg); + + if (FIELD_GET(CTRL_FEATURES_DMA_DWITH64, reg)) + cdns_ctrl->caps2.data_dma_width = 8; + else + cdns_ctrl->caps2.data_dma_width = 4; + + if (reg & CTRL_FEATURES_CONTROL_DATA) + cdns_ctrl->caps2.data_control_supp = true; + + if (reg & (CTRL_FEATURES_NVDDR_2_3 + | CTRL_FEATURES_NVDDR)) + cdns_ctrl->caps2.is_phy_type_dll = true; +} + +/* Prepare CDMA descriptor. */ +static void +cadence_nand_cdma_desc_prepare(struct cdns_nand_ctrl *cdns_ctrl, + char nf_mem, u32 flash_ptr, dma_addr_t mem_ptr, + dma_addr_t ctrl_data_ptr, u16 ctype) +{ + struct cadence_nand_cdma_desc *cdma_desc = cdns_ctrl->cdma_desc; + + memset(cdma_desc, 0, sizeof(struct cadence_nand_cdma_desc)); + + /* Set fields for one descriptor. */ + cdma_desc->flash_pointer = flash_ptr; + if (cdns_ctrl->ctrl_rev >= 13) + cdma_desc->bank = nf_mem; + else + cdma_desc->flash_pointer |= (nf_mem << CDMA_CFPTR_MEM_SHIFT); + + cdma_desc->command_flags |= CDMA_CF_DMA_MASTER; + cdma_desc->command_flags |= CDMA_CF_INT; + + cdma_desc->memory_pointer = mem_ptr; + cdma_desc->status = 0; + cdma_desc->sync_flag_pointer = 0; + cdma_desc->sync_arguments = 0; + + cdma_desc->command_type = ctype; + cdma_desc->ctrl_data_ptr = ctrl_data_ptr; +} + +static u8 cadence_nand_check_desc_error(struct cdns_nand_ctrl *cdns_ctrl, + u32 desc_status) +{ + if (desc_status & CDMA_CS_ERP) + return STAT_ERASED; + + if (desc_status & CDMA_CS_UNCE) + return STAT_ECC_UNCORR; + + if (desc_status & CDMA_CS_ERR) { + dev_err(cdns_ctrl->dev, ":CDMA desc error flag detected.\n"); + return STAT_FAIL; + } + + if (FIELD_GET(CDMA_CS_MAXERR, desc_status)) + return STAT_ECC_CORR; + + return STAT_FAIL; +} + +static int cadence_nand_cdma_finish(struct cdns_nand_ctrl *cdns_ctrl) +{ + struct cadence_nand_cdma_desc *desc_ptr = cdns_ctrl->cdma_desc; + u8 status = STAT_BUSY; + + if (desc_ptr->status & CDMA_CS_FAIL) { + status = cadence_nand_check_desc_error(cdns_ctrl, + desc_ptr->status); + dev_err(cdns_ctrl->dev, ":CDMA error %x\n", desc_ptr->status); + } else if (desc_ptr->status & CDMA_CS_COMP) { + /* Descriptor finished with no errors. */ + if (desc_ptr->command_flags & CDMA_CF_CONT) { + dev_info(cdns_ctrl->dev, "DMA unsupported flag is set"); + status = STAT_UNKNOWN; + } else { + /* Last descriptor. */ + status = STAT_OK; + } + } + + return status; +} + +static int cadence_nand_cdma_send(struct cdns_nand_ctrl *cdns_ctrl, + u8 thread) +{ + u32 reg; + int status; + + /* Wait for thread ready. */ + status = cadence_nand_wait_for_value(cdns_ctrl, TRD_STATUS, + 1000000, + BIT(thread), true); + if (status) + return status; + + cadence_nand_reset_irq(cdns_ctrl); + reinit_completion(&cdns_ctrl->complete); + + writel_relaxed((u32)cdns_ctrl->dma_cdma_desc, + cdns_ctrl->reg + CMD_REG2); + writel_relaxed(0, cdns_ctrl->reg + CMD_REG3); + + /* Select CDMA mode. */ + reg = FIELD_PREP(CMD_REG0_CT, CMD_REG0_CT_CDMA); + /* Thread number. */ + reg |= FIELD_PREP(CMD_REG0_TN, thread); + /* Issue command. */ + writel_relaxed(reg, cdns_ctrl->reg + CMD_REG0); + + return 0; +} + +/* Send SDMA command and wait for finish. */ +static u32 +cadence_nand_cdma_send_and_wait(struct cdns_nand_ctrl *cdns_ctrl, + u8 thread) +{ + struct cadence_nand_irq_status irq_mask, irq_status = {0}; + int status; + + irq_mask.trd_status = BIT(thread); + irq_mask.trd_error = BIT(thread); + irq_mask.status = INTR_STATUS_CDMA_TERR; + + cadence_nand_set_irq_mask(cdns_ctrl, &irq_mask); + + status = cadence_nand_cdma_send(cdns_ctrl, thread); + if (status) + return status; + + cadence_nand_wait_for_irq(cdns_ctrl, &irq_mask, &irq_status); + + if (irq_status.status == 0 && irq_status.trd_status == 0 && + irq_status.trd_error == 0) { + dev_err(cdns_ctrl->dev, "CDMA command timeout\n"); + return -ETIMEDOUT; + } + if (irq_status.status & irq_mask.status) { + dev_err(cdns_ctrl->dev, "CDMA command failed\n"); + return -EIO; + } + + return 0; +} + +/* + * ECC size depends on configured ECC strength and on maximum supported + * ECC step size. + */ +static int cadence_nand_calc_ecc_bytes(int max_step_size, int strength) +{ + int nbytes = DIV_ROUND_UP(fls(8 * max_step_size) * strength, 8); + + return ALIGN(nbytes, 2); +} + +#define CADENCE_NAND_CALC_ECC_BYTES(max_step_size) \ + static int \ + cadence_nand_calc_ecc_bytes_##max_step_size(int step_size, \ + int strength)\ + {\ + return cadence_nand_calc_ecc_bytes(max_step_size, strength);\ + } + +CADENCE_NAND_CALC_ECC_BYTES(256) +CADENCE_NAND_CALC_ECC_BYTES(512) +CADENCE_NAND_CALC_ECC_BYTES(1024) +CADENCE_NAND_CALC_ECC_BYTES(2048) +CADENCE_NAND_CALC_ECC_BYTES(4096) + +/* Function reads BCH capabilities. */ +static int cadence_nand_read_bch_caps(struct cdns_nand_ctrl *cdns_ctrl) +{ + struct nand_ecc_caps *ecc_caps = &cdns_ctrl->ecc_caps; + int max_step_size = 0, nstrengths, i; + u32 reg; + + reg = readl_relaxed(cdns_ctrl->reg + BCH_CFG_3); + cdns_ctrl->bch_metadata_size = FIELD_GET(BCH_CFG_3_METADATA_SIZE, reg); + if (cdns_ctrl->bch_metadata_size < 4) { + dev_err(cdns_ctrl->dev, + "Driver needs at least 4 bytes of BCH meta data\n"); + return -EIO; + } + + reg = readl_relaxed(cdns_ctrl->reg + BCH_CFG_0); + cdns_ctrl->ecc_strengths[0] = FIELD_GET(BCH_CFG_0_CORR_CAP_0, reg); + cdns_ctrl->ecc_strengths[1] = FIELD_GET(BCH_CFG_0_CORR_CAP_1, reg); + cdns_ctrl->ecc_strengths[2] = FIELD_GET(BCH_CFG_0_CORR_CAP_2, reg); + cdns_ctrl->ecc_strengths[3] = FIELD_GET(BCH_CFG_0_CORR_CAP_3, reg); + + reg = readl_relaxed(cdns_ctrl->reg + BCH_CFG_1); + cdns_ctrl->ecc_strengths[4] = FIELD_GET(BCH_CFG_1_CORR_CAP_4, reg); + cdns_ctrl->ecc_strengths[5] = FIELD_GET(BCH_CFG_1_CORR_CAP_5, reg); + cdns_ctrl->ecc_strengths[6] = FIELD_GET(BCH_CFG_1_CORR_CAP_6, reg); + cdns_ctrl->ecc_strengths[7] = FIELD_GET(BCH_CFG_1_CORR_CAP_7, reg); + + reg = readl_relaxed(cdns_ctrl->reg + BCH_CFG_2); + cdns_ctrl->ecc_stepinfos[0].stepsize = + FIELD_GET(BCH_CFG_2_SECT_0, reg); + + cdns_ctrl->ecc_stepinfos[1].stepsize = + FIELD_GET(BCH_CFG_2_SECT_1, reg); + + nstrengths = 0; + for (i = 0; i < BCH_MAX_NUM_CORR_CAPS; i++) { + if (cdns_ctrl->ecc_strengths[i] != 0) + nstrengths++; + } + + ecc_caps->nstepinfos = 0; + for (i = 0; i < BCH_MAX_NUM_SECTOR_SIZES; i++) { + /* ECC strengths are common for all step infos. */ + cdns_ctrl->ecc_stepinfos[i].nstrengths = nstrengths; + cdns_ctrl->ecc_stepinfos[i].strengths = + cdns_ctrl->ecc_strengths; + + if (cdns_ctrl->ecc_stepinfos[i].stepsize != 0) + ecc_caps->nstepinfos++; + + if (cdns_ctrl->ecc_stepinfos[i].stepsize > max_step_size) + max_step_size = cdns_ctrl->ecc_stepinfos[i].stepsize; + } + ecc_caps->stepinfos = &cdns_ctrl->ecc_stepinfos[0]; + + switch (max_step_size) { + case 256: + ecc_caps->calc_ecc_bytes = &cadence_nand_calc_ecc_bytes_256; + break; + case 512: + ecc_caps->calc_ecc_bytes = &cadence_nand_calc_ecc_bytes_512; + break; + case 1024: + ecc_caps->calc_ecc_bytes = &cadence_nand_calc_ecc_bytes_1024; + break; + case 2048: + ecc_caps->calc_ecc_bytes = &cadence_nand_calc_ecc_bytes_2048; + break; + case 4096: + ecc_caps->calc_ecc_bytes = &cadence_nand_calc_ecc_bytes_4096; + break; + default: + dev_err(cdns_ctrl->dev, + "Unsupported sector size(ecc step size) %d\n", + max_step_size); + return -EIO; + } + + return 0; +} + +/* Hardware initialization. */ +static int cadence_nand_hw_init(struct cdns_nand_ctrl *cdns_ctrl) +{ + int status; + u32 reg; + + status = cadence_nand_wait_for_value(cdns_ctrl, CTRL_STATUS, + 1000000, + CTRL_STATUS_INIT_COMP, false); + if (status) + return status; + + reg = readl_relaxed(cdns_ctrl->reg + CTRL_VERSION); + cdns_ctrl->ctrl_rev = FIELD_GET(CTRL_VERSION_REV, reg); + + dev_info(cdns_ctrl->dev, + "%s: cadence nand controller version reg %x\n", + __func__, reg); + + /* Disable cache and multiplane. */ + writel_relaxed(0, cdns_ctrl->reg + MULTIPLANE_CFG); + writel_relaxed(0, cdns_ctrl->reg + CACHE_CFG); + + /* Clear all interrupts. */ + writel_relaxed(0xFFFFFFFF, cdns_ctrl->reg + INTR_STATUS); + + cadence_nand_get_caps(cdns_ctrl); + if (cadence_nand_read_bch_caps(cdns_ctrl)) + return -EIO; + +#ifndef CONFIG_64BIT + if (cdns_ctrl->caps2.data_dma_width == 8) { + dev_err(cdns_ctrl->dev, + "cannot access 64-bit dma on !64-bit architectures"); + return -EIO; + } +#endif + + /* + * Set IO width access to 8. + * It is because during SW device discovering width access + * is expected to be 8. + */ + status = cadence_nand_set_access_width16(cdns_ctrl, false); + + return status; +} + +#define TT_MAIN_OOB_AREAS 2 +#define TT_RAW_PAGE 3 +#define TT_BBM 4 +#define TT_MAIN_OOB_AREA_EXT 5 + +/* Prepare size of data to transfer. */ +static void +cadence_nand_prepare_data_size(struct nand_chip *chip, + int transfer_type) +{ + struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller); + struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip); + struct mtd_info *mtd = nand_to_mtd(chip); + u32 sec_size = 0, offset = 0, sec_cnt = 1; + u32 last_sec_size = cdns_chip->sector_size; + u32 data_ctrl_size = 0; + u32 reg = 0; + + if (cdns_ctrl->curr_trans_type == transfer_type) + return; + + switch (transfer_type) { + case TT_MAIN_OOB_AREA_EXT: + sec_cnt = cdns_chip->sector_count; + sec_size = cdns_chip->sector_size; + data_ctrl_size = cdns_chip->avail_oob_size; + break; + case TT_MAIN_OOB_AREAS: + sec_cnt = cdns_chip->sector_count; + last_sec_size = cdns_chip->sector_size + + cdns_chip->avail_oob_size; + sec_size = cdns_chip->sector_size; + break; + case TT_RAW_PAGE: + last_sec_size = mtd->writesize + mtd->oobsize; + break; + case TT_BBM: + offset = mtd->writesize + cdns_chip->bbm_offs; + last_sec_size = 8; + break; + } + + reg = 0; + reg |= FIELD_PREP(TRAN_CFG_0_OFFSET, offset); + reg |= FIELD_PREP(TRAN_CFG_0_SEC_CNT, sec_cnt); + writel_relaxed(reg, cdns_ctrl->reg + TRAN_CFG_0); + + reg = 0; + reg |= FIELD_PREP(TRAN_CFG_1_LAST_SEC_SIZE, last_sec_size); + reg |= FIELD_PREP(TRAN_CFG_1_SECTOR_SIZE, sec_size); + writel_relaxed(reg, cdns_ctrl->reg + TRAN_CFG_1); + + if (cdns_ctrl->caps2.data_control_supp) { + reg = readl_relaxed(cdns_ctrl->reg + CONTROL_DATA_CTRL); + reg &= ~CONTROL_DATA_CTRL_SIZE; + reg |= FIELD_PREP(CONTROL_DATA_CTRL_SIZE, data_ctrl_size); + writel_relaxed(reg, cdns_ctrl->reg + CONTROL_DATA_CTRL); + } + + cdns_ctrl->curr_trans_type = transfer_type; +} + +static int +cadence_nand_cdma_transfer(struct cdns_nand_ctrl *cdns_ctrl, u8 chip_nr, + int page, void *buf, void *ctrl_dat, u32 buf_size, + u32 ctrl_dat_size, enum dma_data_direction dir, + bool with_ecc) +{ + dma_addr_t dma_buf, dma_ctrl_dat = 0; + u8 thread_nr = chip_nr; + int status; + u16 ctype; + + if (dir == DMA_FROM_DEVICE) + ctype = CDMA_CT_RD; + else + ctype = CDMA_CT_WR; + + cadence_nand_set_ecc_enable(cdns_ctrl, with_ecc); + + dma_buf = dma_map_single(cdns_ctrl->dev, buf, buf_size, dir); + if (dma_mapping_error(cdns_ctrl->dev, dma_buf)) { + dev_err(cdns_ctrl->dev, "Failed to map DMA buffer\n"); + return -EIO; + } + + if (ctrl_dat && ctrl_dat_size) { + dma_ctrl_dat = dma_map_single(cdns_ctrl->dev, ctrl_dat, + ctrl_dat_size, dir); + if (dma_mapping_error(cdns_ctrl->dev, dma_ctrl_dat)) { + dma_unmap_single(cdns_ctrl->dev, dma_buf, + buf_size, dir); + dev_err(cdns_ctrl->dev, "Failed to map DMA buffer\n"); + return -EIO; + } + } + + cadence_nand_cdma_desc_prepare(cdns_ctrl, chip_nr, page, + dma_buf, dma_ctrl_dat, ctype); + + status = cadence_nand_cdma_send_and_wait(cdns_ctrl, thread_nr); + + dma_unmap_single(cdns_ctrl->dev, dma_buf, + buf_size, dir); + + if (ctrl_dat && ctrl_dat_size) + dma_unmap_single(cdns_ctrl->dev, dma_ctrl_dat, + ctrl_dat_size, dir); + if (status) + return status; + + return cadence_nand_cdma_finish(cdns_ctrl); +} + +static void cadence_nand_set_timings(struct cdns_nand_ctrl *cdns_ctrl, + struct cadence_nand_timings *t) +{ + writel_relaxed(t->async_toggle_timings, + cdns_ctrl->reg + ASYNC_TOGGLE_TIMINGS); + writel_relaxed(t->timings0, cdns_ctrl->reg + TIMINGS0); + writel_relaxed(t->timings1, cdns_ctrl->reg + TIMINGS1); + writel_relaxed(t->timings2, cdns_ctrl->reg + TIMINGS2); + + if (cdns_ctrl->caps2.is_phy_type_dll) + writel_relaxed(t->dll_phy_ctrl, cdns_ctrl->reg + DLL_PHY_CTRL); + + writel_relaxed(t->phy_ctrl, cdns_ctrl->reg + PHY_CTRL); + + if (cdns_ctrl->caps2.is_phy_type_dll) { + writel_relaxed(0, cdns_ctrl->reg + PHY_TSEL); + writel_relaxed(2, cdns_ctrl->reg + PHY_DQ_TIMING); + writel_relaxed(t->phy_dqs_timing, + cdns_ctrl->reg + PHY_DQS_TIMING); + writel_relaxed(t->phy_gate_lpbk_ctrl, + cdns_ctrl->reg + PHY_GATE_LPBK_CTRL); + writel_relaxed(PHY_DLL_MASTER_CTRL_BYPASS_MODE, + cdns_ctrl->reg + PHY_DLL_MASTER_CTRL); + writel_relaxed(0, cdns_ctrl->reg + PHY_DLL_SLAVE_CTRL); + } +} + +static int cadence_nand_select_target(struct nand_chip *chip) +{ + struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller); + struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip); + + if (chip == cdns_ctrl->selected_chip) + return 0; + + if (cadence_nand_wait_for_value(cdns_ctrl, CTRL_STATUS, + 1000000, + CTRL_STATUS_CTRL_BUSY, true)) + return -ETIMEDOUT; + + cadence_nand_set_timings(cdns_ctrl, &cdns_chip->timings); + + cadence_nand_set_ecc_strength(cdns_ctrl, + cdns_chip->corr_str_idx); + + cadence_nand_set_erase_detection(cdns_ctrl, true, + chip->ecc.strength); + + cdns_ctrl->curr_trans_type = -1; + cdns_ctrl->selected_chip = chip; + + return 0; +} + +static int cadence_nand_erase(struct nand_chip *chip, u32 page) +{ + struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller); + struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip); + int status; + u8 thread_nr = cdns_chip->cs[chip->cur_cs]; + + cadence_nand_cdma_desc_prepare(cdns_ctrl, + cdns_chip->cs[chip->cur_cs], + page, 0, 0, + CDMA_CT_ERASE); + status = cadence_nand_cdma_send_and_wait(cdns_ctrl, thread_nr); + if (status) { + dev_err(cdns_ctrl->dev, "erase operation failed\n"); + return -EIO; + } + + status = cadence_nand_cdma_finish(cdns_ctrl); + if (status) + return status; + + return 0; +} + +static int cadence_nand_read_bbm(struct nand_chip *chip, int page, u8 *buf) +{ + int status; + struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller); + struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip); + struct mtd_info *mtd = nand_to_mtd(chip); + + cadence_nand_prepare_data_size(chip, TT_BBM); + + cadence_nand_set_skip_bytes_conf(cdns_ctrl, 0, 0, 0); + + /* + * Read only bad block marker from offset + * defined by a memory manufacturer. + */ + status = cadence_nand_cdma_transfer(cdns_ctrl, + cdns_chip->cs[chip->cur_cs], + page, cdns_ctrl->buf, NULL, + mtd->oobsize, + 0, DMA_FROM_DEVICE, false); + if (status) { + dev_err(cdns_ctrl->dev, "read BBM failed\n"); + return -EIO; + } + + memcpy(buf + cdns_chip->bbm_offs, cdns_ctrl->buf, cdns_chip->bbm_len); + + return 0; +} + +static int cadence_nand_write_page(struct nand_chip *chip, + const u8 *buf, int oob_required, + int page) +{ + struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller); + struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip); + struct mtd_info *mtd = nand_to_mtd(chip); + int status; + u16 marker_val = 0xFFFF; + + status = cadence_nand_select_target(chip); + if (status) + return status; + + cadence_nand_set_skip_bytes_conf(cdns_ctrl, cdns_chip->bbm_len, + mtd->writesize + + cdns_chip->bbm_offs, + 1); + + if (oob_required) { + marker_val = *(u16 *)(chip->oob_poi + + cdns_chip->bbm_offs); + } else { + /* Set oob data to 0xFF. */ + memset(cdns_ctrl->buf + mtd->writesize, 0xFF, + cdns_chip->avail_oob_size); + } + + cadence_nand_set_skip_marker_val(cdns_ctrl, marker_val); + + cadence_nand_prepare_data_size(chip, TT_MAIN_OOB_AREA_EXT); + + if (cadence_nand_dma_buf_ok(cdns_ctrl, buf, mtd->writesize) && + cdns_ctrl->caps2.data_control_supp) { + u8 *oob; + + if (oob_required) + oob = chip->oob_poi; + else + oob = cdns_ctrl->buf + mtd->writesize; + + status = cadence_nand_cdma_transfer(cdns_ctrl, + cdns_chip->cs[chip->cur_cs], + page, (void *)buf, oob, + mtd->writesize, + cdns_chip->avail_oob_size, + DMA_TO_DEVICE, true); + if (status) { + dev_err(cdns_ctrl->dev, "write page failed\n"); + return -EIO; + } + + return 0; + } + + if (oob_required) { + /* Transfer the data to the oob area. */ + memcpy(cdns_ctrl->buf + mtd->writesize, chip->oob_poi, + cdns_chip->avail_oob_size); + } + + memcpy(cdns_ctrl->buf, buf, mtd->writesize); + + cadence_nand_prepare_data_size(chip, TT_MAIN_OOB_AREAS); + + return cadence_nand_cdma_transfer(cdns_ctrl, + cdns_chip->cs[chip->cur_cs], + page, cdns_ctrl->buf, NULL, + mtd->writesize + + cdns_chip->avail_oob_size, + 0, DMA_TO_DEVICE, true); +} + +static int cadence_nand_write_oob(struct nand_chip *chip, int page) +{ + struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller); + struct mtd_info *mtd = nand_to_mtd(chip); + + memset(cdns_ctrl->buf, 0xFF, mtd->writesize); + + return cadence_nand_write_page(chip, cdns_ctrl->buf, 1, page); +} + +static int cadence_nand_write_page_raw(struct nand_chip *chip, + const u8 *buf, int oob_required, + int page) +{ + struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller); + struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip); + struct mtd_info *mtd = nand_to_mtd(chip); + int writesize = mtd->writesize; + int oobsize = mtd->oobsize; + int ecc_steps = chip->ecc.steps; + int ecc_size = chip->ecc.size; + int ecc_bytes = chip->ecc.bytes; + void *tmp_buf = cdns_ctrl->buf; + int oob_skip = cdns_chip->bbm_len; + size_t size = writesize + oobsize; + int i, pos, len; + int status = 0; + + status = cadence_nand_select_target(chip); + if (status) + return status; + + /* + * Fill the buffer with 0xff first except the full page transfer. + * This simplifies the logic. + */ + if (!buf || !oob_required) + memset(tmp_buf, 0xff, size); + + cadence_nand_set_skip_bytes_conf(cdns_ctrl, 0, 0, 0); + + /* Arrange the buffer for syndrome payload/ecc layout. */ + if (buf) { + for (i = 0; i < ecc_steps; i++) { + pos = i * (ecc_size + ecc_bytes); + len = ecc_size; + + if (pos >= writesize) + pos += oob_skip; + else if (pos + len > writesize) + len = writesize - pos; + + memcpy(tmp_buf + pos, buf, len); + buf += len; + if (len < ecc_size) { + len = ecc_size - len; + memcpy(tmp_buf + writesize + oob_skip, buf, + len); + buf += len; + } + } + } + + if (oob_required) { + const u8 *oob = chip->oob_poi; + u32 oob_data_offset = (cdns_chip->sector_count - 1) * + (cdns_chip->sector_size + chip->ecc.bytes) + + cdns_chip->sector_size + oob_skip; + + /* BBM at the beginning of the OOB area. */ + memcpy(tmp_buf + writesize, oob, oob_skip); + + /* OOB free. */ + memcpy(tmp_buf + oob_data_offset, oob, + cdns_chip->avail_oob_size); + oob += cdns_chip->avail_oob_size; + + /* OOB ECC. */ + for (i = 0; i < ecc_steps; i++) { + pos = ecc_size + i * (ecc_size + ecc_bytes); + if (i == (ecc_steps - 1)) + pos += cdns_chip->avail_oob_size; + + len = ecc_bytes; + + if (pos >= writesize) + pos += oob_skip; + else if (pos + len > writesize) + len = writesize - pos; + + memcpy(tmp_buf + pos, oob, len); + oob += len; + if (len < ecc_bytes) { + len = ecc_bytes - len; + memcpy(tmp_buf + writesize + oob_skip, oob, + len); + oob += len; + } + } + } + + cadence_nand_prepare_data_size(chip, TT_RAW_PAGE); + + return cadence_nand_cdma_transfer(cdns_ctrl, + cdns_chip->cs[chip->cur_cs], + page, cdns_ctrl->buf, NULL, + mtd->writesize + + mtd->oobsize, + 0, DMA_TO_DEVICE, false); +} + +static int cadence_nand_write_oob_raw(struct nand_chip *chip, + int page) +{ + return cadence_nand_write_page_raw(chip, NULL, true, page); +} + +static int cadence_nand_read_page(struct nand_chip *chip, + u8 *buf, int oob_required, int page) +{ + struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller); + struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip); + struct mtd_info *mtd = nand_to_mtd(chip); + int status = 0; + int ecc_err_count = 0; + + status = cadence_nand_select_target(chip); + if (status) + return status; + + cadence_nand_set_skip_bytes_conf(cdns_ctrl, cdns_chip->bbm_len, + mtd->writesize + + cdns_chip->bbm_offs, 1); + + /* + * If data buffer can be accessed by DMA and data_control feature + * is supported then transfer data and oob directly. + */ + if (cadence_nand_dma_buf_ok(cdns_ctrl, buf, mtd->writesize) && + cdns_ctrl->caps2.data_control_supp) { + u8 *oob; + + if (oob_required) + oob = chip->oob_poi; + else + oob = cdns_ctrl->buf + mtd->writesize; + + cadence_nand_prepare_data_size(chip, TT_MAIN_OOB_AREA_EXT); + status = cadence_nand_cdma_transfer(cdns_ctrl, + cdns_chip->cs[chip->cur_cs], + page, buf, oob, + mtd->writesize, + cdns_chip->avail_oob_size, + DMA_FROM_DEVICE, true); + /* Otherwise use bounce buffer. */ + } else { + cadence_nand_prepare_data_size(chip, TT_MAIN_OOB_AREAS); + status = cadence_nand_cdma_transfer(cdns_ctrl, + cdns_chip->cs[chip->cur_cs], + page, cdns_ctrl->buf, + NULL, mtd->writesize + + cdns_chip->avail_oob_size, + 0, DMA_FROM_DEVICE, true); + + memcpy(buf, cdns_ctrl->buf, mtd->writesize); + if (oob_required) + memcpy(chip->oob_poi, + cdns_ctrl->buf + mtd->writesize, + mtd->oobsize); + } + + switch (status) { + case STAT_ECC_UNCORR: + mtd->ecc_stats.failed++; + ecc_err_count++; + break; + case STAT_ECC_CORR: + ecc_err_count = FIELD_GET(CDMA_CS_MAXERR, + cdns_ctrl->cdma_desc->status); + mtd->ecc_stats.corrected += ecc_err_count; + break; + case STAT_ERASED: + case STAT_OK: + break; + default: + dev_err(cdns_ctrl->dev, "read page failed\n"); + return -EIO; + } + + if (oob_required) + if (cadence_nand_read_bbm(chip, page, chip->oob_poi)) + return -EIO; + + return ecc_err_count; +} + +/* Reads OOB data from the device. */ +static int cadence_nand_read_oob(struct nand_chip *chip, int page) +{ + struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller); + + return cadence_nand_read_page(chip, cdns_ctrl->buf, 1, page); +} + +static int cadence_nand_read_page_raw(struct nand_chip *chip, + u8 *buf, int oob_required, int page) +{ + struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller); + struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip); + struct mtd_info *mtd = nand_to_mtd(chip); + int oob_skip = cdns_chip->bbm_len; + int writesize = mtd->writesize; + int ecc_steps = chip->ecc.steps; + int ecc_size = chip->ecc.size; + int ecc_bytes = chip->ecc.bytes; + void *tmp_buf = cdns_ctrl->buf; + int i, pos, len; + int status = 0; + + status = cadence_nand_select_target(chip); + if (status) + return status; + + cadence_nand_set_skip_bytes_conf(cdns_ctrl, 0, 0, 0); + + cadence_nand_prepare_data_size(chip, TT_RAW_PAGE); + status = cadence_nand_cdma_transfer(cdns_ctrl, + cdns_chip->cs[chip->cur_cs], + page, cdns_ctrl->buf, NULL, + mtd->writesize + + mtd->oobsize, + 0, DMA_FROM_DEVICE, false); + + switch (status) { + case STAT_ERASED: + case STAT_OK: + break; + default: + dev_err(cdns_ctrl->dev, "read raw page failed\n"); + return -EIO; + } + + /* Arrange the buffer for syndrome payload/ecc layout. */ + if (buf) { + for (i = 0; i < ecc_steps; i++) { + pos = i * (ecc_size + ecc_bytes); + len = ecc_size; + + if (pos >= writesize) + pos += oob_skip; + else if (pos + len > writesize) + len = writesize - pos; + + memcpy(buf, tmp_buf + pos, len); + buf += len; + if (len < ecc_size) { + len = ecc_size - len; + memcpy(buf, tmp_buf + writesize + oob_skip, + len); + buf += len; + } + } + } + + if (oob_required) { + u8 *oob = chip->oob_poi; + u32 oob_data_offset = (cdns_chip->sector_count - 1) * + (cdns_chip->sector_size + chip->ecc.bytes) + + cdns_chip->sector_size + oob_skip; + + /* OOB free. */ + memcpy(oob, tmp_buf + oob_data_offset, + cdns_chip->avail_oob_size); + + /* BBM at the beginning of the OOB area. */ + memcpy(oob, tmp_buf + writesize, oob_skip); + + oob += cdns_chip->avail_oob_size; + + /* OOB ECC */ + for (i = 0; i < ecc_steps; i++) { + pos = ecc_size + i * (ecc_size + ecc_bytes); + len = ecc_bytes; + + if (i == (ecc_steps - 1)) + pos += cdns_chip->avail_oob_size; + + if (pos >= writesize) + pos += oob_skip; + else if (pos + len > writesize) + len = writesize - pos; + + memcpy(oob, tmp_buf + pos, len); + oob += len; + if (len < ecc_bytes) { + len = ecc_bytes - len; + memcpy(oob, tmp_buf + writesize + oob_skip, + len); + oob += len; + } + } + } + + return 0; +} + +static int cadence_nand_read_oob_raw(struct nand_chip *chip, + int page) +{ + return cadence_nand_read_page_raw(chip, NULL, true, page); +} + +static void cadence_nand_slave_dma_transfer_finished(void *data) +{ + struct completion *finished = data; + + complete(finished); +} + +static int cadence_nand_slave_dma_transfer(struct cdns_nand_ctrl *cdns_ctrl, + void *buf, + dma_addr_t dev_dma, size_t len, + enum dma_data_direction dir) +{ + DECLARE_COMPLETION_ONSTACK(finished); + struct dma_chan *chan; + struct dma_device *dma_dev; + dma_addr_t src_dma, dst_dma, buf_dma; + struct dma_async_tx_descriptor *tx; + dma_cookie_t cookie; + + chan = cdns_ctrl->dmac; + dma_dev = chan->device; + + buf_dma = dma_map_single(dma_dev->dev, buf, len, dir); + if (dma_mapping_error(dma_dev->dev, buf_dma)) { + dev_err(cdns_ctrl->dev, "Failed to map DMA buffer\n"); + goto err; + } + + if (dir == DMA_FROM_DEVICE) { + src_dma = cdns_ctrl->io.dma; + dst_dma = buf_dma; + } else { + src_dma = buf_dma; + dst_dma = cdns_ctrl->io.dma; + } + + tx = dmaengine_prep_dma_memcpy(cdns_ctrl->dmac, dst_dma, src_dma, len, + DMA_CTRL_ACK | DMA_PREP_INTERRUPT); + if (!tx) { + dev_err(cdns_ctrl->dev, "Failed to prepare DMA memcpy\n"); + goto err_unmap; + } + + tx->callback = cadence_nand_slave_dma_transfer_finished; + tx->callback_param = &finished; + + cookie = dmaengine_submit(tx); + if (dma_submit_error(cookie)) { + dev_err(cdns_ctrl->dev, "Failed to do DMA tx_submit\n"); + goto err_unmap; + } + + dma_async_issue_pending(cdns_ctrl->dmac); + wait_for_completion(&finished); + + dma_unmap_single(cdns_ctrl->dev, buf_dma, len, dir); + + return 0; + +err_unmap: + dma_unmap_single(cdns_ctrl->dev, buf_dma, len, dir); + +err: + dev_dbg(cdns_ctrl->dev, "Fall back to CPU I/O\n"); + + return -EIO; +} + +static int cadence_nand_read_buf(struct cdns_nand_ctrl *cdns_ctrl, + u8 *buf, int len) +{ + u8 thread_nr = 0; + u32 sdma_size; + int status; + + /* Wait until slave DMA interface is ready to data transfer. */ + status = cadence_nand_wait_on_sdma(cdns_ctrl, &thread_nr, &sdma_size); + if (status) + return status; + + if (!cdns_ctrl->caps1->has_dma) { + u8 data_dma_width = cdns_ctrl->caps2.data_dma_width; + + int len_in_words = (data_dma_width == 4) ? len >> 2 : len >> 3; + + /* read alingment data */ + if (data_dma_width == 4) + ioread32_rep(cdns_ctrl->io.virt, buf, len_in_words); +#ifdef CONFIG_64BIT + else + readsq(cdns_ctrl->io.virt, buf, len_in_words); +#endif + + if (sdma_size > len) { + int read_bytes = (data_dma_width == 4) ? + len_in_words << 2 : len_in_words << 3; + + /* read rest data from slave DMA interface if any */ + if (data_dma_width == 4) + ioread32_rep(cdns_ctrl->io.virt, + cdns_ctrl->buf, + sdma_size / 4 - len_in_words); +#ifdef CONFIG_64BIT + else + readsq(cdns_ctrl->io.virt, cdns_ctrl->buf, + sdma_size / 8 - len_in_words); +#endif + + /* copy rest of data */ + memcpy(buf + read_bytes, cdns_ctrl->buf, + len - read_bytes); + } + return 0; + } + + if (cadence_nand_dma_buf_ok(cdns_ctrl, buf, len)) { + status = cadence_nand_slave_dma_transfer(cdns_ctrl, buf, + cdns_ctrl->io.dma, + len, DMA_FROM_DEVICE); + if (status == 0) + return 0; + + dev_warn(cdns_ctrl->dev, + "Slave DMA transfer failed. Try again using bounce buffer."); + } + + /* If DMA transfer is not possible or failed then use bounce buffer. */ + status = cadence_nand_slave_dma_transfer(cdns_ctrl, cdns_ctrl->buf, + cdns_ctrl->io.dma, + sdma_size, DMA_FROM_DEVICE); + + if (status) { + dev_err(cdns_ctrl->dev, "Slave DMA transfer failed"); + return status; + } + + memcpy(buf, cdns_ctrl->buf, len); + + return 0; +} + +static int cadence_nand_write_buf(struct cdns_nand_ctrl *cdns_ctrl, + const u8 *buf, int len) +{ + u8 thread_nr = 0; + u32 sdma_size; + int status; + + /* Wait until slave DMA interface is ready to data transfer. */ + status = cadence_nand_wait_on_sdma(cdns_ctrl, &thread_nr, &sdma_size); + if (status) + return status; + + if (!cdns_ctrl->caps1->has_dma) { + u8 data_dma_width = cdns_ctrl->caps2.data_dma_width; + + int len_in_words = (data_dma_width == 4) ? len >> 2 : len >> 3; + + if (data_dma_width == 4) + iowrite32_rep(cdns_ctrl->io.virt, buf, len_in_words); +#ifdef CONFIG_64BIT + else + writesq(cdns_ctrl->io.virt, buf, len_in_words); +#endif + + if (sdma_size > len) { + int written_bytes = (data_dma_width == 4) ? + len_in_words << 2 : len_in_words << 3; + + /* copy rest of data */ + memcpy(cdns_ctrl->buf, buf + written_bytes, + len - written_bytes); + + /* write all expected by nand controller data */ + if (data_dma_width == 4) + iowrite32_rep(cdns_ctrl->io.virt, + cdns_ctrl->buf, + sdma_size / 4 - len_in_words); +#ifdef CONFIG_64BIT + else + writesq(cdns_ctrl->io.virt, cdns_ctrl->buf, + sdma_size / 8 - len_in_words); +#endif + } + + return 0; + } + + if (cadence_nand_dma_buf_ok(cdns_ctrl, buf, len)) { + status = cadence_nand_slave_dma_transfer(cdns_ctrl, (void *)buf, + cdns_ctrl->io.dma, + len, DMA_TO_DEVICE); + if (status == 0) + return 0; + + dev_warn(cdns_ctrl->dev, + "Slave DMA transfer failed. Try again using bounce buffer."); + } + + /* If DMA transfer is not possible or failed then use bounce buffer. */ + memcpy(cdns_ctrl->buf, buf, len); + + status = cadence_nand_slave_dma_transfer(cdns_ctrl, cdns_ctrl->buf, + cdns_ctrl->io.dma, + sdma_size, DMA_TO_DEVICE); + + if (status) + dev_err(cdns_ctrl->dev, "Slave DMA transfer failed"); + + return status; +} + +static int cadence_nand_force_byte_access(struct nand_chip *chip, + bool force_8bit) +{ + struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller); + + /* + * Callers of this function do not verify if the NAND is using a 16-bit + * an 8-bit bus for normal operations, so we need to take care of that + * here by leaving the configuration unchanged if the NAND does not have + * the NAND_BUSWIDTH_16 flag set. + */ + if (!(chip->options & NAND_BUSWIDTH_16)) + return 0; + + return cadence_nand_set_access_width16(cdns_ctrl, !force_8bit); +} + +static int cadence_nand_cmd_opcode(struct nand_chip *chip, + const struct nand_subop *subop) +{ + struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller); + struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip); + const struct nand_op_instr *instr; + unsigned int op_id = 0; + u64 mini_ctrl_cmd = 0; + int ret; + + instr = &subop->instrs[op_id]; + + if (instr->delay_ns > 0) + mini_ctrl_cmd |= GCMD_LAY_TWB; + + mini_ctrl_cmd |= FIELD_PREP(GCMD_LAY_INSTR, + GCMD_LAY_INSTR_CMD); + mini_ctrl_cmd |= FIELD_PREP(GCMD_LAY_INPUT_CMD, + instr->ctx.cmd.opcode); + + ret = cadence_nand_generic_cmd_send(cdns_ctrl, + cdns_chip->cs[chip->cur_cs], + mini_ctrl_cmd); + if (ret) + dev_err(cdns_ctrl->dev, "send cmd %x failed\n", + instr->ctx.cmd.opcode); + + return ret; +} + +static int cadence_nand_cmd_address(struct nand_chip *chip, + const struct nand_subop *subop) +{ + struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller); + struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip); + const struct nand_op_instr *instr; + unsigned int op_id = 0; + u64 mini_ctrl_cmd = 0; + unsigned int offset, naddrs; + u64 address = 0; + const u8 *addrs; + int ret; + int i; + + instr = &subop->instrs[op_id]; + + if (instr->delay_ns > 0) + mini_ctrl_cmd |= GCMD_LAY_TWB; + + mini_ctrl_cmd |= FIELD_PREP(GCMD_LAY_INSTR, + GCMD_LAY_INSTR_ADDR); + + offset = nand_subop_get_addr_start_off(subop, op_id); + naddrs = nand_subop_get_num_addr_cyc(subop, op_id); + addrs = &instr->ctx.addr.addrs[offset]; + + for (i = 0; i < naddrs; i++) + address |= (u64)addrs[i] << (8 * i); + + mini_ctrl_cmd |= FIELD_PREP(GCMD_LAY_INPUT_ADDR, + address); + mini_ctrl_cmd |= FIELD_PREP(GCMD_LAY_INPUT_ADDR_SIZE, + naddrs - 1); + + ret = cadence_nand_generic_cmd_send(cdns_ctrl, + cdns_chip->cs[chip->cur_cs], + mini_ctrl_cmd); + if (ret) + dev_err(cdns_ctrl->dev, "send address %llx failed\n", address); + + return ret; +} + +static int cadence_nand_cmd_erase(struct nand_chip *chip, + const struct nand_subop *subop) +{ + unsigned int op_id; + + if (subop->instrs[0].ctx.cmd.opcode == NAND_CMD_ERASE1) { + int i; + const struct nand_op_instr *instr = NULL; + unsigned int offset, naddrs; + const u8 *addrs; + u32 page = 0; + + instr = &subop->instrs[1]; + offset = nand_subop_get_addr_start_off(subop, 1); + naddrs = nand_subop_get_num_addr_cyc(subop, 1); + addrs = &instr->ctx.addr.addrs[offset]; + + for (i = 0; i < naddrs; i++) + page |= (u32)addrs[i] << (8 * i); + + return cadence_nand_erase(chip, page); + } + + /* + * If it is not an erase operation then handle operation + * by calling exec_op function. + */ + for (op_id = 0; op_id < subop->ninstrs; op_id++) { + int ret; + const struct nand_operation nand_op = { + .cs = chip->cur_cs, + .instrs = &subop->instrs[op_id], + .ninstrs = 1}; + ret = chip->controller->ops->exec_op(chip, &nand_op, false); + if (ret) + return ret; + } + + return 0; +} + +static int cadence_nand_cmd_data(struct nand_chip *chip, + const struct nand_subop *subop) +{ + struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller); + struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip); + const struct nand_op_instr *instr; + unsigned int offset, op_id = 0; + u64 mini_ctrl_cmd = 0; + int len = 0; + int ret; + + instr = &subop->instrs[op_id]; + + if (instr->delay_ns > 0) + mini_ctrl_cmd |= GCMD_LAY_TWB; + + mini_ctrl_cmd |= FIELD_PREP(GCMD_LAY_INSTR, + GCMD_LAY_INSTR_DATA); + + if (instr->type == NAND_OP_DATA_OUT_INSTR) + mini_ctrl_cmd |= FIELD_PREP(GCMD_DIR, + GCMD_DIR_WRITE); + + len = nand_subop_get_data_len(subop, op_id); + offset = nand_subop_get_data_start_off(subop, op_id); + mini_ctrl_cmd |= FIELD_PREP(GCMD_SECT_CNT, 1); + mini_ctrl_cmd |= FIELD_PREP(GCMD_LAST_SIZE, len); + if (instr->ctx.data.force_8bit) { + ret = cadence_nand_force_byte_access(chip, true); + if (ret) { + dev_err(cdns_ctrl->dev, + "cannot change byte access generic data cmd failed\n"); + return ret; + } + } + + ret = cadence_nand_generic_cmd_send(cdns_ctrl, + cdns_chip->cs[chip->cur_cs], + mini_ctrl_cmd); + if (ret) { + dev_err(cdns_ctrl->dev, "send generic data cmd failed\n"); + return ret; + } + + if (instr->type == NAND_OP_DATA_IN_INSTR) { + void *buf = instr->ctx.data.buf.in + offset; + + ret = cadence_nand_read_buf(cdns_ctrl, buf, len); + } else { + const void *buf = instr->ctx.data.buf.out + offset; + + ret = cadence_nand_write_buf(cdns_ctrl, buf, len); + } + + if (ret) { + dev_err(cdns_ctrl->dev, "data transfer failed for generic command\n"); + return ret; + } + + if (instr->ctx.data.force_8bit) { + ret = cadence_nand_force_byte_access(chip, false); + if (ret) { + dev_err(cdns_ctrl->dev, + "cannot change byte access generic data cmd failed\n"); + } + } + + return ret; +} + +static int cadence_nand_cmd_waitrdy(struct nand_chip *chip, + const struct nand_subop *subop) +{ + int status; + unsigned int op_id = 0; + struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller); + struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip); + const struct nand_op_instr *instr = &subop->instrs[op_id]; + u32 timeout_us = instr->ctx.waitrdy.timeout_ms * 1000; + + status = cadence_nand_wait_for_value(cdns_ctrl, RBN_SETINGS, + timeout_us, + BIT(cdns_chip->cs[chip->cur_cs]), + false); + return status; +} + +static const struct nand_op_parser cadence_nand_op_parser = NAND_OP_PARSER( + NAND_OP_PARSER_PATTERN( + cadence_nand_cmd_erase, + NAND_OP_PARSER_PAT_CMD_ELEM(false), + NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ERASE_ADDRESS_CYC), + NAND_OP_PARSER_PAT_CMD_ELEM(false), + NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)), + NAND_OP_PARSER_PATTERN( + cadence_nand_cmd_opcode, + NAND_OP_PARSER_PAT_CMD_ELEM(false)), + NAND_OP_PARSER_PATTERN( + cadence_nand_cmd_address, + NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDRESS_CYC)), + NAND_OP_PARSER_PATTERN( + cadence_nand_cmd_data, + NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, MAX_DATA_SIZE)), + NAND_OP_PARSER_PATTERN( + cadence_nand_cmd_data, + NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, MAX_DATA_SIZE)), + NAND_OP_PARSER_PATTERN( + cadence_nand_cmd_waitrdy, + NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)) + ); + +static int cadence_nand_exec_op(struct nand_chip *chip, + const struct nand_operation *op, + bool check_only) +{ + if (!check_only) { + int status = cadence_nand_select_target(chip); + + if (status) + return status; + } + + return nand_op_parser_exec_op(chip, &cadence_nand_op_parser, op, + check_only); +} + +static int cadence_nand_ooblayout_free(struct mtd_info *mtd, int section, + struct mtd_oob_region *oobregion) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip); + + if (section) + return -ERANGE; + + oobregion->offset = cdns_chip->bbm_len; + oobregion->length = cdns_chip->avail_oob_size + - cdns_chip->bbm_len; + + return 0; +} + +static int cadence_nand_ooblayout_ecc(struct mtd_info *mtd, int section, + struct mtd_oob_region *oobregion) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip); + + if (section) + return -ERANGE; + + oobregion->offset = cdns_chip->avail_oob_size; + oobregion->length = chip->ecc.total; + + return 0; +} + +static const struct mtd_ooblayout_ops cadence_nand_ooblayout_ops = { + .free = cadence_nand_ooblayout_free, + .ecc = cadence_nand_ooblayout_ecc, +}; + +static int calc_cycl(u32 timing, u32 clock) +{ + if (timing == 0 || clock == 0) + return 0; + + if ((timing % clock) > 0) + return timing / clock; + else + return timing / clock - 1; +} + +/* Calculate max data valid window. */ +static inline u32 calc_tdvw_max(u32 trp_cnt, u32 clk_period, u32 trhoh_min, + u32 board_delay_skew_min, u32 ext_mode) +{ + if (ext_mode == 0) + clk_period /= 2; + + return (trp_cnt + 1) * clk_period + trhoh_min + + board_delay_skew_min; +} + +/* Calculate data valid window. */ +static inline u32 calc_tdvw(u32 trp_cnt, u32 clk_period, u32 trhoh_min, + u32 trea_max, u32 ext_mode) +{ + if (ext_mode == 0) + clk_period /= 2; + + return (trp_cnt + 1) * clk_period + trhoh_min - trea_max; +} + +static int +cadence_nand_setup_interface(struct nand_chip *chip, int chipnr, + const struct nand_interface_config *conf) +{ + const struct nand_sdr_timings *sdr; + struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller); + struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip); + struct cadence_nand_timings *t = &cdns_chip->timings; + u32 reg; + u32 board_delay = cdns_ctrl->board_delay; + u32 clk_period = DIV_ROUND_DOWN_ULL(1000000000000ULL, + cdns_ctrl->nf_clk_rate); + u32 tceh_cnt, tcs_cnt, tadl_cnt, tccs_cnt; + u32 tfeat_cnt, trhz_cnt, tvdly_cnt; + u32 trhw_cnt, twb_cnt, twh_cnt = 0, twhr_cnt; + u32 twp_cnt = 0, trp_cnt = 0, trh_cnt = 0; + u32 if_skew = cdns_ctrl->caps1->if_skew; + u32 board_delay_skew_min = board_delay - if_skew; + u32 board_delay_skew_max = board_delay + if_skew; + u32 dqs_sampl_res, phony_dqs_mod; + u32 tdvw, tdvw_min, tdvw_max; + u32 ext_rd_mode, ext_wr_mode; + u32 dll_phy_dqs_timing = 0, phony_dqs_timing = 0, rd_del_sel = 0; + u32 sampling_point; + + sdr = nand_get_sdr_timings(conf); + if (IS_ERR(sdr)) + return PTR_ERR(sdr); + + memset(t, 0, sizeof(*t)); + /* Sampling point calculation. */ + + if (cdns_ctrl->caps2.is_phy_type_dll) + phony_dqs_mod = 2; + else + phony_dqs_mod = 1; + + dqs_sampl_res = clk_period / phony_dqs_mod; + + tdvw_min = sdr->tREA_max + board_delay_skew_max; + /* + * The idea of those calculation is to get the optimum value + * for tRP and tRH timings. If it is NOT possible to sample data + * with optimal tRP/tRH settings, the parameters will be extended. + * If clk_period is 50ns (the lowest value) this condition is met + * for SDR timing modes 1, 2, 3, 4 and 5. + * If clk_period is 20ns the condition is met only for SDR timing + * mode 5. + */ + if (sdr->tRC_min <= clk_period && + sdr->tRP_min <= (clk_period / 2) && + sdr->tREH_min <= (clk_period / 2)) { + /* Performance mode. */ + ext_rd_mode = 0; + tdvw = calc_tdvw(trp_cnt, clk_period, sdr->tRHOH_min, + sdr->tREA_max, ext_rd_mode); + tdvw_max = calc_tdvw_max(trp_cnt, clk_period, sdr->tRHOH_min, + board_delay_skew_min, + ext_rd_mode); + /* + * Check if data valid window and sampling point can be found + * and is not on the edge (ie. we have hold margin). + * If not extend the tRP timings. + */ + if (tdvw > 0) { + if (tdvw_max <= tdvw_min || + (tdvw_max % dqs_sampl_res) == 0) { + /* + * No valid sampling point so the RE pulse need + * to be widen widening by half clock cycle. + */ + ext_rd_mode = 1; + } + } else { + /* + * There is no valid window + * to be able to sample data the tRP need to be widen. + * Very safe calculations are performed here. + */ + trp_cnt = (sdr->tREA_max + board_delay_skew_max + + dqs_sampl_res) / clk_period; + ext_rd_mode = 1; + } + + } else { + /* Extended read mode. */ + u32 trh; + + ext_rd_mode = 1; + trp_cnt = calc_cycl(sdr->tRP_min, clk_period); + trh = sdr->tRC_min - ((trp_cnt + 1) * clk_period); + if (sdr->tREH_min >= trh) + trh_cnt = calc_cycl(sdr->tREH_min, clk_period); + else + trh_cnt = calc_cycl(trh, clk_period); + + tdvw = calc_tdvw(trp_cnt, clk_period, sdr->tRHOH_min, + sdr->tREA_max, ext_rd_mode); + /* + * Check if data valid window and sampling point can be found + * or if it is at the edge check if previous is valid + * - if not extend the tRP timings. + */ + if (tdvw > 0) { + tdvw_max = calc_tdvw_max(trp_cnt, clk_period, + sdr->tRHOH_min, + board_delay_skew_min, + ext_rd_mode); + + if ((((tdvw_max / dqs_sampl_res) + * dqs_sampl_res) <= tdvw_min) || + (((tdvw_max % dqs_sampl_res) == 0) && + (((tdvw_max / dqs_sampl_res - 1) + * dqs_sampl_res) <= tdvw_min))) { + /* + * Data valid window width is lower than + * sampling resolution and do not hit any + * sampling point to be sure the sampling point + * will be found the RE low pulse width will be + * extended by one clock cycle. + */ + trp_cnt = trp_cnt + 1; + } + } else { + /* + * There is no valid window to be able to sample data. + * The tRP need to be widen. + * Very safe calculations are performed here. + */ + trp_cnt = (sdr->tREA_max + board_delay_skew_max + + dqs_sampl_res) / clk_period; + } + } + + tdvw_max = calc_tdvw_max(trp_cnt, clk_period, + sdr->tRHOH_min, + board_delay_skew_min, ext_rd_mode); + + if (sdr->tWC_min <= clk_period && + (sdr->tWP_min + if_skew) <= (clk_period / 2) && + (sdr->tWH_min + if_skew) <= (clk_period / 2)) { + ext_wr_mode = 0; + } else { + u32 twh; + + ext_wr_mode = 1; + twp_cnt = calc_cycl(sdr->tWP_min + if_skew, clk_period); + if ((twp_cnt + 1) * clk_period < (sdr->tALS_min + if_skew)) + twp_cnt = calc_cycl(sdr->tALS_min + if_skew, + clk_period); + + twh = (sdr->tWC_min - (twp_cnt + 1) * clk_period); + if (sdr->tWH_min >= twh) + twh = sdr->tWH_min; + + twh_cnt = calc_cycl(twh + if_skew, clk_period); + } + + reg = FIELD_PREP(ASYNC_TOGGLE_TIMINGS_TRH, trh_cnt); + reg |= FIELD_PREP(ASYNC_TOGGLE_TIMINGS_TRP, trp_cnt); + reg |= FIELD_PREP(ASYNC_TOGGLE_TIMINGS_TWH, twh_cnt); + reg |= FIELD_PREP(ASYNC_TOGGLE_TIMINGS_TWP, twp_cnt); + t->async_toggle_timings = reg; + dev_dbg(cdns_ctrl->dev, "ASYNC_TOGGLE_TIMINGS_SDR\t%x\n", reg); + + tadl_cnt = calc_cycl((sdr->tADL_min + if_skew), clk_period); + tccs_cnt = calc_cycl((sdr->tCCS_min + if_skew), clk_period); + twhr_cnt = calc_cycl((sdr->tWHR_min + if_skew), clk_period); + trhw_cnt = calc_cycl((sdr->tRHW_min + if_skew), clk_period); + reg = FIELD_PREP(TIMINGS0_TADL, tadl_cnt); + + /* + * If timing exceeds delay field in timing register + * then use maximum value. + */ + if (FIELD_FIT(TIMINGS0_TCCS, tccs_cnt)) + reg |= FIELD_PREP(TIMINGS0_TCCS, tccs_cnt); + else + reg |= TIMINGS0_TCCS; + + reg |= FIELD_PREP(TIMINGS0_TWHR, twhr_cnt); + reg |= FIELD_PREP(TIMINGS0_TRHW, trhw_cnt); + t->timings0 = reg; + dev_dbg(cdns_ctrl->dev, "TIMINGS0_SDR\t%x\n", reg); + + /* The following is related to single signal so skew is not needed. */ + trhz_cnt = calc_cycl(sdr->tRHZ_max, clk_period); + trhz_cnt = trhz_cnt + 1; + twb_cnt = calc_cycl((sdr->tWB_max + board_delay), clk_period); + /* + * Because of the two stage syncflop the value must be increased by 3 + * first value is related with sync, second value is related + * with output if delay. + */ + twb_cnt = twb_cnt + 3 + 5; + /* + * The following is related to the we edge of the random data input + * sequence so skew is not needed. + */ + tvdly_cnt = calc_cycl(500000 + if_skew, clk_period); + reg = FIELD_PREP(TIMINGS1_TRHZ, trhz_cnt); + reg |= FIELD_PREP(TIMINGS1_TWB, twb_cnt); + reg |= FIELD_PREP(TIMINGS1_TVDLY, tvdly_cnt); + t->timings1 = reg; + dev_dbg(cdns_ctrl->dev, "TIMINGS1_SDR\t%x\n", reg); + + tfeat_cnt = calc_cycl(sdr->tFEAT_max, clk_period); + if (tfeat_cnt < twb_cnt) + tfeat_cnt = twb_cnt; + + tceh_cnt = calc_cycl(sdr->tCEH_min, clk_period); + tcs_cnt = calc_cycl((sdr->tCS_min + if_skew), clk_period); + + reg = FIELD_PREP(TIMINGS2_TFEAT, tfeat_cnt); + reg |= FIELD_PREP(TIMINGS2_CS_HOLD_TIME, tceh_cnt); + reg |= FIELD_PREP(TIMINGS2_CS_SETUP_TIME, tcs_cnt); + t->timings2 = reg; + dev_dbg(cdns_ctrl->dev, "TIMINGS2_SDR\t%x\n", reg); + + if (cdns_ctrl->caps2.is_phy_type_dll) { + reg = DLL_PHY_CTRL_DLL_RST_N; + if (ext_wr_mode) + reg |= DLL_PHY_CTRL_EXTENDED_WR_MODE; + if (ext_rd_mode) + reg |= DLL_PHY_CTRL_EXTENDED_RD_MODE; + + reg |= FIELD_PREP(DLL_PHY_CTRL_RS_HIGH_WAIT_CNT, 7); + reg |= FIELD_PREP(DLL_PHY_CTRL_RS_IDLE_CNT, 7); + t->dll_phy_ctrl = reg; + dev_dbg(cdns_ctrl->dev, "DLL_PHY_CTRL_SDR\t%x\n", reg); + } + + /* Sampling point calculation. */ + if ((tdvw_max % dqs_sampl_res) > 0) + sampling_point = tdvw_max / dqs_sampl_res; + else + sampling_point = (tdvw_max / dqs_sampl_res - 1); + + if (sampling_point * dqs_sampl_res > tdvw_min) { + dll_phy_dqs_timing = + FIELD_PREP(PHY_DQS_TIMING_DQS_SEL_OE_END, 4); + dll_phy_dqs_timing |= PHY_DQS_TIMING_USE_PHONY_DQS; + phony_dqs_timing = sampling_point / phony_dqs_mod; + + if ((sampling_point % 2) > 0) { + dll_phy_dqs_timing |= PHY_DQS_TIMING_PHONY_DQS_SEL; + if ((tdvw_max % dqs_sampl_res) == 0) + /* + * Calculation for sampling point at the edge + * of data and being odd number. + */ + phony_dqs_timing = (tdvw_max / dqs_sampl_res) + / phony_dqs_mod - 1; + + if (!cdns_ctrl->caps2.is_phy_type_dll) + phony_dqs_timing--; + + } else { + phony_dqs_timing--; + } + rd_del_sel = phony_dqs_timing + 3; + } else { + dev_warn(cdns_ctrl->dev, + "ERROR : cannot find valid sampling point\n"); + } + + reg = FIELD_PREP(PHY_CTRL_PHONY_DQS, phony_dqs_timing); + if (cdns_ctrl->caps2.is_phy_type_dll) + reg |= PHY_CTRL_SDR_DQS; + t->phy_ctrl = reg; + dev_dbg(cdns_ctrl->dev, "PHY_CTRL_REG_SDR\t%x\n", reg); + + if (cdns_ctrl->caps2.is_phy_type_dll) { + dev_dbg(cdns_ctrl->dev, "PHY_TSEL_REG_SDR\t%x\n", 0); + dev_dbg(cdns_ctrl->dev, "PHY_DQ_TIMING_REG_SDR\t%x\n", 2); + dev_dbg(cdns_ctrl->dev, "PHY_DQS_TIMING_REG_SDR\t%x\n", + dll_phy_dqs_timing); + t->phy_dqs_timing = dll_phy_dqs_timing; + + reg = FIELD_PREP(PHY_GATE_LPBK_CTRL_RDS, rd_del_sel); + dev_dbg(cdns_ctrl->dev, "PHY_GATE_LPBK_CTRL_REG_SDR\t%x\n", + reg); + t->phy_gate_lpbk_ctrl = reg; + + dev_dbg(cdns_ctrl->dev, "PHY_DLL_MASTER_CTRL_REG_SDR\t%lx\n", + PHY_DLL_MASTER_CTRL_BYPASS_MODE); + dev_dbg(cdns_ctrl->dev, "PHY_DLL_SLAVE_CTRL_REG_SDR\t%x\n", 0); + } + + return 0; +} + +static int cadence_nand_attach_chip(struct nand_chip *chip) +{ + struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller); + struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip); + u32 ecc_size; + struct mtd_info *mtd = nand_to_mtd(chip); + int ret; + + if (chip->options & NAND_BUSWIDTH_16) { + ret = cadence_nand_set_access_width16(cdns_ctrl, true); + if (ret) + return ret; + } + + chip->bbt_options |= NAND_BBT_USE_FLASH; + chip->bbt_options |= NAND_BBT_NO_OOB; + chip->ecc.engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST; + + chip->options |= NAND_NO_SUBPAGE_WRITE; + + cdns_chip->bbm_offs = chip->badblockpos; + cdns_chip->bbm_offs &= ~0x01; + /* this value should be even number */ + cdns_chip->bbm_len = 2; + + ret = nand_ecc_choose_conf(chip, + &cdns_ctrl->ecc_caps, + mtd->oobsize - cdns_chip->bbm_len); + if (ret) { + dev_err(cdns_ctrl->dev, "ECC configuration failed\n"); + return ret; + } + + dev_dbg(cdns_ctrl->dev, + "chosen ECC settings: step=%d, strength=%d, bytes=%d\n", + chip->ecc.size, chip->ecc.strength, chip->ecc.bytes); + + /* Error correction configuration. */ + cdns_chip->sector_size = chip->ecc.size; + cdns_chip->sector_count = mtd->writesize / cdns_chip->sector_size; + ecc_size = cdns_chip->sector_count * chip->ecc.bytes; + + cdns_chip->avail_oob_size = mtd->oobsize - ecc_size; + + if (cdns_chip->avail_oob_size > cdns_ctrl->bch_metadata_size) + cdns_chip->avail_oob_size = cdns_ctrl->bch_metadata_size; + + if ((cdns_chip->avail_oob_size + cdns_chip->bbm_len + ecc_size) + > mtd->oobsize) + cdns_chip->avail_oob_size -= 4; + + ret = cadence_nand_get_ecc_strength_idx(cdns_ctrl, chip->ecc.strength); + if (ret < 0) + return -EINVAL; + + cdns_chip->corr_str_idx = (u8)ret; + + if (cadence_nand_wait_for_value(cdns_ctrl, CTRL_STATUS, + 1000000, + CTRL_STATUS_CTRL_BUSY, true)) + return -ETIMEDOUT; + + cadence_nand_set_ecc_strength(cdns_ctrl, + cdns_chip->corr_str_idx); + + cadence_nand_set_erase_detection(cdns_ctrl, true, + chip->ecc.strength); + + /* Override the default read operations. */ + chip->ecc.read_page = cadence_nand_read_page; + chip->ecc.read_page_raw = cadence_nand_read_page_raw; + chip->ecc.write_page = cadence_nand_write_page; + chip->ecc.write_page_raw = cadence_nand_write_page_raw; + chip->ecc.read_oob = cadence_nand_read_oob; + chip->ecc.write_oob = cadence_nand_write_oob; + chip->ecc.read_oob_raw = cadence_nand_read_oob_raw; + chip->ecc.write_oob_raw = cadence_nand_write_oob_raw; + + if ((mtd->writesize + mtd->oobsize) > cdns_ctrl->buf_size) + cdns_ctrl->buf_size = mtd->writesize + mtd->oobsize; + + /* Is 32-bit DMA supported? */ + ret = dma_set_mask(cdns_ctrl->dev, DMA_BIT_MASK(32)); + if (ret) { + dev_err(cdns_ctrl->dev, "no usable DMA configuration\n"); + return ret; + } + + mtd_set_ooblayout(mtd, &cadence_nand_ooblayout_ops); + + return 0; +} + +static const struct nand_controller_ops cadence_nand_controller_ops = { + .attach_chip = cadence_nand_attach_chip, + .exec_op = cadence_nand_exec_op, + .setup_interface = cadence_nand_setup_interface, +}; + +static int cadence_nand_chip_init(struct cdns_nand_ctrl *cdns_ctrl, + struct device_node *np) +{ + struct cdns_nand_chip *cdns_chip; + struct mtd_info *mtd; + struct nand_chip *chip; + int nsels, ret, i; + u32 cs; + + nsels = of_property_count_elems_of_size(np, "reg", sizeof(u32)); + if (nsels <= 0) { + dev_err(cdns_ctrl->dev, "missing/invalid reg property\n"); + return -EINVAL; + } + + /* Allocate the nand chip structure. */ + cdns_chip = devm_kzalloc(cdns_ctrl->dev, sizeof(*cdns_chip) + + (nsels * sizeof(u8)), + GFP_KERNEL); + if (!cdns_chip) { + dev_err(cdns_ctrl->dev, "could not allocate chip structure\n"); + return -ENOMEM; + } + + cdns_chip->nsels = nsels; + + for (i = 0; i < nsels; i++) { + /* Retrieve CS id. */ + ret = of_property_read_u32_index(np, "reg", i, &cs); + if (ret) { + dev_err(cdns_ctrl->dev, + "could not retrieve reg property: %d\n", + ret); + return ret; + } + + if (cs >= cdns_ctrl->caps2.max_banks) { + dev_err(cdns_ctrl->dev, + "invalid reg value: %u (max CS = %d)\n", + cs, cdns_ctrl->caps2.max_banks); + return -EINVAL; + } + + if (test_and_set_bit(cs, &cdns_ctrl->assigned_cs)) { + dev_err(cdns_ctrl->dev, + "CS %d already assigned\n", cs); + return -EINVAL; + } + + cdns_chip->cs[i] = cs; + } + + chip = &cdns_chip->chip; + chip->controller = &cdns_ctrl->controller; + nand_set_flash_node(chip, np); + + mtd = nand_to_mtd(chip); + mtd->dev.parent = cdns_ctrl->dev; + + /* + * Default to HW ECC engine mode. If the nand-ecc-mode property is given + * in the DT node, this entry will be overwritten in nand_scan_ident(). + */ + chip->ecc.engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST; + + ret = nand_scan(chip, cdns_chip->nsels); + if (ret) { + dev_err(cdns_ctrl->dev, "could not scan the nand chip\n"); + return ret; + } + + ret = mtd_device_register(mtd, NULL, 0); + if (ret) { + dev_err(cdns_ctrl->dev, + "failed to register mtd device: %d\n", ret); + nand_cleanup(chip); + return ret; + } + + list_add_tail(&cdns_chip->node, &cdns_ctrl->chips); + + return 0; +} + +static void cadence_nand_chips_cleanup(struct cdns_nand_ctrl *cdns_ctrl) +{ + struct cdns_nand_chip *entry, *temp; + struct nand_chip *chip; + int ret; + + list_for_each_entry_safe(entry, temp, &cdns_ctrl->chips, node) { + chip = &entry->chip; + ret = mtd_device_unregister(nand_to_mtd(chip)); + WARN_ON(ret); + nand_cleanup(chip); + list_del(&entry->node); + } +} + +static int cadence_nand_chips_init(struct cdns_nand_ctrl *cdns_ctrl) +{ + struct device_node *np = cdns_ctrl->dev->of_node; + struct device_node *nand_np; + int max_cs = cdns_ctrl->caps2.max_banks; + int nchips, ret; + + nchips = of_get_child_count(np); + + if (nchips > max_cs) { + dev_err(cdns_ctrl->dev, + "too many NAND chips: %d (max = %d CS)\n", + nchips, max_cs); + return -EINVAL; + } + + for_each_child_of_node(np, nand_np) { + ret = cadence_nand_chip_init(cdns_ctrl, nand_np); + if (ret) { + of_node_put(nand_np); + cadence_nand_chips_cleanup(cdns_ctrl); + return ret; + } + } + + return 0; +} + +static void +cadence_nand_irq_cleanup(int irqnum, struct cdns_nand_ctrl *cdns_ctrl) +{ + /* Disable interrupts. */ + writel_relaxed(INTR_ENABLE_INTR_EN, cdns_ctrl->reg + INTR_ENABLE); +} + +static int cadence_nand_init(struct cdns_nand_ctrl *cdns_ctrl) +{ + dma_cap_mask_t mask; + int ret; + + cdns_ctrl->cdma_desc = dma_alloc_coherent(cdns_ctrl->dev, + sizeof(*cdns_ctrl->cdma_desc), + &cdns_ctrl->dma_cdma_desc, + GFP_KERNEL); + if (!cdns_ctrl->dma_cdma_desc) + return -ENOMEM; + + cdns_ctrl->buf_size = SZ_16K; + cdns_ctrl->buf = kmalloc(cdns_ctrl->buf_size, GFP_KERNEL); + if (!cdns_ctrl->buf) { + ret = -ENOMEM; + goto free_buf_desc; + } + + if (devm_request_irq(cdns_ctrl->dev, cdns_ctrl->irq, cadence_nand_isr, + IRQF_SHARED, "cadence-nand-controller", + cdns_ctrl)) { + dev_err(cdns_ctrl->dev, "Unable to allocate IRQ\n"); + ret = -ENODEV; + goto free_buf; + } + + spin_lock_init(&cdns_ctrl->irq_lock); + init_completion(&cdns_ctrl->complete); + + ret = cadence_nand_hw_init(cdns_ctrl); + if (ret) + goto disable_irq; + + dma_cap_zero(mask); + dma_cap_set(DMA_MEMCPY, mask); + + if (cdns_ctrl->caps1->has_dma) { + cdns_ctrl->dmac = dma_request_channel(mask, NULL, NULL); + if (!cdns_ctrl->dmac) { + dev_err(cdns_ctrl->dev, + "Unable to get a DMA channel\n"); + ret = -EBUSY; + goto disable_irq; + } + } + + nand_controller_init(&cdns_ctrl->controller); + INIT_LIST_HEAD(&cdns_ctrl->chips); + + cdns_ctrl->controller.ops = &cadence_nand_controller_ops; + cdns_ctrl->curr_corr_str_idx = 0xFF; + + ret = cadence_nand_chips_init(cdns_ctrl); + if (ret) { + dev_err(cdns_ctrl->dev, "Failed to register MTD: %d\n", + ret); + goto dma_release_chnl; + } + + kfree(cdns_ctrl->buf); + cdns_ctrl->buf = kzalloc(cdns_ctrl->buf_size, GFP_KERNEL); + if (!cdns_ctrl->buf) { + ret = -ENOMEM; + goto dma_release_chnl; + } + + return 0; + +dma_release_chnl: + if (cdns_ctrl->dmac) + dma_release_channel(cdns_ctrl->dmac); + +disable_irq: + cadence_nand_irq_cleanup(cdns_ctrl->irq, cdns_ctrl); + +free_buf: + kfree(cdns_ctrl->buf); + +free_buf_desc: + dma_free_coherent(cdns_ctrl->dev, sizeof(struct cadence_nand_cdma_desc), + cdns_ctrl->cdma_desc, cdns_ctrl->dma_cdma_desc); + + return ret; +} + +/* Driver exit point. */ +static void cadence_nand_remove(struct cdns_nand_ctrl *cdns_ctrl) +{ + cadence_nand_chips_cleanup(cdns_ctrl); + cadence_nand_irq_cleanup(cdns_ctrl->irq, cdns_ctrl); + kfree(cdns_ctrl->buf); + dma_free_coherent(cdns_ctrl->dev, sizeof(struct cadence_nand_cdma_desc), + cdns_ctrl->cdma_desc, cdns_ctrl->dma_cdma_desc); + + if (cdns_ctrl->dmac) + dma_release_channel(cdns_ctrl->dmac); +} + +struct cadence_nand_dt { + struct cdns_nand_ctrl cdns_ctrl; + struct clk *clk; +}; + +static const struct cadence_nand_dt_devdata cadence_nand_default = { + .if_skew = 0, + .has_dma = 1, +}; + +static const struct of_device_id cadence_nand_dt_ids[] = { + { + .compatible = "cdns,hp-nfc", + .data = &cadence_nand_default + }, {} +}; + +MODULE_DEVICE_TABLE(of, cadence_nand_dt_ids); + +static int cadence_nand_dt_probe(struct platform_device *ofdev) +{ + struct resource *res; + struct cadence_nand_dt *dt; + struct cdns_nand_ctrl *cdns_ctrl; + int ret; + const struct of_device_id *of_id; + const struct cadence_nand_dt_devdata *devdata; + u32 val; + + of_id = of_match_device(cadence_nand_dt_ids, &ofdev->dev); + if (of_id) { + ofdev->id_entry = of_id->data; + devdata = of_id->data; + } else { + pr_err("Failed to find the right device id.\n"); + return -ENOMEM; + } + + dt = devm_kzalloc(&ofdev->dev, sizeof(*dt), GFP_KERNEL); + if (!dt) + return -ENOMEM; + + cdns_ctrl = &dt->cdns_ctrl; + cdns_ctrl->caps1 = devdata; + + cdns_ctrl->dev = &ofdev->dev; + cdns_ctrl->irq = platform_get_irq(ofdev, 0); + if (cdns_ctrl->irq < 0) + return cdns_ctrl->irq; + + dev_info(cdns_ctrl->dev, "IRQ: nr %d\n", cdns_ctrl->irq); + + cdns_ctrl->reg = devm_platform_ioremap_resource(ofdev, 0); + if (IS_ERR(cdns_ctrl->reg)) + return PTR_ERR(cdns_ctrl->reg); + + cdns_ctrl->io.virt = devm_platform_get_and_ioremap_resource(ofdev, 1, &res); + if (IS_ERR(cdns_ctrl->io.virt)) + return PTR_ERR(cdns_ctrl->io.virt); + cdns_ctrl->io.dma = res->start; + + dt->clk = devm_clk_get(cdns_ctrl->dev, "nf_clk"); + if (IS_ERR(dt->clk)) + return PTR_ERR(dt->clk); + + cdns_ctrl->nf_clk_rate = clk_get_rate(dt->clk); + + ret = of_property_read_u32(ofdev->dev.of_node, + "cdns,board-delay-ps", &val); + if (ret) { + val = 4830; + dev_info(cdns_ctrl->dev, + "missing cdns,board-delay-ps property, %d was set\n", + val); + } + cdns_ctrl->board_delay = val; + + ret = cadence_nand_init(cdns_ctrl); + if (ret) + return ret; + + platform_set_drvdata(ofdev, dt); + return 0; +} + +static void cadence_nand_dt_remove(struct platform_device *ofdev) +{ + struct cadence_nand_dt *dt = platform_get_drvdata(ofdev); + + cadence_nand_remove(&dt->cdns_ctrl); +} + +static struct platform_driver cadence_nand_dt_driver = { + .probe = cadence_nand_dt_probe, + .remove_new = cadence_nand_dt_remove, + .driver = { + .name = "cadence-nand-controller", + .of_match_table = cadence_nand_dt_ids, + }, +}; + +module_platform_driver(cadence_nand_dt_driver); + +MODULE_AUTHOR("Piotr Sroka <piotrs@cadence.com>"); +MODULE_LICENSE("GPL v2"); +MODULE_DESCRIPTION("Driver for Cadence NAND flash controller"); + diff --git a/drivers/mtd/nand/raw/cafe_nand.c b/drivers/mtd/nand/raw/cafe_nand.c new file mode 100644 index 0000000000..66385c4fb9 --- /dev/null +++ b/drivers/mtd/nand/raw/cafe_nand.c @@ -0,0 +1,892 @@ +// SPDX-License-Identifier: GPL-2.0-only +/* + * Driver for One Laptop Per Child ‘CAFÉ’ controller, aka Marvell 88ALP01 + * + * The data sheet for this device can be found at: + * http://wiki.laptop.org/go/Datasheets + * + * Copyright © 2006 Red Hat, Inc. + * Copyright © 2006 David Woodhouse <dwmw2@infradead.org> + */ + +#define DEBUG + +#include <linux/device.h> +#undef DEBUG +#include <linux/mtd/mtd.h> +#include <linux/mtd/rawnand.h> +#include <linux/mtd/partitions.h> +#include <linux/rslib.h> +#include <linux/pci.h> +#include <linux/delay.h> +#include <linux/interrupt.h> +#include <linux/dma-mapping.h> +#include <linux/slab.h> +#include <linux/module.h> +#include <asm/io.h> + +#define CAFE_NAND_CTRL1 0x00 +#define CAFE_NAND_CTRL2 0x04 +#define CAFE_NAND_CTRL3 0x08 +#define CAFE_NAND_STATUS 0x0c +#define CAFE_NAND_IRQ 0x10 +#define CAFE_NAND_IRQ_MASK 0x14 +#define CAFE_NAND_DATA_LEN 0x18 +#define CAFE_NAND_ADDR1 0x1c +#define CAFE_NAND_ADDR2 0x20 +#define CAFE_NAND_TIMING1 0x24 +#define CAFE_NAND_TIMING2 0x28 +#define CAFE_NAND_TIMING3 0x2c +#define CAFE_NAND_NONMEM 0x30 +#define CAFE_NAND_ECC_RESULT 0x3C +#define CAFE_NAND_DMA_CTRL 0x40 +#define CAFE_NAND_DMA_ADDR0 0x44 +#define CAFE_NAND_DMA_ADDR1 0x48 +#define CAFE_NAND_ECC_SYN01 0x50 +#define CAFE_NAND_ECC_SYN23 0x54 +#define CAFE_NAND_ECC_SYN45 0x58 +#define CAFE_NAND_ECC_SYN67 0x5c +#define CAFE_NAND_READ_DATA 0x1000 +#define CAFE_NAND_WRITE_DATA 0x2000 + +#define CAFE_GLOBAL_CTRL 0x3004 +#define CAFE_GLOBAL_IRQ 0x3008 +#define CAFE_GLOBAL_IRQ_MASK 0x300c +#define CAFE_NAND_RESET 0x3034 + +/* Missing from the datasheet: bit 19 of CTRL1 sets CE0 vs. CE1 */ +#define CTRL1_CHIPSELECT (1<<19) + +struct cafe_priv { + struct nand_chip nand; + struct pci_dev *pdev; + void __iomem *mmio; + struct rs_control *rs; + uint32_t ctl1; + uint32_t ctl2; + int datalen; + int nr_data; + int data_pos; + int page_addr; + bool usedma; + dma_addr_t dmaaddr; + unsigned char *dmabuf; +}; + +static int usedma = 1; +module_param(usedma, int, 0644); + +static int skipbbt = 0; +module_param(skipbbt, int, 0644); + +static int debug = 0; +module_param(debug, int, 0644); + +static int regdebug = 0; +module_param(regdebug, int, 0644); + +static int checkecc = 1; +module_param(checkecc, int, 0644); + +static unsigned int numtimings; +static int timing[3]; +module_param_array(timing, int, &numtimings, 0644); + +static const char *part_probes[] = { "cmdlinepart", "RedBoot", NULL }; + +/* Hrm. Why isn't this already conditional on something in the struct device? */ +#define cafe_dev_dbg(dev, args...) do { if (debug) dev_dbg(dev, ##args); } while(0) + +/* Make it easier to switch to PIO if we need to */ +#define cafe_readl(cafe, addr) readl((cafe)->mmio + CAFE_##addr) +#define cafe_writel(cafe, datum, addr) writel(datum, (cafe)->mmio + CAFE_##addr) + +static int cafe_device_ready(struct nand_chip *chip) +{ + struct cafe_priv *cafe = nand_get_controller_data(chip); + int result = !!(cafe_readl(cafe, NAND_STATUS) & 0x40000000); + uint32_t irqs = cafe_readl(cafe, NAND_IRQ); + + cafe_writel(cafe, irqs, NAND_IRQ); + + cafe_dev_dbg(&cafe->pdev->dev, "NAND device is%s ready, IRQ %x (%x) (%x,%x)\n", + result?"":" not", irqs, cafe_readl(cafe, NAND_IRQ), + cafe_readl(cafe, GLOBAL_IRQ), cafe_readl(cafe, GLOBAL_IRQ_MASK)); + + return result; +} + + +static void cafe_write_buf(struct nand_chip *chip, const uint8_t *buf, int len) +{ + struct cafe_priv *cafe = nand_get_controller_data(chip); + + if (cafe->usedma) + memcpy(cafe->dmabuf + cafe->datalen, buf, len); + else + memcpy_toio(cafe->mmio + CAFE_NAND_WRITE_DATA + cafe->datalen, buf, len); + + cafe->datalen += len; + + cafe_dev_dbg(&cafe->pdev->dev, "Copy 0x%x bytes to write buffer. datalen 0x%x\n", + len, cafe->datalen); +} + +static void cafe_read_buf(struct nand_chip *chip, uint8_t *buf, int len) +{ + struct cafe_priv *cafe = nand_get_controller_data(chip); + + if (cafe->usedma) + memcpy(buf, cafe->dmabuf + cafe->datalen, len); + else + memcpy_fromio(buf, cafe->mmio + CAFE_NAND_READ_DATA + cafe->datalen, len); + + cafe_dev_dbg(&cafe->pdev->dev, "Copy 0x%x bytes from position 0x%x in read buffer.\n", + len, cafe->datalen); + cafe->datalen += len; +} + +static uint8_t cafe_read_byte(struct nand_chip *chip) +{ + struct cafe_priv *cafe = nand_get_controller_data(chip); + uint8_t d; + + cafe_read_buf(chip, &d, 1); + cafe_dev_dbg(&cafe->pdev->dev, "Read %02x\n", d); + + return d; +} + +static void cafe_nand_cmdfunc(struct nand_chip *chip, unsigned command, + int column, int page_addr) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + struct cafe_priv *cafe = nand_get_controller_data(chip); + int adrbytes = 0; + uint32_t ctl1; + uint32_t doneint = 0x80000000; + + cafe_dev_dbg(&cafe->pdev->dev, "cmdfunc %02x, 0x%x, 0x%x\n", + command, column, page_addr); + + if (command == NAND_CMD_ERASE2 || command == NAND_CMD_PAGEPROG) { + /* Second half of a command we already calculated */ + cafe_writel(cafe, cafe->ctl2 | 0x100 | command, NAND_CTRL2); + ctl1 = cafe->ctl1; + cafe->ctl2 &= ~(1<<30); + cafe_dev_dbg(&cafe->pdev->dev, "Continue command, ctl1 %08x, #data %d\n", + cafe->ctl1, cafe->nr_data); + goto do_command; + } + /* Reset ECC engine */ + cafe_writel(cafe, 0, NAND_CTRL2); + + /* Emulate NAND_CMD_READOOB on large-page chips */ + if (mtd->writesize > 512 && + command == NAND_CMD_READOOB) { + column += mtd->writesize; + command = NAND_CMD_READ0; + } + + /* FIXME: Do we need to send read command before sending data + for small-page chips, to position the buffer correctly? */ + + if (column != -1) { + cafe_writel(cafe, column, NAND_ADDR1); + adrbytes = 2; + if (page_addr != -1) + goto write_adr2; + } else if (page_addr != -1) { + cafe_writel(cafe, page_addr & 0xffff, NAND_ADDR1); + page_addr >>= 16; + write_adr2: + cafe_writel(cafe, page_addr, NAND_ADDR2); + adrbytes += 2; + if (mtd->size > mtd->writesize << 16) + adrbytes++; + } + + cafe->data_pos = cafe->datalen = 0; + + /* Set command valid bit, mask in the chip select bit */ + ctl1 = 0x80000000 | command | (cafe->ctl1 & CTRL1_CHIPSELECT); + + /* Set RD or WR bits as appropriate */ + if (command == NAND_CMD_READID || command == NAND_CMD_STATUS) { + ctl1 |= (1<<26); /* rd */ + /* Always 5 bytes, for now */ + cafe->datalen = 4; + /* And one address cycle -- even for STATUS, since the controller doesn't work without */ + adrbytes = 1; + } else if (command == NAND_CMD_READ0 || command == NAND_CMD_READ1 || + command == NAND_CMD_READOOB || command == NAND_CMD_RNDOUT) { + ctl1 |= 1<<26; /* rd */ + /* For now, assume just read to end of page */ + cafe->datalen = mtd->writesize + mtd->oobsize - column; + } else if (command == NAND_CMD_SEQIN) + ctl1 |= 1<<25; /* wr */ + + /* Set number of address bytes */ + if (adrbytes) + ctl1 |= ((adrbytes-1)|8) << 27; + + if (command == NAND_CMD_SEQIN || command == NAND_CMD_ERASE1) { + /* Ignore the first command of a pair; the hardware + deals with them both at once, later */ + cafe->ctl1 = ctl1; + cafe_dev_dbg(&cafe->pdev->dev, "Setup for delayed command, ctl1 %08x, dlen %x\n", + cafe->ctl1, cafe->datalen); + return; + } + /* RNDOUT and READ0 commands need a following byte */ + if (command == NAND_CMD_RNDOUT) + cafe_writel(cafe, cafe->ctl2 | 0x100 | NAND_CMD_RNDOUTSTART, NAND_CTRL2); + else if (command == NAND_CMD_READ0 && mtd->writesize > 512) + cafe_writel(cafe, cafe->ctl2 | 0x100 | NAND_CMD_READSTART, NAND_CTRL2); + + do_command: + cafe_dev_dbg(&cafe->pdev->dev, "dlen %x, ctl1 %x, ctl2 %x\n", + cafe->datalen, ctl1, cafe_readl(cafe, NAND_CTRL2)); + + /* NB: The datasheet lies -- we really should be subtracting 1 here */ + cafe_writel(cafe, cafe->datalen, NAND_DATA_LEN); + cafe_writel(cafe, 0x90000000, NAND_IRQ); + if (cafe->usedma && (ctl1 & (3<<25))) { + uint32_t dmactl = 0xc0000000 + cafe->datalen; + /* If WR or RD bits set, set up DMA */ + if (ctl1 & (1<<26)) { + /* It's a read */ + dmactl |= (1<<29); + /* ... so it's done when the DMA is done, not just + the command. */ + doneint = 0x10000000; + } + cafe_writel(cafe, dmactl, NAND_DMA_CTRL); + } + cafe->datalen = 0; + + if (unlikely(regdebug)) { + int i; + printk("About to write command %08x to register 0\n", ctl1); + for (i=4; i< 0x5c; i+=4) + printk("Register %x: %08x\n", i, readl(cafe->mmio + i)); + } + + cafe_writel(cafe, ctl1, NAND_CTRL1); + /* Apply this short delay always to ensure that we do wait tWB in + * any case on any machine. */ + ndelay(100); + + if (1) { + int c; + uint32_t irqs; + + for (c = 500000; c != 0; c--) { + irqs = cafe_readl(cafe, NAND_IRQ); + if (irqs & doneint) + break; + udelay(1); + if (!(c % 100000)) + cafe_dev_dbg(&cafe->pdev->dev, "Wait for ready, IRQ %x\n", irqs); + cpu_relax(); + } + cafe_writel(cafe, doneint, NAND_IRQ); + cafe_dev_dbg(&cafe->pdev->dev, "Command %x completed after %d usec, irqs %x (%x)\n", + command, 500000-c, irqs, cafe_readl(cafe, NAND_IRQ)); + } + + WARN_ON(cafe->ctl2 & (1<<30)); + + switch (command) { + + case NAND_CMD_CACHEDPROG: + case NAND_CMD_PAGEPROG: + case NAND_CMD_ERASE1: + case NAND_CMD_ERASE2: + case NAND_CMD_SEQIN: + case NAND_CMD_RNDIN: + case NAND_CMD_STATUS: + case NAND_CMD_RNDOUT: + cafe_writel(cafe, cafe->ctl2, NAND_CTRL2); + return; + } + nand_wait_ready(chip); + cafe_writel(cafe, cafe->ctl2, NAND_CTRL2); +} + +static void cafe_select_chip(struct nand_chip *chip, int chipnr) +{ + struct cafe_priv *cafe = nand_get_controller_data(chip); + + cafe_dev_dbg(&cafe->pdev->dev, "select_chip %d\n", chipnr); + + /* Mask the appropriate bit into the stored value of ctl1 + which will be used by cafe_nand_cmdfunc() */ + if (chipnr) + cafe->ctl1 |= CTRL1_CHIPSELECT; + else + cafe->ctl1 &= ~CTRL1_CHIPSELECT; +} + +static irqreturn_t cafe_nand_interrupt(int irq, void *id) +{ + struct mtd_info *mtd = id; + struct nand_chip *chip = mtd_to_nand(mtd); + struct cafe_priv *cafe = nand_get_controller_data(chip); + uint32_t irqs = cafe_readl(cafe, NAND_IRQ); + cafe_writel(cafe, irqs & ~0x90000000, NAND_IRQ); + if (!irqs) + return IRQ_NONE; + + cafe_dev_dbg(&cafe->pdev->dev, "irq, bits %x (%x)\n", irqs, cafe_readl(cafe, NAND_IRQ)); + return IRQ_HANDLED; +} + +static int cafe_nand_write_oob(struct nand_chip *chip, int page) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + + return nand_prog_page_op(chip, page, mtd->writesize, chip->oob_poi, + mtd->oobsize); +} + +/* Don't use -- use nand_read_oob_std for now */ +static int cafe_nand_read_oob(struct nand_chip *chip, int page) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + + return nand_read_oob_op(chip, page, 0, chip->oob_poi, mtd->oobsize); +} +/** + * cafe_nand_read_page - [REPLACEABLE] hardware ecc syndrome based page read + * @chip: nand chip info structure + * @buf: buffer to store read data + * @oob_required: caller expects OOB data read to chip->oob_poi + * @page: page number to read + * + * The hw generator calculates the error syndrome automatically. Therefore + * we need a special oob layout and handling. + */ +static int cafe_nand_read_page(struct nand_chip *chip, uint8_t *buf, + int oob_required, int page) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + struct cafe_priv *cafe = nand_get_controller_data(chip); + unsigned int max_bitflips = 0; + + cafe_dev_dbg(&cafe->pdev->dev, "ECC result %08x SYN1,2 %08x\n", + cafe_readl(cafe, NAND_ECC_RESULT), + cafe_readl(cafe, NAND_ECC_SYN01)); + + nand_read_page_op(chip, page, 0, buf, mtd->writesize); + chip->legacy.read_buf(chip, chip->oob_poi, mtd->oobsize); + + if (checkecc && cafe_readl(cafe, NAND_ECC_RESULT) & (1<<18)) { + unsigned short syn[8], pat[4]; + int pos[4]; + u8 *oob = chip->oob_poi; + int i, n; + + for (i=0; i<8; i+=2) { + uint32_t tmp = cafe_readl(cafe, NAND_ECC_SYN01 + (i*2)); + + syn[i] = cafe->rs->codec->index_of[tmp & 0xfff]; + syn[i+1] = cafe->rs->codec->index_of[(tmp >> 16) & 0xfff]; + } + + n = decode_rs16(cafe->rs, NULL, NULL, 1367, syn, 0, pos, 0, + pat); + + for (i = 0; i < n; i++) { + int p = pos[i]; + + /* The 12-bit symbols are mapped to bytes here */ + + if (p > 1374) { + /* out of range */ + n = -1374; + } else if (p == 0) { + /* high four bits do not correspond to data */ + if (pat[i] > 0xff) + n = -2048; + else + buf[0] ^= pat[i]; + } else if (p == 1365) { + buf[2047] ^= pat[i] >> 4; + oob[0] ^= pat[i] << 4; + } else if (p > 1365) { + if ((p & 1) == 1) { + oob[3*p/2 - 2048] ^= pat[i] >> 4; + oob[3*p/2 - 2047] ^= pat[i] << 4; + } else { + oob[3*p/2 - 2049] ^= pat[i] >> 8; + oob[3*p/2 - 2048] ^= pat[i]; + } + } else if ((p & 1) == 1) { + buf[3*p/2] ^= pat[i] >> 4; + buf[3*p/2 + 1] ^= pat[i] << 4; + } else { + buf[3*p/2 - 1] ^= pat[i] >> 8; + buf[3*p/2] ^= pat[i]; + } + } + + if (n < 0) { + dev_dbg(&cafe->pdev->dev, "Failed to correct ECC at %08x\n", + cafe_readl(cafe, NAND_ADDR2) * 2048); + for (i = 0; i < 0x5c; i += 4) + printk("Register %x: %08x\n", i, readl(cafe->mmio + i)); + mtd->ecc_stats.failed++; + } else { + dev_dbg(&cafe->pdev->dev, "Corrected %d symbol errors\n", n); + mtd->ecc_stats.corrected += n; + max_bitflips = max_t(unsigned int, max_bitflips, n); + } + } + + return max_bitflips; +} + +static int cafe_ooblayout_ecc(struct mtd_info *mtd, int section, + struct mtd_oob_region *oobregion) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + + if (section) + return -ERANGE; + + oobregion->offset = 0; + oobregion->length = chip->ecc.total; + + return 0; +} + +static int cafe_ooblayout_free(struct mtd_info *mtd, int section, + struct mtd_oob_region *oobregion) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + + if (section) + return -ERANGE; + + oobregion->offset = chip->ecc.total; + oobregion->length = mtd->oobsize - chip->ecc.total; + + return 0; +} + +static const struct mtd_ooblayout_ops cafe_ooblayout_ops = { + .ecc = cafe_ooblayout_ecc, + .free = cafe_ooblayout_free, +}; + +/* Ick. The BBT code really ought to be able to work this bit out + for itself from the above, at least for the 2KiB case */ +static uint8_t cafe_bbt_pattern_2048[] = { 'B', 'b', 't', '0' }; +static uint8_t cafe_mirror_pattern_2048[] = { '1', 't', 'b', 'B' }; + +static uint8_t cafe_bbt_pattern_512[] = { 0xBB }; +static uint8_t cafe_mirror_pattern_512[] = { 0xBC }; + + +static struct nand_bbt_descr cafe_bbt_main_descr_2048 = { + .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE + | NAND_BBT_2BIT | NAND_BBT_VERSION, + .offs = 14, + .len = 4, + .veroffs = 18, + .maxblocks = 4, + .pattern = cafe_bbt_pattern_2048 +}; + +static struct nand_bbt_descr cafe_bbt_mirror_descr_2048 = { + .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE + | NAND_BBT_2BIT | NAND_BBT_VERSION, + .offs = 14, + .len = 4, + .veroffs = 18, + .maxblocks = 4, + .pattern = cafe_mirror_pattern_2048 +}; + +static struct nand_bbt_descr cafe_bbt_main_descr_512 = { + .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE + | NAND_BBT_2BIT | NAND_BBT_VERSION, + .offs = 14, + .len = 1, + .veroffs = 15, + .maxblocks = 4, + .pattern = cafe_bbt_pattern_512 +}; + +static struct nand_bbt_descr cafe_bbt_mirror_descr_512 = { + .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE + | NAND_BBT_2BIT | NAND_BBT_VERSION, + .offs = 14, + .len = 1, + .veroffs = 15, + .maxblocks = 4, + .pattern = cafe_mirror_pattern_512 +}; + + +static int cafe_nand_write_page_lowlevel(struct nand_chip *chip, + const uint8_t *buf, int oob_required, + int page) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + struct cafe_priv *cafe = nand_get_controller_data(chip); + + nand_prog_page_begin_op(chip, page, 0, buf, mtd->writesize); + chip->legacy.write_buf(chip, chip->oob_poi, mtd->oobsize); + + /* Set up ECC autogeneration */ + cafe->ctl2 |= (1<<30); + + return nand_prog_page_end_op(chip); +} + +/* F_2[X]/(X**6+X+1) */ +static unsigned short gf64_mul(u8 a, u8 b) +{ + u8 c; + unsigned int i; + + c = 0; + for (i = 0; i < 6; i++) { + if (a & 1) + c ^= b; + a >>= 1; + b <<= 1; + if ((b & 0x40) != 0) + b ^= 0x43; + } + + return c; +} + +/* F_64[X]/(X**2+X+A**-1) with A the generator of F_64[X] */ +static u16 gf4096_mul(u16 a, u16 b) +{ + u8 ah, al, bh, bl, ch, cl; + + ah = a >> 6; + al = a & 0x3f; + bh = b >> 6; + bl = b & 0x3f; + + ch = gf64_mul(ah ^ al, bh ^ bl) ^ gf64_mul(al, bl); + cl = gf64_mul(gf64_mul(ah, bh), 0x21) ^ gf64_mul(al, bl); + + return (ch << 6) ^ cl; +} + +static int cafe_mul(int x) +{ + if (x == 0) + return 1; + return gf4096_mul(x, 0xe01); +} + +static int cafe_nand_attach_chip(struct nand_chip *chip) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + struct cafe_priv *cafe = nand_get_controller_data(chip); + int err = 0; + + cafe->dmabuf = dma_alloc_coherent(&cafe->pdev->dev, 2112, + &cafe->dmaaddr, GFP_KERNEL); + if (!cafe->dmabuf) + return -ENOMEM; + + /* Set up DMA address */ + cafe_writel(cafe, lower_32_bits(cafe->dmaaddr), NAND_DMA_ADDR0); + cafe_writel(cafe, upper_32_bits(cafe->dmaaddr), NAND_DMA_ADDR1); + + cafe_dev_dbg(&cafe->pdev->dev, "Set DMA address to %x (virt %p)\n", + cafe_readl(cafe, NAND_DMA_ADDR0), cafe->dmabuf); + + /* Restore the DMA flag */ + cafe->usedma = usedma; + + cafe->ctl2 = BIT(27); /* Reed-Solomon ECC */ + if (mtd->writesize == 2048) + cafe->ctl2 |= BIT(29); /* 2KiB page size */ + + /* Set up ECC according to the type of chip we found */ + mtd_set_ooblayout(mtd, &cafe_ooblayout_ops); + if (mtd->writesize == 2048) { + cafe->nand.bbt_td = &cafe_bbt_main_descr_2048; + cafe->nand.bbt_md = &cafe_bbt_mirror_descr_2048; + } else if (mtd->writesize == 512) { + cafe->nand.bbt_td = &cafe_bbt_main_descr_512; + cafe->nand.bbt_md = &cafe_bbt_mirror_descr_512; + } else { + dev_warn(&cafe->pdev->dev, + "Unexpected NAND flash writesize %d. Aborting\n", + mtd->writesize); + err = -ENOTSUPP; + goto out_free_dma; + } + + cafe->nand.ecc.engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST; + cafe->nand.ecc.placement = NAND_ECC_PLACEMENT_INTERLEAVED; + cafe->nand.ecc.size = mtd->writesize; + cafe->nand.ecc.bytes = 14; + cafe->nand.ecc.strength = 4; + cafe->nand.ecc.write_page = cafe_nand_write_page_lowlevel; + cafe->nand.ecc.write_oob = cafe_nand_write_oob; + cafe->nand.ecc.read_page = cafe_nand_read_page; + cafe->nand.ecc.read_oob = cafe_nand_read_oob; + + return 0; + + out_free_dma: + dma_free_coherent(&cafe->pdev->dev, 2112, cafe->dmabuf, cafe->dmaaddr); + + return err; +} + +static void cafe_nand_detach_chip(struct nand_chip *chip) +{ + struct cafe_priv *cafe = nand_get_controller_data(chip); + + dma_free_coherent(&cafe->pdev->dev, 2112, cafe->dmabuf, cafe->dmaaddr); +} + +static const struct nand_controller_ops cafe_nand_controller_ops = { + .attach_chip = cafe_nand_attach_chip, + .detach_chip = cafe_nand_detach_chip, +}; + +static int cafe_nand_probe(struct pci_dev *pdev, + const struct pci_device_id *ent) +{ + struct mtd_info *mtd; + struct cafe_priv *cafe; + uint32_t ctrl; + int err = 0; + + /* Very old versions shared the same PCI ident for all three + functions on the chip. Verify the class too... */ + if ((pdev->class >> 8) != PCI_CLASS_MEMORY_FLASH) + return -ENODEV; + + err = pci_enable_device(pdev); + if (err) + return err; + + pci_set_master(pdev); + + cafe = kzalloc(sizeof(*cafe), GFP_KERNEL); + if (!cafe) { + err = -ENOMEM; + goto out_disable_device; + } + + mtd = nand_to_mtd(&cafe->nand); + mtd->dev.parent = &pdev->dev; + nand_set_controller_data(&cafe->nand, cafe); + + cafe->pdev = pdev; + cafe->mmio = pci_iomap(pdev, 0, 0); + if (!cafe->mmio) { + dev_warn(&pdev->dev, "failed to iomap\n"); + err = -ENOMEM; + goto out_free_mtd; + } + + cafe->rs = init_rs_non_canonical(12, &cafe_mul, 0, 1, 8); + if (!cafe->rs) { + err = -ENOMEM; + goto out_ior; + } + + cafe->nand.legacy.cmdfunc = cafe_nand_cmdfunc; + cafe->nand.legacy.dev_ready = cafe_device_ready; + cafe->nand.legacy.read_byte = cafe_read_byte; + cafe->nand.legacy.read_buf = cafe_read_buf; + cafe->nand.legacy.write_buf = cafe_write_buf; + cafe->nand.legacy.select_chip = cafe_select_chip; + cafe->nand.legacy.set_features = nand_get_set_features_notsupp; + cafe->nand.legacy.get_features = nand_get_set_features_notsupp; + + cafe->nand.legacy.chip_delay = 0; + + /* Enable the following for a flash based bad block table */ + cafe->nand.bbt_options = NAND_BBT_USE_FLASH; + + if (skipbbt) + cafe->nand.options |= NAND_SKIP_BBTSCAN | NAND_NO_BBM_QUIRK; + + if (numtimings && numtimings != 3) { + dev_warn(&cafe->pdev->dev, "%d timing register values ignored; precisely three are required\n", numtimings); + } + + if (numtimings == 3) { + cafe_dev_dbg(&cafe->pdev->dev, "Using provided timings (%08x %08x %08x)\n", + timing[0], timing[1], timing[2]); + } else { + timing[0] = cafe_readl(cafe, NAND_TIMING1); + timing[1] = cafe_readl(cafe, NAND_TIMING2); + timing[2] = cafe_readl(cafe, NAND_TIMING3); + + if (timing[0] | timing[1] | timing[2]) { + cafe_dev_dbg(&cafe->pdev->dev, "Timing registers already set (%08x %08x %08x)\n", + timing[0], timing[1], timing[2]); + } else { + dev_warn(&cafe->pdev->dev, "Timing registers unset; using most conservative defaults\n"); + timing[0] = timing[1] = timing[2] = 0xffffffff; + } + } + + /* Start off by resetting the NAND controller completely */ + cafe_writel(cafe, 1, NAND_RESET); + cafe_writel(cafe, 0, NAND_RESET); + + cafe_writel(cafe, timing[0], NAND_TIMING1); + cafe_writel(cafe, timing[1], NAND_TIMING2); + cafe_writel(cafe, timing[2], NAND_TIMING3); + + cafe_writel(cafe, 0xffffffff, NAND_IRQ_MASK); + err = request_irq(pdev->irq, &cafe_nand_interrupt, IRQF_SHARED, + "CAFE NAND", mtd); + if (err) { + dev_warn(&pdev->dev, "Could not register IRQ %d\n", pdev->irq); + goto out_free_rs; + } + + /* Disable master reset, enable NAND clock */ + ctrl = cafe_readl(cafe, GLOBAL_CTRL); + ctrl &= 0xffffeff0; + ctrl |= 0x00007000; + cafe_writel(cafe, ctrl | 0x05, GLOBAL_CTRL); + cafe_writel(cafe, ctrl | 0x0a, GLOBAL_CTRL); + cafe_writel(cafe, 0, NAND_DMA_CTRL); + + cafe_writel(cafe, 0x7006, GLOBAL_CTRL); + cafe_writel(cafe, 0x700a, GLOBAL_CTRL); + + /* Enable NAND IRQ in global IRQ mask register */ + cafe_writel(cafe, 0x80000007, GLOBAL_IRQ_MASK); + cafe_dev_dbg(&cafe->pdev->dev, "Control %x, IRQ mask %x\n", + cafe_readl(cafe, GLOBAL_CTRL), + cafe_readl(cafe, GLOBAL_IRQ_MASK)); + + /* Do not use the DMA during the NAND identification */ + cafe->usedma = 0; + + /* Scan to find existence of the device */ + cafe->nand.legacy.dummy_controller.ops = &cafe_nand_controller_ops; + err = nand_scan(&cafe->nand, 2); + if (err) + goto out_irq; + + pci_set_drvdata(pdev, mtd); + + mtd->name = "cafe_nand"; + err = mtd_device_parse_register(mtd, part_probes, NULL, NULL, 0); + if (err) + goto out_cleanup_nand; + + goto out; + + out_cleanup_nand: + nand_cleanup(&cafe->nand); + out_irq: + /* Disable NAND IRQ in global IRQ mask register */ + cafe_writel(cafe, ~1 & cafe_readl(cafe, GLOBAL_IRQ_MASK), GLOBAL_IRQ_MASK); + free_irq(pdev->irq, mtd); + out_free_rs: + free_rs(cafe->rs); + out_ior: + pci_iounmap(pdev, cafe->mmio); + out_free_mtd: + kfree(cafe); + out_disable_device: + pci_disable_device(pdev); + out: + return err; +} + +static void cafe_nand_remove(struct pci_dev *pdev) +{ + struct mtd_info *mtd = pci_get_drvdata(pdev); + struct nand_chip *chip = mtd_to_nand(mtd); + struct cafe_priv *cafe = nand_get_controller_data(chip); + int ret; + + /* Disable NAND IRQ in global IRQ mask register */ + cafe_writel(cafe, ~1 & cafe_readl(cafe, GLOBAL_IRQ_MASK), GLOBAL_IRQ_MASK); + free_irq(pdev->irq, mtd); + ret = mtd_device_unregister(mtd); + WARN_ON(ret); + nand_cleanup(chip); + free_rs(cafe->rs); + pci_iounmap(pdev, cafe->mmio); + dma_free_coherent(&cafe->pdev->dev, 2112, cafe->dmabuf, cafe->dmaaddr); + kfree(cafe); + pci_disable_device(pdev); +} + +static const struct pci_device_id cafe_nand_tbl[] = { + { PCI_VENDOR_ID_MARVELL, PCI_DEVICE_ID_MARVELL_88ALP01_NAND, + PCI_ANY_ID, PCI_ANY_ID }, + { } +}; + +MODULE_DEVICE_TABLE(pci, cafe_nand_tbl); + +static int cafe_nand_resume(struct pci_dev *pdev) +{ + uint32_t ctrl; + struct mtd_info *mtd = pci_get_drvdata(pdev); + struct nand_chip *chip = mtd_to_nand(mtd); + struct cafe_priv *cafe = nand_get_controller_data(chip); + + /* Start off by resetting the NAND controller completely */ + cafe_writel(cafe, 1, NAND_RESET); + cafe_writel(cafe, 0, NAND_RESET); + cafe_writel(cafe, 0xffffffff, NAND_IRQ_MASK); + + /* Restore timing configuration */ + cafe_writel(cafe, timing[0], NAND_TIMING1); + cafe_writel(cafe, timing[1], NAND_TIMING2); + cafe_writel(cafe, timing[2], NAND_TIMING3); + + /* Disable master reset, enable NAND clock */ + ctrl = cafe_readl(cafe, GLOBAL_CTRL); + ctrl &= 0xffffeff0; + ctrl |= 0x00007000; + cafe_writel(cafe, ctrl | 0x05, GLOBAL_CTRL); + cafe_writel(cafe, ctrl | 0x0a, GLOBAL_CTRL); + cafe_writel(cafe, 0, NAND_DMA_CTRL); + cafe_writel(cafe, 0x7006, GLOBAL_CTRL); + cafe_writel(cafe, 0x700a, GLOBAL_CTRL); + + /* Set up DMA address */ + cafe_writel(cafe, cafe->dmaaddr & 0xffffffff, NAND_DMA_ADDR0); + if (sizeof(cafe->dmaaddr) > 4) + /* Shift in two parts to shut the compiler up */ + cafe_writel(cafe, (cafe->dmaaddr >> 16) >> 16, NAND_DMA_ADDR1); + else + cafe_writel(cafe, 0, NAND_DMA_ADDR1); + + /* Enable NAND IRQ in global IRQ mask register */ + cafe_writel(cafe, 0x80000007, GLOBAL_IRQ_MASK); + return 0; +} + +static struct pci_driver cafe_nand_pci_driver = { + .name = "CAFÉ NAND", + .id_table = cafe_nand_tbl, + .probe = cafe_nand_probe, + .remove = cafe_nand_remove, + .resume = cafe_nand_resume, +}; + +module_pci_driver(cafe_nand_pci_driver); + +MODULE_LICENSE("GPL"); +MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>"); +MODULE_DESCRIPTION("NAND flash driver for OLPC CAFÉ chip"); diff --git a/drivers/mtd/nand/raw/cs553x_nand.c b/drivers/mtd/nand/raw/cs553x_nand.c new file mode 100644 index 0000000000..f0a15717cf --- /dev/null +++ b/drivers/mtd/nand/raw/cs553x_nand.c @@ -0,0 +1,421 @@ +// SPDX-License-Identifier: GPL-2.0-only +/* + * (C) 2005, 2006 Red Hat Inc. + * + * Author: David Woodhouse <dwmw2@infradead.org> + * Tom Sylla <tom.sylla@amd.com> + * + * Overview: + * This is a device driver for the NAND flash controller found on + * the AMD CS5535/CS5536 companion chipsets for the Geode processor. + * mtd-id for command line partitioning is cs553x_nand_cs[0-3] + * where 0-3 reflects the chip select for NAND. + */ + +#include <linux/kernel.h> +#include <linux/slab.h> +#include <linux/init.h> +#include <linux/module.h> +#include <linux/delay.h> +#include <linux/mtd/mtd.h> +#include <linux/mtd/rawnand.h> +#include <linux/mtd/partitions.h> +#include <linux/iopoll.h> + +#include <asm/msr.h> + +#define NR_CS553X_CONTROLLERS 4 + +#define MSR_DIVIL_GLD_CAP 0x51400000 /* DIVIL capabilitiies */ +#define CAP_CS5535 0x2df000ULL +#define CAP_CS5536 0x5df500ULL + +/* NAND Timing MSRs */ +#define MSR_NANDF_DATA 0x5140001b /* NAND Flash Data Timing MSR */ +#define MSR_NANDF_CTL 0x5140001c /* NAND Flash Control Timing */ +#define MSR_NANDF_RSVD 0x5140001d /* Reserved */ + +/* NAND BAR MSRs */ +#define MSR_DIVIL_LBAR_FLSH0 0x51400010 /* Flash Chip Select 0 */ +#define MSR_DIVIL_LBAR_FLSH1 0x51400011 /* Flash Chip Select 1 */ +#define MSR_DIVIL_LBAR_FLSH2 0x51400012 /* Flash Chip Select 2 */ +#define MSR_DIVIL_LBAR_FLSH3 0x51400013 /* Flash Chip Select 3 */ + /* Each made up of... */ +#define FLSH_LBAR_EN (1ULL<<32) +#define FLSH_NOR_NAND (1ULL<<33) /* 1 for NAND */ +#define FLSH_MEM_IO (1ULL<<34) /* 1 for MMIO */ + /* I/O BARs have BASE_ADDR in bits 15:4, IO_MASK in 47:36 */ + /* MMIO BARs have BASE_ADDR in bits 31:12, MEM_MASK in 63:44 */ + +/* Pin function selection MSR (IDE vs. flash on the IDE pins) */ +#define MSR_DIVIL_BALL_OPTS 0x51400015 +#define PIN_OPT_IDE (1<<0) /* 0 for flash, 1 for IDE */ + +/* Registers within the NAND flash controller BAR -- memory mapped */ +#define MM_NAND_DATA 0x00 /* 0 to 0x7ff, in fact */ +#define MM_NAND_CTL 0x800 /* Any even address 0x800-0x80e */ +#define MM_NAND_IO 0x801 /* Any odd address 0x801-0x80f */ +#define MM_NAND_STS 0x810 +#define MM_NAND_ECC_LSB 0x811 +#define MM_NAND_ECC_MSB 0x812 +#define MM_NAND_ECC_COL 0x813 +#define MM_NAND_LAC 0x814 +#define MM_NAND_ECC_CTL 0x815 + +/* Registers within the NAND flash controller BAR -- I/O mapped */ +#define IO_NAND_DATA 0x00 /* 0 to 3, in fact */ +#define IO_NAND_CTL 0x04 +#define IO_NAND_IO 0x05 +#define IO_NAND_STS 0x06 +#define IO_NAND_ECC_CTL 0x08 +#define IO_NAND_ECC_LSB 0x09 +#define IO_NAND_ECC_MSB 0x0a +#define IO_NAND_ECC_COL 0x0b +#define IO_NAND_LAC 0x0c + +#define CS_NAND_CTL_DIST_EN (1<<4) /* Enable NAND Distract interrupt */ +#define CS_NAND_CTL_RDY_INT_MASK (1<<3) /* Enable RDY/BUSY# interrupt */ +#define CS_NAND_CTL_ALE (1<<2) +#define CS_NAND_CTL_CLE (1<<1) +#define CS_NAND_CTL_CE (1<<0) /* Keep low; 1 to reset */ + +#define CS_NAND_STS_FLASH_RDY (1<<3) +#define CS_NAND_CTLR_BUSY (1<<2) +#define CS_NAND_CMD_COMP (1<<1) +#define CS_NAND_DIST_ST (1<<0) + +#define CS_NAND_ECC_PARITY (1<<2) +#define CS_NAND_ECC_CLRECC (1<<1) +#define CS_NAND_ECC_ENECC (1<<0) + +struct cs553x_nand_controller { + struct nand_controller base; + struct nand_chip chip; + void __iomem *mmio; +}; + +static struct cs553x_nand_controller * +to_cs553x(struct nand_controller *controller) +{ + return container_of(controller, struct cs553x_nand_controller, base); +} + +static int cs553x_write_ctrl_byte(struct cs553x_nand_controller *cs553x, + u32 ctl, u8 data) +{ + u8 status; + + writeb(ctl, cs553x->mmio + MM_NAND_CTL); + writeb(data, cs553x->mmio + MM_NAND_IO); + return readb_poll_timeout_atomic(cs553x->mmio + MM_NAND_STS, status, + !(status & CS_NAND_CTLR_BUSY), 1, + 100000); +} + +static void cs553x_data_in(struct cs553x_nand_controller *cs553x, void *buf, + unsigned int len) +{ + writeb(0, cs553x->mmio + MM_NAND_CTL); + while (unlikely(len > 0x800)) { + memcpy_fromio(buf, cs553x->mmio, 0x800); + buf += 0x800; + len -= 0x800; + } + memcpy_fromio(buf, cs553x->mmio, len); +} + +static void cs553x_data_out(struct cs553x_nand_controller *cs553x, + const void *buf, unsigned int len) +{ + writeb(0, cs553x->mmio + MM_NAND_CTL); + while (unlikely(len > 0x800)) { + memcpy_toio(cs553x->mmio, buf, 0x800); + buf += 0x800; + len -= 0x800; + } + memcpy_toio(cs553x->mmio, buf, len); +} + +static int cs553x_wait_ready(struct cs553x_nand_controller *cs553x, + unsigned int timeout_ms) +{ + u8 mask = CS_NAND_CTLR_BUSY | CS_NAND_STS_FLASH_RDY; + u8 status; + + return readb_poll_timeout(cs553x->mmio + MM_NAND_STS, status, + (status & mask) == CS_NAND_STS_FLASH_RDY, 100, + timeout_ms * 1000); +} + +static int cs553x_exec_instr(struct cs553x_nand_controller *cs553x, + const struct nand_op_instr *instr) +{ + unsigned int i; + int ret = 0; + + switch (instr->type) { + case NAND_OP_CMD_INSTR: + ret = cs553x_write_ctrl_byte(cs553x, CS_NAND_CTL_CLE, + instr->ctx.cmd.opcode); + break; + + case NAND_OP_ADDR_INSTR: + for (i = 0; i < instr->ctx.addr.naddrs; i++) { + ret = cs553x_write_ctrl_byte(cs553x, CS_NAND_CTL_ALE, + instr->ctx.addr.addrs[i]); + if (ret) + break; + } + break; + + case NAND_OP_DATA_IN_INSTR: + cs553x_data_in(cs553x, instr->ctx.data.buf.in, + instr->ctx.data.len); + break; + + case NAND_OP_DATA_OUT_INSTR: + cs553x_data_out(cs553x, instr->ctx.data.buf.out, + instr->ctx.data.len); + break; + + case NAND_OP_WAITRDY_INSTR: + ret = cs553x_wait_ready(cs553x, instr->ctx.waitrdy.timeout_ms); + break; + } + + if (instr->delay_ns) + ndelay(instr->delay_ns); + + return ret; +} + +static int cs553x_exec_op(struct nand_chip *this, + const struct nand_operation *op, + bool check_only) +{ + struct cs553x_nand_controller *cs553x = to_cs553x(this->controller); + unsigned int i; + int ret; + + if (check_only) + return true; + + /* De-assert the CE pin */ + writeb(0, cs553x->mmio + MM_NAND_CTL); + for (i = 0; i < op->ninstrs; i++) { + ret = cs553x_exec_instr(cs553x, &op->instrs[i]); + if (ret) + break; + } + + /* Re-assert the CE pin. */ + writeb(CS_NAND_CTL_CE, cs553x->mmio + MM_NAND_CTL); + + return ret; +} + +static void cs_enable_hwecc(struct nand_chip *this, int mode) +{ + struct cs553x_nand_controller *cs553x = to_cs553x(this->controller); + + writeb(0x07, cs553x->mmio + MM_NAND_ECC_CTL); +} + +static int cs_calculate_ecc(struct nand_chip *this, const u_char *dat, + u_char *ecc_code) +{ + struct cs553x_nand_controller *cs553x = to_cs553x(this->controller); + uint32_t ecc; + + ecc = readl(cs553x->mmio + MM_NAND_STS); + + ecc_code[1] = ecc >> 8; + ecc_code[0] = ecc >> 16; + ecc_code[2] = ecc >> 24; + return 0; +} + +static struct cs553x_nand_controller *controllers[4]; + +static int cs553x_attach_chip(struct nand_chip *chip) +{ + if (chip->ecc.engine_type != NAND_ECC_ENGINE_TYPE_ON_HOST) + return 0; + + chip->ecc.size = 256; + chip->ecc.bytes = 3; + chip->ecc.hwctl = cs_enable_hwecc; + chip->ecc.calculate = cs_calculate_ecc; + chip->ecc.correct = rawnand_sw_hamming_correct; + chip->ecc.strength = 1; + + return 0; +} + +static const struct nand_controller_ops cs553x_nand_controller_ops = { + .exec_op = cs553x_exec_op, + .attach_chip = cs553x_attach_chip, +}; + +static int __init cs553x_init_one(int cs, int mmio, unsigned long adr) +{ + struct cs553x_nand_controller *controller; + int err = 0; + struct nand_chip *this; + struct mtd_info *new_mtd; + + pr_notice("Probing CS553x NAND controller CS#%d at %sIO 0x%08lx\n", + cs, mmio ? "MM" : "P", adr); + + if (!mmio) { + pr_notice("PIO mode not yet implemented for CS553X NAND controller\n"); + return -ENXIO; + } + + /* Allocate memory for MTD device structure and private data */ + controller = kzalloc(sizeof(*controller), GFP_KERNEL); + if (!controller) { + err = -ENOMEM; + goto out; + } + + this = &controller->chip; + nand_controller_init(&controller->base); + controller->base.ops = &cs553x_nand_controller_ops; + this->controller = &controller->base; + new_mtd = nand_to_mtd(this); + + /* Link the private data with the MTD structure */ + new_mtd->owner = THIS_MODULE; + + /* map physical address */ + controller->mmio = ioremap(adr, 4096); + if (!controller->mmio) { + pr_warn("ioremap cs553x NAND @0x%08lx failed\n", adr); + err = -EIO; + goto out_mtd; + } + + /* Enable the following for a flash based bad block table */ + this->bbt_options = NAND_BBT_USE_FLASH; + + new_mtd->name = kasprintf(GFP_KERNEL, "cs553x_nand_cs%d", cs); + if (!new_mtd->name) { + err = -ENOMEM; + goto out_ior; + } + + /* Scan to find existence of the device */ + err = nand_scan(this, 1); + if (err) + goto out_free; + + controllers[cs] = controller; + goto out; + +out_free: + kfree(new_mtd->name); +out_ior: + iounmap(controller->mmio); +out_mtd: + kfree(controller); +out: + return err; +} + +static int is_geode(void) +{ + /* These are the CPUs which will have a CS553[56] companion chip */ + if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD && + boot_cpu_data.x86 == 5 && + boot_cpu_data.x86_model == 10) + return 1; /* Geode LX */ + + if ((boot_cpu_data.x86_vendor == X86_VENDOR_NSC || + boot_cpu_data.x86_vendor == X86_VENDOR_CYRIX) && + boot_cpu_data.x86 == 5 && + boot_cpu_data.x86_model == 5) + return 1; /* Geode GX (née GX2) */ + + return 0; +} + +static int __init cs553x_init(void) +{ + int err = -ENXIO; + int i; + uint64_t val; + + /* If the CPU isn't a Geode GX or LX, abort */ + if (!is_geode()) + return -ENXIO; + + /* If it doesn't have the CS553[56], abort */ + rdmsrl(MSR_DIVIL_GLD_CAP, val); + val &= ~0xFFULL; + if (val != CAP_CS5535 && val != CAP_CS5536) + return -ENXIO; + + /* If it doesn't have the NAND controller enabled, abort */ + rdmsrl(MSR_DIVIL_BALL_OPTS, val); + if (val & PIN_OPT_IDE) { + pr_info("CS553x NAND controller: Flash I/O not enabled in MSR_DIVIL_BALL_OPTS.\n"); + return -ENXIO; + } + + for (i = 0; i < NR_CS553X_CONTROLLERS; i++) { + rdmsrl(MSR_DIVIL_LBAR_FLSH0 + i, val); + + if ((val & (FLSH_LBAR_EN|FLSH_NOR_NAND)) == (FLSH_LBAR_EN|FLSH_NOR_NAND)) + err = cs553x_init_one(i, !!(val & FLSH_MEM_IO), val & 0xFFFFFFFF); + } + + /* Register all devices together here. This means we can easily hack it to + do mtdconcat etc. if we want to. */ + for (i = 0; i < NR_CS553X_CONTROLLERS; i++) { + if (controllers[i]) { + /* If any devices registered, return success. Else the last error. */ + mtd_device_register(nand_to_mtd(&controllers[i]->chip), + NULL, 0); + err = 0; + } + } + + return err; +} + +module_init(cs553x_init); + +static void __exit cs553x_cleanup(void) +{ + int i; + + for (i = 0; i < NR_CS553X_CONTROLLERS; i++) { + struct cs553x_nand_controller *controller = controllers[i]; + struct nand_chip *this = &controller->chip; + struct mtd_info *mtd = nand_to_mtd(this); + int ret; + + if (!mtd) + continue; + + /* Release resources, unregister device */ + ret = mtd_device_unregister(mtd); + WARN_ON(ret); + nand_cleanup(this); + kfree(mtd->name); + controllers[i] = NULL; + + /* unmap physical address */ + iounmap(controller->mmio); + + /* Free the MTD device structure */ + kfree(controller); + } +} + +module_exit(cs553x_cleanup); + +MODULE_LICENSE("GPL"); +MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>"); +MODULE_DESCRIPTION("NAND controller driver for AMD CS5535/CS5536 companion chip"); diff --git a/drivers/mtd/nand/raw/davinci_nand.c b/drivers/mtd/nand/raw/davinci_nand.c new file mode 100644 index 0000000000..e75d81cf8c --- /dev/null +++ b/drivers/mtd/nand/raw/davinci_nand.c @@ -0,0 +1,854 @@ +// SPDX-License-Identifier: GPL-2.0-or-later +/* + * davinci_nand.c - NAND Flash Driver for DaVinci family chips + * + * Copyright © 2006 Texas Instruments. + * + * Port to 2.6.23 Copyright © 2008 by: + * Sander Huijsen <Shuijsen@optelecom-nkf.com> + * Troy Kisky <troy.kisky@boundarydevices.com> + * Dirk Behme <Dirk.Behme@gmail.com> + */ + +#include <linux/kernel.h> +#include <linux/module.h> +#include <linux/platform_device.h> +#include <linux/err.h> +#include <linux/iopoll.h> +#include <linux/mtd/rawnand.h> +#include <linux/mtd/partitions.h> +#include <linux/slab.h> +#include <linux/of.h> + +#include <linux/platform_data/mtd-davinci.h> +#include <linux/platform_data/mtd-davinci-aemif.h> + +/* + * This is a device driver for the NAND flash controller found on the + * various DaVinci family chips. It handles up to four SoC chipselects, + * and some flavors of secondary chipselect (e.g. based on A12) as used + * with multichip packages. + * + * The 1-bit ECC hardware is supported, as well as the newer 4-bit ECC + * available on chips like the DM355 and OMAP-L137 and needed with the + * more error-prone MLC NAND chips. + * + * This driver assumes EM_WAIT connects all the NAND devices' RDY/nBUSY + * outputs in a "wire-AND" configuration, with no per-chip signals. + */ +struct davinci_nand_info { + struct nand_controller controller; + struct nand_chip chip; + + struct platform_device *pdev; + + bool is_readmode; + + void __iomem *base; + void __iomem *vaddr; + + void __iomem *current_cs; + + uint32_t mask_chipsel; + uint32_t mask_ale; + uint32_t mask_cle; + + uint32_t core_chipsel; + + struct davinci_aemif_timing *timing; +}; + +static DEFINE_SPINLOCK(davinci_nand_lock); +static bool ecc4_busy; + +static inline struct davinci_nand_info *to_davinci_nand(struct mtd_info *mtd) +{ + return container_of(mtd_to_nand(mtd), struct davinci_nand_info, chip); +} + +static inline unsigned int davinci_nand_readl(struct davinci_nand_info *info, + int offset) +{ + return __raw_readl(info->base + offset); +} + +static inline void davinci_nand_writel(struct davinci_nand_info *info, + int offset, unsigned long value) +{ + __raw_writel(value, info->base + offset); +} + +/*----------------------------------------------------------------------*/ + +/* + * 1-bit hardware ECC ... context maintained for each core chipselect + */ + +static inline uint32_t nand_davinci_readecc_1bit(struct mtd_info *mtd) +{ + struct davinci_nand_info *info = to_davinci_nand(mtd); + + return davinci_nand_readl(info, NANDF1ECC_OFFSET + + 4 * info->core_chipsel); +} + +static void nand_davinci_hwctl_1bit(struct nand_chip *chip, int mode) +{ + struct davinci_nand_info *info; + uint32_t nandcfr; + unsigned long flags; + + info = to_davinci_nand(nand_to_mtd(chip)); + + /* Reset ECC hardware */ + nand_davinci_readecc_1bit(nand_to_mtd(chip)); + + spin_lock_irqsave(&davinci_nand_lock, flags); + + /* Restart ECC hardware */ + nandcfr = davinci_nand_readl(info, NANDFCR_OFFSET); + nandcfr |= BIT(8 + info->core_chipsel); + davinci_nand_writel(info, NANDFCR_OFFSET, nandcfr); + + spin_unlock_irqrestore(&davinci_nand_lock, flags); +} + +/* + * Read hardware ECC value and pack into three bytes + */ +static int nand_davinci_calculate_1bit(struct nand_chip *chip, + const u_char *dat, u_char *ecc_code) +{ + unsigned int ecc_val = nand_davinci_readecc_1bit(nand_to_mtd(chip)); + unsigned int ecc24 = (ecc_val & 0x0fff) | ((ecc_val & 0x0fff0000) >> 4); + + /* invert so that erased block ecc is correct */ + ecc24 = ~ecc24; + ecc_code[0] = (u_char)(ecc24); + ecc_code[1] = (u_char)(ecc24 >> 8); + ecc_code[2] = (u_char)(ecc24 >> 16); + + return 0; +} + +static int nand_davinci_correct_1bit(struct nand_chip *chip, u_char *dat, + u_char *read_ecc, u_char *calc_ecc) +{ + uint32_t eccNand = read_ecc[0] | (read_ecc[1] << 8) | + (read_ecc[2] << 16); + uint32_t eccCalc = calc_ecc[0] | (calc_ecc[1] << 8) | + (calc_ecc[2] << 16); + uint32_t diff = eccCalc ^ eccNand; + + if (diff) { + if ((((diff >> 12) ^ diff) & 0xfff) == 0xfff) { + /* Correctable error */ + if ((diff >> (12 + 3)) < chip->ecc.size) { + dat[diff >> (12 + 3)] ^= BIT((diff >> 12) & 7); + return 1; + } else { + return -EBADMSG; + } + } else if (!(diff & (diff - 1))) { + /* Single bit ECC error in the ECC itself, + * nothing to fix */ + return 1; + } else { + /* Uncorrectable error */ + return -EBADMSG; + } + + } + return 0; +} + +/*----------------------------------------------------------------------*/ + +/* + * 4-bit hardware ECC ... context maintained over entire AEMIF + * + * This is a syndrome engine, but we avoid NAND_ECC_PLACEMENT_INTERLEAVED + * since that forces use of a problematic "infix OOB" layout. + * Among other things, it trashes manufacturer bad block markers. + * Also, and specific to this hardware, it ECC-protects the "prepad" + * in the OOB ... while having ECC protection for parts of OOB would + * seem useful, the current MTD stack sometimes wants to update the + * OOB without recomputing ECC. + */ + +static void nand_davinci_hwctl_4bit(struct nand_chip *chip, int mode) +{ + struct davinci_nand_info *info = to_davinci_nand(nand_to_mtd(chip)); + unsigned long flags; + u32 val; + + /* Reset ECC hardware */ + davinci_nand_readl(info, NAND_4BIT_ECC1_OFFSET); + + spin_lock_irqsave(&davinci_nand_lock, flags); + + /* Start 4-bit ECC calculation for read/write */ + val = davinci_nand_readl(info, NANDFCR_OFFSET); + val &= ~(0x03 << 4); + val |= (info->core_chipsel << 4) | BIT(12); + davinci_nand_writel(info, NANDFCR_OFFSET, val); + + info->is_readmode = (mode == NAND_ECC_READ); + + spin_unlock_irqrestore(&davinci_nand_lock, flags); +} + +/* Read raw ECC code after writing to NAND. */ +static void +nand_davinci_readecc_4bit(struct davinci_nand_info *info, u32 code[4]) +{ + const u32 mask = 0x03ff03ff; + + code[0] = davinci_nand_readl(info, NAND_4BIT_ECC1_OFFSET) & mask; + code[1] = davinci_nand_readl(info, NAND_4BIT_ECC2_OFFSET) & mask; + code[2] = davinci_nand_readl(info, NAND_4BIT_ECC3_OFFSET) & mask; + code[3] = davinci_nand_readl(info, NAND_4BIT_ECC4_OFFSET) & mask; +} + +/* Terminate read ECC; or return ECC (as bytes) of data written to NAND. */ +static int nand_davinci_calculate_4bit(struct nand_chip *chip, + const u_char *dat, u_char *ecc_code) +{ + struct davinci_nand_info *info = to_davinci_nand(nand_to_mtd(chip)); + u32 raw_ecc[4], *p; + unsigned i; + + /* After a read, terminate ECC calculation by a dummy read + * of some 4-bit ECC register. ECC covers everything that + * was read; correct() just uses the hardware state, so + * ecc_code is not needed. + */ + if (info->is_readmode) { + davinci_nand_readl(info, NAND_4BIT_ECC1_OFFSET); + return 0; + } + + /* Pack eight raw 10-bit ecc values into ten bytes, making + * two passes which each convert four values (in upper and + * lower halves of two 32-bit words) into five bytes. The + * ROM boot loader uses this same packing scheme. + */ + nand_davinci_readecc_4bit(info, raw_ecc); + for (i = 0, p = raw_ecc; i < 2; i++, p += 2) { + *ecc_code++ = p[0] & 0xff; + *ecc_code++ = ((p[0] >> 8) & 0x03) | ((p[0] >> 14) & 0xfc); + *ecc_code++ = ((p[0] >> 22) & 0x0f) | ((p[1] << 4) & 0xf0); + *ecc_code++ = ((p[1] >> 4) & 0x3f) | ((p[1] >> 10) & 0xc0); + *ecc_code++ = (p[1] >> 18) & 0xff; + } + + return 0; +} + +/* Correct up to 4 bits in data we just read, using state left in the + * hardware plus the ecc_code computed when it was first written. + */ +static int nand_davinci_correct_4bit(struct nand_chip *chip, u_char *data, + u_char *ecc_code, u_char *null) +{ + int i; + struct davinci_nand_info *info = to_davinci_nand(nand_to_mtd(chip)); + unsigned short ecc10[8]; + unsigned short *ecc16; + u32 syndrome[4]; + u32 ecc_state; + unsigned num_errors, corrected; + unsigned long timeo; + + /* Unpack ten bytes into eight 10 bit values. We know we're + * little-endian, and use type punning for less shifting/masking. + */ + if (WARN_ON(0x01 & (uintptr_t)ecc_code)) + return -EINVAL; + ecc16 = (unsigned short *)ecc_code; + + ecc10[0] = (ecc16[0] >> 0) & 0x3ff; + ecc10[1] = ((ecc16[0] >> 10) & 0x3f) | ((ecc16[1] << 6) & 0x3c0); + ecc10[2] = (ecc16[1] >> 4) & 0x3ff; + ecc10[3] = ((ecc16[1] >> 14) & 0x3) | ((ecc16[2] << 2) & 0x3fc); + ecc10[4] = (ecc16[2] >> 8) | ((ecc16[3] << 8) & 0x300); + ecc10[5] = (ecc16[3] >> 2) & 0x3ff; + ecc10[6] = ((ecc16[3] >> 12) & 0xf) | ((ecc16[4] << 4) & 0x3f0); + ecc10[7] = (ecc16[4] >> 6) & 0x3ff; + + /* Tell ECC controller about the expected ECC codes. */ + for (i = 7; i >= 0; i--) + davinci_nand_writel(info, NAND_4BIT_ECC_LOAD_OFFSET, ecc10[i]); + + /* Allow time for syndrome calculation ... then read it. + * A syndrome of all zeroes 0 means no detected errors. + */ + davinci_nand_readl(info, NANDFSR_OFFSET); + nand_davinci_readecc_4bit(info, syndrome); + if (!(syndrome[0] | syndrome[1] | syndrome[2] | syndrome[3])) + return 0; + + /* + * Clear any previous address calculation by doing a dummy read of an + * error address register. + */ + davinci_nand_readl(info, NAND_ERR_ADD1_OFFSET); + + /* Start address calculation, and wait for it to complete. + * We _could_ start reading more data while this is working, + * to speed up the overall page read. + */ + davinci_nand_writel(info, NANDFCR_OFFSET, + davinci_nand_readl(info, NANDFCR_OFFSET) | BIT(13)); + + /* + * ECC_STATE field reads 0x3 (Error correction complete) immediately + * after setting the 4BITECC_ADD_CALC_START bit. So if you immediately + * begin trying to poll for the state, you may fall right out of your + * loop without any of the correction calculations having taken place. + * The recommendation from the hardware team is to initially delay as + * long as ECC_STATE reads less than 4. After that, ECC HW has entered + * correction state. + */ + timeo = jiffies + usecs_to_jiffies(100); + do { + ecc_state = (davinci_nand_readl(info, + NANDFSR_OFFSET) >> 8) & 0x0f; + cpu_relax(); + } while ((ecc_state < 4) && time_before(jiffies, timeo)); + + for (;;) { + u32 fsr = davinci_nand_readl(info, NANDFSR_OFFSET); + + switch ((fsr >> 8) & 0x0f) { + case 0: /* no error, should not happen */ + davinci_nand_readl(info, NAND_ERR_ERRVAL1_OFFSET); + return 0; + case 1: /* five or more errors detected */ + davinci_nand_readl(info, NAND_ERR_ERRVAL1_OFFSET); + return -EBADMSG; + case 2: /* error addresses computed */ + case 3: + num_errors = 1 + ((fsr >> 16) & 0x03); + goto correct; + default: /* still working on it */ + cpu_relax(); + continue; + } + } + +correct: + /* correct each error */ + for (i = 0, corrected = 0; i < num_errors; i++) { + int error_address, error_value; + + if (i > 1) { + error_address = davinci_nand_readl(info, + NAND_ERR_ADD2_OFFSET); + error_value = davinci_nand_readl(info, + NAND_ERR_ERRVAL2_OFFSET); + } else { + error_address = davinci_nand_readl(info, + NAND_ERR_ADD1_OFFSET); + error_value = davinci_nand_readl(info, + NAND_ERR_ERRVAL1_OFFSET); + } + + if (i & 1) { + error_address >>= 16; + error_value >>= 16; + } + error_address &= 0x3ff; + error_address = (512 + 7) - error_address; + + if (error_address < 512) { + data[error_address] ^= error_value; + corrected++; + } + } + + return corrected; +} + +/*----------------------------------------------------------------------*/ + +/* An ECC layout for using 4-bit ECC with small-page flash, storing + * ten ECC bytes plus the manufacturer's bad block marker byte, and + * and not overlapping the default BBT markers. + */ +static int hwecc4_ooblayout_small_ecc(struct mtd_info *mtd, int section, + struct mtd_oob_region *oobregion) +{ + if (section > 2) + return -ERANGE; + + if (!section) { + oobregion->offset = 0; + oobregion->length = 5; + } else if (section == 1) { + oobregion->offset = 6; + oobregion->length = 2; + } else { + oobregion->offset = 13; + oobregion->length = 3; + } + + return 0; +} + +static int hwecc4_ooblayout_small_free(struct mtd_info *mtd, int section, + struct mtd_oob_region *oobregion) +{ + if (section > 1) + return -ERANGE; + + if (!section) { + oobregion->offset = 8; + oobregion->length = 5; + } else { + oobregion->offset = 16; + oobregion->length = mtd->oobsize - 16; + } + + return 0; +} + +static const struct mtd_ooblayout_ops hwecc4_small_ooblayout_ops = { + .ecc = hwecc4_ooblayout_small_ecc, + .free = hwecc4_ooblayout_small_free, +}; + +#if defined(CONFIG_OF) +static const struct of_device_id davinci_nand_of_match[] = { + {.compatible = "ti,davinci-nand", }, + {.compatible = "ti,keystone-nand", }, + {}, +}; +MODULE_DEVICE_TABLE(of, davinci_nand_of_match); + +static struct davinci_nand_pdata + *nand_davinci_get_pdata(struct platform_device *pdev) +{ + if (!dev_get_platdata(&pdev->dev) && pdev->dev.of_node) { + struct davinci_nand_pdata *pdata; + const char *mode; + u32 prop; + + pdata = devm_kzalloc(&pdev->dev, + sizeof(struct davinci_nand_pdata), + GFP_KERNEL); + pdev->dev.platform_data = pdata; + if (!pdata) + return ERR_PTR(-ENOMEM); + if (!of_property_read_u32(pdev->dev.of_node, + "ti,davinci-chipselect", &prop)) + pdata->core_chipsel = prop; + else + return ERR_PTR(-EINVAL); + + if (!of_property_read_u32(pdev->dev.of_node, + "ti,davinci-mask-ale", &prop)) + pdata->mask_ale = prop; + if (!of_property_read_u32(pdev->dev.of_node, + "ti,davinci-mask-cle", &prop)) + pdata->mask_cle = prop; + if (!of_property_read_u32(pdev->dev.of_node, + "ti,davinci-mask-chipsel", &prop)) + pdata->mask_chipsel = prop; + if (!of_property_read_string(pdev->dev.of_node, + "ti,davinci-ecc-mode", &mode)) { + if (!strncmp("none", mode, 4)) + pdata->engine_type = NAND_ECC_ENGINE_TYPE_NONE; + if (!strncmp("soft", mode, 4)) + pdata->engine_type = NAND_ECC_ENGINE_TYPE_SOFT; + if (!strncmp("hw", mode, 2)) + pdata->engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST; + } + if (!of_property_read_u32(pdev->dev.of_node, + "ti,davinci-ecc-bits", &prop)) + pdata->ecc_bits = prop; + + if (!of_property_read_u32(pdev->dev.of_node, + "ti,davinci-nand-buswidth", &prop) && prop == 16) + pdata->options |= NAND_BUSWIDTH_16; + + if (of_property_read_bool(pdev->dev.of_node, + "ti,davinci-nand-use-bbt")) + pdata->bbt_options = NAND_BBT_USE_FLASH; + + /* + * Since kernel v4.8, this driver has been fixed to enable + * use of 4-bit hardware ECC with subpages and verified on + * TI's keystone EVMs (K2L, K2HK and K2E). + * However, in the interest of not breaking systems using + * existing UBI partitions, sub-page writes are not being + * (re)enabled. If you want to use subpage writes on Keystone + * platforms (i.e. do not have any existing UBI partitions), + * then use "ti,davinci-nand" as the compatible in your + * device-tree file. + */ + if (of_device_is_compatible(pdev->dev.of_node, + "ti,keystone-nand")) { + pdata->options |= NAND_NO_SUBPAGE_WRITE; + } + } + + return dev_get_platdata(&pdev->dev); +} +#else +static struct davinci_nand_pdata + *nand_davinci_get_pdata(struct platform_device *pdev) +{ + return dev_get_platdata(&pdev->dev); +} +#endif + +static int davinci_nand_attach_chip(struct nand_chip *chip) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + struct davinci_nand_info *info = to_davinci_nand(mtd); + struct davinci_nand_pdata *pdata = nand_davinci_get_pdata(info->pdev); + int ret = 0; + + if (IS_ERR(pdata)) + return PTR_ERR(pdata); + + /* Use board-specific ECC config */ + chip->ecc.engine_type = pdata->engine_type; + chip->ecc.placement = pdata->ecc_placement; + + switch (chip->ecc.engine_type) { + case NAND_ECC_ENGINE_TYPE_NONE: + pdata->ecc_bits = 0; + break; + case NAND_ECC_ENGINE_TYPE_SOFT: + pdata->ecc_bits = 0; + /* + * This driver expects Hamming based ECC when engine_type is set + * to NAND_ECC_ENGINE_TYPE_SOFT. Force ecc.algo to + * NAND_ECC_ALGO_HAMMING to avoid adding an extra ->ecc_algo + * field to davinci_nand_pdata. + */ + chip->ecc.algo = NAND_ECC_ALGO_HAMMING; + break; + case NAND_ECC_ENGINE_TYPE_ON_HOST: + if (pdata->ecc_bits == 4) { + int chunks = mtd->writesize / 512; + + if (!chunks || mtd->oobsize < 16) { + dev_dbg(&info->pdev->dev, "too small\n"); + return -EINVAL; + } + + /* + * No sanity checks: CPUs must support this, + * and the chips may not use NAND_BUSWIDTH_16. + */ + + /* No sharing 4-bit hardware between chipselects yet */ + spin_lock_irq(&davinci_nand_lock); + if (ecc4_busy) + ret = -EBUSY; + else + ecc4_busy = true; + spin_unlock_irq(&davinci_nand_lock); + + if (ret == -EBUSY) + return ret; + + chip->ecc.calculate = nand_davinci_calculate_4bit; + chip->ecc.correct = nand_davinci_correct_4bit; + chip->ecc.hwctl = nand_davinci_hwctl_4bit; + chip->ecc.bytes = 10; + chip->ecc.options = NAND_ECC_GENERIC_ERASED_CHECK; + chip->ecc.algo = NAND_ECC_ALGO_BCH; + + /* + * Update ECC layout if needed ... for 1-bit HW ECC, the + * default is OK, but it allocates 6 bytes when only 3 + * are needed (for each 512 bytes). For 4-bit HW ECC, + * the default is not usable: 10 bytes needed, not 6. + * + * For small page chips, preserve the manufacturer's + * badblock marking data ... and make sure a flash BBT + * table marker fits in the free bytes. + */ + if (chunks == 1) { + mtd_set_ooblayout(mtd, + &hwecc4_small_ooblayout_ops); + } else if (chunks == 4 || chunks == 8) { + mtd_set_ooblayout(mtd, + nand_get_large_page_ooblayout()); + chip->ecc.read_page = nand_read_page_hwecc_oob_first; + } else { + return -EIO; + } + } else { + /* 1bit ecc hamming */ + chip->ecc.calculate = nand_davinci_calculate_1bit; + chip->ecc.correct = nand_davinci_correct_1bit; + chip->ecc.hwctl = nand_davinci_hwctl_1bit; + chip->ecc.bytes = 3; + chip->ecc.algo = NAND_ECC_ALGO_HAMMING; + } + chip->ecc.size = 512; + chip->ecc.strength = pdata->ecc_bits; + break; + default: + return -EINVAL; + } + + return ret; +} + +static void nand_davinci_data_in(struct davinci_nand_info *info, void *buf, + unsigned int len, bool force_8bit) +{ + u32 alignment = ((uintptr_t)buf | len) & 3; + + if (force_8bit || (alignment & 1)) + ioread8_rep(info->current_cs, buf, len); + else if (alignment & 3) + ioread16_rep(info->current_cs, buf, len >> 1); + else + ioread32_rep(info->current_cs, buf, len >> 2); +} + +static void nand_davinci_data_out(struct davinci_nand_info *info, + const void *buf, unsigned int len, + bool force_8bit) +{ + u32 alignment = ((uintptr_t)buf | len) & 3; + + if (force_8bit || (alignment & 1)) + iowrite8_rep(info->current_cs, buf, len); + else if (alignment & 3) + iowrite16_rep(info->current_cs, buf, len >> 1); + else + iowrite32_rep(info->current_cs, buf, len >> 2); +} + +static int davinci_nand_exec_instr(struct davinci_nand_info *info, + const struct nand_op_instr *instr) +{ + unsigned int i, timeout_us; + u32 status; + int ret; + + switch (instr->type) { + case NAND_OP_CMD_INSTR: + iowrite8(instr->ctx.cmd.opcode, + info->current_cs + info->mask_cle); + break; + + case NAND_OP_ADDR_INSTR: + for (i = 0; i < instr->ctx.addr.naddrs; i++) { + iowrite8(instr->ctx.addr.addrs[i], + info->current_cs + info->mask_ale); + } + break; + + case NAND_OP_DATA_IN_INSTR: + nand_davinci_data_in(info, instr->ctx.data.buf.in, + instr->ctx.data.len, + instr->ctx.data.force_8bit); + break; + + case NAND_OP_DATA_OUT_INSTR: + nand_davinci_data_out(info, instr->ctx.data.buf.out, + instr->ctx.data.len, + instr->ctx.data.force_8bit); + break; + + case NAND_OP_WAITRDY_INSTR: + timeout_us = instr->ctx.waitrdy.timeout_ms * 1000; + ret = readl_relaxed_poll_timeout(info->base + NANDFSR_OFFSET, + status, status & BIT(0), 100, + timeout_us); + if (ret) + return ret; + + break; + } + + if (instr->delay_ns) + ndelay(instr->delay_ns); + + return 0; +} + +static int davinci_nand_exec_op(struct nand_chip *chip, + const struct nand_operation *op, + bool check_only) +{ + struct davinci_nand_info *info = to_davinci_nand(nand_to_mtd(chip)); + unsigned int i; + + if (check_only) + return 0; + + info->current_cs = info->vaddr + (op->cs * info->mask_chipsel); + + for (i = 0; i < op->ninstrs; i++) { + int ret; + + ret = davinci_nand_exec_instr(info, &op->instrs[i]); + if (ret) + return ret; + } + + return 0; +} + +static const struct nand_controller_ops davinci_nand_controller_ops = { + .attach_chip = davinci_nand_attach_chip, + .exec_op = davinci_nand_exec_op, +}; + +static int nand_davinci_probe(struct platform_device *pdev) +{ + struct davinci_nand_pdata *pdata; + struct davinci_nand_info *info; + struct resource *res1; + struct resource *res2; + void __iomem *vaddr; + void __iomem *base; + int ret; + uint32_t val; + struct mtd_info *mtd; + + pdata = nand_davinci_get_pdata(pdev); + if (IS_ERR(pdata)) + return PTR_ERR(pdata); + + /* insist on board-specific configuration */ + if (!pdata) + return -ENODEV; + + /* which external chipselect will we be managing? */ + if (pdata->core_chipsel > 3) + return -ENODEV; + + info = devm_kzalloc(&pdev->dev, sizeof(*info), GFP_KERNEL); + if (!info) + return -ENOMEM; + + platform_set_drvdata(pdev, info); + + res1 = platform_get_resource(pdev, IORESOURCE_MEM, 0); + res2 = platform_get_resource(pdev, IORESOURCE_MEM, 1); + if (!res1 || !res2) { + dev_err(&pdev->dev, "resource missing\n"); + return -EINVAL; + } + + vaddr = devm_ioremap_resource(&pdev->dev, res1); + if (IS_ERR(vaddr)) + return PTR_ERR(vaddr); + + /* + * This registers range is used to setup NAND settings. In case with + * TI AEMIF driver, the same memory address range is requested already + * by AEMIF, so we cannot request it twice, just ioremap. + * The AEMIF and NAND drivers not use the same registers in this range. + */ + base = devm_ioremap(&pdev->dev, res2->start, resource_size(res2)); + if (!base) { + dev_err(&pdev->dev, "ioremap failed for resource %pR\n", res2); + return -EADDRNOTAVAIL; + } + + info->pdev = pdev; + info->base = base; + info->vaddr = vaddr; + + mtd = nand_to_mtd(&info->chip); + mtd->dev.parent = &pdev->dev; + nand_set_flash_node(&info->chip, pdev->dev.of_node); + + /* options such as NAND_BBT_USE_FLASH */ + info->chip.bbt_options = pdata->bbt_options; + /* options such as 16-bit widths */ + info->chip.options = pdata->options; + info->chip.bbt_td = pdata->bbt_td; + info->chip.bbt_md = pdata->bbt_md; + info->timing = pdata->timing; + + info->current_cs = info->vaddr; + info->core_chipsel = pdata->core_chipsel; + info->mask_chipsel = pdata->mask_chipsel; + + /* use nandboot-capable ALE/CLE masks by default */ + info->mask_ale = pdata->mask_ale ? : MASK_ALE; + info->mask_cle = pdata->mask_cle ? : MASK_CLE; + + spin_lock_irq(&davinci_nand_lock); + + /* put CSxNAND into NAND mode */ + val = davinci_nand_readl(info, NANDFCR_OFFSET); + val |= BIT(info->core_chipsel); + davinci_nand_writel(info, NANDFCR_OFFSET, val); + + spin_unlock_irq(&davinci_nand_lock); + + /* Scan to find existence of the device(s) */ + nand_controller_init(&info->controller); + info->controller.ops = &davinci_nand_controller_ops; + info->chip.controller = &info->controller; + ret = nand_scan(&info->chip, pdata->mask_chipsel ? 2 : 1); + if (ret < 0) { + dev_dbg(&pdev->dev, "no NAND chip(s) found\n"); + return ret; + } + + if (pdata->parts) + ret = mtd_device_register(mtd, pdata->parts, pdata->nr_parts); + else + ret = mtd_device_register(mtd, NULL, 0); + if (ret < 0) + goto err_cleanup_nand; + + val = davinci_nand_readl(info, NRCSR_OFFSET); + dev_info(&pdev->dev, "controller rev. %d.%d\n", + (val >> 8) & 0xff, val & 0xff); + + return 0; + +err_cleanup_nand: + nand_cleanup(&info->chip); + + return ret; +} + +static void nand_davinci_remove(struct platform_device *pdev) +{ + struct davinci_nand_info *info = platform_get_drvdata(pdev); + struct nand_chip *chip = &info->chip; + int ret; + + spin_lock_irq(&davinci_nand_lock); + if (chip->ecc.placement == NAND_ECC_PLACEMENT_INTERLEAVED) + ecc4_busy = false; + spin_unlock_irq(&davinci_nand_lock); + + ret = mtd_device_unregister(nand_to_mtd(chip)); + WARN_ON(ret); + nand_cleanup(chip); +} + +static struct platform_driver nand_davinci_driver = { + .probe = nand_davinci_probe, + .remove_new = nand_davinci_remove, + .driver = { + .name = "davinci_nand", + .of_match_table = of_match_ptr(davinci_nand_of_match), + }, +}; +MODULE_ALIAS("platform:davinci_nand"); + +module_platform_driver(nand_davinci_driver); + +MODULE_LICENSE("GPL"); +MODULE_AUTHOR("Texas Instruments"); +MODULE_DESCRIPTION("Davinci NAND flash driver"); + diff --git a/drivers/mtd/nand/raw/denali.c b/drivers/mtd/nand/raw/denali.c new file mode 100644 index 0000000000..fa2439cb4d --- /dev/null +++ b/drivers/mtd/nand/raw/denali.c @@ -0,0 +1,1381 @@ +// SPDX-License-Identifier: GPL-2.0 +/* + * NAND Flash Controller Device Driver + * Copyright © 2009-2010, Intel Corporation and its suppliers. + * + * Copyright (c) 2017-2019 Socionext Inc. + * Reworked by Masahiro Yamada <yamada.masahiro@socionext.com> + */ + +#include <linux/bitfield.h> +#include <linux/completion.h> +#include <linux/dma-mapping.h> +#include <linux/interrupt.h> +#include <linux/io.h> +#include <linux/module.h> +#include <linux/mtd/mtd.h> +#include <linux/mtd/rawnand.h> +#include <linux/slab.h> +#include <linux/spinlock.h> + +#include "denali.h" + +#define DENALI_NAND_NAME "denali-nand" + +/* for Indexed Addressing */ +#define DENALI_INDEXED_CTRL 0x00 +#define DENALI_INDEXED_DATA 0x10 + +#define DENALI_MAP00 (0 << 26) /* direct access to buffer */ +#define DENALI_MAP01 (1 << 26) /* read/write pages in PIO */ +#define DENALI_MAP10 (2 << 26) /* high-level control plane */ +#define DENALI_MAP11 (3 << 26) /* direct controller access */ + +/* MAP11 access cycle type */ +#define DENALI_MAP11_CMD ((DENALI_MAP11) | 0) /* command cycle */ +#define DENALI_MAP11_ADDR ((DENALI_MAP11) | 1) /* address cycle */ +#define DENALI_MAP11_DATA ((DENALI_MAP11) | 2) /* data cycle */ + +#define DENALI_BANK(denali) ((denali)->active_bank << 24) + +#define DENALI_INVALID_BANK -1 + +static struct denali_chip *to_denali_chip(struct nand_chip *chip) +{ + return container_of(chip, struct denali_chip, chip); +} + +static struct denali_controller *to_denali_controller(struct nand_chip *chip) +{ + return container_of(chip->controller, struct denali_controller, + controller); +} + +/* + * Direct Addressing - the slave address forms the control information (command + * type, bank, block, and page address). The slave data is the actual data to + * be transferred. This mode requires 28 bits of address region allocated. + */ +static u32 denali_direct_read(struct denali_controller *denali, u32 addr) +{ + return ioread32(denali->host + addr); +} + +static void denali_direct_write(struct denali_controller *denali, u32 addr, + u32 data) +{ + iowrite32(data, denali->host + addr); +} + +/* + * Indexed Addressing - address translation module intervenes in passing the + * control information. This mode reduces the required address range. The + * control information and transferred data are latched by the registers in + * the translation module. + */ +static u32 denali_indexed_read(struct denali_controller *denali, u32 addr) +{ + iowrite32(addr, denali->host + DENALI_INDEXED_CTRL); + return ioread32(denali->host + DENALI_INDEXED_DATA); +} + +static void denali_indexed_write(struct denali_controller *denali, u32 addr, + u32 data) +{ + iowrite32(addr, denali->host + DENALI_INDEXED_CTRL); + iowrite32(data, denali->host + DENALI_INDEXED_DATA); +} + +static void denali_enable_irq(struct denali_controller *denali) +{ + int i; + + for (i = 0; i < denali->nbanks; i++) + iowrite32(U32_MAX, denali->reg + INTR_EN(i)); + iowrite32(GLOBAL_INT_EN_FLAG, denali->reg + GLOBAL_INT_ENABLE); +} + +static void denali_disable_irq(struct denali_controller *denali) +{ + int i; + + for (i = 0; i < denali->nbanks; i++) + iowrite32(0, denali->reg + INTR_EN(i)); + iowrite32(0, denali->reg + GLOBAL_INT_ENABLE); +} + +static void denali_clear_irq(struct denali_controller *denali, + int bank, u32 irq_status) +{ + /* write one to clear bits */ + iowrite32(irq_status, denali->reg + INTR_STATUS(bank)); +} + +static void denali_clear_irq_all(struct denali_controller *denali) +{ + int i; + + for (i = 0; i < denali->nbanks; i++) + denali_clear_irq(denali, i, U32_MAX); +} + +static irqreturn_t denali_isr(int irq, void *dev_id) +{ + struct denali_controller *denali = dev_id; + irqreturn_t ret = IRQ_NONE; + u32 irq_status; + int i; + + spin_lock(&denali->irq_lock); + + for (i = 0; i < denali->nbanks; i++) { + irq_status = ioread32(denali->reg + INTR_STATUS(i)); + if (irq_status) + ret = IRQ_HANDLED; + + denali_clear_irq(denali, i, irq_status); + + if (i != denali->active_bank) + continue; + + denali->irq_status |= irq_status; + + if (denali->irq_status & denali->irq_mask) + complete(&denali->complete); + } + + spin_unlock(&denali->irq_lock); + + return ret; +} + +static void denali_reset_irq(struct denali_controller *denali) +{ + unsigned long flags; + + spin_lock_irqsave(&denali->irq_lock, flags); + denali->irq_status = 0; + denali->irq_mask = 0; + spin_unlock_irqrestore(&denali->irq_lock, flags); +} + +static u32 denali_wait_for_irq(struct denali_controller *denali, u32 irq_mask) +{ + unsigned long time_left, flags; + u32 irq_status; + + spin_lock_irqsave(&denali->irq_lock, flags); + + irq_status = denali->irq_status; + + if (irq_mask & irq_status) { + /* return immediately if the IRQ has already happened. */ + spin_unlock_irqrestore(&denali->irq_lock, flags); + return irq_status; + } + + denali->irq_mask = irq_mask; + reinit_completion(&denali->complete); + spin_unlock_irqrestore(&denali->irq_lock, flags); + + time_left = wait_for_completion_timeout(&denali->complete, + msecs_to_jiffies(1000)); + if (!time_left) { + dev_err(denali->dev, "timeout while waiting for irq 0x%x\n", + irq_mask); + return 0; + } + + return denali->irq_status; +} + +static void denali_select_target(struct nand_chip *chip, int cs) +{ + struct denali_controller *denali = to_denali_controller(chip); + struct denali_chip_sel *sel = &to_denali_chip(chip)->sels[cs]; + struct mtd_info *mtd = nand_to_mtd(chip); + + denali->active_bank = sel->bank; + + iowrite32(1 << (chip->phys_erase_shift - chip->page_shift), + denali->reg + PAGES_PER_BLOCK); + iowrite32(chip->options & NAND_BUSWIDTH_16 ? 1 : 0, + denali->reg + DEVICE_WIDTH); + iowrite32(mtd->writesize, denali->reg + DEVICE_MAIN_AREA_SIZE); + iowrite32(mtd->oobsize, denali->reg + DEVICE_SPARE_AREA_SIZE); + iowrite32(chip->options & NAND_ROW_ADDR_3 ? + 0 : TWO_ROW_ADDR_CYCLES__FLAG, + denali->reg + TWO_ROW_ADDR_CYCLES); + iowrite32(FIELD_PREP(ECC_CORRECTION__ERASE_THRESHOLD, 1) | + FIELD_PREP(ECC_CORRECTION__VALUE, chip->ecc.strength), + denali->reg + ECC_CORRECTION); + iowrite32(chip->ecc.size, denali->reg + CFG_DATA_BLOCK_SIZE); + iowrite32(chip->ecc.size, denali->reg + CFG_LAST_DATA_BLOCK_SIZE); + iowrite32(chip->ecc.steps, denali->reg + CFG_NUM_DATA_BLOCKS); + + if (chip->options & NAND_KEEP_TIMINGS) + return; + + /* update timing registers unless NAND_KEEP_TIMINGS is set */ + iowrite32(sel->hwhr2_and_we_2_re, denali->reg + TWHR2_AND_WE_2_RE); + iowrite32(sel->tcwaw_and_addr_2_data, + denali->reg + TCWAW_AND_ADDR_2_DATA); + iowrite32(sel->re_2_we, denali->reg + RE_2_WE); + iowrite32(sel->acc_clks, denali->reg + ACC_CLKS); + iowrite32(sel->rdwr_en_lo_cnt, denali->reg + RDWR_EN_LO_CNT); + iowrite32(sel->rdwr_en_hi_cnt, denali->reg + RDWR_EN_HI_CNT); + iowrite32(sel->cs_setup_cnt, denali->reg + CS_SETUP_CNT); + iowrite32(sel->re_2_re, denali->reg + RE_2_RE); +} + +static int denali_change_column(struct nand_chip *chip, unsigned int offset, + void *buf, unsigned int len, bool write) +{ + if (write) + return nand_change_write_column_op(chip, offset, buf, len, + false); + else + return nand_change_read_column_op(chip, offset, buf, len, + false); +} + +static int denali_payload_xfer(struct nand_chip *chip, void *buf, bool write) +{ + struct denali_controller *denali = to_denali_controller(chip); + struct mtd_info *mtd = nand_to_mtd(chip); + struct nand_ecc_ctrl *ecc = &chip->ecc; + int writesize = mtd->writesize; + int oob_skip = denali->oob_skip_bytes; + int ret, i, pos, len; + + for (i = 0; i < ecc->steps; i++) { + pos = i * (ecc->size + ecc->bytes); + len = ecc->size; + + if (pos >= writesize) { + pos += oob_skip; + } else if (pos + len > writesize) { + /* This chunk overwraps the BBM area. Must be split */ + ret = denali_change_column(chip, pos, buf, + writesize - pos, write); + if (ret) + return ret; + + buf += writesize - pos; + len -= writesize - pos; + pos = writesize + oob_skip; + } + + ret = denali_change_column(chip, pos, buf, len, write); + if (ret) + return ret; + + buf += len; + } + + return 0; +} + +static int denali_oob_xfer(struct nand_chip *chip, void *buf, bool write) +{ + struct denali_controller *denali = to_denali_controller(chip); + struct mtd_info *mtd = nand_to_mtd(chip); + struct nand_ecc_ctrl *ecc = &chip->ecc; + int writesize = mtd->writesize; + int oobsize = mtd->oobsize; + int oob_skip = denali->oob_skip_bytes; + int ret, i, pos, len; + + /* BBM at the beginning of the OOB area */ + ret = denali_change_column(chip, writesize, buf, oob_skip, write); + if (ret) + return ret; + + buf += oob_skip; + + for (i = 0; i < ecc->steps; i++) { + pos = ecc->size + i * (ecc->size + ecc->bytes); + + if (i == ecc->steps - 1) + /* The last chunk includes OOB free */ + len = writesize + oobsize - pos - oob_skip; + else + len = ecc->bytes; + + if (pos >= writesize) { + pos += oob_skip; + } else if (pos + len > writesize) { + /* This chunk overwraps the BBM area. Must be split */ + ret = denali_change_column(chip, pos, buf, + writesize - pos, write); + if (ret) + return ret; + + buf += writesize - pos; + len -= writesize - pos; + pos = writesize + oob_skip; + } + + ret = denali_change_column(chip, pos, buf, len, write); + if (ret) + return ret; + + buf += len; + } + + return 0; +} + +static int denali_read_raw(struct nand_chip *chip, void *buf, void *oob_buf, + int page) +{ + int ret; + + if (!buf && !oob_buf) + return -EINVAL; + + ret = nand_read_page_op(chip, page, 0, NULL, 0); + if (ret) + return ret; + + if (buf) { + ret = denali_payload_xfer(chip, buf, false); + if (ret) + return ret; + } + + if (oob_buf) { + ret = denali_oob_xfer(chip, oob_buf, false); + if (ret) + return ret; + } + + return 0; +} + +static int denali_write_raw(struct nand_chip *chip, const void *buf, + const void *oob_buf, int page) +{ + int ret; + + if (!buf && !oob_buf) + return -EINVAL; + + ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0); + if (ret) + return ret; + + if (buf) { + ret = denali_payload_xfer(chip, (void *)buf, true); + if (ret) + return ret; + } + + if (oob_buf) { + ret = denali_oob_xfer(chip, (void *)oob_buf, true); + if (ret) + return ret; + } + + return nand_prog_page_end_op(chip); +} + +static int denali_read_page_raw(struct nand_chip *chip, u8 *buf, + int oob_required, int page) +{ + return denali_read_raw(chip, buf, oob_required ? chip->oob_poi : NULL, + page); +} + +static int denali_write_page_raw(struct nand_chip *chip, const u8 *buf, + int oob_required, int page) +{ + return denali_write_raw(chip, buf, oob_required ? chip->oob_poi : NULL, + page); +} + +static int denali_read_oob(struct nand_chip *chip, int page) +{ + return denali_read_raw(chip, NULL, chip->oob_poi, page); +} + +static int denali_write_oob(struct nand_chip *chip, int page) +{ + return denali_write_raw(chip, NULL, chip->oob_poi, page); +} + +static int denali_check_erased_page(struct nand_chip *chip, u8 *buf, + unsigned long uncor_ecc_flags, + unsigned int max_bitflips) +{ + struct denali_controller *denali = to_denali_controller(chip); + struct mtd_ecc_stats *ecc_stats = &nand_to_mtd(chip)->ecc_stats; + struct nand_ecc_ctrl *ecc = &chip->ecc; + u8 *ecc_code = chip->oob_poi + denali->oob_skip_bytes; + int i, stat; + + for (i = 0; i < ecc->steps; i++) { + if (!(uncor_ecc_flags & BIT(i))) + continue; + + stat = nand_check_erased_ecc_chunk(buf, ecc->size, ecc_code, + ecc->bytes, NULL, 0, + ecc->strength); + if (stat < 0) { + ecc_stats->failed++; + } else { + ecc_stats->corrected += stat; + max_bitflips = max_t(unsigned int, max_bitflips, stat); + } + + buf += ecc->size; + ecc_code += ecc->bytes; + } + + return max_bitflips; +} + +static int denali_hw_ecc_fixup(struct nand_chip *chip, + unsigned long *uncor_ecc_flags) +{ + struct denali_controller *denali = to_denali_controller(chip); + struct mtd_ecc_stats *ecc_stats = &nand_to_mtd(chip)->ecc_stats; + int bank = denali->active_bank; + u32 ecc_cor; + unsigned int max_bitflips; + + ecc_cor = ioread32(denali->reg + ECC_COR_INFO(bank)); + ecc_cor >>= ECC_COR_INFO__SHIFT(bank); + + if (ecc_cor & ECC_COR_INFO__UNCOR_ERR) { + /* + * This flag is set when uncorrectable error occurs at least in + * one ECC sector. We can not know "how many sectors", or + * "which sector(s)". We need erase-page check for all sectors. + */ + *uncor_ecc_flags = GENMASK(chip->ecc.steps - 1, 0); + return 0; + } + + max_bitflips = FIELD_GET(ECC_COR_INFO__MAX_ERRORS, ecc_cor); + + /* + * The register holds the maximum of per-sector corrected bitflips. + * This is suitable for the return value of the ->read_page() callback. + * Unfortunately, we can not know the total number of corrected bits in + * the page. Increase the stats by max_bitflips. (compromised solution) + */ + ecc_stats->corrected += max_bitflips; + + return max_bitflips; +} + +static int denali_sw_ecc_fixup(struct nand_chip *chip, + unsigned long *uncor_ecc_flags, u8 *buf) +{ + struct denali_controller *denali = to_denali_controller(chip); + struct mtd_ecc_stats *ecc_stats = &nand_to_mtd(chip)->ecc_stats; + unsigned int ecc_size = chip->ecc.size; + unsigned int bitflips = 0; + unsigned int max_bitflips = 0; + u32 err_addr, err_cor_info; + unsigned int err_byte, err_sector, err_device; + u8 err_cor_value; + unsigned int prev_sector = 0; + u32 irq_status; + + denali_reset_irq(denali); + + do { + err_addr = ioread32(denali->reg + ECC_ERROR_ADDRESS); + err_sector = FIELD_GET(ECC_ERROR_ADDRESS__SECTOR, err_addr); + err_byte = FIELD_GET(ECC_ERROR_ADDRESS__OFFSET, err_addr); + + err_cor_info = ioread32(denali->reg + ERR_CORRECTION_INFO); + err_cor_value = FIELD_GET(ERR_CORRECTION_INFO__BYTE, + err_cor_info); + err_device = FIELD_GET(ERR_CORRECTION_INFO__DEVICE, + err_cor_info); + + /* reset the bitflip counter when crossing ECC sector */ + if (err_sector != prev_sector) + bitflips = 0; + + if (err_cor_info & ERR_CORRECTION_INFO__UNCOR) { + /* + * Check later if this is a real ECC error, or + * an erased sector. + */ + *uncor_ecc_flags |= BIT(err_sector); + } else if (err_byte < ecc_size) { + /* + * If err_byte is larger than ecc_size, means error + * happened in OOB, so we ignore it. It's no need for + * us to correct it err_device is represented the NAND + * error bits are happened in if there are more than + * one NAND connected. + */ + int offset; + unsigned int flips_in_byte; + + offset = (err_sector * ecc_size + err_byte) * + denali->devs_per_cs + err_device; + + /* correct the ECC error */ + flips_in_byte = hweight8(buf[offset] ^ err_cor_value); + buf[offset] ^= err_cor_value; + ecc_stats->corrected += flips_in_byte; + bitflips += flips_in_byte; + + max_bitflips = max(max_bitflips, bitflips); + } + + prev_sector = err_sector; + } while (!(err_cor_info & ERR_CORRECTION_INFO__LAST_ERR)); + + /* + * Once handle all ECC errors, controller will trigger an + * ECC_TRANSACTION_DONE interrupt. + */ + irq_status = denali_wait_for_irq(denali, INTR__ECC_TRANSACTION_DONE); + if (!(irq_status & INTR__ECC_TRANSACTION_DONE)) + return -EIO; + + return max_bitflips; +} + +static void denali_setup_dma64(struct denali_controller *denali, + dma_addr_t dma_addr, int page, bool write) +{ + u32 mode; + const int page_count = 1; + + mode = DENALI_MAP10 | DENALI_BANK(denali) | page; + + /* DMA is a three step process */ + + /* + * 1. setup transfer type, interrupt when complete, + * burst len = 64 bytes, the number of pages + */ + denali->host_write(denali, mode, + 0x01002000 | (64 << 16) | + (write ? BIT(8) : 0) | page_count); + + /* 2. set memory low address */ + denali->host_write(denali, mode, lower_32_bits(dma_addr)); + + /* 3. set memory high address */ + denali->host_write(denali, mode, upper_32_bits(dma_addr)); +} + +static void denali_setup_dma32(struct denali_controller *denali, + dma_addr_t dma_addr, int page, bool write) +{ + u32 mode; + const int page_count = 1; + + mode = DENALI_MAP10 | DENALI_BANK(denali); + + /* DMA is a four step process */ + + /* 1. setup transfer type and # of pages */ + denali->host_write(denali, mode | page, + 0x2000 | (write ? BIT(8) : 0) | page_count); + + /* 2. set memory high address bits 23:8 */ + denali->host_write(denali, mode | ((dma_addr >> 16) << 8), 0x2200); + + /* 3. set memory low address bits 23:8 */ + denali->host_write(denali, mode | ((dma_addr & 0xffff) << 8), 0x2300); + + /* 4. interrupt when complete, burst len = 64 bytes */ + denali->host_write(denali, mode | 0x14000, 0x2400); +} + +static int denali_pio_read(struct denali_controller *denali, u32 *buf, + size_t size, int page) +{ + u32 addr = DENALI_MAP01 | DENALI_BANK(denali) | page; + u32 irq_status, ecc_err_mask; + int i; + + if (denali->caps & DENALI_CAP_HW_ECC_FIXUP) + ecc_err_mask = INTR__ECC_UNCOR_ERR; + else + ecc_err_mask = INTR__ECC_ERR; + + denali_reset_irq(denali); + + for (i = 0; i < size / 4; i++) + buf[i] = denali->host_read(denali, addr); + + irq_status = denali_wait_for_irq(denali, INTR__PAGE_XFER_INC); + if (!(irq_status & INTR__PAGE_XFER_INC)) + return -EIO; + + if (irq_status & INTR__ERASED_PAGE) + memset(buf, 0xff, size); + + return irq_status & ecc_err_mask ? -EBADMSG : 0; +} + +static int denali_pio_write(struct denali_controller *denali, const u32 *buf, + size_t size, int page) +{ + u32 addr = DENALI_MAP01 | DENALI_BANK(denali) | page; + u32 irq_status; + int i; + + denali_reset_irq(denali); + + for (i = 0; i < size / 4; i++) + denali->host_write(denali, addr, buf[i]); + + irq_status = denali_wait_for_irq(denali, + INTR__PROGRAM_COMP | + INTR__PROGRAM_FAIL); + if (!(irq_status & INTR__PROGRAM_COMP)) + return -EIO; + + return 0; +} + +static int denali_pio_xfer(struct denali_controller *denali, void *buf, + size_t size, int page, bool write) +{ + if (write) + return denali_pio_write(denali, buf, size, page); + else + return denali_pio_read(denali, buf, size, page); +} + +static int denali_dma_xfer(struct denali_controller *denali, void *buf, + size_t size, int page, bool write) +{ + dma_addr_t dma_addr; + u32 irq_mask, irq_status, ecc_err_mask; + enum dma_data_direction dir = write ? DMA_TO_DEVICE : DMA_FROM_DEVICE; + int ret = 0; + + dma_addr = dma_map_single(denali->dev, buf, size, dir); + if (dma_mapping_error(denali->dev, dma_addr)) { + dev_dbg(denali->dev, "Failed to DMA-map buffer. Trying PIO.\n"); + return denali_pio_xfer(denali, buf, size, page, write); + } + + if (write) { + /* + * INTR__PROGRAM_COMP is never asserted for the DMA transfer. + * We can use INTR__DMA_CMD_COMP instead. This flag is asserted + * when the page program is completed. + */ + irq_mask = INTR__DMA_CMD_COMP | INTR__PROGRAM_FAIL; + ecc_err_mask = 0; + } else if (denali->caps & DENALI_CAP_HW_ECC_FIXUP) { + irq_mask = INTR__DMA_CMD_COMP; + ecc_err_mask = INTR__ECC_UNCOR_ERR; + } else { + irq_mask = INTR__DMA_CMD_COMP; + ecc_err_mask = INTR__ECC_ERR; + } + + iowrite32(DMA_ENABLE__FLAG, denali->reg + DMA_ENABLE); + /* + * The ->setup_dma() hook kicks DMA by using the data/command + * interface, which belongs to a different AXI port from the + * register interface. Read back the register to avoid a race. + */ + ioread32(denali->reg + DMA_ENABLE); + + denali_reset_irq(denali); + denali->setup_dma(denali, dma_addr, page, write); + + irq_status = denali_wait_for_irq(denali, irq_mask); + if (!(irq_status & INTR__DMA_CMD_COMP)) + ret = -EIO; + else if (irq_status & ecc_err_mask) + ret = -EBADMSG; + + iowrite32(0, denali->reg + DMA_ENABLE); + + dma_unmap_single(denali->dev, dma_addr, size, dir); + + if (irq_status & INTR__ERASED_PAGE) + memset(buf, 0xff, size); + + return ret; +} + +static int denali_page_xfer(struct nand_chip *chip, void *buf, size_t size, + int page, bool write) +{ + struct denali_controller *denali = to_denali_controller(chip); + + denali_select_target(chip, chip->cur_cs); + + if (denali->dma_avail) + return denali_dma_xfer(denali, buf, size, page, write); + else + return denali_pio_xfer(denali, buf, size, page, write); +} + +static int denali_read_page(struct nand_chip *chip, u8 *buf, + int oob_required, int page) +{ + struct denali_controller *denali = to_denali_controller(chip); + struct mtd_info *mtd = nand_to_mtd(chip); + unsigned long uncor_ecc_flags = 0; + int stat = 0; + int ret; + + ret = denali_page_xfer(chip, buf, mtd->writesize, page, false); + if (ret && ret != -EBADMSG) + return ret; + + if (denali->caps & DENALI_CAP_HW_ECC_FIXUP) + stat = denali_hw_ecc_fixup(chip, &uncor_ecc_flags); + else if (ret == -EBADMSG) + stat = denali_sw_ecc_fixup(chip, &uncor_ecc_flags, buf); + + if (stat < 0) + return stat; + + if (uncor_ecc_flags) { + ret = denali_read_oob(chip, page); + if (ret) + return ret; + + stat = denali_check_erased_page(chip, buf, + uncor_ecc_flags, stat); + } + + return stat; +} + +static int denali_write_page(struct nand_chip *chip, const u8 *buf, + int oob_required, int page) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + + return denali_page_xfer(chip, (void *)buf, mtd->writesize, page, true); +} + +static int denali_setup_interface(struct nand_chip *chip, int chipnr, + const struct nand_interface_config *conf) +{ + static const unsigned int data_setup_on_host = 10000; + struct denali_controller *denali = to_denali_controller(chip); + struct denali_chip_sel *sel; + const struct nand_sdr_timings *timings; + unsigned long t_x, mult_x; + int acc_clks, re_2_we, re_2_re, we_2_re, addr_2_data; + int rdwr_en_lo, rdwr_en_hi, rdwr_en_lo_hi, cs_setup; + int addr_2_data_mask; + u32 tmp; + + timings = nand_get_sdr_timings(conf); + if (IS_ERR(timings)) + return PTR_ERR(timings); + + /* clk_x period in picoseconds */ + t_x = DIV_ROUND_DOWN_ULL(1000000000000ULL, denali->clk_x_rate); + if (!t_x) + return -EINVAL; + + /* + * The bus interface clock, clk_x, is phase aligned with the core clock. + * The clk_x is an integral multiple N of the core clk. The value N is + * configured at IP delivery time, and its available value is 4, 5, 6. + */ + mult_x = DIV_ROUND_CLOSEST_ULL(denali->clk_x_rate, denali->clk_rate); + if (mult_x < 4 || mult_x > 6) + return -EINVAL; + + if (chipnr == NAND_DATA_IFACE_CHECK_ONLY) + return 0; + + sel = &to_denali_chip(chip)->sels[chipnr]; + + /* tRWH -> RE_2_WE */ + re_2_we = DIV_ROUND_UP(timings->tRHW_min, t_x); + re_2_we = min_t(int, re_2_we, RE_2_WE__VALUE); + + tmp = ioread32(denali->reg + RE_2_WE); + tmp &= ~RE_2_WE__VALUE; + tmp |= FIELD_PREP(RE_2_WE__VALUE, re_2_we); + sel->re_2_we = tmp; + + /* tRHZ -> RE_2_RE */ + re_2_re = DIV_ROUND_UP(timings->tRHZ_max, t_x); + re_2_re = min_t(int, re_2_re, RE_2_RE__VALUE); + + tmp = ioread32(denali->reg + RE_2_RE); + tmp &= ~RE_2_RE__VALUE; + tmp |= FIELD_PREP(RE_2_RE__VALUE, re_2_re); + sel->re_2_re = tmp; + + /* + * tCCS, tWHR -> WE_2_RE + * + * With WE_2_RE properly set, the Denali controller automatically takes + * care of the delay; the driver need not set NAND_WAIT_TCCS. + */ + we_2_re = DIV_ROUND_UP(max(timings->tCCS_min, timings->tWHR_min), t_x); + we_2_re = min_t(int, we_2_re, TWHR2_AND_WE_2_RE__WE_2_RE); + + tmp = ioread32(denali->reg + TWHR2_AND_WE_2_RE); + tmp &= ~TWHR2_AND_WE_2_RE__WE_2_RE; + tmp |= FIELD_PREP(TWHR2_AND_WE_2_RE__WE_2_RE, we_2_re); + sel->hwhr2_and_we_2_re = tmp; + + /* tADL -> ADDR_2_DATA */ + + /* for older versions, ADDR_2_DATA is only 6 bit wide */ + addr_2_data_mask = TCWAW_AND_ADDR_2_DATA__ADDR_2_DATA; + if (denali->revision < 0x0501) + addr_2_data_mask >>= 1; + + addr_2_data = DIV_ROUND_UP(timings->tADL_min, t_x); + addr_2_data = min_t(int, addr_2_data, addr_2_data_mask); + + tmp = ioread32(denali->reg + TCWAW_AND_ADDR_2_DATA); + tmp &= ~TCWAW_AND_ADDR_2_DATA__ADDR_2_DATA; + tmp |= FIELD_PREP(TCWAW_AND_ADDR_2_DATA__ADDR_2_DATA, addr_2_data); + sel->tcwaw_and_addr_2_data = tmp; + + /* tREH, tWH -> RDWR_EN_HI_CNT */ + rdwr_en_hi = DIV_ROUND_UP(max(timings->tREH_min, timings->tWH_min), + t_x); + rdwr_en_hi = min_t(int, rdwr_en_hi, RDWR_EN_HI_CNT__VALUE); + + tmp = ioread32(denali->reg + RDWR_EN_HI_CNT); + tmp &= ~RDWR_EN_HI_CNT__VALUE; + tmp |= FIELD_PREP(RDWR_EN_HI_CNT__VALUE, rdwr_en_hi); + sel->rdwr_en_hi_cnt = tmp; + + /* + * tREA -> ACC_CLKS + * tRP, tWP, tRHOH, tRC, tWC -> RDWR_EN_LO_CNT + */ + + /* + * Determine the minimum of acc_clks to meet the setup timing when + * capturing the incoming data. + * + * The delay on the chip side is well-defined as tREA, but we need to + * take additional delay into account. This includes a certain degree + * of unknowledge, such as signal propagation delays on the PCB and + * in the SoC, load capacity of the I/O pins, etc. + */ + acc_clks = DIV_ROUND_UP(timings->tREA_max + data_setup_on_host, t_x); + + /* Determine the minimum of rdwr_en_lo_cnt from RE#/WE# pulse width */ + rdwr_en_lo = DIV_ROUND_UP(max(timings->tRP_min, timings->tWP_min), t_x); + + /* Extend rdwr_en_lo to meet the data hold timing */ + rdwr_en_lo = max_t(int, rdwr_en_lo, + acc_clks - timings->tRHOH_min / t_x); + + /* Extend rdwr_en_lo to meet the requirement for RE#/WE# cycle time */ + rdwr_en_lo_hi = DIV_ROUND_UP(max(timings->tRC_min, timings->tWC_min), + t_x); + rdwr_en_lo = max(rdwr_en_lo, rdwr_en_lo_hi - rdwr_en_hi); + rdwr_en_lo = min_t(int, rdwr_en_lo, RDWR_EN_LO_CNT__VALUE); + + /* Center the data latch timing for extra safety */ + acc_clks = (acc_clks + rdwr_en_lo + + DIV_ROUND_UP(timings->tRHOH_min, t_x)) / 2; + acc_clks = min_t(int, acc_clks, ACC_CLKS__VALUE); + + tmp = ioread32(denali->reg + ACC_CLKS); + tmp &= ~ACC_CLKS__VALUE; + tmp |= FIELD_PREP(ACC_CLKS__VALUE, acc_clks); + sel->acc_clks = tmp; + + tmp = ioread32(denali->reg + RDWR_EN_LO_CNT); + tmp &= ~RDWR_EN_LO_CNT__VALUE; + tmp |= FIELD_PREP(RDWR_EN_LO_CNT__VALUE, rdwr_en_lo); + sel->rdwr_en_lo_cnt = tmp; + + /* tCS, tCEA -> CS_SETUP_CNT */ + cs_setup = max3((int)DIV_ROUND_UP(timings->tCS_min, t_x) - rdwr_en_lo, + (int)DIV_ROUND_UP(timings->tCEA_max, t_x) - acc_clks, + 0); + cs_setup = min_t(int, cs_setup, CS_SETUP_CNT__VALUE); + + tmp = ioread32(denali->reg + CS_SETUP_CNT); + tmp &= ~CS_SETUP_CNT__VALUE; + tmp |= FIELD_PREP(CS_SETUP_CNT__VALUE, cs_setup); + sel->cs_setup_cnt = tmp; + + return 0; +} + +int denali_calc_ecc_bytes(int step_size, int strength) +{ + /* BCH code. Denali requires ecc.bytes to be multiple of 2 */ + return DIV_ROUND_UP(strength * fls(step_size * 8), 16) * 2; +} +EXPORT_SYMBOL(denali_calc_ecc_bytes); + +static int denali_ooblayout_ecc(struct mtd_info *mtd, int section, + struct mtd_oob_region *oobregion) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + struct denali_controller *denali = to_denali_controller(chip); + + if (section > 0) + return -ERANGE; + + oobregion->offset = denali->oob_skip_bytes; + oobregion->length = chip->ecc.total; + + return 0; +} + +static int denali_ooblayout_free(struct mtd_info *mtd, int section, + struct mtd_oob_region *oobregion) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + struct denali_controller *denali = to_denali_controller(chip); + + if (section > 0) + return -ERANGE; + + oobregion->offset = chip->ecc.total + denali->oob_skip_bytes; + oobregion->length = mtd->oobsize - oobregion->offset; + + return 0; +} + +static const struct mtd_ooblayout_ops denali_ooblayout_ops = { + .ecc = denali_ooblayout_ecc, + .free = denali_ooblayout_free, +}; + +static int denali_multidev_fixup(struct nand_chip *chip) +{ + struct denali_controller *denali = to_denali_controller(chip); + struct mtd_info *mtd = nand_to_mtd(chip); + struct nand_memory_organization *memorg; + + memorg = nanddev_get_memorg(&chip->base); + + /* + * Support for multi device: + * When the IP configuration is x16 capable and two x8 chips are + * connected in parallel, DEVICES_CONNECTED should be set to 2. + * In this case, the core framework knows nothing about this fact, + * so we should tell it the _logical_ pagesize and anything necessary. + */ + denali->devs_per_cs = ioread32(denali->reg + DEVICES_CONNECTED); + + /* + * On some SoCs, DEVICES_CONNECTED is not auto-detected. + * For those, DEVICES_CONNECTED is left to 0. Set 1 if it is the case. + */ + if (denali->devs_per_cs == 0) { + denali->devs_per_cs = 1; + iowrite32(1, denali->reg + DEVICES_CONNECTED); + } + + if (denali->devs_per_cs == 1) + return 0; + + if (denali->devs_per_cs != 2) { + dev_err(denali->dev, "unsupported number of devices %d\n", + denali->devs_per_cs); + return -EINVAL; + } + + /* 2 chips in parallel */ + memorg->pagesize <<= 1; + memorg->oobsize <<= 1; + mtd->size <<= 1; + mtd->erasesize <<= 1; + mtd->writesize <<= 1; + mtd->oobsize <<= 1; + chip->page_shift += 1; + chip->phys_erase_shift += 1; + chip->bbt_erase_shift += 1; + chip->chip_shift += 1; + chip->pagemask <<= 1; + chip->ecc.size <<= 1; + chip->ecc.bytes <<= 1; + chip->ecc.strength <<= 1; + denali->oob_skip_bytes <<= 1; + + return 0; +} + +static int denali_attach_chip(struct nand_chip *chip) +{ + struct denali_controller *denali = to_denali_controller(chip); + struct mtd_info *mtd = nand_to_mtd(chip); + int ret; + + ret = nand_ecc_choose_conf(chip, denali->ecc_caps, + mtd->oobsize - denali->oob_skip_bytes); + if (ret) { + dev_err(denali->dev, "Failed to setup ECC settings.\n"); + return ret; + } + + dev_dbg(denali->dev, + "chosen ECC settings: step=%d, strength=%d, bytes=%d\n", + chip->ecc.size, chip->ecc.strength, chip->ecc.bytes); + + ret = denali_multidev_fixup(chip); + if (ret) + return ret; + + return 0; +} + +static void denali_exec_in8(struct denali_controller *denali, u32 type, + u8 *buf, unsigned int len) +{ + int i; + + for (i = 0; i < len; i++) + buf[i] = denali->host_read(denali, type | DENALI_BANK(denali)); +} + +static void denali_exec_in16(struct denali_controller *denali, u32 type, + u8 *buf, unsigned int len) +{ + u32 data; + int i; + + for (i = 0; i < len; i += 2) { + data = denali->host_read(denali, type | DENALI_BANK(denali)); + /* bit 31:24 and 15:8 are used for DDR */ + buf[i] = data; + buf[i + 1] = data >> 16; + } +} + +static void denali_exec_in(struct denali_controller *denali, u32 type, + u8 *buf, unsigned int len, bool width16) +{ + if (width16) + denali_exec_in16(denali, type, buf, len); + else + denali_exec_in8(denali, type, buf, len); +} + +static void denali_exec_out8(struct denali_controller *denali, u32 type, + const u8 *buf, unsigned int len) +{ + int i; + + for (i = 0; i < len; i++) + denali->host_write(denali, type | DENALI_BANK(denali), buf[i]); +} + +static void denali_exec_out16(struct denali_controller *denali, u32 type, + const u8 *buf, unsigned int len) +{ + int i; + + for (i = 0; i < len; i += 2) + denali->host_write(denali, type | DENALI_BANK(denali), + buf[i + 1] << 16 | buf[i]); +} + +static void denali_exec_out(struct denali_controller *denali, u32 type, + const u8 *buf, unsigned int len, bool width16) +{ + if (width16) + denali_exec_out16(denali, type, buf, len); + else + denali_exec_out8(denali, type, buf, len); +} + +static int denali_exec_waitrdy(struct denali_controller *denali) +{ + u32 irq_stat; + + /* R/B# pin transitioned from low to high? */ + irq_stat = denali_wait_for_irq(denali, INTR__INT_ACT); + + /* Just in case nand_operation has multiple NAND_OP_WAITRDY_INSTR. */ + denali_reset_irq(denali); + + return irq_stat & INTR__INT_ACT ? 0 : -EIO; +} + +static int denali_exec_instr(struct nand_chip *chip, + const struct nand_op_instr *instr) +{ + struct denali_controller *denali = to_denali_controller(chip); + + switch (instr->type) { + case NAND_OP_CMD_INSTR: + denali_exec_out8(denali, DENALI_MAP11_CMD, + &instr->ctx.cmd.opcode, 1); + return 0; + case NAND_OP_ADDR_INSTR: + denali_exec_out8(denali, DENALI_MAP11_ADDR, + instr->ctx.addr.addrs, + instr->ctx.addr.naddrs); + return 0; + case NAND_OP_DATA_IN_INSTR: + denali_exec_in(denali, DENALI_MAP11_DATA, + instr->ctx.data.buf.in, + instr->ctx.data.len, + !instr->ctx.data.force_8bit && + chip->options & NAND_BUSWIDTH_16); + return 0; + case NAND_OP_DATA_OUT_INSTR: + denali_exec_out(denali, DENALI_MAP11_DATA, + instr->ctx.data.buf.out, + instr->ctx.data.len, + !instr->ctx.data.force_8bit && + chip->options & NAND_BUSWIDTH_16); + return 0; + case NAND_OP_WAITRDY_INSTR: + return denali_exec_waitrdy(denali); + default: + WARN_ONCE(1, "unsupported NAND instruction type: %d\n", + instr->type); + + return -EINVAL; + } +} + +static int denali_exec_op(struct nand_chip *chip, + const struct nand_operation *op, bool check_only) +{ + int i, ret; + + if (check_only) + return 0; + + denali_select_target(chip, op->cs); + + /* + * Some commands contain NAND_OP_WAITRDY_INSTR. + * irq must be cleared here to catch the R/B# interrupt there. + */ + denali_reset_irq(to_denali_controller(chip)); + + for (i = 0; i < op->ninstrs; i++) { + ret = denali_exec_instr(chip, &op->instrs[i]); + if (ret) + return ret; + } + + return 0; +} + +static const struct nand_controller_ops denali_controller_ops = { + .attach_chip = denali_attach_chip, + .exec_op = denali_exec_op, + .setup_interface = denali_setup_interface, +}; + +int denali_chip_init(struct denali_controller *denali, + struct denali_chip *dchip) +{ + struct nand_chip *chip = &dchip->chip; + struct mtd_info *mtd = nand_to_mtd(chip); + struct denali_chip *dchip2; + int i, j, ret; + + chip->controller = &denali->controller; + + /* sanity checks for bank numbers */ + for (i = 0; i < dchip->nsels; i++) { + unsigned int bank = dchip->sels[i].bank; + + if (bank >= denali->nbanks) { + dev_err(denali->dev, "unsupported bank %d\n", bank); + return -EINVAL; + } + + for (j = 0; j < i; j++) { + if (bank == dchip->sels[j].bank) { + dev_err(denali->dev, + "bank %d is assigned twice in the same chip\n", + bank); + return -EINVAL; + } + } + + list_for_each_entry(dchip2, &denali->chips, node) { + for (j = 0; j < dchip2->nsels; j++) { + if (bank == dchip2->sels[j].bank) { + dev_err(denali->dev, + "bank %d is already used\n", + bank); + return -EINVAL; + } + } + } + } + + mtd->dev.parent = denali->dev; + + /* + * Fallback to the default name if DT did not give "label" property. + * Use "label" property if multiple chips are connected. + */ + if (!mtd->name && list_empty(&denali->chips)) + mtd->name = "denali-nand"; + + if (denali->dma_avail) { + chip->options |= NAND_USES_DMA; + chip->buf_align = 16; + } + + /* clk rate info is needed for setup_interface */ + if (!denali->clk_rate || !denali->clk_x_rate) + chip->options |= NAND_KEEP_TIMINGS; + + chip->bbt_options |= NAND_BBT_USE_FLASH; + chip->bbt_options |= NAND_BBT_NO_OOB; + chip->options |= NAND_NO_SUBPAGE_WRITE; + chip->ecc.engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST; + chip->ecc.placement = NAND_ECC_PLACEMENT_INTERLEAVED; + chip->ecc.read_page = denali_read_page; + chip->ecc.write_page = denali_write_page; + chip->ecc.read_page_raw = denali_read_page_raw; + chip->ecc.write_page_raw = denali_write_page_raw; + chip->ecc.read_oob = denali_read_oob; + chip->ecc.write_oob = denali_write_oob; + + mtd_set_ooblayout(mtd, &denali_ooblayout_ops); + + ret = nand_scan(chip, dchip->nsels); + if (ret) + return ret; + + ret = mtd_device_register(mtd, NULL, 0); + if (ret) { + dev_err(denali->dev, "Failed to register MTD: %d\n", ret); + goto cleanup_nand; + } + + list_add_tail(&dchip->node, &denali->chips); + + return 0; + +cleanup_nand: + nand_cleanup(chip); + + return ret; +} +EXPORT_SYMBOL_GPL(denali_chip_init); + +int denali_init(struct denali_controller *denali) +{ + u32 features = ioread32(denali->reg + FEATURES); + int ret; + + nand_controller_init(&denali->controller); + denali->controller.ops = &denali_controller_ops; + init_completion(&denali->complete); + spin_lock_init(&denali->irq_lock); + INIT_LIST_HEAD(&denali->chips); + denali->active_bank = DENALI_INVALID_BANK; + + /* + * The REVISION register may not be reliable. Platforms are allowed to + * override it. + */ + if (!denali->revision) + denali->revision = swab16(ioread32(denali->reg + REVISION)); + + denali->nbanks = 1 << FIELD_GET(FEATURES__N_BANKS, features); + + /* the encoding changed from rev 5.0 to 5.1 */ + if (denali->revision < 0x0501) + denali->nbanks <<= 1; + + if (features & FEATURES__DMA) + denali->dma_avail = true; + + if (denali->dma_avail) { + int dma_bit = denali->caps & DENALI_CAP_DMA_64BIT ? 64 : 32; + + ret = dma_set_mask(denali->dev, DMA_BIT_MASK(dma_bit)); + if (ret) { + dev_info(denali->dev, + "Failed to set DMA mask. Disabling DMA.\n"); + denali->dma_avail = false; + } + } + + if (denali->dma_avail) { + if (denali->caps & DENALI_CAP_DMA_64BIT) + denali->setup_dma = denali_setup_dma64; + else + denali->setup_dma = denali_setup_dma32; + } + + if (features & FEATURES__INDEX_ADDR) { + denali->host_read = denali_indexed_read; + denali->host_write = denali_indexed_write; + } else { + denali->host_read = denali_direct_read; + denali->host_write = denali_direct_write; + } + + /* + * Set how many bytes should be skipped before writing data in OOB. + * If a platform requests a non-zero value, set it to the register. + * Otherwise, read the value out, expecting it has already been set up + * by firmware. + */ + if (denali->oob_skip_bytes) + iowrite32(denali->oob_skip_bytes, + denali->reg + SPARE_AREA_SKIP_BYTES); + else + denali->oob_skip_bytes = ioread32(denali->reg + + SPARE_AREA_SKIP_BYTES); + + iowrite32(0, denali->reg + TRANSFER_SPARE_REG); + iowrite32(GENMASK(denali->nbanks - 1, 0), denali->reg + RB_PIN_ENABLED); + iowrite32(CHIP_EN_DONT_CARE__FLAG, denali->reg + CHIP_ENABLE_DONT_CARE); + iowrite32(ECC_ENABLE__FLAG, denali->reg + ECC_ENABLE); + iowrite32(0xffff, denali->reg + SPARE_AREA_MARKER); + iowrite32(WRITE_PROTECT__FLAG, denali->reg + WRITE_PROTECT); + + denali_clear_irq_all(denali); + + ret = devm_request_irq(denali->dev, denali->irq, denali_isr, + IRQF_SHARED, DENALI_NAND_NAME, denali); + if (ret) { + dev_err(denali->dev, "Unable to request IRQ\n"); + return ret; + } + + denali_enable_irq(denali); + + return 0; +} +EXPORT_SYMBOL(denali_init); + +void denali_remove(struct denali_controller *denali) +{ + struct denali_chip *dchip, *tmp; + struct nand_chip *chip; + int ret; + + list_for_each_entry_safe(dchip, tmp, &denali->chips, node) { + chip = &dchip->chip; + ret = mtd_device_unregister(nand_to_mtd(chip)); + WARN_ON(ret); + nand_cleanup(chip); + list_del(&dchip->node); + } + + denali_disable_irq(denali); +} +EXPORT_SYMBOL(denali_remove); + +MODULE_DESCRIPTION("Driver core for Denali NAND controller"); +MODULE_AUTHOR("Intel Corporation and its suppliers"); +MODULE_LICENSE("GPL v2"); diff --git a/drivers/mtd/nand/raw/denali.h b/drivers/mtd/nand/raw/denali.h new file mode 100644 index 0000000000..ac46eb7956 --- /dev/null +++ b/drivers/mtd/nand/raw/denali.h @@ -0,0 +1,398 @@ +/* SPDX-License-Identifier: GPL-2.0 */ +/* + * NAND Flash Controller Device Driver + * Copyright (c) 2009 - 2010, Intel Corporation and its suppliers. + */ + +#ifndef __DENALI_H__ +#define __DENALI_H__ + +#include <linux/bits.h> +#include <linux/completion.h> +#include <linux/list.h> +#include <linux/mtd/rawnand.h> +#include <linux/spinlock_types.h> +#include <linux/types.h> + +#define DEVICE_RESET 0x0 +#define DEVICE_RESET__BANK(bank) BIT(bank) + +#define TRANSFER_SPARE_REG 0x10 +#define TRANSFER_SPARE_REG__FLAG BIT(0) + +#define LOAD_WAIT_CNT 0x20 +#define LOAD_WAIT_CNT__VALUE GENMASK(15, 0) + +#define PROGRAM_WAIT_CNT 0x30 +#define PROGRAM_WAIT_CNT__VALUE GENMASK(15, 0) + +#define ERASE_WAIT_CNT 0x40 +#define ERASE_WAIT_CNT__VALUE GENMASK(15, 0) + +#define INT_MON_CYCCNT 0x50 +#define INT_MON_CYCCNT__VALUE GENMASK(15, 0) + +#define RB_PIN_ENABLED 0x60 +#define RB_PIN_ENABLED__BANK(bank) BIT(bank) + +#define MULTIPLANE_OPERATION 0x70 +#define MULTIPLANE_OPERATION__FLAG BIT(0) + +#define MULTIPLANE_READ_ENABLE 0x80 +#define MULTIPLANE_READ_ENABLE__FLAG BIT(0) + +#define COPYBACK_DISABLE 0x90 +#define COPYBACK_DISABLE__FLAG BIT(0) + +#define CACHE_WRITE_ENABLE 0xa0 +#define CACHE_WRITE_ENABLE__FLAG BIT(0) + +#define CACHE_READ_ENABLE 0xb0 +#define CACHE_READ_ENABLE__FLAG BIT(0) + +#define PREFETCH_MODE 0xc0 +#define PREFETCH_MODE__PREFETCH_EN BIT(0) +#define PREFETCH_MODE__PREFETCH_BURST_LENGTH GENMASK(15, 4) + +#define CHIP_ENABLE_DONT_CARE 0xd0 +#define CHIP_EN_DONT_CARE__FLAG BIT(0) + +#define ECC_ENABLE 0xe0 +#define ECC_ENABLE__FLAG BIT(0) + +#define GLOBAL_INT_ENABLE 0xf0 +#define GLOBAL_INT_EN_FLAG BIT(0) + +#define TWHR2_AND_WE_2_RE 0x100 +#define TWHR2_AND_WE_2_RE__WE_2_RE GENMASK(5, 0) +#define TWHR2_AND_WE_2_RE__TWHR2 GENMASK(13, 8) + +#define TCWAW_AND_ADDR_2_DATA 0x110 +/* The width of ADDR_2_DATA is 6 bit for old IP, 7 bit for new IP */ +#define TCWAW_AND_ADDR_2_DATA__ADDR_2_DATA GENMASK(6, 0) +#define TCWAW_AND_ADDR_2_DATA__TCWAW GENMASK(13, 8) + +#define RE_2_WE 0x120 +#define RE_2_WE__VALUE GENMASK(5, 0) + +#define ACC_CLKS 0x130 +#define ACC_CLKS__VALUE GENMASK(3, 0) + +#define NUMBER_OF_PLANES 0x140 +#define NUMBER_OF_PLANES__VALUE GENMASK(2, 0) + +#define PAGES_PER_BLOCK 0x150 +#define PAGES_PER_BLOCK__VALUE GENMASK(15, 0) + +#define DEVICE_WIDTH 0x160 +#define DEVICE_WIDTH__VALUE GENMASK(1, 0) + +#define DEVICE_MAIN_AREA_SIZE 0x170 +#define DEVICE_MAIN_AREA_SIZE__VALUE GENMASK(15, 0) + +#define DEVICE_SPARE_AREA_SIZE 0x180 +#define DEVICE_SPARE_AREA_SIZE__VALUE GENMASK(15, 0) + +#define TWO_ROW_ADDR_CYCLES 0x190 +#define TWO_ROW_ADDR_CYCLES__FLAG BIT(0) + +#define MULTIPLANE_ADDR_RESTRICT 0x1a0 +#define MULTIPLANE_ADDR_RESTRICT__FLAG BIT(0) + +#define ECC_CORRECTION 0x1b0 +#define ECC_CORRECTION__VALUE GENMASK(4, 0) +#define ECC_CORRECTION__ERASE_THRESHOLD GENMASK(31, 16) + +#define READ_MODE 0x1c0 +#define READ_MODE__VALUE GENMASK(3, 0) + +#define WRITE_MODE 0x1d0 +#define WRITE_MODE__VALUE GENMASK(3, 0) + +#define COPYBACK_MODE 0x1e0 +#define COPYBACK_MODE__VALUE GENMASK(3, 0) + +#define RDWR_EN_LO_CNT 0x1f0 +#define RDWR_EN_LO_CNT__VALUE GENMASK(4, 0) + +#define RDWR_EN_HI_CNT 0x200 +#define RDWR_EN_HI_CNT__VALUE GENMASK(4, 0) + +#define MAX_RD_DELAY 0x210 +#define MAX_RD_DELAY__VALUE GENMASK(3, 0) + +#define CS_SETUP_CNT 0x220 +#define CS_SETUP_CNT__VALUE GENMASK(4, 0) +#define CS_SETUP_CNT__TWB GENMASK(17, 12) + +#define SPARE_AREA_SKIP_BYTES 0x230 +#define SPARE_AREA_SKIP_BYTES__VALUE GENMASK(5, 0) + +#define SPARE_AREA_MARKER 0x240 +#define SPARE_AREA_MARKER__VALUE GENMASK(15, 0) + +#define DEVICES_CONNECTED 0x250 +#define DEVICES_CONNECTED__VALUE GENMASK(2, 0) + +#define DIE_MASK 0x260 +#define DIE_MASK__VALUE GENMASK(7, 0) + +#define FIRST_BLOCK_OF_NEXT_PLANE 0x270 +#define FIRST_BLOCK_OF_NEXT_PLANE__VALUE GENMASK(15, 0) + +#define WRITE_PROTECT 0x280 +#define WRITE_PROTECT__FLAG BIT(0) + +#define RE_2_RE 0x290 +#define RE_2_RE__VALUE GENMASK(5, 0) + +#define MANUFACTURER_ID 0x300 +#define MANUFACTURER_ID__VALUE GENMASK(7, 0) + +#define DEVICE_ID 0x310 +#define DEVICE_ID__VALUE GENMASK(7, 0) + +#define DEVICE_PARAM_0 0x320 +#define DEVICE_PARAM_0__VALUE GENMASK(7, 0) + +#define DEVICE_PARAM_1 0x330 +#define DEVICE_PARAM_1__VALUE GENMASK(7, 0) + +#define DEVICE_PARAM_2 0x340 +#define DEVICE_PARAM_2__VALUE GENMASK(7, 0) + +#define LOGICAL_PAGE_DATA_SIZE 0x350 +#define LOGICAL_PAGE_DATA_SIZE__VALUE GENMASK(15, 0) + +#define LOGICAL_PAGE_SPARE_SIZE 0x360 +#define LOGICAL_PAGE_SPARE_SIZE__VALUE GENMASK(15, 0) + +#define REVISION 0x370 +#define REVISION__VALUE GENMASK(15, 0) + +#define ONFI_DEVICE_FEATURES 0x380 +#define ONFI_DEVICE_FEATURES__VALUE GENMASK(5, 0) + +#define ONFI_OPTIONAL_COMMANDS 0x390 +#define ONFI_OPTIONAL_COMMANDS__VALUE GENMASK(5, 0) + +#define ONFI_TIMING_MODE 0x3a0 +#define ONFI_TIMING_MODE__VALUE GENMASK(5, 0) + +#define ONFI_PGM_CACHE_TIMING_MODE 0x3b0 +#define ONFI_PGM_CACHE_TIMING_MODE__VALUE GENMASK(5, 0) + +#define ONFI_DEVICE_NO_OF_LUNS 0x3c0 +#define ONFI_DEVICE_NO_OF_LUNS__NO_OF_LUNS GENMASK(7, 0) +#define ONFI_DEVICE_NO_OF_LUNS__ONFI_DEVICE BIT(8) + +#define ONFI_DEVICE_NO_OF_BLOCKS_PER_LUN_L 0x3d0 +#define ONFI_DEVICE_NO_OF_BLOCKS_PER_LUN_L__VALUE GENMASK(15, 0) + +#define ONFI_DEVICE_NO_OF_BLOCKS_PER_LUN_U 0x3e0 +#define ONFI_DEVICE_NO_OF_BLOCKS_PER_LUN_U__VALUE GENMASK(15, 0) + +#define FEATURES 0x3f0 +#define FEATURES__N_BANKS GENMASK(1, 0) +#define FEATURES__ECC_MAX_ERR GENMASK(5, 2) +#define FEATURES__DMA BIT(6) +#define FEATURES__CMD_DMA BIT(7) +#define FEATURES__PARTITION BIT(8) +#define FEATURES__XDMA_SIDEBAND BIT(9) +#define FEATURES__GPREG BIT(10) +#define FEATURES__INDEX_ADDR BIT(11) + +#define TRANSFER_MODE 0x400 +#define TRANSFER_MODE__VALUE GENMASK(1, 0) + +#define INTR_STATUS(bank) (0x410 + (bank) * 0x50) +#define INTR_EN(bank) (0x420 + (bank) * 0x50) +/* bit[1:0] is used differently depending on IP version */ +#define INTR__ECC_UNCOR_ERR BIT(0) /* new IP */ +#define INTR__ECC_TRANSACTION_DONE BIT(0) /* old IP */ +#define INTR__ECC_ERR BIT(1) /* old IP */ +#define INTR__DMA_CMD_COMP BIT(2) +#define INTR__TIME_OUT BIT(3) +#define INTR__PROGRAM_FAIL BIT(4) +#define INTR__ERASE_FAIL BIT(5) +#define INTR__LOAD_COMP BIT(6) +#define INTR__PROGRAM_COMP BIT(7) +#define INTR__ERASE_COMP BIT(8) +#define INTR__PIPE_CPYBCK_CMD_COMP BIT(9) +#define INTR__LOCKED_BLK BIT(10) +#define INTR__UNSUP_CMD BIT(11) +#define INTR__INT_ACT BIT(12) +#define INTR__RST_COMP BIT(13) +#define INTR__PIPE_CMD_ERR BIT(14) +#define INTR__PAGE_XFER_INC BIT(15) +#define INTR__ERASED_PAGE BIT(16) + +#define PAGE_CNT(bank) (0x430 + (bank) * 0x50) +#define ERR_PAGE_ADDR(bank) (0x440 + (bank) * 0x50) +#define ERR_BLOCK_ADDR(bank) (0x450 + (bank) * 0x50) + +#define ECC_THRESHOLD 0x600 +#define ECC_THRESHOLD__VALUE GENMASK(9, 0) + +#define ECC_ERROR_BLOCK_ADDRESS 0x610 +#define ECC_ERROR_BLOCK_ADDRESS__VALUE GENMASK(15, 0) + +#define ECC_ERROR_PAGE_ADDRESS 0x620 +#define ECC_ERROR_PAGE_ADDRESS__VALUE GENMASK(11, 0) +#define ECC_ERROR_PAGE_ADDRESS__BANK GENMASK(15, 12) + +#define ECC_ERROR_ADDRESS 0x630 +#define ECC_ERROR_ADDRESS__OFFSET GENMASK(11, 0) +#define ECC_ERROR_ADDRESS__SECTOR GENMASK(15, 12) + +#define ERR_CORRECTION_INFO 0x640 +#define ERR_CORRECTION_INFO__BYTE GENMASK(7, 0) +#define ERR_CORRECTION_INFO__DEVICE GENMASK(11, 8) +#define ERR_CORRECTION_INFO__UNCOR BIT(14) +#define ERR_CORRECTION_INFO__LAST_ERR BIT(15) + +#define ECC_COR_INFO(bank) (0x650 + (bank) / 2 * 0x10) +#define ECC_COR_INFO__SHIFT(bank) ((bank) % 2 * 8) +#define ECC_COR_INFO__MAX_ERRORS GENMASK(6, 0) +#define ECC_COR_INFO__UNCOR_ERR BIT(7) + +#define CFG_DATA_BLOCK_SIZE 0x6b0 + +#define CFG_LAST_DATA_BLOCK_SIZE 0x6c0 + +#define CFG_NUM_DATA_BLOCKS 0x6d0 + +#define CFG_META_DATA_SIZE 0x6e0 + +#define DMA_ENABLE 0x700 +#define DMA_ENABLE__FLAG BIT(0) + +#define IGNORE_ECC_DONE 0x710 +#define IGNORE_ECC_DONE__FLAG BIT(0) + +#define DMA_INTR 0x720 +#define DMA_INTR_EN 0x730 +#define DMA_INTR__TARGET_ERROR BIT(0) +#define DMA_INTR__DESC_COMP_CHANNEL0 BIT(1) +#define DMA_INTR__DESC_COMP_CHANNEL1 BIT(2) +#define DMA_INTR__DESC_COMP_CHANNEL2 BIT(3) +#define DMA_INTR__DESC_COMP_CHANNEL3 BIT(4) +#define DMA_INTR__MEMCOPY_DESC_COMP BIT(5) + +#define TARGET_ERR_ADDR_LO 0x740 +#define TARGET_ERR_ADDR_LO__VALUE GENMASK(15, 0) + +#define TARGET_ERR_ADDR_HI 0x750 +#define TARGET_ERR_ADDR_HI__VALUE GENMASK(15, 0) + +#define CHNL_ACTIVE 0x760 +#define CHNL_ACTIVE__CHANNEL0 BIT(0) +#define CHNL_ACTIVE__CHANNEL1 BIT(1) +#define CHNL_ACTIVE__CHANNEL2 BIT(2) +#define CHNL_ACTIVE__CHANNEL3 BIT(3) + +/** + * struct denali_chip_sel - per-CS data of Denali NAND + * + * @bank: bank id of the controller this CS is connected to + * @hwhr2_and_we_2_re: value of timing register HWHR2_AND_WE_2_RE + * @tcwaw_and_addr_2_data: value of timing register TCWAW_AND_ADDR_2_DATA + * @re_2_we: value of timing register RE_2_WE + * @acc_clks: value of timing register ACC_CLKS + * @rdwr_en_lo_cnt: value of timing register RDWR_EN_LO_CNT + * @rdwr_en_hi_cnt: value of timing register RDWR_EN_HI_CNT + * @cs_setup_cnt: value of timing register CS_SETUP_CNT + * @re_2_re: value of timing register RE_2_RE + */ +struct denali_chip_sel { + int bank; + u32 hwhr2_and_we_2_re; + u32 tcwaw_and_addr_2_data; + u32 re_2_we; + u32 acc_clks; + u32 rdwr_en_lo_cnt; + u32 rdwr_en_hi_cnt; + u32 cs_setup_cnt; + u32 re_2_re; +}; + +/** + * struct denali_chip - per-chip data of Denali NAND + * + * @chip: base NAND chip structure + * @node: node to be used to associate this chip with the controller + * @nsels: the number of CS lines of this chip + * @sels: the array of per-cs data + */ +struct denali_chip { + struct nand_chip chip; + struct list_head node; + unsigned int nsels; + struct denali_chip_sel sels[]; +}; + +/** + * struct denali_controller - Denali NAND controller data + * + * @controller: base NAND controller structure + * @dev: device + * @chips: the list of chips attached to this controller + * @clk_rate: frequency of core clock + * @clk_x_rate: frequency of bus interface clock + * @reg: base of Register Interface + * @host: base of Host Data/Command interface + * @complete: completion used to wait for interrupts + * @irq: interrupt number + * @irq_mask: interrupt bits the controller is waiting for + * @irq_status: interrupt bits of events that have happened + * @irq_lock: lock to protect @irq_mask and @irq_status + * @dma_avail: set if DMA engine is available + * @devs_per_cs: number of devices connected in parallel + * @oob_skip_bytes: number of bytes in OOB skipped by the ECC engine + * @active_bank: active bank id + * @nbanks: the number of banks supported by this controller + * @revision: IP revision + * @caps: controller capabilities that cannot be detected run-time + * @ecc_caps: ECC engine capabilities + * @host_read: callback for read access of Host Data/Command Interface + * @host_write: callback for write access of Host Data/Command Interface + * @setup_dma: callback for setup of the Data DMA + */ +struct denali_controller { + struct nand_controller controller; + struct device *dev; + struct list_head chips; + unsigned long clk_rate; + unsigned long clk_x_rate; + void __iomem *reg; + void __iomem *host; + struct completion complete; + int irq; + u32 irq_mask; + u32 irq_status; + spinlock_t irq_lock; + bool dma_avail; + int devs_per_cs; + int oob_skip_bytes; + int active_bank; + int nbanks; + unsigned int revision; + unsigned int caps; + const struct nand_ecc_caps *ecc_caps; + u32 (*host_read)(struct denali_controller *denali, u32 addr); + void (*host_write)(struct denali_controller *denali, u32 addr, + u32 data); + void (*setup_dma)(struct denali_controller *denali, dma_addr_t dma_addr, + int page, bool write); +}; + +#define DENALI_CAP_HW_ECC_FIXUP BIT(0) +#define DENALI_CAP_DMA_64BIT BIT(1) + +int denali_calc_ecc_bytes(int step_size, int strength); +int denali_chip_init(struct denali_controller *denali, + struct denali_chip *dchip); +int denali_init(struct denali_controller *denali); +void denali_remove(struct denali_controller *denali); + +#endif /* __DENALI_H__ */ diff --git a/drivers/mtd/nand/raw/denali_dt.c b/drivers/mtd/nand/raw/denali_dt.c new file mode 100644 index 0000000000..edac8749bb --- /dev/null +++ b/drivers/mtd/nand/raw/denali_dt.c @@ -0,0 +1,259 @@ +// SPDX-License-Identifier: GPL-2.0 +/* + * NAND Flash Controller Device Driver for DT + * + * Copyright © 2011, Picochip. + */ + +#include <linux/clk.h> +#include <linux/delay.h> +#include <linux/err.h> +#include <linux/io.h> +#include <linux/ioport.h> +#include <linux/kernel.h> +#include <linux/module.h> +#include <linux/of.h> +#include <linux/platform_device.h> +#include <linux/reset.h> + +#include "denali.h" + +struct denali_dt { + struct denali_controller controller; + struct clk *clk; /* core clock */ + struct clk *clk_x; /* bus interface clock */ + struct clk *clk_ecc; /* ECC circuit clock */ + struct reset_control *rst; /* core reset */ + struct reset_control *rst_reg; /* register reset */ +}; + +struct denali_dt_data { + unsigned int revision; + unsigned int caps; + unsigned int oob_skip_bytes; + const struct nand_ecc_caps *ecc_caps; +}; + +NAND_ECC_CAPS_SINGLE(denali_socfpga_ecc_caps, denali_calc_ecc_bytes, + 512, 8, 15); +static const struct denali_dt_data denali_socfpga_data = { + .caps = DENALI_CAP_HW_ECC_FIXUP, + .oob_skip_bytes = 2, + .ecc_caps = &denali_socfpga_ecc_caps, +}; + +NAND_ECC_CAPS_SINGLE(denali_uniphier_v5a_ecc_caps, denali_calc_ecc_bytes, + 1024, 8, 16, 24); +static const struct denali_dt_data denali_uniphier_v5a_data = { + .caps = DENALI_CAP_HW_ECC_FIXUP | + DENALI_CAP_DMA_64BIT, + .oob_skip_bytes = 8, + .ecc_caps = &denali_uniphier_v5a_ecc_caps, +}; + +NAND_ECC_CAPS_SINGLE(denali_uniphier_v5b_ecc_caps, denali_calc_ecc_bytes, + 1024, 8, 16); +static const struct denali_dt_data denali_uniphier_v5b_data = { + .revision = 0x0501, + .caps = DENALI_CAP_HW_ECC_FIXUP | + DENALI_CAP_DMA_64BIT, + .oob_skip_bytes = 8, + .ecc_caps = &denali_uniphier_v5b_ecc_caps, +}; + +static const struct of_device_id denali_nand_dt_ids[] = { + { + .compatible = "altr,socfpga-denali-nand", + .data = &denali_socfpga_data, + }, + { + .compatible = "socionext,uniphier-denali-nand-v5a", + .data = &denali_uniphier_v5a_data, + }, + { + .compatible = "socionext,uniphier-denali-nand-v5b", + .data = &denali_uniphier_v5b_data, + }, + { /* sentinel */ } +}; +MODULE_DEVICE_TABLE(of, denali_nand_dt_ids); + +static int denali_dt_chip_init(struct denali_controller *denali, + struct device_node *chip_np) +{ + struct denali_chip *dchip; + u32 bank; + int nsels, i, ret; + + nsels = of_property_count_u32_elems(chip_np, "reg"); + if (nsels < 0) + return nsels; + + dchip = devm_kzalloc(denali->dev, struct_size(dchip, sels, nsels), + GFP_KERNEL); + if (!dchip) + return -ENOMEM; + + dchip->nsels = nsels; + + for (i = 0; i < nsels; i++) { + ret = of_property_read_u32_index(chip_np, "reg", i, &bank); + if (ret) + return ret; + + dchip->sels[i].bank = bank; + + nand_set_flash_node(&dchip->chip, chip_np); + } + + return denali_chip_init(denali, dchip); +} + +static int denali_dt_probe(struct platform_device *pdev) +{ + struct device *dev = &pdev->dev; + struct denali_dt *dt; + const struct denali_dt_data *data; + struct denali_controller *denali; + struct device_node *np; + int ret; + + dt = devm_kzalloc(dev, sizeof(*dt), GFP_KERNEL); + if (!dt) + return -ENOMEM; + denali = &dt->controller; + + data = of_device_get_match_data(dev); + if (WARN_ON(!data)) + return -EINVAL; + + denali->revision = data->revision; + denali->caps = data->caps; + denali->oob_skip_bytes = data->oob_skip_bytes; + denali->ecc_caps = data->ecc_caps; + + denali->dev = dev; + denali->irq = platform_get_irq(pdev, 0); + if (denali->irq < 0) + return denali->irq; + + denali->reg = devm_platform_ioremap_resource_byname(pdev, "denali_reg"); + if (IS_ERR(denali->reg)) + return PTR_ERR(denali->reg); + + denali->host = devm_platform_ioremap_resource_byname(pdev, "nand_data"); + if (IS_ERR(denali->host)) + return PTR_ERR(denali->host); + + dt->clk = devm_clk_get(dev, "nand"); + if (IS_ERR(dt->clk)) + return PTR_ERR(dt->clk); + + dt->clk_x = devm_clk_get(dev, "nand_x"); + if (IS_ERR(dt->clk_x)) + return PTR_ERR(dt->clk_x); + + dt->clk_ecc = devm_clk_get(dev, "ecc"); + if (IS_ERR(dt->clk_ecc)) + return PTR_ERR(dt->clk_ecc); + + dt->rst = devm_reset_control_get_optional_shared(dev, "nand"); + if (IS_ERR(dt->rst)) + return PTR_ERR(dt->rst); + + dt->rst_reg = devm_reset_control_get_optional_shared(dev, "reg"); + if (IS_ERR(dt->rst_reg)) + return PTR_ERR(dt->rst_reg); + + ret = clk_prepare_enable(dt->clk); + if (ret) + return ret; + + ret = clk_prepare_enable(dt->clk_x); + if (ret) + goto out_disable_clk; + + ret = clk_prepare_enable(dt->clk_ecc); + if (ret) + goto out_disable_clk_x; + + denali->clk_rate = clk_get_rate(dt->clk); + denali->clk_x_rate = clk_get_rate(dt->clk_x); + + /* + * Deassert the register reset, and the core reset in this order. + * Deasserting the core reset while the register reset is asserted + * will cause unpredictable behavior in the controller. + */ + ret = reset_control_deassert(dt->rst_reg); + if (ret) + goto out_disable_clk_ecc; + + ret = reset_control_deassert(dt->rst); + if (ret) + goto out_assert_rst_reg; + + /* + * When the reset is deasserted, the initialization sequence is kicked + * (bootstrap process). The driver must wait until it finished. + * Otherwise, it will result in unpredictable behavior. + */ + usleep_range(200, 1000); + + ret = denali_init(denali); + if (ret) + goto out_assert_rst; + + for_each_child_of_node(dev->of_node, np) { + ret = denali_dt_chip_init(denali, np); + if (ret) { + of_node_put(np); + goto out_remove_denali; + } + } + + platform_set_drvdata(pdev, dt); + + return 0; + +out_remove_denali: + denali_remove(denali); +out_assert_rst: + reset_control_assert(dt->rst); +out_assert_rst_reg: + reset_control_assert(dt->rst_reg); +out_disable_clk_ecc: + clk_disable_unprepare(dt->clk_ecc); +out_disable_clk_x: + clk_disable_unprepare(dt->clk_x); +out_disable_clk: + clk_disable_unprepare(dt->clk); + + return ret; +} + +static void denali_dt_remove(struct platform_device *pdev) +{ + struct denali_dt *dt = platform_get_drvdata(pdev); + + denali_remove(&dt->controller); + reset_control_assert(dt->rst); + reset_control_assert(dt->rst_reg); + clk_disable_unprepare(dt->clk_ecc); + clk_disable_unprepare(dt->clk_x); + clk_disable_unprepare(dt->clk); +} + +static struct platform_driver denali_dt_driver = { + .probe = denali_dt_probe, + .remove_new = denali_dt_remove, + .driver = { + .name = "denali-nand-dt", + .of_match_table = denali_nand_dt_ids, + }, +}; +module_platform_driver(denali_dt_driver); + +MODULE_LICENSE("GPL v2"); +MODULE_AUTHOR("Jamie Iles"); +MODULE_DESCRIPTION("DT driver for Denali NAND controller"); diff --git a/drivers/mtd/nand/raw/denali_pci.c b/drivers/mtd/nand/raw/denali_pci.c new file mode 100644 index 0000000000..de7e722d38 --- /dev/null +++ b/drivers/mtd/nand/raw/denali_pci.c @@ -0,0 +1,139 @@ +// SPDX-License-Identifier: GPL-2.0 +/* + * NAND Flash Controller Device Driver + * Copyright © 2009-2010, Intel Corporation and its suppliers. + */ + +#include <linux/errno.h> +#include <linux/io.h> +#include <linux/kernel.h> +#include <linux/module.h> +#include <linux/pci.h> + +#include "denali.h" + +#define DENALI_NAND_NAME "denali-nand-pci" + +#define INTEL_CE4100 1 +#define INTEL_MRST 2 + +/* List of platforms this NAND controller has be integrated into */ +static const struct pci_device_id denali_pci_ids[] = { + { PCI_VDEVICE(INTEL, 0x0701), INTEL_CE4100 }, + { PCI_VDEVICE(INTEL, 0x0809), INTEL_MRST }, + { /* end: all zeroes */ } +}; +MODULE_DEVICE_TABLE(pci, denali_pci_ids); + +NAND_ECC_CAPS_SINGLE(denali_pci_ecc_caps, denali_calc_ecc_bytes, 512, 8, 15); + +static int denali_pci_probe(struct pci_dev *dev, const struct pci_device_id *id) +{ + resource_size_t csr_base, mem_base; + unsigned long csr_len, mem_len; + struct denali_controller *denali; + struct denali_chip *dchip; + int nsels, ret, i; + + denali = devm_kzalloc(&dev->dev, sizeof(*denali), GFP_KERNEL); + if (!denali) + return -ENOMEM; + + ret = pcim_enable_device(dev); + if (ret) { + dev_err(&dev->dev, "Spectra: pci_enable_device failed.\n"); + return ret; + } + + if (id->driver_data == INTEL_CE4100) { + mem_base = pci_resource_start(dev, 0); + mem_len = pci_resource_len(dev, 1); + csr_base = pci_resource_start(dev, 1); + csr_len = pci_resource_len(dev, 1); + } else { + csr_base = pci_resource_start(dev, 0); + csr_len = pci_resource_len(dev, 0); + mem_base = pci_resource_start(dev, 1); + mem_len = pci_resource_len(dev, 1); + if (!mem_len) { + mem_base = csr_base + csr_len; + mem_len = csr_len; + } + } + + pci_set_master(dev); + denali->dev = &dev->dev; + denali->irq = dev->irq; + denali->ecc_caps = &denali_pci_ecc_caps; + denali->clk_rate = 50000000; /* 50 MHz */ + denali->clk_x_rate = 200000000; /* 200 MHz */ + + ret = pci_request_regions(dev, DENALI_NAND_NAME); + if (ret) { + dev_err(&dev->dev, "Spectra: Unable to request memory regions\n"); + return ret; + } + + denali->reg = devm_ioremap(denali->dev, csr_base, csr_len); + if (!denali->reg) { + dev_err(&dev->dev, "Spectra: Unable to remap memory region\n"); + return -ENOMEM; + } + + denali->host = devm_ioremap(denali->dev, mem_base, mem_len); + if (!denali->host) { + dev_err(&dev->dev, "Spectra: ioremap failed!"); + return -ENOMEM; + } + + ret = denali_init(denali); + if (ret) + return ret; + + nsels = denali->nbanks; + + dchip = devm_kzalloc(denali->dev, struct_size(dchip, sels, nsels), + GFP_KERNEL); + if (!dchip) { + ret = -ENOMEM; + goto out_remove_denali; + } + + dchip->chip.base.ecc.user_conf.flags |= NAND_ECC_MAXIMIZE_STRENGTH; + + dchip->nsels = nsels; + + for (i = 0; i < nsels; i++) + dchip->sels[i].bank = i; + + ret = denali_chip_init(denali, dchip); + if (ret) + goto out_remove_denali; + + pci_set_drvdata(dev, denali); + + return 0; + +out_remove_denali: + denali_remove(denali); + return ret; +} + +static void denali_pci_remove(struct pci_dev *dev) +{ + struct denali_controller *denali = pci_get_drvdata(dev); + + denali_remove(denali); +} + +static struct pci_driver denali_pci_driver = { + .name = DENALI_NAND_NAME, + .id_table = denali_pci_ids, + .probe = denali_pci_probe, + .remove = denali_pci_remove, +}; +module_pci_driver(denali_pci_driver); + +MODULE_DESCRIPTION("PCI driver for Denali NAND controller"); +MODULE_AUTHOR("Intel Corporation and its suppliers"); +MODULE_LICENSE("GPL v2"); diff --git a/drivers/mtd/nand/raw/diskonchip.c b/drivers/mtd/nand/raw/diskonchip.c new file mode 100644 index 0000000000..5d2ddb037a --- /dev/null +++ b/drivers/mtd/nand/raw/diskonchip.c @@ -0,0 +1,1579 @@ +// SPDX-License-Identifier: GPL-2.0-only +/* + * (C) 2003 Red Hat, Inc. + * (C) 2004 Dan Brown <dan_brown@ieee.org> + * (C) 2004 Kalev Lember <kalev@smartlink.ee> + * + * Author: David Woodhouse <dwmw2@infradead.org> + * Additional Diskonchip 2000 and Millennium support by Dan Brown <dan_brown@ieee.org> + * Diskonchip Millennium Plus support by Kalev Lember <kalev@smartlink.ee> + * + * Error correction code lifted from the old docecc code + * Author: Fabrice Bellard (fabrice.bellard@netgem.com) + * Copyright (C) 2000 Netgem S.A. + * converted to the generic Reed-Solomon library by Thomas Gleixner <tglx@linutronix.de> + * + * Interface to generic NAND code for M-Systems DiskOnChip devices + */ + +#include <linux/kernel.h> +#include <linux/init.h> +#include <linux/sched.h> +#include <linux/delay.h> +#include <linux/rslib.h> +#include <linux/moduleparam.h> +#include <linux/slab.h> +#include <linux/io.h> + +#include <linux/mtd/mtd.h> +#include <linux/mtd/rawnand.h> +#include <linux/mtd/doc2000.h> +#include <linux/mtd/partitions.h> +#include <linux/mtd/inftl.h> +#include <linux/module.h> + +/* Where to look for the devices? */ +#ifndef CONFIG_MTD_NAND_DISKONCHIP_PROBE_ADDRESS +#define CONFIG_MTD_NAND_DISKONCHIP_PROBE_ADDRESS 0 +#endif + +static unsigned long doc_locations[] __initdata = { +#if defined (__alpha__) || defined(__i386__) || defined(__x86_64__) +#ifdef CONFIG_MTD_NAND_DISKONCHIP_PROBE_HIGH + 0xfffc8000, 0xfffca000, 0xfffcc000, 0xfffce000, + 0xfffd0000, 0xfffd2000, 0xfffd4000, 0xfffd6000, + 0xfffd8000, 0xfffda000, 0xfffdc000, 0xfffde000, + 0xfffe0000, 0xfffe2000, 0xfffe4000, 0xfffe6000, + 0xfffe8000, 0xfffea000, 0xfffec000, 0xfffee000, +#else + 0xc8000, 0xca000, 0xcc000, 0xce000, + 0xd0000, 0xd2000, 0xd4000, 0xd6000, + 0xd8000, 0xda000, 0xdc000, 0xde000, + 0xe0000, 0xe2000, 0xe4000, 0xe6000, + 0xe8000, 0xea000, 0xec000, 0xee000, +#endif +#endif + 0xffffffff }; + +static struct mtd_info *doclist = NULL; + +struct doc_priv { + struct nand_controller base; + void __iomem *virtadr; + unsigned long physadr; + u_char ChipID; + u_char CDSNControl; + int chips_per_floor; /* The number of chips detected on each floor */ + int curfloor; + int curchip; + int mh0_page; + int mh1_page; + struct rs_control *rs_decoder; + struct mtd_info *nextdoc; + bool supports_32b_reads; + + /* Handle the last stage of initialization (BBT scan, partitioning) */ + int (*late_init)(struct mtd_info *mtd); +}; + +/* This is the ecc value computed by the HW ecc generator upon writing an empty + page, one with all 0xff for data. */ +static u_char empty_write_ecc[6] = { 0x4b, 0x00, 0xe2, 0x0e, 0x93, 0xf7 }; + +#define INFTL_BBT_RESERVED_BLOCKS 4 + +#define DoC_is_MillenniumPlus(doc) ((doc)->ChipID == DOC_ChipID_DocMilPlus16 || (doc)->ChipID == DOC_ChipID_DocMilPlus32) +#define DoC_is_Millennium(doc) ((doc)->ChipID == DOC_ChipID_DocMil) +#define DoC_is_2000(doc) ((doc)->ChipID == DOC_ChipID_Doc2k) + +static int debug = 0; +module_param(debug, int, 0); + +static int try_dword = 1; +module_param(try_dword, int, 0); + +static int no_ecc_failures = 0; +module_param(no_ecc_failures, int, 0); + +static int no_autopart = 0; +module_param(no_autopart, int, 0); + +static int show_firmware_partition = 0; +module_param(show_firmware_partition, int, 0); + +#ifdef CONFIG_MTD_NAND_DISKONCHIP_BBTWRITE +static int inftl_bbt_write = 1; +#else +static int inftl_bbt_write = 0; +#endif +module_param(inftl_bbt_write, int, 0); + +static unsigned long doc_config_location = CONFIG_MTD_NAND_DISKONCHIP_PROBE_ADDRESS; +module_param(doc_config_location, ulong, 0); +MODULE_PARM_DESC(doc_config_location, "Physical memory address at which to probe for DiskOnChip"); + +/* Sector size for HW ECC */ +#define SECTOR_SIZE 512 +/* The sector bytes are packed into NB_DATA 10 bit words */ +#define NB_DATA (((SECTOR_SIZE + 1) * 8 + 6) / 10) +/* Number of roots */ +#define NROOTS 4 +/* First consective root */ +#define FCR 510 +/* Number of symbols */ +#define NN 1023 + +/* + * The HW decoder in the DoC ASIC's provides us a error syndrome, + * which we must convert to a standard syndrome usable by the generic + * Reed-Solomon library code. + * + * Fabrice Bellard figured this out in the old docecc code. I added + * some comments, improved a minor bit and converted it to make use + * of the generic Reed-Solomon library. tglx + */ +static int doc_ecc_decode(struct rs_control *rs, uint8_t *data, uint8_t *ecc) +{ + int i, j, nerr, errpos[8]; + uint8_t parity; + uint16_t ds[4], s[5], tmp, errval[8], syn[4]; + struct rs_codec *cd = rs->codec; + + memset(syn, 0, sizeof(syn)); + /* Convert the ecc bytes into words */ + ds[0] = ((ecc[4] & 0xff) >> 0) | ((ecc[5] & 0x03) << 8); + ds[1] = ((ecc[5] & 0xfc) >> 2) | ((ecc[2] & 0x0f) << 6); + ds[2] = ((ecc[2] & 0xf0) >> 4) | ((ecc[3] & 0x3f) << 4); + ds[3] = ((ecc[3] & 0xc0) >> 6) | ((ecc[0] & 0xff) << 2); + parity = ecc[1]; + + /* Initialize the syndrome buffer */ + for (i = 0; i < NROOTS; i++) + s[i] = ds[0]; + /* + * Evaluate + * s[i] = ds[3]x^3 + ds[2]x^2 + ds[1]x^1 + ds[0] + * where x = alpha^(FCR + i) + */ + for (j = 1; j < NROOTS; j++) { + if (ds[j] == 0) + continue; + tmp = cd->index_of[ds[j]]; + for (i = 0; i < NROOTS; i++) + s[i] ^= cd->alpha_to[rs_modnn(cd, tmp + (FCR + i) * j)]; + } + + /* Calc syn[i] = s[i] / alpha^(v + i) */ + for (i = 0; i < NROOTS; i++) { + if (s[i]) + syn[i] = rs_modnn(cd, cd->index_of[s[i]] + (NN - FCR - i)); + } + /* Call the decoder library */ + nerr = decode_rs16(rs, NULL, NULL, 1019, syn, 0, errpos, 0, errval); + + /* Incorrectable errors ? */ + if (nerr < 0) + return nerr; + + /* + * Correct the errors. The bitpositions are a bit of magic, + * but they are given by the design of the de/encoder circuit + * in the DoC ASIC's. + */ + for (i = 0; i < nerr; i++) { + int index, bitpos, pos = 1015 - errpos[i]; + uint8_t val; + if (pos >= NB_DATA && pos < 1019) + continue; + if (pos < NB_DATA) { + /* extract bit position (MSB first) */ + pos = 10 * (NB_DATA - 1 - pos) - 6; + /* now correct the following 10 bits. At most two bytes + can be modified since pos is even */ + index = (pos >> 3) ^ 1; + bitpos = pos & 7; + if ((index >= 0 && index < SECTOR_SIZE) || index == (SECTOR_SIZE + 1)) { + val = (uint8_t) (errval[i] >> (2 + bitpos)); + parity ^= val; + if (index < SECTOR_SIZE) + data[index] ^= val; + } + index = ((pos >> 3) + 1) ^ 1; + bitpos = (bitpos + 10) & 7; + if (bitpos == 0) + bitpos = 8; + if ((index >= 0 && index < SECTOR_SIZE) || index == (SECTOR_SIZE + 1)) { + val = (uint8_t) (errval[i] << (8 - bitpos)); + parity ^= val; + if (index < SECTOR_SIZE) + data[index] ^= val; + } + } + } + /* If the parity is wrong, no rescue possible */ + return parity ? -EBADMSG : nerr; +} + +static void DoC_Delay(struct doc_priv *doc, unsigned short cycles) +{ + volatile char __always_unused dummy; + int i; + + for (i = 0; i < cycles; i++) { + if (DoC_is_Millennium(doc)) + dummy = ReadDOC(doc->virtadr, NOP); + else if (DoC_is_MillenniumPlus(doc)) + dummy = ReadDOC(doc->virtadr, Mplus_NOP); + else + dummy = ReadDOC(doc->virtadr, DOCStatus); + } + +} + +#define CDSN_CTRL_FR_B_MASK (CDSN_CTRL_FR_B0 | CDSN_CTRL_FR_B1) + +/* DOC_WaitReady: Wait for RDY line to be asserted by the flash chip */ +static int _DoC_WaitReady(struct doc_priv *doc) +{ + void __iomem *docptr = doc->virtadr; + unsigned long timeo = jiffies + (HZ * 10); + + if (debug) + printk("_DoC_WaitReady...\n"); + /* Out-of-line routine to wait for chip response */ + if (DoC_is_MillenniumPlus(doc)) { + while ((ReadDOC(docptr, Mplus_FlashControl) & CDSN_CTRL_FR_B_MASK) != CDSN_CTRL_FR_B_MASK) { + if (time_after(jiffies, timeo)) { + printk("_DoC_WaitReady timed out.\n"); + return -EIO; + } + udelay(1); + cond_resched(); + } + } else { + while (!(ReadDOC(docptr, CDSNControl) & CDSN_CTRL_FR_B)) { + if (time_after(jiffies, timeo)) { + printk("_DoC_WaitReady timed out.\n"); + return -EIO; + } + udelay(1); + cond_resched(); + } + } + + return 0; +} + +static inline int DoC_WaitReady(struct doc_priv *doc) +{ + void __iomem *docptr = doc->virtadr; + int ret = 0; + + if (DoC_is_MillenniumPlus(doc)) { + DoC_Delay(doc, 4); + + if ((ReadDOC(docptr, Mplus_FlashControl) & CDSN_CTRL_FR_B_MASK) != CDSN_CTRL_FR_B_MASK) + /* Call the out-of-line routine to wait */ + ret = _DoC_WaitReady(doc); + } else { + DoC_Delay(doc, 4); + + if (!(ReadDOC(docptr, CDSNControl) & CDSN_CTRL_FR_B)) + /* Call the out-of-line routine to wait */ + ret = _DoC_WaitReady(doc); + DoC_Delay(doc, 2); + } + + if (debug) + printk("DoC_WaitReady OK\n"); + return ret; +} + +static void doc2000_write_byte(struct nand_chip *this, u_char datum) +{ + struct doc_priv *doc = nand_get_controller_data(this); + void __iomem *docptr = doc->virtadr; + + if (debug) + printk("write_byte %02x\n", datum); + WriteDOC(datum, docptr, CDSNSlowIO); + WriteDOC(datum, docptr, 2k_CDSN_IO); +} + +static void doc2000_writebuf(struct nand_chip *this, const u_char *buf, + int len) +{ + struct doc_priv *doc = nand_get_controller_data(this); + void __iomem *docptr = doc->virtadr; + int i; + if (debug) + printk("writebuf of %d bytes: ", len); + for (i = 0; i < len; i++) { + WriteDOC_(buf[i], docptr, DoC_2k_CDSN_IO + i); + if (debug && i < 16) + printk("%02x ", buf[i]); + } + if (debug) + printk("\n"); +} + +static void doc2000_readbuf(struct nand_chip *this, u_char *buf, int len) +{ + struct doc_priv *doc = nand_get_controller_data(this); + void __iomem *docptr = doc->virtadr; + u32 *buf32 = (u32 *)buf; + int i; + + if (debug) + printk("readbuf of %d bytes: ", len); + + if (!doc->supports_32b_reads || + ((((unsigned long)buf) | len) & 3)) { + for (i = 0; i < len; i++) + buf[i] = ReadDOC(docptr, 2k_CDSN_IO + i); + } else { + for (i = 0; i < len / 4; i++) + buf32[i] = readl(docptr + DoC_2k_CDSN_IO + i); + } +} + +/* + * We need our own readid() here because it's called before the NAND chip + * has been initialized, and calling nand_op_readid() would lead to a NULL + * pointer exception when dereferencing the NAND timings. + */ +static void doc200x_readid(struct nand_chip *this, unsigned int cs, u8 *id) +{ + u8 addr = 0; + struct nand_op_instr instrs[] = { + NAND_OP_CMD(NAND_CMD_READID, 0), + NAND_OP_ADDR(1, &addr, 50), + NAND_OP_8BIT_DATA_IN(2, id, 0), + }; + + struct nand_operation op = NAND_OPERATION(cs, instrs); + + if (!id) + op.ninstrs--; + + this->controller->ops->exec_op(this, &op, false); +} + +static uint16_t __init doc200x_ident_chip(struct mtd_info *mtd, int nr) +{ + struct nand_chip *this = mtd_to_nand(mtd); + struct doc_priv *doc = nand_get_controller_data(this); + uint16_t ret; + u8 id[2]; + + doc200x_readid(this, nr, id); + + ret = ((u16)id[0] << 8) | id[1]; + + if (doc->ChipID == DOC_ChipID_Doc2k && try_dword && !nr) { + /* First chip probe. See if we get same results by 32-bit access */ + union { + uint32_t dword; + uint8_t byte[4]; + } ident; + void __iomem *docptr = doc->virtadr; + + doc200x_readid(this, nr, NULL); + + ident.dword = readl(docptr + DoC_2k_CDSN_IO); + if (((ident.byte[0] << 8) | ident.byte[1]) == ret) { + pr_info("DiskOnChip 2000 responds to DWORD access\n"); + doc->supports_32b_reads = true; + } + } + + return ret; +} + +static void __init doc2000_count_chips(struct mtd_info *mtd) +{ + struct nand_chip *this = mtd_to_nand(mtd); + struct doc_priv *doc = nand_get_controller_data(this); + uint16_t mfrid; + int i; + + /* Max 4 chips per floor on DiskOnChip 2000 */ + doc->chips_per_floor = 4; + + /* Find out what the first chip is */ + mfrid = doc200x_ident_chip(mtd, 0); + + /* Find how many chips in each floor. */ + for (i = 1; i < 4; i++) { + if (doc200x_ident_chip(mtd, i) != mfrid) + break; + } + doc->chips_per_floor = i; + pr_debug("Detected %d chips per floor.\n", i); +} + +static void doc2001_write_byte(struct nand_chip *this, u_char datum) +{ + struct doc_priv *doc = nand_get_controller_data(this); + void __iomem *docptr = doc->virtadr; + + WriteDOC(datum, docptr, CDSNSlowIO); + WriteDOC(datum, docptr, Mil_CDSN_IO); + WriteDOC(datum, docptr, WritePipeTerm); +} + +static void doc2001_writebuf(struct nand_chip *this, const u_char *buf, int len) +{ + struct doc_priv *doc = nand_get_controller_data(this); + void __iomem *docptr = doc->virtadr; + int i; + + for (i = 0; i < len; i++) + WriteDOC_(buf[i], docptr, DoC_Mil_CDSN_IO + i); + /* Terminate write pipeline */ + WriteDOC(0x00, docptr, WritePipeTerm); +} + +static void doc2001_readbuf(struct nand_chip *this, u_char *buf, int len) +{ + struct doc_priv *doc = nand_get_controller_data(this); + void __iomem *docptr = doc->virtadr; + int i; + + /* Start read pipeline */ + ReadDOC(docptr, ReadPipeInit); + + for (i = 0; i < len - 1; i++) + buf[i] = ReadDOC(docptr, Mil_CDSN_IO + (i & 0xff)); + + /* Terminate read pipeline */ + buf[i] = ReadDOC(docptr, LastDataRead); +} + +static void doc2001plus_writebuf(struct nand_chip *this, const u_char *buf, int len) +{ + struct doc_priv *doc = nand_get_controller_data(this); + void __iomem *docptr = doc->virtadr; + int i; + + if (debug) + printk("writebuf of %d bytes: ", len); + for (i = 0; i < len; i++) { + WriteDOC_(buf[i], docptr, DoC_Mil_CDSN_IO + i); + if (debug && i < 16) + printk("%02x ", buf[i]); + } + if (debug) + printk("\n"); +} + +static void doc2001plus_readbuf(struct nand_chip *this, u_char *buf, int len) +{ + struct doc_priv *doc = nand_get_controller_data(this); + void __iomem *docptr = doc->virtadr; + int i; + + if (debug) + printk("readbuf of %d bytes: ", len); + + /* Start read pipeline */ + ReadDOC(docptr, Mplus_ReadPipeInit); + ReadDOC(docptr, Mplus_ReadPipeInit); + + for (i = 0; i < len - 2; i++) { + buf[i] = ReadDOC(docptr, Mil_CDSN_IO); + if (debug && i < 16) + printk("%02x ", buf[i]); + } + + /* Terminate read pipeline */ + if (len >= 2) { + buf[len - 2] = ReadDOC(docptr, Mplus_LastDataRead); + if (debug && i < 16) + printk("%02x ", buf[len - 2]); + } + + buf[len - 1] = ReadDOC(docptr, Mplus_LastDataRead); + if (debug && i < 16) + printk("%02x ", buf[len - 1]); + if (debug) + printk("\n"); +} + +static void doc200x_write_control(struct doc_priv *doc, u8 value) +{ + WriteDOC(value, doc->virtadr, CDSNControl); + /* 11.4.3 -- 4 NOPs after CSDNControl write */ + DoC_Delay(doc, 4); +} + +static void doc200x_exec_instr(struct nand_chip *this, + const struct nand_op_instr *instr) +{ + struct doc_priv *doc = nand_get_controller_data(this); + unsigned int i; + + switch (instr->type) { + case NAND_OP_CMD_INSTR: + doc200x_write_control(doc, CDSN_CTRL_CE | CDSN_CTRL_CLE); + doc2000_write_byte(this, instr->ctx.cmd.opcode); + break; + + case NAND_OP_ADDR_INSTR: + doc200x_write_control(doc, CDSN_CTRL_CE | CDSN_CTRL_ALE); + for (i = 0; i < instr->ctx.addr.naddrs; i++) { + u8 addr = instr->ctx.addr.addrs[i]; + + if (DoC_is_2000(doc)) + doc2000_write_byte(this, addr); + else + doc2001_write_byte(this, addr); + } + break; + + case NAND_OP_DATA_IN_INSTR: + doc200x_write_control(doc, CDSN_CTRL_CE); + if (DoC_is_2000(doc)) + doc2000_readbuf(this, instr->ctx.data.buf.in, + instr->ctx.data.len); + else + doc2001_readbuf(this, instr->ctx.data.buf.in, + instr->ctx.data.len); + break; + + case NAND_OP_DATA_OUT_INSTR: + doc200x_write_control(doc, CDSN_CTRL_CE); + if (DoC_is_2000(doc)) + doc2000_writebuf(this, instr->ctx.data.buf.out, + instr->ctx.data.len); + else + doc2001_writebuf(this, instr->ctx.data.buf.out, + instr->ctx.data.len); + break; + + case NAND_OP_WAITRDY_INSTR: + DoC_WaitReady(doc); + break; + } + + if (instr->delay_ns) + ndelay(instr->delay_ns); +} + +static int doc200x_exec_op(struct nand_chip *this, + const struct nand_operation *op, + bool check_only) +{ + struct doc_priv *doc = nand_get_controller_data(this); + unsigned int i; + + if (check_only) + return true; + + doc->curchip = op->cs % doc->chips_per_floor; + doc->curfloor = op->cs / doc->chips_per_floor; + + WriteDOC(doc->curfloor, doc->virtadr, FloorSelect); + WriteDOC(doc->curchip, doc->virtadr, CDSNDeviceSelect); + + /* Assert CE pin */ + doc200x_write_control(doc, CDSN_CTRL_CE); + + for (i = 0; i < op->ninstrs; i++) + doc200x_exec_instr(this, &op->instrs[i]); + + /* De-assert CE pin */ + doc200x_write_control(doc, 0); + + return 0; +} + +static void doc2001plus_write_pipe_term(struct doc_priv *doc) +{ + WriteDOC(0x00, doc->virtadr, Mplus_WritePipeTerm); + WriteDOC(0x00, doc->virtadr, Mplus_WritePipeTerm); +} + +static void doc2001plus_exec_instr(struct nand_chip *this, + const struct nand_op_instr *instr) +{ + struct doc_priv *doc = nand_get_controller_data(this); + unsigned int i; + + switch (instr->type) { + case NAND_OP_CMD_INSTR: + WriteDOC(instr->ctx.cmd.opcode, doc->virtadr, Mplus_FlashCmd); + doc2001plus_write_pipe_term(doc); + break; + + case NAND_OP_ADDR_INSTR: + for (i = 0; i < instr->ctx.addr.naddrs; i++) { + u8 addr = instr->ctx.addr.addrs[i]; + + WriteDOC(addr, doc->virtadr, Mplus_FlashAddress); + } + doc2001plus_write_pipe_term(doc); + /* deassert ALE */ + WriteDOC(0, doc->virtadr, Mplus_FlashControl); + break; + + case NAND_OP_DATA_IN_INSTR: + doc2001plus_readbuf(this, instr->ctx.data.buf.in, + instr->ctx.data.len); + break; + case NAND_OP_DATA_OUT_INSTR: + doc2001plus_writebuf(this, instr->ctx.data.buf.out, + instr->ctx.data.len); + doc2001plus_write_pipe_term(doc); + break; + case NAND_OP_WAITRDY_INSTR: + DoC_WaitReady(doc); + break; + } + + if (instr->delay_ns) + ndelay(instr->delay_ns); +} + +static int doc2001plus_exec_op(struct nand_chip *this, + const struct nand_operation *op, + bool check_only) +{ + struct doc_priv *doc = nand_get_controller_data(this); + unsigned int i; + + if (check_only) + return true; + + doc->curchip = op->cs % doc->chips_per_floor; + doc->curfloor = op->cs / doc->chips_per_floor; + + /* Assert ChipEnable and deassert WriteProtect */ + WriteDOC(DOC_FLASH_CE, doc->virtadr, Mplus_FlashSelect); + + for (i = 0; i < op->ninstrs; i++) + doc2001plus_exec_instr(this, &op->instrs[i]); + + /* De-assert ChipEnable */ + WriteDOC(0, doc->virtadr, Mplus_FlashSelect); + + return 0; +} + +static void doc200x_enable_hwecc(struct nand_chip *this, int mode) +{ + struct doc_priv *doc = nand_get_controller_data(this); + void __iomem *docptr = doc->virtadr; + + /* Prime the ECC engine */ + switch (mode) { + case NAND_ECC_READ: + WriteDOC(DOC_ECC_RESET, docptr, ECCConf); + WriteDOC(DOC_ECC_EN, docptr, ECCConf); + break; + case NAND_ECC_WRITE: + WriteDOC(DOC_ECC_RESET, docptr, ECCConf); + WriteDOC(DOC_ECC_EN | DOC_ECC_RW, docptr, ECCConf); + break; + } +} + +static void doc2001plus_enable_hwecc(struct nand_chip *this, int mode) +{ + struct doc_priv *doc = nand_get_controller_data(this); + void __iomem *docptr = doc->virtadr; + + /* Prime the ECC engine */ + switch (mode) { + case NAND_ECC_READ: + WriteDOC(DOC_ECC_RESET, docptr, Mplus_ECCConf); + WriteDOC(DOC_ECC_EN, docptr, Mplus_ECCConf); + break; + case NAND_ECC_WRITE: + WriteDOC(DOC_ECC_RESET, docptr, Mplus_ECCConf); + WriteDOC(DOC_ECC_EN | DOC_ECC_RW, docptr, Mplus_ECCConf); + break; + } +} + +/* This code is only called on write */ +static int doc200x_calculate_ecc(struct nand_chip *this, const u_char *dat, + unsigned char *ecc_code) +{ + struct doc_priv *doc = nand_get_controller_data(this); + void __iomem *docptr = doc->virtadr; + int i; + int __always_unused emptymatch = 1; + + /* flush the pipeline */ + if (DoC_is_2000(doc)) { + WriteDOC(doc->CDSNControl & ~CDSN_CTRL_FLASH_IO, docptr, CDSNControl); + WriteDOC(0, docptr, 2k_CDSN_IO); + WriteDOC(0, docptr, 2k_CDSN_IO); + WriteDOC(0, docptr, 2k_CDSN_IO); + WriteDOC(doc->CDSNControl, docptr, CDSNControl); + } else if (DoC_is_MillenniumPlus(doc)) { + WriteDOC(0, docptr, Mplus_NOP); + WriteDOC(0, docptr, Mplus_NOP); + WriteDOC(0, docptr, Mplus_NOP); + } else { + WriteDOC(0, docptr, NOP); + WriteDOC(0, docptr, NOP); + WriteDOC(0, docptr, NOP); + } + + for (i = 0; i < 6; i++) { + if (DoC_is_MillenniumPlus(doc)) + ecc_code[i] = ReadDOC_(docptr, DoC_Mplus_ECCSyndrome0 + i); + else + ecc_code[i] = ReadDOC_(docptr, DoC_ECCSyndrome0 + i); + if (ecc_code[i] != empty_write_ecc[i]) + emptymatch = 0; + } + if (DoC_is_MillenniumPlus(doc)) + WriteDOC(DOC_ECC_DIS, docptr, Mplus_ECCConf); + else + WriteDOC(DOC_ECC_DIS, docptr, ECCConf); +#if 0 + /* If emptymatch=1, we might have an all-0xff data buffer. Check. */ + if (emptymatch) { + /* Note: this somewhat expensive test should not be triggered + often. It could be optimized away by examining the data in + the writebuf routine, and remembering the result. */ + for (i = 0; i < 512; i++) { + if (dat[i] == 0xff) + continue; + emptymatch = 0; + break; + } + } + /* If emptymatch still =1, we do have an all-0xff data buffer. + Return all-0xff ecc value instead of the computed one, so + it'll look just like a freshly-erased page. */ + if (emptymatch) + memset(ecc_code, 0xff, 6); +#endif + return 0; +} + +static int doc200x_correct_data(struct nand_chip *this, u_char *dat, + u_char *read_ecc, u_char *isnull) +{ + int i, ret = 0; + struct doc_priv *doc = nand_get_controller_data(this); + void __iomem *docptr = doc->virtadr; + uint8_t calc_ecc[6]; + volatile u_char dummy; + + /* flush the pipeline */ + if (DoC_is_2000(doc)) { + dummy = ReadDOC(docptr, 2k_ECCStatus); + dummy = ReadDOC(docptr, 2k_ECCStatus); + dummy = ReadDOC(docptr, 2k_ECCStatus); + } else if (DoC_is_MillenniumPlus(doc)) { + dummy = ReadDOC(docptr, Mplus_ECCConf); + dummy = ReadDOC(docptr, Mplus_ECCConf); + dummy = ReadDOC(docptr, Mplus_ECCConf); + } else { + dummy = ReadDOC(docptr, ECCConf); + dummy = ReadDOC(docptr, ECCConf); + dummy = ReadDOC(docptr, ECCConf); + } + + /* Error occurred ? */ + if (dummy & 0x80) { + for (i = 0; i < 6; i++) { + if (DoC_is_MillenniumPlus(doc)) + calc_ecc[i] = ReadDOC_(docptr, DoC_Mplus_ECCSyndrome0 + i); + else + calc_ecc[i] = ReadDOC_(docptr, DoC_ECCSyndrome0 + i); + } + + ret = doc_ecc_decode(doc->rs_decoder, dat, calc_ecc); + if (ret > 0) + pr_err("doc200x_correct_data corrected %d errors\n", + ret); + } + if (DoC_is_MillenniumPlus(doc)) + WriteDOC(DOC_ECC_DIS, docptr, Mplus_ECCConf); + else + WriteDOC(DOC_ECC_DIS, docptr, ECCConf); + if (no_ecc_failures && mtd_is_eccerr(ret)) { + pr_err("suppressing ECC failure\n"); + ret = 0; + } + return ret; +} + +//u_char mydatabuf[528]; + +static int doc200x_ooblayout_ecc(struct mtd_info *mtd, int section, + struct mtd_oob_region *oobregion) +{ + if (section) + return -ERANGE; + + oobregion->offset = 0; + oobregion->length = 6; + + return 0; +} + +static int doc200x_ooblayout_free(struct mtd_info *mtd, int section, + struct mtd_oob_region *oobregion) +{ + if (section > 1) + return -ERANGE; + + /* + * The strange out-of-order free bytes definition is a (possibly + * unneeded) attempt to retain compatibility. It used to read: + * .oobfree = { {8, 8} } + * Since that leaves two bytes unusable, it was changed. But the + * following scheme might affect existing jffs2 installs by moving the + * cleanmarker: + * .oobfree = { {6, 10} } + * jffs2 seems to handle the above gracefully, but the current scheme + * seems safer. The only problem with it is that any code retrieving + * free bytes position must be able to handle out-of-order segments. + */ + if (!section) { + oobregion->offset = 8; + oobregion->length = 8; + } else { + oobregion->offset = 6; + oobregion->length = 2; + } + + return 0; +} + +static const struct mtd_ooblayout_ops doc200x_ooblayout_ops = { + .ecc = doc200x_ooblayout_ecc, + .free = doc200x_ooblayout_free, +}; + +/* Find the (I)NFTL Media Header, and optionally also the mirror media header. + On successful return, buf will contain a copy of the media header for + further processing. id is the string to scan for, and will presumably be + either "ANAND" or "BNAND". If findmirror=1, also look for the mirror media + header. The page #s of the found media headers are placed in mh0_page and + mh1_page in the DOC private structure. */ +static int __init find_media_headers(struct mtd_info *mtd, u_char *buf, const char *id, int findmirror) +{ + struct nand_chip *this = mtd_to_nand(mtd); + struct doc_priv *doc = nand_get_controller_data(this); + unsigned offs; + int ret; + size_t retlen; + + for (offs = 0; offs < mtd->size; offs += mtd->erasesize) { + ret = mtd_read(mtd, offs, mtd->writesize, &retlen, buf); + if (retlen != mtd->writesize) + continue; + if (ret) { + pr_warn("ECC error scanning DOC at 0x%x\n", offs); + } + if (memcmp(buf, id, 6)) + continue; + pr_info("Found DiskOnChip %s Media Header at 0x%x\n", id, offs); + if (doc->mh0_page == -1) { + doc->mh0_page = offs >> this->page_shift; + if (!findmirror) + return 1; + continue; + } + doc->mh1_page = offs >> this->page_shift; + return 2; + } + if (doc->mh0_page == -1) { + pr_warn("DiskOnChip %s Media Header not found.\n", id); + return 0; + } + /* Only one mediaheader was found. We want buf to contain a + mediaheader on return, so we'll have to re-read the one we found. */ + offs = doc->mh0_page << this->page_shift; + ret = mtd_read(mtd, offs, mtd->writesize, &retlen, buf); + if (retlen != mtd->writesize) { + /* Insanity. Give up. */ + pr_err("Read DiskOnChip Media Header once, but can't reread it???\n"); + return 0; + } + return 1; +} + +static inline int __init nftl_partscan(struct mtd_info *mtd, struct mtd_partition *parts) +{ + struct nand_chip *this = mtd_to_nand(mtd); + struct doc_priv *doc = nand_get_controller_data(this); + struct nand_memory_organization *memorg; + int ret = 0; + u_char *buf; + struct NFTLMediaHeader *mh; + const unsigned psize = 1 << this->page_shift; + int numparts = 0; + unsigned blocks, maxblocks; + int offs, numheaders; + + memorg = nanddev_get_memorg(&this->base); + + buf = kmalloc(mtd->writesize, GFP_KERNEL); + if (!buf) { + return 0; + } + if (!(numheaders = find_media_headers(mtd, buf, "ANAND", 1))) + goto out; + mh = (struct NFTLMediaHeader *)buf; + + le16_to_cpus(&mh->NumEraseUnits); + le16_to_cpus(&mh->FirstPhysicalEUN); + le32_to_cpus(&mh->FormattedSize); + + pr_info(" DataOrgID = %s\n" + " NumEraseUnits = %d\n" + " FirstPhysicalEUN = %d\n" + " FormattedSize = %d\n" + " UnitSizeFactor = %d\n", + mh->DataOrgID, mh->NumEraseUnits, + mh->FirstPhysicalEUN, mh->FormattedSize, + mh->UnitSizeFactor); + + blocks = mtd->size >> this->phys_erase_shift; + maxblocks = min(32768U, mtd->erasesize - psize); + + if (mh->UnitSizeFactor == 0x00) { + /* Auto-determine UnitSizeFactor. The constraints are: + - There can be at most 32768 virtual blocks. + - There can be at most (virtual block size - page size) + virtual blocks (because MediaHeader+BBT must fit in 1). + */ + mh->UnitSizeFactor = 0xff; + while (blocks > maxblocks) { + blocks >>= 1; + maxblocks = min(32768U, (maxblocks << 1) + psize); + mh->UnitSizeFactor--; + } + pr_warn("UnitSizeFactor=0x00 detected. Correct value is assumed to be 0x%02x.\n", mh->UnitSizeFactor); + } + + /* NOTE: The lines below modify internal variables of the NAND and MTD + layers; variables with have already been configured by nand_scan. + Unfortunately, we didn't know before this point what these values + should be. Thus, this code is somewhat dependent on the exact + implementation of the NAND layer. */ + if (mh->UnitSizeFactor != 0xff) { + this->bbt_erase_shift += (0xff - mh->UnitSizeFactor); + memorg->pages_per_eraseblock <<= (0xff - mh->UnitSizeFactor); + mtd->erasesize <<= (0xff - mh->UnitSizeFactor); + pr_info("Setting virtual erase size to %d\n", mtd->erasesize); + blocks = mtd->size >> this->bbt_erase_shift; + maxblocks = min(32768U, mtd->erasesize - psize); + } + + if (blocks > maxblocks) { + pr_err("UnitSizeFactor of 0x%02x is inconsistent with device size. Aborting.\n", mh->UnitSizeFactor); + goto out; + } + + /* Skip past the media headers. */ + offs = max(doc->mh0_page, doc->mh1_page); + offs <<= this->page_shift; + offs += mtd->erasesize; + + if (show_firmware_partition == 1) { + parts[0].name = " DiskOnChip Firmware / Media Header partition"; + parts[0].offset = 0; + parts[0].size = offs; + numparts = 1; + } + + parts[numparts].name = " DiskOnChip BDTL partition"; + parts[numparts].offset = offs; + parts[numparts].size = (mh->NumEraseUnits - numheaders) << this->bbt_erase_shift; + + offs += parts[numparts].size; + numparts++; + + if (offs < mtd->size) { + parts[numparts].name = " DiskOnChip Remainder partition"; + parts[numparts].offset = offs; + parts[numparts].size = mtd->size - offs; + numparts++; + } + + ret = numparts; + out: + kfree(buf); + return ret; +} + +/* This is a stripped-down copy of the code in inftlmount.c */ +static inline int __init inftl_partscan(struct mtd_info *mtd, struct mtd_partition *parts) +{ + struct nand_chip *this = mtd_to_nand(mtd); + struct doc_priv *doc = nand_get_controller_data(this); + int ret = 0; + u_char *buf; + struct INFTLMediaHeader *mh; + struct INFTLPartition *ip; + int numparts = 0; + int blocks; + int vshift, lastvunit = 0; + int i; + int end = mtd->size; + + if (inftl_bbt_write) + end -= (INFTL_BBT_RESERVED_BLOCKS << this->phys_erase_shift); + + buf = kmalloc(mtd->writesize, GFP_KERNEL); + if (!buf) { + return 0; + } + + if (!find_media_headers(mtd, buf, "BNAND", 0)) + goto out; + doc->mh1_page = doc->mh0_page + (4096 >> this->page_shift); + mh = (struct INFTLMediaHeader *)buf; + + le32_to_cpus(&mh->NoOfBootImageBlocks); + le32_to_cpus(&mh->NoOfBinaryPartitions); + le32_to_cpus(&mh->NoOfBDTLPartitions); + le32_to_cpus(&mh->BlockMultiplierBits); + le32_to_cpus(&mh->FormatFlags); + le32_to_cpus(&mh->PercentUsed); + + pr_info(" bootRecordID = %s\n" + " NoOfBootImageBlocks = %d\n" + " NoOfBinaryPartitions = %d\n" + " NoOfBDTLPartitions = %d\n" + " BlockMultiplierBits = %d\n" + " FormatFlgs = %d\n" + " OsakVersion = %d.%d.%d.%d\n" + " PercentUsed = %d\n", + mh->bootRecordID, mh->NoOfBootImageBlocks, + mh->NoOfBinaryPartitions, + mh->NoOfBDTLPartitions, + mh->BlockMultiplierBits, mh->FormatFlags, + ((unsigned char *) &mh->OsakVersion)[0] & 0xf, + ((unsigned char *) &mh->OsakVersion)[1] & 0xf, + ((unsigned char *) &mh->OsakVersion)[2] & 0xf, + ((unsigned char *) &mh->OsakVersion)[3] & 0xf, + mh->PercentUsed); + + vshift = this->phys_erase_shift + mh->BlockMultiplierBits; + + blocks = mtd->size >> vshift; + if (blocks > 32768) { + pr_err("BlockMultiplierBits=%d is inconsistent with device size. Aborting.\n", mh->BlockMultiplierBits); + goto out; + } + + blocks = doc->chips_per_floor << (this->chip_shift - this->phys_erase_shift); + if (inftl_bbt_write && (blocks > mtd->erasesize)) { + pr_err("Writeable BBTs spanning more than one erase block are not yet supported. FIX ME!\n"); + goto out; + } + + /* Scan the partitions */ + for (i = 0; (i < 4); i++) { + ip = &(mh->Partitions[i]); + le32_to_cpus(&ip->virtualUnits); + le32_to_cpus(&ip->firstUnit); + le32_to_cpus(&ip->lastUnit); + le32_to_cpus(&ip->flags); + le32_to_cpus(&ip->spareUnits); + le32_to_cpus(&ip->Reserved0); + + pr_info(" PARTITION[%d] ->\n" + " virtualUnits = %d\n" + " firstUnit = %d\n" + " lastUnit = %d\n" + " flags = 0x%x\n" + " spareUnits = %d\n", + i, ip->virtualUnits, ip->firstUnit, + ip->lastUnit, ip->flags, + ip->spareUnits); + + if ((show_firmware_partition == 1) && + (i == 0) && (ip->firstUnit > 0)) { + parts[0].name = " DiskOnChip IPL / Media Header partition"; + parts[0].offset = 0; + parts[0].size = mtd->erasesize * ip->firstUnit; + numparts = 1; + } + + if (ip->flags & INFTL_BINARY) + parts[numparts].name = " DiskOnChip BDK partition"; + else + parts[numparts].name = " DiskOnChip BDTL partition"; + parts[numparts].offset = ip->firstUnit << vshift; + parts[numparts].size = (1 + ip->lastUnit - ip->firstUnit) << vshift; + numparts++; + if (ip->lastUnit > lastvunit) + lastvunit = ip->lastUnit; + if (ip->flags & INFTL_LAST) + break; + } + lastvunit++; + if ((lastvunit << vshift) < end) { + parts[numparts].name = " DiskOnChip Remainder partition"; + parts[numparts].offset = lastvunit << vshift; + parts[numparts].size = end - parts[numparts].offset; + numparts++; + } + ret = numparts; + out: + kfree(buf); + return ret; +} + +static int __init nftl_scan_bbt(struct mtd_info *mtd) +{ + int ret, numparts; + struct nand_chip *this = mtd_to_nand(mtd); + struct doc_priv *doc = nand_get_controller_data(this); + struct mtd_partition parts[2]; + + memset((char *)parts, 0, sizeof(parts)); + /* On NFTL, we have to find the media headers before we can read the + BBTs, since they're stored in the media header eraseblocks. */ + numparts = nftl_partscan(mtd, parts); + if (!numparts) + return -EIO; + this->bbt_td->options = NAND_BBT_ABSPAGE | NAND_BBT_8BIT | + NAND_BBT_SAVECONTENT | NAND_BBT_WRITE | + NAND_BBT_VERSION; + this->bbt_td->veroffs = 7; + this->bbt_td->pages[0] = doc->mh0_page + 1; + if (doc->mh1_page != -1) { + this->bbt_md->options = NAND_BBT_ABSPAGE | NAND_BBT_8BIT | + NAND_BBT_SAVECONTENT | NAND_BBT_WRITE | + NAND_BBT_VERSION; + this->bbt_md->veroffs = 7; + this->bbt_md->pages[0] = doc->mh1_page + 1; + } else { + this->bbt_md = NULL; + } + + ret = nand_create_bbt(this); + if (ret) + return ret; + + return mtd_device_register(mtd, parts, no_autopart ? 0 : numparts); +} + +static int __init inftl_scan_bbt(struct mtd_info *mtd) +{ + int ret, numparts; + struct nand_chip *this = mtd_to_nand(mtd); + struct doc_priv *doc = nand_get_controller_data(this); + struct mtd_partition parts[5]; + + if (nanddev_ntargets(&this->base) > doc->chips_per_floor) { + pr_err("Multi-floor INFTL devices not yet supported.\n"); + return -EIO; + } + + if (DoC_is_MillenniumPlus(doc)) { + this->bbt_td->options = NAND_BBT_2BIT | NAND_BBT_ABSPAGE; + if (inftl_bbt_write) + this->bbt_td->options |= NAND_BBT_WRITE; + this->bbt_td->pages[0] = 2; + this->bbt_md = NULL; + } else { + this->bbt_td->options = NAND_BBT_LASTBLOCK | NAND_BBT_8BIT | NAND_BBT_VERSION; + if (inftl_bbt_write) + this->bbt_td->options |= NAND_BBT_WRITE; + this->bbt_td->offs = 8; + this->bbt_td->len = 8; + this->bbt_td->veroffs = 7; + this->bbt_td->maxblocks = INFTL_BBT_RESERVED_BLOCKS; + this->bbt_td->reserved_block_code = 0x01; + this->bbt_td->pattern = "MSYS_BBT"; + + this->bbt_md->options = NAND_BBT_LASTBLOCK | NAND_BBT_8BIT | NAND_BBT_VERSION; + if (inftl_bbt_write) + this->bbt_md->options |= NAND_BBT_WRITE; + this->bbt_md->offs = 8; + this->bbt_md->len = 8; + this->bbt_md->veroffs = 7; + this->bbt_md->maxblocks = INFTL_BBT_RESERVED_BLOCKS; + this->bbt_md->reserved_block_code = 0x01; + this->bbt_md->pattern = "TBB_SYSM"; + } + + ret = nand_create_bbt(this); + if (ret) + return ret; + + memset((char *)parts, 0, sizeof(parts)); + numparts = inftl_partscan(mtd, parts); + /* At least for now, require the INFTL Media Header. We could probably + do without it for non-INFTL use, since all it gives us is + autopartitioning, but I want to give it more thought. */ + if (!numparts) + return -EIO; + return mtd_device_register(mtd, parts, no_autopart ? 0 : numparts); +} + +static inline int __init doc2000_init(struct mtd_info *mtd) +{ + struct nand_chip *this = mtd_to_nand(mtd); + struct doc_priv *doc = nand_get_controller_data(this); + + doc->late_init = nftl_scan_bbt; + + doc->CDSNControl = CDSN_CTRL_FLASH_IO | CDSN_CTRL_ECC_IO; + doc2000_count_chips(mtd); + mtd->name = "DiskOnChip 2000 (NFTL Model)"; + return (4 * doc->chips_per_floor); +} + +static inline int __init doc2001_init(struct mtd_info *mtd) +{ + struct nand_chip *this = mtd_to_nand(mtd); + struct doc_priv *doc = nand_get_controller_data(this); + + ReadDOC(doc->virtadr, ChipID); + ReadDOC(doc->virtadr, ChipID); + ReadDOC(doc->virtadr, ChipID); + if (ReadDOC(doc->virtadr, ChipID) != DOC_ChipID_DocMil) { + /* It's not a Millennium; it's one of the newer + DiskOnChip 2000 units with a similar ASIC. + Treat it like a Millennium, except that it + can have multiple chips. */ + doc2000_count_chips(mtd); + mtd->name = "DiskOnChip 2000 (INFTL Model)"; + doc->late_init = inftl_scan_bbt; + return (4 * doc->chips_per_floor); + } else { + /* Bog-standard Millennium */ + doc->chips_per_floor = 1; + mtd->name = "DiskOnChip Millennium"; + doc->late_init = nftl_scan_bbt; + return 1; + } +} + +static inline int __init doc2001plus_init(struct mtd_info *mtd) +{ + struct nand_chip *this = mtd_to_nand(mtd); + struct doc_priv *doc = nand_get_controller_data(this); + + doc->late_init = inftl_scan_bbt; + this->ecc.hwctl = doc2001plus_enable_hwecc; + + doc->chips_per_floor = 1; + mtd->name = "DiskOnChip Millennium Plus"; + + return 1; +} + +static int doc200x_attach_chip(struct nand_chip *chip) +{ + if (chip->ecc.engine_type != NAND_ECC_ENGINE_TYPE_ON_HOST) + return 0; + + chip->ecc.placement = NAND_ECC_PLACEMENT_INTERLEAVED; + chip->ecc.size = 512; + chip->ecc.bytes = 6; + chip->ecc.strength = 2; + chip->ecc.options = NAND_ECC_GENERIC_ERASED_CHECK; + chip->ecc.hwctl = doc200x_enable_hwecc; + chip->ecc.calculate = doc200x_calculate_ecc; + chip->ecc.correct = doc200x_correct_data; + + return 0; +} + +static const struct nand_controller_ops doc200x_ops = { + .exec_op = doc200x_exec_op, + .attach_chip = doc200x_attach_chip, +}; + +static const struct nand_controller_ops doc2001plus_ops = { + .exec_op = doc2001plus_exec_op, + .attach_chip = doc200x_attach_chip, +}; + +static int __init doc_probe(unsigned long physadr) +{ + struct nand_chip *nand = NULL; + struct doc_priv *doc = NULL; + unsigned char ChipID; + struct mtd_info *mtd; + void __iomem *virtadr; + unsigned char save_control; + unsigned char tmp, tmpb, tmpc; + int reg, len, numchips; + int ret = 0; + + if (!request_mem_region(physadr, DOC_IOREMAP_LEN, "DiskOnChip")) + return -EBUSY; + virtadr = ioremap(physadr, DOC_IOREMAP_LEN); + if (!virtadr) { + pr_err("Diskonchip ioremap failed: 0x%x bytes at 0x%lx\n", + DOC_IOREMAP_LEN, physadr); + ret = -EIO; + goto error_ioremap; + } + + /* It's not possible to cleanly detect the DiskOnChip - the + * bootup procedure will put the device into reset mode, and + * it's not possible to talk to it without actually writing + * to the DOCControl register. So we store the current contents + * of the DOCControl register's location, in case we later decide + * that it's not a DiskOnChip, and want to put it back how we + * found it. + */ + save_control = ReadDOC(virtadr, DOCControl); + + /* Reset the DiskOnChip ASIC */ + WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_RESET, virtadr, DOCControl); + WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_RESET, virtadr, DOCControl); + + /* Enable the DiskOnChip ASIC */ + WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_NORMAL, virtadr, DOCControl); + WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_NORMAL, virtadr, DOCControl); + + ChipID = ReadDOC(virtadr, ChipID); + + switch (ChipID) { + case DOC_ChipID_Doc2k: + reg = DoC_2k_ECCStatus; + break; + case DOC_ChipID_DocMil: + reg = DoC_ECCConf; + break; + case DOC_ChipID_DocMilPlus16: + case DOC_ChipID_DocMilPlus32: + case 0: + /* Possible Millennium Plus, need to do more checks */ + /* Possibly release from power down mode */ + for (tmp = 0; (tmp < 4); tmp++) + ReadDOC(virtadr, Mplus_Power); + + /* Reset the Millennium Plus ASIC */ + tmp = DOC_MODE_RESET | DOC_MODE_MDWREN | DOC_MODE_RST_LAT | DOC_MODE_BDECT; + WriteDOC(tmp, virtadr, Mplus_DOCControl); + WriteDOC(~tmp, virtadr, Mplus_CtrlConfirm); + + usleep_range(1000, 2000); + /* Enable the Millennium Plus ASIC */ + tmp = DOC_MODE_NORMAL | DOC_MODE_MDWREN | DOC_MODE_RST_LAT | DOC_MODE_BDECT; + WriteDOC(tmp, virtadr, Mplus_DOCControl); + WriteDOC(~tmp, virtadr, Mplus_CtrlConfirm); + usleep_range(1000, 2000); + + ChipID = ReadDOC(virtadr, ChipID); + + switch (ChipID) { + case DOC_ChipID_DocMilPlus16: + reg = DoC_Mplus_Toggle; + break; + case DOC_ChipID_DocMilPlus32: + pr_err("DiskOnChip Millennium Plus 32MB is not supported, ignoring.\n"); + fallthrough; + default: + ret = -ENODEV; + goto notfound; + } + break; + + default: + ret = -ENODEV; + goto notfound; + } + /* Check the TOGGLE bit in the ECC register */ + tmp = ReadDOC_(virtadr, reg) & DOC_TOGGLE_BIT; + tmpb = ReadDOC_(virtadr, reg) & DOC_TOGGLE_BIT; + tmpc = ReadDOC_(virtadr, reg) & DOC_TOGGLE_BIT; + if ((tmp == tmpb) || (tmp != tmpc)) { + pr_warn("Possible DiskOnChip at 0x%lx failed TOGGLE test, dropping.\n", physadr); + ret = -ENODEV; + goto notfound; + } + + for (mtd = doclist; mtd; mtd = doc->nextdoc) { + unsigned char oldval; + unsigned char newval; + nand = mtd_to_nand(mtd); + doc = nand_get_controller_data(nand); + /* Use the alias resolution register to determine if this is + in fact the same DOC aliased to a new address. If writes + to one chip's alias resolution register change the value on + the other chip, they're the same chip. */ + if (ChipID == DOC_ChipID_DocMilPlus16) { + oldval = ReadDOC(doc->virtadr, Mplus_AliasResolution); + newval = ReadDOC(virtadr, Mplus_AliasResolution); + } else { + oldval = ReadDOC(doc->virtadr, AliasResolution); + newval = ReadDOC(virtadr, AliasResolution); + } + if (oldval != newval) + continue; + if (ChipID == DOC_ChipID_DocMilPlus16) { + WriteDOC(~newval, virtadr, Mplus_AliasResolution); + oldval = ReadDOC(doc->virtadr, Mplus_AliasResolution); + WriteDOC(newval, virtadr, Mplus_AliasResolution); // restore it + } else { + WriteDOC(~newval, virtadr, AliasResolution); + oldval = ReadDOC(doc->virtadr, AliasResolution); + WriteDOC(newval, virtadr, AliasResolution); // restore it + } + newval = ~newval; + if (oldval == newval) { + pr_debug("Found alias of DOC at 0x%lx to 0x%lx\n", + doc->physadr, physadr); + goto notfound; + } + } + + pr_notice("DiskOnChip found at 0x%lx\n", physadr); + + len = sizeof(struct nand_chip) + sizeof(struct doc_priv) + + (2 * sizeof(struct nand_bbt_descr)); + nand = kzalloc(len, GFP_KERNEL); + if (!nand) { + ret = -ENOMEM; + goto fail; + } + + /* + * Allocate a RS codec instance + * + * Symbolsize is 10 (bits) + * Primitve polynomial is x^10+x^3+1 + * First consecutive root is 510 + * Primitve element to generate roots = 1 + * Generator polinomial degree = 4 + */ + doc = (struct doc_priv *) (nand + 1); + doc->rs_decoder = init_rs(10, 0x409, FCR, 1, NROOTS); + if (!doc->rs_decoder) { + pr_err("DiskOnChip: Could not create a RS codec\n"); + ret = -ENOMEM; + goto fail; + } + + nand_controller_init(&doc->base); + if (ChipID == DOC_ChipID_DocMilPlus16) + doc->base.ops = &doc2001plus_ops; + else + doc->base.ops = &doc200x_ops; + + mtd = nand_to_mtd(nand); + nand->bbt_td = (struct nand_bbt_descr *) (doc + 1); + nand->bbt_md = nand->bbt_td + 1; + + mtd->owner = THIS_MODULE; + mtd_set_ooblayout(mtd, &doc200x_ooblayout_ops); + + nand->controller = &doc->base; + nand_set_controller_data(nand, doc); + nand->bbt_options = NAND_BBT_USE_FLASH; + /* Skip the automatic BBT scan so we can run it manually */ + nand->options |= NAND_SKIP_BBTSCAN | NAND_NO_BBM_QUIRK; + + doc->physadr = physadr; + doc->virtadr = virtadr; + doc->ChipID = ChipID; + doc->curfloor = -1; + doc->curchip = -1; + doc->mh0_page = -1; + doc->mh1_page = -1; + doc->nextdoc = doclist; + + if (ChipID == DOC_ChipID_Doc2k) + numchips = doc2000_init(mtd); + else if (ChipID == DOC_ChipID_DocMilPlus16) + numchips = doc2001plus_init(mtd); + else + numchips = doc2001_init(mtd); + + if ((ret = nand_scan(nand, numchips)) || (ret = doc->late_init(mtd))) { + /* DBB note: i believe nand_cleanup is necessary here, as + buffers may have been allocated in nand_base. Check with + Thomas. FIX ME! */ + nand_cleanup(nand); + goto fail; + } + + /* Success! */ + doclist = mtd; + return 0; + + notfound: + /* Put back the contents of the DOCControl register, in case it's not + actually a DiskOnChip. */ + WriteDOC(save_control, virtadr, DOCControl); + fail: + if (doc) + free_rs(doc->rs_decoder); + kfree(nand); + iounmap(virtadr); + +error_ioremap: + release_mem_region(physadr, DOC_IOREMAP_LEN); + + return ret; +} + +static void release_nanddoc(void) +{ + struct mtd_info *mtd, *nextmtd; + struct nand_chip *nand; + struct doc_priv *doc; + int ret; + + for (mtd = doclist; mtd; mtd = nextmtd) { + nand = mtd_to_nand(mtd); + doc = nand_get_controller_data(nand); + + nextmtd = doc->nextdoc; + ret = mtd_device_unregister(mtd); + WARN_ON(ret); + nand_cleanup(nand); + iounmap(doc->virtadr); + release_mem_region(doc->physadr, DOC_IOREMAP_LEN); + free_rs(doc->rs_decoder); + kfree(nand); + } +} + +static int __init init_nanddoc(void) +{ + int i, ret = 0; + + if (doc_config_location) { + pr_info("Using configured DiskOnChip probe address 0x%lx\n", + doc_config_location); + ret = doc_probe(doc_config_location); + if (ret < 0) + return ret; + } else { + for (i = 0; (doc_locations[i] != 0xffffffff); i++) { + doc_probe(doc_locations[i]); + } + } + /* No banner message any more. Print a message if no DiskOnChip + found, so the user knows we at least tried. */ + if (!doclist) { + pr_info("No valid DiskOnChip devices found\n"); + ret = -ENODEV; + } + return ret; +} + +static void __exit cleanup_nanddoc(void) +{ + /* Cleanup the nand/DoC resources */ + release_nanddoc(); +} + +module_init(init_nanddoc); +module_exit(cleanup_nanddoc); + +MODULE_LICENSE("GPL"); +MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>"); +MODULE_DESCRIPTION("M-Systems DiskOnChip 2000, Millennium and Millennium Plus device driver"); diff --git a/drivers/mtd/nand/raw/fsl_elbc_nand.c b/drivers/mtd/nand/raw/fsl_elbc_nand.c new file mode 100644 index 0000000000..1e3a80f06f --- /dev/null +++ b/drivers/mtd/nand/raw/fsl_elbc_nand.c @@ -0,0 +1,1008 @@ +// SPDX-License-Identifier: GPL-2.0-or-later +/* Freescale Enhanced Local Bus Controller NAND driver + * + * Copyright © 2006-2007, 2010 Freescale Semiconductor + * + * Authors: Nick Spence <nick.spence@freescale.com>, + * Scott Wood <scottwood@freescale.com> + * Jack Lan <jack.lan@freescale.com> + * Roy Zang <tie-fei.zang@freescale.com> + */ + +#include <linux/module.h> +#include <linux/types.h> +#include <linux/kernel.h> +#include <linux/string.h> +#include <linux/ioport.h> +#include <linux/of_address.h> +#include <linux/of_platform.h> +#include <linux/platform_device.h> +#include <linux/slab.h> +#include <linux/interrupt.h> + +#include <linux/mtd/mtd.h> +#include <linux/mtd/rawnand.h> +#include <linux/mtd/partitions.h> + +#include <asm/io.h> +#include <asm/fsl_lbc.h> + +#define MAX_BANKS 8 +#define ERR_BYTE 0xFF /* Value returned for read bytes when read failed */ +#define FCM_TIMEOUT_MSECS 500 /* Maximum number of mSecs to wait for FCM */ + +/* mtd information per set */ + +struct fsl_elbc_mtd { + struct nand_chip chip; + struct fsl_lbc_ctrl *ctrl; + + struct device *dev; + int bank; /* Chip select bank number */ + u8 __iomem *vbase; /* Chip select base virtual address */ + int page_size; /* NAND page size (0=512, 1=2048) */ + unsigned int fmr; /* FCM Flash Mode Register value */ +}; + +/* Freescale eLBC FCM controller information */ + +struct fsl_elbc_fcm_ctrl { + struct nand_controller controller; + struct fsl_elbc_mtd *chips[MAX_BANKS]; + + u8 __iomem *addr; /* Address of assigned FCM buffer */ + unsigned int page; /* Last page written to / read from */ + unsigned int read_bytes; /* Number of bytes read during command */ + unsigned int column; /* Saved column from SEQIN */ + unsigned int index; /* Pointer to next byte to 'read' */ + unsigned int status; /* status read from LTESR after last op */ + unsigned int mdr; /* UPM/FCM Data Register value */ + unsigned int use_mdr; /* Non zero if the MDR is to be set */ + unsigned int oob; /* Non zero if operating on OOB data */ + unsigned int counter; /* counter for the initializations */ + unsigned int max_bitflips; /* Saved during READ0 cmd */ +}; + +/* These map to the positions used by the FCM hardware ECC generator */ + +static int fsl_elbc_ooblayout_ecc(struct mtd_info *mtd, int section, + struct mtd_oob_region *oobregion) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + struct fsl_elbc_mtd *priv = nand_get_controller_data(chip); + + if (section >= chip->ecc.steps) + return -ERANGE; + + oobregion->offset = (16 * section) + 6; + if (priv->fmr & FMR_ECCM) + oobregion->offset += 2; + + oobregion->length = chip->ecc.bytes; + + return 0; +} + +static int fsl_elbc_ooblayout_free(struct mtd_info *mtd, int section, + struct mtd_oob_region *oobregion) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + struct fsl_elbc_mtd *priv = nand_get_controller_data(chip); + + if (section > chip->ecc.steps) + return -ERANGE; + + if (!section) { + oobregion->offset = 0; + if (mtd->writesize > 512) + oobregion->offset++; + oobregion->length = (priv->fmr & FMR_ECCM) ? 7 : 5; + } else { + oobregion->offset = (16 * section) - + ((priv->fmr & FMR_ECCM) ? 5 : 7); + if (section < chip->ecc.steps) + oobregion->length = 13; + else + oobregion->length = mtd->oobsize - oobregion->offset; + } + + return 0; +} + +static const struct mtd_ooblayout_ops fsl_elbc_ooblayout_ops = { + .ecc = fsl_elbc_ooblayout_ecc, + .free = fsl_elbc_ooblayout_free, +}; + +/* + * ELBC may use HW ECC, so that OOB offsets, that NAND core uses for bbt, + * interfere with ECC positions, that's why we implement our own descriptors. + * OOB {11, 5}, works for both SP and LP chips, with ECCM = 1 and ECCM = 0. + */ +static u8 bbt_pattern[] = {'B', 'b', 't', '0' }; +static u8 mirror_pattern[] = {'1', 't', 'b', 'B' }; + +static struct nand_bbt_descr bbt_main_descr = { + .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE | + NAND_BBT_2BIT | NAND_BBT_VERSION, + .offs = 11, + .len = 4, + .veroffs = 15, + .maxblocks = 4, + .pattern = bbt_pattern, +}; + +static struct nand_bbt_descr bbt_mirror_descr = { + .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE | + NAND_BBT_2BIT | NAND_BBT_VERSION, + .offs = 11, + .len = 4, + .veroffs = 15, + .maxblocks = 4, + .pattern = mirror_pattern, +}; + +/*=================================*/ + +/* + * Set up the FCM hardware block and page address fields, and the fcm + * structure addr field to point to the correct FCM buffer in memory + */ +static void set_addr(struct mtd_info *mtd, int column, int page_addr, int oob) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + struct fsl_elbc_mtd *priv = nand_get_controller_data(chip); + struct fsl_lbc_ctrl *ctrl = priv->ctrl; + struct fsl_lbc_regs __iomem *lbc = ctrl->regs; + struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = ctrl->nand; + int buf_num; + + elbc_fcm_ctrl->page = page_addr; + + if (priv->page_size) { + /* + * large page size chip : FPAR[PI] save the lowest 6 bits, + * FBAR[BLK] save the other bits. + */ + out_be32(&lbc->fbar, page_addr >> 6); + out_be32(&lbc->fpar, + ((page_addr << FPAR_LP_PI_SHIFT) & FPAR_LP_PI) | + (oob ? FPAR_LP_MS : 0) | column); + buf_num = (page_addr & 1) << 2; + } else { + /* + * small page size chip : FPAR[PI] save the lowest 5 bits, + * FBAR[BLK] save the other bits. + */ + out_be32(&lbc->fbar, page_addr >> 5); + out_be32(&lbc->fpar, + ((page_addr << FPAR_SP_PI_SHIFT) & FPAR_SP_PI) | + (oob ? FPAR_SP_MS : 0) | column); + buf_num = page_addr & 7; + } + + elbc_fcm_ctrl->addr = priv->vbase + buf_num * 1024; + elbc_fcm_ctrl->index = column; + + /* for OOB data point to the second half of the buffer */ + if (oob) + elbc_fcm_ctrl->index += priv->page_size ? 2048 : 512; + + dev_vdbg(priv->dev, "set_addr: bank=%d, " + "elbc_fcm_ctrl->addr=0x%p (0x%p), " + "index %x, pes %d ps %d\n", + buf_num, elbc_fcm_ctrl->addr, priv->vbase, + elbc_fcm_ctrl->index, + chip->phys_erase_shift, chip->page_shift); +} + +/* + * execute FCM command and wait for it to complete + */ +static int fsl_elbc_run_command(struct mtd_info *mtd) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + struct fsl_elbc_mtd *priv = nand_get_controller_data(chip); + struct fsl_lbc_ctrl *ctrl = priv->ctrl; + struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = ctrl->nand; + struct fsl_lbc_regs __iomem *lbc = ctrl->regs; + + /* Setup the FMR[OP] to execute without write protection */ + out_be32(&lbc->fmr, priv->fmr | 3); + if (elbc_fcm_ctrl->use_mdr) + out_be32(&lbc->mdr, elbc_fcm_ctrl->mdr); + + dev_vdbg(priv->dev, + "fsl_elbc_run_command: fmr=%08x fir=%08x fcr=%08x\n", + in_be32(&lbc->fmr), in_be32(&lbc->fir), in_be32(&lbc->fcr)); + dev_vdbg(priv->dev, + "fsl_elbc_run_command: fbar=%08x fpar=%08x " + "fbcr=%08x bank=%d\n", + in_be32(&lbc->fbar), in_be32(&lbc->fpar), + in_be32(&lbc->fbcr), priv->bank); + + ctrl->irq_status = 0; + /* execute special operation */ + out_be32(&lbc->lsor, priv->bank); + + /* wait for FCM complete flag or timeout */ + wait_event_timeout(ctrl->irq_wait, ctrl->irq_status, + FCM_TIMEOUT_MSECS * HZ/1000); + elbc_fcm_ctrl->status = ctrl->irq_status; + /* store mdr value in case it was needed */ + if (elbc_fcm_ctrl->use_mdr) + elbc_fcm_ctrl->mdr = in_be32(&lbc->mdr); + + elbc_fcm_ctrl->use_mdr = 0; + + if (elbc_fcm_ctrl->status != LTESR_CC) { + dev_info(priv->dev, + "command failed: fir %x fcr %x status %x mdr %x\n", + in_be32(&lbc->fir), in_be32(&lbc->fcr), + elbc_fcm_ctrl->status, elbc_fcm_ctrl->mdr); + return -EIO; + } + + if (chip->ecc.engine_type != NAND_ECC_ENGINE_TYPE_ON_HOST) + return 0; + + elbc_fcm_ctrl->max_bitflips = 0; + + if (elbc_fcm_ctrl->read_bytes == mtd->writesize + mtd->oobsize) { + uint32_t lteccr = in_be32(&lbc->lteccr); + /* + * if command was a full page read and the ELBC + * has the LTECCR register, then bits 12-15 (ppc order) of + * LTECCR indicates which 512 byte sub-pages had fixed errors. + * bits 28-31 are uncorrectable errors, marked elsewhere. + * for small page nand only 1 bit is used. + * if the ELBC doesn't have the lteccr register it reads 0 + * FIXME: 4 bits can be corrected on NANDs with 2k pages, so + * count the number of sub-pages with bitflips and update + * ecc_stats.corrected accordingly. + */ + if (lteccr & 0x000F000F) + out_be32(&lbc->lteccr, 0x000F000F); /* clear lteccr */ + if (lteccr & 0x000F0000) { + mtd->ecc_stats.corrected++; + elbc_fcm_ctrl->max_bitflips = 1; + } + } + + return 0; +} + +static void fsl_elbc_do_read(struct nand_chip *chip, int oob) +{ + struct fsl_elbc_mtd *priv = nand_get_controller_data(chip); + struct fsl_lbc_ctrl *ctrl = priv->ctrl; + struct fsl_lbc_regs __iomem *lbc = ctrl->regs; + + if (priv->page_size) { + out_be32(&lbc->fir, + (FIR_OP_CM0 << FIR_OP0_SHIFT) | + (FIR_OP_CA << FIR_OP1_SHIFT) | + (FIR_OP_PA << FIR_OP2_SHIFT) | + (FIR_OP_CM1 << FIR_OP3_SHIFT) | + (FIR_OP_RBW << FIR_OP4_SHIFT)); + + out_be32(&lbc->fcr, (NAND_CMD_READ0 << FCR_CMD0_SHIFT) | + (NAND_CMD_READSTART << FCR_CMD1_SHIFT)); + } else { + out_be32(&lbc->fir, + (FIR_OP_CM0 << FIR_OP0_SHIFT) | + (FIR_OP_CA << FIR_OP1_SHIFT) | + (FIR_OP_PA << FIR_OP2_SHIFT) | + (FIR_OP_RBW << FIR_OP3_SHIFT)); + + if (oob) + out_be32(&lbc->fcr, NAND_CMD_READOOB << FCR_CMD0_SHIFT); + else + out_be32(&lbc->fcr, NAND_CMD_READ0 << FCR_CMD0_SHIFT); + } +} + +/* cmdfunc send commands to the FCM */ +static void fsl_elbc_cmdfunc(struct nand_chip *chip, unsigned int command, + int column, int page_addr) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + struct fsl_elbc_mtd *priv = nand_get_controller_data(chip); + struct fsl_lbc_ctrl *ctrl = priv->ctrl; + struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = ctrl->nand; + struct fsl_lbc_regs __iomem *lbc = ctrl->regs; + + elbc_fcm_ctrl->use_mdr = 0; + + /* clear the read buffer */ + elbc_fcm_ctrl->read_bytes = 0; + if (command != NAND_CMD_PAGEPROG) + elbc_fcm_ctrl->index = 0; + + switch (command) { + /* READ0 and READ1 read the entire buffer to use hardware ECC. */ + case NAND_CMD_READ1: + column += 256; + fallthrough; + case NAND_CMD_READ0: + dev_dbg(priv->dev, + "fsl_elbc_cmdfunc: NAND_CMD_READ0, page_addr:" + " 0x%x, column: 0x%x.\n", page_addr, column); + + + out_be32(&lbc->fbcr, 0); /* read entire page to enable ECC */ + set_addr(mtd, 0, page_addr, 0); + + elbc_fcm_ctrl->read_bytes = mtd->writesize + mtd->oobsize; + elbc_fcm_ctrl->index += column; + + fsl_elbc_do_read(chip, 0); + fsl_elbc_run_command(mtd); + return; + + /* RNDOUT moves the pointer inside the page */ + case NAND_CMD_RNDOUT: + dev_dbg(priv->dev, + "fsl_elbc_cmdfunc: NAND_CMD_RNDOUT, column: 0x%x.\n", + column); + + elbc_fcm_ctrl->index = column; + return; + + /* READOOB reads only the OOB because no ECC is performed. */ + case NAND_CMD_READOOB: + dev_vdbg(priv->dev, + "fsl_elbc_cmdfunc: NAND_CMD_READOOB, page_addr:" + " 0x%x, column: 0x%x.\n", page_addr, column); + + out_be32(&lbc->fbcr, mtd->oobsize - column); + set_addr(mtd, column, page_addr, 1); + + elbc_fcm_ctrl->read_bytes = mtd->writesize + mtd->oobsize; + + fsl_elbc_do_read(chip, 1); + fsl_elbc_run_command(mtd); + return; + + case NAND_CMD_READID: + case NAND_CMD_PARAM: + dev_vdbg(priv->dev, "fsl_elbc_cmdfunc: NAND_CMD %x\n", command); + + out_be32(&lbc->fir, (FIR_OP_CM0 << FIR_OP0_SHIFT) | + (FIR_OP_UA << FIR_OP1_SHIFT) | + (FIR_OP_RBW << FIR_OP2_SHIFT)); + out_be32(&lbc->fcr, command << FCR_CMD0_SHIFT); + /* + * although currently it's 8 bytes for READID, we always read + * the maximum 256 bytes(for PARAM) + */ + out_be32(&lbc->fbcr, 256); + elbc_fcm_ctrl->read_bytes = 256; + elbc_fcm_ctrl->use_mdr = 1; + elbc_fcm_ctrl->mdr = column; + set_addr(mtd, 0, 0, 0); + fsl_elbc_run_command(mtd); + return; + + /* ERASE1 stores the block and page address */ + case NAND_CMD_ERASE1: + dev_vdbg(priv->dev, + "fsl_elbc_cmdfunc: NAND_CMD_ERASE1, " + "page_addr: 0x%x.\n", page_addr); + set_addr(mtd, 0, page_addr, 0); + return; + + /* ERASE2 uses the block and page address from ERASE1 */ + case NAND_CMD_ERASE2: + dev_vdbg(priv->dev, "fsl_elbc_cmdfunc: NAND_CMD_ERASE2.\n"); + + out_be32(&lbc->fir, + (FIR_OP_CM0 << FIR_OP0_SHIFT) | + (FIR_OP_PA << FIR_OP1_SHIFT) | + (FIR_OP_CM2 << FIR_OP2_SHIFT) | + (FIR_OP_CW1 << FIR_OP3_SHIFT) | + (FIR_OP_RS << FIR_OP4_SHIFT)); + + out_be32(&lbc->fcr, + (NAND_CMD_ERASE1 << FCR_CMD0_SHIFT) | + (NAND_CMD_STATUS << FCR_CMD1_SHIFT) | + (NAND_CMD_ERASE2 << FCR_CMD2_SHIFT)); + + out_be32(&lbc->fbcr, 0); + elbc_fcm_ctrl->read_bytes = 0; + elbc_fcm_ctrl->use_mdr = 1; + + fsl_elbc_run_command(mtd); + return; + + /* SEQIN sets up the addr buffer and all registers except the length */ + case NAND_CMD_SEQIN: { + __be32 fcr; + dev_vdbg(priv->dev, + "fsl_elbc_cmdfunc: NAND_CMD_SEQIN/PAGE_PROG, " + "page_addr: 0x%x, column: 0x%x.\n", + page_addr, column); + + elbc_fcm_ctrl->column = column; + elbc_fcm_ctrl->use_mdr = 1; + + if (column >= mtd->writesize) { + /* OOB area */ + column -= mtd->writesize; + elbc_fcm_ctrl->oob = 1; + } else { + WARN_ON(column != 0); + elbc_fcm_ctrl->oob = 0; + } + + fcr = (NAND_CMD_STATUS << FCR_CMD1_SHIFT) | + (NAND_CMD_SEQIN << FCR_CMD2_SHIFT) | + (NAND_CMD_PAGEPROG << FCR_CMD3_SHIFT); + + if (priv->page_size) { + out_be32(&lbc->fir, + (FIR_OP_CM2 << FIR_OP0_SHIFT) | + (FIR_OP_CA << FIR_OP1_SHIFT) | + (FIR_OP_PA << FIR_OP2_SHIFT) | + (FIR_OP_WB << FIR_OP3_SHIFT) | + (FIR_OP_CM3 << FIR_OP4_SHIFT) | + (FIR_OP_CW1 << FIR_OP5_SHIFT) | + (FIR_OP_RS << FIR_OP6_SHIFT)); + } else { + out_be32(&lbc->fir, + (FIR_OP_CM0 << FIR_OP0_SHIFT) | + (FIR_OP_CM2 << FIR_OP1_SHIFT) | + (FIR_OP_CA << FIR_OP2_SHIFT) | + (FIR_OP_PA << FIR_OP3_SHIFT) | + (FIR_OP_WB << FIR_OP4_SHIFT) | + (FIR_OP_CM3 << FIR_OP5_SHIFT) | + (FIR_OP_CW1 << FIR_OP6_SHIFT) | + (FIR_OP_RS << FIR_OP7_SHIFT)); + + if (elbc_fcm_ctrl->oob) + /* OOB area --> READOOB */ + fcr |= NAND_CMD_READOOB << FCR_CMD0_SHIFT; + else + /* First 256 bytes --> READ0 */ + fcr |= NAND_CMD_READ0 << FCR_CMD0_SHIFT; + } + + out_be32(&lbc->fcr, fcr); + set_addr(mtd, column, page_addr, elbc_fcm_ctrl->oob); + return; + } + + /* PAGEPROG reuses all of the setup from SEQIN and adds the length */ + case NAND_CMD_PAGEPROG: { + dev_vdbg(priv->dev, + "fsl_elbc_cmdfunc: NAND_CMD_PAGEPROG " + "writing %d bytes.\n", elbc_fcm_ctrl->index); + + /* if the write did not start at 0 or is not a full page + * then set the exact length, otherwise use a full page + * write so the HW generates the ECC. + */ + if (elbc_fcm_ctrl->oob || elbc_fcm_ctrl->column != 0 || + elbc_fcm_ctrl->index != mtd->writesize + mtd->oobsize) + out_be32(&lbc->fbcr, + elbc_fcm_ctrl->index - elbc_fcm_ctrl->column); + else + out_be32(&lbc->fbcr, 0); + + fsl_elbc_run_command(mtd); + return; + } + + /* CMD_STATUS must read the status byte while CEB is active */ + /* Note - it does not wait for the ready line */ + case NAND_CMD_STATUS: + out_be32(&lbc->fir, + (FIR_OP_CM0 << FIR_OP0_SHIFT) | + (FIR_OP_RBW << FIR_OP1_SHIFT)); + out_be32(&lbc->fcr, NAND_CMD_STATUS << FCR_CMD0_SHIFT); + out_be32(&lbc->fbcr, 1); + set_addr(mtd, 0, 0, 0); + elbc_fcm_ctrl->read_bytes = 1; + + fsl_elbc_run_command(mtd); + + /* The chip always seems to report that it is + * write-protected, even when it is not. + */ + setbits8(elbc_fcm_ctrl->addr, NAND_STATUS_WP); + return; + + /* RESET without waiting for the ready line */ + case NAND_CMD_RESET: + dev_dbg(priv->dev, "fsl_elbc_cmdfunc: NAND_CMD_RESET.\n"); + out_be32(&lbc->fir, FIR_OP_CM0 << FIR_OP0_SHIFT); + out_be32(&lbc->fcr, NAND_CMD_RESET << FCR_CMD0_SHIFT); + fsl_elbc_run_command(mtd); + return; + + default: + dev_err(priv->dev, + "fsl_elbc_cmdfunc: error, unsupported command 0x%x.\n", + command); + } +} + +static void fsl_elbc_select_chip(struct nand_chip *chip, int cs) +{ + /* The hardware does not seem to support multiple + * chips per bank. + */ +} + +/* + * Write buf to the FCM Controller Data Buffer + */ +static void fsl_elbc_write_buf(struct nand_chip *chip, const u8 *buf, int len) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + struct fsl_elbc_mtd *priv = nand_get_controller_data(chip); + struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = priv->ctrl->nand; + unsigned int bufsize = mtd->writesize + mtd->oobsize; + + if (len <= 0) { + dev_err(priv->dev, "write_buf of %d bytes", len); + elbc_fcm_ctrl->status = 0; + return; + } + + if ((unsigned int)len > bufsize - elbc_fcm_ctrl->index) { + dev_err(priv->dev, + "write_buf beyond end of buffer " + "(%d requested, %u available)\n", + len, bufsize - elbc_fcm_ctrl->index); + len = bufsize - elbc_fcm_ctrl->index; + } + + memcpy_toio(&elbc_fcm_ctrl->addr[elbc_fcm_ctrl->index], buf, len); + /* + * This is workaround for the weird elbc hangs during nand write, + * Scott Wood says: "...perhaps difference in how long it takes a + * write to make it through the localbus compared to a write to IMMR + * is causing problems, and sync isn't helping for some reason." + * Reading back the last byte helps though. + */ + in_8(&elbc_fcm_ctrl->addr[elbc_fcm_ctrl->index] + len - 1); + + elbc_fcm_ctrl->index += len; +} + +/* + * read a byte from either the FCM hardware buffer if it has any data left + * otherwise issue a command to read a single byte. + */ +static u8 fsl_elbc_read_byte(struct nand_chip *chip) +{ + struct fsl_elbc_mtd *priv = nand_get_controller_data(chip); + struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = priv->ctrl->nand; + + /* If there are still bytes in the FCM, then use the next byte. */ + if (elbc_fcm_ctrl->index < elbc_fcm_ctrl->read_bytes) + return in_8(&elbc_fcm_ctrl->addr[elbc_fcm_ctrl->index++]); + + dev_err(priv->dev, "read_byte beyond end of buffer\n"); + return ERR_BYTE; +} + +/* + * Read from the FCM Controller Data Buffer + */ +static void fsl_elbc_read_buf(struct nand_chip *chip, u8 *buf, int len) +{ + struct fsl_elbc_mtd *priv = nand_get_controller_data(chip); + struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = priv->ctrl->nand; + int avail; + + if (len < 0) + return; + + avail = min((unsigned int)len, + elbc_fcm_ctrl->read_bytes - elbc_fcm_ctrl->index); + memcpy_fromio(buf, &elbc_fcm_ctrl->addr[elbc_fcm_ctrl->index], avail); + elbc_fcm_ctrl->index += avail; + + if (len > avail) + dev_err(priv->dev, + "read_buf beyond end of buffer " + "(%d requested, %d available)\n", + len, avail); +} + +/* This function is called after Program and Erase Operations to + * check for success or failure. + */ +static int fsl_elbc_wait(struct nand_chip *chip) +{ + struct fsl_elbc_mtd *priv = nand_get_controller_data(chip); + struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = priv->ctrl->nand; + + if (elbc_fcm_ctrl->status != LTESR_CC) + return NAND_STATUS_FAIL; + + /* The chip always seems to report that it is + * write-protected, even when it is not. + */ + return (elbc_fcm_ctrl->mdr & 0xff) | NAND_STATUS_WP; +} + +static int fsl_elbc_read_page(struct nand_chip *chip, uint8_t *buf, + int oob_required, int page) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + struct fsl_elbc_mtd *priv = nand_get_controller_data(chip); + struct fsl_lbc_ctrl *ctrl = priv->ctrl; + struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = ctrl->nand; + + nand_read_page_op(chip, page, 0, buf, mtd->writesize); + if (oob_required) + fsl_elbc_read_buf(chip, chip->oob_poi, mtd->oobsize); + + if (fsl_elbc_wait(chip) & NAND_STATUS_FAIL) + mtd->ecc_stats.failed++; + + return elbc_fcm_ctrl->max_bitflips; +} + +/* ECC will be calculated automatically, and errors will be detected in + * waitfunc. + */ +static int fsl_elbc_write_page(struct nand_chip *chip, const uint8_t *buf, + int oob_required, int page) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + + nand_prog_page_begin_op(chip, page, 0, buf, mtd->writesize); + fsl_elbc_write_buf(chip, chip->oob_poi, mtd->oobsize); + + return nand_prog_page_end_op(chip); +} + +/* ECC will be calculated automatically, and errors will be detected in + * waitfunc. + */ +static int fsl_elbc_write_subpage(struct nand_chip *chip, uint32_t offset, + uint32_t data_len, const uint8_t *buf, + int oob_required, int page) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + + nand_prog_page_begin_op(chip, page, 0, NULL, 0); + fsl_elbc_write_buf(chip, buf, mtd->writesize); + fsl_elbc_write_buf(chip, chip->oob_poi, mtd->oobsize); + return nand_prog_page_end_op(chip); +} + +static int fsl_elbc_chip_init(struct fsl_elbc_mtd *priv) +{ + struct fsl_lbc_ctrl *ctrl = priv->ctrl; + struct fsl_lbc_regs __iomem *lbc = ctrl->regs; + struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = ctrl->nand; + struct nand_chip *chip = &priv->chip; + struct mtd_info *mtd = nand_to_mtd(chip); + + dev_dbg(priv->dev, "eLBC Set Information for bank %d\n", priv->bank); + + /* Fill in fsl_elbc_mtd structure */ + mtd->dev.parent = priv->dev; + nand_set_flash_node(chip, priv->dev->of_node); + + /* set timeout to maximum */ + priv->fmr = 15 << FMR_CWTO_SHIFT; + if (in_be32(&lbc->bank[priv->bank].or) & OR_FCM_PGS) + priv->fmr |= FMR_ECCM; + + /* fill in nand_chip structure */ + /* set up function call table */ + chip->legacy.read_byte = fsl_elbc_read_byte; + chip->legacy.write_buf = fsl_elbc_write_buf; + chip->legacy.read_buf = fsl_elbc_read_buf; + chip->legacy.select_chip = fsl_elbc_select_chip; + chip->legacy.cmdfunc = fsl_elbc_cmdfunc; + chip->legacy.waitfunc = fsl_elbc_wait; + chip->legacy.set_features = nand_get_set_features_notsupp; + chip->legacy.get_features = nand_get_set_features_notsupp; + + chip->bbt_td = &bbt_main_descr; + chip->bbt_md = &bbt_mirror_descr; + + /* set up nand options */ + chip->bbt_options = NAND_BBT_USE_FLASH; + + chip->controller = &elbc_fcm_ctrl->controller; + nand_set_controller_data(chip, priv); + + return 0; +} + +static int fsl_elbc_attach_chip(struct nand_chip *chip) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + struct fsl_elbc_mtd *priv = nand_get_controller_data(chip); + struct fsl_lbc_ctrl *ctrl = priv->ctrl; + struct fsl_lbc_regs __iomem *lbc = ctrl->regs; + unsigned int al; + u32 br; + + /* + * if ECC was not chosen in DT, decide whether to use HW or SW ECC from + * CS Base Register + */ + if (chip->ecc.engine_type == NAND_ECC_ENGINE_TYPE_INVALID) { + /* If CS Base Register selects full hardware ECC then use it */ + if ((in_be32(&lbc->bank[priv->bank].br) & BR_DECC) == + BR_DECC_CHK_GEN) { + chip->ecc.engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST; + } else { + /* otherwise fall back to default software ECC */ + chip->ecc.engine_type = NAND_ECC_ENGINE_TYPE_SOFT; + chip->ecc.algo = NAND_ECC_ALGO_HAMMING; + } + } + + switch (chip->ecc.engine_type) { + /* if HW ECC was chosen, setup ecc and oob layout */ + case NAND_ECC_ENGINE_TYPE_ON_HOST: + chip->ecc.read_page = fsl_elbc_read_page; + chip->ecc.write_page = fsl_elbc_write_page; + chip->ecc.write_subpage = fsl_elbc_write_subpage; + mtd_set_ooblayout(mtd, &fsl_elbc_ooblayout_ops); + chip->ecc.size = 512; + chip->ecc.bytes = 3; + chip->ecc.strength = 1; + break; + + /* if none or SW ECC was chosen, we do not need to set anything here */ + case NAND_ECC_ENGINE_TYPE_NONE: + case NAND_ECC_ENGINE_TYPE_SOFT: + case NAND_ECC_ENGINE_TYPE_ON_DIE: + break; + + default: + return -EINVAL; + } + + /* enable/disable HW ECC checking and generating based on if HW ECC was chosen */ + br = in_be32(&lbc->bank[priv->bank].br) & ~BR_DECC; + if (chip->ecc.engine_type == NAND_ECC_ENGINE_TYPE_ON_HOST) + out_be32(&lbc->bank[priv->bank].br, br | BR_DECC_CHK_GEN); + else + out_be32(&lbc->bank[priv->bank].br, br | BR_DECC_OFF); + + /* calculate FMR Address Length field */ + al = 0; + if (chip->pagemask & 0xffff0000) + al++; + if (chip->pagemask & 0xff000000) + al++; + + priv->fmr |= al << FMR_AL_SHIFT; + + dev_dbg(priv->dev, "fsl_elbc_init: nand->numchips = %d\n", + nanddev_ntargets(&chip->base)); + dev_dbg(priv->dev, "fsl_elbc_init: nand->chipsize = %lld\n", + nanddev_target_size(&chip->base)); + dev_dbg(priv->dev, "fsl_elbc_init: nand->pagemask = %8x\n", + chip->pagemask); + dev_dbg(priv->dev, "fsl_elbc_init: nand->legacy.chip_delay = %d\n", + chip->legacy.chip_delay); + dev_dbg(priv->dev, "fsl_elbc_init: nand->badblockpos = %d\n", + chip->badblockpos); + dev_dbg(priv->dev, "fsl_elbc_init: nand->chip_shift = %d\n", + chip->chip_shift); + dev_dbg(priv->dev, "fsl_elbc_init: nand->page_shift = %d\n", + chip->page_shift); + dev_dbg(priv->dev, "fsl_elbc_init: nand->phys_erase_shift = %d\n", + chip->phys_erase_shift); + dev_dbg(priv->dev, "fsl_elbc_init: nand->ecc.engine_type = %d\n", + chip->ecc.engine_type); + dev_dbg(priv->dev, "fsl_elbc_init: nand->ecc.steps = %d\n", + chip->ecc.steps); + dev_dbg(priv->dev, "fsl_elbc_init: nand->ecc.bytes = %d\n", + chip->ecc.bytes); + dev_dbg(priv->dev, "fsl_elbc_init: nand->ecc.total = %d\n", + chip->ecc.total); + dev_dbg(priv->dev, "fsl_elbc_init: mtd->ooblayout = %p\n", + mtd->ooblayout); + dev_dbg(priv->dev, "fsl_elbc_init: mtd->flags = %08x\n", mtd->flags); + dev_dbg(priv->dev, "fsl_elbc_init: mtd->size = %lld\n", mtd->size); + dev_dbg(priv->dev, "fsl_elbc_init: mtd->erasesize = %d\n", + mtd->erasesize); + dev_dbg(priv->dev, "fsl_elbc_init: mtd->writesize = %d\n", + mtd->writesize); + dev_dbg(priv->dev, "fsl_elbc_init: mtd->oobsize = %d\n", + mtd->oobsize); + + /* adjust Option Register and ECC to match Flash page size */ + if (mtd->writesize == 512) { + priv->page_size = 0; + clrbits32(&lbc->bank[priv->bank].or, OR_FCM_PGS); + } else if (mtd->writesize == 2048) { + priv->page_size = 1; + setbits32(&lbc->bank[priv->bank].or, OR_FCM_PGS); + } else { + dev_err(priv->dev, + "fsl_elbc_init: page size %d is not supported\n", + mtd->writesize); + return -ENOTSUPP; + } + + return 0; +} + +static const struct nand_controller_ops fsl_elbc_controller_ops = { + .attach_chip = fsl_elbc_attach_chip, +}; + +static int fsl_elbc_chip_remove(struct fsl_elbc_mtd *priv) +{ + struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = priv->ctrl->nand; + struct mtd_info *mtd = nand_to_mtd(&priv->chip); + + kfree(mtd->name); + + if (priv->vbase) + iounmap(priv->vbase); + + elbc_fcm_ctrl->chips[priv->bank] = NULL; + kfree(priv); + return 0; +} + +static DEFINE_MUTEX(fsl_elbc_nand_mutex); + +static int fsl_elbc_nand_probe(struct platform_device *pdev) +{ + struct fsl_lbc_regs __iomem *lbc; + struct fsl_elbc_mtd *priv; + struct resource res; + struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl; + static const char *part_probe_types[] + = { "cmdlinepart", "RedBoot", "ofpart", NULL }; + int ret; + int bank; + struct device *dev; + struct device_node *node = pdev->dev.of_node; + struct mtd_info *mtd; + + if (!fsl_lbc_ctrl_dev || !fsl_lbc_ctrl_dev->regs) + return -ENODEV; + lbc = fsl_lbc_ctrl_dev->regs; + dev = fsl_lbc_ctrl_dev->dev; + + /* get, allocate and map the memory resource */ + ret = of_address_to_resource(node, 0, &res); + if (ret) { + dev_err(dev, "failed to get resource\n"); + return ret; + } + + /* find which chip select it is connected to */ + for (bank = 0; bank < MAX_BANKS; bank++) + if ((in_be32(&lbc->bank[bank].br) & BR_V) && + (in_be32(&lbc->bank[bank].br) & BR_MSEL) == BR_MS_FCM && + (in_be32(&lbc->bank[bank].br) & + in_be32(&lbc->bank[bank].or) & BR_BA) + == fsl_lbc_addr(res.start)) + break; + + if (bank >= MAX_BANKS) { + dev_err(dev, "address did not match any chip selects\n"); + return -ENODEV; + } + + priv = kzalloc(sizeof(*priv), GFP_KERNEL); + if (!priv) + return -ENOMEM; + + mutex_lock(&fsl_elbc_nand_mutex); + if (!fsl_lbc_ctrl_dev->nand) { + elbc_fcm_ctrl = kzalloc(sizeof(*elbc_fcm_ctrl), GFP_KERNEL); + if (!elbc_fcm_ctrl) { + mutex_unlock(&fsl_elbc_nand_mutex); + ret = -ENOMEM; + goto err; + } + elbc_fcm_ctrl->counter++; + + nand_controller_init(&elbc_fcm_ctrl->controller); + fsl_lbc_ctrl_dev->nand = elbc_fcm_ctrl; + } else { + elbc_fcm_ctrl = fsl_lbc_ctrl_dev->nand; + } + mutex_unlock(&fsl_elbc_nand_mutex); + + elbc_fcm_ctrl->chips[bank] = priv; + priv->bank = bank; + priv->ctrl = fsl_lbc_ctrl_dev; + priv->dev = &pdev->dev; + dev_set_drvdata(priv->dev, priv); + + priv->vbase = ioremap(res.start, resource_size(&res)); + if (!priv->vbase) { + dev_err(dev, "failed to map chip region\n"); + ret = -ENOMEM; + goto err; + } + + mtd = nand_to_mtd(&priv->chip); + mtd->name = kasprintf(GFP_KERNEL, "%llx.flash", (u64)res.start); + if (!nand_to_mtd(&priv->chip)->name) { + ret = -ENOMEM; + goto err; + } + + ret = fsl_elbc_chip_init(priv); + if (ret) + goto err; + + priv->chip.controller->ops = &fsl_elbc_controller_ops; + ret = nand_scan(&priv->chip, 1); + if (ret) + goto err; + + /* First look for RedBoot table or partitions on the command + * line, these take precedence over device tree information */ + ret = mtd_device_parse_register(mtd, part_probe_types, NULL, NULL, 0); + if (ret) + goto cleanup_nand; + + pr_info("eLBC NAND device at 0x%llx, bank %d\n", + (unsigned long long)res.start, priv->bank); + + return 0; + +cleanup_nand: + nand_cleanup(&priv->chip); +err: + fsl_elbc_chip_remove(priv); + + return ret; +} + +static void fsl_elbc_nand_remove(struct platform_device *pdev) +{ + struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = fsl_lbc_ctrl_dev->nand; + struct fsl_elbc_mtd *priv = dev_get_drvdata(&pdev->dev); + struct nand_chip *chip = &priv->chip; + int ret; + + ret = mtd_device_unregister(nand_to_mtd(chip)); + WARN_ON(ret); + nand_cleanup(chip); + + fsl_elbc_chip_remove(priv); + + mutex_lock(&fsl_elbc_nand_mutex); + elbc_fcm_ctrl->counter--; + if (!elbc_fcm_ctrl->counter) { + fsl_lbc_ctrl_dev->nand = NULL; + kfree(elbc_fcm_ctrl); + } + mutex_unlock(&fsl_elbc_nand_mutex); + +} + +static const struct of_device_id fsl_elbc_nand_match[] = { + { .compatible = "fsl,elbc-fcm-nand", }, + {} +}; +MODULE_DEVICE_TABLE(of, fsl_elbc_nand_match); + +static struct platform_driver fsl_elbc_nand_driver = { + .driver = { + .name = "fsl,elbc-fcm-nand", + .of_match_table = fsl_elbc_nand_match, + }, + .probe = fsl_elbc_nand_probe, + .remove_new = fsl_elbc_nand_remove, +}; + +module_platform_driver(fsl_elbc_nand_driver); + +MODULE_LICENSE("GPL"); +MODULE_AUTHOR("Freescale"); +MODULE_DESCRIPTION("Freescale Enhanced Local Bus Controller MTD NAND driver"); diff --git a/drivers/mtd/nand/raw/fsl_ifc_nand.c b/drivers/mtd/nand/raw/fsl_ifc_nand.c new file mode 100644 index 0000000000..f0e2318ce0 --- /dev/null +++ b/drivers/mtd/nand/raw/fsl_ifc_nand.c @@ -0,0 +1,1140 @@ +// SPDX-License-Identifier: GPL-2.0-or-later +/* + * Freescale Integrated Flash Controller NAND driver + * + * Copyright 2011-2012 Freescale Semiconductor, Inc + * + * Author: Dipen Dudhat <Dipen.Dudhat@freescale.com> + */ + +#include <linux/module.h> +#include <linux/platform_device.h> +#include <linux/types.h> +#include <linux/kernel.h> +#include <linux/of_address.h> +#include <linux/slab.h> +#include <linux/mtd/mtd.h> +#include <linux/mtd/rawnand.h> +#include <linux/mtd/partitions.h> +#include <linux/fsl_ifc.h> +#include <linux/iopoll.h> + +#define ERR_BYTE 0xFF /* Value returned for read + bytes when read failed */ +#define IFC_TIMEOUT_MSECS 1000 /* Maximum timeout to wait + for IFC NAND Machine */ + +struct fsl_ifc_ctrl; + +/* mtd information per set */ +struct fsl_ifc_mtd { + struct nand_chip chip; + struct fsl_ifc_ctrl *ctrl; + + struct device *dev; + int bank; /* Chip select bank number */ + unsigned int bufnum_mask; /* bufnum = page & bufnum_mask */ + u8 __iomem *vbase; /* Chip select base virtual address */ +}; + +/* overview of the fsl ifc controller */ +struct fsl_ifc_nand_ctrl { + struct nand_controller controller; + struct fsl_ifc_mtd *chips[FSL_IFC_BANK_COUNT]; + + void __iomem *addr; /* Address of assigned IFC buffer */ + unsigned int page; /* Last page written to / read from */ + unsigned int read_bytes;/* Number of bytes read during command */ + unsigned int column; /* Saved column from SEQIN */ + unsigned int index; /* Pointer to next byte to 'read' */ + unsigned int oob; /* Non zero if operating on OOB data */ + unsigned int eccread; /* Non zero for a full-page ECC read */ + unsigned int counter; /* counter for the initializations */ + unsigned int max_bitflips; /* Saved during READ0 cmd */ +}; + +static struct fsl_ifc_nand_ctrl *ifc_nand_ctrl; + +/* + * Generic flash bbt descriptors + */ +static u8 bbt_pattern[] = {'B', 'b', 't', '0' }; +static u8 mirror_pattern[] = {'1', 't', 'b', 'B' }; + +static struct nand_bbt_descr bbt_main_descr = { + .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE | + NAND_BBT_2BIT | NAND_BBT_VERSION, + .offs = 2, /* 0 on 8-bit small page */ + .len = 4, + .veroffs = 6, + .maxblocks = 4, + .pattern = bbt_pattern, +}; + +static struct nand_bbt_descr bbt_mirror_descr = { + .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE | + NAND_BBT_2BIT | NAND_BBT_VERSION, + .offs = 2, /* 0 on 8-bit small page */ + .len = 4, + .veroffs = 6, + .maxblocks = 4, + .pattern = mirror_pattern, +}; + +static int fsl_ifc_ooblayout_ecc(struct mtd_info *mtd, int section, + struct mtd_oob_region *oobregion) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + + if (section) + return -ERANGE; + + oobregion->offset = 8; + oobregion->length = chip->ecc.total; + + return 0; +} + +static int fsl_ifc_ooblayout_free(struct mtd_info *mtd, int section, + struct mtd_oob_region *oobregion) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + + if (section > 1) + return -ERANGE; + + if (mtd->writesize == 512 && + !(chip->options & NAND_BUSWIDTH_16)) { + if (!section) { + oobregion->offset = 0; + oobregion->length = 5; + } else { + oobregion->offset = 6; + oobregion->length = 2; + } + + return 0; + } + + if (!section) { + oobregion->offset = 2; + oobregion->length = 6; + } else { + oobregion->offset = chip->ecc.total + 8; + oobregion->length = mtd->oobsize - oobregion->offset; + } + + return 0; +} + +static const struct mtd_ooblayout_ops fsl_ifc_ooblayout_ops = { + .ecc = fsl_ifc_ooblayout_ecc, + .free = fsl_ifc_ooblayout_free, +}; + +/* + * Set up the IFC hardware block and page address fields, and the ifc nand + * structure addr field to point to the correct IFC buffer in memory + */ +static void set_addr(struct mtd_info *mtd, int column, int page_addr, int oob) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + struct fsl_ifc_mtd *priv = nand_get_controller_data(chip); + struct fsl_ifc_ctrl *ctrl = priv->ctrl; + struct fsl_ifc_runtime __iomem *ifc = ctrl->rregs; + int buf_num; + + ifc_nand_ctrl->page = page_addr; + /* Program ROW0/COL0 */ + ifc_out32(page_addr, &ifc->ifc_nand.row0); + ifc_out32((oob ? IFC_NAND_COL_MS : 0) | column, &ifc->ifc_nand.col0); + + buf_num = page_addr & priv->bufnum_mask; + + ifc_nand_ctrl->addr = priv->vbase + buf_num * (mtd->writesize * 2); + ifc_nand_ctrl->index = column; + + /* for OOB data point to the second half of the buffer */ + if (oob) + ifc_nand_ctrl->index += mtd->writesize; +} + +/* returns nonzero if entire page is blank */ +static int check_read_ecc(struct mtd_info *mtd, struct fsl_ifc_ctrl *ctrl, + u32 eccstat, unsigned int bufnum) +{ + return (eccstat >> ((3 - bufnum % 4) * 8)) & 15; +} + +/* + * execute IFC NAND command and wait for it to complete + */ +static void fsl_ifc_run_command(struct mtd_info *mtd) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + struct fsl_ifc_mtd *priv = nand_get_controller_data(chip); + struct fsl_ifc_ctrl *ctrl = priv->ctrl; + struct fsl_ifc_nand_ctrl *nctrl = ifc_nand_ctrl; + struct fsl_ifc_runtime __iomem *ifc = ctrl->rregs; + u32 eccstat; + int i; + + /* set the chip select for NAND Transaction */ + ifc_out32(priv->bank << IFC_NAND_CSEL_SHIFT, + &ifc->ifc_nand.nand_csel); + + dev_vdbg(priv->dev, + "%s: fir0=%08x fcr0=%08x\n", + __func__, + ifc_in32(&ifc->ifc_nand.nand_fir0), + ifc_in32(&ifc->ifc_nand.nand_fcr0)); + + ctrl->nand_stat = 0; + + /* start read/write seq */ + ifc_out32(IFC_NAND_SEQ_STRT_FIR_STRT, &ifc->ifc_nand.nandseq_strt); + + /* wait for command complete flag or timeout */ + wait_event_timeout(ctrl->nand_wait, ctrl->nand_stat, + msecs_to_jiffies(IFC_TIMEOUT_MSECS)); + + /* ctrl->nand_stat will be updated from IRQ context */ + if (!ctrl->nand_stat) + dev_err(priv->dev, "Controller is not responding\n"); + if (ctrl->nand_stat & IFC_NAND_EVTER_STAT_FTOER) + dev_err(priv->dev, "NAND Flash Timeout Error\n"); + if (ctrl->nand_stat & IFC_NAND_EVTER_STAT_WPER) + dev_err(priv->dev, "NAND Flash Write Protect Error\n"); + + nctrl->max_bitflips = 0; + + if (nctrl->eccread) { + int errors; + int bufnum = nctrl->page & priv->bufnum_mask; + int sector_start = bufnum * chip->ecc.steps; + int sector_end = sector_start + chip->ecc.steps - 1; + __be32 __iomem *eccstat_regs; + + eccstat_regs = ifc->ifc_nand.nand_eccstat; + eccstat = ifc_in32(&eccstat_regs[sector_start / 4]); + + for (i = sector_start; i <= sector_end; i++) { + if (i != sector_start && !(i % 4)) + eccstat = ifc_in32(&eccstat_regs[i / 4]); + + errors = check_read_ecc(mtd, ctrl, eccstat, i); + + if (errors == 15) { + /* + * Uncorrectable error. + * We'll check for blank pages later. + * + * We disable ECCER reporting due to... + * erratum IFC-A002770 -- so report it now if we + * see an uncorrectable error in ECCSTAT. + */ + ctrl->nand_stat |= IFC_NAND_EVTER_STAT_ECCER; + continue; + } + + mtd->ecc_stats.corrected += errors; + nctrl->max_bitflips = max_t(unsigned int, + nctrl->max_bitflips, + errors); + } + + nctrl->eccread = 0; + } +} + +static void fsl_ifc_do_read(struct nand_chip *chip, + int oob, + struct mtd_info *mtd) +{ + struct fsl_ifc_mtd *priv = nand_get_controller_data(chip); + struct fsl_ifc_ctrl *ctrl = priv->ctrl; + struct fsl_ifc_runtime __iomem *ifc = ctrl->rregs; + + /* Program FIR/IFC_NAND_FCR0 for Small/Large page */ + if (mtd->writesize > 512) { + ifc_out32((IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) | + (IFC_FIR_OP_CA0 << IFC_NAND_FIR0_OP1_SHIFT) | + (IFC_FIR_OP_RA0 << IFC_NAND_FIR0_OP2_SHIFT) | + (IFC_FIR_OP_CMD1 << IFC_NAND_FIR0_OP3_SHIFT) | + (IFC_FIR_OP_RBCD << IFC_NAND_FIR0_OP4_SHIFT), + &ifc->ifc_nand.nand_fir0); + ifc_out32(0x0, &ifc->ifc_nand.nand_fir1); + + ifc_out32((NAND_CMD_READ0 << IFC_NAND_FCR0_CMD0_SHIFT) | + (NAND_CMD_READSTART << IFC_NAND_FCR0_CMD1_SHIFT), + &ifc->ifc_nand.nand_fcr0); + } else { + ifc_out32((IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) | + (IFC_FIR_OP_CA0 << IFC_NAND_FIR0_OP1_SHIFT) | + (IFC_FIR_OP_RA0 << IFC_NAND_FIR0_OP2_SHIFT) | + (IFC_FIR_OP_RBCD << IFC_NAND_FIR0_OP3_SHIFT), + &ifc->ifc_nand.nand_fir0); + ifc_out32(0x0, &ifc->ifc_nand.nand_fir1); + + if (oob) + ifc_out32(NAND_CMD_READOOB << + IFC_NAND_FCR0_CMD0_SHIFT, + &ifc->ifc_nand.nand_fcr0); + else + ifc_out32(NAND_CMD_READ0 << + IFC_NAND_FCR0_CMD0_SHIFT, + &ifc->ifc_nand.nand_fcr0); + } +} + +/* cmdfunc send commands to the IFC NAND Machine */ +static void fsl_ifc_cmdfunc(struct nand_chip *chip, unsigned int command, + int column, int page_addr) { + struct mtd_info *mtd = nand_to_mtd(chip); + struct fsl_ifc_mtd *priv = nand_get_controller_data(chip); + struct fsl_ifc_ctrl *ctrl = priv->ctrl; + struct fsl_ifc_runtime __iomem *ifc = ctrl->rregs; + + /* clear the read buffer */ + ifc_nand_ctrl->read_bytes = 0; + if (command != NAND_CMD_PAGEPROG) + ifc_nand_ctrl->index = 0; + + switch (command) { + /* READ0 read the entire buffer to use hardware ECC. */ + case NAND_CMD_READ0: + ifc_out32(0, &ifc->ifc_nand.nand_fbcr); + set_addr(mtd, 0, page_addr, 0); + + ifc_nand_ctrl->read_bytes = mtd->writesize + mtd->oobsize; + ifc_nand_ctrl->index += column; + + if (chip->ecc.engine_type == NAND_ECC_ENGINE_TYPE_ON_HOST) + ifc_nand_ctrl->eccread = 1; + + fsl_ifc_do_read(chip, 0, mtd); + fsl_ifc_run_command(mtd); + return; + + /* READOOB reads only the OOB because no ECC is performed. */ + case NAND_CMD_READOOB: + ifc_out32(mtd->oobsize - column, &ifc->ifc_nand.nand_fbcr); + set_addr(mtd, column, page_addr, 1); + + ifc_nand_ctrl->read_bytes = mtd->writesize + mtd->oobsize; + + fsl_ifc_do_read(chip, 1, mtd); + fsl_ifc_run_command(mtd); + + return; + + case NAND_CMD_READID: + case NAND_CMD_PARAM: { + /* + * For READID, read 8 bytes that are currently used. + * For PARAM, read all 3 copies of 256-bytes pages. + */ + int len = 8; + int timing = IFC_FIR_OP_RB; + if (command == NAND_CMD_PARAM) { + timing = IFC_FIR_OP_RBCD; + len = 256 * 3; + } + + ifc_out32((IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) | + (IFC_FIR_OP_UA << IFC_NAND_FIR0_OP1_SHIFT) | + (timing << IFC_NAND_FIR0_OP2_SHIFT), + &ifc->ifc_nand.nand_fir0); + ifc_out32(command << IFC_NAND_FCR0_CMD0_SHIFT, + &ifc->ifc_nand.nand_fcr0); + ifc_out32(column, &ifc->ifc_nand.row3); + + ifc_out32(len, &ifc->ifc_nand.nand_fbcr); + ifc_nand_ctrl->read_bytes = len; + + set_addr(mtd, 0, 0, 0); + fsl_ifc_run_command(mtd); + return; + } + + /* ERASE1 stores the block and page address */ + case NAND_CMD_ERASE1: + set_addr(mtd, 0, page_addr, 0); + return; + + /* ERASE2 uses the block and page address from ERASE1 */ + case NAND_CMD_ERASE2: + ifc_out32((IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) | + (IFC_FIR_OP_RA0 << IFC_NAND_FIR0_OP1_SHIFT) | + (IFC_FIR_OP_CMD1 << IFC_NAND_FIR0_OP2_SHIFT), + &ifc->ifc_nand.nand_fir0); + + ifc_out32((NAND_CMD_ERASE1 << IFC_NAND_FCR0_CMD0_SHIFT) | + (NAND_CMD_ERASE2 << IFC_NAND_FCR0_CMD1_SHIFT), + &ifc->ifc_nand.nand_fcr0); + + ifc_out32(0, &ifc->ifc_nand.nand_fbcr); + ifc_nand_ctrl->read_bytes = 0; + fsl_ifc_run_command(mtd); + return; + + /* SEQIN sets up the addr buffer and all registers except the length */ + case NAND_CMD_SEQIN: { + u32 nand_fcr0; + ifc_nand_ctrl->column = column; + ifc_nand_ctrl->oob = 0; + + if (mtd->writesize > 512) { + nand_fcr0 = + (NAND_CMD_SEQIN << IFC_NAND_FCR0_CMD0_SHIFT) | + (NAND_CMD_STATUS << IFC_NAND_FCR0_CMD1_SHIFT) | + (NAND_CMD_PAGEPROG << IFC_NAND_FCR0_CMD2_SHIFT); + + ifc_out32( + (IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) | + (IFC_FIR_OP_CA0 << IFC_NAND_FIR0_OP1_SHIFT) | + (IFC_FIR_OP_RA0 << IFC_NAND_FIR0_OP2_SHIFT) | + (IFC_FIR_OP_WBCD << IFC_NAND_FIR0_OP3_SHIFT) | + (IFC_FIR_OP_CMD2 << IFC_NAND_FIR0_OP4_SHIFT), + &ifc->ifc_nand.nand_fir0); + ifc_out32( + (IFC_FIR_OP_CW1 << IFC_NAND_FIR1_OP5_SHIFT) | + (IFC_FIR_OP_RDSTAT << IFC_NAND_FIR1_OP6_SHIFT) | + (IFC_FIR_OP_NOP << IFC_NAND_FIR1_OP7_SHIFT), + &ifc->ifc_nand.nand_fir1); + } else { + nand_fcr0 = ((NAND_CMD_PAGEPROG << + IFC_NAND_FCR0_CMD1_SHIFT) | + (NAND_CMD_SEQIN << + IFC_NAND_FCR0_CMD2_SHIFT) | + (NAND_CMD_STATUS << + IFC_NAND_FCR0_CMD3_SHIFT)); + + ifc_out32( + (IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) | + (IFC_FIR_OP_CMD2 << IFC_NAND_FIR0_OP1_SHIFT) | + (IFC_FIR_OP_CA0 << IFC_NAND_FIR0_OP2_SHIFT) | + (IFC_FIR_OP_RA0 << IFC_NAND_FIR0_OP3_SHIFT) | + (IFC_FIR_OP_WBCD << IFC_NAND_FIR0_OP4_SHIFT), + &ifc->ifc_nand.nand_fir0); + ifc_out32( + (IFC_FIR_OP_CMD1 << IFC_NAND_FIR1_OP5_SHIFT) | + (IFC_FIR_OP_CW3 << IFC_NAND_FIR1_OP6_SHIFT) | + (IFC_FIR_OP_RDSTAT << IFC_NAND_FIR1_OP7_SHIFT) | + (IFC_FIR_OP_NOP << IFC_NAND_FIR1_OP8_SHIFT), + &ifc->ifc_nand.nand_fir1); + + if (column >= mtd->writesize) + nand_fcr0 |= + NAND_CMD_READOOB << IFC_NAND_FCR0_CMD0_SHIFT; + else + nand_fcr0 |= + NAND_CMD_READ0 << IFC_NAND_FCR0_CMD0_SHIFT; + } + + if (column >= mtd->writesize) { + /* OOB area --> READOOB */ + column -= mtd->writesize; + ifc_nand_ctrl->oob = 1; + } + ifc_out32(nand_fcr0, &ifc->ifc_nand.nand_fcr0); + set_addr(mtd, column, page_addr, ifc_nand_ctrl->oob); + return; + } + + /* PAGEPROG reuses all of the setup from SEQIN and adds the length */ + case NAND_CMD_PAGEPROG: { + if (ifc_nand_ctrl->oob) { + ifc_out32(ifc_nand_ctrl->index - + ifc_nand_ctrl->column, + &ifc->ifc_nand.nand_fbcr); + } else { + ifc_out32(0, &ifc->ifc_nand.nand_fbcr); + } + + fsl_ifc_run_command(mtd); + return; + } + + case NAND_CMD_STATUS: { + void __iomem *addr; + + ifc_out32((IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) | + (IFC_FIR_OP_RB << IFC_NAND_FIR0_OP1_SHIFT), + &ifc->ifc_nand.nand_fir0); + ifc_out32(NAND_CMD_STATUS << IFC_NAND_FCR0_CMD0_SHIFT, + &ifc->ifc_nand.nand_fcr0); + ifc_out32(1, &ifc->ifc_nand.nand_fbcr); + set_addr(mtd, 0, 0, 0); + ifc_nand_ctrl->read_bytes = 1; + + fsl_ifc_run_command(mtd); + + /* + * The chip always seems to report that it is + * write-protected, even when it is not. + */ + addr = ifc_nand_ctrl->addr; + if (chip->options & NAND_BUSWIDTH_16) + ifc_out16(ifc_in16(addr) | (NAND_STATUS_WP), addr); + else + ifc_out8(ifc_in8(addr) | (NAND_STATUS_WP), addr); + return; + } + + case NAND_CMD_RESET: + ifc_out32(IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT, + &ifc->ifc_nand.nand_fir0); + ifc_out32(NAND_CMD_RESET << IFC_NAND_FCR0_CMD0_SHIFT, + &ifc->ifc_nand.nand_fcr0); + fsl_ifc_run_command(mtd); + return; + + default: + dev_err(priv->dev, "%s: error, unsupported command 0x%x.\n", + __func__, command); + } +} + +static void fsl_ifc_select_chip(struct nand_chip *chip, int cs) +{ + /* The hardware does not seem to support multiple + * chips per bank. + */ +} + +/* + * Write buf to the IFC NAND Controller Data Buffer + */ +static void fsl_ifc_write_buf(struct nand_chip *chip, const u8 *buf, int len) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + struct fsl_ifc_mtd *priv = nand_get_controller_data(chip); + unsigned int bufsize = mtd->writesize + mtd->oobsize; + + if (len <= 0) { + dev_err(priv->dev, "%s: len %d bytes", __func__, len); + return; + } + + if ((unsigned int)len > bufsize - ifc_nand_ctrl->index) { + dev_err(priv->dev, + "%s: beyond end of buffer (%d requested, %u available)\n", + __func__, len, bufsize - ifc_nand_ctrl->index); + len = bufsize - ifc_nand_ctrl->index; + } + + memcpy_toio(ifc_nand_ctrl->addr + ifc_nand_ctrl->index, buf, len); + ifc_nand_ctrl->index += len; +} + +/* + * Read a byte from either the IFC hardware buffer + * read function for 8-bit buswidth + */ +static uint8_t fsl_ifc_read_byte(struct nand_chip *chip) +{ + struct fsl_ifc_mtd *priv = nand_get_controller_data(chip); + unsigned int offset; + + /* + * If there are still bytes in the IFC buffer, then use the + * next byte. + */ + if (ifc_nand_ctrl->index < ifc_nand_ctrl->read_bytes) { + offset = ifc_nand_ctrl->index++; + return ifc_in8(ifc_nand_ctrl->addr + offset); + } + + dev_err(priv->dev, "%s: beyond end of buffer\n", __func__); + return ERR_BYTE; +} + +/* + * Read two bytes from the IFC hardware buffer + * read function for 16-bit buswith + */ +static uint8_t fsl_ifc_read_byte16(struct nand_chip *chip) +{ + struct fsl_ifc_mtd *priv = nand_get_controller_data(chip); + uint16_t data; + + /* + * If there are still bytes in the IFC buffer, then use the + * next byte. + */ + if (ifc_nand_ctrl->index < ifc_nand_ctrl->read_bytes) { + data = ifc_in16(ifc_nand_ctrl->addr + ifc_nand_ctrl->index); + ifc_nand_ctrl->index += 2; + return (uint8_t) data; + } + + dev_err(priv->dev, "%s: beyond end of buffer\n", __func__); + return ERR_BYTE; +} + +/* + * Read from the IFC Controller Data Buffer + */ +static void fsl_ifc_read_buf(struct nand_chip *chip, u8 *buf, int len) +{ + struct fsl_ifc_mtd *priv = nand_get_controller_data(chip); + int avail; + + if (len < 0) { + dev_err(priv->dev, "%s: len %d bytes", __func__, len); + return; + } + + avail = min((unsigned int)len, + ifc_nand_ctrl->read_bytes - ifc_nand_ctrl->index); + memcpy_fromio(buf, ifc_nand_ctrl->addr + ifc_nand_ctrl->index, avail); + ifc_nand_ctrl->index += avail; + + if (len > avail) + dev_err(priv->dev, + "%s: beyond end of buffer (%d requested, %d available)\n", + __func__, len, avail); +} + +/* + * This function is called after Program and Erase Operations to + * check for success or failure. + */ +static int fsl_ifc_wait(struct nand_chip *chip) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + struct fsl_ifc_mtd *priv = nand_get_controller_data(chip); + struct fsl_ifc_ctrl *ctrl = priv->ctrl; + struct fsl_ifc_runtime __iomem *ifc = ctrl->rregs; + u32 nand_fsr; + int status; + + /* Use READ_STATUS command, but wait for the device to be ready */ + ifc_out32((IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) | + (IFC_FIR_OP_RDSTAT << IFC_NAND_FIR0_OP1_SHIFT), + &ifc->ifc_nand.nand_fir0); + ifc_out32(NAND_CMD_STATUS << IFC_NAND_FCR0_CMD0_SHIFT, + &ifc->ifc_nand.nand_fcr0); + ifc_out32(1, &ifc->ifc_nand.nand_fbcr); + set_addr(mtd, 0, 0, 0); + ifc_nand_ctrl->read_bytes = 1; + + fsl_ifc_run_command(mtd); + + nand_fsr = ifc_in32(&ifc->ifc_nand.nand_fsr); + status = nand_fsr >> 24; + /* + * The chip always seems to report that it is + * write-protected, even when it is not. + */ + return status | NAND_STATUS_WP; +} + +/* + * The controller does not check for bitflips in erased pages, + * therefore software must check instead. + */ +static int check_erased_page(struct nand_chip *chip, u8 *buf) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + u8 *ecc = chip->oob_poi; + const int ecc_size = chip->ecc.bytes; + const int pkt_size = chip->ecc.size; + int i, res, bitflips = 0; + struct mtd_oob_region oobregion = { }; + + mtd_ooblayout_ecc(mtd, 0, &oobregion); + ecc += oobregion.offset; + + for (i = 0; i < chip->ecc.steps; ++i) { + res = nand_check_erased_ecc_chunk(buf, pkt_size, ecc, ecc_size, + NULL, 0, + chip->ecc.strength); + if (res < 0) + mtd->ecc_stats.failed++; + else + mtd->ecc_stats.corrected += res; + + bitflips = max(res, bitflips); + buf += pkt_size; + ecc += ecc_size; + } + + return bitflips; +} + +static int fsl_ifc_read_page(struct nand_chip *chip, uint8_t *buf, + int oob_required, int page) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + struct fsl_ifc_mtd *priv = nand_get_controller_data(chip); + struct fsl_ifc_ctrl *ctrl = priv->ctrl; + struct fsl_ifc_nand_ctrl *nctrl = ifc_nand_ctrl; + + nand_read_page_op(chip, page, 0, buf, mtd->writesize); + if (oob_required) + fsl_ifc_read_buf(chip, chip->oob_poi, mtd->oobsize); + + if (ctrl->nand_stat & IFC_NAND_EVTER_STAT_ECCER) { + if (!oob_required) + fsl_ifc_read_buf(chip, chip->oob_poi, mtd->oobsize); + + return check_erased_page(chip, buf); + } + + if (ctrl->nand_stat != IFC_NAND_EVTER_STAT_OPC) + mtd->ecc_stats.failed++; + + return nctrl->max_bitflips; +} + +/* ECC will be calculated automatically, and errors will be detected in + * waitfunc. + */ +static int fsl_ifc_write_page(struct nand_chip *chip, const uint8_t *buf, + int oob_required, int page) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + + nand_prog_page_begin_op(chip, page, 0, buf, mtd->writesize); + fsl_ifc_write_buf(chip, chip->oob_poi, mtd->oobsize); + + return nand_prog_page_end_op(chip); +} + +static int fsl_ifc_attach_chip(struct nand_chip *chip) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + struct fsl_ifc_mtd *priv = nand_get_controller_data(chip); + struct fsl_ifc_ctrl *ctrl = priv->ctrl; + struct fsl_ifc_global __iomem *ifc_global = ctrl->gregs; + u32 csor; + + csor = ifc_in32(&ifc_global->csor_cs[priv->bank].csor); + + /* Must also set CSOR_NAND_ECC_ENC_EN if DEC_EN set */ + if (csor & CSOR_NAND_ECC_DEC_EN) { + chip->ecc.engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST; + mtd_set_ooblayout(mtd, &fsl_ifc_ooblayout_ops); + + /* Hardware generates ECC per 512 Bytes */ + chip->ecc.size = 512; + if ((csor & CSOR_NAND_ECC_MODE_MASK) == CSOR_NAND_ECC_MODE_4) { + chip->ecc.bytes = 8; + chip->ecc.strength = 4; + } else { + chip->ecc.bytes = 16; + chip->ecc.strength = 8; + } + } else { + chip->ecc.engine_type = NAND_ECC_ENGINE_TYPE_SOFT; + chip->ecc.algo = NAND_ECC_ALGO_HAMMING; + } + + dev_dbg(priv->dev, "%s: nand->numchips = %d\n", __func__, + nanddev_ntargets(&chip->base)); + dev_dbg(priv->dev, "%s: nand->chipsize = %lld\n", __func__, + nanddev_target_size(&chip->base)); + dev_dbg(priv->dev, "%s: nand->pagemask = %8x\n", __func__, + chip->pagemask); + dev_dbg(priv->dev, "%s: nand->legacy.chip_delay = %d\n", __func__, + chip->legacy.chip_delay); + dev_dbg(priv->dev, "%s: nand->badblockpos = %d\n", __func__, + chip->badblockpos); + dev_dbg(priv->dev, "%s: nand->chip_shift = %d\n", __func__, + chip->chip_shift); + dev_dbg(priv->dev, "%s: nand->page_shift = %d\n", __func__, + chip->page_shift); + dev_dbg(priv->dev, "%s: nand->phys_erase_shift = %d\n", __func__, + chip->phys_erase_shift); + dev_dbg(priv->dev, "%s: nand->ecc.engine_type = %d\n", __func__, + chip->ecc.engine_type); + dev_dbg(priv->dev, "%s: nand->ecc.steps = %d\n", __func__, + chip->ecc.steps); + dev_dbg(priv->dev, "%s: nand->ecc.bytes = %d\n", __func__, + chip->ecc.bytes); + dev_dbg(priv->dev, "%s: nand->ecc.total = %d\n", __func__, + chip->ecc.total); + dev_dbg(priv->dev, "%s: mtd->ooblayout = %p\n", __func__, + mtd->ooblayout); + dev_dbg(priv->dev, "%s: mtd->flags = %08x\n", __func__, mtd->flags); + dev_dbg(priv->dev, "%s: mtd->size = %lld\n", __func__, mtd->size); + dev_dbg(priv->dev, "%s: mtd->erasesize = %d\n", __func__, + mtd->erasesize); + dev_dbg(priv->dev, "%s: mtd->writesize = %d\n", __func__, + mtd->writesize); + dev_dbg(priv->dev, "%s: mtd->oobsize = %d\n", __func__, + mtd->oobsize); + + return 0; +} + +static const struct nand_controller_ops fsl_ifc_controller_ops = { + .attach_chip = fsl_ifc_attach_chip, +}; + +static int fsl_ifc_sram_init(struct fsl_ifc_mtd *priv) +{ + struct fsl_ifc_ctrl *ctrl = priv->ctrl; + struct fsl_ifc_runtime __iomem *ifc_runtime = ctrl->rregs; + struct fsl_ifc_global __iomem *ifc_global = ctrl->gregs; + uint32_t csor = 0, csor_8k = 0, csor_ext = 0; + uint32_t cs = priv->bank; + + if (ctrl->version < FSL_IFC_VERSION_1_1_0) + return 0; + + if (ctrl->version > FSL_IFC_VERSION_1_1_0) { + u32 ncfgr, status; + int ret; + + /* Trigger auto initialization */ + ncfgr = ifc_in32(&ifc_runtime->ifc_nand.ncfgr); + ifc_out32(ncfgr | IFC_NAND_NCFGR_SRAM_INIT_EN, &ifc_runtime->ifc_nand.ncfgr); + + /* Wait until done */ + ret = readx_poll_timeout(ifc_in32, &ifc_runtime->ifc_nand.ncfgr, + status, !(status & IFC_NAND_NCFGR_SRAM_INIT_EN), + 10, IFC_TIMEOUT_MSECS * 1000); + if (ret) + dev_err(priv->dev, "Failed to initialize SRAM!\n"); + + return ret; + } + + /* Save CSOR and CSOR_ext */ + csor = ifc_in32(&ifc_global->csor_cs[cs].csor); + csor_ext = ifc_in32(&ifc_global->csor_cs[cs].csor_ext); + + /* chage PageSize 8K and SpareSize 1K*/ + csor_8k = (csor & ~(CSOR_NAND_PGS_MASK)) | 0x0018C000; + ifc_out32(csor_8k, &ifc_global->csor_cs[cs].csor); + ifc_out32(0x0000400, &ifc_global->csor_cs[cs].csor_ext); + + /* READID */ + ifc_out32((IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) | + (IFC_FIR_OP_UA << IFC_NAND_FIR0_OP1_SHIFT) | + (IFC_FIR_OP_RB << IFC_NAND_FIR0_OP2_SHIFT), + &ifc_runtime->ifc_nand.nand_fir0); + ifc_out32(NAND_CMD_READID << IFC_NAND_FCR0_CMD0_SHIFT, + &ifc_runtime->ifc_nand.nand_fcr0); + ifc_out32(0x0, &ifc_runtime->ifc_nand.row3); + + ifc_out32(0x0, &ifc_runtime->ifc_nand.nand_fbcr); + + /* Program ROW0/COL0 */ + ifc_out32(0x0, &ifc_runtime->ifc_nand.row0); + ifc_out32(0x0, &ifc_runtime->ifc_nand.col0); + + /* set the chip select for NAND Transaction */ + ifc_out32(cs << IFC_NAND_CSEL_SHIFT, + &ifc_runtime->ifc_nand.nand_csel); + + /* start read seq */ + ifc_out32(IFC_NAND_SEQ_STRT_FIR_STRT, + &ifc_runtime->ifc_nand.nandseq_strt); + + /* wait for command complete flag or timeout */ + wait_event_timeout(ctrl->nand_wait, ctrl->nand_stat, + msecs_to_jiffies(IFC_TIMEOUT_MSECS)); + + if (ctrl->nand_stat != IFC_NAND_EVTER_STAT_OPC) { + pr_err("fsl-ifc: Failed to Initialise SRAM\n"); + return -ETIMEDOUT; + } + + /* Restore CSOR and CSOR_ext */ + ifc_out32(csor, &ifc_global->csor_cs[cs].csor); + ifc_out32(csor_ext, &ifc_global->csor_cs[cs].csor_ext); + + return 0; +} + +static int fsl_ifc_chip_init(struct fsl_ifc_mtd *priv) +{ + struct fsl_ifc_ctrl *ctrl = priv->ctrl; + struct fsl_ifc_global __iomem *ifc_global = ctrl->gregs; + struct fsl_ifc_runtime __iomem *ifc_runtime = ctrl->rregs; + struct nand_chip *chip = &priv->chip; + struct mtd_info *mtd = nand_to_mtd(&priv->chip); + u32 csor; + int ret; + + /* Fill in fsl_ifc_mtd structure */ + mtd->dev.parent = priv->dev; + nand_set_flash_node(chip, priv->dev->of_node); + + /* fill in nand_chip structure */ + /* set up function call table */ + if ((ifc_in32(&ifc_global->cspr_cs[priv->bank].cspr)) + & CSPR_PORT_SIZE_16) + chip->legacy.read_byte = fsl_ifc_read_byte16; + else + chip->legacy.read_byte = fsl_ifc_read_byte; + + chip->legacy.write_buf = fsl_ifc_write_buf; + chip->legacy.read_buf = fsl_ifc_read_buf; + chip->legacy.select_chip = fsl_ifc_select_chip; + chip->legacy.cmdfunc = fsl_ifc_cmdfunc; + chip->legacy.waitfunc = fsl_ifc_wait; + chip->legacy.set_features = nand_get_set_features_notsupp; + chip->legacy.get_features = nand_get_set_features_notsupp; + + chip->bbt_td = &bbt_main_descr; + chip->bbt_md = &bbt_mirror_descr; + + ifc_out32(0x0, &ifc_runtime->ifc_nand.ncfgr); + + /* set up nand options */ + chip->bbt_options = NAND_BBT_USE_FLASH; + chip->options = NAND_NO_SUBPAGE_WRITE; + + if (ifc_in32(&ifc_global->cspr_cs[priv->bank].cspr) + & CSPR_PORT_SIZE_16) { + chip->legacy.read_byte = fsl_ifc_read_byte16; + chip->options |= NAND_BUSWIDTH_16; + } else { + chip->legacy.read_byte = fsl_ifc_read_byte; + } + + chip->controller = &ifc_nand_ctrl->controller; + nand_set_controller_data(chip, priv); + + chip->ecc.read_page = fsl_ifc_read_page; + chip->ecc.write_page = fsl_ifc_write_page; + + csor = ifc_in32(&ifc_global->csor_cs[priv->bank].csor); + + switch (csor & CSOR_NAND_PGS_MASK) { + case CSOR_NAND_PGS_512: + if (!(chip->options & NAND_BUSWIDTH_16)) { + /* Avoid conflict with bad block marker */ + bbt_main_descr.offs = 0; + bbt_mirror_descr.offs = 0; + } + + priv->bufnum_mask = 15; + break; + + case CSOR_NAND_PGS_2K: + priv->bufnum_mask = 3; + break; + + case CSOR_NAND_PGS_4K: + priv->bufnum_mask = 1; + break; + + case CSOR_NAND_PGS_8K: + priv->bufnum_mask = 0; + break; + + default: + dev_err(priv->dev, "bad csor %#x: bad page size\n", csor); + return -ENODEV; + } + + ret = fsl_ifc_sram_init(priv); + if (ret) + return ret; + + /* + * As IFC version 2.0.0 has 16KB of internal SRAM as compared to older + * versions which had 8KB. Hence bufnum mask needs to be updated. + */ + if (ctrl->version >= FSL_IFC_VERSION_2_0_0) + priv->bufnum_mask = (priv->bufnum_mask * 2) + 1; + + return 0; +} + +static int fsl_ifc_chip_remove(struct fsl_ifc_mtd *priv) +{ + struct mtd_info *mtd = nand_to_mtd(&priv->chip); + + kfree(mtd->name); + + if (priv->vbase) + iounmap(priv->vbase); + + ifc_nand_ctrl->chips[priv->bank] = NULL; + + return 0; +} + +static int match_bank(struct fsl_ifc_global __iomem *ifc_global, int bank, + phys_addr_t addr) +{ + u32 cspr = ifc_in32(&ifc_global->cspr_cs[bank].cspr); + + if (!(cspr & CSPR_V)) + return 0; + if ((cspr & CSPR_MSEL) != CSPR_MSEL_NAND) + return 0; + + return (cspr & CSPR_BA) == convert_ifc_address(addr); +} + +static DEFINE_MUTEX(fsl_ifc_nand_mutex); + +static int fsl_ifc_nand_probe(struct platform_device *dev) +{ + struct fsl_ifc_runtime __iomem *ifc; + struct fsl_ifc_mtd *priv; + struct resource res; + static const char *part_probe_types[] + = { "cmdlinepart", "RedBoot", "ofpart", NULL }; + int ret; + int bank; + struct device_node *node = dev->dev.of_node; + struct mtd_info *mtd; + + if (!fsl_ifc_ctrl_dev || !fsl_ifc_ctrl_dev->rregs) + return -ENODEV; + ifc = fsl_ifc_ctrl_dev->rregs; + + /* get, allocate and map the memory resource */ + ret = of_address_to_resource(node, 0, &res); + if (ret) { + dev_err(&dev->dev, "%s: failed to get resource\n", __func__); + return ret; + } + + /* find which chip select it is connected to */ + for (bank = 0; bank < fsl_ifc_ctrl_dev->banks; bank++) { + if (match_bank(fsl_ifc_ctrl_dev->gregs, bank, res.start)) + break; + } + + if (bank >= fsl_ifc_ctrl_dev->banks) { + dev_err(&dev->dev, "%s: address did not match any chip selects\n", + __func__); + return -ENODEV; + } + + priv = devm_kzalloc(&dev->dev, sizeof(*priv), GFP_KERNEL); + if (!priv) + return -ENOMEM; + + mutex_lock(&fsl_ifc_nand_mutex); + if (!fsl_ifc_ctrl_dev->nand) { + ifc_nand_ctrl = kzalloc(sizeof(*ifc_nand_ctrl), GFP_KERNEL); + if (!ifc_nand_ctrl) { + mutex_unlock(&fsl_ifc_nand_mutex); + return -ENOMEM; + } + + ifc_nand_ctrl->read_bytes = 0; + ifc_nand_ctrl->index = 0; + ifc_nand_ctrl->addr = NULL; + fsl_ifc_ctrl_dev->nand = ifc_nand_ctrl; + + nand_controller_init(&ifc_nand_ctrl->controller); + } else { + ifc_nand_ctrl = fsl_ifc_ctrl_dev->nand; + } + mutex_unlock(&fsl_ifc_nand_mutex); + + ifc_nand_ctrl->chips[bank] = priv; + priv->bank = bank; + priv->ctrl = fsl_ifc_ctrl_dev; + priv->dev = &dev->dev; + + priv->vbase = ioremap(res.start, resource_size(&res)); + if (!priv->vbase) { + dev_err(priv->dev, "%s: failed to map chip region\n", __func__); + ret = -ENOMEM; + goto err; + } + + dev_set_drvdata(priv->dev, priv); + + ifc_out32(IFC_NAND_EVTER_EN_OPC_EN | + IFC_NAND_EVTER_EN_FTOER_EN | + IFC_NAND_EVTER_EN_WPER_EN, + &ifc->ifc_nand.nand_evter_en); + + /* enable NAND Machine Interrupts */ + ifc_out32(IFC_NAND_EVTER_INTR_OPCIR_EN | + IFC_NAND_EVTER_INTR_FTOERIR_EN | + IFC_NAND_EVTER_INTR_WPERIR_EN, + &ifc->ifc_nand.nand_evter_intr_en); + + mtd = nand_to_mtd(&priv->chip); + mtd->name = kasprintf(GFP_KERNEL, "%llx.flash", (u64)res.start); + if (!mtd->name) { + ret = -ENOMEM; + goto err; + } + + ret = fsl_ifc_chip_init(priv); + if (ret) + goto err; + + priv->chip.controller->ops = &fsl_ifc_controller_ops; + ret = nand_scan(&priv->chip, 1); + if (ret) + goto err; + + /* First look for RedBoot table or partitions on the command + * line, these take precedence over device tree information */ + ret = mtd_device_parse_register(mtd, part_probe_types, NULL, NULL, 0); + if (ret) + goto cleanup_nand; + + dev_info(priv->dev, "IFC NAND device at 0x%llx, bank %d\n", + (unsigned long long)res.start, priv->bank); + + return 0; + +cleanup_nand: + nand_cleanup(&priv->chip); +err: + fsl_ifc_chip_remove(priv); + + return ret; +} + +static void fsl_ifc_nand_remove(struct platform_device *dev) +{ + struct fsl_ifc_mtd *priv = dev_get_drvdata(&dev->dev); + struct nand_chip *chip = &priv->chip; + int ret; + + ret = mtd_device_unregister(nand_to_mtd(chip)); + WARN_ON(ret); + nand_cleanup(chip); + + fsl_ifc_chip_remove(priv); + + mutex_lock(&fsl_ifc_nand_mutex); + ifc_nand_ctrl->counter--; + if (!ifc_nand_ctrl->counter) { + fsl_ifc_ctrl_dev->nand = NULL; + kfree(ifc_nand_ctrl); + } + mutex_unlock(&fsl_ifc_nand_mutex); +} + +static const struct of_device_id fsl_ifc_nand_match[] = { + { + .compatible = "fsl,ifc-nand", + }, + {} +}; +MODULE_DEVICE_TABLE(of, fsl_ifc_nand_match); + +static struct platform_driver fsl_ifc_nand_driver = { + .driver = { + .name = "fsl,ifc-nand", + .of_match_table = fsl_ifc_nand_match, + }, + .probe = fsl_ifc_nand_probe, + .remove_new = fsl_ifc_nand_remove, +}; + +module_platform_driver(fsl_ifc_nand_driver); + +MODULE_LICENSE("GPL"); +MODULE_AUTHOR("Freescale"); +MODULE_DESCRIPTION("Freescale Integrated Flash Controller MTD NAND driver"); diff --git a/drivers/mtd/nand/raw/fsl_upm.c b/drivers/mtd/nand/raw/fsl_upm.c new file mode 100644 index 0000000000..315e9d2b57 --- /dev/null +++ b/drivers/mtd/nand/raw/fsl_upm.c @@ -0,0 +1,270 @@ +// SPDX-License-Identifier: GPL-2.0-or-later +/* + * Freescale UPM NAND driver. + * + * Copyright © 2007-2008 MontaVista Software, Inc. + * + * Author: Anton Vorontsov <avorontsov@ru.mvista.com> + */ + +#include <linux/kernel.h> +#include <linux/module.h> +#include <linux/delay.h> +#include <linux/mtd/rawnand.h> +#include <linux/mtd/partitions.h> +#include <linux/mtd/mtd.h> +#include <linux/of.h> +#include <linux/platform_device.h> +#include <linux/io.h> +#include <linux/slab.h> +#include <asm/fsl_lbc.h> + +struct fsl_upm_nand { + struct nand_controller base; + struct device *dev; + struct nand_chip chip; + struct fsl_upm upm; + uint8_t upm_addr_offset; + uint8_t upm_cmd_offset; + void __iomem *io_base; + struct gpio_desc *rnb_gpio[NAND_MAX_CHIPS]; + uint32_t mchip_offsets[NAND_MAX_CHIPS]; + uint32_t mchip_count; + uint32_t mchip_number; +}; + +static inline struct fsl_upm_nand *to_fsl_upm_nand(struct mtd_info *mtdinfo) +{ + return container_of(mtd_to_nand(mtdinfo), struct fsl_upm_nand, + chip); +} + +static int fun_chip_init(struct fsl_upm_nand *fun, + const struct device_node *upm_np, + const struct resource *io_res) +{ + struct mtd_info *mtd = nand_to_mtd(&fun->chip); + int ret; + struct device_node *flash_np; + + fun->chip.ecc.engine_type = NAND_ECC_ENGINE_TYPE_SOFT; + fun->chip.ecc.algo = NAND_ECC_ALGO_HAMMING; + fun->chip.controller = &fun->base; + mtd->dev.parent = fun->dev; + + flash_np = of_get_next_child(upm_np, NULL); + if (!flash_np) + return -ENODEV; + + nand_set_flash_node(&fun->chip, flash_np); + mtd->name = devm_kasprintf(fun->dev, GFP_KERNEL, "0x%llx.%pOFn", + (u64)io_res->start, + flash_np); + if (!mtd->name) { + ret = -ENOMEM; + goto err; + } + + ret = nand_scan(&fun->chip, fun->mchip_count); + if (ret) + goto err; + + ret = mtd_device_register(mtd, NULL, 0); +err: + of_node_put(flash_np); + return ret; +} + +static int func_exec_instr(struct nand_chip *chip, + const struct nand_op_instr *instr) +{ + struct fsl_upm_nand *fun = to_fsl_upm_nand(nand_to_mtd(chip)); + u32 mar, reg_offs = fun->mchip_offsets[fun->mchip_number]; + unsigned int i; + const u8 *out; + u8 *in; + + switch (instr->type) { + case NAND_OP_CMD_INSTR: + fsl_upm_start_pattern(&fun->upm, fun->upm_cmd_offset); + mar = (instr->ctx.cmd.opcode << (32 - fun->upm.width)) | + reg_offs; + fsl_upm_run_pattern(&fun->upm, fun->io_base + reg_offs, mar); + fsl_upm_end_pattern(&fun->upm); + return 0; + + case NAND_OP_ADDR_INSTR: + fsl_upm_start_pattern(&fun->upm, fun->upm_addr_offset); + for (i = 0; i < instr->ctx.addr.naddrs; i++) { + mar = (instr->ctx.addr.addrs[i] << (32 - fun->upm.width)) | + reg_offs; + fsl_upm_run_pattern(&fun->upm, fun->io_base + reg_offs, mar); + } + fsl_upm_end_pattern(&fun->upm); + return 0; + + case NAND_OP_DATA_IN_INSTR: + in = instr->ctx.data.buf.in; + for (i = 0; i < instr->ctx.data.len; i++) + in[i] = in_8(fun->io_base + reg_offs); + return 0; + + case NAND_OP_DATA_OUT_INSTR: + out = instr->ctx.data.buf.out; + for (i = 0; i < instr->ctx.data.len; i++) + out_8(fun->io_base + reg_offs, out[i]); + return 0; + + case NAND_OP_WAITRDY_INSTR: + if (!fun->rnb_gpio[fun->mchip_number]) + return nand_soft_waitrdy(chip, instr->ctx.waitrdy.timeout_ms); + + return nand_gpio_waitrdy(chip, fun->rnb_gpio[fun->mchip_number], + instr->ctx.waitrdy.timeout_ms); + + default: + return -EINVAL; + } + + return 0; +} + +static int fun_exec_op(struct nand_chip *chip, const struct nand_operation *op, + bool check_only) +{ + struct fsl_upm_nand *fun = to_fsl_upm_nand(nand_to_mtd(chip)); + unsigned int i; + int ret; + + if (op->cs >= NAND_MAX_CHIPS) + return -EINVAL; + + if (check_only) + return 0; + + fun->mchip_number = op->cs; + + for (i = 0; i < op->ninstrs; i++) { + ret = func_exec_instr(chip, &op->instrs[i]); + if (ret) + return ret; + + if (op->instrs[i].delay_ns) + ndelay(op->instrs[i].delay_ns); + } + + return 0; +} + +static const struct nand_controller_ops fun_ops = { + .exec_op = fun_exec_op, +}; + +static int fun_probe(struct platform_device *ofdev) +{ + struct fsl_upm_nand *fun; + struct resource *io_res; + const __be32 *prop; + int ret; + int size; + int i; + + fun = devm_kzalloc(&ofdev->dev, sizeof(*fun), GFP_KERNEL); + if (!fun) + return -ENOMEM; + + fun->io_base = devm_platform_get_and_ioremap_resource(ofdev, 0, &io_res); + if (IS_ERR(fun->io_base)) + return PTR_ERR(fun->io_base); + + ret = fsl_upm_find(io_res->start, &fun->upm); + if (ret) { + dev_err(&ofdev->dev, "can't find UPM\n"); + return ret; + } + + prop = of_get_property(ofdev->dev.of_node, "fsl,upm-addr-offset", + &size); + if (!prop || size != sizeof(uint32_t)) { + dev_err(&ofdev->dev, "can't get UPM address offset\n"); + return -EINVAL; + } + fun->upm_addr_offset = *prop; + + prop = of_get_property(ofdev->dev.of_node, "fsl,upm-cmd-offset", &size); + if (!prop || size != sizeof(uint32_t)) { + dev_err(&ofdev->dev, "can't get UPM command offset\n"); + return -EINVAL; + } + fun->upm_cmd_offset = *prop; + + prop = of_get_property(ofdev->dev.of_node, + "fsl,upm-addr-line-cs-offsets", &size); + if (prop && (size / sizeof(uint32_t)) > 0) { + fun->mchip_count = size / sizeof(uint32_t); + if (fun->mchip_count >= NAND_MAX_CHIPS) { + dev_err(&ofdev->dev, "too much multiple chips\n"); + return -EINVAL; + } + for (i = 0; i < fun->mchip_count; i++) + fun->mchip_offsets[i] = be32_to_cpu(prop[i]); + } else { + fun->mchip_count = 1; + } + + for (i = 0; i < fun->mchip_count; i++) { + fun->rnb_gpio[i] = devm_gpiod_get_index_optional(&ofdev->dev, + NULL, i, + GPIOD_IN); + if (IS_ERR(fun->rnb_gpio[i])) { + dev_err(&ofdev->dev, "RNB gpio #%d is invalid\n", i); + return PTR_ERR(fun->rnb_gpio[i]); + } + } + + nand_controller_init(&fun->base); + fun->base.ops = &fun_ops; + fun->dev = &ofdev->dev; + + ret = fun_chip_init(fun, ofdev->dev.of_node, io_res); + if (ret) + return ret; + + dev_set_drvdata(&ofdev->dev, fun); + + return 0; +} + +static void fun_remove(struct platform_device *ofdev) +{ + struct fsl_upm_nand *fun = dev_get_drvdata(&ofdev->dev); + struct nand_chip *chip = &fun->chip; + struct mtd_info *mtd = nand_to_mtd(chip); + int ret; + + ret = mtd_device_unregister(mtd); + WARN_ON(ret); + nand_cleanup(chip); +} + +static const struct of_device_id of_fun_match[] = { + { .compatible = "fsl,upm-nand" }, + {}, +}; +MODULE_DEVICE_TABLE(of, of_fun_match); + +static struct platform_driver of_fun_driver = { + .driver = { + .name = "fsl,upm-nand", + .of_match_table = of_fun_match, + }, + .probe = fun_probe, + .remove_new = fun_remove, +}; + +module_platform_driver(of_fun_driver); + +MODULE_LICENSE("GPL"); +MODULE_AUTHOR("Anton Vorontsov <avorontsov@ru.mvista.com>"); +MODULE_DESCRIPTION("Driver for NAND chips working through Freescale " + "LocalBus User-Programmable Machine"); diff --git a/drivers/mtd/nand/raw/fsmc_nand.c b/drivers/mtd/nand/raw/fsmc_nand.c new file mode 100644 index 0000000000..811982da35 --- /dev/null +++ b/drivers/mtd/nand/raw/fsmc_nand.c @@ -0,0 +1,1236 @@ +// SPDX-License-Identifier: GPL-2.0 +/* + * ST Microelectronics + * Flexible Static Memory Controller (FSMC) + * Driver for NAND portions + * + * Copyright © 2010 ST Microelectronics + * Vipin Kumar <vipin.kumar@st.com> + * Ashish Priyadarshi + * + * Based on drivers/mtd/nand/nomadik_nand.c (removed in v3.8) + * Copyright © 2007 STMicroelectronics Pvt. Ltd. + * Copyright © 2009 Alessandro Rubini + */ + +#include <linux/clk.h> +#include <linux/completion.h> +#include <linux/delay.h> +#include <linux/dmaengine.h> +#include <linux/dma-direction.h> +#include <linux/dma-mapping.h> +#include <linux/err.h> +#include <linux/init.h> +#include <linux/module.h> +#include <linux/resource.h> +#include <linux/sched.h> +#include <linux/types.h> +#include <linux/mtd/mtd.h> +#include <linux/mtd/nand-ecc-sw-hamming.h> +#include <linux/mtd/rawnand.h> +#include <linux/platform_device.h> +#include <linux/of.h> +#include <linux/mtd/partitions.h> +#include <linux/io.h> +#include <linux/slab.h> +#include <linux/amba/bus.h> +#include <mtd/mtd-abi.h> + +/* fsmc controller registers for NOR flash */ +#define CTRL 0x0 + /* ctrl register definitions */ + #define BANK_ENABLE BIT(0) + #define MUXED BIT(1) + #define NOR_DEV (2 << 2) + #define WIDTH_16 BIT(4) + #define RSTPWRDWN BIT(6) + #define WPROT BIT(7) + #define WRT_ENABLE BIT(12) + #define WAIT_ENB BIT(13) + +#define CTRL_TIM 0x4 + /* ctrl_tim register definitions */ + +#define FSMC_NOR_BANK_SZ 0x8 +#define FSMC_NOR_REG_SIZE 0x40 + +#define FSMC_NOR_REG(base, bank, reg) ((base) + \ + (FSMC_NOR_BANK_SZ * (bank)) + \ + (reg)) + +/* fsmc controller registers for NAND flash */ +#define FSMC_PC 0x00 + /* pc register definitions */ + #define FSMC_RESET BIT(0) + #define FSMC_WAITON BIT(1) + #define FSMC_ENABLE BIT(2) + #define FSMC_DEVTYPE_NAND BIT(3) + #define FSMC_DEVWID_16 BIT(4) + #define FSMC_ECCEN BIT(6) + #define FSMC_ECCPLEN_256 BIT(7) + #define FSMC_TCLR_SHIFT (9) + #define FSMC_TCLR_MASK (0xF) + #define FSMC_TAR_SHIFT (13) + #define FSMC_TAR_MASK (0xF) +#define STS 0x04 + /* sts register definitions */ + #define FSMC_CODE_RDY BIT(15) +#define COMM 0x08 + /* comm register definitions */ + #define FSMC_TSET_SHIFT 0 + #define FSMC_TSET_MASK 0xFF + #define FSMC_TWAIT_SHIFT 8 + #define FSMC_TWAIT_MASK 0xFF + #define FSMC_THOLD_SHIFT 16 + #define FSMC_THOLD_MASK 0xFF + #define FSMC_THIZ_SHIFT 24 + #define FSMC_THIZ_MASK 0xFF +#define ATTRIB 0x0C +#define IOATA 0x10 +#define ECC1 0x14 +#define ECC2 0x18 +#define ECC3 0x1C +#define FSMC_NAND_BANK_SZ 0x20 + +#define FSMC_BUSY_WAIT_TIMEOUT (1 * HZ) + +/* + * According to SPEAr300 Reference Manual (RM0082) + * TOUDEL = 7ns (Output delay from the flip-flops to the board) + * TINDEL = 5ns (Input delay from the board to the flipflop) + */ +#define TOUTDEL 7000 +#define TINDEL 5000 + +struct fsmc_nand_timings { + u8 tclr; + u8 tar; + u8 thiz; + u8 thold; + u8 twait; + u8 tset; +}; + +enum access_mode { + USE_DMA_ACCESS = 1, + USE_WORD_ACCESS, +}; + +/** + * struct fsmc_nand_data - structure for FSMC NAND device state + * + * @base: Inherit from the nand_controller struct + * @pid: Part ID on the AMBA PrimeCell format + * @nand: Chip related info for a NAND flash. + * + * @bank: Bank number for probed device. + * @dev: Parent device + * @mode: Access mode + * @clk: Clock structure for FSMC. + * + * @read_dma_chan: DMA channel for read access + * @write_dma_chan: DMA channel for write access to NAND + * @dma_access_complete: Completion structure + * + * @dev_timings: NAND timings + * + * @data_pa: NAND Physical port for Data. + * @data_va: NAND port for Data. + * @cmd_va: NAND port for Command. + * @addr_va: NAND port for Address. + * @regs_va: Registers base address for a given bank. + */ +struct fsmc_nand_data { + struct nand_controller base; + u32 pid; + struct nand_chip nand; + + unsigned int bank; + struct device *dev; + enum access_mode mode; + struct clk *clk; + + /* DMA related objects */ + struct dma_chan *read_dma_chan; + struct dma_chan *write_dma_chan; + struct completion dma_access_complete; + + struct fsmc_nand_timings *dev_timings; + + dma_addr_t data_pa; + void __iomem *data_va; + void __iomem *cmd_va; + void __iomem *addr_va; + void __iomem *regs_va; +}; + +static int fsmc_ecc1_ooblayout_ecc(struct mtd_info *mtd, int section, + struct mtd_oob_region *oobregion) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + + if (section >= chip->ecc.steps) + return -ERANGE; + + oobregion->offset = (section * 16) + 2; + oobregion->length = 3; + + return 0; +} + +static int fsmc_ecc1_ooblayout_free(struct mtd_info *mtd, int section, + struct mtd_oob_region *oobregion) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + + if (section >= chip->ecc.steps) + return -ERANGE; + + oobregion->offset = (section * 16) + 8; + + if (section < chip->ecc.steps - 1) + oobregion->length = 8; + else + oobregion->length = mtd->oobsize - oobregion->offset; + + return 0; +} + +static const struct mtd_ooblayout_ops fsmc_ecc1_ooblayout_ops = { + .ecc = fsmc_ecc1_ooblayout_ecc, + .free = fsmc_ecc1_ooblayout_free, +}; + +/* + * ECC placement definitions in oobfree type format. + * There are 13 bytes of ecc for every 512 byte block and it has to be read + * consecutively and immediately after the 512 byte data block for hardware to + * generate the error bit offsets in 512 byte data. + */ +static int fsmc_ecc4_ooblayout_ecc(struct mtd_info *mtd, int section, + struct mtd_oob_region *oobregion) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + + if (section >= chip->ecc.steps) + return -ERANGE; + + oobregion->length = chip->ecc.bytes; + + if (!section && mtd->writesize <= 512) + oobregion->offset = 0; + else + oobregion->offset = (section * 16) + 2; + + return 0; +} + +static int fsmc_ecc4_ooblayout_free(struct mtd_info *mtd, int section, + struct mtd_oob_region *oobregion) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + + if (section >= chip->ecc.steps) + return -ERANGE; + + oobregion->offset = (section * 16) + 15; + + if (section < chip->ecc.steps - 1) + oobregion->length = 3; + else + oobregion->length = mtd->oobsize - oobregion->offset; + + return 0; +} + +static const struct mtd_ooblayout_ops fsmc_ecc4_ooblayout_ops = { + .ecc = fsmc_ecc4_ooblayout_ecc, + .free = fsmc_ecc4_ooblayout_free, +}; + +static inline struct fsmc_nand_data *nand_to_fsmc(struct nand_chip *chip) +{ + return container_of(chip, struct fsmc_nand_data, nand); +} + +/* + * fsmc_nand_setup - FSMC (Flexible Static Memory Controller) init routine + * + * This routine initializes timing parameters related to NAND memory access in + * FSMC registers + */ +static void fsmc_nand_setup(struct fsmc_nand_data *host, + struct fsmc_nand_timings *tims) +{ + u32 value = FSMC_DEVTYPE_NAND | FSMC_ENABLE | FSMC_WAITON; + u32 tclr, tar, thiz, thold, twait, tset; + + tclr = (tims->tclr & FSMC_TCLR_MASK) << FSMC_TCLR_SHIFT; + tar = (tims->tar & FSMC_TAR_MASK) << FSMC_TAR_SHIFT; + thiz = (tims->thiz & FSMC_THIZ_MASK) << FSMC_THIZ_SHIFT; + thold = (tims->thold & FSMC_THOLD_MASK) << FSMC_THOLD_SHIFT; + twait = (tims->twait & FSMC_TWAIT_MASK) << FSMC_TWAIT_SHIFT; + tset = (tims->tset & FSMC_TSET_MASK) << FSMC_TSET_SHIFT; + + if (host->nand.options & NAND_BUSWIDTH_16) + value |= FSMC_DEVWID_16; + + writel_relaxed(value | tclr | tar, host->regs_va + FSMC_PC); + writel_relaxed(thiz | thold | twait | tset, host->regs_va + COMM); + writel_relaxed(thiz | thold | twait | tset, host->regs_va + ATTRIB); +} + +static int fsmc_calc_timings(struct fsmc_nand_data *host, + const struct nand_sdr_timings *sdrt, + struct fsmc_nand_timings *tims) +{ + unsigned long hclk = clk_get_rate(host->clk); + unsigned long hclkn = NSEC_PER_SEC / hclk; + u32 thiz, thold, twait, tset, twait_min; + + if (sdrt->tRC_min < 30000) + return -EOPNOTSUPP; + + tims->tar = DIV_ROUND_UP(sdrt->tAR_min / 1000, hclkn) - 1; + if (tims->tar > FSMC_TAR_MASK) + tims->tar = FSMC_TAR_MASK; + tims->tclr = DIV_ROUND_UP(sdrt->tCLR_min / 1000, hclkn) - 1; + if (tims->tclr > FSMC_TCLR_MASK) + tims->tclr = FSMC_TCLR_MASK; + + thiz = sdrt->tCS_min - sdrt->tWP_min; + tims->thiz = DIV_ROUND_UP(thiz / 1000, hclkn); + + thold = sdrt->tDH_min; + if (thold < sdrt->tCH_min) + thold = sdrt->tCH_min; + if (thold < sdrt->tCLH_min) + thold = sdrt->tCLH_min; + if (thold < sdrt->tWH_min) + thold = sdrt->tWH_min; + if (thold < sdrt->tALH_min) + thold = sdrt->tALH_min; + if (thold < sdrt->tREH_min) + thold = sdrt->tREH_min; + tims->thold = DIV_ROUND_UP(thold / 1000, hclkn); + if (tims->thold == 0) + tims->thold = 1; + else if (tims->thold > FSMC_THOLD_MASK) + tims->thold = FSMC_THOLD_MASK; + + tset = max(sdrt->tCS_min - sdrt->tWP_min, + sdrt->tCEA_max - sdrt->tREA_max); + tims->tset = DIV_ROUND_UP(tset / 1000, hclkn) - 1; + if (tims->tset == 0) + tims->tset = 1; + else if (tims->tset > FSMC_TSET_MASK) + tims->tset = FSMC_TSET_MASK; + + /* + * According to SPEAr300 Reference Manual (RM0082) which gives more + * information related to FSMSC timings than the SPEAr600 one (RM0305), + * twait >= tCEA - (tset * TCLK) + TOUTDEL + TINDEL + */ + twait_min = sdrt->tCEA_max - ((tims->tset + 1) * hclkn * 1000) + + TOUTDEL + TINDEL; + twait = max3(sdrt->tRP_min, sdrt->tWP_min, twait_min); + + tims->twait = DIV_ROUND_UP(twait / 1000, hclkn) - 1; + if (tims->twait == 0) + tims->twait = 1; + else if (tims->twait > FSMC_TWAIT_MASK) + tims->twait = FSMC_TWAIT_MASK; + + return 0; +} + +static int fsmc_setup_interface(struct nand_chip *nand, int csline, + const struct nand_interface_config *conf) +{ + struct fsmc_nand_data *host = nand_to_fsmc(nand); + struct fsmc_nand_timings tims; + const struct nand_sdr_timings *sdrt; + int ret; + + sdrt = nand_get_sdr_timings(conf); + if (IS_ERR(sdrt)) + return PTR_ERR(sdrt); + + ret = fsmc_calc_timings(host, sdrt, &tims); + if (ret) + return ret; + + if (csline == NAND_DATA_IFACE_CHECK_ONLY) + return 0; + + fsmc_nand_setup(host, &tims); + + return 0; +} + +/* + * fsmc_enable_hwecc - Enables Hardware ECC through FSMC registers + */ +static void fsmc_enable_hwecc(struct nand_chip *chip, int mode) +{ + struct fsmc_nand_data *host = nand_to_fsmc(chip); + + writel_relaxed(readl(host->regs_va + FSMC_PC) & ~FSMC_ECCPLEN_256, + host->regs_va + FSMC_PC); + writel_relaxed(readl(host->regs_va + FSMC_PC) & ~FSMC_ECCEN, + host->regs_va + FSMC_PC); + writel_relaxed(readl(host->regs_va + FSMC_PC) | FSMC_ECCEN, + host->regs_va + FSMC_PC); +} + +/* + * fsmc_read_hwecc_ecc4 - Hardware ECC calculator for ecc4 option supported by + * FSMC. ECC is 13 bytes for 512 bytes of data (supports error correction up to + * max of 8-bits) + */ +static int fsmc_read_hwecc_ecc4(struct nand_chip *chip, const u8 *data, + u8 *ecc) +{ + struct fsmc_nand_data *host = nand_to_fsmc(chip); + u32 ecc_tmp; + unsigned long deadline = jiffies + FSMC_BUSY_WAIT_TIMEOUT; + + do { + if (readl_relaxed(host->regs_va + STS) & FSMC_CODE_RDY) + break; + + cond_resched(); + } while (!time_after_eq(jiffies, deadline)); + + if (time_after_eq(jiffies, deadline)) { + dev_err(host->dev, "calculate ecc timed out\n"); + return -ETIMEDOUT; + } + + ecc_tmp = readl_relaxed(host->regs_va + ECC1); + ecc[0] = ecc_tmp; + ecc[1] = ecc_tmp >> 8; + ecc[2] = ecc_tmp >> 16; + ecc[3] = ecc_tmp >> 24; + + ecc_tmp = readl_relaxed(host->regs_va + ECC2); + ecc[4] = ecc_tmp; + ecc[5] = ecc_tmp >> 8; + ecc[6] = ecc_tmp >> 16; + ecc[7] = ecc_tmp >> 24; + + ecc_tmp = readl_relaxed(host->regs_va + ECC3); + ecc[8] = ecc_tmp; + ecc[9] = ecc_tmp >> 8; + ecc[10] = ecc_tmp >> 16; + ecc[11] = ecc_tmp >> 24; + + ecc_tmp = readl_relaxed(host->regs_va + STS); + ecc[12] = ecc_tmp >> 16; + + return 0; +} + +/* + * fsmc_read_hwecc_ecc1 - Hardware ECC calculator for ecc1 option supported by + * FSMC. ECC is 3 bytes for 512 bytes of data (supports error correction up to + * max of 1-bit) + */ +static int fsmc_read_hwecc_ecc1(struct nand_chip *chip, const u8 *data, + u8 *ecc) +{ + struct fsmc_nand_data *host = nand_to_fsmc(chip); + u32 ecc_tmp; + + ecc_tmp = readl_relaxed(host->regs_va + ECC1); + ecc[0] = ecc_tmp; + ecc[1] = ecc_tmp >> 8; + ecc[2] = ecc_tmp >> 16; + + return 0; +} + +static int fsmc_correct_ecc1(struct nand_chip *chip, + unsigned char *buf, + unsigned char *read_ecc, + unsigned char *calc_ecc) +{ + bool sm_order = chip->ecc.options & NAND_ECC_SOFT_HAMMING_SM_ORDER; + + return ecc_sw_hamming_correct(buf, read_ecc, calc_ecc, + chip->ecc.size, sm_order); +} + +/* Count the number of 0's in buff upto a max of max_bits */ +static int count_written_bits(u8 *buff, int size, int max_bits) +{ + int k, written_bits = 0; + + for (k = 0; k < size; k++) { + written_bits += hweight8(~buff[k]); + if (written_bits > max_bits) + break; + } + + return written_bits; +} + +static void dma_complete(void *param) +{ + struct fsmc_nand_data *host = param; + + complete(&host->dma_access_complete); +} + +static int dma_xfer(struct fsmc_nand_data *host, void *buffer, int len, + enum dma_data_direction direction) +{ + struct dma_chan *chan; + struct dma_device *dma_dev; + struct dma_async_tx_descriptor *tx; + dma_addr_t dma_dst, dma_src, dma_addr; + dma_cookie_t cookie; + unsigned long flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT; + int ret; + unsigned long time_left; + + if (direction == DMA_TO_DEVICE) + chan = host->write_dma_chan; + else if (direction == DMA_FROM_DEVICE) + chan = host->read_dma_chan; + else + return -EINVAL; + + dma_dev = chan->device; + dma_addr = dma_map_single(dma_dev->dev, buffer, len, direction); + + if (direction == DMA_TO_DEVICE) { + dma_src = dma_addr; + dma_dst = host->data_pa; + } else { + dma_src = host->data_pa; + dma_dst = dma_addr; + } + + tx = dma_dev->device_prep_dma_memcpy(chan, dma_dst, dma_src, + len, flags); + if (!tx) { + dev_err(host->dev, "device_prep_dma_memcpy error\n"); + ret = -EIO; + goto unmap_dma; + } + + tx->callback = dma_complete; + tx->callback_param = host; + cookie = tx->tx_submit(tx); + + ret = dma_submit_error(cookie); + if (ret) { + dev_err(host->dev, "dma_submit_error %d\n", cookie); + goto unmap_dma; + } + + dma_async_issue_pending(chan); + + time_left = + wait_for_completion_timeout(&host->dma_access_complete, + msecs_to_jiffies(3000)); + if (time_left == 0) { + dmaengine_terminate_all(chan); + dev_err(host->dev, "wait_for_completion_timeout\n"); + ret = -ETIMEDOUT; + goto unmap_dma; + } + + ret = 0; + +unmap_dma: + dma_unmap_single(dma_dev->dev, dma_addr, len, direction); + + return ret; +} + +/* + * fsmc_write_buf - write buffer to chip + * @host: FSMC NAND controller + * @buf: data buffer + * @len: number of bytes to write + */ +static void fsmc_write_buf(struct fsmc_nand_data *host, const u8 *buf, + int len) +{ + int i; + + if (IS_ALIGNED((uintptr_t)buf, sizeof(u32)) && + IS_ALIGNED(len, sizeof(u32))) { + u32 *p = (u32 *)buf; + + len = len >> 2; + for (i = 0; i < len; i++) + writel_relaxed(p[i], host->data_va); + } else { + for (i = 0; i < len; i++) + writeb_relaxed(buf[i], host->data_va); + } +} + +/* + * fsmc_read_buf - read chip data into buffer + * @host: FSMC NAND controller + * @buf: buffer to store date + * @len: number of bytes to read + */ +static void fsmc_read_buf(struct fsmc_nand_data *host, u8 *buf, int len) +{ + int i; + + if (IS_ALIGNED((uintptr_t)buf, sizeof(u32)) && + IS_ALIGNED(len, sizeof(u32))) { + u32 *p = (u32 *)buf; + + len = len >> 2; + for (i = 0; i < len; i++) + p[i] = readl_relaxed(host->data_va); + } else { + for (i = 0; i < len; i++) + buf[i] = readb_relaxed(host->data_va); + } +} + +/* + * fsmc_read_buf_dma - read chip data into buffer + * @host: FSMC NAND controller + * @buf: buffer to store date + * @len: number of bytes to read + */ +static void fsmc_read_buf_dma(struct fsmc_nand_data *host, u8 *buf, + int len) +{ + dma_xfer(host, buf, len, DMA_FROM_DEVICE); +} + +/* + * fsmc_write_buf_dma - write buffer to chip + * @host: FSMC NAND controller + * @buf: data buffer + * @len: number of bytes to write + */ +static void fsmc_write_buf_dma(struct fsmc_nand_data *host, const u8 *buf, + int len) +{ + dma_xfer(host, (void *)buf, len, DMA_TO_DEVICE); +} + +/* + * fsmc_exec_op - hook called by the core to execute NAND operations + * + * This controller is simple enough and thus does not need to use the parser + * provided by the core, instead, handle every situation here. + */ +static int fsmc_exec_op(struct nand_chip *chip, const struct nand_operation *op, + bool check_only) +{ + struct fsmc_nand_data *host = nand_to_fsmc(chip); + const struct nand_op_instr *instr = NULL; + int ret = 0; + unsigned int op_id; + int i; + + if (check_only) + return 0; + + pr_debug("Executing operation [%d instructions]:\n", op->ninstrs); + + for (op_id = 0; op_id < op->ninstrs; op_id++) { + instr = &op->instrs[op_id]; + + nand_op_trace(" ", instr); + + switch (instr->type) { + case NAND_OP_CMD_INSTR: + writeb_relaxed(instr->ctx.cmd.opcode, host->cmd_va); + break; + + case NAND_OP_ADDR_INSTR: + for (i = 0; i < instr->ctx.addr.naddrs; i++) + writeb_relaxed(instr->ctx.addr.addrs[i], + host->addr_va); + break; + + case NAND_OP_DATA_IN_INSTR: + if (host->mode == USE_DMA_ACCESS) + fsmc_read_buf_dma(host, instr->ctx.data.buf.in, + instr->ctx.data.len); + else + fsmc_read_buf(host, instr->ctx.data.buf.in, + instr->ctx.data.len); + break; + + case NAND_OP_DATA_OUT_INSTR: + if (host->mode == USE_DMA_ACCESS) + fsmc_write_buf_dma(host, + instr->ctx.data.buf.out, + instr->ctx.data.len); + else + fsmc_write_buf(host, instr->ctx.data.buf.out, + instr->ctx.data.len); + break; + + case NAND_OP_WAITRDY_INSTR: + ret = nand_soft_waitrdy(chip, + instr->ctx.waitrdy.timeout_ms); + break; + } + + if (instr->delay_ns) + ndelay(instr->delay_ns); + } + + return ret; +} + +/* + * fsmc_read_page_hwecc + * @chip: nand chip info structure + * @buf: buffer to store read data + * @oob_required: caller expects OOB data read to chip->oob_poi + * @page: page number to read + * + * This routine is needed for fsmc version 8 as reading from NAND chip has to be + * performed in a strict sequence as follows: + * data(512 byte) -> ecc(13 byte) + * After this read, fsmc hardware generates and reports error data bits(up to a + * max of 8 bits) + */ +static int fsmc_read_page_hwecc(struct nand_chip *chip, u8 *buf, + int oob_required, int page) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + int i, j, s, stat, eccsize = chip->ecc.size; + int eccbytes = chip->ecc.bytes; + int eccsteps = chip->ecc.steps; + u8 *p = buf; + u8 *ecc_calc = chip->ecc.calc_buf; + u8 *ecc_code = chip->ecc.code_buf; + int off, len, ret, group = 0; + /* + * ecc_oob is intentionally taken as u16. In 16bit devices, we + * end up reading 14 bytes (7 words) from oob. The local array is + * to maintain word alignment + */ + u16 ecc_oob[7]; + u8 *oob = (u8 *)&ecc_oob[0]; + unsigned int max_bitflips = 0; + + for (i = 0, s = 0; s < eccsteps; s++, i += eccbytes, p += eccsize) { + nand_read_page_op(chip, page, s * eccsize, NULL, 0); + chip->ecc.hwctl(chip, NAND_ECC_READ); + ret = nand_read_data_op(chip, p, eccsize, false, false); + if (ret) + return ret; + + for (j = 0; j < eccbytes;) { + struct mtd_oob_region oobregion; + + ret = mtd_ooblayout_ecc(mtd, group++, &oobregion); + if (ret) + return ret; + + off = oobregion.offset; + len = oobregion.length; + + /* + * length is intentionally kept a higher multiple of 2 + * to read at least 13 bytes even in case of 16 bit NAND + * devices + */ + if (chip->options & NAND_BUSWIDTH_16) + len = roundup(len, 2); + + nand_read_oob_op(chip, page, off, oob + j, len); + j += len; + } + + memcpy(&ecc_code[i], oob, chip->ecc.bytes); + chip->ecc.calculate(chip, p, &ecc_calc[i]); + + stat = chip->ecc.correct(chip, p, &ecc_code[i], &ecc_calc[i]); + if (stat < 0) { + mtd->ecc_stats.failed++; + } else { + mtd->ecc_stats.corrected += stat; + max_bitflips = max_t(unsigned int, max_bitflips, stat); + } + } + + return max_bitflips; +} + +/* + * fsmc_bch8_correct_data + * @mtd: mtd info structure + * @dat: buffer of read data + * @read_ecc: ecc read from device spare area + * @calc_ecc: ecc calculated from read data + * + * calc_ecc is a 104 bit information containing maximum of 8 error + * offset information of 13 bits each in 512 bytes of read data. + */ +static int fsmc_bch8_correct_data(struct nand_chip *chip, u8 *dat, + u8 *read_ecc, u8 *calc_ecc) +{ + struct fsmc_nand_data *host = nand_to_fsmc(chip); + u32 err_idx[8]; + u32 num_err, i; + u32 ecc1, ecc2, ecc3, ecc4; + + num_err = (readl_relaxed(host->regs_va + STS) >> 10) & 0xF; + + /* no bit flipping */ + if (likely(num_err == 0)) + return 0; + + /* too many errors */ + if (unlikely(num_err > 8)) { + /* + * This is a temporary erase check. A newly erased page read + * would result in an ecc error because the oob data is also + * erased to FF and the calculated ecc for an FF data is not + * FF..FF. + * This is a workaround to skip performing correction in case + * data is FF..FF + * + * Logic: + * For every page, each bit written as 0 is counted until these + * number of bits are greater than 8 (the maximum correction + * capability of FSMC for each 512 + 13 bytes) + */ + + int bits_ecc = count_written_bits(read_ecc, chip->ecc.bytes, 8); + int bits_data = count_written_bits(dat, chip->ecc.size, 8); + + if ((bits_ecc + bits_data) <= 8) { + if (bits_data) + memset(dat, 0xff, chip->ecc.size); + return bits_data; + } + + return -EBADMSG; + } + + /* + * ------------------- calc_ecc[] bit wise -----------|--13 bits--| + * |---idx[7]--|--.....-----|---idx[2]--||---idx[1]--||---idx[0]--| + * + * calc_ecc is a 104 bit information containing maximum of 8 error + * offset information of 13 bits each. calc_ecc is copied into a + * u64 array and error offset indexes are populated in err_idx + * array + */ + ecc1 = readl_relaxed(host->regs_va + ECC1); + ecc2 = readl_relaxed(host->regs_va + ECC2); + ecc3 = readl_relaxed(host->regs_va + ECC3); + ecc4 = readl_relaxed(host->regs_va + STS); + + err_idx[0] = (ecc1 >> 0) & 0x1FFF; + err_idx[1] = (ecc1 >> 13) & 0x1FFF; + err_idx[2] = (((ecc2 >> 0) & 0x7F) << 6) | ((ecc1 >> 26) & 0x3F); + err_idx[3] = (ecc2 >> 7) & 0x1FFF; + err_idx[4] = (((ecc3 >> 0) & 0x1) << 12) | ((ecc2 >> 20) & 0xFFF); + err_idx[5] = (ecc3 >> 1) & 0x1FFF; + err_idx[6] = (ecc3 >> 14) & 0x1FFF; + err_idx[7] = (((ecc4 >> 16) & 0xFF) << 5) | ((ecc3 >> 27) & 0x1F); + + i = 0; + while (num_err--) { + err_idx[i] ^= 3; + + if (err_idx[i] < chip->ecc.size * 8) { + int err = err_idx[i]; + + dat[err >> 3] ^= BIT(err & 7); + i++; + } + } + return i; +} + +static bool filter(struct dma_chan *chan, void *slave) +{ + chan->private = slave; + return true; +} + +static int fsmc_nand_probe_config_dt(struct platform_device *pdev, + struct fsmc_nand_data *host, + struct nand_chip *nand) +{ + struct device_node *np = pdev->dev.of_node; + u32 val; + int ret; + + nand->options = 0; + + if (!of_property_read_u32(np, "bank-width", &val)) { + if (val == 2) { + nand->options |= NAND_BUSWIDTH_16; + } else if (val != 1) { + dev_err(&pdev->dev, "invalid bank-width %u\n", val); + return -EINVAL; + } + } + + if (of_property_read_bool(np, "nand-skip-bbtscan")) + nand->options |= NAND_SKIP_BBTSCAN; + + host->dev_timings = devm_kzalloc(&pdev->dev, + sizeof(*host->dev_timings), + GFP_KERNEL); + if (!host->dev_timings) + return -ENOMEM; + + ret = of_property_read_u8_array(np, "timings", (u8 *)host->dev_timings, + sizeof(*host->dev_timings)); + if (ret) + host->dev_timings = NULL; + + /* Set default NAND bank to 0 */ + host->bank = 0; + if (!of_property_read_u32(np, "bank", &val)) { + if (val > 3) { + dev_err(&pdev->dev, "invalid bank %u\n", val); + return -EINVAL; + } + host->bank = val; + } + return 0; +} + +static int fsmc_nand_attach_chip(struct nand_chip *nand) +{ + struct mtd_info *mtd = nand_to_mtd(nand); + struct fsmc_nand_data *host = nand_to_fsmc(nand); + + if (nand->ecc.engine_type == NAND_ECC_ENGINE_TYPE_INVALID) + nand->ecc.engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST; + + if (!nand->ecc.size) + nand->ecc.size = 512; + + if (AMBA_REV_BITS(host->pid) >= 8) { + nand->ecc.read_page = fsmc_read_page_hwecc; + nand->ecc.calculate = fsmc_read_hwecc_ecc4; + nand->ecc.correct = fsmc_bch8_correct_data; + nand->ecc.bytes = 13; + nand->ecc.strength = 8; + } + + if (AMBA_REV_BITS(host->pid) >= 8) { + switch (mtd->oobsize) { + case 16: + case 64: + case 128: + case 224: + case 256: + break; + default: + dev_warn(host->dev, + "No oob scheme defined for oobsize %d\n", + mtd->oobsize); + return -EINVAL; + } + + mtd_set_ooblayout(mtd, &fsmc_ecc4_ooblayout_ops); + + return 0; + } + + switch (nand->ecc.engine_type) { + case NAND_ECC_ENGINE_TYPE_ON_HOST: + dev_info(host->dev, "Using 1-bit HW ECC scheme\n"); + nand->ecc.calculate = fsmc_read_hwecc_ecc1; + nand->ecc.correct = fsmc_correct_ecc1; + nand->ecc.hwctl = fsmc_enable_hwecc; + nand->ecc.bytes = 3; + nand->ecc.strength = 1; + nand->ecc.options |= NAND_ECC_SOFT_HAMMING_SM_ORDER; + break; + + case NAND_ECC_ENGINE_TYPE_SOFT: + if (nand->ecc.algo == NAND_ECC_ALGO_BCH) { + dev_info(host->dev, + "Using 4-bit SW BCH ECC scheme\n"); + break; + } + break; + + case NAND_ECC_ENGINE_TYPE_ON_DIE: + break; + + default: + dev_err(host->dev, "Unsupported ECC mode!\n"); + return -ENOTSUPP; + } + + /* + * Don't set layout for BCH4 SW ECC. This will be + * generated later during BCH initialization. + */ + if (nand->ecc.engine_type == NAND_ECC_ENGINE_TYPE_ON_HOST) { + switch (mtd->oobsize) { + case 16: + case 64: + case 128: + mtd_set_ooblayout(mtd, + &fsmc_ecc1_ooblayout_ops); + break; + default: + dev_warn(host->dev, + "No oob scheme defined for oobsize %d\n", + mtd->oobsize); + return -EINVAL; + } + } + + return 0; +} + +static const struct nand_controller_ops fsmc_nand_controller_ops = { + .attach_chip = fsmc_nand_attach_chip, + .exec_op = fsmc_exec_op, + .setup_interface = fsmc_setup_interface, +}; + +/** + * fsmc_nand_disable() - Disables the NAND bank + * @host: The instance to disable + */ +static void fsmc_nand_disable(struct fsmc_nand_data *host) +{ + u32 val; + + val = readl(host->regs_va + FSMC_PC); + val &= ~FSMC_ENABLE; + writel(val, host->regs_va + FSMC_PC); +} + +/* + * fsmc_nand_probe - Probe function + * @pdev: platform device structure + */ +static int __init fsmc_nand_probe(struct platform_device *pdev) +{ + struct fsmc_nand_data *host; + struct mtd_info *mtd; + struct nand_chip *nand; + struct resource *res; + void __iomem *base; + dma_cap_mask_t mask; + int ret = 0; + u32 pid; + int i; + + /* Allocate memory for the device structure (and zero it) */ + host = devm_kzalloc(&pdev->dev, sizeof(*host), GFP_KERNEL); + if (!host) + return -ENOMEM; + + nand = &host->nand; + + ret = fsmc_nand_probe_config_dt(pdev, host, nand); + if (ret) + return ret; + + res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "nand_data"); + host->data_va = devm_ioremap_resource(&pdev->dev, res); + if (IS_ERR(host->data_va)) + return PTR_ERR(host->data_va); + + host->data_pa = (dma_addr_t)res->start; + + res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "nand_addr"); + host->addr_va = devm_ioremap_resource(&pdev->dev, res); + if (IS_ERR(host->addr_va)) + return PTR_ERR(host->addr_va); + + res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "nand_cmd"); + host->cmd_va = devm_ioremap_resource(&pdev->dev, res); + if (IS_ERR(host->cmd_va)) + return PTR_ERR(host->cmd_va); + + res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "fsmc_regs"); + base = devm_ioremap_resource(&pdev->dev, res); + if (IS_ERR(base)) + return PTR_ERR(base); + + host->regs_va = base + FSMC_NOR_REG_SIZE + + (host->bank * FSMC_NAND_BANK_SZ); + + host->clk = devm_clk_get_enabled(&pdev->dev, NULL); + if (IS_ERR(host->clk)) { + dev_err(&pdev->dev, "failed to fetch block clock\n"); + return PTR_ERR(host->clk); + } + + /* + * This device ID is actually a common AMBA ID as used on the + * AMBA PrimeCell bus. However it is not a PrimeCell. + */ + for (pid = 0, i = 0; i < 4; i++) + pid |= (readl(base + resource_size(res) - 0x20 + 4 * i) & + 255) << (i * 8); + + host->pid = pid; + + dev_info(&pdev->dev, + "FSMC device partno %03x, manufacturer %02x, revision %02x, config %02x\n", + AMBA_PART_BITS(pid), AMBA_MANF_BITS(pid), + AMBA_REV_BITS(pid), AMBA_CONFIG_BITS(pid)); + + host->dev = &pdev->dev; + + if (host->mode == USE_DMA_ACCESS) + init_completion(&host->dma_access_complete); + + /* Link all private pointers */ + mtd = nand_to_mtd(&host->nand); + nand_set_flash_node(nand, pdev->dev.of_node); + + mtd->dev.parent = &pdev->dev; + + nand->badblockbits = 7; + + if (host->mode == USE_DMA_ACCESS) { + dma_cap_zero(mask); + dma_cap_set(DMA_MEMCPY, mask); + host->read_dma_chan = dma_request_channel(mask, filter, NULL); + if (!host->read_dma_chan) { + dev_err(&pdev->dev, "Unable to get read dma channel\n"); + ret = -ENODEV; + goto disable_fsmc; + } + host->write_dma_chan = dma_request_channel(mask, filter, NULL); + if (!host->write_dma_chan) { + dev_err(&pdev->dev, "Unable to get write dma channel\n"); + ret = -ENODEV; + goto release_dma_read_chan; + } + } + + if (host->dev_timings) { + fsmc_nand_setup(host, host->dev_timings); + nand->options |= NAND_KEEP_TIMINGS; + } + + nand_controller_init(&host->base); + host->base.ops = &fsmc_nand_controller_ops; + nand->controller = &host->base; + + /* + * Scan to find existence of the device + */ + ret = nand_scan(nand, 1); + if (ret) + goto release_dma_write_chan; + + mtd->name = "nand"; + ret = mtd_device_register(mtd, NULL, 0); + if (ret) + goto cleanup_nand; + + platform_set_drvdata(pdev, host); + dev_info(&pdev->dev, "FSMC NAND driver registration successful\n"); + + return 0; + +cleanup_nand: + nand_cleanup(nand); +release_dma_write_chan: + if (host->mode == USE_DMA_ACCESS) + dma_release_channel(host->write_dma_chan); +release_dma_read_chan: + if (host->mode == USE_DMA_ACCESS) + dma_release_channel(host->read_dma_chan); +disable_fsmc: + fsmc_nand_disable(host); + + return ret; +} + +/* + * Clean up routine + */ +static void fsmc_nand_remove(struct platform_device *pdev) +{ + struct fsmc_nand_data *host = platform_get_drvdata(pdev); + + if (host) { + struct nand_chip *chip = &host->nand; + int ret; + + ret = mtd_device_unregister(nand_to_mtd(chip)); + WARN_ON(ret); + nand_cleanup(chip); + fsmc_nand_disable(host); + + if (host->mode == USE_DMA_ACCESS) { + dma_release_channel(host->write_dma_chan); + dma_release_channel(host->read_dma_chan); + } + } +} + +#ifdef CONFIG_PM_SLEEP +static int fsmc_nand_suspend(struct device *dev) +{ + struct fsmc_nand_data *host = dev_get_drvdata(dev); + + if (host) + clk_disable_unprepare(host->clk); + + return 0; +} + +static int fsmc_nand_resume(struct device *dev) +{ + struct fsmc_nand_data *host = dev_get_drvdata(dev); + int ret; + + if (host) { + ret = clk_prepare_enable(host->clk); + if (ret) { + dev_err(dev, "failed to enable clk\n"); + return ret; + } + if (host->dev_timings) + fsmc_nand_setup(host, host->dev_timings); + nand_reset(&host->nand, 0); + } + + return 0; +} +#endif + +static SIMPLE_DEV_PM_OPS(fsmc_nand_pm_ops, fsmc_nand_suspend, fsmc_nand_resume); + +static const struct of_device_id fsmc_nand_id_table[] = { + { .compatible = "st,spear600-fsmc-nand" }, + { .compatible = "stericsson,fsmc-nand" }, + {} +}; +MODULE_DEVICE_TABLE(of, fsmc_nand_id_table); + +static struct platform_driver fsmc_nand_driver = { + .remove_new = fsmc_nand_remove, + .driver = { + .name = "fsmc-nand", + .of_match_table = fsmc_nand_id_table, + .pm = &fsmc_nand_pm_ops, + }, +}; + +module_platform_driver_probe(fsmc_nand_driver, fsmc_nand_probe); + +MODULE_LICENSE("GPL v2"); +MODULE_AUTHOR("Vipin Kumar <vipin.kumar@st.com>, Ashish Priyadarshi"); +MODULE_DESCRIPTION("NAND driver for SPEAr Platforms"); diff --git a/drivers/mtd/nand/raw/gpio.c b/drivers/mtd/nand/raw/gpio.c new file mode 100644 index 0000000000..d6cc2cb652 --- /dev/null +++ b/drivers/mtd/nand/raw/gpio.c @@ -0,0 +1,406 @@ +// SPDX-License-Identifier: GPL-2.0-only +/* + * Updated, and converted to generic GPIO based driver by Russell King. + * + * Written by Ben Dooks <ben@simtec.co.uk> + * Based on 2.4 version by Mark Whittaker + * + * © 2004 Simtec Electronics + * + * Device driver for NAND flash that uses a memory mapped interface to + * read/write the NAND commands and data, and GPIO pins for control signals + * (the DT binding refers to this as "GPIO assisted NAND flash") + */ + +#include <linux/kernel.h> +#include <linux/err.h> +#include <linux/slab.h> +#include <linux/module.h> +#include <linux/platform_device.h> +#include <linux/gpio/consumer.h> +#include <linux/io.h> +#include <linux/mtd/mtd.h> +#include <linux/mtd/rawnand.h> +#include <linux/mtd/partitions.h> +#include <linux/mtd/nand-gpio.h> +#include <linux/of.h> +#include <linux/of_address.h> +#include <linux/delay.h> + +struct gpiomtd { + struct nand_controller base; + void __iomem *io; + void __iomem *io_sync; + struct nand_chip nand_chip; + struct gpio_nand_platdata plat; + struct gpio_desc *nce; /* Optional chip enable */ + struct gpio_desc *cle; + struct gpio_desc *ale; + struct gpio_desc *rdy; + struct gpio_desc *nwp; /* Optional write protection */ +}; + +static inline struct gpiomtd *gpio_nand_getpriv(struct mtd_info *mtd) +{ + return container_of(mtd_to_nand(mtd), struct gpiomtd, nand_chip); +} + + +#ifdef CONFIG_ARM +/* gpio_nand_dosync() + * + * Make sure the GPIO state changes occur in-order with writes to NAND + * memory region. + * Needed on PXA due to bus-reordering within the SoC itself (see section on + * I/O ordering in PXA manual (section 2.3, p35) + */ +static void gpio_nand_dosync(struct gpiomtd *gpiomtd) +{ + unsigned long tmp; + + if (gpiomtd->io_sync) { + /* + * Linux memory barriers don't cater for what's required here. + * What's required is what's here - a read from a separate + * region with a dependency on that read. + */ + tmp = readl(gpiomtd->io_sync); + asm volatile("mov %1, %0\n" : "=r" (tmp) : "r" (tmp)); + } +} +#else +static inline void gpio_nand_dosync(struct gpiomtd *gpiomtd) {} +#endif + +static int gpio_nand_exec_instr(struct nand_chip *chip, + const struct nand_op_instr *instr) +{ + struct gpiomtd *gpiomtd = gpio_nand_getpriv(nand_to_mtd(chip)); + unsigned int i; + + switch (instr->type) { + case NAND_OP_CMD_INSTR: + gpio_nand_dosync(gpiomtd); + gpiod_set_value(gpiomtd->cle, 1); + gpio_nand_dosync(gpiomtd); + writeb(instr->ctx.cmd.opcode, gpiomtd->io); + gpio_nand_dosync(gpiomtd); + gpiod_set_value(gpiomtd->cle, 0); + return 0; + + case NAND_OP_ADDR_INSTR: + gpio_nand_dosync(gpiomtd); + gpiod_set_value(gpiomtd->ale, 1); + gpio_nand_dosync(gpiomtd); + for (i = 0; i < instr->ctx.addr.naddrs; i++) + writeb(instr->ctx.addr.addrs[i], gpiomtd->io); + gpio_nand_dosync(gpiomtd); + gpiod_set_value(gpiomtd->ale, 0); + return 0; + + case NAND_OP_DATA_IN_INSTR: + gpio_nand_dosync(gpiomtd); + if ((chip->options & NAND_BUSWIDTH_16) && + !instr->ctx.data.force_8bit) + ioread16_rep(gpiomtd->io, instr->ctx.data.buf.in, + instr->ctx.data.len / 2); + else + ioread8_rep(gpiomtd->io, instr->ctx.data.buf.in, + instr->ctx.data.len); + return 0; + + case NAND_OP_DATA_OUT_INSTR: + gpio_nand_dosync(gpiomtd); + if ((chip->options & NAND_BUSWIDTH_16) && + !instr->ctx.data.force_8bit) + iowrite16_rep(gpiomtd->io, instr->ctx.data.buf.out, + instr->ctx.data.len / 2); + else + iowrite8_rep(gpiomtd->io, instr->ctx.data.buf.out, + instr->ctx.data.len); + return 0; + + case NAND_OP_WAITRDY_INSTR: + if (!gpiomtd->rdy) + return nand_soft_waitrdy(chip, instr->ctx.waitrdy.timeout_ms); + + return nand_gpio_waitrdy(chip, gpiomtd->rdy, + instr->ctx.waitrdy.timeout_ms); + + default: + return -EINVAL; + } + + return 0; +} + +static int gpio_nand_exec_op(struct nand_chip *chip, + const struct nand_operation *op, + bool check_only) +{ + struct gpiomtd *gpiomtd = gpio_nand_getpriv(nand_to_mtd(chip)); + unsigned int i; + int ret = 0; + + if (check_only) + return 0; + + gpio_nand_dosync(gpiomtd); + gpiod_set_value(gpiomtd->nce, 0); + for (i = 0; i < op->ninstrs; i++) { + ret = gpio_nand_exec_instr(chip, &op->instrs[i]); + if (ret) + break; + + if (op->instrs[i].delay_ns) + ndelay(op->instrs[i].delay_ns); + } + gpio_nand_dosync(gpiomtd); + gpiod_set_value(gpiomtd->nce, 1); + + return ret; +} + +static int gpio_nand_attach_chip(struct nand_chip *chip) +{ + if (chip->ecc.engine_type == NAND_ECC_ENGINE_TYPE_SOFT && + chip->ecc.algo == NAND_ECC_ALGO_UNKNOWN) + chip->ecc.algo = NAND_ECC_ALGO_HAMMING; + + return 0; +} + +static const struct nand_controller_ops gpio_nand_ops = { + .exec_op = gpio_nand_exec_op, + .attach_chip = gpio_nand_attach_chip, +}; + +#ifdef CONFIG_OF +static const struct of_device_id gpio_nand_id_table[] = { + { .compatible = "gpio-control-nand" }, + {} +}; +MODULE_DEVICE_TABLE(of, gpio_nand_id_table); + +static int gpio_nand_get_config_of(const struct device *dev, + struct gpio_nand_platdata *plat) +{ + u32 val; + + if (!dev->of_node) + return -ENODEV; + + if (!of_property_read_u32(dev->of_node, "bank-width", &val)) { + if (val == 2) { + plat->options |= NAND_BUSWIDTH_16; + } else if (val != 1) { + dev_err(dev, "invalid bank-width %u\n", val); + return -EINVAL; + } + } + + if (!of_property_read_u32(dev->of_node, "chip-delay", &val)) + plat->chip_delay = val; + + return 0; +} + +static struct resource *gpio_nand_get_io_sync_of(struct platform_device *pdev) +{ + struct resource *r; + u64 addr; + + if (of_property_read_u64(pdev->dev.of_node, + "gpio-control-nand,io-sync-reg", &addr)) + return NULL; + + r = devm_kzalloc(&pdev->dev, sizeof(*r), GFP_KERNEL); + if (!r) + return NULL; + + r->start = addr; + r->end = r->start + 0x3; + r->flags = IORESOURCE_MEM; + + return r; +} +#else /* CONFIG_OF */ +static inline int gpio_nand_get_config_of(const struct device *dev, + struct gpio_nand_platdata *plat) +{ + return -ENOSYS; +} + +static inline struct resource * +gpio_nand_get_io_sync_of(struct platform_device *pdev) +{ + return NULL; +} +#endif /* CONFIG_OF */ + +static inline int gpio_nand_get_config(const struct device *dev, + struct gpio_nand_platdata *plat) +{ + int ret = gpio_nand_get_config_of(dev, plat); + + if (!ret) + return ret; + + if (dev_get_platdata(dev)) { + memcpy(plat, dev_get_platdata(dev), sizeof(*plat)); + return 0; + } + + return -EINVAL; +} + +static inline struct resource * +gpio_nand_get_io_sync(struct platform_device *pdev) +{ + struct resource *r = gpio_nand_get_io_sync_of(pdev); + + if (r) + return r; + + return platform_get_resource(pdev, IORESOURCE_MEM, 1); +} + +static void gpio_nand_remove(struct platform_device *pdev) +{ + struct gpiomtd *gpiomtd = platform_get_drvdata(pdev); + struct nand_chip *chip = &gpiomtd->nand_chip; + int ret; + + ret = mtd_device_unregister(nand_to_mtd(chip)); + WARN_ON(ret); + nand_cleanup(chip); + + /* Enable write protection and disable the chip */ + if (gpiomtd->nwp && !IS_ERR(gpiomtd->nwp)) + gpiod_set_value(gpiomtd->nwp, 0); + if (gpiomtd->nce && !IS_ERR(gpiomtd->nce)) + gpiod_set_value(gpiomtd->nce, 0); +} + +static int gpio_nand_probe(struct platform_device *pdev) +{ + struct gpiomtd *gpiomtd; + struct nand_chip *chip; + struct mtd_info *mtd; + struct resource *res; + struct device *dev = &pdev->dev; + int ret = 0; + + if (!dev->of_node && !dev_get_platdata(dev)) + return -EINVAL; + + gpiomtd = devm_kzalloc(dev, sizeof(*gpiomtd), GFP_KERNEL); + if (!gpiomtd) + return -ENOMEM; + + chip = &gpiomtd->nand_chip; + + gpiomtd->io = devm_platform_ioremap_resource(pdev, 0); + if (IS_ERR(gpiomtd->io)) + return PTR_ERR(gpiomtd->io); + + res = gpio_nand_get_io_sync(pdev); + if (res) { + gpiomtd->io_sync = devm_ioremap_resource(dev, res); + if (IS_ERR(gpiomtd->io_sync)) + return PTR_ERR(gpiomtd->io_sync); + } + + ret = gpio_nand_get_config(dev, &gpiomtd->plat); + if (ret) + return ret; + + /* Just enable the chip */ + gpiomtd->nce = devm_gpiod_get_optional(dev, "nce", GPIOD_OUT_HIGH); + if (IS_ERR(gpiomtd->nce)) + return PTR_ERR(gpiomtd->nce); + + /* We disable write protection once we know probe() will succeed */ + gpiomtd->nwp = devm_gpiod_get_optional(dev, "nwp", GPIOD_OUT_LOW); + if (IS_ERR(gpiomtd->nwp)) { + ret = PTR_ERR(gpiomtd->nwp); + goto out_ce; + } + + gpiomtd->ale = devm_gpiod_get(dev, "ale", GPIOD_OUT_LOW); + if (IS_ERR(gpiomtd->ale)) { + ret = PTR_ERR(gpiomtd->ale); + goto out_ce; + } + + gpiomtd->cle = devm_gpiod_get(dev, "cle", GPIOD_OUT_LOW); + if (IS_ERR(gpiomtd->cle)) { + ret = PTR_ERR(gpiomtd->cle); + goto out_ce; + } + + gpiomtd->rdy = devm_gpiod_get_optional(dev, "rdy", GPIOD_IN); + if (IS_ERR(gpiomtd->rdy)) { + ret = PTR_ERR(gpiomtd->rdy); + goto out_ce; + } + + nand_controller_init(&gpiomtd->base); + gpiomtd->base.ops = &gpio_nand_ops; + + nand_set_flash_node(chip, pdev->dev.of_node); + chip->options = gpiomtd->plat.options; + chip->controller = &gpiomtd->base; + + mtd = nand_to_mtd(chip); + mtd->dev.parent = dev; + + platform_set_drvdata(pdev, gpiomtd); + + /* Disable write protection, if wired up */ + if (gpiomtd->nwp && !IS_ERR(gpiomtd->nwp)) + gpiod_direction_output(gpiomtd->nwp, 1); + + /* + * This driver assumes that the default ECC engine should be TYPE_SOFT. + * Set ->engine_type before registering the NAND devices in order to + * provide a driver specific default value. + */ + chip->ecc.engine_type = NAND_ECC_ENGINE_TYPE_SOFT; + + ret = nand_scan(chip, 1); + if (ret) + goto err_wp; + + if (gpiomtd->plat.adjust_parts) + gpiomtd->plat.adjust_parts(&gpiomtd->plat, mtd->size); + + ret = mtd_device_register(mtd, gpiomtd->plat.parts, + gpiomtd->plat.num_parts); + if (!ret) + return 0; + +err_wp: + if (gpiomtd->nwp && !IS_ERR(gpiomtd->nwp)) + gpiod_set_value(gpiomtd->nwp, 0); +out_ce: + if (gpiomtd->nce && !IS_ERR(gpiomtd->nce)) + gpiod_set_value(gpiomtd->nce, 0); + + return ret; +} + +static struct platform_driver gpio_nand_driver = { + .probe = gpio_nand_probe, + .remove_new = gpio_nand_remove, + .driver = { + .name = "gpio-nand", + .of_match_table = of_match_ptr(gpio_nand_id_table), + }, +}; + +module_platform_driver(gpio_nand_driver); + +MODULE_LICENSE("GPL"); +MODULE_AUTHOR("Ben Dooks <ben@simtec.co.uk>"); +MODULE_DESCRIPTION("GPIO NAND Driver"); diff --git a/drivers/mtd/nand/raw/gpmi-nand/Makefile b/drivers/mtd/nand/raw/gpmi-nand/Makefile new file mode 100644 index 0000000000..247cbfceaa --- /dev/null +++ b/drivers/mtd/nand/raw/gpmi-nand/Makefile @@ -0,0 +1,2 @@ +# SPDX-License-Identifier: GPL-2.0-only +obj-$(CONFIG_MTD_NAND_GPMI_NAND) += gpmi-nand.o diff --git a/drivers/mtd/nand/raw/gpmi-nand/bch-regs.h b/drivers/mtd/nand/raw/gpmi-nand/bch-regs.h new file mode 100644 index 0000000000..a22b8a5062 --- /dev/null +++ b/drivers/mtd/nand/raw/gpmi-nand/bch-regs.h @@ -0,0 +1,115 @@ +/* SPDX-License-Identifier: GPL-2.0-or-later */ +/* + * Freescale GPMI NAND Flash Driver + * + * Copyright 2008-2011 Freescale Semiconductor, Inc. + * Copyright 2008 Embedded Alley Solutions, Inc. + */ +#ifndef __GPMI_NAND_BCH_REGS_H +#define __GPMI_NAND_BCH_REGS_H + +#define HW_BCH_CTRL 0x00000000 +#define HW_BCH_CTRL_SET 0x00000004 +#define HW_BCH_CTRL_CLR 0x00000008 +#define HW_BCH_CTRL_TOG 0x0000000c + +#define BM_BCH_CTRL_COMPLETE_IRQ_EN (1 << 8) +#define BM_BCH_CTRL_COMPLETE_IRQ (1 << 0) + +#define HW_BCH_STATUS0 0x00000010 +#define HW_BCH_MODE 0x00000020 +#define HW_BCH_ENCODEPTR 0x00000030 +#define HW_BCH_DATAPTR 0x00000040 +#define HW_BCH_METAPTR 0x00000050 +#define HW_BCH_LAYOUTSELECT 0x00000070 + +#define HW_BCH_FLASH0LAYOUT0 0x00000080 + +#define BP_BCH_FLASH0LAYOUT0_NBLOCKS 24 +#define BM_BCH_FLASH0LAYOUT0_NBLOCKS (0xff << BP_BCH_FLASH0LAYOUT0_NBLOCKS) +#define BF_BCH_FLASH0LAYOUT0_NBLOCKS(v) \ + (((v) << BP_BCH_FLASH0LAYOUT0_NBLOCKS) & BM_BCH_FLASH0LAYOUT0_NBLOCKS) + +#define BP_BCH_FLASH0LAYOUT0_META_SIZE 16 +#define BM_BCH_FLASH0LAYOUT0_META_SIZE (0xff << BP_BCH_FLASH0LAYOUT0_META_SIZE) +#define BF_BCH_FLASH0LAYOUT0_META_SIZE(v) \ + (((v) << BP_BCH_FLASH0LAYOUT0_META_SIZE)\ + & BM_BCH_FLASH0LAYOUT0_META_SIZE) + +#define BP_BCH_FLASH0LAYOUT0_ECC0 12 +#define BM_BCH_FLASH0LAYOUT0_ECC0 (0xf << BP_BCH_FLASH0LAYOUT0_ECC0) +#define MX6Q_BP_BCH_FLASH0LAYOUT0_ECC0 11 +#define MX6Q_BM_BCH_FLASH0LAYOUT0_ECC0 (0x1f << MX6Q_BP_BCH_FLASH0LAYOUT0_ECC0) +#define BF_BCH_FLASH0LAYOUT0_ECC0(v, x) \ + (GPMI_IS_MX6(x) \ + ? (((v) << MX6Q_BP_BCH_FLASH0LAYOUT0_ECC0) \ + & MX6Q_BM_BCH_FLASH0LAYOUT0_ECC0) \ + : (((v) << BP_BCH_FLASH0LAYOUT0_ECC0) \ + & BM_BCH_FLASH0LAYOUT0_ECC0) \ + ) + +#define MX6Q_BP_BCH_FLASH0LAYOUT0_GF_13_14 10 +#define MX6Q_BM_BCH_FLASH0LAYOUT0_GF_13_14 \ + (0x1 << MX6Q_BP_BCH_FLASH0LAYOUT0_GF_13_14) +#define BF_BCH_FLASH0LAYOUT0_GF(v, x) \ + ((GPMI_IS_MX6(x) && ((v) == 14)) \ + ? (((1) << MX6Q_BP_BCH_FLASH0LAYOUT0_GF_13_14) \ + & MX6Q_BM_BCH_FLASH0LAYOUT0_GF_13_14) \ + : 0 \ + ) + +#define BP_BCH_FLASH0LAYOUT0_DATA0_SIZE 0 +#define BM_BCH_FLASH0LAYOUT0_DATA0_SIZE \ + (0xfff << BP_BCH_FLASH0LAYOUT0_DATA0_SIZE) +#define MX6Q_BM_BCH_FLASH0LAYOUT0_DATA0_SIZE \ + (0x3ff << BP_BCH_FLASH0LAYOUT0_DATA0_SIZE) +#define BF_BCH_FLASH0LAYOUT0_DATA0_SIZE(v, x) \ + (GPMI_IS_MX6(x) \ + ? (((v) >> 2) & MX6Q_BM_BCH_FLASH0LAYOUT0_DATA0_SIZE) \ + : ((v) & BM_BCH_FLASH0LAYOUT0_DATA0_SIZE) \ + ) + +#define HW_BCH_FLASH0LAYOUT1 0x00000090 + +#define BP_BCH_FLASH0LAYOUT1_PAGE_SIZE 16 +#define BM_BCH_FLASH0LAYOUT1_PAGE_SIZE \ + (0xffff << BP_BCH_FLASH0LAYOUT1_PAGE_SIZE) +#define BF_BCH_FLASH0LAYOUT1_PAGE_SIZE(v) \ + (((v) << BP_BCH_FLASH0LAYOUT1_PAGE_SIZE) \ + & BM_BCH_FLASH0LAYOUT1_PAGE_SIZE) + +#define BP_BCH_FLASH0LAYOUT1_ECCN 12 +#define BM_BCH_FLASH0LAYOUT1_ECCN (0xf << BP_BCH_FLASH0LAYOUT1_ECCN) +#define MX6Q_BP_BCH_FLASH0LAYOUT1_ECCN 11 +#define MX6Q_BM_BCH_FLASH0LAYOUT1_ECCN (0x1f << MX6Q_BP_BCH_FLASH0LAYOUT1_ECCN) +#define BF_BCH_FLASH0LAYOUT1_ECCN(v, x) \ + (GPMI_IS_MX6(x) \ + ? (((v) << MX6Q_BP_BCH_FLASH0LAYOUT1_ECCN) \ + & MX6Q_BM_BCH_FLASH0LAYOUT1_ECCN) \ + : (((v) << BP_BCH_FLASH0LAYOUT1_ECCN) \ + & BM_BCH_FLASH0LAYOUT1_ECCN) \ + ) + +#define MX6Q_BP_BCH_FLASH0LAYOUT1_GF_13_14 10 +#define MX6Q_BM_BCH_FLASH0LAYOUT1_GF_13_14 \ + (0x1 << MX6Q_BP_BCH_FLASH0LAYOUT1_GF_13_14) +#define BF_BCH_FLASH0LAYOUT1_GF(v, x) \ + ((GPMI_IS_MX6(x) && ((v) == 14)) \ + ? (((1) << MX6Q_BP_BCH_FLASH0LAYOUT1_GF_13_14) \ + & MX6Q_BM_BCH_FLASH0LAYOUT1_GF_13_14) \ + : 0 \ + ) + +#define BP_BCH_FLASH0LAYOUT1_DATAN_SIZE 0 +#define BM_BCH_FLASH0LAYOUT1_DATAN_SIZE \ + (0xfff << BP_BCH_FLASH0LAYOUT1_DATAN_SIZE) +#define MX6Q_BM_BCH_FLASH0LAYOUT1_DATAN_SIZE \ + (0x3ff << BP_BCH_FLASH0LAYOUT1_DATAN_SIZE) +#define BF_BCH_FLASH0LAYOUT1_DATAN_SIZE(v, x) \ + (GPMI_IS_MX6(x) \ + ? (((v) >> 2) & MX6Q_BM_BCH_FLASH0LAYOUT1_DATAN_SIZE) \ + : ((v) & BM_BCH_FLASH0LAYOUT1_DATAN_SIZE) \ + ) + +#define HW_BCH_VERSION 0x00000160 +#endif diff --git a/drivers/mtd/nand/raw/gpmi-nand/gpmi-nand.c b/drivers/mtd/nand/raw/gpmi-nand/gpmi-nand.c new file mode 100644 index 0000000000..e71ad2fcec --- /dev/null +++ b/drivers/mtd/nand/raw/gpmi-nand/gpmi-nand.c @@ -0,0 +1,2868 @@ +// SPDX-License-Identifier: GPL-2.0+ +/* + * Freescale GPMI NAND Flash Driver + * + * Copyright (C) 2010-2015 Freescale Semiconductor, Inc. + * Copyright (C) 2008 Embedded Alley Solutions, Inc. + */ +#include <linux/clk.h> +#include <linux/delay.h> +#include <linux/slab.h> +#include <linux/sched/task_stack.h> +#include <linux/interrupt.h> +#include <linux/module.h> +#include <linux/mtd/partitions.h> +#include <linux/of.h> +#include <linux/platform_device.h> +#include <linux/pm_runtime.h> +#include <linux/dma/mxs-dma.h> +#include "gpmi-nand.h" +#include "gpmi-regs.h" +#include "bch-regs.h" + +/* Resource names for the GPMI NAND driver. */ +#define GPMI_NAND_GPMI_REGS_ADDR_RES_NAME "gpmi-nand" +#define GPMI_NAND_BCH_REGS_ADDR_RES_NAME "bch" +#define GPMI_NAND_BCH_INTERRUPT_RES_NAME "bch" + +/* Converts time to clock cycles */ +#define TO_CYCLES(duration, period) DIV_ROUND_UP_ULL(duration, period) + +#define MXS_SET_ADDR 0x4 +#define MXS_CLR_ADDR 0x8 +/* + * Clear the bit and poll it cleared. This is usually called with + * a reset address and mask being either SFTRST(bit 31) or CLKGATE + * (bit 30). + */ +static int clear_poll_bit(void __iomem *addr, u32 mask) +{ + int timeout = 0x400; + + /* clear the bit */ + writel(mask, addr + MXS_CLR_ADDR); + + /* + * SFTRST needs 3 GPMI clocks to settle, the reference manual + * recommends to wait 1us. + */ + udelay(1); + + /* poll the bit becoming clear */ + while ((readl(addr) & mask) && --timeout) + /* nothing */; + + return !timeout; +} + +#define MODULE_CLKGATE (1 << 30) +#define MODULE_SFTRST (1 << 31) +/* + * The current mxs_reset_block() will do two things: + * [1] enable the module. + * [2] reset the module. + * + * In most of the cases, it's ok. + * But in MX23, there is a hardware bug in the BCH block (see erratum #2847). + * If you try to soft reset the BCH block, it becomes unusable until + * the next hard reset. This case occurs in the NAND boot mode. When the board + * boots by NAND, the ROM of the chip will initialize the BCH blocks itself. + * So If the driver tries to reset the BCH again, the BCH will not work anymore. + * You will see a DMA timeout in this case. The bug has been fixed + * in the following chips, such as MX28. + * + * To avoid this bug, just add a new parameter `just_enable` for + * the mxs_reset_block(), and rewrite it here. + */ +static int gpmi_reset_block(void __iomem *reset_addr, bool just_enable) +{ + int ret; + int timeout = 0x400; + + /* clear and poll SFTRST */ + ret = clear_poll_bit(reset_addr, MODULE_SFTRST); + if (unlikely(ret)) + goto error; + + /* clear CLKGATE */ + writel(MODULE_CLKGATE, reset_addr + MXS_CLR_ADDR); + + if (!just_enable) { + /* set SFTRST to reset the block */ + writel(MODULE_SFTRST, reset_addr + MXS_SET_ADDR); + udelay(1); + + /* poll CLKGATE becoming set */ + while ((!(readl(reset_addr) & MODULE_CLKGATE)) && --timeout) + /* nothing */; + if (unlikely(!timeout)) + goto error; + } + + /* clear and poll SFTRST */ + ret = clear_poll_bit(reset_addr, MODULE_SFTRST); + if (unlikely(ret)) + goto error; + + /* clear and poll CLKGATE */ + ret = clear_poll_bit(reset_addr, MODULE_CLKGATE); + if (unlikely(ret)) + goto error; + + return 0; + +error: + pr_err("%s(%p): module reset timeout\n", __func__, reset_addr); + return -ETIMEDOUT; +} + +static int __gpmi_enable_clk(struct gpmi_nand_data *this, bool v) +{ + struct clk *clk; + int ret; + int i; + + for (i = 0; i < GPMI_CLK_MAX; i++) { + clk = this->resources.clock[i]; + if (!clk) + break; + + if (v) { + ret = clk_prepare_enable(clk); + if (ret) + goto err_clk; + } else { + clk_disable_unprepare(clk); + } + } + return 0; + +err_clk: + for (; i > 0; i--) + clk_disable_unprepare(this->resources.clock[i - 1]); + return ret; +} + +static int gpmi_init(struct gpmi_nand_data *this) +{ + struct resources *r = &this->resources; + int ret; + + ret = pm_runtime_resume_and_get(this->dev); + if (ret < 0) + return ret; + + ret = gpmi_reset_block(r->gpmi_regs, false); + if (ret) + goto err_out; + + /* + * Reset BCH here, too. We got failures otherwise :( + * See later BCH reset for explanation of MX23 and MX28 handling + */ + ret = gpmi_reset_block(r->bch_regs, GPMI_IS_MXS(this)); + if (ret) + goto err_out; + + /* Choose NAND mode. */ + writel(BM_GPMI_CTRL1_GPMI_MODE, r->gpmi_regs + HW_GPMI_CTRL1_CLR); + + /* Set the IRQ polarity. */ + writel(BM_GPMI_CTRL1_ATA_IRQRDY_POLARITY, + r->gpmi_regs + HW_GPMI_CTRL1_SET); + + /* Disable Write-Protection. */ + writel(BM_GPMI_CTRL1_DEV_RESET, r->gpmi_regs + HW_GPMI_CTRL1_SET); + + /* Select BCH ECC. */ + writel(BM_GPMI_CTRL1_BCH_MODE, r->gpmi_regs + HW_GPMI_CTRL1_SET); + + /* + * Decouple the chip select from dma channel. We use dma0 for all + * the chips, force all NAND RDY_BUSY inputs to be sourced from + * RDY_BUSY0. + */ + writel(BM_GPMI_CTRL1_DECOUPLE_CS | BM_GPMI_CTRL1_GANGED_RDYBUSY, + r->gpmi_regs + HW_GPMI_CTRL1_SET); + +err_out: + pm_runtime_mark_last_busy(this->dev); + pm_runtime_put_autosuspend(this->dev); + return ret; +} + +/* This function is very useful. It is called only when the bug occur. */ +static void gpmi_dump_info(struct gpmi_nand_data *this) +{ + struct resources *r = &this->resources; + struct bch_geometry *geo = &this->bch_geometry; + u32 reg; + int i; + + dev_err(this->dev, "Show GPMI registers :\n"); + for (i = 0; i <= HW_GPMI_DEBUG / 0x10 + 1; i++) { + reg = readl(r->gpmi_regs + i * 0x10); + dev_err(this->dev, "offset 0x%.3x : 0x%.8x\n", i * 0x10, reg); + } + + /* start to print out the BCH info */ + dev_err(this->dev, "Show BCH registers :\n"); + for (i = 0; i <= HW_BCH_VERSION / 0x10 + 1; i++) { + reg = readl(r->bch_regs + i * 0x10); + dev_err(this->dev, "offset 0x%.3x : 0x%.8x\n", i * 0x10, reg); + } + dev_err(this->dev, "BCH Geometry :\n" + "GF length : %u\n" + "ECC Strength : %u\n" + "Page Size in Bytes : %u\n" + "Metadata Size in Bytes : %u\n" + "ECC0 Chunk Size in Bytes: %u\n" + "ECCn Chunk Size in Bytes: %u\n" + "ECC Chunk Count : %u\n" + "Payload Size in Bytes : %u\n" + "Auxiliary Size in Bytes: %u\n" + "Auxiliary Status Offset: %u\n" + "Block Mark Byte Offset : %u\n" + "Block Mark Bit Offset : %u\n", + geo->gf_len, + geo->ecc_strength, + geo->page_size, + geo->metadata_size, + geo->ecc0_chunk_size, + geo->eccn_chunk_size, + geo->ecc_chunk_count, + geo->payload_size, + geo->auxiliary_size, + geo->auxiliary_status_offset, + geo->block_mark_byte_offset, + geo->block_mark_bit_offset); +} + +static bool gpmi_check_ecc(struct gpmi_nand_data *this) +{ + struct nand_chip *chip = &this->nand; + struct bch_geometry *geo = &this->bch_geometry; + struct nand_device *nand = &chip->base; + struct nand_ecc_props *conf = &nand->ecc.ctx.conf; + + conf->step_size = geo->eccn_chunk_size; + conf->strength = geo->ecc_strength; + + /* Do the sanity check. */ + if (GPMI_IS_MXS(this)) { + /* The mx23/mx28 only support the GF13. */ + if (geo->gf_len == 14) + return false; + } + + if (geo->ecc_strength > this->devdata->bch_max_ecc_strength) + return false; + + if (!nand_ecc_is_strong_enough(nand)) + return false; + + return true; +} + +/* check if bbm locates in data chunk rather than ecc chunk */ +static bool bbm_in_data_chunk(struct gpmi_nand_data *this, + unsigned int *chunk_num) +{ + struct bch_geometry *geo = &this->bch_geometry; + struct nand_chip *chip = &this->nand; + struct mtd_info *mtd = nand_to_mtd(chip); + unsigned int i, j; + + if (geo->ecc0_chunk_size != geo->eccn_chunk_size) { + dev_err(this->dev, + "The size of ecc0_chunk must equal to eccn_chunk\n"); + return false; + } + + i = (mtd->writesize * 8 - geo->metadata_size * 8) / + (geo->gf_len * geo->ecc_strength + + geo->eccn_chunk_size * 8); + + j = (mtd->writesize * 8 - geo->metadata_size * 8) - + (geo->gf_len * geo->ecc_strength + + geo->eccn_chunk_size * 8) * i; + + if (j < geo->eccn_chunk_size * 8) { + *chunk_num = i+1; + dev_dbg(this->dev, "Set ecc to %d and bbm in chunk %d\n", + geo->ecc_strength, *chunk_num); + return true; + } + + return false; +} + +/* + * If we can get the ECC information from the nand chip, we do not + * need to calculate them ourselves. + * + * We may have available oob space in this case. + */ +static int set_geometry_by_ecc_info(struct gpmi_nand_data *this, + unsigned int ecc_strength, + unsigned int ecc_step) +{ + struct bch_geometry *geo = &this->bch_geometry; + struct nand_chip *chip = &this->nand; + struct mtd_info *mtd = nand_to_mtd(chip); + unsigned int block_mark_bit_offset; + + switch (ecc_step) { + case SZ_512: + geo->gf_len = 13; + break; + case SZ_1K: + geo->gf_len = 14; + break; + default: + dev_err(this->dev, + "unsupported nand chip. ecc bits : %d, ecc size : %d\n", + nanddev_get_ecc_requirements(&chip->base)->strength, + nanddev_get_ecc_requirements(&chip->base)->step_size); + return -EINVAL; + } + geo->ecc0_chunk_size = ecc_step; + geo->eccn_chunk_size = ecc_step; + geo->ecc_strength = round_up(ecc_strength, 2); + if (!gpmi_check_ecc(this)) + return -EINVAL; + + /* Keep the C >= O */ + if (geo->eccn_chunk_size < mtd->oobsize) { + dev_err(this->dev, + "unsupported nand chip. ecc size: %d, oob size : %d\n", + ecc_step, mtd->oobsize); + return -EINVAL; + } + + /* The default value, see comment in the legacy_set_geometry(). */ + geo->metadata_size = 10; + + geo->ecc_chunk_count = mtd->writesize / geo->eccn_chunk_size; + + /* + * Now, the NAND chip with 2K page(data chunk is 512byte) shows below: + * + * | P | + * |<----------------------------------------------------->| + * | | + * | (Block Mark) | + * | P' | | | | + * |<-------------------------------------------->| D | | O' | + * | |<---->| |<--->| + * V V V V V + * +---+----------+-+----------+-+----------+-+----------+-+-----+ + * | M | data |E| data |E| data |E| data |E| | + * +---+----------+-+----------+-+----------+-+----------+-+-----+ + * ^ ^ + * | O | + * |<------------>| + * | | + * + * P : the page size for BCH module. + * E : The ECC strength. + * G : the length of Galois Field. + * N : The chunk count of per page. + * M : the metasize of per page. + * C : the ecc chunk size, aka the "data" above. + * P': the nand chip's page size. + * O : the nand chip's oob size. + * O': the free oob. + * + * The formula for P is : + * + * E * G * N + * P = ------------ + P' + M + * 8 + * + * The position of block mark moves forward in the ECC-based view + * of page, and the delta is: + * + * E * G * (N - 1) + * D = (---------------- + M) + * 8 + * + * Please see the comment in legacy_set_geometry(). + * With the condition C >= O , we still can get same result. + * So the bit position of the physical block mark within the ECC-based + * view of the page is : + * (P' - D) * 8 + */ + geo->page_size = mtd->writesize + geo->metadata_size + + (geo->gf_len * geo->ecc_strength * geo->ecc_chunk_count) / 8; + + geo->payload_size = mtd->writesize; + + geo->auxiliary_status_offset = ALIGN(geo->metadata_size, 4); + geo->auxiliary_size = ALIGN(geo->metadata_size, 4) + + ALIGN(geo->ecc_chunk_count, 4); + + if (!this->swap_block_mark) + return 0; + + /* For bit swap. */ + block_mark_bit_offset = mtd->writesize * 8 - + (geo->ecc_strength * geo->gf_len * (geo->ecc_chunk_count - 1) + + geo->metadata_size * 8); + + geo->block_mark_byte_offset = block_mark_bit_offset / 8; + geo->block_mark_bit_offset = block_mark_bit_offset % 8; + return 0; +} + +/* + * Calculate the ECC strength by hand: + * E : The ECC strength. + * G : the length of Galois Field. + * N : The chunk count of per page. + * O : the oobsize of the NAND chip. + * M : the metasize of per page. + * + * The formula is : + * E * G * N + * ------------ <= (O - M) + * 8 + * + * So, we get E by: + * (O - M) * 8 + * E <= ------------- + * G * N + */ +static inline int get_ecc_strength(struct gpmi_nand_data *this) +{ + struct bch_geometry *geo = &this->bch_geometry; + struct mtd_info *mtd = nand_to_mtd(&this->nand); + int ecc_strength; + + ecc_strength = ((mtd->oobsize - geo->metadata_size) * 8) + / (geo->gf_len * geo->ecc_chunk_count); + + /* We need the minor even number. */ + return round_down(ecc_strength, 2); +} + +static int set_geometry_for_large_oob(struct gpmi_nand_data *this) +{ + struct bch_geometry *geo = &this->bch_geometry; + struct nand_chip *chip = &this->nand; + struct mtd_info *mtd = nand_to_mtd(chip); + const struct nand_ecc_props *requirements = + nanddev_get_ecc_requirements(&chip->base); + unsigned int block_mark_bit_offset; + unsigned int max_ecc; + unsigned int bbm_chunk; + unsigned int i; + + /* sanity check for the minimum ecc nand required */ + if (!(requirements->strength > 0 && + requirements->step_size > 0)) + return -EINVAL; + geo->ecc_strength = requirements->strength; + + /* check if platform can support this nand */ + if (!gpmi_check_ecc(this)) { + dev_err(this->dev, + "unsupported NAND chip, minimum ecc required %d\n", + geo->ecc_strength); + return -EINVAL; + } + + /* calculate the maximum ecc platform can support*/ + geo->metadata_size = 10; + geo->gf_len = 14; + geo->ecc0_chunk_size = 1024; + geo->eccn_chunk_size = 1024; + geo->ecc_chunk_count = mtd->writesize / geo->eccn_chunk_size; + max_ecc = min(get_ecc_strength(this), + this->devdata->bch_max_ecc_strength); + + /* + * search a supported ecc strength that makes bbm + * located in data chunk + */ + geo->ecc_strength = max_ecc; + while (!(geo->ecc_strength < requirements->strength)) { + if (bbm_in_data_chunk(this, &bbm_chunk)) + goto geo_setting; + geo->ecc_strength -= 2; + } + + /* if none of them works, keep using the minimum ecc */ + /* nand required but changing ecc page layout */ + geo->ecc_strength = requirements->strength; + /* add extra ecc for meta data */ + geo->ecc0_chunk_size = 0; + geo->ecc_chunk_count = (mtd->writesize / geo->eccn_chunk_size) + 1; + geo->ecc_for_meta = 1; + /* check if oob can afford this extra ecc chunk */ + if (mtd->oobsize * 8 < geo->metadata_size * 8 + + geo->gf_len * geo->ecc_strength * geo->ecc_chunk_count) { + dev_err(this->dev, "unsupported NAND chip with new layout\n"); + return -EINVAL; + } + + /* calculate in which chunk bbm located */ + bbm_chunk = (mtd->writesize * 8 - geo->metadata_size * 8 - + geo->gf_len * geo->ecc_strength) / + (geo->gf_len * geo->ecc_strength + + geo->eccn_chunk_size * 8) + 1; + +geo_setting: + + geo->page_size = mtd->writesize + geo->metadata_size + + (geo->gf_len * geo->ecc_strength * geo->ecc_chunk_count) / 8; + geo->payload_size = mtd->writesize; + + /* + * The auxiliary buffer contains the metadata and the ECC status. The + * metadata is padded to the nearest 32-bit boundary. The ECC status + * contains one byte for every ECC chunk, and is also padded to the + * nearest 32-bit boundary. + */ + geo->auxiliary_status_offset = ALIGN(geo->metadata_size, 4); + geo->auxiliary_size = ALIGN(geo->metadata_size, 4) + + ALIGN(geo->ecc_chunk_count, 4); + + if (!this->swap_block_mark) + return 0; + + /* calculate the number of ecc chunk behind the bbm */ + i = (mtd->writesize / geo->eccn_chunk_size) - bbm_chunk + 1; + + block_mark_bit_offset = mtd->writesize * 8 - + (geo->ecc_strength * geo->gf_len * (geo->ecc_chunk_count - i) + + geo->metadata_size * 8); + + geo->block_mark_byte_offset = block_mark_bit_offset / 8; + geo->block_mark_bit_offset = block_mark_bit_offset % 8; + + dev_dbg(this->dev, "BCH Geometry :\n" + "GF length : %u\n" + "ECC Strength : %u\n" + "Page Size in Bytes : %u\n" + "Metadata Size in Bytes : %u\n" + "ECC0 Chunk Size in Bytes: %u\n" + "ECCn Chunk Size in Bytes: %u\n" + "ECC Chunk Count : %u\n" + "Payload Size in Bytes : %u\n" + "Auxiliary Size in Bytes: %u\n" + "Auxiliary Status Offset: %u\n" + "Block Mark Byte Offset : %u\n" + "Block Mark Bit Offset : %u\n" + "Block Mark in chunk : %u\n" + "Ecc for Meta data : %u\n", + geo->gf_len, + geo->ecc_strength, + geo->page_size, + geo->metadata_size, + geo->ecc0_chunk_size, + geo->eccn_chunk_size, + geo->ecc_chunk_count, + geo->payload_size, + geo->auxiliary_size, + geo->auxiliary_status_offset, + geo->block_mark_byte_offset, + geo->block_mark_bit_offset, + bbm_chunk, + geo->ecc_for_meta); + + return 0; +} + +static int legacy_set_geometry(struct gpmi_nand_data *this) +{ + struct bch_geometry *geo = &this->bch_geometry; + struct mtd_info *mtd = nand_to_mtd(&this->nand); + unsigned int metadata_size; + unsigned int status_size; + unsigned int block_mark_bit_offset; + + /* + * The size of the metadata can be changed, though we set it to 10 + * bytes now. But it can't be too large, because we have to save + * enough space for BCH. + */ + geo->metadata_size = 10; + + /* The default for the length of Galois Field. */ + geo->gf_len = 13; + + /* The default for chunk size. */ + geo->ecc0_chunk_size = 512; + geo->eccn_chunk_size = 512; + while (geo->eccn_chunk_size < mtd->oobsize) { + geo->ecc0_chunk_size *= 2; /* keep C >= O */ + geo->eccn_chunk_size *= 2; /* keep C >= O */ + geo->gf_len = 14; + } + + geo->ecc_chunk_count = mtd->writesize / geo->eccn_chunk_size; + + /* We use the same ECC strength for all chunks. */ + geo->ecc_strength = get_ecc_strength(this); + if (!gpmi_check_ecc(this)) { + dev_err(this->dev, + "ecc strength: %d cannot be supported by the controller (%d)\n" + "try to use minimum ecc strength that NAND chip required\n", + geo->ecc_strength, + this->devdata->bch_max_ecc_strength); + return -EINVAL; + } + + geo->page_size = mtd->writesize + geo->metadata_size + + (geo->gf_len * geo->ecc_strength * geo->ecc_chunk_count) / 8; + geo->payload_size = mtd->writesize; + + /* + * The auxiliary buffer contains the metadata and the ECC status. The + * metadata is padded to the nearest 32-bit boundary. The ECC status + * contains one byte for every ECC chunk, and is also padded to the + * nearest 32-bit boundary. + */ + metadata_size = ALIGN(geo->metadata_size, 4); + status_size = ALIGN(geo->ecc_chunk_count, 4); + + geo->auxiliary_size = metadata_size + status_size; + geo->auxiliary_status_offset = metadata_size; + + if (!this->swap_block_mark) + return 0; + + /* + * We need to compute the byte and bit offsets of + * the physical block mark within the ECC-based view of the page. + * + * NAND chip with 2K page shows below: + * (Block Mark) + * | | + * | D | + * |<---->| + * V V + * +---+----------+-+----------+-+----------+-+----------+-+ + * | M | data |E| data |E| data |E| data |E| + * +---+----------+-+----------+-+----------+-+----------+-+ + * + * The position of block mark moves forward in the ECC-based view + * of page, and the delta is: + * + * E * G * (N - 1) + * D = (---------------- + M) + * 8 + * + * With the formula to compute the ECC strength, and the condition + * : C >= O (C is the ecc chunk size) + * + * It's easy to deduce to the following result: + * + * E * G (O - M) C - M C - M + * ----------- <= ------- <= -------- < --------- + * 8 N N (N - 1) + * + * So, we get: + * + * E * G * (N - 1) + * D = (---------------- + M) < C + * 8 + * + * The above inequality means the position of block mark + * within the ECC-based view of the page is still in the data chunk, + * and it's NOT in the ECC bits of the chunk. + * + * Use the following to compute the bit position of the + * physical block mark within the ECC-based view of the page: + * (page_size - D) * 8 + * + * --Huang Shijie + */ + block_mark_bit_offset = mtd->writesize * 8 - + (geo->ecc_strength * geo->gf_len * (geo->ecc_chunk_count - 1) + + geo->metadata_size * 8); + + geo->block_mark_byte_offset = block_mark_bit_offset / 8; + geo->block_mark_bit_offset = block_mark_bit_offset % 8; + return 0; +} + +static int common_nfc_set_geometry(struct gpmi_nand_data *this) +{ + struct nand_chip *chip = &this->nand; + struct mtd_info *mtd = nand_to_mtd(&this->nand); + const struct nand_ecc_props *requirements = + nanddev_get_ecc_requirements(&chip->base); + bool use_minimun_ecc; + int err; + + use_minimun_ecc = of_property_read_bool(this->dev->of_node, + "fsl,use-minimum-ecc"); + + /* use legacy bch geometry settings by default*/ + if ((!use_minimun_ecc && mtd->oobsize < 1024) || + !(requirements->strength > 0 && requirements->step_size > 0)) { + dev_dbg(this->dev, "use legacy bch geometry\n"); + err = legacy_set_geometry(this); + if (!err) + return 0; + } + + /* for large oob nand */ + if (mtd->oobsize > 1024) { + dev_dbg(this->dev, "use large oob bch geometry\n"); + err = set_geometry_for_large_oob(this); + if (!err) + return 0; + } + + /* otherwise use the minimum ecc nand chip required */ + dev_dbg(this->dev, "use minimum ecc bch geometry\n"); + err = set_geometry_by_ecc_info(this, requirements->strength, + requirements->step_size); + if (err) + dev_err(this->dev, "none of the bch geometry setting works\n"); + + return err; +} + +/* Configures the geometry for BCH. */ +static int bch_set_geometry(struct gpmi_nand_data *this) +{ + struct resources *r = &this->resources; + int ret; + + ret = common_nfc_set_geometry(this); + if (ret) + return ret; + + ret = pm_runtime_get_sync(this->dev); + if (ret < 0) { + pm_runtime_put_autosuspend(this->dev); + return ret; + } + + /* + * Due to erratum #2847 of the MX23, the BCH cannot be soft reset on this + * chip, otherwise it will lock up. So we skip resetting BCH on the MX23. + * and MX28. + */ + ret = gpmi_reset_block(r->bch_regs, GPMI_IS_MXS(this)); + if (ret) + goto err_out; + + /* Set *all* chip selects to use layout 0. */ + writel(0, r->bch_regs + HW_BCH_LAYOUTSELECT); + + ret = 0; +err_out: + pm_runtime_mark_last_busy(this->dev); + pm_runtime_put_autosuspend(this->dev); + + return ret; +} + +/* + * <1> Firstly, we should know what's the GPMI-clock means. + * The GPMI-clock is the internal clock in the gpmi nand controller. + * If you set 100MHz to gpmi nand controller, the GPMI-clock's period + * is 10ns. Mark the GPMI-clock's period as GPMI-clock-period. + * + * <2> Secondly, we should know what's the frequency on the nand chip pins. + * The frequency on the nand chip pins is derived from the GPMI-clock. + * We can get it from the following equation: + * + * F = G / (DS + DH) + * + * F : the frequency on the nand chip pins. + * G : the GPMI clock, such as 100MHz. + * DS : GPMI_HW_GPMI_TIMING0:DATA_SETUP + * DH : GPMI_HW_GPMI_TIMING0:DATA_HOLD + * + * <3> Thirdly, when the frequency on the nand chip pins is above 33MHz, + * the nand EDO(extended Data Out) timing could be applied. + * The GPMI implements a feedback read strobe to sample the read data. + * The feedback read strobe can be delayed to support the nand EDO timing + * where the read strobe may deasserts before the read data is valid, and + * read data is valid for some time after read strobe. + * + * The following figure illustrates some aspects of a NAND Flash read: + * + * |<---tREA---->| + * | | + * | | | + * |<--tRP-->| | + * | | | + * __ ___|__________________________________ + * RDN \________/ | + * | + * /---------\ + * Read Data --------------< >--------- + * \---------/ + * | | + * |<-D->| + * FeedbackRDN ________ ____________ + * \___________/ + * + * D stands for delay, set in the HW_GPMI_CTRL1:RDN_DELAY. + * + * + * <4> Now, we begin to describe how to compute the right RDN_DELAY. + * + * 4.1) From the aspect of the nand chip pins: + * Delay = (tREA + C - tRP) {1} + * + * tREA : the maximum read access time. + * C : a constant to adjust the delay. default is 4000ps. + * tRP : the read pulse width, which is exactly: + * tRP = (GPMI-clock-period) * DATA_SETUP + * + * 4.2) From the aspect of the GPMI nand controller: + * Delay = RDN_DELAY * 0.125 * RP {2} + * + * RP : the DLL reference period. + * if (GPMI-clock-period > DLL_THRETHOLD) + * RP = GPMI-clock-period / 2; + * else + * RP = GPMI-clock-period; + * + * Set the HW_GPMI_CTRL1:HALF_PERIOD if GPMI-clock-period + * is greater DLL_THRETHOLD. In other SOCs, the DLL_THRETHOLD + * is 16000ps, but in mx6q, we use 12000ps. + * + * 4.3) since {1} equals {2}, we get: + * + * (tREA + 4000 - tRP) * 8 + * RDN_DELAY = ----------------------- {3} + * RP + */ +static int gpmi_nfc_compute_timings(struct gpmi_nand_data *this, + const struct nand_sdr_timings *sdr) +{ + struct gpmi_nfc_hardware_timing *hw = &this->hw; + struct resources *r = &this->resources; + unsigned int dll_threshold_ps = this->devdata->max_chain_delay; + unsigned int period_ps, reference_period_ps; + unsigned int data_setup_cycles, data_hold_cycles, addr_setup_cycles; + unsigned int tRP_ps; + bool use_half_period; + int sample_delay_ps, sample_delay_factor; + unsigned int busy_timeout_cycles; + u8 wrn_dly_sel; + unsigned long clk_rate, min_rate; + u64 busy_timeout_ps; + + if (sdr->tRC_min >= 30000) { + /* ONFI non-EDO modes [0-3] */ + hw->clk_rate = 22000000; + min_rate = 0; + wrn_dly_sel = BV_GPMI_CTRL1_WRN_DLY_SEL_4_TO_8NS; + } else if (sdr->tRC_min >= 25000) { + /* ONFI EDO mode 4 */ + hw->clk_rate = 80000000; + min_rate = 22000000; + wrn_dly_sel = BV_GPMI_CTRL1_WRN_DLY_SEL_NO_DELAY; + } else { + /* ONFI EDO mode 5 */ + hw->clk_rate = 100000000; + min_rate = 80000000; + wrn_dly_sel = BV_GPMI_CTRL1_WRN_DLY_SEL_NO_DELAY; + } + + clk_rate = clk_round_rate(r->clock[0], hw->clk_rate); + if (clk_rate <= min_rate) { + dev_err(this->dev, "clock setting: expected %ld, got %ld\n", + hw->clk_rate, clk_rate); + return -ENOTSUPP; + } + + hw->clk_rate = clk_rate; + /* SDR core timings are given in picoseconds */ + period_ps = div_u64((u64)NSEC_PER_SEC * 1000, hw->clk_rate); + + addr_setup_cycles = TO_CYCLES(sdr->tALS_min, period_ps); + data_setup_cycles = TO_CYCLES(sdr->tDS_min, period_ps); + data_hold_cycles = TO_CYCLES(sdr->tDH_min, period_ps); + busy_timeout_ps = max(sdr->tBERS_max, sdr->tPROG_max); + busy_timeout_cycles = TO_CYCLES(busy_timeout_ps, period_ps); + + hw->timing0 = BF_GPMI_TIMING0_ADDRESS_SETUP(addr_setup_cycles) | + BF_GPMI_TIMING0_DATA_HOLD(data_hold_cycles) | + BF_GPMI_TIMING0_DATA_SETUP(data_setup_cycles); + hw->timing1 = BF_GPMI_TIMING1_BUSY_TIMEOUT(DIV_ROUND_UP(busy_timeout_cycles, 4096)); + + /* + * Derive NFC ideal delay from {3}: + * + * (tREA + 4000 - tRP) * 8 + * RDN_DELAY = ----------------------- + * RP + */ + if (period_ps > dll_threshold_ps) { + use_half_period = true; + reference_period_ps = period_ps / 2; + } else { + use_half_period = false; + reference_period_ps = period_ps; + } + + tRP_ps = data_setup_cycles * period_ps; + sample_delay_ps = (sdr->tREA_max + 4000 - tRP_ps) * 8; + if (sample_delay_ps > 0) + sample_delay_factor = sample_delay_ps / reference_period_ps; + else + sample_delay_factor = 0; + + hw->ctrl1n = BF_GPMI_CTRL1_WRN_DLY_SEL(wrn_dly_sel); + if (sample_delay_factor) + hw->ctrl1n |= BF_GPMI_CTRL1_RDN_DELAY(sample_delay_factor) | + BM_GPMI_CTRL1_DLL_ENABLE | + (use_half_period ? BM_GPMI_CTRL1_HALF_PERIOD : 0); + return 0; +} + +static int gpmi_nfc_apply_timings(struct gpmi_nand_data *this) +{ + struct gpmi_nfc_hardware_timing *hw = &this->hw; + struct resources *r = &this->resources; + void __iomem *gpmi_regs = r->gpmi_regs; + unsigned int dll_wait_time_us; + int ret; + + /* Clock dividers do NOT guarantee a clean clock signal on its output + * during the change of the divide factor on i.MX6Q/UL/SX. On i.MX7/8, + * all clock dividers provide these guarantee. + */ + if (GPMI_IS_MX6Q(this) || GPMI_IS_MX6SX(this)) + clk_disable_unprepare(r->clock[0]); + + ret = clk_set_rate(r->clock[0], hw->clk_rate); + if (ret) { + dev_err(this->dev, "cannot set clock rate to %lu Hz: %d\n", hw->clk_rate, ret); + return ret; + } + + if (GPMI_IS_MX6Q(this) || GPMI_IS_MX6SX(this)) { + ret = clk_prepare_enable(r->clock[0]); + if (ret) + return ret; + } + + writel(hw->timing0, gpmi_regs + HW_GPMI_TIMING0); + writel(hw->timing1, gpmi_regs + HW_GPMI_TIMING1); + + /* + * Clear several CTRL1 fields, DLL must be disabled when setting + * RDN_DELAY or HALF_PERIOD. + */ + writel(BM_GPMI_CTRL1_CLEAR_MASK, gpmi_regs + HW_GPMI_CTRL1_CLR); + writel(hw->ctrl1n, gpmi_regs + HW_GPMI_CTRL1_SET); + + /* Wait 64 clock cycles before using the GPMI after enabling the DLL */ + dll_wait_time_us = USEC_PER_SEC / hw->clk_rate * 64; + if (!dll_wait_time_us) + dll_wait_time_us = 1; + + /* Wait for the DLL to settle. */ + udelay(dll_wait_time_us); + + return 0; +} + +static int gpmi_setup_interface(struct nand_chip *chip, int chipnr, + const struct nand_interface_config *conf) +{ + struct gpmi_nand_data *this = nand_get_controller_data(chip); + const struct nand_sdr_timings *sdr; + int ret; + + /* Retrieve required NAND timings */ + sdr = nand_get_sdr_timings(conf); + if (IS_ERR(sdr)) + return PTR_ERR(sdr); + + /* Only MX28/MX6 GPMI controller can reach EDO timings */ + if (sdr->tRC_min <= 25000 && !GPMI_IS_MX28(this) && !GPMI_IS_MX6(this)) + return -ENOTSUPP; + + /* Stop here if this call was just a check */ + if (chipnr < 0) + return 0; + + /* Do the actual derivation of the controller timings */ + ret = gpmi_nfc_compute_timings(this, sdr); + if (ret) + return ret; + + this->hw.must_apply_timings = true; + + return 0; +} + +/* Clears a BCH interrupt. */ +static void gpmi_clear_bch(struct gpmi_nand_data *this) +{ + struct resources *r = &this->resources; + writel(BM_BCH_CTRL_COMPLETE_IRQ, r->bch_regs + HW_BCH_CTRL_CLR); +} + +static struct dma_chan *get_dma_chan(struct gpmi_nand_data *this) +{ + /* We use the DMA channel 0 to access all the nand chips. */ + return this->dma_chans[0]; +} + +/* This will be called after the DMA operation is finished. */ +static void dma_irq_callback(void *param) +{ + struct gpmi_nand_data *this = param; + struct completion *dma_c = &this->dma_done; + + complete(dma_c); +} + +static irqreturn_t bch_irq(int irq, void *cookie) +{ + struct gpmi_nand_data *this = cookie; + + gpmi_clear_bch(this); + complete(&this->bch_done); + return IRQ_HANDLED; +} + +static int gpmi_raw_len_to_len(struct gpmi_nand_data *this, int raw_len) +{ + /* + * raw_len is the length to read/write including bch data which + * we are passed in exec_op. Calculate the data length from it. + */ + if (this->bch) + return ALIGN_DOWN(raw_len, this->bch_geometry.eccn_chunk_size); + else + return raw_len; +} + +/* Can we use the upper's buffer directly for DMA? */ +static bool prepare_data_dma(struct gpmi_nand_data *this, const void *buf, + int raw_len, struct scatterlist *sgl, + enum dma_data_direction dr) +{ + int ret; + int len = gpmi_raw_len_to_len(this, raw_len); + + /* first try to map the upper buffer directly */ + if (virt_addr_valid(buf) && !object_is_on_stack(buf)) { + sg_init_one(sgl, buf, len); + ret = dma_map_sg(this->dev, sgl, 1, dr); + if (ret == 0) + goto map_fail; + + return true; + } + +map_fail: + /* We have to use our own DMA buffer. */ + sg_init_one(sgl, this->data_buffer_dma, len); + + if (dr == DMA_TO_DEVICE && buf != this->data_buffer_dma) + memcpy(this->data_buffer_dma, buf, len); + + dma_map_sg(this->dev, sgl, 1, dr); + + return false; +} + +/* add our owner bbt descriptor */ +static uint8_t scan_ff_pattern[] = { 0xff }; +static struct nand_bbt_descr gpmi_bbt_descr = { + .options = 0, + .offs = 0, + .len = 1, + .pattern = scan_ff_pattern +}; + +/* + * We may change the layout if we can get the ECC info from the datasheet, + * else we will use all the (page + OOB). + */ +static int gpmi_ooblayout_ecc(struct mtd_info *mtd, int section, + struct mtd_oob_region *oobregion) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + struct gpmi_nand_data *this = nand_get_controller_data(chip); + struct bch_geometry *geo = &this->bch_geometry; + + if (section) + return -ERANGE; + + oobregion->offset = 0; + oobregion->length = geo->page_size - mtd->writesize; + + return 0; +} + +static int gpmi_ooblayout_free(struct mtd_info *mtd, int section, + struct mtd_oob_region *oobregion) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + struct gpmi_nand_data *this = nand_get_controller_data(chip); + struct bch_geometry *geo = &this->bch_geometry; + + if (section) + return -ERANGE; + + /* The available oob size we have. */ + if (geo->page_size < mtd->writesize + mtd->oobsize) { + oobregion->offset = geo->page_size - mtd->writesize; + oobregion->length = mtd->oobsize - oobregion->offset; + } + + return 0; +} + +static const char * const gpmi_clks_for_mx2x[] = { + "gpmi_io", +}; + +static const struct mtd_ooblayout_ops gpmi_ooblayout_ops = { + .ecc = gpmi_ooblayout_ecc, + .free = gpmi_ooblayout_free, +}; + +static const struct gpmi_devdata gpmi_devdata_imx23 = { + .type = IS_MX23, + .bch_max_ecc_strength = 20, + .max_chain_delay = 16000, + .clks = gpmi_clks_for_mx2x, + .clks_count = ARRAY_SIZE(gpmi_clks_for_mx2x), +}; + +static const struct gpmi_devdata gpmi_devdata_imx28 = { + .type = IS_MX28, + .bch_max_ecc_strength = 20, + .max_chain_delay = 16000, + .clks = gpmi_clks_for_mx2x, + .clks_count = ARRAY_SIZE(gpmi_clks_for_mx2x), +}; + +static const char * const gpmi_clks_for_mx6[] = { + "gpmi_io", "gpmi_apb", "gpmi_bch", "gpmi_bch_apb", "per1_bch", +}; + +static const struct gpmi_devdata gpmi_devdata_imx6q = { + .type = IS_MX6Q, + .bch_max_ecc_strength = 40, + .max_chain_delay = 12000, + .clks = gpmi_clks_for_mx6, + .clks_count = ARRAY_SIZE(gpmi_clks_for_mx6), +}; + +static const struct gpmi_devdata gpmi_devdata_imx6sx = { + .type = IS_MX6SX, + .bch_max_ecc_strength = 62, + .max_chain_delay = 12000, + .clks = gpmi_clks_for_mx6, + .clks_count = ARRAY_SIZE(gpmi_clks_for_mx6), +}; + +static const char * const gpmi_clks_for_mx7d[] = { + "gpmi_io", "gpmi_bch_apb", +}; + +static const struct gpmi_devdata gpmi_devdata_imx7d = { + .type = IS_MX7D, + .bch_max_ecc_strength = 62, + .max_chain_delay = 12000, + .clks = gpmi_clks_for_mx7d, + .clks_count = ARRAY_SIZE(gpmi_clks_for_mx7d), +}; + +static int acquire_register_block(struct gpmi_nand_data *this, + const char *res_name) +{ + struct platform_device *pdev = this->pdev; + struct resources *res = &this->resources; + void __iomem *p; + + p = devm_platform_ioremap_resource_byname(pdev, res_name); + if (IS_ERR(p)) + return PTR_ERR(p); + + if (!strcmp(res_name, GPMI_NAND_GPMI_REGS_ADDR_RES_NAME)) + res->gpmi_regs = p; + else if (!strcmp(res_name, GPMI_NAND_BCH_REGS_ADDR_RES_NAME)) + res->bch_regs = p; + else + dev_err(this->dev, "unknown resource name : %s\n", res_name); + + return 0; +} + +static int acquire_bch_irq(struct gpmi_nand_data *this, irq_handler_t irq_h) +{ + struct platform_device *pdev = this->pdev; + const char *res_name = GPMI_NAND_BCH_INTERRUPT_RES_NAME; + int err; + + err = platform_get_irq_byname(pdev, res_name); + if (err < 0) + return err; + + err = devm_request_irq(this->dev, err, irq_h, 0, res_name, this); + if (err) + dev_err(this->dev, "error requesting BCH IRQ\n"); + + return err; +} + +static void release_dma_channels(struct gpmi_nand_data *this) +{ + unsigned int i; + for (i = 0; i < DMA_CHANS; i++) + if (this->dma_chans[i]) { + dma_release_channel(this->dma_chans[i]); + this->dma_chans[i] = NULL; + } +} + +static int acquire_dma_channels(struct gpmi_nand_data *this) +{ + struct platform_device *pdev = this->pdev; + struct dma_chan *dma_chan; + int ret = 0; + + /* request dma channel */ + dma_chan = dma_request_chan(&pdev->dev, "rx-tx"); + if (IS_ERR(dma_chan)) { + ret = dev_err_probe(this->dev, PTR_ERR(dma_chan), + "DMA channel request failed\n"); + release_dma_channels(this); + } else { + this->dma_chans[0] = dma_chan; + } + + return ret; +} + +static int gpmi_get_clks(struct gpmi_nand_data *this) +{ + struct resources *r = &this->resources; + struct clk *clk; + int err, i; + + for (i = 0; i < this->devdata->clks_count; i++) { + clk = devm_clk_get(this->dev, this->devdata->clks[i]); + if (IS_ERR(clk)) { + err = PTR_ERR(clk); + goto err_clock; + } + + r->clock[i] = clk; + } + + return 0; + +err_clock: + dev_dbg(this->dev, "failed in finding the clocks.\n"); + return err; +} + +static int acquire_resources(struct gpmi_nand_data *this) +{ + int ret; + + ret = acquire_register_block(this, GPMI_NAND_GPMI_REGS_ADDR_RES_NAME); + if (ret) + goto exit_regs; + + ret = acquire_register_block(this, GPMI_NAND_BCH_REGS_ADDR_RES_NAME); + if (ret) + goto exit_regs; + + ret = acquire_bch_irq(this, bch_irq); + if (ret) + goto exit_regs; + + ret = acquire_dma_channels(this); + if (ret) + goto exit_regs; + + ret = gpmi_get_clks(this); + if (ret) + goto exit_clock; + return 0; + +exit_clock: + release_dma_channels(this); +exit_regs: + return ret; +} + +static void release_resources(struct gpmi_nand_data *this) +{ + release_dma_channels(this); +} + +static void gpmi_free_dma_buffer(struct gpmi_nand_data *this) +{ + struct device *dev = this->dev; + struct bch_geometry *geo = &this->bch_geometry; + + if (this->auxiliary_virt && virt_addr_valid(this->auxiliary_virt)) + dma_free_coherent(dev, geo->auxiliary_size, + this->auxiliary_virt, + this->auxiliary_phys); + kfree(this->data_buffer_dma); + kfree(this->raw_buffer); + + this->data_buffer_dma = NULL; + this->raw_buffer = NULL; +} + +/* Allocate the DMA buffers */ +static int gpmi_alloc_dma_buffer(struct gpmi_nand_data *this) +{ + struct bch_geometry *geo = &this->bch_geometry; + struct device *dev = this->dev; + struct mtd_info *mtd = nand_to_mtd(&this->nand); + + /* + * [2] Allocate a read/write data buffer. + * The gpmi_alloc_dma_buffer can be called twice. + * We allocate a PAGE_SIZE length buffer if gpmi_alloc_dma_buffer + * is called before the NAND identification; and we allocate a + * buffer of the real NAND page size when the gpmi_alloc_dma_buffer + * is called after. + */ + this->data_buffer_dma = kzalloc(mtd->writesize ?: PAGE_SIZE, + GFP_DMA | GFP_KERNEL); + if (this->data_buffer_dma == NULL) + goto error_alloc; + + this->auxiliary_virt = dma_alloc_coherent(dev, geo->auxiliary_size, + &this->auxiliary_phys, GFP_DMA); + if (!this->auxiliary_virt) + goto error_alloc; + + this->raw_buffer = kzalloc((mtd->writesize ?: PAGE_SIZE) + mtd->oobsize, GFP_KERNEL); + if (!this->raw_buffer) + goto error_alloc; + + return 0; + +error_alloc: + gpmi_free_dma_buffer(this); + return -ENOMEM; +} + +/* + * Handles block mark swapping. + * It can be called in swapping the block mark, or swapping it back, + * because the operations are the same. + */ +static void block_mark_swapping(struct gpmi_nand_data *this, + void *payload, void *auxiliary) +{ + struct bch_geometry *nfc_geo = &this->bch_geometry; + unsigned char *p; + unsigned char *a; + unsigned int bit; + unsigned char mask; + unsigned char from_data; + unsigned char from_oob; + + if (!this->swap_block_mark) + return; + + /* + * If control arrives here, we're swapping. Make some convenience + * variables. + */ + bit = nfc_geo->block_mark_bit_offset; + p = payload + nfc_geo->block_mark_byte_offset; + a = auxiliary; + + /* + * Get the byte from the data area that overlays the block mark. Since + * the ECC engine applies its own view to the bits in the page, the + * physical block mark won't (in general) appear on a byte boundary in + * the data. + */ + from_data = (p[0] >> bit) | (p[1] << (8 - bit)); + + /* Get the byte from the OOB. */ + from_oob = a[0]; + + /* Swap them. */ + a[0] = from_data; + + mask = (0x1 << bit) - 1; + p[0] = (p[0] & mask) | (from_oob << bit); + + mask = ~0 << bit; + p[1] = (p[1] & mask) | (from_oob >> (8 - bit)); +} + +static int gpmi_count_bitflips(struct nand_chip *chip, void *buf, int first, + int last, int meta) +{ + struct gpmi_nand_data *this = nand_get_controller_data(chip); + struct bch_geometry *nfc_geo = &this->bch_geometry; + struct mtd_info *mtd = nand_to_mtd(chip); + int i; + unsigned char *status; + unsigned int max_bitflips = 0; + + /* Loop over status bytes, accumulating ECC status. */ + status = this->auxiliary_virt + ALIGN(meta, 4); + + for (i = first; i < last; i++, status++) { + if ((*status == STATUS_GOOD) || (*status == STATUS_ERASED)) + continue; + + if (*status == STATUS_UNCORRECTABLE) { + int eccbits = nfc_geo->ecc_strength * nfc_geo->gf_len; + u8 *eccbuf = this->raw_buffer; + int offset, bitoffset; + int eccbytes; + int flips; + + /* Read ECC bytes into our internal raw_buffer */ + offset = nfc_geo->metadata_size * 8; + offset += ((8 * nfc_geo->eccn_chunk_size) + eccbits) * (i + 1); + offset -= eccbits; + bitoffset = offset % 8; + eccbytes = DIV_ROUND_UP(offset + eccbits, 8); + offset /= 8; + eccbytes -= offset; + nand_change_read_column_op(chip, offset, eccbuf, + eccbytes, false); + + /* + * ECC data are not byte aligned and we may have + * in-band data in the first and last byte of + * eccbuf. Set non-eccbits to one so that + * nand_check_erased_ecc_chunk() does not count them + * as bitflips. + */ + if (bitoffset) + eccbuf[0] |= GENMASK(bitoffset - 1, 0); + + bitoffset = (bitoffset + eccbits) % 8; + if (bitoffset) + eccbuf[eccbytes - 1] |= GENMASK(7, bitoffset); + + /* + * The ECC hardware has an uncorrectable ECC status + * code in case we have bitflips in an erased page. As + * nothing was written into this subpage the ECC is + * obviously wrong and we can not trust it. We assume + * at this point that we are reading an erased page and + * try to correct the bitflips in buffer up to + * ecc_strength bitflips. If this is a page with random + * data, we exceed this number of bitflips and have a + * ECC failure. Otherwise we use the corrected buffer. + */ + if (i == 0) { + /* The first block includes metadata */ + flips = nand_check_erased_ecc_chunk( + buf + i * nfc_geo->eccn_chunk_size, + nfc_geo->eccn_chunk_size, + eccbuf, eccbytes, + this->auxiliary_virt, + nfc_geo->metadata_size, + nfc_geo->ecc_strength); + } else { + flips = nand_check_erased_ecc_chunk( + buf + i * nfc_geo->eccn_chunk_size, + nfc_geo->eccn_chunk_size, + eccbuf, eccbytes, + NULL, 0, + nfc_geo->ecc_strength); + } + + if (flips > 0) { + max_bitflips = max_t(unsigned int, max_bitflips, + flips); + mtd->ecc_stats.corrected += flips; + continue; + } + + mtd->ecc_stats.failed++; + continue; + } + + mtd->ecc_stats.corrected += *status; + max_bitflips = max_t(unsigned int, max_bitflips, *status); + } + + return max_bitflips; +} + +static void gpmi_bch_layout_std(struct gpmi_nand_data *this) +{ + struct bch_geometry *geo = &this->bch_geometry; + unsigned int ecc_strength = geo->ecc_strength >> 1; + unsigned int gf_len = geo->gf_len; + unsigned int block0_size = geo->ecc0_chunk_size; + unsigned int blockn_size = geo->eccn_chunk_size; + + this->bch_flashlayout0 = + BF_BCH_FLASH0LAYOUT0_NBLOCKS(geo->ecc_chunk_count - 1) | + BF_BCH_FLASH0LAYOUT0_META_SIZE(geo->metadata_size) | + BF_BCH_FLASH0LAYOUT0_ECC0(ecc_strength, this) | + BF_BCH_FLASH0LAYOUT0_GF(gf_len, this) | + BF_BCH_FLASH0LAYOUT0_DATA0_SIZE(block0_size, this); + + this->bch_flashlayout1 = + BF_BCH_FLASH0LAYOUT1_PAGE_SIZE(geo->page_size) | + BF_BCH_FLASH0LAYOUT1_ECCN(ecc_strength, this) | + BF_BCH_FLASH0LAYOUT1_GF(gf_len, this) | + BF_BCH_FLASH0LAYOUT1_DATAN_SIZE(blockn_size, this); +} + +static int gpmi_ecc_read_page(struct nand_chip *chip, uint8_t *buf, + int oob_required, int page) +{ + struct gpmi_nand_data *this = nand_get_controller_data(chip); + struct mtd_info *mtd = nand_to_mtd(chip); + struct bch_geometry *geo = &this->bch_geometry; + unsigned int max_bitflips; + int ret; + + gpmi_bch_layout_std(this); + this->bch = true; + + ret = nand_read_page_op(chip, page, 0, buf, geo->page_size); + if (ret) + return ret; + + max_bitflips = gpmi_count_bitflips(chip, buf, 0, + geo->ecc_chunk_count, + geo->auxiliary_status_offset); + + /* handle the block mark swapping */ + block_mark_swapping(this, buf, this->auxiliary_virt); + + if (oob_required) { + /* + * It's time to deliver the OOB bytes. See gpmi_ecc_read_oob() + * for details about our policy for delivering the OOB. + * + * We fill the caller's buffer with set bits, and then copy the + * block mark to th caller's buffer. Note that, if block mark + * swapping was necessary, it has already been done, so we can + * rely on the first byte of the auxiliary buffer to contain + * the block mark. + */ + memset(chip->oob_poi, ~0, mtd->oobsize); + chip->oob_poi[0] = ((uint8_t *)this->auxiliary_virt)[0]; + } + + return max_bitflips; +} + +/* Fake a virtual small page for the subpage read */ +static int gpmi_ecc_read_subpage(struct nand_chip *chip, uint32_t offs, + uint32_t len, uint8_t *buf, int page) +{ + struct gpmi_nand_data *this = nand_get_controller_data(chip); + struct bch_geometry *geo = &this->bch_geometry; + int size = chip->ecc.size; /* ECC chunk size */ + int meta, n, page_size; + unsigned int max_bitflips; + unsigned int ecc_strength; + int first, last, marker_pos; + int ecc_parity_size; + int col = 0; + int ret; + + /* The size of ECC parity */ + ecc_parity_size = geo->gf_len * geo->ecc_strength / 8; + + /* Align it with the chunk size */ + first = offs / size; + last = (offs + len - 1) / size; + + if (this->swap_block_mark) { + /* + * Find the chunk which contains the Block Marker. + * If this chunk is in the range of [first, last], + * we have to read out the whole page. + * Why? since we had swapped the data at the position of Block + * Marker to the metadata which is bound with the chunk 0. + */ + marker_pos = geo->block_mark_byte_offset / size; + if (last >= marker_pos && first <= marker_pos) { + dev_dbg(this->dev, + "page:%d, first:%d, last:%d, marker at:%d\n", + page, first, last, marker_pos); + return gpmi_ecc_read_page(chip, buf, 0, page); + } + } + + /* + * if there is an ECC dedicate for meta: + * - need to add an extra ECC size when calculating col and page_size, + * if the meta size is NOT zero. + * - ecc0_chunk size need to set to the same size as other chunks, + * if the meta size is zero. + */ + + meta = geo->metadata_size; + if (first) { + if (geo->ecc_for_meta) + col = meta + ecc_parity_size + + (size + ecc_parity_size) * first; + else + col = meta + (size + ecc_parity_size) * first; + + meta = 0; + buf = buf + first * size; + } + + ecc_parity_size = geo->gf_len * geo->ecc_strength / 8; + n = last - first + 1; + + if (geo->ecc_for_meta && meta) + page_size = meta + ecc_parity_size + + (size + ecc_parity_size) * n; + else + page_size = meta + (size + ecc_parity_size) * n; + + ecc_strength = geo->ecc_strength >> 1; + + this->bch_flashlayout0 = BF_BCH_FLASH0LAYOUT0_NBLOCKS( + (geo->ecc_for_meta ? n : n - 1)) | + BF_BCH_FLASH0LAYOUT0_META_SIZE(meta) | + BF_BCH_FLASH0LAYOUT0_ECC0(ecc_strength, this) | + BF_BCH_FLASH0LAYOUT0_GF(geo->gf_len, this) | + BF_BCH_FLASH0LAYOUT0_DATA0_SIZE((geo->ecc_for_meta ? + 0 : geo->ecc0_chunk_size), this); + + this->bch_flashlayout1 = BF_BCH_FLASH0LAYOUT1_PAGE_SIZE(page_size) | + BF_BCH_FLASH0LAYOUT1_ECCN(ecc_strength, this) | + BF_BCH_FLASH0LAYOUT1_GF(geo->gf_len, this) | + BF_BCH_FLASH0LAYOUT1_DATAN_SIZE(geo->eccn_chunk_size, this); + + this->bch = true; + + ret = nand_read_page_op(chip, page, col, buf, page_size); + if (ret) + return ret; + + dev_dbg(this->dev, "page:%d(%d:%d)%d, chunk:(%d:%d), BCH PG size:%d\n", + page, offs, len, col, first, n, page_size); + + max_bitflips = gpmi_count_bitflips(chip, buf, first, last, meta); + + return max_bitflips; +} + +static int gpmi_ecc_write_page(struct nand_chip *chip, const uint8_t *buf, + int oob_required, int page) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + struct gpmi_nand_data *this = nand_get_controller_data(chip); + struct bch_geometry *nfc_geo = &this->bch_geometry; + + dev_dbg(this->dev, "ecc write page.\n"); + + gpmi_bch_layout_std(this); + this->bch = true; + + memcpy(this->auxiliary_virt, chip->oob_poi, nfc_geo->auxiliary_size); + + if (this->swap_block_mark) { + /* + * When doing bad block marker swapping we must always copy the + * input buffer as we can't modify the const buffer. + */ + memcpy(this->data_buffer_dma, buf, mtd->writesize); + buf = this->data_buffer_dma; + block_mark_swapping(this, this->data_buffer_dma, + this->auxiliary_virt); + } + + return nand_prog_page_op(chip, page, 0, buf, nfc_geo->page_size); +} + +/* + * There are several places in this driver where we have to handle the OOB and + * block marks. This is the function where things are the most complicated, so + * this is where we try to explain it all. All the other places refer back to + * here. + * + * These are the rules, in order of decreasing importance: + * + * 1) Nothing the caller does can be allowed to imperil the block mark. + * + * 2) In read operations, the first byte of the OOB we return must reflect the + * true state of the block mark, no matter where that block mark appears in + * the physical page. + * + * 3) ECC-based read operations return an OOB full of set bits (since we never + * allow ECC-based writes to the OOB, it doesn't matter what ECC-based reads + * return). + * + * 4) "Raw" read operations return a direct view of the physical bytes in the + * page, using the conventional definition of which bytes are data and which + * are OOB. This gives the caller a way to see the actual, physical bytes + * in the page, without the distortions applied by our ECC engine. + * + * + * What we do for this specific read operation depends on two questions: + * + * 1) Are we doing a "raw" read, or an ECC-based read? + * + * 2) Are we using block mark swapping or transcription? + * + * There are four cases, illustrated by the following Karnaugh map: + * + * | Raw | ECC-based | + * -------------+-------------------------+-------------------------+ + * | Read the conventional | | + * | OOB at the end of the | | + * Swapping | page and return it. It | | + * | contains exactly what | | + * | we want. | Read the block mark and | + * -------------+-------------------------+ return it in a buffer | + * | Read the conventional | full of set bits. | + * | OOB at the end of the | | + * | page and also the block | | + * Transcribing | mark in the metadata. | | + * | Copy the block mark | | + * | into the first byte of | | + * | the OOB. | | + * -------------+-------------------------+-------------------------+ + * + * Note that we break rule #4 in the Transcribing/Raw case because we're not + * giving an accurate view of the actual, physical bytes in the page (we're + * overwriting the block mark). That's OK because it's more important to follow + * rule #2. + * + * It turns out that knowing whether we want an "ECC-based" or "raw" read is not + * easy. When reading a page, for example, the NAND Flash MTD code calls our + * ecc.read_page or ecc.read_page_raw function. Thus, the fact that MTD wants an + * ECC-based or raw view of the page is implicit in which function it calls + * (there is a similar pair of ECC-based/raw functions for writing). + */ +static int gpmi_ecc_read_oob(struct nand_chip *chip, int page) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + struct gpmi_nand_data *this = nand_get_controller_data(chip); + int ret; + + /* clear the OOB buffer */ + memset(chip->oob_poi, ~0, mtd->oobsize); + + /* Read out the conventional OOB. */ + ret = nand_read_page_op(chip, page, mtd->writesize, chip->oob_poi, + mtd->oobsize); + if (ret) + return ret; + + /* + * Now, we want to make sure the block mark is correct. In the + * non-transcribing case (!GPMI_IS_MX23()), we already have it. + * Otherwise, we need to explicitly read it. + */ + if (GPMI_IS_MX23(this)) { + /* Read the block mark into the first byte of the OOB buffer. */ + ret = nand_read_page_op(chip, page, 0, chip->oob_poi, 1); + if (ret) + return ret; + } + + return 0; +} + +static int gpmi_ecc_write_oob(struct nand_chip *chip, int page) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + struct mtd_oob_region of = { }; + + /* Do we have available oob area? */ + mtd_ooblayout_free(mtd, 0, &of); + if (!of.length) + return -EPERM; + + if (!nand_is_slc(chip)) + return -EPERM; + + return nand_prog_page_op(chip, page, mtd->writesize + of.offset, + chip->oob_poi + of.offset, of.length); +} + +/* + * This function reads a NAND page without involving the ECC engine (no HW + * ECC correction). + * The tricky part in the GPMI/BCH controller is that it stores ECC bits + * inline (interleaved with payload DATA), and do not align data chunk on + * byte boundaries. + * We thus need to take care moving the payload data and ECC bits stored in the + * page into the provided buffers, which is why we're using nand_extract_bits(). + * + * See set_geometry_by_ecc_info inline comments to have a full description + * of the layout used by the GPMI controller. + */ +static int gpmi_ecc_read_page_raw(struct nand_chip *chip, uint8_t *buf, + int oob_required, int page) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + struct gpmi_nand_data *this = nand_get_controller_data(chip); + struct bch_geometry *nfc_geo = &this->bch_geometry; + int eccsize = nfc_geo->eccn_chunk_size; + int eccbits = nfc_geo->ecc_strength * nfc_geo->gf_len; + u8 *tmp_buf = this->raw_buffer; + size_t src_bit_off; + size_t oob_bit_off; + size_t oob_byte_off; + uint8_t *oob = chip->oob_poi; + int step; + int ret; + + ret = nand_read_page_op(chip, page, 0, tmp_buf, + mtd->writesize + mtd->oobsize); + if (ret) + return ret; + + /* + * If required, swap the bad block marker and the data stored in the + * metadata section, so that we don't wrongly consider a block as bad. + * + * See the layout description for a detailed explanation on why this + * is needed. + */ + if (this->swap_block_mark) + swap(tmp_buf[0], tmp_buf[mtd->writesize]); + + /* + * Copy the metadata section into the oob buffer (this section is + * guaranteed to be aligned on a byte boundary). + */ + if (oob_required) + memcpy(oob, tmp_buf, nfc_geo->metadata_size); + + oob_bit_off = nfc_geo->metadata_size * 8; + src_bit_off = oob_bit_off; + + /* Extract interleaved payload data and ECC bits */ + for (step = 0; step < nfc_geo->ecc_chunk_count; step++) { + if (buf) + nand_extract_bits(buf, step * eccsize * 8, tmp_buf, + src_bit_off, eccsize * 8); + src_bit_off += eccsize * 8; + + /* Align last ECC block to align a byte boundary */ + if (step == nfc_geo->ecc_chunk_count - 1 && + (oob_bit_off + eccbits) % 8) + eccbits += 8 - ((oob_bit_off + eccbits) % 8); + + if (oob_required) + nand_extract_bits(oob, oob_bit_off, tmp_buf, + src_bit_off, eccbits); + + src_bit_off += eccbits; + oob_bit_off += eccbits; + } + + if (oob_required) { + oob_byte_off = oob_bit_off / 8; + + if (oob_byte_off < mtd->oobsize) + memcpy(oob + oob_byte_off, + tmp_buf + mtd->writesize + oob_byte_off, + mtd->oobsize - oob_byte_off); + } + + return 0; +} + +/* + * This function writes a NAND page without involving the ECC engine (no HW + * ECC generation). + * The tricky part in the GPMI/BCH controller is that it stores ECC bits + * inline (interleaved with payload DATA), and do not align data chunk on + * byte boundaries. + * We thus need to take care moving the OOB area at the right place in the + * final page, which is why we're using nand_extract_bits(). + * + * See set_geometry_by_ecc_info inline comments to have a full description + * of the layout used by the GPMI controller. + */ +static int gpmi_ecc_write_page_raw(struct nand_chip *chip, const uint8_t *buf, + int oob_required, int page) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + struct gpmi_nand_data *this = nand_get_controller_data(chip); + struct bch_geometry *nfc_geo = &this->bch_geometry; + int eccsize = nfc_geo->eccn_chunk_size; + int eccbits = nfc_geo->ecc_strength * nfc_geo->gf_len; + u8 *tmp_buf = this->raw_buffer; + uint8_t *oob = chip->oob_poi; + size_t dst_bit_off; + size_t oob_bit_off; + size_t oob_byte_off; + int step; + + /* + * Initialize all bits to 1 in case we don't have a buffer for the + * payload or oob data in order to leave unspecified bits of data + * to their initial state. + */ + if (!buf || !oob_required) + memset(tmp_buf, 0xff, mtd->writesize + mtd->oobsize); + + /* + * First copy the metadata section (stored in oob buffer) at the + * beginning of the page, as imposed by the GPMI layout. + */ + memcpy(tmp_buf, oob, nfc_geo->metadata_size); + oob_bit_off = nfc_geo->metadata_size * 8; + dst_bit_off = oob_bit_off; + + /* Interleave payload data and ECC bits */ + for (step = 0; step < nfc_geo->ecc_chunk_count; step++) { + if (buf) + nand_extract_bits(tmp_buf, dst_bit_off, buf, + step * eccsize * 8, eccsize * 8); + dst_bit_off += eccsize * 8; + + /* Align last ECC block to align a byte boundary */ + if (step == nfc_geo->ecc_chunk_count - 1 && + (oob_bit_off + eccbits) % 8) + eccbits += 8 - ((oob_bit_off + eccbits) % 8); + + if (oob_required) + nand_extract_bits(tmp_buf, dst_bit_off, oob, + oob_bit_off, eccbits); + + dst_bit_off += eccbits; + oob_bit_off += eccbits; + } + + oob_byte_off = oob_bit_off / 8; + + if (oob_required && oob_byte_off < mtd->oobsize) + memcpy(tmp_buf + mtd->writesize + oob_byte_off, + oob + oob_byte_off, mtd->oobsize - oob_byte_off); + + /* + * If required, swap the bad block marker and the first byte of the + * metadata section, so that we don't modify the bad block marker. + * + * See the layout description for a detailed explanation on why this + * is needed. + */ + if (this->swap_block_mark) + swap(tmp_buf[0], tmp_buf[mtd->writesize]); + + return nand_prog_page_op(chip, page, 0, tmp_buf, + mtd->writesize + mtd->oobsize); +} + +static int gpmi_ecc_read_oob_raw(struct nand_chip *chip, int page) +{ + return gpmi_ecc_read_page_raw(chip, NULL, 1, page); +} + +static int gpmi_ecc_write_oob_raw(struct nand_chip *chip, int page) +{ + return gpmi_ecc_write_page_raw(chip, NULL, 1, page); +} + +static int gpmi_block_markbad(struct nand_chip *chip, loff_t ofs) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + struct gpmi_nand_data *this = nand_get_controller_data(chip); + int ret = 0; + uint8_t *block_mark; + int column, page, chipnr; + + chipnr = (int)(ofs >> chip->chip_shift); + nand_select_target(chip, chipnr); + + column = !GPMI_IS_MX23(this) ? mtd->writesize : 0; + + /* Write the block mark. */ + block_mark = this->data_buffer_dma; + block_mark[0] = 0; /* bad block marker */ + + /* Shift to get page */ + page = (int)(ofs >> chip->page_shift); + + ret = nand_prog_page_op(chip, page, column, block_mark, 1); + + nand_deselect_target(chip); + + return ret; +} + +static int nand_boot_set_geometry(struct gpmi_nand_data *this) +{ + struct boot_rom_geometry *geometry = &this->rom_geometry; + + /* + * Set the boot block stride size. + * + * In principle, we should be reading this from the OTP bits, since + * that's where the ROM is going to get it. In fact, we don't have any + * way to read the OTP bits, so we go with the default and hope for the + * best. + */ + geometry->stride_size_in_pages = 64; + + /* + * Set the search area stride exponent. + * + * In principle, we should be reading this from the OTP bits, since + * that's where the ROM is going to get it. In fact, we don't have any + * way to read the OTP bits, so we go with the default and hope for the + * best. + */ + geometry->search_area_stride_exponent = 2; + return 0; +} + +static const char *fingerprint = "STMP"; +static int mx23_check_transcription_stamp(struct gpmi_nand_data *this) +{ + struct boot_rom_geometry *rom_geo = &this->rom_geometry; + struct device *dev = this->dev; + struct nand_chip *chip = &this->nand; + unsigned int search_area_size_in_strides; + unsigned int stride; + unsigned int page; + u8 *buffer = nand_get_data_buf(chip); + int found_an_ncb_fingerprint = false; + int ret; + + /* Compute the number of strides in a search area. */ + search_area_size_in_strides = 1 << rom_geo->search_area_stride_exponent; + + nand_select_target(chip, 0); + + /* + * Loop through the first search area, looking for the NCB fingerprint. + */ + dev_dbg(dev, "Scanning for an NCB fingerprint...\n"); + + for (stride = 0; stride < search_area_size_in_strides; stride++) { + /* Compute the page addresses. */ + page = stride * rom_geo->stride_size_in_pages; + + dev_dbg(dev, "Looking for a fingerprint in page 0x%x\n", page); + + /* + * Read the NCB fingerprint. The fingerprint is four bytes long + * and starts in the 12th byte of the page. + */ + ret = nand_read_page_op(chip, page, 12, buffer, + strlen(fingerprint)); + if (ret) + continue; + + /* Look for the fingerprint. */ + if (!memcmp(buffer, fingerprint, strlen(fingerprint))) { + found_an_ncb_fingerprint = true; + break; + } + + } + + nand_deselect_target(chip); + + if (found_an_ncb_fingerprint) + dev_dbg(dev, "\tFound a fingerprint\n"); + else + dev_dbg(dev, "\tNo fingerprint found\n"); + return found_an_ncb_fingerprint; +} + +/* Writes a transcription stamp. */ +static int mx23_write_transcription_stamp(struct gpmi_nand_data *this) +{ + struct device *dev = this->dev; + struct boot_rom_geometry *rom_geo = &this->rom_geometry; + struct nand_chip *chip = &this->nand; + struct mtd_info *mtd = nand_to_mtd(chip); + unsigned int block_size_in_pages; + unsigned int search_area_size_in_strides; + unsigned int search_area_size_in_pages; + unsigned int search_area_size_in_blocks; + unsigned int block; + unsigned int stride; + unsigned int page; + u8 *buffer = nand_get_data_buf(chip); + int status; + + /* Compute the search area geometry. */ + block_size_in_pages = mtd->erasesize / mtd->writesize; + search_area_size_in_strides = 1 << rom_geo->search_area_stride_exponent; + search_area_size_in_pages = search_area_size_in_strides * + rom_geo->stride_size_in_pages; + search_area_size_in_blocks = + (search_area_size_in_pages + (block_size_in_pages - 1)) / + block_size_in_pages; + + dev_dbg(dev, "Search Area Geometry :\n"); + dev_dbg(dev, "\tin Blocks : %u\n", search_area_size_in_blocks); + dev_dbg(dev, "\tin Strides: %u\n", search_area_size_in_strides); + dev_dbg(dev, "\tin Pages : %u\n", search_area_size_in_pages); + + nand_select_target(chip, 0); + + /* Loop over blocks in the first search area, erasing them. */ + dev_dbg(dev, "Erasing the search area...\n"); + + for (block = 0; block < search_area_size_in_blocks; block++) { + /* Erase this block. */ + dev_dbg(dev, "\tErasing block 0x%x\n", block); + status = nand_erase_op(chip, block); + if (status) + dev_err(dev, "[%s] Erase failed.\n", __func__); + } + + /* Write the NCB fingerprint into the page buffer. */ + memset(buffer, ~0, mtd->writesize); + memcpy(buffer + 12, fingerprint, strlen(fingerprint)); + + /* Loop through the first search area, writing NCB fingerprints. */ + dev_dbg(dev, "Writing NCB fingerprints...\n"); + for (stride = 0; stride < search_area_size_in_strides; stride++) { + /* Compute the page addresses. */ + page = stride * rom_geo->stride_size_in_pages; + + /* Write the first page of the current stride. */ + dev_dbg(dev, "Writing an NCB fingerprint in page 0x%x\n", page); + + status = chip->ecc.write_page_raw(chip, buffer, 0, page); + if (status) + dev_err(dev, "[%s] Write failed.\n", __func__); + } + + nand_deselect_target(chip); + + return 0; +} + +static int mx23_boot_init(struct gpmi_nand_data *this) +{ + struct device *dev = this->dev; + struct nand_chip *chip = &this->nand; + struct mtd_info *mtd = nand_to_mtd(chip); + unsigned int block_count; + unsigned int block; + int chipnr; + int page; + loff_t byte; + uint8_t block_mark; + int ret = 0; + + /* + * If control arrives here, we can't use block mark swapping, which + * means we're forced to use transcription. First, scan for the + * transcription stamp. If we find it, then we don't have to do + * anything -- the block marks are already transcribed. + */ + if (mx23_check_transcription_stamp(this)) + return 0; + + /* + * If control arrives here, we couldn't find a transcription stamp, so + * so we presume the block marks are in the conventional location. + */ + dev_dbg(dev, "Transcribing bad block marks...\n"); + + /* Compute the number of blocks in the entire medium. */ + block_count = nanddev_eraseblocks_per_target(&chip->base); + + /* + * Loop over all the blocks in the medium, transcribing block marks as + * we go. + */ + for (block = 0; block < block_count; block++) { + /* + * Compute the chip, page and byte addresses for this block's + * conventional mark. + */ + chipnr = block >> (chip->chip_shift - chip->phys_erase_shift); + page = block << (chip->phys_erase_shift - chip->page_shift); + byte = block << chip->phys_erase_shift; + + /* Send the command to read the conventional block mark. */ + nand_select_target(chip, chipnr); + ret = nand_read_page_op(chip, page, mtd->writesize, &block_mark, + 1); + nand_deselect_target(chip); + + if (ret) + continue; + + /* + * Check if the block is marked bad. If so, we need to mark it + * again, but this time the result will be a mark in the + * location where we transcribe block marks. + */ + if (block_mark != 0xff) { + dev_dbg(dev, "Transcribing mark in block %u\n", block); + ret = chip->legacy.block_markbad(chip, byte); + if (ret) + dev_err(dev, + "Failed to mark block bad with ret %d\n", + ret); + } + } + + /* Write the stamp that indicates we've transcribed the block marks. */ + mx23_write_transcription_stamp(this); + return 0; +} + +static int nand_boot_init(struct gpmi_nand_data *this) +{ + nand_boot_set_geometry(this); + + /* This is ROM arch-specific initilization before the BBT scanning. */ + if (GPMI_IS_MX23(this)) + return mx23_boot_init(this); + return 0; +} + +static int gpmi_set_geometry(struct gpmi_nand_data *this) +{ + int ret; + + /* Free the temporary DMA memory for reading ID. */ + gpmi_free_dma_buffer(this); + + /* Set up the NFC geometry which is used by BCH. */ + ret = bch_set_geometry(this); + if (ret) { + dev_err(this->dev, "Error setting BCH geometry : %d\n", ret); + return ret; + } + + /* Alloc the new DMA buffers according to the pagesize and oobsize */ + return gpmi_alloc_dma_buffer(this); +} + +static int gpmi_init_last(struct gpmi_nand_data *this) +{ + struct nand_chip *chip = &this->nand; + struct mtd_info *mtd = nand_to_mtd(chip); + struct nand_ecc_ctrl *ecc = &chip->ecc; + struct bch_geometry *bch_geo = &this->bch_geometry; + int ret; + + /* Set up the medium geometry */ + ret = gpmi_set_geometry(this); + if (ret) + return ret; + + /* Init the nand_ecc_ctrl{} */ + ecc->read_page = gpmi_ecc_read_page; + ecc->write_page = gpmi_ecc_write_page; + ecc->read_oob = gpmi_ecc_read_oob; + ecc->write_oob = gpmi_ecc_write_oob; + ecc->read_page_raw = gpmi_ecc_read_page_raw; + ecc->write_page_raw = gpmi_ecc_write_page_raw; + ecc->read_oob_raw = gpmi_ecc_read_oob_raw; + ecc->write_oob_raw = gpmi_ecc_write_oob_raw; + ecc->engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST; + ecc->size = bch_geo->eccn_chunk_size; + ecc->strength = bch_geo->ecc_strength; + mtd_set_ooblayout(mtd, &gpmi_ooblayout_ops); + + /* + * We only enable the subpage read when: + * (1) the chip is imx6, and + * (2) the size of the ECC parity is byte aligned. + */ + if (GPMI_IS_MX6(this) && + ((bch_geo->gf_len * bch_geo->ecc_strength) % 8) == 0) { + ecc->read_subpage = gpmi_ecc_read_subpage; + chip->options |= NAND_SUBPAGE_READ; + } + + return 0; +} + +static int gpmi_nand_attach_chip(struct nand_chip *chip) +{ + struct gpmi_nand_data *this = nand_get_controller_data(chip); + int ret; + + if (chip->bbt_options & NAND_BBT_USE_FLASH) { + chip->bbt_options |= NAND_BBT_NO_OOB; + + if (of_property_read_bool(this->dev->of_node, + "fsl,no-blockmark-swap")) + this->swap_block_mark = false; + } + dev_dbg(this->dev, "Blockmark swapping %sabled\n", + this->swap_block_mark ? "en" : "dis"); + + ret = gpmi_init_last(this); + if (ret) + return ret; + + chip->options |= NAND_SKIP_BBTSCAN; + + return 0; +} + +static struct gpmi_transfer *get_next_transfer(struct gpmi_nand_data *this) +{ + struct gpmi_transfer *transfer = &this->transfers[this->ntransfers]; + + this->ntransfers++; + + if (this->ntransfers == GPMI_MAX_TRANSFERS) + return NULL; + + return transfer; +} + +static struct dma_async_tx_descriptor *gpmi_chain_command( + struct gpmi_nand_data *this, u8 cmd, const u8 *addr, int naddr) +{ + struct dma_chan *channel = get_dma_chan(this); + struct dma_async_tx_descriptor *desc; + struct gpmi_transfer *transfer; + int chip = this->nand.cur_cs; + u32 pio[3]; + + /* [1] send out the PIO words */ + pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(BV_GPMI_CTRL0_COMMAND_MODE__WRITE) + | BM_GPMI_CTRL0_WORD_LENGTH + | BF_GPMI_CTRL0_CS(chip, this) + | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this) + | BF_GPMI_CTRL0_ADDRESS(BV_GPMI_CTRL0_ADDRESS__NAND_CLE) + | BM_GPMI_CTRL0_ADDRESS_INCREMENT + | BF_GPMI_CTRL0_XFER_COUNT(naddr + 1); + pio[1] = 0; + pio[2] = 0; + desc = mxs_dmaengine_prep_pio(channel, pio, ARRAY_SIZE(pio), + DMA_TRANS_NONE, 0); + if (!desc) + return NULL; + + transfer = get_next_transfer(this); + if (!transfer) + return NULL; + + transfer->cmdbuf[0] = cmd; + if (naddr) + memcpy(&transfer->cmdbuf[1], addr, naddr); + + sg_init_one(&transfer->sgl, transfer->cmdbuf, naddr + 1); + dma_map_sg(this->dev, &transfer->sgl, 1, DMA_TO_DEVICE); + + transfer->direction = DMA_TO_DEVICE; + + desc = dmaengine_prep_slave_sg(channel, &transfer->sgl, 1, DMA_MEM_TO_DEV, + MXS_DMA_CTRL_WAIT4END); + return desc; +} + +static struct dma_async_tx_descriptor *gpmi_chain_wait_ready( + struct gpmi_nand_data *this) +{ + struct dma_chan *channel = get_dma_chan(this); + u32 pio[2]; + + pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(BV_GPMI_CTRL0_COMMAND_MODE__WAIT_FOR_READY) + | BM_GPMI_CTRL0_WORD_LENGTH + | BF_GPMI_CTRL0_CS(this->nand.cur_cs, this) + | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this) + | BF_GPMI_CTRL0_ADDRESS(BV_GPMI_CTRL0_ADDRESS__NAND_DATA) + | BF_GPMI_CTRL0_XFER_COUNT(0); + pio[1] = 0; + + return mxs_dmaengine_prep_pio(channel, pio, 2, DMA_TRANS_NONE, + MXS_DMA_CTRL_WAIT4END | MXS_DMA_CTRL_WAIT4RDY); +} + +static struct dma_async_tx_descriptor *gpmi_chain_data_read( + struct gpmi_nand_data *this, void *buf, int raw_len, bool *direct) +{ + struct dma_async_tx_descriptor *desc; + struct dma_chan *channel = get_dma_chan(this); + struct gpmi_transfer *transfer; + u32 pio[6] = {}; + + transfer = get_next_transfer(this); + if (!transfer) + return NULL; + + transfer->direction = DMA_FROM_DEVICE; + + *direct = prepare_data_dma(this, buf, raw_len, &transfer->sgl, + DMA_FROM_DEVICE); + + pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(BV_GPMI_CTRL0_COMMAND_MODE__READ) + | BM_GPMI_CTRL0_WORD_LENGTH + | BF_GPMI_CTRL0_CS(this->nand.cur_cs, this) + | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this) + | BF_GPMI_CTRL0_ADDRESS(BV_GPMI_CTRL0_ADDRESS__NAND_DATA) + | BF_GPMI_CTRL0_XFER_COUNT(raw_len); + + if (this->bch) { + pio[2] = BM_GPMI_ECCCTRL_ENABLE_ECC + | BF_GPMI_ECCCTRL_ECC_CMD(BV_GPMI_ECCCTRL_ECC_CMD__BCH_DECODE) + | BF_GPMI_ECCCTRL_BUFFER_MASK(BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_PAGE + | BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_AUXONLY); + pio[3] = raw_len; + pio[4] = transfer->sgl.dma_address; + pio[5] = this->auxiliary_phys; + } + + desc = mxs_dmaengine_prep_pio(channel, pio, ARRAY_SIZE(pio), + DMA_TRANS_NONE, 0); + if (!desc) + return NULL; + + if (!this->bch) + desc = dmaengine_prep_slave_sg(channel, &transfer->sgl, 1, + DMA_DEV_TO_MEM, + MXS_DMA_CTRL_WAIT4END); + + return desc; +} + +static struct dma_async_tx_descriptor *gpmi_chain_data_write( + struct gpmi_nand_data *this, const void *buf, int raw_len) +{ + struct dma_chan *channel = get_dma_chan(this); + struct dma_async_tx_descriptor *desc; + struct gpmi_transfer *transfer; + u32 pio[6] = {}; + + transfer = get_next_transfer(this); + if (!transfer) + return NULL; + + transfer->direction = DMA_TO_DEVICE; + + prepare_data_dma(this, buf, raw_len, &transfer->sgl, DMA_TO_DEVICE); + + pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(BV_GPMI_CTRL0_COMMAND_MODE__WRITE) + | BM_GPMI_CTRL0_WORD_LENGTH + | BF_GPMI_CTRL0_CS(this->nand.cur_cs, this) + | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this) + | BF_GPMI_CTRL0_ADDRESS(BV_GPMI_CTRL0_ADDRESS__NAND_DATA) + | BF_GPMI_CTRL0_XFER_COUNT(raw_len); + + if (this->bch) { + pio[2] = BM_GPMI_ECCCTRL_ENABLE_ECC + | BF_GPMI_ECCCTRL_ECC_CMD(BV_GPMI_ECCCTRL_ECC_CMD__BCH_ENCODE) + | BF_GPMI_ECCCTRL_BUFFER_MASK(BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_PAGE | + BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_AUXONLY); + pio[3] = raw_len; + pio[4] = transfer->sgl.dma_address; + pio[5] = this->auxiliary_phys; + } + + desc = mxs_dmaengine_prep_pio(channel, pio, ARRAY_SIZE(pio), + DMA_TRANS_NONE, + (this->bch ? MXS_DMA_CTRL_WAIT4END : 0)); + if (!desc) + return NULL; + + if (!this->bch) + desc = dmaengine_prep_slave_sg(channel, &transfer->sgl, 1, + DMA_MEM_TO_DEV, + MXS_DMA_CTRL_WAIT4END); + + return desc; +} + +static int gpmi_nfc_exec_op(struct nand_chip *chip, + const struct nand_operation *op, + bool check_only) +{ + const struct nand_op_instr *instr; + struct gpmi_nand_data *this = nand_get_controller_data(chip); + struct dma_async_tx_descriptor *desc = NULL; + int i, ret, buf_len = 0, nbufs = 0; + u8 cmd = 0; + void *buf_read = NULL; + const void *buf_write = NULL; + bool direct = false; + struct completion *dma_completion, *bch_completion; + unsigned long to; + + if (check_only) + return 0; + + this->ntransfers = 0; + for (i = 0; i < GPMI_MAX_TRANSFERS; i++) + this->transfers[i].direction = DMA_NONE; + + ret = pm_runtime_resume_and_get(this->dev); + if (ret < 0) + return ret; + + /* + * This driver currently supports only one NAND chip. Plus, dies share + * the same configuration. So once timings have been applied on the + * controller side, they will not change anymore. When the time will + * come, the check on must_apply_timings will have to be dropped. + */ + if (this->hw.must_apply_timings) { + this->hw.must_apply_timings = false; + ret = gpmi_nfc_apply_timings(this); + if (ret) + goto out_pm; + } + + dev_dbg(this->dev, "%s: %d instructions\n", __func__, op->ninstrs); + + for (i = 0; i < op->ninstrs; i++) { + instr = &op->instrs[i]; + + nand_op_trace(" ", instr); + + switch (instr->type) { + case NAND_OP_WAITRDY_INSTR: + desc = gpmi_chain_wait_ready(this); + break; + case NAND_OP_CMD_INSTR: + cmd = instr->ctx.cmd.opcode; + + /* + * When this command has an address cycle chain it + * together with the address cycle + */ + if (i + 1 != op->ninstrs && + op->instrs[i + 1].type == NAND_OP_ADDR_INSTR) + continue; + + desc = gpmi_chain_command(this, cmd, NULL, 0); + + break; + case NAND_OP_ADDR_INSTR: + desc = gpmi_chain_command(this, cmd, instr->ctx.addr.addrs, + instr->ctx.addr.naddrs); + break; + case NAND_OP_DATA_OUT_INSTR: + buf_write = instr->ctx.data.buf.out; + buf_len = instr->ctx.data.len; + nbufs++; + + desc = gpmi_chain_data_write(this, buf_write, buf_len); + + break; + case NAND_OP_DATA_IN_INSTR: + if (!instr->ctx.data.len) + break; + buf_read = instr->ctx.data.buf.in; + buf_len = instr->ctx.data.len; + nbufs++; + + desc = gpmi_chain_data_read(this, buf_read, buf_len, + &direct); + break; + } + + if (!desc) { + ret = -ENXIO; + goto unmap; + } + } + + dev_dbg(this->dev, "%s setup done\n", __func__); + + if (nbufs > 1) { + dev_err(this->dev, "Multiple data instructions not supported\n"); + ret = -EINVAL; + goto unmap; + } + + if (this->bch) { + writel(this->bch_flashlayout0, + this->resources.bch_regs + HW_BCH_FLASH0LAYOUT0); + writel(this->bch_flashlayout1, + this->resources.bch_regs + HW_BCH_FLASH0LAYOUT1); + } + + desc->callback = dma_irq_callback; + desc->callback_param = this; + dma_completion = &this->dma_done; + bch_completion = NULL; + + init_completion(dma_completion); + + if (this->bch && buf_read) { + writel(BM_BCH_CTRL_COMPLETE_IRQ_EN, + this->resources.bch_regs + HW_BCH_CTRL_SET); + bch_completion = &this->bch_done; + init_completion(bch_completion); + } + + dmaengine_submit(desc); + dma_async_issue_pending(get_dma_chan(this)); + + to = wait_for_completion_timeout(dma_completion, msecs_to_jiffies(1000)); + if (!to) { + dev_err(this->dev, "DMA timeout, last DMA\n"); + gpmi_dump_info(this); + ret = -ETIMEDOUT; + goto unmap; + } + + if (this->bch && buf_read) { + to = wait_for_completion_timeout(bch_completion, msecs_to_jiffies(1000)); + if (!to) { + dev_err(this->dev, "BCH timeout, last DMA\n"); + gpmi_dump_info(this); + ret = -ETIMEDOUT; + goto unmap; + } + } + + writel(BM_BCH_CTRL_COMPLETE_IRQ_EN, + this->resources.bch_regs + HW_BCH_CTRL_CLR); + gpmi_clear_bch(this); + + ret = 0; + +unmap: + for (i = 0; i < this->ntransfers; i++) { + struct gpmi_transfer *transfer = &this->transfers[i]; + + if (transfer->direction != DMA_NONE) + dma_unmap_sg(this->dev, &transfer->sgl, 1, + transfer->direction); + } + + if (!ret && buf_read && !direct) + memcpy(buf_read, this->data_buffer_dma, + gpmi_raw_len_to_len(this, buf_len)); + + this->bch = false; + +out_pm: + pm_runtime_mark_last_busy(this->dev); + pm_runtime_put_autosuspend(this->dev); + + return ret; +} + +static const struct nand_controller_ops gpmi_nand_controller_ops = { + .attach_chip = gpmi_nand_attach_chip, + .setup_interface = gpmi_setup_interface, + .exec_op = gpmi_nfc_exec_op, +}; + +static int gpmi_nand_init(struct gpmi_nand_data *this) +{ + struct nand_chip *chip = &this->nand; + struct mtd_info *mtd = nand_to_mtd(chip); + int ret; + + /* init the MTD data structures */ + mtd->name = "gpmi-nand"; + mtd->dev.parent = this->dev; + + /* init the nand_chip{}, we don't support a 16-bit NAND Flash bus. */ + nand_set_controller_data(chip, this); + nand_set_flash_node(chip, this->pdev->dev.of_node); + chip->legacy.block_markbad = gpmi_block_markbad; + chip->badblock_pattern = &gpmi_bbt_descr; + chip->options |= NAND_NO_SUBPAGE_WRITE; + + /* Set up swap_block_mark, must be set before the gpmi_set_geometry() */ + this->swap_block_mark = !GPMI_IS_MX23(this); + + /* + * Allocate a temporary DMA buffer for reading ID in the + * nand_scan_ident(). + */ + this->bch_geometry.payload_size = 1024; + this->bch_geometry.auxiliary_size = 128; + ret = gpmi_alloc_dma_buffer(this); + if (ret) + return ret; + + nand_controller_init(&this->base); + this->base.ops = &gpmi_nand_controller_ops; + chip->controller = &this->base; + + ret = nand_scan(chip, GPMI_IS_MX6(this) ? 2 : 1); + if (ret) + goto err_out; + + ret = nand_boot_init(this); + if (ret) + goto err_nand_cleanup; + ret = nand_create_bbt(chip); + if (ret) + goto err_nand_cleanup; + + ret = mtd_device_register(mtd, NULL, 0); + if (ret) + goto err_nand_cleanup; + return 0; + +err_nand_cleanup: + nand_cleanup(chip); +err_out: + gpmi_free_dma_buffer(this); + return ret; +} + +static const struct of_device_id gpmi_nand_id_table[] = { + { .compatible = "fsl,imx23-gpmi-nand", .data = &gpmi_devdata_imx23, }, + { .compatible = "fsl,imx28-gpmi-nand", .data = &gpmi_devdata_imx28, }, + { .compatible = "fsl,imx6q-gpmi-nand", .data = &gpmi_devdata_imx6q, }, + { .compatible = "fsl,imx6sx-gpmi-nand", .data = &gpmi_devdata_imx6sx, }, + { .compatible = "fsl,imx7d-gpmi-nand", .data = &gpmi_devdata_imx7d,}, + {} +}; +MODULE_DEVICE_TABLE(of, gpmi_nand_id_table); + +static int gpmi_nand_probe(struct platform_device *pdev) +{ + struct gpmi_nand_data *this; + int ret; + + this = devm_kzalloc(&pdev->dev, sizeof(*this), GFP_KERNEL); + if (!this) + return -ENOMEM; + + this->devdata = of_device_get_match_data(&pdev->dev); + platform_set_drvdata(pdev, this); + this->pdev = pdev; + this->dev = &pdev->dev; + + ret = acquire_resources(this); + if (ret) + goto exit_acquire_resources; + + ret = __gpmi_enable_clk(this, true); + if (ret) + goto exit_acquire_resources; + + pm_runtime_set_autosuspend_delay(&pdev->dev, 500); + pm_runtime_use_autosuspend(&pdev->dev); + pm_runtime_set_active(&pdev->dev); + pm_runtime_enable(&pdev->dev); + pm_runtime_get_sync(&pdev->dev); + + ret = gpmi_init(this); + if (ret) + goto exit_nfc_init; + + ret = gpmi_nand_init(this); + if (ret) + goto exit_nfc_init; + + pm_runtime_mark_last_busy(&pdev->dev); + pm_runtime_put_autosuspend(&pdev->dev); + + dev_info(this->dev, "driver registered.\n"); + + return 0; + +exit_nfc_init: + pm_runtime_put(&pdev->dev); + pm_runtime_disable(&pdev->dev); + release_resources(this); +exit_acquire_resources: + + return ret; +} + +static void gpmi_nand_remove(struct platform_device *pdev) +{ + struct gpmi_nand_data *this = platform_get_drvdata(pdev); + struct nand_chip *chip = &this->nand; + int ret; + + pm_runtime_put_sync(&pdev->dev); + pm_runtime_disable(&pdev->dev); + + ret = mtd_device_unregister(nand_to_mtd(chip)); + WARN_ON(ret); + nand_cleanup(chip); + gpmi_free_dma_buffer(this); + release_resources(this); +} + +#ifdef CONFIG_PM_SLEEP +static int gpmi_pm_suspend(struct device *dev) +{ + struct gpmi_nand_data *this = dev_get_drvdata(dev); + + release_dma_channels(this); + return 0; +} + +static int gpmi_pm_resume(struct device *dev) +{ + struct gpmi_nand_data *this = dev_get_drvdata(dev); + int ret; + + ret = acquire_dma_channels(this); + if (ret < 0) + return ret; + + /* re-init the GPMI registers */ + ret = gpmi_init(this); + if (ret) { + dev_err(this->dev, "Error setting GPMI : %d\n", ret); + return ret; + } + + /* Set flag to get timing setup restored for next exec_op */ + if (this->hw.clk_rate) + this->hw.must_apply_timings = true; + + /* re-init the BCH registers */ + ret = bch_set_geometry(this); + if (ret) { + dev_err(this->dev, "Error setting BCH : %d\n", ret); + return ret; + } + + return 0; +} +#endif /* CONFIG_PM_SLEEP */ + +static int __maybe_unused gpmi_runtime_suspend(struct device *dev) +{ + struct gpmi_nand_data *this = dev_get_drvdata(dev); + + return __gpmi_enable_clk(this, false); +} + +static int __maybe_unused gpmi_runtime_resume(struct device *dev) +{ + struct gpmi_nand_data *this = dev_get_drvdata(dev); + + return __gpmi_enable_clk(this, true); +} + +static const struct dev_pm_ops gpmi_pm_ops = { + SET_SYSTEM_SLEEP_PM_OPS(gpmi_pm_suspend, gpmi_pm_resume) + SET_RUNTIME_PM_OPS(gpmi_runtime_suspend, gpmi_runtime_resume, NULL) +}; + +static struct platform_driver gpmi_nand_driver = { + .driver = { + .name = "gpmi-nand", + .pm = &gpmi_pm_ops, + .of_match_table = gpmi_nand_id_table, + }, + .probe = gpmi_nand_probe, + .remove_new = gpmi_nand_remove, +}; +module_platform_driver(gpmi_nand_driver); + +MODULE_AUTHOR("Freescale Semiconductor, Inc."); +MODULE_DESCRIPTION("i.MX GPMI NAND Flash Controller Driver"); +MODULE_LICENSE("GPL"); diff --git a/drivers/mtd/nand/raw/gpmi-nand/gpmi-nand.h b/drivers/mtd/nand/raw/gpmi-nand/gpmi-nand.h new file mode 100644 index 0000000000..c3ff56ac62 --- /dev/null +++ b/drivers/mtd/nand/raw/gpmi-nand/gpmi-nand.h @@ -0,0 +1,179 @@ +/* SPDX-License-Identifier: GPL-2.0+ */ +/* + * Freescale GPMI NAND Flash Driver + * + * Copyright (C) 2010-2011 Freescale Semiconductor, Inc. + * Copyright (C) 2008 Embedded Alley Solutions, Inc. + */ +#ifndef __DRIVERS_MTD_NAND_GPMI_NAND_H +#define __DRIVERS_MTD_NAND_GPMI_NAND_H + +#include <linux/mtd/rawnand.h> +#include <linux/platform_device.h> +#include <linux/dma-mapping.h> +#include <linux/dmaengine.h> + +#define GPMI_CLK_MAX 5 /* MX6Q needs five clocks */ +struct resources { + void __iomem *gpmi_regs; + void __iomem *bch_regs; + unsigned int dma_low_channel; + unsigned int dma_high_channel; + struct clk *clock[GPMI_CLK_MAX]; +}; + +/** + * struct bch_geometry - BCH geometry description. + * @gf_len: The length of Galois Field. (e.g., 13 or 14) + * @ecc_strength: A number that describes the strength of the ECC + * algorithm. + * @page_size: The size, in bytes, of a physical page, including + * both data and OOB. + * @metadata_size: The size, in bytes, of the metadata. + * @ecc0_chunk_size: The size, in bytes, of a first ECC chunk. + * @eccn_chunk_size: The size, in bytes, of a single ECC chunk after + * the first chunk in the page. + * @ecc_chunk_count: The number of ECC chunks in the page, + * @payload_size: The size, in bytes, of the payload buffer. + * @auxiliary_size: The size, in bytes, of the auxiliary buffer. + * @auxiliary_status_offset: The offset into the auxiliary buffer at which + * the ECC status appears. + * @block_mark_byte_offset: The byte offset in the ECC-based page view at + * which the underlying physical block mark appears. + * @block_mark_bit_offset: The bit offset into the ECC-based page view at + * which the underlying physical block mark appears. + * @ecc_for_meta: The flag to indicate if there is a dedicate ecc + * for meta. + */ +struct bch_geometry { + unsigned int gf_len; + unsigned int ecc_strength; + unsigned int page_size; + unsigned int metadata_size; + unsigned int ecc0_chunk_size; + unsigned int eccn_chunk_size; + unsigned int ecc_chunk_count; + unsigned int payload_size; + unsigned int auxiliary_size; + unsigned int auxiliary_status_offset; + unsigned int block_mark_byte_offset; + unsigned int block_mark_bit_offset; + unsigned int ecc_for_meta; /* ECC for meta data */ +}; + +/** + * struct boot_rom_geometry - Boot ROM geometry description. + * @stride_size_in_pages: The size of a boot block stride, in pages. + * @search_area_stride_exponent: The logarithm to base 2 of the size of a + * search area in boot block strides. + */ +struct boot_rom_geometry { + unsigned int stride_size_in_pages; + unsigned int search_area_stride_exponent; +}; + +enum gpmi_type { + IS_MX23, + IS_MX28, + IS_MX6Q, + IS_MX6SX, + IS_MX7D, +}; + +struct gpmi_devdata { + enum gpmi_type type; + int bch_max_ecc_strength; + int max_chain_delay; /* See the SDR EDO mode */ + const char * const *clks; + const int clks_count; +}; + +/** + * struct gpmi_nfc_hardware_timing - GPMI hardware timing parameters. + * @must_apply_timings: Whether controller timings have already been + * applied or not (useful only while there is + * support for only one chip select) + * @clk_rate: The clock rate that must be used to derive the + * following parameters + * @timing0: HW_GPMI_TIMING0 register + * @timing1: HW_GPMI_TIMING1 register + * @ctrl1n: HW_GPMI_CTRL1n register + */ +struct gpmi_nfc_hardware_timing { + bool must_apply_timings; + unsigned long int clk_rate; + u32 timing0; + u32 timing1; + u32 ctrl1n; +}; + +#define GPMI_MAX_TRANSFERS 8 + +struct gpmi_transfer { + u8 cmdbuf[8]; + struct scatterlist sgl; + enum dma_data_direction direction; +}; + +struct gpmi_nand_data { + /* Devdata */ + const struct gpmi_devdata *devdata; + + /* System Interface */ + struct device *dev; + struct platform_device *pdev; + + /* Resources */ + struct resources resources; + + /* Flash Hardware */ + struct gpmi_nfc_hardware_timing hw; + + /* BCH */ + struct bch_geometry bch_geometry; + struct completion bch_done; + + /* NAND Boot issue */ + bool swap_block_mark; + struct boot_rom_geometry rom_geometry; + + /* MTD / NAND */ + struct nand_controller base; + struct nand_chip nand; + + struct gpmi_transfer transfers[GPMI_MAX_TRANSFERS]; + int ntransfers; + + bool bch; + uint32_t bch_flashlayout0; + uint32_t bch_flashlayout1; + + char *data_buffer_dma; + + void *auxiliary_virt; + dma_addr_t auxiliary_phys; + + void *raw_buffer; + + /* DMA channels */ +#define DMA_CHANS 8 + struct dma_chan *dma_chans[DMA_CHANS]; + struct completion dma_done; +}; + +/* BCH : Status Block Completion Codes */ +#define STATUS_GOOD 0x00 +#define STATUS_ERASED 0xff +#define STATUS_UNCORRECTABLE 0xfe + +/* Use the devdata to distinguish different Archs. */ +#define GPMI_IS_MX23(x) ((x)->devdata->type == IS_MX23) +#define GPMI_IS_MX28(x) ((x)->devdata->type == IS_MX28) +#define GPMI_IS_MX6Q(x) ((x)->devdata->type == IS_MX6Q) +#define GPMI_IS_MX6SX(x) ((x)->devdata->type == IS_MX6SX) +#define GPMI_IS_MX7D(x) ((x)->devdata->type == IS_MX7D) + +#define GPMI_IS_MX6(x) (GPMI_IS_MX6Q(x) || GPMI_IS_MX6SX(x) || \ + GPMI_IS_MX7D(x)) +#define GPMI_IS_MXS(x) (GPMI_IS_MX23(x) || GPMI_IS_MX28(x)) +#endif diff --git a/drivers/mtd/nand/raw/gpmi-nand/gpmi-regs.h b/drivers/mtd/nand/raw/gpmi-nand/gpmi-regs.h new file mode 100644 index 0000000000..fc31fd084d --- /dev/null +++ b/drivers/mtd/nand/raw/gpmi-nand/gpmi-regs.h @@ -0,0 +1,180 @@ +/* SPDX-License-Identifier: GPL-2.0-or-later */ +/* + * Freescale GPMI NAND Flash Driver + * + * Copyright 2008-2011 Freescale Semiconductor, Inc. + * Copyright 2008 Embedded Alley Solutions, Inc. + */ +#ifndef __GPMI_NAND_GPMI_REGS_H +#define __GPMI_NAND_GPMI_REGS_H + +#define HW_GPMI_CTRL0 0x00000000 +#define HW_GPMI_CTRL0_SET 0x00000004 +#define HW_GPMI_CTRL0_CLR 0x00000008 +#define HW_GPMI_CTRL0_TOG 0x0000000c + +#define BP_GPMI_CTRL0_COMMAND_MODE 24 +#define BM_GPMI_CTRL0_COMMAND_MODE (3 << BP_GPMI_CTRL0_COMMAND_MODE) +#define BF_GPMI_CTRL0_COMMAND_MODE(v) \ + (((v) << BP_GPMI_CTRL0_COMMAND_MODE) & BM_GPMI_CTRL0_COMMAND_MODE) +#define BV_GPMI_CTRL0_COMMAND_MODE__WRITE 0x0 +#define BV_GPMI_CTRL0_COMMAND_MODE__READ 0x1 +#define BV_GPMI_CTRL0_COMMAND_MODE__READ_AND_COMPARE 0x2 +#define BV_GPMI_CTRL0_COMMAND_MODE__WAIT_FOR_READY 0x3 + +#define BM_GPMI_CTRL0_WORD_LENGTH (1 << 23) +#define BV_GPMI_CTRL0_WORD_LENGTH__16_BIT 0x0 +#define BV_GPMI_CTRL0_WORD_LENGTH__8_BIT 0x1 + +/* + * Difference in LOCK_CS between imx23 and imx28 : + * This bit may impact the _POWER_ consumption. So some chips + * do not set it. + */ +#define MX23_BP_GPMI_CTRL0_LOCK_CS 22 +#define MX28_BP_GPMI_CTRL0_LOCK_CS 27 +#define LOCK_CS_ENABLE 0x1 +#define BF_GPMI_CTRL0_LOCK_CS(v, x) 0x0 + +/* Difference in CS between imx23 and imx28 */ +#define BP_GPMI_CTRL0_CS 20 +#define MX23_BM_GPMI_CTRL0_CS (3 << BP_GPMI_CTRL0_CS) +#define MX28_BM_GPMI_CTRL0_CS (7 << BP_GPMI_CTRL0_CS) +#define BF_GPMI_CTRL0_CS(v, x) (((v) << BP_GPMI_CTRL0_CS) & \ + (GPMI_IS_MX23((x)) \ + ? MX23_BM_GPMI_CTRL0_CS \ + : MX28_BM_GPMI_CTRL0_CS)) + +#define BP_GPMI_CTRL0_ADDRESS 17 +#define BM_GPMI_CTRL0_ADDRESS (3 << BP_GPMI_CTRL0_ADDRESS) +#define BF_GPMI_CTRL0_ADDRESS(v) \ + (((v) << BP_GPMI_CTRL0_ADDRESS) & BM_GPMI_CTRL0_ADDRESS) +#define BV_GPMI_CTRL0_ADDRESS__NAND_DATA 0x0 +#define BV_GPMI_CTRL0_ADDRESS__NAND_CLE 0x1 +#define BV_GPMI_CTRL0_ADDRESS__NAND_ALE 0x2 + +#define BM_GPMI_CTRL0_ADDRESS_INCREMENT (1 << 16) +#define BV_GPMI_CTRL0_ADDRESS_INCREMENT__DISABLED 0x0 +#define BV_GPMI_CTRL0_ADDRESS_INCREMENT__ENABLED 0x1 + +#define BP_GPMI_CTRL0_XFER_COUNT 0 +#define BM_GPMI_CTRL0_XFER_COUNT (0xffff << BP_GPMI_CTRL0_XFER_COUNT) +#define BF_GPMI_CTRL0_XFER_COUNT(v) \ + (((v) << BP_GPMI_CTRL0_XFER_COUNT) & BM_GPMI_CTRL0_XFER_COUNT) + +#define HW_GPMI_COMPARE 0x00000010 + +#define HW_GPMI_ECCCTRL 0x00000020 +#define HW_GPMI_ECCCTRL_SET 0x00000024 +#define HW_GPMI_ECCCTRL_CLR 0x00000028 +#define HW_GPMI_ECCCTRL_TOG 0x0000002c + +#define BP_GPMI_ECCCTRL_ECC_CMD 13 +#define BM_GPMI_ECCCTRL_ECC_CMD (3 << BP_GPMI_ECCCTRL_ECC_CMD) +#define BF_GPMI_ECCCTRL_ECC_CMD(v) \ + (((v) << BP_GPMI_ECCCTRL_ECC_CMD) & BM_GPMI_ECCCTRL_ECC_CMD) +#define BV_GPMI_ECCCTRL_ECC_CMD__BCH_DECODE 0x0 +#define BV_GPMI_ECCCTRL_ECC_CMD__BCH_ENCODE 0x1 + +#define BM_GPMI_ECCCTRL_ENABLE_ECC (1 << 12) +#define BV_GPMI_ECCCTRL_ENABLE_ECC__ENABLE 0x1 +#define BV_GPMI_ECCCTRL_ENABLE_ECC__DISABLE 0x0 + +#define BP_GPMI_ECCCTRL_BUFFER_MASK 0 +#define BM_GPMI_ECCCTRL_BUFFER_MASK (0x1ff << BP_GPMI_ECCCTRL_BUFFER_MASK) +#define BF_GPMI_ECCCTRL_BUFFER_MASK(v) \ + (((v) << BP_GPMI_ECCCTRL_BUFFER_MASK) & BM_GPMI_ECCCTRL_BUFFER_MASK) +#define BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_AUXONLY 0x100 +#define BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_PAGE 0x1FF + +#define HW_GPMI_ECCCOUNT 0x00000030 +#define HW_GPMI_PAYLOAD 0x00000040 +#define HW_GPMI_AUXILIARY 0x00000050 +#define HW_GPMI_CTRL1 0x00000060 +#define HW_GPMI_CTRL1_SET 0x00000064 +#define HW_GPMI_CTRL1_CLR 0x00000068 +#define HW_GPMI_CTRL1_TOG 0x0000006c + +#define BP_GPMI_CTRL1_DECOUPLE_CS 24 +#define BM_GPMI_CTRL1_DECOUPLE_CS (1 << BP_GPMI_CTRL1_DECOUPLE_CS) + +#define BP_GPMI_CTRL1_WRN_DLY_SEL 22 +#define BM_GPMI_CTRL1_WRN_DLY_SEL (0x3 << BP_GPMI_CTRL1_WRN_DLY_SEL) +#define BF_GPMI_CTRL1_WRN_DLY_SEL(v) \ + (((v) << BP_GPMI_CTRL1_WRN_DLY_SEL) & BM_GPMI_CTRL1_WRN_DLY_SEL) +#define BV_GPMI_CTRL1_WRN_DLY_SEL_4_TO_8NS 0x0 +#define BV_GPMI_CTRL1_WRN_DLY_SEL_6_TO_10NS 0x1 +#define BV_GPMI_CTRL1_WRN_DLY_SEL_7_TO_12NS 0x2 +#define BV_GPMI_CTRL1_WRN_DLY_SEL_NO_DELAY 0x3 + +#define BM_GPMI_CTRL1_GANGED_RDYBUSY (1 << 19) +#define BM_GPMI_CTRL1_BCH_MODE (1 << 18) + +#define BP_GPMI_CTRL1_DLL_ENABLE 17 +#define BM_GPMI_CTRL1_DLL_ENABLE (1 << BP_GPMI_CTRL1_DLL_ENABLE) + +#define BP_GPMI_CTRL1_HALF_PERIOD 16 +#define BM_GPMI_CTRL1_HALF_PERIOD (1 << BP_GPMI_CTRL1_HALF_PERIOD) + +#define BP_GPMI_CTRL1_RDN_DELAY 12 +#define BM_GPMI_CTRL1_RDN_DELAY (0xf << BP_GPMI_CTRL1_RDN_DELAY) +#define BF_GPMI_CTRL1_RDN_DELAY(v) \ + (((v) << BP_GPMI_CTRL1_RDN_DELAY) & BM_GPMI_CTRL1_RDN_DELAY) + +#define BM_GPMI_CTRL1_DEV_RESET (1 << 3) +#define BV_GPMI_CTRL1_DEV_RESET__ENABLED 0x0 +#define BV_GPMI_CTRL1_DEV_RESET__DISABLED 0x1 + +#define BM_GPMI_CTRL1_ATA_IRQRDY_POLARITY (1 << 2) +#define BV_GPMI_CTRL1_ATA_IRQRDY_POLARITY__ACTIVELOW 0x0 +#define BV_GPMI_CTRL1_ATA_IRQRDY_POLARITY__ACTIVEHIGH 0x1 + +#define BM_GPMI_CTRL1_CAMERA_MODE (1 << 1) +#define BV_GPMI_CTRL1_GPMI_MODE__NAND 0x0 +#define BV_GPMI_CTRL1_GPMI_MODE__ATA 0x1 + +#define BM_GPMI_CTRL1_GPMI_MODE (1 << 0) + +#define BM_GPMI_CTRL1_CLEAR_MASK (BM_GPMI_CTRL1_WRN_DLY_SEL | \ + BM_GPMI_CTRL1_DLL_ENABLE | \ + BM_GPMI_CTRL1_RDN_DELAY | \ + BM_GPMI_CTRL1_HALF_PERIOD) + +#define HW_GPMI_TIMING0 0x00000070 + +#define BP_GPMI_TIMING0_ADDRESS_SETUP 16 +#define BM_GPMI_TIMING0_ADDRESS_SETUP (0xff << BP_GPMI_TIMING0_ADDRESS_SETUP) +#define BF_GPMI_TIMING0_ADDRESS_SETUP(v) \ + (((v) << BP_GPMI_TIMING0_ADDRESS_SETUP) & BM_GPMI_TIMING0_ADDRESS_SETUP) + +#define BP_GPMI_TIMING0_DATA_HOLD 8 +#define BM_GPMI_TIMING0_DATA_HOLD (0xff << BP_GPMI_TIMING0_DATA_HOLD) +#define BF_GPMI_TIMING0_DATA_HOLD(v) \ + (((v) << BP_GPMI_TIMING0_DATA_HOLD) & BM_GPMI_TIMING0_DATA_HOLD) + +#define BP_GPMI_TIMING0_DATA_SETUP 0 +#define BM_GPMI_TIMING0_DATA_SETUP (0xff << BP_GPMI_TIMING0_DATA_SETUP) +#define BF_GPMI_TIMING0_DATA_SETUP(v) \ + (((v) << BP_GPMI_TIMING0_DATA_SETUP) & BM_GPMI_TIMING0_DATA_SETUP) + +#define HW_GPMI_TIMING1 0x00000080 +#define BP_GPMI_TIMING1_BUSY_TIMEOUT 16 +#define BM_GPMI_TIMING1_BUSY_TIMEOUT (0xffff << BP_GPMI_TIMING1_BUSY_TIMEOUT) +#define BF_GPMI_TIMING1_BUSY_TIMEOUT(v) \ + (((v) << BP_GPMI_TIMING1_BUSY_TIMEOUT) & BM_GPMI_TIMING1_BUSY_TIMEOUT) + +#define HW_GPMI_TIMING2 0x00000090 +#define HW_GPMI_DATA 0x000000a0 + +/* MX28 uses this to detect READY. */ +#define HW_GPMI_STAT 0x000000b0 +#define MX28_BP_GPMI_STAT_READY_BUSY 24 +#define MX28_BM_GPMI_STAT_READY_BUSY (0xff << MX28_BP_GPMI_STAT_READY_BUSY) +#define MX28_BF_GPMI_STAT_READY_BUSY(v) \ + (((v) << MX28_BP_GPMI_STAT_READY_BUSY) & MX28_BM_GPMI_STAT_READY_BUSY) + +/* MX23 uses this to detect READY. */ +#define HW_GPMI_DEBUG 0x000000c0 +#define MX23_BP_GPMI_DEBUG_READY0 28 +#define MX23_BM_GPMI_DEBUG_READY0 (1 << MX23_BP_GPMI_DEBUG_READY0) +#endif diff --git a/drivers/mtd/nand/raw/hisi504_nand.c b/drivers/mtd/nand/raw/hisi504_nand.c new file mode 100644 index 0000000000..fe291a2e5c --- /dev/null +++ b/drivers/mtd/nand/raw/hisi504_nand.c @@ -0,0 +1,869 @@ +// SPDX-License-Identifier: GPL-2.0-or-later +/* + * Hisilicon NAND Flash controller driver + * + * Copyright © 2012-2014 HiSilicon Technologies Co., Ltd. + * http://www.hisilicon.com + * + * Author: Zhou Wang <wangzhou.bry@gmail.com> + * The initial developer of the original code is Zhiyong Cai + * <caizhiyong@huawei.com> + */ +#include <linux/of.h> +#include <linux/mtd/mtd.h> +#include <linux/sizes.h> +#include <linux/clk.h> +#include <linux/slab.h> +#include <linux/module.h> +#include <linux/delay.h> +#include <linux/interrupt.h> +#include <linux/mtd/rawnand.h> +#include <linux/dma-mapping.h> +#include <linux/platform_device.h> +#include <linux/mtd/partitions.h> + +#define HINFC504_MAX_CHIP (4) +#define HINFC504_W_LATCH (5) +#define HINFC504_R_LATCH (7) +#define HINFC504_RW_LATCH (3) + +#define HINFC504_NFC_TIMEOUT (2 * HZ) +#define HINFC504_NFC_PM_TIMEOUT (1 * HZ) +#define HINFC504_NFC_DMA_TIMEOUT (5 * HZ) +#define HINFC504_CHIP_DELAY (25) + +#define HINFC504_REG_BASE_ADDRESS_LEN (0x100) +#define HINFC504_BUFFER_BASE_ADDRESS_LEN (2048 + 128) + +#define HINFC504_ADDR_CYCLE_MASK 0x4 + +#define HINFC504_CON 0x00 +#define HINFC504_CON_OP_MODE_NORMAL BIT(0) +#define HINFC504_CON_PAGEISZE_SHIFT (1) +#define HINFC504_CON_PAGESIZE_MASK (0x07) +#define HINFC504_CON_BUS_WIDTH BIT(4) +#define HINFC504_CON_READY_BUSY_SEL BIT(8) +#define HINFC504_CON_ECCTYPE_SHIFT (9) +#define HINFC504_CON_ECCTYPE_MASK (0x07) + +#define HINFC504_PWIDTH 0x04 +#define SET_HINFC504_PWIDTH(_w_lcnt, _r_lcnt, _rw_hcnt) \ + ((_w_lcnt) | (((_r_lcnt) & 0x0F) << 4) | (((_rw_hcnt) & 0x0F) << 8)) + +#define HINFC504_CMD 0x0C +#define HINFC504_ADDRL 0x10 +#define HINFC504_ADDRH 0x14 +#define HINFC504_DATA_NUM 0x18 + +#define HINFC504_OP 0x1C +#define HINFC504_OP_READ_DATA_EN BIT(1) +#define HINFC504_OP_WAIT_READY_EN BIT(2) +#define HINFC504_OP_CMD2_EN BIT(3) +#define HINFC504_OP_WRITE_DATA_EN BIT(4) +#define HINFC504_OP_ADDR_EN BIT(5) +#define HINFC504_OP_CMD1_EN BIT(6) +#define HINFC504_OP_NF_CS_SHIFT (7) +#define HINFC504_OP_NF_CS_MASK (3) +#define HINFC504_OP_ADDR_CYCLE_SHIFT (9) +#define HINFC504_OP_ADDR_CYCLE_MASK (7) + +#define HINFC504_STATUS 0x20 +#define HINFC504_READY BIT(0) + +#define HINFC504_INTEN 0x24 +#define HINFC504_INTEN_DMA BIT(9) +#define HINFC504_INTEN_UE BIT(6) +#define HINFC504_INTEN_CE BIT(5) + +#define HINFC504_INTS 0x28 +#define HINFC504_INTS_DMA BIT(9) +#define HINFC504_INTS_UE BIT(6) +#define HINFC504_INTS_CE BIT(5) + +#define HINFC504_INTCLR 0x2C +#define HINFC504_INTCLR_DMA BIT(9) +#define HINFC504_INTCLR_UE BIT(6) +#define HINFC504_INTCLR_CE BIT(5) + +#define HINFC504_ECC_STATUS 0x5C +#define HINFC504_ECC_16_BIT_SHIFT 12 + +#define HINFC504_DMA_CTRL 0x60 +#define HINFC504_DMA_CTRL_DMA_START BIT(0) +#define HINFC504_DMA_CTRL_WE BIT(1) +#define HINFC504_DMA_CTRL_DATA_AREA_EN BIT(2) +#define HINFC504_DMA_CTRL_OOB_AREA_EN BIT(3) +#define HINFC504_DMA_CTRL_BURST4_EN BIT(4) +#define HINFC504_DMA_CTRL_BURST8_EN BIT(5) +#define HINFC504_DMA_CTRL_BURST16_EN BIT(6) +#define HINFC504_DMA_CTRL_ADDR_NUM_SHIFT (7) +#define HINFC504_DMA_CTRL_ADDR_NUM_MASK (1) +#define HINFC504_DMA_CTRL_CS_SHIFT (8) +#define HINFC504_DMA_CTRL_CS_MASK (0x03) + +#define HINFC504_DMA_ADDR_DATA 0x64 +#define HINFC504_DMA_ADDR_OOB 0x68 + +#define HINFC504_DMA_LEN 0x6C +#define HINFC504_DMA_LEN_OOB_SHIFT (16) +#define HINFC504_DMA_LEN_OOB_MASK (0xFFF) + +#define HINFC504_DMA_PARA 0x70 +#define HINFC504_DMA_PARA_DATA_RW_EN BIT(0) +#define HINFC504_DMA_PARA_OOB_RW_EN BIT(1) +#define HINFC504_DMA_PARA_DATA_EDC_EN BIT(2) +#define HINFC504_DMA_PARA_OOB_EDC_EN BIT(3) +#define HINFC504_DMA_PARA_DATA_ECC_EN BIT(4) +#define HINFC504_DMA_PARA_OOB_ECC_EN BIT(5) + +#define HINFC_VERSION 0x74 +#define HINFC504_LOG_READ_ADDR 0x7C +#define HINFC504_LOG_READ_LEN 0x80 + +#define HINFC504_NANDINFO_LEN 0x10 + +struct hinfc_host { + struct nand_chip chip; + struct device *dev; + void __iomem *iobase; + void __iomem *mmio; + struct completion cmd_complete; + unsigned int offset; + unsigned int command; + int chipselect; + unsigned int addr_cycle; + u32 addr_value[2]; + u32 cache_addr_value[2]; + char *buffer; + dma_addr_t dma_buffer; + dma_addr_t dma_oob; + int version; + unsigned int irq_status; /* interrupt status */ +}; + +static inline unsigned int hinfc_read(struct hinfc_host *host, unsigned int reg) +{ + return readl(host->iobase + reg); +} + +static inline void hinfc_write(struct hinfc_host *host, unsigned int value, + unsigned int reg) +{ + writel(value, host->iobase + reg); +} + +static void wait_controller_finished(struct hinfc_host *host) +{ + unsigned long timeout = jiffies + HINFC504_NFC_TIMEOUT; + int val; + + while (time_before(jiffies, timeout)) { + val = hinfc_read(host, HINFC504_STATUS); + if (host->command == NAND_CMD_ERASE2) { + /* nfc is ready */ + while (!(val & HINFC504_READY)) { + usleep_range(500, 1000); + val = hinfc_read(host, HINFC504_STATUS); + } + return; + } + + if (val & HINFC504_READY) + return; + } + + /* wait cmd timeout */ + dev_err(host->dev, "Wait NAND controller exec cmd timeout.\n"); +} + +static void hisi_nfc_dma_transfer(struct hinfc_host *host, int todev) +{ + struct nand_chip *chip = &host->chip; + struct mtd_info *mtd = nand_to_mtd(chip); + unsigned long val; + int ret; + + hinfc_write(host, host->dma_buffer, HINFC504_DMA_ADDR_DATA); + hinfc_write(host, host->dma_oob, HINFC504_DMA_ADDR_OOB); + + if (chip->ecc.engine_type == NAND_ECC_ENGINE_TYPE_NONE) { + hinfc_write(host, ((mtd->oobsize & HINFC504_DMA_LEN_OOB_MASK) + << HINFC504_DMA_LEN_OOB_SHIFT), HINFC504_DMA_LEN); + + hinfc_write(host, HINFC504_DMA_PARA_DATA_RW_EN + | HINFC504_DMA_PARA_OOB_RW_EN, HINFC504_DMA_PARA); + } else { + if (host->command == NAND_CMD_READOOB) + hinfc_write(host, HINFC504_DMA_PARA_OOB_RW_EN + | HINFC504_DMA_PARA_OOB_EDC_EN + | HINFC504_DMA_PARA_OOB_ECC_EN, HINFC504_DMA_PARA); + else + hinfc_write(host, HINFC504_DMA_PARA_DATA_RW_EN + | HINFC504_DMA_PARA_OOB_RW_EN + | HINFC504_DMA_PARA_DATA_EDC_EN + | HINFC504_DMA_PARA_OOB_EDC_EN + | HINFC504_DMA_PARA_DATA_ECC_EN + | HINFC504_DMA_PARA_OOB_ECC_EN, HINFC504_DMA_PARA); + + } + + val = (HINFC504_DMA_CTRL_DMA_START | HINFC504_DMA_CTRL_BURST4_EN + | HINFC504_DMA_CTRL_BURST8_EN | HINFC504_DMA_CTRL_BURST16_EN + | HINFC504_DMA_CTRL_DATA_AREA_EN | HINFC504_DMA_CTRL_OOB_AREA_EN + | ((host->addr_cycle == 4 ? 1 : 0) + << HINFC504_DMA_CTRL_ADDR_NUM_SHIFT) + | ((host->chipselect & HINFC504_DMA_CTRL_CS_MASK) + << HINFC504_DMA_CTRL_CS_SHIFT)); + + if (todev) + val |= HINFC504_DMA_CTRL_WE; + + init_completion(&host->cmd_complete); + + hinfc_write(host, val, HINFC504_DMA_CTRL); + ret = wait_for_completion_timeout(&host->cmd_complete, + HINFC504_NFC_DMA_TIMEOUT); + + if (!ret) { + dev_err(host->dev, "DMA operation(irq) timeout!\n"); + /* sanity check */ + val = hinfc_read(host, HINFC504_DMA_CTRL); + if (!(val & HINFC504_DMA_CTRL_DMA_START)) + dev_err(host->dev, "DMA is already done but without irq ACK!\n"); + else + dev_err(host->dev, "DMA is really timeout!\n"); + } +} + +static int hisi_nfc_send_cmd_pageprog(struct hinfc_host *host) +{ + host->addr_value[0] &= 0xffff0000; + + hinfc_write(host, host->addr_value[0], HINFC504_ADDRL); + hinfc_write(host, host->addr_value[1], HINFC504_ADDRH); + hinfc_write(host, NAND_CMD_PAGEPROG << 8 | NAND_CMD_SEQIN, + HINFC504_CMD); + + hisi_nfc_dma_transfer(host, 1); + + return 0; +} + +static int hisi_nfc_send_cmd_readstart(struct hinfc_host *host) +{ + struct mtd_info *mtd = nand_to_mtd(&host->chip); + + if ((host->addr_value[0] == host->cache_addr_value[0]) && + (host->addr_value[1] == host->cache_addr_value[1])) + return 0; + + host->addr_value[0] &= 0xffff0000; + + hinfc_write(host, host->addr_value[0], HINFC504_ADDRL); + hinfc_write(host, host->addr_value[1], HINFC504_ADDRH); + hinfc_write(host, NAND_CMD_READSTART << 8 | NAND_CMD_READ0, + HINFC504_CMD); + + hinfc_write(host, 0, HINFC504_LOG_READ_ADDR); + hinfc_write(host, mtd->writesize + mtd->oobsize, + HINFC504_LOG_READ_LEN); + + hisi_nfc_dma_transfer(host, 0); + + host->cache_addr_value[0] = host->addr_value[0]; + host->cache_addr_value[1] = host->addr_value[1]; + + return 0; +} + +static int hisi_nfc_send_cmd_erase(struct hinfc_host *host) +{ + hinfc_write(host, host->addr_value[0], HINFC504_ADDRL); + hinfc_write(host, (NAND_CMD_ERASE2 << 8) | NAND_CMD_ERASE1, + HINFC504_CMD); + + hinfc_write(host, HINFC504_OP_WAIT_READY_EN + | HINFC504_OP_CMD2_EN + | HINFC504_OP_CMD1_EN + | HINFC504_OP_ADDR_EN + | ((host->chipselect & HINFC504_OP_NF_CS_MASK) + << HINFC504_OP_NF_CS_SHIFT) + | ((host->addr_cycle & HINFC504_OP_ADDR_CYCLE_MASK) + << HINFC504_OP_ADDR_CYCLE_SHIFT), + HINFC504_OP); + + wait_controller_finished(host); + + return 0; +} + +static int hisi_nfc_send_cmd_readid(struct hinfc_host *host) +{ + hinfc_write(host, HINFC504_NANDINFO_LEN, HINFC504_DATA_NUM); + hinfc_write(host, NAND_CMD_READID, HINFC504_CMD); + hinfc_write(host, 0, HINFC504_ADDRL); + + hinfc_write(host, HINFC504_OP_CMD1_EN | HINFC504_OP_ADDR_EN + | HINFC504_OP_READ_DATA_EN + | ((host->chipselect & HINFC504_OP_NF_CS_MASK) + << HINFC504_OP_NF_CS_SHIFT) + | 1 << HINFC504_OP_ADDR_CYCLE_SHIFT, HINFC504_OP); + + wait_controller_finished(host); + + return 0; +} + +static int hisi_nfc_send_cmd_status(struct hinfc_host *host) +{ + hinfc_write(host, HINFC504_NANDINFO_LEN, HINFC504_DATA_NUM); + hinfc_write(host, NAND_CMD_STATUS, HINFC504_CMD); + hinfc_write(host, HINFC504_OP_CMD1_EN + | HINFC504_OP_READ_DATA_EN + | ((host->chipselect & HINFC504_OP_NF_CS_MASK) + << HINFC504_OP_NF_CS_SHIFT), + HINFC504_OP); + + wait_controller_finished(host); + + return 0; +} + +static int hisi_nfc_send_cmd_reset(struct hinfc_host *host, int chipselect) +{ + hinfc_write(host, NAND_CMD_RESET, HINFC504_CMD); + + hinfc_write(host, HINFC504_OP_CMD1_EN + | ((chipselect & HINFC504_OP_NF_CS_MASK) + << HINFC504_OP_NF_CS_SHIFT) + | HINFC504_OP_WAIT_READY_EN, + HINFC504_OP); + + wait_controller_finished(host); + + return 0; +} + +static void hisi_nfc_select_chip(struct nand_chip *chip, int chipselect) +{ + struct hinfc_host *host = nand_get_controller_data(chip); + + if (chipselect < 0) + return; + + host->chipselect = chipselect; +} + +static uint8_t hisi_nfc_read_byte(struct nand_chip *chip) +{ + struct hinfc_host *host = nand_get_controller_data(chip); + + if (host->command == NAND_CMD_STATUS) + return *(uint8_t *)(host->mmio); + + host->offset++; + + if (host->command == NAND_CMD_READID) + return *(uint8_t *)(host->mmio + host->offset - 1); + + return *(uint8_t *)(host->buffer + host->offset - 1); +} + +static void +hisi_nfc_write_buf(struct nand_chip *chip, const uint8_t *buf, int len) +{ + struct hinfc_host *host = nand_get_controller_data(chip); + + memcpy(host->buffer + host->offset, buf, len); + host->offset += len; +} + +static void hisi_nfc_read_buf(struct nand_chip *chip, uint8_t *buf, int len) +{ + struct hinfc_host *host = nand_get_controller_data(chip); + + memcpy(buf, host->buffer + host->offset, len); + host->offset += len; +} + +static void set_addr(struct mtd_info *mtd, int column, int page_addr) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + struct hinfc_host *host = nand_get_controller_data(chip); + unsigned int command = host->command; + + host->addr_cycle = 0; + host->addr_value[0] = 0; + host->addr_value[1] = 0; + + /* Serially input address */ + if (column != -1) { + /* Adjust columns for 16 bit buswidth */ + if (chip->options & NAND_BUSWIDTH_16 && + !nand_opcode_8bits(command)) + column >>= 1; + + host->addr_value[0] = column & 0xffff; + host->addr_cycle = 2; + } + if (page_addr != -1) { + host->addr_value[0] |= (page_addr & 0xffff) + << (host->addr_cycle * 8); + host->addr_cycle += 2; + if (chip->options & NAND_ROW_ADDR_3) { + host->addr_cycle += 1; + if (host->command == NAND_CMD_ERASE1) + host->addr_value[0] |= ((page_addr >> 16) & 0xff) << 16; + else + host->addr_value[1] |= ((page_addr >> 16) & 0xff); + } + } +} + +static void hisi_nfc_cmdfunc(struct nand_chip *chip, unsigned command, + int column, int page_addr) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + struct hinfc_host *host = nand_get_controller_data(chip); + int is_cache_invalid = 1; + unsigned int flag = 0; + + host->command = command; + + switch (command) { + case NAND_CMD_READ0: + case NAND_CMD_READOOB: + if (command == NAND_CMD_READ0) + host->offset = column; + else + host->offset = column + mtd->writesize; + + is_cache_invalid = 0; + set_addr(mtd, column, page_addr); + hisi_nfc_send_cmd_readstart(host); + break; + + case NAND_CMD_SEQIN: + host->offset = column; + set_addr(mtd, column, page_addr); + break; + + case NAND_CMD_ERASE1: + set_addr(mtd, column, page_addr); + break; + + case NAND_CMD_PAGEPROG: + hisi_nfc_send_cmd_pageprog(host); + break; + + case NAND_CMD_ERASE2: + hisi_nfc_send_cmd_erase(host); + break; + + case NAND_CMD_READID: + host->offset = column; + memset(host->mmio, 0, 0x10); + hisi_nfc_send_cmd_readid(host); + break; + + case NAND_CMD_STATUS: + flag = hinfc_read(host, HINFC504_CON); + if (chip->ecc.engine_type == NAND_ECC_ENGINE_TYPE_ON_HOST) + hinfc_write(host, + flag & ~(HINFC504_CON_ECCTYPE_MASK << + HINFC504_CON_ECCTYPE_SHIFT), HINFC504_CON); + + host->offset = 0; + memset(host->mmio, 0, 0x10); + hisi_nfc_send_cmd_status(host); + hinfc_write(host, flag, HINFC504_CON); + break; + + case NAND_CMD_RESET: + hisi_nfc_send_cmd_reset(host, host->chipselect); + break; + + default: + dev_err(host->dev, "Error: unsupported cmd(cmd=%x, col=%x, page=%x)\n", + command, column, page_addr); + } + + if (is_cache_invalid) { + host->cache_addr_value[0] = ~0; + host->cache_addr_value[1] = ~0; + } +} + +static irqreturn_t hinfc_irq_handle(int irq, void *devid) +{ + struct hinfc_host *host = devid; + unsigned int flag; + + flag = hinfc_read(host, HINFC504_INTS); + /* store interrupts state */ + host->irq_status |= flag; + + if (flag & HINFC504_INTS_DMA) { + hinfc_write(host, HINFC504_INTCLR_DMA, HINFC504_INTCLR); + complete(&host->cmd_complete); + } else if (flag & HINFC504_INTS_CE) { + hinfc_write(host, HINFC504_INTCLR_CE, HINFC504_INTCLR); + } else if (flag & HINFC504_INTS_UE) { + hinfc_write(host, HINFC504_INTCLR_UE, HINFC504_INTCLR); + } + + return IRQ_HANDLED; +} + +static int hisi_nand_read_page_hwecc(struct nand_chip *chip, uint8_t *buf, + int oob_required, int page) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + struct hinfc_host *host = nand_get_controller_data(chip); + int max_bitflips = 0, stat = 0, stat_max = 0, status_ecc; + int stat_1, stat_2; + + nand_read_page_op(chip, page, 0, buf, mtd->writesize); + chip->legacy.read_buf(chip, chip->oob_poi, mtd->oobsize); + + /* errors which can not be corrected by ECC */ + if (host->irq_status & HINFC504_INTS_UE) { + mtd->ecc_stats.failed++; + } else if (host->irq_status & HINFC504_INTS_CE) { + /* TODO: need add other ECC modes! */ + switch (chip->ecc.strength) { + case 16: + status_ecc = hinfc_read(host, HINFC504_ECC_STATUS) >> + HINFC504_ECC_16_BIT_SHIFT & 0x0fff; + stat_2 = status_ecc & 0x3f; + stat_1 = status_ecc >> 6 & 0x3f; + stat = stat_1 + stat_2; + stat_max = max_t(int, stat_1, stat_2); + } + mtd->ecc_stats.corrected += stat; + max_bitflips = max_t(int, max_bitflips, stat_max); + } + host->irq_status = 0; + + return max_bitflips; +} + +static int hisi_nand_read_oob(struct nand_chip *chip, int page) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + struct hinfc_host *host = nand_get_controller_data(chip); + + nand_read_oob_op(chip, page, 0, chip->oob_poi, mtd->oobsize); + + if (host->irq_status & HINFC504_INTS_UE) { + host->irq_status = 0; + return -EBADMSG; + } + + host->irq_status = 0; + return 0; +} + +static int hisi_nand_write_page_hwecc(struct nand_chip *chip, + const uint8_t *buf, int oob_required, + int page) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + + nand_prog_page_begin_op(chip, page, 0, buf, mtd->writesize); + if (oob_required) + chip->legacy.write_buf(chip, chip->oob_poi, mtd->oobsize); + + return nand_prog_page_end_op(chip); +} + +static void hisi_nfc_host_init(struct hinfc_host *host) +{ + struct nand_chip *chip = &host->chip; + unsigned int flag = 0; + + host->version = hinfc_read(host, HINFC_VERSION); + host->addr_cycle = 0; + host->addr_value[0] = 0; + host->addr_value[1] = 0; + host->cache_addr_value[0] = ~0; + host->cache_addr_value[1] = ~0; + host->chipselect = 0; + + /* default page size: 2K, ecc_none. need modify */ + flag = HINFC504_CON_OP_MODE_NORMAL | HINFC504_CON_READY_BUSY_SEL + | ((0x001 & HINFC504_CON_PAGESIZE_MASK) + << HINFC504_CON_PAGEISZE_SHIFT) + | ((0x0 & HINFC504_CON_ECCTYPE_MASK) + << HINFC504_CON_ECCTYPE_SHIFT) + | ((chip->options & NAND_BUSWIDTH_16) ? + HINFC504_CON_BUS_WIDTH : 0); + hinfc_write(host, flag, HINFC504_CON); + + memset(host->mmio, 0xff, HINFC504_BUFFER_BASE_ADDRESS_LEN); + + hinfc_write(host, SET_HINFC504_PWIDTH(HINFC504_W_LATCH, + HINFC504_R_LATCH, HINFC504_RW_LATCH), HINFC504_PWIDTH); + + /* enable DMA irq */ + hinfc_write(host, HINFC504_INTEN_DMA, HINFC504_INTEN); +} + +static int hisi_ooblayout_ecc(struct mtd_info *mtd, int section, + struct mtd_oob_region *oobregion) +{ + /* FIXME: add ECC bytes position */ + return -ENOTSUPP; +} + +static int hisi_ooblayout_free(struct mtd_info *mtd, int section, + struct mtd_oob_region *oobregion) +{ + if (section) + return -ERANGE; + + oobregion->offset = 2; + oobregion->length = 6; + + return 0; +} + +static const struct mtd_ooblayout_ops hisi_ooblayout_ops = { + .ecc = hisi_ooblayout_ecc, + .free = hisi_ooblayout_free, +}; + +static int hisi_nfc_ecc_probe(struct hinfc_host *host) +{ + unsigned int flag; + int size, strength, ecc_bits; + struct device *dev = host->dev; + struct nand_chip *chip = &host->chip; + struct mtd_info *mtd = nand_to_mtd(chip); + + size = chip->ecc.size; + strength = chip->ecc.strength; + if (size != 1024) { + dev_err(dev, "error ecc size: %d\n", size); + return -EINVAL; + } + + if ((size == 1024) && ((strength != 8) && (strength != 16) && + (strength != 24) && (strength != 40))) { + dev_err(dev, "ecc size and strength do not match\n"); + return -EINVAL; + } + + chip->ecc.size = size; + chip->ecc.strength = strength; + + chip->ecc.read_page = hisi_nand_read_page_hwecc; + chip->ecc.read_oob = hisi_nand_read_oob; + chip->ecc.write_page = hisi_nand_write_page_hwecc; + + switch (chip->ecc.strength) { + case 16: + ecc_bits = 6; + if (mtd->writesize == 2048) + mtd_set_ooblayout(mtd, &hisi_ooblayout_ops); + + /* TODO: add more page size support */ + break; + + /* TODO: add more ecc strength support */ + default: + dev_err(dev, "not support strength: %d\n", chip->ecc.strength); + return -EINVAL; + } + + flag = hinfc_read(host, HINFC504_CON); + /* add ecc type configure */ + flag |= ((ecc_bits & HINFC504_CON_ECCTYPE_MASK) + << HINFC504_CON_ECCTYPE_SHIFT); + hinfc_write(host, flag, HINFC504_CON); + + /* enable ecc irq */ + flag = hinfc_read(host, HINFC504_INTEN) & 0xfff; + hinfc_write(host, flag | HINFC504_INTEN_UE | HINFC504_INTEN_CE, + HINFC504_INTEN); + + return 0; +} + +static int hisi_nfc_attach_chip(struct nand_chip *chip) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + struct hinfc_host *host = nand_get_controller_data(chip); + int flag; + + host->buffer = dmam_alloc_coherent(host->dev, + mtd->writesize + mtd->oobsize, + &host->dma_buffer, GFP_KERNEL); + if (!host->buffer) + return -ENOMEM; + + host->dma_oob = host->dma_buffer + mtd->writesize; + memset(host->buffer, 0xff, mtd->writesize + mtd->oobsize); + + flag = hinfc_read(host, HINFC504_CON); + flag &= ~(HINFC504_CON_PAGESIZE_MASK << HINFC504_CON_PAGEISZE_SHIFT); + switch (mtd->writesize) { + case 2048: + flag |= (0x001 << HINFC504_CON_PAGEISZE_SHIFT); + break; + /* + * TODO: add more pagesize support, + * default pagesize has been set in hisi_nfc_host_init + */ + default: + dev_err(host->dev, "NON-2KB page size nand flash\n"); + return -EINVAL; + } + hinfc_write(host, flag, HINFC504_CON); + + if (chip->ecc.engine_type == NAND_ECC_ENGINE_TYPE_ON_HOST) + hisi_nfc_ecc_probe(host); + + return 0; +} + +static const struct nand_controller_ops hisi_nfc_controller_ops = { + .attach_chip = hisi_nfc_attach_chip, +}; + +static int hisi_nfc_probe(struct platform_device *pdev) +{ + int ret = 0, irq, max_chips = HINFC504_MAX_CHIP; + struct device *dev = &pdev->dev; + struct hinfc_host *host; + struct nand_chip *chip; + struct mtd_info *mtd; + struct device_node *np = dev->of_node; + + host = devm_kzalloc(dev, sizeof(*host), GFP_KERNEL); + if (!host) + return -ENOMEM; + host->dev = dev; + + platform_set_drvdata(pdev, host); + chip = &host->chip; + mtd = nand_to_mtd(chip); + + irq = platform_get_irq(pdev, 0); + if (irq < 0) + return -ENXIO; + + host->iobase = devm_platform_ioremap_resource(pdev, 0); + if (IS_ERR(host->iobase)) + return PTR_ERR(host->iobase); + + host->mmio = devm_platform_ioremap_resource(pdev, 1); + if (IS_ERR(host->mmio)) + return PTR_ERR(host->mmio); + + mtd->name = "hisi_nand"; + mtd->dev.parent = &pdev->dev; + + nand_set_controller_data(chip, host); + nand_set_flash_node(chip, np); + chip->legacy.cmdfunc = hisi_nfc_cmdfunc; + chip->legacy.select_chip = hisi_nfc_select_chip; + chip->legacy.read_byte = hisi_nfc_read_byte; + chip->legacy.write_buf = hisi_nfc_write_buf; + chip->legacy.read_buf = hisi_nfc_read_buf; + chip->legacy.chip_delay = HINFC504_CHIP_DELAY; + chip->legacy.set_features = nand_get_set_features_notsupp; + chip->legacy.get_features = nand_get_set_features_notsupp; + + hisi_nfc_host_init(host); + + ret = devm_request_irq(dev, irq, hinfc_irq_handle, 0x0, "nandc", host); + if (ret) { + dev_err(dev, "failed to request IRQ\n"); + return ret; + } + + chip->legacy.dummy_controller.ops = &hisi_nfc_controller_ops; + ret = nand_scan(chip, max_chips); + if (ret) + return ret; + + ret = mtd_device_register(mtd, NULL, 0); + if (ret) { + dev_err(dev, "Err MTD partition=%d\n", ret); + nand_cleanup(chip); + return ret; + } + + return 0; +} + +static void hisi_nfc_remove(struct platform_device *pdev) +{ + struct hinfc_host *host = platform_get_drvdata(pdev); + struct nand_chip *chip = &host->chip; + int ret; + + ret = mtd_device_unregister(nand_to_mtd(chip)); + WARN_ON(ret); + nand_cleanup(chip); +} + +#ifdef CONFIG_PM_SLEEP +static int hisi_nfc_suspend(struct device *dev) +{ + struct hinfc_host *host = dev_get_drvdata(dev); + unsigned long timeout = jiffies + HINFC504_NFC_PM_TIMEOUT; + + while (time_before(jiffies, timeout)) { + if (((hinfc_read(host, HINFC504_STATUS) & 0x1) == 0x0) && + (hinfc_read(host, HINFC504_DMA_CTRL) & + HINFC504_DMA_CTRL_DMA_START)) { + cond_resched(); + return 0; + } + } + + dev_err(host->dev, "nand controller suspend timeout.\n"); + + return -EAGAIN; +} + +static int hisi_nfc_resume(struct device *dev) +{ + int cs; + struct hinfc_host *host = dev_get_drvdata(dev); + struct nand_chip *chip = &host->chip; + + for (cs = 0; cs < nanddev_ntargets(&chip->base); cs++) + hisi_nfc_send_cmd_reset(host, cs); + hinfc_write(host, SET_HINFC504_PWIDTH(HINFC504_W_LATCH, + HINFC504_R_LATCH, HINFC504_RW_LATCH), HINFC504_PWIDTH); + + return 0; +} +#endif +static SIMPLE_DEV_PM_OPS(hisi_nfc_pm_ops, hisi_nfc_suspend, hisi_nfc_resume); + +static const struct of_device_id nfc_id_table[] = { + { .compatible = "hisilicon,504-nfc" }, + {} +}; +MODULE_DEVICE_TABLE(of, nfc_id_table); + +static struct platform_driver hisi_nfc_driver = { + .driver = { + .name = "hisi_nand", + .of_match_table = nfc_id_table, + .pm = &hisi_nfc_pm_ops, + }, + .probe = hisi_nfc_probe, + .remove_new = hisi_nfc_remove, +}; + +module_platform_driver(hisi_nfc_driver); + +MODULE_LICENSE("GPL"); +MODULE_AUTHOR("Zhou Wang"); +MODULE_AUTHOR("Zhiyong Cai"); +MODULE_DESCRIPTION("Hisilicon Nand Flash Controller Driver"); diff --git a/drivers/mtd/nand/raw/ingenic/Kconfig b/drivers/mtd/nand/raw/ingenic/Kconfig new file mode 100644 index 0000000000..96c5ae8b1b --- /dev/null +++ b/drivers/mtd/nand/raw/ingenic/Kconfig @@ -0,0 +1,45 @@ +# SPDX-License-Identifier: GPL-2.0-only +config MTD_NAND_JZ4780 + tristate "JZ4780 NAND controller" + depends on MIPS || COMPILE_TEST + depends on JZ4780_NEMC + help + Enables support for NAND Flash connected to the NEMC on JZ4780 SoC + based boards, using the BCH controller for hardware error correction. + +if MTD_NAND_JZ4780 + +config MTD_NAND_INGENIC_ECC + bool + +config MTD_NAND_JZ4740_ECC + tristate "Hardware BCH support for JZ4740 SoC" + select MTD_NAND_INGENIC_ECC + help + Enable this driver to support the Reed-Solomon error-correction + hardware present on the JZ4740 SoC from Ingenic. + + This driver can also be built as a module. If so, the module + will be called jz4740-ecc. + +config MTD_NAND_JZ4725B_BCH + tristate "Hardware BCH support for JZ4725B SoC" + select MTD_NAND_INGENIC_ECC + help + Enable this driver to support the BCH error-correction hardware + present on the JZ4725B SoC from Ingenic. + + This driver can also be built as a module. If so, the module + will be called jz4725b-bch. + +config MTD_NAND_JZ4780_BCH + tristate "Hardware BCH support for JZ4780 SoC" + select MTD_NAND_INGENIC_ECC + help + Enable this driver to support the BCH error-correction hardware + present on the JZ4780 SoC from Ingenic. + + This driver can also be built as a module. If so, the module + will be called jz4780-bch. + +endif # MTD_NAND_JZ4780 diff --git a/drivers/mtd/nand/raw/ingenic/Makefile b/drivers/mtd/nand/raw/ingenic/Makefile new file mode 100644 index 0000000000..4c53f5e759 --- /dev/null +++ b/drivers/mtd/nand/raw/ingenic/Makefile @@ -0,0 +1,9 @@ +# SPDX-License-Identifier: GPL-2.0-only +obj-$(CONFIG_MTD_NAND_JZ4780) += ingenic_nand.o + +ingenic_nand-y += ingenic_nand_drv.o +ingenic_nand-$(CONFIG_MTD_NAND_INGENIC_ECC) += ingenic_ecc.o + +obj-$(CONFIG_MTD_NAND_JZ4740_ECC) += jz4740_ecc.o +obj-$(CONFIG_MTD_NAND_JZ4725B_BCH) += jz4725b_bch.o +obj-$(CONFIG_MTD_NAND_JZ4780_BCH) += jz4780_bch.o diff --git a/drivers/mtd/nand/raw/ingenic/ingenic_ecc.c b/drivers/mtd/nand/raw/ingenic/ingenic_ecc.c new file mode 100644 index 0000000000..525c34c281 --- /dev/null +++ b/drivers/mtd/nand/raw/ingenic/ingenic_ecc.c @@ -0,0 +1,159 @@ +// SPDX-License-Identifier: GPL-2.0 +/* + * JZ47xx ECC common code + * + * Copyright (c) 2015 Imagination Technologies + * Author: Alex Smith <alex.smith@imgtec.com> + */ + +#include <linux/clk.h> +#include <linux/init.h> +#include <linux/module.h> +#include <linux/of.h> +#include <linux/of_platform.h> +#include <linux/platform_device.h> + +#include "ingenic_ecc.h" + +/** + * ingenic_ecc_calculate() - calculate ECC for a data buffer + * @ecc: ECC device. + * @params: ECC parameters. + * @buf: input buffer with raw data. + * @ecc_code: output buffer with ECC. + * + * Return: 0 on success, -ETIMEDOUT if timed out while waiting for ECC + * controller. + */ +int ingenic_ecc_calculate(struct ingenic_ecc *ecc, + struct ingenic_ecc_params *params, + const u8 *buf, u8 *ecc_code) +{ + return ecc->ops->calculate(ecc, params, buf, ecc_code); +} + +/** + * ingenic_ecc_correct() - detect and correct bit errors + * @ecc: ECC device. + * @params: ECC parameters. + * @buf: raw data read from the chip. + * @ecc_code: ECC read from the chip. + * + * Given the raw data and the ECC read from the NAND device, detects and + * corrects errors in the data. + * + * Return: the number of bit errors corrected, -EBADMSG if there are too many + * errors to correct or -ETIMEDOUT if we timed out waiting for the controller. + */ +int ingenic_ecc_correct(struct ingenic_ecc *ecc, + struct ingenic_ecc_params *params, + u8 *buf, u8 *ecc_code) +{ + return ecc->ops->correct(ecc, params, buf, ecc_code); +} + +/** + * ingenic_ecc_get() - get the ECC controller device + * @np: ECC device tree node. + * + * Gets the ECC controller device from the specified device tree node. The + * device must be released with ingenic_ecc_release() when it is no longer being + * used. + * + * Return: a pointer to ingenic_ecc, errors are encoded into the pointer. + * PTR_ERR(-EPROBE_DEFER) if the device hasn't been initialised yet. + */ +static struct ingenic_ecc *ingenic_ecc_get(struct device_node *np) +{ + struct platform_device *pdev; + struct ingenic_ecc *ecc; + + pdev = of_find_device_by_node(np); + if (!pdev) + return ERR_PTR(-EPROBE_DEFER); + + if (!platform_get_drvdata(pdev)) { + put_device(&pdev->dev); + return ERR_PTR(-EPROBE_DEFER); + } + + ecc = platform_get_drvdata(pdev); + clk_prepare_enable(ecc->clk); + + return ecc; +} + +/** + * of_ingenic_ecc_get() - get the ECC controller from a DT node + * @of_node: the node that contains an ecc-engine property. + * + * Get the ecc-engine property from the given device tree + * node and pass it to ingenic_ecc_get to do the work. + * + * Return: a pointer to ingenic_ecc, errors are encoded into the pointer. + * PTR_ERR(-EPROBE_DEFER) if the device hasn't been initialised yet. + */ +struct ingenic_ecc *of_ingenic_ecc_get(struct device_node *of_node) +{ + struct ingenic_ecc *ecc = NULL; + struct device_node *np; + + np = of_parse_phandle(of_node, "ecc-engine", 0); + + /* + * If the ecc-engine property is not found, check for the deprecated + * ingenic,bch-controller property + */ + if (!np) + np = of_parse_phandle(of_node, "ingenic,bch-controller", 0); + + if (np) { + ecc = ingenic_ecc_get(np); + of_node_put(np); + } + return ecc; +} + +/** + * ingenic_ecc_release() - release the ECC controller device + * @ecc: ECC device. + */ +void ingenic_ecc_release(struct ingenic_ecc *ecc) +{ + clk_disable_unprepare(ecc->clk); + put_device(ecc->dev); +} + +int ingenic_ecc_probe(struct platform_device *pdev) +{ + struct device *dev = &pdev->dev; + struct ingenic_ecc *ecc; + + ecc = devm_kzalloc(dev, sizeof(*ecc), GFP_KERNEL); + if (!ecc) + return -ENOMEM; + + ecc->ops = device_get_match_data(dev); + if (!ecc->ops) + return -EINVAL; + + ecc->base = devm_platform_ioremap_resource(pdev, 0); + if (IS_ERR(ecc->base)) + return PTR_ERR(ecc->base); + + ecc->ops->disable(ecc); + + ecc->clk = devm_clk_get(dev, NULL); + if (IS_ERR(ecc->clk)) { + dev_err(dev, "failed to get clock: %ld\n", PTR_ERR(ecc->clk)); + return PTR_ERR(ecc->clk); + } + + mutex_init(&ecc->lock); + + ecc->dev = dev; + platform_set_drvdata(pdev, ecc); + + return 0; +} +EXPORT_SYMBOL(ingenic_ecc_probe); diff --git a/drivers/mtd/nand/raw/ingenic/ingenic_ecc.h b/drivers/mtd/nand/raw/ingenic/ingenic_ecc.h new file mode 100644 index 0000000000..017868f59f --- /dev/null +++ b/drivers/mtd/nand/raw/ingenic/ingenic_ecc.h @@ -0,0 +1,83 @@ +/* SPDX-License-Identifier: GPL-2.0 */ +#ifndef __DRIVERS_MTD_NAND_INGENIC_ECC_INTERNAL_H__ +#define __DRIVERS_MTD_NAND_INGENIC_ECC_INTERNAL_H__ + +#include <linux/compiler_types.h> +#include <linux/err.h> +#include <linux/mutex.h> +#include <linux/types.h> +#include <uapi/asm-generic/errno-base.h> + +struct clk; +struct device; +struct ingenic_ecc; +struct platform_device; + +/** + * struct ingenic_ecc_params - ECC parameters + * @size: data bytes per ECC step. + * @bytes: ECC bytes per step. + * @strength: number of correctable bits per ECC step. + */ +struct ingenic_ecc_params { + int size; + int bytes; + int strength; +}; + +#if IS_ENABLED(CONFIG_MTD_NAND_INGENIC_ECC) +int ingenic_ecc_calculate(struct ingenic_ecc *ecc, + struct ingenic_ecc_params *params, + const u8 *buf, u8 *ecc_code); +int ingenic_ecc_correct(struct ingenic_ecc *ecc, + struct ingenic_ecc_params *params, u8 *buf, + u8 *ecc_code); + +void ingenic_ecc_release(struct ingenic_ecc *ecc); +struct ingenic_ecc *of_ingenic_ecc_get(struct device_node *np); +#else /* CONFIG_MTD_NAND_INGENIC_ECC */ +static inline int ingenic_ecc_calculate(struct ingenic_ecc *ecc, + struct ingenic_ecc_params *params, + const u8 *buf, u8 *ecc_code) +{ + return -ENODEV; +} + +static inline int ingenic_ecc_correct(struct ingenic_ecc *ecc, + struct ingenic_ecc_params *params, u8 *buf, + u8 *ecc_code) +{ + return -ENODEV; +} + +static inline void ingenic_ecc_release(struct ingenic_ecc *ecc) +{ +} + +static inline struct ingenic_ecc *of_ingenic_ecc_get(struct device_node *np) +{ + return ERR_PTR(-ENODEV); +} +#endif /* CONFIG_MTD_NAND_INGENIC_ECC */ + +struct ingenic_ecc_ops { + void (*disable)(struct ingenic_ecc *ecc); + int (*calculate)(struct ingenic_ecc *ecc, + struct ingenic_ecc_params *params, + const u8 *buf, u8 *ecc_code); + int (*correct)(struct ingenic_ecc *ecc, + struct ingenic_ecc_params *params, + u8 *buf, u8 *ecc_code); +}; + +struct ingenic_ecc { + struct device *dev; + const struct ingenic_ecc_ops *ops; + void __iomem *base; + struct clk *clk; + struct mutex lock; +}; + +int ingenic_ecc_probe(struct platform_device *pdev); + +#endif /* __DRIVERS_MTD_NAND_INGENIC_ECC_INTERNAL_H__ */ diff --git a/drivers/mtd/nand/raw/ingenic/ingenic_nand_drv.c b/drivers/mtd/nand/raw/ingenic/ingenic_nand_drv.c new file mode 100644 index 0000000000..6748226b8b --- /dev/null +++ b/drivers/mtd/nand/raw/ingenic/ingenic_nand_drv.c @@ -0,0 +1,575 @@ +// SPDX-License-Identifier: GPL-2.0 +/* + * Ingenic JZ47xx NAND driver + * + * Copyright (c) 2015 Imagination Technologies + * Author: Alex Smith <alex.smith@imgtec.com> + */ + +#include <linux/delay.h> +#include <linux/init.h> +#include <linux/io.h> +#include <linux/list.h> +#include <linux/module.h> +#include <linux/of.h> +#include <linux/of_address.h> +#include <linux/gpio/consumer.h> +#include <linux/platform_device.h> +#include <linux/slab.h> +#include <linux/mtd/mtd.h> +#include <linux/mtd/rawnand.h> +#include <linux/mtd/partitions.h> + +#include <linux/jz4780-nemc.h> + +#include "ingenic_ecc.h" + +#define DRV_NAME "ingenic-nand" + +struct jz_soc_info { + unsigned long data_offset; + unsigned long addr_offset; + unsigned long cmd_offset; + const struct mtd_ooblayout_ops *oob_layout; + bool oob_first; +}; + +struct ingenic_nand_cs { + unsigned int bank; + void __iomem *base; +}; + +struct ingenic_nfc { + struct device *dev; + struct ingenic_ecc *ecc; + const struct jz_soc_info *soc_info; + struct nand_controller controller; + unsigned int num_banks; + struct list_head chips; + struct ingenic_nand_cs cs[]; +}; + +struct ingenic_nand { + struct nand_chip chip; + struct list_head chip_list; + + struct gpio_desc *busy_gpio; + struct gpio_desc *wp_gpio; + unsigned int reading: 1; +}; + +static inline struct ingenic_nand *to_ingenic_nand(struct mtd_info *mtd) +{ + return container_of(mtd_to_nand(mtd), struct ingenic_nand, chip); +} + +static inline struct ingenic_nfc *to_ingenic_nfc(struct nand_controller *ctrl) +{ + return container_of(ctrl, struct ingenic_nfc, controller); +} + +static int qi_lb60_ooblayout_ecc(struct mtd_info *mtd, int section, + struct mtd_oob_region *oobregion) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + struct nand_ecc_ctrl *ecc = &chip->ecc; + + if (section || !ecc->total) + return -ERANGE; + + oobregion->length = ecc->total; + oobregion->offset = 12; + + return 0; +} + +static int qi_lb60_ooblayout_free(struct mtd_info *mtd, int section, + struct mtd_oob_region *oobregion) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + struct nand_ecc_ctrl *ecc = &chip->ecc; + + if (section) + return -ERANGE; + + oobregion->length = mtd->oobsize - ecc->total - 12; + oobregion->offset = 12 + ecc->total; + + return 0; +} + +static const struct mtd_ooblayout_ops qi_lb60_ooblayout_ops = { + .ecc = qi_lb60_ooblayout_ecc, + .free = qi_lb60_ooblayout_free, +}; + +static int jz4725b_ooblayout_ecc(struct mtd_info *mtd, int section, + struct mtd_oob_region *oobregion) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + struct nand_ecc_ctrl *ecc = &chip->ecc; + + if (section || !ecc->total) + return -ERANGE; + + oobregion->length = ecc->total; + oobregion->offset = 3; + + return 0; +} + +static int jz4725b_ooblayout_free(struct mtd_info *mtd, int section, + struct mtd_oob_region *oobregion) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + struct nand_ecc_ctrl *ecc = &chip->ecc; + + if (section) + return -ERANGE; + + oobregion->length = mtd->oobsize - ecc->total - 3; + oobregion->offset = 3 + ecc->total; + + return 0; +} + +static const struct mtd_ooblayout_ops jz4725b_ooblayout_ops = { + .ecc = jz4725b_ooblayout_ecc, + .free = jz4725b_ooblayout_free, +}; + +static void ingenic_nand_ecc_hwctl(struct nand_chip *chip, int mode) +{ + struct ingenic_nand *nand = to_ingenic_nand(nand_to_mtd(chip)); + + nand->reading = (mode == NAND_ECC_READ); +} + +static int ingenic_nand_ecc_calculate(struct nand_chip *chip, const u8 *dat, + u8 *ecc_code) +{ + struct ingenic_nand *nand = to_ingenic_nand(nand_to_mtd(chip)); + struct ingenic_nfc *nfc = to_ingenic_nfc(nand->chip.controller); + struct ingenic_ecc_params params; + + /* + * Don't need to generate the ECC when reading, the ECC engine does it + * for us as part of decoding/correction. + */ + if (nand->reading) + return 0; + + params.size = nand->chip.ecc.size; + params.bytes = nand->chip.ecc.bytes; + params.strength = nand->chip.ecc.strength; + + return ingenic_ecc_calculate(nfc->ecc, ¶ms, dat, ecc_code); +} + +static int ingenic_nand_ecc_correct(struct nand_chip *chip, u8 *dat, + u8 *read_ecc, u8 *calc_ecc) +{ + struct ingenic_nand *nand = to_ingenic_nand(nand_to_mtd(chip)); + struct ingenic_nfc *nfc = to_ingenic_nfc(nand->chip.controller); + struct ingenic_ecc_params params; + + params.size = nand->chip.ecc.size; + params.bytes = nand->chip.ecc.bytes; + params.strength = nand->chip.ecc.strength; + + return ingenic_ecc_correct(nfc->ecc, ¶ms, dat, read_ecc); +} + +static int ingenic_nand_attach_chip(struct nand_chip *chip) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + struct ingenic_nfc *nfc = to_ingenic_nfc(chip->controller); + int eccbytes; + + if (chip->ecc.strength == 4) { + /* JZ4740 uses 9 bytes of ECC to correct maximum 4 errors */ + chip->ecc.bytes = 9; + } else { + chip->ecc.bytes = fls((1 + 8) * chip->ecc.size) * + (chip->ecc.strength / 8); + } + + switch (chip->ecc.engine_type) { + case NAND_ECC_ENGINE_TYPE_ON_HOST: + if (!nfc->ecc) { + dev_err(nfc->dev, "HW ECC selected, but ECC controller not found\n"); + return -ENODEV; + } + + chip->ecc.hwctl = ingenic_nand_ecc_hwctl; + chip->ecc.calculate = ingenic_nand_ecc_calculate; + chip->ecc.correct = ingenic_nand_ecc_correct; + fallthrough; + case NAND_ECC_ENGINE_TYPE_SOFT: + dev_info(nfc->dev, "using %s (strength %d, size %d, bytes %d)\n", + (nfc->ecc) ? "hardware ECC" : "software ECC", + chip->ecc.strength, chip->ecc.size, chip->ecc.bytes); + break; + case NAND_ECC_ENGINE_TYPE_NONE: + dev_info(nfc->dev, "not using ECC\n"); + break; + default: + dev_err(nfc->dev, "ECC mode %d not supported\n", + chip->ecc.engine_type); + return -EINVAL; + } + + /* The NAND core will generate the ECC layout for SW ECC */ + if (chip->ecc.engine_type != NAND_ECC_ENGINE_TYPE_ON_HOST) + return 0; + + /* Generate ECC layout. ECC codes are right aligned in the OOB area. */ + eccbytes = mtd->writesize / chip->ecc.size * chip->ecc.bytes; + + if (eccbytes > mtd->oobsize - 2) { + dev_err(nfc->dev, + "invalid ECC config: required %d ECC bytes, but only %d are available", + eccbytes, mtd->oobsize - 2); + return -EINVAL; + } + + /* + * The generic layout for BBT markers will most likely overlap with our + * ECC bytes in the OOB, so move the BBT markers outside the OOB area. + */ + if (chip->bbt_options & NAND_BBT_USE_FLASH) + chip->bbt_options |= NAND_BBT_NO_OOB; + + if (nfc->soc_info->oob_first) + chip->ecc.read_page = nand_read_page_hwecc_oob_first; + + /* For legacy reasons we use a different layout on the qi,lb60 board. */ + if (of_machine_is_compatible("qi,lb60")) + mtd_set_ooblayout(mtd, &qi_lb60_ooblayout_ops); + else if (nfc->soc_info->oob_layout) + mtd_set_ooblayout(mtd, nfc->soc_info->oob_layout); + else + mtd_set_ooblayout(mtd, nand_get_large_page_ooblayout()); + + return 0; +} + +static int ingenic_nand_exec_instr(struct nand_chip *chip, + struct ingenic_nand_cs *cs, + const struct nand_op_instr *instr) +{ + struct ingenic_nand *nand = to_ingenic_nand(nand_to_mtd(chip)); + struct ingenic_nfc *nfc = to_ingenic_nfc(chip->controller); + unsigned int i; + + switch (instr->type) { + case NAND_OP_CMD_INSTR: + writeb(instr->ctx.cmd.opcode, + cs->base + nfc->soc_info->cmd_offset); + return 0; + case NAND_OP_ADDR_INSTR: + for (i = 0; i < instr->ctx.addr.naddrs; i++) + writeb(instr->ctx.addr.addrs[i], + cs->base + nfc->soc_info->addr_offset); + return 0; + case NAND_OP_DATA_IN_INSTR: + if (instr->ctx.data.force_8bit || + !(chip->options & NAND_BUSWIDTH_16)) + ioread8_rep(cs->base + nfc->soc_info->data_offset, + instr->ctx.data.buf.in, + instr->ctx.data.len); + else + ioread16_rep(cs->base + nfc->soc_info->data_offset, + instr->ctx.data.buf.in, + instr->ctx.data.len); + return 0; + case NAND_OP_DATA_OUT_INSTR: + if (instr->ctx.data.force_8bit || + !(chip->options & NAND_BUSWIDTH_16)) + iowrite8_rep(cs->base + nfc->soc_info->data_offset, + instr->ctx.data.buf.out, + instr->ctx.data.len); + else + iowrite16_rep(cs->base + nfc->soc_info->data_offset, + instr->ctx.data.buf.out, + instr->ctx.data.len); + return 0; + case NAND_OP_WAITRDY_INSTR: + if (!nand->busy_gpio) + return nand_soft_waitrdy(chip, + instr->ctx.waitrdy.timeout_ms); + + return nand_gpio_waitrdy(chip, nand->busy_gpio, + instr->ctx.waitrdy.timeout_ms); + default: + break; + } + + return -EINVAL; +} + +static int ingenic_nand_exec_op(struct nand_chip *chip, + const struct nand_operation *op, + bool check_only) +{ + struct ingenic_nand *nand = to_ingenic_nand(nand_to_mtd(chip)); + struct ingenic_nfc *nfc = to_ingenic_nfc(nand->chip.controller); + struct ingenic_nand_cs *cs; + unsigned int i; + int ret = 0; + + if (check_only) + return 0; + + cs = &nfc->cs[op->cs]; + jz4780_nemc_assert(nfc->dev, cs->bank, true); + for (i = 0; i < op->ninstrs; i++) { + ret = ingenic_nand_exec_instr(chip, cs, &op->instrs[i]); + if (ret) + break; + + if (op->instrs[i].delay_ns) + ndelay(op->instrs[i].delay_ns); + } + jz4780_nemc_assert(nfc->dev, cs->bank, false); + + return ret; +} + +static const struct nand_controller_ops ingenic_nand_controller_ops = { + .attach_chip = ingenic_nand_attach_chip, + .exec_op = ingenic_nand_exec_op, +}; + +static int ingenic_nand_init_chip(struct platform_device *pdev, + struct ingenic_nfc *nfc, + struct device_node *np, + unsigned int chipnr) +{ + struct device *dev = &pdev->dev; + struct ingenic_nand *nand; + struct ingenic_nand_cs *cs; + struct nand_chip *chip; + struct mtd_info *mtd; + const __be32 *reg; + int ret = 0; + + cs = &nfc->cs[chipnr]; + + reg = of_get_property(np, "reg", NULL); + if (!reg) + return -EINVAL; + + cs->bank = be32_to_cpu(*reg); + + jz4780_nemc_set_type(nfc->dev, cs->bank, JZ4780_NEMC_BANK_NAND); + + cs->base = devm_platform_ioremap_resource(pdev, chipnr); + if (IS_ERR(cs->base)) + return PTR_ERR(cs->base); + + nand = devm_kzalloc(dev, sizeof(*nand), GFP_KERNEL); + if (!nand) + return -ENOMEM; + + nand->busy_gpio = devm_gpiod_get_optional(dev, "rb", GPIOD_IN); + + if (IS_ERR(nand->busy_gpio)) { + ret = PTR_ERR(nand->busy_gpio); + dev_err(dev, "failed to request busy GPIO: %d\n", ret); + return ret; + } + + /* + * The rb-gpios semantics was undocumented and qi,lb60 (along with + * the ingenic driver) got it wrong. The active state encodes the + * NAND ready state, which is high level. Since there's no signal + * inverter on this board, it should be active-high. Let's fix that + * here for older DTs so we can re-use the generic nand_gpio_waitrdy() + * helper, and be consistent with what other drivers do. + */ + if (of_machine_is_compatible("qi,lb60") && + gpiod_is_active_low(nand->busy_gpio)) + gpiod_toggle_active_low(nand->busy_gpio); + + nand->wp_gpio = devm_gpiod_get_optional(dev, "wp", GPIOD_OUT_LOW); + + if (IS_ERR(nand->wp_gpio)) { + ret = PTR_ERR(nand->wp_gpio); + dev_err(dev, "failed to request WP GPIO: %d\n", ret); + return ret; + } + + chip = &nand->chip; + mtd = nand_to_mtd(chip); + mtd->name = devm_kasprintf(dev, GFP_KERNEL, "%s.%d", dev_name(dev), + cs->bank); + if (!mtd->name) + return -ENOMEM; + mtd->dev.parent = dev; + + chip->options = NAND_NO_SUBPAGE_WRITE; + chip->ecc.engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST; + chip->controller = &nfc->controller; + nand_set_flash_node(chip, np); + + chip->controller->ops = &ingenic_nand_controller_ops; + ret = nand_scan(chip, 1); + if (ret) + return ret; + + ret = mtd_device_register(mtd, NULL, 0); + if (ret) { + nand_cleanup(chip); + return ret; + } + + list_add_tail(&nand->chip_list, &nfc->chips); + + return 0; +} + +static void ingenic_nand_cleanup_chips(struct ingenic_nfc *nfc) +{ + struct ingenic_nand *ingenic_chip; + struct nand_chip *chip; + int ret; + + while (!list_empty(&nfc->chips)) { + ingenic_chip = list_first_entry(&nfc->chips, + struct ingenic_nand, chip_list); + chip = &ingenic_chip->chip; + ret = mtd_device_unregister(nand_to_mtd(chip)); + WARN_ON(ret); + nand_cleanup(chip); + list_del(&ingenic_chip->chip_list); + } +} + +static int ingenic_nand_init_chips(struct ingenic_nfc *nfc, + struct platform_device *pdev) +{ + struct device *dev = &pdev->dev; + struct device_node *np; + int i = 0; + int ret; + int num_chips = of_get_child_count(dev->of_node); + + if (num_chips > nfc->num_banks) { + dev_err(dev, "found %d chips but only %d banks\n", + num_chips, nfc->num_banks); + return -EINVAL; + } + + for_each_child_of_node(dev->of_node, np) { + ret = ingenic_nand_init_chip(pdev, nfc, np, i); + if (ret) { + ingenic_nand_cleanup_chips(nfc); + of_node_put(np); + return ret; + } + + i++; + } + + return 0; +} + +static int ingenic_nand_probe(struct platform_device *pdev) +{ + struct device *dev = &pdev->dev; + unsigned int num_banks; + struct ingenic_nfc *nfc; + int ret; + + num_banks = jz4780_nemc_num_banks(dev); + if (num_banks == 0) { + dev_err(dev, "no banks found\n"); + return -ENODEV; + } + + nfc = devm_kzalloc(dev, struct_size(nfc, cs, num_banks), GFP_KERNEL); + if (!nfc) + return -ENOMEM; + + nfc->soc_info = device_get_match_data(dev); + if (!nfc->soc_info) + return -EINVAL; + + /* + * Check for ECC HW before we call nand_scan_ident, to prevent us from + * having to call it again if the ECC driver returns -EPROBE_DEFER. + */ + nfc->ecc = of_ingenic_ecc_get(dev->of_node); + if (IS_ERR(nfc->ecc)) + return PTR_ERR(nfc->ecc); + + nfc->dev = dev; + nfc->num_banks = num_banks; + + nand_controller_init(&nfc->controller); + INIT_LIST_HEAD(&nfc->chips); + + ret = ingenic_nand_init_chips(nfc, pdev); + if (ret) { + if (nfc->ecc) + ingenic_ecc_release(nfc->ecc); + return ret; + } + + platform_set_drvdata(pdev, nfc); + return 0; +} + +static void ingenic_nand_remove(struct platform_device *pdev) +{ + struct ingenic_nfc *nfc = platform_get_drvdata(pdev); + + if (nfc->ecc) + ingenic_ecc_release(nfc->ecc); + + ingenic_nand_cleanup_chips(nfc); +} + +static const struct jz_soc_info jz4740_soc_info = { + .data_offset = 0x00000000, + .cmd_offset = 0x00008000, + .addr_offset = 0x00010000, + .oob_first = true, +}; + +static const struct jz_soc_info jz4725b_soc_info = { + .data_offset = 0x00000000, + .cmd_offset = 0x00008000, + .addr_offset = 0x00010000, + .oob_layout = &jz4725b_ooblayout_ops, +}; + +static const struct jz_soc_info jz4780_soc_info = { + .data_offset = 0x00000000, + .cmd_offset = 0x00400000, + .addr_offset = 0x00800000, +}; + +static const struct of_device_id ingenic_nand_dt_match[] = { + { .compatible = "ingenic,jz4740-nand", .data = &jz4740_soc_info }, + { .compatible = "ingenic,jz4725b-nand", .data = &jz4725b_soc_info }, + { .compatible = "ingenic,jz4780-nand", .data = &jz4780_soc_info }, + {}, +}; +MODULE_DEVICE_TABLE(of, ingenic_nand_dt_match); + +static struct platform_driver ingenic_nand_driver = { + .probe = ingenic_nand_probe, + .remove_new = ingenic_nand_remove, + .driver = { + .name = DRV_NAME, + .of_match_table = ingenic_nand_dt_match, + }, +}; +module_platform_driver(ingenic_nand_driver); + +MODULE_AUTHOR("Alex Smith <alex@alex-smith.me.uk>"); +MODULE_AUTHOR("Harvey Hunt <harveyhuntnexus@gmail.com>"); +MODULE_DESCRIPTION("Ingenic JZ47xx NAND driver"); +MODULE_LICENSE("GPL v2"); diff --git a/drivers/mtd/nand/raw/ingenic/jz4725b_bch.c b/drivers/mtd/nand/raw/ingenic/jz4725b_bch.c new file mode 100644 index 0000000000..2d0e0a2192 --- /dev/null +++ b/drivers/mtd/nand/raw/ingenic/jz4725b_bch.c @@ -0,0 +1,295 @@ +// SPDX-License-Identifier: GPL-2.0 +/* + * JZ4725B BCH controller driver + * + * Copyright (C) 2019 Paul Cercueil <paul@crapouillou.net> + * + * Based on jz4780_bch.c + */ + +#include <linux/bitops.h> +#include <linux/device.h> +#include <linux/io.h> +#include <linux/iopoll.h> +#include <linux/module.h> +#include <linux/mutex.h> +#include <linux/of_platform.h> +#include <linux/platform_device.h> + +#include "ingenic_ecc.h" + +#define BCH_BHCR 0x0 +#define BCH_BHCSR 0x4 +#define BCH_BHCCR 0x8 +#define BCH_BHCNT 0xc +#define BCH_BHDR 0x10 +#define BCH_BHPAR0 0x14 +#define BCH_BHERR0 0x28 +#define BCH_BHINT 0x24 +#define BCH_BHINTES 0x3c +#define BCH_BHINTEC 0x40 +#define BCH_BHINTE 0x38 + +#define BCH_BHCR_ENCE BIT(3) +#define BCH_BHCR_BSEL BIT(2) +#define BCH_BHCR_INIT BIT(1) +#define BCH_BHCR_BCHE BIT(0) + +#define BCH_BHCNT_DEC_COUNT_SHIFT 16 +#define BCH_BHCNT_DEC_COUNT_MASK (0x3ff << BCH_BHCNT_DEC_COUNT_SHIFT) +#define BCH_BHCNT_ENC_COUNT_SHIFT 0 +#define BCH_BHCNT_ENC_COUNT_MASK (0x3ff << BCH_BHCNT_ENC_COUNT_SHIFT) + +#define BCH_BHERR_INDEX0_SHIFT 0 +#define BCH_BHERR_INDEX0_MASK (0x1fff << BCH_BHERR_INDEX0_SHIFT) +#define BCH_BHERR_INDEX1_SHIFT 16 +#define BCH_BHERR_INDEX1_MASK (0x1fff << BCH_BHERR_INDEX1_SHIFT) + +#define BCH_BHINT_ERRC_SHIFT 28 +#define BCH_BHINT_ERRC_MASK (0xf << BCH_BHINT_ERRC_SHIFT) +#define BCH_BHINT_TERRC_SHIFT 16 +#define BCH_BHINT_TERRC_MASK (0x7f << BCH_BHINT_TERRC_SHIFT) +#define BCH_BHINT_ALL_0 BIT(5) +#define BCH_BHINT_ALL_F BIT(4) +#define BCH_BHINT_DECF BIT(3) +#define BCH_BHINT_ENCF BIT(2) +#define BCH_BHINT_UNCOR BIT(1) +#define BCH_BHINT_ERR BIT(0) + +/* Timeout for BCH calculation/correction. */ +#define BCH_TIMEOUT_US 100000 + +static inline void jz4725b_bch_config_set(struct ingenic_ecc *bch, u32 cfg) +{ + writel(cfg, bch->base + BCH_BHCSR); +} + +static inline void jz4725b_bch_config_clear(struct ingenic_ecc *bch, u32 cfg) +{ + writel(cfg, bch->base + BCH_BHCCR); +} + +static int jz4725b_bch_reset(struct ingenic_ecc *bch, + struct ingenic_ecc_params *params, bool calc_ecc) +{ + u32 reg, max_value; + + /* Clear interrupt status. */ + writel(readl(bch->base + BCH_BHINT), bch->base + BCH_BHINT); + + /* Initialise and enable BCH. */ + jz4725b_bch_config_clear(bch, 0x1f); + jz4725b_bch_config_set(bch, BCH_BHCR_BCHE); + + if (params->strength == 8) + jz4725b_bch_config_set(bch, BCH_BHCR_BSEL); + else + jz4725b_bch_config_clear(bch, BCH_BHCR_BSEL); + + if (calc_ecc) /* calculate ECC from data */ + jz4725b_bch_config_set(bch, BCH_BHCR_ENCE); + else /* correct data from ECC */ + jz4725b_bch_config_clear(bch, BCH_BHCR_ENCE); + + jz4725b_bch_config_set(bch, BCH_BHCR_INIT); + + max_value = BCH_BHCNT_ENC_COUNT_MASK >> BCH_BHCNT_ENC_COUNT_SHIFT; + if (params->size > max_value) + return -EINVAL; + + max_value = BCH_BHCNT_DEC_COUNT_MASK >> BCH_BHCNT_DEC_COUNT_SHIFT; + if (params->size + params->bytes > max_value) + return -EINVAL; + + /* Set up BCH count register. */ + reg = params->size << BCH_BHCNT_ENC_COUNT_SHIFT; + reg |= (params->size + params->bytes) << BCH_BHCNT_DEC_COUNT_SHIFT; + writel(reg, bch->base + BCH_BHCNT); + + return 0; +} + +static void jz4725b_bch_disable(struct ingenic_ecc *bch) +{ + /* Clear interrupts */ + writel(readl(bch->base + BCH_BHINT), bch->base + BCH_BHINT); + + /* Disable the hardware */ + jz4725b_bch_config_clear(bch, BCH_BHCR_BCHE); +} + +static void jz4725b_bch_write_data(struct ingenic_ecc *bch, const u8 *buf, + size_t size) +{ + while (size--) + writeb(*buf++, bch->base + BCH_BHDR); +} + +static void jz4725b_bch_read_parity(struct ingenic_ecc *bch, u8 *buf, + size_t size) +{ + size_t size32 = size / sizeof(u32); + size_t size8 = size % sizeof(u32); + u32 *dest32; + u8 *dest8; + u32 val, offset = 0; + + dest32 = (u32 *)buf; + while (size32--) { + *dest32++ = readl_relaxed(bch->base + BCH_BHPAR0 + offset); + offset += sizeof(u32); + } + + dest8 = (u8 *)dest32; + val = readl_relaxed(bch->base + BCH_BHPAR0 + offset); + switch (size8) { + case 3: + dest8[2] = (val >> 16) & 0xff; + fallthrough; + case 2: + dest8[1] = (val >> 8) & 0xff; + fallthrough; + case 1: + dest8[0] = val & 0xff; + break; + } +} + +static int jz4725b_bch_wait_complete(struct ingenic_ecc *bch, unsigned int irq, + u32 *status) +{ + u32 reg; + int ret; + + /* + * While we could use interrupts here and sleep until the operation + * completes, the controller works fairly quickly (usually a few + * microseconds) and so the overhead of sleeping until we get an + * interrupt quite noticeably decreases performance. + */ + ret = readl_relaxed_poll_timeout(bch->base + BCH_BHINT, reg, + reg & irq, 0, BCH_TIMEOUT_US); + if (ret) + return ret; + + if (status) + *status = reg; + + writel(reg, bch->base + BCH_BHINT); + + return 0; +} + +static int jz4725b_calculate(struct ingenic_ecc *bch, + struct ingenic_ecc_params *params, + const u8 *buf, u8 *ecc_code) +{ + int ret; + + mutex_lock(&bch->lock); + + ret = jz4725b_bch_reset(bch, params, true); + if (ret) { + dev_err(bch->dev, "Unable to init BCH with given parameters\n"); + goto out_disable; + } + + jz4725b_bch_write_data(bch, buf, params->size); + + ret = jz4725b_bch_wait_complete(bch, BCH_BHINT_ENCF, NULL); + if (ret) { + dev_err(bch->dev, "timed out while calculating ECC\n"); + goto out_disable; + } + + jz4725b_bch_read_parity(bch, ecc_code, params->bytes); + +out_disable: + jz4725b_bch_disable(bch); + mutex_unlock(&bch->lock); + + return ret; +} + +static int jz4725b_correct(struct ingenic_ecc *bch, + struct ingenic_ecc_params *params, + u8 *buf, u8 *ecc_code) +{ + u32 reg, errors, bit; + unsigned int i; + int ret; + + mutex_lock(&bch->lock); + + ret = jz4725b_bch_reset(bch, params, false); + if (ret) { + dev_err(bch->dev, "Unable to init BCH with given parameters\n"); + goto out; + } + + jz4725b_bch_write_data(bch, buf, params->size); + jz4725b_bch_write_data(bch, ecc_code, params->bytes); + + ret = jz4725b_bch_wait_complete(bch, BCH_BHINT_DECF, ®); + if (ret) { + dev_err(bch->dev, "timed out while correcting data\n"); + goto out; + } + + if (reg & (BCH_BHINT_ALL_F | BCH_BHINT_ALL_0)) { + /* Data and ECC is all 0xff or 0x00 - nothing to correct */ + ret = 0; + goto out; + } + + if (reg & BCH_BHINT_UNCOR) { + /* Uncorrectable ECC error */ + ret = -EBADMSG; + goto out; + } + + errors = (reg & BCH_BHINT_ERRC_MASK) >> BCH_BHINT_ERRC_SHIFT; + + /* Correct any detected errors. */ + for (i = 0; i < errors; i++) { + if (i & 1) { + bit = (reg & BCH_BHERR_INDEX1_MASK) >> BCH_BHERR_INDEX1_SHIFT; + } else { + reg = readl(bch->base + BCH_BHERR0 + (i * 4)); + bit = (reg & BCH_BHERR_INDEX0_MASK) >> BCH_BHERR_INDEX0_SHIFT; + } + + buf[(bit >> 3)] ^= BIT(bit & 0x7); + } + +out: + jz4725b_bch_disable(bch); + mutex_unlock(&bch->lock); + + return ret; +} + +static const struct ingenic_ecc_ops jz4725b_bch_ops = { + .disable = jz4725b_bch_disable, + .calculate = jz4725b_calculate, + .correct = jz4725b_correct, +}; + +static const struct of_device_id jz4725b_bch_dt_match[] = { + { .compatible = "ingenic,jz4725b-bch", .data = &jz4725b_bch_ops }, + {}, +}; +MODULE_DEVICE_TABLE(of, jz4725b_bch_dt_match); + +static struct platform_driver jz4725b_bch_driver = { + .probe = ingenic_ecc_probe, + .driver = { + .name = "jz4725b-bch", + .of_match_table = jz4725b_bch_dt_match, + }, +}; +module_platform_driver(jz4725b_bch_driver); + +MODULE_AUTHOR("Paul Cercueil <paul@crapouillou.net>"); +MODULE_DESCRIPTION("Ingenic JZ4725B BCH controller driver"); +MODULE_LICENSE("GPL v2"); diff --git a/drivers/mtd/nand/raw/ingenic/jz4740_ecc.c b/drivers/mtd/nand/raw/ingenic/jz4740_ecc.c new file mode 100644 index 0000000000..54e377754a --- /dev/null +++ b/drivers/mtd/nand/raw/ingenic/jz4740_ecc.c @@ -0,0 +1,197 @@ +// SPDX-License-Identifier: GPL-2.0 +/* + * JZ4740 ECC controller driver + * + * Copyright (c) 2019 Paul Cercueil <paul@crapouillou.net> + * + * based on jz4740-nand.c + */ + +#include <linux/bitops.h> +#include <linux/device.h> +#include <linux/io.h> +#include <linux/module.h> +#include <linux/of_platform.h> +#include <linux/platform_device.h> + +#include "ingenic_ecc.h" + +#define JZ_REG_NAND_ECC_CTRL 0x00 +#define JZ_REG_NAND_DATA 0x04 +#define JZ_REG_NAND_PAR0 0x08 +#define JZ_REG_NAND_PAR1 0x0C +#define JZ_REG_NAND_PAR2 0x10 +#define JZ_REG_NAND_IRQ_STAT 0x14 +#define JZ_REG_NAND_IRQ_CTRL 0x18 +#define JZ_REG_NAND_ERR(x) (0x1C + ((x) << 2)) + +#define JZ_NAND_ECC_CTRL_PAR_READY BIT(4) +#define JZ_NAND_ECC_CTRL_ENCODING BIT(3) +#define JZ_NAND_ECC_CTRL_RS BIT(2) +#define JZ_NAND_ECC_CTRL_RESET BIT(1) +#define JZ_NAND_ECC_CTRL_ENABLE BIT(0) + +#define JZ_NAND_STATUS_ERR_COUNT (BIT(31) | BIT(30) | BIT(29)) +#define JZ_NAND_STATUS_PAD_FINISH BIT(4) +#define JZ_NAND_STATUS_DEC_FINISH BIT(3) +#define JZ_NAND_STATUS_ENC_FINISH BIT(2) +#define JZ_NAND_STATUS_UNCOR_ERROR BIT(1) +#define JZ_NAND_STATUS_ERROR BIT(0) + +static const uint8_t empty_block_ecc[] = { + 0xcd, 0x9d, 0x90, 0x58, 0xf4, 0x8b, 0xff, 0xb7, 0x6f +}; + +static void jz4740_ecc_reset(struct ingenic_ecc *ecc, bool calc_ecc) +{ + uint32_t reg; + + /* Clear interrupt status */ + writel(0, ecc->base + JZ_REG_NAND_IRQ_STAT); + + /* Initialize and enable ECC hardware */ + reg = readl(ecc->base + JZ_REG_NAND_ECC_CTRL); + reg |= JZ_NAND_ECC_CTRL_RESET; + reg |= JZ_NAND_ECC_CTRL_ENABLE; + reg |= JZ_NAND_ECC_CTRL_RS; + if (calc_ecc) /* calculate ECC from data */ + reg |= JZ_NAND_ECC_CTRL_ENCODING; + else /* correct data from ECC */ + reg &= ~JZ_NAND_ECC_CTRL_ENCODING; + + writel(reg, ecc->base + JZ_REG_NAND_ECC_CTRL); +} + +static int jz4740_ecc_calculate(struct ingenic_ecc *ecc, + struct ingenic_ecc_params *params, + const u8 *buf, u8 *ecc_code) +{ + uint32_t reg, status; + unsigned int timeout = 1000; + int i; + + jz4740_ecc_reset(ecc, true); + + do { + status = readl(ecc->base + JZ_REG_NAND_IRQ_STAT); + } while (!(status & JZ_NAND_STATUS_ENC_FINISH) && --timeout); + + if (timeout == 0) + return -ETIMEDOUT; + + reg = readl(ecc->base + JZ_REG_NAND_ECC_CTRL); + reg &= ~JZ_NAND_ECC_CTRL_ENABLE; + writel(reg, ecc->base + JZ_REG_NAND_ECC_CTRL); + + for (i = 0; i < params->bytes; ++i) + ecc_code[i] = readb(ecc->base + JZ_REG_NAND_PAR0 + i); + + /* + * If the written data is completely 0xff, we also want to write 0xff as + * ECC, otherwise we will get in trouble when doing subpage writes. + */ + if (memcmp(ecc_code, empty_block_ecc, sizeof(empty_block_ecc)) == 0) + memset(ecc_code, 0xff, sizeof(empty_block_ecc)); + + return 0; +} + +static void jz_nand_correct_data(uint8_t *buf, int index, int mask) +{ + int offset = index & 0x7; + uint16_t data; + + index += (index >> 3); + + data = buf[index]; + data |= buf[index + 1] << 8; + + mask ^= (data >> offset) & 0x1ff; + data &= ~(0x1ff << offset); + data |= (mask << offset); + + buf[index] = data & 0xff; + buf[index + 1] = (data >> 8) & 0xff; +} + +static int jz4740_ecc_correct(struct ingenic_ecc *ecc, + struct ingenic_ecc_params *params, + u8 *buf, u8 *ecc_code) +{ + int i, error_count, index; + uint32_t reg, status, error; + unsigned int timeout = 1000; + + jz4740_ecc_reset(ecc, false); + + for (i = 0; i < params->bytes; ++i) + writeb(ecc_code[i], ecc->base + JZ_REG_NAND_PAR0 + i); + + reg = readl(ecc->base + JZ_REG_NAND_ECC_CTRL); + reg |= JZ_NAND_ECC_CTRL_PAR_READY; + writel(reg, ecc->base + JZ_REG_NAND_ECC_CTRL); + + do { + status = readl(ecc->base + JZ_REG_NAND_IRQ_STAT); + } while (!(status & JZ_NAND_STATUS_DEC_FINISH) && --timeout); + + if (timeout == 0) + return -ETIMEDOUT; + + reg = readl(ecc->base + JZ_REG_NAND_ECC_CTRL); + reg &= ~JZ_NAND_ECC_CTRL_ENABLE; + writel(reg, ecc->base + JZ_REG_NAND_ECC_CTRL); + + if (status & JZ_NAND_STATUS_ERROR) { + if (status & JZ_NAND_STATUS_UNCOR_ERROR) + return -EBADMSG; + + error_count = (status & JZ_NAND_STATUS_ERR_COUNT) >> 29; + + for (i = 0; i < error_count; ++i) { + error = readl(ecc->base + JZ_REG_NAND_ERR(i)); + index = ((error >> 16) & 0x1ff) - 1; + if (index >= 0 && index < params->size) + jz_nand_correct_data(buf, index, error & 0x1ff); + } + + return error_count; + } + + return 0; +} + +static void jz4740_ecc_disable(struct ingenic_ecc *ecc) +{ + u32 reg; + + writel(0, ecc->base + JZ_REG_NAND_IRQ_STAT); + reg = readl(ecc->base + JZ_REG_NAND_ECC_CTRL); + reg &= ~JZ_NAND_ECC_CTRL_ENABLE; + writel(reg, ecc->base + JZ_REG_NAND_ECC_CTRL); +} + +static const struct ingenic_ecc_ops jz4740_ecc_ops = { + .disable = jz4740_ecc_disable, + .calculate = jz4740_ecc_calculate, + .correct = jz4740_ecc_correct, +}; + +static const struct of_device_id jz4740_ecc_dt_match[] = { + { .compatible = "ingenic,jz4740-ecc", .data = &jz4740_ecc_ops }, + {}, +}; +MODULE_DEVICE_TABLE(of, jz4740_ecc_dt_match); + +static struct platform_driver jz4740_ecc_driver = { + .probe = ingenic_ecc_probe, + .driver = { + .name = "jz4740-ecc", + .of_match_table = jz4740_ecc_dt_match, + }, +}; +module_platform_driver(jz4740_ecc_driver); + +MODULE_AUTHOR("Paul Cercueil <paul@crapouillou.net>"); +MODULE_DESCRIPTION("Ingenic JZ4740 ECC controller driver"); +MODULE_LICENSE("GPL v2"); diff --git a/drivers/mtd/nand/raw/ingenic/jz4780_bch.c b/drivers/mtd/nand/raw/ingenic/jz4780_bch.c new file mode 100644 index 0000000000..12b5b0484f --- /dev/null +++ b/drivers/mtd/nand/raw/ingenic/jz4780_bch.c @@ -0,0 +1,271 @@ +// SPDX-License-Identifier: GPL-2.0 +/* + * JZ4780 BCH controller driver + * + * Copyright (c) 2015 Imagination Technologies + * Author: Alex Smith <alex.smith@imgtec.com> + */ + +#include <linux/bitops.h> +#include <linux/clk.h> +#include <linux/device.h> +#include <linux/io.h> +#include <linux/iopoll.h> +#include <linux/module.h> +#include <linux/mutex.h> +#include <linux/of_platform.h> +#include <linux/platform_device.h> + +#include "ingenic_ecc.h" + +#define BCH_BHCR 0x0 +#define BCH_BHCCR 0x8 +#define BCH_BHCNT 0xc +#define BCH_BHDR 0x10 +#define BCH_BHPAR0 0x14 +#define BCH_BHERR0 0x84 +#define BCH_BHINT 0x184 +#define BCH_BHINTES 0x188 +#define BCH_BHINTEC 0x18c +#define BCH_BHINTE 0x190 + +#define BCH_BHCR_BSEL_SHIFT 4 +#define BCH_BHCR_BSEL_MASK (0x7f << BCH_BHCR_BSEL_SHIFT) +#define BCH_BHCR_ENCE BIT(2) +#define BCH_BHCR_INIT BIT(1) +#define BCH_BHCR_BCHE BIT(0) + +#define BCH_BHCNT_PARITYSIZE_SHIFT 16 +#define BCH_BHCNT_PARITYSIZE_MASK (0x7f << BCH_BHCNT_PARITYSIZE_SHIFT) +#define BCH_BHCNT_BLOCKSIZE_SHIFT 0 +#define BCH_BHCNT_BLOCKSIZE_MASK (0x7ff << BCH_BHCNT_BLOCKSIZE_SHIFT) + +#define BCH_BHERR_MASK_SHIFT 16 +#define BCH_BHERR_MASK_MASK (0xffff << BCH_BHERR_MASK_SHIFT) +#define BCH_BHERR_INDEX_SHIFT 0 +#define BCH_BHERR_INDEX_MASK (0x7ff << BCH_BHERR_INDEX_SHIFT) + +#define BCH_BHINT_ERRC_SHIFT 24 +#define BCH_BHINT_ERRC_MASK (0x7f << BCH_BHINT_ERRC_SHIFT) +#define BCH_BHINT_TERRC_SHIFT 16 +#define BCH_BHINT_TERRC_MASK (0x7f << BCH_BHINT_TERRC_SHIFT) +#define BCH_BHINT_DECF BIT(3) +#define BCH_BHINT_ENCF BIT(2) +#define BCH_BHINT_UNCOR BIT(1) +#define BCH_BHINT_ERR BIT(0) + +#define BCH_CLK_RATE (200 * 1000 * 1000) + +/* Timeout for BCH calculation/correction. */ +#define BCH_TIMEOUT_US 100000 + +static void jz4780_bch_reset(struct ingenic_ecc *bch, + struct ingenic_ecc_params *params, bool encode) +{ + u32 reg; + + /* Clear interrupt status. */ + writel(readl(bch->base + BCH_BHINT), bch->base + BCH_BHINT); + + /* Set up BCH count register. */ + reg = params->size << BCH_BHCNT_BLOCKSIZE_SHIFT; + reg |= params->bytes << BCH_BHCNT_PARITYSIZE_SHIFT; + writel(reg, bch->base + BCH_BHCNT); + + /* Initialise and enable BCH. */ + reg = BCH_BHCR_BCHE | BCH_BHCR_INIT; + reg |= params->strength << BCH_BHCR_BSEL_SHIFT; + if (encode) + reg |= BCH_BHCR_ENCE; + writel(reg, bch->base + BCH_BHCR); +} + +static void jz4780_bch_disable(struct ingenic_ecc *bch) +{ + writel(readl(bch->base + BCH_BHINT), bch->base + BCH_BHINT); + writel(BCH_BHCR_BCHE, bch->base + BCH_BHCCR); +} + +static void jz4780_bch_write_data(struct ingenic_ecc *bch, const void *buf, + size_t size) +{ + size_t size32 = size / sizeof(u32); + size_t size8 = size % sizeof(u32); + const u32 *src32; + const u8 *src8; + + src32 = (const u32 *)buf; + while (size32--) + writel(*src32++, bch->base + BCH_BHDR); + + src8 = (const u8 *)src32; + while (size8--) + writeb(*src8++, bch->base + BCH_BHDR); +} + +static void jz4780_bch_read_parity(struct ingenic_ecc *bch, void *buf, + size_t size) +{ + size_t size32 = size / sizeof(u32); + size_t size8 = size % sizeof(u32); + u32 *dest32; + u8 *dest8; + u32 val, offset = 0; + + dest32 = (u32 *)buf; + while (size32--) { + *dest32++ = readl(bch->base + BCH_BHPAR0 + offset); + offset += sizeof(u32); + } + + dest8 = (u8 *)dest32; + val = readl(bch->base + BCH_BHPAR0 + offset); + switch (size8) { + case 3: + dest8[2] = (val >> 16) & 0xff; + fallthrough; + case 2: + dest8[1] = (val >> 8) & 0xff; + fallthrough; + case 1: + dest8[0] = val & 0xff; + break; + } +} + +static bool jz4780_bch_wait_complete(struct ingenic_ecc *bch, unsigned int irq, + u32 *status) +{ + u32 reg; + int ret; + + /* + * While we could use interrupts here and sleep until the operation + * completes, the controller works fairly quickly (usually a few + * microseconds) and so the overhead of sleeping until we get an + * interrupt quite noticeably decreases performance. + */ + ret = readl_poll_timeout(bch->base + BCH_BHINT, reg, + (reg & irq) == irq, 0, BCH_TIMEOUT_US); + if (ret) + return false; + + if (status) + *status = reg; + + writel(reg, bch->base + BCH_BHINT); + return true; +} + +static int jz4780_calculate(struct ingenic_ecc *bch, + struct ingenic_ecc_params *params, + const u8 *buf, u8 *ecc_code) +{ + int ret = 0; + + mutex_lock(&bch->lock); + + jz4780_bch_reset(bch, params, true); + jz4780_bch_write_data(bch, buf, params->size); + + if (jz4780_bch_wait_complete(bch, BCH_BHINT_ENCF, NULL)) { + jz4780_bch_read_parity(bch, ecc_code, params->bytes); + } else { + dev_err(bch->dev, "timed out while calculating ECC\n"); + ret = -ETIMEDOUT; + } + + jz4780_bch_disable(bch); + mutex_unlock(&bch->lock); + return ret; +} + +static int jz4780_correct(struct ingenic_ecc *bch, + struct ingenic_ecc_params *params, + u8 *buf, u8 *ecc_code) +{ + u32 reg, mask, index; + int i, ret, count; + + mutex_lock(&bch->lock); + + jz4780_bch_reset(bch, params, false); + jz4780_bch_write_data(bch, buf, params->size); + jz4780_bch_write_data(bch, ecc_code, params->bytes); + + if (!jz4780_bch_wait_complete(bch, BCH_BHINT_DECF, ®)) { + dev_err(bch->dev, "timed out while correcting data\n"); + ret = -ETIMEDOUT; + goto out; + } + + if (reg & BCH_BHINT_UNCOR) { + dev_warn(bch->dev, "uncorrectable ECC error\n"); + ret = -EBADMSG; + goto out; + } + + /* Correct any detected errors. */ + if (reg & BCH_BHINT_ERR) { + count = (reg & BCH_BHINT_ERRC_MASK) >> BCH_BHINT_ERRC_SHIFT; + ret = (reg & BCH_BHINT_TERRC_MASK) >> BCH_BHINT_TERRC_SHIFT; + + for (i = 0; i < count; i++) { + reg = readl(bch->base + BCH_BHERR0 + (i * 4)); + mask = (reg & BCH_BHERR_MASK_MASK) >> + BCH_BHERR_MASK_SHIFT; + index = (reg & BCH_BHERR_INDEX_MASK) >> + BCH_BHERR_INDEX_SHIFT; + buf[(index * 2) + 0] ^= mask; + buf[(index * 2) + 1] ^= mask >> 8; + } + } else { + ret = 0; + } + +out: + jz4780_bch_disable(bch); + mutex_unlock(&bch->lock); + return ret; +} + +static int jz4780_bch_probe(struct platform_device *pdev) +{ + struct ingenic_ecc *bch; + int ret; + + ret = ingenic_ecc_probe(pdev); + if (ret) + return ret; + + bch = platform_get_drvdata(pdev); + clk_set_rate(bch->clk, BCH_CLK_RATE); + + return 0; +} + +static const struct ingenic_ecc_ops jz4780_bch_ops = { + .disable = jz4780_bch_disable, + .calculate = jz4780_calculate, + .correct = jz4780_correct, +}; + +static const struct of_device_id jz4780_bch_dt_match[] = { + { .compatible = "ingenic,jz4780-bch", .data = &jz4780_bch_ops }, + {}, +}; +MODULE_DEVICE_TABLE(of, jz4780_bch_dt_match); + +static struct platform_driver jz4780_bch_driver = { + .probe = jz4780_bch_probe, + .driver = { + .name = "jz4780-bch", + .of_match_table = jz4780_bch_dt_match, + }, +}; +module_platform_driver(jz4780_bch_driver); + +MODULE_AUTHOR("Alex Smith <alex@alex-smith.me.uk>"); +MODULE_AUTHOR("Harvey Hunt <harveyhuntnexus@gmail.com>"); +MODULE_DESCRIPTION("Ingenic JZ4780 BCH error correction driver"); +MODULE_LICENSE("GPL v2"); diff --git a/drivers/mtd/nand/raw/intel-nand-controller.c b/drivers/mtd/nand/raw/intel-nand-controller.c new file mode 100644 index 0000000000..f0ad2308f6 --- /dev/null +++ b/drivers/mtd/nand/raw/intel-nand-controller.c @@ -0,0 +1,742 @@ +// SPDX-License-Identifier: GPL-2.0+ +/* Copyright (c) 2020 Intel Corporation. */ + +#include <linux/clk.h> +#include <linux/completion.h> +#include <linux/dmaengine.h> +#include <linux/dma-direction.h> +#include <linux/dma-mapping.h> +#include <linux/err.h> +#include <linux/init.h> +#include <linux/iopoll.h> +#include <linux/kernel.h> +#include <linux/module.h> + +#include <linux/mtd/mtd.h> +#include <linux/mtd/rawnand.h> +#include <linux/mtd/nand.h> + +#include <linux/of.h> +#include <linux/platform_device.h> +#include <linux/sched.h> +#include <linux/slab.h> +#include <linux/types.h> +#include <linux/units.h> +#include <asm/unaligned.h> + +#define EBU_CLC 0x000 +#define EBU_CLC_RST 0x00000000u + +#define EBU_ADDR_SEL(n) (0x020 + (n) * 4) +/* 5 bits 26:22 included for comparison in the ADDR_SELx */ +#define EBU_ADDR_MASK(x) ((x) << 4) +#define EBU_ADDR_SEL_REGEN 0x1 + +#define EBU_BUSCON(n) (0x060 + (n) * 4) +#define EBU_BUSCON_CMULT_V4 0x1 +#define EBU_BUSCON_RECOVC(n) ((n) << 2) +#define EBU_BUSCON_HOLDC(n) ((n) << 4) +#define EBU_BUSCON_WAITRDC(n) ((n) << 6) +#define EBU_BUSCON_WAITWRC(n) ((n) << 8) +#define EBU_BUSCON_BCGEN_CS 0x0 +#define EBU_BUSCON_SETUP_EN BIT(22) +#define EBU_BUSCON_ALEC 0xC000 + +#define EBU_CON 0x0B0 +#define EBU_CON_NANDM_EN BIT(0) +#define EBU_CON_NANDM_DIS 0x0 +#define EBU_CON_CSMUX_E_EN BIT(1) +#define EBU_CON_ALE_P_LOW BIT(2) +#define EBU_CON_CLE_P_LOW BIT(3) +#define EBU_CON_CS_P_LOW BIT(4) +#define EBU_CON_SE_P_LOW BIT(5) +#define EBU_CON_WP_P_LOW BIT(6) +#define EBU_CON_PRE_P_LOW BIT(7) +#define EBU_CON_IN_CS_S(n) ((n) << 8) +#define EBU_CON_OUT_CS_S(n) ((n) << 10) +#define EBU_CON_LAT_EN_CS_P ((0x3D) << 18) + +#define EBU_WAIT 0x0B4 +#define EBU_WAIT_RDBY BIT(0) +#define EBU_WAIT_WR_C BIT(3) + +#define HSNAND_CTL1 0x110 +#define HSNAND_CTL1_ADDR_SHIFT 24 + +#define HSNAND_CTL2 0x114 +#define HSNAND_CTL2_ADDR_SHIFT 8 +#define HSNAND_CTL2_CYC_N_V5 (0x2 << 16) + +#define HSNAND_INT_MSK_CTL 0x124 +#define HSNAND_INT_MSK_CTL_WR_C BIT(4) + +#define HSNAND_INT_STA 0x128 +#define HSNAND_INT_STA_WR_C BIT(4) + +#define HSNAND_CTL 0x130 +#define HSNAND_CTL_ENABLE_ECC BIT(0) +#define HSNAND_CTL_GO BIT(2) +#define HSNAND_CTL_CE_SEL_CS(n) BIT(3 + (n)) +#define HSNAND_CTL_RW_READ 0x0 +#define HSNAND_CTL_RW_WRITE BIT(10) +#define HSNAND_CTL_ECC_OFF_V8TH BIT(11) +#define HSNAND_CTL_CKFF_EN 0x0 +#define HSNAND_CTL_MSG_EN BIT(17) + +#define HSNAND_PARA0 0x13c +#define HSNAND_PARA0_PAGE_V8192 0x3 +#define HSNAND_PARA0_PIB_V256 (0x3 << 4) +#define HSNAND_PARA0_BYP_EN_NP 0x0 +#define HSNAND_PARA0_BYP_DEC_NP 0x0 +#define HSNAND_PARA0_TYPE_ONFI BIT(18) +#define HSNAND_PARA0_ADEP_EN BIT(21) + +#define HSNAND_CMSG_0 0x150 +#define HSNAND_CMSG_1 0x154 + +#define HSNAND_ALE_OFFS BIT(2) +#define HSNAND_CLE_OFFS BIT(3) +#define HSNAND_CS_OFFS BIT(4) + +#define HSNAND_ECC_OFFSET 0x008 + +#define MAX_CS 2 + +#define USEC_PER_SEC 1000000L + +struct ebu_nand_cs { + void __iomem *chipaddr; + u32 addr_sel; +}; + +struct ebu_nand_controller { + struct nand_controller controller; + struct nand_chip chip; + struct device *dev; + void __iomem *ebu; + void __iomem *hsnand; + struct dma_chan *dma_tx; + struct dma_chan *dma_rx; + struct completion dma_access_complete; + struct clk *clk; + u32 nd_para0; + u8 cs_num; + struct ebu_nand_cs cs[MAX_CS]; +}; + +static inline struct ebu_nand_controller *nand_to_ebu(struct nand_chip *chip) +{ + return container_of(chip, struct ebu_nand_controller, chip); +} + +static int ebu_nand_waitrdy(struct nand_chip *chip, int timeout_ms) +{ + struct ebu_nand_controller *ctrl = nand_to_ebu(chip); + u32 status; + + return readl_poll_timeout(ctrl->ebu + EBU_WAIT, status, + (status & EBU_WAIT_RDBY) || + (status & EBU_WAIT_WR_C), 20, timeout_ms); +} + +static u8 ebu_nand_readb(struct nand_chip *chip) +{ + struct ebu_nand_controller *ebu_host = nand_get_controller_data(chip); + u8 cs_num = ebu_host->cs_num; + u8 val; + + val = readb(ebu_host->cs[cs_num].chipaddr + HSNAND_CS_OFFS); + ebu_nand_waitrdy(chip, 1000); + return val; +} + +static void ebu_nand_writeb(struct nand_chip *chip, u32 offset, u8 value) +{ + struct ebu_nand_controller *ebu_host = nand_get_controller_data(chip); + u8 cs_num = ebu_host->cs_num; + + writeb(value, ebu_host->cs[cs_num].chipaddr + offset); + ebu_nand_waitrdy(chip, 1000); +} + +static void ebu_read_buf(struct nand_chip *chip, u_char *buf, unsigned int len) +{ + int i; + + for (i = 0; i < len; i++) + buf[i] = ebu_nand_readb(chip); +} + +static void ebu_write_buf(struct nand_chip *chip, const u_char *buf, int len) +{ + int i; + + for (i = 0; i < len; i++) + ebu_nand_writeb(chip, HSNAND_CS_OFFS, buf[i]); +} + +static void ebu_nand_disable(struct nand_chip *chip) +{ + struct ebu_nand_controller *ebu_host = nand_get_controller_data(chip); + + writel(0, ebu_host->ebu + EBU_CON); +} + +static void ebu_select_chip(struct nand_chip *chip) +{ + struct ebu_nand_controller *ebu_host = nand_get_controller_data(chip); + void __iomem *nand_con = ebu_host->ebu + EBU_CON; + u32 cs = ebu_host->cs_num; + + writel(EBU_CON_NANDM_EN | EBU_CON_CSMUX_E_EN | EBU_CON_CS_P_LOW | + EBU_CON_SE_P_LOW | EBU_CON_WP_P_LOW | EBU_CON_PRE_P_LOW | + EBU_CON_IN_CS_S(cs) | EBU_CON_OUT_CS_S(cs) | + EBU_CON_LAT_EN_CS_P, nand_con); +} + +static int ebu_nand_set_timings(struct nand_chip *chip, int csline, + const struct nand_interface_config *conf) +{ + struct ebu_nand_controller *ctrl = nand_to_ebu(chip); + unsigned int rate = clk_get_rate(ctrl->clk) / HZ_PER_MHZ; + unsigned int period = DIV_ROUND_UP(USEC_PER_SEC, rate); + const struct nand_sdr_timings *timings; + u32 trecov, thold, twrwait, trdwait; + u32 reg = 0; + + timings = nand_get_sdr_timings(conf); + if (IS_ERR(timings)) + return PTR_ERR(timings); + + if (csline == NAND_DATA_IFACE_CHECK_ONLY) + return 0; + + trecov = DIV_ROUND_UP(max(timings->tREA_max, timings->tREH_min), + period); + reg |= EBU_BUSCON_RECOVC(trecov); + + thold = DIV_ROUND_UP(max(timings->tDH_min, timings->tDS_min), period); + reg |= EBU_BUSCON_HOLDC(thold); + + trdwait = DIV_ROUND_UP(max(timings->tRC_min, timings->tREH_min), + period); + reg |= EBU_BUSCON_WAITRDC(trdwait); + + twrwait = DIV_ROUND_UP(max(timings->tWC_min, timings->tWH_min), period); + reg |= EBU_BUSCON_WAITWRC(twrwait); + + reg |= EBU_BUSCON_CMULT_V4 | EBU_BUSCON_BCGEN_CS | EBU_BUSCON_ALEC | + EBU_BUSCON_SETUP_EN; + + writel(reg, ctrl->ebu + EBU_BUSCON(ctrl->cs_num)); + + return 0; +} + +static int ebu_nand_ooblayout_ecc(struct mtd_info *mtd, int section, + struct mtd_oob_region *oobregion) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + + if (section) + return -ERANGE; + + oobregion->offset = HSNAND_ECC_OFFSET; + oobregion->length = chip->ecc.total; + + return 0; +} + +static int ebu_nand_ooblayout_free(struct mtd_info *mtd, int section, + struct mtd_oob_region *oobregion) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + + if (section) + return -ERANGE; + + oobregion->offset = chip->ecc.total + HSNAND_ECC_OFFSET; + oobregion->length = mtd->oobsize - oobregion->offset; + + return 0; +} + +static const struct mtd_ooblayout_ops ebu_nand_ooblayout_ops = { + .ecc = ebu_nand_ooblayout_ecc, + .free = ebu_nand_ooblayout_free, +}; + +static void ebu_dma_rx_callback(void *cookie) +{ + struct ebu_nand_controller *ebu_host = cookie; + + dmaengine_terminate_async(ebu_host->dma_rx); + + complete(&ebu_host->dma_access_complete); +} + +static void ebu_dma_tx_callback(void *cookie) +{ + struct ebu_nand_controller *ebu_host = cookie; + + dmaengine_terminate_async(ebu_host->dma_tx); + + complete(&ebu_host->dma_access_complete); +} + +static int ebu_dma_start(struct ebu_nand_controller *ebu_host, u32 dir, + const u8 *buf, u32 len) +{ + struct dma_async_tx_descriptor *tx; + struct completion *dma_completion; + dma_async_tx_callback callback; + struct dma_chan *chan; + dma_cookie_t cookie; + unsigned long flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT; + dma_addr_t buf_dma; + int ret; + u32 timeout; + + if (dir == DMA_DEV_TO_MEM) { + chan = ebu_host->dma_rx; + dma_completion = &ebu_host->dma_access_complete; + callback = ebu_dma_rx_callback; + } else { + chan = ebu_host->dma_tx; + dma_completion = &ebu_host->dma_access_complete; + callback = ebu_dma_tx_callback; + } + + buf_dma = dma_map_single(chan->device->dev, (void *)buf, len, dir); + if (dma_mapping_error(chan->device->dev, buf_dma)) { + dev_err(ebu_host->dev, "Failed to map DMA buffer\n"); + ret = -EIO; + goto err_unmap; + } + + tx = dmaengine_prep_slave_single(chan, buf_dma, len, dir, flags); + if (!tx) { + ret = -ENXIO; + goto err_unmap; + } + + tx->callback = callback; + tx->callback_param = ebu_host; + cookie = tx->tx_submit(tx); + + ret = dma_submit_error(cookie); + if (ret) { + dev_err(ebu_host->dev, "dma_submit_error %d\n", cookie); + ret = -EIO; + goto err_unmap; + } + + init_completion(dma_completion); + dma_async_issue_pending(chan); + + /* Wait DMA to finish the data transfer.*/ + timeout = wait_for_completion_timeout(dma_completion, msecs_to_jiffies(1000)); + if (!timeout) { + dev_err(ebu_host->dev, "I/O Error in DMA RX (status %d)\n", + dmaengine_tx_status(chan, cookie, NULL)); + dmaengine_terminate_sync(chan); + ret = -ETIMEDOUT; + goto err_unmap; + } + + return 0; + +err_unmap: + dma_unmap_single(ebu_host->dev, buf_dma, len, dir); + + return ret; +} + +static void ebu_nand_trigger(struct ebu_nand_controller *ebu_host, + int page, u32 cmd) +{ + unsigned int val; + + val = cmd | (page & 0xFF) << HSNAND_CTL1_ADDR_SHIFT; + writel(val, ebu_host->hsnand + HSNAND_CTL1); + val = (page & 0xFFFF00) >> 8 | HSNAND_CTL2_CYC_N_V5; + writel(val, ebu_host->hsnand + HSNAND_CTL2); + + writel(ebu_host->nd_para0, ebu_host->hsnand + HSNAND_PARA0); + + /* clear first, will update later */ + writel(0xFFFFFFFF, ebu_host->hsnand + HSNAND_CMSG_0); + writel(0xFFFFFFFF, ebu_host->hsnand + HSNAND_CMSG_1); + + writel(HSNAND_INT_MSK_CTL_WR_C, + ebu_host->hsnand + HSNAND_INT_MSK_CTL); + + if (!cmd) + val = HSNAND_CTL_RW_READ; + else + val = HSNAND_CTL_RW_WRITE; + + writel(HSNAND_CTL_MSG_EN | HSNAND_CTL_CKFF_EN | + HSNAND_CTL_ECC_OFF_V8TH | HSNAND_CTL_CE_SEL_CS(ebu_host->cs_num) | + HSNAND_CTL_ENABLE_ECC | HSNAND_CTL_GO | val, + ebu_host->hsnand + HSNAND_CTL); +} + +static int ebu_nand_read_page_hwecc(struct nand_chip *chip, u8 *buf, + int oob_required, int page) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + struct ebu_nand_controller *ebu_host = nand_get_controller_data(chip); + int ret, reg_data; + + ebu_nand_trigger(ebu_host, page, NAND_CMD_READ0); + + ret = ebu_dma_start(ebu_host, DMA_DEV_TO_MEM, buf, mtd->writesize); + if (ret) + return ret; + + if (oob_required) + chip->ecc.read_oob(chip, page); + + reg_data = readl(ebu_host->hsnand + HSNAND_CTL); + reg_data &= ~HSNAND_CTL_GO; + writel(reg_data, ebu_host->hsnand + HSNAND_CTL); + + return 0; +} + +static int ebu_nand_write_page_hwecc(struct nand_chip *chip, const u8 *buf, + int oob_required, int page) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + struct ebu_nand_controller *ebu_host = nand_get_controller_data(chip); + void __iomem *int_sta = ebu_host->hsnand + HSNAND_INT_STA; + int reg_data, ret, val; + u32 reg; + + ebu_nand_trigger(ebu_host, page, NAND_CMD_SEQIN); + + ret = ebu_dma_start(ebu_host, DMA_MEM_TO_DEV, buf, mtd->writesize); + if (ret) + return ret; + + if (oob_required) { + reg = get_unaligned_le32(chip->oob_poi); + writel(reg, ebu_host->hsnand + HSNAND_CMSG_0); + + reg = get_unaligned_le32(chip->oob_poi + 4); + writel(reg, ebu_host->hsnand + HSNAND_CMSG_1); + } + + ret = readl_poll_timeout_atomic(int_sta, val, !(val & HSNAND_INT_STA_WR_C), + 10, 1000); + if (ret) + return ret; + + reg_data = readl(ebu_host->hsnand + HSNAND_CTL); + reg_data &= ~HSNAND_CTL_GO; + writel(reg_data, ebu_host->hsnand + HSNAND_CTL); + + return 0; +} + +static const u8 ecc_strength[] = { 1, 1, 4, 8, 24, 32, 40, 60, }; + +static int ebu_nand_attach_chip(struct nand_chip *chip) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + struct ebu_nand_controller *ebu_host = nand_get_controller_data(chip); + u32 ecc_steps, ecc_bytes, ecc_total, pagesize, pg_per_blk; + u32 ecc_strength_ds = chip->ecc.strength; + u32 ecc_size = chip->ecc.size; + u32 writesize = mtd->writesize; + u32 blocksize = mtd->erasesize; + int bch_algo, start, val; + + /* Default to an ECC size of 512 */ + if (!chip->ecc.size) + chip->ecc.size = 512; + + switch (ecc_size) { + case 512: + start = 1; + if (!ecc_strength_ds) + ecc_strength_ds = 4; + break; + case 1024: + start = 4; + if (!ecc_strength_ds) + ecc_strength_ds = 32; + break; + default: + return -EINVAL; + } + + /* BCH ECC algorithm Settings for number of bits per 512B/1024B */ + bch_algo = round_up(start + 1, 4); + for (val = start; val < bch_algo; val++) { + if (ecc_strength_ds == ecc_strength[val]) + break; + } + if (val == bch_algo) + return -EINVAL; + + if (ecc_strength_ds == 8) + ecc_bytes = 14; + else + ecc_bytes = DIV_ROUND_UP(ecc_strength_ds * fls(8 * ecc_size), 8); + + ecc_steps = writesize / ecc_size; + ecc_total = ecc_steps * ecc_bytes; + if ((ecc_total + 8) > mtd->oobsize) + return -ERANGE; + + chip->ecc.total = ecc_total; + pagesize = fls(writesize >> 11); + if (pagesize > HSNAND_PARA0_PAGE_V8192) + return -ERANGE; + + pg_per_blk = fls((blocksize / writesize) >> 6) / 8; + if (pg_per_blk > HSNAND_PARA0_PIB_V256) + return -ERANGE; + + ebu_host->nd_para0 = pagesize | pg_per_blk | HSNAND_PARA0_BYP_EN_NP | + HSNAND_PARA0_BYP_DEC_NP | HSNAND_PARA0_ADEP_EN | + HSNAND_PARA0_TYPE_ONFI | (val << 29); + + mtd_set_ooblayout(mtd, &ebu_nand_ooblayout_ops); + chip->ecc.read_page = ebu_nand_read_page_hwecc; + chip->ecc.write_page = ebu_nand_write_page_hwecc; + + return 0; +} + +static int ebu_nand_exec_op(struct nand_chip *chip, + const struct nand_operation *op, bool check_only) +{ + const struct nand_op_instr *instr = NULL; + unsigned int op_id; + int i, timeout_ms, ret = 0; + + if (check_only) + return 0; + + ebu_select_chip(chip); + for (op_id = 0; op_id < op->ninstrs; op_id++) { + instr = &op->instrs[op_id]; + + switch (instr->type) { + case NAND_OP_CMD_INSTR: + ebu_nand_writeb(chip, HSNAND_CLE_OFFS | HSNAND_CS_OFFS, + instr->ctx.cmd.opcode); + break; + + case NAND_OP_ADDR_INSTR: + for (i = 0; i < instr->ctx.addr.naddrs; i++) + ebu_nand_writeb(chip, + HSNAND_ALE_OFFS | HSNAND_CS_OFFS, + instr->ctx.addr.addrs[i]); + break; + + case NAND_OP_DATA_IN_INSTR: + ebu_read_buf(chip, instr->ctx.data.buf.in, + instr->ctx.data.len); + break; + + case NAND_OP_DATA_OUT_INSTR: + ebu_write_buf(chip, instr->ctx.data.buf.out, + instr->ctx.data.len); + break; + + case NAND_OP_WAITRDY_INSTR: + timeout_ms = instr->ctx.waitrdy.timeout_ms * 1000; + ret = ebu_nand_waitrdy(chip, timeout_ms); + break; + } + } + + return ret; +} + +static const struct nand_controller_ops ebu_nand_controller_ops = { + .attach_chip = ebu_nand_attach_chip, + .setup_interface = ebu_nand_set_timings, + .exec_op = ebu_nand_exec_op, +}; + +static void ebu_dma_cleanup(struct ebu_nand_controller *ebu_host) +{ + if (ebu_host->dma_rx) + dma_release_channel(ebu_host->dma_rx); + + if (ebu_host->dma_tx) + dma_release_channel(ebu_host->dma_tx); +} + +static int ebu_nand_probe(struct platform_device *pdev) +{ + struct device *dev = &pdev->dev; + struct ebu_nand_controller *ebu_host; + struct device_node *chip_np; + struct nand_chip *nand; + struct mtd_info *mtd; + struct resource *res; + char *resname; + int ret; + u32 cs; + + ebu_host = devm_kzalloc(dev, sizeof(*ebu_host), GFP_KERNEL); + if (!ebu_host) + return -ENOMEM; + + ebu_host->dev = dev; + nand_controller_init(&ebu_host->controller); + + ebu_host->ebu = devm_platform_ioremap_resource_byname(pdev, "ebunand"); + if (IS_ERR(ebu_host->ebu)) + return PTR_ERR(ebu_host->ebu); + + ebu_host->hsnand = devm_platform_ioremap_resource_byname(pdev, "hsnand"); + if (IS_ERR(ebu_host->hsnand)) + return PTR_ERR(ebu_host->hsnand); + + chip_np = of_get_next_child(dev->of_node, NULL); + if (!chip_np) + return dev_err_probe(dev, -EINVAL, + "Could not find child node for the NAND chip\n"); + + ret = of_property_read_u32(chip_np, "reg", &cs); + if (ret) { + dev_err(dev, "failed to get chip select: %d\n", ret); + goto err_of_node_put; + } + if (cs >= MAX_CS) { + dev_err(dev, "got invalid chip select: %d\n", cs); + ret = -EINVAL; + goto err_of_node_put; + } + + ebu_host->cs_num = cs; + + resname = devm_kasprintf(dev, GFP_KERNEL, "nand_cs%d", cs); + if (!resname) { + ret = -ENOMEM; + goto err_of_node_put; + } + + ebu_host->cs[cs].chipaddr = devm_platform_ioremap_resource_byname(pdev, + resname); + if (IS_ERR(ebu_host->cs[cs].chipaddr)) { + ret = PTR_ERR(ebu_host->cs[cs].chipaddr); + goto err_of_node_put; + } + + ebu_host->clk = devm_clk_get_enabled(dev, NULL); + if (IS_ERR(ebu_host->clk)) { + ret = dev_err_probe(dev, PTR_ERR(ebu_host->clk), + "failed to get and enable clock\n"); + goto err_of_node_put; + } + + ebu_host->dma_tx = dma_request_chan(dev, "tx"); + if (IS_ERR(ebu_host->dma_tx)) { + ret = dev_err_probe(dev, PTR_ERR(ebu_host->dma_tx), + "failed to request DMA tx chan!.\n"); + goto err_of_node_put; + } + + ebu_host->dma_rx = dma_request_chan(dev, "rx"); + if (IS_ERR(ebu_host->dma_rx)) { + ret = dev_err_probe(dev, PTR_ERR(ebu_host->dma_rx), + "failed to request DMA rx chan!.\n"); + ebu_host->dma_rx = NULL; + goto err_cleanup_dma; + } + + resname = devm_kasprintf(dev, GFP_KERNEL, "addr_sel%d", cs); + if (!resname) { + ret = -ENOMEM; + goto err_cleanup_dma; + } + + res = platform_get_resource_byname(pdev, IORESOURCE_MEM, resname); + if (!res) { + ret = -EINVAL; + goto err_cleanup_dma; + } + ebu_host->cs[cs].addr_sel = res->start; + writel(ebu_host->cs[cs].addr_sel | EBU_ADDR_MASK(5) | EBU_ADDR_SEL_REGEN, + ebu_host->ebu + EBU_ADDR_SEL(cs)); + + nand_set_flash_node(&ebu_host->chip, chip_np); + + mtd = nand_to_mtd(&ebu_host->chip); + if (!mtd->name) { + dev_err(ebu_host->dev, "NAND label property is mandatory\n"); + ret = -EINVAL; + goto err_cleanup_dma; + } + + mtd->dev.parent = dev; + ebu_host->dev = dev; + + platform_set_drvdata(pdev, ebu_host); + nand_set_controller_data(&ebu_host->chip, ebu_host); + + nand = &ebu_host->chip; + nand->controller = &ebu_host->controller; + nand->controller->ops = &ebu_nand_controller_ops; + + /* Scan to find existence of the device */ + ret = nand_scan(&ebu_host->chip, 1); + if (ret) + goto err_cleanup_dma; + + ret = mtd_device_register(mtd, NULL, 0); + if (ret) + goto err_clean_nand; + + return 0; + +err_clean_nand: + nand_cleanup(&ebu_host->chip); +err_cleanup_dma: + ebu_dma_cleanup(ebu_host); +err_of_node_put: + of_node_put(chip_np); + + return ret; +} + +static void ebu_nand_remove(struct platform_device *pdev) +{ + struct ebu_nand_controller *ebu_host = platform_get_drvdata(pdev); + int ret; + + ret = mtd_device_unregister(nand_to_mtd(&ebu_host->chip)); + WARN_ON(ret); + nand_cleanup(&ebu_host->chip); + ebu_nand_disable(&ebu_host->chip); + ebu_dma_cleanup(ebu_host); +} + +static const struct of_device_id ebu_nand_match[] = { + { .compatible = "intel,lgm-ebunand" }, + {} +}; +MODULE_DEVICE_TABLE(of, ebu_nand_match); + +static struct platform_driver ebu_nand_driver = { + .probe = ebu_nand_probe, + .remove_new = ebu_nand_remove, + .driver = { + .name = "intel-nand-controller", + .of_match_table = ebu_nand_match, + }, + +}; +module_platform_driver(ebu_nand_driver); + +MODULE_LICENSE("GPL v2"); +MODULE_AUTHOR("Vadivel Murugan R <vadivel.muruganx.ramuthevar@intel.com>"); +MODULE_DESCRIPTION("Intel's LGM External Bus NAND Controller driver"); diff --git a/drivers/mtd/nand/raw/internals.h b/drivers/mtd/nand/raw/internals.h new file mode 100644 index 0000000000..e9932da18b --- /dev/null +++ b/drivers/mtd/nand/raw/internals.h @@ -0,0 +1,175 @@ +/* SPDX-License-Identifier: GPL-2.0 */ +/* + * Copyright (c) 2018 - Bootlin + * + * Author: Boris Brezillon <boris.brezillon@bootlin.com> + * + * Header containing internal definitions to be used only by core files. + * NAND controller drivers should not include this file. + */ + +#ifndef __LINUX_RAWNAND_INTERNALS +#define __LINUX_RAWNAND_INTERNALS + +#include <linux/mtd/rawnand.h> + +/* + * NAND Flash Manufacturer ID Codes + */ +#define NAND_MFR_AMD 0x01 +#define NAND_MFR_ATO 0x9b +#define NAND_MFR_EON 0x92 +#define NAND_MFR_ESMT 0xc8 +#define NAND_MFR_FUJITSU 0x04 +#define NAND_MFR_HYNIX 0xad +#define NAND_MFR_INTEL 0x89 +#define NAND_MFR_MACRONIX 0xc2 +#define NAND_MFR_MICRON 0x2c +#define NAND_MFR_NATIONAL 0x8f +#define NAND_MFR_RENESAS 0x07 +#define NAND_MFR_SAMSUNG 0xec +#define NAND_MFR_SANDISK 0x45 +#define NAND_MFR_STMICRO 0x20 +/* Kioxia is new name of Toshiba memory. */ +#define NAND_MFR_TOSHIBA 0x98 +#define NAND_MFR_WINBOND 0xef + +/** + * struct nand_manufacturer_ops - NAND Manufacturer operations + * @detect: detect the NAND memory organization and capabilities + * @init: initialize all vendor specific fields (like the ->read_retry() + * implementation) if any. + * @cleanup: the ->init() function may have allocated resources, ->cleanup() + * is here to let vendor specific code release those resources. + * @fixup_onfi_param_page: apply vendor specific fixups to the ONFI parameter + * page. This is called after the checksum is verified. + */ +struct nand_manufacturer_ops { + void (*detect)(struct nand_chip *chip); + int (*init)(struct nand_chip *chip); + void (*cleanup)(struct nand_chip *chip); + void (*fixup_onfi_param_page)(struct nand_chip *chip, + struct nand_onfi_params *p); +}; + +/** + * struct nand_manufacturer_desc - NAND Flash Manufacturer descriptor + * @name: Manufacturer name + * @id: manufacturer ID code of device. + * @ops: manufacturer operations + */ +struct nand_manufacturer_desc { + int id; + char *name; + const struct nand_manufacturer_ops *ops; +}; + + +extern struct nand_flash_dev nand_flash_ids[]; + +extern const struct nand_manufacturer_ops amd_nand_manuf_ops; +extern const struct nand_manufacturer_ops esmt_nand_manuf_ops; +extern const struct nand_manufacturer_ops hynix_nand_manuf_ops; +extern const struct nand_manufacturer_ops macronix_nand_manuf_ops; +extern const struct nand_manufacturer_ops micron_nand_manuf_ops; +extern const struct nand_manufacturer_ops samsung_nand_manuf_ops; +extern const struct nand_manufacturer_ops sandisk_nand_manuf_ops; +extern const struct nand_manufacturer_ops toshiba_nand_manuf_ops; + +/* MLC pairing schemes */ +extern const struct mtd_pairing_scheme dist3_pairing_scheme; + +/* Core functions */ +const struct nand_manufacturer_desc *nand_get_manufacturer_desc(u8 id); +int nand_bbm_get_next_page(struct nand_chip *chip, int page); +int nand_markbad_bbm(struct nand_chip *chip, loff_t ofs); +int nand_erase_nand(struct nand_chip *chip, struct erase_info *instr, + int allowbbt); +void onfi_fill_interface_config(struct nand_chip *chip, + struct nand_interface_config *iface, + enum nand_interface_type type, + unsigned int timing_mode); +unsigned int +onfi_find_closest_sdr_mode(const struct nand_sdr_timings *spec_timings); +unsigned int +onfi_find_closest_nvddr_mode(const struct nand_nvddr_timings *spec_timings); +int nand_choose_best_sdr_timings(struct nand_chip *chip, + struct nand_interface_config *iface, + struct nand_sdr_timings *spec_timings); +int nand_choose_best_nvddr_timings(struct nand_chip *chip, + struct nand_interface_config *iface, + struct nand_nvddr_timings *spec_timings); +const struct nand_interface_config *nand_get_reset_interface_config(void); +int nand_get_features(struct nand_chip *chip, int addr, u8 *subfeature_param); +int nand_set_features(struct nand_chip *chip, int addr, u8 *subfeature_param); +int nand_read_page_raw_notsupp(struct nand_chip *chip, u8 *buf, + int oob_required, int page); +int nand_write_page_raw_notsupp(struct nand_chip *chip, const u8 *buf, + int oob_required, int page); +int nand_exit_status_op(struct nand_chip *chip); +int nand_read_param_page_op(struct nand_chip *chip, u8 page, void *buf, + unsigned int len); +void nand_decode_ext_id(struct nand_chip *chip); +void panic_nand_wait(struct nand_chip *chip, unsigned long timeo); +void sanitize_string(uint8_t *s, size_t len); + +static inline bool nand_has_exec_op(struct nand_chip *chip) +{ + if (!chip->controller || !chip->controller->ops || + !chip->controller->ops->exec_op) + return false; + + return true; +} + +static inline int nand_check_op(struct nand_chip *chip, + const struct nand_operation *op) +{ + if (!nand_has_exec_op(chip)) + return 0; + + return chip->controller->ops->exec_op(chip, op, true); +} + +static inline int nand_exec_op(struct nand_chip *chip, + const struct nand_operation *op) +{ + if (!nand_has_exec_op(chip)) + return -ENOTSUPP; + + if (WARN_ON(op->cs >= nanddev_ntargets(&chip->base))) + return -EINVAL; + + return chip->controller->ops->exec_op(chip, op, false); +} + +static inline bool nand_controller_can_setup_interface(struct nand_chip *chip) +{ + if (!chip->controller || !chip->controller->ops || + !chip->controller->ops->setup_interface) + return false; + + if (chip->options & NAND_KEEP_TIMINGS) + return false; + + return true; +} + +/* BBT functions */ +int nand_markbad_bbt(struct nand_chip *chip, loff_t offs); +int nand_isreserved_bbt(struct nand_chip *chip, loff_t offs); +int nand_isbad_bbt(struct nand_chip *chip, loff_t offs, int allowbbt); + +/* Legacy */ +void nand_legacy_set_defaults(struct nand_chip *chip); +void nand_legacy_adjust_cmdfunc(struct nand_chip *chip); +int nand_legacy_check_hooks(struct nand_chip *chip); + +/* ONFI functions */ +u16 onfi_crc16(u16 crc, u8 const *p, size_t len); +int nand_onfi_detect(struct nand_chip *chip); + +/* JEDEC functions */ +int nand_jedec_detect(struct nand_chip *chip); + +#endif /* __LINUX_RAWNAND_INTERNALS */ diff --git a/drivers/mtd/nand/raw/lpc32xx_mlc.c b/drivers/mtd/nand/raw/lpc32xx_mlc.c new file mode 100644 index 0000000000..488fd45261 --- /dev/null +++ b/drivers/mtd/nand/raw/lpc32xx_mlc.c @@ -0,0 +1,902 @@ +// SPDX-License-Identifier: GPL-2.0-or-later +/* + * Driver for NAND MLC Controller in LPC32xx + * + * Author: Roland Stigge <stigge@antcom.de> + * + * Copyright © 2011 WORK Microwave GmbH + * Copyright © 2011, 2012 Roland Stigge + * + * NAND Flash Controller Operation: + * - Read: Auto Decode + * - Write: Auto Encode + * - Tested Page Sizes: 2048, 4096 + */ + +#include <linux/slab.h> +#include <linux/module.h> +#include <linux/platform_device.h> +#include <linux/mtd/mtd.h> +#include <linux/mtd/rawnand.h> +#include <linux/mtd/partitions.h> +#include <linux/clk.h> +#include <linux/err.h> +#include <linux/delay.h> +#include <linux/completion.h> +#include <linux/interrupt.h> +#include <linux/of.h> +#include <linux/gpio/consumer.h> +#include <linux/mtd/lpc32xx_mlc.h> +#include <linux/io.h> +#include <linux/mm.h> +#include <linux/dma-mapping.h> +#include <linux/dmaengine.h> + +#define DRV_NAME "lpc32xx_mlc" + +/********************************************************************** +* MLC NAND controller register offsets +**********************************************************************/ + +#define MLC_BUFF(x) (x + 0x00000) +#define MLC_DATA(x) (x + 0x08000) +#define MLC_CMD(x) (x + 0x10000) +#define MLC_ADDR(x) (x + 0x10004) +#define MLC_ECC_ENC_REG(x) (x + 0x10008) +#define MLC_ECC_DEC_REG(x) (x + 0x1000C) +#define MLC_ECC_AUTO_ENC_REG(x) (x + 0x10010) +#define MLC_ECC_AUTO_DEC_REG(x) (x + 0x10014) +#define MLC_RPR(x) (x + 0x10018) +#define MLC_WPR(x) (x + 0x1001C) +#define MLC_RUBP(x) (x + 0x10020) +#define MLC_ROBP(x) (x + 0x10024) +#define MLC_SW_WP_ADD_LOW(x) (x + 0x10028) +#define MLC_SW_WP_ADD_HIG(x) (x + 0x1002C) +#define MLC_ICR(x) (x + 0x10030) +#define MLC_TIME_REG(x) (x + 0x10034) +#define MLC_IRQ_MR(x) (x + 0x10038) +#define MLC_IRQ_SR(x) (x + 0x1003C) +#define MLC_LOCK_PR(x) (x + 0x10044) +#define MLC_ISR(x) (x + 0x10048) +#define MLC_CEH(x) (x + 0x1004C) + +/********************************************************************** +* MLC_CMD bit definitions +**********************************************************************/ +#define MLCCMD_RESET 0xFF + +/********************************************************************** +* MLC_ICR bit definitions +**********************************************************************/ +#define MLCICR_WPROT (1 << 3) +#define MLCICR_LARGEBLOCK (1 << 2) +#define MLCICR_LONGADDR (1 << 1) +#define MLCICR_16BIT (1 << 0) /* unsupported by LPC32x0! */ + +/********************************************************************** +* MLC_TIME_REG bit definitions +**********************************************************************/ +#define MLCTIMEREG_TCEA_DELAY(n) (((n) & 0x03) << 24) +#define MLCTIMEREG_BUSY_DELAY(n) (((n) & 0x1F) << 19) +#define MLCTIMEREG_NAND_TA(n) (((n) & 0x07) << 16) +#define MLCTIMEREG_RD_HIGH(n) (((n) & 0x0F) << 12) +#define MLCTIMEREG_RD_LOW(n) (((n) & 0x0F) << 8) +#define MLCTIMEREG_WR_HIGH(n) (((n) & 0x0F) << 4) +#define MLCTIMEREG_WR_LOW(n) (((n) & 0x0F) << 0) + +/********************************************************************** +* MLC_IRQ_MR and MLC_IRQ_SR bit definitions +**********************************************************************/ +#define MLCIRQ_NAND_READY (1 << 5) +#define MLCIRQ_CONTROLLER_READY (1 << 4) +#define MLCIRQ_DECODE_FAILURE (1 << 3) +#define MLCIRQ_DECODE_ERROR (1 << 2) +#define MLCIRQ_ECC_READY (1 << 1) +#define MLCIRQ_WRPROT_FAULT (1 << 0) + +/********************************************************************** +* MLC_LOCK_PR bit definitions +**********************************************************************/ +#define MLCLOCKPR_MAGIC 0xA25E + +/********************************************************************** +* MLC_ISR bit definitions +**********************************************************************/ +#define MLCISR_DECODER_FAILURE (1 << 6) +#define MLCISR_ERRORS ((1 << 4) | (1 << 5)) +#define MLCISR_ERRORS_DETECTED (1 << 3) +#define MLCISR_ECC_READY (1 << 2) +#define MLCISR_CONTROLLER_READY (1 << 1) +#define MLCISR_NAND_READY (1 << 0) + +/********************************************************************** +* MLC_CEH bit definitions +**********************************************************************/ +#define MLCCEH_NORMAL (1 << 0) + +struct lpc32xx_nand_cfg_mlc { + uint32_t tcea_delay; + uint32_t busy_delay; + uint32_t nand_ta; + uint32_t rd_high; + uint32_t rd_low; + uint32_t wr_high; + uint32_t wr_low; + struct mtd_partition *parts; + unsigned num_parts; +}; + +static int lpc32xx_ooblayout_ecc(struct mtd_info *mtd, int section, + struct mtd_oob_region *oobregion) +{ + struct nand_chip *nand_chip = mtd_to_nand(mtd); + + if (section >= nand_chip->ecc.steps) + return -ERANGE; + + oobregion->offset = ((section + 1) * 16) - nand_chip->ecc.bytes; + oobregion->length = nand_chip->ecc.bytes; + + return 0; +} + +static int lpc32xx_ooblayout_free(struct mtd_info *mtd, int section, + struct mtd_oob_region *oobregion) +{ + struct nand_chip *nand_chip = mtd_to_nand(mtd); + + if (section >= nand_chip->ecc.steps) + return -ERANGE; + + oobregion->offset = 16 * section; + oobregion->length = 16 - nand_chip->ecc.bytes; + + return 0; +} + +static const struct mtd_ooblayout_ops lpc32xx_ooblayout_ops = { + .ecc = lpc32xx_ooblayout_ecc, + .free = lpc32xx_ooblayout_free, +}; + +static struct nand_bbt_descr lpc32xx_nand_bbt = { + .options = NAND_BBT_ABSPAGE | NAND_BBT_2BIT | NAND_BBT_NO_OOB | + NAND_BBT_WRITE, + .pages = { 524224, 0, 0, 0, 0, 0, 0, 0 }, +}; + +static struct nand_bbt_descr lpc32xx_nand_bbt_mirror = { + .options = NAND_BBT_ABSPAGE | NAND_BBT_2BIT | NAND_BBT_NO_OOB | + NAND_BBT_WRITE, + .pages = { 524160, 0, 0, 0, 0, 0, 0, 0 }, +}; + +struct lpc32xx_nand_host { + struct platform_device *pdev; + struct nand_chip nand_chip; + struct lpc32xx_mlc_platform_data *pdata; + struct clk *clk; + struct gpio_desc *wp_gpio; + void __iomem *io_base; + int irq; + struct lpc32xx_nand_cfg_mlc *ncfg; + struct completion comp_nand; + struct completion comp_controller; + uint32_t llptr; + /* + * Physical addresses of ECC buffer, DMA data buffers, OOB data buffer + */ + dma_addr_t oob_buf_phy; + /* + * Virtual addresses of ECC buffer, DMA data buffers, OOB data buffer + */ + uint8_t *oob_buf; + /* Physical address of DMA base address */ + dma_addr_t io_base_phy; + + struct completion comp_dma; + struct dma_chan *dma_chan; + struct dma_slave_config dma_slave_config; + struct scatterlist sgl; + uint8_t *dma_buf; + uint8_t *dummy_buf; + int mlcsubpages; /* number of 512bytes-subpages */ +}; + +/* + * Activate/Deactivate DMA Operation: + * + * Using the PL080 DMA Controller for transferring the 512 byte subpages + * instead of doing readl() / writel() in a loop slows it down significantly. + * Measurements via getnstimeofday() upon 512 byte subpage reads reveal: + * + * - readl() of 128 x 32 bits in a loop: ~20us + * - DMA read of 512 bytes (32 bit, 4...128 words bursts): ~60us + * - DMA read of 512 bytes (32 bit, no bursts): ~100us + * + * This applies to the transfer itself. In the DMA case: only the + * wait_for_completion() (DMA setup _not_ included). + * + * Note that the 512 bytes subpage transfer is done directly from/to a + * FIFO/buffer inside the NAND controller. Most of the time (~400-800us for a + * 2048 bytes page) is spent waiting for the NAND IRQ, anyway. (The NAND + * controller transferring data between its internal buffer to/from the NAND + * chip.) + * + * Therefore, using the PL080 DMA is disabled by default, for now. + * + */ +static int use_dma; + +static void lpc32xx_nand_setup(struct lpc32xx_nand_host *host) +{ + uint32_t clkrate, tmp; + + /* Reset MLC controller */ + writel(MLCCMD_RESET, MLC_CMD(host->io_base)); + udelay(1000); + + /* Get base clock for MLC block */ + clkrate = clk_get_rate(host->clk); + if (clkrate == 0) + clkrate = 104000000; + + /* Unlock MLC_ICR + * (among others, will be locked again automatically) */ + writew(MLCLOCKPR_MAGIC, MLC_LOCK_PR(host->io_base)); + + /* Configure MLC Controller: Large Block, 5 Byte Address */ + tmp = MLCICR_LARGEBLOCK | MLCICR_LONGADDR; + writel(tmp, MLC_ICR(host->io_base)); + + /* Unlock MLC_TIME_REG + * (among others, will be locked again automatically) */ + writew(MLCLOCKPR_MAGIC, MLC_LOCK_PR(host->io_base)); + + /* Compute clock setup values, see LPC and NAND manual */ + tmp = 0; + tmp |= MLCTIMEREG_TCEA_DELAY(clkrate / host->ncfg->tcea_delay + 1); + tmp |= MLCTIMEREG_BUSY_DELAY(clkrate / host->ncfg->busy_delay + 1); + tmp |= MLCTIMEREG_NAND_TA(clkrate / host->ncfg->nand_ta + 1); + tmp |= MLCTIMEREG_RD_HIGH(clkrate / host->ncfg->rd_high + 1); + tmp |= MLCTIMEREG_RD_LOW(clkrate / host->ncfg->rd_low); + tmp |= MLCTIMEREG_WR_HIGH(clkrate / host->ncfg->wr_high + 1); + tmp |= MLCTIMEREG_WR_LOW(clkrate / host->ncfg->wr_low); + writel(tmp, MLC_TIME_REG(host->io_base)); + + /* Enable IRQ for CONTROLLER_READY and NAND_READY */ + writeb(MLCIRQ_CONTROLLER_READY | MLCIRQ_NAND_READY, + MLC_IRQ_MR(host->io_base)); + + /* Normal nCE operation: nCE controlled by controller */ + writel(MLCCEH_NORMAL, MLC_CEH(host->io_base)); +} + +/* + * Hardware specific access to control lines + */ +static void lpc32xx_nand_cmd_ctrl(struct nand_chip *nand_chip, int cmd, + unsigned int ctrl) +{ + struct lpc32xx_nand_host *host = nand_get_controller_data(nand_chip); + + if (cmd != NAND_CMD_NONE) { + if (ctrl & NAND_CLE) + writel(cmd, MLC_CMD(host->io_base)); + else + writel(cmd, MLC_ADDR(host->io_base)); + } +} + +/* + * Read Device Ready (NAND device _and_ controller ready) + */ +static int lpc32xx_nand_device_ready(struct nand_chip *nand_chip) +{ + struct lpc32xx_nand_host *host = nand_get_controller_data(nand_chip); + + if ((readb(MLC_ISR(host->io_base)) & + (MLCISR_CONTROLLER_READY | MLCISR_NAND_READY)) == + (MLCISR_CONTROLLER_READY | MLCISR_NAND_READY)) + return 1; + + return 0; +} + +static irqreturn_t lpc3xxx_nand_irq(int irq, struct lpc32xx_nand_host *host) +{ + uint8_t sr; + + /* Clear interrupt flag by reading status */ + sr = readb(MLC_IRQ_SR(host->io_base)); + if (sr & MLCIRQ_NAND_READY) + complete(&host->comp_nand); + if (sr & MLCIRQ_CONTROLLER_READY) + complete(&host->comp_controller); + + return IRQ_HANDLED; +} + +static int lpc32xx_waitfunc_nand(struct nand_chip *chip) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + struct lpc32xx_nand_host *host = nand_get_controller_data(chip); + + if (readb(MLC_ISR(host->io_base)) & MLCISR_NAND_READY) + goto exit; + + wait_for_completion(&host->comp_nand); + + while (!(readb(MLC_ISR(host->io_base)) & MLCISR_NAND_READY)) { + /* Seems to be delayed sometimes by controller */ + dev_dbg(&mtd->dev, "Warning: NAND not ready.\n"); + cpu_relax(); + } + +exit: + return NAND_STATUS_READY; +} + +static int lpc32xx_waitfunc_controller(struct nand_chip *chip) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + struct lpc32xx_nand_host *host = nand_get_controller_data(chip); + + if (readb(MLC_ISR(host->io_base)) & MLCISR_CONTROLLER_READY) + goto exit; + + wait_for_completion(&host->comp_controller); + + while (!(readb(MLC_ISR(host->io_base)) & + MLCISR_CONTROLLER_READY)) { + dev_dbg(&mtd->dev, "Warning: Controller not ready.\n"); + cpu_relax(); + } + +exit: + return NAND_STATUS_READY; +} + +static int lpc32xx_waitfunc(struct nand_chip *chip) +{ + lpc32xx_waitfunc_nand(chip); + lpc32xx_waitfunc_controller(chip); + + return NAND_STATUS_READY; +} + +/* + * Enable NAND write protect + */ +static void lpc32xx_wp_enable(struct lpc32xx_nand_host *host) +{ + if (host->wp_gpio) + gpiod_set_value_cansleep(host->wp_gpio, 1); +} + +/* + * Disable NAND write protect + */ +static void lpc32xx_wp_disable(struct lpc32xx_nand_host *host) +{ + if (host->wp_gpio) + gpiod_set_value_cansleep(host->wp_gpio, 0); +} + +static void lpc32xx_dma_complete_func(void *completion) +{ + complete(completion); +} + +static int lpc32xx_xmit_dma(struct mtd_info *mtd, void *mem, int len, + enum dma_transfer_direction dir) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + struct lpc32xx_nand_host *host = nand_get_controller_data(chip); + struct dma_async_tx_descriptor *desc; + int flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT; + int res; + + sg_init_one(&host->sgl, mem, len); + + res = dma_map_sg(host->dma_chan->device->dev, &host->sgl, 1, + DMA_BIDIRECTIONAL); + if (res != 1) { + dev_err(mtd->dev.parent, "Failed to map sg list\n"); + return -ENXIO; + } + desc = dmaengine_prep_slave_sg(host->dma_chan, &host->sgl, 1, dir, + flags); + if (!desc) { + dev_err(mtd->dev.parent, "Failed to prepare slave sg\n"); + goto out1; + } + + init_completion(&host->comp_dma); + desc->callback = lpc32xx_dma_complete_func; + desc->callback_param = &host->comp_dma; + + dmaengine_submit(desc); + dma_async_issue_pending(host->dma_chan); + + wait_for_completion_timeout(&host->comp_dma, msecs_to_jiffies(1000)); + + dma_unmap_sg(host->dma_chan->device->dev, &host->sgl, 1, + DMA_BIDIRECTIONAL); + return 0; +out1: + dma_unmap_sg(host->dma_chan->device->dev, &host->sgl, 1, + DMA_BIDIRECTIONAL); + return -ENXIO; +} + +static int lpc32xx_read_page(struct nand_chip *chip, uint8_t *buf, + int oob_required, int page) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + struct lpc32xx_nand_host *host = nand_get_controller_data(chip); + int i, j; + uint8_t *oobbuf = chip->oob_poi; + uint32_t mlc_isr; + int res; + uint8_t *dma_buf; + bool dma_mapped; + + if ((void *)buf <= high_memory) { + dma_buf = buf; + dma_mapped = true; + } else { + dma_buf = host->dma_buf; + dma_mapped = false; + } + + /* Writing Command and Address */ + nand_read_page_op(chip, page, 0, NULL, 0); + + /* For all sub-pages */ + for (i = 0; i < host->mlcsubpages; i++) { + /* Start Auto Decode Command */ + writeb(0x00, MLC_ECC_AUTO_DEC_REG(host->io_base)); + + /* Wait for Controller Ready */ + lpc32xx_waitfunc_controller(chip); + + /* Check ECC Error status */ + mlc_isr = readl(MLC_ISR(host->io_base)); + if (mlc_isr & MLCISR_DECODER_FAILURE) { + mtd->ecc_stats.failed++; + dev_warn(&mtd->dev, "%s: DECODER_FAILURE\n", __func__); + } else if (mlc_isr & MLCISR_ERRORS_DETECTED) { + mtd->ecc_stats.corrected += ((mlc_isr >> 4) & 0x3) + 1; + } + + /* Read 512 + 16 Bytes */ + if (use_dma) { + res = lpc32xx_xmit_dma(mtd, dma_buf + i * 512, 512, + DMA_DEV_TO_MEM); + if (res) + return res; + } else { + for (j = 0; j < (512 >> 2); j++) { + *((uint32_t *)(buf)) = + readl(MLC_BUFF(host->io_base)); + buf += 4; + } + } + for (j = 0; j < (16 >> 2); j++) { + *((uint32_t *)(oobbuf)) = + readl(MLC_BUFF(host->io_base)); + oobbuf += 4; + } + } + + if (use_dma && !dma_mapped) + memcpy(buf, dma_buf, mtd->writesize); + + return 0; +} + +static int lpc32xx_write_page_lowlevel(struct nand_chip *chip, + const uint8_t *buf, int oob_required, + int page) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + struct lpc32xx_nand_host *host = nand_get_controller_data(chip); + const uint8_t *oobbuf = chip->oob_poi; + uint8_t *dma_buf = (uint8_t *)buf; + int res; + int i, j; + + if (use_dma && (void *)buf >= high_memory) { + dma_buf = host->dma_buf; + memcpy(dma_buf, buf, mtd->writesize); + } + + nand_prog_page_begin_op(chip, page, 0, NULL, 0); + + for (i = 0; i < host->mlcsubpages; i++) { + /* Start Encode */ + writeb(0x00, MLC_ECC_ENC_REG(host->io_base)); + + /* Write 512 + 6 Bytes to Buffer */ + if (use_dma) { + res = lpc32xx_xmit_dma(mtd, dma_buf + i * 512, 512, + DMA_MEM_TO_DEV); + if (res) + return res; + } else { + for (j = 0; j < (512 >> 2); j++) { + writel(*((uint32_t *)(buf)), + MLC_BUFF(host->io_base)); + buf += 4; + } + } + writel(*((uint32_t *)(oobbuf)), MLC_BUFF(host->io_base)); + oobbuf += 4; + writew(*((uint16_t *)(oobbuf)), MLC_BUFF(host->io_base)); + oobbuf += 12; + + /* Auto Encode w/ Bit 8 = 0 (see LPC MLC Controller manual) */ + writeb(0x00, MLC_ECC_AUTO_ENC_REG(host->io_base)); + + /* Wait for Controller Ready */ + lpc32xx_waitfunc_controller(chip); + } + + return nand_prog_page_end_op(chip); +} + +static int lpc32xx_read_oob(struct nand_chip *chip, int page) +{ + struct lpc32xx_nand_host *host = nand_get_controller_data(chip); + + /* Read whole page - necessary with MLC controller! */ + lpc32xx_read_page(chip, host->dummy_buf, 1, page); + + return 0; +} + +static int lpc32xx_write_oob(struct nand_chip *chip, int page) +{ + /* None, write_oob conflicts with the automatic LPC MLC ECC decoder! */ + return 0; +} + +/* Prepares MLC for transfers with H/W ECC enabled: always enabled anyway */ +static void lpc32xx_ecc_enable(struct nand_chip *chip, int mode) +{ + /* Always enabled! */ +} + +static int lpc32xx_dma_setup(struct lpc32xx_nand_host *host) +{ + struct mtd_info *mtd = nand_to_mtd(&host->nand_chip); + dma_cap_mask_t mask; + + if (!host->pdata || !host->pdata->dma_filter) { + dev_err(mtd->dev.parent, "no DMA platform data\n"); + return -ENOENT; + } + + dma_cap_zero(mask); + dma_cap_set(DMA_SLAVE, mask); + host->dma_chan = dma_request_channel(mask, host->pdata->dma_filter, + "nand-mlc"); + if (!host->dma_chan) { + dev_err(mtd->dev.parent, "Failed to request DMA channel\n"); + return -EBUSY; + } + + /* + * Set direction to a sensible value even if the dmaengine driver + * should ignore it. With the default (DMA_MEM_TO_MEM), the amba-pl08x + * driver criticizes it as "alien transfer direction". + */ + host->dma_slave_config.direction = DMA_DEV_TO_MEM; + host->dma_slave_config.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; + host->dma_slave_config.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; + host->dma_slave_config.src_maxburst = 128; + host->dma_slave_config.dst_maxburst = 128; + /* DMA controller does flow control: */ + host->dma_slave_config.device_fc = false; + host->dma_slave_config.src_addr = MLC_BUFF(host->io_base_phy); + host->dma_slave_config.dst_addr = MLC_BUFF(host->io_base_phy); + if (dmaengine_slave_config(host->dma_chan, &host->dma_slave_config)) { + dev_err(mtd->dev.parent, "Failed to setup DMA slave\n"); + goto out1; + } + + return 0; +out1: + dma_release_channel(host->dma_chan); + return -ENXIO; +} + +static struct lpc32xx_nand_cfg_mlc *lpc32xx_parse_dt(struct device *dev) +{ + struct lpc32xx_nand_cfg_mlc *ncfg; + struct device_node *np = dev->of_node; + + ncfg = devm_kzalloc(dev, sizeof(*ncfg), GFP_KERNEL); + if (!ncfg) + return NULL; + + of_property_read_u32(np, "nxp,tcea-delay", &ncfg->tcea_delay); + of_property_read_u32(np, "nxp,busy-delay", &ncfg->busy_delay); + of_property_read_u32(np, "nxp,nand-ta", &ncfg->nand_ta); + of_property_read_u32(np, "nxp,rd-high", &ncfg->rd_high); + of_property_read_u32(np, "nxp,rd-low", &ncfg->rd_low); + of_property_read_u32(np, "nxp,wr-high", &ncfg->wr_high); + of_property_read_u32(np, "nxp,wr-low", &ncfg->wr_low); + + if (!ncfg->tcea_delay || !ncfg->busy_delay || !ncfg->nand_ta || + !ncfg->rd_high || !ncfg->rd_low || !ncfg->wr_high || + !ncfg->wr_low) { + dev_err(dev, "chip parameters not specified correctly\n"); + return NULL; + } + + return ncfg; +} + +static int lpc32xx_nand_attach_chip(struct nand_chip *chip) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + struct lpc32xx_nand_host *host = nand_get_controller_data(chip); + struct device *dev = &host->pdev->dev; + + if (chip->ecc.engine_type != NAND_ECC_ENGINE_TYPE_ON_HOST) + return 0; + + host->dma_buf = devm_kzalloc(dev, mtd->writesize, GFP_KERNEL); + if (!host->dma_buf) + return -ENOMEM; + + host->dummy_buf = devm_kzalloc(dev, mtd->writesize, GFP_KERNEL); + if (!host->dummy_buf) + return -ENOMEM; + + chip->ecc.size = 512; + chip->ecc.hwctl = lpc32xx_ecc_enable; + chip->ecc.read_page_raw = lpc32xx_read_page; + chip->ecc.read_page = lpc32xx_read_page; + chip->ecc.write_page_raw = lpc32xx_write_page_lowlevel; + chip->ecc.write_page = lpc32xx_write_page_lowlevel; + chip->ecc.write_oob = lpc32xx_write_oob; + chip->ecc.read_oob = lpc32xx_read_oob; + chip->ecc.strength = 4; + chip->ecc.bytes = 10; + + mtd_set_ooblayout(mtd, &lpc32xx_ooblayout_ops); + host->mlcsubpages = mtd->writesize / 512; + + return 0; +} + +static const struct nand_controller_ops lpc32xx_nand_controller_ops = { + .attach_chip = lpc32xx_nand_attach_chip, +}; + +/* + * Probe for NAND controller + */ +static int lpc32xx_nand_probe(struct platform_device *pdev) +{ + struct lpc32xx_nand_host *host; + struct mtd_info *mtd; + struct nand_chip *nand_chip; + struct resource *rc; + int res; + + /* Allocate memory for the device structure (and zero it) */ + host = devm_kzalloc(&pdev->dev, sizeof(*host), GFP_KERNEL); + if (!host) + return -ENOMEM; + + host->pdev = pdev; + + host->io_base = devm_platform_get_and_ioremap_resource(pdev, 0, &rc); + if (IS_ERR(host->io_base)) + return PTR_ERR(host->io_base); + + host->io_base_phy = rc->start; + + nand_chip = &host->nand_chip; + mtd = nand_to_mtd(nand_chip); + if (pdev->dev.of_node) + host->ncfg = lpc32xx_parse_dt(&pdev->dev); + if (!host->ncfg) { + dev_err(&pdev->dev, + "Missing or bad NAND config from device tree\n"); + return -ENOENT; + } + + /* Start with WP disabled, if available */ + host->wp_gpio = gpiod_get_optional(&pdev->dev, NULL, GPIOD_OUT_LOW); + res = PTR_ERR_OR_ZERO(host->wp_gpio); + if (res) { + if (res != -EPROBE_DEFER) + dev_err(&pdev->dev, "WP GPIO is not available: %d\n", + res); + return res; + } + + gpiod_set_consumer_name(host->wp_gpio, "NAND WP"); + + host->pdata = dev_get_platdata(&pdev->dev); + + /* link the private data structures */ + nand_set_controller_data(nand_chip, host); + nand_set_flash_node(nand_chip, pdev->dev.of_node); + mtd->dev.parent = &pdev->dev; + + /* Get NAND clock */ + host->clk = clk_get(&pdev->dev, NULL); + if (IS_ERR(host->clk)) { + dev_err(&pdev->dev, "Clock initialization failure\n"); + res = -ENOENT; + goto free_gpio; + } + res = clk_prepare_enable(host->clk); + if (res) + goto put_clk; + + nand_chip->legacy.cmd_ctrl = lpc32xx_nand_cmd_ctrl; + nand_chip->legacy.dev_ready = lpc32xx_nand_device_ready; + nand_chip->legacy.chip_delay = 25; /* us */ + nand_chip->legacy.IO_ADDR_R = MLC_DATA(host->io_base); + nand_chip->legacy.IO_ADDR_W = MLC_DATA(host->io_base); + + /* Init NAND controller */ + lpc32xx_nand_setup(host); + + platform_set_drvdata(pdev, host); + + /* Initialize function pointers */ + nand_chip->legacy.waitfunc = lpc32xx_waitfunc; + + nand_chip->options = NAND_NO_SUBPAGE_WRITE; + nand_chip->bbt_options = NAND_BBT_USE_FLASH | NAND_BBT_NO_OOB; + nand_chip->bbt_td = &lpc32xx_nand_bbt; + nand_chip->bbt_md = &lpc32xx_nand_bbt_mirror; + + if (use_dma) { + res = lpc32xx_dma_setup(host); + if (res) { + res = -EIO; + goto unprepare_clk; + } + } + + /* initially clear interrupt status */ + readb(MLC_IRQ_SR(host->io_base)); + + init_completion(&host->comp_nand); + init_completion(&host->comp_controller); + + host->irq = platform_get_irq(pdev, 0); + if (host->irq < 0) { + res = -EINVAL; + goto release_dma_chan; + } + + if (request_irq(host->irq, (irq_handler_t)&lpc3xxx_nand_irq, + IRQF_TRIGGER_HIGH, DRV_NAME, host)) { + dev_err(&pdev->dev, "Error requesting NAND IRQ\n"); + res = -ENXIO; + goto release_dma_chan; + } + + /* + * Scan to find existence of the device and get the type of NAND device: + * SMALL block or LARGE block. + */ + nand_chip->legacy.dummy_controller.ops = &lpc32xx_nand_controller_ops; + res = nand_scan(nand_chip, 1); + if (res) + goto free_irq; + + mtd->name = DRV_NAME; + + res = mtd_device_register(mtd, host->ncfg->parts, + host->ncfg->num_parts); + if (res) + goto cleanup_nand; + + return 0; + +cleanup_nand: + nand_cleanup(nand_chip); +free_irq: + free_irq(host->irq, host); +release_dma_chan: + if (use_dma) + dma_release_channel(host->dma_chan); +unprepare_clk: + clk_disable_unprepare(host->clk); +put_clk: + clk_put(host->clk); +free_gpio: + lpc32xx_wp_enable(host); + gpiod_put(host->wp_gpio); + + return res; +} + +/* + * Remove NAND device + */ +static void lpc32xx_nand_remove(struct platform_device *pdev) +{ + struct lpc32xx_nand_host *host = platform_get_drvdata(pdev); + struct nand_chip *chip = &host->nand_chip; + int ret; + + ret = mtd_device_unregister(nand_to_mtd(chip)); + WARN_ON(ret); + nand_cleanup(chip); + + free_irq(host->irq, host); + if (use_dma) + dma_release_channel(host->dma_chan); + + clk_disable_unprepare(host->clk); + clk_put(host->clk); + + lpc32xx_wp_enable(host); + gpiod_put(host->wp_gpio); +} + +static int lpc32xx_nand_resume(struct platform_device *pdev) +{ + struct lpc32xx_nand_host *host = platform_get_drvdata(pdev); + int ret; + + /* Re-enable NAND clock */ + ret = clk_prepare_enable(host->clk); + if (ret) + return ret; + + /* Fresh init of NAND controller */ + lpc32xx_nand_setup(host); + + /* Disable write protect */ + lpc32xx_wp_disable(host); + + return 0; +} + +static int lpc32xx_nand_suspend(struct platform_device *pdev, pm_message_t pm) +{ + struct lpc32xx_nand_host *host = platform_get_drvdata(pdev); + + /* Enable write protect for safety */ + lpc32xx_wp_enable(host); + + /* Disable clock */ + clk_disable_unprepare(host->clk); + return 0; +} + +static const struct of_device_id lpc32xx_nand_match[] = { + { .compatible = "nxp,lpc3220-mlc" }, + { /* sentinel */ }, +}; +MODULE_DEVICE_TABLE(of, lpc32xx_nand_match); + +static struct platform_driver lpc32xx_nand_driver = { + .probe = lpc32xx_nand_probe, + .remove_new = lpc32xx_nand_remove, + .resume = pm_ptr(lpc32xx_nand_resume), + .suspend = pm_ptr(lpc32xx_nand_suspend), + .driver = { + .name = DRV_NAME, + .of_match_table = lpc32xx_nand_match, + }, +}; + +module_platform_driver(lpc32xx_nand_driver); + +MODULE_LICENSE("GPL"); +MODULE_AUTHOR("Roland Stigge <stigge@antcom.de>"); +MODULE_DESCRIPTION("NAND driver for the NXP LPC32XX MLC controller"); diff --git a/drivers/mtd/nand/raw/lpc32xx_slc.c b/drivers/mtd/nand/raw/lpc32xx_slc.c new file mode 100644 index 0000000000..1c5fa855b9 --- /dev/null +++ b/drivers/mtd/nand/raw/lpc32xx_slc.c @@ -0,0 +1,1023 @@ +// SPDX-License-Identifier: GPL-2.0-or-later +/* + * NXP LPC32XX NAND SLC driver + * + * Authors: + * Kevin Wells <kevin.wells@nxp.com> + * Roland Stigge <stigge@antcom.de> + * + * Copyright © 2011 NXP Semiconductors + * Copyright © 2012 Roland Stigge + */ + +#include <linux/slab.h> +#include <linux/module.h> +#include <linux/platform_device.h> +#include <linux/mtd/mtd.h> +#include <linux/mtd/rawnand.h> +#include <linux/mtd/partitions.h> +#include <linux/clk.h> +#include <linux/err.h> +#include <linux/delay.h> +#include <linux/io.h> +#include <linux/mm.h> +#include <linux/dma-mapping.h> +#include <linux/dmaengine.h> +#include <linux/gpio/consumer.h> +#include <linux/of.h> +#include <linux/mtd/lpc32xx_slc.h> + +#define LPC32XX_MODNAME "lpc32xx-nand" + +/********************************************************************** +* SLC NAND controller register offsets +**********************************************************************/ + +#define SLC_DATA(x) (x + 0x000) +#define SLC_ADDR(x) (x + 0x004) +#define SLC_CMD(x) (x + 0x008) +#define SLC_STOP(x) (x + 0x00C) +#define SLC_CTRL(x) (x + 0x010) +#define SLC_CFG(x) (x + 0x014) +#define SLC_STAT(x) (x + 0x018) +#define SLC_INT_STAT(x) (x + 0x01C) +#define SLC_IEN(x) (x + 0x020) +#define SLC_ISR(x) (x + 0x024) +#define SLC_ICR(x) (x + 0x028) +#define SLC_TAC(x) (x + 0x02C) +#define SLC_TC(x) (x + 0x030) +#define SLC_ECC(x) (x + 0x034) +#define SLC_DMA_DATA(x) (x + 0x038) + +/********************************************************************** +* slc_ctrl register definitions +**********************************************************************/ +#define SLCCTRL_SW_RESET (1 << 2) /* Reset the NAND controller bit */ +#define SLCCTRL_ECC_CLEAR (1 << 1) /* Reset ECC bit */ +#define SLCCTRL_DMA_START (1 << 0) /* Start DMA channel bit */ + +/********************************************************************** +* slc_cfg register definitions +**********************************************************************/ +#define SLCCFG_CE_LOW (1 << 5) /* Force CE low bit */ +#define SLCCFG_DMA_ECC (1 << 4) /* Enable DMA ECC bit */ +#define SLCCFG_ECC_EN (1 << 3) /* ECC enable bit */ +#define SLCCFG_DMA_BURST (1 << 2) /* DMA burst bit */ +#define SLCCFG_DMA_DIR (1 << 1) /* DMA write(0)/read(1) bit */ +#define SLCCFG_WIDTH (1 << 0) /* External device width, 0=8bit */ + +/********************************************************************** +* slc_stat register definitions +**********************************************************************/ +#define SLCSTAT_DMA_FIFO (1 << 2) /* DMA FIFO has data bit */ +#define SLCSTAT_SLC_FIFO (1 << 1) /* SLC FIFO has data bit */ +#define SLCSTAT_NAND_READY (1 << 0) /* NAND device is ready bit */ + +/********************************************************************** +* slc_int_stat, slc_ien, slc_isr, and slc_icr register definitions +**********************************************************************/ +#define SLCSTAT_INT_TC (1 << 1) /* Transfer count bit */ +#define SLCSTAT_INT_RDY_EN (1 << 0) /* Ready interrupt bit */ + +/********************************************************************** +* slc_tac register definitions +**********************************************************************/ +/* Computation of clock cycles on basis of controller and device clock rates */ +#define SLCTAC_CLOCKS(c, n, s) (min_t(u32, DIV_ROUND_UP(c, n) - 1, 0xF) << s) + +/* Clock setting for RDY write sample wait time in 2*n clocks */ +#define SLCTAC_WDR(n) (((n) & 0xF) << 28) +/* Write pulse width in clock cycles, 1 to 16 clocks */ +#define SLCTAC_WWIDTH(c, n) (SLCTAC_CLOCKS(c, n, 24)) +/* Write hold time of control and data signals, 1 to 16 clocks */ +#define SLCTAC_WHOLD(c, n) (SLCTAC_CLOCKS(c, n, 20)) +/* Write setup time of control and data signals, 1 to 16 clocks */ +#define SLCTAC_WSETUP(c, n) (SLCTAC_CLOCKS(c, n, 16)) +/* Clock setting for RDY read sample wait time in 2*n clocks */ +#define SLCTAC_RDR(n) (((n) & 0xF) << 12) +/* Read pulse width in clock cycles, 1 to 16 clocks */ +#define SLCTAC_RWIDTH(c, n) (SLCTAC_CLOCKS(c, n, 8)) +/* Read hold time of control and data signals, 1 to 16 clocks */ +#define SLCTAC_RHOLD(c, n) (SLCTAC_CLOCKS(c, n, 4)) +/* Read setup time of control and data signals, 1 to 16 clocks */ +#define SLCTAC_RSETUP(c, n) (SLCTAC_CLOCKS(c, n, 0)) + +/********************************************************************** +* slc_ecc register definitions +**********************************************************************/ +/* ECC line party fetch macro */ +#define SLCECC_TO_LINEPAR(n) (((n) >> 6) & 0x7FFF) +#define SLCECC_TO_COLPAR(n) ((n) & 0x3F) + +/* + * DMA requires storage space for the DMA local buffer and the hardware ECC + * storage area. The DMA local buffer is only used if DMA mapping fails + * during runtime. + */ +#define LPC32XX_DMA_DATA_SIZE 4096 +#define LPC32XX_ECC_SAVE_SIZE ((4096 / 256) * 4) + +/* Number of bytes used for ECC stored in NAND per 256 bytes */ +#define LPC32XX_SLC_DEV_ECC_BYTES 3 + +/* + * If the NAND base clock frequency can't be fetched, this frequency will be + * used instead as the base. This rate is used to setup the timing registers + * used for NAND accesses. + */ +#define LPC32XX_DEF_BUS_RATE 133250000 + +/* Milliseconds for DMA FIFO timeout (unlikely anyway) */ +#define LPC32XX_DMA_TIMEOUT 100 + +/* + * NAND ECC Layout for small page NAND devices + * Note: For large and huge page devices, the default layouts are used + */ +static int lpc32xx_ooblayout_ecc(struct mtd_info *mtd, int section, + struct mtd_oob_region *oobregion) +{ + if (section) + return -ERANGE; + + oobregion->length = 6; + oobregion->offset = 10; + + return 0; +} + +static int lpc32xx_ooblayout_free(struct mtd_info *mtd, int section, + struct mtd_oob_region *oobregion) +{ + if (section > 1) + return -ERANGE; + + if (!section) { + oobregion->offset = 0; + oobregion->length = 4; + } else { + oobregion->offset = 6; + oobregion->length = 4; + } + + return 0; +} + +static const struct mtd_ooblayout_ops lpc32xx_ooblayout_ops = { + .ecc = lpc32xx_ooblayout_ecc, + .free = lpc32xx_ooblayout_free, +}; + +static u8 bbt_pattern[] = {'B', 'b', 't', '0' }; +static u8 mirror_pattern[] = {'1', 't', 'b', 'B' }; + +/* + * Small page FLASH BBT descriptors, marker at offset 0, version at offset 6 + * Note: Large page devices used the default layout + */ +static struct nand_bbt_descr bbt_smallpage_main_descr = { + .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE + | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP, + .offs = 0, + .len = 4, + .veroffs = 6, + .maxblocks = 4, + .pattern = bbt_pattern +}; + +static struct nand_bbt_descr bbt_smallpage_mirror_descr = { + .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE + | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP, + .offs = 0, + .len = 4, + .veroffs = 6, + .maxblocks = 4, + .pattern = mirror_pattern +}; + +/* + * NAND platform configuration structure + */ +struct lpc32xx_nand_cfg_slc { + uint32_t wdr_clks; + uint32_t wwidth; + uint32_t whold; + uint32_t wsetup; + uint32_t rdr_clks; + uint32_t rwidth; + uint32_t rhold; + uint32_t rsetup; + struct mtd_partition *parts; + unsigned num_parts; +}; + +struct lpc32xx_nand_host { + struct nand_chip nand_chip; + struct lpc32xx_slc_platform_data *pdata; + struct clk *clk; + struct gpio_desc *wp_gpio; + void __iomem *io_base; + struct lpc32xx_nand_cfg_slc *ncfg; + + struct completion comp; + struct dma_chan *dma_chan; + uint32_t dma_buf_len; + struct dma_slave_config dma_slave_config; + struct scatterlist sgl; + + /* + * DMA and CPU addresses of ECC work area and data buffer + */ + uint32_t *ecc_buf; + uint8_t *data_buf; + dma_addr_t io_base_dma; +}; + +static void lpc32xx_nand_setup(struct lpc32xx_nand_host *host) +{ + uint32_t clkrate, tmp; + + /* Reset SLC controller */ + writel(SLCCTRL_SW_RESET, SLC_CTRL(host->io_base)); + udelay(1000); + + /* Basic setup */ + writel(0, SLC_CFG(host->io_base)); + writel(0, SLC_IEN(host->io_base)); + writel((SLCSTAT_INT_TC | SLCSTAT_INT_RDY_EN), + SLC_ICR(host->io_base)); + + /* Get base clock for SLC block */ + clkrate = clk_get_rate(host->clk); + if (clkrate == 0) + clkrate = LPC32XX_DEF_BUS_RATE; + + /* Compute clock setup values */ + tmp = SLCTAC_WDR(host->ncfg->wdr_clks) | + SLCTAC_WWIDTH(clkrate, host->ncfg->wwidth) | + SLCTAC_WHOLD(clkrate, host->ncfg->whold) | + SLCTAC_WSETUP(clkrate, host->ncfg->wsetup) | + SLCTAC_RDR(host->ncfg->rdr_clks) | + SLCTAC_RWIDTH(clkrate, host->ncfg->rwidth) | + SLCTAC_RHOLD(clkrate, host->ncfg->rhold) | + SLCTAC_RSETUP(clkrate, host->ncfg->rsetup); + writel(tmp, SLC_TAC(host->io_base)); +} + +/* + * Hardware specific access to control lines + */ +static void lpc32xx_nand_cmd_ctrl(struct nand_chip *chip, int cmd, + unsigned int ctrl) +{ + uint32_t tmp; + struct lpc32xx_nand_host *host = nand_get_controller_data(chip); + + /* Does CE state need to be changed? */ + tmp = readl(SLC_CFG(host->io_base)); + if (ctrl & NAND_NCE) + tmp |= SLCCFG_CE_LOW; + else + tmp &= ~SLCCFG_CE_LOW; + writel(tmp, SLC_CFG(host->io_base)); + + if (cmd != NAND_CMD_NONE) { + if (ctrl & NAND_CLE) + writel(cmd, SLC_CMD(host->io_base)); + else + writel(cmd, SLC_ADDR(host->io_base)); + } +} + +/* + * Read the Device Ready pin + */ +static int lpc32xx_nand_device_ready(struct nand_chip *chip) +{ + struct lpc32xx_nand_host *host = nand_get_controller_data(chip); + int rdy = 0; + + if ((readl(SLC_STAT(host->io_base)) & SLCSTAT_NAND_READY) != 0) + rdy = 1; + + return rdy; +} + +/* + * Enable NAND write protect + */ +static void lpc32xx_wp_enable(struct lpc32xx_nand_host *host) +{ + if (host->wp_gpio) + gpiod_set_value_cansleep(host->wp_gpio, 1); +} + +/* + * Disable NAND write protect + */ +static void lpc32xx_wp_disable(struct lpc32xx_nand_host *host) +{ + if (host->wp_gpio) + gpiod_set_value_cansleep(host->wp_gpio, 0); +} + +/* + * Prepares SLC for transfers with H/W ECC enabled + */ +static void lpc32xx_nand_ecc_enable(struct nand_chip *chip, int mode) +{ + /* Hardware ECC is enabled automatically in hardware as needed */ +} + +/* + * Calculates the ECC for the data + */ +static int lpc32xx_nand_ecc_calculate(struct nand_chip *chip, + const unsigned char *buf, + unsigned char *code) +{ + /* + * ECC is calculated automatically in hardware during syndrome read + * and write operations, so it doesn't need to be calculated here. + */ + return 0; +} + +/* + * Read a single byte from NAND device + */ +static uint8_t lpc32xx_nand_read_byte(struct nand_chip *chip) +{ + struct lpc32xx_nand_host *host = nand_get_controller_data(chip); + + return (uint8_t)readl(SLC_DATA(host->io_base)); +} + +/* + * Simple device read without ECC + */ +static void lpc32xx_nand_read_buf(struct nand_chip *chip, u_char *buf, int len) +{ + struct lpc32xx_nand_host *host = nand_get_controller_data(chip); + + /* Direct device read with no ECC */ + while (len-- > 0) + *buf++ = (uint8_t)readl(SLC_DATA(host->io_base)); +} + +/* + * Simple device write without ECC + */ +static void lpc32xx_nand_write_buf(struct nand_chip *chip, const uint8_t *buf, + int len) +{ + struct lpc32xx_nand_host *host = nand_get_controller_data(chip); + + /* Direct device write with no ECC */ + while (len-- > 0) + writel((uint32_t)*buf++, SLC_DATA(host->io_base)); +} + +/* + * Read the OOB data from the device without ECC using FIFO method + */ +static int lpc32xx_nand_read_oob_syndrome(struct nand_chip *chip, int page) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + + return nand_read_oob_op(chip, page, 0, chip->oob_poi, mtd->oobsize); +} + +/* + * Write the OOB data to the device without ECC using FIFO method + */ +static int lpc32xx_nand_write_oob_syndrome(struct nand_chip *chip, int page) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + + return nand_prog_page_op(chip, page, mtd->writesize, chip->oob_poi, + mtd->oobsize); +} + +/* + * Fills in the ECC fields in the OOB buffer with the hardware generated ECC + */ +static void lpc32xx_slc_ecc_copy(uint8_t *spare, const uint32_t *ecc, int count) +{ + int i; + + for (i = 0; i < (count * 3); i += 3) { + uint32_t ce = ecc[i / 3]; + ce = ~(ce << 2) & 0xFFFFFF; + spare[i + 2] = (uint8_t)(ce & 0xFF); + ce >>= 8; + spare[i + 1] = (uint8_t)(ce & 0xFF); + ce >>= 8; + spare[i] = (uint8_t)(ce & 0xFF); + } +} + +static void lpc32xx_dma_complete_func(void *completion) +{ + complete(completion); +} + +static int lpc32xx_xmit_dma(struct mtd_info *mtd, dma_addr_t dma, + void *mem, int len, enum dma_transfer_direction dir) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + struct lpc32xx_nand_host *host = nand_get_controller_data(chip); + struct dma_async_tx_descriptor *desc; + int flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT; + int res; + + host->dma_slave_config.direction = dir; + host->dma_slave_config.src_addr = dma; + host->dma_slave_config.dst_addr = dma; + host->dma_slave_config.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; + host->dma_slave_config.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; + host->dma_slave_config.src_maxburst = 4; + host->dma_slave_config.dst_maxburst = 4; + /* DMA controller does flow control: */ + host->dma_slave_config.device_fc = false; + if (dmaengine_slave_config(host->dma_chan, &host->dma_slave_config)) { + dev_err(mtd->dev.parent, "Failed to setup DMA slave\n"); + return -ENXIO; + } + + sg_init_one(&host->sgl, mem, len); + + res = dma_map_sg(host->dma_chan->device->dev, &host->sgl, 1, + DMA_BIDIRECTIONAL); + if (res != 1) { + dev_err(mtd->dev.parent, "Failed to map sg list\n"); + return -ENXIO; + } + desc = dmaengine_prep_slave_sg(host->dma_chan, &host->sgl, 1, dir, + flags); + if (!desc) { + dev_err(mtd->dev.parent, "Failed to prepare slave sg\n"); + goto out1; + } + + init_completion(&host->comp); + desc->callback = lpc32xx_dma_complete_func; + desc->callback_param = &host->comp; + + dmaengine_submit(desc); + dma_async_issue_pending(host->dma_chan); + + wait_for_completion_timeout(&host->comp, msecs_to_jiffies(1000)); + + dma_unmap_sg(host->dma_chan->device->dev, &host->sgl, 1, + DMA_BIDIRECTIONAL); + + return 0; +out1: + dma_unmap_sg(host->dma_chan->device->dev, &host->sgl, 1, + DMA_BIDIRECTIONAL); + return -ENXIO; +} + +/* + * DMA read/write transfers with ECC support + */ +static int lpc32xx_xfer(struct mtd_info *mtd, uint8_t *buf, int eccsubpages, + int read) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + struct lpc32xx_nand_host *host = nand_get_controller_data(chip); + int i, status = 0; + unsigned long timeout; + int res; + enum dma_transfer_direction dir = + read ? DMA_DEV_TO_MEM : DMA_MEM_TO_DEV; + uint8_t *dma_buf; + bool dma_mapped; + + if ((void *)buf <= high_memory) { + dma_buf = buf; + dma_mapped = true; + } else { + dma_buf = host->data_buf; + dma_mapped = false; + if (!read) + memcpy(host->data_buf, buf, mtd->writesize); + } + + if (read) { + writel(readl(SLC_CFG(host->io_base)) | + SLCCFG_DMA_DIR | SLCCFG_ECC_EN | SLCCFG_DMA_ECC | + SLCCFG_DMA_BURST, SLC_CFG(host->io_base)); + } else { + writel((readl(SLC_CFG(host->io_base)) | + SLCCFG_ECC_EN | SLCCFG_DMA_ECC | SLCCFG_DMA_BURST) & + ~SLCCFG_DMA_DIR, + SLC_CFG(host->io_base)); + } + + /* Clear initial ECC */ + writel(SLCCTRL_ECC_CLEAR, SLC_CTRL(host->io_base)); + + /* Transfer size is data area only */ + writel(mtd->writesize, SLC_TC(host->io_base)); + + /* Start transfer in the NAND controller */ + writel(readl(SLC_CTRL(host->io_base)) | SLCCTRL_DMA_START, + SLC_CTRL(host->io_base)); + + for (i = 0; i < chip->ecc.steps; i++) { + /* Data */ + res = lpc32xx_xmit_dma(mtd, SLC_DMA_DATA(host->io_base_dma), + dma_buf + i * chip->ecc.size, + mtd->writesize / chip->ecc.steps, dir); + if (res) + return res; + + /* Always _read_ ECC */ + if (i == chip->ecc.steps - 1) + break; + if (!read) /* ECC availability delayed on write */ + udelay(10); + res = lpc32xx_xmit_dma(mtd, SLC_ECC(host->io_base_dma), + &host->ecc_buf[i], 4, DMA_DEV_TO_MEM); + if (res) + return res; + } + + /* + * According to NXP, the DMA can be finished here, but the NAND + * controller may still have buffered data. After porting to using the + * dmaengine DMA driver (amba-pl080), the condition (DMA_FIFO empty) + * appears to be always true, according to tests. Keeping the check for + * safety reasons for now. + */ + if (readl(SLC_STAT(host->io_base)) & SLCSTAT_DMA_FIFO) { + dev_warn(mtd->dev.parent, "FIFO not empty!\n"); + timeout = jiffies + msecs_to_jiffies(LPC32XX_DMA_TIMEOUT); + while ((readl(SLC_STAT(host->io_base)) & SLCSTAT_DMA_FIFO) && + time_before(jiffies, timeout)) + cpu_relax(); + if (!time_before(jiffies, timeout)) { + dev_err(mtd->dev.parent, "FIFO held data too long\n"); + status = -EIO; + } + } + + /* Read last calculated ECC value */ + if (!read) + udelay(10); + host->ecc_buf[chip->ecc.steps - 1] = + readl(SLC_ECC(host->io_base)); + + /* Flush DMA */ + dmaengine_terminate_all(host->dma_chan); + + if (readl(SLC_STAT(host->io_base)) & SLCSTAT_DMA_FIFO || + readl(SLC_TC(host->io_base))) { + /* Something is left in the FIFO, something is wrong */ + dev_err(mtd->dev.parent, "DMA FIFO failure\n"); + status = -EIO; + } + + /* Stop DMA & HW ECC */ + writel(readl(SLC_CTRL(host->io_base)) & ~SLCCTRL_DMA_START, + SLC_CTRL(host->io_base)); + writel(readl(SLC_CFG(host->io_base)) & + ~(SLCCFG_DMA_DIR | SLCCFG_ECC_EN | SLCCFG_DMA_ECC | + SLCCFG_DMA_BURST), SLC_CFG(host->io_base)); + + if (!dma_mapped && read) + memcpy(buf, host->data_buf, mtd->writesize); + + return status; +} + +/* + * Read the data and OOB data from the device, use ECC correction with the + * data, disable ECC for the OOB data + */ +static int lpc32xx_nand_read_page_syndrome(struct nand_chip *chip, uint8_t *buf, + int oob_required, int page) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + struct lpc32xx_nand_host *host = nand_get_controller_data(chip); + struct mtd_oob_region oobregion = { }; + int stat, i, status, error; + uint8_t *oobecc, tmpecc[LPC32XX_ECC_SAVE_SIZE]; + + /* Issue read command */ + nand_read_page_op(chip, page, 0, NULL, 0); + + /* Read data and oob, calculate ECC */ + status = lpc32xx_xfer(mtd, buf, chip->ecc.steps, 1); + + /* Get OOB data */ + chip->legacy.read_buf(chip, chip->oob_poi, mtd->oobsize); + + /* Convert to stored ECC format */ + lpc32xx_slc_ecc_copy(tmpecc, (uint32_t *) host->ecc_buf, chip->ecc.steps); + + /* Pointer to ECC data retrieved from NAND spare area */ + error = mtd_ooblayout_ecc(mtd, 0, &oobregion); + if (error) + return error; + + oobecc = chip->oob_poi + oobregion.offset; + + for (i = 0; i < chip->ecc.steps; i++) { + stat = chip->ecc.correct(chip, buf, oobecc, + &tmpecc[i * chip->ecc.bytes]); + if (stat < 0) + mtd->ecc_stats.failed++; + else + mtd->ecc_stats.corrected += stat; + + buf += chip->ecc.size; + oobecc += chip->ecc.bytes; + } + + return status; +} + +/* + * Read the data and OOB data from the device, no ECC correction with the + * data or OOB data + */ +static int lpc32xx_nand_read_page_raw_syndrome(struct nand_chip *chip, + uint8_t *buf, int oob_required, + int page) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + + /* Issue read command */ + nand_read_page_op(chip, page, 0, NULL, 0); + + /* Raw reads can just use the FIFO interface */ + chip->legacy.read_buf(chip, buf, chip->ecc.size * chip->ecc.steps); + chip->legacy.read_buf(chip, chip->oob_poi, mtd->oobsize); + + return 0; +} + +/* + * Write the data and OOB data to the device, use ECC with the data, + * disable ECC for the OOB data + */ +static int lpc32xx_nand_write_page_syndrome(struct nand_chip *chip, + const uint8_t *buf, + int oob_required, int page) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + struct lpc32xx_nand_host *host = nand_get_controller_data(chip); + struct mtd_oob_region oobregion = { }; + uint8_t *pb; + int error; + + nand_prog_page_begin_op(chip, page, 0, NULL, 0); + + /* Write data, calculate ECC on outbound data */ + error = lpc32xx_xfer(mtd, (uint8_t *)buf, chip->ecc.steps, 0); + if (error) + return error; + + /* + * The calculated ECC needs some manual work done to it before + * committing it to NAND. Process the calculated ECC and place + * the resultant values directly into the OOB buffer. */ + error = mtd_ooblayout_ecc(mtd, 0, &oobregion); + if (error) + return error; + + pb = chip->oob_poi + oobregion.offset; + lpc32xx_slc_ecc_copy(pb, (uint32_t *)host->ecc_buf, chip->ecc.steps); + + /* Write ECC data to device */ + chip->legacy.write_buf(chip, chip->oob_poi, mtd->oobsize); + + return nand_prog_page_end_op(chip); +} + +/* + * Write the data and OOB data to the device, no ECC correction with the + * data or OOB data + */ +static int lpc32xx_nand_write_page_raw_syndrome(struct nand_chip *chip, + const uint8_t *buf, + int oob_required, int page) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + + /* Raw writes can just use the FIFO interface */ + nand_prog_page_begin_op(chip, page, 0, buf, + chip->ecc.size * chip->ecc.steps); + chip->legacy.write_buf(chip, chip->oob_poi, mtd->oobsize); + + return nand_prog_page_end_op(chip); +} + +static int lpc32xx_nand_dma_setup(struct lpc32xx_nand_host *host) +{ + struct mtd_info *mtd = nand_to_mtd(&host->nand_chip); + dma_cap_mask_t mask; + + if (!host->pdata || !host->pdata->dma_filter) { + dev_err(mtd->dev.parent, "no DMA platform data\n"); + return -ENOENT; + } + + dma_cap_zero(mask); + dma_cap_set(DMA_SLAVE, mask); + host->dma_chan = dma_request_channel(mask, host->pdata->dma_filter, + "nand-slc"); + if (!host->dma_chan) { + dev_err(mtd->dev.parent, "Failed to request DMA channel\n"); + return -EBUSY; + } + + return 0; +} + +static struct lpc32xx_nand_cfg_slc *lpc32xx_parse_dt(struct device *dev) +{ + struct lpc32xx_nand_cfg_slc *ncfg; + struct device_node *np = dev->of_node; + + ncfg = devm_kzalloc(dev, sizeof(*ncfg), GFP_KERNEL); + if (!ncfg) + return NULL; + + of_property_read_u32(np, "nxp,wdr-clks", &ncfg->wdr_clks); + of_property_read_u32(np, "nxp,wwidth", &ncfg->wwidth); + of_property_read_u32(np, "nxp,whold", &ncfg->whold); + of_property_read_u32(np, "nxp,wsetup", &ncfg->wsetup); + of_property_read_u32(np, "nxp,rdr-clks", &ncfg->rdr_clks); + of_property_read_u32(np, "nxp,rwidth", &ncfg->rwidth); + of_property_read_u32(np, "nxp,rhold", &ncfg->rhold); + of_property_read_u32(np, "nxp,rsetup", &ncfg->rsetup); + + if (!ncfg->wdr_clks || !ncfg->wwidth || !ncfg->whold || + !ncfg->wsetup || !ncfg->rdr_clks || !ncfg->rwidth || + !ncfg->rhold || !ncfg->rsetup) { + dev_err(dev, "chip parameters not specified correctly\n"); + return NULL; + } + + return ncfg; +} + +static int lpc32xx_nand_attach_chip(struct nand_chip *chip) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + struct lpc32xx_nand_host *host = nand_get_controller_data(chip); + + if (chip->ecc.engine_type != NAND_ECC_ENGINE_TYPE_ON_HOST) + return 0; + + /* OOB and ECC CPU and DMA work areas */ + host->ecc_buf = (uint32_t *)(host->data_buf + LPC32XX_DMA_DATA_SIZE); + + /* + * Small page FLASH has a unique OOB layout, but large and huge + * page FLASH use the standard layout. Small page FLASH uses a + * custom BBT marker layout. + */ + if (mtd->writesize <= 512) + mtd_set_ooblayout(mtd, &lpc32xx_ooblayout_ops); + + chip->ecc.placement = NAND_ECC_PLACEMENT_INTERLEAVED; + /* These sizes remain the same regardless of page size */ + chip->ecc.size = 256; + chip->ecc.strength = 1; + chip->ecc.bytes = LPC32XX_SLC_DEV_ECC_BYTES; + chip->ecc.prepad = 0; + chip->ecc.postpad = 0; + chip->ecc.read_page_raw = lpc32xx_nand_read_page_raw_syndrome; + chip->ecc.read_page = lpc32xx_nand_read_page_syndrome; + chip->ecc.write_page_raw = lpc32xx_nand_write_page_raw_syndrome; + chip->ecc.write_page = lpc32xx_nand_write_page_syndrome; + chip->ecc.write_oob = lpc32xx_nand_write_oob_syndrome; + chip->ecc.read_oob = lpc32xx_nand_read_oob_syndrome; + chip->ecc.calculate = lpc32xx_nand_ecc_calculate; + chip->ecc.correct = rawnand_sw_hamming_correct; + chip->ecc.hwctl = lpc32xx_nand_ecc_enable; + + /* + * Use a custom BBT marker setup for small page FLASH that + * won't interfere with the ECC layout. Large and huge page + * FLASH use the standard layout. + */ + if ((chip->bbt_options & NAND_BBT_USE_FLASH) && + mtd->writesize <= 512) { + chip->bbt_td = &bbt_smallpage_main_descr; + chip->bbt_md = &bbt_smallpage_mirror_descr; + } + + return 0; +} + +static const struct nand_controller_ops lpc32xx_nand_controller_ops = { + .attach_chip = lpc32xx_nand_attach_chip, +}; + +/* + * Probe for NAND controller + */ +static int lpc32xx_nand_probe(struct platform_device *pdev) +{ + struct lpc32xx_nand_host *host; + struct mtd_info *mtd; + struct nand_chip *chip; + struct resource *rc; + int res; + + /* Allocate memory for the device structure (and zero it) */ + host = devm_kzalloc(&pdev->dev, sizeof(*host), GFP_KERNEL); + if (!host) + return -ENOMEM; + + host->io_base = devm_platform_get_and_ioremap_resource(pdev, 0, &rc); + if (IS_ERR(host->io_base)) + return PTR_ERR(host->io_base); + + host->io_base_dma = rc->start; + if (pdev->dev.of_node) + host->ncfg = lpc32xx_parse_dt(&pdev->dev); + if (!host->ncfg) { + dev_err(&pdev->dev, + "Missing or bad NAND config from device tree\n"); + return -ENOENT; + } + + /* Start with WP disabled, if available */ + host->wp_gpio = gpiod_get_optional(&pdev->dev, NULL, GPIOD_OUT_LOW); + res = PTR_ERR_OR_ZERO(host->wp_gpio); + if (res) { + if (res != -EPROBE_DEFER) + dev_err(&pdev->dev, "WP GPIO is not available: %d\n", + res); + return res; + } + + gpiod_set_consumer_name(host->wp_gpio, "NAND WP"); + + host->pdata = dev_get_platdata(&pdev->dev); + + chip = &host->nand_chip; + mtd = nand_to_mtd(chip); + nand_set_controller_data(chip, host); + nand_set_flash_node(chip, pdev->dev.of_node); + mtd->owner = THIS_MODULE; + mtd->dev.parent = &pdev->dev; + + /* Get NAND clock */ + host->clk = devm_clk_get_enabled(&pdev->dev, NULL); + if (IS_ERR(host->clk)) { + dev_err(&pdev->dev, "Clock failure\n"); + res = -ENOENT; + goto enable_wp; + } + + /* Set NAND IO addresses and command/ready functions */ + chip->legacy.IO_ADDR_R = SLC_DATA(host->io_base); + chip->legacy.IO_ADDR_W = SLC_DATA(host->io_base); + chip->legacy.cmd_ctrl = lpc32xx_nand_cmd_ctrl; + chip->legacy.dev_ready = lpc32xx_nand_device_ready; + chip->legacy.chip_delay = 20; /* 20us command delay time */ + + /* Init NAND controller */ + lpc32xx_nand_setup(host); + + platform_set_drvdata(pdev, host); + + /* NAND callbacks for LPC32xx SLC hardware */ + chip->legacy.read_byte = lpc32xx_nand_read_byte; + chip->legacy.read_buf = lpc32xx_nand_read_buf; + chip->legacy.write_buf = lpc32xx_nand_write_buf; + + /* + * Allocate a large enough buffer for a single huge page plus + * extra space for the spare area and ECC storage area + */ + host->dma_buf_len = LPC32XX_DMA_DATA_SIZE + LPC32XX_ECC_SAVE_SIZE; + host->data_buf = devm_kzalloc(&pdev->dev, host->dma_buf_len, + GFP_KERNEL); + if (host->data_buf == NULL) { + res = -ENOMEM; + goto enable_wp; + } + + res = lpc32xx_nand_dma_setup(host); + if (res) { + res = -EIO; + goto enable_wp; + } + + /* Find NAND device */ + chip->legacy.dummy_controller.ops = &lpc32xx_nand_controller_ops; + res = nand_scan(chip, 1); + if (res) + goto release_dma; + + mtd->name = "nxp_lpc3220_slc"; + res = mtd_device_register(mtd, host->ncfg->parts, + host->ncfg->num_parts); + if (res) + goto cleanup_nand; + + return 0; + +cleanup_nand: + nand_cleanup(chip); +release_dma: + dma_release_channel(host->dma_chan); +enable_wp: + lpc32xx_wp_enable(host); + + return res; +} + +/* + * Remove NAND device. + */ +static void lpc32xx_nand_remove(struct platform_device *pdev) +{ + uint32_t tmp; + struct lpc32xx_nand_host *host = platform_get_drvdata(pdev); + struct nand_chip *chip = &host->nand_chip; + int ret; + + ret = mtd_device_unregister(nand_to_mtd(chip)); + WARN_ON(ret); + nand_cleanup(chip); + dma_release_channel(host->dma_chan); + + /* Force CE high */ + tmp = readl(SLC_CTRL(host->io_base)); + tmp &= ~SLCCFG_CE_LOW; + writel(tmp, SLC_CTRL(host->io_base)); + + lpc32xx_wp_enable(host); +} + +static int lpc32xx_nand_resume(struct platform_device *pdev) +{ + struct lpc32xx_nand_host *host = platform_get_drvdata(pdev); + int ret; + + /* Re-enable NAND clock */ + ret = clk_prepare_enable(host->clk); + if (ret) + return ret; + + /* Fresh init of NAND controller */ + lpc32xx_nand_setup(host); + + /* Disable write protect */ + lpc32xx_wp_disable(host); + + return 0; +} + +static int lpc32xx_nand_suspend(struct platform_device *pdev, pm_message_t pm) +{ + uint32_t tmp; + struct lpc32xx_nand_host *host = platform_get_drvdata(pdev); + + /* Force CE high */ + tmp = readl(SLC_CTRL(host->io_base)); + tmp &= ~SLCCFG_CE_LOW; + writel(tmp, SLC_CTRL(host->io_base)); + + /* Enable write protect for safety */ + lpc32xx_wp_enable(host); + + /* Disable clock */ + clk_disable_unprepare(host->clk); + + return 0; +} + +static const struct of_device_id lpc32xx_nand_match[] = { + { .compatible = "nxp,lpc3220-slc" }, + { /* sentinel */ }, +}; +MODULE_DEVICE_TABLE(of, lpc32xx_nand_match); + +static struct platform_driver lpc32xx_nand_driver = { + .probe = lpc32xx_nand_probe, + .remove_new = lpc32xx_nand_remove, + .resume = pm_ptr(lpc32xx_nand_resume), + .suspend = pm_ptr(lpc32xx_nand_suspend), + .driver = { + .name = LPC32XX_MODNAME, + .of_match_table = lpc32xx_nand_match, + }, +}; + +module_platform_driver(lpc32xx_nand_driver); + +MODULE_LICENSE("GPL"); +MODULE_AUTHOR("Kevin Wells <kevin.wells@nxp.com>"); +MODULE_AUTHOR("Roland Stigge <stigge@antcom.de>"); +MODULE_DESCRIPTION("NAND driver for the NXP LPC32XX SLC controller"); diff --git a/drivers/mtd/nand/raw/marvell_nand.c b/drivers/mtd/nand/raw/marvell_nand.c new file mode 100644 index 0000000000..b841a81cb1 --- /dev/null +++ b/drivers/mtd/nand/raw/marvell_nand.c @@ -0,0 +1,3200 @@ +// SPDX-License-Identifier: GPL-2.0 +/* + * Marvell NAND flash controller driver + * + * Copyright (C) 2017 Marvell + * Author: Miquel RAYNAL <miquel.raynal@free-electrons.com> + * + * + * This NAND controller driver handles two versions of the hardware, + * one is called NFCv1 and is available on PXA SoCs and the other is + * called NFCv2 and is available on Armada SoCs. + * + * The main visible difference is that NFCv1 only has Hamming ECC + * capabilities, while NFCv2 also embeds a BCH ECC engine. Also, DMA + * is not used with NFCv2. + * + * The ECC layouts are depicted in details in Marvell AN-379, but here + * is a brief description. + * + * When using Hamming, the data is split in 512B chunks (either 1, 2 + * or 4) and each chunk will have its own ECC "digest" of 6B at the + * beginning of the OOB area and eventually the remaining free OOB + * bytes (also called "spare" bytes in the driver). This engine + * corrects up to 1 bit per chunk and detects reliably an error if + * there are at most 2 bitflips. Here is the page layout used by the + * controller when Hamming is chosen: + * + * +-------------------------------------------------------------+ + * | Data 1 | ... | Data N | ECC 1 | ... | ECCN | Free OOB bytes | + * +-------------------------------------------------------------+ + * + * When using the BCH engine, there are N identical (data + free OOB + + * ECC) sections and potentially an extra one to deal with + * configurations where the chosen (data + free OOB + ECC) sizes do + * not align with the page (data + OOB) size. ECC bytes are always + * 30B per ECC chunk. Here is the page layout used by the controller + * when BCH is chosen: + * + * +----------------------------------------- + * | Data 1 | Free OOB bytes 1 | ECC 1 | ... + * +----------------------------------------- + * + * ------------------------------------------- + * ... | Data N | Free OOB bytes N | ECC N | + * ------------------------------------------- + * + * --------------------------------------------+ + * Last Data | Last Free OOB bytes | Last ECC | + * --------------------------------------------+ + * + * In both cases, the layout seen by the user is always: all data + * first, then all free OOB bytes and finally all ECC bytes. With BCH, + * ECC bytes are 30B long and are padded with 0xFF to align on 32 + * bytes. + * + * The controller has certain limitations that are handled by the + * driver: + * - It can only read 2k at a time. To overcome this limitation, the + * driver issues data cycles on the bus, without issuing new + * CMD + ADDR cycles. The Marvell term is "naked" operations. + * - The ECC strength in BCH mode cannot be tuned. It is fixed 16 + * bits. What can be tuned is the ECC block size as long as it + * stays between 512B and 2kiB. It's usually chosen based on the + * chip ECC requirements. For instance, using 2kiB ECC chunks + * provides 4b/512B correctability. + * - The controller will always treat data bytes, free OOB bytes + * and ECC bytes in that order, no matter what the real layout is + * (which is usually all data then all OOB bytes). The + * marvell_nfc_layouts array below contains the currently + * supported layouts. + * - Because of these weird layouts, the Bad Block Markers can be + * located in data section. In this case, the NAND_BBT_NO_OOB_BBM + * option must be set to prevent scanning/writing bad block + * markers. + */ + +#include <linux/module.h> +#include <linux/clk.h> +#include <linux/mtd/rawnand.h> +#include <linux/of.h> +#include <linux/iopoll.h> +#include <linux/interrupt.h> +#include <linux/platform_device.h> +#include <linux/slab.h> +#include <linux/mfd/syscon.h> +#include <linux/regmap.h> +#include <asm/unaligned.h> + +#include <linux/dmaengine.h> +#include <linux/dma-mapping.h> +#include <linux/dma/pxa-dma.h> +#include <linux/platform_data/mtd-nand-pxa3xx.h> + +/* Data FIFO granularity, FIFO reads/writes must be a multiple of this length */ +#define FIFO_DEPTH 8 +#define FIFO_REP(x) (x / sizeof(u32)) +#define BCH_SEQ_READS (32 / FIFO_DEPTH) +/* NFC does not support transfers of larger chunks at a time */ +#define MAX_CHUNK_SIZE 2112 +/* NFCv1 cannot read more that 7 bytes of ID */ +#define NFCV1_READID_LEN 7 +/* Polling is done at a pace of POLL_PERIOD us until POLL_TIMEOUT is reached */ +#define POLL_PERIOD 0 +#define POLL_TIMEOUT 100000 +/* Interrupt maximum wait period in ms */ +#define IRQ_TIMEOUT 1000 +/* Latency in clock cycles between SoC pins and NFC logic */ +#define MIN_RD_DEL_CNT 3 +/* Maximum number of contiguous address cycles */ +#define MAX_ADDRESS_CYC_NFCV1 5 +#define MAX_ADDRESS_CYC_NFCV2 7 +/* System control registers/bits to enable the NAND controller on some SoCs */ +#define GENCONF_SOC_DEVICE_MUX 0x208 +#define GENCONF_SOC_DEVICE_MUX_NFC_EN BIT(0) +#define GENCONF_SOC_DEVICE_MUX_ECC_CLK_RST BIT(20) +#define GENCONF_SOC_DEVICE_MUX_ECC_CORE_RST BIT(21) +#define GENCONF_SOC_DEVICE_MUX_NFC_INT_EN BIT(25) +#define GENCONF_SOC_DEVICE_MUX_NFC_DEVBUS_ARB_EN BIT(27) +#define GENCONF_CLK_GATING_CTRL 0x220 +#define GENCONF_CLK_GATING_CTRL_ND_GATE BIT(2) +#define GENCONF_ND_CLK_CTRL 0x700 +#define GENCONF_ND_CLK_CTRL_EN BIT(0) + +/* NAND controller data flash control register */ +#define NDCR 0x00 +#define NDCR_ALL_INT GENMASK(11, 0) +#define NDCR_CS1_CMDDM BIT(7) +#define NDCR_CS0_CMDDM BIT(8) +#define NDCR_RDYM BIT(11) +#define NDCR_ND_ARB_EN BIT(12) +#define NDCR_RA_START BIT(15) +#define NDCR_RD_ID_CNT(x) (min_t(unsigned int, x, 0x7) << 16) +#define NDCR_PAGE_SZ(x) (x >= 2048 ? BIT(24) : 0) +#define NDCR_DWIDTH_M BIT(26) +#define NDCR_DWIDTH_C BIT(27) +#define NDCR_ND_RUN BIT(28) +#define NDCR_DMA_EN BIT(29) +#define NDCR_ECC_EN BIT(30) +#define NDCR_SPARE_EN BIT(31) +#define NDCR_GENERIC_FIELDS_MASK (~(NDCR_RA_START | NDCR_PAGE_SZ(2048) | \ + NDCR_DWIDTH_M | NDCR_DWIDTH_C)) + +/* NAND interface timing parameter 0 register */ +#define NDTR0 0x04 +#define NDTR0_TRP(x) ((min_t(unsigned int, x, 0xF) & 0x7) << 0) +#define NDTR0_TRH(x) (min_t(unsigned int, x, 0x7) << 3) +#define NDTR0_ETRP(x) ((min_t(unsigned int, x, 0xF) & 0x8) << 3) +#define NDTR0_SEL_NRE_EDGE BIT(7) +#define NDTR0_TWP(x) (min_t(unsigned int, x, 0x7) << 8) +#define NDTR0_TWH(x) (min_t(unsigned int, x, 0x7) << 11) +#define NDTR0_TCS(x) (min_t(unsigned int, x, 0x7) << 16) +#define NDTR0_TCH(x) (min_t(unsigned int, x, 0x7) << 19) +#define NDTR0_RD_CNT_DEL(x) (min_t(unsigned int, x, 0xF) << 22) +#define NDTR0_SELCNTR BIT(26) +#define NDTR0_TADL(x) (min_t(unsigned int, x, 0x1F) << 27) + +/* NAND interface timing parameter 1 register */ +#define NDTR1 0x0C +#define NDTR1_TAR(x) (min_t(unsigned int, x, 0xF) << 0) +#define NDTR1_TWHR(x) (min_t(unsigned int, x, 0xF) << 4) +#define NDTR1_TRHW(x) (min_t(unsigned int, x / 16, 0x3) << 8) +#define NDTR1_PRESCALE BIT(14) +#define NDTR1_WAIT_MODE BIT(15) +#define NDTR1_TR(x) (min_t(unsigned int, x, 0xFFFF) << 16) + +/* NAND controller status register */ +#define NDSR 0x14 +#define NDSR_WRCMDREQ BIT(0) +#define NDSR_RDDREQ BIT(1) +#define NDSR_WRDREQ BIT(2) +#define NDSR_CORERR BIT(3) +#define NDSR_UNCERR BIT(4) +#define NDSR_CMDD(cs) BIT(8 - cs) +#define NDSR_RDY(rb) BIT(11 + rb) +#define NDSR_ERRCNT(x) ((x >> 16) & 0x1F) + +/* NAND ECC control register */ +#define NDECCCTRL 0x28 +#define NDECCCTRL_BCH_EN BIT(0) + +/* NAND controller data buffer register */ +#define NDDB 0x40 + +/* NAND controller command buffer 0 register */ +#define NDCB0 0x48 +#define NDCB0_CMD1(x) ((x & 0xFF) << 0) +#define NDCB0_CMD2(x) ((x & 0xFF) << 8) +#define NDCB0_ADDR_CYC(x) ((x & 0x7) << 16) +#define NDCB0_ADDR_GET_NUM_CYC(x) (((x) >> 16) & 0x7) +#define NDCB0_DBC BIT(19) +#define NDCB0_CMD_TYPE(x) ((x & 0x7) << 21) +#define NDCB0_CSEL BIT(24) +#define NDCB0_RDY_BYP BIT(27) +#define NDCB0_LEN_OVRD BIT(28) +#define NDCB0_CMD_XTYPE(x) ((x & 0x7) << 29) + +/* NAND controller command buffer 1 register */ +#define NDCB1 0x4C +#define NDCB1_COLS(x) ((x & 0xFFFF) << 0) +#define NDCB1_ADDRS_PAGE(x) (x << 16) + +/* NAND controller command buffer 2 register */ +#define NDCB2 0x50 +#define NDCB2_ADDR5_PAGE(x) (((x >> 16) & 0xFF) << 0) +#define NDCB2_ADDR5_CYC(x) ((x & 0xFF) << 0) + +/* NAND controller command buffer 3 register */ +#define NDCB3 0x54 +#define NDCB3_ADDR6_CYC(x) ((x & 0xFF) << 16) +#define NDCB3_ADDR7_CYC(x) ((x & 0xFF) << 24) + +/* NAND controller command buffer 0 register 'type' and 'xtype' fields */ +#define TYPE_READ 0 +#define TYPE_WRITE 1 +#define TYPE_ERASE 2 +#define TYPE_READ_ID 3 +#define TYPE_STATUS 4 +#define TYPE_RESET 5 +#define TYPE_NAKED_CMD 6 +#define TYPE_NAKED_ADDR 7 +#define TYPE_MASK 7 +#define XTYPE_MONOLITHIC_RW 0 +#define XTYPE_LAST_NAKED_RW 1 +#define XTYPE_FINAL_COMMAND 3 +#define XTYPE_READ 4 +#define XTYPE_WRITE_DISPATCH 4 +#define XTYPE_NAKED_RW 5 +#define XTYPE_COMMAND_DISPATCH 6 +#define XTYPE_MASK 7 + +/** + * struct marvell_hw_ecc_layout - layout of Marvell ECC + * + * Marvell ECC engine works differently than the others, in order to limit the + * size of the IP, hardware engineers chose to set a fixed strength at 16 bits + * per subpage, and depending on a the desired strength needed by the NAND chip, + * a particular layout mixing data/spare/ecc is defined, with a possible last + * chunk smaller that the others. + * + * @writesize: Full page size on which the layout applies + * @chunk: Desired ECC chunk size on which the layout applies + * @strength: Desired ECC strength (per chunk size bytes) on which the + * layout applies + * @nchunks: Total number of chunks + * @full_chunk_cnt: Number of full-sized chunks, which is the number of + * repetitions of the pattern: + * (data_bytes + spare_bytes + ecc_bytes). + * @data_bytes: Number of data bytes per chunk + * @spare_bytes: Number of spare bytes per chunk + * @ecc_bytes: Number of ecc bytes per chunk + * @last_data_bytes: Number of data bytes in the last chunk + * @last_spare_bytes: Number of spare bytes in the last chunk + * @last_ecc_bytes: Number of ecc bytes in the last chunk + */ +struct marvell_hw_ecc_layout { + /* Constraints */ + int writesize; + int chunk; + int strength; + /* Corresponding layout */ + int nchunks; + int full_chunk_cnt; + int data_bytes; + int spare_bytes; + int ecc_bytes; + int last_data_bytes; + int last_spare_bytes; + int last_ecc_bytes; +}; + +#define MARVELL_LAYOUT(ws, dc, ds, nc, fcc, db, sb, eb, ldb, lsb, leb) \ + { \ + .writesize = ws, \ + .chunk = dc, \ + .strength = ds, \ + .nchunks = nc, \ + .full_chunk_cnt = fcc, \ + .data_bytes = db, \ + .spare_bytes = sb, \ + .ecc_bytes = eb, \ + .last_data_bytes = ldb, \ + .last_spare_bytes = lsb, \ + .last_ecc_bytes = leb, \ + } + +/* Layouts explained in AN-379_Marvell_SoC_NFC_ECC */ +static const struct marvell_hw_ecc_layout marvell_nfc_layouts[] = { + MARVELL_LAYOUT( 512, 512, 1, 1, 1, 512, 8, 8, 0, 0, 0), + MARVELL_LAYOUT( 2048, 512, 1, 1, 1, 2048, 40, 24, 0, 0, 0), + MARVELL_LAYOUT( 2048, 512, 4, 1, 1, 2048, 32, 30, 0, 0, 0), + MARVELL_LAYOUT( 2048, 512, 8, 2, 1, 1024, 0, 30,1024,32, 30), + MARVELL_LAYOUT( 2048, 512, 8, 2, 1, 1024, 0, 30,1024,64, 30), + MARVELL_LAYOUT( 2048, 512, 12, 3, 2, 704, 0, 30,640, 0, 30), + MARVELL_LAYOUT( 2048, 512, 16, 5, 4, 512, 0, 30, 0, 32, 30), + MARVELL_LAYOUT( 4096, 512, 4, 2, 2, 2048, 32, 30, 0, 0, 0), + MARVELL_LAYOUT( 4096, 512, 8, 5, 4, 1024, 0, 30, 0, 64, 30), + MARVELL_LAYOUT( 4096, 512, 12, 6, 5, 704, 0, 30,576, 32, 30), + MARVELL_LAYOUT( 4096, 512, 16, 9, 8, 512, 0, 30, 0, 32, 30), + MARVELL_LAYOUT( 8192, 512, 4, 4, 4, 2048, 0, 30, 0, 0, 0), + MARVELL_LAYOUT( 8192, 512, 8, 9, 8, 1024, 0, 30, 0, 160, 30), + MARVELL_LAYOUT( 8192, 512, 12, 12, 11, 704, 0, 30,448, 64, 30), + MARVELL_LAYOUT( 8192, 512, 16, 17, 16, 512, 0, 30, 0, 32, 30), +}; + +/** + * struct marvell_nand_chip_sel - CS line description + * + * The Nand Flash Controller has up to 4 CE and 2 RB pins. The CE selection + * is made by a field in NDCB0 register, and in another field in NDCB2 register. + * The datasheet describes the logic with an error: ADDR5 field is once + * declared at the beginning of NDCB2, and another time at its end. Because the + * ADDR5 field of NDCB2 may be used by other bytes, it would be more logical + * to use the last bit of this field instead of the first ones. + * + * @cs: Wanted CE lane. + * @ndcb0_csel: Value of the NDCB0 register with or without the flag + * selecting the wanted CE lane. This is set once when + * the Device Tree is probed. + * @rb: Ready/Busy pin for the flash chip + */ +struct marvell_nand_chip_sel { + unsigned int cs; + u32 ndcb0_csel; + unsigned int rb; +}; + +/** + * struct marvell_nand_chip - stores NAND chip device related information + * + * @chip: Base NAND chip structure + * @node: Used to store NAND chips into a list + * @layout: NAND layout when using hardware ECC + * @ndcr: Controller register value for this NAND chip + * @ndtr0: Timing registers 0 value for this NAND chip + * @ndtr1: Timing registers 1 value for this NAND chip + * @addr_cyc: Amount of cycles needed to pass column address + * @selected_die: Current active CS + * @nsels: Number of CS lines required by the NAND chip + * @sels: Array of CS lines descriptions + */ +struct marvell_nand_chip { + struct nand_chip chip; + struct list_head node; + const struct marvell_hw_ecc_layout *layout; + u32 ndcr; + u32 ndtr0; + u32 ndtr1; + int addr_cyc; + int selected_die; + unsigned int nsels; + struct marvell_nand_chip_sel sels[]; +}; + +static inline struct marvell_nand_chip *to_marvell_nand(struct nand_chip *chip) +{ + return container_of(chip, struct marvell_nand_chip, chip); +} + +static inline struct marvell_nand_chip_sel *to_nand_sel(struct marvell_nand_chip + *nand) +{ + return &nand->sels[nand->selected_die]; +} + +/** + * struct marvell_nfc_caps - NAND controller capabilities for distinction + * between compatible strings + * + * @max_cs_nb: Number of Chip Select lines available + * @max_rb_nb: Number of Ready/Busy lines available + * @need_system_controller: Indicates if the SoC needs to have access to the + * system controller (ie. to enable the NAND controller) + * @legacy_of_bindings: Indicates if DT parsing must be done using the old + * fashion way + * @is_nfcv2: NFCv2 has numerous enhancements compared to NFCv1, ie. + * BCH error detection and correction algorithm, + * NDCB3 register has been added + * @use_dma: Use dma for data transfers + * @max_mode_number: Maximum timing mode supported by the controller + */ +struct marvell_nfc_caps { + unsigned int max_cs_nb; + unsigned int max_rb_nb; + bool need_system_controller; + bool legacy_of_bindings; + bool is_nfcv2; + bool use_dma; + unsigned int max_mode_number; +}; + +/** + * struct marvell_nfc - stores Marvell NAND controller information + * + * @controller: Base controller structure + * @dev: Parent device (used to print error messages) + * @regs: NAND controller registers + * @core_clk: Core clock + * @reg_clk: Registers clock + * @complete: Completion object to wait for NAND controller events + * @assigned_cs: Bitmask describing already assigned CS lines + * @chips: List containing all the NAND chips attached to + * this NAND controller + * @selected_chip: Currently selected target chip + * @caps: NAND controller capabilities for each compatible string + * @use_dma: Whetner DMA is used + * @dma_chan: DMA channel (NFCv1 only) + * @dma_buf: 32-bit aligned buffer for DMA transfers (NFCv1 only) + */ +struct marvell_nfc { + struct nand_controller controller; + struct device *dev; + void __iomem *regs; + struct clk *core_clk; + struct clk *reg_clk; + struct completion complete; + unsigned long assigned_cs; + struct list_head chips; + struct nand_chip *selected_chip; + const struct marvell_nfc_caps *caps; + + /* DMA (NFCv1 only) */ + bool use_dma; + struct dma_chan *dma_chan; + u8 *dma_buf; +}; + +static inline struct marvell_nfc *to_marvell_nfc(struct nand_controller *ctrl) +{ + return container_of(ctrl, struct marvell_nfc, controller); +} + +/** + * struct marvell_nfc_timings - NAND controller timings expressed in NAND + * Controller clock cycles + * + * @tRP: ND_nRE pulse width + * @tRH: ND_nRE high duration + * @tWP: ND_nWE pulse time + * @tWH: ND_nWE high duration + * @tCS: Enable signal setup time + * @tCH: Enable signal hold time + * @tADL: Address to write data delay + * @tAR: ND_ALE low to ND_nRE low delay + * @tWHR: ND_nWE high to ND_nRE low for status read + * @tRHW: ND_nRE high duration, read to write delay + * @tR: ND_nWE high to ND_nRE low for read + */ +struct marvell_nfc_timings { + /* NDTR0 fields */ + unsigned int tRP; + unsigned int tRH; + unsigned int tWP; + unsigned int tWH; + unsigned int tCS; + unsigned int tCH; + unsigned int tADL; + /* NDTR1 fields */ + unsigned int tAR; + unsigned int tWHR; + unsigned int tRHW; + unsigned int tR; +}; + +/** + * TO_CYCLES() - Derives a duration in numbers of clock cycles. + * + * @ps: Duration in pico-seconds + * @period_ns: Clock period in nano-seconds + * + * Convert the duration in nano-seconds, then divide by the period and + * return the number of clock periods. + */ +#define TO_CYCLES(ps, period_ns) (DIV_ROUND_UP(ps / 1000, period_ns)) +#define TO_CYCLES64(ps, period_ns) (DIV_ROUND_UP_ULL(div_u64(ps, 1000), \ + period_ns)) + +/** + * struct marvell_nfc_op - filled during the parsing of the ->exec_op() + * subop subset of instructions. + * + * @ndcb: Array of values written to NDCBx registers + * @cle_ale_delay_ns: Optional delay after the last CMD or ADDR cycle + * @rdy_timeout_ms: Timeout for waits on Ready/Busy pin + * @rdy_delay_ns: Optional delay after waiting for the RB pin + * @data_delay_ns: Optional delay after the data xfer + * @data_instr_idx: Index of the data instruction in the subop + * @data_instr: Pointer to the data instruction in the subop + */ +struct marvell_nfc_op { + u32 ndcb[4]; + unsigned int cle_ale_delay_ns; + unsigned int rdy_timeout_ms; + unsigned int rdy_delay_ns; + unsigned int data_delay_ns; + unsigned int data_instr_idx; + const struct nand_op_instr *data_instr; +}; + +/* + * Internal helper to conditionnally apply a delay (from the above structure, + * most of the time). + */ +static void cond_delay(unsigned int ns) +{ + if (!ns) + return; + + if (ns < 10000) + ndelay(ns); + else + udelay(DIV_ROUND_UP(ns, 1000)); +} + +/* + * The controller has many flags that could generate interrupts, most of them + * are disabled and polling is used. For the very slow signals, using interrupts + * may relax the CPU charge. + */ +static void marvell_nfc_disable_int(struct marvell_nfc *nfc, u32 int_mask) +{ + u32 reg; + + /* Writing 1 disables the interrupt */ + reg = readl_relaxed(nfc->regs + NDCR); + writel_relaxed(reg | int_mask, nfc->regs + NDCR); +} + +static void marvell_nfc_enable_int(struct marvell_nfc *nfc, u32 int_mask) +{ + u32 reg; + + /* Writing 0 enables the interrupt */ + reg = readl_relaxed(nfc->regs + NDCR); + writel_relaxed(reg & ~int_mask, nfc->regs + NDCR); +} + +static u32 marvell_nfc_clear_int(struct marvell_nfc *nfc, u32 int_mask) +{ + u32 reg; + + reg = readl_relaxed(nfc->regs + NDSR); + writel_relaxed(int_mask, nfc->regs + NDSR); + + return reg & int_mask; +} + +static void marvell_nfc_force_byte_access(struct nand_chip *chip, + bool force_8bit) +{ + struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); + u32 ndcr; + + /* + * Callers of this function do not verify if the NAND is using a 16-bit + * an 8-bit bus for normal operations, so we need to take care of that + * here by leaving the configuration unchanged if the NAND does not have + * the NAND_BUSWIDTH_16 flag set. + */ + if (!(chip->options & NAND_BUSWIDTH_16)) + return; + + ndcr = readl_relaxed(nfc->regs + NDCR); + + if (force_8bit) + ndcr &= ~(NDCR_DWIDTH_M | NDCR_DWIDTH_C); + else + ndcr |= NDCR_DWIDTH_M | NDCR_DWIDTH_C; + + writel_relaxed(ndcr, nfc->regs + NDCR); +} + +static int marvell_nfc_wait_ndrun(struct nand_chip *chip) +{ + struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); + u32 val; + int ret; + + /* + * The command is being processed, wait for the ND_RUN bit to be + * cleared by the NFC. If not, we must clear it by hand. + */ + ret = readl_relaxed_poll_timeout(nfc->regs + NDCR, val, + (val & NDCR_ND_RUN) == 0, + POLL_PERIOD, POLL_TIMEOUT); + if (ret) { + dev_err(nfc->dev, "Timeout on NAND controller run mode\n"); + writel_relaxed(readl(nfc->regs + NDCR) & ~NDCR_ND_RUN, + nfc->regs + NDCR); + return ret; + } + + return 0; +} + +/* + * Any time a command has to be sent to the controller, the following sequence + * has to be followed: + * - call marvell_nfc_prepare_cmd() + * -> activate the ND_RUN bit that will kind of 'start a job' + * -> wait the signal indicating the NFC is waiting for a command + * - send the command (cmd and address cycles) + * - enventually send or receive the data + * - call marvell_nfc_end_cmd() with the corresponding flag + * -> wait the flag to be triggered or cancel the job with a timeout + * + * The following helpers are here to factorize the code a bit so that + * specialized functions responsible for executing the actual NAND + * operations do not have to replicate the same code blocks. + */ +static int marvell_nfc_prepare_cmd(struct nand_chip *chip) +{ + struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); + u32 ndcr, val; + int ret; + + /* Poll ND_RUN and clear NDSR before issuing any command */ + ret = marvell_nfc_wait_ndrun(chip); + if (ret) { + dev_err(nfc->dev, "Last operation did not succeed\n"); + return ret; + } + + ndcr = readl_relaxed(nfc->regs + NDCR); + writel_relaxed(readl(nfc->regs + NDSR), nfc->regs + NDSR); + + /* Assert ND_RUN bit and wait the NFC to be ready */ + writel_relaxed(ndcr | NDCR_ND_RUN, nfc->regs + NDCR); + ret = readl_relaxed_poll_timeout(nfc->regs + NDSR, val, + val & NDSR_WRCMDREQ, + POLL_PERIOD, POLL_TIMEOUT); + if (ret) { + dev_err(nfc->dev, "Timeout on WRCMDRE\n"); + return -ETIMEDOUT; + } + + /* Command may be written, clear WRCMDREQ status bit */ + writel_relaxed(NDSR_WRCMDREQ, nfc->regs + NDSR); + + return 0; +} + +static void marvell_nfc_send_cmd(struct nand_chip *chip, + struct marvell_nfc_op *nfc_op) +{ + struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip); + struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); + + dev_dbg(nfc->dev, "\nNDCR: 0x%08x\n" + "NDCB0: 0x%08x\nNDCB1: 0x%08x\nNDCB2: 0x%08x\nNDCB3: 0x%08x\n", + (u32)readl_relaxed(nfc->regs + NDCR), nfc_op->ndcb[0], + nfc_op->ndcb[1], nfc_op->ndcb[2], nfc_op->ndcb[3]); + + writel_relaxed(to_nand_sel(marvell_nand)->ndcb0_csel | nfc_op->ndcb[0], + nfc->regs + NDCB0); + writel_relaxed(nfc_op->ndcb[1], nfc->regs + NDCB0); + writel(nfc_op->ndcb[2], nfc->regs + NDCB0); + + /* + * Write NDCB0 four times only if LEN_OVRD is set or if ADDR6 or ADDR7 + * fields are used (only available on NFCv2). + */ + if (nfc_op->ndcb[0] & NDCB0_LEN_OVRD || + NDCB0_ADDR_GET_NUM_CYC(nfc_op->ndcb[0]) >= 6) { + if (!WARN_ON_ONCE(!nfc->caps->is_nfcv2)) + writel(nfc_op->ndcb[3], nfc->regs + NDCB0); + } +} + +static int marvell_nfc_end_cmd(struct nand_chip *chip, int flag, + const char *label) +{ + struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); + u32 val; + int ret; + + ret = readl_relaxed_poll_timeout(nfc->regs + NDSR, val, + val & flag, + POLL_PERIOD, POLL_TIMEOUT); + + if (ret) { + dev_err(nfc->dev, "Timeout on %s (NDSR: 0x%08x)\n", + label, val); + if (nfc->dma_chan) + dmaengine_terminate_all(nfc->dma_chan); + return ret; + } + + /* + * DMA function uses this helper to poll on CMDD bits without wanting + * them to be cleared. + */ + if (nfc->use_dma && (readl_relaxed(nfc->regs + NDCR) & NDCR_DMA_EN)) + return 0; + + writel_relaxed(flag, nfc->regs + NDSR); + + return 0; +} + +static int marvell_nfc_wait_cmdd(struct nand_chip *chip) +{ + struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip); + int cs_flag = NDSR_CMDD(to_nand_sel(marvell_nand)->ndcb0_csel); + + return marvell_nfc_end_cmd(chip, cs_flag, "CMDD"); +} + +static int marvell_nfc_poll_status(struct marvell_nfc *nfc, u32 mask, + u32 expected_val, unsigned long timeout_ms) +{ + unsigned long limit; + u32 st; + + limit = jiffies + msecs_to_jiffies(timeout_ms); + do { + st = readl_relaxed(nfc->regs + NDSR); + if (st & NDSR_RDY(1)) + st |= NDSR_RDY(0); + + if ((st & mask) == expected_val) + return 0; + + cpu_relax(); + } while (time_after(limit, jiffies)); + + return -ETIMEDOUT; +} + +static int marvell_nfc_wait_op(struct nand_chip *chip, unsigned int timeout_ms) +{ + struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); + struct mtd_info *mtd = nand_to_mtd(chip); + u32 pending; + int ret; + + /* Timeout is expressed in ms */ + if (!timeout_ms) + timeout_ms = IRQ_TIMEOUT; + + if (mtd->oops_panic_write) { + ret = marvell_nfc_poll_status(nfc, NDSR_RDY(0), + NDSR_RDY(0), + timeout_ms); + } else { + init_completion(&nfc->complete); + + marvell_nfc_enable_int(nfc, NDCR_RDYM); + ret = wait_for_completion_timeout(&nfc->complete, + msecs_to_jiffies(timeout_ms)); + marvell_nfc_disable_int(nfc, NDCR_RDYM); + } + pending = marvell_nfc_clear_int(nfc, NDSR_RDY(0) | NDSR_RDY(1)); + + /* + * In case the interrupt was not served in the required time frame, + * check if the ISR was not served or if something went actually wrong. + */ + if (!ret && !pending) { + dev_err(nfc->dev, "Timeout waiting for RB signal\n"); + return -ETIMEDOUT; + } + + return 0; +} + +static void marvell_nfc_select_target(struct nand_chip *chip, + unsigned int die_nr) +{ + struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip); + struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); + u32 ndcr_generic; + + /* + * Reset the NDCR register to a clean state for this particular chip, + * also clear ND_RUN bit. + */ + ndcr_generic = readl_relaxed(nfc->regs + NDCR) & + NDCR_GENERIC_FIELDS_MASK & ~NDCR_ND_RUN; + writel_relaxed(ndcr_generic | marvell_nand->ndcr, nfc->regs + NDCR); + + /* Also reset the interrupt status register */ + marvell_nfc_clear_int(nfc, NDCR_ALL_INT); + + if (chip == nfc->selected_chip && die_nr == marvell_nand->selected_die) + return; + + writel_relaxed(marvell_nand->ndtr0, nfc->regs + NDTR0); + writel_relaxed(marvell_nand->ndtr1, nfc->regs + NDTR1); + + nfc->selected_chip = chip; + marvell_nand->selected_die = die_nr; +} + +static irqreturn_t marvell_nfc_isr(int irq, void *dev_id) +{ + struct marvell_nfc *nfc = dev_id; + u32 st = readl_relaxed(nfc->regs + NDSR); + u32 ien = (~readl_relaxed(nfc->regs + NDCR)) & NDCR_ALL_INT; + + /* + * RDY interrupt mask is one bit in NDCR while there are two status + * bit in NDSR (RDY[cs0/cs2] and RDY[cs1/cs3]). + */ + if (st & NDSR_RDY(1)) + st |= NDSR_RDY(0); + + if (!(st & ien)) + return IRQ_NONE; + + marvell_nfc_disable_int(nfc, st & NDCR_ALL_INT); + + if (st & (NDSR_RDY(0) | NDSR_RDY(1))) + complete(&nfc->complete); + + return IRQ_HANDLED; +} + +/* HW ECC related functions */ +static void marvell_nfc_enable_hw_ecc(struct nand_chip *chip) +{ + struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); + u32 ndcr = readl_relaxed(nfc->regs + NDCR); + + if (!(ndcr & NDCR_ECC_EN)) { + writel_relaxed(ndcr | NDCR_ECC_EN, nfc->regs + NDCR); + + /* + * When enabling BCH, set threshold to 0 to always know the + * number of corrected bitflips. + */ + if (chip->ecc.algo == NAND_ECC_ALGO_BCH) + writel_relaxed(NDECCCTRL_BCH_EN, nfc->regs + NDECCCTRL); + } +} + +static void marvell_nfc_disable_hw_ecc(struct nand_chip *chip) +{ + struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); + u32 ndcr = readl_relaxed(nfc->regs + NDCR); + + if (ndcr & NDCR_ECC_EN) { + writel_relaxed(ndcr & ~NDCR_ECC_EN, nfc->regs + NDCR); + if (chip->ecc.algo == NAND_ECC_ALGO_BCH) + writel_relaxed(0, nfc->regs + NDECCCTRL); + } +} + +/* DMA related helpers */ +static void marvell_nfc_enable_dma(struct marvell_nfc *nfc) +{ + u32 reg; + + reg = readl_relaxed(nfc->regs + NDCR); + writel_relaxed(reg | NDCR_DMA_EN, nfc->regs + NDCR); +} + +static void marvell_nfc_disable_dma(struct marvell_nfc *nfc) +{ + u32 reg; + + reg = readl_relaxed(nfc->regs + NDCR); + writel_relaxed(reg & ~NDCR_DMA_EN, nfc->regs + NDCR); +} + +/* Read/write PIO/DMA accessors */ +static int marvell_nfc_xfer_data_dma(struct marvell_nfc *nfc, + enum dma_data_direction direction, + unsigned int len) +{ + unsigned int dma_len = min_t(int, ALIGN(len, 32), MAX_CHUNK_SIZE); + struct dma_async_tx_descriptor *tx; + struct scatterlist sg; + dma_cookie_t cookie; + int ret; + + marvell_nfc_enable_dma(nfc); + /* Prepare the DMA transfer */ + sg_init_one(&sg, nfc->dma_buf, dma_len); + ret = dma_map_sg(nfc->dma_chan->device->dev, &sg, 1, direction); + if (!ret) { + dev_err(nfc->dev, "Could not map DMA S/G list\n"); + return -ENXIO; + } + + tx = dmaengine_prep_slave_sg(nfc->dma_chan, &sg, 1, + direction == DMA_FROM_DEVICE ? + DMA_DEV_TO_MEM : DMA_MEM_TO_DEV, + DMA_PREP_INTERRUPT); + if (!tx) { + dev_err(nfc->dev, "Could not prepare DMA S/G list\n"); + dma_unmap_sg(nfc->dma_chan->device->dev, &sg, 1, direction); + return -ENXIO; + } + + /* Do the task and wait for it to finish */ + cookie = dmaengine_submit(tx); + ret = dma_submit_error(cookie); + if (ret) + return -EIO; + + dma_async_issue_pending(nfc->dma_chan); + ret = marvell_nfc_wait_cmdd(nfc->selected_chip); + dma_unmap_sg(nfc->dma_chan->device->dev, &sg, 1, direction); + marvell_nfc_disable_dma(nfc); + if (ret) { + dev_err(nfc->dev, "Timeout waiting for DMA (status: %d)\n", + dmaengine_tx_status(nfc->dma_chan, cookie, NULL)); + dmaengine_terminate_all(nfc->dma_chan); + return -ETIMEDOUT; + } + + return 0; +} + +static int marvell_nfc_xfer_data_in_pio(struct marvell_nfc *nfc, u8 *in, + unsigned int len) +{ + unsigned int last_len = len % FIFO_DEPTH; + unsigned int last_full_offset = round_down(len, FIFO_DEPTH); + int i; + + for (i = 0; i < last_full_offset; i += FIFO_DEPTH) + ioread32_rep(nfc->regs + NDDB, in + i, FIFO_REP(FIFO_DEPTH)); + + if (last_len) { + u8 tmp_buf[FIFO_DEPTH]; + + ioread32_rep(nfc->regs + NDDB, tmp_buf, FIFO_REP(FIFO_DEPTH)); + memcpy(in + last_full_offset, tmp_buf, last_len); + } + + return 0; +} + +static int marvell_nfc_xfer_data_out_pio(struct marvell_nfc *nfc, const u8 *out, + unsigned int len) +{ + unsigned int last_len = len % FIFO_DEPTH; + unsigned int last_full_offset = round_down(len, FIFO_DEPTH); + int i; + + for (i = 0; i < last_full_offset; i += FIFO_DEPTH) + iowrite32_rep(nfc->regs + NDDB, out + i, FIFO_REP(FIFO_DEPTH)); + + if (last_len) { + u8 tmp_buf[FIFO_DEPTH]; + + memcpy(tmp_buf, out + last_full_offset, last_len); + iowrite32_rep(nfc->regs + NDDB, tmp_buf, FIFO_REP(FIFO_DEPTH)); + } + + return 0; +} + +static void marvell_nfc_check_empty_chunk(struct nand_chip *chip, + u8 *data, int data_len, + u8 *spare, int spare_len, + u8 *ecc, int ecc_len, + unsigned int *max_bitflips) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + int bf; + + /* + * Blank pages (all 0xFF) that have not been written may be recognized + * as bad if bitflips occur, so whenever an uncorrectable error occurs, + * check if the entire page (with ECC bytes) is actually blank or not. + */ + if (!data) + data_len = 0; + if (!spare) + spare_len = 0; + if (!ecc) + ecc_len = 0; + + bf = nand_check_erased_ecc_chunk(data, data_len, ecc, ecc_len, + spare, spare_len, chip->ecc.strength); + if (bf < 0) { + mtd->ecc_stats.failed++; + return; + } + + /* Update the stats and max_bitflips */ + mtd->ecc_stats.corrected += bf; + *max_bitflips = max_t(unsigned int, *max_bitflips, bf); +} + +/* + * Check if a chunk is correct or not according to the hardware ECC engine. + * mtd->ecc_stats.corrected is updated, as well as max_bitflips, however + * mtd->ecc_stats.failure is not, the function will instead return a non-zero + * value indicating that a check on the emptyness of the subpage must be + * performed before actually declaring the subpage as "corrupted". + */ +static int marvell_nfc_hw_ecc_check_bitflips(struct nand_chip *chip, + unsigned int *max_bitflips) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); + int bf = 0; + u32 ndsr; + + ndsr = readl_relaxed(nfc->regs + NDSR); + + /* Check uncorrectable error flag */ + if (ndsr & NDSR_UNCERR) { + writel_relaxed(ndsr, nfc->regs + NDSR); + + /* + * Do not increment ->ecc_stats.failed now, instead, return a + * non-zero value to indicate that this chunk was apparently + * bad, and it should be check to see if it empty or not. If + * the chunk (with ECC bytes) is not declared empty, the calling + * function must increment the failure count. + */ + return -EBADMSG; + } + + /* Check correctable error flag */ + if (ndsr & NDSR_CORERR) { + writel_relaxed(ndsr, nfc->regs + NDSR); + + if (chip->ecc.algo == NAND_ECC_ALGO_BCH) + bf = NDSR_ERRCNT(ndsr); + else + bf = 1; + } + + /* Update the stats and max_bitflips */ + mtd->ecc_stats.corrected += bf; + *max_bitflips = max_t(unsigned int, *max_bitflips, bf); + + return 0; +} + +/* Hamming read helpers */ +static int marvell_nfc_hw_ecc_hmg_do_read_page(struct nand_chip *chip, + u8 *data_buf, u8 *oob_buf, + bool raw, int page) +{ + struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip); + struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); + const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout; + struct marvell_nfc_op nfc_op = { + .ndcb[0] = NDCB0_CMD_TYPE(TYPE_READ) | + NDCB0_ADDR_CYC(marvell_nand->addr_cyc) | + NDCB0_DBC | + NDCB0_CMD1(NAND_CMD_READ0) | + NDCB0_CMD2(NAND_CMD_READSTART), + .ndcb[1] = NDCB1_ADDRS_PAGE(page), + .ndcb[2] = NDCB2_ADDR5_PAGE(page), + }; + unsigned int oob_bytes = lt->spare_bytes + (raw ? lt->ecc_bytes : 0); + int ret; + + /* NFCv2 needs more information about the operation being executed */ + if (nfc->caps->is_nfcv2) + nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_MONOLITHIC_RW); + + ret = marvell_nfc_prepare_cmd(chip); + if (ret) + return ret; + + marvell_nfc_send_cmd(chip, &nfc_op); + ret = marvell_nfc_end_cmd(chip, NDSR_RDDREQ, + "RDDREQ while draining FIFO (data/oob)"); + if (ret) + return ret; + + /* + * Read the page then the OOB area. Unlike what is shown in current + * documentation, spare bytes are protected by the ECC engine, and must + * be at the beginning of the OOB area or running this driver on legacy + * systems will prevent the discovery of the BBM/BBT. + */ + if (nfc->use_dma) { + marvell_nfc_xfer_data_dma(nfc, DMA_FROM_DEVICE, + lt->data_bytes + oob_bytes); + memcpy(data_buf, nfc->dma_buf, lt->data_bytes); + memcpy(oob_buf, nfc->dma_buf + lt->data_bytes, oob_bytes); + } else { + marvell_nfc_xfer_data_in_pio(nfc, data_buf, lt->data_bytes); + marvell_nfc_xfer_data_in_pio(nfc, oob_buf, oob_bytes); + } + + ret = marvell_nfc_wait_cmdd(chip); + return ret; +} + +static int marvell_nfc_hw_ecc_hmg_read_page_raw(struct nand_chip *chip, u8 *buf, + int oob_required, int page) +{ + marvell_nfc_select_target(chip, chip->cur_cs); + return marvell_nfc_hw_ecc_hmg_do_read_page(chip, buf, chip->oob_poi, + true, page); +} + +static int marvell_nfc_hw_ecc_hmg_read_page(struct nand_chip *chip, u8 *buf, + int oob_required, int page) +{ + const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout; + unsigned int full_sz = lt->data_bytes + lt->spare_bytes + lt->ecc_bytes; + int max_bitflips = 0, ret; + u8 *raw_buf; + + marvell_nfc_select_target(chip, chip->cur_cs); + marvell_nfc_enable_hw_ecc(chip); + marvell_nfc_hw_ecc_hmg_do_read_page(chip, buf, chip->oob_poi, false, + page); + ret = marvell_nfc_hw_ecc_check_bitflips(chip, &max_bitflips); + marvell_nfc_disable_hw_ecc(chip); + + if (!ret) + return max_bitflips; + + /* + * When ECC failures are detected, check if the full page has been + * written or not. Ignore the failure if it is actually empty. + */ + raw_buf = kmalloc(full_sz, GFP_KERNEL); + if (!raw_buf) + return -ENOMEM; + + marvell_nfc_hw_ecc_hmg_do_read_page(chip, raw_buf, raw_buf + + lt->data_bytes, true, page); + marvell_nfc_check_empty_chunk(chip, raw_buf, full_sz, NULL, 0, NULL, 0, + &max_bitflips); + kfree(raw_buf); + + return max_bitflips; +} + +/* + * Spare area in Hamming layouts is not protected by the ECC engine (even if + * it appears before the ECC bytes when reading), the ->read_oob_raw() function + * also stands for ->read_oob(). + */ +static int marvell_nfc_hw_ecc_hmg_read_oob_raw(struct nand_chip *chip, int page) +{ + u8 *buf = nand_get_data_buf(chip); + + marvell_nfc_select_target(chip, chip->cur_cs); + return marvell_nfc_hw_ecc_hmg_do_read_page(chip, buf, chip->oob_poi, + true, page); +} + +/* Hamming write helpers */ +static int marvell_nfc_hw_ecc_hmg_do_write_page(struct nand_chip *chip, + const u8 *data_buf, + const u8 *oob_buf, bool raw, + int page) +{ + const struct nand_sdr_timings *sdr = + nand_get_sdr_timings(nand_get_interface_config(chip)); + struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip); + struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); + const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout; + struct marvell_nfc_op nfc_op = { + .ndcb[0] = NDCB0_CMD_TYPE(TYPE_WRITE) | + NDCB0_ADDR_CYC(marvell_nand->addr_cyc) | + NDCB0_CMD1(NAND_CMD_SEQIN) | + NDCB0_CMD2(NAND_CMD_PAGEPROG) | + NDCB0_DBC, + .ndcb[1] = NDCB1_ADDRS_PAGE(page), + .ndcb[2] = NDCB2_ADDR5_PAGE(page), + }; + unsigned int oob_bytes = lt->spare_bytes + (raw ? lt->ecc_bytes : 0); + u8 status; + int ret; + + /* NFCv2 needs more information about the operation being executed */ + if (nfc->caps->is_nfcv2) + nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_MONOLITHIC_RW); + + ret = marvell_nfc_prepare_cmd(chip); + if (ret) + return ret; + + marvell_nfc_send_cmd(chip, &nfc_op); + ret = marvell_nfc_end_cmd(chip, NDSR_WRDREQ, + "WRDREQ while loading FIFO (data)"); + if (ret) + return ret; + + /* Write the page then the OOB area */ + if (nfc->use_dma) { + memcpy(nfc->dma_buf, data_buf, lt->data_bytes); + memcpy(nfc->dma_buf + lt->data_bytes, oob_buf, oob_bytes); + marvell_nfc_xfer_data_dma(nfc, DMA_TO_DEVICE, lt->data_bytes + + lt->ecc_bytes + lt->spare_bytes); + } else { + marvell_nfc_xfer_data_out_pio(nfc, data_buf, lt->data_bytes); + marvell_nfc_xfer_data_out_pio(nfc, oob_buf, oob_bytes); + } + + ret = marvell_nfc_wait_cmdd(chip); + if (ret) + return ret; + + ret = marvell_nfc_wait_op(chip, + PSEC_TO_MSEC(sdr->tPROG_max)); + if (ret) + return ret; + + /* Check write status on the chip side */ + ret = nand_status_op(chip, &status); + if (ret) + return ret; + + if (status & NAND_STATUS_FAIL) + return -EIO; + + return 0; +} + +static int marvell_nfc_hw_ecc_hmg_write_page_raw(struct nand_chip *chip, + const u8 *buf, + int oob_required, int page) +{ + marvell_nfc_select_target(chip, chip->cur_cs); + return marvell_nfc_hw_ecc_hmg_do_write_page(chip, buf, chip->oob_poi, + true, page); +} + +static int marvell_nfc_hw_ecc_hmg_write_page(struct nand_chip *chip, + const u8 *buf, + int oob_required, int page) +{ + int ret; + + marvell_nfc_select_target(chip, chip->cur_cs); + marvell_nfc_enable_hw_ecc(chip); + ret = marvell_nfc_hw_ecc_hmg_do_write_page(chip, buf, chip->oob_poi, + false, page); + marvell_nfc_disable_hw_ecc(chip); + + return ret; +} + +/* + * Spare area in Hamming layouts is not protected by the ECC engine (even if + * it appears before the ECC bytes when reading), the ->write_oob_raw() function + * also stands for ->write_oob(). + */ +static int marvell_nfc_hw_ecc_hmg_write_oob_raw(struct nand_chip *chip, + int page) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + u8 *buf = nand_get_data_buf(chip); + + memset(buf, 0xFF, mtd->writesize); + + marvell_nfc_select_target(chip, chip->cur_cs); + return marvell_nfc_hw_ecc_hmg_do_write_page(chip, buf, chip->oob_poi, + true, page); +} + +/* BCH read helpers */ +static int marvell_nfc_hw_ecc_bch_read_page_raw(struct nand_chip *chip, u8 *buf, + int oob_required, int page) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout; + u8 *oob = chip->oob_poi; + int chunk_size = lt->data_bytes + lt->spare_bytes + lt->ecc_bytes; + int ecc_offset = (lt->full_chunk_cnt * lt->spare_bytes) + + lt->last_spare_bytes; + int data_len = lt->data_bytes; + int spare_len = lt->spare_bytes; + int ecc_len = lt->ecc_bytes; + int chunk; + + marvell_nfc_select_target(chip, chip->cur_cs); + + if (oob_required) + memset(chip->oob_poi, 0xFF, mtd->oobsize); + + nand_read_page_op(chip, page, 0, NULL, 0); + + for (chunk = 0; chunk < lt->nchunks; chunk++) { + /* Update last chunk length */ + if (chunk >= lt->full_chunk_cnt) { + data_len = lt->last_data_bytes; + spare_len = lt->last_spare_bytes; + ecc_len = lt->last_ecc_bytes; + } + + /* Read data bytes*/ + nand_change_read_column_op(chip, chunk * chunk_size, + buf + (lt->data_bytes * chunk), + data_len, false); + + /* Read spare bytes */ + nand_read_data_op(chip, oob + (lt->spare_bytes * chunk), + spare_len, false, false); + + /* Read ECC bytes */ + nand_read_data_op(chip, oob + ecc_offset + + (ALIGN(lt->ecc_bytes, 32) * chunk), + ecc_len, false, false); + } + + return 0; +} + +static void marvell_nfc_hw_ecc_bch_read_chunk(struct nand_chip *chip, int chunk, + u8 *data, unsigned int data_len, + u8 *spare, unsigned int spare_len, + int page) +{ + struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip); + struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); + const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout; + int i, ret; + struct marvell_nfc_op nfc_op = { + .ndcb[0] = NDCB0_CMD_TYPE(TYPE_READ) | + NDCB0_ADDR_CYC(marvell_nand->addr_cyc) | + NDCB0_LEN_OVRD, + .ndcb[1] = NDCB1_ADDRS_PAGE(page), + .ndcb[2] = NDCB2_ADDR5_PAGE(page), + .ndcb[3] = data_len + spare_len, + }; + + ret = marvell_nfc_prepare_cmd(chip); + if (ret) + return; + + if (chunk == 0) + nfc_op.ndcb[0] |= NDCB0_DBC | + NDCB0_CMD1(NAND_CMD_READ0) | + NDCB0_CMD2(NAND_CMD_READSTART); + + /* + * Trigger the monolithic read on the first chunk, then naked read on + * intermediate chunks and finally a last naked read on the last chunk. + */ + if (chunk == 0) + nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_MONOLITHIC_RW); + else if (chunk < lt->nchunks - 1) + nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_NAKED_RW); + else + nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_LAST_NAKED_RW); + + marvell_nfc_send_cmd(chip, &nfc_op); + + /* + * According to the datasheet, when reading from NDDB + * with BCH enabled, after each 32 bytes reads, we + * have to make sure that the NDSR.RDDREQ bit is set. + * + * Drain the FIFO, 8 32-bit reads at a time, and skip + * the polling on the last read. + * + * Length is a multiple of 32 bytes, hence it is a multiple of 8 too. + */ + for (i = 0; i < data_len; i += FIFO_DEPTH * BCH_SEQ_READS) { + marvell_nfc_end_cmd(chip, NDSR_RDDREQ, + "RDDREQ while draining FIFO (data)"); + marvell_nfc_xfer_data_in_pio(nfc, data, + FIFO_DEPTH * BCH_SEQ_READS); + data += FIFO_DEPTH * BCH_SEQ_READS; + } + + for (i = 0; i < spare_len; i += FIFO_DEPTH * BCH_SEQ_READS) { + marvell_nfc_end_cmd(chip, NDSR_RDDREQ, + "RDDREQ while draining FIFO (OOB)"); + marvell_nfc_xfer_data_in_pio(nfc, spare, + FIFO_DEPTH * BCH_SEQ_READS); + spare += FIFO_DEPTH * BCH_SEQ_READS; + } +} + +static int marvell_nfc_hw_ecc_bch_read_page(struct nand_chip *chip, + u8 *buf, int oob_required, + int page) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout; + int data_len = lt->data_bytes, spare_len = lt->spare_bytes; + u8 *data = buf, *spare = chip->oob_poi; + int max_bitflips = 0; + u32 failure_mask = 0; + int chunk, ret; + + marvell_nfc_select_target(chip, chip->cur_cs); + + /* + * With BCH, OOB is not fully used (and thus not read entirely), not + * expected bytes could show up at the end of the OOB buffer if not + * explicitly erased. + */ + if (oob_required) + memset(chip->oob_poi, 0xFF, mtd->oobsize); + + marvell_nfc_enable_hw_ecc(chip); + + for (chunk = 0; chunk < lt->nchunks; chunk++) { + /* Update length for the last chunk */ + if (chunk >= lt->full_chunk_cnt) { + data_len = lt->last_data_bytes; + spare_len = lt->last_spare_bytes; + } + + /* Read the chunk and detect number of bitflips */ + marvell_nfc_hw_ecc_bch_read_chunk(chip, chunk, data, data_len, + spare, spare_len, page); + ret = marvell_nfc_hw_ecc_check_bitflips(chip, &max_bitflips); + if (ret) + failure_mask |= BIT(chunk); + + data += data_len; + spare += spare_len; + } + + marvell_nfc_disable_hw_ecc(chip); + + if (!failure_mask) + return max_bitflips; + + /* + * Please note that dumping the ECC bytes during a normal read with OOB + * area would add a significant overhead as ECC bytes are "consumed" by + * the controller in normal mode and must be re-read in raw mode. To + * avoid dropping the performances, we prefer not to include them. The + * user should re-read the page in raw mode if ECC bytes are required. + */ + + /* + * In case there is any subpage read error, we usually re-read only ECC + * bytes in raw mode and check if the whole page is empty. In this case, + * it is normal that the ECC check failed and we just ignore the error. + * + * However, it has been empirically observed that for some layouts (e.g + * 2k page, 8b strength per 512B chunk), the controller tries to correct + * bits and may create itself bitflips in the erased area. To overcome + * this strange behavior, the whole page is re-read in raw mode, not + * only the ECC bytes. + */ + for (chunk = 0; chunk < lt->nchunks; chunk++) { + int data_off_in_page, spare_off_in_page, ecc_off_in_page; + int data_off, spare_off, ecc_off; + int data_len, spare_len, ecc_len; + + /* No failure reported for this chunk, move to the next one */ + if (!(failure_mask & BIT(chunk))) + continue; + + data_off_in_page = chunk * (lt->data_bytes + lt->spare_bytes + + lt->ecc_bytes); + spare_off_in_page = data_off_in_page + + (chunk < lt->full_chunk_cnt ? lt->data_bytes : + lt->last_data_bytes); + ecc_off_in_page = spare_off_in_page + + (chunk < lt->full_chunk_cnt ? lt->spare_bytes : + lt->last_spare_bytes); + + data_off = chunk * lt->data_bytes; + spare_off = chunk * lt->spare_bytes; + ecc_off = (lt->full_chunk_cnt * lt->spare_bytes) + + lt->last_spare_bytes + + (chunk * (lt->ecc_bytes + 2)); + + data_len = chunk < lt->full_chunk_cnt ? lt->data_bytes : + lt->last_data_bytes; + spare_len = chunk < lt->full_chunk_cnt ? lt->spare_bytes : + lt->last_spare_bytes; + ecc_len = chunk < lt->full_chunk_cnt ? lt->ecc_bytes : + lt->last_ecc_bytes; + + /* + * Only re-read the ECC bytes, unless we are using the 2k/8b + * layout which is buggy in the sense that the ECC engine will + * try to correct data bytes anyway, creating bitflips. In this + * case, re-read the entire page. + */ + if (lt->writesize == 2048 && lt->strength == 8) { + nand_change_read_column_op(chip, data_off_in_page, + buf + data_off, data_len, + false); + nand_change_read_column_op(chip, spare_off_in_page, + chip->oob_poi + spare_off, spare_len, + false); + } + + nand_change_read_column_op(chip, ecc_off_in_page, + chip->oob_poi + ecc_off, ecc_len, + false); + + /* Check the entire chunk (data + spare + ecc) for emptyness */ + marvell_nfc_check_empty_chunk(chip, buf + data_off, data_len, + chip->oob_poi + spare_off, spare_len, + chip->oob_poi + ecc_off, ecc_len, + &max_bitflips); + } + + return max_bitflips; +} + +static int marvell_nfc_hw_ecc_bch_read_oob_raw(struct nand_chip *chip, int page) +{ + u8 *buf = nand_get_data_buf(chip); + + return chip->ecc.read_page_raw(chip, buf, true, page); +} + +static int marvell_nfc_hw_ecc_bch_read_oob(struct nand_chip *chip, int page) +{ + u8 *buf = nand_get_data_buf(chip); + + return chip->ecc.read_page(chip, buf, true, page); +} + +/* BCH write helpers */ +static int marvell_nfc_hw_ecc_bch_write_page_raw(struct nand_chip *chip, + const u8 *buf, + int oob_required, int page) +{ + const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout; + int full_chunk_size = lt->data_bytes + lt->spare_bytes + lt->ecc_bytes; + int data_len = lt->data_bytes; + int spare_len = lt->spare_bytes; + int ecc_len = lt->ecc_bytes; + int spare_offset = 0; + int ecc_offset = (lt->full_chunk_cnt * lt->spare_bytes) + + lt->last_spare_bytes; + int chunk; + + marvell_nfc_select_target(chip, chip->cur_cs); + + nand_prog_page_begin_op(chip, page, 0, NULL, 0); + + for (chunk = 0; chunk < lt->nchunks; chunk++) { + if (chunk >= lt->full_chunk_cnt) { + data_len = lt->last_data_bytes; + spare_len = lt->last_spare_bytes; + ecc_len = lt->last_ecc_bytes; + } + + /* Point to the column of the next chunk */ + nand_change_write_column_op(chip, chunk * full_chunk_size, + NULL, 0, false); + + /* Write the data */ + nand_write_data_op(chip, buf + (chunk * lt->data_bytes), + data_len, false); + + if (!oob_required) + continue; + + /* Write the spare bytes */ + if (spare_len) + nand_write_data_op(chip, chip->oob_poi + spare_offset, + spare_len, false); + + /* Write the ECC bytes */ + if (ecc_len) + nand_write_data_op(chip, chip->oob_poi + ecc_offset, + ecc_len, false); + + spare_offset += spare_len; + ecc_offset += ALIGN(ecc_len, 32); + } + + return nand_prog_page_end_op(chip); +} + +static int +marvell_nfc_hw_ecc_bch_write_chunk(struct nand_chip *chip, int chunk, + const u8 *data, unsigned int data_len, + const u8 *spare, unsigned int spare_len, + int page) +{ + struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip); + struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); + const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout; + u32 xtype; + int ret; + struct marvell_nfc_op nfc_op = { + .ndcb[0] = NDCB0_CMD_TYPE(TYPE_WRITE) | NDCB0_LEN_OVRD, + .ndcb[3] = data_len + spare_len, + }; + + /* + * First operation dispatches the CMD_SEQIN command, issue the address + * cycles and asks for the first chunk of data. + * All operations in the middle (if any) will issue a naked write and + * also ask for data. + * Last operation (if any) asks for the last chunk of data through a + * last naked write. + */ + if (chunk == 0) { + if (lt->nchunks == 1) + xtype = XTYPE_MONOLITHIC_RW; + else + xtype = XTYPE_WRITE_DISPATCH; + + nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(xtype) | + NDCB0_ADDR_CYC(marvell_nand->addr_cyc) | + NDCB0_CMD1(NAND_CMD_SEQIN); + nfc_op.ndcb[1] |= NDCB1_ADDRS_PAGE(page); + nfc_op.ndcb[2] |= NDCB2_ADDR5_PAGE(page); + } else if (chunk < lt->nchunks - 1) { + nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_NAKED_RW); + } else { + nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_LAST_NAKED_RW); + } + + /* Always dispatch the PAGEPROG command on the last chunk */ + if (chunk == lt->nchunks - 1) + nfc_op.ndcb[0] |= NDCB0_CMD2(NAND_CMD_PAGEPROG) | NDCB0_DBC; + + ret = marvell_nfc_prepare_cmd(chip); + if (ret) + return ret; + + marvell_nfc_send_cmd(chip, &nfc_op); + ret = marvell_nfc_end_cmd(chip, NDSR_WRDREQ, + "WRDREQ while loading FIFO (data)"); + if (ret) + return ret; + + /* Transfer the contents */ + iowrite32_rep(nfc->regs + NDDB, data, FIFO_REP(data_len)); + iowrite32_rep(nfc->regs + NDDB, spare, FIFO_REP(spare_len)); + + return 0; +} + +static int marvell_nfc_hw_ecc_bch_write_page(struct nand_chip *chip, + const u8 *buf, + int oob_required, int page) +{ + const struct nand_sdr_timings *sdr = + nand_get_sdr_timings(nand_get_interface_config(chip)); + struct mtd_info *mtd = nand_to_mtd(chip); + const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout; + const u8 *data = buf; + const u8 *spare = chip->oob_poi; + int data_len = lt->data_bytes; + int spare_len = lt->spare_bytes; + int chunk, ret; + u8 status; + + marvell_nfc_select_target(chip, chip->cur_cs); + + /* Spare data will be written anyway, so clear it to avoid garbage */ + if (!oob_required) + memset(chip->oob_poi, 0xFF, mtd->oobsize); + + marvell_nfc_enable_hw_ecc(chip); + + for (chunk = 0; chunk < lt->nchunks; chunk++) { + if (chunk >= lt->full_chunk_cnt) { + data_len = lt->last_data_bytes; + spare_len = lt->last_spare_bytes; + } + + marvell_nfc_hw_ecc_bch_write_chunk(chip, chunk, data, data_len, + spare, spare_len, page); + data += data_len; + spare += spare_len; + + /* + * Waiting only for CMDD or PAGED is not enough, ECC are + * partially written. No flag is set once the operation is + * really finished but the ND_RUN bit is cleared, so wait for it + * before stepping into the next command. + */ + marvell_nfc_wait_ndrun(chip); + } + + ret = marvell_nfc_wait_op(chip, PSEC_TO_MSEC(sdr->tPROG_max)); + + marvell_nfc_disable_hw_ecc(chip); + + if (ret) + return ret; + + /* Check write status on the chip side */ + ret = nand_status_op(chip, &status); + if (ret) + return ret; + + if (status & NAND_STATUS_FAIL) + return -EIO; + + return 0; +} + +static int marvell_nfc_hw_ecc_bch_write_oob_raw(struct nand_chip *chip, + int page) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + u8 *buf = nand_get_data_buf(chip); + + memset(buf, 0xFF, mtd->writesize); + + return chip->ecc.write_page_raw(chip, buf, true, page); +} + +static int marvell_nfc_hw_ecc_bch_write_oob(struct nand_chip *chip, int page) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + u8 *buf = nand_get_data_buf(chip); + + memset(buf, 0xFF, mtd->writesize); + + return chip->ecc.write_page(chip, buf, true, page); +} + +/* NAND framework ->exec_op() hooks and related helpers */ +static void marvell_nfc_parse_instructions(struct nand_chip *chip, + const struct nand_subop *subop, + struct marvell_nfc_op *nfc_op) +{ + const struct nand_op_instr *instr = NULL; + struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); + bool first_cmd = true; + unsigned int op_id; + int i; + + /* Reset the input structure as most of its fields will be OR'ed */ + memset(nfc_op, 0, sizeof(struct marvell_nfc_op)); + + for (op_id = 0; op_id < subop->ninstrs; op_id++) { + unsigned int offset, naddrs; + const u8 *addrs; + int len; + + instr = &subop->instrs[op_id]; + + switch (instr->type) { + case NAND_OP_CMD_INSTR: + if (first_cmd) + nfc_op->ndcb[0] |= + NDCB0_CMD1(instr->ctx.cmd.opcode); + else + nfc_op->ndcb[0] |= + NDCB0_CMD2(instr->ctx.cmd.opcode) | + NDCB0_DBC; + + nfc_op->cle_ale_delay_ns = instr->delay_ns; + first_cmd = false; + break; + + case NAND_OP_ADDR_INSTR: + offset = nand_subop_get_addr_start_off(subop, op_id); + naddrs = nand_subop_get_num_addr_cyc(subop, op_id); + addrs = &instr->ctx.addr.addrs[offset]; + + nfc_op->ndcb[0] |= NDCB0_ADDR_CYC(naddrs); + + for (i = 0; i < min_t(unsigned int, 4, naddrs); i++) + nfc_op->ndcb[1] |= addrs[i] << (8 * i); + + if (naddrs >= 5) + nfc_op->ndcb[2] |= NDCB2_ADDR5_CYC(addrs[4]); + if (naddrs >= 6) + nfc_op->ndcb[3] |= NDCB3_ADDR6_CYC(addrs[5]); + if (naddrs == 7) + nfc_op->ndcb[3] |= NDCB3_ADDR7_CYC(addrs[6]); + + nfc_op->cle_ale_delay_ns = instr->delay_ns; + break; + + case NAND_OP_DATA_IN_INSTR: + nfc_op->data_instr = instr; + nfc_op->data_instr_idx = op_id; + nfc_op->ndcb[0] |= NDCB0_CMD_TYPE(TYPE_READ); + if (nfc->caps->is_nfcv2) { + nfc_op->ndcb[0] |= + NDCB0_CMD_XTYPE(XTYPE_MONOLITHIC_RW) | + NDCB0_LEN_OVRD; + len = nand_subop_get_data_len(subop, op_id); + nfc_op->ndcb[3] |= round_up(len, FIFO_DEPTH); + } + nfc_op->data_delay_ns = instr->delay_ns; + break; + + case NAND_OP_DATA_OUT_INSTR: + nfc_op->data_instr = instr; + nfc_op->data_instr_idx = op_id; + nfc_op->ndcb[0] |= NDCB0_CMD_TYPE(TYPE_WRITE); + if (nfc->caps->is_nfcv2) { + nfc_op->ndcb[0] |= + NDCB0_CMD_XTYPE(XTYPE_MONOLITHIC_RW) | + NDCB0_LEN_OVRD; + len = nand_subop_get_data_len(subop, op_id); + nfc_op->ndcb[3] |= round_up(len, FIFO_DEPTH); + } + nfc_op->data_delay_ns = instr->delay_ns; + break; + + case NAND_OP_WAITRDY_INSTR: + nfc_op->rdy_timeout_ms = instr->ctx.waitrdy.timeout_ms; + nfc_op->rdy_delay_ns = instr->delay_ns; + break; + } + } +} + +static int marvell_nfc_xfer_data_pio(struct nand_chip *chip, + const struct nand_subop *subop, + struct marvell_nfc_op *nfc_op) +{ + struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); + const struct nand_op_instr *instr = nfc_op->data_instr; + unsigned int op_id = nfc_op->data_instr_idx; + unsigned int len = nand_subop_get_data_len(subop, op_id); + unsigned int offset = nand_subop_get_data_start_off(subop, op_id); + bool reading = (instr->type == NAND_OP_DATA_IN_INSTR); + int ret; + + if (instr->ctx.data.force_8bit) + marvell_nfc_force_byte_access(chip, true); + + if (reading) { + u8 *in = instr->ctx.data.buf.in + offset; + + ret = marvell_nfc_xfer_data_in_pio(nfc, in, len); + } else { + const u8 *out = instr->ctx.data.buf.out + offset; + + ret = marvell_nfc_xfer_data_out_pio(nfc, out, len); + } + + if (instr->ctx.data.force_8bit) + marvell_nfc_force_byte_access(chip, false); + + return ret; +} + +static int marvell_nfc_monolithic_access_exec(struct nand_chip *chip, + const struct nand_subop *subop) +{ + struct marvell_nfc_op nfc_op; + bool reading; + int ret; + + marvell_nfc_parse_instructions(chip, subop, &nfc_op); + reading = (nfc_op.data_instr->type == NAND_OP_DATA_IN_INSTR); + + ret = marvell_nfc_prepare_cmd(chip); + if (ret) + return ret; + + marvell_nfc_send_cmd(chip, &nfc_op); + ret = marvell_nfc_end_cmd(chip, NDSR_RDDREQ | NDSR_WRDREQ, + "RDDREQ/WRDREQ while draining raw data"); + if (ret) + return ret; + + cond_delay(nfc_op.cle_ale_delay_ns); + + if (reading) { + if (nfc_op.rdy_timeout_ms) { + ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms); + if (ret) + return ret; + } + + cond_delay(nfc_op.rdy_delay_ns); + } + + marvell_nfc_xfer_data_pio(chip, subop, &nfc_op); + ret = marvell_nfc_wait_cmdd(chip); + if (ret) + return ret; + + cond_delay(nfc_op.data_delay_ns); + + if (!reading) { + if (nfc_op.rdy_timeout_ms) { + ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms); + if (ret) + return ret; + } + + cond_delay(nfc_op.rdy_delay_ns); + } + + /* + * NDCR ND_RUN bit should be cleared automatically at the end of each + * operation but experience shows that the behavior is buggy when it + * comes to writes (with LEN_OVRD). Clear it by hand in this case. + */ + if (!reading) { + struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); + + writel_relaxed(readl(nfc->regs + NDCR) & ~NDCR_ND_RUN, + nfc->regs + NDCR); + } + + return 0; +} + +static int marvell_nfc_naked_access_exec(struct nand_chip *chip, + const struct nand_subop *subop) +{ + struct marvell_nfc_op nfc_op; + int ret; + + marvell_nfc_parse_instructions(chip, subop, &nfc_op); + + /* + * Naked access are different in that they need to be flagged as naked + * by the controller. Reset the controller registers fields that inform + * on the type and refill them according to the ongoing operation. + */ + nfc_op.ndcb[0] &= ~(NDCB0_CMD_TYPE(TYPE_MASK) | + NDCB0_CMD_XTYPE(XTYPE_MASK)); + switch (subop->instrs[0].type) { + case NAND_OP_CMD_INSTR: + nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_NAKED_CMD); + break; + case NAND_OP_ADDR_INSTR: + nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_NAKED_ADDR); + break; + case NAND_OP_DATA_IN_INSTR: + nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_READ) | + NDCB0_CMD_XTYPE(XTYPE_LAST_NAKED_RW); + break; + case NAND_OP_DATA_OUT_INSTR: + nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_WRITE) | + NDCB0_CMD_XTYPE(XTYPE_LAST_NAKED_RW); + break; + default: + /* This should never happen */ + break; + } + + ret = marvell_nfc_prepare_cmd(chip); + if (ret) + return ret; + + marvell_nfc_send_cmd(chip, &nfc_op); + + if (!nfc_op.data_instr) { + ret = marvell_nfc_wait_cmdd(chip); + cond_delay(nfc_op.cle_ale_delay_ns); + return ret; + } + + ret = marvell_nfc_end_cmd(chip, NDSR_RDDREQ | NDSR_WRDREQ, + "RDDREQ/WRDREQ while draining raw data"); + if (ret) + return ret; + + marvell_nfc_xfer_data_pio(chip, subop, &nfc_op); + ret = marvell_nfc_wait_cmdd(chip); + if (ret) + return ret; + + /* + * NDCR ND_RUN bit should be cleared automatically at the end of each + * operation but experience shows that the behavior is buggy when it + * comes to writes (with LEN_OVRD). Clear it by hand in this case. + */ + if (subop->instrs[0].type == NAND_OP_DATA_OUT_INSTR) { + struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); + + writel_relaxed(readl(nfc->regs + NDCR) & ~NDCR_ND_RUN, + nfc->regs + NDCR); + } + + return 0; +} + +static int marvell_nfc_naked_waitrdy_exec(struct nand_chip *chip, + const struct nand_subop *subop) +{ + struct marvell_nfc_op nfc_op; + int ret; + + marvell_nfc_parse_instructions(chip, subop, &nfc_op); + + ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms); + cond_delay(nfc_op.rdy_delay_ns); + + return ret; +} + +static int marvell_nfc_read_id_type_exec(struct nand_chip *chip, + const struct nand_subop *subop) +{ + struct marvell_nfc_op nfc_op; + int ret; + + marvell_nfc_parse_instructions(chip, subop, &nfc_op); + nfc_op.ndcb[0] &= ~NDCB0_CMD_TYPE(TYPE_READ); + nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_READ_ID); + + ret = marvell_nfc_prepare_cmd(chip); + if (ret) + return ret; + + marvell_nfc_send_cmd(chip, &nfc_op); + ret = marvell_nfc_end_cmd(chip, NDSR_RDDREQ, + "RDDREQ while reading ID"); + if (ret) + return ret; + + cond_delay(nfc_op.cle_ale_delay_ns); + + if (nfc_op.rdy_timeout_ms) { + ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms); + if (ret) + return ret; + } + + cond_delay(nfc_op.rdy_delay_ns); + + marvell_nfc_xfer_data_pio(chip, subop, &nfc_op); + ret = marvell_nfc_wait_cmdd(chip); + if (ret) + return ret; + + cond_delay(nfc_op.data_delay_ns); + + return 0; +} + +static int marvell_nfc_read_status_exec(struct nand_chip *chip, + const struct nand_subop *subop) +{ + struct marvell_nfc_op nfc_op; + int ret; + + marvell_nfc_parse_instructions(chip, subop, &nfc_op); + nfc_op.ndcb[0] &= ~NDCB0_CMD_TYPE(TYPE_READ); + nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_STATUS); + + ret = marvell_nfc_prepare_cmd(chip); + if (ret) + return ret; + + marvell_nfc_send_cmd(chip, &nfc_op); + ret = marvell_nfc_end_cmd(chip, NDSR_RDDREQ, + "RDDREQ while reading status"); + if (ret) + return ret; + + cond_delay(nfc_op.cle_ale_delay_ns); + + if (nfc_op.rdy_timeout_ms) { + ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms); + if (ret) + return ret; + } + + cond_delay(nfc_op.rdy_delay_ns); + + marvell_nfc_xfer_data_pio(chip, subop, &nfc_op); + ret = marvell_nfc_wait_cmdd(chip); + if (ret) + return ret; + + cond_delay(nfc_op.data_delay_ns); + + return 0; +} + +static int marvell_nfc_reset_cmd_type_exec(struct nand_chip *chip, + const struct nand_subop *subop) +{ + struct marvell_nfc_op nfc_op; + int ret; + + marvell_nfc_parse_instructions(chip, subop, &nfc_op); + nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_RESET); + + ret = marvell_nfc_prepare_cmd(chip); + if (ret) + return ret; + + marvell_nfc_send_cmd(chip, &nfc_op); + ret = marvell_nfc_wait_cmdd(chip); + if (ret) + return ret; + + cond_delay(nfc_op.cle_ale_delay_ns); + + ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms); + if (ret) + return ret; + + cond_delay(nfc_op.rdy_delay_ns); + + return 0; +} + +static int marvell_nfc_erase_cmd_type_exec(struct nand_chip *chip, + const struct nand_subop *subop) +{ + struct marvell_nfc_op nfc_op; + int ret; + + marvell_nfc_parse_instructions(chip, subop, &nfc_op); + nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_ERASE); + + ret = marvell_nfc_prepare_cmd(chip); + if (ret) + return ret; + + marvell_nfc_send_cmd(chip, &nfc_op); + ret = marvell_nfc_wait_cmdd(chip); + if (ret) + return ret; + + cond_delay(nfc_op.cle_ale_delay_ns); + + ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms); + if (ret) + return ret; + + cond_delay(nfc_op.rdy_delay_ns); + + return 0; +} + +static const struct nand_op_parser marvell_nfcv2_op_parser = NAND_OP_PARSER( + /* Monolithic reads/writes */ + NAND_OP_PARSER_PATTERN( + marvell_nfc_monolithic_access_exec, + NAND_OP_PARSER_PAT_CMD_ELEM(false), + NAND_OP_PARSER_PAT_ADDR_ELEM(true, MAX_ADDRESS_CYC_NFCV2), + NAND_OP_PARSER_PAT_CMD_ELEM(true), + NAND_OP_PARSER_PAT_WAITRDY_ELEM(true), + NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, MAX_CHUNK_SIZE)), + NAND_OP_PARSER_PATTERN( + marvell_nfc_monolithic_access_exec, + NAND_OP_PARSER_PAT_CMD_ELEM(false), + NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDRESS_CYC_NFCV2), + NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, MAX_CHUNK_SIZE), + NAND_OP_PARSER_PAT_CMD_ELEM(true), + NAND_OP_PARSER_PAT_WAITRDY_ELEM(true)), + /* Naked commands */ + NAND_OP_PARSER_PATTERN( + marvell_nfc_naked_access_exec, + NAND_OP_PARSER_PAT_CMD_ELEM(false)), + NAND_OP_PARSER_PATTERN( + marvell_nfc_naked_access_exec, + NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDRESS_CYC_NFCV2)), + NAND_OP_PARSER_PATTERN( + marvell_nfc_naked_access_exec, + NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, MAX_CHUNK_SIZE)), + NAND_OP_PARSER_PATTERN( + marvell_nfc_naked_access_exec, + NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, MAX_CHUNK_SIZE)), + NAND_OP_PARSER_PATTERN( + marvell_nfc_naked_waitrdy_exec, + NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)), + ); + +static const struct nand_op_parser marvell_nfcv1_op_parser = NAND_OP_PARSER( + /* Naked commands not supported, use a function for each pattern */ + NAND_OP_PARSER_PATTERN( + marvell_nfc_read_id_type_exec, + NAND_OP_PARSER_PAT_CMD_ELEM(false), + NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDRESS_CYC_NFCV1), + NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, 8)), + NAND_OP_PARSER_PATTERN( + marvell_nfc_erase_cmd_type_exec, + NAND_OP_PARSER_PAT_CMD_ELEM(false), + NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDRESS_CYC_NFCV1), + NAND_OP_PARSER_PAT_CMD_ELEM(false), + NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)), + NAND_OP_PARSER_PATTERN( + marvell_nfc_read_status_exec, + NAND_OP_PARSER_PAT_CMD_ELEM(false), + NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, 1)), + NAND_OP_PARSER_PATTERN( + marvell_nfc_reset_cmd_type_exec, + NAND_OP_PARSER_PAT_CMD_ELEM(false), + NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)), + NAND_OP_PARSER_PATTERN( + marvell_nfc_naked_waitrdy_exec, + NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)), + ); + +static int marvell_nfc_exec_op(struct nand_chip *chip, + const struct nand_operation *op, + bool check_only) +{ + struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); + + if (!check_only) + marvell_nfc_select_target(chip, op->cs); + + if (nfc->caps->is_nfcv2) + return nand_op_parser_exec_op(chip, &marvell_nfcv2_op_parser, + op, check_only); + else + return nand_op_parser_exec_op(chip, &marvell_nfcv1_op_parser, + op, check_only); +} + +/* + * Layouts were broken in old pxa3xx_nand driver, these are supposed to be + * usable. + */ +static int marvell_nand_ooblayout_ecc(struct mtd_info *mtd, int section, + struct mtd_oob_region *oobregion) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout; + + if (section) + return -ERANGE; + + oobregion->length = (lt->full_chunk_cnt * lt->ecc_bytes) + + lt->last_ecc_bytes; + oobregion->offset = mtd->oobsize - oobregion->length; + + return 0; +} + +static int marvell_nand_ooblayout_free(struct mtd_info *mtd, int section, + struct mtd_oob_region *oobregion) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout; + + if (section) + return -ERANGE; + + /* + * Bootrom looks in bytes 0 & 5 for bad blocks for the + * 4KB page / 4bit BCH combination. + */ + if (mtd->writesize == SZ_4K && lt->data_bytes == SZ_2K) + oobregion->offset = 6; + else + oobregion->offset = 2; + + oobregion->length = (lt->full_chunk_cnt * lt->spare_bytes) + + lt->last_spare_bytes - oobregion->offset; + + return 0; +} + +static const struct mtd_ooblayout_ops marvell_nand_ooblayout_ops = { + .ecc = marvell_nand_ooblayout_ecc, + .free = marvell_nand_ooblayout_free, +}; + +static int marvell_nand_hw_ecc_controller_init(struct mtd_info *mtd, + struct nand_ecc_ctrl *ecc) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); + const struct marvell_hw_ecc_layout *l; + int i; + + if (!nfc->caps->is_nfcv2 && + (mtd->writesize + mtd->oobsize > MAX_CHUNK_SIZE)) { + dev_err(nfc->dev, + "NFCv1: writesize (%d) cannot be bigger than a chunk (%d)\n", + mtd->writesize, MAX_CHUNK_SIZE - mtd->oobsize); + return -ENOTSUPP; + } + + to_marvell_nand(chip)->layout = NULL; + for (i = 0; i < ARRAY_SIZE(marvell_nfc_layouts); i++) { + l = &marvell_nfc_layouts[i]; + if (mtd->writesize == l->writesize && + ecc->size == l->chunk && ecc->strength == l->strength) { + to_marvell_nand(chip)->layout = l; + break; + } + } + + if (!to_marvell_nand(chip)->layout || + (!nfc->caps->is_nfcv2 && ecc->strength > 1)) { + dev_err(nfc->dev, + "ECC strength %d at page size %d is not supported\n", + ecc->strength, mtd->writesize); + return -ENOTSUPP; + } + + /* Special care for the layout 2k/8-bit/512B */ + if (l->writesize == 2048 && l->strength == 8) { + if (mtd->oobsize < 128) { + dev_err(nfc->dev, "Requested layout needs at least 128 OOB bytes\n"); + return -ENOTSUPP; + } else { + chip->bbt_options |= NAND_BBT_NO_OOB_BBM; + } + } + + mtd_set_ooblayout(mtd, &marvell_nand_ooblayout_ops); + ecc->steps = l->nchunks; + ecc->size = l->data_bytes; + + if (ecc->strength == 1) { + chip->ecc.algo = NAND_ECC_ALGO_HAMMING; + ecc->read_page_raw = marvell_nfc_hw_ecc_hmg_read_page_raw; + ecc->read_page = marvell_nfc_hw_ecc_hmg_read_page; + ecc->read_oob_raw = marvell_nfc_hw_ecc_hmg_read_oob_raw; + ecc->read_oob = ecc->read_oob_raw; + ecc->write_page_raw = marvell_nfc_hw_ecc_hmg_write_page_raw; + ecc->write_page = marvell_nfc_hw_ecc_hmg_write_page; + ecc->write_oob_raw = marvell_nfc_hw_ecc_hmg_write_oob_raw; + ecc->write_oob = ecc->write_oob_raw; + } else { + chip->ecc.algo = NAND_ECC_ALGO_BCH; + ecc->strength = 16; + ecc->read_page_raw = marvell_nfc_hw_ecc_bch_read_page_raw; + ecc->read_page = marvell_nfc_hw_ecc_bch_read_page; + ecc->read_oob_raw = marvell_nfc_hw_ecc_bch_read_oob_raw; + ecc->read_oob = marvell_nfc_hw_ecc_bch_read_oob; + ecc->write_page_raw = marvell_nfc_hw_ecc_bch_write_page_raw; + ecc->write_page = marvell_nfc_hw_ecc_bch_write_page; + ecc->write_oob_raw = marvell_nfc_hw_ecc_bch_write_oob_raw; + ecc->write_oob = marvell_nfc_hw_ecc_bch_write_oob; + } + + return 0; +} + +static int marvell_nand_ecc_init(struct mtd_info *mtd, + struct nand_ecc_ctrl *ecc) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + const struct nand_ecc_props *requirements = + nanddev_get_ecc_requirements(&chip->base); + struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); + int ret; + + if (ecc->engine_type != NAND_ECC_ENGINE_TYPE_NONE && + (!ecc->size || !ecc->strength)) { + if (requirements->step_size && requirements->strength) { + ecc->size = requirements->step_size; + ecc->strength = requirements->strength; + } else { + dev_info(nfc->dev, + "No minimum ECC strength, using 1b/512B\n"); + ecc->size = 512; + ecc->strength = 1; + } + } + + switch (ecc->engine_type) { + case NAND_ECC_ENGINE_TYPE_ON_HOST: + ret = marvell_nand_hw_ecc_controller_init(mtd, ecc); + if (ret) + return ret; + break; + case NAND_ECC_ENGINE_TYPE_NONE: + case NAND_ECC_ENGINE_TYPE_SOFT: + case NAND_ECC_ENGINE_TYPE_ON_DIE: + if (!nfc->caps->is_nfcv2 && mtd->writesize != SZ_512 && + mtd->writesize != SZ_2K) { + dev_err(nfc->dev, "NFCv1 cannot write %d bytes pages\n", + mtd->writesize); + return -EINVAL; + } + break; + default: + return -EINVAL; + } + + return 0; +} + +static u8 bbt_pattern[] = {'M', 'V', 'B', 'b', 't', '0' }; +static u8 bbt_mirror_pattern[] = {'1', 't', 'b', 'B', 'V', 'M' }; + +static struct nand_bbt_descr bbt_main_descr = { + .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE | + NAND_BBT_2BIT | NAND_BBT_VERSION, + .offs = 8, + .len = 6, + .veroffs = 14, + .maxblocks = 8, /* Last 8 blocks in each chip */ + .pattern = bbt_pattern +}; + +static struct nand_bbt_descr bbt_mirror_descr = { + .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE | + NAND_BBT_2BIT | NAND_BBT_VERSION, + .offs = 8, + .len = 6, + .veroffs = 14, + .maxblocks = 8, /* Last 8 blocks in each chip */ + .pattern = bbt_mirror_pattern +}; + +static int marvell_nfc_setup_interface(struct nand_chip *chip, int chipnr, + const struct nand_interface_config *conf) +{ + struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip); + struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); + unsigned int period_ns = 1000000000 / clk_get_rate(nfc->core_clk) * 2; + const struct nand_sdr_timings *sdr; + struct marvell_nfc_timings nfc_tmg; + int read_delay; + + sdr = nand_get_sdr_timings(conf); + if (IS_ERR(sdr)) + return PTR_ERR(sdr); + + if (nfc->caps->max_mode_number && nfc->caps->max_mode_number < conf->timings.mode) + return -EOPNOTSUPP; + + /* + * SDR timings are given in pico-seconds while NFC timings must be + * expressed in NAND controller clock cycles, which is half of the + * frequency of the accessible ECC clock retrieved by clk_get_rate(). + * This is not written anywhere in the datasheet but was observed + * with an oscilloscope. + * + * NFC datasheet gives equations from which thoses calculations + * are derived, they tend to be slightly more restrictives than the + * given core timings and may improve the overall speed. + */ + nfc_tmg.tRP = TO_CYCLES(DIV_ROUND_UP(sdr->tRC_min, 2), period_ns) - 1; + nfc_tmg.tRH = nfc_tmg.tRP; + nfc_tmg.tWP = TO_CYCLES(DIV_ROUND_UP(sdr->tWC_min, 2), period_ns) - 1; + nfc_tmg.tWH = nfc_tmg.tWP; + nfc_tmg.tCS = TO_CYCLES(sdr->tCS_min, period_ns); + nfc_tmg.tCH = TO_CYCLES(sdr->tCH_min, period_ns) - 1; + nfc_tmg.tADL = TO_CYCLES(sdr->tADL_min, period_ns); + /* + * Read delay is the time of propagation from SoC pins to NFC internal + * logic. With non-EDO timings, this is MIN_RD_DEL_CNT clock cycles. In + * EDO mode, an additional delay of tRH must be taken into account so + * the data is sampled on the falling edge instead of the rising edge. + */ + read_delay = sdr->tRC_min >= 30000 ? + MIN_RD_DEL_CNT : MIN_RD_DEL_CNT + nfc_tmg.tRH; + + nfc_tmg.tAR = TO_CYCLES(sdr->tAR_min, period_ns); + /* + * tWHR and tRHW are supposed to be read to write delays (and vice + * versa) but in some cases, ie. when doing a change column, they must + * be greater than that to be sure tCCS delay is respected. + */ + nfc_tmg.tWHR = TO_CYCLES(max_t(int, sdr->tWHR_min, sdr->tCCS_min), + period_ns) - 2; + nfc_tmg.tRHW = TO_CYCLES(max_t(int, sdr->tRHW_min, sdr->tCCS_min), + period_ns); + + /* + * NFCv2: Use WAIT_MODE (wait for RB line), do not rely only on delays. + * NFCv1: No WAIT_MODE, tR must be maximal. + */ + if (nfc->caps->is_nfcv2) { + nfc_tmg.tR = TO_CYCLES(sdr->tWB_max, period_ns); + } else { + nfc_tmg.tR = TO_CYCLES64(sdr->tWB_max + sdr->tR_max, + period_ns); + if (nfc_tmg.tR + 3 > nfc_tmg.tCH) + nfc_tmg.tR = nfc_tmg.tCH - 3; + else + nfc_tmg.tR = 0; + } + + if (chipnr < 0) + return 0; + + marvell_nand->ndtr0 = + NDTR0_TRP(nfc_tmg.tRP) | + NDTR0_TRH(nfc_tmg.tRH) | + NDTR0_ETRP(nfc_tmg.tRP) | + NDTR0_TWP(nfc_tmg.tWP) | + NDTR0_TWH(nfc_tmg.tWH) | + NDTR0_TCS(nfc_tmg.tCS) | + NDTR0_TCH(nfc_tmg.tCH); + + marvell_nand->ndtr1 = + NDTR1_TAR(nfc_tmg.tAR) | + NDTR1_TWHR(nfc_tmg.tWHR) | + NDTR1_TR(nfc_tmg.tR); + + if (nfc->caps->is_nfcv2) { + marvell_nand->ndtr0 |= + NDTR0_RD_CNT_DEL(read_delay) | + NDTR0_SELCNTR | + NDTR0_TADL(nfc_tmg.tADL); + + marvell_nand->ndtr1 |= + NDTR1_TRHW(nfc_tmg.tRHW) | + NDTR1_WAIT_MODE; + } + + /* + * Reset nfc->selected_chip so the next command will cause the timing + * registers to be updated in marvell_nfc_select_target(). + */ + nfc->selected_chip = NULL; + + return 0; +} + +static int marvell_nand_attach_chip(struct nand_chip *chip) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip); + struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); + struct pxa3xx_nand_platform_data *pdata = dev_get_platdata(nfc->dev); + int ret; + + if (pdata && pdata->flash_bbt) + chip->bbt_options |= NAND_BBT_USE_FLASH; + + if (chip->bbt_options & NAND_BBT_USE_FLASH) { + /* + * We'll use a bad block table stored in-flash and don't + * allow writing the bad block marker to the flash. + */ + chip->bbt_options |= NAND_BBT_NO_OOB_BBM; + chip->bbt_td = &bbt_main_descr; + chip->bbt_md = &bbt_mirror_descr; + } + + /* Save the chip-specific fields of NDCR */ + marvell_nand->ndcr = NDCR_PAGE_SZ(mtd->writesize); + if (chip->options & NAND_BUSWIDTH_16) + marvell_nand->ndcr |= NDCR_DWIDTH_M | NDCR_DWIDTH_C; + + /* + * On small page NANDs, only one cycle is needed to pass the + * column address. + */ + if (mtd->writesize <= 512) { + marvell_nand->addr_cyc = 1; + } else { + marvell_nand->addr_cyc = 2; + marvell_nand->ndcr |= NDCR_RA_START; + } + + /* + * Now add the number of cycles needed to pass the row + * address. + * + * Addressing a chip using CS 2 or 3 should also need the third row + * cycle but due to inconsistance in the documentation and lack of + * hardware to test this situation, this case is not supported. + */ + if (chip->options & NAND_ROW_ADDR_3) + marvell_nand->addr_cyc += 3; + else + marvell_nand->addr_cyc += 2; + + if (pdata) { + chip->ecc.size = pdata->ecc_step_size; + chip->ecc.strength = pdata->ecc_strength; + } + + ret = marvell_nand_ecc_init(mtd, &chip->ecc); + if (ret) { + dev_err(nfc->dev, "ECC init failed: %d\n", ret); + return ret; + } + + if (chip->ecc.engine_type == NAND_ECC_ENGINE_TYPE_ON_HOST) { + /* + * Subpage write not available with hardware ECC, prohibit also + * subpage read as in userspace subpage access would still be + * allowed and subpage write, if used, would lead to numerous + * uncorrectable ECC errors. + */ + chip->options |= NAND_NO_SUBPAGE_WRITE; + } + + if (pdata || nfc->caps->legacy_of_bindings) { + /* + * We keep the MTD name unchanged to avoid breaking platforms + * where the MTD cmdline parser is used and the bootloader + * has not been updated to use the new naming scheme. + */ + mtd->name = "pxa3xx_nand-0"; + } else if (!mtd->name) { + /* + * If the new bindings are used and the bootloader has not been + * updated to pass a new mtdparts parameter on the cmdline, you + * should define the following property in your NAND node, ie: + * + * label = "main-storage"; + * + * This way, mtd->name will be set by the core when + * nand_set_flash_node() is called. + */ + mtd->name = devm_kasprintf(nfc->dev, GFP_KERNEL, + "%s:nand.%d", dev_name(nfc->dev), + marvell_nand->sels[0].cs); + if (!mtd->name) { + dev_err(nfc->dev, "Failed to allocate mtd->name\n"); + return -ENOMEM; + } + } + + return 0; +} + +static const struct nand_controller_ops marvell_nand_controller_ops = { + .attach_chip = marvell_nand_attach_chip, + .exec_op = marvell_nfc_exec_op, + .setup_interface = marvell_nfc_setup_interface, +}; + +static int marvell_nand_chip_init(struct device *dev, struct marvell_nfc *nfc, + struct device_node *np) +{ + struct pxa3xx_nand_platform_data *pdata = dev_get_platdata(dev); + struct marvell_nand_chip *marvell_nand; + struct mtd_info *mtd; + struct nand_chip *chip; + int nsels, ret, i; + u32 cs, rb; + + /* + * The legacy "num-cs" property indicates the number of CS on the only + * chip connected to the controller (legacy bindings does not support + * more than one chip). The CS and RB pins are always the #0. + * + * When not using legacy bindings, a couple of "reg" and "nand-rb" + * properties must be filled. For each chip, expressed as a subnode, + * "reg" points to the CS lines and "nand-rb" to the RB line. + */ + if (pdata || nfc->caps->legacy_of_bindings) { + nsels = 1; + } else { + nsels = of_property_count_elems_of_size(np, "reg", sizeof(u32)); + if (nsels <= 0) { + dev_err(dev, "missing/invalid reg property\n"); + return -EINVAL; + } + } + + /* Alloc the nand chip structure */ + marvell_nand = devm_kzalloc(dev, + struct_size(marvell_nand, sels, nsels), + GFP_KERNEL); + if (!marvell_nand) { + dev_err(dev, "could not allocate chip structure\n"); + return -ENOMEM; + } + + marvell_nand->nsels = nsels; + marvell_nand->selected_die = -1; + + for (i = 0; i < nsels; i++) { + if (pdata || nfc->caps->legacy_of_bindings) { + /* + * Legacy bindings use the CS lines in natural + * order (0, 1, ...) + */ + cs = i; + } else { + /* Retrieve CS id */ + ret = of_property_read_u32_index(np, "reg", i, &cs); + if (ret) { + dev_err(dev, "could not retrieve reg property: %d\n", + ret); + return ret; + } + } + + if (cs >= nfc->caps->max_cs_nb) { + dev_err(dev, "invalid reg value: %u (max CS = %d)\n", + cs, nfc->caps->max_cs_nb); + return -EINVAL; + } + + if (test_and_set_bit(cs, &nfc->assigned_cs)) { + dev_err(dev, "CS %d already assigned\n", cs); + return -EINVAL; + } + + /* + * The cs variable represents the chip select id, which must be + * converted in bit fields for NDCB0 and NDCB2 to select the + * right chip. Unfortunately, due to a lack of information on + * the subject and incoherent documentation, the user should not + * use CS1 and CS3 at all as asserting them is not supported in + * a reliable way (due to multiplexing inside ADDR5 field). + */ + marvell_nand->sels[i].cs = cs; + switch (cs) { + case 0: + case 2: + marvell_nand->sels[i].ndcb0_csel = 0; + break; + case 1: + case 3: + marvell_nand->sels[i].ndcb0_csel = NDCB0_CSEL; + break; + default: + return -EINVAL; + } + + /* Retrieve RB id */ + if (pdata || nfc->caps->legacy_of_bindings) { + /* Legacy bindings always use RB #0 */ + rb = 0; + } else { + ret = of_property_read_u32_index(np, "nand-rb", i, + &rb); + if (ret) { + dev_err(dev, + "could not retrieve RB property: %d\n", + ret); + return ret; + } + } + + if (rb >= nfc->caps->max_rb_nb) { + dev_err(dev, "invalid reg value: %u (max RB = %d)\n", + rb, nfc->caps->max_rb_nb); + return -EINVAL; + } + + marvell_nand->sels[i].rb = rb; + } + + chip = &marvell_nand->chip; + chip->controller = &nfc->controller; + nand_set_flash_node(chip, np); + + if (of_property_read_bool(np, "marvell,nand-keep-config")) + chip->options |= NAND_KEEP_TIMINGS; + + mtd = nand_to_mtd(chip); + mtd->dev.parent = dev; + + /* + * Save a reference value for timing registers before + * ->setup_interface() is called. + */ + marvell_nand->ndtr0 = readl_relaxed(nfc->regs + NDTR0); + marvell_nand->ndtr1 = readl_relaxed(nfc->regs + NDTR1); + + chip->options |= NAND_BUSWIDTH_AUTO; + + ret = nand_scan(chip, marvell_nand->nsels); + if (ret) { + dev_err(dev, "could not scan the nand chip\n"); + return ret; + } + + if (pdata) + /* Legacy bindings support only one chip */ + ret = mtd_device_register(mtd, pdata->parts, pdata->nr_parts); + else + ret = mtd_device_register(mtd, NULL, 0); + if (ret) { + dev_err(dev, "failed to register mtd device: %d\n", ret); + nand_cleanup(chip); + return ret; + } + + list_add_tail(&marvell_nand->node, &nfc->chips); + + return 0; +} + +static void marvell_nand_chips_cleanup(struct marvell_nfc *nfc) +{ + struct marvell_nand_chip *entry, *temp; + struct nand_chip *chip; + int ret; + + list_for_each_entry_safe(entry, temp, &nfc->chips, node) { + chip = &entry->chip; + ret = mtd_device_unregister(nand_to_mtd(chip)); + WARN_ON(ret); + nand_cleanup(chip); + list_del(&entry->node); + } +} + +static int marvell_nand_chips_init(struct device *dev, struct marvell_nfc *nfc) +{ + struct device_node *np = dev->of_node; + struct device_node *nand_np; + int max_cs = nfc->caps->max_cs_nb; + int nchips; + int ret; + + if (!np) + nchips = 1; + else + nchips = of_get_child_count(np); + + if (nchips > max_cs) { + dev_err(dev, "too many NAND chips: %d (max = %d CS)\n", nchips, + max_cs); + return -EINVAL; + } + + /* + * Legacy bindings do not use child nodes to exhibit NAND chip + * properties and layout. Instead, NAND properties are mixed with the + * controller ones, and partitions are defined as direct subnodes of the + * NAND controller node. + */ + if (nfc->caps->legacy_of_bindings) { + ret = marvell_nand_chip_init(dev, nfc, np); + return ret; + } + + for_each_child_of_node(np, nand_np) { + ret = marvell_nand_chip_init(dev, nfc, nand_np); + if (ret) { + of_node_put(nand_np); + goto cleanup_chips; + } + } + + return 0; + +cleanup_chips: + marvell_nand_chips_cleanup(nfc); + + return ret; +} + +static int marvell_nfc_init_dma(struct marvell_nfc *nfc) +{ + struct platform_device *pdev = container_of(nfc->dev, + struct platform_device, + dev); + struct dma_slave_config config = {}; + struct resource *r; + int ret; + + if (!IS_ENABLED(CONFIG_PXA_DMA)) { + dev_warn(nfc->dev, + "DMA not enabled in configuration\n"); + return -ENOTSUPP; + } + + ret = dma_set_mask_and_coherent(nfc->dev, DMA_BIT_MASK(32)); + if (ret) + return ret; + + nfc->dma_chan = dma_request_chan(nfc->dev, "data"); + if (IS_ERR(nfc->dma_chan)) { + ret = PTR_ERR(nfc->dma_chan); + nfc->dma_chan = NULL; + return dev_err_probe(nfc->dev, ret, "DMA channel request failed\n"); + } + + r = platform_get_resource(pdev, IORESOURCE_MEM, 0); + if (!r) { + ret = -ENXIO; + goto release_channel; + } + + config.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; + config.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; + config.src_addr = r->start + NDDB; + config.dst_addr = r->start + NDDB; + config.src_maxburst = 32; + config.dst_maxburst = 32; + ret = dmaengine_slave_config(nfc->dma_chan, &config); + if (ret < 0) { + dev_err(nfc->dev, "Failed to configure DMA channel\n"); + goto release_channel; + } + + /* + * DMA must act on length multiple of 32 and this length may be + * bigger than the destination buffer. Use this buffer instead + * for DMA transfers and then copy the desired amount of data to + * the provided buffer. + */ + nfc->dma_buf = kmalloc(MAX_CHUNK_SIZE, GFP_KERNEL | GFP_DMA); + if (!nfc->dma_buf) { + ret = -ENOMEM; + goto release_channel; + } + + nfc->use_dma = true; + + return 0; + +release_channel: + dma_release_channel(nfc->dma_chan); + nfc->dma_chan = NULL; + + return ret; +} + +static void marvell_nfc_reset(struct marvell_nfc *nfc) +{ + /* + * ECC operations and interruptions are only enabled when specifically + * needed. ECC shall not be activated in the early stages (fails probe). + * Arbiter flag, even if marked as "reserved", must be set (empirical). + * SPARE_EN bit must always be set or ECC bytes will not be at the same + * offset in the read page and this will fail the protection. + */ + writel_relaxed(NDCR_ALL_INT | NDCR_ND_ARB_EN | NDCR_SPARE_EN | + NDCR_RD_ID_CNT(NFCV1_READID_LEN), nfc->regs + NDCR); + writel_relaxed(0xFFFFFFFF, nfc->regs + NDSR); + writel_relaxed(0, nfc->regs + NDECCCTRL); +} + +static int marvell_nfc_init(struct marvell_nfc *nfc) +{ + struct device_node *np = nfc->dev->of_node; + + /* + * Some SoCs like A7k/A8k need to enable manually the NAND + * controller, gated clocks and reset bits to avoid being bootloader + * dependent. This is done through the use of the System Functions + * registers. + */ + if (nfc->caps->need_system_controller) { + struct regmap *sysctrl_base = + syscon_regmap_lookup_by_phandle(np, + "marvell,system-controller"); + + if (IS_ERR(sysctrl_base)) + return PTR_ERR(sysctrl_base); + + regmap_write(sysctrl_base, GENCONF_SOC_DEVICE_MUX, + GENCONF_SOC_DEVICE_MUX_NFC_EN | + GENCONF_SOC_DEVICE_MUX_ECC_CLK_RST | + GENCONF_SOC_DEVICE_MUX_ECC_CORE_RST | + GENCONF_SOC_DEVICE_MUX_NFC_INT_EN | + GENCONF_SOC_DEVICE_MUX_NFC_DEVBUS_ARB_EN); + + regmap_update_bits(sysctrl_base, GENCONF_CLK_GATING_CTRL, + GENCONF_CLK_GATING_CTRL_ND_GATE, + GENCONF_CLK_GATING_CTRL_ND_GATE); + } + + /* Configure the DMA if appropriate */ + if (!nfc->caps->is_nfcv2) + marvell_nfc_init_dma(nfc); + + marvell_nfc_reset(nfc); + + return 0; +} + +static int marvell_nfc_probe(struct platform_device *pdev) +{ + struct device *dev = &pdev->dev; + struct marvell_nfc *nfc; + int ret; + int irq; + + nfc = devm_kzalloc(&pdev->dev, sizeof(struct marvell_nfc), + GFP_KERNEL); + if (!nfc) + return -ENOMEM; + + nfc->dev = dev; + nand_controller_init(&nfc->controller); + nfc->controller.ops = &marvell_nand_controller_ops; + INIT_LIST_HEAD(&nfc->chips); + + nfc->regs = devm_platform_ioremap_resource(pdev, 0); + if (IS_ERR(nfc->regs)) + return PTR_ERR(nfc->regs); + + irq = platform_get_irq(pdev, 0); + if (irq < 0) + return irq; + + nfc->core_clk = devm_clk_get(&pdev->dev, "core"); + + /* Managed the legacy case (when the first clock was not named) */ + if (nfc->core_clk == ERR_PTR(-ENOENT)) + nfc->core_clk = devm_clk_get(&pdev->dev, NULL); + + if (IS_ERR(nfc->core_clk)) + return PTR_ERR(nfc->core_clk); + + ret = clk_prepare_enable(nfc->core_clk); + if (ret) + return ret; + + nfc->reg_clk = devm_clk_get(&pdev->dev, "reg"); + if (IS_ERR(nfc->reg_clk)) { + if (PTR_ERR(nfc->reg_clk) != -ENOENT) { + ret = PTR_ERR(nfc->reg_clk); + goto unprepare_core_clk; + } + + nfc->reg_clk = NULL; + } + + ret = clk_prepare_enable(nfc->reg_clk); + if (ret) + goto unprepare_core_clk; + + marvell_nfc_disable_int(nfc, NDCR_ALL_INT); + marvell_nfc_clear_int(nfc, NDCR_ALL_INT); + ret = devm_request_irq(dev, irq, marvell_nfc_isr, + 0, "marvell-nfc", nfc); + if (ret) + goto unprepare_reg_clk; + + /* Get NAND controller capabilities */ + if (pdev->id_entry) + nfc->caps = (void *)pdev->id_entry->driver_data; + else + nfc->caps = of_device_get_match_data(&pdev->dev); + + if (!nfc->caps) { + dev_err(dev, "Could not retrieve NFC caps\n"); + ret = -EINVAL; + goto unprepare_reg_clk; + } + + /* Init the controller and then probe the chips */ + ret = marvell_nfc_init(nfc); + if (ret) + goto unprepare_reg_clk; + + platform_set_drvdata(pdev, nfc); + + ret = marvell_nand_chips_init(dev, nfc); + if (ret) + goto release_dma; + + return 0; + +release_dma: + if (nfc->use_dma) + dma_release_channel(nfc->dma_chan); +unprepare_reg_clk: + clk_disable_unprepare(nfc->reg_clk); +unprepare_core_clk: + clk_disable_unprepare(nfc->core_clk); + + return ret; +} + +static void marvell_nfc_remove(struct platform_device *pdev) +{ + struct marvell_nfc *nfc = platform_get_drvdata(pdev); + + marvell_nand_chips_cleanup(nfc); + + if (nfc->use_dma) { + dmaengine_terminate_all(nfc->dma_chan); + dma_release_channel(nfc->dma_chan); + } + + clk_disable_unprepare(nfc->reg_clk); + clk_disable_unprepare(nfc->core_clk); +} + +static int __maybe_unused marvell_nfc_suspend(struct device *dev) +{ + struct marvell_nfc *nfc = dev_get_drvdata(dev); + struct marvell_nand_chip *chip; + + list_for_each_entry(chip, &nfc->chips, node) + marvell_nfc_wait_ndrun(&chip->chip); + + clk_disable_unprepare(nfc->reg_clk); + clk_disable_unprepare(nfc->core_clk); + + return 0; +} + +static int __maybe_unused marvell_nfc_resume(struct device *dev) +{ + struct marvell_nfc *nfc = dev_get_drvdata(dev); + int ret; + + ret = clk_prepare_enable(nfc->core_clk); + if (ret < 0) + return ret; + + ret = clk_prepare_enable(nfc->reg_clk); + if (ret < 0) { + clk_disable_unprepare(nfc->core_clk); + return ret; + } + + /* + * Reset nfc->selected_chip so the next command will cause the timing + * registers to be restored in marvell_nfc_select_target(). + */ + nfc->selected_chip = NULL; + + /* Reset registers that have lost their contents */ + marvell_nfc_reset(nfc); + + return 0; +} + +static const struct dev_pm_ops marvell_nfc_pm_ops = { + SET_SYSTEM_SLEEP_PM_OPS(marvell_nfc_suspend, marvell_nfc_resume) +}; + +static const struct marvell_nfc_caps marvell_armada_8k_nfc_caps = { + .max_cs_nb = 4, + .max_rb_nb = 2, + .need_system_controller = true, + .is_nfcv2 = true, +}; + +static const struct marvell_nfc_caps marvell_ac5_caps = { + .max_cs_nb = 2, + .max_rb_nb = 1, + .is_nfcv2 = true, + .max_mode_number = 3, +}; + +static const struct marvell_nfc_caps marvell_armada370_nfc_caps = { + .max_cs_nb = 4, + .max_rb_nb = 2, + .is_nfcv2 = true, +}; + +static const struct marvell_nfc_caps marvell_pxa3xx_nfc_caps = { + .max_cs_nb = 2, + .max_rb_nb = 1, + .use_dma = true, +}; + +static const struct marvell_nfc_caps marvell_armada_8k_nfc_legacy_caps = { + .max_cs_nb = 4, + .max_rb_nb = 2, + .need_system_controller = true, + .legacy_of_bindings = true, + .is_nfcv2 = true, +}; + +static const struct marvell_nfc_caps marvell_armada370_nfc_legacy_caps = { + .max_cs_nb = 4, + .max_rb_nb = 2, + .legacy_of_bindings = true, + .is_nfcv2 = true, +}; + +static const struct marvell_nfc_caps marvell_pxa3xx_nfc_legacy_caps = { + .max_cs_nb = 2, + .max_rb_nb = 1, + .legacy_of_bindings = true, + .use_dma = true, +}; + +static const struct platform_device_id marvell_nfc_platform_ids[] = { + { + .name = "pxa3xx-nand", + .driver_data = (kernel_ulong_t)&marvell_pxa3xx_nfc_legacy_caps, + }, + { /* sentinel */ }, +}; +MODULE_DEVICE_TABLE(platform, marvell_nfc_platform_ids); + +static const struct of_device_id marvell_nfc_of_ids[] = { + { + .compatible = "marvell,armada-8k-nand-controller", + .data = &marvell_armada_8k_nfc_caps, + }, + { + .compatible = "marvell,ac5-nand-controller", + .data = &marvell_ac5_caps, + }, + { + .compatible = "marvell,armada370-nand-controller", + .data = &marvell_armada370_nfc_caps, + }, + { + .compatible = "marvell,pxa3xx-nand-controller", + .data = &marvell_pxa3xx_nfc_caps, + }, + /* Support for old/deprecated bindings: */ + { + .compatible = "marvell,armada-8k-nand", + .data = &marvell_armada_8k_nfc_legacy_caps, + }, + { + .compatible = "marvell,armada370-nand", + .data = &marvell_armada370_nfc_legacy_caps, + }, + { + .compatible = "marvell,pxa3xx-nand", + .data = &marvell_pxa3xx_nfc_legacy_caps, + }, + { /* sentinel */ }, +}; +MODULE_DEVICE_TABLE(of, marvell_nfc_of_ids); + +static struct platform_driver marvell_nfc_driver = { + .driver = { + .name = "marvell-nfc", + .of_match_table = marvell_nfc_of_ids, + .pm = &marvell_nfc_pm_ops, + }, + .id_table = marvell_nfc_platform_ids, + .probe = marvell_nfc_probe, + .remove_new = marvell_nfc_remove, +}; +module_platform_driver(marvell_nfc_driver); + +MODULE_LICENSE("GPL"); +MODULE_DESCRIPTION("Marvell NAND controller driver"); diff --git a/drivers/mtd/nand/raw/meson_nand.c b/drivers/mtd/nand/raw/meson_nand.c new file mode 100644 index 0000000000..a506e658d4 --- /dev/null +++ b/drivers/mtd/nand/raw/meson_nand.c @@ -0,0 +1,1602 @@ +// SPDX-License-Identifier: (GPL-2.0+ OR MIT) +/* + * Amlogic Meson Nand Flash Controller Driver + * + * Copyright (c) 2018 Amlogic, inc. + * Author: Liang Yang <liang.yang@amlogic.com> + */ + +#include <linux/platform_device.h> +#include <linux/dma-mapping.h> +#include <linux/interrupt.h> +#include <linux/clk.h> +#include <linux/clk-provider.h> +#include <linux/mtd/rawnand.h> +#include <linux/mtd/mtd.h> +#include <linux/mfd/syscon.h> +#include <linux/regmap.h> +#include <linux/slab.h> +#include <linux/module.h> +#include <linux/iopoll.h> +#include <linux/of.h> +#include <linux/sched/task_stack.h> + +#define NFC_REG_CMD 0x00 +#define NFC_CMD_IDLE (0xc << 14) +#define NFC_CMD_CLE (0x5 << 14) +#define NFC_CMD_ALE (0x6 << 14) +#define NFC_CMD_ADL ((0 << 16) | (3 << 20)) +#define NFC_CMD_ADH ((1 << 16) | (3 << 20)) +#define NFC_CMD_AIL ((2 << 16) | (3 << 20)) +#define NFC_CMD_AIH ((3 << 16) | (3 << 20)) +#define NFC_CMD_SEED ((8 << 16) | (3 << 20)) +#define NFC_CMD_M2N ((0 << 17) | (2 << 20)) +#define NFC_CMD_N2M ((1 << 17) | (2 << 20)) +#define NFC_CMD_RB BIT(20) +#define NFC_CMD_SCRAMBLER_ENABLE BIT(19) +#define NFC_CMD_SCRAMBLER_DISABLE 0 +#define NFC_CMD_SHORTMODE_DISABLE 0 +#define NFC_CMD_RB_INT BIT(14) +#define NFC_CMD_RB_INT_NO_PIN ((0xb << 10) | BIT(18) | BIT(16)) + +#define NFC_CMD_GET_SIZE(x) (((x) >> 22) & GENMASK(4, 0)) + +#define NFC_REG_CFG 0x04 +#define NFC_REG_DADR 0x08 +#define NFC_REG_IADR 0x0c +#define NFC_REG_BUF 0x10 +#define NFC_REG_INFO 0x14 +#define NFC_REG_DC 0x18 +#define NFC_REG_ADR 0x1c +#define NFC_REG_DL 0x20 +#define NFC_REG_DH 0x24 +#define NFC_REG_CADR 0x28 +#define NFC_REG_SADR 0x2c +#define NFC_REG_PINS 0x30 +#define NFC_REG_VER 0x38 + +#define NFC_RB_IRQ_EN BIT(21) + +#define CLK_DIV_SHIFT 0 +#define CLK_DIV_WIDTH 6 + +#define CMDRWGEN(cmd_dir, ran, bch, short_mode, page_size, pages) \ + ( \ + (cmd_dir) | \ + ((ran) << 19) | \ + ((bch) << 14) | \ + ((short_mode) << 13) | \ + (((page_size) & 0x7f) << 6) | \ + ((pages) & 0x3f) \ + ) + +#define GENCMDDADDRL(adl, addr) ((adl) | ((addr) & 0xffff)) +#define GENCMDDADDRH(adh, addr) ((adh) | (((addr) >> 16) & 0xffff)) +#define GENCMDIADDRL(ail, addr) ((ail) | ((addr) & 0xffff)) +#define GENCMDIADDRH(aih, addr) ((aih) | (((addr) >> 16) & 0xffff)) + +#define DMA_DIR(dir) ((dir) ? NFC_CMD_N2M : NFC_CMD_M2N) +#define DMA_ADDR_ALIGN 8 + +#define ECC_CHECK_RETURN_FF (-1) + +#define NAND_CE0 (0xe << 10) +#define NAND_CE1 (0xd << 10) + +#define DMA_BUSY_TIMEOUT 0x100000 +#define CMD_FIFO_EMPTY_TIMEOUT 1000 + +#define MAX_CE_NUM 2 + +/* eMMC clock register, misc control */ +#define CLK_SELECT_NAND BIT(31) + +#define NFC_CLK_CYCLE 6 + +/* nand flash controller delay 3 ns */ +#define NFC_DEFAULT_DELAY 3000 + +#define ROW_ADDER(page, index) (((page) >> (8 * (index))) & 0xff) +#define MAX_CYCLE_ADDRS 5 +#define DIRREAD 1 +#define DIRWRITE 0 + +#define ECC_PARITY_BCH8_512B 14 +#define ECC_COMPLETE BIT(31) +#define ECC_ERR_CNT(x) (((x) >> 24) & GENMASK(5, 0)) +#define ECC_ZERO_CNT(x) (((x) >> 16) & GENMASK(5, 0)) +#define ECC_UNCORRECTABLE 0x3f + +#define PER_INFO_BYTE 8 + +#define NFC_CMD_RAW_LEN GENMASK(13, 0) + +#define NFC_COLUMN_ADDR_0 0 +#define NFC_COLUMN_ADDR_1 0 + +struct meson_nfc_nand_chip { + struct list_head node; + struct nand_chip nand; + unsigned long clk_rate; + unsigned long level1_divider; + u32 bus_timing; + u32 twb; + u32 tadl; + u32 tbers_max; + + u32 bch_mode; + u8 *data_buf; + __le64 *info_buf; + u32 nsels; + u8 sels[]; +}; + +struct meson_nand_ecc { + u32 bch; + u32 strength; + u32 size; +}; + +struct meson_nfc_data { + const struct nand_ecc_caps *ecc_caps; +}; + +struct meson_nfc_param { + u32 chip_select; + u32 rb_select; +}; + +struct nand_rw_cmd { + u32 cmd0; + u32 addrs[MAX_CYCLE_ADDRS]; + u32 cmd1; +}; + +struct nand_timing { + u32 twb; + u32 tadl; + u32 tbers_max; +}; + +struct meson_nfc { + struct nand_controller controller; + struct clk *core_clk; + struct clk *device_clk; + struct clk *nand_clk; + struct clk_divider nand_divider; + + unsigned long clk_rate; + u32 bus_timing; + + struct device *dev; + void __iomem *reg_base; + void __iomem *reg_clk; + struct completion completion; + struct list_head chips; + const struct meson_nfc_data *data; + struct meson_nfc_param param; + struct nand_timing timing; + union { + int cmd[32]; + struct nand_rw_cmd rw; + } cmdfifo; + + dma_addr_t daddr; + dma_addr_t iaddr; + u32 info_bytes; + + unsigned long assigned_cs; + bool no_rb_pin; +}; + +enum { + NFC_ECC_BCH8_512 = 1, + NFC_ECC_BCH8_1K, + NFC_ECC_BCH24_1K, + NFC_ECC_BCH30_1K, + NFC_ECC_BCH40_1K, + NFC_ECC_BCH50_1K, + NFC_ECC_BCH60_1K, +}; + +#define MESON_ECC_DATA(b, s, sz) { .bch = (b), .strength = (s), .size = (sz) } + +static struct meson_nand_ecc meson_ecc[] = { + MESON_ECC_DATA(NFC_ECC_BCH8_512, 8, 512), + MESON_ECC_DATA(NFC_ECC_BCH8_1K, 8, 1024), + MESON_ECC_DATA(NFC_ECC_BCH24_1K, 24, 1024), + MESON_ECC_DATA(NFC_ECC_BCH30_1K, 30, 1024), + MESON_ECC_DATA(NFC_ECC_BCH40_1K, 40, 1024), + MESON_ECC_DATA(NFC_ECC_BCH50_1K, 50, 1024), + MESON_ECC_DATA(NFC_ECC_BCH60_1K, 60, 1024), +}; + +static int meson_nand_calc_ecc_bytes(int step_size, int strength) +{ + int ecc_bytes; + + if (step_size == 512 && strength == 8) + return ECC_PARITY_BCH8_512B; + + ecc_bytes = DIV_ROUND_UP(strength * fls(step_size * 8), 8); + ecc_bytes = ALIGN(ecc_bytes, 2); + + return ecc_bytes; +} + +NAND_ECC_CAPS_SINGLE(meson_gxl_ecc_caps, + meson_nand_calc_ecc_bytes, 1024, 8, 24, 30, 40, 50, 60); + +static const int axg_stepinfo_strengths[] = { 8 }; + +static const struct nand_ecc_step_info axg_stepinfo[] = { + { + .stepsize = 1024, + .strengths = axg_stepinfo_strengths, + .nstrengths = ARRAY_SIZE(axg_stepinfo_strengths) + }, + { + .stepsize = 512, + .strengths = axg_stepinfo_strengths, + .nstrengths = ARRAY_SIZE(axg_stepinfo_strengths) + }, +}; + +static const struct nand_ecc_caps meson_axg_ecc_caps = { + .stepinfos = axg_stepinfo, + .nstepinfos = ARRAY_SIZE(axg_stepinfo), + .calc_ecc_bytes = meson_nand_calc_ecc_bytes, +}; + +static struct meson_nfc_nand_chip *to_meson_nand(struct nand_chip *nand) +{ + return container_of(nand, struct meson_nfc_nand_chip, nand); +} + +static void meson_nfc_select_chip(struct nand_chip *nand, int chip) +{ + struct meson_nfc_nand_chip *meson_chip = to_meson_nand(nand); + struct meson_nfc *nfc = nand_get_controller_data(nand); + int ret, value; + + if (chip < 0 || WARN_ON_ONCE(chip >= meson_chip->nsels)) + return; + + nfc->param.chip_select = meson_chip->sels[chip] ? NAND_CE1 : NAND_CE0; + nfc->param.rb_select = nfc->param.chip_select; + nfc->timing.twb = meson_chip->twb; + nfc->timing.tadl = meson_chip->tadl; + nfc->timing.tbers_max = meson_chip->tbers_max; + + if (nfc->clk_rate != meson_chip->clk_rate) { + ret = clk_set_rate(nfc->nand_clk, meson_chip->clk_rate); + if (ret) { + dev_err(nfc->dev, "failed to set clock rate\n"); + return; + } + nfc->clk_rate = meson_chip->clk_rate; + } + if (nfc->bus_timing != meson_chip->bus_timing) { + value = (NFC_CLK_CYCLE - 1) | (meson_chip->bus_timing << 5); + writel(value, nfc->reg_base + NFC_REG_CFG); + writel((1 << 31), nfc->reg_base + NFC_REG_CMD); + nfc->bus_timing = meson_chip->bus_timing; + } +} + +static void meson_nfc_cmd_idle(struct meson_nfc *nfc, u32 time) +{ + writel(nfc->param.chip_select | NFC_CMD_IDLE | (time & 0x3ff), + nfc->reg_base + NFC_REG_CMD); +} + +static void meson_nfc_cmd_seed(struct meson_nfc *nfc, u32 seed) +{ + writel(NFC_CMD_SEED | (0xc2 + (seed & 0x7fff)), + nfc->reg_base + NFC_REG_CMD); +} + +static void meson_nfc_cmd_access(struct nand_chip *nand, int raw, bool dir, + int scrambler) +{ + struct mtd_info *mtd = nand_to_mtd(nand); + struct meson_nfc *nfc = nand_get_controller_data(mtd_to_nand(mtd)); + struct meson_nfc_nand_chip *meson_chip = to_meson_nand(nand); + u32 bch = meson_chip->bch_mode, cmd; + int len = mtd->writesize, pagesize, pages; + + pagesize = nand->ecc.size; + + if (raw) { + len = mtd->writesize + mtd->oobsize; + cmd = len | scrambler | DMA_DIR(dir); + writel(cmd, nfc->reg_base + NFC_REG_CMD); + return; + } + + pages = len / nand->ecc.size; + + cmd = CMDRWGEN(DMA_DIR(dir), scrambler, bch, + NFC_CMD_SHORTMODE_DISABLE, pagesize, pages); + + writel(cmd, nfc->reg_base + NFC_REG_CMD); +} + +static void meson_nfc_drain_cmd(struct meson_nfc *nfc) +{ + /* + * Insert two commands to make sure all valid commands are finished. + * + * The Nand flash controller is designed as two stages pipleline - + * a) fetch and b) excute. + * There might be cases when the driver see command queue is empty, + * but the Nand flash controller still has two commands buffered, + * one is fetched into NFC request queue (ready to run), and another + * is actively executing. So pushing 2 "IDLE" commands guarantees that + * the pipeline is emptied. + */ + meson_nfc_cmd_idle(nfc, 0); + meson_nfc_cmd_idle(nfc, 0); +} + +static int meson_nfc_wait_cmd_finish(struct meson_nfc *nfc, + unsigned int timeout_ms) +{ + u32 cmd_size = 0; + int ret; + + /* wait cmd fifo is empty */ + ret = readl_relaxed_poll_timeout(nfc->reg_base + NFC_REG_CMD, cmd_size, + !NFC_CMD_GET_SIZE(cmd_size), + 10, timeout_ms * 1000); + if (ret) + dev_err(nfc->dev, "wait for empty CMD FIFO time out\n"); + + return ret; +} + +static int meson_nfc_wait_dma_finish(struct meson_nfc *nfc) +{ + meson_nfc_drain_cmd(nfc); + + return meson_nfc_wait_cmd_finish(nfc, DMA_BUSY_TIMEOUT); +} + +static u8 *meson_nfc_oob_ptr(struct nand_chip *nand, int i) +{ + struct meson_nfc_nand_chip *meson_chip = to_meson_nand(nand); + int len; + + len = nand->ecc.size * (i + 1) + (nand->ecc.bytes + 2) * i; + + return meson_chip->data_buf + len; +} + +static u8 *meson_nfc_data_ptr(struct nand_chip *nand, int i) +{ + struct meson_nfc_nand_chip *meson_chip = to_meson_nand(nand); + int len, temp; + + temp = nand->ecc.size + nand->ecc.bytes; + len = (temp + 2) * i; + + return meson_chip->data_buf + len; +} + +static void meson_nfc_get_data_oob(struct nand_chip *nand, + u8 *buf, u8 *oobbuf) +{ + int i, oob_len = 0; + u8 *dsrc, *osrc; + + oob_len = nand->ecc.bytes + 2; + for (i = 0; i < nand->ecc.steps; i++) { + if (buf) { + dsrc = meson_nfc_data_ptr(nand, i); + memcpy(buf, dsrc, nand->ecc.size); + buf += nand->ecc.size; + } + osrc = meson_nfc_oob_ptr(nand, i); + memcpy(oobbuf, osrc, oob_len); + oobbuf += oob_len; + } +} + +static void meson_nfc_set_data_oob(struct nand_chip *nand, + const u8 *buf, u8 *oobbuf) +{ + int i, oob_len = 0; + u8 *dsrc, *osrc; + + oob_len = nand->ecc.bytes + 2; + for (i = 0; i < nand->ecc.steps; i++) { + if (buf) { + dsrc = meson_nfc_data_ptr(nand, i); + memcpy(dsrc, buf, nand->ecc.size); + buf += nand->ecc.size; + } + osrc = meson_nfc_oob_ptr(nand, i); + memcpy(osrc, oobbuf, oob_len); + oobbuf += oob_len; + } +} + +static int meson_nfc_wait_no_rb_pin(struct nand_chip *nand, int timeout_ms, + bool need_cmd_read0) +{ + struct meson_nfc *nfc = nand_get_controller_data(nand); + u32 cmd, cfg; + + meson_nfc_cmd_idle(nfc, nfc->timing.twb); + meson_nfc_drain_cmd(nfc); + meson_nfc_wait_cmd_finish(nfc, CMD_FIFO_EMPTY_TIMEOUT); + + cfg = readl(nfc->reg_base + NFC_REG_CFG); + cfg |= NFC_RB_IRQ_EN; + writel(cfg, nfc->reg_base + NFC_REG_CFG); + + reinit_completion(&nfc->completion); + nand_status_op(nand, NULL); + + /* use the max erase time as the maximum clock for waiting R/B */ + cmd = NFC_CMD_RB | NFC_CMD_RB_INT_NO_PIN | nfc->timing.tbers_max; + writel(cmd, nfc->reg_base + NFC_REG_CMD); + + if (!wait_for_completion_timeout(&nfc->completion, + msecs_to_jiffies(timeout_ms))) + return -ETIMEDOUT; + + if (need_cmd_read0) + nand_exit_status_op(nand); + + return 0; +} + +static int meson_nfc_wait_rb_pin(struct meson_nfc *nfc, int timeout_ms) +{ + u32 cmd, cfg; + int ret = 0; + + meson_nfc_cmd_idle(nfc, nfc->timing.twb); + meson_nfc_drain_cmd(nfc); + meson_nfc_wait_cmd_finish(nfc, CMD_FIFO_EMPTY_TIMEOUT); + + cfg = readl(nfc->reg_base + NFC_REG_CFG); + cfg |= NFC_RB_IRQ_EN; + writel(cfg, nfc->reg_base + NFC_REG_CFG); + + reinit_completion(&nfc->completion); + + /* use the max erase time as the maximum clock for waiting R/B */ + cmd = NFC_CMD_RB | NFC_CMD_RB_INT + | nfc->param.chip_select | nfc->timing.tbers_max; + writel(cmd, nfc->reg_base + NFC_REG_CMD); + + ret = wait_for_completion_timeout(&nfc->completion, + msecs_to_jiffies(timeout_ms)); + if (ret == 0) + ret = -1; + + return ret; +} + +static int meson_nfc_queue_rb(struct nand_chip *nand, int timeout_ms, + bool need_cmd_read0) +{ + struct meson_nfc *nfc = nand_get_controller_data(nand); + + if (nfc->no_rb_pin) { + /* This mode is used when there is no wired R/B pin. + * It works like 'nand_soft_waitrdy()', but instead of + * polling NAND_CMD_STATUS bit in the software loop, + * it will wait for interrupt - controllers checks IO + * bus and when it detects NAND_CMD_STATUS on it, it + * raises interrupt. After interrupt, NAND_CMD_READ0 is + * sent as terminator of the ready waiting procedure if + * needed (for all cases except page programming - this + * is reason of 'need_cmd_read0' flag). + */ + return meson_nfc_wait_no_rb_pin(nand, timeout_ms, + need_cmd_read0); + } else { + return meson_nfc_wait_rb_pin(nfc, timeout_ms); + } +} + +static void meson_nfc_set_user_byte(struct nand_chip *nand, u8 *oob_buf) +{ + struct meson_nfc_nand_chip *meson_chip = to_meson_nand(nand); + __le64 *info; + int i, count; + + for (i = 0, count = 0; i < nand->ecc.steps; i++, count += 2) { + info = &meson_chip->info_buf[i]; + *info |= oob_buf[count]; + *info |= oob_buf[count + 1] << 8; + } +} + +static void meson_nfc_get_user_byte(struct nand_chip *nand, u8 *oob_buf) +{ + struct meson_nfc_nand_chip *meson_chip = to_meson_nand(nand); + __le64 *info; + int i, count; + + for (i = 0, count = 0; i < nand->ecc.steps; i++, count += 2) { + info = &meson_chip->info_buf[i]; + oob_buf[count] = *info; + oob_buf[count + 1] = *info >> 8; + } +} + +static int meson_nfc_ecc_correct(struct nand_chip *nand, u32 *bitflips, + u64 *correct_bitmap) +{ + struct mtd_info *mtd = nand_to_mtd(nand); + struct meson_nfc_nand_chip *meson_chip = to_meson_nand(nand); + __le64 *info; + int ret = 0, i; + + for (i = 0; i < nand->ecc.steps; i++) { + info = &meson_chip->info_buf[i]; + if (ECC_ERR_CNT(*info) != ECC_UNCORRECTABLE) { + mtd->ecc_stats.corrected += ECC_ERR_CNT(*info); + *bitflips = max_t(u32, *bitflips, ECC_ERR_CNT(*info)); + *correct_bitmap |= BIT_ULL(i); + continue; + } + if ((nand->options & NAND_NEED_SCRAMBLING) && + ECC_ZERO_CNT(*info) < nand->ecc.strength) { + mtd->ecc_stats.corrected += ECC_ZERO_CNT(*info); + *bitflips = max_t(u32, *bitflips, + ECC_ZERO_CNT(*info)); + ret = ECC_CHECK_RETURN_FF; + } else { + ret = -EBADMSG; + } + } + return ret; +} + +static int meson_nfc_dma_buffer_setup(struct nand_chip *nand, void *databuf, + int datalen, void *infobuf, int infolen, + enum dma_data_direction dir) +{ + struct meson_nfc *nfc = nand_get_controller_data(nand); + u32 cmd; + int ret = 0; + + nfc->daddr = dma_map_single(nfc->dev, databuf, datalen, dir); + ret = dma_mapping_error(nfc->dev, nfc->daddr); + if (ret) { + dev_err(nfc->dev, "DMA mapping error\n"); + return ret; + } + cmd = GENCMDDADDRL(NFC_CMD_ADL, nfc->daddr); + writel(cmd, nfc->reg_base + NFC_REG_CMD); + + cmd = GENCMDDADDRH(NFC_CMD_ADH, nfc->daddr); + writel(cmd, nfc->reg_base + NFC_REG_CMD); + + if (infobuf) { + nfc->iaddr = dma_map_single(nfc->dev, infobuf, infolen, dir); + ret = dma_mapping_error(nfc->dev, nfc->iaddr); + if (ret) { + dev_err(nfc->dev, "DMA mapping error\n"); + dma_unmap_single(nfc->dev, + nfc->daddr, datalen, dir); + return ret; + } + nfc->info_bytes = infolen; + cmd = GENCMDIADDRL(NFC_CMD_AIL, nfc->iaddr); + writel(cmd, nfc->reg_base + NFC_REG_CMD); + + cmd = GENCMDIADDRH(NFC_CMD_AIH, nfc->iaddr); + writel(cmd, nfc->reg_base + NFC_REG_CMD); + } + + return ret; +} + +static void meson_nfc_dma_buffer_release(struct nand_chip *nand, + int datalen, int infolen, + enum dma_data_direction dir) +{ + struct meson_nfc *nfc = nand_get_controller_data(nand); + + dma_unmap_single(nfc->dev, nfc->daddr, datalen, dir); + if (infolen) { + dma_unmap_single(nfc->dev, nfc->iaddr, infolen, dir); + nfc->info_bytes = 0; + } +} + +static int meson_nfc_read_buf(struct nand_chip *nand, u8 *buf, int len) +{ + struct meson_nfc *nfc = nand_get_controller_data(nand); + int ret = 0; + u32 cmd; + u8 *info; + + info = kzalloc(PER_INFO_BYTE, GFP_KERNEL); + if (!info) + return -ENOMEM; + + ret = meson_nfc_dma_buffer_setup(nand, buf, len, info, + PER_INFO_BYTE, DMA_FROM_DEVICE); + if (ret) + goto out; + + cmd = NFC_CMD_N2M | len; + writel(cmd, nfc->reg_base + NFC_REG_CMD); + + meson_nfc_drain_cmd(nfc); + meson_nfc_wait_cmd_finish(nfc, 1000); + meson_nfc_dma_buffer_release(nand, len, PER_INFO_BYTE, DMA_FROM_DEVICE); + +out: + kfree(info); + + return ret; +} + +static int meson_nfc_write_buf(struct nand_chip *nand, u8 *buf, int len) +{ + struct meson_nfc *nfc = nand_get_controller_data(nand); + int ret = 0; + u32 cmd; + + ret = meson_nfc_dma_buffer_setup(nand, buf, len, NULL, + 0, DMA_TO_DEVICE); + if (ret) + return ret; + + cmd = NFC_CMD_M2N | len; + writel(cmd, nfc->reg_base + NFC_REG_CMD); + + meson_nfc_drain_cmd(nfc); + meson_nfc_wait_cmd_finish(nfc, 1000); + meson_nfc_dma_buffer_release(nand, len, 0, DMA_TO_DEVICE); + + return ret; +} + +static int meson_nfc_rw_cmd_prepare_and_execute(struct nand_chip *nand, + int page, bool in) +{ + const struct nand_sdr_timings *sdr = + nand_get_sdr_timings(nand_get_interface_config(nand)); + struct mtd_info *mtd = nand_to_mtd(nand); + struct meson_nfc *nfc = nand_get_controller_data(nand); + u32 *addrs = nfc->cmdfifo.rw.addrs; + u32 cs = nfc->param.chip_select; + u32 cmd0, cmd_num, row_start; + int i; + + cmd_num = sizeof(struct nand_rw_cmd) / sizeof(int); + + cmd0 = in ? NAND_CMD_READ0 : NAND_CMD_SEQIN; + nfc->cmdfifo.rw.cmd0 = cs | NFC_CMD_CLE | cmd0; + + addrs[0] = cs | NFC_CMD_ALE | NFC_COLUMN_ADDR_0; + if (mtd->writesize <= 512) { + cmd_num--; + row_start = 1; + } else { + addrs[1] = cs | NFC_CMD_ALE | NFC_COLUMN_ADDR_1; + row_start = 2; + } + + addrs[row_start] = cs | NFC_CMD_ALE | ROW_ADDER(page, 0); + addrs[row_start + 1] = cs | NFC_CMD_ALE | ROW_ADDER(page, 1); + + if (nand->options & NAND_ROW_ADDR_3) + addrs[row_start + 2] = + cs | NFC_CMD_ALE | ROW_ADDER(page, 2); + else + cmd_num--; + + /* subtract cmd1 */ + cmd_num--; + + for (i = 0; i < cmd_num; i++) + writel_relaxed(nfc->cmdfifo.cmd[i], + nfc->reg_base + NFC_REG_CMD); + + if (in) { + nfc->cmdfifo.rw.cmd1 = cs | NFC_CMD_CLE | NAND_CMD_READSTART; + writel(nfc->cmdfifo.rw.cmd1, nfc->reg_base + NFC_REG_CMD); + meson_nfc_queue_rb(nand, PSEC_TO_MSEC(sdr->tR_max), true); + } else { + meson_nfc_cmd_idle(nfc, nfc->timing.tadl); + } + + return 0; +} + +static int meson_nfc_write_page_sub(struct nand_chip *nand, + int page, int raw) +{ + const struct nand_sdr_timings *sdr = + nand_get_sdr_timings(nand_get_interface_config(nand)); + struct mtd_info *mtd = nand_to_mtd(nand); + struct meson_nfc_nand_chip *meson_chip = to_meson_nand(nand); + struct meson_nfc *nfc = nand_get_controller_data(nand); + int data_len, info_len; + u32 cmd; + int ret; + + meson_nfc_select_chip(nand, nand->cur_cs); + + data_len = mtd->writesize + mtd->oobsize; + info_len = nand->ecc.steps * PER_INFO_BYTE; + + ret = meson_nfc_rw_cmd_prepare_and_execute(nand, page, DIRWRITE); + if (ret) + return ret; + + ret = meson_nfc_dma_buffer_setup(nand, meson_chip->data_buf, + data_len, meson_chip->info_buf, + info_len, DMA_TO_DEVICE); + if (ret) + return ret; + + if (nand->options & NAND_NEED_SCRAMBLING) { + meson_nfc_cmd_seed(nfc, page); + meson_nfc_cmd_access(nand, raw, DIRWRITE, + NFC_CMD_SCRAMBLER_ENABLE); + } else { + meson_nfc_cmd_access(nand, raw, DIRWRITE, + NFC_CMD_SCRAMBLER_DISABLE); + } + + cmd = nfc->param.chip_select | NFC_CMD_CLE | NAND_CMD_PAGEPROG; + writel(cmd, nfc->reg_base + NFC_REG_CMD); + meson_nfc_queue_rb(nand, PSEC_TO_MSEC(sdr->tPROG_max), false); + + meson_nfc_dma_buffer_release(nand, data_len, info_len, DMA_TO_DEVICE); + + return ret; +} + +static int meson_nfc_write_page_raw(struct nand_chip *nand, const u8 *buf, + int oob_required, int page) +{ + u8 *oob_buf = nand->oob_poi; + + meson_nfc_set_data_oob(nand, buf, oob_buf); + + return meson_nfc_write_page_sub(nand, page, 1); +} + +static int meson_nfc_write_page_hwecc(struct nand_chip *nand, + const u8 *buf, int oob_required, int page) +{ + struct mtd_info *mtd = nand_to_mtd(nand); + struct meson_nfc_nand_chip *meson_chip = to_meson_nand(nand); + u8 *oob_buf = nand->oob_poi; + + memcpy(meson_chip->data_buf, buf, mtd->writesize); + memset(meson_chip->info_buf, 0, nand->ecc.steps * PER_INFO_BYTE); + meson_nfc_set_user_byte(nand, oob_buf); + + return meson_nfc_write_page_sub(nand, page, 0); +} + +static void meson_nfc_check_ecc_pages_valid(struct meson_nfc *nfc, + struct nand_chip *nand, int raw) +{ + struct meson_nfc_nand_chip *meson_chip = to_meson_nand(nand); + __le64 *info; + u32 neccpages; + int ret; + + neccpages = raw ? 1 : nand->ecc.steps; + info = &meson_chip->info_buf[neccpages - 1]; + do { + usleep_range(10, 15); + /* info is updated by nfc dma engine*/ + smp_rmb(); + dma_sync_single_for_cpu(nfc->dev, nfc->iaddr, nfc->info_bytes, + DMA_FROM_DEVICE); + ret = *info & ECC_COMPLETE; + } while (!ret); +} + +static int meson_nfc_read_page_sub(struct nand_chip *nand, + int page, int raw) +{ + struct mtd_info *mtd = nand_to_mtd(nand); + struct meson_nfc *nfc = nand_get_controller_data(nand); + struct meson_nfc_nand_chip *meson_chip = to_meson_nand(nand); + int data_len, info_len; + int ret; + + meson_nfc_select_chip(nand, nand->cur_cs); + + data_len = mtd->writesize + mtd->oobsize; + info_len = nand->ecc.steps * PER_INFO_BYTE; + + ret = meson_nfc_rw_cmd_prepare_and_execute(nand, page, DIRREAD); + if (ret) + return ret; + + ret = meson_nfc_dma_buffer_setup(nand, meson_chip->data_buf, + data_len, meson_chip->info_buf, + info_len, DMA_FROM_DEVICE); + if (ret) + return ret; + + if (nand->options & NAND_NEED_SCRAMBLING) { + meson_nfc_cmd_seed(nfc, page); + meson_nfc_cmd_access(nand, raw, DIRREAD, + NFC_CMD_SCRAMBLER_ENABLE); + } else { + meson_nfc_cmd_access(nand, raw, DIRREAD, + NFC_CMD_SCRAMBLER_DISABLE); + } + + ret = meson_nfc_wait_dma_finish(nfc); + meson_nfc_check_ecc_pages_valid(nfc, nand, raw); + + meson_nfc_dma_buffer_release(nand, data_len, info_len, DMA_FROM_DEVICE); + + return ret; +} + +static int meson_nfc_read_page_raw(struct nand_chip *nand, u8 *buf, + int oob_required, int page) +{ + u8 *oob_buf = nand->oob_poi; + int ret; + + ret = meson_nfc_read_page_sub(nand, page, 1); + if (ret) + return ret; + + meson_nfc_get_data_oob(nand, buf, oob_buf); + + return 0; +} + +static int meson_nfc_read_page_hwecc(struct nand_chip *nand, u8 *buf, + int oob_required, int page) +{ + struct mtd_info *mtd = nand_to_mtd(nand); + struct meson_nfc_nand_chip *meson_chip = to_meson_nand(nand); + struct nand_ecc_ctrl *ecc = &nand->ecc; + u64 correct_bitmap = 0; + u32 bitflips = 0; + u8 *oob_buf = nand->oob_poi; + int ret, i; + + ret = meson_nfc_read_page_sub(nand, page, 0); + if (ret) + return ret; + + meson_nfc_get_user_byte(nand, oob_buf); + ret = meson_nfc_ecc_correct(nand, &bitflips, &correct_bitmap); + if (ret == ECC_CHECK_RETURN_FF) { + if (buf) + memset(buf, 0xff, mtd->writesize); + memset(oob_buf, 0xff, mtd->oobsize); + } else if (ret < 0) { + if ((nand->options & NAND_NEED_SCRAMBLING) || !buf) { + mtd->ecc_stats.failed++; + return bitflips; + } + ret = meson_nfc_read_page_raw(nand, buf, 0, page); + if (ret) + return ret; + + for (i = 0; i < nand->ecc.steps ; i++) { + u8 *data = buf + i * ecc->size; + u8 *oob = nand->oob_poi + i * (ecc->bytes + 2); + + if (correct_bitmap & BIT_ULL(i)) + continue; + ret = nand_check_erased_ecc_chunk(data, ecc->size, + oob, ecc->bytes + 2, + NULL, 0, + ecc->strength); + if (ret < 0) { + mtd->ecc_stats.failed++; + } else { + mtd->ecc_stats.corrected += ret; + bitflips = max_t(u32, bitflips, ret); + } + } + } else if (buf && buf != meson_chip->data_buf) { + memcpy(buf, meson_chip->data_buf, mtd->writesize); + } + + return bitflips; +} + +static int meson_nfc_read_oob_raw(struct nand_chip *nand, int page) +{ + return meson_nfc_read_page_raw(nand, NULL, 1, page); +} + +static int meson_nfc_read_oob(struct nand_chip *nand, int page) +{ + return meson_nfc_read_page_hwecc(nand, NULL, 1, page); +} + +static bool meson_nfc_is_buffer_dma_safe(const void *buffer) +{ + if ((uintptr_t)buffer % DMA_ADDR_ALIGN) + return false; + + if (virt_addr_valid(buffer) && (!object_is_on_stack(buffer))) + return true; + return false; +} + +static void * +meson_nand_op_get_dma_safe_input_buf(const struct nand_op_instr *instr) +{ + if (WARN_ON(instr->type != NAND_OP_DATA_IN_INSTR)) + return NULL; + + if (meson_nfc_is_buffer_dma_safe(instr->ctx.data.buf.in)) + return instr->ctx.data.buf.in; + + return kzalloc(instr->ctx.data.len, GFP_KERNEL); +} + +static void +meson_nand_op_put_dma_safe_input_buf(const struct nand_op_instr *instr, + void *buf) +{ + if (WARN_ON(instr->type != NAND_OP_DATA_IN_INSTR) || + WARN_ON(!buf)) + return; + + if (buf == instr->ctx.data.buf.in) + return; + + memcpy(instr->ctx.data.buf.in, buf, instr->ctx.data.len); + kfree(buf); +} + +static void * +meson_nand_op_get_dma_safe_output_buf(const struct nand_op_instr *instr) +{ + if (WARN_ON(instr->type != NAND_OP_DATA_OUT_INSTR)) + return NULL; + + if (meson_nfc_is_buffer_dma_safe(instr->ctx.data.buf.out)) + return (void *)instr->ctx.data.buf.out; + + return kmemdup(instr->ctx.data.buf.out, + instr->ctx.data.len, GFP_KERNEL); +} + +static void +meson_nand_op_put_dma_safe_output_buf(const struct nand_op_instr *instr, + const void *buf) +{ + if (WARN_ON(instr->type != NAND_OP_DATA_OUT_INSTR) || + WARN_ON(!buf)) + return; + + if (buf != instr->ctx.data.buf.out) + kfree(buf); +} + +static int meson_nfc_check_op(struct nand_chip *chip, + const struct nand_operation *op) +{ + int op_id; + + for (op_id = 0; op_id < op->ninstrs; op_id++) { + const struct nand_op_instr *instr; + + instr = &op->instrs[op_id]; + + switch (instr->type) { + case NAND_OP_DATA_IN_INSTR: + case NAND_OP_DATA_OUT_INSTR: + if (instr->ctx.data.len > NFC_CMD_RAW_LEN) + return -ENOTSUPP; + + break; + default: + break; + } + } + + return 0; +} + +static int meson_nfc_exec_op(struct nand_chip *nand, + const struct nand_operation *op, bool check_only) +{ + struct meson_nfc_nand_chip *meson_chip = to_meson_nand(nand); + struct meson_nfc *nfc = nand_get_controller_data(nand); + const struct nand_op_instr *instr = NULL; + void *buf; + u32 op_id, delay_idle, cmd; + int err; + int i; + + err = meson_nfc_check_op(nand, op); + if (err) + return err; + + if (check_only) + return 0; + + meson_nfc_select_chip(nand, op->cs); + for (op_id = 0; op_id < op->ninstrs; op_id++) { + instr = &op->instrs[op_id]; + delay_idle = DIV_ROUND_UP(PSEC_TO_NSEC(instr->delay_ns), + meson_chip->level1_divider * + NFC_CLK_CYCLE); + switch (instr->type) { + case NAND_OP_CMD_INSTR: + cmd = nfc->param.chip_select | NFC_CMD_CLE; + cmd |= instr->ctx.cmd.opcode & 0xff; + writel(cmd, nfc->reg_base + NFC_REG_CMD); + meson_nfc_cmd_idle(nfc, delay_idle); + break; + + case NAND_OP_ADDR_INSTR: + for (i = 0; i < instr->ctx.addr.naddrs; i++) { + cmd = nfc->param.chip_select | NFC_CMD_ALE; + cmd |= instr->ctx.addr.addrs[i] & 0xff; + writel(cmd, nfc->reg_base + NFC_REG_CMD); + } + meson_nfc_cmd_idle(nfc, delay_idle); + break; + + case NAND_OP_DATA_IN_INSTR: + buf = meson_nand_op_get_dma_safe_input_buf(instr); + if (!buf) + return -ENOMEM; + meson_nfc_read_buf(nand, buf, instr->ctx.data.len); + meson_nand_op_put_dma_safe_input_buf(instr, buf); + break; + + case NAND_OP_DATA_OUT_INSTR: + buf = meson_nand_op_get_dma_safe_output_buf(instr); + if (!buf) + return -ENOMEM; + meson_nfc_write_buf(nand, buf, instr->ctx.data.len); + meson_nand_op_put_dma_safe_output_buf(instr, buf); + break; + + case NAND_OP_WAITRDY_INSTR: + meson_nfc_queue_rb(nand, instr->ctx.waitrdy.timeout_ms, + true); + if (instr->delay_ns) + meson_nfc_cmd_idle(nfc, delay_idle); + break; + } + } + meson_nfc_wait_cmd_finish(nfc, 1000); + return 0; +} + +static int meson_ooblayout_ecc(struct mtd_info *mtd, int section, + struct mtd_oob_region *oobregion) +{ + struct nand_chip *nand = mtd_to_nand(mtd); + + if (section >= nand->ecc.steps) + return -ERANGE; + + oobregion->offset = 2 + (section * (2 + nand->ecc.bytes)); + oobregion->length = nand->ecc.bytes; + + return 0; +} + +static int meson_ooblayout_free(struct mtd_info *mtd, int section, + struct mtd_oob_region *oobregion) +{ + struct nand_chip *nand = mtd_to_nand(mtd); + + if (section >= nand->ecc.steps) + return -ERANGE; + + oobregion->offset = section * (2 + nand->ecc.bytes); + oobregion->length = 2; + + return 0; +} + +static const struct mtd_ooblayout_ops meson_ooblayout_ops = { + .ecc = meson_ooblayout_ecc, + .free = meson_ooblayout_free, +}; + +static int meson_nfc_clk_init(struct meson_nfc *nfc) +{ + struct clk_parent_data nfc_divider_parent_data[1] = {0}; + struct clk_init_data init = {0}; + int ret; + + /* request core clock */ + nfc->core_clk = devm_clk_get(nfc->dev, "core"); + if (IS_ERR(nfc->core_clk)) { + dev_err(nfc->dev, "failed to get core clock\n"); + return PTR_ERR(nfc->core_clk); + } + + nfc->device_clk = devm_clk_get(nfc->dev, "device"); + if (IS_ERR(nfc->device_clk)) { + dev_err(nfc->dev, "failed to get device clock\n"); + return PTR_ERR(nfc->device_clk); + } + + init.name = devm_kasprintf(nfc->dev, + GFP_KERNEL, "%s#div", + dev_name(nfc->dev)); + if (!init.name) + return -ENOMEM; + + init.ops = &clk_divider_ops; + nfc_divider_parent_data[0].fw_name = "device"; + init.parent_data = nfc_divider_parent_data; + init.num_parents = 1; + nfc->nand_divider.reg = nfc->reg_clk; + nfc->nand_divider.shift = CLK_DIV_SHIFT; + nfc->nand_divider.width = CLK_DIV_WIDTH; + nfc->nand_divider.hw.init = &init; + nfc->nand_divider.flags = CLK_DIVIDER_ONE_BASED | + CLK_DIVIDER_ROUND_CLOSEST | + CLK_DIVIDER_ALLOW_ZERO; + + nfc->nand_clk = devm_clk_register(nfc->dev, &nfc->nand_divider.hw); + if (IS_ERR(nfc->nand_clk)) + return PTR_ERR(nfc->nand_clk); + + /* init SD_EMMC_CLOCK to sane defaults w/min clock rate */ + writel(CLK_SELECT_NAND | readl(nfc->reg_clk), + nfc->reg_clk); + + ret = clk_prepare_enable(nfc->core_clk); + if (ret) { + dev_err(nfc->dev, "failed to enable core clock\n"); + return ret; + } + + ret = clk_prepare_enable(nfc->device_clk); + if (ret) { + dev_err(nfc->dev, "failed to enable device clock\n"); + goto err_device_clk; + } + + ret = clk_prepare_enable(nfc->nand_clk); + if (ret) { + dev_err(nfc->dev, "pre enable NFC divider fail\n"); + goto err_nand_clk; + } + + ret = clk_set_rate(nfc->nand_clk, 24000000); + if (ret) + goto err_disable_clk; + + return 0; + +err_disable_clk: + clk_disable_unprepare(nfc->nand_clk); +err_nand_clk: + clk_disable_unprepare(nfc->device_clk); +err_device_clk: + clk_disable_unprepare(nfc->core_clk); + return ret; +} + +static void meson_nfc_disable_clk(struct meson_nfc *nfc) +{ + clk_disable_unprepare(nfc->nand_clk); + clk_disable_unprepare(nfc->device_clk); + clk_disable_unprepare(nfc->core_clk); +} + +static void meson_nfc_free_buffer(struct nand_chip *nand) +{ + struct meson_nfc_nand_chip *meson_chip = to_meson_nand(nand); + + kfree(meson_chip->info_buf); + kfree(meson_chip->data_buf); +} + +static int meson_chip_buffer_init(struct nand_chip *nand) +{ + struct mtd_info *mtd = nand_to_mtd(nand); + struct meson_nfc_nand_chip *meson_chip = to_meson_nand(nand); + u32 page_bytes, info_bytes, nsectors; + + nsectors = mtd->writesize / nand->ecc.size; + + page_bytes = mtd->writesize + mtd->oobsize; + info_bytes = nsectors * PER_INFO_BYTE; + + meson_chip->data_buf = kmalloc(page_bytes, GFP_KERNEL); + if (!meson_chip->data_buf) + return -ENOMEM; + + meson_chip->info_buf = kmalloc(info_bytes, GFP_KERNEL); + if (!meson_chip->info_buf) { + kfree(meson_chip->data_buf); + return -ENOMEM; + } + + return 0; +} + +static +int meson_nfc_setup_interface(struct nand_chip *nand, int csline, + const struct nand_interface_config *conf) +{ + struct meson_nfc_nand_chip *meson_chip = to_meson_nand(nand); + const struct nand_sdr_timings *timings; + u32 div, bt_min, bt_max, tbers_clocks; + + timings = nand_get_sdr_timings(conf); + if (IS_ERR(timings)) + return -ENOTSUPP; + + if (csline == NAND_DATA_IFACE_CHECK_ONLY) + return 0; + + div = DIV_ROUND_UP((timings->tRC_min / 1000), NFC_CLK_CYCLE); + bt_min = (timings->tREA_max + NFC_DEFAULT_DELAY) / div; + bt_max = (NFC_DEFAULT_DELAY + timings->tRHOH_min + + timings->tRC_min / 2) / div; + + meson_chip->twb = DIV_ROUND_UP(PSEC_TO_NSEC(timings->tWB_max), + div * NFC_CLK_CYCLE); + meson_chip->tadl = DIV_ROUND_UP(PSEC_TO_NSEC(timings->tADL_min), + div * NFC_CLK_CYCLE); + tbers_clocks = DIV_ROUND_UP_ULL(PSEC_TO_NSEC(timings->tBERS_max), + div * NFC_CLK_CYCLE); + meson_chip->tbers_max = ilog2(tbers_clocks); + if (!is_power_of_2(tbers_clocks)) + meson_chip->tbers_max++; + + bt_min = DIV_ROUND_UP(bt_min, 1000); + bt_max = DIV_ROUND_UP(bt_max, 1000); + + if (bt_max < bt_min) + return -EINVAL; + + meson_chip->level1_divider = div; + meson_chip->clk_rate = 1000000000 / meson_chip->level1_divider; + meson_chip->bus_timing = (bt_min + bt_max) / 2 + 1; + + return 0; +} + +static int meson_nand_bch_mode(struct nand_chip *nand) +{ + struct meson_nfc_nand_chip *meson_chip = to_meson_nand(nand); + int i; + + if (nand->ecc.strength > 60 || nand->ecc.strength < 8) + return -EINVAL; + + for (i = 0; i < ARRAY_SIZE(meson_ecc); i++) { + if (meson_ecc[i].strength == nand->ecc.strength && + meson_ecc[i].size == nand->ecc.size) { + meson_chip->bch_mode = meson_ecc[i].bch; + return 0; + } + } + + return -EINVAL; +} + +static void meson_nand_detach_chip(struct nand_chip *nand) +{ + meson_nfc_free_buffer(nand); +} + +static int meson_nand_attach_chip(struct nand_chip *nand) +{ + struct meson_nfc *nfc = nand_get_controller_data(nand); + struct meson_nfc_nand_chip *meson_chip = to_meson_nand(nand); + struct mtd_info *mtd = nand_to_mtd(nand); + int raw_writesize; + int ret; + + if (!mtd->name) { + mtd->name = devm_kasprintf(nfc->dev, GFP_KERNEL, + "%s:nand%d", + dev_name(nfc->dev), + meson_chip->sels[0]); + if (!mtd->name) + return -ENOMEM; + } + + raw_writesize = mtd->writesize + mtd->oobsize; + if (raw_writesize > NFC_CMD_RAW_LEN) { + dev_err(nfc->dev, "too big write size in raw mode: %d > %ld\n", + raw_writesize, NFC_CMD_RAW_LEN); + return -EINVAL; + } + + if (nand->bbt_options & NAND_BBT_USE_FLASH) + nand->bbt_options |= NAND_BBT_NO_OOB; + + nand->options |= NAND_NO_SUBPAGE_WRITE; + + ret = nand_ecc_choose_conf(nand, nfc->data->ecc_caps, + mtd->oobsize - 2); + if (ret) { + dev_err(nfc->dev, "failed to ECC init\n"); + return -EINVAL; + } + + mtd_set_ooblayout(mtd, &meson_ooblayout_ops); + + ret = meson_nand_bch_mode(nand); + if (ret) + return -EINVAL; + + nand->ecc.engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST; + nand->ecc.write_page_raw = meson_nfc_write_page_raw; + nand->ecc.write_page = meson_nfc_write_page_hwecc; + nand->ecc.write_oob_raw = nand_write_oob_std; + nand->ecc.write_oob = nand_write_oob_std; + + nand->ecc.read_page_raw = meson_nfc_read_page_raw; + nand->ecc.read_page = meson_nfc_read_page_hwecc; + nand->ecc.read_oob_raw = meson_nfc_read_oob_raw; + nand->ecc.read_oob = meson_nfc_read_oob; + + if (nand->options & NAND_BUSWIDTH_16) { + dev_err(nfc->dev, "16bits bus width not supported"); + return -EINVAL; + } + ret = meson_chip_buffer_init(nand); + if (ret) + return -ENOMEM; + + return ret; +} + +static const struct nand_controller_ops meson_nand_controller_ops = { + .attach_chip = meson_nand_attach_chip, + .detach_chip = meson_nand_detach_chip, + .setup_interface = meson_nfc_setup_interface, + .exec_op = meson_nfc_exec_op, +}; + +static int +meson_nfc_nand_chip_init(struct device *dev, + struct meson_nfc *nfc, struct device_node *np) +{ + struct meson_nfc_nand_chip *meson_chip; + struct nand_chip *nand; + struct mtd_info *mtd; + int ret, i; + u32 tmp, nsels; + u32 nand_rb_val = 0; + + nsels = of_property_count_elems_of_size(np, "reg", sizeof(u32)); + if (!nsels || nsels > MAX_CE_NUM) { + dev_err(dev, "invalid register property size\n"); + return -EINVAL; + } + + meson_chip = devm_kzalloc(dev, struct_size(meson_chip, sels, nsels), + GFP_KERNEL); + if (!meson_chip) + return -ENOMEM; + + meson_chip->nsels = nsels; + + for (i = 0; i < nsels; i++) { + ret = of_property_read_u32_index(np, "reg", i, &tmp); + if (ret) { + dev_err(dev, "could not retrieve register property: %d\n", + ret); + return ret; + } + + if (test_and_set_bit(tmp, &nfc->assigned_cs)) { + dev_err(dev, "CS %d already assigned\n", tmp); + return -EINVAL; + } + } + + nand = &meson_chip->nand; + nand->controller = &nfc->controller; + nand->controller->ops = &meson_nand_controller_ops; + nand_set_flash_node(nand, np); + nand_set_controller_data(nand, nfc); + + nand->options |= NAND_USES_DMA; + mtd = nand_to_mtd(nand); + mtd->owner = THIS_MODULE; + mtd->dev.parent = dev; + + ret = of_property_read_u32(np, "nand-rb", &nand_rb_val); + if (ret == -EINVAL) + nfc->no_rb_pin = true; + else if (ret) + return ret; + + if (nand_rb_val) + return -EINVAL; + + ret = nand_scan(nand, nsels); + if (ret) + return ret; + + ret = mtd_device_register(mtd, NULL, 0); + if (ret) { + dev_err(dev, "failed to register MTD device: %d\n", ret); + nand_cleanup(nand); + return ret; + } + + list_add_tail(&meson_chip->node, &nfc->chips); + + return 0; +} + +static void meson_nfc_nand_chip_cleanup(struct meson_nfc *nfc) +{ + struct meson_nfc_nand_chip *meson_chip; + struct mtd_info *mtd; + + while (!list_empty(&nfc->chips)) { + meson_chip = list_first_entry(&nfc->chips, + struct meson_nfc_nand_chip, node); + mtd = nand_to_mtd(&meson_chip->nand); + WARN_ON(mtd_device_unregister(mtd)); + + nand_cleanup(&meson_chip->nand); + list_del(&meson_chip->node); + } +} + +static int meson_nfc_nand_chips_init(struct device *dev, + struct meson_nfc *nfc) +{ + struct device_node *np = dev->of_node; + struct device_node *nand_np; + int ret; + + for_each_child_of_node(np, nand_np) { + ret = meson_nfc_nand_chip_init(dev, nfc, nand_np); + if (ret) { + meson_nfc_nand_chip_cleanup(nfc); + of_node_put(nand_np); + return ret; + } + } + + return 0; +} + +static irqreturn_t meson_nfc_irq(int irq, void *id) +{ + struct meson_nfc *nfc = id; + u32 cfg; + + cfg = readl(nfc->reg_base + NFC_REG_CFG); + if (!(cfg & NFC_RB_IRQ_EN)) + return IRQ_NONE; + + cfg &= ~(NFC_RB_IRQ_EN); + writel(cfg, nfc->reg_base + NFC_REG_CFG); + + complete(&nfc->completion); + return IRQ_HANDLED; +} + +static const struct meson_nfc_data meson_gxl_data = { + .ecc_caps = &meson_gxl_ecc_caps, +}; + +static const struct meson_nfc_data meson_axg_data = { + .ecc_caps = &meson_axg_ecc_caps, +}; + +static const struct of_device_id meson_nfc_id_table[] = { + { + .compatible = "amlogic,meson-gxl-nfc", + .data = &meson_gxl_data, + }, { + .compatible = "amlogic,meson-axg-nfc", + .data = &meson_axg_data, + }, + {} +}; +MODULE_DEVICE_TABLE(of, meson_nfc_id_table); + +static int meson_nfc_probe(struct platform_device *pdev) +{ + struct device *dev = &pdev->dev; + struct meson_nfc *nfc; + int ret, irq; + + nfc = devm_kzalloc(dev, sizeof(*nfc), GFP_KERNEL); + if (!nfc) + return -ENOMEM; + + nfc->data = of_device_get_match_data(&pdev->dev); + if (!nfc->data) + return -ENODEV; + + nand_controller_init(&nfc->controller); + INIT_LIST_HEAD(&nfc->chips); + init_completion(&nfc->completion); + + nfc->dev = dev; + + nfc->reg_base = devm_platform_ioremap_resource_byname(pdev, "nfc"); + if (IS_ERR(nfc->reg_base)) + return PTR_ERR(nfc->reg_base); + + nfc->reg_clk = devm_platform_ioremap_resource_byname(pdev, "emmc"); + if (IS_ERR(nfc->reg_clk)) + return PTR_ERR(nfc->reg_clk); + + irq = platform_get_irq(pdev, 0); + if (irq < 0) + return -EINVAL; + + ret = meson_nfc_clk_init(nfc); + if (ret) { + dev_err(dev, "failed to initialize NAND clock\n"); + return ret; + } + + writel(0, nfc->reg_base + NFC_REG_CFG); + ret = devm_request_irq(dev, irq, meson_nfc_irq, 0, dev_name(dev), nfc); + if (ret) { + dev_err(dev, "failed to request NFC IRQ\n"); + ret = -EINVAL; + goto err_clk; + } + + ret = dma_set_mask(dev, DMA_BIT_MASK(32)); + if (ret) { + dev_err(dev, "failed to set DMA mask\n"); + goto err_clk; + } + + platform_set_drvdata(pdev, nfc); + + ret = meson_nfc_nand_chips_init(dev, nfc); + if (ret) { + dev_err(dev, "failed to init NAND chips\n"); + goto err_clk; + } + + return 0; +err_clk: + meson_nfc_disable_clk(nfc); + return ret; +} + +static void meson_nfc_remove(struct platform_device *pdev) +{ + struct meson_nfc *nfc = platform_get_drvdata(pdev); + + meson_nfc_nand_chip_cleanup(nfc); + + meson_nfc_disable_clk(nfc); +} + +static struct platform_driver meson_nfc_driver = { + .probe = meson_nfc_probe, + .remove_new = meson_nfc_remove, + .driver = { + .name = "meson-nand", + .of_match_table = meson_nfc_id_table, + }, +}; +module_platform_driver(meson_nfc_driver); + +MODULE_LICENSE("Dual MIT/GPL"); +MODULE_AUTHOR("Liang Yang <liang.yang@amlogic.com>"); +MODULE_DESCRIPTION("Amlogic's Meson NAND Flash Controller driver"); diff --git a/drivers/mtd/nand/raw/mpc5121_nfc.c b/drivers/mtd/nand/raw/mpc5121_nfc.c new file mode 100644 index 0000000000..215610f808 --- /dev/null +++ b/drivers/mtd/nand/raw/mpc5121_nfc.c @@ -0,0 +1,849 @@ +// SPDX-License-Identifier: GPL-2.0-or-later +/* + * Copyright 2004-2008 Freescale Semiconductor, Inc. + * Copyright 2009 Semihalf. + * + * Approved as OSADL project by a majority of OSADL members and funded + * by OSADL membership fees in 2009; for details see www.osadl.org. + * + * Based on original driver from Freescale Semiconductor + * written by John Rigby <jrigby@freescale.com> on basis of mxc_nand.c. + * Reworked and extended by Piotr Ziecik <kosmo@semihalf.com>. + */ + +#include <linux/module.h> +#include <linux/clk.h> +#include <linux/gfp.h> +#include <linux/delay.h> +#include <linux/err.h> +#include <linux/interrupt.h> +#include <linux/io.h> +#include <linux/mtd/mtd.h> +#include <linux/mtd/rawnand.h> +#include <linux/mtd/partitions.h> +#include <linux/of.h> +#include <linux/of_address.h> +#include <linux/of_irq.h> +#include <linux/platform_device.h> + +#include <asm/mpc5121.h> + +/* Addresses for NFC MAIN RAM BUFFER areas */ +#define NFC_MAIN_AREA(n) ((n) * 0x200) + +/* Addresses for NFC SPARE BUFFER areas */ +#define NFC_SPARE_BUFFERS 8 +#define NFC_SPARE_LEN 0x40 +#define NFC_SPARE_AREA(n) (0x1000 + ((n) * NFC_SPARE_LEN)) + +/* MPC5121 NFC registers */ +#define NFC_BUF_ADDR 0x1E04 +#define NFC_FLASH_ADDR 0x1E06 +#define NFC_FLASH_CMD 0x1E08 +#define NFC_CONFIG 0x1E0A +#define NFC_ECC_STATUS1 0x1E0C +#define NFC_ECC_STATUS2 0x1E0E +#define NFC_SPAS 0x1E10 +#define NFC_WRPROT 0x1E12 +#define NFC_NF_WRPRST 0x1E18 +#define NFC_CONFIG1 0x1E1A +#define NFC_CONFIG2 0x1E1C +#define NFC_UNLOCKSTART_BLK0 0x1E20 +#define NFC_UNLOCKEND_BLK0 0x1E22 +#define NFC_UNLOCKSTART_BLK1 0x1E24 +#define NFC_UNLOCKEND_BLK1 0x1E26 +#define NFC_UNLOCKSTART_BLK2 0x1E28 +#define NFC_UNLOCKEND_BLK2 0x1E2A +#define NFC_UNLOCKSTART_BLK3 0x1E2C +#define NFC_UNLOCKEND_BLK3 0x1E2E + +/* Bit Definitions: NFC_BUF_ADDR */ +#define NFC_RBA_MASK (7 << 0) +#define NFC_ACTIVE_CS_SHIFT 5 +#define NFC_ACTIVE_CS_MASK (3 << NFC_ACTIVE_CS_SHIFT) + +/* Bit Definitions: NFC_CONFIG */ +#define NFC_BLS_UNLOCKED (1 << 1) + +/* Bit Definitions: NFC_CONFIG1 */ +#define NFC_ECC_4BIT (1 << 0) +#define NFC_FULL_PAGE_DMA (1 << 1) +#define NFC_SPARE_ONLY (1 << 2) +#define NFC_ECC_ENABLE (1 << 3) +#define NFC_INT_MASK (1 << 4) +#define NFC_BIG_ENDIAN (1 << 5) +#define NFC_RESET (1 << 6) +#define NFC_CE (1 << 7) +#define NFC_ONE_CYCLE (1 << 8) +#define NFC_PPB_32 (0 << 9) +#define NFC_PPB_64 (1 << 9) +#define NFC_PPB_128 (2 << 9) +#define NFC_PPB_256 (3 << 9) +#define NFC_PPB_MASK (3 << 9) +#define NFC_FULL_PAGE_INT (1 << 11) + +/* Bit Definitions: NFC_CONFIG2 */ +#define NFC_COMMAND (1 << 0) +#define NFC_ADDRESS (1 << 1) +#define NFC_INPUT (1 << 2) +#define NFC_OUTPUT (1 << 3) +#define NFC_ID (1 << 4) +#define NFC_STATUS (1 << 5) +#define NFC_CMD_FAIL (1 << 15) +#define NFC_INT (1 << 15) + +/* Bit Definitions: NFC_WRPROT */ +#define NFC_WPC_LOCK_TIGHT (1 << 0) +#define NFC_WPC_LOCK (1 << 1) +#define NFC_WPC_UNLOCK (1 << 2) + +#define DRV_NAME "mpc5121_nfc" + +/* Timeouts */ +#define NFC_RESET_TIMEOUT 1000 /* 1 ms */ +#define NFC_TIMEOUT (HZ / 10) /* 1/10 s */ + +struct mpc5121_nfc_prv { + struct nand_controller controller; + struct nand_chip chip; + int irq; + void __iomem *regs; + struct clk *clk; + wait_queue_head_t irq_waitq; + uint column; + int spareonly; + void __iomem *csreg; + struct device *dev; +}; + +static void mpc5121_nfc_done(struct mtd_info *mtd); + +/* Read NFC register */ +static inline u16 nfc_read(struct mtd_info *mtd, uint reg) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + struct mpc5121_nfc_prv *prv = nand_get_controller_data(chip); + + return in_be16(prv->regs + reg); +} + +/* Write NFC register */ +static inline void nfc_write(struct mtd_info *mtd, uint reg, u16 val) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + struct mpc5121_nfc_prv *prv = nand_get_controller_data(chip); + + out_be16(prv->regs + reg, val); +} + +/* Set bits in NFC register */ +static inline void nfc_set(struct mtd_info *mtd, uint reg, u16 bits) +{ + nfc_write(mtd, reg, nfc_read(mtd, reg) | bits); +} + +/* Clear bits in NFC register */ +static inline void nfc_clear(struct mtd_info *mtd, uint reg, u16 bits) +{ + nfc_write(mtd, reg, nfc_read(mtd, reg) & ~bits); +} + +/* Invoke address cycle */ +static inline void mpc5121_nfc_send_addr(struct mtd_info *mtd, u16 addr) +{ + nfc_write(mtd, NFC_FLASH_ADDR, addr); + nfc_write(mtd, NFC_CONFIG2, NFC_ADDRESS); + mpc5121_nfc_done(mtd); +} + +/* Invoke command cycle */ +static inline void mpc5121_nfc_send_cmd(struct mtd_info *mtd, u16 cmd) +{ + nfc_write(mtd, NFC_FLASH_CMD, cmd); + nfc_write(mtd, NFC_CONFIG2, NFC_COMMAND); + mpc5121_nfc_done(mtd); +} + +/* Send data from NFC buffers to NAND flash */ +static inline void mpc5121_nfc_send_prog_page(struct mtd_info *mtd) +{ + nfc_clear(mtd, NFC_BUF_ADDR, NFC_RBA_MASK); + nfc_write(mtd, NFC_CONFIG2, NFC_INPUT); + mpc5121_nfc_done(mtd); +} + +/* Receive data from NAND flash */ +static inline void mpc5121_nfc_send_read_page(struct mtd_info *mtd) +{ + nfc_clear(mtd, NFC_BUF_ADDR, NFC_RBA_MASK); + nfc_write(mtd, NFC_CONFIG2, NFC_OUTPUT); + mpc5121_nfc_done(mtd); +} + +/* Receive ID from NAND flash */ +static inline void mpc5121_nfc_send_read_id(struct mtd_info *mtd) +{ + nfc_clear(mtd, NFC_BUF_ADDR, NFC_RBA_MASK); + nfc_write(mtd, NFC_CONFIG2, NFC_ID); + mpc5121_nfc_done(mtd); +} + +/* Receive status from NAND flash */ +static inline void mpc5121_nfc_send_read_status(struct mtd_info *mtd) +{ + nfc_clear(mtd, NFC_BUF_ADDR, NFC_RBA_MASK); + nfc_write(mtd, NFC_CONFIG2, NFC_STATUS); + mpc5121_nfc_done(mtd); +} + +/* NFC interrupt handler */ +static irqreturn_t mpc5121_nfc_irq(int irq, void *data) +{ + struct mtd_info *mtd = data; + struct nand_chip *chip = mtd_to_nand(mtd); + struct mpc5121_nfc_prv *prv = nand_get_controller_data(chip); + + nfc_set(mtd, NFC_CONFIG1, NFC_INT_MASK); + wake_up(&prv->irq_waitq); + + return IRQ_HANDLED; +} + +/* Wait for operation complete */ +static void mpc5121_nfc_done(struct mtd_info *mtd) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + struct mpc5121_nfc_prv *prv = nand_get_controller_data(chip); + int rv; + + if ((nfc_read(mtd, NFC_CONFIG2) & NFC_INT) == 0) { + nfc_clear(mtd, NFC_CONFIG1, NFC_INT_MASK); + rv = wait_event_timeout(prv->irq_waitq, + (nfc_read(mtd, NFC_CONFIG2) & NFC_INT), NFC_TIMEOUT); + + if (!rv) + dev_warn(prv->dev, + "Timeout while waiting for interrupt.\n"); + } + + nfc_clear(mtd, NFC_CONFIG2, NFC_INT); +} + +/* Do address cycle(s) */ +static void mpc5121_nfc_addr_cycle(struct mtd_info *mtd, int column, int page) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + u32 pagemask = chip->pagemask; + + if (column != -1) { + mpc5121_nfc_send_addr(mtd, column); + if (mtd->writesize > 512) + mpc5121_nfc_send_addr(mtd, column >> 8); + } + + if (page != -1) { + do { + mpc5121_nfc_send_addr(mtd, page & 0xFF); + page >>= 8; + pagemask >>= 8; + } while (pagemask); + } +} + +/* Control chip select signals */ +static void mpc5121_nfc_select_chip(struct nand_chip *nand, int chip) +{ + struct mtd_info *mtd = nand_to_mtd(nand); + + if (chip < 0) { + nfc_clear(mtd, NFC_CONFIG1, NFC_CE); + return; + } + + nfc_clear(mtd, NFC_BUF_ADDR, NFC_ACTIVE_CS_MASK); + nfc_set(mtd, NFC_BUF_ADDR, (chip << NFC_ACTIVE_CS_SHIFT) & + NFC_ACTIVE_CS_MASK); + nfc_set(mtd, NFC_CONFIG1, NFC_CE); +} + +/* Init external chip select logic on ADS5121 board */ +static int ads5121_chipselect_init(struct mtd_info *mtd) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + struct mpc5121_nfc_prv *prv = nand_get_controller_data(chip); + struct device_node *dn; + + dn = of_find_compatible_node(NULL, NULL, "fsl,mpc5121ads-cpld"); + if (dn) { + prv->csreg = of_iomap(dn, 0); + of_node_put(dn); + if (!prv->csreg) + return -ENOMEM; + + /* CPLD Register 9 controls NAND /CE Lines */ + prv->csreg += 9; + return 0; + } + + return -EINVAL; +} + +/* Control chips select signal on ADS5121 board */ +static void ads5121_select_chip(struct nand_chip *nand, int chip) +{ + struct mpc5121_nfc_prv *prv = nand_get_controller_data(nand); + u8 v; + + v = in_8(prv->csreg); + v |= 0x0F; + + if (chip >= 0) { + mpc5121_nfc_select_chip(nand, 0); + v &= ~(1 << chip); + } else + mpc5121_nfc_select_chip(nand, -1); + + out_8(prv->csreg, v); +} + +/* Read NAND Ready/Busy signal */ +static int mpc5121_nfc_dev_ready(struct nand_chip *nand) +{ + /* + * NFC handles ready/busy signal internally. Therefore, this function + * always returns status as ready. + */ + return 1; +} + +/* Write command to NAND flash */ +static void mpc5121_nfc_command(struct nand_chip *chip, unsigned command, + int column, int page) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + struct mpc5121_nfc_prv *prv = nand_get_controller_data(chip); + + prv->column = (column >= 0) ? column : 0; + prv->spareonly = 0; + + switch (command) { + case NAND_CMD_PAGEPROG: + mpc5121_nfc_send_prog_page(mtd); + break; + /* + * NFC does not support sub-page reads and writes, + * so emulate them using full page transfers. + */ + case NAND_CMD_READ0: + column = 0; + break; + + case NAND_CMD_READ1: + prv->column += 256; + command = NAND_CMD_READ0; + column = 0; + break; + + case NAND_CMD_READOOB: + prv->spareonly = 1; + command = NAND_CMD_READ0; + column = 0; + break; + + case NAND_CMD_SEQIN: + mpc5121_nfc_command(chip, NAND_CMD_READ0, column, page); + column = 0; + break; + + case NAND_CMD_ERASE1: + case NAND_CMD_ERASE2: + case NAND_CMD_READID: + case NAND_CMD_STATUS: + break; + + default: + return; + } + + mpc5121_nfc_send_cmd(mtd, command); + mpc5121_nfc_addr_cycle(mtd, column, page); + + switch (command) { + case NAND_CMD_READ0: + if (mtd->writesize > 512) + mpc5121_nfc_send_cmd(mtd, NAND_CMD_READSTART); + mpc5121_nfc_send_read_page(mtd); + break; + + case NAND_CMD_READID: + mpc5121_nfc_send_read_id(mtd); + break; + + case NAND_CMD_STATUS: + mpc5121_nfc_send_read_status(mtd); + if (chip->options & NAND_BUSWIDTH_16) + prv->column = 1; + else + prv->column = 0; + break; + } +} + +/* Copy data from/to NFC spare buffers. */ +static void mpc5121_nfc_copy_spare(struct mtd_info *mtd, uint offset, + u8 *buffer, uint size, int wr) +{ + struct nand_chip *nand = mtd_to_nand(mtd); + struct mpc5121_nfc_prv *prv = nand_get_controller_data(nand); + uint o, s, sbsize, blksize; + + /* + * NAND spare area is available through NFC spare buffers. + * The NFC divides spare area into (page_size / 512) chunks. + * Each chunk is placed into separate spare memory area, using + * first (spare_size / num_of_chunks) bytes of the buffer. + * + * For NAND device in which the spare area is not divided fully + * by the number of chunks, number of used bytes in each spare + * buffer is rounded down to the nearest even number of bytes, + * and all remaining bytes are added to the last used spare area. + * + * For more information read section 26.6.10 of MPC5121e + * Microcontroller Reference Manual, Rev. 3. + */ + + /* Calculate number of valid bytes in each spare buffer */ + sbsize = (mtd->oobsize / (mtd->writesize / 512)) & ~1; + + while (size) { + /* Calculate spare buffer number */ + s = offset / sbsize; + if (s > NFC_SPARE_BUFFERS - 1) + s = NFC_SPARE_BUFFERS - 1; + + /* + * Calculate offset to requested data block in selected spare + * buffer and its size. + */ + o = offset - (s * sbsize); + blksize = min(sbsize - o, size); + + if (wr) + memcpy_toio(prv->regs + NFC_SPARE_AREA(s) + o, + buffer, blksize); + else + memcpy_fromio(buffer, + prv->regs + NFC_SPARE_AREA(s) + o, blksize); + + buffer += blksize; + offset += blksize; + size -= blksize; + } +} + +/* Copy data from/to NFC main and spare buffers */ +static void mpc5121_nfc_buf_copy(struct mtd_info *mtd, u_char *buf, int len, + int wr) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + struct mpc5121_nfc_prv *prv = nand_get_controller_data(chip); + uint c = prv->column; + uint l; + + /* Handle spare area access */ + if (prv->spareonly || c >= mtd->writesize) { + /* Calculate offset from beginning of spare area */ + if (c >= mtd->writesize) + c -= mtd->writesize; + + prv->column += len; + mpc5121_nfc_copy_spare(mtd, c, buf, len, wr); + return; + } + + /* + * Handle main area access - limit copy length to prevent + * crossing main/spare boundary. + */ + l = min((uint)len, mtd->writesize - c); + prv->column += l; + + if (wr) + memcpy_toio(prv->regs + NFC_MAIN_AREA(0) + c, buf, l); + else + memcpy_fromio(buf, prv->regs + NFC_MAIN_AREA(0) + c, l); + + /* Handle crossing main/spare boundary */ + if (l != len) { + buf += l; + len -= l; + mpc5121_nfc_buf_copy(mtd, buf, len, wr); + } +} + +/* Read data from NFC buffers */ +static void mpc5121_nfc_read_buf(struct nand_chip *chip, u_char *buf, int len) +{ + mpc5121_nfc_buf_copy(nand_to_mtd(chip), buf, len, 0); +} + +/* Write data to NFC buffers */ +static void mpc5121_nfc_write_buf(struct nand_chip *chip, const u_char *buf, + int len) +{ + mpc5121_nfc_buf_copy(nand_to_mtd(chip), (u_char *)buf, len, 1); +} + +/* Read byte from NFC buffers */ +static u8 mpc5121_nfc_read_byte(struct nand_chip *chip) +{ + u8 tmp; + + mpc5121_nfc_read_buf(chip, &tmp, sizeof(tmp)); + + return tmp; +} + +/* + * Read NFC configuration from Reset Config Word + * + * NFC is configured during reset in basis of information stored + * in Reset Config Word. There is no other way to set NAND block + * size, spare size and bus width. + */ +static int mpc5121_nfc_read_hw_config(struct mtd_info *mtd) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + struct mpc5121_nfc_prv *prv = nand_get_controller_data(chip); + struct mpc512x_reset_module *rm; + struct device_node *rmnode; + uint rcw_pagesize = 0; + uint rcw_sparesize = 0; + uint rcw_width; + uint rcwh; + uint romloc, ps; + int ret = 0; + + rmnode = of_find_compatible_node(NULL, NULL, "fsl,mpc5121-reset"); + if (!rmnode) { + dev_err(prv->dev, "Missing 'fsl,mpc5121-reset' " + "node in device tree!\n"); + return -ENODEV; + } + + rm = of_iomap(rmnode, 0); + if (!rm) { + dev_err(prv->dev, "Error mapping reset module node!\n"); + ret = -EBUSY; + goto out; + } + + rcwh = in_be32(&rm->rcwhr); + + /* Bit 6: NFC bus width */ + rcw_width = ((rcwh >> 6) & 0x1) ? 2 : 1; + + /* Bit 7: NFC Page/Spare size */ + ps = (rcwh >> 7) & 0x1; + + /* Bits [22:21]: ROM Location */ + romloc = (rcwh >> 21) & 0x3; + + /* Decode RCW bits */ + switch ((ps << 2) | romloc) { + case 0x00: + case 0x01: + rcw_pagesize = 512; + rcw_sparesize = 16; + break; + case 0x02: + case 0x03: + rcw_pagesize = 4096; + rcw_sparesize = 128; + break; + case 0x04: + case 0x05: + rcw_pagesize = 2048; + rcw_sparesize = 64; + break; + case 0x06: + case 0x07: + rcw_pagesize = 4096; + rcw_sparesize = 218; + break; + } + + mtd->writesize = rcw_pagesize; + mtd->oobsize = rcw_sparesize; + if (rcw_width == 2) + chip->options |= NAND_BUSWIDTH_16; + + dev_notice(prv->dev, "Configured for " + "%u-bit NAND, page size %u " + "with %u spare.\n", + rcw_width * 8, rcw_pagesize, + rcw_sparesize); + iounmap(rm); +out: + of_node_put(rmnode); + return ret; +} + +/* Free driver resources */ +static void mpc5121_nfc_free(struct device *dev, struct mtd_info *mtd) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + struct mpc5121_nfc_prv *prv = nand_get_controller_data(chip); + + if (prv->csreg) + iounmap(prv->csreg); +} + +static int mpc5121_nfc_attach_chip(struct nand_chip *chip) +{ + if (chip->ecc.engine_type == NAND_ECC_ENGINE_TYPE_SOFT && + chip->ecc.algo == NAND_ECC_ALGO_UNKNOWN) + chip->ecc.algo = NAND_ECC_ALGO_HAMMING; + + return 0; +} + +static const struct nand_controller_ops mpc5121_nfc_ops = { + .attach_chip = mpc5121_nfc_attach_chip, +}; + +static int mpc5121_nfc_probe(struct platform_device *op) +{ + struct device_node *dn = op->dev.of_node; + struct clk *clk; + struct device *dev = &op->dev; + struct mpc5121_nfc_prv *prv; + struct resource res; + struct mtd_info *mtd; + struct nand_chip *chip; + unsigned long regs_paddr, regs_size; + const __be32 *chips_no; + int resettime = 0; + int retval = 0; + int rev, len; + + /* + * Check SoC revision. This driver supports only NFC + * in MPC5121 revision 2 and MPC5123 revision 3. + */ + rev = (mfspr(SPRN_SVR) >> 4) & 0xF; + if ((rev != 2) && (rev != 3)) { + dev_err(dev, "SoC revision %u is not supported!\n", rev); + return -ENXIO; + } + + prv = devm_kzalloc(dev, sizeof(*prv), GFP_KERNEL); + if (!prv) + return -ENOMEM; + + chip = &prv->chip; + mtd = nand_to_mtd(chip); + + nand_controller_init(&prv->controller); + prv->controller.ops = &mpc5121_nfc_ops; + chip->controller = &prv->controller; + + mtd->dev.parent = dev; + nand_set_controller_data(chip, prv); + nand_set_flash_node(chip, dn); + prv->dev = dev; + + /* Read NFC configuration from Reset Config Word */ + retval = mpc5121_nfc_read_hw_config(mtd); + if (retval) { + dev_err(dev, "Unable to read NFC config!\n"); + return retval; + } + + prv->irq = irq_of_parse_and_map(dn, 0); + if (!prv->irq) { + dev_err(dev, "Error mapping IRQ!\n"); + return -EINVAL; + } + + retval = of_address_to_resource(dn, 0, &res); + if (retval) { + dev_err(dev, "Error parsing memory region!\n"); + return retval; + } + + chips_no = of_get_property(dn, "chips", &len); + if (!chips_no || len != sizeof(*chips_no)) { + dev_err(dev, "Invalid/missing 'chips' property!\n"); + return -EINVAL; + } + + regs_paddr = res.start; + regs_size = resource_size(&res); + + if (!devm_request_mem_region(dev, regs_paddr, regs_size, DRV_NAME)) { + dev_err(dev, "Error requesting memory region!\n"); + return -EBUSY; + } + + prv->regs = devm_ioremap(dev, regs_paddr, regs_size); + if (!prv->regs) { + dev_err(dev, "Error mapping memory region!\n"); + return -ENOMEM; + } + + mtd->name = "MPC5121 NAND"; + chip->legacy.dev_ready = mpc5121_nfc_dev_ready; + chip->legacy.cmdfunc = mpc5121_nfc_command; + chip->legacy.read_byte = mpc5121_nfc_read_byte; + chip->legacy.read_buf = mpc5121_nfc_read_buf; + chip->legacy.write_buf = mpc5121_nfc_write_buf; + chip->legacy.select_chip = mpc5121_nfc_select_chip; + chip->legacy.set_features = nand_get_set_features_notsupp; + chip->legacy.get_features = nand_get_set_features_notsupp; + chip->bbt_options = NAND_BBT_USE_FLASH; + + /* Support external chip-select logic on ADS5121 board */ + if (of_machine_is_compatible("fsl,mpc5121ads")) { + retval = ads5121_chipselect_init(mtd); + if (retval) { + dev_err(dev, "Chipselect init error!\n"); + return retval; + } + + chip->legacy.select_chip = ads5121_select_chip; + } + + /* Enable NFC clock */ + clk = devm_clk_get_enabled(dev, "ipg"); + if (IS_ERR(clk)) { + dev_err(dev, "Unable to acquire and enable NFC clock!\n"); + retval = PTR_ERR(clk); + goto error; + } + prv->clk = clk; + + /* Reset NAND Flash controller */ + nfc_set(mtd, NFC_CONFIG1, NFC_RESET); + while (nfc_read(mtd, NFC_CONFIG1) & NFC_RESET) { + if (resettime++ >= NFC_RESET_TIMEOUT) { + dev_err(dev, "Timeout while resetting NFC!\n"); + retval = -EINVAL; + goto error; + } + + udelay(1); + } + + /* Enable write to NFC memory */ + nfc_write(mtd, NFC_CONFIG, NFC_BLS_UNLOCKED); + + /* Enable write to all NAND pages */ + nfc_write(mtd, NFC_UNLOCKSTART_BLK0, 0x0000); + nfc_write(mtd, NFC_UNLOCKEND_BLK0, 0xFFFF); + nfc_write(mtd, NFC_WRPROT, NFC_WPC_UNLOCK); + + /* + * Setup NFC: + * - Big Endian transfers, + * - Interrupt after full page read/write. + */ + nfc_write(mtd, NFC_CONFIG1, NFC_BIG_ENDIAN | NFC_INT_MASK | + NFC_FULL_PAGE_INT); + + /* Set spare area size */ + nfc_write(mtd, NFC_SPAS, mtd->oobsize >> 1); + + init_waitqueue_head(&prv->irq_waitq); + retval = devm_request_irq(dev, prv->irq, &mpc5121_nfc_irq, 0, DRV_NAME, + mtd); + if (retval) { + dev_err(dev, "Error requesting IRQ!\n"); + goto error; + } + + /* + * This driver assumes that the default ECC engine should be TYPE_SOFT. + * Set ->engine_type before registering the NAND devices in order to + * provide a driver specific default value. + */ + chip->ecc.engine_type = NAND_ECC_ENGINE_TYPE_SOFT; + + /* Detect NAND chips */ + retval = nand_scan(chip, be32_to_cpup(chips_no)); + if (retval) { + dev_err(dev, "NAND Flash not found !\n"); + goto error; + } + + /* Set erase block size */ + switch (mtd->erasesize / mtd->writesize) { + case 32: + nfc_set(mtd, NFC_CONFIG1, NFC_PPB_32); + break; + + case 64: + nfc_set(mtd, NFC_CONFIG1, NFC_PPB_64); + break; + + case 128: + nfc_set(mtd, NFC_CONFIG1, NFC_PPB_128); + break; + + case 256: + nfc_set(mtd, NFC_CONFIG1, NFC_PPB_256); + break; + + default: + dev_err(dev, "Unsupported NAND flash!\n"); + retval = -ENXIO; + goto error; + } + + dev_set_drvdata(dev, mtd); + + /* Register device in MTD */ + retval = mtd_device_register(mtd, NULL, 0); + if (retval) { + dev_err(dev, "Error adding MTD device!\n"); + goto error; + } + + return 0; +error: + mpc5121_nfc_free(dev, mtd); + return retval; +} + +static void mpc5121_nfc_remove(struct platform_device *op) +{ + struct device *dev = &op->dev; + struct mtd_info *mtd = dev_get_drvdata(dev); + int ret; + + ret = mtd_device_unregister(mtd); + WARN_ON(ret); + nand_cleanup(mtd_to_nand(mtd)); + mpc5121_nfc_free(dev, mtd); +} + +static const struct of_device_id mpc5121_nfc_match[] = { + { .compatible = "fsl,mpc5121-nfc", }, + {}, +}; +MODULE_DEVICE_TABLE(of, mpc5121_nfc_match); + +static struct platform_driver mpc5121_nfc_driver = { + .probe = mpc5121_nfc_probe, + .remove_new = mpc5121_nfc_remove, + .driver = { + .name = DRV_NAME, + .of_match_table = mpc5121_nfc_match, + }, +}; + +module_platform_driver(mpc5121_nfc_driver); + +MODULE_AUTHOR("Freescale Semiconductor, Inc."); +MODULE_DESCRIPTION("MPC5121 NAND MTD driver"); +MODULE_LICENSE("GPL"); diff --git a/drivers/mtd/nand/raw/mtk_nand.c b/drivers/mtd/nand/raw/mtk_nand.c new file mode 100644 index 0000000000..29c8bddde6 --- /dev/null +++ b/drivers/mtd/nand/raw/mtk_nand.c @@ -0,0 +1,1653 @@ +// SPDX-License-Identifier: GPL-2.0 OR MIT +/* + * MTK NAND Flash controller driver. + * Copyright (C) 2016 MediaTek Inc. + * Authors: Xiaolei Li <xiaolei.li@mediatek.com> + * Jorge Ramirez-Ortiz <jorge.ramirez-ortiz@linaro.org> + */ + +#include <linux/platform_device.h> +#include <linux/dma-mapping.h> +#include <linux/interrupt.h> +#include <linux/delay.h> +#include <linux/clk.h> +#include <linux/mtd/rawnand.h> +#include <linux/mtd/mtd.h> +#include <linux/module.h> +#include <linux/iopoll.h> +#include <linux/of.h> +#include <linux/mtd/nand-ecc-mtk.h> + +/* NAND controller register definition */ +#define NFI_CNFG (0x00) +#define CNFG_AHB BIT(0) +#define CNFG_READ_EN BIT(1) +#define CNFG_DMA_BURST_EN BIT(2) +#define CNFG_BYTE_RW BIT(6) +#define CNFG_HW_ECC_EN BIT(8) +#define CNFG_AUTO_FMT_EN BIT(9) +#define CNFG_OP_CUST (6 << 12) +#define NFI_PAGEFMT (0x04) +#define PAGEFMT_FDM_ECC_SHIFT (12) +#define PAGEFMT_FDM_SHIFT (8) +#define PAGEFMT_SEC_SEL_512 BIT(2) +#define PAGEFMT_512_2K (0) +#define PAGEFMT_2K_4K (1) +#define PAGEFMT_4K_8K (2) +#define PAGEFMT_8K_16K (3) +/* NFI control */ +#define NFI_CON (0x08) +#define CON_FIFO_FLUSH BIT(0) +#define CON_NFI_RST BIT(1) +#define CON_BRD BIT(8) /* burst read */ +#define CON_BWR BIT(9) /* burst write */ +#define CON_SEC_SHIFT (12) +/* Timming control register */ +#define NFI_ACCCON (0x0C) +#define NFI_INTR_EN (0x10) +#define INTR_AHB_DONE_EN BIT(6) +#define NFI_INTR_STA (0x14) +#define NFI_CMD (0x20) +#define NFI_ADDRNOB (0x30) +#define NFI_COLADDR (0x34) +#define NFI_ROWADDR (0x38) +#define NFI_STRDATA (0x40) +#define STAR_EN (1) +#define STAR_DE (0) +#define NFI_CNRNB (0x44) +#define NFI_DATAW (0x50) +#define NFI_DATAR (0x54) +#define NFI_PIO_DIRDY (0x58) +#define PIO_DI_RDY (0x01) +#define NFI_STA (0x60) +#define STA_CMD BIT(0) +#define STA_ADDR BIT(1) +#define STA_BUSY BIT(8) +#define STA_EMP_PAGE BIT(12) +#define NFI_FSM_CUSTDATA (0xe << 16) +#define NFI_FSM_MASK (0xf << 16) +#define NFI_ADDRCNTR (0x70) +#define CNTR_MASK GENMASK(16, 12) +#define ADDRCNTR_SEC_SHIFT (12) +#define ADDRCNTR_SEC(val) \ + (((val) & CNTR_MASK) >> ADDRCNTR_SEC_SHIFT) +#define NFI_STRADDR (0x80) +#define NFI_BYTELEN (0x84) +#define NFI_CSEL (0x90) +#define NFI_FDML(x) (0xA0 + (x) * sizeof(u32) * 2) +#define NFI_FDMM(x) (0xA4 + (x) * sizeof(u32) * 2) +#define NFI_FDM_MAX_SIZE (8) +#define NFI_FDM_MIN_SIZE (1) +#define NFI_DEBUG_CON1 (0x220) +#define STROBE_MASK GENMASK(4, 3) +#define STROBE_SHIFT (3) +#define MAX_STROBE_DLY (3) +#define NFI_MASTER_STA (0x224) +#define MASTER_STA_MASK (0x0FFF) +#define NFI_EMPTY_THRESH (0x23C) + +#define MTK_NAME "mtk-nand" +#define KB(x) ((x) * 1024UL) +#define MB(x) (KB(x) * 1024UL) + +#define MTK_TIMEOUT (500000) +#define MTK_RESET_TIMEOUT (1000000) +#define MTK_NAND_MAX_NSELS (2) +#define MTK_NFC_MIN_SPARE (16) +#define ACCTIMING(tpoecs, tprecs, tc2r, tw2r, twh, twst, trlt) \ + ((tpoecs) << 28 | (tprecs) << 22 | (tc2r) << 16 | \ + (tw2r) << 12 | (twh) << 8 | (twst) << 4 | (trlt)) + +struct mtk_nfc_caps { + const u8 *spare_size; + u8 num_spare_size; + u8 pageformat_spare_shift; + u8 nfi_clk_div; + u8 max_sector; + u32 max_sector_size; +}; + +struct mtk_nfc_bad_mark_ctl { + void (*bm_swap)(struct mtd_info *, u8 *buf, int raw); + u32 sec; + u32 pos; +}; + +/* + * FDM: region used to store free OOB data + */ +struct mtk_nfc_fdm { + u32 reg_size; + u32 ecc_size; +}; + +struct mtk_nfc_nand_chip { + struct list_head node; + struct nand_chip nand; + + struct mtk_nfc_bad_mark_ctl bad_mark; + struct mtk_nfc_fdm fdm; + u32 spare_per_sector; + + int nsels; + u8 sels[]; + /* nothing after this field */ +}; + +struct mtk_nfc_clk { + struct clk *nfi_clk; + struct clk *pad_clk; +}; + +struct mtk_nfc { + struct nand_controller controller; + struct mtk_ecc_config ecc_cfg; + struct mtk_nfc_clk clk; + struct mtk_ecc *ecc; + + struct device *dev; + const struct mtk_nfc_caps *caps; + void __iomem *regs; + + struct completion done; + struct list_head chips; + + u8 *buffer; + + unsigned long assigned_cs; +}; + +/* + * supported spare size of each IP. + * order should be the same with the spare size bitfiled defination of + * register NFI_PAGEFMT. + */ +static const u8 spare_size_mt2701[] = { + 16, 26, 27, 28, 32, 36, 40, 44, 48, 49, 50, 51, 52, 62, 63, 64 +}; + +static const u8 spare_size_mt2712[] = { + 16, 26, 27, 28, 32, 36, 40, 44, 48, 49, 50, 51, 52, 62, 61, 63, 64, 67, + 74 +}; + +static const u8 spare_size_mt7622[] = { + 16, 26, 27, 28 +}; + +static inline struct mtk_nfc_nand_chip *to_mtk_nand(struct nand_chip *nand) +{ + return container_of(nand, struct mtk_nfc_nand_chip, nand); +} + +static inline u8 *data_ptr(struct nand_chip *chip, const u8 *p, int i) +{ + return (u8 *)p + i * chip->ecc.size; +} + +static inline u8 *oob_ptr(struct nand_chip *chip, int i) +{ + struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip); + u8 *poi; + + /* map the sector's FDM data to free oob: + * the beginning of the oob area stores the FDM data of bad mark sectors + */ + + if (i < mtk_nand->bad_mark.sec) + poi = chip->oob_poi + (i + 1) * mtk_nand->fdm.reg_size; + else if (i == mtk_nand->bad_mark.sec) + poi = chip->oob_poi; + else + poi = chip->oob_poi + i * mtk_nand->fdm.reg_size; + + return poi; +} + +static inline int mtk_data_len(struct nand_chip *chip) +{ + struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip); + + return chip->ecc.size + mtk_nand->spare_per_sector; +} + +static inline u8 *mtk_data_ptr(struct nand_chip *chip, int i) +{ + struct mtk_nfc *nfc = nand_get_controller_data(chip); + + return nfc->buffer + i * mtk_data_len(chip); +} + +static inline u8 *mtk_oob_ptr(struct nand_chip *chip, int i) +{ + struct mtk_nfc *nfc = nand_get_controller_data(chip); + + return nfc->buffer + i * mtk_data_len(chip) + chip->ecc.size; +} + +static inline void nfi_writel(struct mtk_nfc *nfc, u32 val, u32 reg) +{ + writel(val, nfc->regs + reg); +} + +static inline void nfi_writew(struct mtk_nfc *nfc, u16 val, u32 reg) +{ + writew(val, nfc->regs + reg); +} + +static inline void nfi_writeb(struct mtk_nfc *nfc, u8 val, u32 reg) +{ + writeb(val, nfc->regs + reg); +} + +static inline u32 nfi_readl(struct mtk_nfc *nfc, u32 reg) +{ + return readl_relaxed(nfc->regs + reg); +} + +static inline u16 nfi_readw(struct mtk_nfc *nfc, u32 reg) +{ + return readw_relaxed(nfc->regs + reg); +} + +static inline u8 nfi_readb(struct mtk_nfc *nfc, u32 reg) +{ + return readb_relaxed(nfc->regs + reg); +} + +static void mtk_nfc_hw_reset(struct mtk_nfc *nfc) +{ + struct device *dev = nfc->dev; + u32 val; + int ret; + + /* reset all registers and force the NFI master to terminate */ + nfi_writel(nfc, CON_FIFO_FLUSH | CON_NFI_RST, NFI_CON); + + /* wait for the master to finish the last transaction */ + ret = readl_poll_timeout(nfc->regs + NFI_MASTER_STA, val, + !(val & MASTER_STA_MASK), 50, + MTK_RESET_TIMEOUT); + if (ret) + dev_warn(dev, "master active in reset [0x%x] = 0x%x\n", + NFI_MASTER_STA, val); + + /* ensure any status register affected by the NFI master is reset */ + nfi_writel(nfc, CON_FIFO_FLUSH | CON_NFI_RST, NFI_CON); + nfi_writew(nfc, STAR_DE, NFI_STRDATA); +} + +static int mtk_nfc_send_command(struct mtk_nfc *nfc, u8 command) +{ + struct device *dev = nfc->dev; + u32 val; + int ret; + + nfi_writel(nfc, command, NFI_CMD); + + ret = readl_poll_timeout_atomic(nfc->regs + NFI_STA, val, + !(val & STA_CMD), 10, MTK_TIMEOUT); + if (ret) { + dev_warn(dev, "nfi core timed out entering command mode\n"); + return -EIO; + } + + return 0; +} + +static int mtk_nfc_send_address(struct mtk_nfc *nfc, int addr) +{ + struct device *dev = nfc->dev; + u32 val; + int ret; + + nfi_writel(nfc, addr, NFI_COLADDR); + nfi_writel(nfc, 0, NFI_ROWADDR); + nfi_writew(nfc, 1, NFI_ADDRNOB); + + ret = readl_poll_timeout_atomic(nfc->regs + NFI_STA, val, + !(val & STA_ADDR), 10, MTK_TIMEOUT); + if (ret) { + dev_warn(dev, "nfi core timed out entering address mode\n"); + return -EIO; + } + + return 0; +} + +static int mtk_nfc_hw_runtime_config(struct mtd_info *mtd) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip); + struct mtk_nfc *nfc = nand_get_controller_data(chip); + u32 fmt, spare, i; + + if (!mtd->writesize) + return 0; + + spare = mtk_nand->spare_per_sector; + + switch (mtd->writesize) { + case 512: + fmt = PAGEFMT_512_2K | PAGEFMT_SEC_SEL_512; + break; + case KB(2): + if (chip->ecc.size == 512) + fmt = PAGEFMT_2K_4K | PAGEFMT_SEC_SEL_512; + else + fmt = PAGEFMT_512_2K; + break; + case KB(4): + if (chip->ecc.size == 512) + fmt = PAGEFMT_4K_8K | PAGEFMT_SEC_SEL_512; + else + fmt = PAGEFMT_2K_4K; + break; + case KB(8): + if (chip->ecc.size == 512) + fmt = PAGEFMT_8K_16K | PAGEFMT_SEC_SEL_512; + else + fmt = PAGEFMT_4K_8K; + break; + case KB(16): + fmt = PAGEFMT_8K_16K; + break; + default: + dev_err(nfc->dev, "invalid page len: %d\n", mtd->writesize); + return -EINVAL; + } + + /* + * the hardware will double the value for this eccsize, so we need to + * halve it + */ + if (chip->ecc.size == 1024) + spare >>= 1; + + for (i = 0; i < nfc->caps->num_spare_size; i++) { + if (nfc->caps->spare_size[i] == spare) + break; + } + + if (i == nfc->caps->num_spare_size) { + dev_err(nfc->dev, "invalid spare size %d\n", spare); + return -EINVAL; + } + + fmt |= i << nfc->caps->pageformat_spare_shift; + + fmt |= mtk_nand->fdm.reg_size << PAGEFMT_FDM_SHIFT; + fmt |= mtk_nand->fdm.ecc_size << PAGEFMT_FDM_ECC_SHIFT; + nfi_writel(nfc, fmt, NFI_PAGEFMT); + + nfc->ecc_cfg.strength = chip->ecc.strength; + nfc->ecc_cfg.len = chip->ecc.size + mtk_nand->fdm.ecc_size; + + return 0; +} + +static inline void mtk_nfc_wait_ioready(struct mtk_nfc *nfc) +{ + int rc; + u8 val; + + rc = readb_poll_timeout_atomic(nfc->regs + NFI_PIO_DIRDY, val, + val & PIO_DI_RDY, 10, MTK_TIMEOUT); + if (rc < 0) + dev_err(nfc->dev, "data not ready\n"); +} + +static inline u8 mtk_nfc_read_byte(struct nand_chip *chip) +{ + struct mtk_nfc *nfc = nand_get_controller_data(chip); + u32 reg; + + /* after each byte read, the NFI_STA reg is reset by the hardware */ + reg = nfi_readl(nfc, NFI_STA) & NFI_FSM_MASK; + if (reg != NFI_FSM_CUSTDATA) { + reg = nfi_readw(nfc, NFI_CNFG); + reg |= CNFG_BYTE_RW | CNFG_READ_EN; + nfi_writew(nfc, reg, NFI_CNFG); + + /* + * set to max sector to allow the HW to continue reading over + * unaligned accesses + */ + reg = (nfc->caps->max_sector << CON_SEC_SHIFT) | CON_BRD; + nfi_writel(nfc, reg, NFI_CON); + + /* trigger to fetch data */ + nfi_writew(nfc, STAR_EN, NFI_STRDATA); + } + + mtk_nfc_wait_ioready(nfc); + + return nfi_readb(nfc, NFI_DATAR); +} + +static void mtk_nfc_read_buf(struct nand_chip *chip, u8 *buf, int len) +{ + int i; + + for (i = 0; i < len; i++) + buf[i] = mtk_nfc_read_byte(chip); +} + +static void mtk_nfc_write_byte(struct nand_chip *chip, u8 byte) +{ + struct mtk_nfc *nfc = nand_get_controller_data(chip); + u32 reg; + + reg = nfi_readl(nfc, NFI_STA) & NFI_FSM_MASK; + + if (reg != NFI_FSM_CUSTDATA) { + reg = nfi_readw(nfc, NFI_CNFG) | CNFG_BYTE_RW; + nfi_writew(nfc, reg, NFI_CNFG); + + reg = nfc->caps->max_sector << CON_SEC_SHIFT | CON_BWR; + nfi_writel(nfc, reg, NFI_CON); + + nfi_writew(nfc, STAR_EN, NFI_STRDATA); + } + + mtk_nfc_wait_ioready(nfc); + nfi_writeb(nfc, byte, NFI_DATAW); +} + +static void mtk_nfc_write_buf(struct nand_chip *chip, const u8 *buf, int len) +{ + int i; + + for (i = 0; i < len; i++) + mtk_nfc_write_byte(chip, buf[i]); +} + +static int mtk_nfc_exec_instr(struct nand_chip *chip, + const struct nand_op_instr *instr) +{ + struct mtk_nfc *nfc = nand_get_controller_data(chip); + unsigned int i; + u32 status; + + switch (instr->type) { + case NAND_OP_CMD_INSTR: + mtk_nfc_send_command(nfc, instr->ctx.cmd.opcode); + return 0; + case NAND_OP_ADDR_INSTR: + for (i = 0; i < instr->ctx.addr.naddrs; i++) + mtk_nfc_send_address(nfc, instr->ctx.addr.addrs[i]); + return 0; + case NAND_OP_DATA_IN_INSTR: + mtk_nfc_read_buf(chip, instr->ctx.data.buf.in, + instr->ctx.data.len); + return 0; + case NAND_OP_DATA_OUT_INSTR: + mtk_nfc_write_buf(chip, instr->ctx.data.buf.out, + instr->ctx.data.len); + return 0; + case NAND_OP_WAITRDY_INSTR: + return readl_poll_timeout(nfc->regs + NFI_STA, status, + !(status & STA_BUSY), 20, + instr->ctx.waitrdy.timeout_ms * 1000); + default: + break; + } + + return -EINVAL; +} + +static void mtk_nfc_select_target(struct nand_chip *nand, unsigned int cs) +{ + struct mtk_nfc *nfc = nand_get_controller_data(nand); + struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(nand); + + mtk_nfc_hw_runtime_config(nand_to_mtd(nand)); + + nfi_writel(nfc, mtk_nand->sels[cs], NFI_CSEL); +} + +static int mtk_nfc_exec_op(struct nand_chip *chip, + const struct nand_operation *op, + bool check_only) +{ + struct mtk_nfc *nfc = nand_get_controller_data(chip); + unsigned int i; + int ret = 0; + + if (check_only) + return 0; + + mtk_nfc_hw_reset(nfc); + nfi_writew(nfc, CNFG_OP_CUST, NFI_CNFG); + mtk_nfc_select_target(chip, op->cs); + + for (i = 0; i < op->ninstrs; i++) { + ret = mtk_nfc_exec_instr(chip, &op->instrs[i]); + if (ret) + break; + } + + return ret; +} + +static int mtk_nfc_setup_interface(struct nand_chip *chip, int csline, + const struct nand_interface_config *conf) +{ + struct mtk_nfc *nfc = nand_get_controller_data(chip); + const struct nand_sdr_timings *timings; + u32 rate, tpoecs, tprecs, tc2r, tw2r, twh, twst = 0, trlt = 0; + u32 temp, tsel = 0; + + timings = nand_get_sdr_timings(conf); + if (IS_ERR(timings)) + return -ENOTSUPP; + + if (csline == NAND_DATA_IFACE_CHECK_ONLY) + return 0; + + rate = clk_get_rate(nfc->clk.nfi_clk); + /* There is a frequency divider in some IPs */ + rate /= nfc->caps->nfi_clk_div; + + /* turn clock rate into KHZ */ + rate /= 1000; + + tpoecs = max(timings->tALH_min, timings->tCLH_min) / 1000; + tpoecs = DIV_ROUND_UP(tpoecs * rate, 1000000); + tpoecs &= 0xf; + + tprecs = max(timings->tCLS_min, timings->tALS_min) / 1000; + tprecs = DIV_ROUND_UP(tprecs * rate, 1000000); + tprecs &= 0x3f; + + /* sdr interface has no tCR which means CE# low to RE# low */ + tc2r = 0; + + tw2r = timings->tWHR_min / 1000; + tw2r = DIV_ROUND_UP(tw2r * rate, 1000000); + tw2r = DIV_ROUND_UP(tw2r - 1, 2); + tw2r &= 0xf; + + twh = max(timings->tREH_min, timings->tWH_min) / 1000; + twh = DIV_ROUND_UP(twh * rate, 1000000) - 1; + twh &= 0xf; + + /* Calculate real WE#/RE# hold time in nanosecond */ + temp = (twh + 1) * 1000000 / rate; + /* nanosecond to picosecond */ + temp *= 1000; + + /* + * WE# low level time should be expaned to meet WE# pulse time + * and WE# cycle time at the same time. + */ + if (temp < timings->tWC_min) + twst = timings->tWC_min - temp; + twst = max(timings->tWP_min, twst) / 1000; + twst = DIV_ROUND_UP(twst * rate, 1000000) - 1; + twst &= 0xf; + + /* + * RE# low level time should be expaned to meet RE# pulse time + * and RE# cycle time at the same time. + */ + if (temp < timings->tRC_min) + trlt = timings->tRC_min - temp; + trlt = max(trlt, timings->tRP_min) / 1000; + trlt = DIV_ROUND_UP(trlt * rate, 1000000) - 1; + trlt &= 0xf; + + /* Calculate RE# pulse time in nanosecond. */ + temp = (trlt + 1) * 1000000 / rate; + /* nanosecond to picosecond */ + temp *= 1000; + /* + * If RE# access time is bigger than RE# pulse time, + * delay sampling data timing. + */ + if (temp < timings->tREA_max) { + tsel = timings->tREA_max / 1000; + tsel = DIV_ROUND_UP(tsel * rate, 1000000); + tsel -= (trlt + 1); + if (tsel > MAX_STROBE_DLY) { + trlt += tsel - MAX_STROBE_DLY; + tsel = MAX_STROBE_DLY; + } + } + temp = nfi_readl(nfc, NFI_DEBUG_CON1); + temp &= ~STROBE_MASK; + temp |= tsel << STROBE_SHIFT; + nfi_writel(nfc, temp, NFI_DEBUG_CON1); + + /* + * ACCON: access timing control register + * ------------------------------------- + * 31:28: tpoecs, minimum required time for CS post pulling down after + * accessing the device + * 27:22: tprecs, minimum required time for CS pre pulling down before + * accessing the device + * 21:16: tc2r, minimum required time from NCEB low to NREB low + * 15:12: tw2r, minimum required time from NWEB high to NREB low. + * 11:08: twh, write enable hold time + * 07:04: twst, write wait states + * 03:00: trlt, read wait states + */ + trlt = ACCTIMING(tpoecs, tprecs, tc2r, tw2r, twh, twst, trlt); + nfi_writel(nfc, trlt, NFI_ACCCON); + + return 0; +} + +static int mtk_nfc_sector_encode(struct nand_chip *chip, u8 *data) +{ + struct mtk_nfc *nfc = nand_get_controller_data(chip); + struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip); + int size = chip->ecc.size + mtk_nand->fdm.reg_size; + + nfc->ecc_cfg.mode = ECC_DMA_MODE; + nfc->ecc_cfg.op = ECC_ENCODE; + + return mtk_ecc_encode(nfc->ecc, &nfc->ecc_cfg, data, size); +} + +static void mtk_nfc_no_bad_mark_swap(struct mtd_info *a, u8 *b, int c) +{ + /* nop */ +} + +static void mtk_nfc_bad_mark_swap(struct mtd_info *mtd, u8 *buf, int raw) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + struct mtk_nfc_nand_chip *nand = to_mtk_nand(chip); + u32 bad_pos = nand->bad_mark.pos; + + if (raw) + bad_pos += nand->bad_mark.sec * mtk_data_len(chip); + else + bad_pos += nand->bad_mark.sec * chip->ecc.size; + + swap(chip->oob_poi[0], buf[bad_pos]); +} + +static int mtk_nfc_format_subpage(struct mtd_info *mtd, u32 offset, + u32 len, const u8 *buf) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip); + struct mtk_nfc *nfc = nand_get_controller_data(chip); + struct mtk_nfc_fdm *fdm = &mtk_nand->fdm; + u32 start, end; + int i, ret; + + start = offset / chip->ecc.size; + end = DIV_ROUND_UP(offset + len, chip->ecc.size); + + memset(nfc->buffer, 0xff, mtd->writesize + mtd->oobsize); + for (i = 0; i < chip->ecc.steps; i++) { + memcpy(mtk_data_ptr(chip, i), data_ptr(chip, buf, i), + chip->ecc.size); + + if (start > i || i >= end) + continue; + + if (i == mtk_nand->bad_mark.sec) + mtk_nand->bad_mark.bm_swap(mtd, nfc->buffer, 1); + + memcpy(mtk_oob_ptr(chip, i), oob_ptr(chip, i), fdm->reg_size); + + /* program the CRC back to the OOB */ + ret = mtk_nfc_sector_encode(chip, mtk_data_ptr(chip, i)); + if (ret < 0) + return ret; + } + + return 0; +} + +static void mtk_nfc_format_page(struct mtd_info *mtd, const u8 *buf) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip); + struct mtk_nfc *nfc = nand_get_controller_data(chip); + struct mtk_nfc_fdm *fdm = &mtk_nand->fdm; + u32 i; + + memset(nfc->buffer, 0xff, mtd->writesize + mtd->oobsize); + for (i = 0; i < chip->ecc.steps; i++) { + if (buf) + memcpy(mtk_data_ptr(chip, i), data_ptr(chip, buf, i), + chip->ecc.size); + + if (i == mtk_nand->bad_mark.sec) + mtk_nand->bad_mark.bm_swap(mtd, nfc->buffer, 1); + + memcpy(mtk_oob_ptr(chip, i), oob_ptr(chip, i), fdm->reg_size); + } +} + +static inline void mtk_nfc_read_fdm(struct nand_chip *chip, u32 start, + u32 sectors) +{ + struct mtk_nfc *nfc = nand_get_controller_data(chip); + struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip); + struct mtk_nfc_fdm *fdm = &mtk_nand->fdm; + u32 vall, valm; + u8 *oobptr; + int i, j; + + for (i = 0; i < sectors; i++) { + oobptr = oob_ptr(chip, start + i); + vall = nfi_readl(nfc, NFI_FDML(i)); + valm = nfi_readl(nfc, NFI_FDMM(i)); + + for (j = 0; j < fdm->reg_size; j++) + oobptr[j] = (j >= 4 ? valm : vall) >> ((j % 4) * 8); + } +} + +static inline void mtk_nfc_write_fdm(struct nand_chip *chip) +{ + struct mtk_nfc *nfc = nand_get_controller_data(chip); + struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip); + struct mtk_nfc_fdm *fdm = &mtk_nand->fdm; + u32 vall, valm; + u8 *oobptr; + int i, j; + + for (i = 0; i < chip->ecc.steps; i++) { + oobptr = oob_ptr(chip, i); + vall = 0; + valm = 0; + for (j = 0; j < 8; j++) { + if (j < 4) + vall |= (j < fdm->reg_size ? oobptr[j] : 0xff) + << (j * 8); + else + valm |= (j < fdm->reg_size ? oobptr[j] : 0xff) + << ((j - 4) * 8); + } + nfi_writel(nfc, vall, NFI_FDML(i)); + nfi_writel(nfc, valm, NFI_FDMM(i)); + } +} + +static int mtk_nfc_do_write_page(struct mtd_info *mtd, struct nand_chip *chip, + const u8 *buf, int page, int len) +{ + struct mtk_nfc *nfc = nand_get_controller_data(chip); + struct device *dev = nfc->dev; + dma_addr_t addr; + u32 reg; + int ret; + + addr = dma_map_single(dev, (void *)buf, len, DMA_TO_DEVICE); + ret = dma_mapping_error(nfc->dev, addr); + if (ret) { + dev_err(nfc->dev, "dma mapping error\n"); + return -EINVAL; + } + + reg = nfi_readw(nfc, NFI_CNFG) | CNFG_AHB | CNFG_DMA_BURST_EN; + nfi_writew(nfc, reg, NFI_CNFG); + + nfi_writel(nfc, chip->ecc.steps << CON_SEC_SHIFT, NFI_CON); + nfi_writel(nfc, lower_32_bits(addr), NFI_STRADDR); + nfi_writew(nfc, INTR_AHB_DONE_EN, NFI_INTR_EN); + + init_completion(&nfc->done); + + reg = nfi_readl(nfc, NFI_CON) | CON_BWR; + nfi_writel(nfc, reg, NFI_CON); + nfi_writew(nfc, STAR_EN, NFI_STRDATA); + + ret = wait_for_completion_timeout(&nfc->done, msecs_to_jiffies(500)); + if (!ret) { + dev_err(dev, "program ahb done timeout\n"); + nfi_writew(nfc, 0, NFI_INTR_EN); + ret = -ETIMEDOUT; + goto timeout; + } + + ret = readl_poll_timeout_atomic(nfc->regs + NFI_ADDRCNTR, reg, + ADDRCNTR_SEC(reg) >= chip->ecc.steps, + 10, MTK_TIMEOUT); + if (ret) + dev_err(dev, "hwecc write timeout\n"); + +timeout: + + dma_unmap_single(nfc->dev, addr, len, DMA_TO_DEVICE); + nfi_writel(nfc, 0, NFI_CON); + + return ret; +} + +static int mtk_nfc_write_page(struct mtd_info *mtd, struct nand_chip *chip, + const u8 *buf, int page, int raw) +{ + struct mtk_nfc *nfc = nand_get_controller_data(chip); + struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip); + size_t len; + const u8 *bufpoi; + u32 reg; + int ret; + + mtk_nfc_select_target(chip, chip->cur_cs); + nand_prog_page_begin_op(chip, page, 0, NULL, 0); + + if (!raw) { + /* OOB => FDM: from register, ECC: from HW */ + reg = nfi_readw(nfc, NFI_CNFG) | CNFG_AUTO_FMT_EN; + nfi_writew(nfc, reg | CNFG_HW_ECC_EN, NFI_CNFG); + + nfc->ecc_cfg.op = ECC_ENCODE; + nfc->ecc_cfg.mode = ECC_NFI_MODE; + ret = mtk_ecc_enable(nfc->ecc, &nfc->ecc_cfg); + if (ret) { + /* clear NFI config */ + reg = nfi_readw(nfc, NFI_CNFG); + reg &= ~(CNFG_AUTO_FMT_EN | CNFG_HW_ECC_EN); + nfi_writew(nfc, reg, NFI_CNFG); + + return ret; + } + + memcpy(nfc->buffer, buf, mtd->writesize); + mtk_nand->bad_mark.bm_swap(mtd, nfc->buffer, raw); + bufpoi = nfc->buffer; + + /* write OOB into the FDM registers (OOB area in MTK NAND) */ + mtk_nfc_write_fdm(chip); + } else { + bufpoi = buf; + } + + len = mtd->writesize + (raw ? mtd->oobsize : 0); + ret = mtk_nfc_do_write_page(mtd, chip, bufpoi, page, len); + + if (!raw) + mtk_ecc_disable(nfc->ecc); + + if (ret) + return ret; + + return nand_prog_page_end_op(chip); +} + +static int mtk_nfc_write_page_hwecc(struct nand_chip *chip, const u8 *buf, + int oob_on, int page) +{ + return mtk_nfc_write_page(nand_to_mtd(chip), chip, buf, page, 0); +} + +static int mtk_nfc_write_page_raw(struct nand_chip *chip, const u8 *buf, + int oob_on, int pg) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + struct mtk_nfc *nfc = nand_get_controller_data(chip); + + mtk_nfc_format_page(mtd, buf); + return mtk_nfc_write_page(mtd, chip, nfc->buffer, pg, 1); +} + +static int mtk_nfc_write_subpage_hwecc(struct nand_chip *chip, u32 offset, + u32 data_len, const u8 *buf, + int oob_on, int page) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + struct mtk_nfc *nfc = nand_get_controller_data(chip); + int ret; + + ret = mtk_nfc_format_subpage(mtd, offset, data_len, buf); + if (ret < 0) + return ret; + + /* use the data in the private buffer (now with FDM and CRC) */ + return mtk_nfc_write_page(mtd, chip, nfc->buffer, page, 1); +} + +static int mtk_nfc_write_oob_std(struct nand_chip *chip, int page) +{ + return mtk_nfc_write_page_raw(chip, NULL, 1, page); +} + +static int mtk_nfc_update_ecc_stats(struct mtd_info *mtd, u8 *buf, u32 start, + u32 sectors) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + struct mtk_nfc *nfc = nand_get_controller_data(chip); + struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip); + struct mtk_ecc_stats stats; + u32 reg_size = mtk_nand->fdm.reg_size; + int rc, i; + + rc = nfi_readl(nfc, NFI_STA) & STA_EMP_PAGE; + if (rc) { + memset(buf, 0xff, sectors * chip->ecc.size); + for (i = 0; i < sectors; i++) + memset(oob_ptr(chip, start + i), 0xff, reg_size); + return 0; + } + + mtk_ecc_get_stats(nfc->ecc, &stats, sectors); + mtd->ecc_stats.corrected += stats.corrected; + mtd->ecc_stats.failed += stats.failed; + + return stats.bitflips; +} + +static int mtk_nfc_read_subpage(struct mtd_info *mtd, struct nand_chip *chip, + u32 data_offs, u32 readlen, + u8 *bufpoi, int page, int raw) +{ + struct mtk_nfc *nfc = nand_get_controller_data(chip); + struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip); + u32 spare = mtk_nand->spare_per_sector; + u32 column, sectors, start, end, reg; + dma_addr_t addr; + int bitflips = 0; + size_t len; + u8 *buf; + int rc; + + mtk_nfc_select_target(chip, chip->cur_cs); + start = data_offs / chip->ecc.size; + end = DIV_ROUND_UP(data_offs + readlen, chip->ecc.size); + + sectors = end - start; + column = start * (chip->ecc.size + spare); + + len = sectors * chip->ecc.size + (raw ? sectors * spare : 0); + buf = bufpoi + start * chip->ecc.size; + + nand_read_page_op(chip, page, column, NULL, 0); + + addr = dma_map_single(nfc->dev, buf, len, DMA_FROM_DEVICE); + rc = dma_mapping_error(nfc->dev, addr); + if (rc) { + dev_err(nfc->dev, "dma mapping error\n"); + + return -EINVAL; + } + + reg = nfi_readw(nfc, NFI_CNFG); + reg |= CNFG_READ_EN | CNFG_DMA_BURST_EN | CNFG_AHB; + if (!raw) { + reg |= CNFG_AUTO_FMT_EN | CNFG_HW_ECC_EN; + nfi_writew(nfc, reg, NFI_CNFG); + + nfc->ecc_cfg.mode = ECC_NFI_MODE; + nfc->ecc_cfg.sectors = sectors; + nfc->ecc_cfg.op = ECC_DECODE; + rc = mtk_ecc_enable(nfc->ecc, &nfc->ecc_cfg); + if (rc) { + dev_err(nfc->dev, "ecc enable\n"); + /* clear NFI_CNFG */ + reg &= ~(CNFG_DMA_BURST_EN | CNFG_AHB | CNFG_READ_EN | + CNFG_AUTO_FMT_EN | CNFG_HW_ECC_EN); + nfi_writew(nfc, reg, NFI_CNFG); + dma_unmap_single(nfc->dev, addr, len, DMA_FROM_DEVICE); + + return rc; + } + } else { + nfi_writew(nfc, reg, NFI_CNFG); + } + + nfi_writel(nfc, sectors << CON_SEC_SHIFT, NFI_CON); + nfi_writew(nfc, INTR_AHB_DONE_EN, NFI_INTR_EN); + nfi_writel(nfc, lower_32_bits(addr), NFI_STRADDR); + + init_completion(&nfc->done); + reg = nfi_readl(nfc, NFI_CON) | CON_BRD; + nfi_writel(nfc, reg, NFI_CON); + nfi_writew(nfc, STAR_EN, NFI_STRDATA); + + rc = wait_for_completion_timeout(&nfc->done, msecs_to_jiffies(500)); + if (!rc) + dev_warn(nfc->dev, "read ahb/dma done timeout\n"); + + rc = readl_poll_timeout_atomic(nfc->regs + NFI_BYTELEN, reg, + ADDRCNTR_SEC(reg) >= sectors, 10, + MTK_TIMEOUT); + if (rc < 0) { + dev_err(nfc->dev, "subpage done timeout\n"); + bitflips = -EIO; + } else if (!raw) { + rc = mtk_ecc_wait_done(nfc->ecc, ECC_DECODE); + bitflips = rc < 0 ? -ETIMEDOUT : + mtk_nfc_update_ecc_stats(mtd, buf, start, sectors); + mtk_nfc_read_fdm(chip, start, sectors); + } + + dma_unmap_single(nfc->dev, addr, len, DMA_FROM_DEVICE); + + if (raw) + goto done; + + mtk_ecc_disable(nfc->ecc); + + if (clamp(mtk_nand->bad_mark.sec, start, end) == mtk_nand->bad_mark.sec) + mtk_nand->bad_mark.bm_swap(mtd, bufpoi, raw); +done: + nfi_writel(nfc, 0, NFI_CON); + + return bitflips; +} + +static int mtk_nfc_read_subpage_hwecc(struct nand_chip *chip, u32 off, + u32 len, u8 *p, int pg) +{ + return mtk_nfc_read_subpage(nand_to_mtd(chip), chip, off, len, p, pg, + 0); +} + +static int mtk_nfc_read_page_hwecc(struct nand_chip *chip, u8 *p, int oob_on, + int pg) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + + return mtk_nfc_read_subpage(mtd, chip, 0, mtd->writesize, p, pg, 0); +} + +static int mtk_nfc_read_page_raw(struct nand_chip *chip, u8 *buf, int oob_on, + int page) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip); + struct mtk_nfc *nfc = nand_get_controller_data(chip); + struct mtk_nfc_fdm *fdm = &mtk_nand->fdm; + int i, ret; + + memset(nfc->buffer, 0xff, mtd->writesize + mtd->oobsize); + ret = mtk_nfc_read_subpage(mtd, chip, 0, mtd->writesize, nfc->buffer, + page, 1); + if (ret < 0) + return ret; + + for (i = 0; i < chip->ecc.steps; i++) { + memcpy(oob_ptr(chip, i), mtk_oob_ptr(chip, i), fdm->reg_size); + + if (i == mtk_nand->bad_mark.sec) + mtk_nand->bad_mark.bm_swap(mtd, nfc->buffer, 1); + + if (buf) + memcpy(data_ptr(chip, buf, i), mtk_data_ptr(chip, i), + chip->ecc.size); + } + + return ret; +} + +static int mtk_nfc_read_oob_std(struct nand_chip *chip, int page) +{ + return mtk_nfc_read_page_raw(chip, NULL, 1, page); +} + +static inline void mtk_nfc_hw_init(struct mtk_nfc *nfc) +{ + /* + * CNRNB: nand ready/busy register + * ------------------------------- + * 7:4: timeout register for polling the NAND busy/ready signal + * 0 : poll the status of the busy/ready signal after [7:4]*16 cycles. + */ + nfi_writew(nfc, 0xf1, NFI_CNRNB); + nfi_writel(nfc, PAGEFMT_8K_16K, NFI_PAGEFMT); + + mtk_nfc_hw_reset(nfc); + + nfi_readl(nfc, NFI_INTR_STA); + nfi_writel(nfc, 0, NFI_INTR_EN); +} + +static irqreturn_t mtk_nfc_irq(int irq, void *id) +{ + struct mtk_nfc *nfc = id; + u16 sta, ien; + + sta = nfi_readw(nfc, NFI_INTR_STA); + ien = nfi_readw(nfc, NFI_INTR_EN); + + if (!(sta & ien)) + return IRQ_NONE; + + nfi_writew(nfc, ~sta & ien, NFI_INTR_EN); + complete(&nfc->done); + + return IRQ_HANDLED; +} + +static int mtk_nfc_ooblayout_free(struct mtd_info *mtd, int section, + struct mtd_oob_region *oob_region) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip); + struct mtk_nfc_fdm *fdm = &mtk_nand->fdm; + u32 eccsteps; + + eccsteps = mtd->writesize / chip->ecc.size; + + if (section >= eccsteps) + return -ERANGE; + + oob_region->length = fdm->reg_size - fdm->ecc_size; + oob_region->offset = section * fdm->reg_size + fdm->ecc_size; + + return 0; +} + +static int mtk_nfc_ooblayout_ecc(struct mtd_info *mtd, int section, + struct mtd_oob_region *oob_region) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip); + u32 eccsteps; + + if (section) + return -ERANGE; + + eccsteps = mtd->writesize / chip->ecc.size; + oob_region->offset = mtk_nand->fdm.reg_size * eccsteps; + oob_region->length = mtd->oobsize - oob_region->offset; + + return 0; +} + +static const struct mtd_ooblayout_ops mtk_nfc_ooblayout_ops = { + .free = mtk_nfc_ooblayout_free, + .ecc = mtk_nfc_ooblayout_ecc, +}; + +static void mtk_nfc_set_fdm(struct mtk_nfc_fdm *fdm, struct mtd_info *mtd) +{ + struct nand_chip *nand = mtd_to_nand(mtd); + struct mtk_nfc_nand_chip *chip = to_mtk_nand(nand); + struct mtk_nfc *nfc = nand_get_controller_data(nand); + u32 ecc_bytes; + + ecc_bytes = DIV_ROUND_UP(nand->ecc.strength * + mtk_ecc_get_parity_bits(nfc->ecc), 8); + + fdm->reg_size = chip->spare_per_sector - ecc_bytes; + if (fdm->reg_size > NFI_FDM_MAX_SIZE) + fdm->reg_size = NFI_FDM_MAX_SIZE; + + /* bad block mark storage */ + fdm->ecc_size = 1; +} + +static void mtk_nfc_set_bad_mark_ctl(struct mtk_nfc_bad_mark_ctl *bm_ctl, + struct mtd_info *mtd) +{ + struct nand_chip *nand = mtd_to_nand(mtd); + + if (mtd->writesize == 512) { + bm_ctl->bm_swap = mtk_nfc_no_bad_mark_swap; + } else { + bm_ctl->bm_swap = mtk_nfc_bad_mark_swap; + bm_ctl->sec = mtd->writesize / mtk_data_len(nand); + bm_ctl->pos = mtd->writesize % mtk_data_len(nand); + } +} + +static int mtk_nfc_set_spare_per_sector(u32 *sps, struct mtd_info *mtd) +{ + struct nand_chip *nand = mtd_to_nand(mtd); + struct mtk_nfc *nfc = nand_get_controller_data(nand); + const u8 *spare = nfc->caps->spare_size; + u32 eccsteps, i, closest_spare = 0; + + eccsteps = mtd->writesize / nand->ecc.size; + *sps = mtd->oobsize / eccsteps; + + if (nand->ecc.size == 1024) + *sps >>= 1; + + if (*sps < MTK_NFC_MIN_SPARE) + return -EINVAL; + + for (i = 0; i < nfc->caps->num_spare_size; i++) { + if (*sps >= spare[i] && spare[i] >= spare[closest_spare]) { + closest_spare = i; + if (*sps == spare[i]) + break; + } + } + + *sps = spare[closest_spare]; + + if (nand->ecc.size == 1024) + *sps <<= 1; + + return 0; +} + +static int mtk_nfc_ecc_init(struct device *dev, struct mtd_info *mtd) +{ + struct nand_chip *nand = mtd_to_nand(mtd); + const struct nand_ecc_props *requirements = + nanddev_get_ecc_requirements(&nand->base); + struct mtk_nfc *nfc = nand_get_controller_data(nand); + u32 spare; + int free, ret; + + /* support only ecc hw mode */ + if (nand->ecc.engine_type != NAND_ECC_ENGINE_TYPE_ON_HOST) { + dev_err(dev, "ecc.engine_type not supported\n"); + return -EINVAL; + } + + /* if optional dt settings not present */ + if (!nand->ecc.size || !nand->ecc.strength) { + /* use datasheet requirements */ + nand->ecc.strength = requirements->strength; + nand->ecc.size = requirements->step_size; + + /* + * align eccstrength and eccsize + * this controller only supports 512 and 1024 sizes + */ + if (nand->ecc.size < 1024) { + if (mtd->writesize > 512 && + nfc->caps->max_sector_size > 512) { + nand->ecc.size = 1024; + nand->ecc.strength <<= 1; + } else { + nand->ecc.size = 512; + } + } else { + nand->ecc.size = 1024; + } + + ret = mtk_nfc_set_spare_per_sector(&spare, mtd); + if (ret) + return ret; + + /* calculate oob bytes except ecc parity data */ + free = (nand->ecc.strength * mtk_ecc_get_parity_bits(nfc->ecc) + + 7) >> 3; + free = spare - free; + + /* + * enhance ecc strength if oob left is bigger than max FDM size + * or reduce ecc strength if oob size is not enough for ecc + * parity data. + */ + if (free > NFI_FDM_MAX_SIZE) { + spare -= NFI_FDM_MAX_SIZE; + nand->ecc.strength = (spare << 3) / + mtk_ecc_get_parity_bits(nfc->ecc); + } else if (free < 0) { + spare -= NFI_FDM_MIN_SIZE; + nand->ecc.strength = (spare << 3) / + mtk_ecc_get_parity_bits(nfc->ecc); + } + } + + mtk_ecc_adjust_strength(nfc->ecc, &nand->ecc.strength); + + dev_info(dev, "eccsize %d eccstrength %d\n", + nand->ecc.size, nand->ecc.strength); + + return 0; +} + +static int mtk_nfc_attach_chip(struct nand_chip *chip) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + struct device *dev = mtd->dev.parent; + struct mtk_nfc *nfc = nand_get_controller_data(chip); + struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip); + int len; + int ret; + + if (chip->options & NAND_BUSWIDTH_16) { + dev_err(dev, "16bits buswidth not supported"); + return -EINVAL; + } + + /* store bbt magic in page, cause OOB is not protected */ + if (chip->bbt_options & NAND_BBT_USE_FLASH) + chip->bbt_options |= NAND_BBT_NO_OOB; + + ret = mtk_nfc_ecc_init(dev, mtd); + if (ret) + return ret; + + ret = mtk_nfc_set_spare_per_sector(&mtk_nand->spare_per_sector, mtd); + if (ret) + return ret; + + mtk_nfc_set_fdm(&mtk_nand->fdm, mtd); + mtk_nfc_set_bad_mark_ctl(&mtk_nand->bad_mark, mtd); + + len = mtd->writesize + mtd->oobsize; + nfc->buffer = devm_kzalloc(dev, len, GFP_KERNEL); + if (!nfc->buffer) + return -ENOMEM; + + return 0; +} + +static const struct nand_controller_ops mtk_nfc_controller_ops = { + .attach_chip = mtk_nfc_attach_chip, + .setup_interface = mtk_nfc_setup_interface, + .exec_op = mtk_nfc_exec_op, +}; + +static int mtk_nfc_nand_chip_init(struct device *dev, struct mtk_nfc *nfc, + struct device_node *np) +{ + struct mtk_nfc_nand_chip *chip; + struct nand_chip *nand; + struct mtd_info *mtd; + int nsels; + u32 tmp; + int ret; + int i; + + if (!of_get_property(np, "reg", &nsels)) + return -ENODEV; + + nsels /= sizeof(u32); + if (!nsels || nsels > MTK_NAND_MAX_NSELS) { + dev_err(dev, "invalid reg property size %d\n", nsels); + return -EINVAL; + } + + chip = devm_kzalloc(dev, sizeof(*chip) + nsels * sizeof(u8), + GFP_KERNEL); + if (!chip) + return -ENOMEM; + + chip->nsels = nsels; + for (i = 0; i < nsels; i++) { + ret = of_property_read_u32_index(np, "reg", i, &tmp); + if (ret) { + dev_err(dev, "reg property failure : %d\n", ret); + return ret; + } + + if (tmp >= MTK_NAND_MAX_NSELS) { + dev_err(dev, "invalid CS: %u\n", tmp); + return -EINVAL; + } + + if (test_and_set_bit(tmp, &nfc->assigned_cs)) { + dev_err(dev, "CS %u already assigned\n", tmp); + return -EINVAL; + } + + chip->sels[i] = tmp; + } + + nand = &chip->nand; + nand->controller = &nfc->controller; + + nand_set_flash_node(nand, np); + nand_set_controller_data(nand, nfc); + + nand->options |= NAND_USES_DMA | NAND_SUBPAGE_READ; + + /* set default mode in case dt entry is missing */ + nand->ecc.engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST; + + nand->ecc.write_subpage = mtk_nfc_write_subpage_hwecc; + nand->ecc.write_page_raw = mtk_nfc_write_page_raw; + nand->ecc.write_page = mtk_nfc_write_page_hwecc; + nand->ecc.write_oob_raw = mtk_nfc_write_oob_std; + nand->ecc.write_oob = mtk_nfc_write_oob_std; + + nand->ecc.read_subpage = mtk_nfc_read_subpage_hwecc; + nand->ecc.read_page_raw = mtk_nfc_read_page_raw; + nand->ecc.read_page = mtk_nfc_read_page_hwecc; + nand->ecc.read_oob_raw = mtk_nfc_read_oob_std; + nand->ecc.read_oob = mtk_nfc_read_oob_std; + + mtd = nand_to_mtd(nand); + mtd->owner = THIS_MODULE; + mtd->dev.parent = dev; + mtd->name = MTK_NAME; + mtd_set_ooblayout(mtd, &mtk_nfc_ooblayout_ops); + + mtk_nfc_hw_init(nfc); + + ret = nand_scan(nand, nsels); + if (ret) + return ret; + + ret = mtd_device_register(mtd, NULL, 0); + if (ret) { + dev_err(dev, "mtd parse partition error\n"); + nand_cleanup(nand); + return ret; + } + + list_add_tail(&chip->node, &nfc->chips); + + return 0; +} + +static int mtk_nfc_nand_chips_init(struct device *dev, struct mtk_nfc *nfc) +{ + struct device_node *np = dev->of_node; + struct device_node *nand_np; + int ret; + + for_each_child_of_node(np, nand_np) { + ret = mtk_nfc_nand_chip_init(dev, nfc, nand_np); + if (ret) { + of_node_put(nand_np); + return ret; + } + } + + return 0; +} + +static const struct mtk_nfc_caps mtk_nfc_caps_mt2701 = { + .spare_size = spare_size_mt2701, + .num_spare_size = 16, + .pageformat_spare_shift = 4, + .nfi_clk_div = 1, + .max_sector = 16, + .max_sector_size = 1024, +}; + +static const struct mtk_nfc_caps mtk_nfc_caps_mt2712 = { + .spare_size = spare_size_mt2712, + .num_spare_size = 19, + .pageformat_spare_shift = 16, + .nfi_clk_div = 2, + .max_sector = 16, + .max_sector_size = 1024, +}; + +static const struct mtk_nfc_caps mtk_nfc_caps_mt7622 = { + .spare_size = spare_size_mt7622, + .num_spare_size = 4, + .pageformat_spare_shift = 4, + .nfi_clk_div = 1, + .max_sector = 8, + .max_sector_size = 512, +}; + +static const struct of_device_id mtk_nfc_id_table[] = { + { + .compatible = "mediatek,mt2701-nfc", + .data = &mtk_nfc_caps_mt2701, + }, { + .compatible = "mediatek,mt2712-nfc", + .data = &mtk_nfc_caps_mt2712, + }, { + .compatible = "mediatek,mt7622-nfc", + .data = &mtk_nfc_caps_mt7622, + }, + {} +}; +MODULE_DEVICE_TABLE(of, mtk_nfc_id_table); + +static int mtk_nfc_probe(struct platform_device *pdev) +{ + struct device *dev = &pdev->dev; + struct device_node *np = dev->of_node; + struct mtk_nfc *nfc; + int ret, irq; + + nfc = devm_kzalloc(dev, sizeof(*nfc), GFP_KERNEL); + if (!nfc) + return -ENOMEM; + + nand_controller_init(&nfc->controller); + INIT_LIST_HEAD(&nfc->chips); + nfc->controller.ops = &mtk_nfc_controller_ops; + + /* probe defer if not ready */ + nfc->ecc = of_mtk_ecc_get(np); + if (IS_ERR(nfc->ecc)) + return PTR_ERR(nfc->ecc); + else if (!nfc->ecc) + return -ENODEV; + + nfc->caps = of_device_get_match_data(dev); + nfc->dev = dev; + + nfc->regs = devm_platform_ioremap_resource(pdev, 0); + if (IS_ERR(nfc->regs)) { + ret = PTR_ERR(nfc->regs); + goto release_ecc; + } + + nfc->clk.nfi_clk = devm_clk_get_enabled(dev, "nfi_clk"); + if (IS_ERR(nfc->clk.nfi_clk)) { + dev_err(dev, "no clk\n"); + ret = PTR_ERR(nfc->clk.nfi_clk); + goto release_ecc; + } + + nfc->clk.pad_clk = devm_clk_get_enabled(dev, "pad_clk"); + if (IS_ERR(nfc->clk.pad_clk)) { + dev_err(dev, "no pad clk\n"); + ret = PTR_ERR(nfc->clk.pad_clk); + goto release_ecc; + } + + irq = platform_get_irq(pdev, 0); + if (irq < 0) { + ret = -EINVAL; + goto release_ecc; + } + + ret = devm_request_irq(dev, irq, mtk_nfc_irq, 0x0, "mtk-nand", nfc); + if (ret) { + dev_err(dev, "failed to request nfi irq\n"); + goto release_ecc; + } + + ret = dma_set_mask(dev, DMA_BIT_MASK(32)); + if (ret) { + dev_err(dev, "failed to set dma mask\n"); + goto release_ecc; + } + + platform_set_drvdata(pdev, nfc); + + ret = mtk_nfc_nand_chips_init(dev, nfc); + if (ret) { + dev_err(dev, "failed to init nand chips\n"); + goto release_ecc; + } + + return 0; + +release_ecc: + mtk_ecc_release(nfc->ecc); + + return ret; +} + +static void mtk_nfc_remove(struct platform_device *pdev) +{ + struct mtk_nfc *nfc = platform_get_drvdata(pdev); + struct mtk_nfc_nand_chip *mtk_chip; + struct nand_chip *chip; + int ret; + + while (!list_empty(&nfc->chips)) { + mtk_chip = list_first_entry(&nfc->chips, + struct mtk_nfc_nand_chip, node); + chip = &mtk_chip->nand; + ret = mtd_device_unregister(nand_to_mtd(chip)); + WARN_ON(ret); + nand_cleanup(chip); + list_del(&mtk_chip->node); + } + + mtk_ecc_release(nfc->ecc); +} + +#ifdef CONFIG_PM_SLEEP +static int mtk_nfc_suspend(struct device *dev) +{ + struct mtk_nfc *nfc = dev_get_drvdata(dev); + + clk_disable_unprepare(nfc->clk.nfi_clk); + clk_disable_unprepare(nfc->clk.pad_clk); + + return 0; +} + +static int mtk_nfc_resume(struct device *dev) +{ + struct mtk_nfc *nfc = dev_get_drvdata(dev); + struct mtk_nfc_nand_chip *chip; + struct nand_chip *nand; + int ret; + u32 i; + + udelay(200); + + ret = clk_prepare_enable(nfc->clk.nfi_clk); + if (ret) { + dev_err(dev, "failed to enable nfi clk\n"); + return ret; + } + + ret = clk_prepare_enable(nfc->clk.pad_clk); + if (ret) { + dev_err(dev, "failed to enable pad clk\n"); + clk_disable_unprepare(nfc->clk.nfi_clk); + return ret; + } + + /* reset NAND chip if VCC was powered off */ + list_for_each_entry(chip, &nfc->chips, node) { + nand = &chip->nand; + for (i = 0; i < chip->nsels; i++) + nand_reset(nand, i); + } + + return 0; +} + +static SIMPLE_DEV_PM_OPS(mtk_nfc_pm_ops, mtk_nfc_suspend, mtk_nfc_resume); +#endif + +static struct platform_driver mtk_nfc_driver = { + .probe = mtk_nfc_probe, + .remove_new = mtk_nfc_remove, + .driver = { + .name = MTK_NAME, + .of_match_table = mtk_nfc_id_table, +#ifdef CONFIG_PM_SLEEP + .pm = &mtk_nfc_pm_ops, +#endif + }, +}; + +module_platform_driver(mtk_nfc_driver); + +MODULE_LICENSE("Dual MIT/GPL"); +MODULE_AUTHOR("Xiaolei Li <xiaolei.li@mediatek.com>"); +MODULE_DESCRIPTION("MTK Nand Flash Controller Driver"); diff --git a/drivers/mtd/nand/raw/mxc_nand.c b/drivers/mtd/nand/raw/mxc_nand.c new file mode 100644 index 0000000000..003008355b --- /dev/null +++ b/drivers/mtd/nand/raw/mxc_nand.c @@ -0,0 +1,1845 @@ +// SPDX-License-Identifier: GPL-2.0+ +/* + * Copyright 2004-2007 Freescale Semiconductor, Inc. All Rights Reserved. + * Copyright 2008 Sascha Hauer, kernel@pengutronix.de + */ + +#include <linux/delay.h> +#include <linux/slab.h> +#include <linux/init.h> +#include <linux/module.h> +#include <linux/mtd/mtd.h> +#include <linux/mtd/rawnand.h> +#include <linux/mtd/partitions.h> +#include <linux/interrupt.h> +#include <linux/device.h> +#include <linux/platform_device.h> +#include <linux/clk.h> +#include <linux/err.h> +#include <linux/io.h> +#include <linux/irq.h> +#include <linux/completion.h> +#include <linux/of.h> + +#define DRIVER_NAME "mxc_nand" + +/* Addresses for NFC registers */ +#define NFC_V1_V2_BUF_SIZE (host->regs + 0x00) +#define NFC_V1_V2_BUF_ADDR (host->regs + 0x04) +#define NFC_V1_V2_FLASH_ADDR (host->regs + 0x06) +#define NFC_V1_V2_FLASH_CMD (host->regs + 0x08) +#define NFC_V1_V2_CONFIG (host->regs + 0x0a) +#define NFC_V1_V2_ECC_STATUS_RESULT (host->regs + 0x0c) +#define NFC_V1_V2_RSLTMAIN_AREA (host->regs + 0x0e) +#define NFC_V21_RSLTSPARE_AREA (host->regs + 0x10) +#define NFC_V1_V2_WRPROT (host->regs + 0x12) +#define NFC_V1_UNLOCKSTART_BLKADDR (host->regs + 0x14) +#define NFC_V1_UNLOCKEND_BLKADDR (host->regs + 0x16) +#define NFC_V21_UNLOCKSTART_BLKADDR0 (host->regs + 0x20) +#define NFC_V21_UNLOCKSTART_BLKADDR1 (host->regs + 0x24) +#define NFC_V21_UNLOCKSTART_BLKADDR2 (host->regs + 0x28) +#define NFC_V21_UNLOCKSTART_BLKADDR3 (host->regs + 0x2c) +#define NFC_V21_UNLOCKEND_BLKADDR0 (host->regs + 0x22) +#define NFC_V21_UNLOCKEND_BLKADDR1 (host->regs + 0x26) +#define NFC_V21_UNLOCKEND_BLKADDR2 (host->regs + 0x2a) +#define NFC_V21_UNLOCKEND_BLKADDR3 (host->regs + 0x2e) +#define NFC_V1_V2_NF_WRPRST (host->regs + 0x18) +#define NFC_V1_V2_CONFIG1 (host->regs + 0x1a) +#define NFC_V1_V2_CONFIG2 (host->regs + 0x1c) + +#define NFC_V2_CONFIG1_ECC_MODE_4 (1 << 0) +#define NFC_V1_V2_CONFIG1_SP_EN (1 << 2) +#define NFC_V1_V2_CONFIG1_ECC_EN (1 << 3) +#define NFC_V1_V2_CONFIG1_INT_MSK (1 << 4) +#define NFC_V1_V2_CONFIG1_BIG (1 << 5) +#define NFC_V1_V2_CONFIG1_RST (1 << 6) +#define NFC_V1_V2_CONFIG1_CE (1 << 7) +#define NFC_V2_CONFIG1_ONE_CYCLE (1 << 8) +#define NFC_V2_CONFIG1_PPB(x) (((x) & 0x3) << 9) +#define NFC_V2_CONFIG1_FP_INT (1 << 11) + +#define NFC_V1_V2_CONFIG2_INT (1 << 15) + +/* + * Operation modes for the NFC. Valid for v1, v2 and v3 + * type controllers. + */ +#define NFC_CMD (1 << 0) +#define NFC_ADDR (1 << 1) +#define NFC_INPUT (1 << 2) +#define NFC_OUTPUT (1 << 3) +#define NFC_ID (1 << 4) +#define NFC_STATUS (1 << 5) + +#define NFC_V3_FLASH_CMD (host->regs_axi + 0x00) +#define NFC_V3_FLASH_ADDR0 (host->regs_axi + 0x04) + +#define NFC_V3_CONFIG1 (host->regs_axi + 0x34) +#define NFC_V3_CONFIG1_SP_EN (1 << 0) +#define NFC_V3_CONFIG1_RBA(x) (((x) & 0x7 ) << 4) + +#define NFC_V3_ECC_STATUS_RESULT (host->regs_axi + 0x38) + +#define NFC_V3_LAUNCH (host->regs_axi + 0x40) + +#define NFC_V3_WRPROT (host->regs_ip + 0x0) +#define NFC_V3_WRPROT_LOCK_TIGHT (1 << 0) +#define NFC_V3_WRPROT_LOCK (1 << 1) +#define NFC_V3_WRPROT_UNLOCK (1 << 2) +#define NFC_V3_WRPROT_BLS_UNLOCK (2 << 6) + +#define NFC_V3_WRPROT_UNLOCK_BLK_ADD0 (host->regs_ip + 0x04) + +#define NFC_V3_CONFIG2 (host->regs_ip + 0x24) +#define NFC_V3_CONFIG2_PS_512 (0 << 0) +#define NFC_V3_CONFIG2_PS_2048 (1 << 0) +#define NFC_V3_CONFIG2_PS_4096 (2 << 0) +#define NFC_V3_CONFIG2_ONE_CYCLE (1 << 2) +#define NFC_V3_CONFIG2_ECC_EN (1 << 3) +#define NFC_V3_CONFIG2_2CMD_PHASES (1 << 4) +#define NFC_V3_CONFIG2_NUM_ADDR_PHASE0 (1 << 5) +#define NFC_V3_CONFIG2_ECC_MODE_8 (1 << 6) +#define NFC_V3_CONFIG2_PPB(x, shift) (((x) & 0x3) << shift) +#define NFC_V3_CONFIG2_NUM_ADDR_PHASE1(x) (((x) & 0x3) << 12) +#define NFC_V3_CONFIG2_INT_MSK (1 << 15) +#define NFC_V3_CONFIG2_ST_CMD(x) (((x) & 0xff) << 24) +#define NFC_V3_CONFIG2_SPAS(x) (((x) & 0xff) << 16) + +#define NFC_V3_CONFIG3 (host->regs_ip + 0x28) +#define NFC_V3_CONFIG3_ADD_OP(x) (((x) & 0x3) << 0) +#define NFC_V3_CONFIG3_FW8 (1 << 3) +#define NFC_V3_CONFIG3_SBB(x) (((x) & 0x7) << 8) +#define NFC_V3_CONFIG3_NUM_OF_DEVICES(x) (((x) & 0x7) << 12) +#define NFC_V3_CONFIG3_RBB_MODE (1 << 15) +#define NFC_V3_CONFIG3_NO_SDMA (1 << 20) + +#define NFC_V3_IPC (host->regs_ip + 0x2C) +#define NFC_V3_IPC_CREQ (1 << 0) +#define NFC_V3_IPC_INT (1 << 31) + +#define NFC_V3_DELAY_LINE (host->regs_ip + 0x34) + +struct mxc_nand_host; + +struct mxc_nand_devtype_data { + void (*preset)(struct mtd_info *); + int (*read_page)(struct nand_chip *chip, void *buf, void *oob, bool ecc, + int page); + void (*send_cmd)(struct mxc_nand_host *, uint16_t, int); + void (*send_addr)(struct mxc_nand_host *, uint16_t, int); + void (*send_page)(struct mtd_info *, unsigned int); + void (*send_read_id)(struct mxc_nand_host *); + uint16_t (*get_dev_status)(struct mxc_nand_host *); + int (*check_int)(struct mxc_nand_host *); + void (*irq_control)(struct mxc_nand_host *, int); + u32 (*get_ecc_status)(struct mxc_nand_host *); + const struct mtd_ooblayout_ops *ooblayout; + void (*select_chip)(struct nand_chip *chip, int cs); + int (*setup_interface)(struct nand_chip *chip, int csline, + const struct nand_interface_config *conf); + void (*enable_hwecc)(struct nand_chip *chip, bool enable); + + /* + * On i.MX21 the CONFIG2:INT bit cannot be read if interrupts are masked + * (CONFIG1:INT_MSK is set). To handle this the driver uses + * enable_irq/disable_irq_nosync instead of CONFIG1:INT_MSK + */ + int irqpending_quirk; + int needs_ip; + + size_t regs_offset; + size_t spare0_offset; + size_t axi_offset; + + int spare_len; + int eccbytes; + int eccsize; + int ppb_shift; +}; + +struct mxc_nand_host { + struct nand_chip nand; + struct device *dev; + + void __iomem *spare0; + void __iomem *main_area0; + + void __iomem *base; + void __iomem *regs; + void __iomem *regs_axi; + void __iomem *regs_ip; + int status_request; + struct clk *clk; + int clk_act; + int irq; + int eccsize; + int used_oobsize; + int active_cs; + + struct completion op_completion; + + uint8_t *data_buf; + unsigned int buf_start; + + const struct mxc_nand_devtype_data *devtype_data; +}; + +static const char * const part_probes[] = { + "cmdlinepart", "RedBoot", "ofpart", NULL }; + +static void memcpy32_fromio(void *trg, const void __iomem *src, size_t size) +{ + int i; + u32 *t = trg; + const __iomem u32 *s = src; + + for (i = 0; i < (size >> 2); i++) + *t++ = __raw_readl(s++); +} + +static void memcpy16_fromio(void *trg, const void __iomem *src, size_t size) +{ + int i; + u16 *t = trg; + const __iomem u16 *s = src; + + /* We assume that src (IO) is always 32bit aligned */ + if (PTR_ALIGN(trg, 4) == trg && IS_ALIGNED(size, 4)) { + memcpy32_fromio(trg, src, size); + return; + } + + for (i = 0; i < (size >> 1); i++) + *t++ = __raw_readw(s++); +} + +static inline void memcpy32_toio(void __iomem *trg, const void *src, int size) +{ + /* __iowrite32_copy use 32bit size values so divide by 4 */ + __iowrite32_copy(trg, src, size / 4); +} + +static void memcpy16_toio(void __iomem *trg, const void *src, int size) +{ + int i; + __iomem u16 *t = trg; + const u16 *s = src; + + /* We assume that trg (IO) is always 32bit aligned */ + if (PTR_ALIGN(src, 4) == src && IS_ALIGNED(size, 4)) { + memcpy32_toio(trg, src, size); + return; + } + + for (i = 0; i < (size >> 1); i++) + __raw_writew(*s++, t++); +} + +/* + * The controller splits a page into data chunks of 512 bytes + partial oob. + * There are writesize / 512 such chunks, the size of the partial oob parts is + * oobsize / #chunks rounded down to a multiple of 2. The last oob chunk then + * contains additionally the byte lost by rounding (if any). + * This function handles the needed shuffling between host->data_buf (which + * holds a page in natural order, i.e. writesize bytes data + oobsize bytes + * spare) and the NFC buffer. + */ +static void copy_spare(struct mtd_info *mtd, bool bfrom, void *buf) +{ + struct nand_chip *this = mtd_to_nand(mtd); + struct mxc_nand_host *host = nand_get_controller_data(this); + u16 i, oob_chunk_size; + u16 num_chunks = mtd->writesize / 512; + + u8 *d = buf; + u8 __iomem *s = host->spare0; + u16 sparebuf_size = host->devtype_data->spare_len; + + /* size of oob chunk for all but possibly the last one */ + oob_chunk_size = (host->used_oobsize / num_chunks) & ~1; + + if (bfrom) { + for (i = 0; i < num_chunks - 1; i++) + memcpy16_fromio(d + i * oob_chunk_size, + s + i * sparebuf_size, + oob_chunk_size); + + /* the last chunk */ + memcpy16_fromio(d + i * oob_chunk_size, + s + i * sparebuf_size, + host->used_oobsize - i * oob_chunk_size); + } else { + for (i = 0; i < num_chunks - 1; i++) + memcpy16_toio(&s[i * sparebuf_size], + &d[i * oob_chunk_size], + oob_chunk_size); + + /* the last chunk */ + memcpy16_toio(&s[i * sparebuf_size], + &d[i * oob_chunk_size], + host->used_oobsize - i * oob_chunk_size); + } +} + +/* + * MXC NANDFC can only perform full page+spare or spare-only read/write. When + * the upper layers perform a read/write buf operation, the saved column address + * is used to index into the full page. So usually this function is called with + * column == 0 (unless no column cycle is needed indicated by column == -1) + */ +static void mxc_do_addr_cycle(struct mtd_info *mtd, int column, int page_addr) +{ + struct nand_chip *nand_chip = mtd_to_nand(mtd); + struct mxc_nand_host *host = nand_get_controller_data(nand_chip); + + /* Write out column address, if necessary */ + if (column != -1) { + host->devtype_data->send_addr(host, column & 0xff, + page_addr == -1); + if (mtd->writesize > 512) + /* another col addr cycle for 2k page */ + host->devtype_data->send_addr(host, + (column >> 8) & 0xff, + false); + } + + /* Write out page address, if necessary */ + if (page_addr != -1) { + /* paddr_0 - p_addr_7 */ + host->devtype_data->send_addr(host, (page_addr & 0xff), false); + + if (mtd->writesize > 512) { + if (mtd->size >= 0x10000000) { + /* paddr_8 - paddr_15 */ + host->devtype_data->send_addr(host, + (page_addr >> 8) & 0xff, + false); + host->devtype_data->send_addr(host, + (page_addr >> 16) & 0xff, + true); + } else + /* paddr_8 - paddr_15 */ + host->devtype_data->send_addr(host, + (page_addr >> 8) & 0xff, true); + } else { + if (nand_chip->options & NAND_ROW_ADDR_3) { + /* paddr_8 - paddr_15 */ + host->devtype_data->send_addr(host, + (page_addr >> 8) & 0xff, + false); + host->devtype_data->send_addr(host, + (page_addr >> 16) & 0xff, + true); + } else + /* paddr_8 - paddr_15 */ + host->devtype_data->send_addr(host, + (page_addr >> 8) & 0xff, true); + } + } +} + +static int check_int_v3(struct mxc_nand_host *host) +{ + uint32_t tmp; + + tmp = readl(NFC_V3_IPC); + if (!(tmp & NFC_V3_IPC_INT)) + return 0; + + tmp &= ~NFC_V3_IPC_INT; + writel(tmp, NFC_V3_IPC); + + return 1; +} + +static int check_int_v1_v2(struct mxc_nand_host *host) +{ + uint32_t tmp; + + tmp = readw(NFC_V1_V2_CONFIG2); + if (!(tmp & NFC_V1_V2_CONFIG2_INT)) + return 0; + + if (!host->devtype_data->irqpending_quirk) + writew(tmp & ~NFC_V1_V2_CONFIG2_INT, NFC_V1_V2_CONFIG2); + + return 1; +} + +static void irq_control_v1_v2(struct mxc_nand_host *host, int activate) +{ + uint16_t tmp; + + tmp = readw(NFC_V1_V2_CONFIG1); + + if (activate) + tmp &= ~NFC_V1_V2_CONFIG1_INT_MSK; + else + tmp |= NFC_V1_V2_CONFIG1_INT_MSK; + + writew(tmp, NFC_V1_V2_CONFIG1); +} + +static void irq_control_v3(struct mxc_nand_host *host, int activate) +{ + uint32_t tmp; + + tmp = readl(NFC_V3_CONFIG2); + + if (activate) + tmp &= ~NFC_V3_CONFIG2_INT_MSK; + else + tmp |= NFC_V3_CONFIG2_INT_MSK; + + writel(tmp, NFC_V3_CONFIG2); +} + +static void irq_control(struct mxc_nand_host *host, int activate) +{ + if (host->devtype_data->irqpending_quirk) { + if (activate) + enable_irq(host->irq); + else + disable_irq_nosync(host->irq); + } else { + host->devtype_data->irq_control(host, activate); + } +} + +static u32 get_ecc_status_v1(struct mxc_nand_host *host) +{ + return readw(NFC_V1_V2_ECC_STATUS_RESULT); +} + +static u32 get_ecc_status_v2(struct mxc_nand_host *host) +{ + return readl(NFC_V1_V2_ECC_STATUS_RESULT); +} + +static u32 get_ecc_status_v3(struct mxc_nand_host *host) +{ + return readl(NFC_V3_ECC_STATUS_RESULT); +} + +static irqreturn_t mxc_nfc_irq(int irq, void *dev_id) +{ + struct mxc_nand_host *host = dev_id; + + if (!host->devtype_data->check_int(host)) + return IRQ_NONE; + + irq_control(host, 0); + + complete(&host->op_completion); + + return IRQ_HANDLED; +} + +/* This function polls the NANDFC to wait for the basic operation to + * complete by checking the INT bit of config2 register. + */ +static int wait_op_done(struct mxc_nand_host *host, int useirq) +{ + int ret = 0; + + /* + * If operation is already complete, don't bother to setup an irq or a + * loop. + */ + if (host->devtype_data->check_int(host)) + return 0; + + if (useirq) { + unsigned long timeout; + + reinit_completion(&host->op_completion); + + irq_control(host, 1); + + timeout = wait_for_completion_timeout(&host->op_completion, HZ); + if (!timeout && !host->devtype_data->check_int(host)) { + dev_dbg(host->dev, "timeout waiting for irq\n"); + ret = -ETIMEDOUT; + } + } else { + int max_retries = 8000; + int done; + + do { + udelay(1); + + done = host->devtype_data->check_int(host); + if (done) + break; + + } while (--max_retries); + + if (!done) { + dev_dbg(host->dev, "timeout polling for completion\n"); + ret = -ETIMEDOUT; + } + } + + WARN_ONCE(ret < 0, "timeout! useirq=%d\n", useirq); + + return ret; +} + +static void send_cmd_v3(struct mxc_nand_host *host, uint16_t cmd, int useirq) +{ + /* fill command */ + writel(cmd, NFC_V3_FLASH_CMD); + + /* send out command */ + writel(NFC_CMD, NFC_V3_LAUNCH); + + /* Wait for operation to complete */ + wait_op_done(host, useirq); +} + +/* This function issues the specified command to the NAND device and + * waits for completion. */ +static void send_cmd_v1_v2(struct mxc_nand_host *host, uint16_t cmd, int useirq) +{ + dev_dbg(host->dev, "send_cmd(host, 0x%x, %d)\n", cmd, useirq); + + writew(cmd, NFC_V1_V2_FLASH_CMD); + writew(NFC_CMD, NFC_V1_V2_CONFIG2); + + if (host->devtype_data->irqpending_quirk && (cmd == NAND_CMD_RESET)) { + int max_retries = 100; + /* Reset completion is indicated by NFC_CONFIG2 */ + /* being set to 0 */ + while (max_retries-- > 0) { + if (readw(NFC_V1_V2_CONFIG2) == 0) { + break; + } + udelay(1); + } + if (max_retries < 0) + dev_dbg(host->dev, "%s: RESET failed\n", __func__); + } else { + /* Wait for operation to complete */ + wait_op_done(host, useirq); + } +} + +static void send_addr_v3(struct mxc_nand_host *host, uint16_t addr, int islast) +{ + /* fill address */ + writel(addr, NFC_V3_FLASH_ADDR0); + + /* send out address */ + writel(NFC_ADDR, NFC_V3_LAUNCH); + + wait_op_done(host, 0); +} + +/* This function sends an address (or partial address) to the + * NAND device. The address is used to select the source/destination for + * a NAND command. */ +static void send_addr_v1_v2(struct mxc_nand_host *host, uint16_t addr, int islast) +{ + dev_dbg(host->dev, "send_addr(host, 0x%x %d)\n", addr, islast); + + writew(addr, NFC_V1_V2_FLASH_ADDR); + writew(NFC_ADDR, NFC_V1_V2_CONFIG2); + + /* Wait for operation to complete */ + wait_op_done(host, islast); +} + +static void send_page_v3(struct mtd_info *mtd, unsigned int ops) +{ + struct nand_chip *nand_chip = mtd_to_nand(mtd); + struct mxc_nand_host *host = nand_get_controller_data(nand_chip); + uint32_t tmp; + + tmp = readl(NFC_V3_CONFIG1); + tmp &= ~(7 << 4); + writel(tmp, NFC_V3_CONFIG1); + + /* transfer data from NFC ram to nand */ + writel(ops, NFC_V3_LAUNCH); + + wait_op_done(host, false); +} + +static void send_page_v2(struct mtd_info *mtd, unsigned int ops) +{ + struct nand_chip *nand_chip = mtd_to_nand(mtd); + struct mxc_nand_host *host = nand_get_controller_data(nand_chip); + + /* NANDFC buffer 0 is used for page read/write */ + writew(host->active_cs << 4, NFC_V1_V2_BUF_ADDR); + + writew(ops, NFC_V1_V2_CONFIG2); + + /* Wait for operation to complete */ + wait_op_done(host, true); +} + +static void send_page_v1(struct mtd_info *mtd, unsigned int ops) +{ + struct nand_chip *nand_chip = mtd_to_nand(mtd); + struct mxc_nand_host *host = nand_get_controller_data(nand_chip); + int bufs, i; + + if (mtd->writesize > 512) + bufs = 4; + else + bufs = 1; + + for (i = 0; i < bufs; i++) { + + /* NANDFC buffer 0 is used for page read/write */ + writew((host->active_cs << 4) | i, NFC_V1_V2_BUF_ADDR); + + writew(ops, NFC_V1_V2_CONFIG2); + + /* Wait for operation to complete */ + wait_op_done(host, true); + } +} + +static void send_read_id_v3(struct mxc_nand_host *host) +{ + /* Read ID into main buffer */ + writel(NFC_ID, NFC_V3_LAUNCH); + + wait_op_done(host, true); + + memcpy32_fromio(host->data_buf, host->main_area0, 16); +} + +/* Request the NANDFC to perform a read of the NAND device ID. */ +static void send_read_id_v1_v2(struct mxc_nand_host *host) +{ + /* NANDFC buffer 0 is used for device ID output */ + writew(host->active_cs << 4, NFC_V1_V2_BUF_ADDR); + + writew(NFC_ID, NFC_V1_V2_CONFIG2); + + /* Wait for operation to complete */ + wait_op_done(host, true); + + memcpy32_fromio(host->data_buf, host->main_area0, 16); +} + +static uint16_t get_dev_status_v3(struct mxc_nand_host *host) +{ + writew(NFC_STATUS, NFC_V3_LAUNCH); + wait_op_done(host, true); + + return readl(NFC_V3_CONFIG1) >> 16; +} + +/* This function requests the NANDFC to perform a read of the + * NAND device status and returns the current status. */ +static uint16_t get_dev_status_v1_v2(struct mxc_nand_host *host) +{ + void __iomem *main_buf = host->main_area0; + uint32_t store; + uint16_t ret; + + writew(host->active_cs << 4, NFC_V1_V2_BUF_ADDR); + + /* + * The device status is stored in main_area0. To + * prevent corruption of the buffer save the value + * and restore it afterwards. + */ + store = readl(main_buf); + + writew(NFC_STATUS, NFC_V1_V2_CONFIG2); + wait_op_done(host, true); + + ret = readw(main_buf); + + writel(store, main_buf); + + return ret; +} + +static void mxc_nand_enable_hwecc_v1_v2(struct nand_chip *chip, bool enable) +{ + struct mxc_nand_host *host = nand_get_controller_data(chip); + uint16_t config1; + + if (chip->ecc.engine_type != NAND_ECC_ENGINE_TYPE_ON_HOST) + return; + + config1 = readw(NFC_V1_V2_CONFIG1); + + if (enable) + config1 |= NFC_V1_V2_CONFIG1_ECC_EN; + else + config1 &= ~NFC_V1_V2_CONFIG1_ECC_EN; + + writew(config1, NFC_V1_V2_CONFIG1); +} + +static void mxc_nand_enable_hwecc_v3(struct nand_chip *chip, bool enable) +{ + struct mxc_nand_host *host = nand_get_controller_data(chip); + uint32_t config2; + + if (chip->ecc.engine_type != NAND_ECC_ENGINE_TYPE_ON_HOST) + return; + + config2 = readl(NFC_V3_CONFIG2); + + if (enable) + config2 |= NFC_V3_CONFIG2_ECC_EN; + else + config2 &= ~NFC_V3_CONFIG2_ECC_EN; + + writel(config2, NFC_V3_CONFIG2); +} + +/* This functions is used by upper layer to checks if device is ready */ +static int mxc_nand_dev_ready(struct nand_chip *chip) +{ + /* + * NFC handles R/B internally. Therefore, this function + * always returns status as ready. + */ + return 1; +} + +static int mxc_nand_read_page_v1(struct nand_chip *chip, void *buf, void *oob, + bool ecc, int page) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + struct mxc_nand_host *host = nand_get_controller_data(chip); + unsigned int bitflips_corrected = 0; + int no_subpages; + int i; + + host->devtype_data->enable_hwecc(chip, ecc); + + host->devtype_data->send_cmd(host, NAND_CMD_READ0, false); + mxc_do_addr_cycle(mtd, 0, page); + + if (mtd->writesize > 512) + host->devtype_data->send_cmd(host, NAND_CMD_READSTART, true); + + no_subpages = mtd->writesize >> 9; + + for (i = 0; i < no_subpages; i++) { + uint16_t ecc_stats; + + /* NANDFC buffer 0 is used for page read/write */ + writew((host->active_cs << 4) | i, NFC_V1_V2_BUF_ADDR); + + writew(NFC_OUTPUT, NFC_V1_V2_CONFIG2); + + /* Wait for operation to complete */ + wait_op_done(host, true); + + ecc_stats = get_ecc_status_v1(host); + + ecc_stats >>= 2; + + if (buf && ecc) { + switch (ecc_stats & 0x3) { + case 0: + default: + break; + case 1: + mtd->ecc_stats.corrected++; + bitflips_corrected = 1; + break; + case 2: + mtd->ecc_stats.failed++; + break; + } + } + } + + if (buf) + memcpy32_fromio(buf, host->main_area0, mtd->writesize); + if (oob) + copy_spare(mtd, true, oob); + + return bitflips_corrected; +} + +static int mxc_nand_read_page_v2_v3(struct nand_chip *chip, void *buf, + void *oob, bool ecc, int page) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + struct mxc_nand_host *host = nand_get_controller_data(chip); + unsigned int max_bitflips = 0; + u32 ecc_stat, err; + int no_subpages; + u8 ecc_bit_mask, err_limit; + + host->devtype_data->enable_hwecc(chip, ecc); + + host->devtype_data->send_cmd(host, NAND_CMD_READ0, false); + mxc_do_addr_cycle(mtd, 0, page); + + if (mtd->writesize > 512) + host->devtype_data->send_cmd(host, + NAND_CMD_READSTART, true); + + host->devtype_data->send_page(mtd, NFC_OUTPUT); + + if (buf) + memcpy32_fromio(buf, host->main_area0, mtd->writesize); + if (oob) + copy_spare(mtd, true, oob); + + ecc_bit_mask = (host->eccsize == 4) ? 0x7 : 0xf; + err_limit = (host->eccsize == 4) ? 0x4 : 0x8; + + no_subpages = mtd->writesize >> 9; + + ecc_stat = host->devtype_data->get_ecc_status(host); + + do { + err = ecc_stat & ecc_bit_mask; + if (err > err_limit) { + mtd->ecc_stats.failed++; + } else { + mtd->ecc_stats.corrected += err; + max_bitflips = max_t(unsigned int, max_bitflips, err); + } + + ecc_stat >>= 4; + } while (--no_subpages); + + return max_bitflips; +} + +static int mxc_nand_read_page(struct nand_chip *chip, uint8_t *buf, + int oob_required, int page) +{ + struct mxc_nand_host *host = nand_get_controller_data(chip); + void *oob_buf; + + if (oob_required) + oob_buf = chip->oob_poi; + else + oob_buf = NULL; + + return host->devtype_data->read_page(chip, buf, oob_buf, 1, page); +} + +static int mxc_nand_read_page_raw(struct nand_chip *chip, uint8_t *buf, + int oob_required, int page) +{ + struct mxc_nand_host *host = nand_get_controller_data(chip); + void *oob_buf; + + if (oob_required) + oob_buf = chip->oob_poi; + else + oob_buf = NULL; + + return host->devtype_data->read_page(chip, buf, oob_buf, 0, page); +} + +static int mxc_nand_read_oob(struct nand_chip *chip, int page) +{ + struct mxc_nand_host *host = nand_get_controller_data(chip); + + return host->devtype_data->read_page(chip, NULL, chip->oob_poi, 0, + page); +} + +static int mxc_nand_write_page(struct nand_chip *chip, const uint8_t *buf, + bool ecc, int page) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + struct mxc_nand_host *host = nand_get_controller_data(chip); + + host->devtype_data->enable_hwecc(chip, ecc); + + host->devtype_data->send_cmd(host, NAND_CMD_SEQIN, false); + mxc_do_addr_cycle(mtd, 0, page); + + memcpy32_toio(host->main_area0, buf, mtd->writesize); + copy_spare(mtd, false, chip->oob_poi); + + host->devtype_data->send_page(mtd, NFC_INPUT); + host->devtype_data->send_cmd(host, NAND_CMD_PAGEPROG, true); + mxc_do_addr_cycle(mtd, 0, page); + + return 0; +} + +static int mxc_nand_write_page_ecc(struct nand_chip *chip, const uint8_t *buf, + int oob_required, int page) +{ + return mxc_nand_write_page(chip, buf, true, page); +} + +static int mxc_nand_write_page_raw(struct nand_chip *chip, const uint8_t *buf, + int oob_required, int page) +{ + return mxc_nand_write_page(chip, buf, false, page); +} + +static int mxc_nand_write_oob(struct nand_chip *chip, int page) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + struct mxc_nand_host *host = nand_get_controller_data(chip); + + memset(host->data_buf, 0xff, mtd->writesize); + + return mxc_nand_write_page(chip, host->data_buf, false, page); +} + +static u_char mxc_nand_read_byte(struct nand_chip *nand_chip) +{ + struct mxc_nand_host *host = nand_get_controller_data(nand_chip); + uint8_t ret; + + /* Check for status request */ + if (host->status_request) + return host->devtype_data->get_dev_status(host) & 0xFF; + + if (nand_chip->options & NAND_BUSWIDTH_16) { + /* only take the lower byte of each word */ + ret = *(uint16_t *)(host->data_buf + host->buf_start); + + host->buf_start += 2; + } else { + ret = *(uint8_t *)(host->data_buf + host->buf_start); + host->buf_start++; + } + + dev_dbg(host->dev, "%s: ret=0x%hhx (start=%u)\n", __func__, ret, host->buf_start); + return ret; +} + +/* Write data of length len to buffer buf. The data to be + * written on NAND Flash is first copied to RAMbuffer. After the Data Input + * Operation by the NFC, the data is written to NAND Flash */ +static void mxc_nand_write_buf(struct nand_chip *nand_chip, const u_char *buf, + int len) +{ + struct mtd_info *mtd = nand_to_mtd(nand_chip); + struct mxc_nand_host *host = nand_get_controller_data(nand_chip); + u16 col = host->buf_start; + int n = mtd->oobsize + mtd->writesize - col; + + n = min(n, len); + + memcpy(host->data_buf + col, buf, n); + + host->buf_start += n; +} + +/* Read the data buffer from the NAND Flash. To read the data from NAND + * Flash first the data output cycle is initiated by the NFC, which copies + * the data to RAMbuffer. This data of length len is then copied to buffer buf. + */ +static void mxc_nand_read_buf(struct nand_chip *nand_chip, u_char *buf, + int len) +{ + struct mtd_info *mtd = nand_to_mtd(nand_chip); + struct mxc_nand_host *host = nand_get_controller_data(nand_chip); + u16 col = host->buf_start; + int n = mtd->oobsize + mtd->writesize - col; + + n = min(n, len); + + memcpy(buf, host->data_buf + col, n); + + host->buf_start += n; +} + +/* This function is used by upper layer for select and + * deselect of the NAND chip */ +static void mxc_nand_select_chip_v1_v3(struct nand_chip *nand_chip, int chip) +{ + struct mxc_nand_host *host = nand_get_controller_data(nand_chip); + + if (chip == -1) { + /* Disable the NFC clock */ + if (host->clk_act) { + clk_disable_unprepare(host->clk); + host->clk_act = 0; + } + return; + } + + if (!host->clk_act) { + /* Enable the NFC clock */ + clk_prepare_enable(host->clk); + host->clk_act = 1; + } +} + +static void mxc_nand_select_chip_v2(struct nand_chip *nand_chip, int chip) +{ + struct mxc_nand_host *host = nand_get_controller_data(nand_chip); + + if (chip == -1) { + /* Disable the NFC clock */ + if (host->clk_act) { + clk_disable_unprepare(host->clk); + host->clk_act = 0; + } + return; + } + + if (!host->clk_act) { + /* Enable the NFC clock */ + clk_prepare_enable(host->clk); + host->clk_act = 1; + } + + host->active_cs = chip; + writew(host->active_cs << 4, NFC_V1_V2_BUF_ADDR); +} + +#define MXC_V1_ECCBYTES 5 + +static int mxc_v1_ooblayout_ecc(struct mtd_info *mtd, int section, + struct mtd_oob_region *oobregion) +{ + struct nand_chip *nand_chip = mtd_to_nand(mtd); + + if (section >= nand_chip->ecc.steps) + return -ERANGE; + + oobregion->offset = (section * 16) + 6; + oobregion->length = MXC_V1_ECCBYTES; + + return 0; +} + +static int mxc_v1_ooblayout_free(struct mtd_info *mtd, int section, + struct mtd_oob_region *oobregion) +{ + struct nand_chip *nand_chip = mtd_to_nand(mtd); + + if (section > nand_chip->ecc.steps) + return -ERANGE; + + if (!section) { + if (mtd->writesize <= 512) { + oobregion->offset = 0; + oobregion->length = 5; + } else { + oobregion->offset = 2; + oobregion->length = 4; + } + } else { + oobregion->offset = ((section - 1) * 16) + MXC_V1_ECCBYTES + 6; + if (section < nand_chip->ecc.steps) + oobregion->length = (section * 16) + 6 - + oobregion->offset; + else + oobregion->length = mtd->oobsize - oobregion->offset; + } + + return 0; +} + +static const struct mtd_ooblayout_ops mxc_v1_ooblayout_ops = { + .ecc = mxc_v1_ooblayout_ecc, + .free = mxc_v1_ooblayout_free, +}; + +static int mxc_v2_ooblayout_ecc(struct mtd_info *mtd, int section, + struct mtd_oob_region *oobregion) +{ + struct nand_chip *nand_chip = mtd_to_nand(mtd); + int stepsize = nand_chip->ecc.bytes == 9 ? 16 : 26; + + if (section >= nand_chip->ecc.steps) + return -ERANGE; + + oobregion->offset = (section * stepsize) + 7; + oobregion->length = nand_chip->ecc.bytes; + + return 0; +} + +static int mxc_v2_ooblayout_free(struct mtd_info *mtd, int section, + struct mtd_oob_region *oobregion) +{ + struct nand_chip *nand_chip = mtd_to_nand(mtd); + int stepsize = nand_chip->ecc.bytes == 9 ? 16 : 26; + + if (section >= nand_chip->ecc.steps) + return -ERANGE; + + if (!section) { + if (mtd->writesize <= 512) { + oobregion->offset = 0; + oobregion->length = 5; + } else { + oobregion->offset = 2; + oobregion->length = 4; + } + } else { + oobregion->offset = section * stepsize; + oobregion->length = 7; + } + + return 0; +} + +static const struct mtd_ooblayout_ops mxc_v2_ooblayout_ops = { + .ecc = mxc_v2_ooblayout_ecc, + .free = mxc_v2_ooblayout_free, +}; + +/* + * v2 and v3 type controllers can do 4bit or 8bit ecc depending + * on how much oob the nand chip has. For 8bit ecc we need at least + * 26 bytes of oob data per 512 byte block. + */ +static int get_eccsize(struct mtd_info *mtd) +{ + int oobbytes_per_512 = 0; + + oobbytes_per_512 = mtd->oobsize * 512 / mtd->writesize; + + if (oobbytes_per_512 < 26) + return 4; + else + return 8; +} + +static void preset_v1(struct mtd_info *mtd) +{ + struct nand_chip *nand_chip = mtd_to_nand(mtd); + struct mxc_nand_host *host = nand_get_controller_data(nand_chip); + uint16_t config1 = 0; + + if (nand_chip->ecc.engine_type == NAND_ECC_ENGINE_TYPE_ON_HOST && + mtd->writesize) + config1 |= NFC_V1_V2_CONFIG1_ECC_EN; + + if (!host->devtype_data->irqpending_quirk) + config1 |= NFC_V1_V2_CONFIG1_INT_MSK; + + host->eccsize = 1; + + writew(config1, NFC_V1_V2_CONFIG1); + /* preset operation */ + + /* Unlock the internal RAM Buffer */ + writew(0x2, NFC_V1_V2_CONFIG); + + /* Blocks to be unlocked */ + writew(0x0, NFC_V1_UNLOCKSTART_BLKADDR); + writew(0xffff, NFC_V1_UNLOCKEND_BLKADDR); + + /* Unlock Block Command for given address range */ + writew(0x4, NFC_V1_V2_WRPROT); +} + +static int mxc_nand_v2_setup_interface(struct nand_chip *chip, int csline, + const struct nand_interface_config *conf) +{ + struct mxc_nand_host *host = nand_get_controller_data(chip); + int tRC_min_ns, tRC_ps, ret; + unsigned long rate, rate_round; + const struct nand_sdr_timings *timings; + u16 config1; + + timings = nand_get_sdr_timings(conf); + if (IS_ERR(timings)) + return -ENOTSUPP; + + config1 = readw(NFC_V1_V2_CONFIG1); + + tRC_min_ns = timings->tRC_min / 1000; + rate = 1000000000 / tRC_min_ns; + + /* + * For tRC < 30ns we have to use EDO mode. In this case the controller + * does one access per clock cycle. Otherwise the controller does one + * access in two clock cycles, thus we have to double the rate to the + * controller. + */ + if (tRC_min_ns < 30) { + rate_round = clk_round_rate(host->clk, rate); + config1 |= NFC_V2_CONFIG1_ONE_CYCLE; + tRC_ps = 1000000000 / (rate_round / 1000); + } else { + rate *= 2; + rate_round = clk_round_rate(host->clk, rate); + config1 &= ~NFC_V2_CONFIG1_ONE_CYCLE; + tRC_ps = 1000000000 / (rate_round / 1000 / 2); + } + + /* + * The timing values compared against are from the i.MX25 Automotive + * datasheet, Table 50. NFC Timing Parameters + */ + if (timings->tCLS_min > tRC_ps - 1000 || + timings->tCLH_min > tRC_ps - 2000 || + timings->tCS_min > tRC_ps - 1000 || + timings->tCH_min > tRC_ps - 2000 || + timings->tWP_min > tRC_ps - 1500 || + timings->tALS_min > tRC_ps || + timings->tALH_min > tRC_ps - 3000 || + timings->tDS_min > tRC_ps || + timings->tDH_min > tRC_ps - 5000 || + timings->tWC_min > 2 * tRC_ps || + timings->tWH_min > tRC_ps - 2500 || + timings->tRR_min > 6 * tRC_ps || + timings->tRP_min > 3 * tRC_ps / 2 || + timings->tRC_min > 2 * tRC_ps || + timings->tREH_min > (tRC_ps / 2) - 2500) { + dev_dbg(host->dev, "Timing out of bounds\n"); + return -EINVAL; + } + + if (csline == NAND_DATA_IFACE_CHECK_ONLY) + return 0; + + ret = clk_set_rate(host->clk, rate); + if (ret) + return ret; + + writew(config1, NFC_V1_V2_CONFIG1); + + dev_dbg(host->dev, "Setting rate to %ldHz, %s mode\n", rate_round, + config1 & NFC_V2_CONFIG1_ONE_CYCLE ? "One cycle (EDO)" : + "normal"); + + return 0; +} + +static void preset_v2(struct mtd_info *mtd) +{ + struct nand_chip *nand_chip = mtd_to_nand(mtd); + struct mxc_nand_host *host = nand_get_controller_data(nand_chip); + uint16_t config1 = 0; + + config1 |= NFC_V2_CONFIG1_FP_INT; + + if (!host->devtype_data->irqpending_quirk) + config1 |= NFC_V1_V2_CONFIG1_INT_MSK; + + if (mtd->writesize) { + uint16_t pages_per_block = mtd->erasesize / mtd->writesize; + + if (nand_chip->ecc.engine_type == NAND_ECC_ENGINE_TYPE_ON_HOST) + config1 |= NFC_V1_V2_CONFIG1_ECC_EN; + + host->eccsize = get_eccsize(mtd); + if (host->eccsize == 4) + config1 |= NFC_V2_CONFIG1_ECC_MODE_4; + + config1 |= NFC_V2_CONFIG1_PPB(ffs(pages_per_block) - 6); + } else { + host->eccsize = 1; + } + + writew(config1, NFC_V1_V2_CONFIG1); + /* preset operation */ + + /* spare area size in 16-bit half-words */ + writew(mtd->oobsize / 2, NFC_V21_RSLTSPARE_AREA); + + /* Unlock the internal RAM Buffer */ + writew(0x2, NFC_V1_V2_CONFIG); + + /* Blocks to be unlocked */ + writew(0x0, NFC_V21_UNLOCKSTART_BLKADDR0); + writew(0x0, NFC_V21_UNLOCKSTART_BLKADDR1); + writew(0x0, NFC_V21_UNLOCKSTART_BLKADDR2); + writew(0x0, NFC_V21_UNLOCKSTART_BLKADDR3); + writew(0xffff, NFC_V21_UNLOCKEND_BLKADDR0); + writew(0xffff, NFC_V21_UNLOCKEND_BLKADDR1); + writew(0xffff, NFC_V21_UNLOCKEND_BLKADDR2); + writew(0xffff, NFC_V21_UNLOCKEND_BLKADDR3); + + /* Unlock Block Command for given address range */ + writew(0x4, NFC_V1_V2_WRPROT); +} + +static void preset_v3(struct mtd_info *mtd) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + struct mxc_nand_host *host = nand_get_controller_data(chip); + uint32_t config2, config3; + int i, addr_phases; + + writel(NFC_V3_CONFIG1_RBA(0), NFC_V3_CONFIG1); + writel(NFC_V3_IPC_CREQ, NFC_V3_IPC); + + /* Unlock the internal RAM Buffer */ + writel(NFC_V3_WRPROT_BLS_UNLOCK | NFC_V3_WRPROT_UNLOCK, + NFC_V3_WRPROT); + + /* Blocks to be unlocked */ + for (i = 0; i < NAND_MAX_CHIPS; i++) + writel(0xffff << 16, NFC_V3_WRPROT_UNLOCK_BLK_ADD0 + (i << 2)); + + writel(0, NFC_V3_IPC); + + config2 = NFC_V3_CONFIG2_ONE_CYCLE | + NFC_V3_CONFIG2_2CMD_PHASES | + NFC_V3_CONFIG2_SPAS(mtd->oobsize >> 1) | + NFC_V3_CONFIG2_ST_CMD(0x70) | + NFC_V3_CONFIG2_INT_MSK | + NFC_V3_CONFIG2_NUM_ADDR_PHASE0; + + addr_phases = fls(chip->pagemask) >> 3; + + if (mtd->writesize == 2048) { + config2 |= NFC_V3_CONFIG2_PS_2048; + config2 |= NFC_V3_CONFIG2_NUM_ADDR_PHASE1(addr_phases); + } else if (mtd->writesize == 4096) { + config2 |= NFC_V3_CONFIG2_PS_4096; + config2 |= NFC_V3_CONFIG2_NUM_ADDR_PHASE1(addr_phases); + } else { + config2 |= NFC_V3_CONFIG2_PS_512; + config2 |= NFC_V3_CONFIG2_NUM_ADDR_PHASE1(addr_phases - 1); + } + + if (mtd->writesize) { + if (chip->ecc.engine_type == NAND_ECC_ENGINE_TYPE_ON_HOST) + config2 |= NFC_V3_CONFIG2_ECC_EN; + + config2 |= NFC_V3_CONFIG2_PPB( + ffs(mtd->erasesize / mtd->writesize) - 6, + host->devtype_data->ppb_shift); + host->eccsize = get_eccsize(mtd); + if (host->eccsize == 8) + config2 |= NFC_V3_CONFIG2_ECC_MODE_8; + } + + writel(config2, NFC_V3_CONFIG2); + + config3 = NFC_V3_CONFIG3_NUM_OF_DEVICES(0) | + NFC_V3_CONFIG3_NO_SDMA | + NFC_V3_CONFIG3_RBB_MODE | + NFC_V3_CONFIG3_SBB(6) | /* Reset default */ + NFC_V3_CONFIG3_ADD_OP(0); + + if (!(chip->options & NAND_BUSWIDTH_16)) + config3 |= NFC_V3_CONFIG3_FW8; + + writel(config3, NFC_V3_CONFIG3); + + writel(0, NFC_V3_DELAY_LINE); +} + +/* Used by the upper layer to write command to NAND Flash for + * different operations to be carried out on NAND Flash */ +static void mxc_nand_command(struct nand_chip *nand_chip, unsigned command, + int column, int page_addr) +{ + struct mtd_info *mtd = nand_to_mtd(nand_chip); + struct mxc_nand_host *host = nand_get_controller_data(nand_chip); + + dev_dbg(host->dev, "mxc_nand_command (cmd = 0x%x, col = 0x%x, page = 0x%x)\n", + command, column, page_addr); + + /* Reset command state information */ + host->status_request = false; + + /* Command pre-processing step */ + switch (command) { + case NAND_CMD_RESET: + host->devtype_data->preset(mtd); + host->devtype_data->send_cmd(host, command, false); + break; + + case NAND_CMD_STATUS: + host->buf_start = 0; + host->status_request = true; + + host->devtype_data->send_cmd(host, command, true); + WARN_ONCE(column != -1 || page_addr != -1, + "Unexpected column/row value (cmd=%u, col=%d, row=%d)\n", + command, column, page_addr); + mxc_do_addr_cycle(mtd, column, page_addr); + break; + + case NAND_CMD_READID: + host->devtype_data->send_cmd(host, command, true); + mxc_do_addr_cycle(mtd, column, page_addr); + host->devtype_data->send_read_id(host); + host->buf_start = 0; + break; + + case NAND_CMD_ERASE1: + case NAND_CMD_ERASE2: + host->devtype_data->send_cmd(host, command, false); + WARN_ONCE(column != -1, + "Unexpected column value (cmd=%u, col=%d)\n", + command, column); + mxc_do_addr_cycle(mtd, column, page_addr); + + break; + case NAND_CMD_PARAM: + host->devtype_data->send_cmd(host, command, false); + mxc_do_addr_cycle(mtd, column, page_addr); + host->devtype_data->send_page(mtd, NFC_OUTPUT); + memcpy32_fromio(host->data_buf, host->main_area0, 512); + host->buf_start = 0; + break; + default: + WARN_ONCE(1, "Unimplemented command (cmd=%u)\n", + command); + break; + } +} + +static int mxc_nand_set_features(struct nand_chip *chip, int addr, + u8 *subfeature_param) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + struct mxc_nand_host *host = nand_get_controller_data(chip); + int i; + + host->buf_start = 0; + + for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i) + chip->legacy.write_byte(chip, subfeature_param[i]); + + memcpy32_toio(host->main_area0, host->data_buf, mtd->writesize); + host->devtype_data->send_cmd(host, NAND_CMD_SET_FEATURES, false); + mxc_do_addr_cycle(mtd, addr, -1); + host->devtype_data->send_page(mtd, NFC_INPUT); + + return 0; +} + +static int mxc_nand_get_features(struct nand_chip *chip, int addr, + u8 *subfeature_param) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + struct mxc_nand_host *host = nand_get_controller_data(chip); + int i; + + host->devtype_data->send_cmd(host, NAND_CMD_GET_FEATURES, false); + mxc_do_addr_cycle(mtd, addr, -1); + host->devtype_data->send_page(mtd, NFC_OUTPUT); + memcpy32_fromio(host->data_buf, host->main_area0, 512); + host->buf_start = 0; + + for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i) + *subfeature_param++ = chip->legacy.read_byte(chip); + + return 0; +} + +/* + * The generic flash bbt descriptors overlap with our ecc + * hardware, so define some i.MX specific ones. + */ +static uint8_t bbt_pattern[] = { 'B', 'b', 't', '0' }; +static uint8_t mirror_pattern[] = { '1', 't', 'b', 'B' }; + +static struct nand_bbt_descr bbt_main_descr = { + .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE + | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP, + .offs = 0, + .len = 4, + .veroffs = 4, + .maxblocks = 4, + .pattern = bbt_pattern, +}; + +static struct nand_bbt_descr bbt_mirror_descr = { + .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE + | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP, + .offs = 0, + .len = 4, + .veroffs = 4, + .maxblocks = 4, + .pattern = mirror_pattern, +}; + +/* v1 + irqpending_quirk: i.MX21 */ +static const struct mxc_nand_devtype_data imx21_nand_devtype_data = { + .preset = preset_v1, + .read_page = mxc_nand_read_page_v1, + .send_cmd = send_cmd_v1_v2, + .send_addr = send_addr_v1_v2, + .send_page = send_page_v1, + .send_read_id = send_read_id_v1_v2, + .get_dev_status = get_dev_status_v1_v2, + .check_int = check_int_v1_v2, + .irq_control = irq_control_v1_v2, + .get_ecc_status = get_ecc_status_v1, + .ooblayout = &mxc_v1_ooblayout_ops, + .select_chip = mxc_nand_select_chip_v1_v3, + .enable_hwecc = mxc_nand_enable_hwecc_v1_v2, + .irqpending_quirk = 1, + .needs_ip = 0, + .regs_offset = 0xe00, + .spare0_offset = 0x800, + .spare_len = 16, + .eccbytes = 3, + .eccsize = 1, +}; + +/* v1 + !irqpending_quirk: i.MX27, i.MX31 */ +static const struct mxc_nand_devtype_data imx27_nand_devtype_data = { + .preset = preset_v1, + .read_page = mxc_nand_read_page_v1, + .send_cmd = send_cmd_v1_v2, + .send_addr = send_addr_v1_v2, + .send_page = send_page_v1, + .send_read_id = send_read_id_v1_v2, + .get_dev_status = get_dev_status_v1_v2, + .check_int = check_int_v1_v2, + .irq_control = irq_control_v1_v2, + .get_ecc_status = get_ecc_status_v1, + .ooblayout = &mxc_v1_ooblayout_ops, + .select_chip = mxc_nand_select_chip_v1_v3, + .enable_hwecc = mxc_nand_enable_hwecc_v1_v2, + .irqpending_quirk = 0, + .needs_ip = 0, + .regs_offset = 0xe00, + .spare0_offset = 0x800, + .axi_offset = 0, + .spare_len = 16, + .eccbytes = 3, + .eccsize = 1, +}; + +/* v21: i.MX25, i.MX35 */ +static const struct mxc_nand_devtype_data imx25_nand_devtype_data = { + .preset = preset_v2, + .read_page = mxc_nand_read_page_v2_v3, + .send_cmd = send_cmd_v1_v2, + .send_addr = send_addr_v1_v2, + .send_page = send_page_v2, + .send_read_id = send_read_id_v1_v2, + .get_dev_status = get_dev_status_v1_v2, + .check_int = check_int_v1_v2, + .irq_control = irq_control_v1_v2, + .get_ecc_status = get_ecc_status_v2, + .ooblayout = &mxc_v2_ooblayout_ops, + .select_chip = mxc_nand_select_chip_v2, + .setup_interface = mxc_nand_v2_setup_interface, + .enable_hwecc = mxc_nand_enable_hwecc_v1_v2, + .irqpending_quirk = 0, + .needs_ip = 0, + .regs_offset = 0x1e00, + .spare0_offset = 0x1000, + .axi_offset = 0, + .spare_len = 64, + .eccbytes = 9, + .eccsize = 0, +}; + +/* v3.2a: i.MX51 */ +static const struct mxc_nand_devtype_data imx51_nand_devtype_data = { + .preset = preset_v3, + .read_page = mxc_nand_read_page_v2_v3, + .send_cmd = send_cmd_v3, + .send_addr = send_addr_v3, + .send_page = send_page_v3, + .send_read_id = send_read_id_v3, + .get_dev_status = get_dev_status_v3, + .check_int = check_int_v3, + .irq_control = irq_control_v3, + .get_ecc_status = get_ecc_status_v3, + .ooblayout = &mxc_v2_ooblayout_ops, + .select_chip = mxc_nand_select_chip_v1_v3, + .enable_hwecc = mxc_nand_enable_hwecc_v3, + .irqpending_quirk = 0, + .needs_ip = 1, + .regs_offset = 0, + .spare0_offset = 0x1000, + .axi_offset = 0x1e00, + .spare_len = 64, + .eccbytes = 0, + .eccsize = 0, + .ppb_shift = 7, +}; + +/* v3.2b: i.MX53 */ +static const struct mxc_nand_devtype_data imx53_nand_devtype_data = { + .preset = preset_v3, + .read_page = mxc_nand_read_page_v2_v3, + .send_cmd = send_cmd_v3, + .send_addr = send_addr_v3, + .send_page = send_page_v3, + .send_read_id = send_read_id_v3, + .get_dev_status = get_dev_status_v3, + .check_int = check_int_v3, + .irq_control = irq_control_v3, + .get_ecc_status = get_ecc_status_v3, + .ooblayout = &mxc_v2_ooblayout_ops, + .select_chip = mxc_nand_select_chip_v1_v3, + .enable_hwecc = mxc_nand_enable_hwecc_v3, + .irqpending_quirk = 0, + .needs_ip = 1, + .regs_offset = 0, + .spare0_offset = 0x1000, + .axi_offset = 0x1e00, + .spare_len = 64, + .eccbytes = 0, + .eccsize = 0, + .ppb_shift = 8, +}; + +static inline int is_imx21_nfc(struct mxc_nand_host *host) +{ + return host->devtype_data == &imx21_nand_devtype_data; +} + +static inline int is_imx27_nfc(struct mxc_nand_host *host) +{ + return host->devtype_data == &imx27_nand_devtype_data; +} + +static inline int is_imx25_nfc(struct mxc_nand_host *host) +{ + return host->devtype_data == &imx25_nand_devtype_data; +} + +static const struct of_device_id mxcnd_dt_ids[] = { + { .compatible = "fsl,imx21-nand", .data = &imx21_nand_devtype_data, }, + { .compatible = "fsl,imx27-nand", .data = &imx27_nand_devtype_data, }, + { .compatible = "fsl,imx25-nand", .data = &imx25_nand_devtype_data, }, + { .compatible = "fsl,imx51-nand", .data = &imx51_nand_devtype_data, }, + { .compatible = "fsl,imx53-nand", .data = &imx53_nand_devtype_data, }, + { /* sentinel */ } +}; +MODULE_DEVICE_TABLE(of, mxcnd_dt_ids); + +static int mxcnd_attach_chip(struct nand_chip *chip) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + struct mxc_nand_host *host = nand_get_controller_data(chip); + struct device *dev = mtd->dev.parent; + + chip->ecc.bytes = host->devtype_data->eccbytes; + host->eccsize = host->devtype_data->eccsize; + chip->ecc.size = 512; + mtd_set_ooblayout(mtd, host->devtype_data->ooblayout); + + switch (chip->ecc.engine_type) { + case NAND_ECC_ENGINE_TYPE_ON_HOST: + chip->ecc.read_page = mxc_nand_read_page; + chip->ecc.read_page_raw = mxc_nand_read_page_raw; + chip->ecc.read_oob = mxc_nand_read_oob; + chip->ecc.write_page = mxc_nand_write_page_ecc; + chip->ecc.write_page_raw = mxc_nand_write_page_raw; + chip->ecc.write_oob = mxc_nand_write_oob; + break; + + case NAND_ECC_ENGINE_TYPE_SOFT: + break; + + default: + return -EINVAL; + } + + if (chip->bbt_options & NAND_BBT_USE_FLASH) { + chip->bbt_td = &bbt_main_descr; + chip->bbt_md = &bbt_mirror_descr; + } + + /* Allocate the right size buffer now */ + devm_kfree(dev, (void *)host->data_buf); + host->data_buf = devm_kzalloc(dev, mtd->writesize + mtd->oobsize, + GFP_KERNEL); + if (!host->data_buf) + return -ENOMEM; + + /* Call preset again, with correct writesize chip time */ + host->devtype_data->preset(mtd); + + if (!chip->ecc.bytes) { + if (host->eccsize == 8) + chip->ecc.bytes = 18; + else if (host->eccsize == 4) + chip->ecc.bytes = 9; + } + + /* + * Experimentation shows that i.MX NFC can only handle up to 218 oob + * bytes. Limit used_oobsize to 218 so as to not confuse copy_spare() + * into copying invalid data to/from the spare IO buffer, as this + * might cause ECC data corruption when doing sub-page write to a + * partially written page. + */ + host->used_oobsize = min(mtd->oobsize, 218U); + + if (chip->ecc.engine_type == NAND_ECC_ENGINE_TYPE_ON_HOST) { + if (is_imx21_nfc(host) || is_imx27_nfc(host)) + chip->ecc.strength = 1; + else + chip->ecc.strength = (host->eccsize == 4) ? 4 : 8; + } + + return 0; +} + +static int mxcnd_setup_interface(struct nand_chip *chip, int chipnr, + const struct nand_interface_config *conf) +{ + struct mxc_nand_host *host = nand_get_controller_data(chip); + + return host->devtype_data->setup_interface(chip, chipnr, conf); +} + +static const struct nand_controller_ops mxcnd_controller_ops = { + .attach_chip = mxcnd_attach_chip, + .setup_interface = mxcnd_setup_interface, +}; + +static int mxcnd_probe(struct platform_device *pdev) +{ + struct nand_chip *this; + struct mtd_info *mtd; + struct mxc_nand_host *host; + int err = 0; + + /* Allocate memory for MTD device structure and private data */ + host = devm_kzalloc(&pdev->dev, sizeof(struct mxc_nand_host), + GFP_KERNEL); + if (!host) + return -ENOMEM; + + /* allocate a temporary buffer for the nand_scan_ident() */ + host->data_buf = devm_kzalloc(&pdev->dev, PAGE_SIZE, GFP_KERNEL); + if (!host->data_buf) + return -ENOMEM; + + host->dev = &pdev->dev; + /* structures must be linked */ + this = &host->nand; + mtd = nand_to_mtd(this); + mtd->dev.parent = &pdev->dev; + mtd->name = DRIVER_NAME; + + /* 50 us command delay time */ + this->legacy.chip_delay = 5; + + nand_set_controller_data(this, host); + nand_set_flash_node(this, pdev->dev.of_node); + this->legacy.dev_ready = mxc_nand_dev_ready; + this->legacy.cmdfunc = mxc_nand_command; + this->legacy.read_byte = mxc_nand_read_byte; + this->legacy.write_buf = mxc_nand_write_buf; + this->legacy.read_buf = mxc_nand_read_buf; + this->legacy.set_features = mxc_nand_set_features; + this->legacy.get_features = mxc_nand_get_features; + + host->clk = devm_clk_get(&pdev->dev, NULL); + if (IS_ERR(host->clk)) + return PTR_ERR(host->clk); + + host->devtype_data = device_get_match_data(&pdev->dev); + + if (!host->devtype_data->setup_interface) + this->options |= NAND_KEEP_TIMINGS; + + if (host->devtype_data->needs_ip) { + host->regs_ip = devm_platform_ioremap_resource(pdev, 0); + if (IS_ERR(host->regs_ip)) + return PTR_ERR(host->regs_ip); + + host->base = devm_platform_ioremap_resource(pdev, 1); + } else { + host->base = devm_platform_ioremap_resource(pdev, 0); + } + + if (IS_ERR(host->base)) + return PTR_ERR(host->base); + + host->main_area0 = host->base; + + if (host->devtype_data->regs_offset) + host->regs = host->base + host->devtype_data->regs_offset; + host->spare0 = host->base + host->devtype_data->spare0_offset; + if (host->devtype_data->axi_offset) + host->regs_axi = host->base + host->devtype_data->axi_offset; + + this->legacy.select_chip = host->devtype_data->select_chip; + + init_completion(&host->op_completion); + + host->irq = platform_get_irq(pdev, 0); + if (host->irq < 0) + return host->irq; + + /* + * Use host->devtype_data->irq_control() here instead of irq_control() + * because we must not disable_irq_nosync without having requested the + * irq. + */ + host->devtype_data->irq_control(host, 0); + + err = devm_request_irq(&pdev->dev, host->irq, mxc_nfc_irq, + 0, DRIVER_NAME, host); + if (err) + return err; + + err = clk_prepare_enable(host->clk); + if (err) + return err; + host->clk_act = 1; + + /* + * Now that we "own" the interrupt make sure the interrupt mask bit is + * cleared on i.MX21. Otherwise we can't read the interrupt status bit + * on this machine. + */ + if (host->devtype_data->irqpending_quirk) { + disable_irq_nosync(host->irq); + host->devtype_data->irq_control(host, 1); + } + + /* Scan the NAND device */ + this->legacy.dummy_controller.ops = &mxcnd_controller_ops; + err = nand_scan(this, is_imx25_nfc(host) ? 4 : 1); + if (err) + goto escan; + + /* Register the partitions */ + err = mtd_device_parse_register(mtd, part_probes, NULL, NULL, 0); + if (err) + goto cleanup_nand; + + platform_set_drvdata(pdev, host); + + return 0; + +cleanup_nand: + nand_cleanup(this); +escan: + if (host->clk_act) + clk_disable_unprepare(host->clk); + + return err; +} + +static void mxcnd_remove(struct platform_device *pdev) +{ + struct mxc_nand_host *host = platform_get_drvdata(pdev); + struct nand_chip *chip = &host->nand; + int ret; + + ret = mtd_device_unregister(nand_to_mtd(chip)); + WARN_ON(ret); + nand_cleanup(chip); + if (host->clk_act) + clk_disable_unprepare(host->clk); +} + +static struct platform_driver mxcnd_driver = { + .driver = { + .name = DRIVER_NAME, + .of_match_table = mxcnd_dt_ids, + }, + .probe = mxcnd_probe, + .remove_new = mxcnd_remove, +}; +module_platform_driver(mxcnd_driver); + +MODULE_AUTHOR("Freescale Semiconductor, Inc."); +MODULE_DESCRIPTION("MXC NAND MTD driver"); +MODULE_LICENSE("GPL"); diff --git a/drivers/mtd/nand/raw/mxic_nand.c b/drivers/mtd/nand/raw/mxic_nand.c new file mode 100644 index 0000000000..be8050e84b --- /dev/null +++ b/drivers/mtd/nand/raw/mxic_nand.c @@ -0,0 +1,587 @@ +// SPDX-License-Identifier: GPL-2.0 +/* + * Copyright (C) 2019 Macronix International Co., Ltd. + * + * Author: + * Mason Yang <masonccyang@mxic.com.tw> + */ + +#include <linux/clk.h> +#include <linux/io.h> +#include <linux/iopoll.h> +#include <linux/interrupt.h> +#include <linux/module.h> +#include <linux/mtd/mtd.h> +#include <linux/mtd/nand-ecc-sw-hamming.h> +#include <linux/mtd/rawnand.h> +#include <linux/platform_device.h> + +#include "internals.h" + +#define HC_CFG 0x0 +#define HC_CFG_IF_CFG(x) ((x) << 27) +#define HC_CFG_DUAL_SLAVE BIT(31) +#define HC_CFG_INDIVIDUAL BIT(30) +#define HC_CFG_NIO(x) (((x) / 4) << 27) +#define HC_CFG_TYPE(s, t) ((t) << (23 + ((s) * 2))) +#define HC_CFG_TYPE_SPI_NOR 0 +#define HC_CFG_TYPE_SPI_NAND 1 +#define HC_CFG_TYPE_SPI_RAM 2 +#define HC_CFG_TYPE_RAW_NAND 3 +#define HC_CFG_SLV_ACT(x) ((x) << 21) +#define HC_CFG_CLK_PH_EN BIT(20) +#define HC_CFG_CLK_POL_INV BIT(19) +#define HC_CFG_BIG_ENDIAN BIT(18) +#define HC_CFG_DATA_PASS BIT(17) +#define HC_CFG_IDLE_SIO_LVL(x) ((x) << 16) +#define HC_CFG_MAN_START_EN BIT(3) +#define HC_CFG_MAN_START BIT(2) +#define HC_CFG_MAN_CS_EN BIT(1) +#define HC_CFG_MAN_CS_ASSERT BIT(0) + +#define INT_STS 0x4 +#define INT_STS_EN 0x8 +#define INT_SIG_EN 0xc +#define INT_STS_ALL GENMASK(31, 0) +#define INT_RDY_PIN BIT(26) +#define INT_RDY_SR BIT(25) +#define INT_LNR_SUSP BIT(24) +#define INT_ECC_ERR BIT(17) +#define INT_CRC_ERR BIT(16) +#define INT_LWR_DIS BIT(12) +#define INT_LRD_DIS BIT(11) +#define INT_SDMA_INT BIT(10) +#define INT_DMA_FINISH BIT(9) +#define INT_RX_NOT_FULL BIT(3) +#define INT_RX_NOT_EMPTY BIT(2) +#define INT_TX_NOT_FULL BIT(1) +#define INT_TX_EMPTY BIT(0) + +#define HC_EN 0x10 +#define HC_EN_BIT BIT(0) + +#define TXD(x) (0x14 + ((x) * 4)) +#define RXD 0x24 + +#define SS_CTRL(s) (0x30 + ((s) * 4)) +#define LRD_CFG 0x44 +#define LWR_CFG 0x80 +#define RWW_CFG 0x70 +#define OP_READ BIT(23) +#define OP_DUMMY_CYC(x) ((x) << 17) +#define OP_ADDR_BYTES(x) ((x) << 14) +#define OP_CMD_BYTES(x) (((x) - 1) << 13) +#define OP_OCTA_CRC_EN BIT(12) +#define OP_DQS_EN BIT(11) +#define OP_ENHC_EN BIT(10) +#define OP_PREAMBLE_EN BIT(9) +#define OP_DATA_DDR BIT(8) +#define OP_DATA_BUSW(x) ((x) << 6) +#define OP_ADDR_DDR BIT(5) +#define OP_ADDR_BUSW(x) ((x) << 3) +#define OP_CMD_DDR BIT(2) +#define OP_CMD_BUSW(x) (x) +#define OP_BUSW_1 0 +#define OP_BUSW_2 1 +#define OP_BUSW_4 2 +#define OP_BUSW_8 3 + +#define OCTA_CRC 0x38 +#define OCTA_CRC_IN_EN(s) BIT(3 + ((s) * 16)) +#define OCTA_CRC_CHUNK(s, x) ((fls((x) / 32)) << (1 + ((s) * 16))) +#define OCTA_CRC_OUT_EN(s) BIT(0 + ((s) * 16)) + +#define ONFI_DIN_CNT(s) (0x3c + (s)) + +#define LRD_CTRL 0x48 +#define RWW_CTRL 0x74 +#define LWR_CTRL 0x84 +#define LMODE_EN BIT(31) +#define LMODE_SLV_ACT(x) ((x) << 21) +#define LMODE_CMD1(x) ((x) << 8) +#define LMODE_CMD0(x) (x) + +#define LRD_ADDR 0x4c +#define LWR_ADDR 0x88 +#define LRD_RANGE 0x50 +#define LWR_RANGE 0x8c + +#define AXI_SLV_ADDR 0x54 + +#define DMAC_RD_CFG 0x58 +#define DMAC_WR_CFG 0x94 +#define DMAC_CFG_PERIPH_EN BIT(31) +#define DMAC_CFG_ALLFLUSH_EN BIT(30) +#define DMAC_CFG_LASTFLUSH_EN BIT(29) +#define DMAC_CFG_QE(x) (((x) + 1) << 16) +#define DMAC_CFG_BURST_LEN(x) (((x) + 1) << 12) +#define DMAC_CFG_BURST_SZ(x) ((x) << 8) +#define DMAC_CFG_DIR_READ BIT(1) +#define DMAC_CFG_START BIT(0) + +#define DMAC_RD_CNT 0x5c +#define DMAC_WR_CNT 0x98 + +#define SDMA_ADDR 0x60 + +#define DMAM_CFG 0x64 +#define DMAM_CFG_START BIT(31) +#define DMAM_CFG_CONT BIT(30) +#define DMAM_CFG_SDMA_GAP(x) (fls((x) / 8192) << 2) +#define DMAM_CFG_DIR_READ BIT(1) +#define DMAM_CFG_EN BIT(0) + +#define DMAM_CNT 0x68 + +#define LNR_TIMER_TH 0x6c + +#define RDM_CFG0 0x78 +#define RDM_CFG0_POLY(x) (x) + +#define RDM_CFG1 0x7c +#define RDM_CFG1_RDM_EN BIT(31) +#define RDM_CFG1_SEED(x) (x) + +#define LWR_SUSP_CTRL 0x90 +#define LWR_SUSP_CTRL_EN BIT(31) + +#define DMAS_CTRL 0x9c +#define DMAS_CTRL_EN BIT(31) +#define DMAS_CTRL_DIR_READ BIT(30) + +#define DATA_STROB 0xa0 +#define DATA_STROB_EDO_EN BIT(2) +#define DATA_STROB_INV_POL BIT(1) +#define DATA_STROB_DELAY_2CYC BIT(0) + +#define IDLY_CODE(x) (0xa4 + ((x) * 4)) +#define IDLY_CODE_VAL(x, v) ((v) << (((x) % 4) * 8)) + +#define GPIO 0xc4 +#define GPIO_PT(x) BIT(3 + ((x) * 16)) +#define GPIO_RESET(x) BIT(2 + ((x) * 16)) +#define GPIO_HOLDB(x) BIT(1 + ((x) * 16)) +#define GPIO_WPB(x) BIT((x) * 16) + +#define HC_VER 0xd0 + +#define HW_TEST(x) (0xe0 + ((x) * 4)) + +#define MXIC_NFC_MAX_CLK_HZ 50000000 +#define IRQ_TIMEOUT 1000 + +struct mxic_nand_ctlr { + struct clk *ps_clk; + struct clk *send_clk; + struct clk *send_dly_clk; + struct completion complete; + void __iomem *regs; + struct nand_controller controller; + struct device *dev; + struct nand_chip chip; +}; + +static int mxic_nfc_clk_enable(struct mxic_nand_ctlr *nfc) +{ + int ret; + + ret = clk_prepare_enable(nfc->ps_clk); + if (ret) + return ret; + + ret = clk_prepare_enable(nfc->send_clk); + if (ret) + goto err_ps_clk; + + ret = clk_prepare_enable(nfc->send_dly_clk); + if (ret) + goto err_send_dly_clk; + + return ret; + +err_send_dly_clk: + clk_disable_unprepare(nfc->send_clk); +err_ps_clk: + clk_disable_unprepare(nfc->ps_clk); + + return ret; +} + +static void mxic_nfc_clk_disable(struct mxic_nand_ctlr *nfc) +{ + clk_disable_unprepare(nfc->send_clk); + clk_disable_unprepare(nfc->send_dly_clk); + clk_disable_unprepare(nfc->ps_clk); +} + +static void mxic_nfc_set_input_delay(struct mxic_nand_ctlr *nfc, u8 idly_code) +{ + writel(IDLY_CODE_VAL(0, idly_code) | + IDLY_CODE_VAL(1, idly_code) | + IDLY_CODE_VAL(2, idly_code) | + IDLY_CODE_VAL(3, idly_code), + nfc->regs + IDLY_CODE(0)); + writel(IDLY_CODE_VAL(4, idly_code) | + IDLY_CODE_VAL(5, idly_code) | + IDLY_CODE_VAL(6, idly_code) | + IDLY_CODE_VAL(7, idly_code), + nfc->regs + IDLY_CODE(1)); +} + +static int mxic_nfc_clk_setup(struct mxic_nand_ctlr *nfc, unsigned long freq) +{ + int ret; + + ret = clk_set_rate(nfc->send_clk, freq); + if (ret) + return ret; + + ret = clk_set_rate(nfc->send_dly_clk, freq); + if (ret) + return ret; + + /* + * A constant delay range from 0x0 ~ 0x1F for input delay, + * the unit is 78 ps, the max input delay is 2.418 ns. + */ + mxic_nfc_set_input_delay(nfc, 0xf); + + /* + * Phase degree = 360 * freq * output-delay + * where output-delay is a constant value 1 ns in FPGA. + * + * Get Phase degree = 360 * freq * 1 ns + * = 360 * freq * 1 sec / 1000000000 + * = 9 * freq / 25000000 + */ + ret = clk_set_phase(nfc->send_dly_clk, 9 * freq / 25000000); + if (ret) + return ret; + + return 0; +} + +static int mxic_nfc_set_freq(struct mxic_nand_ctlr *nfc, unsigned long freq) +{ + int ret; + + if (freq > MXIC_NFC_MAX_CLK_HZ) + freq = MXIC_NFC_MAX_CLK_HZ; + + mxic_nfc_clk_disable(nfc); + ret = mxic_nfc_clk_setup(nfc, freq); + if (ret) + return ret; + + ret = mxic_nfc_clk_enable(nfc); + if (ret) + return ret; + + return 0; +} + +static irqreturn_t mxic_nfc_isr(int irq, void *dev_id) +{ + struct mxic_nand_ctlr *nfc = dev_id; + u32 sts; + + sts = readl(nfc->regs + INT_STS); + if (sts & INT_RDY_PIN) + complete(&nfc->complete); + else + return IRQ_NONE; + + return IRQ_HANDLED; +} + +static void mxic_nfc_hw_init(struct mxic_nand_ctlr *nfc) +{ + writel(HC_CFG_NIO(8) | HC_CFG_TYPE(1, HC_CFG_TYPE_RAW_NAND) | + HC_CFG_SLV_ACT(0) | HC_CFG_MAN_CS_EN | + HC_CFG_IDLE_SIO_LVL(1), nfc->regs + HC_CFG); + writel(INT_STS_ALL, nfc->regs + INT_STS_EN); + writel(INT_RDY_PIN, nfc->regs + INT_SIG_EN); + writel(0x0, nfc->regs + ONFI_DIN_CNT(0)); + writel(0, nfc->regs + LRD_CFG); + writel(0, nfc->regs + LRD_CTRL); + writel(0x0, nfc->regs + HC_EN); +} + +static void mxic_nfc_cs_enable(struct mxic_nand_ctlr *nfc) +{ + writel(readl(nfc->regs + HC_CFG) | HC_CFG_MAN_CS_EN, + nfc->regs + HC_CFG); + writel(HC_CFG_MAN_CS_ASSERT | readl(nfc->regs + HC_CFG), + nfc->regs + HC_CFG); +} + +static void mxic_nfc_cs_disable(struct mxic_nand_ctlr *nfc) +{ + writel(~HC_CFG_MAN_CS_ASSERT & readl(nfc->regs + HC_CFG), + nfc->regs + HC_CFG); +} + +static int mxic_nfc_wait_ready(struct nand_chip *chip) +{ + struct mxic_nand_ctlr *nfc = nand_get_controller_data(chip); + int ret; + + ret = wait_for_completion_timeout(&nfc->complete, + msecs_to_jiffies(IRQ_TIMEOUT)); + if (!ret) { + dev_err(nfc->dev, "nand device timeout\n"); + return -ETIMEDOUT; + } + + return 0; +} + +static int mxic_nfc_data_xfer(struct mxic_nand_ctlr *nfc, const void *txbuf, + void *rxbuf, unsigned int len) +{ + unsigned int pos = 0; + + while (pos < len) { + unsigned int nbytes = len - pos; + u32 data = 0xffffffff; + u32 sts; + int ret; + + if (nbytes > 4) + nbytes = 4; + + if (txbuf) + memcpy(&data, txbuf + pos, nbytes); + + ret = readl_poll_timeout(nfc->regs + INT_STS, sts, + sts & INT_TX_EMPTY, 0, USEC_PER_SEC); + if (ret) + return ret; + + writel(data, nfc->regs + TXD(nbytes % 4)); + + ret = readl_poll_timeout(nfc->regs + INT_STS, sts, + sts & INT_TX_EMPTY, 0, USEC_PER_SEC); + if (ret) + return ret; + + ret = readl_poll_timeout(nfc->regs + INT_STS, sts, + sts & INT_RX_NOT_EMPTY, 0, + USEC_PER_SEC); + if (ret) + return ret; + + data = readl(nfc->regs + RXD); + if (rxbuf) { + data >>= (8 * (4 - nbytes)); + memcpy(rxbuf + pos, &data, nbytes); + } + if (readl(nfc->regs + INT_STS) & INT_RX_NOT_EMPTY) + dev_warn(nfc->dev, "RX FIFO not empty\n"); + + pos += nbytes; + } + + return 0; +} + +static int mxic_nfc_exec_op(struct nand_chip *chip, + const struct nand_operation *op, bool check_only) +{ + struct mxic_nand_ctlr *nfc = nand_get_controller_data(chip); + const struct nand_op_instr *instr = NULL; + int ret = 0; + unsigned int op_id; + + if (check_only) + return 0; + + mxic_nfc_cs_enable(nfc); + init_completion(&nfc->complete); + for (op_id = 0; op_id < op->ninstrs; op_id++) { + instr = &op->instrs[op_id]; + + switch (instr->type) { + case NAND_OP_CMD_INSTR: + writel(0, nfc->regs + HC_EN); + writel(HC_EN_BIT, nfc->regs + HC_EN); + writel(OP_CMD_BUSW(OP_BUSW_8) | OP_DUMMY_CYC(0x3F) | + OP_CMD_BYTES(0), nfc->regs + SS_CTRL(0)); + + ret = mxic_nfc_data_xfer(nfc, + &instr->ctx.cmd.opcode, + NULL, 1); + break; + + case NAND_OP_ADDR_INSTR: + writel(OP_ADDR_BUSW(OP_BUSW_8) | OP_DUMMY_CYC(0x3F) | + OP_ADDR_BYTES(instr->ctx.addr.naddrs), + nfc->regs + SS_CTRL(0)); + ret = mxic_nfc_data_xfer(nfc, + instr->ctx.addr.addrs, NULL, + instr->ctx.addr.naddrs); + break; + + case NAND_OP_DATA_IN_INSTR: + writel(0x0, nfc->regs + ONFI_DIN_CNT(0)); + writel(OP_DATA_BUSW(OP_BUSW_8) | OP_DUMMY_CYC(0x3F) | + OP_READ, nfc->regs + SS_CTRL(0)); + ret = mxic_nfc_data_xfer(nfc, NULL, + instr->ctx.data.buf.in, + instr->ctx.data.len); + break; + + case NAND_OP_DATA_OUT_INSTR: + writel(instr->ctx.data.len, + nfc->regs + ONFI_DIN_CNT(0)); + writel(OP_DATA_BUSW(OP_BUSW_8) | OP_DUMMY_CYC(0x3F), + nfc->regs + SS_CTRL(0)); + ret = mxic_nfc_data_xfer(nfc, + instr->ctx.data.buf.out, NULL, + instr->ctx.data.len); + break; + + case NAND_OP_WAITRDY_INSTR: + ret = mxic_nfc_wait_ready(chip); + break; + } + } + mxic_nfc_cs_disable(nfc); + + return ret; +} + +static int mxic_nfc_setup_interface(struct nand_chip *chip, int chipnr, + const struct nand_interface_config *conf) +{ + struct mxic_nand_ctlr *nfc = nand_get_controller_data(chip); + const struct nand_sdr_timings *sdr; + unsigned long freq; + int ret; + + sdr = nand_get_sdr_timings(conf); + if (IS_ERR(sdr)) + return PTR_ERR(sdr); + + if (chipnr == NAND_DATA_IFACE_CHECK_ONLY) + return 0; + + freq = NSEC_PER_SEC / (sdr->tRC_min / 1000); + + ret = mxic_nfc_set_freq(nfc, freq); + if (ret) + dev_err(nfc->dev, "set freq:%ld failed\n", freq); + + if (sdr->tRC_min < 30000) + writel(DATA_STROB_EDO_EN, nfc->regs + DATA_STROB); + + return 0; +} + +static const struct nand_controller_ops mxic_nand_controller_ops = { + .exec_op = mxic_nfc_exec_op, + .setup_interface = mxic_nfc_setup_interface, +}; + +static int mxic_nfc_probe(struct platform_device *pdev) +{ + struct device_node *nand_np, *np = pdev->dev.of_node; + struct mtd_info *mtd; + struct mxic_nand_ctlr *nfc; + struct nand_chip *nand_chip; + int err; + int irq; + + nfc = devm_kzalloc(&pdev->dev, sizeof(struct mxic_nand_ctlr), + GFP_KERNEL); + if (!nfc) + return -ENOMEM; + + nfc->ps_clk = devm_clk_get(&pdev->dev, "ps"); + if (IS_ERR(nfc->ps_clk)) + return PTR_ERR(nfc->ps_clk); + + nfc->send_clk = devm_clk_get(&pdev->dev, "send"); + if (IS_ERR(nfc->send_clk)) + return PTR_ERR(nfc->send_clk); + + nfc->send_dly_clk = devm_clk_get(&pdev->dev, "send_dly"); + if (IS_ERR(nfc->send_dly_clk)) + return PTR_ERR(nfc->send_dly_clk); + + nfc->regs = devm_platform_ioremap_resource(pdev, 0); + if (IS_ERR(nfc->regs)) + return PTR_ERR(nfc->regs); + + nand_chip = &nfc->chip; + mtd = nand_to_mtd(nand_chip); + mtd->dev.parent = &pdev->dev; + + for_each_child_of_node(np, nand_np) + nand_set_flash_node(nand_chip, nand_np); + + nand_chip->priv = nfc; + nfc->dev = &pdev->dev; + nfc->controller.ops = &mxic_nand_controller_ops; + nand_controller_init(&nfc->controller); + nand_chip->controller = &nfc->controller; + + irq = platform_get_irq(pdev, 0); + if (irq < 0) + return irq; + + mxic_nfc_hw_init(nfc); + + err = devm_request_irq(&pdev->dev, irq, mxic_nfc_isr, + 0, "mxic-nfc", nfc); + if (err) + goto fail; + + err = nand_scan(nand_chip, 1); + if (err) + goto fail; + + err = mtd_device_register(mtd, NULL, 0); + if (err) + goto fail; + + platform_set_drvdata(pdev, nfc); + return 0; + +fail: + mxic_nfc_clk_disable(nfc); + return err; +} + +static void mxic_nfc_remove(struct platform_device *pdev) +{ + struct mxic_nand_ctlr *nfc = platform_get_drvdata(pdev); + struct nand_chip *chip = &nfc->chip; + int ret; + + ret = mtd_device_unregister(nand_to_mtd(chip)); + WARN_ON(ret); + nand_cleanup(chip); + + mxic_nfc_clk_disable(nfc); +} + +static const struct of_device_id mxic_nfc_of_ids[] = { + { .compatible = "mxic,multi-itfc-v009-nand-controller", }, + {}, +}; +MODULE_DEVICE_TABLE(of, mxic_nfc_of_ids); + +static struct platform_driver mxic_nfc_driver = { + .probe = mxic_nfc_probe, + .remove_new = mxic_nfc_remove, + .driver = { + .name = "mxic-nfc", + .of_match_table = mxic_nfc_of_ids, + }, +}; +module_platform_driver(mxic_nfc_driver); + +MODULE_AUTHOR("Mason Yang <masonccyang@mxic.com.tw>"); +MODULE_DESCRIPTION("Macronix raw NAND controller driver"); +MODULE_LICENSE("GPL v2"); diff --git a/drivers/mtd/nand/raw/nand_amd.c b/drivers/mtd/nand/raw/nand_amd.c new file mode 100644 index 0000000000..c3d4dae3cd --- /dev/null +++ b/drivers/mtd/nand/raw/nand_amd.c @@ -0,0 +1,53 @@ +// SPDX-License-Identifier: GPL-2.0-or-later +/* + * Copyright (C) 2017 Free Electrons + * Copyright (C) 2017 NextThing Co + * + * Author: Boris Brezillon <boris.brezillon@free-electrons.com> + */ + +#include "internals.h" + +static void amd_nand_decode_id(struct nand_chip *chip) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + struct nand_memory_organization *memorg; + + memorg = nanddev_get_memorg(&chip->base); + + nand_decode_ext_id(chip); + + /* + * Check for Spansion/AMD ID + repeating 5th, 6th byte since + * some Spansion chips have erasesize that conflicts with size + * listed in nand_ids table. + * Data sheet (5 byte ID): Spansion S30ML-P ORNAND (p.39) + */ + if (chip->id.data[4] != 0x00 && chip->id.data[5] == 0x00 && + chip->id.data[6] == 0x00 && chip->id.data[7] == 0x00 && + memorg->pagesize == 512) { + memorg->pages_per_eraseblock = 256; + memorg->pages_per_eraseblock <<= ((chip->id.data[3] & 0x03) << 1); + mtd->erasesize = memorg->pages_per_eraseblock * + memorg->pagesize; + } +} + +static int amd_nand_init(struct nand_chip *chip) +{ + if (nand_is_slc(chip)) + /* + * According to the datasheet of some Cypress SLC NANDs, + * the bad block markers can be in the first, second or last + * page of a block. So let's check all three locations. + */ + chip->options |= NAND_BBM_FIRSTPAGE | NAND_BBM_SECONDPAGE | + NAND_BBM_LASTPAGE; + + return 0; +} + +const struct nand_manufacturer_ops amd_nand_manuf_ops = { + .detect = amd_nand_decode_id, + .init = amd_nand_init, +}; diff --git a/drivers/mtd/nand/raw/nand_base.c b/drivers/mtd/nand/raw/nand_base.c new file mode 100644 index 0000000000..76167b8ca9 --- /dev/null +++ b/drivers/mtd/nand/raw/nand_base.c @@ -0,0 +1,6677 @@ +// SPDX-License-Identifier: GPL-2.0-only +/* + * Overview: + * This is the generic MTD driver for NAND flash devices. It should be + * capable of working with almost all NAND chips currently available. + * + * Additional technical information is available on + * http://www.linux-mtd.infradead.org/doc/nand.html + * + * Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com) + * 2002-2006 Thomas Gleixner (tglx@linutronix.de) + * + * Credits: + * David Woodhouse for adding multichip support + * + * Aleph One Ltd. and Toby Churchill Ltd. for supporting the + * rework for 2K page size chips + * + * TODO: + * Enable cached programming for 2k page size chips + * Check, if mtd->ecctype should be set to MTD_ECC_HW + * if we have HW ECC support. + * BBT table is not serialized, has to be fixed + */ + +#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt + +#include <linux/module.h> +#include <linux/delay.h> +#include <linux/errno.h> +#include <linux/err.h> +#include <linux/sched.h> +#include <linux/slab.h> +#include <linux/mm.h> +#include <linux/types.h> +#include <linux/mtd/mtd.h> +#include <linux/mtd/nand.h> +#include <linux/mtd/nand-ecc-sw-hamming.h> +#include <linux/mtd/nand-ecc-sw-bch.h> +#include <linux/interrupt.h> +#include <linux/bitops.h> +#include <linux/io.h> +#include <linux/mtd/partitions.h> +#include <linux/of.h> +#include <linux/of_gpio.h> +#include <linux/gpio/consumer.h> + +#include "internals.h" + +static int nand_pairing_dist3_get_info(struct mtd_info *mtd, int page, + struct mtd_pairing_info *info) +{ + int lastpage = (mtd->erasesize / mtd->writesize) - 1; + int dist = 3; + + if (page == lastpage) + dist = 2; + + if (!page || (page & 1)) { + info->group = 0; + info->pair = (page + 1) / 2; + } else { + info->group = 1; + info->pair = (page + 1 - dist) / 2; + } + + return 0; +} + +static int nand_pairing_dist3_get_wunit(struct mtd_info *mtd, + const struct mtd_pairing_info *info) +{ + int lastpair = ((mtd->erasesize / mtd->writesize) - 1) / 2; + int page = info->pair * 2; + int dist = 3; + + if (!info->group && !info->pair) + return 0; + + if (info->pair == lastpair && info->group) + dist = 2; + + if (!info->group) + page--; + else if (info->pair) + page += dist - 1; + + if (page >= mtd->erasesize / mtd->writesize) + return -EINVAL; + + return page; +} + +const struct mtd_pairing_scheme dist3_pairing_scheme = { + .ngroups = 2, + .get_info = nand_pairing_dist3_get_info, + .get_wunit = nand_pairing_dist3_get_wunit, +}; + +static int check_offs_len(struct nand_chip *chip, loff_t ofs, uint64_t len) +{ + int ret = 0; + + /* Start address must align on block boundary */ + if (ofs & ((1ULL << chip->phys_erase_shift) - 1)) { + pr_debug("%s: unaligned address\n", __func__); + ret = -EINVAL; + } + + /* Length must align on block boundary */ + if (len & ((1ULL << chip->phys_erase_shift) - 1)) { + pr_debug("%s: length not block aligned\n", __func__); + ret = -EINVAL; + } + + return ret; +} + +/** + * nand_extract_bits - Copy unaligned bits from one buffer to another one + * @dst: destination buffer + * @dst_off: bit offset at which the writing starts + * @src: source buffer + * @src_off: bit offset at which the reading starts + * @nbits: number of bits to copy from @src to @dst + * + * Copy bits from one memory region to another (overlap authorized). + */ +void nand_extract_bits(u8 *dst, unsigned int dst_off, const u8 *src, + unsigned int src_off, unsigned int nbits) +{ + unsigned int tmp, n; + + dst += dst_off / 8; + dst_off %= 8; + src += src_off / 8; + src_off %= 8; + + while (nbits) { + n = min3(8 - dst_off, 8 - src_off, nbits); + + tmp = (*src >> src_off) & GENMASK(n - 1, 0); + *dst &= ~GENMASK(n - 1 + dst_off, dst_off); + *dst |= tmp << dst_off; + + dst_off += n; + if (dst_off >= 8) { + dst++; + dst_off -= 8; + } + + src_off += n; + if (src_off >= 8) { + src++; + src_off -= 8; + } + + nbits -= n; + } +} +EXPORT_SYMBOL_GPL(nand_extract_bits); + +/** + * nand_select_target() - Select a NAND target (A.K.A. die) + * @chip: NAND chip object + * @cs: the CS line to select. Note that this CS id is always from the chip + * PoV, not the controller one + * + * Select a NAND target so that further operations executed on @chip go to the + * selected NAND target. + */ +void nand_select_target(struct nand_chip *chip, unsigned int cs) +{ + /* + * cs should always lie between 0 and nanddev_ntargets(), when that's + * not the case it's a bug and the caller should be fixed. + */ + if (WARN_ON(cs > nanddev_ntargets(&chip->base))) + return; + + chip->cur_cs = cs; + + if (chip->legacy.select_chip) + chip->legacy.select_chip(chip, cs); +} +EXPORT_SYMBOL_GPL(nand_select_target); + +/** + * nand_deselect_target() - Deselect the currently selected target + * @chip: NAND chip object + * + * Deselect the currently selected NAND target. The result of operations + * executed on @chip after the target has been deselected is undefined. + */ +void nand_deselect_target(struct nand_chip *chip) +{ + if (chip->legacy.select_chip) + chip->legacy.select_chip(chip, -1); + + chip->cur_cs = -1; +} +EXPORT_SYMBOL_GPL(nand_deselect_target); + +/** + * nand_release_device - [GENERIC] release chip + * @chip: NAND chip object + * + * Release chip lock and wake up anyone waiting on the device. + */ +static void nand_release_device(struct nand_chip *chip) +{ + /* Release the controller and the chip */ + mutex_unlock(&chip->controller->lock); + mutex_unlock(&chip->lock); +} + +/** + * nand_bbm_get_next_page - Get the next page for bad block markers + * @chip: NAND chip object + * @page: First page to start checking for bad block marker usage + * + * Returns an integer that corresponds to the page offset within a block, for + * a page that is used to store bad block markers. If no more pages are + * available, -EINVAL is returned. + */ +int nand_bbm_get_next_page(struct nand_chip *chip, int page) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + int last_page = ((mtd->erasesize - mtd->writesize) >> + chip->page_shift) & chip->pagemask; + unsigned int bbm_flags = NAND_BBM_FIRSTPAGE | NAND_BBM_SECONDPAGE + | NAND_BBM_LASTPAGE; + + if (page == 0 && !(chip->options & bbm_flags)) + return 0; + if (page == 0 && chip->options & NAND_BBM_FIRSTPAGE) + return 0; + if (page <= 1 && chip->options & NAND_BBM_SECONDPAGE) + return 1; + if (page <= last_page && chip->options & NAND_BBM_LASTPAGE) + return last_page; + + return -EINVAL; +} + +/** + * nand_block_bad - [DEFAULT] Read bad block marker from the chip + * @chip: NAND chip object + * @ofs: offset from device start + * + * Check, if the block is bad. + */ +static int nand_block_bad(struct nand_chip *chip, loff_t ofs) +{ + int first_page, page_offset; + int res; + u8 bad; + + first_page = (int)(ofs >> chip->page_shift) & chip->pagemask; + page_offset = nand_bbm_get_next_page(chip, 0); + + while (page_offset >= 0) { + res = chip->ecc.read_oob(chip, first_page + page_offset); + if (res < 0) + return res; + + bad = chip->oob_poi[chip->badblockpos]; + + if (likely(chip->badblockbits == 8)) + res = bad != 0xFF; + else + res = hweight8(bad) < chip->badblockbits; + if (res) + return res; + + page_offset = nand_bbm_get_next_page(chip, page_offset + 1); + } + + return 0; +} + +/** + * nand_region_is_secured() - Check if the region is secured + * @chip: NAND chip object + * @offset: Offset of the region to check + * @size: Size of the region to check + * + * Checks if the region is secured by comparing the offset and size with the + * list of secure regions obtained from DT. Returns true if the region is + * secured else false. + */ +static bool nand_region_is_secured(struct nand_chip *chip, loff_t offset, u64 size) +{ + int i; + + /* Skip touching the secure regions if present */ + for (i = 0; i < chip->nr_secure_regions; i++) { + const struct nand_secure_region *region = &chip->secure_regions[i]; + + if (offset + size <= region->offset || + offset >= region->offset + region->size) + continue; + + pr_debug("%s: Region 0x%llx - 0x%llx is secured!", + __func__, offset, offset + size); + + return true; + } + + return false; +} + +static int nand_isbad_bbm(struct nand_chip *chip, loff_t ofs) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + + if (chip->options & NAND_NO_BBM_QUIRK) + return 0; + + /* Check if the region is secured */ + if (nand_region_is_secured(chip, ofs, mtd->erasesize)) + return -EIO; + + if (mtd_check_expert_analysis_mode()) + return 0; + + if (chip->legacy.block_bad) + return chip->legacy.block_bad(chip, ofs); + + return nand_block_bad(chip, ofs); +} + +/** + * nand_get_device - [GENERIC] Get chip for selected access + * @chip: NAND chip structure + * + * Lock the device and its controller for exclusive access + */ +static void nand_get_device(struct nand_chip *chip) +{ + /* Wait until the device is resumed. */ + while (1) { + mutex_lock(&chip->lock); + if (!chip->suspended) { + mutex_lock(&chip->controller->lock); + return; + } + mutex_unlock(&chip->lock); + + wait_event(chip->resume_wq, !chip->suspended); + } +} + +/** + * nand_check_wp - [GENERIC] check if the chip is write protected + * @chip: NAND chip object + * + * Check, if the device is write protected. The function expects, that the + * device is already selected. + */ +static int nand_check_wp(struct nand_chip *chip) +{ + u8 status; + int ret; + + /* Broken xD cards report WP despite being writable */ + if (chip->options & NAND_BROKEN_XD) + return 0; + + /* Check the WP bit */ + ret = nand_status_op(chip, &status); + if (ret) + return ret; + + return status & NAND_STATUS_WP ? 0 : 1; +} + +/** + * nand_fill_oob - [INTERN] Transfer client buffer to oob + * @chip: NAND chip object + * @oob: oob data buffer + * @len: oob data write length + * @ops: oob ops structure + */ +static uint8_t *nand_fill_oob(struct nand_chip *chip, uint8_t *oob, size_t len, + struct mtd_oob_ops *ops) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + int ret; + + /* + * Initialise to all 0xFF, to avoid the possibility of left over OOB + * data from a previous OOB read. + */ + memset(chip->oob_poi, 0xff, mtd->oobsize); + + switch (ops->mode) { + + case MTD_OPS_PLACE_OOB: + case MTD_OPS_RAW: + memcpy(chip->oob_poi + ops->ooboffs, oob, len); + return oob + len; + + case MTD_OPS_AUTO_OOB: + ret = mtd_ooblayout_set_databytes(mtd, oob, chip->oob_poi, + ops->ooboffs, len); + BUG_ON(ret); + return oob + len; + + default: + BUG(); + } + return NULL; +} + +/** + * nand_do_write_oob - [MTD Interface] NAND write out-of-band + * @chip: NAND chip object + * @to: offset to write to + * @ops: oob operation description structure + * + * NAND write out-of-band. + */ +static int nand_do_write_oob(struct nand_chip *chip, loff_t to, + struct mtd_oob_ops *ops) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + int chipnr, page, status, len, ret; + + pr_debug("%s: to = 0x%08x, len = %i\n", + __func__, (unsigned int)to, (int)ops->ooblen); + + len = mtd_oobavail(mtd, ops); + + /* Do not allow write past end of page */ + if ((ops->ooboffs + ops->ooblen) > len) { + pr_debug("%s: attempt to write past end of page\n", + __func__); + return -EINVAL; + } + + /* Check if the region is secured */ + if (nand_region_is_secured(chip, to, ops->ooblen)) + return -EIO; + + chipnr = (int)(to >> chip->chip_shift); + + /* + * Reset the chip. Some chips (like the Toshiba TC5832DC found in one + * of my DiskOnChip 2000 test units) will clear the whole data page too + * if we don't do this. I have no clue why, but I seem to have 'fixed' + * it in the doc2000 driver in August 1999. dwmw2. + */ + ret = nand_reset(chip, chipnr); + if (ret) + return ret; + + nand_select_target(chip, chipnr); + + /* Shift to get page */ + page = (int)(to >> chip->page_shift); + + /* Check, if it is write protected */ + if (nand_check_wp(chip)) { + nand_deselect_target(chip); + return -EROFS; + } + + /* Invalidate the page cache, if we write to the cached page */ + if (page == chip->pagecache.page) + chip->pagecache.page = -1; + + nand_fill_oob(chip, ops->oobbuf, ops->ooblen, ops); + + if (ops->mode == MTD_OPS_RAW) + status = chip->ecc.write_oob_raw(chip, page & chip->pagemask); + else + status = chip->ecc.write_oob(chip, page & chip->pagemask); + + nand_deselect_target(chip); + + if (status) + return status; + + ops->oobretlen = ops->ooblen; + + return 0; +} + +/** + * nand_default_block_markbad - [DEFAULT] mark a block bad via bad block marker + * @chip: NAND chip object + * @ofs: offset from device start + * + * This is the default implementation, which can be overridden by a hardware + * specific driver. It provides the details for writing a bad block marker to a + * block. + */ +static int nand_default_block_markbad(struct nand_chip *chip, loff_t ofs) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + struct mtd_oob_ops ops; + uint8_t buf[2] = { 0, 0 }; + int ret = 0, res, page_offset; + + memset(&ops, 0, sizeof(ops)); + ops.oobbuf = buf; + ops.ooboffs = chip->badblockpos; + if (chip->options & NAND_BUSWIDTH_16) { + ops.ooboffs &= ~0x01; + ops.len = ops.ooblen = 2; + } else { + ops.len = ops.ooblen = 1; + } + ops.mode = MTD_OPS_PLACE_OOB; + + page_offset = nand_bbm_get_next_page(chip, 0); + + while (page_offset >= 0) { + res = nand_do_write_oob(chip, + ofs + (page_offset * mtd->writesize), + &ops); + + if (!ret) + ret = res; + + page_offset = nand_bbm_get_next_page(chip, page_offset + 1); + } + + return ret; +} + +/** + * nand_markbad_bbm - mark a block by updating the BBM + * @chip: NAND chip object + * @ofs: offset of the block to mark bad + */ +int nand_markbad_bbm(struct nand_chip *chip, loff_t ofs) +{ + if (chip->legacy.block_markbad) + return chip->legacy.block_markbad(chip, ofs); + + return nand_default_block_markbad(chip, ofs); +} + +/** + * nand_block_markbad_lowlevel - mark a block bad + * @chip: NAND chip object + * @ofs: offset from device start + * + * This function performs the generic NAND bad block marking steps (i.e., bad + * block table(s) and/or marker(s)). We only allow the hardware driver to + * specify how to write bad block markers to OOB (chip->legacy.block_markbad). + * + * We try operations in the following order: + * + * (1) erase the affected block, to allow OOB marker to be written cleanly + * (2) write bad block marker to OOB area of affected block (unless flag + * NAND_BBT_NO_OOB_BBM is present) + * (3) update the BBT + * + * Note that we retain the first error encountered in (2) or (3), finish the + * procedures, and dump the error in the end. +*/ +static int nand_block_markbad_lowlevel(struct nand_chip *chip, loff_t ofs) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + int res, ret = 0; + + if (!(chip->bbt_options & NAND_BBT_NO_OOB_BBM)) { + struct erase_info einfo; + + /* Attempt erase before marking OOB */ + memset(&einfo, 0, sizeof(einfo)); + einfo.addr = ofs; + einfo.len = 1ULL << chip->phys_erase_shift; + nand_erase_nand(chip, &einfo, 0); + + /* Write bad block marker to OOB */ + nand_get_device(chip); + + ret = nand_markbad_bbm(chip, ofs); + nand_release_device(chip); + } + + /* Mark block bad in BBT */ + if (chip->bbt) { + res = nand_markbad_bbt(chip, ofs); + if (!ret) + ret = res; + } + + if (!ret) + mtd->ecc_stats.badblocks++; + + return ret; +} + +/** + * nand_block_isreserved - [GENERIC] Check if a block is marked reserved. + * @mtd: MTD device structure + * @ofs: offset from device start + * + * Check if the block is marked as reserved. + */ +static int nand_block_isreserved(struct mtd_info *mtd, loff_t ofs) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + + if (!chip->bbt) + return 0; + /* Return info from the table */ + return nand_isreserved_bbt(chip, ofs); +} + +/** + * nand_block_checkbad - [GENERIC] Check if a block is marked bad + * @chip: NAND chip object + * @ofs: offset from device start + * @allowbbt: 1, if its allowed to access the bbt area + * + * Check, if the block is bad. Either by reading the bad block table or + * calling of the scan function. + */ +static int nand_block_checkbad(struct nand_chip *chip, loff_t ofs, int allowbbt) +{ + /* Return info from the table */ + if (chip->bbt) + return nand_isbad_bbt(chip, ofs, allowbbt); + + return nand_isbad_bbm(chip, ofs); +} + +/** + * nand_soft_waitrdy - Poll STATUS reg until RDY bit is set to 1 + * @chip: NAND chip structure + * @timeout_ms: Timeout in ms + * + * Poll the STATUS register using ->exec_op() until the RDY bit becomes 1. + * If that does not happen whitin the specified timeout, -ETIMEDOUT is + * returned. + * + * This helper is intended to be used when the controller does not have access + * to the NAND R/B pin. + * + * Be aware that calling this helper from an ->exec_op() implementation means + * ->exec_op() must be re-entrant. + * + * Return 0 if the NAND chip is ready, a negative error otherwise. + */ +int nand_soft_waitrdy(struct nand_chip *chip, unsigned long timeout_ms) +{ + const struct nand_interface_config *conf; + u8 status = 0; + int ret; + + if (!nand_has_exec_op(chip)) + return -ENOTSUPP; + + /* Wait tWB before polling the STATUS reg. */ + conf = nand_get_interface_config(chip); + ndelay(NAND_COMMON_TIMING_NS(conf, tWB_max)); + + ret = nand_status_op(chip, NULL); + if (ret) + return ret; + + /* + * +1 below is necessary because if we are now in the last fraction + * of jiffy and msecs_to_jiffies is 1 then we will wait only that + * small jiffy fraction - possibly leading to false timeout + */ + timeout_ms = jiffies + msecs_to_jiffies(timeout_ms) + 1; + do { + ret = nand_read_data_op(chip, &status, sizeof(status), true, + false); + if (ret) + break; + + if (status & NAND_STATUS_READY) + break; + + /* + * Typical lowest execution time for a tR on most NANDs is 10us, + * use this as polling delay before doing something smarter (ie. + * deriving a delay from the timeout value, timeout_ms/ratio). + */ + udelay(10); + } while (time_before(jiffies, timeout_ms)); + + /* + * We have to exit READ_STATUS mode in order to read real data on the + * bus in case the WAITRDY instruction is preceding a DATA_IN + * instruction. + */ + nand_exit_status_op(chip); + + if (ret) + return ret; + + return status & NAND_STATUS_READY ? 0 : -ETIMEDOUT; +}; +EXPORT_SYMBOL_GPL(nand_soft_waitrdy); + +/** + * nand_gpio_waitrdy - Poll R/B GPIO pin until ready + * @chip: NAND chip structure + * @gpiod: GPIO descriptor of R/B pin + * @timeout_ms: Timeout in ms + * + * Poll the R/B GPIO pin until it becomes ready. If that does not happen + * whitin the specified timeout, -ETIMEDOUT is returned. + * + * This helper is intended to be used when the controller has access to the + * NAND R/B pin over GPIO. + * + * Return 0 if the R/B pin indicates chip is ready, a negative error otherwise. + */ +int nand_gpio_waitrdy(struct nand_chip *chip, struct gpio_desc *gpiod, + unsigned long timeout_ms) +{ + + /* + * Wait until R/B pin indicates chip is ready or timeout occurs. + * +1 below is necessary because if we are now in the last fraction + * of jiffy and msecs_to_jiffies is 1 then we will wait only that + * small jiffy fraction - possibly leading to false timeout. + */ + timeout_ms = jiffies + msecs_to_jiffies(timeout_ms) + 1; + do { + if (gpiod_get_value_cansleep(gpiod)) + return 0; + + cond_resched(); + } while (time_before(jiffies, timeout_ms)); + + return gpiod_get_value_cansleep(gpiod) ? 0 : -ETIMEDOUT; +}; +EXPORT_SYMBOL_GPL(nand_gpio_waitrdy); + +/** + * panic_nand_wait - [GENERIC] wait until the command is done + * @chip: NAND chip structure + * @timeo: timeout + * + * Wait for command done. This is a helper function for nand_wait used when + * we are in interrupt context. May happen when in panic and trying to write + * an oops through mtdoops. + */ +void panic_nand_wait(struct nand_chip *chip, unsigned long timeo) +{ + int i; + for (i = 0; i < timeo; i++) { + if (chip->legacy.dev_ready) { + if (chip->legacy.dev_ready(chip)) + break; + } else { + int ret; + u8 status; + + ret = nand_read_data_op(chip, &status, sizeof(status), + true, false); + if (ret) + return; + + if (status & NAND_STATUS_READY) + break; + } + mdelay(1); + } +} + +static bool nand_supports_get_features(struct nand_chip *chip, int addr) +{ + return (chip->parameters.supports_set_get_features && + test_bit(addr, chip->parameters.get_feature_list)); +} + +static bool nand_supports_set_features(struct nand_chip *chip, int addr) +{ + return (chip->parameters.supports_set_get_features && + test_bit(addr, chip->parameters.set_feature_list)); +} + +/** + * nand_reset_interface - Reset data interface and timings + * @chip: The NAND chip + * @chipnr: Internal die id + * + * Reset the Data interface and timings to ONFI mode 0. + * + * Returns 0 for success or negative error code otherwise. + */ +static int nand_reset_interface(struct nand_chip *chip, int chipnr) +{ + const struct nand_controller_ops *ops = chip->controller->ops; + int ret; + + if (!nand_controller_can_setup_interface(chip)) + return 0; + + /* + * The ONFI specification says: + * " + * To transition from NV-DDR or NV-DDR2 to the SDR data + * interface, the host shall use the Reset (FFh) command + * using SDR timing mode 0. A device in any timing mode is + * required to recognize Reset (FFh) command issued in SDR + * timing mode 0. + * " + * + * Configure the data interface in SDR mode and set the + * timings to timing mode 0. + */ + + chip->current_interface_config = nand_get_reset_interface_config(); + ret = ops->setup_interface(chip, chipnr, + chip->current_interface_config); + if (ret) + pr_err("Failed to configure data interface to SDR timing mode 0\n"); + + return ret; +} + +/** + * nand_setup_interface - Setup the best data interface and timings + * @chip: The NAND chip + * @chipnr: Internal die id + * + * Configure what has been reported to be the best data interface and NAND + * timings supported by the chip and the driver. + * + * Returns 0 for success or negative error code otherwise. + */ +static int nand_setup_interface(struct nand_chip *chip, int chipnr) +{ + const struct nand_controller_ops *ops = chip->controller->ops; + u8 tmode_param[ONFI_SUBFEATURE_PARAM_LEN] = { }, request; + int ret; + + if (!nand_controller_can_setup_interface(chip)) + return 0; + + /* + * A nand_reset_interface() put both the NAND chip and the NAND + * controller in timings mode 0. If the default mode for this chip is + * also 0, no need to proceed to the change again. Plus, at probe time, + * nand_setup_interface() uses ->set/get_features() which would + * fail anyway as the parameter page is not available yet. + */ + if (!chip->best_interface_config) + return 0; + + request = chip->best_interface_config->timings.mode; + if (nand_interface_is_sdr(chip->best_interface_config)) + request |= ONFI_DATA_INTERFACE_SDR; + else + request |= ONFI_DATA_INTERFACE_NVDDR; + tmode_param[0] = request; + + /* Change the mode on the chip side (if supported by the NAND chip) */ + if (nand_supports_set_features(chip, ONFI_FEATURE_ADDR_TIMING_MODE)) { + nand_select_target(chip, chipnr); + ret = nand_set_features(chip, ONFI_FEATURE_ADDR_TIMING_MODE, + tmode_param); + nand_deselect_target(chip); + if (ret) + return ret; + } + + /* Change the mode on the controller side */ + ret = ops->setup_interface(chip, chipnr, chip->best_interface_config); + if (ret) + return ret; + + /* Check the mode has been accepted by the chip, if supported */ + if (!nand_supports_get_features(chip, ONFI_FEATURE_ADDR_TIMING_MODE)) + goto update_interface_config; + + memset(tmode_param, 0, ONFI_SUBFEATURE_PARAM_LEN); + nand_select_target(chip, chipnr); + ret = nand_get_features(chip, ONFI_FEATURE_ADDR_TIMING_MODE, + tmode_param); + nand_deselect_target(chip); + if (ret) + goto err_reset_chip; + + if (request != tmode_param[0]) { + pr_warn("%s timing mode %d not acknowledged by the NAND chip\n", + nand_interface_is_nvddr(chip->best_interface_config) ? "NV-DDR" : "SDR", + chip->best_interface_config->timings.mode); + pr_debug("NAND chip would work in %s timing mode %d\n", + tmode_param[0] & ONFI_DATA_INTERFACE_NVDDR ? "NV-DDR" : "SDR", + (unsigned int)ONFI_TIMING_MODE_PARAM(tmode_param[0])); + goto err_reset_chip; + } + +update_interface_config: + chip->current_interface_config = chip->best_interface_config; + + return 0; + +err_reset_chip: + /* + * Fallback to mode 0 if the chip explicitly did not ack the chosen + * timing mode. + */ + nand_reset_interface(chip, chipnr); + nand_select_target(chip, chipnr); + nand_reset_op(chip); + nand_deselect_target(chip); + + return ret; +} + +/** + * nand_choose_best_sdr_timings - Pick up the best SDR timings that both the + * NAND controller and the NAND chip support + * @chip: the NAND chip + * @iface: the interface configuration (can eventually be updated) + * @spec_timings: specific timings, when not fitting the ONFI specification + * + * If specific timings are provided, use them. Otherwise, retrieve supported + * timing modes from ONFI information. + */ +int nand_choose_best_sdr_timings(struct nand_chip *chip, + struct nand_interface_config *iface, + struct nand_sdr_timings *spec_timings) +{ + const struct nand_controller_ops *ops = chip->controller->ops; + int best_mode = 0, mode, ret = -EOPNOTSUPP; + + iface->type = NAND_SDR_IFACE; + + if (spec_timings) { + iface->timings.sdr = *spec_timings; + iface->timings.mode = onfi_find_closest_sdr_mode(spec_timings); + + /* Verify the controller supports the requested interface */ + ret = ops->setup_interface(chip, NAND_DATA_IFACE_CHECK_ONLY, + iface); + if (!ret) { + chip->best_interface_config = iface; + return ret; + } + + /* Fallback to slower modes */ + best_mode = iface->timings.mode; + } else if (chip->parameters.onfi) { + best_mode = fls(chip->parameters.onfi->sdr_timing_modes) - 1; + } + + for (mode = best_mode; mode >= 0; mode--) { + onfi_fill_interface_config(chip, iface, NAND_SDR_IFACE, mode); + + ret = ops->setup_interface(chip, NAND_DATA_IFACE_CHECK_ONLY, + iface); + if (!ret) { + chip->best_interface_config = iface; + break; + } + } + + return ret; +} + +/** + * nand_choose_best_nvddr_timings - Pick up the best NVDDR timings that both the + * NAND controller and the NAND chip support + * @chip: the NAND chip + * @iface: the interface configuration (can eventually be updated) + * @spec_timings: specific timings, when not fitting the ONFI specification + * + * If specific timings are provided, use them. Otherwise, retrieve supported + * timing modes from ONFI information. + */ +int nand_choose_best_nvddr_timings(struct nand_chip *chip, + struct nand_interface_config *iface, + struct nand_nvddr_timings *spec_timings) +{ + const struct nand_controller_ops *ops = chip->controller->ops; + int best_mode = 0, mode, ret = -EOPNOTSUPP; + + iface->type = NAND_NVDDR_IFACE; + + if (spec_timings) { + iface->timings.nvddr = *spec_timings; + iface->timings.mode = onfi_find_closest_nvddr_mode(spec_timings); + + /* Verify the controller supports the requested interface */ + ret = ops->setup_interface(chip, NAND_DATA_IFACE_CHECK_ONLY, + iface); + if (!ret) { + chip->best_interface_config = iface; + return ret; + } + + /* Fallback to slower modes */ + best_mode = iface->timings.mode; + } else if (chip->parameters.onfi) { + best_mode = fls(chip->parameters.onfi->nvddr_timing_modes) - 1; + } + + for (mode = best_mode; mode >= 0; mode--) { + onfi_fill_interface_config(chip, iface, NAND_NVDDR_IFACE, mode); + + ret = ops->setup_interface(chip, NAND_DATA_IFACE_CHECK_ONLY, + iface); + if (!ret) { + chip->best_interface_config = iface; + break; + } + } + + return ret; +} + +/** + * nand_choose_best_timings - Pick up the best NVDDR or SDR timings that both + * NAND controller and the NAND chip support + * @chip: the NAND chip + * @iface: the interface configuration (can eventually be updated) + * + * If specific timings are provided, use them. Otherwise, retrieve supported + * timing modes from ONFI information. + */ +static int nand_choose_best_timings(struct nand_chip *chip, + struct nand_interface_config *iface) +{ + int ret; + + /* Try the fastest timings: NV-DDR */ + ret = nand_choose_best_nvddr_timings(chip, iface, NULL); + if (!ret) + return 0; + + /* Fallback to SDR timings otherwise */ + return nand_choose_best_sdr_timings(chip, iface, NULL); +} + +/** + * nand_choose_interface_config - find the best data interface and timings + * @chip: The NAND chip + * + * Find the best data interface and NAND timings supported by the chip + * and the driver. Eventually let the NAND manufacturer driver propose his own + * set of timings. + * + * After this function nand_chip->interface_config is initialized with the best + * timing mode available. + * + * Returns 0 for success or negative error code otherwise. + */ +static int nand_choose_interface_config(struct nand_chip *chip) +{ + struct nand_interface_config *iface; + int ret; + + if (!nand_controller_can_setup_interface(chip)) + return 0; + + iface = kzalloc(sizeof(*iface), GFP_KERNEL); + if (!iface) + return -ENOMEM; + + if (chip->ops.choose_interface_config) + ret = chip->ops.choose_interface_config(chip, iface); + else + ret = nand_choose_best_timings(chip, iface); + + if (ret) + kfree(iface); + + return ret; +} + +/** + * nand_fill_column_cycles - fill the column cycles of an address + * @chip: The NAND chip + * @addrs: Array of address cycles to fill + * @offset_in_page: The offset in the page + * + * Fills the first or the first two bytes of the @addrs field depending + * on the NAND bus width and the page size. + * + * Returns the number of cycles needed to encode the column, or a negative + * error code in case one of the arguments is invalid. + */ +static int nand_fill_column_cycles(struct nand_chip *chip, u8 *addrs, + unsigned int offset_in_page) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + + /* Make sure the offset is less than the actual page size. */ + if (offset_in_page > mtd->writesize + mtd->oobsize) + return -EINVAL; + + /* + * On small page NANDs, there's a dedicated command to access the OOB + * area, and the column address is relative to the start of the OOB + * area, not the start of the page. Asjust the address accordingly. + */ + if (mtd->writesize <= 512 && offset_in_page >= mtd->writesize) + offset_in_page -= mtd->writesize; + + /* + * The offset in page is expressed in bytes, if the NAND bus is 16-bit + * wide, then it must be divided by 2. + */ + if (chip->options & NAND_BUSWIDTH_16) { + if (WARN_ON(offset_in_page % 2)) + return -EINVAL; + + offset_in_page /= 2; + } + + addrs[0] = offset_in_page; + + /* + * Small page NANDs use 1 cycle for the columns, while large page NANDs + * need 2 + */ + if (mtd->writesize <= 512) + return 1; + + addrs[1] = offset_in_page >> 8; + + return 2; +} + +static int nand_sp_exec_read_page_op(struct nand_chip *chip, unsigned int page, + unsigned int offset_in_page, void *buf, + unsigned int len) +{ + const struct nand_interface_config *conf = + nand_get_interface_config(chip); + struct mtd_info *mtd = nand_to_mtd(chip); + u8 addrs[4]; + struct nand_op_instr instrs[] = { + NAND_OP_CMD(NAND_CMD_READ0, 0), + NAND_OP_ADDR(3, addrs, NAND_COMMON_TIMING_NS(conf, tWB_max)), + NAND_OP_WAIT_RDY(NAND_COMMON_TIMING_MS(conf, tR_max), + NAND_COMMON_TIMING_NS(conf, tRR_min)), + NAND_OP_DATA_IN(len, buf, 0), + }; + struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs); + int ret; + + /* Drop the DATA_IN instruction if len is set to 0. */ + if (!len) + op.ninstrs--; + + if (offset_in_page >= mtd->writesize) + instrs[0].ctx.cmd.opcode = NAND_CMD_READOOB; + else if (offset_in_page >= 256 && + !(chip->options & NAND_BUSWIDTH_16)) + instrs[0].ctx.cmd.opcode = NAND_CMD_READ1; + + ret = nand_fill_column_cycles(chip, addrs, offset_in_page); + if (ret < 0) + return ret; + + addrs[1] = page; + addrs[2] = page >> 8; + + if (chip->options & NAND_ROW_ADDR_3) { + addrs[3] = page >> 16; + instrs[1].ctx.addr.naddrs++; + } + + return nand_exec_op(chip, &op); +} + +static int nand_lp_exec_read_page_op(struct nand_chip *chip, unsigned int page, + unsigned int offset_in_page, void *buf, + unsigned int len) +{ + const struct nand_interface_config *conf = + nand_get_interface_config(chip); + u8 addrs[5]; + struct nand_op_instr instrs[] = { + NAND_OP_CMD(NAND_CMD_READ0, 0), + NAND_OP_ADDR(4, addrs, 0), + NAND_OP_CMD(NAND_CMD_READSTART, NAND_COMMON_TIMING_NS(conf, tWB_max)), + NAND_OP_WAIT_RDY(NAND_COMMON_TIMING_MS(conf, tR_max), + NAND_COMMON_TIMING_NS(conf, tRR_min)), + NAND_OP_DATA_IN(len, buf, 0), + }; + struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs); + int ret; + + /* Drop the DATA_IN instruction if len is set to 0. */ + if (!len) + op.ninstrs--; + + ret = nand_fill_column_cycles(chip, addrs, offset_in_page); + if (ret < 0) + return ret; + + addrs[2] = page; + addrs[3] = page >> 8; + + if (chip->options & NAND_ROW_ADDR_3) { + addrs[4] = page >> 16; + instrs[1].ctx.addr.naddrs++; + } + + return nand_exec_op(chip, &op); +} + +static void rawnand_cap_cont_reads(struct nand_chip *chip) +{ + struct nand_memory_organization *memorg; + unsigned int pages_per_lun, first_lun, last_lun; + + memorg = nanddev_get_memorg(&chip->base); + pages_per_lun = memorg->pages_per_eraseblock * memorg->eraseblocks_per_lun; + first_lun = chip->cont_read.first_page / pages_per_lun; + last_lun = chip->cont_read.last_page / pages_per_lun; + + /* Prevent sequential cache reads across LUN boundaries */ + if (first_lun != last_lun) + chip->cont_read.pause_page = first_lun * pages_per_lun + pages_per_lun - 1; + else + chip->cont_read.pause_page = chip->cont_read.last_page; +} + +static int nand_lp_exec_cont_read_page_op(struct nand_chip *chip, unsigned int page, + unsigned int offset_in_page, void *buf, + unsigned int len, bool check_only) +{ + const struct nand_interface_config *conf = + nand_get_interface_config(chip); + u8 addrs[5]; + struct nand_op_instr start_instrs[] = { + NAND_OP_CMD(NAND_CMD_READ0, 0), + NAND_OP_ADDR(4, addrs, 0), + NAND_OP_CMD(NAND_CMD_READSTART, NAND_COMMON_TIMING_NS(conf, tWB_max)), + NAND_OP_WAIT_RDY(NAND_COMMON_TIMING_MS(conf, tR_max), 0), + NAND_OP_CMD(NAND_CMD_READCACHESEQ, NAND_COMMON_TIMING_NS(conf, tWB_max)), + NAND_OP_WAIT_RDY(NAND_COMMON_TIMING_MS(conf, tR_max), + NAND_COMMON_TIMING_NS(conf, tRR_min)), + NAND_OP_DATA_IN(len, buf, 0), + }; + struct nand_op_instr cont_instrs[] = { + NAND_OP_CMD(page == chip->cont_read.pause_page ? + NAND_CMD_READCACHEEND : NAND_CMD_READCACHESEQ, + NAND_COMMON_TIMING_NS(conf, tWB_max)), + NAND_OP_WAIT_RDY(NAND_COMMON_TIMING_MS(conf, tR_max), + NAND_COMMON_TIMING_NS(conf, tRR_min)), + NAND_OP_DATA_IN(len, buf, 0), + }; + struct nand_operation start_op = NAND_OPERATION(chip->cur_cs, start_instrs); + struct nand_operation cont_op = NAND_OPERATION(chip->cur_cs, cont_instrs); + int ret; + + if (!len) { + start_op.ninstrs--; + cont_op.ninstrs--; + } + + ret = nand_fill_column_cycles(chip, addrs, offset_in_page); + if (ret < 0) + return ret; + + addrs[2] = page; + addrs[3] = page >> 8; + + if (chip->options & NAND_ROW_ADDR_3) { + addrs[4] = page >> 16; + start_instrs[1].ctx.addr.naddrs++; + } + + /* Check if cache reads are supported */ + if (check_only) { + if (nand_check_op(chip, &start_op) || nand_check_op(chip, &cont_op)) + return -EOPNOTSUPP; + + return 0; + } + + if (page == chip->cont_read.first_page) + ret = nand_exec_op(chip, &start_op); + else + ret = nand_exec_op(chip, &cont_op); + if (ret) + return ret; + + if (!chip->cont_read.ongoing) + return 0; + + if (page == chip->cont_read.pause_page && + page != chip->cont_read.last_page) { + chip->cont_read.first_page = chip->cont_read.pause_page + 1; + rawnand_cap_cont_reads(chip); + } else if (page == chip->cont_read.last_page) { + chip->cont_read.ongoing = false; + } + + return 0; +} + +static bool rawnand_cont_read_ongoing(struct nand_chip *chip, unsigned int page) +{ + return chip->cont_read.ongoing && page >= chip->cont_read.first_page; +} + +/** + * nand_read_page_op - Do a READ PAGE operation + * @chip: The NAND chip + * @page: page to read + * @offset_in_page: offset within the page + * @buf: buffer used to store the data + * @len: length of the buffer + * + * This function issues a READ PAGE operation. + * This function does not select/unselect the CS line. + * + * Returns 0 on success, a negative error code otherwise. + */ +int nand_read_page_op(struct nand_chip *chip, unsigned int page, + unsigned int offset_in_page, void *buf, unsigned int len) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + + if (len && !buf) + return -EINVAL; + + if (offset_in_page + len > mtd->writesize + mtd->oobsize) + return -EINVAL; + + if (nand_has_exec_op(chip)) { + if (mtd->writesize > 512) { + if (rawnand_cont_read_ongoing(chip, page)) + return nand_lp_exec_cont_read_page_op(chip, page, + offset_in_page, + buf, len, false); + else + return nand_lp_exec_read_page_op(chip, page, + offset_in_page, buf, + len); + } + + return nand_sp_exec_read_page_op(chip, page, offset_in_page, + buf, len); + } + + chip->legacy.cmdfunc(chip, NAND_CMD_READ0, offset_in_page, page); + if (len) + chip->legacy.read_buf(chip, buf, len); + + return 0; +} +EXPORT_SYMBOL_GPL(nand_read_page_op); + +/** + * nand_read_param_page_op - Do a READ PARAMETER PAGE operation + * @chip: The NAND chip + * @page: parameter page to read + * @buf: buffer used to store the data + * @len: length of the buffer + * + * This function issues a READ PARAMETER PAGE operation. + * This function does not select/unselect the CS line. + * + * Returns 0 on success, a negative error code otherwise. + */ +int nand_read_param_page_op(struct nand_chip *chip, u8 page, void *buf, + unsigned int len) +{ + unsigned int i; + u8 *p = buf; + + if (len && !buf) + return -EINVAL; + + if (nand_has_exec_op(chip)) { + const struct nand_interface_config *conf = + nand_get_interface_config(chip); + struct nand_op_instr instrs[] = { + NAND_OP_CMD(NAND_CMD_PARAM, 0), + NAND_OP_ADDR(1, &page, + NAND_COMMON_TIMING_NS(conf, tWB_max)), + NAND_OP_WAIT_RDY(NAND_COMMON_TIMING_MS(conf, tR_max), + NAND_COMMON_TIMING_NS(conf, tRR_min)), + NAND_OP_8BIT_DATA_IN(len, buf, 0), + }; + struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs); + + /* Drop the DATA_IN instruction if len is set to 0. */ + if (!len) + op.ninstrs--; + + return nand_exec_op(chip, &op); + } + + chip->legacy.cmdfunc(chip, NAND_CMD_PARAM, page, -1); + for (i = 0; i < len; i++) + p[i] = chip->legacy.read_byte(chip); + + return 0; +} + +/** + * nand_change_read_column_op - Do a CHANGE READ COLUMN operation + * @chip: The NAND chip + * @offset_in_page: offset within the page + * @buf: buffer used to store the data + * @len: length of the buffer + * @force_8bit: force 8-bit bus access + * + * This function issues a CHANGE READ COLUMN operation. + * This function does not select/unselect the CS line. + * + * Returns 0 on success, a negative error code otherwise. + */ +int nand_change_read_column_op(struct nand_chip *chip, + unsigned int offset_in_page, void *buf, + unsigned int len, bool force_8bit) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + + if (len && !buf) + return -EINVAL; + + if (offset_in_page + len > mtd->writesize + mtd->oobsize) + return -EINVAL; + + /* Small page NANDs do not support column change. */ + if (mtd->writesize <= 512) + return -ENOTSUPP; + + if (nand_has_exec_op(chip)) { + const struct nand_interface_config *conf = + nand_get_interface_config(chip); + u8 addrs[2] = {}; + struct nand_op_instr instrs[] = { + NAND_OP_CMD(NAND_CMD_RNDOUT, 0), + NAND_OP_ADDR(2, addrs, 0), + NAND_OP_CMD(NAND_CMD_RNDOUTSTART, + NAND_COMMON_TIMING_NS(conf, tCCS_min)), + NAND_OP_DATA_IN(len, buf, 0), + }; + struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs); + int ret; + + ret = nand_fill_column_cycles(chip, addrs, offset_in_page); + if (ret < 0) + return ret; + + /* Drop the DATA_IN instruction if len is set to 0. */ + if (!len) + op.ninstrs--; + + instrs[3].ctx.data.force_8bit = force_8bit; + + return nand_exec_op(chip, &op); + } + + chip->legacy.cmdfunc(chip, NAND_CMD_RNDOUT, offset_in_page, -1); + if (len) + chip->legacy.read_buf(chip, buf, len); + + return 0; +} +EXPORT_SYMBOL_GPL(nand_change_read_column_op); + +/** + * nand_read_oob_op - Do a READ OOB operation + * @chip: The NAND chip + * @page: page to read + * @offset_in_oob: offset within the OOB area + * @buf: buffer used to store the data + * @len: length of the buffer + * + * This function issues a READ OOB operation. + * This function does not select/unselect the CS line. + * + * Returns 0 on success, a negative error code otherwise. + */ +int nand_read_oob_op(struct nand_chip *chip, unsigned int page, + unsigned int offset_in_oob, void *buf, unsigned int len) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + + if (len && !buf) + return -EINVAL; + + if (offset_in_oob + len > mtd->oobsize) + return -EINVAL; + + if (nand_has_exec_op(chip)) + return nand_read_page_op(chip, page, + mtd->writesize + offset_in_oob, + buf, len); + + chip->legacy.cmdfunc(chip, NAND_CMD_READOOB, offset_in_oob, page); + if (len) + chip->legacy.read_buf(chip, buf, len); + + return 0; +} +EXPORT_SYMBOL_GPL(nand_read_oob_op); + +static int nand_exec_prog_page_op(struct nand_chip *chip, unsigned int page, + unsigned int offset_in_page, const void *buf, + unsigned int len, bool prog) +{ + const struct nand_interface_config *conf = + nand_get_interface_config(chip); + struct mtd_info *mtd = nand_to_mtd(chip); + u8 addrs[5] = {}; + struct nand_op_instr instrs[] = { + /* + * The first instruction will be dropped if we're dealing + * with a large page NAND and adjusted if we're dealing + * with a small page NAND and the page offset is > 255. + */ + NAND_OP_CMD(NAND_CMD_READ0, 0), + NAND_OP_CMD(NAND_CMD_SEQIN, 0), + NAND_OP_ADDR(0, addrs, NAND_COMMON_TIMING_NS(conf, tADL_min)), + NAND_OP_DATA_OUT(len, buf, 0), + NAND_OP_CMD(NAND_CMD_PAGEPROG, + NAND_COMMON_TIMING_NS(conf, tWB_max)), + NAND_OP_WAIT_RDY(NAND_COMMON_TIMING_MS(conf, tPROG_max), 0), + }; + struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs); + int naddrs = nand_fill_column_cycles(chip, addrs, offset_in_page); + + if (naddrs < 0) + return naddrs; + + addrs[naddrs++] = page; + addrs[naddrs++] = page >> 8; + if (chip->options & NAND_ROW_ADDR_3) + addrs[naddrs++] = page >> 16; + + instrs[2].ctx.addr.naddrs = naddrs; + + /* Drop the last two instructions if we're not programming the page. */ + if (!prog) { + op.ninstrs -= 2; + /* Also drop the DATA_OUT instruction if empty. */ + if (!len) + op.ninstrs--; + } + + if (mtd->writesize <= 512) { + /* + * Small pages need some more tweaking: we have to adjust the + * first instruction depending on the page offset we're trying + * to access. + */ + if (offset_in_page >= mtd->writesize) + instrs[0].ctx.cmd.opcode = NAND_CMD_READOOB; + else if (offset_in_page >= 256 && + !(chip->options & NAND_BUSWIDTH_16)) + instrs[0].ctx.cmd.opcode = NAND_CMD_READ1; + } else { + /* + * Drop the first command if we're dealing with a large page + * NAND. + */ + op.instrs++; + op.ninstrs--; + } + + return nand_exec_op(chip, &op); +} + +/** + * nand_prog_page_begin_op - starts a PROG PAGE operation + * @chip: The NAND chip + * @page: page to write + * @offset_in_page: offset within the page + * @buf: buffer containing the data to write to the page + * @len: length of the buffer + * + * This function issues the first half of a PROG PAGE operation. + * This function does not select/unselect the CS line. + * + * Returns 0 on success, a negative error code otherwise. + */ +int nand_prog_page_begin_op(struct nand_chip *chip, unsigned int page, + unsigned int offset_in_page, const void *buf, + unsigned int len) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + + if (len && !buf) + return -EINVAL; + + if (offset_in_page + len > mtd->writesize + mtd->oobsize) + return -EINVAL; + + if (nand_has_exec_op(chip)) + return nand_exec_prog_page_op(chip, page, offset_in_page, buf, + len, false); + + chip->legacy.cmdfunc(chip, NAND_CMD_SEQIN, offset_in_page, page); + + if (buf) + chip->legacy.write_buf(chip, buf, len); + + return 0; +} +EXPORT_SYMBOL_GPL(nand_prog_page_begin_op); + +/** + * nand_prog_page_end_op - ends a PROG PAGE operation + * @chip: The NAND chip + * + * This function issues the second half of a PROG PAGE operation. + * This function does not select/unselect the CS line. + * + * Returns 0 on success, a negative error code otherwise. + */ +int nand_prog_page_end_op(struct nand_chip *chip) +{ + int ret; + u8 status; + + if (nand_has_exec_op(chip)) { + const struct nand_interface_config *conf = + nand_get_interface_config(chip); + struct nand_op_instr instrs[] = { + NAND_OP_CMD(NAND_CMD_PAGEPROG, + NAND_COMMON_TIMING_NS(conf, tWB_max)), + NAND_OP_WAIT_RDY(NAND_COMMON_TIMING_MS(conf, tPROG_max), + 0), + }; + struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs); + + ret = nand_exec_op(chip, &op); + if (ret) + return ret; + + ret = nand_status_op(chip, &status); + if (ret) + return ret; + } else { + chip->legacy.cmdfunc(chip, NAND_CMD_PAGEPROG, -1, -1); + ret = chip->legacy.waitfunc(chip); + if (ret < 0) + return ret; + + status = ret; + } + + if (status & NAND_STATUS_FAIL) + return -EIO; + + return 0; +} +EXPORT_SYMBOL_GPL(nand_prog_page_end_op); + +/** + * nand_prog_page_op - Do a full PROG PAGE operation + * @chip: The NAND chip + * @page: page to write + * @offset_in_page: offset within the page + * @buf: buffer containing the data to write to the page + * @len: length of the buffer + * + * This function issues a full PROG PAGE operation. + * This function does not select/unselect the CS line. + * + * Returns 0 on success, a negative error code otherwise. + */ +int nand_prog_page_op(struct nand_chip *chip, unsigned int page, + unsigned int offset_in_page, const void *buf, + unsigned int len) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + u8 status; + int ret; + + if (!len || !buf) + return -EINVAL; + + if (offset_in_page + len > mtd->writesize + mtd->oobsize) + return -EINVAL; + + if (nand_has_exec_op(chip)) { + ret = nand_exec_prog_page_op(chip, page, offset_in_page, buf, + len, true); + if (ret) + return ret; + + ret = nand_status_op(chip, &status); + if (ret) + return ret; + } else { + chip->legacy.cmdfunc(chip, NAND_CMD_SEQIN, offset_in_page, + page); + chip->legacy.write_buf(chip, buf, len); + chip->legacy.cmdfunc(chip, NAND_CMD_PAGEPROG, -1, -1); + ret = chip->legacy.waitfunc(chip); + if (ret < 0) + return ret; + + status = ret; + } + + if (status & NAND_STATUS_FAIL) + return -EIO; + + return 0; +} +EXPORT_SYMBOL_GPL(nand_prog_page_op); + +/** + * nand_change_write_column_op - Do a CHANGE WRITE COLUMN operation + * @chip: The NAND chip + * @offset_in_page: offset within the page + * @buf: buffer containing the data to send to the NAND + * @len: length of the buffer + * @force_8bit: force 8-bit bus access + * + * This function issues a CHANGE WRITE COLUMN operation. + * This function does not select/unselect the CS line. + * + * Returns 0 on success, a negative error code otherwise. + */ +int nand_change_write_column_op(struct nand_chip *chip, + unsigned int offset_in_page, + const void *buf, unsigned int len, + bool force_8bit) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + + if (len && !buf) + return -EINVAL; + + if (offset_in_page + len > mtd->writesize + mtd->oobsize) + return -EINVAL; + + /* Small page NANDs do not support column change. */ + if (mtd->writesize <= 512) + return -ENOTSUPP; + + if (nand_has_exec_op(chip)) { + const struct nand_interface_config *conf = + nand_get_interface_config(chip); + u8 addrs[2]; + struct nand_op_instr instrs[] = { + NAND_OP_CMD(NAND_CMD_RNDIN, 0), + NAND_OP_ADDR(2, addrs, NAND_COMMON_TIMING_NS(conf, tCCS_min)), + NAND_OP_DATA_OUT(len, buf, 0), + }; + struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs); + int ret; + + ret = nand_fill_column_cycles(chip, addrs, offset_in_page); + if (ret < 0) + return ret; + + instrs[2].ctx.data.force_8bit = force_8bit; + + /* Drop the DATA_OUT instruction if len is set to 0. */ + if (!len) + op.ninstrs--; + + return nand_exec_op(chip, &op); + } + + chip->legacy.cmdfunc(chip, NAND_CMD_RNDIN, offset_in_page, -1); + if (len) + chip->legacy.write_buf(chip, buf, len); + + return 0; +} +EXPORT_SYMBOL_GPL(nand_change_write_column_op); + +/** + * nand_readid_op - Do a READID operation + * @chip: The NAND chip + * @addr: address cycle to pass after the READID command + * @buf: buffer used to store the ID + * @len: length of the buffer + * + * This function sends a READID command and reads back the ID returned by the + * NAND. + * This function does not select/unselect the CS line. + * + * Returns 0 on success, a negative error code otherwise. + */ +int nand_readid_op(struct nand_chip *chip, u8 addr, void *buf, + unsigned int len) +{ + unsigned int i; + u8 *id = buf, *ddrbuf = NULL; + + if (len && !buf) + return -EINVAL; + + if (nand_has_exec_op(chip)) { + const struct nand_interface_config *conf = + nand_get_interface_config(chip); + struct nand_op_instr instrs[] = { + NAND_OP_CMD(NAND_CMD_READID, 0), + NAND_OP_ADDR(1, &addr, + NAND_COMMON_TIMING_NS(conf, tADL_min)), + NAND_OP_8BIT_DATA_IN(len, buf, 0), + }; + struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs); + int ret; + + /* READ_ID data bytes are received twice in NV-DDR mode */ + if (len && nand_interface_is_nvddr(conf)) { + ddrbuf = kzalloc(len * 2, GFP_KERNEL); + if (!ddrbuf) + return -ENOMEM; + + instrs[2].ctx.data.len *= 2; + instrs[2].ctx.data.buf.in = ddrbuf; + } + + /* Drop the DATA_IN instruction if len is set to 0. */ + if (!len) + op.ninstrs--; + + ret = nand_exec_op(chip, &op); + if (!ret && len && nand_interface_is_nvddr(conf)) { + for (i = 0; i < len; i++) + id[i] = ddrbuf[i * 2]; + } + + kfree(ddrbuf); + + return ret; + } + + chip->legacy.cmdfunc(chip, NAND_CMD_READID, addr, -1); + + for (i = 0; i < len; i++) + id[i] = chip->legacy.read_byte(chip); + + return 0; +} +EXPORT_SYMBOL_GPL(nand_readid_op); + +/** + * nand_status_op - Do a STATUS operation + * @chip: The NAND chip + * @status: out variable to store the NAND status + * + * This function sends a STATUS command and reads back the status returned by + * the NAND. + * This function does not select/unselect the CS line. + * + * Returns 0 on success, a negative error code otherwise. + */ +int nand_status_op(struct nand_chip *chip, u8 *status) +{ + if (nand_has_exec_op(chip)) { + const struct nand_interface_config *conf = + nand_get_interface_config(chip); + u8 ddrstatus[2]; + struct nand_op_instr instrs[] = { + NAND_OP_CMD(NAND_CMD_STATUS, + NAND_COMMON_TIMING_NS(conf, tADL_min)), + NAND_OP_8BIT_DATA_IN(1, status, 0), + }; + struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs); + int ret; + + /* The status data byte will be received twice in NV-DDR mode */ + if (status && nand_interface_is_nvddr(conf)) { + instrs[1].ctx.data.len *= 2; + instrs[1].ctx.data.buf.in = ddrstatus; + } + + if (!status) + op.ninstrs--; + + ret = nand_exec_op(chip, &op); + if (!ret && status && nand_interface_is_nvddr(conf)) + *status = ddrstatus[0]; + + return ret; + } + + chip->legacy.cmdfunc(chip, NAND_CMD_STATUS, -1, -1); + if (status) + *status = chip->legacy.read_byte(chip); + + return 0; +} +EXPORT_SYMBOL_GPL(nand_status_op); + +/** + * nand_exit_status_op - Exit a STATUS operation + * @chip: The NAND chip + * + * This function sends a READ0 command to cancel the effect of the STATUS + * command to avoid reading only the status until a new read command is sent. + * + * This function does not select/unselect the CS line. + * + * Returns 0 on success, a negative error code otherwise. + */ +int nand_exit_status_op(struct nand_chip *chip) +{ + if (nand_has_exec_op(chip)) { + struct nand_op_instr instrs[] = { + NAND_OP_CMD(NAND_CMD_READ0, 0), + }; + struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs); + + return nand_exec_op(chip, &op); + } + + chip->legacy.cmdfunc(chip, NAND_CMD_READ0, -1, -1); + + return 0; +} +EXPORT_SYMBOL_GPL(nand_exit_status_op); + +/** + * nand_erase_op - Do an erase operation + * @chip: The NAND chip + * @eraseblock: block to erase + * + * This function sends an ERASE command and waits for the NAND to be ready + * before returning. + * This function does not select/unselect the CS line. + * + * Returns 0 on success, a negative error code otherwise. + */ +int nand_erase_op(struct nand_chip *chip, unsigned int eraseblock) +{ + unsigned int page = eraseblock << + (chip->phys_erase_shift - chip->page_shift); + int ret; + u8 status; + + if (nand_has_exec_op(chip)) { + const struct nand_interface_config *conf = + nand_get_interface_config(chip); + u8 addrs[3] = { page, page >> 8, page >> 16 }; + struct nand_op_instr instrs[] = { + NAND_OP_CMD(NAND_CMD_ERASE1, 0), + NAND_OP_ADDR(2, addrs, 0), + NAND_OP_CMD(NAND_CMD_ERASE2, + NAND_COMMON_TIMING_NS(conf, tWB_max)), + NAND_OP_WAIT_RDY(NAND_COMMON_TIMING_MS(conf, tBERS_max), + 0), + }; + struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs); + + if (chip->options & NAND_ROW_ADDR_3) + instrs[1].ctx.addr.naddrs++; + + ret = nand_exec_op(chip, &op); + if (ret) + return ret; + + ret = nand_status_op(chip, &status); + if (ret) + return ret; + } else { + chip->legacy.cmdfunc(chip, NAND_CMD_ERASE1, -1, page); + chip->legacy.cmdfunc(chip, NAND_CMD_ERASE2, -1, -1); + + ret = chip->legacy.waitfunc(chip); + if (ret < 0) + return ret; + + status = ret; + } + + if (status & NAND_STATUS_FAIL) + return -EIO; + + return 0; +} +EXPORT_SYMBOL_GPL(nand_erase_op); + +/** + * nand_set_features_op - Do a SET FEATURES operation + * @chip: The NAND chip + * @feature: feature id + * @data: 4 bytes of data + * + * This function sends a SET FEATURES command and waits for the NAND to be + * ready before returning. + * This function does not select/unselect the CS line. + * + * Returns 0 on success, a negative error code otherwise. + */ +static int nand_set_features_op(struct nand_chip *chip, u8 feature, + const void *data) +{ + const u8 *params = data; + int i, ret; + + if (nand_has_exec_op(chip)) { + const struct nand_interface_config *conf = + nand_get_interface_config(chip); + struct nand_op_instr instrs[] = { + NAND_OP_CMD(NAND_CMD_SET_FEATURES, 0), + NAND_OP_ADDR(1, &feature, NAND_COMMON_TIMING_NS(conf, + tADL_min)), + NAND_OP_8BIT_DATA_OUT(ONFI_SUBFEATURE_PARAM_LEN, data, + NAND_COMMON_TIMING_NS(conf, + tWB_max)), + NAND_OP_WAIT_RDY(NAND_COMMON_TIMING_MS(conf, tFEAT_max), + 0), + }; + struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs); + + return nand_exec_op(chip, &op); + } + + chip->legacy.cmdfunc(chip, NAND_CMD_SET_FEATURES, feature, -1); + for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i) + chip->legacy.write_byte(chip, params[i]); + + ret = chip->legacy.waitfunc(chip); + if (ret < 0) + return ret; + + if (ret & NAND_STATUS_FAIL) + return -EIO; + + return 0; +} + +/** + * nand_get_features_op - Do a GET FEATURES operation + * @chip: The NAND chip + * @feature: feature id + * @data: 4 bytes of data + * + * This function sends a GET FEATURES command and waits for the NAND to be + * ready before returning. + * This function does not select/unselect the CS line. + * + * Returns 0 on success, a negative error code otherwise. + */ +static int nand_get_features_op(struct nand_chip *chip, u8 feature, + void *data) +{ + u8 *params = data, ddrbuf[ONFI_SUBFEATURE_PARAM_LEN * 2]; + int i; + + if (nand_has_exec_op(chip)) { + const struct nand_interface_config *conf = + nand_get_interface_config(chip); + struct nand_op_instr instrs[] = { + NAND_OP_CMD(NAND_CMD_GET_FEATURES, 0), + NAND_OP_ADDR(1, &feature, + NAND_COMMON_TIMING_NS(conf, tWB_max)), + NAND_OP_WAIT_RDY(NAND_COMMON_TIMING_MS(conf, tFEAT_max), + NAND_COMMON_TIMING_NS(conf, tRR_min)), + NAND_OP_8BIT_DATA_IN(ONFI_SUBFEATURE_PARAM_LEN, + data, 0), + }; + struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs); + int ret; + + /* GET_FEATURE data bytes are received twice in NV-DDR mode */ + if (nand_interface_is_nvddr(conf)) { + instrs[3].ctx.data.len *= 2; + instrs[3].ctx.data.buf.in = ddrbuf; + } + + ret = nand_exec_op(chip, &op); + if (nand_interface_is_nvddr(conf)) { + for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; i++) + params[i] = ddrbuf[i * 2]; + } + + return ret; + } + + chip->legacy.cmdfunc(chip, NAND_CMD_GET_FEATURES, feature, -1); + for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i) + params[i] = chip->legacy.read_byte(chip); + + return 0; +} + +static int nand_wait_rdy_op(struct nand_chip *chip, unsigned int timeout_ms, + unsigned int delay_ns) +{ + if (nand_has_exec_op(chip)) { + struct nand_op_instr instrs[] = { + NAND_OP_WAIT_RDY(PSEC_TO_MSEC(timeout_ms), + PSEC_TO_NSEC(delay_ns)), + }; + struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs); + + return nand_exec_op(chip, &op); + } + + /* Apply delay or wait for ready/busy pin */ + if (!chip->legacy.dev_ready) + udelay(chip->legacy.chip_delay); + else + nand_wait_ready(chip); + + return 0; +} + +/** + * nand_reset_op - Do a reset operation + * @chip: The NAND chip + * + * This function sends a RESET command and waits for the NAND to be ready + * before returning. + * This function does not select/unselect the CS line. + * + * Returns 0 on success, a negative error code otherwise. + */ +int nand_reset_op(struct nand_chip *chip) +{ + if (nand_has_exec_op(chip)) { + const struct nand_interface_config *conf = + nand_get_interface_config(chip); + struct nand_op_instr instrs[] = { + NAND_OP_CMD(NAND_CMD_RESET, + NAND_COMMON_TIMING_NS(conf, tWB_max)), + NAND_OP_WAIT_RDY(NAND_COMMON_TIMING_MS(conf, tRST_max), + 0), + }; + struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs); + + return nand_exec_op(chip, &op); + } + + chip->legacy.cmdfunc(chip, NAND_CMD_RESET, -1, -1); + + return 0; +} +EXPORT_SYMBOL_GPL(nand_reset_op); + +/** + * nand_read_data_op - Read data from the NAND + * @chip: The NAND chip + * @buf: buffer used to store the data + * @len: length of the buffer + * @force_8bit: force 8-bit bus access + * @check_only: do not actually run the command, only checks if the + * controller driver supports it + * + * This function does a raw data read on the bus. Usually used after launching + * another NAND operation like nand_read_page_op(). + * This function does not select/unselect the CS line. + * + * Returns 0 on success, a negative error code otherwise. + */ +int nand_read_data_op(struct nand_chip *chip, void *buf, unsigned int len, + bool force_8bit, bool check_only) +{ + if (!len || !buf) + return -EINVAL; + + if (nand_has_exec_op(chip)) { + const struct nand_interface_config *conf = + nand_get_interface_config(chip); + struct nand_op_instr instrs[] = { + NAND_OP_DATA_IN(len, buf, 0), + }; + struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs); + u8 *ddrbuf = NULL; + int ret, i; + + instrs[0].ctx.data.force_8bit = force_8bit; + + /* + * Parameter payloads (ID, status, features, etc) do not go + * through the same pipeline as regular data, hence the + * force_8bit flag must be set and this also indicates that in + * case NV-DDR timings are being used the data will be received + * twice. + */ + if (force_8bit && nand_interface_is_nvddr(conf)) { + ddrbuf = kzalloc(len * 2, GFP_KERNEL); + if (!ddrbuf) + return -ENOMEM; + + instrs[0].ctx.data.len *= 2; + instrs[0].ctx.data.buf.in = ddrbuf; + } + + if (check_only) { + ret = nand_check_op(chip, &op); + kfree(ddrbuf); + return ret; + } + + ret = nand_exec_op(chip, &op); + if (!ret && force_8bit && nand_interface_is_nvddr(conf)) { + u8 *dst = buf; + + for (i = 0; i < len; i++) + dst[i] = ddrbuf[i * 2]; + } + + kfree(ddrbuf); + + return ret; + } + + if (check_only) + return 0; + + if (force_8bit) { + u8 *p = buf; + unsigned int i; + + for (i = 0; i < len; i++) + p[i] = chip->legacy.read_byte(chip); + } else { + chip->legacy.read_buf(chip, buf, len); + } + + return 0; +} +EXPORT_SYMBOL_GPL(nand_read_data_op); + +/** + * nand_write_data_op - Write data from the NAND + * @chip: The NAND chip + * @buf: buffer containing the data to send on the bus + * @len: length of the buffer + * @force_8bit: force 8-bit bus access + * + * This function does a raw data write on the bus. Usually used after launching + * another NAND operation like nand_write_page_begin_op(). + * This function does not select/unselect the CS line. + * + * Returns 0 on success, a negative error code otherwise. + */ +int nand_write_data_op(struct nand_chip *chip, const void *buf, + unsigned int len, bool force_8bit) +{ + if (!len || !buf) + return -EINVAL; + + if (nand_has_exec_op(chip)) { + struct nand_op_instr instrs[] = { + NAND_OP_DATA_OUT(len, buf, 0), + }; + struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs); + + instrs[0].ctx.data.force_8bit = force_8bit; + + return nand_exec_op(chip, &op); + } + + if (force_8bit) { + const u8 *p = buf; + unsigned int i; + + for (i = 0; i < len; i++) + chip->legacy.write_byte(chip, p[i]); + } else { + chip->legacy.write_buf(chip, buf, len); + } + + return 0; +} +EXPORT_SYMBOL_GPL(nand_write_data_op); + +/** + * struct nand_op_parser_ctx - Context used by the parser + * @instrs: array of all the instructions that must be addressed + * @ninstrs: length of the @instrs array + * @subop: Sub-operation to be passed to the NAND controller + * + * This structure is used by the core to split NAND operations into + * sub-operations that can be handled by the NAND controller. + */ +struct nand_op_parser_ctx { + const struct nand_op_instr *instrs; + unsigned int ninstrs; + struct nand_subop subop; +}; + +/** + * nand_op_parser_must_split_instr - Checks if an instruction must be split + * @pat: the parser pattern element that matches @instr + * @instr: pointer to the instruction to check + * @start_offset: this is an in/out parameter. If @instr has already been + * split, then @start_offset is the offset from which to start + * (either an address cycle or an offset in the data buffer). + * Conversely, if the function returns true (ie. instr must be + * split), this parameter is updated to point to the first + * data/address cycle that has not been taken care of. + * + * Some NAND controllers are limited and cannot send X address cycles with a + * unique operation, or cannot read/write more than Y bytes at the same time. + * In this case, split the instruction that does not fit in a single + * controller-operation into two or more chunks. + * + * Returns true if the instruction must be split, false otherwise. + * The @start_offset parameter is also updated to the offset at which the next + * bundle of instruction must start (if an address or a data instruction). + */ +static bool +nand_op_parser_must_split_instr(const struct nand_op_parser_pattern_elem *pat, + const struct nand_op_instr *instr, + unsigned int *start_offset) +{ + switch (pat->type) { + case NAND_OP_ADDR_INSTR: + if (!pat->ctx.addr.maxcycles) + break; + + if (instr->ctx.addr.naddrs - *start_offset > + pat->ctx.addr.maxcycles) { + *start_offset += pat->ctx.addr.maxcycles; + return true; + } + break; + + case NAND_OP_DATA_IN_INSTR: + case NAND_OP_DATA_OUT_INSTR: + if (!pat->ctx.data.maxlen) + break; + + if (instr->ctx.data.len - *start_offset > + pat->ctx.data.maxlen) { + *start_offset += pat->ctx.data.maxlen; + return true; + } + break; + + default: + break; + } + + return false; +} + +/** + * nand_op_parser_match_pat - Checks if a pattern matches the instructions + * remaining in the parser context + * @pat: the pattern to test + * @ctx: the parser context structure to match with the pattern @pat + * + * Check if @pat matches the set or a sub-set of instructions remaining in @ctx. + * Returns true if this is the case, false ortherwise. When true is returned, + * @ctx->subop is updated with the set of instructions to be passed to the + * controller driver. + */ +static bool +nand_op_parser_match_pat(const struct nand_op_parser_pattern *pat, + struct nand_op_parser_ctx *ctx) +{ + unsigned int instr_offset = ctx->subop.first_instr_start_off; + const struct nand_op_instr *end = ctx->instrs + ctx->ninstrs; + const struct nand_op_instr *instr = ctx->subop.instrs; + unsigned int i, ninstrs; + + for (i = 0, ninstrs = 0; i < pat->nelems && instr < end; i++) { + /* + * The pattern instruction does not match the operation + * instruction. If the instruction is marked optional in the + * pattern definition, we skip the pattern element and continue + * to the next one. If the element is mandatory, there's no + * match and we can return false directly. + */ + if (instr->type != pat->elems[i].type) { + if (!pat->elems[i].optional) + return false; + + continue; + } + + /* + * Now check the pattern element constraints. If the pattern is + * not able to handle the whole instruction in a single step, + * we have to split it. + * The last_instr_end_off value comes back updated to point to + * the position where we have to split the instruction (the + * start of the next subop chunk). + */ + if (nand_op_parser_must_split_instr(&pat->elems[i], instr, + &instr_offset)) { + ninstrs++; + i++; + break; + } + + instr++; + ninstrs++; + instr_offset = 0; + } + + /* + * This can happen if all instructions of a pattern are optional. + * Still, if there's not at least one instruction handled by this + * pattern, this is not a match, and we should try the next one (if + * any). + */ + if (!ninstrs) + return false; + + /* + * We had a match on the pattern head, but the pattern may be longer + * than the instructions we're asked to execute. We need to make sure + * there's no mandatory elements in the pattern tail. + */ + for (; i < pat->nelems; i++) { + if (!pat->elems[i].optional) + return false; + } + + /* + * We have a match: update the subop structure accordingly and return + * true. + */ + ctx->subop.ninstrs = ninstrs; + ctx->subop.last_instr_end_off = instr_offset; + + return true; +} + +#if IS_ENABLED(CONFIG_DYNAMIC_DEBUG) || defined(DEBUG) +static void nand_op_parser_trace(const struct nand_op_parser_ctx *ctx) +{ + const struct nand_op_instr *instr; + char *prefix = " "; + unsigned int i; + + pr_debug("executing subop (CS%d):\n", ctx->subop.cs); + + for (i = 0; i < ctx->ninstrs; i++) { + instr = &ctx->instrs[i]; + + if (instr == &ctx->subop.instrs[0]) + prefix = " ->"; + + nand_op_trace(prefix, instr); + + if (instr == &ctx->subop.instrs[ctx->subop.ninstrs - 1]) + prefix = " "; + } +} +#else +static void nand_op_parser_trace(const struct nand_op_parser_ctx *ctx) +{ + /* NOP */ +} +#endif + +static int nand_op_parser_cmp_ctx(const struct nand_op_parser_ctx *a, + const struct nand_op_parser_ctx *b) +{ + if (a->subop.ninstrs < b->subop.ninstrs) + return -1; + else if (a->subop.ninstrs > b->subop.ninstrs) + return 1; + + if (a->subop.last_instr_end_off < b->subop.last_instr_end_off) + return -1; + else if (a->subop.last_instr_end_off > b->subop.last_instr_end_off) + return 1; + + return 0; +} + +/** + * nand_op_parser_exec_op - exec_op parser + * @chip: the NAND chip + * @parser: patterns description provided by the controller driver + * @op: the NAND operation to address + * @check_only: when true, the function only checks if @op can be handled but + * does not execute the operation + * + * Helper function designed to ease integration of NAND controller drivers that + * only support a limited set of instruction sequences. The supported sequences + * are described in @parser, and the framework takes care of splitting @op into + * multiple sub-operations (if required) and pass them back to the ->exec() + * callback of the matching pattern if @check_only is set to false. + * + * NAND controller drivers should call this function from their own ->exec_op() + * implementation. + * + * Returns 0 on success, a negative error code otherwise. A failure can be + * caused by an unsupported operation (none of the supported patterns is able + * to handle the requested operation), or an error returned by one of the + * matching pattern->exec() hook. + */ +int nand_op_parser_exec_op(struct nand_chip *chip, + const struct nand_op_parser *parser, + const struct nand_operation *op, bool check_only) +{ + struct nand_op_parser_ctx ctx = { + .subop.cs = op->cs, + .subop.instrs = op->instrs, + .instrs = op->instrs, + .ninstrs = op->ninstrs, + }; + unsigned int i; + + while (ctx.subop.instrs < op->instrs + op->ninstrs) { + const struct nand_op_parser_pattern *pattern; + struct nand_op_parser_ctx best_ctx; + int ret, best_pattern = -1; + + for (i = 0; i < parser->npatterns; i++) { + struct nand_op_parser_ctx test_ctx = ctx; + + pattern = &parser->patterns[i]; + if (!nand_op_parser_match_pat(pattern, &test_ctx)) + continue; + + if (best_pattern >= 0 && + nand_op_parser_cmp_ctx(&test_ctx, &best_ctx) <= 0) + continue; + + best_pattern = i; + best_ctx = test_ctx; + } + + if (best_pattern < 0) { + pr_debug("->exec_op() parser: pattern not found!\n"); + return -ENOTSUPP; + } + + ctx = best_ctx; + nand_op_parser_trace(&ctx); + + if (!check_only) { + pattern = &parser->patterns[best_pattern]; + ret = pattern->exec(chip, &ctx.subop); + if (ret) + return ret; + } + + /* + * Update the context structure by pointing to the start of the + * next subop. + */ + ctx.subop.instrs = ctx.subop.instrs + ctx.subop.ninstrs; + if (ctx.subop.last_instr_end_off) + ctx.subop.instrs -= 1; + + ctx.subop.first_instr_start_off = ctx.subop.last_instr_end_off; + } + + return 0; +} +EXPORT_SYMBOL_GPL(nand_op_parser_exec_op); + +static bool nand_instr_is_data(const struct nand_op_instr *instr) +{ + return instr && (instr->type == NAND_OP_DATA_IN_INSTR || + instr->type == NAND_OP_DATA_OUT_INSTR); +} + +static bool nand_subop_instr_is_valid(const struct nand_subop *subop, + unsigned int instr_idx) +{ + return subop && instr_idx < subop->ninstrs; +} + +static unsigned int nand_subop_get_start_off(const struct nand_subop *subop, + unsigned int instr_idx) +{ + if (instr_idx) + return 0; + + return subop->first_instr_start_off; +} + +/** + * nand_subop_get_addr_start_off - Get the start offset in an address array + * @subop: The entire sub-operation + * @instr_idx: Index of the instruction inside the sub-operation + * + * During driver development, one could be tempted to directly use the + * ->addr.addrs field of address instructions. This is wrong as address + * instructions might be split. + * + * Given an address instruction, returns the offset of the first cycle to issue. + */ +unsigned int nand_subop_get_addr_start_off(const struct nand_subop *subop, + unsigned int instr_idx) +{ + if (WARN_ON(!nand_subop_instr_is_valid(subop, instr_idx) || + subop->instrs[instr_idx].type != NAND_OP_ADDR_INSTR)) + return 0; + + return nand_subop_get_start_off(subop, instr_idx); +} +EXPORT_SYMBOL_GPL(nand_subop_get_addr_start_off); + +/** + * nand_subop_get_num_addr_cyc - Get the remaining address cycles to assert + * @subop: The entire sub-operation + * @instr_idx: Index of the instruction inside the sub-operation + * + * During driver development, one could be tempted to directly use the + * ->addr->naddrs field of a data instruction. This is wrong as instructions + * might be split. + * + * Given an address instruction, returns the number of address cycle to issue. + */ +unsigned int nand_subop_get_num_addr_cyc(const struct nand_subop *subop, + unsigned int instr_idx) +{ + int start_off, end_off; + + if (WARN_ON(!nand_subop_instr_is_valid(subop, instr_idx) || + subop->instrs[instr_idx].type != NAND_OP_ADDR_INSTR)) + return 0; + + start_off = nand_subop_get_addr_start_off(subop, instr_idx); + + if (instr_idx == subop->ninstrs - 1 && + subop->last_instr_end_off) + end_off = subop->last_instr_end_off; + else + end_off = subop->instrs[instr_idx].ctx.addr.naddrs; + + return end_off - start_off; +} +EXPORT_SYMBOL_GPL(nand_subop_get_num_addr_cyc); + +/** + * nand_subop_get_data_start_off - Get the start offset in a data array + * @subop: The entire sub-operation + * @instr_idx: Index of the instruction inside the sub-operation + * + * During driver development, one could be tempted to directly use the + * ->data->buf.{in,out} field of data instructions. This is wrong as data + * instructions might be split. + * + * Given a data instruction, returns the offset to start from. + */ +unsigned int nand_subop_get_data_start_off(const struct nand_subop *subop, + unsigned int instr_idx) +{ + if (WARN_ON(!nand_subop_instr_is_valid(subop, instr_idx) || + !nand_instr_is_data(&subop->instrs[instr_idx]))) + return 0; + + return nand_subop_get_start_off(subop, instr_idx); +} +EXPORT_SYMBOL_GPL(nand_subop_get_data_start_off); + +/** + * nand_subop_get_data_len - Get the number of bytes to retrieve + * @subop: The entire sub-operation + * @instr_idx: Index of the instruction inside the sub-operation + * + * During driver development, one could be tempted to directly use the + * ->data->len field of a data instruction. This is wrong as data instructions + * might be split. + * + * Returns the length of the chunk of data to send/receive. + */ +unsigned int nand_subop_get_data_len(const struct nand_subop *subop, + unsigned int instr_idx) +{ + int start_off = 0, end_off; + + if (WARN_ON(!nand_subop_instr_is_valid(subop, instr_idx) || + !nand_instr_is_data(&subop->instrs[instr_idx]))) + return 0; + + start_off = nand_subop_get_data_start_off(subop, instr_idx); + + if (instr_idx == subop->ninstrs - 1 && + subop->last_instr_end_off) + end_off = subop->last_instr_end_off; + else + end_off = subop->instrs[instr_idx].ctx.data.len; + + return end_off - start_off; +} +EXPORT_SYMBOL_GPL(nand_subop_get_data_len); + +/** + * nand_reset - Reset and initialize a NAND device + * @chip: The NAND chip + * @chipnr: Internal die id + * + * Save the timings data structure, then apply SDR timings mode 0 (see + * nand_reset_interface for details), do the reset operation, and apply + * back the previous timings. + * + * Returns 0 on success, a negative error code otherwise. + */ +int nand_reset(struct nand_chip *chip, int chipnr) +{ + int ret; + + ret = nand_reset_interface(chip, chipnr); + if (ret) + return ret; + + /* + * The CS line has to be released before we can apply the new NAND + * interface settings, hence this weird nand_select_target() + * nand_deselect_target() dance. + */ + nand_select_target(chip, chipnr); + ret = nand_reset_op(chip); + nand_deselect_target(chip); + if (ret) + return ret; + + ret = nand_setup_interface(chip, chipnr); + if (ret) + return ret; + + return 0; +} +EXPORT_SYMBOL_GPL(nand_reset); + +/** + * nand_get_features - wrapper to perform a GET_FEATURE + * @chip: NAND chip info structure + * @addr: feature address + * @subfeature_param: the subfeature parameters, a four bytes array + * + * Returns 0 for success, a negative error otherwise. Returns -ENOTSUPP if the + * operation cannot be handled. + */ +int nand_get_features(struct nand_chip *chip, int addr, + u8 *subfeature_param) +{ + if (!nand_supports_get_features(chip, addr)) + return -ENOTSUPP; + + if (chip->legacy.get_features) + return chip->legacy.get_features(chip, addr, subfeature_param); + + return nand_get_features_op(chip, addr, subfeature_param); +} + +/** + * nand_set_features - wrapper to perform a SET_FEATURE + * @chip: NAND chip info structure + * @addr: feature address + * @subfeature_param: the subfeature parameters, a four bytes array + * + * Returns 0 for success, a negative error otherwise. Returns -ENOTSUPP if the + * operation cannot be handled. + */ +int nand_set_features(struct nand_chip *chip, int addr, + u8 *subfeature_param) +{ + if (!nand_supports_set_features(chip, addr)) + return -ENOTSUPP; + + if (chip->legacy.set_features) + return chip->legacy.set_features(chip, addr, subfeature_param); + + return nand_set_features_op(chip, addr, subfeature_param); +} + +/** + * nand_check_erased_buf - check if a buffer contains (almost) only 0xff data + * @buf: buffer to test + * @len: buffer length + * @bitflips_threshold: maximum number of bitflips + * + * Check if a buffer contains only 0xff, which means the underlying region + * has been erased and is ready to be programmed. + * The bitflips_threshold specify the maximum number of bitflips before + * considering the region is not erased. + * Note: The logic of this function has been extracted from the memweight + * implementation, except that nand_check_erased_buf function exit before + * testing the whole buffer if the number of bitflips exceed the + * bitflips_threshold value. + * + * Returns a positive number of bitflips less than or equal to + * bitflips_threshold, or -ERROR_CODE for bitflips in excess of the + * threshold. + */ +static int nand_check_erased_buf(void *buf, int len, int bitflips_threshold) +{ + const unsigned char *bitmap = buf; + int bitflips = 0; + int weight; + + for (; len && ((uintptr_t)bitmap) % sizeof(long); + len--, bitmap++) { + weight = hweight8(*bitmap); + bitflips += BITS_PER_BYTE - weight; + if (unlikely(bitflips > bitflips_threshold)) + return -EBADMSG; + } + + for (; len >= sizeof(long); + len -= sizeof(long), bitmap += sizeof(long)) { + unsigned long d = *((unsigned long *)bitmap); + if (d == ~0UL) + continue; + weight = hweight_long(d); + bitflips += BITS_PER_LONG - weight; + if (unlikely(bitflips > bitflips_threshold)) + return -EBADMSG; + } + + for (; len > 0; len--, bitmap++) { + weight = hweight8(*bitmap); + bitflips += BITS_PER_BYTE - weight; + if (unlikely(bitflips > bitflips_threshold)) + return -EBADMSG; + } + + return bitflips; +} + +/** + * nand_check_erased_ecc_chunk - check if an ECC chunk contains (almost) only + * 0xff data + * @data: data buffer to test + * @datalen: data length + * @ecc: ECC buffer + * @ecclen: ECC length + * @extraoob: extra OOB buffer + * @extraooblen: extra OOB length + * @bitflips_threshold: maximum number of bitflips + * + * Check if a data buffer and its associated ECC and OOB data contains only + * 0xff pattern, which means the underlying region has been erased and is + * ready to be programmed. + * The bitflips_threshold specify the maximum number of bitflips before + * considering the region as not erased. + * + * Note: + * 1/ ECC algorithms are working on pre-defined block sizes which are usually + * different from the NAND page size. When fixing bitflips, ECC engines will + * report the number of errors per chunk, and the NAND core infrastructure + * expect you to return the maximum number of bitflips for the whole page. + * This is why you should always use this function on a single chunk and + * not on the whole page. After checking each chunk you should update your + * max_bitflips value accordingly. + * 2/ When checking for bitflips in erased pages you should not only check + * the payload data but also their associated ECC data, because a user might + * have programmed almost all bits to 1 but a few. In this case, we + * shouldn't consider the chunk as erased, and checking ECC bytes prevent + * this case. + * 3/ The extraoob argument is optional, and should be used if some of your OOB + * data are protected by the ECC engine. + * It could also be used if you support subpages and want to attach some + * extra OOB data to an ECC chunk. + * + * Returns a positive number of bitflips less than or equal to + * bitflips_threshold, or -ERROR_CODE for bitflips in excess of the + * threshold. In case of success, the passed buffers are filled with 0xff. + */ +int nand_check_erased_ecc_chunk(void *data, int datalen, + void *ecc, int ecclen, + void *extraoob, int extraooblen, + int bitflips_threshold) +{ + int data_bitflips = 0, ecc_bitflips = 0, extraoob_bitflips = 0; + + data_bitflips = nand_check_erased_buf(data, datalen, + bitflips_threshold); + if (data_bitflips < 0) + return data_bitflips; + + bitflips_threshold -= data_bitflips; + + ecc_bitflips = nand_check_erased_buf(ecc, ecclen, bitflips_threshold); + if (ecc_bitflips < 0) + return ecc_bitflips; + + bitflips_threshold -= ecc_bitflips; + + extraoob_bitflips = nand_check_erased_buf(extraoob, extraooblen, + bitflips_threshold); + if (extraoob_bitflips < 0) + return extraoob_bitflips; + + if (data_bitflips) + memset(data, 0xff, datalen); + + if (ecc_bitflips) + memset(ecc, 0xff, ecclen); + + if (extraoob_bitflips) + memset(extraoob, 0xff, extraooblen); + + return data_bitflips + ecc_bitflips + extraoob_bitflips; +} +EXPORT_SYMBOL(nand_check_erased_ecc_chunk); + +/** + * nand_read_page_raw_notsupp - dummy read raw page function + * @chip: nand chip info structure + * @buf: buffer to store read data + * @oob_required: caller requires OOB data read to chip->oob_poi + * @page: page number to read + * + * Returns -ENOTSUPP unconditionally. + */ +int nand_read_page_raw_notsupp(struct nand_chip *chip, u8 *buf, + int oob_required, int page) +{ + return -ENOTSUPP; +} + +/** + * nand_read_page_raw - [INTERN] read raw page data without ecc + * @chip: nand chip info structure + * @buf: buffer to store read data + * @oob_required: caller requires OOB data read to chip->oob_poi + * @page: page number to read + * + * Not for syndrome calculating ECC controllers, which use a special oob layout. + */ +int nand_read_page_raw(struct nand_chip *chip, uint8_t *buf, int oob_required, + int page) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + int ret; + + ret = nand_read_page_op(chip, page, 0, buf, mtd->writesize); + if (ret) + return ret; + + if (oob_required) { + ret = nand_read_data_op(chip, chip->oob_poi, mtd->oobsize, + false, false); + if (ret) + return ret; + } + + return 0; +} +EXPORT_SYMBOL(nand_read_page_raw); + +/** + * nand_monolithic_read_page_raw - Monolithic page read in raw mode + * @chip: NAND chip info structure + * @buf: buffer to store read data + * @oob_required: caller requires OOB data read to chip->oob_poi + * @page: page number to read + * + * This is a raw page read, ie. without any error detection/correction. + * Monolithic means we are requesting all the relevant data (main plus + * eventually OOB) to be loaded in the NAND cache and sent over the + * bus (from the NAND chip to the NAND controller) in a single + * operation. This is an alternative to nand_read_page_raw(), which + * first reads the main data, and if the OOB data is requested too, + * then reads more data on the bus. + */ +int nand_monolithic_read_page_raw(struct nand_chip *chip, u8 *buf, + int oob_required, int page) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + unsigned int size = mtd->writesize; + u8 *read_buf = buf; + int ret; + + if (oob_required) { + size += mtd->oobsize; + + if (buf != chip->data_buf) + read_buf = nand_get_data_buf(chip); + } + + ret = nand_read_page_op(chip, page, 0, read_buf, size); + if (ret) + return ret; + + if (buf != chip->data_buf) + memcpy(buf, read_buf, mtd->writesize); + + return 0; +} +EXPORT_SYMBOL(nand_monolithic_read_page_raw); + +/** + * nand_read_page_raw_syndrome - [INTERN] read raw page data without ecc + * @chip: nand chip info structure + * @buf: buffer to store read data + * @oob_required: caller requires OOB data read to chip->oob_poi + * @page: page number to read + * + * We need a special oob layout and handling even when OOB isn't used. + */ +static int nand_read_page_raw_syndrome(struct nand_chip *chip, uint8_t *buf, + int oob_required, int page) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + int eccsize = chip->ecc.size; + int eccbytes = chip->ecc.bytes; + uint8_t *oob = chip->oob_poi; + int steps, size, ret; + + ret = nand_read_page_op(chip, page, 0, NULL, 0); + if (ret) + return ret; + + for (steps = chip->ecc.steps; steps > 0; steps--) { + ret = nand_read_data_op(chip, buf, eccsize, false, false); + if (ret) + return ret; + + buf += eccsize; + + if (chip->ecc.prepad) { + ret = nand_read_data_op(chip, oob, chip->ecc.prepad, + false, false); + if (ret) + return ret; + + oob += chip->ecc.prepad; + } + + ret = nand_read_data_op(chip, oob, eccbytes, false, false); + if (ret) + return ret; + + oob += eccbytes; + + if (chip->ecc.postpad) { + ret = nand_read_data_op(chip, oob, chip->ecc.postpad, + false, false); + if (ret) + return ret; + + oob += chip->ecc.postpad; + } + } + + size = mtd->oobsize - (oob - chip->oob_poi); + if (size) { + ret = nand_read_data_op(chip, oob, size, false, false); + if (ret) + return ret; + } + + return 0; +} + +/** + * nand_read_page_swecc - [REPLACEABLE] software ECC based page read function + * @chip: nand chip info structure + * @buf: buffer to store read data + * @oob_required: caller requires OOB data read to chip->oob_poi + * @page: page number to read + */ +static int nand_read_page_swecc(struct nand_chip *chip, uint8_t *buf, + int oob_required, int page) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + int i, eccsize = chip->ecc.size, ret; + int eccbytes = chip->ecc.bytes; + int eccsteps = chip->ecc.steps; + uint8_t *p = buf; + uint8_t *ecc_calc = chip->ecc.calc_buf; + uint8_t *ecc_code = chip->ecc.code_buf; + unsigned int max_bitflips = 0; + + chip->ecc.read_page_raw(chip, buf, 1, page); + + for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) + chip->ecc.calculate(chip, p, &ecc_calc[i]); + + ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0, + chip->ecc.total); + if (ret) + return ret; + + eccsteps = chip->ecc.steps; + p = buf; + + for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) { + int stat; + + stat = chip->ecc.correct(chip, p, &ecc_code[i], &ecc_calc[i]); + if (stat < 0) { + mtd->ecc_stats.failed++; + } else { + mtd->ecc_stats.corrected += stat; + max_bitflips = max_t(unsigned int, max_bitflips, stat); + } + } + return max_bitflips; +} + +/** + * nand_read_subpage - [REPLACEABLE] ECC based sub-page read function + * @chip: nand chip info structure + * @data_offs: offset of requested data within the page + * @readlen: data length + * @bufpoi: buffer to store read data + * @page: page number to read + */ +static int nand_read_subpage(struct nand_chip *chip, uint32_t data_offs, + uint32_t readlen, uint8_t *bufpoi, int page) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + int start_step, end_step, num_steps, ret; + uint8_t *p; + int data_col_addr, i, gaps = 0; + int datafrag_len, eccfrag_len, aligned_len, aligned_pos; + int busw = (chip->options & NAND_BUSWIDTH_16) ? 2 : 1; + int index, section = 0; + unsigned int max_bitflips = 0; + struct mtd_oob_region oobregion = { }; + + /* Column address within the page aligned to ECC size (256bytes) */ + start_step = data_offs / chip->ecc.size; + end_step = (data_offs + readlen - 1) / chip->ecc.size; + num_steps = end_step - start_step + 1; + index = start_step * chip->ecc.bytes; + + /* Data size aligned to ECC ecc.size */ + datafrag_len = num_steps * chip->ecc.size; + eccfrag_len = num_steps * chip->ecc.bytes; + + data_col_addr = start_step * chip->ecc.size; + /* If we read not a page aligned data */ + p = bufpoi + data_col_addr; + ret = nand_read_page_op(chip, page, data_col_addr, p, datafrag_len); + if (ret) + return ret; + + /* Calculate ECC */ + for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size) + chip->ecc.calculate(chip, p, &chip->ecc.calc_buf[i]); + + /* + * The performance is faster if we position offsets according to + * ecc.pos. Let's make sure that there are no gaps in ECC positions. + */ + ret = mtd_ooblayout_find_eccregion(mtd, index, §ion, &oobregion); + if (ret) + return ret; + + if (oobregion.length < eccfrag_len) + gaps = 1; + + if (gaps) { + ret = nand_change_read_column_op(chip, mtd->writesize, + chip->oob_poi, mtd->oobsize, + false); + if (ret) + return ret; + } else { + /* + * Send the command to read the particular ECC bytes take care + * about buswidth alignment in read_buf. + */ + aligned_pos = oobregion.offset & ~(busw - 1); + aligned_len = eccfrag_len; + if (oobregion.offset & (busw - 1)) + aligned_len++; + if ((oobregion.offset + (num_steps * chip->ecc.bytes)) & + (busw - 1)) + aligned_len++; + + ret = nand_change_read_column_op(chip, + mtd->writesize + aligned_pos, + &chip->oob_poi[aligned_pos], + aligned_len, false); + if (ret) + return ret; + } + + ret = mtd_ooblayout_get_eccbytes(mtd, chip->ecc.code_buf, + chip->oob_poi, index, eccfrag_len); + if (ret) + return ret; + + p = bufpoi + data_col_addr; + for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size) { + int stat; + + stat = chip->ecc.correct(chip, p, &chip->ecc.code_buf[i], + &chip->ecc.calc_buf[i]); + if (stat == -EBADMSG && + (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) { + /* check for empty pages with bitflips */ + stat = nand_check_erased_ecc_chunk(p, chip->ecc.size, + &chip->ecc.code_buf[i], + chip->ecc.bytes, + NULL, 0, + chip->ecc.strength); + } + + if (stat < 0) { + mtd->ecc_stats.failed++; + } else { + mtd->ecc_stats.corrected += stat; + max_bitflips = max_t(unsigned int, max_bitflips, stat); + } + } + return max_bitflips; +} + +/** + * nand_read_page_hwecc - [REPLACEABLE] hardware ECC based page read function + * @chip: nand chip info structure + * @buf: buffer to store read data + * @oob_required: caller requires OOB data read to chip->oob_poi + * @page: page number to read + * + * Not for syndrome calculating ECC controllers which need a special oob layout. + */ +static int nand_read_page_hwecc(struct nand_chip *chip, uint8_t *buf, + int oob_required, int page) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + int i, eccsize = chip->ecc.size, ret; + int eccbytes = chip->ecc.bytes; + int eccsteps = chip->ecc.steps; + uint8_t *p = buf; + uint8_t *ecc_calc = chip->ecc.calc_buf; + uint8_t *ecc_code = chip->ecc.code_buf; + unsigned int max_bitflips = 0; + + ret = nand_read_page_op(chip, page, 0, NULL, 0); + if (ret) + return ret; + + for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) { + chip->ecc.hwctl(chip, NAND_ECC_READ); + + ret = nand_read_data_op(chip, p, eccsize, false, false); + if (ret) + return ret; + + chip->ecc.calculate(chip, p, &ecc_calc[i]); + } + + ret = nand_read_data_op(chip, chip->oob_poi, mtd->oobsize, false, + false); + if (ret) + return ret; + + ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0, + chip->ecc.total); + if (ret) + return ret; + + eccsteps = chip->ecc.steps; + p = buf; + + for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) { + int stat; + + stat = chip->ecc.correct(chip, p, &ecc_code[i], &ecc_calc[i]); + if (stat == -EBADMSG && + (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) { + /* check for empty pages with bitflips */ + stat = nand_check_erased_ecc_chunk(p, eccsize, + &ecc_code[i], eccbytes, + NULL, 0, + chip->ecc.strength); + } + + if (stat < 0) { + mtd->ecc_stats.failed++; + } else { + mtd->ecc_stats.corrected += stat; + max_bitflips = max_t(unsigned int, max_bitflips, stat); + } + } + return max_bitflips; +} + +/** + * nand_read_page_hwecc_oob_first - Hardware ECC page read with ECC + * data read from OOB area + * @chip: nand chip info structure + * @buf: buffer to store read data + * @oob_required: caller requires OOB data read to chip->oob_poi + * @page: page number to read + * + * Hardware ECC for large page chips, which requires the ECC data to be + * extracted from the OOB before the actual data is read. + */ +int nand_read_page_hwecc_oob_first(struct nand_chip *chip, uint8_t *buf, + int oob_required, int page) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + int i, eccsize = chip->ecc.size, ret; + int eccbytes = chip->ecc.bytes; + int eccsteps = chip->ecc.steps; + uint8_t *p = buf; + uint8_t *ecc_code = chip->ecc.code_buf; + unsigned int max_bitflips = 0; + + /* Read the OOB area first */ + ret = nand_read_oob_op(chip, page, 0, chip->oob_poi, mtd->oobsize); + if (ret) + return ret; + + /* Move read cursor to start of page */ + ret = nand_change_read_column_op(chip, 0, NULL, 0, false); + if (ret) + return ret; + + ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0, + chip->ecc.total); + if (ret) + return ret; + + for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) { + int stat; + + chip->ecc.hwctl(chip, NAND_ECC_READ); + + ret = nand_read_data_op(chip, p, eccsize, false, false); + if (ret) + return ret; + + stat = chip->ecc.correct(chip, p, &ecc_code[i], NULL); + if (stat == -EBADMSG && + (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) { + /* check for empty pages with bitflips */ + stat = nand_check_erased_ecc_chunk(p, eccsize, + &ecc_code[i], + eccbytes, NULL, 0, + chip->ecc.strength); + } + + if (stat < 0) { + mtd->ecc_stats.failed++; + } else { + mtd->ecc_stats.corrected += stat; + max_bitflips = max_t(unsigned int, max_bitflips, stat); + } + } + return max_bitflips; +} +EXPORT_SYMBOL_GPL(nand_read_page_hwecc_oob_first); + +/** + * nand_read_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page read + * @chip: nand chip info structure + * @buf: buffer to store read data + * @oob_required: caller requires OOB data read to chip->oob_poi + * @page: page number to read + * + * The hw generator calculates the error syndrome automatically. Therefore we + * need a special oob layout and handling. + */ +static int nand_read_page_syndrome(struct nand_chip *chip, uint8_t *buf, + int oob_required, int page) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + int ret, i, eccsize = chip->ecc.size; + int eccbytes = chip->ecc.bytes; + int eccsteps = chip->ecc.steps; + int eccpadbytes = eccbytes + chip->ecc.prepad + chip->ecc.postpad; + uint8_t *p = buf; + uint8_t *oob = chip->oob_poi; + unsigned int max_bitflips = 0; + + ret = nand_read_page_op(chip, page, 0, NULL, 0); + if (ret) + return ret; + + for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) { + int stat; + + chip->ecc.hwctl(chip, NAND_ECC_READ); + + ret = nand_read_data_op(chip, p, eccsize, false, false); + if (ret) + return ret; + + if (chip->ecc.prepad) { + ret = nand_read_data_op(chip, oob, chip->ecc.prepad, + false, false); + if (ret) + return ret; + + oob += chip->ecc.prepad; + } + + chip->ecc.hwctl(chip, NAND_ECC_READSYN); + + ret = nand_read_data_op(chip, oob, eccbytes, false, false); + if (ret) + return ret; + + stat = chip->ecc.correct(chip, p, oob, NULL); + + oob += eccbytes; + + if (chip->ecc.postpad) { + ret = nand_read_data_op(chip, oob, chip->ecc.postpad, + false, false); + if (ret) + return ret; + + oob += chip->ecc.postpad; + } + + if (stat == -EBADMSG && + (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) { + /* check for empty pages with bitflips */ + stat = nand_check_erased_ecc_chunk(p, chip->ecc.size, + oob - eccpadbytes, + eccpadbytes, + NULL, 0, + chip->ecc.strength); + } + + if (stat < 0) { + mtd->ecc_stats.failed++; + } else { + mtd->ecc_stats.corrected += stat; + max_bitflips = max_t(unsigned int, max_bitflips, stat); + } + } + + /* Calculate remaining oob bytes */ + i = mtd->oobsize - (oob - chip->oob_poi); + if (i) { + ret = nand_read_data_op(chip, oob, i, false, false); + if (ret) + return ret; + } + + return max_bitflips; +} + +/** + * nand_transfer_oob - [INTERN] Transfer oob to client buffer + * @chip: NAND chip object + * @oob: oob destination address + * @ops: oob ops structure + * @len: size of oob to transfer + */ +static uint8_t *nand_transfer_oob(struct nand_chip *chip, uint8_t *oob, + struct mtd_oob_ops *ops, size_t len) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + int ret; + + switch (ops->mode) { + + case MTD_OPS_PLACE_OOB: + case MTD_OPS_RAW: + memcpy(oob, chip->oob_poi + ops->ooboffs, len); + return oob + len; + + case MTD_OPS_AUTO_OOB: + ret = mtd_ooblayout_get_databytes(mtd, oob, chip->oob_poi, + ops->ooboffs, len); + BUG_ON(ret); + return oob + len; + + default: + BUG(); + } + return NULL; +} + +static void rawnand_enable_cont_reads(struct nand_chip *chip, unsigned int page, + u32 readlen, int col) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + unsigned int end_page, end_col; + + chip->cont_read.ongoing = false; + + if (!chip->controller->supported_op.cont_read) + return; + + end_page = DIV_ROUND_UP(col + readlen, mtd->writesize); + end_col = (col + readlen) % mtd->writesize; + + if (col) + page++; + + if (end_col && end_page) + end_page--; + + if (page + 1 > end_page) + return; + + chip->cont_read.first_page = page; + chip->cont_read.last_page = end_page; + chip->cont_read.ongoing = true; + + rawnand_cap_cont_reads(chip); +} + +static void rawnand_cont_read_skip_first_page(struct nand_chip *chip, unsigned int page) +{ + if (!chip->cont_read.ongoing || page != chip->cont_read.first_page) + return; + + chip->cont_read.first_page++; + if (chip->cont_read.first_page == chip->cont_read.pause_page) + chip->cont_read.first_page++; + if (chip->cont_read.first_page >= chip->cont_read.last_page) + chip->cont_read.ongoing = false; +} + +/** + * nand_setup_read_retry - [INTERN] Set the READ RETRY mode + * @chip: NAND chip object + * @retry_mode: the retry mode to use + * + * Some vendors supply a special command to shift the Vt threshold, to be used + * when there are too many bitflips in a page (i.e., ECC error). After setting + * a new threshold, the host should retry reading the page. + */ +static int nand_setup_read_retry(struct nand_chip *chip, int retry_mode) +{ + pr_debug("setting READ RETRY mode %d\n", retry_mode); + + if (retry_mode >= chip->read_retries) + return -EINVAL; + + if (!chip->ops.setup_read_retry) + return -EOPNOTSUPP; + + return chip->ops.setup_read_retry(chip, retry_mode); +} + +static void nand_wait_readrdy(struct nand_chip *chip) +{ + const struct nand_interface_config *conf; + + if (!(chip->options & NAND_NEED_READRDY)) + return; + + conf = nand_get_interface_config(chip); + WARN_ON(nand_wait_rdy_op(chip, NAND_COMMON_TIMING_MS(conf, tR_max), 0)); +} + +/** + * nand_do_read_ops - [INTERN] Read data with ECC + * @chip: NAND chip object + * @from: offset to read from + * @ops: oob ops structure + * + * Internal function. Called with chip held. + */ +static int nand_do_read_ops(struct nand_chip *chip, loff_t from, + struct mtd_oob_ops *ops) +{ + int chipnr, page, realpage, col, bytes, aligned, oob_required; + struct mtd_info *mtd = nand_to_mtd(chip); + int ret = 0; + uint32_t readlen = ops->len; + uint32_t oobreadlen = ops->ooblen; + uint32_t max_oobsize = mtd_oobavail(mtd, ops); + + uint8_t *bufpoi, *oob, *buf; + int use_bounce_buf; + unsigned int max_bitflips = 0; + int retry_mode = 0; + bool ecc_fail = false; + + /* Check if the region is secured */ + if (nand_region_is_secured(chip, from, readlen)) + return -EIO; + + chipnr = (int)(from >> chip->chip_shift); + nand_select_target(chip, chipnr); + + realpage = (int)(from >> chip->page_shift); + page = realpage & chip->pagemask; + + col = (int)(from & (mtd->writesize - 1)); + + buf = ops->datbuf; + oob = ops->oobbuf; + oob_required = oob ? 1 : 0; + + rawnand_enable_cont_reads(chip, page, readlen, col); + + while (1) { + struct mtd_ecc_stats ecc_stats = mtd->ecc_stats; + + bytes = min(mtd->writesize - col, readlen); + aligned = (bytes == mtd->writesize); + + if (!aligned) + use_bounce_buf = 1; + else if (chip->options & NAND_USES_DMA) + use_bounce_buf = !virt_addr_valid(buf) || + !IS_ALIGNED((unsigned long)buf, + chip->buf_align); + else + use_bounce_buf = 0; + + /* Is the current page in the buffer? */ + if (realpage != chip->pagecache.page || oob) { + bufpoi = use_bounce_buf ? chip->data_buf : buf; + + if (use_bounce_buf && aligned) + pr_debug("%s: using read bounce buffer for buf@%p\n", + __func__, buf); + +read_retry: + /* + * Now read the page into the buffer. Absent an error, + * the read methods return max bitflips per ecc step. + */ + if (unlikely(ops->mode == MTD_OPS_RAW)) + ret = chip->ecc.read_page_raw(chip, bufpoi, + oob_required, + page); + else if (!aligned && NAND_HAS_SUBPAGE_READ(chip) && + !oob) + ret = chip->ecc.read_subpage(chip, col, bytes, + bufpoi, page); + else + ret = chip->ecc.read_page(chip, bufpoi, + oob_required, page); + if (ret < 0) { + if (use_bounce_buf) + /* Invalidate page cache */ + chip->pagecache.page = -1; + break; + } + + /* + * Copy back the data in the initial buffer when reading + * partial pages or when a bounce buffer is required. + */ + if (use_bounce_buf) { + if (!NAND_HAS_SUBPAGE_READ(chip) && !oob && + !(mtd->ecc_stats.failed - ecc_stats.failed) && + (ops->mode != MTD_OPS_RAW)) { + chip->pagecache.page = realpage; + chip->pagecache.bitflips = ret; + } else { + /* Invalidate page cache */ + chip->pagecache.page = -1; + } + memcpy(buf, bufpoi + col, bytes); + } + + if (unlikely(oob)) { + int toread = min(oobreadlen, max_oobsize); + + if (toread) { + oob = nand_transfer_oob(chip, oob, ops, + toread); + oobreadlen -= toread; + } + } + + nand_wait_readrdy(chip); + + if (mtd->ecc_stats.failed - ecc_stats.failed) { + if (retry_mode + 1 < chip->read_retries) { + retry_mode++; + ret = nand_setup_read_retry(chip, + retry_mode); + if (ret < 0) + break; + + /* Reset ecc_stats; retry */ + mtd->ecc_stats = ecc_stats; + goto read_retry; + } else { + /* No more retry modes; real failure */ + ecc_fail = true; + } + } + + buf += bytes; + max_bitflips = max_t(unsigned int, max_bitflips, ret); + } else { + memcpy(buf, chip->data_buf + col, bytes); + buf += bytes; + max_bitflips = max_t(unsigned int, max_bitflips, + chip->pagecache.bitflips); + + rawnand_cont_read_skip_first_page(chip, page); + } + + readlen -= bytes; + + /* Reset to retry mode 0 */ + if (retry_mode) { + ret = nand_setup_read_retry(chip, 0); + if (ret < 0) + break; + retry_mode = 0; + } + + if (!readlen) + break; + + /* For subsequent reads align to page boundary */ + col = 0; + /* Increment page address */ + realpage++; + + page = realpage & chip->pagemask; + /* Check, if we cross a chip boundary */ + if (!page) { + chipnr++; + nand_deselect_target(chip); + nand_select_target(chip, chipnr); + } + } + nand_deselect_target(chip); + + ops->retlen = ops->len - (size_t) readlen; + if (oob) + ops->oobretlen = ops->ooblen - oobreadlen; + + if (ret < 0) + return ret; + + if (ecc_fail) + return -EBADMSG; + + return max_bitflips; +} + +/** + * nand_read_oob_std - [REPLACEABLE] the most common OOB data read function + * @chip: nand chip info structure + * @page: page number to read + */ +int nand_read_oob_std(struct nand_chip *chip, int page) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + + return nand_read_oob_op(chip, page, 0, chip->oob_poi, mtd->oobsize); +} +EXPORT_SYMBOL(nand_read_oob_std); + +/** + * nand_read_oob_syndrome - [REPLACEABLE] OOB data read function for HW ECC + * with syndromes + * @chip: nand chip info structure + * @page: page number to read + */ +static int nand_read_oob_syndrome(struct nand_chip *chip, int page) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + int length = mtd->oobsize; + int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad; + int eccsize = chip->ecc.size; + uint8_t *bufpoi = chip->oob_poi; + int i, toread, sndrnd = 0, pos, ret; + + ret = nand_read_page_op(chip, page, chip->ecc.size, NULL, 0); + if (ret) + return ret; + + for (i = 0; i < chip->ecc.steps; i++) { + if (sndrnd) { + int ret; + + pos = eccsize + i * (eccsize + chunk); + if (mtd->writesize > 512) + ret = nand_change_read_column_op(chip, pos, + NULL, 0, + false); + else + ret = nand_read_page_op(chip, page, pos, NULL, + 0); + + if (ret) + return ret; + } else + sndrnd = 1; + toread = min_t(int, length, chunk); + + ret = nand_read_data_op(chip, bufpoi, toread, false, false); + if (ret) + return ret; + + bufpoi += toread; + length -= toread; + } + if (length > 0) { + ret = nand_read_data_op(chip, bufpoi, length, false, false); + if (ret) + return ret; + } + + return 0; +} + +/** + * nand_write_oob_std - [REPLACEABLE] the most common OOB data write function + * @chip: nand chip info structure + * @page: page number to write + */ +int nand_write_oob_std(struct nand_chip *chip, int page) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + + return nand_prog_page_op(chip, page, mtd->writesize, chip->oob_poi, + mtd->oobsize); +} +EXPORT_SYMBOL(nand_write_oob_std); + +/** + * nand_write_oob_syndrome - [REPLACEABLE] OOB data write function for HW ECC + * with syndrome - only for large page flash + * @chip: nand chip info structure + * @page: page number to write + */ +static int nand_write_oob_syndrome(struct nand_chip *chip, int page) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad; + int eccsize = chip->ecc.size, length = mtd->oobsize; + int ret, i, len, pos, sndcmd = 0, steps = chip->ecc.steps; + const uint8_t *bufpoi = chip->oob_poi; + + /* + * data-ecc-data-ecc ... ecc-oob + * or + * data-pad-ecc-pad-data-pad .... ecc-pad-oob + */ + if (!chip->ecc.prepad && !chip->ecc.postpad) { + pos = steps * (eccsize + chunk); + steps = 0; + } else + pos = eccsize; + + ret = nand_prog_page_begin_op(chip, page, pos, NULL, 0); + if (ret) + return ret; + + for (i = 0; i < steps; i++) { + if (sndcmd) { + if (mtd->writesize <= 512) { + uint32_t fill = 0xFFFFFFFF; + + len = eccsize; + while (len > 0) { + int num = min_t(int, len, 4); + + ret = nand_write_data_op(chip, &fill, + num, false); + if (ret) + return ret; + + len -= num; + } + } else { + pos = eccsize + i * (eccsize + chunk); + ret = nand_change_write_column_op(chip, pos, + NULL, 0, + false); + if (ret) + return ret; + } + } else + sndcmd = 1; + len = min_t(int, length, chunk); + + ret = nand_write_data_op(chip, bufpoi, len, false); + if (ret) + return ret; + + bufpoi += len; + length -= len; + } + if (length > 0) { + ret = nand_write_data_op(chip, bufpoi, length, false); + if (ret) + return ret; + } + + return nand_prog_page_end_op(chip); +} + +/** + * nand_do_read_oob - [INTERN] NAND read out-of-band + * @chip: NAND chip object + * @from: offset to read from + * @ops: oob operations description structure + * + * NAND read out-of-band data from the spare area. + */ +static int nand_do_read_oob(struct nand_chip *chip, loff_t from, + struct mtd_oob_ops *ops) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + unsigned int max_bitflips = 0; + int page, realpage, chipnr; + struct mtd_ecc_stats stats; + int readlen = ops->ooblen; + int len; + uint8_t *buf = ops->oobbuf; + int ret = 0; + + pr_debug("%s: from = 0x%08Lx, len = %i\n", + __func__, (unsigned long long)from, readlen); + + /* Check if the region is secured */ + if (nand_region_is_secured(chip, from, readlen)) + return -EIO; + + stats = mtd->ecc_stats; + + len = mtd_oobavail(mtd, ops); + + chipnr = (int)(from >> chip->chip_shift); + nand_select_target(chip, chipnr); + + /* Shift to get page */ + realpage = (int)(from >> chip->page_shift); + page = realpage & chip->pagemask; + + while (1) { + if (ops->mode == MTD_OPS_RAW) + ret = chip->ecc.read_oob_raw(chip, page); + else + ret = chip->ecc.read_oob(chip, page); + + if (ret < 0) + break; + + len = min(len, readlen); + buf = nand_transfer_oob(chip, buf, ops, len); + + nand_wait_readrdy(chip); + + max_bitflips = max_t(unsigned int, max_bitflips, ret); + + readlen -= len; + if (!readlen) + break; + + /* Increment page address */ + realpage++; + + page = realpage & chip->pagemask; + /* Check, if we cross a chip boundary */ + if (!page) { + chipnr++; + nand_deselect_target(chip); + nand_select_target(chip, chipnr); + } + } + nand_deselect_target(chip); + + ops->oobretlen = ops->ooblen - readlen; + + if (ret < 0) + return ret; + + if (mtd->ecc_stats.failed - stats.failed) + return -EBADMSG; + + return max_bitflips; +} + +/** + * nand_read_oob - [MTD Interface] NAND read data and/or out-of-band + * @mtd: MTD device structure + * @from: offset to read from + * @ops: oob operation description structure + * + * NAND read data and/or out-of-band data. + */ +static int nand_read_oob(struct mtd_info *mtd, loff_t from, + struct mtd_oob_ops *ops) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + struct mtd_ecc_stats old_stats; + int ret; + + ops->retlen = 0; + + if (ops->mode != MTD_OPS_PLACE_OOB && + ops->mode != MTD_OPS_AUTO_OOB && + ops->mode != MTD_OPS_RAW) + return -ENOTSUPP; + + nand_get_device(chip); + + old_stats = mtd->ecc_stats; + + if (!ops->datbuf) + ret = nand_do_read_oob(chip, from, ops); + else + ret = nand_do_read_ops(chip, from, ops); + + if (ops->stats) { + ops->stats->uncorrectable_errors += + mtd->ecc_stats.failed - old_stats.failed; + ops->stats->corrected_bitflips += + mtd->ecc_stats.corrected - old_stats.corrected; + } + + nand_release_device(chip); + return ret; +} + +/** + * nand_write_page_raw_notsupp - dummy raw page write function + * @chip: nand chip info structure + * @buf: data buffer + * @oob_required: must write chip->oob_poi to OOB + * @page: page number to write + * + * Returns -ENOTSUPP unconditionally. + */ +int nand_write_page_raw_notsupp(struct nand_chip *chip, const u8 *buf, + int oob_required, int page) +{ + return -ENOTSUPP; +} + +/** + * nand_write_page_raw - [INTERN] raw page write function + * @chip: nand chip info structure + * @buf: data buffer + * @oob_required: must write chip->oob_poi to OOB + * @page: page number to write + * + * Not for syndrome calculating ECC controllers, which use a special oob layout. + */ +int nand_write_page_raw(struct nand_chip *chip, const uint8_t *buf, + int oob_required, int page) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + int ret; + + ret = nand_prog_page_begin_op(chip, page, 0, buf, mtd->writesize); + if (ret) + return ret; + + if (oob_required) { + ret = nand_write_data_op(chip, chip->oob_poi, mtd->oobsize, + false); + if (ret) + return ret; + } + + return nand_prog_page_end_op(chip); +} +EXPORT_SYMBOL(nand_write_page_raw); + +/** + * nand_monolithic_write_page_raw - Monolithic page write in raw mode + * @chip: NAND chip info structure + * @buf: data buffer to write + * @oob_required: must write chip->oob_poi to OOB + * @page: page number to write + * + * This is a raw page write, ie. without any error detection/correction. + * Monolithic means we are requesting all the relevant data (main plus + * eventually OOB) to be sent over the bus and effectively programmed + * into the NAND chip arrays in a single operation. This is an + * alternative to nand_write_page_raw(), which first sends the main + * data, then eventually send the OOB data by latching more data + * cycles on the NAND bus, and finally sends the program command to + * synchronyze the NAND chip cache. + */ +int nand_monolithic_write_page_raw(struct nand_chip *chip, const u8 *buf, + int oob_required, int page) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + unsigned int size = mtd->writesize; + u8 *write_buf = (u8 *)buf; + + if (oob_required) { + size += mtd->oobsize; + + if (buf != chip->data_buf) { + write_buf = nand_get_data_buf(chip); + memcpy(write_buf, buf, mtd->writesize); + } + } + + return nand_prog_page_op(chip, page, 0, write_buf, size); +} +EXPORT_SYMBOL(nand_monolithic_write_page_raw); + +/** + * nand_write_page_raw_syndrome - [INTERN] raw page write function + * @chip: nand chip info structure + * @buf: data buffer + * @oob_required: must write chip->oob_poi to OOB + * @page: page number to write + * + * We need a special oob layout and handling even when ECC isn't checked. + */ +static int nand_write_page_raw_syndrome(struct nand_chip *chip, + const uint8_t *buf, int oob_required, + int page) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + int eccsize = chip->ecc.size; + int eccbytes = chip->ecc.bytes; + uint8_t *oob = chip->oob_poi; + int steps, size, ret; + + ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0); + if (ret) + return ret; + + for (steps = chip->ecc.steps; steps > 0; steps--) { + ret = nand_write_data_op(chip, buf, eccsize, false); + if (ret) + return ret; + + buf += eccsize; + + if (chip->ecc.prepad) { + ret = nand_write_data_op(chip, oob, chip->ecc.prepad, + false); + if (ret) + return ret; + + oob += chip->ecc.prepad; + } + + ret = nand_write_data_op(chip, oob, eccbytes, false); + if (ret) + return ret; + + oob += eccbytes; + + if (chip->ecc.postpad) { + ret = nand_write_data_op(chip, oob, chip->ecc.postpad, + false); + if (ret) + return ret; + + oob += chip->ecc.postpad; + } + } + + size = mtd->oobsize - (oob - chip->oob_poi); + if (size) { + ret = nand_write_data_op(chip, oob, size, false); + if (ret) + return ret; + } + + return nand_prog_page_end_op(chip); +} +/** + * nand_write_page_swecc - [REPLACEABLE] software ECC based page write function + * @chip: nand chip info structure + * @buf: data buffer + * @oob_required: must write chip->oob_poi to OOB + * @page: page number to write + */ +static int nand_write_page_swecc(struct nand_chip *chip, const uint8_t *buf, + int oob_required, int page) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + int i, eccsize = chip->ecc.size, ret; + int eccbytes = chip->ecc.bytes; + int eccsteps = chip->ecc.steps; + uint8_t *ecc_calc = chip->ecc.calc_buf; + const uint8_t *p = buf; + + /* Software ECC calculation */ + for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) + chip->ecc.calculate(chip, p, &ecc_calc[i]); + + ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi, 0, + chip->ecc.total); + if (ret) + return ret; + + return chip->ecc.write_page_raw(chip, buf, 1, page); +} + +/** + * nand_write_page_hwecc - [REPLACEABLE] hardware ECC based page write function + * @chip: nand chip info structure + * @buf: data buffer + * @oob_required: must write chip->oob_poi to OOB + * @page: page number to write + */ +static int nand_write_page_hwecc(struct nand_chip *chip, const uint8_t *buf, + int oob_required, int page) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + int i, eccsize = chip->ecc.size, ret; + int eccbytes = chip->ecc.bytes; + int eccsteps = chip->ecc.steps; + uint8_t *ecc_calc = chip->ecc.calc_buf; + const uint8_t *p = buf; + + ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0); + if (ret) + return ret; + + for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) { + chip->ecc.hwctl(chip, NAND_ECC_WRITE); + + ret = nand_write_data_op(chip, p, eccsize, false); + if (ret) + return ret; + + chip->ecc.calculate(chip, p, &ecc_calc[i]); + } + + ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi, 0, + chip->ecc.total); + if (ret) + return ret; + + ret = nand_write_data_op(chip, chip->oob_poi, mtd->oobsize, false); + if (ret) + return ret; + + return nand_prog_page_end_op(chip); +} + + +/** + * nand_write_subpage_hwecc - [REPLACEABLE] hardware ECC based subpage write + * @chip: nand chip info structure + * @offset: column address of subpage within the page + * @data_len: data length + * @buf: data buffer + * @oob_required: must write chip->oob_poi to OOB + * @page: page number to write + */ +static int nand_write_subpage_hwecc(struct nand_chip *chip, uint32_t offset, + uint32_t data_len, const uint8_t *buf, + int oob_required, int page) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + uint8_t *oob_buf = chip->oob_poi; + uint8_t *ecc_calc = chip->ecc.calc_buf; + int ecc_size = chip->ecc.size; + int ecc_bytes = chip->ecc.bytes; + int ecc_steps = chip->ecc.steps; + uint32_t start_step = offset / ecc_size; + uint32_t end_step = (offset + data_len - 1) / ecc_size; + int oob_bytes = mtd->oobsize / ecc_steps; + int step, ret; + + ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0); + if (ret) + return ret; + + for (step = 0; step < ecc_steps; step++) { + /* configure controller for WRITE access */ + chip->ecc.hwctl(chip, NAND_ECC_WRITE); + + /* write data (untouched subpages already masked by 0xFF) */ + ret = nand_write_data_op(chip, buf, ecc_size, false); + if (ret) + return ret; + + /* mask ECC of un-touched subpages by padding 0xFF */ + if ((step < start_step) || (step > end_step)) + memset(ecc_calc, 0xff, ecc_bytes); + else + chip->ecc.calculate(chip, buf, ecc_calc); + + /* mask OOB of un-touched subpages by padding 0xFF */ + /* if oob_required, preserve OOB metadata of written subpage */ + if (!oob_required || (step < start_step) || (step > end_step)) + memset(oob_buf, 0xff, oob_bytes); + + buf += ecc_size; + ecc_calc += ecc_bytes; + oob_buf += oob_bytes; + } + + /* copy calculated ECC for whole page to chip->buffer->oob */ + /* this include masked-value(0xFF) for unwritten subpages */ + ecc_calc = chip->ecc.calc_buf; + ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi, 0, + chip->ecc.total); + if (ret) + return ret; + + /* write OOB buffer to NAND device */ + ret = nand_write_data_op(chip, chip->oob_poi, mtd->oobsize, false); + if (ret) + return ret; + + return nand_prog_page_end_op(chip); +} + + +/** + * nand_write_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page write + * @chip: nand chip info structure + * @buf: data buffer + * @oob_required: must write chip->oob_poi to OOB + * @page: page number to write + * + * The hw generator calculates the error syndrome automatically. Therefore we + * need a special oob layout and handling. + */ +static int nand_write_page_syndrome(struct nand_chip *chip, const uint8_t *buf, + int oob_required, int page) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + int i, eccsize = chip->ecc.size; + int eccbytes = chip->ecc.bytes; + int eccsteps = chip->ecc.steps; + const uint8_t *p = buf; + uint8_t *oob = chip->oob_poi; + int ret; + + ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0); + if (ret) + return ret; + + for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) { + chip->ecc.hwctl(chip, NAND_ECC_WRITE); + + ret = nand_write_data_op(chip, p, eccsize, false); + if (ret) + return ret; + + if (chip->ecc.prepad) { + ret = nand_write_data_op(chip, oob, chip->ecc.prepad, + false); + if (ret) + return ret; + + oob += chip->ecc.prepad; + } + + chip->ecc.calculate(chip, p, oob); + + ret = nand_write_data_op(chip, oob, eccbytes, false); + if (ret) + return ret; + + oob += eccbytes; + + if (chip->ecc.postpad) { + ret = nand_write_data_op(chip, oob, chip->ecc.postpad, + false); + if (ret) + return ret; + + oob += chip->ecc.postpad; + } + } + + /* Calculate remaining oob bytes */ + i = mtd->oobsize - (oob - chip->oob_poi); + if (i) { + ret = nand_write_data_op(chip, oob, i, false); + if (ret) + return ret; + } + + return nand_prog_page_end_op(chip); +} + +/** + * nand_write_page - write one page + * @chip: NAND chip descriptor + * @offset: address offset within the page + * @data_len: length of actual data to be written + * @buf: the data to write + * @oob_required: must write chip->oob_poi to OOB + * @page: page number to write + * @raw: use _raw version of write_page + */ +static int nand_write_page(struct nand_chip *chip, uint32_t offset, + int data_len, const uint8_t *buf, int oob_required, + int page, int raw) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + int status, subpage; + + if (!(chip->options & NAND_NO_SUBPAGE_WRITE) && + chip->ecc.write_subpage) + subpage = offset || (data_len < mtd->writesize); + else + subpage = 0; + + if (unlikely(raw)) + status = chip->ecc.write_page_raw(chip, buf, oob_required, + page); + else if (subpage) + status = chip->ecc.write_subpage(chip, offset, data_len, buf, + oob_required, page); + else + status = chip->ecc.write_page(chip, buf, oob_required, page); + + if (status < 0) + return status; + + return 0; +} + +#define NOTALIGNED(x) ((x & (chip->subpagesize - 1)) != 0) + +/** + * nand_do_write_ops - [INTERN] NAND write with ECC + * @chip: NAND chip object + * @to: offset to write to + * @ops: oob operations description structure + * + * NAND write with ECC. + */ +static int nand_do_write_ops(struct nand_chip *chip, loff_t to, + struct mtd_oob_ops *ops) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + int chipnr, realpage, page, column; + uint32_t writelen = ops->len; + + uint32_t oobwritelen = ops->ooblen; + uint32_t oobmaxlen = mtd_oobavail(mtd, ops); + + uint8_t *oob = ops->oobbuf; + uint8_t *buf = ops->datbuf; + int ret; + int oob_required = oob ? 1 : 0; + + ops->retlen = 0; + if (!writelen) + return 0; + + /* Reject writes, which are not page aligned */ + if (NOTALIGNED(to) || NOTALIGNED(ops->len)) { + pr_notice("%s: attempt to write non page aligned data\n", + __func__); + return -EINVAL; + } + + /* Check if the region is secured */ + if (nand_region_is_secured(chip, to, writelen)) + return -EIO; + + column = to & (mtd->writesize - 1); + + chipnr = (int)(to >> chip->chip_shift); + nand_select_target(chip, chipnr); + + /* Check, if it is write protected */ + if (nand_check_wp(chip)) { + ret = -EIO; + goto err_out; + } + + realpage = (int)(to >> chip->page_shift); + page = realpage & chip->pagemask; + + /* Invalidate the page cache, when we write to the cached page */ + if (to <= ((loff_t)chip->pagecache.page << chip->page_shift) && + ((loff_t)chip->pagecache.page << chip->page_shift) < (to + ops->len)) + chip->pagecache.page = -1; + + /* Don't allow multipage oob writes with offset */ + if (oob && ops->ooboffs && (ops->ooboffs + ops->ooblen > oobmaxlen)) { + ret = -EINVAL; + goto err_out; + } + + while (1) { + int bytes = mtd->writesize; + uint8_t *wbuf = buf; + int use_bounce_buf; + int part_pagewr = (column || writelen < mtd->writesize); + + if (part_pagewr) + use_bounce_buf = 1; + else if (chip->options & NAND_USES_DMA) + use_bounce_buf = !virt_addr_valid(buf) || + !IS_ALIGNED((unsigned long)buf, + chip->buf_align); + else + use_bounce_buf = 0; + + /* + * Copy the data from the initial buffer when doing partial page + * writes or when a bounce buffer is required. + */ + if (use_bounce_buf) { + pr_debug("%s: using write bounce buffer for buf@%p\n", + __func__, buf); + if (part_pagewr) + bytes = min_t(int, bytes - column, writelen); + wbuf = nand_get_data_buf(chip); + memset(wbuf, 0xff, mtd->writesize); + memcpy(&wbuf[column], buf, bytes); + } + + if (unlikely(oob)) { + size_t len = min(oobwritelen, oobmaxlen); + oob = nand_fill_oob(chip, oob, len, ops); + oobwritelen -= len; + } else { + /* We still need to erase leftover OOB data */ + memset(chip->oob_poi, 0xff, mtd->oobsize); + } + + ret = nand_write_page(chip, column, bytes, wbuf, + oob_required, page, + (ops->mode == MTD_OPS_RAW)); + if (ret) + break; + + writelen -= bytes; + if (!writelen) + break; + + column = 0; + buf += bytes; + realpage++; + + page = realpage & chip->pagemask; + /* Check, if we cross a chip boundary */ + if (!page) { + chipnr++; + nand_deselect_target(chip); + nand_select_target(chip, chipnr); + } + } + + ops->retlen = ops->len - writelen; + if (unlikely(oob)) + ops->oobretlen = ops->ooblen; + +err_out: + nand_deselect_target(chip); + return ret; +} + +/** + * panic_nand_write - [MTD Interface] NAND write with ECC + * @mtd: MTD device structure + * @to: offset to write to + * @len: number of bytes to write + * @retlen: pointer to variable to store the number of written bytes + * @buf: the data to write + * + * NAND write with ECC. Used when performing writes in interrupt context, this + * may for example be called by mtdoops when writing an oops while in panic. + */ +static int panic_nand_write(struct mtd_info *mtd, loff_t to, size_t len, + size_t *retlen, const uint8_t *buf) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + int chipnr = (int)(to >> chip->chip_shift); + struct mtd_oob_ops ops; + int ret; + + nand_select_target(chip, chipnr); + + /* Wait for the device to get ready */ + panic_nand_wait(chip, 400); + + memset(&ops, 0, sizeof(ops)); + ops.len = len; + ops.datbuf = (uint8_t *)buf; + ops.mode = MTD_OPS_PLACE_OOB; + + ret = nand_do_write_ops(chip, to, &ops); + + *retlen = ops.retlen; + return ret; +} + +/** + * nand_write_oob - [MTD Interface] NAND write data and/or out-of-band + * @mtd: MTD device structure + * @to: offset to write to + * @ops: oob operation description structure + */ +static int nand_write_oob(struct mtd_info *mtd, loff_t to, + struct mtd_oob_ops *ops) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + int ret = 0; + + ops->retlen = 0; + + nand_get_device(chip); + + switch (ops->mode) { + case MTD_OPS_PLACE_OOB: + case MTD_OPS_AUTO_OOB: + case MTD_OPS_RAW: + break; + + default: + goto out; + } + + if (!ops->datbuf) + ret = nand_do_write_oob(chip, to, ops); + else + ret = nand_do_write_ops(chip, to, ops); + +out: + nand_release_device(chip); + return ret; +} + +/** + * nand_erase - [MTD Interface] erase block(s) + * @mtd: MTD device structure + * @instr: erase instruction + * + * Erase one ore more blocks. + */ +static int nand_erase(struct mtd_info *mtd, struct erase_info *instr) +{ + return nand_erase_nand(mtd_to_nand(mtd), instr, 0); +} + +/** + * nand_erase_nand - [INTERN] erase block(s) + * @chip: NAND chip object + * @instr: erase instruction + * @allowbbt: allow erasing the bbt area + * + * Erase one ore more blocks. + */ +int nand_erase_nand(struct nand_chip *chip, struct erase_info *instr, + int allowbbt) +{ + int page, pages_per_block, ret, chipnr; + loff_t len; + + pr_debug("%s: start = 0x%012llx, len = %llu\n", + __func__, (unsigned long long)instr->addr, + (unsigned long long)instr->len); + + if (check_offs_len(chip, instr->addr, instr->len)) + return -EINVAL; + + /* Check if the region is secured */ + if (nand_region_is_secured(chip, instr->addr, instr->len)) + return -EIO; + + /* Grab the lock and see if the device is available */ + nand_get_device(chip); + + /* Shift to get first page */ + page = (int)(instr->addr >> chip->page_shift); + chipnr = (int)(instr->addr >> chip->chip_shift); + + /* Calculate pages in each block */ + pages_per_block = 1 << (chip->phys_erase_shift - chip->page_shift); + + /* Select the NAND device */ + nand_select_target(chip, chipnr); + + /* Check, if it is write protected */ + if (nand_check_wp(chip)) { + pr_debug("%s: device is write protected!\n", + __func__); + ret = -EIO; + goto erase_exit; + } + + /* Loop through the pages */ + len = instr->len; + + while (len) { + loff_t ofs = (loff_t)page << chip->page_shift; + + /* Check if we have a bad block, we do not erase bad blocks! */ + if (nand_block_checkbad(chip, ((loff_t) page) << + chip->page_shift, allowbbt)) { + pr_warn("%s: attempt to erase a bad block at 0x%08llx\n", + __func__, (unsigned long long)ofs); + ret = -EIO; + goto erase_exit; + } + + /* + * Invalidate the page cache, if we erase the block which + * contains the current cached page. + */ + if (page <= chip->pagecache.page && chip->pagecache.page < + (page + pages_per_block)) + chip->pagecache.page = -1; + + ret = nand_erase_op(chip, (page & chip->pagemask) >> + (chip->phys_erase_shift - chip->page_shift)); + if (ret) { + pr_debug("%s: failed erase, page 0x%08x\n", + __func__, page); + instr->fail_addr = ofs; + goto erase_exit; + } + + /* Increment page address and decrement length */ + len -= (1ULL << chip->phys_erase_shift); + page += pages_per_block; + + /* Check, if we cross a chip boundary */ + if (len && !(page & chip->pagemask)) { + chipnr++; + nand_deselect_target(chip); + nand_select_target(chip, chipnr); + } + } + + ret = 0; +erase_exit: + + /* Deselect and wake up anyone waiting on the device */ + nand_deselect_target(chip); + nand_release_device(chip); + + /* Return more or less happy */ + return ret; +} + +/** + * nand_sync - [MTD Interface] sync + * @mtd: MTD device structure + * + * Sync is actually a wait for chip ready function. + */ +static void nand_sync(struct mtd_info *mtd) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + + pr_debug("%s: called\n", __func__); + + /* Grab the lock and see if the device is available */ + nand_get_device(chip); + /* Release it and go back */ + nand_release_device(chip); +} + +/** + * nand_block_isbad - [MTD Interface] Check if block at offset is bad + * @mtd: MTD device structure + * @offs: offset relative to mtd start + */ +static int nand_block_isbad(struct mtd_info *mtd, loff_t offs) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + int chipnr = (int)(offs >> chip->chip_shift); + int ret; + + /* Select the NAND device */ + nand_get_device(chip); + + nand_select_target(chip, chipnr); + + ret = nand_block_checkbad(chip, offs, 0); + + nand_deselect_target(chip); + nand_release_device(chip); + + return ret; +} + +/** + * nand_block_markbad - [MTD Interface] Mark block at the given offset as bad + * @mtd: MTD device structure + * @ofs: offset relative to mtd start + */ +static int nand_block_markbad(struct mtd_info *mtd, loff_t ofs) +{ + int ret; + + ret = nand_block_isbad(mtd, ofs); + if (ret) { + /* If it was bad already, return success and do nothing */ + if (ret > 0) + return 0; + return ret; + } + + return nand_block_markbad_lowlevel(mtd_to_nand(mtd), ofs); +} + +/** + * nand_suspend - [MTD Interface] Suspend the NAND flash + * @mtd: MTD device structure + * + * Returns 0 for success or negative error code otherwise. + */ +static int nand_suspend(struct mtd_info *mtd) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + int ret = 0; + + mutex_lock(&chip->lock); + if (chip->ops.suspend) + ret = chip->ops.suspend(chip); + if (!ret) + chip->suspended = 1; + mutex_unlock(&chip->lock); + + return ret; +} + +/** + * nand_resume - [MTD Interface] Resume the NAND flash + * @mtd: MTD device structure + */ +static void nand_resume(struct mtd_info *mtd) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + + mutex_lock(&chip->lock); + if (chip->suspended) { + if (chip->ops.resume) + chip->ops.resume(chip); + chip->suspended = 0; + } else { + pr_err("%s called for a chip which is not in suspended state\n", + __func__); + } + mutex_unlock(&chip->lock); + + wake_up_all(&chip->resume_wq); +} + +/** + * nand_shutdown - [MTD Interface] Finish the current NAND operation and + * prevent further operations + * @mtd: MTD device structure + */ +static void nand_shutdown(struct mtd_info *mtd) +{ + nand_suspend(mtd); +} + +/** + * nand_lock - [MTD Interface] Lock the NAND flash + * @mtd: MTD device structure + * @ofs: offset byte address + * @len: number of bytes to lock (must be a multiple of block/page size) + */ +static int nand_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + + if (!chip->ops.lock_area) + return -ENOTSUPP; + + return chip->ops.lock_area(chip, ofs, len); +} + +/** + * nand_unlock - [MTD Interface] Unlock the NAND flash + * @mtd: MTD device structure + * @ofs: offset byte address + * @len: number of bytes to unlock (must be a multiple of block/page size) + */ +static int nand_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + + if (!chip->ops.unlock_area) + return -ENOTSUPP; + + return chip->ops.unlock_area(chip, ofs, len); +} + +/* Set default functions */ +static void nand_set_defaults(struct nand_chip *chip) +{ + /* If no controller is provided, use the dummy, legacy one. */ + if (!chip->controller) { + chip->controller = &chip->legacy.dummy_controller; + nand_controller_init(chip->controller); + } + + nand_legacy_set_defaults(chip); + + if (!chip->buf_align) + chip->buf_align = 1; +} + +/* Sanitize ONFI strings so we can safely print them */ +void sanitize_string(uint8_t *s, size_t len) +{ + ssize_t i; + + /* Null terminate */ + s[len - 1] = 0; + + /* Remove non printable chars */ + for (i = 0; i < len - 1; i++) { + if (s[i] < ' ' || s[i] > 127) + s[i] = '?'; + } + + /* Remove trailing spaces */ + strim(s); +} + +/* + * nand_id_has_period - Check if an ID string has a given wraparound period + * @id_data: the ID string + * @arrlen: the length of the @id_data array + * @period: the period of repitition + * + * Check if an ID string is repeated within a given sequence of bytes at + * specific repetition interval period (e.g., {0x20,0x01,0x7F,0x20} has a + * period of 3). This is a helper function for nand_id_len(). Returns non-zero + * if the repetition has a period of @period; otherwise, returns zero. + */ +static int nand_id_has_period(u8 *id_data, int arrlen, int period) +{ + int i, j; + for (i = 0; i < period; i++) + for (j = i + period; j < arrlen; j += period) + if (id_data[i] != id_data[j]) + return 0; + return 1; +} + +/* + * nand_id_len - Get the length of an ID string returned by CMD_READID + * @id_data: the ID string + * @arrlen: the length of the @id_data array + + * Returns the length of the ID string, according to known wraparound/trailing + * zero patterns. If no pattern exists, returns the length of the array. + */ +static int nand_id_len(u8 *id_data, int arrlen) +{ + int last_nonzero, period; + + /* Find last non-zero byte */ + for (last_nonzero = arrlen - 1; last_nonzero >= 0; last_nonzero--) + if (id_data[last_nonzero]) + break; + + /* All zeros */ + if (last_nonzero < 0) + return 0; + + /* Calculate wraparound period */ + for (period = 1; period < arrlen; period++) + if (nand_id_has_period(id_data, arrlen, period)) + break; + + /* There's a repeated pattern */ + if (period < arrlen) + return period; + + /* There are trailing zeros */ + if (last_nonzero < arrlen - 1) + return last_nonzero + 1; + + /* No pattern detected */ + return arrlen; +} + +/* Extract the bits of per cell from the 3rd byte of the extended ID */ +static int nand_get_bits_per_cell(u8 cellinfo) +{ + int bits; + + bits = cellinfo & NAND_CI_CELLTYPE_MSK; + bits >>= NAND_CI_CELLTYPE_SHIFT; + return bits + 1; +} + +/* + * Many new NAND share similar device ID codes, which represent the size of the + * chip. The rest of the parameters must be decoded according to generic or + * manufacturer-specific "extended ID" decoding patterns. + */ +void nand_decode_ext_id(struct nand_chip *chip) +{ + struct nand_memory_organization *memorg; + struct mtd_info *mtd = nand_to_mtd(chip); + int extid; + u8 *id_data = chip->id.data; + + memorg = nanddev_get_memorg(&chip->base); + + /* The 3rd id byte holds MLC / multichip data */ + memorg->bits_per_cell = nand_get_bits_per_cell(id_data[2]); + /* The 4th id byte is the important one */ + extid = id_data[3]; + + /* Calc pagesize */ + memorg->pagesize = 1024 << (extid & 0x03); + mtd->writesize = memorg->pagesize; + extid >>= 2; + /* Calc oobsize */ + memorg->oobsize = (8 << (extid & 0x01)) * (mtd->writesize >> 9); + mtd->oobsize = memorg->oobsize; + extid >>= 2; + /* Calc blocksize. Blocksize is multiples of 64KiB */ + memorg->pages_per_eraseblock = ((64 * 1024) << (extid & 0x03)) / + memorg->pagesize; + mtd->erasesize = (64 * 1024) << (extid & 0x03); + extid >>= 2; + /* Get buswidth information */ + if (extid & 0x1) + chip->options |= NAND_BUSWIDTH_16; +} +EXPORT_SYMBOL_GPL(nand_decode_ext_id); + +/* + * Old devices have chip data hardcoded in the device ID table. nand_decode_id + * decodes a matching ID table entry and assigns the MTD size parameters for + * the chip. + */ +static void nand_decode_id(struct nand_chip *chip, struct nand_flash_dev *type) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + struct nand_memory_organization *memorg; + + memorg = nanddev_get_memorg(&chip->base); + + memorg->pages_per_eraseblock = type->erasesize / type->pagesize; + mtd->erasesize = type->erasesize; + memorg->pagesize = type->pagesize; + mtd->writesize = memorg->pagesize; + memorg->oobsize = memorg->pagesize / 32; + mtd->oobsize = memorg->oobsize; + + /* All legacy ID NAND are small-page, SLC */ + memorg->bits_per_cell = 1; +} + +/* + * Set the bad block marker/indicator (BBM/BBI) patterns according to some + * heuristic patterns using various detected parameters (e.g., manufacturer, + * page size, cell-type information). + */ +static void nand_decode_bbm_options(struct nand_chip *chip) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + + /* Set the bad block position */ + if (mtd->writesize > 512 || (chip->options & NAND_BUSWIDTH_16)) + chip->badblockpos = NAND_BBM_POS_LARGE; + else + chip->badblockpos = NAND_BBM_POS_SMALL; +} + +static inline bool is_full_id_nand(struct nand_flash_dev *type) +{ + return type->id_len; +} + +static bool find_full_id_nand(struct nand_chip *chip, + struct nand_flash_dev *type) +{ + struct nand_device *base = &chip->base; + struct nand_ecc_props requirements; + struct mtd_info *mtd = nand_to_mtd(chip); + struct nand_memory_organization *memorg; + u8 *id_data = chip->id.data; + + memorg = nanddev_get_memorg(&chip->base); + + if (!strncmp(type->id, id_data, type->id_len)) { + memorg->pagesize = type->pagesize; + mtd->writesize = memorg->pagesize; + memorg->pages_per_eraseblock = type->erasesize / + type->pagesize; + mtd->erasesize = type->erasesize; + memorg->oobsize = type->oobsize; + mtd->oobsize = memorg->oobsize; + + memorg->bits_per_cell = nand_get_bits_per_cell(id_data[2]); + memorg->eraseblocks_per_lun = + DIV_ROUND_DOWN_ULL((u64)type->chipsize << 20, + memorg->pagesize * + memorg->pages_per_eraseblock); + chip->options |= type->options; + requirements.strength = NAND_ECC_STRENGTH(type); + requirements.step_size = NAND_ECC_STEP(type); + nanddev_set_ecc_requirements(base, &requirements); + + chip->parameters.model = kstrdup(type->name, GFP_KERNEL); + if (!chip->parameters.model) + return false; + + return true; + } + return false; +} + +/* + * Manufacturer detection. Only used when the NAND is not ONFI or JEDEC + * compliant and does not have a full-id or legacy-id entry in the nand_ids + * table. + */ +static void nand_manufacturer_detect(struct nand_chip *chip) +{ + /* + * Try manufacturer detection if available and use + * nand_decode_ext_id() otherwise. + */ + if (chip->manufacturer.desc && chip->manufacturer.desc->ops && + chip->manufacturer.desc->ops->detect) { + struct nand_memory_organization *memorg; + + memorg = nanddev_get_memorg(&chip->base); + + /* The 3rd id byte holds MLC / multichip data */ + memorg->bits_per_cell = nand_get_bits_per_cell(chip->id.data[2]); + chip->manufacturer.desc->ops->detect(chip); + } else { + nand_decode_ext_id(chip); + } +} + +/* + * Manufacturer initialization. This function is called for all NANDs including + * ONFI and JEDEC compliant ones. + * Manufacturer drivers should put all their specific initialization code in + * their ->init() hook. + */ +static int nand_manufacturer_init(struct nand_chip *chip) +{ + if (!chip->manufacturer.desc || !chip->manufacturer.desc->ops || + !chip->manufacturer.desc->ops->init) + return 0; + + return chip->manufacturer.desc->ops->init(chip); +} + +/* + * Manufacturer cleanup. This function is called for all NANDs including + * ONFI and JEDEC compliant ones. + * Manufacturer drivers should put all their specific cleanup code in their + * ->cleanup() hook. + */ +static void nand_manufacturer_cleanup(struct nand_chip *chip) +{ + /* Release manufacturer private data */ + if (chip->manufacturer.desc && chip->manufacturer.desc->ops && + chip->manufacturer.desc->ops->cleanup) + chip->manufacturer.desc->ops->cleanup(chip); +} + +static const char * +nand_manufacturer_name(const struct nand_manufacturer_desc *manufacturer_desc) +{ + return manufacturer_desc ? manufacturer_desc->name : "Unknown"; +} + +static void rawnand_check_data_only_read_support(struct nand_chip *chip) +{ + /* Use an arbitrary size for the check */ + if (!nand_read_data_op(chip, NULL, SZ_512, true, true)) + chip->controller->supported_op.data_only_read = 1; +} + +static void rawnand_early_check_supported_ops(struct nand_chip *chip) +{ + /* The supported_op fields should not be set by individual drivers */ + WARN_ON_ONCE(chip->controller->supported_op.data_only_read); + + if (!nand_has_exec_op(chip)) + return; + + rawnand_check_data_only_read_support(chip); +} + +static void rawnand_check_cont_read_support(struct nand_chip *chip) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + + if (!chip->parameters.supports_read_cache) + return; + + if (chip->read_retries) + return; + + if (!nand_lp_exec_cont_read_page_op(chip, 0, 0, NULL, + mtd->writesize, true)) + chip->controller->supported_op.cont_read = 1; +} + +static void rawnand_late_check_supported_ops(struct nand_chip *chip) +{ + /* The supported_op fields should not be set by individual drivers */ + WARN_ON_ONCE(chip->controller->supported_op.cont_read); + + /* + * Too many devices do not support sequential cached reads with on-die + * ECC correction enabled, so in this case refuse to perform the + * automation. + */ + if (chip->ecc.engine_type == NAND_ECC_ENGINE_TYPE_ON_DIE) + return; + + if (!nand_has_exec_op(chip)) + return; + + rawnand_check_cont_read_support(chip); +} + +/* + * Get the flash and manufacturer id and lookup if the type is supported. + */ +static int nand_detect(struct nand_chip *chip, struct nand_flash_dev *type) +{ + const struct nand_manufacturer_desc *manufacturer_desc; + struct mtd_info *mtd = nand_to_mtd(chip); + struct nand_memory_organization *memorg; + int busw, ret; + u8 *id_data = chip->id.data; + u8 maf_id, dev_id; + u64 targetsize; + + /* + * Let's start by initializing memorg fields that might be left + * unassigned by the ID-based detection logic. + */ + memorg = nanddev_get_memorg(&chip->base); + memorg->planes_per_lun = 1; + memorg->luns_per_target = 1; + + /* + * Reset the chip, required by some chips (e.g. Micron MT29FxGxxxxx) + * after power-up. + */ + ret = nand_reset(chip, 0); + if (ret) + return ret; + + /* Select the device */ + nand_select_target(chip, 0); + + rawnand_early_check_supported_ops(chip); + + /* Send the command for reading device ID */ + ret = nand_readid_op(chip, 0, id_data, 2); + if (ret) + return ret; + + /* Read manufacturer and device IDs */ + maf_id = id_data[0]; + dev_id = id_data[1]; + + /* + * Try again to make sure, as some systems the bus-hold or other + * interface concerns can cause random data which looks like a + * possibly credible NAND flash to appear. If the two results do + * not match, ignore the device completely. + */ + + /* Read entire ID string */ + ret = nand_readid_op(chip, 0, id_data, sizeof(chip->id.data)); + if (ret) + return ret; + + if (id_data[0] != maf_id || id_data[1] != dev_id) { + pr_info("second ID read did not match %02x,%02x against %02x,%02x\n", + maf_id, dev_id, id_data[0], id_data[1]); + return -ENODEV; + } + + chip->id.len = nand_id_len(id_data, ARRAY_SIZE(chip->id.data)); + + /* Try to identify manufacturer */ + manufacturer_desc = nand_get_manufacturer_desc(maf_id); + chip->manufacturer.desc = manufacturer_desc; + + if (!type) + type = nand_flash_ids; + + /* + * Save the NAND_BUSWIDTH_16 flag before letting auto-detection logic + * override it. + * This is required to make sure initial NAND bus width set by the + * NAND controller driver is coherent with the real NAND bus width + * (extracted by auto-detection code). + */ + busw = chip->options & NAND_BUSWIDTH_16; + + /* + * The flag is only set (never cleared), reset it to its default value + * before starting auto-detection. + */ + chip->options &= ~NAND_BUSWIDTH_16; + + for (; type->name != NULL; type++) { + if (is_full_id_nand(type)) { + if (find_full_id_nand(chip, type)) + goto ident_done; + } else if (dev_id == type->dev_id) { + break; + } + } + + if (!type->name || !type->pagesize) { + /* Check if the chip is ONFI compliant */ + ret = nand_onfi_detect(chip); + if (ret < 0) + return ret; + else if (ret) + goto ident_done; + + /* Check if the chip is JEDEC compliant */ + ret = nand_jedec_detect(chip); + if (ret < 0) + return ret; + else if (ret) + goto ident_done; + } + + if (!type->name) + return -ENODEV; + + chip->parameters.model = kstrdup(type->name, GFP_KERNEL); + if (!chip->parameters.model) + return -ENOMEM; + + if (!type->pagesize) + nand_manufacturer_detect(chip); + else + nand_decode_id(chip, type); + + /* Get chip options */ + chip->options |= type->options; + + memorg->eraseblocks_per_lun = + DIV_ROUND_DOWN_ULL((u64)type->chipsize << 20, + memorg->pagesize * + memorg->pages_per_eraseblock); + +ident_done: + if (!mtd->name) + mtd->name = chip->parameters.model; + + if (chip->options & NAND_BUSWIDTH_AUTO) { + WARN_ON(busw & NAND_BUSWIDTH_16); + nand_set_defaults(chip); + } else if (busw != (chip->options & NAND_BUSWIDTH_16)) { + /* + * Check, if buswidth is correct. Hardware drivers should set + * chip correct! + */ + pr_info("device found, Manufacturer ID: 0x%02x, Chip ID: 0x%02x\n", + maf_id, dev_id); + pr_info("%s %s\n", nand_manufacturer_name(manufacturer_desc), + mtd->name); + pr_warn("bus width %d instead of %d bits\n", busw ? 16 : 8, + (chip->options & NAND_BUSWIDTH_16) ? 16 : 8); + ret = -EINVAL; + + goto free_detect_allocation; + } + + nand_decode_bbm_options(chip); + + /* Calculate the address shift from the page size */ + chip->page_shift = ffs(mtd->writesize) - 1; + /* Convert chipsize to number of pages per chip -1 */ + targetsize = nanddev_target_size(&chip->base); + chip->pagemask = (targetsize >> chip->page_shift) - 1; + + chip->bbt_erase_shift = chip->phys_erase_shift = + ffs(mtd->erasesize) - 1; + if (targetsize & 0xffffffff) + chip->chip_shift = ffs((unsigned)targetsize) - 1; + else { + chip->chip_shift = ffs((unsigned)(targetsize >> 32)); + chip->chip_shift += 32 - 1; + } + + if (chip->chip_shift - chip->page_shift > 16) + chip->options |= NAND_ROW_ADDR_3; + + chip->badblockbits = 8; + + nand_legacy_adjust_cmdfunc(chip); + + pr_info("device found, Manufacturer ID: 0x%02x, Chip ID: 0x%02x\n", + maf_id, dev_id); + pr_info("%s %s\n", nand_manufacturer_name(manufacturer_desc), + chip->parameters.model); + pr_info("%d MiB, %s, erase size: %d KiB, page size: %d, OOB size: %d\n", + (int)(targetsize >> 20), nand_is_slc(chip) ? "SLC" : "MLC", + mtd->erasesize >> 10, mtd->writesize, mtd->oobsize); + return 0; + +free_detect_allocation: + kfree(chip->parameters.model); + + return ret; +} + +static enum nand_ecc_engine_type +of_get_rawnand_ecc_engine_type_legacy(struct device_node *np) +{ + enum nand_ecc_legacy_mode { + NAND_ECC_INVALID, + NAND_ECC_NONE, + NAND_ECC_SOFT, + NAND_ECC_SOFT_BCH, + NAND_ECC_HW, + NAND_ECC_HW_SYNDROME, + NAND_ECC_ON_DIE, + }; + const char * const nand_ecc_legacy_modes[] = { + [NAND_ECC_NONE] = "none", + [NAND_ECC_SOFT] = "soft", + [NAND_ECC_SOFT_BCH] = "soft_bch", + [NAND_ECC_HW] = "hw", + [NAND_ECC_HW_SYNDROME] = "hw_syndrome", + [NAND_ECC_ON_DIE] = "on-die", + }; + enum nand_ecc_legacy_mode eng_type; + const char *pm; + int err; + + err = of_property_read_string(np, "nand-ecc-mode", &pm); + if (err) + return NAND_ECC_ENGINE_TYPE_INVALID; + + for (eng_type = NAND_ECC_NONE; + eng_type < ARRAY_SIZE(nand_ecc_legacy_modes); eng_type++) { + if (!strcasecmp(pm, nand_ecc_legacy_modes[eng_type])) { + switch (eng_type) { + case NAND_ECC_NONE: + return NAND_ECC_ENGINE_TYPE_NONE; + case NAND_ECC_SOFT: + case NAND_ECC_SOFT_BCH: + return NAND_ECC_ENGINE_TYPE_SOFT; + case NAND_ECC_HW: + case NAND_ECC_HW_SYNDROME: + return NAND_ECC_ENGINE_TYPE_ON_HOST; + case NAND_ECC_ON_DIE: + return NAND_ECC_ENGINE_TYPE_ON_DIE; + default: + break; + } + } + } + + return NAND_ECC_ENGINE_TYPE_INVALID; +} + +static enum nand_ecc_placement +of_get_rawnand_ecc_placement_legacy(struct device_node *np) +{ + const char *pm; + int err; + + err = of_property_read_string(np, "nand-ecc-mode", &pm); + if (!err) { + if (!strcasecmp(pm, "hw_syndrome")) + return NAND_ECC_PLACEMENT_INTERLEAVED; + } + + return NAND_ECC_PLACEMENT_UNKNOWN; +} + +static enum nand_ecc_algo of_get_rawnand_ecc_algo_legacy(struct device_node *np) +{ + const char *pm; + int err; + + err = of_property_read_string(np, "nand-ecc-mode", &pm); + if (!err) { + if (!strcasecmp(pm, "soft")) + return NAND_ECC_ALGO_HAMMING; + else if (!strcasecmp(pm, "soft_bch")) + return NAND_ECC_ALGO_BCH; + } + + return NAND_ECC_ALGO_UNKNOWN; +} + +static void of_get_nand_ecc_legacy_user_config(struct nand_chip *chip) +{ + struct device_node *dn = nand_get_flash_node(chip); + struct nand_ecc_props *user_conf = &chip->base.ecc.user_conf; + + if (user_conf->engine_type == NAND_ECC_ENGINE_TYPE_INVALID) + user_conf->engine_type = of_get_rawnand_ecc_engine_type_legacy(dn); + + if (user_conf->algo == NAND_ECC_ALGO_UNKNOWN) + user_conf->algo = of_get_rawnand_ecc_algo_legacy(dn); + + if (user_conf->placement == NAND_ECC_PLACEMENT_UNKNOWN) + user_conf->placement = of_get_rawnand_ecc_placement_legacy(dn); +} + +static int of_get_nand_bus_width(struct nand_chip *chip) +{ + struct device_node *dn = nand_get_flash_node(chip); + u32 val; + int ret; + + ret = of_property_read_u32(dn, "nand-bus-width", &val); + if (ret == -EINVAL) + /* Buswidth defaults to 8 if the property does not exist .*/ + return 0; + else if (ret) + return ret; + + if (val == 16) + chip->options |= NAND_BUSWIDTH_16; + else if (val != 8) + return -EINVAL; + return 0; +} + +static int of_get_nand_secure_regions(struct nand_chip *chip) +{ + struct device_node *dn = nand_get_flash_node(chip); + struct property *prop; + int nr_elem, i, j; + + /* Only proceed if the "secure-regions" property is present in DT */ + prop = of_find_property(dn, "secure-regions", NULL); + if (!prop) + return 0; + + nr_elem = of_property_count_elems_of_size(dn, "secure-regions", sizeof(u64)); + if (nr_elem <= 0) + return nr_elem; + + chip->nr_secure_regions = nr_elem / 2; + chip->secure_regions = kcalloc(chip->nr_secure_regions, sizeof(*chip->secure_regions), + GFP_KERNEL); + if (!chip->secure_regions) + return -ENOMEM; + + for (i = 0, j = 0; i < chip->nr_secure_regions; i++, j += 2) { + of_property_read_u64_index(dn, "secure-regions", j, + &chip->secure_regions[i].offset); + of_property_read_u64_index(dn, "secure-regions", j + 1, + &chip->secure_regions[i].size); + } + + return 0; +} + +/** + * rawnand_dt_parse_gpio_cs - Parse the gpio-cs property of a controller + * @dev: Device that will be parsed. Also used for managed allocations. + * @cs_array: Array of GPIO desc pointers allocated on success + * @ncs_array: Number of entries in @cs_array updated on success. + * @return 0 on success, an error otherwise. + */ +int rawnand_dt_parse_gpio_cs(struct device *dev, struct gpio_desc ***cs_array, + unsigned int *ncs_array) +{ + struct gpio_desc **descs; + int ndescs, i; + + ndescs = gpiod_count(dev, "cs"); + if (ndescs < 0) { + dev_dbg(dev, "No valid cs-gpios property\n"); + return 0; + } + + descs = devm_kcalloc(dev, ndescs, sizeof(*descs), GFP_KERNEL); + if (!descs) + return -ENOMEM; + + for (i = 0; i < ndescs; i++) { + descs[i] = gpiod_get_index_optional(dev, "cs", i, + GPIOD_OUT_HIGH); + if (IS_ERR(descs[i])) + return PTR_ERR(descs[i]); + } + + *ncs_array = ndescs; + *cs_array = descs; + + return 0; +} +EXPORT_SYMBOL(rawnand_dt_parse_gpio_cs); + +static int rawnand_dt_init(struct nand_chip *chip) +{ + struct nand_device *nand = mtd_to_nanddev(nand_to_mtd(chip)); + struct device_node *dn = nand_get_flash_node(chip); + int ret; + + if (!dn) + return 0; + + ret = of_get_nand_bus_width(chip); + if (ret) + return ret; + + if (of_property_read_bool(dn, "nand-is-boot-medium")) + chip->options |= NAND_IS_BOOT_MEDIUM; + + if (of_property_read_bool(dn, "nand-on-flash-bbt")) + chip->bbt_options |= NAND_BBT_USE_FLASH; + + of_get_nand_ecc_user_config(nand); + of_get_nand_ecc_legacy_user_config(chip); + + /* + * If neither the user nor the NAND controller have requested a specific + * ECC engine type, we will default to NAND_ECC_ENGINE_TYPE_ON_HOST. + */ + nand->ecc.defaults.engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST; + + /* + * Use the user requested engine type, unless there is none, in this + * case default to the NAND controller choice, otherwise fallback to + * the raw NAND default one. + */ + if (nand->ecc.user_conf.engine_type != NAND_ECC_ENGINE_TYPE_INVALID) + chip->ecc.engine_type = nand->ecc.user_conf.engine_type; + if (chip->ecc.engine_type == NAND_ECC_ENGINE_TYPE_INVALID) + chip->ecc.engine_type = nand->ecc.defaults.engine_type; + + chip->ecc.placement = nand->ecc.user_conf.placement; + chip->ecc.algo = nand->ecc.user_conf.algo; + chip->ecc.strength = nand->ecc.user_conf.strength; + chip->ecc.size = nand->ecc.user_conf.step_size; + + return 0; +} + +/** + * nand_scan_ident - Scan for the NAND device + * @chip: NAND chip object + * @maxchips: number of chips to scan for + * @table: alternative NAND ID table + * + * This is the first phase of the normal nand_scan() function. It reads the + * flash ID and sets up MTD fields accordingly. + * + * This helper used to be called directly from controller drivers that needed + * to tweak some ECC-related parameters before nand_scan_tail(). This separation + * prevented dynamic allocations during this phase which was unconvenient and + * as been banned for the benefit of the ->init_ecc()/cleanup_ecc() hooks. + */ +static int nand_scan_ident(struct nand_chip *chip, unsigned int maxchips, + struct nand_flash_dev *table) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + struct nand_memory_organization *memorg; + int nand_maf_id, nand_dev_id; + unsigned int i; + int ret; + + memorg = nanddev_get_memorg(&chip->base); + + /* Assume all dies are deselected when we enter nand_scan_ident(). */ + chip->cur_cs = -1; + + mutex_init(&chip->lock); + init_waitqueue_head(&chip->resume_wq); + + /* Enforce the right timings for reset/detection */ + chip->current_interface_config = nand_get_reset_interface_config(); + + ret = rawnand_dt_init(chip); + if (ret) + return ret; + + if (!mtd->name && mtd->dev.parent) + mtd->name = dev_name(mtd->dev.parent); + + /* Set the default functions */ + nand_set_defaults(chip); + + ret = nand_legacy_check_hooks(chip); + if (ret) + return ret; + + memorg->ntargets = maxchips; + + /* Read the flash type */ + ret = nand_detect(chip, table); + if (ret) { + if (!(chip->options & NAND_SCAN_SILENT_NODEV)) + pr_warn("No NAND device found\n"); + nand_deselect_target(chip); + return ret; + } + + nand_maf_id = chip->id.data[0]; + nand_dev_id = chip->id.data[1]; + + nand_deselect_target(chip); + + /* Check for a chip array */ + for (i = 1; i < maxchips; i++) { + u8 id[2]; + + /* See comment in nand_get_flash_type for reset */ + ret = nand_reset(chip, i); + if (ret) + break; + + nand_select_target(chip, i); + /* Send the command for reading device ID */ + ret = nand_readid_op(chip, 0, id, sizeof(id)); + if (ret) + break; + /* Read manufacturer and device IDs */ + if (nand_maf_id != id[0] || nand_dev_id != id[1]) { + nand_deselect_target(chip); + break; + } + nand_deselect_target(chip); + } + if (i > 1) + pr_info("%d chips detected\n", i); + + /* Store the number of chips and calc total size for mtd */ + memorg->ntargets = i; + mtd->size = i * nanddev_target_size(&chip->base); + + return 0; +} + +static void nand_scan_ident_cleanup(struct nand_chip *chip) +{ + kfree(chip->parameters.model); + kfree(chip->parameters.onfi); +} + +int rawnand_sw_hamming_init(struct nand_chip *chip) +{ + struct nand_ecc_sw_hamming_conf *engine_conf; + struct nand_device *base = &chip->base; + int ret; + + base->ecc.user_conf.engine_type = NAND_ECC_ENGINE_TYPE_SOFT; + base->ecc.user_conf.algo = NAND_ECC_ALGO_HAMMING; + base->ecc.user_conf.strength = chip->ecc.strength; + base->ecc.user_conf.step_size = chip->ecc.size; + + ret = nand_ecc_sw_hamming_init_ctx(base); + if (ret) + return ret; + + engine_conf = base->ecc.ctx.priv; + + if (chip->ecc.options & NAND_ECC_SOFT_HAMMING_SM_ORDER) + engine_conf->sm_order = true; + + chip->ecc.size = base->ecc.ctx.conf.step_size; + chip->ecc.strength = base->ecc.ctx.conf.strength; + chip->ecc.total = base->ecc.ctx.total; + chip->ecc.steps = nanddev_get_ecc_nsteps(base); + chip->ecc.bytes = base->ecc.ctx.total / nanddev_get_ecc_nsteps(base); + + return 0; +} +EXPORT_SYMBOL(rawnand_sw_hamming_init); + +int rawnand_sw_hamming_calculate(struct nand_chip *chip, + const unsigned char *buf, + unsigned char *code) +{ + struct nand_device *base = &chip->base; + + return nand_ecc_sw_hamming_calculate(base, buf, code); +} +EXPORT_SYMBOL(rawnand_sw_hamming_calculate); + +int rawnand_sw_hamming_correct(struct nand_chip *chip, + unsigned char *buf, + unsigned char *read_ecc, + unsigned char *calc_ecc) +{ + struct nand_device *base = &chip->base; + + return nand_ecc_sw_hamming_correct(base, buf, read_ecc, calc_ecc); +} +EXPORT_SYMBOL(rawnand_sw_hamming_correct); + +void rawnand_sw_hamming_cleanup(struct nand_chip *chip) +{ + struct nand_device *base = &chip->base; + + nand_ecc_sw_hamming_cleanup_ctx(base); +} +EXPORT_SYMBOL(rawnand_sw_hamming_cleanup); + +int rawnand_sw_bch_init(struct nand_chip *chip) +{ + struct nand_device *base = &chip->base; + const struct nand_ecc_props *ecc_conf = nanddev_get_ecc_conf(base); + int ret; + + base->ecc.user_conf.engine_type = NAND_ECC_ENGINE_TYPE_SOFT; + base->ecc.user_conf.algo = NAND_ECC_ALGO_BCH; + base->ecc.user_conf.step_size = chip->ecc.size; + base->ecc.user_conf.strength = chip->ecc.strength; + + ret = nand_ecc_sw_bch_init_ctx(base); + if (ret) + return ret; + + chip->ecc.size = ecc_conf->step_size; + chip->ecc.strength = ecc_conf->strength; + chip->ecc.total = base->ecc.ctx.total; + chip->ecc.steps = nanddev_get_ecc_nsteps(base); + chip->ecc.bytes = base->ecc.ctx.total / nanddev_get_ecc_nsteps(base); + + return 0; +} +EXPORT_SYMBOL(rawnand_sw_bch_init); + +static int rawnand_sw_bch_calculate(struct nand_chip *chip, + const unsigned char *buf, + unsigned char *code) +{ + struct nand_device *base = &chip->base; + + return nand_ecc_sw_bch_calculate(base, buf, code); +} + +int rawnand_sw_bch_correct(struct nand_chip *chip, unsigned char *buf, + unsigned char *read_ecc, unsigned char *calc_ecc) +{ + struct nand_device *base = &chip->base; + + return nand_ecc_sw_bch_correct(base, buf, read_ecc, calc_ecc); +} +EXPORT_SYMBOL(rawnand_sw_bch_correct); + +void rawnand_sw_bch_cleanup(struct nand_chip *chip) +{ + struct nand_device *base = &chip->base; + + nand_ecc_sw_bch_cleanup_ctx(base); +} +EXPORT_SYMBOL(rawnand_sw_bch_cleanup); + +static int nand_set_ecc_on_host_ops(struct nand_chip *chip) +{ + struct nand_ecc_ctrl *ecc = &chip->ecc; + + switch (ecc->placement) { + case NAND_ECC_PLACEMENT_UNKNOWN: + case NAND_ECC_PLACEMENT_OOB: + /* Use standard hwecc read page function? */ + if (!ecc->read_page) + ecc->read_page = nand_read_page_hwecc; + if (!ecc->write_page) + ecc->write_page = nand_write_page_hwecc; + if (!ecc->read_page_raw) + ecc->read_page_raw = nand_read_page_raw; + if (!ecc->write_page_raw) + ecc->write_page_raw = nand_write_page_raw; + if (!ecc->read_oob) + ecc->read_oob = nand_read_oob_std; + if (!ecc->write_oob) + ecc->write_oob = nand_write_oob_std; + if (!ecc->read_subpage) + ecc->read_subpage = nand_read_subpage; + if (!ecc->write_subpage && ecc->hwctl && ecc->calculate) + ecc->write_subpage = nand_write_subpage_hwecc; + fallthrough; + + case NAND_ECC_PLACEMENT_INTERLEAVED: + if ((!ecc->calculate || !ecc->correct || !ecc->hwctl) && + (!ecc->read_page || + ecc->read_page == nand_read_page_hwecc || + !ecc->write_page || + ecc->write_page == nand_write_page_hwecc)) { + WARN(1, "No ECC functions supplied; hardware ECC not possible\n"); + return -EINVAL; + } + /* Use standard syndrome read/write page function? */ + if (!ecc->read_page) + ecc->read_page = nand_read_page_syndrome; + if (!ecc->write_page) + ecc->write_page = nand_write_page_syndrome; + if (!ecc->read_page_raw) + ecc->read_page_raw = nand_read_page_raw_syndrome; + if (!ecc->write_page_raw) + ecc->write_page_raw = nand_write_page_raw_syndrome; + if (!ecc->read_oob) + ecc->read_oob = nand_read_oob_syndrome; + if (!ecc->write_oob) + ecc->write_oob = nand_write_oob_syndrome; + break; + + default: + pr_warn("Invalid NAND_ECC_PLACEMENT %d\n", + ecc->placement); + return -EINVAL; + } + + return 0; +} + +static int nand_set_ecc_soft_ops(struct nand_chip *chip) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + struct nand_device *nanddev = mtd_to_nanddev(mtd); + struct nand_ecc_ctrl *ecc = &chip->ecc; + int ret; + + if (WARN_ON(ecc->engine_type != NAND_ECC_ENGINE_TYPE_SOFT)) + return -EINVAL; + + switch (ecc->algo) { + case NAND_ECC_ALGO_HAMMING: + ecc->calculate = rawnand_sw_hamming_calculate; + ecc->correct = rawnand_sw_hamming_correct; + ecc->read_page = nand_read_page_swecc; + ecc->read_subpage = nand_read_subpage; + ecc->write_page = nand_write_page_swecc; + if (!ecc->read_page_raw) + ecc->read_page_raw = nand_read_page_raw; + if (!ecc->write_page_raw) + ecc->write_page_raw = nand_write_page_raw; + ecc->read_oob = nand_read_oob_std; + ecc->write_oob = nand_write_oob_std; + if (!ecc->size) + ecc->size = 256; + ecc->bytes = 3; + ecc->strength = 1; + + if (IS_ENABLED(CONFIG_MTD_NAND_ECC_SW_HAMMING_SMC)) + ecc->options |= NAND_ECC_SOFT_HAMMING_SM_ORDER; + + ret = rawnand_sw_hamming_init(chip); + if (ret) { + WARN(1, "Hamming ECC initialization failed!\n"); + return ret; + } + + return 0; + case NAND_ECC_ALGO_BCH: + if (!IS_ENABLED(CONFIG_MTD_NAND_ECC_SW_BCH)) { + WARN(1, "CONFIG_MTD_NAND_ECC_SW_BCH not enabled\n"); + return -EINVAL; + } + ecc->calculate = rawnand_sw_bch_calculate; + ecc->correct = rawnand_sw_bch_correct; + ecc->read_page = nand_read_page_swecc; + ecc->read_subpage = nand_read_subpage; + ecc->write_page = nand_write_page_swecc; + if (!ecc->read_page_raw) + ecc->read_page_raw = nand_read_page_raw; + if (!ecc->write_page_raw) + ecc->write_page_raw = nand_write_page_raw; + ecc->read_oob = nand_read_oob_std; + ecc->write_oob = nand_write_oob_std; + + /* + * We can only maximize ECC config when the default layout is + * used, otherwise we don't know how many bytes can really be + * used. + */ + if (nanddev->ecc.user_conf.flags & NAND_ECC_MAXIMIZE_STRENGTH && + mtd->ooblayout != nand_get_large_page_ooblayout()) + nanddev->ecc.user_conf.flags &= ~NAND_ECC_MAXIMIZE_STRENGTH; + + ret = rawnand_sw_bch_init(chip); + if (ret) { + WARN(1, "BCH ECC initialization failed!\n"); + return ret; + } + + return 0; + default: + WARN(1, "Unsupported ECC algorithm!\n"); + return -EINVAL; + } +} + +/** + * nand_check_ecc_caps - check the sanity of preset ECC settings + * @chip: nand chip info structure + * @caps: ECC caps info structure + * @oobavail: OOB size that the ECC engine can use + * + * When ECC step size and strength are already set, check if they are supported + * by the controller and the calculated ECC bytes fit within the chip's OOB. + * On success, the calculated ECC bytes is set. + */ +static int +nand_check_ecc_caps(struct nand_chip *chip, + const struct nand_ecc_caps *caps, int oobavail) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + const struct nand_ecc_step_info *stepinfo; + int preset_step = chip->ecc.size; + int preset_strength = chip->ecc.strength; + int ecc_bytes, nsteps = mtd->writesize / preset_step; + int i, j; + + for (i = 0; i < caps->nstepinfos; i++) { + stepinfo = &caps->stepinfos[i]; + + if (stepinfo->stepsize != preset_step) + continue; + + for (j = 0; j < stepinfo->nstrengths; j++) { + if (stepinfo->strengths[j] != preset_strength) + continue; + + ecc_bytes = caps->calc_ecc_bytes(preset_step, + preset_strength); + if (WARN_ON_ONCE(ecc_bytes < 0)) + return ecc_bytes; + + if (ecc_bytes * nsteps > oobavail) { + pr_err("ECC (step, strength) = (%d, %d) does not fit in OOB", + preset_step, preset_strength); + return -ENOSPC; + } + + chip->ecc.bytes = ecc_bytes; + + return 0; + } + } + + pr_err("ECC (step, strength) = (%d, %d) not supported on this controller", + preset_step, preset_strength); + + return -ENOTSUPP; +} + +/** + * nand_match_ecc_req - meet the chip's requirement with least ECC bytes + * @chip: nand chip info structure + * @caps: ECC engine caps info structure + * @oobavail: OOB size that the ECC engine can use + * + * If a chip's ECC requirement is provided, try to meet it with the least + * number of ECC bytes (i.e. with the largest number of OOB-free bytes). + * On success, the chosen ECC settings are set. + */ +static int +nand_match_ecc_req(struct nand_chip *chip, + const struct nand_ecc_caps *caps, int oobavail) +{ + const struct nand_ecc_props *requirements = + nanddev_get_ecc_requirements(&chip->base); + struct mtd_info *mtd = nand_to_mtd(chip); + const struct nand_ecc_step_info *stepinfo; + int req_step = requirements->step_size; + int req_strength = requirements->strength; + int req_corr, step_size, strength, nsteps, ecc_bytes, ecc_bytes_total; + int best_step = 0, best_strength = 0, best_ecc_bytes = 0; + int best_ecc_bytes_total = INT_MAX; + int i, j; + + /* No information provided by the NAND chip */ + if (!req_step || !req_strength) + return -ENOTSUPP; + + /* number of correctable bits the chip requires in a page */ + req_corr = mtd->writesize / req_step * req_strength; + + for (i = 0; i < caps->nstepinfos; i++) { + stepinfo = &caps->stepinfos[i]; + step_size = stepinfo->stepsize; + + for (j = 0; j < stepinfo->nstrengths; j++) { + strength = stepinfo->strengths[j]; + + /* + * If both step size and strength are smaller than the + * chip's requirement, it is not easy to compare the + * resulted reliability. + */ + if (step_size < req_step && strength < req_strength) + continue; + + if (mtd->writesize % step_size) + continue; + + nsteps = mtd->writesize / step_size; + + ecc_bytes = caps->calc_ecc_bytes(step_size, strength); + if (WARN_ON_ONCE(ecc_bytes < 0)) + continue; + ecc_bytes_total = ecc_bytes * nsteps; + + if (ecc_bytes_total > oobavail || + strength * nsteps < req_corr) + continue; + + /* + * We assume the best is to meet the chip's requrement + * with the least number of ECC bytes. + */ + if (ecc_bytes_total < best_ecc_bytes_total) { + best_ecc_bytes_total = ecc_bytes_total; + best_step = step_size; + best_strength = strength; + best_ecc_bytes = ecc_bytes; + } + } + } + + if (best_ecc_bytes_total == INT_MAX) + return -ENOTSUPP; + + chip->ecc.size = best_step; + chip->ecc.strength = best_strength; + chip->ecc.bytes = best_ecc_bytes; + + return 0; +} + +/** + * nand_maximize_ecc - choose the max ECC strength available + * @chip: nand chip info structure + * @caps: ECC engine caps info structure + * @oobavail: OOB size that the ECC engine can use + * + * Choose the max ECC strength that is supported on the controller, and can fit + * within the chip's OOB. On success, the chosen ECC settings are set. + */ +static int +nand_maximize_ecc(struct nand_chip *chip, + const struct nand_ecc_caps *caps, int oobavail) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + const struct nand_ecc_step_info *stepinfo; + int step_size, strength, nsteps, ecc_bytes, corr; + int best_corr = 0; + int best_step = 0; + int best_strength = 0, best_ecc_bytes = 0; + int i, j; + + for (i = 0; i < caps->nstepinfos; i++) { + stepinfo = &caps->stepinfos[i]; + step_size = stepinfo->stepsize; + + /* If chip->ecc.size is already set, respect it */ + if (chip->ecc.size && step_size != chip->ecc.size) + continue; + + for (j = 0; j < stepinfo->nstrengths; j++) { + strength = stepinfo->strengths[j]; + + if (mtd->writesize % step_size) + continue; + + nsteps = mtd->writesize / step_size; + + ecc_bytes = caps->calc_ecc_bytes(step_size, strength); + if (WARN_ON_ONCE(ecc_bytes < 0)) + continue; + + if (ecc_bytes * nsteps > oobavail) + continue; + + corr = strength * nsteps; + + /* + * If the number of correctable bits is the same, + * bigger step_size has more reliability. + */ + if (corr > best_corr || + (corr == best_corr && step_size > best_step)) { + best_corr = corr; + best_step = step_size; + best_strength = strength; + best_ecc_bytes = ecc_bytes; + } + } + } + + if (!best_corr) + return -ENOTSUPP; + + chip->ecc.size = best_step; + chip->ecc.strength = best_strength; + chip->ecc.bytes = best_ecc_bytes; + + return 0; +} + +/** + * nand_ecc_choose_conf - Set the ECC strength and ECC step size + * @chip: nand chip info structure + * @caps: ECC engine caps info structure + * @oobavail: OOB size that the ECC engine can use + * + * Choose the ECC configuration according to following logic. + * + * 1. If both ECC step size and ECC strength are already set (usually by DT) + * then check if it is supported by this controller. + * 2. If the user provided the nand-ecc-maximize property, then select maximum + * ECC strength. + * 3. Otherwise, try to match the ECC step size and ECC strength closest + * to the chip's requirement. If available OOB size can't fit the chip + * requirement then fallback to the maximum ECC step size and ECC strength. + * + * On success, the chosen ECC settings are set. + */ +int nand_ecc_choose_conf(struct nand_chip *chip, + const struct nand_ecc_caps *caps, int oobavail) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + struct nand_device *nanddev = mtd_to_nanddev(mtd); + + if (WARN_ON(oobavail < 0 || oobavail > mtd->oobsize)) + return -EINVAL; + + if (chip->ecc.size && chip->ecc.strength) + return nand_check_ecc_caps(chip, caps, oobavail); + + if (nanddev->ecc.user_conf.flags & NAND_ECC_MAXIMIZE_STRENGTH) + return nand_maximize_ecc(chip, caps, oobavail); + + if (!nand_match_ecc_req(chip, caps, oobavail)) + return 0; + + return nand_maximize_ecc(chip, caps, oobavail); +} +EXPORT_SYMBOL_GPL(nand_ecc_choose_conf); + +static int rawnand_erase(struct nand_device *nand, const struct nand_pos *pos) +{ + struct nand_chip *chip = container_of(nand, struct nand_chip, + base); + unsigned int eb = nanddev_pos_to_row(nand, pos); + int ret; + + eb >>= nand->rowconv.eraseblock_addr_shift; + + nand_select_target(chip, pos->target); + ret = nand_erase_op(chip, eb); + nand_deselect_target(chip); + + return ret; +} + +static int rawnand_markbad(struct nand_device *nand, + const struct nand_pos *pos) +{ + struct nand_chip *chip = container_of(nand, struct nand_chip, + base); + + return nand_markbad_bbm(chip, nanddev_pos_to_offs(nand, pos)); +} + +static bool rawnand_isbad(struct nand_device *nand, const struct nand_pos *pos) +{ + struct nand_chip *chip = container_of(nand, struct nand_chip, + base); + int ret; + + nand_select_target(chip, pos->target); + ret = nand_isbad_bbm(chip, nanddev_pos_to_offs(nand, pos)); + nand_deselect_target(chip); + + return ret; +} + +static const struct nand_ops rawnand_ops = { + .erase = rawnand_erase, + .markbad = rawnand_markbad, + .isbad = rawnand_isbad, +}; + +/** + * nand_scan_tail - Scan for the NAND device + * @chip: NAND chip object + * + * This is the second phase of the normal nand_scan() function. It fills out + * all the uninitialized function pointers with the defaults and scans for a + * bad block table if appropriate. + */ +static int nand_scan_tail(struct nand_chip *chip) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + struct nand_ecc_ctrl *ecc = &chip->ecc; + int ret, i; + + /* New bad blocks should be marked in OOB, flash-based BBT, or both */ + if (WARN_ON((chip->bbt_options & NAND_BBT_NO_OOB_BBM) && + !(chip->bbt_options & NAND_BBT_USE_FLASH))) { + return -EINVAL; + } + + chip->data_buf = kmalloc(mtd->writesize + mtd->oobsize, GFP_KERNEL); + if (!chip->data_buf) + return -ENOMEM; + + /* + * FIXME: some NAND manufacturer drivers expect the first die to be + * selected when manufacturer->init() is called. They should be fixed + * to explictly select the relevant die when interacting with the NAND + * chip. + */ + nand_select_target(chip, 0); + ret = nand_manufacturer_init(chip); + nand_deselect_target(chip); + if (ret) + goto err_free_buf; + + /* Set the internal oob buffer location, just after the page data */ + chip->oob_poi = chip->data_buf + mtd->writesize; + + /* + * If no default placement scheme is given, select an appropriate one. + */ + if (!mtd->ooblayout && + !(ecc->engine_type == NAND_ECC_ENGINE_TYPE_SOFT && + ecc->algo == NAND_ECC_ALGO_BCH) && + !(ecc->engine_type == NAND_ECC_ENGINE_TYPE_SOFT && + ecc->algo == NAND_ECC_ALGO_HAMMING)) { + switch (mtd->oobsize) { + case 8: + case 16: + mtd_set_ooblayout(mtd, nand_get_small_page_ooblayout()); + break; + case 64: + case 128: + mtd_set_ooblayout(mtd, + nand_get_large_page_hamming_ooblayout()); + break; + default: + /* + * Expose the whole OOB area to users if ECC_NONE + * is passed. We could do that for all kind of + * ->oobsize, but we must keep the old large/small + * page with ECC layout when ->oobsize <= 128 for + * compatibility reasons. + */ + if (ecc->engine_type == NAND_ECC_ENGINE_TYPE_NONE) { + mtd_set_ooblayout(mtd, + nand_get_large_page_ooblayout()); + break; + } + + WARN(1, "No oob scheme defined for oobsize %d\n", + mtd->oobsize); + ret = -EINVAL; + goto err_nand_manuf_cleanup; + } + } + + /* + * Check ECC mode, default to software if 3byte/512byte hardware ECC is + * selected and we have 256 byte pagesize fallback to software ECC + */ + + switch (ecc->engine_type) { + case NAND_ECC_ENGINE_TYPE_ON_HOST: + ret = nand_set_ecc_on_host_ops(chip); + if (ret) + goto err_nand_manuf_cleanup; + + if (mtd->writesize >= ecc->size) { + if (!ecc->strength) { + WARN(1, "Driver must set ecc.strength when using hardware ECC\n"); + ret = -EINVAL; + goto err_nand_manuf_cleanup; + } + break; + } + pr_warn("%d byte HW ECC not possible on %d byte page size, fallback to SW ECC\n", + ecc->size, mtd->writesize); + ecc->engine_type = NAND_ECC_ENGINE_TYPE_SOFT; + ecc->algo = NAND_ECC_ALGO_HAMMING; + fallthrough; + + case NAND_ECC_ENGINE_TYPE_SOFT: + ret = nand_set_ecc_soft_ops(chip); + if (ret) + goto err_nand_manuf_cleanup; + break; + + case NAND_ECC_ENGINE_TYPE_ON_DIE: + if (!ecc->read_page || !ecc->write_page) { + WARN(1, "No ECC functions supplied; on-die ECC not possible\n"); + ret = -EINVAL; + goto err_nand_manuf_cleanup; + } + if (!ecc->read_oob) + ecc->read_oob = nand_read_oob_std; + if (!ecc->write_oob) + ecc->write_oob = nand_write_oob_std; + break; + + case NAND_ECC_ENGINE_TYPE_NONE: + pr_warn("NAND_ECC_ENGINE_TYPE_NONE selected by board driver. This is not recommended!\n"); + ecc->read_page = nand_read_page_raw; + ecc->write_page = nand_write_page_raw; + ecc->read_oob = nand_read_oob_std; + ecc->read_page_raw = nand_read_page_raw; + ecc->write_page_raw = nand_write_page_raw; + ecc->write_oob = nand_write_oob_std; + ecc->size = mtd->writesize; + ecc->bytes = 0; + ecc->strength = 0; + break; + + default: + WARN(1, "Invalid NAND_ECC_MODE %d\n", ecc->engine_type); + ret = -EINVAL; + goto err_nand_manuf_cleanup; + } + + if (ecc->correct || ecc->calculate) { + ecc->calc_buf = kmalloc(mtd->oobsize, GFP_KERNEL); + ecc->code_buf = kmalloc(mtd->oobsize, GFP_KERNEL); + if (!ecc->calc_buf || !ecc->code_buf) { + ret = -ENOMEM; + goto err_nand_manuf_cleanup; + } + } + + /* For many systems, the standard OOB write also works for raw */ + if (!ecc->read_oob_raw) + ecc->read_oob_raw = ecc->read_oob; + if (!ecc->write_oob_raw) + ecc->write_oob_raw = ecc->write_oob; + + /* propagate ecc info to mtd_info */ + mtd->ecc_strength = ecc->strength; + mtd->ecc_step_size = ecc->size; + + /* + * Set the number of read / write steps for one page depending on ECC + * mode. + */ + if (!ecc->steps) + ecc->steps = mtd->writesize / ecc->size; + if (ecc->steps * ecc->size != mtd->writesize) { + WARN(1, "Invalid ECC parameters\n"); + ret = -EINVAL; + goto err_nand_manuf_cleanup; + } + + if (!ecc->total) { + ecc->total = ecc->steps * ecc->bytes; + chip->base.ecc.ctx.total = ecc->total; + } + + if (ecc->total > mtd->oobsize) { + WARN(1, "Total number of ECC bytes exceeded oobsize\n"); + ret = -EINVAL; + goto err_nand_manuf_cleanup; + } + + /* + * The number of bytes available for a client to place data into + * the out of band area. + */ + ret = mtd_ooblayout_count_freebytes(mtd); + if (ret < 0) + ret = 0; + + mtd->oobavail = ret; + + /* ECC sanity check: warn if it's too weak */ + if (!nand_ecc_is_strong_enough(&chip->base)) + pr_warn("WARNING: %s: the ECC used on your system (%db/%dB) is too weak compared to the one required by the NAND chip (%db/%dB)\n", + mtd->name, chip->ecc.strength, chip->ecc.size, + nanddev_get_ecc_requirements(&chip->base)->strength, + nanddev_get_ecc_requirements(&chip->base)->step_size); + + /* Allow subpage writes up to ecc.steps. Not possible for MLC flash */ + if (!(chip->options & NAND_NO_SUBPAGE_WRITE) && nand_is_slc(chip)) { + switch (ecc->steps) { + case 2: + mtd->subpage_sft = 1; + break; + case 4: + case 8: + case 16: + mtd->subpage_sft = 2; + break; + } + } + chip->subpagesize = mtd->writesize >> mtd->subpage_sft; + + /* Invalidate the pagebuffer reference */ + chip->pagecache.page = -1; + + /* Large page NAND with SOFT_ECC should support subpage reads */ + switch (ecc->engine_type) { + case NAND_ECC_ENGINE_TYPE_SOFT: + if (chip->page_shift > 9) + chip->options |= NAND_SUBPAGE_READ; + break; + + default: + break; + } + + ret = nanddev_init(&chip->base, &rawnand_ops, mtd->owner); + if (ret) + goto err_nand_manuf_cleanup; + + /* Adjust the MTD_CAP_ flags when NAND_ROM is set. */ + if (chip->options & NAND_ROM) + mtd->flags = MTD_CAP_ROM; + + /* Fill in remaining MTD driver data */ + mtd->_erase = nand_erase; + mtd->_point = NULL; + mtd->_unpoint = NULL; + mtd->_panic_write = panic_nand_write; + mtd->_read_oob = nand_read_oob; + mtd->_write_oob = nand_write_oob; + mtd->_sync = nand_sync; + mtd->_lock = nand_lock; + mtd->_unlock = nand_unlock; + mtd->_suspend = nand_suspend; + mtd->_resume = nand_resume; + mtd->_reboot = nand_shutdown; + mtd->_block_isreserved = nand_block_isreserved; + mtd->_block_isbad = nand_block_isbad; + mtd->_block_markbad = nand_block_markbad; + mtd->_max_bad_blocks = nanddev_mtd_max_bad_blocks; + + /* + * Initialize bitflip_threshold to its default prior scan_bbt() call. + * scan_bbt() might invoke mtd_read(), thus bitflip_threshold must be + * properly set. + */ + if (!mtd->bitflip_threshold) + mtd->bitflip_threshold = DIV_ROUND_UP(mtd->ecc_strength * 3, 4); + + /* Find the fastest data interface for this chip */ + ret = nand_choose_interface_config(chip); + if (ret) + goto err_nanddev_cleanup; + + /* Enter fastest possible mode on all dies. */ + for (i = 0; i < nanddev_ntargets(&chip->base); i++) { + ret = nand_setup_interface(chip, i); + if (ret) + goto err_free_interface_config; + } + + rawnand_late_check_supported_ops(chip); + + /* + * Look for secure regions in the NAND chip. These regions are supposed + * to be protected by a secure element like Trustzone. So the read/write + * accesses to these regions will be blocked in the runtime by this + * driver. + */ + ret = of_get_nand_secure_regions(chip); + if (ret) + goto err_free_interface_config; + + /* Check, if we should skip the bad block table scan */ + if (chip->options & NAND_SKIP_BBTSCAN) + return 0; + + /* Build bad block table */ + ret = nand_create_bbt(chip); + if (ret) + goto err_free_secure_regions; + + return 0; + +err_free_secure_regions: + kfree(chip->secure_regions); + +err_free_interface_config: + kfree(chip->best_interface_config); + +err_nanddev_cleanup: + nanddev_cleanup(&chip->base); + +err_nand_manuf_cleanup: + nand_manufacturer_cleanup(chip); + +err_free_buf: + kfree(chip->data_buf); + kfree(ecc->code_buf); + kfree(ecc->calc_buf); + + return ret; +} + +static int nand_attach(struct nand_chip *chip) +{ + if (chip->controller->ops && chip->controller->ops->attach_chip) + return chip->controller->ops->attach_chip(chip); + + return 0; +} + +static void nand_detach(struct nand_chip *chip) +{ + if (chip->controller->ops && chip->controller->ops->detach_chip) + chip->controller->ops->detach_chip(chip); +} + +/** + * nand_scan_with_ids - [NAND Interface] Scan for the NAND device + * @chip: NAND chip object + * @maxchips: number of chips to scan for. + * @ids: optional flash IDs table + * + * This fills out all the uninitialized function pointers with the defaults. + * The flash ID is read and the mtd/chip structures are filled with the + * appropriate values. + */ +int nand_scan_with_ids(struct nand_chip *chip, unsigned int maxchips, + struct nand_flash_dev *ids) +{ + int ret; + + if (!maxchips) + return -EINVAL; + + ret = nand_scan_ident(chip, maxchips, ids); + if (ret) + return ret; + + ret = nand_attach(chip); + if (ret) + goto cleanup_ident; + + ret = nand_scan_tail(chip); + if (ret) + goto detach_chip; + + return 0; + +detach_chip: + nand_detach(chip); +cleanup_ident: + nand_scan_ident_cleanup(chip); + + return ret; +} +EXPORT_SYMBOL(nand_scan_with_ids); + +/** + * nand_cleanup - [NAND Interface] Free resources held by the NAND device + * @chip: NAND chip object + */ +void nand_cleanup(struct nand_chip *chip) +{ + if (chip->ecc.engine_type == NAND_ECC_ENGINE_TYPE_SOFT) { + if (chip->ecc.algo == NAND_ECC_ALGO_HAMMING) + rawnand_sw_hamming_cleanup(chip); + else if (chip->ecc.algo == NAND_ECC_ALGO_BCH) + rawnand_sw_bch_cleanup(chip); + } + + nanddev_cleanup(&chip->base); + + /* Free secure regions data */ + kfree(chip->secure_regions); + + /* Free bad block table memory */ + kfree(chip->bbt); + kfree(chip->data_buf); + kfree(chip->ecc.code_buf); + kfree(chip->ecc.calc_buf); + + /* Free bad block descriptor memory */ + if (chip->badblock_pattern && chip->badblock_pattern->options + & NAND_BBT_DYNAMICSTRUCT) + kfree(chip->badblock_pattern); + + /* Free the data interface */ + kfree(chip->best_interface_config); + + /* Free manufacturer priv data. */ + nand_manufacturer_cleanup(chip); + + /* Free controller specific allocations after chip identification */ + nand_detach(chip); + + /* Free identification phase allocations */ + nand_scan_ident_cleanup(chip); +} + +EXPORT_SYMBOL_GPL(nand_cleanup); + +MODULE_LICENSE("GPL"); +MODULE_AUTHOR("Steven J. Hill <sjhill@realitydiluted.com>"); +MODULE_AUTHOR("Thomas Gleixner <tglx@linutronix.de>"); +MODULE_DESCRIPTION("Generic NAND flash driver code"); diff --git a/drivers/mtd/nand/raw/nand_bbt.c b/drivers/mtd/nand/raw/nand_bbt.c new file mode 100644 index 0000000000..e4664fa6fd --- /dev/null +++ b/drivers/mtd/nand/raw/nand_bbt.c @@ -0,0 +1,1491 @@ +// SPDX-License-Identifier: GPL-2.0-only +/* + * Overview: + * Bad block table support for the NAND driver + * + * Copyright © 2004 Thomas Gleixner (tglx@linutronix.de) + * + * Description: + * + * When nand_scan_bbt is called, then it tries to find the bad block table + * depending on the options in the BBT descriptor(s). If no flash based BBT + * (NAND_BBT_USE_FLASH) is specified then the device is scanned for factory + * marked good / bad blocks. This information is used to create a memory BBT. + * Once a new bad block is discovered then the "factory" information is updated + * on the device. + * If a flash based BBT is specified then the function first tries to find the + * BBT on flash. If a BBT is found then the contents are read and the memory + * based BBT is created. If a mirrored BBT is selected then the mirror is + * searched too and the versions are compared. If the mirror has a greater + * version number, then the mirror BBT is used to build the memory based BBT. + * If the tables are not versioned, then we "or" the bad block information. + * If one of the BBTs is out of date or does not exist it is (re)created. + * If no BBT exists at all then the device is scanned for factory marked + * good / bad blocks and the bad block tables are created. + * + * For manufacturer created BBTs like the one found on M-SYS DOC devices + * the BBT is searched and read but never created + * + * The auto generated bad block table is located in the last good blocks + * of the device. The table is mirrored, so it can be updated eventually. + * The table is marked in the OOB area with an ident pattern and a version + * number which indicates which of both tables is more up to date. If the NAND + * controller needs the complete OOB area for the ECC information then the + * option NAND_BBT_NO_OOB should be used (along with NAND_BBT_USE_FLASH, of + * course): it moves the ident pattern and the version byte into the data area + * and the OOB area will remain untouched. + * + * The table uses 2 bits per block + * 11b: block is good + * 00b: block is factory marked bad + * 01b, 10b: block is marked bad due to wear + * + * The memory bad block table uses the following scheme: + * 00b: block is good + * 01b: block is marked bad due to wear + * 10b: block is reserved (to protect the bbt area) + * 11b: block is factory marked bad + * + * Multichip devices like DOC store the bad block info per floor. + * + * Following assumptions are made: + * - bbts start at a page boundary, if autolocated on a block boundary + * - the space necessary for a bbt in FLASH does not exceed a block boundary + */ + +#include <linux/slab.h> +#include <linux/types.h> +#include <linux/mtd/mtd.h> +#include <linux/mtd/bbm.h> +#include <linux/bitops.h> +#include <linux/delay.h> +#include <linux/vmalloc.h> +#include <linux/export.h> +#include <linux/string.h> + +#include "internals.h" + +#define BBT_BLOCK_GOOD 0x00 +#define BBT_BLOCK_WORN 0x01 +#define BBT_BLOCK_RESERVED 0x02 +#define BBT_BLOCK_FACTORY_BAD 0x03 + +#define BBT_ENTRY_MASK 0x03 +#define BBT_ENTRY_SHIFT 2 + +static inline uint8_t bbt_get_entry(struct nand_chip *chip, int block) +{ + uint8_t entry = chip->bbt[block >> BBT_ENTRY_SHIFT]; + entry >>= (block & BBT_ENTRY_MASK) * 2; + return entry & BBT_ENTRY_MASK; +} + +static inline void bbt_mark_entry(struct nand_chip *chip, int block, + uint8_t mark) +{ + uint8_t msk = (mark & BBT_ENTRY_MASK) << ((block & BBT_ENTRY_MASK) * 2); + chip->bbt[block >> BBT_ENTRY_SHIFT] |= msk; +} + +static int check_pattern_no_oob(uint8_t *buf, struct nand_bbt_descr *td) +{ + if (memcmp(buf, td->pattern, td->len)) + return -1; + return 0; +} + +/** + * check_pattern - [GENERIC] check if a pattern is in the buffer + * @buf: the buffer to search + * @len: the length of buffer to search + * @paglen: the pagelength + * @td: search pattern descriptor + * + * Check for a pattern at the given place. Used to search bad block tables and + * good / bad block identifiers. + */ +static int check_pattern(uint8_t *buf, int len, int paglen, struct nand_bbt_descr *td) +{ + if (td->options & NAND_BBT_NO_OOB) + return check_pattern_no_oob(buf, td); + + /* Compare the pattern */ + if (memcmp(buf + paglen + td->offs, td->pattern, td->len)) + return -1; + + return 0; +} + +/** + * check_short_pattern - [GENERIC] check if a pattern is in the buffer + * @buf: the buffer to search + * @td: search pattern descriptor + * + * Check for a pattern at the given place. Used to search bad block tables and + * good / bad block identifiers. Same as check_pattern, but no optional empty + * check. + */ +static int check_short_pattern(uint8_t *buf, struct nand_bbt_descr *td) +{ + /* Compare the pattern */ + if (memcmp(buf + td->offs, td->pattern, td->len)) + return -1; + return 0; +} + +/** + * add_marker_len - compute the length of the marker in data area + * @td: BBT descriptor used for computation + * + * The length will be 0 if the marker is located in OOB area. + */ +static u32 add_marker_len(struct nand_bbt_descr *td) +{ + u32 len; + + if (!(td->options & NAND_BBT_NO_OOB)) + return 0; + + len = td->len; + if (td->options & NAND_BBT_VERSION) + len++; + return len; +} + +/** + * read_bbt - [GENERIC] Read the bad block table starting from page + * @this: NAND chip object + * @buf: temporary buffer + * @page: the starting page + * @num: the number of bbt descriptors to read + * @td: the bbt describtion table + * @offs: block number offset in the table + * + * Read the bad block table starting from page. + */ +static int read_bbt(struct nand_chip *this, uint8_t *buf, int page, int num, + struct nand_bbt_descr *td, int offs) +{ + struct mtd_info *mtd = nand_to_mtd(this); + int res, ret = 0, i, j, act = 0; + size_t retlen, len, totlen; + loff_t from; + int bits = td->options & NAND_BBT_NRBITS_MSK; + uint8_t msk = (uint8_t)((1 << bits) - 1); + u32 marker_len; + int reserved_block_code = td->reserved_block_code; + + totlen = (num * bits) >> 3; + marker_len = add_marker_len(td); + from = ((loff_t)page) << this->page_shift; + + while (totlen) { + len = min(totlen, (size_t)(1 << this->bbt_erase_shift)); + if (marker_len) { + /* + * In case the BBT marker is not in the OOB area it + * will be just in the first page. + */ + len -= marker_len; + from += marker_len; + marker_len = 0; + } + res = mtd_read(mtd, from, len, &retlen, buf); + if (res < 0) { + if (mtd_is_eccerr(res)) { + pr_info("nand_bbt: ECC error in BBT at 0x%012llx\n", + from & ~mtd->writesize); + return res; + } else if (mtd_is_bitflip(res)) { + pr_info("nand_bbt: corrected error in BBT at 0x%012llx\n", + from & ~mtd->writesize); + ret = res; + } else { + pr_info("nand_bbt: error reading BBT\n"); + return res; + } + } + + /* Analyse data */ + for (i = 0; i < len; i++) { + uint8_t dat = buf[i]; + for (j = 0; j < 8; j += bits, act++) { + uint8_t tmp = (dat >> j) & msk; + if (tmp == msk) + continue; + if (reserved_block_code && (tmp == reserved_block_code)) { + pr_info("nand_read_bbt: reserved block at 0x%012llx\n", + (loff_t)(offs + act) << + this->bbt_erase_shift); + bbt_mark_entry(this, offs + act, + BBT_BLOCK_RESERVED); + mtd->ecc_stats.bbtblocks++; + continue; + } + /* + * Leave it for now, if it's matured we can + * move this message to pr_debug. + */ + pr_info("nand_read_bbt: bad block at 0x%012llx\n", + (loff_t)(offs + act) << + this->bbt_erase_shift); + /* Factory marked bad or worn out? */ + if (tmp == 0) + bbt_mark_entry(this, offs + act, + BBT_BLOCK_FACTORY_BAD); + else + bbt_mark_entry(this, offs + act, + BBT_BLOCK_WORN); + mtd->ecc_stats.badblocks++; + } + } + totlen -= len; + from += len; + } + return ret; +} + +/** + * read_abs_bbt - [GENERIC] Read the bad block table starting at a given page + * @this: NAND chip object + * @buf: temporary buffer + * @td: descriptor for the bad block table + * @chip: read the table for a specific chip, -1 read all chips; applies only if + * NAND_BBT_PERCHIP option is set + * + * Read the bad block table for all chips starting at a given page. We assume + * that the bbt bits are in consecutive order. + */ +static int read_abs_bbt(struct nand_chip *this, uint8_t *buf, + struct nand_bbt_descr *td, int chip) +{ + struct mtd_info *mtd = nand_to_mtd(this); + u64 targetsize = nanddev_target_size(&this->base); + int res = 0, i; + + if (td->options & NAND_BBT_PERCHIP) { + int offs = 0; + for (i = 0; i < nanddev_ntargets(&this->base); i++) { + if (chip == -1 || chip == i) + res = read_bbt(this, buf, td->pages[i], + targetsize >> this->bbt_erase_shift, + td, offs); + if (res) + return res; + offs += targetsize >> this->bbt_erase_shift; + } + } else { + res = read_bbt(this, buf, td->pages[0], + mtd->size >> this->bbt_erase_shift, td, 0); + if (res) + return res; + } + return 0; +} + +/* BBT marker is in the first page, no OOB */ +static int scan_read_data(struct nand_chip *this, uint8_t *buf, loff_t offs, + struct nand_bbt_descr *td) +{ + struct mtd_info *mtd = nand_to_mtd(this); + size_t retlen; + size_t len; + + len = td->len; + if (td->options & NAND_BBT_VERSION) + len++; + + return mtd_read(mtd, offs, len, &retlen, buf); +} + +/** + * scan_read_oob - [GENERIC] Scan data+OOB region to buffer + * @this: NAND chip object + * @buf: temporary buffer + * @offs: offset at which to scan + * @len: length of data region to read + * + * Scan read data from data+OOB. May traverse multiple pages, interleaving + * page,OOB,page,OOB,... in buf. Completes transfer and returns the "strongest" + * ECC condition (error or bitflip). May quit on the first (non-ECC) error. + */ +static int scan_read_oob(struct nand_chip *this, uint8_t *buf, loff_t offs, + size_t len) +{ + struct mtd_info *mtd = nand_to_mtd(this); + struct mtd_oob_ops ops = { }; + int res, ret = 0; + + ops.mode = MTD_OPS_PLACE_OOB; + ops.ooboffs = 0; + ops.ooblen = mtd->oobsize; + + while (len > 0) { + ops.datbuf = buf; + ops.len = min(len, (size_t)mtd->writesize); + ops.oobbuf = buf + ops.len; + + res = mtd_read_oob(mtd, offs, &ops); + if (res) { + if (!mtd_is_bitflip_or_eccerr(res)) + return res; + else if (mtd_is_eccerr(res) || !ret) + ret = res; + } + + buf += mtd->oobsize + mtd->writesize; + len -= mtd->writesize; + offs += mtd->writesize; + } + return ret; +} + +static int scan_read(struct nand_chip *this, uint8_t *buf, loff_t offs, + size_t len, struct nand_bbt_descr *td) +{ + if (td->options & NAND_BBT_NO_OOB) + return scan_read_data(this, buf, offs, td); + else + return scan_read_oob(this, buf, offs, len); +} + +/* Scan write data with oob to flash */ +static int scan_write_bbt(struct nand_chip *this, loff_t offs, size_t len, + uint8_t *buf, uint8_t *oob) +{ + struct mtd_info *mtd = nand_to_mtd(this); + struct mtd_oob_ops ops = { }; + + ops.mode = MTD_OPS_PLACE_OOB; + ops.ooboffs = 0; + ops.ooblen = mtd->oobsize; + ops.datbuf = buf; + ops.oobbuf = oob; + ops.len = len; + + return mtd_write_oob(mtd, offs, &ops); +} + +static u32 bbt_get_ver_offs(struct nand_chip *this, struct nand_bbt_descr *td) +{ + struct mtd_info *mtd = nand_to_mtd(this); + u32 ver_offs = td->veroffs; + + if (!(td->options & NAND_BBT_NO_OOB)) + ver_offs += mtd->writesize; + return ver_offs; +} + +/** + * read_abs_bbts - [GENERIC] Read the bad block table(s) for all chips starting at a given page + * @this: NAND chip object + * @buf: temporary buffer + * @td: descriptor for the bad block table + * @md: descriptor for the bad block table mirror + * + * Read the bad block table(s) for all chips starting at a given page. We + * assume that the bbt bits are in consecutive order. + */ +static void read_abs_bbts(struct nand_chip *this, uint8_t *buf, + struct nand_bbt_descr *td, struct nand_bbt_descr *md) +{ + struct mtd_info *mtd = nand_to_mtd(this); + + /* Read the primary version, if available */ + if (td->options & NAND_BBT_VERSION) { + scan_read(this, buf, (loff_t)td->pages[0] << this->page_shift, + mtd->writesize, td); + td->version[0] = buf[bbt_get_ver_offs(this, td)]; + pr_info("Bad block table at page %d, version 0x%02X\n", + td->pages[0], td->version[0]); + } + + /* Read the mirror version, if available */ + if (md && (md->options & NAND_BBT_VERSION)) { + scan_read(this, buf, (loff_t)md->pages[0] << this->page_shift, + mtd->writesize, md); + md->version[0] = buf[bbt_get_ver_offs(this, md)]; + pr_info("Bad block table at page %d, version 0x%02X\n", + md->pages[0], md->version[0]); + } +} + +/* Scan a given block partially */ +static int scan_block_fast(struct nand_chip *this, struct nand_bbt_descr *bd, + loff_t offs, uint8_t *buf) +{ + struct mtd_info *mtd = nand_to_mtd(this); + + struct mtd_oob_ops ops = { }; + int ret, page_offset; + + ops.ooblen = mtd->oobsize; + ops.oobbuf = buf; + ops.ooboffs = 0; + ops.datbuf = NULL; + ops.mode = MTD_OPS_PLACE_OOB; + + page_offset = nand_bbm_get_next_page(this, 0); + + while (page_offset >= 0) { + /* + * Read the full oob until read_oob is fixed to handle single + * byte reads for 16 bit buswidth. + */ + ret = mtd_read_oob(mtd, offs + (page_offset * mtd->writesize), + &ops); + /* Ignore ECC errors when checking for BBM */ + if (ret && !mtd_is_bitflip_or_eccerr(ret)) + return ret; + + if (check_short_pattern(buf, bd)) + return 1; + + page_offset = nand_bbm_get_next_page(this, page_offset + 1); + } + + return 0; +} + +/* Check if a potential BBT block is marked as bad */ +static int bbt_block_checkbad(struct nand_chip *this, struct nand_bbt_descr *td, + loff_t offs, uint8_t *buf) +{ + struct nand_bbt_descr *bd = this->badblock_pattern; + + /* + * No need to check for a bad BBT block if the BBM area overlaps with + * the bad block table marker area in OOB since writing a BBM here + * invalidates the bad block table marker anyway. + */ + if (!(td->options & NAND_BBT_NO_OOB) && + td->offs >= bd->offs && td->offs < bd->offs + bd->len) + return 0; + + /* + * There is no point in checking for a bad block marker if writing + * such marker is not supported + */ + if (this->bbt_options & NAND_BBT_NO_OOB_BBM || + this->options & NAND_NO_BBM_QUIRK) + return 0; + + if (scan_block_fast(this, bd, offs, buf) > 0) + return 1; + + return 0; +} + +/** + * create_bbt - [GENERIC] Create a bad block table by scanning the device + * @this: NAND chip object + * @buf: temporary buffer + * @bd: descriptor for the good/bad block search pattern + * @chip: create the table for a specific chip, -1 read all chips; applies only + * if NAND_BBT_PERCHIP option is set + * + * Create a bad block table by scanning the device for the given good/bad block + * identify pattern. + */ +static int create_bbt(struct nand_chip *this, uint8_t *buf, + struct nand_bbt_descr *bd, int chip) +{ + u64 targetsize = nanddev_target_size(&this->base); + struct mtd_info *mtd = nand_to_mtd(this); + int i, numblocks, startblock; + loff_t from; + + pr_info("Scanning device for bad blocks\n"); + + if (chip == -1) { + numblocks = mtd->size >> this->bbt_erase_shift; + startblock = 0; + from = 0; + } else { + if (chip >= nanddev_ntargets(&this->base)) { + pr_warn("create_bbt(): chipnr (%d) > available chips (%d)\n", + chip + 1, nanddev_ntargets(&this->base)); + return -EINVAL; + } + numblocks = targetsize >> this->bbt_erase_shift; + startblock = chip * numblocks; + numblocks += startblock; + from = (loff_t)startblock << this->bbt_erase_shift; + } + + for (i = startblock; i < numblocks; i++) { + int ret; + + BUG_ON(bd->options & NAND_BBT_NO_OOB); + + ret = scan_block_fast(this, bd, from, buf); + if (ret < 0) + return ret; + + if (ret) { + bbt_mark_entry(this, i, BBT_BLOCK_FACTORY_BAD); + pr_warn("Bad eraseblock %d at 0x%012llx\n", + i, (unsigned long long)from); + mtd->ecc_stats.badblocks++; + } + + from += (1 << this->bbt_erase_shift); + } + return 0; +} + +/** + * search_bbt - [GENERIC] scan the device for a specific bad block table + * @this: NAND chip object + * @buf: temporary buffer + * @td: descriptor for the bad block table + * + * Read the bad block table by searching for a given ident pattern. Search is + * preformed either from the beginning up or from the end of the device + * downwards. The search starts always at the start of a block. If the option + * NAND_BBT_PERCHIP is given, each chip is searched for a bbt, which contains + * the bad block information of this chip. This is necessary to provide support + * for certain DOC devices. + * + * The bbt ident pattern resides in the oob area of the first page in a block. + */ +static int search_bbt(struct nand_chip *this, uint8_t *buf, + struct nand_bbt_descr *td) +{ + u64 targetsize = nanddev_target_size(&this->base); + struct mtd_info *mtd = nand_to_mtd(this); + int i, chips; + int startblock, block, dir; + int scanlen = mtd->writesize + mtd->oobsize; + int bbtblocks; + int blocktopage = this->bbt_erase_shift - this->page_shift; + + /* Search direction top -> down? */ + if (td->options & NAND_BBT_LASTBLOCK) { + startblock = (mtd->size >> this->bbt_erase_shift) - 1; + dir = -1; + } else { + startblock = 0; + dir = 1; + } + + /* Do we have a bbt per chip? */ + if (td->options & NAND_BBT_PERCHIP) { + chips = nanddev_ntargets(&this->base); + bbtblocks = targetsize >> this->bbt_erase_shift; + startblock &= bbtblocks - 1; + } else { + chips = 1; + bbtblocks = mtd->size >> this->bbt_erase_shift; + } + + for (i = 0; i < chips; i++) { + /* Reset version information */ + td->version[i] = 0; + td->pages[i] = -1; + /* Scan the maximum number of blocks */ + for (block = 0; block < td->maxblocks; block++) { + + int actblock = startblock + dir * block; + loff_t offs = (loff_t)actblock << this->bbt_erase_shift; + + /* Check if block is marked bad */ + if (bbt_block_checkbad(this, td, offs, buf)) + continue; + + /* Read first page */ + scan_read(this, buf, offs, mtd->writesize, td); + if (!check_pattern(buf, scanlen, mtd->writesize, td)) { + td->pages[i] = actblock << blocktopage; + if (td->options & NAND_BBT_VERSION) { + offs = bbt_get_ver_offs(this, td); + td->version[i] = buf[offs]; + } + break; + } + } + startblock += targetsize >> this->bbt_erase_shift; + } + /* Check, if we found a bbt for each requested chip */ + for (i = 0; i < chips; i++) { + if (td->pages[i] == -1) + pr_warn("Bad block table not found for chip %d\n", i); + else + pr_info("Bad block table found at page %d, version 0x%02X\n", + td->pages[i], td->version[i]); + } + return 0; +} + +/** + * search_read_bbts - [GENERIC] scan the device for bad block table(s) + * @this: NAND chip object + * @buf: temporary buffer + * @td: descriptor for the bad block table + * @md: descriptor for the bad block table mirror + * + * Search and read the bad block table(s). + */ +static void search_read_bbts(struct nand_chip *this, uint8_t *buf, + struct nand_bbt_descr *td, + struct nand_bbt_descr *md) +{ + /* Search the primary table */ + search_bbt(this, buf, td); + + /* Search the mirror table */ + if (md) + search_bbt(this, buf, md); +} + +/** + * get_bbt_block - Get the first valid eraseblock suitable to store a BBT + * @this: the NAND device + * @td: the BBT description + * @md: the mirror BBT descriptor + * @chip: the CHIP selector + * + * This functions returns a positive block number pointing a valid eraseblock + * suitable to store a BBT (i.e. in the range reserved for BBT), or -ENOSPC if + * all blocks are already used of marked bad. If td->pages[chip] was already + * pointing to a valid block we re-use it, otherwise we search for the next + * valid one. + */ +static int get_bbt_block(struct nand_chip *this, struct nand_bbt_descr *td, + struct nand_bbt_descr *md, int chip) +{ + u64 targetsize = nanddev_target_size(&this->base); + int startblock, dir, page, numblocks, i; + + /* + * There was already a version of the table, reuse the page. This + * applies for absolute placement too, as we have the page number in + * td->pages. + */ + if (td->pages[chip] != -1) + return td->pages[chip] >> + (this->bbt_erase_shift - this->page_shift); + + numblocks = (int)(targetsize >> this->bbt_erase_shift); + if (!(td->options & NAND_BBT_PERCHIP)) + numblocks *= nanddev_ntargets(&this->base); + + /* + * Automatic placement of the bad block table. Search direction + * top -> down? + */ + if (td->options & NAND_BBT_LASTBLOCK) { + startblock = numblocks * (chip + 1) - 1; + dir = -1; + } else { + startblock = chip * numblocks; + dir = 1; + } + + for (i = 0; i < td->maxblocks; i++) { + int block = startblock + dir * i; + + /* Check, if the block is bad */ + switch (bbt_get_entry(this, block)) { + case BBT_BLOCK_WORN: + case BBT_BLOCK_FACTORY_BAD: + continue; + } + + page = block << (this->bbt_erase_shift - this->page_shift); + + /* Check, if the block is used by the mirror table */ + if (!md || md->pages[chip] != page) + return block; + } + + return -ENOSPC; +} + +/** + * mark_bbt_block_bad - Mark one of the block reserved for BBT bad + * @this: the NAND device + * @td: the BBT description + * @chip: the CHIP selector + * @block: the BBT block to mark + * + * Blocks reserved for BBT can become bad. This functions is an helper to mark + * such blocks as bad. It takes care of updating the in-memory BBT, marking the + * block as bad using a bad block marker and invalidating the associated + * td->pages[] entry. + */ +static void mark_bbt_block_bad(struct nand_chip *this, + struct nand_bbt_descr *td, + int chip, int block) +{ + loff_t to; + int res; + + bbt_mark_entry(this, block, BBT_BLOCK_WORN); + + to = (loff_t)block << this->bbt_erase_shift; + res = nand_markbad_bbm(this, to); + if (res) + pr_warn("nand_bbt: error %d while marking block %d bad\n", + res, block); + + td->pages[chip] = -1; +} + +/** + * write_bbt - [GENERIC] (Re)write the bad block table + * @this: NAND chip object + * @buf: temporary buffer + * @td: descriptor for the bad block table + * @md: descriptor for the bad block table mirror + * @chipsel: selector for a specific chip, -1 for all + * + * (Re)write the bad block table. + */ +static int write_bbt(struct nand_chip *this, uint8_t *buf, + struct nand_bbt_descr *td, struct nand_bbt_descr *md, + int chipsel) +{ + u64 targetsize = nanddev_target_size(&this->base); + struct mtd_info *mtd = nand_to_mtd(this); + struct erase_info einfo; + int i, res, chip = 0; + int bits, page, offs, numblocks, sft, sftmsk; + int nrchips, pageoffs, ooboffs; + uint8_t msk[4]; + uint8_t rcode = td->reserved_block_code; + size_t retlen, len = 0; + loff_t to; + struct mtd_oob_ops ops = { }; + + ops.ooblen = mtd->oobsize; + ops.ooboffs = 0; + ops.datbuf = NULL; + ops.mode = MTD_OPS_PLACE_OOB; + + if (!rcode) + rcode = 0xff; + /* Write bad block table per chip rather than per device? */ + if (td->options & NAND_BBT_PERCHIP) { + numblocks = (int)(targetsize >> this->bbt_erase_shift); + /* Full device write or specific chip? */ + if (chipsel == -1) { + nrchips = nanddev_ntargets(&this->base); + } else { + nrchips = chipsel + 1; + chip = chipsel; + } + } else { + numblocks = (int)(mtd->size >> this->bbt_erase_shift); + nrchips = 1; + } + + /* Loop through the chips */ + while (chip < nrchips) { + int block; + + block = get_bbt_block(this, td, md, chip); + if (block < 0) { + pr_err("No space left to write bad block table\n"); + res = block; + goto outerr; + } + + /* + * get_bbt_block() returns a block number, shift the value to + * get a page number. + */ + page = block << (this->bbt_erase_shift - this->page_shift); + + /* Set up shift count and masks for the flash table */ + bits = td->options & NAND_BBT_NRBITS_MSK; + msk[2] = ~rcode; + switch (bits) { + case 1: sft = 3; sftmsk = 0x07; msk[0] = 0x00; msk[1] = 0x01; + msk[3] = 0x01; + break; + case 2: sft = 2; sftmsk = 0x06; msk[0] = 0x00; msk[1] = 0x01; + msk[3] = 0x03; + break; + case 4: sft = 1; sftmsk = 0x04; msk[0] = 0x00; msk[1] = 0x0C; + msk[3] = 0x0f; + break; + case 8: sft = 0; sftmsk = 0x00; msk[0] = 0x00; msk[1] = 0x0F; + msk[3] = 0xff; + break; + default: return -EINVAL; + } + + to = ((loff_t)page) << this->page_shift; + + /* Must we save the block contents? */ + if (td->options & NAND_BBT_SAVECONTENT) { + /* Make it block aligned */ + to &= ~(((loff_t)1 << this->bbt_erase_shift) - 1); + len = 1 << this->bbt_erase_shift; + res = mtd_read(mtd, to, len, &retlen, buf); + if (res < 0) { + if (retlen != len) { + pr_info("nand_bbt: error reading block for writing the bad block table\n"); + return res; + } + pr_warn("nand_bbt: ECC error while reading block for writing bad block table\n"); + } + /* Read oob data */ + ops.ooblen = (len >> this->page_shift) * mtd->oobsize; + ops.oobbuf = &buf[len]; + res = mtd_read_oob(mtd, to + mtd->writesize, &ops); + if (res < 0 || ops.oobretlen != ops.ooblen) + goto outerr; + + /* Calc the byte offset in the buffer */ + pageoffs = page - (int)(to >> this->page_shift); + offs = pageoffs << this->page_shift; + /* Preset the bbt area with 0xff */ + memset(&buf[offs], 0xff, (size_t)(numblocks >> sft)); + ooboffs = len + (pageoffs * mtd->oobsize); + + } else if (td->options & NAND_BBT_NO_OOB) { + ooboffs = 0; + offs = td->len; + /* The version byte */ + if (td->options & NAND_BBT_VERSION) + offs++; + /* Calc length */ + len = (size_t)(numblocks >> sft); + len += offs; + /* Make it page aligned! */ + len = ALIGN(len, mtd->writesize); + /* Preset the buffer with 0xff */ + memset(buf, 0xff, len); + /* Pattern is located at the begin of first page */ + memcpy(buf, td->pattern, td->len); + } else { + /* Calc length */ + len = (size_t)(numblocks >> sft); + /* Make it page aligned! */ + len = ALIGN(len, mtd->writesize); + /* Preset the buffer with 0xff */ + memset(buf, 0xff, len + + (len >> this->page_shift)* mtd->oobsize); + offs = 0; + ooboffs = len; + /* Pattern is located in oob area of first page */ + memcpy(&buf[ooboffs + td->offs], td->pattern, td->len); + } + + if (td->options & NAND_BBT_VERSION) + buf[ooboffs + td->veroffs] = td->version[chip]; + + /* Walk through the memory table */ + for (i = 0; i < numblocks; i++) { + uint8_t dat; + int sftcnt = (i << (3 - sft)) & sftmsk; + dat = bbt_get_entry(this, chip * numblocks + i); + /* Do not store the reserved bbt blocks! */ + buf[offs + (i >> sft)] &= ~(msk[dat] << sftcnt); + } + + memset(&einfo, 0, sizeof(einfo)); + einfo.addr = to; + einfo.len = 1 << this->bbt_erase_shift; + res = nand_erase_nand(this, &einfo, 1); + if (res < 0) { + pr_warn("nand_bbt: error while erasing BBT block %d\n", + res); + mark_bbt_block_bad(this, td, chip, block); + continue; + } + + res = scan_write_bbt(this, to, len, buf, + td->options & NAND_BBT_NO_OOB ? + NULL : &buf[len]); + if (res < 0) { + pr_warn("nand_bbt: error while writing BBT block %d\n", + res); + mark_bbt_block_bad(this, td, chip, block); + continue; + } + + pr_info("Bad block table written to 0x%012llx, version 0x%02X\n", + (unsigned long long)to, td->version[chip]); + + /* Mark it as used */ + td->pages[chip++] = page; + } + return 0; + + outerr: + pr_warn("nand_bbt: error while writing bad block table %d\n", res); + return res; +} + +/** + * nand_memory_bbt - [GENERIC] create a memory based bad block table + * @this: NAND chip object + * @bd: descriptor for the good/bad block search pattern + * + * The function creates a memory based bbt by scanning the device for + * manufacturer / software marked good / bad blocks. + */ +static inline int nand_memory_bbt(struct nand_chip *this, + struct nand_bbt_descr *bd) +{ + u8 *pagebuf = nand_get_data_buf(this); + + return create_bbt(this, pagebuf, bd, -1); +} + +/** + * check_create - [GENERIC] create and write bbt(s) if necessary + * @this: the NAND device + * @buf: temporary buffer + * @bd: descriptor for the good/bad block search pattern + * + * The function checks the results of the previous call to read_bbt and creates + * / updates the bbt(s) if necessary. Creation is necessary if no bbt was found + * for the chip/device. Update is necessary if one of the tables is missing or + * the version nr. of one table is less than the other. + */ +static int check_create(struct nand_chip *this, uint8_t *buf, + struct nand_bbt_descr *bd) +{ + int i, chips, writeops, create, chipsel, res, res2; + struct nand_bbt_descr *td = this->bbt_td; + struct nand_bbt_descr *md = this->bbt_md; + struct nand_bbt_descr *rd, *rd2; + + /* Do we have a bbt per chip? */ + if (td->options & NAND_BBT_PERCHIP) + chips = nanddev_ntargets(&this->base); + else + chips = 1; + + for (i = 0; i < chips; i++) { + writeops = 0; + create = 0; + rd = NULL; + rd2 = NULL; + res = res2 = 0; + /* Per chip or per device? */ + chipsel = (td->options & NAND_BBT_PERCHIP) ? i : -1; + /* Mirrored table available? */ + if (md) { + if (td->pages[i] == -1 && md->pages[i] == -1) { + create = 1; + writeops = 0x03; + } else if (td->pages[i] == -1) { + rd = md; + writeops = 0x01; + } else if (md->pages[i] == -1) { + rd = td; + writeops = 0x02; + } else if (td->version[i] == md->version[i]) { + rd = td; + if (!(td->options & NAND_BBT_VERSION)) + rd2 = md; + } else if (((int8_t)(td->version[i] - md->version[i])) > 0) { + rd = td; + writeops = 0x02; + } else { + rd = md; + writeops = 0x01; + } + } else { + if (td->pages[i] == -1) { + create = 1; + writeops = 0x01; + } else { + rd = td; + } + } + + if (create) { + /* Create the bad block table by scanning the device? */ + if (!(td->options & NAND_BBT_CREATE)) + continue; + + /* Create the table in memory by scanning the chip(s) */ + if (!(this->bbt_options & NAND_BBT_CREATE_EMPTY)) + create_bbt(this, buf, bd, chipsel); + + td->version[i] = 1; + if (md) + md->version[i] = 1; + } + + /* Read back first? */ + if (rd) { + res = read_abs_bbt(this, buf, rd, chipsel); + if (mtd_is_eccerr(res)) { + /* Mark table as invalid */ + rd->pages[i] = -1; + rd->version[i] = 0; + i--; + continue; + } + } + /* If they weren't versioned, read both */ + if (rd2) { + res2 = read_abs_bbt(this, buf, rd2, chipsel); + if (mtd_is_eccerr(res2)) { + /* Mark table as invalid */ + rd2->pages[i] = -1; + rd2->version[i] = 0; + i--; + continue; + } + } + + /* Scrub the flash table(s)? */ + if (mtd_is_bitflip(res) || mtd_is_bitflip(res2)) + writeops = 0x03; + + /* Update version numbers before writing */ + if (md) { + td->version[i] = max(td->version[i], md->version[i]); + md->version[i] = td->version[i]; + } + + /* Write the bad block table to the device? */ + if ((writeops & 0x01) && (td->options & NAND_BBT_WRITE)) { + res = write_bbt(this, buf, td, md, chipsel); + if (res < 0) + return res; + } + + /* Write the mirror bad block table to the device? */ + if ((writeops & 0x02) && md && (md->options & NAND_BBT_WRITE)) { + res = write_bbt(this, buf, md, td, chipsel); + if (res < 0) + return res; + } + } + return 0; +} + +/** + * nand_update_bbt - update bad block table(s) + * @this: the NAND device + * @offs: the offset of the newly marked block + * + * The function updates the bad block table(s). + */ +static int nand_update_bbt(struct nand_chip *this, loff_t offs) +{ + struct mtd_info *mtd = nand_to_mtd(this); + int len, res = 0; + int chip, chipsel; + uint8_t *buf; + struct nand_bbt_descr *td = this->bbt_td; + struct nand_bbt_descr *md = this->bbt_md; + + if (!this->bbt || !td) + return -EINVAL; + + /* Allocate a temporary buffer for one eraseblock incl. oob */ + len = (1 << this->bbt_erase_shift); + len += (len >> this->page_shift) * mtd->oobsize; + buf = kmalloc(len, GFP_KERNEL); + if (!buf) + return -ENOMEM; + + /* Do we have a bbt per chip? */ + if (td->options & NAND_BBT_PERCHIP) { + chip = (int)(offs >> this->chip_shift); + chipsel = chip; + } else { + chip = 0; + chipsel = -1; + } + + td->version[chip]++; + if (md) + md->version[chip]++; + + /* Write the bad block table to the device? */ + if (td->options & NAND_BBT_WRITE) { + res = write_bbt(this, buf, td, md, chipsel); + if (res < 0) + goto out; + } + /* Write the mirror bad block table to the device? */ + if (md && (md->options & NAND_BBT_WRITE)) { + res = write_bbt(this, buf, md, td, chipsel); + } + + out: + kfree(buf); + return res; +} + +/** + * mark_bbt_region - [GENERIC] mark the bad block table regions + * @this: the NAND device + * @td: bad block table descriptor + * + * The bad block table regions are marked as "bad" to prevent accidental + * erasures / writes. The regions are identified by the mark 0x02. + */ +static void mark_bbt_region(struct nand_chip *this, struct nand_bbt_descr *td) +{ + u64 targetsize = nanddev_target_size(&this->base); + struct mtd_info *mtd = nand_to_mtd(this); + int i, j, chips, block, nrblocks, update; + uint8_t oldval; + + /* Do we have a bbt per chip? */ + if (td->options & NAND_BBT_PERCHIP) { + chips = nanddev_ntargets(&this->base); + nrblocks = (int)(targetsize >> this->bbt_erase_shift); + } else { + chips = 1; + nrblocks = (int)(mtd->size >> this->bbt_erase_shift); + } + + for (i = 0; i < chips; i++) { + if ((td->options & NAND_BBT_ABSPAGE) || + !(td->options & NAND_BBT_WRITE)) { + if (td->pages[i] == -1) + continue; + block = td->pages[i] >> (this->bbt_erase_shift - this->page_shift); + oldval = bbt_get_entry(this, block); + bbt_mark_entry(this, block, BBT_BLOCK_RESERVED); + if ((oldval != BBT_BLOCK_RESERVED) && + td->reserved_block_code) + nand_update_bbt(this, (loff_t)block << + this->bbt_erase_shift); + continue; + } + update = 0; + if (td->options & NAND_BBT_LASTBLOCK) + block = ((i + 1) * nrblocks) - td->maxblocks; + else + block = i * nrblocks; + for (j = 0; j < td->maxblocks; j++) { + oldval = bbt_get_entry(this, block); + bbt_mark_entry(this, block, BBT_BLOCK_RESERVED); + if (oldval != BBT_BLOCK_RESERVED) + update = 1; + block++; + } + /* + * If we want reserved blocks to be recorded to flash, and some + * new ones have been marked, then we need to update the stored + * bbts. This should only happen once. + */ + if (update && td->reserved_block_code) + nand_update_bbt(this, (loff_t)(block - 1) << + this->bbt_erase_shift); + } +} + +/** + * verify_bbt_descr - verify the bad block description + * @this: the NAND device + * @bd: the table to verify + * + * This functions performs a few sanity checks on the bad block description + * table. + */ +static void verify_bbt_descr(struct nand_chip *this, struct nand_bbt_descr *bd) +{ + u64 targetsize = nanddev_target_size(&this->base); + struct mtd_info *mtd = nand_to_mtd(this); + u32 pattern_len; + u32 bits; + u32 table_size; + + if (!bd) + return; + + pattern_len = bd->len; + bits = bd->options & NAND_BBT_NRBITS_MSK; + + BUG_ON((this->bbt_options & NAND_BBT_NO_OOB) && + !(this->bbt_options & NAND_BBT_USE_FLASH)); + BUG_ON(!bits); + + if (bd->options & NAND_BBT_VERSION) + pattern_len++; + + if (bd->options & NAND_BBT_NO_OOB) { + BUG_ON(!(this->bbt_options & NAND_BBT_USE_FLASH)); + BUG_ON(!(this->bbt_options & NAND_BBT_NO_OOB)); + BUG_ON(bd->offs); + if (bd->options & NAND_BBT_VERSION) + BUG_ON(bd->veroffs != bd->len); + BUG_ON(bd->options & NAND_BBT_SAVECONTENT); + } + + if (bd->options & NAND_BBT_PERCHIP) + table_size = targetsize >> this->bbt_erase_shift; + else + table_size = mtd->size >> this->bbt_erase_shift; + table_size >>= 3; + table_size *= bits; + if (bd->options & NAND_BBT_NO_OOB) + table_size += pattern_len; + BUG_ON(table_size > (1 << this->bbt_erase_shift)); +} + +/** + * nand_scan_bbt - [NAND Interface] scan, find, read and maybe create bad block table(s) + * @this: the NAND device + * @bd: descriptor for the good/bad block search pattern + * + * The function checks, if a bad block table(s) is/are already available. If + * not it scans the device for manufacturer marked good / bad blocks and writes + * the bad block table(s) to the selected place. + * + * The bad block table memory is allocated here. It must be freed by calling + * the nand_free_bbt function. + */ +static int nand_scan_bbt(struct nand_chip *this, struct nand_bbt_descr *bd) +{ + struct mtd_info *mtd = nand_to_mtd(this); + int len, res; + uint8_t *buf; + struct nand_bbt_descr *td = this->bbt_td; + struct nand_bbt_descr *md = this->bbt_md; + + len = (mtd->size >> (this->bbt_erase_shift + 2)) ? : 1; + /* + * Allocate memory (2bit per block) and clear the memory bad block + * table. + */ + this->bbt = kzalloc(len, GFP_KERNEL); + if (!this->bbt) + return -ENOMEM; + + /* + * If no primary table descriptor is given, scan the device to build a + * memory based bad block table. + */ + if (!td) { + if ((res = nand_memory_bbt(this, bd))) { + pr_err("nand_bbt: can't scan flash and build the RAM-based BBT\n"); + goto err_free_bbt; + } + return 0; + } + verify_bbt_descr(this, td); + verify_bbt_descr(this, md); + + /* Allocate a temporary buffer for one eraseblock incl. oob */ + len = (1 << this->bbt_erase_shift); + len += (len >> this->page_shift) * mtd->oobsize; + buf = vmalloc(len); + if (!buf) { + res = -ENOMEM; + goto err_free_bbt; + } + + /* Is the bbt at a given page? */ + if (td->options & NAND_BBT_ABSPAGE) { + read_abs_bbts(this, buf, td, md); + } else { + /* Search the bad block table using a pattern in oob */ + search_read_bbts(this, buf, td, md); + } + + res = check_create(this, buf, bd); + if (res) + goto err_free_buf; + + /* Prevent the bbt regions from erasing / writing */ + mark_bbt_region(this, td); + if (md) + mark_bbt_region(this, md); + + vfree(buf); + return 0; + +err_free_buf: + vfree(buf); +err_free_bbt: + kfree(this->bbt); + this->bbt = NULL; + return res; +} + +/* + * Define some generic bad / good block scan pattern which are used + * while scanning a device for factory marked good / bad blocks. + */ +static uint8_t scan_ff_pattern[] = { 0xff, 0xff }; + +/* Generic flash bbt descriptors */ +static uint8_t bbt_pattern[] = {'B', 'b', 't', '0' }; +static uint8_t mirror_pattern[] = {'1', 't', 'b', 'B' }; + +static struct nand_bbt_descr bbt_main_descr = { + .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE + | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP, + .offs = 8, + .len = 4, + .veroffs = 12, + .maxblocks = NAND_BBT_SCAN_MAXBLOCKS, + .pattern = bbt_pattern +}; + +static struct nand_bbt_descr bbt_mirror_descr = { + .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE + | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP, + .offs = 8, + .len = 4, + .veroffs = 12, + .maxblocks = NAND_BBT_SCAN_MAXBLOCKS, + .pattern = mirror_pattern +}; + +static struct nand_bbt_descr bbt_main_no_oob_descr = { + .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE + | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP + | NAND_BBT_NO_OOB, + .len = 4, + .veroffs = 4, + .maxblocks = NAND_BBT_SCAN_MAXBLOCKS, + .pattern = bbt_pattern +}; + +static struct nand_bbt_descr bbt_mirror_no_oob_descr = { + .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE + | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP + | NAND_BBT_NO_OOB, + .len = 4, + .veroffs = 4, + .maxblocks = NAND_BBT_SCAN_MAXBLOCKS, + .pattern = mirror_pattern +}; + +#define BADBLOCK_SCAN_MASK (~NAND_BBT_NO_OOB) +/** + * nand_create_badblock_pattern - [INTERN] Creates a BBT descriptor structure + * @this: NAND chip to create descriptor for + * + * This function allocates and initializes a nand_bbt_descr for BBM detection + * based on the properties of @this. The new descriptor is stored in + * this->badblock_pattern. Thus, this->badblock_pattern should be NULL when + * passed to this function. + */ +static int nand_create_badblock_pattern(struct nand_chip *this) +{ + struct nand_bbt_descr *bd; + if (this->badblock_pattern) { + pr_warn("Bad block pattern already allocated; not replacing\n"); + return -EINVAL; + } + bd = kzalloc(sizeof(*bd), GFP_KERNEL); + if (!bd) + return -ENOMEM; + bd->options = this->bbt_options & BADBLOCK_SCAN_MASK; + bd->offs = this->badblockpos; + bd->len = (this->options & NAND_BUSWIDTH_16) ? 2 : 1; + bd->pattern = scan_ff_pattern; + bd->options |= NAND_BBT_DYNAMICSTRUCT; + this->badblock_pattern = bd; + return 0; +} + +/** + * nand_create_bbt - [NAND Interface] Select a default bad block table for the device + * @this: NAND chip object + * + * This function selects the default bad block table support for the device and + * calls the nand_scan_bbt function. + */ +int nand_create_bbt(struct nand_chip *this) +{ + int ret; + + /* Is a flash based bad block table requested? */ + if (this->bbt_options & NAND_BBT_USE_FLASH) { + /* Use the default pattern descriptors */ + if (!this->bbt_td) { + if (this->bbt_options & NAND_BBT_NO_OOB) { + this->bbt_td = &bbt_main_no_oob_descr; + this->bbt_md = &bbt_mirror_no_oob_descr; + } else { + this->bbt_td = &bbt_main_descr; + this->bbt_md = &bbt_mirror_descr; + } + } + } else { + this->bbt_td = NULL; + this->bbt_md = NULL; + } + + if (!this->badblock_pattern) { + ret = nand_create_badblock_pattern(this); + if (ret) + return ret; + } + + return nand_scan_bbt(this, this->badblock_pattern); +} +EXPORT_SYMBOL(nand_create_bbt); + +/** + * nand_isreserved_bbt - [NAND Interface] Check if a block is reserved + * @this: NAND chip object + * @offs: offset in the device + */ +int nand_isreserved_bbt(struct nand_chip *this, loff_t offs) +{ + int block; + + block = (int)(offs >> this->bbt_erase_shift); + return bbt_get_entry(this, block) == BBT_BLOCK_RESERVED; +} + +/** + * nand_isbad_bbt - [NAND Interface] Check if a block is bad + * @this: NAND chip object + * @offs: offset in the device + * @allowbbt: allow access to bad block table region + */ +int nand_isbad_bbt(struct nand_chip *this, loff_t offs, int allowbbt) +{ + int block, res; + + block = (int)(offs >> this->bbt_erase_shift); + res = bbt_get_entry(this, block); + + pr_debug("nand_isbad_bbt(): bbt info for offs 0x%08x: (block %d) 0x%02x\n", + (unsigned int)offs, block, res); + + if (mtd_check_expert_analysis_mode()) + return 0; + + switch (res) { + case BBT_BLOCK_GOOD: + return 0; + case BBT_BLOCK_WORN: + return 1; + case BBT_BLOCK_RESERVED: + return allowbbt ? 0 : 1; + } + return 1; +} + +/** + * nand_markbad_bbt - [NAND Interface] Mark a block bad in the BBT + * @this: NAND chip object + * @offs: offset of the bad block + */ +int nand_markbad_bbt(struct nand_chip *this, loff_t offs) +{ + int block, ret = 0; + + block = (int)(offs >> this->bbt_erase_shift); + + /* Mark bad block in memory */ + bbt_mark_entry(this, block, BBT_BLOCK_WORN); + + /* Update flash-based bad block table */ + if (this->bbt_options & NAND_BBT_USE_FLASH) + ret = nand_update_bbt(this, offs); + + return ret; +} diff --git a/drivers/mtd/nand/raw/nand_esmt.c b/drivers/mtd/nand/raw/nand_esmt.c new file mode 100644 index 0000000000..4412c407ae --- /dev/null +++ b/drivers/mtd/nand/raw/nand_esmt.c @@ -0,0 +1,59 @@ +// SPDX-License-Identifier: GPL-2.0 +/* + * Copyright (C) 2018 Toradex AG + * + * Author: Marcel Ziswiler <marcel.ziswiler@toradex.com> + */ + +#include <linux/mtd/rawnand.h> +#include "internals.h" + +static void esmt_nand_decode_id(struct nand_chip *chip) +{ + struct nand_device *base = &chip->base; + struct nand_ecc_props requirements = {}; + + nand_decode_ext_id(chip); + + /* Extract ECC requirements from 5th id byte. */ + if (chip->id.len >= 5 && nand_is_slc(chip)) { + requirements.step_size = 512; + switch (chip->id.data[4] & 0x3) { + case 0x0: + requirements.strength = 4; + break; + case 0x1: + requirements.strength = 2; + break; + case 0x2: + requirements.strength = 1; + break; + default: + WARN(1, "Could not get ECC info"); + requirements.step_size = 0; + break; + } + } + + nanddev_set_ecc_requirements(base, &requirements); +} + +static int esmt_nand_init(struct nand_chip *chip) +{ + if (nand_is_slc(chip)) + /* + * It is known that some ESMT SLC NANDs have been shipped + * with the factory bad block markers in the first or last page + * of the block, instead of the first or second page. To be on + * the safe side, let's check all three locations. + */ + chip->options |= NAND_BBM_FIRSTPAGE | NAND_BBM_SECONDPAGE | + NAND_BBM_LASTPAGE; + + return 0; +} + +const struct nand_manufacturer_ops esmt_nand_manuf_ops = { + .detect = esmt_nand_decode_id, + .init = esmt_nand_init, +}; diff --git a/drivers/mtd/nand/raw/nand_hynix.c b/drivers/mtd/nand/raw/nand_hynix.c new file mode 100644 index 0000000000..39076735a3 --- /dev/null +++ b/drivers/mtd/nand/raw/nand_hynix.c @@ -0,0 +1,748 @@ +// SPDX-License-Identifier: GPL-2.0-or-later +/* + * Copyright (C) 2017 Free Electrons + * Copyright (C) 2017 NextThing Co + * + * Author: Boris Brezillon <boris.brezillon@free-electrons.com> + */ + +#include <linux/sizes.h> +#include <linux/slab.h> + +#include "internals.h" + +#define NAND_HYNIX_CMD_SET_PARAMS 0x36 +#define NAND_HYNIX_CMD_APPLY_PARAMS 0x16 + +#define NAND_HYNIX_1XNM_RR_REPEAT 8 + +/** + * struct hynix_read_retry - read-retry data + * @nregs: number of register to set when applying a new read-retry mode + * @regs: register offsets (NAND chip dependent) + * @values: array of values to set in registers. The array size is equal to + * (nregs * nmodes) + */ +struct hynix_read_retry { + int nregs; + const u8 *regs; + u8 values[]; +}; + +/** + * struct hynix_nand - private Hynix NAND struct + * @nand_technology: manufacturing process expressed in picometer + * @read_retry: read-retry information + */ +struct hynix_nand { + const struct hynix_read_retry *read_retry; +}; + +/** + * struct hynix_read_retry_otp - structure describing how the read-retry OTP + * area + * @nregs: number of hynix private registers to set before reading the reading + * the OTP area + * @regs: registers that should be configured + * @values: values that should be set in regs + * @page: the address to pass to the READ_PAGE command. Depends on the NAND + * chip + * @size: size of the read-retry OTP section + */ +struct hynix_read_retry_otp { + int nregs; + const u8 *regs; + const u8 *values; + int page; + int size; +}; + +static bool hynix_nand_has_valid_jedecid(struct nand_chip *chip) +{ + u8 jedecid[5] = { }; + int ret; + + ret = nand_readid_op(chip, 0x40, jedecid, sizeof(jedecid)); + if (ret) + return false; + + return !strncmp("JEDEC", jedecid, sizeof(jedecid)); +} + +static int hynix_nand_cmd_op(struct nand_chip *chip, u8 cmd) +{ + if (nand_has_exec_op(chip)) { + struct nand_op_instr instrs[] = { + NAND_OP_CMD(cmd, 0), + }; + struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs); + + return nand_exec_op(chip, &op); + } + + chip->legacy.cmdfunc(chip, cmd, -1, -1); + + return 0; +} + +static int hynix_nand_reg_write_op(struct nand_chip *chip, u8 addr, u8 val) +{ + u16 column = ((u16)addr << 8) | addr; + + if (nand_has_exec_op(chip)) { + struct nand_op_instr instrs[] = { + NAND_OP_ADDR(1, &addr, 0), + NAND_OP_8BIT_DATA_OUT(1, &val, 0), + }; + struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs); + + return nand_exec_op(chip, &op); + } + + chip->legacy.cmdfunc(chip, NAND_CMD_NONE, column, -1); + chip->legacy.write_byte(chip, val); + + return 0; +} + +static int hynix_nand_setup_read_retry(struct nand_chip *chip, int retry_mode) +{ + struct hynix_nand *hynix = nand_get_manufacturer_data(chip); + const u8 *values; + int i, ret; + + values = hynix->read_retry->values + + (retry_mode * hynix->read_retry->nregs); + + /* Enter 'Set Hynix Parameters' mode */ + ret = hynix_nand_cmd_op(chip, NAND_HYNIX_CMD_SET_PARAMS); + if (ret) + return ret; + + /* + * Configure the NAND in the requested read-retry mode. + * This is done by setting pre-defined values in internal NAND + * registers. + * + * The set of registers is NAND specific, and the values are either + * predefined or extracted from an OTP area on the NAND (values are + * probably tweaked at production in this case). + */ + for (i = 0; i < hynix->read_retry->nregs; i++) { + ret = hynix_nand_reg_write_op(chip, hynix->read_retry->regs[i], + values[i]); + if (ret) + return ret; + } + + /* Apply the new settings. */ + return hynix_nand_cmd_op(chip, NAND_HYNIX_CMD_APPLY_PARAMS); +} + +/** + * hynix_get_majority - get the value that is occurring the most in a given + * set of values + * @in: the array of values to test + * @repeat: the size of the in array + * @out: pointer used to store the output value + * + * This function implements the 'majority check' logic that is supposed to + * overcome the unreliability of MLC NANDs when reading the OTP area storing + * the read-retry parameters. + * + * It's based on a pretty simple assumption: if we repeat the same value + * several times and then take the one that is occurring the most, we should + * find the correct value. + * Let's hope this dummy algorithm prevents us from losing the read-retry + * parameters. + */ +static int hynix_get_majority(const u8 *in, int repeat, u8 *out) +{ + int i, j, half = repeat / 2; + + /* + * We only test the first half of the in array because we must ensure + * that the value is at least occurring repeat / 2 times. + * + * This loop is suboptimal since we may count the occurrences of the + * same value several time, but we are doing that on small sets, which + * makes it acceptable. + */ + for (i = 0; i < half; i++) { + int cnt = 0; + u8 val = in[i]; + + /* Count all values that are matching the one at index i. */ + for (j = i + 1; j < repeat; j++) { + if (in[j] == val) + cnt++; + } + + /* We found a value occurring more than repeat / 2. */ + if (cnt > half) { + *out = val; + return 0; + } + } + + return -EIO; +} + +static int hynix_read_rr_otp(struct nand_chip *chip, + const struct hynix_read_retry_otp *info, + void *buf) +{ + int i, ret; + + ret = nand_reset_op(chip); + if (ret) + return ret; + + ret = hynix_nand_cmd_op(chip, NAND_HYNIX_CMD_SET_PARAMS); + if (ret) + return ret; + + for (i = 0; i < info->nregs; i++) { + ret = hynix_nand_reg_write_op(chip, info->regs[i], + info->values[i]); + if (ret) + return ret; + } + + ret = hynix_nand_cmd_op(chip, NAND_HYNIX_CMD_APPLY_PARAMS); + if (ret) + return ret; + + /* Sequence to enter OTP mode? */ + ret = hynix_nand_cmd_op(chip, 0x17); + if (ret) + return ret; + + ret = hynix_nand_cmd_op(chip, 0x4); + if (ret) + return ret; + + ret = hynix_nand_cmd_op(chip, 0x19); + if (ret) + return ret; + + /* Now read the page */ + ret = nand_read_page_op(chip, info->page, 0, buf, info->size); + if (ret) + return ret; + + /* Put everything back to normal */ + ret = nand_reset_op(chip); + if (ret) + return ret; + + ret = hynix_nand_cmd_op(chip, NAND_HYNIX_CMD_SET_PARAMS); + if (ret) + return ret; + + ret = hynix_nand_reg_write_op(chip, 0x38, 0); + if (ret) + return ret; + + ret = hynix_nand_cmd_op(chip, NAND_HYNIX_CMD_APPLY_PARAMS); + if (ret) + return ret; + + return nand_read_page_op(chip, 0, 0, NULL, 0); +} + +#define NAND_HYNIX_1XNM_RR_COUNT_OFFS 0 +#define NAND_HYNIX_1XNM_RR_REG_COUNT_OFFS 8 +#define NAND_HYNIX_1XNM_RR_SET_OFFS(x, setsize, inv) \ + (16 + ((((x) * 2) + ((inv) ? 1 : 0)) * (setsize))) + +static int hynix_mlc_1xnm_rr_value(const u8 *buf, int nmodes, int nregs, + int mode, int reg, bool inv, u8 *val) +{ + u8 tmp[NAND_HYNIX_1XNM_RR_REPEAT]; + int val_offs = (mode * nregs) + reg; + int set_size = nmodes * nregs; + int i, ret; + + for (i = 0; i < NAND_HYNIX_1XNM_RR_REPEAT; i++) { + int set_offs = NAND_HYNIX_1XNM_RR_SET_OFFS(i, set_size, inv); + + tmp[i] = buf[val_offs + set_offs]; + } + + ret = hynix_get_majority(tmp, NAND_HYNIX_1XNM_RR_REPEAT, val); + if (ret) + return ret; + + if (inv) + *val = ~*val; + + return 0; +} + +static u8 hynix_1xnm_mlc_read_retry_regs[] = { + 0xcc, 0xbf, 0xaa, 0xab, 0xcd, 0xad, 0xae, 0xaf +}; + +static int hynix_mlc_1xnm_rr_init(struct nand_chip *chip, + const struct hynix_read_retry_otp *info) +{ + struct hynix_nand *hynix = nand_get_manufacturer_data(chip); + struct hynix_read_retry *rr = NULL; + int ret, i, j; + u8 nregs, nmodes; + u8 *buf; + + buf = kmalloc(info->size, GFP_KERNEL); + if (!buf) + return -ENOMEM; + + ret = hynix_read_rr_otp(chip, info, buf); + if (ret) + goto out; + + ret = hynix_get_majority(buf, NAND_HYNIX_1XNM_RR_REPEAT, + &nmodes); + if (ret) + goto out; + + ret = hynix_get_majority(buf + NAND_HYNIX_1XNM_RR_REPEAT, + NAND_HYNIX_1XNM_RR_REPEAT, + &nregs); + if (ret) + goto out; + + rr = kzalloc(sizeof(*rr) + (nregs * nmodes), GFP_KERNEL); + if (!rr) { + ret = -ENOMEM; + goto out; + } + + for (i = 0; i < nmodes; i++) { + for (j = 0; j < nregs; j++) { + u8 *val = rr->values + (i * nregs); + + ret = hynix_mlc_1xnm_rr_value(buf, nmodes, nregs, i, j, + false, val); + if (!ret) + continue; + + ret = hynix_mlc_1xnm_rr_value(buf, nmodes, nregs, i, j, + true, val); + if (ret) + goto out; + } + } + + rr->nregs = nregs; + rr->regs = hynix_1xnm_mlc_read_retry_regs; + hynix->read_retry = rr; + chip->ops.setup_read_retry = hynix_nand_setup_read_retry; + chip->read_retries = nmodes; + +out: + kfree(buf); + + if (ret) + kfree(rr); + + return ret; +} + +static const u8 hynix_mlc_1xnm_rr_otp_regs[] = { 0x38 }; +static const u8 hynix_mlc_1xnm_rr_otp_values[] = { 0x52 }; + +static const struct hynix_read_retry_otp hynix_mlc_1xnm_rr_otps[] = { + { + .nregs = ARRAY_SIZE(hynix_mlc_1xnm_rr_otp_regs), + .regs = hynix_mlc_1xnm_rr_otp_regs, + .values = hynix_mlc_1xnm_rr_otp_values, + .page = 0x21f, + .size = 784 + }, + { + .nregs = ARRAY_SIZE(hynix_mlc_1xnm_rr_otp_regs), + .regs = hynix_mlc_1xnm_rr_otp_regs, + .values = hynix_mlc_1xnm_rr_otp_values, + .page = 0x200, + .size = 528, + }, +}; + +static int hynix_nand_rr_init(struct nand_chip *chip) +{ + int i, ret = 0; + bool valid_jedecid; + + valid_jedecid = hynix_nand_has_valid_jedecid(chip); + + /* + * We only support read-retry for 1xnm NANDs, and those NANDs all + * expose a valid JEDEC ID. + */ + if (valid_jedecid) { + u8 nand_tech = chip->id.data[5] >> 4; + + /* 1xnm technology */ + if (nand_tech == 4) { + for (i = 0; i < ARRAY_SIZE(hynix_mlc_1xnm_rr_otps); + i++) { + /* + * FIXME: Hynix recommend to copy the + * read-retry OTP area into a normal page. + */ + ret = hynix_mlc_1xnm_rr_init(chip, + hynix_mlc_1xnm_rr_otps); + if (!ret) + break; + } + } + } + + if (ret) + pr_warn("failed to initialize read-retry infrastructure"); + + return 0; +} + +static void hynix_nand_extract_oobsize(struct nand_chip *chip, + bool valid_jedecid) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + struct nand_memory_organization *memorg; + u8 oobsize; + + memorg = nanddev_get_memorg(&chip->base); + + oobsize = ((chip->id.data[3] >> 2) & 0x3) | + ((chip->id.data[3] >> 4) & 0x4); + + if (valid_jedecid) { + switch (oobsize) { + case 0: + memorg->oobsize = 2048; + break; + case 1: + memorg->oobsize = 1664; + break; + case 2: + memorg->oobsize = 1024; + break; + case 3: + memorg->oobsize = 640; + break; + default: + /* + * We should never reach this case, but if that + * happens, this probably means Hynix decided to use + * a different extended ID format, and we should find + * a way to support it. + */ + WARN(1, "Invalid OOB size"); + break; + } + } else { + switch (oobsize) { + case 0: + memorg->oobsize = 128; + break; + case 1: + memorg->oobsize = 224; + break; + case 2: + memorg->oobsize = 448; + break; + case 3: + memorg->oobsize = 64; + break; + case 4: + memorg->oobsize = 32; + break; + case 5: + memorg->oobsize = 16; + break; + case 6: + memorg->oobsize = 640; + break; + default: + /* + * We should never reach this case, but if that + * happens, this probably means Hynix decided to use + * a different extended ID format, and we should find + * a way to support it. + */ + WARN(1, "Invalid OOB size"); + break; + } + + /* + * The datasheet of H27UCG8T2BTR mentions that the "Redundant + * Area Size" is encoded "per 8KB" (page size). This chip uses + * a page size of 16KiB. The datasheet mentions an OOB size of + * 1.280 bytes, but the OOB size encoded in the ID bytes (using + * the existing logic above) is 640 bytes. + * Update the OOB size for this chip by taking the value + * determined above and scaling it to the actual page size (so + * the actual OOB size for this chip is: 640 * 16k / 8k). + */ + if (chip->id.data[1] == 0xde) + memorg->oobsize *= memorg->pagesize / SZ_8K; + } + + mtd->oobsize = memorg->oobsize; +} + +static void hynix_nand_extract_ecc_requirements(struct nand_chip *chip, + bool valid_jedecid) +{ + struct nand_device *base = &chip->base; + struct nand_ecc_props requirements = {}; + u8 ecc_level = (chip->id.data[4] >> 4) & 0x7; + + if (valid_jedecid) { + /* Reference: H27UCG8T2E datasheet */ + requirements.step_size = 1024; + + switch (ecc_level) { + case 0: + requirements.step_size = 0; + requirements.strength = 0; + break; + case 1: + requirements.strength = 4; + break; + case 2: + requirements.strength = 24; + break; + case 3: + requirements.strength = 32; + break; + case 4: + requirements.strength = 40; + break; + case 5: + requirements.strength = 50; + break; + case 6: + requirements.strength = 60; + break; + default: + /* + * We should never reach this case, but if that + * happens, this probably means Hynix decided to use + * a different extended ID format, and we should find + * a way to support it. + */ + WARN(1, "Invalid ECC requirements"); + } + } else { + /* + * The ECC requirements field meaning depends on the + * NAND technology. + */ + u8 nand_tech = chip->id.data[5] & 0x7; + + if (nand_tech < 3) { + /* > 26nm, reference: H27UBG8T2A datasheet */ + if (ecc_level < 5) { + requirements.step_size = 512; + requirements.strength = 1 << ecc_level; + } else if (ecc_level < 7) { + if (ecc_level == 5) + requirements.step_size = 2048; + else + requirements.step_size = 1024; + requirements.strength = 24; + } else { + /* + * We should never reach this case, but if that + * happens, this probably means Hynix decided + * to use a different extended ID format, and + * we should find a way to support it. + */ + WARN(1, "Invalid ECC requirements"); + } + } else { + /* <= 26nm, reference: H27UBG8T2B datasheet */ + if (!ecc_level) { + requirements.step_size = 0; + requirements.strength = 0; + } else if (ecc_level < 5) { + requirements.step_size = 512; + requirements.strength = 1 << (ecc_level - 1); + } else { + requirements.step_size = 1024; + requirements.strength = 24 + + (8 * (ecc_level - 5)); + } + } + } + + nanddev_set_ecc_requirements(base, &requirements); +} + +static void hynix_nand_extract_scrambling_requirements(struct nand_chip *chip, + bool valid_jedecid) +{ + u8 nand_tech; + + /* We need scrambling on all TLC NANDs*/ + if (nanddev_bits_per_cell(&chip->base) > 2) + chip->options |= NAND_NEED_SCRAMBLING; + + /* And on MLC NANDs with sub-3xnm process */ + if (valid_jedecid) { + nand_tech = chip->id.data[5] >> 4; + + /* < 3xnm */ + if (nand_tech > 0) + chip->options |= NAND_NEED_SCRAMBLING; + } else { + nand_tech = chip->id.data[5] & 0x7; + + /* < 32nm */ + if (nand_tech > 2) + chip->options |= NAND_NEED_SCRAMBLING; + } +} + +static void hynix_nand_decode_id(struct nand_chip *chip) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + struct nand_memory_organization *memorg; + bool valid_jedecid; + u8 tmp; + + memorg = nanddev_get_memorg(&chip->base); + + /* + * Exclude all SLC NANDs from this advanced detection scheme. + * According to the ranges defined in several datasheets, it might + * appear that even SLC NANDs could fall in this extended ID scheme. + * If that the case rework the test to let SLC NANDs go through the + * detection process. + */ + if (chip->id.len < 6 || nand_is_slc(chip)) { + nand_decode_ext_id(chip); + return; + } + + /* Extract pagesize */ + memorg->pagesize = 2048 << (chip->id.data[3] & 0x03); + mtd->writesize = memorg->pagesize; + + tmp = (chip->id.data[3] >> 4) & 0x3; + /* + * When bit7 is set that means we start counting at 1MiB, otherwise + * we start counting at 128KiB and shift this value the content of + * ID[3][4:5]. + * The only exception is when ID[3][4:5] == 3 and ID[3][7] == 0, in + * this case the erasesize is set to 768KiB. + */ + if (chip->id.data[3] & 0x80) { + memorg->pages_per_eraseblock = (SZ_1M << tmp) / + memorg->pagesize; + mtd->erasesize = SZ_1M << tmp; + } else if (tmp == 3) { + memorg->pages_per_eraseblock = (SZ_512K + SZ_256K) / + memorg->pagesize; + mtd->erasesize = SZ_512K + SZ_256K; + } else { + memorg->pages_per_eraseblock = (SZ_128K << tmp) / + memorg->pagesize; + mtd->erasesize = SZ_128K << tmp; + } + + /* + * Modern Toggle DDR NANDs have a valid JEDECID even though they are + * not exposing a valid JEDEC parameter table. + * These NANDs use a different NAND ID scheme. + */ + valid_jedecid = hynix_nand_has_valid_jedecid(chip); + + hynix_nand_extract_oobsize(chip, valid_jedecid); + hynix_nand_extract_ecc_requirements(chip, valid_jedecid); + hynix_nand_extract_scrambling_requirements(chip, valid_jedecid); +} + +static void hynix_nand_cleanup(struct nand_chip *chip) +{ + struct hynix_nand *hynix = nand_get_manufacturer_data(chip); + + if (!hynix) + return; + + kfree(hynix->read_retry); + kfree(hynix); + nand_set_manufacturer_data(chip, NULL); +} + +static int +h27ucg8t2atrbc_choose_interface_config(struct nand_chip *chip, + struct nand_interface_config *iface) +{ + onfi_fill_interface_config(chip, iface, NAND_SDR_IFACE, 4); + + return nand_choose_best_sdr_timings(chip, iface, NULL); +} + +static int h27ucg8t2etrbc_init(struct nand_chip *chip) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + + chip->options |= NAND_NEED_SCRAMBLING; + mtd_set_pairing_scheme(mtd, &dist3_pairing_scheme); + + return 0; +} + +static int hynix_nand_init(struct nand_chip *chip) +{ + struct hynix_nand *hynix; + int ret; + + if (!nand_is_slc(chip)) + chip->options |= NAND_BBM_LASTPAGE; + else + chip->options |= NAND_BBM_FIRSTPAGE | NAND_BBM_SECONDPAGE; + + hynix = kzalloc(sizeof(*hynix), GFP_KERNEL); + if (!hynix) + return -ENOMEM; + + nand_set_manufacturer_data(chip, hynix); + + if (!strncmp("H27UCG8T2ATR-BC", chip->parameters.model, + sizeof("H27UCG8T2ATR-BC") - 1)) + chip->ops.choose_interface_config = + h27ucg8t2atrbc_choose_interface_config; + + if (!strncmp("H27UCG8T2ETR-BC", chip->parameters.model, + sizeof("H27UCG8T2ETR-BC") - 1)) + h27ucg8t2etrbc_init(chip); + + ret = hynix_nand_rr_init(chip); + if (ret) + hynix_nand_cleanup(chip); + + return ret; +} + +static void hynix_fixup_onfi_param_page(struct nand_chip *chip, + struct nand_onfi_params *p) +{ + /* + * Certain chips might report a 0 on sdr_timing_mode field + * (bytes 129-130). This has been seen on H27U4G8F2GDA-BI. + * According to ONFI specification, bit 0 of this field "shall be 1". + * Forcibly set this bit. + */ + p->sdr_timing_modes |= cpu_to_le16(BIT(0)); +} + +const struct nand_manufacturer_ops hynix_nand_manuf_ops = { + .detect = hynix_nand_decode_id, + .init = hynix_nand_init, + .cleanup = hynix_nand_cleanup, + .fixup_onfi_param_page = hynix_fixup_onfi_param_page, +}; diff --git a/drivers/mtd/nand/raw/nand_ids.c b/drivers/mtd/nand/raw/nand_ids.c new file mode 100644 index 0000000000..650351c62a --- /dev/null +++ b/drivers/mtd/nand/raw/nand_ids.c @@ -0,0 +1,217 @@ +// SPDX-License-Identifier: GPL-2.0-only +/* + * Copyright (C) 2002 Thomas Gleixner (tglx@linutronix.de) + */ + +#include <linux/sizes.h> + +#include "internals.h" + +#define LP_OPTIONS 0 +#define LP_OPTIONS16 (LP_OPTIONS | NAND_BUSWIDTH_16) + +#define SP_OPTIONS NAND_NEED_READRDY +#define SP_OPTIONS16 (SP_OPTIONS | NAND_BUSWIDTH_16) + +/* + * The chip ID list: + * name, device ID, page size, chip size in MiB, eraseblock size, options + * + * If page size and eraseblock size are 0, the sizes are taken from the + * extended chip ID. + */ +struct nand_flash_dev nand_flash_ids[] = { + /* + * Some incompatible NAND chips share device ID's and so must be + * listed by full ID. We list them first so that we can easily identify + * the most specific match. + */ + {"TC58NVG0S3E 1G 3.3V 8-bit", + { .id = {0x98, 0xd1, 0x90, 0x15, 0x76, 0x14, 0x01, 0x00} }, + SZ_2K, SZ_128, SZ_128K, 0, 8, 64, NAND_ECC_INFO(1, SZ_512), }, + {"TC58NVG2S0F 4G 3.3V 8-bit", + { .id = {0x98, 0xdc, 0x90, 0x26, 0x76, 0x15, 0x01, 0x08} }, + SZ_4K, SZ_512, SZ_256K, 0, 8, 224, NAND_ECC_INFO(4, SZ_512) }, + {"TC58NVG2S0H 4G 3.3V 8-bit", + { .id = {0x98, 0xdc, 0x90, 0x26, 0x76, 0x16, 0x08, 0x00} }, + SZ_4K, SZ_512, SZ_256K, 0, 8, 256, NAND_ECC_INFO(8, SZ_512) }, + {"TC58NVG3S0F 8G 3.3V 8-bit", + { .id = {0x98, 0xd3, 0x90, 0x26, 0x76, 0x15, 0x02, 0x08} }, + SZ_4K, SZ_1K, SZ_256K, 0, 8, 232, NAND_ECC_INFO(4, SZ_512) }, + {"TC58NVG5D2 32G 3.3V 8-bit", + { .id = {0x98, 0xd7, 0x94, 0x32, 0x76, 0x56, 0x09, 0x00} }, + SZ_8K, SZ_4K, SZ_1M, 0, 8, 640, NAND_ECC_INFO(40, SZ_1K) }, + {"TC58NVG6D2 64G 3.3V 8-bit", + { .id = {0x98, 0xde, 0x94, 0x82, 0x76, 0x56, 0x04, 0x20} }, + SZ_8K, SZ_8K, SZ_2M, 0, 8, 640, NAND_ECC_INFO(40, SZ_1K) }, + {"SDTNQGAMA 64G 3.3V 8-bit", + { .id = {0x45, 0xde, 0x94, 0x93, 0x76, 0x57} }, + SZ_16K, SZ_8K, SZ_4M, 0, 6, 1280, NAND_ECC_INFO(40, SZ_1K) }, + {"SDTNRGAMA 64G 3.3V 8-bit", + { .id = {0x45, 0xde, 0x94, 0x93, 0x76, 0x50} }, + SZ_16K, SZ_8K, SZ_4M, 0, 6, 1280, NAND_ECC_INFO(40, SZ_1K) }, + {"H27UCG8T2ATR-BC 64G 3.3V 8-bit", + { .id = {0xad, 0xde, 0x94, 0xda, 0x74, 0xc4} }, + SZ_8K, SZ_8K, SZ_2M, NAND_NEED_SCRAMBLING, 6, 640, + NAND_ECC_INFO(40, SZ_1K) }, + {"H27UCG8T2ETR-BC 64G 3.3V 8-bit", + { .id = {0xad, 0xde, 0x14, 0xa7, 0x42, 0x4a} }, + SZ_16K, SZ_8K, SZ_4M, NAND_NEED_SCRAMBLING, 6, 1664, + NAND_ECC_INFO(40, SZ_1K) }, + {"TH58NVG2S3HBAI4 4G 3.3V 8-bit", + { .id = {0x98, 0xdc, 0x91, 0x15, 0x76} }, + SZ_2K, SZ_512, SZ_128K, 0, 5, 128, NAND_ECC_INFO(8, SZ_512) }, + {"TH58NVG3S0HBAI4 8G 3.3V 8-bit", + { .id = {0x98, 0xd3, 0x91, 0x26, 0x76} }, + SZ_4K, SZ_1K, SZ_256K, 0, 5, 256, NAND_ECC_INFO(8, SZ_512)}, + + LEGACY_ID_NAND("NAND 4MiB 5V 8-bit", 0x6B, 4, SZ_8K, SP_OPTIONS), + LEGACY_ID_NAND("NAND 4MiB 3,3V 8-bit", 0xE3, 4, SZ_8K, SP_OPTIONS), + LEGACY_ID_NAND("NAND 4MiB 3,3V 8-bit", 0xE5, 4, SZ_8K, SP_OPTIONS), + LEGACY_ID_NAND("NAND 8MiB 3,3V 8-bit", 0xD6, 8, SZ_8K, SP_OPTIONS), + LEGACY_ID_NAND("NAND 8MiB 3,3V 8-bit", 0xE6, 8, SZ_8K, SP_OPTIONS), + + LEGACY_ID_NAND("NAND 16MiB 1,8V 8-bit", 0x33, 16, SZ_16K, SP_OPTIONS), + LEGACY_ID_NAND("NAND 16MiB 3,3V 8-bit", 0x73, 16, SZ_16K, SP_OPTIONS), + LEGACY_ID_NAND("NAND 16MiB 1,8V 16-bit", 0x43, 16, SZ_16K, SP_OPTIONS16), + LEGACY_ID_NAND("NAND 16MiB 3,3V 16-bit", 0x53, 16, SZ_16K, SP_OPTIONS16), + + LEGACY_ID_NAND("NAND 32MiB 1,8V 8-bit", 0x35, 32, SZ_16K, SP_OPTIONS), + LEGACY_ID_NAND("NAND 32MiB 3,3V 8-bit", 0x75, 32, SZ_16K, SP_OPTIONS), + LEGACY_ID_NAND("NAND 32MiB 1,8V 16-bit", 0x45, 32, SZ_16K, SP_OPTIONS16), + LEGACY_ID_NAND("NAND 32MiB 3,3V 16-bit", 0x55, 32, SZ_16K, SP_OPTIONS16), + + LEGACY_ID_NAND("NAND 64MiB 1,8V 8-bit", 0x36, 64, SZ_16K, SP_OPTIONS), + LEGACY_ID_NAND("NAND 64MiB 3,3V 8-bit", 0x76, 64, SZ_16K, SP_OPTIONS), + LEGACY_ID_NAND("NAND 64MiB 1,8V 16-bit", 0x46, 64, SZ_16K, SP_OPTIONS16), + LEGACY_ID_NAND("NAND 64MiB 3,3V 16-bit", 0x56, 64, SZ_16K, SP_OPTIONS16), + + LEGACY_ID_NAND("NAND 128MiB 1,8V 8-bit", 0x78, 128, SZ_16K, SP_OPTIONS), + LEGACY_ID_NAND("NAND 128MiB 1,8V 8-bit", 0x39, 128, SZ_16K, SP_OPTIONS), + LEGACY_ID_NAND("NAND 128MiB 3,3V 8-bit", 0x79, 128, SZ_16K, SP_OPTIONS), + LEGACY_ID_NAND("NAND 128MiB 1,8V 16-bit", 0x72, 128, SZ_16K, SP_OPTIONS16), + LEGACY_ID_NAND("NAND 128MiB 1,8V 16-bit", 0x49, 128, SZ_16K, SP_OPTIONS16), + LEGACY_ID_NAND("NAND 128MiB 3,3V 16-bit", 0x74, 128, SZ_16K, SP_OPTIONS16), + LEGACY_ID_NAND("NAND 128MiB 3,3V 16-bit", 0x59, 128, SZ_16K, SP_OPTIONS16), + + LEGACY_ID_NAND("NAND 256MiB 3,3V 8-bit", 0x71, 256, SZ_16K, SP_OPTIONS), + + /* + * These are the new chips with large page size. Their page size and + * eraseblock size are determined from the extended ID bytes. + */ + + /* 512 Megabit */ + EXTENDED_ID_NAND("NAND 64MiB 1,8V 8-bit", 0xA2, 64, LP_OPTIONS), + EXTENDED_ID_NAND("NAND 64MiB 1,8V 8-bit", 0xA0, 64, LP_OPTIONS), + EXTENDED_ID_NAND("NAND 64MiB 3,3V 8-bit", 0xF2, 64, LP_OPTIONS), + EXTENDED_ID_NAND("NAND 64MiB 3,3V 8-bit", 0xD0, 64, LP_OPTIONS), + EXTENDED_ID_NAND("NAND 64MiB 3,3V 8-bit", 0xF0, 64, LP_OPTIONS), + EXTENDED_ID_NAND("NAND 64MiB 1,8V 16-bit", 0xB2, 64, LP_OPTIONS16), + EXTENDED_ID_NAND("NAND 64MiB 1,8V 16-bit", 0xB0, 64, LP_OPTIONS16), + EXTENDED_ID_NAND("NAND 64MiB 3,3V 16-bit", 0xC2, 64, LP_OPTIONS16), + EXTENDED_ID_NAND("NAND 64MiB 3,3V 16-bit", 0xC0, 64, LP_OPTIONS16), + + /* 1 Gigabit */ + EXTENDED_ID_NAND("NAND 128MiB 1,8V 8-bit", 0xA1, 128, LP_OPTIONS), + EXTENDED_ID_NAND("NAND 128MiB 3,3V 8-bit", 0xF1, 128, LP_OPTIONS), + EXTENDED_ID_NAND("NAND 128MiB 3,3V 8-bit", 0xD1, 128, LP_OPTIONS), + EXTENDED_ID_NAND("NAND 128MiB 1,8V 16-bit", 0xB1, 128, LP_OPTIONS16), + EXTENDED_ID_NAND("NAND 128MiB 3,3V 16-bit", 0xC1, 128, LP_OPTIONS16), + EXTENDED_ID_NAND("NAND 128MiB 1,8V 16-bit", 0xAD, 128, LP_OPTIONS16), + + /* 2 Gigabit */ + EXTENDED_ID_NAND("NAND 256MiB 1,8V 8-bit", 0xAA, 256, LP_OPTIONS), + EXTENDED_ID_NAND("NAND 256MiB 3,3V 8-bit", 0xDA, 256, LP_OPTIONS), + EXTENDED_ID_NAND("NAND 256MiB 1,8V 16-bit", 0xBA, 256, LP_OPTIONS16), + EXTENDED_ID_NAND("NAND 256MiB 3,3V 16-bit", 0xCA, 256, LP_OPTIONS16), + + /* 4 Gigabit */ + EXTENDED_ID_NAND("NAND 512MiB 1,8V 8-bit", 0xAC, 512, LP_OPTIONS), + EXTENDED_ID_NAND("NAND 512MiB 3,3V 8-bit", 0xDC, 512, LP_OPTIONS), + EXTENDED_ID_NAND("NAND 512MiB 1,8V 16-bit", 0xBC, 512, LP_OPTIONS16), + EXTENDED_ID_NAND("NAND 512MiB 3,3V 16-bit", 0xCC, 512, LP_OPTIONS16), + + /* 8 Gigabit */ + EXTENDED_ID_NAND("NAND 1GiB 1,8V 8-bit", 0xA3, 1024, LP_OPTIONS), + EXTENDED_ID_NAND("NAND 1GiB 3,3V 8-bit", 0xD3, 1024, LP_OPTIONS), + EXTENDED_ID_NAND("NAND 1GiB 1,8V 16-bit", 0xB3, 1024, LP_OPTIONS16), + EXTENDED_ID_NAND("NAND 1GiB 3,3V 16-bit", 0xC3, 1024, LP_OPTIONS16), + + /* 16 Gigabit */ + EXTENDED_ID_NAND("NAND 2GiB 1,8V 8-bit", 0xA5, 2048, LP_OPTIONS), + EXTENDED_ID_NAND("NAND 2GiB 3,3V 8-bit", 0xD5, 2048, LP_OPTIONS), + EXTENDED_ID_NAND("NAND 2GiB 1,8V 16-bit", 0xB5, 2048, LP_OPTIONS16), + EXTENDED_ID_NAND("NAND 2GiB 3,3V 16-bit", 0xC5, 2048, LP_OPTIONS16), + + /* 32 Gigabit */ + EXTENDED_ID_NAND("NAND 4GiB 1,8V 8-bit", 0xA7, 4096, LP_OPTIONS), + EXTENDED_ID_NAND("NAND 4GiB 3,3V 8-bit", 0xD7, 4096, LP_OPTIONS), + EXTENDED_ID_NAND("NAND 4GiB 1,8V 16-bit", 0xB7, 4096, LP_OPTIONS16), + EXTENDED_ID_NAND("NAND 4GiB 3,3V 16-bit", 0xC7, 4096, LP_OPTIONS16), + + /* 64 Gigabit */ + EXTENDED_ID_NAND("NAND 8GiB 1,8V 8-bit", 0xAE, 8192, LP_OPTIONS), + EXTENDED_ID_NAND("NAND 8GiB 3,3V 8-bit", 0xDE, 8192, LP_OPTIONS), + EXTENDED_ID_NAND("NAND 8GiB 1,8V 16-bit", 0xBE, 8192, LP_OPTIONS16), + EXTENDED_ID_NAND("NAND 8GiB 3,3V 16-bit", 0xCE, 8192, LP_OPTIONS16), + + /* 128 Gigabit */ + EXTENDED_ID_NAND("NAND 16GiB 1,8V 8-bit", 0x1A, 16384, LP_OPTIONS), + EXTENDED_ID_NAND("NAND 16GiB 3,3V 8-bit", 0x3A, 16384, LP_OPTIONS), + EXTENDED_ID_NAND("NAND 16GiB 1,8V 16-bit", 0x2A, 16384, LP_OPTIONS16), + EXTENDED_ID_NAND("NAND 16GiB 3,3V 16-bit", 0x4A, 16384, LP_OPTIONS16), + + /* 256 Gigabit */ + EXTENDED_ID_NAND("NAND 32GiB 1,8V 8-bit", 0x1C, 32768, LP_OPTIONS), + EXTENDED_ID_NAND("NAND 32GiB 3,3V 8-bit", 0x3C, 32768, LP_OPTIONS), + EXTENDED_ID_NAND("NAND 32GiB 1,8V 16-bit", 0x2C, 32768, LP_OPTIONS16), + EXTENDED_ID_NAND("NAND 32GiB 3,3V 16-bit", 0x4C, 32768, LP_OPTIONS16), + + /* 512 Gigabit */ + EXTENDED_ID_NAND("NAND 64GiB 1,8V 8-bit", 0x1E, 65536, LP_OPTIONS), + EXTENDED_ID_NAND("NAND 64GiB 3,3V 8-bit", 0x3E, 65536, LP_OPTIONS), + EXTENDED_ID_NAND("NAND 64GiB 1,8V 16-bit", 0x2E, 65536, LP_OPTIONS16), + EXTENDED_ID_NAND("NAND 64GiB 3,3V 16-bit", 0x4E, 65536, LP_OPTIONS16), + + {NULL} +}; + +/* Manufacturer IDs */ +static const struct nand_manufacturer_desc nand_manufacturer_descs[] = { + {NAND_MFR_AMD, "AMD/Spansion", &amd_nand_manuf_ops}, + {NAND_MFR_ATO, "ATO"}, + {NAND_MFR_EON, "Eon"}, + {NAND_MFR_ESMT, "ESMT", &esmt_nand_manuf_ops}, + {NAND_MFR_FUJITSU, "Fujitsu"}, + {NAND_MFR_HYNIX, "Hynix", &hynix_nand_manuf_ops}, + {NAND_MFR_INTEL, "Intel"}, + {NAND_MFR_MACRONIX, "Macronix", ¯onix_nand_manuf_ops}, + {NAND_MFR_MICRON, "Micron", µn_nand_manuf_ops}, + {NAND_MFR_NATIONAL, "National"}, + {NAND_MFR_RENESAS, "Renesas"}, + {NAND_MFR_SAMSUNG, "Samsung", &samsung_nand_manuf_ops}, + {NAND_MFR_SANDISK, "SanDisk", &sandisk_nand_manuf_ops}, + {NAND_MFR_STMICRO, "ST Micro"}, + {NAND_MFR_TOSHIBA, "Toshiba", &toshiba_nand_manuf_ops}, + {NAND_MFR_WINBOND, "Winbond"}, +}; + +/** + * nand_get_manufacturer_desc - Get manufacturer information from the + * manufacturer ID + * @id: manufacturer ID + * + * Returns a nand_manufacturer_desc object if the manufacturer is defined + * in the NAND manufacturers database, NULL otherwise. + */ +const struct nand_manufacturer_desc *nand_get_manufacturer_desc(u8 id) +{ + int i; + + for (i = 0; i < ARRAY_SIZE(nand_manufacturer_descs); i++) + if (nand_manufacturer_descs[i].id == id) + return &nand_manufacturer_descs[i]; + + return NULL; +} diff --git a/drivers/mtd/nand/raw/nand_jedec.c b/drivers/mtd/nand/raw/nand_jedec.c new file mode 100644 index 0000000000..b3cc8f3605 --- /dev/null +++ b/drivers/mtd/nand/raw/nand_jedec.c @@ -0,0 +1,141 @@ +// SPDX-License-Identifier: GPL-2.0 +/* + * Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com) + * 2002-2006 Thomas Gleixner (tglx@linutronix.de) + * + * Credits: + * David Woodhouse for adding multichip support + * + * Aleph One Ltd. and Toby Churchill Ltd. for supporting the + * rework for 2K page size chips + * + * This file contains all ONFI helpers. + */ + +#include <linux/slab.h> + +#include "internals.h" + +#define JEDEC_PARAM_PAGES 3 + +/* + * Check if the NAND chip is JEDEC compliant, returns 1 if it is, 0 otherwise. + */ +int nand_jedec_detect(struct nand_chip *chip) +{ + struct nand_device *base = &chip->base; + struct mtd_info *mtd = nand_to_mtd(chip); + struct nand_memory_organization *memorg; + struct nand_jedec_params *p; + struct jedec_ecc_info *ecc; + bool use_datain = false; + int jedec_version = 0; + char id[5]; + int i, val, ret; + u16 crc; + + memorg = nanddev_get_memorg(&chip->base); + + /* Try JEDEC for unknown chip or LP */ + ret = nand_readid_op(chip, 0x40, id, sizeof(id)); + if (ret || strncmp(id, "JEDEC", sizeof(id))) + return 0; + + /* JEDEC chip: allocate a buffer to hold its parameter page */ + p = kzalloc(sizeof(*p), GFP_KERNEL); + if (!p) + return -ENOMEM; + + if (!nand_has_exec_op(chip) || chip->controller->supported_op.data_only_read) + use_datain = true; + + for (i = 0; i < JEDEC_PARAM_PAGES; i++) { + if (!i) + ret = nand_read_param_page_op(chip, 0x40, p, + sizeof(*p)); + else if (use_datain) + ret = nand_read_data_op(chip, p, sizeof(*p), true, + false); + else + ret = nand_change_read_column_op(chip, sizeof(*p) * i, + p, sizeof(*p), true); + if (ret) { + ret = 0; + goto free_jedec_param_page; + } + + crc = onfi_crc16(ONFI_CRC_BASE, (u8 *)p, 510); + if (crc == le16_to_cpu(p->crc)) + break; + } + + if (i == JEDEC_PARAM_PAGES) { + pr_err("Could not find valid JEDEC parameter page; aborting\n"); + goto free_jedec_param_page; + } + + /* Check version */ + val = le16_to_cpu(p->revision); + if (val & (1 << 2)) + jedec_version = 10; + else if (val & (1 << 1)) + jedec_version = 1; /* vendor specific version */ + + if (!jedec_version) { + pr_info("unsupported JEDEC version: %d\n", val); + goto free_jedec_param_page; + } + + sanitize_string(p->manufacturer, sizeof(p->manufacturer)); + sanitize_string(p->model, sizeof(p->model)); + chip->parameters.model = kstrdup(p->model, GFP_KERNEL); + if (!chip->parameters.model) { + ret = -ENOMEM; + goto free_jedec_param_page; + } + + if (p->opt_cmd[0] & JEDEC_OPT_CMD_READ_CACHE) + chip->parameters.supports_read_cache = true; + + memorg->pagesize = le32_to_cpu(p->byte_per_page); + mtd->writesize = memorg->pagesize; + + /* Please reference to the comment for nand_flash_detect_onfi. */ + memorg->pages_per_eraseblock = + 1 << (fls(le32_to_cpu(p->pages_per_block)) - 1); + mtd->erasesize = memorg->pages_per_eraseblock * memorg->pagesize; + + memorg->oobsize = le16_to_cpu(p->spare_bytes_per_page); + mtd->oobsize = memorg->oobsize; + + memorg->luns_per_target = p->lun_count; + memorg->planes_per_lun = 1 << p->multi_plane_addr; + + /* Please reference to the comment for nand_flash_detect_onfi. */ + memorg->eraseblocks_per_lun = + 1 << (fls(le32_to_cpu(p->blocks_per_lun)) - 1); + memorg->bits_per_cell = p->bits_per_cell; + + if (le16_to_cpu(p->features) & JEDEC_FEATURE_16_BIT_BUS) + chip->options |= NAND_BUSWIDTH_16; + + /* ECC info */ + ecc = &p->ecc_info[0]; + + if (ecc->codeword_size >= 9) { + struct nand_ecc_props requirements = { + .strength = ecc->ecc_bits, + .step_size = 1 << ecc->codeword_size, + }; + + nanddev_set_ecc_requirements(base, &requirements); + } else { + pr_warn("Invalid codeword size\n"); + } + + ret = 1; + +free_jedec_param_page: + kfree(p); + return ret; +} diff --git a/drivers/mtd/nand/raw/nand_legacy.c b/drivers/mtd/nand/raw/nand_legacy.c new file mode 100644 index 0000000000..743792edf9 --- /dev/null +++ b/drivers/mtd/nand/raw/nand_legacy.c @@ -0,0 +1,644 @@ +// SPDX-License-Identifier: GPL-2.0 +/* + * Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com) + * 2002-2006 Thomas Gleixner (tglx@linutronix.de) + * + * Credits: + * David Woodhouse for adding multichip support + * + * Aleph One Ltd. and Toby Churchill Ltd. for supporting the + * rework for 2K page size chips + * + * This file contains all legacy helpers/code that should be removed + * at some point. + */ + +#include <linux/delay.h> +#include <linux/io.h> +#include <linux/nmi.h> + +#include "internals.h" + +/** + * nand_read_byte - [DEFAULT] read one byte from the chip + * @chip: NAND chip object + * + * Default read function for 8bit buswidth + */ +static uint8_t nand_read_byte(struct nand_chip *chip) +{ + return readb(chip->legacy.IO_ADDR_R); +} + +/** + * nand_read_byte16 - [DEFAULT] read one byte endianness aware from the chip + * @chip: NAND chip object + * + * Default read function for 16bit buswidth with endianness conversion. + * + */ +static uint8_t nand_read_byte16(struct nand_chip *chip) +{ + return (uint8_t) cpu_to_le16(readw(chip->legacy.IO_ADDR_R)); +} + +/** + * nand_select_chip - [DEFAULT] control CE line + * @chip: NAND chip object + * @chipnr: chipnumber to select, -1 for deselect + * + * Default select function for 1 chip devices. + */ +static void nand_select_chip(struct nand_chip *chip, int chipnr) +{ + switch (chipnr) { + case -1: + chip->legacy.cmd_ctrl(chip, NAND_CMD_NONE, + 0 | NAND_CTRL_CHANGE); + break; + case 0: + break; + + default: + BUG(); + } +} + +/** + * nand_write_byte - [DEFAULT] write single byte to chip + * @chip: NAND chip object + * @byte: value to write + * + * Default function to write a byte to I/O[7:0] + */ +static void nand_write_byte(struct nand_chip *chip, uint8_t byte) +{ + chip->legacy.write_buf(chip, &byte, 1); +} + +/** + * nand_write_byte16 - [DEFAULT] write single byte to a chip with width 16 + * @chip: NAND chip object + * @byte: value to write + * + * Default function to write a byte to I/O[7:0] on a 16-bit wide chip. + */ +static void nand_write_byte16(struct nand_chip *chip, uint8_t byte) +{ + uint16_t word = byte; + + /* + * It's not entirely clear what should happen to I/O[15:8] when writing + * a byte. The ONFi spec (Revision 3.1; 2012-09-19, Section 2.16) reads: + * + * When the host supports a 16-bit bus width, only data is + * transferred at the 16-bit width. All address and command line + * transfers shall use only the lower 8-bits of the data bus. During + * command transfers, the host may place any value on the upper + * 8-bits of the data bus. During address transfers, the host shall + * set the upper 8-bits of the data bus to 00h. + * + * One user of the write_byte callback is nand_set_features. The + * four parameters are specified to be written to I/O[7:0], but this is + * neither an address nor a command transfer. Let's assume a 0 on the + * upper I/O lines is OK. + */ + chip->legacy.write_buf(chip, (uint8_t *)&word, 2); +} + +/** + * nand_write_buf - [DEFAULT] write buffer to chip + * @chip: NAND chip object + * @buf: data buffer + * @len: number of bytes to write + * + * Default write function for 8bit buswidth. + */ +static void nand_write_buf(struct nand_chip *chip, const uint8_t *buf, int len) +{ + iowrite8_rep(chip->legacy.IO_ADDR_W, buf, len); +} + +/** + * nand_read_buf - [DEFAULT] read chip data into buffer + * @chip: NAND chip object + * @buf: buffer to store date + * @len: number of bytes to read + * + * Default read function for 8bit buswidth. + */ +static void nand_read_buf(struct nand_chip *chip, uint8_t *buf, int len) +{ + ioread8_rep(chip->legacy.IO_ADDR_R, buf, len); +} + +/** + * nand_write_buf16 - [DEFAULT] write buffer to chip + * @chip: NAND chip object + * @buf: data buffer + * @len: number of bytes to write + * + * Default write function for 16bit buswidth. + */ +static void nand_write_buf16(struct nand_chip *chip, const uint8_t *buf, + int len) +{ + u16 *p = (u16 *) buf; + + iowrite16_rep(chip->legacy.IO_ADDR_W, p, len >> 1); +} + +/** + * nand_read_buf16 - [DEFAULT] read chip data into buffer + * @chip: NAND chip object + * @buf: buffer to store date + * @len: number of bytes to read + * + * Default read function for 16bit buswidth. + */ +static void nand_read_buf16(struct nand_chip *chip, uint8_t *buf, int len) +{ + u16 *p = (u16 *) buf; + + ioread16_rep(chip->legacy.IO_ADDR_R, p, len >> 1); +} + +/** + * panic_nand_wait_ready - [GENERIC] Wait for the ready pin after commands. + * @chip: NAND chip object + * @timeo: Timeout + * + * Helper function for nand_wait_ready used when needing to wait in interrupt + * context. + */ +static void panic_nand_wait_ready(struct nand_chip *chip, unsigned long timeo) +{ + int i; + + /* Wait for the device to get ready */ + for (i = 0; i < timeo; i++) { + if (chip->legacy.dev_ready(chip)) + break; + touch_softlockup_watchdog(); + mdelay(1); + } +} + +/** + * nand_wait_ready - [GENERIC] Wait for the ready pin after commands. + * @chip: NAND chip object + * + * Wait for the ready pin after a command, and warn if a timeout occurs. + */ +void nand_wait_ready(struct nand_chip *chip) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + unsigned long timeo = 400; + + if (mtd->oops_panic_write) + return panic_nand_wait_ready(chip, timeo); + + /* Wait until command is processed or timeout occurs */ + timeo = jiffies + msecs_to_jiffies(timeo); + do { + if (chip->legacy.dev_ready(chip)) + return; + cond_resched(); + } while (time_before(jiffies, timeo)); + + if (!chip->legacy.dev_ready(chip)) + pr_warn_ratelimited("timeout while waiting for chip to become ready\n"); +} +EXPORT_SYMBOL_GPL(nand_wait_ready); + +/** + * nand_wait_status_ready - [GENERIC] Wait for the ready status after commands. + * @chip: NAND chip object + * @timeo: Timeout in ms + * + * Wait for status ready (i.e. command done) or timeout. + */ +static void nand_wait_status_ready(struct nand_chip *chip, unsigned long timeo) +{ + int ret; + + timeo = jiffies + msecs_to_jiffies(timeo); + do { + u8 status; + + ret = nand_read_data_op(chip, &status, sizeof(status), true, + false); + if (ret) + return; + + if (status & NAND_STATUS_READY) + break; + touch_softlockup_watchdog(); + } while (time_before(jiffies, timeo)); +}; + +/** + * nand_command - [DEFAULT] Send command to NAND device + * @chip: NAND chip object + * @command: the command to be sent + * @column: the column address for this command, -1 if none + * @page_addr: the page address for this command, -1 if none + * + * Send command to NAND device. This function is used for small page devices + * (512 Bytes per page). + */ +static void nand_command(struct nand_chip *chip, unsigned int command, + int column, int page_addr) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + int ctrl = NAND_CTRL_CLE | NAND_CTRL_CHANGE; + + /* Write out the command to the device */ + if (command == NAND_CMD_SEQIN) { + int readcmd; + + if (column >= mtd->writesize) { + /* OOB area */ + column -= mtd->writesize; + readcmd = NAND_CMD_READOOB; + } else if (column < 256) { + /* First 256 bytes --> READ0 */ + readcmd = NAND_CMD_READ0; + } else { + column -= 256; + readcmd = NAND_CMD_READ1; + } + chip->legacy.cmd_ctrl(chip, readcmd, ctrl); + ctrl &= ~NAND_CTRL_CHANGE; + } + if (command != NAND_CMD_NONE) + chip->legacy.cmd_ctrl(chip, command, ctrl); + + /* Address cycle, when necessary */ + ctrl = NAND_CTRL_ALE | NAND_CTRL_CHANGE; + /* Serially input address */ + if (column != -1) { + /* Adjust columns for 16 bit buswidth */ + if (chip->options & NAND_BUSWIDTH_16 && + !nand_opcode_8bits(command)) + column >>= 1; + chip->legacy.cmd_ctrl(chip, column, ctrl); + ctrl &= ~NAND_CTRL_CHANGE; + } + if (page_addr != -1) { + chip->legacy.cmd_ctrl(chip, page_addr, ctrl); + ctrl &= ~NAND_CTRL_CHANGE; + chip->legacy.cmd_ctrl(chip, page_addr >> 8, ctrl); + if (chip->options & NAND_ROW_ADDR_3) + chip->legacy.cmd_ctrl(chip, page_addr >> 16, ctrl); + } + chip->legacy.cmd_ctrl(chip, NAND_CMD_NONE, + NAND_NCE | NAND_CTRL_CHANGE); + + /* + * Program and erase have their own busy handlers status and sequential + * in needs no delay + */ + switch (command) { + + case NAND_CMD_NONE: + case NAND_CMD_PAGEPROG: + case NAND_CMD_ERASE1: + case NAND_CMD_ERASE2: + case NAND_CMD_SEQIN: + case NAND_CMD_STATUS: + case NAND_CMD_READID: + case NAND_CMD_SET_FEATURES: + return; + + case NAND_CMD_RESET: + if (chip->legacy.dev_ready) + break; + udelay(chip->legacy.chip_delay); + chip->legacy.cmd_ctrl(chip, NAND_CMD_STATUS, + NAND_CTRL_CLE | NAND_CTRL_CHANGE); + chip->legacy.cmd_ctrl(chip, NAND_CMD_NONE, + NAND_NCE | NAND_CTRL_CHANGE); + /* EZ-NAND can take upto 250ms as per ONFi v4.0 */ + nand_wait_status_ready(chip, 250); + return; + + /* This applies to read commands */ + case NAND_CMD_READ0: + /* + * READ0 is sometimes used to exit GET STATUS mode. When this + * is the case no address cycles are requested, and we can use + * this information to detect that we should not wait for the + * device to be ready. + */ + if (column == -1 && page_addr == -1) + return; + fallthrough; + default: + /* + * If we don't have access to the busy pin, we apply the given + * command delay + */ + if (!chip->legacy.dev_ready) { + udelay(chip->legacy.chip_delay); + return; + } + } + /* + * Apply this short delay always to ensure that we do wait tWB in + * any case on any machine. + */ + ndelay(100); + + nand_wait_ready(chip); +} + +static void nand_ccs_delay(struct nand_chip *chip) +{ + const struct nand_sdr_timings *sdr = + nand_get_sdr_timings(nand_get_interface_config(chip)); + + /* + * The controller already takes care of waiting for tCCS when the RNDIN + * or RNDOUT command is sent, return directly. + */ + if (!(chip->options & NAND_WAIT_TCCS)) + return; + + /* + * Wait tCCS_min if it is correctly defined, otherwise wait 500ns + * (which should be safe for all NANDs). + */ + if (!IS_ERR(sdr) && nand_controller_can_setup_interface(chip)) + ndelay(sdr->tCCS_min / 1000); + else + ndelay(500); +} + +/** + * nand_command_lp - [DEFAULT] Send command to NAND large page device + * @chip: NAND chip object + * @command: the command to be sent + * @column: the column address for this command, -1 if none + * @page_addr: the page address for this command, -1 if none + * + * Send command to NAND device. This is the version for the new large page + * devices. We don't have the separate regions as we have in the small page + * devices. We must emulate NAND_CMD_READOOB to keep the code compatible. + */ +static void nand_command_lp(struct nand_chip *chip, unsigned int command, + int column, int page_addr) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + + /* Emulate NAND_CMD_READOOB */ + if (command == NAND_CMD_READOOB) { + column += mtd->writesize; + command = NAND_CMD_READ0; + } + + /* Command latch cycle */ + if (command != NAND_CMD_NONE) + chip->legacy.cmd_ctrl(chip, command, + NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE); + + if (column != -1 || page_addr != -1) { + int ctrl = NAND_CTRL_CHANGE | NAND_NCE | NAND_ALE; + + /* Serially input address */ + if (column != -1) { + /* Adjust columns for 16 bit buswidth */ + if (chip->options & NAND_BUSWIDTH_16 && + !nand_opcode_8bits(command)) + column >>= 1; + chip->legacy.cmd_ctrl(chip, column, ctrl); + ctrl &= ~NAND_CTRL_CHANGE; + + /* Only output a single addr cycle for 8bits opcodes. */ + if (!nand_opcode_8bits(command)) + chip->legacy.cmd_ctrl(chip, column >> 8, ctrl); + } + if (page_addr != -1) { + chip->legacy.cmd_ctrl(chip, page_addr, ctrl); + chip->legacy.cmd_ctrl(chip, page_addr >> 8, + NAND_NCE | NAND_ALE); + if (chip->options & NAND_ROW_ADDR_3) + chip->legacy.cmd_ctrl(chip, page_addr >> 16, + NAND_NCE | NAND_ALE); + } + } + chip->legacy.cmd_ctrl(chip, NAND_CMD_NONE, + NAND_NCE | NAND_CTRL_CHANGE); + + /* + * Program and erase have their own busy handlers status, sequential + * in and status need no delay. + */ + switch (command) { + + case NAND_CMD_NONE: + case NAND_CMD_CACHEDPROG: + case NAND_CMD_PAGEPROG: + case NAND_CMD_ERASE1: + case NAND_CMD_ERASE2: + case NAND_CMD_SEQIN: + case NAND_CMD_STATUS: + case NAND_CMD_READID: + case NAND_CMD_SET_FEATURES: + return; + + case NAND_CMD_RNDIN: + nand_ccs_delay(chip); + return; + + case NAND_CMD_RESET: + if (chip->legacy.dev_ready) + break; + udelay(chip->legacy.chip_delay); + chip->legacy.cmd_ctrl(chip, NAND_CMD_STATUS, + NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE); + chip->legacy.cmd_ctrl(chip, NAND_CMD_NONE, + NAND_NCE | NAND_CTRL_CHANGE); + /* EZ-NAND can take upto 250ms as per ONFi v4.0 */ + nand_wait_status_ready(chip, 250); + return; + + case NAND_CMD_RNDOUT: + /* No ready / busy check necessary */ + chip->legacy.cmd_ctrl(chip, NAND_CMD_RNDOUTSTART, + NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE); + chip->legacy.cmd_ctrl(chip, NAND_CMD_NONE, + NAND_NCE | NAND_CTRL_CHANGE); + + nand_ccs_delay(chip); + return; + + case NAND_CMD_READ0: + /* + * READ0 is sometimes used to exit GET STATUS mode. When this + * is the case no address cycles are requested, and we can use + * this information to detect that READSTART should not be + * issued. + */ + if (column == -1 && page_addr == -1) + return; + + chip->legacy.cmd_ctrl(chip, NAND_CMD_READSTART, + NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE); + chip->legacy.cmd_ctrl(chip, NAND_CMD_NONE, + NAND_NCE | NAND_CTRL_CHANGE); + fallthrough; /* This applies to read commands */ + default: + /* + * If we don't have access to the busy pin, we apply the given + * command delay. + */ + if (!chip->legacy.dev_ready) { + udelay(chip->legacy.chip_delay); + return; + } + } + + /* + * Apply this short delay always to ensure that we do wait tWB in + * any case on any machine. + */ + ndelay(100); + + nand_wait_ready(chip); +} + +/** + * nand_get_set_features_notsupp - set/get features stub returning -ENOTSUPP + * @chip: nand chip info structure + * @addr: feature address. + * @subfeature_param: the subfeature parameters, a four bytes array. + * + * Should be used by NAND controller drivers that do not support the SET/GET + * FEATURES operations. + */ +int nand_get_set_features_notsupp(struct nand_chip *chip, int addr, + u8 *subfeature_param) +{ + return -ENOTSUPP; +} +EXPORT_SYMBOL(nand_get_set_features_notsupp); + +/** + * nand_wait - [DEFAULT] wait until the command is done + * @chip: NAND chip structure + * + * Wait for command done. This applies to erase and program only. + */ +static int nand_wait(struct nand_chip *chip) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + unsigned long timeo = 400; + u8 status; + int ret; + + /* + * Apply this short delay always to ensure that we do wait tWB in any + * case on any machine. + */ + ndelay(100); + + ret = nand_status_op(chip, NULL); + if (ret) + return ret; + + if (mtd->oops_panic_write) { + panic_nand_wait(chip, timeo); + } else { + timeo = jiffies + msecs_to_jiffies(timeo); + do { + if (chip->legacy.dev_ready) { + if (chip->legacy.dev_ready(chip)) + break; + } else { + ret = nand_read_data_op(chip, &status, + sizeof(status), true, + false); + if (ret) + return ret; + + if (status & NAND_STATUS_READY) + break; + } + cond_resched(); + } while (time_before(jiffies, timeo)); + } + + ret = nand_read_data_op(chip, &status, sizeof(status), true, false); + if (ret) + return ret; + + /* This can happen if in case of timeout or buggy dev_ready */ + WARN_ON(!(status & NAND_STATUS_READY)); + return status; +} + +void nand_legacy_set_defaults(struct nand_chip *chip) +{ + unsigned int busw = chip->options & NAND_BUSWIDTH_16; + + if (nand_has_exec_op(chip)) + return; + + /* check for proper chip_delay setup, set 20us if not */ + if (!chip->legacy.chip_delay) + chip->legacy.chip_delay = 20; + + /* check, if a user supplied command function given */ + if (!chip->legacy.cmdfunc) + chip->legacy.cmdfunc = nand_command; + + /* check, if a user supplied wait function given */ + if (chip->legacy.waitfunc == NULL) + chip->legacy.waitfunc = nand_wait; + + if (!chip->legacy.select_chip) + chip->legacy.select_chip = nand_select_chip; + + /* If called twice, pointers that depend on busw may need to be reset */ + if (!chip->legacy.read_byte || chip->legacy.read_byte == nand_read_byte) + chip->legacy.read_byte = busw ? nand_read_byte16 : nand_read_byte; + if (!chip->legacy.write_buf || chip->legacy.write_buf == nand_write_buf) + chip->legacy.write_buf = busw ? nand_write_buf16 : nand_write_buf; + if (!chip->legacy.write_byte || chip->legacy.write_byte == nand_write_byte) + chip->legacy.write_byte = busw ? nand_write_byte16 : nand_write_byte; + if (!chip->legacy.read_buf || chip->legacy.read_buf == nand_read_buf) + chip->legacy.read_buf = busw ? nand_read_buf16 : nand_read_buf; +} + +void nand_legacy_adjust_cmdfunc(struct nand_chip *chip) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + + /* Do not replace user supplied command function! */ + if (mtd->writesize > 512 && chip->legacy.cmdfunc == nand_command) + chip->legacy.cmdfunc = nand_command_lp; +} + +int nand_legacy_check_hooks(struct nand_chip *chip) +{ + /* + * ->legacy.cmdfunc() is legacy and will only be used if ->exec_op() is + * not populated. + */ + if (nand_has_exec_op(chip)) + return 0; + + /* + * Default functions assigned for ->legacy.cmdfunc() and + * ->legacy.select_chip() both expect ->legacy.cmd_ctrl() to be + * populated. + */ + if ((!chip->legacy.cmdfunc || !chip->legacy.select_chip) && + !chip->legacy.cmd_ctrl) { + pr_err("->legacy.cmd_ctrl() should be provided\n"); + return -EINVAL; + } + + return 0; +} diff --git a/drivers/mtd/nand/raw/nand_macronix.c b/drivers/mtd/nand/raw/nand_macronix.c new file mode 100644 index 0000000000..e229de32ff --- /dev/null +++ b/drivers/mtd/nand/raw/nand_macronix.c @@ -0,0 +1,500 @@ +// SPDX-License-Identifier: GPL-2.0-or-later +/* + * Copyright (C) 2017 Free Electrons + * Copyright (C) 2017 NextThing Co + * + * Author: Boris Brezillon <boris.brezillon@free-electrons.com> + */ + +#include <linux/slab.h> +#include "linux/delay.h" +#include "internals.h" + +#define MACRONIX_READ_RETRY_BIT BIT(0) +#define MACRONIX_NUM_READ_RETRY_MODES 6 + +#define ONFI_FEATURE_ADDR_MXIC_PROTECTION 0xA0 +#define MXIC_BLOCK_PROTECTION_ALL_LOCK 0x38 +#define MXIC_BLOCK_PROTECTION_ALL_UNLOCK 0x0 + +#define ONFI_FEATURE_ADDR_MXIC_RANDOMIZER 0xB0 +#define MACRONIX_RANDOMIZER_BIT BIT(1) +#define MACRONIX_RANDOMIZER_ENPGM BIT(0) +#define MACRONIX_RANDOMIZER_RANDEN BIT(1) +#define MACRONIX_RANDOMIZER_RANDOPT BIT(2) +#define MACRONIX_RANDOMIZER_MODE_ENTER \ + (MACRONIX_RANDOMIZER_ENPGM | \ + MACRONIX_RANDOMIZER_RANDEN | \ + MACRONIX_RANDOMIZER_RANDOPT) +#define MACRONIX_RANDOMIZER_MODE_EXIT \ + (MACRONIX_RANDOMIZER_RANDEN | \ + MACRONIX_RANDOMIZER_RANDOPT) + +#define MXIC_CMD_POWER_DOWN 0xB9 + +#define ONFI_FEATURE_ADDR_30LFXG18AC_OTP 0x90 +#define MACRONIX_30LFXG18AC_OTP_START_PAGE 2 +#define MACRONIX_30LFXG18AC_OTP_PAGES 30 +#define MACRONIX_30LFXG18AC_OTP_PAGE_SIZE 2112 +#define MACRONIX_30LFXG18AC_OTP_SIZE_BYTES \ + (MACRONIX_30LFXG18AC_OTP_PAGES * \ + MACRONIX_30LFXG18AC_OTP_PAGE_SIZE) + +#define MACRONIX_30LFXG18AC_OTP_EN BIT(0) + +struct nand_onfi_vendor_macronix { + u8 reserved; + u8 reliability_func; +} __packed; + +static int macronix_nand_setup_read_retry(struct nand_chip *chip, int mode) +{ + u8 feature[ONFI_SUBFEATURE_PARAM_LEN]; + + if (!chip->parameters.supports_set_get_features || + !test_bit(ONFI_FEATURE_ADDR_READ_RETRY, + chip->parameters.set_feature_list)) + return -ENOTSUPP; + + feature[0] = mode; + return nand_set_features(chip, ONFI_FEATURE_ADDR_READ_RETRY, feature); +} + +static int macronix_nand_randomizer_check_enable(struct nand_chip *chip) +{ + u8 feature[ONFI_SUBFEATURE_PARAM_LEN]; + int ret; + + ret = nand_get_features(chip, ONFI_FEATURE_ADDR_MXIC_RANDOMIZER, + feature); + if (ret < 0) + return ret; + + if (feature[0]) + return feature[0]; + + feature[0] = MACRONIX_RANDOMIZER_MODE_ENTER; + ret = nand_set_features(chip, ONFI_FEATURE_ADDR_MXIC_RANDOMIZER, + feature); + if (ret < 0) + return ret; + + /* RANDEN and RANDOPT OTP bits are programmed */ + feature[0] = 0x0; + ret = nand_prog_page_op(chip, 0, 0, feature, 1); + if (ret < 0) + return ret; + + ret = nand_get_features(chip, ONFI_FEATURE_ADDR_MXIC_RANDOMIZER, + feature); + if (ret < 0) + return ret; + + feature[0] &= MACRONIX_RANDOMIZER_MODE_EXIT; + ret = nand_set_features(chip, ONFI_FEATURE_ADDR_MXIC_RANDOMIZER, + feature); + if (ret < 0) + return ret; + + return 0; +} + +static void macronix_nand_onfi_init(struct nand_chip *chip) +{ + struct nand_parameters *p = &chip->parameters; + struct nand_onfi_vendor_macronix *mxic; + struct device_node *dn = nand_get_flash_node(chip); + int rand_otp; + int ret; + + if (!p->onfi) + return; + + rand_otp = of_property_read_bool(dn, "mxic,enable-randomizer-otp"); + + mxic = (struct nand_onfi_vendor_macronix *)p->onfi->vendor; + /* Subpage write is prohibited in randomizer operatoin */ + if (rand_otp && chip->options & NAND_NO_SUBPAGE_WRITE && + mxic->reliability_func & MACRONIX_RANDOMIZER_BIT) { + if (p->supports_set_get_features) { + bitmap_set(p->set_feature_list, + ONFI_FEATURE_ADDR_MXIC_RANDOMIZER, 1); + bitmap_set(p->get_feature_list, + ONFI_FEATURE_ADDR_MXIC_RANDOMIZER, 1); + ret = macronix_nand_randomizer_check_enable(chip); + if (ret < 0) { + bitmap_clear(p->set_feature_list, + ONFI_FEATURE_ADDR_MXIC_RANDOMIZER, + 1); + bitmap_clear(p->get_feature_list, + ONFI_FEATURE_ADDR_MXIC_RANDOMIZER, + 1); + pr_info("Macronix NAND randomizer failed\n"); + } else { + pr_info("Macronix NAND randomizer enabled\n"); + } + } + } + + if ((mxic->reliability_func & MACRONIX_READ_RETRY_BIT) == 0) + return; + + chip->read_retries = MACRONIX_NUM_READ_RETRY_MODES; + chip->ops.setup_read_retry = macronix_nand_setup_read_retry; + + if (p->supports_set_get_features) { + bitmap_set(p->set_feature_list, + ONFI_FEATURE_ADDR_READ_RETRY, 1); + bitmap_set(p->get_feature_list, + ONFI_FEATURE_ADDR_READ_RETRY, 1); + } +} + +/* + * Macronix AC series does not support using SET/GET_FEATURES to change + * the timings unlike what is declared in the parameter page. Unflag + * this feature to avoid unnecessary downturns. + */ +static void macronix_nand_fix_broken_get_timings(struct nand_chip *chip) +{ + int i; + static const char * const broken_get_timings[] = { + "MX30LF1G18AC", + "MX30LF1G28AC", + "MX30LF2G18AC", + "MX30LF2G28AC", + "MX30LF4G18AC", + "MX30LF4G28AC", + "MX60LF8G18AC", + "MX30UF1G18AC", + "MX30UF1G16AC", + "MX30UF2G18AC", + "MX30UF2G16AC", + "MX30UF4G18AC", + "MX30UF4G16AC", + "MX30UF4G28AC", + }; + + if (!chip->parameters.supports_set_get_features) + return; + + i = match_string(broken_get_timings, ARRAY_SIZE(broken_get_timings), + chip->parameters.model); + if (i < 0) + return; + + bitmap_clear(chip->parameters.get_feature_list, + ONFI_FEATURE_ADDR_TIMING_MODE, 1); + bitmap_clear(chip->parameters.set_feature_list, + ONFI_FEATURE_ADDR_TIMING_MODE, 1); +} + +/* + * Macronix NAND supports Block Protection by Protectoin(PT) pin; + * active high at power-on which protects the entire chip even the #WP is + * disabled. Lock/unlock protection area can be partition according to + * protection bits, i.e. upper 1/2 locked, upper 1/4 locked and so on. + */ +static int mxic_nand_lock(struct nand_chip *chip, loff_t ofs, uint64_t len) +{ + u8 feature[ONFI_SUBFEATURE_PARAM_LEN]; + int ret; + + feature[0] = MXIC_BLOCK_PROTECTION_ALL_LOCK; + nand_select_target(chip, 0); + ret = nand_set_features(chip, ONFI_FEATURE_ADDR_MXIC_PROTECTION, + feature); + nand_deselect_target(chip); + if (ret) + pr_err("%s all blocks failed\n", __func__); + + return ret; +} + +static int mxic_nand_unlock(struct nand_chip *chip, loff_t ofs, uint64_t len) +{ + u8 feature[ONFI_SUBFEATURE_PARAM_LEN]; + int ret; + + feature[0] = MXIC_BLOCK_PROTECTION_ALL_UNLOCK; + nand_select_target(chip, 0); + ret = nand_set_features(chip, ONFI_FEATURE_ADDR_MXIC_PROTECTION, + feature); + nand_deselect_target(chip); + if (ret) + pr_err("%s all blocks failed\n", __func__); + + return ret; +} + +static void macronix_nand_block_protection_support(struct nand_chip *chip) +{ + u8 feature[ONFI_SUBFEATURE_PARAM_LEN]; + int ret; + + bitmap_set(chip->parameters.get_feature_list, + ONFI_FEATURE_ADDR_MXIC_PROTECTION, 1); + + feature[0] = MXIC_BLOCK_PROTECTION_ALL_UNLOCK; + nand_select_target(chip, 0); + ret = nand_get_features(chip, ONFI_FEATURE_ADDR_MXIC_PROTECTION, + feature); + nand_deselect_target(chip); + if (ret || feature[0] != MXIC_BLOCK_PROTECTION_ALL_LOCK) { + if (ret) + pr_err("Block protection check failed\n"); + + bitmap_clear(chip->parameters.get_feature_list, + ONFI_FEATURE_ADDR_MXIC_PROTECTION, 1); + return; + } + + bitmap_set(chip->parameters.set_feature_list, + ONFI_FEATURE_ADDR_MXIC_PROTECTION, 1); + + chip->ops.lock_area = mxic_nand_lock; + chip->ops.unlock_area = mxic_nand_unlock; +} + +static int nand_power_down_op(struct nand_chip *chip) +{ + int ret; + + if (nand_has_exec_op(chip)) { + struct nand_op_instr instrs[] = { + NAND_OP_CMD(MXIC_CMD_POWER_DOWN, 0), + }; + + struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs); + + ret = nand_exec_op(chip, &op); + if (ret) + return ret; + + } else { + chip->legacy.cmdfunc(chip, MXIC_CMD_POWER_DOWN, -1, -1); + } + + return 0; +} + +static int mxic_nand_suspend(struct nand_chip *chip) +{ + int ret; + + nand_select_target(chip, 0); + ret = nand_power_down_op(chip); + if (ret < 0) + pr_err("Suspending MXIC NAND chip failed (%d)\n", ret); + nand_deselect_target(chip); + + return ret; +} + +static void mxic_nand_resume(struct nand_chip *chip) +{ + /* + * Toggle #CS pin to resume NAND device and don't care + * of the others CLE, #WE, #RE pins status. + * A NAND controller ensure it is able to assert/de-assert #CS + * by sending any byte over the NAND bus. + * i.e., + * NAND power down command or reset command w/o R/B# status checking. + */ + nand_select_target(chip, 0); + nand_power_down_op(chip); + /* The minimum of a recovery time tRDP is 35 us */ + usleep_range(35, 100); + nand_deselect_target(chip); +} + +static void macronix_nand_deep_power_down_support(struct nand_chip *chip) +{ + int i; + static const char * const deep_power_down_dev[] = { + "MX30UF1G28AD", + "MX30UF2G28AD", + "MX30UF4G28AD", + }; + + i = match_string(deep_power_down_dev, ARRAY_SIZE(deep_power_down_dev), + chip->parameters.model); + if (i < 0) + return; + + chip->ops.suspend = mxic_nand_suspend; + chip->ops.resume = mxic_nand_resume; +} + +static int macronix_30lfxg18ac_get_otp_info(struct mtd_info *mtd, size_t len, + size_t *retlen, + struct otp_info *buf) +{ + if (len < sizeof(*buf)) + return -EINVAL; + + /* Always report that OTP is unlocked. Reason is that this + * type of flash chip doesn't provide way to check that OTP + * is locked or not: subfeature parameter is implemented as + * volatile register. Technically OTP region could be locked + * and become readonly, but as there is no way to check it, + * don't allow to lock it ('_lock_user_prot_reg' callback + * always returns -EOPNOTSUPP) and thus we report that OTP + * is unlocked. + */ + buf->locked = 0; + buf->start = 0; + buf->length = MACRONIX_30LFXG18AC_OTP_SIZE_BYTES; + + *retlen = sizeof(*buf); + + return 0; +} + +static int macronix_30lfxg18ac_otp_enable(struct nand_chip *nand) +{ + u8 feature_buf[ONFI_SUBFEATURE_PARAM_LEN] = { 0 }; + + feature_buf[0] = MACRONIX_30LFXG18AC_OTP_EN; + return nand_set_features(nand, ONFI_FEATURE_ADDR_30LFXG18AC_OTP, + feature_buf); +} + +static int macronix_30lfxg18ac_otp_disable(struct nand_chip *nand) +{ + u8 feature_buf[ONFI_SUBFEATURE_PARAM_LEN] = { 0 }; + + return nand_set_features(nand, ONFI_FEATURE_ADDR_30LFXG18AC_OTP, + feature_buf); +} + +static int __macronix_30lfxg18ac_rw_otp(struct mtd_info *mtd, + loff_t offs_in_flash, + size_t len, size_t *retlen, + u_char *buf, bool write) +{ + struct nand_chip *nand; + size_t bytes_handled; + off_t offs_in_page; + u64 page; + int ret; + + nand = mtd_to_nand(mtd); + nand_select_target(nand, 0); + + ret = macronix_30lfxg18ac_otp_enable(nand); + if (ret) + goto out_otp; + + page = offs_in_flash; + /* 'page' will be result of division. */ + offs_in_page = do_div(page, MACRONIX_30LFXG18AC_OTP_PAGE_SIZE); + bytes_handled = 0; + + while (bytes_handled < len && + page < MACRONIX_30LFXG18AC_OTP_PAGES) { + size_t bytes_to_handle; + u64 phys_page = page + MACRONIX_30LFXG18AC_OTP_START_PAGE; + + bytes_to_handle = min_t(size_t, len - bytes_handled, + MACRONIX_30LFXG18AC_OTP_PAGE_SIZE - + offs_in_page); + + if (write) + ret = nand_prog_page_op(nand, phys_page, offs_in_page, + &buf[bytes_handled], bytes_to_handle); + else + ret = nand_read_page_op(nand, phys_page, offs_in_page, + &buf[bytes_handled], bytes_to_handle); + if (ret) + goto out_otp; + + bytes_handled += bytes_to_handle; + offs_in_page = 0; + page++; + } + + *retlen = bytes_handled; + +out_otp: + if (ret) + dev_err(&mtd->dev, "failed to perform OTP IO: %i\n", ret); + + ret = macronix_30lfxg18ac_otp_disable(nand); + if (ret) + dev_err(&mtd->dev, "failed to leave OTP mode after %s\n", + write ? "write" : "read"); + + nand_deselect_target(nand); + + return ret; +} + +static int macronix_30lfxg18ac_write_otp(struct mtd_info *mtd, loff_t to, + size_t len, size_t *rlen, + const u_char *buf) +{ + return __macronix_30lfxg18ac_rw_otp(mtd, to, len, rlen, (u_char *)buf, + true); +} + +static int macronix_30lfxg18ac_read_otp(struct mtd_info *mtd, loff_t from, + size_t len, size_t *rlen, + u_char *buf) +{ + return __macronix_30lfxg18ac_rw_otp(mtd, from, len, rlen, buf, false); +} + +static int macronix_30lfxg18ac_lock_otp(struct mtd_info *mtd, loff_t from, + size_t len) +{ + /* See comment in 'macronix_30lfxg18ac_get_otp_info()'. */ + return -EOPNOTSUPP; +} + +static void macronix_nand_setup_otp(struct nand_chip *chip) +{ + static const char * const supported_otp_models[] = { + "MX30LF1G18AC", + "MX30LF2G18AC", + "MX30LF4G18AC", + }; + struct mtd_info *mtd; + + if (match_string(supported_otp_models, + ARRAY_SIZE(supported_otp_models), + chip->parameters.model) < 0) + return; + + if (!chip->parameters.supports_set_get_features) + return; + + bitmap_set(chip->parameters.get_feature_list, + ONFI_FEATURE_ADDR_30LFXG18AC_OTP, 1); + bitmap_set(chip->parameters.set_feature_list, + ONFI_FEATURE_ADDR_30LFXG18AC_OTP, 1); + + mtd = nand_to_mtd(chip); + mtd->_get_user_prot_info = macronix_30lfxg18ac_get_otp_info; + mtd->_read_user_prot_reg = macronix_30lfxg18ac_read_otp; + mtd->_write_user_prot_reg = macronix_30lfxg18ac_write_otp; + mtd->_lock_user_prot_reg = macronix_30lfxg18ac_lock_otp; +} + +static int macronix_nand_init(struct nand_chip *chip) +{ + if (nand_is_slc(chip)) + chip->options |= NAND_BBM_FIRSTPAGE | NAND_BBM_SECONDPAGE; + + macronix_nand_fix_broken_get_timings(chip); + macronix_nand_onfi_init(chip); + macronix_nand_block_protection_support(chip); + macronix_nand_deep_power_down_support(chip); + macronix_nand_setup_otp(chip); + + return 0; +} + +const struct nand_manufacturer_ops macronix_nand_manuf_ops = { + .init = macronix_nand_init, +}; diff --git a/drivers/mtd/nand/raw/nand_micron.c b/drivers/mtd/nand/raw/nand_micron.c new file mode 100644 index 0000000000..c019288190 --- /dev/null +++ b/drivers/mtd/nand/raw/nand_micron.c @@ -0,0 +1,599 @@ +// SPDX-License-Identifier: GPL-2.0-or-later +/* + * Copyright (C) 2017 Free Electrons + * Copyright (C) 2017 NextThing Co + * + * Author: Boris Brezillon <boris.brezillon@free-electrons.com> + */ + +#include <linux/slab.h> + +#include "internals.h" + +/* + * Special Micron status bit 3 indicates that the block has been + * corrected by on-die ECC and should be rewritten. + */ +#define NAND_ECC_STATUS_WRITE_RECOMMENDED BIT(3) + +/* + * On chips with 8-bit ECC and additional bit can be used to distinguish + * cases where a errors were corrected without needing a rewrite + * + * Bit 4 Bit 3 Bit 0 Description + * ----- ----- ----- ----------- + * 0 0 0 No Errors + * 0 0 1 Multiple uncorrected errors + * 0 1 0 4 - 6 errors corrected, recommend rewrite + * 0 1 1 Reserved + * 1 0 0 1 - 3 errors corrected + * 1 0 1 Reserved + * 1 1 0 7 - 8 errors corrected, recommend rewrite + */ +#define NAND_ECC_STATUS_MASK (BIT(4) | BIT(3) | BIT(0)) +#define NAND_ECC_STATUS_UNCORRECTABLE BIT(0) +#define NAND_ECC_STATUS_4_6_CORRECTED BIT(3) +#define NAND_ECC_STATUS_1_3_CORRECTED BIT(4) +#define NAND_ECC_STATUS_7_8_CORRECTED (BIT(4) | BIT(3)) + +struct nand_onfi_vendor_micron { + u8 two_plane_read; + u8 read_cache; + u8 read_unique_id; + u8 dq_imped; + u8 dq_imped_num_settings; + u8 dq_imped_feat_addr; + u8 rb_pulldown_strength; + u8 rb_pulldown_strength_feat_addr; + u8 rb_pulldown_strength_num_settings; + u8 otp_mode; + u8 otp_page_start; + u8 otp_data_prot_addr; + u8 otp_num_pages; + u8 otp_feat_addr; + u8 read_retry_options; + u8 reserved[72]; + u8 param_revision; +} __packed; + +struct micron_on_die_ecc { + bool forced; + bool enabled; + void *rawbuf; +}; + +struct micron_nand { + struct micron_on_die_ecc ecc; +}; + +static int micron_nand_setup_read_retry(struct nand_chip *chip, int retry_mode) +{ + u8 feature[ONFI_SUBFEATURE_PARAM_LEN] = {retry_mode}; + + return nand_set_features(chip, ONFI_FEATURE_ADDR_READ_RETRY, feature); +} + +/* + * Configure chip properties from Micron vendor-specific ONFI table + */ +static int micron_nand_onfi_init(struct nand_chip *chip) +{ + struct nand_parameters *p = &chip->parameters; + + if (p->onfi) { + struct nand_onfi_vendor_micron *micron = (void *)p->onfi->vendor; + + chip->read_retries = micron->read_retry_options; + chip->ops.setup_read_retry = micron_nand_setup_read_retry; + } + + if (p->supports_set_get_features) { + set_bit(ONFI_FEATURE_ADDR_READ_RETRY, p->set_feature_list); + set_bit(ONFI_FEATURE_ON_DIE_ECC, p->set_feature_list); + set_bit(ONFI_FEATURE_ADDR_READ_RETRY, p->get_feature_list); + set_bit(ONFI_FEATURE_ON_DIE_ECC, p->get_feature_list); + } + + return 0; +} + +static int micron_nand_on_die_4_ooblayout_ecc(struct mtd_info *mtd, + int section, + struct mtd_oob_region *oobregion) +{ + if (section >= 4) + return -ERANGE; + + oobregion->offset = (section * 16) + 8; + oobregion->length = 8; + + return 0; +} + +static int micron_nand_on_die_4_ooblayout_free(struct mtd_info *mtd, + int section, + struct mtd_oob_region *oobregion) +{ + if (section >= 4) + return -ERANGE; + + oobregion->offset = (section * 16) + 2; + oobregion->length = 6; + + return 0; +} + +static const struct mtd_ooblayout_ops micron_nand_on_die_4_ooblayout_ops = { + .ecc = micron_nand_on_die_4_ooblayout_ecc, + .free = micron_nand_on_die_4_ooblayout_free, +}; + +static int micron_nand_on_die_8_ooblayout_ecc(struct mtd_info *mtd, + int section, + struct mtd_oob_region *oobregion) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + + if (section) + return -ERANGE; + + oobregion->offset = mtd->oobsize - chip->ecc.total; + oobregion->length = chip->ecc.total; + + return 0; +} + +static int micron_nand_on_die_8_ooblayout_free(struct mtd_info *mtd, + int section, + struct mtd_oob_region *oobregion) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + + if (section) + return -ERANGE; + + oobregion->offset = 2; + oobregion->length = mtd->oobsize - chip->ecc.total - 2; + + return 0; +} + +static const struct mtd_ooblayout_ops micron_nand_on_die_8_ooblayout_ops = { + .ecc = micron_nand_on_die_8_ooblayout_ecc, + .free = micron_nand_on_die_8_ooblayout_free, +}; + +static int micron_nand_on_die_ecc_setup(struct nand_chip *chip, bool enable) +{ + struct micron_nand *micron = nand_get_manufacturer_data(chip); + u8 feature[ONFI_SUBFEATURE_PARAM_LEN] = { 0, }; + int ret; + + if (micron->ecc.forced) + return 0; + + if (micron->ecc.enabled == enable) + return 0; + + if (enable) + feature[0] |= ONFI_FEATURE_ON_DIE_ECC_EN; + + ret = nand_set_features(chip, ONFI_FEATURE_ON_DIE_ECC, feature); + if (!ret) + micron->ecc.enabled = enable; + + return ret; +} + +static int micron_nand_on_die_ecc_status_4(struct nand_chip *chip, u8 status, + void *buf, int page, + int oob_required) +{ + struct micron_nand *micron = nand_get_manufacturer_data(chip); + struct mtd_info *mtd = nand_to_mtd(chip); + unsigned int step, max_bitflips = 0; + bool use_datain = false; + int ret; + + if (!(status & NAND_ECC_STATUS_WRITE_RECOMMENDED)) { + if (status & NAND_STATUS_FAIL) + mtd->ecc_stats.failed++; + + return 0; + } + + /* + * The internal ECC doesn't tell us the number of bitflips that have + * been corrected, but tells us if it recommends to rewrite the block. + * If it's the case, we need to read the page in raw mode and compare + * its content to the corrected version to extract the actual number of + * bitflips. + * But before we do that, we must make sure we have all OOB bytes read + * in non-raw mode, even if the user did not request those bytes. + */ + if (!oob_required) { + /* + * We first check which operation is supported by the controller + * before running it. This trick makes it possible to support + * all controllers, even the most constraints, without almost + * any performance hit. + * + * TODO: could be enhanced to avoid repeating the same check + * over and over in the fast path. + */ + if (!nand_has_exec_op(chip) || + !nand_read_data_op(chip, chip->oob_poi, mtd->oobsize, false, + true)) + use_datain = true; + + if (use_datain) + ret = nand_read_data_op(chip, chip->oob_poi, + mtd->oobsize, false, false); + else + ret = nand_change_read_column_op(chip, mtd->writesize, + chip->oob_poi, + mtd->oobsize, false); + if (ret) + return ret; + } + + micron_nand_on_die_ecc_setup(chip, false); + + ret = nand_read_page_op(chip, page, 0, micron->ecc.rawbuf, + mtd->writesize + mtd->oobsize); + if (ret) + return ret; + + for (step = 0; step < chip->ecc.steps; step++) { + unsigned int offs, i, nbitflips = 0; + u8 *rawbuf, *corrbuf; + + offs = step * chip->ecc.size; + rawbuf = micron->ecc.rawbuf + offs; + corrbuf = buf + offs; + + for (i = 0; i < chip->ecc.size; i++) + nbitflips += hweight8(corrbuf[i] ^ rawbuf[i]); + + offs = (step * 16) + 4; + rawbuf = micron->ecc.rawbuf + mtd->writesize + offs; + corrbuf = chip->oob_poi + offs; + + for (i = 0; i < chip->ecc.bytes + 4; i++) + nbitflips += hweight8(corrbuf[i] ^ rawbuf[i]); + + if (WARN_ON(nbitflips > chip->ecc.strength)) + return -EINVAL; + + max_bitflips = max(nbitflips, max_bitflips); + mtd->ecc_stats.corrected += nbitflips; + } + + return max_bitflips; +} + +static int micron_nand_on_die_ecc_status_8(struct nand_chip *chip, u8 status) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + + /* + * With 8/512 we have more information but still don't know precisely + * how many bit-flips were seen. + */ + switch (status & NAND_ECC_STATUS_MASK) { + case NAND_ECC_STATUS_UNCORRECTABLE: + mtd->ecc_stats.failed++; + return 0; + case NAND_ECC_STATUS_1_3_CORRECTED: + mtd->ecc_stats.corrected += 3; + return 3; + case NAND_ECC_STATUS_4_6_CORRECTED: + mtd->ecc_stats.corrected += 6; + /* rewrite recommended */ + return 6; + case NAND_ECC_STATUS_7_8_CORRECTED: + mtd->ecc_stats.corrected += 8; + /* rewrite recommended */ + return 8; + default: + return 0; + } +} + +static int +micron_nand_read_page_on_die_ecc(struct nand_chip *chip, uint8_t *buf, + int oob_required, int page) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + bool use_datain = false; + u8 status; + int ret, max_bitflips = 0; + + ret = micron_nand_on_die_ecc_setup(chip, true); + if (ret) + return ret; + + ret = nand_read_page_op(chip, page, 0, NULL, 0); + if (ret) + goto out; + + ret = nand_status_op(chip, &status); + if (ret) + goto out; + + /* + * We first check which operation is supported by the controller before + * running it. This trick makes it possible to support all controllers, + * even the most constraints, without almost any performance hit. + * + * TODO: could be enhanced to avoid repeating the same check over and + * over in the fast path. + */ + if (!nand_has_exec_op(chip) || + !nand_read_data_op(chip, buf, mtd->writesize, false, true)) + use_datain = true; + + if (use_datain) { + ret = nand_exit_status_op(chip); + if (ret) + goto out; + + ret = nand_read_data_op(chip, buf, mtd->writesize, false, + false); + if (!ret && oob_required) + ret = nand_read_data_op(chip, chip->oob_poi, + mtd->oobsize, false, false); + } else { + ret = nand_change_read_column_op(chip, 0, buf, mtd->writesize, + false); + if (!ret && oob_required) + ret = nand_change_read_column_op(chip, mtd->writesize, + chip->oob_poi, + mtd->oobsize, false); + } + + if (chip->ecc.strength == 4) + max_bitflips = micron_nand_on_die_ecc_status_4(chip, status, + buf, page, + oob_required); + else + max_bitflips = micron_nand_on_die_ecc_status_8(chip, status); + +out: + micron_nand_on_die_ecc_setup(chip, false); + + return ret ? ret : max_bitflips; +} + +static int +micron_nand_write_page_on_die_ecc(struct nand_chip *chip, const uint8_t *buf, + int oob_required, int page) +{ + int ret; + + ret = micron_nand_on_die_ecc_setup(chip, true); + if (ret) + return ret; + + ret = nand_write_page_raw(chip, buf, oob_required, page); + micron_nand_on_die_ecc_setup(chip, false); + + return ret; +} + +enum { + /* The NAND flash doesn't support on-die ECC */ + MICRON_ON_DIE_UNSUPPORTED, + + /* + * The NAND flash supports on-die ECC and it can be + * enabled/disabled by a set features command. + */ + MICRON_ON_DIE_SUPPORTED, + + /* + * The NAND flash supports on-die ECC, and it cannot be + * disabled. + */ + MICRON_ON_DIE_MANDATORY, +}; + +#define MICRON_ID_INTERNAL_ECC_MASK GENMASK(1, 0) +#define MICRON_ID_ECC_ENABLED BIT(7) + +/* + * Try to detect if the NAND support on-die ECC. To do this, we enable + * the feature, and read back if it has been enabled as expected. We + * also check if it can be disabled, because some Micron NANDs do not + * allow disabling the on-die ECC and we don't support such NANDs for + * now. + * + * This function also has the side effect of disabling on-die ECC if + * it had been left enabled by the firmware/bootloader. + */ +static int micron_supports_on_die_ecc(struct nand_chip *chip) +{ + const struct nand_ecc_props *requirements = + nanddev_get_ecc_requirements(&chip->base); + u8 id[5]; + int ret; + + if (!chip->parameters.onfi) + return MICRON_ON_DIE_UNSUPPORTED; + + if (nanddev_bits_per_cell(&chip->base) != 1) + return MICRON_ON_DIE_UNSUPPORTED; + + /* + * We only support on-die ECC of 4/512 or 8/512 + */ + if (requirements->strength != 4 && requirements->strength != 8) + return MICRON_ON_DIE_UNSUPPORTED; + + /* 0x2 means on-die ECC is available. */ + if (chip->id.len != 5 || + (chip->id.data[4] & MICRON_ID_INTERNAL_ECC_MASK) != 0x2) + return MICRON_ON_DIE_UNSUPPORTED; + + /* + * It seems that there are devices which do not support ECC officially. + * At least the MT29F2G08ABAGA / MT29F2G08ABBGA devices supports + * enabling the ECC feature but don't reflect that to the READ_ID table. + * So we have to guarantee that we disable the ECC feature directly + * after we did the READ_ID table command. Later we can evaluate the + * ECC_ENABLE support. + */ + ret = micron_nand_on_die_ecc_setup(chip, true); + if (ret) + return MICRON_ON_DIE_UNSUPPORTED; + + ret = nand_readid_op(chip, 0, id, sizeof(id)); + if (ret) + return MICRON_ON_DIE_UNSUPPORTED; + + ret = micron_nand_on_die_ecc_setup(chip, false); + if (ret) + return MICRON_ON_DIE_UNSUPPORTED; + + if (!(id[4] & MICRON_ID_ECC_ENABLED)) + return MICRON_ON_DIE_UNSUPPORTED; + + ret = nand_readid_op(chip, 0, id, sizeof(id)); + if (ret) + return MICRON_ON_DIE_UNSUPPORTED; + + if (id[4] & MICRON_ID_ECC_ENABLED) + return MICRON_ON_DIE_MANDATORY; + + /* + * We only support on-die ECC of 4/512 or 8/512 + */ + if (requirements->strength != 4 && requirements->strength != 8) + return MICRON_ON_DIE_UNSUPPORTED; + + return MICRON_ON_DIE_SUPPORTED; +} + +static int micron_nand_init(struct nand_chip *chip) +{ + struct nand_device *base = &chip->base; + const struct nand_ecc_props *requirements = + nanddev_get_ecc_requirements(base); + struct mtd_info *mtd = nand_to_mtd(chip); + struct micron_nand *micron; + int ondie; + int ret; + + micron = kzalloc(sizeof(*micron), GFP_KERNEL); + if (!micron) + return -ENOMEM; + + nand_set_manufacturer_data(chip, micron); + + ret = micron_nand_onfi_init(chip); + if (ret) + goto err_free_manuf_data; + + chip->options |= NAND_BBM_FIRSTPAGE; + + if (mtd->writesize == 2048) + chip->options |= NAND_BBM_SECONDPAGE; + + ondie = micron_supports_on_die_ecc(chip); + + if (ondie == MICRON_ON_DIE_MANDATORY && + chip->ecc.engine_type != NAND_ECC_ENGINE_TYPE_ON_DIE) { + pr_err("On-die ECC forcefully enabled, not supported\n"); + ret = -EINVAL; + goto err_free_manuf_data; + } + + if (chip->ecc.engine_type == NAND_ECC_ENGINE_TYPE_ON_DIE) { + if (ondie == MICRON_ON_DIE_UNSUPPORTED) { + pr_err("On-die ECC selected but not supported\n"); + ret = -EINVAL; + goto err_free_manuf_data; + } + + if (ondie == MICRON_ON_DIE_MANDATORY) { + micron->ecc.forced = true; + micron->ecc.enabled = true; + } + + /* + * In case of 4bit on-die ECC, we need a buffer to store a + * page dumped in raw mode so that we can compare its content + * to the same page after ECC correction happened and extract + * the real number of bitflips from this comparison. + * That's not needed for 8-bit ECC, because the status expose + * a better approximation of the number of bitflips in a page. + */ + if (requirements->strength == 4) { + micron->ecc.rawbuf = kmalloc(mtd->writesize + + mtd->oobsize, + GFP_KERNEL); + if (!micron->ecc.rawbuf) { + ret = -ENOMEM; + goto err_free_manuf_data; + } + } + + if (requirements->strength == 4) + mtd_set_ooblayout(mtd, + µn_nand_on_die_4_ooblayout_ops); + else + mtd_set_ooblayout(mtd, + µn_nand_on_die_8_ooblayout_ops); + + chip->ecc.bytes = requirements->strength * 2; + chip->ecc.size = 512; + chip->ecc.strength = requirements->strength; + chip->ecc.algo = NAND_ECC_ALGO_BCH; + chip->ecc.read_page = micron_nand_read_page_on_die_ecc; + chip->ecc.write_page = micron_nand_write_page_on_die_ecc; + + if (ondie == MICRON_ON_DIE_MANDATORY) { + chip->ecc.read_page_raw = nand_read_page_raw_notsupp; + chip->ecc.write_page_raw = nand_write_page_raw_notsupp; + } else { + if (!chip->ecc.read_page_raw) + chip->ecc.read_page_raw = nand_read_page_raw; + if (!chip->ecc.write_page_raw) + chip->ecc.write_page_raw = nand_write_page_raw; + } + } + + return 0; + +err_free_manuf_data: + kfree(micron->ecc.rawbuf); + kfree(micron); + + return ret; +} + +static void micron_nand_cleanup(struct nand_chip *chip) +{ + struct micron_nand *micron = nand_get_manufacturer_data(chip); + + kfree(micron->ecc.rawbuf); + kfree(micron); +} + +static void micron_fixup_onfi_param_page(struct nand_chip *chip, + struct nand_onfi_params *p) +{ + /* + * MT29F1G08ABAFAWP-ITE:F and possibly others report 00 00 for the + * revision number field of the ONFI parameter page. Assume ONFI + * version 1.0 if the revision number is 00 00. + */ + if (le16_to_cpu(p->revision) == 0) + p->revision = cpu_to_le16(ONFI_VERSION_1_0); +} + +const struct nand_manufacturer_ops micron_nand_manuf_ops = { + .init = micron_nand_init, + .cleanup = micron_nand_cleanup, + .fixup_onfi_param_page = micron_fixup_onfi_param_page, +}; diff --git a/drivers/mtd/nand/raw/nand_onfi.c b/drivers/mtd/nand/raw/nand_onfi.c new file mode 100644 index 0000000000..861975e44b --- /dev/null +++ b/drivers/mtd/nand/raw/nand_onfi.c @@ -0,0 +1,339 @@ +// SPDX-License-Identifier: GPL-2.0 +/* + * Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com) + * 2002-2006 Thomas Gleixner (tglx@linutronix.de) + * + * Credits: + * David Woodhouse for adding multichip support + * + * Aleph One Ltd. and Toby Churchill Ltd. for supporting the + * rework for 2K page size chips + * + * This file contains all ONFI helpers. + */ + +#include <linux/slab.h> + +#include "internals.h" + +#define ONFI_PARAM_PAGES 3 + +u16 onfi_crc16(u16 crc, u8 const *p, size_t len) +{ + int i; + while (len--) { + crc ^= *p++ << 8; + for (i = 0; i < 8; i++) + crc = (crc << 1) ^ ((crc & 0x8000) ? 0x8005 : 0); + } + + return crc; +} + +/* Parse the Extended Parameter Page. */ +static int nand_flash_detect_ext_param_page(struct nand_chip *chip, + struct nand_onfi_params *p) +{ + struct nand_device *base = &chip->base; + struct nand_ecc_props requirements; + struct onfi_ext_param_page *ep; + struct onfi_ext_section *s; + struct onfi_ext_ecc_info *ecc; + uint8_t *cursor; + int ret; + int len; + int i; + + len = le16_to_cpu(p->ext_param_page_length) * 16; + ep = kmalloc(len, GFP_KERNEL); + if (!ep) + return -ENOMEM; + + /* + * Use the Change Read Column command to skip the ONFI param pages and + * ensure we read at the right location. + */ + ret = nand_change_read_column_op(chip, + sizeof(*p) * p->num_of_param_pages, + ep, len, true); + if (ret) + goto ext_out; + + ret = -EINVAL; + if ((onfi_crc16(ONFI_CRC_BASE, ((uint8_t *)ep) + 2, len - 2) + != le16_to_cpu(ep->crc))) { + pr_debug("fail in the CRC.\n"); + goto ext_out; + } + + /* + * Check the signature. + * Do not strictly follow the ONFI spec, maybe changed in future. + */ + if (strncmp(ep->sig, "EPPS", 4)) { + pr_debug("The signature is invalid.\n"); + goto ext_out; + } + + /* find the ECC section. */ + cursor = (uint8_t *)(ep + 1); + for (i = 0; i < ONFI_EXT_SECTION_MAX; i++) { + s = ep->sections + i; + if (s->type == ONFI_SECTION_TYPE_2) + break; + cursor += s->length * 16; + } + if (i == ONFI_EXT_SECTION_MAX) { + pr_debug("We can not find the ECC section.\n"); + goto ext_out; + } + + /* get the info we want. */ + ecc = (struct onfi_ext_ecc_info *)cursor; + + if (!ecc->codeword_size) { + pr_debug("Invalid codeword size\n"); + goto ext_out; + } + + requirements.strength = ecc->ecc_bits; + requirements.step_size = 1 << ecc->codeword_size; + nanddev_set_ecc_requirements(base, &requirements); + + ret = 0; + +ext_out: + kfree(ep); + return ret; +} + +/* + * Recover data with bit-wise majority + */ +static void nand_bit_wise_majority(const void **srcbufs, + unsigned int nsrcbufs, + void *dstbuf, + unsigned int bufsize) +{ + int i, j, k; + + for (i = 0; i < bufsize; i++) { + u8 val = 0; + + for (j = 0; j < 8; j++) { + unsigned int cnt = 0; + + for (k = 0; k < nsrcbufs; k++) { + const u8 *srcbuf = srcbufs[k]; + + if (srcbuf[i] & BIT(j)) + cnt++; + } + + if (cnt > nsrcbufs / 2) + val |= BIT(j); + } + + ((u8 *)dstbuf)[i] = val; + } +} + +/* + * Check if the NAND chip is ONFI compliant, returns 1 if it is, 0 otherwise. + */ +int nand_onfi_detect(struct nand_chip *chip) +{ + struct nand_device *base = &chip->base; + struct mtd_info *mtd = nand_to_mtd(chip); + struct nand_memory_organization *memorg; + struct nand_onfi_params *p = NULL, *pbuf; + struct onfi_params *onfi; + bool use_datain = false; + int onfi_version = 0; + char id[4]; + int i, ret, val; + u16 crc; + + memorg = nanddev_get_memorg(&chip->base); + + /* Try ONFI for unknown chip or LP */ + ret = nand_readid_op(chip, 0x20, id, sizeof(id)); + if (ret || strncmp(id, "ONFI", 4)) + return 0; + + /* ONFI chip: allocate a buffer to hold its parameter page */ + pbuf = kzalloc((sizeof(*pbuf) * ONFI_PARAM_PAGES), GFP_KERNEL); + if (!pbuf) + return -ENOMEM; + + if (!nand_has_exec_op(chip) || chip->controller->supported_op.data_only_read) + use_datain = true; + + for (i = 0; i < ONFI_PARAM_PAGES; i++) { + if (!i) + ret = nand_read_param_page_op(chip, 0, &pbuf[i], + sizeof(*pbuf)); + else if (use_datain) + ret = nand_read_data_op(chip, &pbuf[i], sizeof(*pbuf), + true, false); + else + ret = nand_change_read_column_op(chip, sizeof(*pbuf) * i, + &pbuf[i], sizeof(*pbuf), + true); + if (ret) { + ret = 0; + goto free_onfi_param_page; + } + + crc = onfi_crc16(ONFI_CRC_BASE, (u8 *)&pbuf[i], 254); + if (crc == le16_to_cpu(pbuf[i].crc)) { + p = &pbuf[i]; + break; + } + } + + if (i == ONFI_PARAM_PAGES) { + const void *srcbufs[ONFI_PARAM_PAGES]; + unsigned int j; + + for (j = 0; j < ONFI_PARAM_PAGES; j++) + srcbufs[j] = pbuf + j; + + pr_warn("Could not find a valid ONFI parameter page, trying bit-wise majority to recover it\n"); + nand_bit_wise_majority(srcbufs, ONFI_PARAM_PAGES, pbuf, + sizeof(*pbuf)); + + crc = onfi_crc16(ONFI_CRC_BASE, (u8 *)pbuf, 254); + if (crc != le16_to_cpu(pbuf->crc)) { + pr_err("ONFI parameter recovery failed, aborting\n"); + goto free_onfi_param_page; + } + p = pbuf; + } + + if (chip->manufacturer.desc && chip->manufacturer.desc->ops && + chip->manufacturer.desc->ops->fixup_onfi_param_page) + chip->manufacturer.desc->ops->fixup_onfi_param_page(chip, p); + + /* Check version */ + val = le16_to_cpu(p->revision); + if (val & ONFI_VERSION_2_3) + onfi_version = 23; + else if (val & ONFI_VERSION_2_2) + onfi_version = 22; + else if (val & ONFI_VERSION_2_1) + onfi_version = 21; + else if (val & ONFI_VERSION_2_0) + onfi_version = 20; + else if (val & ONFI_VERSION_1_0) + onfi_version = 10; + + if (!onfi_version) { + pr_info("unsupported ONFI version: %d\n", val); + goto free_onfi_param_page; + } + + sanitize_string(p->manufacturer, sizeof(p->manufacturer)); + sanitize_string(p->model, sizeof(p->model)); + chip->parameters.model = kstrdup(p->model, GFP_KERNEL); + if (!chip->parameters.model) { + ret = -ENOMEM; + goto free_onfi_param_page; + } + + memorg->pagesize = le32_to_cpu(p->byte_per_page); + mtd->writesize = memorg->pagesize; + + /* + * pages_per_block and blocks_per_lun may not be a power-of-2 size + * (don't ask me who thought of this...). MTD assumes that these + * dimensions will be power-of-2, so just truncate the remaining area. + */ + memorg->pages_per_eraseblock = + 1 << (fls(le32_to_cpu(p->pages_per_block)) - 1); + mtd->erasesize = memorg->pages_per_eraseblock * memorg->pagesize; + + memorg->oobsize = le16_to_cpu(p->spare_bytes_per_page); + mtd->oobsize = memorg->oobsize; + + memorg->luns_per_target = p->lun_count; + memorg->planes_per_lun = 1 << p->interleaved_bits; + + /* See erasesize comment */ + memorg->eraseblocks_per_lun = + 1 << (fls(le32_to_cpu(p->blocks_per_lun)) - 1); + memorg->max_bad_eraseblocks_per_lun = le32_to_cpu(p->blocks_per_lun); + memorg->bits_per_cell = p->bits_per_cell; + + if (le16_to_cpu(p->features) & ONFI_FEATURE_16_BIT_BUS) + chip->options |= NAND_BUSWIDTH_16; + + if (p->ecc_bits != 0xff) { + struct nand_ecc_props requirements = { + .strength = p->ecc_bits, + .step_size = 512, + }; + + nanddev_set_ecc_requirements(base, &requirements); + } else if (onfi_version >= 21 && + (le16_to_cpu(p->features) & ONFI_FEATURE_EXT_PARAM_PAGE)) { + + /* + * The nand_flash_detect_ext_param_page() uses the + * Change Read Column command which maybe not supported + * by the chip->legacy.cmdfunc. So try to update the + * chip->legacy.cmdfunc now. We do not replace user supplied + * command function. + */ + nand_legacy_adjust_cmdfunc(chip); + + /* The Extended Parameter Page is supported since ONFI 2.1. */ + if (nand_flash_detect_ext_param_page(chip, p)) + pr_warn("Failed to detect ONFI extended param page\n"); + } else { + pr_warn("Could not retrieve ONFI ECC requirements\n"); + } + + /* Save some parameters from the parameter page for future use */ + if (le16_to_cpu(p->opt_cmd) & ONFI_OPT_CMD_SET_GET_FEATURES) { + chip->parameters.supports_set_get_features = true; + bitmap_set(chip->parameters.get_feature_list, + ONFI_FEATURE_ADDR_TIMING_MODE, 1); + bitmap_set(chip->parameters.set_feature_list, + ONFI_FEATURE_ADDR_TIMING_MODE, 1); + } + + if (le16_to_cpu(p->opt_cmd) & ONFI_OPT_CMD_READ_CACHE) + chip->parameters.supports_read_cache = true; + + onfi = kzalloc(sizeof(*onfi), GFP_KERNEL); + if (!onfi) { + ret = -ENOMEM; + goto free_model; + } + + onfi->version = onfi_version; + onfi->tPROG = le16_to_cpu(p->t_prog); + onfi->tBERS = le16_to_cpu(p->t_bers); + onfi->tR = le16_to_cpu(p->t_r); + onfi->tCCS = le16_to_cpu(p->t_ccs); + onfi->fast_tCAD = le16_to_cpu(p->nvddr_nvddr2_features) & BIT(0); + onfi->sdr_timing_modes = le16_to_cpu(p->sdr_timing_modes); + if (le16_to_cpu(p->features) & ONFI_FEATURE_NV_DDR) + onfi->nvddr_timing_modes = le16_to_cpu(p->nvddr_timing_modes); + onfi->vendor_revision = le16_to_cpu(p->vendor_revision); + memcpy(onfi->vendor, p->vendor, sizeof(p->vendor)); + chip->parameters.onfi = onfi; + + /* Identification done, free the full ONFI parameter page and exit */ + kfree(pbuf); + + return 1; + +free_model: + kfree(chip->parameters.model); +free_onfi_param_page: + kfree(pbuf); + + return ret; +} diff --git a/drivers/mtd/nand/raw/nand_samsung.c b/drivers/mtd/nand/raw/nand_samsung.c new file mode 100644 index 0000000000..0be6b75638 --- /dev/null +++ b/drivers/mtd/nand/raw/nand_samsung.c @@ -0,0 +1,139 @@ +// SPDX-License-Identifier: GPL-2.0-or-later +/* + * Copyright (C) 2017 Free Electrons + * Copyright (C) 2017 NextThing Co + * + * Author: Boris Brezillon <boris.brezillon@free-electrons.com> + */ + +#include "internals.h" + +static void samsung_nand_decode_id(struct nand_chip *chip) +{ + struct nand_device *base = &chip->base; + struct nand_ecc_props requirements = {}; + struct mtd_info *mtd = nand_to_mtd(chip); + struct nand_memory_organization *memorg; + + memorg = nanddev_get_memorg(&chip->base); + + /* New Samsung (6 byte ID): Samsung K9GAG08U0F (p.44) */ + if (chip->id.len == 6 && !nand_is_slc(chip) && + chip->id.data[5] != 0x00) { + u8 extid = chip->id.data[3]; + + /* Get pagesize */ + memorg->pagesize = 2048 << (extid & 0x03); + mtd->writesize = memorg->pagesize; + + extid >>= 2; + + /* Get oobsize */ + switch (((extid >> 2) & 0x4) | (extid & 0x3)) { + case 1: + memorg->oobsize = 128; + break; + case 2: + memorg->oobsize = 218; + break; + case 3: + memorg->oobsize = 400; + break; + case 4: + memorg->oobsize = 436; + break; + case 5: + memorg->oobsize = 512; + break; + case 6: + memorg->oobsize = 640; + break; + default: + /* + * We should never reach this case, but if that + * happens, this probably means Samsung decided to use + * a different extended ID format, and we should find + * a way to support it. + */ + WARN(1, "Invalid OOB size value"); + break; + } + + mtd->oobsize = memorg->oobsize; + + /* Get blocksize */ + extid >>= 2; + memorg->pages_per_eraseblock = (128 * 1024) << + (((extid >> 1) & 0x04) | + (extid & 0x03)) / + memorg->pagesize; + mtd->erasesize = (128 * 1024) << + (((extid >> 1) & 0x04) | (extid & 0x03)); + + /* Extract ECC requirements from 5th id byte*/ + extid = (chip->id.data[4] >> 4) & 0x07; + if (extid < 5) { + requirements.step_size = 512; + requirements.strength = 1 << extid; + } else { + requirements.step_size = 1024; + switch (extid) { + case 5: + requirements.strength = 24; + break; + case 6: + requirements.strength = 40; + break; + case 7: + requirements.strength = 60; + break; + default: + WARN(1, "Could not decode ECC info"); + requirements.step_size = 0; + } + } + } else { + nand_decode_ext_id(chip); + + if (nand_is_slc(chip)) { + switch (chip->id.data[1]) { + /* K9F4G08U0D-S[I|C]B0(T00) */ + case 0xDC: + requirements.step_size = 512; + requirements.strength = 1; + break; + + /* K9F1G08U0E 21nm chips do not support subpage write */ + case 0xF1: + if (chip->id.len > 4 && + (chip->id.data[4] & GENMASK(1, 0)) == 0x1) + chip->options |= NAND_NO_SUBPAGE_WRITE; + break; + default: + break; + } + } + } + + nanddev_set_ecc_requirements(base, &requirements); +} + +static int samsung_nand_init(struct nand_chip *chip) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + + if (mtd->writesize > 512) + chip->options |= NAND_SAMSUNG_LP_OPTIONS; + + if (!nand_is_slc(chip)) + chip->options |= NAND_BBM_LASTPAGE; + else + chip->options |= NAND_BBM_FIRSTPAGE | NAND_BBM_SECONDPAGE; + + return 0; +} + +const struct nand_manufacturer_ops samsung_nand_manuf_ops = { + .detect = samsung_nand_decode_id, + .init = samsung_nand_init, +}; diff --git a/drivers/mtd/nand/raw/nand_sandisk.c b/drivers/mtd/nand/raw/nand_sandisk.c new file mode 100644 index 0000000000..7c66e4187d --- /dev/null +++ b/drivers/mtd/nand/raw/nand_sandisk.c @@ -0,0 +1,26 @@ +// SPDX-License-Identifier: GPL-2.0-or-later + +#include "internals.h" + +static int +sdtnqgama_choose_interface_config(struct nand_chip *chip, + struct nand_interface_config *iface) +{ + onfi_fill_interface_config(chip, iface, NAND_SDR_IFACE, 0); + + return nand_choose_best_sdr_timings(chip, iface, NULL); +} + +static int sandisk_nand_init(struct nand_chip *chip) +{ + if (!strncmp("SDTNQGAMA", chip->parameters.model, + sizeof("SDTNQGAMA") - 1)) + chip->ops.choose_interface_config = + &sdtnqgama_choose_interface_config; + + return 0; +} + +const struct nand_manufacturer_ops sandisk_nand_manuf_ops = { + .init = sandisk_nand_init, +}; diff --git a/drivers/mtd/nand/raw/nand_timings.c b/drivers/mtd/nand/raw/nand_timings.c new file mode 100644 index 0000000000..7b41afc372 --- /dev/null +++ b/drivers/mtd/nand/raw/nand_timings.c @@ -0,0 +1,737 @@ +// SPDX-License-Identifier: GPL-2.0-only +/* + * Copyright (C) 2014 Free Electrons + * + * Author: Boris BREZILLON <boris.brezillon@free-electrons.com> + */ +#include <linux/kernel.h> +#include <linux/err.h> +#include <linux/export.h> + +#include "internals.h" + +#define ONFI_DYN_TIMING_MAX U16_MAX + +/* + * For non-ONFI chips we use the highest possible value for tPROG and tBERS. + * tR and tCCS will take the default values precised in the ONFI specification + * for timing mode 0, respectively 200us and 500ns. + * + * These four values are tweaked to be more accurate in the case of ONFI chips. + */ +static const struct nand_interface_config onfi_sdr_timings[] = { + /* Mode 0 */ + { + .type = NAND_SDR_IFACE, + .timings.mode = 0, + .timings.sdr = { + .tCCS_min = 500000, + .tR_max = 200000000, + .tPROG_max = 1000000ULL * ONFI_DYN_TIMING_MAX, + .tBERS_max = 1000000ULL * ONFI_DYN_TIMING_MAX, + .tADL_min = 400000, + .tALH_min = 20000, + .tALS_min = 50000, + .tAR_min = 25000, + .tCEA_max = 100000, + .tCEH_min = 20000, + .tCH_min = 20000, + .tCHZ_max = 100000, + .tCLH_min = 20000, + .tCLR_min = 20000, + .tCLS_min = 50000, + .tCOH_min = 0, + .tCS_min = 70000, + .tDH_min = 20000, + .tDS_min = 40000, + .tFEAT_max = 1000000, + .tIR_min = 10000, + .tITC_max = 1000000, + .tRC_min = 100000, + .tREA_max = 40000, + .tREH_min = 30000, + .tRHOH_min = 0, + .tRHW_min = 200000, + .tRHZ_max = 200000, + .tRLOH_min = 0, + .tRP_min = 50000, + .tRR_min = 40000, + .tRST_max = 250000000000ULL, + .tWB_max = 200000, + .tWC_min = 100000, + .tWH_min = 30000, + .tWHR_min = 120000, + .tWP_min = 50000, + .tWW_min = 100000, + }, + }, + /* Mode 1 */ + { + .type = NAND_SDR_IFACE, + .timings.mode = 1, + .timings.sdr = { + .tCCS_min = 500000, + .tR_max = 200000000, + .tPROG_max = 1000000ULL * ONFI_DYN_TIMING_MAX, + .tBERS_max = 1000000ULL * ONFI_DYN_TIMING_MAX, + .tADL_min = 400000, + .tALH_min = 10000, + .tALS_min = 25000, + .tAR_min = 10000, + .tCEA_max = 45000, + .tCEH_min = 20000, + .tCH_min = 10000, + .tCHZ_max = 50000, + .tCLH_min = 10000, + .tCLR_min = 10000, + .tCLS_min = 25000, + .tCOH_min = 15000, + .tCS_min = 35000, + .tDH_min = 10000, + .tDS_min = 20000, + .tFEAT_max = 1000000, + .tIR_min = 0, + .tITC_max = 1000000, + .tRC_min = 50000, + .tREA_max = 30000, + .tREH_min = 15000, + .tRHOH_min = 15000, + .tRHW_min = 100000, + .tRHZ_max = 100000, + .tRLOH_min = 0, + .tRP_min = 25000, + .tRR_min = 20000, + .tRST_max = 500000000, + .tWB_max = 100000, + .tWC_min = 45000, + .tWH_min = 15000, + .tWHR_min = 80000, + .tWP_min = 25000, + .tWW_min = 100000, + }, + }, + /* Mode 2 */ + { + .type = NAND_SDR_IFACE, + .timings.mode = 2, + .timings.sdr = { + .tCCS_min = 500000, + .tR_max = 200000000, + .tPROG_max = 1000000ULL * ONFI_DYN_TIMING_MAX, + .tBERS_max = 1000000ULL * ONFI_DYN_TIMING_MAX, + .tADL_min = 400000, + .tALH_min = 10000, + .tALS_min = 15000, + .tAR_min = 10000, + .tCEA_max = 30000, + .tCEH_min = 20000, + .tCH_min = 10000, + .tCHZ_max = 50000, + .tCLH_min = 10000, + .tCLR_min = 10000, + .tCLS_min = 15000, + .tCOH_min = 15000, + .tCS_min = 25000, + .tDH_min = 5000, + .tDS_min = 15000, + .tFEAT_max = 1000000, + .tIR_min = 0, + .tITC_max = 1000000, + .tRC_min = 35000, + .tREA_max = 25000, + .tREH_min = 15000, + .tRHOH_min = 15000, + .tRHW_min = 100000, + .tRHZ_max = 100000, + .tRLOH_min = 0, + .tRR_min = 20000, + .tRST_max = 500000000, + .tWB_max = 100000, + .tRP_min = 17000, + .tWC_min = 35000, + .tWH_min = 15000, + .tWHR_min = 80000, + .tWP_min = 17000, + .tWW_min = 100000, + }, + }, + /* Mode 3 */ + { + .type = NAND_SDR_IFACE, + .timings.mode = 3, + .timings.sdr = { + .tCCS_min = 500000, + .tR_max = 200000000, + .tPROG_max = 1000000ULL * ONFI_DYN_TIMING_MAX, + .tBERS_max = 1000000ULL * ONFI_DYN_TIMING_MAX, + .tADL_min = 400000, + .tALH_min = 5000, + .tALS_min = 10000, + .tAR_min = 10000, + .tCEA_max = 25000, + .tCEH_min = 20000, + .tCH_min = 5000, + .tCHZ_max = 50000, + .tCLH_min = 5000, + .tCLR_min = 10000, + .tCLS_min = 10000, + .tCOH_min = 15000, + .tCS_min = 25000, + .tDH_min = 5000, + .tDS_min = 10000, + .tFEAT_max = 1000000, + .tIR_min = 0, + .tITC_max = 1000000, + .tRC_min = 30000, + .tREA_max = 20000, + .tREH_min = 10000, + .tRHOH_min = 15000, + .tRHW_min = 100000, + .tRHZ_max = 100000, + .tRLOH_min = 0, + .tRP_min = 15000, + .tRR_min = 20000, + .tRST_max = 500000000, + .tWB_max = 100000, + .tWC_min = 30000, + .tWH_min = 10000, + .tWHR_min = 80000, + .tWP_min = 15000, + .tWW_min = 100000, + }, + }, + /* Mode 4 */ + { + .type = NAND_SDR_IFACE, + .timings.mode = 4, + .timings.sdr = { + .tCCS_min = 500000, + .tR_max = 200000000, + .tPROG_max = 1000000ULL * ONFI_DYN_TIMING_MAX, + .tBERS_max = 1000000ULL * ONFI_DYN_TIMING_MAX, + .tADL_min = 400000, + .tALH_min = 5000, + .tALS_min = 10000, + .tAR_min = 10000, + .tCEA_max = 25000, + .tCEH_min = 20000, + .tCH_min = 5000, + .tCHZ_max = 30000, + .tCLH_min = 5000, + .tCLR_min = 10000, + .tCLS_min = 10000, + .tCOH_min = 15000, + .tCS_min = 20000, + .tDH_min = 5000, + .tDS_min = 10000, + .tFEAT_max = 1000000, + .tIR_min = 0, + .tITC_max = 1000000, + .tRC_min = 25000, + .tREA_max = 20000, + .tREH_min = 10000, + .tRHOH_min = 15000, + .tRHW_min = 100000, + .tRHZ_max = 100000, + .tRLOH_min = 5000, + .tRP_min = 12000, + .tRR_min = 20000, + .tRST_max = 500000000, + .tWB_max = 100000, + .tWC_min = 25000, + .tWH_min = 10000, + .tWHR_min = 80000, + .tWP_min = 12000, + .tWW_min = 100000, + }, + }, + /* Mode 5 */ + { + .type = NAND_SDR_IFACE, + .timings.mode = 5, + .timings.sdr = { + .tCCS_min = 500000, + .tR_max = 200000000, + .tPROG_max = 1000000ULL * ONFI_DYN_TIMING_MAX, + .tBERS_max = 1000000ULL * ONFI_DYN_TIMING_MAX, + .tADL_min = 400000, + .tALH_min = 5000, + .tALS_min = 10000, + .tAR_min = 10000, + .tCEA_max = 25000, + .tCEH_min = 20000, + .tCH_min = 5000, + .tCHZ_max = 30000, + .tCLH_min = 5000, + .tCLR_min = 10000, + .tCLS_min = 10000, + .tCOH_min = 15000, + .tCS_min = 15000, + .tDH_min = 5000, + .tDS_min = 7000, + .tFEAT_max = 1000000, + .tIR_min = 0, + .tITC_max = 1000000, + .tRC_min = 20000, + .tREA_max = 16000, + .tREH_min = 7000, + .tRHOH_min = 15000, + .tRHW_min = 100000, + .tRHZ_max = 100000, + .tRLOH_min = 5000, + .tRP_min = 10000, + .tRR_min = 20000, + .tRST_max = 500000000, + .tWB_max = 100000, + .tWC_min = 20000, + .tWH_min = 7000, + .tWHR_min = 80000, + .tWP_min = 10000, + .tWW_min = 100000, + }, + }, +}; + +static const struct nand_interface_config onfi_nvddr_timings[] = { + /* Mode 0 */ + { + .type = NAND_NVDDR_IFACE, + .timings.mode = 0, + .timings.nvddr = { + .tCCS_min = 500000, + .tR_max = 200000000, + .tPROG_max = 1000000ULL * ONFI_DYN_TIMING_MAX, + .tBERS_max = 1000000ULL * ONFI_DYN_TIMING_MAX, + .tAC_min = 3000, + .tAC_max = 25000, + .tADL_min = 400000, + .tCAD_min = 45000, + .tCAH_min = 10000, + .tCALH_min = 10000, + .tCALS_min = 10000, + .tCAS_min = 10000, + .tCEH_min = 20000, + .tCH_min = 10000, + .tCK_min = 50000, + .tCS_min = 35000, + .tDH_min = 5000, + .tDQSCK_min = 3000, + .tDQSCK_max = 25000, + .tDQSD_min = 0, + .tDQSD_max = 18000, + .tDQSHZ_max = 20000, + .tDQSQ_max = 5000, + .tDS_min = 5000, + .tDSC_min = 50000, + .tFEAT_max = 1000000, + .tITC_max = 1000000, + .tQHS_max = 6000, + .tRHW_min = 100000, + .tRR_min = 20000, + .tRST_max = 500000000, + .tWB_max = 100000, + .tWHR_min = 80000, + .tWRCK_min = 20000, + .tWW_min = 100000, + }, + }, + /* Mode 1 */ + { + .type = NAND_NVDDR_IFACE, + .timings.mode = 1, + .timings.nvddr = { + .tCCS_min = 500000, + .tR_max = 200000000, + .tPROG_max = 1000000ULL * ONFI_DYN_TIMING_MAX, + .tBERS_max = 1000000ULL * ONFI_DYN_TIMING_MAX, + .tAC_min = 3000, + .tAC_max = 25000, + .tADL_min = 400000, + .tCAD_min = 45000, + .tCAH_min = 5000, + .tCALH_min = 5000, + .tCALS_min = 5000, + .tCAS_min = 5000, + .tCEH_min = 20000, + .tCH_min = 5000, + .tCK_min = 30000, + .tCS_min = 25000, + .tDH_min = 2500, + .tDQSCK_min = 3000, + .tDQSCK_max = 25000, + .tDQSD_min = 0, + .tDQSD_max = 18000, + .tDQSHZ_max = 20000, + .tDQSQ_max = 2500, + .tDS_min = 3000, + .tDSC_min = 30000, + .tFEAT_max = 1000000, + .tITC_max = 1000000, + .tQHS_max = 3000, + .tRHW_min = 100000, + .tRR_min = 20000, + .tRST_max = 500000000, + .tWB_max = 100000, + .tWHR_min = 80000, + .tWRCK_min = 20000, + .tWW_min = 100000, + }, + }, + /* Mode 2 */ + { + .type = NAND_NVDDR_IFACE, + .timings.mode = 2, + .timings.nvddr = { + .tCCS_min = 500000, + .tR_max = 200000000, + .tPROG_max = 1000000ULL * ONFI_DYN_TIMING_MAX, + .tBERS_max = 1000000ULL * ONFI_DYN_TIMING_MAX, + .tAC_min = 3000, + .tAC_max = 25000, + .tADL_min = 400000, + .tCAD_min = 45000, + .tCAH_min = 4000, + .tCALH_min = 4000, + .tCALS_min = 4000, + .tCAS_min = 4000, + .tCEH_min = 20000, + .tCH_min = 4000, + .tCK_min = 20000, + .tCS_min = 15000, + .tDH_min = 1700, + .tDQSCK_min = 3000, + .tDQSCK_max = 25000, + .tDQSD_min = 0, + .tDQSD_max = 18000, + .tDQSHZ_max = 20000, + .tDQSQ_max = 1700, + .tDS_min = 2000, + .tDSC_min = 20000, + .tFEAT_max = 1000000, + .tITC_max = 1000000, + .tQHS_max = 2000, + .tRHW_min = 100000, + .tRR_min = 20000, + .tRST_max = 500000000, + .tWB_max = 100000, + .tWHR_min = 80000, + .tWRCK_min = 20000, + .tWW_min = 100000, + }, + }, + /* Mode 3 */ + { + .type = NAND_NVDDR_IFACE, + .timings.mode = 3, + .timings.nvddr = { + .tCCS_min = 500000, + .tR_max = 200000000, + .tPROG_max = 1000000ULL * ONFI_DYN_TIMING_MAX, + .tBERS_max = 1000000ULL * ONFI_DYN_TIMING_MAX, + .tAC_min = 3000, + .tAC_max = 25000, + .tADL_min = 400000, + .tCAD_min = 45000, + .tCAH_min = 3000, + .tCALH_min = 3000, + .tCALS_min = 3000, + .tCAS_min = 3000, + .tCEH_min = 20000, + .tCH_min = 3000, + .tCK_min = 15000, + .tCS_min = 15000, + .tDH_min = 1300, + .tDQSCK_min = 3000, + .tDQSCK_max = 25000, + .tDQSD_min = 0, + .tDQSD_max = 18000, + .tDQSHZ_max = 20000, + .tDQSQ_max = 1300, + .tDS_min = 1500, + .tDSC_min = 15000, + .tFEAT_max = 1000000, + .tITC_max = 1000000, + .tQHS_max = 1500, + .tRHW_min = 100000, + .tRR_min = 20000, + .tRST_max = 500000000, + .tWB_max = 100000, + .tWHR_min = 80000, + .tWRCK_min = 20000, + .tWW_min = 100000, + }, + }, + /* Mode 4 */ + { + .type = NAND_NVDDR_IFACE, + .timings.mode = 4, + .timings.nvddr = { + .tCCS_min = 500000, + .tR_max = 200000000, + .tPROG_max = 1000000ULL * ONFI_DYN_TIMING_MAX, + .tBERS_max = 1000000ULL * ONFI_DYN_TIMING_MAX, + .tAC_min = 3000, + .tAC_max = 25000, + .tADL_min = 400000, + .tCAD_min = 45000, + .tCAH_min = 2500, + .tCALH_min = 2500, + .tCALS_min = 2500, + .tCAS_min = 2500, + .tCEH_min = 20000, + .tCH_min = 2500, + .tCK_min = 12000, + .tCS_min = 15000, + .tDH_min = 1100, + .tDQSCK_min = 3000, + .tDQSCK_max = 25000, + .tDQSD_min = 0, + .tDQSD_max = 18000, + .tDQSHZ_max = 20000, + .tDQSQ_max = 1000, + .tDS_min = 1100, + .tDSC_min = 12000, + .tFEAT_max = 1000000, + .tITC_max = 1000000, + .tQHS_max = 1200, + .tRHW_min = 100000, + .tRR_min = 20000, + .tRST_max = 500000000, + .tWB_max = 100000, + .tWHR_min = 80000, + .tWRCK_min = 20000, + .tWW_min = 100000, + }, + }, + /* Mode 5 */ + { + .type = NAND_NVDDR_IFACE, + .timings.mode = 5, + .timings.nvddr = { + .tCCS_min = 500000, + .tR_max = 200000000, + .tPROG_max = 1000000ULL * ONFI_DYN_TIMING_MAX, + .tBERS_max = 1000000ULL * ONFI_DYN_TIMING_MAX, + .tAC_min = 3000, + .tAC_max = 25000, + .tADL_min = 400000, + .tCAD_min = 45000, + .tCAH_min = 2000, + .tCALH_min = 2000, + .tCALS_min = 2000, + .tCAS_min = 2000, + .tCEH_min = 20000, + .tCH_min = 2000, + .tCK_min = 10000, + .tCS_min = 15000, + .tDH_min = 900, + .tDQSCK_min = 3000, + .tDQSCK_max = 25000, + .tDQSD_min = 0, + .tDQSD_max = 18000, + .tDQSHZ_max = 20000, + .tDQSQ_max = 850, + .tDS_min = 900, + .tDSC_min = 10000, + .tFEAT_max = 1000000, + .tITC_max = 1000000, + .tQHS_max = 1000, + .tRHW_min = 100000, + .tRR_min = 20000, + .tRST_max = 500000000, + .tWB_max = 100000, + .tWHR_min = 80000, + .tWRCK_min = 20000, + .tWW_min = 100000, + }, + }, +}; + +/* All NAND chips share the same reset data interface: SDR mode 0 */ +const struct nand_interface_config *nand_get_reset_interface_config(void) +{ + return &onfi_sdr_timings[0]; +} + +/** + * onfi_find_closest_sdr_mode - Derive the closest ONFI SDR timing mode given a + * set of timings + * @spec_timings: the timings to challenge + */ +unsigned int +onfi_find_closest_sdr_mode(const struct nand_sdr_timings *spec_timings) +{ + const struct nand_sdr_timings *onfi_timings; + int mode; + + for (mode = ARRAY_SIZE(onfi_sdr_timings) - 1; mode > 0; mode--) { + onfi_timings = &onfi_sdr_timings[mode].timings.sdr; + + if (spec_timings->tCCS_min <= onfi_timings->tCCS_min && + spec_timings->tADL_min <= onfi_timings->tADL_min && + spec_timings->tALH_min <= onfi_timings->tALH_min && + spec_timings->tALS_min <= onfi_timings->tALS_min && + spec_timings->tAR_min <= onfi_timings->tAR_min && + spec_timings->tCEH_min <= onfi_timings->tCEH_min && + spec_timings->tCH_min <= onfi_timings->tCH_min && + spec_timings->tCLH_min <= onfi_timings->tCLH_min && + spec_timings->tCLR_min <= onfi_timings->tCLR_min && + spec_timings->tCLS_min <= onfi_timings->tCLS_min && + spec_timings->tCOH_min <= onfi_timings->tCOH_min && + spec_timings->tCS_min <= onfi_timings->tCS_min && + spec_timings->tDH_min <= onfi_timings->tDH_min && + spec_timings->tDS_min <= onfi_timings->tDS_min && + spec_timings->tIR_min <= onfi_timings->tIR_min && + spec_timings->tRC_min <= onfi_timings->tRC_min && + spec_timings->tREH_min <= onfi_timings->tREH_min && + spec_timings->tRHOH_min <= onfi_timings->tRHOH_min && + spec_timings->tRHW_min <= onfi_timings->tRHW_min && + spec_timings->tRLOH_min <= onfi_timings->tRLOH_min && + spec_timings->tRP_min <= onfi_timings->tRP_min && + spec_timings->tRR_min <= onfi_timings->tRR_min && + spec_timings->tWC_min <= onfi_timings->tWC_min && + spec_timings->tWH_min <= onfi_timings->tWH_min && + spec_timings->tWHR_min <= onfi_timings->tWHR_min && + spec_timings->tWP_min <= onfi_timings->tWP_min && + spec_timings->tWW_min <= onfi_timings->tWW_min) + return mode; + } + + return 0; +} + +/** + * onfi_find_closest_nvddr_mode - Derive the closest ONFI NVDDR timing mode + * given a set of timings + * @spec_timings: the timings to challenge + */ +unsigned int +onfi_find_closest_nvddr_mode(const struct nand_nvddr_timings *spec_timings) +{ + const struct nand_nvddr_timings *onfi_timings; + int mode; + + for (mode = ARRAY_SIZE(onfi_nvddr_timings) - 1; mode > 0; mode--) { + onfi_timings = &onfi_nvddr_timings[mode].timings.nvddr; + + if (spec_timings->tCCS_min <= onfi_timings->tCCS_min && + spec_timings->tAC_min <= onfi_timings->tAC_min && + spec_timings->tADL_min <= onfi_timings->tADL_min && + spec_timings->tCAD_min <= onfi_timings->tCAD_min && + spec_timings->tCAH_min <= onfi_timings->tCAH_min && + spec_timings->tCALH_min <= onfi_timings->tCALH_min && + spec_timings->tCALS_min <= onfi_timings->tCALS_min && + spec_timings->tCAS_min <= onfi_timings->tCAS_min && + spec_timings->tCEH_min <= onfi_timings->tCEH_min && + spec_timings->tCH_min <= onfi_timings->tCH_min && + spec_timings->tCK_min <= onfi_timings->tCK_min && + spec_timings->tCS_min <= onfi_timings->tCS_min && + spec_timings->tDH_min <= onfi_timings->tDH_min && + spec_timings->tDQSCK_min <= onfi_timings->tDQSCK_min && + spec_timings->tDQSD_min <= onfi_timings->tDQSD_min && + spec_timings->tDS_min <= onfi_timings->tDS_min && + spec_timings->tDSC_min <= onfi_timings->tDSC_min && + spec_timings->tRHW_min <= onfi_timings->tRHW_min && + spec_timings->tRR_min <= onfi_timings->tRR_min && + spec_timings->tWHR_min <= onfi_timings->tWHR_min && + spec_timings->tWRCK_min <= onfi_timings->tWRCK_min && + spec_timings->tWW_min <= onfi_timings->tWW_min) + return mode; + } + + return 0; +} + +/* + * onfi_fill_sdr_interface_config - Initialize a SDR interface config from a + * given ONFI mode + * @chip: The NAND chip + * @iface: The interface configuration to fill + * @timing_mode: The ONFI timing mode + */ +static void onfi_fill_sdr_interface_config(struct nand_chip *chip, + struct nand_interface_config *iface, + unsigned int timing_mode) +{ + struct onfi_params *onfi = chip->parameters.onfi; + + if (WARN_ON(timing_mode >= ARRAY_SIZE(onfi_sdr_timings))) + return; + + *iface = onfi_sdr_timings[timing_mode]; + + /* + * Initialize timings that cannot be deduced from timing mode: + * tPROG, tBERS, tR and tCCS. + * These information are part of the ONFI parameter page. + */ + if (onfi) { + struct nand_sdr_timings *timings = &iface->timings.sdr; + + /* microseconds -> picoseconds */ + timings->tPROG_max = 1000000ULL * onfi->tPROG; + timings->tBERS_max = 1000000ULL * onfi->tBERS; + timings->tR_max = 1000000ULL * onfi->tR; + + /* nanoseconds -> picoseconds */ + timings->tCCS_min = 1000UL * onfi->tCCS; + } +} + +/** + * onfi_fill_nvddr_interface_config - Initialize a NVDDR interface config from a + * given ONFI mode + * @chip: The NAND chip + * @iface: The interface configuration to fill + * @timing_mode: The ONFI timing mode + */ +static void onfi_fill_nvddr_interface_config(struct nand_chip *chip, + struct nand_interface_config *iface, + unsigned int timing_mode) +{ + struct onfi_params *onfi = chip->parameters.onfi; + + if (WARN_ON(timing_mode >= ARRAY_SIZE(onfi_nvddr_timings))) + return; + + *iface = onfi_nvddr_timings[timing_mode]; + + /* + * Initialize timings that cannot be deduced from timing mode: + * tPROG, tBERS, tR, tCCS and tCAD. + * These information are part of the ONFI parameter page. + */ + if (onfi) { + struct nand_nvddr_timings *timings = &iface->timings.nvddr; + + /* microseconds -> picoseconds */ + timings->tPROG_max = 1000000ULL * onfi->tPROG; + timings->tBERS_max = 1000000ULL * onfi->tBERS; + timings->tR_max = 1000000ULL * onfi->tR; + + /* nanoseconds -> picoseconds */ + timings->tCCS_min = 1000UL * onfi->tCCS; + + if (onfi->fast_tCAD) + timings->tCAD_min = 25000; + } +} + +/** + * onfi_fill_interface_config - Initialize an interface config from a given + * ONFI mode + * @chip: The NAND chip + * @iface: The interface configuration to fill + * @type: The interface type + * @timing_mode: The ONFI timing mode + */ +void onfi_fill_interface_config(struct nand_chip *chip, + struct nand_interface_config *iface, + enum nand_interface_type type, + unsigned int timing_mode) +{ + if (type == NAND_SDR_IFACE) + return onfi_fill_sdr_interface_config(chip, iface, timing_mode); + else + return onfi_fill_nvddr_interface_config(chip, iface, timing_mode); +} diff --git a/drivers/mtd/nand/raw/nand_toshiba.c b/drivers/mtd/nand/raw/nand_toshiba.c new file mode 100644 index 0000000000..d3d34d7192 --- /dev/null +++ b/drivers/mtd/nand/raw/nand_toshiba.c @@ -0,0 +1,302 @@ +// SPDX-License-Identifier: GPL-2.0-or-later +/* + * Copyright (C) 2017 Free Electrons + * Copyright (C) 2017 NextThing Co + * + * Author: Boris Brezillon <boris.brezillon@free-electrons.com> + */ + +#include "internals.h" + +/* Bit for detecting BENAND */ +#define TOSHIBA_NAND_ID4_IS_BENAND BIT(7) + +/* Recommended to rewrite for BENAND */ +#define TOSHIBA_NAND_STATUS_REWRITE_RECOMMENDED BIT(3) + +/* ECC Status Read Command for BENAND */ +#define TOSHIBA_NAND_CMD_ECC_STATUS_READ 0x7A + +/* ECC Status Mask for BENAND */ +#define TOSHIBA_NAND_ECC_STATUS_MASK 0x0F + +/* Uncorrectable Error for BENAND */ +#define TOSHIBA_NAND_ECC_STATUS_UNCORR 0x0F + +/* Max ECC Steps for BENAND */ +#define TOSHIBA_NAND_MAX_ECC_STEPS 8 + +static int toshiba_nand_benand_read_eccstatus_op(struct nand_chip *chip, + u8 *buf) +{ + u8 *ecc_status = buf; + + if (nand_has_exec_op(chip)) { + const struct nand_sdr_timings *sdr = + nand_get_sdr_timings(nand_get_interface_config(chip)); + struct nand_op_instr instrs[] = { + NAND_OP_CMD(TOSHIBA_NAND_CMD_ECC_STATUS_READ, + PSEC_TO_NSEC(sdr->tADL_min)), + NAND_OP_8BIT_DATA_IN(chip->ecc.steps, ecc_status, 0), + }; + struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs); + + return nand_exec_op(chip, &op); + } + + return -ENOTSUPP; +} + +static int toshiba_nand_benand_eccstatus(struct nand_chip *chip) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + int ret; + unsigned int max_bitflips = 0; + u8 status, ecc_status[TOSHIBA_NAND_MAX_ECC_STEPS]; + + /* Check Status */ + ret = toshiba_nand_benand_read_eccstatus_op(chip, ecc_status); + if (!ret) { + unsigned int i, bitflips = 0; + + for (i = 0; i < chip->ecc.steps; i++) { + bitflips = ecc_status[i] & TOSHIBA_NAND_ECC_STATUS_MASK; + if (bitflips == TOSHIBA_NAND_ECC_STATUS_UNCORR) { + mtd->ecc_stats.failed++; + } else { + mtd->ecc_stats.corrected += bitflips; + max_bitflips = max(max_bitflips, bitflips); + } + } + + return max_bitflips; + } + + /* + * Fallback to regular status check if + * toshiba_nand_benand_read_eccstatus_op() failed. + */ + ret = nand_status_op(chip, &status); + if (ret) + return ret; + + if (status & NAND_STATUS_FAIL) { + /* uncorrected */ + mtd->ecc_stats.failed++; + } else if (status & TOSHIBA_NAND_STATUS_REWRITE_RECOMMENDED) { + /* corrected */ + max_bitflips = mtd->bitflip_threshold; + mtd->ecc_stats.corrected += max_bitflips; + } + + return max_bitflips; +} + +static int +toshiba_nand_read_page_benand(struct nand_chip *chip, uint8_t *buf, + int oob_required, int page) +{ + int ret; + + ret = nand_read_page_raw(chip, buf, oob_required, page); + if (ret) + return ret; + + return toshiba_nand_benand_eccstatus(chip); +} + +static int +toshiba_nand_read_subpage_benand(struct nand_chip *chip, uint32_t data_offs, + uint32_t readlen, uint8_t *bufpoi, int page) +{ + int ret; + + ret = nand_read_page_op(chip, page, data_offs, + bufpoi + data_offs, readlen); + if (ret) + return ret; + + return toshiba_nand_benand_eccstatus(chip); +} + +static void toshiba_nand_benand_init(struct nand_chip *chip) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + + /* + * On BENAND, the entire OOB region can be used by the MTD user. + * The calculated ECC bytes are stored into other isolated + * area which is not accessible to users. + * This is why chip->ecc.bytes = 0. + */ + chip->ecc.bytes = 0; + chip->ecc.size = 512; + chip->ecc.strength = 8; + chip->ecc.read_page = toshiba_nand_read_page_benand; + chip->ecc.read_subpage = toshiba_nand_read_subpage_benand; + chip->ecc.write_page = nand_write_page_raw; + chip->ecc.read_page_raw = nand_read_page_raw_notsupp; + chip->ecc.write_page_raw = nand_write_page_raw_notsupp; + + chip->options |= NAND_SUBPAGE_READ; + + mtd_set_ooblayout(mtd, nand_get_large_page_ooblayout()); +} + +static void toshiba_nand_decode_id(struct nand_chip *chip) +{ + struct nand_device *base = &chip->base; + struct nand_ecc_props requirements = {}; + struct mtd_info *mtd = nand_to_mtd(chip); + struct nand_memory_organization *memorg; + + memorg = nanddev_get_memorg(&chip->base); + + nand_decode_ext_id(chip); + + /* + * Toshiba 24nm raw SLC (i.e., not BENAND) have 32B OOB per + * 512B page. For Toshiba SLC, we decode the 5th/6th byte as + * follows: + * - ID byte 6, bits[2:0]: 100b -> 43nm, 101b -> 32nm, + * 110b -> 24nm + * - ID byte 5, bit[7]: 1 -> BENAND, 0 -> raw SLC + */ + if (chip->id.len >= 6 && nand_is_slc(chip) && + (chip->id.data[5] & 0x7) == 0x6 /* 24nm */ && + !(chip->id.data[4] & TOSHIBA_NAND_ID4_IS_BENAND) /* !BENAND */) { + memorg->oobsize = 32 * memorg->pagesize >> 9; + mtd->oobsize = memorg->oobsize; + } + + /* + * Extract ECC requirements from 6th id byte. + * For Toshiba SLC, ecc requrements are as follows: + * - 43nm: 1 bit ECC for each 512Byte is required. + * - 32nm: 4 bit ECC for each 512Byte is required. + * - 24nm: 8 bit ECC for each 512Byte is required. + */ + if (chip->id.len >= 6 && nand_is_slc(chip)) { + requirements.step_size = 512; + switch (chip->id.data[5] & 0x7) { + case 0x4: + requirements.strength = 1; + break; + case 0x5: + requirements.strength = 4; + break; + case 0x6: + requirements.strength = 8; + break; + default: + WARN(1, "Could not get ECC info"); + requirements.step_size = 0; + break; + } + } + + nanddev_set_ecc_requirements(base, &requirements); +} + +static int +tc58teg5dclta00_choose_interface_config(struct nand_chip *chip, + struct nand_interface_config *iface) +{ + onfi_fill_interface_config(chip, iface, NAND_SDR_IFACE, 5); + + return nand_choose_best_sdr_timings(chip, iface, NULL); +} + +static int +tc58nvg0s3e_choose_interface_config(struct nand_chip *chip, + struct nand_interface_config *iface) +{ + onfi_fill_interface_config(chip, iface, NAND_SDR_IFACE, 2); + + return nand_choose_best_sdr_timings(chip, iface, NULL); +} + +static int +th58nvg2s3hbai4_choose_interface_config(struct nand_chip *chip, + struct nand_interface_config *iface) +{ + struct nand_sdr_timings *sdr = &iface->timings.sdr; + + /* Start with timings from the closest timing mode, mode 4. */ + onfi_fill_interface_config(chip, iface, NAND_SDR_IFACE, 4); + + /* Patch timings that differ from mode 4. */ + sdr->tALS_min = 12000; + sdr->tCHZ_max = 20000; + sdr->tCLS_min = 12000; + sdr->tCOH_min = 0; + sdr->tDS_min = 12000; + sdr->tRHOH_min = 25000; + sdr->tRHW_min = 30000; + sdr->tRHZ_max = 60000; + sdr->tWHR_min = 60000; + + /* Patch timings not part of onfi timing mode. */ + sdr->tPROG_max = 700000000; + sdr->tBERS_max = 5000000000; + + return nand_choose_best_sdr_timings(chip, iface, sdr); +} + +static int tc58teg5dclta00_init(struct nand_chip *chip) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + + chip->ops.choose_interface_config = + &tc58teg5dclta00_choose_interface_config; + chip->options |= NAND_NEED_SCRAMBLING; + mtd_set_pairing_scheme(mtd, &dist3_pairing_scheme); + + return 0; +} + +static int tc58nvg0s3e_init(struct nand_chip *chip) +{ + chip->ops.choose_interface_config = + &tc58nvg0s3e_choose_interface_config; + + return 0; +} + +static int th58nvg2s3hbai4_init(struct nand_chip *chip) +{ + chip->ops.choose_interface_config = + &th58nvg2s3hbai4_choose_interface_config; + + return 0; +} + +static int toshiba_nand_init(struct nand_chip *chip) +{ + if (nand_is_slc(chip)) + chip->options |= NAND_BBM_FIRSTPAGE | NAND_BBM_SECONDPAGE; + + /* Check that chip is BENAND and ECC mode is on-die */ + if (nand_is_slc(chip) && + chip->ecc.engine_type == NAND_ECC_ENGINE_TYPE_ON_DIE && + chip->id.data[4] & TOSHIBA_NAND_ID4_IS_BENAND) + toshiba_nand_benand_init(chip); + + if (!strcmp("TC58TEG5DCLTA00", chip->parameters.model)) + tc58teg5dclta00_init(chip); + if (!strncmp("TC58NVG0S3E", chip->parameters.model, + sizeof("TC58NVG0S3E") - 1)) + tc58nvg0s3e_init(chip); + if ((!strncmp("TH58NVG2S3HBAI4", chip->parameters.model, + sizeof("TH58NVG2S3HBAI4") - 1)) || + (!strncmp("TH58NVG3S0HBAI4", chip->parameters.model, + sizeof("TH58NVG3S0HBAI4") - 1))) + th58nvg2s3hbai4_init(chip); + + return 0; +} + +const struct nand_manufacturer_ops toshiba_nand_manuf_ops = { + .detect = toshiba_nand_decode_id, + .init = toshiba_nand_init, +}; diff --git a/drivers/mtd/nand/raw/nandsim.c b/drivers/mtd/nand/raw/nandsim.c new file mode 100644 index 0000000000..179b28459b --- /dev/null +++ b/drivers/mtd/nand/raw/nandsim.c @@ -0,0 +1,2460 @@ +// SPDX-License-Identifier: GPL-2.0-or-later +/* + * NAND flash simulator. + * + * Author: Artem B. Bityuckiy <dedekind@oktetlabs.ru>, <dedekind@infradead.org> + * + * Copyright (C) 2004 Nokia Corporation + * + * Note: NS means "NAND Simulator". + * Note: Input means input TO flash chip, output means output FROM chip. + */ + +#define pr_fmt(fmt) "[nandsim]" fmt + +#include <linux/init.h> +#include <linux/types.h> +#include <linux/module.h> +#include <linux/moduleparam.h> +#include <linux/vmalloc.h> +#include <linux/math64.h> +#include <linux/slab.h> +#include <linux/errno.h> +#include <linux/string.h> +#include <linux/mtd/mtd.h> +#include <linux/mtd/rawnand.h> +#include <linux/mtd/partitions.h> +#include <linux/delay.h> +#include <linux/list.h> +#include <linux/random.h> +#include <linux/sched.h> +#include <linux/sched/mm.h> +#include <linux/fs.h> +#include <linux/pagemap.h> +#include <linux/seq_file.h> +#include <linux/debugfs.h> + +/* Default simulator parameters values */ +#if !defined(CONFIG_NANDSIM_FIRST_ID_BYTE) || \ + !defined(CONFIG_NANDSIM_SECOND_ID_BYTE) || \ + !defined(CONFIG_NANDSIM_THIRD_ID_BYTE) || \ + !defined(CONFIG_NANDSIM_FOURTH_ID_BYTE) +#define CONFIG_NANDSIM_FIRST_ID_BYTE 0x98 +#define CONFIG_NANDSIM_SECOND_ID_BYTE 0x39 +#define CONFIG_NANDSIM_THIRD_ID_BYTE 0xFF /* No byte */ +#define CONFIG_NANDSIM_FOURTH_ID_BYTE 0xFF /* No byte */ +#endif + +#ifndef CONFIG_NANDSIM_ACCESS_DELAY +#define CONFIG_NANDSIM_ACCESS_DELAY 25 +#endif +#ifndef CONFIG_NANDSIM_PROGRAMM_DELAY +#define CONFIG_NANDSIM_PROGRAMM_DELAY 200 +#endif +#ifndef CONFIG_NANDSIM_ERASE_DELAY +#define CONFIG_NANDSIM_ERASE_DELAY 2 +#endif +#ifndef CONFIG_NANDSIM_OUTPUT_CYCLE +#define CONFIG_NANDSIM_OUTPUT_CYCLE 40 +#endif +#ifndef CONFIG_NANDSIM_INPUT_CYCLE +#define CONFIG_NANDSIM_INPUT_CYCLE 50 +#endif +#ifndef CONFIG_NANDSIM_BUS_WIDTH +#define CONFIG_NANDSIM_BUS_WIDTH 8 +#endif +#ifndef CONFIG_NANDSIM_DO_DELAYS +#define CONFIG_NANDSIM_DO_DELAYS 0 +#endif +#ifndef CONFIG_NANDSIM_LOG +#define CONFIG_NANDSIM_LOG 0 +#endif +#ifndef CONFIG_NANDSIM_DBG +#define CONFIG_NANDSIM_DBG 0 +#endif +#ifndef CONFIG_NANDSIM_MAX_PARTS +#define CONFIG_NANDSIM_MAX_PARTS 32 +#endif + +static uint access_delay = CONFIG_NANDSIM_ACCESS_DELAY; +static uint programm_delay = CONFIG_NANDSIM_PROGRAMM_DELAY; +static uint erase_delay = CONFIG_NANDSIM_ERASE_DELAY; +static uint output_cycle = CONFIG_NANDSIM_OUTPUT_CYCLE; +static uint input_cycle = CONFIG_NANDSIM_INPUT_CYCLE; +static uint bus_width = CONFIG_NANDSIM_BUS_WIDTH; +static uint do_delays = CONFIG_NANDSIM_DO_DELAYS; +static uint log = CONFIG_NANDSIM_LOG; +static uint dbg = CONFIG_NANDSIM_DBG; +static unsigned long parts[CONFIG_NANDSIM_MAX_PARTS]; +static unsigned int parts_num; +static char *badblocks = NULL; +static char *weakblocks = NULL; +static char *weakpages = NULL; +static unsigned int bitflips = 0; +static char *gravepages = NULL; +static unsigned int overridesize = 0; +static char *cache_file = NULL; +static unsigned int bbt; +static unsigned int bch; +static u_char id_bytes[8] = { + [0] = CONFIG_NANDSIM_FIRST_ID_BYTE, + [1] = CONFIG_NANDSIM_SECOND_ID_BYTE, + [2] = CONFIG_NANDSIM_THIRD_ID_BYTE, + [3] = CONFIG_NANDSIM_FOURTH_ID_BYTE, + [4 ... 7] = 0xFF, +}; + +module_param_array(id_bytes, byte, NULL, 0400); +module_param_named(first_id_byte, id_bytes[0], byte, 0400); +module_param_named(second_id_byte, id_bytes[1], byte, 0400); +module_param_named(third_id_byte, id_bytes[2], byte, 0400); +module_param_named(fourth_id_byte, id_bytes[3], byte, 0400); +module_param(access_delay, uint, 0400); +module_param(programm_delay, uint, 0400); +module_param(erase_delay, uint, 0400); +module_param(output_cycle, uint, 0400); +module_param(input_cycle, uint, 0400); +module_param(bus_width, uint, 0400); +module_param(do_delays, uint, 0400); +module_param(log, uint, 0400); +module_param(dbg, uint, 0400); +module_param_array(parts, ulong, &parts_num, 0400); +module_param(badblocks, charp, 0400); +module_param(weakblocks, charp, 0400); +module_param(weakpages, charp, 0400); +module_param(bitflips, uint, 0400); +module_param(gravepages, charp, 0400); +module_param(overridesize, uint, 0400); +module_param(cache_file, charp, 0400); +module_param(bbt, uint, 0400); +module_param(bch, uint, 0400); + +MODULE_PARM_DESC(id_bytes, "The ID bytes returned by NAND Flash 'read ID' command"); +MODULE_PARM_DESC(first_id_byte, "The first byte returned by NAND Flash 'read ID' command (manufacturer ID) (obsolete)"); +MODULE_PARM_DESC(second_id_byte, "The second byte returned by NAND Flash 'read ID' command (chip ID) (obsolete)"); +MODULE_PARM_DESC(third_id_byte, "The third byte returned by NAND Flash 'read ID' command (obsolete)"); +MODULE_PARM_DESC(fourth_id_byte, "The fourth byte returned by NAND Flash 'read ID' command (obsolete)"); +MODULE_PARM_DESC(access_delay, "Initial page access delay (microseconds)"); +MODULE_PARM_DESC(programm_delay, "Page programm delay (microseconds"); +MODULE_PARM_DESC(erase_delay, "Sector erase delay (milliseconds)"); +MODULE_PARM_DESC(output_cycle, "Word output (from flash) time (nanoseconds)"); +MODULE_PARM_DESC(input_cycle, "Word input (to flash) time (nanoseconds)"); +MODULE_PARM_DESC(bus_width, "Chip's bus width (8- or 16-bit)"); +MODULE_PARM_DESC(do_delays, "Simulate NAND delays using busy-waits if not zero"); +MODULE_PARM_DESC(log, "Perform logging if not zero"); +MODULE_PARM_DESC(dbg, "Output debug information if not zero"); +MODULE_PARM_DESC(parts, "Partition sizes (in erase blocks) separated by commas"); +/* Page and erase block positions for the following parameters are independent of any partitions */ +MODULE_PARM_DESC(badblocks, "Erase blocks that are initially marked bad, separated by commas"); +MODULE_PARM_DESC(weakblocks, "Weak erase blocks [: remaining erase cycles (defaults to 3)]" + " separated by commas e.g. 113:2 means eb 113" + " can be erased only twice before failing"); +MODULE_PARM_DESC(weakpages, "Weak pages [: maximum writes (defaults to 3)]" + " separated by commas e.g. 1401:2 means page 1401" + " can be written only twice before failing"); +MODULE_PARM_DESC(bitflips, "Maximum number of random bit flips per page (zero by default)"); +MODULE_PARM_DESC(gravepages, "Pages that lose data [: maximum reads (defaults to 3)]" + " separated by commas e.g. 1401:2 means page 1401" + " can be read only twice before failing"); +MODULE_PARM_DESC(overridesize, "Specifies the NAND Flash size overriding the ID bytes. " + "The size is specified in erase blocks and as the exponent of a power of two" + " e.g. 5 means a size of 32 erase blocks"); +MODULE_PARM_DESC(cache_file, "File to use to cache nand pages instead of memory"); +MODULE_PARM_DESC(bbt, "0 OOB, 1 BBT with marker in OOB, 2 BBT with marker in data area"); +MODULE_PARM_DESC(bch, "Enable BCH ecc and set how many bits should " + "be correctable in 512-byte blocks"); + +/* The largest possible page size */ +#define NS_LARGEST_PAGE_SIZE 4096 + +/* Simulator's output macros (logging, debugging, warning, error) */ +#define NS_LOG(args...) \ + do { if (log) pr_debug(" log: " args); } while(0) +#define NS_DBG(args...) \ + do { if (dbg) pr_debug(" debug: " args); } while(0) +#define NS_WARN(args...) \ + do { pr_warn(" warning: " args); } while(0) +#define NS_ERR(args...) \ + do { pr_err(" error: " args); } while(0) +#define NS_INFO(args...) \ + do { pr_info(" " args); } while(0) + +/* Busy-wait delay macros (microseconds, milliseconds) */ +#define NS_UDELAY(us) \ + do { if (do_delays) udelay(us); } while(0) +#define NS_MDELAY(us) \ + do { if (do_delays) mdelay(us); } while(0) + +/* Is the nandsim structure initialized ? */ +#define NS_IS_INITIALIZED(ns) ((ns)->geom.totsz != 0) + +/* Good operation completion status */ +#define NS_STATUS_OK(ns) (NAND_STATUS_READY | (NAND_STATUS_WP * ((ns)->lines.wp == 0))) + +/* Operation failed completion status */ +#define NS_STATUS_FAILED(ns) (NAND_STATUS_FAIL | NS_STATUS_OK(ns)) + +/* Calculate the page offset in flash RAM image by (row, column) address */ +#define NS_RAW_OFFSET(ns) \ + (((ns)->regs.row * (ns)->geom.pgszoob) + (ns)->regs.column) + +/* Calculate the OOB offset in flash RAM image by (row, column) address */ +#define NS_RAW_OFFSET_OOB(ns) (NS_RAW_OFFSET(ns) + ns->geom.pgsz) + +/* Calculate the byte shift in the next page to access */ +#define NS_PAGE_BYTE_SHIFT(ns) ((ns)->regs.column + (ns)->regs.off) + +/* After a command is input, the simulator goes to one of the following states */ +#define STATE_CMD_READ0 0x00000001 /* read data from the beginning of page */ +#define STATE_CMD_READ1 0x00000002 /* read data from the second half of page */ +#define STATE_CMD_READSTART 0x00000003 /* read data second command (large page devices) */ +#define STATE_CMD_PAGEPROG 0x00000004 /* start page program */ +#define STATE_CMD_READOOB 0x00000005 /* read OOB area */ +#define STATE_CMD_ERASE1 0x00000006 /* sector erase first command */ +#define STATE_CMD_STATUS 0x00000007 /* read status */ +#define STATE_CMD_SEQIN 0x00000009 /* sequential data input */ +#define STATE_CMD_READID 0x0000000A /* read ID */ +#define STATE_CMD_ERASE2 0x0000000B /* sector erase second command */ +#define STATE_CMD_RESET 0x0000000C /* reset */ +#define STATE_CMD_RNDOUT 0x0000000D /* random output command */ +#define STATE_CMD_RNDOUTSTART 0x0000000E /* random output start command */ +#define STATE_CMD_MASK 0x0000000F /* command states mask */ + +/* After an address is input, the simulator goes to one of these states */ +#define STATE_ADDR_PAGE 0x00000010 /* full (row, column) address is accepted */ +#define STATE_ADDR_SEC 0x00000020 /* sector address was accepted */ +#define STATE_ADDR_COLUMN 0x00000030 /* column address was accepted */ +#define STATE_ADDR_ZERO 0x00000040 /* one byte zero address was accepted */ +#define STATE_ADDR_MASK 0x00000070 /* address states mask */ + +/* During data input/output the simulator is in these states */ +#define STATE_DATAIN 0x00000100 /* waiting for data input */ +#define STATE_DATAIN_MASK 0x00000100 /* data input states mask */ + +#define STATE_DATAOUT 0x00001000 /* waiting for page data output */ +#define STATE_DATAOUT_ID 0x00002000 /* waiting for ID bytes output */ +#define STATE_DATAOUT_STATUS 0x00003000 /* waiting for status output */ +#define STATE_DATAOUT_MASK 0x00007000 /* data output states mask */ + +/* Previous operation is done, ready to accept new requests */ +#define STATE_READY 0x00000000 + +/* This state is used to mark that the next state isn't known yet */ +#define STATE_UNKNOWN 0x10000000 + +/* Simulator's actions bit masks */ +#define ACTION_CPY 0x00100000 /* copy page/OOB to the internal buffer */ +#define ACTION_PRGPAGE 0x00200000 /* program the internal buffer to flash */ +#define ACTION_SECERASE 0x00300000 /* erase sector */ +#define ACTION_ZEROOFF 0x00400000 /* don't add any offset to address */ +#define ACTION_HALFOFF 0x00500000 /* add to address half of page */ +#define ACTION_OOBOFF 0x00600000 /* add to address OOB offset */ +#define ACTION_MASK 0x00700000 /* action mask */ + +#define NS_OPER_NUM 13 /* Number of operations supported by the simulator */ +#define NS_OPER_STATES 6 /* Maximum number of states in operation */ + +#define OPT_ANY 0xFFFFFFFF /* any chip supports this operation */ +#define OPT_PAGE512 0x00000002 /* 512-byte page chips */ +#define OPT_PAGE2048 0x00000008 /* 2048-byte page chips */ +#define OPT_PAGE512_8BIT 0x00000040 /* 512-byte page chips with 8-bit bus width */ +#define OPT_PAGE4096 0x00000080 /* 4096-byte page chips */ +#define OPT_LARGEPAGE (OPT_PAGE2048 | OPT_PAGE4096) /* 2048 & 4096-byte page chips */ +#define OPT_SMALLPAGE (OPT_PAGE512) /* 512-byte page chips */ + +/* Remove action bits from state */ +#define NS_STATE(x) ((x) & ~ACTION_MASK) + +/* + * Maximum previous states which need to be saved. Currently saving is + * only needed for page program operation with preceded read command + * (which is only valid for 512-byte pages). + */ +#define NS_MAX_PREVSTATES 1 + +/* Maximum page cache pages needed to read or write a NAND page to the cache_file */ +#define NS_MAX_HELD_PAGES 16 + +/* + * A union to represent flash memory contents and flash buffer. + */ +union ns_mem { + u_char *byte; /* for byte access */ + uint16_t *word; /* for 16-bit word access */ +}; + +/* + * The structure which describes all the internal simulator data. + */ +struct nandsim { + struct nand_chip chip; + struct nand_controller base; + struct mtd_partition partitions[CONFIG_NANDSIM_MAX_PARTS]; + unsigned int nbparts; + + uint busw; /* flash chip bus width (8 or 16) */ + u_char ids[8]; /* chip's ID bytes */ + uint32_t options; /* chip's characteristic bits */ + uint32_t state; /* current chip state */ + uint32_t nxstate; /* next expected state */ + + uint32_t *op; /* current operation, NULL operations isn't known yet */ + uint32_t pstates[NS_MAX_PREVSTATES]; /* previous states */ + uint16_t npstates; /* number of previous states saved */ + uint16_t stateidx; /* current state index */ + + /* The simulated NAND flash pages array */ + union ns_mem *pages; + + /* Slab allocator for nand pages */ + struct kmem_cache *nand_pages_slab; + + /* Internal buffer of page + OOB size bytes */ + union ns_mem buf; + + /* NAND flash "geometry" */ + struct { + uint64_t totsz; /* total flash size, bytes */ + uint32_t secsz; /* flash sector (erase block) size, bytes */ + uint pgsz; /* NAND flash page size, bytes */ + uint oobsz; /* page OOB area size, bytes */ + uint64_t totszoob; /* total flash size including OOB, bytes */ + uint pgszoob; /* page size including OOB , bytes*/ + uint secszoob; /* sector size including OOB, bytes */ + uint pgnum; /* total number of pages */ + uint pgsec; /* number of pages per sector */ + uint secshift; /* bits number in sector size */ + uint pgshift; /* bits number in page size */ + uint pgaddrbytes; /* bytes per page address */ + uint secaddrbytes; /* bytes per sector address */ + uint idbytes; /* the number ID bytes that this chip outputs */ + } geom; + + /* NAND flash internal registers */ + struct { + unsigned command; /* the command register */ + u_char status; /* the status register */ + uint row; /* the page number */ + uint column; /* the offset within page */ + uint count; /* internal counter */ + uint num; /* number of bytes which must be processed */ + uint off; /* fixed page offset */ + } regs; + + /* NAND flash lines state */ + struct { + int ce; /* chip Enable */ + int cle; /* command Latch Enable */ + int ale; /* address Latch Enable */ + int wp; /* write Protect */ + } lines; + + /* Fields needed when using a cache file */ + struct file *cfile; /* Open file */ + unsigned long *pages_written; /* Which pages have been written */ + void *file_buf; + struct page *held_pages[NS_MAX_HELD_PAGES]; + int held_cnt; + + /* debugfs entry */ + struct dentry *dent; +}; + +/* + * Operations array. To perform any operation the simulator must pass + * through the correspondent states chain. + */ +static struct nandsim_operations { + uint32_t reqopts; /* options which are required to perform the operation */ + uint32_t states[NS_OPER_STATES]; /* operation's states */ +} ops[NS_OPER_NUM] = { + /* Read page + OOB from the beginning */ + {OPT_SMALLPAGE, {STATE_CMD_READ0 | ACTION_ZEROOFF, STATE_ADDR_PAGE | ACTION_CPY, + STATE_DATAOUT, STATE_READY}}, + /* Read page + OOB from the second half */ + {OPT_PAGE512_8BIT, {STATE_CMD_READ1 | ACTION_HALFOFF, STATE_ADDR_PAGE | ACTION_CPY, + STATE_DATAOUT, STATE_READY}}, + /* Read OOB */ + {OPT_SMALLPAGE, {STATE_CMD_READOOB | ACTION_OOBOFF, STATE_ADDR_PAGE | ACTION_CPY, + STATE_DATAOUT, STATE_READY}}, + /* Program page starting from the beginning */ + {OPT_ANY, {STATE_CMD_SEQIN, STATE_ADDR_PAGE, STATE_DATAIN, + STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}}, + /* Program page starting from the beginning */ + {OPT_SMALLPAGE, {STATE_CMD_READ0, STATE_CMD_SEQIN | ACTION_ZEROOFF, STATE_ADDR_PAGE, + STATE_DATAIN, STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}}, + /* Program page starting from the second half */ + {OPT_PAGE512, {STATE_CMD_READ1, STATE_CMD_SEQIN | ACTION_HALFOFF, STATE_ADDR_PAGE, + STATE_DATAIN, STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}}, + /* Program OOB */ + {OPT_SMALLPAGE, {STATE_CMD_READOOB, STATE_CMD_SEQIN | ACTION_OOBOFF, STATE_ADDR_PAGE, + STATE_DATAIN, STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}}, + /* Erase sector */ + {OPT_ANY, {STATE_CMD_ERASE1, STATE_ADDR_SEC, STATE_CMD_ERASE2 | ACTION_SECERASE, STATE_READY}}, + /* Read status */ + {OPT_ANY, {STATE_CMD_STATUS, STATE_DATAOUT_STATUS, STATE_READY}}, + /* Read ID */ + {OPT_ANY, {STATE_CMD_READID, STATE_ADDR_ZERO, STATE_DATAOUT_ID, STATE_READY}}, + /* Large page devices read page */ + {OPT_LARGEPAGE, {STATE_CMD_READ0, STATE_ADDR_PAGE, STATE_CMD_READSTART | ACTION_CPY, + STATE_DATAOUT, STATE_READY}}, + /* Large page devices random page read */ + {OPT_LARGEPAGE, {STATE_CMD_RNDOUT, STATE_ADDR_COLUMN, STATE_CMD_RNDOUTSTART | ACTION_CPY, + STATE_DATAOUT, STATE_READY}}, +}; + +struct weak_block { + struct list_head list; + unsigned int erase_block_no; + unsigned int max_erases; + unsigned int erases_done; +}; + +static LIST_HEAD(weak_blocks); + +struct weak_page { + struct list_head list; + unsigned int page_no; + unsigned int max_writes; + unsigned int writes_done; +}; + +static LIST_HEAD(weak_pages); + +struct grave_page { + struct list_head list; + unsigned int page_no; + unsigned int max_reads; + unsigned int reads_done; +}; + +static LIST_HEAD(grave_pages); + +static unsigned long *erase_block_wear = NULL; +static unsigned int wear_eb_count = 0; +static unsigned long total_wear = 0; + +/* MTD structure for NAND controller */ +static struct mtd_info *nsmtd; + +static int ns_show(struct seq_file *m, void *private) +{ + unsigned long wmin = -1, wmax = 0, avg; + unsigned long deciles[10], decile_max[10], tot = 0; + unsigned int i; + + /* Calc wear stats */ + for (i = 0; i < wear_eb_count; ++i) { + unsigned long wear = erase_block_wear[i]; + if (wear < wmin) + wmin = wear; + if (wear > wmax) + wmax = wear; + tot += wear; + } + + for (i = 0; i < 9; ++i) { + deciles[i] = 0; + decile_max[i] = (wmax * (i + 1) + 5) / 10; + } + deciles[9] = 0; + decile_max[9] = wmax; + for (i = 0; i < wear_eb_count; ++i) { + int d; + unsigned long wear = erase_block_wear[i]; + for (d = 0; d < 10; ++d) + if (wear <= decile_max[d]) { + deciles[d] += 1; + break; + } + } + avg = tot / wear_eb_count; + + /* Output wear report */ + seq_printf(m, "Total numbers of erases: %lu\n", tot); + seq_printf(m, "Number of erase blocks: %u\n", wear_eb_count); + seq_printf(m, "Average number of erases: %lu\n", avg); + seq_printf(m, "Maximum number of erases: %lu\n", wmax); + seq_printf(m, "Minimum number of erases: %lu\n", wmin); + for (i = 0; i < 10; ++i) { + unsigned long from = (i ? decile_max[i - 1] + 1 : 0); + if (from > decile_max[i]) + continue; + seq_printf(m, "Number of ebs with erase counts from %lu to %lu : %lu\n", + from, + decile_max[i], + deciles[i]); + } + + return 0; +} +DEFINE_SHOW_ATTRIBUTE(ns); + +/** + * ns_debugfs_create - initialize debugfs + * @ns: nandsim device description object + * + * This function creates all debugfs files for UBI device @ubi. Returns zero in + * case of success and a negative error code in case of failure. + */ +static int ns_debugfs_create(struct nandsim *ns) +{ + struct dentry *root = nsmtd->dbg.dfs_dir; + + /* + * Just skip debugfs initialization when the debugfs directory is + * missing. + */ + if (IS_ERR_OR_NULL(root)) { + if (IS_ENABLED(CONFIG_DEBUG_FS) && + !IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER)) + NS_WARN("CONFIG_MTD_PARTITIONED_MASTER must be enabled to expose debugfs stuff\n"); + return 0; + } + + ns->dent = debugfs_create_file("nandsim_wear_report", 0400, root, ns, + &ns_fops); + if (IS_ERR_OR_NULL(ns->dent)) { + NS_ERR("cannot create \"nandsim_wear_report\" debugfs entry\n"); + return -1; + } + + return 0; +} + +static void ns_debugfs_remove(struct nandsim *ns) +{ + debugfs_remove_recursive(ns->dent); +} + +/* + * Allocate array of page pointers, create slab allocation for an array + * and initialize the array by NULL pointers. + * + * RETURNS: 0 if success, -ENOMEM if memory alloc fails. + */ +static int __init ns_alloc_device(struct nandsim *ns) +{ + struct file *cfile; + int i, err; + + if (cache_file) { + cfile = filp_open(cache_file, O_CREAT | O_RDWR | O_LARGEFILE, 0600); + if (IS_ERR(cfile)) + return PTR_ERR(cfile); + if (!(cfile->f_mode & FMODE_CAN_READ)) { + NS_ERR("alloc_device: cache file not readable\n"); + err = -EINVAL; + goto err_close_filp; + } + if (!(cfile->f_mode & FMODE_CAN_WRITE)) { + NS_ERR("alloc_device: cache file not writeable\n"); + err = -EINVAL; + goto err_close_filp; + } + ns->pages_written = + vzalloc(array_size(sizeof(unsigned long), + BITS_TO_LONGS(ns->geom.pgnum))); + if (!ns->pages_written) { + NS_ERR("alloc_device: unable to allocate pages written array\n"); + err = -ENOMEM; + goto err_close_filp; + } + ns->file_buf = kmalloc(ns->geom.pgszoob, GFP_KERNEL); + if (!ns->file_buf) { + NS_ERR("alloc_device: unable to allocate file buf\n"); + err = -ENOMEM; + goto err_free_pw; + } + ns->cfile = cfile; + + return 0; + +err_free_pw: + vfree(ns->pages_written); +err_close_filp: + filp_close(cfile, NULL); + + return err; + } + + ns->pages = vmalloc(array_size(sizeof(union ns_mem), ns->geom.pgnum)); + if (!ns->pages) { + NS_ERR("alloc_device: unable to allocate page array\n"); + return -ENOMEM; + } + for (i = 0; i < ns->geom.pgnum; i++) { + ns->pages[i].byte = NULL; + } + ns->nand_pages_slab = kmem_cache_create("nandsim", + ns->geom.pgszoob, 0, 0, NULL); + if (!ns->nand_pages_slab) { + NS_ERR("cache_create: unable to create kmem_cache\n"); + err = -ENOMEM; + goto err_free_pg; + } + + return 0; + +err_free_pg: + vfree(ns->pages); + + return err; +} + +/* + * Free any allocated pages, and free the array of page pointers. + */ +static void ns_free_device(struct nandsim *ns) +{ + int i; + + if (ns->cfile) { + kfree(ns->file_buf); + vfree(ns->pages_written); + filp_close(ns->cfile, NULL); + return; + } + + if (ns->pages) { + for (i = 0; i < ns->geom.pgnum; i++) { + if (ns->pages[i].byte) + kmem_cache_free(ns->nand_pages_slab, + ns->pages[i].byte); + } + kmem_cache_destroy(ns->nand_pages_slab); + vfree(ns->pages); + } +} + +static char __init *ns_get_partition_name(int i) +{ + return kasprintf(GFP_KERNEL, "NAND simulator partition %d", i); +} + +/* + * Initialize the nandsim structure. + * + * RETURNS: 0 if success, -ERRNO if failure. + */ +static int __init ns_init(struct mtd_info *mtd) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + struct nandsim *ns = nand_get_controller_data(chip); + int i, ret = 0; + uint64_t remains; + uint64_t next_offset; + + if (NS_IS_INITIALIZED(ns)) { + NS_ERR("init_nandsim: nandsim is already initialized\n"); + return -EIO; + } + + /* Initialize the NAND flash parameters */ + ns->busw = chip->options & NAND_BUSWIDTH_16 ? 16 : 8; + ns->geom.totsz = mtd->size; + ns->geom.pgsz = mtd->writesize; + ns->geom.oobsz = mtd->oobsize; + ns->geom.secsz = mtd->erasesize; + ns->geom.pgszoob = ns->geom.pgsz + ns->geom.oobsz; + ns->geom.pgnum = div_u64(ns->geom.totsz, ns->geom.pgsz); + ns->geom.totszoob = ns->geom.totsz + (uint64_t)ns->geom.pgnum * ns->geom.oobsz; + ns->geom.secshift = ffs(ns->geom.secsz) - 1; + ns->geom.pgshift = chip->page_shift; + ns->geom.pgsec = ns->geom.secsz / ns->geom.pgsz; + ns->geom.secszoob = ns->geom.secsz + ns->geom.oobsz * ns->geom.pgsec; + ns->options = 0; + + if (ns->geom.pgsz == 512) { + ns->options |= OPT_PAGE512; + if (ns->busw == 8) + ns->options |= OPT_PAGE512_8BIT; + } else if (ns->geom.pgsz == 2048) { + ns->options |= OPT_PAGE2048; + } else if (ns->geom.pgsz == 4096) { + ns->options |= OPT_PAGE4096; + } else { + NS_ERR("init_nandsim: unknown page size %u\n", ns->geom.pgsz); + return -EIO; + } + + if (ns->options & OPT_SMALLPAGE) { + if (ns->geom.totsz <= (32 << 20)) { + ns->geom.pgaddrbytes = 3; + ns->geom.secaddrbytes = 2; + } else { + ns->geom.pgaddrbytes = 4; + ns->geom.secaddrbytes = 3; + } + } else { + if (ns->geom.totsz <= (128 << 20)) { + ns->geom.pgaddrbytes = 4; + ns->geom.secaddrbytes = 2; + } else { + ns->geom.pgaddrbytes = 5; + ns->geom.secaddrbytes = 3; + } + } + + /* Fill the partition_info structure */ + if (parts_num > ARRAY_SIZE(ns->partitions)) { + NS_ERR("too many partitions.\n"); + return -EINVAL; + } + remains = ns->geom.totsz; + next_offset = 0; + for (i = 0; i < parts_num; ++i) { + uint64_t part_sz = (uint64_t)parts[i] * ns->geom.secsz; + + if (!part_sz || part_sz > remains) { + NS_ERR("bad partition size.\n"); + return -EINVAL; + } + ns->partitions[i].name = ns_get_partition_name(i); + if (!ns->partitions[i].name) { + NS_ERR("unable to allocate memory.\n"); + return -ENOMEM; + } + ns->partitions[i].offset = next_offset; + ns->partitions[i].size = part_sz; + next_offset += ns->partitions[i].size; + remains -= ns->partitions[i].size; + } + ns->nbparts = parts_num; + if (remains) { + if (parts_num + 1 > ARRAY_SIZE(ns->partitions)) { + NS_ERR("too many partitions.\n"); + ret = -EINVAL; + goto free_partition_names; + } + ns->partitions[i].name = ns_get_partition_name(i); + if (!ns->partitions[i].name) { + NS_ERR("unable to allocate memory.\n"); + ret = -ENOMEM; + goto free_partition_names; + } + ns->partitions[i].offset = next_offset; + ns->partitions[i].size = remains; + ns->nbparts += 1; + } + + if (ns->busw == 16) + NS_WARN("16-bit flashes support wasn't tested\n"); + + printk("flash size: %llu MiB\n", + (unsigned long long)ns->geom.totsz >> 20); + printk("page size: %u bytes\n", ns->geom.pgsz); + printk("OOB area size: %u bytes\n", ns->geom.oobsz); + printk("sector size: %u KiB\n", ns->geom.secsz >> 10); + printk("pages number: %u\n", ns->geom.pgnum); + printk("pages per sector: %u\n", ns->geom.pgsec); + printk("bus width: %u\n", ns->busw); + printk("bits in sector size: %u\n", ns->geom.secshift); + printk("bits in page size: %u\n", ns->geom.pgshift); + printk("bits in OOB size: %u\n", ffs(ns->geom.oobsz) - 1); + printk("flash size with OOB: %llu KiB\n", + (unsigned long long)ns->geom.totszoob >> 10); + printk("page address bytes: %u\n", ns->geom.pgaddrbytes); + printk("sector address bytes: %u\n", ns->geom.secaddrbytes); + printk("options: %#x\n", ns->options); + + ret = ns_alloc_device(ns); + if (ret) + goto free_partition_names; + + /* Allocate / initialize the internal buffer */ + ns->buf.byte = kmalloc(ns->geom.pgszoob, GFP_KERNEL); + if (!ns->buf.byte) { + NS_ERR("init_nandsim: unable to allocate %u bytes for the internal buffer\n", + ns->geom.pgszoob); + ret = -ENOMEM; + goto free_device; + } + memset(ns->buf.byte, 0xFF, ns->geom.pgszoob); + + return 0; + +free_device: + ns_free_device(ns); +free_partition_names: + for (i = 0; i < ARRAY_SIZE(ns->partitions); ++i) + kfree(ns->partitions[i].name); + + return ret; +} + +/* + * Free the nandsim structure. + */ +static void ns_free(struct nandsim *ns) +{ + int i; + + for (i = 0; i < ARRAY_SIZE(ns->partitions); ++i) + kfree(ns->partitions[i].name); + + kfree(ns->buf.byte); + ns_free_device(ns); + + return; +} + +static int ns_parse_badblocks(struct nandsim *ns, struct mtd_info *mtd) +{ + char *w; + int zero_ok; + unsigned int erase_block_no; + loff_t offset; + + if (!badblocks) + return 0; + w = badblocks; + do { + zero_ok = (*w == '0' ? 1 : 0); + erase_block_no = simple_strtoul(w, &w, 0); + if (!zero_ok && !erase_block_no) { + NS_ERR("invalid badblocks.\n"); + return -EINVAL; + } + offset = (loff_t)erase_block_no * ns->geom.secsz; + if (mtd_block_markbad(mtd, offset)) { + NS_ERR("invalid badblocks.\n"); + return -EINVAL; + } + if (*w == ',') + w += 1; + } while (*w); + return 0; +} + +static int ns_parse_weakblocks(void) +{ + char *w; + int zero_ok; + unsigned int erase_block_no; + unsigned int max_erases; + struct weak_block *wb; + + if (!weakblocks) + return 0; + w = weakblocks; + do { + zero_ok = (*w == '0' ? 1 : 0); + erase_block_no = simple_strtoul(w, &w, 0); + if (!zero_ok && !erase_block_no) { + NS_ERR("invalid weakblocks.\n"); + return -EINVAL; + } + max_erases = 3; + if (*w == ':') { + w += 1; + max_erases = simple_strtoul(w, &w, 0); + } + if (*w == ',') + w += 1; + wb = kzalloc(sizeof(*wb), GFP_KERNEL); + if (!wb) { + NS_ERR("unable to allocate memory.\n"); + return -ENOMEM; + } + wb->erase_block_no = erase_block_no; + wb->max_erases = max_erases; + list_add(&wb->list, &weak_blocks); + } while (*w); + return 0; +} + +static int ns_erase_error(unsigned int erase_block_no) +{ + struct weak_block *wb; + + list_for_each_entry(wb, &weak_blocks, list) + if (wb->erase_block_no == erase_block_no) { + if (wb->erases_done >= wb->max_erases) + return 1; + wb->erases_done += 1; + return 0; + } + return 0; +} + +static int ns_parse_weakpages(void) +{ + char *w; + int zero_ok; + unsigned int page_no; + unsigned int max_writes; + struct weak_page *wp; + + if (!weakpages) + return 0; + w = weakpages; + do { + zero_ok = (*w == '0' ? 1 : 0); + page_no = simple_strtoul(w, &w, 0); + if (!zero_ok && !page_no) { + NS_ERR("invalid weakpages.\n"); + return -EINVAL; + } + max_writes = 3; + if (*w == ':') { + w += 1; + max_writes = simple_strtoul(w, &w, 0); + } + if (*w == ',') + w += 1; + wp = kzalloc(sizeof(*wp), GFP_KERNEL); + if (!wp) { + NS_ERR("unable to allocate memory.\n"); + return -ENOMEM; + } + wp->page_no = page_no; + wp->max_writes = max_writes; + list_add(&wp->list, &weak_pages); + } while (*w); + return 0; +} + +static int ns_write_error(unsigned int page_no) +{ + struct weak_page *wp; + + list_for_each_entry(wp, &weak_pages, list) + if (wp->page_no == page_no) { + if (wp->writes_done >= wp->max_writes) + return 1; + wp->writes_done += 1; + return 0; + } + return 0; +} + +static int ns_parse_gravepages(void) +{ + char *g; + int zero_ok; + unsigned int page_no; + unsigned int max_reads; + struct grave_page *gp; + + if (!gravepages) + return 0; + g = gravepages; + do { + zero_ok = (*g == '0' ? 1 : 0); + page_no = simple_strtoul(g, &g, 0); + if (!zero_ok && !page_no) { + NS_ERR("invalid gravepagess.\n"); + return -EINVAL; + } + max_reads = 3; + if (*g == ':') { + g += 1; + max_reads = simple_strtoul(g, &g, 0); + } + if (*g == ',') + g += 1; + gp = kzalloc(sizeof(*gp), GFP_KERNEL); + if (!gp) { + NS_ERR("unable to allocate memory.\n"); + return -ENOMEM; + } + gp->page_no = page_no; + gp->max_reads = max_reads; + list_add(&gp->list, &grave_pages); + } while (*g); + return 0; +} + +static int ns_read_error(unsigned int page_no) +{ + struct grave_page *gp; + + list_for_each_entry(gp, &grave_pages, list) + if (gp->page_no == page_no) { + if (gp->reads_done >= gp->max_reads) + return 1; + gp->reads_done += 1; + return 0; + } + return 0; +} + +static int ns_setup_wear_reporting(struct mtd_info *mtd) +{ + wear_eb_count = div_u64(mtd->size, mtd->erasesize); + erase_block_wear = kcalloc(wear_eb_count, sizeof(unsigned long), GFP_KERNEL); + if (!erase_block_wear) { + NS_ERR("Too many erase blocks for wear reporting\n"); + return -ENOMEM; + } + return 0; +} + +static void ns_update_wear(unsigned int erase_block_no) +{ + if (!erase_block_wear) + return; + total_wear += 1; + /* + * TODO: Notify this through a debugfs entry, + * instead of showing an error message. + */ + if (total_wear == 0) + NS_ERR("Erase counter total overflow\n"); + erase_block_wear[erase_block_no] += 1; + if (erase_block_wear[erase_block_no] == 0) + NS_ERR("Erase counter overflow for erase block %u\n", erase_block_no); +} + +/* + * Returns the string representation of 'state' state. + */ +static char *ns_get_state_name(uint32_t state) +{ + switch (NS_STATE(state)) { + case STATE_CMD_READ0: + return "STATE_CMD_READ0"; + case STATE_CMD_READ1: + return "STATE_CMD_READ1"; + case STATE_CMD_PAGEPROG: + return "STATE_CMD_PAGEPROG"; + case STATE_CMD_READOOB: + return "STATE_CMD_READOOB"; + case STATE_CMD_READSTART: + return "STATE_CMD_READSTART"; + case STATE_CMD_ERASE1: + return "STATE_CMD_ERASE1"; + case STATE_CMD_STATUS: + return "STATE_CMD_STATUS"; + case STATE_CMD_SEQIN: + return "STATE_CMD_SEQIN"; + case STATE_CMD_READID: + return "STATE_CMD_READID"; + case STATE_CMD_ERASE2: + return "STATE_CMD_ERASE2"; + case STATE_CMD_RESET: + return "STATE_CMD_RESET"; + case STATE_CMD_RNDOUT: + return "STATE_CMD_RNDOUT"; + case STATE_CMD_RNDOUTSTART: + return "STATE_CMD_RNDOUTSTART"; + case STATE_ADDR_PAGE: + return "STATE_ADDR_PAGE"; + case STATE_ADDR_SEC: + return "STATE_ADDR_SEC"; + case STATE_ADDR_ZERO: + return "STATE_ADDR_ZERO"; + case STATE_ADDR_COLUMN: + return "STATE_ADDR_COLUMN"; + case STATE_DATAIN: + return "STATE_DATAIN"; + case STATE_DATAOUT: + return "STATE_DATAOUT"; + case STATE_DATAOUT_ID: + return "STATE_DATAOUT_ID"; + case STATE_DATAOUT_STATUS: + return "STATE_DATAOUT_STATUS"; + case STATE_READY: + return "STATE_READY"; + case STATE_UNKNOWN: + return "STATE_UNKNOWN"; + } + + NS_ERR("get_state_name: unknown state, BUG\n"); + return NULL; +} + +/* + * Check if command is valid. + * + * RETURNS: 1 if wrong command, 0 if right. + */ +static int ns_check_command(int cmd) +{ + switch (cmd) { + + case NAND_CMD_READ0: + case NAND_CMD_READ1: + case NAND_CMD_READSTART: + case NAND_CMD_PAGEPROG: + case NAND_CMD_READOOB: + case NAND_CMD_ERASE1: + case NAND_CMD_STATUS: + case NAND_CMD_SEQIN: + case NAND_CMD_READID: + case NAND_CMD_ERASE2: + case NAND_CMD_RESET: + case NAND_CMD_RNDOUT: + case NAND_CMD_RNDOUTSTART: + return 0; + + default: + return 1; + } +} + +/* + * Returns state after command is accepted by command number. + */ +static uint32_t ns_get_state_by_command(unsigned command) +{ + switch (command) { + case NAND_CMD_READ0: + return STATE_CMD_READ0; + case NAND_CMD_READ1: + return STATE_CMD_READ1; + case NAND_CMD_PAGEPROG: + return STATE_CMD_PAGEPROG; + case NAND_CMD_READSTART: + return STATE_CMD_READSTART; + case NAND_CMD_READOOB: + return STATE_CMD_READOOB; + case NAND_CMD_ERASE1: + return STATE_CMD_ERASE1; + case NAND_CMD_STATUS: + return STATE_CMD_STATUS; + case NAND_CMD_SEQIN: + return STATE_CMD_SEQIN; + case NAND_CMD_READID: + return STATE_CMD_READID; + case NAND_CMD_ERASE2: + return STATE_CMD_ERASE2; + case NAND_CMD_RESET: + return STATE_CMD_RESET; + case NAND_CMD_RNDOUT: + return STATE_CMD_RNDOUT; + case NAND_CMD_RNDOUTSTART: + return STATE_CMD_RNDOUTSTART; + } + + NS_ERR("get_state_by_command: unknown command, BUG\n"); + return 0; +} + +/* + * Move an address byte to the correspondent internal register. + */ +static inline void ns_accept_addr_byte(struct nandsim *ns, u_char bt) +{ + uint byte = (uint)bt; + + if (ns->regs.count < (ns->geom.pgaddrbytes - ns->geom.secaddrbytes)) + ns->regs.column |= (byte << 8 * ns->regs.count); + else { + ns->regs.row |= (byte << 8 * (ns->regs.count - + ns->geom.pgaddrbytes + + ns->geom.secaddrbytes)); + } + + return; +} + +/* + * Switch to STATE_READY state. + */ +static inline void ns_switch_to_ready_state(struct nandsim *ns, u_char status) +{ + NS_DBG("switch_to_ready_state: switch to %s state\n", + ns_get_state_name(STATE_READY)); + + ns->state = STATE_READY; + ns->nxstate = STATE_UNKNOWN; + ns->op = NULL; + ns->npstates = 0; + ns->stateidx = 0; + ns->regs.num = 0; + ns->regs.count = 0; + ns->regs.off = 0; + ns->regs.row = 0; + ns->regs.column = 0; + ns->regs.status = status; +} + +/* + * If the operation isn't known yet, try to find it in the global array + * of supported operations. + * + * Operation can be unknown because of the following. + * 1. New command was accepted and this is the first call to find the + * correspondent states chain. In this case ns->npstates = 0; + * 2. There are several operations which begin with the same command(s) + * (for example program from the second half and read from the + * second half operations both begin with the READ1 command). In this + * case the ns->pstates[] array contains previous states. + * + * Thus, the function tries to find operation containing the following + * states (if the 'flag' parameter is 0): + * ns->pstates[0], ... ns->pstates[ns->npstates], ns->state + * + * If (one and only one) matching operation is found, it is accepted ( + * ns->ops, ns->state, ns->nxstate are initialized, ns->npstate is + * zeroed). + * + * If there are several matches, the current state is pushed to the + * ns->pstates. + * + * The operation can be unknown only while commands are input to the chip. + * As soon as address command is accepted, the operation must be known. + * In such situation the function is called with 'flag' != 0, and the + * operation is searched using the following pattern: + * ns->pstates[0], ... ns->pstates[ns->npstates], <address input> + * + * It is supposed that this pattern must either match one operation or + * none. There can't be ambiguity in that case. + * + * If no matches found, the function does the following: + * 1. if there are saved states present, try to ignore them and search + * again only using the last command. If nothing was found, switch + * to the STATE_READY state. + * 2. if there are no saved states, switch to the STATE_READY state. + * + * RETURNS: -2 - no matched operations found. + * -1 - several matches. + * 0 - operation is found. + */ +static int ns_find_operation(struct nandsim *ns, uint32_t flag) +{ + int opsfound = 0; + int i, j, idx = 0; + + for (i = 0; i < NS_OPER_NUM; i++) { + + int found = 1; + + if (!(ns->options & ops[i].reqopts)) + /* Ignore operations we can't perform */ + continue; + + if (flag) { + if (!(ops[i].states[ns->npstates] & STATE_ADDR_MASK)) + continue; + } else { + if (NS_STATE(ns->state) != NS_STATE(ops[i].states[ns->npstates])) + continue; + } + + for (j = 0; j < ns->npstates; j++) + if (NS_STATE(ops[i].states[j]) != NS_STATE(ns->pstates[j]) + && (ns->options & ops[idx].reqopts)) { + found = 0; + break; + } + + if (found) { + idx = i; + opsfound += 1; + } + } + + if (opsfound == 1) { + /* Exact match */ + ns->op = &ops[idx].states[0]; + if (flag) { + /* + * In this case the find_operation function was + * called when address has just began input. But it isn't + * yet fully input and the current state must + * not be one of STATE_ADDR_*, but the STATE_ADDR_* + * state must be the next state (ns->nxstate). + */ + ns->stateidx = ns->npstates - 1; + } else { + ns->stateidx = ns->npstates; + } + ns->npstates = 0; + ns->state = ns->op[ns->stateidx]; + ns->nxstate = ns->op[ns->stateidx + 1]; + NS_DBG("find_operation: operation found, index: %d, state: %s, nxstate %s\n", + idx, ns_get_state_name(ns->state), + ns_get_state_name(ns->nxstate)); + return 0; + } + + if (opsfound == 0) { + /* Nothing was found. Try to ignore previous commands (if any) and search again */ + if (ns->npstates != 0) { + NS_DBG("find_operation: no operation found, try again with state %s\n", + ns_get_state_name(ns->state)); + ns->npstates = 0; + return ns_find_operation(ns, 0); + + } + NS_DBG("find_operation: no operations found\n"); + ns_switch_to_ready_state(ns, NS_STATUS_FAILED(ns)); + return -2; + } + + if (flag) { + /* This shouldn't happen */ + NS_DBG("find_operation: BUG, operation must be known if address is input\n"); + return -2; + } + + NS_DBG("find_operation: there is still ambiguity\n"); + + ns->pstates[ns->npstates++] = ns->state; + + return -1; +} + +static void ns_put_pages(struct nandsim *ns) +{ + int i; + + for (i = 0; i < ns->held_cnt; i++) + put_page(ns->held_pages[i]); +} + +/* Get page cache pages in advance to provide NOFS memory allocation */ +static int ns_get_pages(struct nandsim *ns, struct file *file, size_t count, + loff_t pos) +{ + pgoff_t index, start_index, end_index; + struct page *page; + struct address_space *mapping = file->f_mapping; + + start_index = pos >> PAGE_SHIFT; + end_index = (pos + count - 1) >> PAGE_SHIFT; + if (end_index - start_index + 1 > NS_MAX_HELD_PAGES) + return -EINVAL; + ns->held_cnt = 0; + for (index = start_index; index <= end_index; index++) { + page = find_get_page(mapping, index); + if (page == NULL) { + page = find_or_create_page(mapping, index, GFP_NOFS); + if (page == NULL) { + write_inode_now(mapping->host, 1); + page = find_or_create_page(mapping, index, GFP_NOFS); + } + if (page == NULL) { + ns_put_pages(ns); + return -ENOMEM; + } + unlock_page(page); + } + ns->held_pages[ns->held_cnt++] = page; + } + return 0; +} + +static ssize_t ns_read_file(struct nandsim *ns, struct file *file, void *buf, + size_t count, loff_t pos) +{ + ssize_t tx; + int err; + unsigned int noreclaim_flag; + + err = ns_get_pages(ns, file, count, pos); + if (err) + return err; + noreclaim_flag = memalloc_noreclaim_save(); + tx = kernel_read(file, buf, count, &pos); + memalloc_noreclaim_restore(noreclaim_flag); + ns_put_pages(ns); + return tx; +} + +static ssize_t ns_write_file(struct nandsim *ns, struct file *file, void *buf, + size_t count, loff_t pos) +{ + ssize_t tx; + int err; + unsigned int noreclaim_flag; + + err = ns_get_pages(ns, file, count, pos); + if (err) + return err; + noreclaim_flag = memalloc_noreclaim_save(); + tx = kernel_write(file, buf, count, &pos); + memalloc_noreclaim_restore(noreclaim_flag); + ns_put_pages(ns); + return tx; +} + +/* + * Returns a pointer to the current page. + */ +static inline union ns_mem *NS_GET_PAGE(struct nandsim *ns) +{ + return &(ns->pages[ns->regs.row]); +} + +/* + * Retuns a pointer to the current byte, within the current page. + */ +static inline u_char *NS_PAGE_BYTE_OFF(struct nandsim *ns) +{ + return NS_GET_PAGE(ns)->byte + NS_PAGE_BYTE_SHIFT(ns); +} + +static int ns_do_read_error(struct nandsim *ns, int num) +{ + unsigned int page_no = ns->regs.row; + + if (ns_read_error(page_no)) { + get_random_bytes(ns->buf.byte, num); + NS_WARN("simulating read error in page %u\n", page_no); + return 1; + } + return 0; +} + +static void ns_do_bit_flips(struct nandsim *ns, int num) +{ + if (bitflips && get_random_u16() < (1 << 6)) { + int flips = 1; + if (bitflips > 1) + flips = get_random_u32_inclusive(1, bitflips); + while (flips--) { + int pos = get_random_u32_below(num * 8); + ns->buf.byte[pos / 8] ^= (1 << (pos % 8)); + NS_WARN("read_page: flipping bit %d in page %d " + "reading from %d ecc: corrected=%u failed=%u\n", + pos, ns->regs.row, NS_PAGE_BYTE_SHIFT(ns), + nsmtd->ecc_stats.corrected, nsmtd->ecc_stats.failed); + } + } +} + +/* + * Fill the NAND buffer with data read from the specified page. + */ +static void ns_read_page(struct nandsim *ns, int num) +{ + union ns_mem *mypage; + + if (ns->cfile) { + if (!test_bit(ns->regs.row, ns->pages_written)) { + NS_DBG("read_page: page %d not written\n", ns->regs.row); + memset(ns->buf.byte, 0xFF, num); + } else { + loff_t pos; + ssize_t tx; + + NS_DBG("read_page: page %d written, reading from %d\n", + ns->regs.row, NS_PAGE_BYTE_SHIFT(ns)); + if (ns_do_read_error(ns, num)) + return; + pos = (loff_t)NS_RAW_OFFSET(ns) + ns->regs.off; + tx = ns_read_file(ns, ns->cfile, ns->buf.byte, num, + pos); + if (tx != num) { + NS_ERR("read_page: read error for page %d ret %ld\n", ns->regs.row, (long)tx); + return; + } + ns_do_bit_flips(ns, num); + } + return; + } + + mypage = NS_GET_PAGE(ns); + if (mypage->byte == NULL) { + NS_DBG("read_page: page %d not allocated\n", ns->regs.row); + memset(ns->buf.byte, 0xFF, num); + } else { + NS_DBG("read_page: page %d allocated, reading from %d\n", + ns->regs.row, NS_PAGE_BYTE_SHIFT(ns)); + if (ns_do_read_error(ns, num)) + return; + memcpy(ns->buf.byte, NS_PAGE_BYTE_OFF(ns), num); + ns_do_bit_flips(ns, num); + } +} + +/* + * Erase all pages in the specified sector. + */ +static void ns_erase_sector(struct nandsim *ns) +{ + union ns_mem *mypage; + int i; + + if (ns->cfile) { + for (i = 0; i < ns->geom.pgsec; i++) + if (__test_and_clear_bit(ns->regs.row + i, + ns->pages_written)) { + NS_DBG("erase_sector: freeing page %d\n", ns->regs.row + i); + } + return; + } + + mypage = NS_GET_PAGE(ns); + for (i = 0; i < ns->geom.pgsec; i++) { + if (mypage->byte != NULL) { + NS_DBG("erase_sector: freeing page %d\n", ns->regs.row+i); + kmem_cache_free(ns->nand_pages_slab, mypage->byte); + mypage->byte = NULL; + } + mypage++; + } +} + +/* + * Program the specified page with the contents from the NAND buffer. + */ +static int ns_prog_page(struct nandsim *ns, int num) +{ + int i; + union ns_mem *mypage; + u_char *pg_off; + + if (ns->cfile) { + loff_t off; + ssize_t tx; + int all; + + NS_DBG("prog_page: writing page %d\n", ns->regs.row); + pg_off = ns->file_buf + NS_PAGE_BYTE_SHIFT(ns); + off = (loff_t)NS_RAW_OFFSET(ns) + ns->regs.off; + if (!test_bit(ns->regs.row, ns->pages_written)) { + all = 1; + memset(ns->file_buf, 0xff, ns->geom.pgszoob); + } else { + all = 0; + tx = ns_read_file(ns, ns->cfile, pg_off, num, off); + if (tx != num) { + NS_ERR("prog_page: read error for page %d ret %ld\n", ns->regs.row, (long)tx); + return -1; + } + } + for (i = 0; i < num; i++) + pg_off[i] &= ns->buf.byte[i]; + if (all) { + loff_t pos = (loff_t)ns->regs.row * ns->geom.pgszoob; + tx = ns_write_file(ns, ns->cfile, ns->file_buf, + ns->geom.pgszoob, pos); + if (tx != ns->geom.pgszoob) { + NS_ERR("prog_page: write error for page %d ret %ld\n", ns->regs.row, (long)tx); + return -1; + } + __set_bit(ns->regs.row, ns->pages_written); + } else { + tx = ns_write_file(ns, ns->cfile, pg_off, num, off); + if (tx != num) { + NS_ERR("prog_page: write error for page %d ret %ld\n", ns->regs.row, (long)tx); + return -1; + } + } + return 0; + } + + mypage = NS_GET_PAGE(ns); + if (mypage->byte == NULL) { + NS_DBG("prog_page: allocating page %d\n", ns->regs.row); + /* + * We allocate memory with GFP_NOFS because a flash FS may + * utilize this. If it is holding an FS lock, then gets here, + * then kernel memory alloc runs writeback which goes to the FS + * again and deadlocks. This was seen in practice. + */ + mypage->byte = kmem_cache_alloc(ns->nand_pages_slab, GFP_NOFS); + if (mypage->byte == NULL) { + NS_ERR("prog_page: error allocating memory for page %d\n", ns->regs.row); + return -1; + } + memset(mypage->byte, 0xFF, ns->geom.pgszoob); + } + + pg_off = NS_PAGE_BYTE_OFF(ns); + for (i = 0; i < num; i++) + pg_off[i] &= ns->buf.byte[i]; + + return 0; +} + +/* + * If state has any action bit, perform this action. + * + * RETURNS: 0 if success, -1 if error. + */ +static int ns_do_state_action(struct nandsim *ns, uint32_t action) +{ + int num; + int busdiv = ns->busw == 8 ? 1 : 2; + unsigned int erase_block_no, page_no; + + action &= ACTION_MASK; + + /* Check that page address input is correct */ + if (action != ACTION_SECERASE && ns->regs.row >= ns->geom.pgnum) { + NS_WARN("do_state_action: wrong page number (%#x)\n", ns->regs.row); + return -1; + } + + switch (action) { + + case ACTION_CPY: + /* + * Copy page data to the internal buffer. + */ + + /* Column shouldn't be very large */ + if (ns->regs.column >= (ns->geom.pgszoob - ns->regs.off)) { + NS_ERR("do_state_action: column number is too large\n"); + break; + } + num = ns->geom.pgszoob - NS_PAGE_BYTE_SHIFT(ns); + ns_read_page(ns, num); + + NS_DBG("do_state_action: (ACTION_CPY:) copy %d bytes to int buf, raw offset %d\n", + num, NS_RAW_OFFSET(ns) + ns->regs.off); + + if (ns->regs.off == 0) + NS_LOG("read page %d\n", ns->regs.row); + else if (ns->regs.off < ns->geom.pgsz) + NS_LOG("read page %d (second half)\n", ns->regs.row); + else + NS_LOG("read OOB of page %d\n", ns->regs.row); + + NS_UDELAY(access_delay); + NS_UDELAY(input_cycle * ns->geom.pgsz / 1000 / busdiv); + + break; + + case ACTION_SECERASE: + /* + * Erase sector. + */ + + if (ns->lines.wp) { + NS_ERR("do_state_action: device is write-protected, ignore sector erase\n"); + return -1; + } + + if (ns->regs.row >= ns->geom.pgnum - ns->geom.pgsec + || (ns->regs.row & ~(ns->geom.secsz - 1))) { + NS_ERR("do_state_action: wrong sector address (%#x)\n", ns->regs.row); + return -1; + } + + ns->regs.row = (ns->regs.row << + 8 * (ns->geom.pgaddrbytes - ns->geom.secaddrbytes)) | ns->regs.column; + ns->regs.column = 0; + + erase_block_no = ns->regs.row >> (ns->geom.secshift - ns->geom.pgshift); + + NS_DBG("do_state_action: erase sector at address %#x, off = %d\n", + ns->regs.row, NS_RAW_OFFSET(ns)); + NS_LOG("erase sector %u\n", erase_block_no); + + ns_erase_sector(ns); + + NS_MDELAY(erase_delay); + + if (erase_block_wear) + ns_update_wear(erase_block_no); + + if (ns_erase_error(erase_block_no)) { + NS_WARN("simulating erase failure in erase block %u\n", erase_block_no); + return -1; + } + + break; + + case ACTION_PRGPAGE: + /* + * Program page - move internal buffer data to the page. + */ + + if (ns->lines.wp) { + NS_WARN("do_state_action: device is write-protected, programm\n"); + return -1; + } + + num = ns->geom.pgszoob - NS_PAGE_BYTE_SHIFT(ns); + if (num != ns->regs.count) { + NS_ERR("do_state_action: too few bytes were input (%d instead of %d)\n", + ns->regs.count, num); + return -1; + } + + if (ns_prog_page(ns, num) == -1) + return -1; + + page_no = ns->regs.row; + + NS_DBG("do_state_action: copy %d bytes from int buf to (%#x, %#x), raw off = %d\n", + num, ns->regs.row, ns->regs.column, NS_RAW_OFFSET(ns) + ns->regs.off); + NS_LOG("programm page %d\n", ns->regs.row); + + NS_UDELAY(programm_delay); + NS_UDELAY(output_cycle * ns->geom.pgsz / 1000 / busdiv); + + if (ns_write_error(page_no)) { + NS_WARN("simulating write failure in page %u\n", page_no); + return -1; + } + + break; + + case ACTION_ZEROOFF: + NS_DBG("do_state_action: set internal offset to 0\n"); + ns->regs.off = 0; + break; + + case ACTION_HALFOFF: + if (!(ns->options & OPT_PAGE512_8BIT)) { + NS_ERR("do_state_action: BUG! can't skip half of page for non-512" + "byte page size 8x chips\n"); + return -1; + } + NS_DBG("do_state_action: set internal offset to %d\n", ns->geom.pgsz/2); + ns->regs.off = ns->geom.pgsz/2; + break; + + case ACTION_OOBOFF: + NS_DBG("do_state_action: set internal offset to %d\n", ns->geom.pgsz); + ns->regs.off = ns->geom.pgsz; + break; + + default: + NS_DBG("do_state_action: BUG! unknown action\n"); + } + + return 0; +} + +/* + * Switch simulator's state. + */ +static void ns_switch_state(struct nandsim *ns) +{ + if (ns->op) { + /* + * The current operation have already been identified. + * Just follow the states chain. + */ + + ns->stateidx += 1; + ns->state = ns->nxstate; + ns->nxstate = ns->op[ns->stateidx + 1]; + + NS_DBG("switch_state: operation is known, switch to the next state, " + "state: %s, nxstate: %s\n", + ns_get_state_name(ns->state), + ns_get_state_name(ns->nxstate)); + } else { + /* + * We don't yet know which operation we perform. + * Try to identify it. + */ + + /* + * The only event causing the switch_state function to + * be called with yet unknown operation is new command. + */ + ns->state = ns_get_state_by_command(ns->regs.command); + + NS_DBG("switch_state: operation is unknown, try to find it\n"); + + if (ns_find_operation(ns, 0)) + return; + } + + /* See, whether we need to do some action */ + if ((ns->state & ACTION_MASK) && + ns_do_state_action(ns, ns->state) < 0) { + ns_switch_to_ready_state(ns, NS_STATUS_FAILED(ns)); + return; + } + + /* For 16x devices column means the page offset in words */ + if ((ns->nxstate & STATE_ADDR_MASK) && ns->busw == 16) { + NS_DBG("switch_state: double the column number for 16x device\n"); + ns->regs.column <<= 1; + } + + if (NS_STATE(ns->nxstate) == STATE_READY) { + /* + * The current state is the last. Return to STATE_READY + */ + + u_char status = NS_STATUS_OK(ns); + + /* In case of data states, see if all bytes were input/output */ + if ((ns->state & (STATE_DATAIN_MASK | STATE_DATAOUT_MASK)) + && ns->regs.count != ns->regs.num) { + NS_WARN("switch_state: not all bytes were processed, %d left\n", + ns->regs.num - ns->regs.count); + status = NS_STATUS_FAILED(ns); + } + + NS_DBG("switch_state: operation complete, switch to STATE_READY state\n"); + + ns_switch_to_ready_state(ns, status); + + return; + } else if (ns->nxstate & (STATE_DATAIN_MASK | STATE_DATAOUT_MASK)) { + /* + * If the next state is data input/output, switch to it now + */ + + ns->state = ns->nxstate; + ns->nxstate = ns->op[++ns->stateidx + 1]; + ns->regs.num = ns->regs.count = 0; + + NS_DBG("switch_state: the next state is data I/O, switch, " + "state: %s, nxstate: %s\n", + ns_get_state_name(ns->state), + ns_get_state_name(ns->nxstate)); + + /* + * Set the internal register to the count of bytes which + * are expected to be input or output + */ + switch (NS_STATE(ns->state)) { + case STATE_DATAIN: + case STATE_DATAOUT: + ns->regs.num = ns->geom.pgszoob - NS_PAGE_BYTE_SHIFT(ns); + break; + + case STATE_DATAOUT_ID: + ns->regs.num = ns->geom.idbytes; + break; + + case STATE_DATAOUT_STATUS: + ns->regs.count = ns->regs.num = 0; + break; + + default: + NS_ERR("switch_state: BUG! unknown data state\n"); + } + + } else if (ns->nxstate & STATE_ADDR_MASK) { + /* + * If the next state is address input, set the internal + * register to the number of expected address bytes + */ + + ns->regs.count = 0; + + switch (NS_STATE(ns->nxstate)) { + case STATE_ADDR_PAGE: + ns->regs.num = ns->geom.pgaddrbytes; + + break; + case STATE_ADDR_SEC: + ns->regs.num = ns->geom.secaddrbytes; + break; + + case STATE_ADDR_ZERO: + ns->regs.num = 1; + break; + + case STATE_ADDR_COLUMN: + /* Column address is always 2 bytes */ + ns->regs.num = ns->geom.pgaddrbytes - ns->geom.secaddrbytes; + break; + + default: + NS_ERR("switch_state: BUG! unknown address state\n"); + } + } else { + /* + * Just reset internal counters. + */ + + ns->regs.num = 0; + ns->regs.count = 0; + } +} + +static u_char ns_nand_read_byte(struct nand_chip *chip) +{ + struct nandsim *ns = nand_get_controller_data(chip); + u_char outb = 0x00; + + /* Sanity and correctness checks */ + if (!ns->lines.ce) { + NS_ERR("read_byte: chip is disabled, return %#x\n", (uint)outb); + return outb; + } + if (ns->lines.ale || ns->lines.cle) { + NS_ERR("read_byte: ALE or CLE pin is high, return %#x\n", (uint)outb); + return outb; + } + if (!(ns->state & STATE_DATAOUT_MASK)) { + NS_WARN("read_byte: unexpected data output cycle, state is %s return %#x\n", + ns_get_state_name(ns->state), (uint)outb); + return outb; + } + + /* Status register may be read as many times as it is wanted */ + if (NS_STATE(ns->state) == STATE_DATAOUT_STATUS) { + NS_DBG("read_byte: return %#x status\n", ns->regs.status); + return ns->regs.status; + } + + /* Check if there is any data in the internal buffer which may be read */ + if (ns->regs.count == ns->regs.num) { + NS_WARN("read_byte: no more data to output, return %#x\n", (uint)outb); + return outb; + } + + switch (NS_STATE(ns->state)) { + case STATE_DATAOUT: + if (ns->busw == 8) { + outb = ns->buf.byte[ns->regs.count]; + ns->regs.count += 1; + } else { + outb = (u_char)cpu_to_le16(ns->buf.word[ns->regs.count >> 1]); + ns->regs.count += 2; + } + break; + case STATE_DATAOUT_ID: + NS_DBG("read_byte: read ID byte %d, total = %d\n", ns->regs.count, ns->regs.num); + outb = ns->ids[ns->regs.count]; + ns->regs.count += 1; + break; + default: + BUG(); + } + + if (ns->regs.count == ns->regs.num) { + NS_DBG("read_byte: all bytes were read\n"); + + if (NS_STATE(ns->nxstate) == STATE_READY) + ns_switch_state(ns); + } + + return outb; +} + +static void ns_nand_write_byte(struct nand_chip *chip, u_char byte) +{ + struct nandsim *ns = nand_get_controller_data(chip); + + /* Sanity and correctness checks */ + if (!ns->lines.ce) { + NS_ERR("write_byte: chip is disabled, ignore write\n"); + return; + } + if (ns->lines.ale && ns->lines.cle) { + NS_ERR("write_byte: ALE and CLE pins are high simultaneously, ignore write\n"); + return; + } + + if (ns->lines.cle == 1) { + /* + * The byte written is a command. + */ + + if (byte == NAND_CMD_RESET) { + NS_LOG("reset chip\n"); + ns_switch_to_ready_state(ns, NS_STATUS_OK(ns)); + return; + } + + /* Check that the command byte is correct */ + if (ns_check_command(byte)) { + NS_ERR("write_byte: unknown command %#x\n", (uint)byte); + return; + } + + if (NS_STATE(ns->state) == STATE_DATAOUT_STATUS + || NS_STATE(ns->state) == STATE_DATAOUT) { + int row = ns->regs.row; + + ns_switch_state(ns); + if (byte == NAND_CMD_RNDOUT) + ns->regs.row = row; + } + + /* Check if chip is expecting command */ + if (NS_STATE(ns->nxstate) != STATE_UNKNOWN && !(ns->nxstate & STATE_CMD_MASK)) { + /* Do not warn if only 2 id bytes are read */ + if (!(ns->regs.command == NAND_CMD_READID && + NS_STATE(ns->state) == STATE_DATAOUT_ID && ns->regs.count == 2)) { + /* + * We are in situation when something else (not command) + * was expected but command was input. In this case ignore + * previous command(s)/state(s) and accept the last one. + */ + NS_WARN("write_byte: command (%#x) wasn't expected, expected state is %s, ignore previous states\n", + (uint)byte, + ns_get_state_name(ns->nxstate)); + } + ns_switch_to_ready_state(ns, NS_STATUS_FAILED(ns)); + } + + NS_DBG("command byte corresponding to %s state accepted\n", + ns_get_state_name(ns_get_state_by_command(byte))); + ns->regs.command = byte; + ns_switch_state(ns); + + } else if (ns->lines.ale == 1) { + /* + * The byte written is an address. + */ + + if (NS_STATE(ns->nxstate) == STATE_UNKNOWN) { + + NS_DBG("write_byte: operation isn't known yet, identify it\n"); + + if (ns_find_operation(ns, 1) < 0) + return; + + if ((ns->state & ACTION_MASK) && + ns_do_state_action(ns, ns->state) < 0) { + ns_switch_to_ready_state(ns, + NS_STATUS_FAILED(ns)); + return; + } + + ns->regs.count = 0; + switch (NS_STATE(ns->nxstate)) { + case STATE_ADDR_PAGE: + ns->regs.num = ns->geom.pgaddrbytes; + break; + case STATE_ADDR_SEC: + ns->regs.num = ns->geom.secaddrbytes; + break; + case STATE_ADDR_ZERO: + ns->regs.num = 1; + break; + default: + BUG(); + } + } + + /* Check that chip is expecting address */ + if (!(ns->nxstate & STATE_ADDR_MASK)) { + NS_ERR("write_byte: address (%#x) isn't expected, expected state is %s, switch to STATE_READY\n", + (uint)byte, ns_get_state_name(ns->nxstate)); + ns_switch_to_ready_state(ns, NS_STATUS_FAILED(ns)); + return; + } + + /* Check if this is expected byte */ + if (ns->regs.count == ns->regs.num) { + NS_ERR("write_byte: no more address bytes expected\n"); + ns_switch_to_ready_state(ns, NS_STATUS_FAILED(ns)); + return; + } + + ns_accept_addr_byte(ns, byte); + + ns->regs.count += 1; + + NS_DBG("write_byte: address byte %#x was accepted (%d bytes input, %d expected)\n", + (uint)byte, ns->regs.count, ns->regs.num); + + if (ns->regs.count == ns->regs.num) { + NS_DBG("address (%#x, %#x) is accepted\n", ns->regs.row, ns->regs.column); + ns_switch_state(ns); + } + + } else { + /* + * The byte written is an input data. + */ + + /* Check that chip is expecting data input */ + if (!(ns->state & STATE_DATAIN_MASK)) { + NS_ERR("write_byte: data input (%#x) isn't expected, state is %s, switch to %s\n", + (uint)byte, ns_get_state_name(ns->state), + ns_get_state_name(STATE_READY)); + ns_switch_to_ready_state(ns, NS_STATUS_FAILED(ns)); + return; + } + + /* Check if this is expected byte */ + if (ns->regs.count == ns->regs.num) { + NS_WARN("write_byte: %u input bytes has already been accepted, ignore write\n", + ns->regs.num); + return; + } + + if (ns->busw == 8) { + ns->buf.byte[ns->regs.count] = byte; + ns->regs.count += 1; + } else { + ns->buf.word[ns->regs.count >> 1] = cpu_to_le16((uint16_t)byte); + ns->regs.count += 2; + } + } + + return; +} + +static void ns_nand_write_buf(struct nand_chip *chip, const u_char *buf, + int len) +{ + struct nandsim *ns = nand_get_controller_data(chip); + + /* Check that chip is expecting data input */ + if (!(ns->state & STATE_DATAIN_MASK)) { + NS_ERR("write_buf: data input isn't expected, state is %s, switch to STATE_READY\n", + ns_get_state_name(ns->state)); + ns_switch_to_ready_state(ns, NS_STATUS_FAILED(ns)); + return; + } + + /* Check if these are expected bytes */ + if (ns->regs.count + len > ns->regs.num) { + NS_ERR("write_buf: too many input bytes\n"); + ns_switch_to_ready_state(ns, NS_STATUS_FAILED(ns)); + return; + } + + memcpy(ns->buf.byte + ns->regs.count, buf, len); + ns->regs.count += len; + + if (ns->regs.count == ns->regs.num) { + NS_DBG("write_buf: %d bytes were written\n", ns->regs.count); + } +} + +static void ns_nand_read_buf(struct nand_chip *chip, u_char *buf, int len) +{ + struct nandsim *ns = nand_get_controller_data(chip); + + /* Sanity and correctness checks */ + if (!ns->lines.ce) { + NS_ERR("read_buf: chip is disabled\n"); + return; + } + if (ns->lines.ale || ns->lines.cle) { + NS_ERR("read_buf: ALE or CLE pin is high\n"); + return; + } + if (!(ns->state & STATE_DATAOUT_MASK)) { + NS_WARN("read_buf: unexpected data output cycle, current state is %s\n", + ns_get_state_name(ns->state)); + return; + } + + if (NS_STATE(ns->state) != STATE_DATAOUT) { + int i; + + for (i = 0; i < len; i++) + buf[i] = ns_nand_read_byte(chip); + + return; + } + + /* Check if these are expected bytes */ + if (ns->regs.count + len > ns->regs.num) { + NS_ERR("read_buf: too many bytes to read\n"); + ns_switch_to_ready_state(ns, NS_STATUS_FAILED(ns)); + return; + } + + memcpy(buf, ns->buf.byte + ns->regs.count, len); + ns->regs.count += len; + + if (ns->regs.count == ns->regs.num) { + if (NS_STATE(ns->nxstate) == STATE_READY) + ns_switch_state(ns); + } + + return; +} + +static int ns_exec_op(struct nand_chip *chip, const struct nand_operation *op, + bool check_only) +{ + int i; + unsigned int op_id; + const struct nand_op_instr *instr = NULL; + struct nandsim *ns = nand_get_controller_data(chip); + + if (check_only) { + /* The current implementation of nandsim needs to know the + * ongoing operation when performing the address cycles. This + * means it cannot make the difference between a regular read + * and a continuous read. Hence, this hack to manually refuse + * supporting sequential cached operations. + */ + for (op_id = 0; op_id < op->ninstrs; op_id++) { + instr = &op->instrs[op_id]; + if (instr->type == NAND_OP_CMD_INSTR && + (instr->ctx.cmd.opcode == NAND_CMD_READCACHEEND || + instr->ctx.cmd.opcode == NAND_CMD_READCACHESEQ)) + return -EOPNOTSUPP; + } + + return 0; + } + + ns->lines.ce = 1; + + for (op_id = 0; op_id < op->ninstrs; op_id++) { + instr = &op->instrs[op_id]; + ns->lines.cle = 0; + ns->lines.ale = 0; + + switch (instr->type) { + case NAND_OP_CMD_INSTR: + ns->lines.cle = 1; + ns_nand_write_byte(chip, instr->ctx.cmd.opcode); + break; + case NAND_OP_ADDR_INSTR: + ns->lines.ale = 1; + for (i = 0; i < instr->ctx.addr.naddrs; i++) + ns_nand_write_byte(chip, instr->ctx.addr.addrs[i]); + break; + case NAND_OP_DATA_IN_INSTR: + ns_nand_read_buf(chip, instr->ctx.data.buf.in, instr->ctx.data.len); + break; + case NAND_OP_DATA_OUT_INSTR: + ns_nand_write_buf(chip, instr->ctx.data.buf.out, instr->ctx.data.len); + break; + case NAND_OP_WAITRDY_INSTR: + /* we are always ready */ + break; + } + } + + return 0; +} + +static int ns_attach_chip(struct nand_chip *chip) +{ + unsigned int eccsteps, eccbytes; + + chip->ecc.engine_type = NAND_ECC_ENGINE_TYPE_SOFT; + chip->ecc.algo = bch ? NAND_ECC_ALGO_BCH : NAND_ECC_ALGO_HAMMING; + + if (!bch) + return 0; + + if (!IS_ENABLED(CONFIG_MTD_NAND_ECC_SW_BCH)) { + NS_ERR("BCH ECC support is disabled\n"); + return -EINVAL; + } + + /* Use 512-byte ecc blocks */ + eccsteps = nsmtd->writesize / 512; + eccbytes = ((bch * 13) + 7) / 8; + + /* Do not bother supporting small page devices */ + if (nsmtd->oobsize < 64 || !eccsteps) { + NS_ERR("BCH not available on small page devices\n"); + return -EINVAL; + } + + if (((eccbytes * eccsteps) + 2) > nsmtd->oobsize) { + NS_ERR("Invalid BCH value %u\n", bch); + return -EINVAL; + } + + chip->ecc.size = 512; + chip->ecc.strength = bch; + chip->ecc.bytes = eccbytes; + + NS_INFO("Using %u-bit/%u bytes BCH ECC\n", bch, chip->ecc.size); + + return 0; +} + +static const struct nand_controller_ops ns_controller_ops = { + .attach_chip = ns_attach_chip, + .exec_op = ns_exec_op, +}; + +/* + * Module initialization function + */ +static int __init ns_init_module(void) +{ + struct list_head *pos, *n; + struct nand_chip *chip; + struct nandsim *ns; + int ret; + + if (bus_width != 8 && bus_width != 16) { + NS_ERR("wrong bus width (%d), use only 8 or 16\n", bus_width); + return -EINVAL; + } + + ns = kzalloc(sizeof(struct nandsim), GFP_KERNEL); + if (!ns) { + NS_ERR("unable to allocate core structures.\n"); + return -ENOMEM; + } + chip = &ns->chip; + nsmtd = nand_to_mtd(chip); + nand_set_controller_data(chip, (void *)ns); + + /* The NAND_SKIP_BBTSCAN option is necessary for 'overridesize' */ + /* and 'badblocks' parameters to work */ + chip->options |= NAND_SKIP_BBTSCAN; + + switch (bbt) { + case 2: + chip->bbt_options |= NAND_BBT_NO_OOB; + fallthrough; + case 1: + chip->bbt_options |= NAND_BBT_USE_FLASH; + fallthrough; + case 0: + break; + default: + NS_ERR("bbt has to be 0..2\n"); + ret = -EINVAL; + goto free_ns_struct; + } + /* + * Perform minimum nandsim structure initialization to handle + * the initial ID read command correctly + */ + if (id_bytes[6] != 0xFF || id_bytes[7] != 0xFF) + ns->geom.idbytes = 8; + else if (id_bytes[4] != 0xFF || id_bytes[5] != 0xFF) + ns->geom.idbytes = 6; + else if (id_bytes[2] != 0xFF || id_bytes[3] != 0xFF) + ns->geom.idbytes = 4; + else + ns->geom.idbytes = 2; + ns->regs.status = NS_STATUS_OK(ns); + ns->nxstate = STATE_UNKNOWN; + ns->options |= OPT_PAGE512; /* temporary value */ + memcpy(ns->ids, id_bytes, sizeof(ns->ids)); + if (bus_width == 16) { + ns->busw = 16; + chip->options |= NAND_BUSWIDTH_16; + } + + nsmtd->owner = THIS_MODULE; + + ret = ns_parse_weakblocks(); + if (ret) + goto free_ns_struct; + + ret = ns_parse_weakpages(); + if (ret) + goto free_wb_list; + + ret = ns_parse_gravepages(); + if (ret) + goto free_wp_list; + + nand_controller_init(&ns->base); + ns->base.ops = &ns_controller_ops; + chip->controller = &ns->base; + + ret = nand_scan(chip, 1); + if (ret) { + NS_ERR("Could not scan NAND Simulator device\n"); + goto free_gp_list; + } + + if (overridesize) { + uint64_t new_size = (uint64_t)nsmtd->erasesize << overridesize; + struct nand_memory_organization *memorg; + u64 targetsize; + + memorg = nanddev_get_memorg(&chip->base); + + if (new_size >> overridesize != nsmtd->erasesize) { + NS_ERR("overridesize is too big\n"); + ret = -EINVAL; + goto cleanup_nand; + } + + /* N.B. This relies on nand_scan not doing anything with the size before we change it */ + nsmtd->size = new_size; + memorg->eraseblocks_per_lun = 1 << overridesize; + targetsize = nanddev_target_size(&chip->base); + chip->chip_shift = ffs(nsmtd->erasesize) + overridesize - 1; + chip->pagemask = (targetsize >> chip->page_shift) - 1; + } + + ret = ns_setup_wear_reporting(nsmtd); + if (ret) + goto cleanup_nand; + + ret = ns_init(nsmtd); + if (ret) + goto free_ebw; + + ret = nand_create_bbt(chip); + if (ret) + goto free_ns_object; + + ret = ns_parse_badblocks(ns, nsmtd); + if (ret) + goto free_ns_object; + + /* Register NAND partitions */ + ret = mtd_device_register(nsmtd, &ns->partitions[0], ns->nbparts); + if (ret) + goto free_ns_object; + + ret = ns_debugfs_create(ns); + if (ret) + goto unregister_mtd; + + return 0; + +unregister_mtd: + WARN_ON(mtd_device_unregister(nsmtd)); +free_ns_object: + ns_free(ns); +free_ebw: + kfree(erase_block_wear); +cleanup_nand: + nand_cleanup(chip); +free_gp_list: + list_for_each_safe(pos, n, &grave_pages) { + list_del(pos); + kfree(list_entry(pos, struct grave_page, list)); + } +free_wp_list: + list_for_each_safe(pos, n, &weak_pages) { + list_del(pos); + kfree(list_entry(pos, struct weak_page, list)); + } +free_wb_list: + list_for_each_safe(pos, n, &weak_blocks) { + list_del(pos); + kfree(list_entry(pos, struct weak_block, list)); + } +free_ns_struct: + kfree(ns); + + return ret; +} + +module_init(ns_init_module); + +/* + * Module clean-up function + */ +static void __exit ns_cleanup_module(void) +{ + struct nand_chip *chip = mtd_to_nand(nsmtd); + struct nandsim *ns = nand_get_controller_data(chip); + struct list_head *pos, *n; + + ns_debugfs_remove(ns); + WARN_ON(mtd_device_unregister(nsmtd)); + ns_free(ns); + kfree(erase_block_wear); + nand_cleanup(chip); + + list_for_each_safe(pos, n, &grave_pages) { + list_del(pos); + kfree(list_entry(pos, struct grave_page, list)); + } + + list_for_each_safe(pos, n, &weak_pages) { + list_del(pos); + kfree(list_entry(pos, struct weak_page, list)); + } + + list_for_each_safe(pos, n, &weak_blocks) { + list_del(pos); + kfree(list_entry(pos, struct weak_block, list)); + } + + kfree(ns); +} + +module_exit(ns_cleanup_module); + +MODULE_LICENSE ("GPL"); +MODULE_AUTHOR ("Artem B. Bityuckiy"); +MODULE_DESCRIPTION ("The NAND flash simulator"); diff --git a/drivers/mtd/nand/raw/ndfc.c b/drivers/mtd/nand/raw/ndfc.c new file mode 100644 index 0000000000..3bb32a7c6d --- /dev/null +++ b/drivers/mtd/nand/raw/ndfc.c @@ -0,0 +1,276 @@ +// SPDX-License-Identifier: GPL-2.0-or-later +/* + * Overview: + * Platform independent driver for NDFC (NanD Flash Controller) + * integrated into EP440 cores + * + * Ported to an OF platform driver by Sean MacLennan + * + * The NDFC supports multiple chips, but this driver only supports a + * single chip since I do not have access to any boards with + * multiple chips. + * + * Author: Thomas Gleixner + * + * Copyright 2006 IBM + * Copyright 2008 PIKA Technologies + * Sean MacLennan <smaclennan@pikatech.com> + */ +#include <linux/module.h> +#include <linux/mtd/rawnand.h> +#include <linux/mtd/partitions.h> +#include <linux/mtd/ndfc.h> +#include <linux/slab.h> +#include <linux/mtd/mtd.h> +#include <linux/of.h> +#include <linux/of_address.h> +#include <linux/platform_device.h> +#include <asm/io.h> + +#define NDFC_MAX_CS 4 + +struct ndfc_controller { + struct platform_device *ofdev; + void __iomem *ndfcbase; + struct nand_chip chip; + int chip_select; + struct nand_controller ndfc_control; +}; + +static struct ndfc_controller ndfc_ctrl[NDFC_MAX_CS]; + +static void ndfc_select_chip(struct nand_chip *nchip, int chip) +{ + uint32_t ccr; + struct ndfc_controller *ndfc = nand_get_controller_data(nchip); + + ccr = in_be32(ndfc->ndfcbase + NDFC_CCR); + if (chip >= 0) { + ccr &= ~NDFC_CCR_BS_MASK; + ccr |= NDFC_CCR_BS(chip + ndfc->chip_select); + } else + ccr |= NDFC_CCR_RESET_CE; + out_be32(ndfc->ndfcbase + NDFC_CCR, ccr); +} + +static void ndfc_hwcontrol(struct nand_chip *chip, int cmd, unsigned int ctrl) +{ + struct ndfc_controller *ndfc = nand_get_controller_data(chip); + + if (cmd == NAND_CMD_NONE) + return; + + if (ctrl & NAND_CLE) + writel(cmd & 0xFF, ndfc->ndfcbase + NDFC_CMD); + else + writel(cmd & 0xFF, ndfc->ndfcbase + NDFC_ALE); +} + +static int ndfc_ready(struct nand_chip *chip) +{ + struct ndfc_controller *ndfc = nand_get_controller_data(chip); + + return in_be32(ndfc->ndfcbase + NDFC_STAT) & NDFC_STAT_IS_READY; +} + +static void ndfc_enable_hwecc(struct nand_chip *chip, int mode) +{ + uint32_t ccr; + struct ndfc_controller *ndfc = nand_get_controller_data(chip); + + ccr = in_be32(ndfc->ndfcbase + NDFC_CCR); + ccr |= NDFC_CCR_RESET_ECC; + out_be32(ndfc->ndfcbase + NDFC_CCR, ccr); + wmb(); +} + +static int ndfc_calculate_ecc(struct nand_chip *chip, + const u_char *dat, u_char *ecc_code) +{ + struct ndfc_controller *ndfc = nand_get_controller_data(chip); + uint32_t ecc; + uint8_t *p = (uint8_t *)&ecc; + + wmb(); + ecc = in_be32(ndfc->ndfcbase + NDFC_ECC); + /* The NDFC uses Smart Media (SMC) bytes order */ + ecc_code[0] = p[1]; + ecc_code[1] = p[2]; + ecc_code[2] = p[3]; + + return 0; +} + +/* + * Speedups for buffer read/write/verify + * + * NDFC allows 32bit read/write of data. So we can speed up the buffer + * functions. No further checking, as nand_base will always read/write + * page aligned. + */ +static void ndfc_read_buf(struct nand_chip *chip, uint8_t *buf, int len) +{ + struct ndfc_controller *ndfc = nand_get_controller_data(chip); + uint32_t *p = (uint32_t *) buf; + + for(;len > 0; len -= 4) + *p++ = in_be32(ndfc->ndfcbase + NDFC_DATA); +} + +static void ndfc_write_buf(struct nand_chip *chip, const uint8_t *buf, int len) +{ + struct ndfc_controller *ndfc = nand_get_controller_data(chip); + uint32_t *p = (uint32_t *) buf; + + for(;len > 0; len -= 4) + out_be32(ndfc->ndfcbase + NDFC_DATA, *p++); +} + +/* + * Initialize chip structure + */ +static int ndfc_chip_init(struct ndfc_controller *ndfc, + struct device_node *node) +{ + struct device_node *flash_np; + struct nand_chip *chip = &ndfc->chip; + struct mtd_info *mtd = nand_to_mtd(chip); + int ret; + + chip->legacy.IO_ADDR_R = ndfc->ndfcbase + NDFC_DATA; + chip->legacy.IO_ADDR_W = ndfc->ndfcbase + NDFC_DATA; + chip->legacy.cmd_ctrl = ndfc_hwcontrol; + chip->legacy.dev_ready = ndfc_ready; + chip->legacy.select_chip = ndfc_select_chip; + chip->legacy.chip_delay = 50; + chip->controller = &ndfc->ndfc_control; + chip->legacy.read_buf = ndfc_read_buf; + chip->legacy.write_buf = ndfc_write_buf; + chip->ecc.correct = rawnand_sw_hamming_correct; + chip->ecc.hwctl = ndfc_enable_hwecc; + chip->ecc.calculate = ndfc_calculate_ecc; + chip->ecc.engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST; + chip->ecc.size = 256; + chip->ecc.bytes = 3; + chip->ecc.strength = 1; + nand_set_controller_data(chip, ndfc); + + mtd->dev.parent = &ndfc->ofdev->dev; + + flash_np = of_get_next_child(node, NULL); + if (!flash_np) + return -ENODEV; + nand_set_flash_node(chip, flash_np); + + mtd->name = kasprintf(GFP_KERNEL, "%s.%pOFn", dev_name(&ndfc->ofdev->dev), + flash_np); + if (!mtd->name) { + ret = -ENOMEM; + goto err; + } + + ret = nand_scan(chip, 1); + if (ret) + goto err; + + ret = mtd_device_register(mtd, NULL, 0); + +err: + of_node_put(flash_np); + if (ret) + kfree(mtd->name); + return ret; +} + +static int ndfc_probe(struct platform_device *ofdev) +{ + struct ndfc_controller *ndfc; + const __be32 *reg; + u32 ccr; + u32 cs; + int err, len; + + /* Read the reg property to get the chip select */ + reg = of_get_property(ofdev->dev.of_node, "reg", &len); + if (reg == NULL || len != 12) { + dev_err(&ofdev->dev, "unable read reg property (%d)\n", len); + return -ENOENT; + } + + cs = be32_to_cpu(reg[0]); + if (cs >= NDFC_MAX_CS) { + dev_err(&ofdev->dev, "invalid CS number (%d)\n", cs); + return -EINVAL; + } + + ndfc = &ndfc_ctrl[cs]; + ndfc->chip_select = cs; + + nand_controller_init(&ndfc->ndfc_control); + ndfc->ofdev = ofdev; + dev_set_drvdata(&ofdev->dev, ndfc); + + ndfc->ndfcbase = of_iomap(ofdev->dev.of_node, 0); + if (!ndfc->ndfcbase) { + dev_err(&ofdev->dev, "failed to get memory\n"); + return -EIO; + } + + ccr = NDFC_CCR_BS(ndfc->chip_select); + + /* It is ok if ccr does not exist - just default to 0 */ + reg = of_get_property(ofdev->dev.of_node, "ccr", NULL); + if (reg) + ccr |= be32_to_cpup(reg); + + out_be32(ndfc->ndfcbase + NDFC_CCR, ccr); + + /* Set the bank settings if given */ + reg = of_get_property(ofdev->dev.of_node, "bank-settings", NULL); + if (reg) { + int offset = NDFC_BCFG0 + (ndfc->chip_select << 2); + out_be32(ndfc->ndfcbase + offset, be32_to_cpup(reg)); + } + + err = ndfc_chip_init(ndfc, ofdev->dev.of_node); + if (err) { + iounmap(ndfc->ndfcbase); + return err; + } + + return 0; +} + +static void ndfc_remove(struct platform_device *ofdev) +{ + struct ndfc_controller *ndfc = dev_get_drvdata(&ofdev->dev); + struct nand_chip *chip = &ndfc->chip; + struct mtd_info *mtd = nand_to_mtd(chip); + int ret; + + ret = mtd_device_unregister(mtd); + WARN_ON(ret); + nand_cleanup(chip); + kfree(mtd->name); +} + +static const struct of_device_id ndfc_match[] = { + { .compatible = "ibm,ndfc", }, + {} +}; +MODULE_DEVICE_TABLE(of, ndfc_match); + +static struct platform_driver ndfc_driver = { + .driver = { + .name = "ndfc", + .of_match_table = ndfc_match, + }, + .probe = ndfc_probe, + .remove_new = ndfc_remove, +}; + +module_platform_driver(ndfc_driver); + +MODULE_LICENSE("GPL"); +MODULE_AUTHOR("Thomas Gleixner <tglx@linutronix.de>"); +MODULE_DESCRIPTION("OF Platform driver for NDFC"); diff --git a/drivers/mtd/nand/raw/omap2.c b/drivers/mtd/nand/raw/omap2.c new file mode 100644 index 0000000000..c45bef6158 --- /dev/null +++ b/drivers/mtd/nand/raw/omap2.c @@ -0,0 +1,2305 @@ +// SPDX-License-Identifier: GPL-2.0-only +/* + * Copyright © 2004 Texas Instruments, Jian Zhang <jzhang@ti.com> + * Copyright © 2004 Micron Technology Inc. + * Copyright © 2004 David Brownell + */ + +#include <linux/platform_device.h> +#include <linux/dmaengine.h> +#include <linux/dma-mapping.h> +#include <linux/delay.h> +#include <linux/gpio/consumer.h> +#include <linux/module.h> +#include <linux/interrupt.h> +#include <linux/jiffies.h> +#include <linux/sched.h> +#include <linux/mtd/mtd.h> +#include <linux/mtd/nand-ecc-sw-bch.h> +#include <linux/mtd/rawnand.h> +#include <linux/mtd/partitions.h> +#include <linux/omap-dma.h> +#include <linux/iopoll.h> +#include <linux/slab.h> +#include <linux/of.h> +#include <linux/of_platform.h> + +#include <linux/platform_data/elm.h> + +#include <linux/omap-gpmc.h> +#include <linux/platform_data/mtd-nand-omap2.h> + +#define DRIVER_NAME "omap2-nand" +#define OMAP_NAND_TIMEOUT_MS 5000 + +#define NAND_Ecc_P1e (1 << 0) +#define NAND_Ecc_P2e (1 << 1) +#define NAND_Ecc_P4e (1 << 2) +#define NAND_Ecc_P8e (1 << 3) +#define NAND_Ecc_P16e (1 << 4) +#define NAND_Ecc_P32e (1 << 5) +#define NAND_Ecc_P64e (1 << 6) +#define NAND_Ecc_P128e (1 << 7) +#define NAND_Ecc_P256e (1 << 8) +#define NAND_Ecc_P512e (1 << 9) +#define NAND_Ecc_P1024e (1 << 10) +#define NAND_Ecc_P2048e (1 << 11) + +#define NAND_Ecc_P1o (1 << 16) +#define NAND_Ecc_P2o (1 << 17) +#define NAND_Ecc_P4o (1 << 18) +#define NAND_Ecc_P8o (1 << 19) +#define NAND_Ecc_P16o (1 << 20) +#define NAND_Ecc_P32o (1 << 21) +#define NAND_Ecc_P64o (1 << 22) +#define NAND_Ecc_P128o (1 << 23) +#define NAND_Ecc_P256o (1 << 24) +#define NAND_Ecc_P512o (1 << 25) +#define NAND_Ecc_P1024o (1 << 26) +#define NAND_Ecc_P2048o (1 << 27) + +#define TF(value) (value ? 1 : 0) + +#define P2048e(a) (TF(a & NAND_Ecc_P2048e) << 0) +#define P2048o(a) (TF(a & NAND_Ecc_P2048o) << 1) +#define P1e(a) (TF(a & NAND_Ecc_P1e) << 2) +#define P1o(a) (TF(a & NAND_Ecc_P1o) << 3) +#define P2e(a) (TF(a & NAND_Ecc_P2e) << 4) +#define P2o(a) (TF(a & NAND_Ecc_P2o) << 5) +#define P4e(a) (TF(a & NAND_Ecc_P4e) << 6) +#define P4o(a) (TF(a & NAND_Ecc_P4o) << 7) + +#define P8e(a) (TF(a & NAND_Ecc_P8e) << 0) +#define P8o(a) (TF(a & NAND_Ecc_P8o) << 1) +#define P16e(a) (TF(a & NAND_Ecc_P16e) << 2) +#define P16o(a) (TF(a & NAND_Ecc_P16o) << 3) +#define P32e(a) (TF(a & NAND_Ecc_P32e) << 4) +#define P32o(a) (TF(a & NAND_Ecc_P32o) << 5) +#define P64e(a) (TF(a & NAND_Ecc_P64e) << 6) +#define P64o(a) (TF(a & NAND_Ecc_P64o) << 7) + +#define P128e(a) (TF(a & NAND_Ecc_P128e) << 0) +#define P128o(a) (TF(a & NAND_Ecc_P128o) << 1) +#define P256e(a) (TF(a & NAND_Ecc_P256e) << 2) +#define P256o(a) (TF(a & NAND_Ecc_P256o) << 3) +#define P512e(a) (TF(a & NAND_Ecc_P512e) << 4) +#define P512o(a) (TF(a & NAND_Ecc_P512o) << 5) +#define P1024e(a) (TF(a & NAND_Ecc_P1024e) << 6) +#define P1024o(a) (TF(a & NAND_Ecc_P1024o) << 7) + +#define P8e_s(a) (TF(a & NAND_Ecc_P8e) << 0) +#define P8o_s(a) (TF(a & NAND_Ecc_P8o) << 1) +#define P16e_s(a) (TF(a & NAND_Ecc_P16e) << 2) +#define P16o_s(a) (TF(a & NAND_Ecc_P16o) << 3) +#define P1e_s(a) (TF(a & NAND_Ecc_P1e) << 4) +#define P1o_s(a) (TF(a & NAND_Ecc_P1o) << 5) +#define P2e_s(a) (TF(a & NAND_Ecc_P2e) << 6) +#define P2o_s(a) (TF(a & NAND_Ecc_P2o) << 7) + +#define P4e_s(a) (TF(a & NAND_Ecc_P4e) << 0) +#define P4o_s(a) (TF(a & NAND_Ecc_P4o) << 1) + +#define PREFETCH_CONFIG1_CS_SHIFT 24 +#define ECC_CONFIG_CS_SHIFT 1 +#define CS_MASK 0x7 +#define ENABLE_PREFETCH (0x1 << 7) +#define DMA_MPU_MODE_SHIFT 2 +#define ECCSIZE0_SHIFT 12 +#define ECCSIZE1_SHIFT 22 +#define ECC1RESULTSIZE 0x1 +#define ECCCLEAR 0x100 +#define ECC1 0x1 +#define PREFETCH_FIFOTHRESHOLD_MAX 0x40 +#define PREFETCH_FIFOTHRESHOLD(val) ((val) << 8) +#define PREFETCH_STATUS_COUNT(val) (val & 0x00003fff) +#define PREFETCH_STATUS_FIFO_CNT(val) ((val >> 24) & 0x7F) +#define STATUS_BUFF_EMPTY 0x00000001 + +#define SECTOR_BYTES 512 +/* 4 bit padding to make byte aligned, 56 = 52 + 4 */ +#define BCH4_BIT_PAD 4 + +/* GPMC ecc engine settings for read */ +#define BCH_WRAPMODE_1 1 /* BCH wrap mode 1 */ +#define BCH8R_ECC_SIZE0 0x1a /* ecc_size0 = 26 */ +#define BCH8R_ECC_SIZE1 0x2 /* ecc_size1 = 2 */ +#define BCH4R_ECC_SIZE0 0xd /* ecc_size0 = 13 */ +#define BCH4R_ECC_SIZE1 0x3 /* ecc_size1 = 3 */ + +/* GPMC ecc engine settings for write */ +#define BCH_WRAPMODE_6 6 /* BCH wrap mode 6 */ +#define BCH_ECC_SIZE0 0x0 /* ecc_size0 = 0, no oob protection */ +#define BCH_ECC_SIZE1 0x20 /* ecc_size1 = 32 */ + +#define BBM_LEN 2 + +static u_char bch16_vector[] = {0xf5, 0x24, 0x1c, 0xd0, 0x61, 0xb3, 0xf1, 0x55, + 0x2e, 0x2c, 0x86, 0xa3, 0xed, 0x36, 0x1b, 0x78, + 0x48, 0x76, 0xa9, 0x3b, 0x97, 0xd1, 0x7a, 0x93, + 0x07, 0x0e}; +static u_char bch8_vector[] = {0xf3, 0xdb, 0x14, 0x16, 0x8b, 0xd2, 0xbe, 0xcc, + 0xac, 0x6b, 0xff, 0x99, 0x7b}; +static u_char bch4_vector[] = {0x00, 0x6b, 0x31, 0xdd, 0x41, 0xbc, 0x10}; + +struct omap_nand_info { + struct nand_chip nand; + struct platform_device *pdev; + + int gpmc_cs; + bool dev_ready; + enum nand_io xfer_type; + enum omap_ecc ecc_opt; + struct device_node *elm_of_node; + + unsigned long phys_base; + struct completion comp; + struct dma_chan *dma; + int gpmc_irq_fifo; + int gpmc_irq_count; + enum { + OMAP_NAND_IO_READ = 0, /* read */ + OMAP_NAND_IO_WRITE, /* write */ + } iomode; + u_char *buf; + int buf_len; + /* Interface to GPMC */ + void __iomem *fifo; + struct gpmc_nand_regs reg; + struct gpmc_nand_ops *ops; + bool flash_bbt; + /* fields specific for BCHx_HW ECC scheme */ + struct device *elm_dev; + /* NAND ready gpio */ + struct gpio_desc *ready_gpiod; + unsigned int neccpg; + unsigned int nsteps_per_eccpg; + unsigned int eccpg_size; + unsigned int eccpg_bytes; + void (*data_in)(struct nand_chip *chip, void *buf, + unsigned int len, bool force_8bit); + void (*data_out)(struct nand_chip *chip, + const void *buf, unsigned int len, + bool force_8bit); +}; + +static inline struct omap_nand_info *mtd_to_omap(struct mtd_info *mtd) +{ + return container_of(mtd_to_nand(mtd), struct omap_nand_info, nand); +} + +static void omap_nand_data_in(struct nand_chip *chip, void *buf, + unsigned int len, bool force_8bit); + +static void omap_nand_data_out(struct nand_chip *chip, + const void *buf, unsigned int len, + bool force_8bit); + +/** + * omap_prefetch_enable - configures and starts prefetch transfer + * @cs: cs (chip select) number + * @fifo_th: fifo threshold to be used for read/ write + * @dma_mode: dma mode enable (1) or disable (0) + * @u32_count: number of bytes to be transferred + * @is_write: prefetch read(0) or write post(1) mode + * @info: NAND device structure containing platform data + */ +static int omap_prefetch_enable(int cs, int fifo_th, int dma_mode, + unsigned int u32_count, int is_write, struct omap_nand_info *info) +{ + u32 val; + + if (fifo_th > PREFETCH_FIFOTHRESHOLD_MAX) + return -1; + + if (readl(info->reg.gpmc_prefetch_control)) + return -EBUSY; + + /* Set the amount of bytes to be prefetched */ + writel(u32_count, info->reg.gpmc_prefetch_config2); + + /* Set dma/mpu mode, the prefetch read / post write and + * enable the engine. Set which cs is has requested for. + */ + val = ((cs << PREFETCH_CONFIG1_CS_SHIFT) | + PREFETCH_FIFOTHRESHOLD(fifo_th) | ENABLE_PREFETCH | + (dma_mode << DMA_MPU_MODE_SHIFT) | (is_write & 0x1)); + writel(val, info->reg.gpmc_prefetch_config1); + + /* Start the prefetch engine */ + writel(0x1, info->reg.gpmc_prefetch_control); + + return 0; +} + +/* + * omap_prefetch_reset - disables and stops the prefetch engine + */ +static int omap_prefetch_reset(int cs, struct omap_nand_info *info) +{ + u32 config1; + + /* check if the same module/cs is trying to reset */ + config1 = readl(info->reg.gpmc_prefetch_config1); + if (((config1 >> PREFETCH_CONFIG1_CS_SHIFT) & CS_MASK) != cs) + return -EINVAL; + + /* Stop the PFPW engine */ + writel(0x0, info->reg.gpmc_prefetch_control); + + /* Reset/disable the PFPW engine */ + writel(0x0, info->reg.gpmc_prefetch_config1); + + return 0; +} + +/** + * omap_nand_data_in_pref - NAND data in using prefetch engine + */ +static void omap_nand_data_in_pref(struct nand_chip *chip, void *buf, + unsigned int len, bool force_8bit) +{ + struct omap_nand_info *info = mtd_to_omap(nand_to_mtd(chip)); + uint32_t r_count = 0; + int ret = 0; + u32 *p = (u32 *)buf; + unsigned int pref_len; + + if (force_8bit) { + omap_nand_data_in(chip, buf, len, force_8bit); + return; + } + + /* read 32-bit words using prefetch and remaining bytes normally */ + + /* configure and start prefetch transfer */ + pref_len = len - (len & 3); + ret = omap_prefetch_enable(info->gpmc_cs, + PREFETCH_FIFOTHRESHOLD_MAX, 0x0, pref_len, 0x0, info); + if (ret) { + /* prefetch engine is busy, use CPU copy method */ + omap_nand_data_in(chip, buf, len, false); + } else { + do { + r_count = readl(info->reg.gpmc_prefetch_status); + r_count = PREFETCH_STATUS_FIFO_CNT(r_count); + r_count = r_count >> 2; + ioread32_rep(info->fifo, p, r_count); + p += r_count; + pref_len -= r_count << 2; + } while (pref_len); + /* disable and stop the Prefetch engine */ + omap_prefetch_reset(info->gpmc_cs, info); + /* fetch any remaining bytes */ + if (len & 3) + omap_nand_data_in(chip, p, len & 3, false); + } +} + +/** + * omap_nand_data_out_pref - NAND data out using Write Posting engine + */ +static void omap_nand_data_out_pref(struct nand_chip *chip, + const void *buf, unsigned int len, + bool force_8bit) +{ + struct omap_nand_info *info = mtd_to_omap(nand_to_mtd(chip)); + uint32_t w_count = 0; + int i = 0, ret = 0; + u16 *p = (u16 *)buf; + unsigned long tim, limit; + u32 val; + + if (force_8bit) { + omap_nand_data_out(chip, buf, len, force_8bit); + return; + } + + /* take care of subpage writes */ + if (len % 2 != 0) { + writeb(*(u8 *)buf, info->fifo); + p = (u16 *)(buf + 1); + len--; + } + + /* configure and start prefetch transfer */ + ret = omap_prefetch_enable(info->gpmc_cs, + PREFETCH_FIFOTHRESHOLD_MAX, 0x0, len, 0x1, info); + if (ret) { + /* write posting engine is busy, use CPU copy method */ + omap_nand_data_out(chip, buf, len, false); + } else { + while (len) { + w_count = readl(info->reg.gpmc_prefetch_status); + w_count = PREFETCH_STATUS_FIFO_CNT(w_count); + w_count = w_count >> 1; + for (i = 0; (i < w_count) && len; i++, len -= 2) + iowrite16(*p++, info->fifo); + } + /* wait for data to flushed-out before reset the prefetch */ + tim = 0; + limit = (loops_per_jiffy * + msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS)); + do { + cpu_relax(); + val = readl(info->reg.gpmc_prefetch_status); + val = PREFETCH_STATUS_COUNT(val); + } while (val && (tim++ < limit)); + + /* disable and stop the PFPW engine */ + omap_prefetch_reset(info->gpmc_cs, info); + } +} + +/* + * omap_nand_dma_callback: callback on the completion of dma transfer + * @data: pointer to completion data structure + */ +static void omap_nand_dma_callback(void *data) +{ + complete((struct completion *) data); +} + +/* + * omap_nand_dma_transfer: configure and start dma transfer + * @chip: nand chip structure + * @addr: virtual address in RAM of source/destination + * @len: number of data bytes to be transferred + * @is_write: flag for read/write operation + */ +static inline int omap_nand_dma_transfer(struct nand_chip *chip, + const void *addr, unsigned int len, + int is_write) +{ + struct omap_nand_info *info = mtd_to_omap(nand_to_mtd(chip)); + struct dma_async_tx_descriptor *tx; + enum dma_data_direction dir = is_write ? DMA_TO_DEVICE : + DMA_FROM_DEVICE; + struct scatterlist sg; + unsigned long tim, limit; + unsigned n; + int ret; + u32 val; + + if (!virt_addr_valid(addr)) + goto out_copy; + + sg_init_one(&sg, addr, len); + n = dma_map_sg(info->dma->device->dev, &sg, 1, dir); + if (n == 0) { + dev_err(&info->pdev->dev, + "Couldn't DMA map a %d byte buffer\n", len); + goto out_copy; + } + + tx = dmaengine_prep_slave_sg(info->dma, &sg, n, + is_write ? DMA_MEM_TO_DEV : DMA_DEV_TO_MEM, + DMA_PREP_INTERRUPT | DMA_CTRL_ACK); + if (!tx) + goto out_copy_unmap; + + tx->callback = omap_nand_dma_callback; + tx->callback_param = &info->comp; + dmaengine_submit(tx); + + init_completion(&info->comp); + + /* setup and start DMA using dma_addr */ + dma_async_issue_pending(info->dma); + + /* configure and start prefetch transfer */ + ret = omap_prefetch_enable(info->gpmc_cs, + PREFETCH_FIFOTHRESHOLD_MAX, 0x1, len, is_write, info); + if (ret) + /* PFPW engine is busy, use cpu copy method */ + goto out_copy_unmap; + + wait_for_completion(&info->comp); + tim = 0; + limit = (loops_per_jiffy * msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS)); + + do { + cpu_relax(); + val = readl(info->reg.gpmc_prefetch_status); + val = PREFETCH_STATUS_COUNT(val); + } while (val && (tim++ < limit)); + + /* disable and stop the PFPW engine */ + omap_prefetch_reset(info->gpmc_cs, info); + + dma_unmap_sg(info->dma->device->dev, &sg, 1, dir); + return 0; + +out_copy_unmap: + dma_unmap_sg(info->dma->device->dev, &sg, 1, dir); +out_copy: + is_write == 0 ? omap_nand_data_in(chip, (void *)addr, len, false) + : omap_nand_data_out(chip, addr, len, false); + + return 0; +} + +/** + * omap_nand_data_in_dma_pref - NAND data in using DMA and Prefetch + */ +static void omap_nand_data_in_dma_pref(struct nand_chip *chip, void *buf, + unsigned int len, bool force_8bit) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + + if (force_8bit) { + omap_nand_data_in(chip, buf, len, force_8bit); + return; + } + + if (len <= mtd->oobsize) + omap_nand_data_in_pref(chip, buf, len, false); + else + /* start transfer in DMA mode */ + omap_nand_dma_transfer(chip, buf, len, 0x0); +} + +/** + * omap_nand_data_out_dma_pref - NAND data out using DMA and write posting + */ +static void omap_nand_data_out_dma_pref(struct nand_chip *chip, + const void *buf, unsigned int len, + bool force_8bit) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + + if (force_8bit) { + omap_nand_data_out(chip, buf, len, force_8bit); + return; + } + + if (len <= mtd->oobsize) + omap_nand_data_out_pref(chip, buf, len, false); + else + /* start transfer in DMA mode */ + omap_nand_dma_transfer(chip, buf, len, 0x1); +} + +/* + * omap_nand_irq - GPMC irq handler + * @this_irq: gpmc irq number + * @dev: omap_nand_info structure pointer is passed here + */ +static irqreturn_t omap_nand_irq(int this_irq, void *dev) +{ + struct omap_nand_info *info = (struct omap_nand_info *) dev; + u32 bytes; + + bytes = readl(info->reg.gpmc_prefetch_status); + bytes = PREFETCH_STATUS_FIFO_CNT(bytes); + bytes = bytes & 0xFFFC; /* io in multiple of 4 bytes */ + if (info->iomode == OMAP_NAND_IO_WRITE) { /* checks for write io */ + if (this_irq == info->gpmc_irq_count) + goto done; + + if (info->buf_len && (info->buf_len < bytes)) + bytes = info->buf_len; + else if (!info->buf_len) + bytes = 0; + iowrite32_rep(info->fifo, (u32 *)info->buf, + bytes >> 2); + info->buf = info->buf + bytes; + info->buf_len -= bytes; + + } else { + ioread32_rep(info->fifo, (u32 *)info->buf, + bytes >> 2); + info->buf = info->buf + bytes; + + if (this_irq == info->gpmc_irq_count) + goto done; + } + + return IRQ_HANDLED; + +done: + complete(&info->comp); + + disable_irq_nosync(info->gpmc_irq_fifo); + disable_irq_nosync(info->gpmc_irq_count); + + return IRQ_HANDLED; +} + +/* + * omap_nand_data_in_irq_pref - NAND data in using Prefetch and IRQ + */ +static void omap_nand_data_in_irq_pref(struct nand_chip *chip, void *buf, + unsigned int len, bool force_8bit) +{ + struct omap_nand_info *info = mtd_to_omap(nand_to_mtd(chip)); + struct mtd_info *mtd = nand_to_mtd(&info->nand); + int ret = 0; + + if (len <= mtd->oobsize || force_8bit) { + omap_nand_data_in(chip, buf, len, force_8bit); + return; + } + + info->iomode = OMAP_NAND_IO_READ; + info->buf = buf; + init_completion(&info->comp); + + /* configure and start prefetch transfer */ + ret = omap_prefetch_enable(info->gpmc_cs, + PREFETCH_FIFOTHRESHOLD_MAX/2, 0x0, len, 0x0, info); + if (ret) { + /* PFPW engine is busy, use cpu copy method */ + omap_nand_data_in(chip, buf, len, false); + return; + } + + info->buf_len = len; + + enable_irq(info->gpmc_irq_count); + enable_irq(info->gpmc_irq_fifo); + + /* waiting for read to complete */ + wait_for_completion(&info->comp); + + /* disable and stop the PFPW engine */ + omap_prefetch_reset(info->gpmc_cs, info); + return; +} + +/* + * omap_nand_data_out_irq_pref - NAND out using write posting and IRQ + */ +static void omap_nand_data_out_irq_pref(struct nand_chip *chip, + const void *buf, unsigned int len, + bool force_8bit) +{ + struct omap_nand_info *info = mtd_to_omap(nand_to_mtd(chip)); + struct mtd_info *mtd = nand_to_mtd(&info->nand); + int ret = 0; + unsigned long tim, limit; + u32 val; + + if (len <= mtd->oobsize || force_8bit) { + omap_nand_data_out(chip, buf, len, force_8bit); + return; + } + + info->iomode = OMAP_NAND_IO_WRITE; + info->buf = (u_char *) buf; + init_completion(&info->comp); + + /* configure and start prefetch transfer : size=24 */ + ret = omap_prefetch_enable(info->gpmc_cs, + (PREFETCH_FIFOTHRESHOLD_MAX * 3) / 8, 0x0, len, 0x1, info); + if (ret) { + /* PFPW engine is busy, use cpu copy method */ + omap_nand_data_out(chip, buf, len, false); + return; + } + + info->buf_len = len; + + enable_irq(info->gpmc_irq_count); + enable_irq(info->gpmc_irq_fifo); + + /* waiting for write to complete */ + wait_for_completion(&info->comp); + + /* wait for data to flushed-out before reset the prefetch */ + tim = 0; + limit = (loops_per_jiffy * msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS)); + do { + val = readl(info->reg.gpmc_prefetch_status); + val = PREFETCH_STATUS_COUNT(val); + cpu_relax(); + } while (val && (tim++ < limit)); + + /* disable and stop the PFPW engine */ + omap_prefetch_reset(info->gpmc_cs, info); + return; +} + +/** + * gen_true_ecc - This function will generate true ECC value + * @ecc_buf: buffer to store ecc code + * + * This generated true ECC value can be used when correcting + * data read from NAND flash memory core + */ +static void gen_true_ecc(u8 *ecc_buf) +{ + u32 tmp = ecc_buf[0] | (ecc_buf[1] << 16) | + ((ecc_buf[2] & 0xF0) << 20) | ((ecc_buf[2] & 0x0F) << 8); + + ecc_buf[0] = ~(P64o(tmp) | P64e(tmp) | P32o(tmp) | P32e(tmp) | + P16o(tmp) | P16e(tmp) | P8o(tmp) | P8e(tmp)); + ecc_buf[1] = ~(P1024o(tmp) | P1024e(tmp) | P512o(tmp) | P512e(tmp) | + P256o(tmp) | P256e(tmp) | P128o(tmp) | P128e(tmp)); + ecc_buf[2] = ~(P4o(tmp) | P4e(tmp) | P2o(tmp) | P2e(tmp) | P1o(tmp) | + P1e(tmp) | P2048o(tmp) | P2048e(tmp)); +} + +/** + * omap_compare_ecc - Detect (2 bits) and correct (1 bit) error in data + * @ecc_data1: ecc code from nand spare area + * @ecc_data2: ecc code from hardware register obtained from hardware ecc + * @page_data: page data + * + * This function compares two ECC's and indicates if there is an error. + * If the error can be corrected it will be corrected to the buffer. + * If there is no error, %0 is returned. If there is an error but it + * was corrected, %1 is returned. Otherwise, %-1 is returned. + */ +static int omap_compare_ecc(u8 *ecc_data1, /* read from NAND memory */ + u8 *ecc_data2, /* read from register */ + u8 *page_data) +{ + uint i; + u8 tmp0_bit[8], tmp1_bit[8], tmp2_bit[8]; + u8 comp0_bit[8], comp1_bit[8], comp2_bit[8]; + u8 ecc_bit[24]; + u8 ecc_sum = 0; + u8 find_bit = 0; + uint find_byte = 0; + int isEccFF; + + isEccFF = ((*(u32 *)ecc_data1 & 0xFFFFFF) == 0xFFFFFF); + + gen_true_ecc(ecc_data1); + gen_true_ecc(ecc_data2); + + for (i = 0; i <= 2; i++) { + *(ecc_data1 + i) = ~(*(ecc_data1 + i)); + *(ecc_data2 + i) = ~(*(ecc_data2 + i)); + } + + for (i = 0; i < 8; i++) { + tmp0_bit[i] = *ecc_data1 % 2; + *ecc_data1 = *ecc_data1 / 2; + } + + for (i = 0; i < 8; i++) { + tmp1_bit[i] = *(ecc_data1 + 1) % 2; + *(ecc_data1 + 1) = *(ecc_data1 + 1) / 2; + } + + for (i = 0; i < 8; i++) { + tmp2_bit[i] = *(ecc_data1 + 2) % 2; + *(ecc_data1 + 2) = *(ecc_data1 + 2) / 2; + } + + for (i = 0; i < 8; i++) { + comp0_bit[i] = *ecc_data2 % 2; + *ecc_data2 = *ecc_data2 / 2; + } + + for (i = 0; i < 8; i++) { + comp1_bit[i] = *(ecc_data2 + 1) % 2; + *(ecc_data2 + 1) = *(ecc_data2 + 1) / 2; + } + + for (i = 0; i < 8; i++) { + comp2_bit[i] = *(ecc_data2 + 2) % 2; + *(ecc_data2 + 2) = *(ecc_data2 + 2) / 2; + } + + for (i = 0; i < 6; i++) + ecc_bit[i] = tmp2_bit[i + 2] ^ comp2_bit[i + 2]; + + for (i = 0; i < 8; i++) + ecc_bit[i + 6] = tmp0_bit[i] ^ comp0_bit[i]; + + for (i = 0; i < 8; i++) + ecc_bit[i + 14] = tmp1_bit[i] ^ comp1_bit[i]; + + ecc_bit[22] = tmp2_bit[0] ^ comp2_bit[0]; + ecc_bit[23] = tmp2_bit[1] ^ comp2_bit[1]; + + for (i = 0; i < 24; i++) + ecc_sum += ecc_bit[i]; + + switch (ecc_sum) { + case 0: + /* Not reached because this function is not called if + * ECC values are equal + */ + return 0; + + case 1: + /* Uncorrectable error */ + pr_debug("ECC UNCORRECTED_ERROR 1\n"); + return -EBADMSG; + + case 11: + /* UN-Correctable error */ + pr_debug("ECC UNCORRECTED_ERROR B\n"); + return -EBADMSG; + + case 12: + /* Correctable error */ + find_byte = (ecc_bit[23] << 8) + + (ecc_bit[21] << 7) + + (ecc_bit[19] << 6) + + (ecc_bit[17] << 5) + + (ecc_bit[15] << 4) + + (ecc_bit[13] << 3) + + (ecc_bit[11] << 2) + + (ecc_bit[9] << 1) + + ecc_bit[7]; + + find_bit = (ecc_bit[5] << 2) + (ecc_bit[3] << 1) + ecc_bit[1]; + + pr_debug("Correcting single bit ECC error at offset: " + "%d, bit: %d\n", find_byte, find_bit); + + page_data[find_byte] ^= (1 << find_bit); + + return 1; + default: + if (isEccFF) { + if (ecc_data2[0] == 0 && + ecc_data2[1] == 0 && + ecc_data2[2] == 0) + return 0; + } + pr_debug("UNCORRECTED_ERROR default\n"); + return -EBADMSG; + } +} + +/** + * omap_correct_data - Compares the ECC read with HW generated ECC + * @chip: NAND chip object + * @dat: page data + * @read_ecc: ecc read from nand flash + * @calc_ecc: ecc read from HW ECC registers + * + * Compares the ecc read from nand spare area with ECC registers values + * and if ECC's mismatched, it will call 'omap_compare_ecc' for error + * detection and correction. If there are no errors, %0 is returned. If + * there were errors and all of the errors were corrected, the number of + * corrected errors is returned. If uncorrectable errors exist, %-1 is + * returned. + */ +static int omap_correct_data(struct nand_chip *chip, u_char *dat, + u_char *read_ecc, u_char *calc_ecc) +{ + struct omap_nand_info *info = mtd_to_omap(nand_to_mtd(chip)); + int blockCnt = 0, i = 0, ret = 0; + int stat = 0; + + /* Ex NAND_ECC_HW12_2048 */ + if (info->nand.ecc.engine_type == NAND_ECC_ENGINE_TYPE_ON_HOST && + info->nand.ecc.size == 2048) + blockCnt = 4; + else + blockCnt = 1; + + for (i = 0; i < blockCnt; i++) { + if (memcmp(read_ecc, calc_ecc, 3) != 0) { + ret = omap_compare_ecc(read_ecc, calc_ecc, dat); + if (ret < 0) + return ret; + /* keep track of the number of corrected errors */ + stat += ret; + } + read_ecc += 3; + calc_ecc += 3; + dat += 512; + } + return stat; +} + +/** + * omap_calculate_ecc - Generate non-inverted ECC bytes. + * @chip: NAND chip object + * @dat: The pointer to data on which ecc is computed + * @ecc_code: The ecc_code buffer + * + * Using noninverted ECC can be considered ugly since writing a blank + * page ie. padding will clear the ECC bytes. This is no problem as long + * nobody is trying to write data on the seemingly unused page. Reading + * an erased page will produce an ECC mismatch between generated and read + * ECC bytes that has to be dealt with separately. + */ +static int omap_calculate_ecc(struct nand_chip *chip, const u_char *dat, + u_char *ecc_code) +{ + struct omap_nand_info *info = mtd_to_omap(nand_to_mtd(chip)); + u32 val; + + val = readl(info->reg.gpmc_ecc_config); + if (((val >> ECC_CONFIG_CS_SHIFT) & CS_MASK) != info->gpmc_cs) + return -EINVAL; + + /* read ecc result */ + val = readl(info->reg.gpmc_ecc1_result); + *ecc_code++ = val; /* P128e, ..., P1e */ + *ecc_code++ = val >> 16; /* P128o, ..., P1o */ + /* P2048o, P1024o, P512o, P256o, P2048e, P1024e, P512e, P256e */ + *ecc_code++ = ((val >> 8) & 0x0f) | ((val >> 20) & 0xf0); + + return 0; +} + +/** + * omap_enable_hwecc - This function enables the hardware ecc functionality + * @chip: NAND chip object + * @mode: Read/Write mode + */ +static void omap_enable_hwecc(struct nand_chip *chip, int mode) +{ + struct omap_nand_info *info = mtd_to_omap(nand_to_mtd(chip)); + unsigned int dev_width = (chip->options & NAND_BUSWIDTH_16) ? 1 : 0; + u32 val; + + /* clear ecc and enable bits */ + val = ECCCLEAR | ECC1; + writel(val, info->reg.gpmc_ecc_control); + + /* program ecc and result sizes */ + val = ((((info->nand.ecc.size >> 1) - 1) << ECCSIZE1_SHIFT) | + ECC1RESULTSIZE); + writel(val, info->reg.gpmc_ecc_size_config); + + switch (mode) { + case NAND_ECC_READ: + case NAND_ECC_WRITE: + writel(ECCCLEAR | ECC1, info->reg.gpmc_ecc_control); + break; + case NAND_ECC_READSYN: + writel(ECCCLEAR, info->reg.gpmc_ecc_control); + break; + default: + dev_info(&info->pdev->dev, + "error: unrecognized Mode[%d]!\n", mode); + break; + } + + /* (ECC 16 or 8 bit col) | ( CS ) | ECC Enable */ + val = (dev_width << 7) | (info->gpmc_cs << 1) | (0x1); + writel(val, info->reg.gpmc_ecc_config); +} + +/** + * omap_enable_hwecc_bch - Program GPMC to perform BCH ECC calculation + * @chip: NAND chip object + * @mode: Read/Write mode + * + * When using BCH with SW correction (i.e. no ELM), sector size is set + * to 512 bytes and we use BCH_WRAPMODE_6 wrapping mode + * for both reading and writing with: + * eccsize0 = 0 (no additional protected byte in spare area) + * eccsize1 = 32 (skip 32 nibbles = 16 bytes per sector in spare area) + */ +static void __maybe_unused omap_enable_hwecc_bch(struct nand_chip *chip, + int mode) +{ + unsigned int bch_type; + unsigned int dev_width, nsectors; + struct omap_nand_info *info = mtd_to_omap(nand_to_mtd(chip)); + enum omap_ecc ecc_opt = info->ecc_opt; + u32 val, wr_mode; + unsigned int ecc_size1, ecc_size0; + + /* GPMC configurations for calculating ECC */ + switch (ecc_opt) { + case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW: + bch_type = 0; + nsectors = 1; + wr_mode = BCH_WRAPMODE_6; + ecc_size0 = BCH_ECC_SIZE0; + ecc_size1 = BCH_ECC_SIZE1; + break; + case OMAP_ECC_BCH4_CODE_HW: + bch_type = 0; + nsectors = chip->ecc.steps; + if (mode == NAND_ECC_READ) { + wr_mode = BCH_WRAPMODE_1; + ecc_size0 = BCH4R_ECC_SIZE0; + ecc_size1 = BCH4R_ECC_SIZE1; + } else { + wr_mode = BCH_WRAPMODE_6; + ecc_size0 = BCH_ECC_SIZE0; + ecc_size1 = BCH_ECC_SIZE1; + } + break; + case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW: + bch_type = 1; + nsectors = 1; + wr_mode = BCH_WRAPMODE_6; + ecc_size0 = BCH_ECC_SIZE0; + ecc_size1 = BCH_ECC_SIZE1; + break; + case OMAP_ECC_BCH8_CODE_HW: + bch_type = 1; + nsectors = chip->ecc.steps; + if (mode == NAND_ECC_READ) { + wr_mode = BCH_WRAPMODE_1; + ecc_size0 = BCH8R_ECC_SIZE0; + ecc_size1 = BCH8R_ECC_SIZE1; + } else { + wr_mode = BCH_WRAPMODE_6; + ecc_size0 = BCH_ECC_SIZE0; + ecc_size1 = BCH_ECC_SIZE1; + } + break; + case OMAP_ECC_BCH16_CODE_HW: + bch_type = 0x2; + nsectors = chip->ecc.steps; + if (mode == NAND_ECC_READ) { + wr_mode = 0x01; + ecc_size0 = 52; /* ECC bits in nibbles per sector */ + ecc_size1 = 0; /* non-ECC bits in nibbles per sector */ + } else { + wr_mode = 0x01; + ecc_size0 = 0; /* extra bits in nibbles per sector */ + ecc_size1 = 52; /* OOB bits in nibbles per sector */ + } + break; + default: + return; + } + + writel(ECC1, info->reg.gpmc_ecc_control); + + /* Configure ecc size for BCH */ + val = (ecc_size1 << ECCSIZE1_SHIFT) | (ecc_size0 << ECCSIZE0_SHIFT); + writel(val, info->reg.gpmc_ecc_size_config); + + dev_width = (chip->options & NAND_BUSWIDTH_16) ? 1 : 0; + + /* BCH configuration */ + val = ((1 << 16) | /* enable BCH */ + (bch_type << 12) | /* BCH4/BCH8/BCH16 */ + (wr_mode << 8) | /* wrap mode */ + (dev_width << 7) | /* bus width */ + (((nsectors-1) & 0x7) << 4) | /* number of sectors */ + (info->gpmc_cs << 1) | /* ECC CS */ + (0x1)); /* enable ECC */ + + writel(val, info->reg.gpmc_ecc_config); + + /* Clear ecc and enable bits */ + writel(ECCCLEAR | ECC1, info->reg.gpmc_ecc_control); +} + +static u8 bch4_polynomial[] = {0x28, 0x13, 0xcc, 0x39, 0x96, 0xac, 0x7f}; +static u8 bch8_polynomial[] = {0xef, 0x51, 0x2e, 0x09, 0xed, 0x93, 0x9a, 0xc2, + 0x97, 0x79, 0xe5, 0x24, 0xb5}; + +/** + * _omap_calculate_ecc_bch - Generate ECC bytes for one sector + * @mtd: MTD device structure + * @dat: The pointer to data on which ecc is computed + * @ecc_calc: The ecc_code buffer + * @i: The sector number (for a multi sector page) + * + * Support calculating of BCH4/8/16 ECC vectors for one sector + * within a page. Sector number is in @i. + */ +static int _omap_calculate_ecc_bch(struct mtd_info *mtd, + const u_char *dat, u_char *ecc_calc, int i) +{ + struct omap_nand_info *info = mtd_to_omap(mtd); + int eccbytes = info->nand.ecc.bytes; + struct gpmc_nand_regs *gpmc_regs = &info->reg; + u8 *ecc_code; + unsigned long bch_val1, bch_val2, bch_val3, bch_val4; + u32 val; + int j; + + ecc_code = ecc_calc; + switch (info->ecc_opt) { + case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW: + case OMAP_ECC_BCH8_CODE_HW: + bch_val1 = readl(gpmc_regs->gpmc_bch_result0[i]); + bch_val2 = readl(gpmc_regs->gpmc_bch_result1[i]); + bch_val3 = readl(gpmc_regs->gpmc_bch_result2[i]); + bch_val4 = readl(gpmc_regs->gpmc_bch_result3[i]); + *ecc_code++ = (bch_val4 & 0xFF); + *ecc_code++ = ((bch_val3 >> 24) & 0xFF); + *ecc_code++ = ((bch_val3 >> 16) & 0xFF); + *ecc_code++ = ((bch_val3 >> 8) & 0xFF); + *ecc_code++ = (bch_val3 & 0xFF); + *ecc_code++ = ((bch_val2 >> 24) & 0xFF); + *ecc_code++ = ((bch_val2 >> 16) & 0xFF); + *ecc_code++ = ((bch_val2 >> 8) & 0xFF); + *ecc_code++ = (bch_val2 & 0xFF); + *ecc_code++ = ((bch_val1 >> 24) & 0xFF); + *ecc_code++ = ((bch_val1 >> 16) & 0xFF); + *ecc_code++ = ((bch_val1 >> 8) & 0xFF); + *ecc_code++ = (bch_val1 & 0xFF); + break; + case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW: + case OMAP_ECC_BCH4_CODE_HW: + bch_val1 = readl(gpmc_regs->gpmc_bch_result0[i]); + bch_val2 = readl(gpmc_regs->gpmc_bch_result1[i]); + *ecc_code++ = ((bch_val2 >> 12) & 0xFF); + *ecc_code++ = ((bch_val2 >> 4) & 0xFF); + *ecc_code++ = ((bch_val2 & 0xF) << 4) | + ((bch_val1 >> 28) & 0xF); + *ecc_code++ = ((bch_val1 >> 20) & 0xFF); + *ecc_code++ = ((bch_val1 >> 12) & 0xFF); + *ecc_code++ = ((bch_val1 >> 4) & 0xFF); + *ecc_code++ = ((bch_val1 & 0xF) << 4); + break; + case OMAP_ECC_BCH16_CODE_HW: + val = readl(gpmc_regs->gpmc_bch_result6[i]); + ecc_code[0] = ((val >> 8) & 0xFF); + ecc_code[1] = ((val >> 0) & 0xFF); + val = readl(gpmc_regs->gpmc_bch_result5[i]); + ecc_code[2] = ((val >> 24) & 0xFF); + ecc_code[3] = ((val >> 16) & 0xFF); + ecc_code[4] = ((val >> 8) & 0xFF); + ecc_code[5] = ((val >> 0) & 0xFF); + val = readl(gpmc_regs->gpmc_bch_result4[i]); + ecc_code[6] = ((val >> 24) & 0xFF); + ecc_code[7] = ((val >> 16) & 0xFF); + ecc_code[8] = ((val >> 8) & 0xFF); + ecc_code[9] = ((val >> 0) & 0xFF); + val = readl(gpmc_regs->gpmc_bch_result3[i]); + ecc_code[10] = ((val >> 24) & 0xFF); + ecc_code[11] = ((val >> 16) & 0xFF); + ecc_code[12] = ((val >> 8) & 0xFF); + ecc_code[13] = ((val >> 0) & 0xFF); + val = readl(gpmc_regs->gpmc_bch_result2[i]); + ecc_code[14] = ((val >> 24) & 0xFF); + ecc_code[15] = ((val >> 16) & 0xFF); + ecc_code[16] = ((val >> 8) & 0xFF); + ecc_code[17] = ((val >> 0) & 0xFF); + val = readl(gpmc_regs->gpmc_bch_result1[i]); + ecc_code[18] = ((val >> 24) & 0xFF); + ecc_code[19] = ((val >> 16) & 0xFF); + ecc_code[20] = ((val >> 8) & 0xFF); + ecc_code[21] = ((val >> 0) & 0xFF); + val = readl(gpmc_regs->gpmc_bch_result0[i]); + ecc_code[22] = ((val >> 24) & 0xFF); + ecc_code[23] = ((val >> 16) & 0xFF); + ecc_code[24] = ((val >> 8) & 0xFF); + ecc_code[25] = ((val >> 0) & 0xFF); + break; + default: + return -EINVAL; + } + + /* ECC scheme specific syndrome customizations */ + switch (info->ecc_opt) { + case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW: + /* Add constant polynomial to remainder, so that + * ECC of blank pages results in 0x0 on reading back + */ + for (j = 0; j < eccbytes; j++) + ecc_calc[j] ^= bch4_polynomial[j]; + break; + case OMAP_ECC_BCH4_CODE_HW: + /* Set 8th ECC byte as 0x0 for ROM compatibility */ + ecc_calc[eccbytes - 1] = 0x0; + break; + case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW: + /* Add constant polynomial to remainder, so that + * ECC of blank pages results in 0x0 on reading back + */ + for (j = 0; j < eccbytes; j++) + ecc_calc[j] ^= bch8_polynomial[j]; + break; + case OMAP_ECC_BCH8_CODE_HW: + /* Set 14th ECC byte as 0x0 for ROM compatibility */ + ecc_calc[eccbytes - 1] = 0x0; + break; + case OMAP_ECC_BCH16_CODE_HW: + break; + default: + return -EINVAL; + } + + return 0; +} + +/** + * omap_calculate_ecc_bch_sw - ECC generator for sector for SW based correction + * @chip: NAND chip object + * @dat: The pointer to data on which ecc is computed + * @ecc_calc: Buffer storing the calculated ECC bytes + * + * Support calculating of BCH4/8/16 ECC vectors for one sector. This is used + * when SW based correction is required as ECC is required for one sector + * at a time. + */ +static int omap_calculate_ecc_bch_sw(struct nand_chip *chip, + const u_char *dat, u_char *ecc_calc) +{ + return _omap_calculate_ecc_bch(nand_to_mtd(chip), dat, ecc_calc, 0); +} + +/** + * omap_calculate_ecc_bch_multi - Generate ECC for multiple sectors + * @mtd: MTD device structure + * @dat: The pointer to data on which ecc is computed + * @ecc_calc: Buffer storing the calculated ECC bytes + * + * Support calculating of BCH4/8/16 ecc vectors for the entire page in one go. + */ +static int omap_calculate_ecc_bch_multi(struct mtd_info *mtd, + const u_char *dat, u_char *ecc_calc) +{ + struct omap_nand_info *info = mtd_to_omap(mtd); + int eccbytes = info->nand.ecc.bytes; + unsigned long nsectors; + int i, ret; + + nsectors = ((readl(info->reg.gpmc_ecc_config) >> 4) & 0x7) + 1; + for (i = 0; i < nsectors; i++) { + ret = _omap_calculate_ecc_bch(mtd, dat, ecc_calc, i); + if (ret) + return ret; + + ecc_calc += eccbytes; + } + + return 0; +} + +/** + * erased_sector_bitflips - count bit flips + * @data: data sector buffer + * @oob: oob buffer + * @info: omap_nand_info + * + * Check the bit flips in erased page falls below correctable level. + * If falls below, report the page as erased with correctable bit + * flip, else report as uncorrectable page. + */ +static int erased_sector_bitflips(u_char *data, u_char *oob, + struct omap_nand_info *info) +{ + int flip_bits = 0, i; + + for (i = 0; i < info->nand.ecc.size; i++) { + flip_bits += hweight8(~data[i]); + if (flip_bits > info->nand.ecc.strength) + return 0; + } + + for (i = 0; i < info->nand.ecc.bytes - 1; i++) { + flip_bits += hweight8(~oob[i]); + if (flip_bits > info->nand.ecc.strength) + return 0; + } + + /* + * Bit flips falls in correctable level. + * Fill data area with 0xFF + */ + if (flip_bits) { + memset(data, 0xFF, info->nand.ecc.size); + memset(oob, 0xFF, info->nand.ecc.bytes); + } + + return flip_bits; +} + +/** + * omap_elm_correct_data - corrects page data area in case error reported + * @chip: NAND chip object + * @data: page data + * @read_ecc: ecc read from nand flash + * @calc_ecc: ecc read from HW ECC registers + * + * Calculated ecc vector reported as zero in case of non-error pages. + * In case of non-zero ecc vector, first filter out erased-pages, and + * then process data via ELM to detect bit-flips. + */ +static int omap_elm_correct_data(struct nand_chip *chip, u_char *data, + u_char *read_ecc, u_char *calc_ecc) +{ + struct omap_nand_info *info = mtd_to_omap(nand_to_mtd(chip)); + struct nand_ecc_ctrl *ecc = &info->nand.ecc; + int eccsteps = info->nsteps_per_eccpg; + int i , j, stat = 0; + int eccflag, actual_eccbytes; + struct elm_errorvec err_vec[ERROR_VECTOR_MAX]; + u_char *ecc_vec = calc_ecc; + u_char *spare_ecc = read_ecc; + u_char *erased_ecc_vec; + u_char *buf; + int bitflip_count; + bool is_error_reported = false; + u32 bit_pos, byte_pos, error_max, pos; + int err; + + switch (info->ecc_opt) { + case OMAP_ECC_BCH4_CODE_HW: + /* omit 7th ECC byte reserved for ROM code compatibility */ + actual_eccbytes = ecc->bytes - 1; + erased_ecc_vec = bch4_vector; + break; + case OMAP_ECC_BCH8_CODE_HW: + /* omit 14th ECC byte reserved for ROM code compatibility */ + actual_eccbytes = ecc->bytes - 1; + erased_ecc_vec = bch8_vector; + break; + case OMAP_ECC_BCH16_CODE_HW: + actual_eccbytes = ecc->bytes; + erased_ecc_vec = bch16_vector; + break; + default: + dev_err(&info->pdev->dev, "invalid driver configuration\n"); + return -EINVAL; + } + + /* Initialize elm error vector to zero */ + memset(err_vec, 0, sizeof(err_vec)); + + for (i = 0; i < eccsteps ; i++) { + eccflag = 0; /* initialize eccflag */ + + /* + * Check any error reported, + * In case of error, non zero ecc reported. + */ + for (j = 0; j < actual_eccbytes; j++) { + if (calc_ecc[j] != 0) { + eccflag = 1; /* non zero ecc, error present */ + break; + } + } + + if (eccflag == 1) { + if (memcmp(calc_ecc, erased_ecc_vec, + actual_eccbytes) == 0) { + /* + * calc_ecc[] matches pattern for ECC(all 0xff) + * so this is definitely an erased-page + */ + } else { + buf = &data[info->nand.ecc.size * i]; + /* + * count number of 0-bits in read_buf. + * This check can be removed once a similar + * check is introduced in generic NAND driver + */ + bitflip_count = erased_sector_bitflips( + buf, read_ecc, info); + if (bitflip_count) { + /* + * number of 0-bits within ECC limits + * So this may be an erased-page + */ + stat += bitflip_count; + } else { + /* + * Too many 0-bits. It may be a + * - programmed-page, OR + * - erased-page with many bit-flips + * So this page requires check by ELM + */ + err_vec[i].error_reported = true; + is_error_reported = true; + } + } + } + + /* Update the ecc vector */ + calc_ecc += ecc->bytes; + read_ecc += ecc->bytes; + } + + /* Check if any error reported */ + if (!is_error_reported) + return stat; + + /* Decode BCH error using ELM module */ + elm_decode_bch_error_page(info->elm_dev, ecc_vec, err_vec); + + err = 0; + for (i = 0; i < eccsteps; i++) { + if (err_vec[i].error_uncorrectable) { + dev_err(&info->pdev->dev, + "uncorrectable bit-flips found\n"); + err = -EBADMSG; + } else if (err_vec[i].error_reported) { + for (j = 0; j < err_vec[i].error_count; j++) { + switch (info->ecc_opt) { + case OMAP_ECC_BCH4_CODE_HW: + /* Add 4 bits to take care of padding */ + pos = err_vec[i].error_loc[j] + + BCH4_BIT_PAD; + break; + case OMAP_ECC_BCH8_CODE_HW: + case OMAP_ECC_BCH16_CODE_HW: + pos = err_vec[i].error_loc[j]; + break; + default: + return -EINVAL; + } + error_max = (ecc->size + actual_eccbytes) * 8; + /* Calculate bit position of error */ + bit_pos = pos % 8; + + /* Calculate byte position of error */ + byte_pos = (error_max - pos - 1) / 8; + + if (pos < error_max) { + if (byte_pos < 512) { + pr_debug("bitflip@dat[%d]=%x\n", + byte_pos, data[byte_pos]); + data[byte_pos] ^= 1 << bit_pos; + } else { + pr_debug("bitflip@oob[%d]=%x\n", + (byte_pos - 512), + spare_ecc[byte_pos - 512]); + spare_ecc[byte_pos - 512] ^= + 1 << bit_pos; + } + } else { + dev_err(&info->pdev->dev, + "invalid bit-flip @ %d:%d\n", + byte_pos, bit_pos); + err = -EBADMSG; + } + } + } + + /* Update number of correctable errors */ + stat = max_t(unsigned int, stat, err_vec[i].error_count); + + /* Update page data with sector size */ + data += ecc->size; + spare_ecc += ecc->bytes; + } + + return (err) ? err : stat; +} + +/** + * omap_write_page_bch - BCH ecc based write page function for entire page + * @chip: nand chip info structure + * @buf: data buffer + * @oob_required: must write chip->oob_poi to OOB + * @page: page + * + * Custom write page method evolved to support multi sector writing in one shot + */ +static int omap_write_page_bch(struct nand_chip *chip, const uint8_t *buf, + int oob_required, int page) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + struct omap_nand_info *info = mtd_to_omap(mtd); + uint8_t *ecc_calc = chip->ecc.calc_buf; + unsigned int eccpg; + int ret; + + ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0); + if (ret) + return ret; + + for (eccpg = 0; eccpg < info->neccpg; eccpg++) { + /* Enable GPMC ecc engine */ + chip->ecc.hwctl(chip, NAND_ECC_WRITE); + + /* Write data */ + info->data_out(chip, buf + (eccpg * info->eccpg_size), + info->eccpg_size, false); + + /* Update ecc vector from GPMC result registers */ + ret = omap_calculate_ecc_bch_multi(mtd, + buf + (eccpg * info->eccpg_size), + ecc_calc); + if (ret) + return ret; + + ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, + chip->oob_poi, + eccpg * info->eccpg_bytes, + info->eccpg_bytes); + if (ret) + return ret; + } + + /* Write ecc vector to OOB area */ + info->data_out(chip, chip->oob_poi, mtd->oobsize, false); + + return nand_prog_page_end_op(chip); +} + +/** + * omap_write_subpage_bch - BCH hardware ECC based subpage write + * @chip: nand chip info structure + * @offset: column address of subpage within the page + * @data_len: data length + * @buf: data buffer + * @oob_required: must write chip->oob_poi to OOB + * @page: page number to write + * + * OMAP optimized subpage write method. + */ +static int omap_write_subpage_bch(struct nand_chip *chip, u32 offset, + u32 data_len, const u8 *buf, + int oob_required, int page) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + struct omap_nand_info *info = mtd_to_omap(mtd); + u8 *ecc_calc = chip->ecc.calc_buf; + int ecc_size = chip->ecc.size; + int ecc_bytes = chip->ecc.bytes; + u32 start_step = offset / ecc_size; + u32 end_step = (offset + data_len - 1) / ecc_size; + unsigned int eccpg; + int step, ret = 0; + + /* + * Write entire page at one go as it would be optimal + * as ECC is calculated by hardware. + * ECC is calculated for all subpages but we choose + * only what we want. + */ + ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0); + if (ret) + return ret; + + for (eccpg = 0; eccpg < info->neccpg; eccpg++) { + /* Enable GPMC ECC engine */ + chip->ecc.hwctl(chip, NAND_ECC_WRITE); + + /* Write data */ + info->data_out(chip, buf + (eccpg * info->eccpg_size), + info->eccpg_size, false); + + for (step = 0; step < info->nsteps_per_eccpg; step++) { + unsigned int base_step = eccpg * info->nsteps_per_eccpg; + const u8 *bufoffs = buf + (eccpg * info->eccpg_size); + + /* Mask ECC of un-touched subpages with 0xFFs */ + if ((step + base_step) < start_step || + (step + base_step) > end_step) + memset(ecc_calc + (step * ecc_bytes), 0xff, + ecc_bytes); + else + ret = _omap_calculate_ecc_bch(mtd, + bufoffs + (step * ecc_size), + ecc_calc + (step * ecc_bytes), + step); + + if (ret) + return ret; + } + + /* + * Copy the calculated ECC for the whole page including the + * masked values (0xFF) corresponding to unwritten subpages. + */ + ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi, + eccpg * info->eccpg_bytes, + info->eccpg_bytes); + if (ret) + return ret; + } + + /* write OOB buffer to NAND device */ + info->data_out(chip, chip->oob_poi, mtd->oobsize, false); + + return nand_prog_page_end_op(chip); +} + +/** + * omap_read_page_bch - BCH ecc based page read function for entire page + * @chip: nand chip info structure + * @buf: buffer to store read data + * @oob_required: caller requires OOB data read to chip->oob_poi + * @page: page number to read + * + * For BCH ecc scheme, GPMC used for syndrome calculation and ELM module + * used for error correction. + * Custom method evolved to support ELM error correction & multi sector + * reading. On reading page data area is read along with OOB data with + * ecc engine enabled. ecc vector updated after read of OOB data. + * For non error pages ecc vector reported as zero. + */ +static int omap_read_page_bch(struct nand_chip *chip, uint8_t *buf, + int oob_required, int page) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + struct omap_nand_info *info = mtd_to_omap(mtd); + uint8_t *ecc_calc = chip->ecc.calc_buf; + uint8_t *ecc_code = chip->ecc.code_buf; + unsigned int max_bitflips = 0, eccpg; + int stat, ret; + + ret = nand_read_page_op(chip, page, 0, NULL, 0); + if (ret) + return ret; + + for (eccpg = 0; eccpg < info->neccpg; eccpg++) { + /* Enable GPMC ecc engine */ + chip->ecc.hwctl(chip, NAND_ECC_READ); + + /* Read data */ + ret = nand_change_read_column_op(chip, eccpg * info->eccpg_size, + buf + (eccpg * info->eccpg_size), + info->eccpg_size, false); + if (ret) + return ret; + + /* Read oob bytes */ + ret = nand_change_read_column_op(chip, + mtd->writesize + BBM_LEN + + (eccpg * info->eccpg_bytes), + chip->oob_poi + BBM_LEN + + (eccpg * info->eccpg_bytes), + info->eccpg_bytes, false); + if (ret) + return ret; + + /* Calculate ecc bytes */ + ret = omap_calculate_ecc_bch_multi(mtd, + buf + (eccpg * info->eccpg_size), + ecc_calc); + if (ret) + return ret; + + ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, + chip->oob_poi, + eccpg * info->eccpg_bytes, + info->eccpg_bytes); + if (ret) + return ret; + + stat = chip->ecc.correct(chip, + buf + (eccpg * info->eccpg_size), + ecc_code, ecc_calc); + if (stat < 0) { + mtd->ecc_stats.failed++; + } else { + mtd->ecc_stats.corrected += stat; + max_bitflips = max_t(unsigned int, max_bitflips, stat); + } + } + + return max_bitflips; +} + +/** + * is_elm_present - checks for presence of ELM module by scanning DT nodes + * @info: NAND device structure containing platform data + * @elm_node: ELM's DT node + */ +static bool is_elm_present(struct omap_nand_info *info, + struct device_node *elm_node) +{ + struct platform_device *pdev; + + /* check whether elm-id is passed via DT */ + if (!elm_node) { + dev_err(&info->pdev->dev, "ELM devicetree node not found\n"); + return false; + } + pdev = of_find_device_by_node(elm_node); + /* check whether ELM device is registered */ + if (!pdev) { + dev_err(&info->pdev->dev, "ELM device not found\n"); + return false; + } + /* ELM module available, now configure it */ + info->elm_dev = &pdev->dev; + return true; +} + +static bool omap2_nand_ecc_check(struct omap_nand_info *info) +{ + bool ecc_needs_bch, ecc_needs_omap_bch, ecc_needs_elm; + + switch (info->ecc_opt) { + case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW: + case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW: + ecc_needs_omap_bch = false; + ecc_needs_bch = true; + ecc_needs_elm = false; + break; + case OMAP_ECC_BCH4_CODE_HW: + case OMAP_ECC_BCH8_CODE_HW: + case OMAP_ECC_BCH16_CODE_HW: + ecc_needs_omap_bch = true; + ecc_needs_bch = false; + ecc_needs_elm = true; + break; + default: + ecc_needs_omap_bch = false; + ecc_needs_bch = false; + ecc_needs_elm = false; + break; + } + + if (ecc_needs_bch && !IS_ENABLED(CONFIG_MTD_NAND_ECC_SW_BCH)) { + dev_err(&info->pdev->dev, + "CONFIG_MTD_NAND_ECC_SW_BCH not enabled\n"); + return false; + } + if (ecc_needs_omap_bch && !IS_ENABLED(CONFIG_MTD_NAND_OMAP_BCH)) { + dev_err(&info->pdev->dev, + "CONFIG_MTD_NAND_OMAP_BCH not enabled\n"); + return false; + } + if (ecc_needs_elm && !is_elm_present(info, info->elm_of_node)) { + dev_err(&info->pdev->dev, "ELM not available\n"); + return false; + } + + return true; +} + +static const char * const nand_xfer_types[] = { + [NAND_OMAP_PREFETCH_POLLED] = "prefetch-polled", + [NAND_OMAP_POLLED] = "polled", + [NAND_OMAP_PREFETCH_DMA] = "prefetch-dma", + [NAND_OMAP_PREFETCH_IRQ] = "prefetch-irq", +}; + +static int omap_get_dt_info(struct device *dev, struct omap_nand_info *info) +{ + struct device_node *child = dev->of_node; + int i; + const char *s; + u32 cs; + + if (of_property_read_u32(child, "reg", &cs) < 0) { + dev_err(dev, "reg not found in DT\n"); + return -EINVAL; + } + + info->gpmc_cs = cs; + + /* detect availability of ELM module. Won't be present pre-OMAP4 */ + info->elm_of_node = of_parse_phandle(child, "ti,elm-id", 0); + if (!info->elm_of_node) { + info->elm_of_node = of_parse_phandle(child, "elm_id", 0); + if (!info->elm_of_node) + dev_dbg(dev, "ti,elm-id not in DT\n"); + } + + /* select ecc-scheme for NAND */ + if (of_property_read_string(child, "ti,nand-ecc-opt", &s)) { + dev_err(dev, "ti,nand-ecc-opt not found\n"); + return -EINVAL; + } + + if (!strcmp(s, "sw")) { + info->ecc_opt = OMAP_ECC_HAM1_CODE_SW; + } else if (!strcmp(s, "ham1") || + !strcmp(s, "hw") || !strcmp(s, "hw-romcode")) { + info->ecc_opt = OMAP_ECC_HAM1_CODE_HW; + } else if (!strcmp(s, "bch4")) { + if (info->elm_of_node) + info->ecc_opt = OMAP_ECC_BCH4_CODE_HW; + else + info->ecc_opt = OMAP_ECC_BCH4_CODE_HW_DETECTION_SW; + } else if (!strcmp(s, "bch8")) { + if (info->elm_of_node) + info->ecc_opt = OMAP_ECC_BCH8_CODE_HW; + else + info->ecc_opt = OMAP_ECC_BCH8_CODE_HW_DETECTION_SW; + } else if (!strcmp(s, "bch16")) { + info->ecc_opt = OMAP_ECC_BCH16_CODE_HW; + } else { + dev_err(dev, "unrecognized value for ti,nand-ecc-opt\n"); + return -EINVAL; + } + + /* select data transfer mode */ + if (!of_property_read_string(child, "ti,nand-xfer-type", &s)) { + for (i = 0; i < ARRAY_SIZE(nand_xfer_types); i++) { + if (!strcasecmp(s, nand_xfer_types[i])) { + info->xfer_type = i; + return 0; + } + } + + dev_err(dev, "unrecognized value for ti,nand-xfer-type\n"); + return -EINVAL; + } + + return 0; +} + +static int omap_ooblayout_ecc(struct mtd_info *mtd, int section, + struct mtd_oob_region *oobregion) +{ + struct omap_nand_info *info = mtd_to_omap(mtd); + struct nand_chip *chip = &info->nand; + int off = BBM_LEN; + + if (info->ecc_opt == OMAP_ECC_HAM1_CODE_HW && + !(chip->options & NAND_BUSWIDTH_16)) + off = 1; + + if (section) + return -ERANGE; + + oobregion->offset = off; + oobregion->length = chip->ecc.total; + + return 0; +} + +static int omap_ooblayout_free(struct mtd_info *mtd, int section, + struct mtd_oob_region *oobregion) +{ + struct omap_nand_info *info = mtd_to_omap(mtd); + struct nand_chip *chip = &info->nand; + int off = BBM_LEN; + + if (info->ecc_opt == OMAP_ECC_HAM1_CODE_HW && + !(chip->options & NAND_BUSWIDTH_16)) + off = 1; + + if (section) + return -ERANGE; + + off += chip->ecc.total; + if (off >= mtd->oobsize) + return -ERANGE; + + oobregion->offset = off; + oobregion->length = mtd->oobsize - off; + + return 0; +} + +static const struct mtd_ooblayout_ops omap_ooblayout_ops = { + .ecc = omap_ooblayout_ecc, + .free = omap_ooblayout_free, +}; + +static int omap_sw_ooblayout_ecc(struct mtd_info *mtd, int section, + struct mtd_oob_region *oobregion) +{ + struct nand_device *nand = mtd_to_nanddev(mtd); + unsigned int nsteps = nanddev_get_ecc_nsteps(nand); + unsigned int ecc_bytes = nanddev_get_ecc_bytes_per_step(nand); + int off = BBM_LEN; + + if (section >= nsteps) + return -ERANGE; + + /* + * When SW correction is employed, one OMAP specific marker byte is + * reserved after each ECC step. + */ + oobregion->offset = off + (section * (ecc_bytes + 1)); + oobregion->length = ecc_bytes; + + return 0; +} + +static int omap_sw_ooblayout_free(struct mtd_info *mtd, int section, + struct mtd_oob_region *oobregion) +{ + struct nand_device *nand = mtd_to_nanddev(mtd); + unsigned int nsteps = nanddev_get_ecc_nsteps(nand); + unsigned int ecc_bytes = nanddev_get_ecc_bytes_per_step(nand); + int off = BBM_LEN; + + if (section) + return -ERANGE; + + /* + * When SW correction is employed, one OMAP specific marker byte is + * reserved after each ECC step. + */ + off += ((ecc_bytes + 1) * nsteps); + if (off >= mtd->oobsize) + return -ERANGE; + + oobregion->offset = off; + oobregion->length = mtd->oobsize - off; + + return 0; +} + +static const struct mtd_ooblayout_ops omap_sw_ooblayout_ops = { + .ecc = omap_sw_ooblayout_ecc, + .free = omap_sw_ooblayout_free, +}; + +static int omap_nand_attach_chip(struct nand_chip *chip) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + struct omap_nand_info *info = mtd_to_omap(mtd); + struct device *dev = &info->pdev->dev; + int min_oobbytes = BBM_LEN; + int elm_bch_strength = -1; + int oobbytes_per_step; + dma_cap_mask_t mask; + int err; + + if (chip->bbt_options & NAND_BBT_USE_FLASH) + chip->bbt_options |= NAND_BBT_NO_OOB; + else + chip->options |= NAND_SKIP_BBTSCAN; + + /* Re-populate low-level callbacks based on xfer modes */ + switch (info->xfer_type) { + case NAND_OMAP_PREFETCH_POLLED: + info->data_in = omap_nand_data_in_pref; + info->data_out = omap_nand_data_out_pref; + break; + + case NAND_OMAP_POLLED: + /* Use nand_base defaults for {read,write}_buf */ + break; + + case NAND_OMAP_PREFETCH_DMA: + dma_cap_zero(mask); + dma_cap_set(DMA_SLAVE, mask); + info->dma = dma_request_chan(dev->parent, "rxtx"); + + if (IS_ERR(info->dma)) { + dev_err(dev, "DMA engine request failed\n"); + return PTR_ERR(info->dma); + } else { + struct dma_slave_config cfg; + + memset(&cfg, 0, sizeof(cfg)); + cfg.src_addr = info->phys_base; + cfg.dst_addr = info->phys_base; + cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; + cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; + cfg.src_maxburst = 16; + cfg.dst_maxburst = 16; + err = dmaengine_slave_config(info->dma, &cfg); + if (err) { + dev_err(dev, + "DMA engine slave config failed: %d\n", + err); + return err; + } + + info->data_in = omap_nand_data_in_dma_pref; + info->data_out = omap_nand_data_out_dma_pref; + } + break; + + case NAND_OMAP_PREFETCH_IRQ: + info->gpmc_irq_fifo = platform_get_irq(info->pdev, 0); + if (info->gpmc_irq_fifo <= 0) + return -ENODEV; + err = devm_request_irq(dev, info->gpmc_irq_fifo, + omap_nand_irq, IRQF_SHARED, + "gpmc-nand-fifo", info); + if (err) { + dev_err(dev, "Requesting IRQ %d, error %d\n", + info->gpmc_irq_fifo, err); + info->gpmc_irq_fifo = 0; + return err; + } + + info->gpmc_irq_count = platform_get_irq(info->pdev, 1); + if (info->gpmc_irq_count <= 0) + return -ENODEV; + err = devm_request_irq(dev, info->gpmc_irq_count, + omap_nand_irq, IRQF_SHARED, + "gpmc-nand-count", info); + if (err) { + dev_err(dev, "Requesting IRQ %d, error %d\n", + info->gpmc_irq_count, err); + info->gpmc_irq_count = 0; + return err; + } + + info->data_in = omap_nand_data_in_irq_pref; + info->data_out = omap_nand_data_out_irq_pref; + break; + + default: + dev_err(dev, "xfer_type %d not supported!\n", info->xfer_type); + return -EINVAL; + } + + if (!omap2_nand_ecc_check(info)) + return -EINVAL; + + /* + * Bail out earlier to let NAND_ECC_ENGINE_TYPE_SOFT code create its own + * ooblayout instead of using ours. + */ + if (info->ecc_opt == OMAP_ECC_HAM1_CODE_SW) { + chip->ecc.engine_type = NAND_ECC_ENGINE_TYPE_SOFT; + chip->ecc.algo = NAND_ECC_ALGO_HAMMING; + return 0; + } + + /* Populate MTD interface based on ECC scheme */ + switch (info->ecc_opt) { + case OMAP_ECC_HAM1_CODE_HW: + dev_info(dev, "nand: using OMAP_ECC_HAM1_CODE_HW\n"); + chip->ecc.engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST; + chip->ecc.bytes = 3; + chip->ecc.size = 512; + chip->ecc.strength = 1; + chip->ecc.calculate = omap_calculate_ecc; + chip->ecc.hwctl = omap_enable_hwecc; + chip->ecc.correct = omap_correct_data; + mtd_set_ooblayout(mtd, &omap_ooblayout_ops); + oobbytes_per_step = chip->ecc.bytes; + + if (!(chip->options & NAND_BUSWIDTH_16)) + min_oobbytes = 1; + + break; + + case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW: + pr_info("nand: using OMAP_ECC_BCH4_CODE_HW_DETECTION_SW\n"); + chip->ecc.engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST; + chip->ecc.size = 512; + chip->ecc.bytes = 7; + chip->ecc.strength = 4; + chip->ecc.hwctl = omap_enable_hwecc_bch; + chip->ecc.correct = rawnand_sw_bch_correct; + chip->ecc.calculate = omap_calculate_ecc_bch_sw; + mtd_set_ooblayout(mtd, &omap_sw_ooblayout_ops); + /* Reserve one byte for the OMAP marker */ + oobbytes_per_step = chip->ecc.bytes + 1; + /* Software BCH library is used for locating errors */ + err = rawnand_sw_bch_init(chip); + if (err) { + dev_err(dev, "Unable to use BCH library\n"); + return err; + } + break; + + case OMAP_ECC_BCH4_CODE_HW: + pr_info("nand: using OMAP_ECC_BCH4_CODE_HW ECC scheme\n"); + chip->ecc.engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST; + chip->ecc.size = 512; + /* 14th bit is kept reserved for ROM-code compatibility */ + chip->ecc.bytes = 7 + 1; + chip->ecc.strength = 4; + chip->ecc.hwctl = omap_enable_hwecc_bch; + chip->ecc.correct = omap_elm_correct_data; + chip->ecc.read_page = omap_read_page_bch; + chip->ecc.write_page = omap_write_page_bch; + chip->ecc.write_subpage = omap_write_subpage_bch; + mtd_set_ooblayout(mtd, &omap_ooblayout_ops); + oobbytes_per_step = chip->ecc.bytes; + elm_bch_strength = BCH4_ECC; + break; + + case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW: + pr_info("nand: using OMAP_ECC_BCH8_CODE_HW_DETECTION_SW\n"); + chip->ecc.engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST; + chip->ecc.size = 512; + chip->ecc.bytes = 13; + chip->ecc.strength = 8; + chip->ecc.hwctl = omap_enable_hwecc_bch; + chip->ecc.correct = rawnand_sw_bch_correct; + chip->ecc.calculate = omap_calculate_ecc_bch_sw; + mtd_set_ooblayout(mtd, &omap_sw_ooblayout_ops); + /* Reserve one byte for the OMAP marker */ + oobbytes_per_step = chip->ecc.bytes + 1; + /* Software BCH library is used for locating errors */ + err = rawnand_sw_bch_init(chip); + if (err) { + dev_err(dev, "unable to use BCH library\n"); + return err; + } + break; + + case OMAP_ECC_BCH8_CODE_HW: + pr_info("nand: using OMAP_ECC_BCH8_CODE_HW ECC scheme\n"); + chip->ecc.engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST; + chip->ecc.size = 512; + /* 14th bit is kept reserved for ROM-code compatibility */ + chip->ecc.bytes = 13 + 1; + chip->ecc.strength = 8; + chip->ecc.hwctl = omap_enable_hwecc_bch; + chip->ecc.correct = omap_elm_correct_data; + chip->ecc.read_page = omap_read_page_bch; + chip->ecc.write_page = omap_write_page_bch; + chip->ecc.write_subpage = omap_write_subpage_bch; + mtd_set_ooblayout(mtd, &omap_ooblayout_ops); + oobbytes_per_step = chip->ecc.bytes; + elm_bch_strength = BCH8_ECC; + break; + + case OMAP_ECC_BCH16_CODE_HW: + pr_info("Using OMAP_ECC_BCH16_CODE_HW ECC scheme\n"); + chip->ecc.engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST; + chip->ecc.size = 512; + chip->ecc.bytes = 26; + chip->ecc.strength = 16; + chip->ecc.hwctl = omap_enable_hwecc_bch; + chip->ecc.correct = omap_elm_correct_data; + chip->ecc.read_page = omap_read_page_bch; + chip->ecc.write_page = omap_write_page_bch; + chip->ecc.write_subpage = omap_write_subpage_bch; + mtd_set_ooblayout(mtd, &omap_ooblayout_ops); + oobbytes_per_step = chip->ecc.bytes; + elm_bch_strength = BCH16_ECC; + break; + default: + dev_err(dev, "Invalid or unsupported ECC scheme\n"); + return -EINVAL; + } + + if (elm_bch_strength >= 0) { + chip->ecc.steps = mtd->writesize / chip->ecc.size; + info->neccpg = chip->ecc.steps / ERROR_VECTOR_MAX; + if (info->neccpg) { + info->nsteps_per_eccpg = ERROR_VECTOR_MAX; + } else { + info->neccpg = 1; + info->nsteps_per_eccpg = chip->ecc.steps; + } + info->eccpg_size = info->nsteps_per_eccpg * chip->ecc.size; + info->eccpg_bytes = info->nsteps_per_eccpg * chip->ecc.bytes; + + err = elm_config(info->elm_dev, elm_bch_strength, + info->nsteps_per_eccpg, chip->ecc.size, + chip->ecc.bytes); + if (err < 0) + return err; + } + + /* Check if NAND device's OOB is enough to store ECC signatures */ + min_oobbytes += (oobbytes_per_step * + (mtd->writesize / chip->ecc.size)); + if (mtd->oobsize < min_oobbytes) { + dev_err(dev, + "Not enough OOB bytes: required = %d, available=%d\n", + min_oobbytes, mtd->oobsize); + return -EINVAL; + } + + return 0; +} + +static void omap_nand_data_in(struct nand_chip *chip, void *buf, + unsigned int len, bool force_8bit) +{ + struct omap_nand_info *info = mtd_to_omap(nand_to_mtd(chip)); + u32 alignment = ((uintptr_t)buf | len) & 3; + + if (force_8bit || (alignment & 1)) + ioread8_rep(info->fifo, buf, len); + else if (alignment & 3) + ioread16_rep(info->fifo, buf, len >> 1); + else + ioread32_rep(info->fifo, buf, len >> 2); +} + +static void omap_nand_data_out(struct nand_chip *chip, + const void *buf, unsigned int len, + bool force_8bit) +{ + struct omap_nand_info *info = mtd_to_omap(nand_to_mtd(chip)); + u32 alignment = ((uintptr_t)buf | len) & 3; + + if (force_8bit || (alignment & 1)) + iowrite8_rep(info->fifo, buf, len); + else if (alignment & 3) + iowrite16_rep(info->fifo, buf, len >> 1); + else + iowrite32_rep(info->fifo, buf, len >> 2); +} + +static int omap_nand_exec_instr(struct nand_chip *chip, + const struct nand_op_instr *instr) +{ + struct omap_nand_info *info = mtd_to_omap(nand_to_mtd(chip)); + unsigned int i; + int ret; + + switch (instr->type) { + case NAND_OP_CMD_INSTR: + iowrite8(instr->ctx.cmd.opcode, + info->reg.gpmc_nand_command); + break; + + case NAND_OP_ADDR_INSTR: + for (i = 0; i < instr->ctx.addr.naddrs; i++) { + iowrite8(instr->ctx.addr.addrs[i], + info->reg.gpmc_nand_address); + } + break; + + case NAND_OP_DATA_IN_INSTR: + info->data_in(chip, instr->ctx.data.buf.in, + instr->ctx.data.len, + instr->ctx.data.force_8bit); + break; + + case NAND_OP_DATA_OUT_INSTR: + info->data_out(chip, instr->ctx.data.buf.out, + instr->ctx.data.len, + instr->ctx.data.force_8bit); + break; + + case NAND_OP_WAITRDY_INSTR: + ret = info->ready_gpiod ? + nand_gpio_waitrdy(chip, info->ready_gpiod, instr->ctx.waitrdy.timeout_ms) : + nand_soft_waitrdy(chip, instr->ctx.waitrdy.timeout_ms); + if (ret) + return ret; + break; + } + + if (instr->delay_ns) + ndelay(instr->delay_ns); + + return 0; +} + +static int omap_nand_exec_op(struct nand_chip *chip, + const struct nand_operation *op, + bool check_only) +{ + unsigned int i; + + if (check_only) + return 0; + + for (i = 0; i < op->ninstrs; i++) { + int ret; + + ret = omap_nand_exec_instr(chip, &op->instrs[i]); + if (ret) + return ret; + } + + return 0; +} + +static const struct nand_controller_ops omap_nand_controller_ops = { + .attach_chip = omap_nand_attach_chip, + .exec_op = omap_nand_exec_op, +}; + +/* Shared among all NAND instances to synchronize access to the ECC Engine */ +static struct nand_controller omap_gpmc_controller; +static bool omap_gpmc_controller_initialized; + +static int omap_nand_probe(struct platform_device *pdev) +{ + struct omap_nand_info *info; + struct mtd_info *mtd; + struct nand_chip *nand_chip; + int err; + struct resource *res; + struct device *dev = &pdev->dev; + void __iomem *vaddr; + + info = devm_kzalloc(&pdev->dev, sizeof(struct omap_nand_info), + GFP_KERNEL); + if (!info) + return -ENOMEM; + + info->pdev = pdev; + + err = omap_get_dt_info(dev, info); + if (err) + return err; + + info->ops = gpmc_omap_get_nand_ops(&info->reg, info->gpmc_cs); + if (!info->ops) { + dev_err(&pdev->dev, "Failed to get GPMC->NAND interface\n"); + return -ENODEV; + } + + nand_chip = &info->nand; + mtd = nand_to_mtd(nand_chip); + mtd->dev.parent = &pdev->dev; + nand_set_flash_node(nand_chip, dev->of_node); + + if (!mtd->name) { + mtd->name = devm_kasprintf(&pdev->dev, GFP_KERNEL, + "omap2-nand.%d", info->gpmc_cs); + if (!mtd->name) { + dev_err(&pdev->dev, "Failed to set MTD name\n"); + return -ENOMEM; + } + } + + vaddr = devm_platform_get_and_ioremap_resource(pdev, 0, &res); + if (IS_ERR(vaddr)) + return PTR_ERR(vaddr); + + info->fifo = vaddr; + info->phys_base = res->start; + + if (!omap_gpmc_controller_initialized) { + omap_gpmc_controller.ops = &omap_nand_controller_ops; + nand_controller_init(&omap_gpmc_controller); + omap_gpmc_controller_initialized = true; + } + + nand_chip->controller = &omap_gpmc_controller; + + info->ready_gpiod = devm_gpiod_get_optional(&pdev->dev, "rb", + GPIOD_IN); + if (IS_ERR(info->ready_gpiod)) { + dev_err(dev, "failed to get ready gpio\n"); + return PTR_ERR(info->ready_gpiod); + } + + if (info->flash_bbt) + nand_chip->bbt_options |= NAND_BBT_USE_FLASH; + + /* default operations */ + info->data_in = omap_nand_data_in; + info->data_out = omap_nand_data_out; + + err = nand_scan(nand_chip, 1); + if (err) + goto return_error; + + err = mtd_device_register(mtd, NULL, 0); + if (err) + goto cleanup_nand; + + platform_set_drvdata(pdev, mtd); + + return 0; + +cleanup_nand: + nand_cleanup(nand_chip); + +return_error: + if (!IS_ERR_OR_NULL(info->dma)) + dma_release_channel(info->dma); + + rawnand_sw_bch_cleanup(nand_chip); + + return err; +} + +static void omap_nand_remove(struct platform_device *pdev) +{ + struct mtd_info *mtd = platform_get_drvdata(pdev); + struct nand_chip *nand_chip = mtd_to_nand(mtd); + struct omap_nand_info *info = mtd_to_omap(mtd); + + rawnand_sw_bch_cleanup(nand_chip); + + if (info->dma) + dma_release_channel(info->dma); + WARN_ON(mtd_device_unregister(mtd)); + nand_cleanup(nand_chip); +} + +/* omap_nand_ids defined in linux/platform_data/mtd-nand-omap2.h */ +MODULE_DEVICE_TABLE(of, omap_nand_ids); + +static struct platform_driver omap_nand_driver = { + .probe = omap_nand_probe, + .remove_new = omap_nand_remove, + .driver = { + .name = DRIVER_NAME, + .of_match_table = omap_nand_ids, + }, +}; + +module_platform_driver(omap_nand_driver); + +MODULE_ALIAS("platform:" DRIVER_NAME); +MODULE_LICENSE("GPL"); +MODULE_DESCRIPTION("Glue layer for NAND flash on TI OMAP boards"); diff --git a/drivers/mtd/nand/raw/omap_elm.c b/drivers/mtd/nand/raw/omap_elm.c new file mode 100644 index 0000000000..4a97d4a764 --- /dev/null +++ b/drivers/mtd/nand/raw/omap_elm.c @@ -0,0 +1,571 @@ +// SPDX-License-Identifier: GPL-2.0-or-later +/* + * Error Location Module + * + * Copyright (C) 2012 Texas Instruments Incorporated - https://www.ti.com/ + */ + +#define DRIVER_NAME "omap-elm" + +#include <linux/platform_device.h> +#include <linux/module.h> +#include <linux/interrupt.h> +#include <linux/io.h> +#include <linux/of.h> +#include <linux/sched.h> +#include <linux/pm_runtime.h> +#include <linux/platform_data/elm.h> + +#define ELM_SYSCONFIG 0x010 +#define ELM_IRQSTATUS 0x018 +#define ELM_IRQENABLE 0x01c +#define ELM_LOCATION_CONFIG 0x020 +#define ELM_PAGE_CTRL 0x080 +#define ELM_SYNDROME_FRAGMENT_0 0x400 +#define ELM_SYNDROME_FRAGMENT_1 0x404 +#define ELM_SYNDROME_FRAGMENT_2 0x408 +#define ELM_SYNDROME_FRAGMENT_3 0x40c +#define ELM_SYNDROME_FRAGMENT_4 0x410 +#define ELM_SYNDROME_FRAGMENT_5 0x414 +#define ELM_SYNDROME_FRAGMENT_6 0x418 +#define ELM_LOCATION_STATUS 0x800 +#define ELM_ERROR_LOCATION_0 0x880 + +/* ELM Interrupt Status Register */ +#define INTR_STATUS_PAGE_VALID BIT(8) + +/* ELM Interrupt Enable Register */ +#define INTR_EN_PAGE_MASK BIT(8) + +/* ELM Location Configuration Register */ +#define ECC_BCH_LEVEL_MASK 0x3 + +/* ELM syndrome */ +#define ELM_SYNDROME_VALID BIT(16) + +/* ELM_LOCATION_STATUS Register */ +#define ECC_CORRECTABLE_MASK BIT(8) +#define ECC_NB_ERRORS_MASK 0x1f + +/* ELM_ERROR_LOCATION_0-15 Registers */ +#define ECC_ERROR_LOCATION_MASK 0x1fff + +#define ELM_ECC_SIZE 0x7ff + +#define SYNDROME_FRAGMENT_REG_SIZE 0x40 +#define ERROR_LOCATION_SIZE 0x100 + +struct elm_registers { + u32 elm_irqenable; + u32 elm_sysconfig; + u32 elm_location_config; + u32 elm_page_ctrl; + u32 elm_syndrome_fragment_6[ERROR_VECTOR_MAX]; + u32 elm_syndrome_fragment_5[ERROR_VECTOR_MAX]; + u32 elm_syndrome_fragment_4[ERROR_VECTOR_MAX]; + u32 elm_syndrome_fragment_3[ERROR_VECTOR_MAX]; + u32 elm_syndrome_fragment_2[ERROR_VECTOR_MAX]; + u32 elm_syndrome_fragment_1[ERROR_VECTOR_MAX]; + u32 elm_syndrome_fragment_0[ERROR_VECTOR_MAX]; +}; + +struct elm_info { + struct device *dev; + void __iomem *elm_base; + struct completion elm_completion; + struct list_head list; + enum bch_ecc bch_type; + struct elm_registers elm_regs; + int ecc_steps; + int ecc_syndrome_size; +}; + +static LIST_HEAD(elm_devices); + +static void elm_write_reg(struct elm_info *info, int offset, u32 val) +{ + writel(val, info->elm_base + offset); +} + +static u32 elm_read_reg(struct elm_info *info, int offset) +{ + return readl(info->elm_base + offset); +} + +/** + * elm_config - Configure ELM module + * @dev: ELM device + * @bch_type: Type of BCH ecc + * @ecc_steps: ECC steps to assign to config + * @ecc_step_size: ECC step size to assign to config + * @ecc_syndrome_size: ECC syndrome size to assign to config + */ +int elm_config(struct device *dev, enum bch_ecc bch_type, + int ecc_steps, int ecc_step_size, int ecc_syndrome_size) +{ + u32 reg_val; + struct elm_info *info = dev_get_drvdata(dev); + + if (!info) { + dev_err(dev, "Unable to configure elm - device not probed?\n"); + return -EPROBE_DEFER; + } + /* ELM cannot detect ECC errors for chunks > 1KB */ + if (ecc_step_size > ((ELM_ECC_SIZE + 1) / 2)) { + dev_err(dev, "unsupported config ecc-size=%d\n", ecc_step_size); + return -EINVAL; + } + /* ELM support 8 error syndrome process */ + if (ecc_steps > ERROR_VECTOR_MAX && ecc_steps % ERROR_VECTOR_MAX) { + dev_err(dev, "unsupported config ecc-step=%d\n", ecc_steps); + return -EINVAL; + } + + reg_val = (bch_type & ECC_BCH_LEVEL_MASK) | (ELM_ECC_SIZE << 16); + elm_write_reg(info, ELM_LOCATION_CONFIG, reg_val); + info->bch_type = bch_type; + info->ecc_steps = ecc_steps; + info->ecc_syndrome_size = ecc_syndrome_size; + + return 0; +} +EXPORT_SYMBOL(elm_config); + +/** + * elm_configure_page_mode - Enable/Disable page mode + * @info: elm info + * @index: index number of syndrome fragment vector + * @enable: enable/disable flag for page mode + * + * Enable page mode for syndrome fragment index + */ +static void elm_configure_page_mode(struct elm_info *info, int index, + bool enable) +{ + u32 reg_val; + + reg_val = elm_read_reg(info, ELM_PAGE_CTRL); + if (enable) + reg_val |= BIT(index); /* enable page mode */ + else + reg_val &= ~BIT(index); /* disable page mode */ + + elm_write_reg(info, ELM_PAGE_CTRL, reg_val); +} + +/** + * elm_load_syndrome - Load ELM syndrome reg + * @info: elm info + * @err_vec: elm error vectors + * @ecc: buffer with calculated ecc + * + * Load syndrome fragment registers with calculated ecc in reverse order. + */ +static void elm_load_syndrome(struct elm_info *info, + struct elm_errorvec *err_vec, u8 *ecc) +{ + int i, offset; + u32 val; + + for (i = 0; i < info->ecc_steps; i++) { + + /* Check error reported */ + if (err_vec[i].error_reported) { + elm_configure_page_mode(info, i, true); + offset = ELM_SYNDROME_FRAGMENT_0 + + SYNDROME_FRAGMENT_REG_SIZE * i; + switch (info->bch_type) { + case BCH8_ECC: + /* syndrome fragment 0 = ecc[9-12B] */ + val = (__force u32)cpu_to_be32(*(u32 *)&ecc[9]); + elm_write_reg(info, offset, val); + + /* syndrome fragment 1 = ecc[5-8B] */ + offset += 4; + val = (__force u32)cpu_to_be32(*(u32 *)&ecc[5]); + elm_write_reg(info, offset, val); + + /* syndrome fragment 2 = ecc[1-4B] */ + offset += 4; + val = (__force u32)cpu_to_be32(*(u32 *)&ecc[1]); + elm_write_reg(info, offset, val); + + /* syndrome fragment 3 = ecc[0B] */ + offset += 4; + val = ecc[0]; + elm_write_reg(info, offset, val); + break; + case BCH4_ECC: + /* syndrome fragment 0 = ecc[20-52b] bits */ + val = ((__force u32)cpu_to_be32(*(u32 *)&ecc[3]) >> 4) | + ((ecc[2] & 0xf) << 28); + elm_write_reg(info, offset, val); + + /* syndrome fragment 1 = ecc[0-20b] bits */ + offset += 4; + val = (__force u32)cpu_to_be32(*(u32 *)&ecc[0]) >> 12; + elm_write_reg(info, offset, val); + break; + case BCH16_ECC: + val = (__force u32)cpu_to_be32(*(u32 *)&ecc[22]); + elm_write_reg(info, offset, val); + offset += 4; + val = (__force u32)cpu_to_be32(*(u32 *)&ecc[18]); + elm_write_reg(info, offset, val); + offset += 4; + val = (__force u32)cpu_to_be32(*(u32 *)&ecc[14]); + elm_write_reg(info, offset, val); + offset += 4; + val = (__force u32)cpu_to_be32(*(u32 *)&ecc[10]); + elm_write_reg(info, offset, val); + offset += 4; + val = (__force u32)cpu_to_be32(*(u32 *)&ecc[6]); + elm_write_reg(info, offset, val); + offset += 4; + val = (__force u32)cpu_to_be32(*(u32 *)&ecc[2]); + elm_write_reg(info, offset, val); + offset += 4; + val = (__force u32)cpu_to_be32(*(u32 *)&ecc[0]) >> 16; + elm_write_reg(info, offset, val); + break; + default: + pr_err("invalid config bch_type\n"); + } + } + + /* Update ecc pointer with ecc byte size */ + ecc += info->ecc_syndrome_size; + } +} + +/** + * elm_start_processing - start elm syndrome processing + * @info: elm info + * @err_vec: elm error vectors + * + * Set syndrome valid bit for syndrome fragment registers for which + * elm syndrome fragment registers are loaded. This enables elm module + * to start processing syndrome vectors. + */ +static void elm_start_processing(struct elm_info *info, + struct elm_errorvec *err_vec) +{ + int i, offset; + u32 reg_val; + + /* + * Set syndrome vector valid, so that ELM module + * will process it for vectors error is reported + */ + for (i = 0; i < info->ecc_steps; i++) { + if (err_vec[i].error_reported) { + offset = ELM_SYNDROME_FRAGMENT_6 + + SYNDROME_FRAGMENT_REG_SIZE * i; + reg_val = elm_read_reg(info, offset); + reg_val |= ELM_SYNDROME_VALID; + elm_write_reg(info, offset, reg_val); + } + } +} + +/** + * elm_error_correction - locate correctable error position + * @info: elm info + * @err_vec: elm error vectors + * + * On completion of processing by elm module, error location status + * register updated with correctable/uncorrectable error information. + * In case of correctable errors, number of errors located from + * elm location status register & read the positions from + * elm error location register. + */ +static void elm_error_correction(struct elm_info *info, + struct elm_errorvec *err_vec) +{ + int i, j; + int offset; + u32 reg_val; + + for (i = 0; i < info->ecc_steps; i++) { + + /* Check error reported */ + if (err_vec[i].error_reported) { + offset = ELM_LOCATION_STATUS + ERROR_LOCATION_SIZE * i; + reg_val = elm_read_reg(info, offset); + + /* Check correctable error or not */ + if (reg_val & ECC_CORRECTABLE_MASK) { + offset = ELM_ERROR_LOCATION_0 + + ERROR_LOCATION_SIZE * i; + + /* Read count of correctable errors */ + err_vec[i].error_count = reg_val & + ECC_NB_ERRORS_MASK; + + /* Update the error locations in error vector */ + for (j = 0; j < err_vec[i].error_count; j++) { + + reg_val = elm_read_reg(info, offset); + err_vec[i].error_loc[j] = reg_val & + ECC_ERROR_LOCATION_MASK; + + /* Update error location register */ + offset += 4; + } + } else { + err_vec[i].error_uncorrectable = true; + } + + /* Clearing interrupts for processed error vectors */ + elm_write_reg(info, ELM_IRQSTATUS, BIT(i)); + + /* Disable page mode */ + elm_configure_page_mode(info, i, false); + } + } +} + +/** + * elm_decode_bch_error_page - Locate error position + * @dev: device pointer + * @ecc_calc: calculated ECC bytes from GPMC + * @err_vec: elm error vectors + * + * Called with one or more error reported vectors & vectors with + * error reported is updated in err_vec[].error_reported + */ +void elm_decode_bch_error_page(struct device *dev, u8 *ecc_calc, + struct elm_errorvec *err_vec) +{ + struct elm_info *info = dev_get_drvdata(dev); + u32 reg_val; + + /* Enable page mode interrupt */ + reg_val = elm_read_reg(info, ELM_IRQSTATUS); + elm_write_reg(info, ELM_IRQSTATUS, reg_val & INTR_STATUS_PAGE_VALID); + elm_write_reg(info, ELM_IRQENABLE, INTR_EN_PAGE_MASK); + + /* Load valid ecc byte to syndrome fragment register */ + elm_load_syndrome(info, err_vec, ecc_calc); + + /* Enable syndrome processing for which syndrome fragment is updated */ + elm_start_processing(info, err_vec); + + /* Wait for ELM module to finish locating error correction */ + wait_for_completion(&info->elm_completion); + + /* Disable page mode interrupt */ + reg_val = elm_read_reg(info, ELM_IRQENABLE); + elm_write_reg(info, ELM_IRQENABLE, reg_val & ~INTR_EN_PAGE_MASK); + elm_error_correction(info, err_vec); +} +EXPORT_SYMBOL(elm_decode_bch_error_page); + +static irqreturn_t elm_isr(int this_irq, void *dev_id) +{ + u32 reg_val; + struct elm_info *info = dev_id; + + reg_val = elm_read_reg(info, ELM_IRQSTATUS); + + /* All error vectors processed */ + if (reg_val & INTR_STATUS_PAGE_VALID) { + elm_write_reg(info, ELM_IRQSTATUS, + reg_val & INTR_STATUS_PAGE_VALID); + complete(&info->elm_completion); + return IRQ_HANDLED; + } + + return IRQ_NONE; +} + +static int elm_probe(struct platform_device *pdev) +{ + int ret = 0; + struct elm_info *info; + int irq; + + info = devm_kzalloc(&pdev->dev, sizeof(*info), GFP_KERNEL); + if (!info) + return -ENOMEM; + + info->dev = &pdev->dev; + + irq = platform_get_irq(pdev, 0); + if (irq < 0) + return irq; + + info->elm_base = devm_platform_ioremap_resource(pdev, 0); + if (IS_ERR(info->elm_base)) + return PTR_ERR(info->elm_base); + + ret = devm_request_irq(&pdev->dev, irq, elm_isr, 0, + pdev->name, info); + if (ret) { + dev_err(&pdev->dev, "failure requesting %d\n", irq); + return ret; + } + + pm_runtime_enable(&pdev->dev); + if (pm_runtime_get_sync(&pdev->dev) < 0) { + ret = -EINVAL; + pm_runtime_put_sync(&pdev->dev); + pm_runtime_disable(&pdev->dev); + dev_err(&pdev->dev, "can't enable clock\n"); + return ret; + } + + init_completion(&info->elm_completion); + INIT_LIST_HEAD(&info->list); + list_add(&info->list, &elm_devices); + platform_set_drvdata(pdev, info); + return ret; +} + +static void elm_remove(struct platform_device *pdev) +{ + pm_runtime_put_sync(&pdev->dev); + pm_runtime_disable(&pdev->dev); +} + +#ifdef CONFIG_PM_SLEEP +/* + * elm_context_save + * saves ELM configurations to preserve them across Hardware powered-down + */ +static int elm_context_save(struct elm_info *info) +{ + struct elm_registers *regs = &info->elm_regs; + enum bch_ecc bch_type = info->bch_type; + u32 offset = 0, i; + + regs->elm_irqenable = elm_read_reg(info, ELM_IRQENABLE); + regs->elm_sysconfig = elm_read_reg(info, ELM_SYSCONFIG); + regs->elm_location_config = elm_read_reg(info, ELM_LOCATION_CONFIG); + regs->elm_page_ctrl = elm_read_reg(info, ELM_PAGE_CTRL); + for (i = 0; i < ERROR_VECTOR_MAX; i++) { + offset = i * SYNDROME_FRAGMENT_REG_SIZE; + switch (bch_type) { + case BCH16_ECC: + regs->elm_syndrome_fragment_6[i] = elm_read_reg(info, + ELM_SYNDROME_FRAGMENT_6 + offset); + regs->elm_syndrome_fragment_5[i] = elm_read_reg(info, + ELM_SYNDROME_FRAGMENT_5 + offset); + regs->elm_syndrome_fragment_4[i] = elm_read_reg(info, + ELM_SYNDROME_FRAGMENT_4 + offset); + fallthrough; + case BCH8_ECC: + regs->elm_syndrome_fragment_3[i] = elm_read_reg(info, + ELM_SYNDROME_FRAGMENT_3 + offset); + regs->elm_syndrome_fragment_2[i] = elm_read_reg(info, + ELM_SYNDROME_FRAGMENT_2 + offset); + fallthrough; + case BCH4_ECC: + regs->elm_syndrome_fragment_1[i] = elm_read_reg(info, + ELM_SYNDROME_FRAGMENT_1 + offset); + regs->elm_syndrome_fragment_0[i] = elm_read_reg(info, + ELM_SYNDROME_FRAGMENT_0 + offset); + break; + default: + return -EINVAL; + } + /* ELM SYNDROME_VALID bit in SYNDROME_FRAGMENT_6[] needs + * to be saved for all BCH schemes*/ + regs->elm_syndrome_fragment_6[i] = elm_read_reg(info, + ELM_SYNDROME_FRAGMENT_6 + offset); + } + return 0; +} + +/* + * elm_context_restore + * writes configurations saved duing power-down back into ELM registers + */ +static int elm_context_restore(struct elm_info *info) +{ + struct elm_registers *regs = &info->elm_regs; + enum bch_ecc bch_type = info->bch_type; + u32 offset = 0, i; + + elm_write_reg(info, ELM_IRQENABLE, regs->elm_irqenable); + elm_write_reg(info, ELM_SYSCONFIG, regs->elm_sysconfig); + elm_write_reg(info, ELM_LOCATION_CONFIG, regs->elm_location_config); + elm_write_reg(info, ELM_PAGE_CTRL, regs->elm_page_ctrl); + for (i = 0; i < ERROR_VECTOR_MAX; i++) { + offset = i * SYNDROME_FRAGMENT_REG_SIZE; + switch (bch_type) { + case BCH16_ECC: + elm_write_reg(info, ELM_SYNDROME_FRAGMENT_6 + offset, + regs->elm_syndrome_fragment_6[i]); + elm_write_reg(info, ELM_SYNDROME_FRAGMENT_5 + offset, + regs->elm_syndrome_fragment_5[i]); + elm_write_reg(info, ELM_SYNDROME_FRAGMENT_4 + offset, + regs->elm_syndrome_fragment_4[i]); + fallthrough; + case BCH8_ECC: + elm_write_reg(info, ELM_SYNDROME_FRAGMENT_3 + offset, + regs->elm_syndrome_fragment_3[i]); + elm_write_reg(info, ELM_SYNDROME_FRAGMENT_2 + offset, + regs->elm_syndrome_fragment_2[i]); + fallthrough; + case BCH4_ECC: + elm_write_reg(info, ELM_SYNDROME_FRAGMENT_1 + offset, + regs->elm_syndrome_fragment_1[i]); + elm_write_reg(info, ELM_SYNDROME_FRAGMENT_0 + offset, + regs->elm_syndrome_fragment_0[i]); + break; + default: + return -EINVAL; + } + /* ELM_SYNDROME_VALID bit to be set in last to trigger FSM */ + elm_write_reg(info, ELM_SYNDROME_FRAGMENT_6 + offset, + regs->elm_syndrome_fragment_6[i] & + ELM_SYNDROME_VALID); + } + return 0; +} + +static int elm_suspend(struct device *dev) +{ + struct elm_info *info = dev_get_drvdata(dev); + elm_context_save(info); + pm_runtime_put_sync(dev); + return 0; +} + +static int elm_resume(struct device *dev) +{ + struct elm_info *info = dev_get_drvdata(dev); + pm_runtime_get_sync(dev); + elm_context_restore(info); + return 0; +} +#endif + +static SIMPLE_DEV_PM_OPS(elm_pm_ops, elm_suspend, elm_resume); + +#ifdef CONFIG_OF +static const struct of_device_id elm_of_match[] = { + { .compatible = "ti,am3352-elm" }, + { .compatible = "ti,am64-elm" }, + {}, +}; +MODULE_DEVICE_TABLE(of, elm_of_match); +#endif + +static struct platform_driver elm_driver = { + .driver = { + .name = DRIVER_NAME, + .of_match_table = of_match_ptr(elm_of_match), + .pm = &elm_pm_ops, + }, + .probe = elm_probe, + .remove_new = elm_remove, +}; + +module_platform_driver(elm_driver); + +MODULE_DESCRIPTION("ELM driver for BCH error correction"); +MODULE_AUTHOR("Texas Instruments"); +MODULE_ALIAS("platform:" DRIVER_NAME); +MODULE_LICENSE("GPL v2"); diff --git a/drivers/mtd/nand/raw/orion_nand.c b/drivers/mtd/nand/raw/orion_nand.c new file mode 100644 index 0000000000..2951d81614 --- /dev/null +++ b/drivers/mtd/nand/raw/orion_nand.c @@ -0,0 +1,229 @@ +/* + * NAND support for Marvell Orion SoC platforms + * + * Tzachi Perelstein <tzachi@marvell.com> + * + * This file is licensed under the terms of the GNU General Public + * License version 2. This program is licensed "as is" without any + * warranty of any kind, whether express or implied. + */ + +#include <linux/slab.h> +#include <linux/module.h> +#include <linux/platform_device.h> +#include <linux/of.h> +#include <linux/mtd/mtd.h> +#include <linux/mtd/rawnand.h> +#include <linux/mtd/partitions.h> +#include <linux/clk.h> +#include <linux/err.h> +#include <linux/io.h> +#include <linux/sizes.h> +#include <linux/platform_data/mtd-orion_nand.h> + +struct orion_nand_info { + struct nand_controller controller; + struct nand_chip chip; + struct clk *clk; +}; + +static void orion_nand_cmd_ctrl(struct nand_chip *nc, int cmd, + unsigned int ctrl) +{ + struct orion_nand_data *board = nand_get_controller_data(nc); + u32 offs; + + if (cmd == NAND_CMD_NONE) + return; + + if (ctrl & NAND_CLE) + offs = (1 << board->cle); + else if (ctrl & NAND_ALE) + offs = (1 << board->ale); + else + return; + + if (nc->options & NAND_BUSWIDTH_16) + offs <<= 1; + + writeb(cmd, nc->legacy.IO_ADDR_W + offs); +} + +static void orion_nand_read_buf(struct nand_chip *chip, uint8_t *buf, int len) +{ + void __iomem *io_base = chip->legacy.IO_ADDR_R; +#if defined(__LINUX_ARM_ARCH__) && __LINUX_ARM_ARCH__ >= 5 + uint64_t *buf64; +#endif + int i = 0; + + while (len && (unsigned long)buf & 7) { + *buf++ = readb(io_base); + len--; + } +#if defined(__LINUX_ARM_ARCH__) && __LINUX_ARM_ARCH__ >= 5 + buf64 = (uint64_t *)buf; + while (i < len/8) { + /* + * Since GCC has no proper constraint (PR 43518) + * force x variable to r2/r3 registers as ldrd instruction + * requires first register to be even. + */ + register uint64_t x asm ("r2"); + + asm volatile ("ldrd\t%0, [%1]" : "=&r" (x) : "r" (io_base)); + buf64[i++] = x; + } + i *= 8; +#else + readsl(io_base, buf, len/4); + i = len / 4 * 4; +#endif + while (i < len) + buf[i++] = readb(io_base); +} + +static int orion_nand_attach_chip(struct nand_chip *chip) +{ + if (chip->ecc.engine_type == NAND_ECC_ENGINE_TYPE_SOFT && + chip->ecc.algo == NAND_ECC_ALGO_UNKNOWN) + chip->ecc.algo = NAND_ECC_ALGO_HAMMING; + + return 0; +} + +static const struct nand_controller_ops orion_nand_ops = { + .attach_chip = orion_nand_attach_chip, +}; + +static int __init orion_nand_probe(struct platform_device *pdev) +{ + struct orion_nand_info *info; + struct mtd_info *mtd; + struct nand_chip *nc; + struct orion_nand_data *board; + void __iomem *io_base; + int ret = 0; + u32 val = 0; + + info = devm_kzalloc(&pdev->dev, + sizeof(struct orion_nand_info), + GFP_KERNEL); + if (!info) + return -ENOMEM; + nc = &info->chip; + mtd = nand_to_mtd(nc); + + nand_controller_init(&info->controller); + info->controller.ops = &orion_nand_ops; + nc->controller = &info->controller; + + io_base = devm_platform_ioremap_resource(pdev, 0); + + if (IS_ERR(io_base)) + return PTR_ERR(io_base); + + if (pdev->dev.of_node) { + board = devm_kzalloc(&pdev->dev, sizeof(struct orion_nand_data), + GFP_KERNEL); + if (!board) + return -ENOMEM; + if (!of_property_read_u32(pdev->dev.of_node, "cle", &val)) + board->cle = (u8)val; + else + board->cle = 0; + if (!of_property_read_u32(pdev->dev.of_node, "ale", &val)) + board->ale = (u8)val; + else + board->ale = 1; + if (!of_property_read_u32(pdev->dev.of_node, + "bank-width", &val)) + board->width = (u8)val * 8; + else + board->width = 8; + if (!of_property_read_u32(pdev->dev.of_node, + "chip-delay", &val)) + board->chip_delay = (u8)val; + } else { + board = dev_get_platdata(&pdev->dev); + } + + mtd->dev.parent = &pdev->dev; + + nand_set_controller_data(nc, board); + nand_set_flash_node(nc, pdev->dev.of_node); + nc->legacy.IO_ADDR_R = nc->legacy.IO_ADDR_W = io_base; + nc->legacy.cmd_ctrl = orion_nand_cmd_ctrl; + nc->legacy.read_buf = orion_nand_read_buf; + + if (board->chip_delay) + nc->legacy.chip_delay = board->chip_delay; + + WARN(board->width > 16, + "%d bit bus width out of range", + board->width); + + if (board->width == 16) + nc->options |= NAND_BUSWIDTH_16; + + platform_set_drvdata(pdev, info); + + /* Not all platforms can gate the clock, so it is optional. */ + info->clk = devm_clk_get_optional_enabled(&pdev->dev, NULL); + if (IS_ERR(info->clk)) + return dev_err_probe(&pdev->dev, PTR_ERR(info->clk), + "failed to get and enable clock!\n"); + + /* + * This driver assumes that the default ECC engine should be TYPE_SOFT. + * Set ->engine_type before registering the NAND devices in order to + * provide a driver specific default value. + */ + nc->ecc.engine_type = NAND_ECC_ENGINE_TYPE_SOFT; + + ret = nand_scan(nc, 1); + if (ret) + return ret; + + mtd->name = "orion_nand"; + ret = mtd_device_register(mtd, board->parts, board->nr_parts); + if (ret) + nand_cleanup(nc); + + return ret; +} + +static void orion_nand_remove(struct platform_device *pdev) +{ + struct orion_nand_info *info = platform_get_drvdata(pdev); + struct nand_chip *chip = &info->chip; + int ret; + + ret = mtd_device_unregister(nand_to_mtd(chip)); + WARN_ON(ret); + + nand_cleanup(chip); +} + +#ifdef CONFIG_OF +static const struct of_device_id orion_nand_of_match_table[] = { + { .compatible = "marvell,orion-nand", }, + {}, +}; +MODULE_DEVICE_TABLE(of, orion_nand_of_match_table); +#endif + +static struct platform_driver orion_nand_driver = { + .remove_new = orion_nand_remove, + .driver = { + .name = "orion_nand", + .of_match_table = of_match_ptr(orion_nand_of_match_table), + }, +}; + +module_platform_driver_probe(orion_nand_driver, orion_nand_probe); + +MODULE_LICENSE("GPL"); +MODULE_AUTHOR("Tzachi Perelstein"); +MODULE_DESCRIPTION("NAND glue for Orion platforms"); +MODULE_ALIAS("platform:orion_nand"); diff --git a/drivers/mtd/nand/raw/pasemi_nand.c b/drivers/mtd/nand/raw/pasemi_nand.c new file mode 100644 index 0000000000..19b2c9d258 --- /dev/null +++ b/drivers/mtd/nand/raw/pasemi_nand.c @@ -0,0 +1,247 @@ +// SPDX-License-Identifier: GPL-2.0-only +/* + * Copyright (C) 2006-2007 PA Semi, Inc + * + * Author: Egor Martovetsky <egor@pasemi.com> + * Maintained by: Olof Johansson <olof@lixom.net> + * + * Driver for the PWRficient onchip NAND flash interface + */ + +#undef DEBUG + +#include <linux/slab.h> +#include <linux/module.h> +#include <linux/mtd/mtd.h> +#include <linux/mtd/rawnand.h> +#include <linux/of_address.h> +#include <linux/of_irq.h> +#include <linux/of_platform.h> +#include <linux/platform_device.h> +#include <linux/pci.h> + +#include <asm/io.h> + +#define LBICTRL_LPCCTL_NR 0x00004000 +#define CLE_PIN_CTL 15 +#define ALE_PIN_CTL 14 + +struct pasemi_ddata { + struct nand_chip chip; + unsigned int lpcctl; + struct nand_controller controller; +}; + +static const char driver_name[] = "pasemi-nand"; + +static void pasemi_read_buf(struct nand_chip *chip, u_char *buf, int len) +{ + while (len > 0x800) { + memcpy_fromio(buf, chip->legacy.IO_ADDR_R, 0x800); + buf += 0x800; + len -= 0x800; + } + memcpy_fromio(buf, chip->legacy.IO_ADDR_R, len); +} + +static void pasemi_write_buf(struct nand_chip *chip, const u_char *buf, + int len) +{ + while (len > 0x800) { + memcpy_toio(chip->legacy.IO_ADDR_R, buf, 0x800); + buf += 0x800; + len -= 0x800; + } + memcpy_toio(chip->legacy.IO_ADDR_R, buf, len); +} + +static void pasemi_hwcontrol(struct nand_chip *chip, int cmd, + unsigned int ctrl) +{ + struct pasemi_ddata *ddata = container_of(chip, struct pasemi_ddata, chip); + + if (cmd == NAND_CMD_NONE) + return; + + if (ctrl & NAND_CLE) + out_8(chip->legacy.IO_ADDR_W + (1 << CLE_PIN_CTL), cmd); + else + out_8(chip->legacy.IO_ADDR_W + (1 << ALE_PIN_CTL), cmd); + + /* Push out posted writes */ + eieio(); + inl(ddata->lpcctl); +} + +static int pasemi_device_ready(struct nand_chip *chip) +{ + struct pasemi_ddata *ddata = container_of(chip, struct pasemi_ddata, chip); + + return !!(inl(ddata->lpcctl) & LBICTRL_LPCCTL_NR); +} + +static int pasemi_attach_chip(struct nand_chip *chip) +{ + if (chip->ecc.engine_type == NAND_ECC_ENGINE_TYPE_SOFT && + chip->ecc.algo == NAND_ECC_ALGO_UNKNOWN) + chip->ecc.algo = NAND_ECC_ALGO_HAMMING; + + return 0; +} + +static const struct nand_controller_ops pasemi_ops = { + .attach_chip = pasemi_attach_chip, +}; + +static int pasemi_nand_probe(struct platform_device *ofdev) +{ + struct device *dev = &ofdev->dev; + struct pci_dev *pdev; + struct device_node *np = dev->of_node; + struct resource res; + struct nand_chip *chip; + struct nand_controller *controller; + int err = 0; + struct pasemi_ddata *ddata; + struct mtd_info *pasemi_nand_mtd; + + err = of_address_to_resource(np, 0, &res); + + if (err) + return -EINVAL; + + dev_dbg(dev, "pasemi_nand at %pR\n", &res); + + /* Allocate memory for MTD device structure and private data */ + ddata = kzalloc(sizeof(*ddata), GFP_KERNEL); + if (!ddata) { + err = -ENOMEM; + goto out; + } + platform_set_drvdata(ofdev, ddata); + chip = &ddata->chip; + controller = &ddata->controller; + + controller->ops = &pasemi_ops; + nand_controller_init(controller); + chip->controller = controller; + + pasemi_nand_mtd = nand_to_mtd(chip); + + /* Link the private data with the MTD structure */ + pasemi_nand_mtd->dev.parent = dev; + + chip->legacy.IO_ADDR_R = of_iomap(np, 0); + chip->legacy.IO_ADDR_W = chip->legacy.IO_ADDR_R; + + if (!chip->legacy.IO_ADDR_R) { + err = -EIO; + goto out_mtd; + } + + pdev = pci_get_device(PCI_VENDOR_ID_PASEMI, 0xa008, NULL); + if (!pdev) { + err = -ENODEV; + goto out_ior; + } + + ddata->lpcctl = pci_resource_start(pdev, 0); + pci_dev_put(pdev); + + if (!request_region(ddata->lpcctl, 4, driver_name)) { + err = -EBUSY; + goto out_ior; + } + + chip->legacy.cmd_ctrl = pasemi_hwcontrol; + chip->legacy.dev_ready = pasemi_device_ready; + chip->legacy.read_buf = pasemi_read_buf; + chip->legacy.write_buf = pasemi_write_buf; + chip->legacy.chip_delay = 0; + + /* Enable the following for a flash based bad block table */ + chip->bbt_options = NAND_BBT_USE_FLASH; + + /* + * This driver assumes that the default ECC engine should be TYPE_SOFT. + * Set ->engine_type before registering the NAND devices in order to + * provide a driver specific default value. + */ + chip->ecc.engine_type = NAND_ECC_ENGINE_TYPE_SOFT; + + /* Scan to find existence of the device */ + err = nand_scan(chip, 1); + if (err) + goto out_lpc; + + if (mtd_device_register(pasemi_nand_mtd, NULL, 0)) { + dev_err(dev, "Unable to register MTD device\n"); + err = -ENODEV; + goto out_cleanup_nand; + } + + dev_info(dev, "PA Semi NAND flash at %pR, control at I/O %x\n", &res, + ddata->lpcctl); + + return 0; + + out_cleanup_nand: + nand_cleanup(chip); + out_lpc: + release_region(ddata->lpcctl, 4); + out_ior: + iounmap(chip->legacy.IO_ADDR_R); + out_mtd: + kfree(ddata); + out: + return err; +} + +static void pasemi_nand_remove(struct platform_device *ofdev) +{ + struct pasemi_ddata *ddata = platform_get_drvdata(ofdev); + struct mtd_info *pasemi_nand_mtd; + int ret; + struct nand_chip *chip; + + chip = &ddata->chip; + pasemi_nand_mtd = nand_to_mtd(chip); + + /* Release resources, unregister device */ + ret = mtd_device_unregister(pasemi_nand_mtd); + WARN_ON(ret); + nand_cleanup(chip); + + release_region(ddata->lpcctl, 4); + + iounmap(chip->legacy.IO_ADDR_R); + + /* Free the MTD device structure */ + kfree(ddata); +} + +static const struct of_device_id pasemi_nand_match[] = +{ + { + .compatible = "pasemi,localbus-nand", + }, + {}, +}; + +MODULE_DEVICE_TABLE(of, pasemi_nand_match); + +static struct platform_driver pasemi_nand_driver = +{ + .driver = { + .name = driver_name, + .of_match_table = pasemi_nand_match, + }, + .probe = pasemi_nand_probe, + .remove_new = pasemi_nand_remove, +}; + +module_platform_driver(pasemi_nand_driver); + +MODULE_LICENSE("GPL"); +MODULE_AUTHOR("Egor Martovetsky <egor@pasemi.com>"); +MODULE_DESCRIPTION("NAND flash interface driver for PA Semi PWRficient"); diff --git a/drivers/mtd/nand/raw/pl35x-nand-controller.c b/drivers/mtd/nand/raw/pl35x-nand-controller.c new file mode 100644 index 0000000000..c506e92a3e --- /dev/null +++ b/drivers/mtd/nand/raw/pl35x-nand-controller.c @@ -0,0 +1,1199 @@ +// SPDX-License-Identifier: GPL-2.0 +/* + * ARM PL35X NAND flash controller driver + * + * Copyright (C) 2017 Xilinx, Inc + * Author: + * Miquel Raynal <miquel.raynal@bootlin.com> + * Original work (rewritten): + * Punnaiah Choudary Kalluri <punnaia@xilinx.com> + * Naga Sureshkumar Relli <nagasure@xilinx.com> + */ + +#include <linux/amba/bus.h> +#include <linux/err.h> +#include <linux/delay.h> +#include <linux/interrupt.h> +#include <linux/io.h> +#include <linux/ioport.h> +#include <linux/iopoll.h> +#include <linux/irq.h> +#include <linux/module.h> +#include <linux/moduleparam.h> +#include <linux/mtd/mtd.h> +#include <linux/mtd/rawnand.h> +#include <linux/mtd/partitions.h> +#include <linux/of.h> +#include <linux/platform_device.h> +#include <linux/slab.h> +#include <linux/clk.h> + +#define PL35X_NANDC_DRIVER_NAME "pl35x-nand-controller" + +/* SMC controller status register (RO) */ +#define PL35X_SMC_MEMC_STATUS 0x0 +#define PL35X_SMC_MEMC_STATUS_RAW_INT_STATUS1 BIT(6) +/* SMC clear config register (WO) */ +#define PL35X_SMC_MEMC_CFG_CLR 0xC +#define PL35X_SMC_MEMC_CFG_CLR_INT_DIS_1 BIT(1) +#define PL35X_SMC_MEMC_CFG_CLR_INT_CLR_1 BIT(4) +#define PL35X_SMC_MEMC_CFG_CLR_ECC_INT_DIS_1 BIT(6) +/* SMC direct command register (WO) */ +#define PL35X_SMC_DIRECT_CMD 0x10 +#define PL35X_SMC_DIRECT_CMD_NAND_CS (0x4 << 23) +#define PL35X_SMC_DIRECT_CMD_UPD_REGS (0x2 << 21) +/* SMC set cycles register (WO) */ +#define PL35X_SMC_CYCLES 0x14 +#define PL35X_SMC_NAND_TRC_CYCLES(x) ((x) << 0) +#define PL35X_SMC_NAND_TWC_CYCLES(x) ((x) << 4) +#define PL35X_SMC_NAND_TREA_CYCLES(x) ((x) << 8) +#define PL35X_SMC_NAND_TWP_CYCLES(x) ((x) << 11) +#define PL35X_SMC_NAND_TCLR_CYCLES(x) ((x) << 14) +#define PL35X_SMC_NAND_TAR_CYCLES(x) ((x) << 17) +#define PL35X_SMC_NAND_TRR_CYCLES(x) ((x) << 20) +/* SMC set opmode register (WO) */ +#define PL35X_SMC_OPMODE 0x18 +#define PL35X_SMC_OPMODE_BW_8 0 +#define PL35X_SMC_OPMODE_BW_16 1 +/* SMC ECC status register (RO) */ +#define PL35X_SMC_ECC_STATUS 0x400 +#define PL35X_SMC_ECC_STATUS_ECC_BUSY BIT(6) +/* SMC ECC configuration register */ +#define PL35X_SMC_ECC_CFG 0x404 +#define PL35X_SMC_ECC_CFG_MODE_MASK 0xC +#define PL35X_SMC_ECC_CFG_MODE_BYPASS 0 +#define PL35X_SMC_ECC_CFG_MODE_APB BIT(2) +#define PL35X_SMC_ECC_CFG_MODE_MEM BIT(3) +#define PL35X_SMC_ECC_CFG_PGSIZE_MASK 0x3 +/* SMC ECC command 1 register */ +#define PL35X_SMC_ECC_CMD1 0x408 +#define PL35X_SMC_ECC_CMD1_WRITE(x) ((x) << 0) +#define PL35X_SMC_ECC_CMD1_READ(x) ((x) << 8) +#define PL35X_SMC_ECC_CMD1_READ_END(x) ((x) << 16) +#define PL35X_SMC_ECC_CMD1_READ_END_VALID(x) ((x) << 24) +/* SMC ECC command 2 register */ +#define PL35X_SMC_ECC_CMD2 0x40C +#define PL35X_SMC_ECC_CMD2_WRITE_COL_CHG(x) ((x) << 0) +#define PL35X_SMC_ECC_CMD2_READ_COL_CHG(x) ((x) << 8) +#define PL35X_SMC_ECC_CMD2_READ_COL_CHG_END(x) ((x) << 16) +#define PL35X_SMC_ECC_CMD2_READ_COL_CHG_END_VALID(x) ((x) << 24) +/* SMC ECC value registers (RO) */ +#define PL35X_SMC_ECC_VALUE(x) (0x418 + (4 * (x))) +#define PL35X_SMC_ECC_VALUE_IS_CORRECTABLE(x) ((x) & BIT(27)) +#define PL35X_SMC_ECC_VALUE_HAS_FAILED(x) ((x) & BIT(28)) +#define PL35X_SMC_ECC_VALUE_IS_VALID(x) ((x) & BIT(30)) + +/* NAND AXI interface */ +#define PL35X_SMC_CMD_PHASE 0 +#define PL35X_SMC_CMD_PHASE_CMD0(x) ((x) << 3) +#define PL35X_SMC_CMD_PHASE_CMD1(x) ((x) << 11) +#define PL35X_SMC_CMD_PHASE_CMD1_VALID BIT(20) +#define PL35X_SMC_CMD_PHASE_ADDR(pos, x) ((x) << (8 * (pos))) +#define PL35X_SMC_CMD_PHASE_NADDRS(x) ((x) << 21) +#define PL35X_SMC_DATA_PHASE BIT(19) +#define PL35X_SMC_DATA_PHASE_ECC_LAST BIT(10) +#define PL35X_SMC_DATA_PHASE_CLEAR_CS BIT(21) + +#define PL35X_NAND_MAX_CS 1 +#define PL35X_NAND_LAST_XFER_SZ 4 +#define TO_CYCLES(ps, period_ns) (DIV_ROUND_UP((ps) / 1000, period_ns)) + +#define PL35X_NAND_ECC_BITS_MASK 0xFFF +#define PL35X_NAND_ECC_BYTE_OFF_MASK 0x1FF +#define PL35X_NAND_ECC_BIT_OFF_MASK 0x7 + +struct pl35x_nand_timings { + unsigned int t_rc:4; + unsigned int t_wc:4; + unsigned int t_rea:3; + unsigned int t_wp:3; + unsigned int t_clr:3; + unsigned int t_ar:3; + unsigned int t_rr:4; + unsigned int rsvd:8; +}; + +struct pl35x_nand { + struct list_head node; + struct nand_chip chip; + unsigned int cs; + unsigned int addr_cycles; + u32 ecc_cfg; + u32 timings; +}; + +/** + * struct pl35x_nandc - NAND flash controller driver structure + * @dev: Kernel device + * @conf_regs: SMC configuration registers for command phase + * @io_regs: NAND data registers for data phase + * @controller: Core NAND controller structure + * @chip: NAND chip information structure + * @selected_chip: NAND chip currently selected by the controller + * @assigned_cs: List of assigned CS + * @ecc_buf: Temporary buffer to extract ECC bytes + */ +struct pl35x_nandc { + struct device *dev; + void __iomem *conf_regs; + void __iomem *io_regs; + struct nand_controller controller; + struct list_head chips; + struct nand_chip *selected_chip; + unsigned long assigned_cs; + u8 *ecc_buf; +}; + +static inline struct pl35x_nandc *to_pl35x_nandc(struct nand_controller *ctrl) +{ + return container_of(ctrl, struct pl35x_nandc, controller); +} + +static inline struct pl35x_nand *to_pl35x_nand(struct nand_chip *chip) +{ + return container_of(chip, struct pl35x_nand, chip); +} + +static int pl35x_ecc_ooblayout16_ecc(struct mtd_info *mtd, int section, + struct mtd_oob_region *oobregion) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + + if (section >= chip->ecc.steps) + return -ERANGE; + + oobregion->offset = (section * chip->ecc.bytes); + oobregion->length = chip->ecc.bytes; + + return 0; +} + +static int pl35x_ecc_ooblayout16_free(struct mtd_info *mtd, int section, + struct mtd_oob_region *oobregion) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + + if (section >= chip->ecc.steps) + return -ERANGE; + + oobregion->offset = (section * chip->ecc.bytes) + 8; + oobregion->length = 8; + + return 0; +} + +static const struct mtd_ooblayout_ops pl35x_ecc_ooblayout16_ops = { + .ecc = pl35x_ecc_ooblayout16_ecc, + .free = pl35x_ecc_ooblayout16_free, +}; + +/* Generic flash bbt decriptors */ +static u8 bbt_pattern[] = { 'B', 'b', 't', '0' }; +static u8 mirror_pattern[] = { '1', 't', 'b', 'B' }; + +static struct nand_bbt_descr bbt_main_descr = { + .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE + | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP, + .offs = 4, + .len = 4, + .veroffs = 20, + .maxblocks = 4, + .pattern = bbt_pattern +}; + +static struct nand_bbt_descr bbt_mirror_descr = { + .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE + | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP, + .offs = 4, + .len = 4, + .veroffs = 20, + .maxblocks = 4, + .pattern = mirror_pattern +}; + +static void pl35x_smc_update_regs(struct pl35x_nandc *nfc) +{ + writel(PL35X_SMC_DIRECT_CMD_NAND_CS | + PL35X_SMC_DIRECT_CMD_UPD_REGS, + nfc->conf_regs + PL35X_SMC_DIRECT_CMD); +} + +static int pl35x_smc_set_buswidth(struct pl35x_nandc *nfc, unsigned int bw) +{ + if (bw != PL35X_SMC_OPMODE_BW_8 && bw != PL35X_SMC_OPMODE_BW_16) + return -EINVAL; + + writel(bw, nfc->conf_regs + PL35X_SMC_OPMODE); + pl35x_smc_update_regs(nfc); + + return 0; +} + +static void pl35x_smc_clear_irq(struct pl35x_nandc *nfc) +{ + writel(PL35X_SMC_MEMC_CFG_CLR_INT_CLR_1, + nfc->conf_regs + PL35X_SMC_MEMC_CFG_CLR); +} + +static int pl35x_smc_wait_for_irq(struct pl35x_nandc *nfc) +{ + u32 reg; + int ret; + + ret = readl_poll_timeout(nfc->conf_regs + PL35X_SMC_MEMC_STATUS, reg, + reg & PL35X_SMC_MEMC_STATUS_RAW_INT_STATUS1, + 10, 1000000); + if (ret) + dev_err(nfc->dev, + "Timeout polling on NAND controller interrupt (0x%x)\n", + reg); + + pl35x_smc_clear_irq(nfc); + + return ret; +} + +static int pl35x_smc_wait_for_ecc_done(struct pl35x_nandc *nfc) +{ + u32 reg; + int ret; + + ret = readl_poll_timeout(nfc->conf_regs + PL35X_SMC_ECC_STATUS, reg, + !(reg & PL35X_SMC_ECC_STATUS_ECC_BUSY), + 10, 1000000); + if (ret) + dev_err(nfc->dev, + "Timeout polling on ECC controller interrupt\n"); + + return ret; +} + +static int pl35x_smc_set_ecc_mode(struct pl35x_nandc *nfc, + struct nand_chip *chip, + unsigned int mode) +{ + struct pl35x_nand *plnand; + u32 ecc_cfg; + + ecc_cfg = readl(nfc->conf_regs + PL35X_SMC_ECC_CFG); + ecc_cfg &= ~PL35X_SMC_ECC_CFG_MODE_MASK; + ecc_cfg |= mode; + writel(ecc_cfg, nfc->conf_regs + PL35X_SMC_ECC_CFG); + + if (chip) { + plnand = to_pl35x_nand(chip); + plnand->ecc_cfg = ecc_cfg; + } + + if (mode != PL35X_SMC_ECC_CFG_MODE_BYPASS) + return pl35x_smc_wait_for_ecc_done(nfc); + + return 0; +} + +static void pl35x_smc_force_byte_access(struct nand_chip *chip, + bool force_8bit) +{ + struct pl35x_nandc *nfc = to_pl35x_nandc(chip->controller); + int ret; + + if (!(chip->options & NAND_BUSWIDTH_16)) + return; + + if (force_8bit) + ret = pl35x_smc_set_buswidth(nfc, PL35X_SMC_OPMODE_BW_8); + else + ret = pl35x_smc_set_buswidth(nfc, PL35X_SMC_OPMODE_BW_16); + + if (ret) + dev_err(nfc->dev, "Error in Buswidth\n"); +} + +static void pl35x_nand_select_target(struct nand_chip *chip, + unsigned int die_nr) +{ + struct pl35x_nandc *nfc = to_pl35x_nandc(chip->controller); + struct pl35x_nand *plnand = to_pl35x_nand(chip); + + if (chip == nfc->selected_chip) + return; + + /* Setup the timings */ + writel(plnand->timings, nfc->conf_regs + PL35X_SMC_CYCLES); + pl35x_smc_update_regs(nfc); + + /* Configure the ECC engine */ + writel(plnand->ecc_cfg, nfc->conf_regs + PL35X_SMC_ECC_CFG); + + nfc->selected_chip = chip; +} + +static void pl35x_nand_read_data_op(struct nand_chip *chip, u8 *in, + unsigned int len, bool force_8bit, + unsigned int flags, unsigned int last_flags) +{ + struct pl35x_nandc *nfc = to_pl35x_nandc(chip->controller); + unsigned int buf_end = len / 4; + unsigned int in_start = round_down(len, 4); + unsigned int data_phase_addr; + u32 *buf32 = (u32 *)in; + u8 *buf8 = (u8 *)in; + int i; + + if (force_8bit) + pl35x_smc_force_byte_access(chip, true); + + for (i = 0; i < buf_end; i++) { + data_phase_addr = PL35X_SMC_DATA_PHASE + flags; + if (i + 1 == buf_end) + data_phase_addr = PL35X_SMC_DATA_PHASE + last_flags; + + buf32[i] = readl(nfc->io_regs + data_phase_addr); + } + + /* No working extra flags on unaligned data accesses */ + for (i = in_start; i < len; i++) + buf8[i] = readb(nfc->io_regs + PL35X_SMC_DATA_PHASE); + + if (force_8bit) + pl35x_smc_force_byte_access(chip, false); +} + +static void pl35x_nand_write_data_op(struct nand_chip *chip, const u8 *out, + int len, bool force_8bit, + unsigned int flags, + unsigned int last_flags) +{ + struct pl35x_nandc *nfc = to_pl35x_nandc(chip->controller); + unsigned int buf_end = len / 4; + unsigned int in_start = round_down(len, 4); + const u32 *buf32 = (const u32 *)out; + const u8 *buf8 = (const u8 *)out; + unsigned int data_phase_addr; + int i; + + if (force_8bit) + pl35x_smc_force_byte_access(chip, true); + + for (i = 0; i < buf_end; i++) { + data_phase_addr = PL35X_SMC_DATA_PHASE + flags; + if (i + 1 == buf_end) + data_phase_addr = PL35X_SMC_DATA_PHASE + last_flags; + + writel(buf32[i], nfc->io_regs + data_phase_addr); + } + + /* No working extra flags on unaligned data accesses */ + for (i = in_start; i < len; i++) + writeb(buf8[i], nfc->io_regs + PL35X_SMC_DATA_PHASE); + + if (force_8bit) + pl35x_smc_force_byte_access(chip, false); +} + +static int pl35x_nand_correct_data(struct pl35x_nandc *nfc, unsigned char *buf, + unsigned char *read_ecc, + unsigned char *calc_ecc) +{ + unsigned short ecc_odd, ecc_even, read_ecc_lower, read_ecc_upper; + unsigned short calc_ecc_lower, calc_ecc_upper; + unsigned short byte_addr, bit_addr; + + read_ecc_lower = (read_ecc[0] | (read_ecc[1] << 8)) & + PL35X_NAND_ECC_BITS_MASK; + read_ecc_upper = ((read_ecc[1] >> 4) | (read_ecc[2] << 4)) & + PL35X_NAND_ECC_BITS_MASK; + + calc_ecc_lower = (calc_ecc[0] | (calc_ecc[1] << 8)) & + PL35X_NAND_ECC_BITS_MASK; + calc_ecc_upper = ((calc_ecc[1] >> 4) | (calc_ecc[2] << 4)) & + PL35X_NAND_ECC_BITS_MASK; + + ecc_odd = read_ecc_lower ^ calc_ecc_lower; + ecc_even = read_ecc_upper ^ calc_ecc_upper; + + /* No error */ + if (likely(!ecc_odd && !ecc_even)) + return 0; + + /* One error in the main data; to be corrected */ + if (ecc_odd == (~ecc_even & PL35X_NAND_ECC_BITS_MASK)) { + /* Bits [11:3] of error code give the byte offset */ + byte_addr = (ecc_odd >> 3) & PL35X_NAND_ECC_BYTE_OFF_MASK; + /* Bits [2:0] of error code give the bit offset */ + bit_addr = ecc_odd & PL35X_NAND_ECC_BIT_OFF_MASK; + /* Toggle the faulty bit */ + buf[byte_addr] ^= (BIT(bit_addr)); + + return 1; + } + + /* One error in the ECC data; no action needed */ + if (hweight32(ecc_odd | ecc_even) == 1) + return 1; + + return -EBADMSG; +} + +static void pl35x_nand_ecc_reg_to_array(struct nand_chip *chip, u32 ecc_reg, + u8 *ecc_array) +{ + u32 ecc_value = ~ecc_reg; + unsigned int ecc_byte; + + for (ecc_byte = 0; ecc_byte < chip->ecc.bytes; ecc_byte++) + ecc_array[ecc_byte] = ecc_value >> (8 * ecc_byte); +} + +static int pl35x_nand_read_eccbytes(struct pl35x_nandc *nfc, + struct nand_chip *chip, u8 *read_ecc) +{ + u32 ecc_value; + int chunk; + + for (chunk = 0; chunk < chip->ecc.steps; + chunk++, read_ecc += chip->ecc.bytes) { + ecc_value = readl(nfc->conf_regs + PL35X_SMC_ECC_VALUE(chunk)); + if (!PL35X_SMC_ECC_VALUE_IS_VALID(ecc_value)) + return -EINVAL; + + pl35x_nand_ecc_reg_to_array(chip, ecc_value, read_ecc); + } + + return 0; +} + +static int pl35x_nand_recover_data_hwecc(struct pl35x_nandc *nfc, + struct nand_chip *chip, u8 *data, + u8 *read_ecc) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + unsigned int max_bitflips = 0, chunk; + u8 calc_ecc[3]; + u32 ecc_value; + int stats; + + for (chunk = 0; chunk < chip->ecc.steps; + chunk++, data += chip->ecc.size, read_ecc += chip->ecc.bytes) { + /* Read ECC value for each chunk */ + ecc_value = readl(nfc->conf_regs + PL35X_SMC_ECC_VALUE(chunk)); + + if (!PL35X_SMC_ECC_VALUE_IS_VALID(ecc_value)) + return -EINVAL; + + if (PL35X_SMC_ECC_VALUE_HAS_FAILED(ecc_value)) { + mtd->ecc_stats.failed++; + continue; + } + + pl35x_nand_ecc_reg_to_array(chip, ecc_value, calc_ecc); + stats = pl35x_nand_correct_data(nfc, data, read_ecc, calc_ecc); + if (stats < 0) { + mtd->ecc_stats.failed++; + } else { + mtd->ecc_stats.corrected += stats; + max_bitflips = max_t(unsigned int, max_bitflips, stats); + } + } + + return max_bitflips; +} + +static int pl35x_nand_write_page_hwecc(struct nand_chip *chip, + const u8 *buf, int oob_required, + int page) +{ + struct pl35x_nandc *nfc = to_pl35x_nandc(chip->controller); + struct pl35x_nand *plnand = to_pl35x_nand(chip); + struct mtd_info *mtd = nand_to_mtd(chip); + unsigned int first_row = (mtd->writesize <= 512) ? 1 : 2; + unsigned int nrows = plnand->addr_cycles; + u32 addr1 = 0, addr2 = 0, row; + u32 cmd_addr; + int i, ret; + u8 status; + + ret = pl35x_smc_set_ecc_mode(nfc, chip, PL35X_SMC_ECC_CFG_MODE_APB); + if (ret) + return ret; + + cmd_addr = PL35X_SMC_CMD_PHASE | + PL35X_SMC_CMD_PHASE_NADDRS(plnand->addr_cycles) | + PL35X_SMC_CMD_PHASE_CMD0(NAND_CMD_SEQIN); + + for (i = 0, row = first_row; row < nrows; i++, row++) { + u8 addr = page >> ((i * 8) & 0xFF); + + if (row < 4) + addr1 |= PL35X_SMC_CMD_PHASE_ADDR(row, addr); + else + addr2 |= PL35X_SMC_CMD_PHASE_ADDR(row - 4, addr); + } + + /* Send the command and address cycles */ + writel(addr1, nfc->io_regs + cmd_addr); + if (plnand->addr_cycles > 4) + writel(addr2, nfc->io_regs + cmd_addr); + + /* Write the data with the engine enabled */ + pl35x_nand_write_data_op(chip, buf, mtd->writesize, false, + 0, PL35X_SMC_DATA_PHASE_ECC_LAST); + ret = pl35x_smc_wait_for_ecc_done(nfc); + if (ret) + goto disable_ecc_engine; + + /* Copy the HW calculated ECC bytes in the OOB buffer */ + ret = pl35x_nand_read_eccbytes(nfc, chip, nfc->ecc_buf); + if (ret) + goto disable_ecc_engine; + + if (!oob_required) + memset(chip->oob_poi, 0xFF, mtd->oobsize); + + ret = mtd_ooblayout_set_eccbytes(mtd, nfc->ecc_buf, chip->oob_poi, + 0, chip->ecc.total); + if (ret) + goto disable_ecc_engine; + + /* Write the spare area with ECC bytes */ + pl35x_nand_write_data_op(chip, chip->oob_poi, mtd->oobsize, false, 0, + PL35X_SMC_CMD_PHASE_CMD1(NAND_CMD_PAGEPROG) | + PL35X_SMC_CMD_PHASE_CMD1_VALID | + PL35X_SMC_DATA_PHASE_CLEAR_CS); + ret = pl35x_smc_wait_for_irq(nfc); + if (ret) + goto disable_ecc_engine; + + /* Check write status on the chip side */ + ret = nand_status_op(chip, &status); + if (ret) + goto disable_ecc_engine; + + if (status & NAND_STATUS_FAIL) + ret = -EIO; + +disable_ecc_engine: + pl35x_smc_set_ecc_mode(nfc, chip, PL35X_SMC_ECC_CFG_MODE_BYPASS); + + return ret; +} + +/* + * This functions reads data and checks the data integrity by comparing hardware + * generated ECC values and read ECC values from spare area. + * + * There is a limitation with SMC controller: ECC_LAST must be set on the + * last data access to tell the ECC engine not to expect any further data. + * In practice, this implies to shrink the last data transfert by eg. 4 bytes, + * and doing a last 4-byte transfer with the additional bit set. The last block + * should be aligned with the end of an ECC block. Because of this limitation, + * it is not possible to use the core routines. + */ +static int pl35x_nand_read_page_hwecc(struct nand_chip *chip, + u8 *buf, int oob_required, int page) +{ + const struct nand_sdr_timings *sdr = + nand_get_sdr_timings(nand_get_interface_config(chip)); + struct pl35x_nandc *nfc = to_pl35x_nandc(chip->controller); + struct pl35x_nand *plnand = to_pl35x_nand(chip); + struct mtd_info *mtd = nand_to_mtd(chip); + unsigned int first_row = (mtd->writesize <= 512) ? 1 : 2; + unsigned int nrows = plnand->addr_cycles; + unsigned int addr1 = 0, addr2 = 0, row; + u32 cmd_addr; + int i, ret; + + ret = pl35x_smc_set_ecc_mode(nfc, chip, PL35X_SMC_ECC_CFG_MODE_APB); + if (ret) + return ret; + + cmd_addr = PL35X_SMC_CMD_PHASE | + PL35X_SMC_CMD_PHASE_NADDRS(plnand->addr_cycles) | + PL35X_SMC_CMD_PHASE_CMD0(NAND_CMD_READ0) | + PL35X_SMC_CMD_PHASE_CMD1(NAND_CMD_READSTART) | + PL35X_SMC_CMD_PHASE_CMD1_VALID; + + for (i = 0, row = first_row; row < nrows; i++, row++) { + u8 addr = page >> ((i * 8) & 0xFF); + + if (row < 4) + addr1 |= PL35X_SMC_CMD_PHASE_ADDR(row, addr); + else + addr2 |= PL35X_SMC_CMD_PHASE_ADDR(row - 4, addr); + } + + /* Send the command and address cycles */ + writel(addr1, nfc->io_regs + cmd_addr); + if (plnand->addr_cycles > 4) + writel(addr2, nfc->io_regs + cmd_addr); + + /* Wait the data to be available in the NAND cache */ + ndelay(PSEC_TO_NSEC(sdr->tRR_min)); + ret = pl35x_smc_wait_for_irq(nfc); + if (ret) + goto disable_ecc_engine; + + /* Retrieve the raw data with the engine enabled */ + pl35x_nand_read_data_op(chip, buf, mtd->writesize, false, + 0, PL35X_SMC_DATA_PHASE_ECC_LAST); + ret = pl35x_smc_wait_for_ecc_done(nfc); + if (ret) + goto disable_ecc_engine; + + /* Retrieve the stored ECC bytes */ + pl35x_nand_read_data_op(chip, chip->oob_poi, mtd->oobsize, false, + 0, PL35X_SMC_DATA_PHASE_CLEAR_CS); + ret = mtd_ooblayout_get_eccbytes(mtd, nfc->ecc_buf, chip->oob_poi, 0, + chip->ecc.total); + if (ret) + goto disable_ecc_engine; + + pl35x_smc_set_ecc_mode(nfc, chip, PL35X_SMC_ECC_CFG_MODE_BYPASS); + + /* Correct the data and report failures */ + return pl35x_nand_recover_data_hwecc(nfc, chip, buf, nfc->ecc_buf); + +disable_ecc_engine: + pl35x_smc_set_ecc_mode(nfc, chip, PL35X_SMC_ECC_CFG_MODE_BYPASS); + + return ret; +} + +static int pl35x_nand_exec_op(struct nand_chip *chip, + const struct nand_subop *subop) +{ + struct pl35x_nandc *nfc = to_pl35x_nandc(chip->controller); + const struct nand_op_instr *instr, *data_instr = NULL; + unsigned int rdy_tim_ms = 0, naddrs = 0, cmds = 0, last_flags = 0; + u32 addr1 = 0, addr2 = 0, cmd0 = 0, cmd1 = 0, cmd_addr = 0; + unsigned int op_id, len, offset, rdy_del_ns; + int last_instr_type = -1; + bool cmd1_valid = false; + const u8 *addrs; + int i, ret; + + for (op_id = 0; op_id < subop->ninstrs; op_id++) { + instr = &subop->instrs[op_id]; + + switch (instr->type) { + case NAND_OP_CMD_INSTR: + if (!cmds) { + cmd0 = PL35X_SMC_CMD_PHASE_CMD0(instr->ctx.cmd.opcode); + } else { + cmd1 = PL35X_SMC_CMD_PHASE_CMD1(instr->ctx.cmd.opcode); + if (last_instr_type != NAND_OP_DATA_OUT_INSTR) + cmd1_valid = true; + } + cmds++; + break; + + case NAND_OP_ADDR_INSTR: + offset = nand_subop_get_addr_start_off(subop, op_id); + naddrs = nand_subop_get_num_addr_cyc(subop, op_id); + addrs = &instr->ctx.addr.addrs[offset]; + cmd_addr |= PL35X_SMC_CMD_PHASE_NADDRS(naddrs); + + for (i = offset; i < naddrs; i++) { + if (i < 4) + addr1 |= PL35X_SMC_CMD_PHASE_ADDR(i, addrs[i]); + else + addr2 |= PL35X_SMC_CMD_PHASE_ADDR(i - 4, addrs[i]); + } + break; + + case NAND_OP_DATA_IN_INSTR: + case NAND_OP_DATA_OUT_INSTR: + data_instr = instr; + len = nand_subop_get_data_len(subop, op_id); + break; + + case NAND_OP_WAITRDY_INSTR: + rdy_tim_ms = instr->ctx.waitrdy.timeout_ms; + rdy_del_ns = instr->delay_ns; + break; + } + + last_instr_type = instr->type; + } + + /* Command phase */ + cmd_addr |= PL35X_SMC_CMD_PHASE | cmd0 | cmd1 | + (cmd1_valid ? PL35X_SMC_CMD_PHASE_CMD1_VALID : 0); + writel(addr1, nfc->io_regs + cmd_addr); + if (naddrs > 4) + writel(addr2, nfc->io_regs + cmd_addr); + + /* Data phase */ + if (data_instr && data_instr->type == NAND_OP_DATA_OUT_INSTR) { + last_flags = PL35X_SMC_DATA_PHASE_CLEAR_CS; + if (cmds == 2) + last_flags |= cmd1 | PL35X_SMC_CMD_PHASE_CMD1_VALID; + + pl35x_nand_write_data_op(chip, data_instr->ctx.data.buf.out, + len, data_instr->ctx.data.force_8bit, + 0, last_flags); + } + + if (rdy_tim_ms) { + ndelay(rdy_del_ns); + ret = pl35x_smc_wait_for_irq(nfc); + if (ret) + return ret; + } + + if (data_instr && data_instr->type == NAND_OP_DATA_IN_INSTR) + pl35x_nand_read_data_op(chip, data_instr->ctx.data.buf.in, + len, data_instr->ctx.data.force_8bit, + 0, PL35X_SMC_DATA_PHASE_CLEAR_CS); + + return 0; +} + +static const struct nand_op_parser pl35x_nandc_op_parser = NAND_OP_PARSER( + NAND_OP_PARSER_PATTERN(pl35x_nand_exec_op, + NAND_OP_PARSER_PAT_CMD_ELEM(true), + NAND_OP_PARSER_PAT_ADDR_ELEM(true, 7), + NAND_OP_PARSER_PAT_CMD_ELEM(true), + NAND_OP_PARSER_PAT_WAITRDY_ELEM(true), + NAND_OP_PARSER_PAT_DATA_IN_ELEM(true, 2112)), + NAND_OP_PARSER_PATTERN(pl35x_nand_exec_op, + NAND_OP_PARSER_PAT_CMD_ELEM(false), + NAND_OP_PARSER_PAT_ADDR_ELEM(false, 7), + NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, 2112), + NAND_OP_PARSER_PAT_CMD_ELEM(false), + NAND_OP_PARSER_PAT_WAITRDY_ELEM(true)), + NAND_OP_PARSER_PATTERN(pl35x_nand_exec_op, + NAND_OP_PARSER_PAT_CMD_ELEM(false), + NAND_OP_PARSER_PAT_ADDR_ELEM(false, 7), + NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, 2112), + NAND_OP_PARSER_PAT_CMD_ELEM(true), + NAND_OP_PARSER_PAT_WAITRDY_ELEM(true)), + ); + +static int pl35x_nfc_exec_op(struct nand_chip *chip, + const struct nand_operation *op, + bool check_only) +{ + if (!check_only) + pl35x_nand_select_target(chip, op->cs); + + return nand_op_parser_exec_op(chip, &pl35x_nandc_op_parser, + op, check_only); +} + +static int pl35x_nfc_setup_interface(struct nand_chip *chip, int cs, + const struct nand_interface_config *conf) +{ + struct pl35x_nandc *nfc = to_pl35x_nandc(chip->controller); + struct pl35x_nand *plnand = to_pl35x_nand(chip); + struct pl35x_nand_timings tmgs = {}; + const struct nand_sdr_timings *sdr; + unsigned int period_ns, val; + struct clk *mclk; + + sdr = nand_get_sdr_timings(conf); + if (IS_ERR(sdr)) + return PTR_ERR(sdr); + + mclk = of_clk_get_by_name(nfc->dev->parent->of_node, "memclk"); + if (IS_ERR(mclk)) { + dev_err(nfc->dev, "Failed to retrieve SMC memclk\n"); + return PTR_ERR(mclk); + } + + /* + * SDR timings are given in pico-seconds while NFC timings must be + * expressed in NAND controller clock cycles. We use the TO_CYCLE() + * macro to convert from one to the other. + */ + period_ns = NSEC_PER_SEC / clk_get_rate(mclk); + + /* + * PL35X SMC needs one extra read cycle in SDR Mode 5. This is not + * written anywhere in the datasheet but is an empirical observation. + */ + val = TO_CYCLES(sdr->tRC_min, period_ns); + if (sdr->tRC_min <= 20000) + val++; + + tmgs.t_rc = val; + if (tmgs.t_rc != val || tmgs.t_rc < 2) + return -EINVAL; + + val = TO_CYCLES(sdr->tWC_min, period_ns); + tmgs.t_wc = val; + if (tmgs.t_wc != val || tmgs.t_wc < 2) + return -EINVAL; + + /* + * For all SDR modes, PL35X SMC needs tREA_max being 1, + * this is also an empirical result. + */ + tmgs.t_rea = 1; + + val = TO_CYCLES(sdr->tWP_min, period_ns); + tmgs.t_wp = val; + if (tmgs.t_wp != val || tmgs.t_wp < 1) + return -EINVAL; + + val = TO_CYCLES(sdr->tCLR_min, period_ns); + tmgs.t_clr = val; + if (tmgs.t_clr != val) + return -EINVAL; + + val = TO_CYCLES(sdr->tAR_min, period_ns); + tmgs.t_ar = val; + if (tmgs.t_ar != val) + return -EINVAL; + + val = TO_CYCLES(sdr->tRR_min, period_ns); + tmgs.t_rr = val; + if (tmgs.t_rr != val) + return -EINVAL; + + if (cs == NAND_DATA_IFACE_CHECK_ONLY) + return 0; + + plnand->timings = PL35X_SMC_NAND_TRC_CYCLES(tmgs.t_rc) | + PL35X_SMC_NAND_TWC_CYCLES(tmgs.t_wc) | + PL35X_SMC_NAND_TREA_CYCLES(tmgs.t_rea) | + PL35X_SMC_NAND_TWP_CYCLES(tmgs.t_wp) | + PL35X_SMC_NAND_TCLR_CYCLES(tmgs.t_clr) | + PL35X_SMC_NAND_TAR_CYCLES(tmgs.t_ar) | + PL35X_SMC_NAND_TRR_CYCLES(tmgs.t_rr); + + return 0; +} + +static void pl35x_smc_set_ecc_pg_size(struct pl35x_nandc *nfc, + struct nand_chip *chip, + unsigned int pg_sz) +{ + struct pl35x_nand *plnand = to_pl35x_nand(chip); + u32 sz; + + switch (pg_sz) { + case SZ_512: + sz = 1; + break; + case SZ_1K: + sz = 2; + break; + case SZ_2K: + sz = 3; + break; + default: + sz = 0; + break; + } + + plnand->ecc_cfg = readl(nfc->conf_regs + PL35X_SMC_ECC_CFG); + plnand->ecc_cfg &= ~PL35X_SMC_ECC_CFG_PGSIZE_MASK; + plnand->ecc_cfg |= sz; + writel(plnand->ecc_cfg, nfc->conf_regs + PL35X_SMC_ECC_CFG); +} + +static int pl35x_nand_init_hw_ecc_controller(struct pl35x_nandc *nfc, + struct nand_chip *chip) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + int ret = 0; + + if (mtd->writesize < SZ_512 || mtd->writesize > SZ_2K) { + dev_err(nfc->dev, + "The hardware ECC engine is limited to pages up to 2kiB\n"); + return -EOPNOTSUPP; + } + + chip->ecc.strength = 1; + chip->ecc.bytes = 3; + chip->ecc.size = SZ_512; + chip->ecc.steps = mtd->writesize / chip->ecc.size; + chip->ecc.read_page = pl35x_nand_read_page_hwecc; + chip->ecc.write_page = pl35x_nand_write_page_hwecc; + chip->ecc.write_page_raw = nand_monolithic_write_page_raw; + pl35x_smc_set_ecc_pg_size(nfc, chip, mtd->writesize); + + nfc->ecc_buf = devm_kmalloc(nfc->dev, chip->ecc.bytes * chip->ecc.steps, + GFP_KERNEL); + if (!nfc->ecc_buf) + return -ENOMEM; + + switch (mtd->oobsize) { + case 16: + /* Legacy Xilinx layout */ + mtd_set_ooblayout(mtd, &pl35x_ecc_ooblayout16_ops); + chip->bbt_options |= NAND_BBT_NO_OOB_BBM; + break; + case 64: + mtd_set_ooblayout(mtd, nand_get_large_page_ooblayout()); + break; + default: + dev_err(nfc->dev, "Unsupported OOB size\n"); + return -EOPNOTSUPP; + } + + return ret; +} + +static int pl35x_nand_attach_chip(struct nand_chip *chip) +{ + const struct nand_ecc_props *requirements = + nanddev_get_ecc_requirements(&chip->base); + struct pl35x_nandc *nfc = to_pl35x_nandc(chip->controller); + struct pl35x_nand *plnand = to_pl35x_nand(chip); + struct mtd_info *mtd = nand_to_mtd(chip); + int ret; + + if (chip->ecc.engine_type != NAND_ECC_ENGINE_TYPE_NONE && + (!chip->ecc.size || !chip->ecc.strength)) { + if (requirements->step_size && requirements->strength) { + chip->ecc.size = requirements->step_size; + chip->ecc.strength = requirements->strength; + } else { + dev_info(nfc->dev, + "No minimum ECC strength, using 1b/512B\n"); + chip->ecc.size = 512; + chip->ecc.strength = 1; + } + } + + if (mtd->writesize <= SZ_512) + plnand->addr_cycles = 1; + else + plnand->addr_cycles = 2; + + if (chip->options & NAND_ROW_ADDR_3) + plnand->addr_cycles += 3; + else + plnand->addr_cycles += 2; + + switch (chip->ecc.engine_type) { + case NAND_ECC_ENGINE_TYPE_ON_DIE: + /* Keep these legacy BBT descriptors for ON_DIE situations */ + chip->bbt_td = &bbt_main_descr; + chip->bbt_md = &bbt_mirror_descr; + fallthrough; + case NAND_ECC_ENGINE_TYPE_NONE: + case NAND_ECC_ENGINE_TYPE_SOFT: + break; + case NAND_ECC_ENGINE_TYPE_ON_HOST: + ret = pl35x_nand_init_hw_ecc_controller(nfc, chip); + if (ret) + return ret; + break; + default: + dev_err(nfc->dev, "Unsupported ECC mode: %d\n", + chip->ecc.engine_type); + return -EINVAL; + } + + return 0; +} + +static const struct nand_controller_ops pl35x_nandc_ops = { + .attach_chip = pl35x_nand_attach_chip, + .exec_op = pl35x_nfc_exec_op, + .setup_interface = pl35x_nfc_setup_interface, +}; + +static int pl35x_nand_reset_state(struct pl35x_nandc *nfc) +{ + int ret; + + /* Disable interrupts and clear their status */ + writel(PL35X_SMC_MEMC_CFG_CLR_INT_CLR_1 | + PL35X_SMC_MEMC_CFG_CLR_ECC_INT_DIS_1 | + PL35X_SMC_MEMC_CFG_CLR_INT_DIS_1, + nfc->conf_regs + PL35X_SMC_MEMC_CFG_CLR); + + /* Set default bus width to 8-bit */ + ret = pl35x_smc_set_buswidth(nfc, PL35X_SMC_OPMODE_BW_8); + if (ret) + return ret; + + /* Ensure the ECC controller is bypassed by default */ + ret = pl35x_smc_set_ecc_mode(nfc, NULL, PL35X_SMC_ECC_CFG_MODE_BYPASS); + if (ret) + return ret; + + /* + * Configure the commands that the ECC block uses to detect the + * operations it should start/end. + */ + writel(PL35X_SMC_ECC_CMD1_WRITE(NAND_CMD_SEQIN) | + PL35X_SMC_ECC_CMD1_READ(NAND_CMD_READ0) | + PL35X_SMC_ECC_CMD1_READ_END(NAND_CMD_READSTART) | + PL35X_SMC_ECC_CMD1_READ_END_VALID(NAND_CMD_READ1), + nfc->conf_regs + PL35X_SMC_ECC_CMD1); + writel(PL35X_SMC_ECC_CMD2_WRITE_COL_CHG(NAND_CMD_RNDIN) | + PL35X_SMC_ECC_CMD2_READ_COL_CHG(NAND_CMD_RNDOUT) | + PL35X_SMC_ECC_CMD2_READ_COL_CHG_END(NAND_CMD_RNDOUTSTART) | + PL35X_SMC_ECC_CMD2_READ_COL_CHG_END_VALID(NAND_CMD_READ1), + nfc->conf_regs + PL35X_SMC_ECC_CMD2); + + return 0; +} + +static int pl35x_nand_chip_init(struct pl35x_nandc *nfc, + struct device_node *np) +{ + struct pl35x_nand *plnand; + struct nand_chip *chip; + struct mtd_info *mtd; + int cs, ret; + + plnand = devm_kzalloc(nfc->dev, sizeof(*plnand), GFP_KERNEL); + if (!plnand) + return -ENOMEM; + + ret = of_property_read_u32(np, "reg", &cs); + if (ret) + return ret; + + if (cs >= PL35X_NAND_MAX_CS) { + dev_err(nfc->dev, "Wrong CS %d\n", cs); + return -EINVAL; + } + + if (test_and_set_bit(cs, &nfc->assigned_cs)) { + dev_err(nfc->dev, "Already assigned CS %d\n", cs); + return -EINVAL; + } + + plnand->cs = cs; + + chip = &plnand->chip; + chip->options = NAND_BUSWIDTH_AUTO | NAND_USES_DMA | NAND_NO_SUBPAGE_WRITE; + chip->bbt_options = NAND_BBT_USE_FLASH; + chip->controller = &nfc->controller; + mtd = nand_to_mtd(chip); + mtd->dev.parent = nfc->dev; + nand_set_flash_node(chip, np); + if (!mtd->name) { + mtd->name = devm_kasprintf(nfc->dev, GFP_KERNEL, + "%s", PL35X_NANDC_DRIVER_NAME); + if (!mtd->name) { + dev_err(nfc->dev, "Failed to allocate mtd->name\n"); + return -ENOMEM; + } + } + + ret = nand_scan(chip, 1); + if (ret) + return ret; + + ret = mtd_device_register(mtd, NULL, 0); + if (ret) { + nand_cleanup(chip); + return ret; + } + + list_add_tail(&plnand->node, &nfc->chips); + + return ret; +} + +static void pl35x_nand_chips_cleanup(struct pl35x_nandc *nfc) +{ + struct pl35x_nand *plnand, *tmp; + struct nand_chip *chip; + int ret; + + list_for_each_entry_safe(plnand, tmp, &nfc->chips, node) { + chip = &plnand->chip; + ret = mtd_device_unregister(nand_to_mtd(chip)); + WARN_ON(ret); + nand_cleanup(chip); + list_del(&plnand->node); + } +} + +static int pl35x_nand_chips_init(struct pl35x_nandc *nfc) +{ + struct device_node *np = nfc->dev->of_node, *nand_np; + int nchips = of_get_child_count(np); + int ret; + + if (!nchips || nchips > PL35X_NAND_MAX_CS) { + dev_err(nfc->dev, "Incorrect number of NAND chips (%d)\n", + nchips); + return -EINVAL; + } + + for_each_child_of_node(np, nand_np) { + ret = pl35x_nand_chip_init(nfc, nand_np); + if (ret) { + of_node_put(nand_np); + pl35x_nand_chips_cleanup(nfc); + break; + } + } + + return ret; +} + +static int pl35x_nand_probe(struct platform_device *pdev) +{ + struct device *smc_dev = pdev->dev.parent; + struct amba_device *smc_amba = to_amba_device(smc_dev); + struct pl35x_nandc *nfc; + u32 ret; + + nfc = devm_kzalloc(&pdev->dev, sizeof(*nfc), GFP_KERNEL); + if (!nfc) + return -ENOMEM; + + nfc->dev = &pdev->dev; + nand_controller_init(&nfc->controller); + nfc->controller.ops = &pl35x_nandc_ops; + INIT_LIST_HEAD(&nfc->chips); + + nfc->conf_regs = devm_ioremap_resource(&smc_amba->dev, &smc_amba->res); + if (IS_ERR(nfc->conf_regs)) + return PTR_ERR(nfc->conf_regs); + + nfc->io_regs = devm_platform_ioremap_resource(pdev, 0); + if (IS_ERR(nfc->io_regs)) + return PTR_ERR(nfc->io_regs); + + ret = pl35x_nand_reset_state(nfc); + if (ret) + return ret; + + ret = pl35x_nand_chips_init(nfc); + if (ret) + return ret; + + platform_set_drvdata(pdev, nfc); + + return 0; +} + +static void pl35x_nand_remove(struct platform_device *pdev) +{ + struct pl35x_nandc *nfc = platform_get_drvdata(pdev); + + pl35x_nand_chips_cleanup(nfc); +} + +static const struct of_device_id pl35x_nand_of_match[] = { + { .compatible = "arm,pl353-nand-r2p1" }, + {}, +}; +MODULE_DEVICE_TABLE(of, pl35x_nand_of_match); + +static struct platform_driver pl35x_nandc_driver = { + .probe = pl35x_nand_probe, + .remove_new = pl35x_nand_remove, + .driver = { + .name = PL35X_NANDC_DRIVER_NAME, + .of_match_table = pl35x_nand_of_match, + }, +}; +module_platform_driver(pl35x_nandc_driver); + +MODULE_AUTHOR("Xilinx, Inc."); +MODULE_ALIAS("platform:" PL35X_NANDC_DRIVER_NAME); +MODULE_DESCRIPTION("ARM PL35X NAND controller driver"); +MODULE_LICENSE("GPL"); diff --git a/drivers/mtd/nand/raw/plat_nand.c b/drivers/mtd/nand/raw/plat_nand.c new file mode 100644 index 0000000000..b5c374b51e --- /dev/null +++ b/drivers/mtd/nand/raw/plat_nand.c @@ -0,0 +1,159 @@ +// SPDX-License-Identifier: GPL-2.0-only +/* + * Generic NAND driver + * + * Author: Vitaly Wool <vitalywool@gmail.com> + */ + +#include <linux/err.h> +#include <linux/io.h> +#include <linux/module.h> +#include <linux/platform_device.h> +#include <linux/slab.h> +#include <linux/mtd/mtd.h> +#include <linux/mtd/platnand.h> + +struct plat_nand_data { + struct nand_controller controller; + struct nand_chip chip; + void __iomem *io_base; +}; + +static int plat_nand_attach_chip(struct nand_chip *chip) +{ + if (chip->ecc.engine_type == NAND_ECC_ENGINE_TYPE_SOFT && + chip->ecc.algo == NAND_ECC_ALGO_UNKNOWN) + chip->ecc.algo = NAND_ECC_ALGO_HAMMING; + + return 0; +} + +static const struct nand_controller_ops plat_nand_ops = { + .attach_chip = plat_nand_attach_chip, +}; + +/* + * Probe for the NAND device. + */ +static int plat_nand_probe(struct platform_device *pdev) +{ + struct platform_nand_data *pdata = dev_get_platdata(&pdev->dev); + struct plat_nand_data *data; + struct mtd_info *mtd; + const char **part_types; + int err = 0; + + if (!pdata) { + dev_err(&pdev->dev, "platform_nand_data is missing\n"); + return -EINVAL; + } + + if (pdata->chip.nr_chips < 1) { + dev_err(&pdev->dev, "invalid number of chips specified\n"); + return -EINVAL; + } + + /* Allocate memory for the device structure (and zero it) */ + data = devm_kzalloc(&pdev->dev, sizeof(struct plat_nand_data), + GFP_KERNEL); + if (!data) + return -ENOMEM; + + data->controller.ops = &plat_nand_ops; + nand_controller_init(&data->controller); + data->chip.controller = &data->controller; + + data->io_base = devm_platform_ioremap_resource(pdev, 0); + if (IS_ERR(data->io_base)) + return PTR_ERR(data->io_base); + + nand_set_flash_node(&data->chip, pdev->dev.of_node); + mtd = nand_to_mtd(&data->chip); + mtd->dev.parent = &pdev->dev; + + data->chip.legacy.IO_ADDR_R = data->io_base; + data->chip.legacy.IO_ADDR_W = data->io_base; + data->chip.legacy.cmd_ctrl = pdata->ctrl.cmd_ctrl; + data->chip.legacy.dev_ready = pdata->ctrl.dev_ready; + data->chip.legacy.select_chip = pdata->ctrl.select_chip; + data->chip.legacy.write_buf = pdata->ctrl.write_buf; + data->chip.legacy.read_buf = pdata->ctrl.read_buf; + data->chip.legacy.chip_delay = pdata->chip.chip_delay; + data->chip.options |= pdata->chip.options; + data->chip.bbt_options |= pdata->chip.bbt_options; + + platform_set_drvdata(pdev, data); + + /* Handle any platform specific setup */ + if (pdata->ctrl.probe) { + err = pdata->ctrl.probe(pdev); + if (err) + goto out; + } + + /* + * This driver assumes that the default ECC engine should be TYPE_SOFT. + * Set ->engine_type before registering the NAND devices in order to + * provide a driver specific default value. + */ + data->chip.ecc.engine_type = NAND_ECC_ENGINE_TYPE_SOFT; + + /* Scan to find existence of the device */ + err = nand_scan(&data->chip, pdata->chip.nr_chips); + if (err) + goto out; + + part_types = pdata->chip.part_probe_types; + + err = mtd_device_parse_register(mtd, part_types, NULL, + pdata->chip.partitions, + pdata->chip.nr_partitions); + + if (!err) + return err; + + nand_cleanup(&data->chip); +out: + if (pdata->ctrl.remove) + pdata->ctrl.remove(pdev); + return err; +} + +/* + * Remove a NAND device. + */ +static void plat_nand_remove(struct platform_device *pdev) +{ + struct plat_nand_data *data = platform_get_drvdata(pdev); + struct platform_nand_data *pdata = dev_get_platdata(&pdev->dev); + struct nand_chip *chip = &data->chip; + int ret; + + ret = mtd_device_unregister(nand_to_mtd(chip)); + WARN_ON(ret); + nand_cleanup(chip); + if (pdata->ctrl.remove) + pdata->ctrl.remove(pdev); +} + +static const struct of_device_id plat_nand_match[] = { + { .compatible = "gen_nand" }, + {}, +}; +MODULE_DEVICE_TABLE(of, plat_nand_match); + +static struct platform_driver plat_nand_driver = { + .probe = plat_nand_probe, + .remove_new = plat_nand_remove, + .driver = { + .name = "gen_nand", + .of_match_table = plat_nand_match, + }, +}; + +module_platform_driver(plat_nand_driver); + +MODULE_LICENSE("GPL"); +MODULE_AUTHOR("Vitaly Wool"); +MODULE_DESCRIPTION("Simple generic NAND driver"); +MODULE_ALIAS("platform:gen_nand"); diff --git a/drivers/mtd/nand/raw/qcom_nandc.c b/drivers/mtd/nand/raw/qcom_nandc.c new file mode 100644 index 0000000000..b079605c84 --- /dev/null +++ b/drivers/mtd/nand/raw/qcom_nandc.c @@ -0,0 +1,3546 @@ +// SPDX-License-Identifier: GPL-2.0-only +/* + * Copyright (c) 2016, The Linux Foundation. All rights reserved. + */ +#include <linux/bitops.h> +#include <linux/clk.h> +#include <linux/delay.h> +#include <linux/dmaengine.h> +#include <linux/dma-mapping.h> +#include <linux/dma/qcom_adm.h> +#include <linux/dma/qcom_bam_dma.h> +#include <linux/module.h> +#include <linux/mtd/partitions.h> +#include <linux/mtd/rawnand.h> +#include <linux/of.h> +#include <linux/platform_device.h> +#include <linux/slab.h> + +/* NANDc reg offsets */ +#define NAND_FLASH_CMD 0x00 +#define NAND_ADDR0 0x04 +#define NAND_ADDR1 0x08 +#define NAND_FLASH_CHIP_SELECT 0x0c +#define NAND_EXEC_CMD 0x10 +#define NAND_FLASH_STATUS 0x14 +#define NAND_BUFFER_STATUS 0x18 +#define NAND_DEV0_CFG0 0x20 +#define NAND_DEV0_CFG1 0x24 +#define NAND_DEV0_ECC_CFG 0x28 +#define NAND_AUTO_STATUS_EN 0x2c +#define NAND_DEV1_CFG0 0x30 +#define NAND_DEV1_CFG1 0x34 +#define NAND_READ_ID 0x40 +#define NAND_READ_STATUS 0x44 +#define NAND_DEV_CMD0 0xa0 +#define NAND_DEV_CMD1 0xa4 +#define NAND_DEV_CMD2 0xa8 +#define NAND_DEV_CMD_VLD 0xac +#define SFLASHC_BURST_CFG 0xe0 +#define NAND_ERASED_CW_DETECT_CFG 0xe8 +#define NAND_ERASED_CW_DETECT_STATUS 0xec +#define NAND_EBI2_ECC_BUF_CFG 0xf0 +#define FLASH_BUF_ACC 0x100 + +#define NAND_CTRL 0xf00 +#define NAND_VERSION 0xf08 +#define NAND_READ_LOCATION_0 0xf20 +#define NAND_READ_LOCATION_1 0xf24 +#define NAND_READ_LOCATION_2 0xf28 +#define NAND_READ_LOCATION_3 0xf2c +#define NAND_READ_LOCATION_LAST_CW_0 0xf40 +#define NAND_READ_LOCATION_LAST_CW_1 0xf44 +#define NAND_READ_LOCATION_LAST_CW_2 0xf48 +#define NAND_READ_LOCATION_LAST_CW_3 0xf4c + +/* dummy register offsets, used by write_reg_dma */ +#define NAND_DEV_CMD1_RESTORE 0xdead +#define NAND_DEV_CMD_VLD_RESTORE 0xbeef + +/* NAND_FLASH_CMD bits */ +#define PAGE_ACC BIT(4) +#define LAST_PAGE BIT(5) + +/* NAND_FLASH_CHIP_SELECT bits */ +#define NAND_DEV_SEL 0 +#define DM_EN BIT(2) + +/* NAND_FLASH_STATUS bits */ +#define FS_OP_ERR BIT(4) +#define FS_READY_BSY_N BIT(5) +#define FS_MPU_ERR BIT(8) +#define FS_DEVICE_STS_ERR BIT(16) +#define FS_DEVICE_WP BIT(23) + +/* NAND_BUFFER_STATUS bits */ +#define BS_UNCORRECTABLE_BIT BIT(8) +#define BS_CORRECTABLE_ERR_MSK 0x1f + +/* NAND_DEVn_CFG0 bits */ +#define DISABLE_STATUS_AFTER_WRITE 4 +#define CW_PER_PAGE 6 +#define UD_SIZE_BYTES 9 +#define UD_SIZE_BYTES_MASK GENMASK(18, 9) +#define ECC_PARITY_SIZE_BYTES_RS 19 +#define SPARE_SIZE_BYTES 23 +#define SPARE_SIZE_BYTES_MASK GENMASK(26, 23) +#define NUM_ADDR_CYCLES 27 +#define STATUS_BFR_READ 30 +#define SET_RD_MODE_AFTER_STATUS 31 + +/* NAND_DEVn_CFG0 bits */ +#define DEV0_CFG1_ECC_DISABLE 0 +#define WIDE_FLASH 1 +#define NAND_RECOVERY_CYCLES 2 +#define CS_ACTIVE_BSY 5 +#define BAD_BLOCK_BYTE_NUM 6 +#define BAD_BLOCK_IN_SPARE_AREA 16 +#define WR_RD_BSY_GAP 17 +#define ENABLE_BCH_ECC 27 + +/* NAND_DEV0_ECC_CFG bits */ +#define ECC_CFG_ECC_DISABLE 0 +#define ECC_SW_RESET 1 +#define ECC_MODE 4 +#define ECC_PARITY_SIZE_BYTES_BCH 8 +#define ECC_NUM_DATA_BYTES 16 +#define ECC_NUM_DATA_BYTES_MASK GENMASK(25, 16) +#define ECC_FORCE_CLK_OPEN 30 + +/* NAND_DEV_CMD1 bits */ +#define READ_ADDR 0 + +/* NAND_DEV_CMD_VLD bits */ +#define READ_START_VLD BIT(0) +#define READ_STOP_VLD BIT(1) +#define WRITE_START_VLD BIT(2) +#define ERASE_START_VLD BIT(3) +#define SEQ_READ_START_VLD BIT(4) + +/* NAND_EBI2_ECC_BUF_CFG bits */ +#define NUM_STEPS 0 + +/* NAND_ERASED_CW_DETECT_CFG bits */ +#define ERASED_CW_ECC_MASK 1 +#define AUTO_DETECT_RES 0 +#define MASK_ECC BIT(ERASED_CW_ECC_MASK) +#define RESET_ERASED_DET BIT(AUTO_DETECT_RES) +#define ACTIVE_ERASED_DET (0 << AUTO_DETECT_RES) +#define CLR_ERASED_PAGE_DET (RESET_ERASED_DET | MASK_ECC) +#define SET_ERASED_PAGE_DET (ACTIVE_ERASED_DET | MASK_ECC) + +/* NAND_ERASED_CW_DETECT_STATUS bits */ +#define PAGE_ALL_ERASED BIT(7) +#define CODEWORD_ALL_ERASED BIT(6) +#define PAGE_ERASED BIT(5) +#define CODEWORD_ERASED BIT(4) +#define ERASED_PAGE (PAGE_ALL_ERASED | PAGE_ERASED) +#define ERASED_CW (CODEWORD_ALL_ERASED | CODEWORD_ERASED) + +/* NAND_READ_LOCATION_n bits */ +#define READ_LOCATION_OFFSET 0 +#define READ_LOCATION_SIZE 16 +#define READ_LOCATION_LAST 31 + +/* Version Mask */ +#define NAND_VERSION_MAJOR_MASK 0xf0000000 +#define NAND_VERSION_MAJOR_SHIFT 28 +#define NAND_VERSION_MINOR_MASK 0x0fff0000 +#define NAND_VERSION_MINOR_SHIFT 16 + +/* NAND OP_CMDs */ +#define OP_PAGE_READ 0x2 +#define OP_PAGE_READ_WITH_ECC 0x3 +#define OP_PAGE_READ_WITH_ECC_SPARE 0x4 +#define OP_PAGE_READ_ONFI_READ 0x5 +#define OP_PROGRAM_PAGE 0x6 +#define OP_PAGE_PROGRAM_WITH_ECC 0x7 +#define OP_PROGRAM_PAGE_SPARE 0x9 +#define OP_BLOCK_ERASE 0xa +#define OP_CHECK_STATUS 0xc +#define OP_FETCH_ID 0xb +#define OP_RESET_DEVICE 0xd + +/* Default Value for NAND_DEV_CMD_VLD */ +#define NAND_DEV_CMD_VLD_VAL (READ_START_VLD | WRITE_START_VLD | \ + ERASE_START_VLD | SEQ_READ_START_VLD) + +/* NAND_CTRL bits */ +#define BAM_MODE_EN BIT(0) + +/* + * the NAND controller performs reads/writes with ECC in 516 byte chunks. + * the driver calls the chunks 'step' or 'codeword' interchangeably + */ +#define NANDC_STEP_SIZE 512 + +/* + * the largest page size we support is 8K, this will have 16 steps/codewords + * of 512 bytes each + */ +#define MAX_NUM_STEPS (SZ_8K / NANDC_STEP_SIZE) + +/* we read at most 3 registers per codeword scan */ +#define MAX_REG_RD (3 * MAX_NUM_STEPS) + +/* ECC modes supported by the controller */ +#define ECC_NONE BIT(0) +#define ECC_RS_4BIT BIT(1) +#define ECC_BCH_4BIT BIT(2) +#define ECC_BCH_8BIT BIT(3) + +#define nandc_set_read_loc_first(chip, reg, cw_offset, read_size, is_last_read_loc) \ +nandc_set_reg(chip, reg, \ + ((cw_offset) << READ_LOCATION_OFFSET) | \ + ((read_size) << READ_LOCATION_SIZE) | \ + ((is_last_read_loc) << READ_LOCATION_LAST)) + +#define nandc_set_read_loc_last(chip, reg, cw_offset, read_size, is_last_read_loc) \ +nandc_set_reg(chip, reg, \ + ((cw_offset) << READ_LOCATION_OFFSET) | \ + ((read_size) << READ_LOCATION_SIZE) | \ + ((is_last_read_loc) << READ_LOCATION_LAST)) +/* + * Returns the actual register address for all NAND_DEV_ registers + * (i.e. NAND_DEV_CMD0, NAND_DEV_CMD1, NAND_DEV_CMD2 and NAND_DEV_CMD_VLD) + */ +#define dev_cmd_reg_addr(nandc, reg) ((nandc)->props->dev_cmd_reg_start + (reg)) + +/* Returns the NAND register physical address */ +#define nandc_reg_phys(chip, offset) ((chip)->base_phys + (offset)) + +/* Returns the dma address for reg read buffer */ +#define reg_buf_dma_addr(chip, vaddr) \ + ((chip)->reg_read_dma + \ + ((u8 *)(vaddr) - (u8 *)(chip)->reg_read_buf)) + +#define QPIC_PER_CW_CMD_ELEMENTS 32 +#define QPIC_PER_CW_CMD_SGL 32 +#define QPIC_PER_CW_DATA_SGL 8 + +#define QPIC_NAND_COMPLETION_TIMEOUT msecs_to_jiffies(2000) + +/* + * Flags used in DMA descriptor preparation helper functions + * (i.e. read_reg_dma/write_reg_dma/read_data_dma/write_data_dma) + */ +/* Don't set the EOT in current tx BAM sgl */ +#define NAND_BAM_NO_EOT BIT(0) +/* Set the NWD flag in current BAM sgl */ +#define NAND_BAM_NWD BIT(1) +/* Finish writing in the current BAM sgl and start writing in another BAM sgl */ +#define NAND_BAM_NEXT_SGL BIT(2) +/* + * Erased codeword status is being used two times in single transfer so this + * flag will determine the current value of erased codeword status register + */ +#define NAND_ERASED_CW_SET BIT(4) + +#define MAX_ADDRESS_CYCLE 5 + +/* + * This data type corresponds to the BAM transaction which will be used for all + * NAND transfers. + * @bam_ce - the array of BAM command elements + * @cmd_sgl - sgl for NAND BAM command pipe + * @data_sgl - sgl for NAND BAM consumer/producer pipe + * @last_data_desc - last DMA desc in data channel (tx/rx). + * @last_cmd_desc - last DMA desc in command channel. + * @txn_done - completion for NAND transfer. + * @bam_ce_pos - the index in bam_ce which is available for next sgl + * @bam_ce_start - the index in bam_ce which marks the start position ce + * for current sgl. It will be used for size calculation + * for current sgl + * @cmd_sgl_pos - current index in command sgl. + * @cmd_sgl_start - start index in command sgl. + * @tx_sgl_pos - current index in data sgl for tx. + * @tx_sgl_start - start index in data sgl for tx. + * @rx_sgl_pos - current index in data sgl for rx. + * @rx_sgl_start - start index in data sgl for rx. + * @wait_second_completion - wait for second DMA desc completion before making + * the NAND transfer completion. + */ +struct bam_transaction { + struct bam_cmd_element *bam_ce; + struct scatterlist *cmd_sgl; + struct scatterlist *data_sgl; + struct dma_async_tx_descriptor *last_data_desc; + struct dma_async_tx_descriptor *last_cmd_desc; + struct completion txn_done; + u32 bam_ce_pos; + u32 bam_ce_start; + u32 cmd_sgl_pos; + u32 cmd_sgl_start; + u32 tx_sgl_pos; + u32 tx_sgl_start; + u32 rx_sgl_pos; + u32 rx_sgl_start; + bool wait_second_completion; +}; + +/* + * This data type corresponds to the nand dma descriptor + * @dma_desc - low level DMA engine descriptor + * @list - list for desc_info + * + * @adm_sgl - sgl which will be used for single sgl dma descriptor. Only used by + * ADM + * @bam_sgl - sgl which will be used for dma descriptor. Only used by BAM + * @sgl_cnt - number of SGL in bam_sgl. Only used by BAM + * @dir - DMA transfer direction + */ +struct desc_info { + struct dma_async_tx_descriptor *dma_desc; + struct list_head node; + + union { + struct scatterlist adm_sgl; + struct { + struct scatterlist *bam_sgl; + int sgl_cnt; + }; + }; + enum dma_data_direction dir; +}; + +/* + * holds the current register values that we want to write. acts as a contiguous + * chunk of memory which we use to write the controller registers through DMA. + */ +struct nandc_regs { + __le32 cmd; + __le32 addr0; + __le32 addr1; + __le32 chip_sel; + __le32 exec; + + __le32 cfg0; + __le32 cfg1; + __le32 ecc_bch_cfg; + + __le32 clrflashstatus; + __le32 clrreadstatus; + + __le32 cmd1; + __le32 vld; + + __le32 orig_cmd1; + __le32 orig_vld; + + __le32 ecc_buf_cfg; + __le32 read_location0; + __le32 read_location1; + __le32 read_location2; + __le32 read_location3; + __le32 read_location_last0; + __le32 read_location_last1; + __le32 read_location_last2; + __le32 read_location_last3; + + __le32 erased_cw_detect_cfg_clr; + __le32 erased_cw_detect_cfg_set; +}; + +/* + * NAND controller data struct + * + * @dev: parent device + * + * @base: MMIO base + * + * @core_clk: controller clock + * @aon_clk: another controller clock + * + * @regs: a contiguous chunk of memory for DMA register + * writes. contains the register values to be + * written to controller + * + * @props: properties of current NAND controller, + * initialized via DT match data + * + * @controller: base controller structure + * @host_list: list containing all the chips attached to the + * controller + * + * @chan: dma channel + * @cmd_crci: ADM DMA CRCI for command flow control + * @data_crci: ADM DMA CRCI for data flow control + * + * @desc_list: DMA descriptor list (list of desc_infos) + * + * @data_buffer: our local DMA buffer for page read/writes, + * used when we can't use the buffer provided + * by upper layers directly + * @reg_read_buf: local buffer for reading back registers via DMA + * + * @base_phys: physical base address of controller registers + * @base_dma: dma base address of controller registers + * @reg_read_dma: contains dma address for register read buffer + * + * @buf_size/count/start: markers for chip->legacy.read_buf/write_buf + * functions + * @max_cwperpage: maximum QPIC codewords required. calculated + * from all connected NAND devices pagesize + * + * @reg_read_pos: marker for data read in reg_read_buf + * + * @cmd1/vld: some fixed controller register values + * + * @exec_opwrite: flag to select correct number of code word + * while reading status + */ +struct qcom_nand_controller { + struct device *dev; + + void __iomem *base; + + struct clk *core_clk; + struct clk *aon_clk; + + struct nandc_regs *regs; + struct bam_transaction *bam_txn; + + const struct qcom_nandc_props *props; + + struct nand_controller controller; + struct list_head host_list; + + union { + /* will be used only by QPIC for BAM DMA */ + struct { + struct dma_chan *tx_chan; + struct dma_chan *rx_chan; + struct dma_chan *cmd_chan; + }; + + /* will be used only by EBI2 for ADM DMA */ + struct { + struct dma_chan *chan; + unsigned int cmd_crci; + unsigned int data_crci; + }; + }; + + struct list_head desc_list; + + u8 *data_buffer; + __le32 *reg_read_buf; + + phys_addr_t base_phys; + dma_addr_t base_dma; + dma_addr_t reg_read_dma; + + int buf_size; + int buf_count; + int buf_start; + unsigned int max_cwperpage; + + int reg_read_pos; + + u32 cmd1, vld; + bool exec_opwrite; +}; + +/* + * NAND special boot partitions + * + * @page_offset: offset of the partition where spare data is not protected + * by ECC (value in pages) + * @page_offset: size of the partition where spare data is not protected + * by ECC (value in pages) + */ +struct qcom_nand_boot_partition { + u32 page_offset; + u32 page_size; +}; + +/* + * Qcom op for each exec_op transfer + * + * @data_instr: data instruction pointer + * @data_instr_idx: data instruction index + * @rdy_timeout_ms: wait ready timeout in ms + * @rdy_delay_ns: Additional delay in ns + * @addr1_reg: Address1 register value + * @addr2_reg: Address2 register value + * @cmd_reg: CMD register value + * @flag: flag for misc instruction + */ +struct qcom_op { + const struct nand_op_instr *data_instr; + unsigned int data_instr_idx; + unsigned int rdy_timeout_ms; + unsigned int rdy_delay_ns; + u32 addr1_reg; + u32 addr2_reg; + u32 cmd_reg; + u8 flag; +}; + +/* + * NAND chip structure + * + * @boot_partitions: array of boot partitions where offset and size of the + * boot partitions are stored + * + * @chip: base NAND chip structure + * @node: list node to add itself to host_list in + * qcom_nand_controller + * + * @nr_boot_partitions: count of the boot partitions where spare data is not + * protected by ECC + * + * @cs: chip select value for this chip + * @cw_size: the number of bytes in a single step/codeword + * of a page, consisting of all data, ecc, spare + * and reserved bytes + * @cw_data: the number of bytes within a codeword protected + * by ECC + * @ecc_bytes_hw: ECC bytes used by controller hardware for this + * chip + * + * @last_command: keeps track of last command on this chip. used + * for reading correct status + * + * @cfg0, cfg1, cfg0_raw..: NANDc register configurations needed for + * ecc/non-ecc mode for the current nand flash + * device + * + * @status: value to be returned if NAND_CMD_STATUS command + * is executed + * @codeword_fixup: keep track of the current layout used by + * the driver for read/write operation. + * @use_ecc: request the controller to use ECC for the + * upcoming read/write + * @bch_enabled: flag to tell whether BCH ECC mode is used + */ +struct qcom_nand_host { + struct qcom_nand_boot_partition *boot_partitions; + + struct nand_chip chip; + struct list_head node; + + int nr_boot_partitions; + + int cs; + int cw_size; + int cw_data; + int ecc_bytes_hw; + int spare_bytes; + int bbm_size; + + int last_command; + + u32 cfg0, cfg1; + u32 cfg0_raw, cfg1_raw; + u32 ecc_buf_cfg; + u32 ecc_bch_cfg; + u32 clrflashstatus; + u32 clrreadstatus; + + u8 status; + bool codeword_fixup; + bool use_ecc; + bool bch_enabled; +}; + +/* + * This data type corresponds to the NAND controller properties which varies + * among different NAND controllers. + * @ecc_modes - ecc mode for NAND + * @dev_cmd_reg_start - NAND_DEV_CMD_* registers starting offset + * @is_bam - whether NAND controller is using BAM + * @is_qpic - whether NAND CTRL is part of qpic IP + * @qpic_v2 - flag to indicate QPIC IP version 2 + * @use_codeword_fixup - whether NAND has different layout for boot partitions + */ +struct qcom_nandc_props { + u32 ecc_modes; + u32 dev_cmd_reg_start; + bool is_bam; + bool is_qpic; + bool qpic_v2; + bool use_codeword_fixup; +}; + +/* Frees the BAM transaction memory */ +static void free_bam_transaction(struct qcom_nand_controller *nandc) +{ + struct bam_transaction *bam_txn = nandc->bam_txn; + + devm_kfree(nandc->dev, bam_txn); +} + +/* Allocates and Initializes the BAM transaction */ +static struct bam_transaction * +alloc_bam_transaction(struct qcom_nand_controller *nandc) +{ + struct bam_transaction *bam_txn; + size_t bam_txn_size; + unsigned int num_cw = nandc->max_cwperpage; + void *bam_txn_buf; + + bam_txn_size = + sizeof(*bam_txn) + num_cw * + ((sizeof(*bam_txn->bam_ce) * QPIC_PER_CW_CMD_ELEMENTS) + + (sizeof(*bam_txn->cmd_sgl) * QPIC_PER_CW_CMD_SGL) + + (sizeof(*bam_txn->data_sgl) * QPIC_PER_CW_DATA_SGL)); + + bam_txn_buf = devm_kzalloc(nandc->dev, bam_txn_size, GFP_KERNEL); + if (!bam_txn_buf) + return NULL; + + bam_txn = bam_txn_buf; + bam_txn_buf += sizeof(*bam_txn); + + bam_txn->bam_ce = bam_txn_buf; + bam_txn_buf += + sizeof(*bam_txn->bam_ce) * QPIC_PER_CW_CMD_ELEMENTS * num_cw; + + bam_txn->cmd_sgl = bam_txn_buf; + bam_txn_buf += + sizeof(*bam_txn->cmd_sgl) * QPIC_PER_CW_CMD_SGL * num_cw; + + bam_txn->data_sgl = bam_txn_buf; + + init_completion(&bam_txn->txn_done); + + return bam_txn; +} + +/* Clears the BAM transaction indexes */ +static void clear_bam_transaction(struct qcom_nand_controller *nandc) +{ + struct bam_transaction *bam_txn = nandc->bam_txn; + + if (!nandc->props->is_bam) + return; + + bam_txn->bam_ce_pos = 0; + bam_txn->bam_ce_start = 0; + bam_txn->cmd_sgl_pos = 0; + bam_txn->cmd_sgl_start = 0; + bam_txn->tx_sgl_pos = 0; + bam_txn->tx_sgl_start = 0; + bam_txn->rx_sgl_pos = 0; + bam_txn->rx_sgl_start = 0; + bam_txn->last_data_desc = NULL; + bam_txn->wait_second_completion = false; + + sg_init_table(bam_txn->cmd_sgl, nandc->max_cwperpage * + QPIC_PER_CW_CMD_SGL); + sg_init_table(bam_txn->data_sgl, nandc->max_cwperpage * + QPIC_PER_CW_DATA_SGL); + + reinit_completion(&bam_txn->txn_done); +} + +/* Callback for DMA descriptor completion */ +static void qpic_bam_dma_done(void *data) +{ + struct bam_transaction *bam_txn = data; + + /* + * In case of data transfer with NAND, 2 callbacks will be generated. + * One for command channel and another one for data channel. + * If current transaction has data descriptors + * (i.e. wait_second_completion is true), then set this to false + * and wait for second DMA descriptor completion. + */ + if (bam_txn->wait_second_completion) + bam_txn->wait_second_completion = false; + else + complete(&bam_txn->txn_done); +} + +static inline struct qcom_nand_host *to_qcom_nand_host(struct nand_chip *chip) +{ + return container_of(chip, struct qcom_nand_host, chip); +} + +static inline struct qcom_nand_controller * +get_qcom_nand_controller(struct nand_chip *chip) +{ + return container_of(chip->controller, struct qcom_nand_controller, + controller); +} + +static inline u32 nandc_read(struct qcom_nand_controller *nandc, int offset) +{ + return ioread32(nandc->base + offset); +} + +static inline void nandc_write(struct qcom_nand_controller *nandc, int offset, + u32 val) +{ + iowrite32(val, nandc->base + offset); +} + +static inline void nandc_read_buffer_sync(struct qcom_nand_controller *nandc, + bool is_cpu) +{ + if (!nandc->props->is_bam) + return; + + if (is_cpu) + dma_sync_single_for_cpu(nandc->dev, nandc->reg_read_dma, + MAX_REG_RD * + sizeof(*nandc->reg_read_buf), + DMA_FROM_DEVICE); + else + dma_sync_single_for_device(nandc->dev, nandc->reg_read_dma, + MAX_REG_RD * + sizeof(*nandc->reg_read_buf), + DMA_FROM_DEVICE); +} + +static __le32 *offset_to_nandc_reg(struct nandc_regs *regs, int offset) +{ + switch (offset) { + case NAND_FLASH_CMD: + return ®s->cmd; + case NAND_ADDR0: + return ®s->addr0; + case NAND_ADDR1: + return ®s->addr1; + case NAND_FLASH_CHIP_SELECT: + return ®s->chip_sel; + case NAND_EXEC_CMD: + return ®s->exec; + case NAND_FLASH_STATUS: + return ®s->clrflashstatus; + case NAND_DEV0_CFG0: + return ®s->cfg0; + case NAND_DEV0_CFG1: + return ®s->cfg1; + case NAND_DEV0_ECC_CFG: + return ®s->ecc_bch_cfg; + case NAND_READ_STATUS: + return ®s->clrreadstatus; + case NAND_DEV_CMD1: + return ®s->cmd1; + case NAND_DEV_CMD1_RESTORE: + return ®s->orig_cmd1; + case NAND_DEV_CMD_VLD: + return ®s->vld; + case NAND_DEV_CMD_VLD_RESTORE: + return ®s->orig_vld; + case NAND_EBI2_ECC_BUF_CFG: + return ®s->ecc_buf_cfg; + case NAND_READ_LOCATION_0: + return ®s->read_location0; + case NAND_READ_LOCATION_1: + return ®s->read_location1; + case NAND_READ_LOCATION_2: + return ®s->read_location2; + case NAND_READ_LOCATION_3: + return ®s->read_location3; + case NAND_READ_LOCATION_LAST_CW_0: + return ®s->read_location_last0; + case NAND_READ_LOCATION_LAST_CW_1: + return ®s->read_location_last1; + case NAND_READ_LOCATION_LAST_CW_2: + return ®s->read_location_last2; + case NAND_READ_LOCATION_LAST_CW_3: + return ®s->read_location_last3; + default: + return NULL; + } +} + +static void nandc_set_reg(struct nand_chip *chip, int offset, + u32 val) +{ + struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); + struct nandc_regs *regs = nandc->regs; + __le32 *reg; + + reg = offset_to_nandc_reg(regs, offset); + + if (reg) + *reg = cpu_to_le32(val); +} + +/* Helper to check the code word, whether it is last cw or not */ +static bool qcom_nandc_is_last_cw(struct nand_ecc_ctrl *ecc, int cw) +{ + return cw == (ecc->steps - 1); +} + +/* helper to configure location register values */ +static void nandc_set_read_loc(struct nand_chip *chip, int cw, int reg, + int cw_offset, int read_size, int is_last_read_loc) +{ + struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); + struct nand_ecc_ctrl *ecc = &chip->ecc; + int reg_base = NAND_READ_LOCATION_0; + + if (nandc->props->qpic_v2 && qcom_nandc_is_last_cw(ecc, cw)) + reg_base = NAND_READ_LOCATION_LAST_CW_0; + + reg_base += reg * 4; + + if (nandc->props->qpic_v2 && qcom_nandc_is_last_cw(ecc, cw)) + return nandc_set_read_loc_last(chip, reg_base, cw_offset, + read_size, is_last_read_loc); + else + return nandc_set_read_loc_first(chip, reg_base, cw_offset, + read_size, is_last_read_loc); +} + +/* helper to configure address register values */ +static void set_address(struct qcom_nand_host *host, u16 column, int page) +{ + struct nand_chip *chip = &host->chip; + + if (chip->options & NAND_BUSWIDTH_16) + column >>= 1; + + nandc_set_reg(chip, NAND_ADDR0, page << 16 | column); + nandc_set_reg(chip, NAND_ADDR1, page >> 16 & 0xff); +} + +/* + * update_rw_regs: set up read/write register values, these will be + * written to the NAND controller registers via DMA + * + * @num_cw: number of steps for the read/write operation + * @read: read or write operation + * @cw : which code word + */ +static void update_rw_regs(struct qcom_nand_host *host, int num_cw, bool read, int cw) +{ + struct nand_chip *chip = &host->chip; + u32 cmd, cfg0, cfg1, ecc_bch_cfg; + struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); + + if (read) { + if (host->use_ecc) + cmd = OP_PAGE_READ_WITH_ECC | PAGE_ACC | LAST_PAGE; + else + cmd = OP_PAGE_READ | PAGE_ACC | LAST_PAGE; + } else { + cmd = OP_PROGRAM_PAGE | PAGE_ACC | LAST_PAGE; + } + + if (host->use_ecc) { + cfg0 = (host->cfg0 & ~(7U << CW_PER_PAGE)) | + (num_cw - 1) << CW_PER_PAGE; + + cfg1 = host->cfg1; + ecc_bch_cfg = host->ecc_bch_cfg; + } else { + cfg0 = (host->cfg0_raw & ~(7U << CW_PER_PAGE)) | + (num_cw - 1) << CW_PER_PAGE; + + cfg1 = host->cfg1_raw; + ecc_bch_cfg = 1 << ECC_CFG_ECC_DISABLE; + } + + nandc_set_reg(chip, NAND_FLASH_CMD, cmd); + nandc_set_reg(chip, NAND_DEV0_CFG0, cfg0); + nandc_set_reg(chip, NAND_DEV0_CFG1, cfg1); + nandc_set_reg(chip, NAND_DEV0_ECC_CFG, ecc_bch_cfg); + if (!nandc->props->qpic_v2) + nandc_set_reg(chip, NAND_EBI2_ECC_BUF_CFG, host->ecc_buf_cfg); + nandc_set_reg(chip, NAND_FLASH_STATUS, host->clrflashstatus); + nandc_set_reg(chip, NAND_READ_STATUS, host->clrreadstatus); + nandc_set_reg(chip, NAND_EXEC_CMD, 1); + + if (read) + nandc_set_read_loc(chip, cw, 0, 0, host->use_ecc ? + host->cw_data : host->cw_size, 1); +} + +/* + * Maps the scatter gather list for DMA transfer and forms the DMA descriptor + * for BAM. This descriptor will be added in the NAND DMA descriptor queue + * which will be submitted to DMA engine. + */ +static int prepare_bam_async_desc(struct qcom_nand_controller *nandc, + struct dma_chan *chan, + unsigned long flags) +{ + struct desc_info *desc; + struct scatterlist *sgl; + unsigned int sgl_cnt; + int ret; + struct bam_transaction *bam_txn = nandc->bam_txn; + enum dma_transfer_direction dir_eng; + struct dma_async_tx_descriptor *dma_desc; + + desc = kzalloc(sizeof(*desc), GFP_KERNEL); + if (!desc) + return -ENOMEM; + + if (chan == nandc->cmd_chan) { + sgl = &bam_txn->cmd_sgl[bam_txn->cmd_sgl_start]; + sgl_cnt = bam_txn->cmd_sgl_pos - bam_txn->cmd_sgl_start; + bam_txn->cmd_sgl_start = bam_txn->cmd_sgl_pos; + dir_eng = DMA_MEM_TO_DEV; + desc->dir = DMA_TO_DEVICE; + } else if (chan == nandc->tx_chan) { + sgl = &bam_txn->data_sgl[bam_txn->tx_sgl_start]; + sgl_cnt = bam_txn->tx_sgl_pos - bam_txn->tx_sgl_start; + bam_txn->tx_sgl_start = bam_txn->tx_sgl_pos; + dir_eng = DMA_MEM_TO_DEV; + desc->dir = DMA_TO_DEVICE; + } else { + sgl = &bam_txn->data_sgl[bam_txn->rx_sgl_start]; + sgl_cnt = bam_txn->rx_sgl_pos - bam_txn->rx_sgl_start; + bam_txn->rx_sgl_start = bam_txn->rx_sgl_pos; + dir_eng = DMA_DEV_TO_MEM; + desc->dir = DMA_FROM_DEVICE; + } + + sg_mark_end(sgl + sgl_cnt - 1); + ret = dma_map_sg(nandc->dev, sgl, sgl_cnt, desc->dir); + if (ret == 0) { + dev_err(nandc->dev, "failure in mapping desc\n"); + kfree(desc); + return -ENOMEM; + } + + desc->sgl_cnt = sgl_cnt; + desc->bam_sgl = sgl; + + dma_desc = dmaengine_prep_slave_sg(chan, sgl, sgl_cnt, dir_eng, + flags); + + if (!dma_desc) { + dev_err(nandc->dev, "failure in prep desc\n"); + dma_unmap_sg(nandc->dev, sgl, sgl_cnt, desc->dir); + kfree(desc); + return -EINVAL; + } + + desc->dma_desc = dma_desc; + + /* update last data/command descriptor */ + if (chan == nandc->cmd_chan) + bam_txn->last_cmd_desc = dma_desc; + else + bam_txn->last_data_desc = dma_desc; + + list_add_tail(&desc->node, &nandc->desc_list); + + return 0; +} + +/* + * Prepares the command descriptor for BAM DMA which will be used for NAND + * register reads and writes. The command descriptor requires the command + * to be formed in command element type so this function uses the command + * element from bam transaction ce array and fills the same with required + * data. A single SGL can contain multiple command elements so + * NAND_BAM_NEXT_SGL will be used for starting the separate SGL + * after the current command element. + */ +static int prep_bam_dma_desc_cmd(struct qcom_nand_controller *nandc, bool read, + int reg_off, const void *vaddr, + int size, unsigned int flags) +{ + int bam_ce_size; + int i, ret; + struct bam_cmd_element *bam_ce_buffer; + struct bam_transaction *bam_txn = nandc->bam_txn; + + bam_ce_buffer = &bam_txn->bam_ce[bam_txn->bam_ce_pos]; + + /* fill the command desc */ + for (i = 0; i < size; i++) { + if (read) + bam_prep_ce(&bam_ce_buffer[i], + nandc_reg_phys(nandc, reg_off + 4 * i), + BAM_READ_COMMAND, + reg_buf_dma_addr(nandc, + (__le32 *)vaddr + i)); + else + bam_prep_ce_le32(&bam_ce_buffer[i], + nandc_reg_phys(nandc, reg_off + 4 * i), + BAM_WRITE_COMMAND, + *((__le32 *)vaddr + i)); + } + + bam_txn->bam_ce_pos += size; + + /* use the separate sgl after this command */ + if (flags & NAND_BAM_NEXT_SGL) { + bam_ce_buffer = &bam_txn->bam_ce[bam_txn->bam_ce_start]; + bam_ce_size = (bam_txn->bam_ce_pos - + bam_txn->bam_ce_start) * + sizeof(struct bam_cmd_element); + sg_set_buf(&bam_txn->cmd_sgl[bam_txn->cmd_sgl_pos], + bam_ce_buffer, bam_ce_size); + bam_txn->cmd_sgl_pos++; + bam_txn->bam_ce_start = bam_txn->bam_ce_pos; + + if (flags & NAND_BAM_NWD) { + ret = prepare_bam_async_desc(nandc, nandc->cmd_chan, + DMA_PREP_FENCE | + DMA_PREP_CMD); + if (ret) + return ret; + } + } + + return 0; +} + +/* + * Prepares the data descriptor for BAM DMA which will be used for NAND + * data reads and writes. + */ +static int prep_bam_dma_desc_data(struct qcom_nand_controller *nandc, bool read, + const void *vaddr, + int size, unsigned int flags) +{ + int ret; + struct bam_transaction *bam_txn = nandc->bam_txn; + + if (read) { + sg_set_buf(&bam_txn->data_sgl[bam_txn->rx_sgl_pos], + vaddr, size); + bam_txn->rx_sgl_pos++; + } else { + sg_set_buf(&bam_txn->data_sgl[bam_txn->tx_sgl_pos], + vaddr, size); + bam_txn->tx_sgl_pos++; + + /* + * BAM will only set EOT for DMA_PREP_INTERRUPT so if this flag + * is not set, form the DMA descriptor + */ + if (!(flags & NAND_BAM_NO_EOT)) { + ret = prepare_bam_async_desc(nandc, nandc->tx_chan, + DMA_PREP_INTERRUPT); + if (ret) + return ret; + } + } + + return 0; +} + +static int prep_adm_dma_desc(struct qcom_nand_controller *nandc, bool read, + int reg_off, const void *vaddr, int size, + bool flow_control) +{ + struct desc_info *desc; + struct dma_async_tx_descriptor *dma_desc; + struct scatterlist *sgl; + struct dma_slave_config slave_conf; + struct qcom_adm_peripheral_config periph_conf = {}; + enum dma_transfer_direction dir_eng; + int ret; + + desc = kzalloc(sizeof(*desc), GFP_KERNEL); + if (!desc) + return -ENOMEM; + + sgl = &desc->adm_sgl; + + sg_init_one(sgl, vaddr, size); + + if (read) { + dir_eng = DMA_DEV_TO_MEM; + desc->dir = DMA_FROM_DEVICE; + } else { + dir_eng = DMA_MEM_TO_DEV; + desc->dir = DMA_TO_DEVICE; + } + + ret = dma_map_sg(nandc->dev, sgl, 1, desc->dir); + if (ret == 0) { + ret = -ENOMEM; + goto err; + } + + memset(&slave_conf, 0x00, sizeof(slave_conf)); + + slave_conf.device_fc = flow_control; + if (read) { + slave_conf.src_maxburst = 16; + slave_conf.src_addr = nandc->base_dma + reg_off; + if (nandc->data_crci) { + periph_conf.crci = nandc->data_crci; + slave_conf.peripheral_config = &periph_conf; + slave_conf.peripheral_size = sizeof(periph_conf); + } + } else { + slave_conf.dst_maxburst = 16; + slave_conf.dst_addr = nandc->base_dma + reg_off; + if (nandc->cmd_crci) { + periph_conf.crci = nandc->cmd_crci; + slave_conf.peripheral_config = &periph_conf; + slave_conf.peripheral_size = sizeof(periph_conf); + } + } + + ret = dmaengine_slave_config(nandc->chan, &slave_conf); + if (ret) { + dev_err(nandc->dev, "failed to configure dma channel\n"); + goto err; + } + + dma_desc = dmaengine_prep_slave_sg(nandc->chan, sgl, 1, dir_eng, 0); + if (!dma_desc) { + dev_err(nandc->dev, "failed to prepare desc\n"); + ret = -EINVAL; + goto err; + } + + desc->dma_desc = dma_desc; + + list_add_tail(&desc->node, &nandc->desc_list); + + return 0; +err: + kfree(desc); + + return ret; +} + +/* + * read_reg_dma: prepares a descriptor to read a given number of + * contiguous registers to the reg_read_buf pointer + * + * @first: offset of the first register in the contiguous block + * @num_regs: number of registers to read + * @flags: flags to control DMA descriptor preparation + */ +static int read_reg_dma(struct qcom_nand_controller *nandc, int first, + int num_regs, unsigned int flags) +{ + bool flow_control = false; + void *vaddr; + + vaddr = nandc->reg_read_buf + nandc->reg_read_pos; + nandc->reg_read_pos += num_regs; + + if (first == NAND_DEV_CMD_VLD || first == NAND_DEV_CMD1) + first = dev_cmd_reg_addr(nandc, first); + + if (nandc->props->is_bam) + return prep_bam_dma_desc_cmd(nandc, true, first, vaddr, + num_regs, flags); + + if (first == NAND_READ_ID || first == NAND_FLASH_STATUS) + flow_control = true; + + return prep_adm_dma_desc(nandc, true, first, vaddr, + num_regs * sizeof(u32), flow_control); +} + +/* + * write_reg_dma: prepares a descriptor to write a given number of + * contiguous registers + * + * @first: offset of the first register in the contiguous block + * @num_regs: number of registers to write + * @flags: flags to control DMA descriptor preparation + */ +static int write_reg_dma(struct qcom_nand_controller *nandc, int first, + int num_regs, unsigned int flags) +{ + bool flow_control = false; + struct nandc_regs *regs = nandc->regs; + void *vaddr; + + vaddr = offset_to_nandc_reg(regs, first); + + if (first == NAND_ERASED_CW_DETECT_CFG) { + if (flags & NAND_ERASED_CW_SET) + vaddr = ®s->erased_cw_detect_cfg_set; + else + vaddr = ®s->erased_cw_detect_cfg_clr; + } + + if (first == NAND_EXEC_CMD) + flags |= NAND_BAM_NWD; + + if (first == NAND_DEV_CMD1_RESTORE || first == NAND_DEV_CMD1) + first = dev_cmd_reg_addr(nandc, NAND_DEV_CMD1); + + if (first == NAND_DEV_CMD_VLD_RESTORE || first == NAND_DEV_CMD_VLD) + first = dev_cmd_reg_addr(nandc, NAND_DEV_CMD_VLD); + + if (nandc->props->is_bam) + return prep_bam_dma_desc_cmd(nandc, false, first, vaddr, + num_regs, flags); + + if (first == NAND_FLASH_CMD) + flow_control = true; + + return prep_adm_dma_desc(nandc, false, first, vaddr, + num_regs * sizeof(u32), flow_control); +} + +/* + * read_data_dma: prepares a DMA descriptor to transfer data from the + * controller's internal buffer to the buffer 'vaddr' + * + * @reg_off: offset within the controller's data buffer + * @vaddr: virtual address of the buffer we want to write to + * @size: DMA transaction size in bytes + * @flags: flags to control DMA descriptor preparation + */ +static int read_data_dma(struct qcom_nand_controller *nandc, int reg_off, + const u8 *vaddr, int size, unsigned int flags) +{ + if (nandc->props->is_bam) + return prep_bam_dma_desc_data(nandc, true, vaddr, size, flags); + + return prep_adm_dma_desc(nandc, true, reg_off, vaddr, size, false); +} + +/* + * write_data_dma: prepares a DMA descriptor to transfer data from + * 'vaddr' to the controller's internal buffer + * + * @reg_off: offset within the controller's data buffer + * @vaddr: virtual address of the buffer we want to read from + * @size: DMA transaction size in bytes + * @flags: flags to control DMA descriptor preparation + */ +static int write_data_dma(struct qcom_nand_controller *nandc, int reg_off, + const u8 *vaddr, int size, unsigned int flags) +{ + if (nandc->props->is_bam) + return prep_bam_dma_desc_data(nandc, false, vaddr, size, flags); + + return prep_adm_dma_desc(nandc, false, reg_off, vaddr, size, false); +} + +/* + * Helper to prepare DMA descriptors for configuring registers + * before reading a NAND page. + */ +static void config_nand_page_read(struct nand_chip *chip) +{ + struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); + + write_reg_dma(nandc, NAND_ADDR0, 2, 0); + write_reg_dma(nandc, NAND_DEV0_CFG0, 3, 0); + if (!nandc->props->qpic_v2) + write_reg_dma(nandc, NAND_EBI2_ECC_BUF_CFG, 1, 0); + write_reg_dma(nandc, NAND_ERASED_CW_DETECT_CFG, 1, 0); + write_reg_dma(nandc, NAND_ERASED_CW_DETECT_CFG, 1, + NAND_ERASED_CW_SET | NAND_BAM_NEXT_SGL); +} + +/* + * Helper to prepare DMA descriptors for configuring registers + * before reading each codeword in NAND page. + */ +static void +config_nand_cw_read(struct nand_chip *chip, bool use_ecc, int cw) +{ + struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); + struct nand_ecc_ctrl *ecc = &chip->ecc; + + int reg = NAND_READ_LOCATION_0; + + if (nandc->props->qpic_v2 && qcom_nandc_is_last_cw(ecc, cw)) + reg = NAND_READ_LOCATION_LAST_CW_0; + + if (nandc->props->is_bam) + write_reg_dma(nandc, reg, 4, NAND_BAM_NEXT_SGL); + + write_reg_dma(nandc, NAND_FLASH_CMD, 1, NAND_BAM_NEXT_SGL); + write_reg_dma(nandc, NAND_EXEC_CMD, 1, NAND_BAM_NEXT_SGL); + + if (use_ecc) { + read_reg_dma(nandc, NAND_FLASH_STATUS, 2, 0); + read_reg_dma(nandc, NAND_ERASED_CW_DETECT_STATUS, 1, + NAND_BAM_NEXT_SGL); + } else { + read_reg_dma(nandc, NAND_FLASH_STATUS, 1, NAND_BAM_NEXT_SGL); + } +} + +/* + * Helper to prepare dma descriptors to configure registers needed for reading a + * single codeword in page + */ +static void +config_nand_single_cw_page_read(struct nand_chip *chip, + bool use_ecc, int cw) +{ + config_nand_page_read(chip); + config_nand_cw_read(chip, use_ecc, cw); +} + +/* + * Helper to prepare DMA descriptors used to configure registers needed for + * before writing a NAND page. + */ +static void config_nand_page_write(struct nand_chip *chip) +{ + struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); + + write_reg_dma(nandc, NAND_ADDR0, 2, 0); + write_reg_dma(nandc, NAND_DEV0_CFG0, 3, 0); + if (!nandc->props->qpic_v2) + write_reg_dma(nandc, NAND_EBI2_ECC_BUF_CFG, 1, + NAND_BAM_NEXT_SGL); +} + +/* + * Helper to prepare DMA descriptors for configuring registers + * before writing each codeword in NAND page. + */ +static void config_nand_cw_write(struct nand_chip *chip) +{ + struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); + + write_reg_dma(nandc, NAND_FLASH_CMD, 1, NAND_BAM_NEXT_SGL); + write_reg_dma(nandc, NAND_EXEC_CMD, 1, NAND_BAM_NEXT_SGL); + + read_reg_dma(nandc, NAND_FLASH_STATUS, 1, NAND_BAM_NEXT_SGL); + + write_reg_dma(nandc, NAND_FLASH_STATUS, 1, 0); + write_reg_dma(nandc, NAND_READ_STATUS, 1, NAND_BAM_NEXT_SGL); +} + +/* helpers to submit/free our list of dma descriptors */ +static int submit_descs(struct qcom_nand_controller *nandc) +{ + struct desc_info *desc, *n; + dma_cookie_t cookie = 0; + struct bam_transaction *bam_txn = nandc->bam_txn; + int ret = 0; + + if (nandc->props->is_bam) { + if (bam_txn->rx_sgl_pos > bam_txn->rx_sgl_start) { + ret = prepare_bam_async_desc(nandc, nandc->rx_chan, 0); + if (ret) + goto err_unmap_free_desc; + } + + if (bam_txn->tx_sgl_pos > bam_txn->tx_sgl_start) { + ret = prepare_bam_async_desc(nandc, nandc->tx_chan, + DMA_PREP_INTERRUPT); + if (ret) + goto err_unmap_free_desc; + } + + if (bam_txn->cmd_sgl_pos > bam_txn->cmd_sgl_start) { + ret = prepare_bam_async_desc(nandc, nandc->cmd_chan, + DMA_PREP_CMD); + if (ret) + goto err_unmap_free_desc; + } + } + + list_for_each_entry(desc, &nandc->desc_list, node) + cookie = dmaengine_submit(desc->dma_desc); + + if (nandc->props->is_bam) { + bam_txn->last_cmd_desc->callback = qpic_bam_dma_done; + bam_txn->last_cmd_desc->callback_param = bam_txn; + if (bam_txn->last_data_desc) { + bam_txn->last_data_desc->callback = qpic_bam_dma_done; + bam_txn->last_data_desc->callback_param = bam_txn; + bam_txn->wait_second_completion = true; + } + + dma_async_issue_pending(nandc->tx_chan); + dma_async_issue_pending(nandc->rx_chan); + dma_async_issue_pending(nandc->cmd_chan); + + if (!wait_for_completion_timeout(&bam_txn->txn_done, + QPIC_NAND_COMPLETION_TIMEOUT)) + ret = -ETIMEDOUT; + } else { + if (dma_sync_wait(nandc->chan, cookie) != DMA_COMPLETE) + ret = -ETIMEDOUT; + } + +err_unmap_free_desc: + /* + * Unmap the dma sg_list and free the desc allocated by both + * prepare_bam_async_desc() and prep_adm_dma_desc() functions. + */ + list_for_each_entry_safe(desc, n, &nandc->desc_list, node) { + list_del(&desc->node); + + if (nandc->props->is_bam) + dma_unmap_sg(nandc->dev, desc->bam_sgl, + desc->sgl_cnt, desc->dir); + else + dma_unmap_sg(nandc->dev, &desc->adm_sgl, 1, + desc->dir); + + kfree(desc); + } + + return ret; +} + +/* reset the register read buffer for next NAND operation */ +static void clear_read_regs(struct qcom_nand_controller *nandc) +{ + nandc->reg_read_pos = 0; + nandc_read_buffer_sync(nandc, false); +} + +/* + * when using BCH ECC, the HW flags an error in NAND_FLASH_STATUS if it read + * an erased CW, and reports an erased CW in NAND_ERASED_CW_DETECT_STATUS. + * + * when using RS ECC, the HW reports the same erros when reading an erased CW, + * but it notifies that it is an erased CW by placing special characters at + * certain offsets in the buffer. + * + * verify if the page is erased or not, and fix up the page for RS ECC by + * replacing the special characters with 0xff. + */ +static bool erased_chunk_check_and_fixup(u8 *data_buf, int data_len) +{ + u8 empty1, empty2; + + /* + * an erased page flags an error in NAND_FLASH_STATUS, check if the page + * is erased by looking for 0x54s at offsets 3 and 175 from the + * beginning of each codeword + */ + + empty1 = data_buf[3]; + empty2 = data_buf[175]; + + /* + * if the erased codework markers, if they exist override them with + * 0xffs + */ + if ((empty1 == 0x54 && empty2 == 0xff) || + (empty1 == 0xff && empty2 == 0x54)) { + data_buf[3] = 0xff; + data_buf[175] = 0xff; + } + + /* + * check if the entire chunk contains 0xffs or not. if it doesn't, then + * restore the original values at the special offsets + */ + if (memchr_inv(data_buf, 0xff, data_len)) { + data_buf[3] = empty1; + data_buf[175] = empty2; + + return false; + } + + return true; +} + +struct read_stats { + __le32 flash; + __le32 buffer; + __le32 erased_cw; +}; + +/* reads back FLASH_STATUS register set by the controller */ +static int check_flash_errors(struct qcom_nand_host *host, int cw_cnt) +{ + struct nand_chip *chip = &host->chip; + struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); + int i; + + nandc_read_buffer_sync(nandc, true); + + for (i = 0; i < cw_cnt; i++) { + u32 flash = le32_to_cpu(nandc->reg_read_buf[i]); + + if (flash & (FS_OP_ERR | FS_MPU_ERR)) + return -EIO; + } + + return 0; +} + +/* performs raw read for one codeword */ +static int +qcom_nandc_read_cw_raw(struct mtd_info *mtd, struct nand_chip *chip, + u8 *data_buf, u8 *oob_buf, int page, int cw) +{ + struct qcom_nand_host *host = to_qcom_nand_host(chip); + struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); + struct nand_ecc_ctrl *ecc = &chip->ecc; + int data_size1, data_size2, oob_size1, oob_size2; + int ret, reg_off = FLASH_BUF_ACC, read_loc = 0; + int raw_cw = cw; + + nand_read_page_op(chip, page, 0, NULL, 0); + nandc->buf_count = 0; + nandc->buf_start = 0; + clear_read_regs(nandc); + host->use_ecc = false; + + if (nandc->props->qpic_v2) + raw_cw = ecc->steps - 1; + + clear_bam_transaction(nandc); + set_address(host, host->cw_size * cw, page); + update_rw_regs(host, 1, true, raw_cw); + config_nand_page_read(chip); + + data_size1 = mtd->writesize - host->cw_size * (ecc->steps - 1); + oob_size1 = host->bbm_size; + + if (qcom_nandc_is_last_cw(ecc, cw) && !host->codeword_fixup) { + data_size2 = ecc->size - data_size1 - + ((ecc->steps - 1) * 4); + oob_size2 = (ecc->steps * 4) + host->ecc_bytes_hw + + host->spare_bytes; + } else { + data_size2 = host->cw_data - data_size1; + oob_size2 = host->ecc_bytes_hw + host->spare_bytes; + } + + if (nandc->props->is_bam) { + nandc_set_read_loc(chip, cw, 0, read_loc, data_size1, 0); + read_loc += data_size1; + + nandc_set_read_loc(chip, cw, 1, read_loc, oob_size1, 0); + read_loc += oob_size1; + + nandc_set_read_loc(chip, cw, 2, read_loc, data_size2, 0); + read_loc += data_size2; + + nandc_set_read_loc(chip, cw, 3, read_loc, oob_size2, 1); + } + + config_nand_cw_read(chip, false, raw_cw); + + read_data_dma(nandc, reg_off, data_buf, data_size1, 0); + reg_off += data_size1; + + read_data_dma(nandc, reg_off, oob_buf, oob_size1, 0); + reg_off += oob_size1; + + read_data_dma(nandc, reg_off, data_buf + data_size1, data_size2, 0); + reg_off += data_size2; + + read_data_dma(nandc, reg_off, oob_buf + oob_size1, oob_size2, 0); + + ret = submit_descs(nandc); + if (ret) { + dev_err(nandc->dev, "failure to read raw cw %d\n", cw); + return ret; + } + + return check_flash_errors(host, 1); +} + +/* + * Bitflips can happen in erased codewords also so this function counts the + * number of 0 in each CW for which ECC engine returns the uncorrectable + * error. The page will be assumed as erased if this count is less than or + * equal to the ecc->strength for each CW. + * + * 1. Both DATA and OOB need to be checked for number of 0. The + * top-level API can be called with only data buf or OOB buf so use + * chip->data_buf if data buf is null and chip->oob_poi if oob buf + * is null for copying the raw bytes. + * 2. Perform raw read for all the CW which has uncorrectable errors. + * 3. For each CW, check the number of 0 in cw_data and usable OOB bytes. + * The BBM and spare bytes bit flip won’t affect the ECC so don’t check + * the number of bitflips in this area. + */ +static int +check_for_erased_page(struct qcom_nand_host *host, u8 *data_buf, + u8 *oob_buf, unsigned long uncorrectable_cws, + int page, unsigned int max_bitflips) +{ + struct nand_chip *chip = &host->chip; + struct mtd_info *mtd = nand_to_mtd(chip); + struct nand_ecc_ctrl *ecc = &chip->ecc; + u8 *cw_data_buf, *cw_oob_buf; + int cw, data_size, oob_size, ret; + + if (!data_buf) + data_buf = nand_get_data_buf(chip); + + if (!oob_buf) { + nand_get_data_buf(chip); + oob_buf = chip->oob_poi; + } + + for_each_set_bit(cw, &uncorrectable_cws, ecc->steps) { + if (qcom_nandc_is_last_cw(ecc, cw) && !host->codeword_fixup) { + data_size = ecc->size - ((ecc->steps - 1) * 4); + oob_size = (ecc->steps * 4) + host->ecc_bytes_hw; + } else { + data_size = host->cw_data; + oob_size = host->ecc_bytes_hw; + } + + /* determine starting buffer address for current CW */ + cw_data_buf = data_buf + (cw * host->cw_data); + cw_oob_buf = oob_buf + (cw * ecc->bytes); + + ret = qcom_nandc_read_cw_raw(mtd, chip, cw_data_buf, + cw_oob_buf, page, cw); + if (ret) + return ret; + + /* + * make sure it isn't an erased page reported + * as not-erased by HW because of a few bitflips + */ + ret = nand_check_erased_ecc_chunk(cw_data_buf, data_size, + cw_oob_buf + host->bbm_size, + oob_size, NULL, + 0, ecc->strength); + if (ret < 0) { + mtd->ecc_stats.failed++; + } else { + mtd->ecc_stats.corrected += ret; + max_bitflips = max_t(unsigned int, max_bitflips, ret); + } + } + + return max_bitflips; +} + +/* + * reads back status registers set by the controller to notify page read + * errors. this is equivalent to what 'ecc->correct()' would do. + */ +static int parse_read_errors(struct qcom_nand_host *host, u8 *data_buf, + u8 *oob_buf, int page) +{ + struct nand_chip *chip = &host->chip; + struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); + struct mtd_info *mtd = nand_to_mtd(chip); + struct nand_ecc_ctrl *ecc = &chip->ecc; + unsigned int max_bitflips = 0, uncorrectable_cws = 0; + struct read_stats *buf; + bool flash_op_err = false, erased; + int i; + u8 *data_buf_start = data_buf, *oob_buf_start = oob_buf; + + buf = (struct read_stats *)nandc->reg_read_buf; + nandc_read_buffer_sync(nandc, true); + + for (i = 0; i < ecc->steps; i++, buf++) { + u32 flash, buffer, erased_cw; + int data_len, oob_len; + + if (qcom_nandc_is_last_cw(ecc, i)) { + data_len = ecc->size - ((ecc->steps - 1) << 2); + oob_len = ecc->steps << 2; + } else { + data_len = host->cw_data; + oob_len = 0; + } + + flash = le32_to_cpu(buf->flash); + buffer = le32_to_cpu(buf->buffer); + erased_cw = le32_to_cpu(buf->erased_cw); + + /* + * Check ECC failure for each codeword. ECC failure can + * happen in either of the following conditions + * 1. If number of bitflips are greater than ECC engine + * capability. + * 2. If this codeword contains all 0xff for which erased + * codeword detection check will be done. + */ + if ((flash & FS_OP_ERR) && (buffer & BS_UNCORRECTABLE_BIT)) { + /* + * For BCH ECC, ignore erased codeword errors, if + * ERASED_CW bits are set. + */ + if (host->bch_enabled) { + erased = (erased_cw & ERASED_CW) == ERASED_CW; + /* + * For RS ECC, HW reports the erased CW by placing + * special characters at certain offsets in the buffer. + * These special characters will be valid only if + * complete page is read i.e. data_buf is not NULL. + */ + } else if (data_buf) { + erased = erased_chunk_check_and_fixup(data_buf, + data_len); + } else { + erased = false; + } + + if (!erased) + uncorrectable_cws |= BIT(i); + /* + * Check if MPU or any other operational error (timeout, + * device failure, etc.) happened for this codeword and + * make flash_op_err true. If flash_op_err is set, then + * EIO will be returned for page read. + */ + } else if (flash & (FS_OP_ERR | FS_MPU_ERR)) { + flash_op_err = true; + /* + * No ECC or operational errors happened. Check the number of + * bits corrected and update the ecc_stats.corrected. + */ + } else { + unsigned int stat; + + stat = buffer & BS_CORRECTABLE_ERR_MSK; + mtd->ecc_stats.corrected += stat; + max_bitflips = max(max_bitflips, stat); + } + + if (data_buf) + data_buf += data_len; + if (oob_buf) + oob_buf += oob_len + ecc->bytes; + } + + if (flash_op_err) + return -EIO; + + if (!uncorrectable_cws) + return max_bitflips; + + return check_for_erased_page(host, data_buf_start, oob_buf_start, + uncorrectable_cws, page, + max_bitflips); +} + +/* + * helper to perform the actual page read operation, used by ecc->read_page(), + * ecc->read_oob() + */ +static int read_page_ecc(struct qcom_nand_host *host, u8 *data_buf, + u8 *oob_buf, int page) +{ + struct nand_chip *chip = &host->chip; + struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); + struct nand_ecc_ctrl *ecc = &chip->ecc; + u8 *data_buf_start = data_buf, *oob_buf_start = oob_buf; + int i, ret; + + config_nand_page_read(chip); + + /* queue cmd descs for each codeword */ + for (i = 0; i < ecc->steps; i++) { + int data_size, oob_size; + + if (qcom_nandc_is_last_cw(ecc, i) && !host->codeword_fixup) { + data_size = ecc->size - ((ecc->steps - 1) << 2); + oob_size = (ecc->steps << 2) + host->ecc_bytes_hw + + host->spare_bytes; + } else { + data_size = host->cw_data; + oob_size = host->ecc_bytes_hw + host->spare_bytes; + } + + if (nandc->props->is_bam) { + if (data_buf && oob_buf) { + nandc_set_read_loc(chip, i, 0, 0, data_size, 0); + nandc_set_read_loc(chip, i, 1, data_size, + oob_size, 1); + } else if (data_buf) { + nandc_set_read_loc(chip, i, 0, 0, data_size, 1); + } else { + nandc_set_read_loc(chip, i, 0, data_size, + oob_size, 1); + } + } + + config_nand_cw_read(chip, true, i); + + if (data_buf) + read_data_dma(nandc, FLASH_BUF_ACC, data_buf, + data_size, 0); + + /* + * when ecc is enabled, the controller doesn't read the real + * or dummy bad block markers in each chunk. To maintain a + * consistent layout across RAW and ECC reads, we just + * leave the real/dummy BBM offsets empty (i.e, filled with + * 0xffs) + */ + if (oob_buf) { + int j; + + for (j = 0; j < host->bbm_size; j++) + *oob_buf++ = 0xff; + + read_data_dma(nandc, FLASH_BUF_ACC + data_size, + oob_buf, oob_size, 0); + } + + if (data_buf) + data_buf += data_size; + if (oob_buf) + oob_buf += oob_size; + } + + ret = submit_descs(nandc); + if (ret) { + dev_err(nandc->dev, "failure to read page/oob\n"); + return ret; + } + + return parse_read_errors(host, data_buf_start, oob_buf_start, page); +} + +/* + * a helper that copies the last step/codeword of a page (containing free oob) + * into our local buffer + */ +static int copy_last_cw(struct qcom_nand_host *host, int page) +{ + struct nand_chip *chip = &host->chip; + struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); + struct nand_ecc_ctrl *ecc = &chip->ecc; + int size; + int ret; + + clear_read_regs(nandc); + + size = host->use_ecc ? host->cw_data : host->cw_size; + + /* prepare a clean read buffer */ + memset(nandc->data_buffer, 0xff, size); + + set_address(host, host->cw_size * (ecc->steps - 1), page); + update_rw_regs(host, 1, true, ecc->steps - 1); + + config_nand_single_cw_page_read(chip, host->use_ecc, ecc->steps - 1); + + read_data_dma(nandc, FLASH_BUF_ACC, nandc->data_buffer, size, 0); + + ret = submit_descs(nandc); + if (ret) + dev_err(nandc->dev, "failed to copy last codeword\n"); + + return ret; +} + +static bool qcom_nandc_is_boot_partition(struct qcom_nand_host *host, int page) +{ + struct qcom_nand_boot_partition *boot_partition; + u32 start, end; + int i; + + /* + * Since the frequent access will be to the non-boot partitions like rootfs, + * optimize the page check by: + * + * 1. Checking if the page lies after the last boot partition. + * 2. Checking from the boot partition end. + */ + + /* First check the last boot partition */ + boot_partition = &host->boot_partitions[host->nr_boot_partitions - 1]; + start = boot_partition->page_offset; + end = start + boot_partition->page_size; + + /* Page is after the last boot partition end. This is NOT a boot partition */ + if (page > end) + return false; + + /* Actually check if it's a boot partition */ + if (page < end && page >= start) + return true; + + /* Check the other boot partitions starting from the second-last partition */ + for (i = host->nr_boot_partitions - 2; i >= 0; i--) { + boot_partition = &host->boot_partitions[i]; + start = boot_partition->page_offset; + end = start + boot_partition->page_size; + + if (page < end && page >= start) + return true; + } + + return false; +} + +static void qcom_nandc_codeword_fixup(struct qcom_nand_host *host, int page) +{ + bool codeword_fixup = qcom_nandc_is_boot_partition(host, page); + + /* Skip conf write if we are already in the correct mode */ + if (codeword_fixup == host->codeword_fixup) + return; + + host->codeword_fixup = codeword_fixup; + + host->cw_data = codeword_fixup ? 512 : 516; + host->spare_bytes = host->cw_size - host->ecc_bytes_hw - + host->bbm_size - host->cw_data; + + host->cfg0 &= ~(SPARE_SIZE_BYTES_MASK | UD_SIZE_BYTES_MASK); + host->cfg0 |= host->spare_bytes << SPARE_SIZE_BYTES | + host->cw_data << UD_SIZE_BYTES; + + host->ecc_bch_cfg &= ~ECC_NUM_DATA_BYTES_MASK; + host->ecc_bch_cfg |= host->cw_data << ECC_NUM_DATA_BYTES; + host->ecc_buf_cfg = (host->cw_data - 1) << NUM_STEPS; +} + +/* implements ecc->read_page() */ +static int qcom_nandc_read_page(struct nand_chip *chip, u8 *buf, + int oob_required, int page) +{ + struct qcom_nand_host *host = to_qcom_nand_host(chip); + struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); + struct nand_ecc_ctrl *ecc = &chip->ecc; + u8 *data_buf, *oob_buf = NULL; + + if (host->nr_boot_partitions) + qcom_nandc_codeword_fixup(host, page); + + nand_read_page_op(chip, page, 0, NULL, 0); + nandc->buf_count = 0; + nandc->buf_start = 0; + host->use_ecc = true; + clear_read_regs(nandc); + set_address(host, 0, page); + update_rw_regs(host, ecc->steps, true, 0); + + data_buf = buf; + oob_buf = oob_required ? chip->oob_poi : NULL; + + clear_bam_transaction(nandc); + + return read_page_ecc(host, data_buf, oob_buf, page); +} + +/* implements ecc->read_page_raw() */ +static int qcom_nandc_read_page_raw(struct nand_chip *chip, u8 *buf, + int oob_required, int page) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + struct qcom_nand_host *host = to_qcom_nand_host(chip); + struct nand_ecc_ctrl *ecc = &chip->ecc; + int cw, ret; + u8 *data_buf = buf, *oob_buf = chip->oob_poi; + + if (host->nr_boot_partitions) + qcom_nandc_codeword_fixup(host, page); + + for (cw = 0; cw < ecc->steps; cw++) { + ret = qcom_nandc_read_cw_raw(mtd, chip, data_buf, oob_buf, + page, cw); + if (ret) + return ret; + + data_buf += host->cw_data; + oob_buf += ecc->bytes; + } + + return 0; +} + +/* implements ecc->read_oob() */ +static int qcom_nandc_read_oob(struct nand_chip *chip, int page) +{ + struct qcom_nand_host *host = to_qcom_nand_host(chip); + struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); + struct nand_ecc_ctrl *ecc = &chip->ecc; + + if (host->nr_boot_partitions) + qcom_nandc_codeword_fixup(host, page); + + clear_read_regs(nandc); + clear_bam_transaction(nandc); + + host->use_ecc = true; + set_address(host, 0, page); + update_rw_regs(host, ecc->steps, true, 0); + + return read_page_ecc(host, NULL, chip->oob_poi, page); +} + +/* implements ecc->write_page() */ +static int qcom_nandc_write_page(struct nand_chip *chip, const u8 *buf, + int oob_required, int page) +{ + struct qcom_nand_host *host = to_qcom_nand_host(chip); + struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); + struct nand_ecc_ctrl *ecc = &chip->ecc; + u8 *data_buf, *oob_buf; + int i, ret; + + if (host->nr_boot_partitions) + qcom_nandc_codeword_fixup(host, page); + + nand_prog_page_begin_op(chip, page, 0, NULL, 0); + + set_address(host, 0, page); + nandc->buf_count = 0; + nandc->buf_start = 0; + clear_read_regs(nandc); + clear_bam_transaction(nandc); + + data_buf = (u8 *)buf; + oob_buf = chip->oob_poi; + + host->use_ecc = true; + update_rw_regs(host, ecc->steps, false, 0); + config_nand_page_write(chip); + + for (i = 0; i < ecc->steps; i++) { + int data_size, oob_size; + + if (qcom_nandc_is_last_cw(ecc, i) && !host->codeword_fixup) { + data_size = ecc->size - ((ecc->steps - 1) << 2); + oob_size = (ecc->steps << 2) + host->ecc_bytes_hw + + host->spare_bytes; + } else { + data_size = host->cw_data; + oob_size = ecc->bytes; + } + + write_data_dma(nandc, FLASH_BUF_ACC, data_buf, data_size, + i == (ecc->steps - 1) ? NAND_BAM_NO_EOT : 0); + + /* + * when ECC is enabled, we don't really need to write anything + * to oob for the first n - 1 codewords since these oob regions + * just contain ECC bytes that's written by the controller + * itself. For the last codeword, we skip the bbm positions and + * write to the free oob area. + */ + if (qcom_nandc_is_last_cw(ecc, i)) { + oob_buf += host->bbm_size; + + write_data_dma(nandc, FLASH_BUF_ACC + data_size, + oob_buf, oob_size, 0); + } + + config_nand_cw_write(chip); + + data_buf += data_size; + oob_buf += oob_size; + } + + ret = submit_descs(nandc); + if (ret) { + dev_err(nandc->dev, "failure to write page\n"); + return ret; + } + + return nand_prog_page_end_op(chip); +} + +/* implements ecc->write_page_raw() */ +static int qcom_nandc_write_page_raw(struct nand_chip *chip, + const u8 *buf, int oob_required, + int page) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + struct qcom_nand_host *host = to_qcom_nand_host(chip); + struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); + struct nand_ecc_ctrl *ecc = &chip->ecc; + u8 *data_buf, *oob_buf; + int i, ret; + + if (host->nr_boot_partitions) + qcom_nandc_codeword_fixup(host, page); + + nand_prog_page_begin_op(chip, page, 0, NULL, 0); + clear_read_regs(nandc); + clear_bam_transaction(nandc); + + data_buf = (u8 *)buf; + oob_buf = chip->oob_poi; + + host->use_ecc = false; + update_rw_regs(host, ecc->steps, false, 0); + config_nand_page_write(chip); + + for (i = 0; i < ecc->steps; i++) { + int data_size1, data_size2, oob_size1, oob_size2; + int reg_off = FLASH_BUF_ACC; + + data_size1 = mtd->writesize - host->cw_size * (ecc->steps - 1); + oob_size1 = host->bbm_size; + + if (qcom_nandc_is_last_cw(ecc, i) && !host->codeword_fixup) { + data_size2 = ecc->size - data_size1 - + ((ecc->steps - 1) << 2); + oob_size2 = (ecc->steps << 2) + host->ecc_bytes_hw + + host->spare_bytes; + } else { + data_size2 = host->cw_data - data_size1; + oob_size2 = host->ecc_bytes_hw + host->spare_bytes; + } + + write_data_dma(nandc, reg_off, data_buf, data_size1, + NAND_BAM_NO_EOT); + reg_off += data_size1; + data_buf += data_size1; + + write_data_dma(nandc, reg_off, oob_buf, oob_size1, + NAND_BAM_NO_EOT); + reg_off += oob_size1; + oob_buf += oob_size1; + + write_data_dma(nandc, reg_off, data_buf, data_size2, + NAND_BAM_NO_EOT); + reg_off += data_size2; + data_buf += data_size2; + + write_data_dma(nandc, reg_off, oob_buf, oob_size2, 0); + oob_buf += oob_size2; + + config_nand_cw_write(chip); + } + + ret = submit_descs(nandc); + if (ret) { + dev_err(nandc->dev, "failure to write raw page\n"); + return ret; + } + + return nand_prog_page_end_op(chip); +} + +/* + * implements ecc->write_oob() + * + * the NAND controller cannot write only data or only OOB within a codeword + * since ECC is calculated for the combined codeword. So update the OOB from + * chip->oob_poi, and pad the data area with OxFF before writing. + */ +static int qcom_nandc_write_oob(struct nand_chip *chip, int page) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + struct qcom_nand_host *host = to_qcom_nand_host(chip); + struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); + struct nand_ecc_ctrl *ecc = &chip->ecc; + u8 *oob = chip->oob_poi; + int data_size, oob_size; + int ret; + + if (host->nr_boot_partitions) + qcom_nandc_codeword_fixup(host, page); + + host->use_ecc = true; + clear_bam_transaction(nandc); + + /* calculate the data and oob size for the last codeword/step */ + data_size = ecc->size - ((ecc->steps - 1) << 2); + oob_size = mtd->oobavail; + + memset(nandc->data_buffer, 0xff, host->cw_data); + /* override new oob content to last codeword */ + mtd_ooblayout_get_databytes(mtd, nandc->data_buffer + data_size, oob, + 0, mtd->oobavail); + + set_address(host, host->cw_size * (ecc->steps - 1), page); + update_rw_regs(host, 1, false, 0); + + config_nand_page_write(chip); + write_data_dma(nandc, FLASH_BUF_ACC, + nandc->data_buffer, data_size + oob_size, 0); + config_nand_cw_write(chip); + + ret = submit_descs(nandc); + if (ret) { + dev_err(nandc->dev, "failure to write oob\n"); + return ret; + } + + return nand_prog_page_end_op(chip); +} + +static int qcom_nandc_block_bad(struct nand_chip *chip, loff_t ofs) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + struct qcom_nand_host *host = to_qcom_nand_host(chip); + struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); + struct nand_ecc_ctrl *ecc = &chip->ecc; + int page, ret, bbpos, bad = 0; + + page = (int)(ofs >> chip->page_shift) & chip->pagemask; + + /* + * configure registers for a raw sub page read, the address is set to + * the beginning of the last codeword, we don't care about reading ecc + * portion of oob. we just want the first few bytes from this codeword + * that contains the BBM + */ + host->use_ecc = false; + + clear_bam_transaction(nandc); + ret = copy_last_cw(host, page); + if (ret) + goto err; + + if (check_flash_errors(host, 1)) { + dev_warn(nandc->dev, "error when trying to read BBM\n"); + goto err; + } + + bbpos = mtd->writesize - host->cw_size * (ecc->steps - 1); + + bad = nandc->data_buffer[bbpos] != 0xff; + + if (chip->options & NAND_BUSWIDTH_16) + bad = bad || (nandc->data_buffer[bbpos + 1] != 0xff); +err: + return bad; +} + +static int qcom_nandc_block_markbad(struct nand_chip *chip, loff_t ofs) +{ + struct qcom_nand_host *host = to_qcom_nand_host(chip); + struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); + struct nand_ecc_ctrl *ecc = &chip->ecc; + int page, ret; + + clear_read_regs(nandc); + clear_bam_transaction(nandc); + + /* + * to mark the BBM as bad, we flash the entire last codeword with 0s. + * we don't care about the rest of the content in the codeword since + * we aren't going to use this block again + */ + memset(nandc->data_buffer, 0x00, host->cw_size); + + page = (int)(ofs >> chip->page_shift) & chip->pagemask; + + /* prepare write */ + host->use_ecc = false; + set_address(host, host->cw_size * (ecc->steps - 1), page); + update_rw_regs(host, 1, false, ecc->steps - 1); + + config_nand_page_write(chip); + write_data_dma(nandc, FLASH_BUF_ACC, + nandc->data_buffer, host->cw_size, 0); + config_nand_cw_write(chip); + + ret = submit_descs(nandc); + if (ret) { + dev_err(nandc->dev, "failure to update BBM\n"); + return ret; + } + + return nand_prog_page_end_op(chip); +} + +/* + * NAND controller page layout info + * + * Layout with ECC enabled: + * + * |----------------------| |---------------------------------| + * | xx.......yy| | *********xx.......yy| + * | DATA xx..ECC..yy| | DATA **SPARE**xx..ECC..yy| + * | (516) xx.......yy| | (516-n*4) **(n*4)**xx.......yy| + * | xx.......yy| | *********xx.......yy| + * |----------------------| |---------------------------------| + * codeword 1,2..n-1 codeword n + * <---(528/532 Bytes)--> <-------(528/532 Bytes)---------> + * + * n = Number of codewords in the page + * . = ECC bytes + * * = Spare/free bytes + * x = Unused byte(s) + * y = Reserved byte(s) + * + * 2K page: n = 4, spare = 16 bytes + * 4K page: n = 8, spare = 32 bytes + * 8K page: n = 16, spare = 64 bytes + * + * the qcom nand controller operates at a sub page/codeword level. each + * codeword is 528 and 532 bytes for 4 bit and 8 bit ECC modes respectively. + * the number of ECC bytes vary based on the ECC strength and the bus width. + * + * the first n - 1 codewords contains 516 bytes of user data, the remaining + * 12/16 bytes consist of ECC and reserved data. The nth codeword contains + * both user data and spare(oobavail) bytes that sum up to 516 bytes. + * + * When we access a page with ECC enabled, the reserved bytes(s) are not + * accessible at all. When reading, we fill up these unreadable positions + * with 0xffs. When writing, the controller skips writing the inaccessible + * bytes. + * + * Layout with ECC disabled: + * + * |------------------------------| |---------------------------------------| + * | yy xx.......| | bb *********xx.......| + * | DATA1 yy DATA2 xx..ECC..| | DATA1 bb DATA2 **SPARE**xx..ECC..| + * | (size1) yy (size2) xx.......| | (size1) bb (size2) **(n*4)**xx.......| + * | yy xx.......| | bb *********xx.......| + * |------------------------------| |---------------------------------------| + * codeword 1,2..n-1 codeword n + * <-------(528/532 Bytes)------> <-----------(528/532 Bytes)-----------> + * + * n = Number of codewords in the page + * . = ECC bytes + * * = Spare/free bytes + * x = Unused byte(s) + * y = Dummy Bad Bock byte(s) + * b = Real Bad Block byte(s) + * size1/size2 = function of codeword size and 'n' + * + * when the ECC block is disabled, one reserved byte (or two for 16 bit bus + * width) is now accessible. For the first n - 1 codewords, these are dummy Bad + * Block Markers. In the last codeword, this position contains the real BBM + * + * In order to have a consistent layout between RAW and ECC modes, we assume + * the following OOB layout arrangement: + * + * |-----------| |--------------------| + * |yyxx.......| |bb*********xx.......| + * |yyxx..ECC..| |bb*FREEOOB*xx..ECC..| + * |yyxx.......| |bb*********xx.......| + * |yyxx.......| |bb*********xx.......| + * |-----------| |--------------------| + * first n - 1 nth OOB region + * OOB regions + * + * n = Number of codewords in the page + * . = ECC bytes + * * = FREE OOB bytes + * y = Dummy bad block byte(s) (inaccessible when ECC enabled) + * x = Unused byte(s) + * b = Real bad block byte(s) (inaccessible when ECC enabled) + * + * This layout is read as is when ECC is disabled. When ECC is enabled, the + * inaccessible Bad Block byte(s) are ignored when we write to a page/oob, + * and assumed as 0xffs when we read a page/oob. The ECC, unused and + * dummy/real bad block bytes are grouped as ecc bytes (i.e, ecc->bytes is + * the sum of the three). + */ +static int qcom_nand_ooblayout_ecc(struct mtd_info *mtd, int section, + struct mtd_oob_region *oobregion) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + struct qcom_nand_host *host = to_qcom_nand_host(chip); + struct nand_ecc_ctrl *ecc = &chip->ecc; + + if (section > 1) + return -ERANGE; + + if (!section) { + oobregion->length = (ecc->bytes * (ecc->steps - 1)) + + host->bbm_size; + oobregion->offset = 0; + } else { + oobregion->length = host->ecc_bytes_hw + host->spare_bytes; + oobregion->offset = mtd->oobsize - oobregion->length; + } + + return 0; +} + +static int qcom_nand_ooblayout_free(struct mtd_info *mtd, int section, + struct mtd_oob_region *oobregion) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + struct qcom_nand_host *host = to_qcom_nand_host(chip); + struct nand_ecc_ctrl *ecc = &chip->ecc; + + if (section) + return -ERANGE; + + oobregion->length = ecc->steps * 4; + oobregion->offset = ((ecc->steps - 1) * ecc->bytes) + host->bbm_size; + + return 0; +} + +static const struct mtd_ooblayout_ops qcom_nand_ooblayout_ops = { + .ecc = qcom_nand_ooblayout_ecc, + .free = qcom_nand_ooblayout_free, +}; + +static int +qcom_nandc_calc_ecc_bytes(int step_size, int strength) +{ + return strength == 4 ? 12 : 16; +} + +NAND_ECC_CAPS_SINGLE(qcom_nandc_ecc_caps, qcom_nandc_calc_ecc_bytes, + NANDC_STEP_SIZE, 4, 8); + +static int qcom_nand_attach_chip(struct nand_chip *chip) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + struct qcom_nand_host *host = to_qcom_nand_host(chip); + struct nand_ecc_ctrl *ecc = &chip->ecc; + struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); + int cwperpage, bad_block_byte, ret; + bool wide_bus; + int ecc_mode = 1; + + /* controller only supports 512 bytes data steps */ + ecc->size = NANDC_STEP_SIZE; + wide_bus = chip->options & NAND_BUSWIDTH_16 ? true : false; + cwperpage = mtd->writesize / NANDC_STEP_SIZE; + + /* + * Each CW has 4 available OOB bytes which will be protected with ECC + * so remaining bytes can be used for ECC. + */ + ret = nand_ecc_choose_conf(chip, &qcom_nandc_ecc_caps, + mtd->oobsize - (cwperpage * 4)); + if (ret) { + dev_err(nandc->dev, "No valid ECC settings possible\n"); + return ret; + } + + if (ecc->strength >= 8) { + /* 8 bit ECC defaults to BCH ECC on all platforms */ + host->bch_enabled = true; + ecc_mode = 1; + + if (wide_bus) { + host->ecc_bytes_hw = 14; + host->spare_bytes = 0; + host->bbm_size = 2; + } else { + host->ecc_bytes_hw = 13; + host->spare_bytes = 2; + host->bbm_size = 1; + } + } else { + /* + * if the controller supports BCH for 4 bit ECC, the controller + * uses lesser bytes for ECC. If RS is used, the ECC bytes is + * always 10 bytes + */ + if (nandc->props->ecc_modes & ECC_BCH_4BIT) { + /* BCH */ + host->bch_enabled = true; + ecc_mode = 0; + + if (wide_bus) { + host->ecc_bytes_hw = 8; + host->spare_bytes = 2; + host->bbm_size = 2; + } else { + host->ecc_bytes_hw = 7; + host->spare_bytes = 4; + host->bbm_size = 1; + } + } else { + /* RS */ + host->ecc_bytes_hw = 10; + + if (wide_bus) { + host->spare_bytes = 0; + host->bbm_size = 2; + } else { + host->spare_bytes = 1; + host->bbm_size = 1; + } + } + } + + /* + * we consider ecc->bytes as the sum of all the non-data content in a + * step. It gives us a clean representation of the oob area (even if + * all the bytes aren't used for ECC).It is always 16 bytes for 8 bit + * ECC and 12 bytes for 4 bit ECC + */ + ecc->bytes = host->ecc_bytes_hw + host->spare_bytes + host->bbm_size; + + ecc->read_page = qcom_nandc_read_page; + ecc->read_page_raw = qcom_nandc_read_page_raw; + ecc->read_oob = qcom_nandc_read_oob; + ecc->write_page = qcom_nandc_write_page; + ecc->write_page_raw = qcom_nandc_write_page_raw; + ecc->write_oob = qcom_nandc_write_oob; + + ecc->engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST; + + mtd_set_ooblayout(mtd, &qcom_nand_ooblayout_ops); + /* Free the initially allocated BAM transaction for reading the ONFI params */ + if (nandc->props->is_bam) + free_bam_transaction(nandc); + + nandc->max_cwperpage = max_t(unsigned int, nandc->max_cwperpage, + cwperpage); + + /* Now allocate the BAM transaction based on updated max_cwperpage */ + if (nandc->props->is_bam) { + nandc->bam_txn = alloc_bam_transaction(nandc); + if (!nandc->bam_txn) { + dev_err(nandc->dev, + "failed to allocate bam transaction\n"); + return -ENOMEM; + } + } + + /* + * DATA_UD_BYTES varies based on whether the read/write command protects + * spare data with ECC too. We protect spare data by default, so we set + * it to main + spare data, which are 512 and 4 bytes respectively. + */ + host->cw_data = 516; + + /* + * total bytes in a step, either 528 bytes for 4 bit ECC, or 532 bytes + * for 8 bit ECC + */ + host->cw_size = host->cw_data + ecc->bytes; + bad_block_byte = mtd->writesize - host->cw_size * (cwperpage - 1) + 1; + + host->cfg0 = (cwperpage - 1) << CW_PER_PAGE + | host->cw_data << UD_SIZE_BYTES + | 0 << DISABLE_STATUS_AFTER_WRITE + | 5 << NUM_ADDR_CYCLES + | host->ecc_bytes_hw << ECC_PARITY_SIZE_BYTES_RS + | 0 << STATUS_BFR_READ + | 1 << SET_RD_MODE_AFTER_STATUS + | host->spare_bytes << SPARE_SIZE_BYTES; + + host->cfg1 = 7 << NAND_RECOVERY_CYCLES + | 0 << CS_ACTIVE_BSY + | bad_block_byte << BAD_BLOCK_BYTE_NUM + | 0 << BAD_BLOCK_IN_SPARE_AREA + | 2 << WR_RD_BSY_GAP + | wide_bus << WIDE_FLASH + | host->bch_enabled << ENABLE_BCH_ECC; + + host->cfg0_raw = (cwperpage - 1) << CW_PER_PAGE + | host->cw_size << UD_SIZE_BYTES + | 5 << NUM_ADDR_CYCLES + | 0 << SPARE_SIZE_BYTES; + + host->cfg1_raw = 7 << NAND_RECOVERY_CYCLES + | 0 << CS_ACTIVE_BSY + | 17 << BAD_BLOCK_BYTE_NUM + | 1 << BAD_BLOCK_IN_SPARE_AREA + | 2 << WR_RD_BSY_GAP + | wide_bus << WIDE_FLASH + | 1 << DEV0_CFG1_ECC_DISABLE; + + host->ecc_bch_cfg = !host->bch_enabled << ECC_CFG_ECC_DISABLE + | 0 << ECC_SW_RESET + | host->cw_data << ECC_NUM_DATA_BYTES + | 1 << ECC_FORCE_CLK_OPEN + | ecc_mode << ECC_MODE + | host->ecc_bytes_hw << ECC_PARITY_SIZE_BYTES_BCH; + + if (!nandc->props->qpic_v2) + host->ecc_buf_cfg = 0x203 << NUM_STEPS; + + host->clrflashstatus = FS_READY_BSY_N; + host->clrreadstatus = 0xc0; + nandc->regs->erased_cw_detect_cfg_clr = + cpu_to_le32(CLR_ERASED_PAGE_DET); + nandc->regs->erased_cw_detect_cfg_set = + cpu_to_le32(SET_ERASED_PAGE_DET); + + dev_dbg(nandc->dev, + "cfg0 %x cfg1 %x ecc_buf_cfg %x ecc_bch cfg %x cw_size %d cw_data %d strength %d parity_bytes %d steps %d\n", + host->cfg0, host->cfg1, host->ecc_buf_cfg, host->ecc_bch_cfg, + host->cw_size, host->cw_data, ecc->strength, ecc->bytes, + cwperpage); + + return 0; +} + +static int qcom_op_cmd_mapping(struct nand_chip *chip, u8 opcode, + struct qcom_op *q_op) +{ + struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); + struct qcom_nand_host *host = to_qcom_nand_host(chip); + int cmd; + + switch (opcode) { + case NAND_CMD_RESET: + cmd = OP_RESET_DEVICE; + break; + case NAND_CMD_READID: + cmd = OP_FETCH_ID; + break; + case NAND_CMD_PARAM: + if (nandc->props->qpic_v2) + cmd = OP_PAGE_READ_ONFI_READ; + else + cmd = OP_PAGE_READ; + break; + case NAND_CMD_ERASE1: + case NAND_CMD_ERASE2: + cmd = OP_BLOCK_ERASE; + break; + case NAND_CMD_STATUS: + cmd = OP_CHECK_STATUS; + break; + case NAND_CMD_PAGEPROG: + cmd = OP_PROGRAM_PAGE; + q_op->flag = OP_PROGRAM_PAGE; + nandc->exec_opwrite = true; + break; + case NAND_CMD_READ0: + case NAND_CMD_READSTART: + if (host->use_ecc) + cmd = OP_PAGE_READ_WITH_ECC; + else + cmd = OP_PAGE_READ; + break; + default: + dev_err(nandc->dev, "Opcode not supported: %u\n", opcode); + return -EOPNOTSUPP; + } + + return cmd; +} + +/* NAND framework ->exec_op() hooks and related helpers */ +static int qcom_parse_instructions(struct nand_chip *chip, + const struct nand_subop *subop, + struct qcom_op *q_op) +{ + const struct nand_op_instr *instr = NULL; + unsigned int op_id; + int i, ret; + + for (op_id = 0; op_id < subop->ninstrs; op_id++) { + unsigned int offset, naddrs; + const u8 *addrs; + + instr = &subop->instrs[op_id]; + + switch (instr->type) { + case NAND_OP_CMD_INSTR: + ret = qcom_op_cmd_mapping(chip, instr->ctx.cmd.opcode, q_op); + if (ret < 0) + return ret; + + q_op->cmd_reg = ret; + q_op->rdy_delay_ns = instr->delay_ns; + break; + + case NAND_OP_ADDR_INSTR: + offset = nand_subop_get_addr_start_off(subop, op_id); + naddrs = nand_subop_get_num_addr_cyc(subop, op_id); + addrs = &instr->ctx.addr.addrs[offset]; + + for (i = 0; i < min_t(unsigned int, 4, naddrs); i++) + q_op->addr1_reg |= addrs[i] << (i * 8); + + if (naddrs > 4) + q_op->addr2_reg |= addrs[4]; + + q_op->rdy_delay_ns = instr->delay_ns; + break; + + case NAND_OP_DATA_IN_INSTR: + q_op->data_instr = instr; + q_op->data_instr_idx = op_id; + q_op->rdy_delay_ns = instr->delay_ns; + fallthrough; + case NAND_OP_DATA_OUT_INSTR: + q_op->rdy_delay_ns = instr->delay_ns; + break; + + case NAND_OP_WAITRDY_INSTR: + q_op->rdy_timeout_ms = instr->ctx.waitrdy.timeout_ms; + q_op->rdy_delay_ns = instr->delay_ns; + break; + } + } + + return 0; +} + +static void qcom_delay_ns(unsigned int ns) +{ + if (!ns) + return; + + if (ns < 10000) + ndelay(ns); + else + udelay(DIV_ROUND_UP(ns, 1000)); +} + +static int qcom_wait_rdy_poll(struct nand_chip *chip, unsigned int time_ms) +{ + struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); + unsigned long start = jiffies + msecs_to_jiffies(time_ms); + u32 flash; + + nandc_read_buffer_sync(nandc, true); + + do { + flash = le32_to_cpu(nandc->reg_read_buf[0]); + if (flash & FS_READY_BSY_N) + return 0; + cpu_relax(); + } while (time_after(start, jiffies)); + + dev_err(nandc->dev, "Timeout waiting for device to be ready:0x%08x\n", flash); + + return -ETIMEDOUT; +} + +static int qcom_read_status_exec(struct nand_chip *chip, + const struct nand_subop *subop) +{ + struct qcom_nand_host *host = to_qcom_nand_host(chip); + struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); + struct nand_ecc_ctrl *ecc = &chip->ecc; + struct qcom_op q_op = {}; + const struct nand_op_instr *instr = NULL; + unsigned int op_id = 0; + unsigned int len = 0; + int ret, num_cw, i; + u32 flash_status; + + host->status = NAND_STATUS_READY | NAND_STATUS_WP; + + ret = qcom_parse_instructions(chip, subop, &q_op); + if (ret) + return ret; + + num_cw = nandc->exec_opwrite ? ecc->steps : 1; + nandc->exec_opwrite = false; + + nandc->buf_count = 0; + nandc->buf_start = 0; + host->use_ecc = false; + + clear_read_regs(nandc); + clear_bam_transaction(nandc); + + nandc_set_reg(chip, NAND_FLASH_CMD, q_op.cmd_reg); + nandc_set_reg(chip, NAND_EXEC_CMD, 1); + + write_reg_dma(nandc, NAND_FLASH_CMD, 1, NAND_BAM_NEXT_SGL); + write_reg_dma(nandc, NAND_EXEC_CMD, 1, NAND_BAM_NEXT_SGL); + read_reg_dma(nandc, NAND_FLASH_STATUS, 1, NAND_BAM_NEXT_SGL); + + ret = submit_descs(nandc); + if (ret) { + dev_err(nandc->dev, "failure in submitting status descriptor\n"); + goto err_out; + } + + nandc_read_buffer_sync(nandc, true); + + for (i = 0; i < num_cw; i++) { + flash_status = le32_to_cpu(nandc->reg_read_buf[i]); + + if (flash_status & FS_MPU_ERR) + host->status &= ~NAND_STATUS_WP; + + if (flash_status & FS_OP_ERR || + (i == (num_cw - 1) && (flash_status & FS_DEVICE_STS_ERR))) + host->status |= NAND_STATUS_FAIL; + } + + flash_status = host->status; + instr = q_op.data_instr; + op_id = q_op.data_instr_idx; + len = nand_subop_get_data_len(subop, op_id); + memcpy(instr->ctx.data.buf.in, &flash_status, len); + +err_out: + return ret; +} + +static int qcom_read_id_type_exec(struct nand_chip *chip, const struct nand_subop *subop) +{ + struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); + struct qcom_nand_host *host = to_qcom_nand_host(chip); + struct qcom_op q_op = {}; + const struct nand_op_instr *instr = NULL; + unsigned int op_id = 0; + unsigned int len = 0; + int ret; + + ret = qcom_parse_instructions(chip, subop, &q_op); + if (ret) + return ret; + + nandc->buf_count = 0; + nandc->buf_start = 0; + host->use_ecc = false; + + clear_read_regs(nandc); + clear_bam_transaction(nandc); + + nandc_set_reg(chip, NAND_FLASH_CMD, q_op.cmd_reg); + nandc_set_reg(chip, NAND_ADDR0, q_op.addr1_reg); + nandc_set_reg(chip, NAND_ADDR1, q_op.addr2_reg); + nandc_set_reg(chip, NAND_FLASH_CHIP_SELECT, + nandc->props->is_bam ? 0 : DM_EN); + + nandc_set_reg(chip, NAND_EXEC_CMD, 1); + + write_reg_dma(nandc, NAND_FLASH_CMD, 4, NAND_BAM_NEXT_SGL); + write_reg_dma(nandc, NAND_EXEC_CMD, 1, NAND_BAM_NEXT_SGL); + + read_reg_dma(nandc, NAND_READ_ID, 1, NAND_BAM_NEXT_SGL); + + ret = submit_descs(nandc); + if (ret) { + dev_err(nandc->dev, "failure in submitting read id descriptor\n"); + goto err_out; + } + + instr = q_op.data_instr; + op_id = q_op.data_instr_idx; + len = nand_subop_get_data_len(subop, op_id); + + nandc_read_buffer_sync(nandc, true); + memcpy(instr->ctx.data.buf.in, nandc->reg_read_buf, len); + +err_out: + return ret; +} + +static int qcom_misc_cmd_type_exec(struct nand_chip *chip, const struct nand_subop *subop) +{ + struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); + struct qcom_nand_host *host = to_qcom_nand_host(chip); + struct qcom_op q_op = {}; + int ret; + int instrs = 1; + + ret = qcom_parse_instructions(chip, subop, &q_op); + if (ret) + return ret; + + if (q_op.flag == OP_PROGRAM_PAGE) { + goto wait_rdy; + } else if (q_op.cmd_reg == OP_BLOCK_ERASE) { + q_op.cmd_reg |= PAGE_ACC | LAST_PAGE; + nandc_set_reg(chip, NAND_ADDR0, q_op.addr1_reg); + nandc_set_reg(chip, NAND_ADDR1, q_op.addr2_reg); + nandc_set_reg(chip, NAND_DEV0_CFG0, + host->cfg0_raw & ~(7 << CW_PER_PAGE)); + nandc_set_reg(chip, NAND_DEV0_CFG1, host->cfg1_raw); + instrs = 3; + } else { + return 0; + } + + nandc->buf_count = 0; + nandc->buf_start = 0; + host->use_ecc = false; + + clear_read_regs(nandc); + clear_bam_transaction(nandc); + + nandc_set_reg(chip, NAND_FLASH_CMD, q_op.cmd_reg); + nandc_set_reg(chip, NAND_EXEC_CMD, 1); + + write_reg_dma(nandc, NAND_FLASH_CMD, instrs, NAND_BAM_NEXT_SGL); + (q_op.cmd_reg == OP_BLOCK_ERASE) ? write_reg_dma(nandc, NAND_DEV0_CFG0, + 2, NAND_BAM_NEXT_SGL) : read_reg_dma(nandc, + NAND_FLASH_STATUS, 1, NAND_BAM_NEXT_SGL); + + write_reg_dma(nandc, NAND_EXEC_CMD, 1, NAND_BAM_NEXT_SGL); + read_reg_dma(nandc, NAND_FLASH_STATUS, 1, NAND_BAM_NEXT_SGL); + + ret = submit_descs(nandc); + if (ret) { + dev_err(nandc->dev, "failure in submitting misc descriptor\n"); + goto err_out; + } + +wait_rdy: + qcom_delay_ns(q_op.rdy_delay_ns); + ret = qcom_wait_rdy_poll(chip, q_op.rdy_timeout_ms); + +err_out: + return ret; +} + +static int qcom_param_page_type_exec(struct nand_chip *chip, const struct nand_subop *subop) +{ + struct qcom_nand_host *host = to_qcom_nand_host(chip); + struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); + struct qcom_op q_op = {}; + const struct nand_op_instr *instr = NULL; + unsigned int op_id = 0; + unsigned int len = 0; + int ret; + + ret = qcom_parse_instructions(chip, subop, &q_op); + if (ret) + return ret; + + q_op.cmd_reg |= PAGE_ACC | LAST_PAGE; + + nandc->buf_count = 0; + nandc->buf_start = 0; + host->use_ecc = false; + clear_read_regs(nandc); + clear_bam_transaction(nandc); + + nandc_set_reg(chip, NAND_FLASH_CMD, q_op.cmd_reg); + + nandc_set_reg(chip, NAND_ADDR0, 0); + nandc_set_reg(chip, NAND_ADDR1, 0); + nandc_set_reg(chip, NAND_DEV0_CFG0, 0 << CW_PER_PAGE + | 512 << UD_SIZE_BYTES + | 5 << NUM_ADDR_CYCLES + | 0 << SPARE_SIZE_BYTES); + nandc_set_reg(chip, NAND_DEV0_CFG1, 7 << NAND_RECOVERY_CYCLES + | 0 << CS_ACTIVE_BSY + | 17 << BAD_BLOCK_BYTE_NUM + | 1 << BAD_BLOCK_IN_SPARE_AREA + | 2 << WR_RD_BSY_GAP + | 0 << WIDE_FLASH + | 1 << DEV0_CFG1_ECC_DISABLE); + if (!nandc->props->qpic_v2) + nandc_set_reg(chip, NAND_EBI2_ECC_BUF_CFG, 1 << ECC_CFG_ECC_DISABLE); + + /* configure CMD1 and VLD for ONFI param probing in QPIC v1 */ + if (!nandc->props->qpic_v2) { + nandc_set_reg(chip, NAND_DEV_CMD_VLD, + (nandc->vld & ~READ_START_VLD)); + nandc_set_reg(chip, NAND_DEV_CMD1, + (nandc->cmd1 & ~(0xFF << READ_ADDR)) + | NAND_CMD_PARAM << READ_ADDR); + } + + nandc_set_reg(chip, NAND_EXEC_CMD, 1); + + if (!nandc->props->qpic_v2) { + nandc_set_reg(chip, NAND_DEV_CMD1_RESTORE, nandc->cmd1); + nandc_set_reg(chip, NAND_DEV_CMD_VLD_RESTORE, nandc->vld); + } + + instr = q_op.data_instr; + op_id = q_op.data_instr_idx; + len = nand_subop_get_data_len(subop, op_id); + + nandc_set_read_loc(chip, 0, 0, 0, len, 1); + + if (!nandc->props->qpic_v2) { + write_reg_dma(nandc, NAND_DEV_CMD_VLD, 1, 0); + write_reg_dma(nandc, NAND_DEV_CMD1, 1, NAND_BAM_NEXT_SGL); + } + + nandc->buf_count = len; + memset(nandc->data_buffer, 0xff, nandc->buf_count); + + config_nand_single_cw_page_read(chip, false, 0); + + read_data_dma(nandc, FLASH_BUF_ACC, nandc->data_buffer, + nandc->buf_count, 0); + + /* restore CMD1 and VLD regs */ + if (!nandc->props->qpic_v2) { + write_reg_dma(nandc, NAND_DEV_CMD1_RESTORE, 1, 0); + write_reg_dma(nandc, NAND_DEV_CMD_VLD_RESTORE, 1, NAND_BAM_NEXT_SGL); + } + + ret = submit_descs(nandc); + if (ret) { + dev_err(nandc->dev, "failure in submitting param page descriptor\n"); + goto err_out; + } + + ret = qcom_wait_rdy_poll(chip, q_op.rdy_timeout_ms); + if (ret) + goto err_out; + + memcpy(instr->ctx.data.buf.in, nandc->data_buffer, len); + +err_out: + return ret; +} + +static const struct nand_op_parser qcom_op_parser = NAND_OP_PARSER( + NAND_OP_PARSER_PATTERN( + qcom_read_id_type_exec, + NAND_OP_PARSER_PAT_CMD_ELEM(false), + NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDRESS_CYCLE), + NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, 8)), + NAND_OP_PARSER_PATTERN( + qcom_read_status_exec, + NAND_OP_PARSER_PAT_CMD_ELEM(false), + NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, 1)), + NAND_OP_PARSER_PATTERN( + qcom_param_page_type_exec, + NAND_OP_PARSER_PAT_CMD_ELEM(false), + NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDRESS_CYCLE), + NAND_OP_PARSER_PAT_WAITRDY_ELEM(true), + NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, 512)), + NAND_OP_PARSER_PATTERN( + qcom_misc_cmd_type_exec, + NAND_OP_PARSER_PAT_CMD_ELEM(false), + NAND_OP_PARSER_PAT_ADDR_ELEM(true, MAX_ADDRESS_CYCLE), + NAND_OP_PARSER_PAT_CMD_ELEM(true), + NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)), + ); + +static int qcom_check_op(struct nand_chip *chip, + const struct nand_operation *op) +{ + const struct nand_op_instr *instr; + int op_id; + + for (op_id = 0; op_id < op->ninstrs; op_id++) { + instr = &op->instrs[op_id]; + + switch (instr->type) { + case NAND_OP_CMD_INSTR: + if (instr->ctx.cmd.opcode != NAND_CMD_RESET && + instr->ctx.cmd.opcode != NAND_CMD_READID && + instr->ctx.cmd.opcode != NAND_CMD_PARAM && + instr->ctx.cmd.opcode != NAND_CMD_ERASE1 && + instr->ctx.cmd.opcode != NAND_CMD_ERASE2 && + instr->ctx.cmd.opcode != NAND_CMD_STATUS && + instr->ctx.cmd.opcode != NAND_CMD_PAGEPROG && + instr->ctx.cmd.opcode != NAND_CMD_READ0 && + instr->ctx.cmd.opcode != NAND_CMD_READSTART) + return -EOPNOTSUPP; + break; + default: + break; + } + } + + return 0; +} + +static int qcom_nand_exec_op(struct nand_chip *chip, + const struct nand_operation *op, bool check_only) +{ + if (check_only) + return qcom_check_op(chip, op); + + return nand_op_parser_exec_op(chip, &qcom_op_parser, op, check_only); +} + +static const struct nand_controller_ops qcom_nandc_ops = { + .attach_chip = qcom_nand_attach_chip, + .exec_op = qcom_nand_exec_op, +}; + +static void qcom_nandc_unalloc(struct qcom_nand_controller *nandc) +{ + if (nandc->props->is_bam) { + if (!dma_mapping_error(nandc->dev, nandc->reg_read_dma)) + dma_unmap_single(nandc->dev, nandc->reg_read_dma, + MAX_REG_RD * + sizeof(*nandc->reg_read_buf), + DMA_FROM_DEVICE); + + if (nandc->tx_chan) + dma_release_channel(nandc->tx_chan); + + if (nandc->rx_chan) + dma_release_channel(nandc->rx_chan); + + if (nandc->cmd_chan) + dma_release_channel(nandc->cmd_chan); + } else { + if (nandc->chan) + dma_release_channel(nandc->chan); + } +} + +static int qcom_nandc_alloc(struct qcom_nand_controller *nandc) +{ + int ret; + + ret = dma_set_coherent_mask(nandc->dev, DMA_BIT_MASK(32)); + if (ret) { + dev_err(nandc->dev, "failed to set DMA mask\n"); + return ret; + } + + /* + * we use the internal buffer for reading ONFI params, reading small + * data like ID and status, and preforming read-copy-write operations + * when writing to a codeword partially. 532 is the maximum possible + * size of a codeword for our nand controller + */ + nandc->buf_size = 532; + + nandc->data_buffer = devm_kzalloc(nandc->dev, nandc->buf_size, GFP_KERNEL); + if (!nandc->data_buffer) + return -ENOMEM; + + nandc->regs = devm_kzalloc(nandc->dev, sizeof(*nandc->regs), GFP_KERNEL); + if (!nandc->regs) + return -ENOMEM; + + nandc->reg_read_buf = devm_kcalloc(nandc->dev, MAX_REG_RD, + sizeof(*nandc->reg_read_buf), + GFP_KERNEL); + if (!nandc->reg_read_buf) + return -ENOMEM; + + if (nandc->props->is_bam) { + nandc->reg_read_dma = + dma_map_single(nandc->dev, nandc->reg_read_buf, + MAX_REG_RD * + sizeof(*nandc->reg_read_buf), + DMA_FROM_DEVICE); + if (dma_mapping_error(nandc->dev, nandc->reg_read_dma)) { + dev_err(nandc->dev, "failed to DMA MAP reg buffer\n"); + return -EIO; + } + + nandc->tx_chan = dma_request_chan(nandc->dev, "tx"); + if (IS_ERR(nandc->tx_chan)) { + ret = PTR_ERR(nandc->tx_chan); + nandc->tx_chan = NULL; + dev_err_probe(nandc->dev, ret, + "tx DMA channel request failed\n"); + goto unalloc; + } + + nandc->rx_chan = dma_request_chan(nandc->dev, "rx"); + if (IS_ERR(nandc->rx_chan)) { + ret = PTR_ERR(nandc->rx_chan); + nandc->rx_chan = NULL; + dev_err_probe(nandc->dev, ret, + "rx DMA channel request failed\n"); + goto unalloc; + } + + nandc->cmd_chan = dma_request_chan(nandc->dev, "cmd"); + if (IS_ERR(nandc->cmd_chan)) { + ret = PTR_ERR(nandc->cmd_chan); + nandc->cmd_chan = NULL; + dev_err_probe(nandc->dev, ret, + "cmd DMA channel request failed\n"); + goto unalloc; + } + + /* + * Initially allocate BAM transaction to read ONFI param page. + * After detecting all the devices, this BAM transaction will + * be freed and the next BAM transaction will be allocated with + * maximum codeword size + */ + nandc->max_cwperpage = 1; + nandc->bam_txn = alloc_bam_transaction(nandc); + if (!nandc->bam_txn) { + dev_err(nandc->dev, + "failed to allocate bam transaction\n"); + ret = -ENOMEM; + goto unalloc; + } + } else { + nandc->chan = dma_request_chan(nandc->dev, "rxtx"); + if (IS_ERR(nandc->chan)) { + ret = PTR_ERR(nandc->chan); + nandc->chan = NULL; + dev_err_probe(nandc->dev, ret, + "rxtx DMA channel request failed\n"); + return ret; + } + } + + INIT_LIST_HEAD(&nandc->desc_list); + INIT_LIST_HEAD(&nandc->host_list); + + nand_controller_init(&nandc->controller); + nandc->controller.ops = &qcom_nandc_ops; + + return 0; +unalloc: + qcom_nandc_unalloc(nandc); + return ret; +} + +/* one time setup of a few nand controller registers */ +static int qcom_nandc_setup(struct qcom_nand_controller *nandc) +{ + u32 nand_ctrl; + + /* kill onenand */ + if (!nandc->props->is_qpic) + nandc_write(nandc, SFLASHC_BURST_CFG, 0); + + if (!nandc->props->qpic_v2) + nandc_write(nandc, dev_cmd_reg_addr(nandc, NAND_DEV_CMD_VLD), + NAND_DEV_CMD_VLD_VAL); + + /* enable ADM or BAM DMA */ + if (nandc->props->is_bam) { + nand_ctrl = nandc_read(nandc, NAND_CTRL); + + /* + *NAND_CTRL is an operational registers, and CPU + * access to operational registers are read only + * in BAM mode. So update the NAND_CTRL register + * only if it is not in BAM mode. In most cases BAM + * mode will be enabled in bootloader + */ + if (!(nand_ctrl & BAM_MODE_EN)) + nandc_write(nandc, NAND_CTRL, nand_ctrl | BAM_MODE_EN); + } else { + nandc_write(nandc, NAND_FLASH_CHIP_SELECT, DM_EN); + } + + /* save the original values of these registers */ + if (!nandc->props->qpic_v2) { + nandc->cmd1 = nandc_read(nandc, dev_cmd_reg_addr(nandc, NAND_DEV_CMD1)); + nandc->vld = NAND_DEV_CMD_VLD_VAL; + } + + return 0; +} + +static const char * const probes[] = { "cmdlinepart", "ofpart", "qcomsmem", NULL }; + +static int qcom_nand_host_parse_boot_partitions(struct qcom_nand_controller *nandc, + struct qcom_nand_host *host, + struct device_node *dn) +{ + struct nand_chip *chip = &host->chip; + struct mtd_info *mtd = nand_to_mtd(chip); + struct qcom_nand_boot_partition *boot_partition; + struct device *dev = nandc->dev; + int partitions_count, i, j, ret; + + if (!of_property_present(dn, "qcom,boot-partitions")) + return 0; + + partitions_count = of_property_count_u32_elems(dn, "qcom,boot-partitions"); + if (partitions_count <= 0) { + dev_err(dev, "Error parsing boot partition\n"); + return partitions_count ? partitions_count : -EINVAL; + } + + host->nr_boot_partitions = partitions_count / 2; + host->boot_partitions = devm_kcalloc(dev, host->nr_boot_partitions, + sizeof(*host->boot_partitions), GFP_KERNEL); + if (!host->boot_partitions) { + host->nr_boot_partitions = 0; + return -ENOMEM; + } + + for (i = 0, j = 0; i < host->nr_boot_partitions; i++, j += 2) { + boot_partition = &host->boot_partitions[i]; + + ret = of_property_read_u32_index(dn, "qcom,boot-partitions", j, + &boot_partition->page_offset); + if (ret) { + dev_err(dev, "Error parsing boot partition offset at index %d\n", i); + host->nr_boot_partitions = 0; + return ret; + } + + if (boot_partition->page_offset % mtd->writesize) { + dev_err(dev, "Boot partition offset not multiple of writesize at index %i\n", + i); + host->nr_boot_partitions = 0; + return -EINVAL; + } + /* Convert offset to nand pages */ + boot_partition->page_offset /= mtd->writesize; + + ret = of_property_read_u32_index(dn, "qcom,boot-partitions", j + 1, + &boot_partition->page_size); + if (ret) { + dev_err(dev, "Error parsing boot partition size at index %d\n", i); + host->nr_boot_partitions = 0; + return ret; + } + + if (boot_partition->page_size % mtd->writesize) { + dev_err(dev, "Boot partition size not multiple of writesize at index %i\n", + i); + host->nr_boot_partitions = 0; + return -EINVAL; + } + /* Convert size to nand pages */ + boot_partition->page_size /= mtd->writesize; + } + + return 0; +} + +static int qcom_nand_host_init_and_register(struct qcom_nand_controller *nandc, + struct qcom_nand_host *host, + struct device_node *dn) +{ + struct nand_chip *chip = &host->chip; + struct mtd_info *mtd = nand_to_mtd(chip); + struct device *dev = nandc->dev; + int ret; + + ret = of_property_read_u32(dn, "reg", &host->cs); + if (ret) { + dev_err(dev, "can't get chip-select\n"); + return -ENXIO; + } + + nand_set_flash_node(chip, dn); + mtd->name = devm_kasprintf(dev, GFP_KERNEL, "qcom_nand.%d", host->cs); + if (!mtd->name) + return -ENOMEM; + + mtd->owner = THIS_MODULE; + mtd->dev.parent = dev; + + /* + * the bad block marker is readable only when we read the last codeword + * of a page with ECC disabled. currently, the nand_base and nand_bbt + * helpers don't allow us to read BB from a nand chip with ECC + * disabled (MTD_OPS_PLACE_OOB is set by default). use the block_bad + * and block_markbad helpers until we permanently switch to using + * MTD_OPS_RAW for all drivers (with the help of badblockbits) + */ + chip->legacy.block_bad = qcom_nandc_block_bad; + chip->legacy.block_markbad = qcom_nandc_block_markbad; + + chip->controller = &nandc->controller; + chip->options |= NAND_NO_SUBPAGE_WRITE | NAND_USES_DMA | + NAND_SKIP_BBTSCAN; + + /* set up initial status value */ + host->status = NAND_STATUS_READY | NAND_STATUS_WP; + + ret = nand_scan(chip, 1); + if (ret) + return ret; + + ret = mtd_device_parse_register(mtd, probes, NULL, NULL, 0); + if (ret) + goto err; + + if (nandc->props->use_codeword_fixup) { + ret = qcom_nand_host_parse_boot_partitions(nandc, host, dn); + if (ret) + goto err; + } + + return 0; + +err: + nand_cleanup(chip); + return ret; +} + +static int qcom_probe_nand_devices(struct qcom_nand_controller *nandc) +{ + struct device *dev = nandc->dev; + struct device_node *dn = dev->of_node, *child; + struct qcom_nand_host *host; + int ret = -ENODEV; + + for_each_available_child_of_node(dn, child) { + host = devm_kzalloc(dev, sizeof(*host), GFP_KERNEL); + if (!host) { + of_node_put(child); + return -ENOMEM; + } + + ret = qcom_nand_host_init_and_register(nandc, host, child); + if (ret) { + devm_kfree(dev, host); + continue; + } + + list_add_tail(&host->node, &nandc->host_list); + } + + return ret; +} + +/* parse custom DT properties here */ +static int qcom_nandc_parse_dt(struct platform_device *pdev) +{ + struct qcom_nand_controller *nandc = platform_get_drvdata(pdev); + struct device_node *np = nandc->dev->of_node; + int ret; + + if (!nandc->props->is_bam) { + ret = of_property_read_u32(np, "qcom,cmd-crci", + &nandc->cmd_crci); + if (ret) { + dev_err(nandc->dev, "command CRCI unspecified\n"); + return ret; + } + + ret = of_property_read_u32(np, "qcom,data-crci", + &nandc->data_crci); + if (ret) { + dev_err(nandc->dev, "data CRCI unspecified\n"); + return ret; + } + } + + return 0; +} + +static int qcom_nandc_probe(struct platform_device *pdev) +{ + struct qcom_nand_controller *nandc; + const void *dev_data; + struct device *dev = &pdev->dev; + struct resource *res; + int ret; + + nandc = devm_kzalloc(&pdev->dev, sizeof(*nandc), GFP_KERNEL); + if (!nandc) + return -ENOMEM; + + platform_set_drvdata(pdev, nandc); + nandc->dev = dev; + + dev_data = of_device_get_match_data(dev); + if (!dev_data) { + dev_err(&pdev->dev, "failed to get device data\n"); + return -ENODEV; + } + + nandc->props = dev_data; + + nandc->core_clk = devm_clk_get(dev, "core"); + if (IS_ERR(nandc->core_clk)) + return PTR_ERR(nandc->core_clk); + + nandc->aon_clk = devm_clk_get(dev, "aon"); + if (IS_ERR(nandc->aon_clk)) + return PTR_ERR(nandc->aon_clk); + + ret = qcom_nandc_parse_dt(pdev); + if (ret) + return ret; + + nandc->base = devm_platform_get_and_ioremap_resource(pdev, 0, &res); + if (IS_ERR(nandc->base)) + return PTR_ERR(nandc->base); + + nandc->base_phys = res->start; + nandc->base_dma = dma_map_resource(dev, res->start, + resource_size(res), + DMA_BIDIRECTIONAL, 0); + if (dma_mapping_error(dev, nandc->base_dma)) + return -ENXIO; + + ret = clk_prepare_enable(nandc->core_clk); + if (ret) + goto err_core_clk; + + ret = clk_prepare_enable(nandc->aon_clk); + if (ret) + goto err_aon_clk; + + ret = qcom_nandc_alloc(nandc); + if (ret) + goto err_nandc_alloc; + + ret = qcom_nandc_setup(nandc); + if (ret) + goto err_setup; + + ret = qcom_probe_nand_devices(nandc); + if (ret) + goto err_setup; + + return 0; + +err_setup: + qcom_nandc_unalloc(nandc); +err_nandc_alloc: + clk_disable_unprepare(nandc->aon_clk); +err_aon_clk: + clk_disable_unprepare(nandc->core_clk); +err_core_clk: + dma_unmap_resource(dev, nandc->base_dma, resource_size(res), + DMA_BIDIRECTIONAL, 0); + return ret; +} + +static void qcom_nandc_remove(struct platform_device *pdev) +{ + struct qcom_nand_controller *nandc = platform_get_drvdata(pdev); + struct resource *res = platform_get_resource(pdev, IORESOURCE_MEM, 0); + struct qcom_nand_host *host; + struct nand_chip *chip; + int ret; + + list_for_each_entry(host, &nandc->host_list, node) { + chip = &host->chip; + ret = mtd_device_unregister(nand_to_mtd(chip)); + WARN_ON(ret); + nand_cleanup(chip); + } + + qcom_nandc_unalloc(nandc); + + clk_disable_unprepare(nandc->aon_clk); + clk_disable_unprepare(nandc->core_clk); + + dma_unmap_resource(&pdev->dev, nandc->base_dma, resource_size(res), + DMA_BIDIRECTIONAL, 0); +} + +static const struct qcom_nandc_props ipq806x_nandc_props = { + .ecc_modes = (ECC_RS_4BIT | ECC_BCH_8BIT), + .is_bam = false, + .use_codeword_fixup = true, + .dev_cmd_reg_start = 0x0, +}; + +static const struct qcom_nandc_props ipq4019_nandc_props = { + .ecc_modes = (ECC_BCH_4BIT | ECC_BCH_8BIT), + .is_bam = true, + .is_qpic = true, + .dev_cmd_reg_start = 0x0, +}; + +static const struct qcom_nandc_props ipq8074_nandc_props = { + .ecc_modes = (ECC_BCH_4BIT | ECC_BCH_8BIT), + .is_bam = true, + .is_qpic = true, + .dev_cmd_reg_start = 0x7000, +}; + +static const struct qcom_nandc_props sdx55_nandc_props = { + .ecc_modes = (ECC_BCH_4BIT | ECC_BCH_8BIT), + .is_bam = true, + .is_qpic = true, + .qpic_v2 = true, + .dev_cmd_reg_start = 0x7000, +}; + +/* + * data will hold a struct pointer containing more differences once we support + * more controller variants + */ +static const struct of_device_id qcom_nandc_of_match[] = { + { + .compatible = "qcom,ipq806x-nand", + .data = &ipq806x_nandc_props, + }, + { + .compatible = "qcom,ipq4019-nand", + .data = &ipq4019_nandc_props, + }, + { + .compatible = "qcom,ipq6018-nand", + .data = &ipq8074_nandc_props, + }, + { + .compatible = "qcom,ipq8074-nand", + .data = &ipq8074_nandc_props, + }, + { + .compatible = "qcom,sdx55-nand", + .data = &sdx55_nandc_props, + }, + {} +}; +MODULE_DEVICE_TABLE(of, qcom_nandc_of_match); + +static struct platform_driver qcom_nandc_driver = { + .driver = { + .name = "qcom-nandc", + .of_match_table = qcom_nandc_of_match, + }, + .probe = qcom_nandc_probe, + .remove_new = qcom_nandc_remove, +}; +module_platform_driver(qcom_nandc_driver); + +MODULE_AUTHOR("Archit Taneja <architt@codeaurora.org>"); +MODULE_DESCRIPTION("Qualcomm NAND Controller driver"); +MODULE_LICENSE("GPL v2"); diff --git a/drivers/mtd/nand/raw/r852.c b/drivers/mtd/nand/raw/r852.c new file mode 100644 index 0000000000..ed0cf732d2 --- /dev/null +++ b/drivers/mtd/nand/raw/r852.c @@ -0,0 +1,1091 @@ +// SPDX-License-Identifier: GPL-2.0-only +/* + * Copyright © 2009 - Maxim Levitsky + * driver for Ricoh xD readers + */ + +#define DRV_NAME "r852" +#define pr_fmt(fmt) DRV_NAME ": " fmt + +#include <linux/kernel.h> +#include <linux/module.h> +#include <linux/jiffies.h> +#include <linux/workqueue.h> +#include <linux/interrupt.h> +#include <linux/pci.h> +#include <linux/pci_ids.h> +#include <linux/delay.h> +#include <linux/slab.h> +#include <asm/byteorder.h> +#include <linux/sched.h> +#include "sm_common.h" +#include "r852.h" + + +static bool r852_enable_dma = 1; +module_param(r852_enable_dma, bool, S_IRUGO); +MODULE_PARM_DESC(r852_enable_dma, "Enable usage of the DMA (default)"); + +static int debug; +module_param(debug, int, S_IRUGO | S_IWUSR); +MODULE_PARM_DESC(debug, "Debug level (0-2)"); + +/* read register */ +static inline uint8_t r852_read_reg(struct r852_device *dev, int address) +{ + uint8_t reg = readb(dev->mmio + address); + return reg; +} + +/* write register */ +static inline void r852_write_reg(struct r852_device *dev, + int address, uint8_t value) +{ + writeb(value, dev->mmio + address); +} + + +/* read dword sized register */ +static inline uint32_t r852_read_reg_dword(struct r852_device *dev, int address) +{ + uint32_t reg = le32_to_cpu(readl(dev->mmio + address)); + return reg; +} + +/* write dword sized register */ +static inline void r852_write_reg_dword(struct r852_device *dev, + int address, uint32_t value) +{ + writel(cpu_to_le32(value), dev->mmio + address); +} + +/* returns pointer to our private structure */ +static inline struct r852_device *r852_get_dev(struct mtd_info *mtd) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + return nand_get_controller_data(chip); +} + + +/* check if controller supports dma */ +static void r852_dma_test(struct r852_device *dev) +{ + dev->dma_usable = (r852_read_reg(dev, R852_DMA_CAP) & + (R852_DMA1 | R852_DMA2)) == (R852_DMA1 | R852_DMA2); + + if (!dev->dma_usable) + message("Non dma capable device detected, dma disabled"); + + if (!r852_enable_dma) { + message("disabling dma on user request"); + dev->dma_usable = 0; + } +} + +/* + * Enable dma. Enables ether first or second stage of the DMA, + * Expects dev->dma_dir and dev->dma_state be set + */ +static void r852_dma_enable(struct r852_device *dev) +{ + uint8_t dma_reg, dma_irq_reg; + + /* Set up dma settings */ + dma_reg = r852_read_reg_dword(dev, R852_DMA_SETTINGS); + dma_reg &= ~(R852_DMA_READ | R852_DMA_INTERNAL | R852_DMA_MEMORY); + + if (dev->dma_dir) + dma_reg |= R852_DMA_READ; + + if (dev->dma_state == DMA_INTERNAL) { + dma_reg |= R852_DMA_INTERNAL; + /* Precaution to make sure HW doesn't write */ + /* to random kernel memory */ + r852_write_reg_dword(dev, R852_DMA_ADDR, + cpu_to_le32(dev->phys_bounce_buffer)); + } else { + dma_reg |= R852_DMA_MEMORY; + r852_write_reg_dword(dev, R852_DMA_ADDR, + cpu_to_le32(dev->phys_dma_addr)); + } + + /* Precaution: make sure write reached the device */ + r852_read_reg_dword(dev, R852_DMA_ADDR); + + r852_write_reg_dword(dev, R852_DMA_SETTINGS, dma_reg); + + /* Set dma irq */ + dma_irq_reg = r852_read_reg_dword(dev, R852_DMA_IRQ_ENABLE); + r852_write_reg_dword(dev, R852_DMA_IRQ_ENABLE, + dma_irq_reg | + R852_DMA_IRQ_INTERNAL | + R852_DMA_IRQ_ERROR | + R852_DMA_IRQ_MEMORY); +} + +/* + * Disable dma, called from the interrupt handler, which specifies + * success of the operation via 'error' argument + */ +static void r852_dma_done(struct r852_device *dev, int error) +{ + WARN_ON(dev->dma_stage == 0); + + r852_write_reg_dword(dev, R852_DMA_IRQ_STA, + r852_read_reg_dword(dev, R852_DMA_IRQ_STA)); + + r852_write_reg_dword(dev, R852_DMA_SETTINGS, 0); + r852_write_reg_dword(dev, R852_DMA_IRQ_ENABLE, 0); + + /* Precaution to make sure HW doesn't write to random kernel memory */ + r852_write_reg_dword(dev, R852_DMA_ADDR, + cpu_to_le32(dev->phys_bounce_buffer)); + r852_read_reg_dword(dev, R852_DMA_ADDR); + + dev->dma_error = error; + dev->dma_stage = 0; + + if (dev->phys_dma_addr && dev->phys_dma_addr != dev->phys_bounce_buffer) + dma_unmap_single(&dev->pci_dev->dev, dev->phys_dma_addr, + R852_DMA_LEN, + dev->dma_dir ? DMA_FROM_DEVICE : DMA_TO_DEVICE); +} + +/* + * Wait, till dma is done, which includes both phases of it + */ +static int r852_dma_wait(struct r852_device *dev) +{ + long timeout = wait_for_completion_timeout(&dev->dma_done, + msecs_to_jiffies(1000)); + if (!timeout) { + dbg("timeout waiting for DMA interrupt"); + return -ETIMEDOUT; + } + + return 0; +} + +/* + * Read/Write one page using dma. Only pages can be read (512 bytes) +*/ +static void r852_do_dma(struct r852_device *dev, uint8_t *buf, int do_read) +{ + int bounce = 0; + unsigned long flags; + int error; + + dev->dma_error = 0; + + /* Set dma direction */ + dev->dma_dir = do_read; + dev->dma_stage = 1; + reinit_completion(&dev->dma_done); + + dbg_verbose("doing dma %s ", do_read ? "read" : "write"); + + /* Set initial dma state: for reading first fill on board buffer, + from device, for writes first fill the buffer from memory*/ + dev->dma_state = do_read ? DMA_INTERNAL : DMA_MEMORY; + + /* if incoming buffer is not page aligned, we should do bounce */ + if ((unsigned long)buf & (R852_DMA_LEN-1)) + bounce = 1; + + if (!bounce) { + dev->phys_dma_addr = dma_map_single(&dev->pci_dev->dev, buf, + R852_DMA_LEN, + do_read ? DMA_FROM_DEVICE : DMA_TO_DEVICE); + if (dma_mapping_error(&dev->pci_dev->dev, dev->phys_dma_addr)) + bounce = 1; + } + + if (bounce) { + dbg_verbose("dma: using bounce buffer"); + dev->phys_dma_addr = dev->phys_bounce_buffer; + if (!do_read) + memcpy(dev->bounce_buffer, buf, R852_DMA_LEN); + } + + /* Enable DMA */ + spin_lock_irqsave(&dev->irqlock, flags); + r852_dma_enable(dev); + spin_unlock_irqrestore(&dev->irqlock, flags); + + /* Wait till complete */ + error = r852_dma_wait(dev); + + if (error) { + r852_dma_done(dev, error); + return; + } + + if (do_read && bounce) + memcpy((void *)buf, dev->bounce_buffer, R852_DMA_LEN); +} + +/* + * Program data lines of the nand chip to send data to it + */ +static void r852_write_buf(struct nand_chip *chip, const uint8_t *buf, int len) +{ + struct r852_device *dev = r852_get_dev(nand_to_mtd(chip)); + uint32_t reg; + + /* Don't allow any access to hardware if we suspect card removal */ + if (dev->card_unstable) + return; + + /* Special case for whole sector read */ + if (len == R852_DMA_LEN && dev->dma_usable) { + r852_do_dma(dev, (uint8_t *)buf, 0); + return; + } + + /* write DWORD chinks - faster */ + while (len >= 4) { + reg = buf[0] | buf[1] << 8 | buf[2] << 16 | buf[3] << 24; + r852_write_reg_dword(dev, R852_DATALINE, reg); + buf += 4; + len -= 4; + + } + + /* write rest */ + while (len > 0) { + r852_write_reg(dev, R852_DATALINE, *buf++); + len--; + } +} + +/* + * Read data lines of the nand chip to retrieve data + */ +static void r852_read_buf(struct nand_chip *chip, uint8_t *buf, int len) +{ + struct r852_device *dev = r852_get_dev(nand_to_mtd(chip)); + uint32_t reg; + + if (dev->card_unstable) { + /* since we can't signal error here, at least, return + predictable buffer */ + memset(buf, 0, len); + return; + } + + /* special case for whole sector read */ + if (len == R852_DMA_LEN && dev->dma_usable) { + r852_do_dma(dev, buf, 1); + return; + } + + /* read in dword sized chunks */ + while (len >= 4) { + + reg = r852_read_reg_dword(dev, R852_DATALINE); + *buf++ = reg & 0xFF; + *buf++ = (reg >> 8) & 0xFF; + *buf++ = (reg >> 16) & 0xFF; + *buf++ = (reg >> 24) & 0xFF; + len -= 4; + } + + /* read the reset by bytes */ + while (len--) + *buf++ = r852_read_reg(dev, R852_DATALINE); +} + +/* + * Read one byte from nand chip + */ +static uint8_t r852_read_byte(struct nand_chip *chip) +{ + struct r852_device *dev = r852_get_dev(nand_to_mtd(chip)); + + /* Same problem as in r852_read_buf.... */ + if (dev->card_unstable) + return 0; + + return r852_read_reg(dev, R852_DATALINE); +} + +/* + * Control several chip lines & send commands + */ +static void r852_cmdctl(struct nand_chip *chip, int dat, unsigned int ctrl) +{ + struct r852_device *dev = r852_get_dev(nand_to_mtd(chip)); + + if (dev->card_unstable) + return; + + if (ctrl & NAND_CTRL_CHANGE) { + + dev->ctlreg &= ~(R852_CTL_DATA | R852_CTL_COMMAND | + R852_CTL_ON | R852_CTL_CARDENABLE); + + if (ctrl & NAND_ALE) + dev->ctlreg |= R852_CTL_DATA; + + if (ctrl & NAND_CLE) + dev->ctlreg |= R852_CTL_COMMAND; + + if (ctrl & NAND_NCE) + dev->ctlreg |= (R852_CTL_CARDENABLE | R852_CTL_ON); + else + dev->ctlreg &= ~R852_CTL_WRITE; + + /* when write is stareted, enable write access */ + if (dat == NAND_CMD_ERASE1) + dev->ctlreg |= R852_CTL_WRITE; + + r852_write_reg(dev, R852_CTL, dev->ctlreg); + } + + /* HACK: NAND_CMD_SEQIN is called without NAND_CTRL_CHANGE, but we need + to set write mode */ + if (dat == NAND_CMD_SEQIN && (dev->ctlreg & R852_CTL_COMMAND)) { + dev->ctlreg |= R852_CTL_WRITE; + r852_write_reg(dev, R852_CTL, dev->ctlreg); + } + + if (dat != NAND_CMD_NONE) + r852_write_reg(dev, R852_DATALINE, dat); +} + +/* + * Wait till card is ready. + * based on nand_wait, but returns errors on DMA error + */ +static int r852_wait(struct nand_chip *chip) +{ + struct r852_device *dev = nand_get_controller_data(chip); + + unsigned long timeout; + u8 status; + + timeout = jiffies + msecs_to_jiffies(400); + + while (time_before(jiffies, timeout)) + if (chip->legacy.dev_ready(chip)) + break; + + nand_status_op(chip, &status); + + /* Unfortunelly, no way to send detailed error status... */ + if (dev->dma_error) { + status |= NAND_STATUS_FAIL; + dev->dma_error = 0; + } + return status; +} + +/* + * Check if card is ready + */ + +static int r852_ready(struct nand_chip *chip) +{ + struct r852_device *dev = r852_get_dev(nand_to_mtd(chip)); + return !(r852_read_reg(dev, R852_CARD_STA) & R852_CARD_STA_BUSY); +} + + +/* + * Set ECC engine mode +*/ + +static void r852_ecc_hwctl(struct nand_chip *chip, int mode) +{ + struct r852_device *dev = r852_get_dev(nand_to_mtd(chip)); + + if (dev->card_unstable) + return; + + switch (mode) { + case NAND_ECC_READ: + case NAND_ECC_WRITE: + /* enable ecc generation/check*/ + dev->ctlreg |= R852_CTL_ECC_ENABLE; + + /* flush ecc buffer */ + r852_write_reg(dev, R852_CTL, + dev->ctlreg | R852_CTL_ECC_ACCESS); + + r852_read_reg_dword(dev, R852_DATALINE); + r852_write_reg(dev, R852_CTL, dev->ctlreg); + return; + + case NAND_ECC_READSYN: + /* disable ecc generation */ + dev->ctlreg &= ~R852_CTL_ECC_ENABLE; + r852_write_reg(dev, R852_CTL, dev->ctlreg); + } +} + +/* + * Calculate ECC, only used for writes + */ + +static int r852_ecc_calculate(struct nand_chip *chip, const uint8_t *dat, + uint8_t *ecc_code) +{ + struct r852_device *dev = r852_get_dev(nand_to_mtd(chip)); + struct sm_oob *oob = (struct sm_oob *)ecc_code; + uint32_t ecc1, ecc2; + + if (dev->card_unstable) + return 0; + + dev->ctlreg &= ~R852_CTL_ECC_ENABLE; + r852_write_reg(dev, R852_CTL, dev->ctlreg | R852_CTL_ECC_ACCESS); + + ecc1 = r852_read_reg_dword(dev, R852_DATALINE); + ecc2 = r852_read_reg_dword(dev, R852_DATALINE); + + oob->ecc1[0] = (ecc1) & 0xFF; + oob->ecc1[1] = (ecc1 >> 8) & 0xFF; + oob->ecc1[2] = (ecc1 >> 16) & 0xFF; + + oob->ecc2[0] = (ecc2) & 0xFF; + oob->ecc2[1] = (ecc2 >> 8) & 0xFF; + oob->ecc2[2] = (ecc2 >> 16) & 0xFF; + + r852_write_reg(dev, R852_CTL, dev->ctlreg); + return 0; +} + +/* + * Correct the data using ECC, hw did almost everything for us + */ + +static int r852_ecc_correct(struct nand_chip *chip, uint8_t *dat, + uint8_t *read_ecc, uint8_t *calc_ecc) +{ + uint32_t ecc_reg; + uint8_t ecc_status, err_byte; + int i, error = 0; + + struct r852_device *dev = r852_get_dev(nand_to_mtd(chip)); + + if (dev->card_unstable) + return 0; + + if (dev->dma_error) { + dev->dma_error = 0; + return -EIO; + } + + r852_write_reg(dev, R852_CTL, dev->ctlreg | R852_CTL_ECC_ACCESS); + ecc_reg = r852_read_reg_dword(dev, R852_DATALINE); + r852_write_reg(dev, R852_CTL, dev->ctlreg); + + for (i = 0 ; i <= 1 ; i++) { + + ecc_status = (ecc_reg >> 8) & 0xFF; + + /* ecc uncorrectable error */ + if (ecc_status & R852_ECC_FAIL) { + dbg("ecc: unrecoverable error, in half %d", i); + error = -EBADMSG; + goto exit; + } + + /* correctable error */ + if (ecc_status & R852_ECC_CORRECTABLE) { + + err_byte = ecc_reg & 0xFF; + dbg("ecc: recoverable error, " + "in half %d, byte %d, bit %d", i, + err_byte, ecc_status & R852_ECC_ERR_BIT_MSK); + + dat[err_byte] ^= + 1 << (ecc_status & R852_ECC_ERR_BIT_MSK); + error++; + } + + dat += 256; + ecc_reg >>= 16; + } +exit: + return error; +} + +/* + * This is copy of nand_read_oob_std + * nand_read_oob_syndrome assumes we can send column address - we can't + */ +static int r852_read_oob(struct nand_chip *chip, int page) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + + return nand_read_oob_op(chip, page, 0, chip->oob_poi, mtd->oobsize); +} + +/* + * Start the nand engine + */ + +static void r852_engine_enable(struct r852_device *dev) +{ + if (r852_read_reg_dword(dev, R852_HW) & R852_HW_UNKNOWN) { + r852_write_reg(dev, R852_CTL, R852_CTL_RESET | R852_CTL_ON); + r852_write_reg_dword(dev, R852_HW, R852_HW_ENABLED); + } else { + r852_write_reg_dword(dev, R852_HW, R852_HW_ENABLED); + r852_write_reg(dev, R852_CTL, R852_CTL_RESET | R852_CTL_ON); + } + msleep(300); + r852_write_reg(dev, R852_CTL, 0); +} + + +/* + * Stop the nand engine + */ + +static void r852_engine_disable(struct r852_device *dev) +{ + r852_write_reg_dword(dev, R852_HW, 0); + r852_write_reg(dev, R852_CTL, R852_CTL_RESET); +} + +/* + * Test if card is present + */ + +static void r852_card_update_present(struct r852_device *dev) +{ + unsigned long flags; + uint8_t reg; + + spin_lock_irqsave(&dev->irqlock, flags); + reg = r852_read_reg(dev, R852_CARD_STA); + dev->card_detected = !!(reg & R852_CARD_STA_PRESENT); + spin_unlock_irqrestore(&dev->irqlock, flags); +} + +/* + * Update card detection IRQ state according to current card state + * which is read in r852_card_update_present + */ +static void r852_update_card_detect(struct r852_device *dev) +{ + int card_detect_reg = r852_read_reg(dev, R852_CARD_IRQ_ENABLE); + dev->card_unstable = 0; + + card_detect_reg &= ~(R852_CARD_IRQ_REMOVE | R852_CARD_IRQ_INSERT); + card_detect_reg |= R852_CARD_IRQ_GENABLE; + + card_detect_reg |= dev->card_detected ? + R852_CARD_IRQ_REMOVE : R852_CARD_IRQ_INSERT; + + r852_write_reg(dev, R852_CARD_IRQ_ENABLE, card_detect_reg); +} + +static ssize_t media_type_show(struct device *sys_dev, + struct device_attribute *attr, char *buf) +{ + struct mtd_info *mtd = container_of(sys_dev, struct mtd_info, dev); + struct r852_device *dev = r852_get_dev(mtd); + char *data = dev->sm ? "smartmedia" : "xd"; + + strcpy(buf, data); + return strlen(data); +} +static DEVICE_ATTR_RO(media_type); + + +/* Detect properties of card in slot */ +static void r852_update_media_status(struct r852_device *dev) +{ + uint8_t reg; + unsigned long flags; + int readonly; + + spin_lock_irqsave(&dev->irqlock, flags); + if (!dev->card_detected) { + message("card removed"); + spin_unlock_irqrestore(&dev->irqlock, flags); + return ; + } + + readonly = r852_read_reg(dev, R852_CARD_STA) & R852_CARD_STA_RO; + reg = r852_read_reg(dev, R852_DMA_CAP); + dev->sm = (reg & (R852_DMA1 | R852_DMA2)) && (reg & R852_SMBIT); + + message("detected %s %s card in slot", + dev->sm ? "SmartMedia" : "xD", + readonly ? "readonly" : "writeable"); + + dev->readonly = readonly; + spin_unlock_irqrestore(&dev->irqlock, flags); +} + +/* + * Register the nand device + * Called when the card is detected + */ +static int r852_register_nand_device(struct r852_device *dev) +{ + struct mtd_info *mtd = nand_to_mtd(dev->chip); + + WARN_ON(dev->card_registered); + + mtd->dev.parent = &dev->pci_dev->dev; + + if (dev->readonly) + dev->chip->options |= NAND_ROM; + + r852_engine_enable(dev); + + if (sm_register_device(mtd, dev->sm)) + goto error1; + + if (device_create_file(&mtd->dev, &dev_attr_media_type)) { + message("can't create media type sysfs attribute"); + goto error3; + } + + dev->card_registered = 1; + return 0; +error3: + WARN_ON(mtd_device_unregister(nand_to_mtd(dev->chip))); + nand_cleanup(dev->chip); +error1: + /* Force card redetect */ + dev->card_detected = 0; + return -1; +} + +/* + * Unregister the card + */ + +static void r852_unregister_nand_device(struct r852_device *dev) +{ + struct mtd_info *mtd = nand_to_mtd(dev->chip); + + if (!dev->card_registered) + return; + + device_remove_file(&mtd->dev, &dev_attr_media_type); + WARN_ON(mtd_device_unregister(mtd)); + nand_cleanup(dev->chip); + r852_engine_disable(dev); + dev->card_registered = 0; +} + +/* Card state updater */ +static void r852_card_detect_work(struct work_struct *work) +{ + struct r852_device *dev = + container_of(work, struct r852_device, card_detect_work.work); + + r852_card_update_present(dev); + r852_update_card_detect(dev); + dev->card_unstable = 0; + + /* False alarm */ + if (dev->card_detected == dev->card_registered) + goto exit; + + /* Read media properties */ + r852_update_media_status(dev); + + /* Register the card */ + if (dev->card_detected) + r852_register_nand_device(dev); + else + r852_unregister_nand_device(dev); +exit: + r852_update_card_detect(dev); +} + +/* Ack + disable IRQ generation */ +static void r852_disable_irqs(struct r852_device *dev) +{ + uint8_t reg; + reg = r852_read_reg(dev, R852_CARD_IRQ_ENABLE); + r852_write_reg(dev, R852_CARD_IRQ_ENABLE, reg & ~R852_CARD_IRQ_MASK); + + reg = r852_read_reg_dword(dev, R852_DMA_IRQ_ENABLE); + r852_write_reg_dword(dev, R852_DMA_IRQ_ENABLE, + reg & ~R852_DMA_IRQ_MASK); + + r852_write_reg(dev, R852_CARD_IRQ_STA, R852_CARD_IRQ_MASK); + r852_write_reg_dword(dev, R852_DMA_IRQ_STA, R852_DMA_IRQ_MASK); +} + +/* Interrupt handler */ +static irqreturn_t r852_irq(int irq, void *data) +{ + struct r852_device *dev = (struct r852_device *)data; + + uint8_t card_status, dma_status; + irqreturn_t ret = IRQ_NONE; + + spin_lock(&dev->irqlock); + + /* handle card detection interrupts first */ + card_status = r852_read_reg(dev, R852_CARD_IRQ_STA); + r852_write_reg(dev, R852_CARD_IRQ_STA, card_status); + + if (card_status & (R852_CARD_IRQ_INSERT|R852_CARD_IRQ_REMOVE)) { + + ret = IRQ_HANDLED; + dev->card_detected = !!(card_status & R852_CARD_IRQ_INSERT); + + /* we shouldn't receive any interrupts if we wait for card + to settle */ + WARN_ON(dev->card_unstable); + + /* disable irqs while card is unstable */ + /* this will timeout DMA if active, but better that garbage */ + r852_disable_irqs(dev); + + if (dev->card_unstable) + goto out; + + /* let, card state to settle a bit, and then do the work */ + dev->card_unstable = 1; + queue_delayed_work(dev->card_workqueue, + &dev->card_detect_work, msecs_to_jiffies(100)); + goto out; + } + + + /* Handle dma interrupts */ + dma_status = r852_read_reg_dword(dev, R852_DMA_IRQ_STA); + r852_write_reg_dword(dev, R852_DMA_IRQ_STA, dma_status); + + if (dma_status & R852_DMA_IRQ_MASK) { + + ret = IRQ_HANDLED; + + if (dma_status & R852_DMA_IRQ_ERROR) { + dbg("received dma error IRQ"); + r852_dma_done(dev, -EIO); + complete(&dev->dma_done); + goto out; + } + + /* received DMA interrupt out of nowhere? */ + WARN_ON_ONCE(dev->dma_stage == 0); + + if (dev->dma_stage == 0) + goto out; + + /* done device access */ + if (dev->dma_state == DMA_INTERNAL && + (dma_status & R852_DMA_IRQ_INTERNAL)) { + + dev->dma_state = DMA_MEMORY; + dev->dma_stage++; + } + + /* done memory DMA */ + if (dev->dma_state == DMA_MEMORY && + (dma_status & R852_DMA_IRQ_MEMORY)) { + dev->dma_state = DMA_INTERNAL; + dev->dma_stage++; + } + + /* Enable 2nd half of dma dance */ + if (dev->dma_stage == 2) + r852_dma_enable(dev); + + /* Operation done */ + if (dev->dma_stage == 3) { + r852_dma_done(dev, 0); + complete(&dev->dma_done); + } + goto out; + } + + /* Handle unknown interrupts */ + if (dma_status) + dbg("bad dma IRQ status = %x", dma_status); + + if (card_status & ~R852_CARD_STA_CD) + dbg("strange card status = %x", card_status); + +out: + spin_unlock(&dev->irqlock); + return ret; +} + +static int r852_attach_chip(struct nand_chip *chip) +{ + if (chip->ecc.engine_type != NAND_ECC_ENGINE_TYPE_ON_HOST) + return 0; + + chip->ecc.placement = NAND_ECC_PLACEMENT_INTERLEAVED; + chip->ecc.size = R852_DMA_LEN; + chip->ecc.bytes = SM_OOB_SIZE; + chip->ecc.strength = 2; + chip->ecc.hwctl = r852_ecc_hwctl; + chip->ecc.calculate = r852_ecc_calculate; + chip->ecc.correct = r852_ecc_correct; + + /* TODO: hack */ + chip->ecc.read_oob = r852_read_oob; + + return 0; +} + +static const struct nand_controller_ops r852_ops = { + .attach_chip = r852_attach_chip, +}; + +static int r852_probe(struct pci_dev *pci_dev, const struct pci_device_id *id) +{ + int error; + struct nand_chip *chip; + struct r852_device *dev; + + /* pci initialization */ + error = pci_enable_device(pci_dev); + + if (error) + goto error1; + + pci_set_master(pci_dev); + + error = dma_set_mask(&pci_dev->dev, DMA_BIT_MASK(32)); + if (error) + goto error2; + + error = pci_request_regions(pci_dev, DRV_NAME); + + if (error) + goto error3; + + error = -ENOMEM; + + /* init nand chip, but register it only on card insert */ + chip = kzalloc(sizeof(struct nand_chip), GFP_KERNEL); + + if (!chip) + goto error4; + + /* commands */ + chip->legacy.cmd_ctrl = r852_cmdctl; + chip->legacy.waitfunc = r852_wait; + chip->legacy.dev_ready = r852_ready; + + /* I/O */ + chip->legacy.read_byte = r852_read_byte; + chip->legacy.read_buf = r852_read_buf; + chip->legacy.write_buf = r852_write_buf; + + /* init our device structure */ + dev = kzalloc(sizeof(struct r852_device), GFP_KERNEL); + + if (!dev) + goto error5; + + nand_set_controller_data(chip, dev); + dev->chip = chip; + dev->pci_dev = pci_dev; + pci_set_drvdata(pci_dev, dev); + + nand_controller_init(&dev->controller); + dev->controller.ops = &r852_ops; + chip->controller = &dev->controller; + + dev->bounce_buffer = dma_alloc_coherent(&pci_dev->dev, R852_DMA_LEN, + &dev->phys_bounce_buffer, GFP_KERNEL); + + if (!dev->bounce_buffer) + goto error6; + + + error = -ENODEV; + dev->mmio = pci_ioremap_bar(pci_dev, 0); + + if (!dev->mmio) + goto error7; + + error = -ENOMEM; + dev->tmp_buffer = kzalloc(SM_SECTOR_SIZE, GFP_KERNEL); + + if (!dev->tmp_buffer) + goto error8; + + init_completion(&dev->dma_done); + + dev->card_workqueue = create_freezable_workqueue(DRV_NAME); + + if (!dev->card_workqueue) + goto error9; + + INIT_DELAYED_WORK(&dev->card_detect_work, r852_card_detect_work); + + /* shutdown everything - precation */ + r852_engine_disable(dev); + r852_disable_irqs(dev); + + r852_dma_test(dev); + + dev->irq = pci_dev->irq; + spin_lock_init(&dev->irqlock); + + dev->card_detected = 0; + r852_card_update_present(dev); + + /*register irq handler*/ + error = -ENODEV; + if (request_irq(pci_dev->irq, &r852_irq, IRQF_SHARED, + DRV_NAME, dev)) + goto error10; + + /* kick initial present test */ + queue_delayed_work(dev->card_workqueue, + &dev->card_detect_work, 0); + + + pr_notice("driver loaded successfully\n"); + return 0; + +error10: + destroy_workqueue(dev->card_workqueue); +error9: + kfree(dev->tmp_buffer); +error8: + pci_iounmap(pci_dev, dev->mmio); +error7: + dma_free_coherent(&pci_dev->dev, R852_DMA_LEN, dev->bounce_buffer, + dev->phys_bounce_buffer); +error6: + kfree(dev); +error5: + kfree(chip); +error4: + pci_release_regions(pci_dev); +error3: +error2: + pci_disable_device(pci_dev); +error1: + return error; +} + +static void r852_remove(struct pci_dev *pci_dev) +{ + struct r852_device *dev = pci_get_drvdata(pci_dev); + + /* Stop detect workqueue - + we are going to unregister the device anyway*/ + cancel_delayed_work_sync(&dev->card_detect_work); + destroy_workqueue(dev->card_workqueue); + + /* Unregister the device, this might make more IO */ + r852_unregister_nand_device(dev); + + /* Stop interrupts */ + r852_disable_irqs(dev); + free_irq(dev->irq, dev); + + /* Cleanup */ + kfree(dev->tmp_buffer); + pci_iounmap(pci_dev, dev->mmio); + dma_free_coherent(&pci_dev->dev, R852_DMA_LEN, dev->bounce_buffer, + dev->phys_bounce_buffer); + + kfree(dev->chip); + kfree(dev); + + /* Shutdown the PCI device */ + pci_release_regions(pci_dev); + pci_disable_device(pci_dev); +} + +static void r852_shutdown(struct pci_dev *pci_dev) +{ + struct r852_device *dev = pci_get_drvdata(pci_dev); + + cancel_delayed_work_sync(&dev->card_detect_work); + r852_disable_irqs(dev); + synchronize_irq(dev->irq); + pci_disable_device(pci_dev); +} + +#ifdef CONFIG_PM_SLEEP +static int r852_suspend(struct device *device) +{ + struct r852_device *dev = dev_get_drvdata(device); + + if (dev->ctlreg & R852_CTL_CARDENABLE) + return -EBUSY; + + /* First make sure the detect work is gone */ + cancel_delayed_work_sync(&dev->card_detect_work); + + /* Turn off the interrupts and stop the device */ + r852_disable_irqs(dev); + r852_engine_disable(dev); + + /* If card was pulled off just during the suspend, which is very + unlikely, we will remove it on resume, it too late now + anyway... */ + dev->card_unstable = 0; + return 0; +} + +static int r852_resume(struct device *device) +{ + struct r852_device *dev = dev_get_drvdata(device); + + r852_disable_irqs(dev); + r852_card_update_present(dev); + r852_engine_disable(dev); + + + /* If card status changed, just do the work */ + if (dev->card_detected != dev->card_registered) { + dbg("card was %s during low power state", + dev->card_detected ? "added" : "removed"); + + queue_delayed_work(dev->card_workqueue, + &dev->card_detect_work, msecs_to_jiffies(1000)); + return 0; + } + + /* Otherwise, initialize the card */ + if (dev->card_registered) { + r852_engine_enable(dev); + nand_select_target(dev->chip, 0); + nand_reset_op(dev->chip); + nand_deselect_target(dev->chip); + } + + /* Program card detection IRQ */ + r852_update_card_detect(dev); + return 0; +} +#endif + +static const struct pci_device_id r852_pci_id_tbl[] = { + + { PCI_VDEVICE(RICOH, 0x0852), }, + { }, +}; + +MODULE_DEVICE_TABLE(pci, r852_pci_id_tbl); + +static SIMPLE_DEV_PM_OPS(r852_pm_ops, r852_suspend, r852_resume); + +static struct pci_driver r852_pci_driver = { + .name = DRV_NAME, + .id_table = r852_pci_id_tbl, + .probe = r852_probe, + .remove = r852_remove, + .shutdown = r852_shutdown, + .driver.pm = &r852_pm_ops, +}; + +module_pci_driver(r852_pci_driver); + +MODULE_LICENSE("GPL"); +MODULE_AUTHOR("Maxim Levitsky <maximlevitsky@gmail.com>"); +MODULE_DESCRIPTION("Ricoh 85xx xD/smartmedia card reader driver"); diff --git a/drivers/mtd/nand/raw/r852.h b/drivers/mtd/nand/raw/r852.h new file mode 100644 index 0000000000..96fe301d15 --- /dev/null +++ b/drivers/mtd/nand/raw/r852.h @@ -0,0 +1,155 @@ +/* SPDX-License-Identifier: GPL-2.0-only */ +/* + * Copyright © 2009 - Maxim Levitsky + * driver for Ricoh xD readers + */ + +#include <linux/pci.h> +#include <linux/completion.h> +#include <linux/workqueue.h> +#include <linux/mtd/rawnand.h> +#include <linux/spinlock.h> + + +/* nand interface + ecc + byte write/read does one cycle on nand data lines. + dword write/read does 4 cycles + if R852_CTL_ECC_ACCESS is set in R852_CTL, then dword read reads + results of ecc correction, if DMA read was done before. + If write was done two dword reads read generated ecc checksums +*/ +#define R852_DATALINE 0x00 + +/* control register */ +#define R852_CTL 0x04 +#define R852_CTL_COMMAND 0x01 /* send command (#CLE)*/ +#define R852_CTL_DATA 0x02 /* read/write data (#ALE)*/ +#define R852_CTL_ON 0x04 /* only seem to controls the hd led, */ + /* but has to be set on start...*/ +#define R852_CTL_RESET 0x08 /* unknown, set only on start once*/ +#define R852_CTL_CARDENABLE 0x10 /* probably (#CE) - always set*/ +#define R852_CTL_ECC_ENABLE 0x20 /* enable ecc engine */ +#define R852_CTL_ECC_ACCESS 0x40 /* read/write ecc via reg #0*/ +#define R852_CTL_WRITE 0x80 /* set when performing writes (#WP) */ + +/* card detection status */ +#define R852_CARD_STA 0x05 + +#define R852_CARD_STA_CD 0x01 /* state of #CD line, same as 0x04 */ +#define R852_CARD_STA_RO 0x02 /* card is readonly */ +#define R852_CARD_STA_PRESENT 0x04 /* card is present (#CD) */ +#define R852_CARD_STA_ABSENT 0x08 /* card is absent */ +#define R852_CARD_STA_BUSY 0x80 /* card is busy - (#R/B) */ + +/* card detection irq status & enable*/ +#define R852_CARD_IRQ_STA 0x06 /* IRQ status */ +#define R852_CARD_IRQ_ENABLE 0x07 /* IRQ enable */ + +#define R852_CARD_IRQ_CD 0x01 /* fire when #CD lights, same as 0x04*/ +#define R852_CARD_IRQ_REMOVE 0x04 /* detect card removal */ +#define R852_CARD_IRQ_INSERT 0x08 /* detect card insert */ +#define R852_CARD_IRQ_UNK1 0x10 /* unknown */ +#define R852_CARD_IRQ_GENABLE 0x80 /* general enable */ +#define R852_CARD_IRQ_MASK 0x1D + + + +/* hardware enable */ +#define R852_HW 0x08 +#define R852_HW_ENABLED 0x01 /* hw enabled */ +#define R852_HW_UNKNOWN 0x80 + + +/* dma capabilities */ +#define R852_DMA_CAP 0x09 +#define R852_SMBIT 0x20 /* if set with bit #6 or bit #7, then */ + /* hw is smartmedia */ +#define R852_DMA1 0x40 /* if set w/bit #7, dma is supported */ +#define R852_DMA2 0x80 /* if set w/bit #6, dma is supported */ + + +/* physical DMA address - 32 bit value*/ +#define R852_DMA_ADDR 0x0C + + +/* dma settings */ +#define R852_DMA_SETTINGS 0x10 +#define R852_DMA_MEMORY 0x01 /* (memory <-> internal hw buffer) */ +#define R852_DMA_READ 0x02 /* 0 = write, 1 = read */ +#define R852_DMA_INTERNAL 0x04 /* (internal hw buffer <-> card) */ + +/* dma IRQ status */ +#define R852_DMA_IRQ_STA 0x14 + +/* dma IRQ enable */ +#define R852_DMA_IRQ_ENABLE 0x18 + +#define R852_DMA_IRQ_MEMORY 0x01 /* (memory <-> internal hw buffer) */ +#define R852_DMA_IRQ_ERROR 0x02 /* error did happen */ +#define R852_DMA_IRQ_INTERNAL 0x04 /* (internal hw buffer <-> card) */ +#define R852_DMA_IRQ_MASK 0x07 /* mask of all IRQ bits */ + + +/* ECC syndrome format - read from reg #0 will return two copies of these for + each half of the page. + first byte is error byte location, and second, bit location + flags */ +#define R852_ECC_ERR_BIT_MSK 0x07 /* error bit location */ +#define R852_ECC_CORRECT 0x10 /* no errors - (guessed) */ +#define R852_ECC_CORRECTABLE 0x20 /* correctable error exist */ +#define R852_ECC_FAIL 0x40 /* non correctable error detected */ + +#define R852_DMA_LEN 512 + +#define DMA_INTERNAL 0 +#define DMA_MEMORY 1 + +struct r852_device { + struct nand_controller controller; + void __iomem *mmio; /* mmio */ + struct nand_chip *chip; /* nand chip backpointer */ + struct pci_dev *pci_dev; /* pci backpointer */ + + /* dma area */ + dma_addr_t phys_dma_addr; /* bus address of buffer*/ + struct completion dma_done; /* data transfer done */ + + dma_addr_t phys_bounce_buffer; /* bus address of bounce buffer */ + uint8_t *bounce_buffer; /* virtual address of bounce buffer */ + + int dma_dir; /* 1 = read, 0 = write */ + int dma_stage; /* 0 - idle, 1 - first step, + 2 - second step */ + + int dma_state; /* 0 = internal, 1 = memory */ + int dma_error; /* dma errors */ + int dma_usable; /* is it possible to use dma */ + + /* card status area */ + struct delayed_work card_detect_work; + struct workqueue_struct *card_workqueue; + int card_registered; /* card registered with mtd */ + int card_detected; /* card detected in slot */ + int card_unstable; /* whenever the card is inserted, + is not known yet */ + int readonly; /* card is readonly */ + int sm; /* Is card smartmedia */ + + /* interrupt handling */ + spinlock_t irqlock; /* IRQ protecting lock */ + int irq; /* irq num */ + /* misc */ + void *tmp_buffer; /* temporary buffer */ + uint8_t ctlreg; /* cached contents of control reg */ +}; + +#define dbg(format, ...) \ + if (debug) \ + pr_debug(format "\n", ## __VA_ARGS__) + +#define dbg_verbose(format, ...) \ + if (debug > 1) \ + pr_debug(format "\n", ## __VA_ARGS__) + + +#define message(format, ...) \ + pr_info(format "\n", ## __VA_ARGS__) diff --git a/drivers/mtd/nand/raw/renesas-nand-controller.c b/drivers/mtd/nand/raw/renesas-nand-controller.c new file mode 100644 index 0000000000..589021ea9e --- /dev/null +++ b/drivers/mtd/nand/raw/renesas-nand-controller.c @@ -0,0 +1,1417 @@ +// SPDX-License-Identifier: GPL-2.0 +/* + * Evatronix/Renesas R-Car Gen3, RZ/N1D, RZ/N1S, RZ/N1L NAND controller driver + * + * Copyright (C) 2021 Schneider Electric + * Author: Miquel RAYNAL <miquel.raynal@bootlin.com> + */ + +#include <linux/bitfield.h> +#include <linux/clk.h> +#include <linux/dma-mapping.h> +#include <linux/interrupt.h> +#include <linux/iopoll.h> +#include <linux/module.h> +#include <linux/mtd/mtd.h> +#include <linux/mtd/rawnand.h> +#include <linux/of.h> +#include <linux/platform_device.h> +#include <linux/pm_runtime.h> +#include <linux/slab.h> + +#define COMMAND_REG 0x00 +#define COMMAND_SEQ(x) FIELD_PREP(GENMASK(5, 0), (x)) +#define COMMAND_SEQ_10 COMMAND_SEQ(0x2A) +#define COMMAND_SEQ_12 COMMAND_SEQ(0x0C) +#define COMMAND_SEQ_18 COMMAND_SEQ(0x32) +#define COMMAND_SEQ_19 COMMAND_SEQ(0x13) +#define COMMAND_SEQ_GEN_IN COMMAND_SEQ_18 +#define COMMAND_SEQ_GEN_OUT COMMAND_SEQ_19 +#define COMMAND_SEQ_READ_PAGE COMMAND_SEQ_10 +#define COMMAND_SEQ_WRITE_PAGE COMMAND_SEQ_12 +#define COMMAND_INPUT_SEL_AHBS 0 +#define COMMAND_INPUT_SEL_DMA BIT(6) +#define COMMAND_FIFO_SEL 0 +#define COMMAND_DATA_SEL BIT(7) +#define COMMAND_0(x) FIELD_PREP(GENMASK(15, 8), (x)) +#define COMMAND_1(x) FIELD_PREP(GENMASK(23, 16), (x)) +#define COMMAND_2(x) FIELD_PREP(GENMASK(31, 24), (x)) + +#define CONTROL_REG 0x04 +#define CONTROL_CHECK_RB_LINE 0 +#define CONTROL_ECC_BLOCK_SIZE(x) FIELD_PREP(GENMASK(2, 1), (x)) +#define CONTROL_ECC_BLOCK_SIZE_256 CONTROL_ECC_BLOCK_SIZE(0) +#define CONTROL_ECC_BLOCK_SIZE_512 CONTROL_ECC_BLOCK_SIZE(1) +#define CONTROL_ECC_BLOCK_SIZE_1024 CONTROL_ECC_BLOCK_SIZE(2) +#define CONTROL_INT_EN BIT(4) +#define CONTROL_ECC_EN BIT(5) +#define CONTROL_BLOCK_SIZE(x) FIELD_PREP(GENMASK(7, 6), (x)) +#define CONTROL_BLOCK_SIZE_32P CONTROL_BLOCK_SIZE(0) +#define CONTROL_BLOCK_SIZE_64P CONTROL_BLOCK_SIZE(1) +#define CONTROL_BLOCK_SIZE_128P CONTROL_BLOCK_SIZE(2) +#define CONTROL_BLOCK_SIZE_256P CONTROL_BLOCK_SIZE(3) + +#define STATUS_REG 0x8 +#define MEM_RDY(cs, reg) (FIELD_GET(GENMASK(3, 0), (reg)) & BIT(cs)) +#define CTRL_RDY(reg) (FIELD_GET(BIT(8), (reg)) == 0) + +#define ECC_CTRL_REG 0x18 +#define ECC_CTRL_CAP(x) FIELD_PREP(GENMASK(2, 0), (x)) +#define ECC_CTRL_CAP_2B ECC_CTRL_CAP(0) +#define ECC_CTRL_CAP_4B ECC_CTRL_CAP(1) +#define ECC_CTRL_CAP_8B ECC_CTRL_CAP(2) +#define ECC_CTRL_CAP_16B ECC_CTRL_CAP(3) +#define ECC_CTRL_CAP_24B ECC_CTRL_CAP(4) +#define ECC_CTRL_CAP_32B ECC_CTRL_CAP(5) +#define ECC_CTRL_ERR_THRESHOLD(x) FIELD_PREP(GENMASK(13, 8), (x)) + +#define INT_MASK_REG 0x10 +#define INT_STATUS_REG 0x14 +#define INT_CMD_END BIT(1) +#define INT_DMA_END BIT(3) +#define INT_MEM_RDY(cs) FIELD_PREP(GENMASK(11, 8), BIT(cs)) +#define INT_DMA_ENDED BIT(3) +#define MEM_IS_RDY(cs, reg) (FIELD_GET(GENMASK(11, 8), (reg)) & BIT(cs)) +#define DMA_HAS_ENDED(reg) FIELD_GET(BIT(3), (reg)) + +#define ECC_OFFSET_REG 0x1C +#define ECC_OFFSET(x) FIELD_PREP(GENMASK(15, 0), (x)) + +#define ECC_STAT_REG 0x20 +#define ECC_STAT_CORRECTABLE(cs, reg) (FIELD_GET(GENMASK(3, 0), (reg)) & BIT(cs)) +#define ECC_STAT_UNCORRECTABLE(cs, reg) (FIELD_GET(GENMASK(11, 8), (reg)) & BIT(cs)) + +#define ADDR0_COL_REG 0x24 +#define ADDR0_COL(x) FIELD_PREP(GENMASK(15, 0), (x)) + +#define ADDR0_ROW_REG 0x28 +#define ADDR0_ROW(x) FIELD_PREP(GENMASK(23, 0), (x)) + +#define ADDR1_COL_REG 0x2C +#define ADDR1_COL(x) FIELD_PREP(GENMASK(15, 0), (x)) + +#define ADDR1_ROW_REG 0x30 +#define ADDR1_ROW(x) FIELD_PREP(GENMASK(23, 0), (x)) + +#define FIFO_DATA_REG 0x38 + +#define DATA_REG 0x3C + +#define DATA_REG_SIZE_REG 0x40 + +#define DMA_ADDR_LOW_REG 0x64 + +#define DMA_ADDR_HIGH_REG 0x68 + +#define DMA_CNT_REG 0x6C + +#define DMA_CTRL_REG 0x70 +#define DMA_CTRL_INCREMENT_BURST_4 0 +#define DMA_CTRL_REGISTER_MANAGED_MODE 0 +#define DMA_CTRL_START BIT(7) + +#define MEM_CTRL_REG 0x80 +#define MEM_CTRL_CS(cs) FIELD_PREP(GENMASK(1, 0), (cs)) +#define MEM_CTRL_DIS_WP(cs) FIELD_PREP(GENMASK(11, 8), BIT((cs))) + +#define DATA_SIZE_REG 0x84 +#define DATA_SIZE(x) FIELD_PREP(GENMASK(14, 0), (x)) + +#define TIMINGS_ASYN_REG 0x88 +#define TIMINGS_ASYN_TRWP(x) FIELD_PREP(GENMASK(3, 0), max((x), 1U) - 1) +#define TIMINGS_ASYN_TRWH(x) FIELD_PREP(GENMASK(7, 4), max((x), 1U) - 1) + +#define TIM_SEQ0_REG 0x90 +#define TIM_SEQ0_TCCS(x) FIELD_PREP(GENMASK(5, 0), max((x), 1U) - 1) +#define TIM_SEQ0_TADL(x) FIELD_PREP(GENMASK(13, 8), max((x), 1U) - 1) +#define TIM_SEQ0_TRHW(x) FIELD_PREP(GENMASK(21, 16), max((x), 1U) - 1) +#define TIM_SEQ0_TWHR(x) FIELD_PREP(GENMASK(29, 24), max((x), 1U) - 1) + +#define TIM_SEQ1_REG 0x94 +#define TIM_SEQ1_TWB(x) FIELD_PREP(GENMASK(5, 0), max((x), 1U) - 1) +#define TIM_SEQ1_TRR(x) FIELD_PREP(GENMASK(13, 8), max((x), 1U) - 1) +#define TIM_SEQ1_TWW(x) FIELD_PREP(GENMASK(21, 16), max((x), 1U) - 1) + +#define TIM_GEN_SEQ0_REG 0x98 +#define TIM_GEN_SEQ0_D0(x) FIELD_PREP(GENMASK(5, 0), max((x), 1U) - 1) +#define TIM_GEN_SEQ0_D1(x) FIELD_PREP(GENMASK(13, 8), max((x), 1U) - 1) +#define TIM_GEN_SEQ0_D2(x) FIELD_PREP(GENMASK(21, 16), max((x), 1U) - 1) +#define TIM_GEN_SEQ0_D3(x) FIELD_PREP(GENMASK(29, 24), max((x), 1U) - 1) + +#define TIM_GEN_SEQ1_REG 0x9c +#define TIM_GEN_SEQ1_D4(x) FIELD_PREP(GENMASK(5, 0), max((x), 1U) - 1) +#define TIM_GEN_SEQ1_D5(x) FIELD_PREP(GENMASK(13, 8), max((x), 1U) - 1) +#define TIM_GEN_SEQ1_D6(x) FIELD_PREP(GENMASK(21, 16), max((x), 1U) - 1) +#define TIM_GEN_SEQ1_D7(x) FIELD_PREP(GENMASK(29, 24), max((x), 1U) - 1) + +#define TIM_GEN_SEQ2_REG 0xA0 +#define TIM_GEN_SEQ2_D8(x) FIELD_PREP(GENMASK(5, 0), max((x), 1U) - 1) +#define TIM_GEN_SEQ2_D9(x) FIELD_PREP(GENMASK(13, 8), max((x), 1U) - 1) +#define TIM_GEN_SEQ2_D10(x) FIELD_PREP(GENMASK(21, 16), max((x), 1U) - 1) +#define TIM_GEN_SEQ2_D11(x) FIELD_PREP(GENMASK(29, 24), max((x), 1U) - 1) + +#define FIFO_INIT_REG 0xB4 +#define FIFO_INIT BIT(0) + +#define FIFO_STATE_REG 0xB4 +#define FIFO_STATE_R_EMPTY(reg) FIELD_GET(BIT(0), (reg)) +#define FIFO_STATE_W_FULL(reg) FIELD_GET(BIT(1), (reg)) +#define FIFO_STATE_C_EMPTY(reg) FIELD_GET(BIT(2), (reg)) +#define FIFO_STATE_R_FULL(reg) FIELD_GET(BIT(6), (reg)) +#define FIFO_STATE_W_EMPTY(reg) FIELD_GET(BIT(7), (reg)) + +#define GEN_SEQ_CTRL_REG 0xB8 +#define GEN_SEQ_CMD0_EN BIT(0) +#define GEN_SEQ_CMD1_EN BIT(1) +#define GEN_SEQ_CMD2_EN BIT(2) +#define GEN_SEQ_CMD3_EN BIT(3) +#define GEN_SEQ_COL_A0(x) FIELD_PREP(GENMASK(5, 4), min((x), 2U)) +#define GEN_SEQ_COL_A1(x) FIELD_PREP(GENMASK(7, 6), min((x), 2U)) +#define GEN_SEQ_ROW_A0(x) FIELD_PREP(GENMASK(9, 8), min((x), 3U)) +#define GEN_SEQ_ROW_A1(x) FIELD_PREP(GENMASK(11, 10), min((x), 3U)) +#define GEN_SEQ_DATA_EN BIT(12) +#define GEN_SEQ_DELAY_EN(x) FIELD_PREP(GENMASK(14, 13), (x)) +#define GEN_SEQ_DELAY0_EN GEN_SEQ_DELAY_EN(1) +#define GEN_SEQ_DELAY1_EN GEN_SEQ_DELAY_EN(2) +#define GEN_SEQ_IMD_SEQ BIT(15) +#define GEN_SEQ_COMMAND_3(x) FIELD_PREP(GENMASK(26, 16), (x)) + +#define DMA_TLVL_REG 0x114 +#define DMA_TLVL(x) FIELD_PREP(GENMASK(7, 0), (x)) +#define DMA_TLVL_MAX DMA_TLVL(0xFF) + +#define TIM_GEN_SEQ3_REG 0x134 +#define TIM_GEN_SEQ3_D12(x) FIELD_PREP(GENMASK(5, 0), max((x), 1U) - 1) + +#define ECC_CNT_REG 0x14C +#define ECC_CNT(cs, reg) FIELD_GET(GENMASK(5, 0), (reg) >> ((cs) * 8)) + +#define RNANDC_CS_NUM 4 + +#define TO_CYCLES64(ps, period_ns) ((unsigned int)DIV_ROUND_UP_ULL(div_u64(ps, 1000), \ + period_ns)) + +struct rnand_chip_sel { + unsigned int cs; +}; + +struct rnand_chip { + struct nand_chip chip; + struct list_head node; + int selected_die; + u32 ctrl; + unsigned int nsels; + u32 control; + u32 ecc_ctrl; + u32 timings_asyn; + u32 tim_seq0; + u32 tim_seq1; + u32 tim_gen_seq0; + u32 tim_gen_seq1; + u32 tim_gen_seq2; + u32 tim_gen_seq3; + struct rnand_chip_sel sels[]; +}; + +struct rnandc { + struct nand_controller controller; + struct device *dev; + void __iomem *regs; + unsigned long ext_clk_rate; + unsigned long assigned_cs; + struct list_head chips; + struct nand_chip *selected_chip; + struct completion complete; + bool use_polling; + u8 *buf; + unsigned int buf_sz; +}; + +struct rnandc_op { + u32 command; + u32 addr0_col; + u32 addr0_row; + u32 addr1_col; + u32 addr1_row; + u32 data_size; + u32 ecc_offset; + u32 gen_seq_ctrl; + u8 *buf; + bool read; + unsigned int len; +}; + +static inline struct rnandc *to_rnandc(struct nand_controller *ctrl) +{ + return container_of(ctrl, struct rnandc, controller); +} + +static inline struct rnand_chip *to_rnand(struct nand_chip *chip) +{ + return container_of(chip, struct rnand_chip, chip); +} + +static inline unsigned int to_rnandc_cs(struct rnand_chip *nand) +{ + return nand->sels[nand->selected_die].cs; +} + +static void rnandc_dis_correction(struct rnandc *rnandc) +{ + u32 control; + + control = readl_relaxed(rnandc->regs + CONTROL_REG); + control &= ~CONTROL_ECC_EN; + writel_relaxed(control, rnandc->regs + CONTROL_REG); +} + +static void rnandc_en_correction(struct rnandc *rnandc) +{ + u32 control; + + control = readl_relaxed(rnandc->regs + CONTROL_REG); + control |= CONTROL_ECC_EN; + writel_relaxed(control, rnandc->regs + CONTROL_REG); +} + +static void rnandc_clear_status(struct rnandc *rnandc) +{ + writel_relaxed(0, rnandc->regs + INT_STATUS_REG); + writel_relaxed(0, rnandc->regs + ECC_STAT_REG); + writel_relaxed(0, rnandc->regs + ECC_CNT_REG); +} + +static void rnandc_dis_interrupts(struct rnandc *rnandc) +{ + writel_relaxed(0, rnandc->regs + INT_MASK_REG); +} + +static void rnandc_en_interrupts(struct rnandc *rnandc, u32 val) +{ + if (!rnandc->use_polling) + writel_relaxed(val, rnandc->regs + INT_MASK_REG); +} + +static void rnandc_clear_fifo(struct rnandc *rnandc) +{ + writel_relaxed(FIFO_INIT, rnandc->regs + FIFO_INIT_REG); +} + +static void rnandc_select_target(struct nand_chip *chip, int die_nr) +{ + struct rnand_chip *rnand = to_rnand(chip); + struct rnandc *rnandc = to_rnandc(chip->controller); + unsigned int cs = rnand->sels[die_nr].cs; + + if (chip == rnandc->selected_chip && die_nr == rnand->selected_die) + return; + + rnandc_clear_status(rnandc); + writel_relaxed(MEM_CTRL_CS(cs) | MEM_CTRL_DIS_WP(cs), rnandc->regs + MEM_CTRL_REG); + writel_relaxed(rnand->control, rnandc->regs + CONTROL_REG); + writel_relaxed(rnand->ecc_ctrl, rnandc->regs + ECC_CTRL_REG); + writel_relaxed(rnand->timings_asyn, rnandc->regs + TIMINGS_ASYN_REG); + writel_relaxed(rnand->tim_seq0, rnandc->regs + TIM_SEQ0_REG); + writel_relaxed(rnand->tim_seq1, rnandc->regs + TIM_SEQ1_REG); + writel_relaxed(rnand->tim_gen_seq0, rnandc->regs + TIM_GEN_SEQ0_REG); + writel_relaxed(rnand->tim_gen_seq1, rnandc->regs + TIM_GEN_SEQ1_REG); + writel_relaxed(rnand->tim_gen_seq2, rnandc->regs + TIM_GEN_SEQ2_REG); + writel_relaxed(rnand->tim_gen_seq3, rnandc->regs + TIM_GEN_SEQ3_REG); + + rnandc->selected_chip = chip; + rnand->selected_die = die_nr; +} + +static void rnandc_trigger_op(struct rnandc *rnandc, struct rnandc_op *rop) +{ + writel_relaxed(rop->addr0_col, rnandc->regs + ADDR0_COL_REG); + writel_relaxed(rop->addr0_row, rnandc->regs + ADDR0_ROW_REG); + writel_relaxed(rop->addr1_col, rnandc->regs + ADDR1_COL_REG); + writel_relaxed(rop->addr1_row, rnandc->regs + ADDR1_ROW_REG); + writel_relaxed(rop->ecc_offset, rnandc->regs + ECC_OFFSET_REG); + writel_relaxed(rop->gen_seq_ctrl, rnandc->regs + GEN_SEQ_CTRL_REG); + writel_relaxed(DATA_SIZE(rop->len), rnandc->regs + DATA_SIZE_REG); + writel_relaxed(rop->command, rnandc->regs + COMMAND_REG); +} + +static void rnandc_trigger_dma(struct rnandc *rnandc) +{ + writel_relaxed(DMA_CTRL_INCREMENT_BURST_4 | + DMA_CTRL_REGISTER_MANAGED_MODE | + DMA_CTRL_START, rnandc->regs + DMA_CTRL_REG); +} + +static irqreturn_t rnandc_irq_handler(int irq, void *private) +{ + struct rnandc *rnandc = private; + + rnandc_dis_interrupts(rnandc); + complete(&rnandc->complete); + + return IRQ_HANDLED; +} + +static int rnandc_wait_end_of_op(struct rnandc *rnandc, + struct nand_chip *chip) +{ + struct rnand_chip *rnand = to_rnand(chip); + unsigned int cs = to_rnandc_cs(rnand); + u32 status; + int ret; + + ret = readl_poll_timeout(rnandc->regs + STATUS_REG, status, + MEM_RDY(cs, status) && CTRL_RDY(status), + 1, 100000); + if (ret) + dev_err(rnandc->dev, "Operation timed out, status: 0x%08x\n", + status); + + return ret; +} + +static int rnandc_wait_end_of_io(struct rnandc *rnandc, + struct nand_chip *chip) +{ + int timeout_ms = 1000; + int ret; + + if (rnandc->use_polling) { + struct rnand_chip *rnand = to_rnand(chip); + unsigned int cs = to_rnandc_cs(rnand); + u32 status; + + ret = readl_poll_timeout(rnandc->regs + INT_STATUS_REG, status, + MEM_IS_RDY(cs, status) & + DMA_HAS_ENDED(status), + 0, timeout_ms * 1000); + } else { + ret = wait_for_completion_timeout(&rnandc->complete, + msecs_to_jiffies(timeout_ms)); + if (!ret) + ret = -ETIMEDOUT; + else + ret = 0; + } + + return ret; +} + +static int rnandc_read_page_hw_ecc(struct nand_chip *chip, u8 *buf, + int oob_required, int page) +{ + struct rnandc *rnandc = to_rnandc(chip->controller); + struct mtd_info *mtd = nand_to_mtd(chip); + struct rnand_chip *rnand = to_rnand(chip); + unsigned int cs = to_rnandc_cs(rnand); + struct rnandc_op rop = { + .command = COMMAND_INPUT_SEL_DMA | COMMAND_0(NAND_CMD_READ0) | + COMMAND_2(NAND_CMD_READSTART) | COMMAND_FIFO_SEL | + COMMAND_SEQ_READ_PAGE, + .addr0_row = page, + .len = mtd->writesize, + .ecc_offset = ECC_OFFSET(mtd->writesize + 2), + }; + unsigned int max_bitflips = 0; + dma_addr_t dma_addr; + u32 ecc_stat; + int bf, ret, i; + + /* Prepare controller */ + rnandc_select_target(chip, chip->cur_cs); + rnandc_clear_status(rnandc); + reinit_completion(&rnandc->complete); + rnandc_en_interrupts(rnandc, INT_DMA_ENDED); + rnandc_en_correction(rnandc); + + /* Configure DMA */ + dma_addr = dma_map_single(rnandc->dev, rnandc->buf, mtd->writesize, + DMA_FROM_DEVICE); + writel(dma_addr, rnandc->regs + DMA_ADDR_LOW_REG); + writel(mtd->writesize, rnandc->regs + DMA_CNT_REG); + writel(DMA_TLVL_MAX, rnandc->regs + DMA_TLVL_REG); + + rnandc_trigger_op(rnandc, &rop); + rnandc_trigger_dma(rnandc); + + ret = rnandc_wait_end_of_io(rnandc, chip); + dma_unmap_single(rnandc->dev, dma_addr, mtd->writesize, DMA_FROM_DEVICE); + rnandc_dis_correction(rnandc); + if (ret) { + dev_err(rnandc->dev, "Read page operation never ending\n"); + return ret; + } + + ecc_stat = readl_relaxed(rnandc->regs + ECC_STAT_REG); + + if (oob_required || ECC_STAT_UNCORRECTABLE(cs, ecc_stat)) { + ret = nand_change_read_column_op(chip, mtd->writesize, + chip->oob_poi, mtd->oobsize, + false); + if (ret) + return ret; + } + + if (ECC_STAT_UNCORRECTABLE(cs, ecc_stat)) { + for (i = 0; i < chip->ecc.steps; i++) { + unsigned int off = i * chip->ecc.size; + unsigned int eccoff = i * chip->ecc.bytes; + + bf = nand_check_erased_ecc_chunk(rnandc->buf + off, + chip->ecc.size, + chip->oob_poi + 2 + eccoff, + chip->ecc.bytes, + NULL, 0, + chip->ecc.strength); + if (bf < 0) { + mtd->ecc_stats.failed++; + } else { + mtd->ecc_stats.corrected += bf; + max_bitflips = max_t(unsigned int, max_bitflips, bf); + } + } + } else if (ECC_STAT_CORRECTABLE(cs, ecc_stat)) { + bf = ECC_CNT(cs, readl_relaxed(rnandc->regs + ECC_CNT_REG)); + /* + * The number of bitflips is an approximation given the fact + * that this controller does not provide per-chunk details but + * only gives statistics on the entire page. + */ + mtd->ecc_stats.corrected += bf; + } + + memcpy(buf, rnandc->buf, mtd->writesize); + + return 0; +} + +static int rnandc_read_subpage_hw_ecc(struct nand_chip *chip, u32 req_offset, + u32 req_len, u8 *bufpoi, int page) +{ + struct rnandc *rnandc = to_rnandc(chip->controller); + struct mtd_info *mtd = nand_to_mtd(chip); + struct rnand_chip *rnand = to_rnand(chip); + unsigned int cs = to_rnandc_cs(rnand); + unsigned int page_off = round_down(req_offset, chip->ecc.size); + unsigned int real_len = round_up(req_offset + req_len - page_off, + chip->ecc.size); + unsigned int start_chunk = page_off / chip->ecc.size; + unsigned int nchunks = real_len / chip->ecc.size; + unsigned int ecc_off = 2 + (start_chunk * chip->ecc.bytes); + struct rnandc_op rop = { + .command = COMMAND_INPUT_SEL_AHBS | COMMAND_0(NAND_CMD_READ0) | + COMMAND_2(NAND_CMD_READSTART) | COMMAND_FIFO_SEL | + COMMAND_SEQ_READ_PAGE, + .addr0_row = page, + .addr0_col = page_off, + .len = real_len, + .ecc_offset = ECC_OFFSET(mtd->writesize + ecc_off), + }; + unsigned int max_bitflips = 0, i; + u32 ecc_stat; + int bf, ret; + + /* Prepare controller */ + rnandc_select_target(chip, chip->cur_cs); + rnandc_clear_status(rnandc); + rnandc_en_correction(rnandc); + rnandc_trigger_op(rnandc, &rop); + + while (!FIFO_STATE_C_EMPTY(readl(rnandc->regs + FIFO_STATE_REG))) + cpu_relax(); + + while (FIFO_STATE_R_EMPTY(readl(rnandc->regs + FIFO_STATE_REG))) + cpu_relax(); + + ioread32_rep(rnandc->regs + FIFO_DATA_REG, bufpoi + page_off, + real_len / 4); + + if (!FIFO_STATE_R_EMPTY(readl(rnandc->regs + FIFO_STATE_REG))) { + dev_err(rnandc->dev, "Clearing residual data in the read FIFO\n"); + rnandc_clear_fifo(rnandc); + } + + ret = rnandc_wait_end_of_op(rnandc, chip); + rnandc_dis_correction(rnandc); + if (ret) { + dev_err(rnandc->dev, "Read subpage operation never ending\n"); + return ret; + } + + ecc_stat = readl_relaxed(rnandc->regs + ECC_STAT_REG); + + if (ECC_STAT_UNCORRECTABLE(cs, ecc_stat)) { + ret = nand_change_read_column_op(chip, mtd->writesize, + chip->oob_poi, mtd->oobsize, + false); + if (ret) + return ret; + + for (i = start_chunk; i < nchunks; i++) { + unsigned int dataoff = i * chip->ecc.size; + unsigned int eccoff = 2 + (i * chip->ecc.bytes); + + bf = nand_check_erased_ecc_chunk(bufpoi + dataoff, + chip->ecc.size, + chip->oob_poi + eccoff, + chip->ecc.bytes, + NULL, 0, + chip->ecc.strength); + if (bf < 0) { + mtd->ecc_stats.failed++; + } else { + mtd->ecc_stats.corrected += bf; + max_bitflips = max_t(unsigned int, max_bitflips, bf); + } + } + } else if (ECC_STAT_CORRECTABLE(cs, ecc_stat)) { + bf = ECC_CNT(cs, readl_relaxed(rnandc->regs + ECC_CNT_REG)); + /* + * The number of bitflips is an approximation given the fact + * that this controller does not provide per-chunk details but + * only gives statistics on the entire page. + */ + mtd->ecc_stats.corrected += bf; + } + + return 0; +} + +static int rnandc_write_page_hw_ecc(struct nand_chip *chip, const u8 *buf, + int oob_required, int page) +{ + struct rnandc *rnandc = to_rnandc(chip->controller); + struct mtd_info *mtd = nand_to_mtd(chip); + struct rnand_chip *rnand = to_rnand(chip); + unsigned int cs = to_rnandc_cs(rnand); + struct rnandc_op rop = { + .command = COMMAND_INPUT_SEL_DMA | COMMAND_0(NAND_CMD_SEQIN) | + COMMAND_1(NAND_CMD_PAGEPROG) | COMMAND_FIFO_SEL | + COMMAND_SEQ_WRITE_PAGE, + .addr0_row = page, + .len = mtd->writesize, + .ecc_offset = ECC_OFFSET(mtd->writesize + 2), + }; + dma_addr_t dma_addr; + int ret; + + memcpy(rnandc->buf, buf, mtd->writesize); + + /* Prepare controller */ + rnandc_select_target(chip, chip->cur_cs); + rnandc_clear_status(rnandc); + reinit_completion(&rnandc->complete); + rnandc_en_interrupts(rnandc, INT_MEM_RDY(cs)); + rnandc_en_correction(rnandc); + + /* Configure DMA */ + dma_addr = dma_map_single(rnandc->dev, (void *)rnandc->buf, mtd->writesize, + DMA_TO_DEVICE); + writel(dma_addr, rnandc->regs + DMA_ADDR_LOW_REG); + writel(mtd->writesize, rnandc->regs + DMA_CNT_REG); + writel(DMA_TLVL_MAX, rnandc->regs + DMA_TLVL_REG); + + rnandc_trigger_op(rnandc, &rop); + rnandc_trigger_dma(rnandc); + + ret = rnandc_wait_end_of_io(rnandc, chip); + dma_unmap_single(rnandc->dev, dma_addr, mtd->writesize, DMA_TO_DEVICE); + rnandc_dis_correction(rnandc); + if (ret) { + dev_err(rnandc->dev, "Write page operation never ending\n"); + return ret; + } + + if (!oob_required) + return 0; + + return nand_change_write_column_op(chip, mtd->writesize, chip->oob_poi, + mtd->oobsize, false); +} + +static int rnandc_write_subpage_hw_ecc(struct nand_chip *chip, u32 req_offset, + u32 req_len, const u8 *bufpoi, + int oob_required, int page) +{ + struct rnandc *rnandc = to_rnandc(chip->controller); + struct mtd_info *mtd = nand_to_mtd(chip); + unsigned int page_off = round_down(req_offset, chip->ecc.size); + unsigned int real_len = round_up(req_offset + req_len - page_off, + chip->ecc.size); + unsigned int start_chunk = page_off / chip->ecc.size; + unsigned int ecc_off = 2 + (start_chunk * chip->ecc.bytes); + struct rnandc_op rop = { + .command = COMMAND_INPUT_SEL_AHBS | COMMAND_0(NAND_CMD_SEQIN) | + COMMAND_1(NAND_CMD_PAGEPROG) | COMMAND_FIFO_SEL | + COMMAND_SEQ_WRITE_PAGE, + .addr0_row = page, + .addr0_col = page_off, + .len = real_len, + .ecc_offset = ECC_OFFSET(mtd->writesize + ecc_off), + }; + int ret; + + /* Prepare controller */ + rnandc_select_target(chip, chip->cur_cs); + rnandc_clear_status(rnandc); + rnandc_en_correction(rnandc); + rnandc_trigger_op(rnandc, &rop); + + while (FIFO_STATE_W_FULL(readl(rnandc->regs + FIFO_STATE_REG))) + cpu_relax(); + + iowrite32_rep(rnandc->regs + FIFO_DATA_REG, bufpoi + page_off, + real_len / 4); + + while (!FIFO_STATE_W_EMPTY(readl(rnandc->regs + FIFO_STATE_REG))) + cpu_relax(); + + ret = rnandc_wait_end_of_op(rnandc, chip); + rnandc_dis_correction(rnandc); + if (ret) { + dev_err(rnandc->dev, "Write subpage operation never ending\n"); + return ret; + } + + return 0; +} + +/* + * This controller is simple enough and thus does not need to use the parser + * provided by the core, instead, handle every situation here. + */ +static int rnandc_exec_op(struct nand_chip *chip, + const struct nand_operation *op, bool check_only) +{ + struct rnandc *rnandc = to_rnandc(chip->controller); + const struct nand_op_instr *instr = NULL; + struct rnandc_op rop = { + .command = COMMAND_INPUT_SEL_AHBS, + .gen_seq_ctrl = GEN_SEQ_IMD_SEQ, + }; + unsigned int cmd_phase = 0, addr_phase = 0, data_phase = 0, + delay_phase = 0, delays = 0; + unsigned int op_id, col_addrs, row_addrs, naddrs, remainder, words, i; + const u8 *addrs; + u32 last_bytes; + int ret; + + if (!check_only) + rnandc_select_target(chip, op->cs); + + for (op_id = 0; op_id < op->ninstrs; op_id++) { + instr = &op->instrs[op_id]; + + nand_op_trace(" ", instr); + + switch (instr->type) { + case NAND_OP_CMD_INSTR: + switch (cmd_phase++) { + case 0: + rop.command |= COMMAND_0(instr->ctx.cmd.opcode); + rop.gen_seq_ctrl |= GEN_SEQ_CMD0_EN; + break; + case 1: + rop.gen_seq_ctrl |= GEN_SEQ_COMMAND_3(instr->ctx.cmd.opcode); + rop.gen_seq_ctrl |= GEN_SEQ_CMD3_EN; + if (addr_phase == 0) + addr_phase = 1; + break; + case 2: + rop.command |= COMMAND_2(instr->ctx.cmd.opcode); + rop.gen_seq_ctrl |= GEN_SEQ_CMD2_EN; + if (addr_phase <= 1) + addr_phase = 2; + break; + case 3: + rop.command |= COMMAND_1(instr->ctx.cmd.opcode); + rop.gen_seq_ctrl |= GEN_SEQ_CMD1_EN; + if (addr_phase <= 1) + addr_phase = 2; + if (delay_phase == 0) + delay_phase = 1; + if (data_phase == 0) + data_phase = 1; + break; + default: + return -EOPNOTSUPP; + } + break; + + case NAND_OP_ADDR_INSTR: + addrs = instr->ctx.addr.addrs; + naddrs = instr->ctx.addr.naddrs; + if (naddrs > 5) + return -EOPNOTSUPP; + + col_addrs = min(2U, naddrs); + row_addrs = naddrs > 2 ? naddrs - col_addrs : 0; + + switch (addr_phase++) { + case 0: + for (i = 0; i < col_addrs; i++) + rop.addr0_col |= addrs[i] << (i * 8); + rop.gen_seq_ctrl |= GEN_SEQ_COL_A0(col_addrs); + + for (i = 0; i < row_addrs; i++) + rop.addr0_row |= addrs[2 + i] << (i * 8); + rop.gen_seq_ctrl |= GEN_SEQ_ROW_A0(row_addrs); + + if (cmd_phase == 0) + cmd_phase = 1; + break; + case 1: + for (i = 0; i < col_addrs; i++) + rop.addr1_col |= addrs[i] << (i * 8); + rop.gen_seq_ctrl |= GEN_SEQ_COL_A1(col_addrs); + + for (i = 0; i < row_addrs; i++) + rop.addr1_row |= addrs[2 + i] << (i * 8); + rop.gen_seq_ctrl |= GEN_SEQ_ROW_A1(row_addrs); + + if (cmd_phase <= 1) + cmd_phase = 2; + break; + default: + return -EOPNOTSUPP; + } + break; + + case NAND_OP_DATA_IN_INSTR: + rop.read = true; + fallthrough; + case NAND_OP_DATA_OUT_INSTR: + rop.gen_seq_ctrl |= GEN_SEQ_DATA_EN; + rop.buf = instr->ctx.data.buf.in; + rop.len = instr->ctx.data.len; + rop.command |= COMMAND_FIFO_SEL; + + switch (data_phase++) { + case 0: + if (cmd_phase <= 2) + cmd_phase = 3; + if (addr_phase <= 1) + addr_phase = 2; + if (delay_phase == 0) + delay_phase = 1; + break; + default: + return -EOPNOTSUPP; + } + break; + + case NAND_OP_WAITRDY_INSTR: + switch (delay_phase++) { + case 0: + rop.gen_seq_ctrl |= GEN_SEQ_DELAY0_EN; + + if (cmd_phase <= 2) + cmd_phase = 3; + break; + case 1: + rop.gen_seq_ctrl |= GEN_SEQ_DELAY1_EN; + + if (cmd_phase <= 3) + cmd_phase = 4; + if (data_phase == 0) + data_phase = 1; + break; + default: + return -EOPNOTSUPP; + } + break; + } + } + + /* + * Sequence 19 is generic and dedicated to write operations. + * Sequence 18 is also generic and works for all other operations. + */ + if (rop.buf && !rop.read) + rop.command |= COMMAND_SEQ_GEN_OUT; + else + rop.command |= COMMAND_SEQ_GEN_IN; + + if (delays > 1) { + dev_err(rnandc->dev, "Cannot handle more than one wait delay\n"); + return -EOPNOTSUPP; + } + + if (check_only) + return 0; + + rnandc_trigger_op(rnandc, &rop); + + words = rop.len / sizeof(u32); + remainder = rop.len % sizeof(u32); + if (rop.buf && rop.read) { + while (!FIFO_STATE_C_EMPTY(readl(rnandc->regs + FIFO_STATE_REG))) + cpu_relax(); + + while (FIFO_STATE_R_EMPTY(readl(rnandc->regs + FIFO_STATE_REG))) + cpu_relax(); + + ioread32_rep(rnandc->regs + FIFO_DATA_REG, rop.buf, words); + if (remainder) { + last_bytes = readl_relaxed(rnandc->regs + FIFO_DATA_REG); + memcpy(rop.buf + (words * sizeof(u32)), &last_bytes, + remainder); + } + + if (!FIFO_STATE_R_EMPTY(readl(rnandc->regs + FIFO_STATE_REG))) { + dev_warn(rnandc->dev, + "Clearing residual data in the read FIFO\n"); + rnandc_clear_fifo(rnandc); + } + } else if (rop.len && !rop.read) { + while (FIFO_STATE_W_FULL(readl(rnandc->regs + FIFO_STATE_REG))) + cpu_relax(); + + iowrite32_rep(rnandc->regs + FIFO_DATA_REG, rop.buf, + DIV_ROUND_UP(rop.len, 4)); + + if (remainder) { + last_bytes = 0; + memcpy(&last_bytes, rop.buf + (words * sizeof(u32)), remainder); + writel_relaxed(last_bytes, rnandc->regs + FIFO_DATA_REG); + } + + while (!FIFO_STATE_W_EMPTY(readl(rnandc->regs + FIFO_STATE_REG))) + cpu_relax(); + } + + ret = rnandc_wait_end_of_op(rnandc, chip); + if (ret) + return ret; + + return 0; +} + +static int rnandc_setup_interface(struct nand_chip *chip, int chipnr, + const struct nand_interface_config *conf) +{ + struct rnand_chip *rnand = to_rnand(chip); + struct rnandc *rnandc = to_rnandc(chip->controller); + unsigned int period_ns = 1000000000 / rnandc->ext_clk_rate; + const struct nand_sdr_timings *sdr; + unsigned int cyc, cle, ale, bef_dly, ca_to_data; + + sdr = nand_get_sdr_timings(conf); + if (IS_ERR(sdr)) + return PTR_ERR(sdr); + + if (sdr->tRP_min != sdr->tWP_min || sdr->tREH_min != sdr->tWH_min) { + dev_err(rnandc->dev, "Read and write hold times must be identical\n"); + return -EINVAL; + } + + if (chipnr < 0) + return 0; + + rnand->timings_asyn = + TIMINGS_ASYN_TRWP(TO_CYCLES64(sdr->tRP_min, period_ns)) | + TIMINGS_ASYN_TRWH(TO_CYCLES64(sdr->tREH_min, period_ns)); + rnand->tim_seq0 = + TIM_SEQ0_TCCS(TO_CYCLES64(sdr->tCCS_min, period_ns)) | + TIM_SEQ0_TADL(TO_CYCLES64(sdr->tADL_min, period_ns)) | + TIM_SEQ0_TRHW(TO_CYCLES64(sdr->tRHW_min, period_ns)) | + TIM_SEQ0_TWHR(TO_CYCLES64(sdr->tWHR_min, period_ns)); + rnand->tim_seq1 = + TIM_SEQ1_TWB(TO_CYCLES64(sdr->tWB_max, period_ns)) | + TIM_SEQ1_TRR(TO_CYCLES64(sdr->tRR_min, period_ns)) | + TIM_SEQ1_TWW(TO_CYCLES64(sdr->tWW_min, period_ns)); + + cyc = sdr->tDS_min + sdr->tDH_min; + cle = sdr->tCLH_min + sdr->tCLS_min; + ale = sdr->tALH_min + sdr->tALS_min; + bef_dly = sdr->tWB_max - sdr->tDH_min; + ca_to_data = sdr->tWHR_min + sdr->tREA_max - sdr->tDH_min; + + /* + * D0 = CMD -> ADDR = tCLH + tCLS - 1 cycle + * D1 = CMD -> CMD = tCLH + tCLS - 1 cycle + * D2 = CMD -> DLY = tWB - tDH + * D3 = CMD -> DATA = tWHR + tREA - tDH + */ + rnand->tim_gen_seq0 = + TIM_GEN_SEQ0_D0(TO_CYCLES64(cle - cyc, period_ns)) | + TIM_GEN_SEQ0_D1(TO_CYCLES64(cle - cyc, period_ns)) | + TIM_GEN_SEQ0_D2(TO_CYCLES64(bef_dly, period_ns)) | + TIM_GEN_SEQ0_D3(TO_CYCLES64(ca_to_data, period_ns)); + + /* + * D4 = ADDR -> CMD = tALH + tALS - 1 cyle + * D5 = ADDR -> ADDR = tALH + tALS - 1 cyle + * D6 = ADDR -> DLY = tWB - tDH + * D7 = ADDR -> DATA = tWHR + tREA - tDH + */ + rnand->tim_gen_seq1 = + TIM_GEN_SEQ1_D4(TO_CYCLES64(ale - cyc, period_ns)) | + TIM_GEN_SEQ1_D5(TO_CYCLES64(ale - cyc, period_ns)) | + TIM_GEN_SEQ1_D6(TO_CYCLES64(bef_dly, period_ns)) | + TIM_GEN_SEQ1_D7(TO_CYCLES64(ca_to_data, period_ns)); + + /* + * D8 = DLY -> DATA = tRR + tREA + * D9 = DLY -> CMD = tRR + * D10 = DATA -> CMD = tCLH + tCLS - 1 cycle + * D11 = DATA -> DLY = tWB - tDH + */ + rnand->tim_gen_seq2 = + TIM_GEN_SEQ2_D8(TO_CYCLES64(sdr->tRR_min + sdr->tREA_max, period_ns)) | + TIM_GEN_SEQ2_D9(TO_CYCLES64(sdr->tRR_min, period_ns)) | + TIM_GEN_SEQ2_D10(TO_CYCLES64(cle - cyc, period_ns)) | + TIM_GEN_SEQ2_D11(TO_CYCLES64(bef_dly, period_ns)); + + /* D12 = DATA -> END = tCLH - tDH */ + rnand->tim_gen_seq3 = + TIM_GEN_SEQ3_D12(TO_CYCLES64(sdr->tCLH_min - sdr->tDH_min, period_ns)); + + return 0; +} + +static int rnandc_ooblayout_ecc(struct mtd_info *mtd, int section, + struct mtd_oob_region *oobregion) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + unsigned int eccbytes = round_up(chip->ecc.bytes, 4) * chip->ecc.steps; + + if (section) + return -ERANGE; + + oobregion->offset = 2; + oobregion->length = eccbytes; + + return 0; +} + +static int rnandc_ooblayout_free(struct mtd_info *mtd, int section, + struct mtd_oob_region *oobregion) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + unsigned int eccbytes = round_up(chip->ecc.bytes, 4) * chip->ecc.steps; + + if (section) + return -ERANGE; + + oobregion->offset = 2 + eccbytes; + oobregion->length = mtd->oobsize - oobregion->offset; + + return 0; +} + +static const struct mtd_ooblayout_ops rnandc_ooblayout_ops = { + .ecc = rnandc_ooblayout_ecc, + .free = rnandc_ooblayout_free, +}; + +static int rnandc_hw_ecc_controller_init(struct nand_chip *chip) +{ + struct rnand_chip *rnand = to_rnand(chip); + struct mtd_info *mtd = nand_to_mtd(chip); + struct rnandc *rnandc = to_rnandc(chip->controller); + + if (mtd->writesize > SZ_16K) { + dev_err(rnandc->dev, "Unsupported page size\n"); + return -EINVAL; + } + + switch (chip->ecc.size) { + case SZ_256: + rnand->control |= CONTROL_ECC_BLOCK_SIZE_256; + break; + case SZ_512: + rnand->control |= CONTROL_ECC_BLOCK_SIZE_512; + break; + case SZ_1K: + rnand->control |= CONTROL_ECC_BLOCK_SIZE_1024; + break; + default: + dev_err(rnandc->dev, "Unsupported ECC chunk size\n"); + return -EINVAL; + } + + switch (chip->ecc.strength) { + case 2: + chip->ecc.bytes = 4; + rnand->ecc_ctrl |= ECC_CTRL_CAP_2B; + break; + case 4: + chip->ecc.bytes = 7; + rnand->ecc_ctrl |= ECC_CTRL_CAP_4B; + break; + case 8: + chip->ecc.bytes = 14; + rnand->ecc_ctrl |= ECC_CTRL_CAP_8B; + break; + case 16: + chip->ecc.bytes = 28; + rnand->ecc_ctrl |= ECC_CTRL_CAP_16B; + break; + case 24: + chip->ecc.bytes = 42; + rnand->ecc_ctrl |= ECC_CTRL_CAP_24B; + break; + case 32: + chip->ecc.bytes = 56; + rnand->ecc_ctrl |= ECC_CTRL_CAP_32B; + break; + default: + dev_err(rnandc->dev, "Unsupported ECC strength\n"); + return -EINVAL; + } + + rnand->ecc_ctrl |= ECC_CTRL_ERR_THRESHOLD(chip->ecc.strength); + + mtd_set_ooblayout(mtd, &rnandc_ooblayout_ops); + chip->ecc.steps = mtd->writesize / chip->ecc.size; + chip->ecc.read_page = rnandc_read_page_hw_ecc; + chip->ecc.read_subpage = rnandc_read_subpage_hw_ecc; + chip->ecc.write_page = rnandc_write_page_hw_ecc; + chip->ecc.write_subpage = rnandc_write_subpage_hw_ecc; + + return 0; +} + +static int rnandc_ecc_init(struct nand_chip *chip) +{ + struct nand_ecc_ctrl *ecc = &chip->ecc; + const struct nand_ecc_props *requirements = + nanddev_get_ecc_requirements(&chip->base); + struct rnandc *rnandc = to_rnandc(chip->controller); + int ret; + + if (ecc->engine_type != NAND_ECC_ENGINE_TYPE_NONE && + (!ecc->size || !ecc->strength)) { + if (requirements->step_size && requirements->strength) { + ecc->size = requirements->step_size; + ecc->strength = requirements->strength; + } else { + dev_err(rnandc->dev, "No minimum ECC strength\n"); + return -EINVAL; + } + } + + switch (ecc->engine_type) { + case NAND_ECC_ENGINE_TYPE_ON_HOST: + ret = rnandc_hw_ecc_controller_init(chip); + if (ret) + return ret; + break; + case NAND_ECC_ENGINE_TYPE_NONE: + case NAND_ECC_ENGINE_TYPE_SOFT: + case NAND_ECC_ENGINE_TYPE_ON_DIE: + break; + default: + return -EINVAL; + } + + return 0; +} + +static int rnandc_attach_chip(struct nand_chip *chip) +{ + struct rnand_chip *rnand = to_rnand(chip); + struct rnandc *rnandc = to_rnandc(chip->controller); + struct mtd_info *mtd = nand_to_mtd(chip); + struct nand_memory_organization *memorg = nanddev_get_memorg(&chip->base); + int ret; + + /* Do not store BBT bits in the OOB section as it is not protected */ + if (chip->bbt_options & NAND_BBT_USE_FLASH) + chip->bbt_options |= NAND_BBT_NO_OOB; + + if (mtd->writesize <= 512) { + dev_err(rnandc->dev, "Small page devices not supported\n"); + return -EINVAL; + } + + rnand->control |= CONTROL_CHECK_RB_LINE | CONTROL_INT_EN; + + switch (memorg->pages_per_eraseblock) { + case 32: + rnand->control |= CONTROL_BLOCK_SIZE_32P; + break; + case 64: + rnand->control |= CONTROL_BLOCK_SIZE_64P; + break; + case 128: + rnand->control |= CONTROL_BLOCK_SIZE_128P; + break; + case 256: + rnand->control |= CONTROL_BLOCK_SIZE_256P; + break; + default: + dev_err(rnandc->dev, "Unsupported memory organization\n"); + return -EINVAL; + } + + chip->options |= NAND_SUBPAGE_READ; + + ret = rnandc_ecc_init(chip); + if (ret) { + dev_err(rnandc->dev, "ECC initialization failed (%d)\n", ret); + return ret; + } + + /* Force an update of the configuration registers */ + rnand->selected_die = -1; + + return 0; +} + +static const struct nand_controller_ops rnandc_ops = { + .attach_chip = rnandc_attach_chip, + .exec_op = rnandc_exec_op, + .setup_interface = rnandc_setup_interface, +}; + +static int rnandc_alloc_dma_buf(struct rnandc *rnandc, + struct mtd_info *new_mtd) +{ + unsigned int max_len = new_mtd->writesize + new_mtd->oobsize; + struct rnand_chip *entry, *temp; + struct nand_chip *chip; + struct mtd_info *mtd; + + list_for_each_entry_safe(entry, temp, &rnandc->chips, node) { + chip = &entry->chip; + mtd = nand_to_mtd(chip); + max_len = max(max_len, mtd->writesize + mtd->oobsize); + } + + if (rnandc->buf && rnandc->buf_sz < max_len) { + devm_kfree(rnandc->dev, rnandc->buf); + rnandc->buf = NULL; + } + + if (!rnandc->buf) { + rnandc->buf_sz = max_len; + rnandc->buf = devm_kmalloc(rnandc->dev, max_len, + GFP_KERNEL | GFP_DMA); + if (!rnandc->buf) + return -ENOMEM; + } + + return 0; +} + +static int rnandc_chip_init(struct rnandc *rnandc, struct device_node *np) +{ + struct rnand_chip *rnand; + struct mtd_info *mtd; + struct nand_chip *chip; + int nsels, ret, i; + u32 cs; + + nsels = of_property_count_elems_of_size(np, "reg", sizeof(u32)); + if (nsels <= 0) { + ret = (nsels < 0) ? nsels : -EINVAL; + dev_err(rnandc->dev, "Invalid reg property (%d)\n", ret); + return ret; + } + + /* Alloc the driver's NAND chip structure */ + rnand = devm_kzalloc(rnandc->dev, struct_size(rnand, sels, nsels), + GFP_KERNEL); + if (!rnand) + return -ENOMEM; + + rnand->nsels = nsels; + rnand->selected_die = -1; + + for (i = 0; i < nsels; i++) { + ret = of_property_read_u32_index(np, "reg", i, &cs); + if (ret) { + dev_err(rnandc->dev, "Incomplete reg property (%d)\n", ret); + return ret; + } + + if (cs >= RNANDC_CS_NUM) { + dev_err(rnandc->dev, "Invalid reg property (%d)\n", cs); + return -EINVAL; + } + + if (test_and_set_bit(cs, &rnandc->assigned_cs)) { + dev_err(rnandc->dev, "CS %d already assigned\n", cs); + return -EINVAL; + } + + /* + * No need to check for RB or WP properties, there is a 1:1 + * mandatory mapping with the CS. + */ + rnand->sels[i].cs = cs; + } + + chip = &rnand->chip; + chip->controller = &rnandc->controller; + nand_set_flash_node(chip, np); + + mtd = nand_to_mtd(chip); + mtd->dev.parent = rnandc->dev; + if (!mtd->name) { + dev_err(rnandc->dev, "Missing MTD label\n"); + return -EINVAL; + } + + ret = nand_scan(chip, rnand->nsels); + if (ret) { + dev_err(rnandc->dev, "Failed to scan the NAND chip (%d)\n", ret); + return ret; + } + + ret = rnandc_alloc_dma_buf(rnandc, mtd); + if (ret) + goto cleanup_nand; + + ret = mtd_device_register(mtd, NULL, 0); + if (ret) { + dev_err(rnandc->dev, "Failed to register MTD device (%d)\n", ret); + goto cleanup_nand; + } + + list_add_tail(&rnand->node, &rnandc->chips); + + return 0; + +cleanup_nand: + nand_cleanup(chip); + + return ret; +} + +static void rnandc_chips_cleanup(struct rnandc *rnandc) +{ + struct rnand_chip *entry, *temp; + struct nand_chip *chip; + int ret; + + list_for_each_entry_safe(entry, temp, &rnandc->chips, node) { + chip = &entry->chip; + ret = mtd_device_unregister(nand_to_mtd(chip)); + WARN_ON(ret); + nand_cleanup(chip); + list_del(&entry->node); + } +} + +static int rnandc_chips_init(struct rnandc *rnandc) +{ + struct device_node *np; + int ret; + + for_each_child_of_node(rnandc->dev->of_node, np) { + ret = rnandc_chip_init(rnandc, np); + if (ret) { + of_node_put(np); + goto cleanup_chips; + } + } + + return 0; + +cleanup_chips: + rnandc_chips_cleanup(rnandc); + + return ret; +} + +static int rnandc_probe(struct platform_device *pdev) +{ + struct rnandc *rnandc; + struct clk *eclk; + int irq, ret; + + rnandc = devm_kzalloc(&pdev->dev, sizeof(*rnandc), GFP_KERNEL); + if (!rnandc) + return -ENOMEM; + + rnandc->dev = &pdev->dev; + nand_controller_init(&rnandc->controller); + rnandc->controller.ops = &rnandc_ops; + INIT_LIST_HEAD(&rnandc->chips); + init_completion(&rnandc->complete); + + rnandc->regs = devm_platform_ioremap_resource(pdev, 0); + if (IS_ERR(rnandc->regs)) + return PTR_ERR(rnandc->regs); + + devm_pm_runtime_enable(&pdev->dev); + ret = pm_runtime_resume_and_get(&pdev->dev); + if (ret < 0) + return ret; + + /* The external NAND bus clock rate is needed for computing timings */ + eclk = clk_get(&pdev->dev, "eclk"); + if (IS_ERR(eclk)) { + ret = PTR_ERR(eclk); + goto dis_runtime_pm; + } + + rnandc->ext_clk_rate = clk_get_rate(eclk); + clk_put(eclk); + + rnandc_dis_interrupts(rnandc); + irq = platform_get_irq_optional(pdev, 0); + if (irq == -EPROBE_DEFER) { + ret = irq; + goto dis_runtime_pm; + } else if (irq < 0) { + dev_info(&pdev->dev, "No IRQ found, fallback to polling\n"); + rnandc->use_polling = true; + } else { + ret = devm_request_irq(&pdev->dev, irq, rnandc_irq_handler, 0, + "renesas-nand-controller", rnandc); + if (ret < 0) + goto dis_runtime_pm; + } + + ret = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32)); + if (ret) + goto dis_runtime_pm; + + rnandc_clear_fifo(rnandc); + + platform_set_drvdata(pdev, rnandc); + + ret = rnandc_chips_init(rnandc); + if (ret) + goto dis_runtime_pm; + + return 0; + +dis_runtime_pm: + pm_runtime_put(&pdev->dev); + + return ret; +} + +static void rnandc_remove(struct platform_device *pdev) +{ + struct rnandc *rnandc = platform_get_drvdata(pdev); + + rnandc_chips_cleanup(rnandc); + + pm_runtime_put(&pdev->dev); +} + +static const struct of_device_id rnandc_id_table[] = { + { .compatible = "renesas,rcar-gen3-nandc" }, + { .compatible = "renesas,rzn1-nandc" }, + {} /* sentinel */ +}; +MODULE_DEVICE_TABLE(of, rnandc_id_table); + +static struct platform_driver rnandc_driver = { + .driver = { + .name = "renesas-nandc", + .of_match_table = rnandc_id_table, + }, + .probe = rnandc_probe, + .remove_new = rnandc_remove, +}; +module_platform_driver(rnandc_driver); + +MODULE_AUTHOR("Miquel Raynal <miquel.raynal@bootlin.com>"); +MODULE_DESCRIPTION("Renesas R-Car Gen3 & RZ/N1 NAND controller driver"); +MODULE_LICENSE("GPL v2"); diff --git a/drivers/mtd/nand/raw/rockchip-nand-controller.c b/drivers/mtd/nand/raw/rockchip-nand-controller.c new file mode 100644 index 0000000000..5bc90ffa72 --- /dev/null +++ b/drivers/mtd/nand/raw/rockchip-nand-controller.c @@ -0,0 +1,1494 @@ +// SPDX-License-Identifier: GPL-2.0 OR MIT +/* + * Rockchip NAND Flash controller driver. + * Copyright (C) 2020 Rockchip Inc. + * Author: Yifeng Zhao <yifeng.zhao@rock-chips.com> + */ + +#include <linux/clk.h> +#include <linux/delay.h> +#include <linux/dma-mapping.h> +#include <linux/dmaengine.h> +#include <linux/interrupt.h> +#include <linux/iopoll.h> +#include <linux/module.h> +#include <linux/mtd/mtd.h> +#include <linux/mtd/rawnand.h> +#include <linux/of.h> +#include <linux/platform_device.h> +#include <linux/slab.h> + +/* + * NFC Page Data Layout: + * 1024 bytes data + 4Bytes sys data + 28Bytes~124Bytes ECC data + + * 1024 bytes data + 4Bytes sys data + 28Bytes~124Bytes ECC data + + * ...... + * NAND Page Data Layout: + * 1024 * n data + m Bytes oob + * Original Bad Block Mask Location: + * First byte of oob(spare). + * nand_chip->oob_poi data layout: + * 4Bytes sys data + .... + 4Bytes sys data + ECC data. + */ + +/* NAND controller register definition */ +#define NFC_READ (0) +#define NFC_WRITE (1) + +#define NFC_FMCTL (0x00) +#define FMCTL_CE_SEL_M 0xFF +#define FMCTL_CE_SEL(x) (1 << (x)) +#define FMCTL_WP BIT(8) +#define FMCTL_RDY BIT(9) + +#define NFC_FMWAIT (0x04) +#define FLCTL_RST BIT(0) +#define FLCTL_WR (1) /* 0: read, 1: write */ +#define FLCTL_XFER_ST BIT(2) +#define FLCTL_XFER_EN BIT(3) +#define FLCTL_ACORRECT BIT(10) /* Auto correct error bits. */ +#define FLCTL_XFER_READY BIT(20) +#define FLCTL_XFER_SECTOR (22) +#define FLCTL_TOG_FIX BIT(29) + +#define BCHCTL_BANK_M (7 << 5) +#define BCHCTL_BANK (5) + +#define DMA_ST BIT(0) +#define DMA_WR (1) /* 0: write, 1: read */ +#define DMA_EN BIT(2) +#define DMA_AHB_SIZE (3) /* 0: 1, 1: 2, 2: 4 */ +#define DMA_BURST_SIZE (6) /* 0: 1, 3: 4, 5: 8, 7: 16 */ +#define DMA_INC_NUM (9) /* 1 - 16 */ + +#define ECC_ERR_CNT(x, e) ((((x) >> (e).low) & (e).low_mask) |\ + (((x) >> (e).high) & (e).high_mask) << (e).low_bn) +#define INT_DMA BIT(0) +#define NFC_BANK (0x800) +#define NFC_BANK_STEP (0x100) +#define BANK_DATA (0x00) +#define BANK_ADDR (0x04) +#define BANK_CMD (0x08) +#define NFC_SRAM0 (0x1000) +#define NFC_SRAM1 (0x1400) +#define NFC_SRAM_SIZE (0x400) +#define NFC_TIMEOUT (500000) +#define NFC_MAX_OOB_PER_STEP 128 +#define NFC_MIN_OOB_PER_STEP 64 +#define MAX_DATA_SIZE 0xFFFC +#define MAX_ADDRESS_CYC 6 +#define NFC_ECC_MAX_MODES 4 +#define NFC_MAX_NSELS (8) /* Some Socs only have 1 or 2 CSs. */ +#define NFC_SYS_DATA_SIZE (4) /* 4 bytes sys data in oob pre 1024 data.*/ +#define RK_DEFAULT_CLOCK_RATE (150 * 1000 * 1000) /* 150 Mhz */ +#define ACCTIMING(csrw, rwpw, rwcs) ((csrw) << 12 | (rwpw) << 5 | (rwcs)) + +enum nfc_type { + NFC_V6, + NFC_V8, + NFC_V9, +}; + +/** + * struct rk_ecc_cnt_status: represent a ecc status data. + * @err_flag_bit: error flag bit index at register. + * @low: ECC count low bit index at register. + * @low_mask: mask bit. + * @low_bn: ECC count low bit number. + * @high: ECC count high bit index at register. + * @high_mask: mask bit + */ +struct ecc_cnt_status { + u8 err_flag_bit; + u8 low; + u8 low_mask; + u8 low_bn; + u8 high; + u8 high_mask; +}; + +/** + * @type: NFC version + * @ecc_strengths: ECC strengths + * @ecc_cfgs: ECC config values + * @flctl_off: FLCTL register offset + * @bchctl_off: BCHCTL register offset + * @dma_data_buf_off: DMA_DATA_BUF register offset + * @dma_oob_buf_off: DMA_OOB_BUF register offset + * @dma_cfg_off: DMA_CFG register offset + * @dma_st_off: DMA_ST register offset + * @bch_st_off: BCG_ST register offset + * @randmz_off: RANDMZ register offset + * @int_en_off: interrupt enable register offset + * @int_clr_off: interrupt clean register offset + * @int_st_off: interrupt status register offset + * @oob0_off: oob0 register offset + * @oob1_off: oob1 register offset + * @ecc0: represent ECC0 status data + * @ecc1: represent ECC1 status data + */ +struct nfc_cfg { + enum nfc_type type; + u8 ecc_strengths[NFC_ECC_MAX_MODES]; + u32 ecc_cfgs[NFC_ECC_MAX_MODES]; + u32 flctl_off; + u32 bchctl_off; + u32 dma_cfg_off; + u32 dma_data_buf_off; + u32 dma_oob_buf_off; + u32 dma_st_off; + u32 bch_st_off; + u32 randmz_off; + u32 int_en_off; + u32 int_clr_off; + u32 int_st_off; + u32 oob0_off; + u32 oob1_off; + struct ecc_cnt_status ecc0; + struct ecc_cnt_status ecc1; +}; + +struct rk_nfc_nand_chip { + struct list_head node; + struct nand_chip chip; + + u16 boot_blks; + u16 metadata_size; + u32 boot_ecc; + u32 timing; + + u8 nsels; + u8 sels[]; + /* Nothing after this field. */ +}; + +struct rk_nfc { + struct nand_controller controller; + const struct nfc_cfg *cfg; + struct device *dev; + + struct clk *nfc_clk; + struct clk *ahb_clk; + void __iomem *regs; + + u32 selected_bank; + u32 band_offset; + u32 cur_ecc; + u32 cur_timing; + + struct completion done; + struct list_head chips; + + u8 *page_buf; + u32 *oob_buf; + u32 page_buf_size; + u32 oob_buf_size; + + unsigned long assigned_cs; +}; + +static inline struct rk_nfc_nand_chip *rk_nfc_to_rknand(struct nand_chip *chip) +{ + return container_of(chip, struct rk_nfc_nand_chip, chip); +} + +static inline u8 *rk_nfc_buf_to_data_ptr(struct nand_chip *chip, const u8 *p, int i) +{ + return (u8 *)p + i * chip->ecc.size; +} + +static inline u8 *rk_nfc_buf_to_oob_ptr(struct nand_chip *chip, int i) +{ + u8 *poi; + + poi = chip->oob_poi + i * NFC_SYS_DATA_SIZE; + + return poi; +} + +static inline u8 *rk_nfc_buf_to_oob_ecc_ptr(struct nand_chip *chip, int i) +{ + struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip); + u8 *poi; + + poi = chip->oob_poi + rknand->metadata_size + chip->ecc.bytes * i; + + return poi; +} + +static inline int rk_nfc_data_len(struct nand_chip *chip) +{ + return chip->ecc.size + chip->ecc.bytes + NFC_SYS_DATA_SIZE; +} + +static inline u8 *rk_nfc_data_ptr(struct nand_chip *chip, int i) +{ + struct rk_nfc *nfc = nand_get_controller_data(chip); + + return nfc->page_buf + i * rk_nfc_data_len(chip); +} + +static inline u8 *rk_nfc_oob_ptr(struct nand_chip *chip, int i) +{ + struct rk_nfc *nfc = nand_get_controller_data(chip); + + return nfc->page_buf + i * rk_nfc_data_len(chip) + chip->ecc.size; +} + +static int rk_nfc_hw_ecc_setup(struct nand_chip *chip, u32 strength) +{ + struct rk_nfc *nfc = nand_get_controller_data(chip); + u32 reg, i; + + for (i = 0; i < NFC_ECC_MAX_MODES; i++) { + if (strength == nfc->cfg->ecc_strengths[i]) { + reg = nfc->cfg->ecc_cfgs[i]; + break; + } + } + + if (i >= NFC_ECC_MAX_MODES) + return -EINVAL; + + writel(reg, nfc->regs + nfc->cfg->bchctl_off); + + /* Save chip ECC setting */ + nfc->cur_ecc = strength; + + return 0; +} + +static void rk_nfc_select_chip(struct nand_chip *chip, int cs) +{ + struct rk_nfc *nfc = nand_get_controller_data(chip); + struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip); + struct nand_ecc_ctrl *ecc = &chip->ecc; + u32 val; + + if (cs < 0) { + nfc->selected_bank = -1; + /* Deselect the currently selected target. */ + val = readl_relaxed(nfc->regs + NFC_FMCTL); + val &= ~FMCTL_CE_SEL_M; + writel(val, nfc->regs + NFC_FMCTL); + return; + } + + nfc->selected_bank = rknand->sels[cs]; + nfc->band_offset = NFC_BANK + nfc->selected_bank * NFC_BANK_STEP; + + val = readl_relaxed(nfc->regs + NFC_FMCTL); + val &= ~FMCTL_CE_SEL_M; + val |= FMCTL_CE_SEL(nfc->selected_bank); + + writel(val, nfc->regs + NFC_FMCTL); + + /* + * Compare current chip timing with selected chip timing and + * change if needed. + */ + if (nfc->cur_timing != rknand->timing) { + writel(rknand->timing, nfc->regs + NFC_FMWAIT); + nfc->cur_timing = rknand->timing; + } + + /* + * Compare current chip ECC setting with selected chip ECC setting and + * change if needed. + */ + if (nfc->cur_ecc != ecc->strength) + rk_nfc_hw_ecc_setup(chip, ecc->strength); +} + +static inline int rk_nfc_wait_ioready(struct rk_nfc *nfc) +{ + int rc; + u32 val; + + rc = readl_relaxed_poll_timeout(nfc->regs + NFC_FMCTL, val, + val & FMCTL_RDY, 10, NFC_TIMEOUT); + + return rc; +} + +static void rk_nfc_read_buf(struct rk_nfc *nfc, u8 *buf, int len) +{ + int i; + + for (i = 0; i < len; i++) + buf[i] = readb_relaxed(nfc->regs + nfc->band_offset + + BANK_DATA); +} + +static void rk_nfc_write_buf(struct rk_nfc *nfc, const u8 *buf, int len) +{ + int i; + + for (i = 0; i < len; i++) + writeb(buf[i], nfc->regs + nfc->band_offset + BANK_DATA); +} + +static int rk_nfc_cmd(struct nand_chip *chip, + const struct nand_subop *subop) +{ + struct rk_nfc *nfc = nand_get_controller_data(chip); + unsigned int i, j, remaining, start; + int reg_offset = nfc->band_offset; + u8 *inbuf = NULL; + const u8 *outbuf; + u32 cnt = 0; + int ret = 0; + + for (i = 0; i < subop->ninstrs; i++) { + const struct nand_op_instr *instr = &subop->instrs[i]; + + switch (instr->type) { + case NAND_OP_CMD_INSTR: + writeb(instr->ctx.cmd.opcode, + nfc->regs + reg_offset + BANK_CMD); + break; + + case NAND_OP_ADDR_INSTR: + remaining = nand_subop_get_num_addr_cyc(subop, i); + start = nand_subop_get_addr_start_off(subop, i); + + for (j = 0; j < 8 && j + start < remaining; j++) + writeb(instr->ctx.addr.addrs[j + start], + nfc->regs + reg_offset + BANK_ADDR); + break; + + case NAND_OP_DATA_IN_INSTR: + case NAND_OP_DATA_OUT_INSTR: + start = nand_subop_get_data_start_off(subop, i); + cnt = nand_subop_get_data_len(subop, i); + + if (instr->type == NAND_OP_DATA_OUT_INSTR) { + outbuf = instr->ctx.data.buf.out + start; + rk_nfc_write_buf(nfc, outbuf, cnt); + } else { + inbuf = instr->ctx.data.buf.in + start; + rk_nfc_read_buf(nfc, inbuf, cnt); + } + break; + + case NAND_OP_WAITRDY_INSTR: + if (rk_nfc_wait_ioready(nfc) < 0) { + ret = -ETIMEDOUT; + dev_err(nfc->dev, "IO not ready\n"); + } + break; + } + } + + return ret; +} + +static const struct nand_op_parser rk_nfc_op_parser = NAND_OP_PARSER( + NAND_OP_PARSER_PATTERN( + rk_nfc_cmd, + NAND_OP_PARSER_PAT_CMD_ELEM(true), + NAND_OP_PARSER_PAT_ADDR_ELEM(true, MAX_ADDRESS_CYC), + NAND_OP_PARSER_PAT_CMD_ELEM(true), + NAND_OP_PARSER_PAT_WAITRDY_ELEM(true), + NAND_OP_PARSER_PAT_DATA_IN_ELEM(true, MAX_DATA_SIZE)), + NAND_OP_PARSER_PATTERN( + rk_nfc_cmd, + NAND_OP_PARSER_PAT_CMD_ELEM(true), + NAND_OP_PARSER_PAT_ADDR_ELEM(true, MAX_ADDRESS_CYC), + NAND_OP_PARSER_PAT_DATA_OUT_ELEM(true, MAX_DATA_SIZE), + NAND_OP_PARSER_PAT_CMD_ELEM(true), + NAND_OP_PARSER_PAT_WAITRDY_ELEM(true)), +); + +static int rk_nfc_exec_op(struct nand_chip *chip, + const struct nand_operation *op, + bool check_only) +{ + if (!check_only) + rk_nfc_select_chip(chip, op->cs); + + return nand_op_parser_exec_op(chip, &rk_nfc_op_parser, op, + check_only); +} + +static int rk_nfc_setup_interface(struct nand_chip *chip, int target, + const struct nand_interface_config *conf) +{ + struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip); + struct rk_nfc *nfc = nand_get_controller_data(chip); + const struct nand_sdr_timings *timings; + u32 rate, tc2rw, trwpw, trw2c; + u32 temp; + + if (target < 0) + return 0; + + timings = nand_get_sdr_timings(conf); + if (IS_ERR(timings)) + return -EOPNOTSUPP; + + if (IS_ERR(nfc->nfc_clk)) + rate = clk_get_rate(nfc->ahb_clk); + else + rate = clk_get_rate(nfc->nfc_clk); + + /* Turn clock rate into kHz. */ + rate /= 1000; + + tc2rw = 1; + trw2c = 1; + + trwpw = max(timings->tWC_min, timings->tRC_min) / 1000; + trwpw = DIV_ROUND_UP(trwpw * rate, 1000000); + + temp = timings->tREA_max / 1000; + temp = DIV_ROUND_UP(temp * rate, 1000000); + + if (trwpw < temp) + trwpw = temp; + + /* + * ACCON: access timing control register + * ------------------------------------- + * 31:18: reserved + * 17:12: csrw, clock cycles from the falling edge of CSn to the + * falling edge of RDn or WRn + * 11:11: reserved + * 10:05: rwpw, the width of RDn or WRn in processor clock cycles + * 04:00: rwcs, clock cycles from the rising edge of RDn or WRn to the + * rising edge of CSn + */ + + /* Save chip timing */ + rknand->timing = ACCTIMING(tc2rw, trwpw, trw2c); + + return 0; +} + +static void rk_nfc_xfer_start(struct rk_nfc *nfc, u8 rw, u8 n_KB, + dma_addr_t dma_data, dma_addr_t dma_oob) +{ + u32 dma_reg, fl_reg, bch_reg; + + dma_reg = DMA_ST | ((!rw) << DMA_WR) | DMA_EN | (2 << DMA_AHB_SIZE) | + (7 << DMA_BURST_SIZE) | (16 << DMA_INC_NUM); + + fl_reg = (rw << FLCTL_WR) | FLCTL_XFER_EN | FLCTL_ACORRECT | + (n_KB << FLCTL_XFER_SECTOR) | FLCTL_TOG_FIX; + + if (nfc->cfg->type == NFC_V6 || nfc->cfg->type == NFC_V8) { + bch_reg = readl_relaxed(nfc->regs + nfc->cfg->bchctl_off); + bch_reg = (bch_reg & (~BCHCTL_BANK_M)) | + (nfc->selected_bank << BCHCTL_BANK); + writel(bch_reg, nfc->regs + nfc->cfg->bchctl_off); + } + + writel(dma_reg, nfc->regs + nfc->cfg->dma_cfg_off); + writel((u32)dma_data, nfc->regs + nfc->cfg->dma_data_buf_off); + writel((u32)dma_oob, nfc->regs + nfc->cfg->dma_oob_buf_off); + writel(fl_reg, nfc->regs + nfc->cfg->flctl_off); + fl_reg |= FLCTL_XFER_ST; + writel(fl_reg, nfc->regs + nfc->cfg->flctl_off); +} + +static int rk_nfc_wait_for_xfer_done(struct rk_nfc *nfc) +{ + void __iomem *ptr; + u32 reg; + + ptr = nfc->regs + nfc->cfg->flctl_off; + + return readl_relaxed_poll_timeout(ptr, reg, + reg & FLCTL_XFER_READY, + 10, NFC_TIMEOUT); +} + +static int rk_nfc_write_page_raw(struct nand_chip *chip, const u8 *buf, + int oob_on, int page) +{ + struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip); + struct rk_nfc *nfc = nand_get_controller_data(chip); + struct mtd_info *mtd = nand_to_mtd(chip); + struct nand_ecc_ctrl *ecc = &chip->ecc; + int i, pages_per_blk; + + pages_per_blk = mtd->erasesize / mtd->writesize; + if ((chip->options & NAND_IS_BOOT_MEDIUM) && + (page < (pages_per_blk * rknand->boot_blks)) && + rknand->boot_ecc != ecc->strength) { + /* + * There's currently no method to notify the MTD framework that + * a different ECC strength is in use for the boot blocks. + */ + return -EIO; + } + + if (!buf) + memset(nfc->page_buf, 0xff, mtd->writesize + mtd->oobsize); + + for (i = 0; i < ecc->steps; i++) { + /* Copy data to the NFC buffer. */ + if (buf) + memcpy(rk_nfc_data_ptr(chip, i), + rk_nfc_buf_to_data_ptr(chip, buf, i), + ecc->size); + /* + * The first four bytes of OOB are reserved for the + * boot ROM. In some debugging cases, such as with a + * read, erase and write back test these 4 bytes stored + * in OOB also need to be written back. + * + * The function nand_block_bad detects bad blocks like: + * + * bad = chip->oob_poi[chip->badblockpos]; + * + * chip->badblockpos == 0 for a large page NAND Flash, + * so chip->oob_poi[0] is the bad block mask (BBM). + * + * The OOB data layout on the NFC is: + * + * PA0 PA1 PA2 PA3 | BBM OOB1 OOB2 OOB3 | ... + * + * or + * + * 0xFF 0xFF 0xFF 0xFF | BBM OOB1 OOB2 OOB3 | ... + * + * The code here just swaps the first 4 bytes with the last + * 4 bytes without losing any data. + * + * The chip->oob_poi data layout: + * + * BBM OOB1 OOB2 OOB3 |......| PA0 PA1 PA2 PA3 + * + * The rk_nfc_ooblayout_free() function already has reserved + * these 4 bytes together with 2 bytes for BBM + * by reducing it's length: + * + * oob_region->length = rknand->metadata_size - NFC_SYS_DATA_SIZE - 2; + */ + if (!i) + memcpy(rk_nfc_oob_ptr(chip, i), + rk_nfc_buf_to_oob_ptr(chip, ecc->steps - 1), + NFC_SYS_DATA_SIZE); + else + memcpy(rk_nfc_oob_ptr(chip, i), + rk_nfc_buf_to_oob_ptr(chip, i - 1), + NFC_SYS_DATA_SIZE); + /* Copy ECC data to the NFC buffer. */ + memcpy(rk_nfc_oob_ptr(chip, i) + NFC_SYS_DATA_SIZE, + rk_nfc_buf_to_oob_ecc_ptr(chip, i), + ecc->bytes); + } + + nand_prog_page_begin_op(chip, page, 0, NULL, 0); + rk_nfc_write_buf(nfc, buf, mtd->writesize + mtd->oobsize); + return nand_prog_page_end_op(chip); +} + +static int rk_nfc_write_page_hwecc(struct nand_chip *chip, const u8 *buf, + int oob_on, int page) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + struct rk_nfc *nfc = nand_get_controller_data(chip); + struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip); + struct nand_ecc_ctrl *ecc = &chip->ecc; + int oob_step = (ecc->bytes > 60) ? NFC_MAX_OOB_PER_STEP : + NFC_MIN_OOB_PER_STEP; + int pages_per_blk = mtd->erasesize / mtd->writesize; + int ret = 0, i, boot_rom_mode = 0; + dma_addr_t dma_data, dma_oob; + u32 tmp; + u8 *oob; + + nand_prog_page_begin_op(chip, page, 0, NULL, 0); + + if (buf) + memcpy(nfc->page_buf, buf, mtd->writesize); + else + memset(nfc->page_buf, 0xFF, mtd->writesize); + + /* + * The first blocks (4, 8 or 16 depending on the device) are used + * by the boot ROM and the first 32 bits of OOB need to link to + * the next page address in the same block. We can't directly copy + * OOB data from the MTD framework, because this page address + * conflicts for example with the bad block marker (BBM), + * so we shift all OOB data including the BBM with 4 byte positions. + * As a consequence the OOB size available to the MTD framework is + * also reduced with 4 bytes. + * + * PA0 PA1 PA2 PA3 | BBM OOB1 OOB2 OOB3 | ... + * + * If a NAND is not a boot medium or the page is not a boot block, + * the first 4 bytes are left untouched by writing 0xFF to them. + * + * 0xFF 0xFF 0xFF 0xFF | BBM OOB1 OOB2 OOB3 | ... + * + * The code here just swaps the first 4 bytes with the last + * 4 bytes without losing any data. + * + * The chip->oob_poi data layout: + * + * BBM OOB1 OOB2 OOB3 |......| PA0 PA1 PA2 PA3 + * + * Configure the ECC algorithm supported by the boot ROM. + */ + if ((page < (pages_per_blk * rknand->boot_blks)) && + (chip->options & NAND_IS_BOOT_MEDIUM)) { + boot_rom_mode = 1; + if (rknand->boot_ecc != ecc->strength) + rk_nfc_hw_ecc_setup(chip, rknand->boot_ecc); + } + + for (i = 0; i < ecc->steps; i++) { + if (!i) + oob = chip->oob_poi + (ecc->steps - 1) * NFC_SYS_DATA_SIZE; + else + oob = chip->oob_poi + (i - 1) * NFC_SYS_DATA_SIZE; + + tmp = oob[0] | oob[1] << 8 | oob[2] << 16 | oob[3] << 24; + + if (nfc->cfg->type == NFC_V9) + nfc->oob_buf[i] = tmp; + else + nfc->oob_buf[i * (oob_step / 4)] = tmp; + } + + dma_data = dma_map_single(nfc->dev, (void *)nfc->page_buf, + mtd->writesize, DMA_TO_DEVICE); + dma_oob = dma_map_single(nfc->dev, nfc->oob_buf, + ecc->steps * oob_step, + DMA_TO_DEVICE); + + reinit_completion(&nfc->done); + writel(INT_DMA, nfc->regs + nfc->cfg->int_en_off); + + rk_nfc_xfer_start(nfc, NFC_WRITE, ecc->steps, dma_data, + dma_oob); + ret = wait_for_completion_timeout(&nfc->done, + msecs_to_jiffies(100)); + if (!ret) + dev_warn(nfc->dev, "write: wait dma done timeout.\n"); + /* + * Whether the DMA transfer is completed or not. The driver + * needs to check the NFC`s status register to see if the data + * transfer was completed. + */ + ret = rk_nfc_wait_for_xfer_done(nfc); + + dma_unmap_single(nfc->dev, dma_data, mtd->writesize, + DMA_TO_DEVICE); + dma_unmap_single(nfc->dev, dma_oob, ecc->steps * oob_step, + DMA_TO_DEVICE); + + if (boot_rom_mode && rknand->boot_ecc != ecc->strength) + rk_nfc_hw_ecc_setup(chip, ecc->strength); + + if (ret) { + dev_err(nfc->dev, "write: wait transfer done timeout.\n"); + return -ETIMEDOUT; + } + + return nand_prog_page_end_op(chip); +} + +static int rk_nfc_write_oob(struct nand_chip *chip, int page) +{ + return rk_nfc_write_page_hwecc(chip, NULL, 1, page); +} + +static int rk_nfc_read_page_raw(struct nand_chip *chip, u8 *buf, int oob_on, + int page) +{ + struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip); + struct rk_nfc *nfc = nand_get_controller_data(chip); + struct mtd_info *mtd = nand_to_mtd(chip); + struct nand_ecc_ctrl *ecc = &chip->ecc; + int i, pages_per_blk; + + pages_per_blk = mtd->erasesize / mtd->writesize; + if ((chip->options & NAND_IS_BOOT_MEDIUM) && + (page < (pages_per_blk * rknand->boot_blks)) && + rknand->boot_ecc != ecc->strength) { + /* + * There's currently no method to notify the MTD framework that + * a different ECC strength is in use for the boot blocks. + */ + return -EIO; + } + + nand_read_page_op(chip, page, 0, NULL, 0); + rk_nfc_read_buf(nfc, nfc->page_buf, mtd->writesize + mtd->oobsize); + for (i = 0; i < ecc->steps; i++) { + /* + * The first four bytes of OOB are reserved for the + * boot ROM. In some debugging cases, such as with a read, + * erase and write back test, these 4 bytes also must be + * saved somewhere, otherwise this information will be + * lost during a write back. + */ + if (!i) + memcpy(rk_nfc_buf_to_oob_ptr(chip, ecc->steps - 1), + rk_nfc_oob_ptr(chip, i), + NFC_SYS_DATA_SIZE); + else + memcpy(rk_nfc_buf_to_oob_ptr(chip, i - 1), + rk_nfc_oob_ptr(chip, i), + NFC_SYS_DATA_SIZE); + + /* Copy ECC data from the NFC buffer. */ + memcpy(rk_nfc_buf_to_oob_ecc_ptr(chip, i), + rk_nfc_oob_ptr(chip, i) + NFC_SYS_DATA_SIZE, + ecc->bytes); + + /* Copy data from the NFC buffer. */ + if (buf) + memcpy(rk_nfc_buf_to_data_ptr(chip, buf, i), + rk_nfc_data_ptr(chip, i), + ecc->size); + } + + return 0; +} + +static int rk_nfc_read_page_hwecc(struct nand_chip *chip, u8 *buf, int oob_on, + int page) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + struct rk_nfc *nfc = nand_get_controller_data(chip); + struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip); + struct nand_ecc_ctrl *ecc = &chip->ecc; + int oob_step = (ecc->bytes > 60) ? NFC_MAX_OOB_PER_STEP : + NFC_MIN_OOB_PER_STEP; + int pages_per_blk = mtd->erasesize / mtd->writesize; + dma_addr_t dma_data, dma_oob; + int ret = 0, i, cnt, boot_rom_mode = 0; + int max_bitflips = 0, bch_st, ecc_fail = 0; + u8 *oob; + u32 tmp; + + nand_read_page_op(chip, page, 0, NULL, 0); + + dma_data = dma_map_single(nfc->dev, nfc->page_buf, + mtd->writesize, + DMA_FROM_DEVICE); + dma_oob = dma_map_single(nfc->dev, nfc->oob_buf, + ecc->steps * oob_step, + DMA_FROM_DEVICE); + + /* + * The first blocks (4, 8 or 16 depending on the device) + * are used by the boot ROM. + * Configure the ECC algorithm supported by the boot ROM. + */ + if ((page < (pages_per_blk * rknand->boot_blks)) && + (chip->options & NAND_IS_BOOT_MEDIUM)) { + boot_rom_mode = 1; + if (rknand->boot_ecc != ecc->strength) + rk_nfc_hw_ecc_setup(chip, rknand->boot_ecc); + } + + reinit_completion(&nfc->done); + writel(INT_DMA, nfc->regs + nfc->cfg->int_en_off); + rk_nfc_xfer_start(nfc, NFC_READ, ecc->steps, dma_data, + dma_oob); + ret = wait_for_completion_timeout(&nfc->done, + msecs_to_jiffies(100)); + if (!ret) + dev_warn(nfc->dev, "read: wait dma done timeout.\n"); + /* + * Whether the DMA transfer is completed or not. The driver + * needs to check the NFC`s status register to see if the data + * transfer was completed. + */ + ret = rk_nfc_wait_for_xfer_done(nfc); + + dma_unmap_single(nfc->dev, dma_data, mtd->writesize, + DMA_FROM_DEVICE); + dma_unmap_single(nfc->dev, dma_oob, ecc->steps * oob_step, + DMA_FROM_DEVICE); + + if (ret) { + ret = -ETIMEDOUT; + dev_err(nfc->dev, "read: wait transfer done timeout.\n"); + goto timeout_err; + } + + for (i = 0; i < ecc->steps; i++) { + if (!i) + oob = chip->oob_poi + (ecc->steps - 1) * NFC_SYS_DATA_SIZE; + else + oob = chip->oob_poi + (i - 1) * NFC_SYS_DATA_SIZE; + + if (nfc->cfg->type == NFC_V9) + tmp = nfc->oob_buf[i]; + else + tmp = nfc->oob_buf[i * (oob_step / 4)]; + + *oob++ = (u8)tmp; + *oob++ = (u8)(tmp >> 8); + *oob++ = (u8)(tmp >> 16); + *oob++ = (u8)(tmp >> 24); + } + + for (i = 0; i < (ecc->steps / 2); i++) { + bch_st = readl_relaxed(nfc->regs + + nfc->cfg->bch_st_off + i * 4); + if (bch_st & BIT(nfc->cfg->ecc0.err_flag_bit) || + bch_st & BIT(nfc->cfg->ecc1.err_flag_bit)) { + mtd->ecc_stats.failed++; + ecc_fail = 1; + } else { + cnt = ECC_ERR_CNT(bch_st, nfc->cfg->ecc0); + mtd->ecc_stats.corrected += cnt; + max_bitflips = max_t(u32, max_bitflips, cnt); + + cnt = ECC_ERR_CNT(bch_st, nfc->cfg->ecc1); + mtd->ecc_stats.corrected += cnt; + max_bitflips = max_t(u32, max_bitflips, cnt); + } + } + + if (buf) + memcpy(buf, nfc->page_buf, mtd->writesize); + +timeout_err: + if (boot_rom_mode && rknand->boot_ecc != ecc->strength) + rk_nfc_hw_ecc_setup(chip, ecc->strength); + + if (ret) + return ret; + + if (ecc_fail) { + dev_err(nfc->dev, "read page: %x ecc error!\n", page); + return 0; + } + + return max_bitflips; +} + +static int rk_nfc_read_oob(struct nand_chip *chip, int page) +{ + return rk_nfc_read_page_hwecc(chip, NULL, 1, page); +} + +static inline void rk_nfc_hw_init(struct rk_nfc *nfc) +{ + /* Disable flash wp. */ + writel(FMCTL_WP, nfc->regs + NFC_FMCTL); + /* Config default timing 40ns at 150 Mhz NFC clock. */ + writel(0x1081, nfc->regs + NFC_FMWAIT); + nfc->cur_timing = 0x1081; + /* Disable randomizer and DMA. */ + writel(0, nfc->regs + nfc->cfg->randmz_off); + writel(0, nfc->regs + nfc->cfg->dma_cfg_off); + writel(FLCTL_RST, nfc->regs + nfc->cfg->flctl_off); +} + +static irqreturn_t rk_nfc_irq(int irq, void *id) +{ + struct rk_nfc *nfc = id; + u32 sta, ien; + + sta = readl_relaxed(nfc->regs + nfc->cfg->int_st_off); + ien = readl_relaxed(nfc->regs + nfc->cfg->int_en_off); + + if (!(sta & ien)) + return IRQ_NONE; + + writel(sta, nfc->regs + nfc->cfg->int_clr_off); + writel(~sta & ien, nfc->regs + nfc->cfg->int_en_off); + + complete(&nfc->done); + + return IRQ_HANDLED; +} + +static int rk_nfc_enable_clks(struct device *dev, struct rk_nfc *nfc) +{ + int ret; + + if (!IS_ERR(nfc->nfc_clk)) { + ret = clk_prepare_enable(nfc->nfc_clk); + if (ret) { + dev_err(dev, "failed to enable NFC clk\n"); + return ret; + } + } + + ret = clk_prepare_enable(nfc->ahb_clk); + if (ret) { + dev_err(dev, "failed to enable ahb clk\n"); + clk_disable_unprepare(nfc->nfc_clk); + return ret; + } + + return 0; +} + +static void rk_nfc_disable_clks(struct rk_nfc *nfc) +{ + clk_disable_unprepare(nfc->nfc_clk); + clk_disable_unprepare(nfc->ahb_clk); +} + +static int rk_nfc_ooblayout_free(struct mtd_info *mtd, int section, + struct mtd_oob_region *oob_region) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip); + + if (section) + return -ERANGE; + + oob_region->length = rknand->metadata_size - NFC_SYS_DATA_SIZE - 2; + oob_region->offset = 2; + + return 0; +} + +static int rk_nfc_ooblayout_ecc(struct mtd_info *mtd, int section, + struct mtd_oob_region *oob_region) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip); + + if (section) + return -ERANGE; + + oob_region->length = mtd->oobsize - rknand->metadata_size; + oob_region->offset = rknand->metadata_size; + + return 0; +} + +static const struct mtd_ooblayout_ops rk_nfc_ooblayout_ops = { + .free = rk_nfc_ooblayout_free, + .ecc = rk_nfc_ooblayout_ecc, +}; + +static int rk_nfc_ecc_init(struct device *dev, struct mtd_info *mtd) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + struct rk_nfc *nfc = nand_get_controller_data(chip); + struct nand_ecc_ctrl *ecc = &chip->ecc; + const u8 *strengths = nfc->cfg->ecc_strengths; + u8 max_strength, nfc_max_strength; + int i; + + nfc_max_strength = nfc->cfg->ecc_strengths[0]; + /* If optional dt settings not present. */ + if (!ecc->size || !ecc->strength || + ecc->strength > nfc_max_strength) { + chip->ecc.size = 1024; + ecc->steps = mtd->writesize / ecc->size; + + /* + * HW ECC always requests the number of ECC bytes per 1024 byte + * blocks. The first 4 OOB bytes are reserved for sys data. + */ + max_strength = ((mtd->oobsize / ecc->steps) - 4) * 8 / + fls(8 * 1024); + if (max_strength > nfc_max_strength) + max_strength = nfc_max_strength; + + for (i = 0; i < 4; i++) { + if (max_strength >= strengths[i]) + break; + } + + if (i >= 4) { + dev_err(nfc->dev, "unsupported ECC strength\n"); + return -EOPNOTSUPP; + } + + ecc->strength = strengths[i]; + } + ecc->steps = mtd->writesize / ecc->size; + ecc->bytes = DIV_ROUND_UP(ecc->strength * fls(8 * chip->ecc.size), 8); + + return 0; +} + +static int rk_nfc_attach_chip(struct nand_chip *chip) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + struct device *dev = mtd->dev.parent; + struct rk_nfc *nfc = nand_get_controller_data(chip); + struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip); + struct nand_ecc_ctrl *ecc = &chip->ecc; + int new_page_len, new_oob_len; + void *buf; + int ret; + + if (chip->options & NAND_BUSWIDTH_16) { + dev_err(dev, "16 bits bus width not supported"); + return -EINVAL; + } + + if (ecc->engine_type != NAND_ECC_ENGINE_TYPE_ON_HOST) + return 0; + + ret = rk_nfc_ecc_init(dev, mtd); + if (ret) + return ret; + + rknand->metadata_size = NFC_SYS_DATA_SIZE * ecc->steps; + + if (rknand->metadata_size < NFC_SYS_DATA_SIZE + 2) { + dev_err(dev, + "driver needs at least %d bytes of meta data\n", + NFC_SYS_DATA_SIZE + 2); + return -EIO; + } + + /* Check buffer first, avoid duplicate alloc buffer. */ + new_page_len = mtd->writesize + mtd->oobsize; + if (nfc->page_buf && new_page_len > nfc->page_buf_size) { + buf = krealloc(nfc->page_buf, new_page_len, + GFP_KERNEL | GFP_DMA); + if (!buf) + return -ENOMEM; + nfc->page_buf = buf; + nfc->page_buf_size = new_page_len; + } + + new_oob_len = ecc->steps * NFC_MAX_OOB_PER_STEP; + if (nfc->oob_buf && new_oob_len > nfc->oob_buf_size) { + buf = krealloc(nfc->oob_buf, new_oob_len, + GFP_KERNEL | GFP_DMA); + if (!buf) { + kfree(nfc->page_buf); + nfc->page_buf = NULL; + return -ENOMEM; + } + nfc->oob_buf = buf; + nfc->oob_buf_size = new_oob_len; + } + + if (!nfc->page_buf) { + nfc->page_buf = kzalloc(new_page_len, GFP_KERNEL | GFP_DMA); + if (!nfc->page_buf) + return -ENOMEM; + nfc->page_buf_size = new_page_len; + } + + if (!nfc->oob_buf) { + nfc->oob_buf = kzalloc(new_oob_len, GFP_KERNEL | GFP_DMA); + if (!nfc->oob_buf) { + kfree(nfc->page_buf); + nfc->page_buf = NULL; + return -ENOMEM; + } + nfc->oob_buf_size = new_oob_len; + } + + chip->ecc.write_page_raw = rk_nfc_write_page_raw; + chip->ecc.write_page = rk_nfc_write_page_hwecc; + chip->ecc.write_oob = rk_nfc_write_oob; + + chip->ecc.read_page_raw = rk_nfc_read_page_raw; + chip->ecc.read_page = rk_nfc_read_page_hwecc; + chip->ecc.read_oob = rk_nfc_read_oob; + + return 0; +} + +static const struct nand_controller_ops rk_nfc_controller_ops = { + .attach_chip = rk_nfc_attach_chip, + .exec_op = rk_nfc_exec_op, + .setup_interface = rk_nfc_setup_interface, +}; + +static int rk_nfc_nand_chip_init(struct device *dev, struct rk_nfc *nfc, + struct device_node *np) +{ + struct rk_nfc_nand_chip *rknand; + struct nand_chip *chip; + struct mtd_info *mtd; + int nsels; + u32 tmp; + int ret; + int i; + + if (!of_get_property(np, "reg", &nsels)) + return -ENODEV; + nsels /= sizeof(u32); + if (!nsels || nsels > NFC_MAX_NSELS) { + dev_err(dev, "invalid reg property size %d\n", nsels); + return -EINVAL; + } + + rknand = devm_kzalloc(dev, sizeof(*rknand) + nsels * sizeof(u8), + GFP_KERNEL); + if (!rknand) + return -ENOMEM; + + rknand->nsels = nsels; + for (i = 0; i < nsels; i++) { + ret = of_property_read_u32_index(np, "reg", i, &tmp); + if (ret) { + dev_err(dev, "reg property failure : %d\n", ret); + return ret; + } + + if (tmp >= NFC_MAX_NSELS) { + dev_err(dev, "invalid CS: %u\n", tmp); + return -EINVAL; + } + + if (test_and_set_bit(tmp, &nfc->assigned_cs)) { + dev_err(dev, "CS %u already assigned\n", tmp); + return -EINVAL; + } + + rknand->sels[i] = tmp; + } + + chip = &rknand->chip; + chip->controller = &nfc->controller; + + nand_set_flash_node(chip, np); + + nand_set_controller_data(chip, nfc); + + chip->options |= NAND_USES_DMA | NAND_NO_SUBPAGE_WRITE; + chip->bbt_options = NAND_BBT_USE_FLASH | NAND_BBT_NO_OOB; + + /* Set default mode in case dt entry is missing. */ + chip->ecc.engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST; + + mtd = nand_to_mtd(chip); + mtd->owner = THIS_MODULE; + mtd->dev.parent = dev; + + if (!mtd->name) { + dev_err(nfc->dev, "NAND label property is mandatory\n"); + return -EINVAL; + } + + mtd_set_ooblayout(mtd, &rk_nfc_ooblayout_ops); + rk_nfc_hw_init(nfc); + ret = nand_scan(chip, nsels); + if (ret) + return ret; + + if (chip->options & NAND_IS_BOOT_MEDIUM) { + ret = of_property_read_u32(np, "rockchip,boot-blks", &tmp); + rknand->boot_blks = ret ? 0 : tmp; + + ret = of_property_read_u32(np, "rockchip,boot-ecc-strength", + &tmp); + rknand->boot_ecc = ret ? chip->ecc.strength : tmp; + } + + ret = mtd_device_register(mtd, NULL, 0); + if (ret) { + dev_err(dev, "MTD parse partition error\n"); + nand_cleanup(chip); + return ret; + } + + list_add_tail(&rknand->node, &nfc->chips); + + return 0; +} + +static void rk_nfc_chips_cleanup(struct rk_nfc *nfc) +{ + struct rk_nfc_nand_chip *rknand, *tmp; + struct nand_chip *chip; + int ret; + + list_for_each_entry_safe(rknand, tmp, &nfc->chips, node) { + chip = &rknand->chip; + ret = mtd_device_unregister(nand_to_mtd(chip)); + WARN_ON(ret); + nand_cleanup(chip); + list_del(&rknand->node); + } +} + +static int rk_nfc_nand_chips_init(struct device *dev, struct rk_nfc *nfc) +{ + struct device_node *np = dev->of_node, *nand_np; + int nchips = of_get_child_count(np); + int ret; + + if (!nchips || nchips > NFC_MAX_NSELS) { + dev_err(nfc->dev, "incorrect number of NAND chips (%d)\n", + nchips); + return -EINVAL; + } + + for_each_child_of_node(np, nand_np) { + ret = rk_nfc_nand_chip_init(dev, nfc, nand_np); + if (ret) { + of_node_put(nand_np); + rk_nfc_chips_cleanup(nfc); + return ret; + } + } + + return 0; +} + +static struct nfc_cfg nfc_v6_cfg = { + .type = NFC_V6, + .ecc_strengths = {60, 40, 24, 16}, + .ecc_cfgs = { + 0x00040011, 0x00040001, 0x00000011, 0x00000001, + }, + .flctl_off = 0x08, + .bchctl_off = 0x0C, + .dma_cfg_off = 0x10, + .dma_data_buf_off = 0x14, + .dma_oob_buf_off = 0x18, + .dma_st_off = 0x1C, + .bch_st_off = 0x20, + .randmz_off = 0x150, + .int_en_off = 0x16C, + .int_clr_off = 0x170, + .int_st_off = 0x174, + .oob0_off = 0x200, + .oob1_off = 0x230, + .ecc0 = { + .err_flag_bit = 2, + .low = 3, + .low_mask = 0x1F, + .low_bn = 5, + .high = 27, + .high_mask = 0x1, + }, + .ecc1 = { + .err_flag_bit = 15, + .low = 16, + .low_mask = 0x1F, + .low_bn = 5, + .high = 29, + .high_mask = 0x1, + }, +}; + +static struct nfc_cfg nfc_v8_cfg = { + .type = NFC_V8, + .ecc_strengths = {16, 16, 16, 16}, + .ecc_cfgs = { + 0x00000001, 0x00000001, 0x00000001, 0x00000001, + }, + .flctl_off = 0x08, + .bchctl_off = 0x0C, + .dma_cfg_off = 0x10, + .dma_data_buf_off = 0x14, + .dma_oob_buf_off = 0x18, + .dma_st_off = 0x1C, + .bch_st_off = 0x20, + .randmz_off = 0x150, + .int_en_off = 0x16C, + .int_clr_off = 0x170, + .int_st_off = 0x174, + .oob0_off = 0x200, + .oob1_off = 0x230, + .ecc0 = { + .err_flag_bit = 2, + .low = 3, + .low_mask = 0x1F, + .low_bn = 5, + .high = 27, + .high_mask = 0x1, + }, + .ecc1 = { + .err_flag_bit = 15, + .low = 16, + .low_mask = 0x1F, + .low_bn = 5, + .high = 29, + .high_mask = 0x1, + }, +}; + +static struct nfc_cfg nfc_v9_cfg = { + .type = NFC_V9, + .ecc_strengths = {70, 60, 40, 16}, + .ecc_cfgs = { + 0x00000001, 0x06000001, 0x04000001, 0x02000001, + }, + .flctl_off = 0x10, + .bchctl_off = 0x20, + .dma_cfg_off = 0x30, + .dma_data_buf_off = 0x34, + .dma_oob_buf_off = 0x38, + .dma_st_off = 0x3C, + .bch_st_off = 0x150, + .randmz_off = 0x208, + .int_en_off = 0x120, + .int_clr_off = 0x124, + .int_st_off = 0x128, + .oob0_off = 0x200, + .oob1_off = 0x204, + .ecc0 = { + .err_flag_bit = 2, + .low = 3, + .low_mask = 0x7F, + .low_bn = 7, + .high = 0, + .high_mask = 0x0, + }, + .ecc1 = { + .err_flag_bit = 18, + .low = 19, + .low_mask = 0x7F, + .low_bn = 7, + .high = 0, + .high_mask = 0x0, + }, +}; + +static const struct of_device_id rk_nfc_id_table[] = { + { + .compatible = "rockchip,px30-nfc", + .data = &nfc_v9_cfg + }, + { + .compatible = "rockchip,rk2928-nfc", + .data = &nfc_v6_cfg + }, + { + .compatible = "rockchip,rv1108-nfc", + .data = &nfc_v8_cfg + }, + { /* sentinel */ } +}; +MODULE_DEVICE_TABLE(of, rk_nfc_id_table); + +static int rk_nfc_probe(struct platform_device *pdev) +{ + struct device *dev = &pdev->dev; + struct rk_nfc *nfc; + int ret, irq; + + nfc = devm_kzalloc(dev, sizeof(*nfc), GFP_KERNEL); + if (!nfc) + return -ENOMEM; + + nand_controller_init(&nfc->controller); + INIT_LIST_HEAD(&nfc->chips); + nfc->controller.ops = &rk_nfc_controller_ops; + + nfc->cfg = of_device_get_match_data(dev); + nfc->dev = dev; + + init_completion(&nfc->done); + + nfc->regs = devm_platform_ioremap_resource(pdev, 0); + if (IS_ERR(nfc->regs)) { + ret = PTR_ERR(nfc->regs); + goto release_nfc; + } + + nfc->nfc_clk = devm_clk_get(dev, "nfc"); + if (IS_ERR(nfc->nfc_clk)) { + dev_dbg(dev, "no NFC clk\n"); + /* Some earlier models, such as rk3066, have no NFC clk. */ + } + + nfc->ahb_clk = devm_clk_get(dev, "ahb"); + if (IS_ERR(nfc->ahb_clk)) { + dev_err(dev, "no ahb clk\n"); + ret = PTR_ERR(nfc->ahb_clk); + goto release_nfc; + } + + ret = rk_nfc_enable_clks(dev, nfc); + if (ret) + goto release_nfc; + + irq = platform_get_irq(pdev, 0); + if (irq < 0) { + ret = -EINVAL; + goto clk_disable; + } + + writel(0, nfc->regs + nfc->cfg->int_en_off); + ret = devm_request_irq(dev, irq, rk_nfc_irq, 0x0, "rk-nand", nfc); + if (ret) { + dev_err(dev, "failed to request NFC irq\n"); + goto clk_disable; + } + + platform_set_drvdata(pdev, nfc); + + ret = rk_nfc_nand_chips_init(dev, nfc); + if (ret) { + dev_err(dev, "failed to init NAND chips\n"); + goto clk_disable; + } + return 0; + +clk_disable: + rk_nfc_disable_clks(nfc); +release_nfc: + return ret; +} + +static void rk_nfc_remove(struct platform_device *pdev) +{ + struct rk_nfc *nfc = platform_get_drvdata(pdev); + + kfree(nfc->page_buf); + kfree(nfc->oob_buf); + rk_nfc_chips_cleanup(nfc); + rk_nfc_disable_clks(nfc); +} + +static int __maybe_unused rk_nfc_suspend(struct device *dev) +{ + struct rk_nfc *nfc = dev_get_drvdata(dev); + + rk_nfc_disable_clks(nfc); + + return 0; +} + +static int __maybe_unused rk_nfc_resume(struct device *dev) +{ + struct rk_nfc *nfc = dev_get_drvdata(dev); + struct rk_nfc_nand_chip *rknand; + struct nand_chip *chip; + int ret; + u32 i; + + ret = rk_nfc_enable_clks(dev, nfc); + if (ret) + return ret; + + /* Reset NAND chip if VCC was powered off. */ + list_for_each_entry(rknand, &nfc->chips, node) { + chip = &rknand->chip; + for (i = 0; i < rknand->nsels; i++) + nand_reset(chip, i); + } + + return 0; +} + +static const struct dev_pm_ops rk_nfc_pm_ops = { + SET_SYSTEM_SLEEP_PM_OPS(rk_nfc_suspend, rk_nfc_resume) +}; + +static struct platform_driver rk_nfc_driver = { + .probe = rk_nfc_probe, + .remove_new = rk_nfc_remove, + .driver = { + .name = "rockchip-nfc", + .of_match_table = rk_nfc_id_table, + .pm = &rk_nfc_pm_ops, + }, +}; + +module_platform_driver(rk_nfc_driver); + +MODULE_LICENSE("Dual MIT/GPL"); +MODULE_AUTHOR("Yifeng Zhao <yifeng.zhao@rock-chips.com>"); +MODULE_DESCRIPTION("Rockchip Nand Flash Controller Driver"); +MODULE_ALIAS("platform:rockchip-nand-controller"); diff --git a/drivers/mtd/nand/raw/s3c2410.c b/drivers/mtd/nand/raw/s3c2410.c new file mode 100644 index 0000000000..3d3d5c9814 --- /dev/null +++ b/drivers/mtd/nand/raw/s3c2410.c @@ -0,0 +1,1232 @@ +// SPDX-License-Identifier: GPL-2.0-or-later +/* + * Copyright © 2004-2008 Simtec Electronics + * http://armlinux.simtec.co.uk/ + * Ben Dooks <ben@simtec.co.uk> + * + * Samsung S3C2410/S3C2440/S3C2412 NAND driver +*/ + +#define pr_fmt(fmt) "nand-s3c2410: " fmt + +#ifdef CONFIG_MTD_NAND_S3C2410_DEBUG +#define DEBUG +#endif + +#include <linux/module.h> +#include <linux/types.h> +#include <linux/kernel.h> +#include <linux/string.h> +#include <linux/io.h> +#include <linux/ioport.h> +#include <linux/platform_device.h> +#include <linux/delay.h> +#include <linux/err.h> +#include <linux/slab.h> +#include <linux/clk.h> +#include <linux/cpufreq.h> +#include <linux/of.h> + +#include <linux/mtd/mtd.h> +#include <linux/mtd/rawnand.h> +#include <linux/mtd/partitions.h> + +#include <linux/platform_data/mtd-nand-s3c2410.h> + +#define S3C2410_NFREG(x) (x) + +#define S3C2410_NFCONF S3C2410_NFREG(0x00) +#define S3C2410_NFCMD S3C2410_NFREG(0x04) +#define S3C2410_NFADDR S3C2410_NFREG(0x08) +#define S3C2410_NFDATA S3C2410_NFREG(0x0C) +#define S3C2410_NFSTAT S3C2410_NFREG(0x10) +#define S3C2410_NFECC S3C2410_NFREG(0x14) +#define S3C2440_NFCONT S3C2410_NFREG(0x04) +#define S3C2440_NFCMD S3C2410_NFREG(0x08) +#define S3C2440_NFADDR S3C2410_NFREG(0x0C) +#define S3C2440_NFDATA S3C2410_NFREG(0x10) +#define S3C2440_NFSTAT S3C2410_NFREG(0x20) +#define S3C2440_NFMECC0 S3C2410_NFREG(0x2C) +#define S3C2412_NFSTAT S3C2410_NFREG(0x28) +#define S3C2412_NFMECC0 S3C2410_NFREG(0x34) +#define S3C2410_NFCONF_EN (1<<15) +#define S3C2410_NFCONF_INITECC (1<<12) +#define S3C2410_NFCONF_nFCE (1<<11) +#define S3C2410_NFCONF_TACLS(x) ((x)<<8) +#define S3C2410_NFCONF_TWRPH0(x) ((x)<<4) +#define S3C2410_NFCONF_TWRPH1(x) ((x)<<0) +#define S3C2410_NFSTAT_BUSY (1<<0) +#define S3C2440_NFCONF_TACLS(x) ((x)<<12) +#define S3C2440_NFCONF_TWRPH0(x) ((x)<<8) +#define S3C2440_NFCONF_TWRPH1(x) ((x)<<4) +#define S3C2440_NFCONT_INITECC (1<<4) +#define S3C2440_NFCONT_nFCE (1<<1) +#define S3C2440_NFCONT_ENABLE (1<<0) +#define S3C2440_NFSTAT_READY (1<<0) +#define S3C2412_NFCONF_NANDBOOT (1<<31) +#define S3C2412_NFCONT_INIT_MAIN_ECC (1<<5) +#define S3C2412_NFCONT_nFCE0 (1<<1) +#define S3C2412_NFSTAT_READY (1<<0) + +/* new oob placement block for use with hardware ecc generation + */ +static int s3c2410_ooblayout_ecc(struct mtd_info *mtd, int section, + struct mtd_oob_region *oobregion) +{ + if (section) + return -ERANGE; + + oobregion->offset = 0; + oobregion->length = 3; + + return 0; +} + +static int s3c2410_ooblayout_free(struct mtd_info *mtd, int section, + struct mtd_oob_region *oobregion) +{ + if (section) + return -ERANGE; + + oobregion->offset = 8; + oobregion->length = 8; + + return 0; +} + +static const struct mtd_ooblayout_ops s3c2410_ooblayout_ops = { + .ecc = s3c2410_ooblayout_ecc, + .free = s3c2410_ooblayout_free, +}; + +/* controller and mtd information */ + +struct s3c2410_nand_info; + +/** + * struct s3c2410_nand_mtd - driver MTD structure + * @mtd: The MTD instance to pass to the MTD layer. + * @chip: The NAND chip information. + * @set: The platform information supplied for this set of NAND chips. + * @info: Link back to the hardware information. +*/ +struct s3c2410_nand_mtd { + struct nand_chip chip; + struct s3c2410_nand_set *set; + struct s3c2410_nand_info *info; +}; + +enum s3c_cpu_type { + TYPE_S3C2410, + TYPE_S3C2412, + TYPE_S3C2440, +}; + +enum s3c_nand_clk_state { + CLOCK_DISABLE = 0, + CLOCK_ENABLE, + CLOCK_SUSPEND, +}; + +/* overview of the s3c2410 nand state */ + +/** + * struct s3c2410_nand_info - NAND controller state. + * @controller: Base controller structure. + * @mtds: An array of MTD instances on this controller. + * @platform: The platform data for this board. + * @device: The platform device we bound to. + * @clk: The clock resource for this controller. + * @regs: The area mapped for the hardware registers. + * @sel_reg: Pointer to the register controlling the NAND selection. + * @sel_bit: The bit in @sel_reg to select the NAND chip. + * @mtd_count: The number of MTDs created from this controller. + * @save_sel: The contents of @sel_reg to be saved over suspend. + * @clk_rate: The clock rate from @clk. + * @clk_state: The current clock state. + * @cpu_type: The exact type of this controller. + * @freq_transition: CPUFreq notifier block + */ +struct s3c2410_nand_info { + /* mtd info */ + struct nand_controller controller; + struct s3c2410_nand_mtd *mtds; + struct s3c2410_platform_nand *platform; + + /* device info */ + struct device *device; + struct clk *clk; + void __iomem *regs; + void __iomem *sel_reg; + int sel_bit; + int mtd_count; + unsigned long save_sel; + unsigned long clk_rate; + enum s3c_nand_clk_state clk_state; + + enum s3c_cpu_type cpu_type; +}; + +struct s3c24XX_nand_devtype_data { + enum s3c_cpu_type type; +}; + +static const struct s3c24XX_nand_devtype_data s3c2410_nand_devtype_data = { + .type = TYPE_S3C2410, +}; + +static const struct s3c24XX_nand_devtype_data s3c2412_nand_devtype_data = { + .type = TYPE_S3C2412, +}; + +static const struct s3c24XX_nand_devtype_data s3c2440_nand_devtype_data = { + .type = TYPE_S3C2440, +}; + +/* conversion functions */ + +static struct s3c2410_nand_mtd *s3c2410_nand_mtd_toours(struct mtd_info *mtd) +{ + return container_of(mtd_to_nand(mtd), struct s3c2410_nand_mtd, + chip); +} + +static struct s3c2410_nand_info *s3c2410_nand_mtd_toinfo(struct mtd_info *mtd) +{ + return s3c2410_nand_mtd_toours(mtd)->info; +} + +static struct s3c2410_nand_info *to_nand_info(struct platform_device *dev) +{ + return platform_get_drvdata(dev); +} + +static struct s3c2410_platform_nand *to_nand_plat(struct platform_device *dev) +{ + return dev_get_platdata(&dev->dev); +} + +static inline int allow_clk_suspend(struct s3c2410_nand_info *info) +{ +#ifdef CONFIG_MTD_NAND_S3C2410_CLKSTOP + return 1; +#else + return 0; +#endif +} + +/** + * s3c2410_nand_clk_set_state - Enable, disable or suspend NAND clock. + * @info: The controller instance. + * @new_state: State to which clock should be set. + */ +static void s3c2410_nand_clk_set_state(struct s3c2410_nand_info *info, + enum s3c_nand_clk_state new_state) +{ + if (!allow_clk_suspend(info) && new_state == CLOCK_SUSPEND) + return; + + if (info->clk_state == CLOCK_ENABLE) { + if (new_state != CLOCK_ENABLE) + clk_disable_unprepare(info->clk); + } else { + if (new_state == CLOCK_ENABLE) + clk_prepare_enable(info->clk); + } + + info->clk_state = new_state; +} + +/* timing calculations */ + +#define NS_IN_KHZ 1000000 + +/** + * s3c_nand_calc_rate - calculate timing data. + * @wanted: The cycle time in nanoseconds. + * @clk: The clock rate in kHz. + * @max: The maximum divider value. + * + * Calculate the timing value from the given parameters. + */ +static int s3c_nand_calc_rate(int wanted, unsigned long clk, int max) +{ + int result; + + result = DIV_ROUND_UP((wanted * clk), NS_IN_KHZ); + + pr_debug("result %d from %ld, %d\n", result, clk, wanted); + + if (result > max) { + pr_err("%d ns is too big for current clock rate %ld\n", + wanted, clk); + return -1; + } + + if (result < 1) + result = 1; + + return result; +} + +#define to_ns(ticks, clk) (((ticks) * NS_IN_KHZ) / (unsigned int)(clk)) + +/* controller setup */ + +/** + * s3c2410_nand_setrate - setup controller timing information. + * @info: The controller instance. + * + * Given the information supplied by the platform, calculate and set + * the necessary timing registers in the hardware to generate the + * necessary timing cycles to the hardware. + */ +static int s3c2410_nand_setrate(struct s3c2410_nand_info *info) +{ + struct s3c2410_platform_nand *plat = info->platform; + int tacls_max = (info->cpu_type == TYPE_S3C2412) ? 8 : 4; + int tacls, twrph0, twrph1; + unsigned long clkrate = clk_get_rate(info->clk); + unsigned long set, cfg, mask; + unsigned long flags; + + /* calculate the timing information for the controller */ + + info->clk_rate = clkrate; + clkrate /= 1000; /* turn clock into kHz for ease of use */ + + if (plat != NULL) { + tacls = s3c_nand_calc_rate(plat->tacls, clkrate, tacls_max); + twrph0 = s3c_nand_calc_rate(plat->twrph0, clkrate, 8); + twrph1 = s3c_nand_calc_rate(plat->twrph1, clkrate, 8); + } else { + /* default timings */ + tacls = tacls_max; + twrph0 = 8; + twrph1 = 8; + } + + if (tacls < 0 || twrph0 < 0 || twrph1 < 0) { + dev_err(info->device, "cannot get suitable timings\n"); + return -EINVAL; + } + + dev_info(info->device, "Tacls=%d, %dns Twrph0=%d %dns, Twrph1=%d %dns\n", + tacls, to_ns(tacls, clkrate), twrph0, to_ns(twrph0, clkrate), + twrph1, to_ns(twrph1, clkrate)); + + switch (info->cpu_type) { + case TYPE_S3C2410: + mask = (S3C2410_NFCONF_TACLS(3) | + S3C2410_NFCONF_TWRPH0(7) | + S3C2410_NFCONF_TWRPH1(7)); + set = S3C2410_NFCONF_EN; + set |= S3C2410_NFCONF_TACLS(tacls - 1); + set |= S3C2410_NFCONF_TWRPH0(twrph0 - 1); + set |= S3C2410_NFCONF_TWRPH1(twrph1 - 1); + break; + + case TYPE_S3C2440: + case TYPE_S3C2412: + mask = (S3C2440_NFCONF_TACLS(tacls_max - 1) | + S3C2440_NFCONF_TWRPH0(7) | + S3C2440_NFCONF_TWRPH1(7)); + + set = S3C2440_NFCONF_TACLS(tacls - 1); + set |= S3C2440_NFCONF_TWRPH0(twrph0 - 1); + set |= S3C2440_NFCONF_TWRPH1(twrph1 - 1); + break; + + default: + BUG(); + } + + local_irq_save(flags); + + cfg = readl(info->regs + S3C2410_NFCONF); + cfg &= ~mask; + cfg |= set; + writel(cfg, info->regs + S3C2410_NFCONF); + + local_irq_restore(flags); + + dev_dbg(info->device, "NF_CONF is 0x%lx\n", cfg); + + return 0; +} + +/** + * s3c2410_nand_inithw - basic hardware initialisation + * @info: The hardware state. + * + * Do the basic initialisation of the hardware, using s3c2410_nand_setrate() + * to setup the hardware access speeds and set the controller to be enabled. +*/ +static int s3c2410_nand_inithw(struct s3c2410_nand_info *info) +{ + int ret; + + ret = s3c2410_nand_setrate(info); + if (ret < 0) + return ret; + + switch (info->cpu_type) { + case TYPE_S3C2410: + default: + break; + + case TYPE_S3C2440: + case TYPE_S3C2412: + /* enable the controller and de-assert nFCE */ + + writel(S3C2440_NFCONT_ENABLE, info->regs + S3C2440_NFCONT); + } + + return 0; +} + +/** + * s3c2410_nand_select_chip - select the given nand chip + * @this: NAND chip object. + * @chip: The chip number. + * + * This is called by the MTD layer to either select a given chip for the + * @mtd instance, or to indicate that the access has finished and the + * chip can be de-selected. + * + * The routine ensures that the nFCE line is correctly setup, and any + * platform specific selection code is called to route nFCE to the specific + * chip. + */ +static void s3c2410_nand_select_chip(struct nand_chip *this, int chip) +{ + struct s3c2410_nand_info *info; + struct s3c2410_nand_mtd *nmtd; + unsigned long cur; + + nmtd = nand_get_controller_data(this); + info = nmtd->info; + + if (chip != -1) + s3c2410_nand_clk_set_state(info, CLOCK_ENABLE); + + cur = readl(info->sel_reg); + + if (chip == -1) { + cur |= info->sel_bit; + } else { + if (nmtd->set != NULL && chip > nmtd->set->nr_chips) { + dev_err(info->device, "invalid chip %d\n", chip); + return; + } + + if (info->platform != NULL) { + if (info->platform->select_chip != NULL) + (info->platform->select_chip) (nmtd->set, chip); + } + + cur &= ~info->sel_bit; + } + + writel(cur, info->sel_reg); + + if (chip == -1) + s3c2410_nand_clk_set_state(info, CLOCK_SUSPEND); +} + +/* s3c2410_nand_hwcontrol + * + * Issue command and address cycles to the chip +*/ + +static void s3c2410_nand_hwcontrol(struct nand_chip *chip, int cmd, + unsigned int ctrl) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd); + + if (cmd == NAND_CMD_NONE) + return; + + if (ctrl & NAND_CLE) + writeb(cmd, info->regs + S3C2410_NFCMD); + else + writeb(cmd, info->regs + S3C2410_NFADDR); +} + +/* command and control functions */ + +static void s3c2440_nand_hwcontrol(struct nand_chip *chip, int cmd, + unsigned int ctrl) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd); + + if (cmd == NAND_CMD_NONE) + return; + + if (ctrl & NAND_CLE) + writeb(cmd, info->regs + S3C2440_NFCMD); + else + writeb(cmd, info->regs + S3C2440_NFADDR); +} + +/* s3c2410_nand_devready() + * + * returns 0 if the nand is busy, 1 if it is ready +*/ + +static int s3c2410_nand_devready(struct nand_chip *chip) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd); + return readb(info->regs + S3C2410_NFSTAT) & S3C2410_NFSTAT_BUSY; +} + +static int s3c2440_nand_devready(struct nand_chip *chip) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd); + return readb(info->regs + S3C2440_NFSTAT) & S3C2440_NFSTAT_READY; +} + +static int s3c2412_nand_devready(struct nand_chip *chip) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd); + return readb(info->regs + S3C2412_NFSTAT) & S3C2412_NFSTAT_READY; +} + +/* ECC handling functions */ + +static int s3c2410_nand_correct_data(struct nand_chip *chip, u_char *dat, + u_char *read_ecc, u_char *calc_ecc) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd); + unsigned int diff0, diff1, diff2; + unsigned int bit, byte; + + pr_debug("%s(%p,%p,%p,%p)\n", __func__, mtd, dat, read_ecc, calc_ecc); + + diff0 = read_ecc[0] ^ calc_ecc[0]; + diff1 = read_ecc[1] ^ calc_ecc[1]; + diff2 = read_ecc[2] ^ calc_ecc[2]; + + pr_debug("%s: rd %*phN calc %*phN diff %02x%02x%02x\n", + __func__, 3, read_ecc, 3, calc_ecc, + diff0, diff1, diff2); + + if (diff0 == 0 && diff1 == 0 && diff2 == 0) + return 0; /* ECC is ok */ + + /* sometimes people do not think about using the ECC, so check + * to see if we have an 0xff,0xff,0xff read ECC and then ignore + * the error, on the assumption that this is an un-eccd page. + */ + if (read_ecc[0] == 0xff && read_ecc[1] == 0xff && read_ecc[2] == 0xff + && info->platform->ignore_unset_ecc) + return 0; + + /* Can we correct this ECC (ie, one row and column change). + * Note, this is similar to the 256 error code on smartmedia */ + + if (((diff0 ^ (diff0 >> 1)) & 0x55) == 0x55 && + ((diff1 ^ (diff1 >> 1)) & 0x55) == 0x55 && + ((diff2 ^ (diff2 >> 1)) & 0x55) == 0x55) { + /* calculate the bit position of the error */ + + bit = ((diff2 >> 3) & 1) | + ((diff2 >> 4) & 2) | + ((diff2 >> 5) & 4); + + /* calculate the byte position of the error */ + + byte = ((diff2 << 7) & 0x100) | + ((diff1 << 0) & 0x80) | + ((diff1 << 1) & 0x40) | + ((diff1 << 2) & 0x20) | + ((diff1 << 3) & 0x10) | + ((diff0 >> 4) & 0x08) | + ((diff0 >> 3) & 0x04) | + ((diff0 >> 2) & 0x02) | + ((diff0 >> 1) & 0x01); + + dev_dbg(info->device, "correcting error bit %d, byte %d\n", + bit, byte); + + dat[byte] ^= (1 << bit); + return 1; + } + + /* if there is only one bit difference in the ECC, then + * one of only a row or column parity has changed, which + * means the error is most probably in the ECC itself */ + + diff0 |= (diff1 << 8); + diff0 |= (diff2 << 16); + + /* equal to "(diff0 & ~(1 << __ffs(diff0)))" */ + if ((diff0 & (diff0 - 1)) == 0) + return 1; + + return -1; +} + +/* ECC functions + * + * These allow the s3c2410 and s3c2440 to use the controller's ECC + * generator block to ECC the data as it passes through] +*/ + +static void s3c2410_nand_enable_hwecc(struct nand_chip *chip, int mode) +{ + struct s3c2410_nand_info *info; + unsigned long ctrl; + + info = s3c2410_nand_mtd_toinfo(nand_to_mtd(chip)); + ctrl = readl(info->regs + S3C2410_NFCONF); + ctrl |= S3C2410_NFCONF_INITECC; + writel(ctrl, info->regs + S3C2410_NFCONF); +} + +static void s3c2412_nand_enable_hwecc(struct nand_chip *chip, int mode) +{ + struct s3c2410_nand_info *info; + unsigned long ctrl; + + info = s3c2410_nand_mtd_toinfo(nand_to_mtd(chip)); + ctrl = readl(info->regs + S3C2440_NFCONT); + writel(ctrl | S3C2412_NFCONT_INIT_MAIN_ECC, + info->regs + S3C2440_NFCONT); +} + +static void s3c2440_nand_enable_hwecc(struct nand_chip *chip, int mode) +{ + struct s3c2410_nand_info *info; + unsigned long ctrl; + + info = s3c2410_nand_mtd_toinfo(nand_to_mtd(chip)); + ctrl = readl(info->regs + S3C2440_NFCONT); + writel(ctrl | S3C2440_NFCONT_INITECC, info->regs + S3C2440_NFCONT); +} + +static int s3c2410_nand_calculate_ecc(struct nand_chip *chip, + const u_char *dat, u_char *ecc_code) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd); + + ecc_code[0] = readb(info->regs + S3C2410_NFECC + 0); + ecc_code[1] = readb(info->regs + S3C2410_NFECC + 1); + ecc_code[2] = readb(info->regs + S3C2410_NFECC + 2); + + pr_debug("%s: returning ecc %*phN\n", __func__, 3, ecc_code); + + return 0; +} + +static int s3c2412_nand_calculate_ecc(struct nand_chip *chip, + const u_char *dat, u_char *ecc_code) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd); + unsigned long ecc = readl(info->regs + S3C2412_NFMECC0); + + ecc_code[0] = ecc; + ecc_code[1] = ecc >> 8; + ecc_code[2] = ecc >> 16; + + pr_debug("%s: returning ecc %*phN\n", __func__, 3, ecc_code); + + return 0; +} + +static int s3c2440_nand_calculate_ecc(struct nand_chip *chip, + const u_char *dat, u_char *ecc_code) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd); + unsigned long ecc = readl(info->regs + S3C2440_NFMECC0); + + ecc_code[0] = ecc; + ecc_code[1] = ecc >> 8; + ecc_code[2] = ecc >> 16; + + pr_debug("%s: returning ecc %06lx\n", __func__, ecc & 0xffffff); + + return 0; +} + +/* over-ride the standard functions for a little more speed. We can + * use read/write block to move the data buffers to/from the controller +*/ + +static void s3c2410_nand_read_buf(struct nand_chip *this, u_char *buf, int len) +{ + readsb(this->legacy.IO_ADDR_R, buf, len); +} + +static void s3c2440_nand_read_buf(struct nand_chip *this, u_char *buf, int len) +{ + struct mtd_info *mtd = nand_to_mtd(this); + struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd); + + readsl(info->regs + S3C2440_NFDATA, buf, len >> 2); + + /* cleanup if we've got less than a word to do */ + if (len & 3) { + buf += len & ~3; + + for (; len & 3; len--) + *buf++ = readb(info->regs + S3C2440_NFDATA); + } +} + +static void s3c2410_nand_write_buf(struct nand_chip *this, const u_char *buf, + int len) +{ + writesb(this->legacy.IO_ADDR_W, buf, len); +} + +static void s3c2440_nand_write_buf(struct nand_chip *this, const u_char *buf, + int len) +{ + struct mtd_info *mtd = nand_to_mtd(this); + struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd); + + writesl(info->regs + S3C2440_NFDATA, buf, len >> 2); + + /* cleanup any fractional write */ + if (len & 3) { + buf += len & ~3; + + for (; len & 3; len--, buf++) + writeb(*buf, info->regs + S3C2440_NFDATA); + } +} + +/* device management functions */ + +static void s3c24xx_nand_remove(struct platform_device *pdev) +{ + struct s3c2410_nand_info *info = to_nand_info(pdev); + + if (info == NULL) + return; + + /* Release all our mtds and their partitions, then go through + * freeing the resources used + */ + + if (info->mtds != NULL) { + struct s3c2410_nand_mtd *ptr = info->mtds; + int mtdno; + + for (mtdno = 0; mtdno < info->mtd_count; mtdno++, ptr++) { + pr_debug("releasing mtd %d (%p)\n", mtdno, ptr); + WARN_ON(mtd_device_unregister(nand_to_mtd(&ptr->chip))); + nand_cleanup(&ptr->chip); + } + } + + /* free the common resources */ + + if (!IS_ERR(info->clk)) + s3c2410_nand_clk_set_state(info, CLOCK_DISABLE); +} + +static int s3c2410_nand_add_partition(struct s3c2410_nand_info *info, + struct s3c2410_nand_mtd *mtd, + struct s3c2410_nand_set *set) +{ + if (set) { + struct mtd_info *mtdinfo = nand_to_mtd(&mtd->chip); + + mtdinfo->name = set->name; + + return mtd_device_register(mtdinfo, set->partitions, + set->nr_partitions); + } + + return -ENODEV; +} + +static int s3c2410_nand_setup_interface(struct nand_chip *chip, int csline, + const struct nand_interface_config *conf) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd); + struct s3c2410_platform_nand *pdata = info->platform; + const struct nand_sdr_timings *timings; + int tacls; + + timings = nand_get_sdr_timings(conf); + if (IS_ERR(timings)) + return -ENOTSUPP; + + tacls = timings->tCLS_min - timings->tWP_min; + if (tacls < 0) + tacls = 0; + + pdata->tacls = DIV_ROUND_UP(tacls, 1000); + pdata->twrph0 = DIV_ROUND_UP(timings->tWP_min, 1000); + pdata->twrph1 = DIV_ROUND_UP(timings->tCLH_min, 1000); + + return s3c2410_nand_setrate(info); +} + +/** + * s3c2410_nand_init_chip - initialise a single instance of an chip + * @info: The base NAND controller the chip is on. + * @nmtd: The new controller MTD instance to fill in. + * @set: The information passed from the board specific platform data. + * + * Initialise the given @nmtd from the information in @info and @set. This + * readies the structure for use with the MTD layer functions by ensuring + * all pointers are setup and the necessary control routines selected. + */ +static void s3c2410_nand_init_chip(struct s3c2410_nand_info *info, + struct s3c2410_nand_mtd *nmtd, + struct s3c2410_nand_set *set) +{ + struct device_node *np = info->device->of_node; + struct nand_chip *chip = &nmtd->chip; + void __iomem *regs = info->regs; + + nand_set_flash_node(chip, set->of_node); + + chip->legacy.write_buf = s3c2410_nand_write_buf; + chip->legacy.read_buf = s3c2410_nand_read_buf; + chip->legacy.select_chip = s3c2410_nand_select_chip; + chip->legacy.chip_delay = 50; + nand_set_controller_data(chip, nmtd); + chip->options = set->options; + chip->controller = &info->controller; + + /* + * let's keep behavior unchanged for legacy boards booting via pdata and + * auto-detect timings only when booting with a device tree. + */ + if (!np) + chip->options |= NAND_KEEP_TIMINGS; + + switch (info->cpu_type) { + case TYPE_S3C2410: + chip->legacy.IO_ADDR_W = regs + S3C2410_NFDATA; + info->sel_reg = regs + S3C2410_NFCONF; + info->sel_bit = S3C2410_NFCONF_nFCE; + chip->legacy.cmd_ctrl = s3c2410_nand_hwcontrol; + chip->legacy.dev_ready = s3c2410_nand_devready; + break; + + case TYPE_S3C2440: + chip->legacy.IO_ADDR_W = regs + S3C2440_NFDATA; + info->sel_reg = regs + S3C2440_NFCONT; + info->sel_bit = S3C2440_NFCONT_nFCE; + chip->legacy.cmd_ctrl = s3c2440_nand_hwcontrol; + chip->legacy.dev_ready = s3c2440_nand_devready; + chip->legacy.read_buf = s3c2440_nand_read_buf; + chip->legacy.write_buf = s3c2440_nand_write_buf; + break; + + case TYPE_S3C2412: + chip->legacy.IO_ADDR_W = regs + S3C2440_NFDATA; + info->sel_reg = regs + S3C2440_NFCONT; + info->sel_bit = S3C2412_NFCONT_nFCE0; + chip->legacy.cmd_ctrl = s3c2440_nand_hwcontrol; + chip->legacy.dev_ready = s3c2412_nand_devready; + + if (readl(regs + S3C2410_NFCONF) & S3C2412_NFCONF_NANDBOOT) + dev_info(info->device, "System booted from NAND\n"); + + break; + } + + chip->legacy.IO_ADDR_R = chip->legacy.IO_ADDR_W; + + nmtd->info = info; + nmtd->set = set; + + chip->ecc.engine_type = info->platform->engine_type; + + /* + * If you use u-boot BBT creation code, specifying this flag will + * let the kernel fish out the BBT from the NAND. + */ + if (set->flash_bbt) + chip->bbt_options |= NAND_BBT_USE_FLASH; +} + +/** + * s3c2410_nand_attach_chip - Init the ECC engine after NAND scan + * @chip: The NAND chip + * + * This hook is called by the core after the identification of the NAND chip, + * once the relevant per-chip information is up to date.. This call ensure that + * we update the internal state accordingly. + * + * The internal state is currently limited to the ECC state information. +*/ +static int s3c2410_nand_attach_chip(struct nand_chip *chip) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd); + + switch (chip->ecc.engine_type) { + + case NAND_ECC_ENGINE_TYPE_NONE: + dev_info(info->device, "ECC disabled\n"); + break; + + case NAND_ECC_ENGINE_TYPE_SOFT: + /* + * This driver expects Hamming based ECC when engine_type is set + * to NAND_ECC_ENGINE_TYPE_SOFT. Force ecc.algo to + * NAND_ECC_ALGO_HAMMING to avoid adding an extra ecc_algo field + * to s3c2410_platform_nand. + */ + chip->ecc.algo = NAND_ECC_ALGO_HAMMING; + dev_info(info->device, "soft ECC\n"); + break; + + case NAND_ECC_ENGINE_TYPE_ON_HOST: + chip->ecc.calculate = s3c2410_nand_calculate_ecc; + chip->ecc.correct = s3c2410_nand_correct_data; + chip->ecc.strength = 1; + + switch (info->cpu_type) { + case TYPE_S3C2410: + chip->ecc.hwctl = s3c2410_nand_enable_hwecc; + chip->ecc.calculate = s3c2410_nand_calculate_ecc; + break; + + case TYPE_S3C2412: + chip->ecc.hwctl = s3c2412_nand_enable_hwecc; + chip->ecc.calculate = s3c2412_nand_calculate_ecc; + break; + + case TYPE_S3C2440: + chip->ecc.hwctl = s3c2440_nand_enable_hwecc; + chip->ecc.calculate = s3c2440_nand_calculate_ecc; + break; + } + + dev_dbg(info->device, "chip %p => page shift %d\n", + chip, chip->page_shift); + + /* change the behaviour depending on whether we are using + * the large or small page nand device */ + if (chip->page_shift > 10) { + chip->ecc.size = 256; + chip->ecc.bytes = 3; + } else { + chip->ecc.size = 512; + chip->ecc.bytes = 3; + mtd_set_ooblayout(nand_to_mtd(chip), + &s3c2410_ooblayout_ops); + } + + dev_info(info->device, "hardware ECC\n"); + break; + + default: + dev_err(info->device, "invalid ECC mode!\n"); + return -EINVAL; + } + + if (chip->bbt_options & NAND_BBT_USE_FLASH) + chip->options |= NAND_SKIP_BBTSCAN; + + return 0; +} + +static const struct nand_controller_ops s3c24xx_nand_controller_ops = { + .attach_chip = s3c2410_nand_attach_chip, + .setup_interface = s3c2410_nand_setup_interface, +}; + +static const struct of_device_id s3c24xx_nand_dt_ids[] = { + { + .compatible = "samsung,s3c2410-nand", + .data = &s3c2410_nand_devtype_data, + }, { + /* also compatible with s3c6400 */ + .compatible = "samsung,s3c2412-nand", + .data = &s3c2412_nand_devtype_data, + }, { + .compatible = "samsung,s3c2440-nand", + .data = &s3c2440_nand_devtype_data, + }, + { /* sentinel */ } +}; +MODULE_DEVICE_TABLE(of, s3c24xx_nand_dt_ids); + +static int s3c24xx_nand_probe_dt(struct platform_device *pdev) +{ + const struct s3c24XX_nand_devtype_data *devtype_data; + struct s3c2410_platform_nand *pdata; + struct s3c2410_nand_info *info = platform_get_drvdata(pdev); + struct device_node *np = pdev->dev.of_node, *child; + struct s3c2410_nand_set *sets; + + devtype_data = of_device_get_match_data(&pdev->dev); + if (!devtype_data) + return -ENODEV; + + info->cpu_type = devtype_data->type; + + pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL); + if (!pdata) + return -ENOMEM; + + pdev->dev.platform_data = pdata; + + pdata->nr_sets = of_get_child_count(np); + if (!pdata->nr_sets) + return 0; + + sets = devm_kcalloc(&pdev->dev, pdata->nr_sets, sizeof(*sets), + GFP_KERNEL); + if (!sets) + return -ENOMEM; + + pdata->sets = sets; + + for_each_available_child_of_node(np, child) { + sets->name = (char *)child->name; + sets->of_node = child; + sets->nr_chips = 1; + + of_node_get(child); + + sets++; + } + + return 0; +} + +static int s3c24xx_nand_probe_pdata(struct platform_device *pdev) +{ + struct s3c2410_nand_info *info = platform_get_drvdata(pdev); + + info->cpu_type = platform_get_device_id(pdev)->driver_data; + + return 0; +} + +/* s3c24xx_nand_probe + * + * called by device layer when it finds a device matching + * one our driver can handled. This code checks to see if + * it can allocate all necessary resources then calls the + * nand layer to look for devices +*/ +static int s3c24xx_nand_probe(struct platform_device *pdev) +{ + struct s3c2410_platform_nand *plat; + struct s3c2410_nand_info *info; + struct s3c2410_nand_mtd *nmtd; + struct s3c2410_nand_set *sets; + struct resource *res; + int err = 0; + int size; + int nr_sets; + int setno; + + info = devm_kzalloc(&pdev->dev, sizeof(*info), GFP_KERNEL); + if (info == NULL) { + err = -ENOMEM; + goto exit_error; + } + + platform_set_drvdata(pdev, info); + + nand_controller_init(&info->controller); + info->controller.ops = &s3c24xx_nand_controller_ops; + + /* get the clock source and enable it */ + + info->clk = devm_clk_get(&pdev->dev, "nand"); + if (IS_ERR(info->clk)) { + dev_err(&pdev->dev, "failed to get clock\n"); + err = -ENOENT; + goto exit_error; + } + + s3c2410_nand_clk_set_state(info, CLOCK_ENABLE); + + if (pdev->dev.of_node) + err = s3c24xx_nand_probe_dt(pdev); + else + err = s3c24xx_nand_probe_pdata(pdev); + + if (err) + goto exit_error; + + plat = to_nand_plat(pdev); + + /* allocate and map the resource */ + + /* currently we assume we have the one resource */ + res = pdev->resource; + size = resource_size(res); + + info->device = &pdev->dev; + info->platform = plat; + + info->regs = devm_ioremap_resource(&pdev->dev, res); + if (IS_ERR(info->regs)) { + err = PTR_ERR(info->regs); + goto exit_error; + } + + dev_dbg(&pdev->dev, "mapped registers at %p\n", info->regs); + + if (!plat->sets || plat->nr_sets < 1) { + err = -EINVAL; + goto exit_error; + } + + sets = plat->sets; + nr_sets = plat->nr_sets; + + info->mtd_count = nr_sets; + + /* allocate our information */ + + size = nr_sets * sizeof(*info->mtds); + info->mtds = devm_kzalloc(&pdev->dev, size, GFP_KERNEL); + if (info->mtds == NULL) { + err = -ENOMEM; + goto exit_error; + } + + /* initialise all possible chips */ + + nmtd = info->mtds; + + for (setno = 0; setno < nr_sets; setno++, nmtd++, sets++) { + struct mtd_info *mtd = nand_to_mtd(&nmtd->chip); + + pr_debug("initialising set %d (%p, info %p)\n", + setno, nmtd, info); + + mtd->dev.parent = &pdev->dev; + s3c2410_nand_init_chip(info, nmtd, sets); + + err = nand_scan(&nmtd->chip, sets ? sets->nr_chips : 1); + if (err) + goto exit_error; + + s3c2410_nand_add_partition(info, nmtd, sets); + } + + /* initialise the hardware */ + err = s3c2410_nand_inithw(info); + if (err != 0) + goto exit_error; + + if (allow_clk_suspend(info)) { + dev_info(&pdev->dev, "clock idle support enabled\n"); + s3c2410_nand_clk_set_state(info, CLOCK_SUSPEND); + } + + return 0; + + exit_error: + s3c24xx_nand_remove(pdev); + + if (err == 0) + err = -EINVAL; + return err; +} + +/* PM Support */ +#ifdef CONFIG_PM + +static int s3c24xx_nand_suspend(struct platform_device *dev, pm_message_t pm) +{ + struct s3c2410_nand_info *info = platform_get_drvdata(dev); + + if (info) { + info->save_sel = readl(info->sel_reg); + + /* For the moment, we must ensure nFCE is high during + * the time we are suspended. This really should be + * handled by suspending the MTDs we are using, but + * that is currently not the case. */ + + writel(info->save_sel | info->sel_bit, info->sel_reg); + + s3c2410_nand_clk_set_state(info, CLOCK_DISABLE); + } + + return 0; +} + +static int s3c24xx_nand_resume(struct platform_device *dev) +{ + struct s3c2410_nand_info *info = platform_get_drvdata(dev); + unsigned long sel; + + if (info) { + s3c2410_nand_clk_set_state(info, CLOCK_ENABLE); + s3c2410_nand_inithw(info); + + /* Restore the state of the nFCE line. */ + + sel = readl(info->sel_reg); + sel &= ~info->sel_bit; + sel |= info->save_sel & info->sel_bit; + writel(sel, info->sel_reg); + + s3c2410_nand_clk_set_state(info, CLOCK_SUSPEND); + } + + return 0; +} + +#else +#define s3c24xx_nand_suspend NULL +#define s3c24xx_nand_resume NULL +#endif + +/* driver device registration */ + +static const struct platform_device_id s3c24xx_driver_ids[] = { + { + .name = "s3c2410-nand", + .driver_data = TYPE_S3C2410, + }, { + .name = "s3c2440-nand", + .driver_data = TYPE_S3C2440, + }, { + .name = "s3c2412-nand", + .driver_data = TYPE_S3C2412, + }, { + .name = "s3c6400-nand", + .driver_data = TYPE_S3C2412, /* compatible with 2412 */ + }, + { } +}; + +MODULE_DEVICE_TABLE(platform, s3c24xx_driver_ids); + +static struct platform_driver s3c24xx_nand_driver = { + .probe = s3c24xx_nand_probe, + .remove_new = s3c24xx_nand_remove, + .suspend = s3c24xx_nand_suspend, + .resume = s3c24xx_nand_resume, + .id_table = s3c24xx_driver_ids, + .driver = { + .name = "s3c24xx-nand", + .of_match_table = s3c24xx_nand_dt_ids, + }, +}; + +module_platform_driver(s3c24xx_nand_driver); + +MODULE_LICENSE("GPL"); +MODULE_AUTHOR("Ben Dooks <ben@simtec.co.uk>"); +MODULE_DESCRIPTION("S3C24XX MTD NAND driver"); diff --git a/drivers/mtd/nand/raw/sh_flctl.c b/drivers/mtd/nand/raw/sh_flctl.c new file mode 100644 index 0000000000..3e5df75cbc --- /dev/null +++ b/drivers/mtd/nand/raw/sh_flctl.c @@ -0,0 +1,1230 @@ +// SPDX-License-Identifier: GPL-2.0 +/* + * SuperH FLCTL nand controller + * + * Copyright (c) 2008 Renesas Solutions Corp. + * Copyright (c) 2008 Atom Create Engineering Co., Ltd. + * + * Based on fsl_elbc_nand.c, Copyright (c) 2006-2007 Freescale Semiconductor + */ + +#include <linux/module.h> +#include <linux/kernel.h> +#include <linux/completion.h> +#include <linux/delay.h> +#include <linux/dmaengine.h> +#include <linux/dma-mapping.h> +#include <linux/interrupt.h> +#include <linux/io.h> +#include <linux/of.h> +#include <linux/platform_device.h> +#include <linux/pm_runtime.h> +#include <linux/sh_dma.h> +#include <linux/slab.h> +#include <linux/string.h> + +#include <linux/mtd/mtd.h> +#include <linux/mtd/rawnand.h> +#include <linux/mtd/partitions.h> +#include <linux/mtd/sh_flctl.h> + +static int flctl_4secc_ooblayout_sp_ecc(struct mtd_info *mtd, int section, + struct mtd_oob_region *oobregion) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + + if (section) + return -ERANGE; + + oobregion->offset = 0; + oobregion->length = chip->ecc.bytes; + + return 0; +} + +static int flctl_4secc_ooblayout_sp_free(struct mtd_info *mtd, int section, + struct mtd_oob_region *oobregion) +{ + if (section) + return -ERANGE; + + oobregion->offset = 12; + oobregion->length = 4; + + return 0; +} + +static const struct mtd_ooblayout_ops flctl_4secc_oob_smallpage_ops = { + .ecc = flctl_4secc_ooblayout_sp_ecc, + .free = flctl_4secc_ooblayout_sp_free, +}; + +static int flctl_4secc_ooblayout_lp_ecc(struct mtd_info *mtd, int section, + struct mtd_oob_region *oobregion) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + + if (section >= chip->ecc.steps) + return -ERANGE; + + oobregion->offset = (section * 16) + 6; + oobregion->length = chip->ecc.bytes; + + return 0; +} + +static int flctl_4secc_ooblayout_lp_free(struct mtd_info *mtd, int section, + struct mtd_oob_region *oobregion) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + + if (section >= chip->ecc.steps) + return -ERANGE; + + oobregion->offset = section * 16; + oobregion->length = 6; + + if (!section) { + oobregion->offset += 2; + oobregion->length -= 2; + } + + return 0; +} + +static const struct mtd_ooblayout_ops flctl_4secc_oob_largepage_ops = { + .ecc = flctl_4secc_ooblayout_lp_ecc, + .free = flctl_4secc_ooblayout_lp_free, +}; + +static uint8_t scan_ff_pattern[] = { 0xff, 0xff }; + +static struct nand_bbt_descr flctl_4secc_smallpage = { + .offs = 11, + .len = 1, + .pattern = scan_ff_pattern, +}; + +static struct nand_bbt_descr flctl_4secc_largepage = { + .offs = 0, + .len = 2, + .pattern = scan_ff_pattern, +}; + +static void empty_fifo(struct sh_flctl *flctl) +{ + writel(flctl->flintdmacr_base | AC1CLR | AC0CLR, FLINTDMACR(flctl)); + writel(flctl->flintdmacr_base, FLINTDMACR(flctl)); +} + +static void start_translation(struct sh_flctl *flctl) +{ + writeb(TRSTRT, FLTRCR(flctl)); +} + +static void timeout_error(struct sh_flctl *flctl, const char *str) +{ + dev_err(&flctl->pdev->dev, "Timeout occurred in %s\n", str); +} + +static void wait_completion(struct sh_flctl *flctl) +{ + uint32_t timeout = LOOP_TIMEOUT_MAX; + + while (timeout--) { + if (readb(FLTRCR(flctl)) & TREND) { + writeb(0x0, FLTRCR(flctl)); + return; + } + udelay(1); + } + + timeout_error(flctl, __func__); + writeb(0x0, FLTRCR(flctl)); +} + +static void flctl_dma_complete(void *param) +{ + struct sh_flctl *flctl = param; + + complete(&flctl->dma_complete); +} + +static void flctl_release_dma(struct sh_flctl *flctl) +{ + if (flctl->chan_fifo0_rx) { + dma_release_channel(flctl->chan_fifo0_rx); + flctl->chan_fifo0_rx = NULL; + } + if (flctl->chan_fifo0_tx) { + dma_release_channel(flctl->chan_fifo0_tx); + flctl->chan_fifo0_tx = NULL; + } +} + +static void flctl_setup_dma(struct sh_flctl *flctl) +{ + dma_cap_mask_t mask; + struct dma_slave_config cfg; + struct platform_device *pdev = flctl->pdev; + struct sh_flctl_platform_data *pdata = dev_get_platdata(&pdev->dev); + int ret; + + if (!pdata) + return; + + if (pdata->slave_id_fifo0_tx <= 0 || pdata->slave_id_fifo0_rx <= 0) + return; + + /* We can only either use DMA for both Tx and Rx or not use it at all */ + dma_cap_zero(mask); + dma_cap_set(DMA_SLAVE, mask); + + flctl->chan_fifo0_tx = dma_request_channel(mask, shdma_chan_filter, + (void *)(uintptr_t)pdata->slave_id_fifo0_tx); + dev_dbg(&pdev->dev, "%s: TX: got channel %p\n", __func__, + flctl->chan_fifo0_tx); + + if (!flctl->chan_fifo0_tx) + return; + + memset(&cfg, 0, sizeof(cfg)); + cfg.direction = DMA_MEM_TO_DEV; + cfg.dst_addr = flctl->fifo; + cfg.src_addr = 0; + ret = dmaengine_slave_config(flctl->chan_fifo0_tx, &cfg); + if (ret < 0) + goto err; + + flctl->chan_fifo0_rx = dma_request_channel(mask, shdma_chan_filter, + (void *)(uintptr_t)pdata->slave_id_fifo0_rx); + dev_dbg(&pdev->dev, "%s: RX: got channel %p\n", __func__, + flctl->chan_fifo0_rx); + + if (!flctl->chan_fifo0_rx) + goto err; + + cfg.direction = DMA_DEV_TO_MEM; + cfg.dst_addr = 0; + cfg.src_addr = flctl->fifo; + ret = dmaengine_slave_config(flctl->chan_fifo0_rx, &cfg); + if (ret < 0) + goto err; + + init_completion(&flctl->dma_complete); + + return; + +err: + flctl_release_dma(flctl); +} + +static void set_addr(struct mtd_info *mtd, int column, int page_addr) +{ + struct sh_flctl *flctl = mtd_to_flctl(mtd); + uint32_t addr = 0; + + if (column == -1) { + addr = page_addr; /* ERASE1 */ + } else if (page_addr != -1) { + /* SEQIN, READ0, etc.. */ + if (flctl->chip.options & NAND_BUSWIDTH_16) + column >>= 1; + if (flctl->page_size) { + addr = column & 0x0FFF; + addr |= (page_addr & 0xff) << 16; + addr |= ((page_addr >> 8) & 0xff) << 24; + /* big than 128MB */ + if (flctl->rw_ADRCNT == ADRCNT2_E) { + uint32_t addr2; + addr2 = (page_addr >> 16) & 0xff; + writel(addr2, FLADR2(flctl)); + } + } else { + addr = column; + addr |= (page_addr & 0xff) << 8; + addr |= ((page_addr >> 8) & 0xff) << 16; + addr |= ((page_addr >> 16) & 0xff) << 24; + } + } + writel(addr, FLADR(flctl)); +} + +static void wait_rfifo_ready(struct sh_flctl *flctl) +{ + uint32_t timeout = LOOP_TIMEOUT_MAX; + + while (timeout--) { + uint32_t val; + /* check FIFO */ + val = readl(FLDTCNTR(flctl)) >> 16; + if (val & 0xFF) + return; + udelay(1); + } + timeout_error(flctl, __func__); +} + +static void wait_wfifo_ready(struct sh_flctl *flctl) +{ + uint32_t len, timeout = LOOP_TIMEOUT_MAX; + + while (timeout--) { + /* check FIFO */ + len = (readl(FLDTCNTR(flctl)) >> 16) & 0xFF; + if (len >= 4) + return; + udelay(1); + } + timeout_error(flctl, __func__); +} + +static enum flctl_ecc_res_t wait_recfifo_ready + (struct sh_flctl *flctl, int sector_number) +{ + uint32_t timeout = LOOP_TIMEOUT_MAX; + void __iomem *ecc_reg[4]; + int i; + int state = FL_SUCCESS; + uint32_t data, size; + + /* + * First this loops checks in FLDTCNTR if we are ready to read out the + * oob data. This is the case if either all went fine without errors or + * if the bottom part of the loop corrected the errors or marked them as + * uncorrectable and the controller is given time to push the data into + * the FIFO. + */ + while (timeout--) { + /* check if all is ok and we can read out the OOB */ + size = readl(FLDTCNTR(flctl)) >> 24; + if ((size & 0xFF) == 4) + return state; + + /* check if a correction code has been calculated */ + if (!(readl(FL4ECCCR(flctl)) & _4ECCEND)) { + /* + * either we wait for the fifo to be filled or a + * correction pattern is being generated + */ + udelay(1); + continue; + } + + /* check for an uncorrectable error */ + if (readl(FL4ECCCR(flctl)) & _4ECCFA) { + /* check if we face a non-empty page */ + for (i = 0; i < 512; i++) { + if (flctl->done_buff[i] != 0xff) { + state = FL_ERROR; /* can't correct */ + break; + } + } + + if (state == FL_SUCCESS) + dev_dbg(&flctl->pdev->dev, + "reading empty sector %d, ecc error ignored\n", + sector_number); + + writel(0, FL4ECCCR(flctl)); + continue; + } + + /* start error correction */ + ecc_reg[0] = FL4ECCRESULT0(flctl); + ecc_reg[1] = FL4ECCRESULT1(flctl); + ecc_reg[2] = FL4ECCRESULT2(flctl); + ecc_reg[3] = FL4ECCRESULT3(flctl); + + for (i = 0; i < 3; i++) { + uint8_t org; + unsigned int index; + + data = readl(ecc_reg[i]); + + if (flctl->page_size) + index = (512 * sector_number) + + (data >> 16); + else + index = data >> 16; + + org = flctl->done_buff[index]; + flctl->done_buff[index] = org ^ (data & 0xFF); + } + state = FL_REPAIRABLE; + writel(0, FL4ECCCR(flctl)); + } + + timeout_error(flctl, __func__); + return FL_TIMEOUT; /* timeout */ +} + +static void wait_wecfifo_ready(struct sh_flctl *flctl) +{ + uint32_t timeout = LOOP_TIMEOUT_MAX; + uint32_t len; + + while (timeout--) { + /* check FLECFIFO */ + len = (readl(FLDTCNTR(flctl)) >> 24) & 0xFF; + if (len >= 4) + return; + udelay(1); + } + timeout_error(flctl, __func__); +} + +static int flctl_dma_fifo0_transfer(struct sh_flctl *flctl, unsigned long *buf, + int len, enum dma_data_direction dir) +{ + struct dma_async_tx_descriptor *desc = NULL; + struct dma_chan *chan; + enum dma_transfer_direction tr_dir; + dma_addr_t dma_addr; + dma_cookie_t cookie; + uint32_t reg; + int ret = 0; + unsigned long time_left; + + if (dir == DMA_FROM_DEVICE) { + chan = flctl->chan_fifo0_rx; + tr_dir = DMA_DEV_TO_MEM; + } else { + chan = flctl->chan_fifo0_tx; + tr_dir = DMA_MEM_TO_DEV; + } + + dma_addr = dma_map_single(chan->device->dev, buf, len, dir); + + if (!dma_mapping_error(chan->device->dev, dma_addr)) + desc = dmaengine_prep_slave_single(chan, dma_addr, len, + tr_dir, DMA_PREP_INTERRUPT | DMA_CTRL_ACK); + + if (desc) { + reg = readl(FLINTDMACR(flctl)); + reg |= DREQ0EN; + writel(reg, FLINTDMACR(flctl)); + + desc->callback = flctl_dma_complete; + desc->callback_param = flctl; + cookie = dmaengine_submit(desc); + if (dma_submit_error(cookie)) { + ret = dma_submit_error(cookie); + dev_warn(&flctl->pdev->dev, + "DMA submit failed, falling back to PIO\n"); + goto out; + } + + dma_async_issue_pending(chan); + } else { + /* DMA failed, fall back to PIO */ + flctl_release_dma(flctl); + dev_warn(&flctl->pdev->dev, + "DMA failed, falling back to PIO\n"); + ret = -EIO; + goto out; + } + + time_left = + wait_for_completion_timeout(&flctl->dma_complete, + msecs_to_jiffies(3000)); + + if (time_left == 0) { + dmaengine_terminate_all(chan); + dev_err(&flctl->pdev->dev, "wait_for_completion_timeout\n"); + ret = -ETIMEDOUT; + } + +out: + reg = readl(FLINTDMACR(flctl)); + reg &= ~DREQ0EN; + writel(reg, FLINTDMACR(flctl)); + + dma_unmap_single(chan->device->dev, dma_addr, len, dir); + + /* ret == 0 is success */ + return ret; +} + +static void read_datareg(struct sh_flctl *flctl, int offset) +{ + unsigned long data; + unsigned long *buf = (unsigned long *)&flctl->done_buff[offset]; + + wait_completion(flctl); + + data = readl(FLDATAR(flctl)); + *buf = le32_to_cpu(data); +} + +static void read_fiforeg(struct sh_flctl *flctl, int rlen, int offset) +{ + int i, len_4align; + unsigned long *buf = (unsigned long *)&flctl->done_buff[offset]; + + len_4align = (rlen + 3) / 4; + + /* initiate DMA transfer */ + if (flctl->chan_fifo0_rx && rlen >= 32 && + !flctl_dma_fifo0_transfer(flctl, buf, rlen, DMA_FROM_DEVICE)) + goto convert; /* DMA success */ + + /* do polling transfer */ + for (i = 0; i < len_4align; i++) { + wait_rfifo_ready(flctl); + buf[i] = readl(FLDTFIFO(flctl)); + } + +convert: + for (i = 0; i < len_4align; i++) + buf[i] = be32_to_cpu(buf[i]); +} + +static enum flctl_ecc_res_t read_ecfiforeg + (struct sh_flctl *flctl, uint8_t *buff, int sector) +{ + int i; + enum flctl_ecc_res_t res; + unsigned long *ecc_buf = (unsigned long *)buff; + + res = wait_recfifo_ready(flctl , sector); + + if (res != FL_ERROR) { + for (i = 0; i < 4; i++) { + ecc_buf[i] = readl(FLECFIFO(flctl)); + ecc_buf[i] = be32_to_cpu(ecc_buf[i]); + } + } + + return res; +} + +static void write_fiforeg(struct sh_flctl *flctl, int rlen, + unsigned int offset) +{ + int i, len_4align; + unsigned long *buf = (unsigned long *)&flctl->done_buff[offset]; + + len_4align = (rlen + 3) / 4; + for (i = 0; i < len_4align; i++) { + wait_wfifo_ready(flctl); + writel(cpu_to_be32(buf[i]), FLDTFIFO(flctl)); + } +} + +static void write_ec_fiforeg(struct sh_flctl *flctl, int rlen, + unsigned int offset) +{ + int i, len_4align; + unsigned long *buf = (unsigned long *)&flctl->done_buff[offset]; + + len_4align = (rlen + 3) / 4; + + for (i = 0; i < len_4align; i++) + buf[i] = cpu_to_be32(buf[i]); + + /* initiate DMA transfer */ + if (flctl->chan_fifo0_tx && rlen >= 32 && + !flctl_dma_fifo0_transfer(flctl, buf, rlen, DMA_TO_DEVICE)) + return; /* DMA success */ + + /* do polling transfer */ + for (i = 0; i < len_4align; i++) { + wait_wecfifo_ready(flctl); + writel(buf[i], FLECFIFO(flctl)); + } +} + +static void set_cmd_regs(struct mtd_info *mtd, uint32_t cmd, uint32_t flcmcdr_val) +{ + struct sh_flctl *flctl = mtd_to_flctl(mtd); + uint32_t flcmncr_val = flctl->flcmncr_base & ~SEL_16BIT; + uint32_t flcmdcr_val, addr_len_bytes = 0; + + /* Set SNAND bit if page size is 2048byte */ + if (flctl->page_size) + flcmncr_val |= SNAND_E; + else + flcmncr_val &= ~SNAND_E; + + /* default FLCMDCR val */ + flcmdcr_val = DOCMD1_E | DOADR_E; + + /* Set for FLCMDCR */ + switch (cmd) { + case NAND_CMD_ERASE1: + addr_len_bytes = flctl->erase_ADRCNT; + flcmdcr_val |= DOCMD2_E; + break; + case NAND_CMD_READ0: + case NAND_CMD_READOOB: + case NAND_CMD_RNDOUT: + addr_len_bytes = flctl->rw_ADRCNT; + flcmdcr_val |= CDSRC_E; + if (flctl->chip.options & NAND_BUSWIDTH_16) + flcmncr_val |= SEL_16BIT; + break; + case NAND_CMD_SEQIN: + /* This case is that cmd is READ0 or READ1 or READ00 */ + flcmdcr_val &= ~DOADR_E; /* ONLY execute 1st cmd */ + break; + case NAND_CMD_PAGEPROG: + addr_len_bytes = flctl->rw_ADRCNT; + flcmdcr_val |= DOCMD2_E | CDSRC_E | SELRW; + if (flctl->chip.options & NAND_BUSWIDTH_16) + flcmncr_val |= SEL_16BIT; + break; + case NAND_CMD_READID: + flcmncr_val &= ~SNAND_E; + flcmdcr_val |= CDSRC_E; + addr_len_bytes = ADRCNT_1; + break; + case NAND_CMD_STATUS: + case NAND_CMD_RESET: + flcmncr_val &= ~SNAND_E; + flcmdcr_val &= ~(DOADR_E | DOSR_E); + break; + default: + break; + } + + /* Set address bytes parameter */ + flcmdcr_val |= addr_len_bytes; + + /* Now actually write */ + writel(flcmncr_val, FLCMNCR(flctl)); + writel(flcmdcr_val, FLCMDCR(flctl)); + writel(flcmcdr_val, FLCMCDR(flctl)); +} + +static int flctl_read_page_hwecc(struct nand_chip *chip, uint8_t *buf, + int oob_required, int page) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + + nand_read_page_op(chip, page, 0, buf, mtd->writesize); + if (oob_required) + chip->legacy.read_buf(chip, chip->oob_poi, mtd->oobsize); + return 0; +} + +static int flctl_write_page_hwecc(struct nand_chip *chip, const uint8_t *buf, + int oob_required, int page) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + + nand_prog_page_begin_op(chip, page, 0, buf, mtd->writesize); + chip->legacy.write_buf(chip, chip->oob_poi, mtd->oobsize); + return nand_prog_page_end_op(chip); +} + +static void execmd_read_page_sector(struct mtd_info *mtd, int page_addr) +{ + struct sh_flctl *flctl = mtd_to_flctl(mtd); + int sector, page_sectors; + enum flctl_ecc_res_t ecc_result; + + page_sectors = flctl->page_size ? 4 : 1; + + set_cmd_regs(mtd, NAND_CMD_READ0, + (NAND_CMD_READSTART << 8) | NAND_CMD_READ0); + + writel(readl(FLCMNCR(flctl)) | ACM_SACCES_MODE | _4ECCCORRECT, + FLCMNCR(flctl)); + writel(readl(FLCMDCR(flctl)) | page_sectors, FLCMDCR(flctl)); + writel(page_addr << 2, FLADR(flctl)); + + empty_fifo(flctl); + start_translation(flctl); + + for (sector = 0; sector < page_sectors; sector++) { + read_fiforeg(flctl, 512, 512 * sector); + + ecc_result = read_ecfiforeg(flctl, + &flctl->done_buff[mtd->writesize + 16 * sector], + sector); + + switch (ecc_result) { + case FL_REPAIRABLE: + dev_info(&flctl->pdev->dev, + "applied ecc on page 0x%x", page_addr); + mtd->ecc_stats.corrected++; + break; + case FL_ERROR: + dev_warn(&flctl->pdev->dev, + "page 0x%x contains corrupted data\n", + page_addr); + mtd->ecc_stats.failed++; + break; + default: + ; + } + } + + wait_completion(flctl); + + writel(readl(FLCMNCR(flctl)) & ~(ACM_SACCES_MODE | _4ECCCORRECT), + FLCMNCR(flctl)); +} + +static void execmd_read_oob(struct mtd_info *mtd, int page_addr) +{ + struct sh_flctl *flctl = mtd_to_flctl(mtd); + int page_sectors = flctl->page_size ? 4 : 1; + int i; + + set_cmd_regs(mtd, NAND_CMD_READ0, + (NAND_CMD_READSTART << 8) | NAND_CMD_READ0); + + empty_fifo(flctl); + + for (i = 0; i < page_sectors; i++) { + set_addr(mtd, (512 + 16) * i + 512 , page_addr); + writel(16, FLDTCNTR(flctl)); + + start_translation(flctl); + read_fiforeg(flctl, 16, 16 * i); + wait_completion(flctl); + } +} + +static void execmd_write_page_sector(struct mtd_info *mtd) +{ + struct sh_flctl *flctl = mtd_to_flctl(mtd); + int page_addr = flctl->seqin_page_addr; + int sector, page_sectors; + + page_sectors = flctl->page_size ? 4 : 1; + + set_cmd_regs(mtd, NAND_CMD_PAGEPROG, + (NAND_CMD_PAGEPROG << 8) | NAND_CMD_SEQIN); + + empty_fifo(flctl); + writel(readl(FLCMNCR(flctl)) | ACM_SACCES_MODE, FLCMNCR(flctl)); + writel(readl(FLCMDCR(flctl)) | page_sectors, FLCMDCR(flctl)); + writel(page_addr << 2, FLADR(flctl)); + start_translation(flctl); + + for (sector = 0; sector < page_sectors; sector++) { + write_fiforeg(flctl, 512, 512 * sector); + write_ec_fiforeg(flctl, 16, mtd->writesize + 16 * sector); + } + + wait_completion(flctl); + writel(readl(FLCMNCR(flctl)) & ~ACM_SACCES_MODE, FLCMNCR(flctl)); +} + +static void execmd_write_oob(struct mtd_info *mtd) +{ + struct sh_flctl *flctl = mtd_to_flctl(mtd); + int page_addr = flctl->seqin_page_addr; + int sector, page_sectors; + + page_sectors = flctl->page_size ? 4 : 1; + + set_cmd_regs(mtd, NAND_CMD_PAGEPROG, + (NAND_CMD_PAGEPROG << 8) | NAND_CMD_SEQIN); + + for (sector = 0; sector < page_sectors; sector++) { + empty_fifo(flctl); + set_addr(mtd, sector * 528 + 512, page_addr); + writel(16, FLDTCNTR(flctl)); /* set read size */ + + start_translation(flctl); + write_fiforeg(flctl, 16, 16 * sector); + wait_completion(flctl); + } +} + +static void flctl_cmdfunc(struct nand_chip *chip, unsigned int command, + int column, int page_addr) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + struct sh_flctl *flctl = mtd_to_flctl(mtd); + uint32_t read_cmd = 0; + + pm_runtime_get_sync(&flctl->pdev->dev); + + flctl->read_bytes = 0; + if (command != NAND_CMD_PAGEPROG) + flctl->index = 0; + + switch (command) { + case NAND_CMD_READ1: + case NAND_CMD_READ0: + if (flctl->hwecc) { + /* read page with hwecc */ + execmd_read_page_sector(mtd, page_addr); + break; + } + if (flctl->page_size) + set_cmd_regs(mtd, command, (NAND_CMD_READSTART << 8) + | command); + else + set_cmd_regs(mtd, command, command); + + set_addr(mtd, 0, page_addr); + + flctl->read_bytes = mtd->writesize + mtd->oobsize; + if (flctl->chip.options & NAND_BUSWIDTH_16) + column >>= 1; + flctl->index += column; + goto read_normal_exit; + + case NAND_CMD_READOOB: + if (flctl->hwecc) { + /* read page with hwecc */ + execmd_read_oob(mtd, page_addr); + break; + } + + if (flctl->page_size) { + set_cmd_regs(mtd, command, (NAND_CMD_READSTART << 8) + | NAND_CMD_READ0); + set_addr(mtd, mtd->writesize, page_addr); + } else { + set_cmd_regs(mtd, command, command); + set_addr(mtd, 0, page_addr); + } + flctl->read_bytes = mtd->oobsize; + goto read_normal_exit; + + case NAND_CMD_RNDOUT: + if (flctl->hwecc) + break; + + if (flctl->page_size) + set_cmd_regs(mtd, command, (NAND_CMD_RNDOUTSTART << 8) + | command); + else + set_cmd_regs(mtd, command, command); + + set_addr(mtd, column, 0); + + flctl->read_bytes = mtd->writesize + mtd->oobsize - column; + goto read_normal_exit; + + case NAND_CMD_READID: + set_cmd_regs(mtd, command, command); + + /* READID is always performed using an 8-bit bus */ + if (flctl->chip.options & NAND_BUSWIDTH_16) + column <<= 1; + set_addr(mtd, column, 0); + + flctl->read_bytes = 8; + writel(flctl->read_bytes, FLDTCNTR(flctl)); /* set read size */ + empty_fifo(flctl); + start_translation(flctl); + read_fiforeg(flctl, flctl->read_bytes, 0); + wait_completion(flctl); + break; + + case NAND_CMD_ERASE1: + flctl->erase1_page_addr = page_addr; + break; + + case NAND_CMD_ERASE2: + set_cmd_regs(mtd, NAND_CMD_ERASE1, + (command << 8) | NAND_CMD_ERASE1); + set_addr(mtd, -1, flctl->erase1_page_addr); + start_translation(flctl); + wait_completion(flctl); + break; + + case NAND_CMD_SEQIN: + if (!flctl->page_size) { + /* output read command */ + if (column >= mtd->writesize) { + column -= mtd->writesize; + read_cmd = NAND_CMD_READOOB; + } else if (column < 256) { + read_cmd = NAND_CMD_READ0; + } else { + column -= 256; + read_cmd = NAND_CMD_READ1; + } + } + flctl->seqin_column = column; + flctl->seqin_page_addr = page_addr; + flctl->seqin_read_cmd = read_cmd; + break; + + case NAND_CMD_PAGEPROG: + empty_fifo(flctl); + if (!flctl->page_size) { + set_cmd_regs(mtd, NAND_CMD_SEQIN, + flctl->seqin_read_cmd); + set_addr(mtd, -1, -1); + writel(0, FLDTCNTR(flctl)); /* set 0 size */ + start_translation(flctl); + wait_completion(flctl); + } + if (flctl->hwecc) { + /* write page with hwecc */ + if (flctl->seqin_column == mtd->writesize) + execmd_write_oob(mtd); + else if (!flctl->seqin_column) + execmd_write_page_sector(mtd); + else + pr_err("Invalid address !?\n"); + break; + } + set_cmd_regs(mtd, command, (command << 8) | NAND_CMD_SEQIN); + set_addr(mtd, flctl->seqin_column, flctl->seqin_page_addr); + writel(flctl->index, FLDTCNTR(flctl)); /* set write size */ + start_translation(flctl); + write_fiforeg(flctl, flctl->index, 0); + wait_completion(flctl); + break; + + case NAND_CMD_STATUS: + set_cmd_regs(mtd, command, command); + set_addr(mtd, -1, -1); + + flctl->read_bytes = 1; + writel(flctl->read_bytes, FLDTCNTR(flctl)); /* set read size */ + start_translation(flctl); + read_datareg(flctl, 0); /* read and end */ + break; + + case NAND_CMD_RESET: + set_cmd_regs(mtd, command, command); + set_addr(mtd, -1, -1); + + writel(0, FLDTCNTR(flctl)); /* set 0 size */ + start_translation(flctl); + wait_completion(flctl); + break; + + default: + break; + } + goto runtime_exit; + +read_normal_exit: + writel(flctl->read_bytes, FLDTCNTR(flctl)); /* set read size */ + empty_fifo(flctl); + start_translation(flctl); + read_fiforeg(flctl, flctl->read_bytes, 0); + wait_completion(flctl); +runtime_exit: + pm_runtime_put_sync(&flctl->pdev->dev); + return; +} + +static void flctl_select_chip(struct nand_chip *chip, int chipnr) +{ + struct sh_flctl *flctl = mtd_to_flctl(nand_to_mtd(chip)); + int ret; + + switch (chipnr) { + case -1: + flctl->flcmncr_base &= ~CE0_ENABLE; + + pm_runtime_get_sync(&flctl->pdev->dev); + writel(flctl->flcmncr_base, FLCMNCR(flctl)); + + if (flctl->qos_request) { + dev_pm_qos_remove_request(&flctl->pm_qos); + flctl->qos_request = 0; + } + + pm_runtime_put_sync(&flctl->pdev->dev); + break; + case 0: + flctl->flcmncr_base |= CE0_ENABLE; + + if (!flctl->qos_request) { + ret = dev_pm_qos_add_request(&flctl->pdev->dev, + &flctl->pm_qos, + DEV_PM_QOS_RESUME_LATENCY, + 100); + if (ret < 0) + dev_err(&flctl->pdev->dev, + "PM QoS request failed: %d\n", ret); + flctl->qos_request = 1; + } + + if (flctl->holden) { + pm_runtime_get_sync(&flctl->pdev->dev); + writel(HOLDEN, FLHOLDCR(flctl)); + pm_runtime_put_sync(&flctl->pdev->dev); + } + break; + default: + BUG(); + } +} + +static void flctl_write_buf(struct nand_chip *chip, const uint8_t *buf, int len) +{ + struct sh_flctl *flctl = mtd_to_flctl(nand_to_mtd(chip)); + + memcpy(&flctl->done_buff[flctl->index], buf, len); + flctl->index += len; +} + +static uint8_t flctl_read_byte(struct nand_chip *chip) +{ + struct sh_flctl *flctl = mtd_to_flctl(nand_to_mtd(chip)); + uint8_t data; + + data = flctl->done_buff[flctl->index]; + flctl->index++; + return data; +} + +static void flctl_read_buf(struct nand_chip *chip, uint8_t *buf, int len) +{ + struct sh_flctl *flctl = mtd_to_flctl(nand_to_mtd(chip)); + + memcpy(buf, &flctl->done_buff[flctl->index], len); + flctl->index += len; +} + +static int flctl_chip_attach_chip(struct nand_chip *chip) +{ + u64 targetsize = nanddev_target_size(&chip->base); + struct mtd_info *mtd = nand_to_mtd(chip); + struct sh_flctl *flctl = mtd_to_flctl(mtd); + + /* + * NAND_BUSWIDTH_16 may have been set by nand_scan_ident(). + * Add the SEL_16BIT flag in flctl->flcmncr_base. + */ + if (chip->options & NAND_BUSWIDTH_16) + flctl->flcmncr_base |= SEL_16BIT; + + if (mtd->writesize == 512) { + flctl->page_size = 0; + if (targetsize > (32 << 20)) { + /* big than 32MB */ + flctl->rw_ADRCNT = ADRCNT_4; + flctl->erase_ADRCNT = ADRCNT_3; + } else if (targetsize > (2 << 16)) { + /* big than 128KB */ + flctl->rw_ADRCNT = ADRCNT_3; + flctl->erase_ADRCNT = ADRCNT_2; + } else { + flctl->rw_ADRCNT = ADRCNT_2; + flctl->erase_ADRCNT = ADRCNT_1; + } + } else { + flctl->page_size = 1; + if (targetsize > (128 << 20)) { + /* big than 128MB */ + flctl->rw_ADRCNT = ADRCNT2_E; + flctl->erase_ADRCNT = ADRCNT_3; + } else if (targetsize > (8 << 16)) { + /* big than 512KB */ + flctl->rw_ADRCNT = ADRCNT_4; + flctl->erase_ADRCNT = ADRCNT_2; + } else { + flctl->rw_ADRCNT = ADRCNT_3; + flctl->erase_ADRCNT = ADRCNT_1; + } + } + + if (flctl->hwecc) { + if (mtd->writesize == 512) { + mtd_set_ooblayout(mtd, &flctl_4secc_oob_smallpage_ops); + chip->badblock_pattern = &flctl_4secc_smallpage; + } else { + mtd_set_ooblayout(mtd, &flctl_4secc_oob_largepage_ops); + chip->badblock_pattern = &flctl_4secc_largepage; + } + + chip->ecc.size = 512; + chip->ecc.bytes = 10; + chip->ecc.strength = 4; + chip->ecc.read_page = flctl_read_page_hwecc; + chip->ecc.write_page = flctl_write_page_hwecc; + chip->ecc.engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST; + + /* 4 symbols ECC enabled */ + flctl->flcmncr_base |= _4ECCEN; + } else { + chip->ecc.engine_type = NAND_ECC_ENGINE_TYPE_SOFT; + chip->ecc.algo = NAND_ECC_ALGO_HAMMING; + } + + return 0; +} + +static const struct nand_controller_ops flctl_nand_controller_ops = { + .attach_chip = flctl_chip_attach_chip, +}; + +static irqreturn_t flctl_handle_flste(int irq, void *dev_id) +{ + struct sh_flctl *flctl = dev_id; + + dev_err(&flctl->pdev->dev, "flste irq: %x\n", readl(FLINTDMACR(flctl))); + writel(flctl->flintdmacr_base, FLINTDMACR(flctl)); + + return IRQ_HANDLED; +} + +struct flctl_soc_config { + unsigned long flcmncr_val; + unsigned has_hwecc:1; + unsigned use_holden:1; +}; + +static struct flctl_soc_config flctl_sh7372_config = { + .flcmncr_val = CLK_16B_12L_4H | TYPESEL_SET | SHBUSSEL, + .has_hwecc = 1, + .use_holden = 1, +}; + +static const struct of_device_id of_flctl_match[] = { + { .compatible = "renesas,shmobile-flctl-sh7372", + .data = &flctl_sh7372_config }, + {}, +}; +MODULE_DEVICE_TABLE(of, of_flctl_match); + +static struct sh_flctl_platform_data *flctl_parse_dt(struct device *dev) +{ + const struct flctl_soc_config *config; + struct sh_flctl_platform_data *pdata; + + config = of_device_get_match_data(dev); + if (!config) { + dev_err(dev, "%s: no OF configuration attached\n", __func__); + return NULL; + } + + pdata = devm_kzalloc(dev, sizeof(struct sh_flctl_platform_data), + GFP_KERNEL); + if (!pdata) + return NULL; + + /* set SoC specific options */ + pdata->flcmncr_val = config->flcmncr_val; + pdata->has_hwecc = config->has_hwecc; + pdata->use_holden = config->use_holden; + + return pdata; +} + +static int flctl_probe(struct platform_device *pdev) +{ + struct resource *res; + struct sh_flctl *flctl; + struct mtd_info *flctl_mtd; + struct nand_chip *nand; + struct sh_flctl_platform_data *pdata; + int ret; + int irq; + + flctl = devm_kzalloc(&pdev->dev, sizeof(struct sh_flctl), GFP_KERNEL); + if (!flctl) + return -ENOMEM; + + flctl->reg = devm_platform_get_and_ioremap_resource(pdev, 0, &res); + if (IS_ERR(flctl->reg)) + return PTR_ERR(flctl->reg); + flctl->fifo = res->start + 0x24; /* FLDTFIFO */ + + irq = platform_get_irq(pdev, 0); + if (irq < 0) + return irq; + + ret = devm_request_irq(&pdev->dev, irq, flctl_handle_flste, IRQF_SHARED, + "flste", flctl); + if (ret) { + dev_err(&pdev->dev, "request interrupt failed.\n"); + return ret; + } + + if (pdev->dev.of_node) + pdata = flctl_parse_dt(&pdev->dev); + else + pdata = dev_get_platdata(&pdev->dev); + + if (!pdata) { + dev_err(&pdev->dev, "no setup data defined\n"); + return -EINVAL; + } + + platform_set_drvdata(pdev, flctl); + nand = &flctl->chip; + flctl_mtd = nand_to_mtd(nand); + nand_set_flash_node(nand, pdev->dev.of_node); + flctl_mtd->dev.parent = &pdev->dev; + flctl->pdev = pdev; + flctl->hwecc = pdata->has_hwecc; + flctl->holden = pdata->use_holden; + flctl->flcmncr_base = pdata->flcmncr_val; + flctl->flintdmacr_base = flctl->hwecc ? (STERINTE | ECERB) : STERINTE; + + /* Set address of hardware control function */ + /* 20 us command delay time */ + nand->legacy.chip_delay = 20; + + nand->legacy.read_byte = flctl_read_byte; + nand->legacy.write_buf = flctl_write_buf; + nand->legacy.read_buf = flctl_read_buf; + nand->legacy.select_chip = flctl_select_chip; + nand->legacy.cmdfunc = flctl_cmdfunc; + nand->legacy.set_features = nand_get_set_features_notsupp; + nand->legacy.get_features = nand_get_set_features_notsupp; + + if (pdata->flcmncr_val & SEL_16BIT) + nand->options |= NAND_BUSWIDTH_16; + + nand->options |= NAND_BBM_FIRSTPAGE | NAND_BBM_SECONDPAGE; + + pm_runtime_enable(&pdev->dev); + pm_runtime_resume(&pdev->dev); + + flctl_setup_dma(flctl); + + nand->legacy.dummy_controller.ops = &flctl_nand_controller_ops; + ret = nand_scan(nand, 1); + if (ret) + goto err_chip; + + ret = mtd_device_register(flctl_mtd, pdata->parts, pdata->nr_parts); + if (ret) + goto cleanup_nand; + + return 0; + +cleanup_nand: + nand_cleanup(nand); +err_chip: + flctl_release_dma(flctl); + pm_runtime_disable(&pdev->dev); + return ret; +} + +static void flctl_remove(struct platform_device *pdev) +{ + struct sh_flctl *flctl = platform_get_drvdata(pdev); + struct nand_chip *chip = &flctl->chip; + int ret; + + flctl_release_dma(flctl); + ret = mtd_device_unregister(nand_to_mtd(chip)); + WARN_ON(ret); + nand_cleanup(chip); + pm_runtime_disable(&pdev->dev); +} + +static struct platform_driver flctl_driver = { + .remove_new = flctl_remove, + .driver = { + .name = "sh_flctl", + .of_match_table = of_flctl_match, + }, +}; + +module_platform_driver_probe(flctl_driver, flctl_probe); + +MODULE_LICENSE("GPL v2"); +MODULE_AUTHOR("Yoshihiro Shimoda"); +MODULE_DESCRIPTION("SuperH FLCTL driver"); +MODULE_ALIAS("platform:sh_flctl"); diff --git a/drivers/mtd/nand/raw/sharpsl.c b/drivers/mtd/nand/raw/sharpsl.c new file mode 100644 index 0000000000..2402dc5465 --- /dev/null +++ b/drivers/mtd/nand/raw/sharpsl.c @@ -0,0 +1,244 @@ +// SPDX-License-Identifier: GPL-2.0-only +/* + * Copyright (C) 2004 Richard Purdie + * Copyright (C) 2008 Dmitry Baryshkov + * + * Based on Sharp's NAND driver sharp_sl.c + */ + +#include <linux/slab.h> +#include <linux/module.h> +#include <linux/delay.h> +#include <linux/mtd/mtd.h> +#include <linux/mtd/rawnand.h> +#include <linux/mtd/partitions.h> +#include <linux/mtd/sharpsl.h> +#include <linux/interrupt.h> +#include <linux/platform_device.h> +#include <linux/io.h> + +struct sharpsl_nand { + struct nand_controller controller; + struct nand_chip chip; + + void __iomem *io; +}; + +static inline struct sharpsl_nand *mtd_to_sharpsl(struct mtd_info *mtd) +{ + return container_of(mtd_to_nand(mtd), struct sharpsl_nand, chip); +} + +/* register offset */ +#define ECCLPLB 0x00 /* line parity 7 - 0 bit */ +#define ECCLPUB 0x04 /* line parity 15 - 8 bit */ +#define ECCCP 0x08 /* column parity 5 - 0 bit */ +#define ECCCNTR 0x0C /* ECC byte counter */ +#define ECCCLRR 0x10 /* cleare ECC */ +#define FLASHIO 0x14 /* Flash I/O */ +#define FLASHCTL 0x18 /* Flash Control */ + +/* Flash control bit */ +#define FLRYBY (1 << 5) +#define FLCE1 (1 << 4) +#define FLWP (1 << 3) +#define FLALE (1 << 2) +#define FLCLE (1 << 1) +#define FLCE0 (1 << 0) + +/* + * hardware specific access to control-lines + * ctrl: + * NAND_CNE: bit 0 -> ! bit 0 & 4 + * NAND_CLE: bit 1 -> bit 1 + * NAND_ALE: bit 2 -> bit 2 + * + */ +static void sharpsl_nand_hwcontrol(struct nand_chip *chip, int cmd, + unsigned int ctrl) +{ + struct sharpsl_nand *sharpsl = mtd_to_sharpsl(nand_to_mtd(chip)); + + if (ctrl & NAND_CTRL_CHANGE) { + unsigned char bits = ctrl & 0x07; + + bits |= (ctrl & 0x01) << 4; + + bits ^= 0x11; + + writeb((readb(sharpsl->io + FLASHCTL) & ~0x17) | bits, sharpsl->io + FLASHCTL); + } + + if (cmd != NAND_CMD_NONE) + writeb(cmd, chip->legacy.IO_ADDR_W); +} + +static int sharpsl_nand_dev_ready(struct nand_chip *chip) +{ + struct sharpsl_nand *sharpsl = mtd_to_sharpsl(nand_to_mtd(chip)); + return !((readb(sharpsl->io + FLASHCTL) & FLRYBY) == 0); +} + +static void sharpsl_nand_enable_hwecc(struct nand_chip *chip, int mode) +{ + struct sharpsl_nand *sharpsl = mtd_to_sharpsl(nand_to_mtd(chip)); + writeb(0, sharpsl->io + ECCCLRR); +} + +static int sharpsl_nand_calculate_ecc(struct nand_chip *chip, + const u_char * dat, u_char * ecc_code) +{ + struct sharpsl_nand *sharpsl = mtd_to_sharpsl(nand_to_mtd(chip)); + ecc_code[0] = ~readb(sharpsl->io + ECCLPUB); + ecc_code[1] = ~readb(sharpsl->io + ECCLPLB); + ecc_code[2] = (~readb(sharpsl->io + ECCCP) << 2) | 0x03; + return readb(sharpsl->io + ECCCNTR) != 0; +} + +static int sharpsl_attach_chip(struct nand_chip *chip) +{ + if (chip->ecc.engine_type != NAND_ECC_ENGINE_TYPE_ON_HOST) + return 0; + + chip->ecc.size = 256; + chip->ecc.bytes = 3; + chip->ecc.strength = 1; + chip->ecc.hwctl = sharpsl_nand_enable_hwecc; + chip->ecc.calculate = sharpsl_nand_calculate_ecc; + chip->ecc.correct = rawnand_sw_hamming_correct; + + return 0; +} + +static const struct nand_controller_ops sharpsl_ops = { + .attach_chip = sharpsl_attach_chip, +}; + +/* + * Main initialization routine + */ +static int sharpsl_nand_probe(struct platform_device *pdev) +{ + struct nand_chip *this; + struct mtd_info *mtd; + struct resource *r; + int err = 0; + struct sharpsl_nand *sharpsl; + struct sharpsl_nand_platform_data *data = dev_get_platdata(&pdev->dev); + + if (!data) { + dev_err(&pdev->dev, "no platform data!\n"); + return -EINVAL; + } + + /* Allocate memory for MTD device structure and private data */ + sharpsl = kzalloc(sizeof(struct sharpsl_nand), GFP_KERNEL); + if (!sharpsl) + return -ENOMEM; + + r = platform_get_resource(pdev, IORESOURCE_MEM, 0); + if (!r) { + dev_err(&pdev->dev, "no io memory resource defined!\n"); + err = -ENODEV; + goto err_get_res; + } + + /* map physical address */ + sharpsl->io = ioremap(r->start, resource_size(r)); + if (!sharpsl->io) { + dev_err(&pdev->dev, "ioremap to access Sharp SL NAND chip failed\n"); + err = -EIO; + goto err_ioremap; + } + + /* Get pointer to private data */ + this = (struct nand_chip *)(&sharpsl->chip); + + nand_controller_init(&sharpsl->controller); + sharpsl->controller.ops = &sharpsl_ops; + this->controller = &sharpsl->controller; + + /* Link the private data with the MTD structure */ + mtd = nand_to_mtd(this); + mtd->dev.parent = &pdev->dev; + mtd_set_ooblayout(mtd, data->ecc_layout); + + platform_set_drvdata(pdev, sharpsl); + + /* + * PXA initialize + */ + writeb(readb(sharpsl->io + FLASHCTL) | FLWP, sharpsl->io + FLASHCTL); + + /* Set address of NAND IO lines */ + this->legacy.IO_ADDR_R = sharpsl->io + FLASHIO; + this->legacy.IO_ADDR_W = sharpsl->io + FLASHIO; + /* Set address of hardware control function */ + this->legacy.cmd_ctrl = sharpsl_nand_hwcontrol; + this->legacy.dev_ready = sharpsl_nand_dev_ready; + /* 15 us command delay time */ + this->legacy.chip_delay = 15; + this->badblock_pattern = data->badblock_pattern; + + /* Scan to find existence of the device */ + err = nand_scan(this, 1); + if (err) + goto err_scan; + + /* Register the partitions */ + mtd->name = "sharpsl-nand"; + + err = mtd_device_parse_register(mtd, data->part_parsers, NULL, + data->partitions, data->nr_partitions); + if (err) + goto err_add; + + /* Return happy */ + return 0; + +err_add: + nand_cleanup(this); + +err_scan: + iounmap(sharpsl->io); +err_ioremap: +err_get_res: + kfree(sharpsl); + return err; +} + +/* + * Clean up routine + */ +static void sharpsl_nand_remove(struct platform_device *pdev) +{ + struct sharpsl_nand *sharpsl = platform_get_drvdata(pdev); + struct nand_chip *chip = &sharpsl->chip; + int ret; + + /* Unregister device */ + ret = mtd_device_unregister(nand_to_mtd(chip)); + WARN_ON(ret); + + /* Release resources */ + nand_cleanup(chip); + + iounmap(sharpsl->io); + + /* Free the driver's structure */ + kfree(sharpsl); +} + +static struct platform_driver sharpsl_nand_driver = { + .driver = { + .name = "sharpsl-nand", + }, + .probe = sharpsl_nand_probe, + .remove_new = sharpsl_nand_remove, +}; + +module_platform_driver(sharpsl_nand_driver); + +MODULE_LICENSE("GPL"); +MODULE_AUTHOR("Richard Purdie <rpurdie@rpsys.net>"); +MODULE_DESCRIPTION("Device specific logic for NAND flash on Sharp SL-C7xx Series"); diff --git a/drivers/mtd/nand/raw/sm_common.c b/drivers/mtd/nand/raw/sm_common.c new file mode 100644 index 0000000000..24f52a30fb --- /dev/null +++ b/drivers/mtd/nand/raw/sm_common.c @@ -0,0 +1,210 @@ +// SPDX-License-Identifier: GPL-2.0-only +/* + * Copyright © 2009 - Maxim Levitsky + * Common routines & support for xD format + */ +#include <linux/kernel.h> +#include <linux/mtd/rawnand.h> +#include <linux/module.h> +#include <linux/sizes.h> +#include "sm_common.h" + +static int oob_sm_ooblayout_ecc(struct mtd_info *mtd, int section, + struct mtd_oob_region *oobregion) +{ + if (section > 1) + return -ERANGE; + + oobregion->length = 3; + oobregion->offset = ((section + 1) * 8) - 3; + + return 0; +} + +static int oob_sm_ooblayout_free(struct mtd_info *mtd, int section, + struct mtd_oob_region *oobregion) +{ + switch (section) { + case 0: + /* reserved */ + oobregion->offset = 0; + oobregion->length = 4; + break; + case 1: + /* LBA1 */ + oobregion->offset = 6; + oobregion->length = 2; + break; + case 2: + /* LBA2 */ + oobregion->offset = 11; + oobregion->length = 2; + break; + default: + return -ERANGE; + } + + return 0; +} + +static const struct mtd_ooblayout_ops oob_sm_ops = { + .ecc = oob_sm_ooblayout_ecc, + .free = oob_sm_ooblayout_free, +}; + +/* NOTE: This layout is not compatabable with SmartMedia, */ +/* because the 256 byte devices have page depenent oob layout */ +/* However it does preserve the bad block markers */ +/* If you use smftl, it will bypass this and work correctly */ +/* If you not, then you break SmartMedia compliance anyway */ + +static int oob_sm_small_ooblayout_ecc(struct mtd_info *mtd, int section, + struct mtd_oob_region *oobregion) +{ + if (section) + return -ERANGE; + + oobregion->length = 3; + oobregion->offset = 0; + + return 0; +} + +static int oob_sm_small_ooblayout_free(struct mtd_info *mtd, int section, + struct mtd_oob_region *oobregion) +{ + switch (section) { + case 0: + /* reserved */ + oobregion->offset = 3; + oobregion->length = 2; + break; + case 1: + /* LBA1 */ + oobregion->offset = 6; + oobregion->length = 2; + break; + default: + return -ERANGE; + } + + return 0; +} + +static const struct mtd_ooblayout_ops oob_sm_small_ops = { + .ecc = oob_sm_small_ooblayout_ecc, + .free = oob_sm_small_ooblayout_free, +}; + +static int sm_block_markbad(struct nand_chip *chip, loff_t ofs) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + struct mtd_oob_ops ops = { }; + struct sm_oob oob; + int ret; + + memset(&oob, -1, SM_OOB_SIZE); + oob.block_status = 0x0F; + + /* As long as this function is called on erase block boundaries + it will work correctly for 256 byte nand */ + ops.mode = MTD_OPS_PLACE_OOB; + ops.ooboffs = 0; + ops.ooblen = mtd->oobsize; + ops.oobbuf = (void *)&oob; + ops.datbuf = NULL; + + + ret = mtd_write_oob(mtd, ofs, &ops); + if (ret < 0 || ops.oobretlen != SM_OOB_SIZE) { + pr_notice("sm_common: can't mark sector at %i as bad\n", + (int)ofs); + return -EIO; + } + + return 0; +} + +static struct nand_flash_dev nand_smartmedia_flash_ids[] = { + LEGACY_ID_NAND("SmartMedia 2MiB 3,3V ROM", 0x5d, 2, SZ_8K, NAND_ROM), + LEGACY_ID_NAND("SmartMedia 4MiB 3,3V", 0xe3, 4, SZ_8K, 0), + LEGACY_ID_NAND("SmartMedia 4MiB 3,3/5V", 0xe5, 4, SZ_8K, 0), + LEGACY_ID_NAND("SmartMedia 4MiB 5V", 0x6b, 4, SZ_8K, 0), + LEGACY_ID_NAND("SmartMedia 4MiB 3,3V ROM", 0xd5, 4, SZ_8K, NAND_ROM), + LEGACY_ID_NAND("SmartMedia 8MiB 3,3V", 0xe6, 8, SZ_8K, 0), + LEGACY_ID_NAND("SmartMedia 8MiB 3,3V ROM", 0xd6, 8, SZ_8K, NAND_ROM), + LEGACY_ID_NAND("SmartMedia 16MiB 3,3V", 0x73, 16, SZ_16K, 0), + LEGACY_ID_NAND("SmartMedia 16MiB 3,3V ROM", 0x57, 16, SZ_16K, NAND_ROM), + LEGACY_ID_NAND("SmartMedia 32MiB 3,3V", 0x75, 32, SZ_16K, 0), + LEGACY_ID_NAND("SmartMedia 32MiB 3,3V ROM", 0x58, 32, SZ_16K, NAND_ROM), + LEGACY_ID_NAND("SmartMedia 64MiB 3,3V", 0x76, 64, SZ_16K, 0), + LEGACY_ID_NAND("SmartMedia 64MiB 3,3V ROM", 0xd9, 64, SZ_16K, NAND_ROM), + LEGACY_ID_NAND("SmartMedia 128MiB 3,3V", 0x79, 128, SZ_16K, 0), + LEGACY_ID_NAND("SmartMedia 128MiB 3,3V ROM", 0xda, 128, SZ_16K, NAND_ROM), + LEGACY_ID_NAND("SmartMedia 256MiB 3, 3V", 0x71, 256, SZ_16K, 0), + LEGACY_ID_NAND("SmartMedia 256MiB 3,3V ROM", 0x5b, 256, SZ_16K, NAND_ROM), + {NULL} +}; + +static struct nand_flash_dev nand_xd_flash_ids[] = { + LEGACY_ID_NAND("xD 16MiB 3,3V", 0x73, 16, SZ_16K, 0), + LEGACY_ID_NAND("xD 32MiB 3,3V", 0x75, 32, SZ_16K, 0), + LEGACY_ID_NAND("xD 64MiB 3,3V", 0x76, 64, SZ_16K, 0), + LEGACY_ID_NAND("xD 128MiB 3,3V", 0x79, 128, SZ_16K, 0), + LEGACY_ID_NAND("xD 256MiB 3,3V", 0x71, 256, SZ_16K, NAND_BROKEN_XD), + LEGACY_ID_NAND("xD 512MiB 3,3V", 0xdc, 512, SZ_16K, NAND_BROKEN_XD), + LEGACY_ID_NAND("xD 1GiB 3,3V", 0xd3, 1024, SZ_16K, NAND_BROKEN_XD), + LEGACY_ID_NAND("xD 2GiB 3,3V", 0xd5, 2048, SZ_16K, NAND_BROKEN_XD), + {NULL} +}; + +static int sm_attach_chip(struct nand_chip *chip) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + + /* Bad block marker position */ + chip->badblockpos = 0x05; + chip->badblockbits = 7; + chip->legacy.block_markbad = sm_block_markbad; + + /* ECC layout */ + if (mtd->writesize == SM_SECTOR_SIZE) + mtd_set_ooblayout(mtd, &oob_sm_ops); + else if (mtd->writesize == SM_SMALL_PAGE) + mtd_set_ooblayout(mtd, &oob_sm_small_ops); + else + return -ENODEV; + + return 0; +} + +static const struct nand_controller_ops sm_controller_ops = { + .attach_chip = sm_attach_chip, +}; + +int sm_register_device(struct mtd_info *mtd, int smartmedia) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + struct nand_flash_dev *flash_ids; + int ret; + + chip->options |= NAND_SKIP_BBTSCAN; + + /* Scan for card properties */ + chip->legacy.dummy_controller.ops = &sm_controller_ops; + flash_ids = smartmedia ? nand_smartmedia_flash_ids : nand_xd_flash_ids; + ret = nand_scan_with_ids(chip, 1, flash_ids); + if (ret) + return ret; + + ret = mtd_device_register(mtd, NULL, 0); + if (ret) + nand_cleanup(chip); + + return ret; +} +EXPORT_SYMBOL_GPL(sm_register_device); + +MODULE_LICENSE("GPL"); +MODULE_AUTHOR("Maxim Levitsky <maximlevitsky@gmail.com>"); +MODULE_DESCRIPTION("Common SmartMedia/xD functions"); diff --git a/drivers/mtd/nand/raw/sm_common.h b/drivers/mtd/nand/raw/sm_common.h new file mode 100644 index 0000000000..57fc9f86f9 --- /dev/null +++ b/drivers/mtd/nand/raw/sm_common.h @@ -0,0 +1,58 @@ +/* SPDX-License-Identifier: GPL-2.0-only */ +/* + * Copyright © 2009 - Maxim Levitsky + * Common routines & support for SmartMedia/xD format + */ +#include <linux/bitops.h> +#include <linux/mtd/mtd.h> + +/* Full oob structure as written on the flash */ +struct sm_oob { + uint32_t reserved; + uint8_t data_status; + uint8_t block_status; + uint8_t lba_copy1[2]; + uint8_t ecc2[3]; + uint8_t lba_copy2[2]; + uint8_t ecc1[3]; +} __packed; + + +/* one sector is always 512 bytes, but it can consist of two nand pages */ +#define SM_SECTOR_SIZE 512 + +/* oob area is also 16 bytes, but might be from two pages */ +#define SM_OOB_SIZE 16 + +/* This is maximum zone size, and all devices that have more that one zone + have this size */ +#define SM_MAX_ZONE_SIZE 1024 + +/* support for small page nand */ +#define SM_SMALL_PAGE 256 +#define SM_SMALL_OOB_SIZE 8 + + +int sm_register_device(struct mtd_info *mtd, int smartmedia); + + +static inline int sm_sector_valid(struct sm_oob *oob) +{ + return hweight16(oob->data_status) >= 5; +} + +static inline int sm_block_valid(struct sm_oob *oob) +{ + return hweight16(oob->block_status) >= 7; +} + +static inline int sm_block_erased(struct sm_oob *oob) +{ + static const uint32_t erased_pattern[4] = { + 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF }; + + /* First test for erased block */ + if (!memcmp(oob, erased_pattern, sizeof(*oob))) + return 1; + return 0; +} diff --git a/drivers/mtd/nand/raw/socrates_nand.c b/drivers/mtd/nand/raw/socrates_nand.c new file mode 100644 index 0000000000..76d50eb9f1 --- /dev/null +++ b/drivers/mtd/nand/raw/socrates_nand.c @@ -0,0 +1,241 @@ +// SPDX-License-Identifier: GPL-2.0-only +/* + * Copyright © 2008 Ilya Yanok, Emcraft Systems + */ + +#include <linux/slab.h> +#include <linux/module.h> +#include <linux/mtd/mtd.h> +#include <linux/mtd/rawnand.h> +#include <linux/mtd/partitions.h> +#include <linux/of.h> +#include <linux/of_address.h> +#include <linux/platform_device.h> +#include <linux/io.h> + +#define FPGA_NAND_CMD_MASK (0x7 << 28) +#define FPGA_NAND_CMD_COMMAND (0x0 << 28) +#define FPGA_NAND_CMD_ADDR (0x1 << 28) +#define FPGA_NAND_CMD_READ (0x2 << 28) +#define FPGA_NAND_CMD_WRITE (0x3 << 28) +#define FPGA_NAND_BUSY (0x1 << 15) +#define FPGA_NAND_ENABLE (0x1 << 31) +#define FPGA_NAND_DATA_SHIFT 16 + +struct socrates_nand_host { + struct nand_controller controller; + struct nand_chip nand_chip; + void __iomem *io_base; + struct device *dev; +}; + +/** + * socrates_nand_write_buf - write buffer to chip + * @this: NAND chip object + * @buf: data buffer + * @len: number of bytes to write + */ +static void socrates_nand_write_buf(struct nand_chip *this, const uint8_t *buf, + int len) +{ + int i; + struct socrates_nand_host *host = nand_get_controller_data(this); + + for (i = 0; i < len; i++) { + out_be32(host->io_base, FPGA_NAND_ENABLE | + FPGA_NAND_CMD_WRITE | + (buf[i] << FPGA_NAND_DATA_SHIFT)); + } +} + +/** + * socrates_nand_read_buf - read chip data into buffer + * @this: NAND chip object + * @buf: buffer to store date + * @len: number of bytes to read + */ +static void socrates_nand_read_buf(struct nand_chip *this, uint8_t *buf, + int len) +{ + int i; + struct socrates_nand_host *host = nand_get_controller_data(this); + uint32_t val; + + val = FPGA_NAND_ENABLE | FPGA_NAND_CMD_READ; + + out_be32(host->io_base, val); + for (i = 0; i < len; i++) { + buf[i] = (in_be32(host->io_base) >> + FPGA_NAND_DATA_SHIFT) & 0xff; + } +} + +/** + * socrates_nand_read_byte - read one byte from the chip + * @mtd: MTD device structure + */ +static uint8_t socrates_nand_read_byte(struct nand_chip *this) +{ + uint8_t byte; + socrates_nand_read_buf(this, &byte, sizeof(byte)); + return byte; +} + +/* + * Hardware specific access to control-lines + */ +static void socrates_nand_cmd_ctrl(struct nand_chip *nand_chip, int cmd, + unsigned int ctrl) +{ + struct socrates_nand_host *host = nand_get_controller_data(nand_chip); + uint32_t val; + + if (cmd == NAND_CMD_NONE) + return; + + if (ctrl & NAND_CLE) + val = FPGA_NAND_CMD_COMMAND; + else + val = FPGA_NAND_CMD_ADDR; + + if (ctrl & NAND_NCE) + val |= FPGA_NAND_ENABLE; + + val |= (cmd & 0xff) << FPGA_NAND_DATA_SHIFT; + + out_be32(host->io_base, val); +} + +/* + * Read the Device Ready pin. + */ +static int socrates_nand_device_ready(struct nand_chip *nand_chip) +{ + struct socrates_nand_host *host = nand_get_controller_data(nand_chip); + + if (in_be32(host->io_base) & FPGA_NAND_BUSY) + return 0; /* busy */ + return 1; +} + +static int socrates_attach_chip(struct nand_chip *chip) +{ + if (chip->ecc.engine_type == NAND_ECC_ENGINE_TYPE_SOFT && + chip->ecc.algo == NAND_ECC_ALGO_UNKNOWN) + chip->ecc.algo = NAND_ECC_ALGO_HAMMING; + + return 0; +} + +static const struct nand_controller_ops socrates_ops = { + .attach_chip = socrates_attach_chip, +}; + +/* + * Probe for the NAND device. + */ +static int socrates_nand_probe(struct platform_device *ofdev) +{ + struct socrates_nand_host *host; + struct mtd_info *mtd; + struct nand_chip *nand_chip; + int res; + + /* Allocate memory for the device structure (and zero it) */ + host = devm_kzalloc(&ofdev->dev, sizeof(*host), GFP_KERNEL); + if (!host) + return -ENOMEM; + + host->io_base = of_iomap(ofdev->dev.of_node, 0); + if (host->io_base == NULL) { + dev_err(&ofdev->dev, "ioremap failed\n"); + return -EIO; + } + + nand_chip = &host->nand_chip; + mtd = nand_to_mtd(nand_chip); + host->dev = &ofdev->dev; + + nand_controller_init(&host->controller); + host->controller.ops = &socrates_ops; + nand_chip->controller = &host->controller; + + /* link the private data structures */ + nand_set_controller_data(nand_chip, host); + nand_set_flash_node(nand_chip, ofdev->dev.of_node); + mtd->name = "socrates_nand"; + mtd->dev.parent = &ofdev->dev; + + nand_chip->legacy.cmd_ctrl = socrates_nand_cmd_ctrl; + nand_chip->legacy.read_byte = socrates_nand_read_byte; + nand_chip->legacy.write_buf = socrates_nand_write_buf; + nand_chip->legacy.read_buf = socrates_nand_read_buf; + nand_chip->legacy.dev_ready = socrates_nand_device_ready; + + /* TODO: I have no idea what real delay is. */ + nand_chip->legacy.chip_delay = 20; /* 20us command delay time */ + + /* + * This driver assumes that the default ECC engine should be TYPE_SOFT. + * Set ->engine_type before registering the NAND devices in order to + * provide a driver specific default value. + */ + nand_chip->ecc.engine_type = NAND_ECC_ENGINE_TYPE_SOFT; + + dev_set_drvdata(&ofdev->dev, host); + + res = nand_scan(nand_chip, 1); + if (res) + goto out; + + res = mtd_device_register(mtd, NULL, 0); + if (!res) + return res; + + nand_cleanup(nand_chip); + +out: + iounmap(host->io_base); + return res; +} + +/* + * Remove a NAND device. + */ +static void socrates_nand_remove(struct platform_device *ofdev) +{ + struct socrates_nand_host *host = dev_get_drvdata(&ofdev->dev); + struct nand_chip *chip = &host->nand_chip; + int ret; + + ret = mtd_device_unregister(nand_to_mtd(chip)); + WARN_ON(ret); + nand_cleanup(chip); + + iounmap(host->io_base); +} + +static const struct of_device_id socrates_nand_match[] = +{ + { + .compatible = "abb,socrates-nand", + }, + {}, +}; + +MODULE_DEVICE_TABLE(of, socrates_nand_match); + +static struct platform_driver socrates_nand_driver = { + .driver = { + .name = "socrates_nand", + .of_match_table = socrates_nand_match, + }, + .probe = socrates_nand_probe, + .remove_new = socrates_nand_remove, +}; + +module_platform_driver(socrates_nand_driver); + +MODULE_LICENSE("GPL"); +MODULE_AUTHOR("Ilya Yanok"); +MODULE_DESCRIPTION("NAND driver for Socrates board"); diff --git a/drivers/mtd/nand/raw/stm32_fmc2_nand.c b/drivers/mtd/nand/raw/stm32_fmc2_nand.c new file mode 100644 index 0000000000..88811139aa --- /dev/null +++ b/drivers/mtd/nand/raw/stm32_fmc2_nand.c @@ -0,0 +1,2110 @@ +// SPDX-License-Identifier: GPL-2.0 +/* + * Copyright (C) STMicroelectronics 2018 + * Author: Christophe Kerello <christophe.kerello@st.com> + */ + +#include <linux/bitfield.h> +#include <linux/clk.h> +#include <linux/dmaengine.h> +#include <linux/dma-mapping.h> +#include <linux/errno.h> +#include <linux/gpio/consumer.h> +#include <linux/interrupt.h> +#include <linux/iopoll.h> +#include <linux/mfd/syscon.h> +#include <linux/module.h> +#include <linux/mtd/rawnand.h> +#include <linux/of_address.h> +#include <linux/pinctrl/consumer.h> +#include <linux/platform_device.h> +#include <linux/regmap.h> +#include <linux/reset.h> + +/* Bad block marker length */ +#define FMC2_BBM_LEN 2 + +/* ECC step size */ +#define FMC2_ECC_STEP_SIZE 512 + +/* BCHDSRx registers length */ +#define FMC2_BCHDSRS_LEN 20 + +/* HECCR length */ +#define FMC2_HECCR_LEN 4 + +/* Max requests done for a 8k nand page size */ +#define FMC2_MAX_SG 16 + +/* Max chip enable */ +#define FMC2_MAX_CE 2 + +/* Max ECC buffer length */ +#define FMC2_MAX_ECC_BUF_LEN (FMC2_BCHDSRS_LEN * FMC2_MAX_SG) + +#define FMC2_TIMEOUT_MS 5000 + +/* Timings */ +#define FMC2_THIZ 1 +#define FMC2_TIO 8000 +#define FMC2_TSYNC 3000 +#define FMC2_PCR_TIMING_MASK 0xf +#define FMC2_PMEM_PATT_TIMING_MASK 0xff + +/* FMC2 Controller Registers */ +#define FMC2_BCR1 0x0 +#define FMC2_PCR 0x80 +#define FMC2_SR 0x84 +#define FMC2_PMEM 0x88 +#define FMC2_PATT 0x8c +#define FMC2_HECCR 0x94 +#define FMC2_ISR 0x184 +#define FMC2_ICR 0x188 +#define FMC2_CSQCR 0x200 +#define FMC2_CSQCFGR1 0x204 +#define FMC2_CSQCFGR2 0x208 +#define FMC2_CSQCFGR3 0x20c +#define FMC2_CSQAR1 0x210 +#define FMC2_CSQAR2 0x214 +#define FMC2_CSQIER 0x220 +#define FMC2_CSQISR 0x224 +#define FMC2_CSQICR 0x228 +#define FMC2_CSQEMSR 0x230 +#define FMC2_BCHIER 0x250 +#define FMC2_BCHISR 0x254 +#define FMC2_BCHICR 0x258 +#define FMC2_BCHPBR1 0x260 +#define FMC2_BCHPBR2 0x264 +#define FMC2_BCHPBR3 0x268 +#define FMC2_BCHPBR4 0x26c +#define FMC2_BCHDSR0 0x27c +#define FMC2_BCHDSR1 0x280 +#define FMC2_BCHDSR2 0x284 +#define FMC2_BCHDSR3 0x288 +#define FMC2_BCHDSR4 0x28c + +/* Register: FMC2_BCR1 */ +#define FMC2_BCR1_FMC2EN BIT(31) + +/* Register: FMC2_PCR */ +#define FMC2_PCR_PWAITEN BIT(1) +#define FMC2_PCR_PBKEN BIT(2) +#define FMC2_PCR_PWID GENMASK(5, 4) +#define FMC2_PCR_PWID_BUSWIDTH_8 0 +#define FMC2_PCR_PWID_BUSWIDTH_16 1 +#define FMC2_PCR_ECCEN BIT(6) +#define FMC2_PCR_ECCALG BIT(8) +#define FMC2_PCR_TCLR GENMASK(12, 9) +#define FMC2_PCR_TCLR_DEFAULT 0xf +#define FMC2_PCR_TAR GENMASK(16, 13) +#define FMC2_PCR_TAR_DEFAULT 0xf +#define FMC2_PCR_ECCSS GENMASK(19, 17) +#define FMC2_PCR_ECCSS_512 1 +#define FMC2_PCR_ECCSS_2048 3 +#define FMC2_PCR_BCHECC BIT(24) +#define FMC2_PCR_WEN BIT(25) + +/* Register: FMC2_SR */ +#define FMC2_SR_NWRF BIT(6) + +/* Register: FMC2_PMEM */ +#define FMC2_PMEM_MEMSET GENMASK(7, 0) +#define FMC2_PMEM_MEMWAIT GENMASK(15, 8) +#define FMC2_PMEM_MEMHOLD GENMASK(23, 16) +#define FMC2_PMEM_MEMHIZ GENMASK(31, 24) +#define FMC2_PMEM_DEFAULT 0x0a0a0a0a + +/* Register: FMC2_PATT */ +#define FMC2_PATT_ATTSET GENMASK(7, 0) +#define FMC2_PATT_ATTWAIT GENMASK(15, 8) +#define FMC2_PATT_ATTHOLD GENMASK(23, 16) +#define FMC2_PATT_ATTHIZ GENMASK(31, 24) +#define FMC2_PATT_DEFAULT 0x0a0a0a0a + +/* Register: FMC2_ISR */ +#define FMC2_ISR_IHLF BIT(1) + +/* Register: FMC2_ICR */ +#define FMC2_ICR_CIHLF BIT(1) + +/* Register: FMC2_CSQCR */ +#define FMC2_CSQCR_CSQSTART BIT(0) + +/* Register: FMC2_CSQCFGR1 */ +#define FMC2_CSQCFGR1_CMD2EN BIT(1) +#define FMC2_CSQCFGR1_DMADEN BIT(2) +#define FMC2_CSQCFGR1_ACYNBR GENMASK(6, 4) +#define FMC2_CSQCFGR1_CMD1 GENMASK(15, 8) +#define FMC2_CSQCFGR1_CMD2 GENMASK(23, 16) +#define FMC2_CSQCFGR1_CMD1T BIT(24) +#define FMC2_CSQCFGR1_CMD2T BIT(25) + +/* Register: FMC2_CSQCFGR2 */ +#define FMC2_CSQCFGR2_SQSDTEN BIT(0) +#define FMC2_CSQCFGR2_RCMD2EN BIT(1) +#define FMC2_CSQCFGR2_DMASEN BIT(2) +#define FMC2_CSQCFGR2_RCMD1 GENMASK(15, 8) +#define FMC2_CSQCFGR2_RCMD2 GENMASK(23, 16) +#define FMC2_CSQCFGR2_RCMD1T BIT(24) +#define FMC2_CSQCFGR2_RCMD2T BIT(25) + +/* Register: FMC2_CSQCFGR3 */ +#define FMC2_CSQCFGR3_SNBR GENMASK(13, 8) +#define FMC2_CSQCFGR3_AC1T BIT(16) +#define FMC2_CSQCFGR3_AC2T BIT(17) +#define FMC2_CSQCFGR3_AC3T BIT(18) +#define FMC2_CSQCFGR3_AC4T BIT(19) +#define FMC2_CSQCFGR3_AC5T BIT(20) +#define FMC2_CSQCFGR3_SDT BIT(21) +#define FMC2_CSQCFGR3_RAC1T BIT(22) +#define FMC2_CSQCFGR3_RAC2T BIT(23) + +/* Register: FMC2_CSQCAR1 */ +#define FMC2_CSQCAR1_ADDC1 GENMASK(7, 0) +#define FMC2_CSQCAR1_ADDC2 GENMASK(15, 8) +#define FMC2_CSQCAR1_ADDC3 GENMASK(23, 16) +#define FMC2_CSQCAR1_ADDC4 GENMASK(31, 24) + +/* Register: FMC2_CSQCAR2 */ +#define FMC2_CSQCAR2_ADDC5 GENMASK(7, 0) +#define FMC2_CSQCAR2_NANDCEN GENMASK(11, 10) +#define FMC2_CSQCAR2_SAO GENMASK(31, 16) + +/* Register: FMC2_CSQIER */ +#define FMC2_CSQIER_TCIE BIT(0) + +/* Register: FMC2_CSQICR */ +#define FMC2_CSQICR_CLEAR_IRQ GENMASK(4, 0) + +/* Register: FMC2_CSQEMSR */ +#define FMC2_CSQEMSR_SEM GENMASK(15, 0) + +/* Register: FMC2_BCHIER */ +#define FMC2_BCHIER_DERIE BIT(1) +#define FMC2_BCHIER_EPBRIE BIT(4) + +/* Register: FMC2_BCHICR */ +#define FMC2_BCHICR_CLEAR_IRQ GENMASK(4, 0) + +/* Register: FMC2_BCHDSR0 */ +#define FMC2_BCHDSR0_DUE BIT(0) +#define FMC2_BCHDSR0_DEF BIT(1) +#define FMC2_BCHDSR0_DEN GENMASK(7, 4) + +/* Register: FMC2_BCHDSR1 */ +#define FMC2_BCHDSR1_EBP1 GENMASK(12, 0) +#define FMC2_BCHDSR1_EBP2 GENMASK(28, 16) + +/* Register: FMC2_BCHDSR2 */ +#define FMC2_BCHDSR2_EBP3 GENMASK(12, 0) +#define FMC2_BCHDSR2_EBP4 GENMASK(28, 16) + +/* Register: FMC2_BCHDSR3 */ +#define FMC2_BCHDSR3_EBP5 GENMASK(12, 0) +#define FMC2_BCHDSR3_EBP6 GENMASK(28, 16) + +/* Register: FMC2_BCHDSR4 */ +#define FMC2_BCHDSR4_EBP7 GENMASK(12, 0) +#define FMC2_BCHDSR4_EBP8 GENMASK(28, 16) + +enum stm32_fmc2_ecc { + FMC2_ECC_HAM = 1, + FMC2_ECC_BCH4 = 4, + FMC2_ECC_BCH8 = 8 +}; + +enum stm32_fmc2_irq_state { + FMC2_IRQ_UNKNOWN = 0, + FMC2_IRQ_BCH, + FMC2_IRQ_SEQ +}; + +struct stm32_fmc2_timings { + u8 tclr; + u8 tar; + u8 thiz; + u8 twait; + u8 thold_mem; + u8 tset_mem; + u8 thold_att; + u8 tset_att; +}; + +struct stm32_fmc2_nand { + struct nand_chip chip; + struct gpio_desc *wp_gpio; + struct stm32_fmc2_timings timings; + int ncs; + int cs_used[FMC2_MAX_CE]; +}; + +static inline struct stm32_fmc2_nand *to_fmc2_nand(struct nand_chip *chip) +{ + return container_of(chip, struct stm32_fmc2_nand, chip); +} + +struct stm32_fmc2_nfc { + struct nand_controller base; + struct stm32_fmc2_nand nand; + struct device *dev; + struct device *cdev; + struct regmap *regmap; + void __iomem *data_base[FMC2_MAX_CE]; + void __iomem *cmd_base[FMC2_MAX_CE]; + void __iomem *addr_base[FMC2_MAX_CE]; + phys_addr_t io_phys_addr; + phys_addr_t data_phys_addr[FMC2_MAX_CE]; + struct clk *clk; + u8 irq_state; + + struct dma_chan *dma_tx_ch; + struct dma_chan *dma_rx_ch; + struct dma_chan *dma_ecc_ch; + struct sg_table dma_data_sg; + struct sg_table dma_ecc_sg; + u8 *ecc_buf; + int dma_ecc_len; + + struct completion complete; + struct completion dma_data_complete; + struct completion dma_ecc_complete; + + u8 cs_assigned; + int cs_sel; +}; + +static inline struct stm32_fmc2_nfc *to_stm32_nfc(struct nand_controller *base) +{ + return container_of(base, struct stm32_fmc2_nfc, base); +} + +static void stm32_fmc2_nfc_timings_init(struct nand_chip *chip) +{ + struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller); + struct stm32_fmc2_nand *nand = to_fmc2_nand(chip); + struct stm32_fmc2_timings *timings = &nand->timings; + u32 pmem, patt; + + /* Set tclr/tar timings */ + regmap_update_bits(nfc->regmap, FMC2_PCR, + FMC2_PCR_TCLR | FMC2_PCR_TAR, + FIELD_PREP(FMC2_PCR_TCLR, timings->tclr) | + FIELD_PREP(FMC2_PCR_TAR, timings->tar)); + + /* Set tset/twait/thold/thiz timings in common bank */ + pmem = FIELD_PREP(FMC2_PMEM_MEMSET, timings->tset_mem); + pmem |= FIELD_PREP(FMC2_PMEM_MEMWAIT, timings->twait); + pmem |= FIELD_PREP(FMC2_PMEM_MEMHOLD, timings->thold_mem); + pmem |= FIELD_PREP(FMC2_PMEM_MEMHIZ, timings->thiz); + regmap_write(nfc->regmap, FMC2_PMEM, pmem); + + /* Set tset/twait/thold/thiz timings in attribut bank */ + patt = FIELD_PREP(FMC2_PATT_ATTSET, timings->tset_att); + patt |= FIELD_PREP(FMC2_PATT_ATTWAIT, timings->twait); + patt |= FIELD_PREP(FMC2_PATT_ATTHOLD, timings->thold_att); + patt |= FIELD_PREP(FMC2_PATT_ATTHIZ, timings->thiz); + regmap_write(nfc->regmap, FMC2_PATT, patt); +} + +static void stm32_fmc2_nfc_setup(struct nand_chip *chip) +{ + struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller); + u32 pcr = 0, pcr_mask; + + /* Configure ECC algorithm (default configuration is Hamming) */ + pcr_mask = FMC2_PCR_ECCALG; + pcr_mask |= FMC2_PCR_BCHECC; + if (chip->ecc.strength == FMC2_ECC_BCH8) { + pcr |= FMC2_PCR_ECCALG; + pcr |= FMC2_PCR_BCHECC; + } else if (chip->ecc.strength == FMC2_ECC_BCH4) { + pcr |= FMC2_PCR_ECCALG; + } + + /* Set buswidth */ + pcr_mask |= FMC2_PCR_PWID; + if (chip->options & NAND_BUSWIDTH_16) + pcr |= FIELD_PREP(FMC2_PCR_PWID, FMC2_PCR_PWID_BUSWIDTH_16); + + /* Set ECC sector size */ + pcr_mask |= FMC2_PCR_ECCSS; + pcr |= FIELD_PREP(FMC2_PCR_ECCSS, FMC2_PCR_ECCSS_512); + + regmap_update_bits(nfc->regmap, FMC2_PCR, pcr_mask, pcr); +} + +static int stm32_fmc2_nfc_select_chip(struct nand_chip *chip, int chipnr) +{ + struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller); + struct stm32_fmc2_nand *nand = to_fmc2_nand(chip); + struct dma_slave_config dma_cfg; + int ret; + + if (nand->cs_used[chipnr] == nfc->cs_sel) + return 0; + + nfc->cs_sel = nand->cs_used[chipnr]; + stm32_fmc2_nfc_setup(chip); + stm32_fmc2_nfc_timings_init(chip); + + if (nfc->dma_tx_ch && nfc->dma_rx_ch) { + memset(&dma_cfg, 0, sizeof(dma_cfg)); + dma_cfg.src_addr = nfc->data_phys_addr[nfc->cs_sel]; + dma_cfg.dst_addr = nfc->data_phys_addr[nfc->cs_sel]; + dma_cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; + dma_cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; + dma_cfg.src_maxburst = 32; + dma_cfg.dst_maxburst = 32; + + ret = dmaengine_slave_config(nfc->dma_tx_ch, &dma_cfg); + if (ret) { + dev_err(nfc->dev, "tx DMA engine slave config failed\n"); + return ret; + } + + ret = dmaengine_slave_config(nfc->dma_rx_ch, &dma_cfg); + if (ret) { + dev_err(nfc->dev, "rx DMA engine slave config failed\n"); + return ret; + } + } + + if (nfc->dma_ecc_ch) { + /* + * Hamming: we read HECCR register + * BCH4/BCH8: we read BCHDSRSx registers + */ + memset(&dma_cfg, 0, sizeof(dma_cfg)); + dma_cfg.src_addr = nfc->io_phys_addr; + dma_cfg.src_addr += chip->ecc.strength == FMC2_ECC_HAM ? + FMC2_HECCR : FMC2_BCHDSR0; + dma_cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; + + ret = dmaengine_slave_config(nfc->dma_ecc_ch, &dma_cfg); + if (ret) { + dev_err(nfc->dev, "ECC DMA engine slave config failed\n"); + return ret; + } + + /* Calculate ECC length needed for one sector */ + nfc->dma_ecc_len = chip->ecc.strength == FMC2_ECC_HAM ? + FMC2_HECCR_LEN : FMC2_BCHDSRS_LEN; + } + + return 0; +} + +static void stm32_fmc2_nfc_set_buswidth_16(struct stm32_fmc2_nfc *nfc, bool set) +{ + u32 pcr; + + pcr = set ? FIELD_PREP(FMC2_PCR_PWID, FMC2_PCR_PWID_BUSWIDTH_16) : + FIELD_PREP(FMC2_PCR_PWID, FMC2_PCR_PWID_BUSWIDTH_8); + + regmap_update_bits(nfc->regmap, FMC2_PCR, FMC2_PCR_PWID, pcr); +} + +static void stm32_fmc2_nfc_set_ecc(struct stm32_fmc2_nfc *nfc, bool enable) +{ + regmap_update_bits(nfc->regmap, FMC2_PCR, FMC2_PCR_ECCEN, + enable ? FMC2_PCR_ECCEN : 0); +} + +static void stm32_fmc2_nfc_enable_seq_irq(struct stm32_fmc2_nfc *nfc) +{ + nfc->irq_state = FMC2_IRQ_SEQ; + + regmap_update_bits(nfc->regmap, FMC2_CSQIER, + FMC2_CSQIER_TCIE, FMC2_CSQIER_TCIE); +} + +static void stm32_fmc2_nfc_disable_seq_irq(struct stm32_fmc2_nfc *nfc) +{ + regmap_update_bits(nfc->regmap, FMC2_CSQIER, FMC2_CSQIER_TCIE, 0); + + nfc->irq_state = FMC2_IRQ_UNKNOWN; +} + +static void stm32_fmc2_nfc_clear_seq_irq(struct stm32_fmc2_nfc *nfc) +{ + regmap_write(nfc->regmap, FMC2_CSQICR, FMC2_CSQICR_CLEAR_IRQ); +} + +static void stm32_fmc2_nfc_enable_bch_irq(struct stm32_fmc2_nfc *nfc, int mode) +{ + nfc->irq_state = FMC2_IRQ_BCH; + + if (mode == NAND_ECC_WRITE) + regmap_update_bits(nfc->regmap, FMC2_BCHIER, + FMC2_BCHIER_EPBRIE, FMC2_BCHIER_EPBRIE); + else + regmap_update_bits(nfc->regmap, FMC2_BCHIER, + FMC2_BCHIER_DERIE, FMC2_BCHIER_DERIE); +} + +static void stm32_fmc2_nfc_disable_bch_irq(struct stm32_fmc2_nfc *nfc) +{ + regmap_update_bits(nfc->regmap, FMC2_BCHIER, + FMC2_BCHIER_DERIE | FMC2_BCHIER_EPBRIE, 0); + + nfc->irq_state = FMC2_IRQ_UNKNOWN; +} + +static void stm32_fmc2_nfc_clear_bch_irq(struct stm32_fmc2_nfc *nfc) +{ + regmap_write(nfc->regmap, FMC2_BCHICR, FMC2_BCHICR_CLEAR_IRQ); +} + +/* + * Enable ECC logic and reset syndrome/parity bits previously calculated + * Syndrome/parity bits is cleared by setting the ECCEN bit to 0 + */ +static void stm32_fmc2_nfc_hwctl(struct nand_chip *chip, int mode) +{ + struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller); + + stm32_fmc2_nfc_set_ecc(nfc, false); + + if (chip->ecc.strength != FMC2_ECC_HAM) { + regmap_update_bits(nfc->regmap, FMC2_PCR, FMC2_PCR_WEN, + mode == NAND_ECC_WRITE ? FMC2_PCR_WEN : 0); + + reinit_completion(&nfc->complete); + stm32_fmc2_nfc_clear_bch_irq(nfc); + stm32_fmc2_nfc_enable_bch_irq(nfc, mode); + } + + stm32_fmc2_nfc_set_ecc(nfc, true); +} + +/* + * ECC Hamming calculation + * ECC is 3 bytes for 512 bytes of data (supports error correction up to + * max of 1-bit) + */ +static void stm32_fmc2_nfc_ham_set_ecc(const u32 ecc_sta, u8 *ecc) +{ + ecc[0] = ecc_sta; + ecc[1] = ecc_sta >> 8; + ecc[2] = ecc_sta >> 16; +} + +static int stm32_fmc2_nfc_ham_calculate(struct nand_chip *chip, const u8 *data, + u8 *ecc) +{ + struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller); + u32 sr, heccr; + int ret; + + ret = regmap_read_poll_timeout(nfc->regmap, FMC2_SR, sr, + sr & FMC2_SR_NWRF, 1, + 1000 * FMC2_TIMEOUT_MS); + if (ret) { + dev_err(nfc->dev, "ham timeout\n"); + return ret; + } + + regmap_read(nfc->regmap, FMC2_HECCR, &heccr); + stm32_fmc2_nfc_ham_set_ecc(heccr, ecc); + stm32_fmc2_nfc_set_ecc(nfc, false); + + return 0; +} + +static int stm32_fmc2_nfc_ham_correct(struct nand_chip *chip, u8 *dat, + u8 *read_ecc, u8 *calc_ecc) +{ + u8 bit_position = 0, b0, b1, b2; + u32 byte_addr = 0, b; + u32 i, shifting = 1; + + /* Indicate which bit and byte is faulty (if any) */ + b0 = read_ecc[0] ^ calc_ecc[0]; + b1 = read_ecc[1] ^ calc_ecc[1]; + b2 = read_ecc[2] ^ calc_ecc[2]; + b = b0 | (b1 << 8) | (b2 << 16); + + /* No errors */ + if (likely(!b)) + return 0; + + /* Calculate bit position */ + for (i = 0; i < 3; i++) { + switch (b % 4) { + case 2: + bit_position += shifting; + break; + case 1: + break; + default: + return -EBADMSG; + } + shifting <<= 1; + b >>= 2; + } + + /* Calculate byte position */ + shifting = 1; + for (i = 0; i < 9; i++) { + switch (b % 4) { + case 2: + byte_addr += shifting; + break; + case 1: + break; + default: + return -EBADMSG; + } + shifting <<= 1; + b >>= 2; + } + + /* Flip the bit */ + dat[byte_addr] ^= (1 << bit_position); + + return 1; +} + +/* + * ECC BCH calculation and correction + * ECC is 7/13 bytes for 512 bytes of data (supports error correction up to + * max of 4-bit/8-bit) + */ +static int stm32_fmc2_nfc_bch_calculate(struct nand_chip *chip, const u8 *data, + u8 *ecc) +{ + struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller); + u32 bchpbr; + + /* Wait until the BCH code is ready */ + if (!wait_for_completion_timeout(&nfc->complete, + msecs_to_jiffies(FMC2_TIMEOUT_MS))) { + dev_err(nfc->dev, "bch timeout\n"); + stm32_fmc2_nfc_disable_bch_irq(nfc); + return -ETIMEDOUT; + } + + /* Read parity bits */ + regmap_read(nfc->regmap, FMC2_BCHPBR1, &bchpbr); + ecc[0] = bchpbr; + ecc[1] = bchpbr >> 8; + ecc[2] = bchpbr >> 16; + ecc[3] = bchpbr >> 24; + + regmap_read(nfc->regmap, FMC2_BCHPBR2, &bchpbr); + ecc[4] = bchpbr; + ecc[5] = bchpbr >> 8; + ecc[6] = bchpbr >> 16; + + if (chip->ecc.strength == FMC2_ECC_BCH8) { + ecc[7] = bchpbr >> 24; + + regmap_read(nfc->regmap, FMC2_BCHPBR3, &bchpbr); + ecc[8] = bchpbr; + ecc[9] = bchpbr >> 8; + ecc[10] = bchpbr >> 16; + ecc[11] = bchpbr >> 24; + + regmap_read(nfc->regmap, FMC2_BCHPBR4, &bchpbr); + ecc[12] = bchpbr; + } + + stm32_fmc2_nfc_set_ecc(nfc, false); + + return 0; +} + +static int stm32_fmc2_nfc_bch_decode(int eccsize, u8 *dat, u32 *ecc_sta) +{ + u32 bchdsr0 = ecc_sta[0]; + u32 bchdsr1 = ecc_sta[1]; + u32 bchdsr2 = ecc_sta[2]; + u32 bchdsr3 = ecc_sta[3]; + u32 bchdsr4 = ecc_sta[4]; + u16 pos[8]; + int i, den; + unsigned int nb_errs = 0; + + /* No errors found */ + if (likely(!(bchdsr0 & FMC2_BCHDSR0_DEF))) + return 0; + + /* Too many errors detected */ + if (unlikely(bchdsr0 & FMC2_BCHDSR0_DUE)) + return -EBADMSG; + + pos[0] = FIELD_GET(FMC2_BCHDSR1_EBP1, bchdsr1); + pos[1] = FIELD_GET(FMC2_BCHDSR1_EBP2, bchdsr1); + pos[2] = FIELD_GET(FMC2_BCHDSR2_EBP3, bchdsr2); + pos[3] = FIELD_GET(FMC2_BCHDSR2_EBP4, bchdsr2); + pos[4] = FIELD_GET(FMC2_BCHDSR3_EBP5, bchdsr3); + pos[5] = FIELD_GET(FMC2_BCHDSR3_EBP6, bchdsr3); + pos[6] = FIELD_GET(FMC2_BCHDSR4_EBP7, bchdsr4); + pos[7] = FIELD_GET(FMC2_BCHDSR4_EBP8, bchdsr4); + + den = FIELD_GET(FMC2_BCHDSR0_DEN, bchdsr0); + for (i = 0; i < den; i++) { + if (pos[i] < eccsize * 8) { + change_bit(pos[i], (unsigned long *)dat); + nb_errs++; + } + } + + return nb_errs; +} + +static int stm32_fmc2_nfc_bch_correct(struct nand_chip *chip, u8 *dat, + u8 *read_ecc, u8 *calc_ecc) +{ + struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller); + u32 ecc_sta[5]; + + /* Wait until the decoding error is ready */ + if (!wait_for_completion_timeout(&nfc->complete, + msecs_to_jiffies(FMC2_TIMEOUT_MS))) { + dev_err(nfc->dev, "bch timeout\n"); + stm32_fmc2_nfc_disable_bch_irq(nfc); + return -ETIMEDOUT; + } + + regmap_bulk_read(nfc->regmap, FMC2_BCHDSR0, ecc_sta, 5); + + stm32_fmc2_nfc_set_ecc(nfc, false); + + return stm32_fmc2_nfc_bch_decode(chip->ecc.size, dat, ecc_sta); +} + +static int stm32_fmc2_nfc_read_page(struct nand_chip *chip, u8 *buf, + int oob_required, int page) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + int ret, i, s, stat, eccsize = chip->ecc.size; + int eccbytes = chip->ecc.bytes; + int eccsteps = chip->ecc.steps; + int eccstrength = chip->ecc.strength; + u8 *p = buf; + u8 *ecc_calc = chip->ecc.calc_buf; + u8 *ecc_code = chip->ecc.code_buf; + unsigned int max_bitflips = 0; + + ret = nand_read_page_op(chip, page, 0, NULL, 0); + if (ret) + return ret; + + for (i = mtd->writesize + FMC2_BBM_LEN, s = 0; s < eccsteps; + s++, i += eccbytes, p += eccsize) { + chip->ecc.hwctl(chip, NAND_ECC_READ); + + /* Read the nand page sector (512 bytes) */ + ret = nand_change_read_column_op(chip, s * eccsize, p, + eccsize, false); + if (ret) + return ret; + + /* Read the corresponding ECC bytes */ + ret = nand_change_read_column_op(chip, i, ecc_code, + eccbytes, false); + if (ret) + return ret; + + /* Correct the data */ + stat = chip->ecc.correct(chip, p, ecc_code, ecc_calc); + if (stat == -EBADMSG) + /* Check for empty pages with bitflips */ + stat = nand_check_erased_ecc_chunk(p, eccsize, + ecc_code, eccbytes, + NULL, 0, + eccstrength); + + if (stat < 0) { + mtd->ecc_stats.failed++; + } else { + mtd->ecc_stats.corrected += stat; + max_bitflips = max_t(unsigned int, max_bitflips, stat); + } + } + + /* Read oob */ + if (oob_required) { + ret = nand_change_read_column_op(chip, mtd->writesize, + chip->oob_poi, mtd->oobsize, + false); + if (ret) + return ret; + } + + return max_bitflips; +} + +/* Sequencer read/write configuration */ +static void stm32_fmc2_nfc_rw_page_init(struct nand_chip *chip, int page, + int raw, bool write_data) +{ + struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller); + struct mtd_info *mtd = nand_to_mtd(chip); + u32 ecc_offset = mtd->writesize + FMC2_BBM_LEN; + /* + * cfg[0] => csqcfgr1, cfg[1] => csqcfgr2, cfg[2] => csqcfgr3 + * cfg[3] => csqar1, cfg[4] => csqar2 + */ + u32 cfg[5]; + + regmap_update_bits(nfc->regmap, FMC2_PCR, FMC2_PCR_WEN, + write_data ? FMC2_PCR_WEN : 0); + + /* + * - Set Program Page/Page Read command + * - Enable DMA request data + * - Set timings + */ + cfg[0] = FMC2_CSQCFGR1_DMADEN | FMC2_CSQCFGR1_CMD1T; + if (write_data) + cfg[0] |= FIELD_PREP(FMC2_CSQCFGR1_CMD1, NAND_CMD_SEQIN); + else + cfg[0] |= FIELD_PREP(FMC2_CSQCFGR1_CMD1, NAND_CMD_READ0) | + FMC2_CSQCFGR1_CMD2EN | + FIELD_PREP(FMC2_CSQCFGR1_CMD2, NAND_CMD_READSTART) | + FMC2_CSQCFGR1_CMD2T; + + /* + * - Set Random Data Input/Random Data Read command + * - Enable the sequencer to access the Spare data area + * - Enable DMA request status decoding for read + * - Set timings + */ + if (write_data) + cfg[1] = FIELD_PREP(FMC2_CSQCFGR2_RCMD1, NAND_CMD_RNDIN); + else + cfg[1] = FIELD_PREP(FMC2_CSQCFGR2_RCMD1, NAND_CMD_RNDOUT) | + FMC2_CSQCFGR2_RCMD2EN | + FIELD_PREP(FMC2_CSQCFGR2_RCMD2, NAND_CMD_RNDOUTSTART) | + FMC2_CSQCFGR2_RCMD1T | + FMC2_CSQCFGR2_RCMD2T; + if (!raw) { + cfg[1] |= write_data ? 0 : FMC2_CSQCFGR2_DMASEN; + cfg[1] |= FMC2_CSQCFGR2_SQSDTEN; + } + + /* + * - Set the number of sectors to be written + * - Set timings + */ + cfg[2] = FIELD_PREP(FMC2_CSQCFGR3_SNBR, chip->ecc.steps - 1); + if (write_data) { + cfg[2] |= FMC2_CSQCFGR3_RAC2T; + if (chip->options & NAND_ROW_ADDR_3) + cfg[2] |= FMC2_CSQCFGR3_AC5T; + else + cfg[2] |= FMC2_CSQCFGR3_AC4T; + } + + /* + * Set the fourth first address cycles + * Byte 1 and byte 2 => column, we start at 0x0 + * Byte 3 and byte 4 => page + */ + cfg[3] = FIELD_PREP(FMC2_CSQCAR1_ADDC3, page); + cfg[3] |= FIELD_PREP(FMC2_CSQCAR1_ADDC4, page >> 8); + + /* + * - Set chip enable number + * - Set ECC byte offset in the spare area + * - Calculate the number of address cycles to be issued + * - Set byte 5 of address cycle if needed + */ + cfg[4] = FIELD_PREP(FMC2_CSQCAR2_NANDCEN, nfc->cs_sel); + if (chip->options & NAND_BUSWIDTH_16) + cfg[4] |= FIELD_PREP(FMC2_CSQCAR2_SAO, ecc_offset >> 1); + else + cfg[4] |= FIELD_PREP(FMC2_CSQCAR2_SAO, ecc_offset); + if (chip->options & NAND_ROW_ADDR_3) { + cfg[0] |= FIELD_PREP(FMC2_CSQCFGR1_ACYNBR, 5); + cfg[4] |= FIELD_PREP(FMC2_CSQCAR2_ADDC5, page >> 16); + } else { + cfg[0] |= FIELD_PREP(FMC2_CSQCFGR1_ACYNBR, 4); + } + + regmap_bulk_write(nfc->regmap, FMC2_CSQCFGR1, cfg, 5); +} + +static void stm32_fmc2_nfc_dma_callback(void *arg) +{ + complete((struct completion *)arg); +} + +/* Read/write data from/to a page */ +static int stm32_fmc2_nfc_xfer(struct nand_chip *chip, const u8 *buf, + int raw, bool write_data) +{ + struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller); + struct dma_async_tx_descriptor *desc_data, *desc_ecc; + struct scatterlist *sg; + struct dma_chan *dma_ch = nfc->dma_rx_ch; + enum dma_data_direction dma_data_dir = DMA_FROM_DEVICE; + enum dma_transfer_direction dma_transfer_dir = DMA_DEV_TO_MEM; + int eccsteps = chip->ecc.steps; + int eccsize = chip->ecc.size; + unsigned long timeout = msecs_to_jiffies(FMC2_TIMEOUT_MS); + const u8 *p = buf; + int s, ret; + + /* Configure DMA data */ + if (write_data) { + dma_data_dir = DMA_TO_DEVICE; + dma_transfer_dir = DMA_MEM_TO_DEV; + dma_ch = nfc->dma_tx_ch; + } + + for_each_sg(nfc->dma_data_sg.sgl, sg, eccsteps, s) { + sg_set_buf(sg, p, eccsize); + p += eccsize; + } + + ret = dma_map_sg(nfc->dev, nfc->dma_data_sg.sgl, + eccsteps, dma_data_dir); + if (!ret) + return -EIO; + + desc_data = dmaengine_prep_slave_sg(dma_ch, nfc->dma_data_sg.sgl, + eccsteps, dma_transfer_dir, + DMA_PREP_INTERRUPT); + if (!desc_data) { + ret = -ENOMEM; + goto err_unmap_data; + } + + reinit_completion(&nfc->dma_data_complete); + reinit_completion(&nfc->complete); + desc_data->callback = stm32_fmc2_nfc_dma_callback; + desc_data->callback_param = &nfc->dma_data_complete; + ret = dma_submit_error(dmaengine_submit(desc_data)); + if (ret) + goto err_unmap_data; + + dma_async_issue_pending(dma_ch); + + if (!write_data && !raw) { + /* Configure DMA ECC status */ + p = nfc->ecc_buf; + for_each_sg(nfc->dma_ecc_sg.sgl, sg, eccsteps, s) { + sg_set_buf(sg, p, nfc->dma_ecc_len); + p += nfc->dma_ecc_len; + } + + ret = dma_map_sg(nfc->dev, nfc->dma_ecc_sg.sgl, + eccsteps, dma_data_dir); + if (!ret) { + ret = -EIO; + goto err_unmap_data; + } + + desc_ecc = dmaengine_prep_slave_sg(nfc->dma_ecc_ch, + nfc->dma_ecc_sg.sgl, + eccsteps, dma_transfer_dir, + DMA_PREP_INTERRUPT); + if (!desc_ecc) { + ret = -ENOMEM; + goto err_unmap_ecc; + } + + reinit_completion(&nfc->dma_ecc_complete); + desc_ecc->callback = stm32_fmc2_nfc_dma_callback; + desc_ecc->callback_param = &nfc->dma_ecc_complete; + ret = dma_submit_error(dmaengine_submit(desc_ecc)); + if (ret) + goto err_unmap_ecc; + + dma_async_issue_pending(nfc->dma_ecc_ch); + } + + stm32_fmc2_nfc_clear_seq_irq(nfc); + stm32_fmc2_nfc_enable_seq_irq(nfc); + + /* Start the transfer */ + regmap_update_bits(nfc->regmap, FMC2_CSQCR, + FMC2_CSQCR_CSQSTART, FMC2_CSQCR_CSQSTART); + + /* Wait end of sequencer transfer */ + if (!wait_for_completion_timeout(&nfc->complete, timeout)) { + dev_err(nfc->dev, "seq timeout\n"); + stm32_fmc2_nfc_disable_seq_irq(nfc); + dmaengine_terminate_all(dma_ch); + if (!write_data && !raw) + dmaengine_terminate_all(nfc->dma_ecc_ch); + ret = -ETIMEDOUT; + goto err_unmap_ecc; + } + + /* Wait DMA data transfer completion */ + if (!wait_for_completion_timeout(&nfc->dma_data_complete, timeout)) { + dev_err(nfc->dev, "data DMA timeout\n"); + dmaengine_terminate_all(dma_ch); + ret = -ETIMEDOUT; + } + + /* Wait DMA ECC transfer completion */ + if (!write_data && !raw) { + if (!wait_for_completion_timeout(&nfc->dma_ecc_complete, + timeout)) { + dev_err(nfc->dev, "ECC DMA timeout\n"); + dmaengine_terminate_all(nfc->dma_ecc_ch); + ret = -ETIMEDOUT; + } + } + +err_unmap_ecc: + if (!write_data && !raw) + dma_unmap_sg(nfc->dev, nfc->dma_ecc_sg.sgl, + eccsteps, dma_data_dir); + +err_unmap_data: + dma_unmap_sg(nfc->dev, nfc->dma_data_sg.sgl, eccsteps, dma_data_dir); + + return ret; +} + +static int stm32_fmc2_nfc_seq_write(struct nand_chip *chip, const u8 *buf, + int oob_required, int page, int raw) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + int ret; + + /* Configure the sequencer */ + stm32_fmc2_nfc_rw_page_init(chip, page, raw, true); + + /* Write the page */ + ret = stm32_fmc2_nfc_xfer(chip, buf, raw, true); + if (ret) + return ret; + + /* Write oob */ + if (oob_required) { + ret = nand_change_write_column_op(chip, mtd->writesize, + chip->oob_poi, mtd->oobsize, + false); + if (ret) + return ret; + } + + return nand_prog_page_end_op(chip); +} + +static int stm32_fmc2_nfc_seq_write_page(struct nand_chip *chip, const u8 *buf, + int oob_required, int page) +{ + int ret; + + ret = stm32_fmc2_nfc_select_chip(chip, chip->cur_cs); + if (ret) + return ret; + + return stm32_fmc2_nfc_seq_write(chip, buf, oob_required, page, false); +} + +static int stm32_fmc2_nfc_seq_write_page_raw(struct nand_chip *chip, + const u8 *buf, int oob_required, + int page) +{ + int ret; + + ret = stm32_fmc2_nfc_select_chip(chip, chip->cur_cs); + if (ret) + return ret; + + return stm32_fmc2_nfc_seq_write(chip, buf, oob_required, page, true); +} + +/* Get a status indicating which sectors have errors */ +static u16 stm32_fmc2_nfc_get_mapping_status(struct stm32_fmc2_nfc *nfc) +{ + u32 csqemsr; + + regmap_read(nfc->regmap, FMC2_CSQEMSR, &csqemsr); + + return FIELD_GET(FMC2_CSQEMSR_SEM, csqemsr); +} + +static int stm32_fmc2_nfc_seq_correct(struct nand_chip *chip, u8 *dat, + u8 *read_ecc, u8 *calc_ecc) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller); + int eccbytes = chip->ecc.bytes; + int eccsteps = chip->ecc.steps; + int eccstrength = chip->ecc.strength; + int i, s, eccsize = chip->ecc.size; + u32 *ecc_sta = (u32 *)nfc->ecc_buf; + u16 sta_map = stm32_fmc2_nfc_get_mapping_status(nfc); + unsigned int max_bitflips = 0; + + for (i = 0, s = 0; s < eccsteps; s++, i += eccbytes, dat += eccsize) { + int stat = 0; + + if (eccstrength == FMC2_ECC_HAM) { + /* Ecc_sta = FMC2_HECCR */ + if (sta_map & BIT(s)) { + stm32_fmc2_nfc_ham_set_ecc(*ecc_sta, + &calc_ecc[i]); + stat = stm32_fmc2_nfc_ham_correct(chip, dat, + &read_ecc[i], + &calc_ecc[i]); + } + ecc_sta++; + } else { + /* + * Ecc_sta[0] = FMC2_BCHDSR0 + * Ecc_sta[1] = FMC2_BCHDSR1 + * Ecc_sta[2] = FMC2_BCHDSR2 + * Ecc_sta[3] = FMC2_BCHDSR3 + * Ecc_sta[4] = FMC2_BCHDSR4 + */ + if (sta_map & BIT(s)) + stat = stm32_fmc2_nfc_bch_decode(eccsize, dat, + ecc_sta); + ecc_sta += 5; + } + + if (stat == -EBADMSG) + /* Check for empty pages with bitflips */ + stat = nand_check_erased_ecc_chunk(dat, eccsize, + &read_ecc[i], + eccbytes, + NULL, 0, + eccstrength); + + if (stat < 0) { + mtd->ecc_stats.failed++; + } else { + mtd->ecc_stats.corrected += stat; + max_bitflips = max_t(unsigned int, max_bitflips, stat); + } + } + + return max_bitflips; +} + +static int stm32_fmc2_nfc_seq_read_page(struct nand_chip *chip, u8 *buf, + int oob_required, int page) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller); + u8 *ecc_calc = chip->ecc.calc_buf; + u8 *ecc_code = chip->ecc.code_buf; + u16 sta_map; + int ret; + + ret = stm32_fmc2_nfc_select_chip(chip, chip->cur_cs); + if (ret) + return ret; + + /* Configure the sequencer */ + stm32_fmc2_nfc_rw_page_init(chip, page, 0, false); + + /* Read the page */ + ret = stm32_fmc2_nfc_xfer(chip, buf, 0, false); + if (ret) + return ret; + + sta_map = stm32_fmc2_nfc_get_mapping_status(nfc); + + /* Check if errors happen */ + if (likely(!sta_map)) { + if (oob_required) + return nand_change_read_column_op(chip, mtd->writesize, + chip->oob_poi, + mtd->oobsize, false); + + return 0; + } + + /* Read oob */ + ret = nand_change_read_column_op(chip, mtd->writesize, + chip->oob_poi, mtd->oobsize, false); + if (ret) + return ret; + + ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0, + chip->ecc.total); + if (ret) + return ret; + + /* Correct data */ + return chip->ecc.correct(chip, buf, ecc_code, ecc_calc); +} + +static int stm32_fmc2_nfc_seq_read_page_raw(struct nand_chip *chip, u8 *buf, + int oob_required, int page) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + int ret; + + ret = stm32_fmc2_nfc_select_chip(chip, chip->cur_cs); + if (ret) + return ret; + + /* Configure the sequencer */ + stm32_fmc2_nfc_rw_page_init(chip, page, 1, false); + + /* Read the page */ + ret = stm32_fmc2_nfc_xfer(chip, buf, 1, false); + if (ret) + return ret; + + /* Read oob */ + if (oob_required) + return nand_change_read_column_op(chip, mtd->writesize, + chip->oob_poi, mtd->oobsize, + false); + + return 0; +} + +static irqreturn_t stm32_fmc2_nfc_irq(int irq, void *dev_id) +{ + struct stm32_fmc2_nfc *nfc = (struct stm32_fmc2_nfc *)dev_id; + + if (nfc->irq_state == FMC2_IRQ_SEQ) + /* Sequencer is used */ + stm32_fmc2_nfc_disable_seq_irq(nfc); + else if (nfc->irq_state == FMC2_IRQ_BCH) + /* BCH is used */ + stm32_fmc2_nfc_disable_bch_irq(nfc); + + complete(&nfc->complete); + + return IRQ_HANDLED; +} + +static void stm32_fmc2_nfc_read_data(struct nand_chip *chip, void *buf, + unsigned int len, bool force_8bit) +{ + struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller); + void __iomem *io_addr_r = nfc->data_base[nfc->cs_sel]; + + if (force_8bit && chip->options & NAND_BUSWIDTH_16) + /* Reconfigure bus width to 8-bit */ + stm32_fmc2_nfc_set_buswidth_16(nfc, false); + + if (!IS_ALIGNED((uintptr_t)buf, sizeof(u32))) { + if (!IS_ALIGNED((uintptr_t)buf, sizeof(u16)) && len) { + *(u8 *)buf = readb_relaxed(io_addr_r); + buf += sizeof(u8); + len -= sizeof(u8); + } + + if (!IS_ALIGNED((uintptr_t)buf, sizeof(u32)) && + len >= sizeof(u16)) { + *(u16 *)buf = readw_relaxed(io_addr_r); + buf += sizeof(u16); + len -= sizeof(u16); + } + } + + /* Buf is aligned */ + while (len >= sizeof(u32)) { + *(u32 *)buf = readl_relaxed(io_addr_r); + buf += sizeof(u32); + len -= sizeof(u32); + } + + /* Read remaining bytes */ + if (len >= sizeof(u16)) { + *(u16 *)buf = readw_relaxed(io_addr_r); + buf += sizeof(u16); + len -= sizeof(u16); + } + + if (len) + *(u8 *)buf = readb_relaxed(io_addr_r); + + if (force_8bit && chip->options & NAND_BUSWIDTH_16) + /* Reconfigure bus width to 16-bit */ + stm32_fmc2_nfc_set_buswidth_16(nfc, true); +} + +static void stm32_fmc2_nfc_write_data(struct nand_chip *chip, const void *buf, + unsigned int len, bool force_8bit) +{ + struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller); + void __iomem *io_addr_w = nfc->data_base[nfc->cs_sel]; + + if (force_8bit && chip->options & NAND_BUSWIDTH_16) + /* Reconfigure bus width to 8-bit */ + stm32_fmc2_nfc_set_buswidth_16(nfc, false); + + if (!IS_ALIGNED((uintptr_t)buf, sizeof(u32))) { + if (!IS_ALIGNED((uintptr_t)buf, sizeof(u16)) && len) { + writeb_relaxed(*(u8 *)buf, io_addr_w); + buf += sizeof(u8); + len -= sizeof(u8); + } + + if (!IS_ALIGNED((uintptr_t)buf, sizeof(u32)) && + len >= sizeof(u16)) { + writew_relaxed(*(u16 *)buf, io_addr_w); + buf += sizeof(u16); + len -= sizeof(u16); + } + } + + /* Buf is aligned */ + while (len >= sizeof(u32)) { + writel_relaxed(*(u32 *)buf, io_addr_w); + buf += sizeof(u32); + len -= sizeof(u32); + } + + /* Write remaining bytes */ + if (len >= sizeof(u16)) { + writew_relaxed(*(u16 *)buf, io_addr_w); + buf += sizeof(u16); + len -= sizeof(u16); + } + + if (len) + writeb_relaxed(*(u8 *)buf, io_addr_w); + + if (force_8bit && chip->options & NAND_BUSWIDTH_16) + /* Reconfigure bus width to 16-bit */ + stm32_fmc2_nfc_set_buswidth_16(nfc, true); +} + +static int stm32_fmc2_nfc_waitrdy(struct nand_chip *chip, + unsigned long timeout_ms) +{ + struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller); + const struct nand_sdr_timings *timings; + u32 isr, sr; + + /* Check if there is no pending requests to the NAND flash */ + if (regmap_read_poll_timeout(nfc->regmap, FMC2_SR, sr, + sr & FMC2_SR_NWRF, 1, + 1000 * FMC2_TIMEOUT_MS)) + dev_warn(nfc->dev, "Waitrdy timeout\n"); + + /* Wait tWB before R/B# signal is low */ + timings = nand_get_sdr_timings(nand_get_interface_config(chip)); + ndelay(PSEC_TO_NSEC(timings->tWB_max)); + + /* R/B# signal is low, clear high level flag */ + regmap_write(nfc->regmap, FMC2_ICR, FMC2_ICR_CIHLF); + + /* Wait R/B# signal is high */ + return regmap_read_poll_timeout(nfc->regmap, FMC2_ISR, isr, + isr & FMC2_ISR_IHLF, 5, + 1000 * FMC2_TIMEOUT_MS); +} + +static int stm32_fmc2_nfc_exec_op(struct nand_chip *chip, + const struct nand_operation *op, + bool check_only) +{ + struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller); + const struct nand_op_instr *instr = NULL; + unsigned int op_id, i, timeout; + int ret; + + if (check_only) + return 0; + + ret = stm32_fmc2_nfc_select_chip(chip, op->cs); + if (ret) + return ret; + + for (op_id = 0; op_id < op->ninstrs; op_id++) { + instr = &op->instrs[op_id]; + + switch (instr->type) { + case NAND_OP_CMD_INSTR: + writeb_relaxed(instr->ctx.cmd.opcode, + nfc->cmd_base[nfc->cs_sel]); + break; + + case NAND_OP_ADDR_INSTR: + for (i = 0; i < instr->ctx.addr.naddrs; i++) + writeb_relaxed(instr->ctx.addr.addrs[i], + nfc->addr_base[nfc->cs_sel]); + break; + + case NAND_OP_DATA_IN_INSTR: + stm32_fmc2_nfc_read_data(chip, instr->ctx.data.buf.in, + instr->ctx.data.len, + instr->ctx.data.force_8bit); + break; + + case NAND_OP_DATA_OUT_INSTR: + stm32_fmc2_nfc_write_data(chip, instr->ctx.data.buf.out, + instr->ctx.data.len, + instr->ctx.data.force_8bit); + break; + + case NAND_OP_WAITRDY_INSTR: + timeout = instr->ctx.waitrdy.timeout_ms; + ret = stm32_fmc2_nfc_waitrdy(chip, timeout); + break; + } + } + + return ret; +} + +static void stm32_fmc2_nfc_init(struct stm32_fmc2_nfc *nfc) +{ + u32 pcr; + + regmap_read(nfc->regmap, FMC2_PCR, &pcr); + + /* Set CS used to undefined */ + nfc->cs_sel = -1; + + /* Enable wait feature and nand flash memory bank */ + pcr |= FMC2_PCR_PWAITEN; + pcr |= FMC2_PCR_PBKEN; + + /* Set buswidth to 8 bits mode for identification */ + pcr &= ~FMC2_PCR_PWID; + + /* ECC logic is disabled */ + pcr &= ~FMC2_PCR_ECCEN; + + /* Default mode */ + pcr &= ~FMC2_PCR_ECCALG; + pcr &= ~FMC2_PCR_BCHECC; + pcr &= ~FMC2_PCR_WEN; + + /* Set default ECC sector size */ + pcr &= ~FMC2_PCR_ECCSS; + pcr |= FIELD_PREP(FMC2_PCR_ECCSS, FMC2_PCR_ECCSS_2048); + + /* Set default tclr/tar timings */ + pcr &= ~FMC2_PCR_TCLR; + pcr |= FIELD_PREP(FMC2_PCR_TCLR, FMC2_PCR_TCLR_DEFAULT); + pcr &= ~FMC2_PCR_TAR; + pcr |= FIELD_PREP(FMC2_PCR_TAR, FMC2_PCR_TAR_DEFAULT); + + /* Enable FMC2 controller */ + if (nfc->dev == nfc->cdev) + regmap_update_bits(nfc->regmap, FMC2_BCR1, + FMC2_BCR1_FMC2EN, FMC2_BCR1_FMC2EN); + + regmap_write(nfc->regmap, FMC2_PCR, pcr); + regmap_write(nfc->regmap, FMC2_PMEM, FMC2_PMEM_DEFAULT); + regmap_write(nfc->regmap, FMC2_PATT, FMC2_PATT_DEFAULT); +} + +static void stm32_fmc2_nfc_calc_timings(struct nand_chip *chip, + const struct nand_sdr_timings *sdrt) +{ + struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller); + struct stm32_fmc2_nand *nand = to_fmc2_nand(chip); + struct stm32_fmc2_timings *tims = &nand->timings; + unsigned long hclk = clk_get_rate(nfc->clk); + unsigned long hclkp = NSEC_PER_SEC / (hclk / 1000); + unsigned long timing, tar, tclr, thiz, twait; + unsigned long tset_mem, tset_att, thold_mem, thold_att; + + tar = max_t(unsigned long, hclkp, sdrt->tAR_min); + timing = DIV_ROUND_UP(tar, hclkp) - 1; + tims->tar = min_t(unsigned long, timing, FMC2_PCR_TIMING_MASK); + + tclr = max_t(unsigned long, hclkp, sdrt->tCLR_min); + timing = DIV_ROUND_UP(tclr, hclkp) - 1; + tims->tclr = min_t(unsigned long, timing, FMC2_PCR_TIMING_MASK); + + tims->thiz = FMC2_THIZ; + thiz = (tims->thiz + 1) * hclkp; + + /* + * tWAIT > tRP + * tWAIT > tWP + * tWAIT > tREA + tIO + */ + twait = max_t(unsigned long, hclkp, sdrt->tRP_min); + twait = max_t(unsigned long, twait, sdrt->tWP_min); + twait = max_t(unsigned long, twait, sdrt->tREA_max + FMC2_TIO); + timing = DIV_ROUND_UP(twait, hclkp); + tims->twait = clamp_val(timing, 1, FMC2_PMEM_PATT_TIMING_MASK); + + /* + * tSETUP_MEM > tCS - tWAIT + * tSETUP_MEM > tALS - tWAIT + * tSETUP_MEM > tDS - (tWAIT - tHIZ) + */ + tset_mem = hclkp; + if (sdrt->tCS_min > twait && (tset_mem < sdrt->tCS_min - twait)) + tset_mem = sdrt->tCS_min - twait; + if (sdrt->tALS_min > twait && (tset_mem < sdrt->tALS_min - twait)) + tset_mem = sdrt->tALS_min - twait; + if (twait > thiz && (sdrt->tDS_min > twait - thiz) && + (tset_mem < sdrt->tDS_min - (twait - thiz))) + tset_mem = sdrt->tDS_min - (twait - thiz); + timing = DIV_ROUND_UP(tset_mem, hclkp); + tims->tset_mem = clamp_val(timing, 1, FMC2_PMEM_PATT_TIMING_MASK); + + /* + * tHOLD_MEM > tCH + * tHOLD_MEM > tREH - tSETUP_MEM + * tHOLD_MEM > max(tRC, tWC) - (tSETUP_MEM + tWAIT) + */ + thold_mem = max_t(unsigned long, hclkp, sdrt->tCH_min); + if (sdrt->tREH_min > tset_mem && + (thold_mem < sdrt->tREH_min - tset_mem)) + thold_mem = sdrt->tREH_min - tset_mem; + if ((sdrt->tRC_min > tset_mem + twait) && + (thold_mem < sdrt->tRC_min - (tset_mem + twait))) + thold_mem = sdrt->tRC_min - (tset_mem + twait); + if ((sdrt->tWC_min > tset_mem + twait) && + (thold_mem < sdrt->tWC_min - (tset_mem + twait))) + thold_mem = sdrt->tWC_min - (tset_mem + twait); + timing = DIV_ROUND_UP(thold_mem, hclkp); + tims->thold_mem = clamp_val(timing, 1, FMC2_PMEM_PATT_TIMING_MASK); + + /* + * tSETUP_ATT > tCS - tWAIT + * tSETUP_ATT > tCLS - tWAIT + * tSETUP_ATT > tALS - tWAIT + * tSETUP_ATT > tRHW - tHOLD_MEM + * tSETUP_ATT > tDS - (tWAIT - tHIZ) + */ + tset_att = hclkp; + if (sdrt->tCS_min > twait && (tset_att < sdrt->tCS_min - twait)) + tset_att = sdrt->tCS_min - twait; + if (sdrt->tCLS_min > twait && (tset_att < sdrt->tCLS_min - twait)) + tset_att = sdrt->tCLS_min - twait; + if (sdrt->tALS_min > twait && (tset_att < sdrt->tALS_min - twait)) + tset_att = sdrt->tALS_min - twait; + if (sdrt->tRHW_min > thold_mem && + (tset_att < sdrt->tRHW_min - thold_mem)) + tset_att = sdrt->tRHW_min - thold_mem; + if (twait > thiz && (sdrt->tDS_min > twait - thiz) && + (tset_att < sdrt->tDS_min - (twait - thiz))) + tset_att = sdrt->tDS_min - (twait - thiz); + timing = DIV_ROUND_UP(tset_att, hclkp); + tims->tset_att = clamp_val(timing, 1, FMC2_PMEM_PATT_TIMING_MASK); + + /* + * tHOLD_ATT > tALH + * tHOLD_ATT > tCH + * tHOLD_ATT > tCLH + * tHOLD_ATT > tCOH + * tHOLD_ATT > tDH + * tHOLD_ATT > tWB + tIO + tSYNC - tSETUP_MEM + * tHOLD_ATT > tADL - tSETUP_MEM + * tHOLD_ATT > tWH - tSETUP_MEM + * tHOLD_ATT > tWHR - tSETUP_MEM + * tHOLD_ATT > tRC - (tSETUP_ATT + tWAIT) + * tHOLD_ATT > tWC - (tSETUP_ATT + tWAIT) + */ + thold_att = max_t(unsigned long, hclkp, sdrt->tALH_min); + thold_att = max_t(unsigned long, thold_att, sdrt->tCH_min); + thold_att = max_t(unsigned long, thold_att, sdrt->tCLH_min); + thold_att = max_t(unsigned long, thold_att, sdrt->tCOH_min); + thold_att = max_t(unsigned long, thold_att, sdrt->tDH_min); + if ((sdrt->tWB_max + FMC2_TIO + FMC2_TSYNC > tset_mem) && + (thold_att < sdrt->tWB_max + FMC2_TIO + FMC2_TSYNC - tset_mem)) + thold_att = sdrt->tWB_max + FMC2_TIO + FMC2_TSYNC - tset_mem; + if (sdrt->tADL_min > tset_mem && + (thold_att < sdrt->tADL_min - tset_mem)) + thold_att = sdrt->tADL_min - tset_mem; + if (sdrt->tWH_min > tset_mem && + (thold_att < sdrt->tWH_min - tset_mem)) + thold_att = sdrt->tWH_min - tset_mem; + if (sdrt->tWHR_min > tset_mem && + (thold_att < sdrt->tWHR_min - tset_mem)) + thold_att = sdrt->tWHR_min - tset_mem; + if ((sdrt->tRC_min > tset_att + twait) && + (thold_att < sdrt->tRC_min - (tset_att + twait))) + thold_att = sdrt->tRC_min - (tset_att + twait); + if ((sdrt->tWC_min > tset_att + twait) && + (thold_att < sdrt->tWC_min - (tset_att + twait))) + thold_att = sdrt->tWC_min - (tset_att + twait); + timing = DIV_ROUND_UP(thold_att, hclkp); + tims->thold_att = clamp_val(timing, 1, FMC2_PMEM_PATT_TIMING_MASK); +} + +static int stm32_fmc2_nfc_setup_interface(struct nand_chip *chip, int chipnr, + const struct nand_interface_config *conf) +{ + const struct nand_sdr_timings *sdrt; + + sdrt = nand_get_sdr_timings(conf); + if (IS_ERR(sdrt)) + return PTR_ERR(sdrt); + + if (conf->timings.mode > 3) + return -EOPNOTSUPP; + + if (chipnr == NAND_DATA_IFACE_CHECK_ONLY) + return 0; + + stm32_fmc2_nfc_calc_timings(chip, sdrt); + stm32_fmc2_nfc_timings_init(chip); + + return 0; +} + +static int stm32_fmc2_nfc_dma_setup(struct stm32_fmc2_nfc *nfc) +{ + int ret = 0; + + nfc->dma_tx_ch = dma_request_chan(nfc->dev, "tx"); + if (IS_ERR(nfc->dma_tx_ch)) { + ret = PTR_ERR(nfc->dma_tx_ch); + if (ret != -ENODEV && ret != -EPROBE_DEFER) + dev_err(nfc->dev, + "failed to request tx DMA channel: %d\n", ret); + nfc->dma_tx_ch = NULL; + goto err_dma; + } + + nfc->dma_rx_ch = dma_request_chan(nfc->dev, "rx"); + if (IS_ERR(nfc->dma_rx_ch)) { + ret = PTR_ERR(nfc->dma_rx_ch); + if (ret != -ENODEV && ret != -EPROBE_DEFER) + dev_err(nfc->dev, + "failed to request rx DMA channel: %d\n", ret); + nfc->dma_rx_ch = NULL; + goto err_dma; + } + + nfc->dma_ecc_ch = dma_request_chan(nfc->dev, "ecc"); + if (IS_ERR(nfc->dma_ecc_ch)) { + ret = PTR_ERR(nfc->dma_ecc_ch); + if (ret != -ENODEV && ret != -EPROBE_DEFER) + dev_err(nfc->dev, + "failed to request ecc DMA channel: %d\n", ret); + nfc->dma_ecc_ch = NULL; + goto err_dma; + } + + ret = sg_alloc_table(&nfc->dma_ecc_sg, FMC2_MAX_SG, GFP_KERNEL); + if (ret) + return ret; + + /* Allocate a buffer to store ECC status registers */ + nfc->ecc_buf = devm_kzalloc(nfc->dev, FMC2_MAX_ECC_BUF_LEN, GFP_KERNEL); + if (!nfc->ecc_buf) + return -ENOMEM; + + ret = sg_alloc_table(&nfc->dma_data_sg, FMC2_MAX_SG, GFP_KERNEL); + if (ret) + return ret; + + init_completion(&nfc->dma_data_complete); + init_completion(&nfc->dma_ecc_complete); + + return 0; + +err_dma: + if (ret == -ENODEV) { + dev_warn(nfc->dev, + "DMAs not defined in the DT, polling mode is used\n"); + ret = 0; + } + + return ret; +} + +static void stm32_fmc2_nfc_nand_callbacks_setup(struct nand_chip *chip) +{ + struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller); + + /* + * Specific callbacks to read/write a page depending on + * the mode (polling/sequencer) and the algo used (Hamming, BCH). + */ + if (nfc->dma_tx_ch && nfc->dma_rx_ch && nfc->dma_ecc_ch) { + /* DMA => use sequencer mode callbacks */ + chip->ecc.correct = stm32_fmc2_nfc_seq_correct; + chip->ecc.write_page = stm32_fmc2_nfc_seq_write_page; + chip->ecc.read_page = stm32_fmc2_nfc_seq_read_page; + chip->ecc.write_page_raw = stm32_fmc2_nfc_seq_write_page_raw; + chip->ecc.read_page_raw = stm32_fmc2_nfc_seq_read_page_raw; + } else { + /* No DMA => use polling mode callbacks */ + chip->ecc.hwctl = stm32_fmc2_nfc_hwctl; + if (chip->ecc.strength == FMC2_ECC_HAM) { + /* Hamming is used */ + chip->ecc.calculate = stm32_fmc2_nfc_ham_calculate; + chip->ecc.correct = stm32_fmc2_nfc_ham_correct; + chip->ecc.options |= NAND_ECC_GENERIC_ERASED_CHECK; + } else { + /* BCH is used */ + chip->ecc.calculate = stm32_fmc2_nfc_bch_calculate; + chip->ecc.correct = stm32_fmc2_nfc_bch_correct; + chip->ecc.read_page = stm32_fmc2_nfc_read_page; + } + } + + /* Specific configurations depending on the algo used */ + if (chip->ecc.strength == FMC2_ECC_HAM) + chip->ecc.bytes = chip->options & NAND_BUSWIDTH_16 ? 4 : 3; + else if (chip->ecc.strength == FMC2_ECC_BCH8) + chip->ecc.bytes = chip->options & NAND_BUSWIDTH_16 ? 14 : 13; + else + chip->ecc.bytes = chip->options & NAND_BUSWIDTH_16 ? 8 : 7; +} + +static int stm32_fmc2_nfc_ooblayout_ecc(struct mtd_info *mtd, int section, + struct mtd_oob_region *oobregion) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + struct nand_ecc_ctrl *ecc = &chip->ecc; + + if (section) + return -ERANGE; + + oobregion->length = ecc->total; + oobregion->offset = FMC2_BBM_LEN; + + return 0; +} + +static int stm32_fmc2_nfc_ooblayout_free(struct mtd_info *mtd, int section, + struct mtd_oob_region *oobregion) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + struct nand_ecc_ctrl *ecc = &chip->ecc; + + if (section) + return -ERANGE; + + oobregion->length = mtd->oobsize - ecc->total - FMC2_BBM_LEN; + oobregion->offset = ecc->total + FMC2_BBM_LEN; + + return 0; +} + +static const struct mtd_ooblayout_ops stm32_fmc2_nfc_ooblayout_ops = { + .ecc = stm32_fmc2_nfc_ooblayout_ecc, + .free = stm32_fmc2_nfc_ooblayout_free, +}; + +static int stm32_fmc2_nfc_calc_ecc_bytes(int step_size, int strength) +{ + /* Hamming */ + if (strength == FMC2_ECC_HAM) + return 4; + + /* BCH8 */ + if (strength == FMC2_ECC_BCH8) + return 14; + + /* BCH4 */ + return 8; +} + +NAND_ECC_CAPS_SINGLE(stm32_fmc2_nfc_ecc_caps, stm32_fmc2_nfc_calc_ecc_bytes, + FMC2_ECC_STEP_SIZE, + FMC2_ECC_HAM, FMC2_ECC_BCH4, FMC2_ECC_BCH8); + +static int stm32_fmc2_nfc_attach_chip(struct nand_chip *chip) +{ + struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller); + struct mtd_info *mtd = nand_to_mtd(chip); + int ret; + + /* + * Only NAND_ECC_ENGINE_TYPE_ON_HOST mode is actually supported + * Hamming => ecc.strength = 1 + * BCH4 => ecc.strength = 4 + * BCH8 => ecc.strength = 8 + * ECC sector size = 512 + */ + if (chip->ecc.engine_type != NAND_ECC_ENGINE_TYPE_ON_HOST) { + dev_err(nfc->dev, + "nand_ecc_engine_type is not well defined in the DT\n"); + return -EINVAL; + } + + /* Default ECC settings in case they are not set in the device tree */ + if (!chip->ecc.size) + chip->ecc.size = FMC2_ECC_STEP_SIZE; + + if (!chip->ecc.strength) + chip->ecc.strength = FMC2_ECC_BCH8; + + ret = nand_ecc_choose_conf(chip, &stm32_fmc2_nfc_ecc_caps, + mtd->oobsize - FMC2_BBM_LEN); + if (ret) { + dev_err(nfc->dev, "no valid ECC settings set\n"); + return ret; + } + + if (mtd->writesize / chip->ecc.size > FMC2_MAX_SG) { + dev_err(nfc->dev, "nand page size is not supported\n"); + return -EINVAL; + } + + if (chip->bbt_options & NAND_BBT_USE_FLASH) + chip->bbt_options |= NAND_BBT_NO_OOB; + + stm32_fmc2_nfc_nand_callbacks_setup(chip); + + mtd_set_ooblayout(mtd, &stm32_fmc2_nfc_ooblayout_ops); + + stm32_fmc2_nfc_setup(chip); + + return 0; +} + +static const struct nand_controller_ops stm32_fmc2_nfc_controller_ops = { + .attach_chip = stm32_fmc2_nfc_attach_chip, + .exec_op = stm32_fmc2_nfc_exec_op, + .setup_interface = stm32_fmc2_nfc_setup_interface, +}; + +static void stm32_fmc2_nfc_wp_enable(struct stm32_fmc2_nand *nand) +{ + if (nand->wp_gpio) + gpiod_set_value(nand->wp_gpio, 1); +} + +static void stm32_fmc2_nfc_wp_disable(struct stm32_fmc2_nand *nand) +{ + if (nand->wp_gpio) + gpiod_set_value(nand->wp_gpio, 0); +} + +static int stm32_fmc2_nfc_parse_child(struct stm32_fmc2_nfc *nfc, + struct device_node *dn) +{ + struct stm32_fmc2_nand *nand = &nfc->nand; + u32 cs; + int ret, i; + + if (!of_get_property(dn, "reg", &nand->ncs)) + return -EINVAL; + + nand->ncs /= sizeof(u32); + if (!nand->ncs) { + dev_err(nfc->dev, "invalid reg property size\n"); + return -EINVAL; + } + + for (i = 0; i < nand->ncs; i++) { + ret = of_property_read_u32_index(dn, "reg", i, &cs); + if (ret) { + dev_err(nfc->dev, "could not retrieve reg property: %d\n", + ret); + return ret; + } + + if (cs >= FMC2_MAX_CE) { + dev_err(nfc->dev, "invalid reg value: %d\n", cs); + return -EINVAL; + } + + if (nfc->cs_assigned & BIT(cs)) { + dev_err(nfc->dev, "cs already assigned: %d\n", cs); + return -EINVAL; + } + + nfc->cs_assigned |= BIT(cs); + nand->cs_used[i] = cs; + } + + nand->wp_gpio = devm_fwnode_gpiod_get(nfc->dev, of_fwnode_handle(dn), + "wp", GPIOD_OUT_HIGH, "wp"); + if (IS_ERR(nand->wp_gpio)) { + ret = PTR_ERR(nand->wp_gpio); + if (ret != -ENOENT) + return dev_err_probe(nfc->dev, ret, + "failed to request WP GPIO\n"); + + nand->wp_gpio = NULL; + } + + nand_set_flash_node(&nand->chip, dn); + + return 0; +} + +static int stm32_fmc2_nfc_parse_dt(struct stm32_fmc2_nfc *nfc) +{ + struct device_node *dn = nfc->dev->of_node; + struct device_node *child; + int nchips = of_get_child_count(dn); + int ret = 0; + + if (!nchips) { + dev_err(nfc->dev, "NAND chip not defined\n"); + return -EINVAL; + } + + if (nchips > 1) { + dev_err(nfc->dev, "too many NAND chips defined\n"); + return -EINVAL; + } + + for_each_child_of_node(dn, child) { + ret = stm32_fmc2_nfc_parse_child(nfc, child); + if (ret < 0) { + of_node_put(child); + return ret; + } + } + + return ret; +} + +static int stm32_fmc2_nfc_set_cdev(struct stm32_fmc2_nfc *nfc) +{ + struct device *dev = nfc->dev; + bool ebi_found = false; + + if (dev->parent && of_device_is_compatible(dev->parent->of_node, + "st,stm32mp1-fmc2-ebi")) + ebi_found = true; + + if (of_device_is_compatible(dev->of_node, "st,stm32mp1-fmc2-nfc")) { + if (ebi_found) { + nfc->cdev = dev->parent; + + return 0; + } + + return -EINVAL; + } + + if (ebi_found) + return -EINVAL; + + nfc->cdev = dev; + + return 0; +} + +static int stm32_fmc2_nfc_probe(struct platform_device *pdev) +{ + struct device *dev = &pdev->dev; + struct reset_control *rstc; + struct stm32_fmc2_nfc *nfc; + struct stm32_fmc2_nand *nand; + struct resource *res; + struct mtd_info *mtd; + struct nand_chip *chip; + struct resource cres; + int chip_cs, mem_region, ret, irq; + int start_region = 0; + + nfc = devm_kzalloc(dev, sizeof(*nfc), GFP_KERNEL); + if (!nfc) + return -ENOMEM; + + nfc->dev = dev; + nand_controller_init(&nfc->base); + nfc->base.ops = &stm32_fmc2_nfc_controller_ops; + + ret = stm32_fmc2_nfc_set_cdev(nfc); + if (ret) + return ret; + + ret = stm32_fmc2_nfc_parse_dt(nfc); + if (ret) + return ret; + + ret = of_address_to_resource(nfc->cdev->of_node, 0, &cres); + if (ret) + return ret; + + nfc->io_phys_addr = cres.start; + + nfc->regmap = device_node_to_regmap(nfc->cdev->of_node); + if (IS_ERR(nfc->regmap)) + return PTR_ERR(nfc->regmap); + + if (nfc->dev == nfc->cdev) + start_region = 1; + + for (chip_cs = 0, mem_region = start_region; chip_cs < FMC2_MAX_CE; + chip_cs++, mem_region += 3) { + if (!(nfc->cs_assigned & BIT(chip_cs))) + continue; + + nfc->data_base[chip_cs] = devm_platform_get_and_ioremap_resource(pdev, + mem_region, &res); + if (IS_ERR(nfc->data_base[chip_cs])) + return PTR_ERR(nfc->data_base[chip_cs]); + + nfc->data_phys_addr[chip_cs] = res->start; + + nfc->cmd_base[chip_cs] = devm_platform_ioremap_resource(pdev, mem_region + 1); + if (IS_ERR(nfc->cmd_base[chip_cs])) + return PTR_ERR(nfc->cmd_base[chip_cs]); + + nfc->addr_base[chip_cs] = devm_platform_ioremap_resource(pdev, mem_region + 2); + if (IS_ERR(nfc->addr_base[chip_cs])) + return PTR_ERR(nfc->addr_base[chip_cs]); + } + + irq = platform_get_irq(pdev, 0); + if (irq < 0) + return irq; + + ret = devm_request_irq(dev, irq, stm32_fmc2_nfc_irq, 0, + dev_name(dev), nfc); + if (ret) { + dev_err(dev, "failed to request irq\n"); + return ret; + } + + init_completion(&nfc->complete); + + nfc->clk = devm_clk_get_enabled(nfc->cdev, NULL); + if (IS_ERR(nfc->clk)) { + dev_err(dev, "can not get and enable the clock\n"); + return PTR_ERR(nfc->clk); + } + + rstc = devm_reset_control_get(dev, NULL); + if (IS_ERR(rstc)) { + ret = PTR_ERR(rstc); + if (ret == -EPROBE_DEFER) + return ret; + } else { + reset_control_assert(rstc); + reset_control_deassert(rstc); + } + + ret = stm32_fmc2_nfc_dma_setup(nfc); + if (ret) + goto err_release_dma; + + stm32_fmc2_nfc_init(nfc); + + nand = &nfc->nand; + chip = &nand->chip; + mtd = nand_to_mtd(chip); + mtd->dev.parent = dev; + + chip->controller = &nfc->base; + chip->options |= NAND_BUSWIDTH_AUTO | NAND_NO_SUBPAGE_WRITE | + NAND_USES_DMA; + + stm32_fmc2_nfc_wp_disable(nand); + + /* Scan to find existence of the device */ + ret = nand_scan(chip, nand->ncs); + if (ret) + goto err_wp_enable; + + ret = mtd_device_register(mtd, NULL, 0); + if (ret) + goto err_nand_cleanup; + + platform_set_drvdata(pdev, nfc); + + return 0; + +err_nand_cleanup: + nand_cleanup(chip); + +err_wp_enable: + stm32_fmc2_nfc_wp_enable(nand); + +err_release_dma: + if (nfc->dma_ecc_ch) + dma_release_channel(nfc->dma_ecc_ch); + if (nfc->dma_tx_ch) + dma_release_channel(nfc->dma_tx_ch); + if (nfc->dma_rx_ch) + dma_release_channel(nfc->dma_rx_ch); + + sg_free_table(&nfc->dma_data_sg); + sg_free_table(&nfc->dma_ecc_sg); + + return ret; +} + +static void stm32_fmc2_nfc_remove(struct platform_device *pdev) +{ + struct stm32_fmc2_nfc *nfc = platform_get_drvdata(pdev); + struct stm32_fmc2_nand *nand = &nfc->nand; + struct nand_chip *chip = &nand->chip; + int ret; + + ret = mtd_device_unregister(nand_to_mtd(chip)); + WARN_ON(ret); + nand_cleanup(chip); + + if (nfc->dma_ecc_ch) + dma_release_channel(nfc->dma_ecc_ch); + if (nfc->dma_tx_ch) + dma_release_channel(nfc->dma_tx_ch); + if (nfc->dma_rx_ch) + dma_release_channel(nfc->dma_rx_ch); + + sg_free_table(&nfc->dma_data_sg); + sg_free_table(&nfc->dma_ecc_sg); + + stm32_fmc2_nfc_wp_enable(nand); +} + +static int __maybe_unused stm32_fmc2_nfc_suspend(struct device *dev) +{ + struct stm32_fmc2_nfc *nfc = dev_get_drvdata(dev); + struct stm32_fmc2_nand *nand = &nfc->nand; + + clk_disable_unprepare(nfc->clk); + + stm32_fmc2_nfc_wp_enable(nand); + + pinctrl_pm_select_sleep_state(dev); + + return 0; +} + +static int __maybe_unused stm32_fmc2_nfc_resume(struct device *dev) +{ + struct stm32_fmc2_nfc *nfc = dev_get_drvdata(dev); + struct stm32_fmc2_nand *nand = &nfc->nand; + int chip_cs, ret; + + pinctrl_pm_select_default_state(dev); + + ret = clk_prepare_enable(nfc->clk); + if (ret) { + dev_err(dev, "can not enable the clock\n"); + return ret; + } + + stm32_fmc2_nfc_init(nfc); + + stm32_fmc2_nfc_wp_disable(nand); + + for (chip_cs = 0; chip_cs < FMC2_MAX_CE; chip_cs++) { + if (!(nfc->cs_assigned & BIT(chip_cs))) + continue; + + nand_reset(&nand->chip, chip_cs); + } + + return 0; +} + +static SIMPLE_DEV_PM_OPS(stm32_fmc2_nfc_pm_ops, stm32_fmc2_nfc_suspend, + stm32_fmc2_nfc_resume); + +static const struct of_device_id stm32_fmc2_nfc_match[] = { + {.compatible = "st,stm32mp15-fmc2"}, + {.compatible = "st,stm32mp1-fmc2-nfc"}, + {} +}; +MODULE_DEVICE_TABLE(of, stm32_fmc2_nfc_match); + +static struct platform_driver stm32_fmc2_nfc_driver = { + .probe = stm32_fmc2_nfc_probe, + .remove_new = stm32_fmc2_nfc_remove, + .driver = { + .name = "stm32_fmc2_nfc", + .of_match_table = stm32_fmc2_nfc_match, + .pm = &stm32_fmc2_nfc_pm_ops, + }, +}; +module_platform_driver(stm32_fmc2_nfc_driver); + +MODULE_ALIAS("platform:stm32_fmc2_nfc"); +MODULE_AUTHOR("Christophe Kerello <christophe.kerello@st.com>"); +MODULE_DESCRIPTION("STMicroelectronics STM32 FMC2 NFC driver"); +MODULE_LICENSE("GPL v2"); diff --git a/drivers/mtd/nand/raw/sunxi_nand.c b/drivers/mtd/nand/raw/sunxi_nand.c new file mode 100644 index 0000000000..9abf38049d --- /dev/null +++ b/drivers/mtd/nand/raw/sunxi_nand.c @@ -0,0 +1,2208 @@ +// SPDX-License-Identifier: GPL-2.0+ +/* + * Copyright (C) 2013 Boris BREZILLON <b.brezillon.dev@gmail.com> + * + * Derived from: + * https://github.com/yuq/sunxi-nfc-mtd + * Copyright (C) 2013 Qiang Yu <yuq825@gmail.com> + * + * https://github.com/hno/Allwinner-Info + * Copyright (C) 2013 Henrik Nordström <Henrik Nordström> + * + * Copyright (C) 2013 Dmitriy B. <rzk333@gmail.com> + * Copyright (C) 2013 Sergey Lapin <slapin@ossfans.org> + */ + +#include <linux/dma-mapping.h> +#include <linux/slab.h> +#include <linux/module.h> +#include <linux/moduleparam.h> +#include <linux/platform_device.h> +#include <linux/of.h> +#include <linux/mtd/mtd.h> +#include <linux/mtd/rawnand.h> +#include <linux/mtd/partitions.h> +#include <linux/clk.h> +#include <linux/delay.h> +#include <linux/dmaengine.h> +#include <linux/interrupt.h> +#include <linux/iopoll.h> +#include <linux/reset.h> + +#define NFC_REG_CTL 0x0000 +#define NFC_REG_ST 0x0004 +#define NFC_REG_INT 0x0008 +#define NFC_REG_TIMING_CTL 0x000C +#define NFC_REG_TIMING_CFG 0x0010 +#define NFC_REG_ADDR_LOW 0x0014 +#define NFC_REG_ADDR_HIGH 0x0018 +#define NFC_REG_SECTOR_NUM 0x001C +#define NFC_REG_CNT 0x0020 +#define NFC_REG_CMD 0x0024 +#define NFC_REG_RCMD_SET 0x0028 +#define NFC_REG_WCMD_SET 0x002C +#define NFC_REG_A10_IO_DATA 0x0030 +#define NFC_REG_A23_IO_DATA 0x0300 +#define NFC_REG_ECC_CTL 0x0034 +#define NFC_REG_ECC_ST 0x0038 +#define NFC_REG_DEBUG 0x003C +#define NFC_REG_ECC_ERR_CNT(x) ((0x0040 + (x)) & ~0x3) +#define NFC_REG_USER_DATA(x) (0x0050 + ((x) * 4)) +#define NFC_REG_SPARE_AREA 0x00A0 +#define NFC_REG_PAT_ID 0x00A4 +#define NFC_REG_MDMA_ADDR 0x00C0 +#define NFC_REG_MDMA_CNT 0x00C4 +#define NFC_RAM0_BASE 0x0400 +#define NFC_RAM1_BASE 0x0800 + +/* define bit use in NFC_CTL */ +#define NFC_EN BIT(0) +#define NFC_RESET BIT(1) +#define NFC_BUS_WIDTH_MSK BIT(2) +#define NFC_BUS_WIDTH_8 (0 << 2) +#define NFC_BUS_WIDTH_16 (1 << 2) +#define NFC_RB_SEL_MSK BIT(3) +#define NFC_RB_SEL(x) ((x) << 3) +#define NFC_CE_SEL_MSK GENMASK(26, 24) +#define NFC_CE_SEL(x) ((x) << 24) +#define NFC_CE_CTL BIT(6) +#define NFC_PAGE_SHIFT_MSK GENMASK(11, 8) +#define NFC_PAGE_SHIFT(x) (((x) < 10 ? 0 : (x) - 10) << 8) +#define NFC_SAM BIT(12) +#define NFC_RAM_METHOD BIT(14) +#define NFC_DMA_TYPE_NORMAL BIT(15) +#define NFC_DEBUG_CTL BIT(31) + +/* define bit use in NFC_ST */ +#define NFC_RB_B2R BIT(0) +#define NFC_CMD_INT_FLAG BIT(1) +#define NFC_DMA_INT_FLAG BIT(2) +#define NFC_CMD_FIFO_STATUS BIT(3) +#define NFC_STA BIT(4) +#define NFC_NATCH_INT_FLAG BIT(5) +#define NFC_RB_STATE(x) BIT(x + 8) + +/* define bit use in NFC_INT */ +#define NFC_B2R_INT_ENABLE BIT(0) +#define NFC_CMD_INT_ENABLE BIT(1) +#define NFC_DMA_INT_ENABLE BIT(2) +#define NFC_INT_MASK (NFC_B2R_INT_ENABLE | \ + NFC_CMD_INT_ENABLE | \ + NFC_DMA_INT_ENABLE) + +/* define bit use in NFC_TIMING_CTL */ +#define NFC_TIMING_CTL_EDO BIT(8) + +/* define NFC_TIMING_CFG register layout */ +#define NFC_TIMING_CFG(tWB, tADL, tWHR, tRHW, tCAD) \ + (((tWB) & 0x3) | (((tADL) & 0x3) << 2) | \ + (((tWHR) & 0x3) << 4) | (((tRHW) & 0x3) << 6) | \ + (((tCAD) & 0x7) << 8)) + +/* define bit use in NFC_CMD */ +#define NFC_CMD_LOW_BYTE_MSK GENMASK(7, 0) +#define NFC_CMD_HIGH_BYTE_MSK GENMASK(15, 8) +#define NFC_CMD(x) (x) +#define NFC_ADR_NUM_MSK GENMASK(18, 16) +#define NFC_ADR_NUM(x) (((x) - 1) << 16) +#define NFC_SEND_ADR BIT(19) +#define NFC_ACCESS_DIR BIT(20) +#define NFC_DATA_TRANS BIT(21) +#define NFC_SEND_CMD1 BIT(22) +#define NFC_WAIT_FLAG BIT(23) +#define NFC_SEND_CMD2 BIT(24) +#define NFC_SEQ BIT(25) +#define NFC_DATA_SWAP_METHOD BIT(26) +#define NFC_ROW_AUTO_INC BIT(27) +#define NFC_SEND_CMD3 BIT(28) +#define NFC_SEND_CMD4 BIT(29) +#define NFC_CMD_TYPE_MSK GENMASK(31, 30) +#define NFC_NORMAL_OP (0 << 30) +#define NFC_ECC_OP (1 << 30) +#define NFC_PAGE_OP (2U << 30) + +/* define bit use in NFC_RCMD_SET */ +#define NFC_READ_CMD_MSK GENMASK(7, 0) +#define NFC_RND_READ_CMD0_MSK GENMASK(15, 8) +#define NFC_RND_READ_CMD1_MSK GENMASK(23, 16) + +/* define bit use in NFC_WCMD_SET */ +#define NFC_PROGRAM_CMD_MSK GENMASK(7, 0) +#define NFC_RND_WRITE_CMD_MSK GENMASK(15, 8) +#define NFC_READ_CMD0_MSK GENMASK(23, 16) +#define NFC_READ_CMD1_MSK GENMASK(31, 24) + +/* define bit use in NFC_ECC_CTL */ +#define NFC_ECC_EN BIT(0) +#define NFC_ECC_PIPELINE BIT(3) +#define NFC_ECC_EXCEPTION BIT(4) +#define NFC_ECC_BLOCK_SIZE_MSK BIT(5) +#define NFC_ECC_BLOCK_512 BIT(5) +#define NFC_RANDOM_EN BIT(9) +#define NFC_RANDOM_DIRECTION BIT(10) +#define NFC_ECC_MODE_MSK GENMASK(15, 12) +#define NFC_ECC_MODE(x) ((x) << 12) +#define NFC_RANDOM_SEED_MSK GENMASK(30, 16) +#define NFC_RANDOM_SEED(x) ((x) << 16) + +/* define bit use in NFC_ECC_ST */ +#define NFC_ECC_ERR(x) BIT(x) +#define NFC_ECC_ERR_MSK GENMASK(15, 0) +#define NFC_ECC_PAT_FOUND(x) BIT(x + 16) +#define NFC_ECC_ERR_CNT(b, x) (((x) >> (((b) % 4) * 8)) & 0xff) + +#define NFC_DEFAULT_TIMEOUT_MS 1000 + +#define NFC_SRAM_SIZE 1024 + +#define NFC_MAX_CS 7 + +/** + * struct sunxi_nand_chip_sel - stores information related to NAND Chip Select + * + * @cs: the NAND CS id used to communicate with a NAND Chip + * @rb: the Ready/Busy pin ID. -1 means no R/B pin connected to the NFC + */ +struct sunxi_nand_chip_sel { + u8 cs; + s8 rb; +}; + +/** + * struct sunxi_nand_hw_ecc - stores information related to HW ECC support + * + * @ecc_ctl: ECC_CTL register value for this NAND chip + */ +struct sunxi_nand_hw_ecc { + u32 ecc_ctl; +}; + +/** + * struct sunxi_nand_chip - stores NAND chip device related information + * + * @node: used to store NAND chips into a list + * @nand: base NAND chip structure + * @ecc: ECC controller structure + * @clk_rate: clk_rate required for this NAND chip + * @timing_cfg: TIMING_CFG register value for this NAND chip + * @timing_ctl: TIMING_CTL register value for this NAND chip + * @nsels: number of CS lines required by the NAND chip + * @sels: array of CS lines descriptions + */ +struct sunxi_nand_chip { + struct list_head node; + struct nand_chip nand; + struct sunxi_nand_hw_ecc ecc; + unsigned long clk_rate; + u32 timing_cfg; + u32 timing_ctl; + int nsels; + struct sunxi_nand_chip_sel sels[]; +}; + +static inline struct sunxi_nand_chip *to_sunxi_nand(struct nand_chip *nand) +{ + return container_of(nand, struct sunxi_nand_chip, nand); +} + +/* + * NAND Controller capabilities structure: stores NAND controller capabilities + * for distinction between compatible strings. + * + * @has_mdma: Use mbus dma mode, otherwise general dma + * through MBUS on A23/A33 needs extra configuration. + * @reg_io_data: I/O data register + * @dma_maxburst: DMA maxburst + */ +struct sunxi_nfc_caps { + bool has_mdma; + unsigned int reg_io_data; + unsigned int dma_maxburst; +}; + +/** + * struct sunxi_nfc - stores sunxi NAND controller information + * + * @controller: base controller structure + * @dev: parent device (used to print error messages) + * @regs: NAND controller registers + * @ahb_clk: NAND controller AHB clock + * @mod_clk: NAND controller mod clock + * @reset: NAND controller reset line + * @assigned_cs: bitmask describing already assigned CS lines + * @clk_rate: NAND controller current clock rate + * @chips: a list containing all the NAND chips attached to this NAND + * controller + * @complete: a completion object used to wait for NAND controller events + * @dmac: the DMA channel attached to the NAND controller + * @caps: NAND Controller capabilities + */ +struct sunxi_nfc { + struct nand_controller controller; + struct device *dev; + void __iomem *regs; + struct clk *ahb_clk; + struct clk *mod_clk; + struct reset_control *reset; + unsigned long assigned_cs; + unsigned long clk_rate; + struct list_head chips; + struct completion complete; + struct dma_chan *dmac; + const struct sunxi_nfc_caps *caps; +}; + +static inline struct sunxi_nfc *to_sunxi_nfc(struct nand_controller *ctrl) +{ + return container_of(ctrl, struct sunxi_nfc, controller); +} + +static irqreturn_t sunxi_nfc_interrupt(int irq, void *dev_id) +{ + struct sunxi_nfc *nfc = dev_id; + u32 st = readl(nfc->regs + NFC_REG_ST); + u32 ien = readl(nfc->regs + NFC_REG_INT); + + if (!(ien & st)) + return IRQ_NONE; + + if ((ien & st) == ien) + complete(&nfc->complete); + + writel(st & NFC_INT_MASK, nfc->regs + NFC_REG_ST); + writel(~st & ien & NFC_INT_MASK, nfc->regs + NFC_REG_INT); + + return IRQ_HANDLED; +} + +static int sunxi_nfc_wait_events(struct sunxi_nfc *nfc, u32 events, + bool use_polling, unsigned int timeout_ms) +{ + int ret; + + if (events & ~NFC_INT_MASK) + return -EINVAL; + + if (!timeout_ms) + timeout_ms = NFC_DEFAULT_TIMEOUT_MS; + + if (!use_polling) { + init_completion(&nfc->complete); + + writel(events, nfc->regs + NFC_REG_INT); + + ret = wait_for_completion_timeout(&nfc->complete, + msecs_to_jiffies(timeout_ms)); + if (!ret) + ret = -ETIMEDOUT; + else + ret = 0; + + writel(0, nfc->regs + NFC_REG_INT); + } else { + u32 status; + + ret = readl_poll_timeout(nfc->regs + NFC_REG_ST, status, + (status & events) == events, 1, + timeout_ms * 1000); + } + + writel(events & NFC_INT_MASK, nfc->regs + NFC_REG_ST); + + if (ret) + dev_err(nfc->dev, "wait interrupt timedout\n"); + + return ret; +} + +static int sunxi_nfc_wait_cmd_fifo_empty(struct sunxi_nfc *nfc) +{ + u32 status; + int ret; + + ret = readl_poll_timeout(nfc->regs + NFC_REG_ST, status, + !(status & NFC_CMD_FIFO_STATUS), 1, + NFC_DEFAULT_TIMEOUT_MS * 1000); + if (ret) + dev_err(nfc->dev, "wait for empty cmd FIFO timedout\n"); + + return ret; +} + +static int sunxi_nfc_rst(struct sunxi_nfc *nfc) +{ + u32 ctl; + int ret; + + writel(0, nfc->regs + NFC_REG_ECC_CTL); + writel(NFC_RESET, nfc->regs + NFC_REG_CTL); + + ret = readl_poll_timeout(nfc->regs + NFC_REG_CTL, ctl, + !(ctl & NFC_RESET), 1, + NFC_DEFAULT_TIMEOUT_MS * 1000); + if (ret) + dev_err(nfc->dev, "wait for NAND controller reset timedout\n"); + + return ret; +} + +static int sunxi_nfc_dma_op_prepare(struct sunxi_nfc *nfc, const void *buf, + int chunksize, int nchunks, + enum dma_data_direction ddir, + struct scatterlist *sg) +{ + struct dma_async_tx_descriptor *dmad; + enum dma_transfer_direction tdir; + dma_cookie_t dmat; + int ret; + + if (ddir == DMA_FROM_DEVICE) + tdir = DMA_DEV_TO_MEM; + else + tdir = DMA_MEM_TO_DEV; + + sg_init_one(sg, buf, nchunks * chunksize); + ret = dma_map_sg(nfc->dev, sg, 1, ddir); + if (!ret) + return -ENOMEM; + + if (!nfc->caps->has_mdma) { + dmad = dmaengine_prep_slave_sg(nfc->dmac, sg, 1, tdir, DMA_CTRL_ACK); + if (!dmad) { + ret = -EINVAL; + goto err_unmap_buf; + } + } + + writel(readl(nfc->regs + NFC_REG_CTL) | NFC_RAM_METHOD, + nfc->regs + NFC_REG_CTL); + writel(nchunks, nfc->regs + NFC_REG_SECTOR_NUM); + writel(chunksize, nfc->regs + NFC_REG_CNT); + + if (nfc->caps->has_mdma) { + writel(readl(nfc->regs + NFC_REG_CTL) & ~NFC_DMA_TYPE_NORMAL, + nfc->regs + NFC_REG_CTL); + writel(chunksize * nchunks, nfc->regs + NFC_REG_MDMA_CNT); + writel(sg_dma_address(sg), nfc->regs + NFC_REG_MDMA_ADDR); + } else { + dmat = dmaengine_submit(dmad); + + ret = dma_submit_error(dmat); + if (ret) + goto err_clr_dma_flag; + } + + return 0; + +err_clr_dma_flag: + writel(readl(nfc->regs + NFC_REG_CTL) & ~NFC_RAM_METHOD, + nfc->regs + NFC_REG_CTL); + +err_unmap_buf: + dma_unmap_sg(nfc->dev, sg, 1, ddir); + return ret; +} + +static void sunxi_nfc_dma_op_cleanup(struct sunxi_nfc *nfc, + enum dma_data_direction ddir, + struct scatterlist *sg) +{ + dma_unmap_sg(nfc->dev, sg, 1, ddir); + writel(readl(nfc->regs + NFC_REG_CTL) & ~NFC_RAM_METHOD, + nfc->regs + NFC_REG_CTL); +} + +static void sunxi_nfc_select_chip(struct nand_chip *nand, unsigned int cs) +{ + struct mtd_info *mtd = nand_to_mtd(nand); + struct sunxi_nand_chip *sunxi_nand = to_sunxi_nand(nand); + struct sunxi_nfc *nfc = to_sunxi_nfc(sunxi_nand->nand.controller); + struct sunxi_nand_chip_sel *sel; + u32 ctl; + + if (cs >= sunxi_nand->nsels) + return; + + ctl = readl(nfc->regs + NFC_REG_CTL) & + ~(NFC_PAGE_SHIFT_MSK | NFC_CE_SEL_MSK | NFC_RB_SEL_MSK | NFC_EN); + + sel = &sunxi_nand->sels[cs]; + ctl |= NFC_CE_SEL(sel->cs) | NFC_EN | NFC_PAGE_SHIFT(nand->page_shift); + if (sel->rb >= 0) + ctl |= NFC_RB_SEL(sel->rb); + + writel(mtd->writesize, nfc->regs + NFC_REG_SPARE_AREA); + + if (nfc->clk_rate != sunxi_nand->clk_rate) { + clk_set_rate(nfc->mod_clk, sunxi_nand->clk_rate); + nfc->clk_rate = sunxi_nand->clk_rate; + } + + writel(sunxi_nand->timing_ctl, nfc->regs + NFC_REG_TIMING_CTL); + writel(sunxi_nand->timing_cfg, nfc->regs + NFC_REG_TIMING_CFG); + writel(ctl, nfc->regs + NFC_REG_CTL); +} + +static void sunxi_nfc_read_buf(struct nand_chip *nand, uint8_t *buf, int len) +{ + struct sunxi_nand_chip *sunxi_nand = to_sunxi_nand(nand); + struct sunxi_nfc *nfc = to_sunxi_nfc(sunxi_nand->nand.controller); + int ret; + int cnt; + int offs = 0; + u32 tmp; + + while (len > offs) { + bool poll = false; + + cnt = min(len - offs, NFC_SRAM_SIZE); + + ret = sunxi_nfc_wait_cmd_fifo_empty(nfc); + if (ret) + break; + + writel(cnt, nfc->regs + NFC_REG_CNT); + tmp = NFC_DATA_TRANS | NFC_DATA_SWAP_METHOD; + writel(tmp, nfc->regs + NFC_REG_CMD); + + /* Arbitrary limit for polling mode */ + if (cnt < 64) + poll = true; + + ret = sunxi_nfc_wait_events(nfc, NFC_CMD_INT_FLAG, poll, 0); + if (ret) + break; + + if (buf) + memcpy_fromio(buf + offs, nfc->regs + NFC_RAM0_BASE, + cnt); + offs += cnt; + } +} + +static void sunxi_nfc_write_buf(struct nand_chip *nand, const uint8_t *buf, + int len) +{ + struct sunxi_nand_chip *sunxi_nand = to_sunxi_nand(nand); + struct sunxi_nfc *nfc = to_sunxi_nfc(sunxi_nand->nand.controller); + int ret; + int cnt; + int offs = 0; + u32 tmp; + + while (len > offs) { + bool poll = false; + + cnt = min(len - offs, NFC_SRAM_SIZE); + + ret = sunxi_nfc_wait_cmd_fifo_empty(nfc); + if (ret) + break; + + writel(cnt, nfc->regs + NFC_REG_CNT); + memcpy_toio(nfc->regs + NFC_RAM0_BASE, buf + offs, cnt); + tmp = NFC_DATA_TRANS | NFC_DATA_SWAP_METHOD | + NFC_ACCESS_DIR; + writel(tmp, nfc->regs + NFC_REG_CMD); + + /* Arbitrary limit for polling mode */ + if (cnt < 64) + poll = true; + + ret = sunxi_nfc_wait_events(nfc, NFC_CMD_INT_FLAG, poll, 0); + if (ret) + break; + + offs += cnt; + } +} + +/* These seed values have been extracted from Allwinner's BSP */ +static const u16 sunxi_nfc_randomizer_page_seeds[] = { + 0x2b75, 0x0bd0, 0x5ca3, 0x62d1, 0x1c93, 0x07e9, 0x2162, 0x3a72, + 0x0d67, 0x67f9, 0x1be7, 0x077d, 0x032f, 0x0dac, 0x2716, 0x2436, + 0x7922, 0x1510, 0x3860, 0x5287, 0x480f, 0x4252, 0x1789, 0x5a2d, + 0x2a49, 0x5e10, 0x437f, 0x4b4e, 0x2f45, 0x216e, 0x5cb7, 0x7130, + 0x2a3f, 0x60e4, 0x4dc9, 0x0ef0, 0x0f52, 0x1bb9, 0x6211, 0x7a56, + 0x226d, 0x4ea7, 0x6f36, 0x3692, 0x38bf, 0x0c62, 0x05eb, 0x4c55, + 0x60f4, 0x728c, 0x3b6f, 0x2037, 0x7f69, 0x0936, 0x651a, 0x4ceb, + 0x6218, 0x79f3, 0x383f, 0x18d9, 0x4f05, 0x5c82, 0x2912, 0x6f17, + 0x6856, 0x5938, 0x1007, 0x61ab, 0x3e7f, 0x57c2, 0x542f, 0x4f62, + 0x7454, 0x2eac, 0x7739, 0x42d4, 0x2f90, 0x435a, 0x2e52, 0x2064, + 0x637c, 0x66ad, 0x2c90, 0x0bad, 0x759c, 0x0029, 0x0986, 0x7126, + 0x1ca7, 0x1605, 0x386a, 0x27f5, 0x1380, 0x6d75, 0x24c3, 0x0f8e, + 0x2b7a, 0x1418, 0x1fd1, 0x7dc1, 0x2d8e, 0x43af, 0x2267, 0x7da3, + 0x4e3d, 0x1338, 0x50db, 0x454d, 0x764d, 0x40a3, 0x42e6, 0x262b, + 0x2d2e, 0x1aea, 0x2e17, 0x173d, 0x3a6e, 0x71bf, 0x25f9, 0x0a5d, + 0x7c57, 0x0fbe, 0x46ce, 0x4939, 0x6b17, 0x37bb, 0x3e91, 0x76db, +}; + +/* + * sunxi_nfc_randomizer_ecc512_seeds and sunxi_nfc_randomizer_ecc1024_seeds + * have been generated using + * sunxi_nfc_randomizer_step(seed, (step_size * 8) + 15), which is what + * the randomizer engine does internally before de/scrambling OOB data. + * + * Those tables are statically defined to avoid calculating randomizer state + * at runtime. + */ +static const u16 sunxi_nfc_randomizer_ecc512_seeds[] = { + 0x3346, 0x367f, 0x1f18, 0x769a, 0x4f64, 0x068c, 0x2ef1, 0x6b64, + 0x28a9, 0x15d7, 0x30f8, 0x3659, 0x53db, 0x7c5f, 0x71d4, 0x4409, + 0x26eb, 0x03cc, 0x655d, 0x47d4, 0x4daa, 0x0877, 0x712d, 0x3617, + 0x3264, 0x49aa, 0x7f9e, 0x588e, 0x4fbc, 0x7176, 0x7f91, 0x6c6d, + 0x4b95, 0x5fb7, 0x3844, 0x4037, 0x0184, 0x081b, 0x0ee8, 0x5b91, + 0x293d, 0x1f71, 0x0e6f, 0x402b, 0x5122, 0x1e52, 0x22be, 0x3d2d, + 0x75bc, 0x7c60, 0x6291, 0x1a2f, 0x61d4, 0x74aa, 0x4140, 0x29ab, + 0x472d, 0x2852, 0x017e, 0x15e8, 0x5ec2, 0x17cf, 0x7d0f, 0x06b8, + 0x117a, 0x6b94, 0x789b, 0x3126, 0x6ac5, 0x5be7, 0x150f, 0x51f8, + 0x7889, 0x0aa5, 0x663d, 0x77e8, 0x0b87, 0x3dcb, 0x360d, 0x218b, + 0x512f, 0x7dc9, 0x6a4d, 0x630a, 0x3547, 0x1dd2, 0x5aea, 0x69a5, + 0x7bfa, 0x5e4f, 0x1519, 0x6430, 0x3a0e, 0x5eb3, 0x5425, 0x0c7a, + 0x5540, 0x3670, 0x63c1, 0x31e9, 0x5a39, 0x2de7, 0x5979, 0x2891, + 0x1562, 0x014b, 0x5b05, 0x2756, 0x5a34, 0x13aa, 0x6cb5, 0x2c36, + 0x5e72, 0x1306, 0x0861, 0x15ef, 0x1ee8, 0x5a37, 0x7ac4, 0x45dd, + 0x44c4, 0x7266, 0x2f41, 0x3ccc, 0x045e, 0x7d40, 0x7c66, 0x0fa0, +}; + +static const u16 sunxi_nfc_randomizer_ecc1024_seeds[] = { + 0x2cf5, 0x35f1, 0x63a4, 0x5274, 0x2bd2, 0x778b, 0x7285, 0x32b6, + 0x6a5c, 0x70d6, 0x757d, 0x6769, 0x5375, 0x1e81, 0x0cf3, 0x3982, + 0x6787, 0x042a, 0x6c49, 0x1925, 0x56a8, 0x40a9, 0x063e, 0x7bd9, + 0x4dbf, 0x55ec, 0x672e, 0x7334, 0x5185, 0x4d00, 0x232a, 0x7e07, + 0x445d, 0x6b92, 0x528f, 0x4255, 0x53ba, 0x7d82, 0x2a2e, 0x3a4e, + 0x75eb, 0x450c, 0x6844, 0x1b5d, 0x581a, 0x4cc6, 0x0379, 0x37b2, + 0x419f, 0x0e92, 0x6b27, 0x5624, 0x01e3, 0x07c1, 0x44a5, 0x130c, + 0x13e8, 0x5910, 0x0876, 0x60c5, 0x54e3, 0x5b7f, 0x2269, 0x509f, + 0x7665, 0x36fd, 0x3e9a, 0x0579, 0x6295, 0x14ef, 0x0a81, 0x1bcc, + 0x4b16, 0x64db, 0x0514, 0x4f07, 0x0591, 0x3576, 0x6853, 0x0d9e, + 0x259f, 0x38b7, 0x64fb, 0x3094, 0x4693, 0x6ddd, 0x29bb, 0x0bc8, + 0x3f47, 0x490e, 0x0c0e, 0x7933, 0x3c9e, 0x5840, 0x398d, 0x3e68, + 0x4af1, 0x71f5, 0x57cf, 0x1121, 0x64eb, 0x3579, 0x15ac, 0x584d, + 0x5f2a, 0x47e2, 0x6528, 0x6eac, 0x196e, 0x6b96, 0x0450, 0x0179, + 0x609c, 0x06e1, 0x4626, 0x42c7, 0x273e, 0x486f, 0x0705, 0x1601, + 0x145b, 0x407e, 0x062b, 0x57a5, 0x53f9, 0x5659, 0x4410, 0x3ccd, +}; + +static u16 sunxi_nfc_randomizer_step(u16 state, int count) +{ + state &= 0x7fff; + + /* + * This loop is just a simple implementation of a Fibonacci LFSR using + * the x16 + x15 + 1 polynomial. + */ + while (count--) + state = ((state >> 1) | + (((state ^ (state >> 1)) & 1) << 14)) & 0x7fff; + + return state; +} + +static u16 sunxi_nfc_randomizer_state(struct nand_chip *nand, int page, + bool ecc) +{ + struct mtd_info *mtd = nand_to_mtd(nand); + const u16 *seeds = sunxi_nfc_randomizer_page_seeds; + int mod = mtd_div_by_ws(mtd->erasesize, mtd); + + if (mod > ARRAY_SIZE(sunxi_nfc_randomizer_page_seeds)) + mod = ARRAY_SIZE(sunxi_nfc_randomizer_page_seeds); + + if (ecc) { + if (mtd->ecc_step_size == 512) + seeds = sunxi_nfc_randomizer_ecc512_seeds; + else + seeds = sunxi_nfc_randomizer_ecc1024_seeds; + } + + return seeds[page % mod]; +} + +static void sunxi_nfc_randomizer_config(struct nand_chip *nand, int page, + bool ecc) +{ + struct sunxi_nfc *nfc = to_sunxi_nfc(nand->controller); + u32 ecc_ctl = readl(nfc->regs + NFC_REG_ECC_CTL); + u16 state; + + if (!(nand->options & NAND_NEED_SCRAMBLING)) + return; + + ecc_ctl = readl(nfc->regs + NFC_REG_ECC_CTL); + state = sunxi_nfc_randomizer_state(nand, page, ecc); + ecc_ctl = readl(nfc->regs + NFC_REG_ECC_CTL) & ~NFC_RANDOM_SEED_MSK; + writel(ecc_ctl | NFC_RANDOM_SEED(state), nfc->regs + NFC_REG_ECC_CTL); +} + +static void sunxi_nfc_randomizer_enable(struct nand_chip *nand) +{ + struct sunxi_nfc *nfc = to_sunxi_nfc(nand->controller); + + if (!(nand->options & NAND_NEED_SCRAMBLING)) + return; + + writel(readl(nfc->regs + NFC_REG_ECC_CTL) | NFC_RANDOM_EN, + nfc->regs + NFC_REG_ECC_CTL); +} + +static void sunxi_nfc_randomizer_disable(struct nand_chip *nand) +{ + struct sunxi_nfc *nfc = to_sunxi_nfc(nand->controller); + + if (!(nand->options & NAND_NEED_SCRAMBLING)) + return; + + writel(readl(nfc->regs + NFC_REG_ECC_CTL) & ~NFC_RANDOM_EN, + nfc->regs + NFC_REG_ECC_CTL); +} + +static void sunxi_nfc_randomize_bbm(struct nand_chip *nand, int page, u8 *bbm) +{ + u16 state = sunxi_nfc_randomizer_state(nand, page, true); + + bbm[0] ^= state; + bbm[1] ^= sunxi_nfc_randomizer_step(state, 8); +} + +static void sunxi_nfc_randomizer_write_buf(struct nand_chip *nand, + const uint8_t *buf, int len, + bool ecc, int page) +{ + sunxi_nfc_randomizer_config(nand, page, ecc); + sunxi_nfc_randomizer_enable(nand); + sunxi_nfc_write_buf(nand, buf, len); + sunxi_nfc_randomizer_disable(nand); +} + +static void sunxi_nfc_randomizer_read_buf(struct nand_chip *nand, uint8_t *buf, + int len, bool ecc, int page) +{ + sunxi_nfc_randomizer_config(nand, page, ecc); + sunxi_nfc_randomizer_enable(nand); + sunxi_nfc_read_buf(nand, buf, len); + sunxi_nfc_randomizer_disable(nand); +} + +static void sunxi_nfc_hw_ecc_enable(struct nand_chip *nand) +{ + struct sunxi_nand_chip *sunxi_nand = to_sunxi_nand(nand); + struct sunxi_nfc *nfc = to_sunxi_nfc(nand->controller); + + writel(sunxi_nand->ecc.ecc_ctl, nfc->regs + NFC_REG_ECC_CTL); +} + +static void sunxi_nfc_hw_ecc_disable(struct nand_chip *nand) +{ + struct sunxi_nfc *nfc = to_sunxi_nfc(nand->controller); + + writel(0, nfc->regs + NFC_REG_ECC_CTL); +} + +static inline void sunxi_nfc_user_data_to_buf(u32 user_data, u8 *buf) +{ + buf[0] = user_data; + buf[1] = user_data >> 8; + buf[2] = user_data >> 16; + buf[3] = user_data >> 24; +} + +static inline u32 sunxi_nfc_buf_to_user_data(const u8 *buf) +{ + return buf[0] | (buf[1] << 8) | (buf[2] << 16) | (buf[3] << 24); +} + +static void sunxi_nfc_hw_ecc_get_prot_oob_bytes(struct nand_chip *nand, u8 *oob, + int step, bool bbm, int page) +{ + struct sunxi_nfc *nfc = to_sunxi_nfc(nand->controller); + + sunxi_nfc_user_data_to_buf(readl(nfc->regs + NFC_REG_USER_DATA(step)), + oob); + + /* De-randomize the Bad Block Marker. */ + if (bbm && (nand->options & NAND_NEED_SCRAMBLING)) + sunxi_nfc_randomize_bbm(nand, page, oob); +} + +static void sunxi_nfc_hw_ecc_set_prot_oob_bytes(struct nand_chip *nand, + const u8 *oob, int step, + bool bbm, int page) +{ + struct sunxi_nfc *nfc = to_sunxi_nfc(nand->controller); + u8 user_data[4]; + + /* Randomize the Bad Block Marker. */ + if (bbm && (nand->options & NAND_NEED_SCRAMBLING)) { + memcpy(user_data, oob, sizeof(user_data)); + sunxi_nfc_randomize_bbm(nand, page, user_data); + oob = user_data; + } + + writel(sunxi_nfc_buf_to_user_data(oob), + nfc->regs + NFC_REG_USER_DATA(step)); +} + +static void sunxi_nfc_hw_ecc_update_stats(struct nand_chip *nand, + unsigned int *max_bitflips, int ret) +{ + struct mtd_info *mtd = nand_to_mtd(nand); + + if (ret < 0) { + mtd->ecc_stats.failed++; + } else { + mtd->ecc_stats.corrected += ret; + *max_bitflips = max_t(unsigned int, *max_bitflips, ret); + } +} + +static int sunxi_nfc_hw_ecc_correct(struct nand_chip *nand, u8 *data, u8 *oob, + int step, u32 status, bool *erased) +{ + struct sunxi_nfc *nfc = to_sunxi_nfc(nand->controller); + struct nand_ecc_ctrl *ecc = &nand->ecc; + u32 tmp; + + *erased = false; + + if (status & NFC_ECC_ERR(step)) + return -EBADMSG; + + if (status & NFC_ECC_PAT_FOUND(step)) { + u8 pattern; + + if (unlikely(!(readl(nfc->regs + NFC_REG_PAT_ID) & 0x1))) { + pattern = 0x0; + } else { + pattern = 0xff; + *erased = true; + } + + if (data) + memset(data, pattern, ecc->size); + + if (oob) + memset(oob, pattern, ecc->bytes + 4); + + return 0; + } + + tmp = readl(nfc->regs + NFC_REG_ECC_ERR_CNT(step)); + + return NFC_ECC_ERR_CNT(step, tmp); +} + +static int sunxi_nfc_hw_ecc_read_chunk(struct nand_chip *nand, + u8 *data, int data_off, + u8 *oob, int oob_off, + int *cur_off, + unsigned int *max_bitflips, + bool bbm, bool oob_required, int page) +{ + struct sunxi_nfc *nfc = to_sunxi_nfc(nand->controller); + struct nand_ecc_ctrl *ecc = &nand->ecc; + int raw_mode = 0; + bool erased; + int ret; + + if (*cur_off != data_off) + nand_change_read_column_op(nand, data_off, NULL, 0, false); + + sunxi_nfc_randomizer_read_buf(nand, NULL, ecc->size, false, page); + + if (data_off + ecc->size != oob_off) + nand_change_read_column_op(nand, oob_off, NULL, 0, false); + + ret = sunxi_nfc_wait_cmd_fifo_empty(nfc); + if (ret) + return ret; + + sunxi_nfc_randomizer_enable(nand); + writel(NFC_DATA_TRANS | NFC_DATA_SWAP_METHOD | NFC_ECC_OP, + nfc->regs + NFC_REG_CMD); + + ret = sunxi_nfc_wait_events(nfc, NFC_CMD_INT_FLAG, false, 0); + sunxi_nfc_randomizer_disable(nand); + if (ret) + return ret; + + *cur_off = oob_off + ecc->bytes + 4; + + ret = sunxi_nfc_hw_ecc_correct(nand, data, oob_required ? oob : NULL, 0, + readl(nfc->regs + NFC_REG_ECC_ST), + &erased); + if (erased) + return 1; + + if (ret < 0) { + /* + * Re-read the data with the randomizer disabled to identify + * bitflips in erased pages. + */ + if (nand->options & NAND_NEED_SCRAMBLING) + nand_change_read_column_op(nand, data_off, data, + ecc->size, false); + else + memcpy_fromio(data, nfc->regs + NFC_RAM0_BASE, + ecc->size); + + nand_change_read_column_op(nand, oob_off, oob, ecc->bytes + 4, + false); + + ret = nand_check_erased_ecc_chunk(data, ecc->size, + oob, ecc->bytes + 4, + NULL, 0, ecc->strength); + if (ret >= 0) + raw_mode = 1; + } else { + memcpy_fromio(data, nfc->regs + NFC_RAM0_BASE, ecc->size); + + if (oob_required) { + nand_change_read_column_op(nand, oob_off, NULL, 0, + false); + sunxi_nfc_randomizer_read_buf(nand, oob, ecc->bytes + 4, + true, page); + + sunxi_nfc_hw_ecc_get_prot_oob_bytes(nand, oob, 0, + bbm, page); + } + } + + sunxi_nfc_hw_ecc_update_stats(nand, max_bitflips, ret); + + return raw_mode; +} + +static void sunxi_nfc_hw_ecc_read_extra_oob(struct nand_chip *nand, + u8 *oob, int *cur_off, + bool randomize, int page) +{ + struct mtd_info *mtd = nand_to_mtd(nand); + struct nand_ecc_ctrl *ecc = &nand->ecc; + int offset = ((ecc->bytes + 4) * ecc->steps); + int len = mtd->oobsize - offset; + + if (len <= 0) + return; + + if (!cur_off || *cur_off != offset) + nand_change_read_column_op(nand, mtd->writesize, NULL, 0, + false); + + if (!randomize) + sunxi_nfc_read_buf(nand, oob + offset, len); + else + sunxi_nfc_randomizer_read_buf(nand, oob + offset, len, + false, page); + + if (cur_off) + *cur_off = mtd->oobsize + mtd->writesize; +} + +static int sunxi_nfc_hw_ecc_read_chunks_dma(struct nand_chip *nand, uint8_t *buf, + int oob_required, int page, + int nchunks) +{ + bool randomized = nand->options & NAND_NEED_SCRAMBLING; + struct sunxi_nfc *nfc = to_sunxi_nfc(nand->controller); + struct mtd_info *mtd = nand_to_mtd(nand); + struct nand_ecc_ctrl *ecc = &nand->ecc; + unsigned int max_bitflips = 0; + int ret, i, raw_mode = 0; + struct scatterlist sg; + u32 status, wait; + + ret = sunxi_nfc_wait_cmd_fifo_empty(nfc); + if (ret) + return ret; + + ret = sunxi_nfc_dma_op_prepare(nfc, buf, ecc->size, nchunks, + DMA_FROM_DEVICE, &sg); + if (ret) + return ret; + + sunxi_nfc_hw_ecc_enable(nand); + sunxi_nfc_randomizer_config(nand, page, false); + sunxi_nfc_randomizer_enable(nand); + + writel((NAND_CMD_RNDOUTSTART << 16) | (NAND_CMD_RNDOUT << 8) | + NAND_CMD_READSTART, nfc->regs + NFC_REG_RCMD_SET); + + wait = NFC_CMD_INT_FLAG; + + if (nfc->caps->has_mdma) + wait |= NFC_DMA_INT_FLAG; + else + dma_async_issue_pending(nfc->dmac); + + writel(NFC_PAGE_OP | NFC_DATA_SWAP_METHOD | NFC_DATA_TRANS, + nfc->regs + NFC_REG_CMD); + + ret = sunxi_nfc_wait_events(nfc, wait, false, 0); + if (ret && !nfc->caps->has_mdma) + dmaengine_terminate_all(nfc->dmac); + + sunxi_nfc_randomizer_disable(nand); + sunxi_nfc_hw_ecc_disable(nand); + + sunxi_nfc_dma_op_cleanup(nfc, DMA_FROM_DEVICE, &sg); + + if (ret) + return ret; + + status = readl(nfc->regs + NFC_REG_ECC_ST); + + for (i = 0; i < nchunks; i++) { + int data_off = i * ecc->size; + int oob_off = i * (ecc->bytes + 4); + u8 *data = buf + data_off; + u8 *oob = nand->oob_poi + oob_off; + bool erased; + + ret = sunxi_nfc_hw_ecc_correct(nand, randomized ? data : NULL, + oob_required ? oob : NULL, + i, status, &erased); + + /* ECC errors are handled in the second loop. */ + if (ret < 0) + continue; + + if (oob_required && !erased) { + /* TODO: use DMA to retrieve OOB */ + nand_change_read_column_op(nand, + mtd->writesize + oob_off, + oob, ecc->bytes + 4, false); + + sunxi_nfc_hw_ecc_get_prot_oob_bytes(nand, oob, i, + !i, page); + } + + if (erased) + raw_mode = 1; + + sunxi_nfc_hw_ecc_update_stats(nand, &max_bitflips, ret); + } + + if (status & NFC_ECC_ERR_MSK) { + for (i = 0; i < nchunks; i++) { + int data_off = i * ecc->size; + int oob_off = i * (ecc->bytes + 4); + u8 *data = buf + data_off; + u8 *oob = nand->oob_poi + oob_off; + + if (!(status & NFC_ECC_ERR(i))) + continue; + + /* + * Re-read the data with the randomizer disabled to + * identify bitflips in erased pages. + * TODO: use DMA to read page in raw mode + */ + if (randomized) + nand_change_read_column_op(nand, data_off, + data, ecc->size, + false); + + /* TODO: use DMA to retrieve OOB */ + nand_change_read_column_op(nand, + mtd->writesize + oob_off, + oob, ecc->bytes + 4, false); + + ret = nand_check_erased_ecc_chunk(data, ecc->size, + oob, ecc->bytes + 4, + NULL, 0, + ecc->strength); + if (ret >= 0) + raw_mode = 1; + + sunxi_nfc_hw_ecc_update_stats(nand, &max_bitflips, ret); + } + } + + if (oob_required) + sunxi_nfc_hw_ecc_read_extra_oob(nand, nand->oob_poi, + NULL, !raw_mode, + page); + + return max_bitflips; +} + +static int sunxi_nfc_hw_ecc_write_chunk(struct nand_chip *nand, + const u8 *data, int data_off, + const u8 *oob, int oob_off, + int *cur_off, bool bbm, + int page) +{ + struct sunxi_nfc *nfc = to_sunxi_nfc(nand->controller); + struct nand_ecc_ctrl *ecc = &nand->ecc; + int ret; + + if (data_off != *cur_off) + nand_change_write_column_op(nand, data_off, NULL, 0, false); + + sunxi_nfc_randomizer_write_buf(nand, data, ecc->size, false, page); + + if (data_off + ecc->size != oob_off) + nand_change_write_column_op(nand, oob_off, NULL, 0, false); + + ret = sunxi_nfc_wait_cmd_fifo_empty(nfc); + if (ret) + return ret; + + sunxi_nfc_randomizer_enable(nand); + sunxi_nfc_hw_ecc_set_prot_oob_bytes(nand, oob, 0, bbm, page); + + writel(NFC_DATA_TRANS | NFC_DATA_SWAP_METHOD | + NFC_ACCESS_DIR | NFC_ECC_OP, + nfc->regs + NFC_REG_CMD); + + ret = sunxi_nfc_wait_events(nfc, NFC_CMD_INT_FLAG, false, 0); + sunxi_nfc_randomizer_disable(nand); + if (ret) + return ret; + + *cur_off = oob_off + ecc->bytes + 4; + + return 0; +} + +static void sunxi_nfc_hw_ecc_write_extra_oob(struct nand_chip *nand, + u8 *oob, int *cur_off, + int page) +{ + struct mtd_info *mtd = nand_to_mtd(nand); + struct nand_ecc_ctrl *ecc = &nand->ecc; + int offset = ((ecc->bytes + 4) * ecc->steps); + int len = mtd->oobsize - offset; + + if (len <= 0) + return; + + if (!cur_off || *cur_off != offset) + nand_change_write_column_op(nand, offset + mtd->writesize, + NULL, 0, false); + + sunxi_nfc_randomizer_write_buf(nand, oob + offset, len, false, page); + + if (cur_off) + *cur_off = mtd->oobsize + mtd->writesize; +} + +static int sunxi_nfc_hw_ecc_read_page(struct nand_chip *nand, uint8_t *buf, + int oob_required, int page) +{ + struct mtd_info *mtd = nand_to_mtd(nand); + struct nand_ecc_ctrl *ecc = &nand->ecc; + unsigned int max_bitflips = 0; + int ret, i, cur_off = 0; + bool raw_mode = false; + + sunxi_nfc_select_chip(nand, nand->cur_cs); + + nand_read_page_op(nand, page, 0, NULL, 0); + + sunxi_nfc_hw_ecc_enable(nand); + + for (i = 0; i < ecc->steps; i++) { + int data_off = i * ecc->size; + int oob_off = i * (ecc->bytes + 4); + u8 *data = buf + data_off; + u8 *oob = nand->oob_poi + oob_off; + + ret = sunxi_nfc_hw_ecc_read_chunk(nand, data, data_off, oob, + oob_off + mtd->writesize, + &cur_off, &max_bitflips, + !i, oob_required, page); + if (ret < 0) + return ret; + else if (ret) + raw_mode = true; + } + + if (oob_required) + sunxi_nfc_hw_ecc_read_extra_oob(nand, nand->oob_poi, &cur_off, + !raw_mode, page); + + sunxi_nfc_hw_ecc_disable(nand); + + return max_bitflips; +} + +static int sunxi_nfc_hw_ecc_read_page_dma(struct nand_chip *nand, u8 *buf, + int oob_required, int page) +{ + int ret; + + sunxi_nfc_select_chip(nand, nand->cur_cs); + + nand_read_page_op(nand, page, 0, NULL, 0); + + ret = sunxi_nfc_hw_ecc_read_chunks_dma(nand, buf, oob_required, page, + nand->ecc.steps); + if (ret >= 0) + return ret; + + /* Fallback to PIO mode */ + return sunxi_nfc_hw_ecc_read_page(nand, buf, oob_required, page); +} + +static int sunxi_nfc_hw_ecc_read_subpage(struct nand_chip *nand, + u32 data_offs, u32 readlen, + u8 *bufpoi, int page) +{ + struct mtd_info *mtd = nand_to_mtd(nand); + struct nand_ecc_ctrl *ecc = &nand->ecc; + int ret, i, cur_off = 0; + unsigned int max_bitflips = 0; + + sunxi_nfc_select_chip(nand, nand->cur_cs); + + nand_read_page_op(nand, page, 0, NULL, 0); + + sunxi_nfc_hw_ecc_enable(nand); + + for (i = data_offs / ecc->size; + i < DIV_ROUND_UP(data_offs + readlen, ecc->size); i++) { + int data_off = i * ecc->size; + int oob_off = i * (ecc->bytes + 4); + u8 *data = bufpoi + data_off; + u8 *oob = nand->oob_poi + oob_off; + + ret = sunxi_nfc_hw_ecc_read_chunk(nand, data, data_off, + oob, + oob_off + mtd->writesize, + &cur_off, &max_bitflips, !i, + false, page); + if (ret < 0) + return ret; + } + + sunxi_nfc_hw_ecc_disable(nand); + + return max_bitflips; +} + +static int sunxi_nfc_hw_ecc_read_subpage_dma(struct nand_chip *nand, + u32 data_offs, u32 readlen, + u8 *buf, int page) +{ + int nchunks = DIV_ROUND_UP(data_offs + readlen, nand->ecc.size); + int ret; + + sunxi_nfc_select_chip(nand, nand->cur_cs); + + nand_read_page_op(nand, page, 0, NULL, 0); + + ret = sunxi_nfc_hw_ecc_read_chunks_dma(nand, buf, false, page, nchunks); + if (ret >= 0) + return ret; + + /* Fallback to PIO mode */ + return sunxi_nfc_hw_ecc_read_subpage(nand, data_offs, readlen, + buf, page); +} + +static int sunxi_nfc_hw_ecc_write_page(struct nand_chip *nand, + const uint8_t *buf, int oob_required, + int page) +{ + struct mtd_info *mtd = nand_to_mtd(nand); + struct nand_ecc_ctrl *ecc = &nand->ecc; + int ret, i, cur_off = 0; + + sunxi_nfc_select_chip(nand, nand->cur_cs); + + nand_prog_page_begin_op(nand, page, 0, NULL, 0); + + sunxi_nfc_hw_ecc_enable(nand); + + for (i = 0; i < ecc->steps; i++) { + int data_off = i * ecc->size; + int oob_off = i * (ecc->bytes + 4); + const u8 *data = buf + data_off; + const u8 *oob = nand->oob_poi + oob_off; + + ret = sunxi_nfc_hw_ecc_write_chunk(nand, data, data_off, oob, + oob_off + mtd->writesize, + &cur_off, !i, page); + if (ret) + return ret; + } + + if (oob_required || (nand->options & NAND_NEED_SCRAMBLING)) + sunxi_nfc_hw_ecc_write_extra_oob(nand, nand->oob_poi, + &cur_off, page); + + sunxi_nfc_hw_ecc_disable(nand); + + return nand_prog_page_end_op(nand); +} + +static int sunxi_nfc_hw_ecc_write_subpage(struct nand_chip *nand, + u32 data_offs, u32 data_len, + const u8 *buf, int oob_required, + int page) +{ + struct mtd_info *mtd = nand_to_mtd(nand); + struct nand_ecc_ctrl *ecc = &nand->ecc; + int ret, i, cur_off = 0; + + sunxi_nfc_select_chip(nand, nand->cur_cs); + + nand_prog_page_begin_op(nand, page, 0, NULL, 0); + + sunxi_nfc_hw_ecc_enable(nand); + + for (i = data_offs / ecc->size; + i < DIV_ROUND_UP(data_offs + data_len, ecc->size); i++) { + int data_off = i * ecc->size; + int oob_off = i * (ecc->bytes + 4); + const u8 *data = buf + data_off; + const u8 *oob = nand->oob_poi + oob_off; + + ret = sunxi_nfc_hw_ecc_write_chunk(nand, data, data_off, oob, + oob_off + mtd->writesize, + &cur_off, !i, page); + if (ret) + return ret; + } + + sunxi_nfc_hw_ecc_disable(nand); + + return nand_prog_page_end_op(nand); +} + +static int sunxi_nfc_hw_ecc_write_page_dma(struct nand_chip *nand, + const u8 *buf, + int oob_required, + int page) +{ + struct sunxi_nfc *nfc = to_sunxi_nfc(nand->controller); + struct nand_ecc_ctrl *ecc = &nand->ecc; + struct scatterlist sg; + u32 wait; + int ret, i; + + sunxi_nfc_select_chip(nand, nand->cur_cs); + + ret = sunxi_nfc_wait_cmd_fifo_empty(nfc); + if (ret) + return ret; + + ret = sunxi_nfc_dma_op_prepare(nfc, buf, ecc->size, ecc->steps, + DMA_TO_DEVICE, &sg); + if (ret) + goto pio_fallback; + + for (i = 0; i < ecc->steps; i++) { + const u8 *oob = nand->oob_poi + (i * (ecc->bytes + 4)); + + sunxi_nfc_hw_ecc_set_prot_oob_bytes(nand, oob, i, !i, page); + } + + nand_prog_page_begin_op(nand, page, 0, NULL, 0); + + sunxi_nfc_hw_ecc_enable(nand); + sunxi_nfc_randomizer_config(nand, page, false); + sunxi_nfc_randomizer_enable(nand); + + writel((NAND_CMD_RNDIN << 8) | NAND_CMD_PAGEPROG, + nfc->regs + NFC_REG_WCMD_SET); + + wait = NFC_CMD_INT_FLAG; + + if (nfc->caps->has_mdma) + wait |= NFC_DMA_INT_FLAG; + else + dma_async_issue_pending(nfc->dmac); + + writel(NFC_PAGE_OP | NFC_DATA_SWAP_METHOD | + NFC_DATA_TRANS | NFC_ACCESS_DIR, + nfc->regs + NFC_REG_CMD); + + ret = sunxi_nfc_wait_events(nfc, wait, false, 0); + if (ret && !nfc->caps->has_mdma) + dmaengine_terminate_all(nfc->dmac); + + sunxi_nfc_randomizer_disable(nand); + sunxi_nfc_hw_ecc_disable(nand); + + sunxi_nfc_dma_op_cleanup(nfc, DMA_TO_DEVICE, &sg); + + if (ret) + return ret; + + if (oob_required || (nand->options & NAND_NEED_SCRAMBLING)) + /* TODO: use DMA to transfer extra OOB bytes ? */ + sunxi_nfc_hw_ecc_write_extra_oob(nand, nand->oob_poi, + NULL, page); + + return nand_prog_page_end_op(nand); + +pio_fallback: + return sunxi_nfc_hw_ecc_write_page(nand, buf, oob_required, page); +} + +static int sunxi_nfc_hw_ecc_read_oob(struct nand_chip *nand, int page) +{ + u8 *buf = nand_get_data_buf(nand); + + return nand->ecc.read_page(nand, buf, 1, page); +} + +static int sunxi_nfc_hw_ecc_write_oob(struct nand_chip *nand, int page) +{ + struct mtd_info *mtd = nand_to_mtd(nand); + u8 *buf = nand_get_data_buf(nand); + int ret; + + memset(buf, 0xff, mtd->writesize); + ret = nand->ecc.write_page(nand, buf, 1, page); + if (ret) + return ret; + + /* Send command to program the OOB data */ + return nand_prog_page_end_op(nand); +} + +static const s32 tWB_lut[] = {6, 12, 16, 20}; +static const s32 tRHW_lut[] = {4, 8, 12, 20}; + +static int _sunxi_nand_lookup_timing(const s32 *lut, int lut_size, u32 duration, + u32 clk_period) +{ + u32 clk_cycles = DIV_ROUND_UP(duration, clk_period); + int i; + + for (i = 0; i < lut_size; i++) { + if (clk_cycles <= lut[i]) + return i; + } + + /* Doesn't fit */ + return -EINVAL; +} + +#define sunxi_nand_lookup_timing(l, p, c) \ + _sunxi_nand_lookup_timing(l, ARRAY_SIZE(l), p, c) + +static int sunxi_nfc_setup_interface(struct nand_chip *nand, int csline, + const struct nand_interface_config *conf) +{ + struct sunxi_nand_chip *sunxi_nand = to_sunxi_nand(nand); + struct sunxi_nfc *nfc = to_sunxi_nfc(sunxi_nand->nand.controller); + const struct nand_sdr_timings *timings; + u32 min_clk_period = 0; + s32 tWB, tADL, tWHR, tRHW, tCAD; + long real_clk_rate; + + timings = nand_get_sdr_timings(conf); + if (IS_ERR(timings)) + return -ENOTSUPP; + + /* T1 <=> tCLS */ + if (timings->tCLS_min > min_clk_period) + min_clk_period = timings->tCLS_min; + + /* T2 <=> tCLH */ + if (timings->tCLH_min > min_clk_period) + min_clk_period = timings->tCLH_min; + + /* T3 <=> tCS */ + if (timings->tCS_min > min_clk_period) + min_clk_period = timings->tCS_min; + + /* T4 <=> tCH */ + if (timings->tCH_min > min_clk_period) + min_clk_period = timings->tCH_min; + + /* T5 <=> tWP */ + if (timings->tWP_min > min_clk_period) + min_clk_period = timings->tWP_min; + + /* T6 <=> tWH */ + if (timings->tWH_min > min_clk_period) + min_clk_period = timings->tWH_min; + + /* T7 <=> tALS */ + if (timings->tALS_min > min_clk_period) + min_clk_period = timings->tALS_min; + + /* T8 <=> tDS */ + if (timings->tDS_min > min_clk_period) + min_clk_period = timings->tDS_min; + + /* T9 <=> tDH */ + if (timings->tDH_min > min_clk_period) + min_clk_period = timings->tDH_min; + + /* T10 <=> tRR */ + if (timings->tRR_min > (min_clk_period * 3)) + min_clk_period = DIV_ROUND_UP(timings->tRR_min, 3); + + /* T11 <=> tALH */ + if (timings->tALH_min > min_clk_period) + min_clk_period = timings->tALH_min; + + /* T12 <=> tRP */ + if (timings->tRP_min > min_clk_period) + min_clk_period = timings->tRP_min; + + /* T13 <=> tREH */ + if (timings->tREH_min > min_clk_period) + min_clk_period = timings->tREH_min; + + /* T14 <=> tRC */ + if (timings->tRC_min > (min_clk_period * 2)) + min_clk_period = DIV_ROUND_UP(timings->tRC_min, 2); + + /* T15 <=> tWC */ + if (timings->tWC_min > (min_clk_period * 2)) + min_clk_period = DIV_ROUND_UP(timings->tWC_min, 2); + + /* T16 - T19 + tCAD */ + if (timings->tWB_max > (min_clk_period * 20)) + min_clk_period = DIV_ROUND_UP(timings->tWB_max, 20); + + if (timings->tADL_min > (min_clk_period * 32)) + min_clk_period = DIV_ROUND_UP(timings->tADL_min, 32); + + if (timings->tWHR_min > (min_clk_period * 32)) + min_clk_period = DIV_ROUND_UP(timings->tWHR_min, 32); + + if (timings->tRHW_min > (min_clk_period * 20)) + min_clk_period = DIV_ROUND_UP(timings->tRHW_min, 20); + + /* + * In non-EDO, tREA should be less than tRP to guarantee that the + * controller does not sample the IO lines too early. Unfortunately, + * the sunxi NAND controller does not allow us to have different + * values for tRP and tREH (tRP = tREH = tRW / 2). + * + * We have 2 options to overcome this limitation: + * + * 1/ Extend tRC to fulfil the tREA <= tRC / 2 constraint + * 2/ Use EDO mode (only works if timings->tRLOH > 0) + */ + if (timings->tREA_max > min_clk_period && !timings->tRLOH_min) + min_clk_period = timings->tREA_max; + + tWB = sunxi_nand_lookup_timing(tWB_lut, timings->tWB_max, + min_clk_period); + if (tWB < 0) { + dev_err(nfc->dev, "unsupported tWB\n"); + return tWB; + } + + tADL = DIV_ROUND_UP(timings->tADL_min, min_clk_period) >> 3; + if (tADL > 3) { + dev_err(nfc->dev, "unsupported tADL\n"); + return -EINVAL; + } + + tWHR = DIV_ROUND_UP(timings->tWHR_min, min_clk_period) >> 3; + if (tWHR > 3) { + dev_err(nfc->dev, "unsupported tWHR\n"); + return -EINVAL; + } + + tRHW = sunxi_nand_lookup_timing(tRHW_lut, timings->tRHW_min, + min_clk_period); + if (tRHW < 0) { + dev_err(nfc->dev, "unsupported tRHW\n"); + return tRHW; + } + + if (csline == NAND_DATA_IFACE_CHECK_ONLY) + return 0; + + /* + * TODO: according to ONFI specs this value only applies for DDR NAND, + * but Allwinner seems to set this to 0x7. Mimic them for now. + */ + tCAD = 0x7; + + /* TODO: A83 has some more bits for CDQSS, CS, CLHZ, CCS, WC */ + sunxi_nand->timing_cfg = NFC_TIMING_CFG(tWB, tADL, tWHR, tRHW, tCAD); + + /* Convert min_clk_period from picoseconds to nanoseconds */ + min_clk_period = DIV_ROUND_UP(min_clk_period, 1000); + + /* + * Unlike what is stated in Allwinner datasheet, the clk_rate should + * be set to (1 / min_clk_period), and not (2 / min_clk_period). + * This new formula was verified with a scope and validated by + * Allwinner engineers. + */ + sunxi_nand->clk_rate = NSEC_PER_SEC / min_clk_period; + real_clk_rate = clk_round_rate(nfc->mod_clk, sunxi_nand->clk_rate); + if (real_clk_rate <= 0) { + dev_err(nfc->dev, "Unable to round clk %lu\n", + sunxi_nand->clk_rate); + return -EINVAL; + } + + sunxi_nand->timing_ctl = 0; + + /* + * ONFI specification 3.1, paragraph 4.15.2 dictates that EDO data + * output cycle timings shall be used if the host drives tRC less than + * 30 ns. We should also use EDO mode if tREA is bigger than tRP. + */ + min_clk_period = NSEC_PER_SEC / real_clk_rate; + if (min_clk_period * 2 < 30 || min_clk_period * 1000 < timings->tREA_max) + sunxi_nand->timing_ctl = NFC_TIMING_CTL_EDO; + + return 0; +} + +static int sunxi_nand_ooblayout_ecc(struct mtd_info *mtd, int section, + struct mtd_oob_region *oobregion) +{ + struct nand_chip *nand = mtd_to_nand(mtd); + struct nand_ecc_ctrl *ecc = &nand->ecc; + + if (section >= ecc->steps) + return -ERANGE; + + oobregion->offset = section * (ecc->bytes + 4) + 4; + oobregion->length = ecc->bytes; + + return 0; +} + +static int sunxi_nand_ooblayout_free(struct mtd_info *mtd, int section, + struct mtd_oob_region *oobregion) +{ + struct nand_chip *nand = mtd_to_nand(mtd); + struct nand_ecc_ctrl *ecc = &nand->ecc; + + if (section > ecc->steps) + return -ERANGE; + + /* + * The first 2 bytes are used for BB markers, hence we + * only have 2 bytes available in the first user data + * section. + */ + if (!section && ecc->engine_type == NAND_ECC_ENGINE_TYPE_ON_HOST) { + oobregion->offset = 2; + oobregion->length = 2; + + return 0; + } + + /* + * The controller does not provide access to OOB bytes + * past the end of the ECC data. + */ + if (section == ecc->steps && ecc->engine_type == NAND_ECC_ENGINE_TYPE_ON_HOST) + return -ERANGE; + + oobregion->offset = section * (ecc->bytes + 4); + + if (section < ecc->steps) + oobregion->length = 4; + else + oobregion->length = mtd->oobsize - oobregion->offset; + + return 0; +} + +static const struct mtd_ooblayout_ops sunxi_nand_ooblayout_ops = { + .ecc = sunxi_nand_ooblayout_ecc, + .free = sunxi_nand_ooblayout_free, +}; + +static int sunxi_nand_hw_ecc_ctrl_init(struct nand_chip *nand, + struct nand_ecc_ctrl *ecc, + struct device_node *np) +{ + static const u8 strengths[] = { 16, 24, 28, 32, 40, 48, 56, 60, 64 }; + struct sunxi_nand_chip *sunxi_nand = to_sunxi_nand(nand); + struct sunxi_nfc *nfc = to_sunxi_nfc(nand->controller); + struct mtd_info *mtd = nand_to_mtd(nand); + struct nand_device *nanddev = mtd_to_nanddev(mtd); + int nsectors; + int i; + + if (nanddev->ecc.user_conf.flags & NAND_ECC_MAXIMIZE_STRENGTH) { + int bytes; + + ecc->size = 1024; + nsectors = mtd->writesize / ecc->size; + + /* Reserve 2 bytes for the BBM */ + bytes = (mtd->oobsize - 2) / nsectors; + + /* 4 non-ECC bytes are added before each ECC bytes section */ + bytes -= 4; + + /* and bytes has to be even. */ + if (bytes % 2) + bytes--; + + ecc->strength = bytes * 8 / fls(8 * ecc->size); + + for (i = 0; i < ARRAY_SIZE(strengths); i++) { + if (strengths[i] > ecc->strength) + break; + } + + if (!i) + ecc->strength = 0; + else + ecc->strength = strengths[i - 1]; + } + + if (ecc->size != 512 && ecc->size != 1024) + return -EINVAL; + + /* Prefer 1k ECC chunk over 512 ones */ + if (ecc->size == 512 && mtd->writesize > 512) { + ecc->size = 1024; + ecc->strength *= 2; + } + + /* Add ECC info retrieval from DT */ + for (i = 0; i < ARRAY_SIZE(strengths); i++) { + if (ecc->strength <= strengths[i]) { + /* + * Update ecc->strength value with the actual strength + * that will be used by the ECC engine. + */ + ecc->strength = strengths[i]; + break; + } + } + + if (i >= ARRAY_SIZE(strengths)) { + dev_err(nfc->dev, "unsupported strength\n"); + return -ENOTSUPP; + } + + /* HW ECC always request ECC bytes for 1024 bytes blocks */ + ecc->bytes = DIV_ROUND_UP(ecc->strength * fls(8 * 1024), 8); + + /* HW ECC always work with even numbers of ECC bytes */ + ecc->bytes = ALIGN(ecc->bytes, 2); + + nsectors = mtd->writesize / ecc->size; + + if (mtd->oobsize < ((ecc->bytes + 4) * nsectors)) + return -EINVAL; + + ecc->read_oob = sunxi_nfc_hw_ecc_read_oob; + ecc->write_oob = sunxi_nfc_hw_ecc_write_oob; + mtd_set_ooblayout(mtd, &sunxi_nand_ooblayout_ops); + + if (nfc->dmac || nfc->caps->has_mdma) { + ecc->read_page = sunxi_nfc_hw_ecc_read_page_dma; + ecc->read_subpage = sunxi_nfc_hw_ecc_read_subpage_dma; + ecc->write_page = sunxi_nfc_hw_ecc_write_page_dma; + nand->options |= NAND_USES_DMA; + } else { + ecc->read_page = sunxi_nfc_hw_ecc_read_page; + ecc->read_subpage = sunxi_nfc_hw_ecc_read_subpage; + ecc->write_page = sunxi_nfc_hw_ecc_write_page; + } + + /* TODO: support DMA for raw accesses and subpage write */ + ecc->write_subpage = sunxi_nfc_hw_ecc_write_subpage; + ecc->read_oob_raw = nand_read_oob_std; + ecc->write_oob_raw = nand_write_oob_std; + + sunxi_nand->ecc.ecc_ctl = NFC_ECC_MODE(i) | NFC_ECC_EXCEPTION | + NFC_ECC_PIPELINE | NFC_ECC_EN; + + if (ecc->size == 512) + sunxi_nand->ecc.ecc_ctl |= NFC_ECC_BLOCK_512; + + return 0; +} + +static int sunxi_nand_attach_chip(struct nand_chip *nand) +{ + const struct nand_ecc_props *requirements = + nanddev_get_ecc_requirements(&nand->base); + struct nand_ecc_ctrl *ecc = &nand->ecc; + struct device_node *np = nand_get_flash_node(nand); + int ret; + + if (nand->bbt_options & NAND_BBT_USE_FLASH) + nand->bbt_options |= NAND_BBT_NO_OOB; + + if (nand->options & NAND_NEED_SCRAMBLING) + nand->options |= NAND_NO_SUBPAGE_WRITE; + + nand->options |= NAND_SUBPAGE_READ; + + if (!ecc->size) { + ecc->size = requirements->step_size; + ecc->strength = requirements->strength; + } + + if (!ecc->size || !ecc->strength) + return -EINVAL; + + switch (ecc->engine_type) { + case NAND_ECC_ENGINE_TYPE_ON_HOST: + ret = sunxi_nand_hw_ecc_ctrl_init(nand, ecc, np); + if (ret) + return ret; + break; + case NAND_ECC_ENGINE_TYPE_NONE: + case NAND_ECC_ENGINE_TYPE_SOFT: + break; + default: + return -EINVAL; + } + + return 0; +} + +static int sunxi_nfc_exec_subop(struct nand_chip *nand, + const struct nand_subop *subop) +{ + struct sunxi_nfc *nfc = to_sunxi_nfc(nand->controller); + u32 cmd = 0, extcmd = 0, cnt = 0, addrs[2] = { }; + unsigned int i, j, remaining, start; + void *inbuf = NULL; + int ret; + + for (i = 0; i < subop->ninstrs; i++) { + const struct nand_op_instr *instr = &subop->instrs[i]; + + switch (instr->type) { + case NAND_OP_CMD_INSTR: + if (cmd & NFC_SEND_CMD1) { + if (WARN_ON(cmd & NFC_SEND_CMD2)) + return -EINVAL; + + cmd |= NFC_SEND_CMD2; + extcmd |= instr->ctx.cmd.opcode; + } else { + cmd |= NFC_SEND_CMD1 | + NFC_CMD(instr->ctx.cmd.opcode); + } + break; + + case NAND_OP_ADDR_INSTR: + remaining = nand_subop_get_num_addr_cyc(subop, i); + start = nand_subop_get_addr_start_off(subop, i); + for (j = 0; j < 8 && j + start < remaining; j++) { + u32 addr = instr->ctx.addr.addrs[j + start]; + + addrs[j / 4] |= addr << (j % 4) * 8; + } + + if (j) + cmd |= NFC_SEND_ADR | NFC_ADR_NUM(j); + + break; + + case NAND_OP_DATA_IN_INSTR: + case NAND_OP_DATA_OUT_INSTR: + start = nand_subop_get_data_start_off(subop, i); + remaining = nand_subop_get_data_len(subop, i); + cnt = min_t(u32, remaining, NFC_SRAM_SIZE); + cmd |= NFC_DATA_TRANS | NFC_DATA_SWAP_METHOD; + + if (instr->type == NAND_OP_DATA_OUT_INSTR) { + cmd |= NFC_ACCESS_DIR; + memcpy_toio(nfc->regs + NFC_RAM0_BASE, + instr->ctx.data.buf.out + start, + cnt); + } else { + inbuf = instr->ctx.data.buf.in + start; + } + + break; + + case NAND_OP_WAITRDY_INSTR: + cmd |= NFC_WAIT_FLAG; + break; + } + } + + ret = sunxi_nfc_wait_cmd_fifo_empty(nfc); + if (ret) + return ret; + + if (cmd & NFC_SEND_ADR) { + writel(addrs[0], nfc->regs + NFC_REG_ADDR_LOW); + writel(addrs[1], nfc->regs + NFC_REG_ADDR_HIGH); + } + + if (cmd & NFC_SEND_CMD2) + writel(extcmd, + nfc->regs + + (cmd & NFC_ACCESS_DIR ? + NFC_REG_WCMD_SET : NFC_REG_RCMD_SET)); + + if (cmd & NFC_DATA_TRANS) + writel(cnt, nfc->regs + NFC_REG_CNT); + + writel(cmd, nfc->regs + NFC_REG_CMD); + + ret = sunxi_nfc_wait_events(nfc, NFC_CMD_INT_FLAG, + !(cmd & NFC_WAIT_FLAG) && cnt < 64, + 0); + if (ret) + return ret; + + if (inbuf) + memcpy_fromio(inbuf, nfc->regs + NFC_RAM0_BASE, cnt); + + return 0; +} + +static int sunxi_nfc_soft_waitrdy(struct nand_chip *nand, + const struct nand_subop *subop) +{ + return nand_soft_waitrdy(nand, + subop->instrs[0].ctx.waitrdy.timeout_ms); +} + +static const struct nand_op_parser sunxi_nfc_op_parser = NAND_OP_PARSER( + NAND_OP_PARSER_PATTERN(sunxi_nfc_exec_subop, + NAND_OP_PARSER_PAT_CMD_ELEM(true), + NAND_OP_PARSER_PAT_ADDR_ELEM(true, 8), + NAND_OP_PARSER_PAT_CMD_ELEM(true), + NAND_OP_PARSER_PAT_WAITRDY_ELEM(true), + NAND_OP_PARSER_PAT_DATA_IN_ELEM(true, 1024)), + NAND_OP_PARSER_PATTERN(sunxi_nfc_exec_subop, + NAND_OP_PARSER_PAT_CMD_ELEM(true), + NAND_OP_PARSER_PAT_ADDR_ELEM(true, 8), + NAND_OP_PARSER_PAT_DATA_OUT_ELEM(true, 1024), + NAND_OP_PARSER_PAT_CMD_ELEM(true), + NAND_OP_PARSER_PAT_WAITRDY_ELEM(true)), +); + +static const struct nand_op_parser sunxi_nfc_norb_op_parser = NAND_OP_PARSER( + NAND_OP_PARSER_PATTERN(sunxi_nfc_exec_subop, + NAND_OP_PARSER_PAT_CMD_ELEM(true), + NAND_OP_PARSER_PAT_ADDR_ELEM(true, 8), + NAND_OP_PARSER_PAT_CMD_ELEM(true), + NAND_OP_PARSER_PAT_DATA_IN_ELEM(true, 1024)), + NAND_OP_PARSER_PATTERN(sunxi_nfc_exec_subop, + NAND_OP_PARSER_PAT_CMD_ELEM(true), + NAND_OP_PARSER_PAT_ADDR_ELEM(true, 8), + NAND_OP_PARSER_PAT_DATA_OUT_ELEM(true, 1024), + NAND_OP_PARSER_PAT_CMD_ELEM(true)), + NAND_OP_PARSER_PATTERN(sunxi_nfc_soft_waitrdy, + NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)), +); + +static int sunxi_nfc_exec_op(struct nand_chip *nand, + const struct nand_operation *op, bool check_only) +{ + struct sunxi_nand_chip *sunxi_nand = to_sunxi_nand(nand); + const struct nand_op_parser *parser; + + if (!check_only) + sunxi_nfc_select_chip(nand, op->cs); + + if (sunxi_nand->sels[op->cs].rb >= 0) + parser = &sunxi_nfc_op_parser; + else + parser = &sunxi_nfc_norb_op_parser; + + return nand_op_parser_exec_op(nand, parser, op, check_only); +} + +static const struct nand_controller_ops sunxi_nand_controller_ops = { + .attach_chip = sunxi_nand_attach_chip, + .setup_interface = sunxi_nfc_setup_interface, + .exec_op = sunxi_nfc_exec_op, +}; + +static void sunxi_nand_chips_cleanup(struct sunxi_nfc *nfc) +{ + struct sunxi_nand_chip *sunxi_nand; + struct nand_chip *chip; + int ret; + + while (!list_empty(&nfc->chips)) { + sunxi_nand = list_first_entry(&nfc->chips, + struct sunxi_nand_chip, + node); + chip = &sunxi_nand->nand; + ret = mtd_device_unregister(nand_to_mtd(chip)); + WARN_ON(ret); + nand_cleanup(chip); + list_del(&sunxi_nand->node); + } +} + +static int sunxi_nand_chip_init(struct device *dev, struct sunxi_nfc *nfc, + struct device_node *np) +{ + struct sunxi_nand_chip *sunxi_nand; + struct mtd_info *mtd; + struct nand_chip *nand; + int nsels; + int ret; + int i; + u32 tmp; + + if (!of_get_property(np, "reg", &nsels)) + return -EINVAL; + + nsels /= sizeof(u32); + if (!nsels) { + dev_err(dev, "invalid reg property size\n"); + return -EINVAL; + } + + sunxi_nand = devm_kzalloc(dev, struct_size(sunxi_nand, sels, nsels), + GFP_KERNEL); + if (!sunxi_nand) + return -ENOMEM; + + sunxi_nand->nsels = nsels; + + for (i = 0; i < nsels; i++) { + ret = of_property_read_u32_index(np, "reg", i, &tmp); + if (ret) { + dev_err(dev, "could not retrieve reg property: %d\n", + ret); + return ret; + } + + if (tmp > NFC_MAX_CS) { + dev_err(dev, + "invalid reg value: %u (max CS = 7)\n", + tmp); + return -EINVAL; + } + + if (test_and_set_bit(tmp, &nfc->assigned_cs)) { + dev_err(dev, "CS %d already assigned\n", tmp); + return -EINVAL; + } + + sunxi_nand->sels[i].cs = tmp; + + if (!of_property_read_u32_index(np, "allwinner,rb", i, &tmp) && + tmp < 2) + sunxi_nand->sels[i].rb = tmp; + else + sunxi_nand->sels[i].rb = -1; + } + + nand = &sunxi_nand->nand; + /* Default tR value specified in the ONFI spec (chapter 4.15.1) */ + nand->controller = &nfc->controller; + nand->controller->ops = &sunxi_nand_controller_ops; + + /* + * Set the ECC mode to the default value in case nothing is specified + * in the DT. + */ + nand->ecc.engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST; + nand_set_flash_node(nand, np); + + mtd = nand_to_mtd(nand); + mtd->dev.parent = dev; + + ret = nand_scan(nand, nsels); + if (ret) + return ret; + + ret = mtd_device_register(mtd, NULL, 0); + if (ret) { + dev_err(dev, "failed to register mtd device: %d\n", ret); + nand_cleanup(nand); + return ret; + } + + list_add_tail(&sunxi_nand->node, &nfc->chips); + + return 0; +} + +static int sunxi_nand_chips_init(struct device *dev, struct sunxi_nfc *nfc) +{ + struct device_node *np = dev->of_node; + struct device_node *nand_np; + int ret; + + for_each_child_of_node(np, nand_np) { + ret = sunxi_nand_chip_init(dev, nfc, nand_np); + if (ret) { + of_node_put(nand_np); + sunxi_nand_chips_cleanup(nfc); + return ret; + } + } + + return 0; +} + +static int sunxi_nfc_dma_init(struct sunxi_nfc *nfc, struct resource *r) +{ + int ret; + + if (nfc->caps->has_mdma) + return 0; + + nfc->dmac = dma_request_chan(nfc->dev, "rxtx"); + if (IS_ERR(nfc->dmac)) { + ret = PTR_ERR(nfc->dmac); + if (ret == -EPROBE_DEFER) + return ret; + + /* Ignore errors to fall back to PIO mode */ + dev_warn(nfc->dev, "failed to request rxtx DMA channel: %d\n", ret); + nfc->dmac = NULL; + } else { + struct dma_slave_config dmac_cfg = { }; + + dmac_cfg.src_addr = r->start + nfc->caps->reg_io_data; + dmac_cfg.dst_addr = dmac_cfg.src_addr; + dmac_cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; + dmac_cfg.dst_addr_width = dmac_cfg.src_addr_width; + dmac_cfg.src_maxburst = nfc->caps->dma_maxburst; + dmac_cfg.dst_maxburst = nfc->caps->dma_maxburst; + dmaengine_slave_config(nfc->dmac, &dmac_cfg); + } + return 0; +} + +static int sunxi_nfc_probe(struct platform_device *pdev) +{ + struct device *dev = &pdev->dev; + struct resource *r; + struct sunxi_nfc *nfc; + int irq; + int ret; + + nfc = devm_kzalloc(dev, sizeof(*nfc), GFP_KERNEL); + if (!nfc) + return -ENOMEM; + + nfc->dev = dev; + nand_controller_init(&nfc->controller); + INIT_LIST_HEAD(&nfc->chips); + + nfc->regs = devm_platform_get_and_ioremap_resource(pdev, 0, &r); + if (IS_ERR(nfc->regs)) + return PTR_ERR(nfc->regs); + + irq = platform_get_irq(pdev, 0); + if (irq < 0) + return irq; + + nfc->ahb_clk = devm_clk_get_enabled(dev, "ahb"); + if (IS_ERR(nfc->ahb_clk)) { + dev_err(dev, "failed to retrieve ahb clk\n"); + return PTR_ERR(nfc->ahb_clk); + } + + nfc->mod_clk = devm_clk_get_enabled(dev, "mod"); + if (IS_ERR(nfc->mod_clk)) { + dev_err(dev, "failed to retrieve mod clk\n"); + return PTR_ERR(nfc->mod_clk); + } + + nfc->reset = devm_reset_control_get_optional_exclusive(dev, "ahb"); + if (IS_ERR(nfc->reset)) + return PTR_ERR(nfc->reset); + + ret = reset_control_deassert(nfc->reset); + if (ret) { + dev_err(dev, "reset err %d\n", ret); + return ret; + } + + nfc->caps = of_device_get_match_data(&pdev->dev); + if (!nfc->caps) { + ret = -EINVAL; + goto out_ahb_reset_reassert; + } + + ret = sunxi_nfc_rst(nfc); + if (ret) + goto out_ahb_reset_reassert; + + writel(0, nfc->regs + NFC_REG_INT); + ret = devm_request_irq(dev, irq, sunxi_nfc_interrupt, + 0, "sunxi-nand", nfc); + if (ret) + goto out_ahb_reset_reassert; + + ret = sunxi_nfc_dma_init(nfc, r); + + if (ret) + goto out_ahb_reset_reassert; + + platform_set_drvdata(pdev, nfc); + + ret = sunxi_nand_chips_init(dev, nfc); + if (ret) { + dev_err(dev, "failed to init nand chips\n"); + goto out_release_dmac; + } + + return 0; + +out_release_dmac: + if (nfc->dmac) + dma_release_channel(nfc->dmac); +out_ahb_reset_reassert: + reset_control_assert(nfc->reset); + + return ret; +} + +static void sunxi_nfc_remove(struct platform_device *pdev) +{ + struct sunxi_nfc *nfc = platform_get_drvdata(pdev); + + sunxi_nand_chips_cleanup(nfc); + + reset_control_assert(nfc->reset); + + if (nfc->dmac) + dma_release_channel(nfc->dmac); +} + +static const struct sunxi_nfc_caps sunxi_nfc_a10_caps = { + .reg_io_data = NFC_REG_A10_IO_DATA, + .dma_maxburst = 4, +}; + +static const struct sunxi_nfc_caps sunxi_nfc_a23_caps = { + .has_mdma = true, + .reg_io_data = NFC_REG_A23_IO_DATA, + .dma_maxburst = 8, +}; + +static const struct of_device_id sunxi_nfc_ids[] = { + { + .compatible = "allwinner,sun4i-a10-nand", + .data = &sunxi_nfc_a10_caps, + }, + { + .compatible = "allwinner,sun8i-a23-nand-controller", + .data = &sunxi_nfc_a23_caps, + }, + { /* sentinel */ } +}; +MODULE_DEVICE_TABLE(of, sunxi_nfc_ids); + +static struct platform_driver sunxi_nfc_driver = { + .driver = { + .name = "sunxi_nand", + .of_match_table = sunxi_nfc_ids, + }, + .probe = sunxi_nfc_probe, + .remove_new = sunxi_nfc_remove, +}; +module_platform_driver(sunxi_nfc_driver); + +MODULE_LICENSE("GPL"); +MODULE_AUTHOR("Boris BREZILLON"); +MODULE_DESCRIPTION("Allwinner NAND Flash Controller driver"); +MODULE_ALIAS("platform:sunxi_nand"); diff --git a/drivers/mtd/nand/raw/tegra_nand.c b/drivers/mtd/nand/raw/tegra_nand.c new file mode 100644 index 0000000000..a553e3ac8f --- /dev/null +++ b/drivers/mtd/nand/raw/tegra_nand.c @@ -0,0 +1,1290 @@ +// SPDX-License-Identifier: GPL-2.0 +/* + * Copyright (C) 2018 Stefan Agner <stefan@agner.ch> + * Copyright (C) 2014-2015 Lucas Stach <dev@lynxeye.de> + * Copyright (C) 2012 Avionic Design GmbH + */ + +#include <linux/clk.h> +#include <linux/completion.h> +#include <linux/dma-mapping.h> +#include <linux/err.h> +#include <linux/gpio/consumer.h> +#include <linux/interrupt.h> +#include <linux/io.h> +#include <linux/module.h> +#include <linux/mtd/partitions.h> +#include <linux/mtd/rawnand.h> +#include <linux/of.h> +#include <linux/platform_device.h> +#include <linux/pm_runtime.h> +#include <linux/reset.h> + +#include <soc/tegra/common.h> + +#define COMMAND 0x00 +#define COMMAND_GO BIT(31) +#define COMMAND_CLE BIT(30) +#define COMMAND_ALE BIT(29) +#define COMMAND_PIO BIT(28) +#define COMMAND_TX BIT(27) +#define COMMAND_RX BIT(26) +#define COMMAND_SEC_CMD BIT(25) +#define COMMAND_AFT_DAT BIT(24) +#define COMMAND_TRANS_SIZE(size) ((((size) - 1) & 0xf) << 20) +#define COMMAND_A_VALID BIT(19) +#define COMMAND_B_VALID BIT(18) +#define COMMAND_RD_STATUS_CHK BIT(17) +#define COMMAND_RBSY_CHK BIT(16) +#define COMMAND_CE(x) BIT(8 + ((x) & 0x7)) +#define COMMAND_CLE_SIZE(size) ((((size) - 1) & 0x3) << 4) +#define COMMAND_ALE_SIZE(size) ((((size) - 1) & 0xf) << 0) + +#define STATUS 0x04 + +#define ISR 0x08 +#define ISR_CORRFAIL_ERR BIT(24) +#define ISR_UND BIT(7) +#define ISR_OVR BIT(6) +#define ISR_CMD_DONE BIT(5) +#define ISR_ECC_ERR BIT(4) + +#define IER 0x0c +#define IER_ERR_TRIG_VAL(x) (((x) & 0xf) << 16) +#define IER_UND BIT(7) +#define IER_OVR BIT(6) +#define IER_CMD_DONE BIT(5) +#define IER_ECC_ERR BIT(4) +#define IER_GIE BIT(0) + +#define CONFIG 0x10 +#define CONFIG_HW_ECC BIT(31) +#define CONFIG_ECC_SEL BIT(30) +#define CONFIG_ERR_COR BIT(29) +#define CONFIG_PIPE_EN BIT(28) +#define CONFIG_TVAL_4 (0 << 24) +#define CONFIG_TVAL_6 (1 << 24) +#define CONFIG_TVAL_8 (2 << 24) +#define CONFIG_SKIP_SPARE BIT(23) +#define CONFIG_BUS_WIDTH_16 BIT(21) +#define CONFIG_COM_BSY BIT(20) +#define CONFIG_PS_256 (0 << 16) +#define CONFIG_PS_512 (1 << 16) +#define CONFIG_PS_1024 (2 << 16) +#define CONFIG_PS_2048 (3 << 16) +#define CONFIG_PS_4096 (4 << 16) +#define CONFIG_SKIP_SPARE_SIZE_4 (0 << 14) +#define CONFIG_SKIP_SPARE_SIZE_8 (1 << 14) +#define CONFIG_SKIP_SPARE_SIZE_12 (2 << 14) +#define CONFIG_SKIP_SPARE_SIZE_16 (3 << 14) +#define CONFIG_TAG_BYTE_SIZE(x) ((x) & 0xff) + +#define TIMING_1 0x14 +#define TIMING_TRP_RESP(x) (((x) & 0xf) << 28) +#define TIMING_TWB(x) (((x) & 0xf) << 24) +#define TIMING_TCR_TAR_TRR(x) (((x) & 0xf) << 20) +#define TIMING_TWHR(x) (((x) & 0xf) << 16) +#define TIMING_TCS(x) (((x) & 0x3) << 14) +#define TIMING_TWH(x) (((x) & 0x3) << 12) +#define TIMING_TWP(x) (((x) & 0xf) << 8) +#define TIMING_TRH(x) (((x) & 0x3) << 4) +#define TIMING_TRP(x) (((x) & 0xf) << 0) + +#define RESP 0x18 + +#define TIMING_2 0x1c +#define TIMING_TADL(x) ((x) & 0xf) + +#define CMD_REG1 0x20 +#define CMD_REG2 0x24 +#define ADDR_REG1 0x28 +#define ADDR_REG2 0x2c + +#define DMA_MST_CTRL 0x30 +#define DMA_MST_CTRL_GO BIT(31) +#define DMA_MST_CTRL_IN (0 << 30) +#define DMA_MST_CTRL_OUT BIT(30) +#define DMA_MST_CTRL_PERF_EN BIT(29) +#define DMA_MST_CTRL_IE_DONE BIT(28) +#define DMA_MST_CTRL_REUSE BIT(27) +#define DMA_MST_CTRL_BURST_1 (2 << 24) +#define DMA_MST_CTRL_BURST_4 (3 << 24) +#define DMA_MST_CTRL_BURST_8 (4 << 24) +#define DMA_MST_CTRL_BURST_16 (5 << 24) +#define DMA_MST_CTRL_IS_DONE BIT(20) +#define DMA_MST_CTRL_EN_A BIT(2) +#define DMA_MST_CTRL_EN_B BIT(1) + +#define DMA_CFG_A 0x34 +#define DMA_CFG_B 0x38 + +#define FIFO_CTRL 0x3c +#define FIFO_CTRL_CLR_ALL BIT(3) + +#define DATA_PTR 0x40 +#define TAG_PTR 0x44 +#define ECC_PTR 0x48 + +#define DEC_STATUS 0x4c +#define DEC_STATUS_A_ECC_FAIL BIT(1) +#define DEC_STATUS_ERR_COUNT_MASK 0x00ff0000 +#define DEC_STATUS_ERR_COUNT_SHIFT 16 + +#define HWSTATUS_CMD 0x50 +#define HWSTATUS_MASK 0x54 +#define HWSTATUS_RDSTATUS_MASK(x) (((x) & 0xff) << 24) +#define HWSTATUS_RDSTATUS_VALUE(x) (((x) & 0xff) << 16) +#define HWSTATUS_RBSY_MASK(x) (((x) & 0xff) << 8) +#define HWSTATUS_RBSY_VALUE(x) (((x) & 0xff) << 0) + +#define BCH_CONFIG 0xcc +#define BCH_ENABLE BIT(0) +#define BCH_TVAL_4 (0 << 4) +#define BCH_TVAL_8 (1 << 4) +#define BCH_TVAL_14 (2 << 4) +#define BCH_TVAL_16 (3 << 4) + +#define DEC_STAT_RESULT 0xd0 +#define DEC_STAT_BUF 0xd4 +#define DEC_STAT_BUF_FAIL_SEC_FLAG_MASK 0xff000000 +#define DEC_STAT_BUF_FAIL_SEC_FLAG_SHIFT 24 +#define DEC_STAT_BUF_CORR_SEC_FLAG_MASK 0x00ff0000 +#define DEC_STAT_BUF_CORR_SEC_FLAG_SHIFT 16 +#define DEC_STAT_BUF_MAX_CORR_CNT_MASK 0x00001f00 +#define DEC_STAT_BUF_MAX_CORR_CNT_SHIFT 8 + +#define OFFSET(val, off) ((val) < (off) ? 0 : (val) - (off)) + +#define SKIP_SPARE_BYTES 4 +#define BITS_PER_STEP_RS 18 +#define BITS_PER_STEP_BCH 13 + +#define INT_MASK (IER_UND | IER_OVR | IER_CMD_DONE | IER_GIE) +#define HWSTATUS_CMD_DEFAULT NAND_STATUS_READY +#define HWSTATUS_MASK_DEFAULT (HWSTATUS_RDSTATUS_MASK(1) | \ + HWSTATUS_RDSTATUS_VALUE(0) | \ + HWSTATUS_RBSY_MASK(NAND_STATUS_READY) | \ + HWSTATUS_RBSY_VALUE(NAND_STATUS_READY)) + +struct tegra_nand_controller { + struct nand_controller controller; + struct device *dev; + void __iomem *regs; + int irq; + struct clk *clk; + struct completion command_complete; + struct completion dma_complete; + bool last_read_error; + int cur_cs; + struct nand_chip *chip; +}; + +struct tegra_nand_chip { + struct nand_chip chip; + struct gpio_desc *wp_gpio; + struct mtd_oob_region ecc; + u32 config; + u32 config_ecc; + u32 bch_config; + int cs[1]; +}; + +static inline struct tegra_nand_controller * + to_tegra_ctrl(struct nand_controller *hw_ctrl) +{ + return container_of(hw_ctrl, struct tegra_nand_controller, controller); +} + +static inline struct tegra_nand_chip *to_tegra_chip(struct nand_chip *chip) +{ + return container_of(chip, struct tegra_nand_chip, chip); +} + +static int tegra_nand_ooblayout_rs_ecc(struct mtd_info *mtd, int section, + struct mtd_oob_region *oobregion) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + int bytes_per_step = DIV_ROUND_UP(BITS_PER_STEP_RS * chip->ecc.strength, + BITS_PER_BYTE); + + if (section > 0) + return -ERANGE; + + oobregion->offset = SKIP_SPARE_BYTES; + oobregion->length = round_up(bytes_per_step * chip->ecc.steps, 4); + + return 0; +} + +static int tegra_nand_ooblayout_no_free(struct mtd_info *mtd, int section, + struct mtd_oob_region *oobregion) +{ + return -ERANGE; +} + +static const struct mtd_ooblayout_ops tegra_nand_oob_rs_ops = { + .ecc = tegra_nand_ooblayout_rs_ecc, + .free = tegra_nand_ooblayout_no_free, +}; + +static int tegra_nand_ooblayout_bch_ecc(struct mtd_info *mtd, int section, + struct mtd_oob_region *oobregion) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + int bytes_per_step = DIV_ROUND_UP(BITS_PER_STEP_BCH * chip->ecc.strength, + BITS_PER_BYTE); + + if (section > 0) + return -ERANGE; + + oobregion->offset = SKIP_SPARE_BYTES; + oobregion->length = round_up(bytes_per_step * chip->ecc.steps, 4); + + return 0; +} + +static const struct mtd_ooblayout_ops tegra_nand_oob_bch_ops = { + .ecc = tegra_nand_ooblayout_bch_ecc, + .free = tegra_nand_ooblayout_no_free, +}; + +static irqreturn_t tegra_nand_irq(int irq, void *data) +{ + struct tegra_nand_controller *ctrl = data; + u32 isr, dma; + + isr = readl_relaxed(ctrl->regs + ISR); + dma = readl_relaxed(ctrl->regs + DMA_MST_CTRL); + dev_dbg(ctrl->dev, "isr %08x\n", isr); + + if (!isr && !(dma & DMA_MST_CTRL_IS_DONE)) + return IRQ_NONE; + + /* + * The bit name is somewhat missleading: This is also set when + * HW ECC was successful. The data sheet states: + * Correctable OR Un-correctable errors occurred in the DMA transfer... + */ + if (isr & ISR_CORRFAIL_ERR) + ctrl->last_read_error = true; + + if (isr & ISR_CMD_DONE) + complete(&ctrl->command_complete); + + if (isr & ISR_UND) + dev_err(ctrl->dev, "FIFO underrun\n"); + + if (isr & ISR_OVR) + dev_err(ctrl->dev, "FIFO overrun\n"); + + /* handle DMA interrupts */ + if (dma & DMA_MST_CTRL_IS_DONE) { + writel_relaxed(dma, ctrl->regs + DMA_MST_CTRL); + complete(&ctrl->dma_complete); + } + + /* clear interrupts */ + writel_relaxed(isr, ctrl->regs + ISR); + + return IRQ_HANDLED; +} + +static const char * const tegra_nand_reg_names[] = { + "COMMAND", + "STATUS", + "ISR", + "IER", + "CONFIG", + "TIMING", + NULL, + "TIMING2", + "CMD_REG1", + "CMD_REG2", + "ADDR_REG1", + "ADDR_REG2", + "DMA_MST_CTRL", + "DMA_CFG_A", + "DMA_CFG_B", + "FIFO_CTRL", +}; + +static void tegra_nand_dump_reg(struct tegra_nand_controller *ctrl) +{ + u32 reg; + int i; + + dev_err(ctrl->dev, "Tegra NAND controller register dump\n"); + for (i = 0; i < ARRAY_SIZE(tegra_nand_reg_names); i++) { + const char *reg_name = tegra_nand_reg_names[i]; + + if (!reg_name) + continue; + + reg = readl_relaxed(ctrl->regs + (i * 4)); + dev_err(ctrl->dev, "%s: 0x%08x\n", reg_name, reg); + } +} + +static void tegra_nand_controller_abort(struct tegra_nand_controller *ctrl) +{ + u32 isr, dma; + + disable_irq(ctrl->irq); + + /* Abort current command/DMA operation */ + writel_relaxed(0, ctrl->regs + DMA_MST_CTRL); + writel_relaxed(0, ctrl->regs + COMMAND); + + /* clear interrupts */ + isr = readl_relaxed(ctrl->regs + ISR); + writel_relaxed(isr, ctrl->regs + ISR); + dma = readl_relaxed(ctrl->regs + DMA_MST_CTRL); + writel_relaxed(dma, ctrl->regs + DMA_MST_CTRL); + + reinit_completion(&ctrl->command_complete); + reinit_completion(&ctrl->dma_complete); + + enable_irq(ctrl->irq); +} + +static int tegra_nand_cmd(struct nand_chip *chip, + const struct nand_subop *subop) +{ + const struct nand_op_instr *instr; + const struct nand_op_instr *instr_data_in = NULL; + struct tegra_nand_controller *ctrl = to_tegra_ctrl(chip->controller); + unsigned int op_id, size = 0, offset = 0; + bool first_cmd = true; + u32 reg, cmd = 0; + int ret; + + for (op_id = 0; op_id < subop->ninstrs; op_id++) { + unsigned int naddrs, i; + const u8 *addrs; + u32 addr1 = 0, addr2 = 0; + + instr = &subop->instrs[op_id]; + + switch (instr->type) { + case NAND_OP_CMD_INSTR: + if (first_cmd) { + cmd |= COMMAND_CLE; + writel_relaxed(instr->ctx.cmd.opcode, + ctrl->regs + CMD_REG1); + } else { + cmd |= COMMAND_SEC_CMD; + writel_relaxed(instr->ctx.cmd.opcode, + ctrl->regs + CMD_REG2); + } + first_cmd = false; + break; + + case NAND_OP_ADDR_INSTR: + offset = nand_subop_get_addr_start_off(subop, op_id); + naddrs = nand_subop_get_num_addr_cyc(subop, op_id); + addrs = &instr->ctx.addr.addrs[offset]; + + cmd |= COMMAND_ALE | COMMAND_ALE_SIZE(naddrs); + for (i = 0; i < min_t(unsigned int, 4, naddrs); i++) + addr1 |= *addrs++ << (BITS_PER_BYTE * i); + naddrs -= i; + for (i = 0; i < min_t(unsigned int, 4, naddrs); i++) + addr2 |= *addrs++ << (BITS_PER_BYTE * i); + + writel_relaxed(addr1, ctrl->regs + ADDR_REG1); + writel_relaxed(addr2, ctrl->regs + ADDR_REG2); + break; + + case NAND_OP_DATA_IN_INSTR: + size = nand_subop_get_data_len(subop, op_id); + offset = nand_subop_get_data_start_off(subop, op_id); + + cmd |= COMMAND_TRANS_SIZE(size) | COMMAND_PIO | + COMMAND_RX | COMMAND_A_VALID; + + instr_data_in = instr; + break; + + case NAND_OP_DATA_OUT_INSTR: + size = nand_subop_get_data_len(subop, op_id); + offset = nand_subop_get_data_start_off(subop, op_id); + + cmd |= COMMAND_TRANS_SIZE(size) | COMMAND_PIO | + COMMAND_TX | COMMAND_A_VALID; + memcpy(®, instr->ctx.data.buf.out + offset, size); + + writel_relaxed(reg, ctrl->regs + RESP); + break; + + case NAND_OP_WAITRDY_INSTR: + cmd |= COMMAND_RBSY_CHK; + break; + } + } + + cmd |= COMMAND_GO | COMMAND_CE(ctrl->cur_cs); + writel_relaxed(cmd, ctrl->regs + COMMAND); + ret = wait_for_completion_timeout(&ctrl->command_complete, + msecs_to_jiffies(500)); + if (!ret) { + dev_err(ctrl->dev, "COMMAND timeout\n"); + tegra_nand_dump_reg(ctrl); + tegra_nand_controller_abort(ctrl); + return -ETIMEDOUT; + } + + if (instr_data_in) { + reg = readl_relaxed(ctrl->regs + RESP); + memcpy(instr_data_in->ctx.data.buf.in + offset, ®, size); + } + + return 0; +} + +static const struct nand_op_parser tegra_nand_op_parser = NAND_OP_PARSER( + NAND_OP_PARSER_PATTERN(tegra_nand_cmd, + NAND_OP_PARSER_PAT_CMD_ELEM(true), + NAND_OP_PARSER_PAT_ADDR_ELEM(true, 8), + NAND_OP_PARSER_PAT_CMD_ELEM(true), + NAND_OP_PARSER_PAT_WAITRDY_ELEM(true)), + NAND_OP_PARSER_PATTERN(tegra_nand_cmd, + NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, 4)), + NAND_OP_PARSER_PATTERN(tegra_nand_cmd, + NAND_OP_PARSER_PAT_CMD_ELEM(true), + NAND_OP_PARSER_PAT_ADDR_ELEM(true, 8), + NAND_OP_PARSER_PAT_CMD_ELEM(true), + NAND_OP_PARSER_PAT_WAITRDY_ELEM(true), + NAND_OP_PARSER_PAT_DATA_IN_ELEM(true, 4)), + ); + +static void tegra_nand_select_target(struct nand_chip *chip, + unsigned int die_nr) +{ + struct tegra_nand_chip *nand = to_tegra_chip(chip); + struct tegra_nand_controller *ctrl = to_tegra_ctrl(chip->controller); + + ctrl->cur_cs = nand->cs[die_nr]; +} + +static int tegra_nand_exec_op(struct nand_chip *chip, + const struct nand_operation *op, + bool check_only) +{ + if (!check_only) + tegra_nand_select_target(chip, op->cs); + + return nand_op_parser_exec_op(chip, &tegra_nand_op_parser, op, + check_only); +} + +static void tegra_nand_hw_ecc(struct tegra_nand_controller *ctrl, + struct nand_chip *chip, bool enable) +{ + struct tegra_nand_chip *nand = to_tegra_chip(chip); + + if (chip->ecc.algo == NAND_ECC_ALGO_BCH && enable) + writel_relaxed(nand->bch_config, ctrl->regs + BCH_CONFIG); + else + writel_relaxed(0, ctrl->regs + BCH_CONFIG); + + if (enable) + writel_relaxed(nand->config_ecc, ctrl->regs + CONFIG); + else + writel_relaxed(nand->config, ctrl->regs + CONFIG); +} + +static int tegra_nand_page_xfer(struct mtd_info *mtd, struct nand_chip *chip, + void *buf, void *oob_buf, int oob_len, int page, + bool read) +{ + struct tegra_nand_controller *ctrl = to_tegra_ctrl(chip->controller); + enum dma_data_direction dir = read ? DMA_FROM_DEVICE : DMA_TO_DEVICE; + dma_addr_t dma_addr = 0, dma_addr_oob = 0; + u32 addr1, cmd, dma_ctrl; + int ret; + + tegra_nand_select_target(chip, chip->cur_cs); + + if (read) { + writel_relaxed(NAND_CMD_READ0, ctrl->regs + CMD_REG1); + writel_relaxed(NAND_CMD_READSTART, ctrl->regs + CMD_REG2); + } else { + writel_relaxed(NAND_CMD_SEQIN, ctrl->regs + CMD_REG1); + writel_relaxed(NAND_CMD_PAGEPROG, ctrl->regs + CMD_REG2); + } + cmd = COMMAND_CLE | COMMAND_SEC_CMD; + + /* Lower 16-bits are column, by default 0 */ + addr1 = page << 16; + + if (!buf) + addr1 |= mtd->writesize; + writel_relaxed(addr1, ctrl->regs + ADDR_REG1); + + if (chip->options & NAND_ROW_ADDR_3) { + writel_relaxed(page >> 16, ctrl->regs + ADDR_REG2); + cmd |= COMMAND_ALE | COMMAND_ALE_SIZE(5); + } else { + cmd |= COMMAND_ALE | COMMAND_ALE_SIZE(4); + } + + if (buf) { + dma_addr = dma_map_single(ctrl->dev, buf, mtd->writesize, dir); + ret = dma_mapping_error(ctrl->dev, dma_addr); + if (ret) { + dev_err(ctrl->dev, "dma mapping error\n"); + return -EINVAL; + } + + writel_relaxed(mtd->writesize - 1, ctrl->regs + DMA_CFG_A); + writel_relaxed(dma_addr, ctrl->regs + DATA_PTR); + } + + if (oob_buf) { + dma_addr_oob = dma_map_single(ctrl->dev, oob_buf, mtd->oobsize, + dir); + ret = dma_mapping_error(ctrl->dev, dma_addr_oob); + if (ret) { + dev_err(ctrl->dev, "dma mapping error\n"); + ret = -EINVAL; + goto err_unmap_dma_page; + } + + writel_relaxed(oob_len - 1, ctrl->regs + DMA_CFG_B); + writel_relaxed(dma_addr_oob, ctrl->regs + TAG_PTR); + } + + dma_ctrl = DMA_MST_CTRL_GO | DMA_MST_CTRL_PERF_EN | + DMA_MST_CTRL_IE_DONE | DMA_MST_CTRL_IS_DONE | + DMA_MST_CTRL_BURST_16; + + if (buf) + dma_ctrl |= DMA_MST_CTRL_EN_A; + if (oob_buf) + dma_ctrl |= DMA_MST_CTRL_EN_B; + + if (read) + dma_ctrl |= DMA_MST_CTRL_IN | DMA_MST_CTRL_REUSE; + else + dma_ctrl |= DMA_MST_CTRL_OUT; + + writel_relaxed(dma_ctrl, ctrl->regs + DMA_MST_CTRL); + + cmd |= COMMAND_GO | COMMAND_RBSY_CHK | COMMAND_TRANS_SIZE(9) | + COMMAND_CE(ctrl->cur_cs); + + if (buf) + cmd |= COMMAND_A_VALID; + if (oob_buf) + cmd |= COMMAND_B_VALID; + + if (read) + cmd |= COMMAND_RX; + else + cmd |= COMMAND_TX | COMMAND_AFT_DAT; + + writel_relaxed(cmd, ctrl->regs + COMMAND); + + ret = wait_for_completion_timeout(&ctrl->command_complete, + msecs_to_jiffies(500)); + if (!ret) { + dev_err(ctrl->dev, "COMMAND timeout\n"); + tegra_nand_dump_reg(ctrl); + tegra_nand_controller_abort(ctrl); + ret = -ETIMEDOUT; + goto err_unmap_dma; + } + + ret = wait_for_completion_timeout(&ctrl->dma_complete, + msecs_to_jiffies(500)); + if (!ret) { + dev_err(ctrl->dev, "DMA timeout\n"); + tegra_nand_dump_reg(ctrl); + tegra_nand_controller_abort(ctrl); + ret = -ETIMEDOUT; + goto err_unmap_dma; + } + ret = 0; + +err_unmap_dma: + if (oob_buf) + dma_unmap_single(ctrl->dev, dma_addr_oob, mtd->oobsize, dir); +err_unmap_dma_page: + if (buf) + dma_unmap_single(ctrl->dev, dma_addr, mtd->writesize, dir); + + return ret; +} + +static int tegra_nand_read_page_raw(struct nand_chip *chip, u8 *buf, + int oob_required, int page) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + void *oob_buf = oob_required ? chip->oob_poi : NULL; + + return tegra_nand_page_xfer(mtd, chip, buf, oob_buf, + mtd->oobsize, page, true); +} + +static int tegra_nand_write_page_raw(struct nand_chip *chip, const u8 *buf, + int oob_required, int page) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + void *oob_buf = oob_required ? chip->oob_poi : NULL; + + return tegra_nand_page_xfer(mtd, chip, (void *)buf, oob_buf, + mtd->oobsize, page, false); +} + +static int tegra_nand_read_oob(struct nand_chip *chip, int page) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + + return tegra_nand_page_xfer(mtd, chip, NULL, chip->oob_poi, + mtd->oobsize, page, true); +} + +static int tegra_nand_write_oob(struct nand_chip *chip, int page) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + + return tegra_nand_page_xfer(mtd, chip, NULL, chip->oob_poi, + mtd->oobsize, page, false); +} + +static int tegra_nand_read_page_hwecc(struct nand_chip *chip, u8 *buf, + int oob_required, int page) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + struct tegra_nand_controller *ctrl = to_tegra_ctrl(chip->controller); + struct tegra_nand_chip *nand = to_tegra_chip(chip); + void *oob_buf = oob_required ? chip->oob_poi : NULL; + u32 dec_stat, max_corr_cnt; + unsigned long fail_sec_flag; + int ret; + + tegra_nand_hw_ecc(ctrl, chip, true); + ret = tegra_nand_page_xfer(mtd, chip, buf, oob_buf, 0, page, true); + tegra_nand_hw_ecc(ctrl, chip, false); + if (ret) + return ret; + + /* No correctable or un-correctable errors, page must have 0 bitflips */ + if (!ctrl->last_read_error) + return 0; + + /* + * Correctable or un-correctable errors occurred. Use DEC_STAT_BUF + * which contains information for all ECC selections. + * + * Note that since we do not use Command Queues DEC_RESULT does not + * state the number of pages we can read from the DEC_STAT_BUF. But + * since CORRFAIL_ERR did occur during page read we do have a valid + * result in DEC_STAT_BUF. + */ + ctrl->last_read_error = false; + dec_stat = readl_relaxed(ctrl->regs + DEC_STAT_BUF); + + fail_sec_flag = (dec_stat & DEC_STAT_BUF_FAIL_SEC_FLAG_MASK) >> + DEC_STAT_BUF_FAIL_SEC_FLAG_SHIFT; + + max_corr_cnt = (dec_stat & DEC_STAT_BUF_MAX_CORR_CNT_MASK) >> + DEC_STAT_BUF_MAX_CORR_CNT_SHIFT; + + if (fail_sec_flag) { + int bit, max_bitflips = 0; + + /* + * Since we do not support subpage writes, a complete page + * is either written or not. We can take a shortcut here by + * checking wheather any of the sector has been successful + * read. If at least one sectors has been read successfully, + * the page must have been a written previously. It cannot + * be an erased page. + * + * E.g. controller might return fail_sec_flag with 0x4, which + * would mean only the third sector failed to correct. The + * page must have been written and the third sector is really + * not correctable anymore. + */ + if (fail_sec_flag ^ GENMASK(chip->ecc.steps - 1, 0)) { + mtd->ecc_stats.failed += hweight8(fail_sec_flag); + return max_corr_cnt; + } + + /* + * All sectors failed to correct, but the ECC isn't smart + * enough to figure out if a page is really just erased. + * Read OOB data and check whether data/OOB is completely + * erased or if error correction just failed for all sub- + * pages. + */ + ret = tegra_nand_read_oob(chip, page); + if (ret < 0) + return ret; + + for_each_set_bit(bit, &fail_sec_flag, chip->ecc.steps) { + u8 *data = buf + (chip->ecc.size * bit); + u8 *oob = chip->oob_poi + nand->ecc.offset + + (chip->ecc.bytes * bit); + + ret = nand_check_erased_ecc_chunk(data, chip->ecc.size, + oob, chip->ecc.bytes, + NULL, 0, + chip->ecc.strength); + if (ret < 0) { + mtd->ecc_stats.failed++; + } else { + mtd->ecc_stats.corrected += ret; + max_bitflips = max(ret, max_bitflips); + } + } + + return max_t(unsigned int, max_corr_cnt, max_bitflips); + } else { + int corr_sec_flag; + + corr_sec_flag = (dec_stat & DEC_STAT_BUF_CORR_SEC_FLAG_MASK) >> + DEC_STAT_BUF_CORR_SEC_FLAG_SHIFT; + + /* + * The value returned in the register is the maximum of + * bitflips encountered in any of the ECC regions. As there is + * no way to get the number of bitflips in a specific regions + * we are not able to deliver correct stats but instead + * overestimate the number of corrected bitflips by assuming + * that all regions where errors have been corrected + * encountered the maximum number of bitflips. + */ + mtd->ecc_stats.corrected += max_corr_cnt * hweight8(corr_sec_flag); + + return max_corr_cnt; + } +} + +static int tegra_nand_write_page_hwecc(struct nand_chip *chip, const u8 *buf, + int oob_required, int page) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + struct tegra_nand_controller *ctrl = to_tegra_ctrl(chip->controller); + void *oob_buf = oob_required ? chip->oob_poi : NULL; + int ret; + + tegra_nand_hw_ecc(ctrl, chip, true); + ret = tegra_nand_page_xfer(mtd, chip, (void *)buf, oob_buf, + 0, page, false); + tegra_nand_hw_ecc(ctrl, chip, false); + + return ret; +} + +static void tegra_nand_setup_timing(struct tegra_nand_controller *ctrl, + const struct nand_sdr_timings *timings) +{ + /* + * The period (and all other timings in this function) is in ps, + * so need to take care here to avoid integer overflows. + */ + unsigned int rate = clk_get_rate(ctrl->clk) / 1000000; + unsigned int period = DIV_ROUND_UP(1000000, rate); + u32 val, reg = 0; + + val = DIV_ROUND_UP(max3(timings->tAR_min, timings->tRR_min, + timings->tRC_min), period); + reg |= TIMING_TCR_TAR_TRR(OFFSET(val, 3)); + + val = DIV_ROUND_UP(max(max(timings->tCS_min, timings->tCH_min), + max(timings->tALS_min, timings->tALH_min)), + period); + reg |= TIMING_TCS(OFFSET(val, 2)); + + val = DIV_ROUND_UP(max(timings->tRP_min, timings->tREA_max) + 6000, + period); + reg |= TIMING_TRP(OFFSET(val, 1)) | TIMING_TRP_RESP(OFFSET(val, 1)); + + reg |= TIMING_TWB(OFFSET(DIV_ROUND_UP(timings->tWB_max, period), 1)); + reg |= TIMING_TWHR(OFFSET(DIV_ROUND_UP(timings->tWHR_min, period), 1)); + reg |= TIMING_TWH(OFFSET(DIV_ROUND_UP(timings->tWH_min, period), 1)); + reg |= TIMING_TWP(OFFSET(DIV_ROUND_UP(timings->tWP_min, period), 1)); + reg |= TIMING_TRH(OFFSET(DIV_ROUND_UP(timings->tREH_min, period), 1)); + + writel_relaxed(reg, ctrl->regs + TIMING_1); + + val = DIV_ROUND_UP(timings->tADL_min, period); + reg = TIMING_TADL(OFFSET(val, 3)); + + writel_relaxed(reg, ctrl->regs + TIMING_2); +} + +static int tegra_nand_setup_interface(struct nand_chip *chip, int csline, + const struct nand_interface_config *conf) +{ + struct tegra_nand_controller *ctrl = to_tegra_ctrl(chip->controller); + const struct nand_sdr_timings *timings; + + timings = nand_get_sdr_timings(conf); + if (IS_ERR(timings)) + return PTR_ERR(timings); + + if (csline == NAND_DATA_IFACE_CHECK_ONLY) + return 0; + + tegra_nand_setup_timing(ctrl, timings); + + return 0; +} + +static const int rs_strength_bootable[] = { 4 }; +static const int rs_strength[] = { 4, 6, 8 }; +static const int bch_strength_bootable[] = { 8, 16 }; +static const int bch_strength[] = { 4, 8, 14, 16 }; + +static int tegra_nand_get_strength(struct nand_chip *chip, const int *strength, + int strength_len, int bits_per_step, + int oobsize) +{ + struct nand_device *base = mtd_to_nanddev(nand_to_mtd(chip)); + const struct nand_ecc_props *requirements = + nanddev_get_ecc_requirements(base); + bool maximize = base->ecc.user_conf.flags & NAND_ECC_MAXIMIZE_STRENGTH; + int i; + + /* + * Loop through available strengths. Backwards in case we try to + * maximize the BCH strength. + */ + for (i = 0; i < strength_len; i++) { + int strength_sel, bytes_per_step, bytes_per_page; + + if (maximize) { + strength_sel = strength[strength_len - i - 1]; + } else { + strength_sel = strength[i]; + + if (strength_sel < requirements->strength) + continue; + } + + bytes_per_step = DIV_ROUND_UP(bits_per_step * strength_sel, + BITS_PER_BYTE); + bytes_per_page = round_up(bytes_per_step * chip->ecc.steps, 4); + + /* Check whether strength fits OOB */ + if (bytes_per_page < (oobsize - SKIP_SPARE_BYTES)) + return strength_sel; + } + + return -EINVAL; +} + +static int tegra_nand_select_strength(struct nand_chip *chip, int oobsize) +{ + const int *strength; + int strength_len, bits_per_step; + + switch (chip->ecc.algo) { + case NAND_ECC_ALGO_RS: + bits_per_step = BITS_PER_STEP_RS; + if (chip->options & NAND_IS_BOOT_MEDIUM) { + strength = rs_strength_bootable; + strength_len = ARRAY_SIZE(rs_strength_bootable); + } else { + strength = rs_strength; + strength_len = ARRAY_SIZE(rs_strength); + } + break; + case NAND_ECC_ALGO_BCH: + bits_per_step = BITS_PER_STEP_BCH; + if (chip->options & NAND_IS_BOOT_MEDIUM) { + strength = bch_strength_bootable; + strength_len = ARRAY_SIZE(bch_strength_bootable); + } else { + strength = bch_strength; + strength_len = ARRAY_SIZE(bch_strength); + } + break; + default: + return -EINVAL; + } + + return tegra_nand_get_strength(chip, strength, strength_len, + bits_per_step, oobsize); +} + +static int tegra_nand_attach_chip(struct nand_chip *chip) +{ + struct tegra_nand_controller *ctrl = to_tegra_ctrl(chip->controller); + const struct nand_ecc_props *requirements = + nanddev_get_ecc_requirements(&chip->base); + struct tegra_nand_chip *nand = to_tegra_chip(chip); + struct mtd_info *mtd = nand_to_mtd(chip); + int bits_per_step; + int ret; + + if (chip->bbt_options & NAND_BBT_USE_FLASH) + chip->bbt_options |= NAND_BBT_NO_OOB; + + chip->ecc.engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST; + chip->ecc.size = 512; + chip->ecc.steps = mtd->writesize / chip->ecc.size; + if (requirements->step_size != 512) { + dev_err(ctrl->dev, "Unsupported step size %d\n", + requirements->step_size); + return -EINVAL; + } + + chip->ecc.read_page = tegra_nand_read_page_hwecc; + chip->ecc.write_page = tegra_nand_write_page_hwecc; + chip->ecc.read_page_raw = tegra_nand_read_page_raw; + chip->ecc.write_page_raw = tegra_nand_write_page_raw; + chip->ecc.read_oob = tegra_nand_read_oob; + chip->ecc.write_oob = tegra_nand_write_oob; + + if (chip->options & NAND_BUSWIDTH_16) + nand->config |= CONFIG_BUS_WIDTH_16; + + if (chip->ecc.algo == NAND_ECC_ALGO_UNKNOWN) { + if (mtd->writesize < 2048) + chip->ecc.algo = NAND_ECC_ALGO_RS; + else + chip->ecc.algo = NAND_ECC_ALGO_BCH; + } + + if (chip->ecc.algo == NAND_ECC_ALGO_BCH && mtd->writesize < 2048) { + dev_err(ctrl->dev, "BCH supports 2K or 4K page size only\n"); + return -EINVAL; + } + + if (!chip->ecc.strength) { + ret = tegra_nand_select_strength(chip, mtd->oobsize); + if (ret < 0) { + dev_err(ctrl->dev, + "No valid strength found, minimum %d\n", + requirements->strength); + return ret; + } + + chip->ecc.strength = ret; + } + + nand->config_ecc = CONFIG_PIPE_EN | CONFIG_SKIP_SPARE | + CONFIG_SKIP_SPARE_SIZE_4; + + switch (chip->ecc.algo) { + case NAND_ECC_ALGO_RS: + bits_per_step = BITS_PER_STEP_RS * chip->ecc.strength; + mtd_set_ooblayout(mtd, &tegra_nand_oob_rs_ops); + nand->config_ecc |= CONFIG_HW_ECC | CONFIG_ECC_SEL | + CONFIG_ERR_COR; + switch (chip->ecc.strength) { + case 4: + nand->config_ecc |= CONFIG_TVAL_4; + break; + case 6: + nand->config_ecc |= CONFIG_TVAL_6; + break; + case 8: + nand->config_ecc |= CONFIG_TVAL_8; + break; + default: + dev_err(ctrl->dev, "ECC strength %d not supported\n", + chip->ecc.strength); + return -EINVAL; + } + break; + case NAND_ECC_ALGO_BCH: + bits_per_step = BITS_PER_STEP_BCH * chip->ecc.strength; + mtd_set_ooblayout(mtd, &tegra_nand_oob_bch_ops); + nand->bch_config = BCH_ENABLE; + switch (chip->ecc.strength) { + case 4: + nand->bch_config |= BCH_TVAL_4; + break; + case 8: + nand->bch_config |= BCH_TVAL_8; + break; + case 14: + nand->bch_config |= BCH_TVAL_14; + break; + case 16: + nand->bch_config |= BCH_TVAL_16; + break; + default: + dev_err(ctrl->dev, "ECC strength %d not supported\n", + chip->ecc.strength); + return -EINVAL; + } + break; + default: + dev_err(ctrl->dev, "ECC algorithm not supported\n"); + return -EINVAL; + } + + dev_info(ctrl->dev, "Using %s with strength %d per 512 byte step\n", + chip->ecc.algo == NAND_ECC_ALGO_BCH ? "BCH" : "RS", + chip->ecc.strength); + + chip->ecc.bytes = DIV_ROUND_UP(bits_per_step, BITS_PER_BYTE); + + switch (mtd->writesize) { + case 256: + nand->config |= CONFIG_PS_256; + break; + case 512: + nand->config |= CONFIG_PS_512; + break; + case 1024: + nand->config |= CONFIG_PS_1024; + break; + case 2048: + nand->config |= CONFIG_PS_2048; + break; + case 4096: + nand->config |= CONFIG_PS_4096; + break; + default: + dev_err(ctrl->dev, "Unsupported writesize %d\n", + mtd->writesize); + return -ENODEV; + } + + /* Store complete configuration for HW ECC in config_ecc */ + nand->config_ecc |= nand->config; + + /* Non-HW ECC read/writes complete OOB */ + nand->config |= CONFIG_TAG_BYTE_SIZE(mtd->oobsize - 1); + writel_relaxed(nand->config, ctrl->regs + CONFIG); + + return 0; +} + +static const struct nand_controller_ops tegra_nand_controller_ops = { + .attach_chip = &tegra_nand_attach_chip, + .exec_op = tegra_nand_exec_op, + .setup_interface = tegra_nand_setup_interface, +}; + +static int tegra_nand_chips_init(struct device *dev, + struct tegra_nand_controller *ctrl) +{ + struct device_node *np = dev->of_node; + struct device_node *np_nand; + int nsels, nchips = of_get_child_count(np); + struct tegra_nand_chip *nand; + struct mtd_info *mtd; + struct nand_chip *chip; + int ret; + u32 cs; + + if (nchips != 1) { + dev_err(dev, "Currently only one NAND chip supported\n"); + return -EINVAL; + } + + np_nand = of_get_next_child(np, NULL); + + nsels = of_property_count_elems_of_size(np_nand, "reg", sizeof(u32)); + if (nsels != 1) { + dev_err(dev, "Missing/invalid reg property\n"); + return -EINVAL; + } + + /* Retrieve CS id, currently only single die NAND supported */ + ret = of_property_read_u32(np_nand, "reg", &cs); + if (ret) { + dev_err(dev, "could not retrieve reg property: %d\n", ret); + return ret; + } + + nand = devm_kzalloc(dev, sizeof(*nand), GFP_KERNEL); + if (!nand) + return -ENOMEM; + + nand->cs[0] = cs; + + nand->wp_gpio = devm_gpiod_get_optional(dev, "wp", GPIOD_OUT_LOW); + + if (IS_ERR(nand->wp_gpio)) { + ret = PTR_ERR(nand->wp_gpio); + dev_err(dev, "Failed to request WP GPIO: %d\n", ret); + return ret; + } + + chip = &nand->chip; + chip->controller = &ctrl->controller; + + mtd = nand_to_mtd(chip); + + mtd->dev.parent = dev; + mtd->owner = THIS_MODULE; + + nand_set_flash_node(chip, np_nand); + + if (!mtd->name) + mtd->name = "tegra_nand"; + + chip->options = NAND_NO_SUBPAGE_WRITE | NAND_USES_DMA; + + ret = nand_scan(chip, 1); + if (ret) + return ret; + + mtd_ooblayout_ecc(mtd, 0, &nand->ecc); + + ret = mtd_device_register(mtd, NULL, 0); + if (ret) { + dev_err(dev, "Failed to register mtd device: %d\n", ret); + nand_cleanup(chip); + return ret; + } + + ctrl->chip = chip; + + return 0; +} + +static int tegra_nand_probe(struct platform_device *pdev) +{ + struct reset_control *rst; + struct tegra_nand_controller *ctrl; + int err = 0; + + ctrl = devm_kzalloc(&pdev->dev, sizeof(*ctrl), GFP_KERNEL); + if (!ctrl) + return -ENOMEM; + + ctrl->dev = &pdev->dev; + platform_set_drvdata(pdev, ctrl); + nand_controller_init(&ctrl->controller); + ctrl->controller.ops = &tegra_nand_controller_ops; + + ctrl->regs = devm_platform_ioremap_resource(pdev, 0); + if (IS_ERR(ctrl->regs)) + return PTR_ERR(ctrl->regs); + + rst = devm_reset_control_get(&pdev->dev, "nand"); + if (IS_ERR(rst)) + return PTR_ERR(rst); + + ctrl->clk = devm_clk_get(&pdev->dev, "nand"); + if (IS_ERR(ctrl->clk)) + return PTR_ERR(ctrl->clk); + + err = devm_tegra_core_dev_init_opp_table_common(&pdev->dev); + if (err) + return err; + + /* + * This driver doesn't support active power management yet, + * so we will simply keep device resumed. + */ + pm_runtime_enable(&pdev->dev); + err = pm_runtime_resume_and_get(&pdev->dev); + if (err) + goto err_dis_pm; + + err = reset_control_reset(rst); + if (err) { + dev_err(ctrl->dev, "Failed to reset HW: %d\n", err); + goto err_put_pm; + } + + writel_relaxed(HWSTATUS_CMD_DEFAULT, ctrl->regs + HWSTATUS_CMD); + writel_relaxed(HWSTATUS_MASK_DEFAULT, ctrl->regs + HWSTATUS_MASK); + writel_relaxed(INT_MASK, ctrl->regs + IER); + + init_completion(&ctrl->command_complete); + init_completion(&ctrl->dma_complete); + + ctrl->irq = platform_get_irq(pdev, 0); + if (ctrl->irq < 0) { + err = ctrl->irq; + goto err_put_pm; + } + err = devm_request_irq(&pdev->dev, ctrl->irq, tegra_nand_irq, 0, + dev_name(&pdev->dev), ctrl); + if (err) { + dev_err(ctrl->dev, "Failed to get IRQ: %d\n", err); + goto err_put_pm; + } + + writel_relaxed(DMA_MST_CTRL_IS_DONE, ctrl->regs + DMA_MST_CTRL); + + err = tegra_nand_chips_init(ctrl->dev, ctrl); + if (err) + goto err_put_pm; + + return 0; + +err_put_pm: + pm_runtime_put_sync_suspend(ctrl->dev); + pm_runtime_force_suspend(ctrl->dev); +err_dis_pm: + pm_runtime_disable(&pdev->dev); + return err; +} + +static void tegra_nand_remove(struct platform_device *pdev) +{ + struct tegra_nand_controller *ctrl = platform_get_drvdata(pdev); + struct nand_chip *chip = ctrl->chip; + struct mtd_info *mtd = nand_to_mtd(chip); + + WARN_ON(mtd_device_unregister(mtd)); + + nand_cleanup(chip); + + pm_runtime_put_sync_suspend(ctrl->dev); + pm_runtime_force_suspend(ctrl->dev); +} + +static int __maybe_unused tegra_nand_runtime_resume(struct device *dev) +{ + struct tegra_nand_controller *ctrl = dev_get_drvdata(dev); + int err; + + err = clk_prepare_enable(ctrl->clk); + if (err) { + dev_err(dev, "Failed to enable clock: %d\n", err); + return err; + } + + return 0; +} + +static int __maybe_unused tegra_nand_runtime_suspend(struct device *dev) +{ + struct tegra_nand_controller *ctrl = dev_get_drvdata(dev); + + clk_disable_unprepare(ctrl->clk); + + return 0; +} + +static const struct dev_pm_ops tegra_nand_pm = { + SET_RUNTIME_PM_OPS(tegra_nand_runtime_suspend, tegra_nand_runtime_resume, + NULL) +}; + +static const struct of_device_id tegra_nand_of_match[] = { + { .compatible = "nvidia,tegra20-nand" }, + { /* sentinel */ } +}; +MODULE_DEVICE_TABLE(of, tegra_nand_of_match); + +static struct platform_driver tegra_nand_driver = { + .driver = { + .name = "tegra-nand", + .of_match_table = tegra_nand_of_match, + .pm = &tegra_nand_pm, + }, + .probe = tegra_nand_probe, + .remove_new = tegra_nand_remove, +}; +module_platform_driver(tegra_nand_driver); + +MODULE_DESCRIPTION("NVIDIA Tegra NAND driver"); +MODULE_AUTHOR("Thierry Reding <thierry.reding@nvidia.com>"); +MODULE_AUTHOR("Lucas Stach <dev@lynxeye.de>"); +MODULE_AUTHOR("Stefan Agner <stefan@agner.ch>"); +MODULE_LICENSE("GPL v2"); diff --git a/drivers/mtd/nand/raw/txx9ndfmc.c b/drivers/mtd/nand/raw/txx9ndfmc.c new file mode 100644 index 0000000000..eddcc0728a --- /dev/null +++ b/drivers/mtd/nand/raw/txx9ndfmc.c @@ -0,0 +1,421 @@ +// SPDX-License-Identifier: GPL-2.0-only +/* + * TXx9 NAND flash memory controller driver + * Based on RBTX49xx patch from CELF patch archive. + * + * (C) Copyright TOSHIBA CORPORATION 2004-2007 + * All Rights Reserved. + */ +#include <linux/err.h> +#include <linux/init.h> +#include <linux/slab.h> +#include <linux/module.h> +#include <linux/platform_device.h> +#include <linux/delay.h> +#include <linux/mtd/mtd.h> +#include <linux/mtd/rawnand.h> +#include <linux/mtd/partitions.h> +#include <linux/io.h> +#include <linux/platform_data/txx9/ndfmc.h> + +/* TXX9 NDFMC Registers */ +#define TXX9_NDFDTR 0x00 +#define TXX9_NDFMCR 0x04 +#define TXX9_NDFSR 0x08 +#define TXX9_NDFISR 0x0c +#define TXX9_NDFIMR 0x10 +#define TXX9_NDFSPR 0x14 +#define TXX9_NDFRSTR 0x18 /* not TX4939 */ + +/* NDFMCR : NDFMC Mode Control */ +#define TXX9_NDFMCR_WE 0x80 +#define TXX9_NDFMCR_ECC_ALL 0x60 +#define TXX9_NDFMCR_ECC_RESET 0x60 +#define TXX9_NDFMCR_ECC_READ 0x40 +#define TXX9_NDFMCR_ECC_ON 0x20 +#define TXX9_NDFMCR_ECC_OFF 0x00 +#define TXX9_NDFMCR_CE 0x10 +#define TXX9_NDFMCR_BSPRT 0x04 /* TX4925/TX4926 only */ +#define TXX9_NDFMCR_ALE 0x02 +#define TXX9_NDFMCR_CLE 0x01 +/* TX4939 only */ +#define TXX9_NDFMCR_X16 0x0400 +#define TXX9_NDFMCR_DMAREQ_MASK 0x0300 +#define TXX9_NDFMCR_DMAREQ_NODMA 0x0000 +#define TXX9_NDFMCR_DMAREQ_128 0x0100 +#define TXX9_NDFMCR_DMAREQ_256 0x0200 +#define TXX9_NDFMCR_DMAREQ_512 0x0300 +#define TXX9_NDFMCR_CS_MASK 0x0c +#define TXX9_NDFMCR_CS(ch) ((ch) << 2) + +/* NDFMCR : NDFMC Status */ +#define TXX9_NDFSR_BUSY 0x80 +/* TX4939 only */ +#define TXX9_NDFSR_DMARUN 0x40 + +/* NDFMCR : NDFMC Reset */ +#define TXX9_NDFRSTR_RST 0x01 + +struct txx9ndfmc_priv { + struct platform_device *dev; + struct nand_chip chip; + int cs; + const char *mtdname; +}; + +#define MAX_TXX9NDFMC_DEV 4 +struct txx9ndfmc_drvdata { + struct mtd_info *mtds[MAX_TXX9NDFMC_DEV]; + void __iomem *base; + unsigned char hold; /* in gbusclock */ + unsigned char spw; /* in gbusclock */ + struct nand_controller controller; +}; + +static struct platform_device *mtd_to_platdev(struct mtd_info *mtd) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + struct txx9ndfmc_priv *txx9_priv = nand_get_controller_data(chip); + return txx9_priv->dev; +} + +static void __iomem *ndregaddr(struct platform_device *dev, unsigned int reg) +{ + struct txx9ndfmc_drvdata *drvdata = platform_get_drvdata(dev); + struct txx9ndfmc_platform_data *plat = dev_get_platdata(&dev->dev); + + return drvdata->base + (reg << plat->shift); +} + +static u32 txx9ndfmc_read(struct platform_device *dev, unsigned int reg) +{ + return __raw_readl(ndregaddr(dev, reg)); +} + +static void txx9ndfmc_write(struct platform_device *dev, + u32 val, unsigned int reg) +{ + __raw_writel(val, ndregaddr(dev, reg)); +} + +static uint8_t txx9ndfmc_read_byte(struct nand_chip *chip) +{ + struct platform_device *dev = mtd_to_platdev(nand_to_mtd(chip)); + + return txx9ndfmc_read(dev, TXX9_NDFDTR); +} + +static void txx9ndfmc_write_buf(struct nand_chip *chip, const uint8_t *buf, + int len) +{ + struct platform_device *dev = mtd_to_platdev(nand_to_mtd(chip)); + void __iomem *ndfdtr = ndregaddr(dev, TXX9_NDFDTR); + u32 mcr = txx9ndfmc_read(dev, TXX9_NDFMCR); + + txx9ndfmc_write(dev, mcr | TXX9_NDFMCR_WE, TXX9_NDFMCR); + while (len--) + __raw_writel(*buf++, ndfdtr); + txx9ndfmc_write(dev, mcr, TXX9_NDFMCR); +} + +static void txx9ndfmc_read_buf(struct nand_chip *chip, uint8_t *buf, int len) +{ + struct platform_device *dev = mtd_to_platdev(nand_to_mtd(chip)); + void __iomem *ndfdtr = ndregaddr(dev, TXX9_NDFDTR); + + while (len--) + *buf++ = __raw_readl(ndfdtr); +} + +static void txx9ndfmc_cmd_ctrl(struct nand_chip *chip, int cmd, + unsigned int ctrl) +{ + struct txx9ndfmc_priv *txx9_priv = nand_get_controller_data(chip); + struct platform_device *dev = txx9_priv->dev; + struct txx9ndfmc_platform_data *plat = dev_get_platdata(&dev->dev); + + if (ctrl & NAND_CTRL_CHANGE) { + u32 mcr = txx9ndfmc_read(dev, TXX9_NDFMCR); + + mcr &= ~(TXX9_NDFMCR_CLE | TXX9_NDFMCR_ALE | TXX9_NDFMCR_CE); + mcr |= ctrl & NAND_CLE ? TXX9_NDFMCR_CLE : 0; + mcr |= ctrl & NAND_ALE ? TXX9_NDFMCR_ALE : 0; + /* TXX9_NDFMCR_CE bit is 0:high 1:low */ + mcr |= ctrl & NAND_NCE ? TXX9_NDFMCR_CE : 0; + if (txx9_priv->cs >= 0 && (ctrl & NAND_NCE)) { + mcr &= ~TXX9_NDFMCR_CS_MASK; + mcr |= TXX9_NDFMCR_CS(txx9_priv->cs); + } + txx9ndfmc_write(dev, mcr, TXX9_NDFMCR); + } + if (cmd != NAND_CMD_NONE) + txx9ndfmc_write(dev, cmd & 0xff, TXX9_NDFDTR); + if (plat->flags & NDFMC_PLAT_FLAG_DUMMYWRITE) { + /* dummy write to update external latch */ + if ((ctrl & NAND_CTRL_CHANGE) && cmd == NAND_CMD_NONE) + txx9ndfmc_write(dev, 0, TXX9_NDFDTR); + } +} + +static int txx9ndfmc_dev_ready(struct nand_chip *chip) +{ + struct platform_device *dev = mtd_to_platdev(nand_to_mtd(chip)); + + return !(txx9ndfmc_read(dev, TXX9_NDFSR) & TXX9_NDFSR_BUSY); +} + +static int txx9ndfmc_calculate_ecc(struct nand_chip *chip, const uint8_t *dat, + uint8_t *ecc_code) +{ + struct platform_device *dev = mtd_to_platdev(nand_to_mtd(chip)); + int eccbytes; + u32 mcr = txx9ndfmc_read(dev, TXX9_NDFMCR); + + mcr &= ~TXX9_NDFMCR_ECC_ALL; + txx9ndfmc_write(dev, mcr | TXX9_NDFMCR_ECC_OFF, TXX9_NDFMCR); + txx9ndfmc_write(dev, mcr | TXX9_NDFMCR_ECC_READ, TXX9_NDFMCR); + for (eccbytes = chip->ecc.bytes; eccbytes > 0; eccbytes -= 3) { + ecc_code[1] = txx9ndfmc_read(dev, TXX9_NDFDTR); + ecc_code[0] = txx9ndfmc_read(dev, TXX9_NDFDTR); + ecc_code[2] = txx9ndfmc_read(dev, TXX9_NDFDTR); + ecc_code += 3; + } + txx9ndfmc_write(dev, mcr | TXX9_NDFMCR_ECC_OFF, TXX9_NDFMCR); + return 0; +} + +static int txx9ndfmc_correct_data(struct nand_chip *chip, unsigned char *buf, + unsigned char *read_ecc, + unsigned char *calc_ecc) +{ + int eccsize; + int corrected = 0; + int stat; + + for (eccsize = chip->ecc.size; eccsize > 0; eccsize -= 256) { + stat = rawnand_sw_hamming_correct(chip, buf, read_ecc, + calc_ecc); + if (stat < 0) + return stat; + corrected += stat; + buf += 256; + read_ecc += 3; + calc_ecc += 3; + } + return corrected; +} + +static void txx9ndfmc_enable_hwecc(struct nand_chip *chip, int mode) +{ + struct platform_device *dev = mtd_to_platdev(nand_to_mtd(chip)); + u32 mcr = txx9ndfmc_read(dev, TXX9_NDFMCR); + + mcr &= ~TXX9_NDFMCR_ECC_ALL; + txx9ndfmc_write(dev, mcr | TXX9_NDFMCR_ECC_RESET, TXX9_NDFMCR); + txx9ndfmc_write(dev, mcr | TXX9_NDFMCR_ECC_OFF, TXX9_NDFMCR); + txx9ndfmc_write(dev, mcr | TXX9_NDFMCR_ECC_ON, TXX9_NDFMCR); +} + +static void txx9ndfmc_initialize(struct platform_device *dev) +{ + struct txx9ndfmc_platform_data *plat = dev_get_platdata(&dev->dev); + struct txx9ndfmc_drvdata *drvdata = platform_get_drvdata(dev); + int tmout = 100; + + if (plat->flags & NDFMC_PLAT_FLAG_NO_RSTR) + ; /* no NDFRSTR. Write to NDFSPR resets the NDFMC. */ + else { + /* reset NDFMC */ + txx9ndfmc_write(dev, + txx9ndfmc_read(dev, TXX9_NDFRSTR) | + TXX9_NDFRSTR_RST, + TXX9_NDFRSTR); + while (txx9ndfmc_read(dev, TXX9_NDFRSTR) & TXX9_NDFRSTR_RST) { + if (--tmout == 0) { + dev_err(&dev->dev, "reset failed.\n"); + break; + } + udelay(1); + } + } + /* setup Hold Time, Strobe Pulse Width */ + txx9ndfmc_write(dev, (drvdata->hold << 4) | drvdata->spw, TXX9_NDFSPR); + txx9ndfmc_write(dev, + (plat->flags & NDFMC_PLAT_FLAG_USE_BSPRT) ? + TXX9_NDFMCR_BSPRT : 0, TXX9_NDFMCR); +} + +#define TXX9NDFMC_NS_TO_CYC(gbusclk, ns) \ + DIV_ROUND_UP((ns) * DIV_ROUND_UP(gbusclk, 1000), 1000000) + +static int txx9ndfmc_attach_chip(struct nand_chip *chip) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + + if (chip->ecc.engine_type != NAND_ECC_ENGINE_TYPE_ON_HOST) + return 0; + + chip->ecc.strength = 1; + + if (mtd->writesize >= 512) { + chip->ecc.size = 512; + chip->ecc.bytes = 6; + } else { + chip->ecc.size = 256; + chip->ecc.bytes = 3; + } + + chip->ecc.calculate = txx9ndfmc_calculate_ecc; + chip->ecc.correct = txx9ndfmc_correct_data; + chip->ecc.hwctl = txx9ndfmc_enable_hwecc; + + return 0; +} + +static const struct nand_controller_ops txx9ndfmc_controller_ops = { + .attach_chip = txx9ndfmc_attach_chip, +}; + +static int __init txx9ndfmc_probe(struct platform_device *dev) +{ + struct txx9ndfmc_platform_data *plat = dev_get_platdata(&dev->dev); + int hold, spw; + int i; + struct txx9ndfmc_drvdata *drvdata; + unsigned long gbusclk = plat->gbus_clock; + + drvdata = devm_kzalloc(&dev->dev, sizeof(*drvdata), GFP_KERNEL); + if (!drvdata) + return -ENOMEM; + drvdata->base = devm_platform_ioremap_resource(dev, 0); + if (IS_ERR(drvdata->base)) + return PTR_ERR(drvdata->base); + + hold = plat->hold ?: 20; /* tDH */ + spw = plat->spw ?: 90; /* max(tREADID, tWP, tRP) */ + + hold = TXX9NDFMC_NS_TO_CYC(gbusclk, hold); + spw = TXX9NDFMC_NS_TO_CYC(gbusclk, spw); + if (plat->flags & NDFMC_PLAT_FLAG_HOLDADD) + hold -= 2; /* actual hold time : (HOLD + 2) BUSCLK */ + spw -= 1; /* actual wait time : (SPW + 1) BUSCLK */ + hold = clamp(hold, 1, 15); + drvdata->hold = hold; + spw = clamp(spw, 1, 15); + drvdata->spw = spw; + dev_info(&dev->dev, "CLK:%ldMHz HOLD:%d SPW:%d\n", + (gbusclk + 500000) / 1000000, hold, spw); + + nand_controller_init(&drvdata->controller); + drvdata->controller.ops = &txx9ndfmc_controller_ops; + + platform_set_drvdata(dev, drvdata); + txx9ndfmc_initialize(dev); + + for (i = 0; i < MAX_TXX9NDFMC_DEV; i++) { + struct txx9ndfmc_priv *txx9_priv; + struct nand_chip *chip; + struct mtd_info *mtd; + + if (!(plat->ch_mask & (1 << i))) + continue; + txx9_priv = kzalloc(sizeof(struct txx9ndfmc_priv), + GFP_KERNEL); + if (!txx9_priv) + continue; + chip = &txx9_priv->chip; + mtd = nand_to_mtd(chip); + mtd->dev.parent = &dev->dev; + + chip->legacy.read_byte = txx9ndfmc_read_byte; + chip->legacy.read_buf = txx9ndfmc_read_buf; + chip->legacy.write_buf = txx9ndfmc_write_buf; + chip->legacy.cmd_ctrl = txx9ndfmc_cmd_ctrl; + chip->legacy.dev_ready = txx9ndfmc_dev_ready; + chip->legacy.chip_delay = 100; + chip->controller = &drvdata->controller; + + nand_set_controller_data(chip, txx9_priv); + txx9_priv->dev = dev; + + if (plat->ch_mask != 1) { + txx9_priv->cs = i; + txx9_priv->mtdname = kasprintf(GFP_KERNEL, "%s.%u", + dev_name(&dev->dev), i); + } else { + txx9_priv->cs = -1; + txx9_priv->mtdname = kstrdup(dev_name(&dev->dev), + GFP_KERNEL); + } + if (!txx9_priv->mtdname) { + kfree(txx9_priv); + dev_err(&dev->dev, "Unable to allocate MTD name.\n"); + continue; + } + if (plat->wide_mask & (1 << i)) + chip->options |= NAND_BUSWIDTH_16; + + if (nand_scan(chip, 1)) { + kfree(txx9_priv->mtdname); + kfree(txx9_priv); + continue; + } + mtd->name = txx9_priv->mtdname; + + mtd_device_register(mtd, NULL, 0); + drvdata->mtds[i] = mtd; + } + + return 0; +} + +static int __exit txx9ndfmc_remove(struct platform_device *dev) +{ + struct txx9ndfmc_drvdata *drvdata = platform_get_drvdata(dev); + int ret, i; + + if (!drvdata) + return 0; + for (i = 0; i < MAX_TXX9NDFMC_DEV; i++) { + struct mtd_info *mtd = drvdata->mtds[i]; + struct nand_chip *chip; + struct txx9ndfmc_priv *txx9_priv; + + if (!mtd) + continue; + chip = mtd_to_nand(mtd); + txx9_priv = nand_get_controller_data(chip); + + ret = mtd_device_unregister(nand_to_mtd(chip)); + WARN_ON(ret); + nand_cleanup(chip); + kfree(txx9_priv->mtdname); + kfree(txx9_priv); + } + return 0; +} + +#ifdef CONFIG_PM +static int txx9ndfmc_resume(struct platform_device *dev) +{ + if (platform_get_drvdata(dev)) + txx9ndfmc_initialize(dev); + return 0; +} +#else +#define txx9ndfmc_resume NULL +#endif + +static struct platform_driver txx9ndfmc_driver = { + .remove = __exit_p(txx9ndfmc_remove), + .resume = txx9ndfmc_resume, + .driver = { + .name = "txx9ndfmc", + }, +}; + +module_platform_driver_probe(txx9ndfmc_driver, txx9ndfmc_probe); + +MODULE_LICENSE("GPL"); +MODULE_DESCRIPTION("TXx9 SoC NAND flash controller driver"); +MODULE_ALIAS("platform:txx9ndfmc"); diff --git a/drivers/mtd/nand/raw/vf610_nfc.c b/drivers/mtd/nand/raw/vf610_nfc.c new file mode 100644 index 0000000000..3f783b8f76 --- /dev/null +++ b/drivers/mtd/nand/raw/vf610_nfc.c @@ -0,0 +1,953 @@ +// SPDX-License-Identifier: GPL-2.0+ +/* + * Copyright 2009-2015 Freescale Semiconductor, Inc. and others + * + * Description: MPC5125, VF610, MCF54418 and Kinetis K70 Nand driver. + * Jason ported to M54418TWR and MVFA5 (VF610). + * Authors: Stefan Agner <stefan.agner@toradex.com> + * Bill Pringlemeir <bpringlemeir@nbsps.com> + * Shaohui Xie <b21989@freescale.com> + * Jason Jin <Jason.jin@freescale.com> + * + * Based on original driver mpc5121_nfc.c. + * + * Limitations: + * - Untested on MPC5125 and M54418. + * - DMA and pipelining not used. + * - 2K pages or less. + * - HW ECC: Only 2K page with 64+ OOB. + * - HW ECC: Only 24 and 32-bit error correction implemented. + */ + +#include <linux/module.h> +#include <linux/bitops.h> +#include <linux/clk.h> +#include <linux/delay.h> +#include <linux/init.h> +#include <linux/interrupt.h> +#include <linux/io.h> +#include <linux/mtd/mtd.h> +#include <linux/mtd/rawnand.h> +#include <linux/mtd/partitions.h> +#include <linux/of_device.h> +#include <linux/platform_device.h> +#include <linux/slab.h> +#include <linux/swab.h> + +#define DRV_NAME "vf610_nfc" + +/* Register Offsets */ +#define NFC_FLASH_CMD1 0x3F00 +#define NFC_FLASH_CMD2 0x3F04 +#define NFC_COL_ADDR 0x3F08 +#define NFC_ROW_ADDR 0x3F0c +#define NFC_ROW_ADDR_INC 0x3F14 +#define NFC_FLASH_STATUS1 0x3F18 +#define NFC_FLASH_STATUS2 0x3F1c +#define NFC_CACHE_SWAP 0x3F28 +#define NFC_SECTOR_SIZE 0x3F2c +#define NFC_FLASH_CONFIG 0x3F30 +#define NFC_IRQ_STATUS 0x3F38 + +/* Addresses for NFC MAIN RAM BUFFER areas */ +#define NFC_MAIN_AREA(n) ((n) * 0x1000) + +#define PAGE_2K 0x0800 +#define OOB_64 0x0040 +#define OOB_MAX 0x0100 + +/* NFC_CMD2[CODE] controller cycle bit masks */ +#define COMMAND_CMD_BYTE1 BIT(14) +#define COMMAND_CAR_BYTE1 BIT(13) +#define COMMAND_CAR_BYTE2 BIT(12) +#define COMMAND_RAR_BYTE1 BIT(11) +#define COMMAND_RAR_BYTE2 BIT(10) +#define COMMAND_RAR_BYTE3 BIT(9) +#define COMMAND_NADDR_BYTES(x) GENMASK(13, 13 - (x) + 1) +#define COMMAND_WRITE_DATA BIT(8) +#define COMMAND_CMD_BYTE2 BIT(7) +#define COMMAND_RB_HANDSHAKE BIT(6) +#define COMMAND_READ_DATA BIT(5) +#define COMMAND_CMD_BYTE3 BIT(4) +#define COMMAND_READ_STATUS BIT(3) +#define COMMAND_READ_ID BIT(2) + +/* NFC ECC mode define */ +#define ECC_BYPASS 0 +#define ECC_45_BYTE 6 +#define ECC_60_BYTE 7 + +/*** Register Mask and bit definitions */ + +/* NFC_FLASH_CMD1 Field */ +#define CMD_BYTE2_MASK 0xFF000000 +#define CMD_BYTE2_SHIFT 24 + +/* NFC_FLASH_CM2 Field */ +#define CMD_BYTE1_MASK 0xFF000000 +#define CMD_BYTE1_SHIFT 24 +#define CMD_CODE_MASK 0x00FFFF00 +#define CMD_CODE_SHIFT 8 +#define BUFNO_MASK 0x00000006 +#define BUFNO_SHIFT 1 +#define START_BIT BIT(0) + +/* NFC_COL_ADDR Field */ +#define COL_ADDR_MASK 0x0000FFFF +#define COL_ADDR_SHIFT 0 +#define COL_ADDR(pos, val) (((val) & 0xFF) << (8 * (pos))) + +/* NFC_ROW_ADDR Field */ +#define ROW_ADDR_MASK 0x00FFFFFF +#define ROW_ADDR_SHIFT 0 +#define ROW_ADDR(pos, val) (((val) & 0xFF) << (8 * (pos))) + +#define ROW_ADDR_CHIP_SEL_RB_MASK 0xF0000000 +#define ROW_ADDR_CHIP_SEL_RB_SHIFT 28 +#define ROW_ADDR_CHIP_SEL_MASK 0x0F000000 +#define ROW_ADDR_CHIP_SEL_SHIFT 24 + +/* NFC_FLASH_STATUS2 Field */ +#define STATUS_BYTE1_MASK 0x000000FF + +/* NFC_FLASH_CONFIG Field */ +#define CONFIG_ECC_SRAM_ADDR_MASK 0x7FC00000 +#define CONFIG_ECC_SRAM_ADDR_SHIFT 22 +#define CONFIG_ECC_SRAM_REQ_BIT BIT(21) +#define CONFIG_DMA_REQ_BIT BIT(20) +#define CONFIG_ECC_MODE_MASK 0x000E0000 +#define CONFIG_ECC_MODE_SHIFT 17 +#define CONFIG_FAST_FLASH_BIT BIT(16) +#define CONFIG_16BIT BIT(7) +#define CONFIG_BOOT_MODE_BIT BIT(6) +#define CONFIG_ADDR_AUTO_INCR_BIT BIT(5) +#define CONFIG_BUFNO_AUTO_INCR_BIT BIT(4) +#define CONFIG_PAGE_CNT_MASK 0xF +#define CONFIG_PAGE_CNT_SHIFT 0 + +/* NFC_IRQ_STATUS Field */ +#define IDLE_IRQ_BIT BIT(29) +#define IDLE_EN_BIT BIT(20) +#define CMD_DONE_CLEAR_BIT BIT(18) +#define IDLE_CLEAR_BIT BIT(17) + +/* + * ECC status - seems to consume 8 bytes (double word). The documented + * status byte is located in the lowest byte of the second word (which is + * the 4th or 7th byte depending on endianness). + * Calculate an offset to store the ECC status at the end of the buffer. + */ +#define ECC_SRAM_ADDR (PAGE_2K + OOB_MAX - 8) + +#define ECC_STATUS 0x4 +#define ECC_STATUS_MASK 0x80 +#define ECC_STATUS_ERR_COUNT 0x3F + +enum vf610_nfc_variant { + NFC_VFC610 = 1, +}; + +struct vf610_nfc { + struct nand_controller base; + struct nand_chip chip; + struct device *dev; + void __iomem *regs; + struct completion cmd_done; + /* Status and ID are in alternate locations. */ + enum vf610_nfc_variant variant; + struct clk *clk; + /* + * Indicate that user data is accessed (full page/oob). This is + * useful to indicate the driver whether to swap byte endianness. + * See comments in vf610_nfc_rd_from_sram/vf610_nfc_wr_to_sram. + */ + bool data_access; + u32 ecc_mode; +}; + +static inline struct vf610_nfc *chip_to_nfc(struct nand_chip *chip) +{ + return container_of(chip, struct vf610_nfc, chip); +} + +static inline u32 vf610_nfc_read(struct vf610_nfc *nfc, uint reg) +{ + return readl(nfc->regs + reg); +} + +static inline void vf610_nfc_write(struct vf610_nfc *nfc, uint reg, u32 val) +{ + writel(val, nfc->regs + reg); +} + +static inline void vf610_nfc_set(struct vf610_nfc *nfc, uint reg, u32 bits) +{ + vf610_nfc_write(nfc, reg, vf610_nfc_read(nfc, reg) | bits); +} + +static inline void vf610_nfc_clear(struct vf610_nfc *nfc, uint reg, u32 bits) +{ + vf610_nfc_write(nfc, reg, vf610_nfc_read(nfc, reg) & ~bits); +} + +static inline void vf610_nfc_set_field(struct vf610_nfc *nfc, u32 reg, + u32 mask, u32 shift, u32 val) +{ + vf610_nfc_write(nfc, reg, + (vf610_nfc_read(nfc, reg) & (~mask)) | val << shift); +} + +static inline bool vf610_nfc_kernel_is_little_endian(void) +{ +#ifdef __LITTLE_ENDIAN + return true; +#else + return false; +#endif +} + +/* + * Read accessor for internal SRAM buffer + * @dst: destination address in regular memory + * @src: source address in SRAM buffer + * @len: bytes to copy + * @fix_endian: Fix endianness if required + * + * Use this accessor for the internal SRAM buffers. On the ARM + * Freescale Vybrid SoC it's known that the driver can treat + * the SRAM buffer as if it's memory. Other platform might need + * to treat the buffers differently. + * + * The controller stores bytes from the NAND chip internally in big + * endianness. On little endian platforms such as Vybrid this leads + * to reversed byte order. + * For performance reason (and earlier probably due to unawareness) + * the driver avoids correcting endianness where it has control over + * write and read side (e.g. page wise data access). + */ +static inline void vf610_nfc_rd_from_sram(void *dst, const void __iomem *src, + size_t len, bool fix_endian) +{ + if (vf610_nfc_kernel_is_little_endian() && fix_endian) { + unsigned int i; + + for (i = 0; i < len; i += 4) { + u32 val = swab32(__raw_readl(src + i)); + + memcpy(dst + i, &val, min(sizeof(val), len - i)); + } + } else { + memcpy_fromio(dst, src, len); + } +} + +/* + * Write accessor for internal SRAM buffer + * @dst: destination address in SRAM buffer + * @src: source address in regular memory + * @len: bytes to copy + * @fix_endian: Fix endianness if required + * + * Use this accessor for the internal SRAM buffers. On the ARM + * Freescale Vybrid SoC it's known that the driver can treat + * the SRAM buffer as if it's memory. Other platform might need + * to treat the buffers differently. + * + * The controller stores bytes from the NAND chip internally in big + * endianness. On little endian platforms such as Vybrid this leads + * to reversed byte order. + * For performance reason (and earlier probably due to unawareness) + * the driver avoids correcting endianness where it has control over + * write and read side (e.g. page wise data access). + */ +static inline void vf610_nfc_wr_to_sram(void __iomem *dst, const void *src, + size_t len, bool fix_endian) +{ + if (vf610_nfc_kernel_is_little_endian() && fix_endian) { + unsigned int i; + + for (i = 0; i < len; i += 4) { + u32 val; + + memcpy(&val, src + i, min(sizeof(val), len - i)); + __raw_writel(swab32(val), dst + i); + } + } else { + memcpy_toio(dst, src, len); + } +} + +/* Clear flags for upcoming command */ +static inline void vf610_nfc_clear_status(struct vf610_nfc *nfc) +{ + u32 tmp = vf610_nfc_read(nfc, NFC_IRQ_STATUS); + + tmp |= CMD_DONE_CLEAR_BIT | IDLE_CLEAR_BIT; + vf610_nfc_write(nfc, NFC_IRQ_STATUS, tmp); +} + +static void vf610_nfc_done(struct vf610_nfc *nfc) +{ + unsigned long timeout = msecs_to_jiffies(100); + + /* + * Barrier is needed after this write. This write need + * to be done before reading the next register the first + * time. + * vf610_nfc_set implicates such a barrier by using writel + * to write to the register. + */ + vf610_nfc_set(nfc, NFC_IRQ_STATUS, IDLE_EN_BIT); + vf610_nfc_set(nfc, NFC_FLASH_CMD2, START_BIT); + + if (!wait_for_completion_timeout(&nfc->cmd_done, timeout)) + dev_warn(nfc->dev, "Timeout while waiting for BUSY.\n"); + + vf610_nfc_clear_status(nfc); +} + +static irqreturn_t vf610_nfc_irq(int irq, void *data) +{ + struct vf610_nfc *nfc = data; + + vf610_nfc_clear(nfc, NFC_IRQ_STATUS, IDLE_EN_BIT); + complete(&nfc->cmd_done); + + return IRQ_HANDLED; +} + +static inline void vf610_nfc_ecc_mode(struct vf610_nfc *nfc, int ecc_mode) +{ + vf610_nfc_set_field(nfc, NFC_FLASH_CONFIG, + CONFIG_ECC_MODE_MASK, + CONFIG_ECC_MODE_SHIFT, ecc_mode); +} + +static inline void vf610_nfc_run(struct vf610_nfc *nfc, u32 col, u32 row, + u32 cmd1, u32 cmd2, u32 trfr_sz) +{ + vf610_nfc_set_field(nfc, NFC_COL_ADDR, COL_ADDR_MASK, + COL_ADDR_SHIFT, col); + + vf610_nfc_set_field(nfc, NFC_ROW_ADDR, ROW_ADDR_MASK, + ROW_ADDR_SHIFT, row); + + vf610_nfc_write(nfc, NFC_SECTOR_SIZE, trfr_sz); + vf610_nfc_write(nfc, NFC_FLASH_CMD1, cmd1); + vf610_nfc_write(nfc, NFC_FLASH_CMD2, cmd2); + + dev_dbg(nfc->dev, + "col 0x%04x, row 0x%08x, cmd1 0x%08x, cmd2 0x%08x, len %d\n", + col, row, cmd1, cmd2, trfr_sz); + + vf610_nfc_done(nfc); +} + +static inline const struct nand_op_instr * +vf610_get_next_instr(const struct nand_subop *subop, int *op_id) +{ + if (*op_id + 1 >= subop->ninstrs) + return NULL; + + (*op_id)++; + + return &subop->instrs[*op_id]; +} + +static int vf610_nfc_cmd(struct nand_chip *chip, + const struct nand_subop *subop) +{ + const struct nand_op_instr *instr; + struct vf610_nfc *nfc = chip_to_nfc(chip); + int op_id = -1, trfr_sz = 0, offset = 0; + u32 col = 0, row = 0, cmd1 = 0, cmd2 = 0, code = 0; + bool force8bit = false; + + /* + * Some ops are optional, but the hardware requires the operations + * to be in this exact order. + * The op parser enforces the order and makes sure that there isn't + * a read and write element in a single operation. + */ + instr = vf610_get_next_instr(subop, &op_id); + if (!instr) + return -EINVAL; + + if (instr && instr->type == NAND_OP_CMD_INSTR) { + cmd2 |= instr->ctx.cmd.opcode << CMD_BYTE1_SHIFT; + code |= COMMAND_CMD_BYTE1; + + instr = vf610_get_next_instr(subop, &op_id); + } + + if (instr && instr->type == NAND_OP_ADDR_INSTR) { + int naddrs = nand_subop_get_num_addr_cyc(subop, op_id); + int i = nand_subop_get_addr_start_off(subop, op_id); + + for (; i < naddrs; i++) { + u8 val = instr->ctx.addr.addrs[i]; + + if (i < 2) + col |= COL_ADDR(i, val); + else + row |= ROW_ADDR(i - 2, val); + } + code |= COMMAND_NADDR_BYTES(naddrs); + + instr = vf610_get_next_instr(subop, &op_id); + } + + if (instr && instr->type == NAND_OP_DATA_OUT_INSTR) { + trfr_sz = nand_subop_get_data_len(subop, op_id); + offset = nand_subop_get_data_start_off(subop, op_id); + force8bit = instr->ctx.data.force_8bit; + + /* + * Don't fix endianness on page access for historical reasons. + * See comment in vf610_nfc_wr_to_sram + */ + vf610_nfc_wr_to_sram(nfc->regs + NFC_MAIN_AREA(0) + offset, + instr->ctx.data.buf.out + offset, + trfr_sz, !nfc->data_access); + code |= COMMAND_WRITE_DATA; + + instr = vf610_get_next_instr(subop, &op_id); + } + + if (instr && instr->type == NAND_OP_CMD_INSTR) { + cmd1 |= instr->ctx.cmd.opcode << CMD_BYTE2_SHIFT; + code |= COMMAND_CMD_BYTE2; + + instr = vf610_get_next_instr(subop, &op_id); + } + + if (instr && instr->type == NAND_OP_WAITRDY_INSTR) { + code |= COMMAND_RB_HANDSHAKE; + + instr = vf610_get_next_instr(subop, &op_id); + } + + if (instr && instr->type == NAND_OP_DATA_IN_INSTR) { + trfr_sz = nand_subop_get_data_len(subop, op_id); + offset = nand_subop_get_data_start_off(subop, op_id); + force8bit = instr->ctx.data.force_8bit; + + code |= COMMAND_READ_DATA; + } + + if (force8bit && (chip->options & NAND_BUSWIDTH_16)) + vf610_nfc_clear(nfc, NFC_FLASH_CONFIG, CONFIG_16BIT); + + cmd2 |= code << CMD_CODE_SHIFT; + + vf610_nfc_run(nfc, col, row, cmd1, cmd2, trfr_sz); + + if (instr && instr->type == NAND_OP_DATA_IN_INSTR) { + /* + * Don't fix endianness on page access for historical reasons. + * See comment in vf610_nfc_rd_from_sram + */ + vf610_nfc_rd_from_sram(instr->ctx.data.buf.in + offset, + nfc->regs + NFC_MAIN_AREA(0) + offset, + trfr_sz, !nfc->data_access); + } + + if (force8bit && (chip->options & NAND_BUSWIDTH_16)) + vf610_nfc_set(nfc, NFC_FLASH_CONFIG, CONFIG_16BIT); + + return 0; +} + +static const struct nand_op_parser vf610_nfc_op_parser = NAND_OP_PARSER( + NAND_OP_PARSER_PATTERN(vf610_nfc_cmd, + NAND_OP_PARSER_PAT_CMD_ELEM(true), + NAND_OP_PARSER_PAT_ADDR_ELEM(true, 5), + NAND_OP_PARSER_PAT_DATA_OUT_ELEM(true, PAGE_2K + OOB_MAX), + NAND_OP_PARSER_PAT_CMD_ELEM(true), + NAND_OP_PARSER_PAT_WAITRDY_ELEM(true)), + NAND_OP_PARSER_PATTERN(vf610_nfc_cmd, + NAND_OP_PARSER_PAT_CMD_ELEM(true), + NAND_OP_PARSER_PAT_ADDR_ELEM(true, 5), + NAND_OP_PARSER_PAT_CMD_ELEM(true), + NAND_OP_PARSER_PAT_WAITRDY_ELEM(true), + NAND_OP_PARSER_PAT_DATA_IN_ELEM(true, PAGE_2K + OOB_MAX)), + ); + +/* + * This function supports Vybrid only (MPC5125 would have full RB and four CS) + */ +static void vf610_nfc_select_target(struct nand_chip *chip, unsigned int cs) +{ + struct vf610_nfc *nfc = chip_to_nfc(chip); + u32 tmp; + + /* Vybrid only (MPC5125 would have full RB and four CS) */ + if (nfc->variant != NFC_VFC610) + return; + + tmp = vf610_nfc_read(nfc, NFC_ROW_ADDR); + tmp &= ~(ROW_ADDR_CHIP_SEL_RB_MASK | ROW_ADDR_CHIP_SEL_MASK); + tmp |= 1 << ROW_ADDR_CHIP_SEL_RB_SHIFT; + tmp |= BIT(cs) << ROW_ADDR_CHIP_SEL_SHIFT; + + vf610_nfc_write(nfc, NFC_ROW_ADDR, tmp); +} + +static int vf610_nfc_exec_op(struct nand_chip *chip, + const struct nand_operation *op, + bool check_only) +{ + if (!check_only) + vf610_nfc_select_target(chip, op->cs); + + return nand_op_parser_exec_op(chip, &vf610_nfc_op_parser, op, + check_only); +} + +static inline int vf610_nfc_correct_data(struct nand_chip *chip, uint8_t *dat, + uint8_t *oob, int page) +{ + struct vf610_nfc *nfc = chip_to_nfc(chip); + struct mtd_info *mtd = nand_to_mtd(chip); + u32 ecc_status_off = NFC_MAIN_AREA(0) + ECC_SRAM_ADDR + ECC_STATUS; + u8 ecc_status; + u8 ecc_count; + int flips_threshold = nfc->chip.ecc.strength / 2; + + ecc_status = vf610_nfc_read(nfc, ecc_status_off) & 0xff; + ecc_count = ecc_status & ECC_STATUS_ERR_COUNT; + + if (!(ecc_status & ECC_STATUS_MASK)) + return ecc_count; + + nfc->data_access = true; + nand_read_oob_op(&nfc->chip, page, 0, oob, mtd->oobsize); + nfc->data_access = false; + + /* + * On an erased page, bit count (including OOB) should be zero or + * at least less then half of the ECC strength. + */ + return nand_check_erased_ecc_chunk(dat, nfc->chip.ecc.size, oob, + mtd->oobsize, NULL, 0, + flips_threshold); +} + +static void vf610_nfc_fill_row(struct nand_chip *chip, int page, u32 *code, + u32 *row) +{ + *row = ROW_ADDR(0, page & 0xff) | ROW_ADDR(1, page >> 8); + *code |= COMMAND_RAR_BYTE1 | COMMAND_RAR_BYTE2; + + if (chip->options & NAND_ROW_ADDR_3) { + *row |= ROW_ADDR(2, page >> 16); + *code |= COMMAND_RAR_BYTE3; + } +} + +static int vf610_nfc_read_page(struct nand_chip *chip, uint8_t *buf, + int oob_required, int page) +{ + struct vf610_nfc *nfc = chip_to_nfc(chip); + struct mtd_info *mtd = nand_to_mtd(chip); + int trfr_sz = mtd->writesize + mtd->oobsize; + u32 row = 0, cmd1 = 0, cmd2 = 0, code = 0; + int stat; + + vf610_nfc_select_target(chip, chip->cur_cs); + + cmd2 |= NAND_CMD_READ0 << CMD_BYTE1_SHIFT; + code |= COMMAND_CMD_BYTE1 | COMMAND_CAR_BYTE1 | COMMAND_CAR_BYTE2; + + vf610_nfc_fill_row(chip, page, &code, &row); + + cmd1 |= NAND_CMD_READSTART << CMD_BYTE2_SHIFT; + code |= COMMAND_CMD_BYTE2 | COMMAND_RB_HANDSHAKE | COMMAND_READ_DATA; + + cmd2 |= code << CMD_CODE_SHIFT; + + vf610_nfc_ecc_mode(nfc, nfc->ecc_mode); + vf610_nfc_run(nfc, 0, row, cmd1, cmd2, trfr_sz); + vf610_nfc_ecc_mode(nfc, ECC_BYPASS); + + /* + * Don't fix endianness on page access for historical reasons. + * See comment in vf610_nfc_rd_from_sram + */ + vf610_nfc_rd_from_sram(buf, nfc->regs + NFC_MAIN_AREA(0), + mtd->writesize, false); + if (oob_required) + vf610_nfc_rd_from_sram(chip->oob_poi, + nfc->regs + NFC_MAIN_AREA(0) + + mtd->writesize, + mtd->oobsize, false); + + stat = vf610_nfc_correct_data(chip, buf, chip->oob_poi, page); + + if (stat < 0) { + mtd->ecc_stats.failed++; + return 0; + } else { + mtd->ecc_stats.corrected += stat; + return stat; + } +} + +static int vf610_nfc_write_page(struct nand_chip *chip, const uint8_t *buf, + int oob_required, int page) +{ + struct vf610_nfc *nfc = chip_to_nfc(chip); + struct mtd_info *mtd = nand_to_mtd(chip); + int trfr_sz = mtd->writesize + mtd->oobsize; + u32 row = 0, cmd1 = 0, cmd2 = 0, code = 0; + u8 status; + int ret; + + vf610_nfc_select_target(chip, chip->cur_cs); + + cmd2 |= NAND_CMD_SEQIN << CMD_BYTE1_SHIFT; + code |= COMMAND_CMD_BYTE1 | COMMAND_CAR_BYTE1 | COMMAND_CAR_BYTE2; + + vf610_nfc_fill_row(chip, page, &code, &row); + + cmd1 |= NAND_CMD_PAGEPROG << CMD_BYTE2_SHIFT; + code |= COMMAND_CMD_BYTE2 | COMMAND_WRITE_DATA; + + /* + * Don't fix endianness on page access for historical reasons. + * See comment in vf610_nfc_wr_to_sram + */ + vf610_nfc_wr_to_sram(nfc->regs + NFC_MAIN_AREA(0), buf, + mtd->writesize, false); + + code |= COMMAND_RB_HANDSHAKE; + cmd2 |= code << CMD_CODE_SHIFT; + + vf610_nfc_ecc_mode(nfc, nfc->ecc_mode); + vf610_nfc_run(nfc, 0, row, cmd1, cmd2, trfr_sz); + vf610_nfc_ecc_mode(nfc, ECC_BYPASS); + + ret = nand_status_op(chip, &status); + if (ret) + return ret; + + if (status & NAND_STATUS_FAIL) + return -EIO; + + return 0; +} + +static int vf610_nfc_read_page_raw(struct nand_chip *chip, u8 *buf, + int oob_required, int page) +{ + struct vf610_nfc *nfc = chip_to_nfc(chip); + int ret; + + nfc->data_access = true; + ret = nand_read_page_raw(chip, buf, oob_required, page); + nfc->data_access = false; + + return ret; +} + +static int vf610_nfc_write_page_raw(struct nand_chip *chip, const u8 *buf, + int oob_required, int page) +{ + struct vf610_nfc *nfc = chip_to_nfc(chip); + struct mtd_info *mtd = nand_to_mtd(chip); + int ret; + + nfc->data_access = true; + ret = nand_prog_page_begin_op(chip, page, 0, buf, mtd->writesize); + if (!ret && oob_required) + ret = nand_write_data_op(chip, chip->oob_poi, mtd->oobsize, + false); + nfc->data_access = false; + + if (ret) + return ret; + + return nand_prog_page_end_op(chip); +} + +static int vf610_nfc_read_oob(struct nand_chip *chip, int page) +{ + struct vf610_nfc *nfc = chip_to_nfc(chip); + int ret; + + nfc->data_access = true; + ret = nand_read_oob_std(chip, page); + nfc->data_access = false; + + return ret; +} + +static int vf610_nfc_write_oob(struct nand_chip *chip, int page) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + struct vf610_nfc *nfc = chip_to_nfc(chip); + int ret; + + nfc->data_access = true; + ret = nand_prog_page_begin_op(chip, page, mtd->writesize, + chip->oob_poi, mtd->oobsize); + nfc->data_access = false; + + if (ret) + return ret; + + return nand_prog_page_end_op(chip); +} + +static const struct of_device_id vf610_nfc_dt_ids[] = { + { .compatible = "fsl,vf610-nfc", .data = (void *)NFC_VFC610 }, + { /* sentinel */ } +}; +MODULE_DEVICE_TABLE(of, vf610_nfc_dt_ids); + +static void vf610_nfc_preinit_controller(struct vf610_nfc *nfc) +{ + vf610_nfc_clear(nfc, NFC_FLASH_CONFIG, CONFIG_16BIT); + vf610_nfc_clear(nfc, NFC_FLASH_CONFIG, CONFIG_ADDR_AUTO_INCR_BIT); + vf610_nfc_clear(nfc, NFC_FLASH_CONFIG, CONFIG_BUFNO_AUTO_INCR_BIT); + vf610_nfc_clear(nfc, NFC_FLASH_CONFIG, CONFIG_BOOT_MODE_BIT); + vf610_nfc_clear(nfc, NFC_FLASH_CONFIG, CONFIG_DMA_REQ_BIT); + vf610_nfc_set(nfc, NFC_FLASH_CONFIG, CONFIG_FAST_FLASH_BIT); + vf610_nfc_ecc_mode(nfc, ECC_BYPASS); + + /* Disable virtual pages, only one elementary transfer unit */ + vf610_nfc_set_field(nfc, NFC_FLASH_CONFIG, CONFIG_PAGE_CNT_MASK, + CONFIG_PAGE_CNT_SHIFT, 1); +} + +static void vf610_nfc_init_controller(struct vf610_nfc *nfc) +{ + if (nfc->chip.options & NAND_BUSWIDTH_16) + vf610_nfc_set(nfc, NFC_FLASH_CONFIG, CONFIG_16BIT); + else + vf610_nfc_clear(nfc, NFC_FLASH_CONFIG, CONFIG_16BIT); + + if (nfc->chip.ecc.engine_type == NAND_ECC_ENGINE_TYPE_ON_HOST) { + /* Set ECC status offset in SRAM */ + vf610_nfc_set_field(nfc, NFC_FLASH_CONFIG, + CONFIG_ECC_SRAM_ADDR_MASK, + CONFIG_ECC_SRAM_ADDR_SHIFT, + ECC_SRAM_ADDR >> 3); + + /* Enable ECC status in SRAM */ + vf610_nfc_set(nfc, NFC_FLASH_CONFIG, CONFIG_ECC_SRAM_REQ_BIT); + } +} + +static int vf610_nfc_attach_chip(struct nand_chip *chip) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + struct vf610_nfc *nfc = chip_to_nfc(chip); + + vf610_nfc_init_controller(nfc); + + /* Bad block options. */ + if (chip->bbt_options & NAND_BBT_USE_FLASH) + chip->bbt_options |= NAND_BBT_NO_OOB; + + /* Single buffer only, max 256 OOB minus ECC status */ + if (mtd->writesize + mtd->oobsize > PAGE_2K + OOB_MAX - 8) { + dev_err(nfc->dev, "Unsupported flash page size\n"); + return -ENXIO; + } + + if (chip->ecc.engine_type != NAND_ECC_ENGINE_TYPE_ON_HOST) + return 0; + + if (mtd->writesize != PAGE_2K && mtd->oobsize < 64) { + dev_err(nfc->dev, "Unsupported flash with hwecc\n"); + return -ENXIO; + } + + if (chip->ecc.size != mtd->writesize) { + dev_err(nfc->dev, "Step size needs to be page size\n"); + return -ENXIO; + } + + /* Only 64 byte ECC layouts known */ + if (mtd->oobsize > 64) + mtd->oobsize = 64; + + /* Use default large page ECC layout defined in NAND core */ + mtd_set_ooblayout(mtd, nand_get_large_page_ooblayout()); + if (chip->ecc.strength == 32) { + nfc->ecc_mode = ECC_60_BYTE; + chip->ecc.bytes = 60; + } else if (chip->ecc.strength == 24) { + nfc->ecc_mode = ECC_45_BYTE; + chip->ecc.bytes = 45; + } else { + dev_err(nfc->dev, "Unsupported ECC strength\n"); + return -ENXIO; + } + + chip->ecc.read_page = vf610_nfc_read_page; + chip->ecc.write_page = vf610_nfc_write_page; + chip->ecc.read_page_raw = vf610_nfc_read_page_raw; + chip->ecc.write_page_raw = vf610_nfc_write_page_raw; + chip->ecc.read_oob = vf610_nfc_read_oob; + chip->ecc.write_oob = vf610_nfc_write_oob; + + chip->ecc.size = PAGE_2K; + + return 0; +} + +static const struct nand_controller_ops vf610_nfc_controller_ops = { + .attach_chip = vf610_nfc_attach_chip, + .exec_op = vf610_nfc_exec_op, + +}; + +static int vf610_nfc_probe(struct platform_device *pdev) +{ + struct vf610_nfc *nfc; + struct mtd_info *mtd; + struct nand_chip *chip; + struct device_node *child; + const struct of_device_id *of_id; + int err; + int irq; + + nfc = devm_kzalloc(&pdev->dev, sizeof(*nfc), GFP_KERNEL); + if (!nfc) + return -ENOMEM; + + nfc->dev = &pdev->dev; + chip = &nfc->chip; + mtd = nand_to_mtd(chip); + + mtd->owner = THIS_MODULE; + mtd->dev.parent = nfc->dev; + mtd->name = DRV_NAME; + + irq = platform_get_irq(pdev, 0); + if (irq < 0) + return irq; + + nfc->regs = devm_platform_ioremap_resource(pdev, 0); + if (IS_ERR(nfc->regs)) + return PTR_ERR(nfc->regs); + + nfc->clk = devm_clk_get_enabled(&pdev->dev, NULL); + if (IS_ERR(nfc->clk)) { + dev_err(nfc->dev, "Unable to get and enable clock!\n"); + return PTR_ERR(nfc->clk); + } + + of_id = of_match_device(vf610_nfc_dt_ids, &pdev->dev); + if (!of_id) + return -ENODEV; + + nfc->variant = (uintptr_t)of_id->data; + + for_each_available_child_of_node(nfc->dev->of_node, child) { + if (of_device_is_compatible(child, "fsl,vf610-nfc-nandcs")) { + + if (nand_get_flash_node(chip)) { + dev_err(nfc->dev, + "Only one NAND chip supported!\n"); + of_node_put(child); + return -EINVAL; + } + + nand_set_flash_node(chip, child); + } + } + + if (!nand_get_flash_node(chip)) { + dev_err(nfc->dev, "NAND chip sub-node missing!\n"); + return -ENODEV; + } + + chip->options |= NAND_NO_SUBPAGE_WRITE; + + init_completion(&nfc->cmd_done); + + err = devm_request_irq(nfc->dev, irq, vf610_nfc_irq, 0, DRV_NAME, nfc); + if (err) { + dev_err(nfc->dev, "Error requesting IRQ!\n"); + return err; + } + + vf610_nfc_preinit_controller(nfc); + + nand_controller_init(&nfc->base); + nfc->base.ops = &vf610_nfc_controller_ops; + chip->controller = &nfc->base; + + /* Scan the NAND chip */ + err = nand_scan(chip, 1); + if (err) + return err; + + platform_set_drvdata(pdev, nfc); + + /* Register device in MTD */ + err = mtd_device_register(mtd, NULL, 0); + if (err) + goto err_cleanup_nand; + return 0; + +err_cleanup_nand: + nand_cleanup(chip); + return err; +} + +static void vf610_nfc_remove(struct platform_device *pdev) +{ + struct vf610_nfc *nfc = platform_get_drvdata(pdev); + struct nand_chip *chip = &nfc->chip; + int ret; + + ret = mtd_device_unregister(nand_to_mtd(chip)); + WARN_ON(ret); + nand_cleanup(chip); +} + +#ifdef CONFIG_PM_SLEEP +static int vf610_nfc_suspend(struct device *dev) +{ + struct vf610_nfc *nfc = dev_get_drvdata(dev); + + clk_disable_unprepare(nfc->clk); + return 0; +} + +static int vf610_nfc_resume(struct device *dev) +{ + struct vf610_nfc *nfc = dev_get_drvdata(dev); + int err; + + err = clk_prepare_enable(nfc->clk); + if (err) + return err; + + vf610_nfc_preinit_controller(nfc); + vf610_nfc_init_controller(nfc); + return 0; +} +#endif + +static SIMPLE_DEV_PM_OPS(vf610_nfc_pm_ops, vf610_nfc_suspend, vf610_nfc_resume); + +static struct platform_driver vf610_nfc_driver = { + .driver = { + .name = DRV_NAME, + .of_match_table = vf610_nfc_dt_ids, + .pm = &vf610_nfc_pm_ops, + }, + .probe = vf610_nfc_probe, + .remove_new = vf610_nfc_remove, +}; + +module_platform_driver(vf610_nfc_driver); + +MODULE_AUTHOR("Stefan Agner <stefan.agner@toradex.com>"); +MODULE_DESCRIPTION("Freescale VF610/MPC5125 NFC MTD NAND driver"); +MODULE_LICENSE("GPL"); diff --git a/drivers/mtd/nand/raw/xway_nand.c b/drivers/mtd/nand/raw/xway_nand.c new file mode 100644 index 0000000000..51d802a165 --- /dev/null +++ b/drivers/mtd/nand/raw/xway_nand.c @@ -0,0 +1,267 @@ +// SPDX-License-Identifier: GPL-2.0-only +/* + * + * Copyright © 2012 John Crispin <john@phrozen.org> + * Copyright © 2016 Hauke Mehrtens <hauke@hauke-m.de> + */ + +#include <linux/mtd/rawnand.h> +#include <linux/of_gpio.h> +#include <linux/of.h> +#include <linux/platform_device.h> + +#include <lantiq_soc.h> + +/* nand registers */ +#define EBU_ADDSEL1 0x24 +#define EBU_NAND_CON 0xB0 +#define EBU_NAND_WAIT 0xB4 +#define NAND_WAIT_RD BIT(0) /* NAND flash status output */ +#define NAND_WAIT_WR_C BIT(3) /* NAND Write/Read complete */ +#define EBU_NAND_ECC0 0xB8 +#define EBU_NAND_ECC_AC 0xBC + +/* + * nand commands + * The pins of the NAND chip are selected based on the address bits of the + * "register" read and write. There are no special registers, but an + * address range and the lower address bits are used to activate the + * correct line. For example when the bit (1 << 2) is set in the address + * the ALE pin will be activated. + */ +#define NAND_CMD_ALE BIT(2) /* address latch enable */ +#define NAND_CMD_CLE BIT(3) /* command latch enable */ +#define NAND_CMD_CS BIT(4) /* chip select */ +#define NAND_CMD_SE BIT(5) /* spare area access latch */ +#define NAND_CMD_WP BIT(6) /* write protect */ +#define NAND_WRITE_CMD (NAND_CMD_CS | NAND_CMD_CLE) +#define NAND_WRITE_ADDR (NAND_CMD_CS | NAND_CMD_ALE) +#define NAND_WRITE_DATA (NAND_CMD_CS) +#define NAND_READ_DATA (NAND_CMD_CS) + +/* we need to tel the ebu which addr we mapped the nand to */ +#define ADDSEL1_MASK(x) (x << 4) +#define ADDSEL1_REGEN 1 + +/* we need to tell the EBU that we have nand attached and set it up properly */ +#define BUSCON1_SETUP (1 << 22) +#define BUSCON1_BCGEN_RES (0x3 << 12) +#define BUSCON1_WAITWRC2 (2 << 8) +#define BUSCON1_WAITRDC2 (2 << 6) +#define BUSCON1_HOLDC1 (1 << 4) +#define BUSCON1_RECOVC1 (1 << 2) +#define BUSCON1_CMULT4 1 + +#define NAND_CON_CE (1 << 20) +#define NAND_CON_OUT_CS1 (1 << 10) +#define NAND_CON_IN_CS1 (1 << 8) +#define NAND_CON_PRE_P (1 << 7) +#define NAND_CON_WP_P (1 << 6) +#define NAND_CON_SE_P (1 << 5) +#define NAND_CON_CS_P (1 << 4) +#define NAND_CON_CSMUX (1 << 1) +#define NAND_CON_NANDM 1 + +struct xway_nand_data { + struct nand_controller controller; + struct nand_chip chip; + unsigned long csflags; + void __iomem *nandaddr; +}; + +static u8 xway_readb(struct mtd_info *mtd, int op) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + struct xway_nand_data *data = nand_get_controller_data(chip); + + return readb(data->nandaddr + op); +} + +static void xway_writeb(struct mtd_info *mtd, int op, u8 value) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + struct xway_nand_data *data = nand_get_controller_data(chip); + + writeb(value, data->nandaddr + op); +} + +static void xway_select_chip(struct nand_chip *chip, int select) +{ + struct xway_nand_data *data = nand_get_controller_data(chip); + + switch (select) { + case -1: + ltq_ebu_w32_mask(NAND_CON_CE, 0, EBU_NAND_CON); + ltq_ebu_w32_mask(NAND_CON_NANDM, 0, EBU_NAND_CON); + spin_unlock_irqrestore(&ebu_lock, data->csflags); + break; + case 0: + spin_lock_irqsave(&ebu_lock, data->csflags); + ltq_ebu_w32_mask(0, NAND_CON_NANDM, EBU_NAND_CON); + ltq_ebu_w32_mask(0, NAND_CON_CE, EBU_NAND_CON); + break; + default: + BUG(); + } +} + +static void xway_cmd_ctrl(struct nand_chip *chip, int cmd, unsigned int ctrl) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + + if (cmd == NAND_CMD_NONE) + return; + + if (ctrl & NAND_CLE) + xway_writeb(mtd, NAND_WRITE_CMD, cmd); + else if (ctrl & NAND_ALE) + xway_writeb(mtd, NAND_WRITE_ADDR, cmd); + + while ((ltq_ebu_r32(EBU_NAND_WAIT) & NAND_WAIT_WR_C) == 0) + ; +} + +static int xway_dev_ready(struct nand_chip *chip) +{ + return ltq_ebu_r32(EBU_NAND_WAIT) & NAND_WAIT_RD; +} + +static unsigned char xway_read_byte(struct nand_chip *chip) +{ + return xway_readb(nand_to_mtd(chip), NAND_READ_DATA); +} + +static void xway_read_buf(struct nand_chip *chip, u_char *buf, int len) +{ + int i; + + for (i = 0; i < len; i++) + buf[i] = xway_readb(nand_to_mtd(chip), NAND_WRITE_DATA); +} + +static void xway_write_buf(struct nand_chip *chip, const u_char *buf, int len) +{ + int i; + + for (i = 0; i < len; i++) + xway_writeb(nand_to_mtd(chip), NAND_WRITE_DATA, buf[i]); +} + +static int xway_attach_chip(struct nand_chip *chip) +{ + if (chip->ecc.engine_type == NAND_ECC_ENGINE_TYPE_SOFT && + chip->ecc.algo == NAND_ECC_ALGO_UNKNOWN) + chip->ecc.algo = NAND_ECC_ALGO_HAMMING; + + return 0; +} + +static const struct nand_controller_ops xway_nand_ops = { + .attach_chip = xway_attach_chip, +}; + +/* + * Probe for the NAND device. + */ +static int xway_nand_probe(struct platform_device *pdev) +{ + struct xway_nand_data *data; + struct mtd_info *mtd; + int err; + u32 cs; + u32 cs_flag = 0; + + /* Allocate memory for the device structure (and zero it) */ + data = devm_kzalloc(&pdev->dev, sizeof(struct xway_nand_data), + GFP_KERNEL); + if (!data) + return -ENOMEM; + + data->nandaddr = devm_platform_ioremap_resource(pdev, 0); + if (IS_ERR(data->nandaddr)) + return PTR_ERR(data->nandaddr); + + nand_set_flash_node(&data->chip, pdev->dev.of_node); + mtd = nand_to_mtd(&data->chip); + mtd->dev.parent = &pdev->dev; + + data->chip.legacy.cmd_ctrl = xway_cmd_ctrl; + data->chip.legacy.dev_ready = xway_dev_ready; + data->chip.legacy.select_chip = xway_select_chip; + data->chip.legacy.write_buf = xway_write_buf; + data->chip.legacy.read_buf = xway_read_buf; + data->chip.legacy.read_byte = xway_read_byte; + data->chip.legacy.chip_delay = 30; + + nand_controller_init(&data->controller); + data->controller.ops = &xway_nand_ops; + data->chip.controller = &data->controller; + + platform_set_drvdata(pdev, data); + nand_set_controller_data(&data->chip, data); + + /* load our CS from the DT. Either we find a valid 1 or default to 0 */ + err = of_property_read_u32(pdev->dev.of_node, "lantiq,cs", &cs); + if (!err && cs == 1) + cs_flag = NAND_CON_IN_CS1 | NAND_CON_OUT_CS1; + + /* setup the EBU to run in NAND mode on our base addr */ + ltq_ebu_w32(CPHYSADDR(data->nandaddr) + | ADDSEL1_MASK(3) | ADDSEL1_REGEN, EBU_ADDSEL1); + + ltq_ebu_w32(BUSCON1_SETUP | BUSCON1_BCGEN_RES | BUSCON1_WAITWRC2 + | BUSCON1_WAITRDC2 | BUSCON1_HOLDC1 | BUSCON1_RECOVC1 + | BUSCON1_CMULT4, LTQ_EBU_BUSCON1); + + ltq_ebu_w32(NAND_CON_NANDM | NAND_CON_CSMUX | NAND_CON_CS_P + | NAND_CON_SE_P | NAND_CON_WP_P | NAND_CON_PRE_P + | cs_flag, EBU_NAND_CON); + + /* + * This driver assumes that the default ECC engine should be TYPE_SOFT. + * Set ->engine_type before registering the NAND devices in order to + * provide a driver specific default value. + */ + data->chip.ecc.engine_type = NAND_ECC_ENGINE_TYPE_SOFT; + + /* Scan to find existence of the device */ + err = nand_scan(&data->chip, 1); + if (err) + return err; + + err = mtd_device_register(mtd, NULL, 0); + if (err) + nand_cleanup(&data->chip); + + return err; +} + +/* + * Remove a NAND device. + */ +static void xway_nand_remove(struct platform_device *pdev) +{ + struct xway_nand_data *data = platform_get_drvdata(pdev); + struct nand_chip *chip = &data->chip; + int ret; + + ret = mtd_device_unregister(nand_to_mtd(chip)); + WARN_ON(ret); + nand_cleanup(chip); +} + +static const struct of_device_id xway_nand_match[] = { + { .compatible = "lantiq,nand-xway" }, + {}, +}; + +static struct platform_driver xway_nand_driver = { + .probe = xway_nand_probe, + .remove_new = xway_nand_remove, + .driver = { + .name = "lantiq,nand-xway", + .of_match_table = xway_nand_match, + }, +}; + +builtin_platform_driver(xway_nand_driver); diff --git a/drivers/mtd/nand/spi/Kconfig b/drivers/mtd/nand/spi/Kconfig new file mode 100644 index 0000000000..3d7649a2dd --- /dev/null +++ b/drivers/mtd/nand/spi/Kconfig @@ -0,0 +1,9 @@ +# SPDX-License-Identifier: GPL-2.0-only +menuconfig MTD_SPI_NAND + tristate "SPI NAND device Support" + select MTD_NAND_CORE + select MTD_NAND_ECC + depends on SPI_MASTER + select SPI_MEM + help + This is the framework for the SPI NAND device drivers. diff --git a/drivers/mtd/nand/spi/Makefile b/drivers/mtd/nand/spi/Makefile new file mode 100644 index 0000000000..cd8b66bf77 --- /dev/null +++ b/drivers/mtd/nand/spi/Makefile @@ -0,0 +1,4 @@ +# SPDX-License-Identifier: GPL-2.0 +spinand-objs := core.o alliancememory.o ato.o esmt.o gigadevice.o macronix.o +spinand-objs += micron.o paragon.o toshiba.o winbond.o xtx.o +obj-$(CONFIG_MTD_SPI_NAND) += spinand.o diff --git a/drivers/mtd/nand/spi/alliancememory.c b/drivers/mtd/nand/spi/alliancememory.c new file mode 100644 index 0000000000..7936ea546b --- /dev/null +++ b/drivers/mtd/nand/spi/alliancememory.c @@ -0,0 +1,153 @@ +// SPDX-License-Identifier: GPL-2.0 +/* + * Author: Mario Kicherer <dev@kicherer.org> + */ + +#include <linux/device.h> +#include <linux/kernel.h> +#include <linux/mtd/spinand.h> + +#define SPINAND_MFR_ALLIANCEMEMORY 0x52 + +#define AM_STATUS_ECC_BITMASK (3 << 4) + +#define AM_STATUS_ECC_NONE_DETECTED (0 << 4) +#define AM_STATUS_ECC_CORRECTED (1 << 4) +#define AM_STATUS_ECC_ERRORED (2 << 4) +#define AM_STATUS_ECC_MAX_CORRECTED (3 << 4) + +static SPINAND_OP_VARIANTS(read_cache_variants, + SPINAND_PAGE_READ_FROM_CACHE_QUADIO_OP(0, 1, NULL, 0), + SPINAND_PAGE_READ_FROM_CACHE_X4_OP(0, 1, NULL, 0), + SPINAND_PAGE_READ_FROM_CACHE_DUALIO_OP(0, 1, NULL, 0), + SPINAND_PAGE_READ_FROM_CACHE_X2_OP(0, 1, NULL, 0), + SPINAND_PAGE_READ_FROM_CACHE_OP(true, 0, 1, NULL, 0), + SPINAND_PAGE_READ_FROM_CACHE_OP(false, 0, 1, NULL, 0)); + +static SPINAND_OP_VARIANTS(write_cache_variants, + SPINAND_PROG_LOAD_X4(true, 0, NULL, 0), + SPINAND_PROG_LOAD(true, 0, NULL, 0)); + +static SPINAND_OP_VARIANTS(update_cache_variants, + SPINAND_PROG_LOAD_X4(false, 0, NULL, 0), + SPINAND_PROG_LOAD(false, 0, NULL, 0)); + +static int am_get_eccsize(struct mtd_info *mtd) +{ + if (mtd->oobsize == 64) + return 0x20; + else if (mtd->oobsize == 128) + return 0x38; + else if (mtd->oobsize == 256) + return 0x70; + else + return -EINVAL; +} + +static int am_ooblayout_ecc(struct mtd_info *mtd, int section, + struct mtd_oob_region *region) +{ + int ecc_bytes; + + ecc_bytes = am_get_eccsize(mtd); + if (ecc_bytes < 0) + return ecc_bytes; + + region->offset = mtd->oobsize - ecc_bytes; + region->length = ecc_bytes; + + return 0; +} + +static int am_ooblayout_free(struct mtd_info *mtd, int section, + struct mtd_oob_region *region) +{ + int ecc_bytes; + + if (section) + return -ERANGE; + + ecc_bytes = am_get_eccsize(mtd); + if (ecc_bytes < 0) + return ecc_bytes; + + /* + * It is unclear how many bytes are used for the bad block marker. We + * reserve the common two bytes here. + * + * The free area in this kind of flash is divided into chunks where the + * first 4 bytes of each chunk are unprotected. The number of chunks + * depends on the specific model. The models with 4096+256 bytes pages + * have 8 chunks, the others 4 chunks. + */ + + region->offset = 2; + region->length = mtd->oobsize - 2 - ecc_bytes; + + return 0; +} + +static const struct mtd_ooblayout_ops am_ooblayout = { + .ecc = am_ooblayout_ecc, + .free = am_ooblayout_free, +}; + +static int am_ecc_get_status(struct spinand_device *spinand, u8 status) +{ + switch (status & AM_STATUS_ECC_BITMASK) { + case AM_STATUS_ECC_NONE_DETECTED: + return 0; + + case AM_STATUS_ECC_CORRECTED: + /* + * use oobsize to determine the flash model and the maximum of + * correctable errors and return maximum - 1 by convention + */ + if (spinand->base.mtd.oobsize == 64) + return 3; + else + return 7; + + case AM_STATUS_ECC_ERRORED: + return -EBADMSG; + + case AM_STATUS_ECC_MAX_CORRECTED: + /* + * use oobsize to determine the flash model and the maximum of + * correctable errors + */ + if (spinand->base.mtd.oobsize == 64) + return 4; + else + return 8; + + default: + break; + } + + return -EINVAL; +} + +static const struct spinand_info alliancememory_spinand_table[] = { + SPINAND_INFO("AS5F34G04SND", + SPINAND_ID(SPINAND_READID_METHOD_OPCODE_DUMMY, 0x2f), + NAND_MEMORG(1, 2048, 128, 64, 4096, 80, 1, 1, 1), + NAND_ECCREQ(4, 512), + SPINAND_INFO_OP_VARIANTS(&read_cache_variants, + &write_cache_variants, + &update_cache_variants), + SPINAND_HAS_QE_BIT, + SPINAND_ECCINFO(&am_ooblayout, + am_ecc_get_status)), +}; + +static const struct spinand_manufacturer_ops alliancememory_spinand_manuf_ops = { +}; + +const struct spinand_manufacturer alliancememory_spinand_manufacturer = { + .id = SPINAND_MFR_ALLIANCEMEMORY, + .name = "AllianceMemory", + .chips = alliancememory_spinand_table, + .nchips = ARRAY_SIZE(alliancememory_spinand_table), + .ops = &alliancememory_spinand_manuf_ops, +}; diff --git a/drivers/mtd/nand/spi/ato.c b/drivers/mtd/nand/spi/ato.c new file mode 100644 index 0000000000..82b377c068 --- /dev/null +++ b/drivers/mtd/nand/spi/ato.c @@ -0,0 +1,86 @@ +// SPDX-License-Identifier: GPL-2.0 +/* + * Copyright (C) 2022 Aidan MacDonald + * + * Author: Aidan MacDonald <aidanmacdonald.0x0@gmail.com> + */ + +#include <linux/device.h> +#include <linux/kernel.h> +#include <linux/mtd/spinand.h> + + +#define SPINAND_MFR_ATO 0x9b + + +static SPINAND_OP_VARIANTS(read_cache_variants, + SPINAND_PAGE_READ_FROM_CACHE_X4_OP(0, 1, NULL, 0), + SPINAND_PAGE_READ_FROM_CACHE_OP(true, 0, 1, NULL, 0), + SPINAND_PAGE_READ_FROM_CACHE_OP(false, 0, 1, NULL, 0)); + +static SPINAND_OP_VARIANTS(write_cache_variants, + SPINAND_PROG_LOAD_X4(true, 0, NULL, 0), + SPINAND_PROG_LOAD(true, 0, NULL, 0)); + +static SPINAND_OP_VARIANTS(update_cache_variants, + SPINAND_PROG_LOAD_X4(false, 0, NULL, 0), + SPINAND_PROG_LOAD(false, 0, NULL, 0)); + + +static int ato25d1ga_ooblayout_ecc(struct mtd_info *mtd, int section, + struct mtd_oob_region *region) +{ + if (section > 3) + return -ERANGE; + + region->offset = (16 * section) + 8; + region->length = 8; + return 0; +} + +static int ato25d1ga_ooblayout_free(struct mtd_info *mtd, int section, + struct mtd_oob_region *region) +{ + if (section > 3) + return -ERANGE; + + if (section) { + region->offset = (16 * section); + region->length = 8; + } else { + /* first byte of section 0 is reserved for the BBM */ + region->offset = 1; + region->length = 7; + } + + return 0; +} + +static const struct mtd_ooblayout_ops ato25d1ga_ooblayout = { + .ecc = ato25d1ga_ooblayout_ecc, + .free = ato25d1ga_ooblayout_free, +}; + + +static const struct spinand_info ato_spinand_table[] = { + SPINAND_INFO("ATO25D1GA", + SPINAND_ID(SPINAND_READID_METHOD_OPCODE_ADDR, 0x12), + NAND_MEMORG(1, 2048, 64, 64, 1024, 20, 1, 1, 1), + NAND_ECCREQ(1, 512), + SPINAND_INFO_OP_VARIANTS(&read_cache_variants, + &write_cache_variants, + &update_cache_variants), + SPINAND_HAS_QE_BIT, + SPINAND_ECCINFO(&ato25d1ga_ooblayout, NULL)), +}; + +static const struct spinand_manufacturer_ops ato_spinand_manuf_ops = { +}; + +const struct spinand_manufacturer ato_spinand_manufacturer = { + .id = SPINAND_MFR_ATO, + .name = "ATO", + .chips = ato_spinand_table, + .nchips = ARRAY_SIZE(ato_spinand_table), + .ops = &ato_spinand_manuf_ops, +}; diff --git a/drivers/mtd/nand/spi/core.c b/drivers/mtd/nand/spi/core.c new file mode 100644 index 0000000000..393ff37f0d --- /dev/null +++ b/drivers/mtd/nand/spi/core.c @@ -0,0 +1,1406 @@ +// SPDX-License-Identifier: GPL-2.0 +/* + * Copyright (C) 2016-2017 Micron Technology, Inc. + * + * Authors: + * Peter Pan <peterpandong@micron.com> + * Boris Brezillon <boris.brezillon@bootlin.com> + */ + +#define pr_fmt(fmt) "spi-nand: " fmt + +#include <linux/device.h> +#include <linux/jiffies.h> +#include <linux/kernel.h> +#include <linux/module.h> +#include <linux/mtd/spinand.h> +#include <linux/of.h> +#include <linux/slab.h> +#include <linux/string.h> +#include <linux/spi/spi.h> +#include <linux/spi/spi-mem.h> + +static int spinand_read_reg_op(struct spinand_device *spinand, u8 reg, u8 *val) +{ + struct spi_mem_op op = SPINAND_GET_FEATURE_OP(reg, + spinand->scratchbuf); + int ret; + + ret = spi_mem_exec_op(spinand->spimem, &op); + if (ret) + return ret; + + *val = *spinand->scratchbuf; + return 0; +} + +static int spinand_write_reg_op(struct spinand_device *spinand, u8 reg, u8 val) +{ + struct spi_mem_op op = SPINAND_SET_FEATURE_OP(reg, + spinand->scratchbuf); + + *spinand->scratchbuf = val; + return spi_mem_exec_op(spinand->spimem, &op); +} + +static int spinand_read_status(struct spinand_device *spinand, u8 *status) +{ + return spinand_read_reg_op(spinand, REG_STATUS, status); +} + +static int spinand_get_cfg(struct spinand_device *spinand, u8 *cfg) +{ + struct nand_device *nand = spinand_to_nand(spinand); + + if (WARN_ON(spinand->cur_target < 0 || + spinand->cur_target >= nand->memorg.ntargets)) + return -EINVAL; + + *cfg = spinand->cfg_cache[spinand->cur_target]; + return 0; +} + +static int spinand_set_cfg(struct spinand_device *spinand, u8 cfg) +{ + struct nand_device *nand = spinand_to_nand(spinand); + int ret; + + if (WARN_ON(spinand->cur_target < 0 || + spinand->cur_target >= nand->memorg.ntargets)) + return -EINVAL; + + if (spinand->cfg_cache[spinand->cur_target] == cfg) + return 0; + + ret = spinand_write_reg_op(spinand, REG_CFG, cfg); + if (ret) + return ret; + + spinand->cfg_cache[spinand->cur_target] = cfg; + return 0; +} + +/** + * spinand_upd_cfg() - Update the configuration register + * @spinand: the spinand device + * @mask: the mask encoding the bits to update in the config reg + * @val: the new value to apply + * + * Update the configuration register. + * + * Return: 0 on success, a negative error code otherwise. + */ +int spinand_upd_cfg(struct spinand_device *spinand, u8 mask, u8 val) +{ + int ret; + u8 cfg; + + ret = spinand_get_cfg(spinand, &cfg); + if (ret) + return ret; + + cfg &= ~mask; + cfg |= val; + + return spinand_set_cfg(spinand, cfg); +} + +/** + * spinand_select_target() - Select a specific NAND target/die + * @spinand: the spinand device + * @target: the target/die to select + * + * Select a new target/die. If chip only has one die, this function is a NOOP. + * + * Return: 0 on success, a negative error code otherwise. + */ +int spinand_select_target(struct spinand_device *spinand, unsigned int target) +{ + struct nand_device *nand = spinand_to_nand(spinand); + int ret; + + if (WARN_ON(target >= nand->memorg.ntargets)) + return -EINVAL; + + if (spinand->cur_target == target) + return 0; + + if (nand->memorg.ntargets == 1) { + spinand->cur_target = target; + return 0; + } + + ret = spinand->select_target(spinand, target); + if (ret) + return ret; + + spinand->cur_target = target; + return 0; +} + +static int spinand_read_cfg(struct spinand_device *spinand) +{ + struct nand_device *nand = spinand_to_nand(spinand); + unsigned int target; + int ret; + + for (target = 0; target < nand->memorg.ntargets; target++) { + ret = spinand_select_target(spinand, target); + if (ret) + return ret; + + /* + * We use spinand_read_reg_op() instead of spinand_get_cfg() + * here to bypass the config cache. + */ + ret = spinand_read_reg_op(spinand, REG_CFG, + &spinand->cfg_cache[target]); + if (ret) + return ret; + } + + return 0; +} + +static int spinand_init_cfg_cache(struct spinand_device *spinand) +{ + struct nand_device *nand = spinand_to_nand(spinand); + struct device *dev = &spinand->spimem->spi->dev; + + spinand->cfg_cache = devm_kcalloc(dev, + nand->memorg.ntargets, + sizeof(*spinand->cfg_cache), + GFP_KERNEL); + if (!spinand->cfg_cache) + return -ENOMEM; + + return 0; +} + +static int spinand_init_quad_enable(struct spinand_device *spinand) +{ + bool enable = false; + + if (!(spinand->flags & SPINAND_HAS_QE_BIT)) + return 0; + + if (spinand->op_templates.read_cache->data.buswidth == 4 || + spinand->op_templates.write_cache->data.buswidth == 4 || + spinand->op_templates.update_cache->data.buswidth == 4) + enable = true; + + return spinand_upd_cfg(spinand, CFG_QUAD_ENABLE, + enable ? CFG_QUAD_ENABLE : 0); +} + +static int spinand_ecc_enable(struct spinand_device *spinand, + bool enable) +{ + return spinand_upd_cfg(spinand, CFG_ECC_ENABLE, + enable ? CFG_ECC_ENABLE : 0); +} + +static int spinand_check_ecc_status(struct spinand_device *spinand, u8 status) +{ + struct nand_device *nand = spinand_to_nand(spinand); + + if (spinand->eccinfo.get_status) + return spinand->eccinfo.get_status(spinand, status); + + switch (status & STATUS_ECC_MASK) { + case STATUS_ECC_NO_BITFLIPS: + return 0; + + case STATUS_ECC_HAS_BITFLIPS: + /* + * We have no way to know exactly how many bitflips have been + * fixed, so let's return the maximum possible value so that + * wear-leveling layers move the data immediately. + */ + return nanddev_get_ecc_conf(nand)->strength; + + case STATUS_ECC_UNCOR_ERROR: + return -EBADMSG; + + default: + break; + } + + return -EINVAL; +} + +static int spinand_noecc_ooblayout_ecc(struct mtd_info *mtd, int section, + struct mtd_oob_region *region) +{ + return -ERANGE; +} + +static int spinand_noecc_ooblayout_free(struct mtd_info *mtd, int section, + struct mtd_oob_region *region) +{ + if (section) + return -ERANGE; + + /* Reserve 2 bytes for the BBM. */ + region->offset = 2; + region->length = 62; + + return 0; +} + +static const struct mtd_ooblayout_ops spinand_noecc_ooblayout = { + .ecc = spinand_noecc_ooblayout_ecc, + .free = spinand_noecc_ooblayout_free, +}; + +static int spinand_ondie_ecc_init_ctx(struct nand_device *nand) +{ + struct spinand_device *spinand = nand_to_spinand(nand); + struct mtd_info *mtd = nanddev_to_mtd(nand); + struct spinand_ondie_ecc_conf *engine_conf; + + nand->ecc.ctx.conf.engine_type = NAND_ECC_ENGINE_TYPE_ON_DIE; + nand->ecc.ctx.conf.step_size = nand->ecc.requirements.step_size; + nand->ecc.ctx.conf.strength = nand->ecc.requirements.strength; + + engine_conf = kzalloc(sizeof(*engine_conf), GFP_KERNEL); + if (!engine_conf) + return -ENOMEM; + + nand->ecc.ctx.priv = engine_conf; + + if (spinand->eccinfo.ooblayout) + mtd_set_ooblayout(mtd, spinand->eccinfo.ooblayout); + else + mtd_set_ooblayout(mtd, &spinand_noecc_ooblayout); + + return 0; +} + +static void spinand_ondie_ecc_cleanup_ctx(struct nand_device *nand) +{ + kfree(nand->ecc.ctx.priv); +} + +static int spinand_ondie_ecc_prepare_io_req(struct nand_device *nand, + struct nand_page_io_req *req) +{ + struct spinand_device *spinand = nand_to_spinand(nand); + bool enable = (req->mode != MTD_OPS_RAW); + + memset(spinand->oobbuf, 0xff, nanddev_per_page_oobsize(nand)); + + /* Only enable or disable the engine */ + return spinand_ecc_enable(spinand, enable); +} + +static int spinand_ondie_ecc_finish_io_req(struct nand_device *nand, + struct nand_page_io_req *req) +{ + struct spinand_ondie_ecc_conf *engine_conf = nand->ecc.ctx.priv; + struct spinand_device *spinand = nand_to_spinand(nand); + struct mtd_info *mtd = spinand_to_mtd(spinand); + int ret; + + if (req->mode == MTD_OPS_RAW) + return 0; + + /* Nothing to do when finishing a page write */ + if (req->type == NAND_PAGE_WRITE) + return 0; + + /* Finish a page read: check the status, report errors/bitflips */ + ret = spinand_check_ecc_status(spinand, engine_conf->status); + if (ret == -EBADMSG) + mtd->ecc_stats.failed++; + else if (ret > 0) + mtd->ecc_stats.corrected += ret; + + return ret; +} + +static struct nand_ecc_engine_ops spinand_ondie_ecc_engine_ops = { + .init_ctx = spinand_ondie_ecc_init_ctx, + .cleanup_ctx = spinand_ondie_ecc_cleanup_ctx, + .prepare_io_req = spinand_ondie_ecc_prepare_io_req, + .finish_io_req = spinand_ondie_ecc_finish_io_req, +}; + +static struct nand_ecc_engine spinand_ondie_ecc_engine = { + .ops = &spinand_ondie_ecc_engine_ops, +}; + +static void spinand_ondie_ecc_save_status(struct nand_device *nand, u8 status) +{ + struct spinand_ondie_ecc_conf *engine_conf = nand->ecc.ctx.priv; + + if (nand->ecc.ctx.conf.engine_type == NAND_ECC_ENGINE_TYPE_ON_DIE && + engine_conf) + engine_conf->status = status; +} + +static int spinand_write_enable_op(struct spinand_device *spinand) +{ + struct spi_mem_op op = SPINAND_WR_EN_DIS_OP(true); + + return spi_mem_exec_op(spinand->spimem, &op); +} + +static int spinand_load_page_op(struct spinand_device *spinand, + const struct nand_page_io_req *req) +{ + struct nand_device *nand = spinand_to_nand(spinand); + unsigned int row = nanddev_pos_to_row(nand, &req->pos); + struct spi_mem_op op = SPINAND_PAGE_READ_OP(row); + + return spi_mem_exec_op(spinand->spimem, &op); +} + +static int spinand_read_from_cache_op(struct spinand_device *spinand, + const struct nand_page_io_req *req) +{ + struct nand_device *nand = spinand_to_nand(spinand); + struct mtd_info *mtd = spinand_to_mtd(spinand); + struct spi_mem_dirmap_desc *rdesc; + unsigned int nbytes = 0; + void *buf = NULL; + u16 column = 0; + ssize_t ret; + + if (req->datalen) { + buf = spinand->databuf; + nbytes = nanddev_page_size(nand); + column = 0; + } + + if (req->ooblen) { + nbytes += nanddev_per_page_oobsize(nand); + if (!buf) { + buf = spinand->oobbuf; + column = nanddev_page_size(nand); + } + } + + if (req->mode == MTD_OPS_RAW) + rdesc = spinand->dirmaps[req->pos.plane].rdesc; + else + rdesc = spinand->dirmaps[req->pos.plane].rdesc_ecc; + + while (nbytes) { + ret = spi_mem_dirmap_read(rdesc, column, nbytes, buf); + if (ret < 0) + return ret; + + if (!ret || ret > nbytes) + return -EIO; + + nbytes -= ret; + column += ret; + buf += ret; + } + + if (req->datalen) + memcpy(req->databuf.in, spinand->databuf + req->dataoffs, + req->datalen); + + if (req->ooblen) { + if (req->mode == MTD_OPS_AUTO_OOB) + mtd_ooblayout_get_databytes(mtd, req->oobbuf.in, + spinand->oobbuf, + req->ooboffs, + req->ooblen); + else + memcpy(req->oobbuf.in, spinand->oobbuf + req->ooboffs, + req->ooblen); + } + + return 0; +} + +static int spinand_write_to_cache_op(struct spinand_device *spinand, + const struct nand_page_io_req *req) +{ + struct nand_device *nand = spinand_to_nand(spinand); + struct mtd_info *mtd = spinand_to_mtd(spinand); + struct spi_mem_dirmap_desc *wdesc; + unsigned int nbytes, column = 0; + void *buf = spinand->databuf; + ssize_t ret; + + /* + * Looks like PROGRAM LOAD (AKA write cache) does not necessarily reset + * the cache content to 0xFF (depends on vendor implementation), so we + * must fill the page cache entirely even if we only want to program + * the data portion of the page, otherwise we might corrupt the BBM or + * user data previously programmed in OOB area. + * + * Only reset the data buffer manually, the OOB buffer is prepared by + * ECC engines ->prepare_io_req() callback. + */ + nbytes = nanddev_page_size(nand) + nanddev_per_page_oobsize(nand); + memset(spinand->databuf, 0xff, nanddev_page_size(nand)); + + if (req->datalen) + memcpy(spinand->databuf + req->dataoffs, req->databuf.out, + req->datalen); + + if (req->ooblen) { + if (req->mode == MTD_OPS_AUTO_OOB) + mtd_ooblayout_set_databytes(mtd, req->oobbuf.out, + spinand->oobbuf, + req->ooboffs, + req->ooblen); + else + memcpy(spinand->oobbuf + req->ooboffs, req->oobbuf.out, + req->ooblen); + } + + if (req->mode == MTD_OPS_RAW) + wdesc = spinand->dirmaps[req->pos.plane].wdesc; + else + wdesc = spinand->dirmaps[req->pos.plane].wdesc_ecc; + + while (nbytes) { + ret = spi_mem_dirmap_write(wdesc, column, nbytes, buf); + if (ret < 0) + return ret; + + if (!ret || ret > nbytes) + return -EIO; + + nbytes -= ret; + column += ret; + buf += ret; + } + + return 0; +} + +static int spinand_program_op(struct spinand_device *spinand, + const struct nand_page_io_req *req) +{ + struct nand_device *nand = spinand_to_nand(spinand); + unsigned int row = nanddev_pos_to_row(nand, &req->pos); + struct spi_mem_op op = SPINAND_PROG_EXEC_OP(row); + + return spi_mem_exec_op(spinand->spimem, &op); +} + +static int spinand_erase_op(struct spinand_device *spinand, + const struct nand_pos *pos) +{ + struct nand_device *nand = spinand_to_nand(spinand); + unsigned int row = nanddev_pos_to_row(nand, pos); + struct spi_mem_op op = SPINAND_BLK_ERASE_OP(row); + + return spi_mem_exec_op(spinand->spimem, &op); +} + +static int spinand_wait(struct spinand_device *spinand, + unsigned long initial_delay_us, + unsigned long poll_delay_us, + u8 *s) +{ + struct spi_mem_op op = SPINAND_GET_FEATURE_OP(REG_STATUS, + spinand->scratchbuf); + u8 status; + int ret; + + ret = spi_mem_poll_status(spinand->spimem, &op, STATUS_BUSY, 0, + initial_delay_us, + poll_delay_us, + SPINAND_WAITRDY_TIMEOUT_MS); + if (ret) + return ret; + + status = *spinand->scratchbuf; + if (!(status & STATUS_BUSY)) + goto out; + + /* + * Extra read, just in case the STATUS_READY bit has changed + * since our last check + */ + ret = spinand_read_status(spinand, &status); + if (ret) + return ret; + +out: + if (s) + *s = status; + + return status & STATUS_BUSY ? -ETIMEDOUT : 0; +} + +static int spinand_read_id_op(struct spinand_device *spinand, u8 naddr, + u8 ndummy, u8 *buf) +{ + struct spi_mem_op op = SPINAND_READID_OP( + naddr, ndummy, spinand->scratchbuf, SPINAND_MAX_ID_LEN); + int ret; + + ret = spi_mem_exec_op(spinand->spimem, &op); + if (!ret) + memcpy(buf, spinand->scratchbuf, SPINAND_MAX_ID_LEN); + + return ret; +} + +static int spinand_reset_op(struct spinand_device *spinand) +{ + struct spi_mem_op op = SPINAND_RESET_OP; + int ret; + + ret = spi_mem_exec_op(spinand->spimem, &op); + if (ret) + return ret; + + return spinand_wait(spinand, + SPINAND_RESET_INITIAL_DELAY_US, + SPINAND_RESET_POLL_DELAY_US, + NULL); +} + +static int spinand_lock_block(struct spinand_device *spinand, u8 lock) +{ + return spinand_write_reg_op(spinand, REG_BLOCK_LOCK, lock); +} + +static int spinand_read_page(struct spinand_device *spinand, + const struct nand_page_io_req *req) +{ + struct nand_device *nand = spinand_to_nand(spinand); + u8 status; + int ret; + + ret = nand_ecc_prepare_io_req(nand, (struct nand_page_io_req *)req); + if (ret) + return ret; + + ret = spinand_load_page_op(spinand, req); + if (ret) + return ret; + + ret = spinand_wait(spinand, + SPINAND_READ_INITIAL_DELAY_US, + SPINAND_READ_POLL_DELAY_US, + &status); + if (ret < 0) + return ret; + + spinand_ondie_ecc_save_status(nand, status); + + ret = spinand_read_from_cache_op(spinand, req); + if (ret) + return ret; + + return nand_ecc_finish_io_req(nand, (struct nand_page_io_req *)req); +} + +static int spinand_write_page(struct spinand_device *spinand, + const struct nand_page_io_req *req) +{ + struct nand_device *nand = spinand_to_nand(spinand); + u8 status; + int ret; + + ret = nand_ecc_prepare_io_req(nand, (struct nand_page_io_req *)req); + if (ret) + return ret; + + ret = spinand_write_enable_op(spinand); + if (ret) + return ret; + + ret = spinand_write_to_cache_op(spinand, req); + if (ret) + return ret; + + ret = spinand_program_op(spinand, req); + if (ret) + return ret; + + ret = spinand_wait(spinand, + SPINAND_WRITE_INITIAL_DELAY_US, + SPINAND_WRITE_POLL_DELAY_US, + &status); + if (!ret && (status & STATUS_PROG_FAILED)) + return -EIO; + + return nand_ecc_finish_io_req(nand, (struct nand_page_io_req *)req); +} + +static int spinand_mtd_read(struct mtd_info *mtd, loff_t from, + struct mtd_oob_ops *ops) +{ + struct spinand_device *spinand = mtd_to_spinand(mtd); + struct nand_device *nand = mtd_to_nanddev(mtd); + struct mtd_ecc_stats old_stats; + unsigned int max_bitflips = 0; + struct nand_io_iter iter; + bool disable_ecc = false; + bool ecc_failed = false; + int ret = 0; + + if (ops->mode == MTD_OPS_RAW || !spinand->eccinfo.ooblayout) + disable_ecc = true; + + mutex_lock(&spinand->lock); + + old_stats = mtd->ecc_stats; + + nanddev_io_for_each_page(nand, NAND_PAGE_READ, from, ops, &iter) { + if (disable_ecc) + iter.req.mode = MTD_OPS_RAW; + + ret = spinand_select_target(spinand, iter.req.pos.target); + if (ret) + break; + + ret = spinand_read_page(spinand, &iter.req); + if (ret < 0 && ret != -EBADMSG) + break; + + if (ret == -EBADMSG) + ecc_failed = true; + else + max_bitflips = max_t(unsigned int, max_bitflips, ret); + + ret = 0; + ops->retlen += iter.req.datalen; + ops->oobretlen += iter.req.ooblen; + } + + if (ops->stats) { + ops->stats->uncorrectable_errors += + mtd->ecc_stats.failed - old_stats.failed; + ops->stats->corrected_bitflips += + mtd->ecc_stats.corrected - old_stats.corrected; + } + + mutex_unlock(&spinand->lock); + + if (ecc_failed && !ret) + ret = -EBADMSG; + + return ret ? ret : max_bitflips; +} + +static int spinand_mtd_write(struct mtd_info *mtd, loff_t to, + struct mtd_oob_ops *ops) +{ + struct spinand_device *spinand = mtd_to_spinand(mtd); + struct nand_device *nand = mtd_to_nanddev(mtd); + struct nand_io_iter iter; + bool disable_ecc = false; + int ret = 0; + + if (ops->mode == MTD_OPS_RAW || !mtd->ooblayout) + disable_ecc = true; + + mutex_lock(&spinand->lock); + + nanddev_io_for_each_page(nand, NAND_PAGE_WRITE, to, ops, &iter) { + if (disable_ecc) + iter.req.mode = MTD_OPS_RAW; + + ret = spinand_select_target(spinand, iter.req.pos.target); + if (ret) + break; + + ret = spinand_write_page(spinand, &iter.req); + if (ret) + break; + + ops->retlen += iter.req.datalen; + ops->oobretlen += iter.req.ooblen; + } + + mutex_unlock(&spinand->lock); + + return ret; +} + +static bool spinand_isbad(struct nand_device *nand, const struct nand_pos *pos) +{ + struct spinand_device *spinand = nand_to_spinand(nand); + u8 marker[2] = { }; + struct nand_page_io_req req = { + .pos = *pos, + .ooblen = sizeof(marker), + .ooboffs = 0, + .oobbuf.in = marker, + .mode = MTD_OPS_RAW, + }; + + spinand_select_target(spinand, pos->target); + spinand_read_page(spinand, &req); + if (marker[0] != 0xff || marker[1] != 0xff) + return true; + + return false; +} + +static int spinand_mtd_block_isbad(struct mtd_info *mtd, loff_t offs) +{ + struct nand_device *nand = mtd_to_nanddev(mtd); + struct spinand_device *spinand = nand_to_spinand(nand); + struct nand_pos pos; + int ret; + + nanddev_offs_to_pos(nand, offs, &pos); + mutex_lock(&spinand->lock); + ret = nanddev_isbad(nand, &pos); + mutex_unlock(&spinand->lock); + + return ret; +} + +static int spinand_markbad(struct nand_device *nand, const struct nand_pos *pos) +{ + struct spinand_device *spinand = nand_to_spinand(nand); + u8 marker[2] = { }; + struct nand_page_io_req req = { + .pos = *pos, + .ooboffs = 0, + .ooblen = sizeof(marker), + .oobbuf.out = marker, + .mode = MTD_OPS_RAW, + }; + int ret; + + ret = spinand_select_target(spinand, pos->target); + if (ret) + return ret; + + ret = spinand_write_enable_op(spinand); + if (ret) + return ret; + + return spinand_write_page(spinand, &req); +} + +static int spinand_mtd_block_markbad(struct mtd_info *mtd, loff_t offs) +{ + struct nand_device *nand = mtd_to_nanddev(mtd); + struct spinand_device *spinand = nand_to_spinand(nand); + struct nand_pos pos; + int ret; + + nanddev_offs_to_pos(nand, offs, &pos); + mutex_lock(&spinand->lock); + ret = nanddev_markbad(nand, &pos); + mutex_unlock(&spinand->lock); + + return ret; +} + +static int spinand_erase(struct nand_device *nand, const struct nand_pos *pos) +{ + struct spinand_device *spinand = nand_to_spinand(nand); + u8 status; + int ret; + + ret = spinand_select_target(spinand, pos->target); + if (ret) + return ret; + + ret = spinand_write_enable_op(spinand); + if (ret) + return ret; + + ret = spinand_erase_op(spinand, pos); + if (ret) + return ret; + + ret = spinand_wait(spinand, + SPINAND_ERASE_INITIAL_DELAY_US, + SPINAND_ERASE_POLL_DELAY_US, + &status); + + if (!ret && (status & STATUS_ERASE_FAILED)) + ret = -EIO; + + return ret; +} + +static int spinand_mtd_erase(struct mtd_info *mtd, + struct erase_info *einfo) +{ + struct spinand_device *spinand = mtd_to_spinand(mtd); + int ret; + + mutex_lock(&spinand->lock); + ret = nanddev_mtd_erase(mtd, einfo); + mutex_unlock(&spinand->lock); + + return ret; +} + +static int spinand_mtd_block_isreserved(struct mtd_info *mtd, loff_t offs) +{ + struct spinand_device *spinand = mtd_to_spinand(mtd); + struct nand_device *nand = mtd_to_nanddev(mtd); + struct nand_pos pos; + int ret; + + nanddev_offs_to_pos(nand, offs, &pos); + mutex_lock(&spinand->lock); + ret = nanddev_isreserved(nand, &pos); + mutex_unlock(&spinand->lock); + + return ret; +} + +static int spinand_create_dirmap(struct spinand_device *spinand, + unsigned int plane) +{ + struct nand_device *nand = spinand_to_nand(spinand); + struct spi_mem_dirmap_info info = { + .length = nanddev_page_size(nand) + + nanddev_per_page_oobsize(nand), + }; + struct spi_mem_dirmap_desc *desc; + + /* The plane number is passed in MSB just above the column address */ + info.offset = plane << fls(nand->memorg.pagesize); + + info.op_tmpl = *spinand->op_templates.update_cache; + desc = devm_spi_mem_dirmap_create(&spinand->spimem->spi->dev, + spinand->spimem, &info); + if (IS_ERR(desc)) + return PTR_ERR(desc); + + spinand->dirmaps[plane].wdesc = desc; + + info.op_tmpl = *spinand->op_templates.read_cache; + desc = devm_spi_mem_dirmap_create(&spinand->spimem->spi->dev, + spinand->spimem, &info); + if (IS_ERR(desc)) + return PTR_ERR(desc); + + spinand->dirmaps[plane].rdesc = desc; + + if (nand->ecc.engine->integration != NAND_ECC_ENGINE_INTEGRATION_PIPELINED) { + spinand->dirmaps[plane].wdesc_ecc = spinand->dirmaps[plane].wdesc; + spinand->dirmaps[plane].rdesc_ecc = spinand->dirmaps[plane].rdesc; + + return 0; + } + + info.op_tmpl = *spinand->op_templates.update_cache; + info.op_tmpl.data.ecc = true; + desc = devm_spi_mem_dirmap_create(&spinand->spimem->spi->dev, + spinand->spimem, &info); + if (IS_ERR(desc)) + return PTR_ERR(desc); + + spinand->dirmaps[plane].wdesc_ecc = desc; + + info.op_tmpl = *spinand->op_templates.read_cache; + info.op_tmpl.data.ecc = true; + desc = devm_spi_mem_dirmap_create(&spinand->spimem->spi->dev, + spinand->spimem, &info); + if (IS_ERR(desc)) + return PTR_ERR(desc); + + spinand->dirmaps[plane].rdesc_ecc = desc; + + return 0; +} + +static int spinand_create_dirmaps(struct spinand_device *spinand) +{ + struct nand_device *nand = spinand_to_nand(spinand); + int i, ret; + + spinand->dirmaps = devm_kzalloc(&spinand->spimem->spi->dev, + sizeof(*spinand->dirmaps) * + nand->memorg.planes_per_lun, + GFP_KERNEL); + if (!spinand->dirmaps) + return -ENOMEM; + + for (i = 0; i < nand->memorg.planes_per_lun; i++) { + ret = spinand_create_dirmap(spinand, i); + if (ret) + return ret; + } + + return 0; +} + +static const struct nand_ops spinand_ops = { + .erase = spinand_erase, + .markbad = spinand_markbad, + .isbad = spinand_isbad, +}; + +static const struct spinand_manufacturer *spinand_manufacturers[] = { + &alliancememory_spinand_manufacturer, + &ato_spinand_manufacturer, + &esmt_c8_spinand_manufacturer, + &gigadevice_spinand_manufacturer, + ¯onix_spinand_manufacturer, + µn_spinand_manufacturer, + ¶gon_spinand_manufacturer, + &toshiba_spinand_manufacturer, + &winbond_spinand_manufacturer, + &xtx_spinand_manufacturer, +}; + +static int spinand_manufacturer_match(struct spinand_device *spinand, + enum spinand_readid_method rdid_method) +{ + u8 *id = spinand->id.data; + unsigned int i; + int ret; + + for (i = 0; i < ARRAY_SIZE(spinand_manufacturers); i++) { + const struct spinand_manufacturer *manufacturer = + spinand_manufacturers[i]; + + if (id[0] != manufacturer->id) + continue; + + ret = spinand_match_and_init(spinand, + manufacturer->chips, + manufacturer->nchips, + rdid_method); + if (ret < 0) + continue; + + spinand->manufacturer = manufacturer; + return 0; + } + return -ENOTSUPP; +} + +static int spinand_id_detect(struct spinand_device *spinand) +{ + u8 *id = spinand->id.data; + int ret; + + ret = spinand_read_id_op(spinand, 0, 0, id); + if (ret) + return ret; + ret = spinand_manufacturer_match(spinand, SPINAND_READID_METHOD_OPCODE); + if (!ret) + return 0; + + ret = spinand_read_id_op(spinand, 1, 0, id); + if (ret) + return ret; + ret = spinand_manufacturer_match(spinand, + SPINAND_READID_METHOD_OPCODE_ADDR); + if (!ret) + return 0; + + ret = spinand_read_id_op(spinand, 0, 1, id); + if (ret) + return ret; + ret = spinand_manufacturer_match(spinand, + SPINAND_READID_METHOD_OPCODE_DUMMY); + + return ret; +} + +static int spinand_manufacturer_init(struct spinand_device *spinand) +{ + if (spinand->manufacturer->ops->init) + return spinand->manufacturer->ops->init(spinand); + + return 0; +} + +static void spinand_manufacturer_cleanup(struct spinand_device *spinand) +{ + /* Release manufacturer private data */ + if (spinand->manufacturer->ops->cleanup) + return spinand->manufacturer->ops->cleanup(spinand); +} + +static const struct spi_mem_op * +spinand_select_op_variant(struct spinand_device *spinand, + const struct spinand_op_variants *variants) +{ + struct nand_device *nand = spinand_to_nand(spinand); + unsigned int i; + + for (i = 0; i < variants->nops; i++) { + struct spi_mem_op op = variants->ops[i]; + unsigned int nbytes; + int ret; + + nbytes = nanddev_per_page_oobsize(nand) + + nanddev_page_size(nand); + + while (nbytes) { + op.data.nbytes = nbytes; + ret = spi_mem_adjust_op_size(spinand->spimem, &op); + if (ret) + break; + + if (!spi_mem_supports_op(spinand->spimem, &op)) + break; + + nbytes -= op.data.nbytes; + } + + if (!nbytes) + return &variants->ops[i]; + } + + return NULL; +} + +/** + * spinand_match_and_init() - Try to find a match between a device ID and an + * entry in a spinand_info table + * @spinand: SPI NAND object + * @table: SPI NAND device description table + * @table_size: size of the device description table + * @rdid_method: read id method to match + * + * Match between a device ID retrieved through the READ_ID command and an + * entry in the SPI NAND description table. If a match is found, the spinand + * object will be initialized with information provided by the matching + * spinand_info entry. + * + * Return: 0 on success, a negative error code otherwise. + */ +int spinand_match_and_init(struct spinand_device *spinand, + const struct spinand_info *table, + unsigned int table_size, + enum spinand_readid_method rdid_method) +{ + u8 *id = spinand->id.data; + struct nand_device *nand = spinand_to_nand(spinand); + unsigned int i; + + for (i = 0; i < table_size; i++) { + const struct spinand_info *info = &table[i]; + const struct spi_mem_op *op; + + if (rdid_method != info->devid.method) + continue; + + if (memcmp(id + 1, info->devid.id, info->devid.len)) + continue; + + nand->memorg = table[i].memorg; + nanddev_set_ecc_requirements(nand, &table[i].eccreq); + spinand->eccinfo = table[i].eccinfo; + spinand->flags = table[i].flags; + spinand->id.len = 1 + table[i].devid.len; + spinand->select_target = table[i].select_target; + + op = spinand_select_op_variant(spinand, + info->op_variants.read_cache); + if (!op) + return -ENOTSUPP; + + spinand->op_templates.read_cache = op; + + op = spinand_select_op_variant(spinand, + info->op_variants.write_cache); + if (!op) + return -ENOTSUPP; + + spinand->op_templates.write_cache = op; + + op = spinand_select_op_variant(spinand, + info->op_variants.update_cache); + spinand->op_templates.update_cache = op; + + return 0; + } + + return -ENOTSUPP; +} + +static int spinand_detect(struct spinand_device *spinand) +{ + struct device *dev = &spinand->spimem->spi->dev; + struct nand_device *nand = spinand_to_nand(spinand); + int ret; + + ret = spinand_reset_op(spinand); + if (ret) + return ret; + + ret = spinand_id_detect(spinand); + if (ret) { + dev_err(dev, "unknown raw ID %*phN\n", SPINAND_MAX_ID_LEN, + spinand->id.data); + return ret; + } + + if (nand->memorg.ntargets > 1 && !spinand->select_target) { + dev_err(dev, + "SPI NANDs with more than one die must implement ->select_target()\n"); + return -EINVAL; + } + + dev_info(&spinand->spimem->spi->dev, + "%s SPI NAND was found.\n", spinand->manufacturer->name); + dev_info(&spinand->spimem->spi->dev, + "%llu MiB, block size: %zu KiB, page size: %zu, OOB size: %u\n", + nanddev_size(nand) >> 20, nanddev_eraseblock_size(nand) >> 10, + nanddev_page_size(nand), nanddev_per_page_oobsize(nand)); + + return 0; +} + +static int spinand_init_flash(struct spinand_device *spinand) +{ + struct device *dev = &spinand->spimem->spi->dev; + struct nand_device *nand = spinand_to_nand(spinand); + int ret, i; + + ret = spinand_read_cfg(spinand); + if (ret) + return ret; + + ret = spinand_init_quad_enable(spinand); + if (ret) + return ret; + + ret = spinand_upd_cfg(spinand, CFG_OTP_ENABLE, 0); + if (ret) + return ret; + + ret = spinand_manufacturer_init(spinand); + if (ret) { + dev_err(dev, + "Failed to initialize the SPI NAND chip (err = %d)\n", + ret); + return ret; + } + + /* After power up, all blocks are locked, so unlock them here. */ + for (i = 0; i < nand->memorg.ntargets; i++) { + ret = spinand_select_target(spinand, i); + if (ret) + break; + + ret = spinand_lock_block(spinand, BL_ALL_UNLOCKED); + if (ret) + break; + } + + if (ret) + spinand_manufacturer_cleanup(spinand); + + return ret; +} + +static void spinand_mtd_resume(struct mtd_info *mtd) +{ + struct spinand_device *spinand = mtd_to_spinand(mtd); + int ret; + + ret = spinand_reset_op(spinand); + if (ret) + return; + + ret = spinand_init_flash(spinand); + if (ret) + return; + + spinand_ecc_enable(spinand, false); +} + +static int spinand_init(struct spinand_device *spinand) +{ + struct device *dev = &spinand->spimem->spi->dev; + struct mtd_info *mtd = spinand_to_mtd(spinand); + struct nand_device *nand = mtd_to_nanddev(mtd); + int ret; + + /* + * We need a scratch buffer because the spi_mem interface requires that + * buf passed in spi_mem_op->data.buf be DMA-able. + */ + spinand->scratchbuf = kzalloc(SPINAND_MAX_ID_LEN, GFP_KERNEL); + if (!spinand->scratchbuf) + return -ENOMEM; + + ret = spinand_detect(spinand); + if (ret) + goto err_free_bufs; + + /* + * Use kzalloc() instead of devm_kzalloc() here, because some drivers + * may use this buffer for DMA access. + * Memory allocated by devm_ does not guarantee DMA-safe alignment. + */ + spinand->databuf = kzalloc(nanddev_page_size(nand) + + nanddev_per_page_oobsize(nand), + GFP_KERNEL); + if (!spinand->databuf) { + ret = -ENOMEM; + goto err_free_bufs; + } + + spinand->oobbuf = spinand->databuf + nanddev_page_size(nand); + + ret = spinand_init_cfg_cache(spinand); + if (ret) + goto err_free_bufs; + + ret = spinand_init_flash(spinand); + if (ret) + goto err_free_bufs; + + ret = nanddev_init(nand, &spinand_ops, THIS_MODULE); + if (ret) + goto err_manuf_cleanup; + + /* SPI-NAND default ECC engine is on-die */ + nand->ecc.defaults.engine_type = NAND_ECC_ENGINE_TYPE_ON_DIE; + nand->ecc.ondie_engine = &spinand_ondie_ecc_engine; + + spinand_ecc_enable(spinand, false); + ret = nanddev_ecc_engine_init(nand); + if (ret) + goto err_cleanup_nanddev; + + mtd->_read_oob = spinand_mtd_read; + mtd->_write_oob = spinand_mtd_write; + mtd->_block_isbad = spinand_mtd_block_isbad; + mtd->_block_markbad = spinand_mtd_block_markbad; + mtd->_block_isreserved = spinand_mtd_block_isreserved; + mtd->_erase = spinand_mtd_erase; + mtd->_max_bad_blocks = nanddev_mtd_max_bad_blocks; + mtd->_resume = spinand_mtd_resume; + + if (nand->ecc.engine) { + ret = mtd_ooblayout_count_freebytes(mtd); + if (ret < 0) + goto err_cleanup_ecc_engine; + } + + mtd->oobavail = ret; + + /* Propagate ECC information to mtd_info */ + mtd->ecc_strength = nanddev_get_ecc_conf(nand)->strength; + mtd->ecc_step_size = nanddev_get_ecc_conf(nand)->step_size; + + ret = spinand_create_dirmaps(spinand); + if (ret) { + dev_err(dev, + "Failed to create direct mappings for read/write operations (err = %d)\n", + ret); + goto err_cleanup_ecc_engine; + } + + return 0; + +err_cleanup_ecc_engine: + nanddev_ecc_engine_cleanup(nand); + +err_cleanup_nanddev: + nanddev_cleanup(nand); + +err_manuf_cleanup: + spinand_manufacturer_cleanup(spinand); + +err_free_bufs: + kfree(spinand->databuf); + kfree(spinand->scratchbuf); + return ret; +} + +static void spinand_cleanup(struct spinand_device *spinand) +{ + struct nand_device *nand = spinand_to_nand(spinand); + + nanddev_cleanup(nand); + spinand_manufacturer_cleanup(spinand); + kfree(spinand->databuf); + kfree(spinand->scratchbuf); +} + +static int spinand_probe(struct spi_mem *mem) +{ + struct spinand_device *spinand; + struct mtd_info *mtd; + int ret; + + spinand = devm_kzalloc(&mem->spi->dev, sizeof(*spinand), + GFP_KERNEL); + if (!spinand) + return -ENOMEM; + + spinand->spimem = mem; + spi_mem_set_drvdata(mem, spinand); + spinand_set_of_node(spinand, mem->spi->dev.of_node); + mutex_init(&spinand->lock); + mtd = spinand_to_mtd(spinand); + mtd->dev.parent = &mem->spi->dev; + + ret = spinand_init(spinand); + if (ret) + return ret; + + ret = mtd_device_register(mtd, NULL, 0); + if (ret) + goto err_spinand_cleanup; + + return 0; + +err_spinand_cleanup: + spinand_cleanup(spinand); + + return ret; +} + +static int spinand_remove(struct spi_mem *mem) +{ + struct spinand_device *spinand; + struct mtd_info *mtd; + int ret; + + spinand = spi_mem_get_drvdata(mem); + mtd = spinand_to_mtd(spinand); + + ret = mtd_device_unregister(mtd); + if (ret) + return ret; + + spinand_cleanup(spinand); + + return 0; +} + +static const struct spi_device_id spinand_ids[] = { + { .name = "spi-nand" }, + { /* sentinel */ }, +}; +MODULE_DEVICE_TABLE(spi, spinand_ids); + +#ifdef CONFIG_OF +static const struct of_device_id spinand_of_ids[] = { + { .compatible = "spi-nand" }, + { /* sentinel */ }, +}; +MODULE_DEVICE_TABLE(of, spinand_of_ids); +#endif + +static struct spi_mem_driver spinand_drv = { + .spidrv = { + .id_table = spinand_ids, + .driver = { + .name = "spi-nand", + .of_match_table = of_match_ptr(spinand_of_ids), + }, + }, + .probe = spinand_probe, + .remove = spinand_remove, +}; +module_spi_mem_driver(spinand_drv); + +MODULE_DESCRIPTION("SPI NAND framework"); +MODULE_AUTHOR("Peter Pan<peterpandong@micron.com>"); +MODULE_LICENSE("GPL v2"); diff --git a/drivers/mtd/nand/spi/esmt.c b/drivers/mtd/nand/spi/esmt.c new file mode 100644 index 0000000000..31c439a557 --- /dev/null +++ b/drivers/mtd/nand/spi/esmt.c @@ -0,0 +1,144 @@ +// SPDX-License-Identifier: GPL-2.0 +/* + * Author: + * Chuanhong Guo <gch981213@gmail.com> - the main driver logic + * Martin Kurbanov <mmkurbanov@sberdevices.ru> - OOB layout + */ + +#include <linux/device.h> +#include <linux/kernel.h> +#include <linux/mtd/spinand.h> + +/* ESMT uses GigaDevice 0xc8 JECDEC ID on some SPI NANDs */ +#define SPINAND_MFR_ESMT_C8 0xc8 + +static SPINAND_OP_VARIANTS(read_cache_variants, + SPINAND_PAGE_READ_FROM_CACHE_X4_OP(0, 1, NULL, 0), + SPINAND_PAGE_READ_FROM_CACHE_X2_OP(0, 1, NULL, 0), + SPINAND_PAGE_READ_FROM_CACHE_OP(true, 0, 1, NULL, 0), + SPINAND_PAGE_READ_FROM_CACHE_OP(false, 0, 1, NULL, 0)); + +static SPINAND_OP_VARIANTS(write_cache_variants, + SPINAND_PROG_LOAD_X4(true, 0, NULL, 0), + SPINAND_PROG_LOAD(true, 0, NULL, 0)); + +static SPINAND_OP_VARIANTS(update_cache_variants, + SPINAND_PROG_LOAD_X4(false, 0, NULL, 0), + SPINAND_PROG_LOAD(false, 0, NULL, 0)); + +/* + * OOB spare area map (64 bytes) + * + * Bad Block Markers + * filled by HW and kernel Reserved + * | +-----------------------+-----------------------+ + * | | | | + * | | OOB free data Area |non ECC protected | + * | +-------------|-----+-----------------|-----+-----------------|-----+ + * | | | | | | | | + * +-|---|----------+--|-----|--------------+--|-----|--------------+--|-----|--------------+ + * | | | section0 | | | section1 | | | section2 | | | section3 | + * +-v-+-v-+---+----+--v--+--v--+-----+-----+--v--+--v--+-----+-----+--v--+--v--+-----+-----+ + * | | | | | | | | | | | | | | | | | + * |0:1|2:3|4:7|8:15|16:17|18:19|20:23|24:31|32:33|34:35|36:39|40:47|48:49|50:51|52:55|56:63| + * | | | | | | | | | | | | | | | | | + * +---+---+-^-+--^-+-----+-----+--^--+--^--+-----+-----+--^--+--^--+-----+-----+--^--+--^--+ + * | | | | | | | | + * | +----------------|-----+-----------------|-----+-----------------|-----+ + * | ECC Area|(Main + Spare) - filled|by ESMT NAND HW | + * | | | | + * +---------------------+-----------------------+-----------------------+ + * OOB ECC protected Area - not used due to + * partial programming from some filesystems + * (like JFFS2 with cleanmarkers) + */ + +#define ESMT_OOB_SECTION_COUNT 4 +#define ESMT_OOB_SECTION_SIZE(nand) \ + (nanddev_per_page_oobsize(nand) / ESMT_OOB_SECTION_COUNT) +#define ESMT_OOB_FREE_SIZE(nand) \ + (ESMT_OOB_SECTION_SIZE(nand) / 2) +#define ESMT_OOB_ECC_SIZE(nand) \ + (ESMT_OOB_SECTION_SIZE(nand) - ESMT_OOB_FREE_SIZE(nand)) +#define ESMT_OOB_BBM_SIZE 2 + +static int f50l1g41lb_ooblayout_ecc(struct mtd_info *mtd, int section, + struct mtd_oob_region *region) +{ + struct nand_device *nand = mtd_to_nanddev(mtd); + + if (section >= ESMT_OOB_SECTION_COUNT) + return -ERANGE; + + region->offset = section * ESMT_OOB_SECTION_SIZE(nand) + + ESMT_OOB_FREE_SIZE(nand); + region->length = ESMT_OOB_ECC_SIZE(nand); + + return 0; +} + +static int f50l1g41lb_ooblayout_free(struct mtd_info *mtd, int section, + struct mtd_oob_region *region) +{ + struct nand_device *nand = mtd_to_nanddev(mtd); + + if (section >= ESMT_OOB_SECTION_COUNT) + return -ERANGE; + + /* + * Reserve space for bad blocks markers (section0) and + * reserved bytes (sections 1-3) + */ + region->offset = section * ESMT_OOB_SECTION_SIZE(nand) + 2; + + /* Use only 2 non-protected ECC bytes per each OOB section */ + region->length = 2; + + return 0; +} + +static const struct mtd_ooblayout_ops f50l1g41lb_ooblayout = { + .ecc = f50l1g41lb_ooblayout_ecc, + .free = f50l1g41lb_ooblayout_free, +}; + +static const struct spinand_info esmt_c8_spinand_table[] = { + SPINAND_INFO("F50L1G41LB", + SPINAND_ID(SPINAND_READID_METHOD_OPCODE_ADDR, 0x01), + NAND_MEMORG(1, 2048, 64, 64, 1024, 20, 1, 1, 1), + NAND_ECCREQ(1, 512), + SPINAND_INFO_OP_VARIANTS(&read_cache_variants, + &write_cache_variants, + &update_cache_variants), + 0, + SPINAND_ECCINFO(&f50l1g41lb_ooblayout, NULL)), + SPINAND_INFO("F50D1G41LB", + SPINAND_ID(SPINAND_READID_METHOD_OPCODE_ADDR, 0x11), + NAND_MEMORG(1, 2048, 64, 64, 1024, 20, 1, 1, 1), + NAND_ECCREQ(1, 512), + SPINAND_INFO_OP_VARIANTS(&read_cache_variants, + &write_cache_variants, + &update_cache_variants), + 0, + SPINAND_ECCINFO(&f50l1g41lb_ooblayout, NULL)), + SPINAND_INFO("F50D2G41KA", + SPINAND_ID(SPINAND_READID_METHOD_OPCODE_ADDR, 0x51), + NAND_MEMORG(1, 2048, 128, 64, 2048, 40, 1, 1, 1), + NAND_ECCREQ(8, 512), + SPINAND_INFO_OP_VARIANTS(&read_cache_variants, + &write_cache_variants, + &update_cache_variants), + 0, + SPINAND_ECCINFO(&f50l1g41lb_ooblayout, NULL)), +}; + +static const struct spinand_manufacturer_ops esmt_spinand_manuf_ops = { +}; + +const struct spinand_manufacturer esmt_c8_spinand_manufacturer = { + .id = SPINAND_MFR_ESMT_C8, + .name = "ESMT", + .chips = esmt_c8_spinand_table, + .nchips = ARRAY_SIZE(esmt_c8_spinand_table), + .ops = &esmt_spinand_manuf_ops, +}; diff --git a/drivers/mtd/nand/spi/gigadevice.c b/drivers/mtd/nand/spi/gigadevice.c new file mode 100644 index 0000000000..987710e094 --- /dev/null +++ b/drivers/mtd/nand/spi/gigadevice.c @@ -0,0 +1,545 @@ +// SPDX-License-Identifier: GPL-2.0 +/* + * Author: + * Chuanhong Guo <gch981213@gmail.com> + */ + +#include <linux/device.h> +#include <linux/kernel.h> +#include <linux/mtd/spinand.h> + +#define SPINAND_MFR_GIGADEVICE 0xC8 + +#define GD5FXGQ4XA_STATUS_ECC_1_7_BITFLIPS (1 << 4) +#define GD5FXGQ4XA_STATUS_ECC_8_BITFLIPS (3 << 4) + +#define GD5FXGQ5XE_STATUS_ECC_1_4_BITFLIPS (1 << 4) +#define GD5FXGQ5XE_STATUS_ECC_4_BITFLIPS (3 << 4) + +#define GD5FXGQXXEXXG_REG_STATUS2 0xf0 + +#define GD5FXGQ4UXFXXG_STATUS_ECC_MASK (7 << 4) +#define GD5FXGQ4UXFXXG_STATUS_ECC_NO_BITFLIPS (0 << 4) +#define GD5FXGQ4UXFXXG_STATUS_ECC_1_3_BITFLIPS (1 << 4) +#define GD5FXGQ4UXFXXG_STATUS_ECC_UNCOR_ERROR (7 << 4) + +static SPINAND_OP_VARIANTS(read_cache_variants, + SPINAND_PAGE_READ_FROM_CACHE_QUADIO_OP(0, 1, NULL, 0), + SPINAND_PAGE_READ_FROM_CACHE_X4_OP(0, 1, NULL, 0), + SPINAND_PAGE_READ_FROM_CACHE_DUALIO_OP(0, 1, NULL, 0), + SPINAND_PAGE_READ_FROM_CACHE_X2_OP(0, 1, NULL, 0), + SPINAND_PAGE_READ_FROM_CACHE_OP(true, 0, 1, NULL, 0), + SPINAND_PAGE_READ_FROM_CACHE_OP(false, 0, 1, NULL, 0)); + +static SPINAND_OP_VARIANTS(read_cache_variants_f, + SPINAND_PAGE_READ_FROM_CACHE_QUADIO_OP(0, 1, NULL, 0), + SPINAND_PAGE_READ_FROM_CACHE_X4_OP_3A(0, 1, NULL, 0), + SPINAND_PAGE_READ_FROM_CACHE_DUALIO_OP(0, 1, NULL, 0), + SPINAND_PAGE_READ_FROM_CACHE_X2_OP_3A(0, 1, NULL, 0), + SPINAND_PAGE_READ_FROM_CACHE_OP_3A(true, 0, 1, NULL, 0), + SPINAND_PAGE_READ_FROM_CACHE_OP_3A(false, 0, 0, NULL, 0)); + +static SPINAND_OP_VARIANTS(read_cache_variants_1gq5, + SPINAND_PAGE_READ_FROM_CACHE_QUADIO_OP(0, 2, NULL, 0), + SPINAND_PAGE_READ_FROM_CACHE_X4_OP(0, 1, NULL, 0), + SPINAND_PAGE_READ_FROM_CACHE_DUALIO_OP(0, 1, NULL, 0), + SPINAND_PAGE_READ_FROM_CACHE_X2_OP(0, 1, NULL, 0), + SPINAND_PAGE_READ_FROM_CACHE_OP(true, 0, 1, NULL, 0), + SPINAND_PAGE_READ_FROM_CACHE_OP(false, 0, 1, NULL, 0)); + +static SPINAND_OP_VARIANTS(read_cache_variants_2gq5, + SPINAND_PAGE_READ_FROM_CACHE_QUADIO_OP(0, 4, NULL, 0), + SPINAND_PAGE_READ_FROM_CACHE_X4_OP(0, 1, NULL, 0), + SPINAND_PAGE_READ_FROM_CACHE_DUALIO_OP(0, 2, NULL, 0), + SPINAND_PAGE_READ_FROM_CACHE_X2_OP(0, 1, NULL, 0), + SPINAND_PAGE_READ_FROM_CACHE_OP(true, 0, 1, NULL, 0), + SPINAND_PAGE_READ_FROM_CACHE_OP(false, 0, 1, NULL, 0)); + +static SPINAND_OP_VARIANTS(write_cache_variants, + SPINAND_PROG_LOAD_X4(true, 0, NULL, 0), + SPINAND_PROG_LOAD(true, 0, NULL, 0)); + +static SPINAND_OP_VARIANTS(update_cache_variants, + SPINAND_PROG_LOAD_X4(false, 0, NULL, 0), + SPINAND_PROG_LOAD(false, 0, NULL, 0)); + +static int gd5fxgq4xa_ooblayout_ecc(struct mtd_info *mtd, int section, + struct mtd_oob_region *region) +{ + if (section > 3) + return -ERANGE; + + region->offset = (16 * section) + 8; + region->length = 8; + + return 0; +} + +static int gd5fxgq4xa_ooblayout_free(struct mtd_info *mtd, int section, + struct mtd_oob_region *region) +{ + if (section > 3) + return -ERANGE; + + if (section) { + region->offset = 16 * section; + region->length = 8; + } else { + /* section 0 has one byte reserved for bad block mark */ + region->offset = 1; + region->length = 7; + } + return 0; +} + +static const struct mtd_ooblayout_ops gd5fxgq4xa_ooblayout = { + .ecc = gd5fxgq4xa_ooblayout_ecc, + .free = gd5fxgq4xa_ooblayout_free, +}; + +static int gd5fxgq4xa_ecc_get_status(struct spinand_device *spinand, + u8 status) +{ + switch (status & STATUS_ECC_MASK) { + case STATUS_ECC_NO_BITFLIPS: + return 0; + + case GD5FXGQ4XA_STATUS_ECC_1_7_BITFLIPS: + /* 1-7 bits are flipped. return the maximum. */ + return 7; + + case GD5FXGQ4XA_STATUS_ECC_8_BITFLIPS: + return 8; + + case STATUS_ECC_UNCOR_ERROR: + return -EBADMSG; + + default: + break; + } + + return -EINVAL; +} + +static int gd5fxgqx_variant2_ooblayout_ecc(struct mtd_info *mtd, int section, + struct mtd_oob_region *region) +{ + if (section) + return -ERANGE; + + region->offset = 64; + region->length = 64; + + return 0; +} + +static int gd5fxgqx_variant2_ooblayout_free(struct mtd_info *mtd, int section, + struct mtd_oob_region *region) +{ + if (section) + return -ERANGE; + + /* Reserve 1 bytes for the BBM. */ + region->offset = 1; + region->length = 63; + + return 0; +} + +/* Valid for Q4/Q5 and Q6 (untested) devices */ +static const struct mtd_ooblayout_ops gd5fxgqx_variant2_ooblayout = { + .ecc = gd5fxgqx_variant2_ooblayout_ecc, + .free = gd5fxgqx_variant2_ooblayout_free, +}; + +static int gd5fxgq4xc_ooblayout_256_ecc(struct mtd_info *mtd, int section, + struct mtd_oob_region *oobregion) +{ + if (section) + return -ERANGE; + + oobregion->offset = 128; + oobregion->length = 128; + + return 0; +} + +static int gd5fxgq4xc_ooblayout_256_free(struct mtd_info *mtd, int section, + struct mtd_oob_region *oobregion) +{ + if (section) + return -ERANGE; + + oobregion->offset = 1; + oobregion->length = 127; + + return 0; +} + +static const struct mtd_ooblayout_ops gd5fxgq4xc_oob_256_ops = { + .ecc = gd5fxgq4xc_ooblayout_256_ecc, + .free = gd5fxgq4xc_ooblayout_256_free, +}; + +static int gd5fxgq4uexxg_ecc_get_status(struct spinand_device *spinand, + u8 status) +{ + u8 status2; + struct spi_mem_op op = SPINAND_GET_FEATURE_OP(GD5FXGQXXEXXG_REG_STATUS2, + &status2); + int ret; + + switch (status & STATUS_ECC_MASK) { + case STATUS_ECC_NO_BITFLIPS: + return 0; + + case GD5FXGQ4XA_STATUS_ECC_1_7_BITFLIPS: + /* + * Read status2 register to determine a more fine grained + * bit error status + */ + ret = spi_mem_exec_op(spinand->spimem, &op); + if (ret) + return ret; + + /* + * 4 ... 7 bits are flipped (1..4 can't be detected, so + * report the maximum of 4 in this case + */ + /* bits sorted this way (3...0): ECCS1,ECCS0,ECCSE1,ECCSE0 */ + return ((status & STATUS_ECC_MASK) >> 2) | + ((status2 & STATUS_ECC_MASK) >> 4); + + case GD5FXGQ4XA_STATUS_ECC_8_BITFLIPS: + return 8; + + case STATUS_ECC_UNCOR_ERROR: + return -EBADMSG; + + default: + break; + } + + return -EINVAL; +} + +static int gd5fxgq5xexxg_ecc_get_status(struct spinand_device *spinand, + u8 status) +{ + u8 status2; + struct spi_mem_op op = SPINAND_GET_FEATURE_OP(GD5FXGQXXEXXG_REG_STATUS2, + &status2); + int ret; + + switch (status & STATUS_ECC_MASK) { + case STATUS_ECC_NO_BITFLIPS: + return 0; + + case GD5FXGQ5XE_STATUS_ECC_1_4_BITFLIPS: + /* + * Read status2 register to determine a more fine grained + * bit error status + */ + ret = spi_mem_exec_op(spinand->spimem, &op); + if (ret) + return ret; + + /* + * 1 ... 4 bits are flipped (and corrected) + */ + /* bits sorted this way (1...0): ECCSE1, ECCSE0 */ + return ((status2 & STATUS_ECC_MASK) >> 4) + 1; + + case STATUS_ECC_UNCOR_ERROR: + return -EBADMSG; + + default: + break; + } + + return -EINVAL; +} + +static int gd5fxgq4ufxxg_ecc_get_status(struct spinand_device *spinand, + u8 status) +{ + switch (status & GD5FXGQ4UXFXXG_STATUS_ECC_MASK) { + case GD5FXGQ4UXFXXG_STATUS_ECC_NO_BITFLIPS: + return 0; + + case GD5FXGQ4UXFXXG_STATUS_ECC_1_3_BITFLIPS: + return 3; + + case GD5FXGQ4UXFXXG_STATUS_ECC_UNCOR_ERROR: + return -EBADMSG; + + default: /* (2 << 4) through (6 << 4) are 4-8 corrected errors */ + return ((status & GD5FXGQ4UXFXXG_STATUS_ECC_MASK) >> 4) + 2; + } + + return -EINVAL; +} + +static const struct spinand_info gigadevice_spinand_table[] = { + SPINAND_INFO("GD5F1GQ4xA", + SPINAND_ID(SPINAND_READID_METHOD_OPCODE_ADDR, 0xf1), + NAND_MEMORG(1, 2048, 64, 64, 1024, 20, 1, 1, 1), + NAND_ECCREQ(8, 512), + SPINAND_INFO_OP_VARIANTS(&read_cache_variants, + &write_cache_variants, + &update_cache_variants), + SPINAND_HAS_QE_BIT, + SPINAND_ECCINFO(&gd5fxgq4xa_ooblayout, + gd5fxgq4xa_ecc_get_status)), + SPINAND_INFO("GD5F2GQ4xA", + SPINAND_ID(SPINAND_READID_METHOD_OPCODE_ADDR, 0xf2), + NAND_MEMORG(1, 2048, 64, 64, 2048, 40, 1, 1, 1), + NAND_ECCREQ(8, 512), + SPINAND_INFO_OP_VARIANTS(&read_cache_variants, + &write_cache_variants, + &update_cache_variants), + SPINAND_HAS_QE_BIT, + SPINAND_ECCINFO(&gd5fxgq4xa_ooblayout, + gd5fxgq4xa_ecc_get_status)), + SPINAND_INFO("GD5F4GQ4xA", + SPINAND_ID(SPINAND_READID_METHOD_OPCODE_ADDR, 0xf4), + NAND_MEMORG(1, 2048, 64, 64, 4096, 80, 1, 1, 1), + NAND_ECCREQ(8, 512), + SPINAND_INFO_OP_VARIANTS(&read_cache_variants, + &write_cache_variants, + &update_cache_variants), + SPINAND_HAS_QE_BIT, + SPINAND_ECCINFO(&gd5fxgq4xa_ooblayout, + gd5fxgq4xa_ecc_get_status)), + SPINAND_INFO("GD5F4GQ4RC", + SPINAND_ID(SPINAND_READID_METHOD_OPCODE, 0xa4, 0x68), + NAND_MEMORG(1, 4096, 256, 64, 2048, 40, 1, 1, 1), + NAND_ECCREQ(8, 512), + SPINAND_INFO_OP_VARIANTS(&read_cache_variants_f, + &write_cache_variants, + &update_cache_variants), + SPINAND_HAS_QE_BIT, + SPINAND_ECCINFO(&gd5fxgq4xc_oob_256_ops, + gd5fxgq4ufxxg_ecc_get_status)), + SPINAND_INFO("GD5F4GQ4UC", + SPINAND_ID(SPINAND_READID_METHOD_OPCODE, 0xb4, 0x68), + NAND_MEMORG(1, 4096, 256, 64, 2048, 40, 1, 1, 1), + NAND_ECCREQ(8, 512), + SPINAND_INFO_OP_VARIANTS(&read_cache_variants_f, + &write_cache_variants, + &update_cache_variants), + SPINAND_HAS_QE_BIT, + SPINAND_ECCINFO(&gd5fxgq4xc_oob_256_ops, + gd5fxgq4ufxxg_ecc_get_status)), + SPINAND_INFO("GD5F1GQ4UExxG", + SPINAND_ID(SPINAND_READID_METHOD_OPCODE_ADDR, 0xd1), + NAND_MEMORG(1, 2048, 128, 64, 1024, 20, 1, 1, 1), + NAND_ECCREQ(8, 512), + SPINAND_INFO_OP_VARIANTS(&read_cache_variants, + &write_cache_variants, + &update_cache_variants), + SPINAND_HAS_QE_BIT, + SPINAND_ECCINFO(&gd5fxgqx_variant2_ooblayout, + gd5fxgq4uexxg_ecc_get_status)), + SPINAND_INFO("GD5F1GQ4RExxG", + SPINAND_ID(SPINAND_READID_METHOD_OPCODE_ADDR, 0xc1), + NAND_MEMORG(1, 2048, 128, 64, 1024, 20, 1, 1, 1), + NAND_ECCREQ(8, 512), + SPINAND_INFO_OP_VARIANTS(&read_cache_variants, + &write_cache_variants, + &update_cache_variants), + SPINAND_HAS_QE_BIT, + SPINAND_ECCINFO(&gd5fxgqx_variant2_ooblayout, + gd5fxgq4uexxg_ecc_get_status)), + SPINAND_INFO("GD5F2GQ4UExxG", + SPINAND_ID(SPINAND_READID_METHOD_OPCODE_ADDR, 0xd2), + NAND_MEMORG(1, 2048, 128, 64, 2048, 40, 1, 1, 1), + NAND_ECCREQ(8, 512), + SPINAND_INFO_OP_VARIANTS(&read_cache_variants, + &write_cache_variants, + &update_cache_variants), + SPINAND_HAS_QE_BIT, + SPINAND_ECCINFO(&gd5fxgqx_variant2_ooblayout, + gd5fxgq4uexxg_ecc_get_status)), + SPINAND_INFO("GD5F2GQ4RExxG", + SPINAND_ID(SPINAND_READID_METHOD_OPCODE_ADDR, 0xc2), + NAND_MEMORG(1, 2048, 128, 64, 2048, 40, 1, 1, 1), + NAND_ECCREQ(8, 512), + SPINAND_INFO_OP_VARIANTS(&read_cache_variants, + &write_cache_variants, + &update_cache_variants), + SPINAND_HAS_QE_BIT, + SPINAND_ECCINFO(&gd5fxgqx_variant2_ooblayout, + gd5fxgq4uexxg_ecc_get_status)), + SPINAND_INFO("GD5F1GQ4UFxxG", + SPINAND_ID(SPINAND_READID_METHOD_OPCODE, 0xb1, 0x48), + NAND_MEMORG(1, 2048, 128, 64, 1024, 20, 1, 1, 1), + NAND_ECCREQ(8, 512), + SPINAND_INFO_OP_VARIANTS(&read_cache_variants_f, + &write_cache_variants, + &update_cache_variants), + SPINAND_HAS_QE_BIT, + SPINAND_ECCINFO(&gd5fxgqx_variant2_ooblayout, + gd5fxgq4ufxxg_ecc_get_status)), + SPINAND_INFO("GD5F1GQ5UExxG", + SPINAND_ID(SPINAND_READID_METHOD_OPCODE_DUMMY, 0x51), + NAND_MEMORG(1, 2048, 128, 64, 1024, 20, 1, 1, 1), + NAND_ECCREQ(4, 512), + SPINAND_INFO_OP_VARIANTS(&read_cache_variants_1gq5, + &write_cache_variants, + &update_cache_variants), + SPINAND_HAS_QE_BIT, + SPINAND_ECCINFO(&gd5fxgqx_variant2_ooblayout, + gd5fxgq5xexxg_ecc_get_status)), + SPINAND_INFO("GD5F1GQ5RExxG", + SPINAND_ID(SPINAND_READID_METHOD_OPCODE_DUMMY, 0x41), + NAND_MEMORG(1, 2048, 128, 64, 1024, 20, 1, 1, 1), + NAND_ECCREQ(4, 512), + SPINAND_INFO_OP_VARIANTS(&read_cache_variants_1gq5, + &write_cache_variants, + &update_cache_variants), + SPINAND_HAS_QE_BIT, + SPINAND_ECCINFO(&gd5fxgqx_variant2_ooblayout, + gd5fxgq5xexxg_ecc_get_status)), + SPINAND_INFO("GD5F2GQ5UExxG", + SPINAND_ID(SPINAND_READID_METHOD_OPCODE_DUMMY, 0x52), + NAND_MEMORG(1, 2048, 128, 64, 2048, 40, 1, 1, 1), + NAND_ECCREQ(4, 512), + SPINAND_INFO_OP_VARIANTS(&read_cache_variants_2gq5, + &write_cache_variants, + &update_cache_variants), + SPINAND_HAS_QE_BIT, + SPINAND_ECCINFO(&gd5fxgqx_variant2_ooblayout, + gd5fxgq5xexxg_ecc_get_status)), + SPINAND_INFO("GD5F2GQ5RExxG", + SPINAND_ID(SPINAND_READID_METHOD_OPCODE_DUMMY, 0x42), + NAND_MEMORG(1, 2048, 128, 64, 2048, 40, 1, 1, 1), + NAND_ECCREQ(4, 512), + SPINAND_INFO_OP_VARIANTS(&read_cache_variants_2gq5, + &write_cache_variants, + &update_cache_variants), + SPINAND_HAS_QE_BIT, + SPINAND_ECCINFO(&gd5fxgqx_variant2_ooblayout, + gd5fxgq5xexxg_ecc_get_status)), + SPINAND_INFO("GD5F4GQ6UExxG", + SPINAND_ID(SPINAND_READID_METHOD_OPCODE_DUMMY, 0x55), + NAND_MEMORG(1, 2048, 128, 64, 2048, 40, 1, 2, 1), + NAND_ECCREQ(4, 512), + SPINAND_INFO_OP_VARIANTS(&read_cache_variants_2gq5, + &write_cache_variants, + &update_cache_variants), + SPINAND_HAS_QE_BIT, + SPINAND_ECCINFO(&gd5fxgqx_variant2_ooblayout, + gd5fxgq5xexxg_ecc_get_status)), + SPINAND_INFO("GD5F4GQ6RExxG", + SPINAND_ID(SPINAND_READID_METHOD_OPCODE_DUMMY, 0x45), + NAND_MEMORG(1, 2048, 128, 64, 2048, 40, 1, 2, 1), + NAND_ECCREQ(4, 512), + SPINAND_INFO_OP_VARIANTS(&read_cache_variants_2gq5, + &write_cache_variants, + &update_cache_variants), + SPINAND_HAS_QE_BIT, + SPINAND_ECCINFO(&gd5fxgqx_variant2_ooblayout, + gd5fxgq5xexxg_ecc_get_status)), + SPINAND_INFO("GD5F1GM7UExxG", + SPINAND_ID(SPINAND_READID_METHOD_OPCODE_DUMMY, 0x91), + NAND_MEMORG(1, 2048, 128, 64, 1024, 20, 1, 1, 1), + NAND_ECCREQ(8, 512), + SPINAND_INFO_OP_VARIANTS(&read_cache_variants_1gq5, + &write_cache_variants, + &update_cache_variants), + SPINAND_HAS_QE_BIT, + SPINAND_ECCINFO(&gd5fxgqx_variant2_ooblayout, + gd5fxgq4uexxg_ecc_get_status)), + SPINAND_INFO("GD5F1GM7RExxG", + SPINAND_ID(SPINAND_READID_METHOD_OPCODE_DUMMY, 0x81), + NAND_MEMORG(1, 2048, 128, 64, 1024, 20, 1, 1, 1), + NAND_ECCREQ(8, 512), + SPINAND_INFO_OP_VARIANTS(&read_cache_variants_1gq5, + &write_cache_variants, + &update_cache_variants), + SPINAND_HAS_QE_BIT, + SPINAND_ECCINFO(&gd5fxgqx_variant2_ooblayout, + gd5fxgq4uexxg_ecc_get_status)), + SPINAND_INFO("GD5F2GM7UExxG", + SPINAND_ID(SPINAND_READID_METHOD_OPCODE_DUMMY, 0x92), + NAND_MEMORG(1, 2048, 128, 64, 2048, 40, 1, 1, 1), + NAND_ECCREQ(8, 512), + SPINAND_INFO_OP_VARIANTS(&read_cache_variants_1gq5, + &write_cache_variants, + &update_cache_variants), + SPINAND_HAS_QE_BIT, + SPINAND_ECCINFO(&gd5fxgqx_variant2_ooblayout, + gd5fxgq4uexxg_ecc_get_status)), + SPINAND_INFO("GD5F2GM7RExxG", + SPINAND_ID(SPINAND_READID_METHOD_OPCODE_DUMMY, 0x82), + NAND_MEMORG(1, 2048, 128, 64, 2048, 40, 1, 1, 1), + NAND_ECCREQ(8, 512), + SPINAND_INFO_OP_VARIANTS(&read_cache_variants_1gq5, + &write_cache_variants, + &update_cache_variants), + SPINAND_HAS_QE_BIT, + SPINAND_ECCINFO(&gd5fxgqx_variant2_ooblayout, + gd5fxgq4uexxg_ecc_get_status)), + SPINAND_INFO("GD5F4GM8UExxG", + SPINAND_ID(SPINAND_READID_METHOD_OPCODE_DUMMY, 0x95), + NAND_MEMORG(1, 2048, 128, 64, 4096, 80, 1, 1, 1), + NAND_ECCREQ(8, 512), + SPINAND_INFO_OP_VARIANTS(&read_cache_variants_1gq5, + &write_cache_variants, + &update_cache_variants), + SPINAND_HAS_QE_BIT, + SPINAND_ECCINFO(&gd5fxgqx_variant2_ooblayout, + gd5fxgq4uexxg_ecc_get_status)), + SPINAND_INFO("GD5F4GM8RExxG", + SPINAND_ID(SPINAND_READID_METHOD_OPCODE_DUMMY, 0x85), + NAND_MEMORG(1, 2048, 128, 64, 4096, 80, 1, 1, 1), + NAND_ECCREQ(8, 512), + SPINAND_INFO_OP_VARIANTS(&read_cache_variants_1gq5, + &write_cache_variants, + &update_cache_variants), + SPINAND_HAS_QE_BIT, + SPINAND_ECCINFO(&gd5fxgqx_variant2_ooblayout, + gd5fxgq4uexxg_ecc_get_status)), + SPINAND_INFO("GD5F2GQ5xExxH", + SPINAND_ID(SPINAND_READID_METHOD_OPCODE_DUMMY, 0x22), + NAND_MEMORG(1, 2048, 64, 64, 2048, 40, 1, 1, 1), + NAND_ECCREQ(4, 512), + SPINAND_INFO_OP_VARIANTS(&read_cache_variants_2gq5, + &write_cache_variants, + &update_cache_variants), + SPINAND_HAS_QE_BIT, + SPINAND_ECCINFO(&gd5fxgqx_variant2_ooblayout, + gd5fxgq4uexxg_ecc_get_status)), + SPINAND_INFO("GD5F1GQ5RExxH", + SPINAND_ID(SPINAND_READID_METHOD_OPCODE_DUMMY, 0x21), + NAND_MEMORG(1, 2048, 64, 64, 1024, 20, 1, 1, 1), + NAND_ECCREQ(4, 512), + SPINAND_INFO_OP_VARIANTS(&read_cache_variants_1gq5, + &write_cache_variants, + &update_cache_variants), + SPINAND_HAS_QE_BIT, + SPINAND_ECCINFO(&gd5fxgqx_variant2_ooblayout, + gd5fxgq4uexxg_ecc_get_status)), + SPINAND_INFO("GD5F1GQ4RExxH", + SPINAND_ID(SPINAND_READID_METHOD_OPCODE_DUMMY, 0xc9), + NAND_MEMORG(1, 2048, 64, 64, 1024, 20, 1, 1, 1), + NAND_ECCREQ(4, 512), + SPINAND_INFO_OP_VARIANTS(&read_cache_variants_1gq5, + &write_cache_variants, + &update_cache_variants), + SPINAND_HAS_QE_BIT, + SPINAND_ECCINFO(&gd5fxgqx_variant2_ooblayout, + gd5fxgq4uexxg_ecc_get_status)), +}; + +static const struct spinand_manufacturer_ops gigadevice_spinand_manuf_ops = { +}; + +const struct spinand_manufacturer gigadevice_spinand_manufacturer = { + .id = SPINAND_MFR_GIGADEVICE, + .name = "GigaDevice", + .chips = gigadevice_spinand_table, + .nchips = ARRAY_SIZE(gigadevice_spinand_table), + .ops = &gigadevice_spinand_manuf_ops, +}; diff --git a/drivers/mtd/nand/spi/macronix.c b/drivers/mtd/nand/spi/macronix.c new file mode 100644 index 0000000000..3dfc7e1e52 --- /dev/null +++ b/drivers/mtd/nand/spi/macronix.c @@ -0,0 +1,333 @@ +// SPDX-License-Identifier: GPL-2.0 +/* + * Copyright (c) 2018 Macronix + * + * Author: Boris Brezillon <boris.brezillon@bootlin.com> + */ + +#include <linux/device.h> +#include <linux/kernel.h> +#include <linux/mtd/spinand.h> + +#define SPINAND_MFR_MACRONIX 0xC2 +#define MACRONIX_ECCSR_MASK 0x0F + +static SPINAND_OP_VARIANTS(read_cache_variants, + SPINAND_PAGE_READ_FROM_CACHE_X4_OP(0, 1, NULL, 0), + SPINAND_PAGE_READ_FROM_CACHE_X2_OP(0, 1, NULL, 0), + SPINAND_PAGE_READ_FROM_CACHE_OP(true, 0, 1, NULL, 0), + SPINAND_PAGE_READ_FROM_CACHE_OP(false, 0, 1, NULL, 0)); + +static SPINAND_OP_VARIANTS(write_cache_variants, + SPINAND_PROG_LOAD_X4(true, 0, NULL, 0), + SPINAND_PROG_LOAD(false, 0, NULL, 0)); + +static SPINAND_OP_VARIANTS(update_cache_variants, + SPINAND_PROG_LOAD_X4(false, 0, NULL, 0), + SPINAND_PROG_LOAD(false, 0, NULL, 0)); + +static int mx35lfxge4ab_ooblayout_ecc(struct mtd_info *mtd, int section, + struct mtd_oob_region *region) +{ + return -ERANGE; +} + +static int mx35lfxge4ab_ooblayout_free(struct mtd_info *mtd, int section, + struct mtd_oob_region *region) +{ + if (section) + return -ERANGE; + + region->offset = 2; + region->length = mtd->oobsize - 2; + + return 0; +} + +static const struct mtd_ooblayout_ops mx35lfxge4ab_ooblayout = { + .ecc = mx35lfxge4ab_ooblayout_ecc, + .free = mx35lfxge4ab_ooblayout_free, +}; + +static int mx35lf1ge4ab_get_eccsr(struct spinand_device *spinand, u8 *eccsr) +{ + struct spi_mem_op op = SPI_MEM_OP(SPI_MEM_OP_CMD(0x7c, 1), + SPI_MEM_OP_NO_ADDR, + SPI_MEM_OP_DUMMY(1, 1), + SPI_MEM_OP_DATA_IN(1, eccsr, 1)); + + int ret = spi_mem_exec_op(spinand->spimem, &op); + if (ret) + return ret; + + *eccsr &= MACRONIX_ECCSR_MASK; + return 0; +} + +static int mx35lf1ge4ab_ecc_get_status(struct spinand_device *spinand, + u8 status) +{ + struct nand_device *nand = spinand_to_nand(spinand); + u8 eccsr; + + switch (status & STATUS_ECC_MASK) { + case STATUS_ECC_NO_BITFLIPS: + return 0; + + case STATUS_ECC_UNCOR_ERROR: + return -EBADMSG; + + case STATUS_ECC_HAS_BITFLIPS: + /* + * Let's try to retrieve the real maximum number of bitflips + * in order to avoid forcing the wear-leveling layer to move + * data around if it's not necessary. + */ + if (mx35lf1ge4ab_get_eccsr(spinand, spinand->scratchbuf)) + return nanddev_get_ecc_conf(nand)->strength; + + eccsr = *spinand->scratchbuf; + if (WARN_ON(eccsr > nanddev_get_ecc_conf(nand)->strength || + !eccsr)) + return nanddev_get_ecc_conf(nand)->strength; + + return eccsr; + + default: + break; + } + + return -EINVAL; +} + +static const struct spinand_info macronix_spinand_table[] = { + SPINAND_INFO("MX35LF1GE4AB", + SPINAND_ID(SPINAND_READID_METHOD_OPCODE_DUMMY, 0x12), + NAND_MEMORG(1, 2048, 64, 64, 1024, 20, 1, 1, 1), + NAND_ECCREQ(4, 512), + SPINAND_INFO_OP_VARIANTS(&read_cache_variants, + &write_cache_variants, + &update_cache_variants), + SPINAND_HAS_QE_BIT, + SPINAND_ECCINFO(&mx35lfxge4ab_ooblayout, + mx35lf1ge4ab_ecc_get_status)), + SPINAND_INFO("MX35LF2GE4AB", + SPINAND_ID(SPINAND_READID_METHOD_OPCODE_DUMMY, 0x22), + NAND_MEMORG(1, 2048, 64, 64, 2048, 40, 2, 1, 1), + NAND_ECCREQ(4, 512), + SPINAND_INFO_OP_VARIANTS(&read_cache_variants, + &write_cache_variants, + &update_cache_variants), + SPINAND_HAS_QE_BIT, + SPINAND_ECCINFO(&mx35lfxge4ab_ooblayout, NULL)), + SPINAND_INFO("MX35LF2GE4AD", + SPINAND_ID(SPINAND_READID_METHOD_OPCODE_DUMMY, 0x26), + NAND_MEMORG(1, 2048, 64, 64, 2048, 40, 1, 1, 1), + NAND_ECCREQ(8, 512), + SPINAND_INFO_OP_VARIANTS(&read_cache_variants, + &write_cache_variants, + &update_cache_variants), + SPINAND_HAS_QE_BIT, + SPINAND_ECCINFO(&mx35lfxge4ab_ooblayout, + mx35lf1ge4ab_ecc_get_status)), + SPINAND_INFO("MX35LF4GE4AD", + SPINAND_ID(SPINAND_READID_METHOD_OPCODE_DUMMY, 0x37), + NAND_MEMORG(1, 4096, 128, 64, 2048, 40, 1, 1, 1), + NAND_ECCREQ(8, 512), + SPINAND_INFO_OP_VARIANTS(&read_cache_variants, + &write_cache_variants, + &update_cache_variants), + SPINAND_HAS_QE_BIT, + SPINAND_ECCINFO(&mx35lfxge4ab_ooblayout, + mx35lf1ge4ab_ecc_get_status)), + SPINAND_INFO("MX35LF1G24AD", + SPINAND_ID(SPINAND_READID_METHOD_OPCODE_DUMMY, 0x14), + NAND_MEMORG(1, 2048, 128, 64, 1024, 20, 1, 1, 1), + NAND_ECCREQ(8, 512), + SPINAND_INFO_OP_VARIANTS(&read_cache_variants, + &write_cache_variants, + &update_cache_variants), + SPINAND_HAS_QE_BIT, + SPINAND_ECCINFO(&mx35lfxge4ab_ooblayout, NULL)), + SPINAND_INFO("MX35LF2G24AD", + SPINAND_ID(SPINAND_READID_METHOD_OPCODE_DUMMY, 0x24), + NAND_MEMORG(1, 2048, 128, 64, 2048, 40, 2, 1, 1), + NAND_ECCREQ(8, 512), + SPINAND_INFO_OP_VARIANTS(&read_cache_variants, + &write_cache_variants, + &update_cache_variants), + SPINAND_HAS_QE_BIT, + SPINAND_ECCINFO(&mx35lfxge4ab_ooblayout, NULL)), + SPINAND_INFO("MX35LF4G24AD", + SPINAND_ID(SPINAND_READID_METHOD_OPCODE_DUMMY, 0x35), + NAND_MEMORG(1, 4096, 256, 64, 2048, 40, 2, 1, 1), + NAND_ECCREQ(8, 512), + SPINAND_INFO_OP_VARIANTS(&read_cache_variants, + &write_cache_variants, + &update_cache_variants), + SPINAND_HAS_QE_BIT, + SPINAND_ECCINFO(&mx35lfxge4ab_ooblayout, NULL)), + SPINAND_INFO("MX31LF1GE4BC", + SPINAND_ID(SPINAND_READID_METHOD_OPCODE_DUMMY, 0x1e), + NAND_MEMORG(1, 2048, 64, 64, 1024, 20, 1, 1, 1), + NAND_ECCREQ(8, 512), + SPINAND_INFO_OP_VARIANTS(&read_cache_variants, + &write_cache_variants, + &update_cache_variants), + SPINAND_HAS_QE_BIT, + SPINAND_ECCINFO(&mx35lfxge4ab_ooblayout, + mx35lf1ge4ab_ecc_get_status)), + SPINAND_INFO("MX31UF1GE4BC", + SPINAND_ID(SPINAND_READID_METHOD_OPCODE_DUMMY, 0x9e), + NAND_MEMORG(1, 2048, 64, 64, 1024, 20, 1, 1, 1), + NAND_ECCREQ(8, 512), + SPINAND_INFO_OP_VARIANTS(&read_cache_variants, + &write_cache_variants, + &update_cache_variants), + SPINAND_HAS_QE_BIT, + SPINAND_ECCINFO(&mx35lfxge4ab_ooblayout, + mx35lf1ge4ab_ecc_get_status)), + + SPINAND_INFO("MX35LF2G14AC", + SPINAND_ID(SPINAND_READID_METHOD_OPCODE_DUMMY, 0x20), + NAND_MEMORG(1, 2048, 64, 64, 2048, 40, 2, 1, 1), + NAND_ECCREQ(4, 512), + SPINAND_INFO_OP_VARIANTS(&read_cache_variants, + &write_cache_variants, + &update_cache_variants), + SPINAND_HAS_QE_BIT, + SPINAND_ECCINFO(&mx35lfxge4ab_ooblayout, + mx35lf1ge4ab_ecc_get_status)), + SPINAND_INFO("MX35UF4G24AD", + SPINAND_ID(SPINAND_READID_METHOD_OPCODE_DUMMY, 0xb5), + NAND_MEMORG(1, 4096, 256, 64, 2048, 40, 2, 1, 1), + NAND_ECCREQ(8, 512), + SPINAND_INFO_OP_VARIANTS(&read_cache_variants, + &write_cache_variants, + &update_cache_variants), + SPINAND_HAS_QE_BIT, + SPINAND_ECCINFO(&mx35lfxge4ab_ooblayout, + mx35lf1ge4ab_ecc_get_status)), + SPINAND_INFO("MX35UF4GE4AD", + SPINAND_ID(SPINAND_READID_METHOD_OPCODE_DUMMY, 0xb7), + NAND_MEMORG(1, 4096, 256, 64, 2048, 40, 1, 1, 1), + NAND_ECCREQ(8, 512), + SPINAND_INFO_OP_VARIANTS(&read_cache_variants, + &write_cache_variants, + &update_cache_variants), + SPINAND_HAS_QE_BIT, + SPINAND_ECCINFO(&mx35lfxge4ab_ooblayout, + mx35lf1ge4ab_ecc_get_status)), + SPINAND_INFO("MX35UF2G14AC", + SPINAND_ID(SPINAND_READID_METHOD_OPCODE_DUMMY, 0xa0), + NAND_MEMORG(1, 2048, 64, 64, 2048, 40, 2, 1, 1), + NAND_ECCREQ(4, 512), + SPINAND_INFO_OP_VARIANTS(&read_cache_variants, + &write_cache_variants, + &update_cache_variants), + SPINAND_HAS_QE_BIT, + SPINAND_ECCINFO(&mx35lfxge4ab_ooblayout, + mx35lf1ge4ab_ecc_get_status)), + SPINAND_INFO("MX35UF2G24AD", + SPINAND_ID(SPINAND_READID_METHOD_OPCODE_DUMMY, 0xa4), + NAND_MEMORG(1, 2048, 128, 64, 2048, 40, 2, 1, 1), + NAND_ECCREQ(8, 512), + SPINAND_INFO_OP_VARIANTS(&read_cache_variants, + &write_cache_variants, + &update_cache_variants), + SPINAND_HAS_QE_BIT, + SPINAND_ECCINFO(&mx35lfxge4ab_ooblayout, + mx35lf1ge4ab_ecc_get_status)), + SPINAND_INFO("MX35UF2GE4AD", + SPINAND_ID(SPINAND_READID_METHOD_OPCODE_DUMMY, 0xa6), + NAND_MEMORG(1, 2048, 128, 64, 2048, 40, 1, 1, 1), + NAND_ECCREQ(8, 512), + SPINAND_INFO_OP_VARIANTS(&read_cache_variants, + &write_cache_variants, + &update_cache_variants), + SPINAND_HAS_QE_BIT, + SPINAND_ECCINFO(&mx35lfxge4ab_ooblayout, + mx35lf1ge4ab_ecc_get_status)), + SPINAND_INFO("MX35UF2GE4AC", + SPINAND_ID(SPINAND_READID_METHOD_OPCODE_DUMMY, 0xa2), + NAND_MEMORG(1, 2048, 64, 64, 2048, 40, 1, 1, 1), + NAND_ECCREQ(4, 512), + SPINAND_INFO_OP_VARIANTS(&read_cache_variants, + &write_cache_variants, + &update_cache_variants), + SPINAND_HAS_QE_BIT, + SPINAND_ECCINFO(&mx35lfxge4ab_ooblayout, + mx35lf1ge4ab_ecc_get_status)), + SPINAND_INFO("MX35UF1G14AC", + SPINAND_ID(SPINAND_READID_METHOD_OPCODE_DUMMY, 0x90), + NAND_MEMORG(1, 2048, 64, 64, 1024, 20, 1, 1, 1), + NAND_ECCREQ(4, 512), + SPINAND_INFO_OP_VARIANTS(&read_cache_variants, + &write_cache_variants, + &update_cache_variants), + SPINAND_HAS_QE_BIT, + SPINAND_ECCINFO(&mx35lfxge4ab_ooblayout, + mx35lf1ge4ab_ecc_get_status)), + SPINAND_INFO("MX35UF1G24AD", + SPINAND_ID(SPINAND_READID_METHOD_OPCODE_DUMMY, 0x94), + NAND_MEMORG(1, 2048, 128, 64, 1024, 20, 1, 1, 1), + NAND_ECCREQ(8, 512), + SPINAND_INFO_OP_VARIANTS(&read_cache_variants, + &write_cache_variants, + &update_cache_variants), + SPINAND_HAS_QE_BIT, + SPINAND_ECCINFO(&mx35lfxge4ab_ooblayout, + mx35lf1ge4ab_ecc_get_status)), + SPINAND_INFO("MX35UF1GE4AD", + SPINAND_ID(SPINAND_READID_METHOD_OPCODE_DUMMY, 0x96), + NAND_MEMORG(1, 2048, 128, 64, 1024, 20, 1, 1, 1), + NAND_ECCREQ(8, 512), + SPINAND_INFO_OP_VARIANTS(&read_cache_variants, + &write_cache_variants, + &update_cache_variants), + SPINAND_HAS_QE_BIT, + SPINAND_ECCINFO(&mx35lfxge4ab_ooblayout, + mx35lf1ge4ab_ecc_get_status)), + SPINAND_INFO("MX35UF1GE4AC", + SPINAND_ID(SPINAND_READID_METHOD_OPCODE_DUMMY, 0x92), + NAND_MEMORG(1, 2048, 64, 64, 1024, 20, 1, 1, 1), + NAND_ECCREQ(4, 512), + SPINAND_INFO_OP_VARIANTS(&read_cache_variants, + &write_cache_variants, + &update_cache_variants), + SPINAND_HAS_QE_BIT, + SPINAND_ECCINFO(&mx35lfxge4ab_ooblayout, + mx35lf1ge4ab_ecc_get_status)), + + SPINAND_INFO("MX31LF2GE4BC", + SPINAND_ID(SPINAND_READID_METHOD_OPCODE_DUMMY, 0x2e), + NAND_MEMORG(1, 2048, 64, 64, 2048, 40, 1, 1, 1), + NAND_ECCREQ(8, 512), + SPINAND_INFO_OP_VARIANTS(&read_cache_variants, + &write_cache_variants, + &update_cache_variants), + SPINAND_HAS_QE_BIT, + SPINAND_ECCINFO(&mx35lfxge4ab_ooblayout, + mx35lf1ge4ab_ecc_get_status)), + SPINAND_INFO("MX3UF2GE4BC", + SPINAND_ID(SPINAND_READID_METHOD_OPCODE_DUMMY, 0xae), + NAND_MEMORG(1, 2048, 64, 64, 2048, 40, 1, 1, 1), + NAND_ECCREQ(8, 512), + SPINAND_INFO_OP_VARIANTS(&read_cache_variants, + &write_cache_variants, + &update_cache_variants), + SPINAND_HAS_QE_BIT, + SPINAND_ECCINFO(&mx35lfxge4ab_ooblayout, + mx35lf1ge4ab_ecc_get_status)), +}; + +static const struct spinand_manufacturer_ops macronix_spinand_manuf_ops = { +}; + +const struct spinand_manufacturer macronix_spinand_manufacturer = { + .id = SPINAND_MFR_MACRONIX, + .name = "Macronix", + .chips = macronix_spinand_table, + .nchips = ARRAY_SIZE(macronix_spinand_table), + .ops = ¯onix_spinand_manuf_ops, +}; diff --git a/drivers/mtd/nand/spi/micron.c b/drivers/mtd/nand/spi/micron.c new file mode 100644 index 0000000000..12601bc422 --- /dev/null +++ b/drivers/mtd/nand/spi/micron.c @@ -0,0 +1,309 @@ +// SPDX-License-Identifier: GPL-2.0 +/* + * Copyright (c) 2016-2017 Micron Technology, Inc. + * + * Authors: + * Peter Pan <peterpandong@micron.com> + */ + +#include <linux/device.h> +#include <linux/kernel.h> +#include <linux/mtd/spinand.h> + +#define SPINAND_MFR_MICRON 0x2c + +#define MICRON_STATUS_ECC_MASK GENMASK(6, 4) +#define MICRON_STATUS_ECC_NO_BITFLIPS (0 << 4) +#define MICRON_STATUS_ECC_1TO3_BITFLIPS (1 << 4) +#define MICRON_STATUS_ECC_4TO6_BITFLIPS (3 << 4) +#define MICRON_STATUS_ECC_7TO8_BITFLIPS (5 << 4) + +#define MICRON_CFG_CR BIT(0) + +/* + * As per datasheet, die selection is done by the 6th bit of Die + * Select Register (Address 0xD0). + */ +#define MICRON_DIE_SELECT_REG 0xD0 + +#define MICRON_SELECT_DIE(x) ((x) << 6) + +static SPINAND_OP_VARIANTS(quadio_read_cache_variants, + SPINAND_PAGE_READ_FROM_CACHE_QUADIO_OP(0, 2, NULL, 0), + SPINAND_PAGE_READ_FROM_CACHE_X4_OP(0, 1, NULL, 0), + SPINAND_PAGE_READ_FROM_CACHE_DUALIO_OP(0, 1, NULL, 0), + SPINAND_PAGE_READ_FROM_CACHE_X2_OP(0, 1, NULL, 0), + SPINAND_PAGE_READ_FROM_CACHE_OP(true, 0, 1, NULL, 0), + SPINAND_PAGE_READ_FROM_CACHE_OP(false, 0, 1, NULL, 0)); + +static SPINAND_OP_VARIANTS(x4_write_cache_variants, + SPINAND_PROG_LOAD_X4(true, 0, NULL, 0), + SPINAND_PROG_LOAD(true, 0, NULL, 0)); + +static SPINAND_OP_VARIANTS(x4_update_cache_variants, + SPINAND_PROG_LOAD_X4(false, 0, NULL, 0), + SPINAND_PROG_LOAD(false, 0, NULL, 0)); + +/* Micron MT29F2G01AAAED Device */ +static SPINAND_OP_VARIANTS(x4_read_cache_variants, + SPINAND_PAGE_READ_FROM_CACHE_X4_OP(0, 1, NULL, 0), + SPINAND_PAGE_READ_FROM_CACHE_X2_OP(0, 1, NULL, 0), + SPINAND_PAGE_READ_FROM_CACHE_OP(true, 0, 1, NULL, 0), + SPINAND_PAGE_READ_FROM_CACHE_OP(false, 0, 1, NULL, 0)); + +static SPINAND_OP_VARIANTS(x1_write_cache_variants, + SPINAND_PROG_LOAD(true, 0, NULL, 0)); + +static SPINAND_OP_VARIANTS(x1_update_cache_variants, + SPINAND_PROG_LOAD(false, 0, NULL, 0)); + +static int micron_8_ooblayout_ecc(struct mtd_info *mtd, int section, + struct mtd_oob_region *region) +{ + if (section) + return -ERANGE; + + region->offset = mtd->oobsize / 2; + region->length = mtd->oobsize / 2; + + return 0; +} + +static int micron_8_ooblayout_free(struct mtd_info *mtd, int section, + struct mtd_oob_region *region) +{ + if (section) + return -ERANGE; + + /* Reserve 2 bytes for the BBM. */ + region->offset = 2; + region->length = (mtd->oobsize / 2) - 2; + + return 0; +} + +static const struct mtd_ooblayout_ops micron_8_ooblayout = { + .ecc = micron_8_ooblayout_ecc, + .free = micron_8_ooblayout_free, +}; + +static int micron_4_ooblayout_ecc(struct mtd_info *mtd, int section, + struct mtd_oob_region *region) +{ + struct spinand_device *spinand = mtd_to_spinand(mtd); + + if (section >= spinand->base.memorg.pagesize / + mtd->ecc_step_size) + return -ERANGE; + + region->offset = (section * 16) + 8; + region->length = 8; + + return 0; +} + +static int micron_4_ooblayout_free(struct mtd_info *mtd, int section, + struct mtd_oob_region *region) +{ + struct spinand_device *spinand = mtd_to_spinand(mtd); + + if (section >= spinand->base.memorg.pagesize / + mtd->ecc_step_size) + return -ERANGE; + + if (section) { + region->offset = 16 * section; + region->length = 8; + } else { + /* section 0 has two bytes reserved for the BBM */ + region->offset = 2; + region->length = 6; + } + + return 0; +} + +static const struct mtd_ooblayout_ops micron_4_ooblayout = { + .ecc = micron_4_ooblayout_ecc, + .free = micron_4_ooblayout_free, +}; + +static int micron_select_target(struct spinand_device *spinand, + unsigned int target) +{ + struct spi_mem_op op = SPINAND_SET_FEATURE_OP(MICRON_DIE_SELECT_REG, + spinand->scratchbuf); + + if (target > 1) + return -EINVAL; + + *spinand->scratchbuf = MICRON_SELECT_DIE(target); + + return spi_mem_exec_op(spinand->spimem, &op); +} + +static int micron_8_ecc_get_status(struct spinand_device *spinand, + u8 status) +{ + switch (status & MICRON_STATUS_ECC_MASK) { + case STATUS_ECC_NO_BITFLIPS: + return 0; + + case STATUS_ECC_UNCOR_ERROR: + return -EBADMSG; + + case MICRON_STATUS_ECC_1TO3_BITFLIPS: + return 3; + + case MICRON_STATUS_ECC_4TO6_BITFLIPS: + return 6; + + case MICRON_STATUS_ECC_7TO8_BITFLIPS: + return 8; + + default: + break; + } + + return -EINVAL; +} + +static const struct spinand_info micron_spinand_table[] = { + /* M79A 2Gb 3.3V */ + SPINAND_INFO("MT29F2G01ABAGD", + SPINAND_ID(SPINAND_READID_METHOD_OPCODE_DUMMY, 0x24), + NAND_MEMORG(1, 2048, 128, 64, 2048, 40, 2, 1, 1), + NAND_ECCREQ(8, 512), + SPINAND_INFO_OP_VARIANTS(&quadio_read_cache_variants, + &x4_write_cache_variants, + &x4_update_cache_variants), + 0, + SPINAND_ECCINFO(µn_8_ooblayout, + micron_8_ecc_get_status)), + /* M79A 2Gb 1.8V */ + SPINAND_INFO("MT29F2G01ABBGD", + SPINAND_ID(SPINAND_READID_METHOD_OPCODE_DUMMY, 0x25), + NAND_MEMORG(1, 2048, 128, 64, 2048, 40, 2, 1, 1), + NAND_ECCREQ(8, 512), + SPINAND_INFO_OP_VARIANTS(&quadio_read_cache_variants, + &x4_write_cache_variants, + &x4_update_cache_variants), + 0, + SPINAND_ECCINFO(µn_8_ooblayout, + micron_8_ecc_get_status)), + /* M78A 1Gb 3.3V */ + SPINAND_INFO("MT29F1G01ABAFD", + SPINAND_ID(SPINAND_READID_METHOD_OPCODE_DUMMY, 0x14), + NAND_MEMORG(1, 2048, 128, 64, 1024, 20, 1, 1, 1), + NAND_ECCREQ(8, 512), + SPINAND_INFO_OP_VARIANTS(&quadio_read_cache_variants, + &x4_write_cache_variants, + &x4_update_cache_variants), + 0, + SPINAND_ECCINFO(µn_8_ooblayout, + micron_8_ecc_get_status)), + /* M78A 1Gb 1.8V */ + SPINAND_INFO("MT29F1G01ABAFD", + SPINAND_ID(SPINAND_READID_METHOD_OPCODE_DUMMY, 0x15), + NAND_MEMORG(1, 2048, 128, 64, 1024, 20, 1, 1, 1), + NAND_ECCREQ(8, 512), + SPINAND_INFO_OP_VARIANTS(&quadio_read_cache_variants, + &x4_write_cache_variants, + &x4_update_cache_variants), + 0, + SPINAND_ECCINFO(µn_8_ooblayout, + micron_8_ecc_get_status)), + /* M79A 4Gb 3.3V */ + SPINAND_INFO("MT29F4G01ADAGD", + SPINAND_ID(SPINAND_READID_METHOD_OPCODE_DUMMY, 0x36), + NAND_MEMORG(1, 2048, 128, 64, 2048, 80, 2, 1, 2), + NAND_ECCREQ(8, 512), + SPINAND_INFO_OP_VARIANTS(&quadio_read_cache_variants, + &x4_write_cache_variants, + &x4_update_cache_variants), + 0, + SPINAND_ECCINFO(µn_8_ooblayout, + micron_8_ecc_get_status), + SPINAND_SELECT_TARGET(micron_select_target)), + /* M70A 4Gb 3.3V */ + SPINAND_INFO("MT29F4G01ABAFD", + SPINAND_ID(SPINAND_READID_METHOD_OPCODE_DUMMY, 0x34), + NAND_MEMORG(1, 4096, 256, 64, 2048, 40, 1, 1, 1), + NAND_ECCREQ(8, 512), + SPINAND_INFO_OP_VARIANTS(&quadio_read_cache_variants, + &x4_write_cache_variants, + &x4_update_cache_variants), + SPINAND_HAS_CR_FEAT_BIT, + SPINAND_ECCINFO(µn_8_ooblayout, + micron_8_ecc_get_status)), + /* M70A 4Gb 1.8V */ + SPINAND_INFO("MT29F4G01ABBFD", + SPINAND_ID(SPINAND_READID_METHOD_OPCODE_DUMMY, 0x35), + NAND_MEMORG(1, 4096, 256, 64, 2048, 40, 1, 1, 1), + NAND_ECCREQ(8, 512), + SPINAND_INFO_OP_VARIANTS(&quadio_read_cache_variants, + &x4_write_cache_variants, + &x4_update_cache_variants), + SPINAND_HAS_CR_FEAT_BIT, + SPINAND_ECCINFO(µn_8_ooblayout, + micron_8_ecc_get_status)), + /* M70A 8Gb 3.3V */ + SPINAND_INFO("MT29F8G01ADAFD", + SPINAND_ID(SPINAND_READID_METHOD_OPCODE_DUMMY, 0x46), + NAND_MEMORG(1, 4096, 256, 64, 2048, 40, 1, 1, 2), + NAND_ECCREQ(8, 512), + SPINAND_INFO_OP_VARIANTS(&quadio_read_cache_variants, + &x4_write_cache_variants, + &x4_update_cache_variants), + SPINAND_HAS_CR_FEAT_BIT, + SPINAND_ECCINFO(µn_8_ooblayout, + micron_8_ecc_get_status), + SPINAND_SELECT_TARGET(micron_select_target)), + /* M70A 8Gb 1.8V */ + SPINAND_INFO("MT29F8G01ADBFD", + SPINAND_ID(SPINAND_READID_METHOD_OPCODE_DUMMY, 0x47), + NAND_MEMORG(1, 4096, 256, 64, 2048, 40, 1, 1, 2), + NAND_ECCREQ(8, 512), + SPINAND_INFO_OP_VARIANTS(&quadio_read_cache_variants, + &x4_write_cache_variants, + &x4_update_cache_variants), + SPINAND_HAS_CR_FEAT_BIT, + SPINAND_ECCINFO(µn_8_ooblayout, + micron_8_ecc_get_status), + SPINAND_SELECT_TARGET(micron_select_target)), + /* M69A 2Gb 3.3V */ + SPINAND_INFO("MT29F2G01AAAED", + SPINAND_ID(SPINAND_READID_METHOD_OPCODE_DUMMY, 0x9F), + NAND_MEMORG(1, 2048, 64, 64, 2048, 80, 2, 1, 1), + NAND_ECCREQ(4, 512), + SPINAND_INFO_OP_VARIANTS(&x4_read_cache_variants, + &x1_write_cache_variants, + &x1_update_cache_variants), + 0, + SPINAND_ECCINFO(µn_4_ooblayout, NULL)), +}; + +static int micron_spinand_init(struct spinand_device *spinand) +{ + /* + * M70A device series enable Continuous Read feature at Power-up, + * which is not supported. Disable this bit to avoid any possible + * failure. + */ + if (spinand->flags & SPINAND_HAS_CR_FEAT_BIT) + return spinand_upd_cfg(spinand, MICRON_CFG_CR, 0); + + return 0; +} + +static const struct spinand_manufacturer_ops micron_spinand_manuf_ops = { + .init = micron_spinand_init, +}; + +const struct spinand_manufacturer micron_spinand_manufacturer = { + .id = SPINAND_MFR_MICRON, + .name = "Micron", + .chips = micron_spinand_table, + .nchips = ARRAY_SIZE(micron_spinand_table), + .ops = µn_spinand_manuf_ops, +}; diff --git a/drivers/mtd/nand/spi/paragon.c b/drivers/mtd/nand/spi/paragon.c new file mode 100644 index 0000000000..519ade513c --- /dev/null +++ b/drivers/mtd/nand/spi/paragon.c @@ -0,0 +1,131 @@ +// SPDX-License-Identifier: GPL-2.0 +/* + * Copyright (C) 2019 Jeff Kletsky + * + * Author: Jeff Kletsky <git-commits@allycomm.com> + */ + +#include <linux/device.h> +#include <linux/kernel.h> +#include <linux/mtd/spinand.h> + + +#define SPINAND_MFR_PARAGON 0xa1 + + +#define PN26G0XA_STATUS_ECC_BITMASK (3 << 4) + +#define PN26G0XA_STATUS_ECC_NONE_DETECTED (0 << 4) +#define PN26G0XA_STATUS_ECC_1_7_CORRECTED (1 << 4) +#define PN26G0XA_STATUS_ECC_ERRORED (2 << 4) +#define PN26G0XA_STATUS_ECC_8_CORRECTED (3 << 4) + + +static SPINAND_OP_VARIANTS(read_cache_variants, + SPINAND_PAGE_READ_FROM_CACHE_QUADIO_OP(0, 2, NULL, 0), + SPINAND_PAGE_READ_FROM_CACHE_X4_OP(0, 1, NULL, 0), + SPINAND_PAGE_READ_FROM_CACHE_DUALIO_OP(0, 1, NULL, 0), + SPINAND_PAGE_READ_FROM_CACHE_X2_OP(0, 1, NULL, 0), + SPINAND_PAGE_READ_FROM_CACHE_OP(true, 0, 1, NULL, 0), + SPINAND_PAGE_READ_FROM_CACHE_OP(false, 0, 1, NULL, 0)); + +static SPINAND_OP_VARIANTS(write_cache_variants, + SPINAND_PROG_LOAD_X4(true, 0, NULL, 0), + SPINAND_PROG_LOAD(true, 0, NULL, 0)); + +static SPINAND_OP_VARIANTS(update_cache_variants, + SPINAND_PROG_LOAD_X4(false, 0, NULL, 0), + SPINAND_PROG_LOAD(false, 0, NULL, 0)); + + +static int pn26g0xa_ooblayout_ecc(struct mtd_info *mtd, int section, + struct mtd_oob_region *region) +{ + if (section > 3) + return -ERANGE; + + region->offset = 6 + (15 * section); /* 4 BBM + 2 user bytes */ + region->length = 13; + + return 0; +} + +static int pn26g0xa_ooblayout_free(struct mtd_info *mtd, int section, + struct mtd_oob_region *region) +{ + if (section > 4) + return -ERANGE; + + if (section == 4) { + region->offset = 64; + region->length = 64; + } else { + region->offset = 4 + (15 * section); + region->length = 2; + } + + return 0; +} + +static int pn26g0xa_ecc_get_status(struct spinand_device *spinand, + u8 status) +{ + switch (status & PN26G0XA_STATUS_ECC_BITMASK) { + case PN26G0XA_STATUS_ECC_NONE_DETECTED: + return 0; + + case PN26G0XA_STATUS_ECC_1_7_CORRECTED: + return 7; /* Return upper limit by convention */ + + case PN26G0XA_STATUS_ECC_8_CORRECTED: + return 8; + + case PN26G0XA_STATUS_ECC_ERRORED: + return -EBADMSG; + + default: + break; + } + + return -EINVAL; +} + +static const struct mtd_ooblayout_ops pn26g0xa_ooblayout = { + .ecc = pn26g0xa_ooblayout_ecc, + .free = pn26g0xa_ooblayout_free, +}; + + +static const struct spinand_info paragon_spinand_table[] = { + SPINAND_INFO("PN26G01A", + SPINAND_ID(SPINAND_READID_METHOD_OPCODE_DUMMY, 0xe1), + NAND_MEMORG(1, 2048, 128, 64, 1024, 21, 1, 1, 1), + NAND_ECCREQ(8, 512), + SPINAND_INFO_OP_VARIANTS(&read_cache_variants, + &write_cache_variants, + &update_cache_variants), + 0, + SPINAND_ECCINFO(&pn26g0xa_ooblayout, + pn26g0xa_ecc_get_status)), + SPINAND_INFO("PN26G02A", + SPINAND_ID(SPINAND_READID_METHOD_OPCODE_DUMMY, 0xe2), + NAND_MEMORG(1, 2048, 128, 64, 2048, 41, 1, 1, 1), + NAND_ECCREQ(8, 512), + SPINAND_INFO_OP_VARIANTS(&read_cache_variants, + &write_cache_variants, + &update_cache_variants), + 0, + SPINAND_ECCINFO(&pn26g0xa_ooblayout, + pn26g0xa_ecc_get_status)), +}; + +static const struct spinand_manufacturer_ops paragon_spinand_manuf_ops = { +}; + +const struct spinand_manufacturer paragon_spinand_manufacturer = { + .id = SPINAND_MFR_PARAGON, + .name = "Paragon", + .chips = paragon_spinand_table, + .nchips = ARRAY_SIZE(paragon_spinand_table), + .ops = ¶gon_spinand_manuf_ops, +}; diff --git a/drivers/mtd/nand/spi/toshiba.c b/drivers/mtd/nand/spi/toshiba.c new file mode 100644 index 0000000000..bbbcaa87c0 --- /dev/null +++ b/drivers/mtd/nand/spi/toshiba.c @@ -0,0 +1,313 @@ +// SPDX-License-Identifier: GPL-2.0 +/* + * Copyright (c) 2018 exceet electronics GmbH + * Copyright (c) 2018 Kontron Electronics GmbH + * + * Author: Frieder Schrempf <frieder.schrempf@kontron.de> + */ + +#include <linux/device.h> +#include <linux/kernel.h> +#include <linux/mtd/spinand.h> + +/* Kioxia is new name of Toshiba memory. */ +#define SPINAND_MFR_TOSHIBA 0x98 +#define TOSH_STATUS_ECC_HAS_BITFLIPS_T (3 << 4) + +static SPINAND_OP_VARIANTS(read_cache_variants, + SPINAND_PAGE_READ_FROM_CACHE_X4_OP(0, 1, NULL, 0), + SPINAND_PAGE_READ_FROM_CACHE_X2_OP(0, 1, NULL, 0), + SPINAND_PAGE_READ_FROM_CACHE_OP(true, 0, 1, NULL, 0), + SPINAND_PAGE_READ_FROM_CACHE_OP(false, 0, 1, NULL, 0)); + +static SPINAND_OP_VARIANTS(write_cache_x4_variants, + SPINAND_PROG_LOAD_X4(true, 0, NULL, 0), + SPINAND_PROG_LOAD(true, 0, NULL, 0)); + +static SPINAND_OP_VARIANTS(update_cache_x4_variants, + SPINAND_PROG_LOAD_X4(false, 0, NULL, 0), + SPINAND_PROG_LOAD(false, 0, NULL, 0)); + +/* + * Backward compatibility for 1st generation Serial NAND devices + * which don't support Quad Program Load operation. + */ +static SPINAND_OP_VARIANTS(write_cache_variants, + SPINAND_PROG_LOAD(true, 0, NULL, 0)); + +static SPINAND_OP_VARIANTS(update_cache_variants, + SPINAND_PROG_LOAD(false, 0, NULL, 0)); + +static int tx58cxgxsxraix_ooblayout_ecc(struct mtd_info *mtd, int section, + struct mtd_oob_region *region) +{ + if (section > 0) + return -ERANGE; + + region->offset = mtd->oobsize / 2; + region->length = mtd->oobsize / 2; + + return 0; +} + +static int tx58cxgxsxraix_ooblayout_free(struct mtd_info *mtd, int section, + struct mtd_oob_region *region) +{ + if (section > 0) + return -ERANGE; + + /* 2 bytes reserved for BBM */ + region->offset = 2; + region->length = (mtd->oobsize / 2) - 2; + + return 0; +} + +static const struct mtd_ooblayout_ops tx58cxgxsxraix_ooblayout = { + .ecc = tx58cxgxsxraix_ooblayout_ecc, + .free = tx58cxgxsxraix_ooblayout_free, +}; + +static int tx58cxgxsxraix_ecc_get_status(struct spinand_device *spinand, + u8 status) +{ + struct nand_device *nand = spinand_to_nand(spinand); + u8 mbf = 0; + struct spi_mem_op op = SPINAND_GET_FEATURE_OP(0x30, spinand->scratchbuf); + + switch (status & STATUS_ECC_MASK) { + case STATUS_ECC_NO_BITFLIPS: + return 0; + + case STATUS_ECC_UNCOR_ERROR: + return -EBADMSG; + + case STATUS_ECC_HAS_BITFLIPS: + case TOSH_STATUS_ECC_HAS_BITFLIPS_T: + /* + * Let's try to retrieve the real maximum number of bitflips + * in order to avoid forcing the wear-leveling layer to move + * data around if it's not necessary. + */ + if (spi_mem_exec_op(spinand->spimem, &op)) + return nanddev_get_ecc_conf(nand)->strength; + + mbf = *(spinand->scratchbuf) >> 4; + + if (WARN_ON(mbf > nanddev_get_ecc_conf(nand)->strength || !mbf)) + return nanddev_get_ecc_conf(nand)->strength; + + return mbf; + + default: + break; + } + + return -EINVAL; +} + +static const struct spinand_info toshiba_spinand_table[] = { + /* 3.3V 1Gb (1st generation) */ + SPINAND_INFO("TC58CVG0S3HRAIG", + SPINAND_ID(SPINAND_READID_METHOD_OPCODE_DUMMY, 0xC2), + NAND_MEMORG(1, 2048, 128, 64, 1024, 20, 1, 1, 1), + NAND_ECCREQ(8, 512), + SPINAND_INFO_OP_VARIANTS(&read_cache_variants, + &write_cache_variants, + &update_cache_variants), + 0, + SPINAND_ECCINFO(&tx58cxgxsxraix_ooblayout, + tx58cxgxsxraix_ecc_get_status)), + /* 3.3V 2Gb (1st generation) */ + SPINAND_INFO("TC58CVG1S3HRAIG", + SPINAND_ID(SPINAND_READID_METHOD_OPCODE_DUMMY, 0xCB), + NAND_MEMORG(1, 2048, 128, 64, 2048, 40, 1, 1, 1), + NAND_ECCREQ(8, 512), + SPINAND_INFO_OP_VARIANTS(&read_cache_variants, + &write_cache_variants, + &update_cache_variants), + 0, + SPINAND_ECCINFO(&tx58cxgxsxraix_ooblayout, + tx58cxgxsxraix_ecc_get_status)), + /* 3.3V 4Gb (1st generation) */ + SPINAND_INFO("TC58CVG2S0HRAIG", + SPINAND_ID(SPINAND_READID_METHOD_OPCODE_DUMMY, 0xCD), + NAND_MEMORG(1, 4096, 256, 64, 2048, 40, 1, 1, 1), + NAND_ECCREQ(8, 512), + SPINAND_INFO_OP_VARIANTS(&read_cache_variants, + &write_cache_variants, + &update_cache_variants), + 0, + SPINAND_ECCINFO(&tx58cxgxsxraix_ooblayout, + tx58cxgxsxraix_ecc_get_status)), + /* 1.8V 1Gb (1st generation) */ + SPINAND_INFO("TC58CYG0S3HRAIG", + SPINAND_ID(SPINAND_READID_METHOD_OPCODE_DUMMY, 0xB2), + NAND_MEMORG(1, 2048, 128, 64, 1024, 20, 1, 1, 1), + NAND_ECCREQ(8, 512), + SPINAND_INFO_OP_VARIANTS(&read_cache_variants, + &write_cache_variants, + &update_cache_variants), + 0, + SPINAND_ECCINFO(&tx58cxgxsxraix_ooblayout, + tx58cxgxsxraix_ecc_get_status)), + /* 1.8V 2Gb (1st generation) */ + SPINAND_INFO("TC58CYG1S3HRAIG", + SPINAND_ID(SPINAND_READID_METHOD_OPCODE_DUMMY, 0xBB), + NAND_MEMORG(1, 2048, 128, 64, 2048, 40, 1, 1, 1), + NAND_ECCREQ(8, 512), + SPINAND_INFO_OP_VARIANTS(&read_cache_variants, + &write_cache_variants, + &update_cache_variants), + 0, + SPINAND_ECCINFO(&tx58cxgxsxraix_ooblayout, + tx58cxgxsxraix_ecc_get_status)), + /* 1.8V 4Gb (1st generation) */ + SPINAND_INFO("TC58CYG2S0HRAIG", + SPINAND_ID(SPINAND_READID_METHOD_OPCODE_DUMMY, 0xBD), + NAND_MEMORG(1, 4096, 256, 64, 2048, 40, 1, 1, 1), + NAND_ECCREQ(8, 512), + SPINAND_INFO_OP_VARIANTS(&read_cache_variants, + &write_cache_variants, + &update_cache_variants), + 0, + SPINAND_ECCINFO(&tx58cxgxsxraix_ooblayout, + tx58cxgxsxraix_ecc_get_status)), + + /* + * 2nd generation serial nand has HOLD_D which is equivalent to + * QE_BIT. + */ + /* 3.3V 1Gb (2nd generation) */ + SPINAND_INFO("TC58CVG0S3HRAIJ", + SPINAND_ID(SPINAND_READID_METHOD_OPCODE_DUMMY, 0xE2), + NAND_MEMORG(1, 2048, 128, 64, 1024, 20, 1, 1, 1), + NAND_ECCREQ(8, 512), + SPINAND_INFO_OP_VARIANTS(&read_cache_variants, + &write_cache_x4_variants, + &update_cache_x4_variants), + SPINAND_HAS_QE_BIT, + SPINAND_ECCINFO(&tx58cxgxsxraix_ooblayout, + tx58cxgxsxraix_ecc_get_status)), + /* 3.3V 2Gb (2nd generation) */ + SPINAND_INFO("TC58CVG1S3HRAIJ", + SPINAND_ID(SPINAND_READID_METHOD_OPCODE_DUMMY, 0xEB), + NAND_MEMORG(1, 2048, 128, 64, 2048, 40, 1, 1, 1), + NAND_ECCREQ(8, 512), + SPINAND_INFO_OP_VARIANTS(&read_cache_variants, + &write_cache_x4_variants, + &update_cache_x4_variants), + SPINAND_HAS_QE_BIT, + SPINAND_ECCINFO(&tx58cxgxsxraix_ooblayout, + tx58cxgxsxraix_ecc_get_status)), + /* 3.3V 4Gb (2nd generation) */ + SPINAND_INFO("TC58CVG2S0HRAIJ", + SPINAND_ID(SPINAND_READID_METHOD_OPCODE_DUMMY, 0xED), + NAND_MEMORG(1, 4096, 256, 64, 2048, 40, 1, 1, 1), + NAND_ECCREQ(8, 512), + SPINAND_INFO_OP_VARIANTS(&read_cache_variants, + &write_cache_x4_variants, + &update_cache_x4_variants), + SPINAND_HAS_QE_BIT, + SPINAND_ECCINFO(&tx58cxgxsxraix_ooblayout, + tx58cxgxsxraix_ecc_get_status)), + /* 3.3V 8Gb (2nd generation) */ + SPINAND_INFO("TH58CVG3S0HRAIJ", + SPINAND_ID(SPINAND_READID_METHOD_OPCODE_DUMMY, 0xE4), + NAND_MEMORG(1, 4096, 256, 64, 4096, 80, 1, 1, 1), + NAND_ECCREQ(8, 512), + SPINAND_INFO_OP_VARIANTS(&read_cache_variants, + &write_cache_x4_variants, + &update_cache_x4_variants), + SPINAND_HAS_QE_BIT, + SPINAND_ECCINFO(&tx58cxgxsxraix_ooblayout, + tx58cxgxsxraix_ecc_get_status)), + /* 1.8V 1Gb (2nd generation) */ + SPINAND_INFO("TC58CYG0S3HRAIJ", + SPINAND_ID(SPINAND_READID_METHOD_OPCODE_DUMMY, 0xD2), + NAND_MEMORG(1, 2048, 128, 64, 1024, 20, 1, 1, 1), + NAND_ECCREQ(8, 512), + SPINAND_INFO_OP_VARIANTS(&read_cache_variants, + &write_cache_x4_variants, + &update_cache_x4_variants), + SPINAND_HAS_QE_BIT, + SPINAND_ECCINFO(&tx58cxgxsxraix_ooblayout, + tx58cxgxsxraix_ecc_get_status)), + /* 1.8V 2Gb (2nd generation) */ + SPINAND_INFO("TC58CYG1S3HRAIJ", + SPINAND_ID(SPINAND_READID_METHOD_OPCODE_DUMMY, 0xDB), + NAND_MEMORG(1, 2048, 128, 64, 2048, 40, 1, 1, 1), + NAND_ECCREQ(8, 512), + SPINAND_INFO_OP_VARIANTS(&read_cache_variants, + &write_cache_x4_variants, + &update_cache_x4_variants), + SPINAND_HAS_QE_BIT, + SPINAND_ECCINFO(&tx58cxgxsxraix_ooblayout, + tx58cxgxsxraix_ecc_get_status)), + /* 1.8V 4Gb (2nd generation) */ + SPINAND_INFO("TC58CYG2S0HRAIJ", + SPINAND_ID(SPINAND_READID_METHOD_OPCODE_DUMMY, 0xDD), + NAND_MEMORG(1, 4096, 256, 64, 2048, 40, 1, 1, 1), + NAND_ECCREQ(8, 512), + SPINAND_INFO_OP_VARIANTS(&read_cache_variants, + &write_cache_x4_variants, + &update_cache_x4_variants), + SPINAND_HAS_QE_BIT, + SPINAND_ECCINFO(&tx58cxgxsxraix_ooblayout, + tx58cxgxsxraix_ecc_get_status)), + /* 1.8V 8Gb (2nd generation) */ + SPINAND_INFO("TH58CYG3S0HRAIJ", + SPINAND_ID(SPINAND_READID_METHOD_OPCODE_DUMMY, 0xD4), + NAND_MEMORG(1, 4096, 256, 64, 4096, 80, 1, 1, 1), + NAND_ECCREQ(8, 512), + SPINAND_INFO_OP_VARIANTS(&read_cache_variants, + &write_cache_x4_variants, + &update_cache_x4_variants), + SPINAND_HAS_QE_BIT, + SPINAND_ECCINFO(&tx58cxgxsxraix_ooblayout, + tx58cxgxsxraix_ecc_get_status)), + /* 1.8V 1Gb (1st generation) */ + SPINAND_INFO("TC58NYG0S3HBAI4", + SPINAND_ID(SPINAND_READID_METHOD_OPCODE_DUMMY, 0xA1), + NAND_MEMORG(1, 2048, 128, 64, 1024, 20, 1, 1, 1), + NAND_ECCREQ(8, 512), + SPINAND_INFO_OP_VARIANTS(&read_cache_variants, + &write_cache_variants, + &update_cache_variants), + 0, + SPINAND_ECCINFO(&tx58cxgxsxraix_ooblayout, + tx58cxgxsxraix_ecc_get_status)), + /* 1.8V 4Gb (1st generation) */ + SPINAND_INFO("TH58NYG2S3HBAI4", + SPINAND_ID(SPINAND_READID_METHOD_OPCODE_DUMMY, 0xAC), + NAND_MEMORG(1, 2048, 128, 64, 4096, 80, 1, 2, 1), + NAND_ECCREQ(8, 512), + SPINAND_INFO_OP_VARIANTS(&read_cache_variants, + &write_cache_x4_variants, + &update_cache_x4_variants), + SPINAND_HAS_QE_BIT, + SPINAND_ECCINFO(&tx58cxgxsxraix_ooblayout, + tx58cxgxsxraix_ecc_get_status)), + /* 1.8V 8Gb (1st generation) */ + SPINAND_INFO("TH58NYG3S0HBAI6", + SPINAND_ID(SPINAND_READID_METHOD_OPCODE_DUMMY, 0xA3), + NAND_MEMORG(1, 4096, 256, 64, 4096, 80, 1, 1, 1), + NAND_ECCREQ(8, 512), + SPINAND_INFO_OP_VARIANTS(&read_cache_variants, + &write_cache_x4_variants, + &update_cache_x4_variants), + SPINAND_HAS_QE_BIT, + SPINAND_ECCINFO(&tx58cxgxsxraix_ooblayout, + tx58cxgxsxraix_ecc_get_status)), +}; + +static const struct spinand_manufacturer_ops toshiba_spinand_manuf_ops = { +}; + +const struct spinand_manufacturer toshiba_spinand_manufacturer = { + .id = SPINAND_MFR_TOSHIBA, + .name = "Toshiba", + .chips = toshiba_spinand_table, + .nchips = ARRAY_SIZE(toshiba_spinand_table), + .ops = &toshiba_spinand_manuf_ops, +}; diff --git a/drivers/mtd/nand/spi/winbond.c b/drivers/mtd/nand/spi/winbond.c new file mode 100644 index 0000000000..f507e37593 --- /dev/null +++ b/drivers/mtd/nand/spi/winbond.c @@ -0,0 +1,202 @@ +// SPDX-License-Identifier: GPL-2.0 +/* + * Copyright (c) 2017 exceet electronics GmbH + * + * Authors: + * Frieder Schrempf <frieder.schrempf@exceet.de> + * Boris Brezillon <boris.brezillon@bootlin.com> + */ + +#include <linux/device.h> +#include <linux/kernel.h> +#include <linux/mtd/spinand.h> + +#define SPINAND_MFR_WINBOND 0xEF + +#define WINBOND_CFG_BUF_READ BIT(3) + +static SPINAND_OP_VARIANTS(read_cache_variants, + SPINAND_PAGE_READ_FROM_CACHE_QUADIO_OP(0, 2, NULL, 0), + SPINAND_PAGE_READ_FROM_CACHE_X4_OP(0, 1, NULL, 0), + SPINAND_PAGE_READ_FROM_CACHE_DUALIO_OP(0, 1, NULL, 0), + SPINAND_PAGE_READ_FROM_CACHE_X2_OP(0, 1, NULL, 0), + SPINAND_PAGE_READ_FROM_CACHE_OP(true, 0, 1, NULL, 0), + SPINAND_PAGE_READ_FROM_CACHE_OP(false, 0, 1, NULL, 0)); + +static SPINAND_OP_VARIANTS(write_cache_variants, + SPINAND_PROG_LOAD_X4(true, 0, NULL, 0), + SPINAND_PROG_LOAD(true, 0, NULL, 0)); + +static SPINAND_OP_VARIANTS(update_cache_variants, + SPINAND_PROG_LOAD_X4(false, 0, NULL, 0), + SPINAND_PROG_LOAD(false, 0, NULL, 0)); + +static int w25m02gv_ooblayout_ecc(struct mtd_info *mtd, int section, + struct mtd_oob_region *region) +{ + if (section > 3) + return -ERANGE; + + region->offset = (16 * section) + 8; + region->length = 8; + + return 0; +} + +static int w25m02gv_ooblayout_free(struct mtd_info *mtd, int section, + struct mtd_oob_region *region) +{ + if (section > 3) + return -ERANGE; + + region->offset = (16 * section) + 2; + region->length = 6; + + return 0; +} + +static const struct mtd_ooblayout_ops w25m02gv_ooblayout = { + .ecc = w25m02gv_ooblayout_ecc, + .free = w25m02gv_ooblayout_free, +}; + +static int w25m02gv_select_target(struct spinand_device *spinand, + unsigned int target) +{ + struct spi_mem_op op = SPI_MEM_OP(SPI_MEM_OP_CMD(0xc2, 1), + SPI_MEM_OP_NO_ADDR, + SPI_MEM_OP_NO_DUMMY, + SPI_MEM_OP_DATA_OUT(1, + spinand->scratchbuf, + 1)); + + *spinand->scratchbuf = target; + return spi_mem_exec_op(spinand->spimem, &op); +} + +static int w25n02kv_ooblayout_ecc(struct mtd_info *mtd, int section, + struct mtd_oob_region *region) +{ + if (section > 3) + return -ERANGE; + + region->offset = 64 + (16 * section); + region->length = 13; + + return 0; +} + +static int w25n02kv_ooblayout_free(struct mtd_info *mtd, int section, + struct mtd_oob_region *region) +{ + if (section > 3) + return -ERANGE; + + region->offset = (16 * section) + 2; + region->length = 14; + + return 0; +} + +static const struct mtd_ooblayout_ops w25n02kv_ooblayout = { + .ecc = w25n02kv_ooblayout_ecc, + .free = w25n02kv_ooblayout_free, +}; + +static int w25n02kv_ecc_get_status(struct spinand_device *spinand, + u8 status) +{ + struct nand_device *nand = spinand_to_nand(spinand); + u8 mbf = 0; + struct spi_mem_op op = SPINAND_GET_FEATURE_OP(0x30, spinand->scratchbuf); + + switch (status & STATUS_ECC_MASK) { + case STATUS_ECC_NO_BITFLIPS: + return 0; + + case STATUS_ECC_UNCOR_ERROR: + return -EBADMSG; + + case STATUS_ECC_HAS_BITFLIPS: + /* + * Let's try to retrieve the real maximum number of bitflips + * in order to avoid forcing the wear-leveling layer to move + * data around if it's not necessary. + */ + if (spi_mem_exec_op(spinand->spimem, &op)) + return nanddev_get_ecc_conf(nand)->strength; + + mbf = *(spinand->scratchbuf) >> 4; + + if (WARN_ON(mbf > nanddev_get_ecc_conf(nand)->strength || !mbf)) + return nanddev_get_ecc_conf(nand)->strength; + + return mbf; + + default: + break; + } + + return -EINVAL; +} + +static const struct spinand_info winbond_spinand_table[] = { + SPINAND_INFO("W25M02GV", + SPINAND_ID(SPINAND_READID_METHOD_OPCODE_DUMMY, 0xab, 0x21), + NAND_MEMORG(1, 2048, 64, 64, 1024, 20, 1, 1, 2), + NAND_ECCREQ(1, 512), + SPINAND_INFO_OP_VARIANTS(&read_cache_variants, + &write_cache_variants, + &update_cache_variants), + 0, + SPINAND_ECCINFO(&w25m02gv_ooblayout, NULL), + SPINAND_SELECT_TARGET(w25m02gv_select_target)), + SPINAND_INFO("W25N01GV", + SPINAND_ID(SPINAND_READID_METHOD_OPCODE_DUMMY, 0xaa, 0x21), + NAND_MEMORG(1, 2048, 64, 64, 1024, 20, 1, 1, 1), + NAND_ECCREQ(1, 512), + SPINAND_INFO_OP_VARIANTS(&read_cache_variants, + &write_cache_variants, + &update_cache_variants), + 0, + SPINAND_ECCINFO(&w25m02gv_ooblayout, NULL)), + SPINAND_INFO("W25N02KV", + SPINAND_ID(SPINAND_READID_METHOD_OPCODE_DUMMY, 0xaa, 0x22), + NAND_MEMORG(1, 2048, 128, 64, 2048, 40, 1, 1, 1), + NAND_ECCREQ(8, 512), + SPINAND_INFO_OP_VARIANTS(&read_cache_variants, + &write_cache_variants, + &update_cache_variants), + 0, + SPINAND_ECCINFO(&w25n02kv_ooblayout, w25n02kv_ecc_get_status)), +}; + +static int winbond_spinand_init(struct spinand_device *spinand) +{ + struct nand_device *nand = spinand_to_nand(spinand); + unsigned int i; + + /* + * Make sure all dies are in buffer read mode and not continuous read + * mode. + */ + for (i = 0; i < nand->memorg.ntargets; i++) { + spinand_select_target(spinand, i); + spinand_upd_cfg(spinand, WINBOND_CFG_BUF_READ, + WINBOND_CFG_BUF_READ); + } + + return 0; +} + +static const struct spinand_manufacturer_ops winbond_spinand_manuf_ops = { + .init = winbond_spinand_init, +}; + +const struct spinand_manufacturer winbond_spinand_manufacturer = { + .id = SPINAND_MFR_WINBOND, + .name = "Winbond", + .chips = winbond_spinand_table, + .nchips = ARRAY_SIZE(winbond_spinand_table), + .ops = &winbond_spinand_manuf_ops, +}; diff --git a/drivers/mtd/nand/spi/xtx.c b/drivers/mtd/nand/spi/xtx.c new file mode 100644 index 0000000000..3911520f71 --- /dev/null +++ b/drivers/mtd/nand/spi/xtx.c @@ -0,0 +1,129 @@ +// SPDX-License-Identifier: GPL-2.0 +/* + * Author: + * Felix Matouschek <felix@matouschek.org> + */ + +#include <linux/device.h> +#include <linux/kernel.h> +#include <linux/mtd/spinand.h> + +#define SPINAND_MFR_XTX 0x0B + +#define XT26G0XA_STATUS_ECC_MASK GENMASK(5, 2) +#define XT26G0XA_STATUS_ECC_NO_DETECTED (0 << 2) +#define XT26G0XA_STATUS_ECC_8_CORRECTED (3 << 4) +#define XT26G0XA_STATUS_ECC_UNCOR_ERROR (2 << 4) + +static SPINAND_OP_VARIANTS(read_cache_variants, + SPINAND_PAGE_READ_FROM_CACHE_QUADIO_OP(0, 1, NULL, 0), + SPINAND_PAGE_READ_FROM_CACHE_X4_OP(0, 1, NULL, 0), + SPINAND_PAGE_READ_FROM_CACHE_DUALIO_OP(0, 1, NULL, 0), + SPINAND_PAGE_READ_FROM_CACHE_X2_OP(0, 1, NULL, 0), + SPINAND_PAGE_READ_FROM_CACHE_OP(true, 0, 1, NULL, 0), + SPINAND_PAGE_READ_FROM_CACHE_OP(false, 0, 1, NULL, 0)); + +static SPINAND_OP_VARIANTS(write_cache_variants, + SPINAND_PROG_LOAD_X4(true, 0, NULL, 0), + SPINAND_PROG_LOAD(true, 0, NULL, 0)); + +static SPINAND_OP_VARIANTS(update_cache_variants, + SPINAND_PROG_LOAD_X4(false, 0, NULL, 0), + SPINAND_PROG_LOAD(false, 0, NULL, 0)); + +static int xt26g0xa_ooblayout_ecc(struct mtd_info *mtd, int section, + struct mtd_oob_region *region) +{ + if (section) + return -ERANGE; + + region->offset = 48; + region->length = 16; + + return 0; +} + +static int xt26g0xa_ooblayout_free(struct mtd_info *mtd, int section, + struct mtd_oob_region *region) +{ + if (section) + return -ERANGE; + + region->offset = 1; + region->length = 47; + + return 0; +} + +static const struct mtd_ooblayout_ops xt26g0xa_ooblayout = { + .ecc = xt26g0xa_ooblayout_ecc, + .free = xt26g0xa_ooblayout_free, +}; + +static int xt26g0xa_ecc_get_status(struct spinand_device *spinand, + u8 status) +{ + status = status & XT26G0XA_STATUS_ECC_MASK; + + switch (status) { + case XT26G0XA_STATUS_ECC_NO_DETECTED: + return 0; + case XT26G0XA_STATUS_ECC_8_CORRECTED: + return 8; + case XT26G0XA_STATUS_ECC_UNCOR_ERROR: + return -EBADMSG; + default: + break; + } + + /* At this point values greater than (2 << 4) are invalid */ + if (status > XT26G0XA_STATUS_ECC_UNCOR_ERROR) + return -EINVAL; + + /* (1 << 2) through (7 << 2) are 1-7 corrected errors */ + return status >> 2; +} + +static const struct spinand_info xtx_spinand_table[] = { + SPINAND_INFO("XT26G01A", + SPINAND_ID(SPINAND_READID_METHOD_OPCODE_ADDR, 0xE1), + NAND_MEMORG(1, 2048, 64, 64, 1024, 20, 1, 1, 1), + NAND_ECCREQ(8, 512), + SPINAND_INFO_OP_VARIANTS(&read_cache_variants, + &write_cache_variants, + &update_cache_variants), + SPINAND_HAS_QE_BIT, + SPINAND_ECCINFO(&xt26g0xa_ooblayout, + xt26g0xa_ecc_get_status)), + SPINAND_INFO("XT26G02A", + SPINAND_ID(SPINAND_READID_METHOD_OPCODE_ADDR, 0xE2), + NAND_MEMORG(1, 2048, 64, 64, 2048, 40, 1, 1, 1), + NAND_ECCREQ(8, 512), + SPINAND_INFO_OP_VARIANTS(&read_cache_variants, + &write_cache_variants, + &update_cache_variants), + SPINAND_HAS_QE_BIT, + SPINAND_ECCINFO(&xt26g0xa_ooblayout, + xt26g0xa_ecc_get_status)), + SPINAND_INFO("XT26G04A", + SPINAND_ID(SPINAND_READID_METHOD_OPCODE_ADDR, 0xE3), + NAND_MEMORG(1, 2048, 64, 128, 2048, 40, 1, 1, 1), + NAND_ECCREQ(8, 512), + SPINAND_INFO_OP_VARIANTS(&read_cache_variants, + &write_cache_variants, + &update_cache_variants), + SPINAND_HAS_QE_BIT, + SPINAND_ECCINFO(&xt26g0xa_ooblayout, + xt26g0xa_ecc_get_status)), +}; + +static const struct spinand_manufacturer_ops xtx_spinand_manuf_ops = { +}; + +const struct spinand_manufacturer xtx_spinand_manufacturer = { + .id = SPINAND_MFR_XTX, + .name = "XTX", + .chips = xtx_spinand_table, + .nchips = ARRAY_SIZE(xtx_spinand_table), + .ops = &xtx_spinand_manuf_ops, +}; diff --git a/drivers/mtd/nftlcore.c b/drivers/mtd/nftlcore.c new file mode 100644 index 0000000000..64d319e959 --- /dev/null +++ b/drivers/mtd/nftlcore.c @@ -0,0 +1,804 @@ +// SPDX-License-Identifier: GPL-2.0-or-later +/* + * Linux driver for NAND Flash Translation Layer + * + * Copyright © 1999 Machine Vision Holdings, Inc. + * Copyright © 1999-2010 David Woodhouse <dwmw2@infradead.org> + */ + +#define PRERELEASE + +#include <linux/kernel.h> +#include <linux/module.h> +#include <asm/errno.h> +#include <asm/io.h> +#include <linux/uaccess.h> +#include <linux/delay.h> +#include <linux/slab.h> +#include <linux/init.h> +#include <linux/hdreg.h> +#include <linux/blkdev.h> + +#include <linux/kmod.h> +#include <linux/mtd/mtd.h> +#include <linux/mtd/rawnand.h> +#include <linux/mtd/nftl.h> +#include <linux/mtd/blktrans.h> + +/* maximum number of loops while examining next block, to have a + chance to detect consistency problems (they should never happen + because of the checks done in the mounting */ + +#define MAX_LOOPS 10000 + + +static void nftl_add_mtd(struct mtd_blktrans_ops *tr, struct mtd_info *mtd) +{ + struct NFTLrecord *nftl; + unsigned long temp; + + if (!mtd_type_is_nand(mtd) || mtd->size > UINT_MAX) + return; + /* OK, this is moderately ugly. But probably safe. Alternatives? */ + if (memcmp(mtd->name, "DiskOnChip", 10)) + return; + + pr_debug("NFTL: add_mtd for %s\n", mtd->name); + + nftl = kzalloc(sizeof(struct NFTLrecord), GFP_KERNEL); + + if (!nftl) + return; + + nftl->mbd.mtd = mtd; + nftl->mbd.devnum = -1; + + nftl->mbd.tr = tr; + + if (NFTL_mount(nftl) < 0) { + printk(KERN_WARNING "NFTL: could not mount device\n"); + kfree(nftl); + return; + } + + /* OK, it's a new one. Set up all the data structures. */ + + /* Calculate geometry */ + nftl->cylinders = 1024; + nftl->heads = 16; + + temp = nftl->cylinders * nftl->heads; + nftl->sectors = nftl->mbd.size / temp; + if (nftl->mbd.size % temp) { + nftl->sectors++; + temp = nftl->cylinders * nftl->sectors; + nftl->heads = nftl->mbd.size / temp; + + if (nftl->mbd.size % temp) { + nftl->heads++; + temp = nftl->heads * nftl->sectors; + nftl->cylinders = nftl->mbd.size / temp; + } + } + + if (nftl->mbd.size != nftl->heads * nftl->cylinders * nftl->sectors) { + /* + Oh no we don't have + mbd.size == heads * cylinders * sectors + */ + printk(KERN_WARNING "NFTL: cannot calculate a geometry to " + "match size of 0x%lx.\n", nftl->mbd.size); + printk(KERN_WARNING "NFTL: using C:%d H:%d S:%d " + "(== 0x%lx sects)\n", + nftl->cylinders, nftl->heads , nftl->sectors, + (long)nftl->cylinders * (long)nftl->heads * + (long)nftl->sectors ); + } + + if (add_mtd_blktrans_dev(&nftl->mbd)) { + kfree(nftl->ReplUnitTable); + kfree(nftl->EUNtable); + kfree(nftl); + return; + } +#ifdef PSYCHO_DEBUG + printk(KERN_INFO "NFTL: Found new nftl%c\n", nftl->mbd.devnum + 'a'); +#endif +} + +static void nftl_remove_dev(struct mtd_blktrans_dev *dev) +{ + struct NFTLrecord *nftl = (void *)dev; + + pr_debug("NFTL: remove_dev (i=%d)\n", dev->devnum); + + del_mtd_blktrans_dev(dev); + kfree(nftl->ReplUnitTable); + kfree(nftl->EUNtable); +} + +/* + * Read oob data from flash + */ +int nftl_read_oob(struct mtd_info *mtd, loff_t offs, size_t len, + size_t *retlen, uint8_t *buf) +{ + loff_t mask = mtd->writesize - 1; + struct mtd_oob_ops ops = { }; + int res; + + ops.mode = MTD_OPS_PLACE_OOB; + ops.ooboffs = offs & mask; + ops.ooblen = len; + ops.oobbuf = buf; + ops.datbuf = NULL; + + res = mtd_read_oob(mtd, offs & ~mask, &ops); + *retlen = ops.oobretlen; + return res; +} + +/* + * Write oob data to flash + */ +int nftl_write_oob(struct mtd_info *mtd, loff_t offs, size_t len, + size_t *retlen, uint8_t *buf) +{ + loff_t mask = mtd->writesize - 1; + struct mtd_oob_ops ops = { }; + int res; + + ops.mode = MTD_OPS_PLACE_OOB; + ops.ooboffs = offs & mask; + ops.ooblen = len; + ops.oobbuf = buf; + ops.datbuf = NULL; + + res = mtd_write_oob(mtd, offs & ~mask, &ops); + *retlen = ops.oobretlen; + return res; +} + +#ifdef CONFIG_NFTL_RW + +/* + * Write data and oob to flash + */ +static int nftl_write(struct mtd_info *mtd, loff_t offs, size_t len, + size_t *retlen, uint8_t *buf, uint8_t *oob) +{ + loff_t mask = mtd->writesize - 1; + struct mtd_oob_ops ops = { }; + int res; + + ops.mode = MTD_OPS_PLACE_OOB; + ops.ooboffs = offs & mask; + ops.ooblen = mtd->oobsize; + ops.oobbuf = oob; + ops.datbuf = buf; + ops.len = len; + + res = mtd_write_oob(mtd, offs & ~mask, &ops); + *retlen = ops.retlen; + return res; +} + +/* Actual NFTL access routines */ +/* NFTL_findfreeblock: Find a free Erase Unit on the NFTL partition. This function is used + * when the give Virtual Unit Chain + */ +static u16 NFTL_findfreeblock(struct NFTLrecord *nftl, int desperate ) +{ + /* For a given Virtual Unit Chain: find or create a free block and + add it to the chain */ + /* We're passed the number of the last EUN in the chain, to save us from + having to look it up again */ + u16 pot = nftl->LastFreeEUN; + int silly = nftl->nb_blocks; + + /* Normally, we force a fold to happen before we run out of free blocks completely */ + if (!desperate && nftl->numfreeEUNs < 2) { + pr_debug("NFTL_findfreeblock: there are too few free EUNs\n"); + return BLOCK_NIL; + } + + /* Scan for a free block */ + do { + if (nftl->ReplUnitTable[pot] == BLOCK_FREE) { + nftl->LastFreeEUN = pot; + nftl->numfreeEUNs--; + return pot; + } + + /* This will probably point to the MediaHdr unit itself, + right at the beginning of the partition. But that unit + (and the backup unit too) should have the UCI set + up so that it's not selected for overwriting */ + if (++pot > nftl->lastEUN) + pot = le16_to_cpu(nftl->MediaHdr.FirstPhysicalEUN); + + if (!silly--) { + printk("Argh! No free blocks found! LastFreeEUN = %d, " + "FirstEUN = %d\n", nftl->LastFreeEUN, + le16_to_cpu(nftl->MediaHdr.FirstPhysicalEUN)); + return BLOCK_NIL; + } + } while (pot != nftl->LastFreeEUN); + + return BLOCK_NIL; +} + +static u16 NFTL_foldchain (struct NFTLrecord *nftl, unsigned thisVUC, unsigned pendingblock ) +{ + struct mtd_info *mtd = nftl->mbd.mtd; + u16 BlockMap[MAX_SECTORS_PER_UNIT]; + unsigned char BlockLastState[MAX_SECTORS_PER_UNIT]; + unsigned char BlockFreeFound[MAX_SECTORS_PER_UNIT]; + unsigned int thisEUN; + int block; + int silly; + unsigned int targetEUN; + struct nftl_oob oob; + int inplace = 1; + size_t retlen; + + memset(BlockMap, 0xff, sizeof(BlockMap)); + memset(BlockFreeFound, 0, sizeof(BlockFreeFound)); + + thisEUN = nftl->EUNtable[thisVUC]; + + if (thisEUN == BLOCK_NIL) { + printk(KERN_WARNING "Trying to fold non-existent " + "Virtual Unit Chain %d!\n", thisVUC); + return BLOCK_NIL; + } + + /* Scan to find the Erase Unit which holds the actual data for each + 512-byte block within the Chain. + */ + silly = MAX_LOOPS; + targetEUN = BLOCK_NIL; + while (thisEUN <= nftl->lastEUN ) { + unsigned int status, foldmark; + + targetEUN = thisEUN; + for (block = 0; block < nftl->EraseSize / 512; block ++) { + nftl_read_oob(mtd, (thisEUN * nftl->EraseSize) + + (block * 512), 16 , &retlen, + (char *)&oob); + if (block == 2) { + foldmark = oob.u.c.FoldMark | oob.u.c.FoldMark1; + if (foldmark == FOLD_MARK_IN_PROGRESS) { + pr_debug("Write Inhibited on EUN %d\n", thisEUN); + inplace = 0; + } else { + /* There's no other reason not to do inplace, + except ones that come later. So we don't need + to preserve inplace */ + inplace = 1; + } + } + status = oob.b.Status | oob.b.Status1; + BlockLastState[block] = status; + + switch(status) { + case SECTOR_FREE: + BlockFreeFound[block] = 1; + break; + + case SECTOR_USED: + if (!BlockFreeFound[block]) + BlockMap[block] = thisEUN; + else + printk(KERN_WARNING + "SECTOR_USED found after SECTOR_FREE " + "in Virtual Unit Chain %d for block %d\n", + thisVUC, block); + break; + case SECTOR_DELETED: + if (!BlockFreeFound[block]) + BlockMap[block] = BLOCK_NIL; + else + printk(KERN_WARNING + "SECTOR_DELETED found after SECTOR_FREE " + "in Virtual Unit Chain %d for block %d\n", + thisVUC, block); + break; + + case SECTOR_IGNORE: + break; + default: + printk("Unknown status for block %d in EUN %d: %x\n", + block, thisEUN, status); + } + } + + if (!silly--) { + printk(KERN_WARNING "Infinite loop in Virtual Unit Chain 0x%x\n", + thisVUC); + return BLOCK_NIL; + } + + thisEUN = nftl->ReplUnitTable[thisEUN]; + } + + if (inplace) { + /* We're being asked to be a fold-in-place. Check + that all blocks which actually have data associated + with them (i.e. BlockMap[block] != BLOCK_NIL) are + either already present or SECTOR_FREE in the target + block. If not, we're going to have to fold out-of-place + anyway. + */ + for (block = 0; block < nftl->EraseSize / 512 ; block++) { + if (BlockLastState[block] != SECTOR_FREE && + BlockMap[block] != BLOCK_NIL && + BlockMap[block] != targetEUN) { + pr_debug("Setting inplace to 0. VUC %d, " + "block %d was %x lastEUN, " + "and is in EUN %d (%s) %d\n", + thisVUC, block, BlockLastState[block], + BlockMap[block], + BlockMap[block]== targetEUN ? "==" : "!=", + targetEUN); + inplace = 0; + break; + } + } + + if (pendingblock >= (thisVUC * (nftl->EraseSize / 512)) && + pendingblock < ((thisVUC + 1)* (nftl->EraseSize / 512)) && + BlockLastState[pendingblock - (thisVUC * (nftl->EraseSize / 512))] != + SECTOR_FREE) { + pr_debug("Pending write not free in EUN %d. " + "Folding out of place.\n", targetEUN); + inplace = 0; + } + } + + if (!inplace) { + pr_debug("Cannot fold Virtual Unit Chain %d in place. " + "Trying out-of-place\n", thisVUC); + /* We need to find a targetEUN to fold into. */ + targetEUN = NFTL_findfreeblock(nftl, 1); + if (targetEUN == BLOCK_NIL) { + /* Ouch. Now we're screwed. We need to do a + fold-in-place of another chain to make room + for this one. We need a better way of selecting + which chain to fold, because makefreeblock will + only ask us to fold the same one again. + */ + printk(KERN_WARNING + "NFTL_findfreeblock(desperate) returns 0xffff.\n"); + return BLOCK_NIL; + } + } else { + /* We put a fold mark in the chain we are folding only if we + fold in place to help the mount check code. If we do not fold in + place, it is possible to find the valid chain by selecting the + longer one */ + oob.u.c.FoldMark = oob.u.c.FoldMark1 = cpu_to_le16(FOLD_MARK_IN_PROGRESS); + oob.u.c.unused = 0xffffffff; + nftl_write_oob(mtd, (nftl->EraseSize * targetEUN) + 2 * 512 + 8, + 8, &retlen, (char *)&oob.u); + } + + /* OK. We now know the location of every block in the Virtual Unit Chain, + and the Erase Unit into which we are supposed to be copying. + Go for it. + */ + pr_debug("Folding chain %d into unit %d\n", thisVUC, targetEUN); + for (block = 0; block < nftl->EraseSize / 512 ; block++) { + unsigned char movebuf[512]; + int ret; + + /* If it's in the target EUN already, or if it's pending write, do nothing */ + if (BlockMap[block] == targetEUN || + (pendingblock == (thisVUC * (nftl->EraseSize / 512) + block))) { + continue; + } + + /* copy only in non free block (free blocks can only + happen in case of media errors or deleted blocks) */ + if (BlockMap[block] == BLOCK_NIL) + continue; + + ret = mtd_read(mtd, + (nftl->EraseSize * BlockMap[block]) + (block * 512), + 512, + &retlen, + movebuf); + if (ret < 0 && !mtd_is_bitflip(ret)) { + ret = mtd_read(mtd, + (nftl->EraseSize * BlockMap[block]) + (block * 512), + 512, + &retlen, + movebuf); + if (ret != -EIO) + printk("Error went away on retry.\n"); + } + memset(&oob, 0xff, sizeof(struct nftl_oob)); + oob.b.Status = oob.b.Status1 = SECTOR_USED; + + nftl_write(nftl->mbd.mtd, (nftl->EraseSize * targetEUN) + + (block * 512), 512, &retlen, movebuf, (char *)&oob); + } + + /* add the header so that it is now a valid chain */ + oob.u.a.VirtUnitNum = oob.u.a.SpareVirtUnitNum = cpu_to_le16(thisVUC); + oob.u.a.ReplUnitNum = oob.u.a.SpareReplUnitNum = BLOCK_NIL; + + nftl_write_oob(mtd, (nftl->EraseSize * targetEUN) + 8, + 8, &retlen, (char *)&oob.u); + + /* OK. We've moved the whole lot into the new block. Now we have to free the original blocks. */ + + /* At this point, we have two different chains for this Virtual Unit, and no way to tell + them apart. If we crash now, we get confused. However, both contain the same data, so we + shouldn't actually lose data in this case. It's just that when we load up on a medium which + has duplicate chains, we need to free one of the chains because it's not necessary any more. + */ + thisEUN = nftl->EUNtable[thisVUC]; + pr_debug("Want to erase\n"); + + /* For each block in the old chain (except the targetEUN of course), + free it and make it available for future use */ + while (thisEUN <= nftl->lastEUN && thisEUN != targetEUN) { + unsigned int EUNtmp; + + EUNtmp = nftl->ReplUnitTable[thisEUN]; + + if (NFTL_formatblock(nftl, thisEUN) < 0) { + /* could not erase : mark block as reserved + */ + nftl->ReplUnitTable[thisEUN] = BLOCK_RESERVED; + } else { + /* correctly erased : mark it as free */ + nftl->ReplUnitTable[thisEUN] = BLOCK_FREE; + nftl->numfreeEUNs++; + } + thisEUN = EUNtmp; + } + + /* Make this the new start of chain for thisVUC */ + nftl->ReplUnitTable[targetEUN] = BLOCK_NIL; + nftl->EUNtable[thisVUC] = targetEUN; + + return targetEUN; +} + +static u16 NFTL_makefreeblock( struct NFTLrecord *nftl , unsigned pendingblock) +{ + /* This is the part that needs some cleverness applied. + For now, I'm doing the minimum applicable to actually + get the thing to work. + Wear-levelling and other clever stuff needs to be implemented + and we also need to do some assessment of the results when + the system loses power half-way through the routine. + */ + u16 LongestChain = 0; + u16 ChainLength = 0, thislen; + u16 chain, EUN; + + for (chain = 0; chain < le32_to_cpu(nftl->MediaHdr.FormattedSize) / nftl->EraseSize; chain++) { + EUN = nftl->EUNtable[chain]; + thislen = 0; + + while (EUN <= nftl->lastEUN) { + thislen++; + //printk("VUC %d reaches len %d with EUN %d\n", chain, thislen, EUN); + EUN = nftl->ReplUnitTable[EUN] & 0x7fff; + if (thislen > 0xff00) { + printk("Endless loop in Virtual Chain %d: Unit %x\n", + chain, EUN); + } + if (thislen > 0xff10) { + /* Actually, don't return failure. Just ignore this chain and + get on with it. */ + thislen = 0; + break; + } + } + + if (thislen > ChainLength) { + //printk("New longest chain is %d with length %d\n", chain, thislen); + ChainLength = thislen; + LongestChain = chain; + } + } + + if (ChainLength < 2) { + printk(KERN_WARNING "No Virtual Unit Chains available for folding. " + "Failing request\n"); + return BLOCK_NIL; + } + + return NFTL_foldchain (nftl, LongestChain, pendingblock); +} + +/* NFTL_findwriteunit: Return the unit number into which we can write + for this block. Make it available if it isn't already +*/ +static inline u16 NFTL_findwriteunit(struct NFTLrecord *nftl, unsigned block) +{ + u16 lastEUN; + u16 thisVUC = block / (nftl->EraseSize / 512); + struct mtd_info *mtd = nftl->mbd.mtd; + unsigned int writeEUN; + unsigned long blockofs = (block * 512) & (nftl->EraseSize -1); + size_t retlen; + int silly, silly2 = 3; + struct nftl_oob oob; + + do { + /* Scan the media to find a unit in the VUC which has + a free space for the block in question. + */ + + /* This condition catches the 0x[7f]fff cases, as well as + being a sanity check for past-end-of-media access + */ + lastEUN = BLOCK_NIL; + writeEUN = nftl->EUNtable[thisVUC]; + silly = MAX_LOOPS; + while (writeEUN <= nftl->lastEUN) { + struct nftl_bci bci; + size_t retlen; + unsigned int status; + + lastEUN = writeEUN; + + nftl_read_oob(mtd, + (writeEUN * nftl->EraseSize) + blockofs, + 8, &retlen, (char *)&bci); + + pr_debug("Status of block %d in EUN %d is %x\n", + block , writeEUN, le16_to_cpu(bci.Status)); + + status = bci.Status | bci.Status1; + switch(status) { + case SECTOR_FREE: + return writeEUN; + + case SECTOR_DELETED: + case SECTOR_USED: + case SECTOR_IGNORE: + break; + default: + // Invalid block. Don't use it any more. Must implement. + break; + } + + if (!silly--) { + printk(KERN_WARNING + "Infinite loop in Virtual Unit Chain 0x%x\n", + thisVUC); + return BLOCK_NIL; + } + + /* Skip to next block in chain */ + writeEUN = nftl->ReplUnitTable[writeEUN]; + } + + /* OK. We didn't find one in the existing chain, or there + is no existing chain. */ + + /* Try to find an already-free block */ + writeEUN = NFTL_findfreeblock(nftl, 0); + + if (writeEUN == BLOCK_NIL) { + /* That didn't work - there were no free blocks just + waiting to be picked up. We're going to have to fold + a chain to make room. + */ + + /* First remember the start of this chain */ + //u16 startEUN = nftl->EUNtable[thisVUC]; + + //printk("Write to VirtualUnitChain %d, calling makefreeblock()\n", thisVUC); + writeEUN = NFTL_makefreeblock(nftl, BLOCK_NIL); + + if (writeEUN == BLOCK_NIL) { + /* OK, we accept that the above comment is + lying - there may have been free blocks + last time we called NFTL_findfreeblock(), + but they are reserved for when we're + desperate. Well, now we're desperate. + */ + pr_debug("Using desperate==1 to find free EUN to accommodate write to VUC %d\n", thisVUC); + writeEUN = NFTL_findfreeblock(nftl, 1); + } + if (writeEUN == BLOCK_NIL) { + /* Ouch. This should never happen - we should + always be able to make some room somehow. + If we get here, we've allocated more storage + space than actual media, or our makefreeblock + routine is missing something. + */ + printk(KERN_WARNING "Cannot make free space.\n"); + return BLOCK_NIL; + } + //printk("Restarting scan\n"); + continue; + } + + /* We've found a free block. Insert it into the chain. */ + + if (lastEUN != BLOCK_NIL) { + thisVUC |= 0x8000; /* It's a replacement block */ + } else { + /* The first block in a new chain */ + nftl->EUNtable[thisVUC] = writeEUN; + } + + /* set up the actual EUN we're writing into */ + /* Both in our cache... */ + nftl->ReplUnitTable[writeEUN] = BLOCK_NIL; + + /* ... and on the flash itself */ + nftl_read_oob(mtd, writeEUN * nftl->EraseSize + 8, 8, + &retlen, (char *)&oob.u); + + oob.u.a.VirtUnitNum = oob.u.a.SpareVirtUnitNum = cpu_to_le16(thisVUC); + + nftl_write_oob(mtd, writeEUN * nftl->EraseSize + 8, 8, + &retlen, (char *)&oob.u); + + /* we link the new block to the chain only after the + block is ready. It avoids the case where the chain + could point to a free block */ + if (lastEUN != BLOCK_NIL) { + /* Both in our cache... */ + nftl->ReplUnitTable[lastEUN] = writeEUN; + /* ... and on the flash itself */ + nftl_read_oob(mtd, (lastEUN * nftl->EraseSize) + 8, + 8, &retlen, (char *)&oob.u); + + oob.u.a.ReplUnitNum = oob.u.a.SpareReplUnitNum + = cpu_to_le16(writeEUN); + + nftl_write_oob(mtd, (lastEUN * nftl->EraseSize) + 8, + 8, &retlen, (char *)&oob.u); + } + + return writeEUN; + + } while (silly2--); + + printk(KERN_WARNING "Error folding to make room for Virtual Unit Chain 0x%x\n", + thisVUC); + return BLOCK_NIL; +} + +static int nftl_writeblock(struct mtd_blktrans_dev *mbd, unsigned long block, + char *buffer) +{ + struct NFTLrecord *nftl = (void *)mbd; + u16 writeEUN; + unsigned long blockofs = (block * 512) & (nftl->EraseSize - 1); + size_t retlen; + struct nftl_oob oob; + + writeEUN = NFTL_findwriteunit(nftl, block); + + if (writeEUN == BLOCK_NIL) { + printk(KERN_WARNING + "NFTL_writeblock(): Cannot find block to write to\n"); + /* If we _still_ haven't got a block to use, we're screwed */ + return 1; + } + + memset(&oob, 0xff, sizeof(struct nftl_oob)); + oob.b.Status = oob.b.Status1 = SECTOR_USED; + + nftl_write(nftl->mbd.mtd, (writeEUN * nftl->EraseSize) + blockofs, + 512, &retlen, (char *)buffer, (char *)&oob); + return 0; +} +#endif /* CONFIG_NFTL_RW */ + +static int nftl_readblock(struct mtd_blktrans_dev *mbd, unsigned long block, + char *buffer) +{ + struct NFTLrecord *nftl = (void *)mbd; + struct mtd_info *mtd = nftl->mbd.mtd; + u16 lastgoodEUN; + u16 thisEUN = nftl->EUNtable[block / (nftl->EraseSize / 512)]; + unsigned long blockofs = (block * 512) & (nftl->EraseSize - 1); + unsigned int status; + int silly = MAX_LOOPS; + size_t retlen; + struct nftl_bci bci; + + lastgoodEUN = BLOCK_NIL; + + if (thisEUN != BLOCK_NIL) { + while (thisEUN < nftl->nb_blocks) { + if (nftl_read_oob(mtd, (thisEUN * nftl->EraseSize) + + blockofs, 8, &retlen, + (char *)&bci) < 0) + status = SECTOR_IGNORE; + else + status = bci.Status | bci.Status1; + + switch (status) { + case SECTOR_FREE: + /* no modification of a sector should follow a free sector */ + goto the_end; + case SECTOR_DELETED: + lastgoodEUN = BLOCK_NIL; + break; + case SECTOR_USED: + lastgoodEUN = thisEUN; + break; + case SECTOR_IGNORE: + break; + default: + printk("Unknown status for block %ld in EUN %d: %x\n", + block, thisEUN, status); + break; + } + + if (!silly--) { + printk(KERN_WARNING "Infinite loop in Virtual Unit Chain 0x%lx\n", + block / (nftl->EraseSize / 512)); + return 1; + } + thisEUN = nftl->ReplUnitTable[thisEUN]; + } + } + + the_end: + if (lastgoodEUN == BLOCK_NIL) { + /* the requested block is not on the media, return all 0x00 */ + memset(buffer, 0, 512); + } else { + loff_t ptr = (lastgoodEUN * nftl->EraseSize) + blockofs; + size_t retlen; + int res = mtd_read(mtd, ptr, 512, &retlen, buffer); + + if (res < 0 && !mtd_is_bitflip(res)) + return -EIO; + } + return 0; +} + +static int nftl_getgeo(struct mtd_blktrans_dev *dev, struct hd_geometry *geo) +{ + struct NFTLrecord *nftl = (void *)dev; + + geo->heads = nftl->heads; + geo->sectors = nftl->sectors; + geo->cylinders = nftl->cylinders; + + return 0; +} + +/**************************************************************************** + * + * Module stuff + * + ****************************************************************************/ + + +static struct mtd_blktrans_ops nftl_tr = { + .name = "nftl", + .major = NFTL_MAJOR, + .part_bits = NFTL_PARTN_BITS, + .blksize = 512, + .getgeo = nftl_getgeo, + .readsect = nftl_readblock, +#ifdef CONFIG_NFTL_RW + .writesect = nftl_writeblock, +#endif + .add_mtd = nftl_add_mtd, + .remove_dev = nftl_remove_dev, + .owner = THIS_MODULE, +}; + +module_mtd_blktrans(nftl_tr); + +MODULE_LICENSE("GPL"); +MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>, Fabrice Bellard <fabrice.bellard@netgem.com> et al."); +MODULE_DESCRIPTION("Support code for NAND Flash Translation Layer, used on M-Systems DiskOnChip 2000 and Millennium"); +MODULE_ALIAS_BLOCKDEV_MAJOR(NFTL_MAJOR); diff --git a/drivers/mtd/nftlmount.c b/drivers/mtd/nftlmount.c new file mode 100644 index 0000000000..75e86ed3e6 --- /dev/null +++ b/drivers/mtd/nftlmount.c @@ -0,0 +1,782 @@ +// SPDX-License-Identifier: GPL-2.0-or-later +/* + * NFTL mount code with extensive checks + * + * Author: Fabrice Bellard (fabrice.bellard@netgem.com) + * Copyright © 2000 Netgem S.A. + * Copyright © 1999-2010 David Woodhouse <dwmw2@infradead.org> + */ + +#include <linux/kernel.h> +#include <asm/errno.h> +#include <linux/delay.h> +#include <linux/slab.h> +#include <linux/mtd/mtd.h> +#include <linux/mtd/rawnand.h> +#include <linux/mtd/nftl.h> + +#define SECTORSIZE 512 + +/* find_boot_record: Find the NFTL Media Header and its Spare copy which contains the + * various device information of the NFTL partition and Bad Unit Table. Update + * the ReplUnitTable[] table according to the Bad Unit Table. ReplUnitTable[] + * is used for management of Erase Unit in other routines in nftl.c and nftlmount.c + */ +static int find_boot_record(struct NFTLrecord *nftl) +{ + struct nftl_uci1 h1; + unsigned int block, boot_record_count = 0; + size_t retlen; + u8 buf[SECTORSIZE]; + struct NFTLMediaHeader *mh = &nftl->MediaHdr; + struct mtd_info *mtd = nftl->mbd.mtd; + unsigned int i; + + /* Assume logical EraseSize == physical erasesize for starting the scan. + We'll sort it out later if we find a MediaHeader which says otherwise */ + /* Actually, we won't. The new DiskOnChip driver has already scanned + the MediaHeader and adjusted the virtual erasesize it presents in + the mtd device accordingly. We could even get rid of + nftl->EraseSize if there were any point in doing so. */ + nftl->EraseSize = nftl->mbd.mtd->erasesize; + nftl->nb_blocks = (u32)nftl->mbd.mtd->size / nftl->EraseSize; + + nftl->MediaUnit = BLOCK_NIL; + nftl->SpareMediaUnit = BLOCK_NIL; + + /* search for a valid boot record */ + for (block = 0; block < nftl->nb_blocks; block++) { + int ret; + + /* Check for ANAND header first. Then can whinge if it's found but later + checks fail */ + ret = mtd_read(mtd, block * nftl->EraseSize, SECTORSIZE, + &retlen, buf); + /* We ignore ret in case the ECC of the MediaHeader is invalid + (which is apparently acceptable) */ + if (retlen != SECTORSIZE) { + static int warncount = 5; + + if (warncount) { + printk(KERN_WARNING "Block read at 0x%x of mtd%d failed: %d\n", + block * nftl->EraseSize, nftl->mbd.mtd->index, ret); + if (!--warncount) + printk(KERN_WARNING "Further failures for this block will not be printed\n"); + } + continue; + } + + if (retlen < 6 || memcmp(buf, "ANAND", 6)) { + /* ANAND\0 not found. Continue */ +#if 0 + printk(KERN_DEBUG "ANAND header not found at 0x%x in mtd%d\n", + block * nftl->EraseSize, nftl->mbd.mtd->index); +#endif + continue; + } + + /* To be safer with BIOS, also use erase mark as discriminant */ + ret = nftl_read_oob(mtd, block * nftl->EraseSize + + SECTORSIZE + 8, 8, &retlen, + (char *)&h1); + if (ret < 0) { + printk(KERN_WARNING "ANAND header found at 0x%x in mtd%d, but OOB data read failed (err %d)\n", + block * nftl->EraseSize, nftl->mbd.mtd->index, ret); + continue; + } + +#if 0 /* Some people seem to have devices without ECC or erase marks + on the Media Header blocks. There are enough other sanity + checks in here that we can probably do without it. + */ + if (le16_to_cpu(h1.EraseMark | h1.EraseMark1) != ERASE_MARK) { + printk(KERN_NOTICE "ANAND header found at 0x%x in mtd%d, but erase mark not present (0x%04x,0x%04x instead)\n", + block * nftl->EraseSize, nftl->mbd.mtd->index, + le16_to_cpu(h1.EraseMark), le16_to_cpu(h1.EraseMark1)); + continue; + } + + /* Finally reread to check ECC */ + ret = mtd->read(mtd, block * nftl->EraseSize, SECTORSIZE, + &retlen, buf); + if (ret < 0) { + printk(KERN_NOTICE "ANAND header found at 0x%x in mtd%d, but ECC read failed (err %d)\n", + block * nftl->EraseSize, nftl->mbd.mtd->index, ret); + continue; + } + + /* Paranoia. Check the ANAND header is still there after the ECC read */ + if (memcmp(buf, "ANAND", 6)) { + printk(KERN_NOTICE "ANAND header found at 0x%x in mtd%d, but went away on reread!\n", + block * nftl->EraseSize, nftl->mbd.mtd->index); + printk(KERN_NOTICE "New data are: %6ph\n", buf); + continue; + } +#endif + /* OK, we like it. */ + + if (boot_record_count) { + /* We've already processed one. So we just check if + this one is the same as the first one we found */ + if (memcmp(mh, buf, sizeof(struct NFTLMediaHeader))) { + printk(KERN_NOTICE "NFTL Media Headers at 0x%x and 0x%x disagree.\n", + nftl->MediaUnit * nftl->EraseSize, block * nftl->EraseSize); + /* if (debug) Print both side by side */ + if (boot_record_count < 2) { + /* We haven't yet seen two real ones */ + return -1; + } + continue; + } + if (boot_record_count == 1) + nftl->SpareMediaUnit = block; + + /* Mark this boot record (NFTL MediaHeader) block as reserved */ + nftl->ReplUnitTable[block] = BLOCK_RESERVED; + + + boot_record_count++; + continue; + } + + /* This is the first we've seen. Copy the media header structure into place */ + memcpy(mh, buf, sizeof(struct NFTLMediaHeader)); + + /* Do some sanity checks on it */ +#if 0 +The new DiskOnChip driver scans the MediaHeader itself, and presents a virtual +erasesize based on UnitSizeFactor. So the erasesize we read from the mtd +device is already correct. + if (mh->UnitSizeFactor == 0) { + printk(KERN_NOTICE "NFTL: UnitSizeFactor 0x00 detected. This violates the spec but we think we know what it means...\n"); + } else if (mh->UnitSizeFactor < 0xfc) { + printk(KERN_NOTICE "Sorry, we don't support UnitSizeFactor 0x%02x\n", + mh->UnitSizeFactor); + return -1; + } else if (mh->UnitSizeFactor != 0xff) { + printk(KERN_NOTICE "WARNING: Support for NFTL with UnitSizeFactor 0x%02x is experimental\n", + mh->UnitSizeFactor); + nftl->EraseSize = nftl->mbd.mtd->erasesize << (0xff - mh->UnitSizeFactor); + nftl->nb_blocks = (u32)nftl->mbd.mtd->size / nftl->EraseSize; + } +#endif + nftl->nb_boot_blocks = le16_to_cpu(mh->FirstPhysicalEUN); + if ((nftl->nb_boot_blocks + 2) >= nftl->nb_blocks) { + printk(KERN_NOTICE "NFTL Media Header sanity check failed:\n"); + printk(KERN_NOTICE "nb_boot_blocks (%d) + 2 > nb_blocks (%d)\n", + nftl->nb_boot_blocks, nftl->nb_blocks); + return -1; + } + + nftl->numvunits = le32_to_cpu(mh->FormattedSize) / nftl->EraseSize; + if (nftl->numvunits > (nftl->nb_blocks - nftl->nb_boot_blocks - 2)) { + printk(KERN_NOTICE "NFTL Media Header sanity check failed:\n"); + printk(KERN_NOTICE "numvunits (%d) > nb_blocks (%d) - nb_boot_blocks(%d) - 2\n", + nftl->numvunits, nftl->nb_blocks, nftl->nb_boot_blocks); + return -1; + } + + nftl->mbd.size = nftl->numvunits * (nftl->EraseSize / SECTORSIZE); + + /* If we're not using the last sectors in the device for some reason, + reduce nb_blocks accordingly so we forget they're there */ + nftl->nb_blocks = le16_to_cpu(mh->NumEraseUnits) + le16_to_cpu(mh->FirstPhysicalEUN); + + /* XXX: will be suppressed */ + nftl->lastEUN = nftl->nb_blocks - 1; + + /* memory alloc */ + nftl->EUNtable = kmalloc_array(nftl->nb_blocks, sizeof(u16), + GFP_KERNEL); + if (!nftl->EUNtable) + return -ENOMEM; + + nftl->ReplUnitTable = kmalloc_array(nftl->nb_blocks, + sizeof(u16), + GFP_KERNEL); + if (!nftl->ReplUnitTable) { + kfree(nftl->EUNtable); + return -ENOMEM; + } + + /* mark the bios blocks (blocks before NFTL MediaHeader) as reserved */ + for (i = 0; i < nftl->nb_boot_blocks; i++) + nftl->ReplUnitTable[i] = BLOCK_RESERVED; + /* mark all remaining blocks as potentially containing data */ + for (; i < nftl->nb_blocks; i++) { + nftl->ReplUnitTable[i] = BLOCK_NOTEXPLORED; + } + + /* Mark this boot record (NFTL MediaHeader) block as reserved */ + nftl->ReplUnitTable[block] = BLOCK_RESERVED; + + /* read the Bad Erase Unit Table and modify ReplUnitTable[] accordingly */ + for (i = 0; i < nftl->nb_blocks; i++) { +#if 0 +The new DiskOnChip driver already scanned the bad block table. Just query it. + if ((i & (SECTORSIZE - 1)) == 0) { + /* read one sector for every SECTORSIZE of blocks */ + ret = mtd->read(nftl->mbd.mtd, + block * nftl->EraseSize + i + + SECTORSIZE, SECTORSIZE, + &retlen, buf); + if (ret < 0) { + printk(KERN_NOTICE "Read of bad sector table failed (err %d)\n", + ret); + kfree(nftl->ReplUnitTable); + kfree(nftl->EUNtable); + return -1; + } + } + /* mark the Bad Erase Unit as RESERVED in ReplUnitTable */ + if (buf[i & (SECTORSIZE - 1)] != 0xff) + nftl->ReplUnitTable[i] = BLOCK_RESERVED; +#endif + if (mtd_block_isbad(nftl->mbd.mtd, + i * nftl->EraseSize)) + nftl->ReplUnitTable[i] = BLOCK_RESERVED; + } + + nftl->MediaUnit = block; + boot_record_count++; + + } /* foreach (block) */ + + return boot_record_count?0:-1; +} + +static int memcmpb(void *a, int c, int n) +{ + int i; + for (i = 0; i < n; i++) { + if (c != ((unsigned char *)a)[i]) + return 1; + } + return 0; +} + +/* check_free_sector: check if a free sector is actually FREE, i.e. All 0xff in data and oob area */ +static int check_free_sectors(struct NFTLrecord *nftl, unsigned int address, int len, + int check_oob) +{ + struct mtd_info *mtd = nftl->mbd.mtd; + size_t retlen; + int i, ret; + u8 *buf; + + buf = kmalloc(SECTORSIZE + mtd->oobsize, GFP_KERNEL); + if (!buf) + return -ENOMEM; + + ret = -1; + for (i = 0; i < len; i += SECTORSIZE) { + if (mtd_read(mtd, address, SECTORSIZE, &retlen, buf)) + goto out; + if (memcmpb(buf, 0xff, SECTORSIZE) != 0) + goto out; + + if (check_oob) { + if(nftl_read_oob(mtd, address, mtd->oobsize, + &retlen, &buf[SECTORSIZE]) < 0) + goto out; + if (memcmpb(buf + SECTORSIZE, 0xff, mtd->oobsize) != 0) + goto out; + } + address += SECTORSIZE; + } + + ret = 0; + +out: + kfree(buf); + return ret; +} + +/* NFTL_format: format a Erase Unit by erasing ALL Erase Zones in the Erase Unit and + * Update NFTL metadata. Each erase operation is checked with check_free_sectors + * + * Return: 0 when succeed, -1 on error. + * + * ToDo: 1. Is it necessary to check_free_sector after erasing ?? + */ +int NFTL_formatblock(struct NFTLrecord *nftl, int block) +{ + size_t retlen; + unsigned int nb_erases, erase_mark; + struct nftl_uci1 uci; + struct erase_info *instr = &nftl->instr; + struct mtd_info *mtd = nftl->mbd.mtd; + + /* Read the Unit Control Information #1 for Wear-Leveling */ + if (nftl_read_oob(mtd, block * nftl->EraseSize + SECTORSIZE + 8, + 8, &retlen, (char *)&uci) < 0) + goto default_uci1; + + erase_mark = le16_to_cpu ((uci.EraseMark | uci.EraseMark1)); + if (erase_mark != ERASE_MARK) { + default_uci1: + uci.EraseMark = cpu_to_le16(ERASE_MARK); + uci.EraseMark1 = cpu_to_le16(ERASE_MARK); + uci.WearInfo = cpu_to_le32(0); + } + + memset(instr, 0, sizeof(struct erase_info)); + + /* XXX: use async erase interface, XXX: test return code */ + instr->addr = block * nftl->EraseSize; + instr->len = nftl->EraseSize; + if (mtd_erase(mtd, instr)) { + printk("Error while formatting block %d\n", block); + goto fail; + } + + /* increase and write Wear-Leveling info */ + nb_erases = le32_to_cpu(uci.WearInfo); + nb_erases++; + + /* wrap (almost impossible with current flash) or free block */ + if (nb_erases == 0) + nb_erases = 1; + + /* check the "freeness" of Erase Unit before updating metadata + * FixMe: is this check really necessary ? since we have check the + * return code after the erase operation. + */ + if (check_free_sectors(nftl, instr->addr, nftl->EraseSize, 1) != 0) + goto fail; + + uci.WearInfo = le32_to_cpu(nb_erases); + if (nftl_write_oob(mtd, block * nftl->EraseSize + SECTORSIZE + + 8, 8, &retlen, (char *)&uci) < 0) + goto fail; + return 0; +fail: + /* could not format, update the bad block table (caller is responsible + for setting the ReplUnitTable to BLOCK_RESERVED on failure) */ + mtd_block_markbad(nftl->mbd.mtd, instr->addr); + return -1; +} + +/* check_sectors_in_chain: Check that each sector of a Virtual Unit Chain is correct. + * Mark as 'IGNORE' each incorrect sector. This check is only done if the chain + * was being folded when NFTL was interrupted. + * + * The check_free_sectors in this function is necessary. There is a possible + * situation that after writing the Data area, the Block Control Information is + * not updated according (due to power failure or something) which leaves the block + * in an inconsistent state. So we have to check if a block is really FREE in this + * case. */ +static void check_sectors_in_chain(struct NFTLrecord *nftl, unsigned int first_block) +{ + struct mtd_info *mtd = nftl->mbd.mtd; + unsigned int block, i, status; + struct nftl_bci bci; + int sectors_per_block; + size_t retlen; + + sectors_per_block = nftl->EraseSize / SECTORSIZE; + block = first_block; + for (;;) { + for (i = 0; i < sectors_per_block; i++) { + if (nftl_read_oob(mtd, + block * nftl->EraseSize + i * SECTORSIZE, + 8, &retlen, (char *)&bci) < 0) + status = SECTOR_IGNORE; + else + status = bci.Status | bci.Status1; + + switch(status) { + case SECTOR_FREE: + /* verify that the sector is really free. If not, mark + as ignore */ + if (memcmpb(&bci, 0xff, 8) != 0 || + check_free_sectors(nftl, block * nftl->EraseSize + i * SECTORSIZE, + SECTORSIZE, 0) != 0) { + printk("Incorrect free sector %d in block %d: " + "marking it as ignored\n", + i, block); + + /* sector not free actually : mark it as SECTOR_IGNORE */ + bci.Status = SECTOR_IGNORE; + bci.Status1 = SECTOR_IGNORE; + nftl_write_oob(mtd, block * + nftl->EraseSize + + i * SECTORSIZE, 8, + &retlen, (char *)&bci); + } + break; + default: + break; + } + } + + /* proceed to next Erase Unit on the chain */ + block = nftl->ReplUnitTable[block]; + if (!(block == BLOCK_NIL || block < nftl->nb_blocks)) + printk("incorrect ReplUnitTable[] : %d\n", block); + if (block == BLOCK_NIL || block >= nftl->nb_blocks) + break; + } +} + +/* calc_chain_length: Walk through a Virtual Unit Chain and estimate chain length */ +static int calc_chain_length(struct NFTLrecord *nftl, unsigned int first_block) +{ + unsigned int length = 0, block = first_block; + + for (;;) { + length++; + /* avoid infinite loops, although this is guaranteed not to + happen because of the previous checks */ + if (length >= nftl->nb_blocks) { + printk("nftl: length too long %d !\n", length); + break; + } + + block = nftl->ReplUnitTable[block]; + if (!(block == BLOCK_NIL || block < nftl->nb_blocks)) + printk("incorrect ReplUnitTable[] : %d\n", block); + if (block == BLOCK_NIL || block >= nftl->nb_blocks) + break; + } + return length; +} + +/* format_chain: Format an invalid Virtual Unit chain. It frees all the Erase Units in a + * Virtual Unit Chain, i.e. all the units are disconnected. + * + * It is not strictly correct to begin from the first block of the chain because + * if we stop the code, we may see again a valid chain if there was a first_block + * flag in a block inside it. But is it really a problem ? + * + * FixMe: Figure out what the last statement means. What if power failure when we are + * in the for (;;) loop formatting blocks ?? + */ +static void format_chain(struct NFTLrecord *nftl, unsigned int first_block) +{ + unsigned int block = first_block, block1; + + printk("Formatting chain at block %d\n", first_block); + + for (;;) { + block1 = nftl->ReplUnitTable[block]; + + printk("Formatting block %d\n", block); + if (NFTL_formatblock(nftl, block) < 0) { + /* cannot format !!!! Mark it as Bad Unit */ + nftl->ReplUnitTable[block] = BLOCK_RESERVED; + } else { + nftl->ReplUnitTable[block] = BLOCK_FREE; + } + + /* goto next block on the chain */ + block = block1; + + if (!(block == BLOCK_NIL || block < nftl->nb_blocks)) + printk("incorrect ReplUnitTable[] : %d\n", block); + if (block == BLOCK_NIL || block >= nftl->nb_blocks) + break; + } +} + +/* check_and_mark_free_block: Verify that a block is free in the NFTL sense (valid erase mark) or + * totally free (only 0xff). + * + * Definition: Free Erase Unit -- A properly erased/formatted Free Erase Unit should have meet the + * following criteria: + * 1. */ +static int check_and_mark_free_block(struct NFTLrecord *nftl, int block) +{ + struct mtd_info *mtd = nftl->mbd.mtd; + struct nftl_uci1 h1; + unsigned int erase_mark; + size_t retlen; + + /* check erase mark. */ + if (nftl_read_oob(mtd, block * nftl->EraseSize + SECTORSIZE + 8, 8, + &retlen, (char *)&h1) < 0) + return -1; + + erase_mark = le16_to_cpu ((h1.EraseMark | h1.EraseMark1)); + if (erase_mark != ERASE_MARK) { + /* if no erase mark, the block must be totally free. This is + possible in two cases : empty filesystem or interrupted erase (very unlikely) */ + if (check_free_sectors (nftl, block * nftl->EraseSize, nftl->EraseSize, 1) != 0) + return -1; + + /* free block : write erase mark */ + h1.EraseMark = cpu_to_le16(ERASE_MARK); + h1.EraseMark1 = cpu_to_le16(ERASE_MARK); + h1.WearInfo = cpu_to_le32(0); + if (nftl_write_oob(mtd, + block * nftl->EraseSize + SECTORSIZE + 8, 8, + &retlen, (char *)&h1) < 0) + return -1; + } else { +#if 0 + /* if erase mark present, need to skip it when doing check */ + for (i = 0; i < nftl->EraseSize; i += SECTORSIZE) { + /* check free sector */ + if (check_free_sectors (nftl, block * nftl->EraseSize + i, + SECTORSIZE, 0) != 0) + return -1; + + if (nftl_read_oob(mtd, block * nftl->EraseSize + i, + 16, &retlen, buf) < 0) + return -1; + if (i == SECTORSIZE) { + /* skip erase mark */ + if (memcmpb(buf, 0xff, 8)) + return -1; + } else { + if (memcmpb(buf, 0xff, 16)) + return -1; + } + } +#endif + } + + return 0; +} + +/* get_fold_mark: Read fold mark from Unit Control Information #2, we use FOLD_MARK_IN_PROGRESS + * to indicate that we are in the progression of a Virtual Unit Chain folding. If the UCI #2 + * is FOLD_MARK_IN_PROGRESS when mounting the NFTL, the (previous) folding process is interrupted + * for some reason. A clean up/check of the VUC is necessary in this case. + * + * WARNING: return 0 if read error + */ +static int get_fold_mark(struct NFTLrecord *nftl, unsigned int block) +{ + struct mtd_info *mtd = nftl->mbd.mtd; + struct nftl_uci2 uci; + size_t retlen; + + if (nftl_read_oob(mtd, block * nftl->EraseSize + 2 * SECTORSIZE + 8, + 8, &retlen, (char *)&uci) < 0) + return 0; + + return le16_to_cpu((uci.FoldMark | uci.FoldMark1)); +} + +int NFTL_mount(struct NFTLrecord *s) +{ + int i; + unsigned int first_logical_block, logical_block, rep_block, erase_mark; + unsigned int block, first_block, is_first_block; + int chain_length, do_format_chain; + struct nftl_uci0 h0; + struct nftl_uci1 h1; + struct mtd_info *mtd = s->mbd.mtd; + size_t retlen; + + /* search for NFTL MediaHeader and Spare NFTL Media Header */ + if (find_boot_record(s) < 0) { + printk("Could not find valid boot record\n"); + return -1; + } + + /* init the logical to physical table */ + for (i = 0; i < s->nb_blocks; i++) { + s->EUNtable[i] = BLOCK_NIL; + } + + /* first pass : explore each block chain */ + first_logical_block = 0; + for (first_block = 0; first_block < s->nb_blocks; first_block++) { + /* if the block was not already explored, we can look at it */ + if (s->ReplUnitTable[first_block] == BLOCK_NOTEXPLORED) { + block = first_block; + chain_length = 0; + do_format_chain = 0; + + for (;;) { + /* read the block header. If error, we format the chain */ + if (nftl_read_oob(mtd, + block * s->EraseSize + 8, 8, + &retlen, (char *)&h0) < 0 || + nftl_read_oob(mtd, + block * s->EraseSize + + SECTORSIZE + 8, 8, + &retlen, (char *)&h1) < 0) { + s->ReplUnitTable[block] = BLOCK_NIL; + do_format_chain = 1; + break; + } + + logical_block = le16_to_cpu ((h0.VirtUnitNum | h0.SpareVirtUnitNum)); + rep_block = le16_to_cpu ((h0.ReplUnitNum | h0.SpareReplUnitNum)); + erase_mark = le16_to_cpu ((h1.EraseMark | h1.EraseMark1)); + + is_first_block = !(logical_block >> 15); + logical_block = logical_block & 0x7fff; + + /* invalid/free block test */ + if (erase_mark != ERASE_MARK || logical_block >= s->nb_blocks) { + if (chain_length == 0) { + /* if not currently in a chain, we can handle it safely */ + if (check_and_mark_free_block(s, block) < 0) { + /* not really free: format it */ + printk("Formatting block %d\n", block); + if (NFTL_formatblock(s, block) < 0) { + /* could not format: reserve the block */ + s->ReplUnitTable[block] = BLOCK_RESERVED; + } else { + s->ReplUnitTable[block] = BLOCK_FREE; + } + } else { + /* free block: mark it */ + s->ReplUnitTable[block] = BLOCK_FREE; + } + /* directly examine the next block. */ + goto examine_ReplUnitTable; + } else { + /* the block was in a chain : this is bad. We + must format all the chain */ + printk("Block %d: free but referenced in chain %d\n", + block, first_block); + s->ReplUnitTable[block] = BLOCK_NIL; + do_format_chain = 1; + break; + } + } + + /* we accept only first blocks here */ + if (chain_length == 0) { + /* this block is not the first block in chain : + ignore it, it will be included in a chain + later, or marked as not explored */ + if (!is_first_block) + goto examine_ReplUnitTable; + first_logical_block = logical_block; + } else { + if (logical_block != first_logical_block) { + printk("Block %d: incorrect logical block: %d expected: %d\n", + block, logical_block, first_logical_block); + /* the chain is incorrect : we must format it, + but we need to read it completely */ + do_format_chain = 1; + } + if (is_first_block) { + /* we accept that a block is marked as first + block while being last block in a chain + only if the chain is being folded */ + if (get_fold_mark(s, block) != FOLD_MARK_IN_PROGRESS || + rep_block != 0xffff) { + printk("Block %d: incorrectly marked as first block in chain\n", + block); + /* the chain is incorrect : we must format it, + but we need to read it completely */ + do_format_chain = 1; + } else { + printk("Block %d: folding in progress - ignoring first block flag\n", + block); + } + } + } + chain_length++; + if (rep_block == 0xffff) { + /* no more blocks after */ + s->ReplUnitTable[block] = BLOCK_NIL; + break; + } else if (rep_block >= s->nb_blocks) { + printk("Block %d: referencing invalid block %d\n", + block, rep_block); + do_format_chain = 1; + s->ReplUnitTable[block] = BLOCK_NIL; + break; + } else if (s->ReplUnitTable[rep_block] != BLOCK_NOTEXPLORED) { + /* same problem as previous 'is_first_block' test: + we accept that the last block of a chain has + the first_block flag set if folding is in + progress. We handle here the case where the + last block appeared first */ + if (s->ReplUnitTable[rep_block] == BLOCK_NIL && + s->EUNtable[first_logical_block] == rep_block && + get_fold_mark(s, first_block) == FOLD_MARK_IN_PROGRESS) { + /* EUNtable[] will be set after */ + printk("Block %d: folding in progress - ignoring first block flag\n", + rep_block); + s->ReplUnitTable[block] = rep_block; + s->EUNtable[first_logical_block] = BLOCK_NIL; + } else { + printk("Block %d: referencing block %d already in another chain\n", + block, rep_block); + /* XXX: should handle correctly fold in progress chains */ + do_format_chain = 1; + s->ReplUnitTable[block] = BLOCK_NIL; + } + break; + } else { + /* this is OK */ + s->ReplUnitTable[block] = rep_block; + block = rep_block; + } + } + + /* the chain was completely explored. Now we can decide + what to do with it */ + if (do_format_chain) { + /* invalid chain : format it */ + format_chain(s, first_block); + } else { + unsigned int first_block1, chain_to_format, chain_length1; + int fold_mark; + + /* valid chain : get foldmark */ + fold_mark = get_fold_mark(s, first_block); + if (fold_mark == 0) { + /* cannot get foldmark : format the chain */ + printk("Could read foldmark at block %d\n", first_block); + format_chain(s, first_block); + } else { + if (fold_mark == FOLD_MARK_IN_PROGRESS) + check_sectors_in_chain(s, first_block); + + /* now handle the case where we find two chains at the + same virtual address : we select the longer one, + because the shorter one is the one which was being + folded if the folding was not done in place */ + first_block1 = s->EUNtable[first_logical_block]; + if (first_block1 != BLOCK_NIL) { + /* XXX: what to do if same length ? */ + chain_length1 = calc_chain_length(s, first_block1); + printk("Two chains at blocks %d (len=%d) and %d (len=%d)\n", + first_block1, chain_length1, first_block, chain_length); + + if (chain_length >= chain_length1) { + chain_to_format = first_block1; + s->EUNtable[first_logical_block] = first_block; + } else { + chain_to_format = first_block; + } + format_chain(s, chain_to_format); + } else { + s->EUNtable[first_logical_block] = first_block; + } + } + } + } + examine_ReplUnitTable:; + } + + /* second pass to format unreferenced blocks and init free block count */ + s->numfreeEUNs = 0; + s->LastFreeEUN = le16_to_cpu(s->MediaHdr.FirstPhysicalEUN); + + for (block = 0; block < s->nb_blocks; block++) { + if (s->ReplUnitTable[block] == BLOCK_NOTEXPLORED) { + printk("Unreferenced block %d, formatting it\n", block); + if (NFTL_formatblock(s, block) < 0) + s->ReplUnitTable[block] = BLOCK_RESERVED; + else + s->ReplUnitTable[block] = BLOCK_FREE; + } + if (s->ReplUnitTable[block] == BLOCK_FREE) { + s->numfreeEUNs++; + s->LastFreeEUN = block; + } + } + + return 0; +} diff --git a/drivers/mtd/parsers/Kconfig b/drivers/mtd/parsers/Kconfig new file mode 100644 index 0000000000..60738edcd5 --- /dev/null +++ b/drivers/mtd/parsers/Kconfig @@ -0,0 +1,222 @@ +# SPDX-License-Identifier: GPL-2.0-only +config MTD_AR7_PARTS + tristate "TI AR7 partitioning parser" + help + TI AR7 partitioning parser support + +config MTD_BCM47XX_PARTS + tristate "BCM47XX partitioning parser" + depends on BCM47XX || ARCH_BCM_5301X + help + This provides partitions parser for devices based on BCM47xx + boards. + +config MTD_BCM63XX_PARTS + bool "BCM63XX CFE partitioning parser" + depends on BCM63XX || BMIPS_GENERIC || COMPILE_TEST + select CRC32 + select MTD_PARSER_IMAGETAG + help + This provides partition parsing for BCM63xx devices with CFE + bootloaders. + +config MTD_BRCM_U_BOOT + tristate "Broadcom's U-Boot partition parser" + depends on ARCH_BCMBCA || COMPILE_TEST + help + Broadcom uses a custom way of storing U-Boot environment variables. + They are placed inside U-Boot partition itself at unspecified offset. + It's possible to locate them by looking for a custom header with a + magic value. This driver does that and creates subpartitions for + each found environment variables block. + +config MTD_CMDLINE_PARTS + tristate "Command line partition table parsing" + depends on MTD + help + Allow generic configuration of the MTD partition tables via the kernel + command line. Multiple flash resources are supported for hardware where + different kinds of flash memory are available. + + You will still need the parsing functions to be called by the driver + for your particular device. It won't happen automatically. The + SA1100 map driver (CONFIG_MTD_SA1100) has an option for this, for + example. + + The format for the command line is as follows: + + mtdparts=<mtddef>[;<mtddef] + <mtddef> := <mtd-id>:<partdef>[,<partdef>] + <partdef> := <size>[@offset][<name>][ro] + <mtd-id> := unique id used in mapping driver/device + <size> := standard linux memsize OR "-" to denote all + remaining space + <name> := (NAME) + + Due to the way Linux handles the command line, no spaces are + allowed in the partition definition, including mtd id's and partition + names. + + Examples: + + 1 flash resource (mtd-id "sa1100"), with 1 single writable partition: + mtdparts=sa1100:- + + Same flash, but 2 named partitions, the first one being read-only: + mtdparts=sa1100:256k(ARMboot)ro,-(root) + + If unsure, say 'N'. + +config MTD_OF_PARTS + tristate "OpenFirmware (device tree) partitioning parser" + default y + depends on OF + help + This provides a open firmware device tree partition parser + which derives the partition map from the children of the + flash memory node, as described in + Documentation/devicetree/bindings/mtd/mtd.yaml. + +config MTD_OF_PARTS_BCM4908 + bool "BCM4908 partitioning support" + depends on MTD_OF_PARTS && (ARCH_BCMBCA || COMPILE_TEST) + default ARCH_BCMBCA + help + This provides partitions parser for BCM4908 family devices + that can have multiple "firmware" partitions. It takes care of + finding currently used one and backup ones. + +config MTD_OF_PARTS_LINKSYS_NS + bool "Linksys Northstar partitioning support" + depends on MTD_OF_PARTS && (ARCH_BCM_5301X || ARCH_BCMBCA || COMPILE_TEST) + default ARCH_BCM_5301X + help + This provides partitions parser for Linksys devices based on Broadcom + Northstar architecture. Linksys commonly uses fixed flash layout with + two "firmware" partitions. Currently used firmware has to be detected + using CFE environment variable. + +config MTD_PARSER_IMAGETAG + tristate "Parser for BCM963XX Image Tag format partitions" + depends on BCM63XX || BMIPS_GENERIC || COMPILE_TEST + select CRC32 + help + Image Tag is the firmware header used by broadcom on their xDSL line + of devices. It is used to describe the offsets and lengths of kernel + and rootfs partitions. + This driver adds support for parsing a partition with an Image Tag + header and creates up to two partitions, kernel and rootfs. + +config MTD_AFS_PARTS + tristate "ARM Firmware Suite partition parsing" + depends on (ARM || ARM64) + help + The ARM Firmware Suite allows the user to divide flash devices into + multiple 'images'. Each such image has a header containing its name + and offset/size etc. + + If you need code which can detect and parse these tables, and + register MTD 'partitions' corresponding to each image detected, + enable this option. + + You will still need the parsing functions to be called by the driver + for your particular device. It won't happen automatically. The + 'physmap' map driver (CONFIG_MTD_PHYSMAP) does this, for example. + +config MTD_PARSER_TPLINK_SAFELOADER + tristate "TP-Link Safeloader partitions parser" + depends on MTD && (ARCH_BCM_5301X || ATH79 || SOC_MT7620 || SOC_MT7621 || COMPILE_TEST) + help + TP-Link home routers use flash partitions to store various data. Info + about flash space layout is stored in a partitions table using a + custom ASCII-based format. + + That format was first found in devices with SafeLoader bootloader and + was named after it. Later it was adapted to CFE and U-Boot + bootloaders. + + This driver reads partitions table, parses it and creates MTD + partitions. + +config MTD_PARSER_TRX + tristate "Parser for TRX format partitions" + depends on MTD && (BCM47XX || ARCH_BCM_5301X || ARCH_MEDIATEK || RALINK || COMPILE_TEST) + help + TRX is a firmware format used by Broadcom on their devices. It + may contain up to 3/4 partitions (depending on the version). + This driver will parse TRX header and report at least two partitions: + kernel and rootfs. + +config MTD_SHARPSL_PARTS + tristate "Sharp SL Series NAND flash partition parser" + depends on MTD_NAND_SHARPSL || COMPILE_TEST + help + This provides the read-only FTL logic necessary to read the partition + table from the NAND flash of Sharp SL Series (Zaurus) and the MTD + partition parser using this code. + +config MTD_REDBOOT_PARTS + tristate "RedBoot partition table parsing" + help + RedBoot is a ROM monitor and bootloader which deals with multiple + 'images' in flash devices by putting a table one of the erase + blocks on the device, similar to a partition table, which gives + the offsets, lengths and names of all the images stored in the + flash. + + If you need code which can detect and parse this table, and register + MTD 'partitions' corresponding to each image in the table, enable + this option. + + You will still need the parsing functions to be called by the driver + for your particular device. It won't happen automatically. The + SA1100 map driver (CONFIG_MTD_SA1100) has an option for this, for + example. + +if MTD_REDBOOT_PARTS + +config MTD_REDBOOT_DIRECTORY_BLOCK + int "Location of RedBoot partition table" + default "-1" + help + This option is the Linux counterpart to the + CYGNUM_REDBOOT_FIS_DIRECTORY_BLOCK RedBoot compile time + option. + + The option specifies which Flash sectors holds the RedBoot + partition table. A zero or positive value gives an absolute + erase block number. A negative value specifies a number of + sectors before the end of the device. + + For example "2" means block number 2, "-1" means the last + block and "-2" means the penultimate block. + +config MTD_REDBOOT_PARTS_UNALLOCATED + bool "Include unallocated flash regions" + help + If you need to register each unallocated flash region as a MTD + 'partition', enable this option. + +config MTD_REDBOOT_PARTS_READONLY + bool "Force read-only for RedBoot system images" + help + If you need to force read-only for 'RedBoot', 'RedBoot Config' and + 'FIS directory' images, enable this option. + +endif # MTD_REDBOOT_PARTS + +config MTD_QCOMSMEM_PARTS + tristate "Qualcomm SMEM flash partition parser" + depends on QCOM_SMEM + help + This provides support for parsing partitions from Shared Memory (SMEM) + for NAND and SPI flash on Qualcomm platforms. + +config MTD_SERCOMM_PARTS + tristate "Sercomm partition table parser" + depends on MTD && RALINK + help + This provides partitions table parser for devices with Sercomm + partition map. This partition table contains real partition + offsets, which may differ from device to device depending on the + number and location of bad blocks on NAND. diff --git a/drivers/mtd/parsers/Makefile b/drivers/mtd/parsers/Makefile new file mode 100644 index 0000000000..0e70b621a1 --- /dev/null +++ b/drivers/mtd/parsers/Makefile @@ -0,0 +1,18 @@ +# SPDX-License-Identifier: GPL-2.0-only +obj-$(CONFIG_MTD_AR7_PARTS) += ar7part.o +obj-$(CONFIG_MTD_BCM47XX_PARTS) += bcm47xxpart.o +obj-$(CONFIG_MTD_BCM63XX_PARTS) += bcm63xxpart.o +obj-$(CONFIG_MTD_BRCM_U_BOOT) += brcm_u-boot.o +obj-$(CONFIG_MTD_CMDLINE_PARTS) += cmdlinepart.o +obj-$(CONFIG_MTD_OF_PARTS) += ofpart.o +ofpart-y += ofpart_core.o +ofpart-$(CONFIG_MTD_OF_PARTS_BCM4908) += ofpart_bcm4908.o +ofpart-$(CONFIG_MTD_OF_PARTS_LINKSYS_NS)+= ofpart_linksys_ns.o +obj-$(CONFIG_MTD_PARSER_IMAGETAG) += parser_imagetag.o +obj-$(CONFIG_MTD_AFS_PARTS) += afs.o +obj-$(CONFIG_MTD_PARSER_TPLINK_SAFELOADER) += tplink_safeloader.o +obj-$(CONFIG_MTD_PARSER_TRX) += parser_trx.o +obj-$(CONFIG_MTD_SERCOMM_PARTS) += scpart.o +obj-$(CONFIG_MTD_SHARPSL_PARTS) += sharpslpart.o +obj-$(CONFIG_MTD_REDBOOT_PARTS) += redboot.o +obj-$(CONFIG_MTD_QCOMSMEM_PARTS) += qcomsmempart.o diff --git a/drivers/mtd/parsers/afs.c b/drivers/mtd/parsers/afs.c new file mode 100644 index 0000000000..26116694c8 --- /dev/null +++ b/drivers/mtd/parsers/afs.c @@ -0,0 +1,395 @@ +// SPDX-License-Identifier: GPL-2.0-or-later +/*====================================================================== + + drivers/mtd/afs.c: ARM Flash Layout/Partitioning + + Copyright © 2000 ARM Limited + Copyright (C) 2019 Linus Walleij + + + This is access code for flashes using ARM's flash partitioning + standards. + +======================================================================*/ + +#include <linux/module.h> +#include <linux/types.h> +#include <linux/kernel.h> +#include <linux/slab.h> +#include <linux/string.h> +#include <linux/init.h> + +#include <linux/mtd/mtd.h> +#include <linux/mtd/map.h> +#include <linux/mtd/partitions.h> + +#define AFSV1_FOOTER_MAGIC 0xA0FFFF9F +#define AFSV2_FOOTER_MAGIC1 0x464C5348 /* "FLSH" */ +#define AFSV2_FOOTER_MAGIC2 0x464F4F54 /* "FOOT" */ + +struct footer_v1 { + u32 image_info_base; /* Address of first word of ImageFooter */ + u32 image_start; /* Start of area reserved by this footer */ + u32 signature; /* 'Magic' number proves it's a footer */ + u32 type; /* Area type: ARM Image, SIB, customer */ + u32 checksum; /* Just this structure */ +}; + +struct image_info_v1 { + u32 bootFlags; /* Boot flags, compression etc. */ + u32 imageNumber; /* Unique number, selects for boot etc. */ + u32 loadAddress; /* Address program should be loaded to */ + u32 length; /* Actual size of image */ + u32 address; /* Image is executed from here */ + char name[16]; /* Null terminated */ + u32 headerBase; /* Flash Address of any stripped header */ + u32 header_length; /* Length of header in memory */ + u32 headerType; /* AIF, RLF, s-record etc. */ + u32 checksum; /* Image checksum (inc. this struct) */ +}; + +static u32 word_sum(void *words, int num) +{ + u32 *p = words; + u32 sum = 0; + + while (num--) + sum += *p++; + + return sum; +} + +static u32 word_sum_v2(u32 *p, u32 num) +{ + u32 sum = 0; + int i; + + for (i = 0; i < num; i++) { + u32 val; + + val = p[i]; + if (val > ~sum) + sum++; + sum += val; + } + return ~sum; +} + +static bool afs_is_v1(struct mtd_info *mtd, u_int off) +{ + /* The magic is 12 bytes from the end of the erase block */ + u_int ptr = off + mtd->erasesize - 12; + u32 magic; + size_t sz; + int ret; + + ret = mtd_read(mtd, ptr, 4, &sz, (u_char *)&magic); + if (ret < 0) { + printk(KERN_ERR "AFS: mtd read failed at 0x%x: %d\n", + ptr, ret); + return false; + } + if (ret >= 0 && sz != 4) + return false; + + return (magic == AFSV1_FOOTER_MAGIC); +} + +static bool afs_is_v2(struct mtd_info *mtd, u_int off) +{ + /* The magic is the 8 last bytes of the erase block */ + u_int ptr = off + mtd->erasesize - 8; + u32 foot[2]; + size_t sz; + int ret; + + ret = mtd_read(mtd, ptr, 8, &sz, (u_char *)foot); + if (ret < 0) { + printk(KERN_ERR "AFS: mtd read failed at 0x%x: %d\n", + ptr, ret); + return false; + } + if (ret >= 0 && sz != 8) + return false; + + return (foot[0] == AFSV2_FOOTER_MAGIC1 && + foot[1] == AFSV2_FOOTER_MAGIC2); +} + +static int afs_parse_v1_partition(struct mtd_info *mtd, + u_int off, struct mtd_partition *part) +{ + struct footer_v1 fs; + struct image_info_v1 iis; + u_int mask; + /* + * Static checks cannot see that we bail out if we have an error + * reading the footer. + */ + u_int iis_ptr; + u_int img_ptr; + u_int ptr; + size_t sz; + int ret; + int i; + + /* + * This is the address mask; we use this to mask off out of + * range address bits. + */ + mask = mtd->size - 1; + + ptr = off + mtd->erasesize - sizeof(fs); + ret = mtd_read(mtd, ptr, sizeof(fs), &sz, (u_char *)&fs); + if (ret >= 0 && sz != sizeof(fs)) + ret = -EINVAL; + if (ret < 0) { + printk(KERN_ERR "AFS: mtd read failed at 0x%x: %d\n", + ptr, ret); + return ret; + } + /* + * Check the checksum. + */ + if (word_sum(&fs, sizeof(fs) / sizeof(u32)) != 0xffffffff) + return -EINVAL; + + /* + * Hide the SIB (System Information Block) + */ + if (fs.type == 2) + return 0; + + iis_ptr = fs.image_info_base & mask; + img_ptr = fs.image_start & mask; + + /* + * Check the image info base. This can not + * be located after the footer structure. + */ + if (iis_ptr >= ptr) + return 0; + + /* + * Check the start of this image. The image + * data can not be located after this block. + */ + if (img_ptr > off) + return 0; + + /* Read the image info block */ + memset(&iis, 0, sizeof(iis)); + ret = mtd_read(mtd, iis_ptr, sizeof(iis), &sz, (u_char *)&iis); + if (ret < 0) { + printk(KERN_ERR "AFS: mtd read failed at 0x%x: %d\n", + iis_ptr, ret); + return -EINVAL; + } + + if (sz != sizeof(iis)) + return -EINVAL; + + /* + * Validate the name - it must be NUL terminated. + */ + for (i = 0; i < sizeof(iis.name); i++) + if (iis.name[i] == '\0') + break; + if (i > sizeof(iis.name)) + return -EINVAL; + + part->name = kstrdup(iis.name, GFP_KERNEL); + if (!part->name) + return -ENOMEM; + + part->size = (iis.length + mtd->erasesize - 1) & ~(mtd->erasesize - 1); + part->offset = img_ptr; + part->mask_flags = 0; + + printk(" mtd: at 0x%08x, %5lluKiB, %8u, %s\n", + img_ptr, part->size / 1024, + iis.imageNumber, part->name); + + return 0; +} + +static int afs_parse_v2_partition(struct mtd_info *mtd, + u_int off, struct mtd_partition *part) +{ + u_int ptr; + u32 footer[12]; + u32 imginfo[36]; + char *name; + u32 version; + u32 entrypoint; + u32 attributes; + u32 region_count; + u32 block_start; + u32 block_end; + u32 crc; + size_t sz; + int ret; + int i; + int pad = 0; + + pr_debug("Parsing v2 partition @%08x-%08x\n", + off, off + mtd->erasesize); + + /* First read the footer */ + ptr = off + mtd->erasesize - sizeof(footer); + ret = mtd_read(mtd, ptr, sizeof(footer), &sz, (u_char *)footer); + if ((ret < 0) || (ret >= 0 && sz != sizeof(footer))) { + pr_err("AFS: mtd read failed at 0x%x: %d\n", + ptr, ret); + return -EIO; + } + name = (char *) &footer[0]; + version = footer[9]; + ptr = off + mtd->erasesize - sizeof(footer) - footer[8]; + + pr_debug("found image \"%s\", version %08x, info @%08x\n", + name, version, ptr); + + /* Then read the image information */ + ret = mtd_read(mtd, ptr, sizeof(imginfo), &sz, (u_char *)imginfo); + if ((ret < 0) || (ret >= 0 && sz != sizeof(imginfo))) { + pr_err("AFS: mtd read failed at 0x%x: %d\n", + ptr, ret); + return -EIO; + } + + /* 32bit platforms have 4 bytes padding */ + crc = word_sum_v2(&imginfo[1], 34); + if (!crc) { + pr_debug("Padding 1 word (4 bytes)\n"); + pad = 1; + } else { + /* 64bit platforms have 8 bytes padding */ + crc = word_sum_v2(&imginfo[2], 34); + if (!crc) { + pr_debug("Padding 2 words (8 bytes)\n"); + pad = 2; + } + } + if (crc) { + pr_err("AFS: bad checksum on v2 image info: %08x\n", crc); + return -EINVAL; + } + entrypoint = imginfo[pad]; + attributes = imginfo[pad+1]; + region_count = imginfo[pad+2]; + block_start = imginfo[20]; + block_end = imginfo[21]; + + pr_debug("image entry=%08x, attr=%08x, regions=%08x, " + "bs=%08x, be=%08x\n", + entrypoint, attributes, region_count, + block_start, block_end); + + for (i = 0; i < region_count; i++) { + u32 region_load_addr = imginfo[pad + 3 + i*4]; + u32 region_size = imginfo[pad + 4 + i*4]; + u32 region_offset = imginfo[pad + 5 + i*4]; + u32 region_start; + u32 region_end; + + pr_debug(" region %d: address: %08x, size: %08x, " + "offset: %08x\n", + i, + region_load_addr, + region_size, + region_offset); + + region_start = off + region_offset; + region_end = region_start + region_size; + /* Align partition to end of erase block */ + region_end += (mtd->erasesize - 1); + region_end &= ~(mtd->erasesize -1); + pr_debug(" partition start = %08x, partition end = %08x\n", + region_start, region_end); + + /* Create one partition per region */ + part->name = kstrdup(name, GFP_KERNEL); + if (!part->name) + return -ENOMEM; + part->offset = region_start; + part->size = region_end - region_start; + part->mask_flags = 0; + } + + return 0; +} + +static int parse_afs_partitions(struct mtd_info *mtd, + const struct mtd_partition **pparts, + struct mtd_part_parser_data *data) +{ + struct mtd_partition *parts; + u_int off, sz; + int ret = 0; + int i; + + /* Count the partitions by looping over all erase blocks */ + for (i = off = sz = 0; off < mtd->size; off += mtd->erasesize) { + if (afs_is_v1(mtd, off)) { + sz += sizeof(struct mtd_partition); + i += 1; + } + if (afs_is_v2(mtd, off)) { + sz += sizeof(struct mtd_partition); + i += 1; + } + } + + if (!i) + return 0; + + parts = kzalloc(sz, GFP_KERNEL); + if (!parts) + return -ENOMEM; + + /* + * Identify the partitions + */ + for (i = off = 0; off < mtd->size; off += mtd->erasesize) { + if (afs_is_v1(mtd, off)) { + ret = afs_parse_v1_partition(mtd, off, &parts[i]); + if (ret) + goto out_free_parts; + i++; + } + if (afs_is_v2(mtd, off)) { + ret = afs_parse_v2_partition(mtd, off, &parts[i]); + if (ret) + goto out_free_parts; + i++; + } + } + + *pparts = parts; + return i; + +out_free_parts: + while (--i >= 0) + kfree(parts[i].name); + kfree(parts); + *pparts = NULL; + return ret; +} + +static const struct of_device_id mtd_parser_afs_of_match_table[] = { + { .compatible = "arm,arm-firmware-suite" }, + {}, +}; +MODULE_DEVICE_TABLE(of, mtd_parser_afs_of_match_table); + +static struct mtd_part_parser afs_parser = { + .parse_fn = parse_afs_partitions, + .name = "afs", + .of_match_table = mtd_parser_afs_of_match_table, +}; +module_mtd_part_parser(afs_parser); + +MODULE_AUTHOR("ARM Ltd"); +MODULE_DESCRIPTION("ARM Firmware Suite partition parser"); +MODULE_LICENSE("GPL"); diff --git a/drivers/mtd/parsers/ar7part.c b/drivers/mtd/parsers/ar7part.c new file mode 100644 index 0000000000..8cd683711a --- /dev/null +++ b/drivers/mtd/parsers/ar7part.c @@ -0,0 +1,129 @@ +// SPDX-License-Identifier: GPL-2.0-or-later +/* + * Copyright © 2007 Eugene Konev <ejka@openwrt.org> + * + * TI AR7 flash partition table. + * Based on ar7 map by Felix Fietkau <nbd@openwrt.org> + */ + +#include <linux/kernel.h> +#include <linux/slab.h> + +#include <linux/mtd/mtd.h> +#include <linux/mtd/partitions.h> +#include <linux/memblock.h> +#include <linux/module.h> + +#include <uapi/linux/magic.h> + +#define AR7_PARTS 4 +#define ROOT_OFFSET 0xe0000 + +#define LOADER_MAGIC1 le32_to_cpu(0xfeedfa42) +#define LOADER_MAGIC2 le32_to_cpu(0xfeed1281) + +struct ar7_bin_rec { + unsigned int checksum; + unsigned int length; + unsigned int address; +}; + +static int create_mtd_partitions(struct mtd_info *master, + const struct mtd_partition **pparts, + struct mtd_part_parser_data *data) +{ + struct ar7_bin_rec header; + unsigned int offset; + size_t len; + unsigned int pre_size = master->erasesize, post_size = 0; + unsigned int root_offset = ROOT_OFFSET; + + int retries = 10; + struct mtd_partition *ar7_parts; + + ar7_parts = kcalloc(AR7_PARTS, sizeof(*ar7_parts), GFP_KERNEL); + if (!ar7_parts) + return -ENOMEM; + ar7_parts[0].name = "loader"; + ar7_parts[0].offset = 0; + ar7_parts[0].size = master->erasesize; + ar7_parts[0].mask_flags = MTD_WRITEABLE; + + ar7_parts[1].name = "config"; + ar7_parts[1].offset = 0; + ar7_parts[1].size = master->erasesize; + ar7_parts[1].mask_flags = 0; + + do { /* Try 10 blocks starting from master->erasesize */ + offset = pre_size; + mtd_read(master, offset, sizeof(header), &len, + (uint8_t *)&header); + if (!strncmp((char *)&header, "TIENV0.8", 8)) + ar7_parts[1].offset = pre_size; + if (header.checksum == LOADER_MAGIC1) + break; + if (header.checksum == LOADER_MAGIC2) + break; + pre_size += master->erasesize; + } while (retries--); + + pre_size = offset; + + if (!ar7_parts[1].offset) { + ar7_parts[1].offset = master->size - master->erasesize; + post_size = master->erasesize; + } + + switch (header.checksum) { + case LOADER_MAGIC1: + while (header.length) { + offset += sizeof(header) + header.length; + mtd_read(master, offset, sizeof(header), &len, + (uint8_t *)&header); + } + root_offset = offset + sizeof(header) + 4; + break; + case LOADER_MAGIC2: + while (header.length) { + offset += sizeof(header) + header.length; + mtd_read(master, offset, sizeof(header), &len, + (uint8_t *)&header); + } + root_offset = offset + sizeof(header) + 4 + 0xff; + root_offset &= ~(uint32_t)0xff; + break; + default: + printk(KERN_WARNING "Unknown magic: %08x\n", header.checksum); + break; + } + + mtd_read(master, root_offset, sizeof(header), &len, (u8 *)&header); + if (header.checksum != SQUASHFS_MAGIC) { + root_offset += master->erasesize - 1; + root_offset &= ~(master->erasesize - 1); + } + + ar7_parts[2].name = "linux"; + ar7_parts[2].offset = pre_size; + ar7_parts[2].size = master->size - pre_size - post_size; + ar7_parts[2].mask_flags = 0; + + ar7_parts[3].name = "rootfs"; + ar7_parts[3].offset = root_offset; + ar7_parts[3].size = master->size - root_offset - post_size; + ar7_parts[3].mask_flags = 0; + + *pparts = ar7_parts; + return AR7_PARTS; +} + +static struct mtd_part_parser ar7_parser = { + .parse_fn = create_mtd_partitions, + .name = "ar7part", +}; +module_mtd_part_parser(ar7_parser); + +MODULE_LICENSE("GPL"); +MODULE_AUTHOR( "Felix Fietkau <nbd@openwrt.org>, " + "Eugene Konev <ejka@openwrt.org>"); +MODULE_DESCRIPTION("MTD partitioning for TI AR7"); diff --git a/drivers/mtd/parsers/bcm47xxpart.c b/drivers/mtd/parsers/bcm47xxpart.c new file mode 100644 index 0000000000..13daf9bffd --- /dev/null +++ b/drivers/mtd/parsers/bcm47xxpart.c @@ -0,0 +1,317 @@ +// SPDX-License-Identifier: GPL-2.0-only +/* + * BCM47XX MTD partitioning + * + * Copyright © 2012 Rafał Miłecki <zajec5@gmail.com> + */ + +#include <linux/bcm47xx_nvram.h> +#include <linux/module.h> +#include <linux/kernel.h> +#include <linux/slab.h> +#include <linux/mtd/mtd.h> +#include <linux/mtd/partitions.h> + +#include <uapi/linux/magic.h> + +/* + * NAND flash on Netgear R6250 was verified to contain 15 partitions. + * This will result in allocating too big array for some old devices, but the + * memory will be freed soon anyway (see mtd_device_parse_register). + */ +#define BCM47XXPART_MAX_PARTS 20 + +/* + * Amount of bytes we read when analyzing each block of flash memory. + * Set it big enough to allow detecting partition and reading important data. + */ +#define BCM47XXPART_BYTES_TO_READ 0x4e8 + +/* Magics */ +#define BOARD_DATA_MAGIC 0x5246504D /* MPFR */ +#define BOARD_DATA_MAGIC2 0xBD0D0BBD +#define CFE_MAGIC 0x43464531 /* 1EFC */ +#define FACTORY_MAGIC 0x59544346 /* FCTY */ +#define NVRAM_HEADER 0x48534C46 /* FLSH */ +#define POT_MAGIC1 0x54544f50 /* POTT */ +#define POT_MAGIC2 0x504f /* OP */ +#define ML_MAGIC1 0x39685a42 +#define ML_MAGIC2 0x26594131 +#define TRX_MAGIC 0x30524448 +#define SHSQ_MAGIC 0x71736873 /* shsq (weird ZTE H218N endianness) */ + +static const char * const trx_types[] = { "trx", NULL }; + +struct trx_header { + uint32_t magic; + uint32_t length; + uint32_t crc32; + uint16_t flags; + uint16_t version; + uint32_t offset[3]; +} __packed; + +static void bcm47xxpart_add_part(struct mtd_partition *part, const char *name, + u64 offset, uint32_t mask_flags) +{ + part->name = name; + part->offset = offset; + part->mask_flags = mask_flags; +} + +/** + * bcm47xxpart_bootpartition - gets index of TRX partition used by bootloader + * + * Some devices may have more than one TRX partition. In such case one of them + * is the main one and another a failsafe one. Bootloader may fallback to the + * failsafe firmware if it detects corruption of the main image. + * + * This function provides info about currently used TRX partition. It's the one + * containing kernel started by the bootloader. + */ +static int bcm47xxpart_bootpartition(void) +{ + char buf[4]; + int bootpartition; + + /* Check CFE environment variable */ + if (bcm47xx_nvram_getenv("bootpartition", buf, sizeof(buf)) > 0) { + if (!kstrtoint(buf, 0, &bootpartition)) + return bootpartition; + } + + return 0; +} + +static int bcm47xxpart_parse(struct mtd_info *master, + const struct mtd_partition **pparts, + struct mtd_part_parser_data *data) +{ + struct mtd_partition *parts; + uint8_t i, curr_part = 0; + uint32_t *buf; + size_t bytes_read; + uint32_t offset; + uint32_t blocksize = master->erasesize; + int trx_parts[2]; /* Array with indexes of TRX partitions */ + int trx_num = 0; /* Number of found TRX partitions */ + int possible_nvram_sizes[] = { 0x8000, 0xF000, 0x10000, }; + int err; + + /* + * Some really old flashes (like AT45DB*) had smaller erasesize-s, but + * partitions were aligned to at least 0x1000 anyway. + */ + if (blocksize < 0x1000) + blocksize = 0x1000; + + /* Alloc */ + parts = kcalloc(BCM47XXPART_MAX_PARTS, sizeof(struct mtd_partition), + GFP_KERNEL); + if (!parts) + return -ENOMEM; + + buf = kzalloc(BCM47XXPART_BYTES_TO_READ, GFP_KERNEL); + if (!buf) { + kfree(parts); + return -ENOMEM; + } + + /* Parse block by block looking for magics */ + for (offset = 0; offset <= master->size - blocksize; + offset += blocksize) { + /* Nothing more in higher memory on BCM47XX (MIPS) */ + if (IS_ENABLED(CONFIG_BCM47XX) && offset >= 0x2000000) + break; + + if (curr_part >= BCM47XXPART_MAX_PARTS) { + pr_warn("Reached maximum number of partitions, scanning stopped!\n"); + break; + } + + /* Read beginning of the block */ + err = mtd_read(master, offset, BCM47XXPART_BYTES_TO_READ, + &bytes_read, (uint8_t *)buf); + if (err && !mtd_is_bitflip(err)) { + pr_err("mtd_read error while parsing (offset: 0x%X): %d\n", + offset, err); + continue; + } + + /* Magic or small NVRAM at 0x400 */ + if ((buf[0x4e0 / 4] == CFE_MAGIC && buf[0x4e4 / 4] == CFE_MAGIC) || + (buf[0x400 / 4] == NVRAM_HEADER)) { + bcm47xxpart_add_part(&parts[curr_part++], "boot", + offset, MTD_WRITEABLE); + continue; + } + + /* + * board_data starts with board_id which differs across boards, + * but we can use 'MPFR' (hopefully) magic at 0x100 + */ + if (buf[0x100 / 4] == BOARD_DATA_MAGIC) { + bcm47xxpart_add_part(&parts[curr_part++], "board_data", + offset, MTD_WRITEABLE); + continue; + } + + /* Found on Huawei E970 */ + if (buf[0x000 / 4] == FACTORY_MAGIC) { + bcm47xxpart_add_part(&parts[curr_part++], "factory", + offset, MTD_WRITEABLE); + continue; + } + + /* POT(TOP) */ + if (buf[0x000 / 4] == POT_MAGIC1 && + (buf[0x004 / 4] & 0xFFFF) == POT_MAGIC2) { + bcm47xxpart_add_part(&parts[curr_part++], "POT", offset, + MTD_WRITEABLE); + continue; + } + + /* ML */ + if (buf[0x010 / 4] == ML_MAGIC1 && + buf[0x014 / 4] == ML_MAGIC2) { + bcm47xxpart_add_part(&parts[curr_part++], "ML", offset, + MTD_WRITEABLE); + continue; + } + + /* TRX */ + if (buf[0x000 / 4] == TRX_MAGIC) { + struct trx_header *trx; + uint32_t last_subpart; + uint32_t trx_size; + + if (trx_num >= ARRAY_SIZE(trx_parts)) + pr_warn("No enough space to store another TRX found at 0x%X\n", + offset); + else + trx_parts[trx_num++] = curr_part; + bcm47xxpart_add_part(&parts[curr_part++], "firmware", + offset, 0); + + /* + * Try to find TRX size. The "length" field isn't fully + * reliable as it could be decreased to make CRC32 cover + * only part of TRX data. It's commonly used as checksum + * can't cover e.g. ever-changing rootfs partition. + * Use offsets as helpers for assuming min TRX size. + */ + trx = (struct trx_header *)buf; + last_subpart = max3(trx->offset[0], trx->offset[1], + trx->offset[2]); + trx_size = max(trx->length, last_subpart + blocksize); + + /* + * Skip the TRX data. Decrease offset by block size as + * the next loop iteration will increase it. + */ + offset += roundup(trx_size, blocksize) - blocksize; + continue; + } + + /* Squashfs on devices not using TRX */ + if (le32_to_cpu(buf[0x000 / 4]) == SQUASHFS_MAGIC || + buf[0x000 / 4] == SHSQ_MAGIC) { + bcm47xxpart_add_part(&parts[curr_part++], "rootfs", + offset, 0); + continue; + } + + /* + * New (ARM?) devices may have NVRAM in some middle block. Last + * block will be checked later, so skip it. + */ + if (offset != master->size - blocksize && + buf[0x000 / 4] == NVRAM_HEADER) { + bcm47xxpart_add_part(&parts[curr_part++], "nvram", + offset, 0); + continue; + } + + /* Read middle of the block */ + err = mtd_read(master, offset + (blocksize / 2), 0x4, &bytes_read, + (uint8_t *)buf); + if (err && !mtd_is_bitflip(err)) { + pr_err("mtd_read error while parsing (offset: 0x%X): %d\n", + offset + (blocksize / 2), err); + continue; + } + + /* Some devices (ex. WNDR3700v3) don't have a standard 'MPFR' */ + if (buf[0x000 / 4] == BOARD_DATA_MAGIC2) { + bcm47xxpart_add_part(&parts[curr_part++], "board_data", + offset, MTD_WRITEABLE); + continue; + } + } + + /* Look for NVRAM at the end of the last block. */ + for (i = 0; i < ARRAY_SIZE(possible_nvram_sizes); i++) { + if (curr_part >= BCM47XXPART_MAX_PARTS) { + pr_warn("Reached maximum number of partitions, scanning stopped!\n"); + break; + } + + offset = master->size - possible_nvram_sizes[i]; + err = mtd_read(master, offset, 0x4, &bytes_read, + (uint8_t *)buf); + if (err && !mtd_is_bitflip(err)) { + pr_err("mtd_read error while reading (offset 0x%X): %d\n", + offset, err); + continue; + } + + /* Standard NVRAM */ + if (buf[0] == NVRAM_HEADER) { + bcm47xxpart_add_part(&parts[curr_part++], "nvram", + master->size - blocksize, 0); + break; + } + } + + kfree(buf); + + /* + * Assume that partitions end at the beginning of the one they are + * followed by. + */ + for (i = 0; i < curr_part; i++) { + u64 next_part_offset = (i < curr_part - 1) ? + parts[i + 1].offset : master->size; + + parts[i].size = next_part_offset - parts[i].offset; + } + + /* If there was TRX parse it now */ + for (i = 0; i < trx_num; i++) { + struct mtd_partition *trx = &parts[trx_parts[i]]; + + if (i == bcm47xxpart_bootpartition()) + trx->types = trx_types; + else + trx->name = "failsafe"; + } + + *pparts = parts; + return curr_part; +}; + +static const struct of_device_id bcm47xxpart_of_match_table[] = { + { .compatible = "brcm,bcm947xx-cfe-partitions" }, + {}, +}; +MODULE_DEVICE_TABLE(of, bcm47xxpart_of_match_table); + +static struct mtd_part_parser bcm47xxpart_mtd_parser = { + .parse_fn = bcm47xxpart_parse, + .name = "bcm47xxpart", + .of_match_table = bcm47xxpart_of_match_table, +}; +module_mtd_part_parser(bcm47xxpart_mtd_parser); + +MODULE_LICENSE("GPL"); +MODULE_DESCRIPTION("MTD partitioning for BCM47XX flash memories"); diff --git a/drivers/mtd/parsers/bcm63xxpart.c b/drivers/mtd/parsers/bcm63xxpart.c new file mode 100644 index 0000000000..6e7b1ae8f5 --- /dev/null +++ b/drivers/mtd/parsers/bcm63xxpart.c @@ -0,0 +1,171 @@ +// SPDX-License-Identifier: GPL-2.0-or-later +/* + * BCM63XX CFE image tag parser + * + * Copyright © 2006-2008 Florian Fainelli <florian@openwrt.org> + * Mike Albon <malbon@openwrt.org> + * Copyright © 2009-2010 Daniel Dickinson <openwrt@cshore.neomailbox.net> + * Copyright © 2011-2013 Jonas Gorski <jonas.gorski@gmail.com> + */ + +#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt + +#include <linux/bcm963xx_nvram.h> +#include <linux/bcm963xx_tag.h> +#include <linux/crc32.h> +#include <linux/module.h> +#include <linux/kernel.h> +#include <linux/sizes.h> +#include <linux/slab.h> +#include <linux/vmalloc.h> +#include <linux/mtd/mtd.h> +#include <linux/mtd/partitions.h> +#include <linux/of.h> + +#ifdef CONFIG_MIPS +#include <asm/bootinfo.h> +#include <asm/fw/cfe/cfe_api.h> +#endif /* CONFIG_MIPS */ + +#define BCM963XX_CFE_BLOCK_SIZE SZ_64K /* always at least 64KiB */ + +#define BCM963XX_CFE_MAGIC_OFFSET 0x4e0 +#define BCM963XX_CFE_VERSION_OFFSET 0x570 +#define BCM963XX_NVRAM_OFFSET 0x580 + +/* Ensure strings read from flash structs are null terminated */ +#define STR_NULL_TERMINATE(x) \ + do { char *_str = (x); _str[sizeof(x) - 1] = 0; } while (0) + +static inline int bcm63xx_detect_cfe(void) +{ + int ret = 0; + +#ifdef CONFIG_MIPS + ret = (fw_arg3 == CFE_EPTSEAL); +#endif /* CONFIG_MIPS */ + + return ret; +} + +static int bcm63xx_read_nvram(struct mtd_info *master, + struct bcm963xx_nvram *nvram) +{ + u32 actual_crc, expected_crc; + size_t retlen; + int ret; + + /* extract nvram data */ + ret = mtd_read(master, BCM963XX_NVRAM_OFFSET, BCM963XX_NVRAM_V5_SIZE, + &retlen, (void *)nvram); + if (ret) + return ret; + + ret = bcm963xx_nvram_checksum(nvram, &expected_crc, &actual_crc); + if (ret) + pr_warn("nvram checksum failed, contents may be invalid (expected %08x, got %08x)\n", + expected_crc, actual_crc); + + if (!nvram->psi_size) + nvram->psi_size = BCM963XX_DEFAULT_PSI_SIZE; + + return 0; +} + +static const char * const bcm63xx_cfe_part_types[] = { + "bcm963xx-imagetag", + NULL, +}; + +static int bcm63xx_parse_cfe_nor_partitions(struct mtd_info *master, + const struct mtd_partition **pparts, struct bcm963xx_nvram *nvram) +{ + struct mtd_partition *parts; + int nrparts = 3, curpart = 0; + unsigned int cfelen, nvramlen; + unsigned int cfe_erasesize; + int i; + + cfe_erasesize = max_t(uint32_t, master->erasesize, + BCM963XX_CFE_BLOCK_SIZE); + + cfelen = cfe_erasesize; + nvramlen = nvram->psi_size * SZ_1K; + nvramlen = roundup(nvramlen, cfe_erasesize); + + parts = kzalloc(sizeof(*parts) * nrparts + 10 * nrparts, GFP_KERNEL); + if (!parts) + return -ENOMEM; + + /* Start building partition list */ + parts[curpart].name = "CFE"; + parts[curpart].offset = 0; + parts[curpart].size = cfelen; + curpart++; + + parts[curpart].name = "nvram"; + parts[curpart].offset = master->size - nvramlen; + parts[curpart].size = nvramlen; + curpart++; + + /* Global partition "linux" to make easy firmware upgrade */ + parts[curpart].name = "linux"; + parts[curpart].offset = cfelen; + parts[curpart].size = master->size - cfelen - nvramlen; + parts[curpart].types = bcm63xx_cfe_part_types; + + for (i = 0; i < nrparts; i++) + pr_info("Partition %d is %s offset %llx and length %llx\n", i, + parts[i].name, parts[i].offset, parts[i].size); + + *pparts = parts; + + return nrparts; +} + +static int bcm63xx_parse_cfe_partitions(struct mtd_info *master, + const struct mtd_partition **pparts, + struct mtd_part_parser_data *data) +{ + struct bcm963xx_nvram *nvram = NULL; + int ret; + + if (!bcm63xx_detect_cfe()) + return -EINVAL; + + nvram = vzalloc(sizeof(*nvram)); + if (!nvram) + return -ENOMEM; + + ret = bcm63xx_read_nvram(master, nvram); + if (ret) + goto out; + + if (!mtd_type_is_nand(master)) + ret = bcm63xx_parse_cfe_nor_partitions(master, pparts, nvram); + else + ret = -EINVAL; + +out: + vfree(nvram); + return ret; +}; + +static const struct of_device_id parse_bcm63xx_cfe_match_table[] = { + { .compatible = "brcm,bcm963xx-cfe-nor-partitions" }, + {}, +}; +MODULE_DEVICE_TABLE(of, parse_bcm63xx_cfe_match_table); + +static struct mtd_part_parser bcm63xx_cfe_parser = { + .parse_fn = bcm63xx_parse_cfe_partitions, + .name = "bcm63xxpart", + .of_match_table = parse_bcm63xx_cfe_match_table, +}; +module_mtd_part_parser(bcm63xx_cfe_parser); + +MODULE_AUTHOR("Daniel Dickinson <openwrt@cshore.neomailbox.net>"); +MODULE_AUTHOR("Florian Fainelli <florian@openwrt.org>"); +MODULE_AUTHOR("Mike Albon <malbon@openwrt.org>"); +MODULE_AUTHOR("Jonas Gorski <jonas.gorski@gmail.com"); +MODULE_DESCRIPTION("MTD partitioning for BCM63XX CFE bootloaders"); diff --git a/drivers/mtd/parsers/brcm_u-boot.c b/drivers/mtd/parsers/brcm_u-boot.c new file mode 100644 index 0000000000..7c338dc7b8 --- /dev/null +++ b/drivers/mtd/parsers/brcm_u-boot.c @@ -0,0 +1,84 @@ +// SPDX-License-Identifier: GPL-2.0-only +/* + * Copyright © 2022 Rafał Miłecki <rafal@milecki.pl> + */ + +#include <linux/module.h> +#include <linux/kernel.h> +#include <linux/slab.h> +#include <linux/mtd/mtd.h> +#include <linux/mtd/partitions.h> + +#define BRCM_U_BOOT_MAX_OFFSET 0x200000 +#define BRCM_U_BOOT_STEP 0x1000 + +#define BRCM_U_BOOT_MAX_PARTS 2 + +#define BRCM_U_BOOT_MAGIC 0x75456e76 /* uEnv */ + +struct brcm_u_boot_header { + __le32 magic; + __le32 length; +} __packed; + +static const char *names[BRCM_U_BOOT_MAX_PARTS] = { + "u-boot-env", + "u-boot-env-backup", +}; + +static int brcm_u_boot_parse(struct mtd_info *mtd, + const struct mtd_partition **pparts, + struct mtd_part_parser_data *data) +{ + struct brcm_u_boot_header header; + struct mtd_partition *parts; + size_t bytes_read; + size_t offset; + int err; + int i = 0; + + parts = kcalloc(BRCM_U_BOOT_MAX_PARTS, sizeof(*parts), GFP_KERNEL); + if (!parts) + return -ENOMEM; + + for (offset = 0; + offset < min_t(size_t, mtd->size, BRCM_U_BOOT_MAX_OFFSET); + offset += BRCM_U_BOOT_STEP) { + err = mtd_read(mtd, offset, sizeof(header), &bytes_read, (uint8_t *)&header); + if (err && !mtd_is_bitflip(err)) { + pr_err("Failed to read from %s at 0x%zx: %d\n", mtd->name, offset, err); + continue; + } + + if (le32_to_cpu(header.magic) != BRCM_U_BOOT_MAGIC) + continue; + + parts[i].name = names[i]; + parts[i].offset = offset; + parts[i].size = sizeof(header) + le32_to_cpu(header.length); + i++; + pr_info("offset:0x%zx magic:0x%08x BINGO\n", offset, header.magic); + + if (i == BRCM_U_BOOT_MAX_PARTS) + break; + } + + *pparts = parts; + + return i; +}; + +static const struct of_device_id brcm_u_boot_of_match_table[] = { + { .compatible = "brcm,u-boot" }, + {}, +}; +MODULE_DEVICE_TABLE(of, brcm_u_boot_of_match_table); + +static struct mtd_part_parser brcm_u_boot_mtd_parser = { + .parse_fn = brcm_u_boot_parse, + .name = "brcm_u-boot", + .of_match_table = brcm_u_boot_of_match_table, +}; +module_mtd_part_parser(brcm_u_boot_mtd_parser); + +MODULE_LICENSE("GPL"); diff --git a/drivers/mtd/parsers/cmdlinepart.c b/drivers/mtd/parsers/cmdlinepart.c new file mode 100644 index 0000000000..b34856def8 --- /dev/null +++ b/drivers/mtd/parsers/cmdlinepart.c @@ -0,0 +1,437 @@ +// SPDX-License-Identifier: GPL-2.0-or-later +/* + * Read flash partition table from command line + * + * Copyright © 2002 SYSGO Real-Time Solutions GmbH + * Copyright © 2002-2010 David Woodhouse <dwmw2@infradead.org> + * + * The format for the command line is as follows: + * + * mtdparts=<mtddef>[;<mtddef] + * <mtddef> := <mtd-id>:<partdef>[,<partdef>] + * <partdef> := <size>[@<offset>][<name>][ro][lk][slc] + * <mtd-id> := unique name used in mapping driver/device (mtd->name) + * <size> := standard linux memsize OR "-" to denote all remaining space + * size is automatically truncated at end of device + * if specified or truncated size is 0 the part is skipped + * <offset> := standard linux memsize + * if omitted the part will immediately follow the previous part + * or 0 if the first part + * <name> := '(' NAME ')' + * NAME will appear in /proc/mtd + * + * <size> and <offset> can be specified such that the parts are out of order + * in physical memory and may even overlap. + * + * The parts are assigned MTD numbers in the order they are specified in the + * command line regardless of their order in physical memory. + * + * Examples: + * + * 1 NOR Flash, with 1 single writable partition: + * edb7312-nor:- + * + * 1 NOR Flash with 2 partitions, 1 NAND with one + * edb7312-nor:256k(ARMboot)ro,-(root);edb7312-nand:-(home) + */ + +#define pr_fmt(fmt) "mtd: " fmt + +#include <linux/kernel.h> +#include <linux/slab.h> +#include <linux/mtd/mtd.h> +#include <linux/mtd/partitions.h> +#include <linux/module.h> +#include <linux/err.h> + +/* debug macro */ +#if 0 +#define dbg(x) do { printk("DEBUG-CMDLINE-PART: "); printk x; } while(0) +#else +#define dbg(x) +#endif + + +/* special size referring to all the remaining space in a partition */ +#define SIZE_REMAINING ULLONG_MAX +#define OFFSET_CONTINUOUS ULLONG_MAX + +struct cmdline_mtd_partition { + struct cmdline_mtd_partition *next; + char *mtd_id; + int num_parts; + struct mtd_partition *parts; +}; + +/* mtdpart_setup() parses into here */ +static struct cmdline_mtd_partition *partitions; + +/* the command line passed to mtdpart_setup() */ +static char *mtdparts; +static char *cmdline; +static int cmdline_parsed; + +/* + * Parse one partition definition for an MTD. Since there can be many + * comma separated partition definitions, this function calls itself + * recursively until no more partition definitions are found. Nice side + * effect: the memory to keep the mtd_partition structs and the names + * is allocated upon the last definition being found. At that point the + * syntax has been verified ok. + */ +static struct mtd_partition * newpart(char *s, + char **retptr, + int *num_parts, + int this_part, + unsigned char **extra_mem_ptr, + int extra_mem_size) +{ + struct mtd_partition *parts; + unsigned long long size, offset = OFFSET_CONTINUOUS; + char *name; + int name_len; + unsigned char *extra_mem; + char delim; + unsigned int mask_flags, add_flags; + + /* fetch the partition size */ + if (*s == '-') { + /* assign all remaining space to this partition */ + size = SIZE_REMAINING; + s++; + } else { + size = memparse(s, &s); + if (!size) { + pr_err("partition has size 0\n"); + return ERR_PTR(-EINVAL); + } + } + + /* fetch partition name and flags */ + mask_flags = 0; /* this is going to be a regular partition */ + add_flags = 0; + delim = 0; + + /* check for offset */ + if (*s == '@') { + s++; + offset = memparse(s, &s); + } + + /* now look for name */ + if (*s == '(') + delim = ')'; + + if (delim) { + char *p; + + name = ++s; + p = strchr(name, delim); + if (!p) { + pr_err("no closing %c found in partition name\n", delim); + return ERR_PTR(-EINVAL); + } + name_len = p - name; + s = p + 1; + } else { + name = NULL; + name_len = 13; /* Partition_000 */ + } + + /* record name length for memory allocation later */ + extra_mem_size += name_len + 1; + + /* test for options */ + if (strncmp(s, "ro", 2) == 0) { + mask_flags |= MTD_WRITEABLE; + s += 2; + } + + /* if lk is found do NOT unlock the MTD partition*/ + if (strncmp(s, "lk", 2) == 0) { + mask_flags |= MTD_POWERUP_LOCK; + s += 2; + } + + /* if slc is found use emulated SLC mode on this partition*/ + if (!strncmp(s, "slc", 3)) { + add_flags |= MTD_SLC_ON_MLC_EMULATION; + s += 3; + } + + /* test if more partitions are following */ + if (*s == ',') { + if (size == SIZE_REMAINING) { + pr_err("no partitions allowed after a fill-up partition\n"); + return ERR_PTR(-EINVAL); + } + /* more partitions follow, parse them */ + parts = newpart(s + 1, &s, num_parts, this_part + 1, + &extra_mem, extra_mem_size); + if (IS_ERR(parts)) + return parts; + } else { + /* this is the last partition: allocate space for all */ + int alloc_size; + + *num_parts = this_part + 1; + alloc_size = *num_parts * sizeof(struct mtd_partition) + + extra_mem_size; + + parts = kzalloc(alloc_size, GFP_KERNEL); + if (!parts) + return ERR_PTR(-ENOMEM); + extra_mem = (unsigned char *)(parts + *num_parts); + } + + /* + * enter this partition (offset will be calculated later if it is + * OFFSET_CONTINUOUS at this point) + */ + parts[this_part].size = size; + parts[this_part].offset = offset; + parts[this_part].mask_flags = mask_flags; + parts[this_part].add_flags = add_flags; + if (name) + strscpy(extra_mem, name, name_len + 1); + else + sprintf(extra_mem, "Partition_%03d", this_part); + parts[this_part].name = extra_mem; + extra_mem += name_len + 1; + + dbg(("partition %d: name <%s>, offset %llx, size %llx, mask flags %x\n", + this_part, parts[this_part].name, parts[this_part].offset, + parts[this_part].size, parts[this_part].mask_flags)); + + /* return (updated) pointer to extra_mem memory */ + if (extra_mem_ptr) + *extra_mem_ptr = extra_mem; + + /* return (updated) pointer command line string */ + *retptr = s; + + /* return partition table */ + return parts; +} + +/* + * Parse the command line. + */ +static int mtdpart_setup_real(char *s) +{ + cmdline_parsed = 1; + + for( ; s != NULL; ) + { + struct cmdline_mtd_partition *this_mtd; + struct mtd_partition *parts; + int mtd_id_len, num_parts; + char *p, *mtd_id, *semicol, *open_parenth; + + /* + * Replace the first ';' by a NULL char so strrchr can work + * properly. + */ + semicol = strchr(s, ';'); + if (semicol) + *semicol = '\0'; + + /* + * make sure that part-names with ":" will not be handled as + * part of the mtd-id with an ":" + */ + open_parenth = strchr(s, '('); + if (open_parenth) + *open_parenth = '\0'; + + mtd_id = s; + + /* + * fetch <mtd-id>. We use strrchr to ignore all ':' that could + * be present in the MTD name, only the last one is interpreted + * as an <mtd-id>/<part-definition> separator. + */ + p = strrchr(s, ':'); + + /* Restore the '(' now. */ + if (open_parenth) + *open_parenth = '('; + + /* Restore the ';' now. */ + if (semicol) + *semicol = ';'; + + if (!p) { + pr_err("no mtd-id\n"); + return -EINVAL; + } + mtd_id_len = p - mtd_id; + + dbg(("parsing <%s>\n", p+1)); + + /* + * parse one mtd. have it reserve memory for the + * struct cmdline_mtd_partition and the mtd-id string. + */ + parts = newpart(p + 1, /* cmdline */ + &s, /* out: updated cmdline ptr */ + &num_parts, /* out: number of parts */ + 0, /* first partition */ + (unsigned char**)&this_mtd, /* out: extra mem */ + mtd_id_len + 1 + sizeof(*this_mtd) + + sizeof(void*)-1 /*alignment*/); + if (IS_ERR(parts)) { + /* + * An error occurred. We're either: + * a) out of memory, or + * b) in the middle of the partition spec + * Either way, this mtd is hosed and we're + * unlikely to succeed in parsing any more + */ + return PTR_ERR(parts); + } + + /* align this_mtd */ + this_mtd = (struct cmdline_mtd_partition *) + ALIGN((unsigned long)this_mtd, sizeof(void *)); + /* enter results */ + this_mtd->parts = parts; + this_mtd->num_parts = num_parts; + this_mtd->mtd_id = (char*)(this_mtd + 1); + strscpy(this_mtd->mtd_id, mtd_id, mtd_id_len + 1); + + /* link into chain */ + this_mtd->next = partitions; + partitions = this_mtd; + + dbg(("mtdid=<%s> num_parts=<%d>\n", + this_mtd->mtd_id, this_mtd->num_parts)); + + + /* EOS - we're done */ + if (*s == 0) + break; + + /* does another spec follow? */ + if (*s != ';') { + pr_err("bad character after partition (%c)\n", *s); + return -EINVAL; + } + s++; + } + + return 0; +} + +/* + * Main function to be called from the MTD mapping driver/device to + * obtain the partitioning information. At this point the command line + * arguments will actually be parsed and turned to struct mtd_partition + * information. It returns partitions for the requested mtd device, or + * the first one in the chain if a NULL mtd_id is passed in. + */ +static int parse_cmdline_partitions(struct mtd_info *master, + const struct mtd_partition **pparts, + struct mtd_part_parser_data *data) +{ + unsigned long long offset; + int i, err; + struct cmdline_mtd_partition *part; + const char *mtd_id = master->name; + + /* parse command line */ + if (!cmdline_parsed) { + err = mtdpart_setup_real(cmdline); + if (err) + return err; + } + + /* + * Search for the partition definition matching master->name. + * If master->name is not set, stop at first partition definition. + */ + for (part = partitions; part; part = part->next) { + if ((!mtd_id) || (!strcmp(part->mtd_id, mtd_id))) + break; + } + + if (!part) + return 0; + + for (i = 0, offset = 0; i < part->num_parts; i++) { + if (part->parts[i].offset == OFFSET_CONTINUOUS) + part->parts[i].offset = offset; + else + offset = part->parts[i].offset; + + if (part->parts[i].size == SIZE_REMAINING) + part->parts[i].size = master->size - offset; + + if (offset + part->parts[i].size > master->size) { + pr_warn("%s: partitioning exceeds flash size, truncating\n", + part->mtd_id); + part->parts[i].size = master->size - offset; + } + offset += part->parts[i].size; + + if (part->parts[i].size == 0) { + pr_warn("%s: skipping zero sized partition\n", + part->mtd_id); + part->num_parts--; + memmove(&part->parts[i], &part->parts[i + 1], + sizeof(*part->parts) * (part->num_parts - i)); + i--; + } + } + + *pparts = kmemdup(part->parts, sizeof(*part->parts) * part->num_parts, + GFP_KERNEL); + if (!*pparts) + return -ENOMEM; + + return part->num_parts; +} + + +/* + * This is the handler for our kernel parameter, called from + * main.c::checksetup(). Note that we can not yet kmalloc() anything, + * so we only save the commandline for later processing. + * + * This function needs to be visible for bootloaders. + */ +static int __init mtdpart_setup(char *s) +{ + cmdline = s; + return 1; +} + +__setup("mtdparts=", mtdpart_setup); + +static struct mtd_part_parser cmdline_parser = { + .parse_fn = parse_cmdline_partitions, + .name = "cmdlinepart", +}; + +static int __init cmdline_parser_init(void) +{ + if (mtdparts) + mtdpart_setup(mtdparts); + register_mtd_parser(&cmdline_parser); + return 0; +} + +static void __exit cmdline_parser_exit(void) +{ + deregister_mtd_parser(&cmdline_parser); +} + +module_init(cmdline_parser_init); +module_exit(cmdline_parser_exit); + +MODULE_PARM_DESC(mtdparts, "Partitioning specification"); +module_param(mtdparts, charp, 0); + +MODULE_LICENSE("GPL"); +MODULE_AUTHOR("Marius Groeger <mag@sysgo.de>"); +MODULE_DESCRIPTION("Command line configuration of MTD partitions"); diff --git a/drivers/mtd/parsers/ofpart_bcm4908.c b/drivers/mtd/parsers/ofpart_bcm4908.c new file mode 100644 index 0000000000..bb072a0940 --- /dev/null +++ b/drivers/mtd/parsers/ofpart_bcm4908.c @@ -0,0 +1,67 @@ +// SPDX-License-Identifier: GPL-2.0 +/* + * Copyright (C) 2021 Rafał Miłecki <rafal@milecki.pl> + */ + +#include <linux/module.h> +#include <linux/init.h> +#include <linux/of.h> +#include <linux/mtd/mtd.h> +#include <linux/slab.h> +#include <linux/mtd/partitions.h> + +#include "ofpart_bcm4908.h" + +#define BLPARAMS_FW_OFFSET "NAND_RFS_OFS" + +static long long bcm4908_partitions_fw_offset(void) +{ + struct device_node *root; + struct property *prop; + const char *s; + + root = of_find_node_by_path("/"); + if (!root) + return -ENOENT; + + of_property_for_each_string(root, "brcm_blparms", prop, s) { + size_t len = strlen(BLPARAMS_FW_OFFSET); + unsigned long offset; + int err; + + if (strncmp(s, BLPARAMS_FW_OFFSET, len) || s[len] != '=') + continue; + + err = kstrtoul(s + len + 1, 0, &offset); + if (err) { + pr_err("failed to parse %s\n", s + len + 1); + of_node_put(root); + return err; + } + + of_node_put(root); + return offset << 10; + } + + of_node_put(root); + return -ENOENT; +} + +int bcm4908_partitions_post_parse(struct mtd_info *mtd, struct mtd_partition *parts, int nr_parts) +{ + long long fw_offset; + int i; + + fw_offset = bcm4908_partitions_fw_offset(); + + for (i = 0; i < nr_parts; i++) { + if (of_device_is_compatible(parts[i].of_node, "brcm,bcm4908-firmware")) { + if (fw_offset < 0 || parts[i].offset == fw_offset) + parts[i].name = "firmware"; + else + parts[i].name = "backup"; + } + } + + return 0; +} diff --git a/drivers/mtd/parsers/ofpart_bcm4908.h b/drivers/mtd/parsers/ofpart_bcm4908.h new file mode 100644 index 0000000000..80f8c08664 --- /dev/null +++ b/drivers/mtd/parsers/ofpart_bcm4908.h @@ -0,0 +1,15 @@ +/* SPDX-License-Identifier: GPL-2.0 */ +#ifndef __BCM4908_PARTITIONS_H +#define __BCM4908_PARTITIONS_H + +#ifdef CONFIG_MTD_OF_PARTS_BCM4908 +int bcm4908_partitions_post_parse(struct mtd_info *mtd, struct mtd_partition *parts, int nr_parts); +#else +static inline int bcm4908_partitions_post_parse(struct mtd_info *mtd, struct mtd_partition *parts, + int nr_parts) +{ + return -EOPNOTSUPP; +} +#endif + +#endif diff --git a/drivers/mtd/parsers/ofpart_core.c b/drivers/mtd/parsers/ofpart_core.c new file mode 100644 index 0000000000..e7b8e9d0a9 --- /dev/null +++ b/drivers/mtd/parsers/ofpart_core.c @@ -0,0 +1,292 @@ +// SPDX-License-Identifier: GPL-2.0-or-later +/* + * Flash partitions described by the OF (or flattened) device tree + * + * Copyright © 2006 MontaVista Software Inc. + * Author: Vitaly Wool <vwool@ru.mvista.com> + * + * Revised to handle newer style flash binding by: + * Copyright © 2007 David Gibson, IBM Corporation. + */ + +#include <linux/module.h> +#include <linux/init.h> +#include <linux/of.h> +#include <linux/mtd/mtd.h> +#include <linux/slab.h> +#include <linux/mtd/partitions.h> + +#include "ofpart_bcm4908.h" +#include "ofpart_linksys_ns.h" + +struct fixed_partitions_quirks { + int (*post_parse)(struct mtd_info *mtd, struct mtd_partition *parts, int nr_parts); +}; + +static struct fixed_partitions_quirks bcm4908_partitions_quirks = { + .post_parse = bcm4908_partitions_post_parse, +}; + +static struct fixed_partitions_quirks linksys_ns_partitions_quirks = { + .post_parse = linksys_ns_partitions_post_parse, +}; + +static const struct of_device_id parse_ofpart_match_table[]; + +static bool node_has_compatible(struct device_node *pp) +{ + return of_get_property(pp, "compatible", NULL); +} + +static int parse_fixed_partitions(struct mtd_info *master, + const struct mtd_partition **pparts, + struct mtd_part_parser_data *data) +{ + const struct fixed_partitions_quirks *quirks; + const struct of_device_id *of_id; + struct mtd_partition *parts; + struct device_node *mtd_node; + struct device_node *ofpart_node; + const char *partname; + struct device_node *pp; + int nr_parts, i, ret = 0; + bool dedicated = true; + + /* Pull of_node from the master device node */ + mtd_node = mtd_get_of_node(master); + if (!mtd_node) + return 0; + + if (!master->parent) { /* Master */ + ofpart_node = of_get_child_by_name(mtd_node, "partitions"); + if (!ofpart_node) { + /* + * We might get here even when ofpart isn't used at all (e.g., + * when using another parser), so don't be louder than + * KERN_DEBUG + */ + pr_debug("%s: 'partitions' subnode not found on %pOF. Trying to parse direct subnodes as partitions.\n", + master->name, mtd_node); + ofpart_node = mtd_node; + dedicated = false; + } + } else { /* Partition */ + ofpart_node = mtd_node; + } + + of_id = of_match_node(parse_ofpart_match_table, ofpart_node); + if (dedicated && !of_id) { + /* The 'partitions' subnode might be used by another parser */ + return 0; + } + + quirks = of_id ? of_id->data : NULL; + + /* First count the subnodes */ + nr_parts = 0; + for_each_child_of_node(ofpart_node, pp) { + if (!dedicated && node_has_compatible(pp)) + continue; + + nr_parts++; + } + + if (nr_parts == 0) + return 0; + + parts = kcalloc(nr_parts, sizeof(*parts), GFP_KERNEL); + if (!parts) + return -ENOMEM; + + i = 0; + for_each_child_of_node(ofpart_node, pp) { + const __be32 *reg; + int len; + int a_cells, s_cells; + + if (!dedicated && node_has_compatible(pp)) + continue; + + reg = of_get_property(pp, "reg", &len); + if (!reg) { + if (dedicated) { + pr_debug("%s: ofpart partition %pOF (%pOF) missing reg property.\n", + master->name, pp, + mtd_node); + goto ofpart_fail; + } else { + nr_parts--; + continue; + } + } + + a_cells = of_n_addr_cells(pp); + s_cells = of_n_size_cells(pp); + if (!dedicated && s_cells == 0) { + /* + * This is a ugly workaround to not create + * regression on devices that are still creating + * partitions as direct children of the nand controller. + * This can happen in case the nand controller node has + * #size-cells equal to 0 and the firmware (e.g. + * U-Boot) just add the partitions there assuming + * 32-bit addressing. + * + * If you get this warning your firmware and/or DTS + * should be really fixed. + * + * This is working only for devices smaller than 4GiB. + */ + pr_warn("%s: ofpart partition %pOF (%pOF) #size-cells is wrongly set to <0>, assuming <1> for parsing partitions.\n", + master->name, pp, mtd_node); + s_cells = 1; + } + if (len / 4 != a_cells + s_cells) { + pr_debug("%s: ofpart partition %pOF (%pOF) error parsing reg property.\n", + master->name, pp, + mtd_node); + goto ofpart_fail; + } + + parts[i].offset = of_read_number(reg, a_cells); + parts[i].size = of_read_number(reg + a_cells, s_cells); + parts[i].of_node = pp; + + partname = of_get_property(pp, "label", &len); + if (!partname) + partname = of_get_property(pp, "name", &len); + parts[i].name = partname; + + if (of_get_property(pp, "read-only", &len)) + parts[i].mask_flags |= MTD_WRITEABLE; + + if (of_get_property(pp, "lock", &len)) + parts[i].mask_flags |= MTD_POWERUP_LOCK; + + if (of_property_read_bool(pp, "slc-mode")) + parts[i].add_flags |= MTD_SLC_ON_MLC_EMULATION; + + i++; + } + + if (!nr_parts) + goto ofpart_none; + + if (quirks && quirks->post_parse) + quirks->post_parse(master, parts, nr_parts); + + *pparts = parts; + return nr_parts; + +ofpart_fail: + pr_err("%s: error parsing ofpart partition %pOF (%pOF)\n", + master->name, pp, mtd_node); + ret = -EINVAL; +ofpart_none: + of_node_put(pp); + kfree(parts); + return ret; +} + +static const struct of_device_id parse_ofpart_match_table[] = { + /* Generic */ + { .compatible = "fixed-partitions" }, + /* Customized */ + { .compatible = "brcm,bcm4908-partitions", .data = &bcm4908_partitions_quirks, }, + { .compatible = "linksys,ns-partitions", .data = &linksys_ns_partitions_quirks, }, + {}, +}; +MODULE_DEVICE_TABLE(of, parse_ofpart_match_table); + +static struct mtd_part_parser ofpart_parser = { + .parse_fn = parse_fixed_partitions, + .name = "fixed-partitions", + .of_match_table = parse_ofpart_match_table, +}; + +static int parse_ofoldpart_partitions(struct mtd_info *master, + const struct mtd_partition **pparts, + struct mtd_part_parser_data *data) +{ + struct mtd_partition *parts; + struct device_node *dp; + int i, plen, nr_parts; + const struct { + __be32 offset, len; + } *part; + const char *names; + + /* Pull of_node from the master device node */ + dp = mtd_get_of_node(master); + if (!dp) + return 0; + + part = of_get_property(dp, "partitions", &plen); + if (!part) + return 0; /* No partitions found */ + + pr_warn("Device tree uses obsolete partition map binding: %pOF\n", dp); + + nr_parts = plen / sizeof(part[0]); + + parts = kcalloc(nr_parts, sizeof(*parts), GFP_KERNEL); + if (!parts) + return -ENOMEM; + + names = of_get_property(dp, "partition-names", &plen); + + for (i = 0; i < nr_parts; i++) { + parts[i].offset = be32_to_cpu(part->offset); + parts[i].size = be32_to_cpu(part->len) & ~1; + /* bit 0 set signifies read only partition */ + if (be32_to_cpu(part->len) & 1) + parts[i].mask_flags = MTD_WRITEABLE; + + if (names && (plen > 0)) { + int len = strlen(names) + 1; + + parts[i].name = names; + plen -= len; + names += len; + } else { + parts[i].name = "unnamed"; + } + + part++; + } + + *pparts = parts; + return nr_parts; +} + +static struct mtd_part_parser ofoldpart_parser = { + .parse_fn = parse_ofoldpart_partitions, + .name = "ofoldpart", +}; + +static int __init ofpart_parser_init(void) +{ + register_mtd_parser(&ofpart_parser); + register_mtd_parser(&ofoldpart_parser); + return 0; +} + +static void __exit ofpart_parser_exit(void) +{ + deregister_mtd_parser(&ofpart_parser); + deregister_mtd_parser(&ofoldpart_parser); +} + +module_init(ofpart_parser_init); +module_exit(ofpart_parser_exit); + +MODULE_LICENSE("GPL"); +MODULE_DESCRIPTION("Parser for MTD partitioning information in device tree"); +MODULE_AUTHOR("Vitaly Wool, David Gibson"); +/* + * When MTD core cannot find the requested parser, it tries to load the module + * with the same name. Since we provide the ofoldpart parser, we should have + * the corresponding alias. + */ +MODULE_ALIAS("fixed-partitions"); +MODULE_ALIAS("ofoldpart"); diff --git a/drivers/mtd/parsers/ofpart_linksys_ns.c b/drivers/mtd/parsers/ofpart_linksys_ns.c new file mode 100644 index 0000000000..318c42d025 --- /dev/null +++ b/drivers/mtd/parsers/ofpart_linksys_ns.c @@ -0,0 +1,50 @@ +// SPDX-License-Identifier: GPL-2.0 +/* + * Copyright (C) 2021 Rafał Miłecki <rafal@milecki.pl> + */ + +#include <linux/bcm47xx_nvram.h> +#include <linux/mtd/mtd.h> +#include <linux/mtd/partitions.h> + +#include "ofpart_linksys_ns.h" + +#define NVRAM_BOOT_PART "bootpartition" + +static int ofpart_linksys_ns_bootpartition(void) +{ + char buf[4]; + int bootpartition; + + /* Check CFE environment variable */ + if (bcm47xx_nvram_getenv(NVRAM_BOOT_PART, buf, sizeof(buf)) > 0) { + if (!kstrtoint(buf, 0, &bootpartition)) + return bootpartition; + pr_warn("Failed to parse %s value \"%s\"\n", NVRAM_BOOT_PART, + buf); + } else { + pr_warn("Failed to get NVRAM \"%s\"\n", NVRAM_BOOT_PART); + } + + return 0; +} + +int linksys_ns_partitions_post_parse(struct mtd_info *mtd, + struct mtd_partition *parts, + int nr_parts) +{ + int bootpartition = ofpart_linksys_ns_bootpartition(); + int trx_idx = 0; + int i; + + for (i = 0; i < nr_parts; i++) { + if (of_device_is_compatible(parts[i].of_node, "linksys,ns-firmware")) { + if (trx_idx++ == bootpartition) + parts[i].name = "firmware"; + else + parts[i].name = "backup"; + } + } + + return 0; +} diff --git a/drivers/mtd/parsers/ofpart_linksys_ns.h b/drivers/mtd/parsers/ofpart_linksys_ns.h new file mode 100644 index 0000000000..730c46812e --- /dev/null +++ b/drivers/mtd/parsers/ofpart_linksys_ns.h @@ -0,0 +1,18 @@ +/* SPDX-License-Identifier: GPL-2.0 */ +#ifndef __OFPART_LINKSYS_NS_H +#define __OFPART_LINKSYS_NS_H + +#ifdef CONFIG_MTD_OF_PARTS_LINKSYS_NS +int linksys_ns_partitions_post_parse(struct mtd_info *mtd, + struct mtd_partition *parts, + int nr_parts); +#else +static inline int linksys_ns_partitions_post_parse(struct mtd_info *mtd, + struct mtd_partition *parts, + int nr_parts) +{ + return -EOPNOTSUPP; +} +#endif + +#endif diff --git a/drivers/mtd/parsers/parser_imagetag.c b/drivers/mtd/parsers/parser_imagetag.c new file mode 100644 index 0000000000..fab0949aab --- /dev/null +++ b/drivers/mtd/parsers/parser_imagetag.c @@ -0,0 +1,221 @@ +// SPDX-License-Identifier: GPL-2.0-or-later +/* + * BCM63XX CFE image tag parser + * + * Copyright © 2006-2008 Florian Fainelli <florian@openwrt.org> + * Mike Albon <malbon@openwrt.org> + * Copyright © 2009-2010 Daniel Dickinson <openwrt@cshore.neomailbox.net> + * Copyright © 2011-2013 Jonas Gorski <jonas.gorski@gmail.com> + */ + +#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt + +#include <linux/bcm963xx_tag.h> +#include <linux/crc32.h> +#include <linux/module.h> +#include <linux/kernel.h> +#include <linux/sizes.h> +#include <linux/slab.h> +#include <linux/vmalloc.h> +#include <linux/mtd/mtd.h> +#include <linux/mtd/partitions.h> +#include <linux/of.h> + +/* Ensure strings read from flash structs are null terminated */ +#define STR_NULL_TERMINATE(x) \ + do { char *_str = (x); _str[sizeof(x) - 1] = 0; } while (0) + +static int bcm963xx_read_imagetag(struct mtd_info *master, const char *name, + loff_t tag_offset, struct bcm_tag *buf) +{ + int ret; + size_t retlen; + u32 computed_crc; + + ret = mtd_read(master, tag_offset, sizeof(*buf), &retlen, (void *)buf); + if (ret) + return ret; + + if (retlen != sizeof(*buf)) + return -EIO; + + computed_crc = crc32_le(IMAGETAG_CRC_START, (u8 *)buf, + offsetof(struct bcm_tag, header_crc)); + if (computed_crc == buf->header_crc) { + STR_NULL_TERMINATE(buf->board_id); + STR_NULL_TERMINATE(buf->tag_version); + + pr_info("%s: CFE image tag found at 0x%llx with version %s, board type %s\n", + name, tag_offset, buf->tag_version, buf->board_id); + + return 0; + } + + pr_warn("%s: CFE image tag at 0x%llx CRC invalid (expected %08x, actual %08x)\n", + name, tag_offset, buf->header_crc, computed_crc); + return -EINVAL; +} + +static int bcm963xx_parse_imagetag_partitions(struct mtd_info *master, + const struct mtd_partition **pparts, + struct mtd_part_parser_data *data) +{ + /* CFE, NVRAM and global Linux are always present */ + int nrparts = 0, curpart = 0; + struct bcm_tag *buf = NULL; + struct mtd_partition *parts; + int ret; + unsigned int rootfsaddr, kerneladdr, spareaddr, offset; + unsigned int rootfslen, kernellen, sparelen, totallen; + int i; + bool rootfs_first = false; + + buf = vmalloc(sizeof(struct bcm_tag)); + if (!buf) + return -ENOMEM; + + /* Get the tag */ + ret = bcm963xx_read_imagetag(master, "rootfs", 0, buf); + if (!ret) { + STR_NULL_TERMINATE(buf->flash_image_start); + if (kstrtouint(buf->flash_image_start, 10, &rootfsaddr) || + rootfsaddr < BCM963XX_EXTENDED_SIZE) { + pr_err("invalid rootfs address: %*ph\n", + (int)sizeof(buf->flash_image_start), + buf->flash_image_start); + ret = -EINVAL; + goto out; + } + + STR_NULL_TERMINATE(buf->kernel_address); + if (kstrtouint(buf->kernel_address, 10, &kerneladdr) || + kerneladdr < BCM963XX_EXTENDED_SIZE) { + pr_err("invalid kernel address: %*ph\n", + (int)sizeof(buf->kernel_address), + buf->kernel_address); + ret = -EINVAL; + goto out; + } + + STR_NULL_TERMINATE(buf->kernel_length); + if (kstrtouint(buf->kernel_length, 10, &kernellen)) { + pr_err("invalid kernel length: %*ph\n", + (int)sizeof(buf->kernel_length), + buf->kernel_length); + ret = -EINVAL; + goto out; + } + + STR_NULL_TERMINATE(buf->total_length); + if (kstrtouint(buf->total_length, 10, &totallen)) { + pr_err("invalid total length: %*ph\n", + (int)sizeof(buf->total_length), + buf->total_length); + ret = -EINVAL; + goto out; + } + + /* + * Addresses are flash absolute, so convert to partition + * relative addresses. Assume either kernel or rootfs will + * directly follow the image tag. + */ + if (rootfsaddr < kerneladdr) + offset = rootfsaddr - sizeof(struct bcm_tag); + else + offset = kerneladdr - sizeof(struct bcm_tag); + + kerneladdr = kerneladdr - offset; + rootfsaddr = rootfsaddr - offset; + spareaddr = roundup(totallen, master->erasesize); + + if (rootfsaddr < kerneladdr) { + /* default Broadcom layout */ + rootfslen = kerneladdr - rootfsaddr; + rootfs_first = true; + } else { + /* OpenWrt layout */ + rootfsaddr = kerneladdr + kernellen; + rootfslen = spareaddr - rootfsaddr; + } + } else { + goto out; + } + sparelen = master->size - spareaddr; + + /* Determine number of partitions */ + if (rootfslen > 0) + nrparts++; + + if (kernellen > 0) + nrparts++; + + parts = kzalloc(sizeof(*parts) * nrparts + 10 * nrparts, GFP_KERNEL); + if (!parts) { + ret = -ENOMEM; + goto out; + } + + /* Start building partition list */ + if (kernellen > 0) { + int kernelpart = curpart; + + if (rootfslen > 0 && rootfs_first) + kernelpart++; + parts[kernelpart].name = "kernel"; + parts[kernelpart].offset = kerneladdr; + parts[kernelpart].size = kernellen; + curpart++; + } + + if (rootfslen > 0) { + int rootfspart = curpart; + + if (kernellen > 0 && rootfs_first) + rootfspart--; + parts[rootfspart].name = "rootfs"; + parts[rootfspart].offset = rootfsaddr; + parts[rootfspart].size = rootfslen; + if (sparelen > 0 && !rootfs_first) + parts[rootfspart].size += sparelen; + curpart++; + } + + for (i = 0; i < nrparts; i++) + pr_info("Partition %d is %s offset %llx and length %llx\n", i, + parts[i].name, parts[i].offset, parts[i].size); + + pr_info("Spare partition is offset %x and length %x\n", spareaddr, + sparelen); + + *pparts = parts; + ret = 0; + +out: + vfree(buf); + + if (ret) + return ret; + + return nrparts; +} + +static const struct of_device_id parse_bcm963xx_imagetag_match_table[] = { + { .compatible = "brcm,bcm963xx-imagetag" }, + {}, +}; +MODULE_DEVICE_TABLE(of, parse_bcm963xx_imagetag_match_table); + +static struct mtd_part_parser bcm963xx_imagetag_parser = { + .parse_fn = bcm963xx_parse_imagetag_partitions, + .name = "bcm963xx-imagetag", + .of_match_table = parse_bcm963xx_imagetag_match_table, +}; +module_mtd_part_parser(bcm963xx_imagetag_parser); + +MODULE_LICENSE("GPL"); +MODULE_AUTHOR("Daniel Dickinson <openwrt@cshore.neomailbox.net>"); +MODULE_AUTHOR("Florian Fainelli <florian@openwrt.org>"); +MODULE_AUTHOR("Mike Albon <malbon@openwrt.org>"); +MODULE_AUTHOR("Jonas Gorski <jonas.gorski@gmail.com>"); +MODULE_DESCRIPTION("MTD parser for BCM963XX CFE Image Tag partitions"); diff --git a/drivers/mtd/parsers/parser_trx.c b/drivers/mtd/parsers/parser_trx.c new file mode 100644 index 0000000000..4814cf218e --- /dev/null +++ b/drivers/mtd/parsers/parser_trx.c @@ -0,0 +1,136 @@ +// SPDX-License-Identifier: GPL-2.0-only +/* + * Parser for TRX format partitions + * + * Copyright (C) 2012 - 2017 Rafał Miłecki <rafal@milecki.pl> + */ + +#include <linux/module.h> +#include <linux/slab.h> +#include <linux/mtd/mtd.h> +#include <linux/mtd/partitions.h> + +#define TRX_PARSER_MAX_PARTS 4 + +/* Magics */ +#define TRX_MAGIC 0x30524448 +#define UBI_EC_MAGIC 0x23494255 /* UBI# */ + +struct trx_header { + uint32_t magic; + uint32_t length; + uint32_t crc32; + uint16_t flags; + uint16_t version; + uint32_t offset[3]; +} __packed; + +static const char *parser_trx_data_part_name(struct mtd_info *master, + size_t offset) +{ + uint32_t buf; + size_t bytes_read; + int err; + + err = mtd_read(master, offset, sizeof(buf), &bytes_read, + (uint8_t *)&buf); + if (err && !mtd_is_bitflip(err)) { + pr_err("mtd_read error while parsing (offset: 0x%zX): %d\n", + offset, err); + goto out_default; + } + + if (buf == UBI_EC_MAGIC) + return "ubi"; + +out_default: + return "rootfs"; +} + +static int parser_trx_parse(struct mtd_info *mtd, + const struct mtd_partition **pparts, + struct mtd_part_parser_data *data) +{ + struct device_node *np = mtd_get_of_node(mtd); + struct mtd_partition *parts; + struct mtd_partition *part; + struct trx_header trx; + size_t bytes_read; + uint8_t curr_part = 0, i = 0; + uint32_t trx_magic = TRX_MAGIC; + int err; + + /* Get different magic from device tree if specified */ + err = of_property_read_u32(np, "brcm,trx-magic", &trx_magic); + if (err != 0 && err != -EINVAL) + pr_err("failed to parse \"brcm,trx-magic\" DT attribute, using default: %d\n", err); + + parts = kcalloc(TRX_PARSER_MAX_PARTS, sizeof(struct mtd_partition), + GFP_KERNEL); + if (!parts) + return -ENOMEM; + + err = mtd_read(mtd, 0, sizeof(trx), &bytes_read, (uint8_t *)&trx); + if (err) { + pr_err("MTD reading error: %d\n", err); + kfree(parts); + return err; + } + + if (trx.magic != trx_magic) { + kfree(parts); + return -ENOENT; + } + + /* We have LZMA loader if there is address in offset[2] */ + if (trx.offset[2]) { + part = &parts[curr_part++]; + part->name = "loader"; + part->offset = trx.offset[i]; + i++; + } + + if (trx.offset[i]) { + part = &parts[curr_part++]; + part->name = "linux"; + part->offset = trx.offset[i]; + i++; + } + + if (trx.offset[i]) { + part = &parts[curr_part++]; + part->name = parser_trx_data_part_name(mtd, trx.offset[i]); + part->offset = trx.offset[i]; + i++; + } + + /* + * Assume that every partition ends at the beginning of the one it is + * followed by. + */ + for (i = 0; i < curr_part; i++) { + u64 next_part_offset = (i < curr_part - 1) ? + parts[i + 1].offset : mtd->size; + + parts[i].size = next_part_offset - parts[i].offset; + } + + *pparts = parts; + return i; +}; + +static const struct of_device_id mtd_parser_trx_of_match_table[] = { + { .compatible = "brcm,trx" }, + {}, +}; +MODULE_DEVICE_TABLE(of, mtd_parser_trx_of_match_table); + +static struct mtd_part_parser mtd_parser_trx = { + .parse_fn = parser_trx_parse, + .name = "trx", + .of_match_table = mtd_parser_trx_of_match_table, +}; +module_mtd_part_parser(mtd_parser_trx); + +MODULE_LICENSE("GPL v2"); +MODULE_DESCRIPTION("Parser for TRX format partitions"); diff --git a/drivers/mtd/parsers/qcomsmempart.c b/drivers/mtd/parsers/qcomsmempart.c new file mode 100644 index 0000000000..4311b89d8d --- /dev/null +++ b/drivers/mtd/parsers/qcomsmempart.c @@ -0,0 +1,197 @@ +// SPDX-License-Identifier: GPL-2.0-only +/* + * Qualcomm SMEM NAND flash partition parser + * + * Copyright (C) 2020, Linaro Ltd. + */ + +#include <linux/ctype.h> +#include <linux/module.h> +#include <linux/mtd/mtd.h> +#include <linux/mtd/partitions.h> +#include <linux/slab.h> +#include <linux/soc/qcom/smem.h> + +#define SMEM_AARM_PARTITION_TABLE 9 +#define SMEM_APPS 0 + +#define SMEM_FLASH_PART_MAGIC1 0x55ee73aa +#define SMEM_FLASH_PART_MAGIC2 0xe35ebddb +#define SMEM_FLASH_PTABLE_V3 3 +#define SMEM_FLASH_PTABLE_V4 4 +#define SMEM_FLASH_PTABLE_MAX_PARTS_V3 16 +#define SMEM_FLASH_PTABLE_MAX_PARTS_V4 48 +#define SMEM_FLASH_PTABLE_HDR_LEN (4 * sizeof(u32)) +#define SMEM_FLASH_PTABLE_NAME_SIZE 16 + +/** + * struct smem_flash_pentry - SMEM Flash partition entry + * @name: Name of the partition + * @offset: Offset in blocks + * @length: Length of the partition in blocks + * @attr: Flags for this partition + */ +struct smem_flash_pentry { + char name[SMEM_FLASH_PTABLE_NAME_SIZE]; + __le32 offset; + __le32 length; + u8 attr; +} __packed __aligned(4); + +/** + * struct smem_flash_ptable - SMEM Flash partition table + * @magic1: Partition table Magic 1 + * @magic2: Partition table Magic 2 + * @version: Partition table version + * @numparts: Number of partitions in this ptable + * @pentry: Flash partition entries belonging to this ptable + */ +struct smem_flash_ptable { + __le32 magic1; + __le32 magic2; + __le32 version; + __le32 numparts; + struct smem_flash_pentry pentry[SMEM_FLASH_PTABLE_MAX_PARTS_V4]; +} __packed __aligned(4); + +static int parse_qcomsmem_part(struct mtd_info *mtd, + const struct mtd_partition **pparts, + struct mtd_part_parser_data *data) +{ + size_t len = SMEM_FLASH_PTABLE_HDR_LEN; + int ret, i, j, tmpparts, numparts = 0; + struct smem_flash_pentry *pentry; + struct smem_flash_ptable *ptable; + struct mtd_partition *parts; + char *name, *c; + + if (IS_ENABLED(CONFIG_MTD_SPI_NOR_USE_4K_SECTORS) + && mtd->type == MTD_NORFLASH) { + pr_err("%s: SMEM partition parser is incompatible with 4K sectors\n", + mtd->name); + return -EINVAL; + } + + pr_debug("Parsing partition table info from SMEM\n"); + ptable = qcom_smem_get(SMEM_APPS, SMEM_AARM_PARTITION_TABLE, &len); + if (IS_ERR(ptable)) { + if (PTR_ERR(ptable) != -EPROBE_DEFER) + pr_err("Error reading partition table header\n"); + return PTR_ERR(ptable); + } + + /* Verify ptable magic */ + if (le32_to_cpu(ptable->magic1) != SMEM_FLASH_PART_MAGIC1 || + le32_to_cpu(ptable->magic2) != SMEM_FLASH_PART_MAGIC2) { + pr_err("Partition table magic verification failed\n"); + return -EINVAL; + } + + /* Ensure that # of partitions is less than the max we have allocated */ + tmpparts = le32_to_cpu(ptable->numparts); + if (tmpparts > SMEM_FLASH_PTABLE_MAX_PARTS_V4) { + pr_err("Partition numbers exceed the max limit\n"); + return -EINVAL; + } + + /* Find out length of partition data based on table version */ + if (le32_to_cpu(ptable->version) <= SMEM_FLASH_PTABLE_V3) { + len = SMEM_FLASH_PTABLE_HDR_LEN + SMEM_FLASH_PTABLE_MAX_PARTS_V3 * + sizeof(struct smem_flash_pentry); + } else if (le32_to_cpu(ptable->version) == SMEM_FLASH_PTABLE_V4) { + len = SMEM_FLASH_PTABLE_HDR_LEN + SMEM_FLASH_PTABLE_MAX_PARTS_V4 * + sizeof(struct smem_flash_pentry); + } else { + pr_err("Unknown ptable version (%d)", le32_to_cpu(ptable->version)); + return -EINVAL; + } + + /* + * Now that the partition table header has been parsed, verified + * and the length of the partition table calculated, read the + * complete partition table + */ + ptable = qcom_smem_get(SMEM_APPS, SMEM_AARM_PARTITION_TABLE, &len); + if (IS_ERR(ptable)) { + pr_err("Error reading partition table\n"); + return PTR_ERR(ptable); + } + + for (i = 0; i < tmpparts; i++) { + pentry = &ptable->pentry[i]; + if (pentry->name[0] != '\0') + numparts++; + } + + parts = kcalloc(numparts, sizeof(*parts), GFP_KERNEL); + if (!parts) + return -ENOMEM; + + for (i = 0, j = 0; i < tmpparts; i++) { + pentry = &ptable->pentry[i]; + if (pentry->name[0] == '\0') + continue; + + name = kstrdup(pentry->name, GFP_KERNEL); + if (!name) { + ret = -ENOMEM; + goto out_free_parts; + } + + /* Convert name to lower case */ + for (c = name; *c != '\0'; c++) + *c = tolower(*c); + + parts[j].name = name; + parts[j].offset = le32_to_cpu(pentry->offset) * mtd->erasesize; + parts[j].mask_flags = pentry->attr; + parts[j].size = le32_to_cpu(pentry->length) * mtd->erasesize; + pr_debug("%d: %s offs=0x%08x size=0x%08x attr:0x%08x\n", + i, pentry->name, le32_to_cpu(pentry->offset), + le32_to_cpu(pentry->length), pentry->attr); + j++; + } + + pr_debug("SMEM partition table found: ver: %d len: %d\n", + le32_to_cpu(ptable->version), tmpparts); + *pparts = parts; + + return numparts; + +out_free_parts: + while (--j >= 0) + kfree(parts[j].name); + kfree(parts); + *pparts = NULL; + + return ret; +} + +static void parse_qcomsmem_cleanup(const struct mtd_partition *pparts, + int nr_parts) +{ + int i; + + for (i = 0; i < nr_parts; i++) + kfree(pparts[i].name); + + kfree(pparts); +} + +static const struct of_device_id qcomsmem_of_match_table[] = { + { .compatible = "qcom,smem-part" }, + {}, +}; +MODULE_DEVICE_TABLE(of, qcomsmem_of_match_table); + +static struct mtd_part_parser mtd_parser_qcomsmem = { + .parse_fn = parse_qcomsmem_part, + .cleanup = parse_qcomsmem_cleanup, + .name = "qcomsmem", + .of_match_table = qcomsmem_of_match_table, +}; +module_mtd_part_parser(mtd_parser_qcomsmem); + +MODULE_LICENSE("GPL v2"); +MODULE_AUTHOR("Manivannan Sadhasivam <manivannan.sadhasivam@linaro.org>"); +MODULE_DESCRIPTION("Qualcomm SMEM NAND flash partition parser"); diff --git a/drivers/mtd/parsers/redboot.c b/drivers/mtd/parsers/redboot.c new file mode 100644 index 0000000000..a16b42a885 --- /dev/null +++ b/drivers/mtd/parsers/redboot.c @@ -0,0 +1,323 @@ +// SPDX-License-Identifier: GPL-2.0-or-later +/* + * Parse RedBoot-style Flash Image System (FIS) tables and + * produce a Linux partition array to match. + * + * Copyright © 2001 Red Hat UK Limited + * Copyright © 2001-2010 David Woodhouse <dwmw2@infradead.org> + */ + +#include <linux/kernel.h> +#include <linux/slab.h> +#include <linux/init.h> +#include <linux/vmalloc.h> +#include <linux/of.h> +#include <linux/mtd/mtd.h> +#include <linux/mtd/partitions.h> +#include <linux/module.h> + +struct fis_image_desc { + unsigned char name[16]; // Null terminated name + u32 flash_base; // Address within FLASH of image + u32 mem_base; // Address in memory where it executes + u32 size; // Length of image + u32 entry_point; // Execution entry point + u32 data_length; // Length of actual data + unsigned char _pad[256 - (16 + 7 * sizeof(u32))]; + u32 desc_cksum; // Checksum over image descriptor + u32 file_cksum; // Checksum over image data +}; + +struct fis_list { + struct fis_image_desc *img; + struct fis_list *next; +}; + +static int directory = CONFIG_MTD_REDBOOT_DIRECTORY_BLOCK; +module_param(directory, int, 0); + +static inline int redboot_checksum(struct fis_image_desc *img) +{ + /* RedBoot doesn't actually write the desc_cksum field yet AFAICT */ + return 1; +} + +static void parse_redboot_of(struct mtd_info *master) +{ + struct device_node *np; + struct device_node *npart; + u32 dirblock; + int ret; + + np = mtd_get_of_node(master); + if (!np) + return; + + npart = of_get_child_by_name(np, "partitions"); + if (!npart) + return; + + ret = of_property_read_u32(npart, "fis-index-block", &dirblock); + of_node_put(npart); + if (ret) + return; + + /* + * Assign the block found in the device tree to the local + * directory block pointer. + */ + directory = dirblock; +} + +static int parse_redboot_partitions(struct mtd_info *master, + const struct mtd_partition **pparts, + struct mtd_part_parser_data *data) +{ + int nrparts = 0; + struct fis_image_desc *buf; + struct mtd_partition *parts; + struct fis_list *fl = NULL, *tmp_fl; + int ret, i; + size_t retlen; + char *names; + char *nullname; + int namelen = 0; + int nulllen = 0; + int numslots; + unsigned long offset; +#ifdef CONFIG_MTD_REDBOOT_PARTS_UNALLOCATED + static char nullstring[] = "unallocated"; +#endif + + parse_redboot_of(master); + + if (directory < 0) { + offset = master->size + directory * master->erasesize; + while (mtd_block_isbad(master, offset)) { + if (!offset) { +nogood: + pr_notice("Failed to find a non-bad block to check for RedBoot partition table\n"); + return -EIO; + } + offset -= master->erasesize; + } + } else { + offset = directory * master->erasesize; + while (mtd_block_isbad(master, offset)) { + offset += master->erasesize; + if (offset == master->size) + goto nogood; + } + } + buf = vmalloc(master->erasesize); + + if (!buf) + return -ENOMEM; + + pr_notice("Searching for RedBoot partition table in %s at offset 0x%lx\n", + master->name, offset); + + ret = mtd_read(master, offset, master->erasesize, &retlen, + (void *)buf); + + if (ret) + goto out; + + if (retlen != master->erasesize) { + ret = -EIO; + goto out; + } + + numslots = (master->erasesize / sizeof(struct fis_image_desc)); + for (i = 0; i < numslots; i++) { + if (!memcmp(buf[i].name, "FIS directory", 14)) { + /* This is apparently the FIS directory entry for the + * FIS directory itself. The FIS directory size is + * one erase block; if the buf[i].size field is + * swab32(erasesize) then we know we are looking at + * a byte swapped FIS directory - swap all the entries! + * (NOTE: this is 'size' not 'data_length'; size is + * the full size of the entry.) + */ + + /* RedBoot can combine the FIS directory and + config partitions into a single eraseblock; + we assume wrong-endian if either the swapped + 'size' matches the eraseblock size precisely, + or if the swapped size actually fits in an + eraseblock while the unswapped size doesn't. */ + if (swab32(buf[i].size) == master->erasesize || + (buf[i].size > master->erasesize + && swab32(buf[i].size) < master->erasesize)) { + int j; + /* Update numslots based on actual FIS directory size */ + numslots = swab32(buf[i].size) / sizeof(struct fis_image_desc); + for (j = 0; j < numslots; ++j) { + /* A single 0xff denotes a deleted entry. + * Two of them in a row is the end of the table. + */ + if (buf[j].name[0] == 0xff) { + if (buf[j].name[1] == 0xff) { + break; + } else { + continue; + } + } + + /* The unsigned long fields were written with the + * wrong byte sex, name and pad have no byte sex. + */ + swab32s(&buf[j].flash_base); + swab32s(&buf[j].mem_base); + swab32s(&buf[j].size); + swab32s(&buf[j].entry_point); + swab32s(&buf[j].data_length); + swab32s(&buf[j].desc_cksum); + swab32s(&buf[j].file_cksum); + } + } else if (buf[i].size < master->erasesize) { + /* Update numslots based on actual FIS directory size */ + numslots = buf[i].size / sizeof(struct fis_image_desc); + } + break; + } + } + if (i == numslots) { + /* Didn't find it */ + pr_notice("No RedBoot partition table detected in %s\n", + master->name); + ret = 0; + goto out; + } + + for (i = 0; i < numslots; i++) { + struct fis_list *new_fl, **prev; + + if (buf[i].name[0] == 0xff) { + if (buf[i].name[1] == 0xff) { + break; + } else { + continue; + } + } + if (!redboot_checksum(&buf[i])) + break; + + new_fl = kmalloc(sizeof(struct fis_list), GFP_KERNEL); + namelen += strlen(buf[i].name) + 1; + if (!new_fl) { + ret = -ENOMEM; + goto out; + } + new_fl->img = &buf[i]; + if (data && data->origin) + buf[i].flash_base -= data->origin; + else + buf[i].flash_base &= master->size - 1; + + /* I'm sure the JFFS2 code has done me permanent damage. + * I now think the following is _normal_ + */ + prev = &fl; + while (*prev && (*prev)->img->flash_base < new_fl->img->flash_base) + prev = &(*prev)->next; + new_fl->next = *prev; + *prev = new_fl; + + nrparts++; + } +#ifdef CONFIG_MTD_REDBOOT_PARTS_UNALLOCATED + if (fl->img->flash_base) { + nrparts++; + nulllen = sizeof(nullstring); + } + + for (tmp_fl = fl; tmp_fl->next; tmp_fl = tmp_fl->next) { + if (tmp_fl->img->flash_base + tmp_fl->img->size + master->erasesize <= tmp_fl->next->img->flash_base) { + nrparts++; + nulllen = sizeof(nullstring); + } + } +#endif + parts = kzalloc(sizeof(*parts) * nrparts + nulllen + namelen, GFP_KERNEL); + + if (!parts) { + ret = -ENOMEM; + goto out; + } + + nullname = (char *)&parts[nrparts]; +#ifdef CONFIG_MTD_REDBOOT_PARTS_UNALLOCATED + if (nulllen > 0) + strcpy(nullname, nullstring); +#endif + names = nullname + nulllen; + + i = 0; + +#ifdef CONFIG_MTD_REDBOOT_PARTS_UNALLOCATED + if (fl->img->flash_base) { + parts[0].name = nullname; + parts[0].size = fl->img->flash_base; + parts[0].offset = 0; + i++; + } +#endif + for ( ; i < nrparts; i++) { + parts[i].size = fl->img->size; + parts[i].offset = fl->img->flash_base; + parts[i].name = names; + + strcpy(names, fl->img->name); +#ifdef CONFIG_MTD_REDBOOT_PARTS_READONLY + if (!memcmp(names, "RedBoot", 8) || + !memcmp(names, "RedBoot config", 15) || + !memcmp(names, "FIS directory", 14)) { + parts[i].mask_flags = MTD_WRITEABLE; + } +#endif + names += strlen(names) + 1; + +#ifdef CONFIG_MTD_REDBOOT_PARTS_UNALLOCATED + if (fl->next && fl->img->flash_base + fl->img->size + master->erasesize <= fl->next->img->flash_base) { + i++; + parts[i].offset = parts[i - 1].size + parts[i - 1].offset; + parts[i].size = fl->next->img->flash_base - parts[i].offset; + parts[i].name = nullname; + } +#endif + tmp_fl = fl; + fl = fl->next; + kfree(tmp_fl); + } + ret = nrparts; + *pparts = parts; + out: + while (fl) { + struct fis_list *old = fl; + + fl = fl->next; + kfree(old); + } + vfree(buf); + return ret; +} + +static const struct of_device_id mtd_parser_redboot_of_match_table[] = { + { .compatible = "redboot-fis" }, + {}, +}; +MODULE_DEVICE_TABLE(of, mtd_parser_redboot_of_match_table); + +static struct mtd_part_parser redboot_parser = { + .parse_fn = parse_redboot_partitions, + .name = "RedBoot", + .of_match_table = mtd_parser_redboot_of_match_table, +}; +module_mtd_part_parser(redboot_parser); + +/* mtd parsers will request the module by parser name */ +MODULE_ALIAS("RedBoot"); +MODULE_LICENSE("GPL"); +MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>"); +MODULE_DESCRIPTION("Parsing code for RedBoot Flash Image System (FIS) tables"); diff --git a/drivers/mtd/parsers/scpart.c b/drivers/mtd/parsers/scpart.c new file mode 100644 index 0000000000..6e5e11c370 --- /dev/null +++ b/drivers/mtd/parsers/scpart.c @@ -0,0 +1,249 @@ +// SPDX-License-Identifier: GPL-2.0-or-later +/* + * drivers/mtd/scpart.c: Sercomm Partition Parser + * + * Copyright (C) 2018 NOGUCHI Hiroshi + * Copyright (C) 2022 Mikhail Zhilkin + */ + +#include <linux/kernel.h> +#include <linux/slab.h> +#include <linux/mtd/mtd.h> +#include <linux/mtd/partitions.h> +#include <linux/module.h> + +#define MOD_NAME "scpart" + +#ifdef pr_fmt +#undef pr_fmt +#endif + +#define pr_fmt(fmt) MOD_NAME ": " fmt + +#define ID_ALREADY_FOUND 0xffffffffUL + +#define MAP_OFFS_IN_BLK 0x800 +#define MAP_MIRROR_NUM 2 + +static const char sc_part_magic[] = { + 'S', 'C', 'F', 'L', 'M', 'A', 'P', 'O', 'K', '\0', +}; +#define PART_MAGIC_LEN sizeof(sc_part_magic) + +/* assumes that all fields are set by CPU native endian */ +struct sc_part_desc { + uint32_t part_id; + uint32_t part_offs; + uint32_t part_bytes; +}; + +static uint32_t scpart_desc_is_valid(struct sc_part_desc *pdesc) +{ + return ((pdesc->part_id != 0xffffffffUL) && + (pdesc->part_offs != 0xffffffffUL) && + (pdesc->part_bytes != 0xffffffffUL)); +} + +static int scpart_scan_partmap(struct mtd_info *master, loff_t partmap_offs, + struct sc_part_desc **ppdesc) +{ + int cnt = 0; + int res = 0; + int res2; + uint32_t offs; + size_t retlen; + struct sc_part_desc *pdesc = NULL; + struct sc_part_desc *tmpdesc; + uint8_t *buf; + + buf = kzalloc(master->erasesize, GFP_KERNEL); + if (!buf) { + res = -ENOMEM; + goto out; + } + + res2 = mtd_read(master, partmap_offs, master->erasesize, &retlen, buf); + if (res2 || retlen != master->erasesize) { + res = -EIO; + goto free; + } + + for (offs = MAP_OFFS_IN_BLK; + offs < master->erasesize - sizeof(*tmpdesc); + offs += sizeof(*tmpdesc)) { + tmpdesc = (struct sc_part_desc *)&buf[offs]; + if (!scpart_desc_is_valid(tmpdesc)) + break; + cnt++; + } + + if (cnt > 0) { + int bytes = cnt * sizeof(*pdesc); + + pdesc = kcalloc(cnt, sizeof(*pdesc), GFP_KERNEL); + if (!pdesc) { + res = -ENOMEM; + goto free; + } + memcpy(pdesc, &(buf[MAP_OFFS_IN_BLK]), bytes); + + *ppdesc = pdesc; + res = cnt; + } + +free: + kfree(buf); + +out: + return res; +} + +static int scpart_find_partmap(struct mtd_info *master, + struct sc_part_desc **ppdesc) +{ + int magic_found = 0; + int res = 0; + int res2; + loff_t offs = 0; + size_t retlen; + uint8_t rdbuf[PART_MAGIC_LEN]; + + while ((magic_found < MAP_MIRROR_NUM) && + (offs < master->size) && + !mtd_block_isbad(master, offs)) { + res2 = mtd_read(master, offs, PART_MAGIC_LEN, &retlen, rdbuf); + if (res2 || retlen != PART_MAGIC_LEN) { + res = -EIO; + goto out; + } + if (!memcmp(rdbuf, sc_part_magic, PART_MAGIC_LEN)) { + pr_debug("Signature found at 0x%llx\n", offs); + magic_found++; + res = scpart_scan_partmap(master, offs, ppdesc); + if (res > 0) + goto out; + } + offs += master->erasesize; + } + +out: + if (res > 0) + pr_info("Valid 'SC PART MAP' (%d partitions) found at 0x%llx\n", res, offs); + else + pr_info("No valid 'SC PART MAP' was found\n"); + + return res; +} + +static int scpart_parse(struct mtd_info *master, + const struct mtd_partition **pparts, + struct mtd_part_parser_data *data) +{ + const char *partname; + int n; + int nr_scparts; + int nr_parts = 0; + int res = 0; + struct sc_part_desc *scpart_map = NULL; + struct mtd_partition *parts = NULL; + struct device_node *mtd_node; + struct device_node *ofpart_node; + struct device_node *pp; + + mtd_node = mtd_get_of_node(master); + if (!mtd_node) { + res = -ENOENT; + goto out; + } + + ofpart_node = of_get_child_by_name(mtd_node, "partitions"); + if (!ofpart_node) { + pr_info("%s: 'partitions' subnode not found on %pOF.\n", + master->name, mtd_node); + res = -ENOENT; + goto out; + } + + nr_scparts = scpart_find_partmap(master, &scpart_map); + if (nr_scparts <= 0) { + pr_info("No any partitions was found in 'SC PART MAP'.\n"); + res = -ENOENT; + goto free; + } + + parts = kcalloc(of_get_child_count(ofpart_node), sizeof(*parts), + GFP_KERNEL); + if (!parts) { + res = -ENOMEM; + goto free; + } + + for_each_child_of_node(ofpart_node, pp) { + u32 scpart_id; + + if (of_property_read_u32(pp, "sercomm,scpart-id", &scpart_id)) + continue; + + for (n = 0 ; n < nr_scparts ; n++) + if ((scpart_map[n].part_id != ID_ALREADY_FOUND) && + (scpart_id == scpart_map[n].part_id)) + break; + if (n >= nr_scparts) + /* not match */ + continue; + + /* add the partition found in OF into MTD partition array */ + parts[nr_parts].offset = scpart_map[n].part_offs; + parts[nr_parts].size = scpart_map[n].part_bytes; + parts[nr_parts].of_node = pp; + + if (!of_property_read_string(pp, "label", &partname)) + parts[nr_parts].name = partname; + if (of_property_read_bool(pp, "read-only")) + parts[nr_parts].mask_flags |= MTD_WRITEABLE; + if (of_property_read_bool(pp, "lock")) + parts[nr_parts].mask_flags |= MTD_POWERUP_LOCK; + + /* mark as 'done' */ + scpart_map[n].part_id = ID_ALREADY_FOUND; + + nr_parts++; + } + + if (nr_parts > 0) { + *pparts = parts; + res = nr_parts; + } else + pr_info("No partition in OF matches partition ID with 'SC PART MAP'.\n"); + + of_node_put(pp); + +free: + of_node_put(ofpart_node); + kfree(scpart_map); + if (res <= 0) + kfree(parts); + +out: + return res; +} + +static const struct of_device_id scpart_parser_of_match_table[] = { + { .compatible = "sercomm,sc-partitions" }, + {}, +}; +MODULE_DEVICE_TABLE(of, scpart_parser_of_match_table); + +static struct mtd_part_parser scpart_parser = { + .parse_fn = scpart_parse, + .name = "scpart", + .of_match_table = scpart_parser_of_match_table, +}; +module_mtd_part_parser(scpart_parser); + +/* mtd parsers will request the module by parser name */ +MODULE_ALIAS("scpart"); +MODULE_LICENSE("GPL"); +MODULE_AUTHOR("NOGUCHI Hiroshi <drvlabo@gmail.com>"); +MODULE_AUTHOR("Mikhail Zhilkin <csharper2005@gmail.com>"); +MODULE_DESCRIPTION("Sercomm partition parser"); diff --git a/drivers/mtd/parsers/sharpslpart.c b/drivers/mtd/parsers/sharpslpart.c new file mode 100644 index 0000000000..671a61845b --- /dev/null +++ b/drivers/mtd/parsers/sharpslpart.c @@ -0,0 +1,399 @@ +/* + * sharpslpart.c - MTD partition parser for NAND flash using the SHARP FTL + * for logical addressing, as used on the PXA models of the SHARP SL Series. + * + * Copyright (C) 2017 Andrea Adami <andrea.adami@gmail.com> + * + * Based on SHARP GPL 2.4 sources: + * http://support.ezaurus.com/developer/source/source_dl.asp + * drivers/mtd/nand/sharp_sl_logical.c + * linux/include/asm-arm/sharp_nand_logical.h + * + * Copyright (C) 2002 SHARP + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + */ + +#include <linux/kernel.h> +#include <linux/slab.h> +#include <linux/module.h> +#include <linux/types.h> +#include <linux/bitops.h> +#include <linux/sizes.h> +#include <linux/mtd/mtd.h> +#include <linux/mtd/partitions.h> + +/* oob structure */ +#define NAND_NOOB_LOGADDR_00 8 +#define NAND_NOOB_LOGADDR_01 9 +#define NAND_NOOB_LOGADDR_10 10 +#define NAND_NOOB_LOGADDR_11 11 +#define NAND_NOOB_LOGADDR_20 12 +#define NAND_NOOB_LOGADDR_21 13 + +#define BLOCK_IS_RESERVED 0xffff +#define BLOCK_UNMASK_COMPLEMENT 1 + +/* factory defaults */ +#define SHARPSL_NAND_PARTS 3 +#define SHARPSL_FTL_PART_SIZE (7 * SZ_1M) +#define SHARPSL_PARTINFO1_LADDR 0x00060000 +#define SHARPSL_PARTINFO2_LADDR 0x00064000 + +#define BOOT_MAGIC 0x424f4f54 +#define FSRO_MAGIC 0x4653524f +#define FSRW_MAGIC 0x46535257 + +/** + * struct sharpsl_ftl - Sharp FTL Logical Table + * @logmax: number of logical blocks + * @log2phy: the logical-to-physical table + * + * Structure containing the logical-to-physical translation table + * used by the SHARP SL FTL. + */ +struct sharpsl_ftl { + unsigned int logmax; + unsigned int *log2phy; +}; + +/* verify that the OOB bytes 8 to 15 are free and available for the FTL */ +static int sharpsl_nand_check_ooblayout(struct mtd_info *mtd) +{ + u8 freebytes = 0; + int section = 0; + + while (true) { + struct mtd_oob_region oobfree = { }; + int ret, i; + + ret = mtd_ooblayout_free(mtd, section++, &oobfree); + if (ret) + break; + + if (!oobfree.length || oobfree.offset > 15 || + (oobfree.offset + oobfree.length) < 8) + continue; + + i = oobfree.offset >= 8 ? oobfree.offset : 8; + for (; i < oobfree.offset + oobfree.length && i < 16; i++) + freebytes |= BIT(i - 8); + + if (freebytes == 0xff) + return 0; + } + + return -ENOTSUPP; +} + +static int sharpsl_nand_read_oob(struct mtd_info *mtd, loff_t offs, u8 *buf) +{ + struct mtd_oob_ops ops = { }; + int ret; + + ops.mode = MTD_OPS_PLACE_OOB; + ops.ooblen = mtd->oobsize; + ops.oobbuf = buf; + + ret = mtd_read_oob(mtd, offs, &ops); + if (ret != 0 || mtd->oobsize != ops.oobretlen) + return -1; + + return 0; +} + +/* + * The logical block number assigned to a physical block is stored in the OOB + * of the first page, in 3 16-bit copies with the following layout: + * + * 01234567 89abcdef + * -------- -------- + * ECC BB xyxyxy + * + * When reading we check that the first two copies agree. + * In case of error, matching is tried using the following pairs. + * Reserved values 0xffff mean the block is kept for wear leveling. + * + * 01234567 89abcdef + * -------- -------- + * ECC BB xyxy oob[8]==oob[10] && oob[9]==oob[11] -> byte0=8 byte1=9 + * ECC BB xyxy oob[10]==oob[12] && oob[11]==oob[13] -> byte0=10 byte1=11 + * ECC BB xy xy oob[12]==oob[8] && oob[13]==oob[9] -> byte0=12 byte1=13 + */ +static int sharpsl_nand_get_logical_num(u8 *oob) +{ + u16 us; + int good0, good1; + + if (oob[NAND_NOOB_LOGADDR_00] == oob[NAND_NOOB_LOGADDR_10] && + oob[NAND_NOOB_LOGADDR_01] == oob[NAND_NOOB_LOGADDR_11]) { + good0 = NAND_NOOB_LOGADDR_00; + good1 = NAND_NOOB_LOGADDR_01; + } else if (oob[NAND_NOOB_LOGADDR_10] == oob[NAND_NOOB_LOGADDR_20] && + oob[NAND_NOOB_LOGADDR_11] == oob[NAND_NOOB_LOGADDR_21]) { + good0 = NAND_NOOB_LOGADDR_10; + good1 = NAND_NOOB_LOGADDR_11; + } else if (oob[NAND_NOOB_LOGADDR_20] == oob[NAND_NOOB_LOGADDR_00] && + oob[NAND_NOOB_LOGADDR_21] == oob[NAND_NOOB_LOGADDR_01]) { + good0 = NAND_NOOB_LOGADDR_20; + good1 = NAND_NOOB_LOGADDR_21; + } else { + return -EINVAL; + } + + us = oob[good0] | oob[good1] << 8; + + /* parity check */ + if (hweight16(us) & BLOCK_UNMASK_COMPLEMENT) + return -EINVAL; + + /* reserved */ + if (us == BLOCK_IS_RESERVED) + return BLOCK_IS_RESERVED; + + return (us >> 1) & GENMASK(9, 0); +} + +static int sharpsl_nand_init_ftl(struct mtd_info *mtd, struct sharpsl_ftl *ftl) +{ + unsigned int block_num, phymax; + int i, ret, log_num; + loff_t block_adr; + u8 *oob; + + oob = kzalloc(mtd->oobsize, GFP_KERNEL); + if (!oob) + return -ENOMEM; + + phymax = mtd_div_by_eb(SHARPSL_FTL_PART_SIZE, mtd); + + /* FTL reserves 5% of the blocks + 1 spare */ + ftl->logmax = ((phymax * 95) / 100) - 1; + + ftl->log2phy = kmalloc_array(ftl->logmax, sizeof(*ftl->log2phy), + GFP_KERNEL); + if (!ftl->log2phy) { + ret = -ENOMEM; + goto exit; + } + + /* initialize ftl->log2phy */ + for (i = 0; i < ftl->logmax; i++) + ftl->log2phy[i] = UINT_MAX; + + /* create physical-logical table */ + for (block_num = 0; block_num < phymax; block_num++) { + block_adr = (loff_t)block_num * mtd->erasesize; + + if (mtd_block_isbad(mtd, block_adr)) + continue; + + if (sharpsl_nand_read_oob(mtd, block_adr, oob)) + continue; + + /* get logical block */ + log_num = sharpsl_nand_get_logical_num(oob); + + /* cut-off errors and skip the out-of-range values */ + if (log_num > 0 && log_num < ftl->logmax) { + if (ftl->log2phy[log_num] == UINT_MAX) + ftl->log2phy[log_num] = block_num; + } + } + + pr_info("Sharp SL FTL: %d blocks used (%d logical, %d reserved)\n", + phymax, ftl->logmax, phymax - ftl->logmax); + + ret = 0; +exit: + kfree(oob); + return ret; +} + +static void sharpsl_nand_cleanup_ftl(struct sharpsl_ftl *ftl) +{ + kfree(ftl->log2phy); +} + +static int sharpsl_nand_read_laddr(struct mtd_info *mtd, + loff_t from, + size_t len, + void *buf, + struct sharpsl_ftl *ftl) +{ + unsigned int log_num, final_log_num; + unsigned int block_num; + loff_t block_adr; + loff_t block_ofs; + size_t retlen; + int err; + + log_num = mtd_div_by_eb((u32)from, mtd); + final_log_num = mtd_div_by_eb(((u32)from + len - 1), mtd); + + if (len <= 0 || log_num >= ftl->logmax || final_log_num > log_num) + return -EINVAL; + + block_num = ftl->log2phy[log_num]; + block_adr = (loff_t)block_num * mtd->erasesize; + block_ofs = mtd_mod_by_eb((u32)from, mtd); + + err = mtd_read(mtd, block_adr + block_ofs, len, &retlen, buf); + /* Ignore corrected ECC errors */ + if (mtd_is_bitflip(err)) + err = 0; + + if (!err && retlen != len) + err = -EIO; + + if (err) + pr_err("sharpslpart: error, read failed at %#llx\n", + block_adr + block_ofs); + + return err; +} + +/* + * MTD Partition Parser + * + * Sample values read from SL-C860 + * + * # cat /proc/mtd + * dev: size erasesize name + * mtd0: 006d0000 00020000 "Filesystem" + * mtd1: 00700000 00004000 "smf" + * mtd2: 03500000 00004000 "root" + * mtd3: 04400000 00004000 "home" + * + * PARTITIONINFO1 + * 0x00060000: 00 00 00 00 00 00 70 00 42 4f 4f 54 00 00 00 00 ......p.BOOT.... + * 0x00060010: 00 00 70 00 00 00 c0 03 46 53 52 4f 00 00 00 00 ..p.....FSRO.... + * 0x00060020: 00 00 c0 03 00 00 00 04 46 53 52 57 00 00 00 00 ........FSRW.... + */ +struct sharpsl_nand_partinfo { + __le32 start; + __le32 end; + __be32 magic; + u32 reserved; +}; + +static int sharpsl_nand_read_partinfo(struct mtd_info *master, + loff_t from, + size_t len, + struct sharpsl_nand_partinfo *buf, + struct sharpsl_ftl *ftl) +{ + int ret; + + ret = sharpsl_nand_read_laddr(master, from, len, buf, ftl); + if (ret) + return ret; + + /* check for magics */ + if (be32_to_cpu(buf[0].magic) != BOOT_MAGIC || + be32_to_cpu(buf[1].magic) != FSRO_MAGIC || + be32_to_cpu(buf[2].magic) != FSRW_MAGIC) { + pr_err("sharpslpart: magic values mismatch\n"); + return -EINVAL; + } + + /* fixup for hardcoded value 64 MiB (for older models) */ + buf[2].end = cpu_to_le32(master->size); + + /* extra sanity check */ + if (le32_to_cpu(buf[0].end) <= le32_to_cpu(buf[0].start) || + le32_to_cpu(buf[1].start) < le32_to_cpu(buf[0].end) || + le32_to_cpu(buf[1].end) <= le32_to_cpu(buf[1].start) || + le32_to_cpu(buf[2].start) < le32_to_cpu(buf[1].end) || + le32_to_cpu(buf[2].end) <= le32_to_cpu(buf[2].start)) { + pr_err("sharpslpart: partition sizes mismatch\n"); + return -EINVAL; + } + + return 0; +} + +static int sharpsl_parse_mtd_partitions(struct mtd_info *master, + const struct mtd_partition **pparts, + struct mtd_part_parser_data *data) +{ + struct sharpsl_ftl ftl; + struct sharpsl_nand_partinfo buf[SHARPSL_NAND_PARTS]; + struct mtd_partition *sharpsl_nand_parts; + int err; + + /* check that OOB bytes 8 to 15 used by the FTL are actually free */ + err = sharpsl_nand_check_ooblayout(master); + if (err) + return err; + + /* init logical mgmt (FTL) */ + err = sharpsl_nand_init_ftl(master, &ftl); + if (err) + return err; + + /* read and validate first partition table */ + pr_info("sharpslpart: try reading first partition table\n"); + err = sharpsl_nand_read_partinfo(master, + SHARPSL_PARTINFO1_LADDR, + sizeof(buf), buf, &ftl); + if (err) { + /* fallback: read second partition table */ + pr_warn("sharpslpart: first partition table is invalid, retry using the second\n"); + err = sharpsl_nand_read_partinfo(master, + SHARPSL_PARTINFO2_LADDR, + sizeof(buf), buf, &ftl); + } + + /* cleanup logical mgmt (FTL) */ + sharpsl_nand_cleanup_ftl(&ftl); + + if (err) { + pr_err("sharpslpart: both partition tables are invalid\n"); + return err; + } + + sharpsl_nand_parts = kcalloc(SHARPSL_NAND_PARTS, + sizeof(*sharpsl_nand_parts), + GFP_KERNEL); + if (!sharpsl_nand_parts) + return -ENOMEM; + + /* original names */ + sharpsl_nand_parts[0].name = "smf"; + sharpsl_nand_parts[0].offset = le32_to_cpu(buf[0].start); + sharpsl_nand_parts[0].size = le32_to_cpu(buf[0].end) - + le32_to_cpu(buf[0].start); + + sharpsl_nand_parts[1].name = "root"; + sharpsl_nand_parts[1].offset = le32_to_cpu(buf[1].start); + sharpsl_nand_parts[1].size = le32_to_cpu(buf[1].end) - + le32_to_cpu(buf[1].start); + + sharpsl_nand_parts[2].name = "home"; + sharpsl_nand_parts[2].offset = le32_to_cpu(buf[2].start); + sharpsl_nand_parts[2].size = le32_to_cpu(buf[2].end) - + le32_to_cpu(buf[2].start); + + *pparts = sharpsl_nand_parts; + return SHARPSL_NAND_PARTS; +} + +static struct mtd_part_parser sharpsl_mtd_parser = { + .parse_fn = sharpsl_parse_mtd_partitions, + .name = "sharpslpart", +}; +module_mtd_part_parser(sharpsl_mtd_parser); + +MODULE_LICENSE("GPL"); +MODULE_AUTHOR("Andrea Adami <andrea.adami@gmail.com>"); +MODULE_DESCRIPTION("MTD partitioning for NAND flash on Sharp SL Series"); diff --git a/drivers/mtd/parsers/tplink_safeloader.c b/drivers/mtd/parsers/tplink_safeloader.c new file mode 100644 index 0000000000..1c689dafca --- /dev/null +++ b/drivers/mtd/parsers/tplink_safeloader.c @@ -0,0 +1,152 @@ +// SPDX-License-Identifier: GPL-2.0-only +/* + * Copyright © 2022 Rafał Miłecki <rafal@milecki.pl> + */ + +#include <linux/kernel.h> +#include <linux/module.h> +#include <linux/mtd/mtd.h> +#include <linux/mtd/partitions.h> +#include <linux/of.h> +#include <linux/slab.h> + +#define TPLINK_SAFELOADER_DATA_OFFSET 4 +#define TPLINK_SAFELOADER_MAX_PARTS 32 + +struct safeloader_cmn_header { + __be32 size; + uint32_t unused; +} __packed; + +static void *mtd_parser_tplink_safeloader_read_table(struct mtd_info *mtd) +{ + struct safeloader_cmn_header hdr; + struct device_node *np; + size_t bytes_read; + size_t size; + u32 offset; + char *buf; + int err; + + np = mtd_get_of_node(mtd); + if (mtd_is_partition(mtd)) + of_node_get(np); + else + np = of_get_child_by_name(np, "partitions"); + + if (of_property_read_u32(np, "partitions-table-offset", &offset)) { + pr_err("Failed to get partitions table offset\n"); + goto err_put; + } + + err = mtd_read(mtd, offset, sizeof(hdr), &bytes_read, (uint8_t *)&hdr); + if (err && !mtd_is_bitflip(err)) { + pr_err("Failed to read from %s at 0x%x\n", mtd->name, offset); + goto err_put; + } + + size = be32_to_cpu(hdr.size); + + buf = kmalloc(size + 1, GFP_KERNEL); + if (!buf) + goto err_put; + + err = mtd_read(mtd, offset + sizeof(hdr), size, &bytes_read, buf); + if (err && !mtd_is_bitflip(err)) { + pr_err("Failed to read from %s at 0x%zx\n", mtd->name, offset + sizeof(hdr)); + goto err_kfree; + } + + buf[size] = '\0'; + + of_node_put(np); + + return buf; + +err_kfree: + kfree(buf); +err_put: + of_node_put(np); + return NULL; +} + +static int mtd_parser_tplink_safeloader_parse(struct mtd_info *mtd, + const struct mtd_partition **pparts, + struct mtd_part_parser_data *data) +{ + struct mtd_partition *parts; + char name[65]; + size_t offset; + size_t bytes; + char *buf; + int idx; + int err; + + parts = kcalloc(TPLINK_SAFELOADER_MAX_PARTS, sizeof(*parts), GFP_KERNEL); + if (!parts) { + err = -ENOMEM; + goto err_out; + } + + buf = mtd_parser_tplink_safeloader_read_table(mtd); + if (!buf) { + err = -ENOENT; + goto err_free_parts; + } + + for (idx = 0, offset = TPLINK_SAFELOADER_DATA_OFFSET; + idx < TPLINK_SAFELOADER_MAX_PARTS && + sscanf(buf + offset, "partition %64s base 0x%llx size 0x%llx%zn\n", + name, &parts[idx].offset, &parts[idx].size, &bytes) == 3; + idx++, offset += bytes + 1) { + parts[idx].name = kstrdup(name, GFP_KERNEL); + if (!parts[idx].name) { + err = -ENOMEM; + goto err_free; + } + } + + if (idx == TPLINK_SAFELOADER_MAX_PARTS) + pr_warn("Reached maximum number of partitions!\n"); + + kfree(buf); + + *pparts = parts; + + return idx; + +err_free: + for (idx -= 1; idx >= 0; idx--) + kfree(parts[idx].name); +err_free_parts: + kfree(parts); +err_out: + return err; +}; + +static void mtd_parser_tplink_safeloader_cleanup(const struct mtd_partition *pparts, + int nr_parts) +{ + int i; + + for (i = 0; i < nr_parts; i++) + kfree(pparts[i].name); + + kfree(pparts); +} + +static const struct of_device_id mtd_parser_tplink_safeloader_of_match_table[] = { + { .compatible = "tplink,safeloader-partitions" }, + {}, +}; +MODULE_DEVICE_TABLE(of, mtd_parser_tplink_safeloader_of_match_table); + +static struct mtd_part_parser mtd_parser_tplink_safeloader = { + .parse_fn = mtd_parser_tplink_safeloader_parse, + .cleanup = mtd_parser_tplink_safeloader_cleanup, + .name = "tplink-safeloader", + .of_match_table = mtd_parser_tplink_safeloader_of_match_table, +}; +module_mtd_part_parser(mtd_parser_tplink_safeloader); + +MODULE_LICENSE("GPL"); diff --git a/drivers/mtd/rfd_ftl.c b/drivers/mtd/rfd_ftl.c new file mode 100644 index 0000000000..c546f8c5f2 --- /dev/null +++ b/drivers/mtd/rfd_ftl.c @@ -0,0 +1,830 @@ +// SPDX-License-Identifier: GPL-2.0-only +/* + * rfd_ftl.c -- resident flash disk (flash translation layer) + * + * Copyright © 2005 Sean Young <sean@mess.org> + * + * This type of flash translation layer (FTL) is used by the Embedded BIOS + * by General Software. It is known as the Resident Flash Disk (RFD), see: + * + * http://www.gensw.com/pages/prod/bios/rfd.htm + * + * based on ftl.c + */ + +#include <linux/hdreg.h> +#include <linux/init.h> +#include <linux/mtd/blktrans.h> +#include <linux/mtd/mtd.h> +#include <linux/vmalloc.h> +#include <linux/slab.h> +#include <linux/jiffies.h> +#include <linux/module.h> + +#include <asm/types.h> + +static int block_size = 0; +module_param(block_size, int, 0); +MODULE_PARM_DESC(block_size, "Block size to use by RFD, defaults to erase unit size"); + +#define PREFIX "rfd_ftl: " + +/* This major has been assigned by device@lanana.org */ +#ifndef RFD_FTL_MAJOR +#define RFD_FTL_MAJOR 256 +#endif + +/* Maximum number of partitions in an FTL region */ +#define PART_BITS 4 + +/* An erase unit should start with this value */ +#define RFD_MAGIC 0x9193 + +/* the second value is 0xffff or 0xffc8; function unknown */ + +/* the third value is always 0xffff, ignored */ + +/* next is an array of mapping for each corresponding sector */ +#define HEADER_MAP_OFFSET 3 +#define SECTOR_DELETED 0x0000 +#define SECTOR_ZERO 0xfffe +#define SECTOR_FREE 0xffff + +#define SECTOR_SIZE 512 + +#define SECTORS_PER_TRACK 63 + +struct block { + enum { + BLOCK_OK, + BLOCK_ERASING, + BLOCK_ERASED, + BLOCK_UNUSED, + BLOCK_FAILED + } state; + int free_sectors; + int used_sectors; + int erases; + u_long offset; +}; + +struct partition { + struct mtd_blktrans_dev mbd; + + u_int block_size; /* size of erase unit */ + u_int total_blocks; /* number of erase units */ + u_int header_sectors_per_block; /* header sectors in erase unit */ + u_int data_sectors_per_block; /* data sectors in erase unit */ + u_int sector_count; /* sectors in translated disk */ + u_int header_size; /* bytes in header sector */ + int reserved_block; /* block next up for reclaim */ + int current_block; /* block to write to */ + u16 *header_cache; /* cached header */ + + int is_reclaiming; + int cylinders; + int errors; + u_long *sector_map; + struct block *blocks; +}; + +static int rfd_ftl_writesect(struct mtd_blktrans_dev *dev, u_long sector, char *buf); + +static int build_block_map(struct partition *part, int block_no) +{ + struct block *block = &part->blocks[block_no]; + int i; + + block->offset = part->block_size * block_no; + + if (le16_to_cpu(part->header_cache[0]) != RFD_MAGIC) { + block->state = BLOCK_UNUSED; + return -ENOENT; + } + + block->state = BLOCK_OK; + + for (i=0; i<part->data_sectors_per_block; i++) { + u16 entry; + + entry = le16_to_cpu(part->header_cache[HEADER_MAP_OFFSET + i]); + + if (entry == SECTOR_DELETED) + continue; + + if (entry == SECTOR_FREE) { + block->free_sectors++; + continue; + } + + if (entry == SECTOR_ZERO) + entry = 0; + + if (entry >= part->sector_count) { + printk(KERN_WARNING PREFIX + "'%s': unit #%d: entry %d corrupt, " + "sector %d out of range\n", + part->mbd.mtd->name, block_no, i, entry); + continue; + } + + if (part->sector_map[entry] != -1) { + printk(KERN_WARNING PREFIX + "'%s': more than one entry for sector %d\n", + part->mbd.mtd->name, entry); + part->errors = 1; + continue; + } + + part->sector_map[entry] = block->offset + + (i + part->header_sectors_per_block) * SECTOR_SIZE; + + block->used_sectors++; + } + + if (block->free_sectors == part->data_sectors_per_block) + part->reserved_block = block_no; + + return 0; +} + +static int scan_header(struct partition *part) +{ + int sectors_per_block; + int i, rc = -ENOMEM; + int blocks_found; + size_t retlen; + + sectors_per_block = part->block_size / SECTOR_SIZE; + part->total_blocks = (u32)part->mbd.mtd->size / part->block_size; + + if (part->total_blocks < 2) + return -ENOENT; + + /* each erase block has three bytes header, followed by the map */ + part->header_sectors_per_block = + ((HEADER_MAP_OFFSET + sectors_per_block) * + sizeof(u16) + SECTOR_SIZE - 1) / SECTOR_SIZE; + + part->data_sectors_per_block = sectors_per_block - + part->header_sectors_per_block; + + part->header_size = (HEADER_MAP_OFFSET + + part->data_sectors_per_block) * sizeof(u16); + + part->cylinders = (part->data_sectors_per_block * + (part->total_blocks - 1) - 1) / SECTORS_PER_TRACK; + + part->sector_count = part->cylinders * SECTORS_PER_TRACK; + + part->current_block = -1; + part->reserved_block = -1; + part->is_reclaiming = 0; + + part->header_cache = kmalloc(part->header_size, GFP_KERNEL); + if (!part->header_cache) + goto err; + + part->blocks = kcalloc(part->total_blocks, sizeof(struct block), + GFP_KERNEL); + if (!part->blocks) + goto err; + + part->sector_map = vmalloc(array_size(sizeof(u_long), + part->sector_count)); + if (!part->sector_map) + goto err; + + for (i=0; i<part->sector_count; i++) + part->sector_map[i] = -1; + + for (i=0, blocks_found=0; i<part->total_blocks; i++) { + rc = mtd_read(part->mbd.mtd, i * part->block_size, + part->header_size, &retlen, + (u_char *)part->header_cache); + + if (!rc && retlen != part->header_size) + rc = -EIO; + + if (rc) + goto err; + + if (!build_block_map(part, i)) + blocks_found++; + } + + if (blocks_found == 0) { + printk(KERN_NOTICE PREFIX "no RFD magic found in '%s'\n", + part->mbd.mtd->name); + rc = -ENOENT; + goto err; + } + + if (part->reserved_block == -1) { + printk(KERN_WARNING PREFIX "'%s': no empty erase unit found\n", + part->mbd.mtd->name); + + part->errors = 1; + } + + return 0; + +err: + vfree(part->sector_map); + kfree(part->header_cache); + kfree(part->blocks); + + return rc; +} + +static int rfd_ftl_readsect(struct mtd_blktrans_dev *dev, u_long sector, char *buf) +{ + struct partition *part = container_of(dev, struct partition, mbd); + u_long addr; + size_t retlen; + int rc; + + if (sector >= part->sector_count) + return -EIO; + + addr = part->sector_map[sector]; + if (addr != -1) { + rc = mtd_read(part->mbd.mtd, addr, SECTOR_SIZE, &retlen, + (u_char *)buf); + if (!rc && retlen != SECTOR_SIZE) + rc = -EIO; + + if (rc) { + printk(KERN_WARNING PREFIX "error reading '%s' at " + "0x%lx\n", part->mbd.mtd->name, addr); + return rc; + } + } else + memset(buf, 0, SECTOR_SIZE); + + return 0; +} + +static int erase_block(struct partition *part, int block) +{ + struct erase_info *erase; + int rc; + + erase = kmalloc(sizeof(struct erase_info), GFP_KERNEL); + if (!erase) + return -ENOMEM; + + erase->addr = part->blocks[block].offset; + erase->len = part->block_size; + + part->blocks[block].state = BLOCK_ERASING; + part->blocks[block].free_sectors = 0; + + rc = mtd_erase(part->mbd.mtd, erase); + if (rc) { + printk(KERN_ERR PREFIX "erase of region %llx,%llx on '%s' " + "failed\n", (unsigned long long)erase->addr, + (unsigned long long)erase->len, part->mbd.mtd->name); + part->blocks[block].state = BLOCK_FAILED; + part->blocks[block].free_sectors = 0; + part->blocks[block].used_sectors = 0; + } else { + u16 magic = cpu_to_le16(RFD_MAGIC); + size_t retlen; + + part->blocks[block].state = BLOCK_ERASED; + part->blocks[block].free_sectors = part->data_sectors_per_block; + part->blocks[block].used_sectors = 0; + part->blocks[block].erases++; + + rc = mtd_write(part->mbd.mtd, part->blocks[block].offset, + sizeof(magic), &retlen, (u_char *)&magic); + if (!rc && retlen != sizeof(magic)) + rc = -EIO; + + if (rc) { + pr_err(PREFIX "'%s': unable to write RFD header at 0x%lx\n", + part->mbd.mtd->name, part->blocks[block].offset); + part->blocks[block].state = BLOCK_FAILED; + } else { + part->blocks[block].state = BLOCK_OK; + } + } + + kfree(erase); + + return rc; +} + +static int move_block_contents(struct partition *part, int block_no, u_long *old_sector) +{ + void *sector_data; + u16 *map; + size_t retlen; + int i, rc = -ENOMEM; + + part->is_reclaiming = 1; + + sector_data = kmalloc(SECTOR_SIZE, GFP_KERNEL); + if (!sector_data) + goto err3; + + map = kmalloc(part->header_size, GFP_KERNEL); + if (!map) + goto err2; + + rc = mtd_read(part->mbd.mtd, part->blocks[block_no].offset, + part->header_size, &retlen, (u_char *)map); + + if (!rc && retlen != part->header_size) + rc = -EIO; + + if (rc) { + printk(KERN_ERR PREFIX "error reading '%s' at " + "0x%lx\n", part->mbd.mtd->name, + part->blocks[block_no].offset); + + goto err; + } + + for (i=0; i<part->data_sectors_per_block; i++) { + u16 entry = le16_to_cpu(map[HEADER_MAP_OFFSET + i]); + u_long addr; + + + if (entry == SECTOR_FREE || entry == SECTOR_DELETED) + continue; + + if (entry == SECTOR_ZERO) + entry = 0; + + /* already warned about and ignored in build_block_map() */ + if (entry >= part->sector_count) + continue; + + addr = part->blocks[block_no].offset + + (i + part->header_sectors_per_block) * SECTOR_SIZE; + + if (*old_sector == addr) { + *old_sector = -1; + if (!part->blocks[block_no].used_sectors--) { + rc = erase_block(part, block_no); + break; + } + continue; + } + rc = mtd_read(part->mbd.mtd, addr, SECTOR_SIZE, &retlen, + sector_data); + + if (!rc && retlen != SECTOR_SIZE) + rc = -EIO; + + if (rc) { + printk(KERN_ERR PREFIX "'%s': Unable to " + "read sector for relocation\n", + part->mbd.mtd->name); + + goto err; + } + + rc = rfd_ftl_writesect((struct mtd_blktrans_dev*)part, + entry, sector_data); + + if (rc) + goto err; + } + +err: + kfree(map); +err2: + kfree(sector_data); +err3: + part->is_reclaiming = 0; + + return rc; +} + +static int reclaim_block(struct partition *part, u_long *old_sector) +{ + int block, best_block, score, old_sector_block; + int rc; + + /* we have a race if sync doesn't exist */ + mtd_sync(part->mbd.mtd); + + score = 0x7fffffff; /* MAX_INT */ + best_block = -1; + if (*old_sector != -1) + old_sector_block = *old_sector / part->block_size; + else + old_sector_block = -1; + + for (block=0; block<part->total_blocks; block++) { + int this_score; + + if (block == part->reserved_block) + continue; + + /* + * Postpone reclaiming if there is a free sector as + * more removed sectors is more efficient (have to move + * less). + */ + if (part->blocks[block].free_sectors) + return 0; + + this_score = part->blocks[block].used_sectors; + + if (block == old_sector_block) + this_score--; + else { + /* no point in moving a full block */ + if (part->blocks[block].used_sectors == + part->data_sectors_per_block) + continue; + } + + this_score += part->blocks[block].erases; + + if (this_score < score) { + best_block = block; + score = this_score; + } + } + + if (best_block == -1) + return -ENOSPC; + + part->current_block = -1; + part->reserved_block = best_block; + + pr_debug("reclaim_block: reclaiming block #%d with %d used " + "%d free sectors\n", best_block, + part->blocks[best_block].used_sectors, + part->blocks[best_block].free_sectors); + + if (part->blocks[best_block].used_sectors) + rc = move_block_contents(part, best_block, old_sector); + else + rc = erase_block(part, best_block); + + return rc; +} + +/* + * IMPROVE: It would be best to choose the block with the most deleted sectors, + * because if we fill that one up first it'll have the most chance of having + * the least live sectors at reclaim. + */ +static int find_free_block(struct partition *part) +{ + int block, stop; + + block = part->current_block == -1 ? + jiffies % part->total_blocks : part->current_block; + stop = block; + + do { + if (part->blocks[block].free_sectors && + block != part->reserved_block) + return block; + + if (part->blocks[block].state == BLOCK_UNUSED) + erase_block(part, block); + + if (++block >= part->total_blocks) + block = 0; + + } while (block != stop); + + return -1; +} + +static int find_writable_block(struct partition *part, u_long *old_sector) +{ + int rc, block; + size_t retlen; + + block = find_free_block(part); + + if (block == -1) { + if (!part->is_reclaiming) { + rc = reclaim_block(part, old_sector); + if (rc) + goto err; + + block = find_free_block(part); + } + + if (block == -1) { + rc = -ENOSPC; + goto err; + } + } + + rc = mtd_read(part->mbd.mtd, part->blocks[block].offset, + part->header_size, &retlen, + (u_char *)part->header_cache); + + if (!rc && retlen != part->header_size) + rc = -EIO; + + if (rc) { + printk(KERN_ERR PREFIX "'%s': unable to read header at " + "0x%lx\n", part->mbd.mtd->name, + part->blocks[block].offset); + goto err; + } + + part->current_block = block; + +err: + return rc; +} + +static int mark_sector_deleted(struct partition *part, u_long old_addr) +{ + int block, offset, rc; + u_long addr; + size_t retlen; + u16 del = cpu_to_le16(SECTOR_DELETED); + + block = old_addr / part->block_size; + offset = (old_addr % part->block_size) / SECTOR_SIZE - + part->header_sectors_per_block; + + addr = part->blocks[block].offset + + (HEADER_MAP_OFFSET + offset) * sizeof(u16); + rc = mtd_write(part->mbd.mtd, addr, sizeof(del), &retlen, + (u_char *)&del); + + if (!rc && retlen != sizeof(del)) + rc = -EIO; + + if (rc) { + printk(KERN_ERR PREFIX "error writing '%s' at " + "0x%lx\n", part->mbd.mtd->name, addr); + goto err; + } + if (block == part->current_block) + part->header_cache[offset + HEADER_MAP_OFFSET] = del; + + part->blocks[block].used_sectors--; + + if (!part->blocks[block].used_sectors && + !part->blocks[block].free_sectors) + rc = erase_block(part, block); + +err: + return rc; +} + +static int find_free_sector(const struct partition *part, const struct block *block) +{ + int i, stop; + + i = stop = part->data_sectors_per_block - block->free_sectors; + + do { + if (le16_to_cpu(part->header_cache[HEADER_MAP_OFFSET + i]) + == SECTOR_FREE) + return i; + + if (++i == part->data_sectors_per_block) + i = 0; + } + while(i != stop); + + return -1; +} + +static int do_writesect(struct mtd_blktrans_dev *dev, u_long sector, char *buf, ulong *old_addr) +{ + struct partition *part = container_of(dev, struct partition, mbd); + struct block *block; + u_long addr; + int i; + int rc; + size_t retlen; + u16 entry; + + if (part->current_block == -1 || + !part->blocks[part->current_block].free_sectors) { + + rc = find_writable_block(part, old_addr); + if (rc) + goto err; + } + + block = &part->blocks[part->current_block]; + + i = find_free_sector(part, block); + + if (i < 0) { + rc = -ENOSPC; + goto err; + } + + addr = (i + part->header_sectors_per_block) * SECTOR_SIZE + + block->offset; + rc = mtd_write(part->mbd.mtd, addr, SECTOR_SIZE, &retlen, + (u_char *)buf); + + if (!rc && retlen != SECTOR_SIZE) + rc = -EIO; + + if (rc) { + printk(KERN_ERR PREFIX "error writing '%s' at 0x%lx\n", + part->mbd.mtd->name, addr); + goto err; + } + + part->sector_map[sector] = addr; + + entry = cpu_to_le16(sector == 0 ? SECTOR_ZERO : sector); + + part->header_cache[i + HEADER_MAP_OFFSET] = entry; + + addr = block->offset + (HEADER_MAP_OFFSET + i) * sizeof(u16); + rc = mtd_write(part->mbd.mtd, addr, sizeof(entry), &retlen, + (u_char *)&entry); + + if (!rc && retlen != sizeof(entry)) + rc = -EIO; + + if (rc) { + printk(KERN_ERR PREFIX "error writing '%s' at 0x%lx\n", + part->mbd.mtd->name, addr); + goto err; + } + block->used_sectors++; + block->free_sectors--; + +err: + return rc; +} + +static int rfd_ftl_writesect(struct mtd_blktrans_dev *dev, u_long sector, char *buf) +{ + struct partition *part = container_of(dev, struct partition, mbd); + u_long old_addr; + int i; + int rc = 0; + + pr_debug("rfd_ftl_writesect(sector=0x%lx)\n", sector); + + if (part->reserved_block == -1) { + rc = -EACCES; + goto err; + } + + if (sector >= part->sector_count) { + rc = -EIO; + goto err; + } + + old_addr = part->sector_map[sector]; + + for (i=0; i<SECTOR_SIZE; i++) { + if (!buf[i]) + continue; + + rc = do_writesect(dev, sector, buf, &old_addr); + if (rc) + goto err; + break; + } + + if (i == SECTOR_SIZE) + part->sector_map[sector] = -1; + + if (old_addr != -1) + rc = mark_sector_deleted(part, old_addr); + +err: + return rc; +} + +static int rfd_ftl_discardsect(struct mtd_blktrans_dev *dev, + unsigned long sector, unsigned int nr_sects) +{ + struct partition *part = container_of(dev, struct partition, mbd); + u_long addr; + int rc; + + while (nr_sects) { + if (sector >= part->sector_count) + return -EIO; + + addr = part->sector_map[sector]; + + if (addr != -1) { + rc = mark_sector_deleted(part, addr); + if (rc) + return rc; + + part->sector_map[sector] = -1; + } + + sector++; + nr_sects--; + } + + return 0; +} + +static int rfd_ftl_getgeo(struct mtd_blktrans_dev *dev, struct hd_geometry *geo) +{ + struct partition *part = container_of(dev, struct partition, mbd); + + geo->heads = 1; + geo->sectors = SECTORS_PER_TRACK; + geo->cylinders = part->cylinders; + + return 0; +} + +static void rfd_ftl_add_mtd(struct mtd_blktrans_ops *tr, struct mtd_info *mtd) +{ + struct partition *part; + + if ((mtd->type != MTD_NORFLASH && mtd->type != MTD_RAM) || + mtd->size > UINT_MAX) + return; + + part = kzalloc(sizeof(struct partition), GFP_KERNEL); + if (!part) + return; + + part->mbd.mtd = mtd; + + if (block_size) + part->block_size = block_size; + else { + if (!mtd->erasesize) { + printk(KERN_WARNING PREFIX "please provide block_size"); + goto out; + } else + part->block_size = mtd->erasesize; + } + + if (scan_header(part) == 0) { + part->mbd.size = part->sector_count; + part->mbd.tr = tr; + part->mbd.devnum = -1; + if (!(mtd->flags & MTD_WRITEABLE)) + part->mbd.readonly = 1; + else if (part->errors) { + printk(KERN_WARNING PREFIX "'%s': errors found, " + "setting read-only\n", mtd->name); + part->mbd.readonly = 1; + } + + printk(KERN_INFO PREFIX "name: '%s' type: %d flags %x\n", + mtd->name, mtd->type, mtd->flags); + + if (!add_mtd_blktrans_dev(&part->mbd)) + return; + } +out: + kfree(part); +} + +static void rfd_ftl_remove_dev(struct mtd_blktrans_dev *dev) +{ + struct partition *part = container_of(dev, struct partition, mbd); + int i; + + for (i=0; i<part->total_blocks; i++) { + pr_debug("rfd_ftl_remove_dev:'%s': erase unit #%02d: %d erases\n", + part->mbd.mtd->name, i, part->blocks[i].erases); + } + + vfree(part->sector_map); + kfree(part->header_cache); + kfree(part->blocks); + del_mtd_blktrans_dev(&part->mbd); +} + +static struct mtd_blktrans_ops rfd_ftl_tr = { + .name = "rfd", + .major = RFD_FTL_MAJOR, + .part_bits = PART_BITS, + .blksize = SECTOR_SIZE, + + .readsect = rfd_ftl_readsect, + .writesect = rfd_ftl_writesect, + .discard = rfd_ftl_discardsect, + .getgeo = rfd_ftl_getgeo, + .add_mtd = rfd_ftl_add_mtd, + .remove_dev = rfd_ftl_remove_dev, + .owner = THIS_MODULE, +}; + +module_mtd_blktrans(rfd_ftl_tr); + +MODULE_LICENSE("GPL"); +MODULE_AUTHOR("Sean Young <sean@mess.org>"); +MODULE_DESCRIPTION("Support code for RFD Flash Translation Layer, " + "used by General Software's Embedded BIOS"); + diff --git a/drivers/mtd/sm_ftl.c b/drivers/mtd/sm_ftl.c new file mode 100644 index 0000000000..b5b3c4c44a --- /dev/null +++ b/drivers/mtd/sm_ftl.c @@ -0,0 +1,1299 @@ +// SPDX-License-Identifier: GPL-2.0-only +/* + * Copyright © 2009 - Maxim Levitsky + * SmartMedia/xD translation layer + */ + +#include <linux/kernel.h> +#include <linux/module.h> +#include <linux/random.h> +#include <linux/hdreg.h> +#include <linux/kthread.h> +#include <linux/freezer.h> +#include <linux/sysfs.h> +#include <linux/bitops.h> +#include <linux/slab.h> +#include <linux/mtd/nand-ecc-sw-hamming.h> +#include "nand/raw/sm_common.h" +#include "sm_ftl.h" + + + +static struct workqueue_struct *cache_flush_workqueue; + +static int cache_timeout = 1000; +module_param(cache_timeout, int, S_IRUGO); +MODULE_PARM_DESC(cache_timeout, + "Timeout (in ms) for cache flush (1000 ms default"); + +static int debug; +module_param(debug, int, S_IRUGO | S_IWUSR); +MODULE_PARM_DESC(debug, "Debug level (0-2)"); + + +/* ------------------- sysfs attributes ---------------------------------- */ +struct sm_sysfs_attribute { + struct device_attribute dev_attr; + char *data; + int len; +}; + +static ssize_t sm_attr_show(struct device *dev, struct device_attribute *attr, + char *buf) +{ + struct sm_sysfs_attribute *sm_attr = + container_of(attr, struct sm_sysfs_attribute, dev_attr); + + strncpy(buf, sm_attr->data, sm_attr->len); + return sm_attr->len; +} + + +#define NUM_ATTRIBUTES 1 +#define SM_CIS_VENDOR_OFFSET 0x59 +static struct attribute_group *sm_create_sysfs_attributes(struct sm_ftl *ftl) +{ + struct attribute_group *attr_group; + struct attribute **attributes; + struct sm_sysfs_attribute *vendor_attribute; + char *vendor; + + vendor = kstrndup(ftl->cis_buffer + SM_CIS_VENDOR_OFFSET, + SM_SMALL_PAGE - SM_CIS_VENDOR_OFFSET, GFP_KERNEL); + if (!vendor) + goto error1; + + /* Initialize sysfs attributes */ + vendor_attribute = + kzalloc(sizeof(struct sm_sysfs_attribute), GFP_KERNEL); + if (!vendor_attribute) + goto error2; + + sysfs_attr_init(&vendor_attribute->dev_attr.attr); + + vendor_attribute->data = vendor; + vendor_attribute->len = strlen(vendor); + vendor_attribute->dev_attr.attr.name = "vendor"; + vendor_attribute->dev_attr.attr.mode = S_IRUGO; + vendor_attribute->dev_attr.show = sm_attr_show; + + + /* Create array of pointers to the attributes */ + attributes = kcalloc(NUM_ATTRIBUTES + 1, sizeof(struct attribute *), + GFP_KERNEL); + if (!attributes) + goto error3; + attributes[0] = &vendor_attribute->dev_attr.attr; + + /* Finally create the attribute group */ + attr_group = kzalloc(sizeof(struct attribute_group), GFP_KERNEL); + if (!attr_group) + goto error4; + attr_group->attrs = attributes; + return attr_group; +error4: + kfree(attributes); +error3: + kfree(vendor_attribute); +error2: + kfree(vendor); +error1: + return NULL; +} + +static void sm_delete_sysfs_attributes(struct sm_ftl *ftl) +{ + struct attribute **attributes = ftl->disk_attributes->attrs; + int i; + + for (i = 0; attributes[i] ; i++) { + + struct device_attribute *dev_attr = container_of(attributes[i], + struct device_attribute, attr); + + struct sm_sysfs_attribute *sm_attr = + container_of(dev_attr, + struct sm_sysfs_attribute, dev_attr); + + kfree(sm_attr->data); + kfree(sm_attr); + } + + kfree(ftl->disk_attributes->attrs); + kfree(ftl->disk_attributes); +} + + +/* ----------------------- oob helpers -------------------------------------- */ + +static int sm_get_lba(uint8_t *lba) +{ + /* check fixed bits */ + if ((lba[0] & 0xF8) != 0x10) + return -2; + + /* check parity - endianness doesn't matter */ + if (hweight16(*(uint16_t *)lba) & 1) + return -2; + + return (lba[1] >> 1) | ((lba[0] & 0x07) << 7); +} + + +/* + * Read LBA associated with block + * returns -1, if block is erased + * returns -2 if error happens + */ +static int sm_read_lba(struct sm_oob *oob) +{ + static const uint32_t erased_pattern[4] = { + 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF }; + + uint16_t lba_test; + int lba; + + /* First test for erased block */ + if (!memcmp(oob, erased_pattern, SM_OOB_SIZE)) + return -1; + + /* Now check is both copies of the LBA differ too much */ + lba_test = *(uint16_t *)oob->lba_copy1 ^ *(uint16_t*)oob->lba_copy2; + if (lba_test && !is_power_of_2(lba_test)) + return -2; + + /* And read it */ + lba = sm_get_lba(oob->lba_copy1); + + if (lba == -2) + lba = sm_get_lba(oob->lba_copy2); + + return lba; +} + +static void sm_write_lba(struct sm_oob *oob, uint16_t lba) +{ + uint8_t tmp[2]; + + WARN_ON(lba >= 1000); + + tmp[0] = 0x10 | ((lba >> 7) & 0x07); + tmp[1] = (lba << 1) & 0xFF; + + if (hweight16(*(uint16_t *)tmp) & 0x01) + tmp[1] |= 1; + + oob->lba_copy1[0] = oob->lba_copy2[0] = tmp[0]; + oob->lba_copy1[1] = oob->lba_copy2[1] = tmp[1]; +} + + +/* Make offset from parts */ +static loff_t sm_mkoffset(struct sm_ftl *ftl, int zone, int block, int boffset) +{ + WARN_ON(boffset & (SM_SECTOR_SIZE - 1)); + WARN_ON(zone < 0 || zone >= ftl->zone_count); + WARN_ON(block >= ftl->zone_size); + WARN_ON(boffset >= ftl->block_size); + + if (block == -1) + return -1; + + return (zone * SM_MAX_ZONE_SIZE + block) * ftl->block_size + boffset; +} + +/* Breaks offset into parts */ +static void sm_break_offset(struct sm_ftl *ftl, loff_t loffset, + int *zone, int *block, int *boffset) +{ + u64 offset = loffset; + *boffset = do_div(offset, ftl->block_size); + *block = do_div(offset, ftl->max_lba); + *zone = offset >= ftl->zone_count ? -1 : offset; +} + +/* ---------------------- low level IO ------------------------------------- */ + +static int sm_correct_sector(uint8_t *buffer, struct sm_oob *oob) +{ + bool sm_order = IS_ENABLED(CONFIG_MTD_NAND_ECC_SW_HAMMING_SMC); + uint8_t ecc[3]; + + ecc_sw_hamming_calculate(buffer, SM_SMALL_PAGE, ecc, sm_order); + if (ecc_sw_hamming_correct(buffer, ecc, oob->ecc1, SM_SMALL_PAGE, + sm_order) < 0) + return -EIO; + + buffer += SM_SMALL_PAGE; + + ecc_sw_hamming_calculate(buffer, SM_SMALL_PAGE, ecc, sm_order); + if (ecc_sw_hamming_correct(buffer, ecc, oob->ecc2, SM_SMALL_PAGE, + sm_order) < 0) + return -EIO; + return 0; +} + +/* Reads a sector + oob*/ +static int sm_read_sector(struct sm_ftl *ftl, + int zone, int block, int boffset, + uint8_t *buffer, struct sm_oob *oob) +{ + struct mtd_info *mtd = ftl->trans->mtd; + struct mtd_oob_ops ops = { }; + struct sm_oob tmp_oob; + int ret = -EIO; + int try = 0; + + /* FTL can contain -1 entries that are by default filled with bits */ + if (block == -1) { + if (buffer) + memset(buffer, 0xFF, SM_SECTOR_SIZE); + return 0; + } + + /* User might not need the oob, but we do for data verification */ + if (!oob) + oob = &tmp_oob; + + ops.mode = ftl->smallpagenand ? MTD_OPS_RAW : MTD_OPS_PLACE_OOB; + ops.ooboffs = 0; + ops.ooblen = SM_OOB_SIZE; + ops.oobbuf = (void *)oob; + ops.len = SM_SECTOR_SIZE; + ops.datbuf = buffer; + +again: + if (try++) { + /* Avoid infinite recursion on CIS reads, sm_recheck_media + * won't help anyway + */ + if (zone == 0 && block == ftl->cis_block && boffset == + ftl->cis_boffset) + return ret; + + /* Test if media is stable */ + if (try == 3 || sm_recheck_media(ftl)) + return ret; + } + + /* Unfortunately, oob read will _always_ succeed, + * despite card removal..... + */ + ret = mtd_read_oob(mtd, sm_mkoffset(ftl, zone, block, boffset), &ops); + + /* Test for unknown errors */ + if (ret != 0 && !mtd_is_bitflip_or_eccerr(ret)) { + dbg("read of block %d at zone %d, failed due to error (%d)", + block, zone, ret); + goto again; + } + + /* Do a basic test on the oob, to guard against returned garbage */ + if (oob->reserved != 0xFFFFFFFF && !is_power_of_2(~oob->reserved)) + goto again; + + /* This should never happen, unless there is a bug in the mtd driver */ + WARN_ON(ops.oobretlen != SM_OOB_SIZE); + WARN_ON(buffer && ops.retlen != SM_SECTOR_SIZE); + + if (!buffer) + return 0; + + /* Test if sector marked as bad */ + if (!sm_sector_valid(oob)) { + dbg("read of block %d at zone %d, failed because it is marked" + " as bad" , block, zone); + goto again; + } + + /* Test ECC*/ + if (mtd_is_eccerr(ret) || + (ftl->smallpagenand && sm_correct_sector(buffer, oob))) { + + dbg("read of block %d at zone %d, failed due to ECC error", + block, zone); + goto again; + } + + return 0; +} + +/* Writes a sector to media */ +static int sm_write_sector(struct sm_ftl *ftl, + int zone, int block, int boffset, + uint8_t *buffer, struct sm_oob *oob) +{ + struct mtd_oob_ops ops = { }; + struct mtd_info *mtd = ftl->trans->mtd; + int ret; + + BUG_ON(ftl->readonly); + + if (zone == 0 && (block == ftl->cis_block || block == 0)) { + dbg("attempted to write the CIS!"); + return -EIO; + } + + if (ftl->unstable) + return -EIO; + + ops.mode = ftl->smallpagenand ? MTD_OPS_RAW : MTD_OPS_PLACE_OOB; + ops.len = SM_SECTOR_SIZE; + ops.datbuf = buffer; + ops.ooboffs = 0; + ops.ooblen = SM_OOB_SIZE; + ops.oobbuf = (void *)oob; + + ret = mtd_write_oob(mtd, sm_mkoffset(ftl, zone, block, boffset), &ops); + + /* Now we assume that hardware will catch write bitflip errors */ + + if (ret) { + dbg("write to block %d at zone %d, failed with error %d", + block, zone, ret); + + sm_recheck_media(ftl); + return ret; + } + + /* This should never happen, unless there is a bug in the driver */ + WARN_ON(ops.oobretlen != SM_OOB_SIZE); + WARN_ON(buffer && ops.retlen != SM_SECTOR_SIZE); + + return 0; +} + +/* ------------------------ block IO ------------------------------------- */ + +/* Write a block using data and lba, and invalid sector bitmap */ +static int sm_write_block(struct sm_ftl *ftl, uint8_t *buf, + int zone, int block, int lba, + unsigned long invalid_bitmap) +{ + bool sm_order = IS_ENABLED(CONFIG_MTD_NAND_ECC_SW_HAMMING_SMC); + struct sm_oob oob; + int boffset; + int retry = 0; + + /* Initialize the oob with requested values */ + memset(&oob, 0xFF, SM_OOB_SIZE); + sm_write_lba(&oob, lba); +restart: + if (ftl->unstable) + return -EIO; + + for (boffset = 0; boffset < ftl->block_size; + boffset += SM_SECTOR_SIZE) { + + oob.data_status = 0xFF; + + if (test_bit(boffset / SM_SECTOR_SIZE, &invalid_bitmap)) { + + sm_printk("sector %d of block at LBA %d of zone %d" + " couldn't be read, marking it as invalid", + boffset / SM_SECTOR_SIZE, lba, zone); + + oob.data_status = 0; + } + + if (ftl->smallpagenand) { + ecc_sw_hamming_calculate(buf + boffset, + SM_SMALL_PAGE, oob.ecc1, + sm_order); + + ecc_sw_hamming_calculate(buf + boffset + SM_SMALL_PAGE, + SM_SMALL_PAGE, oob.ecc2, + sm_order); + } + if (!sm_write_sector(ftl, zone, block, boffset, + buf + boffset, &oob)) + continue; + + if (!retry) { + + /* If write fails. try to erase the block */ + /* This is safe, because we never write in blocks + * that contain valuable data. + * This is intended to repair block that are marked + * as erased, but that isn't fully erased + */ + + if (sm_erase_block(ftl, zone, block, 0)) + return -EIO; + + retry = 1; + goto restart; + } else { + sm_mark_block_bad(ftl, zone, block); + return -EIO; + } + } + return 0; +} + + +/* Mark whole block at offset 'offs' as bad. */ +static void sm_mark_block_bad(struct sm_ftl *ftl, int zone, int block) +{ + struct sm_oob oob; + int boffset; + + memset(&oob, 0xFF, SM_OOB_SIZE); + oob.block_status = 0xF0; + + if (ftl->unstable) + return; + + if (sm_recheck_media(ftl)) + return; + + sm_printk("marking block %d of zone %d as bad", block, zone); + + /* We aren't checking the return value, because we don't care */ + /* This also fails on fake xD cards, but I guess these won't expose + * any bad blocks till fail completely + */ + for (boffset = 0; boffset < ftl->block_size; boffset += SM_SECTOR_SIZE) + sm_write_sector(ftl, zone, block, boffset, NULL, &oob); +} + +/* + * Erase a block within a zone + * If erase succeeds, it updates free block fifo, otherwise marks block as bad + */ +static int sm_erase_block(struct sm_ftl *ftl, int zone_num, uint16_t block, + int put_free) +{ + struct ftl_zone *zone = &ftl->zones[zone_num]; + struct mtd_info *mtd = ftl->trans->mtd; + struct erase_info erase; + + erase.addr = sm_mkoffset(ftl, zone_num, block, 0); + erase.len = ftl->block_size; + + if (ftl->unstable) + return -EIO; + + BUG_ON(ftl->readonly); + + if (zone_num == 0 && (block == ftl->cis_block || block == 0)) { + sm_printk("attempted to erase the CIS!"); + return -EIO; + } + + if (mtd_erase(mtd, &erase)) { + sm_printk("erase of block %d in zone %d failed", + block, zone_num); + goto error; + } + + if (put_free) + kfifo_in(&zone->free_sectors, + (const unsigned char *)&block, sizeof(block)); + + return 0; +error: + sm_mark_block_bad(ftl, zone_num, block); + return -EIO; +} + +/* Thoroughly test that block is valid. */ +static int sm_check_block(struct sm_ftl *ftl, int zone, int block) +{ + int boffset; + struct sm_oob oob; + int lbas[] = { -3, 0, 0, 0 }; + int i = 0; + int test_lba; + + + /* First just check that block doesn't look fishy */ + /* Only blocks that are valid or are sliced in two parts, are + * accepted + */ + for (boffset = 0; boffset < ftl->block_size; + boffset += SM_SECTOR_SIZE) { + + /* This shouldn't happen anyway */ + if (sm_read_sector(ftl, zone, block, boffset, NULL, &oob)) + return -2; + + test_lba = sm_read_lba(&oob); + + if (lbas[i] != test_lba) + lbas[++i] = test_lba; + + /* If we found three different LBAs, something is fishy */ + if (i == 3) + return -EIO; + } + + /* If the block is sliced (partially erased usually) erase it */ + if (i == 2) { + sm_erase_block(ftl, zone, block, 1); + return 1; + } + + return 0; +} + +/* ----------------- media scanning --------------------------------- */ +static const struct chs_entry chs_table[] = { + { 1, 125, 4, 4 }, + { 2, 125, 4, 8 }, + { 4, 250, 4, 8 }, + { 8, 250, 4, 16 }, + { 16, 500, 4, 16 }, + { 32, 500, 8, 16 }, + { 64, 500, 8, 32 }, + { 128, 500, 16, 32 }, + { 256, 1000, 16, 32 }, + { 512, 1015, 32, 63 }, + { 1024, 985, 33, 63 }, + { 2048, 985, 33, 63 }, + { 0 }, +}; + + +static const uint8_t cis_signature[] = { + 0x01, 0x03, 0xD9, 0x01, 0xFF, 0x18, 0x02, 0xDF, 0x01, 0x20 +}; +/* Find out media parameters. + * This ideally has to be based on nand id, but for now device size is enough + */ +static int sm_get_media_info(struct sm_ftl *ftl, struct mtd_info *mtd) +{ + int i; + int size_in_megs = mtd->size / (1024 * 1024); + + ftl->readonly = mtd->type == MTD_ROM; + + /* Manual settings for very old devices */ + ftl->zone_count = 1; + ftl->smallpagenand = 0; + + switch (size_in_megs) { + case 1: + /* 1 MiB flash/rom SmartMedia card (256 byte pages)*/ + ftl->zone_size = 256; + ftl->max_lba = 250; + ftl->block_size = 8 * SM_SECTOR_SIZE; + ftl->smallpagenand = 1; + + break; + case 2: + /* 2 MiB flash SmartMedia (256 byte pages)*/ + if (mtd->writesize == SM_SMALL_PAGE) { + ftl->zone_size = 512; + ftl->max_lba = 500; + ftl->block_size = 8 * SM_SECTOR_SIZE; + ftl->smallpagenand = 1; + /* 2 MiB rom SmartMedia */ + } else { + + if (!ftl->readonly) + return -ENODEV; + + ftl->zone_size = 256; + ftl->max_lba = 250; + ftl->block_size = 16 * SM_SECTOR_SIZE; + } + break; + case 4: + /* 4 MiB flash/rom SmartMedia device */ + ftl->zone_size = 512; + ftl->max_lba = 500; + ftl->block_size = 16 * SM_SECTOR_SIZE; + break; + case 8: + /* 8 MiB flash/rom SmartMedia device */ + ftl->zone_size = 1024; + ftl->max_lba = 1000; + ftl->block_size = 16 * SM_SECTOR_SIZE; + } + + /* Minimum xD size is 16MiB. Also, all xD cards have standard zone + * sizes. SmartMedia cards exist up to 128 MiB and have same layout + */ + if (size_in_megs >= 16) { + ftl->zone_count = size_in_megs / 16; + ftl->zone_size = 1024; + ftl->max_lba = 1000; + ftl->block_size = 32 * SM_SECTOR_SIZE; + } + + /* Test for proper write,erase and oob sizes */ + if (mtd->erasesize > ftl->block_size) + return -ENODEV; + + if (mtd->writesize > SM_SECTOR_SIZE) + return -ENODEV; + + if (ftl->smallpagenand && mtd->oobsize < SM_SMALL_OOB_SIZE) + return -ENODEV; + + if (!ftl->smallpagenand && mtd->oobsize < SM_OOB_SIZE) + return -ENODEV; + + /* We use OOB */ + if (!mtd_has_oob(mtd)) + return -ENODEV; + + /* Find geometry information */ + for (i = 0 ; i < ARRAY_SIZE(chs_table) ; i++) { + if (chs_table[i].size == size_in_megs) { + ftl->cylinders = chs_table[i].cyl; + ftl->heads = chs_table[i].head; + ftl->sectors = chs_table[i].sec; + return 0; + } + } + + sm_printk("media has unknown size : %dMiB", size_in_megs); + ftl->cylinders = 985; + ftl->heads = 33; + ftl->sectors = 63; + return 0; +} + +/* Validate the CIS */ +static int sm_read_cis(struct sm_ftl *ftl) +{ + struct sm_oob oob; + + if (sm_read_sector(ftl, + 0, ftl->cis_block, ftl->cis_boffset, ftl->cis_buffer, &oob)) + return -EIO; + + if (!sm_sector_valid(&oob) || !sm_block_valid(&oob)) + return -EIO; + + if (!memcmp(ftl->cis_buffer + ftl->cis_page_offset, + cis_signature, sizeof(cis_signature))) { + return 0; + } + + return -EIO; +} + +/* Scan the media for the CIS */ +static int sm_find_cis(struct sm_ftl *ftl) +{ + struct sm_oob oob; + int block, boffset; + int block_found = 0; + int cis_found = 0; + + /* Search for first valid block */ + for (block = 0 ; block < ftl->zone_size - ftl->max_lba ; block++) { + + if (sm_read_sector(ftl, 0, block, 0, NULL, &oob)) + continue; + + if (!sm_block_valid(&oob)) + continue; + block_found = 1; + break; + } + + if (!block_found) + return -EIO; + + /* Search for first valid sector in this block */ + for (boffset = 0 ; boffset < ftl->block_size; + boffset += SM_SECTOR_SIZE) { + + if (sm_read_sector(ftl, 0, block, boffset, NULL, &oob)) + continue; + + if (!sm_sector_valid(&oob)) + continue; + break; + } + + if (boffset == ftl->block_size) + return -EIO; + + ftl->cis_block = block; + ftl->cis_boffset = boffset; + ftl->cis_page_offset = 0; + + cis_found = !sm_read_cis(ftl); + + if (!cis_found) { + ftl->cis_page_offset = SM_SMALL_PAGE; + cis_found = !sm_read_cis(ftl); + } + + if (cis_found) { + dbg("CIS block found at offset %x", + block * ftl->block_size + + boffset + ftl->cis_page_offset); + return 0; + } + return -EIO; +} + +/* Basic test to determine if underlying mtd device if functional */ +static int sm_recheck_media(struct sm_ftl *ftl) +{ + if (sm_read_cis(ftl)) { + + if (!ftl->unstable) { + sm_printk("media unstable, not allowing writes"); + ftl->unstable = 1; + } + return -EIO; + } + return 0; +} + +/* Initialize a FTL zone */ +static int sm_init_zone(struct sm_ftl *ftl, int zone_num) +{ + struct ftl_zone *zone = &ftl->zones[zone_num]; + struct sm_oob oob; + uint16_t block; + int lba; + int i = 0; + int len; + + dbg("initializing zone %d", zone_num); + + /* Allocate memory for FTL table */ + zone->lba_to_phys_table = kmalloc_array(ftl->max_lba, 2, GFP_KERNEL); + + if (!zone->lba_to_phys_table) + return -ENOMEM; + memset(zone->lba_to_phys_table, -1, ftl->max_lba * 2); + + + /* Allocate memory for free sectors FIFO */ + if (kfifo_alloc(&zone->free_sectors, ftl->zone_size * 2, GFP_KERNEL)) { + kfree(zone->lba_to_phys_table); + return -ENOMEM; + } + + /* Now scan the zone */ + for (block = 0 ; block < ftl->zone_size ; block++) { + + /* Skip blocks till the CIS (including) */ + if (zone_num == 0 && block <= ftl->cis_block) + continue; + + /* Read the oob of first sector */ + if (sm_read_sector(ftl, zone_num, block, 0, NULL, &oob)) { + kfifo_free(&zone->free_sectors); + kfree(zone->lba_to_phys_table); + return -EIO; + } + + /* Test to see if block is erased. It is enough to test + * first sector, because erase happens in one shot + */ + if (sm_block_erased(&oob)) { + kfifo_in(&zone->free_sectors, + (unsigned char *)&block, 2); + continue; + } + + /* If block is marked as bad, skip it */ + /* This assumes we can trust first sector*/ + /* However the way the block valid status is defined, ensures + * very low probability of failure here + */ + if (!sm_block_valid(&oob)) { + dbg("PH %04d <-> <marked bad>", block); + continue; + } + + + lba = sm_read_lba(&oob); + + /* Invalid LBA means that block is damaged. */ + /* We can try to erase it, or mark it as bad, but + * lets leave that to recovery application + */ + if (lba == -2 || lba >= ftl->max_lba) { + dbg("PH %04d <-> LBA %04d(bad)", block, lba); + continue; + } + + + /* If there is no collision, + * just put the sector in the FTL table + */ + if (zone->lba_to_phys_table[lba] < 0) { + dbg_verbose("PH %04d <-> LBA %04d", block, lba); + zone->lba_to_phys_table[lba] = block; + continue; + } + + sm_printk("collision" + " of LBA %d between blocks %d and %d in zone %d", + lba, zone->lba_to_phys_table[lba], block, zone_num); + + /* Test that this block is valid*/ + if (sm_check_block(ftl, zone_num, block)) + continue; + + /* Test now the old block */ + if (sm_check_block(ftl, zone_num, + zone->lba_to_phys_table[lba])) { + zone->lba_to_phys_table[lba] = block; + continue; + } + + /* If both blocks are valid and share same LBA, it means that + * they hold different versions of same data. It not + * known which is more recent, thus just erase one of them + */ + sm_printk("both blocks are valid, erasing the later"); + sm_erase_block(ftl, zone_num, block, 1); + } + + dbg("zone initialized"); + zone->initialized = 1; + + /* No free sectors, means that the zone is heavily damaged, write won't + * work, but it can still can be (partially) read + */ + if (!kfifo_len(&zone->free_sectors)) { + sm_printk("no free blocks in zone %d", zone_num); + return 0; + } + + /* Randomize first block we write to */ + get_random_bytes(&i, 2); + i %= (kfifo_len(&zone->free_sectors) / 2); + + while (i--) { + len = kfifo_out(&zone->free_sectors, + (unsigned char *)&block, 2); + WARN_ON(len != 2); + kfifo_in(&zone->free_sectors, (const unsigned char *)&block, 2); + } + return 0; +} + +/* Get and automatically initialize an FTL mapping for one zone */ +static struct ftl_zone *sm_get_zone(struct sm_ftl *ftl, int zone_num) +{ + struct ftl_zone *zone; + int error; + + BUG_ON(zone_num >= ftl->zone_count); + zone = &ftl->zones[zone_num]; + + if (!zone->initialized) { + error = sm_init_zone(ftl, zone_num); + + if (error) + return ERR_PTR(error); + } + return zone; +} + + +/* ----------------- cache handling ------------------------------------------*/ + +/* Initialize the one block cache */ +static void sm_cache_init(struct sm_ftl *ftl) +{ + ftl->cache_data_invalid_bitmap = 0xFFFFFFFF; + ftl->cache_clean = 1; + ftl->cache_zone = -1; + ftl->cache_block = -1; + /*memset(ftl->cache_data, 0xAA, ftl->block_size);*/ +} + +/* Put sector in one block cache */ +static void sm_cache_put(struct sm_ftl *ftl, char *buffer, int boffset) +{ + memcpy(ftl->cache_data + boffset, buffer, SM_SECTOR_SIZE); + clear_bit(boffset / SM_SECTOR_SIZE, &ftl->cache_data_invalid_bitmap); + ftl->cache_clean = 0; +} + +/* Read a sector from the cache */ +static int sm_cache_get(struct sm_ftl *ftl, char *buffer, int boffset) +{ + if (test_bit(boffset / SM_SECTOR_SIZE, + &ftl->cache_data_invalid_bitmap)) + return -1; + + memcpy(buffer, ftl->cache_data + boffset, SM_SECTOR_SIZE); + return 0; +} + +/* Write the cache to hardware */ +static int sm_cache_flush(struct sm_ftl *ftl) +{ + struct ftl_zone *zone; + + int sector_num; + uint16_t write_sector; + int zone_num = ftl->cache_zone; + int block_num; + + if (ftl->cache_clean) + return 0; + + if (ftl->unstable) + return -EIO; + + BUG_ON(zone_num < 0); + zone = &ftl->zones[zone_num]; + block_num = zone->lba_to_phys_table[ftl->cache_block]; + + + /* Try to read all unread areas of the cache block*/ + for_each_set_bit(sector_num, &ftl->cache_data_invalid_bitmap, + ftl->block_size / SM_SECTOR_SIZE) { + + if (!sm_read_sector(ftl, + zone_num, block_num, sector_num * SM_SECTOR_SIZE, + ftl->cache_data + sector_num * SM_SECTOR_SIZE, NULL)) + clear_bit(sector_num, + &ftl->cache_data_invalid_bitmap); + } +restart: + + if (ftl->unstable) + return -EIO; + + /* If there are no spare blocks, */ + /* we could still continue by erasing/writing the current block, + * but for such worn out media it doesn't worth the trouble, + * and the dangers + */ + if (kfifo_out(&zone->free_sectors, + (unsigned char *)&write_sector, 2) != 2) { + dbg("no free sectors for write!"); + return -EIO; + } + + + if (sm_write_block(ftl, ftl->cache_data, zone_num, write_sector, + ftl->cache_block, ftl->cache_data_invalid_bitmap)) + goto restart; + + /* Update the FTL table */ + zone->lba_to_phys_table[ftl->cache_block] = write_sector; + + /* Write successful, so erase and free the old block */ + if (block_num > 0) + sm_erase_block(ftl, zone_num, block_num, 1); + + sm_cache_init(ftl); + return 0; +} + + +/* flush timer, runs a second after last write */ +static void sm_cache_flush_timer(struct timer_list *t) +{ + struct sm_ftl *ftl = from_timer(ftl, t, timer); + queue_work(cache_flush_workqueue, &ftl->flush_work); +} + +/* cache flush work, kicked by timer */ +static void sm_cache_flush_work(struct work_struct *work) +{ + struct sm_ftl *ftl = container_of(work, struct sm_ftl, flush_work); + mutex_lock(&ftl->mutex); + sm_cache_flush(ftl); + mutex_unlock(&ftl->mutex); + return; +} + +/* ---------------- outside interface -------------------------------------- */ + +/* outside interface: read a sector */ +static int sm_read(struct mtd_blktrans_dev *dev, + unsigned long sect_no, char *buf) +{ + struct sm_ftl *ftl = dev->priv; + struct ftl_zone *zone; + int error = 0, in_cache = 0; + int zone_num, block, boffset; + + sm_break_offset(ftl, sect_no << 9, &zone_num, &block, &boffset); + mutex_lock(&ftl->mutex); + + + zone = sm_get_zone(ftl, zone_num); + if (IS_ERR(zone)) { + error = PTR_ERR(zone); + goto unlock; + } + + /* Have to look at cache first */ + if (ftl->cache_zone == zone_num && ftl->cache_block == block) { + in_cache = 1; + if (!sm_cache_get(ftl, buf, boffset)) + goto unlock; + } + + /* Translate the block and return if doesn't exist in the table */ + block = zone->lba_to_phys_table[block]; + + if (block == -1) { + memset(buf, 0xFF, SM_SECTOR_SIZE); + goto unlock; + } + + if (sm_read_sector(ftl, zone_num, block, boffset, buf, NULL)) { + error = -EIO; + goto unlock; + } + + if (in_cache) + sm_cache_put(ftl, buf, boffset); +unlock: + mutex_unlock(&ftl->mutex); + return error; +} + +/* outside interface: write a sector */ +static int sm_write(struct mtd_blktrans_dev *dev, + unsigned long sec_no, char *buf) +{ + struct sm_ftl *ftl = dev->priv; + struct ftl_zone *zone; + int error = 0, zone_num, block, boffset; + + BUG_ON(ftl->readonly); + sm_break_offset(ftl, sec_no << 9, &zone_num, &block, &boffset); + + /* No need in flush thread running now */ + del_timer(&ftl->timer); + mutex_lock(&ftl->mutex); + + zone = sm_get_zone(ftl, zone_num); + if (IS_ERR(zone)) { + error = PTR_ERR(zone); + goto unlock; + } + + /* If entry is not in cache, flush it */ + if (ftl->cache_block != block || ftl->cache_zone != zone_num) { + + error = sm_cache_flush(ftl); + if (error) + goto unlock; + + ftl->cache_block = block; + ftl->cache_zone = zone_num; + } + + sm_cache_put(ftl, buf, boffset); +unlock: + mod_timer(&ftl->timer, jiffies + msecs_to_jiffies(cache_timeout)); + mutex_unlock(&ftl->mutex); + return error; +} + +/* outside interface: flush everything */ +static int sm_flush(struct mtd_blktrans_dev *dev) +{ + struct sm_ftl *ftl = dev->priv; + int retval; + + mutex_lock(&ftl->mutex); + retval = sm_cache_flush(ftl); + mutex_unlock(&ftl->mutex); + return retval; +} + +/* outside interface: device is released */ +static void sm_release(struct mtd_blktrans_dev *dev) +{ + struct sm_ftl *ftl = dev->priv; + + del_timer_sync(&ftl->timer); + cancel_work_sync(&ftl->flush_work); + mutex_lock(&ftl->mutex); + sm_cache_flush(ftl); + mutex_unlock(&ftl->mutex); +} + +/* outside interface: get geometry */ +static int sm_getgeo(struct mtd_blktrans_dev *dev, struct hd_geometry *geo) +{ + struct sm_ftl *ftl = dev->priv; + geo->heads = ftl->heads; + geo->sectors = ftl->sectors; + geo->cylinders = ftl->cylinders; + return 0; +} + +/* external interface: main initialization function */ +static void sm_add_mtd(struct mtd_blktrans_ops *tr, struct mtd_info *mtd) +{ + struct mtd_blktrans_dev *trans; + struct sm_ftl *ftl; + + /* Allocate & initialize our private structure */ + ftl = kzalloc(sizeof(struct sm_ftl), GFP_KERNEL); + if (!ftl) + goto error1; + + + mutex_init(&ftl->mutex); + timer_setup(&ftl->timer, sm_cache_flush_timer, 0); + INIT_WORK(&ftl->flush_work, sm_cache_flush_work); + + /* Read media information */ + if (sm_get_media_info(ftl, mtd)) { + dbg("found unsupported mtd device, aborting"); + goto error2; + } + + + /* Allocate temporary CIS buffer for read retry support */ + ftl->cis_buffer = kzalloc(SM_SECTOR_SIZE, GFP_KERNEL); + if (!ftl->cis_buffer) + goto error2; + + /* Allocate zone array, it will be initialized on demand */ + ftl->zones = kcalloc(ftl->zone_count, sizeof(struct ftl_zone), + GFP_KERNEL); + if (!ftl->zones) + goto error3; + + /* Allocate the cache*/ + ftl->cache_data = kzalloc(ftl->block_size, GFP_KERNEL); + + if (!ftl->cache_data) + goto error4; + + sm_cache_init(ftl); + + + /* Allocate upper layer structure and initialize it */ + trans = kzalloc(sizeof(struct mtd_blktrans_dev), GFP_KERNEL); + if (!trans) + goto error5; + + ftl->trans = trans; + trans->priv = ftl; + + trans->tr = tr; + trans->mtd = mtd; + trans->devnum = -1; + trans->size = (ftl->block_size * ftl->max_lba * ftl->zone_count) >> 9; + trans->readonly = ftl->readonly; + + if (sm_find_cis(ftl)) { + dbg("CIS not found on mtd device, aborting"); + goto error6; + } + + ftl->disk_attributes = sm_create_sysfs_attributes(ftl); + if (!ftl->disk_attributes) + goto error6; + trans->disk_attributes = ftl->disk_attributes; + + sm_printk("Found %d MiB xD/SmartMedia FTL on mtd%d", + (int)(mtd->size / (1024 * 1024)), mtd->index); + + dbg("FTL layout:"); + dbg("%d zone(s), each consists of %d blocks (+%d spares)", + ftl->zone_count, ftl->max_lba, + ftl->zone_size - ftl->max_lba); + dbg("each block consists of %d bytes", + ftl->block_size); + + + /* Register device*/ + if (add_mtd_blktrans_dev(trans)) { + dbg("error in mtdblktrans layer"); + goto error6; + } + return; +error6: + kfree(trans); +error5: + kfree(ftl->cache_data); +error4: + kfree(ftl->zones); +error3: + kfree(ftl->cis_buffer); +error2: + kfree(ftl); +error1: + return; +} + +/* main interface: device {surprise,} removal */ +static void sm_remove_dev(struct mtd_blktrans_dev *dev) +{ + struct sm_ftl *ftl = dev->priv; + int i; + + del_mtd_blktrans_dev(dev); + ftl->trans = NULL; + + for (i = 0 ; i < ftl->zone_count; i++) { + + if (!ftl->zones[i].initialized) + continue; + + kfree(ftl->zones[i].lba_to_phys_table); + kfifo_free(&ftl->zones[i].free_sectors); + } + + sm_delete_sysfs_attributes(ftl); + kfree(ftl->cis_buffer); + kfree(ftl->zones); + kfree(ftl->cache_data); + kfree(ftl); +} + +static struct mtd_blktrans_ops sm_ftl_ops = { + .name = "smblk", + .major = 0, + .part_bits = SM_FTL_PARTN_BITS, + .blksize = SM_SECTOR_SIZE, + .getgeo = sm_getgeo, + + .add_mtd = sm_add_mtd, + .remove_dev = sm_remove_dev, + + .readsect = sm_read, + .writesect = sm_write, + + .flush = sm_flush, + .release = sm_release, + + .owner = THIS_MODULE, +}; + +static __init int sm_module_init(void) +{ + int error = 0; + + cache_flush_workqueue = create_freezable_workqueue("smflush"); + if (!cache_flush_workqueue) + return -ENOMEM; + + error = register_mtd_blktrans(&sm_ftl_ops); + if (error) + destroy_workqueue(cache_flush_workqueue); + return error; + +} + +static void __exit sm_module_exit(void) +{ + destroy_workqueue(cache_flush_workqueue); + deregister_mtd_blktrans(&sm_ftl_ops); +} + +module_init(sm_module_init); +module_exit(sm_module_exit); + +MODULE_LICENSE("GPL"); +MODULE_AUTHOR("Maxim Levitsky <maximlevitsky@gmail.com>"); +MODULE_DESCRIPTION("Smartmedia/xD mtd translation layer"); diff --git a/drivers/mtd/sm_ftl.h b/drivers/mtd/sm_ftl.h new file mode 100644 index 0000000000..6aed8b60de --- /dev/null +++ b/drivers/mtd/sm_ftl.h @@ -0,0 +1,87 @@ +/* SPDX-License-Identifier: GPL-2.0-only */ +/* + * Copyright © 2009 - Maxim Levitsky + * SmartMedia/xD translation layer + * + * Based loosly on ssfdc.c which is + * © 2005 Eptar srl + * Author: Claudio Lanconelli <lanconelli.claudio@eptar.com> + */ + +#include <linux/mtd/blktrans.h> +#include <linux/kfifo.h> +#include <linux/sched.h> +#include <linux/completion.h> +#include <linux/mtd/mtd.h> + + + +struct ftl_zone { + bool initialized; + int16_t *lba_to_phys_table; /* LBA to physical table */ + struct kfifo free_sectors; /* queue of free sectors */ +}; + +struct sm_ftl { + struct mtd_blktrans_dev *trans; + + struct mutex mutex; /* protects the structure */ + struct ftl_zone *zones; /* FTL tables for each zone */ + + /* Media information */ + int block_size; /* block size in bytes */ + int zone_size; /* zone size in blocks */ + int zone_count; /* number of zones */ + int max_lba; /* maximum lba in a zone */ + int smallpagenand; /* 256 bytes/page nand */ + bool readonly; /* is FS readonly */ + bool unstable; + int cis_block; /* CIS block location */ + int cis_boffset; /* CIS offset in the block */ + int cis_page_offset; /* CIS offset in the page */ + void *cis_buffer; /* tmp buffer for cis reads */ + + /* Cache */ + int cache_block; /* block number of cached block */ + int cache_zone; /* zone of cached block */ + unsigned char *cache_data; /* cached block data */ + long unsigned int cache_data_invalid_bitmap; + bool cache_clean; + struct work_struct flush_work; + struct timer_list timer; + + /* Geometry stuff */ + int heads; + int sectors; + int cylinders; + + struct attribute_group *disk_attributes; +}; + +struct chs_entry { + unsigned long size; + unsigned short cyl; + unsigned char head; + unsigned char sec; +}; + + +#define SM_FTL_PARTN_BITS 3 + +#define sm_printk(format, ...) \ + printk(KERN_WARNING "sm_ftl" ": " format "\n", ## __VA_ARGS__) + +#define dbg(format, ...) \ + if (debug) \ + printk(KERN_DEBUG "sm_ftl" ": " format "\n", ## __VA_ARGS__) + +#define dbg_verbose(format, ...) \ + if (debug > 1) \ + printk(KERN_DEBUG "sm_ftl" ": " format "\n", ## __VA_ARGS__) + + +static int sm_erase_block(struct sm_ftl *ftl, int zone_num, uint16_t block, + int put_free); +static void sm_mark_block_bad(struct sm_ftl *ftl, int zone_num, int block); + +static int sm_recheck_media(struct sm_ftl *ftl); diff --git a/drivers/mtd/spi-nor/Kconfig b/drivers/mtd/spi-nor/Kconfig new file mode 100644 index 0000000000..24cd25de2b --- /dev/null +++ b/drivers/mtd/spi-nor/Kconfig @@ -0,0 +1,73 @@ +# SPDX-License-Identifier: GPL-2.0-only +menuconfig MTD_SPI_NOR + tristate "SPI NOR device support" + depends on MTD + depends on MTD && SPI_MASTER + select SPI_MEM + help + This is the framework for the SPI NOR which can be used by the SPI + device drivers and the SPI NOR device driver. + +if MTD_SPI_NOR + +config MTD_SPI_NOR_USE_4K_SECTORS + bool "Use small 4096 B erase sectors" + default y + help + Many flash memories support erasing small (4096 B) sectors. Depending + on the usage this feature may provide performance gain in comparison + to erasing whole blocks (32/64 KiB). + Changing a small part of the flash's contents is usually faster with + small sectors. On the other hand erasing should be faster when using + 64 KiB block instead of 16 × 4 KiB sectors. + + Please note that some tools/drivers/filesystems may not work with + 4096 B erase size (e.g. UBIFS requires 15 KiB as a minimum). + +choice + prompt "Software write protection at boot" + default MTD_SPI_NOR_SWP_DISABLE_ON_VOLATILE + +config MTD_SPI_NOR_SWP_DISABLE + bool "Disable SWP on any flashes (legacy behavior)" + help + This option disables the software write protection on any SPI + flashes at boot-up. + + Depending on the flash chip this either clears the block protection + bits or does a "Global Unprotect" command. + + Don't use this if you intent to use the software write protection + of your SPI flash. This is only to keep backwards compatibility. + +config MTD_SPI_NOR_SWP_DISABLE_ON_VOLATILE + bool "Disable SWP on flashes w/ volatile protection bits" + help + Some SPI flashes have volatile block protection bits, ie. after a + power-up or a reset the flash is software write protected by + default. + + This option disables the software write protection for these kind + of flashes while keeping it enabled for any other SPI flashes + which have non-volatile write protection bits. + + If the software write protection will be disabled depending on + the flash either the block protection bits are cleared or a + "Global Unprotect" command is issued. + + If you are unsure, select this option. + +config MTD_SPI_NOR_SWP_KEEP + bool "Keep software write protection as is" + help + If you select this option the software write protection of any + SPI flashes will not be changed. If your flash is software write + protected or will be automatically software write protected after + power-up you have to manually unlock it before you are able to + write to it. + +endchoice + +source "drivers/mtd/spi-nor/controllers/Kconfig" + +endif # MTD_SPI_NOR diff --git a/drivers/mtd/spi-nor/Makefile b/drivers/mtd/spi-nor/Makefile new file mode 100644 index 0000000000..e347b435a0 --- /dev/null +++ b/drivers/mtd/spi-nor/Makefile @@ -0,0 +1,23 @@ +# SPDX-License-Identifier: GPL-2.0 + +spi-nor-objs := core.o sfdp.o swp.o otp.o sysfs.o +spi-nor-objs += atmel.o +spi-nor-objs += catalyst.o +spi-nor-objs += eon.o +spi-nor-objs += esmt.o +spi-nor-objs += everspin.o +spi-nor-objs += fujitsu.o +spi-nor-objs += gigadevice.o +spi-nor-objs += intel.o +spi-nor-objs += issi.o +spi-nor-objs += macronix.o +spi-nor-objs += micron-st.o +spi-nor-objs += spansion.o +spi-nor-objs += sst.o +spi-nor-objs += winbond.o +spi-nor-objs += xilinx.o +spi-nor-objs += xmc.o +spi-nor-$(CONFIG_DEBUG_FS) += debugfs.o +obj-$(CONFIG_MTD_SPI_NOR) += spi-nor.o + +obj-$(CONFIG_MTD_SPI_NOR) += controllers/ diff --git a/drivers/mtd/spi-nor/atmel.c b/drivers/mtd/spi-nor/atmel.c new file mode 100644 index 0000000000..58968c1e7d --- /dev/null +++ b/drivers/mtd/spi-nor/atmel.c @@ -0,0 +1,215 @@ +// SPDX-License-Identifier: GPL-2.0 +/* + * Copyright (C) 2005, Intec Automation Inc. + * Copyright (C) 2014, Freescale Semiconductor, Inc. + */ + +#include <linux/mtd/spi-nor.h> + +#include "core.h" + +#define ATMEL_SR_GLOBAL_PROTECT_MASK GENMASK(5, 2) + +/* + * The Atmel AT25FS010/AT25FS040 parts have some weird configuration for the + * block protection bits. We don't support them. But legacy behavior in linux + * is to unlock the whole flash array on startup. Therefore, we have to support + * exactly this operation. + */ +static int at25fs_nor_lock(struct spi_nor *nor, loff_t ofs, uint64_t len) +{ + return -EOPNOTSUPP; +} + +static int at25fs_nor_unlock(struct spi_nor *nor, loff_t ofs, uint64_t len) +{ + int ret; + + /* We only support unlocking the whole flash array */ + if (ofs || len != nor->params->size) + return -EINVAL; + + /* Write 0x00 to the status register to disable write protection */ + ret = spi_nor_write_sr_and_check(nor, 0); + if (ret) + dev_dbg(nor->dev, "unable to clear BP bits, WP# asserted?\n"); + + return ret; +} + +static int at25fs_nor_is_locked(struct spi_nor *nor, loff_t ofs, uint64_t len) +{ + return -EOPNOTSUPP; +} + +static const struct spi_nor_locking_ops at25fs_nor_locking_ops = { + .lock = at25fs_nor_lock, + .unlock = at25fs_nor_unlock, + .is_locked = at25fs_nor_is_locked, +}; + +static int at25fs_nor_late_init(struct spi_nor *nor) +{ + nor->params->locking_ops = &at25fs_nor_locking_ops; + + return 0; +} + +static const struct spi_nor_fixups at25fs_nor_fixups = { + .late_init = at25fs_nor_late_init, +}; + +/** + * atmel_nor_set_global_protection - Do a Global Protect or Unprotect command + * @nor: pointer to 'struct spi_nor' + * @ofs: offset in bytes + * @len: len in bytes + * @is_protect: if true do a Global Protect otherwise it is a Global Unprotect + * + * Return: 0 on success, -error otherwise. + */ +static int atmel_nor_set_global_protection(struct spi_nor *nor, loff_t ofs, + uint64_t len, bool is_protect) +{ + int ret; + u8 sr; + + /* We only support locking the whole flash array */ + if (ofs || len != nor->params->size) + return -EINVAL; + + ret = spi_nor_read_sr(nor, nor->bouncebuf); + if (ret) + return ret; + + sr = nor->bouncebuf[0]; + + /* SRWD bit needs to be cleared, otherwise the protection doesn't change */ + if (sr & SR_SRWD) { + sr &= ~SR_SRWD; + ret = spi_nor_write_sr_and_check(nor, sr); + if (ret) { + dev_dbg(nor->dev, "unable to clear SRWD bit, WP# asserted?\n"); + return ret; + } + } + + if (is_protect) { + sr |= ATMEL_SR_GLOBAL_PROTECT_MASK; + /* + * Set the SRWD bit again as soon as we are protecting + * anything. This will ensure that the WP# pin is working + * correctly. By doing this we also behave the same as + * spi_nor_sr_lock(), which sets SRWD if any block protection + * is active. + */ + sr |= SR_SRWD; + } else { + sr &= ~ATMEL_SR_GLOBAL_PROTECT_MASK; + } + + nor->bouncebuf[0] = sr; + + /* + * We cannot use the spi_nor_write_sr_and_check() because this command + * isn't really setting any bits, instead it is an pseudo command for + * "Global Unprotect" or "Global Protect" + */ + return spi_nor_write_sr(nor, nor->bouncebuf, 1); +} + +static int atmel_nor_global_protect(struct spi_nor *nor, loff_t ofs, + uint64_t len) +{ + return atmel_nor_set_global_protection(nor, ofs, len, true); +} + +static int atmel_nor_global_unprotect(struct spi_nor *nor, loff_t ofs, + uint64_t len) +{ + return atmel_nor_set_global_protection(nor, ofs, len, false); +} + +static int atmel_nor_is_global_protected(struct spi_nor *nor, loff_t ofs, + uint64_t len) +{ + int ret; + + if (ofs >= nor->params->size || (ofs + len) > nor->params->size) + return -EINVAL; + + ret = spi_nor_read_sr(nor, nor->bouncebuf); + if (ret) + return ret; + + return ((nor->bouncebuf[0] & ATMEL_SR_GLOBAL_PROTECT_MASK) == ATMEL_SR_GLOBAL_PROTECT_MASK); +} + +static const struct spi_nor_locking_ops atmel_nor_global_protection_ops = { + .lock = atmel_nor_global_protect, + .unlock = atmel_nor_global_unprotect, + .is_locked = atmel_nor_is_global_protected, +}; + +static int atmel_nor_global_protection_late_init(struct spi_nor *nor) +{ + nor->params->locking_ops = &atmel_nor_global_protection_ops; + + return 0; +} + +static const struct spi_nor_fixups atmel_nor_global_protection_fixups = { + .late_init = atmel_nor_global_protection_late_init, +}; + +static const struct flash_info atmel_nor_parts[] = { + /* Atmel -- some are (confusingly) marketed as "DataFlash" */ + { "at25fs010", INFO(0x1f6601, 0, 32 * 1024, 4) + FLAGS(SPI_NOR_HAS_LOCK) + NO_SFDP_FLAGS(SECT_4K) + .fixups = &at25fs_nor_fixups }, + { "at25fs040", INFO(0x1f6604, 0, 64 * 1024, 8) + FLAGS(SPI_NOR_HAS_LOCK) + NO_SFDP_FLAGS(SECT_4K) + .fixups = &at25fs_nor_fixups }, + { "at25df041a", INFO(0x1f4401, 0, 64 * 1024, 8) + FLAGS(SPI_NOR_HAS_LOCK | SPI_NOR_SWP_IS_VOLATILE) + NO_SFDP_FLAGS(SECT_4K) + .fixups = &atmel_nor_global_protection_fixups }, + { "at25df321", INFO(0x1f4700, 0, 64 * 1024, 64) + FLAGS(SPI_NOR_HAS_LOCK | SPI_NOR_SWP_IS_VOLATILE) + NO_SFDP_FLAGS(SECT_4K) + .fixups = &atmel_nor_global_protection_fixups }, + { "at25df321a", INFO(0x1f4701, 0, 64 * 1024, 64) + FLAGS(SPI_NOR_HAS_LOCK | SPI_NOR_SWP_IS_VOLATILE) + NO_SFDP_FLAGS(SECT_4K) + .fixups = &atmel_nor_global_protection_fixups }, + { "at25df641", INFO(0x1f4800, 0, 64 * 1024, 128) + FLAGS(SPI_NOR_HAS_LOCK | SPI_NOR_SWP_IS_VOLATILE) + NO_SFDP_FLAGS(SECT_4K) + .fixups = &atmel_nor_global_protection_fixups }, + { "at25sl321", INFO(0x1f4216, 0, 64 * 1024, 64) + NO_SFDP_FLAGS(SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) }, + { "at26f004", INFO(0x1f0400, 0, 64 * 1024, 8) + NO_SFDP_FLAGS(SECT_4K) }, + { "at26df081a", INFO(0x1f4501, 0, 64 * 1024, 16) + FLAGS(SPI_NOR_HAS_LOCK | SPI_NOR_SWP_IS_VOLATILE) + NO_SFDP_FLAGS(SECT_4K) + .fixups = &atmel_nor_global_protection_fixups }, + { "at26df161a", INFO(0x1f4601, 0, 64 * 1024, 32) + FLAGS(SPI_NOR_HAS_LOCK | SPI_NOR_SWP_IS_VOLATILE) + NO_SFDP_FLAGS(SECT_4K) + .fixups = &atmel_nor_global_protection_fixups }, + { "at26df321", INFO(0x1f4700, 0, 64 * 1024, 64) + FLAGS(SPI_NOR_HAS_LOCK | SPI_NOR_SWP_IS_VOLATILE) + NO_SFDP_FLAGS(SECT_4K) + .fixups = &atmel_nor_global_protection_fixups }, + { "at45db081d", INFO(0x1f2500, 0, 64 * 1024, 16) + NO_SFDP_FLAGS(SECT_4K) }, +}; + +const struct spi_nor_manufacturer spi_nor_atmel = { + .name = "atmel", + .parts = atmel_nor_parts, + .nparts = ARRAY_SIZE(atmel_nor_parts), +}; diff --git a/drivers/mtd/spi-nor/catalyst.c b/drivers/mtd/spi-nor/catalyst.c new file mode 100644 index 0000000000..6d310815fb --- /dev/null +++ b/drivers/mtd/spi-nor/catalyst.c @@ -0,0 +1,24 @@ +// SPDX-License-Identifier: GPL-2.0 +/* + * Copyright (C) 2005, Intec Automation Inc. + * Copyright (C) 2014, Freescale Semiconductor, Inc. + */ + +#include <linux/mtd/spi-nor.h> + +#include "core.h" + +static const struct flash_info catalyst_nor_parts[] = { + /* Catalyst / On Semiconductor -- non-JEDEC */ + { "cat25c11", CAT25_INFO(16, 8, 16, 1) }, + { "cat25c03", CAT25_INFO(32, 8, 16, 2) }, + { "cat25c09", CAT25_INFO(128, 8, 32, 2) }, + { "cat25c17", CAT25_INFO(256, 8, 32, 2) }, + { "cat25128", CAT25_INFO(2048, 8, 64, 2) }, +}; + +const struct spi_nor_manufacturer spi_nor_catalyst = { + .name = "catalyst", + .parts = catalyst_nor_parts, + .nparts = ARRAY_SIZE(catalyst_nor_parts), +}; diff --git a/drivers/mtd/spi-nor/controllers/Kconfig b/drivers/mtd/spi-nor/controllers/Kconfig new file mode 100644 index 0000000000..ca45dcd3ff --- /dev/null +++ b/drivers/mtd/spi-nor/controllers/Kconfig @@ -0,0 +1,18 @@ +# SPDX-License-Identifier: GPL-2.0-only +config SPI_HISI_SFC + tristate "Hisilicon FMC SPI NOR Flash Controller(SFC)" + depends on ARCH_HISI || COMPILE_TEST + depends on HAS_IOMEM + help + This enables support for HiSilicon FMC SPI NOR flash controller. + +config SPI_NXP_SPIFI + tristate "NXP SPI Flash Interface (SPIFI)" + depends on OF && (ARCH_LPC18XX || COMPILE_TEST) + depends on HAS_IOMEM + help + Enable support for the NXP LPC SPI Flash Interface controller. + + SPIFI is a specialized controller for connecting serial SPI + Flash. Enable this option if you have a device with a SPIFI + controller and want to access the Flash as a mtd device. diff --git a/drivers/mtd/spi-nor/controllers/Makefile b/drivers/mtd/spi-nor/controllers/Makefile new file mode 100644 index 0000000000..0b8e1d5309 --- /dev/null +++ b/drivers/mtd/spi-nor/controllers/Makefile @@ -0,0 +1,3 @@ +# SPDX-License-Identifier: GPL-2.0 +obj-$(CONFIG_SPI_HISI_SFC) += hisi-sfc.o +obj-$(CONFIG_SPI_NXP_SPIFI) += nxp-spifi.o diff --git a/drivers/mtd/spi-nor/controllers/hisi-sfc.c b/drivers/mtd/spi-nor/controllers/hisi-sfc.c new file mode 100644 index 0000000000..5070d72835 --- /dev/null +++ b/drivers/mtd/spi-nor/controllers/hisi-sfc.c @@ -0,0 +1,497 @@ +// SPDX-License-Identifier: GPL-2.0-or-later +/* + * HiSilicon FMC SPI NOR flash controller driver + * + * Copyright (c) 2015-2016 HiSilicon Technologies Co., Ltd. + */ +#include <linux/bitops.h> +#include <linux/clk.h> +#include <linux/dma-mapping.h> +#include <linux/iopoll.h> +#include <linux/module.h> +#include <linux/mtd/mtd.h> +#include <linux/mtd/spi-nor.h> +#include <linux/of.h> +#include <linux/platform_device.h> +#include <linux/slab.h> + +/* Hardware register offsets and field definitions */ +#define FMC_CFG 0x00 +#define FMC_CFG_OP_MODE_MASK BIT_MASK(0) +#define FMC_CFG_OP_MODE_BOOT 0 +#define FMC_CFG_OP_MODE_NORMAL 1 +#define FMC_CFG_FLASH_SEL(type) (((type) & 0x3) << 1) +#define FMC_CFG_FLASH_SEL_MASK 0x6 +#define FMC_ECC_TYPE(type) (((type) & 0x7) << 5) +#define FMC_ECC_TYPE_MASK GENMASK(7, 5) +#define SPI_NOR_ADDR_MODE_MASK BIT_MASK(10) +#define SPI_NOR_ADDR_MODE_3BYTES (0x0 << 10) +#define SPI_NOR_ADDR_MODE_4BYTES (0x1 << 10) +#define FMC_GLOBAL_CFG 0x04 +#define FMC_GLOBAL_CFG_WP_ENABLE BIT(6) +#define FMC_SPI_TIMING_CFG 0x08 +#define TIMING_CFG_TCSH(nr) (((nr) & 0xf) << 8) +#define TIMING_CFG_TCSS(nr) (((nr) & 0xf) << 4) +#define TIMING_CFG_TSHSL(nr) ((nr) & 0xf) +#define CS_HOLD_TIME 0x6 +#define CS_SETUP_TIME 0x6 +#define CS_DESELECT_TIME 0xf +#define FMC_INT 0x18 +#define FMC_INT_OP_DONE BIT(0) +#define FMC_INT_CLR 0x20 +#define FMC_CMD 0x24 +#define FMC_CMD_CMD1(cmd) ((cmd) & 0xff) +#define FMC_ADDRL 0x2c +#define FMC_OP_CFG 0x30 +#define OP_CFG_FM_CS(cs) ((cs) << 11) +#define OP_CFG_MEM_IF_TYPE(type) (((type) & 0x7) << 7) +#define OP_CFG_ADDR_NUM(addr) (((addr) & 0x7) << 4) +#define OP_CFG_DUMMY_NUM(dummy) ((dummy) & 0xf) +#define FMC_DATA_NUM 0x38 +#define FMC_DATA_NUM_CNT(cnt) ((cnt) & GENMASK(13, 0)) +#define FMC_OP 0x3c +#define FMC_OP_DUMMY_EN BIT(8) +#define FMC_OP_CMD1_EN BIT(7) +#define FMC_OP_ADDR_EN BIT(6) +#define FMC_OP_WRITE_DATA_EN BIT(5) +#define FMC_OP_READ_DATA_EN BIT(2) +#define FMC_OP_READ_STATUS_EN BIT(1) +#define FMC_OP_REG_OP_START BIT(0) +#define FMC_DMA_LEN 0x40 +#define FMC_DMA_LEN_SET(len) ((len) & GENMASK(27, 0)) +#define FMC_DMA_SADDR_D0 0x4c +#define HIFMC_DMA_MAX_LEN (4096) +#define HIFMC_DMA_MASK (HIFMC_DMA_MAX_LEN - 1) +#define FMC_OP_DMA 0x68 +#define OP_CTRL_RD_OPCODE(code) (((code) & 0xff) << 16) +#define OP_CTRL_WR_OPCODE(code) (((code) & 0xff) << 8) +#define OP_CTRL_RW_OP(op) ((op) << 1) +#define OP_CTRL_DMA_OP_READY BIT(0) +#define FMC_OP_READ 0x0 +#define FMC_OP_WRITE 0x1 +#define FMC_WAIT_TIMEOUT 1000000 + +enum hifmc_iftype { + IF_TYPE_STD, + IF_TYPE_DUAL, + IF_TYPE_DIO, + IF_TYPE_QUAD, + IF_TYPE_QIO, +}; + +struct hifmc_priv { + u32 chipselect; + u32 clkrate; + struct hifmc_host *host; +}; + +#define HIFMC_MAX_CHIP_NUM 2 +struct hifmc_host { + struct device *dev; + struct mutex lock; + + void __iomem *regbase; + void __iomem *iobase; + struct clk *clk; + void *buffer; + dma_addr_t dma_buffer; + + struct spi_nor *nor[HIFMC_MAX_CHIP_NUM]; + u32 num_chip; +}; + +static inline int hisi_spi_nor_wait_op_finish(struct hifmc_host *host) +{ + u32 reg; + + return readl_poll_timeout(host->regbase + FMC_INT, reg, + (reg & FMC_INT_OP_DONE), 0, FMC_WAIT_TIMEOUT); +} + +static int hisi_spi_nor_get_if_type(enum spi_nor_protocol proto) +{ + enum hifmc_iftype if_type; + + switch (proto) { + case SNOR_PROTO_1_1_2: + if_type = IF_TYPE_DUAL; + break; + case SNOR_PROTO_1_2_2: + if_type = IF_TYPE_DIO; + break; + case SNOR_PROTO_1_1_4: + if_type = IF_TYPE_QUAD; + break; + case SNOR_PROTO_1_4_4: + if_type = IF_TYPE_QIO; + break; + case SNOR_PROTO_1_1_1: + default: + if_type = IF_TYPE_STD; + break; + } + + return if_type; +} + +static void hisi_spi_nor_init(struct hifmc_host *host) +{ + u32 reg; + + reg = TIMING_CFG_TCSH(CS_HOLD_TIME) + | TIMING_CFG_TCSS(CS_SETUP_TIME) + | TIMING_CFG_TSHSL(CS_DESELECT_TIME); + writel(reg, host->regbase + FMC_SPI_TIMING_CFG); +} + +static int hisi_spi_nor_prep(struct spi_nor *nor) +{ + struct hifmc_priv *priv = nor->priv; + struct hifmc_host *host = priv->host; + int ret; + + mutex_lock(&host->lock); + + ret = clk_set_rate(host->clk, priv->clkrate); + if (ret) + goto out; + + ret = clk_prepare_enable(host->clk); + if (ret) + goto out; + + return 0; + +out: + mutex_unlock(&host->lock); + return ret; +} + +static void hisi_spi_nor_unprep(struct spi_nor *nor) +{ + struct hifmc_priv *priv = nor->priv; + struct hifmc_host *host = priv->host; + + clk_disable_unprepare(host->clk); + mutex_unlock(&host->lock); +} + +static int hisi_spi_nor_op_reg(struct spi_nor *nor, + u8 opcode, size_t len, u8 optype) +{ + struct hifmc_priv *priv = nor->priv; + struct hifmc_host *host = priv->host; + u32 reg; + + reg = FMC_CMD_CMD1(opcode); + writel(reg, host->regbase + FMC_CMD); + + reg = FMC_DATA_NUM_CNT(len); + writel(reg, host->regbase + FMC_DATA_NUM); + + reg = OP_CFG_FM_CS(priv->chipselect); + writel(reg, host->regbase + FMC_OP_CFG); + + writel(0xff, host->regbase + FMC_INT_CLR); + reg = FMC_OP_CMD1_EN | FMC_OP_REG_OP_START | optype; + writel(reg, host->regbase + FMC_OP); + + return hisi_spi_nor_wait_op_finish(host); +} + +static int hisi_spi_nor_read_reg(struct spi_nor *nor, u8 opcode, u8 *buf, + size_t len) +{ + struct hifmc_priv *priv = nor->priv; + struct hifmc_host *host = priv->host; + int ret; + + ret = hisi_spi_nor_op_reg(nor, opcode, len, FMC_OP_READ_DATA_EN); + if (ret) + return ret; + + memcpy_fromio(buf, host->iobase, len); + return 0; +} + +static int hisi_spi_nor_write_reg(struct spi_nor *nor, u8 opcode, + const u8 *buf, size_t len) +{ + struct hifmc_priv *priv = nor->priv; + struct hifmc_host *host = priv->host; + + if (len) + memcpy_toio(host->iobase, buf, len); + + return hisi_spi_nor_op_reg(nor, opcode, len, FMC_OP_WRITE_DATA_EN); +} + +static int hisi_spi_nor_dma_transfer(struct spi_nor *nor, loff_t start_off, + dma_addr_t dma_buf, size_t len, u8 op_type) +{ + struct hifmc_priv *priv = nor->priv; + struct hifmc_host *host = priv->host; + u8 if_type = 0; + u32 reg; + + reg = readl(host->regbase + FMC_CFG); + reg &= ~(FMC_CFG_OP_MODE_MASK | SPI_NOR_ADDR_MODE_MASK); + reg |= FMC_CFG_OP_MODE_NORMAL; + reg |= (nor->addr_nbytes == 4) ? SPI_NOR_ADDR_MODE_4BYTES + : SPI_NOR_ADDR_MODE_3BYTES; + writel(reg, host->regbase + FMC_CFG); + + writel(start_off, host->regbase + FMC_ADDRL); + writel(dma_buf, host->regbase + FMC_DMA_SADDR_D0); + writel(FMC_DMA_LEN_SET(len), host->regbase + FMC_DMA_LEN); + + reg = OP_CFG_FM_CS(priv->chipselect); + if (op_type == FMC_OP_READ) + if_type = hisi_spi_nor_get_if_type(nor->read_proto); + else + if_type = hisi_spi_nor_get_if_type(nor->write_proto); + reg |= OP_CFG_MEM_IF_TYPE(if_type); + if (op_type == FMC_OP_READ) + reg |= OP_CFG_DUMMY_NUM(nor->read_dummy >> 3); + writel(reg, host->regbase + FMC_OP_CFG); + + writel(0xff, host->regbase + FMC_INT_CLR); + reg = OP_CTRL_RW_OP(op_type) | OP_CTRL_DMA_OP_READY; + reg |= (op_type == FMC_OP_READ) + ? OP_CTRL_RD_OPCODE(nor->read_opcode) + : OP_CTRL_WR_OPCODE(nor->program_opcode); + writel(reg, host->regbase + FMC_OP_DMA); + + return hisi_spi_nor_wait_op_finish(host); +} + +static ssize_t hisi_spi_nor_read(struct spi_nor *nor, loff_t from, size_t len, + u_char *read_buf) +{ + struct hifmc_priv *priv = nor->priv; + struct hifmc_host *host = priv->host; + size_t offset; + int ret; + + for (offset = 0; offset < len; offset += HIFMC_DMA_MAX_LEN) { + size_t trans = min_t(size_t, HIFMC_DMA_MAX_LEN, len - offset); + + ret = hisi_spi_nor_dma_transfer(nor, + from + offset, host->dma_buffer, trans, FMC_OP_READ); + if (ret) { + dev_warn(nor->dev, "DMA read timeout\n"); + return ret; + } + memcpy(read_buf + offset, host->buffer, trans); + } + + return len; +} + +static ssize_t hisi_spi_nor_write(struct spi_nor *nor, loff_t to, + size_t len, const u_char *write_buf) +{ + struct hifmc_priv *priv = nor->priv; + struct hifmc_host *host = priv->host; + size_t offset; + int ret; + + for (offset = 0; offset < len; offset += HIFMC_DMA_MAX_LEN) { + size_t trans = min_t(size_t, HIFMC_DMA_MAX_LEN, len - offset); + + memcpy(host->buffer, write_buf + offset, trans); + ret = hisi_spi_nor_dma_transfer(nor, + to + offset, host->dma_buffer, trans, FMC_OP_WRITE); + if (ret) { + dev_warn(nor->dev, "DMA write timeout\n"); + return ret; + } + } + + return len; +} + +static const struct spi_nor_controller_ops hisi_controller_ops = { + .prepare = hisi_spi_nor_prep, + .unprepare = hisi_spi_nor_unprep, + .read_reg = hisi_spi_nor_read_reg, + .write_reg = hisi_spi_nor_write_reg, + .read = hisi_spi_nor_read, + .write = hisi_spi_nor_write, +}; + +/* + * Get spi flash device information and register it as a mtd device. + */ +static int hisi_spi_nor_register(struct device_node *np, + struct hifmc_host *host) +{ + const struct spi_nor_hwcaps hwcaps = { + .mask = SNOR_HWCAPS_READ | + SNOR_HWCAPS_READ_FAST | + SNOR_HWCAPS_READ_1_1_2 | + SNOR_HWCAPS_READ_1_1_4 | + SNOR_HWCAPS_PP, + }; + struct device *dev = host->dev; + struct spi_nor *nor; + struct hifmc_priv *priv; + struct mtd_info *mtd; + int ret; + + nor = devm_kzalloc(dev, sizeof(*nor), GFP_KERNEL); + if (!nor) + return -ENOMEM; + + nor->dev = dev; + spi_nor_set_flash_node(nor, np); + + priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL); + if (!priv) + return -ENOMEM; + + ret = of_property_read_u32(np, "reg", &priv->chipselect); + if (ret) { + dev_err(dev, "There's no reg property for %pOF\n", + np); + return ret; + } + + ret = of_property_read_u32(np, "spi-max-frequency", + &priv->clkrate); + if (ret) { + dev_err(dev, "There's no spi-max-frequency property for %pOF\n", + np); + return ret; + } + priv->host = host; + nor->priv = priv; + nor->controller_ops = &hisi_controller_ops; + + ret = spi_nor_scan(nor, NULL, &hwcaps); + if (ret) + return ret; + + mtd = &nor->mtd; + mtd->name = np->name; + ret = mtd_device_register(mtd, NULL, 0); + if (ret) + return ret; + + host->nor[host->num_chip] = nor; + host->num_chip++; + return 0; +} + +static void hisi_spi_nor_unregister_all(struct hifmc_host *host) +{ + int i; + + for (i = 0; i < host->num_chip; i++) + mtd_device_unregister(&host->nor[i]->mtd); +} + +static int hisi_spi_nor_register_all(struct hifmc_host *host) +{ + struct device *dev = host->dev; + struct device_node *np; + int ret; + + for_each_available_child_of_node(dev->of_node, np) { + ret = hisi_spi_nor_register(np, host); + if (ret) { + of_node_put(np); + goto fail; + } + + if (host->num_chip == HIFMC_MAX_CHIP_NUM) { + dev_warn(dev, "Flash device number exceeds the maximum chipselect number\n"); + of_node_put(np); + break; + } + } + + return 0; + +fail: + hisi_spi_nor_unregister_all(host); + return ret; +} + +static int hisi_spi_nor_probe(struct platform_device *pdev) +{ + struct device *dev = &pdev->dev; + struct hifmc_host *host; + int ret; + + host = devm_kzalloc(dev, sizeof(*host), GFP_KERNEL); + if (!host) + return -ENOMEM; + + platform_set_drvdata(pdev, host); + host->dev = dev; + + host->regbase = devm_platform_ioremap_resource_byname(pdev, "control"); + if (IS_ERR(host->regbase)) + return PTR_ERR(host->regbase); + + host->iobase = devm_platform_ioremap_resource_byname(pdev, "memory"); + if (IS_ERR(host->iobase)) + return PTR_ERR(host->iobase); + + host->clk = devm_clk_get(dev, NULL); + if (IS_ERR(host->clk)) + return PTR_ERR(host->clk); + + ret = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(32)); + if (ret) { + dev_warn(dev, "Unable to set dma mask\n"); + return ret; + } + + host->buffer = dmam_alloc_coherent(dev, HIFMC_DMA_MAX_LEN, + &host->dma_buffer, GFP_KERNEL); + if (!host->buffer) + return -ENOMEM; + + ret = clk_prepare_enable(host->clk); + if (ret) + return ret; + + mutex_init(&host->lock); + hisi_spi_nor_init(host); + ret = hisi_spi_nor_register_all(host); + if (ret) + mutex_destroy(&host->lock); + + clk_disable_unprepare(host->clk); + return ret; +} + +static int hisi_spi_nor_remove(struct platform_device *pdev) +{ + struct hifmc_host *host = platform_get_drvdata(pdev); + + hisi_spi_nor_unregister_all(host); + mutex_destroy(&host->lock); + return 0; +} + +static const struct of_device_id hisi_spi_nor_dt_ids[] = { + { .compatible = "hisilicon,fmc-spi-nor"}, + { /* sentinel */ } +}; +MODULE_DEVICE_TABLE(of, hisi_spi_nor_dt_ids); + +static struct platform_driver hisi_spi_nor_driver = { + .driver = { + .name = "hisi-sfc", + .of_match_table = hisi_spi_nor_dt_ids, + }, + .probe = hisi_spi_nor_probe, + .remove = hisi_spi_nor_remove, +}; +module_platform_driver(hisi_spi_nor_driver); + +MODULE_LICENSE("GPL v2"); +MODULE_DESCRIPTION("HiSilicon SPI Nor Flash Controller Driver"); diff --git a/drivers/mtd/spi-nor/controllers/nxp-spifi.c b/drivers/mtd/spi-nor/controllers/nxp-spifi.c new file mode 100644 index 0000000000..5d8f47ab14 --- /dev/null +++ b/drivers/mtd/spi-nor/controllers/nxp-spifi.c @@ -0,0 +1,461 @@ +// SPDX-License-Identifier: GPL-2.0-only +/* + * SPI NOR driver for NXP SPI Flash Interface (SPIFI) + * + * Copyright (C) 2015 Joachim Eastwood <manabian@gmail.com> + * + * Based on Freescale QuadSPI driver: + * Copyright (C) 2013 Freescale Semiconductor, Inc. + */ + +#include <linux/clk.h> +#include <linux/err.h> +#include <linux/io.h> +#include <linux/iopoll.h> +#include <linux/module.h> +#include <linux/mtd/mtd.h> +#include <linux/mtd/partitions.h> +#include <linux/mtd/spi-nor.h> +#include <linux/of.h> +#include <linux/platform_device.h> +#include <linux/spi/spi.h> + +/* NXP SPIFI registers, bits and macros */ +#define SPIFI_CTRL 0x000 +#define SPIFI_CTRL_TIMEOUT(timeout) (timeout) +#define SPIFI_CTRL_CSHIGH(cshigh) ((cshigh) << 16) +#define SPIFI_CTRL_MODE3 BIT(23) +#define SPIFI_CTRL_DUAL BIT(28) +#define SPIFI_CTRL_FBCLK BIT(30) +#define SPIFI_CMD 0x004 +#define SPIFI_CMD_DATALEN(dlen) ((dlen) & 0x3fff) +#define SPIFI_CMD_DOUT BIT(15) +#define SPIFI_CMD_INTLEN(ilen) ((ilen) << 16) +#define SPIFI_CMD_FIELDFORM(field) ((field) << 19) +#define SPIFI_CMD_FIELDFORM_ALL_SERIAL SPIFI_CMD_FIELDFORM(0x0) +#define SPIFI_CMD_FIELDFORM_QUAD_DUAL_DATA SPIFI_CMD_FIELDFORM(0x1) +#define SPIFI_CMD_FRAMEFORM(frame) ((frame) << 21) +#define SPIFI_CMD_FRAMEFORM_OPCODE_ONLY SPIFI_CMD_FRAMEFORM(0x1) +#define SPIFI_CMD_OPCODE(op) ((op) << 24) +#define SPIFI_ADDR 0x008 +#define SPIFI_IDATA 0x00c +#define SPIFI_CLIMIT 0x010 +#define SPIFI_DATA 0x014 +#define SPIFI_MCMD 0x018 +#define SPIFI_STAT 0x01c +#define SPIFI_STAT_MCINIT BIT(0) +#define SPIFI_STAT_CMD BIT(1) +#define SPIFI_STAT_RESET BIT(4) + +#define SPI_NOR_MAX_ID_LEN 6 + +struct nxp_spifi { + struct device *dev; + struct clk *clk_spifi; + struct clk *clk_reg; + void __iomem *io_base; + void __iomem *flash_base; + struct spi_nor nor; + bool memory_mode; + u32 mcmd; +}; + +static int nxp_spifi_wait_for_cmd(struct nxp_spifi *spifi) +{ + u8 stat; + int ret; + + ret = readb_poll_timeout(spifi->io_base + SPIFI_STAT, stat, + !(stat & SPIFI_STAT_CMD), 10, 30); + if (ret) + dev_warn(spifi->dev, "command timed out\n"); + + return ret; +} + +static int nxp_spifi_reset(struct nxp_spifi *spifi) +{ + u8 stat; + int ret; + + writel(SPIFI_STAT_RESET, spifi->io_base + SPIFI_STAT); + ret = readb_poll_timeout(spifi->io_base + SPIFI_STAT, stat, + !(stat & SPIFI_STAT_RESET), 10, 30); + if (ret) + dev_warn(spifi->dev, "state reset timed out\n"); + + return ret; +} + +static int nxp_spifi_set_memory_mode_off(struct nxp_spifi *spifi) +{ + int ret; + + if (!spifi->memory_mode) + return 0; + + ret = nxp_spifi_reset(spifi); + if (ret) + dev_err(spifi->dev, "unable to enter command mode\n"); + else + spifi->memory_mode = false; + + return ret; +} + +static int nxp_spifi_set_memory_mode_on(struct nxp_spifi *spifi) +{ + u8 stat; + int ret; + + if (spifi->memory_mode) + return 0; + + writel(spifi->mcmd, spifi->io_base + SPIFI_MCMD); + ret = readb_poll_timeout(spifi->io_base + SPIFI_STAT, stat, + stat & SPIFI_STAT_MCINIT, 10, 30); + if (ret) + dev_err(spifi->dev, "unable to enter memory mode\n"); + else + spifi->memory_mode = true; + + return ret; +} + +static int nxp_spifi_read_reg(struct spi_nor *nor, u8 opcode, u8 *buf, + size_t len) +{ + struct nxp_spifi *spifi = nor->priv; + u32 cmd; + int ret; + + ret = nxp_spifi_set_memory_mode_off(spifi); + if (ret) + return ret; + + cmd = SPIFI_CMD_DATALEN(len) | + SPIFI_CMD_OPCODE(opcode) | + SPIFI_CMD_FIELDFORM_ALL_SERIAL | + SPIFI_CMD_FRAMEFORM_OPCODE_ONLY; + writel(cmd, spifi->io_base + SPIFI_CMD); + + while (len--) + *buf++ = readb(spifi->io_base + SPIFI_DATA); + + return nxp_spifi_wait_for_cmd(spifi); +} + +static int nxp_spifi_write_reg(struct spi_nor *nor, u8 opcode, const u8 *buf, + size_t len) +{ + struct nxp_spifi *spifi = nor->priv; + u32 cmd; + int ret; + + ret = nxp_spifi_set_memory_mode_off(spifi); + if (ret) + return ret; + + cmd = SPIFI_CMD_DOUT | + SPIFI_CMD_DATALEN(len) | + SPIFI_CMD_OPCODE(opcode) | + SPIFI_CMD_FIELDFORM_ALL_SERIAL | + SPIFI_CMD_FRAMEFORM_OPCODE_ONLY; + writel(cmd, spifi->io_base + SPIFI_CMD); + + while (len--) + writeb(*buf++, spifi->io_base + SPIFI_DATA); + + return nxp_spifi_wait_for_cmd(spifi); +} + +static ssize_t nxp_spifi_read(struct spi_nor *nor, loff_t from, size_t len, + u_char *buf) +{ + struct nxp_spifi *spifi = nor->priv; + int ret; + + ret = nxp_spifi_set_memory_mode_on(spifi); + if (ret) + return ret; + + memcpy_fromio(buf, spifi->flash_base + from, len); + + return len; +} + +static ssize_t nxp_spifi_write(struct spi_nor *nor, loff_t to, size_t len, + const u_char *buf) +{ + struct nxp_spifi *spifi = nor->priv; + u32 cmd; + int ret; + size_t i; + + ret = nxp_spifi_set_memory_mode_off(spifi); + if (ret) + return ret; + + writel(to, spifi->io_base + SPIFI_ADDR); + + cmd = SPIFI_CMD_DOUT | + SPIFI_CMD_DATALEN(len) | + SPIFI_CMD_FIELDFORM_ALL_SERIAL | + SPIFI_CMD_OPCODE(nor->program_opcode) | + SPIFI_CMD_FRAMEFORM(spifi->nor.addr_nbytes + 1); + writel(cmd, spifi->io_base + SPIFI_CMD); + + for (i = 0; i < len; i++) + writeb(buf[i], spifi->io_base + SPIFI_DATA); + + ret = nxp_spifi_wait_for_cmd(spifi); + if (ret) + return ret; + + return len; +} + +static int nxp_spifi_erase(struct spi_nor *nor, loff_t offs) +{ + struct nxp_spifi *spifi = nor->priv; + u32 cmd; + int ret; + + ret = nxp_spifi_set_memory_mode_off(spifi); + if (ret) + return ret; + + writel(offs, spifi->io_base + SPIFI_ADDR); + + cmd = SPIFI_CMD_FIELDFORM_ALL_SERIAL | + SPIFI_CMD_OPCODE(nor->erase_opcode) | + SPIFI_CMD_FRAMEFORM(spifi->nor.addr_nbytes + 1); + writel(cmd, spifi->io_base + SPIFI_CMD); + + return nxp_spifi_wait_for_cmd(spifi); +} + +static int nxp_spifi_setup_memory_cmd(struct nxp_spifi *spifi) +{ + switch (spifi->nor.read_proto) { + case SNOR_PROTO_1_1_1: + spifi->mcmd = SPIFI_CMD_FIELDFORM_ALL_SERIAL; + break; + case SNOR_PROTO_1_1_2: + case SNOR_PROTO_1_1_4: + spifi->mcmd = SPIFI_CMD_FIELDFORM_QUAD_DUAL_DATA; + break; + default: + dev_err(spifi->dev, "unsupported SPI read mode\n"); + return -EINVAL; + } + + /* Memory mode supports address length between 1 and 4 */ + if (spifi->nor.addr_nbytes < 1 || spifi->nor.addr_nbytes > 4) + return -EINVAL; + + spifi->mcmd |= SPIFI_CMD_OPCODE(spifi->nor.read_opcode) | + SPIFI_CMD_INTLEN(spifi->nor.read_dummy / 8) | + SPIFI_CMD_FRAMEFORM(spifi->nor.addr_nbytes + 1); + + return 0; +} + +static void nxp_spifi_dummy_id_read(struct spi_nor *nor) +{ + u8 id[SPI_NOR_MAX_ID_LEN]; + nor->controller_ops->read_reg(nor, SPINOR_OP_RDID, id, + SPI_NOR_MAX_ID_LEN); +} + +static const struct spi_nor_controller_ops nxp_spifi_controller_ops = { + .read_reg = nxp_spifi_read_reg, + .write_reg = nxp_spifi_write_reg, + .read = nxp_spifi_read, + .write = nxp_spifi_write, + .erase = nxp_spifi_erase, +}; + +static int nxp_spifi_setup_flash(struct nxp_spifi *spifi, + struct device_node *np) +{ + struct spi_nor_hwcaps hwcaps = { + .mask = SNOR_HWCAPS_READ | + SNOR_HWCAPS_READ_FAST | + SNOR_HWCAPS_PP, + }; + u32 ctrl, property; + u16 mode = 0; + int ret; + + if (!of_property_read_u32(np, "spi-rx-bus-width", &property)) { + switch (property) { + case 1: + break; + case 2: + mode |= SPI_RX_DUAL; + break; + case 4: + mode |= SPI_RX_QUAD; + break; + default: + dev_err(spifi->dev, "unsupported rx-bus-width\n"); + return -EINVAL; + } + } + + if (of_property_read_bool(np, "spi-cpha")) + mode |= SPI_CPHA; + + if (of_property_read_bool(np, "spi-cpol")) + mode |= SPI_CPOL; + + /* Setup control register defaults */ + ctrl = SPIFI_CTRL_TIMEOUT(1000) | + SPIFI_CTRL_CSHIGH(15) | + SPIFI_CTRL_FBCLK; + + if (mode & SPI_RX_DUAL) { + ctrl |= SPIFI_CTRL_DUAL; + hwcaps.mask |= SNOR_HWCAPS_READ_1_1_2; + } else if (mode & SPI_RX_QUAD) { + ctrl &= ~SPIFI_CTRL_DUAL; + hwcaps.mask |= SNOR_HWCAPS_READ_1_1_4; + } else { + ctrl |= SPIFI_CTRL_DUAL; + } + + switch (mode & SPI_MODE_X_MASK) { + case SPI_MODE_0: + ctrl &= ~SPIFI_CTRL_MODE3; + break; + case SPI_MODE_3: + ctrl |= SPIFI_CTRL_MODE3; + break; + default: + dev_err(spifi->dev, "only mode 0 and 3 supported\n"); + return -EINVAL; + } + + writel(ctrl, spifi->io_base + SPIFI_CTRL); + + spifi->nor.dev = spifi->dev; + spi_nor_set_flash_node(&spifi->nor, np); + spifi->nor.priv = spifi; + spifi->nor.controller_ops = &nxp_spifi_controller_ops; + + /* + * The first read on a hard reset isn't reliable so do a + * dummy read of the id before calling spi_nor_scan(). + * The reason for this problem is unknown. + * + * The official NXP spifilib uses more or less the same + * workaround that is applied here by reading the device + * id multiple times. + */ + nxp_spifi_dummy_id_read(&spifi->nor); + + ret = spi_nor_scan(&spifi->nor, NULL, &hwcaps); + if (ret) { + dev_err(spifi->dev, "device scan failed\n"); + return ret; + } + + ret = nxp_spifi_setup_memory_cmd(spifi); + if (ret) { + dev_err(spifi->dev, "memory command setup failed\n"); + return ret; + } + + ret = mtd_device_register(&spifi->nor.mtd, NULL, 0); + if (ret) { + dev_err(spifi->dev, "mtd device parse failed\n"); + return ret; + } + + return 0; +} + +static int nxp_spifi_probe(struct platform_device *pdev) +{ + struct device_node *flash_np; + struct nxp_spifi *spifi; + int ret; + + spifi = devm_kzalloc(&pdev->dev, sizeof(*spifi), GFP_KERNEL); + if (!spifi) + return -ENOMEM; + + spifi->io_base = devm_platform_ioremap_resource_byname(pdev, "spifi"); + if (IS_ERR(spifi->io_base)) + return PTR_ERR(spifi->io_base); + + spifi->flash_base = devm_platform_ioremap_resource_byname(pdev, "flash"); + if (IS_ERR(spifi->flash_base)) + return PTR_ERR(spifi->flash_base); + + spifi->clk_spifi = devm_clk_get_enabled(&pdev->dev, "spifi"); + if (IS_ERR(spifi->clk_spifi)) { + dev_err(&pdev->dev, "spifi clock not found or unable to enable\n"); + return PTR_ERR(spifi->clk_spifi); + } + + spifi->clk_reg = devm_clk_get_enabled(&pdev->dev, "reg"); + if (IS_ERR(spifi->clk_reg)) { + dev_err(&pdev->dev, "reg clock not found or unable to enable\n"); + return PTR_ERR(spifi->clk_reg); + } + + spifi->dev = &pdev->dev; + platform_set_drvdata(pdev, spifi); + + /* Initialize and reset device */ + nxp_spifi_reset(spifi); + writel(0, spifi->io_base + SPIFI_IDATA); + writel(0, spifi->io_base + SPIFI_MCMD); + nxp_spifi_reset(spifi); + + flash_np = of_get_next_available_child(pdev->dev.of_node, NULL); + if (!flash_np) { + dev_err(&pdev->dev, "no SPI flash device to configure\n"); + return -ENODEV; + } + + ret = nxp_spifi_setup_flash(spifi, flash_np); + of_node_put(flash_np); + if (ret) { + dev_err(&pdev->dev, "unable to setup flash chip\n"); + return ret; + } + + return 0; +} + +static int nxp_spifi_remove(struct platform_device *pdev) +{ + struct nxp_spifi *spifi = platform_get_drvdata(pdev); + + mtd_device_unregister(&spifi->nor.mtd); + + return 0; +} + +static const struct of_device_id nxp_spifi_match[] = { + {.compatible = "nxp,lpc1773-spifi"}, + { /* sentinel */ } +}; +MODULE_DEVICE_TABLE(of, nxp_spifi_match); + +static struct platform_driver nxp_spifi_driver = { + .probe = nxp_spifi_probe, + .remove = nxp_spifi_remove, + .driver = { + .name = "nxp-spifi", + .of_match_table = nxp_spifi_match, + }, +}; +module_platform_driver(nxp_spifi_driver); + +MODULE_DESCRIPTION("NXP SPI Flash Interface driver"); +MODULE_AUTHOR("Joachim Eastwood <manabian@gmail.com>"); +MODULE_LICENSE("GPL v2"); diff --git a/drivers/mtd/spi-nor/core.c b/drivers/mtd/spi-nor/core.c new file mode 100644 index 0000000000..1b0c6770c1 --- /dev/null +++ b/drivers/mtd/spi-nor/core.c @@ -0,0 +1,3813 @@ +// SPDX-License-Identifier: GPL-2.0 +/* + * Based on m25p80.c, by Mike Lavender (mike@steroidmicros.com), with + * influence from lart.c (Abraham Van Der Merwe) and mtd_dataflash.c + * + * Copyright (C) 2005, Intec Automation Inc. + * Copyright (C) 2014, Freescale Semiconductor, Inc. + */ + +#include <linux/err.h> +#include <linux/errno.h> +#include <linux/delay.h> +#include <linux/device.h> +#include <linux/math64.h> +#include <linux/module.h> +#include <linux/mtd/mtd.h> +#include <linux/mtd/spi-nor.h> +#include <linux/mutex.h> +#include <linux/of_platform.h> +#include <linux/sched/task_stack.h> +#include <linux/sizes.h> +#include <linux/slab.h> +#include <linux/spi/flash.h> + +#include "core.h" + +/* Define max times to check status register before we give up. */ + +/* + * For everything but full-chip erase; probably could be much smaller, but kept + * around for safety for now + */ +#define DEFAULT_READY_WAIT_JIFFIES (40UL * HZ) + +/* + * For full-chip erase, calibrated to a 2MB flash (M25P16); should be scaled up + * for larger flash + */ +#define CHIP_ERASE_2MB_READY_WAIT_JIFFIES (40UL * HZ) + +#define SPI_NOR_MAX_ADDR_NBYTES 4 + +#define SPI_NOR_SRST_SLEEP_MIN 200 +#define SPI_NOR_SRST_SLEEP_MAX 400 + +/** + * spi_nor_get_cmd_ext() - Get the command opcode extension based on the + * extension type. + * @nor: pointer to a 'struct spi_nor' + * @op: pointer to the 'struct spi_mem_op' whose properties + * need to be initialized. + * + * Right now, only "repeat" and "invert" are supported. + * + * Return: The opcode extension. + */ +static u8 spi_nor_get_cmd_ext(const struct spi_nor *nor, + const struct spi_mem_op *op) +{ + switch (nor->cmd_ext_type) { + case SPI_NOR_EXT_INVERT: + return ~op->cmd.opcode; + + case SPI_NOR_EXT_REPEAT: + return op->cmd.opcode; + + default: + dev_err(nor->dev, "Unknown command extension type\n"); + return 0; + } +} + +/** + * spi_nor_spimem_setup_op() - Set up common properties of a spi-mem op. + * @nor: pointer to a 'struct spi_nor' + * @op: pointer to the 'struct spi_mem_op' whose properties + * need to be initialized. + * @proto: the protocol from which the properties need to be set. + */ +void spi_nor_spimem_setup_op(const struct spi_nor *nor, + struct spi_mem_op *op, + const enum spi_nor_protocol proto) +{ + u8 ext; + + op->cmd.buswidth = spi_nor_get_protocol_inst_nbits(proto); + + if (op->addr.nbytes) + op->addr.buswidth = spi_nor_get_protocol_addr_nbits(proto); + + if (op->dummy.nbytes) + op->dummy.buswidth = spi_nor_get_protocol_addr_nbits(proto); + + if (op->data.nbytes) + op->data.buswidth = spi_nor_get_protocol_data_nbits(proto); + + if (spi_nor_protocol_is_dtr(proto)) { + /* + * SPIMEM supports mixed DTR modes, but right now we can only + * have all phases either DTR or STR. IOW, SPIMEM can have + * something like 4S-4D-4D, but SPI NOR can't. So, set all 4 + * phases to either DTR or STR. + */ + op->cmd.dtr = true; + op->addr.dtr = true; + op->dummy.dtr = true; + op->data.dtr = true; + + /* 2 bytes per clock cycle in DTR mode. */ + op->dummy.nbytes *= 2; + + ext = spi_nor_get_cmd_ext(nor, op); + op->cmd.opcode = (op->cmd.opcode << 8) | ext; + op->cmd.nbytes = 2; + } +} + +/** + * spi_nor_spimem_bounce() - check if a bounce buffer is needed for the data + * transfer + * @nor: pointer to 'struct spi_nor' + * @op: pointer to 'struct spi_mem_op' template for transfer + * + * If we have to use the bounce buffer, the data field in @op will be updated. + * + * Return: true if the bounce buffer is needed, false if not + */ +static bool spi_nor_spimem_bounce(struct spi_nor *nor, struct spi_mem_op *op) +{ + /* op->data.buf.in occupies the same memory as op->data.buf.out */ + if (object_is_on_stack(op->data.buf.in) || + !virt_addr_valid(op->data.buf.in)) { + if (op->data.nbytes > nor->bouncebuf_size) + op->data.nbytes = nor->bouncebuf_size; + op->data.buf.in = nor->bouncebuf; + return true; + } + + return false; +} + +/** + * spi_nor_spimem_exec_op() - execute a memory operation + * @nor: pointer to 'struct spi_nor' + * @op: pointer to 'struct spi_mem_op' template for transfer + * + * Return: 0 on success, -error otherwise. + */ +static int spi_nor_spimem_exec_op(struct spi_nor *nor, struct spi_mem_op *op) +{ + int error; + + error = spi_mem_adjust_op_size(nor->spimem, op); + if (error) + return error; + + return spi_mem_exec_op(nor->spimem, op); +} + +int spi_nor_controller_ops_read_reg(struct spi_nor *nor, u8 opcode, + u8 *buf, size_t len) +{ + if (spi_nor_protocol_is_dtr(nor->reg_proto)) + return -EOPNOTSUPP; + + return nor->controller_ops->read_reg(nor, opcode, buf, len); +} + +int spi_nor_controller_ops_write_reg(struct spi_nor *nor, u8 opcode, + const u8 *buf, size_t len) +{ + if (spi_nor_protocol_is_dtr(nor->reg_proto)) + return -EOPNOTSUPP; + + return nor->controller_ops->write_reg(nor, opcode, buf, len); +} + +static int spi_nor_controller_ops_erase(struct spi_nor *nor, loff_t offs) +{ + if (spi_nor_protocol_is_dtr(nor->reg_proto)) + return -EOPNOTSUPP; + + return nor->controller_ops->erase(nor, offs); +} + +/** + * spi_nor_spimem_read_data() - read data from flash's memory region via + * spi-mem + * @nor: pointer to 'struct spi_nor' + * @from: offset to read from + * @len: number of bytes to read + * @buf: pointer to dst buffer + * + * Return: number of bytes read successfully, -errno otherwise + */ +static ssize_t spi_nor_spimem_read_data(struct spi_nor *nor, loff_t from, + size_t len, u8 *buf) +{ + struct spi_mem_op op = + SPI_MEM_OP(SPI_MEM_OP_CMD(nor->read_opcode, 0), + SPI_MEM_OP_ADDR(nor->addr_nbytes, from, 0), + SPI_MEM_OP_DUMMY(nor->read_dummy, 0), + SPI_MEM_OP_DATA_IN(len, buf, 0)); + bool usebouncebuf; + ssize_t nbytes; + int error; + + spi_nor_spimem_setup_op(nor, &op, nor->read_proto); + + /* convert the dummy cycles to the number of bytes */ + op.dummy.nbytes = (nor->read_dummy * op.dummy.buswidth) / 8; + if (spi_nor_protocol_is_dtr(nor->read_proto)) + op.dummy.nbytes *= 2; + + usebouncebuf = spi_nor_spimem_bounce(nor, &op); + + if (nor->dirmap.rdesc) { + nbytes = spi_mem_dirmap_read(nor->dirmap.rdesc, op.addr.val, + op.data.nbytes, op.data.buf.in); + } else { + error = spi_nor_spimem_exec_op(nor, &op); + if (error) + return error; + nbytes = op.data.nbytes; + } + + if (usebouncebuf && nbytes > 0) + memcpy(buf, op.data.buf.in, nbytes); + + return nbytes; +} + +/** + * spi_nor_read_data() - read data from flash memory + * @nor: pointer to 'struct spi_nor' + * @from: offset to read from + * @len: number of bytes to read + * @buf: pointer to dst buffer + * + * Return: number of bytes read successfully, -errno otherwise + */ +ssize_t spi_nor_read_data(struct spi_nor *nor, loff_t from, size_t len, u8 *buf) +{ + if (nor->spimem) + return spi_nor_spimem_read_data(nor, from, len, buf); + + return nor->controller_ops->read(nor, from, len, buf); +} + +/** + * spi_nor_spimem_write_data() - write data to flash memory via + * spi-mem + * @nor: pointer to 'struct spi_nor' + * @to: offset to write to + * @len: number of bytes to write + * @buf: pointer to src buffer + * + * Return: number of bytes written successfully, -errno otherwise + */ +static ssize_t spi_nor_spimem_write_data(struct spi_nor *nor, loff_t to, + size_t len, const u8 *buf) +{ + struct spi_mem_op op = + SPI_MEM_OP(SPI_MEM_OP_CMD(nor->program_opcode, 0), + SPI_MEM_OP_ADDR(nor->addr_nbytes, to, 0), + SPI_MEM_OP_NO_DUMMY, + SPI_MEM_OP_DATA_OUT(len, buf, 0)); + ssize_t nbytes; + int error; + + if (nor->program_opcode == SPINOR_OP_AAI_WP && nor->sst_write_second) + op.addr.nbytes = 0; + + spi_nor_spimem_setup_op(nor, &op, nor->write_proto); + + if (spi_nor_spimem_bounce(nor, &op)) + memcpy(nor->bouncebuf, buf, op.data.nbytes); + + if (nor->dirmap.wdesc) { + nbytes = spi_mem_dirmap_write(nor->dirmap.wdesc, op.addr.val, + op.data.nbytes, op.data.buf.out); + } else { + error = spi_nor_spimem_exec_op(nor, &op); + if (error) + return error; + nbytes = op.data.nbytes; + } + + return nbytes; +} + +/** + * spi_nor_write_data() - write data to flash memory + * @nor: pointer to 'struct spi_nor' + * @to: offset to write to + * @len: number of bytes to write + * @buf: pointer to src buffer + * + * Return: number of bytes written successfully, -errno otherwise + */ +ssize_t spi_nor_write_data(struct spi_nor *nor, loff_t to, size_t len, + const u8 *buf) +{ + if (nor->spimem) + return spi_nor_spimem_write_data(nor, to, len, buf); + + return nor->controller_ops->write(nor, to, len, buf); +} + +/** + * spi_nor_read_any_reg() - read any register from flash memory, nonvolatile or + * volatile. + * @nor: pointer to 'struct spi_nor'. + * @op: SPI memory operation. op->data.buf must be DMA-able. + * @proto: SPI protocol to use for the register operation. + * + * Return: zero on success, -errno otherwise + */ +int spi_nor_read_any_reg(struct spi_nor *nor, struct spi_mem_op *op, + enum spi_nor_protocol proto) +{ + if (!nor->spimem) + return -EOPNOTSUPP; + + spi_nor_spimem_setup_op(nor, op, proto); + return spi_nor_spimem_exec_op(nor, op); +} + +/** + * spi_nor_write_any_volatile_reg() - write any volatile register to flash + * memory. + * @nor: pointer to 'struct spi_nor' + * @op: SPI memory operation. op->data.buf must be DMA-able. + * @proto: SPI protocol to use for the register operation. + * + * Writing volatile registers are instant according to some manufacturers + * (Cypress, Micron) and do not need any status polling. + * + * Return: zero on success, -errno otherwise + */ +int spi_nor_write_any_volatile_reg(struct spi_nor *nor, struct spi_mem_op *op, + enum spi_nor_protocol proto) +{ + int ret; + + if (!nor->spimem) + return -EOPNOTSUPP; + + ret = spi_nor_write_enable(nor); + if (ret) + return ret; + spi_nor_spimem_setup_op(nor, op, proto); + return spi_nor_spimem_exec_op(nor, op); +} + +/** + * spi_nor_write_enable() - Set write enable latch with Write Enable command. + * @nor: pointer to 'struct spi_nor'. + * + * Return: 0 on success, -errno otherwise. + */ +int spi_nor_write_enable(struct spi_nor *nor) +{ + int ret; + + if (nor->spimem) { + struct spi_mem_op op = SPI_NOR_WREN_OP; + + spi_nor_spimem_setup_op(nor, &op, nor->reg_proto); + + ret = spi_mem_exec_op(nor->spimem, &op); + } else { + ret = spi_nor_controller_ops_write_reg(nor, SPINOR_OP_WREN, + NULL, 0); + } + + if (ret) + dev_dbg(nor->dev, "error %d on Write Enable\n", ret); + + return ret; +} + +/** + * spi_nor_write_disable() - Send Write Disable instruction to the chip. + * @nor: pointer to 'struct spi_nor'. + * + * Return: 0 on success, -errno otherwise. + */ +int spi_nor_write_disable(struct spi_nor *nor) +{ + int ret; + + if (nor->spimem) { + struct spi_mem_op op = SPI_NOR_WRDI_OP; + + spi_nor_spimem_setup_op(nor, &op, nor->reg_proto); + + ret = spi_mem_exec_op(nor->spimem, &op); + } else { + ret = spi_nor_controller_ops_write_reg(nor, SPINOR_OP_WRDI, + NULL, 0); + } + + if (ret) + dev_dbg(nor->dev, "error %d on Write Disable\n", ret); + + return ret; +} + +/** + * spi_nor_read_id() - Read the JEDEC ID. + * @nor: pointer to 'struct spi_nor'. + * @naddr: number of address bytes to send. Can be zero if the operation + * does not need to send an address. + * @ndummy: number of dummy bytes to send after an opcode or address. Can + * be zero if the operation does not require dummy bytes. + * @id: pointer to a DMA-able buffer where the value of the JEDEC ID + * will be written. + * @proto: the SPI protocol for register operation. + * + * Return: 0 on success, -errno otherwise. + */ +int spi_nor_read_id(struct spi_nor *nor, u8 naddr, u8 ndummy, u8 *id, + enum spi_nor_protocol proto) +{ + int ret; + + if (nor->spimem) { + struct spi_mem_op op = + SPI_NOR_READID_OP(naddr, ndummy, id, SPI_NOR_MAX_ID_LEN); + + spi_nor_spimem_setup_op(nor, &op, proto); + ret = spi_mem_exec_op(nor->spimem, &op); + } else { + ret = nor->controller_ops->read_reg(nor, SPINOR_OP_RDID, id, + SPI_NOR_MAX_ID_LEN); + } + return ret; +} + +/** + * spi_nor_read_sr() - Read the Status Register. + * @nor: pointer to 'struct spi_nor'. + * @sr: pointer to a DMA-able buffer where the value of the + * Status Register will be written. Should be at least 2 bytes. + * + * Return: 0 on success, -errno otherwise. + */ +int spi_nor_read_sr(struct spi_nor *nor, u8 *sr) +{ + int ret; + + if (nor->spimem) { + struct spi_mem_op op = SPI_NOR_RDSR_OP(sr); + + if (nor->reg_proto == SNOR_PROTO_8_8_8_DTR) { + op.addr.nbytes = nor->params->rdsr_addr_nbytes; + op.dummy.nbytes = nor->params->rdsr_dummy; + /* + * We don't want to read only one byte in DTR mode. So, + * read 2 and then discard the second byte. + */ + op.data.nbytes = 2; + } + + spi_nor_spimem_setup_op(nor, &op, nor->reg_proto); + + ret = spi_mem_exec_op(nor->spimem, &op); + } else { + ret = spi_nor_controller_ops_read_reg(nor, SPINOR_OP_RDSR, sr, + 1); + } + + if (ret) + dev_dbg(nor->dev, "error %d reading SR\n", ret); + + return ret; +} + +/** + * spi_nor_read_cr() - Read the Configuration Register using the + * SPINOR_OP_RDCR (35h) command. + * @nor: pointer to 'struct spi_nor' + * @cr: pointer to a DMA-able buffer where the value of the + * Configuration Register will be written. + * + * Return: 0 on success, -errno otherwise. + */ +int spi_nor_read_cr(struct spi_nor *nor, u8 *cr) +{ + int ret; + + if (nor->spimem) { + struct spi_mem_op op = SPI_NOR_RDCR_OP(cr); + + spi_nor_spimem_setup_op(nor, &op, nor->reg_proto); + + ret = spi_mem_exec_op(nor->spimem, &op); + } else { + ret = spi_nor_controller_ops_read_reg(nor, SPINOR_OP_RDCR, cr, + 1); + } + + if (ret) + dev_dbg(nor->dev, "error %d reading CR\n", ret); + + return ret; +} + +/** + * spi_nor_set_4byte_addr_mode_en4b_ex4b() - Enter/Exit 4-byte address mode + * using SPINOR_OP_EN4B/SPINOR_OP_EX4B. Typically used by + * Winbond and Macronix. + * @nor: pointer to 'struct spi_nor'. + * @enable: true to enter the 4-byte address mode, false to exit the 4-byte + * address mode. + * + * Return: 0 on success, -errno otherwise. + */ +int spi_nor_set_4byte_addr_mode_en4b_ex4b(struct spi_nor *nor, bool enable) +{ + int ret; + + if (nor->spimem) { + struct spi_mem_op op = SPI_NOR_EN4B_EX4B_OP(enable); + + spi_nor_spimem_setup_op(nor, &op, nor->reg_proto); + + ret = spi_mem_exec_op(nor->spimem, &op); + } else { + ret = spi_nor_controller_ops_write_reg(nor, + enable ? SPINOR_OP_EN4B : + SPINOR_OP_EX4B, + NULL, 0); + } + + if (ret) + dev_dbg(nor->dev, "error %d setting 4-byte mode\n", ret); + + return ret; +} + +/** + * spi_nor_set_4byte_addr_mode_wren_en4b_ex4b() - Set 4-byte address mode using + * SPINOR_OP_WREN followed by SPINOR_OP_EN4B or SPINOR_OP_EX4B. Typically used + * by ST and Micron flashes. + * @nor: pointer to 'struct spi_nor'. + * @enable: true to enter the 4-byte address mode, false to exit the 4-byte + * address mode. + * + * Return: 0 on success, -errno otherwise. + */ +int spi_nor_set_4byte_addr_mode_wren_en4b_ex4b(struct spi_nor *nor, bool enable) +{ + int ret; + + ret = spi_nor_write_enable(nor); + if (ret) + return ret; + + ret = spi_nor_set_4byte_addr_mode_en4b_ex4b(nor, enable); + if (ret) + return ret; + + return spi_nor_write_disable(nor); +} + +/** + * spi_nor_set_4byte_addr_mode_brwr() - Set 4-byte address mode using + * SPINOR_OP_BRWR. Typically used by Spansion flashes. + * @nor: pointer to 'struct spi_nor'. + * @enable: true to enter the 4-byte address mode, false to exit the 4-byte + * address mode. + * + * 8-bit volatile bank register used to define A[30:A24] bits. MSB (bit[7]) is + * used to enable/disable 4-byte address mode. When MSB is set to ‘1’, 4-byte + * address mode is active and A[30:24] bits are don’t care. Write instruction is + * SPINOR_OP_BRWR(17h) with 1 byte of data. + * + * Return: 0 on success, -errno otherwise. + */ +int spi_nor_set_4byte_addr_mode_brwr(struct spi_nor *nor, bool enable) +{ + int ret; + + nor->bouncebuf[0] = enable << 7; + + if (nor->spimem) { + struct spi_mem_op op = SPI_NOR_BRWR_OP(nor->bouncebuf); + + spi_nor_spimem_setup_op(nor, &op, nor->reg_proto); + + ret = spi_mem_exec_op(nor->spimem, &op); + } else { + ret = spi_nor_controller_ops_write_reg(nor, SPINOR_OP_BRWR, + nor->bouncebuf, 1); + } + + if (ret) + dev_dbg(nor->dev, "error %d setting 4-byte mode\n", ret); + + return ret; +} + +/** + * spi_nor_sr_ready() - Query the Status Register to see if the flash is ready + * for new commands. + * @nor: pointer to 'struct spi_nor'. + * + * Return: 1 if ready, 0 if not ready, -errno on errors. + */ +int spi_nor_sr_ready(struct spi_nor *nor) +{ + int ret; + + ret = spi_nor_read_sr(nor, nor->bouncebuf); + if (ret) + return ret; + + return !(nor->bouncebuf[0] & SR_WIP); +} + +/** + * spi_nor_use_parallel_locking() - Checks if RWW locking scheme shall be used + * @nor: pointer to 'struct spi_nor'. + * + * Return: true if parallel locking is enabled, false otherwise. + */ +static bool spi_nor_use_parallel_locking(struct spi_nor *nor) +{ + return nor->flags & SNOR_F_RWW; +} + +/* Locking helpers for status read operations */ +static int spi_nor_rww_start_rdst(struct spi_nor *nor) +{ + struct spi_nor_rww *rww = &nor->rww; + int ret = -EAGAIN; + + mutex_lock(&nor->lock); + + if (rww->ongoing_io || rww->ongoing_rd) + goto busy; + + rww->ongoing_io = true; + rww->ongoing_rd = true; + ret = 0; + +busy: + mutex_unlock(&nor->lock); + return ret; +} + +static void spi_nor_rww_end_rdst(struct spi_nor *nor) +{ + struct spi_nor_rww *rww = &nor->rww; + + mutex_lock(&nor->lock); + + rww->ongoing_io = false; + rww->ongoing_rd = false; + + mutex_unlock(&nor->lock); +} + +static int spi_nor_lock_rdst(struct spi_nor *nor) +{ + if (spi_nor_use_parallel_locking(nor)) + return spi_nor_rww_start_rdst(nor); + + return 0; +} + +static void spi_nor_unlock_rdst(struct spi_nor *nor) +{ + if (spi_nor_use_parallel_locking(nor)) { + spi_nor_rww_end_rdst(nor); + wake_up(&nor->rww.wait); + } +} + +/** + * spi_nor_ready() - Query the flash to see if it is ready for new commands. + * @nor: pointer to 'struct spi_nor'. + * + * Return: 1 if ready, 0 if not ready, -errno on errors. + */ +static int spi_nor_ready(struct spi_nor *nor) +{ + int ret; + + ret = spi_nor_lock_rdst(nor); + if (ret) + return 0; + + /* Flashes might override the standard routine. */ + if (nor->params->ready) + ret = nor->params->ready(nor); + else + ret = spi_nor_sr_ready(nor); + + spi_nor_unlock_rdst(nor); + + return ret; +} + +/** + * spi_nor_wait_till_ready_with_timeout() - Service routine to read the + * Status Register until ready, or timeout occurs. + * @nor: pointer to "struct spi_nor". + * @timeout_jiffies: jiffies to wait until timeout. + * + * Return: 0 on success, -errno otherwise. + */ +static int spi_nor_wait_till_ready_with_timeout(struct spi_nor *nor, + unsigned long timeout_jiffies) +{ + unsigned long deadline; + int timeout = 0, ret; + + deadline = jiffies + timeout_jiffies; + + while (!timeout) { + if (time_after_eq(jiffies, deadline)) + timeout = 1; + + ret = spi_nor_ready(nor); + if (ret < 0) + return ret; + if (ret) + return 0; + + cond_resched(); + } + + dev_dbg(nor->dev, "flash operation timed out\n"); + + return -ETIMEDOUT; +} + +/** + * spi_nor_wait_till_ready() - Wait for a predefined amount of time for the + * flash to be ready, or timeout occurs. + * @nor: pointer to "struct spi_nor". + * + * Return: 0 on success, -errno otherwise. + */ +int spi_nor_wait_till_ready(struct spi_nor *nor) +{ + return spi_nor_wait_till_ready_with_timeout(nor, + DEFAULT_READY_WAIT_JIFFIES); +} + +/** + * spi_nor_global_block_unlock() - Unlock Global Block Protection. + * @nor: pointer to 'struct spi_nor'. + * + * Return: 0 on success, -errno otherwise. + */ +int spi_nor_global_block_unlock(struct spi_nor *nor) +{ + int ret; + + ret = spi_nor_write_enable(nor); + if (ret) + return ret; + + if (nor->spimem) { + struct spi_mem_op op = SPI_NOR_GBULK_OP; + + spi_nor_spimem_setup_op(nor, &op, nor->reg_proto); + + ret = spi_mem_exec_op(nor->spimem, &op); + } else { + ret = spi_nor_controller_ops_write_reg(nor, SPINOR_OP_GBULK, + NULL, 0); + } + + if (ret) { + dev_dbg(nor->dev, "error %d on Global Block Unlock\n", ret); + return ret; + } + + return spi_nor_wait_till_ready(nor); +} + +/** + * spi_nor_write_sr() - Write the Status Register. + * @nor: pointer to 'struct spi_nor'. + * @sr: pointer to DMA-able buffer to write to the Status Register. + * @len: number of bytes to write to the Status Register. + * + * Return: 0 on success, -errno otherwise. + */ +int spi_nor_write_sr(struct spi_nor *nor, const u8 *sr, size_t len) +{ + int ret; + + ret = spi_nor_write_enable(nor); + if (ret) + return ret; + + if (nor->spimem) { + struct spi_mem_op op = SPI_NOR_WRSR_OP(sr, len); + + spi_nor_spimem_setup_op(nor, &op, nor->reg_proto); + + ret = spi_mem_exec_op(nor->spimem, &op); + } else { + ret = spi_nor_controller_ops_write_reg(nor, SPINOR_OP_WRSR, sr, + len); + } + + if (ret) { + dev_dbg(nor->dev, "error %d writing SR\n", ret); + return ret; + } + + return spi_nor_wait_till_ready(nor); +} + +/** + * spi_nor_write_sr1_and_check() - Write one byte to the Status Register 1 and + * ensure that the byte written match the received value. + * @nor: pointer to a 'struct spi_nor'. + * @sr1: byte value to be written to the Status Register. + * + * Return: 0 on success, -errno otherwise. + */ +static int spi_nor_write_sr1_and_check(struct spi_nor *nor, u8 sr1) +{ + int ret; + + nor->bouncebuf[0] = sr1; + + ret = spi_nor_write_sr(nor, nor->bouncebuf, 1); + if (ret) + return ret; + + ret = spi_nor_read_sr(nor, nor->bouncebuf); + if (ret) + return ret; + + if (nor->bouncebuf[0] != sr1) { + dev_dbg(nor->dev, "SR1: read back test failed\n"); + return -EIO; + } + + return 0; +} + +/** + * spi_nor_write_16bit_sr_and_check() - Write the Status Register 1 and the + * Status Register 2 in one shot. Ensure that the byte written in the Status + * Register 1 match the received value, and that the 16-bit Write did not + * affect what was already in the Status Register 2. + * @nor: pointer to a 'struct spi_nor'. + * @sr1: byte value to be written to the Status Register 1. + * + * Return: 0 on success, -errno otherwise. + */ +static int spi_nor_write_16bit_sr_and_check(struct spi_nor *nor, u8 sr1) +{ + int ret; + u8 *sr_cr = nor->bouncebuf; + u8 cr_written; + + /* Make sure we don't overwrite the contents of Status Register 2. */ + if (!(nor->flags & SNOR_F_NO_READ_CR)) { + ret = spi_nor_read_cr(nor, &sr_cr[1]); + if (ret) + return ret; + } else if (spi_nor_get_protocol_width(nor->read_proto) == 4 && + spi_nor_get_protocol_width(nor->write_proto) == 4 && + nor->params->quad_enable) { + /* + * If the Status Register 2 Read command (35h) is not + * supported, we should at least be sure we don't + * change the value of the SR2 Quad Enable bit. + * + * When the Quad Enable method is set and the buswidth is 4, we + * can safely assume that the value of the QE bit is one, as a + * consequence of the nor->params->quad_enable() call. + * + * According to the JESD216 revB standard, BFPT DWORDS[15], + * bits 22:20, the 16-bit Write Status (01h) command is + * available just for the cases in which the QE bit is + * described in SR2 at BIT(1). + */ + sr_cr[1] = SR2_QUAD_EN_BIT1; + } else { + sr_cr[1] = 0; + } + + sr_cr[0] = sr1; + + ret = spi_nor_write_sr(nor, sr_cr, 2); + if (ret) + return ret; + + ret = spi_nor_read_sr(nor, sr_cr); + if (ret) + return ret; + + if (sr1 != sr_cr[0]) { + dev_dbg(nor->dev, "SR: Read back test failed\n"); + return -EIO; + } + + if (nor->flags & SNOR_F_NO_READ_CR) + return 0; + + cr_written = sr_cr[1]; + + ret = spi_nor_read_cr(nor, &sr_cr[1]); + if (ret) + return ret; + + if (cr_written != sr_cr[1]) { + dev_dbg(nor->dev, "CR: read back test failed\n"); + return -EIO; + } + + return 0; +} + +/** + * spi_nor_write_16bit_cr_and_check() - Write the Status Register 1 and the + * Configuration Register in one shot. Ensure that the byte written in the + * Configuration Register match the received value, and that the 16-bit Write + * did not affect what was already in the Status Register 1. + * @nor: pointer to a 'struct spi_nor'. + * @cr: byte value to be written to the Configuration Register. + * + * Return: 0 on success, -errno otherwise. + */ +int spi_nor_write_16bit_cr_and_check(struct spi_nor *nor, u8 cr) +{ + int ret; + u8 *sr_cr = nor->bouncebuf; + u8 sr_written; + + /* Keep the current value of the Status Register 1. */ + ret = spi_nor_read_sr(nor, sr_cr); + if (ret) + return ret; + + sr_cr[1] = cr; + + ret = spi_nor_write_sr(nor, sr_cr, 2); + if (ret) + return ret; + + sr_written = sr_cr[0]; + + ret = spi_nor_read_sr(nor, sr_cr); + if (ret) + return ret; + + if (sr_written != sr_cr[0]) { + dev_dbg(nor->dev, "SR: Read back test failed\n"); + return -EIO; + } + + if (nor->flags & SNOR_F_NO_READ_CR) + return 0; + + ret = spi_nor_read_cr(nor, &sr_cr[1]); + if (ret) + return ret; + + if (cr != sr_cr[1]) { + dev_dbg(nor->dev, "CR: read back test failed\n"); + return -EIO; + } + + return 0; +} + +/** + * spi_nor_write_sr_and_check() - Write the Status Register 1 and ensure that + * the byte written match the received value without affecting other bits in the + * Status Register 1 and 2. + * @nor: pointer to a 'struct spi_nor'. + * @sr1: byte value to be written to the Status Register. + * + * Return: 0 on success, -errno otherwise. + */ +int spi_nor_write_sr_and_check(struct spi_nor *nor, u8 sr1) +{ + if (nor->flags & SNOR_F_HAS_16BIT_SR) + return spi_nor_write_16bit_sr_and_check(nor, sr1); + + return spi_nor_write_sr1_and_check(nor, sr1); +} + +/** + * spi_nor_write_sr2() - Write the Status Register 2 using the + * SPINOR_OP_WRSR2 (3eh) command. + * @nor: pointer to 'struct spi_nor'. + * @sr2: pointer to DMA-able buffer to write to the Status Register 2. + * + * Return: 0 on success, -errno otherwise. + */ +static int spi_nor_write_sr2(struct spi_nor *nor, const u8 *sr2) +{ + int ret; + + ret = spi_nor_write_enable(nor); + if (ret) + return ret; + + if (nor->spimem) { + struct spi_mem_op op = SPI_NOR_WRSR2_OP(sr2); + + spi_nor_spimem_setup_op(nor, &op, nor->reg_proto); + + ret = spi_mem_exec_op(nor->spimem, &op); + } else { + ret = spi_nor_controller_ops_write_reg(nor, SPINOR_OP_WRSR2, + sr2, 1); + } + + if (ret) { + dev_dbg(nor->dev, "error %d writing SR2\n", ret); + return ret; + } + + return spi_nor_wait_till_ready(nor); +} + +/** + * spi_nor_read_sr2() - Read the Status Register 2 using the + * SPINOR_OP_RDSR2 (3fh) command. + * @nor: pointer to 'struct spi_nor'. + * @sr2: pointer to DMA-able buffer where the value of the + * Status Register 2 will be written. + * + * Return: 0 on success, -errno otherwise. + */ +static int spi_nor_read_sr2(struct spi_nor *nor, u8 *sr2) +{ + int ret; + + if (nor->spimem) { + struct spi_mem_op op = SPI_NOR_RDSR2_OP(sr2); + + spi_nor_spimem_setup_op(nor, &op, nor->reg_proto); + + ret = spi_mem_exec_op(nor->spimem, &op); + } else { + ret = spi_nor_controller_ops_read_reg(nor, SPINOR_OP_RDSR2, sr2, + 1); + } + + if (ret) + dev_dbg(nor->dev, "error %d reading SR2\n", ret); + + return ret; +} + +/** + * spi_nor_erase_chip() - Erase the entire flash memory. + * @nor: pointer to 'struct spi_nor'. + * + * Return: 0 on success, -errno otherwise. + */ +static int spi_nor_erase_chip(struct spi_nor *nor) +{ + int ret; + + dev_dbg(nor->dev, " %lldKiB\n", (long long)(nor->mtd.size >> 10)); + + if (nor->spimem) { + struct spi_mem_op op = SPI_NOR_CHIP_ERASE_OP; + + spi_nor_spimem_setup_op(nor, &op, nor->reg_proto); + + ret = spi_mem_exec_op(nor->spimem, &op); + } else { + ret = spi_nor_controller_ops_write_reg(nor, + SPINOR_OP_CHIP_ERASE, + NULL, 0); + } + + if (ret) + dev_dbg(nor->dev, "error %d erasing chip\n", ret); + + return ret; +} + +static u8 spi_nor_convert_opcode(u8 opcode, const u8 table[][2], size_t size) +{ + size_t i; + + for (i = 0; i < size; i++) + if (table[i][0] == opcode) + return table[i][1]; + + /* No conversion found, keep input op code. */ + return opcode; +} + +u8 spi_nor_convert_3to4_read(u8 opcode) +{ + static const u8 spi_nor_3to4_read[][2] = { + { SPINOR_OP_READ, SPINOR_OP_READ_4B }, + { SPINOR_OP_READ_FAST, SPINOR_OP_READ_FAST_4B }, + { SPINOR_OP_READ_1_1_2, SPINOR_OP_READ_1_1_2_4B }, + { SPINOR_OP_READ_1_2_2, SPINOR_OP_READ_1_2_2_4B }, + { SPINOR_OP_READ_1_1_4, SPINOR_OP_READ_1_1_4_4B }, + { SPINOR_OP_READ_1_4_4, SPINOR_OP_READ_1_4_4_4B }, + { SPINOR_OP_READ_1_1_8, SPINOR_OP_READ_1_1_8_4B }, + { SPINOR_OP_READ_1_8_8, SPINOR_OP_READ_1_8_8_4B }, + + { SPINOR_OP_READ_1_1_1_DTR, SPINOR_OP_READ_1_1_1_DTR_4B }, + { SPINOR_OP_READ_1_2_2_DTR, SPINOR_OP_READ_1_2_2_DTR_4B }, + { SPINOR_OP_READ_1_4_4_DTR, SPINOR_OP_READ_1_4_4_DTR_4B }, + }; + + return spi_nor_convert_opcode(opcode, spi_nor_3to4_read, + ARRAY_SIZE(spi_nor_3to4_read)); +} + +static u8 spi_nor_convert_3to4_program(u8 opcode) +{ + static const u8 spi_nor_3to4_program[][2] = { + { SPINOR_OP_PP, SPINOR_OP_PP_4B }, + { SPINOR_OP_PP_1_1_4, SPINOR_OP_PP_1_1_4_4B }, + { SPINOR_OP_PP_1_4_4, SPINOR_OP_PP_1_4_4_4B }, + { SPINOR_OP_PP_1_1_8, SPINOR_OP_PP_1_1_8_4B }, + { SPINOR_OP_PP_1_8_8, SPINOR_OP_PP_1_8_8_4B }, + }; + + return spi_nor_convert_opcode(opcode, spi_nor_3to4_program, + ARRAY_SIZE(spi_nor_3to4_program)); +} + +static u8 spi_nor_convert_3to4_erase(u8 opcode) +{ + static const u8 spi_nor_3to4_erase[][2] = { + { SPINOR_OP_BE_4K, SPINOR_OP_BE_4K_4B }, + { SPINOR_OP_BE_32K, SPINOR_OP_BE_32K_4B }, + { SPINOR_OP_SE, SPINOR_OP_SE_4B }, + }; + + return spi_nor_convert_opcode(opcode, spi_nor_3to4_erase, + ARRAY_SIZE(spi_nor_3to4_erase)); +} + +static bool spi_nor_has_uniform_erase(const struct spi_nor *nor) +{ + return !!nor->params->erase_map.uniform_erase_type; +} + +static void spi_nor_set_4byte_opcodes(struct spi_nor *nor) +{ + nor->read_opcode = spi_nor_convert_3to4_read(nor->read_opcode); + nor->program_opcode = spi_nor_convert_3to4_program(nor->program_opcode); + nor->erase_opcode = spi_nor_convert_3to4_erase(nor->erase_opcode); + + if (!spi_nor_has_uniform_erase(nor)) { + struct spi_nor_erase_map *map = &nor->params->erase_map; + struct spi_nor_erase_type *erase; + int i; + + for (i = 0; i < SNOR_ERASE_TYPE_MAX; i++) { + erase = &map->erase_type[i]; + erase->opcode = + spi_nor_convert_3to4_erase(erase->opcode); + } + } +} + +static int spi_nor_prep(struct spi_nor *nor) +{ + int ret = 0; + + if (nor->controller_ops && nor->controller_ops->prepare) + ret = nor->controller_ops->prepare(nor); + + return ret; +} + +static void spi_nor_unprep(struct spi_nor *nor) +{ + if (nor->controller_ops && nor->controller_ops->unprepare) + nor->controller_ops->unprepare(nor); +} + +static void spi_nor_offset_to_banks(u64 bank_size, loff_t start, size_t len, + u8 *first, u8 *last) +{ + /* This is currently safe, the number of banks being very small */ + *first = DIV_ROUND_DOWN_ULL(start, bank_size); + *last = DIV_ROUND_DOWN_ULL(start + len - 1, bank_size); +} + +/* Generic helpers for internal locking and serialization */ +static bool spi_nor_rww_start_io(struct spi_nor *nor) +{ + struct spi_nor_rww *rww = &nor->rww; + bool start = false; + + mutex_lock(&nor->lock); + + if (rww->ongoing_io) + goto busy; + + rww->ongoing_io = true; + start = true; + +busy: + mutex_unlock(&nor->lock); + return start; +} + +static void spi_nor_rww_end_io(struct spi_nor *nor) +{ + mutex_lock(&nor->lock); + nor->rww.ongoing_io = false; + mutex_unlock(&nor->lock); +} + +static int spi_nor_lock_device(struct spi_nor *nor) +{ + if (!spi_nor_use_parallel_locking(nor)) + return 0; + + return wait_event_killable(nor->rww.wait, spi_nor_rww_start_io(nor)); +} + +static void spi_nor_unlock_device(struct spi_nor *nor) +{ + if (spi_nor_use_parallel_locking(nor)) { + spi_nor_rww_end_io(nor); + wake_up(&nor->rww.wait); + } +} + +/* Generic helpers for internal locking and serialization */ +static bool spi_nor_rww_start_exclusive(struct spi_nor *nor) +{ + struct spi_nor_rww *rww = &nor->rww; + bool start = false; + + mutex_lock(&nor->lock); + + if (rww->ongoing_io || rww->ongoing_rd || rww->ongoing_pe) + goto busy; + + rww->ongoing_io = true; + rww->ongoing_rd = true; + rww->ongoing_pe = true; + start = true; + +busy: + mutex_unlock(&nor->lock); + return start; +} + +static void spi_nor_rww_end_exclusive(struct spi_nor *nor) +{ + struct spi_nor_rww *rww = &nor->rww; + + mutex_lock(&nor->lock); + rww->ongoing_io = false; + rww->ongoing_rd = false; + rww->ongoing_pe = false; + mutex_unlock(&nor->lock); +} + +int spi_nor_prep_and_lock(struct spi_nor *nor) +{ + int ret; + + ret = spi_nor_prep(nor); + if (ret) + return ret; + + if (!spi_nor_use_parallel_locking(nor)) + mutex_lock(&nor->lock); + else + ret = wait_event_killable(nor->rww.wait, + spi_nor_rww_start_exclusive(nor)); + + return ret; +} + +void spi_nor_unlock_and_unprep(struct spi_nor *nor) +{ + if (!spi_nor_use_parallel_locking(nor)) { + mutex_unlock(&nor->lock); + } else { + spi_nor_rww_end_exclusive(nor); + wake_up(&nor->rww.wait); + } + + spi_nor_unprep(nor); +} + +/* Internal locking helpers for program and erase operations */ +static bool spi_nor_rww_start_pe(struct spi_nor *nor, loff_t start, size_t len) +{ + struct spi_nor_rww *rww = &nor->rww; + unsigned int used_banks = 0; + bool started = false; + u8 first, last; + int bank; + + mutex_lock(&nor->lock); + + if (rww->ongoing_io || rww->ongoing_rd || rww->ongoing_pe) + goto busy; + + spi_nor_offset_to_banks(nor->params->bank_size, start, len, &first, &last); + for (bank = first; bank <= last; bank++) { + if (rww->used_banks & BIT(bank)) + goto busy; + + used_banks |= BIT(bank); + } + + rww->used_banks |= used_banks; + rww->ongoing_pe = true; + started = true; + +busy: + mutex_unlock(&nor->lock); + return started; +} + +static void spi_nor_rww_end_pe(struct spi_nor *nor, loff_t start, size_t len) +{ + struct spi_nor_rww *rww = &nor->rww; + u8 first, last; + int bank; + + mutex_lock(&nor->lock); + + spi_nor_offset_to_banks(nor->params->bank_size, start, len, &first, &last); + for (bank = first; bank <= last; bank++) + rww->used_banks &= ~BIT(bank); + + rww->ongoing_pe = false; + + mutex_unlock(&nor->lock); +} + +static int spi_nor_prep_and_lock_pe(struct spi_nor *nor, loff_t start, size_t len) +{ + int ret; + + ret = spi_nor_prep(nor); + if (ret) + return ret; + + if (!spi_nor_use_parallel_locking(nor)) + mutex_lock(&nor->lock); + else + ret = wait_event_killable(nor->rww.wait, + spi_nor_rww_start_pe(nor, start, len)); + + return ret; +} + +static void spi_nor_unlock_and_unprep_pe(struct spi_nor *nor, loff_t start, size_t len) +{ + if (!spi_nor_use_parallel_locking(nor)) { + mutex_unlock(&nor->lock); + } else { + spi_nor_rww_end_pe(nor, start, len); + wake_up(&nor->rww.wait); + } + + spi_nor_unprep(nor); +} + +/* Internal locking helpers for read operations */ +static bool spi_nor_rww_start_rd(struct spi_nor *nor, loff_t start, size_t len) +{ + struct spi_nor_rww *rww = &nor->rww; + unsigned int used_banks = 0; + bool started = false; + u8 first, last; + int bank; + + mutex_lock(&nor->lock); + + if (rww->ongoing_io || rww->ongoing_rd) + goto busy; + + spi_nor_offset_to_banks(nor->params->bank_size, start, len, &first, &last); + for (bank = first; bank <= last; bank++) { + if (rww->used_banks & BIT(bank)) + goto busy; + + used_banks |= BIT(bank); + } + + rww->used_banks |= used_banks; + rww->ongoing_io = true; + rww->ongoing_rd = true; + started = true; + +busy: + mutex_unlock(&nor->lock); + return started; +} + +static void spi_nor_rww_end_rd(struct spi_nor *nor, loff_t start, size_t len) +{ + struct spi_nor_rww *rww = &nor->rww; + u8 first, last; + int bank; + + mutex_lock(&nor->lock); + + spi_nor_offset_to_banks(nor->params->bank_size, start, len, &first, &last); + for (bank = first; bank <= last; bank++) + nor->rww.used_banks &= ~BIT(bank); + + rww->ongoing_io = false; + rww->ongoing_rd = false; + + mutex_unlock(&nor->lock); +} + +static int spi_nor_prep_and_lock_rd(struct spi_nor *nor, loff_t start, size_t len) +{ + int ret; + + ret = spi_nor_prep(nor); + if (ret) + return ret; + + if (!spi_nor_use_parallel_locking(nor)) + mutex_lock(&nor->lock); + else + ret = wait_event_killable(nor->rww.wait, + spi_nor_rww_start_rd(nor, start, len)); + + return ret; +} + +static void spi_nor_unlock_and_unprep_rd(struct spi_nor *nor, loff_t start, size_t len) +{ + if (!spi_nor_use_parallel_locking(nor)) { + mutex_unlock(&nor->lock); + } else { + spi_nor_rww_end_rd(nor, start, len); + wake_up(&nor->rww.wait); + } + + spi_nor_unprep(nor); +} + +static u32 spi_nor_convert_addr(struct spi_nor *nor, loff_t addr) +{ + if (!nor->params->convert_addr) + return addr; + + return nor->params->convert_addr(nor, addr); +} + +/* + * Initiate the erasure of a single sector + */ +int spi_nor_erase_sector(struct spi_nor *nor, u32 addr) +{ + int i; + + addr = spi_nor_convert_addr(nor, addr); + + if (nor->spimem) { + struct spi_mem_op op = + SPI_NOR_SECTOR_ERASE_OP(nor->erase_opcode, + nor->addr_nbytes, addr); + + spi_nor_spimem_setup_op(nor, &op, nor->reg_proto); + + return spi_mem_exec_op(nor->spimem, &op); + } else if (nor->controller_ops->erase) { + return spi_nor_controller_ops_erase(nor, addr); + } + + /* + * Default implementation, if driver doesn't have a specialized HW + * control + */ + for (i = nor->addr_nbytes - 1; i >= 0; i--) { + nor->bouncebuf[i] = addr & 0xff; + addr >>= 8; + } + + return spi_nor_controller_ops_write_reg(nor, nor->erase_opcode, + nor->bouncebuf, nor->addr_nbytes); +} + +/** + * spi_nor_div_by_erase_size() - calculate remainder and update new dividend + * @erase: pointer to a structure that describes a SPI NOR erase type + * @dividend: dividend value + * @remainder: pointer to u32 remainder (will be updated) + * + * Return: the result of the division + */ +static u64 spi_nor_div_by_erase_size(const struct spi_nor_erase_type *erase, + u64 dividend, u32 *remainder) +{ + /* JEDEC JESD216B Standard imposes erase sizes to be power of 2. */ + *remainder = (u32)dividend & erase->size_mask; + return dividend >> erase->size_shift; +} + +/** + * spi_nor_find_best_erase_type() - find the best erase type for the given + * offset in the serial flash memory and the + * number of bytes to erase. The region in + * which the address fits is expected to be + * provided. + * @map: the erase map of the SPI NOR + * @region: pointer to a structure that describes a SPI NOR erase region + * @addr: offset in the serial flash memory + * @len: number of bytes to erase + * + * Return: a pointer to the best fitted erase type, NULL otherwise. + */ +static const struct spi_nor_erase_type * +spi_nor_find_best_erase_type(const struct spi_nor_erase_map *map, + const struct spi_nor_erase_region *region, + u64 addr, u32 len) +{ + const struct spi_nor_erase_type *erase; + u32 rem; + int i; + u8 erase_mask = region->offset & SNOR_ERASE_TYPE_MASK; + + /* + * Erase types are ordered by size, with the smallest erase type at + * index 0. + */ + for (i = SNOR_ERASE_TYPE_MAX - 1; i >= 0; i--) { + /* Does the erase region support the tested erase type? */ + if (!(erase_mask & BIT(i))) + continue; + + erase = &map->erase_type[i]; + if (!erase->size) + continue; + + /* Alignment is not mandatory for overlaid regions */ + if (region->offset & SNOR_OVERLAID_REGION && + region->size <= len) + return erase; + + /* Don't erase more than what the user has asked for. */ + if (erase->size > len) + continue; + + spi_nor_div_by_erase_size(erase, addr, &rem); + if (!rem) + return erase; + } + + return NULL; +} + +static u64 spi_nor_region_is_last(const struct spi_nor_erase_region *region) +{ + return region->offset & SNOR_LAST_REGION; +} + +static u64 spi_nor_region_end(const struct spi_nor_erase_region *region) +{ + return (region->offset & ~SNOR_ERASE_FLAGS_MASK) + region->size; +} + +/** + * spi_nor_region_next() - get the next spi nor region + * @region: pointer to a structure that describes a SPI NOR erase region + * + * Return: the next spi nor region or NULL if last region. + */ +struct spi_nor_erase_region * +spi_nor_region_next(struct spi_nor_erase_region *region) +{ + if (spi_nor_region_is_last(region)) + return NULL; + region++; + return region; +} + +/** + * spi_nor_find_erase_region() - find the region of the serial flash memory in + * which the offset fits + * @map: the erase map of the SPI NOR + * @addr: offset in the serial flash memory + * + * Return: a pointer to the spi_nor_erase_region struct, ERR_PTR(-errno) + * otherwise. + */ +static struct spi_nor_erase_region * +spi_nor_find_erase_region(const struct spi_nor_erase_map *map, u64 addr) +{ + struct spi_nor_erase_region *region = map->regions; + u64 region_start = region->offset & ~SNOR_ERASE_FLAGS_MASK; + u64 region_end = region_start + region->size; + + while (addr < region_start || addr >= region_end) { + region = spi_nor_region_next(region); + if (!region) + return ERR_PTR(-EINVAL); + + region_start = region->offset & ~SNOR_ERASE_FLAGS_MASK; + region_end = region_start + region->size; + } + + return region; +} + +/** + * spi_nor_init_erase_cmd() - initialize an erase command + * @region: pointer to a structure that describes a SPI NOR erase region + * @erase: pointer to a structure that describes a SPI NOR erase type + * + * Return: the pointer to the allocated erase command, ERR_PTR(-errno) + * otherwise. + */ +static struct spi_nor_erase_command * +spi_nor_init_erase_cmd(const struct spi_nor_erase_region *region, + const struct spi_nor_erase_type *erase) +{ + struct spi_nor_erase_command *cmd; + + cmd = kmalloc(sizeof(*cmd), GFP_KERNEL); + if (!cmd) + return ERR_PTR(-ENOMEM); + + INIT_LIST_HEAD(&cmd->list); + cmd->opcode = erase->opcode; + cmd->count = 1; + + if (region->offset & SNOR_OVERLAID_REGION) + cmd->size = region->size; + else + cmd->size = erase->size; + + return cmd; +} + +/** + * spi_nor_destroy_erase_cmd_list() - destroy erase command list + * @erase_list: list of erase commands + */ +static void spi_nor_destroy_erase_cmd_list(struct list_head *erase_list) +{ + struct spi_nor_erase_command *cmd, *next; + + list_for_each_entry_safe(cmd, next, erase_list, list) { + list_del(&cmd->list); + kfree(cmd); + } +} + +/** + * spi_nor_init_erase_cmd_list() - initialize erase command list + * @nor: pointer to a 'struct spi_nor' + * @erase_list: list of erase commands to be executed once we validate that the + * erase can be performed + * @addr: offset in the serial flash memory + * @len: number of bytes to erase + * + * Builds the list of best fitted erase commands and verifies if the erase can + * be performed. + * + * Return: 0 on success, -errno otherwise. + */ +static int spi_nor_init_erase_cmd_list(struct spi_nor *nor, + struct list_head *erase_list, + u64 addr, u32 len) +{ + const struct spi_nor_erase_map *map = &nor->params->erase_map; + const struct spi_nor_erase_type *erase, *prev_erase = NULL; + struct spi_nor_erase_region *region; + struct spi_nor_erase_command *cmd = NULL; + u64 region_end; + int ret = -EINVAL; + + region = spi_nor_find_erase_region(map, addr); + if (IS_ERR(region)) + return PTR_ERR(region); + + region_end = spi_nor_region_end(region); + + while (len) { + erase = spi_nor_find_best_erase_type(map, region, addr, len); + if (!erase) + goto destroy_erase_cmd_list; + + if (prev_erase != erase || + erase->size != cmd->size || + region->offset & SNOR_OVERLAID_REGION) { + cmd = spi_nor_init_erase_cmd(region, erase); + if (IS_ERR(cmd)) { + ret = PTR_ERR(cmd); + goto destroy_erase_cmd_list; + } + + list_add_tail(&cmd->list, erase_list); + } else { + cmd->count++; + } + + addr += cmd->size; + len -= cmd->size; + + if (len && addr >= region_end) { + region = spi_nor_region_next(region); + if (!region) + goto destroy_erase_cmd_list; + region_end = spi_nor_region_end(region); + } + + prev_erase = erase; + } + + return 0; + +destroy_erase_cmd_list: + spi_nor_destroy_erase_cmd_list(erase_list); + return ret; +} + +/** + * spi_nor_erase_multi_sectors() - perform a non-uniform erase + * @nor: pointer to a 'struct spi_nor' + * @addr: offset in the serial flash memory + * @len: number of bytes to erase + * + * Build a list of best fitted erase commands and execute it once we validate + * that the erase can be performed. + * + * Return: 0 on success, -errno otherwise. + */ +static int spi_nor_erase_multi_sectors(struct spi_nor *nor, u64 addr, u32 len) +{ + LIST_HEAD(erase_list); + struct spi_nor_erase_command *cmd, *next; + int ret; + + ret = spi_nor_init_erase_cmd_list(nor, &erase_list, addr, len); + if (ret) + return ret; + + list_for_each_entry_safe(cmd, next, &erase_list, list) { + nor->erase_opcode = cmd->opcode; + while (cmd->count) { + dev_vdbg(nor->dev, "erase_cmd->size = 0x%08x, erase_cmd->opcode = 0x%02x, erase_cmd->count = %u\n", + cmd->size, cmd->opcode, cmd->count); + + ret = spi_nor_lock_device(nor); + if (ret) + goto destroy_erase_cmd_list; + + ret = spi_nor_write_enable(nor); + if (ret) { + spi_nor_unlock_device(nor); + goto destroy_erase_cmd_list; + } + + ret = spi_nor_erase_sector(nor, addr); + spi_nor_unlock_device(nor); + if (ret) + goto destroy_erase_cmd_list; + + ret = spi_nor_wait_till_ready(nor); + if (ret) + goto destroy_erase_cmd_list; + + addr += cmd->size; + cmd->count--; + } + list_del(&cmd->list); + kfree(cmd); + } + + return 0; + +destroy_erase_cmd_list: + spi_nor_destroy_erase_cmd_list(&erase_list); + return ret; +} + +/* + * Erase an address range on the nor chip. The address range may extend + * one or more erase sectors. Return an error if there is a problem erasing. + */ +static int spi_nor_erase(struct mtd_info *mtd, struct erase_info *instr) +{ + struct spi_nor *nor = mtd_to_spi_nor(mtd); + u32 addr, len; + uint32_t rem; + int ret; + + dev_dbg(nor->dev, "at 0x%llx, len %lld\n", (long long)instr->addr, + (long long)instr->len); + + if (spi_nor_has_uniform_erase(nor)) { + div_u64_rem(instr->len, mtd->erasesize, &rem); + if (rem) + return -EINVAL; + } + + addr = instr->addr; + len = instr->len; + + ret = spi_nor_prep_and_lock_pe(nor, instr->addr, instr->len); + if (ret) + return ret; + + /* whole-chip erase? */ + if (len == mtd->size && !(nor->flags & SNOR_F_NO_OP_CHIP_ERASE)) { + unsigned long timeout; + + ret = spi_nor_lock_device(nor); + if (ret) + goto erase_err; + + ret = spi_nor_write_enable(nor); + if (ret) { + spi_nor_unlock_device(nor); + goto erase_err; + } + + ret = spi_nor_erase_chip(nor); + spi_nor_unlock_device(nor); + if (ret) + goto erase_err; + + /* + * Scale the timeout linearly with the size of the flash, with + * a minimum calibrated to an old 2MB flash. We could try to + * pull these from CFI/SFDP, but these values should be good + * enough for now. + */ + timeout = max(CHIP_ERASE_2MB_READY_WAIT_JIFFIES, + CHIP_ERASE_2MB_READY_WAIT_JIFFIES * + (unsigned long)(mtd->size / SZ_2M)); + ret = spi_nor_wait_till_ready_with_timeout(nor, timeout); + if (ret) + goto erase_err; + + /* REVISIT in some cases we could speed up erasing large regions + * by using SPINOR_OP_SE instead of SPINOR_OP_BE_4K. We may have set up + * to use "small sector erase", but that's not always optimal. + */ + + /* "sector"-at-a-time erase */ + } else if (spi_nor_has_uniform_erase(nor)) { + while (len) { + ret = spi_nor_lock_device(nor); + if (ret) + goto erase_err; + + ret = spi_nor_write_enable(nor); + if (ret) { + spi_nor_unlock_device(nor); + goto erase_err; + } + + ret = spi_nor_erase_sector(nor, addr); + spi_nor_unlock_device(nor); + if (ret) + goto erase_err; + + ret = spi_nor_wait_till_ready(nor); + if (ret) + goto erase_err; + + addr += mtd->erasesize; + len -= mtd->erasesize; + } + + /* erase multiple sectors */ + } else { + ret = spi_nor_erase_multi_sectors(nor, addr, len); + if (ret) + goto erase_err; + } + + ret = spi_nor_write_disable(nor); + +erase_err: + spi_nor_unlock_and_unprep_pe(nor, instr->addr, instr->len); + + return ret; +} + +/** + * spi_nor_sr1_bit6_quad_enable() - Set the Quad Enable BIT(6) in the Status + * Register 1. + * @nor: pointer to a 'struct spi_nor' + * + * Bit 6 of the Status Register 1 is the QE bit for Macronix like QSPI memories. + * + * Return: 0 on success, -errno otherwise. + */ +int spi_nor_sr1_bit6_quad_enable(struct spi_nor *nor) +{ + int ret; + + ret = spi_nor_read_sr(nor, nor->bouncebuf); + if (ret) + return ret; + + if (nor->bouncebuf[0] & SR1_QUAD_EN_BIT6) + return 0; + + nor->bouncebuf[0] |= SR1_QUAD_EN_BIT6; + + return spi_nor_write_sr1_and_check(nor, nor->bouncebuf[0]); +} + +/** + * spi_nor_sr2_bit1_quad_enable() - set the Quad Enable BIT(1) in the Status + * Register 2. + * @nor: pointer to a 'struct spi_nor'. + * + * Bit 1 of the Status Register 2 is the QE bit for Spansion like QSPI memories. + * + * Return: 0 on success, -errno otherwise. + */ +int spi_nor_sr2_bit1_quad_enable(struct spi_nor *nor) +{ + int ret; + + if (nor->flags & SNOR_F_NO_READ_CR) + return spi_nor_write_16bit_cr_and_check(nor, SR2_QUAD_EN_BIT1); + + ret = spi_nor_read_cr(nor, nor->bouncebuf); + if (ret) + return ret; + + if (nor->bouncebuf[0] & SR2_QUAD_EN_BIT1) + return 0; + + nor->bouncebuf[0] |= SR2_QUAD_EN_BIT1; + + return spi_nor_write_16bit_cr_and_check(nor, nor->bouncebuf[0]); +} + +/** + * spi_nor_sr2_bit7_quad_enable() - set QE bit in Status Register 2. + * @nor: pointer to a 'struct spi_nor' + * + * Set the Quad Enable (QE) bit in the Status Register 2. + * + * This is one of the procedures to set the QE bit described in the SFDP + * (JESD216 rev B) specification but no manufacturer using this procedure has + * been identified yet, hence the name of the function. + * + * Return: 0 on success, -errno otherwise. + */ +int spi_nor_sr2_bit7_quad_enable(struct spi_nor *nor) +{ + u8 *sr2 = nor->bouncebuf; + int ret; + u8 sr2_written; + + /* Check current Quad Enable bit value. */ + ret = spi_nor_read_sr2(nor, sr2); + if (ret) + return ret; + if (*sr2 & SR2_QUAD_EN_BIT7) + return 0; + + /* Update the Quad Enable bit. */ + *sr2 |= SR2_QUAD_EN_BIT7; + + ret = spi_nor_write_sr2(nor, sr2); + if (ret) + return ret; + + sr2_written = *sr2; + + /* Read back and check it. */ + ret = spi_nor_read_sr2(nor, sr2); + if (ret) + return ret; + + if (*sr2 != sr2_written) { + dev_dbg(nor->dev, "SR2: Read back test failed\n"); + return -EIO; + } + + return 0; +} + +static const struct spi_nor_manufacturer *manufacturers[] = { + &spi_nor_atmel, + &spi_nor_catalyst, + &spi_nor_eon, + &spi_nor_esmt, + &spi_nor_everspin, + &spi_nor_fujitsu, + &spi_nor_gigadevice, + &spi_nor_intel, + &spi_nor_issi, + &spi_nor_macronix, + &spi_nor_micron, + &spi_nor_st, + &spi_nor_spansion, + &spi_nor_sst, + &spi_nor_winbond, + &spi_nor_xilinx, + &spi_nor_xmc, +}; + +static const struct flash_info spi_nor_generic_flash = { + .name = "spi-nor-generic", + .n_banks = 1, + /* + * JESD216 rev A doesn't specify the page size, therefore we need a + * sane default. + */ + .page_size = 256, + .parse_sfdp = true, +}; + +static const struct flash_info *spi_nor_match_id(struct spi_nor *nor, + const u8 *id) +{ + const struct flash_info *part; + unsigned int i, j; + + for (i = 0; i < ARRAY_SIZE(manufacturers); i++) { + for (j = 0; j < manufacturers[i]->nparts; j++) { + part = &manufacturers[i]->parts[j]; + if (part->id_len && + !memcmp(part->id, id, part->id_len)) { + nor->manufacturer = manufacturers[i]; + return part; + } + } + } + + return NULL; +} + +static const struct flash_info *spi_nor_detect(struct spi_nor *nor) +{ + const struct flash_info *info; + u8 *id = nor->bouncebuf; + int ret; + + ret = spi_nor_read_id(nor, 0, 0, id, nor->reg_proto); + if (ret) { + dev_dbg(nor->dev, "error %d reading JEDEC ID\n", ret); + return ERR_PTR(ret); + } + + /* Cache the complete flash ID. */ + nor->id = devm_kmemdup(nor->dev, id, SPI_NOR_MAX_ID_LEN, GFP_KERNEL); + if (!nor->id) + return ERR_PTR(-ENOMEM); + + info = spi_nor_match_id(nor, id); + + /* Fallback to a generic flash described only by its SFDP data. */ + if (!info) { + ret = spi_nor_check_sfdp_signature(nor); + if (!ret) + info = &spi_nor_generic_flash; + } + + if (!info) { + dev_err(nor->dev, "unrecognized JEDEC id bytes: %*ph\n", + SPI_NOR_MAX_ID_LEN, id); + return ERR_PTR(-ENODEV); + } + return info; +} + +static int spi_nor_read(struct mtd_info *mtd, loff_t from, size_t len, + size_t *retlen, u_char *buf) +{ + struct spi_nor *nor = mtd_to_spi_nor(mtd); + loff_t from_lock = from; + size_t len_lock = len; + ssize_t ret; + + dev_dbg(nor->dev, "from 0x%08x, len %zd\n", (u32)from, len); + + ret = spi_nor_prep_and_lock_rd(nor, from_lock, len_lock); + if (ret) + return ret; + + while (len) { + loff_t addr = from; + + addr = spi_nor_convert_addr(nor, addr); + + ret = spi_nor_read_data(nor, addr, len, buf); + if (ret == 0) { + /* We shouldn't see 0-length reads */ + ret = -EIO; + goto read_err; + } + if (ret < 0) + goto read_err; + + WARN_ON(ret > len); + *retlen += ret; + buf += ret; + from += ret; + len -= ret; + } + ret = 0; + +read_err: + spi_nor_unlock_and_unprep_rd(nor, from_lock, len_lock); + + return ret; +} + +/* + * Write an address range to the nor chip. Data must be written in + * FLASH_PAGESIZE chunks. The address range may be any size provided + * it is within the physical boundaries. + */ +static int spi_nor_write(struct mtd_info *mtd, loff_t to, size_t len, + size_t *retlen, const u_char *buf) +{ + struct spi_nor *nor = mtd_to_spi_nor(mtd); + size_t page_offset, page_remain, i; + ssize_t ret; + u32 page_size = nor->params->page_size; + + dev_dbg(nor->dev, "to 0x%08x, len %zd\n", (u32)to, len); + + ret = spi_nor_prep_and_lock_pe(nor, to, len); + if (ret) + return ret; + + for (i = 0; i < len; ) { + ssize_t written; + loff_t addr = to + i; + + /* + * If page_size is a power of two, the offset can be quickly + * calculated with an AND operation. On the other cases we + * need to do a modulus operation (more expensive). + */ + if (is_power_of_2(page_size)) { + page_offset = addr & (page_size - 1); + } else { + uint64_t aux = addr; + + page_offset = do_div(aux, page_size); + } + /* the size of data remaining on the first page */ + page_remain = min_t(size_t, page_size - page_offset, len - i); + + addr = spi_nor_convert_addr(nor, addr); + + ret = spi_nor_lock_device(nor); + if (ret) + goto write_err; + + ret = spi_nor_write_enable(nor); + if (ret) { + spi_nor_unlock_device(nor); + goto write_err; + } + + ret = spi_nor_write_data(nor, addr, page_remain, buf + i); + spi_nor_unlock_device(nor); + if (ret < 0) + goto write_err; + written = ret; + + ret = spi_nor_wait_till_ready(nor); + if (ret) + goto write_err; + *retlen += written; + i += written; + } + +write_err: + spi_nor_unlock_and_unprep_pe(nor, to, len); + + return ret; +} + +static int spi_nor_check(struct spi_nor *nor) +{ + if (!nor->dev || + (!nor->spimem && !nor->controller_ops) || + (!nor->spimem && nor->controller_ops && + (!nor->controller_ops->read || + !nor->controller_ops->write || + !nor->controller_ops->read_reg || + !nor->controller_ops->write_reg))) { + pr_err("spi-nor: please fill all the necessary fields!\n"); + return -EINVAL; + } + + if (nor->spimem && nor->controller_ops) { + dev_err(nor->dev, "nor->spimem and nor->controller_ops are mutually exclusive, please set just one of them.\n"); + return -EINVAL; + } + + return 0; +} + +void +spi_nor_set_read_settings(struct spi_nor_read_command *read, + u8 num_mode_clocks, + u8 num_wait_states, + u8 opcode, + enum spi_nor_protocol proto) +{ + read->num_mode_clocks = num_mode_clocks; + read->num_wait_states = num_wait_states; + read->opcode = opcode; + read->proto = proto; +} + +void spi_nor_set_pp_settings(struct spi_nor_pp_command *pp, u8 opcode, + enum spi_nor_protocol proto) +{ + pp->opcode = opcode; + pp->proto = proto; +} + +static int spi_nor_hwcaps2cmd(u32 hwcaps, const int table[][2], size_t size) +{ + size_t i; + + for (i = 0; i < size; i++) + if (table[i][0] == (int)hwcaps) + return table[i][1]; + + return -EINVAL; +} + +int spi_nor_hwcaps_read2cmd(u32 hwcaps) +{ + static const int hwcaps_read2cmd[][2] = { + { SNOR_HWCAPS_READ, SNOR_CMD_READ }, + { SNOR_HWCAPS_READ_FAST, SNOR_CMD_READ_FAST }, + { SNOR_HWCAPS_READ_1_1_1_DTR, SNOR_CMD_READ_1_1_1_DTR }, + { SNOR_HWCAPS_READ_1_1_2, SNOR_CMD_READ_1_1_2 }, + { SNOR_HWCAPS_READ_1_2_2, SNOR_CMD_READ_1_2_2 }, + { SNOR_HWCAPS_READ_2_2_2, SNOR_CMD_READ_2_2_2 }, + { SNOR_HWCAPS_READ_1_2_2_DTR, SNOR_CMD_READ_1_2_2_DTR }, + { SNOR_HWCAPS_READ_1_1_4, SNOR_CMD_READ_1_1_4 }, + { SNOR_HWCAPS_READ_1_4_4, SNOR_CMD_READ_1_4_4 }, + { SNOR_HWCAPS_READ_4_4_4, SNOR_CMD_READ_4_4_4 }, + { SNOR_HWCAPS_READ_1_4_4_DTR, SNOR_CMD_READ_1_4_4_DTR }, + { SNOR_HWCAPS_READ_1_1_8, SNOR_CMD_READ_1_1_8 }, + { SNOR_HWCAPS_READ_1_8_8, SNOR_CMD_READ_1_8_8 }, + { SNOR_HWCAPS_READ_8_8_8, SNOR_CMD_READ_8_8_8 }, + { SNOR_HWCAPS_READ_1_8_8_DTR, SNOR_CMD_READ_1_8_8_DTR }, + { SNOR_HWCAPS_READ_8_8_8_DTR, SNOR_CMD_READ_8_8_8_DTR }, + }; + + return spi_nor_hwcaps2cmd(hwcaps, hwcaps_read2cmd, + ARRAY_SIZE(hwcaps_read2cmd)); +} + +int spi_nor_hwcaps_pp2cmd(u32 hwcaps) +{ + static const int hwcaps_pp2cmd[][2] = { + { SNOR_HWCAPS_PP, SNOR_CMD_PP }, + { SNOR_HWCAPS_PP_1_1_4, SNOR_CMD_PP_1_1_4 }, + { SNOR_HWCAPS_PP_1_4_4, SNOR_CMD_PP_1_4_4 }, + { SNOR_HWCAPS_PP_4_4_4, SNOR_CMD_PP_4_4_4 }, + { SNOR_HWCAPS_PP_1_1_8, SNOR_CMD_PP_1_1_8 }, + { SNOR_HWCAPS_PP_1_8_8, SNOR_CMD_PP_1_8_8 }, + { SNOR_HWCAPS_PP_8_8_8, SNOR_CMD_PP_8_8_8 }, + { SNOR_HWCAPS_PP_8_8_8_DTR, SNOR_CMD_PP_8_8_8_DTR }, + }; + + return spi_nor_hwcaps2cmd(hwcaps, hwcaps_pp2cmd, + ARRAY_SIZE(hwcaps_pp2cmd)); +} + +/** + * spi_nor_spimem_check_op - check if the operation is supported + * by controller + *@nor: pointer to a 'struct spi_nor' + *@op: pointer to op template to be checked + * + * Returns 0 if operation is supported, -EOPNOTSUPP otherwise. + */ +static int spi_nor_spimem_check_op(struct spi_nor *nor, + struct spi_mem_op *op) +{ + /* + * First test with 4 address bytes. The opcode itself might + * be a 3B addressing opcode but we don't care, because + * SPI controller implementation should not check the opcode, + * but just the sequence. + */ + op->addr.nbytes = 4; + if (!spi_mem_supports_op(nor->spimem, op)) { + if (nor->params->size > SZ_16M) + return -EOPNOTSUPP; + + /* If flash size <= 16MB, 3 address bytes are sufficient */ + op->addr.nbytes = 3; + if (!spi_mem_supports_op(nor->spimem, op)) + return -EOPNOTSUPP; + } + + return 0; +} + +/** + * spi_nor_spimem_check_readop - check if the read op is supported + * by controller + *@nor: pointer to a 'struct spi_nor' + *@read: pointer to op template to be checked + * + * Returns 0 if operation is supported, -EOPNOTSUPP otherwise. + */ +static int spi_nor_spimem_check_readop(struct spi_nor *nor, + const struct spi_nor_read_command *read) +{ + struct spi_mem_op op = SPI_NOR_READ_OP(read->opcode); + + spi_nor_spimem_setup_op(nor, &op, read->proto); + + /* convert the dummy cycles to the number of bytes */ + op.dummy.nbytes = (read->num_mode_clocks + read->num_wait_states) * + op.dummy.buswidth / 8; + if (spi_nor_protocol_is_dtr(nor->read_proto)) + op.dummy.nbytes *= 2; + + return spi_nor_spimem_check_op(nor, &op); +} + +/** + * spi_nor_spimem_check_pp - check if the page program op is supported + * by controller + *@nor: pointer to a 'struct spi_nor' + *@pp: pointer to op template to be checked + * + * Returns 0 if operation is supported, -EOPNOTSUPP otherwise. + */ +static int spi_nor_spimem_check_pp(struct spi_nor *nor, + const struct spi_nor_pp_command *pp) +{ + struct spi_mem_op op = SPI_NOR_PP_OP(pp->opcode); + + spi_nor_spimem_setup_op(nor, &op, pp->proto); + + return spi_nor_spimem_check_op(nor, &op); +} + +/** + * spi_nor_spimem_adjust_hwcaps - Find optimal Read/Write protocol + * based on SPI controller capabilities + * @nor: pointer to a 'struct spi_nor' + * @hwcaps: pointer to resulting capabilities after adjusting + * according to controller and flash's capability + */ +static void +spi_nor_spimem_adjust_hwcaps(struct spi_nor *nor, u32 *hwcaps) +{ + struct spi_nor_flash_parameter *params = nor->params; + unsigned int cap; + + /* X-X-X modes are not supported yet, mask them all. */ + *hwcaps &= ~SNOR_HWCAPS_X_X_X; + + /* + * If the reset line is broken, we do not want to enter a stateful + * mode. + */ + if (nor->flags & SNOR_F_BROKEN_RESET) + *hwcaps &= ~(SNOR_HWCAPS_X_X_X | SNOR_HWCAPS_X_X_X_DTR); + + for (cap = 0; cap < sizeof(*hwcaps) * BITS_PER_BYTE; cap++) { + int rdidx, ppidx; + + if (!(*hwcaps & BIT(cap))) + continue; + + rdidx = spi_nor_hwcaps_read2cmd(BIT(cap)); + if (rdidx >= 0 && + spi_nor_spimem_check_readop(nor, ¶ms->reads[rdidx])) + *hwcaps &= ~BIT(cap); + + ppidx = spi_nor_hwcaps_pp2cmd(BIT(cap)); + if (ppidx < 0) + continue; + + if (spi_nor_spimem_check_pp(nor, + ¶ms->page_programs[ppidx])) + *hwcaps &= ~BIT(cap); + } +} + +/** + * spi_nor_set_erase_type() - set a SPI NOR erase type + * @erase: pointer to a structure that describes a SPI NOR erase type + * @size: the size of the sector/block erased by the erase type + * @opcode: the SPI command op code to erase the sector/block + */ +void spi_nor_set_erase_type(struct spi_nor_erase_type *erase, u32 size, + u8 opcode) +{ + erase->size = size; + erase->opcode = opcode; + /* JEDEC JESD216B Standard imposes erase sizes to be power of 2. */ + erase->size_shift = ffs(erase->size) - 1; + erase->size_mask = (1 << erase->size_shift) - 1; +} + +/** + * spi_nor_mask_erase_type() - mask out a SPI NOR erase type + * @erase: pointer to a structure that describes a SPI NOR erase type + */ +void spi_nor_mask_erase_type(struct spi_nor_erase_type *erase) +{ + erase->size = 0; +} + +/** + * spi_nor_init_uniform_erase_map() - Initialize uniform erase map + * @map: the erase map of the SPI NOR + * @erase_mask: bitmask encoding erase types that can erase the entire + * flash memory + * @flash_size: the spi nor flash memory size + */ +void spi_nor_init_uniform_erase_map(struct spi_nor_erase_map *map, + u8 erase_mask, u64 flash_size) +{ + /* Offset 0 with erase_mask and SNOR_LAST_REGION bit set */ + map->uniform_region.offset = (erase_mask & SNOR_ERASE_TYPE_MASK) | + SNOR_LAST_REGION; + map->uniform_region.size = flash_size; + map->regions = &map->uniform_region; + map->uniform_erase_type = erase_mask; +} + +int spi_nor_post_bfpt_fixups(struct spi_nor *nor, + const struct sfdp_parameter_header *bfpt_header, + const struct sfdp_bfpt *bfpt) +{ + int ret; + + if (nor->manufacturer && nor->manufacturer->fixups && + nor->manufacturer->fixups->post_bfpt) { + ret = nor->manufacturer->fixups->post_bfpt(nor, bfpt_header, + bfpt); + if (ret) + return ret; + } + + if (nor->info->fixups && nor->info->fixups->post_bfpt) + return nor->info->fixups->post_bfpt(nor, bfpt_header, bfpt); + + return 0; +} + +static int spi_nor_select_read(struct spi_nor *nor, + u32 shared_hwcaps) +{ + int cmd, best_match = fls(shared_hwcaps & SNOR_HWCAPS_READ_MASK) - 1; + const struct spi_nor_read_command *read; + + if (best_match < 0) + return -EINVAL; + + cmd = spi_nor_hwcaps_read2cmd(BIT(best_match)); + if (cmd < 0) + return -EINVAL; + + read = &nor->params->reads[cmd]; + nor->read_opcode = read->opcode; + nor->read_proto = read->proto; + + /* + * In the SPI NOR framework, we don't need to make the difference + * between mode clock cycles and wait state clock cycles. + * Indeed, the value of the mode clock cycles is used by a QSPI + * flash memory to know whether it should enter or leave its 0-4-4 + * (Continuous Read / XIP) mode. + * eXecution In Place is out of the scope of the mtd sub-system. + * Hence we choose to merge both mode and wait state clock cycles + * into the so called dummy clock cycles. + */ + nor->read_dummy = read->num_mode_clocks + read->num_wait_states; + return 0; +} + +static int spi_nor_select_pp(struct spi_nor *nor, + u32 shared_hwcaps) +{ + int cmd, best_match = fls(shared_hwcaps & SNOR_HWCAPS_PP_MASK) - 1; + const struct spi_nor_pp_command *pp; + + if (best_match < 0) + return -EINVAL; + + cmd = spi_nor_hwcaps_pp2cmd(BIT(best_match)); + if (cmd < 0) + return -EINVAL; + + pp = &nor->params->page_programs[cmd]; + nor->program_opcode = pp->opcode; + nor->write_proto = pp->proto; + return 0; +} + +/** + * spi_nor_select_uniform_erase() - select optimum uniform erase type + * @map: the erase map of the SPI NOR + * @wanted_size: the erase type size to search for. Contains the value of + * info->sector_size, the "small sector" size in case + * CONFIG_MTD_SPI_NOR_USE_4K_SECTORS is defined or 0 if + * there is no information about the sector size. The + * latter is the case if the flash parameters are parsed + * solely by SFDP, then the largest supported erase type + * is selected. + * + * Once the optimum uniform sector erase command is found, disable all the + * other. + * + * Return: pointer to erase type on success, NULL otherwise. + */ +static const struct spi_nor_erase_type * +spi_nor_select_uniform_erase(struct spi_nor_erase_map *map, + const u32 wanted_size) +{ + const struct spi_nor_erase_type *tested_erase, *erase = NULL; + int i; + u8 uniform_erase_type = map->uniform_erase_type; + + for (i = SNOR_ERASE_TYPE_MAX - 1; i >= 0; i--) { + if (!(uniform_erase_type & BIT(i))) + continue; + + tested_erase = &map->erase_type[i]; + + /* Skip masked erase types. */ + if (!tested_erase->size) + continue; + + /* + * If the current erase size is the one, stop here: + * we have found the right uniform Sector Erase command. + */ + if (tested_erase->size == wanted_size) { + erase = tested_erase; + break; + } + + /* + * Otherwise, the current erase size is still a valid candidate. + * Select the biggest valid candidate. + */ + if (!erase && tested_erase->size) + erase = tested_erase; + /* keep iterating to find the wanted_size */ + } + + if (!erase) + return NULL; + + /* Disable all other Sector Erase commands. */ + map->uniform_erase_type &= ~SNOR_ERASE_TYPE_MASK; + map->uniform_erase_type |= BIT(erase - map->erase_type); + return erase; +} + +static int spi_nor_select_erase(struct spi_nor *nor) +{ + struct spi_nor_erase_map *map = &nor->params->erase_map; + const struct spi_nor_erase_type *erase = NULL; + struct mtd_info *mtd = &nor->mtd; + u32 wanted_size = nor->info->sector_size; + int i; + + /* + * The previous implementation handling Sector Erase commands assumed + * that the SPI flash memory has an uniform layout then used only one + * of the supported erase sizes for all Sector Erase commands. + * So to be backward compatible, the new implementation also tries to + * manage the SPI flash memory as uniform with a single erase sector + * size, when possible. + */ +#ifdef CONFIG_MTD_SPI_NOR_USE_4K_SECTORS + /* prefer "small sector" erase if possible */ + wanted_size = 4096u; +#endif + + if (spi_nor_has_uniform_erase(nor)) { + erase = spi_nor_select_uniform_erase(map, wanted_size); + if (!erase) + return -EINVAL; + nor->erase_opcode = erase->opcode; + mtd->erasesize = erase->size; + return 0; + } + + /* + * For non-uniform SPI flash memory, set mtd->erasesize to the + * maximum erase sector size. No need to set nor->erase_opcode. + */ + for (i = SNOR_ERASE_TYPE_MAX - 1; i >= 0; i--) { + if (map->erase_type[i].size) { + erase = &map->erase_type[i]; + break; + } + } + + if (!erase) + return -EINVAL; + + mtd->erasesize = erase->size; + return 0; +} + +static int spi_nor_default_setup(struct spi_nor *nor, + const struct spi_nor_hwcaps *hwcaps) +{ + struct spi_nor_flash_parameter *params = nor->params; + u32 ignored_mask, shared_mask; + int err; + + /* + * Keep only the hardware capabilities supported by both the SPI + * controller and the SPI flash memory. + */ + shared_mask = hwcaps->mask & params->hwcaps.mask; + + if (nor->spimem) { + /* + * When called from spi_nor_probe(), all caps are set and we + * need to discard some of them based on what the SPI + * controller actually supports (using spi_mem_supports_op()). + */ + spi_nor_spimem_adjust_hwcaps(nor, &shared_mask); + } else { + /* + * SPI n-n-n protocols are not supported when the SPI + * controller directly implements the spi_nor interface. + * Yet another reason to switch to spi-mem. + */ + ignored_mask = SNOR_HWCAPS_X_X_X | SNOR_HWCAPS_X_X_X_DTR; + if (shared_mask & ignored_mask) { + dev_dbg(nor->dev, + "SPI n-n-n protocols are not supported.\n"); + shared_mask &= ~ignored_mask; + } + } + + /* Select the (Fast) Read command. */ + err = spi_nor_select_read(nor, shared_mask); + if (err) { + dev_dbg(nor->dev, + "can't select read settings supported by both the SPI controller and memory.\n"); + return err; + } + + /* Select the Page Program command. */ + err = spi_nor_select_pp(nor, shared_mask); + if (err) { + dev_dbg(nor->dev, + "can't select write settings supported by both the SPI controller and memory.\n"); + return err; + } + + /* Select the Sector Erase command. */ + err = spi_nor_select_erase(nor); + if (err) { + dev_dbg(nor->dev, + "can't select erase settings supported by both the SPI controller and memory.\n"); + return err; + } + + return 0; +} + +static int spi_nor_set_addr_nbytes(struct spi_nor *nor) +{ + if (nor->params->addr_nbytes) { + nor->addr_nbytes = nor->params->addr_nbytes; + } else if (nor->read_proto == SNOR_PROTO_8_8_8_DTR) { + /* + * In 8D-8D-8D mode, one byte takes half a cycle to transfer. So + * in this protocol an odd addr_nbytes cannot be used because + * then the address phase would only span a cycle and a half. + * Half a cycle would be left over. We would then have to start + * the dummy phase in the middle of a cycle and so too the data + * phase, and we will end the transaction with half a cycle left + * over. + * + * Force all 8D-8D-8D flashes to use an addr_nbytes of 4 to + * avoid this situation. + */ + nor->addr_nbytes = 4; + } else if (nor->info->addr_nbytes) { + nor->addr_nbytes = nor->info->addr_nbytes; + } else { + nor->addr_nbytes = 3; + } + + if (nor->addr_nbytes == 3 && nor->params->size > 0x1000000) { + /* enable 4-byte addressing if the device exceeds 16MiB */ + nor->addr_nbytes = 4; + } + + if (nor->addr_nbytes > SPI_NOR_MAX_ADDR_NBYTES) { + dev_dbg(nor->dev, "The number of address bytes is too large: %u\n", + nor->addr_nbytes); + return -EINVAL; + } + + /* Set 4byte opcodes when possible. */ + if (nor->addr_nbytes == 4 && nor->flags & SNOR_F_4B_OPCODES && + !(nor->flags & SNOR_F_HAS_4BAIT)) + spi_nor_set_4byte_opcodes(nor); + + return 0; +} + +static int spi_nor_setup(struct spi_nor *nor, + const struct spi_nor_hwcaps *hwcaps) +{ + int ret; + + if (nor->params->setup) + ret = nor->params->setup(nor, hwcaps); + else + ret = spi_nor_default_setup(nor, hwcaps); + if (ret) + return ret; + + return spi_nor_set_addr_nbytes(nor); +} + +/** + * spi_nor_manufacturer_init_params() - Initialize the flash's parameters and + * settings based on MFR register and ->default_init() hook. + * @nor: pointer to a 'struct spi_nor'. + */ +static void spi_nor_manufacturer_init_params(struct spi_nor *nor) +{ + if (nor->manufacturer && nor->manufacturer->fixups && + nor->manufacturer->fixups->default_init) + nor->manufacturer->fixups->default_init(nor); + + if (nor->info->fixups && nor->info->fixups->default_init) + nor->info->fixups->default_init(nor); +} + +/** + * spi_nor_no_sfdp_init_params() - Initialize the flash's parameters and + * settings based on nor->info->sfdp_flags. This method should be called only by + * flashes that do not define SFDP tables. If the flash supports SFDP but the + * information is wrong and the settings from this function can not be retrieved + * by parsing SFDP, one should instead use the fixup hooks and update the wrong + * bits. + * @nor: pointer to a 'struct spi_nor'. + */ +static void spi_nor_no_sfdp_init_params(struct spi_nor *nor) +{ + struct spi_nor_flash_parameter *params = nor->params; + struct spi_nor_erase_map *map = ¶ms->erase_map; + const u8 no_sfdp_flags = nor->info->no_sfdp_flags; + u8 i, erase_mask; + + if (no_sfdp_flags & SPI_NOR_DUAL_READ) { + params->hwcaps.mask |= SNOR_HWCAPS_READ_1_1_2; + spi_nor_set_read_settings(¶ms->reads[SNOR_CMD_READ_1_1_2], + 0, 8, SPINOR_OP_READ_1_1_2, + SNOR_PROTO_1_1_2); + } + + if (no_sfdp_flags & SPI_NOR_QUAD_READ) { + params->hwcaps.mask |= SNOR_HWCAPS_READ_1_1_4; + spi_nor_set_read_settings(¶ms->reads[SNOR_CMD_READ_1_1_4], + 0, 8, SPINOR_OP_READ_1_1_4, + SNOR_PROTO_1_1_4); + } + + if (no_sfdp_flags & SPI_NOR_OCTAL_READ) { + params->hwcaps.mask |= SNOR_HWCAPS_READ_1_1_8; + spi_nor_set_read_settings(¶ms->reads[SNOR_CMD_READ_1_1_8], + 0, 8, SPINOR_OP_READ_1_1_8, + SNOR_PROTO_1_1_8); + } + + if (no_sfdp_flags & SPI_NOR_OCTAL_DTR_READ) { + params->hwcaps.mask |= SNOR_HWCAPS_READ_8_8_8_DTR; + spi_nor_set_read_settings(¶ms->reads[SNOR_CMD_READ_8_8_8_DTR], + 0, 20, SPINOR_OP_READ_FAST, + SNOR_PROTO_8_8_8_DTR); + } + + if (no_sfdp_flags & SPI_NOR_OCTAL_DTR_PP) { + params->hwcaps.mask |= SNOR_HWCAPS_PP_8_8_8_DTR; + /* + * Since xSPI Page Program opcode is backward compatible with + * Legacy SPI, use Legacy SPI opcode there as well. + */ + spi_nor_set_pp_settings(¶ms->page_programs[SNOR_CMD_PP_8_8_8_DTR], + SPINOR_OP_PP, SNOR_PROTO_8_8_8_DTR); + } + + /* + * Sector Erase settings. Sort Erase Types in ascending order, with the + * smallest erase size starting at BIT(0). + */ + erase_mask = 0; + i = 0; + if (no_sfdp_flags & SECT_4K) { + erase_mask |= BIT(i); + spi_nor_set_erase_type(&map->erase_type[i], 4096u, + SPINOR_OP_BE_4K); + i++; + } + erase_mask |= BIT(i); + spi_nor_set_erase_type(&map->erase_type[i], nor->info->sector_size, + SPINOR_OP_SE); + spi_nor_init_uniform_erase_map(map, erase_mask, params->size); +} + +/** + * spi_nor_init_flags() - Initialize NOR flags for settings that are not defined + * in the JESD216 SFDP standard, thus can not be retrieved when parsing SFDP. + * @nor: pointer to a 'struct spi_nor' + */ +static void spi_nor_init_flags(struct spi_nor *nor) +{ + struct device_node *np = spi_nor_get_flash_node(nor); + const u16 flags = nor->info->flags; + + if (of_property_read_bool(np, "broken-flash-reset")) + nor->flags |= SNOR_F_BROKEN_RESET; + + if (of_property_read_bool(np, "no-wp")) + nor->flags |= SNOR_F_NO_WP; + + if (flags & SPI_NOR_SWP_IS_VOLATILE) + nor->flags |= SNOR_F_SWP_IS_VOLATILE; + + if (flags & SPI_NOR_HAS_LOCK) + nor->flags |= SNOR_F_HAS_LOCK; + + if (flags & SPI_NOR_HAS_TB) { + nor->flags |= SNOR_F_HAS_SR_TB; + if (flags & SPI_NOR_TB_SR_BIT6) + nor->flags |= SNOR_F_HAS_SR_TB_BIT6; + } + + if (flags & SPI_NOR_4BIT_BP) { + nor->flags |= SNOR_F_HAS_4BIT_BP; + if (flags & SPI_NOR_BP3_SR_BIT6) + nor->flags |= SNOR_F_HAS_SR_BP3_BIT6; + } + + if (flags & NO_CHIP_ERASE) + nor->flags |= SNOR_F_NO_OP_CHIP_ERASE; + + if (flags & SPI_NOR_RWW && nor->info->n_banks > 1 && + !nor->controller_ops) + nor->flags |= SNOR_F_RWW; +} + +/** + * spi_nor_init_fixup_flags() - Initialize NOR flags for settings that can not + * be discovered by SFDP for this particular flash because the SFDP table that + * indicates this support is not defined in the flash. In case the table for + * this support is defined but has wrong values, one should instead use a + * post_sfdp() hook to set the SNOR_F equivalent flag. + * @nor: pointer to a 'struct spi_nor' + */ +static void spi_nor_init_fixup_flags(struct spi_nor *nor) +{ + const u8 fixup_flags = nor->info->fixup_flags; + + if (fixup_flags & SPI_NOR_4B_OPCODES) + nor->flags |= SNOR_F_4B_OPCODES; + + if (fixup_flags & SPI_NOR_IO_MODE_EN_VOLATILE) + nor->flags |= SNOR_F_IO_MODE_EN_VOLATILE; +} + +/** + * spi_nor_late_init_params() - Late initialization of default flash parameters. + * @nor: pointer to a 'struct spi_nor' + * + * Used to initialize flash parameters that are not declared in the JESD216 + * SFDP standard, or where SFDP tables are not defined at all. + * Will replace the spi_nor_manufacturer_init_params() method. + */ +static int spi_nor_late_init_params(struct spi_nor *nor) +{ + struct spi_nor_flash_parameter *params = nor->params; + int ret; + + if (nor->manufacturer && nor->manufacturer->fixups && + nor->manufacturer->fixups->late_init) { + ret = nor->manufacturer->fixups->late_init(nor); + if (ret) + return ret; + } + + if (nor->info->fixups && nor->info->fixups->late_init) { + ret = nor->info->fixups->late_init(nor); + if (ret) + return ret; + } + + /* Default method kept for backward compatibility. */ + if (!params->set_4byte_addr_mode) + params->set_4byte_addr_mode = spi_nor_set_4byte_addr_mode_brwr; + + spi_nor_init_flags(nor); + spi_nor_init_fixup_flags(nor); + + /* + * NOR protection support. When locking_ops are not provided, we pick + * the default ones. + */ + if (nor->flags & SNOR_F_HAS_LOCK && !nor->params->locking_ops) + spi_nor_init_default_locking_ops(nor); + + if (nor->info->n_banks > 1) + params->bank_size = div64_u64(params->size, nor->info->n_banks); + + return 0; +} + +/** + * spi_nor_sfdp_init_params_deprecated() - Deprecated way of initializing flash + * parameters and settings based on JESD216 SFDP standard. + * @nor: pointer to a 'struct spi_nor'. + * + * The method has a roll-back mechanism: in case the SFDP parsing fails, the + * legacy flash parameters and settings will be restored. + */ +static void spi_nor_sfdp_init_params_deprecated(struct spi_nor *nor) +{ + struct spi_nor_flash_parameter sfdp_params; + + memcpy(&sfdp_params, nor->params, sizeof(sfdp_params)); + + if (spi_nor_parse_sfdp(nor)) { + memcpy(nor->params, &sfdp_params, sizeof(*nor->params)); + nor->flags &= ~SNOR_F_4B_OPCODES; + } +} + +/** + * spi_nor_init_params_deprecated() - Deprecated way of initializing flash + * parameters and settings. + * @nor: pointer to a 'struct spi_nor'. + * + * The method assumes that flash doesn't support SFDP so it initializes flash + * parameters in spi_nor_no_sfdp_init_params() which later on can be overwritten + * when parsing SFDP, if supported. + */ +static void spi_nor_init_params_deprecated(struct spi_nor *nor) +{ + spi_nor_no_sfdp_init_params(nor); + + spi_nor_manufacturer_init_params(nor); + + if (nor->info->no_sfdp_flags & (SPI_NOR_DUAL_READ | + SPI_NOR_QUAD_READ | + SPI_NOR_OCTAL_READ | + SPI_NOR_OCTAL_DTR_READ)) + spi_nor_sfdp_init_params_deprecated(nor); +} + +/** + * spi_nor_init_default_params() - Default initialization of flash parameters + * and settings. Done for all flashes, regardless is they define SFDP tables + * or not. + * @nor: pointer to a 'struct spi_nor'. + */ +static void spi_nor_init_default_params(struct spi_nor *nor) +{ + struct spi_nor_flash_parameter *params = nor->params; + const struct flash_info *info = nor->info; + struct device_node *np = spi_nor_get_flash_node(nor); + + params->quad_enable = spi_nor_sr2_bit1_quad_enable; + params->otp.org = &info->otp_org; + + /* Default to 16-bit Write Status (01h) Command */ + nor->flags |= SNOR_F_HAS_16BIT_SR; + + /* Set SPI NOR sizes. */ + params->writesize = 1; + params->size = (u64)info->sector_size * info->n_sectors; + params->bank_size = params->size; + params->page_size = info->page_size; + + if (!(info->flags & SPI_NOR_NO_FR)) { + /* Default to Fast Read for DT and non-DT platform devices. */ + params->hwcaps.mask |= SNOR_HWCAPS_READ_FAST; + + /* Mask out Fast Read if not requested at DT instantiation. */ + if (np && !of_property_read_bool(np, "m25p,fast-read")) + params->hwcaps.mask &= ~SNOR_HWCAPS_READ_FAST; + } + + /* (Fast) Read settings. */ + params->hwcaps.mask |= SNOR_HWCAPS_READ; + spi_nor_set_read_settings(¶ms->reads[SNOR_CMD_READ], + 0, 0, SPINOR_OP_READ, + SNOR_PROTO_1_1_1); + + if (params->hwcaps.mask & SNOR_HWCAPS_READ_FAST) + spi_nor_set_read_settings(¶ms->reads[SNOR_CMD_READ_FAST], + 0, 8, SPINOR_OP_READ_FAST, + SNOR_PROTO_1_1_1); + /* Page Program settings. */ + params->hwcaps.mask |= SNOR_HWCAPS_PP; + spi_nor_set_pp_settings(¶ms->page_programs[SNOR_CMD_PP], + SPINOR_OP_PP, SNOR_PROTO_1_1_1); + + if (info->flags & SPI_NOR_QUAD_PP) { + params->hwcaps.mask |= SNOR_HWCAPS_PP_1_1_4; + spi_nor_set_pp_settings(¶ms->page_programs[SNOR_CMD_PP_1_1_4], + SPINOR_OP_PP_1_1_4, SNOR_PROTO_1_1_4); + } +} + +/** + * spi_nor_init_params() - Initialize the flash's parameters and settings. + * @nor: pointer to a 'struct spi_nor'. + * + * The flash parameters and settings are initialized based on a sequence of + * calls that are ordered by priority: + * + * 1/ Default flash parameters initialization. The initializations are done + * based on nor->info data: + * spi_nor_info_init_params() + * + * which can be overwritten by: + * 2/ Manufacturer flash parameters initialization. The initializations are + * done based on MFR register, or when the decisions can not be done solely + * based on MFR, by using specific flash_info tweeks, ->default_init(): + * spi_nor_manufacturer_init_params() + * + * which can be overwritten by: + * 3/ SFDP flash parameters initialization. JESD216 SFDP is a standard and + * should be more accurate that the above. + * spi_nor_parse_sfdp() or spi_nor_no_sfdp_init_params() + * + * Please note that there is a ->post_bfpt() fixup hook that can overwrite + * the flash parameters and settings immediately after parsing the Basic + * Flash Parameter Table. + * spi_nor_post_sfdp_fixups() is called after the SFDP tables are parsed. + * It is used to tweak various flash parameters when information provided + * by the SFDP tables are wrong. + * + * which can be overwritten by: + * 4/ Late flash parameters initialization, used to initialize flash + * parameters that are not declared in the JESD216 SFDP standard, or where SFDP + * tables are not defined at all. + * spi_nor_late_init_params() + * + * Return: 0 on success, -errno otherwise. + */ +static int spi_nor_init_params(struct spi_nor *nor) +{ + int ret; + + nor->params = devm_kzalloc(nor->dev, sizeof(*nor->params), GFP_KERNEL); + if (!nor->params) + return -ENOMEM; + + spi_nor_init_default_params(nor); + + if (nor->info->parse_sfdp) { + ret = spi_nor_parse_sfdp(nor); + if (ret) { + dev_err(nor->dev, "BFPT parsing failed. Please consider using SPI_NOR_SKIP_SFDP when declaring the flash\n"); + return ret; + } + } else if (nor->info->no_sfdp_flags & SPI_NOR_SKIP_SFDP) { + spi_nor_no_sfdp_init_params(nor); + } else { + spi_nor_init_params_deprecated(nor); + } + + return spi_nor_late_init_params(nor); +} + +/** spi_nor_set_octal_dtr() - enable or disable Octal DTR I/O. + * @nor: pointer to a 'struct spi_nor' + * @enable: whether to enable or disable Octal DTR + * + * Return: 0 on success, -errno otherwise. + */ +static int spi_nor_set_octal_dtr(struct spi_nor *nor, bool enable) +{ + int ret; + + if (!nor->params->set_octal_dtr) + return 0; + + if (!(nor->read_proto == SNOR_PROTO_8_8_8_DTR && + nor->write_proto == SNOR_PROTO_8_8_8_DTR)) + return 0; + + if (!(nor->flags & SNOR_F_IO_MODE_EN_VOLATILE)) + return 0; + + ret = nor->params->set_octal_dtr(nor, enable); + if (ret) + return ret; + + if (enable) + nor->reg_proto = SNOR_PROTO_8_8_8_DTR; + else + nor->reg_proto = SNOR_PROTO_1_1_1; + + return 0; +} + +/** + * spi_nor_quad_enable() - enable Quad I/O if needed. + * @nor: pointer to a 'struct spi_nor' + * + * Return: 0 on success, -errno otherwise. + */ +static int spi_nor_quad_enable(struct spi_nor *nor) +{ + if (!nor->params->quad_enable) + return 0; + + if (!(spi_nor_get_protocol_width(nor->read_proto) == 4 || + spi_nor_get_protocol_width(nor->write_proto) == 4)) + return 0; + + return nor->params->quad_enable(nor); +} + +/** + * spi_nor_set_4byte_addr_mode() - Set address mode. + * @nor: pointer to a 'struct spi_nor'. + * @enable: enable/disable 4 byte address mode. + * + * Return: 0 on success, -errno otherwise. + */ +int spi_nor_set_4byte_addr_mode(struct spi_nor *nor, bool enable) +{ + struct spi_nor_flash_parameter *params = nor->params; + int ret; + + ret = params->set_4byte_addr_mode(nor, enable); + if (ret && ret != -ENOTSUPP) + return ret; + + if (enable) { + params->addr_nbytes = 4; + params->addr_mode_nbytes = 4; + } else { + params->addr_nbytes = 3; + params->addr_mode_nbytes = 3; + } + + return 0; +} + +static int spi_nor_init(struct spi_nor *nor) +{ + int err; + + err = spi_nor_set_octal_dtr(nor, true); + if (err) { + dev_dbg(nor->dev, "octal mode not supported\n"); + return err; + } + + err = spi_nor_quad_enable(nor); + if (err) { + dev_dbg(nor->dev, "quad mode not supported\n"); + return err; + } + + /* + * Some SPI NOR flashes are write protected by default after a power-on + * reset cycle, in order to avoid inadvertent writes during power-up. + * Backward compatibility imposes to unlock the entire flash memory + * array at power-up by default. Depending on the kernel configuration + * (1) do nothing, (2) always unlock the entire flash array or (3) + * unlock the entire flash array only when the software write + * protection bits are volatile. The latter is indicated by + * SNOR_F_SWP_IS_VOLATILE. + */ + if (IS_ENABLED(CONFIG_MTD_SPI_NOR_SWP_DISABLE) || + (IS_ENABLED(CONFIG_MTD_SPI_NOR_SWP_DISABLE_ON_VOLATILE) && + nor->flags & SNOR_F_SWP_IS_VOLATILE)) + spi_nor_try_unlock_all(nor); + + if (nor->addr_nbytes == 4 && + nor->read_proto != SNOR_PROTO_8_8_8_DTR && + !(nor->flags & SNOR_F_4B_OPCODES)) { + /* + * If the RESET# pin isn't hooked up properly, or the system + * otherwise doesn't perform a reset command in the boot + * sequence, it's impossible to 100% protect against unexpected + * reboots (e.g., crashes). Warn the user (or hopefully, system + * designer) that this is bad. + */ + WARN_ONCE(nor->flags & SNOR_F_BROKEN_RESET, + "enabling reset hack; may not recover from unexpected reboots\n"); + err = spi_nor_set_4byte_addr_mode(nor, true); + if (err) + return err; + } + + return 0; +} + +/** + * spi_nor_soft_reset() - Perform a software reset + * @nor: pointer to 'struct spi_nor' + * + * Performs a "Soft Reset and Enter Default Protocol Mode" sequence which resets + * the device to its power-on-reset state. This is useful when the software has + * made some changes to device (volatile) registers and needs to reset it before + * shutting down, for example. + * + * Not every flash supports this sequence. The same set of opcodes might be used + * for some other operation on a flash that does not support this. Support for + * this sequence can be discovered via SFDP in the BFPT table. + * + * Return: 0 on success, -errno otherwise. + */ +static void spi_nor_soft_reset(struct spi_nor *nor) +{ + struct spi_mem_op op; + int ret; + + op = (struct spi_mem_op)SPINOR_SRSTEN_OP; + + spi_nor_spimem_setup_op(nor, &op, nor->reg_proto); + + ret = spi_mem_exec_op(nor->spimem, &op); + if (ret) { + dev_warn(nor->dev, "Software reset failed: %d\n", ret); + return; + } + + op = (struct spi_mem_op)SPINOR_SRST_OP; + + spi_nor_spimem_setup_op(nor, &op, nor->reg_proto); + + ret = spi_mem_exec_op(nor->spimem, &op); + if (ret) { + dev_warn(nor->dev, "Software reset failed: %d\n", ret); + return; + } + + /* + * Software Reset is not instant, and the delay varies from flash to + * flash. Looking at a few flashes, most range somewhere below 100 + * microseconds. So, sleep for a range of 200-400 us. + */ + usleep_range(SPI_NOR_SRST_SLEEP_MIN, SPI_NOR_SRST_SLEEP_MAX); +} + +/* mtd suspend handler */ +static int spi_nor_suspend(struct mtd_info *mtd) +{ + struct spi_nor *nor = mtd_to_spi_nor(mtd); + int ret; + + /* Disable octal DTR mode if we enabled it. */ + ret = spi_nor_set_octal_dtr(nor, false); + if (ret) + dev_err(nor->dev, "suspend() failed\n"); + + return ret; +} + +/* mtd resume handler */ +static void spi_nor_resume(struct mtd_info *mtd) +{ + struct spi_nor *nor = mtd_to_spi_nor(mtd); + struct device *dev = nor->dev; + int ret; + + /* re-initialize the nor chip */ + ret = spi_nor_init(nor); + if (ret) + dev_err(dev, "resume() failed\n"); +} + +static int spi_nor_get_device(struct mtd_info *mtd) +{ + struct mtd_info *master = mtd_get_master(mtd); + struct spi_nor *nor = mtd_to_spi_nor(master); + struct device *dev; + + if (nor->spimem) + dev = nor->spimem->spi->controller->dev.parent; + else + dev = nor->dev; + + if (!try_module_get(dev->driver->owner)) + return -ENODEV; + + return 0; +} + +static void spi_nor_put_device(struct mtd_info *mtd) +{ + struct mtd_info *master = mtd_get_master(mtd); + struct spi_nor *nor = mtd_to_spi_nor(master); + struct device *dev; + + if (nor->spimem) + dev = nor->spimem->spi->controller->dev.parent; + else + dev = nor->dev; + + module_put(dev->driver->owner); +} + +static void spi_nor_restore(struct spi_nor *nor) +{ + int ret; + + /* restore the addressing mode */ + if (nor->addr_nbytes == 4 && !(nor->flags & SNOR_F_4B_OPCODES) && + nor->flags & SNOR_F_BROKEN_RESET) { + ret = spi_nor_set_4byte_addr_mode(nor, false); + if (ret) + /* + * Do not stop the execution in the hope that the flash + * will default to the 3-byte address mode after the + * software reset. + */ + dev_err(nor->dev, "Failed to exit 4-byte address mode, err = %d\n", ret); + } + + if (nor->flags & SNOR_F_SOFT_RESET) + spi_nor_soft_reset(nor); +} + +static const struct flash_info *spi_nor_match_name(struct spi_nor *nor, + const char *name) +{ + unsigned int i, j; + + for (i = 0; i < ARRAY_SIZE(manufacturers); i++) { + for (j = 0; j < manufacturers[i]->nparts; j++) { + if (!strcmp(name, manufacturers[i]->parts[j].name)) { + nor->manufacturer = manufacturers[i]; + return &manufacturers[i]->parts[j]; + } + } + } + + return NULL; +} + +static const struct flash_info *spi_nor_get_flash_info(struct spi_nor *nor, + const char *name) +{ + const struct flash_info *info = NULL; + + if (name) + info = spi_nor_match_name(nor, name); + /* Try to auto-detect if chip name wasn't specified or not found */ + if (!info) + return spi_nor_detect(nor); + + /* + * If caller has specified name of flash model that can normally be + * detected using JEDEC, let's verify it. + */ + if (name && info->id_len) { + const struct flash_info *jinfo; + + jinfo = spi_nor_detect(nor); + if (IS_ERR(jinfo)) { + return jinfo; + } else if (jinfo != info) { + /* + * JEDEC knows better, so overwrite platform ID. We + * can't trust partitions any longer, but we'll let + * mtd apply them anyway, since some partitions may be + * marked read-only, and we don't want to loose that + * information, even if it's not 100% accurate. + */ + dev_warn(nor->dev, "found %s, expected %s\n", + jinfo->name, info->name); + info = jinfo; + } + } + + return info; +} + +static void spi_nor_set_mtd_info(struct spi_nor *nor) +{ + struct mtd_info *mtd = &nor->mtd; + struct device *dev = nor->dev; + + spi_nor_set_mtd_locking_ops(nor); + spi_nor_set_mtd_otp_ops(nor); + + mtd->dev.parent = dev; + if (!mtd->name) + mtd->name = dev_name(dev); + mtd->type = MTD_NORFLASH; + mtd->flags = MTD_CAP_NORFLASH; + /* Unset BIT_WRITEABLE to enable JFFS2 write buffer for ECC'd NOR */ + if (nor->flags & SNOR_F_ECC) + mtd->flags &= ~MTD_BIT_WRITEABLE; + if (nor->info->flags & SPI_NOR_NO_ERASE) + mtd->flags |= MTD_NO_ERASE; + else + mtd->_erase = spi_nor_erase; + mtd->writesize = nor->params->writesize; + mtd->writebufsize = nor->params->page_size; + mtd->size = nor->params->size; + mtd->_read = spi_nor_read; + /* Might be already set by some SST flashes. */ + if (!mtd->_write) + mtd->_write = spi_nor_write; + mtd->_suspend = spi_nor_suspend; + mtd->_resume = spi_nor_resume; + mtd->_get_device = spi_nor_get_device; + mtd->_put_device = spi_nor_put_device; +} + +static int spi_nor_hw_reset(struct spi_nor *nor) +{ + struct gpio_desc *reset; + + reset = devm_gpiod_get_optional(nor->dev, "reset", GPIOD_OUT_LOW); + if (IS_ERR_OR_NULL(reset)) + return PTR_ERR_OR_ZERO(reset); + + /* + * Experimental delay values by looking at different flash device + * vendors datasheets. + */ + usleep_range(1, 5); + gpiod_set_value_cansleep(reset, 1); + usleep_range(100, 150); + gpiod_set_value_cansleep(reset, 0); + usleep_range(1000, 1200); + + return 0; +} + +int spi_nor_scan(struct spi_nor *nor, const char *name, + const struct spi_nor_hwcaps *hwcaps) +{ + const struct flash_info *info; + struct device *dev = nor->dev; + struct mtd_info *mtd = &nor->mtd; + int ret; + int i; + + ret = spi_nor_check(nor); + if (ret) + return ret; + + /* Reset SPI protocol for all commands. */ + nor->reg_proto = SNOR_PROTO_1_1_1; + nor->read_proto = SNOR_PROTO_1_1_1; + nor->write_proto = SNOR_PROTO_1_1_1; + + /* + * We need the bounce buffer early to read/write registers when going + * through the spi-mem layer (buffers have to be DMA-able). + * For spi-mem drivers, we'll reallocate a new buffer if + * nor->params->page_size turns out to be greater than PAGE_SIZE (which + * shouldn't happen before long since NOR pages are usually less + * than 1KB) after spi_nor_scan() returns. + */ + nor->bouncebuf_size = PAGE_SIZE; + nor->bouncebuf = devm_kmalloc(dev, nor->bouncebuf_size, + GFP_KERNEL); + if (!nor->bouncebuf) + return -ENOMEM; + + ret = spi_nor_hw_reset(nor); + if (ret) + return ret; + + info = spi_nor_get_flash_info(nor, name); + if (IS_ERR(info)) + return PTR_ERR(info); + + nor->info = info; + + mutex_init(&nor->lock); + + /* Init flash parameters based on flash_info struct and SFDP */ + ret = spi_nor_init_params(nor); + if (ret) + return ret; + + if (spi_nor_use_parallel_locking(nor)) + init_waitqueue_head(&nor->rww.wait); + + /* + * Configure the SPI memory: + * - select op codes for (Fast) Read, Page Program and Sector Erase. + * - set the number of dummy cycles (mode cycles + wait states). + * - set the SPI protocols for register and memory accesses. + * - set the number of address bytes. + */ + ret = spi_nor_setup(nor, hwcaps); + if (ret) + return ret; + + /* Send all the required SPI flash commands to initialize device */ + ret = spi_nor_init(nor); + if (ret) + return ret; + + /* No mtd_info fields should be used up to this point. */ + spi_nor_set_mtd_info(nor); + + dev_info(dev, "%s (%lld Kbytes)\n", info->name, + (long long)mtd->size >> 10); + + dev_dbg(dev, + "mtd .name = %s, .size = 0x%llx (%lldMiB), " + ".erasesize = 0x%.8x (%uKiB) .numeraseregions = %d\n", + mtd->name, (long long)mtd->size, (long long)(mtd->size >> 20), + mtd->erasesize, mtd->erasesize / 1024, mtd->numeraseregions); + + if (mtd->numeraseregions) + for (i = 0; i < mtd->numeraseregions; i++) + dev_dbg(dev, + "mtd.eraseregions[%d] = { .offset = 0x%llx, " + ".erasesize = 0x%.8x (%uKiB), " + ".numblocks = %d }\n", + i, (long long)mtd->eraseregions[i].offset, + mtd->eraseregions[i].erasesize, + mtd->eraseregions[i].erasesize / 1024, + mtd->eraseregions[i].numblocks); + return 0; +} +EXPORT_SYMBOL_GPL(spi_nor_scan); + +static int spi_nor_create_read_dirmap(struct spi_nor *nor) +{ + struct spi_mem_dirmap_info info = { + .op_tmpl = SPI_MEM_OP(SPI_MEM_OP_CMD(nor->read_opcode, 0), + SPI_MEM_OP_ADDR(nor->addr_nbytes, 0, 0), + SPI_MEM_OP_DUMMY(nor->read_dummy, 0), + SPI_MEM_OP_DATA_IN(0, NULL, 0)), + .offset = 0, + .length = nor->params->size, + }; + struct spi_mem_op *op = &info.op_tmpl; + + spi_nor_spimem_setup_op(nor, op, nor->read_proto); + + /* convert the dummy cycles to the number of bytes */ + op->dummy.nbytes = (nor->read_dummy * op->dummy.buswidth) / 8; + if (spi_nor_protocol_is_dtr(nor->read_proto)) + op->dummy.nbytes *= 2; + + /* + * Since spi_nor_spimem_setup_op() only sets buswidth when the number + * of data bytes is non-zero, the data buswidth won't be set here. So, + * do it explicitly. + */ + op->data.buswidth = spi_nor_get_protocol_data_nbits(nor->read_proto); + + nor->dirmap.rdesc = devm_spi_mem_dirmap_create(nor->dev, nor->spimem, + &info); + return PTR_ERR_OR_ZERO(nor->dirmap.rdesc); +} + +static int spi_nor_create_write_dirmap(struct spi_nor *nor) +{ + struct spi_mem_dirmap_info info = { + .op_tmpl = SPI_MEM_OP(SPI_MEM_OP_CMD(nor->program_opcode, 0), + SPI_MEM_OP_ADDR(nor->addr_nbytes, 0, 0), + SPI_MEM_OP_NO_DUMMY, + SPI_MEM_OP_DATA_OUT(0, NULL, 0)), + .offset = 0, + .length = nor->params->size, + }; + struct spi_mem_op *op = &info.op_tmpl; + + if (nor->program_opcode == SPINOR_OP_AAI_WP && nor->sst_write_second) + op->addr.nbytes = 0; + + spi_nor_spimem_setup_op(nor, op, nor->write_proto); + + /* + * Since spi_nor_spimem_setup_op() only sets buswidth when the number + * of data bytes is non-zero, the data buswidth won't be set here. So, + * do it explicitly. + */ + op->data.buswidth = spi_nor_get_protocol_data_nbits(nor->write_proto); + + nor->dirmap.wdesc = devm_spi_mem_dirmap_create(nor->dev, nor->spimem, + &info); + return PTR_ERR_OR_ZERO(nor->dirmap.wdesc); +} + +static int spi_nor_probe(struct spi_mem *spimem) +{ + struct spi_device *spi = spimem->spi; + struct flash_platform_data *data = dev_get_platdata(&spi->dev); + struct spi_nor *nor; + /* + * Enable all caps by default. The core will mask them after + * checking what's really supported using spi_mem_supports_op(). + */ + const struct spi_nor_hwcaps hwcaps = { .mask = SNOR_HWCAPS_ALL }; + char *flash_name; + int ret; + + nor = devm_kzalloc(&spi->dev, sizeof(*nor), GFP_KERNEL); + if (!nor) + return -ENOMEM; + + nor->spimem = spimem; + nor->dev = &spi->dev; + spi_nor_set_flash_node(nor, spi->dev.of_node); + + spi_mem_set_drvdata(spimem, nor); + + if (data && data->name) + nor->mtd.name = data->name; + + if (!nor->mtd.name) + nor->mtd.name = spi_mem_get_name(spimem); + + /* + * For some (historical?) reason many platforms provide two different + * names in flash_platform_data: "name" and "type". Quite often name is + * set to "m25p80" and then "type" provides a real chip name. + * If that's the case, respect "type" and ignore a "name". + */ + if (data && data->type) + flash_name = data->type; + else if (!strcmp(spi->modalias, "spi-nor")) + flash_name = NULL; /* auto-detect */ + else + flash_name = spi->modalias; + + ret = spi_nor_scan(nor, flash_name, &hwcaps); + if (ret) + return ret; + + spi_nor_debugfs_register(nor); + + /* + * None of the existing parts have > 512B pages, but let's play safe + * and add this logic so that if anyone ever adds support for such + * a NOR we don't end up with buffer overflows. + */ + if (nor->params->page_size > PAGE_SIZE) { + nor->bouncebuf_size = nor->params->page_size; + devm_kfree(nor->dev, nor->bouncebuf); + nor->bouncebuf = devm_kmalloc(nor->dev, + nor->bouncebuf_size, + GFP_KERNEL); + if (!nor->bouncebuf) + return -ENOMEM; + } + + ret = spi_nor_create_read_dirmap(nor); + if (ret) + return ret; + + ret = spi_nor_create_write_dirmap(nor); + if (ret) + return ret; + + return mtd_device_register(&nor->mtd, data ? data->parts : NULL, + data ? data->nr_parts : 0); +} + +static int spi_nor_remove(struct spi_mem *spimem) +{ + struct spi_nor *nor = spi_mem_get_drvdata(spimem); + + spi_nor_restore(nor); + + /* Clean up MTD stuff. */ + return mtd_device_unregister(&nor->mtd); +} + +static void spi_nor_shutdown(struct spi_mem *spimem) +{ + struct spi_nor *nor = spi_mem_get_drvdata(spimem); + + spi_nor_restore(nor); +} + +/* + * Do NOT add to this array without reading the following: + * + * Historically, many flash devices are bound to this driver by their name. But + * since most of these flash are compatible to some extent, and their + * differences can often be differentiated by the JEDEC read-ID command, we + * encourage new users to add support to the spi-nor library, and simply bind + * against a generic string here (e.g., "jedec,spi-nor"). + * + * Many flash names are kept here in this list to keep them available + * as module aliases for existing platforms. + */ +static const struct spi_device_id spi_nor_dev_ids[] = { + /* + * Allow non-DT platform devices to bind to the "spi-nor" modalias, and + * hack around the fact that the SPI core does not provide uevent + * matching for .of_match_table + */ + {"spi-nor"}, + + /* + * Entries not used in DTs that should be safe to drop after replacing + * them with "spi-nor" in platform data. + */ + {"s25sl064a"}, {"w25x16"}, {"m25p10"}, {"m25px64"}, + + /* + * Entries that were used in DTs without "jedec,spi-nor" fallback and + * should be kept for backward compatibility. + */ + {"at25df321a"}, {"at25df641"}, {"at26df081a"}, + {"mx25l4005a"}, {"mx25l1606e"}, {"mx25l6405d"}, {"mx25l12805d"}, + {"mx25l25635e"},{"mx66l51235l"}, + {"n25q064"}, {"n25q128a11"}, {"n25q128a13"}, {"n25q512a"}, + {"s25fl256s1"}, {"s25fl512s"}, {"s25sl12801"}, {"s25fl008k"}, + {"s25fl064k"}, + {"sst25vf040b"},{"sst25vf016b"},{"sst25vf032b"},{"sst25wf040"}, + {"m25p40"}, {"m25p80"}, {"m25p16"}, {"m25p32"}, + {"m25p64"}, {"m25p128"}, + {"w25x80"}, {"w25x32"}, {"w25q32"}, {"w25q32dw"}, + {"w25q80bl"}, {"w25q128"}, {"w25q256"}, + + /* Flashes that can't be detected using JEDEC */ + {"m25p05-nonjedec"}, {"m25p10-nonjedec"}, {"m25p20-nonjedec"}, + {"m25p40-nonjedec"}, {"m25p80-nonjedec"}, {"m25p16-nonjedec"}, + {"m25p32-nonjedec"}, {"m25p64-nonjedec"}, {"m25p128-nonjedec"}, + + /* Everspin MRAMs (non-JEDEC) */ + { "mr25h128" }, /* 128 Kib, 40 MHz */ + { "mr25h256" }, /* 256 Kib, 40 MHz */ + { "mr25h10" }, /* 1 Mib, 40 MHz */ + { "mr25h40" }, /* 4 Mib, 40 MHz */ + + { }, +}; +MODULE_DEVICE_TABLE(spi, spi_nor_dev_ids); + +static const struct of_device_id spi_nor_of_table[] = { + /* + * Generic compatibility for SPI NOR that can be identified by the + * JEDEC READ ID opcode (0x9F). Use this, if possible. + */ + { .compatible = "jedec,spi-nor" }, + { /* sentinel */ }, +}; +MODULE_DEVICE_TABLE(of, spi_nor_of_table); + +/* + * REVISIT: many of these chips have deep power-down modes, which + * should clearly be entered on suspend() to minimize power use. + * And also when they're otherwise idle... + */ +static struct spi_mem_driver spi_nor_driver = { + .spidrv = { + .driver = { + .name = "spi-nor", + .of_match_table = spi_nor_of_table, + .dev_groups = spi_nor_sysfs_groups, + }, + .id_table = spi_nor_dev_ids, + }, + .probe = spi_nor_probe, + .remove = spi_nor_remove, + .shutdown = spi_nor_shutdown, +}; + +static int __init spi_nor_module_init(void) +{ + return spi_mem_driver_register(&spi_nor_driver); +} +module_init(spi_nor_module_init); + +static void __exit spi_nor_module_exit(void) +{ + spi_mem_driver_unregister(&spi_nor_driver); + spi_nor_debugfs_shutdown(); +} +module_exit(spi_nor_module_exit); + +MODULE_LICENSE("GPL v2"); +MODULE_AUTHOR("Huang Shijie <shijie8@gmail.com>"); +MODULE_AUTHOR("Mike Lavender"); +MODULE_DESCRIPTION("framework for SPI NOR"); diff --git a/drivers/mtd/spi-nor/core.h b/drivers/mtd/spi-nor/core.h new file mode 100644 index 0000000000..9217379b9c --- /dev/null +++ b/drivers/mtd/spi-nor/core.h @@ -0,0 +1,745 @@ +/* SPDX-License-Identifier: GPL-2.0 */ +/* + * Copyright (C) 2005, Intec Automation Inc. + * Copyright (C) 2014, Freescale Semiconductor, Inc. + */ + +#ifndef __LINUX_MTD_SPI_NOR_INTERNAL_H +#define __LINUX_MTD_SPI_NOR_INTERNAL_H + +#include "sfdp.h" + +#define SPI_NOR_MAX_ID_LEN 6 + +/* Standard SPI NOR flash operations. */ +#define SPI_NOR_READID_OP(naddr, ndummy, buf, len) \ + SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_RDID, 0), \ + SPI_MEM_OP_ADDR(naddr, 0, 0), \ + SPI_MEM_OP_DUMMY(ndummy, 0), \ + SPI_MEM_OP_DATA_IN(len, buf, 0)) + +#define SPI_NOR_WREN_OP \ + SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_WREN, 0), \ + SPI_MEM_OP_NO_ADDR, \ + SPI_MEM_OP_NO_DUMMY, \ + SPI_MEM_OP_NO_DATA) + +#define SPI_NOR_WRDI_OP \ + SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_WRDI, 0), \ + SPI_MEM_OP_NO_ADDR, \ + SPI_MEM_OP_NO_DUMMY, \ + SPI_MEM_OP_NO_DATA) + +#define SPI_NOR_RDSR_OP(buf) \ + SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_RDSR, 0), \ + SPI_MEM_OP_NO_ADDR, \ + SPI_MEM_OP_NO_DUMMY, \ + SPI_MEM_OP_DATA_IN(1, buf, 0)) + +#define SPI_NOR_WRSR_OP(buf, len) \ + SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_WRSR, 0), \ + SPI_MEM_OP_NO_ADDR, \ + SPI_MEM_OP_NO_DUMMY, \ + SPI_MEM_OP_DATA_OUT(len, buf, 0)) + +#define SPI_NOR_RDSR2_OP(buf) \ + SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_RDSR2, 0), \ + SPI_MEM_OP_NO_ADDR, \ + SPI_MEM_OP_NO_DUMMY, \ + SPI_MEM_OP_DATA_OUT(1, buf, 0)) + +#define SPI_NOR_WRSR2_OP(buf) \ + SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_WRSR2, 0), \ + SPI_MEM_OP_NO_ADDR, \ + SPI_MEM_OP_NO_DUMMY, \ + SPI_MEM_OP_DATA_OUT(1, buf, 0)) + +#define SPI_NOR_RDCR_OP(buf) \ + SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_RDCR, 0), \ + SPI_MEM_OP_NO_ADDR, \ + SPI_MEM_OP_NO_DUMMY, \ + SPI_MEM_OP_DATA_IN(1, buf, 0)) + +#define SPI_NOR_EN4B_EX4B_OP(enable) \ + SPI_MEM_OP(SPI_MEM_OP_CMD(enable ? SPINOR_OP_EN4B : SPINOR_OP_EX4B, 0), \ + SPI_MEM_OP_NO_ADDR, \ + SPI_MEM_OP_NO_DUMMY, \ + SPI_MEM_OP_NO_DATA) + +#define SPI_NOR_BRWR_OP(buf) \ + SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_BRWR, 0), \ + SPI_MEM_OP_NO_ADDR, \ + SPI_MEM_OP_NO_DUMMY, \ + SPI_MEM_OP_DATA_OUT(1, buf, 0)) + +#define SPI_NOR_GBULK_OP \ + SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_GBULK, 0), \ + SPI_MEM_OP_NO_ADDR, \ + SPI_MEM_OP_NO_DUMMY, \ + SPI_MEM_OP_NO_DATA) + +#define SPI_NOR_CHIP_ERASE_OP \ + SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_CHIP_ERASE, 0), \ + SPI_MEM_OP_NO_ADDR, \ + SPI_MEM_OP_NO_DUMMY, \ + SPI_MEM_OP_NO_DATA) + +#define SPI_NOR_SECTOR_ERASE_OP(opcode, addr_nbytes, addr) \ + SPI_MEM_OP(SPI_MEM_OP_CMD(opcode, 0), \ + SPI_MEM_OP_ADDR(addr_nbytes, addr, 0), \ + SPI_MEM_OP_NO_DUMMY, \ + SPI_MEM_OP_NO_DATA) + +#define SPI_NOR_READ_OP(opcode) \ + SPI_MEM_OP(SPI_MEM_OP_CMD(opcode, 0), \ + SPI_MEM_OP_ADDR(3, 0, 0), \ + SPI_MEM_OP_DUMMY(1, 0), \ + SPI_MEM_OP_DATA_IN(2, NULL, 0)) + +#define SPI_NOR_PP_OP(opcode) \ + SPI_MEM_OP(SPI_MEM_OP_CMD(opcode, 0), \ + SPI_MEM_OP_ADDR(3, 0, 0), \ + SPI_MEM_OP_NO_DUMMY, \ + SPI_MEM_OP_DATA_OUT(2, NULL, 0)) + +#define SPINOR_SRSTEN_OP \ + SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_SRSTEN, 0), \ + SPI_MEM_OP_NO_DUMMY, \ + SPI_MEM_OP_NO_ADDR, \ + SPI_MEM_OP_NO_DATA) + +#define SPINOR_SRST_OP \ + SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_SRST, 0), \ + SPI_MEM_OP_NO_DUMMY, \ + SPI_MEM_OP_NO_ADDR, \ + SPI_MEM_OP_NO_DATA) + +/* Keep these in sync with the list in debugfs.c */ +enum spi_nor_option_flags { + SNOR_F_HAS_SR_TB = BIT(0), + SNOR_F_NO_OP_CHIP_ERASE = BIT(1), + SNOR_F_BROKEN_RESET = BIT(2), + SNOR_F_4B_OPCODES = BIT(3), + SNOR_F_HAS_4BAIT = BIT(4), + SNOR_F_HAS_LOCK = BIT(5), + SNOR_F_HAS_16BIT_SR = BIT(6), + SNOR_F_NO_READ_CR = BIT(7), + SNOR_F_HAS_SR_TB_BIT6 = BIT(8), + SNOR_F_HAS_4BIT_BP = BIT(9), + SNOR_F_HAS_SR_BP3_BIT6 = BIT(10), + SNOR_F_IO_MODE_EN_VOLATILE = BIT(11), + SNOR_F_SOFT_RESET = BIT(12), + SNOR_F_SWP_IS_VOLATILE = BIT(13), + SNOR_F_RWW = BIT(14), + SNOR_F_ECC = BIT(15), + SNOR_F_NO_WP = BIT(16), +}; + +struct spi_nor_read_command { + u8 num_mode_clocks; + u8 num_wait_states; + u8 opcode; + enum spi_nor_protocol proto; +}; + +struct spi_nor_pp_command { + u8 opcode; + enum spi_nor_protocol proto; +}; + +enum spi_nor_read_command_index { + SNOR_CMD_READ, + SNOR_CMD_READ_FAST, + SNOR_CMD_READ_1_1_1_DTR, + + /* Dual SPI */ + SNOR_CMD_READ_1_1_2, + SNOR_CMD_READ_1_2_2, + SNOR_CMD_READ_2_2_2, + SNOR_CMD_READ_1_2_2_DTR, + + /* Quad SPI */ + SNOR_CMD_READ_1_1_4, + SNOR_CMD_READ_1_4_4, + SNOR_CMD_READ_4_4_4, + SNOR_CMD_READ_1_4_4_DTR, + + /* Octal SPI */ + SNOR_CMD_READ_1_1_8, + SNOR_CMD_READ_1_8_8, + SNOR_CMD_READ_8_8_8, + SNOR_CMD_READ_1_8_8_DTR, + SNOR_CMD_READ_8_8_8_DTR, + + SNOR_CMD_READ_MAX +}; + +enum spi_nor_pp_command_index { + SNOR_CMD_PP, + + /* Quad SPI */ + SNOR_CMD_PP_1_1_4, + SNOR_CMD_PP_1_4_4, + SNOR_CMD_PP_4_4_4, + + /* Octal SPI */ + SNOR_CMD_PP_1_1_8, + SNOR_CMD_PP_1_8_8, + SNOR_CMD_PP_8_8_8, + SNOR_CMD_PP_8_8_8_DTR, + + SNOR_CMD_PP_MAX +}; + +/** + * struct spi_nor_erase_type - Structure to describe a SPI NOR erase type + * @size: the size of the sector/block erased by the erase type. + * JEDEC JESD216B imposes erase sizes to be a power of 2. + * @size_shift: @size is a power of 2, the shift is stored in + * @size_shift. + * @size_mask: the size mask based on @size_shift. + * @opcode: the SPI command op code to erase the sector/block. + * @idx: Erase Type index as sorted in the Basic Flash Parameter + * Table. It will be used to synchronize the supported + * Erase Types with the ones identified in the SFDP + * optional tables. + */ +struct spi_nor_erase_type { + u32 size; + u32 size_shift; + u32 size_mask; + u8 opcode; + u8 idx; +}; + +/** + * struct spi_nor_erase_command - Used for non-uniform erases + * The structure is used to describe a list of erase commands to be executed + * once we validate that the erase can be performed. The elements in the list + * are run-length encoded. + * @list: for inclusion into the list of erase commands. + * @count: how many times the same erase command should be + * consecutively used. + * @size: the size of the sector/block erased by the command. + * @opcode: the SPI command op code to erase the sector/block. + */ +struct spi_nor_erase_command { + struct list_head list; + u32 count; + u32 size; + u8 opcode; +}; + +/** + * struct spi_nor_erase_region - Structure to describe a SPI NOR erase region + * @offset: the offset in the data array of erase region start. + * LSB bits are used as a bitmask encoding flags to + * determine if this region is overlaid, if this region is + * the last in the SPI NOR flash memory and to indicate + * all the supported erase commands inside this region. + * The erase types are sorted in ascending order with the + * smallest Erase Type size being at BIT(0). + * @size: the size of the region in bytes. + */ +struct spi_nor_erase_region { + u64 offset; + u64 size; +}; + +#define SNOR_ERASE_TYPE_MAX 4 +#define SNOR_ERASE_TYPE_MASK GENMASK_ULL(SNOR_ERASE_TYPE_MAX - 1, 0) + +#define SNOR_LAST_REGION BIT(4) +#define SNOR_OVERLAID_REGION BIT(5) + +#define SNOR_ERASE_FLAGS_MAX 6 +#define SNOR_ERASE_FLAGS_MASK GENMASK_ULL(SNOR_ERASE_FLAGS_MAX - 1, 0) + +/** + * struct spi_nor_erase_map - Structure to describe the SPI NOR erase map + * @regions: array of erase regions. The regions are consecutive in + * address space. Walking through the regions is done + * incrementally. + * @uniform_region: a pre-allocated erase region for SPI NOR with a uniform + * sector size (legacy implementation). + * @erase_type: an array of erase types shared by all the regions. + * The erase types are sorted in ascending order, with the + * smallest Erase Type size being the first member in the + * erase_type array. + * @uniform_erase_type: bitmask encoding erase types that can erase the + * entire memory. This member is completed at init by + * uniform and non-uniform SPI NOR flash memories if they + * support at least one erase type that can erase the + * entire memory. + */ +struct spi_nor_erase_map { + struct spi_nor_erase_region *regions; + struct spi_nor_erase_region uniform_region; + struct spi_nor_erase_type erase_type[SNOR_ERASE_TYPE_MAX]; + u8 uniform_erase_type; +}; + +/** + * struct spi_nor_locking_ops - SPI NOR locking methods + * @lock: lock a region of the SPI NOR. + * @unlock: unlock a region of the SPI NOR. + * @is_locked: check if a region of the SPI NOR is completely locked + */ +struct spi_nor_locking_ops { + int (*lock)(struct spi_nor *nor, loff_t ofs, uint64_t len); + int (*unlock)(struct spi_nor *nor, loff_t ofs, uint64_t len); + int (*is_locked)(struct spi_nor *nor, loff_t ofs, uint64_t len); +}; + +/** + * struct spi_nor_otp_organization - Structure to describe the SPI NOR OTP regions + * @len: size of one OTP region in bytes. + * @base: start address of the OTP area. + * @offset: offset between consecutive OTP regions if there are more + * than one. + * @n_regions: number of individual OTP regions. + */ +struct spi_nor_otp_organization { + size_t len; + loff_t base; + loff_t offset; + unsigned int n_regions; +}; + +/** + * struct spi_nor_otp_ops - SPI NOR OTP methods + * @read: read from the SPI NOR OTP area. + * @write: write to the SPI NOR OTP area. + * @lock: lock an OTP region. + * @erase: erase an OTP region. + * @is_locked: check if an OTP region of the SPI NOR is locked. + */ +struct spi_nor_otp_ops { + int (*read)(struct spi_nor *nor, loff_t addr, size_t len, u8 *buf); + int (*write)(struct spi_nor *nor, loff_t addr, size_t len, + const u8 *buf); + int (*lock)(struct spi_nor *nor, unsigned int region); + int (*erase)(struct spi_nor *nor, loff_t addr); + int (*is_locked)(struct spi_nor *nor, unsigned int region); +}; + +/** + * struct spi_nor_otp - SPI NOR OTP grouping structure + * @org: OTP region organization + * @ops: OTP access ops + */ +struct spi_nor_otp { + const struct spi_nor_otp_organization *org; + const struct spi_nor_otp_ops *ops; +}; + +/** + * struct spi_nor_flash_parameter - SPI NOR flash parameters and settings. + * Includes legacy flash parameters and settings that can be overwritten + * by the spi_nor_fixups hooks, or dynamically when parsing the JESD216 + * Serial Flash Discoverable Parameters (SFDP) tables. + * + * @bank_size: the flash memory bank density in bytes. + * @size: the total flash memory density in bytes. + * @writesize Minimal writable flash unit size. Defaults to 1. Set to + * ECC unit size for ECC-ed flashes. + * @page_size: the page size of the SPI NOR flash memory. + * @addr_nbytes: number of address bytes to send. + * @addr_mode_nbytes: number of address bytes of current address mode. Useful + * when the flash operates with 4B opcodes but needs the + * internal address mode for opcodes that don't have a 4B + * opcode correspondent. + * @rdsr_dummy: dummy cycles needed for Read Status Register command + * in octal DTR mode. + * @rdsr_addr_nbytes: dummy address bytes needed for Read Status Register + * command in octal DTR mode. + * @n_dice: number of dice in the flash memory. + * @vreg_offset: volatile register offset for each die. + * @hwcaps: describes the read and page program hardware + * capabilities. + * @reads: read capabilities ordered by priority: the higher index + * in the array, the higher priority. + * @page_programs: page program capabilities ordered by priority: the + * higher index in the array, the higher priority. + * @erase_map: the erase map parsed from the SFDP Sector Map Parameter + * Table. + * @otp: SPI NOR OTP info. + * @set_octal_dtr: enables or disables SPI NOR octal DTR mode. + * @quad_enable: enables SPI NOR quad mode. + * @set_4byte_addr_mode: puts the SPI NOR in 4 byte addressing mode. + * @convert_addr: converts an absolute address into something the flash + * will understand. Particularly useful when pagesize is + * not a power-of-2. + * @setup: (optional) configures the SPI NOR memory. Useful for + * SPI NOR flashes that have peculiarities to the SPI NOR + * standard e.g. different opcodes, specific address + * calculation, page size, etc. + * @ready: (optional) flashes might use a different mechanism + * than reading the status register to indicate they + * are ready for a new command + * @locking_ops: SPI NOR locking methods. + * @priv: flash's private data. + */ +struct spi_nor_flash_parameter { + u64 bank_size; + u64 size; + u32 writesize; + u32 page_size; + u8 addr_nbytes; + u8 addr_mode_nbytes; + u8 rdsr_dummy; + u8 rdsr_addr_nbytes; + u8 n_dice; + u32 *vreg_offset; + + struct spi_nor_hwcaps hwcaps; + struct spi_nor_read_command reads[SNOR_CMD_READ_MAX]; + struct spi_nor_pp_command page_programs[SNOR_CMD_PP_MAX]; + + struct spi_nor_erase_map erase_map; + struct spi_nor_otp otp; + + int (*set_octal_dtr)(struct spi_nor *nor, bool enable); + int (*quad_enable)(struct spi_nor *nor); + int (*set_4byte_addr_mode)(struct spi_nor *nor, bool enable); + u32 (*convert_addr)(struct spi_nor *nor, u32 addr); + int (*setup)(struct spi_nor *nor, const struct spi_nor_hwcaps *hwcaps); + int (*ready)(struct spi_nor *nor); + + const struct spi_nor_locking_ops *locking_ops; + void *priv; +}; + +/** + * struct spi_nor_fixups - SPI NOR fixup hooks + * @default_init: called after default flash parameters init. Used to tweak + * flash parameters when information provided by the flash_info + * table is incomplete or wrong. + * @post_bfpt: called after the BFPT table has been parsed + * @post_sfdp: called after SFDP has been parsed (is also called for SPI NORs + * that do not support RDSFDP). Typically used to tweak various + * parameters that could not be extracted by other means (i.e. + * when information provided by the SFDP/flash_info tables are + * incomplete or wrong). + * @late_init: used to initialize flash parameters that are not declared in the + * JESD216 SFDP standard, or where SFDP tables not defined at all. + * Will replace the default_init() hook. + * + * Those hooks can be used to tweak the SPI NOR configuration when the SFDP + * table is broken or not available. + */ +struct spi_nor_fixups { + void (*default_init)(struct spi_nor *nor); + int (*post_bfpt)(struct spi_nor *nor, + const struct sfdp_parameter_header *bfpt_header, + const struct sfdp_bfpt *bfpt); + int (*post_sfdp)(struct spi_nor *nor); + int (*late_init)(struct spi_nor *nor); +}; + +/** + * struct flash_info - SPI NOR flash_info entry. + * @name: the name of the flash. + * @id: the flash's ID bytes. The first three bytes are the + * JEDIC ID. JEDEC ID zero means "no ID" (mostly older chips). + * @id_len: the number of bytes of ID. + * @sector_size: the size listed here is what works with SPINOR_OP_SE, which + * isn't necessarily called a "sector" by the vendor. + * @n_sectors: the number of sectors. + * @n_banks: the number of banks. + * @page_size: the flash's page size. + * @addr_nbytes: number of address bytes to send. + * + * @parse_sfdp: true when flash supports SFDP tables. The false value has no + * meaning. If one wants to skip the SFDP tables, one should + * instead use the SPI_NOR_SKIP_SFDP sfdp_flag. + * @flags: flags that indicate support that is not defined by the + * JESD216 standard in its SFDP tables. Flag meanings: + * SPI_NOR_HAS_LOCK: flash supports lock/unlock via SR + * SPI_NOR_HAS_TB: flash SR has Top/Bottom (TB) protect bit. Must be + * used with SPI_NOR_HAS_LOCK. + * SPI_NOR_TB_SR_BIT6: Top/Bottom (TB) is bit 6 of status register. + * Must be used with SPI_NOR_HAS_TB. + * SPI_NOR_4BIT_BP: flash SR has 4 bit fields (BP0-3) for block + * protection. + * SPI_NOR_BP3_SR_BIT6: BP3 is bit 6 of status register. Must be used with + * SPI_NOR_4BIT_BP. + * SPI_NOR_SWP_IS_VOLATILE: flash has volatile software write protection bits. + * Usually these will power-up in a write-protected + * state. + * SPI_NOR_NO_ERASE: no erase command needed. + * NO_CHIP_ERASE: chip does not support chip erase. + * SPI_NOR_NO_FR: can't do fastread. + * SPI_NOR_QUAD_PP: flash supports Quad Input Page Program. + * SPI_NOR_RWW: flash supports reads while write. + * + * @no_sfdp_flags: flags that indicate support that can be discovered via SFDP. + * Used when SFDP tables are not defined in the flash. These + * flags are used together with the SPI_NOR_SKIP_SFDP flag. + * SPI_NOR_SKIP_SFDP: skip parsing of SFDP tables. + * SECT_4K: SPINOR_OP_BE_4K works uniformly. + * SPI_NOR_DUAL_READ: flash supports Dual Read. + * SPI_NOR_QUAD_READ: flash supports Quad Read. + * SPI_NOR_OCTAL_READ: flash supports Octal Read. + * SPI_NOR_OCTAL_DTR_READ: flash supports octal DTR Read. + * SPI_NOR_OCTAL_DTR_PP: flash supports Octal DTR Page Program. + * + * @fixup_flags: flags that indicate support that can be discovered via SFDP + * ideally, but can not be discovered for this particular flash + * because the SFDP table that indicates this support is not + * defined by the flash. In case the table for this support is + * defined but has wrong values, one should instead use a + * post_sfdp() hook to set the SNOR_F equivalent flag. + * + * SPI_NOR_4B_OPCODES: use dedicated 4byte address op codes to support + * memory size above 128Mib. + * SPI_NOR_IO_MODE_EN_VOLATILE: flash enables the best available I/O mode + * via a volatile bit. + * @mfr_flags: manufacturer private flags. Used in the manufacturer fixup + * hooks to differentiate support between flashes of the same + * manufacturer. + * @otp_org: flash's OTP organization. + * @fixups: part specific fixup hooks. + */ +struct flash_info { + char *name; + u8 id[SPI_NOR_MAX_ID_LEN]; + u8 id_len; + unsigned sector_size; + u16 n_sectors; + u16 page_size; + u8 n_banks; + u8 addr_nbytes; + + bool parse_sfdp; + u16 flags; +#define SPI_NOR_HAS_LOCK BIT(0) +#define SPI_NOR_HAS_TB BIT(1) +#define SPI_NOR_TB_SR_BIT6 BIT(2) +#define SPI_NOR_4BIT_BP BIT(3) +#define SPI_NOR_BP3_SR_BIT6 BIT(4) +#define SPI_NOR_SWP_IS_VOLATILE BIT(5) +#define SPI_NOR_NO_ERASE BIT(6) +#define NO_CHIP_ERASE BIT(7) +#define SPI_NOR_NO_FR BIT(8) +#define SPI_NOR_QUAD_PP BIT(9) +#define SPI_NOR_RWW BIT(10) + + u8 no_sfdp_flags; +#define SPI_NOR_SKIP_SFDP BIT(0) +#define SECT_4K BIT(1) +#define SPI_NOR_DUAL_READ BIT(3) +#define SPI_NOR_QUAD_READ BIT(4) +#define SPI_NOR_OCTAL_READ BIT(5) +#define SPI_NOR_OCTAL_DTR_READ BIT(6) +#define SPI_NOR_OCTAL_DTR_PP BIT(7) + + u8 fixup_flags; +#define SPI_NOR_4B_OPCODES BIT(0) +#define SPI_NOR_IO_MODE_EN_VOLATILE BIT(1) + + u8 mfr_flags; + + const struct spi_nor_otp_organization otp_org; + const struct spi_nor_fixups *fixups; +}; + +#define SPI_NOR_ID_2ITEMS(_id) ((_id) >> 8) & 0xff, (_id) & 0xff +#define SPI_NOR_ID_3ITEMS(_id) ((_id) >> 16) & 0xff, SPI_NOR_ID_2ITEMS(_id) + +#define SPI_NOR_ID(_jedec_id, _ext_id) \ + .id = { SPI_NOR_ID_3ITEMS(_jedec_id), SPI_NOR_ID_2ITEMS(_ext_id) }, \ + .id_len = !(_jedec_id) ? 0 : (3 + ((_ext_id) ? 2 : 0)) + +#define SPI_NOR_ID6(_jedec_id, _ext_id) \ + .id = { SPI_NOR_ID_3ITEMS(_jedec_id), SPI_NOR_ID_3ITEMS(_ext_id) }, \ + .id_len = 6 + +#define SPI_NOR_GEOMETRY(_sector_size, _n_sectors, _n_banks) \ + .sector_size = (_sector_size), \ + .n_sectors = (_n_sectors), \ + .page_size = 256, \ + .n_banks = (_n_banks) + +/* Used when the "_ext_id" is two bytes at most */ +#define INFO(_jedec_id, _ext_id, _sector_size, _n_sectors) \ + SPI_NOR_ID((_jedec_id), (_ext_id)), \ + SPI_NOR_GEOMETRY((_sector_size), (_n_sectors), 1), + +#define INFOB(_jedec_id, _ext_id, _sector_size, _n_sectors, _n_banks) \ + SPI_NOR_ID((_jedec_id), (_ext_id)), \ + SPI_NOR_GEOMETRY((_sector_size), (_n_sectors), (_n_banks)), + +#define INFO6(_jedec_id, _ext_id, _sector_size, _n_sectors) \ + SPI_NOR_ID6((_jedec_id), (_ext_id)), \ + SPI_NOR_GEOMETRY((_sector_size), (_n_sectors), 1), + +#define CAT25_INFO(_sector_size, _n_sectors, _page_size, _addr_nbytes) \ + .sector_size = (_sector_size), \ + .n_sectors = (_n_sectors), \ + .page_size = (_page_size), \ + .n_banks = 1, \ + .addr_nbytes = (_addr_nbytes), \ + .flags = SPI_NOR_NO_ERASE | SPI_NOR_NO_FR, \ + +#define OTP_INFO(_len, _n_regions, _base, _offset) \ + .otp_org = { \ + .len = (_len), \ + .base = (_base), \ + .offset = (_offset), \ + .n_regions = (_n_regions), \ + }, + +#define PARSE_SFDP \ + .parse_sfdp = true, \ + +#define FLAGS(_flags) \ + .flags = (_flags), \ + +#define NO_SFDP_FLAGS(_no_sfdp_flags) \ + .no_sfdp_flags = (_no_sfdp_flags), \ + +#define FIXUP_FLAGS(_fixup_flags) \ + .fixup_flags = (_fixup_flags), \ + +#define MFR_FLAGS(_mfr_flags) \ + .mfr_flags = (_mfr_flags), \ + +/** + * struct spi_nor_manufacturer - SPI NOR manufacturer object + * @name: manufacturer name + * @parts: array of parts supported by this manufacturer + * @nparts: number of entries in the parts array + * @fixups: hooks called at various points in time during spi_nor_scan() + */ +struct spi_nor_manufacturer { + const char *name; + const struct flash_info *parts; + unsigned int nparts; + const struct spi_nor_fixups *fixups; +}; + +/** + * struct sfdp - SFDP data + * @num_dwords: number of entries in the dwords array + * @dwords: array of double words of the SFDP data + */ +struct sfdp { + size_t num_dwords; + u32 *dwords; +}; + +/* Manufacturer drivers. */ +extern const struct spi_nor_manufacturer spi_nor_atmel; +extern const struct spi_nor_manufacturer spi_nor_catalyst; +extern const struct spi_nor_manufacturer spi_nor_eon; +extern const struct spi_nor_manufacturer spi_nor_esmt; +extern const struct spi_nor_manufacturer spi_nor_everspin; +extern const struct spi_nor_manufacturer spi_nor_fujitsu; +extern const struct spi_nor_manufacturer spi_nor_gigadevice; +extern const struct spi_nor_manufacturer spi_nor_intel; +extern const struct spi_nor_manufacturer spi_nor_issi; +extern const struct spi_nor_manufacturer spi_nor_macronix; +extern const struct spi_nor_manufacturer spi_nor_micron; +extern const struct spi_nor_manufacturer spi_nor_st; +extern const struct spi_nor_manufacturer spi_nor_spansion; +extern const struct spi_nor_manufacturer spi_nor_sst; +extern const struct spi_nor_manufacturer spi_nor_winbond; +extern const struct spi_nor_manufacturer spi_nor_xilinx; +extern const struct spi_nor_manufacturer spi_nor_xmc; + +extern const struct attribute_group *spi_nor_sysfs_groups[]; + +void spi_nor_spimem_setup_op(const struct spi_nor *nor, + struct spi_mem_op *op, + const enum spi_nor_protocol proto); +int spi_nor_write_enable(struct spi_nor *nor); +int spi_nor_write_disable(struct spi_nor *nor); +int spi_nor_set_4byte_addr_mode_en4b_ex4b(struct spi_nor *nor, bool enable); +int spi_nor_set_4byte_addr_mode_wren_en4b_ex4b(struct spi_nor *nor, + bool enable); +int spi_nor_set_4byte_addr_mode_brwr(struct spi_nor *nor, bool enable); +int spi_nor_set_4byte_addr_mode(struct spi_nor *nor, bool enable); +int spi_nor_wait_till_ready(struct spi_nor *nor); +int spi_nor_global_block_unlock(struct spi_nor *nor); +int spi_nor_prep_and_lock(struct spi_nor *nor); +void spi_nor_unlock_and_unprep(struct spi_nor *nor); +int spi_nor_sr1_bit6_quad_enable(struct spi_nor *nor); +int spi_nor_sr2_bit1_quad_enable(struct spi_nor *nor); +int spi_nor_sr2_bit7_quad_enable(struct spi_nor *nor); +int spi_nor_read_id(struct spi_nor *nor, u8 naddr, u8 ndummy, u8 *id, + enum spi_nor_protocol reg_proto); +int spi_nor_read_sr(struct spi_nor *nor, u8 *sr); +int spi_nor_sr_ready(struct spi_nor *nor); +int spi_nor_read_cr(struct spi_nor *nor, u8 *cr); +int spi_nor_write_sr(struct spi_nor *nor, const u8 *sr, size_t len); +int spi_nor_write_sr_and_check(struct spi_nor *nor, u8 sr1); +int spi_nor_write_16bit_cr_and_check(struct spi_nor *nor, u8 cr); + +ssize_t spi_nor_read_data(struct spi_nor *nor, loff_t from, size_t len, + u8 *buf); +ssize_t spi_nor_write_data(struct spi_nor *nor, loff_t to, size_t len, + const u8 *buf); +int spi_nor_read_any_reg(struct spi_nor *nor, struct spi_mem_op *op, + enum spi_nor_protocol proto); +int spi_nor_write_any_volatile_reg(struct spi_nor *nor, struct spi_mem_op *op, + enum spi_nor_protocol proto); +int spi_nor_erase_sector(struct spi_nor *nor, u32 addr); + +int spi_nor_otp_read_secr(struct spi_nor *nor, loff_t addr, size_t len, u8 *buf); +int spi_nor_otp_write_secr(struct spi_nor *nor, loff_t addr, size_t len, + const u8 *buf); +int spi_nor_otp_erase_secr(struct spi_nor *nor, loff_t addr); +int spi_nor_otp_lock_sr2(struct spi_nor *nor, unsigned int region); +int spi_nor_otp_is_locked_sr2(struct spi_nor *nor, unsigned int region); + +int spi_nor_hwcaps_read2cmd(u32 hwcaps); +int spi_nor_hwcaps_pp2cmd(u32 hwcaps); +u8 spi_nor_convert_3to4_read(u8 opcode); +void spi_nor_set_read_settings(struct spi_nor_read_command *read, + u8 num_mode_clocks, + u8 num_wait_states, + u8 opcode, + enum spi_nor_protocol proto); +void spi_nor_set_pp_settings(struct spi_nor_pp_command *pp, u8 opcode, + enum spi_nor_protocol proto); + +void spi_nor_set_erase_type(struct spi_nor_erase_type *erase, u32 size, + u8 opcode); +void spi_nor_mask_erase_type(struct spi_nor_erase_type *erase); +struct spi_nor_erase_region * +spi_nor_region_next(struct spi_nor_erase_region *region); +void spi_nor_init_uniform_erase_map(struct spi_nor_erase_map *map, + u8 erase_mask, u64 flash_size); + +int spi_nor_post_bfpt_fixups(struct spi_nor *nor, + const struct sfdp_parameter_header *bfpt_header, + const struct sfdp_bfpt *bfpt); + +void spi_nor_init_default_locking_ops(struct spi_nor *nor); +void spi_nor_try_unlock_all(struct spi_nor *nor); +void spi_nor_set_mtd_locking_ops(struct spi_nor *nor); +void spi_nor_set_mtd_otp_ops(struct spi_nor *nor); + +int spi_nor_controller_ops_read_reg(struct spi_nor *nor, u8 opcode, + u8 *buf, size_t len); +int spi_nor_controller_ops_write_reg(struct spi_nor *nor, u8 opcode, + const u8 *buf, size_t len); + +int spi_nor_check_sfdp_signature(struct spi_nor *nor); +int spi_nor_parse_sfdp(struct spi_nor *nor); + +static inline struct spi_nor *mtd_to_spi_nor(struct mtd_info *mtd) +{ + return container_of(mtd, struct spi_nor, mtd); +} + +#ifdef CONFIG_DEBUG_FS +void spi_nor_debugfs_register(struct spi_nor *nor); +void spi_nor_debugfs_shutdown(void); +#else +static inline void spi_nor_debugfs_register(struct spi_nor *nor) {} +static inline void spi_nor_debugfs_shutdown(void) {} +#endif + +#endif /* __LINUX_MTD_SPI_NOR_INTERNAL_H */ diff --git a/drivers/mtd/spi-nor/debugfs.c b/drivers/mtd/spi-nor/debugfs.c new file mode 100644 index 0000000000..6e163cb5b4 --- /dev/null +++ b/drivers/mtd/spi-nor/debugfs.c @@ -0,0 +1,257 @@ +// SPDX-License-Identifier: GPL-2.0 + +#include <linux/debugfs.h> +#include <linux/mtd/spi-nor.h> +#include <linux/spi/spi.h> +#include <linux/spi/spi-mem.h> + +#include "core.h" + +#define SPI_NOR_DEBUGFS_ROOT "spi-nor" + +#define SNOR_F_NAME(name) [ilog2(SNOR_F_##name)] = #name +static const char *const snor_f_names[] = { + SNOR_F_NAME(HAS_SR_TB), + SNOR_F_NAME(NO_OP_CHIP_ERASE), + SNOR_F_NAME(BROKEN_RESET), + SNOR_F_NAME(4B_OPCODES), + SNOR_F_NAME(HAS_4BAIT), + SNOR_F_NAME(HAS_LOCK), + SNOR_F_NAME(HAS_16BIT_SR), + SNOR_F_NAME(NO_READ_CR), + SNOR_F_NAME(HAS_SR_TB_BIT6), + SNOR_F_NAME(HAS_4BIT_BP), + SNOR_F_NAME(HAS_SR_BP3_BIT6), + SNOR_F_NAME(IO_MODE_EN_VOLATILE), + SNOR_F_NAME(SOFT_RESET), + SNOR_F_NAME(SWP_IS_VOLATILE), + SNOR_F_NAME(RWW), + SNOR_F_NAME(ECC), + SNOR_F_NAME(NO_WP), +}; +#undef SNOR_F_NAME + +static const char *spi_nor_protocol_name(enum spi_nor_protocol proto) +{ + switch (proto) { + case SNOR_PROTO_1_1_1: return "1S-1S-1S"; + case SNOR_PROTO_1_1_2: return "1S-1S-2S"; + case SNOR_PROTO_1_1_4: return "1S-1S-4S"; + case SNOR_PROTO_1_1_8: return "1S-1S-8S"; + case SNOR_PROTO_1_2_2: return "1S-2S-2S"; + case SNOR_PROTO_1_4_4: return "1S-4S-4S"; + case SNOR_PROTO_1_8_8: return "1S-8S-8S"; + case SNOR_PROTO_2_2_2: return "2S-2S-2S"; + case SNOR_PROTO_4_4_4: return "4S-4S-4S"; + case SNOR_PROTO_8_8_8: return "8S-8S-8S"; + case SNOR_PROTO_1_1_1_DTR: return "1D-1D-1D"; + case SNOR_PROTO_1_2_2_DTR: return "1D-2D-2D"; + case SNOR_PROTO_1_4_4_DTR: return "1D-4D-4D"; + case SNOR_PROTO_1_8_8_DTR: return "1D-8D-8D"; + case SNOR_PROTO_8_8_8_DTR: return "8D-8D-8D"; + } + + return "<unknown>"; +} + +static void spi_nor_print_flags(struct seq_file *s, unsigned long flags, + const char *const *names, int names_len) +{ + bool sep = false; + int i; + + for (i = 0; i < sizeof(flags) * BITS_PER_BYTE; i++) { + if (!(flags & BIT(i))) + continue; + if (sep) + seq_puts(s, " | "); + sep = true; + if (i < names_len && names[i]) + seq_puts(s, names[i]); + else + seq_printf(s, "1<<%d", i); + } +} + +static int spi_nor_params_show(struct seq_file *s, void *data) +{ + struct spi_nor *nor = s->private; + struct spi_nor_flash_parameter *params = nor->params; + struct spi_nor_erase_map *erase_map = ¶ms->erase_map; + struct spi_nor_erase_region *region; + const struct flash_info *info = nor->info; + char buf[16], *str; + int i; + + seq_printf(s, "name\t\t%s\n", info->name); + seq_printf(s, "id\t\t%*ph\n", SPI_NOR_MAX_ID_LEN, nor->id); + string_get_size(params->size, 1, STRING_UNITS_2, buf, sizeof(buf)); + seq_printf(s, "size\t\t%s\n", buf); + seq_printf(s, "write size\t%u\n", params->writesize); + seq_printf(s, "page size\t%u\n", params->page_size); + seq_printf(s, "address nbytes\t%u\n", nor->addr_nbytes); + + seq_puts(s, "flags\t\t"); + spi_nor_print_flags(s, nor->flags, snor_f_names, sizeof(snor_f_names)); + seq_puts(s, "\n"); + + seq_puts(s, "\nopcodes\n"); + seq_printf(s, " read\t\t0x%02x\n", nor->read_opcode); + seq_printf(s, " dummy cycles\t%u\n", nor->read_dummy); + seq_printf(s, " erase\t\t0x%02x\n", nor->erase_opcode); + seq_printf(s, " program\t0x%02x\n", nor->program_opcode); + + switch (nor->cmd_ext_type) { + case SPI_NOR_EXT_NONE: + str = "none"; + break; + case SPI_NOR_EXT_REPEAT: + str = "repeat"; + break; + case SPI_NOR_EXT_INVERT: + str = "invert"; + break; + default: + str = "<unknown>"; + break; + } + seq_printf(s, " 8D extension\t%s\n", str); + + seq_puts(s, "\nprotocols\n"); + seq_printf(s, " read\t\t%s\n", + spi_nor_protocol_name(nor->read_proto)); + seq_printf(s, " write\t\t%s\n", + spi_nor_protocol_name(nor->write_proto)); + seq_printf(s, " register\t%s\n", + spi_nor_protocol_name(nor->reg_proto)); + + seq_puts(s, "\nerase commands\n"); + for (i = 0; i < SNOR_ERASE_TYPE_MAX; i++) { + struct spi_nor_erase_type *et = &erase_map->erase_type[i]; + + if (et->size) { + string_get_size(et->size, 1, STRING_UNITS_2, buf, + sizeof(buf)); + seq_printf(s, " %02x (%s) [%d]\n", et->opcode, buf, i); + } + } + + if (!(nor->flags & SNOR_F_NO_OP_CHIP_ERASE)) { + string_get_size(params->size, 1, STRING_UNITS_2, buf, sizeof(buf)); + seq_printf(s, " %02x (%s)\n", SPINOR_OP_CHIP_ERASE, buf); + } + + seq_puts(s, "\nsector map\n"); + seq_puts(s, " region (in hex) | erase mask | flags\n"); + seq_puts(s, " ------------------+------------+----------\n"); + for (region = erase_map->regions; + region; + region = spi_nor_region_next(region)) { + u64 start = region->offset & ~SNOR_ERASE_FLAGS_MASK; + u64 flags = region->offset & SNOR_ERASE_FLAGS_MASK; + u64 end = start + region->size - 1; + + seq_printf(s, " %08llx-%08llx | [%c%c%c%c] | %s\n", + start, end, + flags & BIT(0) ? '0' : ' ', + flags & BIT(1) ? '1' : ' ', + flags & BIT(2) ? '2' : ' ', + flags & BIT(3) ? '3' : ' ', + flags & SNOR_OVERLAID_REGION ? "overlaid" : ""); + } + + return 0; +} +DEFINE_SHOW_ATTRIBUTE(spi_nor_params); + +static void spi_nor_print_read_cmd(struct seq_file *s, u32 cap, + struct spi_nor_read_command *cmd) +{ + seq_printf(s, " %s%s\n", spi_nor_protocol_name(cmd->proto), + cap == SNOR_HWCAPS_READ_FAST ? " (fast read)" : ""); + seq_printf(s, " opcode\t0x%02x\n", cmd->opcode); + seq_printf(s, " mode cycles\t%u\n", cmd->num_mode_clocks); + seq_printf(s, " dummy cycles\t%u\n", cmd->num_wait_states); +} + +static void spi_nor_print_pp_cmd(struct seq_file *s, + struct spi_nor_pp_command *cmd) +{ + seq_printf(s, " %s\n", spi_nor_protocol_name(cmd->proto)); + seq_printf(s, " opcode\t0x%02x\n", cmd->opcode); +} + +static int spi_nor_capabilities_show(struct seq_file *s, void *data) +{ + struct spi_nor *nor = s->private; + struct spi_nor_flash_parameter *params = nor->params; + u32 hwcaps = params->hwcaps.mask; + int i, cmd; + + seq_puts(s, "Supported read modes by the flash\n"); + for (i = 0; i < sizeof(hwcaps) * BITS_PER_BYTE; i++) { + if (!(hwcaps & BIT(i))) + continue; + + cmd = spi_nor_hwcaps_read2cmd(BIT(i)); + if (cmd < 0) + continue; + + spi_nor_print_read_cmd(s, BIT(i), ¶ms->reads[cmd]); + hwcaps &= ~BIT(i); + } + + seq_puts(s, "\nSupported page program modes by the flash\n"); + for (i = 0; i < sizeof(hwcaps) * BITS_PER_BYTE; i++) { + if (!(hwcaps & BIT(i))) + continue; + + cmd = spi_nor_hwcaps_pp2cmd(BIT(i)); + if (cmd < 0) + continue; + + spi_nor_print_pp_cmd(s, ¶ms->page_programs[cmd]); + hwcaps &= ~BIT(i); + } + + if (hwcaps) + seq_printf(s, "\nunknown hwcaps 0x%x\n", hwcaps); + + return 0; +} +DEFINE_SHOW_ATTRIBUTE(spi_nor_capabilities); + +static void spi_nor_debugfs_unregister(void *data) +{ + struct spi_nor *nor = data; + + debugfs_remove(nor->debugfs_root); + nor->debugfs_root = NULL; +} + +static struct dentry *rootdir; + +void spi_nor_debugfs_register(struct spi_nor *nor) +{ + struct dentry *d; + int ret; + + if (!rootdir) + rootdir = debugfs_create_dir(SPI_NOR_DEBUGFS_ROOT, NULL); + + ret = devm_add_action(nor->dev, spi_nor_debugfs_unregister, nor); + if (ret) + return; + + d = debugfs_create_dir(dev_name(nor->dev), rootdir); + nor->debugfs_root = d; + + debugfs_create_file("params", 0444, d, nor, &spi_nor_params_fops); + debugfs_create_file("capabilities", 0444, d, nor, + &spi_nor_capabilities_fops); +} + +void spi_nor_debugfs_shutdown(void) +{ + debugfs_remove(rootdir); +} diff --git a/drivers/mtd/spi-nor/eon.c b/drivers/mtd/spi-nor/eon.c new file mode 100644 index 0000000000..50a1105371 --- /dev/null +++ b/drivers/mtd/spi-nor/eon.c @@ -0,0 +1,38 @@ +// SPDX-License-Identifier: GPL-2.0 +/* + * Copyright (C) 2005, Intec Automation Inc. + * Copyright (C) 2014, Freescale Semiconductor, Inc. + */ + +#include <linux/mtd/spi-nor.h> + +#include "core.h" + +static const struct flash_info eon_nor_parts[] = { + /* EON -- en25xxx */ + { "en25f32", INFO(0x1c3116, 0, 64 * 1024, 64) + NO_SFDP_FLAGS(SECT_4K) }, + { "en25p32", INFO(0x1c2016, 0, 64 * 1024, 64) }, + { "en25q32b", INFO(0x1c3016, 0, 64 * 1024, 64) }, + { "en25p64", INFO(0x1c2017, 0, 64 * 1024, 128) }, + { "en25q64", INFO(0x1c3017, 0, 64 * 1024, 128) + NO_SFDP_FLAGS(SECT_4K) }, + { "en25q80a", INFO(0x1c3014, 0, 64 * 1024, 16) + NO_SFDP_FLAGS(SECT_4K | SPI_NOR_DUAL_READ) }, + { "en25qh16", INFO(0x1c7015, 0, 64 * 1024, 32) + NO_SFDP_FLAGS(SECT_4K | SPI_NOR_DUAL_READ) }, + { "en25qh32", INFO(0x1c7016, 0, 64 * 1024, 64) }, + { "en25qh64", INFO(0x1c7017, 0, 64 * 1024, 128) + NO_SFDP_FLAGS(SECT_4K | SPI_NOR_DUAL_READ) }, + { "en25qh128", INFO(0x1c7018, 0, 64 * 1024, 256) }, + { "en25qh256", INFO(0x1c7019, 0, 64 * 1024, 512) + PARSE_SFDP }, + { "en25s64", INFO(0x1c3817, 0, 64 * 1024, 128) + NO_SFDP_FLAGS(SECT_4K) }, +}; + +const struct spi_nor_manufacturer spi_nor_eon = { + .name = "eon", + .parts = eon_nor_parts, + .nparts = ARRAY_SIZE(eon_nor_parts), +}; diff --git a/drivers/mtd/spi-nor/esmt.c b/drivers/mtd/spi-nor/esmt.c new file mode 100644 index 0000000000..fcc3b0e7cd --- /dev/null +++ b/drivers/mtd/spi-nor/esmt.c @@ -0,0 +1,28 @@ +// SPDX-License-Identifier: GPL-2.0 +/* + * Copyright (C) 2005, Intec Automation Inc. + * Copyright (C) 2014, Freescale Semiconductor, Inc. + */ + +#include <linux/mtd/spi-nor.h> + +#include "core.h" + +static const struct flash_info esmt_nor_parts[] = { + /* ESMT */ + { "f25l32pa", INFO(0x8c2016, 0, 64 * 1024, 64) + FLAGS(SPI_NOR_HAS_LOCK | SPI_NOR_SWP_IS_VOLATILE) + NO_SFDP_FLAGS(SECT_4K) }, + { "f25l32qa-2s", INFO(0x8c4116, 0, 64 * 1024, 64) + FLAGS(SPI_NOR_HAS_LOCK) + NO_SFDP_FLAGS(SECT_4K) }, + { "f25l64qa", INFO(0x8c4117, 0, 64 * 1024, 128) + FLAGS(SPI_NOR_HAS_LOCK) + NO_SFDP_FLAGS(SECT_4K) }, +}; + +const struct spi_nor_manufacturer spi_nor_esmt = { + .name = "esmt", + .parts = esmt_nor_parts, + .nparts = ARRAY_SIZE(esmt_nor_parts), +}; diff --git a/drivers/mtd/spi-nor/everspin.c b/drivers/mtd/spi-nor/everspin.c new file mode 100644 index 0000000000..84a07c2e05 --- /dev/null +++ b/drivers/mtd/spi-nor/everspin.c @@ -0,0 +1,23 @@ +// SPDX-License-Identifier: GPL-2.0 +/* + * Copyright (C) 2005, Intec Automation Inc. + * Copyright (C) 2014, Freescale Semiconductor, Inc. + */ + +#include <linux/mtd/spi-nor.h> + +#include "core.h" + +static const struct flash_info everspin_nor_parts[] = { + /* Everspin */ + { "mr25h128", CAT25_INFO(16 * 1024, 1, 256, 2) }, + { "mr25h256", CAT25_INFO(32 * 1024, 1, 256, 2) }, + { "mr25h10", CAT25_INFO(128 * 1024, 1, 256, 3) }, + { "mr25h40", CAT25_INFO(512 * 1024, 1, 256, 3) }, +}; + +const struct spi_nor_manufacturer spi_nor_everspin = { + .name = "everspin", + .parts = everspin_nor_parts, + .nparts = ARRAY_SIZE(everspin_nor_parts), +}; diff --git a/drivers/mtd/spi-nor/fujitsu.c b/drivers/mtd/spi-nor/fujitsu.c new file mode 100644 index 0000000000..69cffc5c73 --- /dev/null +++ b/drivers/mtd/spi-nor/fujitsu.c @@ -0,0 +1,21 @@ +// SPDX-License-Identifier: GPL-2.0 +/* + * Copyright (C) 2005, Intec Automation Inc. + * Copyright (C) 2014, Freescale Semiconductor, Inc. + */ + +#include <linux/mtd/spi-nor.h> + +#include "core.h" + +static const struct flash_info fujitsu_nor_parts[] = { + /* Fujitsu */ + { "mb85rs1mt", INFO(0x047f27, 0, 128 * 1024, 1) + FLAGS(SPI_NOR_NO_ERASE) }, +}; + +const struct spi_nor_manufacturer spi_nor_fujitsu = { + .name = "fujitsu", + .parts = fujitsu_nor_parts, + .nparts = ARRAY_SIZE(fujitsu_nor_parts), +}; diff --git a/drivers/mtd/spi-nor/gigadevice.c b/drivers/mtd/spi-nor/gigadevice.c new file mode 100644 index 0000000000..d57ddaf152 --- /dev/null +++ b/drivers/mtd/spi-nor/gigadevice.c @@ -0,0 +1,76 @@ +// SPDX-License-Identifier: GPL-2.0 +/* + * Copyright (C) 2005, Intec Automation Inc. + * Copyright (C) 2014, Freescale Semiconductor, Inc. + */ + +#include <linux/mtd/spi-nor.h> + +#include "core.h" + +static int +gd25q256_post_bfpt(struct spi_nor *nor, + const struct sfdp_parameter_header *bfpt_header, + const struct sfdp_bfpt *bfpt) +{ + /* + * GD25Q256C supports the first version of JESD216 which does not define + * the Quad Enable methods. Overwrite the default Quad Enable method. + * + * GD25Q256 GENERATION | SFDP MAJOR VERSION | SFDP MINOR VERSION + * GD25Q256C | SFDP_JESD216_MAJOR | SFDP_JESD216_MINOR + * GD25Q256D | SFDP_JESD216_MAJOR | SFDP_JESD216B_MINOR + * GD25Q256E | SFDP_JESD216_MAJOR | SFDP_JESD216B_MINOR + */ + if (bfpt_header->major == SFDP_JESD216_MAJOR && + bfpt_header->minor == SFDP_JESD216_MINOR) + nor->params->quad_enable = spi_nor_sr1_bit6_quad_enable; + + return 0; +} + +static const struct spi_nor_fixups gd25q256_fixups = { + .post_bfpt = gd25q256_post_bfpt, +}; + +static const struct flash_info gigadevice_nor_parts[] = { + { "gd25q16", INFO(0xc84015, 0, 64 * 1024, 32) + FLAGS(SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB) + NO_SFDP_FLAGS(SECT_4K | SPI_NOR_DUAL_READ | + SPI_NOR_QUAD_READ) }, + { "gd25q32", INFO(0xc84016, 0, 64 * 1024, 64) + FLAGS(SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB) + NO_SFDP_FLAGS(SECT_4K | SPI_NOR_DUAL_READ | + SPI_NOR_QUAD_READ) }, + { "gd25lq32", INFO(0xc86016, 0, 64 * 1024, 64) + FLAGS(SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB) + NO_SFDP_FLAGS(SECT_4K | SPI_NOR_DUAL_READ | + SPI_NOR_QUAD_READ) }, + { "gd25q64", INFO(0xc84017, 0, 64 * 1024, 128) + FLAGS(SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB) + NO_SFDP_FLAGS(SECT_4K | SPI_NOR_DUAL_READ | + SPI_NOR_QUAD_READ) }, + { "gd25lq64c", INFO(0xc86017, 0, 64 * 1024, 128) + FLAGS(SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB) + NO_SFDP_FLAGS(SECT_4K | SPI_NOR_DUAL_READ | + SPI_NOR_QUAD_READ) }, + { "gd25lq128d", INFO(0xc86018, 0, 64 * 1024, 256) + FLAGS(SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB) + NO_SFDP_FLAGS(SECT_4K | SPI_NOR_DUAL_READ | + SPI_NOR_QUAD_READ) }, + { "gd25q128", INFO(0xc84018, 0, 64 * 1024, 256) + FLAGS(SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB) + NO_SFDP_FLAGS(SECT_4K | SPI_NOR_DUAL_READ | + SPI_NOR_QUAD_READ) }, + { "gd25q256", INFO(0xc84019, 0, 64 * 1024, 512) + PARSE_SFDP + FLAGS(SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB | SPI_NOR_TB_SR_BIT6) + FIXUP_FLAGS(SPI_NOR_4B_OPCODES) + .fixups = &gd25q256_fixups }, +}; + +const struct spi_nor_manufacturer spi_nor_gigadevice = { + .name = "gigadevice", + .parts = gigadevice_nor_parts, + .nparts = ARRAY_SIZE(gigadevice_nor_parts), +}; diff --git a/drivers/mtd/spi-nor/intel.c b/drivers/mtd/spi-nor/intel.c new file mode 100644 index 0000000000..9179f2d09c --- /dev/null +++ b/drivers/mtd/spi-nor/intel.c @@ -0,0 +1,25 @@ +// SPDX-License-Identifier: GPL-2.0 +/* + * Copyright (C) 2005, Intec Automation Inc. + * Copyright (C) 2014, Freescale Semiconductor, Inc. + */ + +#include <linux/mtd/spi-nor.h> + +#include "core.h" + +static const struct flash_info intel_nor_parts[] = { + /* Intel/Numonyx -- xxxs33b */ + { "160s33b", INFO(0x898911, 0, 64 * 1024, 32) + FLAGS(SPI_NOR_HAS_LOCK | SPI_NOR_SWP_IS_VOLATILE) }, + { "320s33b", INFO(0x898912, 0, 64 * 1024, 64) + FLAGS(SPI_NOR_HAS_LOCK | SPI_NOR_SWP_IS_VOLATILE) }, + { "640s33b", INFO(0x898913, 0, 64 * 1024, 128) + FLAGS(SPI_NOR_HAS_LOCK | SPI_NOR_SWP_IS_VOLATILE) }, +}; + +const struct spi_nor_manufacturer spi_nor_intel = { + .name = "intel", + .parts = intel_nor_parts, + .nparts = ARRAY_SIZE(intel_nor_parts), +}; diff --git a/drivers/mtd/spi-nor/issi.c b/drivers/mtd/spi-nor/issi.c new file mode 100644 index 0000000000..accdf7aa2b --- /dev/null +++ b/drivers/mtd/spi-nor/issi.c @@ -0,0 +1,108 @@ +// SPDX-License-Identifier: GPL-2.0 +/* + * Copyright (C) 2005, Intec Automation Inc. + * Copyright (C) 2014, Freescale Semiconductor, Inc. + */ + +#include <linux/mtd/spi-nor.h> + +#include "core.h" + +static int +is25lp256_post_bfpt_fixups(struct spi_nor *nor, + const struct sfdp_parameter_header *bfpt_header, + const struct sfdp_bfpt *bfpt) +{ + /* + * IS25LP256 supports 4B opcodes, but the BFPT advertises + * BFPT_DWORD1_ADDRESS_BYTES_3_ONLY. + * Overwrite the number of address bytes advertised by the BFPT. + */ + if ((bfpt->dwords[SFDP_DWORD(1)] & BFPT_DWORD1_ADDRESS_BYTES_MASK) == + BFPT_DWORD1_ADDRESS_BYTES_3_ONLY) + nor->params->addr_nbytes = 4; + + return 0; +} + +static const struct spi_nor_fixups is25lp256_fixups = { + .post_bfpt = is25lp256_post_bfpt_fixups, +}; + +static int pm25lv_nor_late_init(struct spi_nor *nor) +{ + struct spi_nor_erase_map *map = &nor->params->erase_map; + int i; + + /* The PM25LV series has a different 4k sector erase opcode */ + for (i = 0; i < SNOR_ERASE_TYPE_MAX; i++) + if (map->erase_type[i].size == 4096) + map->erase_type[i].opcode = SPINOR_OP_BE_4K_PMC; + + return 0; +} + +static const struct spi_nor_fixups pm25lv_nor_fixups = { + .late_init = pm25lv_nor_late_init, +}; + +static const struct flash_info issi_nor_parts[] = { + /* ISSI */ + { "is25cd512", INFO(0x7f9d20, 0, 32 * 1024, 2) + NO_SFDP_FLAGS(SECT_4K) }, + { "is25lq040b", INFO(0x9d4013, 0, 64 * 1024, 8) + NO_SFDP_FLAGS(SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) }, + { "is25lp016d", INFO(0x9d6015, 0, 64 * 1024, 32) + NO_SFDP_FLAGS(SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) }, + { "is25lp080d", INFO(0x9d6014, 0, 64 * 1024, 16) + NO_SFDP_FLAGS(SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) }, + { "is25lp032", INFO(0x9d6016, 0, 64 * 1024, 64) + NO_SFDP_FLAGS(SECT_4K | SPI_NOR_DUAL_READ) }, + { "is25lp064", INFO(0x9d6017, 0, 64 * 1024, 128) + NO_SFDP_FLAGS(SECT_4K | SPI_NOR_DUAL_READ) }, + { "is25lp128", INFO(0x9d6018, 0, 64 * 1024, 256) + NO_SFDP_FLAGS(SECT_4K | SPI_NOR_DUAL_READ) }, + { "is25lp256", INFO(0x9d6019, 0, 64 * 1024, 512) + PARSE_SFDP + FIXUP_FLAGS(SPI_NOR_4B_OPCODES) + .fixups = &is25lp256_fixups }, + { "is25wp032", INFO(0x9d7016, 0, 64 * 1024, 64) + NO_SFDP_FLAGS(SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) }, + { "is25wp064", INFO(0x9d7017, 0, 64 * 1024, 128) + NO_SFDP_FLAGS(SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) }, + { "is25wp128", INFO(0x9d7018, 0, 64 * 1024, 256) + NO_SFDP_FLAGS(SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) }, + { "is25wp256", INFO(0x9d7019, 0, 0, 0) + PARSE_SFDP + FIXUP_FLAGS(SPI_NOR_4B_OPCODES) + FLAGS(SPI_NOR_QUAD_PP) + .fixups = &is25lp256_fixups }, + + /* PMC */ + { "pm25lv512", INFO(0, 0, 32 * 1024, 2) + NO_SFDP_FLAGS(SECT_4K) + .fixups = &pm25lv_nor_fixups + }, + { "pm25lv010", INFO(0, 0, 32 * 1024, 4) + NO_SFDP_FLAGS(SECT_4K) + .fixups = &pm25lv_nor_fixups + }, + { "pm25lq032", INFO(0x7f9d46, 0, 64 * 1024, 64) + NO_SFDP_FLAGS(SECT_4K) }, +}; + +static void issi_nor_default_init(struct spi_nor *nor) +{ + nor->params->quad_enable = spi_nor_sr1_bit6_quad_enable; +} + +static const struct spi_nor_fixups issi_fixups = { + .default_init = issi_nor_default_init, +}; + +const struct spi_nor_manufacturer spi_nor_issi = { + .name = "issi", + .parts = issi_nor_parts, + .nparts = ARRAY_SIZE(issi_nor_parts), + .fixups = &issi_fixups, +}; diff --git a/drivers/mtd/spi-nor/macronix.c b/drivers/mtd/spi-nor/macronix.c new file mode 100644 index 0000000000..eb149e517c --- /dev/null +++ b/drivers/mtd/spi-nor/macronix.c @@ -0,0 +1,131 @@ +// SPDX-License-Identifier: GPL-2.0 +/* + * Copyright (C) 2005, Intec Automation Inc. + * Copyright (C) 2014, Freescale Semiconductor, Inc. + */ + +#include <linux/mtd/spi-nor.h> + +#include "core.h" + +static int +mx25l25635_post_bfpt_fixups(struct spi_nor *nor, + const struct sfdp_parameter_header *bfpt_header, + const struct sfdp_bfpt *bfpt) +{ + /* + * MX25L25635F supports 4B opcodes but MX25L25635E does not. + * Unfortunately, Macronix has re-used the same JEDEC ID for both + * variants which prevents us from defining a new entry in the parts + * table. + * We need a way to differentiate MX25L25635E and MX25L25635F, and it + * seems that the F version advertises support for Fast Read 4-4-4 in + * its BFPT table. + */ + if (bfpt->dwords[SFDP_DWORD(5)] & BFPT_DWORD5_FAST_READ_4_4_4) + nor->flags |= SNOR_F_4B_OPCODES; + + return 0; +} + +static const struct spi_nor_fixups mx25l25635_fixups = { + .post_bfpt = mx25l25635_post_bfpt_fixups, +}; + +static const struct flash_info macronix_nor_parts[] = { + /* Macronix */ + { "mx25l512e", INFO(0xc22010, 0, 64 * 1024, 1) + NO_SFDP_FLAGS(SECT_4K) }, + { "mx25l2005a", INFO(0xc22012, 0, 64 * 1024, 4) + NO_SFDP_FLAGS(SECT_4K) }, + { "mx25l4005a", INFO(0xc22013, 0, 64 * 1024, 8) + NO_SFDP_FLAGS(SECT_4K) }, + { "mx25l8005", INFO(0xc22014, 0, 64 * 1024, 16) }, + { "mx25l1606e", INFO(0xc22015, 0, 64 * 1024, 32) + NO_SFDP_FLAGS(SECT_4K) }, + { "mx25l3205d", INFO(0xc22016, 0, 64 * 1024, 64) + NO_SFDP_FLAGS(SECT_4K) }, + { "mx25l3255e", INFO(0xc29e16, 0, 64 * 1024, 64) + NO_SFDP_FLAGS(SECT_4K) }, + { "mx25l6405d", INFO(0xc22017, 0, 64 * 1024, 128) + NO_SFDP_FLAGS(SECT_4K) }, + { "mx25u2033e", INFO(0xc22532, 0, 64 * 1024, 4) + NO_SFDP_FLAGS(SECT_4K) }, + { "mx25u3235f", INFO(0xc22536, 0, 64 * 1024, 64) + NO_SFDP_FLAGS(SECT_4K | SPI_NOR_DUAL_READ | + SPI_NOR_QUAD_READ) }, + { "mx25u4035", INFO(0xc22533, 0, 64 * 1024, 8) + NO_SFDP_FLAGS(SECT_4K) }, + { "mx25u8035", INFO(0xc22534, 0, 64 * 1024, 16) + NO_SFDP_FLAGS(SECT_4K) }, + { "mx25u6435f", INFO(0xc22537, 0, 64 * 1024, 128) + NO_SFDP_FLAGS(SECT_4K) }, + { "mx25l12805d", INFO(0xc22018, 0, 64 * 1024, 256) + FLAGS(SPI_NOR_HAS_LOCK | SPI_NOR_4BIT_BP) + NO_SFDP_FLAGS(SECT_4K) }, + { "mx25l12855e", INFO(0xc22618, 0, 64 * 1024, 256) }, + { "mx25r1635f", INFO(0xc22815, 0, 64 * 1024, 32) + NO_SFDP_FLAGS(SECT_4K | SPI_NOR_DUAL_READ | + SPI_NOR_QUAD_READ) }, + { "mx25r3235f", INFO(0xc22816, 0, 64 * 1024, 64) + NO_SFDP_FLAGS(SECT_4K | SPI_NOR_DUAL_READ | + SPI_NOR_QUAD_READ) }, + { "mx25u12835f", INFO(0xc22538, 0, 64 * 1024, 256) + NO_SFDP_FLAGS(SECT_4K | SPI_NOR_DUAL_READ | + SPI_NOR_QUAD_READ) }, + { "mx25l25635e", INFO(0xc22019, 0, 64 * 1024, 512) + NO_SFDP_FLAGS(SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) + .fixups = &mx25l25635_fixups }, + { "mx25u25635f", INFO(0xc22539, 0, 64 * 1024, 512) + NO_SFDP_FLAGS(SECT_4K) + FIXUP_FLAGS(SPI_NOR_4B_OPCODES) }, + { "mx25u51245g", INFO(0xc2253a, 0, 64 * 1024, 1024) + NO_SFDP_FLAGS(SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) + FIXUP_FLAGS(SPI_NOR_4B_OPCODES) }, + { "mx25uw51245g", INFOB(0xc2813a, 0, 0, 0, 4) + PARSE_SFDP + FLAGS(SPI_NOR_RWW) }, + { "mx25v8035f", INFO(0xc22314, 0, 64 * 1024, 16) + NO_SFDP_FLAGS(SECT_4K | SPI_NOR_DUAL_READ | + SPI_NOR_QUAD_READ) }, + { "mx25l25655e", INFO(0xc22619, 0, 64 * 1024, 512) }, + { "mx66l51235f", INFO(0xc2201a, 0, 64 * 1024, 1024) + NO_SFDP_FLAGS(SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) + FIXUP_FLAGS(SPI_NOR_4B_OPCODES) }, + { "mx66u51235f", INFO(0xc2253a, 0, 64 * 1024, 1024) + NO_SFDP_FLAGS(SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) + FIXUP_FLAGS(SPI_NOR_4B_OPCODES) }, + { "mx66l1g45g", INFO(0xc2201b, 0, 64 * 1024, 2048) + NO_SFDP_FLAGS(SECT_4K | SPI_NOR_DUAL_READ | + SPI_NOR_QUAD_READ) }, + { "mx66l1g55g", INFO(0xc2261b, 0, 64 * 1024, 2048) + NO_SFDP_FLAGS(SPI_NOR_QUAD_READ) }, + { "mx66u2g45g", INFO(0xc2253c, 0, 64 * 1024, 4096) + NO_SFDP_FLAGS(SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) + FIXUP_FLAGS(SPI_NOR_4B_OPCODES) }, +}; + +static void macronix_nor_default_init(struct spi_nor *nor) +{ + nor->params->quad_enable = spi_nor_sr1_bit6_quad_enable; +} + +static int macronix_nor_late_init(struct spi_nor *nor) +{ + if (!nor->params->set_4byte_addr_mode) + nor->params->set_4byte_addr_mode = spi_nor_set_4byte_addr_mode_en4b_ex4b; + + return 0; +} + +static const struct spi_nor_fixups macronix_nor_fixups = { + .default_init = macronix_nor_default_init, + .late_init = macronix_nor_late_init, +}; + +const struct spi_nor_manufacturer spi_nor_macronix = { + .name = "macronix", + .parts = macronix_nor_parts, + .nparts = ARRAY_SIZE(macronix_nor_parts), + .fixups = ¯onix_nor_fixups, +}; diff --git a/drivers/mtd/spi-nor/micron-st.c b/drivers/mtd/spi-nor/micron-st.c new file mode 100644 index 0000000000..6ad080c52a --- /dev/null +++ b/drivers/mtd/spi-nor/micron-st.c @@ -0,0 +1,462 @@ +// SPDX-License-Identifier: GPL-2.0 +/* + * Copyright (C) 2005, Intec Automation Inc. + * Copyright (C) 2014, Freescale Semiconductor, Inc. + */ + +#include <linux/mtd/spi-nor.h> + +#include "core.h" + +/* flash_info mfr_flag. Used to read proprietary FSR register. */ +#define USE_FSR BIT(0) + +#define SPINOR_OP_RDFSR 0x70 /* Read flag status register */ +#define SPINOR_OP_CLFSR 0x50 /* Clear flag status register */ +#define SPINOR_OP_MT_DTR_RD 0xfd /* Fast Read opcode in DTR mode */ +#define SPINOR_OP_MT_RD_ANY_REG 0x85 /* Read volatile register */ +#define SPINOR_OP_MT_WR_ANY_REG 0x81 /* Write volatile register */ +#define SPINOR_REG_MT_CFR0V 0x00 /* For setting octal DTR mode */ +#define SPINOR_REG_MT_CFR1V 0x01 /* For setting dummy cycles */ +#define SPINOR_REG_MT_CFR1V_DEF 0x1f /* Default dummy cycles */ +#define SPINOR_MT_OCT_DTR 0xe7 /* Enable Octal DTR. */ +#define SPINOR_MT_EXSPI 0xff /* Enable Extended SPI (default) */ + +/* Flag Status Register bits */ +#define FSR_READY BIT(7) /* Device status, 0 = Busy, 1 = Ready */ +#define FSR_E_ERR BIT(5) /* Erase operation status */ +#define FSR_P_ERR BIT(4) /* Program operation status */ +#define FSR_PT_ERR BIT(1) /* Protection error bit */ + +/* Micron ST SPI NOR flash operations. */ +#define MICRON_ST_NOR_WR_ANY_REG_OP(naddr, addr, ndata, buf) \ + SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_MT_WR_ANY_REG, 0), \ + SPI_MEM_OP_ADDR(naddr, addr, 0), \ + SPI_MEM_OP_NO_DUMMY, \ + SPI_MEM_OP_DATA_OUT(ndata, buf, 0)) + +#define MICRON_ST_RDFSR_OP(buf) \ + SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_RDFSR, 0), \ + SPI_MEM_OP_NO_ADDR, \ + SPI_MEM_OP_NO_DUMMY, \ + SPI_MEM_OP_DATA_IN(1, buf, 0)) + +#define MICRON_ST_CLFSR_OP \ + SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_CLFSR, 0), \ + SPI_MEM_OP_NO_ADDR, \ + SPI_MEM_OP_NO_DUMMY, \ + SPI_MEM_OP_NO_DATA) + +static int micron_st_nor_octal_dtr_en(struct spi_nor *nor) +{ + struct spi_mem_op op; + u8 *buf = nor->bouncebuf; + int ret; + u8 addr_mode_nbytes = nor->params->addr_mode_nbytes; + + /* Use 20 dummy cycles for memory array reads. */ + *buf = 20; + op = (struct spi_mem_op) + MICRON_ST_NOR_WR_ANY_REG_OP(addr_mode_nbytes, + SPINOR_REG_MT_CFR1V, 1, buf); + ret = spi_nor_write_any_volatile_reg(nor, &op, nor->reg_proto); + if (ret) + return ret; + + buf[0] = SPINOR_MT_OCT_DTR; + op = (struct spi_mem_op) + MICRON_ST_NOR_WR_ANY_REG_OP(addr_mode_nbytes, + SPINOR_REG_MT_CFR0V, 1, buf); + ret = spi_nor_write_any_volatile_reg(nor, &op, nor->reg_proto); + if (ret) + return ret; + + /* Read flash ID to make sure the switch was successful. */ + ret = spi_nor_read_id(nor, 0, 8, buf, SNOR_PROTO_8_8_8_DTR); + if (ret) { + dev_dbg(nor->dev, "error %d reading JEDEC ID after enabling 8D-8D-8D mode\n", ret); + return ret; + } + + if (memcmp(buf, nor->info->id, nor->info->id_len)) + return -EINVAL; + + return 0; +} + +static int micron_st_nor_octal_dtr_dis(struct spi_nor *nor) +{ + struct spi_mem_op op; + u8 *buf = nor->bouncebuf; + int ret; + + /* + * The register is 1-byte wide, but 1-byte transactions are not allowed + * in 8D-8D-8D mode. The next register is the dummy cycle configuration + * register. Since the transaction needs to be at least 2 bytes wide, + * set the next register to its default value. This also makes sense + * because the value was changed when enabling 8D-8D-8D mode, it should + * be reset when disabling. + */ + buf[0] = SPINOR_MT_EXSPI; + buf[1] = SPINOR_REG_MT_CFR1V_DEF; + op = (struct spi_mem_op) + MICRON_ST_NOR_WR_ANY_REG_OP(nor->addr_nbytes, + SPINOR_REG_MT_CFR0V, 2, buf); + ret = spi_nor_write_any_volatile_reg(nor, &op, SNOR_PROTO_8_8_8_DTR); + if (ret) + return ret; + + /* Read flash ID to make sure the switch was successful. */ + ret = spi_nor_read_id(nor, 0, 0, buf, SNOR_PROTO_1_1_1); + if (ret) { + dev_dbg(nor->dev, "error %d reading JEDEC ID after disabling 8D-8D-8D mode\n", ret); + return ret; + } + + if (memcmp(buf, nor->info->id, nor->info->id_len)) + return -EINVAL; + + return 0; +} + +static int micron_st_nor_set_octal_dtr(struct spi_nor *nor, bool enable) +{ + return enable ? micron_st_nor_octal_dtr_en(nor) : + micron_st_nor_octal_dtr_dis(nor); +} + +static void mt35xu512aba_default_init(struct spi_nor *nor) +{ + nor->params->set_octal_dtr = micron_st_nor_set_octal_dtr; +} + +static int mt35xu512aba_post_sfdp_fixup(struct spi_nor *nor) +{ + /* Set the Fast Read settings. */ + nor->params->hwcaps.mask |= SNOR_HWCAPS_READ_8_8_8_DTR; + spi_nor_set_read_settings(&nor->params->reads[SNOR_CMD_READ_8_8_8_DTR], + 0, 20, SPINOR_OP_MT_DTR_RD, + SNOR_PROTO_8_8_8_DTR); + + nor->cmd_ext_type = SPI_NOR_EXT_REPEAT; + nor->params->rdsr_dummy = 8; + nor->params->rdsr_addr_nbytes = 0; + + /* + * The BFPT quad enable field is set to a reserved value so the quad + * enable function is ignored by spi_nor_parse_bfpt(). Make sure we + * disable it. + */ + nor->params->quad_enable = NULL; + + return 0; +} + +static const struct spi_nor_fixups mt35xu512aba_fixups = { + .default_init = mt35xu512aba_default_init, + .post_sfdp = mt35xu512aba_post_sfdp_fixup, +}; + +static const struct flash_info micron_nor_parts[] = { + { "mt35xu512aba", INFO(0x2c5b1a, 0, 128 * 1024, 512) + NO_SFDP_FLAGS(SECT_4K | SPI_NOR_OCTAL_READ | + SPI_NOR_OCTAL_DTR_READ | SPI_NOR_OCTAL_DTR_PP) + FIXUP_FLAGS(SPI_NOR_4B_OPCODES | SPI_NOR_IO_MODE_EN_VOLATILE) + MFR_FLAGS(USE_FSR) + .fixups = &mt35xu512aba_fixups + }, + { "mt35xu02g", INFO(0x2c5b1c, 0, 128 * 1024, 2048) + NO_SFDP_FLAGS(SECT_4K | SPI_NOR_OCTAL_READ) + FIXUP_FLAGS(SPI_NOR_4B_OPCODES) + MFR_FLAGS(USE_FSR) + }, +}; + +static const struct flash_info st_nor_parts[] = { + { "n25q016a", INFO(0x20bb15, 0, 64 * 1024, 32) + NO_SFDP_FLAGS(SECT_4K | SPI_NOR_QUAD_READ) }, + { "n25q032", INFO(0x20ba16, 0, 64 * 1024, 64) + NO_SFDP_FLAGS(SPI_NOR_QUAD_READ) }, + { "n25q032a", INFO(0x20bb16, 0, 64 * 1024, 64) + NO_SFDP_FLAGS(SPI_NOR_QUAD_READ) }, + { "n25q064", INFO(0x20ba17, 0, 64 * 1024, 128) + NO_SFDP_FLAGS(SECT_4K | SPI_NOR_QUAD_READ) }, + { "n25q064a", INFO(0x20bb17, 0, 64 * 1024, 128) + NO_SFDP_FLAGS(SECT_4K | SPI_NOR_QUAD_READ) }, + { "n25q128a11", INFO(0x20bb18, 0, 64 * 1024, 256) + FLAGS(SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB | SPI_NOR_4BIT_BP | + SPI_NOR_BP3_SR_BIT6) + NO_SFDP_FLAGS(SECT_4K | SPI_NOR_QUAD_READ) + MFR_FLAGS(USE_FSR) + }, + { "n25q128a13", INFO(0x20ba18, 0, 64 * 1024, 256) + FLAGS(SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB | SPI_NOR_4BIT_BP | + SPI_NOR_BP3_SR_BIT6) + NO_SFDP_FLAGS(SECT_4K | SPI_NOR_QUAD_READ) + MFR_FLAGS(USE_FSR) + }, + { "mt25ql256a", INFO6(0x20ba19, 0x104400, 64 * 1024, 512) + NO_SFDP_FLAGS(SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) + FIXUP_FLAGS(SPI_NOR_4B_OPCODES) + MFR_FLAGS(USE_FSR) + }, + { "n25q256a", INFO(0x20ba19, 0, 64 * 1024, 512) + NO_SFDP_FLAGS(SECT_4K | SPI_NOR_DUAL_READ | + SPI_NOR_QUAD_READ) + MFR_FLAGS(USE_FSR) + }, + { "mt25qu256a", INFO6(0x20bb19, 0x104400, 64 * 1024, 512) + FLAGS(SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB | SPI_NOR_4BIT_BP | + SPI_NOR_BP3_SR_BIT6) + NO_SFDP_FLAGS(SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) + FIXUP_FLAGS(SPI_NOR_4B_OPCODES) + MFR_FLAGS(USE_FSR) + }, + { "n25q256ax1", INFO(0x20bb19, 0, 64 * 1024, 512) + NO_SFDP_FLAGS(SECT_4K | SPI_NOR_QUAD_READ) + MFR_FLAGS(USE_FSR) + }, + { "mt25ql512a", INFO6(0x20ba20, 0x104400, 64 * 1024, 1024) + NO_SFDP_FLAGS(SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) + FIXUP_FLAGS(SPI_NOR_4B_OPCODES) + MFR_FLAGS(USE_FSR) + }, + { "n25q512ax3", INFO(0x20ba20, 0, 64 * 1024, 1024) + FLAGS(SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB | SPI_NOR_4BIT_BP | + SPI_NOR_BP3_SR_BIT6) + NO_SFDP_FLAGS(SECT_4K | SPI_NOR_QUAD_READ) + MFR_FLAGS(USE_FSR) + }, + { "mt25qu512a", INFO6(0x20bb20, 0x104400, 64 * 1024, 1024) + NO_SFDP_FLAGS(SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) + FIXUP_FLAGS(SPI_NOR_4B_OPCODES) + MFR_FLAGS(USE_FSR) + }, + { "n25q512a", INFO(0x20bb20, 0, 64 * 1024, 1024) + FLAGS(SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB | SPI_NOR_4BIT_BP | + SPI_NOR_BP3_SR_BIT6) + NO_SFDP_FLAGS(SECT_4K | SPI_NOR_QUAD_READ) + MFR_FLAGS(USE_FSR) + }, + { "n25q00", INFO(0x20ba21, 0, 64 * 1024, 2048) + FLAGS(SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB | SPI_NOR_4BIT_BP | + SPI_NOR_BP3_SR_BIT6 | NO_CHIP_ERASE) + NO_SFDP_FLAGS(SECT_4K | SPI_NOR_QUAD_READ) + MFR_FLAGS(USE_FSR) + }, + { "n25q00a", INFO(0x20bb21, 0, 64 * 1024, 2048) + FLAGS(NO_CHIP_ERASE) + NO_SFDP_FLAGS(SECT_4K | SPI_NOR_QUAD_READ) + MFR_FLAGS(USE_FSR) + }, + { "mt25ql02g", INFO(0x20ba22, 0, 64 * 1024, 4096) + FLAGS(NO_CHIP_ERASE) + NO_SFDP_FLAGS(SECT_4K | SPI_NOR_QUAD_READ) + MFR_FLAGS(USE_FSR) + }, + { "mt25qu02g", INFO(0x20bb22, 0, 64 * 1024, 4096) + FLAGS(NO_CHIP_ERASE) + NO_SFDP_FLAGS(SECT_4K | SPI_NOR_DUAL_READ | + SPI_NOR_QUAD_READ) + MFR_FLAGS(USE_FSR) + }, + + { "m25p05", INFO(0x202010, 0, 32 * 1024, 2) }, + { "m25p10", INFO(0x202011, 0, 32 * 1024, 4) }, + { "m25p20", INFO(0x202012, 0, 64 * 1024, 4) }, + { "m25p40", INFO(0x202013, 0, 64 * 1024, 8) }, + { "m25p80", INFO(0x202014, 0, 64 * 1024, 16) }, + { "m25p16", INFO(0x202015, 0, 64 * 1024, 32) }, + { "m25p32", INFO(0x202016, 0, 64 * 1024, 64) }, + { "m25p64", INFO(0x202017, 0, 64 * 1024, 128) }, + { "m25p128", INFO(0x202018, 0, 256 * 1024, 64) }, + + { "m25p05-nonjedec", INFO(0, 0, 32 * 1024, 2) }, + { "m25p10-nonjedec", INFO(0, 0, 32 * 1024, 4) }, + { "m25p20-nonjedec", INFO(0, 0, 64 * 1024, 4) }, + { "m25p40-nonjedec", INFO(0, 0, 64 * 1024, 8) }, + { "m25p80-nonjedec", INFO(0, 0, 64 * 1024, 16) }, + { "m25p16-nonjedec", INFO(0, 0, 64 * 1024, 32) }, + { "m25p32-nonjedec", INFO(0, 0, 64 * 1024, 64) }, + { "m25p64-nonjedec", INFO(0, 0, 64 * 1024, 128) }, + { "m25p128-nonjedec", INFO(0, 0, 256 * 1024, 64) }, + + { "m45pe10", INFO(0x204011, 0, 64 * 1024, 2) }, + { "m45pe80", INFO(0x204014, 0, 64 * 1024, 16) }, + { "m45pe16", INFO(0x204015, 0, 64 * 1024, 32) }, + + { "m25pe20", INFO(0x208012, 0, 64 * 1024, 4) }, + { "m25pe80", INFO(0x208014, 0, 64 * 1024, 16) }, + { "m25pe16", INFO(0x208015, 0, 64 * 1024, 32) + NO_SFDP_FLAGS(SECT_4K) }, + + { "m25px16", INFO(0x207115, 0, 64 * 1024, 32) + NO_SFDP_FLAGS(SECT_4K) }, + { "m25px32", INFO(0x207116, 0, 64 * 1024, 64) + NO_SFDP_FLAGS(SECT_4K) }, + { "m25px32-s0", INFO(0x207316, 0, 64 * 1024, 64) + NO_SFDP_FLAGS(SECT_4K) }, + { "m25px32-s1", INFO(0x206316, 0, 64 * 1024, 64) + NO_SFDP_FLAGS(SECT_4K) }, + { "m25px64", INFO(0x207117, 0, 64 * 1024, 128) }, + { "m25px80", INFO(0x207114, 0, 64 * 1024, 16) }, +}; + +/** + * micron_st_nor_read_fsr() - Read the Flag Status Register. + * @nor: pointer to 'struct spi_nor' + * @fsr: pointer to a DMA-able buffer where the value of the + * Flag Status Register will be written. Should be at least 2 + * bytes. + * + * Return: 0 on success, -errno otherwise. + */ +static int micron_st_nor_read_fsr(struct spi_nor *nor, u8 *fsr) +{ + int ret; + + if (nor->spimem) { + struct spi_mem_op op = MICRON_ST_RDFSR_OP(fsr); + + if (nor->reg_proto == SNOR_PROTO_8_8_8_DTR) { + op.addr.nbytes = nor->params->rdsr_addr_nbytes; + op.dummy.nbytes = nor->params->rdsr_dummy; + /* + * We don't want to read only one byte in DTR mode. So, + * read 2 and then discard the second byte. + */ + op.data.nbytes = 2; + } + + spi_nor_spimem_setup_op(nor, &op, nor->reg_proto); + + ret = spi_mem_exec_op(nor->spimem, &op); + } else { + ret = spi_nor_controller_ops_read_reg(nor, SPINOR_OP_RDFSR, fsr, + 1); + } + + if (ret) + dev_dbg(nor->dev, "error %d reading FSR\n", ret); + + return ret; +} + +/** + * micron_st_nor_clear_fsr() - Clear the Flag Status Register. + * @nor: pointer to 'struct spi_nor'. + */ +static void micron_st_nor_clear_fsr(struct spi_nor *nor) +{ + int ret; + + if (nor->spimem) { + struct spi_mem_op op = MICRON_ST_CLFSR_OP; + + spi_nor_spimem_setup_op(nor, &op, nor->reg_proto); + + ret = spi_mem_exec_op(nor->spimem, &op); + } else { + ret = spi_nor_controller_ops_write_reg(nor, SPINOR_OP_CLFSR, + NULL, 0); + } + + if (ret) + dev_dbg(nor->dev, "error %d clearing FSR\n", ret); +} + +/** + * micron_st_nor_ready() - Query the Status Register as well as the Flag Status + * Register to see if the flash is ready for new commands. If there are any + * errors in the FSR clear them. + * @nor: pointer to 'struct spi_nor'. + * + * Return: 1 if ready, 0 if not ready, -errno on errors. + */ +static int micron_st_nor_ready(struct spi_nor *nor) +{ + int sr_ready, ret; + + sr_ready = spi_nor_sr_ready(nor); + if (sr_ready < 0) + return sr_ready; + + ret = micron_st_nor_read_fsr(nor, nor->bouncebuf); + if (ret) { + /* + * Some controllers, such as Intel SPI, do not support low + * level operations such as reading the flag status + * register. They only expose small amount of high level + * operations to the software. If this is the case we use + * only the status register value. + */ + return ret == -EOPNOTSUPP ? sr_ready : ret; + } + + if (nor->bouncebuf[0] & (FSR_E_ERR | FSR_P_ERR)) { + if (nor->bouncebuf[0] & FSR_E_ERR) + dev_err(nor->dev, "Erase operation failed.\n"); + else + dev_err(nor->dev, "Program operation failed.\n"); + + if (nor->bouncebuf[0] & FSR_PT_ERR) + dev_err(nor->dev, + "Attempted to modify a protected sector.\n"); + + micron_st_nor_clear_fsr(nor); + + /* + * WEL bit remains set to one when an erase or page program + * error occurs. Issue a Write Disable command to protect + * against inadvertent writes that can possibly corrupt the + * contents of the memory. + */ + ret = spi_nor_write_disable(nor); + if (ret) + return ret; + + return -EIO; + } + + return sr_ready && !!(nor->bouncebuf[0] & FSR_READY); +} + +static void micron_st_nor_default_init(struct spi_nor *nor) +{ + nor->flags |= SNOR_F_HAS_LOCK; + nor->flags &= ~SNOR_F_HAS_16BIT_SR; + nor->params->quad_enable = NULL; +} + +static int micron_st_nor_late_init(struct spi_nor *nor) +{ + struct spi_nor_flash_parameter *params = nor->params; + + if (nor->info->mfr_flags & USE_FSR) + params->ready = micron_st_nor_ready; + + if (!params->set_4byte_addr_mode) + params->set_4byte_addr_mode = spi_nor_set_4byte_addr_mode_wren_en4b_ex4b; + + return 0; +} + +static const struct spi_nor_fixups micron_st_nor_fixups = { + .default_init = micron_st_nor_default_init, + .late_init = micron_st_nor_late_init, +}; + +const struct spi_nor_manufacturer spi_nor_micron = { + .name = "micron", + .parts = micron_nor_parts, + .nparts = ARRAY_SIZE(micron_nor_parts), + .fixups = µn_st_nor_fixups, +}; + +const struct spi_nor_manufacturer spi_nor_st = { + .name = "st", + .parts = st_nor_parts, + .nparts = ARRAY_SIZE(st_nor_parts), + .fixups = µn_st_nor_fixups, +}; diff --git a/drivers/mtd/spi-nor/otp.c b/drivers/mtd/spi-nor/otp.c new file mode 100644 index 0000000000..9a729aa345 --- /dev/null +++ b/drivers/mtd/spi-nor/otp.c @@ -0,0 +1,507 @@ +// SPDX-License-Identifier: GPL-2.0 +/* + * OTP support for SPI NOR flashes + * + * Copyright (C) 2021 Michael Walle <michael@walle.cc> + */ + +#include <linux/log2.h> +#include <linux/mtd/mtd.h> +#include <linux/mtd/spi-nor.h> + +#include "core.h" + +#define spi_nor_otp_region_len(nor) ((nor)->params->otp.org->len) +#define spi_nor_otp_n_regions(nor) ((nor)->params->otp.org->n_regions) + +/** + * spi_nor_otp_read_secr() - read security register + * @nor: pointer to 'struct spi_nor' + * @addr: offset to read from + * @len: number of bytes to read + * @buf: pointer to dst buffer + * + * Read a security register by using the SPINOR_OP_RSECR commands. + * + * In Winbond/GigaDevice datasheets the term "security register" stands for + * an one-time-programmable memory area, consisting of multiple bytes (usually + * 256). Thus one "security register" maps to one OTP region. + * + * This method is used on GigaDevice and Winbond flashes. + * + * Please note, the read must not span multiple registers. + * + * Return: number of bytes read successfully, -errno otherwise + */ +int spi_nor_otp_read_secr(struct spi_nor *nor, loff_t addr, size_t len, u8 *buf) +{ + u8 addr_nbytes, read_opcode, read_dummy; + struct spi_mem_dirmap_desc *rdesc; + enum spi_nor_protocol read_proto; + int ret; + + read_opcode = nor->read_opcode; + addr_nbytes = nor->addr_nbytes; + read_dummy = nor->read_dummy; + read_proto = nor->read_proto; + rdesc = nor->dirmap.rdesc; + + nor->read_opcode = SPINOR_OP_RSECR; + nor->read_dummy = 8; + nor->read_proto = SNOR_PROTO_1_1_1; + nor->dirmap.rdesc = NULL; + + ret = spi_nor_read_data(nor, addr, len, buf); + + nor->read_opcode = read_opcode; + nor->addr_nbytes = addr_nbytes; + nor->read_dummy = read_dummy; + nor->read_proto = read_proto; + nor->dirmap.rdesc = rdesc; + + return ret; +} + +/** + * spi_nor_otp_write_secr() - write security register + * @nor: pointer to 'struct spi_nor' + * @addr: offset to write to + * @len: number of bytes to write + * @buf: pointer to src buffer + * + * Write a security register by using the SPINOR_OP_PSECR commands. + * + * For more information on the term "security register", see the documentation + * of spi_nor_otp_read_secr(). + * + * This method is used on GigaDevice and Winbond flashes. + * + * Please note, the write must not span multiple registers. + * + * Return: number of bytes written successfully, -errno otherwise + */ +int spi_nor_otp_write_secr(struct spi_nor *nor, loff_t addr, size_t len, + const u8 *buf) +{ + enum spi_nor_protocol write_proto; + struct spi_mem_dirmap_desc *wdesc; + u8 addr_nbytes, program_opcode; + int ret, written; + + program_opcode = nor->program_opcode; + addr_nbytes = nor->addr_nbytes; + write_proto = nor->write_proto; + wdesc = nor->dirmap.wdesc; + + nor->program_opcode = SPINOR_OP_PSECR; + nor->write_proto = SNOR_PROTO_1_1_1; + nor->dirmap.wdesc = NULL; + + /* + * We only support a write to one single page. For now all winbond + * flashes only have one page per security register. + */ + ret = spi_nor_write_enable(nor); + if (ret) + goto out; + + written = spi_nor_write_data(nor, addr, len, buf); + if (written < 0) + goto out; + + ret = spi_nor_wait_till_ready(nor); + +out: + nor->program_opcode = program_opcode; + nor->addr_nbytes = addr_nbytes; + nor->write_proto = write_proto; + nor->dirmap.wdesc = wdesc; + + return ret ?: written; +} + +/** + * spi_nor_otp_erase_secr() - erase a security register + * @nor: pointer to 'struct spi_nor' + * @addr: offset of the security register to be erased + * + * Erase a security register by using the SPINOR_OP_ESECR command. + * + * For more information on the term "security register", see the documentation + * of spi_nor_otp_read_secr(). + * + * This method is used on GigaDevice and Winbond flashes. + * + * Return: 0 on success, -errno otherwise + */ +int spi_nor_otp_erase_secr(struct spi_nor *nor, loff_t addr) +{ + u8 erase_opcode = nor->erase_opcode; + int ret; + + ret = spi_nor_write_enable(nor); + if (ret) + return ret; + + nor->erase_opcode = SPINOR_OP_ESECR; + ret = spi_nor_erase_sector(nor, addr); + nor->erase_opcode = erase_opcode; + if (ret) + return ret; + + return spi_nor_wait_till_ready(nor); +} + +static int spi_nor_otp_lock_bit_cr(unsigned int region) +{ + static const int lock_bits[] = { SR2_LB1, SR2_LB2, SR2_LB3 }; + + if (region >= ARRAY_SIZE(lock_bits)) + return -EINVAL; + + return lock_bits[region]; +} + +/** + * spi_nor_otp_lock_sr2() - lock the OTP region + * @nor: pointer to 'struct spi_nor' + * @region: OTP region + * + * Lock the OTP region by writing the status register-2. This method is used on + * GigaDevice and Winbond flashes. + * + * Return: 0 on success, -errno otherwise. + */ +int spi_nor_otp_lock_sr2(struct spi_nor *nor, unsigned int region) +{ + u8 *cr = nor->bouncebuf; + int ret, lock_bit; + + lock_bit = spi_nor_otp_lock_bit_cr(region); + if (lock_bit < 0) + return lock_bit; + + ret = spi_nor_read_cr(nor, cr); + if (ret) + return ret; + + /* no need to write the register if region is already locked */ + if (cr[0] & lock_bit) + return 0; + + cr[0] |= lock_bit; + + return spi_nor_write_16bit_cr_and_check(nor, cr[0]); +} + +/** + * spi_nor_otp_is_locked_sr2() - get the OTP region lock status + * @nor: pointer to 'struct spi_nor' + * @region: OTP region + * + * Retrieve the OTP region lock bit by reading the status register-2. This + * method is used on GigaDevice and Winbond flashes. + * + * Return: 0 on success, -errno otherwise. + */ +int spi_nor_otp_is_locked_sr2(struct spi_nor *nor, unsigned int region) +{ + u8 *cr = nor->bouncebuf; + int ret, lock_bit; + + lock_bit = spi_nor_otp_lock_bit_cr(region); + if (lock_bit < 0) + return lock_bit; + + ret = spi_nor_read_cr(nor, cr); + if (ret) + return ret; + + return cr[0] & lock_bit; +} + +static loff_t spi_nor_otp_region_start(const struct spi_nor *nor, unsigned int region) +{ + const struct spi_nor_otp_organization *org = nor->params->otp.org; + + return org->base + region * org->offset; +} + +static size_t spi_nor_otp_size(struct spi_nor *nor) +{ + return spi_nor_otp_n_regions(nor) * spi_nor_otp_region_len(nor); +} + +/* Translate the file offsets from and to OTP regions. */ +static loff_t spi_nor_otp_region_to_offset(struct spi_nor *nor, unsigned int region) +{ + return region * spi_nor_otp_region_len(nor); +} + +static unsigned int spi_nor_otp_offset_to_region(struct spi_nor *nor, loff_t ofs) +{ + return div64_u64(ofs, spi_nor_otp_region_len(nor)); +} + +static int spi_nor_mtd_otp_info(struct mtd_info *mtd, size_t len, + size_t *retlen, struct otp_info *buf) +{ + struct spi_nor *nor = mtd_to_spi_nor(mtd); + const struct spi_nor_otp_ops *ops = nor->params->otp.ops; + unsigned int n_regions = spi_nor_otp_n_regions(nor); + unsigned int i; + int ret, locked; + + if (len < n_regions * sizeof(*buf)) + return -ENOSPC; + + ret = spi_nor_prep_and_lock(nor); + if (ret) + return ret; + + for (i = 0; i < n_regions; i++) { + buf->start = spi_nor_otp_region_to_offset(nor, i); + buf->length = spi_nor_otp_region_len(nor); + + locked = ops->is_locked(nor, i); + if (locked < 0) { + ret = locked; + goto out; + } + + buf->locked = !!locked; + buf++; + } + + *retlen = n_regions * sizeof(*buf); + +out: + spi_nor_unlock_and_unprep(nor); + + return ret; +} + +static int spi_nor_mtd_otp_range_is_locked(struct spi_nor *nor, loff_t ofs, + size_t len) +{ + const struct spi_nor_otp_ops *ops = nor->params->otp.ops; + unsigned int region; + int locked; + + /* + * If any of the affected OTP regions are locked the entire range is + * considered locked. + */ + for (region = spi_nor_otp_offset_to_region(nor, ofs); + region <= spi_nor_otp_offset_to_region(nor, ofs + len - 1); + region++) { + locked = ops->is_locked(nor, region); + /* take the branch it is locked or in case of an error */ + if (locked) + return locked; + } + + return 0; +} + +static int spi_nor_mtd_otp_read_write(struct mtd_info *mtd, loff_t ofs, + size_t total_len, size_t *retlen, + const u8 *buf, bool is_write) +{ + struct spi_nor *nor = mtd_to_spi_nor(mtd); + const struct spi_nor_otp_ops *ops = nor->params->otp.ops; + const size_t rlen = spi_nor_otp_region_len(nor); + loff_t rstart, rofs; + unsigned int region; + size_t len; + int ret; + + if (ofs < 0 || ofs >= spi_nor_otp_size(nor)) + return 0; + + /* don't access beyond the end */ + total_len = min_t(size_t, total_len, spi_nor_otp_size(nor) - ofs); + + if (!total_len) + return 0; + + ret = spi_nor_prep_and_lock(nor); + if (ret) + return ret; + + if (is_write) { + ret = spi_nor_mtd_otp_range_is_locked(nor, ofs, total_len); + if (ret < 0) { + goto out; + } else if (ret) { + ret = -EROFS; + goto out; + } + } + + while (total_len) { + /* + * The OTP regions are mapped into a contiguous area starting + * at 0 as expected by the MTD layer. This will map the MTD + * file offsets to the address of an OTP region as used in the + * actual SPI commands. + */ + region = spi_nor_otp_offset_to_region(nor, ofs); + rstart = spi_nor_otp_region_start(nor, region); + + /* + * The size of a OTP region is expected to be a power of two, + * thus we can just mask the lower bits and get the offset into + * a region. + */ + rofs = ofs & (rlen - 1); + + /* don't access beyond one OTP region */ + len = min_t(size_t, total_len, rlen - rofs); + + if (is_write) + ret = ops->write(nor, rstart + rofs, len, buf); + else + ret = ops->read(nor, rstart + rofs, len, (u8 *)buf); + if (ret == 0) + ret = -EIO; + if (ret < 0) + goto out; + + *retlen += ret; + ofs += ret; + buf += ret; + total_len -= ret; + } + ret = 0; + +out: + spi_nor_unlock_and_unprep(nor); + return ret; +} + +static int spi_nor_mtd_otp_read(struct mtd_info *mtd, loff_t from, size_t len, + size_t *retlen, u8 *buf) +{ + return spi_nor_mtd_otp_read_write(mtd, from, len, retlen, buf, false); +} + +static int spi_nor_mtd_otp_write(struct mtd_info *mtd, loff_t to, size_t len, + size_t *retlen, const u8 *buf) +{ + return spi_nor_mtd_otp_read_write(mtd, to, len, retlen, buf, true); +} + +static int spi_nor_mtd_otp_erase(struct mtd_info *mtd, loff_t from, size_t len) +{ + struct spi_nor *nor = mtd_to_spi_nor(mtd); + const struct spi_nor_otp_ops *ops = nor->params->otp.ops; + const size_t rlen = spi_nor_otp_region_len(nor); + unsigned int region; + loff_t rstart; + int ret; + + /* OTP erase is optional */ + if (!ops->erase) + return -EOPNOTSUPP; + + if (!len) + return 0; + + if (from < 0 || (from + len) > spi_nor_otp_size(nor)) + return -EINVAL; + + /* the user has to explicitly ask for whole regions */ + if (!IS_ALIGNED(len, rlen) || !IS_ALIGNED(from, rlen)) + return -EINVAL; + + ret = spi_nor_prep_and_lock(nor); + if (ret) + return ret; + + ret = spi_nor_mtd_otp_range_is_locked(nor, from, len); + if (ret < 0) { + goto out; + } else if (ret) { + ret = -EROFS; + goto out; + } + + while (len) { + region = spi_nor_otp_offset_to_region(nor, from); + rstart = spi_nor_otp_region_start(nor, region); + + ret = ops->erase(nor, rstart); + if (ret) + goto out; + + len -= rlen; + from += rlen; + } + +out: + spi_nor_unlock_and_unprep(nor); + + return ret; +} + +static int spi_nor_mtd_otp_lock(struct mtd_info *mtd, loff_t from, size_t len) +{ + struct spi_nor *nor = mtd_to_spi_nor(mtd); + const struct spi_nor_otp_ops *ops = nor->params->otp.ops; + const size_t rlen = spi_nor_otp_region_len(nor); + unsigned int region; + int ret; + + if (from < 0 || (from + len) > spi_nor_otp_size(nor)) + return -EINVAL; + + /* the user has to explicitly ask for whole regions */ + if (!IS_ALIGNED(len, rlen) || !IS_ALIGNED(from, rlen)) + return -EINVAL; + + ret = spi_nor_prep_and_lock(nor); + if (ret) + return ret; + + while (len) { + region = spi_nor_otp_offset_to_region(nor, from); + ret = ops->lock(nor, region); + if (ret) + goto out; + + len -= rlen; + from += rlen; + } + +out: + spi_nor_unlock_and_unprep(nor); + + return ret; +} + +void spi_nor_set_mtd_otp_ops(struct spi_nor *nor) +{ + struct mtd_info *mtd = &nor->mtd; + + if (!nor->params->otp.ops) + return; + + if (WARN_ON(!is_power_of_2(spi_nor_otp_region_len(nor)))) + return; + + /* + * We only support user_prot callbacks (yet). + * + * Some SPI NOR flashes like Macronix ones can be ordered in two + * different variants. One with a factory locked OTP area and one where + * it is left to the user to write to it. The factory locked OTP is + * usually preprogrammed with an "electrical serial number". We don't + * support these for now. + */ + mtd->_get_user_prot_info = spi_nor_mtd_otp_info; + mtd->_read_user_prot_reg = spi_nor_mtd_otp_read; + mtd->_write_user_prot_reg = spi_nor_mtd_otp_write; + mtd->_lock_user_prot_reg = spi_nor_mtd_otp_lock; + mtd->_erase_user_prot_reg = spi_nor_mtd_otp_erase; +} diff --git a/drivers/mtd/spi-nor/sfdp.c b/drivers/mtd/spi-nor/sfdp.c new file mode 100644 index 0000000000..b3b11dfed7 --- /dev/null +++ b/drivers/mtd/spi-nor/sfdp.c @@ -0,0 +1,1570 @@ +// SPDX-License-Identifier: GPL-2.0 +/* + * Copyright (C) 2005, Intec Automation Inc. + * Copyright (C) 2014, Freescale Semiconductor, Inc. + */ + +#include <linux/bitfield.h> +#include <linux/mtd/spi-nor.h> +#include <linux/slab.h> +#include <linux/sort.h> + +#include "core.h" + +#define SFDP_PARAM_HEADER_ID(p) (((p)->id_msb << 8) | (p)->id_lsb) +#define SFDP_PARAM_HEADER_PTP(p) \ + (((p)->parameter_table_pointer[2] << 16) | \ + ((p)->parameter_table_pointer[1] << 8) | \ + ((p)->parameter_table_pointer[0] << 0)) +#define SFDP_PARAM_HEADER_PARAM_LEN(p) ((p)->length * 4) + +#define SFDP_BFPT_ID 0xff00 /* Basic Flash Parameter Table */ +#define SFDP_SECTOR_MAP_ID 0xff81 /* Sector Map Table */ +#define SFDP_4BAIT_ID 0xff84 /* 4-byte Address Instruction Table */ +#define SFDP_PROFILE1_ID 0xff05 /* xSPI Profile 1.0 table. */ +#define SFDP_SCCR_MAP_ID 0xff87 /* + * Status, Control and Configuration + * Register Map. + */ +#define SFDP_SCCR_MAP_MC_ID 0xff88 /* + * Status, Control and Configuration + * Register Map Offsets for Multi-Chip + * SPI Memory Devices. + */ + +#define SFDP_SIGNATURE 0x50444653U + +struct sfdp_header { + u32 signature; /* Ox50444653U <=> "SFDP" */ + u8 minor; + u8 major; + u8 nph; /* 0-base number of parameter headers */ + u8 unused; + + /* Basic Flash Parameter Table. */ + struct sfdp_parameter_header bfpt_header; +}; + +/* Fast Read settings. */ +struct sfdp_bfpt_read { + /* The Fast Read x-y-z hardware capability in params->hwcaps.mask. */ + u32 hwcaps; + + /* + * The <supported_bit> bit in <supported_dword> BFPT DWORD tells us + * whether the Fast Read x-y-z command is supported. + */ + u32 supported_dword; + u32 supported_bit; + + /* + * The half-word at offset <setting_shift> in <setting_dword> BFPT DWORD + * encodes the op code, the number of mode clocks and the number of wait + * states to be used by Fast Read x-y-z command. + */ + u32 settings_dword; + u32 settings_shift; + + /* The SPI protocol for this Fast Read x-y-z command. */ + enum spi_nor_protocol proto; +}; + +struct sfdp_bfpt_erase { + /* + * The half-word at offset <shift> in DWORD <dword> encodes the + * op code and erase sector size to be used by Sector Erase commands. + */ + u32 dword; + u32 shift; +}; + +#define SMPT_CMD_ADDRESS_LEN_MASK GENMASK(23, 22) +#define SMPT_CMD_ADDRESS_LEN_0 (0x0UL << 22) +#define SMPT_CMD_ADDRESS_LEN_3 (0x1UL << 22) +#define SMPT_CMD_ADDRESS_LEN_4 (0x2UL << 22) +#define SMPT_CMD_ADDRESS_LEN_USE_CURRENT (0x3UL << 22) + +#define SMPT_CMD_READ_DUMMY_MASK GENMASK(19, 16) +#define SMPT_CMD_READ_DUMMY_SHIFT 16 +#define SMPT_CMD_READ_DUMMY(_cmd) \ + (((_cmd) & SMPT_CMD_READ_DUMMY_MASK) >> SMPT_CMD_READ_DUMMY_SHIFT) +#define SMPT_CMD_READ_DUMMY_IS_VARIABLE 0xfUL + +#define SMPT_CMD_READ_DATA_MASK GENMASK(31, 24) +#define SMPT_CMD_READ_DATA_SHIFT 24 +#define SMPT_CMD_READ_DATA(_cmd) \ + (((_cmd) & SMPT_CMD_READ_DATA_MASK) >> SMPT_CMD_READ_DATA_SHIFT) + +#define SMPT_CMD_OPCODE_MASK GENMASK(15, 8) +#define SMPT_CMD_OPCODE_SHIFT 8 +#define SMPT_CMD_OPCODE(_cmd) \ + (((_cmd) & SMPT_CMD_OPCODE_MASK) >> SMPT_CMD_OPCODE_SHIFT) + +#define SMPT_MAP_REGION_COUNT_MASK GENMASK(23, 16) +#define SMPT_MAP_REGION_COUNT_SHIFT 16 +#define SMPT_MAP_REGION_COUNT(_header) \ + ((((_header) & SMPT_MAP_REGION_COUNT_MASK) >> \ + SMPT_MAP_REGION_COUNT_SHIFT) + 1) + +#define SMPT_MAP_ID_MASK GENMASK(15, 8) +#define SMPT_MAP_ID_SHIFT 8 +#define SMPT_MAP_ID(_header) \ + (((_header) & SMPT_MAP_ID_MASK) >> SMPT_MAP_ID_SHIFT) + +#define SMPT_MAP_REGION_SIZE_MASK GENMASK(31, 8) +#define SMPT_MAP_REGION_SIZE_SHIFT 8 +#define SMPT_MAP_REGION_SIZE(_region) \ + (((((_region) & SMPT_MAP_REGION_SIZE_MASK) >> \ + SMPT_MAP_REGION_SIZE_SHIFT) + 1) * 256) + +#define SMPT_MAP_REGION_ERASE_TYPE_MASK GENMASK(3, 0) +#define SMPT_MAP_REGION_ERASE_TYPE(_region) \ + ((_region) & SMPT_MAP_REGION_ERASE_TYPE_MASK) + +#define SMPT_DESC_TYPE_MAP BIT(1) +#define SMPT_DESC_END BIT(0) + +#define SFDP_4BAIT_DWORD_MAX 2 + +struct sfdp_4bait { + /* The hardware capability. */ + u32 hwcaps; + + /* + * The <supported_bit> bit in DWORD1 of the 4BAIT tells us whether + * the associated 4-byte address op code is supported. + */ + u32 supported_bit; +}; + +/** + * spi_nor_read_raw() - raw read of serial flash memory. read_opcode, + * addr_nbytes and read_dummy members of the struct spi_nor + * should be previously set. + * @nor: pointer to a 'struct spi_nor' + * @addr: offset in the serial flash memory + * @len: number of bytes to read + * @buf: buffer where the data is copied into (dma-safe memory) + * + * Return: 0 on success, -errno otherwise. + */ +static int spi_nor_read_raw(struct spi_nor *nor, u32 addr, size_t len, u8 *buf) +{ + ssize_t ret; + + while (len) { + ret = spi_nor_read_data(nor, addr, len, buf); + if (ret < 0) + return ret; + if (!ret || ret > len) + return -EIO; + + buf += ret; + addr += ret; + len -= ret; + } + return 0; +} + +/** + * spi_nor_read_sfdp() - read Serial Flash Discoverable Parameters. + * @nor: pointer to a 'struct spi_nor' + * @addr: offset in the SFDP area to start reading data from + * @len: number of bytes to read + * @buf: buffer where the SFDP data are copied into (dma-safe memory) + * + * Whatever the actual numbers of bytes for address and dummy cycles are + * for (Fast) Read commands, the Read SFDP (5Ah) instruction is always + * followed by a 3-byte address and 8 dummy clock cycles. + * + * Return: 0 on success, -errno otherwise. + */ +static int spi_nor_read_sfdp(struct spi_nor *nor, u32 addr, + size_t len, void *buf) +{ + u8 addr_nbytes, read_opcode, read_dummy; + int ret; + + read_opcode = nor->read_opcode; + addr_nbytes = nor->addr_nbytes; + read_dummy = nor->read_dummy; + + nor->read_opcode = SPINOR_OP_RDSFDP; + nor->addr_nbytes = 3; + nor->read_dummy = 8; + + ret = spi_nor_read_raw(nor, addr, len, buf); + + nor->read_opcode = read_opcode; + nor->addr_nbytes = addr_nbytes; + nor->read_dummy = read_dummy; + + return ret; +} + +/** + * spi_nor_read_sfdp_dma_unsafe() - read Serial Flash Discoverable Parameters. + * @nor: pointer to a 'struct spi_nor' + * @addr: offset in the SFDP area to start reading data from + * @len: number of bytes to read + * @buf: buffer where the SFDP data are copied into + * + * Wrap spi_nor_read_sfdp() using a kmalloc'ed bounce buffer as @buf is now not + * guaranteed to be dma-safe. + * + * Return: -ENOMEM if kmalloc() fails, the return code of spi_nor_read_sfdp() + * otherwise. + */ +static int spi_nor_read_sfdp_dma_unsafe(struct spi_nor *nor, u32 addr, + size_t len, void *buf) +{ + void *dma_safe_buf; + int ret; + + dma_safe_buf = kmalloc(len, GFP_KERNEL); + if (!dma_safe_buf) + return -ENOMEM; + + ret = spi_nor_read_sfdp(nor, addr, len, dma_safe_buf); + memcpy(buf, dma_safe_buf, len); + kfree(dma_safe_buf); + + return ret; +} + +static void +spi_nor_set_read_settings_from_bfpt(struct spi_nor_read_command *read, + u16 half, + enum spi_nor_protocol proto) +{ + read->num_mode_clocks = (half >> 5) & 0x07; + read->num_wait_states = (half >> 0) & 0x1f; + read->opcode = (half >> 8) & 0xff; + read->proto = proto; +} + +static const struct sfdp_bfpt_read sfdp_bfpt_reads[] = { + /* Fast Read 1-1-2 */ + { + SNOR_HWCAPS_READ_1_1_2, + SFDP_DWORD(1), BIT(16), /* Supported bit */ + SFDP_DWORD(4), 0, /* Settings */ + SNOR_PROTO_1_1_2, + }, + + /* Fast Read 1-2-2 */ + { + SNOR_HWCAPS_READ_1_2_2, + SFDP_DWORD(1), BIT(20), /* Supported bit */ + SFDP_DWORD(4), 16, /* Settings */ + SNOR_PROTO_1_2_2, + }, + + /* Fast Read 2-2-2 */ + { + SNOR_HWCAPS_READ_2_2_2, + SFDP_DWORD(5), BIT(0), /* Supported bit */ + SFDP_DWORD(6), 16, /* Settings */ + SNOR_PROTO_2_2_2, + }, + + /* Fast Read 1-1-4 */ + { + SNOR_HWCAPS_READ_1_1_4, + SFDP_DWORD(1), BIT(22), /* Supported bit */ + SFDP_DWORD(3), 16, /* Settings */ + SNOR_PROTO_1_1_4, + }, + + /* Fast Read 1-4-4 */ + { + SNOR_HWCAPS_READ_1_4_4, + SFDP_DWORD(1), BIT(21), /* Supported bit */ + SFDP_DWORD(3), 0, /* Settings */ + SNOR_PROTO_1_4_4, + }, + + /* Fast Read 4-4-4 */ + { + SNOR_HWCAPS_READ_4_4_4, + SFDP_DWORD(5), BIT(4), /* Supported bit */ + SFDP_DWORD(7), 16, /* Settings */ + SNOR_PROTO_4_4_4, + }, +}; + +static const struct sfdp_bfpt_erase sfdp_bfpt_erases[] = { + /* Erase Type 1 in DWORD8 bits[15:0] */ + {SFDP_DWORD(8), 0}, + + /* Erase Type 2 in DWORD8 bits[31:16] */ + {SFDP_DWORD(8), 16}, + + /* Erase Type 3 in DWORD9 bits[15:0] */ + {SFDP_DWORD(9), 0}, + + /* Erase Type 4 in DWORD9 bits[31:16] */ + {SFDP_DWORD(9), 16}, +}; + +/** + * spi_nor_set_erase_settings_from_bfpt() - set erase type settings from BFPT + * @erase: pointer to a structure that describes a SPI NOR erase type + * @size: the size of the sector/block erased by the erase type + * @opcode: the SPI command op code to erase the sector/block + * @i: erase type index as sorted in the Basic Flash Parameter Table + * + * The supported Erase Types will be sorted at init in ascending order, with + * the smallest Erase Type size being the first member in the erase_type array + * of the spi_nor_erase_map structure. Save the Erase Type index as sorted in + * the Basic Flash Parameter Table since it will be used later on to + * synchronize with the supported Erase Types defined in SFDP optional tables. + */ +static void +spi_nor_set_erase_settings_from_bfpt(struct spi_nor_erase_type *erase, + u32 size, u8 opcode, u8 i) +{ + erase->idx = i; + spi_nor_set_erase_type(erase, size, opcode); +} + +/** + * spi_nor_map_cmp_erase_type() - compare the map's erase types by size + * @l: member in the left half of the map's erase_type array + * @r: member in the right half of the map's erase_type array + * + * Comparison function used in the sort() call to sort in ascending order the + * map's erase types, the smallest erase type size being the first member in the + * sorted erase_type array. + * + * Return: the result of @l->size - @r->size + */ +static int spi_nor_map_cmp_erase_type(const void *l, const void *r) +{ + const struct spi_nor_erase_type *left = l, *right = r; + + return left->size - right->size; +} + +/** + * spi_nor_sort_erase_mask() - sort erase mask + * @map: the erase map of the SPI NOR + * @erase_mask: the erase type mask to be sorted + * + * Replicate the sort done for the map's erase types in BFPT: sort the erase + * mask in ascending order with the smallest erase type size starting from + * BIT(0) in the sorted erase mask. + * + * Return: sorted erase mask. + */ +static u8 spi_nor_sort_erase_mask(struct spi_nor_erase_map *map, u8 erase_mask) +{ + struct spi_nor_erase_type *erase_type = map->erase_type; + int i; + u8 sorted_erase_mask = 0; + + if (!erase_mask) + return 0; + + /* Replicate the sort done for the map's erase types. */ + for (i = 0; i < SNOR_ERASE_TYPE_MAX; i++) + if (erase_type[i].size && erase_mask & BIT(erase_type[i].idx)) + sorted_erase_mask |= BIT(i); + + return sorted_erase_mask; +} + +/** + * spi_nor_regions_sort_erase_types() - sort erase types in each region + * @map: the erase map of the SPI NOR + * + * Function assumes that the erase types defined in the erase map are already + * sorted in ascending order, with the smallest erase type size being the first + * member in the erase_type array. It replicates the sort done for the map's + * erase types. Each region's erase bitmask will indicate which erase types are + * supported from the sorted erase types defined in the erase map. + * Sort the all region's erase type at init in order to speed up the process of + * finding the best erase command at runtime. + */ +static void spi_nor_regions_sort_erase_types(struct spi_nor_erase_map *map) +{ + struct spi_nor_erase_region *region = map->regions; + u8 region_erase_mask, sorted_erase_mask; + + while (region) { + region_erase_mask = region->offset & SNOR_ERASE_TYPE_MASK; + + sorted_erase_mask = spi_nor_sort_erase_mask(map, + region_erase_mask); + + /* Overwrite erase mask. */ + region->offset = (region->offset & ~SNOR_ERASE_TYPE_MASK) | + sorted_erase_mask; + + region = spi_nor_region_next(region); + } +} + +/** + * spi_nor_parse_bfpt() - read and parse the Basic Flash Parameter Table. + * @nor: pointer to a 'struct spi_nor' + * @bfpt_header: pointer to the 'struct sfdp_parameter_header' describing + * the Basic Flash Parameter Table length and version + * + * The Basic Flash Parameter Table is the main and only mandatory table as + * defined by the SFDP (JESD216) specification. + * It provides us with the total size (memory density) of the data array and + * the number of address bytes for Fast Read, Page Program and Sector Erase + * commands. + * For Fast READ commands, it also gives the number of mode clock cycles and + * wait states (regrouped in the number of dummy clock cycles) for each + * supported instruction op code. + * For Page Program, the page size is now available since JESD216 rev A, however + * the supported instruction op codes are still not provided. + * For Sector Erase commands, this table stores the supported instruction op + * codes and the associated sector sizes. + * Finally, the Quad Enable Requirements (QER) are also available since JESD216 + * rev A. The QER bits encode the manufacturer dependent procedure to be + * executed to set the Quad Enable (QE) bit in some internal register of the + * Quad SPI memory. Indeed the QE bit, when it exists, must be set before + * sending any Quad SPI command to the memory. Actually, setting the QE bit + * tells the memory to reassign its WP# and HOLD#/RESET# pins to functions IO2 + * and IO3 hence enabling 4 (Quad) I/O lines. + * + * Return: 0 on success, -errno otherwise. + */ +static int spi_nor_parse_bfpt(struct spi_nor *nor, + const struct sfdp_parameter_header *bfpt_header) +{ + struct spi_nor_flash_parameter *params = nor->params; + struct spi_nor_erase_map *map = ¶ms->erase_map; + struct spi_nor_erase_type *erase_type = map->erase_type; + struct sfdp_bfpt bfpt; + size_t len; + int i, cmd, err; + u32 addr, val; + u32 dword; + u16 half; + u8 erase_mask; + + /* JESD216 Basic Flash Parameter Table length is at least 9 DWORDs. */ + if (bfpt_header->length < BFPT_DWORD_MAX_JESD216) + return -EINVAL; + + /* Read the Basic Flash Parameter Table. */ + len = min_t(size_t, sizeof(bfpt), + bfpt_header->length * sizeof(u32)); + addr = SFDP_PARAM_HEADER_PTP(bfpt_header); + memset(&bfpt, 0, sizeof(bfpt)); + err = spi_nor_read_sfdp_dma_unsafe(nor, addr, len, &bfpt); + if (err < 0) + return err; + + /* Fix endianness of the BFPT DWORDs. */ + le32_to_cpu_array(bfpt.dwords, BFPT_DWORD_MAX); + + /* Number of address bytes. */ + switch (bfpt.dwords[SFDP_DWORD(1)] & BFPT_DWORD1_ADDRESS_BYTES_MASK) { + case BFPT_DWORD1_ADDRESS_BYTES_3_ONLY: + case BFPT_DWORD1_ADDRESS_BYTES_3_OR_4: + params->addr_nbytes = 3; + params->addr_mode_nbytes = 3; + break; + + case BFPT_DWORD1_ADDRESS_BYTES_4_ONLY: + params->addr_nbytes = 4; + params->addr_mode_nbytes = 4; + break; + + default: + break; + } + + /* Flash Memory Density (in bits). */ + val = bfpt.dwords[SFDP_DWORD(2)]; + if (val & BIT(31)) { + val &= ~BIT(31); + + /* + * Prevent overflows on params->size. Anyway, a NOR of 2^64 + * bits is unlikely to exist so this error probably means + * the BFPT we are reading is corrupted/wrong. + */ + if (val > 63) + return -EINVAL; + + params->size = 1ULL << val; + } else { + params->size = val + 1; + } + params->size >>= 3; /* Convert to bytes. */ + + /* Fast Read settings. */ + for (i = 0; i < ARRAY_SIZE(sfdp_bfpt_reads); i++) { + const struct sfdp_bfpt_read *rd = &sfdp_bfpt_reads[i]; + struct spi_nor_read_command *read; + + if (!(bfpt.dwords[rd->supported_dword] & rd->supported_bit)) { + params->hwcaps.mask &= ~rd->hwcaps; + continue; + } + + params->hwcaps.mask |= rd->hwcaps; + cmd = spi_nor_hwcaps_read2cmd(rd->hwcaps); + read = ¶ms->reads[cmd]; + half = bfpt.dwords[rd->settings_dword] >> rd->settings_shift; + spi_nor_set_read_settings_from_bfpt(read, half, rd->proto); + } + + /* + * Sector Erase settings. Reinitialize the uniform erase map using the + * Erase Types defined in the bfpt table. + */ + erase_mask = 0; + memset(¶ms->erase_map, 0, sizeof(params->erase_map)); + for (i = 0; i < ARRAY_SIZE(sfdp_bfpt_erases); i++) { + const struct sfdp_bfpt_erase *er = &sfdp_bfpt_erases[i]; + u32 erasesize; + u8 opcode; + + half = bfpt.dwords[er->dword] >> er->shift; + erasesize = half & 0xff; + + /* erasesize == 0 means this Erase Type is not supported. */ + if (!erasesize) + continue; + + erasesize = 1U << erasesize; + opcode = (half >> 8) & 0xff; + erase_mask |= BIT(i); + spi_nor_set_erase_settings_from_bfpt(&erase_type[i], erasesize, + opcode, i); + } + spi_nor_init_uniform_erase_map(map, erase_mask, params->size); + /* + * Sort all the map's Erase Types in ascending order with the smallest + * erase size being the first member in the erase_type array. + */ + sort(erase_type, SNOR_ERASE_TYPE_MAX, sizeof(erase_type[0]), + spi_nor_map_cmp_erase_type, NULL); + /* + * Sort the erase types in the uniform region in order to update the + * uniform_erase_type bitmask. The bitmask will be used later on when + * selecting the uniform erase. + */ + spi_nor_regions_sort_erase_types(map); + map->uniform_erase_type = map->uniform_region.offset & + SNOR_ERASE_TYPE_MASK; + + /* Stop here if not JESD216 rev A or later. */ + if (bfpt_header->length == BFPT_DWORD_MAX_JESD216) + return spi_nor_post_bfpt_fixups(nor, bfpt_header, &bfpt); + + /* Page size: this field specifies 'N' so the page size = 2^N bytes. */ + val = bfpt.dwords[SFDP_DWORD(11)]; + val &= BFPT_DWORD11_PAGE_SIZE_MASK; + val >>= BFPT_DWORD11_PAGE_SIZE_SHIFT; + params->page_size = 1U << val; + + /* Quad Enable Requirements. */ + switch (bfpt.dwords[SFDP_DWORD(15)] & BFPT_DWORD15_QER_MASK) { + case BFPT_DWORD15_QER_NONE: + params->quad_enable = NULL; + break; + + case BFPT_DWORD15_QER_SR2_BIT1_BUGGY: + /* + * Writing only one byte to the Status Register has the + * side-effect of clearing Status Register 2. + */ + case BFPT_DWORD15_QER_SR2_BIT1_NO_RD: + /* + * Read Configuration Register (35h) instruction is not + * supported. + */ + nor->flags |= SNOR_F_HAS_16BIT_SR | SNOR_F_NO_READ_CR; + params->quad_enable = spi_nor_sr2_bit1_quad_enable; + break; + + case BFPT_DWORD15_QER_SR1_BIT6: + nor->flags &= ~SNOR_F_HAS_16BIT_SR; + params->quad_enable = spi_nor_sr1_bit6_quad_enable; + break; + + case BFPT_DWORD15_QER_SR2_BIT7: + nor->flags &= ~SNOR_F_HAS_16BIT_SR; + params->quad_enable = spi_nor_sr2_bit7_quad_enable; + break; + + case BFPT_DWORD15_QER_SR2_BIT1: + /* + * JESD216 rev B or later does not specify if writing only one + * byte to the Status Register clears or not the Status + * Register 2, so let's be cautious and keep the default + * assumption of a 16-bit Write Status (01h) command. + */ + nor->flags |= SNOR_F_HAS_16BIT_SR; + + params->quad_enable = spi_nor_sr2_bit1_quad_enable; + break; + + default: + dev_dbg(nor->dev, "BFPT QER reserved value used\n"); + break; + } + + dword = bfpt.dwords[SFDP_DWORD(16)] & BFPT_DWORD16_4B_ADDR_MODE_MASK; + if (SFDP_MASK_CHECK(dword, BFPT_DWORD16_4B_ADDR_MODE_BRWR)) + params->set_4byte_addr_mode = spi_nor_set_4byte_addr_mode_brwr; + else if (SFDP_MASK_CHECK(dword, BFPT_DWORD16_4B_ADDR_MODE_WREN_EN4B_EX4B)) + params->set_4byte_addr_mode = spi_nor_set_4byte_addr_mode_wren_en4b_ex4b; + else if (SFDP_MASK_CHECK(dword, BFPT_DWORD16_4B_ADDR_MODE_EN4B_EX4B)) + params->set_4byte_addr_mode = spi_nor_set_4byte_addr_mode_en4b_ex4b; + else + dev_dbg(nor->dev, "BFPT: 4-Byte Address Mode method is not recognized or not implemented\n"); + + /* Soft Reset support. */ + if (bfpt.dwords[SFDP_DWORD(16)] & BFPT_DWORD16_SWRST_EN_RST) + nor->flags |= SNOR_F_SOFT_RESET; + + /* Stop here if not JESD216 rev C or later. */ + if (bfpt_header->length == BFPT_DWORD_MAX_JESD216B) + return spi_nor_post_bfpt_fixups(nor, bfpt_header, &bfpt); + + /* 8D-8D-8D command extension. */ + switch (bfpt.dwords[SFDP_DWORD(18)] & BFPT_DWORD18_CMD_EXT_MASK) { + case BFPT_DWORD18_CMD_EXT_REP: + nor->cmd_ext_type = SPI_NOR_EXT_REPEAT; + break; + + case BFPT_DWORD18_CMD_EXT_INV: + nor->cmd_ext_type = SPI_NOR_EXT_INVERT; + break; + + case BFPT_DWORD18_CMD_EXT_RES: + dev_dbg(nor->dev, "Reserved command extension used\n"); + break; + + case BFPT_DWORD18_CMD_EXT_16B: + dev_dbg(nor->dev, "16-bit opcodes not supported\n"); + return -EOPNOTSUPP; + } + + return spi_nor_post_bfpt_fixups(nor, bfpt_header, &bfpt); +} + +/** + * spi_nor_smpt_addr_nbytes() - return the number of address bytes used in the + * configuration detection command. + * @nor: pointer to a 'struct spi_nor' + * @settings: configuration detection command descriptor, dword1 + */ +static u8 spi_nor_smpt_addr_nbytes(const struct spi_nor *nor, const u32 settings) +{ + switch (settings & SMPT_CMD_ADDRESS_LEN_MASK) { + case SMPT_CMD_ADDRESS_LEN_0: + return 0; + case SMPT_CMD_ADDRESS_LEN_3: + return 3; + case SMPT_CMD_ADDRESS_LEN_4: + return 4; + case SMPT_CMD_ADDRESS_LEN_USE_CURRENT: + default: + return nor->params->addr_mode_nbytes; + } +} + +/** + * spi_nor_smpt_read_dummy() - return the configuration detection command read + * latency, in clock cycles. + * @nor: pointer to a 'struct spi_nor' + * @settings: configuration detection command descriptor, dword1 + * + * Return: the number of dummy cycles for an SMPT read + */ +static u8 spi_nor_smpt_read_dummy(const struct spi_nor *nor, const u32 settings) +{ + u8 read_dummy = SMPT_CMD_READ_DUMMY(settings); + + if (read_dummy == SMPT_CMD_READ_DUMMY_IS_VARIABLE) + return nor->read_dummy; + return read_dummy; +} + +/** + * spi_nor_get_map_in_use() - get the configuration map in use + * @nor: pointer to a 'struct spi_nor' + * @smpt: pointer to the sector map parameter table + * @smpt_len: sector map parameter table length + * + * Return: pointer to the map in use, ERR_PTR(-errno) otherwise. + */ +static const u32 *spi_nor_get_map_in_use(struct spi_nor *nor, const u32 *smpt, + u8 smpt_len) +{ + const u32 *ret; + u8 *buf; + u32 addr; + int err; + u8 i; + u8 addr_nbytes, read_opcode, read_dummy; + u8 read_data_mask, map_id; + + /* Use a kmalloc'ed bounce buffer to guarantee it is DMA-able. */ + buf = kmalloc(sizeof(*buf), GFP_KERNEL); + if (!buf) + return ERR_PTR(-ENOMEM); + + addr_nbytes = nor->addr_nbytes; + read_dummy = nor->read_dummy; + read_opcode = nor->read_opcode; + + map_id = 0; + /* Determine if there are any optional Detection Command Descriptors */ + for (i = 0; i < smpt_len; i += 2) { + if (smpt[i] & SMPT_DESC_TYPE_MAP) + break; + + read_data_mask = SMPT_CMD_READ_DATA(smpt[i]); + nor->addr_nbytes = spi_nor_smpt_addr_nbytes(nor, smpt[i]); + nor->read_dummy = spi_nor_smpt_read_dummy(nor, smpt[i]); + nor->read_opcode = SMPT_CMD_OPCODE(smpt[i]); + addr = smpt[i + 1]; + + err = spi_nor_read_raw(nor, addr, 1, buf); + if (err) { + ret = ERR_PTR(err); + goto out; + } + + /* + * Build an index value that is used to select the Sector Map + * Configuration that is currently in use. + */ + map_id = map_id << 1 | !!(*buf & read_data_mask); + } + + /* + * If command descriptors are provided, they always precede map + * descriptors in the table. There is no need to start the iteration + * over smpt array all over again. + * + * Find the matching configuration map. + */ + ret = ERR_PTR(-EINVAL); + while (i < smpt_len) { + if (SMPT_MAP_ID(smpt[i]) == map_id) { + ret = smpt + i; + break; + } + + /* + * If there are no more configuration map descriptors and no + * configuration ID matched the configuration identifier, the + * sector address map is unknown. + */ + if (smpt[i] & SMPT_DESC_END) + break; + + /* increment the table index to the next map */ + i += SMPT_MAP_REGION_COUNT(smpt[i]) + 1; + } + + /* fall through */ +out: + kfree(buf); + nor->addr_nbytes = addr_nbytes; + nor->read_dummy = read_dummy; + nor->read_opcode = read_opcode; + return ret; +} + +static void spi_nor_region_mark_end(struct spi_nor_erase_region *region) +{ + region->offset |= SNOR_LAST_REGION; +} + +static void spi_nor_region_mark_overlay(struct spi_nor_erase_region *region) +{ + region->offset |= SNOR_OVERLAID_REGION; +} + +/** + * spi_nor_region_check_overlay() - set overlay bit when the region is overlaid + * @region: pointer to a structure that describes a SPI NOR erase region + * @erase: pointer to a structure that describes a SPI NOR erase type + * @erase_type: erase type bitmask + */ +static void +spi_nor_region_check_overlay(struct spi_nor_erase_region *region, + const struct spi_nor_erase_type *erase, + const u8 erase_type) +{ + int i; + + for (i = 0; i < SNOR_ERASE_TYPE_MAX; i++) { + if (!(erase[i].size && erase_type & BIT(erase[i].idx))) + continue; + if (region->size & erase[i].size_mask) { + spi_nor_region_mark_overlay(region); + return; + } + } +} + +/** + * spi_nor_init_non_uniform_erase_map() - initialize the non-uniform erase map + * @nor: pointer to a 'struct spi_nor' + * @smpt: pointer to the sector map parameter table + * + * Return: 0 on success, -errno otherwise. + */ +static int spi_nor_init_non_uniform_erase_map(struct spi_nor *nor, + const u32 *smpt) +{ + struct spi_nor_erase_map *map = &nor->params->erase_map; + struct spi_nor_erase_type *erase = map->erase_type; + struct spi_nor_erase_region *region; + u64 offset; + u32 region_count; + int i, j; + u8 uniform_erase_type, save_uniform_erase_type; + u8 erase_type, regions_erase_type; + + region_count = SMPT_MAP_REGION_COUNT(*smpt); + /* + * The regions will be freed when the driver detaches from the + * device. + */ + region = devm_kcalloc(nor->dev, region_count, sizeof(*region), + GFP_KERNEL); + if (!region) + return -ENOMEM; + map->regions = region; + + uniform_erase_type = 0xff; + regions_erase_type = 0; + offset = 0; + /* Populate regions. */ + for (i = 0; i < region_count; i++) { + j = i + 1; /* index for the region dword */ + region[i].size = SMPT_MAP_REGION_SIZE(smpt[j]); + erase_type = SMPT_MAP_REGION_ERASE_TYPE(smpt[j]); + region[i].offset = offset | erase_type; + + spi_nor_region_check_overlay(®ion[i], erase, erase_type); + + /* + * Save the erase types that are supported in all regions and + * can erase the entire flash memory. + */ + uniform_erase_type &= erase_type; + + /* + * regions_erase_type mask will indicate all the erase types + * supported in this configuration map. + */ + regions_erase_type |= erase_type; + + offset = (region[i].offset & ~SNOR_ERASE_FLAGS_MASK) + + region[i].size; + } + spi_nor_region_mark_end(®ion[i - 1]); + + save_uniform_erase_type = map->uniform_erase_type; + map->uniform_erase_type = spi_nor_sort_erase_mask(map, + uniform_erase_type); + + if (!regions_erase_type) { + /* + * Roll back to the previous uniform_erase_type mask, SMPT is + * broken. + */ + map->uniform_erase_type = save_uniform_erase_type; + return -EINVAL; + } + + /* + * BFPT advertises all the erase types supported by all the possible + * map configurations. Mask out the erase types that are not supported + * by the current map configuration. + */ + for (i = 0; i < SNOR_ERASE_TYPE_MAX; i++) + if (!(regions_erase_type & BIT(erase[i].idx))) + spi_nor_mask_erase_type(&erase[i]); + + return 0; +} + +/** + * spi_nor_parse_smpt() - parse Sector Map Parameter Table + * @nor: pointer to a 'struct spi_nor' + * @smpt_header: sector map parameter table header + * + * This table is optional, but when available, we parse it to identify the + * location and size of sectors within the main data array of the flash memory + * device and to identify which Erase Types are supported by each sector. + * + * Return: 0 on success, -errno otherwise. + */ +static int spi_nor_parse_smpt(struct spi_nor *nor, + const struct sfdp_parameter_header *smpt_header) +{ + const u32 *sector_map; + u32 *smpt; + size_t len; + u32 addr; + int ret; + + /* Read the Sector Map Parameter Table. */ + len = smpt_header->length * sizeof(*smpt); + smpt = kmalloc(len, GFP_KERNEL); + if (!smpt) + return -ENOMEM; + + addr = SFDP_PARAM_HEADER_PTP(smpt_header); + ret = spi_nor_read_sfdp(nor, addr, len, smpt); + if (ret) + goto out; + + /* Fix endianness of the SMPT DWORDs. */ + le32_to_cpu_array(smpt, smpt_header->length); + + sector_map = spi_nor_get_map_in_use(nor, smpt, smpt_header->length); + if (IS_ERR(sector_map)) { + ret = PTR_ERR(sector_map); + goto out; + } + + ret = spi_nor_init_non_uniform_erase_map(nor, sector_map); + if (ret) + goto out; + + spi_nor_regions_sort_erase_types(&nor->params->erase_map); + /* fall through */ +out: + kfree(smpt); + return ret; +} + +/** + * spi_nor_parse_4bait() - parse the 4-Byte Address Instruction Table + * @nor: pointer to a 'struct spi_nor'. + * @param_header: pointer to the 'struct sfdp_parameter_header' describing + * the 4-Byte Address Instruction Table length and version. + * + * Return: 0 on success, -errno otherwise. + */ +static int spi_nor_parse_4bait(struct spi_nor *nor, + const struct sfdp_parameter_header *param_header) +{ + static const struct sfdp_4bait reads[] = { + { SNOR_HWCAPS_READ, BIT(0) }, + { SNOR_HWCAPS_READ_FAST, BIT(1) }, + { SNOR_HWCAPS_READ_1_1_2, BIT(2) }, + { SNOR_HWCAPS_READ_1_2_2, BIT(3) }, + { SNOR_HWCAPS_READ_1_1_4, BIT(4) }, + { SNOR_HWCAPS_READ_1_4_4, BIT(5) }, + { SNOR_HWCAPS_READ_1_1_1_DTR, BIT(13) }, + { SNOR_HWCAPS_READ_1_2_2_DTR, BIT(14) }, + { SNOR_HWCAPS_READ_1_4_4_DTR, BIT(15) }, + }; + static const struct sfdp_4bait programs[] = { + { SNOR_HWCAPS_PP, BIT(6) }, + { SNOR_HWCAPS_PP_1_1_4, BIT(7) }, + { SNOR_HWCAPS_PP_1_4_4, BIT(8) }, + }; + static const struct sfdp_4bait erases[SNOR_ERASE_TYPE_MAX] = { + { 0u /* not used */, BIT(9) }, + { 0u /* not used */, BIT(10) }, + { 0u /* not used */, BIT(11) }, + { 0u /* not used */, BIT(12) }, + }; + struct spi_nor_flash_parameter *params = nor->params; + struct spi_nor_pp_command *params_pp = params->page_programs; + struct spi_nor_erase_map *map = ¶ms->erase_map; + struct spi_nor_erase_type *erase_type = map->erase_type; + u32 *dwords; + size_t len; + u32 addr, discard_hwcaps, read_hwcaps, pp_hwcaps, erase_mask; + int i, ret; + + if (param_header->major != SFDP_JESD216_MAJOR || + param_header->length < SFDP_4BAIT_DWORD_MAX) + return -EINVAL; + + /* Read the 4-byte Address Instruction Table. */ + len = sizeof(*dwords) * SFDP_4BAIT_DWORD_MAX; + + /* Use a kmalloc'ed bounce buffer to guarantee it is DMA-able. */ + dwords = kmalloc(len, GFP_KERNEL); + if (!dwords) + return -ENOMEM; + + addr = SFDP_PARAM_HEADER_PTP(param_header); + ret = spi_nor_read_sfdp(nor, addr, len, dwords); + if (ret) + goto out; + + /* Fix endianness of the 4BAIT DWORDs. */ + le32_to_cpu_array(dwords, SFDP_4BAIT_DWORD_MAX); + + /* + * Compute the subset of (Fast) Read commands for which the 4-byte + * version is supported. + */ + discard_hwcaps = 0; + read_hwcaps = 0; + for (i = 0; i < ARRAY_SIZE(reads); i++) { + const struct sfdp_4bait *read = &reads[i]; + + discard_hwcaps |= read->hwcaps; + if ((params->hwcaps.mask & read->hwcaps) && + (dwords[SFDP_DWORD(1)] & read->supported_bit)) + read_hwcaps |= read->hwcaps; + } + + /* + * Compute the subset of Page Program commands for which the 4-byte + * version is supported. + */ + pp_hwcaps = 0; + for (i = 0; i < ARRAY_SIZE(programs); i++) { + const struct sfdp_4bait *program = &programs[i]; + + /* + * The 4 Byte Address Instruction (Optional) Table is the only + * SFDP table that indicates support for Page Program Commands. + * Bypass the params->hwcaps.mask and consider 4BAIT the biggest + * authority for specifying Page Program support. + */ + discard_hwcaps |= program->hwcaps; + if (dwords[SFDP_DWORD(1)] & program->supported_bit) + pp_hwcaps |= program->hwcaps; + } + + /* + * Compute the subset of Sector Erase commands for which the 4-byte + * version is supported. + */ + erase_mask = 0; + for (i = 0; i < SNOR_ERASE_TYPE_MAX; i++) { + const struct sfdp_4bait *erase = &erases[i]; + + if (dwords[SFDP_DWORD(1)] & erase->supported_bit) + erase_mask |= BIT(i); + } + + /* Replicate the sort done for the map's erase types in BFPT. */ + erase_mask = spi_nor_sort_erase_mask(map, erase_mask); + + /* + * We need at least one 4-byte op code per read, program and erase + * operation; the .read(), .write() and .erase() hooks share the + * nor->addr_nbytes value. + */ + if (!read_hwcaps || !pp_hwcaps || !erase_mask) + goto out; + + /* + * Discard all operations from the 4-byte instruction set which are + * not supported by this memory. + */ + params->hwcaps.mask &= ~discard_hwcaps; + params->hwcaps.mask |= (read_hwcaps | pp_hwcaps); + + /* Use the 4-byte address instruction set. */ + for (i = 0; i < SNOR_CMD_READ_MAX; i++) { + struct spi_nor_read_command *read_cmd = ¶ms->reads[i]; + + read_cmd->opcode = spi_nor_convert_3to4_read(read_cmd->opcode); + } + + /* 4BAIT is the only SFDP table that indicates page program support. */ + if (pp_hwcaps & SNOR_HWCAPS_PP) { + spi_nor_set_pp_settings(¶ms_pp[SNOR_CMD_PP], + SPINOR_OP_PP_4B, SNOR_PROTO_1_1_1); + /* + * Since xSPI Page Program opcode is backward compatible with + * Legacy SPI, use Legacy SPI opcode there as well. + */ + spi_nor_set_pp_settings(¶ms_pp[SNOR_CMD_PP_8_8_8_DTR], + SPINOR_OP_PP_4B, SNOR_PROTO_8_8_8_DTR); + } + if (pp_hwcaps & SNOR_HWCAPS_PP_1_1_4) + spi_nor_set_pp_settings(¶ms_pp[SNOR_CMD_PP_1_1_4], + SPINOR_OP_PP_1_1_4_4B, + SNOR_PROTO_1_1_4); + if (pp_hwcaps & SNOR_HWCAPS_PP_1_4_4) + spi_nor_set_pp_settings(¶ms_pp[SNOR_CMD_PP_1_4_4], + SPINOR_OP_PP_1_4_4_4B, + SNOR_PROTO_1_4_4); + + for (i = 0; i < SNOR_ERASE_TYPE_MAX; i++) { + if (erase_mask & BIT(i)) + erase_type[i].opcode = (dwords[SFDP_DWORD(2)] >> + erase_type[i].idx * 8) & 0xFF; + else + spi_nor_mask_erase_type(&erase_type[i]); + } + + /* + * We set SNOR_F_HAS_4BAIT in order to skip spi_nor_set_4byte_opcodes() + * later because we already did the conversion to 4byte opcodes. Also, + * this latest function implements a legacy quirk for the erase size of + * Spansion memory. However this quirk is no longer needed with new + * SFDP compliant memories. + */ + params->addr_nbytes = 4; + nor->flags |= SNOR_F_4B_OPCODES | SNOR_F_HAS_4BAIT; + + /* fall through */ +out: + kfree(dwords); + return ret; +} + +#define PROFILE1_DWORD1_RDSR_ADDR_BYTES BIT(29) +#define PROFILE1_DWORD1_RDSR_DUMMY BIT(28) +#define PROFILE1_DWORD1_RD_FAST_CMD GENMASK(15, 8) +#define PROFILE1_DWORD4_DUMMY_200MHZ GENMASK(11, 7) +#define PROFILE1_DWORD5_DUMMY_166MHZ GENMASK(31, 27) +#define PROFILE1_DWORD5_DUMMY_133MHZ GENMASK(21, 17) +#define PROFILE1_DWORD5_DUMMY_100MHZ GENMASK(11, 7) + +/** + * spi_nor_parse_profile1() - parse the xSPI Profile 1.0 table + * @nor: pointer to a 'struct spi_nor' + * @profile1_header: pointer to the 'struct sfdp_parameter_header' describing + * the Profile 1.0 Table length and version. + * + * Return: 0 on success, -errno otherwise. + */ +static int spi_nor_parse_profile1(struct spi_nor *nor, + const struct sfdp_parameter_header *profile1_header) +{ + u32 *dwords, addr; + size_t len; + int ret; + u8 dummy, opcode; + + len = profile1_header->length * sizeof(*dwords); + dwords = kmalloc(len, GFP_KERNEL); + if (!dwords) + return -ENOMEM; + + addr = SFDP_PARAM_HEADER_PTP(profile1_header); + ret = spi_nor_read_sfdp(nor, addr, len, dwords); + if (ret) + goto out; + + le32_to_cpu_array(dwords, profile1_header->length); + + /* Get 8D-8D-8D fast read opcode and dummy cycles. */ + opcode = FIELD_GET(PROFILE1_DWORD1_RD_FAST_CMD, dwords[SFDP_DWORD(1)]); + + /* Set the Read Status Register dummy cycles and dummy address bytes. */ + if (dwords[SFDP_DWORD(1)] & PROFILE1_DWORD1_RDSR_DUMMY) + nor->params->rdsr_dummy = 8; + else + nor->params->rdsr_dummy = 4; + + if (dwords[SFDP_DWORD(1)] & PROFILE1_DWORD1_RDSR_ADDR_BYTES) + nor->params->rdsr_addr_nbytes = 4; + else + nor->params->rdsr_addr_nbytes = 0; + + /* + * We don't know what speed the controller is running at. Find the + * dummy cycles for the fastest frequency the flash can run at to be + * sure we are never short of dummy cycles. A value of 0 means the + * frequency is not supported. + * + * Default to PROFILE1_DUMMY_DEFAULT if we don't find anything, and let + * flashes set the correct value if needed in their fixup hooks. + */ + dummy = FIELD_GET(PROFILE1_DWORD4_DUMMY_200MHZ, dwords[SFDP_DWORD(4)]); + if (!dummy) + dummy = FIELD_GET(PROFILE1_DWORD5_DUMMY_166MHZ, + dwords[SFDP_DWORD(5)]); + if (!dummy) + dummy = FIELD_GET(PROFILE1_DWORD5_DUMMY_133MHZ, + dwords[SFDP_DWORD(5)]); + if (!dummy) + dummy = FIELD_GET(PROFILE1_DWORD5_DUMMY_100MHZ, + dwords[SFDP_DWORD(5)]); + if (!dummy) + dev_dbg(nor->dev, + "Can't find dummy cycles from Profile 1.0 table\n"); + + /* Round up to an even value to avoid tripping controllers up. */ + dummy = round_up(dummy, 2); + + /* Update the fast read settings. */ + nor->params->hwcaps.mask |= SNOR_HWCAPS_READ_8_8_8_DTR; + spi_nor_set_read_settings(&nor->params->reads[SNOR_CMD_READ_8_8_8_DTR], + 0, dummy, opcode, + SNOR_PROTO_8_8_8_DTR); + + /* + * Page Program is "Required Command" in the xSPI Profile 1.0. Update + * the params->hwcaps.mask here. + */ + nor->params->hwcaps.mask |= SNOR_HWCAPS_PP_8_8_8_DTR; + +out: + kfree(dwords); + return ret; +} + +#define SCCR_DWORD22_OCTAL_DTR_EN_VOLATILE BIT(31) + +/** + * spi_nor_parse_sccr() - Parse the Status, Control and Configuration Register + * Map. + * @nor: pointer to a 'struct spi_nor' + * @sccr_header: pointer to the 'struct sfdp_parameter_header' describing + * the SCCR Map table length and version. + * + * Return: 0 on success, -errno otherwise. + */ +static int spi_nor_parse_sccr(struct spi_nor *nor, + const struct sfdp_parameter_header *sccr_header) +{ + struct spi_nor_flash_parameter *params = nor->params; + u32 *dwords, addr; + size_t len; + int ret; + + len = sccr_header->length * sizeof(*dwords); + dwords = kmalloc(len, GFP_KERNEL); + if (!dwords) + return -ENOMEM; + + addr = SFDP_PARAM_HEADER_PTP(sccr_header); + ret = spi_nor_read_sfdp(nor, addr, len, dwords); + if (ret) + goto out; + + le32_to_cpu_array(dwords, sccr_header->length); + + /* Address offset for volatile registers (die 0) */ + if (!params->vreg_offset) { + params->vreg_offset = devm_kmalloc(nor->dev, sizeof(*dwords), + GFP_KERNEL); + if (!params->vreg_offset) { + ret = -ENOMEM; + goto out; + } + } + params->vreg_offset[0] = dwords[SFDP_DWORD(1)]; + params->n_dice = 1; + + if (FIELD_GET(SCCR_DWORD22_OCTAL_DTR_EN_VOLATILE, + dwords[SFDP_DWORD(22)])) + nor->flags |= SNOR_F_IO_MODE_EN_VOLATILE; + +out: + kfree(dwords); + return ret; +} + +/** + * spi_nor_parse_sccr_mc() - Parse the Status, Control and Configuration + * Register Map Offsets for Multi-Chip SPI Memory + * Devices. + * @nor: pointer to a 'struct spi_nor' + * @sccr_mc_header: pointer to the 'struct sfdp_parameter_header' describing + * the SCCR Map offsets table length and version. + * + * Return: 0 on success, -errno otherwise. + */ +static int spi_nor_parse_sccr_mc(struct spi_nor *nor, + const struct sfdp_parameter_header *sccr_mc_header) +{ + struct spi_nor_flash_parameter *params = nor->params; + u32 *dwords, addr; + u8 i, n_dice; + size_t len; + int ret; + + len = sccr_mc_header->length * sizeof(*dwords); + dwords = kmalloc(len, GFP_KERNEL); + if (!dwords) + return -ENOMEM; + + addr = SFDP_PARAM_HEADER_PTP(sccr_mc_header); + ret = spi_nor_read_sfdp(nor, addr, len, dwords); + if (ret) + goto out; + + le32_to_cpu_array(dwords, sccr_mc_header->length); + + /* + * Pair of DOWRDs (volatile and non-volatile register offsets) per + * additional die. Hence, length = 2 * (number of additional dice). + */ + n_dice = 1 + sccr_mc_header->length / 2; + + /* Address offset for volatile registers of additional dice */ + params->vreg_offset = + devm_krealloc(nor->dev, params->vreg_offset, + n_dice * sizeof(*dwords), + GFP_KERNEL); + if (!params->vreg_offset) { + ret = -ENOMEM; + goto out; + } + + for (i = 1; i < n_dice; i++) + params->vreg_offset[i] = dwords[SFDP_DWORD(i) * 2]; + + params->n_dice = n_dice; + +out: + kfree(dwords); + return ret; +} + +/** + * spi_nor_post_sfdp_fixups() - Updates the flash's parameters and settings + * after SFDP has been parsed. Called only for flashes that define JESD216 SFDP + * tables. + * @nor: pointer to a 'struct spi_nor' + * + * Used to tweak various flash parameters when information provided by the SFDP + * tables are wrong. + */ +static int spi_nor_post_sfdp_fixups(struct spi_nor *nor) +{ + int ret; + + if (nor->manufacturer && nor->manufacturer->fixups && + nor->manufacturer->fixups->post_sfdp) { + ret = nor->manufacturer->fixups->post_sfdp(nor); + if (ret) + return ret; + } + + if (nor->info->fixups && nor->info->fixups->post_sfdp) + return nor->info->fixups->post_sfdp(nor); + + return 0; +} + +/** + * spi_nor_check_sfdp_signature() - check for a valid SFDP signature + * @nor: pointer to a 'struct spi_nor' + * + * Used to detect if the flash supports the RDSFDP command as well as the + * presence of a valid SFDP table. + * + * Return: 0 on success, -errno otherwise. + */ +int spi_nor_check_sfdp_signature(struct spi_nor *nor) +{ + u32 signature; + int err; + + /* Get the SFDP header. */ + err = spi_nor_read_sfdp_dma_unsafe(nor, 0, sizeof(signature), + &signature); + if (err < 0) + return err; + + /* Check the SFDP signature. */ + if (le32_to_cpu(signature) != SFDP_SIGNATURE) + return -EINVAL; + + return 0; +} + +/** + * spi_nor_parse_sfdp() - parse the Serial Flash Discoverable Parameters. + * @nor: pointer to a 'struct spi_nor' + * + * The Serial Flash Discoverable Parameters are described by the JEDEC JESD216 + * specification. This is a standard which tends to supported by almost all + * (Q)SPI memory manufacturers. Those hard-coded tables allow us to learn at + * runtime the main parameters needed to perform basic SPI flash operations such + * as Fast Read, Page Program or Sector Erase commands. + * + * Return: 0 on success, -errno otherwise. + */ +int spi_nor_parse_sfdp(struct spi_nor *nor) +{ + const struct sfdp_parameter_header *param_header, *bfpt_header; + struct sfdp_parameter_header *param_headers = NULL; + struct sfdp_header header; + struct device *dev = nor->dev; + struct sfdp *sfdp; + size_t sfdp_size; + size_t psize; + int i, err; + + /* Get the SFDP header. */ + err = spi_nor_read_sfdp_dma_unsafe(nor, 0, sizeof(header), &header); + if (err < 0) + return err; + + /* Check the SFDP header version. */ + if (le32_to_cpu(header.signature) != SFDP_SIGNATURE || + header.major != SFDP_JESD216_MAJOR) + return -EINVAL; + + /* + * Verify that the first and only mandatory parameter header is a + * Basic Flash Parameter Table header as specified in JESD216. + */ + bfpt_header = &header.bfpt_header; + if (SFDP_PARAM_HEADER_ID(bfpt_header) != SFDP_BFPT_ID || + bfpt_header->major != SFDP_JESD216_MAJOR) + return -EINVAL; + + sfdp_size = SFDP_PARAM_HEADER_PTP(bfpt_header) + + SFDP_PARAM_HEADER_PARAM_LEN(bfpt_header); + + /* + * Allocate memory then read all parameter headers with a single + * Read SFDP command. These parameter headers will actually be parsed + * twice: a first time to get the latest revision of the basic flash + * parameter table, then a second time to handle the supported optional + * tables. + * Hence we read the parameter headers once for all to reduce the + * processing time. Also we use kmalloc() instead of devm_kmalloc() + * because we don't need to keep these parameter headers: the allocated + * memory is always released with kfree() before exiting this function. + */ + if (header.nph) { + psize = header.nph * sizeof(*param_headers); + + param_headers = kmalloc(psize, GFP_KERNEL); + if (!param_headers) + return -ENOMEM; + + err = spi_nor_read_sfdp(nor, sizeof(header), + psize, param_headers); + if (err < 0) { + dev_dbg(dev, "failed to read SFDP parameter headers\n"); + goto exit; + } + } + + /* + * Cache the complete SFDP data. It is not (easily) possible to fetch + * SFDP after probe time and we need it for the sysfs access. + */ + for (i = 0; i < header.nph; i++) { + param_header = ¶m_headers[i]; + sfdp_size = max_t(size_t, sfdp_size, + SFDP_PARAM_HEADER_PTP(param_header) + + SFDP_PARAM_HEADER_PARAM_LEN(param_header)); + } + + /* + * Limit the total size to a reasonable value to avoid allocating too + * much memory just of because the flash returned some insane values. + */ + if (sfdp_size > PAGE_SIZE) { + dev_dbg(dev, "SFDP data (%zu) too big, truncating\n", + sfdp_size); + sfdp_size = PAGE_SIZE; + } + + sfdp = devm_kzalloc(dev, sizeof(*sfdp), GFP_KERNEL); + if (!sfdp) { + err = -ENOMEM; + goto exit; + } + + /* + * The SFDP is organized in chunks of DWORDs. Thus, in theory, the + * sfdp_size should be a multiple of DWORDs. But in case a flash + * is not spec compliant, make sure that we have enough space to store + * the complete SFDP data. + */ + sfdp->num_dwords = DIV_ROUND_UP(sfdp_size, sizeof(*sfdp->dwords)); + sfdp->dwords = devm_kcalloc(dev, sfdp->num_dwords, + sizeof(*sfdp->dwords), GFP_KERNEL); + if (!sfdp->dwords) { + err = -ENOMEM; + devm_kfree(dev, sfdp); + goto exit; + } + + err = spi_nor_read_sfdp(nor, 0, sfdp_size, sfdp->dwords); + if (err < 0) { + dev_dbg(dev, "failed to read SFDP data\n"); + devm_kfree(dev, sfdp->dwords); + devm_kfree(dev, sfdp); + goto exit; + } + + nor->sfdp = sfdp; + + /* + * Check other parameter headers to get the latest revision of + * the basic flash parameter table. + */ + for (i = 0; i < header.nph; i++) { + param_header = ¶m_headers[i]; + + if (SFDP_PARAM_HEADER_ID(param_header) == SFDP_BFPT_ID && + param_header->major == SFDP_JESD216_MAJOR && + (param_header->minor > bfpt_header->minor || + (param_header->minor == bfpt_header->minor && + param_header->length > bfpt_header->length))) + bfpt_header = param_header; + } + + err = spi_nor_parse_bfpt(nor, bfpt_header); + if (err) + goto exit; + + /* Parse optional parameter tables. */ + for (i = 0; i < header.nph; i++) { + param_header = ¶m_headers[i]; + + switch (SFDP_PARAM_HEADER_ID(param_header)) { + case SFDP_SECTOR_MAP_ID: + err = spi_nor_parse_smpt(nor, param_header); + break; + + case SFDP_4BAIT_ID: + err = spi_nor_parse_4bait(nor, param_header); + break; + + case SFDP_PROFILE1_ID: + err = spi_nor_parse_profile1(nor, param_header); + break; + + case SFDP_SCCR_MAP_ID: + err = spi_nor_parse_sccr(nor, param_header); + break; + + case SFDP_SCCR_MAP_MC_ID: + err = spi_nor_parse_sccr_mc(nor, param_header); + break; + + default: + break; + } + + if (err) { + dev_warn(dev, "Failed to parse optional parameter table: %04x\n", + SFDP_PARAM_HEADER_ID(param_header)); + /* + * Let's not drop all information we extracted so far + * if optional table parsers fail. In case of failing, + * each optional parser is responsible to roll back to + * the previously known spi_nor data. + */ + err = 0; + } + } + + err = spi_nor_post_sfdp_fixups(nor); +exit: + kfree(param_headers); + return err; +} diff --git a/drivers/mtd/spi-nor/sfdp.h b/drivers/mtd/spi-nor/sfdp.h new file mode 100644 index 0000000000..6eb99e1cdd --- /dev/null +++ b/drivers/mtd/spi-nor/sfdp.h @@ -0,0 +1,136 @@ +/* SPDX-License-Identifier: GPL-2.0 */ +/* + * Copyright (C) 2005, Intec Automation Inc. + * Copyright (C) 2014, Freescale Semiconductor, Inc. + */ + +#ifndef __LINUX_MTD_SFDP_H +#define __LINUX_MTD_SFDP_H + +/* SFDP revisions */ +#define SFDP_JESD216_MAJOR 1 +#define SFDP_JESD216_MINOR 0 +#define SFDP_JESD216A_MINOR 5 +#define SFDP_JESD216B_MINOR 6 + +/* SFDP DWORDS are indexed from 1 but C arrays are indexed from 0. */ +#define SFDP_DWORD(i) ((i) - 1) +#define SFDP_MASK_CHECK(dword, mask) (((dword) & (mask)) == (mask)) + +/* Basic Flash Parameter Table */ + +/* JESD216 rev D defines a Basic Flash Parameter Table of 20 DWORDs. */ +#define BFPT_DWORD_MAX 20 + +struct sfdp_bfpt { + u32 dwords[BFPT_DWORD_MAX]; +}; + +/* The first version of JESD216 defined only 9 DWORDs. */ +#define BFPT_DWORD_MAX_JESD216 9 +#define BFPT_DWORD_MAX_JESD216B 16 + +/* 1st DWORD. */ +#define BFPT_DWORD1_FAST_READ_1_1_2 BIT(16) +#define BFPT_DWORD1_ADDRESS_BYTES_MASK GENMASK(18, 17) +#define BFPT_DWORD1_ADDRESS_BYTES_3_ONLY (0x0UL << 17) +#define BFPT_DWORD1_ADDRESS_BYTES_3_OR_4 (0x1UL << 17) +#define BFPT_DWORD1_ADDRESS_BYTES_4_ONLY (0x2UL << 17) +#define BFPT_DWORD1_DTR BIT(19) +#define BFPT_DWORD1_FAST_READ_1_2_2 BIT(20) +#define BFPT_DWORD1_FAST_READ_1_4_4 BIT(21) +#define BFPT_DWORD1_FAST_READ_1_1_4 BIT(22) + +/* 5th DWORD. */ +#define BFPT_DWORD5_FAST_READ_2_2_2 BIT(0) +#define BFPT_DWORD5_FAST_READ_4_4_4 BIT(4) + +/* 11th DWORD. */ +#define BFPT_DWORD11_PAGE_SIZE_SHIFT 4 +#define BFPT_DWORD11_PAGE_SIZE_MASK GENMASK(7, 4) + +/* 15th DWORD. */ + +/* + * (from JESD216 rev B) + * Quad Enable Requirements (QER): + * - 000b: Device does not have a QE bit. Device detects 1-1-4 and 1-4-4 + * reads based on instruction. DQ3/HOLD# functions are hold during + * instruction phase. + * - 001b: QE is bit 1 of status register 2. It is set via Write Status with + * two data bytes where bit 1 of the second byte is one. + * [...] + * Writing only one byte to the status register has the side-effect of + * clearing status register 2, including the QE bit. The 100b code is + * used if writing one byte to the status register does not modify + * status register 2. + * - 010b: QE is bit 6 of status register 1. It is set via Write Status with + * one data byte where bit 6 is one. + * [...] + * - 011b: QE is bit 7 of status register 2. It is set via Write status + * register 2 instruction 3Eh with one data byte where bit 7 is one. + * [...] + * The status register 2 is read using instruction 3Fh. + * - 100b: QE is bit 1 of status register 2. It is set via Write Status with + * two data bytes where bit 1 of the second byte is one. + * [...] + * In contrast to the 001b code, writing one byte to the status + * register does not modify status register 2. + * - 101b: QE is bit 1 of status register 2. Status register 1 is read using + * Read Status instruction 05h. Status register2 is read using + * instruction 35h. QE is set via Write Status instruction 01h with + * two data bytes where bit 1 of the second byte is one. + * [...] + */ +#define BFPT_DWORD15_QER_MASK GENMASK(22, 20) +#define BFPT_DWORD15_QER_NONE (0x0UL << 20) /* Micron */ +#define BFPT_DWORD15_QER_SR2_BIT1_BUGGY (0x1UL << 20) +#define BFPT_DWORD15_QER_SR1_BIT6 (0x2UL << 20) /* Macronix */ +#define BFPT_DWORD15_QER_SR2_BIT7 (0x3UL << 20) +#define BFPT_DWORD15_QER_SR2_BIT1_NO_RD (0x4UL << 20) +#define BFPT_DWORD15_QER_SR2_BIT1 (0x5UL << 20) /* Spansion */ + +#define BFPT_DWORD16_EN4B_MASK GENMASK(31, 24) +#define BFPT_DWORD16_EN4B_ALWAYS_4B BIT(30) +#define BFPT_DWORD16_EN4B_4B_OPCODES BIT(29) +#define BFPT_DWORD16_EN4B_16BIT_NV_CR BIT(28) +#define BFPT_DWORD16_EN4B_BRWR BIT(27) +#define BFPT_DWORD16_EN4B_WREAR BIT(26) +#define BFPT_DWORD16_EN4B_WREN_EN4B BIT(25) +#define BFPT_DWORD16_EN4B_EN4B BIT(24) +#define BFPT_DWORD16_EX4B_MASK GENMASK(18, 14) +#define BFPT_DWORD16_EX4B_16BIT_NV_CR BIT(18) +#define BFPT_DWORD16_EX4B_BRWR BIT(17) +#define BFPT_DWORD16_EX4B_WREAR BIT(16) +#define BFPT_DWORD16_EX4B_WREN_EX4B BIT(15) +#define BFPT_DWORD16_EX4B_EX4B BIT(14) +#define BFPT_DWORD16_4B_ADDR_MODE_MASK \ + (BFPT_DWORD16_EN4B_MASK | BFPT_DWORD16_EX4B_MASK) +#define BFPT_DWORD16_4B_ADDR_MODE_16BIT_NV_CR \ + (BFPT_DWORD16_EN4B_16BIT_NV_CR | BFPT_DWORD16_EX4B_16BIT_NV_CR) +#define BFPT_DWORD16_4B_ADDR_MODE_BRWR \ + (BFPT_DWORD16_EN4B_BRWR | BFPT_DWORD16_EX4B_BRWR) +#define BFPT_DWORD16_4B_ADDR_MODE_WREAR \ + (BFPT_DWORD16_EN4B_WREAR | BFPT_DWORD16_EX4B_WREAR) +#define BFPT_DWORD16_4B_ADDR_MODE_WREN_EN4B_EX4B \ + (BFPT_DWORD16_EN4B_WREN_EN4B | BFPT_DWORD16_EX4B_WREN_EX4B) +#define BFPT_DWORD16_4B_ADDR_MODE_EN4B_EX4B \ + (BFPT_DWORD16_EN4B_EN4B | BFPT_DWORD16_EX4B_EX4B) +#define BFPT_DWORD16_SWRST_EN_RST BIT(12) + +#define BFPT_DWORD18_CMD_EXT_MASK GENMASK(30, 29) +#define BFPT_DWORD18_CMD_EXT_REP (0x0UL << 29) /* Repeat */ +#define BFPT_DWORD18_CMD_EXT_INV (0x1UL << 29) /* Invert */ +#define BFPT_DWORD18_CMD_EXT_RES (0x2UL << 29) /* Reserved */ +#define BFPT_DWORD18_CMD_EXT_16B (0x3UL << 29) /* 16-bit opcode */ + +struct sfdp_parameter_header { + u8 id_lsb; + u8 minor; + u8 major; + u8 length; /* in double words */ + u8 parameter_table_pointer[3]; /* byte address */ + u8 id_msb; +}; + +#endif /* __LINUX_MTD_SFDP_H */ diff --git a/drivers/mtd/spi-nor/spansion.c b/drivers/mtd/spi-nor/spansion.c new file mode 100644 index 0000000000..709822fced --- /dev/null +++ b/drivers/mtd/spi-nor/spansion.c @@ -0,0 +1,989 @@ +// SPDX-License-Identifier: GPL-2.0 +/* + * Copyright (C) 2005, Intec Automation Inc. + * Copyright (C) 2014, Freescale Semiconductor, Inc. + */ + +#include <linux/bitfield.h> +#include <linux/device.h> +#include <linux/errno.h> +#include <linux/mtd/spi-nor.h> + +#include "core.h" + +/* flash_info mfr_flag. Used to clear sticky prorietary SR bits. */ +#define USE_CLSR BIT(0) +#define USE_CLPEF BIT(1) + +#define SPINOR_OP_CLSR 0x30 /* Clear status register 1 */ +#define SPINOR_OP_CLPEF 0x82 /* Clear program/erase failure flags */ +#define SPINOR_OP_RD_ANY_REG 0x65 /* Read any register */ +#define SPINOR_OP_WR_ANY_REG 0x71 /* Write any register */ +#define SPINOR_REG_CYPRESS_VREG 0x00800000 +#define SPINOR_REG_CYPRESS_STR1 0x0 +#define SPINOR_REG_CYPRESS_STR1V \ + (SPINOR_REG_CYPRESS_VREG + SPINOR_REG_CYPRESS_STR1) +#define SPINOR_REG_CYPRESS_CFR1 0x2 +#define SPINOR_REG_CYPRESS_CFR1_QUAD_EN BIT(1) /* Quad Enable */ +#define SPINOR_REG_CYPRESS_CFR2 0x3 +#define SPINOR_REG_CYPRESS_CFR2V \ + (SPINOR_REG_CYPRESS_VREG + SPINOR_REG_CYPRESS_CFR2) +#define SPINOR_REG_CYPRESS_CFR2_MEMLAT_MASK GENMASK(3, 0) +#define SPINOR_REG_CYPRESS_CFR2_MEMLAT_11_24 0xb +#define SPINOR_REG_CYPRESS_CFR2_ADRBYT BIT(7) +#define SPINOR_REG_CYPRESS_CFR3 0x4 +#define SPINOR_REG_CYPRESS_CFR3_PGSZ BIT(4) /* Page size. */ +#define SPINOR_REG_CYPRESS_CFR5 0x6 +#define SPINOR_REG_CYPRESS_CFR5_BIT6 BIT(6) +#define SPINOR_REG_CYPRESS_CFR5_DDR BIT(1) +#define SPINOR_REG_CYPRESS_CFR5_OPI BIT(0) +#define SPINOR_REG_CYPRESS_CFR5_OCT_DTR_EN \ + (SPINOR_REG_CYPRESS_CFR5_BIT6 | SPINOR_REG_CYPRESS_CFR5_DDR | \ + SPINOR_REG_CYPRESS_CFR5_OPI) +#define SPINOR_REG_CYPRESS_CFR5_OCT_DTR_DS SPINOR_REG_CYPRESS_CFR5_BIT6 +#define SPINOR_OP_CYPRESS_RD_FAST 0xee +#define SPINOR_REG_CYPRESS_ARCFN 0x00000006 + +/* Cypress SPI NOR flash operations. */ +#define CYPRESS_NOR_WR_ANY_REG_OP(naddr, addr, ndata, buf) \ + SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_WR_ANY_REG, 0), \ + SPI_MEM_OP_ADDR(naddr, addr, 0), \ + SPI_MEM_OP_NO_DUMMY, \ + SPI_MEM_OP_DATA_OUT(ndata, buf, 0)) + +#define CYPRESS_NOR_RD_ANY_REG_OP(naddr, addr, ndummy, buf) \ + SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_RD_ANY_REG, 0), \ + SPI_MEM_OP_ADDR(naddr, addr, 0), \ + SPI_MEM_OP_DUMMY(ndummy, 0), \ + SPI_MEM_OP_DATA_IN(1, buf, 0)) + +#define SPANSION_OP(opcode) \ + SPI_MEM_OP(SPI_MEM_OP_CMD(opcode, 0), \ + SPI_MEM_OP_NO_ADDR, \ + SPI_MEM_OP_NO_DUMMY, \ + SPI_MEM_OP_NO_DATA) + +/** + * struct spansion_nor_params - Spansion private parameters. + * @clsr: Clear Status Register or Clear Program and Erase Failure Flag + * opcode. + */ +struct spansion_nor_params { + u8 clsr; +}; + +/** + * spansion_nor_clear_sr() - Clear the Status Register. + * @nor: pointer to 'struct spi_nor'. + */ +static void spansion_nor_clear_sr(struct spi_nor *nor) +{ + const struct spansion_nor_params *priv_params = nor->params->priv; + int ret; + + if (nor->spimem) { + struct spi_mem_op op = SPANSION_OP(priv_params->clsr); + + spi_nor_spimem_setup_op(nor, &op, nor->reg_proto); + + ret = spi_mem_exec_op(nor->spimem, &op); + } else { + ret = spi_nor_controller_ops_write_reg(nor, SPINOR_OP_CLSR, + NULL, 0); + } + + if (ret) + dev_dbg(nor->dev, "error %d clearing SR\n", ret); +} + +static int cypress_nor_sr_ready_and_clear_reg(struct spi_nor *nor, u64 addr) +{ + struct spi_nor_flash_parameter *params = nor->params; + struct spi_mem_op op = + CYPRESS_NOR_RD_ANY_REG_OP(params->addr_mode_nbytes, addr, + 0, nor->bouncebuf); + int ret; + + if (nor->reg_proto == SNOR_PROTO_8_8_8_DTR) { + op.dummy.nbytes = params->rdsr_dummy; + op.data.nbytes = 2; + } + + ret = spi_nor_read_any_reg(nor, &op, nor->reg_proto); + if (ret) + return ret; + + if (nor->bouncebuf[0] & (SR_E_ERR | SR_P_ERR)) { + if (nor->bouncebuf[0] & SR_E_ERR) + dev_err(nor->dev, "Erase Error occurred\n"); + else + dev_err(nor->dev, "Programming Error occurred\n"); + + spansion_nor_clear_sr(nor); + + ret = spi_nor_write_disable(nor); + if (ret) + return ret; + + return -EIO; + } + + return !(nor->bouncebuf[0] & SR_WIP); +} +/** + * cypress_nor_sr_ready_and_clear() - Query the Status Register of each die by + * using Read Any Register command to see if the whole flash is ready for new + * commands and clear it if there are any errors. + * @nor: pointer to 'struct spi_nor'. + * + * Return: 1 if ready, 0 if not ready, -errno on errors. + */ +static int cypress_nor_sr_ready_and_clear(struct spi_nor *nor) +{ + struct spi_nor_flash_parameter *params = nor->params; + u64 addr; + int ret; + u8 i; + + for (i = 0; i < params->n_dice; i++) { + addr = params->vreg_offset[i] + SPINOR_REG_CYPRESS_STR1; + ret = cypress_nor_sr_ready_and_clear_reg(nor, addr); + if (ret < 0) + return ret; + else if (ret == 0) + return 0; + } + + return 1; +} + +static int cypress_nor_set_memlat(struct spi_nor *nor, u64 addr) +{ + struct spi_mem_op op; + u8 *buf = nor->bouncebuf; + int ret; + u8 addr_mode_nbytes = nor->params->addr_mode_nbytes; + + op = (struct spi_mem_op) + CYPRESS_NOR_RD_ANY_REG_OP(addr_mode_nbytes, addr, 0, buf); + + ret = spi_nor_read_any_reg(nor, &op, nor->reg_proto); + if (ret) + return ret; + + /* Use 24 dummy cycles for memory array reads. */ + *buf &= ~SPINOR_REG_CYPRESS_CFR2_MEMLAT_MASK; + *buf |= FIELD_PREP(SPINOR_REG_CYPRESS_CFR2_MEMLAT_MASK, + SPINOR_REG_CYPRESS_CFR2_MEMLAT_11_24); + op = (struct spi_mem_op) + CYPRESS_NOR_WR_ANY_REG_OP(addr_mode_nbytes, addr, 1, buf); + + ret = spi_nor_write_any_volatile_reg(nor, &op, nor->reg_proto); + if (ret) + return ret; + + nor->read_dummy = 24; + + return 0; +} + +static int cypress_nor_set_octal_dtr_bits(struct spi_nor *nor, u64 addr) +{ + struct spi_mem_op op; + u8 *buf = nor->bouncebuf; + + /* Set the octal and DTR enable bits. */ + buf[0] = SPINOR_REG_CYPRESS_CFR5_OCT_DTR_EN; + op = (struct spi_mem_op) + CYPRESS_NOR_WR_ANY_REG_OP(nor->params->addr_mode_nbytes, + addr, 1, buf); + + return spi_nor_write_any_volatile_reg(nor, &op, nor->reg_proto); +} + +static int cypress_nor_octal_dtr_en(struct spi_nor *nor) +{ + const struct spi_nor_flash_parameter *params = nor->params; + u8 *buf = nor->bouncebuf; + u64 addr; + int i, ret; + + for (i = 0; i < params->n_dice; i++) { + addr = params->vreg_offset[i] + SPINOR_REG_CYPRESS_CFR2; + ret = cypress_nor_set_memlat(nor, addr); + if (ret) + return ret; + + addr = params->vreg_offset[i] + SPINOR_REG_CYPRESS_CFR5; + ret = cypress_nor_set_octal_dtr_bits(nor, addr); + if (ret) + return ret; + } + + /* Read flash ID to make sure the switch was successful. */ + ret = spi_nor_read_id(nor, nor->addr_nbytes, 3, buf, + SNOR_PROTO_8_8_8_DTR); + if (ret) { + dev_dbg(nor->dev, "error %d reading JEDEC ID after enabling 8D-8D-8D mode\n", ret); + return ret; + } + + if (memcmp(buf, nor->info->id, nor->info->id_len)) + return -EINVAL; + + return 0; +} + +static int cypress_nor_set_single_spi_bits(struct spi_nor *nor, u64 addr) +{ + struct spi_mem_op op; + u8 *buf = nor->bouncebuf; + + /* + * The register is 1-byte wide, but 1-byte transactions are not allowed + * in 8D-8D-8D mode. Since there is no register at the next location, + * just initialize the value to 0 and let the transaction go on. + */ + buf[0] = SPINOR_REG_CYPRESS_CFR5_OCT_DTR_DS; + buf[1] = 0; + op = (struct spi_mem_op) + CYPRESS_NOR_WR_ANY_REG_OP(nor->addr_nbytes, addr, 2, buf); + return spi_nor_write_any_volatile_reg(nor, &op, SNOR_PROTO_8_8_8_DTR); +} + +static int cypress_nor_octal_dtr_dis(struct spi_nor *nor) +{ + const struct spi_nor_flash_parameter *params = nor->params; + u8 *buf = nor->bouncebuf; + u64 addr; + int i, ret; + + for (i = 0; i < params->n_dice; i++) { + addr = params->vreg_offset[i] + SPINOR_REG_CYPRESS_CFR5; + ret = cypress_nor_set_single_spi_bits(nor, addr); + if (ret) + return ret; + } + + /* Read flash ID to make sure the switch was successful. */ + ret = spi_nor_read_id(nor, 0, 0, buf, SNOR_PROTO_1_1_1); + if (ret) { + dev_dbg(nor->dev, "error %d reading JEDEC ID after disabling 8D-8D-8D mode\n", ret); + return ret; + } + + if (memcmp(buf, nor->info->id, nor->info->id_len)) + return -EINVAL; + + return 0; +} + +static int cypress_nor_quad_enable_volatile_reg(struct spi_nor *nor, u64 addr) +{ + struct spi_mem_op op; + u8 addr_mode_nbytes = nor->params->addr_mode_nbytes; + u8 cfr1v_written; + int ret; + + op = (struct spi_mem_op) + CYPRESS_NOR_RD_ANY_REG_OP(addr_mode_nbytes, addr, 0, + nor->bouncebuf); + + ret = spi_nor_read_any_reg(nor, &op, nor->reg_proto); + if (ret) + return ret; + + if (nor->bouncebuf[0] & SPINOR_REG_CYPRESS_CFR1_QUAD_EN) + return 0; + + /* Update the Quad Enable bit. */ + nor->bouncebuf[0] |= SPINOR_REG_CYPRESS_CFR1_QUAD_EN; + op = (struct spi_mem_op) + CYPRESS_NOR_WR_ANY_REG_OP(addr_mode_nbytes, addr, 1, + nor->bouncebuf); + ret = spi_nor_write_any_volatile_reg(nor, &op, nor->reg_proto); + if (ret) + return ret; + + cfr1v_written = nor->bouncebuf[0]; + + /* Read back and check it. */ + op = (struct spi_mem_op) + CYPRESS_NOR_RD_ANY_REG_OP(addr_mode_nbytes, addr, 0, + nor->bouncebuf); + ret = spi_nor_read_any_reg(nor, &op, nor->reg_proto); + if (ret) + return ret; + + if (nor->bouncebuf[0] != cfr1v_written) { + dev_err(nor->dev, "CFR1: Read back test failed\n"); + return -EIO; + } + + return 0; +} + +/** + * cypress_nor_quad_enable_volatile() - enable Quad I/O mode in volatile + * register. + * @nor: pointer to a 'struct spi_nor' + * + * It is recommended to update volatile registers in the field application due + * to a risk of the non-volatile registers corruption by power interrupt. This + * function sets Quad Enable bit in CFR1 volatile. If users set the Quad Enable + * bit in the CFR1 non-volatile in advance (typically by a Flash programmer + * before mounting Flash on PCB), the Quad Enable bit in the CFR1 volatile is + * also set during Flash power-up. + * + * Return: 0 on success, -errno otherwise. + */ +static int cypress_nor_quad_enable_volatile(struct spi_nor *nor) +{ + struct spi_nor_flash_parameter *params = nor->params; + u64 addr; + u8 i; + int ret; + + for (i = 0; i < params->n_dice; i++) { + addr = params->vreg_offset[i] + SPINOR_REG_CYPRESS_CFR1; + ret = cypress_nor_quad_enable_volatile_reg(nor, addr); + if (ret) + return ret; + } + + return 0; +} + +/** + * cypress_nor_determine_addr_mode_by_sr1() - Determine current address mode + * (3 or 4-byte) by querying status + * register 1 (SR1). + * @nor: pointer to a 'struct spi_nor' + * @addr_mode: ponter to a buffer where we return the determined + * address mode. + * + * This function tries to determine current address mode by comparing SR1 value + * from RDSR1(no address), RDAR(3-byte address), and RDAR(4-byte address). + * + * Return: 0 on success, -errno otherwise. + */ +static int cypress_nor_determine_addr_mode_by_sr1(struct spi_nor *nor, + u8 *addr_mode) +{ + struct spi_mem_op op = + CYPRESS_NOR_RD_ANY_REG_OP(3, SPINOR_REG_CYPRESS_STR1V, 0, + nor->bouncebuf); + bool is3byte, is4byte; + int ret; + + ret = spi_nor_read_sr(nor, &nor->bouncebuf[1]); + if (ret) + return ret; + + ret = spi_nor_read_any_reg(nor, &op, nor->reg_proto); + if (ret) + return ret; + + is3byte = (nor->bouncebuf[0] == nor->bouncebuf[1]); + + op = (struct spi_mem_op) + CYPRESS_NOR_RD_ANY_REG_OP(4, SPINOR_REG_CYPRESS_STR1V, 0, + nor->bouncebuf); + ret = spi_nor_read_any_reg(nor, &op, nor->reg_proto); + if (ret) + return ret; + + is4byte = (nor->bouncebuf[0] == nor->bouncebuf[1]); + + if (is3byte == is4byte) + return -EIO; + if (is3byte) + *addr_mode = 3; + else + *addr_mode = 4; + + return 0; +} + +/** + * cypress_nor_set_addr_mode_nbytes() - Set the number of address bytes mode of + * current address mode. + * @nor: pointer to a 'struct spi_nor' + * + * Determine current address mode by reading SR1 with different methods, then + * query CFR2V[7] to confirm. If determination is failed, force enter to 4-byte + * address mode. + * + * Return: 0 on success, -errno otherwise. + */ +static int cypress_nor_set_addr_mode_nbytes(struct spi_nor *nor) +{ + struct spi_mem_op op; + u8 addr_mode; + int ret; + + /* + * Read SR1 by RDSR1 and RDAR(3- AND 4-byte addr). Use write enable + * that sets bit-1 in SR1. + */ + ret = spi_nor_write_enable(nor); + if (ret) + return ret; + ret = cypress_nor_determine_addr_mode_by_sr1(nor, &addr_mode); + if (ret) { + ret = spi_nor_set_4byte_addr_mode(nor, true); + if (ret) + return ret; + return spi_nor_write_disable(nor); + } + ret = spi_nor_write_disable(nor); + if (ret) + return ret; + + /* + * Query CFR2V and make sure no contradiction between determined address + * mode and CFR2V[7]. + */ + op = (struct spi_mem_op) + CYPRESS_NOR_RD_ANY_REG_OP(addr_mode, SPINOR_REG_CYPRESS_CFR2V, + 0, nor->bouncebuf); + ret = spi_nor_read_any_reg(nor, &op, nor->reg_proto); + if (ret) + return ret; + + if (nor->bouncebuf[0] & SPINOR_REG_CYPRESS_CFR2_ADRBYT) { + if (addr_mode != 4) + return spi_nor_set_4byte_addr_mode(nor, true); + } else { + if (addr_mode != 3) + return spi_nor_set_4byte_addr_mode(nor, true); + } + + nor->params->addr_nbytes = addr_mode; + nor->params->addr_mode_nbytes = addr_mode; + + return 0; +} + +/** + * cypress_nor_get_page_size() - Get flash page size configuration. + * @nor: pointer to a 'struct spi_nor' + * + * The BFPT table advertises a 512B or 256B page size depending on part but the + * page size is actually configurable (with the default being 256B). Read from + * CFR3V[4] and set the correct size. + * + * Return: 0 on success, -errno otherwise. + */ +static int cypress_nor_get_page_size(struct spi_nor *nor) +{ + struct spi_mem_op op = + CYPRESS_NOR_RD_ANY_REG_OP(nor->params->addr_mode_nbytes, + 0, 0, nor->bouncebuf); + struct spi_nor_flash_parameter *params = nor->params; + int ret; + u8 i; + + /* + * Use the minimum common page size configuration. Programming 256-byte + * under 512-byte page size configuration is safe. + */ + params->page_size = 256; + for (i = 0; i < params->n_dice; i++) { + op.addr.val = params->vreg_offset[i] + SPINOR_REG_CYPRESS_CFR3; + + ret = spi_nor_read_any_reg(nor, &op, nor->reg_proto); + if (ret) + return ret; + + if (!(nor->bouncebuf[0] & SPINOR_REG_CYPRESS_CFR3_PGSZ)) + return 0; + } + + params->page_size = 512; + + return 0; +} + +static void cypress_nor_ecc_init(struct spi_nor *nor) +{ + /* + * Programming is supported only in 16-byte ECC data unit granularity. + * Byte-programming, bit-walking, or multiple program operations to the + * same ECC data unit without an erase are not allowed. + */ + nor->params->writesize = 16; + nor->flags |= SNOR_F_ECC; +} + +static int +s25fs256t_post_bfpt_fixup(struct spi_nor *nor, + const struct sfdp_parameter_header *bfpt_header, + const struct sfdp_bfpt *bfpt) +{ + struct spi_mem_op op; + int ret; + + ret = cypress_nor_set_addr_mode_nbytes(nor); + if (ret) + return ret; + + /* Read Architecture Configuration Register (ARCFN) */ + op = (struct spi_mem_op) + CYPRESS_NOR_RD_ANY_REG_OP(nor->params->addr_mode_nbytes, + SPINOR_REG_CYPRESS_ARCFN, 1, + nor->bouncebuf); + ret = spi_nor_read_any_reg(nor, &op, nor->reg_proto); + if (ret) + return ret; + + /* ARCFN value must be 0 if uniform sector is selected */ + if (nor->bouncebuf[0]) + return -ENODEV; + + return 0; +} + +static int s25fs256t_post_sfdp_fixup(struct spi_nor *nor) +{ + struct spi_nor_flash_parameter *params = nor->params; + + /* + * S25FS256T does not define the SCCR map, but we would like to use the + * same code base for both single and multi chip package devices, thus + * set the vreg_offset and n_dice to be able to do so. + */ + params->vreg_offset = devm_kmalloc(nor->dev, sizeof(u32), GFP_KERNEL); + if (!params->vreg_offset) + return -ENOMEM; + + params->vreg_offset[0] = SPINOR_REG_CYPRESS_VREG; + params->n_dice = 1; + + /* PP_1_1_4_4B is supported but missing in 4BAIT. */ + params->hwcaps.mask |= SNOR_HWCAPS_PP_1_1_4; + spi_nor_set_pp_settings(¶ms->page_programs[SNOR_CMD_PP_1_1_4], + SPINOR_OP_PP_1_1_4_4B, + SNOR_PROTO_1_1_4); + + return cypress_nor_get_page_size(nor); +} + +static int s25fs256t_late_init(struct spi_nor *nor) +{ + cypress_nor_ecc_init(nor); + + return 0; +} + +static struct spi_nor_fixups s25fs256t_fixups = { + .post_bfpt = s25fs256t_post_bfpt_fixup, + .post_sfdp = s25fs256t_post_sfdp_fixup, + .late_init = s25fs256t_late_init, +}; + +static int +s25hx_t_post_bfpt_fixup(struct spi_nor *nor, + const struct sfdp_parameter_header *bfpt_header, + const struct sfdp_bfpt *bfpt) +{ + int ret; + + ret = cypress_nor_set_addr_mode_nbytes(nor); + if (ret) + return ret; + + /* Replace Quad Enable with volatile version */ + nor->params->quad_enable = cypress_nor_quad_enable_volatile; + + return 0; +} + +static int s25hx_t_post_sfdp_fixup(struct spi_nor *nor) +{ + struct spi_nor_flash_parameter *params = nor->params; + struct spi_nor_erase_type *erase_type = params->erase_map.erase_type; + unsigned int i; + + if (!params->n_dice || !params->vreg_offset) { + dev_err(nor->dev, "%s failed. The volatile register offset could not be retrieved from SFDP.\n", + __func__); + return -EOPNOTSUPP; + } + + /* The 2 Gb parts duplicate info and advertise 4 dice instead of 2. */ + if (params->size == SZ_256M) + params->n_dice = 2; + + /* + * In some parts, 3byte erase opcodes are advertised by 4BAIT. + * Convert them to 4byte erase opcodes. + */ + for (i = 0; i < SNOR_ERASE_TYPE_MAX; i++) { + switch (erase_type[i].opcode) { + case SPINOR_OP_SE: + erase_type[i].opcode = SPINOR_OP_SE_4B; + break; + case SPINOR_OP_BE_4K: + erase_type[i].opcode = SPINOR_OP_BE_4K_4B; + break; + default: + break; + } + } + + return cypress_nor_get_page_size(nor); +} + +static int s25hx_t_late_init(struct spi_nor *nor) +{ + struct spi_nor_flash_parameter *params = nor->params; + + /* Fast Read 4B requires mode cycles */ + params->reads[SNOR_CMD_READ_FAST].num_mode_clocks = 8; + params->ready = cypress_nor_sr_ready_and_clear; + cypress_nor_ecc_init(nor); + + return 0; +} + +static struct spi_nor_fixups s25hx_t_fixups = { + .post_bfpt = s25hx_t_post_bfpt_fixup, + .post_sfdp = s25hx_t_post_sfdp_fixup, + .late_init = s25hx_t_late_init, +}; + +/** + * cypress_nor_set_octal_dtr() - Enable or disable octal DTR on Cypress flashes. + * @nor: pointer to a 'struct spi_nor' + * @enable: whether to enable or disable Octal DTR + * + * This also sets the memory access latency cycles to 24 to allow the flash to + * run at up to 200MHz. + * + * Return: 0 on success, -errno otherwise. + */ +static int cypress_nor_set_octal_dtr(struct spi_nor *nor, bool enable) +{ + return enable ? cypress_nor_octal_dtr_en(nor) : + cypress_nor_octal_dtr_dis(nor); +} + +static int s28hx_t_post_sfdp_fixup(struct spi_nor *nor) +{ + struct spi_nor_flash_parameter *params = nor->params; + + if (!params->n_dice || !params->vreg_offset) { + dev_err(nor->dev, "%s failed. The volatile register offset could not be retrieved from SFDP.\n", + __func__); + return -EOPNOTSUPP; + } + + /* The 2 Gb parts duplicate info and advertise 4 dice instead of 2. */ + if (params->size == SZ_256M) + params->n_dice = 2; + + /* + * On older versions of the flash the xSPI Profile 1.0 table has the + * 8D-8D-8D Fast Read opcode as 0x00. But it actually should be 0xEE. + */ + if (params->reads[SNOR_CMD_READ_8_8_8_DTR].opcode == 0) + params->reads[SNOR_CMD_READ_8_8_8_DTR].opcode = + SPINOR_OP_CYPRESS_RD_FAST; + + /* This flash is also missing the 4-byte Page Program opcode bit. */ + spi_nor_set_pp_settings(¶ms->page_programs[SNOR_CMD_PP], + SPINOR_OP_PP_4B, SNOR_PROTO_1_1_1); + /* + * Since xSPI Page Program opcode is backward compatible with + * Legacy SPI, use Legacy SPI opcode there as well. + */ + spi_nor_set_pp_settings(¶ms->page_programs[SNOR_CMD_PP_8_8_8_DTR], + SPINOR_OP_PP_4B, SNOR_PROTO_8_8_8_DTR); + + /* + * The xSPI Profile 1.0 table advertises the number of additional + * address bytes needed for Read Status Register command as 0 but the + * actual value for that is 4. + */ + params->rdsr_addr_nbytes = 4; + + return cypress_nor_get_page_size(nor); +} + +static int s28hx_t_post_bfpt_fixup(struct spi_nor *nor, + const struct sfdp_parameter_header *bfpt_header, + const struct sfdp_bfpt *bfpt) +{ + return cypress_nor_set_addr_mode_nbytes(nor); +} + +static int s28hx_t_late_init(struct spi_nor *nor) +{ + struct spi_nor_flash_parameter *params = nor->params; + + params->set_octal_dtr = cypress_nor_set_octal_dtr; + params->ready = cypress_nor_sr_ready_and_clear; + cypress_nor_ecc_init(nor); + + return 0; +} + +static const struct spi_nor_fixups s28hx_t_fixups = { + .post_sfdp = s28hx_t_post_sfdp_fixup, + .post_bfpt = s28hx_t_post_bfpt_fixup, + .late_init = s28hx_t_late_init, +}; + +static int +s25fs_s_nor_post_bfpt_fixups(struct spi_nor *nor, + const struct sfdp_parameter_header *bfpt_header, + const struct sfdp_bfpt *bfpt) +{ + /* + * The S25FS-S chip family reports 512-byte pages in BFPT but + * in reality the write buffer still wraps at the safe default + * of 256 bytes. Overwrite the page size advertised by BFPT + * to get the writes working. + */ + nor->params->page_size = 256; + + return 0; +} + +static const struct spi_nor_fixups s25fs_s_nor_fixups = { + .post_bfpt = s25fs_s_nor_post_bfpt_fixups, +}; + +static const struct flash_info spansion_nor_parts[] = { + /* Spansion/Cypress -- single (large) sector size only, at least + * for the chips listed here (without boot sectors). + */ + { "s25sl032p", INFO(0x010215, 0x4d00, 64 * 1024, 64) + NO_SFDP_FLAGS(SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) }, + { "s25sl064p", INFO(0x010216, 0x4d00, 64 * 1024, 128) + NO_SFDP_FLAGS(SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) }, + { "s25fl128s0", INFO6(0x012018, 0x4d0080, 256 * 1024, 64) + NO_SFDP_FLAGS(SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) + MFR_FLAGS(USE_CLSR) + }, + { "s25fl128s1", INFO6(0x012018, 0x4d0180, 64 * 1024, 256) + NO_SFDP_FLAGS(SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) + MFR_FLAGS(USE_CLSR) + }, + { "s25fl256s0", INFO6(0x010219, 0x4d0080, 256 * 1024, 128) + NO_SFDP_FLAGS(SPI_NOR_SKIP_SFDP | SPI_NOR_DUAL_READ | + SPI_NOR_QUAD_READ) + MFR_FLAGS(USE_CLSR) + }, + { "s25fl256s1", INFO6(0x010219, 0x4d0180, 64 * 1024, 512) + NO_SFDP_FLAGS(SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) + MFR_FLAGS(USE_CLSR) + }, + { "s25fl512s", INFO6(0x010220, 0x4d0080, 256 * 1024, 256) + FLAGS(SPI_NOR_HAS_LOCK) + NO_SFDP_FLAGS(SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) + MFR_FLAGS(USE_CLSR) + }, + { "s25fs128s1", INFO6(0x012018, 0x4d0181, 64 * 1024, 256) + NO_SFDP_FLAGS(SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) + MFR_FLAGS(USE_CLSR) + .fixups = &s25fs_s_nor_fixups, }, + { "s25fs256s0", INFO6(0x010219, 0x4d0081, 256 * 1024, 128) + NO_SFDP_FLAGS(SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) + MFR_FLAGS(USE_CLSR) + }, + { "s25fs256s1", INFO6(0x010219, 0x4d0181, 64 * 1024, 512) + NO_SFDP_FLAGS(SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) + MFR_FLAGS(USE_CLSR) + }, + { "s25fs512s", INFO6(0x010220, 0x4d0081, 256 * 1024, 256) + NO_SFDP_FLAGS(SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) + MFR_FLAGS(USE_CLSR) + .fixups = &s25fs_s_nor_fixups, }, + { "s25sl12800", INFO(0x012018, 0x0300, 256 * 1024, 64) }, + { "s25sl12801", INFO(0x012018, 0x0301, 64 * 1024, 256) }, + { "s25fl129p0", INFO(0x012018, 0x4d00, 256 * 1024, 64) + NO_SFDP_FLAGS(SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) + MFR_FLAGS(USE_CLSR) + }, + { "s25fl129p1", INFO(0x012018, 0x4d01, 64 * 1024, 256) + NO_SFDP_FLAGS(SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) + MFR_FLAGS(USE_CLSR) + }, + { "s25sl004a", INFO(0x010212, 0, 64 * 1024, 8) }, + { "s25sl008a", INFO(0x010213, 0, 64 * 1024, 16) }, + { "s25sl016a", INFO(0x010214, 0, 64 * 1024, 32) }, + { "s25sl032a", INFO(0x010215, 0, 64 * 1024, 64) }, + { "s25sl064a", INFO(0x010216, 0, 64 * 1024, 128) }, + { "s25fl004k", INFO(0xef4013, 0, 64 * 1024, 8) + NO_SFDP_FLAGS(SECT_4K | SPI_NOR_DUAL_READ | + SPI_NOR_QUAD_READ) }, + { "s25fl008k", INFO(0xef4014, 0, 64 * 1024, 16) + NO_SFDP_FLAGS(SECT_4K | SPI_NOR_DUAL_READ | + SPI_NOR_QUAD_READ) }, + { "s25fl016k", INFO(0xef4015, 0, 64 * 1024, 32) + NO_SFDP_FLAGS(SECT_4K | SPI_NOR_DUAL_READ | + SPI_NOR_QUAD_READ) }, + { "s25fl064k", INFO(0xef4017, 0, 64 * 1024, 128) + NO_SFDP_FLAGS(SECT_4K | SPI_NOR_DUAL_READ | + SPI_NOR_QUAD_READ) }, + { "s25fl116k", INFO(0x014015, 0, 64 * 1024, 32) + NO_SFDP_FLAGS(SECT_4K | SPI_NOR_DUAL_READ | + SPI_NOR_QUAD_READ) }, + { "s25fl132k", INFO(0x014016, 0, 64 * 1024, 64) + NO_SFDP_FLAGS(SECT_4K) }, + { "s25fl164k", INFO(0x014017, 0, 64 * 1024, 128) + NO_SFDP_FLAGS(SECT_4K) }, + { "s25fl204k", INFO(0x014013, 0, 64 * 1024, 8) + NO_SFDP_FLAGS(SECT_4K | SPI_NOR_DUAL_READ) }, + { "s25fl208k", INFO(0x014014, 0, 64 * 1024, 16) + NO_SFDP_FLAGS(SECT_4K | SPI_NOR_DUAL_READ) }, + { "s25fl064l", INFO(0x016017, 0, 64 * 1024, 128) + NO_SFDP_FLAGS(SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) + FIXUP_FLAGS(SPI_NOR_4B_OPCODES) }, + { "s25fl128l", INFO(0x016018, 0, 64 * 1024, 256) + NO_SFDP_FLAGS(SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) + FIXUP_FLAGS(SPI_NOR_4B_OPCODES) }, + { "s25fl256l", INFO(0x016019, 0, 64 * 1024, 512) + NO_SFDP_FLAGS(SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) + FIXUP_FLAGS(SPI_NOR_4B_OPCODES) }, + { "s25fs256t", INFO6(0x342b19, 0x0f0890, 0, 0) + PARSE_SFDP + MFR_FLAGS(USE_CLPEF) + .fixups = &s25fs256t_fixups }, + { "s25hl512t", INFO6(0x342a1a, 0x0f0390, 0, 0) + PARSE_SFDP + MFR_FLAGS(USE_CLPEF) + .fixups = &s25hx_t_fixups }, + { "s25hl01gt", INFO6(0x342a1b, 0x0f0390, 0, 0) + PARSE_SFDP + MFR_FLAGS(USE_CLPEF) + .fixups = &s25hx_t_fixups }, + { "s25hl02gt", INFO6(0x342a1c, 0x0f0090, 0, 0) + PARSE_SFDP + MFR_FLAGS(USE_CLPEF) + FLAGS(NO_CHIP_ERASE) + .fixups = &s25hx_t_fixups }, + { "s25hs512t", INFO6(0x342b1a, 0x0f0390, 0, 0) + PARSE_SFDP + MFR_FLAGS(USE_CLPEF) + .fixups = &s25hx_t_fixups }, + { "s25hs01gt", INFO6(0x342b1b, 0x0f0390, 0, 0) + PARSE_SFDP + MFR_FLAGS(USE_CLPEF) + .fixups = &s25hx_t_fixups }, + { "s25hs02gt", INFO6(0x342b1c, 0x0f0090, 0, 0) + PARSE_SFDP + MFR_FLAGS(USE_CLPEF) + FLAGS(NO_CHIP_ERASE) + .fixups = &s25hx_t_fixups }, + { "cy15x104q", INFO6(0x042cc2, 0x7f7f7f, 512 * 1024, 1) + FLAGS(SPI_NOR_NO_ERASE) }, + { "s28hl512t", INFO(0x345a1a, 0, 0, 0) + PARSE_SFDP + MFR_FLAGS(USE_CLPEF) + .fixups = &s28hx_t_fixups, + }, + { "s28hl01gt", INFO(0x345a1b, 0, 0, 0) + PARSE_SFDP + MFR_FLAGS(USE_CLPEF) + .fixups = &s28hx_t_fixups, + }, + { "s28hs512t", INFO(0x345b1a, 0, 0, 0) + PARSE_SFDP + MFR_FLAGS(USE_CLPEF) + .fixups = &s28hx_t_fixups, + }, + { "s28hs01gt", INFO(0x345b1b, 0, 0, 0) + PARSE_SFDP + MFR_FLAGS(USE_CLPEF) + .fixups = &s28hx_t_fixups, + }, + { "s28hs02gt", INFO(0x345b1c, 0, 0, 0) + PARSE_SFDP + MFR_FLAGS(USE_CLPEF) + .fixups = &s28hx_t_fixups, + }, +}; + +/** + * spansion_nor_sr_ready_and_clear() - Query the Status Register to see if the + * flash is ready for new commands and clear it if there are any errors. + * @nor: pointer to 'struct spi_nor'. + * + * Return: 1 if ready, 0 if not ready, -errno on errors. + */ +static int spansion_nor_sr_ready_and_clear(struct spi_nor *nor) +{ + int ret; + + ret = spi_nor_read_sr(nor, nor->bouncebuf); + if (ret) + return ret; + + if (nor->bouncebuf[0] & (SR_E_ERR | SR_P_ERR)) { + if (nor->bouncebuf[0] & SR_E_ERR) + dev_err(nor->dev, "Erase Error occurred\n"); + else + dev_err(nor->dev, "Programming Error occurred\n"); + + spansion_nor_clear_sr(nor); + + /* + * WEL bit remains set to one when an erase or page program + * error occurs. Issue a Write Disable command to protect + * against inadvertent writes that can possibly corrupt the + * contents of the memory. + */ + ret = spi_nor_write_disable(nor); + if (ret) + return ret; + + return -EIO; + } + + return !(nor->bouncebuf[0] & SR_WIP); +} + +static int spansion_nor_late_init(struct spi_nor *nor) +{ + struct spi_nor_flash_parameter *params = nor->params; + struct spansion_nor_params *priv_params; + u8 mfr_flags = nor->info->mfr_flags; + + if (params->size > SZ_16M) { + nor->flags |= SNOR_F_4B_OPCODES; + /* No small sector erase for 4-byte command set */ + nor->erase_opcode = SPINOR_OP_SE; + nor->mtd.erasesize = nor->info->sector_size; + } + + if (mfr_flags & (USE_CLSR | USE_CLPEF)) { + priv_params = devm_kmalloc(nor->dev, sizeof(*priv_params), + GFP_KERNEL); + if (!priv_params) + return -ENOMEM; + + if (mfr_flags & USE_CLSR) + priv_params->clsr = SPINOR_OP_CLSR; + else if (mfr_flags & USE_CLPEF) + priv_params->clsr = SPINOR_OP_CLPEF; + + params->priv = priv_params; + params->ready = spansion_nor_sr_ready_and_clear; + } + + return 0; +} + +static const struct spi_nor_fixups spansion_nor_fixups = { + .late_init = spansion_nor_late_init, +}; + +const struct spi_nor_manufacturer spi_nor_spansion = { + .name = "spansion", + .parts = spansion_nor_parts, + .nparts = ARRAY_SIZE(spansion_nor_parts), + .fixups = &spansion_nor_fixups, +}; diff --git a/drivers/mtd/spi-nor/sst.c b/drivers/mtd/spi-nor/sst.c new file mode 100644 index 0000000000..197d2c1101 --- /dev/null +++ b/drivers/mtd/spi-nor/sst.c @@ -0,0 +1,229 @@ +// SPDX-License-Identifier: GPL-2.0 +/* + * Copyright (C) 2005, Intec Automation Inc. + * Copyright (C) 2014, Freescale Semiconductor, Inc. + */ + +#include <linux/mtd/spi-nor.h> + +#include "core.h" + +/* SST flash_info mfr_flag. Used to specify SST byte programming. */ +#define SST_WRITE BIT(0) + +#define SST26VF_CR_BPNV BIT(3) + +static int sst26vf_nor_lock(struct spi_nor *nor, loff_t ofs, uint64_t len) +{ + return -EOPNOTSUPP; +} + +static int sst26vf_nor_unlock(struct spi_nor *nor, loff_t ofs, uint64_t len) +{ + int ret; + + /* We only support unlocking the entire flash array. */ + if (ofs != 0 || len != nor->params->size) + return -EINVAL; + + ret = spi_nor_read_cr(nor, nor->bouncebuf); + if (ret) + return ret; + + if (!(nor->bouncebuf[0] & SST26VF_CR_BPNV)) { + dev_dbg(nor->dev, "Any block has been permanently locked\n"); + return -EINVAL; + } + + return spi_nor_global_block_unlock(nor); +} + +static int sst26vf_nor_is_locked(struct spi_nor *nor, loff_t ofs, uint64_t len) +{ + return -EOPNOTSUPP; +} + +static const struct spi_nor_locking_ops sst26vf_nor_locking_ops = { + .lock = sst26vf_nor_lock, + .unlock = sst26vf_nor_unlock, + .is_locked = sst26vf_nor_is_locked, +}; + +static int sst26vf_nor_late_init(struct spi_nor *nor) +{ + nor->params->locking_ops = &sst26vf_nor_locking_ops; + + return 0; +} + +static const struct spi_nor_fixups sst26vf_nor_fixups = { + .late_init = sst26vf_nor_late_init, +}; + +static const struct flash_info sst_nor_parts[] = { + /* SST -- large erase sizes are "overlays", "sectors" are 4K */ + { "sst25vf040b", INFO(0xbf258d, 0, 64 * 1024, 8) + FLAGS(SPI_NOR_HAS_LOCK | SPI_NOR_SWP_IS_VOLATILE) + NO_SFDP_FLAGS(SECT_4K) + MFR_FLAGS(SST_WRITE) }, + { "sst25vf080b", INFO(0xbf258e, 0, 64 * 1024, 16) + FLAGS(SPI_NOR_HAS_LOCK | SPI_NOR_SWP_IS_VOLATILE) + NO_SFDP_FLAGS(SECT_4K) + MFR_FLAGS(SST_WRITE) }, + { "sst25vf016b", INFO(0xbf2541, 0, 64 * 1024, 32) + FLAGS(SPI_NOR_HAS_LOCK | SPI_NOR_SWP_IS_VOLATILE) + NO_SFDP_FLAGS(SECT_4K) + MFR_FLAGS(SST_WRITE) }, + { "sst25vf032b", INFO(0xbf254a, 0, 64 * 1024, 64) + FLAGS(SPI_NOR_HAS_LOCK | SPI_NOR_SWP_IS_VOLATILE) + NO_SFDP_FLAGS(SECT_4K) + MFR_FLAGS(SST_WRITE) }, + { "sst25vf064c", INFO(0xbf254b, 0, 64 * 1024, 128) + FLAGS(SPI_NOR_HAS_LOCK | SPI_NOR_4BIT_BP | + SPI_NOR_SWP_IS_VOLATILE) + NO_SFDP_FLAGS(SECT_4K) }, + { "sst25wf512", INFO(0xbf2501, 0, 64 * 1024, 1) + FLAGS(SPI_NOR_HAS_LOCK | SPI_NOR_SWP_IS_VOLATILE) + NO_SFDP_FLAGS(SECT_4K) + MFR_FLAGS(SST_WRITE) }, + { "sst25wf010", INFO(0xbf2502, 0, 64 * 1024, 2) + FLAGS(SPI_NOR_HAS_LOCK | SPI_NOR_SWP_IS_VOLATILE) + NO_SFDP_FLAGS(SECT_4K) + MFR_FLAGS(SST_WRITE) }, + { "sst25wf020", INFO(0xbf2503, 0, 64 * 1024, 4) + FLAGS(SPI_NOR_HAS_LOCK | SPI_NOR_SWP_IS_VOLATILE) + NO_SFDP_FLAGS(SECT_4K) + MFR_FLAGS(SST_WRITE) }, + { "sst25wf020a", INFO(0x621612, 0, 64 * 1024, 4) + FLAGS(SPI_NOR_HAS_LOCK) + NO_SFDP_FLAGS(SECT_4K) }, + { "sst25wf040b", INFO(0x621613, 0, 64 * 1024, 8) + FLAGS(SPI_NOR_HAS_LOCK) + NO_SFDP_FLAGS(SECT_4K) }, + { "sst25wf040", INFO(0xbf2504, 0, 64 * 1024, 8) + FLAGS(SPI_NOR_HAS_LOCK | SPI_NOR_SWP_IS_VOLATILE) + NO_SFDP_FLAGS(SECT_4K) + MFR_FLAGS(SST_WRITE) }, + { "sst25wf080", INFO(0xbf2505, 0, 64 * 1024, 16) + FLAGS(SPI_NOR_HAS_LOCK | SPI_NOR_SWP_IS_VOLATILE) + NO_SFDP_FLAGS(SECT_4K) + MFR_FLAGS(SST_WRITE) }, + { "sst26wf016b", INFO(0xbf2651, 0, 64 * 1024, 32) + NO_SFDP_FLAGS(SECT_4K | SPI_NOR_DUAL_READ | + SPI_NOR_QUAD_READ) }, + { "sst26vf016b", INFO(0xbf2641, 0, 64 * 1024, 32) + NO_SFDP_FLAGS(SECT_4K | SPI_NOR_DUAL_READ) }, + { "sst26vf032b", INFO(0xbf2642, 0, 0, 0) + FLAGS(SPI_NOR_HAS_LOCK | SPI_NOR_SWP_IS_VOLATILE) + PARSE_SFDP + .fixups = &sst26vf_nor_fixups }, + { "sst26vf064b", INFO(0xbf2643, 0, 64 * 1024, 128) + FLAGS(SPI_NOR_HAS_LOCK | SPI_NOR_SWP_IS_VOLATILE) + NO_SFDP_FLAGS(SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) + .fixups = &sst26vf_nor_fixups }, +}; + +static int sst_nor_write(struct mtd_info *mtd, loff_t to, size_t len, + size_t *retlen, const u_char *buf) +{ + struct spi_nor *nor = mtd_to_spi_nor(mtd); + size_t actual = 0; + int ret; + + dev_dbg(nor->dev, "to 0x%08x, len %zd\n", (u32)to, len); + + ret = spi_nor_prep_and_lock(nor); + if (ret) + return ret; + + ret = spi_nor_write_enable(nor); + if (ret) + goto out; + + nor->sst_write_second = false; + + /* Start write from odd address. */ + if (to % 2) { + nor->program_opcode = SPINOR_OP_BP; + + /* write one byte. */ + ret = spi_nor_write_data(nor, to, 1, buf); + if (ret < 0) + goto out; + WARN(ret != 1, "While writing 1 byte written %i bytes\n", ret); + ret = spi_nor_wait_till_ready(nor); + if (ret) + goto out; + + to++; + actual++; + } + + /* Write out most of the data here. */ + for (; actual < len - 1; actual += 2) { + nor->program_opcode = SPINOR_OP_AAI_WP; + + /* write two bytes. */ + ret = spi_nor_write_data(nor, to, 2, buf + actual); + if (ret < 0) + goto out; + WARN(ret != 2, "While writing 2 bytes written %i bytes\n", ret); + ret = spi_nor_wait_till_ready(nor); + if (ret) + goto out; + to += 2; + nor->sst_write_second = true; + } + nor->sst_write_second = false; + + ret = spi_nor_write_disable(nor); + if (ret) + goto out; + + ret = spi_nor_wait_till_ready(nor); + if (ret) + goto out; + + /* Write out trailing byte if it exists. */ + if (actual != len) { + ret = spi_nor_write_enable(nor); + if (ret) + goto out; + + nor->program_opcode = SPINOR_OP_BP; + ret = spi_nor_write_data(nor, to, 1, buf + actual); + if (ret < 0) + goto out; + WARN(ret != 1, "While writing 1 byte written %i bytes\n", ret); + ret = spi_nor_wait_till_ready(nor); + if (ret) + goto out; + + actual += 1; + + ret = spi_nor_write_disable(nor); + } +out: + *retlen += actual; + spi_nor_unlock_and_unprep(nor); + return ret; +} + +static int sst_nor_late_init(struct spi_nor *nor) +{ + if (nor->info->mfr_flags & SST_WRITE) + nor->mtd._write = sst_nor_write; + + return 0; +} + +static const struct spi_nor_fixups sst_nor_fixups = { + .late_init = sst_nor_late_init, +}; + +const struct spi_nor_manufacturer spi_nor_sst = { + .name = "sst", + .parts = sst_nor_parts, + .nparts = ARRAY_SIZE(sst_nor_parts), + .fixups = &sst_nor_fixups, +}; diff --git a/drivers/mtd/spi-nor/swp.c b/drivers/mtd/spi-nor/swp.c new file mode 100644 index 0000000000..5ab9d53248 --- /dev/null +++ b/drivers/mtd/spi-nor/swp.c @@ -0,0 +1,432 @@ +// SPDX-License-Identifier: GPL-2.0 +/* + * SPI NOR Software Write Protection logic. + * + * Copyright (C) 2005, Intec Automation Inc. + * Copyright (C) 2014, Freescale Semiconductor, Inc. + */ +#include <linux/mtd/mtd.h> +#include <linux/mtd/spi-nor.h> + +#include "core.h" + +static u8 spi_nor_get_sr_bp_mask(struct spi_nor *nor) +{ + u8 mask = SR_BP2 | SR_BP1 | SR_BP0; + + if (nor->flags & SNOR_F_HAS_SR_BP3_BIT6) + return mask | SR_BP3_BIT6; + + if (nor->flags & SNOR_F_HAS_4BIT_BP) + return mask | SR_BP3; + + return mask; +} + +static u8 spi_nor_get_sr_tb_mask(struct spi_nor *nor) +{ + if (nor->flags & SNOR_F_HAS_SR_TB_BIT6) + return SR_TB_BIT6; + else + return SR_TB_BIT5; +} + +static u64 spi_nor_get_min_prot_length_sr(struct spi_nor *nor) +{ + unsigned int bp_slots, bp_slots_needed; + u8 mask = spi_nor_get_sr_bp_mask(nor); + + /* Reserved one for "protect none" and one for "protect all". */ + bp_slots = (1 << hweight8(mask)) - 2; + bp_slots_needed = ilog2(nor->info->n_sectors); + + if (bp_slots_needed > bp_slots) + return nor->info->sector_size << + (bp_slots_needed - bp_slots); + else + return nor->info->sector_size; +} + +static void spi_nor_get_locked_range_sr(struct spi_nor *nor, u8 sr, loff_t *ofs, + uint64_t *len) +{ + struct mtd_info *mtd = &nor->mtd; + u64 min_prot_len; + u8 mask = spi_nor_get_sr_bp_mask(nor); + u8 tb_mask = spi_nor_get_sr_tb_mask(nor); + u8 bp, val = sr & mask; + + if (nor->flags & SNOR_F_HAS_SR_BP3_BIT6 && val & SR_BP3_BIT6) + val = (val & ~SR_BP3_BIT6) | SR_BP3; + + bp = val >> SR_BP_SHIFT; + + if (!bp) { + /* No protection */ + *ofs = 0; + *len = 0; + return; + } + + min_prot_len = spi_nor_get_min_prot_length_sr(nor); + *len = min_prot_len << (bp - 1); + + if (*len > mtd->size) + *len = mtd->size; + + if (nor->flags & SNOR_F_HAS_SR_TB && sr & tb_mask) + *ofs = 0; + else + *ofs = mtd->size - *len; +} + +/* + * Return true if the entire region is locked (if @locked is true) or unlocked + * (if @locked is false); false otherwise. + */ +static bool spi_nor_check_lock_status_sr(struct spi_nor *nor, loff_t ofs, + uint64_t len, u8 sr, bool locked) +{ + loff_t lock_offs, lock_offs_max, offs_max; + uint64_t lock_len; + + if (!len) + return true; + + spi_nor_get_locked_range_sr(nor, sr, &lock_offs, &lock_len); + + lock_offs_max = lock_offs + lock_len; + offs_max = ofs + len; + + if (locked) + /* Requested range is a sub-range of locked range */ + return (offs_max <= lock_offs_max) && (ofs >= lock_offs); + else + /* Requested range does not overlap with locked range */ + return (ofs >= lock_offs_max) || (offs_max <= lock_offs); +} + +static bool spi_nor_is_locked_sr(struct spi_nor *nor, loff_t ofs, uint64_t len, + u8 sr) +{ + return spi_nor_check_lock_status_sr(nor, ofs, len, sr, true); +} + +static bool spi_nor_is_unlocked_sr(struct spi_nor *nor, loff_t ofs, + uint64_t len, u8 sr) +{ + return spi_nor_check_lock_status_sr(nor, ofs, len, sr, false); +} + +/* + * Lock a region of the flash. Compatible with ST Micro and similar flash. + * Supports the block protection bits BP{0,1,2}/BP{0,1,2,3} in the status + * register + * (SR). Does not support these features found in newer SR bitfields: + * - SEC: sector/block protect - only handle SEC=0 (block protect) + * - CMP: complement protect - only support CMP=0 (range is not complemented) + * + * Support for the following is provided conditionally for some flash: + * - TB: top/bottom protect + * + * Sample table portion for 8MB flash (Winbond w25q64fw): + * + * SEC | TB | BP2 | BP1 | BP0 | Prot Length | Protected Portion + * -------------------------------------------------------------------------- + * X | X | 0 | 0 | 0 | NONE | NONE + * 0 | 0 | 0 | 0 | 1 | 128 KB | Upper 1/64 + * 0 | 0 | 0 | 1 | 0 | 256 KB | Upper 1/32 + * 0 | 0 | 0 | 1 | 1 | 512 KB | Upper 1/16 + * 0 | 0 | 1 | 0 | 0 | 1 MB | Upper 1/8 + * 0 | 0 | 1 | 0 | 1 | 2 MB | Upper 1/4 + * 0 | 0 | 1 | 1 | 0 | 4 MB | Upper 1/2 + * X | X | 1 | 1 | 1 | 8 MB | ALL + * ------|-------|-------|-------|-------|---------------|------------------- + * 0 | 1 | 0 | 0 | 1 | 128 KB | Lower 1/64 + * 0 | 1 | 0 | 1 | 0 | 256 KB | Lower 1/32 + * 0 | 1 | 0 | 1 | 1 | 512 KB | Lower 1/16 + * 0 | 1 | 1 | 0 | 0 | 1 MB | Lower 1/8 + * 0 | 1 | 1 | 0 | 1 | 2 MB | Lower 1/4 + * 0 | 1 | 1 | 1 | 0 | 4 MB | Lower 1/2 + * + * Returns negative on errors, 0 on success. + */ +static int spi_nor_sr_lock(struct spi_nor *nor, loff_t ofs, uint64_t len) +{ + struct mtd_info *mtd = &nor->mtd; + u64 min_prot_len; + int ret, status_old, status_new; + u8 mask = spi_nor_get_sr_bp_mask(nor); + u8 tb_mask = spi_nor_get_sr_tb_mask(nor); + u8 pow, val; + loff_t lock_len; + bool can_be_top = true, can_be_bottom = nor->flags & SNOR_F_HAS_SR_TB; + bool use_top; + + ret = spi_nor_read_sr(nor, nor->bouncebuf); + if (ret) + return ret; + + status_old = nor->bouncebuf[0]; + + /* If nothing in our range is unlocked, we don't need to do anything */ + if (spi_nor_is_locked_sr(nor, ofs, len, status_old)) + return 0; + + /* If anything below us is unlocked, we can't use 'bottom' protection */ + if (!spi_nor_is_locked_sr(nor, 0, ofs, status_old)) + can_be_bottom = false; + + /* If anything above us is unlocked, we can't use 'top' protection */ + if (!spi_nor_is_locked_sr(nor, ofs + len, mtd->size - (ofs + len), + status_old)) + can_be_top = false; + + if (!can_be_bottom && !can_be_top) + return -EINVAL; + + /* Prefer top, if both are valid */ + use_top = can_be_top; + + /* lock_len: length of region that should end up locked */ + if (use_top) + lock_len = mtd->size - ofs; + else + lock_len = ofs + len; + + if (lock_len == mtd->size) { + val = mask; + } else { + min_prot_len = spi_nor_get_min_prot_length_sr(nor); + pow = ilog2(lock_len) - ilog2(min_prot_len) + 1; + val = pow << SR_BP_SHIFT; + + if (nor->flags & SNOR_F_HAS_SR_BP3_BIT6 && val & SR_BP3) + val = (val & ~SR_BP3) | SR_BP3_BIT6; + + if (val & ~mask) + return -EINVAL; + + /* Don't "lock" with no region! */ + if (!(val & mask)) + return -EINVAL; + } + + status_new = (status_old & ~mask & ~tb_mask) | val; + + /* + * Disallow further writes if WP# pin is neither left floating nor + * wrongly tied to GND (that includes internal pull-downs). + * WP# pin hard strapped to GND can be a valid use case. + */ + if (!(nor->flags & SNOR_F_NO_WP)) + status_new |= SR_SRWD; + + if (!use_top) + status_new |= tb_mask; + + /* Don't bother if they're the same */ + if (status_new == status_old) + return 0; + + /* Only modify protection if it will not unlock other areas */ + if ((status_new & mask) < (status_old & mask)) + return -EINVAL; + + return spi_nor_write_sr_and_check(nor, status_new); +} + +/* + * Unlock a region of the flash. See spi_nor_sr_lock() for more info + * + * Returns negative on errors, 0 on success. + */ +static int spi_nor_sr_unlock(struct spi_nor *nor, loff_t ofs, uint64_t len) +{ + struct mtd_info *mtd = &nor->mtd; + u64 min_prot_len; + int ret, status_old, status_new; + u8 mask = spi_nor_get_sr_bp_mask(nor); + u8 tb_mask = spi_nor_get_sr_tb_mask(nor); + u8 pow, val; + loff_t lock_len; + bool can_be_top = true, can_be_bottom = nor->flags & SNOR_F_HAS_SR_TB; + bool use_top; + + ret = spi_nor_read_sr(nor, nor->bouncebuf); + if (ret) + return ret; + + status_old = nor->bouncebuf[0]; + + /* If nothing in our range is locked, we don't need to do anything */ + if (spi_nor_is_unlocked_sr(nor, ofs, len, status_old)) + return 0; + + /* If anything below us is locked, we can't use 'top' protection */ + if (!spi_nor_is_unlocked_sr(nor, 0, ofs, status_old)) + can_be_top = false; + + /* If anything above us is locked, we can't use 'bottom' protection */ + if (!spi_nor_is_unlocked_sr(nor, ofs + len, mtd->size - (ofs + len), + status_old)) + can_be_bottom = false; + + if (!can_be_bottom && !can_be_top) + return -EINVAL; + + /* Prefer top, if both are valid */ + use_top = can_be_top; + + /* lock_len: length of region that should remain locked */ + if (use_top) + lock_len = mtd->size - (ofs + len); + else + lock_len = ofs; + + if (lock_len == 0) { + val = 0; /* fully unlocked */ + } else { + min_prot_len = spi_nor_get_min_prot_length_sr(nor); + pow = ilog2(lock_len) - ilog2(min_prot_len) + 1; + val = pow << SR_BP_SHIFT; + + if (nor->flags & SNOR_F_HAS_SR_BP3_BIT6 && val & SR_BP3) + val = (val & ~SR_BP3) | SR_BP3_BIT6; + + /* Some power-of-two sizes are not supported */ + if (val & ~mask) + return -EINVAL; + } + + status_new = (status_old & ~mask & ~tb_mask) | val; + + /* Don't protect status register if we're fully unlocked */ + if (lock_len == 0) + status_new &= ~SR_SRWD; + + if (!use_top) + status_new |= tb_mask; + + /* Don't bother if they're the same */ + if (status_new == status_old) + return 0; + + /* Only modify protection if it will not lock other areas */ + if ((status_new & mask) > (status_old & mask)) + return -EINVAL; + + return spi_nor_write_sr_and_check(nor, status_new); +} + +/* + * Check if a region of the flash is (completely) locked. See spi_nor_sr_lock() + * for more info. + * + * Returns 1 if entire region is locked, 0 if any portion is unlocked, and + * negative on errors. + */ +static int spi_nor_sr_is_locked(struct spi_nor *nor, loff_t ofs, uint64_t len) +{ + int ret; + + ret = spi_nor_read_sr(nor, nor->bouncebuf); + if (ret) + return ret; + + return spi_nor_is_locked_sr(nor, ofs, len, nor->bouncebuf[0]); +} + +static const struct spi_nor_locking_ops spi_nor_sr_locking_ops = { + .lock = spi_nor_sr_lock, + .unlock = spi_nor_sr_unlock, + .is_locked = spi_nor_sr_is_locked, +}; + +void spi_nor_init_default_locking_ops(struct spi_nor *nor) +{ + nor->params->locking_ops = &spi_nor_sr_locking_ops; +} + +static int spi_nor_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len) +{ + struct spi_nor *nor = mtd_to_spi_nor(mtd); + int ret; + + ret = spi_nor_prep_and_lock(nor); + if (ret) + return ret; + + ret = nor->params->locking_ops->lock(nor, ofs, len); + + spi_nor_unlock_and_unprep(nor); + return ret; +} + +static int spi_nor_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len) +{ + struct spi_nor *nor = mtd_to_spi_nor(mtd); + int ret; + + ret = spi_nor_prep_and_lock(nor); + if (ret) + return ret; + + ret = nor->params->locking_ops->unlock(nor, ofs, len); + + spi_nor_unlock_and_unprep(nor); + return ret; +} + +static int spi_nor_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len) +{ + struct spi_nor *nor = mtd_to_spi_nor(mtd); + int ret; + + ret = spi_nor_prep_and_lock(nor); + if (ret) + return ret; + + ret = nor->params->locking_ops->is_locked(nor, ofs, len); + + spi_nor_unlock_and_unprep(nor); + return ret; +} + +/** + * spi_nor_try_unlock_all() - Tries to unlock the entire flash memory array. + * @nor: pointer to a 'struct spi_nor'. + * + * Some SPI NOR flashes are write protected by default after a power-on reset + * cycle, in order to avoid inadvertent writes during power-up. Backward + * compatibility imposes to unlock the entire flash memory array at power-up + * by default. + * + * Unprotecting the entire flash array will fail for boards which are hardware + * write-protected. Thus any errors are ignored. + */ +void spi_nor_try_unlock_all(struct spi_nor *nor) +{ + int ret; + + if (!(nor->flags & SNOR_F_HAS_LOCK)) + return; + + dev_dbg(nor->dev, "Unprotecting entire flash array\n"); + + ret = spi_nor_unlock(&nor->mtd, 0, nor->params->size); + if (ret) + dev_dbg(nor->dev, "Failed to unlock the entire flash memory array\n"); +} + +void spi_nor_set_mtd_locking_ops(struct spi_nor *nor) +{ + struct mtd_info *mtd = &nor->mtd; + + if (!nor->params->locking_ops) + return; + + mtd->_lock = spi_nor_lock; + mtd->_unlock = spi_nor_unlock; + mtd->_is_locked = spi_nor_is_locked; +} diff --git a/drivers/mtd/spi-nor/sysfs.c b/drivers/mtd/spi-nor/sysfs.c new file mode 100644 index 0000000000..c09bb832b3 --- /dev/null +++ b/drivers/mtd/spi-nor/sysfs.c @@ -0,0 +1,111 @@ +// SPDX-License-Identifier: GPL-2.0 + +#include <linux/mtd/spi-nor.h> +#include <linux/spi/spi.h> +#include <linux/spi/spi-mem.h> +#include <linux/sysfs.h> + +#include "core.h" + +static ssize_t manufacturer_show(struct device *dev, + struct device_attribute *attr, char *buf) +{ + struct spi_device *spi = to_spi_device(dev); + struct spi_mem *spimem = spi_get_drvdata(spi); + struct spi_nor *nor = spi_mem_get_drvdata(spimem); + + return sysfs_emit(buf, "%s\n", nor->manufacturer->name); +} +static DEVICE_ATTR_RO(manufacturer); + +static ssize_t partname_show(struct device *dev, + struct device_attribute *attr, char *buf) +{ + struct spi_device *spi = to_spi_device(dev); + struct spi_mem *spimem = spi_get_drvdata(spi); + struct spi_nor *nor = spi_mem_get_drvdata(spimem); + + return sysfs_emit(buf, "%s\n", nor->info->name); +} +static DEVICE_ATTR_RO(partname); + +static ssize_t jedec_id_show(struct device *dev, + struct device_attribute *attr, char *buf) +{ + struct spi_device *spi = to_spi_device(dev); + struct spi_mem *spimem = spi_get_drvdata(spi); + struct spi_nor *nor = spi_mem_get_drvdata(spimem); + const u8 *id = nor->info->id_len ? nor->info->id : nor->id; + u8 id_len = nor->info->id_len ?: SPI_NOR_MAX_ID_LEN; + + return sysfs_emit(buf, "%*phN\n", id_len, id); +} +static DEVICE_ATTR_RO(jedec_id); + +static struct attribute *spi_nor_sysfs_entries[] = { + &dev_attr_manufacturer.attr, + &dev_attr_partname.attr, + &dev_attr_jedec_id.attr, + NULL +}; + +static ssize_t sfdp_read(struct file *filp, struct kobject *kobj, + struct bin_attribute *bin_attr, char *buf, + loff_t off, size_t count) +{ + struct spi_device *spi = to_spi_device(kobj_to_dev(kobj)); + struct spi_mem *spimem = spi_get_drvdata(spi); + struct spi_nor *nor = spi_mem_get_drvdata(spimem); + struct sfdp *sfdp = nor->sfdp; + size_t sfdp_size = sfdp->num_dwords * sizeof(*sfdp->dwords); + + return memory_read_from_buffer(buf, count, &off, nor->sfdp->dwords, + sfdp_size); +} +static BIN_ATTR_RO(sfdp, 0); + +static struct bin_attribute *spi_nor_sysfs_bin_entries[] = { + &bin_attr_sfdp, + NULL +}; + +static umode_t spi_nor_sysfs_is_visible(struct kobject *kobj, + struct attribute *attr, int n) +{ + struct spi_device *spi = to_spi_device(kobj_to_dev(kobj)); + struct spi_mem *spimem = spi_get_drvdata(spi); + struct spi_nor *nor = spi_mem_get_drvdata(spimem); + + if (attr == &dev_attr_manufacturer.attr && !nor->manufacturer) + return 0; + if (attr == &dev_attr_jedec_id.attr && !nor->info->id_len && !nor->id) + return 0; + + return 0444; +} + +static umode_t spi_nor_sysfs_is_bin_visible(struct kobject *kobj, + struct bin_attribute *attr, int n) +{ + struct spi_device *spi = to_spi_device(kobj_to_dev(kobj)); + struct spi_mem *spimem = spi_get_drvdata(spi); + struct spi_nor *nor = spi_mem_get_drvdata(spimem); + + if (attr == &bin_attr_sfdp && nor->sfdp) + return 0444; + + return 0; +} + +static const struct attribute_group spi_nor_sysfs_group = { + .name = "spi-nor", + .is_visible = spi_nor_sysfs_is_visible, + .is_bin_visible = spi_nor_sysfs_is_bin_visible, + .attrs = spi_nor_sysfs_entries, + .bin_attrs = spi_nor_sysfs_bin_entries, +}; + +const struct attribute_group *spi_nor_sysfs_groups[] = { + &spi_nor_sysfs_group, + NULL +}; diff --git a/drivers/mtd/spi-nor/winbond.c b/drivers/mtd/spi-nor/winbond.c new file mode 100644 index 0000000000..cd99c9a1c5 --- /dev/null +++ b/drivers/mtd/spi-nor/winbond.c @@ -0,0 +1,249 @@ +// SPDX-License-Identifier: GPL-2.0 +/* + * Copyright (C) 2005, Intec Automation Inc. + * Copyright (C) 2014, Freescale Semiconductor, Inc. + */ + +#include <linux/mtd/spi-nor.h> + +#include "core.h" + +#define WINBOND_NOR_OP_RDEAR 0xc8 /* Read Extended Address Register */ +#define WINBOND_NOR_OP_WREAR 0xc5 /* Write Extended Address Register */ + +#define WINBOND_NOR_WREAR_OP(buf) \ + SPI_MEM_OP(SPI_MEM_OP_CMD(WINBOND_NOR_OP_WREAR, 0), \ + SPI_MEM_OP_NO_ADDR, \ + SPI_MEM_OP_NO_DUMMY, \ + SPI_MEM_OP_DATA_OUT(1, buf, 0)) + +static int +w25q256_post_bfpt_fixups(struct spi_nor *nor, + const struct sfdp_parameter_header *bfpt_header, + const struct sfdp_bfpt *bfpt) +{ + /* + * W25Q256JV supports 4B opcodes but W25Q256FV does not. + * Unfortunately, Winbond has re-used the same JEDEC ID for both + * variants which prevents us from defining a new entry in the parts + * table. + * To differentiate between W25Q256JV and W25Q256FV check SFDP header + * version: only JV has JESD216A compliant structure (version 5). + */ + if (bfpt_header->major == SFDP_JESD216_MAJOR && + bfpt_header->minor == SFDP_JESD216A_MINOR) + nor->flags |= SNOR_F_4B_OPCODES; + + return 0; +} + +static const struct spi_nor_fixups w25q256_fixups = { + .post_bfpt = w25q256_post_bfpt_fixups, +}; + +static const struct flash_info winbond_nor_parts[] = { + /* Winbond -- w25x "blocks" are 64K, "sectors" are 4KiB */ + { "w25x05", INFO(0xef3010, 0, 64 * 1024, 1) + NO_SFDP_FLAGS(SECT_4K) }, + { "w25x10", INFO(0xef3011, 0, 64 * 1024, 2) + NO_SFDP_FLAGS(SECT_4K) }, + { "w25x20", INFO(0xef3012, 0, 64 * 1024, 4) + NO_SFDP_FLAGS(SECT_4K) }, + { "w25x40", INFO(0xef3013, 0, 64 * 1024, 8) + NO_SFDP_FLAGS(SECT_4K) }, + { "w25x80", INFO(0xef3014, 0, 64 * 1024, 16) + NO_SFDP_FLAGS(SECT_4K) }, + { "w25x16", INFO(0xef3015, 0, 64 * 1024, 32) + NO_SFDP_FLAGS(SECT_4K) }, + { "w25q16dw", INFO(0xef6015, 0, 64 * 1024, 32) + FLAGS(SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB) + NO_SFDP_FLAGS(SECT_4K | SPI_NOR_DUAL_READ | + SPI_NOR_QUAD_READ) }, + { "w25x32", INFO(0xef3016, 0, 64 * 1024, 64) + NO_SFDP_FLAGS(SECT_4K) }, + { "w25q16jv-im/jm", INFO(0xef7015, 0, 64 * 1024, 32) + FLAGS(SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB) + NO_SFDP_FLAGS(SECT_4K | SPI_NOR_DUAL_READ | + SPI_NOR_QUAD_READ) }, + { "w25q20cl", INFO(0xef4012, 0, 64 * 1024, 4) + NO_SFDP_FLAGS(SECT_4K) }, + { "w25q20bw", INFO(0xef5012, 0, 64 * 1024, 4) + NO_SFDP_FLAGS(SECT_4K) }, + { "w25q20ew", INFO(0xef6012, 0, 64 * 1024, 4) + NO_SFDP_FLAGS(SECT_4K) }, + { "w25q32", INFO(0xef4016, 0, 64 * 1024, 64) + NO_SFDP_FLAGS(SECT_4K) }, + { "w25q32dw", INFO(0xef6016, 0, 64 * 1024, 64) + FLAGS(SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB) + NO_SFDP_FLAGS(SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) + OTP_INFO(256, 3, 0x1000, 0x1000) }, + { "w25q32jv", INFO(0xef7016, 0, 64 * 1024, 64) + FLAGS(SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB) + NO_SFDP_FLAGS(SECT_4K | SPI_NOR_DUAL_READ | + SPI_NOR_QUAD_READ) }, + { "w25q32jwm", INFO(0xef8016, 0, 64 * 1024, 64) + FLAGS(SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB) + NO_SFDP_FLAGS(SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) + OTP_INFO(256, 3, 0x1000, 0x1000) }, + { "w25q64jwm", INFO(0xef8017, 0, 64 * 1024, 128) + FLAGS(SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB) + NO_SFDP_FLAGS(SECT_4K | SPI_NOR_DUAL_READ | + SPI_NOR_QUAD_READ) }, + { "w25q128jwm", INFO(0xef8018, 0, 64 * 1024, 256) + FLAGS(SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB) + NO_SFDP_FLAGS(SECT_4K | SPI_NOR_DUAL_READ | + SPI_NOR_QUAD_READ) }, + { "w25q256jwm", INFO(0xef8019, 0, 64 * 1024, 512) + FLAGS(SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB) + NO_SFDP_FLAGS(SECT_4K | SPI_NOR_DUAL_READ | + SPI_NOR_QUAD_READ) }, + { "w25x64", INFO(0xef3017, 0, 64 * 1024, 128) + NO_SFDP_FLAGS(SECT_4K) }, + { "w25q64", INFO(0xef4017, 0, 64 * 1024, 128) + NO_SFDP_FLAGS(SECT_4K | SPI_NOR_DUAL_READ | + SPI_NOR_QUAD_READ) }, + { "w25q64dw", INFO(0xef6017, 0, 64 * 1024, 128) + FLAGS(SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB) + NO_SFDP_FLAGS(SECT_4K | SPI_NOR_DUAL_READ | + SPI_NOR_QUAD_READ) }, + { "w25q64jvm", INFO(0xef7017, 0, 64 * 1024, 128) + NO_SFDP_FLAGS(SECT_4K) }, + { "w25q128fw", INFO(0xef6018, 0, 64 * 1024, 256) + FLAGS(SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB) + NO_SFDP_FLAGS(SECT_4K | SPI_NOR_DUAL_READ | + SPI_NOR_QUAD_READ) }, + { "w25q128jv", INFO(0xef7018, 0, 64 * 1024, 256) + FLAGS(SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB) + NO_SFDP_FLAGS(SECT_4K | SPI_NOR_DUAL_READ | + SPI_NOR_QUAD_READ) }, + { "w25q80", INFO(0xef5014, 0, 64 * 1024, 16) + NO_SFDP_FLAGS(SECT_4K) }, + { "w25q80bl", INFO(0xef4014, 0, 64 * 1024, 16) + NO_SFDP_FLAGS(SECT_4K) }, + { "w25q128", INFO(0xef4018, 0, 0, 0) + PARSE_SFDP + FLAGS(SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB) }, + { "w25q256", INFO(0xef4019, 0, 64 * 1024, 512) + NO_SFDP_FLAGS(SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) + .fixups = &w25q256_fixups }, + { "w25q256jvm", INFO(0xef7019, 0, 64 * 1024, 512) + PARSE_SFDP }, + { "w25q256jw", INFO(0xef6019, 0, 64 * 1024, 512) + NO_SFDP_FLAGS(SECT_4K | SPI_NOR_DUAL_READ | + SPI_NOR_QUAD_READ) }, + { "w25m512jv", INFO(0xef7119, 0, 64 * 1024, 1024) + NO_SFDP_FLAGS(SECT_4K | SPI_NOR_QUAD_READ | + SPI_NOR_DUAL_READ) }, + { "w25q512nwq", INFO(0xef6020, 0, 0, 0) + PARSE_SFDP + OTP_INFO(256, 3, 0x1000, 0x1000) }, + { "w25q512nwm", INFO(0xef8020, 0, 64 * 1024, 1024) + PARSE_SFDP + OTP_INFO(256, 3, 0x1000, 0x1000) }, + { "w25q512jvq", INFO(0xef4020, 0, 64 * 1024, 1024) + NO_SFDP_FLAGS(SECT_4K | SPI_NOR_DUAL_READ | + SPI_NOR_QUAD_READ) }, +}; + +/** + * winbond_nor_write_ear() - Write Extended Address Register. + * @nor: pointer to 'struct spi_nor'. + * @ear: value to write to the Extended Address Register. + * + * Return: 0 on success, -errno otherwise. + */ +static int winbond_nor_write_ear(struct spi_nor *nor, u8 ear) +{ + int ret; + + nor->bouncebuf[0] = ear; + + if (nor->spimem) { + struct spi_mem_op op = WINBOND_NOR_WREAR_OP(nor->bouncebuf); + + spi_nor_spimem_setup_op(nor, &op, nor->reg_proto); + + ret = spi_mem_exec_op(nor->spimem, &op); + } else { + ret = spi_nor_controller_ops_write_reg(nor, + WINBOND_NOR_OP_WREAR, + nor->bouncebuf, 1); + } + + if (ret) + dev_dbg(nor->dev, "error %d writing EAR\n", ret); + + return ret; +} + +/** + * winbond_nor_set_4byte_addr_mode() - Set 4-byte address mode for Winbond + * flashes. + * @nor: pointer to 'struct spi_nor'. + * @enable: true to enter the 4-byte address mode, false to exit the 4-byte + * address mode. + * + * Return: 0 on success, -errno otherwise. + */ +static int winbond_nor_set_4byte_addr_mode(struct spi_nor *nor, bool enable) +{ + int ret; + + ret = spi_nor_set_4byte_addr_mode_en4b_ex4b(nor, enable); + if (ret || enable) + return ret; + + /* + * On Winbond W25Q256FV, leaving 4byte mode causes the Extended Address + * Register to be set to 1, so all 3-byte-address reads come from the + * second 16M. We must clear the register to enable normal behavior. + */ + ret = spi_nor_write_enable(nor); + if (ret) + return ret; + + ret = winbond_nor_write_ear(nor, 0); + if (ret) + return ret; + + return spi_nor_write_disable(nor); +} + +static const struct spi_nor_otp_ops winbond_nor_otp_ops = { + .read = spi_nor_otp_read_secr, + .write = spi_nor_otp_write_secr, + .erase = spi_nor_otp_erase_secr, + .lock = spi_nor_otp_lock_sr2, + .is_locked = spi_nor_otp_is_locked_sr2, +}; + +static int winbond_nor_late_init(struct spi_nor *nor) +{ + struct spi_nor_flash_parameter *params = nor->params; + + if (params->otp.org->n_regions) + params->otp.ops = &winbond_nor_otp_ops; + + /* + * Winbond seems to require that the Extended Address Register to be set + * to zero when exiting the 4-Byte Address Mode, at least for W25Q256FV. + * This requirement is not described in the JESD216 SFDP standard, thus + * it is Winbond specific. Since we do not know if other Winbond flashes + * have the same requirement, play safe and overwrite the method parsed + * from BFPT, if any. + */ + params->set_4byte_addr_mode = winbond_nor_set_4byte_addr_mode; + + return 0; +} + +static const struct spi_nor_fixups winbond_nor_fixups = { + .late_init = winbond_nor_late_init, +}; + +const struct spi_nor_manufacturer spi_nor_winbond = { + .name = "winbond", + .parts = winbond_nor_parts, + .nparts = ARRAY_SIZE(winbond_nor_parts), + .fixups = &winbond_nor_fixups, +}; diff --git a/drivers/mtd/spi-nor/xilinx.c b/drivers/mtd/spi-nor/xilinx.c new file mode 100644 index 0000000000..00d53eae5e --- /dev/null +++ b/drivers/mtd/spi-nor/xilinx.c @@ -0,0 +1,175 @@ +// SPDX-License-Identifier: GPL-2.0 +/* + * Copyright (C) 2005, Intec Automation Inc. + * Copyright (C) 2014, Freescale Semiconductor, Inc. + */ + +#include <linux/mtd/spi-nor.h> + +#include "core.h" + +#define XILINX_OP_SE 0x50 /* Sector erase */ +#define XILINX_OP_PP 0x82 /* Page program */ +#define XILINX_OP_RDSR 0xd7 /* Read status register */ + +#define XSR_PAGESIZE BIT(0) /* Page size in Po2 or Linear */ +#define XSR_RDY BIT(7) /* Ready */ + +#define XILINX_RDSR_OP(buf) \ + SPI_MEM_OP(SPI_MEM_OP_CMD(XILINX_OP_RDSR, 0), \ + SPI_MEM_OP_NO_ADDR, \ + SPI_MEM_OP_NO_DUMMY, \ + SPI_MEM_OP_DATA_IN(1, buf, 0)) + +#define S3AN_INFO(_jedec_id, _n_sectors, _page_size) \ + .id = { \ + ((_jedec_id) >> 16) & 0xff, \ + ((_jedec_id) >> 8) & 0xff, \ + (_jedec_id) & 0xff \ + }, \ + .id_len = 3, \ + .sector_size = (8 * (_page_size)), \ + .n_sectors = (_n_sectors), \ + .page_size = (_page_size), \ + .n_banks = 1, \ + .addr_nbytes = 3, \ + .flags = SPI_NOR_NO_FR + +/* Xilinx S3AN share MFR with Atmel SPI NOR */ +static const struct flash_info xilinx_nor_parts[] = { + /* Xilinx S3AN Internal Flash */ + { "3S50AN", S3AN_INFO(0x1f2200, 64, 264) }, + { "3S200AN", S3AN_INFO(0x1f2400, 256, 264) }, + { "3S400AN", S3AN_INFO(0x1f2400, 256, 264) }, + { "3S700AN", S3AN_INFO(0x1f2500, 512, 264) }, + { "3S1400AN", S3AN_INFO(0x1f2600, 512, 528) }, +}; + +/* + * This code converts an address to the Default Address Mode, that has non + * power of two page sizes. We must support this mode because it is the default + * mode supported by Xilinx tools, it can access the whole flash area and + * changing over to the Power-of-two mode is irreversible and corrupts the + * original data. + * Addr can safely be unsigned int, the biggest S3AN device is smaller than + * 4 MiB. + */ +static u32 s3an_nor_convert_addr(struct spi_nor *nor, u32 addr) +{ + u32 page_size = nor->params->page_size; + u32 offset, page; + + offset = addr % page_size; + page = addr / page_size; + page <<= (page_size > 512) ? 10 : 9; + + return page | offset; +} + +/** + * xilinx_nor_read_sr() - Read the Status Register on S3AN flashes. + * @nor: pointer to 'struct spi_nor'. + * @sr: pointer to a DMA-able buffer where the value of the + * Status Register will be written. + * + * Return: 0 on success, -errno otherwise. + */ +static int xilinx_nor_read_sr(struct spi_nor *nor, u8 *sr) +{ + int ret; + + if (nor->spimem) { + struct spi_mem_op op = XILINX_RDSR_OP(sr); + + spi_nor_spimem_setup_op(nor, &op, nor->reg_proto); + + ret = spi_mem_exec_op(nor->spimem, &op); + } else { + ret = spi_nor_controller_ops_read_reg(nor, XILINX_OP_RDSR, sr, + 1); + } + + if (ret) + dev_dbg(nor->dev, "error %d reading SR\n", ret); + + return ret; +} + +/** + * xilinx_nor_sr_ready() - Query the Status Register of the S3AN flash to see + * if the flash is ready for new commands. + * @nor: pointer to 'struct spi_nor'. + * + * Return: 1 if ready, 0 if not ready, -errno on errors. + */ +static int xilinx_nor_sr_ready(struct spi_nor *nor) +{ + int ret; + + ret = xilinx_nor_read_sr(nor, nor->bouncebuf); + if (ret) + return ret; + + return !!(nor->bouncebuf[0] & XSR_RDY); +} + +static int xilinx_nor_setup(struct spi_nor *nor, + const struct spi_nor_hwcaps *hwcaps) +{ + u32 page_size; + int ret; + + ret = xilinx_nor_read_sr(nor, nor->bouncebuf); + if (ret) + return ret; + + nor->erase_opcode = XILINX_OP_SE; + nor->program_opcode = XILINX_OP_PP; + nor->read_opcode = SPINOR_OP_READ; + nor->flags |= SNOR_F_NO_OP_CHIP_ERASE; + + /* + * This flashes have a page size of 264 or 528 bytes (known as + * Default addressing mode). It can be changed to a more standard + * Power of two mode where the page size is 256/512. This comes + * with a price: there is 3% less of space, the data is corrupted + * and the page size cannot be changed back to default addressing + * mode. + * + * The current addressing mode can be read from the XRDSR register + * and should not be changed, because is a destructive operation. + */ + if (nor->bouncebuf[0] & XSR_PAGESIZE) { + /* Flash in Power of 2 mode */ + page_size = (nor->params->page_size == 264) ? 256 : 512; + nor->params->page_size = page_size; + nor->mtd.writebufsize = page_size; + nor->params->size = 8 * page_size * nor->info->n_sectors; + nor->mtd.erasesize = 8 * page_size; + } else { + /* Flash in Default addressing mode */ + nor->params->convert_addr = s3an_nor_convert_addr; + nor->mtd.erasesize = nor->info->sector_size; + } + + return 0; +} + +static int xilinx_nor_late_init(struct spi_nor *nor) +{ + nor->params->setup = xilinx_nor_setup; + nor->params->ready = xilinx_nor_sr_ready; + + return 0; +} + +static const struct spi_nor_fixups xilinx_nor_fixups = { + .late_init = xilinx_nor_late_init, +}; + +const struct spi_nor_manufacturer spi_nor_xilinx = { + .name = "xilinx", + .parts = xilinx_nor_parts, + .nparts = ARRAY_SIZE(xilinx_nor_parts), + .fixups = &xilinx_nor_fixups, +}; diff --git a/drivers/mtd/spi-nor/xmc.c b/drivers/mtd/spi-nor/xmc.c new file mode 100644 index 0000000000..051411e863 --- /dev/null +++ b/drivers/mtd/spi-nor/xmc.c @@ -0,0 +1,25 @@ +// SPDX-License-Identifier: GPL-2.0 +/* + * Copyright (C) 2005, Intec Automation Inc. + * Copyright (C) 2014, Freescale Semiconductor, Inc. + */ + +#include <linux/mtd/spi-nor.h> + +#include "core.h" + +static const struct flash_info xmc_nor_parts[] = { + /* XMC (Wuhan Xinxin Semiconductor Manufacturing Corp.) */ + { "XM25QH64A", INFO(0x207017, 0, 64 * 1024, 128) + NO_SFDP_FLAGS(SECT_4K | SPI_NOR_DUAL_READ | + SPI_NOR_QUAD_READ) }, + { "XM25QH128A", INFO(0x207018, 0, 64 * 1024, 256) + NO_SFDP_FLAGS(SECT_4K | SPI_NOR_DUAL_READ | + SPI_NOR_QUAD_READ) }, +}; + +const struct spi_nor_manufacturer spi_nor_xmc = { + .name = "xmc", + .parts = xmc_nor_parts, + .nparts = ARRAY_SIZE(xmc_nor_parts), +}; diff --git a/drivers/mtd/ssfdc.c b/drivers/mtd/ssfdc.c new file mode 100644 index 0000000000..04da685c36 --- /dev/null +++ b/drivers/mtd/ssfdc.c @@ -0,0 +1,455 @@ +// SPDX-License-Identifier: GPL-2.0-only +/* + * Linux driver for SSFDC Flash Translation Layer (Read only) + * © 2005 Eptar srl + * Author: Claudio Lanconelli <lanconelli.claudio@eptar.com> + * + * Based on NTFL and MTDBLOCK_RO drivers + */ + +#include <linux/kernel.h> +#include <linux/module.h> +#include <linux/init.h> +#include <linux/slab.h> +#include <linux/hdreg.h> +#include <linux/mtd/mtd.h> +#include <linux/mtd/rawnand.h> +#include <linux/mtd/blktrans.h> + +struct ssfdcr_record { + struct mtd_blktrans_dev mbd; + int usecount; + unsigned char heads; + unsigned char sectors; + unsigned short cylinders; + int cis_block; /* block n. containing CIS/IDI */ + int erase_size; /* phys_block_size */ + unsigned short *logic_block_map; /* all zones (max 8192 phys blocks on + the 128MiB) */ + int map_len; /* n. phys_blocks on the card */ +}; + +#define SSFDCR_MAJOR 257 +#define SSFDCR_PARTN_BITS 3 + +#define SECTOR_SIZE 512 +#define SECTOR_SHIFT 9 +#define OOB_SIZE 16 + +#define MAX_LOGIC_BLK_PER_ZONE 1000 +#define MAX_PHYS_BLK_PER_ZONE 1024 + +#define KiB(x) ( (x) * 1024L ) +#define MiB(x) ( KiB(x) * 1024L ) + +/** CHS Table + 1MiB 2MiB 4MiB 8MiB 16MiB 32MiB 64MiB 128MiB +NCylinder 125 125 250 250 500 500 500 500 +NHead 4 4 4 4 4 8 8 16 +NSector 4 8 8 16 16 16 32 32 +SumSector 2,000 4,000 8,000 16,000 32,000 64,000 128,000 256,000 +SectorSize 512 512 512 512 512 512 512 512 +**/ + +typedef struct { + unsigned long size; + unsigned short cyl; + unsigned char head; + unsigned char sec; +} chs_entry_t; + +/* Must be ordered by size */ +static const chs_entry_t chs_table[] = { + { MiB( 1), 125, 4, 4 }, + { MiB( 2), 125, 4, 8 }, + { MiB( 4), 250, 4, 8 }, + { MiB( 8), 250, 4, 16 }, + { MiB( 16), 500, 4, 16 }, + { MiB( 32), 500, 8, 16 }, + { MiB( 64), 500, 8, 32 }, + { MiB(128), 500, 16, 32 }, + { 0 }, +}; + +static int get_chs(unsigned long size, unsigned short *cyl, unsigned char *head, + unsigned char *sec) +{ + int k; + int found = 0; + + k = 0; + while (chs_table[k].size > 0 && size > chs_table[k].size) + k++; + + if (chs_table[k].size > 0) { + if (cyl) + *cyl = chs_table[k].cyl; + if (head) + *head = chs_table[k].head; + if (sec) + *sec = chs_table[k].sec; + found = 1; + } + + return found; +} + +/* These bytes are the signature for the CIS/IDI sector */ +static const uint8_t cis_numbers[] = { + 0x01, 0x03, 0xD9, 0x01, 0xFF, 0x18, 0x02, 0xDF, 0x01, 0x20 +}; + +/* Read and check for a valid CIS sector */ +static int get_valid_cis_sector(struct mtd_info *mtd) +{ + int ret, k, cis_sector; + size_t retlen; + loff_t offset; + uint8_t *sect_buf; + + cis_sector = -1; + + sect_buf = kmalloc(SECTOR_SIZE, GFP_KERNEL); + if (!sect_buf) + goto out; + + /* + * Look for CIS/IDI sector on the first GOOD block (give up after 4 bad + * blocks). If the first good block doesn't contain CIS number the flash + * is not SSFDC formatted + */ + for (k = 0, offset = 0; k < 4; k++, offset += mtd->erasesize) { + if (mtd_block_isbad(mtd, offset)) { + ret = mtd_read(mtd, offset, SECTOR_SIZE, &retlen, + sect_buf); + + /* CIS pattern match on the sector buffer */ + if (ret < 0 || retlen != SECTOR_SIZE) { + printk(KERN_WARNING + "SSFDC_RO:can't read CIS/IDI sector\n"); + } else if (!memcmp(sect_buf, cis_numbers, + sizeof(cis_numbers))) { + /* Found */ + cis_sector = (int)(offset >> SECTOR_SHIFT); + } else { + pr_debug("SSFDC_RO: CIS/IDI sector not found" + " on %s (mtd%d)\n", mtd->name, + mtd->index); + } + break; + } + } + + kfree(sect_buf); + out: + return cis_sector; +} + +/* Read physical sector (wrapper to MTD_READ) */ +static int read_physical_sector(struct mtd_info *mtd, uint8_t *sect_buf, + int sect_no) +{ + int ret; + size_t retlen; + loff_t offset = (loff_t)sect_no << SECTOR_SHIFT; + + ret = mtd_read(mtd, offset, SECTOR_SIZE, &retlen, sect_buf); + if (ret < 0 || retlen != SECTOR_SIZE) + return -1; + + return 0; +} + +/* Read redundancy area (wrapper to MTD_READ_OOB */ +static int read_raw_oob(struct mtd_info *mtd, loff_t offs, uint8_t *buf) +{ + struct mtd_oob_ops ops = { }; + int ret; + + ops.mode = MTD_OPS_RAW; + ops.ooboffs = 0; + ops.ooblen = OOB_SIZE; + ops.oobbuf = buf; + ops.datbuf = NULL; + + ret = mtd_read_oob(mtd, offs, &ops); + if (ret < 0 || ops.oobretlen != OOB_SIZE) + return -1; + + return 0; +} + +/* Parity calculator on a word of n bit size */ +static int get_parity(int number, int size) +{ + int k; + int parity; + + parity = 1; + for (k = 0; k < size; k++) { + parity += (number >> k); + parity &= 1; + } + return parity; +} + +/* Read and validate the logical block address field stored in the OOB */ +static int get_logical_address(uint8_t *oob_buf) +{ + int block_address, parity; + int offset[2] = {6, 11}; /* offset of the 2 address fields within OOB */ + int j; + int ok = 0; + + /* + * Look for the first valid logical address + * Valid address has fixed pattern on most significant bits and + * parity check + */ + for (j = 0; j < ARRAY_SIZE(offset); j++) { + block_address = ((int)oob_buf[offset[j]] << 8) | + oob_buf[offset[j]+1]; + + /* Check for the signature bits in the address field (MSBits) */ + if ((block_address & ~0x7FF) == 0x1000) { + parity = block_address & 0x01; + block_address &= 0x7FF; + block_address >>= 1; + + if (get_parity(block_address, 10) != parity) { + pr_debug("SSFDC_RO: logical address field%d" + "parity error(0x%04X)\n", j+1, + block_address); + } else { + ok = 1; + break; + } + } + } + + if (!ok) + block_address = -2; + + pr_debug("SSFDC_RO: get_logical_address() %d\n", + block_address); + + return block_address; +} + +/* Build the logic block map */ +static int build_logical_block_map(struct ssfdcr_record *ssfdc) +{ + unsigned long offset; + uint8_t oob_buf[OOB_SIZE]; + int ret, block_address, phys_block; + struct mtd_info *mtd = ssfdc->mbd.mtd; + + pr_debug("SSFDC_RO: build_block_map() nblks=%d (%luK)\n", + ssfdc->map_len, + (unsigned long)ssfdc->map_len * ssfdc->erase_size / 1024); + + /* Scan every physical block, skip CIS block */ + for (phys_block = ssfdc->cis_block + 1; phys_block < ssfdc->map_len; + phys_block++) { + offset = (unsigned long)phys_block * ssfdc->erase_size; + if (mtd_block_isbad(mtd, offset)) + continue; /* skip bad blocks */ + + ret = read_raw_oob(mtd, offset, oob_buf); + if (ret < 0) { + pr_debug("SSFDC_RO: mtd read_oob() failed at %lu\n", + offset); + return -1; + } + block_address = get_logical_address(oob_buf); + + /* Skip invalid addresses */ + if (block_address >= 0 && + block_address < MAX_LOGIC_BLK_PER_ZONE) { + int zone_index; + + zone_index = phys_block / MAX_PHYS_BLK_PER_ZONE; + block_address += zone_index * MAX_LOGIC_BLK_PER_ZONE; + ssfdc->logic_block_map[block_address] = + (unsigned short)phys_block; + + pr_debug("SSFDC_RO: build_block_map() phys_block=%d," + "logic_block_addr=%d, zone=%d\n", + phys_block, block_address, zone_index); + } + } + return 0; +} + +static void ssfdcr_add_mtd(struct mtd_blktrans_ops *tr, struct mtd_info *mtd) +{ + struct ssfdcr_record *ssfdc; + int cis_sector; + + /* Check for small page NAND flash */ + if (!mtd_type_is_nand(mtd) || mtd->oobsize != OOB_SIZE || + mtd->size > UINT_MAX) + return; + + /* Check for SSDFC format by reading CIS/IDI sector */ + cis_sector = get_valid_cis_sector(mtd); + if (cis_sector == -1) + return; + + ssfdc = kzalloc(sizeof(struct ssfdcr_record), GFP_KERNEL); + if (!ssfdc) + return; + + ssfdc->mbd.mtd = mtd; + ssfdc->mbd.devnum = -1; + ssfdc->mbd.tr = tr; + ssfdc->mbd.readonly = 1; + + ssfdc->cis_block = cis_sector / (mtd->erasesize >> SECTOR_SHIFT); + ssfdc->erase_size = mtd->erasesize; + ssfdc->map_len = (u32)mtd->size / mtd->erasesize; + + pr_debug("SSFDC_RO: cis_block=%d,erase_size=%d,map_len=%d,n_zones=%d\n", + ssfdc->cis_block, ssfdc->erase_size, ssfdc->map_len, + DIV_ROUND_UP(ssfdc->map_len, MAX_PHYS_BLK_PER_ZONE)); + + /* Set geometry */ + ssfdc->heads = 16; + ssfdc->sectors = 32; + get_chs(mtd->size, NULL, &ssfdc->heads, &ssfdc->sectors); + ssfdc->cylinders = (unsigned short)(((u32)mtd->size >> SECTOR_SHIFT) / + ((long)ssfdc->sectors * (long)ssfdc->heads)); + + pr_debug("SSFDC_RO: using C:%d H:%d S:%d == %ld sects\n", + ssfdc->cylinders, ssfdc->heads , ssfdc->sectors, + (long)ssfdc->cylinders * (long)ssfdc->heads * + (long)ssfdc->sectors); + + ssfdc->mbd.size = (long)ssfdc->heads * (long)ssfdc->cylinders * + (long)ssfdc->sectors; + + /* Allocate logical block map */ + ssfdc->logic_block_map = + kmalloc_array(ssfdc->map_len, + sizeof(ssfdc->logic_block_map[0]), GFP_KERNEL); + if (!ssfdc->logic_block_map) + goto out_err; + memset(ssfdc->logic_block_map, 0xff, sizeof(ssfdc->logic_block_map[0]) * + ssfdc->map_len); + + /* Build logical block map */ + if (build_logical_block_map(ssfdc) < 0) + goto out_err; + + /* Register device + partitions */ + if (add_mtd_blktrans_dev(&ssfdc->mbd)) + goto out_err; + + printk(KERN_INFO "SSFDC_RO: Found ssfdc%c on mtd%d (%s)\n", + ssfdc->mbd.devnum + 'a', mtd->index, mtd->name); + return; + +out_err: + kfree(ssfdc->logic_block_map); + kfree(ssfdc); +} + +static void ssfdcr_remove_dev(struct mtd_blktrans_dev *dev) +{ + struct ssfdcr_record *ssfdc = (struct ssfdcr_record *)dev; + + pr_debug("SSFDC_RO: remove_dev (i=%d)\n", dev->devnum); + + del_mtd_blktrans_dev(dev); + kfree(ssfdc->logic_block_map); +} + +static int ssfdcr_readsect(struct mtd_blktrans_dev *dev, + unsigned long logic_sect_no, char *buf) +{ + struct ssfdcr_record *ssfdc = (struct ssfdcr_record *)dev; + int sectors_per_block, offset, block_address; + + sectors_per_block = ssfdc->erase_size >> SECTOR_SHIFT; + offset = (int)(logic_sect_no % sectors_per_block); + block_address = (int)(logic_sect_no / sectors_per_block); + + pr_debug("SSFDC_RO: ssfdcr_readsect(%lu) sec_per_blk=%d, ofst=%d," + " block_addr=%d\n", logic_sect_no, sectors_per_block, offset, + block_address); + + BUG_ON(block_address >= ssfdc->map_len); + + block_address = ssfdc->logic_block_map[block_address]; + + pr_debug("SSFDC_RO: ssfdcr_readsect() phys_block_addr=%d\n", + block_address); + + if (block_address < 0xffff) { + unsigned long sect_no; + + sect_no = (unsigned long)block_address * sectors_per_block + + offset; + + pr_debug("SSFDC_RO: ssfdcr_readsect() phys_sect_no=%lu\n", + sect_no); + + if (read_physical_sector(ssfdc->mbd.mtd, buf, sect_no) < 0) + return -EIO; + } else { + memset(buf, 0xff, SECTOR_SIZE); + } + + return 0; +} + +static int ssfdcr_getgeo(struct mtd_blktrans_dev *dev, struct hd_geometry *geo) +{ + struct ssfdcr_record *ssfdc = (struct ssfdcr_record *)dev; + + pr_debug("SSFDC_RO: ssfdcr_getgeo() C=%d, H=%d, S=%d\n", + ssfdc->cylinders, ssfdc->heads, ssfdc->sectors); + + geo->heads = ssfdc->heads; + geo->sectors = ssfdc->sectors; + geo->cylinders = ssfdc->cylinders; + + return 0; +} + +/**************************************************************************** + * + * Module stuff + * + ****************************************************************************/ + +static struct mtd_blktrans_ops ssfdcr_tr = { + .name = "ssfdc", + .major = SSFDCR_MAJOR, + .part_bits = SSFDCR_PARTN_BITS, + .blksize = SECTOR_SIZE, + .getgeo = ssfdcr_getgeo, + .readsect = ssfdcr_readsect, + .add_mtd = ssfdcr_add_mtd, + .remove_dev = ssfdcr_remove_dev, + .owner = THIS_MODULE, +}; + +static int __init init_ssfdcr(void) +{ + printk(KERN_INFO "SSFDC read-only Flash Translation layer\n"); + + return register_mtd_blktrans(&ssfdcr_tr); +} + +static void __exit cleanup_ssfdcr(void) +{ + deregister_mtd_blktrans(&ssfdcr_tr); +} + +module_init(init_ssfdcr); +module_exit(cleanup_ssfdcr); + +MODULE_LICENSE("GPL"); +MODULE_AUTHOR("Claudio Lanconelli <lanconelli.claudio@eptar.com>"); +MODULE_DESCRIPTION("Flash Translation Layer for read-only SSFDC SmartMedia card"); diff --git a/drivers/mtd/tests/Makefile b/drivers/mtd/tests/Makefile new file mode 100644 index 0000000000..5de0378f90 --- /dev/null +++ b/drivers/mtd/tests/Makefile @@ -0,0 +1,19 @@ +# SPDX-License-Identifier: GPL-2.0 +obj-$(CONFIG_MTD_TESTS) += mtd_oobtest.o +obj-$(CONFIG_MTD_TESTS) += mtd_pagetest.o +obj-$(CONFIG_MTD_TESTS) += mtd_readtest.o +obj-$(CONFIG_MTD_TESTS) += mtd_speedtest.o +obj-$(CONFIG_MTD_TESTS) += mtd_stresstest.o +obj-$(CONFIG_MTD_TESTS) += mtd_subpagetest.o +obj-$(CONFIG_MTD_TESTS) += mtd_torturetest.o +obj-$(CONFIG_MTD_TESTS) += mtd_nandecctest.o +obj-$(CONFIG_MTD_TESTS) += mtd_nandbiterrs.o + +mtd_oobtest-objs := oobtest.o mtd_test.o +mtd_pagetest-objs := pagetest.o mtd_test.o +mtd_readtest-objs := readtest.o mtd_test.o +mtd_speedtest-objs := speedtest.o mtd_test.o +mtd_stresstest-objs := stresstest.o mtd_test.o +mtd_subpagetest-objs := subpagetest.o mtd_test.o +mtd_torturetest-objs := torturetest.o mtd_test.o +mtd_nandbiterrs-objs := nandbiterrs.o mtd_test.o diff --git a/drivers/mtd/tests/mtd_nandecctest.c b/drivers/mtd/tests/mtd_nandecctest.c new file mode 100644 index 0000000000..824cc1c03b --- /dev/null +++ b/drivers/mtd/tests/mtd_nandecctest.c @@ -0,0 +1,329 @@ +// SPDX-License-Identifier: GPL-2.0-only +#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt + +#include <linux/kernel.h> +#include <linux/module.h> +#include <linux/list.h> +#include <linux/random.h> +#include <linux/string.h> +#include <linux/bitops.h> +#include <linux/slab.h> +#include <linux/mtd/nand-ecc-sw-hamming.h> + +#include "mtd_test.h" + +/* + * Test the implementation for software ECC + * + * No actual MTD device is needed, So we don't need to warry about losing + * important data by human error. + * + * This covers possible patterns of corruption which can be reliably corrected + * or detected. + */ + +#if IS_ENABLED(CONFIG_MTD_RAW_NAND) + +struct nand_ecc_test { + const char *name; + void (*prepare)(void *, void *, void *, void *, const size_t); + int (*verify)(void *, void *, void *, const size_t); +}; + +/* + * The reason for this __change_bit_le() instead of __change_bit() is to inject + * bit error properly within the region which is not a multiple of + * sizeof(unsigned long) on big-endian systems + */ +#ifdef __LITTLE_ENDIAN +#define __change_bit_le(nr, addr) __change_bit(nr, addr) +#elif defined(__BIG_ENDIAN) +#define __change_bit_le(nr, addr) \ + __change_bit((nr) ^ ((BITS_PER_LONG - 1) & ~0x7), addr) +#else +#error "Unknown byte order" +#endif + +static void single_bit_error_data(void *error_data, void *correct_data, + size_t size) +{ + unsigned int offset = get_random_u32_below(size * BITS_PER_BYTE); + + memcpy(error_data, correct_data, size); + __change_bit_le(offset, error_data); +} + +static void double_bit_error_data(void *error_data, void *correct_data, + size_t size) +{ + unsigned int offset[2]; + + offset[0] = get_random_u32_below(size * BITS_PER_BYTE); + do { + offset[1] = get_random_u32_below(size * BITS_PER_BYTE); + } while (offset[0] == offset[1]); + + memcpy(error_data, correct_data, size); + + __change_bit_le(offset[0], error_data); + __change_bit_le(offset[1], error_data); +} + +static unsigned int random_ecc_bit(size_t size) +{ + unsigned int offset = get_random_u32_below(3 * BITS_PER_BYTE); + + if (size == 256) { + /* + * Don't inject a bit error into the insignificant bits (16th + * and 17th bit) in ECC code for 256 byte data block + */ + while (offset == 16 || offset == 17) + offset = get_random_u32_below(3 * BITS_PER_BYTE); + } + + return offset; +} + +static void single_bit_error_ecc(void *error_ecc, void *correct_ecc, + size_t size) +{ + unsigned int offset = random_ecc_bit(size); + + memcpy(error_ecc, correct_ecc, 3); + __change_bit_le(offset, error_ecc); +} + +static void double_bit_error_ecc(void *error_ecc, void *correct_ecc, + size_t size) +{ + unsigned int offset[2]; + + offset[0] = random_ecc_bit(size); + do { + offset[1] = random_ecc_bit(size); + } while (offset[0] == offset[1]); + + memcpy(error_ecc, correct_ecc, 3); + __change_bit_le(offset[0], error_ecc); + __change_bit_le(offset[1], error_ecc); +} + +static void no_bit_error(void *error_data, void *error_ecc, + void *correct_data, void *correct_ecc, const size_t size) +{ + memcpy(error_data, correct_data, size); + memcpy(error_ecc, correct_ecc, 3); +} + +static int no_bit_error_verify(void *error_data, void *error_ecc, + void *correct_data, const size_t size) +{ + bool sm_order = IS_ENABLED(CONFIG_MTD_NAND_ECC_SW_HAMMING_SMC); + unsigned char calc_ecc[3]; + int ret; + + ecc_sw_hamming_calculate(error_data, size, calc_ecc, sm_order); + ret = ecc_sw_hamming_correct(error_data, error_ecc, calc_ecc, size, + sm_order); + if (ret == 0 && !memcmp(correct_data, error_data, size)) + return 0; + + return -EINVAL; +} + +static void single_bit_error_in_data(void *error_data, void *error_ecc, + void *correct_data, void *correct_ecc, const size_t size) +{ + single_bit_error_data(error_data, correct_data, size); + memcpy(error_ecc, correct_ecc, 3); +} + +static void single_bit_error_in_ecc(void *error_data, void *error_ecc, + void *correct_data, void *correct_ecc, const size_t size) +{ + memcpy(error_data, correct_data, size); + single_bit_error_ecc(error_ecc, correct_ecc, size); +} + +static int single_bit_error_correct(void *error_data, void *error_ecc, + void *correct_data, const size_t size) +{ + bool sm_order = IS_ENABLED(CONFIG_MTD_NAND_ECC_SW_HAMMING_SMC); + unsigned char calc_ecc[3]; + int ret; + + ecc_sw_hamming_calculate(error_data, size, calc_ecc, sm_order); + ret = ecc_sw_hamming_correct(error_data, error_ecc, calc_ecc, size, + sm_order); + if (ret == 1 && !memcmp(correct_data, error_data, size)) + return 0; + + return -EINVAL; +} + +static void double_bit_error_in_data(void *error_data, void *error_ecc, + void *correct_data, void *correct_ecc, const size_t size) +{ + double_bit_error_data(error_data, correct_data, size); + memcpy(error_ecc, correct_ecc, 3); +} + +static void single_bit_error_in_data_and_ecc(void *error_data, void *error_ecc, + void *correct_data, void *correct_ecc, const size_t size) +{ + single_bit_error_data(error_data, correct_data, size); + single_bit_error_ecc(error_ecc, correct_ecc, size); +} + +static void double_bit_error_in_ecc(void *error_data, void *error_ecc, + void *correct_data, void *correct_ecc, const size_t size) +{ + memcpy(error_data, correct_data, size); + double_bit_error_ecc(error_ecc, correct_ecc, size); +} + +static int double_bit_error_detect(void *error_data, void *error_ecc, + void *correct_data, const size_t size) +{ + bool sm_order = IS_ENABLED(CONFIG_MTD_NAND_ECC_SW_HAMMING_SMC); + unsigned char calc_ecc[3]; + int ret; + + ecc_sw_hamming_calculate(error_data, size, calc_ecc, sm_order); + ret = ecc_sw_hamming_correct(error_data, error_ecc, calc_ecc, size, + sm_order); + + return (ret == -EBADMSG) ? 0 : -EINVAL; +} + +static const struct nand_ecc_test nand_ecc_test[] = { + { + .name = "no-bit-error", + .prepare = no_bit_error, + .verify = no_bit_error_verify, + }, + { + .name = "single-bit-error-in-data-correct", + .prepare = single_bit_error_in_data, + .verify = single_bit_error_correct, + }, + { + .name = "single-bit-error-in-ecc-correct", + .prepare = single_bit_error_in_ecc, + .verify = single_bit_error_correct, + }, + { + .name = "double-bit-error-in-data-detect", + .prepare = double_bit_error_in_data, + .verify = double_bit_error_detect, + }, + { + .name = "single-bit-error-in-data-and-ecc-detect", + .prepare = single_bit_error_in_data_and_ecc, + .verify = double_bit_error_detect, + }, + { + .name = "double-bit-error-in-ecc-detect", + .prepare = double_bit_error_in_ecc, + .verify = double_bit_error_detect, + }, +}; + +static void dump_data_ecc(void *error_data, void *error_ecc, void *correct_data, + void *correct_ecc, const size_t size) +{ + pr_info("hexdump of error data:\n"); + print_hex_dump(KERN_INFO, "", DUMP_PREFIX_OFFSET, 16, 4, + error_data, size, false); + print_hex_dump(KERN_INFO, "hexdump of error ecc: ", + DUMP_PREFIX_NONE, 16, 1, error_ecc, 3, false); + + pr_info("hexdump of correct data:\n"); + print_hex_dump(KERN_INFO, "", DUMP_PREFIX_OFFSET, 16, 4, + correct_data, size, false); + print_hex_dump(KERN_INFO, "hexdump of correct ecc: ", + DUMP_PREFIX_NONE, 16, 1, correct_ecc, 3, false); +} + +static int nand_ecc_test_run(const size_t size) +{ + bool sm_order = IS_ENABLED(CONFIG_MTD_NAND_ECC_SW_HAMMING_SMC); + int i; + int err = 0; + void *error_data; + void *error_ecc; + void *correct_data; + void *correct_ecc; + + error_data = kmalloc(size, GFP_KERNEL); + error_ecc = kmalloc(3, GFP_KERNEL); + correct_data = kmalloc(size, GFP_KERNEL); + correct_ecc = kmalloc(3, GFP_KERNEL); + + if (!error_data || !error_ecc || !correct_data || !correct_ecc) { + err = -ENOMEM; + goto error; + } + + get_random_bytes(correct_data, size); + ecc_sw_hamming_calculate(correct_data, size, correct_ecc, sm_order); + for (i = 0; i < ARRAY_SIZE(nand_ecc_test); i++) { + nand_ecc_test[i].prepare(error_data, error_ecc, + correct_data, correct_ecc, size); + err = nand_ecc_test[i].verify(error_data, error_ecc, + correct_data, size); + + if (err) { + pr_err("not ok - %s-%zd\n", + nand_ecc_test[i].name, size); + dump_data_ecc(error_data, error_ecc, + correct_data, correct_ecc, size); + break; + } + pr_info("ok - %s-%zd\n", + nand_ecc_test[i].name, size); + + err = mtdtest_relax(); + if (err) + break; + } +error: + kfree(error_data); + kfree(error_ecc); + kfree(correct_data); + kfree(correct_ecc); + + return err; +} + +#else + +static int nand_ecc_test_run(const size_t size) +{ + return 0; +} + +#endif + +static int __init ecc_test_init(void) +{ + int err; + + err = nand_ecc_test_run(256); + if (err) + return err; + + return nand_ecc_test_run(512); +} + +static void __exit ecc_test_exit(void) +{ +} + +module_init(ecc_test_init); +module_exit(ecc_test_exit); + +MODULE_DESCRIPTION("NAND ECC function test module"); +MODULE_AUTHOR("Akinobu Mita"); +MODULE_LICENSE("GPL"); diff --git a/drivers/mtd/tests/mtd_test.c b/drivers/mtd/tests/mtd_test.c new file mode 100644 index 0000000000..c84250beff --- /dev/null +++ b/drivers/mtd/tests/mtd_test.c @@ -0,0 +1,109 @@ +// SPDX-License-Identifier: GPL-2.0 +#define pr_fmt(fmt) "mtd_test: " fmt + +#include <linux/module.h> +#include <linux/sched.h> +#include <linux/printk.h> + +#include "mtd_test.h" + +int mtdtest_erase_eraseblock(struct mtd_info *mtd, unsigned int ebnum) +{ + int err; + struct erase_info ei; + loff_t addr = (loff_t)ebnum * mtd->erasesize; + + memset(&ei, 0, sizeof(struct erase_info)); + ei.addr = addr; + ei.len = mtd->erasesize; + + err = mtd_erase(mtd, &ei); + if (err) { + pr_info("error %d while erasing EB %d\n", err, ebnum); + return err; + } + + return 0; +} + +static int is_block_bad(struct mtd_info *mtd, unsigned int ebnum) +{ + int ret; + loff_t addr = (loff_t)ebnum * mtd->erasesize; + + ret = mtd_block_isbad(mtd, addr); + if (ret) + pr_info("block %d is bad\n", ebnum); + + return ret; +} + +int mtdtest_scan_for_bad_eraseblocks(struct mtd_info *mtd, unsigned char *bbt, + unsigned int eb, int ebcnt) +{ + int i, bad = 0; + + if (!mtd_can_have_bb(mtd)) + return 0; + + pr_info("scanning for bad eraseblocks\n"); + for (i = 0; i < ebcnt; ++i) { + bbt[i] = is_block_bad(mtd, eb + i) ? 1 : 0; + if (bbt[i]) + bad += 1; + cond_resched(); + } + pr_info("scanned %d eraseblocks, %d are bad\n", i, bad); + + return 0; +} + +int mtdtest_erase_good_eraseblocks(struct mtd_info *mtd, unsigned char *bbt, + unsigned int eb, int ebcnt) +{ + int err; + unsigned int i; + + for (i = 0; i < ebcnt; ++i) { + if (bbt[i]) + continue; + err = mtdtest_erase_eraseblock(mtd, eb + i); + if (err) + return err; + cond_resched(); + } + + return 0; +} + +int mtdtest_read(struct mtd_info *mtd, loff_t addr, size_t size, void *buf) +{ + size_t read; + int err; + + err = mtd_read(mtd, addr, size, &read, buf); + /* Ignore corrected ECC errors */ + if (mtd_is_bitflip(err)) + err = 0; + if (!err && read != size) + err = -EIO; + if (err) + pr_err("error: read failed at %#llx\n", addr); + + return err; +} + +int mtdtest_write(struct mtd_info *mtd, loff_t addr, size_t size, + const void *buf) +{ + size_t written; + int err; + + err = mtd_write(mtd, addr, size, &written, buf); + if (!err && written != size) + err = -EIO; + if (err) + pr_err("error: write failed at %#llx\n", addr); + + return err; +} diff --git a/drivers/mtd/tests/mtd_test.h b/drivers/mtd/tests/mtd_test.h new file mode 100644 index 0000000000..5a6e3bbe04 --- /dev/null +++ b/drivers/mtd/tests/mtd_test.h @@ -0,0 +1,24 @@ +/* SPDX-License-Identifier: GPL-2.0 */ +#include <linux/mtd/mtd.h> +#include <linux/sched/signal.h> + +static inline int mtdtest_relax(void) +{ + cond_resched(); + if (signal_pending(current)) { + pr_info("aborting test due to pending signal!\n"); + return -EINTR; + } + + return 0; +} + +int mtdtest_erase_eraseblock(struct mtd_info *mtd, unsigned int ebnum); +int mtdtest_scan_for_bad_eraseblocks(struct mtd_info *mtd, unsigned char *bbt, + unsigned int eb, int ebcnt); +int mtdtest_erase_good_eraseblocks(struct mtd_info *mtd, unsigned char *bbt, + unsigned int eb, int ebcnt); + +int mtdtest_read(struct mtd_info *mtd, loff_t addr, size_t size, void *buf); +int mtdtest_write(struct mtd_info *mtd, loff_t addr, size_t size, + const void *buf); diff --git a/drivers/mtd/tests/nandbiterrs.c b/drivers/mtd/tests/nandbiterrs.c new file mode 100644 index 0000000000..98d7508f95 --- /dev/null +++ b/drivers/mtd/tests/nandbiterrs.c @@ -0,0 +1,419 @@ +// SPDX-License-Identifier: GPL-2.0-only +/* + * Copyright © 2012 NetCommWireless + * Iwo Mergler <Iwo.Mergler@netcommwireless.com.au> + * + * Test for multi-bit error recovery on a NAND page This mostly tests the + * ECC controller / driver. + * + * There are two test modes: + * + * 0 - artificially inserting bit errors until the ECC fails + * This is the default method and fairly quick. It should + * be independent of the quality of the FLASH. + * + * 1 - re-writing the same pattern repeatedly until the ECC fails. + * This method relies on the physics of NAND FLASH to eventually + * generate '0' bits if '1' has been written sufficient times. + * Depending on the NAND, the first bit errors will appear after + * 1000 or more writes and then will usually snowball, reaching the + * limits of the ECC quickly. + * + * The test stops after 10000 cycles, should your FLASH be + * exceptionally good and not generate bit errors before that. Try + * a different page in that case. + * + * Please note that neither of these tests will significantly 'use up' any + * FLASH endurance. Only a maximum of two erase operations will be performed. + */ + +#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt + +#include <linux/init.h> +#include <linux/module.h> +#include <linux/moduleparam.h> +#include <linux/mtd/mtd.h> +#include <linux/err.h> +#include <linux/mtd/rawnand.h> +#include <linux/slab.h> +#include "mtd_test.h" + +static int dev; +module_param(dev, int, S_IRUGO); +MODULE_PARM_DESC(dev, "MTD device number to use"); + +static unsigned page_offset; +module_param(page_offset, uint, S_IRUGO); +MODULE_PARM_DESC(page_offset, "Page number relative to dev start"); + +static unsigned seed; +module_param(seed, uint, S_IRUGO); +MODULE_PARM_DESC(seed, "Random seed"); + +static int mode; +module_param(mode, int, S_IRUGO); +MODULE_PARM_DESC(mode, "0=incremental errors, 1=overwrite test"); + +static unsigned max_overwrite = 10000; + +static loff_t offset; /* Offset of the page we're using. */ +static unsigned eraseblock; /* Eraseblock number for our page. */ + +/* We assume that the ECC can correct up to a certain number + * of biterrors per subpage. */ +static unsigned subsize; /* Size of subpages */ +static unsigned subcount; /* Number of subpages per page */ + +static struct mtd_info *mtd; /* MTD device */ + +static uint8_t *wbuffer; /* One page write / compare buffer */ +static uint8_t *rbuffer; /* One page read buffer */ + +/* 'random' bytes from known offsets */ +static uint8_t hash(unsigned offset) +{ + unsigned v = offset; + unsigned char c; + v ^= 0x7f7edfd3; + v = v ^ (v >> 3); + v = v ^ (v >> 5); + v = v ^ (v >> 13); + c = v & 0xFF; + /* Reverse bits of result. */ + c = (c & 0x0F) << 4 | (c & 0xF0) >> 4; + c = (c & 0x33) << 2 | (c & 0xCC) >> 2; + c = (c & 0x55) << 1 | (c & 0xAA) >> 1; + return c; +} + +/* Writes wbuffer to page */ +static int write_page(int log) +{ + if (log) + pr_info("write_page\n"); + + return mtdtest_write(mtd, offset, mtd->writesize, wbuffer); +} + +/* Re-writes the data area while leaving the OOB alone. */ +static int rewrite_page(int log) +{ + int err = 0; + struct mtd_oob_ops ops = { }; + + if (log) + pr_info("rewrite page\n"); + + ops.mode = MTD_OPS_RAW; /* No ECC */ + ops.len = mtd->writesize; + ops.retlen = 0; + ops.ooblen = 0; + ops.oobretlen = 0; + ops.ooboffs = 0; + ops.datbuf = wbuffer; + ops.oobbuf = NULL; + + err = mtd_write_oob(mtd, offset, &ops); + if (err || ops.retlen != mtd->writesize) { + pr_err("error: write_oob failed (%d)\n", err); + if (!err) + err = -EIO; + } + + return err; +} + +/* Reads page into rbuffer. Returns number of corrected bit errors (>=0) + * or error (<0) */ +static int read_page(int log) +{ + int err = 0; + size_t read; + struct mtd_ecc_stats oldstats; + + if (log) + pr_info("read_page\n"); + + /* Saving last mtd stats */ + memcpy(&oldstats, &mtd->ecc_stats, sizeof(oldstats)); + + err = mtd_read(mtd, offset, mtd->writesize, &read, rbuffer); + if (!err || err == -EUCLEAN) + err = mtd->ecc_stats.corrected - oldstats.corrected; + + if (err < 0 || read != mtd->writesize) { + pr_err("error: read failed at %#llx\n", (long long)offset); + if (err >= 0) + err = -EIO; + } + + return err; +} + +/* Verifies rbuffer against random sequence */ +static int verify_page(int log) +{ + unsigned i, errs = 0; + + if (log) + pr_info("verify_page\n"); + + for (i = 0; i < mtd->writesize; i++) { + if (rbuffer[i] != hash(i+seed)) { + pr_err("Error: page offset %u, expected %02x, got %02x\n", + i, hash(i+seed), rbuffer[i]); + errs++; + } + } + + if (errs) + return -EIO; + else + return 0; +} + +#define CBIT(v, n) ((v) & (1 << (n))) +#define BCLR(v, n) ((v) = (v) & ~(1 << (n))) + +/* Finds the first '1' bit in wbuffer starting at offset 'byte' + * and sets it to '0'. */ +static int insert_biterror(unsigned byte) +{ + int bit; + + while (byte < mtd->writesize) { + for (bit = 7; bit >= 0; bit--) { + if (CBIT(wbuffer[byte], bit)) { + BCLR(wbuffer[byte], bit); + pr_info("Inserted biterror @ %u/%u\n", byte, bit); + return 0; + } + } + byte++; + } + pr_err("biterror: Failed to find a '1' bit\n"); + return -EIO; +} + +/* Writes 'random' data to page and then introduces deliberate bit + * errors into the page, while verifying each step. */ +static int incremental_errors_test(void) +{ + int err = 0; + unsigned i; + unsigned errs_per_subpage = 0; + + pr_info("incremental biterrors test\n"); + + for (i = 0; i < mtd->writesize; i++) + wbuffer[i] = hash(i+seed); + + err = write_page(1); + if (err) + goto exit; + + while (1) { + + err = rewrite_page(1); + if (err) + goto exit; + + err = read_page(1); + if (err > 0) + pr_info("Read reported %d corrected bit errors\n", err); + if (err < 0) { + pr_err("After %d biterrors per subpage, read reported error %d\n", + errs_per_subpage, err); + err = 0; + goto exit; + } + + err = verify_page(1); + if (err) { + pr_err("ECC failure, read data is incorrect despite read success\n"); + goto exit; + } + + pr_info("Successfully corrected %d bit errors per subpage\n", + errs_per_subpage); + + for (i = 0; i < subcount; i++) { + err = insert_biterror(i * subsize); + if (err < 0) + goto exit; + } + errs_per_subpage++; + } + +exit: + return err; +} + + +/* Writes 'random' data to page and then re-writes that same data repeatedly. + This eventually develops bit errors (bits written as '1' will slowly become + '0'), which are corrected as far as the ECC is capable of. */ +static int overwrite_test(void) +{ + int err = 0; + unsigned i; + unsigned max_corrected = 0; + unsigned opno = 0; + /* We don't expect more than this many correctable bit errors per + * page. */ + #define MAXBITS 512 + static unsigned bitstats[MAXBITS]; /* bit error histogram. */ + + memset(bitstats, 0, sizeof(bitstats)); + + pr_info("overwrite biterrors test\n"); + + for (i = 0; i < mtd->writesize; i++) + wbuffer[i] = hash(i+seed); + + err = write_page(1); + if (err) + goto exit; + + while (opno < max_overwrite) { + + err = write_page(0); + if (err) + break; + + err = read_page(0); + if (err >= 0) { + if (err >= MAXBITS) { + pr_info("Implausible number of bit errors corrected\n"); + err = -EIO; + break; + } + bitstats[err]++; + if (err > max_corrected) { + max_corrected = err; + pr_info("Read reported %d corrected bit errors\n", + err); + } + } else { /* err < 0 */ + pr_info("Read reported error %d\n", err); + err = 0; + break; + } + + err = verify_page(0); + if (err) { + bitstats[max_corrected] = opno; + pr_info("ECC failure, read data is incorrect despite read success\n"); + break; + } + + err = mtdtest_relax(); + if (err) + break; + + opno++; + } + + /* At this point bitstats[0] contains the number of ops with no bit + * errors, bitstats[1] the number of ops with 1 bit error, etc. */ + pr_info("Bit error histogram (%d operations total):\n", opno); + for (i = 0; i < max_corrected; i++) + pr_info("Page reads with %3d corrected bit errors: %d\n", + i, bitstats[i]); + +exit: + return err; +} + +static int __init mtd_nandbiterrs_init(void) +{ + int err = 0; + + printk("\n"); + printk(KERN_INFO "==================================================\n"); + pr_info("MTD device: %d\n", dev); + + mtd = get_mtd_device(NULL, dev); + if (IS_ERR(mtd)) { + err = PTR_ERR(mtd); + pr_err("error: cannot get MTD device\n"); + goto exit_mtddev; + } + + if (!mtd_type_is_nand(mtd)) { + pr_info("this test requires NAND flash\n"); + err = -ENODEV; + goto exit_nand; + } + + pr_info("MTD device size %llu, eraseblock=%u, page=%u, oob=%u\n", + (unsigned long long)mtd->size, mtd->erasesize, + mtd->writesize, mtd->oobsize); + + subsize = mtd->writesize >> mtd->subpage_sft; + subcount = mtd->writesize / subsize; + + pr_info("Device uses %d subpages of %d bytes\n", subcount, subsize); + + offset = (loff_t)page_offset * mtd->writesize; + eraseblock = mtd_div_by_eb(offset, mtd); + + pr_info("Using page=%u, offset=%llu, eraseblock=%u\n", + page_offset, offset, eraseblock); + + wbuffer = kmalloc(mtd->writesize, GFP_KERNEL); + if (!wbuffer) { + err = -ENOMEM; + goto exit_wbuffer; + } + + rbuffer = kmalloc(mtd->writesize, GFP_KERNEL); + if (!rbuffer) { + err = -ENOMEM; + goto exit_rbuffer; + } + + err = mtdtest_erase_eraseblock(mtd, eraseblock); + if (err) + goto exit_error; + + if (mode == 0) + err = incremental_errors_test(); + else + err = overwrite_test(); + + if (err) + goto exit_error; + + /* We leave the block un-erased in case of test failure. */ + err = mtdtest_erase_eraseblock(mtd, eraseblock); + if (err) + goto exit_error; + + err = -EIO; + pr_info("finished successfully.\n"); + printk(KERN_INFO "==================================================\n"); + +exit_error: + kfree(rbuffer); +exit_rbuffer: + kfree(wbuffer); +exit_wbuffer: + /* Nothing */ +exit_nand: + put_mtd_device(mtd); +exit_mtddev: + return err; +} + +static void __exit mtd_nandbiterrs_exit(void) +{ + return; +} + +module_init(mtd_nandbiterrs_init); +module_exit(mtd_nandbiterrs_exit); + +MODULE_DESCRIPTION("NAND bit error recovery test"); +MODULE_AUTHOR("Iwo Mergler"); +MODULE_LICENSE("GPL"); diff --git a/drivers/mtd/tests/oobtest.c b/drivers/mtd/tests/oobtest.c new file mode 100644 index 0000000000..13fed39893 --- /dev/null +++ b/drivers/mtd/tests/oobtest.c @@ -0,0 +1,733 @@ +// SPDX-License-Identifier: GPL-2.0-only +/* + * Copyright (C) 2006-2008 Nokia Corporation + * + * Test OOB read and write on MTD device. + * + * Author: Adrian Hunter <ext-adrian.hunter@nokia.com> + */ + +#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt + +#include <asm/div64.h> +#include <linux/init.h> +#include <linux/module.h> +#include <linux/moduleparam.h> +#include <linux/err.h> +#include <linux/mtd/mtd.h> +#include <linux/slab.h> +#include <linux/sched.h> +#include <linux/random.h> + +#include "mtd_test.h" + +static int dev = -EINVAL; +static int bitflip_limit; +module_param(dev, int, S_IRUGO); +MODULE_PARM_DESC(dev, "MTD device number to use"); +module_param(bitflip_limit, int, S_IRUGO); +MODULE_PARM_DESC(bitflip_limit, "Max. allowed bitflips per page"); + +static struct mtd_info *mtd; +static unsigned char *readbuf; +static unsigned char *writebuf; +static unsigned char *bbt; + +static int ebcnt; +static int pgcnt; +static int errcnt; +static int use_offset; +static int use_len; +static int use_len_max; +static int vary_offset; +static struct rnd_state rnd_state; + +static void do_vary_offset(void) +{ + use_len -= 1; + if (use_len < 1) { + use_offset += 1; + if (use_offset >= use_len_max) + use_offset = 0; + use_len = use_len_max - use_offset; + } +} + +static int write_eraseblock(int ebnum) +{ + int i; + struct mtd_oob_ops ops = { }; + int err = 0; + loff_t addr = (loff_t)ebnum * mtd->erasesize; + + prandom_bytes_state(&rnd_state, writebuf, use_len_max * pgcnt); + for (i = 0; i < pgcnt; ++i, addr += mtd->writesize) { + ops.mode = MTD_OPS_AUTO_OOB; + ops.len = 0; + ops.retlen = 0; + ops.ooblen = use_len; + ops.oobretlen = 0; + ops.ooboffs = use_offset; + ops.datbuf = NULL; + ops.oobbuf = writebuf + (use_len_max * i) + use_offset; + err = mtd_write_oob(mtd, addr, &ops); + if (err || ops.oobretlen != use_len) { + pr_err("error: writeoob failed at %#llx\n", + (long long)addr); + pr_err("error: use_len %d, use_offset %d\n", + use_len, use_offset); + errcnt += 1; + return err ? err : -1; + } + if (vary_offset) + do_vary_offset(); + } + + return err; +} + +static int write_whole_device(void) +{ + int err; + unsigned int i; + + pr_info("writing OOBs of whole device\n"); + for (i = 0; i < ebcnt; ++i) { + if (bbt[i]) + continue; + err = write_eraseblock(i); + if (err) + return err; + if (i % 256 == 0) + pr_info("written up to eraseblock %u\n", i); + + err = mtdtest_relax(); + if (err) + return err; + } + pr_info("written %u eraseblocks\n", i); + return 0; +} + +/* + * Display the address, offset and data bytes at comparison failure. + * Return number of bitflips encountered. + */ +static size_t memcmpshowoffset(loff_t addr, loff_t offset, const void *cs, + const void *ct, size_t count) +{ + const unsigned char *su1, *su2; + int res; + size_t i = 0; + size_t bitflips = 0; + + for (su1 = cs, su2 = ct; 0 < count; ++su1, ++su2, count--, i++) { + res = *su1 ^ *su2; + if (res) { + pr_info("error @addr[0x%lx:0x%lx] 0x%x -> 0x%x diff 0x%x\n", + (unsigned long)addr, (unsigned long)offset + i, + *su1, *su2, res); + bitflips += hweight8(res); + } + } + + return bitflips; +} + +#define memcmpshow(addr, cs, ct, count) memcmpshowoffset((addr), 0, (cs), (ct),\ + (count)) + +/* + * Compare with 0xff and show the address, offset and data bytes at + * comparison failure. Return number of bitflips encountered. + */ +static size_t memffshow(loff_t addr, loff_t offset, const void *cs, + size_t count) +{ + const unsigned char *su1; + int res; + size_t i = 0; + size_t bitflips = 0; + + for (su1 = cs; 0 < count; ++su1, count--, i++) { + res = *su1 ^ 0xff; + if (res) { + pr_info("error @addr[0x%lx:0x%lx] 0x%x -> 0xff diff 0x%x\n", + (unsigned long)addr, (unsigned long)offset + i, + *su1, res); + bitflips += hweight8(res); + } + } + + return bitflips; +} + +static int verify_eraseblock(int ebnum) +{ + int i; + struct mtd_oob_ops ops = { }; + int err = 0; + loff_t addr = (loff_t)ebnum * mtd->erasesize; + size_t bitflips; + + prandom_bytes_state(&rnd_state, writebuf, use_len_max * pgcnt); + for (i = 0; i < pgcnt; ++i, addr += mtd->writesize) { + ops.mode = MTD_OPS_AUTO_OOB; + ops.len = 0; + ops.retlen = 0; + ops.ooblen = use_len; + ops.oobretlen = 0; + ops.ooboffs = use_offset; + ops.datbuf = NULL; + ops.oobbuf = readbuf; + err = mtd_read_oob(mtd, addr, &ops); + if (mtd_is_bitflip(err)) + err = 0; + + if (err || ops.oobretlen != use_len) { + pr_err("error: readoob failed at %#llx\n", + (long long)addr); + errcnt += 1; + return err ? err : -1; + } + + bitflips = memcmpshow(addr, readbuf, + writebuf + (use_len_max * i) + use_offset, + use_len); + if (bitflips > bitflip_limit) { + pr_err("error: verify failed at %#llx\n", + (long long)addr); + errcnt += 1; + if (errcnt > 1000) { + pr_err("error: too many errors\n"); + return -1; + } + } else if (bitflips) { + pr_info("ignoring error as within bitflip_limit\n"); + } + + if (use_offset != 0 || use_len < mtd->oobavail) { + int k; + + ops.mode = MTD_OPS_AUTO_OOB; + ops.len = 0; + ops.retlen = 0; + ops.ooblen = mtd->oobavail; + ops.oobretlen = 0; + ops.ooboffs = 0; + ops.datbuf = NULL; + ops.oobbuf = readbuf; + err = mtd_read_oob(mtd, addr, &ops); + if (mtd_is_bitflip(err)) + err = 0; + + if (err || ops.oobretlen != mtd->oobavail) { + pr_err("error: readoob failed at %#llx\n", + (long long)addr); + errcnt += 1; + return err ? err : -1; + } + bitflips = memcmpshowoffset(addr, use_offset, + readbuf + use_offset, + writebuf + (use_len_max * i) + use_offset, + use_len); + + /* verify pre-offset area for 0xff */ + bitflips += memffshow(addr, 0, readbuf, use_offset); + + /* verify post-(use_offset + use_len) area for 0xff */ + k = use_offset + use_len; + bitflips += memffshow(addr, k, readbuf + k, + mtd->oobavail - k); + + if (bitflips > bitflip_limit) { + pr_err("error: verify failed at %#llx\n", + (long long)addr); + errcnt += 1; + if (errcnt > 1000) { + pr_err("error: too many errors\n"); + return -1; + } + } else if (bitflips) { + pr_info("ignoring errors as within bitflip limit\n"); + } + } + if (vary_offset) + do_vary_offset(); + } + return err; +} + +static int verify_eraseblock_in_one_go(int ebnum) +{ + struct mtd_oob_ops ops = { }; + int err = 0; + loff_t addr = (loff_t)ebnum * mtd->erasesize; + size_t len = mtd->oobavail * pgcnt; + size_t oobavail = mtd->oobavail; + size_t bitflips; + int i; + + prandom_bytes_state(&rnd_state, writebuf, len); + ops.mode = MTD_OPS_AUTO_OOB; + ops.len = 0; + ops.retlen = 0; + ops.ooblen = len; + ops.oobretlen = 0; + ops.ooboffs = 0; + ops.datbuf = NULL; + ops.oobbuf = readbuf; + + /* read entire block's OOB at one go */ + err = mtd_read_oob(mtd, addr, &ops); + if (mtd_is_bitflip(err)) + err = 0; + + if (err || ops.oobretlen != len) { + pr_err("error: readoob failed at %#llx\n", + (long long)addr); + errcnt += 1; + return err ? err : -1; + } + + /* verify one page OOB at a time for bitflip per page limit check */ + for (i = 0; i < pgcnt; ++i, addr += mtd->writesize) { + bitflips = memcmpshow(addr, readbuf + (i * oobavail), + writebuf + (i * oobavail), oobavail); + if (bitflips > bitflip_limit) { + pr_err("error: verify failed at %#llx\n", + (long long)addr); + errcnt += 1; + if (errcnt > 1000) { + pr_err("error: too many errors\n"); + return -1; + } + } else if (bitflips) { + pr_info("ignoring error as within bitflip_limit\n"); + } + } + + return err; +} + +static int verify_all_eraseblocks(void) +{ + int err; + unsigned int i; + + pr_info("verifying all eraseblocks\n"); + for (i = 0; i < ebcnt; ++i) { + if (bbt[i]) + continue; + err = verify_eraseblock(i); + if (err) + return err; + if (i % 256 == 0) + pr_info("verified up to eraseblock %u\n", i); + + err = mtdtest_relax(); + if (err) + return err; + } + pr_info("verified %u eraseblocks\n", i); + return 0; +} + +static int __init mtd_oobtest_init(void) +{ + int err = 0; + unsigned int i; + uint64_t tmp; + struct mtd_oob_ops ops = { }; + loff_t addr = 0, addr0; + + printk(KERN_INFO "\n"); + printk(KERN_INFO "=================================================\n"); + + if (dev < 0) { + pr_info("Please specify a valid mtd-device via module parameter\n"); + pr_crit("CAREFUL: This test wipes all data on the specified MTD device!\n"); + return -EINVAL; + } + + pr_info("MTD device: %d\n", dev); + + mtd = get_mtd_device(NULL, dev); + if (IS_ERR(mtd)) { + err = PTR_ERR(mtd); + pr_err("error: cannot get MTD device\n"); + return err; + } + + if (!mtd_type_is_nand(mtd)) { + pr_info("this test requires NAND flash\n"); + goto out; + } + + tmp = mtd->size; + do_div(tmp, mtd->erasesize); + ebcnt = tmp; + pgcnt = mtd->erasesize / mtd->writesize; + + pr_info("MTD device size %llu, eraseblock size %u, " + "page size %u, count of eraseblocks %u, pages per " + "eraseblock %u, OOB size %u\n", + (unsigned long long)mtd->size, mtd->erasesize, + mtd->writesize, ebcnt, pgcnt, mtd->oobsize); + + err = -ENOMEM; + readbuf = kmalloc(mtd->erasesize, GFP_KERNEL); + if (!readbuf) + goto out; + writebuf = kmalloc(mtd->erasesize, GFP_KERNEL); + if (!writebuf) + goto out; + bbt = kzalloc(ebcnt, GFP_KERNEL); + if (!bbt) + goto out; + + err = mtdtest_scan_for_bad_eraseblocks(mtd, bbt, 0, ebcnt); + if (err) + goto out; + + use_offset = 0; + use_len = mtd->oobavail; + use_len_max = mtd->oobavail; + vary_offset = 0; + + /* First test: write all OOB, read it back and verify */ + pr_info("test 1 of 5\n"); + + err = mtdtest_erase_good_eraseblocks(mtd, bbt, 0, ebcnt); + if (err) + goto out; + + prandom_seed_state(&rnd_state, 1); + err = write_whole_device(); + if (err) + goto out; + + prandom_seed_state(&rnd_state, 1); + err = verify_all_eraseblocks(); + if (err) + goto out; + + /* + * Second test: write all OOB, a block at a time, read it back and + * verify. + */ + pr_info("test 2 of 5\n"); + + err = mtdtest_erase_good_eraseblocks(mtd, bbt, 0, ebcnt); + if (err) + goto out; + + prandom_seed_state(&rnd_state, 3); + err = write_whole_device(); + if (err) + goto out; + + /* Check all eraseblocks */ + prandom_seed_state(&rnd_state, 3); + pr_info("verifying all eraseblocks\n"); + for (i = 0; i < ebcnt; ++i) { + if (bbt[i]) + continue; + err = verify_eraseblock_in_one_go(i); + if (err) + goto out; + if (i % 256 == 0) + pr_info("verified up to eraseblock %u\n", i); + + err = mtdtest_relax(); + if (err) + goto out; + } + pr_info("verified %u eraseblocks\n", i); + + /* + * Third test: write OOB at varying offsets and lengths, read it back + * and verify. + */ + pr_info("test 3 of 5\n"); + + err = mtdtest_erase_good_eraseblocks(mtd, bbt, 0, ebcnt); + if (err) + goto out; + + /* Write all eraseblocks */ + use_offset = 0; + use_len = mtd->oobavail; + use_len_max = mtd->oobavail; + vary_offset = 1; + prandom_seed_state(&rnd_state, 5); + + err = write_whole_device(); + if (err) + goto out; + + /* Check all eraseblocks */ + use_offset = 0; + use_len = mtd->oobavail; + use_len_max = mtd->oobavail; + vary_offset = 1; + prandom_seed_state(&rnd_state, 5); + err = verify_all_eraseblocks(); + if (err) + goto out; + + use_offset = 0; + use_len = mtd->oobavail; + use_len_max = mtd->oobavail; + vary_offset = 0; + + /* Fourth test: try to write off end of device */ + pr_info("test 4 of 5\n"); + + err = mtdtest_erase_good_eraseblocks(mtd, bbt, 0, ebcnt); + if (err) + goto out; + + addr0 = 0; + for (i = 0; i < ebcnt && bbt[i]; ++i) + addr0 += mtd->erasesize; + + /* Attempt to write off end of OOB */ + ops.mode = MTD_OPS_AUTO_OOB; + ops.len = 0; + ops.retlen = 0; + ops.ooblen = 1; + ops.oobretlen = 0; + ops.ooboffs = mtd->oobavail; + ops.datbuf = NULL; + ops.oobbuf = writebuf; + pr_info("attempting to start write past end of OOB\n"); + pr_info("an error is expected...\n"); + err = mtd_write_oob(mtd, addr0, &ops); + if (err) { + pr_info("error occurred as expected\n"); + } else { + pr_err("error: can write past end of OOB\n"); + errcnt += 1; + } + + /* Attempt to read off end of OOB */ + ops.mode = MTD_OPS_AUTO_OOB; + ops.len = 0; + ops.retlen = 0; + ops.ooblen = 1; + ops.oobretlen = 0; + ops.ooboffs = mtd->oobavail; + ops.datbuf = NULL; + ops.oobbuf = readbuf; + pr_info("attempting to start read past end of OOB\n"); + pr_info("an error is expected...\n"); + err = mtd_read_oob(mtd, addr0, &ops); + if (mtd_is_bitflip(err)) + err = 0; + + if (err) { + pr_info("error occurred as expected\n"); + } else { + pr_err("error: can read past end of OOB\n"); + errcnt += 1; + } + + if (bbt[ebcnt - 1]) + pr_info("skipping end of device tests because last " + "block is bad\n"); + else { + /* Attempt to write off end of device */ + ops.mode = MTD_OPS_AUTO_OOB; + ops.len = 0; + ops.retlen = 0; + ops.ooblen = mtd->oobavail + 1; + ops.oobretlen = 0; + ops.ooboffs = 0; + ops.datbuf = NULL; + ops.oobbuf = writebuf; + pr_info("attempting to write past end of device\n"); + pr_info("an error is expected...\n"); + err = mtd_write_oob(mtd, mtd->size - mtd->writesize, &ops); + if (err) { + pr_info("error occurred as expected\n"); + } else { + pr_err("error: wrote past end of device\n"); + errcnt += 1; + } + + /* Attempt to read off end of device */ + ops.mode = MTD_OPS_AUTO_OOB; + ops.len = 0; + ops.retlen = 0; + ops.ooblen = mtd->oobavail + 1; + ops.oobretlen = 0; + ops.ooboffs = 0; + ops.datbuf = NULL; + ops.oobbuf = readbuf; + pr_info("attempting to read past end of device\n"); + pr_info("an error is expected...\n"); + err = mtd_read_oob(mtd, mtd->size - mtd->writesize, &ops); + if (mtd_is_bitflip(err)) + err = 0; + + if (err) { + pr_info("error occurred as expected\n"); + } else { + pr_err("error: read past end of device\n"); + errcnt += 1; + } + + err = mtdtest_erase_eraseblock(mtd, ebcnt - 1); + if (err) + goto out; + + /* Attempt to write off end of device */ + ops.mode = MTD_OPS_AUTO_OOB; + ops.len = 0; + ops.retlen = 0; + ops.ooblen = mtd->oobavail; + ops.oobretlen = 0; + ops.ooboffs = 1; + ops.datbuf = NULL; + ops.oobbuf = writebuf; + pr_info("attempting to write past end of device\n"); + pr_info("an error is expected...\n"); + err = mtd_write_oob(mtd, mtd->size - mtd->writesize, &ops); + if (err) { + pr_info("error occurred as expected\n"); + } else { + pr_err("error: wrote past end of device\n"); + errcnt += 1; + } + + /* Attempt to read off end of device */ + ops.mode = MTD_OPS_AUTO_OOB; + ops.len = 0; + ops.retlen = 0; + ops.ooblen = mtd->oobavail; + ops.oobretlen = 0; + ops.ooboffs = 1; + ops.datbuf = NULL; + ops.oobbuf = readbuf; + pr_info("attempting to read past end of device\n"); + pr_info("an error is expected...\n"); + err = mtd_read_oob(mtd, mtd->size - mtd->writesize, &ops); + if (mtd_is_bitflip(err)) + err = 0; + + if (err) { + pr_info("error occurred as expected\n"); + } else { + pr_err("error: read past end of device\n"); + errcnt += 1; + } + } + + /* Fifth test: write / read across block boundaries */ + pr_info("test 5 of 5\n"); + + /* Erase all eraseblocks */ + err = mtdtest_erase_good_eraseblocks(mtd, bbt, 0, ebcnt); + if (err) + goto out; + + /* Write all eraseblocks */ + prandom_seed_state(&rnd_state, 11); + pr_info("writing OOBs of whole device\n"); + for (i = 0; i < ebcnt - 1; ++i) { + int cnt = 2; + int pg; + size_t sz = mtd->oobavail; + if (bbt[i] || bbt[i + 1]) + continue; + addr = (loff_t)(i + 1) * mtd->erasesize - mtd->writesize; + prandom_bytes_state(&rnd_state, writebuf, sz * cnt); + for (pg = 0; pg < cnt; ++pg) { + ops.mode = MTD_OPS_AUTO_OOB; + ops.len = 0; + ops.retlen = 0; + ops.ooblen = sz; + ops.oobretlen = 0; + ops.ooboffs = 0; + ops.datbuf = NULL; + ops.oobbuf = writebuf + pg * sz; + err = mtd_write_oob(mtd, addr, &ops); + if (err) + goto out; + if (i % 256 == 0) + pr_info("written up to eraseblock %u\n", i); + + err = mtdtest_relax(); + if (err) + goto out; + + addr += mtd->writesize; + } + } + pr_info("written %u eraseblocks\n", i); + + /* Check all eraseblocks */ + prandom_seed_state(&rnd_state, 11); + pr_info("verifying all eraseblocks\n"); + for (i = 0; i < ebcnt - 1; ++i) { + if (bbt[i] || bbt[i + 1]) + continue; + prandom_bytes_state(&rnd_state, writebuf, mtd->oobavail * 2); + addr = (loff_t)(i + 1) * mtd->erasesize - mtd->writesize; + ops.mode = MTD_OPS_AUTO_OOB; + ops.len = 0; + ops.retlen = 0; + ops.ooblen = mtd->oobavail * 2; + ops.oobretlen = 0; + ops.ooboffs = 0; + ops.datbuf = NULL; + ops.oobbuf = readbuf; + err = mtd_read_oob(mtd, addr, &ops); + if (mtd_is_bitflip(err)) + err = 0; + + if (err) + goto out; + if (memcmpshow(addr, readbuf, writebuf, + mtd->oobavail * 2)) { + pr_err("error: verify failed at %#llx\n", + (long long)addr); + errcnt += 1; + if (errcnt > 1000) { + err = -EINVAL; + pr_err("error: too many errors\n"); + goto out; + } + } + if (i % 256 == 0) + pr_info("verified up to eraseblock %u\n", i); + + err = mtdtest_relax(); + if (err) + goto out; + } + pr_info("verified %u eraseblocks\n", i); + + pr_info("finished with %d errors\n", errcnt); +out: + kfree(bbt); + kfree(writebuf); + kfree(readbuf); + put_mtd_device(mtd); + if (err) + pr_info("error %d occurred\n", err); + printk(KERN_INFO "=================================================\n"); + return err; +} +module_init(mtd_oobtest_init); + +static void __exit mtd_oobtest_exit(void) +{ + return; +} +module_exit(mtd_oobtest_exit); + +MODULE_DESCRIPTION("Out-of-band test module"); +MODULE_AUTHOR("Adrian Hunter"); +MODULE_LICENSE("GPL"); diff --git a/drivers/mtd/tests/pagetest.c b/drivers/mtd/tests/pagetest.c new file mode 100644 index 0000000000..8eb40b6e6d --- /dev/null +++ b/drivers/mtd/tests/pagetest.c @@ -0,0 +1,461 @@ +// SPDX-License-Identifier: GPL-2.0-only +/* + * Copyright (C) 2006-2008 Nokia Corporation + * + * Test page read and write on MTD device. + * + * Author: Adrian Hunter <ext-adrian.hunter@nokia.com> + */ + +#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt + +#include <asm/div64.h> +#include <linux/init.h> +#include <linux/module.h> +#include <linux/moduleparam.h> +#include <linux/err.h> +#include <linux/mtd/mtd.h> +#include <linux/slab.h> +#include <linux/sched.h> +#include <linux/random.h> + +#include "mtd_test.h" + +static int dev = -EINVAL; +module_param(dev, int, S_IRUGO); +MODULE_PARM_DESC(dev, "MTD device number to use"); + +static struct mtd_info *mtd; +static unsigned char *twopages; +static unsigned char *writebuf; +static unsigned char *boundary; +static unsigned char *bbt; + +static int pgsize; +static int bufsize; +static int ebcnt; +static int pgcnt; +static int errcnt; +static struct rnd_state rnd_state; + +static int write_eraseblock(int ebnum) +{ + loff_t addr = (loff_t)ebnum * mtd->erasesize; + + prandom_bytes_state(&rnd_state, writebuf, mtd->erasesize); + cond_resched(); + return mtdtest_write(mtd, addr, mtd->erasesize, writebuf); +} + +static int verify_eraseblock(int ebnum) +{ + uint32_t j; + int err = 0, i; + loff_t addr0, addrn; + loff_t addr = (loff_t)ebnum * mtd->erasesize; + + addr0 = 0; + for (i = 0; i < ebcnt && bbt[i]; ++i) + addr0 += mtd->erasesize; + + addrn = mtd->size; + for (i = 0; i < ebcnt && bbt[ebcnt - i - 1]; ++i) + addrn -= mtd->erasesize; + + prandom_bytes_state(&rnd_state, writebuf, mtd->erasesize); + for (j = 0; j < pgcnt - 1; ++j, addr += pgsize) { + /* Do a read to set the internal dataRAMs to different data */ + err = mtdtest_read(mtd, addr0, bufsize, twopages); + if (err) + return err; + err = mtdtest_read(mtd, addrn - bufsize, bufsize, twopages); + if (err) + return err; + memset(twopages, 0, bufsize); + err = mtdtest_read(mtd, addr, bufsize, twopages); + if (err) + break; + if (memcmp(twopages, writebuf + (j * pgsize), bufsize)) { + pr_err("error: verify failed at %#llx\n", + (long long)addr); + errcnt += 1; + } + } + /* Check boundary between eraseblocks */ + if (addr <= addrn - pgsize - pgsize && !bbt[ebnum + 1]) { + struct rnd_state old_state = rnd_state; + + /* Do a read to set the internal dataRAMs to different data */ + err = mtdtest_read(mtd, addr0, bufsize, twopages); + if (err) + return err; + err = mtdtest_read(mtd, addrn - bufsize, bufsize, twopages); + if (err) + return err; + memset(twopages, 0, bufsize); + err = mtdtest_read(mtd, addr, bufsize, twopages); + if (err) + return err; + memcpy(boundary, writebuf + mtd->erasesize - pgsize, pgsize); + prandom_bytes_state(&rnd_state, boundary + pgsize, pgsize); + if (memcmp(twopages, boundary, bufsize)) { + pr_err("error: verify failed at %#llx\n", + (long long)addr); + errcnt += 1; + } + rnd_state = old_state; + } + return err; +} + +static int crosstest(void) +{ + int err = 0, i; + loff_t addr, addr0, addrn; + unsigned char *pp1, *pp2, *pp3, *pp4; + + pr_info("crosstest\n"); + pp1 = kcalloc(pgsize, 4, GFP_KERNEL); + if (!pp1) + return -ENOMEM; + pp2 = pp1 + pgsize; + pp3 = pp2 + pgsize; + pp4 = pp3 + pgsize; + + addr0 = 0; + for (i = 0; i < ebcnt && bbt[i]; ++i) + addr0 += mtd->erasesize; + + addrn = mtd->size; + for (i = 0; i < ebcnt && bbt[ebcnt - i - 1]; ++i) + addrn -= mtd->erasesize; + + /* Read 2nd-to-last page to pp1 */ + addr = addrn - pgsize - pgsize; + err = mtdtest_read(mtd, addr, pgsize, pp1); + if (err) { + kfree(pp1); + return err; + } + + /* Read 3rd-to-last page to pp1 */ + addr = addrn - pgsize - pgsize - pgsize; + err = mtdtest_read(mtd, addr, pgsize, pp1); + if (err) { + kfree(pp1); + return err; + } + + /* Read first page to pp2 */ + addr = addr0; + pr_info("reading page at %#llx\n", (long long)addr); + err = mtdtest_read(mtd, addr, pgsize, pp2); + if (err) { + kfree(pp1); + return err; + } + + /* Read last page to pp3 */ + addr = addrn - pgsize; + pr_info("reading page at %#llx\n", (long long)addr); + err = mtdtest_read(mtd, addr, pgsize, pp3); + if (err) { + kfree(pp1); + return err; + } + + /* Read first page again to pp4 */ + addr = addr0; + pr_info("reading page at %#llx\n", (long long)addr); + err = mtdtest_read(mtd, addr, pgsize, pp4); + if (err) { + kfree(pp1); + return err; + } + + /* pp2 and pp4 should be the same */ + pr_info("verifying pages read at %#llx match\n", + (long long)addr0); + if (memcmp(pp2, pp4, pgsize)) { + pr_err("verify failed!\n"); + errcnt += 1; + } else if (!err) + pr_info("crosstest ok\n"); + kfree(pp1); + return err; +} + +static int erasecrosstest(void) +{ + int err = 0, i, ebnum, ebnum2; + loff_t addr0; + char *readbuf = twopages; + + pr_info("erasecrosstest\n"); + + ebnum = 0; + addr0 = 0; + for (i = 0; i < ebcnt && bbt[i]; ++i) { + addr0 += mtd->erasesize; + ebnum += 1; + } + + ebnum2 = ebcnt - 1; + while (ebnum2 && bbt[ebnum2]) + ebnum2 -= 1; + + pr_info("erasing block %d\n", ebnum); + err = mtdtest_erase_eraseblock(mtd, ebnum); + if (err) + return err; + + pr_info("writing 1st page of block %d\n", ebnum); + prandom_bytes_state(&rnd_state, writebuf, pgsize); + strcpy(writebuf, "There is no data like this!"); + err = mtdtest_write(mtd, addr0, pgsize, writebuf); + if (err) + return err; + + pr_info("reading 1st page of block %d\n", ebnum); + memset(readbuf, 0, pgsize); + err = mtdtest_read(mtd, addr0, pgsize, readbuf); + if (err) + return err; + + pr_info("verifying 1st page of block %d\n", ebnum); + if (memcmp(writebuf, readbuf, pgsize)) { + pr_err("verify failed!\n"); + errcnt += 1; + return -1; + } + + pr_info("erasing block %d\n", ebnum); + err = mtdtest_erase_eraseblock(mtd, ebnum); + if (err) + return err; + + pr_info("writing 1st page of block %d\n", ebnum); + prandom_bytes_state(&rnd_state, writebuf, pgsize); + strcpy(writebuf, "There is no data like this!"); + err = mtdtest_write(mtd, addr0, pgsize, writebuf); + if (err) + return err; + + pr_info("erasing block %d\n", ebnum2); + err = mtdtest_erase_eraseblock(mtd, ebnum2); + if (err) + return err; + + pr_info("reading 1st page of block %d\n", ebnum); + memset(readbuf, 0, pgsize); + err = mtdtest_read(mtd, addr0, pgsize, readbuf); + if (err) + return err; + + pr_info("verifying 1st page of block %d\n", ebnum); + if (memcmp(writebuf, readbuf, pgsize)) { + pr_err("verify failed!\n"); + errcnt += 1; + return -1; + } + + if (!err) + pr_info("erasecrosstest ok\n"); + return err; +} + +static int erasetest(void) +{ + int err = 0, i, ebnum, ok = 1; + loff_t addr0; + + pr_info("erasetest\n"); + + ebnum = 0; + addr0 = 0; + for (i = 0; i < ebcnt && bbt[i]; ++i) { + addr0 += mtd->erasesize; + ebnum += 1; + } + + pr_info("erasing block %d\n", ebnum); + err = mtdtest_erase_eraseblock(mtd, ebnum); + if (err) + return err; + + pr_info("writing 1st page of block %d\n", ebnum); + prandom_bytes_state(&rnd_state, writebuf, pgsize); + err = mtdtest_write(mtd, addr0, pgsize, writebuf); + if (err) + return err; + + pr_info("erasing block %d\n", ebnum); + err = mtdtest_erase_eraseblock(mtd, ebnum); + if (err) + return err; + + pr_info("reading 1st page of block %d\n", ebnum); + err = mtdtest_read(mtd, addr0, pgsize, twopages); + if (err) + return err; + + pr_info("verifying 1st page of block %d is all 0xff\n", + ebnum); + for (i = 0; i < pgsize; ++i) + if (twopages[i] != 0xff) { + pr_err("verifying all 0xff failed at %d\n", + i); + errcnt += 1; + ok = 0; + break; + } + + if (ok && !err) + pr_info("erasetest ok\n"); + + return err; +} + +static int __init mtd_pagetest_init(void) +{ + int err = 0; + uint64_t tmp; + uint32_t i; + + printk(KERN_INFO "\n"); + printk(KERN_INFO "=================================================\n"); + + if (dev < 0) { + pr_info("Please specify a valid mtd-device via module parameter\n"); + pr_crit("CAREFUL: This test wipes all data on the specified MTD device!\n"); + return -EINVAL; + } + + pr_info("MTD device: %d\n", dev); + + mtd = get_mtd_device(NULL, dev); + if (IS_ERR(mtd)) { + err = PTR_ERR(mtd); + pr_err("error: cannot get MTD device\n"); + return err; + } + + if (!mtd_type_is_nand(mtd)) { + pr_info("this test requires NAND flash\n"); + goto out; + } + + tmp = mtd->size; + do_div(tmp, mtd->erasesize); + ebcnt = tmp; + pgcnt = mtd->erasesize / mtd->writesize; + pgsize = mtd->writesize; + + pr_info("MTD device size %llu, eraseblock size %u, " + "page size %u, count of eraseblocks %u, pages per " + "eraseblock %u, OOB size %u\n", + (unsigned long long)mtd->size, mtd->erasesize, + pgsize, ebcnt, pgcnt, mtd->oobsize); + + err = -ENOMEM; + bufsize = pgsize * 2; + writebuf = kmalloc(mtd->erasesize, GFP_KERNEL); + if (!writebuf) + goto out; + twopages = kmalloc(bufsize, GFP_KERNEL); + if (!twopages) + goto out; + boundary = kmalloc(bufsize, GFP_KERNEL); + if (!boundary) + goto out; + + bbt = kzalloc(ebcnt, GFP_KERNEL); + if (!bbt) + goto out; + err = mtdtest_scan_for_bad_eraseblocks(mtd, bbt, 0, ebcnt); + if (err) + goto out; + + /* Erase all eraseblocks */ + pr_info("erasing whole device\n"); + err = mtdtest_erase_good_eraseblocks(mtd, bbt, 0, ebcnt); + if (err) + goto out; + pr_info("erased %u eraseblocks\n", ebcnt); + + /* Write all eraseblocks */ + prandom_seed_state(&rnd_state, 1); + pr_info("writing whole device\n"); + for (i = 0; i < ebcnt; ++i) { + if (bbt[i]) + continue; + err = write_eraseblock(i); + if (err) + goto out; + if (i % 256 == 0) + pr_info("written up to eraseblock %u\n", i); + + err = mtdtest_relax(); + if (err) + goto out; + } + pr_info("written %u eraseblocks\n", i); + + /* Check all eraseblocks */ + prandom_seed_state(&rnd_state, 1); + pr_info("verifying all eraseblocks\n"); + for (i = 0; i < ebcnt; ++i) { + if (bbt[i]) + continue; + err = verify_eraseblock(i); + if (err) + goto out; + if (i % 256 == 0) + pr_info("verified up to eraseblock %u\n", i); + + err = mtdtest_relax(); + if (err) + goto out; + } + pr_info("verified %u eraseblocks\n", i); + + err = crosstest(); + if (err) + goto out; + + if (ebcnt > 1) { + err = erasecrosstest(); + if (err) + goto out; + } else { + pr_info("skipping erasecrosstest, 2 erase blocks needed\n"); + } + + err = erasetest(); + if (err) + goto out; + + pr_info("finished with %d errors\n", errcnt); +out: + + kfree(bbt); + kfree(boundary); + kfree(twopages); + kfree(writebuf); + put_mtd_device(mtd); + if (err) + pr_info("error %d occurred\n", err); + printk(KERN_INFO "=================================================\n"); + return err; +} +module_init(mtd_pagetest_init); + +static void __exit mtd_pagetest_exit(void) +{ + return; +} +module_exit(mtd_pagetest_exit); + +MODULE_DESCRIPTION("NAND page test"); +MODULE_AUTHOR("Adrian Hunter"); +MODULE_LICENSE("GPL"); diff --git a/drivers/mtd/tests/readtest.c b/drivers/mtd/tests/readtest.c new file mode 100644 index 0000000000..99670ef91f --- /dev/null +++ b/drivers/mtd/tests/readtest.c @@ -0,0 +1,215 @@ +// SPDX-License-Identifier: GPL-2.0-only +/* + * Copyright (C) 2006-2008 Nokia Corporation + * + * Check MTD device read. + * + * Author: Adrian Hunter <ext-adrian.hunter@nokia.com> + */ + +#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt + +#include <linux/init.h> +#include <linux/module.h> +#include <linux/moduleparam.h> +#include <linux/err.h> +#include <linux/mtd/mtd.h> +#include <linux/slab.h> +#include <linux/sched.h> + +#include "mtd_test.h" + +static int dev = -EINVAL; +module_param(dev, int, S_IRUGO); +MODULE_PARM_DESC(dev, "MTD device number to use"); + +static struct mtd_info *mtd; +static unsigned char *iobuf; +static unsigned char *iobuf1; +static unsigned char *bbt; + +static int pgsize; +static int ebcnt; +static int pgcnt; + +static int read_eraseblock_by_page(int ebnum) +{ + int i, ret, err = 0; + loff_t addr = (loff_t)ebnum * mtd->erasesize; + void *buf = iobuf; + void *oobbuf = iobuf1; + + for (i = 0; i < pgcnt; i++) { + memset(buf, 0 , pgsize); + ret = mtdtest_read(mtd, addr, pgsize, buf); + if (ret) { + if (!err) + err = ret; + } + if (mtd->oobsize) { + struct mtd_oob_ops ops = { }; + + ops.mode = MTD_OPS_PLACE_OOB; + ops.len = 0; + ops.retlen = 0; + ops.ooblen = mtd->oobsize; + ops.oobretlen = 0; + ops.ooboffs = 0; + ops.datbuf = NULL; + ops.oobbuf = oobbuf; + ret = mtd_read_oob(mtd, addr, &ops); + if ((ret && !mtd_is_bitflip(ret)) || + ops.oobretlen != mtd->oobsize) { + pr_err("error: read oob failed at " + "%#llx\n", (long long)addr); + if (!err) + err = ret; + if (!err) + err = -EINVAL; + } + oobbuf += mtd->oobsize; + } + addr += pgsize; + buf += pgsize; + } + + return err; +} + +static void dump_eraseblock(int ebnum) +{ + int i, j, n; + char line[128]; + int pg, oob; + + pr_info("dumping eraseblock %d\n", ebnum); + n = mtd->erasesize; + for (i = 0; i < n;) { + char *p = line; + + p += sprintf(p, "%05x: ", i); + for (j = 0; j < 32 && i < n; j++, i++) + p += sprintf(p, "%02x", (unsigned int)iobuf[i]); + printk(KERN_CRIT "%s\n", line); + cond_resched(); + } + if (!mtd->oobsize) + return; + pr_info("dumping oob from eraseblock %d\n", ebnum); + n = mtd->oobsize; + for (pg = 0, i = 0; pg < pgcnt; pg++) + for (oob = 0; oob < n;) { + char *p = line; + + p += sprintf(p, "%05x: ", i); + for (j = 0; j < 32 && oob < n; j++, oob++, i++) + p += sprintf(p, "%02x", + (unsigned int)iobuf1[i]); + printk(KERN_CRIT "%s\n", line); + cond_resched(); + } +} + +static int __init mtd_readtest_init(void) +{ + uint64_t tmp; + int err, i; + + printk(KERN_INFO "\n"); + printk(KERN_INFO "=================================================\n"); + + if (dev < 0) { + pr_info("Please specify a valid mtd-device via module parameter\n"); + return -EINVAL; + } + + pr_info("MTD device: %d\n", dev); + + mtd = get_mtd_device(NULL, dev); + if (IS_ERR(mtd)) { + err = PTR_ERR(mtd); + pr_err("error: Cannot get MTD device\n"); + return err; + } + + if (mtd->writesize == 1) { + pr_info("not NAND flash, assume page size is 512 " + "bytes.\n"); + pgsize = 512; + } else + pgsize = mtd->writesize; + + tmp = mtd->size; + do_div(tmp, mtd->erasesize); + ebcnt = tmp; + pgcnt = mtd->erasesize / pgsize; + + pr_info("MTD device size %llu, eraseblock size %u, " + "page size %u, count of eraseblocks %u, pages per " + "eraseblock %u, OOB size %u\n", + (unsigned long long)mtd->size, mtd->erasesize, + pgsize, ebcnt, pgcnt, mtd->oobsize); + + err = -ENOMEM; + iobuf = kmalloc(mtd->erasesize, GFP_KERNEL); + if (!iobuf) + goto out; + iobuf1 = kmalloc(mtd->erasesize, GFP_KERNEL); + if (!iobuf1) + goto out; + + bbt = kzalloc(ebcnt, GFP_KERNEL); + if (!bbt) + goto out; + err = mtdtest_scan_for_bad_eraseblocks(mtd, bbt, 0, ebcnt); + if (err) + goto out; + + /* Read all eraseblocks 1 page at a time */ + pr_info("testing page read\n"); + for (i = 0; i < ebcnt; ++i) { + int ret; + + if (bbt[i]) + continue; + ret = read_eraseblock_by_page(i); + if (ret) { + dump_eraseblock(i); + if (!err) + err = ret; + } + + ret = mtdtest_relax(); + if (ret) { + err = ret; + goto out; + } + } + + if (err) + pr_info("finished with errors\n"); + else + pr_info("finished\n"); + +out: + + kfree(iobuf); + kfree(iobuf1); + kfree(bbt); + put_mtd_device(mtd); + if (err) + pr_info("error %d occurred\n", err); + printk(KERN_INFO "=================================================\n"); + return err; +} +module_init(mtd_readtest_init); + +static void __exit mtd_readtest_exit(void) +{ + return; +} +module_exit(mtd_readtest_exit); + +MODULE_DESCRIPTION("Read test module"); +MODULE_AUTHOR("Adrian Hunter"); +MODULE_LICENSE("GPL"); diff --git a/drivers/mtd/tests/speedtest.c b/drivers/mtd/tests/speedtest.c new file mode 100644 index 0000000000..075bce32ca --- /dev/null +++ b/drivers/mtd/tests/speedtest.c @@ -0,0 +1,418 @@ +// SPDX-License-Identifier: GPL-2.0-only +/* + * Copyright (C) 2007 Nokia Corporation + * + * Test read and write speed of a MTD device. + * + * Author: Adrian Hunter <adrian.hunter@nokia.com> + */ + +#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt + +#include <linux/init.h> +#include <linux/ktime.h> +#include <linux/module.h> +#include <linux/moduleparam.h> +#include <linux/err.h> +#include <linux/mtd/mtd.h> +#include <linux/slab.h> +#include <linux/sched.h> +#include <linux/random.h> + +#include "mtd_test.h" + +static int dev = -EINVAL; +module_param(dev, int, S_IRUGO); +MODULE_PARM_DESC(dev, "MTD device number to use"); + +static int count; +module_param(count, int, S_IRUGO); +MODULE_PARM_DESC(count, "Maximum number of eraseblocks to use " + "(0 means use all)"); + +static struct mtd_info *mtd; +static unsigned char *iobuf; +static unsigned char *bbt; + +static int pgsize; +static int ebcnt; +static int pgcnt; +static int goodebcnt; +static ktime_t start, finish; + +static int multiblock_erase(int ebnum, int blocks) +{ + int err; + struct erase_info ei; + loff_t addr = (loff_t)ebnum * mtd->erasesize; + + memset(&ei, 0, sizeof(struct erase_info)); + ei.addr = addr; + ei.len = mtd->erasesize * blocks; + + err = mtd_erase(mtd, &ei); + if (err) { + pr_err("error %d while erasing EB %d, blocks %d\n", + err, ebnum, blocks); + return err; + } + + return 0; +} + +static int write_eraseblock(int ebnum) +{ + loff_t addr = (loff_t)ebnum * mtd->erasesize; + + return mtdtest_write(mtd, addr, mtd->erasesize, iobuf); +} + +static int write_eraseblock_by_page(int ebnum) +{ + int i, err = 0; + loff_t addr = (loff_t)ebnum * mtd->erasesize; + void *buf = iobuf; + + for (i = 0; i < pgcnt; i++) { + err = mtdtest_write(mtd, addr, pgsize, buf); + if (err) + break; + addr += pgsize; + buf += pgsize; + } + + return err; +} + +static int write_eraseblock_by_2pages(int ebnum) +{ + size_t sz = pgsize * 2; + int i, n = pgcnt / 2, err = 0; + loff_t addr = (loff_t)ebnum * mtd->erasesize; + void *buf = iobuf; + + for (i = 0; i < n; i++) { + err = mtdtest_write(mtd, addr, sz, buf); + if (err) + return err; + addr += sz; + buf += sz; + } + if (pgcnt % 2) + err = mtdtest_write(mtd, addr, pgsize, buf); + + return err; +} + +static int read_eraseblock(int ebnum) +{ + loff_t addr = (loff_t)ebnum * mtd->erasesize; + + return mtdtest_read(mtd, addr, mtd->erasesize, iobuf); +} + +static int read_eraseblock_by_page(int ebnum) +{ + int i, err = 0; + loff_t addr = (loff_t)ebnum * mtd->erasesize; + void *buf = iobuf; + + for (i = 0; i < pgcnt; i++) { + err = mtdtest_read(mtd, addr, pgsize, buf); + if (err) + break; + addr += pgsize; + buf += pgsize; + } + + return err; +} + +static int read_eraseblock_by_2pages(int ebnum) +{ + size_t sz = pgsize * 2; + int i, n = pgcnt / 2, err = 0; + loff_t addr = (loff_t)ebnum * mtd->erasesize; + void *buf = iobuf; + + for (i = 0; i < n; i++) { + err = mtdtest_read(mtd, addr, sz, buf); + if (err) + return err; + addr += sz; + buf += sz; + } + if (pgcnt % 2) + err = mtdtest_read(mtd, addr, pgsize, buf); + + return err; +} + +static inline void start_timing(void) +{ + start = ktime_get(); +} + +static inline void stop_timing(void) +{ + finish = ktime_get(); +} + +static long calc_speed(void) +{ + uint64_t k, us; + + us = ktime_us_delta(finish, start); + if (us == 0) + return 0; + k = (uint64_t)goodebcnt * (mtd->erasesize / 1024) * 1000000; + do_div(k, us); + return k; +} + +static int __init mtd_speedtest_init(void) +{ + int err, i, blocks, j, k; + long speed; + uint64_t tmp; + + printk(KERN_INFO "\n"); + printk(KERN_INFO "=================================================\n"); + + if (dev < 0) { + pr_info("Please specify a valid mtd-device via module parameter\n"); + pr_crit("CAREFUL: This test wipes all data on the specified MTD device!\n"); + return -EINVAL; + } + + if (count) + pr_info("MTD device: %d count: %d\n", dev, count); + else + pr_info("MTD device: %d\n", dev); + + mtd = get_mtd_device(NULL, dev); + if (IS_ERR(mtd)) { + err = PTR_ERR(mtd); + pr_err("error: cannot get MTD device\n"); + return err; + } + + if (mtd->writesize == 1) { + pr_info("not NAND flash, assume page size is 512 " + "bytes.\n"); + pgsize = 512; + } else + pgsize = mtd->writesize; + + tmp = mtd->size; + do_div(tmp, mtd->erasesize); + ebcnt = tmp; + pgcnt = mtd->erasesize / pgsize; + + pr_info("MTD device size %llu, eraseblock size %u, " + "page size %u, count of eraseblocks %u, pages per " + "eraseblock %u, OOB size %u\n", + (unsigned long long)mtd->size, mtd->erasesize, + pgsize, ebcnt, pgcnt, mtd->oobsize); + + if (count > 0 && count < ebcnt) + ebcnt = count; + + err = -ENOMEM; + iobuf = kmalloc(mtd->erasesize, GFP_KERNEL); + if (!iobuf) + goto out; + + get_random_bytes(iobuf, mtd->erasesize); + + bbt = kzalloc(ebcnt, GFP_KERNEL); + if (!bbt) + goto out; + err = mtdtest_scan_for_bad_eraseblocks(mtd, bbt, 0, ebcnt); + if (err) + goto out; + for (i = 0; i < ebcnt; i++) { + if (!bbt[i]) + goodebcnt++; + } + + err = mtdtest_erase_good_eraseblocks(mtd, bbt, 0, ebcnt); + if (err) + goto out; + + /* Write all eraseblocks, 1 eraseblock at a time */ + pr_info("testing eraseblock write speed\n"); + start_timing(); + for (i = 0; i < ebcnt; ++i) { + if (bbt[i]) + continue; + err = write_eraseblock(i); + if (err) + goto out; + + err = mtdtest_relax(); + if (err) + goto out; + } + stop_timing(); + speed = calc_speed(); + pr_info("eraseblock write speed is %ld KiB/s\n", speed); + + /* Read all eraseblocks, 1 eraseblock at a time */ + pr_info("testing eraseblock read speed\n"); + start_timing(); + for (i = 0; i < ebcnt; ++i) { + if (bbt[i]) + continue; + err = read_eraseblock(i); + if (err) + goto out; + + err = mtdtest_relax(); + if (err) + goto out; + } + stop_timing(); + speed = calc_speed(); + pr_info("eraseblock read speed is %ld KiB/s\n", speed); + + err = mtdtest_erase_good_eraseblocks(mtd, bbt, 0, ebcnt); + if (err) + goto out; + + /* Write all eraseblocks, 1 page at a time */ + pr_info("testing page write speed\n"); + start_timing(); + for (i = 0; i < ebcnt; ++i) { + if (bbt[i]) + continue; + err = write_eraseblock_by_page(i); + if (err) + goto out; + + err = mtdtest_relax(); + if (err) + goto out; + } + stop_timing(); + speed = calc_speed(); + pr_info("page write speed is %ld KiB/s\n", speed); + + /* Read all eraseblocks, 1 page at a time */ + pr_info("testing page read speed\n"); + start_timing(); + for (i = 0; i < ebcnt; ++i) { + if (bbt[i]) + continue; + err = read_eraseblock_by_page(i); + if (err) + goto out; + + err = mtdtest_relax(); + if (err) + goto out; + } + stop_timing(); + speed = calc_speed(); + pr_info("page read speed is %ld KiB/s\n", speed); + + err = mtdtest_erase_good_eraseblocks(mtd, bbt, 0, ebcnt); + if (err) + goto out; + + /* Write all eraseblocks, 2 pages at a time */ + pr_info("testing 2 page write speed\n"); + start_timing(); + for (i = 0; i < ebcnt; ++i) { + if (bbt[i]) + continue; + err = write_eraseblock_by_2pages(i); + if (err) + goto out; + + err = mtdtest_relax(); + if (err) + goto out; + } + stop_timing(); + speed = calc_speed(); + pr_info("2 page write speed is %ld KiB/s\n", speed); + + /* Read all eraseblocks, 2 pages at a time */ + pr_info("testing 2 page read speed\n"); + start_timing(); + for (i = 0; i < ebcnt; ++i) { + if (bbt[i]) + continue; + err = read_eraseblock_by_2pages(i); + if (err) + goto out; + + err = mtdtest_relax(); + if (err) + goto out; + } + stop_timing(); + speed = calc_speed(); + pr_info("2 page read speed is %ld KiB/s\n", speed); + + /* Erase all eraseblocks */ + pr_info("Testing erase speed\n"); + start_timing(); + err = mtdtest_erase_good_eraseblocks(mtd, bbt, 0, ebcnt); + if (err) + goto out; + stop_timing(); + speed = calc_speed(); + pr_info("erase speed is %ld KiB/s\n", speed); + + /* Multi-block erase all eraseblocks */ + for (k = 1; k < 7; k++) { + blocks = 1 << k; + pr_info("Testing %dx multi-block erase speed\n", + blocks); + start_timing(); + for (i = 0; i < ebcnt; ) { + for (j = 0; j < blocks && (i + j) < ebcnt; j++) + if (bbt[i + j]) + break; + if (j < 1) { + i++; + continue; + } + err = multiblock_erase(i, j); + if (err) + goto out; + + err = mtdtest_relax(); + if (err) + goto out; + + i += j; + } + stop_timing(); + speed = calc_speed(); + pr_info("%dx multi-block erase speed is %ld KiB/s\n", + blocks, speed); + } + pr_info("finished\n"); +out: + kfree(iobuf); + kfree(bbt); + put_mtd_device(mtd); + if (err) + pr_info("error %d occurred\n", err); + printk(KERN_INFO "=================================================\n"); + return err; +} +module_init(mtd_speedtest_init); + +static void __exit mtd_speedtest_exit(void) +{ + return; +} +module_exit(mtd_speedtest_exit); + +MODULE_DESCRIPTION("Speed test module"); +MODULE_AUTHOR("Adrian Hunter"); +MODULE_LICENSE("GPL"); diff --git a/drivers/mtd/tests/stresstest.c b/drivers/mtd/tests/stresstest.c new file mode 100644 index 0000000000..8062098930 --- /dev/null +++ b/drivers/mtd/tests/stresstest.c @@ -0,0 +1,232 @@ +// SPDX-License-Identifier: GPL-2.0-only +/* + * Copyright (C) 2006-2008 Nokia Corporation + * + * Test random reads, writes and erases on MTD device. + * + * Author: Adrian Hunter <ext-adrian.hunter@nokia.com> + */ + +#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt + +#include <linux/init.h> +#include <linux/module.h> +#include <linux/moduleparam.h> +#include <linux/err.h> +#include <linux/mtd/mtd.h> +#include <linux/slab.h> +#include <linux/sched.h> +#include <linux/vmalloc.h> +#include <linux/random.h> + +#include "mtd_test.h" + +static int dev = -EINVAL; +module_param(dev, int, S_IRUGO); +MODULE_PARM_DESC(dev, "MTD device number to use"); + +static int count = 10000; +module_param(count, int, S_IRUGO); +MODULE_PARM_DESC(count, "Number of operations to do (default is 10000)"); + +static struct mtd_info *mtd; +static unsigned char *writebuf; +static unsigned char *readbuf; +static unsigned char *bbt; +static int *offsets; + +static int pgsize; +static int bufsize; +static int ebcnt; +static int pgcnt; + +static int rand_eb(void) +{ + unsigned int eb; + +again: + /* Read or write up 2 eraseblocks at a time - hence 'ebcnt - 1' */ + eb = get_random_u32_below(ebcnt - 1); + if (bbt[eb]) + goto again; + return eb; +} + +static int rand_offs(void) +{ + return get_random_u32_below(bufsize); +} + +static int rand_len(int offs) +{ + return get_random_u32_below(bufsize - offs); +} + +static int do_read(void) +{ + int eb = rand_eb(); + int offs = rand_offs(); + int len = rand_len(offs); + loff_t addr; + + if (bbt[eb + 1]) { + if (offs >= mtd->erasesize) + offs -= mtd->erasesize; + if (offs + len > mtd->erasesize) + len = mtd->erasesize - offs; + } + addr = (loff_t)eb * mtd->erasesize + offs; + return mtdtest_read(mtd, addr, len, readbuf); +} + +static int do_write(void) +{ + int eb = rand_eb(), offs, err, len; + loff_t addr; + + offs = offsets[eb]; + if (offs >= mtd->erasesize) { + err = mtdtest_erase_eraseblock(mtd, eb); + if (err) + return err; + offs = offsets[eb] = 0; + } + len = rand_len(offs); + len = ((len + pgsize - 1) / pgsize) * pgsize; + if (offs + len > mtd->erasesize) { + if (bbt[eb + 1]) + len = mtd->erasesize - offs; + else { + err = mtdtest_erase_eraseblock(mtd, eb + 1); + if (err) + return err; + offsets[eb + 1] = 0; + } + } + addr = (loff_t)eb * mtd->erasesize + offs; + err = mtdtest_write(mtd, addr, len, writebuf); + if (unlikely(err)) + return err; + offs += len; + while (offs > mtd->erasesize) { + offsets[eb++] = mtd->erasesize; + offs -= mtd->erasesize; + } + offsets[eb] = offs; + return 0; +} + +static int do_operation(void) +{ + if (get_random_u32_below(2)) + return do_read(); + else + return do_write(); +} + +static int __init mtd_stresstest_init(void) +{ + int err; + int i, op; + uint64_t tmp; + + printk(KERN_INFO "\n"); + printk(KERN_INFO "=================================================\n"); + + if (dev < 0) { + pr_info("Please specify a valid mtd-device via module parameter\n"); + pr_crit("CAREFUL: This test wipes all data on the specified MTD device!\n"); + return -EINVAL; + } + + pr_info("MTD device: %d\n", dev); + + mtd = get_mtd_device(NULL, dev); + if (IS_ERR(mtd)) { + err = PTR_ERR(mtd); + pr_err("error: cannot get MTD device\n"); + return err; + } + + if (mtd->writesize == 1) { + pr_info("not NAND flash, assume page size is 512 " + "bytes.\n"); + pgsize = 512; + } else + pgsize = mtd->writesize; + + tmp = mtd->size; + do_div(tmp, mtd->erasesize); + ebcnt = tmp; + pgcnt = mtd->erasesize / pgsize; + + pr_info("MTD device size %llu, eraseblock size %u, " + "page size %u, count of eraseblocks %u, pages per " + "eraseblock %u, OOB size %u\n", + (unsigned long long)mtd->size, mtd->erasesize, + pgsize, ebcnt, pgcnt, mtd->oobsize); + + if (ebcnt < 2) { + pr_err("error: need at least 2 eraseblocks\n"); + err = -ENOSPC; + goto out_put_mtd; + } + + /* Read or write up 2 eraseblocks at a time */ + bufsize = mtd->erasesize * 2; + + err = -ENOMEM; + readbuf = vmalloc(bufsize); + writebuf = vmalloc(bufsize); + offsets = kmalloc_array(ebcnt, sizeof(int), GFP_KERNEL); + if (!readbuf || !writebuf || !offsets) + goto out; + for (i = 0; i < ebcnt; i++) + offsets[i] = mtd->erasesize; + get_random_bytes(writebuf, bufsize); + + bbt = kzalloc(ebcnt, GFP_KERNEL); + if (!bbt) + goto out; + err = mtdtest_scan_for_bad_eraseblocks(mtd, bbt, 0, ebcnt); + if (err) + goto out; + + /* Do operations */ + pr_info("doing operations\n"); + for (op = 0; op < count; op++) { + if ((op & 1023) == 0) + pr_info("%d operations done\n", op); + err = do_operation(); + if (err) + goto out; + + err = mtdtest_relax(); + if (err) + goto out; + } + pr_info("finished, %d operations done\n", op); + +out: + kfree(offsets); + kfree(bbt); + vfree(writebuf); + vfree(readbuf); +out_put_mtd: + put_mtd_device(mtd); + if (err) + pr_info("error %d occurred\n", err); + printk(KERN_INFO "=================================================\n"); + return err; +} +module_init(mtd_stresstest_init); + +static void __exit mtd_stresstest_exit(void) +{ + return; +} +module_exit(mtd_stresstest_exit); + +MODULE_DESCRIPTION("Stress test module"); +MODULE_AUTHOR("Adrian Hunter"); +MODULE_LICENSE("GPL"); diff --git a/drivers/mtd/tests/subpagetest.c b/drivers/mtd/tests/subpagetest.c new file mode 100644 index 0000000000..05250a0801 --- /dev/null +++ b/drivers/mtd/tests/subpagetest.c @@ -0,0 +1,437 @@ +// SPDX-License-Identifier: GPL-2.0-only +/* + * Copyright (C) 2006-2007 Nokia Corporation + * + * Test sub-page read and write on MTD device. + * Author: Adrian Hunter <ext-adrian.hunter@nokia.com> + */ + +#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt + +#include <linux/init.h> +#include <linux/module.h> +#include <linux/moduleparam.h> +#include <linux/err.h> +#include <linux/mtd/mtd.h> +#include <linux/slab.h> +#include <linux/sched.h> +#include <linux/random.h> + +#include "mtd_test.h" + +static int dev = -EINVAL; +module_param(dev, int, S_IRUGO); +MODULE_PARM_DESC(dev, "MTD device number to use"); + +static struct mtd_info *mtd; +static unsigned char *writebuf; +static unsigned char *readbuf; +static unsigned char *bbt; + +static int subpgsize; +static int bufsize; +static int ebcnt; +static int pgcnt; +static int errcnt; +static struct rnd_state rnd_state; + +static inline void clear_data(unsigned char *buf, size_t len) +{ + memset(buf, 0, len); +} + +static int write_eraseblock(int ebnum) +{ + size_t written; + int err = 0; + loff_t addr = (loff_t)ebnum * mtd->erasesize; + + prandom_bytes_state(&rnd_state, writebuf, subpgsize); + err = mtd_write(mtd, addr, subpgsize, &written, writebuf); + if (unlikely(err || written != subpgsize)) { + pr_err("error: write failed at %#llx\n", + (long long)addr); + if (written != subpgsize) { + pr_err(" write size: %#x\n", subpgsize); + pr_err(" written: %#zx\n", written); + } + return err ? err : -1; + } + + addr += subpgsize; + + prandom_bytes_state(&rnd_state, writebuf, subpgsize); + err = mtd_write(mtd, addr, subpgsize, &written, writebuf); + if (unlikely(err || written != subpgsize)) { + pr_err("error: write failed at %#llx\n", + (long long)addr); + if (written != subpgsize) { + pr_err(" write size: %#x\n", subpgsize); + pr_err(" written: %#zx\n", written); + } + return err ? err : -1; + } + + return err; +} + +static int write_eraseblock2(int ebnum) +{ + size_t written; + int err = 0, k; + loff_t addr = (loff_t)ebnum * mtd->erasesize; + + for (k = 1; k < 33; ++k) { + if (addr + (subpgsize * k) > (loff_t)(ebnum + 1) * mtd->erasesize) + break; + prandom_bytes_state(&rnd_state, writebuf, subpgsize * k); + err = mtd_write(mtd, addr, subpgsize * k, &written, writebuf); + if (unlikely(err || written != subpgsize * k)) { + pr_err("error: write failed at %#llx\n", + (long long)addr); + if (written != subpgsize * k) { + pr_err(" write size: %#x\n", + subpgsize * k); + pr_err(" written: %#08zx\n", + written); + } + return err ? err : -1; + } + addr += subpgsize * k; + } + + return err; +} + +static void print_subpage(unsigned char *p) +{ + int i, j; + + for (i = 0; i < subpgsize; ) { + for (j = 0; i < subpgsize && j < 32; ++i, ++j) + printk("%02x", *p++); + printk("\n"); + } +} + +static int verify_eraseblock(int ebnum) +{ + size_t read; + int err = 0; + loff_t addr = (loff_t)ebnum * mtd->erasesize; + + prandom_bytes_state(&rnd_state, writebuf, subpgsize); + clear_data(readbuf, subpgsize); + err = mtd_read(mtd, addr, subpgsize, &read, readbuf); + if (unlikely(err || read != subpgsize)) { + if (mtd_is_bitflip(err) && read == subpgsize) { + pr_info("ECC correction at %#llx\n", + (long long)addr); + err = 0; + } else { + pr_err("error: read failed at %#llx\n", + (long long)addr); + return err ? err : -1; + } + } + if (unlikely(memcmp(readbuf, writebuf, subpgsize))) { + pr_err("error: verify failed at %#llx\n", + (long long)addr); + pr_info("------------- written----------------\n"); + print_subpage(writebuf); + pr_info("------------- read ------------------\n"); + print_subpage(readbuf); + pr_info("-------------------------------------\n"); + errcnt += 1; + } + + addr += subpgsize; + + prandom_bytes_state(&rnd_state, writebuf, subpgsize); + clear_data(readbuf, subpgsize); + err = mtd_read(mtd, addr, subpgsize, &read, readbuf); + if (unlikely(err || read != subpgsize)) { + if (mtd_is_bitflip(err) && read == subpgsize) { + pr_info("ECC correction at %#llx\n", + (long long)addr); + err = 0; + } else { + pr_err("error: read failed at %#llx\n", + (long long)addr); + return err ? err : -1; + } + } + if (unlikely(memcmp(readbuf, writebuf, subpgsize))) { + pr_info("error: verify failed at %#llx\n", + (long long)addr); + pr_info("------------- written----------------\n"); + print_subpage(writebuf); + pr_info("------------- read ------------------\n"); + print_subpage(readbuf); + pr_info("-------------------------------------\n"); + errcnt += 1; + } + + return err; +} + +static int verify_eraseblock2(int ebnum) +{ + size_t read; + int err = 0, k; + loff_t addr = (loff_t)ebnum * mtd->erasesize; + + for (k = 1; k < 33; ++k) { + if (addr + (subpgsize * k) > (loff_t)(ebnum + 1) * mtd->erasesize) + break; + prandom_bytes_state(&rnd_state, writebuf, subpgsize * k); + clear_data(readbuf, subpgsize * k); + err = mtd_read(mtd, addr, subpgsize * k, &read, readbuf); + if (unlikely(err || read != subpgsize * k)) { + if (mtd_is_bitflip(err) && read == subpgsize * k) { + pr_info("ECC correction at %#llx\n", + (long long)addr); + err = 0; + } else { + pr_err("error: read failed at " + "%#llx\n", (long long)addr); + return err ? err : -1; + } + } + if (unlikely(memcmp(readbuf, writebuf, subpgsize * k))) { + pr_err("error: verify failed at %#llx\n", + (long long)addr); + errcnt += 1; + } + addr += subpgsize * k; + } + + return err; +} + +static int verify_eraseblock_ff(int ebnum) +{ + uint32_t j; + size_t read; + int err = 0; + loff_t addr = (loff_t)ebnum * mtd->erasesize; + + memset(writebuf, 0xff, subpgsize); + for (j = 0; j < mtd->erasesize / subpgsize; ++j) { + clear_data(readbuf, subpgsize); + err = mtd_read(mtd, addr, subpgsize, &read, readbuf); + if (unlikely(err || read != subpgsize)) { + if (mtd_is_bitflip(err) && read == subpgsize) { + pr_info("ECC correction at %#llx\n", + (long long)addr); + err = 0; + } else { + pr_err("error: read failed at " + "%#llx\n", (long long)addr); + return err ? err : -1; + } + } + if (unlikely(memcmp(readbuf, writebuf, subpgsize))) { + pr_err("error: verify 0xff failed at " + "%#llx\n", (long long)addr); + errcnt += 1; + } + addr += subpgsize; + } + + return err; +} + +static int verify_all_eraseblocks_ff(void) +{ + int err; + unsigned int i; + + pr_info("verifying all eraseblocks for 0xff\n"); + for (i = 0; i < ebcnt; ++i) { + if (bbt[i]) + continue; + err = verify_eraseblock_ff(i); + if (err) + return err; + if (i % 256 == 0) + pr_info("verified up to eraseblock %u\n", i); + + err = mtdtest_relax(); + if (err) + return err; + } + pr_info("verified %u eraseblocks\n", i); + return 0; +} + +static int __init mtd_subpagetest_init(void) +{ + int err = 0; + uint32_t i; + uint64_t tmp; + + printk(KERN_INFO "\n"); + printk(KERN_INFO "=================================================\n"); + + if (dev < 0) { + pr_info("Please specify a valid mtd-device via module parameter\n"); + pr_crit("CAREFUL: This test wipes all data on the specified MTD device!\n"); + return -EINVAL; + } + + pr_info("MTD device: %d\n", dev); + + mtd = get_mtd_device(NULL, dev); + if (IS_ERR(mtd)) { + err = PTR_ERR(mtd); + pr_err("error: cannot get MTD device\n"); + return err; + } + + if (!mtd_type_is_nand(mtd)) { + pr_info("this test requires NAND flash\n"); + goto out; + } + + subpgsize = mtd->writesize >> mtd->subpage_sft; + tmp = mtd->size; + do_div(tmp, mtd->erasesize); + ebcnt = tmp; + pgcnt = mtd->erasesize / mtd->writesize; + + pr_info("MTD device size %llu, eraseblock size %u, " + "page size %u, subpage size %u, count of eraseblocks %u, " + "pages per eraseblock %u, OOB size %u\n", + (unsigned long long)mtd->size, mtd->erasesize, + mtd->writesize, subpgsize, ebcnt, pgcnt, mtd->oobsize); + + err = -ENOMEM; + bufsize = subpgsize * 32; + writebuf = kmalloc(bufsize, GFP_KERNEL); + if (!writebuf) + goto out; + readbuf = kmalloc(bufsize, GFP_KERNEL); + if (!readbuf) + goto out; + bbt = kzalloc(ebcnt, GFP_KERNEL); + if (!bbt) + goto out; + + err = mtdtest_scan_for_bad_eraseblocks(mtd, bbt, 0, ebcnt); + if (err) + goto out; + + err = mtdtest_erase_good_eraseblocks(mtd, bbt, 0, ebcnt); + if (err) + goto out; + + pr_info("writing whole device\n"); + prandom_seed_state(&rnd_state, 1); + for (i = 0; i < ebcnt; ++i) { + if (bbt[i]) + continue; + err = write_eraseblock(i); + if (unlikely(err)) + goto out; + if (i % 256 == 0) + pr_info("written up to eraseblock %u\n", i); + + err = mtdtest_relax(); + if (err) + goto out; + } + pr_info("written %u eraseblocks\n", i); + + prandom_seed_state(&rnd_state, 1); + pr_info("verifying all eraseblocks\n"); + for (i = 0; i < ebcnt; ++i) { + if (bbt[i]) + continue; + err = verify_eraseblock(i); + if (unlikely(err)) + goto out; + if (i % 256 == 0) + pr_info("verified up to eraseblock %u\n", i); + + err = mtdtest_relax(); + if (err) + goto out; + } + pr_info("verified %u eraseblocks\n", i); + + err = mtdtest_erase_good_eraseblocks(mtd, bbt, 0, ebcnt); + if (err) + goto out; + + err = verify_all_eraseblocks_ff(); + if (err) + goto out; + + /* Write all eraseblocks */ + prandom_seed_state(&rnd_state, 3); + pr_info("writing whole device\n"); + for (i = 0; i < ebcnt; ++i) { + if (bbt[i]) + continue; + err = write_eraseblock2(i); + if (unlikely(err)) + goto out; + if (i % 256 == 0) + pr_info("written up to eraseblock %u\n", i); + + err = mtdtest_relax(); + if (err) + goto out; + } + pr_info("written %u eraseblocks\n", i); + + /* Check all eraseblocks */ + prandom_seed_state(&rnd_state, 3); + pr_info("verifying all eraseblocks\n"); + for (i = 0; i < ebcnt; ++i) { + if (bbt[i]) + continue; + err = verify_eraseblock2(i); + if (unlikely(err)) + goto out; + if (i % 256 == 0) + pr_info("verified up to eraseblock %u\n", i); + + err = mtdtest_relax(); + if (err) + goto out; + } + pr_info("verified %u eraseblocks\n", i); + + err = mtdtest_erase_good_eraseblocks(mtd, bbt, 0, ebcnt); + if (err) + goto out; + + err = verify_all_eraseblocks_ff(); + if (err) + goto out; + + pr_info("finished with %d errors\n", errcnt); + +out: + kfree(bbt); + kfree(readbuf); + kfree(writebuf); + put_mtd_device(mtd); + if (err) + pr_info("error %d occurred\n", err); + printk(KERN_INFO "=================================================\n"); + return err; +} +module_init(mtd_subpagetest_init); + +static void __exit mtd_subpagetest_exit(void) +{ + return; +} +module_exit(mtd_subpagetest_exit); + +MODULE_DESCRIPTION("Subpage test module"); +MODULE_AUTHOR("Adrian Hunter"); +MODULE_LICENSE("GPL"); diff --git a/drivers/mtd/tests/torturetest.c b/drivers/mtd/tests/torturetest.c new file mode 100644 index 0000000000..841689b4d8 --- /dev/null +++ b/drivers/mtd/tests/torturetest.c @@ -0,0 +1,480 @@ +// SPDX-License-Identifier: GPL-2.0-only +/* + * Copyright (C) 2006-2008 Artem Bityutskiy + * Copyright (C) 2006-2008 Jarkko Lavinen + * Copyright (C) 2006-2008 Adrian Hunter + * + * Authors: Artem Bityutskiy, Jarkko Lavinen, Adria Hunter + * + * WARNING: this test program may kill your flash and your device. Do not + * use it unless you know what you do. Authors are not responsible for any + * damage caused by this program. + */ + +#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt + +#include <linux/init.h> +#include <linux/ktime.h> +#include <linux/module.h> +#include <linux/moduleparam.h> +#include <linux/err.h> +#include <linux/mtd/mtd.h> +#include <linux/slab.h> +#include <linux/sched.h> +#include "mtd_test.h" + +#define RETRIES 3 + +static int eb = 8; +module_param(eb, int, S_IRUGO); +MODULE_PARM_DESC(eb, "eraseblock number within the selected MTD device"); + +static int ebcnt = 32; +module_param(ebcnt, int, S_IRUGO); +MODULE_PARM_DESC(ebcnt, "number of consecutive eraseblocks to torture"); + +static int pgcnt; +module_param(pgcnt, int, S_IRUGO); +MODULE_PARM_DESC(pgcnt, "number of pages per eraseblock to torture (0 => all)"); + +static int dev = -EINVAL; +module_param(dev, int, S_IRUGO); +MODULE_PARM_DESC(dev, "MTD device number to use"); + +static int gran = 512; +module_param(gran, int, S_IRUGO); +MODULE_PARM_DESC(gran, "how often the status information should be printed"); + +static int check = 1; +module_param(check, int, S_IRUGO); +MODULE_PARM_DESC(check, "if the written data should be checked"); + +static unsigned int cycles_count; +module_param(cycles_count, uint, S_IRUGO); +MODULE_PARM_DESC(cycles_count, "how many erase cycles to do " + "(infinite by default)"); + +static struct mtd_info *mtd; + +/* This buffer contains 0x555555...0xAAAAAA... pattern */ +static unsigned char *patt_5A5; +/* This buffer contains 0xAAAAAA...0x555555... pattern */ +static unsigned char *patt_A5A; +/* This buffer contains all 0xFF bytes */ +static unsigned char *patt_FF; +/* This a temporary buffer is use when checking data */ +static unsigned char *check_buf; +/* How many erase cycles were done */ +static unsigned int erase_cycles; + +static int pgsize; +static ktime_t start, finish; + +static void report_corrupt(unsigned char *read, unsigned char *written); + +static inline void start_timing(void) +{ + start = ktime_get(); +} + +static inline void stop_timing(void) +{ + finish = ktime_get(); +} + +/* + * Check that the contents of eraseblock number @enbum is equivalent to the + * @buf buffer. + */ +static inline int check_eraseblock(int ebnum, unsigned char *buf) +{ + int err, retries = 0; + size_t read; + loff_t addr = (loff_t)ebnum * mtd->erasesize; + size_t len = mtd->erasesize; + + if (pgcnt) { + addr = (loff_t)(ebnum + 1) * mtd->erasesize - pgcnt * pgsize; + len = pgcnt * pgsize; + } + +retry: + err = mtd_read(mtd, addr, len, &read, check_buf); + if (mtd_is_bitflip(err)) + pr_err("single bit flip occurred at EB %d " + "MTD reported that it was fixed.\n", ebnum); + else if (err) { + pr_err("error %d while reading EB %d, " + "read %zd\n", err, ebnum, read); + return err; + } + + if (read != len) { + pr_err("failed to read %zd bytes from EB %d, " + "read only %zd, but no error reported\n", + len, ebnum, read); + return -EIO; + } + + if (memcmp(buf, check_buf, len)) { + pr_err("read wrong data from EB %d\n", ebnum); + report_corrupt(check_buf, buf); + + if (retries++ < RETRIES) { + /* Try read again */ + yield(); + pr_info("re-try reading data from EB %d\n", + ebnum); + goto retry; + } else { + pr_info("retried %d times, still errors, " + "give-up\n", RETRIES); + return -EINVAL; + } + } + + if (retries != 0) + pr_info("only attempt number %d was OK (!!!)\n", + retries); + + return 0; +} + +static inline int write_pattern(int ebnum, void *buf) +{ + int err; + size_t written; + loff_t addr = (loff_t)ebnum * mtd->erasesize; + size_t len = mtd->erasesize; + + if (pgcnt) { + addr = (loff_t)(ebnum + 1) * mtd->erasesize - pgcnt * pgsize; + len = pgcnt * pgsize; + } + err = mtd_write(mtd, addr, len, &written, buf); + if (err) { + pr_err("error %d while writing EB %d, written %zd" + " bytes\n", err, ebnum, written); + return err; + } + if (written != len) { + pr_info("written only %zd bytes of %zd, but no error" + " reported\n", written, len); + return -EIO; + } + + return 0; +} + +static int __init tort_init(void) +{ + int err = 0, i, infinite = !cycles_count; + unsigned char *bad_ebs; + + printk(KERN_INFO "\n"); + printk(KERN_INFO "=================================================\n"); + pr_info("Warning: this program is trying to wear out your " + "flash, stop it if this is not wanted.\n"); + + if (dev < 0) { + pr_info("Please specify a valid mtd-device via module parameter\n"); + pr_crit("CAREFUL: This test wipes all data on the specified MTD device!\n"); + return -EINVAL; + } + + pr_info("MTD device: %d\n", dev); + pr_info("torture %d eraseblocks (%d-%d) of mtd%d\n", + ebcnt, eb, eb + ebcnt - 1, dev); + if (pgcnt) + pr_info("torturing just %d pages per eraseblock\n", + pgcnt); + pr_info("write verify %s\n", check ? "enabled" : "disabled"); + + mtd = get_mtd_device(NULL, dev); + if (IS_ERR(mtd)) { + err = PTR_ERR(mtd); + pr_err("error: cannot get MTD device\n"); + return err; + } + + if (mtd->writesize == 1) { + pr_info("not NAND flash, assume page size is 512 " + "bytes.\n"); + pgsize = 512; + } else + pgsize = mtd->writesize; + + if (pgcnt && (pgcnt > mtd->erasesize / pgsize || pgcnt < 0)) { + pr_err("error: invalid pgcnt value %d\n", pgcnt); + goto out_mtd; + } + + err = -ENOMEM; + patt_5A5 = kmalloc(mtd->erasesize, GFP_KERNEL); + if (!patt_5A5) + goto out_mtd; + + patt_A5A = kmalloc(mtd->erasesize, GFP_KERNEL); + if (!patt_A5A) + goto out_patt_5A5; + + patt_FF = kmalloc(mtd->erasesize, GFP_KERNEL); + if (!patt_FF) + goto out_patt_A5A; + + check_buf = kmalloc(mtd->erasesize, GFP_KERNEL); + if (!check_buf) + goto out_patt_FF; + + bad_ebs = kzalloc(ebcnt, GFP_KERNEL); + if (!bad_ebs) + goto out_check_buf; + + /* Initialize patterns */ + memset(patt_FF, 0xFF, mtd->erasesize); + for (i = 0; i < mtd->erasesize / pgsize; i++) { + if (!(i & 1)) { + memset(patt_5A5 + i * pgsize, 0x55, pgsize); + memset(patt_A5A + i * pgsize, 0xAA, pgsize); + } else { + memset(patt_5A5 + i * pgsize, 0xAA, pgsize); + memset(patt_A5A + i * pgsize, 0x55, pgsize); + } + } + + err = mtdtest_scan_for_bad_eraseblocks(mtd, bad_ebs, eb, ebcnt); + if (err) + goto out; + + start_timing(); + while (1) { + int i; + void *patt; + + err = mtdtest_erase_good_eraseblocks(mtd, bad_ebs, eb, ebcnt); + if (err) + goto out; + + /* Check if the eraseblocks contain only 0xFF bytes */ + if (check) { + for (i = eb; i < eb + ebcnt; i++) { + if (bad_ebs[i - eb]) + continue; + err = check_eraseblock(i, patt_FF); + if (err) { + pr_info("verify failed" + " for 0xFF... pattern\n"); + goto out; + } + + err = mtdtest_relax(); + if (err) + goto out; + } + } + + /* Write the pattern */ + for (i = eb; i < eb + ebcnt; i++) { + if (bad_ebs[i - eb]) + continue; + if ((eb + erase_cycles) & 1) + patt = patt_5A5; + else + patt = patt_A5A; + err = write_pattern(i, patt); + if (err) + goto out; + + err = mtdtest_relax(); + if (err) + goto out; + } + + /* Verify what we wrote */ + if (check) { + for (i = eb; i < eb + ebcnt; i++) { + if (bad_ebs[i - eb]) + continue; + if ((eb + erase_cycles) & 1) + patt = patt_5A5; + else + patt = patt_A5A; + err = check_eraseblock(i, patt); + if (err) { + pr_info("verify failed for %s" + " pattern\n", + ((eb + erase_cycles) & 1) ? + "0x55AA55..." : "0xAA55AA..."); + goto out; + } + + err = mtdtest_relax(); + if (err) + goto out; + } + } + + erase_cycles += 1; + + if (erase_cycles % gran == 0) { + long ms; + + stop_timing(); + ms = ktime_ms_delta(finish, start); + pr_info("%08u erase cycles done, took %lu " + "milliseconds (%lu seconds)\n", + erase_cycles, ms, ms / 1000); + start_timing(); + } + + if (!infinite && --cycles_count == 0) + break; + } +out: + + pr_info("finished after %u erase cycles\n", + erase_cycles); + kfree(bad_ebs); +out_check_buf: + kfree(check_buf); +out_patt_FF: + kfree(patt_FF); +out_patt_A5A: + kfree(patt_A5A); +out_patt_5A5: + kfree(patt_5A5); +out_mtd: + put_mtd_device(mtd); + if (err) + pr_info("error %d occurred during torturing\n", err); + printk(KERN_INFO "=================================================\n"); + return err; +} +module_init(tort_init); + +static void __exit tort_exit(void) +{ + return; +} +module_exit(tort_exit); + +static int countdiffs(unsigned char *buf, unsigned char *check_buf, + unsigned offset, unsigned len, unsigned *bytesp, + unsigned *bitsp); +static void print_bufs(unsigned char *read, unsigned char *written, int start, + int len); + +/* + * Report the detailed information about how the read EB differs from what was + * written. + */ +static void report_corrupt(unsigned char *read, unsigned char *written) +{ + int i; + int bytes, bits, pages, first; + int offset, len; + size_t check_len = mtd->erasesize; + + if (pgcnt) + check_len = pgcnt * pgsize; + + bytes = bits = pages = 0; + for (i = 0; i < check_len; i += pgsize) + if (countdiffs(written, read, i, pgsize, &bytes, + &bits) >= 0) + pages++; + + pr_info("verify fails on %d pages, %d bytes/%d bits\n", + pages, bytes, bits); + pr_info("The following is a list of all differences between" + " what was read from flash and what was expected\n"); + + for (i = 0; i < check_len; i += pgsize) { + cond_resched(); + bytes = bits = 0; + first = countdiffs(written, read, i, pgsize, &bytes, + &bits); + if (first < 0) + continue; + + printk("-------------------------------------------------------" + "----------------------------------\n"); + + pr_info("Page %zd has %d bytes/%d bits failing verify," + " starting at offset 0x%x\n", + (mtd->erasesize - check_len + i) / pgsize, + bytes, bits, first); + + offset = first & ~0x7; + len = ((first + bytes) | 0x7) + 1 - offset; + + print_bufs(read, written, offset, len); + } +} + +static void print_bufs(unsigned char *read, unsigned char *written, int start, + int len) +{ + int i = 0, j1, j2; + char *diff; + + printk("Offset Read Written\n"); + while (i < len) { + printk("0x%08x: ", start + i); + diff = " "; + for (j1 = 0; j1 < 8 && i + j1 < len; j1++) { + printk(" %02x", read[start + i + j1]); + if (read[start + i + j1] != written[start + i + j1]) + diff = "***"; + } + + while (j1 < 8) { + printk(" "); + j1 += 1; + } + + printk(" %s ", diff); + + for (j2 = 0; j2 < 8 && i + j2 < len; j2++) + printk(" %02x", written[start + i + j2]); + printk("\n"); + i += 8; + } +} + +/* + * Count the number of differing bytes and bits and return the first differing + * offset. + */ +static int countdiffs(unsigned char *buf, unsigned char *check_buf, + unsigned offset, unsigned len, unsigned *bytesp, + unsigned *bitsp) +{ + unsigned i, bit; + int first = -1; + + for (i = offset; i < offset + len; i++) + if (buf[i] != check_buf[i]) { + first = i; + break; + } + + while (i < offset + len) { + if (buf[i] != check_buf[i]) { + (*bytesp)++; + bit = 1; + while (bit < 256) { + if ((buf[i] & bit) != (check_buf[i] & bit)) + (*bitsp)++; + bit <<= 1; + } + } + i++; + } + + return first; +} + +MODULE_DESCRIPTION("Eraseblock torturing module"); +MODULE_AUTHOR("Artem Bityutskiy, Jarkko Lavinen, Adrian Hunter"); +MODULE_LICENSE("GPL"); diff --git a/drivers/mtd/ubi/Kconfig b/drivers/mtd/ubi/Kconfig new file mode 100644 index 0000000000..2ed77b7b3f --- /dev/null +++ b/drivers/mtd/ubi/Kconfig @@ -0,0 +1,107 @@ +# SPDX-License-Identifier: GPL-2.0-only +menuconfig MTD_UBI + tristate "Enable UBI - Unsorted block images" + select CRC32 + help + UBI is a software layer above MTD layer which admits use of LVM-like + logical volumes on top of MTD devices, hides some complexities of + flash chips like wear and bad blocks and provides some other useful + capabilities. Please, consult the MTD web site for more details + (www.linux-mtd.infradead.org). + +if MTD_UBI + +config MTD_UBI_WL_THRESHOLD + int "UBI wear-leveling threshold" + default 4096 + range 2 65536 + help + This parameter defines the maximum difference between the highest + erase counter value and the lowest erase counter value of eraseblocks + of UBI devices. When this threshold is exceeded, UBI starts performing + wear leveling by means of moving data from eraseblock with low erase + counter to eraseblocks with high erase counter. + + The default value should be OK for SLC NAND flashes, NOR flashes and + other flashes which have eraseblock life-cycle 100000 or more. + However, in case of MLC NAND flashes which typically have eraseblock + life-cycle less than 10000, the threshold should be lessened (e.g., + to 128 or 256, although it does not have to be power of 2). + +config MTD_UBI_BEB_LIMIT + int "Maximum expected bad eraseblock count per 1024 eraseblocks" + default 20 + range 0 768 + help + This option specifies the maximum bad physical eraseblocks UBI + expects on the MTD device (per 1024 eraseblocks). If the underlying + flash does not admit of bad eraseblocks (e.g. NOR flash), this value + is ignored. + + NAND datasheets often specify the minimum and maximum NVM (Number of + Valid Blocks) for the flashes' endurance lifetime. The maximum + expected bad eraseblocks per 1024 eraseblocks then can be calculated + as "1024 * (1 - MinNVB / MaxNVB)", which gives 20 for most NANDs + (MaxNVB is basically the total count of eraseblocks on the chip). + + To put it differently, if this value is 20, UBI will try to reserve + about 1.9% of physical eraseblocks for bad blocks handling. And that + will be 1.9% of eraseblocks on the entire NAND chip, not just the MTD + partition UBI attaches. This means that if you have, say, a NAND + flash chip admits maximum 40 bad eraseblocks, and it is split on two + MTD partitions of the same size, UBI will reserve 40 eraseblocks when + attaching a partition. + + This option can be overridden by the "mtd=" UBI module parameter or + by the "attach" ioctl. + + Leave the default value if unsure. + +config MTD_UBI_FASTMAP + bool "UBI Fastmap (Experimental feature)" + default n + help + Important: this feature is experimental so far and the on-flash + format for fastmap may change in the next kernel versions + + Fastmap is a mechanism which allows attaching an UBI device + in nearly constant time. Instead of scanning the whole MTD device it + only has to locate a checkpoint (called fastmap) on the device. + The on-flash fastmap contains all information needed to attach + the device. Using fastmap makes only sense on large devices where + attaching by scanning takes long. UBI will not automatically install + a fastmap on old images, but you can set the UBI module parameter + fm_autoconvert to 1 if you want so. Please note that fastmap-enabled + images are still usable with UBI implementations without + fastmap support. On typical flash devices the whole fastmap fits + into one PEB. UBI will reserve PEBs to hold two fastmaps. + + If in doubt, say "N". + +config MTD_UBI_GLUEBI + tristate "MTD devices emulation driver (gluebi)" + help + This option enables gluebi - an additional driver which emulates MTD + devices on top of UBI volumes: for each UBI volumes an MTD device is + created, and all I/O to this MTD device is redirected to the UBI + volume. This is handy to make MTD-oriented software (like JFFS2) + work on top of UBI. Do not enable this unless you use legacy + software. + +config MTD_UBI_BLOCK + bool "Read-only block devices on top of UBI volumes" + default n + depends on BLOCK + help + This option enables read-only UBI block devices support. UBI block + devices will be layered on top of UBI volumes, which means that the + UBI driver will transparently handle things like bad eraseblocks and + bit-flips. You can put any block-oriented file system on top of UBI + volumes in read-only mode (e.g., ext4), but it is probably most + practical for read-only file systems, like squashfs. + + When selected, this feature will be built in the UBI driver. + + If in doubt, say "N". + +endif # MTD_UBI diff --git a/drivers/mtd/ubi/Makefile b/drivers/mtd/ubi/Makefile new file mode 100644 index 0000000000..543673605c --- /dev/null +++ b/drivers/mtd/ubi/Makefile @@ -0,0 +1,9 @@ +# SPDX-License-Identifier: GPL-2.0 +obj-$(CONFIG_MTD_UBI) += ubi.o + +ubi-y += vtbl.o vmt.o upd.o build.o cdev.o kapi.o eba.o io.o wl.o attach.o +ubi-y += misc.o debug.o +ubi-$(CONFIG_MTD_UBI_FASTMAP) += fastmap.o +ubi-$(CONFIG_MTD_UBI_BLOCK) += block.o + +obj-$(CONFIG_MTD_UBI_GLUEBI) += gluebi.o diff --git a/drivers/mtd/ubi/attach.c b/drivers/mtd/ubi/attach.c new file mode 100644 index 0000000000..ae5abe492b --- /dev/null +++ b/drivers/mtd/ubi/attach.c @@ -0,0 +1,1923 @@ +// SPDX-License-Identifier: GPL-2.0-or-later +/* + * Copyright (c) International Business Machines Corp., 2006 + * + * Author: Artem Bityutskiy (Битюцкий Артём) + */ + +/* + * UBI attaching sub-system. + * + * This sub-system is responsible for attaching MTD devices and it also + * implements flash media scanning. + * + * The attaching information is represented by a &struct ubi_attach_info' + * object. Information about volumes is represented by &struct ubi_ainf_volume + * objects which are kept in volume RB-tree with root at the @volumes field. + * The RB-tree is indexed by the volume ID. + * + * Logical eraseblocks are represented by &struct ubi_ainf_peb objects. These + * objects are kept in per-volume RB-trees with the root at the corresponding + * &struct ubi_ainf_volume object. To put it differently, we keep an RB-tree of + * per-volume objects and each of these objects is the root of RB-tree of + * per-LEB objects. + * + * Corrupted physical eraseblocks are put to the @corr list, free physical + * eraseblocks are put to the @free list and the physical eraseblock to be + * erased are put to the @erase list. + * + * About corruptions + * ~~~~~~~~~~~~~~~~~ + * + * UBI protects EC and VID headers with CRC-32 checksums, so it can detect + * whether the headers are corrupted or not. Sometimes UBI also protects the + * data with CRC-32, e.g., when it executes the atomic LEB change operation, or + * when it moves the contents of a PEB for wear-leveling purposes. + * + * UBI tries to distinguish between 2 types of corruptions. + * + * 1. Corruptions caused by power cuts. These are expected corruptions and UBI + * tries to handle them gracefully, without printing too many warnings and + * error messages. The idea is that we do not lose important data in these + * cases - we may lose only the data which were being written to the media just + * before the power cut happened, and the upper layers (e.g., UBIFS) are + * supposed to handle such data losses (e.g., by using the FS journal). + * + * When UBI detects a corruption (CRC-32 mismatch) in a PEB, and it looks like + * the reason is a power cut, UBI puts this PEB to the @erase list, and all + * PEBs in the @erase list are scheduled for erasure later. + * + * 2. Unexpected corruptions which are not caused by power cuts. During + * attaching, such PEBs are put to the @corr list and UBI preserves them. + * Obviously, this lessens the amount of available PEBs, and if at some point + * UBI runs out of free PEBs, it switches to R/O mode. UBI also loudly informs + * about such PEBs every time the MTD device is attached. + * + * However, it is difficult to reliably distinguish between these types of + * corruptions and UBI's strategy is as follows (in case of attaching by + * scanning). UBI assumes corruption type 2 if the VID header is corrupted and + * the data area does not contain all 0xFFs, and there were no bit-flips or + * integrity errors (e.g., ECC errors in case of NAND) while reading the data + * area. Otherwise UBI assumes corruption type 1. So the decision criteria + * are as follows. + * o If the data area contains only 0xFFs, there are no data, and it is safe + * to just erase this PEB - this is corruption type 1. + * o If the data area has bit-flips or data integrity errors (ECC errors on + * NAND), it is probably a PEB which was being erased when power cut + * happened, so this is corruption type 1. However, this is just a guess, + * which might be wrong. + * o Otherwise this is corruption type 2. + */ + +#include <linux/err.h> +#include <linux/slab.h> +#include <linux/crc32.h> +#include <linux/math64.h> +#include <linux/random.h> +#include "ubi.h" + +static int self_check_ai(struct ubi_device *ubi, struct ubi_attach_info *ai); + +#define AV_FIND BIT(0) +#define AV_ADD BIT(1) +#define AV_FIND_OR_ADD (AV_FIND | AV_ADD) + +/** + * find_or_add_av - internal function to find a volume, add a volume or do + * both (find and add if missing). + * @ai: attaching information + * @vol_id: the requested volume ID + * @flags: a combination of the %AV_FIND and %AV_ADD flags describing the + * expected operation. If only %AV_ADD is set, -EEXIST is returned + * if the volume already exists. If only %AV_FIND is set, NULL is + * returned if the volume does not exist. And if both flags are + * set, the helper first tries to find an existing volume, and if + * it does not exist it creates a new one. + * @created: in value used to inform the caller whether it"s a newly created + * volume or not. + * + * This function returns a pointer to a volume description or an ERR_PTR if + * the operation failed. It can also return NULL if only %AV_FIND is set and + * the volume does not exist. + */ +static struct ubi_ainf_volume *find_or_add_av(struct ubi_attach_info *ai, + int vol_id, unsigned int flags, + bool *created) +{ + struct ubi_ainf_volume *av; + struct rb_node **p = &ai->volumes.rb_node, *parent = NULL; + + /* Walk the volume RB-tree to look if this volume is already present */ + while (*p) { + parent = *p; + av = rb_entry(parent, struct ubi_ainf_volume, rb); + + if (vol_id == av->vol_id) { + *created = false; + + if (!(flags & AV_FIND)) + return ERR_PTR(-EEXIST); + + return av; + } + + if (vol_id > av->vol_id) + p = &(*p)->rb_left; + else + p = &(*p)->rb_right; + } + + if (!(flags & AV_ADD)) + return NULL; + + /* The volume is absent - add it */ + av = kzalloc(sizeof(*av), GFP_KERNEL); + if (!av) + return ERR_PTR(-ENOMEM); + + av->vol_id = vol_id; + + if (vol_id > ai->highest_vol_id) + ai->highest_vol_id = vol_id; + + rb_link_node(&av->rb, parent, p); + rb_insert_color(&av->rb, &ai->volumes); + ai->vols_found += 1; + *created = true; + dbg_bld("added volume %d", vol_id); + return av; +} + +/** + * ubi_find_or_add_av - search for a volume in the attaching information and + * add one if it does not exist. + * @ai: attaching information + * @vol_id: the requested volume ID + * @created: whether the volume has been created or not + * + * This function returns a pointer to the new volume description or an + * ERR_PTR if the operation failed. + */ +static struct ubi_ainf_volume *ubi_find_or_add_av(struct ubi_attach_info *ai, + int vol_id, bool *created) +{ + return find_or_add_av(ai, vol_id, AV_FIND_OR_ADD, created); +} + +/** + * ubi_alloc_aeb - allocate an aeb element + * @ai: attaching information + * @pnum: physical eraseblock number + * @ec: erase counter of the physical eraseblock + * + * Allocate an aeb object and initialize the pnum and ec information. + * vol_id and lnum are set to UBI_UNKNOWN, and the other fields are + * initialized to zero. + * Note that the element is not added in any list or RB tree. + */ +struct ubi_ainf_peb *ubi_alloc_aeb(struct ubi_attach_info *ai, int pnum, + int ec) +{ + struct ubi_ainf_peb *aeb; + + aeb = kmem_cache_zalloc(ai->aeb_slab_cache, GFP_KERNEL); + if (!aeb) + return NULL; + + aeb->pnum = pnum; + aeb->ec = ec; + aeb->vol_id = UBI_UNKNOWN; + aeb->lnum = UBI_UNKNOWN; + + return aeb; +} + +/** + * ubi_free_aeb - free an aeb element + * @ai: attaching information + * @aeb: the element to free + * + * Free an aeb object. The caller must have removed the element from any list + * or RB tree. + */ +void ubi_free_aeb(struct ubi_attach_info *ai, struct ubi_ainf_peb *aeb) +{ + kmem_cache_free(ai->aeb_slab_cache, aeb); +} + +/** + * add_to_list - add physical eraseblock to a list. + * @ai: attaching information + * @pnum: physical eraseblock number to add + * @vol_id: the last used volume id for the PEB + * @lnum: the last used LEB number for the PEB + * @ec: erase counter of the physical eraseblock + * @to_head: if not zero, add to the head of the list + * @list: the list to add to + * + * This function allocates a 'struct ubi_ainf_peb' object for physical + * eraseblock @pnum and adds it to the "free", "erase", or "alien" lists. + * It stores the @lnum and @vol_id alongside, which can both be + * %UBI_UNKNOWN if they are not available, not readable, or not assigned. + * If @to_head is not zero, PEB will be added to the head of the list, which + * basically means it will be processed first later. E.g., we add corrupted + * PEBs (corrupted due to power cuts) to the head of the erase list to make + * sure we erase them first and get rid of corruptions ASAP. This function + * returns zero in case of success and a negative error code in case of + * failure. + */ +static int add_to_list(struct ubi_attach_info *ai, int pnum, int vol_id, + int lnum, int ec, int to_head, struct list_head *list) +{ + struct ubi_ainf_peb *aeb; + + if (list == &ai->free) { + dbg_bld("add to free: PEB %d, EC %d", pnum, ec); + } else if (list == &ai->erase) { + dbg_bld("add to erase: PEB %d, EC %d", pnum, ec); + } else if (list == &ai->alien) { + dbg_bld("add to alien: PEB %d, EC %d", pnum, ec); + ai->alien_peb_count += 1; + } else + BUG(); + + aeb = ubi_alloc_aeb(ai, pnum, ec); + if (!aeb) + return -ENOMEM; + + aeb->vol_id = vol_id; + aeb->lnum = lnum; + if (to_head) + list_add(&aeb->u.list, list); + else + list_add_tail(&aeb->u.list, list); + return 0; +} + +/** + * add_corrupted - add a corrupted physical eraseblock. + * @ai: attaching information + * @pnum: physical eraseblock number to add + * @ec: erase counter of the physical eraseblock + * + * This function allocates a 'struct ubi_ainf_peb' object for a corrupted + * physical eraseblock @pnum and adds it to the 'corr' list. The corruption + * was presumably not caused by a power cut. Returns zero in case of success + * and a negative error code in case of failure. + */ +static int add_corrupted(struct ubi_attach_info *ai, int pnum, int ec) +{ + struct ubi_ainf_peb *aeb; + + dbg_bld("add to corrupted: PEB %d, EC %d", pnum, ec); + + aeb = ubi_alloc_aeb(ai, pnum, ec); + if (!aeb) + return -ENOMEM; + + ai->corr_peb_count += 1; + list_add(&aeb->u.list, &ai->corr); + return 0; +} + +/** + * add_fastmap - add a Fastmap related physical eraseblock. + * @ai: attaching information + * @pnum: physical eraseblock number the VID header came from + * @vid_hdr: the volume identifier header + * @ec: erase counter of the physical eraseblock + * + * This function allocates a 'struct ubi_ainf_peb' object for a Fastamp + * physical eraseblock @pnum and adds it to the 'fastmap' list. + * Such blocks can be Fastmap super and data blocks from both the most + * recent Fastmap we're attaching from or from old Fastmaps which will + * be erased. + */ +static int add_fastmap(struct ubi_attach_info *ai, int pnum, + struct ubi_vid_hdr *vid_hdr, int ec) +{ + struct ubi_ainf_peb *aeb; + + aeb = ubi_alloc_aeb(ai, pnum, ec); + if (!aeb) + return -ENOMEM; + + aeb->vol_id = be32_to_cpu(vid_hdr->vol_id); + aeb->sqnum = be64_to_cpu(vid_hdr->sqnum); + list_add(&aeb->u.list, &ai->fastmap); + + dbg_bld("add to fastmap list: PEB %d, vol_id %d, sqnum: %llu", pnum, + aeb->vol_id, aeb->sqnum); + + return 0; +} + +/** + * validate_vid_hdr - check volume identifier header. + * @ubi: UBI device description object + * @vid_hdr: the volume identifier header to check + * @av: information about the volume this logical eraseblock belongs to + * @pnum: physical eraseblock number the VID header came from + * + * This function checks that data stored in @vid_hdr is consistent. Returns + * non-zero if an inconsistency was found and zero if not. + * + * Note, UBI does sanity check of everything it reads from the flash media. + * Most of the checks are done in the I/O sub-system. Here we check that the + * information in the VID header is consistent to the information in other VID + * headers of the same volume. + */ +static int validate_vid_hdr(const struct ubi_device *ubi, + const struct ubi_vid_hdr *vid_hdr, + const struct ubi_ainf_volume *av, int pnum) +{ + int vol_type = vid_hdr->vol_type; + int vol_id = be32_to_cpu(vid_hdr->vol_id); + int used_ebs = be32_to_cpu(vid_hdr->used_ebs); + int data_pad = be32_to_cpu(vid_hdr->data_pad); + + if (av->leb_count != 0) { + int av_vol_type; + + /* + * This is not the first logical eraseblock belonging to this + * volume. Ensure that the data in its VID header is consistent + * to the data in previous logical eraseblock headers. + */ + + if (vol_id != av->vol_id) { + ubi_err(ubi, "inconsistent vol_id"); + goto bad; + } + + if (av->vol_type == UBI_STATIC_VOLUME) + av_vol_type = UBI_VID_STATIC; + else + av_vol_type = UBI_VID_DYNAMIC; + + if (vol_type != av_vol_type) { + ubi_err(ubi, "inconsistent vol_type"); + goto bad; + } + + if (used_ebs != av->used_ebs) { + ubi_err(ubi, "inconsistent used_ebs"); + goto bad; + } + + if (data_pad != av->data_pad) { + ubi_err(ubi, "inconsistent data_pad"); + goto bad; + } + } + + return 0; + +bad: + ubi_err(ubi, "inconsistent VID header at PEB %d", pnum); + ubi_dump_vid_hdr(vid_hdr); + ubi_dump_av(av); + return -EINVAL; +} + +/** + * add_volume - add volume to the attaching information. + * @ai: attaching information + * @vol_id: ID of the volume to add + * @pnum: physical eraseblock number + * @vid_hdr: volume identifier header + * + * If the volume corresponding to the @vid_hdr logical eraseblock is already + * present in the attaching information, this function does nothing. Otherwise + * it adds corresponding volume to the attaching information. Returns a pointer + * to the allocated "av" object in case of success and a negative error code in + * case of failure. + */ +static struct ubi_ainf_volume *add_volume(struct ubi_attach_info *ai, + int vol_id, int pnum, + const struct ubi_vid_hdr *vid_hdr) +{ + struct ubi_ainf_volume *av; + bool created; + + ubi_assert(vol_id == be32_to_cpu(vid_hdr->vol_id)); + + av = ubi_find_or_add_av(ai, vol_id, &created); + if (IS_ERR(av) || !created) + return av; + + av->used_ebs = be32_to_cpu(vid_hdr->used_ebs); + av->data_pad = be32_to_cpu(vid_hdr->data_pad); + av->compat = vid_hdr->compat; + av->vol_type = vid_hdr->vol_type == UBI_VID_DYNAMIC ? UBI_DYNAMIC_VOLUME + : UBI_STATIC_VOLUME; + + return av; +} + +/** + * ubi_compare_lebs - find out which logical eraseblock is newer. + * @ubi: UBI device description object + * @aeb: first logical eraseblock to compare + * @pnum: physical eraseblock number of the second logical eraseblock to + * compare + * @vid_hdr: volume identifier header of the second logical eraseblock + * + * This function compares 2 copies of a LEB and informs which one is newer. In + * case of success this function returns a positive value, in case of failure, a + * negative error code is returned. The success return codes use the following + * bits: + * o bit 0 is cleared: the first PEB (described by @aeb) is newer than the + * second PEB (described by @pnum and @vid_hdr); + * o bit 0 is set: the second PEB is newer; + * o bit 1 is cleared: no bit-flips were detected in the newer LEB; + * o bit 1 is set: bit-flips were detected in the newer LEB; + * o bit 2 is cleared: the older LEB is not corrupted; + * o bit 2 is set: the older LEB is corrupted. + */ +int ubi_compare_lebs(struct ubi_device *ubi, const struct ubi_ainf_peb *aeb, + int pnum, const struct ubi_vid_hdr *vid_hdr) +{ + int len, err, second_is_newer, bitflips = 0, corrupted = 0; + uint32_t data_crc, crc; + struct ubi_vid_io_buf *vidb = NULL; + unsigned long long sqnum2 = be64_to_cpu(vid_hdr->sqnum); + + if (sqnum2 == aeb->sqnum) { + /* + * This must be a really ancient UBI image which has been + * created before sequence numbers support has been added. At + * that times we used 32-bit LEB versions stored in logical + * eraseblocks. That was before UBI got into mainline. We do not + * support these images anymore. Well, those images still work, + * but only if no unclean reboots happened. + */ + ubi_err(ubi, "unsupported on-flash UBI format"); + return -EINVAL; + } + + /* Obviously the LEB with lower sequence counter is older */ + second_is_newer = (sqnum2 > aeb->sqnum); + + /* + * Now we know which copy is newer. If the copy flag of the PEB with + * newer version is not set, then we just return, otherwise we have to + * check data CRC. For the second PEB we already have the VID header, + * for the first one - we'll need to re-read it from flash. + * + * Note: this may be optimized so that we wouldn't read twice. + */ + + if (second_is_newer) { + if (!vid_hdr->copy_flag) { + /* It is not a copy, so it is newer */ + dbg_bld("second PEB %d is newer, copy_flag is unset", + pnum); + return 1; + } + } else { + if (!aeb->copy_flag) { + /* It is not a copy, so it is newer */ + dbg_bld("first PEB %d is newer, copy_flag is unset", + pnum); + return bitflips << 1; + } + + vidb = ubi_alloc_vid_buf(ubi, GFP_KERNEL); + if (!vidb) + return -ENOMEM; + + pnum = aeb->pnum; + err = ubi_io_read_vid_hdr(ubi, pnum, vidb, 0); + if (err) { + if (err == UBI_IO_BITFLIPS) + bitflips = 1; + else { + ubi_err(ubi, "VID of PEB %d header is bad, but it was OK earlier, err %d", + pnum, err); + if (err > 0) + err = -EIO; + + goto out_free_vidh; + } + } + + vid_hdr = ubi_get_vid_hdr(vidb); + } + + /* Read the data of the copy and check the CRC */ + + len = be32_to_cpu(vid_hdr->data_size); + + mutex_lock(&ubi->buf_mutex); + err = ubi_io_read_data(ubi, ubi->peb_buf, pnum, 0, len); + if (err && err != UBI_IO_BITFLIPS && !mtd_is_eccerr(err)) + goto out_unlock; + + data_crc = be32_to_cpu(vid_hdr->data_crc); + crc = crc32(UBI_CRC32_INIT, ubi->peb_buf, len); + if (crc != data_crc) { + dbg_bld("PEB %d CRC error: calculated %#08x, must be %#08x", + pnum, crc, data_crc); + corrupted = 1; + bitflips = 0; + second_is_newer = !second_is_newer; + } else { + dbg_bld("PEB %d CRC is OK", pnum); + bitflips |= !!err; + } + mutex_unlock(&ubi->buf_mutex); + + ubi_free_vid_buf(vidb); + + if (second_is_newer) + dbg_bld("second PEB %d is newer, copy_flag is set", pnum); + else + dbg_bld("first PEB %d is newer, copy_flag is set", pnum); + + return second_is_newer | (bitflips << 1) | (corrupted << 2); + +out_unlock: + mutex_unlock(&ubi->buf_mutex); +out_free_vidh: + ubi_free_vid_buf(vidb); + return err; +} + +/** + * ubi_add_to_av - add used physical eraseblock to the attaching information. + * @ubi: UBI device description object + * @ai: attaching information + * @pnum: the physical eraseblock number + * @ec: erase counter + * @vid_hdr: the volume identifier header + * @bitflips: if bit-flips were detected when this physical eraseblock was read + * + * This function adds information about a used physical eraseblock to the + * 'used' tree of the corresponding volume. The function is rather complex + * because it has to handle cases when this is not the first physical + * eraseblock belonging to the same logical eraseblock, and the newer one has + * to be picked, while the older one has to be dropped. This function returns + * zero in case of success and a negative error code in case of failure. + */ +int ubi_add_to_av(struct ubi_device *ubi, struct ubi_attach_info *ai, int pnum, + int ec, const struct ubi_vid_hdr *vid_hdr, int bitflips) +{ + int err, vol_id, lnum; + unsigned long long sqnum; + struct ubi_ainf_volume *av; + struct ubi_ainf_peb *aeb; + struct rb_node **p, *parent = NULL; + + vol_id = be32_to_cpu(vid_hdr->vol_id); + lnum = be32_to_cpu(vid_hdr->lnum); + sqnum = be64_to_cpu(vid_hdr->sqnum); + + dbg_bld("PEB %d, LEB %d:%d, EC %d, sqnum %llu, bitflips %d", + pnum, vol_id, lnum, ec, sqnum, bitflips); + + av = add_volume(ai, vol_id, pnum, vid_hdr); + if (IS_ERR(av)) + return PTR_ERR(av); + + if (ai->max_sqnum < sqnum) + ai->max_sqnum = sqnum; + + /* + * Walk the RB-tree of logical eraseblocks of volume @vol_id to look + * if this is the first instance of this logical eraseblock or not. + */ + p = &av->root.rb_node; + while (*p) { + int cmp_res; + + parent = *p; + aeb = rb_entry(parent, struct ubi_ainf_peb, u.rb); + if (lnum != aeb->lnum) { + if (lnum < aeb->lnum) + p = &(*p)->rb_left; + else + p = &(*p)->rb_right; + continue; + } + + /* + * There is already a physical eraseblock describing the same + * logical eraseblock present. + */ + + dbg_bld("this LEB already exists: PEB %d, sqnum %llu, EC %d", + aeb->pnum, aeb->sqnum, aeb->ec); + + /* + * Make sure that the logical eraseblocks have different + * sequence numbers. Otherwise the image is bad. + * + * However, if the sequence number is zero, we assume it must + * be an ancient UBI image from the era when UBI did not have + * sequence numbers. We still can attach these images, unless + * there is a need to distinguish between old and new + * eraseblocks, in which case we'll refuse the image in + * 'ubi_compare_lebs()'. In other words, we attach old clean + * images, but refuse attaching old images with duplicated + * logical eraseblocks because there was an unclean reboot. + */ + if (aeb->sqnum == sqnum && sqnum != 0) { + ubi_err(ubi, "two LEBs with same sequence number %llu", + sqnum); + ubi_dump_aeb(aeb, 0); + ubi_dump_vid_hdr(vid_hdr); + return -EINVAL; + } + + /* + * Now we have to drop the older one and preserve the newer + * one. + */ + cmp_res = ubi_compare_lebs(ubi, aeb, pnum, vid_hdr); + if (cmp_res < 0) + return cmp_res; + + if (cmp_res & 1) { + /* + * This logical eraseblock is newer than the one + * found earlier. + */ + err = validate_vid_hdr(ubi, vid_hdr, av, pnum); + if (err) + return err; + + err = add_to_list(ai, aeb->pnum, aeb->vol_id, + aeb->lnum, aeb->ec, cmp_res & 4, + &ai->erase); + if (err) + return err; + + aeb->ec = ec; + aeb->pnum = pnum; + aeb->vol_id = vol_id; + aeb->lnum = lnum; + aeb->scrub = ((cmp_res & 2) || bitflips); + aeb->copy_flag = vid_hdr->copy_flag; + aeb->sqnum = sqnum; + + if (av->highest_lnum == lnum) + av->last_data_size = + be32_to_cpu(vid_hdr->data_size); + + return 0; + } else { + /* + * This logical eraseblock is older than the one found + * previously. + */ + return add_to_list(ai, pnum, vol_id, lnum, ec, + cmp_res & 4, &ai->erase); + } + } + + /* + * We've met this logical eraseblock for the first time, add it to the + * attaching information. + */ + + err = validate_vid_hdr(ubi, vid_hdr, av, pnum); + if (err) + return err; + + aeb = ubi_alloc_aeb(ai, pnum, ec); + if (!aeb) + return -ENOMEM; + + aeb->vol_id = vol_id; + aeb->lnum = lnum; + aeb->scrub = bitflips; + aeb->copy_flag = vid_hdr->copy_flag; + aeb->sqnum = sqnum; + + if (av->highest_lnum <= lnum) { + av->highest_lnum = lnum; + av->last_data_size = be32_to_cpu(vid_hdr->data_size); + } + + av->leb_count += 1; + rb_link_node(&aeb->u.rb, parent, p); + rb_insert_color(&aeb->u.rb, &av->root); + return 0; +} + +/** + * ubi_add_av - add volume to the attaching information. + * @ai: attaching information + * @vol_id: the requested volume ID + * + * This function returns a pointer to the new volume description or an + * ERR_PTR if the operation failed. + */ +struct ubi_ainf_volume *ubi_add_av(struct ubi_attach_info *ai, int vol_id) +{ + bool created; + + return find_or_add_av(ai, vol_id, AV_ADD, &created); +} + +/** + * ubi_find_av - find volume in the attaching information. + * @ai: attaching information + * @vol_id: the requested volume ID + * + * This function returns a pointer to the volume description or %NULL if there + * are no data about this volume in the attaching information. + */ +struct ubi_ainf_volume *ubi_find_av(const struct ubi_attach_info *ai, + int vol_id) +{ + bool created; + + return find_or_add_av((struct ubi_attach_info *)ai, vol_id, AV_FIND, + &created); +} + +static void destroy_av(struct ubi_attach_info *ai, struct ubi_ainf_volume *av, + struct list_head *list); + +/** + * ubi_remove_av - delete attaching information about a volume. + * @ai: attaching information + * @av: the volume attaching information to delete + */ +void ubi_remove_av(struct ubi_attach_info *ai, struct ubi_ainf_volume *av) +{ + dbg_bld("remove attaching information about volume %d", av->vol_id); + + rb_erase(&av->rb, &ai->volumes); + destroy_av(ai, av, &ai->erase); + ai->vols_found -= 1; +} + +/** + * early_erase_peb - erase a physical eraseblock. + * @ubi: UBI device description object + * @ai: attaching information + * @pnum: physical eraseblock number to erase; + * @ec: erase counter value to write (%UBI_UNKNOWN if it is unknown) + * + * This function erases physical eraseblock 'pnum', and writes the erase + * counter header to it. This function should only be used on UBI device + * initialization stages, when the EBA sub-system had not been yet initialized. + * This function returns zero in case of success and a negative error code in + * case of failure. + */ +static int early_erase_peb(struct ubi_device *ubi, + const struct ubi_attach_info *ai, int pnum, int ec) +{ + int err; + struct ubi_ec_hdr *ec_hdr; + + if ((long long)ec >= UBI_MAX_ERASECOUNTER) { + /* + * Erase counter overflow. Upgrade UBI and use 64-bit + * erase counters internally. + */ + ubi_err(ubi, "erase counter overflow at PEB %d, EC %d", + pnum, ec); + return -EINVAL; + } + + ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_KERNEL); + if (!ec_hdr) + return -ENOMEM; + + ec_hdr->ec = cpu_to_be64(ec); + + err = ubi_io_sync_erase(ubi, pnum, 0); + if (err < 0) + goto out_free; + + err = ubi_io_write_ec_hdr(ubi, pnum, ec_hdr); + +out_free: + kfree(ec_hdr); + return err; +} + +/** + * ubi_early_get_peb - get a free physical eraseblock. + * @ubi: UBI device description object + * @ai: attaching information + * + * This function returns a free physical eraseblock. It is supposed to be + * called on the UBI initialization stages when the wear-leveling sub-system is + * not initialized yet. This function picks a physical eraseblocks from one of + * the lists, writes the EC header if it is needed, and removes it from the + * list. + * + * This function returns a pointer to the "aeb" of the found free PEB in case + * of success and an error code in case of failure. + */ +struct ubi_ainf_peb *ubi_early_get_peb(struct ubi_device *ubi, + struct ubi_attach_info *ai) +{ + int err = 0; + struct ubi_ainf_peb *aeb, *tmp_aeb; + + if (!list_empty(&ai->free)) { + aeb = list_entry(ai->free.next, struct ubi_ainf_peb, u.list); + list_del(&aeb->u.list); + dbg_bld("return free PEB %d, EC %d", aeb->pnum, aeb->ec); + return aeb; + } + + /* + * We try to erase the first physical eraseblock from the erase list + * and pick it if we succeed, or try to erase the next one if not. And + * so forth. We don't want to take care about bad eraseblocks here - + * they'll be handled later. + */ + list_for_each_entry_safe(aeb, tmp_aeb, &ai->erase, u.list) { + if (aeb->ec == UBI_UNKNOWN) + aeb->ec = ai->mean_ec; + + err = early_erase_peb(ubi, ai, aeb->pnum, aeb->ec+1); + if (err) + continue; + + aeb->ec += 1; + list_del(&aeb->u.list); + dbg_bld("return PEB %d, EC %d", aeb->pnum, aeb->ec); + return aeb; + } + + ubi_err(ubi, "no free eraseblocks"); + return ERR_PTR(-ENOSPC); +} + +/** + * check_corruption - check the data area of PEB. + * @ubi: UBI device description object + * @vid_hdr: the (corrupted) VID header of this PEB + * @pnum: the physical eraseblock number to check + * + * This is a helper function which is used to distinguish between VID header + * corruptions caused by power cuts and other reasons. If the PEB contains only + * 0xFF bytes in the data area, the VID header is most probably corrupted + * because of a power cut (%0 is returned in this case). Otherwise, it was + * probably corrupted for some other reasons (%1 is returned in this case). A + * negative error code is returned if a read error occurred. + * + * If the corruption reason was a power cut, UBI can safely erase this PEB. + * Otherwise, it should preserve it to avoid possibly destroying important + * information. + */ +static int check_corruption(struct ubi_device *ubi, struct ubi_vid_hdr *vid_hdr, + int pnum) +{ + int err; + + mutex_lock(&ubi->buf_mutex); + memset(ubi->peb_buf, 0x00, ubi->leb_size); + + err = ubi_io_read(ubi, ubi->peb_buf, pnum, ubi->leb_start, + ubi->leb_size); + if (err == UBI_IO_BITFLIPS || mtd_is_eccerr(err)) { + /* + * Bit-flips or integrity errors while reading the data area. + * It is difficult to say for sure what type of corruption is + * this, but presumably a power cut happened while this PEB was + * erased, so it became unstable and corrupted, and should be + * erased. + */ + err = 0; + goto out_unlock; + } + + if (err) + goto out_unlock; + + if (ubi_check_pattern(ubi->peb_buf, 0xFF, ubi->leb_size)) + goto out_unlock; + + ubi_err(ubi, "PEB %d contains corrupted VID header, and the data does not contain all 0xFF", + pnum); + ubi_err(ubi, "this may be a non-UBI PEB or a severe VID header corruption which requires manual inspection"); + ubi_dump_vid_hdr(vid_hdr); + pr_err("hexdump of PEB %d offset %d, length %d", + pnum, ubi->leb_start, ubi->leb_size); + ubi_dbg_print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1, + ubi->peb_buf, ubi->leb_size, 1); + err = 1; + +out_unlock: + mutex_unlock(&ubi->buf_mutex); + return err; +} + +static bool vol_ignored(int vol_id) +{ + switch (vol_id) { + case UBI_LAYOUT_VOLUME_ID: + return true; + } + +#ifdef CONFIG_MTD_UBI_FASTMAP + return ubi_is_fm_vol(vol_id); +#else + return false; +#endif +} + +/** + * scan_peb - scan and process UBI headers of a PEB. + * @ubi: UBI device description object + * @ai: attaching information + * @pnum: the physical eraseblock number + * @fast: true if we're scanning for a Fastmap + * + * This function reads UBI headers of PEB @pnum, checks them, and adds + * information about this PEB to the corresponding list or RB-tree in the + * "attaching info" structure. Returns zero if the physical eraseblock was + * successfully handled and a negative error code in case of failure. + */ +static int scan_peb(struct ubi_device *ubi, struct ubi_attach_info *ai, + int pnum, bool fast) +{ + struct ubi_ec_hdr *ech = ai->ech; + struct ubi_vid_io_buf *vidb = ai->vidb; + struct ubi_vid_hdr *vidh = ubi_get_vid_hdr(vidb); + long long ec; + int err, bitflips = 0, vol_id = -1, ec_err = 0; + + dbg_bld("scan PEB %d", pnum); + + /* Skip bad physical eraseblocks */ + err = ubi_io_is_bad(ubi, pnum); + if (err < 0) + return err; + else if (err) { + ai->bad_peb_count += 1; + return 0; + } + + err = ubi_io_read_ec_hdr(ubi, pnum, ech, 0); + if (err < 0) + return err; + switch (err) { + case 0: + break; + case UBI_IO_BITFLIPS: + bitflips = 1; + break; + case UBI_IO_FF: + ai->empty_peb_count += 1; + return add_to_list(ai, pnum, UBI_UNKNOWN, UBI_UNKNOWN, + UBI_UNKNOWN, 0, &ai->erase); + case UBI_IO_FF_BITFLIPS: + ai->empty_peb_count += 1; + return add_to_list(ai, pnum, UBI_UNKNOWN, UBI_UNKNOWN, + UBI_UNKNOWN, 1, &ai->erase); + case UBI_IO_BAD_HDR_EBADMSG: + case UBI_IO_BAD_HDR: + /* + * We have to also look at the VID header, possibly it is not + * corrupted. Set %bitflips flag in order to make this PEB be + * moved and EC be re-created. + */ + ec_err = err; + ec = UBI_UNKNOWN; + bitflips = 1; + break; + default: + ubi_err(ubi, "'ubi_io_read_ec_hdr()' returned unknown code %d", + err); + return -EINVAL; + } + + if (!ec_err) { + int image_seq; + + /* Make sure UBI version is OK */ + if (ech->version != UBI_VERSION) { + ubi_err(ubi, "this UBI version is %d, image version is %d", + UBI_VERSION, (int)ech->version); + return -EINVAL; + } + + ec = be64_to_cpu(ech->ec); + if (ec > UBI_MAX_ERASECOUNTER) { + /* + * Erase counter overflow. The EC headers have 64 bits + * reserved, but we anyway make use of only 31 bit + * values, as this seems to be enough for any existing + * flash. Upgrade UBI and use 64-bit erase counters + * internally. + */ + ubi_err(ubi, "erase counter overflow, max is %d", + UBI_MAX_ERASECOUNTER); + ubi_dump_ec_hdr(ech); + return -EINVAL; + } + + /* + * Make sure that all PEBs have the same image sequence number. + * This allows us to detect situations when users flash UBI + * images incorrectly, so that the flash has the new UBI image + * and leftovers from the old one. This feature was added + * relatively recently, and the sequence number was always + * zero, because old UBI implementations always set it to zero. + * For this reasons, we do not panic if some PEBs have zero + * sequence number, while other PEBs have non-zero sequence + * number. + */ + image_seq = be32_to_cpu(ech->image_seq); + if (!ubi->image_seq) + ubi->image_seq = image_seq; + if (image_seq && ubi->image_seq != image_seq) { + ubi_err(ubi, "bad image sequence number %d in PEB %d, expected %d", + image_seq, pnum, ubi->image_seq); + ubi_dump_ec_hdr(ech); + return -EINVAL; + } + } + + /* OK, we've done with the EC header, let's look at the VID header */ + + err = ubi_io_read_vid_hdr(ubi, pnum, vidb, 0); + if (err < 0) + return err; + switch (err) { + case 0: + break; + case UBI_IO_BITFLIPS: + bitflips = 1; + break; + case UBI_IO_BAD_HDR_EBADMSG: + if (ec_err == UBI_IO_BAD_HDR_EBADMSG) + /* + * Both EC and VID headers are corrupted and were read + * with data integrity error, probably this is a bad + * PEB, bit it is not marked as bad yet. This may also + * be a result of power cut during erasure. + */ + ai->maybe_bad_peb_count += 1; + fallthrough; + case UBI_IO_BAD_HDR: + /* + * If we're facing a bad VID header we have to drop *all* + * Fastmap data structures we find. The most recent Fastmap + * could be bad and therefore there is a chance that we attach + * from an old one. On a fine MTD stack a PEB must not render + * bad all of a sudden, but the reality is different. + * So, let's be paranoid and help finding the root cause by + * falling back to scanning mode instead of attaching with a + * bad EBA table and cause data corruption which is hard to + * analyze. + */ + if (fast) + ai->force_full_scan = 1; + + if (ec_err) + /* + * Both headers are corrupted. There is a possibility + * that this a valid UBI PEB which has corresponding + * LEB, but the headers are corrupted. However, it is + * impossible to distinguish it from a PEB which just + * contains garbage because of a power cut during erase + * operation. So we just schedule this PEB for erasure. + * + * Besides, in case of NOR flash, we deliberately + * corrupt both headers because NOR flash erasure is + * slow and can start from the end. + */ + err = 0; + else + /* + * The EC was OK, but the VID header is corrupted. We + * have to check what is in the data area. + */ + err = check_corruption(ubi, vidh, pnum); + + if (err < 0) + return err; + else if (!err) + /* This corruption is caused by a power cut */ + err = add_to_list(ai, pnum, UBI_UNKNOWN, + UBI_UNKNOWN, ec, 1, &ai->erase); + else + /* This is an unexpected corruption */ + err = add_corrupted(ai, pnum, ec); + if (err) + return err; + goto adjust_mean_ec; + case UBI_IO_FF_BITFLIPS: + err = add_to_list(ai, pnum, UBI_UNKNOWN, UBI_UNKNOWN, + ec, 1, &ai->erase); + if (err) + return err; + goto adjust_mean_ec; + case UBI_IO_FF: + if (ec_err || bitflips) + err = add_to_list(ai, pnum, UBI_UNKNOWN, + UBI_UNKNOWN, ec, 1, &ai->erase); + else + err = add_to_list(ai, pnum, UBI_UNKNOWN, + UBI_UNKNOWN, ec, 0, &ai->free); + if (err) + return err; + goto adjust_mean_ec; + default: + ubi_err(ubi, "'ubi_io_read_vid_hdr()' returned unknown code %d", + err); + return -EINVAL; + } + + vol_id = be32_to_cpu(vidh->vol_id); + if (vol_id > UBI_MAX_VOLUMES && !vol_ignored(vol_id)) { + int lnum = be32_to_cpu(vidh->lnum); + + /* Unsupported internal volume */ + switch (vidh->compat) { + case UBI_COMPAT_DELETE: + ubi_msg(ubi, "\"delete\" compatible internal volume %d:%d found, will remove it", + vol_id, lnum); + + err = add_to_list(ai, pnum, vol_id, lnum, + ec, 1, &ai->erase); + if (err) + return err; + return 0; + + case UBI_COMPAT_RO: + ubi_msg(ubi, "read-only compatible internal volume %d:%d found, switch to read-only mode", + vol_id, lnum); + ubi->ro_mode = 1; + break; + + case UBI_COMPAT_PRESERVE: + ubi_msg(ubi, "\"preserve\" compatible internal volume %d:%d found", + vol_id, lnum); + err = add_to_list(ai, pnum, vol_id, lnum, + ec, 0, &ai->alien); + if (err) + return err; + return 0; + + case UBI_COMPAT_REJECT: + ubi_err(ubi, "incompatible internal volume %d:%d found", + vol_id, lnum); + return -EINVAL; + } + } + + if (ec_err) + ubi_warn(ubi, "valid VID header but corrupted EC header at PEB %d", + pnum); + + if (ubi_is_fm_vol(vol_id)) + err = add_fastmap(ai, pnum, vidh, ec); + else + err = ubi_add_to_av(ubi, ai, pnum, ec, vidh, bitflips); + + if (err) + return err; + +adjust_mean_ec: + if (!ec_err) { + ai->ec_sum += ec; + ai->ec_count += 1; + if (ec > ai->max_ec) + ai->max_ec = ec; + if (ec < ai->min_ec) + ai->min_ec = ec; + } + + return 0; +} + +/** + * late_analysis - analyze the overall situation with PEB. + * @ubi: UBI device description object + * @ai: attaching information + * + * This is a helper function which takes a look what PEBs we have after we + * gather information about all of them ("ai" is compete). It decides whether + * the flash is empty and should be formatted of whether there are too many + * corrupted PEBs and we should not attach this MTD device. Returns zero if we + * should proceed with attaching the MTD device, and %-EINVAL if we should not. + */ +static int late_analysis(struct ubi_device *ubi, struct ubi_attach_info *ai) +{ + struct ubi_ainf_peb *aeb; + int max_corr, peb_count; + + peb_count = ubi->peb_count - ai->bad_peb_count - ai->alien_peb_count; + max_corr = peb_count / 20 ?: 8; + + /* + * Few corrupted PEBs is not a problem and may be just a result of + * unclean reboots. However, many of them may indicate some problems + * with the flash HW or driver. + */ + if (ai->corr_peb_count) { + ubi_err(ubi, "%d PEBs are corrupted and preserved", + ai->corr_peb_count); + pr_err("Corrupted PEBs are:"); + list_for_each_entry(aeb, &ai->corr, u.list) + pr_cont(" %d", aeb->pnum); + pr_cont("\n"); + + /* + * If too many PEBs are corrupted, we refuse attaching, + * otherwise, only print a warning. + */ + if (ai->corr_peb_count >= max_corr) { + ubi_err(ubi, "too many corrupted PEBs, refusing"); + return -EINVAL; + } + } + + if (ai->empty_peb_count + ai->maybe_bad_peb_count == peb_count) { + /* + * All PEBs are empty, or almost all - a couple PEBs look like + * they may be bad PEBs which were not marked as bad yet. + * + * This piece of code basically tries to distinguish between + * the following situations: + * + * 1. Flash is empty, but there are few bad PEBs, which are not + * marked as bad so far, and which were read with error. We + * want to go ahead and format this flash. While formatting, + * the faulty PEBs will probably be marked as bad. + * + * 2. Flash contains non-UBI data and we do not want to format + * it and destroy possibly important information. + */ + if (ai->maybe_bad_peb_count <= 2) { + ai->is_empty = 1; + ubi_msg(ubi, "empty MTD device detected"); + get_random_bytes(&ubi->image_seq, + sizeof(ubi->image_seq)); + } else { + ubi_err(ubi, "MTD device is not UBI-formatted and possibly contains non-UBI data - refusing it"); + return -EINVAL; + } + + } + + return 0; +} + +/** + * destroy_av - free volume attaching information. + * @av: volume attaching information + * @ai: attaching information + * @list: put the aeb elements in there if !NULL, otherwise free them + * + * This function destroys the volume attaching information. + */ +static void destroy_av(struct ubi_attach_info *ai, struct ubi_ainf_volume *av, + struct list_head *list) +{ + struct ubi_ainf_peb *aeb; + struct rb_node *this = av->root.rb_node; + + while (this) { + if (this->rb_left) + this = this->rb_left; + else if (this->rb_right) + this = this->rb_right; + else { + aeb = rb_entry(this, struct ubi_ainf_peb, u.rb); + this = rb_parent(this); + if (this) { + if (this->rb_left == &aeb->u.rb) + this->rb_left = NULL; + else + this->rb_right = NULL; + } + + if (list) + list_add_tail(&aeb->u.list, list); + else + ubi_free_aeb(ai, aeb); + } + } + kfree(av); +} + +/** + * destroy_ai - destroy attaching information. + * @ai: attaching information + */ +static void destroy_ai(struct ubi_attach_info *ai) +{ + struct ubi_ainf_peb *aeb, *aeb_tmp; + struct ubi_ainf_volume *av; + struct rb_node *rb; + + list_for_each_entry_safe(aeb, aeb_tmp, &ai->alien, u.list) { + list_del(&aeb->u.list); + ubi_free_aeb(ai, aeb); + } + list_for_each_entry_safe(aeb, aeb_tmp, &ai->erase, u.list) { + list_del(&aeb->u.list); + ubi_free_aeb(ai, aeb); + } + list_for_each_entry_safe(aeb, aeb_tmp, &ai->corr, u.list) { + list_del(&aeb->u.list); + ubi_free_aeb(ai, aeb); + } + list_for_each_entry_safe(aeb, aeb_tmp, &ai->free, u.list) { + list_del(&aeb->u.list); + ubi_free_aeb(ai, aeb); + } + list_for_each_entry_safe(aeb, aeb_tmp, &ai->fastmap, u.list) { + list_del(&aeb->u.list); + ubi_free_aeb(ai, aeb); + } + + /* Destroy the volume RB-tree */ + rb = ai->volumes.rb_node; + while (rb) { + if (rb->rb_left) + rb = rb->rb_left; + else if (rb->rb_right) + rb = rb->rb_right; + else { + av = rb_entry(rb, struct ubi_ainf_volume, rb); + + rb = rb_parent(rb); + if (rb) { + if (rb->rb_left == &av->rb) + rb->rb_left = NULL; + else + rb->rb_right = NULL; + } + + destroy_av(ai, av, NULL); + } + } + + kmem_cache_destroy(ai->aeb_slab_cache); + kfree(ai); +} + +/** + * scan_all - scan entire MTD device. + * @ubi: UBI device description object + * @ai: attach info object + * @start: start scanning at this PEB + * + * This function does full scanning of an MTD device and returns complete + * information about it in form of a "struct ubi_attach_info" object. In case + * of failure, an error code is returned. + */ +static int scan_all(struct ubi_device *ubi, struct ubi_attach_info *ai, + int start) +{ + int err, pnum; + struct rb_node *rb1, *rb2; + struct ubi_ainf_volume *av; + struct ubi_ainf_peb *aeb; + + err = -ENOMEM; + + ai->ech = kzalloc(ubi->ec_hdr_alsize, GFP_KERNEL); + if (!ai->ech) + return err; + + ai->vidb = ubi_alloc_vid_buf(ubi, GFP_KERNEL); + if (!ai->vidb) + goto out_ech; + + for (pnum = start; pnum < ubi->peb_count; pnum++) { + cond_resched(); + + dbg_gen("process PEB %d", pnum); + err = scan_peb(ubi, ai, pnum, false); + if (err < 0) + goto out_vidh; + } + + ubi_msg(ubi, "scanning is finished"); + + /* Calculate mean erase counter */ + if (ai->ec_count) + ai->mean_ec = div_u64(ai->ec_sum, ai->ec_count); + + err = late_analysis(ubi, ai); + if (err) + goto out_vidh; + + /* + * In case of unknown erase counter we use the mean erase counter + * value. + */ + ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb) { + ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb) + if (aeb->ec == UBI_UNKNOWN) + aeb->ec = ai->mean_ec; + } + + list_for_each_entry(aeb, &ai->free, u.list) { + if (aeb->ec == UBI_UNKNOWN) + aeb->ec = ai->mean_ec; + } + + list_for_each_entry(aeb, &ai->corr, u.list) + if (aeb->ec == UBI_UNKNOWN) + aeb->ec = ai->mean_ec; + + list_for_each_entry(aeb, &ai->erase, u.list) + if (aeb->ec == UBI_UNKNOWN) + aeb->ec = ai->mean_ec; + + err = self_check_ai(ubi, ai); + if (err) + goto out_vidh; + + ubi_free_vid_buf(ai->vidb); + kfree(ai->ech); + + return 0; + +out_vidh: + ubi_free_vid_buf(ai->vidb); +out_ech: + kfree(ai->ech); + return err; +} + +static struct ubi_attach_info *alloc_ai(void) +{ + struct ubi_attach_info *ai; + + ai = kzalloc(sizeof(struct ubi_attach_info), GFP_KERNEL); + if (!ai) + return ai; + + INIT_LIST_HEAD(&ai->corr); + INIT_LIST_HEAD(&ai->free); + INIT_LIST_HEAD(&ai->erase); + INIT_LIST_HEAD(&ai->alien); + INIT_LIST_HEAD(&ai->fastmap); + ai->volumes = RB_ROOT; + ai->aeb_slab_cache = kmem_cache_create("ubi_aeb_slab_cache", + sizeof(struct ubi_ainf_peb), + 0, 0, NULL); + if (!ai->aeb_slab_cache) { + kfree(ai); + ai = NULL; + } + + return ai; +} + +#ifdef CONFIG_MTD_UBI_FASTMAP + +/** + * scan_fast - try to find a fastmap and attach from it. + * @ubi: UBI device description object + * @ai: attach info object + * + * Returns 0 on success, negative return values indicate an internal + * error. + * UBI_NO_FASTMAP denotes that no fastmap was found. + * UBI_BAD_FASTMAP denotes that the found fastmap was invalid. + */ +static int scan_fast(struct ubi_device *ubi, struct ubi_attach_info **ai) +{ + int err, pnum; + struct ubi_attach_info *scan_ai; + + err = -ENOMEM; + + scan_ai = alloc_ai(); + if (!scan_ai) + goto out; + + scan_ai->ech = kzalloc(ubi->ec_hdr_alsize, GFP_KERNEL); + if (!scan_ai->ech) + goto out_ai; + + scan_ai->vidb = ubi_alloc_vid_buf(ubi, GFP_KERNEL); + if (!scan_ai->vidb) + goto out_ech; + + for (pnum = 0; pnum < UBI_FM_MAX_START; pnum++) { + cond_resched(); + + dbg_gen("process PEB %d", pnum); + err = scan_peb(ubi, scan_ai, pnum, true); + if (err < 0) + goto out_vidh; + } + + ubi_free_vid_buf(scan_ai->vidb); + kfree(scan_ai->ech); + + if (scan_ai->force_full_scan) + err = UBI_NO_FASTMAP; + else + err = ubi_scan_fastmap(ubi, *ai, scan_ai); + + if (err) { + /* + * Didn't attach via fastmap, do a full scan but reuse what + * we've aready scanned. + */ + destroy_ai(*ai); + *ai = scan_ai; + } else + destroy_ai(scan_ai); + + return err; + +out_vidh: + ubi_free_vid_buf(scan_ai->vidb); +out_ech: + kfree(scan_ai->ech); +out_ai: + destroy_ai(scan_ai); +out: + return err; +} + +#endif + +/** + * ubi_attach - attach an MTD device. + * @ubi: UBI device descriptor + * @force_scan: if set to non-zero attach by scanning + * + * This function returns zero in case of success and a negative error code in + * case of failure. + */ +int ubi_attach(struct ubi_device *ubi, int force_scan) +{ + int err; + struct ubi_attach_info *ai; + + ai = alloc_ai(); + if (!ai) + return -ENOMEM; + +#ifdef CONFIG_MTD_UBI_FASTMAP + /* On small flash devices we disable fastmap in any case. */ + if ((int)mtd_div_by_eb(ubi->mtd->size, ubi->mtd) <= UBI_FM_MAX_START) { + ubi->fm_disabled = 1; + force_scan = 1; + } + + if (force_scan) + err = scan_all(ubi, ai, 0); + else { + err = scan_fast(ubi, &ai); + if (err > 0 || mtd_is_eccerr(err)) { + if (err != UBI_NO_FASTMAP) { + destroy_ai(ai); + ai = alloc_ai(); + if (!ai) + return -ENOMEM; + + err = scan_all(ubi, ai, 0); + } else { + err = scan_all(ubi, ai, UBI_FM_MAX_START); + } + } + } +#else + err = scan_all(ubi, ai, 0); +#endif + if (err) + goto out_ai; + + ubi->bad_peb_count = ai->bad_peb_count; + ubi->good_peb_count = ubi->peb_count - ubi->bad_peb_count; + ubi->corr_peb_count = ai->corr_peb_count; + ubi->max_ec = ai->max_ec; + ubi->mean_ec = ai->mean_ec; + dbg_gen("max. sequence number: %llu", ai->max_sqnum); + + err = ubi_read_volume_table(ubi, ai); + if (err) + goto out_ai; + + err = ubi_wl_init(ubi, ai); + if (err) + goto out_vtbl; + + err = ubi_eba_init(ubi, ai); + if (err) + goto out_wl; + +#ifdef CONFIG_MTD_UBI_FASTMAP + if (ubi->fm && ubi_dbg_chk_fastmap(ubi)) { + struct ubi_attach_info *scan_ai; + + scan_ai = alloc_ai(); + if (!scan_ai) { + err = -ENOMEM; + goto out_wl; + } + + err = scan_all(ubi, scan_ai, 0); + if (err) { + destroy_ai(scan_ai); + goto out_wl; + } + + err = self_check_eba(ubi, ai, scan_ai); + destroy_ai(scan_ai); + + if (err) + goto out_wl; + } +#endif + + destroy_ai(ai); + return 0; + +out_wl: + ubi_wl_close(ubi); +out_vtbl: + ubi_free_all_volumes(ubi); + vfree(ubi->vtbl); +out_ai: + destroy_ai(ai); + return err; +} + +/** + * self_check_ai - check the attaching information. + * @ubi: UBI device description object + * @ai: attaching information + * + * This function returns zero if the attaching information is all right, and a + * negative error code if not or if an error occurred. + */ +static int self_check_ai(struct ubi_device *ubi, struct ubi_attach_info *ai) +{ + struct ubi_vid_io_buf *vidb = ai->vidb; + struct ubi_vid_hdr *vidh = ubi_get_vid_hdr(vidb); + int pnum, err, vols_found = 0; + struct rb_node *rb1, *rb2; + struct ubi_ainf_volume *av; + struct ubi_ainf_peb *aeb, *last_aeb; + uint8_t *buf; + + if (!ubi_dbg_chk_gen(ubi)) + return 0; + + /* + * At first, check that attaching information is OK. + */ + ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb) { + int leb_count = 0; + + cond_resched(); + + vols_found += 1; + + if (ai->is_empty) { + ubi_err(ubi, "bad is_empty flag"); + goto bad_av; + } + + if (av->vol_id < 0 || av->highest_lnum < 0 || + av->leb_count < 0 || av->vol_type < 0 || av->used_ebs < 0 || + av->data_pad < 0 || av->last_data_size < 0) { + ubi_err(ubi, "negative values"); + goto bad_av; + } + + if (av->vol_id >= UBI_MAX_VOLUMES && + av->vol_id < UBI_INTERNAL_VOL_START) { + ubi_err(ubi, "bad vol_id"); + goto bad_av; + } + + if (av->vol_id > ai->highest_vol_id) { + ubi_err(ubi, "highest_vol_id is %d, but vol_id %d is there", + ai->highest_vol_id, av->vol_id); + goto out; + } + + if (av->vol_type != UBI_DYNAMIC_VOLUME && + av->vol_type != UBI_STATIC_VOLUME) { + ubi_err(ubi, "bad vol_type"); + goto bad_av; + } + + if (av->data_pad > ubi->leb_size / 2) { + ubi_err(ubi, "bad data_pad"); + goto bad_av; + } + + last_aeb = NULL; + ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb) { + cond_resched(); + + last_aeb = aeb; + leb_count += 1; + + if (aeb->pnum < 0 || aeb->ec < 0) { + ubi_err(ubi, "negative values"); + goto bad_aeb; + } + + if (aeb->ec < ai->min_ec) { + ubi_err(ubi, "bad ai->min_ec (%d), %d found", + ai->min_ec, aeb->ec); + goto bad_aeb; + } + + if (aeb->ec > ai->max_ec) { + ubi_err(ubi, "bad ai->max_ec (%d), %d found", + ai->max_ec, aeb->ec); + goto bad_aeb; + } + + if (aeb->pnum >= ubi->peb_count) { + ubi_err(ubi, "too high PEB number %d, total PEBs %d", + aeb->pnum, ubi->peb_count); + goto bad_aeb; + } + + if (av->vol_type == UBI_STATIC_VOLUME) { + if (aeb->lnum >= av->used_ebs) { + ubi_err(ubi, "bad lnum or used_ebs"); + goto bad_aeb; + } + } else { + if (av->used_ebs != 0) { + ubi_err(ubi, "non-zero used_ebs"); + goto bad_aeb; + } + } + + if (aeb->lnum > av->highest_lnum) { + ubi_err(ubi, "incorrect highest_lnum or lnum"); + goto bad_aeb; + } + } + + if (av->leb_count != leb_count) { + ubi_err(ubi, "bad leb_count, %d objects in the tree", + leb_count); + goto bad_av; + } + + if (!last_aeb) + continue; + + aeb = last_aeb; + + if (aeb->lnum != av->highest_lnum) { + ubi_err(ubi, "bad highest_lnum"); + goto bad_aeb; + } + } + + if (vols_found != ai->vols_found) { + ubi_err(ubi, "bad ai->vols_found %d, should be %d", + ai->vols_found, vols_found); + goto out; + } + + /* Check that attaching information is correct */ + ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb) { + last_aeb = NULL; + ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb) { + int vol_type; + + cond_resched(); + + last_aeb = aeb; + + err = ubi_io_read_vid_hdr(ubi, aeb->pnum, vidb, 1); + if (err && err != UBI_IO_BITFLIPS) { + ubi_err(ubi, "VID header is not OK (%d)", + err); + if (err > 0) + err = -EIO; + return err; + } + + vol_type = vidh->vol_type == UBI_VID_DYNAMIC ? + UBI_DYNAMIC_VOLUME : UBI_STATIC_VOLUME; + if (av->vol_type != vol_type) { + ubi_err(ubi, "bad vol_type"); + goto bad_vid_hdr; + } + + if (aeb->sqnum != be64_to_cpu(vidh->sqnum)) { + ubi_err(ubi, "bad sqnum %llu", aeb->sqnum); + goto bad_vid_hdr; + } + + if (av->vol_id != be32_to_cpu(vidh->vol_id)) { + ubi_err(ubi, "bad vol_id %d", av->vol_id); + goto bad_vid_hdr; + } + + if (av->compat != vidh->compat) { + ubi_err(ubi, "bad compat %d", vidh->compat); + goto bad_vid_hdr; + } + + if (aeb->lnum != be32_to_cpu(vidh->lnum)) { + ubi_err(ubi, "bad lnum %d", aeb->lnum); + goto bad_vid_hdr; + } + + if (av->used_ebs != be32_to_cpu(vidh->used_ebs)) { + ubi_err(ubi, "bad used_ebs %d", av->used_ebs); + goto bad_vid_hdr; + } + + if (av->data_pad != be32_to_cpu(vidh->data_pad)) { + ubi_err(ubi, "bad data_pad %d", av->data_pad); + goto bad_vid_hdr; + } + } + + if (!last_aeb) + continue; + + if (av->highest_lnum != be32_to_cpu(vidh->lnum)) { + ubi_err(ubi, "bad highest_lnum %d", av->highest_lnum); + goto bad_vid_hdr; + } + + if (av->last_data_size != be32_to_cpu(vidh->data_size)) { + ubi_err(ubi, "bad last_data_size %d", + av->last_data_size); + goto bad_vid_hdr; + } + } + + /* + * Make sure that all the physical eraseblocks are in one of the lists + * or trees. + */ + buf = kzalloc(ubi->peb_count, GFP_KERNEL); + if (!buf) + return -ENOMEM; + + for (pnum = 0; pnum < ubi->peb_count; pnum++) { + err = ubi_io_is_bad(ubi, pnum); + if (err < 0) { + kfree(buf); + return err; + } else if (err) + buf[pnum] = 1; + } + + ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb) + ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb) + buf[aeb->pnum] = 1; + + list_for_each_entry(aeb, &ai->free, u.list) + buf[aeb->pnum] = 1; + + list_for_each_entry(aeb, &ai->corr, u.list) + buf[aeb->pnum] = 1; + + list_for_each_entry(aeb, &ai->erase, u.list) + buf[aeb->pnum] = 1; + + list_for_each_entry(aeb, &ai->alien, u.list) + buf[aeb->pnum] = 1; + + err = 0; + for (pnum = 0; pnum < ubi->peb_count; pnum++) + if (!buf[pnum]) { + ubi_err(ubi, "PEB %d is not referred", pnum); + err = 1; + } + + kfree(buf); + if (err) + goto out; + return 0; + +bad_aeb: + ubi_err(ubi, "bad attaching information about LEB %d", aeb->lnum); + ubi_dump_aeb(aeb, 0); + ubi_dump_av(av); + goto out; + +bad_av: + ubi_err(ubi, "bad attaching information about volume %d", av->vol_id); + ubi_dump_av(av); + goto out; + +bad_vid_hdr: + ubi_err(ubi, "bad attaching information about volume %d", av->vol_id); + ubi_dump_av(av); + ubi_dump_vid_hdr(vidh); + +out: + dump_stack(); + return -EINVAL; +} diff --git a/drivers/mtd/ubi/block.c b/drivers/mtd/ubi/block.c new file mode 100644 index 0000000000..437c5b83ff --- /dev/null +++ b/drivers/mtd/ubi/block.c @@ -0,0 +1,673 @@ +// SPDX-License-Identifier: GPL-2.0-only +/* + * Copyright (c) 2014 Ezequiel Garcia + * Copyright (c) 2011 Free Electrons + * + * Driver parameter handling strongly based on drivers/mtd/ubi/build.c + * Copyright (c) International Business Machines Corp., 2006 + * Copyright (c) Nokia Corporation, 2007 + * Authors: Artem Bityutskiy, Frank Haverkamp + */ + +/* + * Read-only block devices on top of UBI volumes + * + * A simple implementation to allow a block device to be layered on top of a + * UBI volume. The implementation is provided by creating a static 1-to-1 + * mapping between the block device and the UBI volume. + * + * The addressed byte is obtained from the addressed block sector, which is + * mapped linearly into the corresponding LEB: + * + * LEB number = addressed byte / LEB size + * + * This feature is compiled in the UBI core, and adds a 'block' parameter + * to allow early creation of block devices on top of UBI volumes. Runtime + * block creation/removal for UBI volumes is provided through two UBI ioctls: + * UBI_IOCVOLCRBLK and UBI_IOCVOLRMBLK. + */ + +#include <linux/module.h> +#include <linux/init.h> +#include <linux/err.h> +#include <linux/kernel.h> +#include <linux/list.h> +#include <linux/mutex.h> +#include <linux/slab.h> +#include <linux/mtd/ubi.h> +#include <linux/blkdev.h> +#include <linux/blk-mq.h> +#include <linux/hdreg.h> +#include <linux/scatterlist.h> +#include <linux/idr.h> +#include <asm/div64.h> + +#include "ubi-media.h" +#include "ubi.h" + +/* Maximum number of supported devices */ +#define UBIBLOCK_MAX_DEVICES 32 + +/* Maximum length of the 'block=' parameter */ +#define UBIBLOCK_PARAM_LEN 63 + +/* Maximum number of comma-separated items in the 'block=' parameter */ +#define UBIBLOCK_PARAM_COUNT 2 + +struct ubiblock_param { + int ubi_num; + int vol_id; + char name[UBIBLOCK_PARAM_LEN+1]; +}; + +struct ubiblock_pdu { + struct ubi_sgl usgl; +}; + +/* Numbers of elements set in the @ubiblock_param array */ +static int ubiblock_devs __initdata; + +/* MTD devices specification parameters */ +static struct ubiblock_param ubiblock_param[UBIBLOCK_MAX_DEVICES] __initdata; + +struct ubiblock { + struct ubi_volume_desc *desc; + int ubi_num; + int vol_id; + int refcnt; + int leb_size; + + struct gendisk *gd; + struct request_queue *rq; + + struct mutex dev_mutex; + struct list_head list; + struct blk_mq_tag_set tag_set; +}; + +/* Linked list of all ubiblock instances */ +static LIST_HEAD(ubiblock_devices); +static DEFINE_IDR(ubiblock_minor_idr); +/* Protects ubiblock_devices and ubiblock_minor_idr */ +static DEFINE_MUTEX(devices_mutex); +static int ubiblock_major; + +static int __init ubiblock_set_param(const char *val, + const struct kernel_param *kp) +{ + int i, ret; + size_t len; + struct ubiblock_param *param; + char buf[UBIBLOCK_PARAM_LEN]; + char *pbuf = &buf[0]; + char *tokens[UBIBLOCK_PARAM_COUNT]; + + if (!val) + return -EINVAL; + + len = strnlen(val, UBIBLOCK_PARAM_LEN); + if (len == 0) { + pr_warn("UBI: block: empty 'block=' parameter - ignored\n"); + return 0; + } + + if (len == UBIBLOCK_PARAM_LEN) { + pr_err("UBI: block: parameter \"%s\" is too long, max. is %d\n", + val, UBIBLOCK_PARAM_LEN); + return -EINVAL; + } + + strcpy(buf, val); + + /* Get rid of the final newline */ + if (buf[len - 1] == '\n') + buf[len - 1] = '\0'; + + for (i = 0; i < UBIBLOCK_PARAM_COUNT; i++) + tokens[i] = strsep(&pbuf, ","); + + param = &ubiblock_param[ubiblock_devs]; + if (tokens[1]) { + /* Two parameters: can be 'ubi, vol_id' or 'ubi, vol_name' */ + ret = kstrtoint(tokens[0], 10, ¶m->ubi_num); + if (ret < 0) + return -EINVAL; + + /* Second param can be a number or a name */ + ret = kstrtoint(tokens[1], 10, ¶m->vol_id); + if (ret < 0) { + param->vol_id = -1; + strcpy(param->name, tokens[1]); + } + + } else { + /* One parameter: must be device path */ + strcpy(param->name, tokens[0]); + param->ubi_num = -1; + param->vol_id = -1; + } + + ubiblock_devs++; + + return 0; +} + +static const struct kernel_param_ops ubiblock_param_ops = { + .set = ubiblock_set_param, +}; +module_param_cb(block, &ubiblock_param_ops, NULL, 0); +MODULE_PARM_DESC(block, "Attach block devices to UBI volumes. Parameter format: block=<path|dev,num|dev,name>.\n" + "Multiple \"block\" parameters may be specified.\n" + "UBI volumes may be specified by their number, name, or path to the device node.\n" + "Examples\n" + "Using the UBI volume path:\n" + "ubi.block=/dev/ubi0_0\n" + "Using the UBI device, and the volume name:\n" + "ubi.block=0,rootfs\n" + "Using both UBI device number and UBI volume number:\n" + "ubi.block=0,0\n"); + +static struct ubiblock *find_dev_nolock(int ubi_num, int vol_id) +{ + struct ubiblock *dev; + + list_for_each_entry(dev, &ubiblock_devices, list) + if (dev->ubi_num == ubi_num && dev->vol_id == vol_id) + return dev; + return NULL; +} + +static blk_status_t ubiblock_read(struct request *req) +{ + struct ubiblock_pdu *pdu = blk_mq_rq_to_pdu(req); + struct ubiblock *dev = req->q->queuedata; + u64 pos = blk_rq_pos(req) << 9; + int to_read = blk_rq_bytes(req); + int bytes_left = to_read; + /* Get LEB:offset address to read from */ + int offset = do_div(pos, dev->leb_size); + int leb = pos; + struct req_iterator iter; + struct bio_vec bvec; + int ret; + + blk_mq_start_request(req); + + /* + * It is safe to ignore the return value of blk_rq_map_sg() because + * the number of sg entries is limited to UBI_MAX_SG_COUNT + * and ubi_read_sg() will check that limit. + */ + ubi_sgl_init(&pdu->usgl); + blk_rq_map_sg(req->q, req, pdu->usgl.sg); + + while (bytes_left) { + /* + * We can only read one LEB at a time. Therefore if the read + * length is larger than one LEB size, we split the operation. + */ + if (offset + to_read > dev->leb_size) + to_read = dev->leb_size - offset; + + ret = ubi_read_sg(dev->desc, leb, &pdu->usgl, offset, to_read); + if (ret < 0) + break; + + bytes_left -= to_read; + to_read = bytes_left; + leb += 1; + offset = 0; + } + + rq_for_each_segment(bvec, req, iter) + flush_dcache_page(bvec.bv_page); + + blk_mq_end_request(req, errno_to_blk_status(ret)); + + return BLK_STS_OK; +} + +static int ubiblock_open(struct gendisk *disk, blk_mode_t mode) +{ + struct ubiblock *dev = disk->private_data; + int ret; + + mutex_lock(&dev->dev_mutex); + if (dev->refcnt > 0) { + /* + * The volume is already open, just increase the reference + * counter. + */ + goto out_done; + } + + /* + * We want users to be aware they should only mount us as read-only. + * It's just a paranoid check, as write requests will get rejected + * in any case. + */ + if (mode & BLK_OPEN_WRITE) { + ret = -EROFS; + goto out_unlock; + } + dev->desc = ubi_open_volume(dev->ubi_num, dev->vol_id, UBI_READONLY); + if (IS_ERR(dev->desc)) { + dev_err(disk_to_dev(dev->gd), "failed to open ubi volume %d_%d", + dev->ubi_num, dev->vol_id); + ret = PTR_ERR(dev->desc); + dev->desc = NULL; + goto out_unlock; + } + +out_done: + dev->refcnt++; + mutex_unlock(&dev->dev_mutex); + return 0; + +out_unlock: + mutex_unlock(&dev->dev_mutex); + return ret; +} + +static void ubiblock_release(struct gendisk *gd) +{ + struct ubiblock *dev = gd->private_data; + + mutex_lock(&dev->dev_mutex); + dev->refcnt--; + if (dev->refcnt == 0) { + ubi_close_volume(dev->desc); + dev->desc = NULL; + } + mutex_unlock(&dev->dev_mutex); +} + +static int ubiblock_getgeo(struct block_device *bdev, struct hd_geometry *geo) +{ + /* Some tools might require this information */ + geo->heads = 1; + geo->cylinders = 1; + geo->sectors = get_capacity(bdev->bd_disk); + geo->start = 0; + return 0; +} + +static const struct block_device_operations ubiblock_ops = { + .owner = THIS_MODULE, + .open = ubiblock_open, + .release = ubiblock_release, + .getgeo = ubiblock_getgeo, +}; + +static blk_status_t ubiblock_queue_rq(struct blk_mq_hw_ctx *hctx, + const struct blk_mq_queue_data *bd) +{ + switch (req_op(bd->rq)) { + case REQ_OP_READ: + return ubiblock_read(bd->rq); + default: + return BLK_STS_IOERR; + } +} + +static int ubiblock_init_request(struct blk_mq_tag_set *set, + struct request *req, unsigned int hctx_idx, + unsigned int numa_node) +{ + struct ubiblock_pdu *pdu = blk_mq_rq_to_pdu(req); + + sg_init_table(pdu->usgl.sg, UBI_MAX_SG_COUNT); + return 0; +} + +static const struct blk_mq_ops ubiblock_mq_ops = { + .queue_rq = ubiblock_queue_rq, + .init_request = ubiblock_init_request, +}; + +static int calc_disk_capacity(struct ubi_volume_info *vi, u64 *disk_capacity) +{ + u64 size = vi->used_bytes >> 9; + + if (vi->used_bytes % 512) { + if (vi->vol_type == UBI_DYNAMIC_VOLUME) + pr_warn("UBI: block: volume size is not a multiple of 512, last %llu bytes are ignored!\n", + vi->used_bytes - (size << 9)); + else + pr_info("UBI: block: volume size is not a multiple of 512, last %llu bytes are ignored!\n", + vi->used_bytes - (size << 9)); + } + + if ((sector_t)size != size) + return -EFBIG; + + *disk_capacity = size; + + return 0; +} + +int ubiblock_create(struct ubi_volume_info *vi) +{ + struct ubiblock *dev; + struct gendisk *gd; + u64 disk_capacity; + int ret; + + ret = calc_disk_capacity(vi, &disk_capacity); + if (ret) { + return ret; + } + + /* Check that the volume isn't already handled */ + mutex_lock(&devices_mutex); + if (find_dev_nolock(vi->ubi_num, vi->vol_id)) { + ret = -EEXIST; + goto out_unlock; + } + + dev = kzalloc(sizeof(struct ubiblock), GFP_KERNEL); + if (!dev) { + ret = -ENOMEM; + goto out_unlock; + } + + mutex_init(&dev->dev_mutex); + + dev->ubi_num = vi->ubi_num; + dev->vol_id = vi->vol_id; + dev->leb_size = vi->usable_leb_size; + + dev->tag_set.ops = &ubiblock_mq_ops; + dev->tag_set.queue_depth = 64; + dev->tag_set.numa_node = NUMA_NO_NODE; + dev->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_BLOCKING; + dev->tag_set.cmd_size = sizeof(struct ubiblock_pdu); + dev->tag_set.driver_data = dev; + dev->tag_set.nr_hw_queues = 1; + + ret = blk_mq_alloc_tag_set(&dev->tag_set); + if (ret) { + dev_err(disk_to_dev(dev->gd), "blk_mq_alloc_tag_set failed"); + goto out_free_dev; + } + + + /* Initialize the gendisk of this ubiblock device */ + gd = blk_mq_alloc_disk(&dev->tag_set, dev); + if (IS_ERR(gd)) { + ret = PTR_ERR(gd); + goto out_free_tags; + } + + gd->fops = &ubiblock_ops; + gd->major = ubiblock_major; + gd->minors = 1; + gd->first_minor = idr_alloc(&ubiblock_minor_idr, dev, 0, 0, GFP_KERNEL); + if (gd->first_minor < 0) { + dev_err(disk_to_dev(gd), + "block: dynamic minor allocation failed"); + ret = -ENODEV; + goto out_cleanup_disk; + } + gd->flags |= GENHD_FL_NO_PART; + gd->private_data = dev; + sprintf(gd->disk_name, "ubiblock%d_%d", dev->ubi_num, dev->vol_id); + set_capacity(gd, disk_capacity); + dev->gd = gd; + + dev->rq = gd->queue; + blk_queue_max_segments(dev->rq, UBI_MAX_SG_COUNT); + + list_add_tail(&dev->list, &ubiblock_devices); + + /* Must be the last step: anyone can call file ops from now on */ + ret = device_add_disk(vi->dev, dev->gd, NULL); + if (ret) + goto out_remove_minor; + + dev_info(disk_to_dev(dev->gd), "created from ubi%d:%d(%s)", + dev->ubi_num, dev->vol_id, vi->name); + mutex_unlock(&devices_mutex); + return 0; + +out_remove_minor: + list_del(&dev->list); + idr_remove(&ubiblock_minor_idr, gd->first_minor); +out_cleanup_disk: + put_disk(dev->gd); +out_free_tags: + blk_mq_free_tag_set(&dev->tag_set); +out_free_dev: + kfree(dev); +out_unlock: + mutex_unlock(&devices_mutex); + + return ret; +} + +static void ubiblock_cleanup(struct ubiblock *dev) +{ + /* Stop new requests to arrive */ + del_gendisk(dev->gd); + /* Finally destroy the blk queue */ + dev_info(disk_to_dev(dev->gd), "released"); + put_disk(dev->gd); + blk_mq_free_tag_set(&dev->tag_set); + idr_remove(&ubiblock_minor_idr, dev->gd->first_minor); +} + +int ubiblock_remove(struct ubi_volume_info *vi) +{ + struct ubiblock *dev; + int ret; + + mutex_lock(&devices_mutex); + dev = find_dev_nolock(vi->ubi_num, vi->vol_id); + if (!dev) { + ret = -ENODEV; + goto out_unlock; + } + + /* Found a device, let's lock it so we can check if it's busy */ + mutex_lock(&dev->dev_mutex); + if (dev->refcnt > 0) { + ret = -EBUSY; + goto out_unlock_dev; + } + + /* Remove from device list */ + list_del(&dev->list); + ubiblock_cleanup(dev); + mutex_unlock(&dev->dev_mutex); + mutex_unlock(&devices_mutex); + + kfree(dev); + return 0; + +out_unlock_dev: + mutex_unlock(&dev->dev_mutex); +out_unlock: + mutex_unlock(&devices_mutex); + return ret; +} + +static int ubiblock_resize(struct ubi_volume_info *vi) +{ + struct ubiblock *dev; + u64 disk_capacity; + int ret; + + /* + * Need to lock the device list until we stop using the device, + * otherwise the device struct might get released in + * 'ubiblock_remove()'. + */ + mutex_lock(&devices_mutex); + dev = find_dev_nolock(vi->ubi_num, vi->vol_id); + if (!dev) { + mutex_unlock(&devices_mutex); + return -ENODEV; + } + + ret = calc_disk_capacity(vi, &disk_capacity); + if (ret) { + mutex_unlock(&devices_mutex); + if (ret == -EFBIG) { + dev_warn(disk_to_dev(dev->gd), + "the volume is too big (%d LEBs), cannot resize", + vi->size); + } + return ret; + } + + mutex_lock(&dev->dev_mutex); + + if (get_capacity(dev->gd) != disk_capacity) { + set_capacity(dev->gd, disk_capacity); + dev_info(disk_to_dev(dev->gd), "resized to %lld bytes", + vi->used_bytes); + } + mutex_unlock(&dev->dev_mutex); + mutex_unlock(&devices_mutex); + return 0; +} + +static int ubiblock_notify(struct notifier_block *nb, + unsigned long notification_type, void *ns_ptr) +{ + struct ubi_notification *nt = ns_ptr; + + switch (notification_type) { + case UBI_VOLUME_ADDED: + /* + * We want to enforce explicit block device creation for + * volumes, so when a volume is added we do nothing. + */ + break; + case UBI_VOLUME_REMOVED: + ubiblock_remove(&nt->vi); + break; + case UBI_VOLUME_RESIZED: + ubiblock_resize(&nt->vi); + break; + case UBI_VOLUME_UPDATED: + /* + * If the volume is static, a content update might mean the + * size (i.e. used_bytes) was also changed. + */ + if (nt->vi.vol_type == UBI_STATIC_VOLUME) + ubiblock_resize(&nt->vi); + break; + default: + break; + } + return NOTIFY_OK; +} + +static struct notifier_block ubiblock_notifier = { + .notifier_call = ubiblock_notify, +}; + +static struct ubi_volume_desc * __init +open_volume_desc(const char *name, int ubi_num, int vol_id) +{ + if (ubi_num == -1) + /* No ubi num, name must be a vol device path */ + return ubi_open_volume_path(name, UBI_READONLY); + else if (vol_id == -1) + /* No vol_id, must be vol_name */ + return ubi_open_volume_nm(ubi_num, name, UBI_READONLY); + else + return ubi_open_volume(ubi_num, vol_id, UBI_READONLY); +} + +static void __init ubiblock_create_from_param(void) +{ + int i, ret = 0; + struct ubiblock_param *p; + struct ubi_volume_desc *desc; + struct ubi_volume_info vi; + + /* + * If there is an error creating one of the ubiblocks, continue on to + * create the following ubiblocks. This helps in a circumstance where + * the kernel command-line specifies multiple block devices and some + * may be broken, but we still want the working ones to come up. + */ + for (i = 0; i < ubiblock_devs; i++) { + p = &ubiblock_param[i]; + + desc = open_volume_desc(p->name, p->ubi_num, p->vol_id); + if (IS_ERR(desc)) { + pr_err( + "UBI: block: can't open volume on ubi%d_%d, err=%ld\n", + p->ubi_num, p->vol_id, PTR_ERR(desc)); + continue; + } + + ubi_get_volume_info(desc, &vi); + ubi_close_volume(desc); + + ret = ubiblock_create(&vi); + if (ret) { + pr_err( + "UBI: block: can't add '%s' volume on ubi%d_%d, err=%d\n", + vi.name, p->ubi_num, p->vol_id, ret); + continue; + } + } +} + +static void ubiblock_remove_all(void) +{ + struct ubiblock *next; + struct ubiblock *dev; + + mutex_lock(&devices_mutex); + list_for_each_entry_safe(dev, next, &ubiblock_devices, list) { + /* The module is being forcefully removed */ + WARN_ON(dev->desc); + /* Remove from device list */ + list_del(&dev->list); + ubiblock_cleanup(dev); + kfree(dev); + } + mutex_unlock(&devices_mutex); +} + +int __init ubiblock_init(void) +{ + int ret; + + ubiblock_major = register_blkdev(0, "ubiblock"); + if (ubiblock_major < 0) + return ubiblock_major; + + /* + * Attach block devices from 'block=' module param. + * Even if one block device in the param list fails to come up, + * still allow the module to load and leave any others up. + */ + ubiblock_create_from_param(); + + /* + * Block devices are only created upon user requests, so we ignore + * existing volumes. + */ + ret = ubi_register_volume_notifier(&ubiblock_notifier, 1); + if (ret) + goto err_unreg; + return 0; + +err_unreg: + unregister_blkdev(ubiblock_major, "ubiblock"); + ubiblock_remove_all(); + return ret; +} + +void __exit ubiblock_exit(void) +{ + ubi_unregister_volume_notifier(&ubiblock_notifier); + ubiblock_remove_all(); + unregister_blkdev(ubiblock_major, "ubiblock"); +} diff --git a/drivers/mtd/ubi/build.c b/drivers/mtd/ubi/build.c new file mode 100644 index 0000000000..8ee51e49fc --- /dev/null +++ b/drivers/mtd/ubi/build.c @@ -0,0 +1,1514 @@ +// SPDX-License-Identifier: GPL-2.0-or-later +/* + * Copyright (c) International Business Machines Corp., 2006 + * Copyright (c) Nokia Corporation, 2007 + * + * Author: Artem Bityutskiy (Битюцкий Артём), + * Frank Haverkamp + */ + +/* + * This file includes UBI initialization and building of UBI devices. + * + * When UBI is initialized, it attaches all the MTD devices specified as the + * module load parameters or the kernel boot parameters. If MTD devices were + * specified, UBI does not attach any MTD device, but it is possible to do + * later using the "UBI control device". + */ + +#include <linux/err.h> +#include <linux/module.h> +#include <linux/moduleparam.h> +#include <linux/stringify.h> +#include <linux/namei.h> +#include <linux/stat.h> +#include <linux/miscdevice.h> +#include <linux/mtd/partitions.h> +#include <linux/log2.h> +#include <linux/kthread.h> +#include <linux/kernel.h> +#include <linux/slab.h> +#include <linux/major.h> +#include "ubi.h" + +/* Maximum length of the 'mtd=' parameter */ +#define MTD_PARAM_LEN_MAX 64 + +/* Maximum number of comma-separated items in the 'mtd=' parameter */ +#define MTD_PARAM_MAX_COUNT 5 + +/* Maximum value for the number of bad PEBs per 1024 PEBs */ +#define MAX_MTD_UBI_BEB_LIMIT 768 + +#ifdef CONFIG_MTD_UBI_MODULE +#define ubi_is_module() 1 +#else +#define ubi_is_module() 0 +#endif + +/** + * struct mtd_dev_param - MTD device parameter description data structure. + * @name: MTD character device node path, MTD device name, or MTD device number + * string + * @ubi_num: UBI number + * @vid_hdr_offs: VID header offset + * @max_beb_per1024: maximum expected number of bad PEBs per 1024 PEBs + * @enable_fm: enable fastmap when value is non-zero + */ +struct mtd_dev_param { + char name[MTD_PARAM_LEN_MAX]; + int ubi_num; + int vid_hdr_offs; + int max_beb_per1024; + int enable_fm; +}; + +/* Numbers of elements set in the @mtd_dev_param array */ +static int mtd_devs; + +/* MTD devices specification parameters */ +static struct mtd_dev_param mtd_dev_param[UBI_MAX_DEVICES]; +#ifdef CONFIG_MTD_UBI_FASTMAP +/* UBI module parameter to enable fastmap automatically on non-fastmap images */ +static bool fm_autoconvert; +static bool fm_debug; +#endif + +/* Slab cache for wear-leveling entries */ +struct kmem_cache *ubi_wl_entry_slab; + +/* UBI control character device */ +static struct miscdevice ubi_ctrl_cdev = { + .minor = MISC_DYNAMIC_MINOR, + .name = "ubi_ctrl", + .fops = &ubi_ctrl_cdev_operations, +}; + +/* All UBI devices in system */ +static struct ubi_device *ubi_devices[UBI_MAX_DEVICES]; + +/* Serializes UBI devices creations and removals */ +DEFINE_MUTEX(ubi_devices_mutex); + +/* Protects @ubi_devices and @ubi->ref_count */ +static DEFINE_SPINLOCK(ubi_devices_lock); + +/* "Show" method for files in '/<sysfs>/class/ubi/' */ +/* UBI version attribute ('/<sysfs>/class/ubi/version') */ +static ssize_t version_show(const struct class *class, const struct class_attribute *attr, + char *buf) +{ + return sprintf(buf, "%d\n", UBI_VERSION); +} +static CLASS_ATTR_RO(version); + +static struct attribute *ubi_class_attrs[] = { + &class_attr_version.attr, + NULL, +}; +ATTRIBUTE_GROUPS(ubi_class); + +/* Root UBI "class" object (corresponds to '/<sysfs>/class/ubi/') */ +struct class ubi_class = { + .name = UBI_NAME_STR, + .class_groups = ubi_class_groups, +}; + +static ssize_t dev_attribute_show(struct device *dev, + struct device_attribute *attr, char *buf); + +/* UBI device attributes (correspond to files in '/<sysfs>/class/ubi/ubiX') */ +static struct device_attribute dev_eraseblock_size = + __ATTR(eraseblock_size, S_IRUGO, dev_attribute_show, NULL); +static struct device_attribute dev_avail_eraseblocks = + __ATTR(avail_eraseblocks, S_IRUGO, dev_attribute_show, NULL); +static struct device_attribute dev_total_eraseblocks = + __ATTR(total_eraseblocks, S_IRUGO, dev_attribute_show, NULL); +static struct device_attribute dev_volumes_count = + __ATTR(volumes_count, S_IRUGO, dev_attribute_show, NULL); +static struct device_attribute dev_max_ec = + __ATTR(max_ec, S_IRUGO, dev_attribute_show, NULL); +static struct device_attribute dev_reserved_for_bad = + __ATTR(reserved_for_bad, S_IRUGO, dev_attribute_show, NULL); +static struct device_attribute dev_bad_peb_count = + __ATTR(bad_peb_count, S_IRUGO, dev_attribute_show, NULL); +static struct device_attribute dev_max_vol_count = + __ATTR(max_vol_count, S_IRUGO, dev_attribute_show, NULL); +static struct device_attribute dev_min_io_size = + __ATTR(min_io_size, S_IRUGO, dev_attribute_show, NULL); +static struct device_attribute dev_bgt_enabled = + __ATTR(bgt_enabled, S_IRUGO, dev_attribute_show, NULL); +static struct device_attribute dev_mtd_num = + __ATTR(mtd_num, S_IRUGO, dev_attribute_show, NULL); +static struct device_attribute dev_ro_mode = + __ATTR(ro_mode, S_IRUGO, dev_attribute_show, NULL); + +/** + * ubi_volume_notify - send a volume change notification. + * @ubi: UBI device description object + * @vol: volume description object of the changed volume + * @ntype: notification type to send (%UBI_VOLUME_ADDED, etc) + * + * This is a helper function which notifies all subscribers about a volume + * change event (creation, removal, re-sizing, re-naming, updating). Returns + * zero in case of success and a negative error code in case of failure. + */ +int ubi_volume_notify(struct ubi_device *ubi, struct ubi_volume *vol, int ntype) +{ + int ret; + struct ubi_notification nt; + + ubi_do_get_device_info(ubi, &nt.di); + ubi_do_get_volume_info(ubi, vol, &nt.vi); + + switch (ntype) { + case UBI_VOLUME_ADDED: + case UBI_VOLUME_REMOVED: + case UBI_VOLUME_RESIZED: + case UBI_VOLUME_RENAMED: + ret = ubi_update_fastmap(ubi); + if (ret) + ubi_msg(ubi, "Unable to write a new fastmap: %i", ret); + } + + return blocking_notifier_call_chain(&ubi_notifiers, ntype, &nt); +} + +/** + * ubi_notify_all - send a notification to all volumes. + * @ubi: UBI device description object + * @ntype: notification type to send (%UBI_VOLUME_ADDED, etc) + * @nb: the notifier to call + * + * This function walks all volumes of UBI device @ubi and sends the @ntype + * notification for each volume. If @nb is %NULL, then all registered notifiers + * are called, otherwise only the @nb notifier is called. Returns the number of + * sent notifications. + */ +int ubi_notify_all(struct ubi_device *ubi, int ntype, struct notifier_block *nb) +{ + struct ubi_notification nt; + int i, count = 0; + + ubi_do_get_device_info(ubi, &nt.di); + + mutex_lock(&ubi->device_mutex); + for (i = 0; i < ubi->vtbl_slots; i++) { + /* + * Since the @ubi->device is locked, and we are not going to + * change @ubi->volumes, we do not have to lock + * @ubi->volumes_lock. + */ + if (!ubi->volumes[i]) + continue; + + ubi_do_get_volume_info(ubi, ubi->volumes[i], &nt.vi); + if (nb) + nb->notifier_call(nb, ntype, &nt); + else + blocking_notifier_call_chain(&ubi_notifiers, ntype, + &nt); + count += 1; + } + mutex_unlock(&ubi->device_mutex); + + return count; +} + +/** + * ubi_enumerate_volumes - send "add" notification for all existing volumes. + * @nb: the notifier to call + * + * This function walks all UBI devices and volumes and sends the + * %UBI_VOLUME_ADDED notification for each volume. If @nb is %NULL, then all + * registered notifiers are called, otherwise only the @nb notifier is called. + * Returns the number of sent notifications. + */ +int ubi_enumerate_volumes(struct notifier_block *nb) +{ + int i, count = 0; + + /* + * Since the @ubi_devices_mutex is locked, and we are not going to + * change @ubi_devices, we do not have to lock @ubi_devices_lock. + */ + for (i = 0; i < UBI_MAX_DEVICES; i++) { + struct ubi_device *ubi = ubi_devices[i]; + + if (!ubi) + continue; + count += ubi_notify_all(ubi, UBI_VOLUME_ADDED, nb); + } + + return count; +} + +/** + * ubi_get_device - get UBI device. + * @ubi_num: UBI device number + * + * This function returns UBI device description object for UBI device number + * @ubi_num, or %NULL if the device does not exist. This function increases the + * device reference count to prevent removal of the device. In other words, the + * device cannot be removed if its reference count is not zero. + */ +struct ubi_device *ubi_get_device(int ubi_num) +{ + struct ubi_device *ubi; + + spin_lock(&ubi_devices_lock); + ubi = ubi_devices[ubi_num]; + if (ubi) { + ubi_assert(ubi->ref_count >= 0); + ubi->ref_count += 1; + get_device(&ubi->dev); + } + spin_unlock(&ubi_devices_lock); + + return ubi; +} + +/** + * ubi_put_device - drop an UBI device reference. + * @ubi: UBI device description object + */ +void ubi_put_device(struct ubi_device *ubi) +{ + spin_lock(&ubi_devices_lock); + ubi->ref_count -= 1; + put_device(&ubi->dev); + spin_unlock(&ubi_devices_lock); +} + +/** + * ubi_get_by_major - get UBI device by character device major number. + * @major: major number + * + * This function is similar to 'ubi_get_device()', but it searches the device + * by its major number. + */ +struct ubi_device *ubi_get_by_major(int major) +{ + int i; + struct ubi_device *ubi; + + spin_lock(&ubi_devices_lock); + for (i = 0; i < UBI_MAX_DEVICES; i++) { + ubi = ubi_devices[i]; + if (ubi && MAJOR(ubi->cdev.dev) == major) { + ubi_assert(ubi->ref_count >= 0); + ubi->ref_count += 1; + get_device(&ubi->dev); + spin_unlock(&ubi_devices_lock); + return ubi; + } + } + spin_unlock(&ubi_devices_lock); + + return NULL; +} + +/** + * ubi_major2num - get UBI device number by character device major number. + * @major: major number + * + * This function searches UBI device number object by its major number. If UBI + * device was not found, this function returns -ENODEV, otherwise the UBI device + * number is returned. + */ +int ubi_major2num(int major) +{ + int i, ubi_num = -ENODEV; + + spin_lock(&ubi_devices_lock); + for (i = 0; i < UBI_MAX_DEVICES; i++) { + struct ubi_device *ubi = ubi_devices[i]; + + if (ubi && MAJOR(ubi->cdev.dev) == major) { + ubi_num = ubi->ubi_num; + break; + } + } + spin_unlock(&ubi_devices_lock); + + return ubi_num; +} + +/* "Show" method for files in '/<sysfs>/class/ubi/ubiX/' */ +static ssize_t dev_attribute_show(struct device *dev, + struct device_attribute *attr, char *buf) +{ + ssize_t ret; + struct ubi_device *ubi; + + /* + * The below code looks weird, but it actually makes sense. We get the + * UBI device reference from the contained 'struct ubi_device'. But it + * is unclear if the device was removed or not yet. Indeed, if the + * device was removed before we increased its reference count, + * 'ubi_get_device()' will return -ENODEV and we fail. + * + * Remember, 'struct ubi_device' is freed in the release function, so + * we still can use 'ubi->ubi_num'. + */ + ubi = container_of(dev, struct ubi_device, dev); + + if (attr == &dev_eraseblock_size) + ret = sprintf(buf, "%d\n", ubi->leb_size); + else if (attr == &dev_avail_eraseblocks) + ret = sprintf(buf, "%d\n", ubi->avail_pebs); + else if (attr == &dev_total_eraseblocks) + ret = sprintf(buf, "%d\n", ubi->good_peb_count); + else if (attr == &dev_volumes_count) + ret = sprintf(buf, "%d\n", ubi->vol_count - UBI_INT_VOL_COUNT); + else if (attr == &dev_max_ec) + ret = sprintf(buf, "%d\n", ubi->max_ec); + else if (attr == &dev_reserved_for_bad) + ret = sprintf(buf, "%d\n", ubi->beb_rsvd_pebs); + else if (attr == &dev_bad_peb_count) + ret = sprintf(buf, "%d\n", ubi->bad_peb_count); + else if (attr == &dev_max_vol_count) + ret = sprintf(buf, "%d\n", ubi->vtbl_slots); + else if (attr == &dev_min_io_size) + ret = sprintf(buf, "%d\n", ubi->min_io_size); + else if (attr == &dev_bgt_enabled) + ret = sprintf(buf, "%d\n", ubi->thread_enabled); + else if (attr == &dev_mtd_num) + ret = sprintf(buf, "%d\n", ubi->mtd->index); + else if (attr == &dev_ro_mode) + ret = sprintf(buf, "%d\n", ubi->ro_mode); + else + ret = -EINVAL; + + return ret; +} + +static struct attribute *ubi_dev_attrs[] = { + &dev_eraseblock_size.attr, + &dev_avail_eraseblocks.attr, + &dev_total_eraseblocks.attr, + &dev_volumes_count.attr, + &dev_max_ec.attr, + &dev_reserved_for_bad.attr, + &dev_bad_peb_count.attr, + &dev_max_vol_count.attr, + &dev_min_io_size.attr, + &dev_bgt_enabled.attr, + &dev_mtd_num.attr, + &dev_ro_mode.attr, + NULL +}; +ATTRIBUTE_GROUPS(ubi_dev); + +static void dev_release(struct device *dev) +{ + struct ubi_device *ubi = container_of(dev, struct ubi_device, dev); + + kfree(ubi); +} + +/** + * kill_volumes - destroy all user volumes. + * @ubi: UBI device description object + */ +static void kill_volumes(struct ubi_device *ubi) +{ + int i; + + for (i = 0; i < ubi->vtbl_slots; i++) + if (ubi->volumes[i]) + ubi_free_volume(ubi, ubi->volumes[i]); +} + +/** + * uif_init - initialize user interfaces for an UBI device. + * @ubi: UBI device description object + * + * This function initializes various user interfaces for an UBI device. If the + * initialization fails at an early stage, this function frees all the + * resources it allocated, returns an error. + * + * This function returns zero in case of success and a negative error code in + * case of failure. + */ +static int uif_init(struct ubi_device *ubi) +{ + int i, err; + dev_t dev; + + sprintf(ubi->ubi_name, UBI_NAME_STR "%d", ubi->ubi_num); + + /* + * Major numbers for the UBI character devices are allocated + * dynamically. Major numbers of volume character devices are + * equivalent to ones of the corresponding UBI character device. Minor + * numbers of UBI character devices are 0, while minor numbers of + * volume character devices start from 1. Thus, we allocate one major + * number and ubi->vtbl_slots + 1 minor numbers. + */ + err = alloc_chrdev_region(&dev, 0, ubi->vtbl_slots + 1, ubi->ubi_name); + if (err) { + ubi_err(ubi, "cannot register UBI character devices"); + return err; + } + + ubi->dev.devt = dev; + + ubi_assert(MINOR(dev) == 0); + cdev_init(&ubi->cdev, &ubi_cdev_operations); + dbg_gen("%s major is %u", ubi->ubi_name, MAJOR(dev)); + ubi->cdev.owner = THIS_MODULE; + + dev_set_name(&ubi->dev, UBI_NAME_STR "%d", ubi->ubi_num); + err = cdev_device_add(&ubi->cdev, &ubi->dev); + if (err) + goto out_unreg; + + for (i = 0; i < ubi->vtbl_slots; i++) + if (ubi->volumes[i]) { + err = ubi_add_volume(ubi, ubi->volumes[i]); + if (err) { + ubi_err(ubi, "cannot add volume %d", i); + ubi->volumes[i] = NULL; + goto out_volumes; + } + } + + return 0; + +out_volumes: + kill_volumes(ubi); + cdev_device_del(&ubi->cdev, &ubi->dev); +out_unreg: + unregister_chrdev_region(ubi->cdev.dev, ubi->vtbl_slots + 1); + ubi_err(ubi, "cannot initialize UBI %s, error %d", + ubi->ubi_name, err); + return err; +} + +/** + * uif_close - close user interfaces for an UBI device. + * @ubi: UBI device description object + * + * Note, since this function un-registers UBI volume device objects (@vol->dev), + * the memory allocated voe the volumes is freed as well (in the release + * function). + */ +static void uif_close(struct ubi_device *ubi) +{ + kill_volumes(ubi); + cdev_device_del(&ubi->cdev, &ubi->dev); + unregister_chrdev_region(ubi->cdev.dev, ubi->vtbl_slots + 1); +} + +/** + * ubi_free_volumes_from - free volumes from specific index. + * @ubi: UBI device description object + * @from: the start index used for volume free. + */ +static void ubi_free_volumes_from(struct ubi_device *ubi, int from) +{ + int i; + + for (i = from; i < ubi->vtbl_slots + UBI_INT_VOL_COUNT; i++) { + if (!ubi->volumes[i]) + continue; + ubi_eba_replace_table(ubi->volumes[i], NULL); + ubi_fastmap_destroy_checkmap(ubi->volumes[i]); + kfree(ubi->volumes[i]); + ubi->volumes[i] = NULL; + } +} + +/** + * ubi_free_all_volumes - free all volumes. + * @ubi: UBI device description object + */ +void ubi_free_all_volumes(struct ubi_device *ubi) +{ + ubi_free_volumes_from(ubi, 0); +} + +/** + * ubi_free_internal_volumes - free internal volumes. + * @ubi: UBI device description object + */ +void ubi_free_internal_volumes(struct ubi_device *ubi) +{ + ubi_free_volumes_from(ubi, ubi->vtbl_slots); +} + +static int get_bad_peb_limit(const struct ubi_device *ubi, int max_beb_per1024) +{ + int limit, device_pebs; + uint64_t device_size; + + if (!max_beb_per1024) { + /* + * Since max_beb_per1024 has not been set by the user in either + * the cmdline or Kconfig, use mtd_max_bad_blocks to set the + * limit if it is supported by the device. + */ + limit = mtd_max_bad_blocks(ubi->mtd, 0, ubi->mtd->size); + if (limit < 0) + return 0; + return limit; + } + + /* + * Here we are using size of the entire flash chip and + * not just the MTD partition size because the maximum + * number of bad eraseblocks is a percentage of the + * whole device and bad eraseblocks are not fairly + * distributed over the flash chip. So the worst case + * is that all the bad eraseblocks of the chip are in + * the MTD partition we are attaching (ubi->mtd). + */ + device_size = mtd_get_device_size(ubi->mtd); + device_pebs = mtd_div_by_eb(device_size, ubi->mtd); + limit = mult_frac(device_pebs, max_beb_per1024, 1024); + + /* Round it up */ + if (mult_frac(limit, 1024, max_beb_per1024) < device_pebs) + limit += 1; + + return limit; +} + +/** + * io_init - initialize I/O sub-system for a given UBI device. + * @ubi: UBI device description object + * @max_beb_per1024: maximum expected number of bad PEB per 1024 PEBs + * + * If @ubi->vid_hdr_offset or @ubi->leb_start is zero, default offsets are + * assumed: + * o EC header is always at offset zero - this cannot be changed; + * o VID header starts just after the EC header at the closest address + * aligned to @io->hdrs_min_io_size; + * o data starts just after the VID header at the closest address aligned to + * @io->min_io_size + * + * This function returns zero in case of success and a negative error code in + * case of failure. + */ +static int io_init(struct ubi_device *ubi, int max_beb_per1024) +{ + dbg_gen("sizeof(struct ubi_ainf_peb) %zu", sizeof(struct ubi_ainf_peb)); + dbg_gen("sizeof(struct ubi_wl_entry) %zu", sizeof(struct ubi_wl_entry)); + + if (ubi->mtd->numeraseregions != 0) { + /* + * Some flashes have several erase regions. Different regions + * may have different eraseblock size and other + * characteristics. It looks like mostly multi-region flashes + * have one "main" region and one or more small regions to + * store boot loader code or boot parameters or whatever. I + * guess we should just pick the largest region. But this is + * not implemented. + */ + ubi_err(ubi, "multiple regions, not implemented"); + return -EINVAL; + } + + if (ubi->vid_hdr_offset < 0) + return -EINVAL; + + /* + * Note, in this implementation we support MTD devices with 0x7FFFFFFF + * physical eraseblocks maximum. + */ + + ubi->peb_size = ubi->mtd->erasesize; + ubi->peb_count = mtd_div_by_eb(ubi->mtd->size, ubi->mtd); + ubi->flash_size = ubi->mtd->size; + + if (mtd_can_have_bb(ubi->mtd)) { + ubi->bad_allowed = 1; + ubi->bad_peb_limit = get_bad_peb_limit(ubi, max_beb_per1024); + } + + if (ubi->mtd->type == MTD_NORFLASH) + ubi->nor_flash = 1; + + ubi->min_io_size = ubi->mtd->writesize; + ubi->hdrs_min_io_size = ubi->mtd->writesize >> ubi->mtd->subpage_sft; + + /* + * Make sure minimal I/O unit is power of 2. Note, there is no + * fundamental reason for this assumption. It is just an optimization + * which allows us to avoid costly division operations. + */ + if (!is_power_of_2(ubi->min_io_size)) { + ubi_err(ubi, "min. I/O unit (%d) is not power of 2", + ubi->min_io_size); + return -EINVAL; + } + + ubi_assert(ubi->hdrs_min_io_size > 0); + ubi_assert(ubi->hdrs_min_io_size <= ubi->min_io_size); + ubi_assert(ubi->min_io_size % ubi->hdrs_min_io_size == 0); + + ubi->max_write_size = ubi->mtd->writebufsize; + /* + * Maximum write size has to be greater or equivalent to min. I/O + * size, and be multiple of min. I/O size. + */ + if (ubi->max_write_size < ubi->min_io_size || + ubi->max_write_size % ubi->min_io_size || + !is_power_of_2(ubi->max_write_size)) { + ubi_err(ubi, "bad write buffer size %d for %d min. I/O unit", + ubi->max_write_size, ubi->min_io_size); + return -EINVAL; + } + + /* Calculate default aligned sizes of EC and VID headers */ + ubi->ec_hdr_alsize = ALIGN(UBI_EC_HDR_SIZE, ubi->hdrs_min_io_size); + ubi->vid_hdr_alsize = ALIGN(UBI_VID_HDR_SIZE, ubi->hdrs_min_io_size); + + dbg_gen("min_io_size %d", ubi->min_io_size); + dbg_gen("max_write_size %d", ubi->max_write_size); + dbg_gen("hdrs_min_io_size %d", ubi->hdrs_min_io_size); + dbg_gen("ec_hdr_alsize %d", ubi->ec_hdr_alsize); + dbg_gen("vid_hdr_alsize %d", ubi->vid_hdr_alsize); + + if (ubi->vid_hdr_offset == 0) + /* Default offset */ + ubi->vid_hdr_offset = ubi->vid_hdr_aloffset = + ubi->ec_hdr_alsize; + else { + ubi->vid_hdr_aloffset = ubi->vid_hdr_offset & + ~(ubi->hdrs_min_io_size - 1); + ubi->vid_hdr_shift = ubi->vid_hdr_offset - + ubi->vid_hdr_aloffset; + } + + /* + * Memory allocation for VID header is ubi->vid_hdr_alsize + * which is described in comments in io.c. + * Make sure VID header shift + UBI_VID_HDR_SIZE not exceeds + * ubi->vid_hdr_alsize, so that all vid header operations + * won't access memory out of bounds. + */ + if ((ubi->vid_hdr_shift + UBI_VID_HDR_SIZE) > ubi->vid_hdr_alsize) { + ubi_err(ubi, "Invalid VID header offset %d, VID header shift(%d)" + " + VID header size(%zu) > VID header aligned size(%d).", + ubi->vid_hdr_offset, ubi->vid_hdr_shift, + UBI_VID_HDR_SIZE, ubi->vid_hdr_alsize); + return -EINVAL; + } + + /* Similar for the data offset */ + ubi->leb_start = ubi->vid_hdr_offset + UBI_VID_HDR_SIZE; + ubi->leb_start = ALIGN(ubi->leb_start, ubi->min_io_size); + + dbg_gen("vid_hdr_offset %d", ubi->vid_hdr_offset); + dbg_gen("vid_hdr_aloffset %d", ubi->vid_hdr_aloffset); + dbg_gen("vid_hdr_shift %d", ubi->vid_hdr_shift); + dbg_gen("leb_start %d", ubi->leb_start); + + /* The shift must be aligned to 32-bit boundary */ + if (ubi->vid_hdr_shift % 4) { + ubi_err(ubi, "unaligned VID header shift %d", + ubi->vid_hdr_shift); + return -EINVAL; + } + + /* Check sanity */ + if (ubi->vid_hdr_offset < UBI_EC_HDR_SIZE || + ubi->leb_start < ubi->vid_hdr_offset + UBI_VID_HDR_SIZE || + ubi->leb_start > ubi->peb_size - UBI_VID_HDR_SIZE || + ubi->leb_start & (ubi->min_io_size - 1)) { + ubi_err(ubi, "bad VID header (%d) or data offsets (%d)", + ubi->vid_hdr_offset, ubi->leb_start); + return -EINVAL; + } + + /* + * Set maximum amount of physical erroneous eraseblocks to be 10%. + * Erroneous PEB are those which have read errors. + */ + ubi->max_erroneous = ubi->peb_count / 10; + if (ubi->max_erroneous < 16) + ubi->max_erroneous = 16; + dbg_gen("max_erroneous %d", ubi->max_erroneous); + + /* + * It may happen that EC and VID headers are situated in one minimal + * I/O unit. In this case we can only accept this UBI image in + * read-only mode. + */ + if (ubi->vid_hdr_offset + UBI_VID_HDR_SIZE <= ubi->hdrs_min_io_size) { + ubi_warn(ubi, "EC and VID headers are in the same minimal I/O unit, switch to read-only mode"); + ubi->ro_mode = 1; + } + + ubi->leb_size = ubi->peb_size - ubi->leb_start; + + if (!(ubi->mtd->flags & MTD_WRITEABLE)) { + ubi_msg(ubi, "MTD device %d is write-protected, attach in read-only mode", + ubi->mtd->index); + ubi->ro_mode = 1; + } + + /* + * Note, ideally, we have to initialize @ubi->bad_peb_count here. But + * unfortunately, MTD does not provide this information. We should loop + * over all physical eraseblocks and invoke mtd->block_is_bad() for + * each physical eraseblock. So, we leave @ubi->bad_peb_count + * uninitialized so far. + */ + + return 0; +} + +/** + * autoresize - re-size the volume which has the "auto-resize" flag set. + * @ubi: UBI device description object + * @vol_id: ID of the volume to re-size + * + * This function re-sizes the volume marked by the %UBI_VTBL_AUTORESIZE_FLG in + * the volume table to the largest possible size. See comments in ubi-header.h + * for more description of the flag. Returns zero in case of success and a + * negative error code in case of failure. + */ +static int autoresize(struct ubi_device *ubi, int vol_id) +{ + struct ubi_volume_desc desc; + struct ubi_volume *vol = ubi->volumes[vol_id]; + int err, old_reserved_pebs = vol->reserved_pebs; + + if (ubi->ro_mode) { + ubi_warn(ubi, "skip auto-resize because of R/O mode"); + return 0; + } + + /* + * Clear the auto-resize flag in the volume in-memory copy of the + * volume table, and 'ubi_resize_volume()' will propagate this change + * to the flash. + */ + ubi->vtbl[vol_id].flags &= ~UBI_VTBL_AUTORESIZE_FLG; + + if (ubi->avail_pebs == 0) { + struct ubi_vtbl_record vtbl_rec; + + /* + * No available PEBs to re-size the volume, clear the flag on + * flash and exit. + */ + vtbl_rec = ubi->vtbl[vol_id]; + err = ubi_change_vtbl_record(ubi, vol_id, &vtbl_rec); + if (err) + ubi_err(ubi, "cannot clean auto-resize flag for volume %d", + vol_id); + } else { + desc.vol = vol; + err = ubi_resize_volume(&desc, + old_reserved_pebs + ubi->avail_pebs); + if (err) + ubi_err(ubi, "cannot auto-resize volume %d", + vol_id); + } + + if (err) + return err; + + ubi_msg(ubi, "volume %d (\"%s\") re-sized from %d to %d LEBs", + vol_id, vol->name, old_reserved_pebs, vol->reserved_pebs); + return 0; +} + +/** + * ubi_attach_mtd_dev - attach an MTD device. + * @mtd: MTD device description object + * @ubi_num: number to assign to the new UBI device + * @vid_hdr_offset: VID header offset + * @max_beb_per1024: maximum expected number of bad PEB per 1024 PEBs + * @disable_fm: whether disable fastmap + * + * This function attaches MTD device @mtd_dev to UBI and assign @ubi_num number + * to the newly created UBI device, unless @ubi_num is %UBI_DEV_NUM_AUTO, in + * which case this function finds a vacant device number and assigns it + * automatically. Returns the new UBI device number in case of success and a + * negative error code in case of failure. + * + * If @disable_fm is true, ubi doesn't create new fastmap even the module param + * 'fm_autoconvert' is set, and existed old fastmap will be destroyed after + * doing full scanning. + * + * Note, the invocations of this function has to be serialized by the + * @ubi_devices_mutex. + */ +int ubi_attach_mtd_dev(struct mtd_info *mtd, int ubi_num, + int vid_hdr_offset, int max_beb_per1024, bool disable_fm) +{ + struct ubi_device *ubi; + int i, err; + + if (max_beb_per1024 < 0 || max_beb_per1024 > MAX_MTD_UBI_BEB_LIMIT) + return -EINVAL; + + if (!max_beb_per1024) + max_beb_per1024 = CONFIG_MTD_UBI_BEB_LIMIT; + + /* + * Check if we already have the same MTD device attached. + * + * Note, this function assumes that UBI devices creations and deletions + * are serialized, so it does not take the &ubi_devices_lock. + */ + for (i = 0; i < UBI_MAX_DEVICES; i++) { + ubi = ubi_devices[i]; + if (ubi && mtd->index == ubi->mtd->index) { + pr_err("ubi: mtd%d is already attached to ubi%d\n", + mtd->index, i); + return -EEXIST; + } + } + + /* + * Make sure this MTD device is not emulated on top of an UBI volume + * already. Well, generally this recursion works fine, but there are + * different problems like the UBI module takes a reference to itself + * by attaching (and thus, opening) the emulated MTD device. This + * results in inability to unload the module. And in general it makes + * no sense to attach emulated MTD devices, so we prohibit this. + */ + if (mtd->type == MTD_UBIVOLUME) { + pr_err("ubi: refuse attaching mtd%d - it is already emulated on top of UBI\n", + mtd->index); + return -EINVAL; + } + + /* + * Both UBI and UBIFS have been designed for SLC NAND and NOR flashes. + * MLC NAND is different and needs special care, otherwise UBI or UBIFS + * will die soon and you will lose all your data. + * Relax this rule if the partition we're attaching to operates in SLC + * mode. + */ + if (mtd->type == MTD_MLCNANDFLASH && + !(mtd->flags & MTD_SLC_ON_MLC_EMULATION)) { + pr_err("ubi: refuse attaching mtd%d - MLC NAND is not supported\n", + mtd->index); + return -EINVAL; + } + + /* UBI cannot work on flashes with zero erasesize. */ + if (!mtd->erasesize) { + pr_err("ubi: refuse attaching mtd%d - zero erasesize flash is not supported\n", + mtd->index); + return -EINVAL; + } + + if (ubi_num == UBI_DEV_NUM_AUTO) { + /* Search for an empty slot in the @ubi_devices array */ + for (ubi_num = 0; ubi_num < UBI_MAX_DEVICES; ubi_num++) + if (!ubi_devices[ubi_num]) + break; + if (ubi_num == UBI_MAX_DEVICES) { + pr_err("ubi: only %d UBI devices may be created\n", + UBI_MAX_DEVICES); + return -ENFILE; + } + } else { + if (ubi_num >= UBI_MAX_DEVICES) + return -EINVAL; + + /* Make sure ubi_num is not busy */ + if (ubi_devices[ubi_num]) { + pr_err("ubi: ubi%i already exists\n", ubi_num); + return -EEXIST; + } + } + + ubi = kzalloc(sizeof(struct ubi_device), GFP_KERNEL); + if (!ubi) + return -ENOMEM; + + device_initialize(&ubi->dev); + ubi->dev.release = dev_release; + ubi->dev.class = &ubi_class; + ubi->dev.groups = ubi_dev_groups; + ubi->dev.parent = &mtd->dev; + + ubi->mtd = mtd; + ubi->ubi_num = ubi_num; + ubi->vid_hdr_offset = vid_hdr_offset; + ubi->autoresize_vol_id = -1; + +#ifdef CONFIG_MTD_UBI_FASTMAP + ubi->fm_pool.used = ubi->fm_pool.size = 0; + ubi->fm_wl_pool.used = ubi->fm_wl_pool.size = 0; + + /* + * fm_pool.max_size is 5% of the total number of PEBs but it's also + * between UBI_FM_MAX_POOL_SIZE and UBI_FM_MIN_POOL_SIZE. + */ + ubi->fm_pool.max_size = min(((int)mtd_div_by_eb(ubi->mtd->size, + ubi->mtd) / 100) * 5, UBI_FM_MAX_POOL_SIZE); + ubi->fm_pool.max_size = max(ubi->fm_pool.max_size, + UBI_FM_MIN_POOL_SIZE); + + ubi->fm_wl_pool.max_size = ubi->fm_pool.max_size / 2; + ubi->fm_disabled = (!fm_autoconvert || disable_fm) ? 1 : 0; + if (fm_debug) + ubi_enable_dbg_chk_fastmap(ubi); + + if (!ubi->fm_disabled && (int)mtd_div_by_eb(ubi->mtd->size, ubi->mtd) + <= UBI_FM_MAX_START) { + ubi_err(ubi, "More than %i PEBs are needed for fastmap, sorry.", + UBI_FM_MAX_START); + ubi->fm_disabled = 1; + } + + ubi_msg(ubi, "default fastmap pool size: %d", ubi->fm_pool.max_size); + ubi_msg(ubi, "default fastmap WL pool size: %d", + ubi->fm_wl_pool.max_size); +#else + ubi->fm_disabled = 1; +#endif + mutex_init(&ubi->buf_mutex); + mutex_init(&ubi->ckvol_mutex); + mutex_init(&ubi->device_mutex); + spin_lock_init(&ubi->volumes_lock); + init_rwsem(&ubi->fm_protect); + init_rwsem(&ubi->fm_eba_sem); + + ubi_msg(ubi, "attaching mtd%d", mtd->index); + + err = io_init(ubi, max_beb_per1024); + if (err) + goto out_free; + + err = -ENOMEM; + ubi->peb_buf = vmalloc(ubi->peb_size); + if (!ubi->peb_buf) + goto out_free; + +#ifdef CONFIG_MTD_UBI_FASTMAP + ubi->fm_size = ubi_calc_fm_size(ubi); + ubi->fm_buf = vzalloc(ubi->fm_size); + if (!ubi->fm_buf) + goto out_free; +#endif + err = ubi_attach(ubi, disable_fm ? 1 : 0); + if (err) { + ubi_err(ubi, "failed to attach mtd%d, error %d", + mtd->index, err); + goto out_free; + } + + if (ubi->autoresize_vol_id != -1) { + err = autoresize(ubi, ubi->autoresize_vol_id); + if (err) + goto out_detach; + } + + err = uif_init(ubi); + if (err) + goto out_detach; + + err = ubi_debugfs_init_dev(ubi); + if (err) + goto out_uif; + + ubi->bgt_thread = kthread_create(ubi_thread, ubi, "%s", ubi->bgt_name); + if (IS_ERR(ubi->bgt_thread)) { + err = PTR_ERR(ubi->bgt_thread); + ubi_err(ubi, "cannot spawn \"%s\", error %d", + ubi->bgt_name, err); + goto out_debugfs; + } + + ubi_msg(ubi, "attached mtd%d (name \"%s\", size %llu MiB)", + mtd->index, mtd->name, ubi->flash_size >> 20); + ubi_msg(ubi, "PEB size: %d bytes (%d KiB), LEB size: %d bytes", + ubi->peb_size, ubi->peb_size >> 10, ubi->leb_size); + ubi_msg(ubi, "min./max. I/O unit sizes: %d/%d, sub-page size %d", + ubi->min_io_size, ubi->max_write_size, ubi->hdrs_min_io_size); + ubi_msg(ubi, "VID header offset: %d (aligned %d), data offset: %d", + ubi->vid_hdr_offset, ubi->vid_hdr_aloffset, ubi->leb_start); + ubi_msg(ubi, "good PEBs: %d, bad PEBs: %d, corrupted PEBs: %d", + ubi->good_peb_count, ubi->bad_peb_count, ubi->corr_peb_count); + ubi_msg(ubi, "user volume: %d, internal volumes: %d, max. volumes count: %d", + ubi->vol_count - UBI_INT_VOL_COUNT, UBI_INT_VOL_COUNT, + ubi->vtbl_slots); + ubi_msg(ubi, "max/mean erase counter: %d/%d, WL threshold: %d, image sequence number: %u", + ubi->max_ec, ubi->mean_ec, CONFIG_MTD_UBI_WL_THRESHOLD, + ubi->image_seq); + ubi_msg(ubi, "available PEBs: %d, total reserved PEBs: %d, PEBs reserved for bad PEB handling: %d", + ubi->avail_pebs, ubi->rsvd_pebs, ubi->beb_rsvd_pebs); + + /* + * The below lock makes sure we do not race with 'ubi_thread()' which + * checks @ubi->thread_enabled. Otherwise we may fail to wake it up. + */ + spin_lock(&ubi->wl_lock); + ubi->thread_enabled = 1; + wake_up_process(ubi->bgt_thread); + spin_unlock(&ubi->wl_lock); + + ubi_devices[ubi_num] = ubi; + ubi_notify_all(ubi, UBI_VOLUME_ADDED, NULL); + return ubi_num; + +out_debugfs: + ubi_debugfs_exit_dev(ubi); +out_uif: + uif_close(ubi); +out_detach: + ubi_wl_close(ubi); + ubi_free_all_volumes(ubi); + vfree(ubi->vtbl); +out_free: + vfree(ubi->peb_buf); + vfree(ubi->fm_buf); + put_device(&ubi->dev); + return err; +} + +/** + * ubi_detach_mtd_dev - detach an MTD device. + * @ubi_num: UBI device number to detach from + * @anyway: detach MTD even if device reference count is not zero + * + * This function destroys an UBI device number @ubi_num and detaches the + * underlying MTD device. Returns zero in case of success and %-EBUSY if the + * UBI device is busy and cannot be destroyed, and %-EINVAL if it does not + * exist. + * + * Note, the invocations of this function has to be serialized by the + * @ubi_devices_mutex. + */ +int ubi_detach_mtd_dev(int ubi_num, int anyway) +{ + struct ubi_device *ubi; + + if (ubi_num < 0 || ubi_num >= UBI_MAX_DEVICES) + return -EINVAL; + + ubi = ubi_get_device(ubi_num); + if (!ubi) + return -EINVAL; + + spin_lock(&ubi_devices_lock); + put_device(&ubi->dev); + ubi->ref_count -= 1; + if (ubi->ref_count) { + if (!anyway) { + spin_unlock(&ubi_devices_lock); + return -EBUSY; + } + /* This may only happen if there is a bug */ + ubi_err(ubi, "%s reference count %d, destroy anyway", + ubi->ubi_name, ubi->ref_count); + } + ubi_devices[ubi_num] = NULL; + spin_unlock(&ubi_devices_lock); + + ubi_assert(ubi_num == ubi->ubi_num); + ubi_notify_all(ubi, UBI_VOLUME_REMOVED, NULL); + ubi_msg(ubi, "detaching mtd%d", ubi->mtd->index); +#ifdef CONFIG_MTD_UBI_FASTMAP + /* If we don't write a new fastmap at detach time we lose all + * EC updates that have been made since the last written fastmap. + * In case of fastmap debugging we omit the update to simulate an + * unclean shutdown. */ + if (!ubi_dbg_chk_fastmap(ubi)) + ubi_update_fastmap(ubi); +#endif + /* + * Before freeing anything, we have to stop the background thread to + * prevent it from doing anything on this device while we are freeing. + */ + if (ubi->bgt_thread) + kthread_stop(ubi->bgt_thread); + +#ifdef CONFIG_MTD_UBI_FASTMAP + cancel_work_sync(&ubi->fm_work); +#endif + ubi_debugfs_exit_dev(ubi); + uif_close(ubi); + + ubi_wl_close(ubi); + ubi_free_internal_volumes(ubi); + vfree(ubi->vtbl); + vfree(ubi->peb_buf); + vfree(ubi->fm_buf); + ubi_msg(ubi, "mtd%d is detached", ubi->mtd->index); + put_mtd_device(ubi->mtd); + put_device(&ubi->dev); + return 0; +} + +/** + * open_mtd_by_chdev - open an MTD device by its character device node path. + * @mtd_dev: MTD character device node path + * + * This helper function opens an MTD device by its character node device path. + * Returns MTD device description object in case of success and a negative + * error code in case of failure. + */ +static struct mtd_info * __init open_mtd_by_chdev(const char *mtd_dev) +{ + int err, minor; + struct path path; + struct kstat stat; + + /* Probably this is an MTD character device node path */ + err = kern_path(mtd_dev, LOOKUP_FOLLOW, &path); + if (err) + return ERR_PTR(err); + + err = vfs_getattr(&path, &stat, STATX_TYPE, AT_STATX_SYNC_AS_STAT); + path_put(&path); + if (err) + return ERR_PTR(err); + + /* MTD device number is defined by the major / minor numbers */ + if (MAJOR(stat.rdev) != MTD_CHAR_MAJOR || !S_ISCHR(stat.mode)) + return ERR_PTR(-EINVAL); + + minor = MINOR(stat.rdev); + + if (minor & 1) + /* + * Just do not think the "/dev/mtdrX" devices support is need, + * so do not support them to avoid doing extra work. + */ + return ERR_PTR(-EINVAL); + + return get_mtd_device(NULL, minor / 2); +} + +/** + * open_mtd_device - open MTD device by name, character device path, or number. + * @mtd_dev: name, character device node path, or MTD device device number + * + * This function tries to open and MTD device described by @mtd_dev string, + * which is first treated as ASCII MTD device number, and if it is not true, it + * is treated as MTD device name, and if that is also not true, it is treated + * as MTD character device node path. Returns MTD device description object in + * case of success and a negative error code in case of failure. + */ +static struct mtd_info * __init open_mtd_device(const char *mtd_dev) +{ + struct mtd_info *mtd; + int mtd_num; + char *endp; + + mtd_num = simple_strtoul(mtd_dev, &endp, 0); + if (*endp != '\0' || mtd_dev == endp) { + /* + * This does not look like an ASCII integer, probably this is + * MTD device name. + */ + mtd = get_mtd_device_nm(mtd_dev); + if (PTR_ERR(mtd) == -ENODEV) + /* Probably this is an MTD character device node path */ + mtd = open_mtd_by_chdev(mtd_dev); + } else + mtd = get_mtd_device(NULL, mtd_num); + + return mtd; +} + +static int __init ubi_init(void) +{ + int err, i, k; + + /* Ensure that EC and VID headers have correct size */ + BUILD_BUG_ON(sizeof(struct ubi_ec_hdr) != 64); + BUILD_BUG_ON(sizeof(struct ubi_vid_hdr) != 64); + + if (mtd_devs > UBI_MAX_DEVICES) { + pr_err("UBI error: too many MTD devices, maximum is %d\n", + UBI_MAX_DEVICES); + return -EINVAL; + } + + /* Create base sysfs directory and sysfs files */ + err = class_register(&ubi_class); + if (err < 0) + return err; + + err = misc_register(&ubi_ctrl_cdev); + if (err) { + pr_err("UBI error: cannot register device\n"); + goto out; + } + + ubi_wl_entry_slab = kmem_cache_create("ubi_wl_entry_slab", + sizeof(struct ubi_wl_entry), + 0, 0, NULL); + if (!ubi_wl_entry_slab) { + err = -ENOMEM; + goto out_dev_unreg; + } + + err = ubi_debugfs_init(); + if (err) + goto out_slab; + + + /* Attach MTD devices */ + for (i = 0; i < mtd_devs; i++) { + struct mtd_dev_param *p = &mtd_dev_param[i]; + struct mtd_info *mtd; + + cond_resched(); + + mtd = open_mtd_device(p->name); + if (IS_ERR(mtd)) { + err = PTR_ERR(mtd); + pr_err("UBI error: cannot open mtd %s, error %d\n", + p->name, err); + /* See comment below re-ubi_is_module(). */ + if (ubi_is_module()) + goto out_detach; + continue; + } + + mutex_lock(&ubi_devices_mutex); + err = ubi_attach_mtd_dev(mtd, p->ubi_num, + p->vid_hdr_offs, p->max_beb_per1024, + p->enable_fm == 0); + mutex_unlock(&ubi_devices_mutex); + if (err < 0) { + pr_err("UBI error: cannot attach mtd%d\n", + mtd->index); + put_mtd_device(mtd); + + /* + * Originally UBI stopped initializing on any error. + * However, later on it was found out that this + * behavior is not very good when UBI is compiled into + * the kernel and the MTD devices to attach are passed + * through the command line. Indeed, UBI failure + * stopped whole boot sequence. + * + * To fix this, we changed the behavior for the + * non-module case, but preserved the old behavior for + * the module case, just for compatibility. This is a + * little inconsistent, though. + */ + if (ubi_is_module()) + goto out_detach; + } + } + + err = ubiblock_init(); + if (err) { + pr_err("UBI error: block: cannot initialize, error %d\n", err); + + /* See comment above re-ubi_is_module(). */ + if (ubi_is_module()) + goto out_detach; + } + + return 0; + +out_detach: + for (k = 0; k < i; k++) + if (ubi_devices[k]) { + mutex_lock(&ubi_devices_mutex); + ubi_detach_mtd_dev(ubi_devices[k]->ubi_num, 1); + mutex_unlock(&ubi_devices_mutex); + } + ubi_debugfs_exit(); +out_slab: + kmem_cache_destroy(ubi_wl_entry_slab); +out_dev_unreg: + misc_deregister(&ubi_ctrl_cdev); +out: + class_unregister(&ubi_class); + pr_err("UBI error: cannot initialize UBI, error %d\n", err); + return err; +} +late_initcall(ubi_init); + +static void __exit ubi_exit(void) +{ + int i; + + ubiblock_exit(); + + for (i = 0; i < UBI_MAX_DEVICES; i++) + if (ubi_devices[i]) { + mutex_lock(&ubi_devices_mutex); + ubi_detach_mtd_dev(ubi_devices[i]->ubi_num, 1); + mutex_unlock(&ubi_devices_mutex); + } + ubi_debugfs_exit(); + kmem_cache_destroy(ubi_wl_entry_slab); + misc_deregister(&ubi_ctrl_cdev); + class_unregister(&ubi_class); +} +module_exit(ubi_exit); + +/** + * bytes_str_to_int - convert a number of bytes string into an integer. + * @str: the string to convert + * + * This function returns positive resulting integer in case of success and a + * negative error code in case of failure. + */ +static int bytes_str_to_int(const char *str) +{ + char *endp; + unsigned long result; + + result = simple_strtoul(str, &endp, 0); + if (str == endp || result >= INT_MAX) { + pr_err("UBI error: incorrect bytes count: \"%s\"\n", str); + return -EINVAL; + } + + switch (*endp) { + case 'G': + result *= 1024; + fallthrough; + case 'M': + result *= 1024; + fallthrough; + case 'K': + result *= 1024; + break; + case '\0': + break; + default: + pr_err("UBI error: incorrect bytes count: \"%s\"\n", str); + return -EINVAL; + } + + return result; +} + +/** + * ubi_mtd_param_parse - parse the 'mtd=' UBI parameter. + * @val: the parameter value to parse + * @kp: not used + * + * This function returns zero in case of success and a negative error code in + * case of error. + */ +static int ubi_mtd_param_parse(const char *val, const struct kernel_param *kp) +{ + int i, len; + struct mtd_dev_param *p; + char buf[MTD_PARAM_LEN_MAX]; + char *pbuf = &buf[0]; + char *tokens[MTD_PARAM_MAX_COUNT], *token; + + if (!val) + return -EINVAL; + + if (mtd_devs == UBI_MAX_DEVICES) { + pr_err("UBI error: too many parameters, max. is %d\n", + UBI_MAX_DEVICES); + return -EINVAL; + } + + len = strnlen(val, MTD_PARAM_LEN_MAX); + if (len == MTD_PARAM_LEN_MAX) { + pr_err("UBI error: parameter \"%s\" is too long, max. is %d\n", + val, MTD_PARAM_LEN_MAX); + return -EINVAL; + } + + if (len == 0) { + pr_warn("UBI warning: empty 'mtd=' parameter - ignored\n"); + return 0; + } + + strcpy(buf, val); + + /* Get rid of the final newline */ + if (buf[len - 1] == '\n') + buf[len - 1] = '\0'; + + for (i = 0; i < MTD_PARAM_MAX_COUNT; i++) + tokens[i] = strsep(&pbuf, ","); + + if (pbuf) { + pr_err("UBI error: too many arguments at \"%s\"\n", val); + return -EINVAL; + } + + p = &mtd_dev_param[mtd_devs]; + strcpy(&p->name[0], tokens[0]); + + token = tokens[1]; + if (token) { + p->vid_hdr_offs = bytes_str_to_int(token); + + if (p->vid_hdr_offs < 0) + return p->vid_hdr_offs; + } + + token = tokens[2]; + if (token) { + int err = kstrtoint(token, 10, &p->max_beb_per1024); + + if (err) { + pr_err("UBI error: bad value for max_beb_per1024 parameter: %s\n", + token); + return -EINVAL; + } + } + + token = tokens[3]; + if (token) { + int err = kstrtoint(token, 10, &p->ubi_num); + + if (err) { + pr_err("UBI error: bad value for ubi_num parameter: %s\n", + token); + return -EINVAL; + } + } else + p->ubi_num = UBI_DEV_NUM_AUTO; + + token = tokens[4]; + if (token) { + int err = kstrtoint(token, 10, &p->enable_fm); + + if (err) { + pr_err("UBI error: bad value for enable_fm parameter: %s\n", + token); + return -EINVAL; + } + } else + p->enable_fm = 0; + + mtd_devs += 1; + return 0; +} + +module_param_call(mtd, ubi_mtd_param_parse, NULL, NULL, 0400); +MODULE_PARM_DESC(mtd, "MTD devices to attach. Parameter format: mtd=<name|num|path>[,<vid_hdr_offs>[,max_beb_per1024[,ubi_num]]].\n" + "Multiple \"mtd\" parameters may be specified.\n" + "MTD devices may be specified by their number, name, or path to the MTD character device node.\n" + "Optional \"vid_hdr_offs\" parameter specifies UBI VID header position to be used by UBI. (default value if 0)\n" + "Optional \"max_beb_per1024\" parameter specifies the maximum expected bad eraseblock per 1024 eraseblocks. (default value (" + __stringify(CONFIG_MTD_UBI_BEB_LIMIT) ") if 0)\n" + "Optional \"ubi_num\" parameter specifies UBI device number which have to be assigned to the newly created UBI device (assigned automatically by default)\n" + "Optional \"enable_fm\" parameter determines whether to enable fastmap during attach. If the value is non-zero, fastmap is enabled. Default value is 0.\n" + "\n" + "Example 1: mtd=/dev/mtd0 - attach MTD device /dev/mtd0.\n" + "Example 2: mtd=content,1984 mtd=4 - attach MTD device with name \"content\" using VID header offset 1984, and MTD device number 4 with default VID header offset.\n" + "Example 3: mtd=/dev/mtd1,0,25 - attach MTD device /dev/mtd1 using default VID header offset and reserve 25*nand_size_in_blocks/1024 erase blocks for bad block handling.\n" + "Example 4: mtd=/dev/mtd1,0,0,5 - attach MTD device /dev/mtd1 to UBI 5 and using default values for the other fields.\n" + "example 5: mtd=1,0,0,5 mtd=2,0,0,6,1 - attach MTD device /dev/mtd1 to UBI 5 and disable fastmap; attach MTD device /dev/mtd2 to UBI 6 and enable fastmap.(only works when fastmap is enabled and fm_autoconvert=Y).\n" + "\t(e.g. if the NAND *chipset* has 4096 PEB, 100 will be reserved for this UBI device)."); +#ifdef CONFIG_MTD_UBI_FASTMAP +module_param(fm_autoconvert, bool, 0644); +MODULE_PARM_DESC(fm_autoconvert, "Set this parameter to enable fastmap automatically on images without a fastmap."); +module_param(fm_debug, bool, 0); +MODULE_PARM_DESC(fm_debug, "Set this parameter to enable fastmap debugging by default. Warning, this will make fastmap slow!"); +#endif +MODULE_VERSION(__stringify(UBI_VERSION)); +MODULE_DESCRIPTION("UBI - Unsorted Block Images"); +MODULE_AUTHOR("Artem Bityutskiy"); +MODULE_LICENSE("GPL"); diff --git a/drivers/mtd/ubi/cdev.c b/drivers/mtd/ubi/cdev.c new file mode 100644 index 0000000000..f43430b9c1 --- /dev/null +++ b/drivers/mtd/ubi/cdev.c @@ -0,0 +1,1108 @@ +// SPDX-License-Identifier: GPL-2.0-or-later +/* + * Copyright (c) International Business Machines Corp., 2006 + * + * Author: Artem Bityutskiy (Битюцкий Артём) + */ + +/* + * This file includes implementation of UBI character device operations. + * + * There are two kinds of character devices in UBI: UBI character devices and + * UBI volume character devices. UBI character devices allow users to + * manipulate whole volumes: create, remove, and re-size them. Volume character + * devices provide volume I/O capabilities. + * + * Major and minor numbers are assigned dynamically to both UBI and volume + * character devices. + * + * Well, there is the third kind of character devices - the UBI control + * character device, which allows to manipulate by UBI devices - create and + * delete them. In other words, it is used for attaching and detaching MTD + * devices. + */ + +#include <linux/module.h> +#include <linux/stat.h> +#include <linux/slab.h> +#include <linux/ioctl.h> +#include <linux/capability.h> +#include <linux/uaccess.h> +#include <linux/compat.h> +#include <linux/math64.h> +#include <mtd/ubi-user.h> +#include "ubi.h" + +/** + * get_exclusive - get exclusive access to an UBI volume. + * @desc: volume descriptor + * + * This function changes UBI volume open mode to "exclusive". Returns previous + * mode value (positive integer) in case of success and a negative error code + * in case of failure. + */ +static int get_exclusive(struct ubi_volume_desc *desc) +{ + int users, err; + struct ubi_volume *vol = desc->vol; + + spin_lock(&vol->ubi->volumes_lock); + users = vol->readers + vol->writers + vol->exclusive + vol->metaonly; + ubi_assert(users > 0); + if (users > 1) { + ubi_err(vol->ubi, "%d users for volume %d", users, vol->vol_id); + err = -EBUSY; + } else { + vol->readers = vol->writers = vol->metaonly = 0; + vol->exclusive = 1; + err = desc->mode; + desc->mode = UBI_EXCLUSIVE; + } + spin_unlock(&vol->ubi->volumes_lock); + + return err; +} + +/** + * revoke_exclusive - revoke exclusive mode. + * @desc: volume descriptor + * @mode: new mode to switch to + */ +static void revoke_exclusive(struct ubi_volume_desc *desc, int mode) +{ + struct ubi_volume *vol = desc->vol; + + spin_lock(&vol->ubi->volumes_lock); + ubi_assert(vol->readers == 0 && vol->writers == 0 && vol->metaonly == 0); + ubi_assert(vol->exclusive == 1 && desc->mode == UBI_EXCLUSIVE); + vol->exclusive = 0; + if (mode == UBI_READONLY) + vol->readers = 1; + else if (mode == UBI_READWRITE) + vol->writers = 1; + else if (mode == UBI_METAONLY) + vol->metaonly = 1; + else + vol->exclusive = 1; + spin_unlock(&vol->ubi->volumes_lock); + + desc->mode = mode; +} + +static int vol_cdev_open(struct inode *inode, struct file *file) +{ + struct ubi_volume_desc *desc; + int vol_id = iminor(inode) - 1, mode, ubi_num; + + ubi_num = ubi_major2num(imajor(inode)); + if (ubi_num < 0) + return ubi_num; + + if (file->f_mode & FMODE_WRITE) + mode = UBI_READWRITE; + else + mode = UBI_READONLY; + + dbg_gen("open device %d, volume %d, mode %d", + ubi_num, vol_id, mode); + + desc = ubi_open_volume(ubi_num, vol_id, mode); + if (IS_ERR(desc)) + return PTR_ERR(desc); + + file->private_data = desc; + return 0; +} + +static int vol_cdev_release(struct inode *inode, struct file *file) +{ + struct ubi_volume_desc *desc = file->private_data; + struct ubi_volume *vol = desc->vol; + + dbg_gen("release device %d, volume %d, mode %d", + vol->ubi->ubi_num, vol->vol_id, desc->mode); + + if (vol->updating) { + ubi_warn(vol->ubi, "update of volume %d not finished, volume is damaged", + vol->vol_id); + ubi_assert(!vol->changing_leb); + vol->updating = 0; + vfree(vol->upd_buf); + } else if (vol->changing_leb) { + dbg_gen("only %lld of %lld bytes received for atomic LEB change for volume %d:%d, cancel", + vol->upd_received, vol->upd_bytes, vol->ubi->ubi_num, + vol->vol_id); + vol->changing_leb = 0; + vfree(vol->upd_buf); + } + + ubi_close_volume(desc); + return 0; +} + +static loff_t vol_cdev_llseek(struct file *file, loff_t offset, int origin) +{ + struct ubi_volume_desc *desc = file->private_data; + struct ubi_volume *vol = desc->vol; + + if (vol->updating) { + /* Update is in progress, seeking is prohibited */ + ubi_err(vol->ubi, "updating"); + return -EBUSY; + } + + return fixed_size_llseek(file, offset, origin, vol->used_bytes); +} + +static int vol_cdev_fsync(struct file *file, loff_t start, loff_t end, + int datasync) +{ + struct ubi_volume_desc *desc = file->private_data; + struct ubi_device *ubi = desc->vol->ubi; + struct inode *inode = file_inode(file); + int err; + inode_lock(inode); + err = ubi_sync(ubi->ubi_num); + inode_unlock(inode); + return err; +} + + +static ssize_t vol_cdev_read(struct file *file, __user char *buf, size_t count, + loff_t *offp) +{ + struct ubi_volume_desc *desc = file->private_data; + struct ubi_volume *vol = desc->vol; + struct ubi_device *ubi = vol->ubi; + int err, lnum, off, len, tbuf_size; + size_t count_save = count; + void *tbuf; + + dbg_gen("read %zd bytes from offset %lld of volume %d", + count, *offp, vol->vol_id); + + if (vol->updating) { + ubi_err(vol->ubi, "updating"); + return -EBUSY; + } + if (vol->upd_marker) { + ubi_err(vol->ubi, "damaged volume, update marker is set"); + return -EBADF; + } + if (*offp == vol->used_bytes || count == 0) + return 0; + + if (vol->corrupted) + dbg_gen("read from corrupted volume %d", vol->vol_id); + + if (*offp + count > vol->used_bytes) + count_save = count = vol->used_bytes - *offp; + + tbuf_size = vol->usable_leb_size; + if (count < tbuf_size) + tbuf_size = ALIGN(count, ubi->min_io_size); + tbuf = vmalloc(tbuf_size); + if (!tbuf) + return -ENOMEM; + + len = count > tbuf_size ? tbuf_size : count; + lnum = div_u64_rem(*offp, vol->usable_leb_size, &off); + + do { + cond_resched(); + + if (off + len >= vol->usable_leb_size) + len = vol->usable_leb_size - off; + + err = ubi_eba_read_leb(ubi, vol, lnum, tbuf, off, len, 0); + if (err) + break; + + off += len; + if (off == vol->usable_leb_size) { + lnum += 1; + off -= vol->usable_leb_size; + } + + count -= len; + *offp += len; + + err = copy_to_user(buf, tbuf, len); + if (err) { + err = -EFAULT; + break; + } + + buf += len; + len = count > tbuf_size ? tbuf_size : count; + } while (count); + + vfree(tbuf); + return err ? err : count_save - count; +} + +/* + * This function allows to directly write to dynamic UBI volumes, without + * issuing the volume update operation. + */ +static ssize_t vol_cdev_direct_write(struct file *file, const char __user *buf, + size_t count, loff_t *offp) +{ + struct ubi_volume_desc *desc = file->private_data; + struct ubi_volume *vol = desc->vol; + struct ubi_device *ubi = vol->ubi; + int lnum, off, len, tbuf_size, err = 0; + size_t count_save = count; + char *tbuf; + + if (!vol->direct_writes) + return -EPERM; + + dbg_gen("requested: write %zd bytes to offset %lld of volume %u", + count, *offp, vol->vol_id); + + if (vol->vol_type == UBI_STATIC_VOLUME) + return -EROFS; + + lnum = div_u64_rem(*offp, vol->usable_leb_size, &off); + if (off & (ubi->min_io_size - 1)) { + ubi_err(ubi, "unaligned position"); + return -EINVAL; + } + + if (*offp + count > vol->used_bytes) + count_save = count = vol->used_bytes - *offp; + + /* We can write only in fractions of the minimum I/O unit */ + if (count & (ubi->min_io_size - 1)) { + ubi_err(ubi, "unaligned write length"); + return -EINVAL; + } + + tbuf_size = vol->usable_leb_size; + if (count < tbuf_size) + tbuf_size = ALIGN(count, ubi->min_io_size); + tbuf = vmalloc(tbuf_size); + if (!tbuf) + return -ENOMEM; + + len = count > tbuf_size ? tbuf_size : count; + + while (count) { + cond_resched(); + + if (off + len >= vol->usable_leb_size) + len = vol->usable_leb_size - off; + + err = copy_from_user(tbuf, buf, len); + if (err) { + err = -EFAULT; + break; + } + + err = ubi_eba_write_leb(ubi, vol, lnum, tbuf, off, len); + if (err) + break; + + off += len; + if (off == vol->usable_leb_size) { + lnum += 1; + off -= vol->usable_leb_size; + } + + count -= len; + *offp += len; + buf += len; + len = count > tbuf_size ? tbuf_size : count; + } + + vfree(tbuf); + return err ? err : count_save - count; +} + +static ssize_t vol_cdev_write(struct file *file, const char __user *buf, + size_t count, loff_t *offp) +{ + int err = 0; + struct ubi_volume_desc *desc = file->private_data; + struct ubi_volume *vol = desc->vol; + struct ubi_device *ubi = vol->ubi; + + if (!vol->updating && !vol->changing_leb) + return vol_cdev_direct_write(file, buf, count, offp); + + if (vol->updating) + err = ubi_more_update_data(ubi, vol, buf, count); + else + err = ubi_more_leb_change_data(ubi, vol, buf, count); + + if (err < 0) { + ubi_err(ubi, "cannot accept more %zd bytes of data, error %d", + count, err); + return err; + } + + if (err) { + /* + * The operation is finished, @err contains number of actually + * written bytes. + */ + count = err; + + if (vol->changing_leb) { + revoke_exclusive(desc, UBI_READWRITE); + return count; + } + + /* + * We voluntarily do not take into account the skip_check flag + * as we want to make sure what we wrote was correctly written. + */ + err = ubi_check_volume(ubi, vol->vol_id); + if (err < 0) + return err; + + if (err) { + ubi_warn(ubi, "volume %d on UBI device %d is corrupted", + vol->vol_id, ubi->ubi_num); + vol->corrupted = 1; + } + vol->checked = 1; + ubi_volume_notify(ubi, vol, UBI_VOLUME_UPDATED); + revoke_exclusive(desc, UBI_READWRITE); + } + + return count; +} + +static long vol_cdev_ioctl(struct file *file, unsigned int cmd, + unsigned long arg) +{ + int err = 0; + struct ubi_volume_desc *desc = file->private_data; + struct ubi_volume *vol = desc->vol; + struct ubi_device *ubi = vol->ubi; + void __user *argp = (void __user *)arg; + + switch (cmd) { + /* Volume update command */ + case UBI_IOCVOLUP: + { + int64_t bytes, rsvd_bytes; + + if (!capable(CAP_SYS_RESOURCE)) { + err = -EPERM; + break; + } + + err = copy_from_user(&bytes, argp, sizeof(int64_t)); + if (err) { + err = -EFAULT; + break; + } + + if (desc->mode == UBI_READONLY) { + err = -EROFS; + break; + } + + rsvd_bytes = (long long)vol->reserved_pebs * + vol->usable_leb_size; + if (bytes < 0 || bytes > rsvd_bytes) { + err = -EINVAL; + break; + } + + err = get_exclusive(desc); + if (err < 0) + break; + + err = ubi_start_update(ubi, vol, bytes); + if (bytes == 0) { + ubi_volume_notify(ubi, vol, UBI_VOLUME_UPDATED); + revoke_exclusive(desc, UBI_READWRITE); + } + break; + } + + /* Atomic logical eraseblock change command */ + case UBI_IOCEBCH: + { + struct ubi_leb_change_req req; + + err = copy_from_user(&req, argp, + sizeof(struct ubi_leb_change_req)); + if (err) { + err = -EFAULT; + break; + } + + if (desc->mode == UBI_READONLY || + vol->vol_type == UBI_STATIC_VOLUME) { + err = -EROFS; + break; + } + + /* Validate the request */ + err = -EINVAL; + if (!ubi_leb_valid(vol, req.lnum) || + req.bytes < 0 || req.bytes > vol->usable_leb_size) + break; + + err = get_exclusive(desc); + if (err < 0) + break; + + err = ubi_start_leb_change(ubi, vol, &req); + if (req.bytes == 0) + revoke_exclusive(desc, UBI_READWRITE); + break; + } + + /* Logical eraseblock erasure command */ + case UBI_IOCEBER: + { + int32_t lnum; + + err = get_user(lnum, (__user int32_t *)argp); + if (err) { + err = -EFAULT; + break; + } + + if (desc->mode == UBI_READONLY || + vol->vol_type == UBI_STATIC_VOLUME) { + err = -EROFS; + break; + } + + if (!ubi_leb_valid(vol, lnum)) { + err = -EINVAL; + break; + } + + dbg_gen("erase LEB %d:%d", vol->vol_id, lnum); + err = ubi_eba_unmap_leb(ubi, vol, lnum); + if (err) + break; + + err = ubi_wl_flush(ubi, UBI_ALL, UBI_ALL); + break; + } + + /* Logical eraseblock map command */ + case UBI_IOCEBMAP: + { + struct ubi_map_req req; + + err = copy_from_user(&req, argp, sizeof(struct ubi_map_req)); + if (err) { + err = -EFAULT; + break; + } + err = ubi_leb_map(desc, req.lnum); + break; + } + + /* Logical eraseblock un-map command */ + case UBI_IOCEBUNMAP: + { + int32_t lnum; + + err = get_user(lnum, (__user int32_t *)argp); + if (err) { + err = -EFAULT; + break; + } + err = ubi_leb_unmap(desc, lnum); + break; + } + + /* Check if logical eraseblock is mapped command */ + case UBI_IOCEBISMAP: + { + int32_t lnum; + + err = get_user(lnum, (__user int32_t *)argp); + if (err) { + err = -EFAULT; + break; + } + err = ubi_is_mapped(desc, lnum); + break; + } + + /* Set volume property command */ + case UBI_IOCSETVOLPROP: + { + struct ubi_set_vol_prop_req req; + + err = copy_from_user(&req, argp, + sizeof(struct ubi_set_vol_prop_req)); + if (err) { + err = -EFAULT; + break; + } + switch (req.property) { + case UBI_VOL_PROP_DIRECT_WRITE: + mutex_lock(&ubi->device_mutex); + desc->vol->direct_writes = !!req.value; + mutex_unlock(&ubi->device_mutex); + break; + default: + err = -EINVAL; + break; + } + break; + } + + /* Create a R/O block device on top of the UBI volume */ + case UBI_IOCVOLCRBLK: + { + struct ubi_volume_info vi; + + ubi_get_volume_info(desc, &vi); + err = ubiblock_create(&vi); + break; + } + + /* Remove the R/O block device */ + case UBI_IOCVOLRMBLK: + { + struct ubi_volume_info vi; + + ubi_get_volume_info(desc, &vi); + err = ubiblock_remove(&vi); + break; + } + + default: + err = -ENOTTY; + break; + } + return err; +} + +/** + * verify_mkvol_req - verify volume creation request. + * @ubi: UBI device description object + * @req: the request to check + * + * This function zero if the request is correct, and %-EINVAL if not. + */ +static int verify_mkvol_req(const struct ubi_device *ubi, + const struct ubi_mkvol_req *req) +{ + int n, err = -EINVAL; + + if (req->bytes < 0 || req->alignment < 0 || req->vol_type < 0 || + req->name_len < 0) + goto bad; + + if ((req->vol_id < 0 || req->vol_id >= ubi->vtbl_slots) && + req->vol_id != UBI_VOL_NUM_AUTO) + goto bad; + + if (req->alignment == 0) + goto bad; + + if (req->bytes == 0) + goto bad; + + if (req->vol_type != UBI_DYNAMIC_VOLUME && + req->vol_type != UBI_STATIC_VOLUME) + goto bad; + + if (req->flags & ~UBI_VOL_VALID_FLGS) + goto bad; + + if (req->flags & UBI_VOL_SKIP_CRC_CHECK_FLG && + req->vol_type != UBI_STATIC_VOLUME) + goto bad; + + if (req->alignment > ubi->leb_size) + goto bad; + + n = req->alignment & (ubi->min_io_size - 1); + if (req->alignment != 1 && n) + goto bad; + + if (!req->name[0] || !req->name_len) + goto bad; + + if (req->name_len > UBI_VOL_NAME_MAX) { + err = -ENAMETOOLONG; + goto bad; + } + + n = strnlen(req->name, req->name_len + 1); + if (n != req->name_len) + goto bad; + + return 0; + +bad: + ubi_err(ubi, "bad volume creation request"); + ubi_dump_mkvol_req(req); + return err; +} + +/** + * verify_rsvol_req - verify volume re-size request. + * @ubi: UBI device description object + * @req: the request to check + * + * This function returns zero if the request is correct, and %-EINVAL if not. + */ +static int verify_rsvol_req(const struct ubi_device *ubi, + const struct ubi_rsvol_req *req) +{ + if (req->bytes <= 0) + return -EINVAL; + + if (req->vol_id < 0 || req->vol_id >= ubi->vtbl_slots) + return -EINVAL; + + return 0; +} + +/** + * rename_volumes - rename UBI volumes. + * @ubi: UBI device description object + * @req: volumes re-name request + * + * This is a helper function for the volume re-name IOCTL which validates the + * request, opens the volume and calls corresponding volumes management + * function. Returns zero in case of success and a negative error code in case + * of failure. + */ +static int rename_volumes(struct ubi_device *ubi, + struct ubi_rnvol_req *req) +{ + int i, n, err; + struct list_head rename_list; + struct ubi_rename_entry *re, *re1; + + if (req->count < 0 || req->count > UBI_MAX_RNVOL) + return -EINVAL; + + if (req->count == 0) + return 0; + + /* Validate volume IDs and names in the request */ + for (i = 0; i < req->count; i++) { + if (req->ents[i].vol_id < 0 || + req->ents[i].vol_id >= ubi->vtbl_slots) + return -EINVAL; + if (req->ents[i].name_len < 0) + return -EINVAL; + if (req->ents[i].name_len > UBI_VOL_NAME_MAX) + return -ENAMETOOLONG; + req->ents[i].name[req->ents[i].name_len] = '\0'; + n = strlen(req->ents[i].name); + if (n != req->ents[i].name_len) + return -EINVAL; + } + + /* Make sure volume IDs and names are unique */ + for (i = 0; i < req->count - 1; i++) { + for (n = i + 1; n < req->count; n++) { + if (req->ents[i].vol_id == req->ents[n].vol_id) { + ubi_err(ubi, "duplicated volume id %d", + req->ents[i].vol_id); + return -EINVAL; + } + if (!strcmp(req->ents[i].name, req->ents[n].name)) { + ubi_err(ubi, "duplicated volume name \"%s\"", + req->ents[i].name); + return -EINVAL; + } + } + } + + /* Create the re-name list */ + INIT_LIST_HEAD(&rename_list); + for (i = 0; i < req->count; i++) { + int vol_id = req->ents[i].vol_id; + int name_len = req->ents[i].name_len; + const char *name = req->ents[i].name; + + re = kzalloc(sizeof(struct ubi_rename_entry), GFP_KERNEL); + if (!re) { + err = -ENOMEM; + goto out_free; + } + + re->desc = ubi_open_volume(ubi->ubi_num, vol_id, UBI_METAONLY); + if (IS_ERR(re->desc)) { + err = PTR_ERR(re->desc); + ubi_err(ubi, "cannot open volume %d, error %d", + vol_id, err); + kfree(re); + goto out_free; + } + + /* Skip this re-naming if the name does not really change */ + if (re->desc->vol->name_len == name_len && + !memcmp(re->desc->vol->name, name, name_len)) { + ubi_close_volume(re->desc); + kfree(re); + continue; + } + + re->new_name_len = name_len; + memcpy(re->new_name, name, name_len); + list_add_tail(&re->list, &rename_list); + dbg_gen("will rename volume %d from \"%s\" to \"%s\"", + vol_id, re->desc->vol->name, name); + } + + if (list_empty(&rename_list)) + return 0; + + /* Find out the volumes which have to be removed */ + list_for_each_entry(re, &rename_list, list) { + struct ubi_volume_desc *desc; + int no_remove_needed = 0; + + /* + * Volume @re->vol_id is going to be re-named to + * @re->new_name, while its current name is @name. If a volume + * with name @re->new_name currently exists, it has to be + * removed, unless it is also re-named in the request (@req). + */ + list_for_each_entry(re1, &rename_list, list) { + if (re->new_name_len == re1->desc->vol->name_len && + !memcmp(re->new_name, re1->desc->vol->name, + re1->desc->vol->name_len)) { + no_remove_needed = 1; + break; + } + } + + if (no_remove_needed) + continue; + + /* + * It seems we need to remove volume with name @re->new_name, + * if it exists. + */ + desc = ubi_open_volume_nm(ubi->ubi_num, re->new_name, + UBI_EXCLUSIVE); + if (IS_ERR(desc)) { + err = PTR_ERR(desc); + if (err == -ENODEV) + /* Re-naming into a non-existing volume name */ + continue; + + /* The volume exists but busy, or an error occurred */ + ubi_err(ubi, "cannot open volume \"%s\", error %d", + re->new_name, err); + goto out_free; + } + + re1 = kzalloc(sizeof(struct ubi_rename_entry), GFP_KERNEL); + if (!re1) { + err = -ENOMEM; + ubi_close_volume(desc); + goto out_free; + } + + re1->remove = 1; + re1->desc = desc; + list_add(&re1->list, &rename_list); + dbg_gen("will remove volume %d, name \"%s\"", + re1->desc->vol->vol_id, re1->desc->vol->name); + } + + mutex_lock(&ubi->device_mutex); + err = ubi_rename_volumes(ubi, &rename_list); + mutex_unlock(&ubi->device_mutex); + +out_free: + list_for_each_entry_safe(re, re1, &rename_list, list) { + ubi_close_volume(re->desc); + list_del(&re->list); + kfree(re); + } + return err; +} + +static long ubi_cdev_ioctl(struct file *file, unsigned int cmd, + unsigned long arg) +{ + int err = 0; + struct ubi_device *ubi; + struct ubi_volume_desc *desc; + void __user *argp = (void __user *)arg; + + if (!capable(CAP_SYS_RESOURCE)) + return -EPERM; + + ubi = ubi_get_by_major(imajor(file->f_mapping->host)); + if (!ubi) + return -ENODEV; + + switch (cmd) { + /* Create volume command */ + case UBI_IOCMKVOL: + { + struct ubi_mkvol_req req; + + dbg_gen("create volume"); + err = copy_from_user(&req, argp, sizeof(struct ubi_mkvol_req)); + if (err) { + err = -EFAULT; + break; + } + + err = verify_mkvol_req(ubi, &req); + if (err) + break; + + mutex_lock(&ubi->device_mutex); + err = ubi_create_volume(ubi, &req); + mutex_unlock(&ubi->device_mutex); + if (err) + break; + + err = put_user(req.vol_id, (__user int32_t *)argp); + if (err) + err = -EFAULT; + + break; + } + + /* Remove volume command */ + case UBI_IOCRMVOL: + { + int vol_id; + + dbg_gen("remove volume"); + err = get_user(vol_id, (__user int32_t *)argp); + if (err) { + err = -EFAULT; + break; + } + + desc = ubi_open_volume(ubi->ubi_num, vol_id, UBI_EXCLUSIVE); + if (IS_ERR(desc)) { + err = PTR_ERR(desc); + break; + } + + mutex_lock(&ubi->device_mutex); + err = ubi_remove_volume(desc, 0); + mutex_unlock(&ubi->device_mutex); + + /* + * The volume is deleted (unless an error occurred), and the + * 'struct ubi_volume' object will be freed when + * 'ubi_close_volume()' will call 'put_device()'. + */ + ubi_close_volume(desc); + break; + } + + /* Re-size volume command */ + case UBI_IOCRSVOL: + { + int pebs; + struct ubi_rsvol_req req; + + dbg_gen("re-size volume"); + err = copy_from_user(&req, argp, sizeof(struct ubi_rsvol_req)); + if (err) { + err = -EFAULT; + break; + } + + err = verify_rsvol_req(ubi, &req); + if (err) + break; + + desc = ubi_open_volume(ubi->ubi_num, req.vol_id, UBI_EXCLUSIVE); + if (IS_ERR(desc)) { + err = PTR_ERR(desc); + break; + } + + pebs = div_u64(req.bytes + desc->vol->usable_leb_size - 1, + desc->vol->usable_leb_size); + + mutex_lock(&ubi->device_mutex); + err = ubi_resize_volume(desc, pebs); + mutex_unlock(&ubi->device_mutex); + ubi_close_volume(desc); + break; + } + + /* Re-name volumes command */ + case UBI_IOCRNVOL: + { + struct ubi_rnvol_req *req; + + dbg_gen("re-name volumes"); + req = kmalloc(sizeof(struct ubi_rnvol_req), GFP_KERNEL); + if (!req) { + err = -ENOMEM; + break; + } + + err = copy_from_user(req, argp, sizeof(struct ubi_rnvol_req)); + if (err) { + err = -EFAULT; + kfree(req); + break; + } + + err = rename_volumes(ubi, req); + kfree(req); + break; + } + + /* Check a specific PEB for bitflips and scrub it if needed */ + case UBI_IOCRPEB: + { + int pnum; + + err = get_user(pnum, (__user int32_t *)argp); + if (err) { + err = -EFAULT; + break; + } + + err = ubi_bitflip_check(ubi, pnum, 0); + break; + } + + /* Force scrubbing for a specific PEB */ + case UBI_IOCSPEB: + { + int pnum; + + err = get_user(pnum, (__user int32_t *)argp); + if (err) { + err = -EFAULT; + break; + } + + err = ubi_bitflip_check(ubi, pnum, 1); + break; + } + + default: + err = -ENOTTY; + break; + } + + ubi_put_device(ubi); + return err; +} + +static long ctrl_cdev_ioctl(struct file *file, unsigned int cmd, + unsigned long arg) +{ + int err = 0; + void __user *argp = (void __user *)arg; + + if (!capable(CAP_SYS_RESOURCE)) + return -EPERM; + + switch (cmd) { + /* Attach an MTD device command */ + case UBI_IOCATT: + { + struct ubi_attach_req req; + struct mtd_info *mtd; + + dbg_gen("attach MTD device"); + err = copy_from_user(&req, argp, sizeof(struct ubi_attach_req)); + if (err) { + err = -EFAULT; + break; + } + + if (req.mtd_num < 0 || + (req.ubi_num < 0 && req.ubi_num != UBI_DEV_NUM_AUTO)) { + err = -EINVAL; + break; + } + + mtd = get_mtd_device(NULL, req.mtd_num); + if (IS_ERR(mtd)) { + err = PTR_ERR(mtd); + break; + } + + /* + * Note, further request verification is done by + * 'ubi_attach_mtd_dev()'. + */ + mutex_lock(&ubi_devices_mutex); + err = ubi_attach_mtd_dev(mtd, req.ubi_num, req.vid_hdr_offset, + req.max_beb_per1024, !!req.disable_fm); + mutex_unlock(&ubi_devices_mutex); + if (err < 0) + put_mtd_device(mtd); + else + /* @err contains UBI device number */ + err = put_user(err, (__user int32_t *)argp); + + break; + } + + /* Detach an MTD device command */ + case UBI_IOCDET: + { + int ubi_num; + + dbg_gen("detach MTD device"); + err = get_user(ubi_num, (__user int32_t *)argp); + if (err) { + err = -EFAULT; + break; + } + + mutex_lock(&ubi_devices_mutex); + err = ubi_detach_mtd_dev(ubi_num, 0); + mutex_unlock(&ubi_devices_mutex); + break; + } + + default: + err = -ENOTTY; + break; + } + + return err; +} + +/* UBI volume character device operations */ +const struct file_operations ubi_vol_cdev_operations = { + .owner = THIS_MODULE, + .open = vol_cdev_open, + .release = vol_cdev_release, + .llseek = vol_cdev_llseek, + .read = vol_cdev_read, + .write = vol_cdev_write, + .fsync = vol_cdev_fsync, + .unlocked_ioctl = vol_cdev_ioctl, + .compat_ioctl = compat_ptr_ioctl, +}; + +/* UBI character device operations */ +const struct file_operations ubi_cdev_operations = { + .owner = THIS_MODULE, + .llseek = no_llseek, + .unlocked_ioctl = ubi_cdev_ioctl, + .compat_ioctl = compat_ptr_ioctl, +}; + +/* UBI control character device operations */ +const struct file_operations ubi_ctrl_cdev_operations = { + .owner = THIS_MODULE, + .unlocked_ioctl = ctrl_cdev_ioctl, + .compat_ioctl = compat_ptr_ioctl, + .llseek = no_llseek, +}; diff --git a/drivers/mtd/ubi/debug.c b/drivers/mtd/ubi/debug.c new file mode 100644 index 0000000000..27168f511d --- /dev/null +++ b/drivers/mtd/ubi/debug.c @@ -0,0 +1,606 @@ +// SPDX-License-Identifier: GPL-2.0-or-later +/* + * Copyright (c) International Business Machines Corp., 2006 + * + * Author: Artem Bityutskiy (Битюцкий Артём) + */ + +#include "ubi.h" +#include <linux/debugfs.h> +#include <linux/uaccess.h> +#include <linux/module.h> +#include <linux/seq_file.h> + + +/** + * ubi_dump_flash - dump a region of flash. + * @ubi: UBI device description object + * @pnum: the physical eraseblock number to dump + * @offset: the starting offset within the physical eraseblock to dump + * @len: the length of the region to dump + */ +void ubi_dump_flash(struct ubi_device *ubi, int pnum, int offset, int len) +{ + int err; + size_t read; + void *buf; + loff_t addr = (loff_t)pnum * ubi->peb_size + offset; + + buf = vmalloc(len); + if (!buf) + return; + err = mtd_read(ubi->mtd, addr, len, &read, buf); + if (err && err != -EUCLEAN) { + ubi_err(ubi, "err %d while reading %d bytes from PEB %d:%d, read %zd bytes", + err, len, pnum, offset, read); + goto out; + } + + ubi_msg(ubi, "dumping %d bytes of data from PEB %d, offset %d", + len, pnum, offset); + print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1, buf, len, 1); +out: + vfree(buf); + return; +} + +/** + * ubi_dump_ec_hdr - dump an erase counter header. + * @ec_hdr: the erase counter header to dump + */ +void ubi_dump_ec_hdr(const struct ubi_ec_hdr *ec_hdr) +{ + pr_err("Erase counter header dump:\n"); + pr_err("\tmagic %#08x\n", be32_to_cpu(ec_hdr->magic)); + pr_err("\tversion %d\n", (int)ec_hdr->version); + pr_err("\tec %llu\n", (long long)be64_to_cpu(ec_hdr->ec)); + pr_err("\tvid_hdr_offset %d\n", be32_to_cpu(ec_hdr->vid_hdr_offset)); + pr_err("\tdata_offset %d\n", be32_to_cpu(ec_hdr->data_offset)); + pr_err("\timage_seq %d\n", be32_to_cpu(ec_hdr->image_seq)); + pr_err("\thdr_crc %#08x\n", be32_to_cpu(ec_hdr->hdr_crc)); + pr_err("erase counter header hexdump:\n"); + print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1, + ec_hdr, UBI_EC_HDR_SIZE, 1); +} + +/** + * ubi_dump_vid_hdr - dump a volume identifier header. + * @vid_hdr: the volume identifier header to dump + */ +void ubi_dump_vid_hdr(const struct ubi_vid_hdr *vid_hdr) +{ + pr_err("Volume identifier header dump:\n"); + pr_err("\tmagic %08x\n", be32_to_cpu(vid_hdr->magic)); + pr_err("\tversion %d\n", (int)vid_hdr->version); + pr_err("\tvol_type %d\n", (int)vid_hdr->vol_type); + pr_err("\tcopy_flag %d\n", (int)vid_hdr->copy_flag); + pr_err("\tcompat %d\n", (int)vid_hdr->compat); + pr_err("\tvol_id %d\n", be32_to_cpu(vid_hdr->vol_id)); + pr_err("\tlnum %d\n", be32_to_cpu(vid_hdr->lnum)); + pr_err("\tdata_size %d\n", be32_to_cpu(vid_hdr->data_size)); + pr_err("\tused_ebs %d\n", be32_to_cpu(vid_hdr->used_ebs)); + pr_err("\tdata_pad %d\n", be32_to_cpu(vid_hdr->data_pad)); + pr_err("\tsqnum %llu\n", + (unsigned long long)be64_to_cpu(vid_hdr->sqnum)); + pr_err("\thdr_crc %08x\n", be32_to_cpu(vid_hdr->hdr_crc)); + pr_err("Volume identifier header hexdump:\n"); + print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1, + vid_hdr, UBI_VID_HDR_SIZE, 1); +} + +/** + * ubi_dump_vol_info - dump volume information. + * @vol: UBI volume description object + */ +void ubi_dump_vol_info(const struct ubi_volume *vol) +{ + pr_err("Volume information dump:\n"); + pr_err("\tvol_id %d\n", vol->vol_id); + pr_err("\treserved_pebs %d\n", vol->reserved_pebs); + pr_err("\talignment %d\n", vol->alignment); + pr_err("\tdata_pad %d\n", vol->data_pad); + pr_err("\tvol_type %d\n", vol->vol_type); + pr_err("\tname_len %d\n", vol->name_len); + pr_err("\tusable_leb_size %d\n", vol->usable_leb_size); + pr_err("\tused_ebs %d\n", vol->used_ebs); + pr_err("\tused_bytes %lld\n", vol->used_bytes); + pr_err("\tlast_eb_bytes %d\n", vol->last_eb_bytes); + pr_err("\tcorrupted %d\n", vol->corrupted); + pr_err("\tupd_marker %d\n", vol->upd_marker); + pr_err("\tskip_check %d\n", vol->skip_check); + + if (vol->name_len <= UBI_VOL_NAME_MAX && + strnlen(vol->name, vol->name_len + 1) == vol->name_len) { + pr_err("\tname %s\n", vol->name); + } else { + pr_err("\t1st 5 characters of name: %c%c%c%c%c\n", + vol->name[0], vol->name[1], vol->name[2], + vol->name[3], vol->name[4]); + } +} + +/** + * ubi_dump_vtbl_record - dump a &struct ubi_vtbl_record object. + * @r: the object to dump + * @idx: volume table index + */ +void ubi_dump_vtbl_record(const struct ubi_vtbl_record *r, int idx) +{ + int name_len = be16_to_cpu(r->name_len); + + pr_err("Volume table record %d dump:\n", idx); + pr_err("\treserved_pebs %d\n", be32_to_cpu(r->reserved_pebs)); + pr_err("\talignment %d\n", be32_to_cpu(r->alignment)); + pr_err("\tdata_pad %d\n", be32_to_cpu(r->data_pad)); + pr_err("\tvol_type %d\n", (int)r->vol_type); + pr_err("\tupd_marker %d\n", (int)r->upd_marker); + pr_err("\tname_len %d\n", name_len); + + if (r->name[0] == '\0') { + pr_err("\tname NULL\n"); + return; + } + + if (name_len <= UBI_VOL_NAME_MAX && + strnlen(&r->name[0], name_len + 1) == name_len) { + pr_err("\tname %s\n", &r->name[0]); + } else { + pr_err("\t1st 5 characters of name: %c%c%c%c%c\n", + r->name[0], r->name[1], r->name[2], r->name[3], + r->name[4]); + } + pr_err("\tcrc %#08x\n", be32_to_cpu(r->crc)); +} + +/** + * ubi_dump_av - dump a &struct ubi_ainf_volume object. + * @av: the object to dump + */ +void ubi_dump_av(const struct ubi_ainf_volume *av) +{ + pr_err("Volume attaching information dump:\n"); + pr_err("\tvol_id %d\n", av->vol_id); + pr_err("\thighest_lnum %d\n", av->highest_lnum); + pr_err("\tleb_count %d\n", av->leb_count); + pr_err("\tcompat %d\n", av->compat); + pr_err("\tvol_type %d\n", av->vol_type); + pr_err("\tused_ebs %d\n", av->used_ebs); + pr_err("\tlast_data_size %d\n", av->last_data_size); + pr_err("\tdata_pad %d\n", av->data_pad); +} + +/** + * ubi_dump_aeb - dump a &struct ubi_ainf_peb object. + * @aeb: the object to dump + * @type: object type: 0 - not corrupted, 1 - corrupted + */ +void ubi_dump_aeb(const struct ubi_ainf_peb *aeb, int type) +{ + pr_err("eraseblock attaching information dump:\n"); + pr_err("\tec %d\n", aeb->ec); + pr_err("\tpnum %d\n", aeb->pnum); + if (type == 0) { + pr_err("\tlnum %d\n", aeb->lnum); + pr_err("\tscrub %d\n", aeb->scrub); + pr_err("\tsqnum %llu\n", aeb->sqnum); + } +} + +/** + * ubi_dump_mkvol_req - dump a &struct ubi_mkvol_req object. + * @req: the object to dump + */ +void ubi_dump_mkvol_req(const struct ubi_mkvol_req *req) +{ + char nm[17]; + + pr_err("Volume creation request dump:\n"); + pr_err("\tvol_id %d\n", req->vol_id); + pr_err("\talignment %d\n", req->alignment); + pr_err("\tbytes %lld\n", (long long)req->bytes); + pr_err("\tvol_type %d\n", req->vol_type); + pr_err("\tname_len %d\n", req->name_len); + + memcpy(nm, req->name, 16); + nm[16] = 0; + pr_err("\t1st 16 characters of name: %s\n", nm); +} + +/* + * Root directory for UBI stuff in debugfs. Contains sub-directories which + * contain the stuff specific to particular UBI devices. + */ +static struct dentry *dfs_rootdir; + +/** + * ubi_debugfs_init - create UBI debugfs directory. + * + * Create UBI debugfs directory. Returns zero in case of success and a negative + * error code in case of failure. + */ +int ubi_debugfs_init(void) +{ + if (!IS_ENABLED(CONFIG_DEBUG_FS)) + return 0; + + dfs_rootdir = debugfs_create_dir("ubi", NULL); + if (IS_ERR_OR_NULL(dfs_rootdir)) { + int err = dfs_rootdir ? PTR_ERR(dfs_rootdir) : -ENODEV; + + pr_err("UBI error: cannot create \"ubi\" debugfs directory, error %d\n", + err); + return err; + } + + return 0; +} + +/** + * ubi_debugfs_exit - remove UBI debugfs directory. + */ +void ubi_debugfs_exit(void) +{ + if (IS_ENABLED(CONFIG_DEBUG_FS)) + debugfs_remove(dfs_rootdir); +} + +/* Read an UBI debugfs file */ +static ssize_t dfs_file_read(struct file *file, char __user *user_buf, + size_t count, loff_t *ppos) +{ + unsigned long ubi_num = (unsigned long)file->private_data; + struct dentry *dent = file->f_path.dentry; + struct ubi_device *ubi; + struct ubi_debug_info *d; + char buf[8]; + int val; + + ubi = ubi_get_device(ubi_num); + if (!ubi) + return -ENODEV; + d = &ubi->dbg; + + if (dent == d->dfs_chk_gen) + val = d->chk_gen; + else if (dent == d->dfs_chk_io) + val = d->chk_io; + else if (dent == d->dfs_chk_fastmap) + val = d->chk_fastmap; + else if (dent == d->dfs_disable_bgt) + val = d->disable_bgt; + else if (dent == d->dfs_emulate_bitflips) + val = d->emulate_bitflips; + else if (dent == d->dfs_emulate_io_failures) + val = d->emulate_io_failures; + else if (dent == d->dfs_emulate_power_cut) { + snprintf(buf, sizeof(buf), "%u\n", d->emulate_power_cut); + count = simple_read_from_buffer(user_buf, count, ppos, + buf, strlen(buf)); + goto out; + } else if (dent == d->dfs_power_cut_min) { + snprintf(buf, sizeof(buf), "%u\n", d->power_cut_min); + count = simple_read_from_buffer(user_buf, count, ppos, + buf, strlen(buf)); + goto out; + } else if (dent == d->dfs_power_cut_max) { + snprintf(buf, sizeof(buf), "%u\n", d->power_cut_max); + count = simple_read_from_buffer(user_buf, count, ppos, + buf, strlen(buf)); + goto out; + } + else { + count = -EINVAL; + goto out; + } + + if (val) + buf[0] = '1'; + else + buf[0] = '0'; + buf[1] = '\n'; + buf[2] = 0x00; + + count = simple_read_from_buffer(user_buf, count, ppos, buf, 2); + +out: + ubi_put_device(ubi); + return count; +} + +/* Write an UBI debugfs file */ +static ssize_t dfs_file_write(struct file *file, const char __user *user_buf, + size_t count, loff_t *ppos) +{ + unsigned long ubi_num = (unsigned long)file->private_data; + struct dentry *dent = file->f_path.dentry; + struct ubi_device *ubi; + struct ubi_debug_info *d; + size_t buf_size; + char buf[8] = {0}; + int val; + + ubi = ubi_get_device(ubi_num); + if (!ubi) + return -ENODEV; + d = &ubi->dbg; + + buf_size = min_t(size_t, count, (sizeof(buf) - 1)); + if (copy_from_user(buf, user_buf, buf_size)) { + count = -EFAULT; + goto out; + } + + if (dent == d->dfs_power_cut_min) { + if (kstrtouint(buf, 0, &d->power_cut_min) != 0) + count = -EINVAL; + goto out; + } else if (dent == d->dfs_power_cut_max) { + if (kstrtouint(buf, 0, &d->power_cut_max) != 0) + count = -EINVAL; + goto out; + } else if (dent == d->dfs_emulate_power_cut) { + if (kstrtoint(buf, 0, &val) != 0) + count = -EINVAL; + else + d->emulate_power_cut = val; + goto out; + } + + if (buf[0] == '1') + val = 1; + else if (buf[0] == '0') + val = 0; + else { + count = -EINVAL; + goto out; + } + + if (dent == d->dfs_chk_gen) + d->chk_gen = val; + else if (dent == d->dfs_chk_io) + d->chk_io = val; + else if (dent == d->dfs_chk_fastmap) + d->chk_fastmap = val; + else if (dent == d->dfs_disable_bgt) + d->disable_bgt = val; + else if (dent == d->dfs_emulate_bitflips) + d->emulate_bitflips = val; + else if (dent == d->dfs_emulate_io_failures) + d->emulate_io_failures = val; + else + count = -EINVAL; + +out: + ubi_put_device(ubi); + return count; +} + +/* File operations for all UBI debugfs files except + * detailed_erase_block_info + */ +static const struct file_operations dfs_fops = { + .read = dfs_file_read, + .write = dfs_file_write, + .open = simple_open, + .llseek = no_llseek, + .owner = THIS_MODULE, +}; + +/* As long as the position is less then that total number of erase blocks, + * we still have more to print. + */ +static void *eraseblk_count_seq_start(struct seq_file *s, loff_t *pos) +{ + struct ubi_device *ubi = s->private; + + if (*pos < ubi->peb_count) + return pos; + + return NULL; +} + +/* Since we are using the position as the iterator, we just need to check if we + * are done and increment the position. + */ +static void *eraseblk_count_seq_next(struct seq_file *s, void *v, loff_t *pos) +{ + struct ubi_device *ubi = s->private; + + (*pos)++; + + if (*pos < ubi->peb_count) + return pos; + + return NULL; +} + +static void eraseblk_count_seq_stop(struct seq_file *s, void *v) +{ +} + +static int eraseblk_count_seq_show(struct seq_file *s, void *iter) +{ + struct ubi_device *ubi = s->private; + struct ubi_wl_entry *wl; + int *block_number = iter; + int erase_count = -1; + int err; + + /* If this is the start, print a header */ + if (*block_number == 0) + seq_puts(s, "physical_block_number\terase_count\n"); + + err = ubi_io_is_bad(ubi, *block_number); + if (err) + return err; + + spin_lock(&ubi->wl_lock); + + wl = ubi->lookuptbl[*block_number]; + if (wl) + erase_count = wl->ec; + + spin_unlock(&ubi->wl_lock); + + if (erase_count < 0) + return 0; + + seq_printf(s, "%-22d\t%-11d\n", *block_number, erase_count); + + return 0; +} + +static const struct seq_operations eraseblk_count_seq_ops = { + .start = eraseblk_count_seq_start, + .next = eraseblk_count_seq_next, + .stop = eraseblk_count_seq_stop, + .show = eraseblk_count_seq_show +}; + +static int eraseblk_count_open(struct inode *inode, struct file *f) +{ + struct seq_file *s; + int err; + + err = seq_open(f, &eraseblk_count_seq_ops); + if (err) + return err; + + s = f->private_data; + s->private = ubi_get_device((unsigned long)inode->i_private); + + if (!s->private) + return -ENODEV; + else + return 0; +} + +static int eraseblk_count_release(struct inode *inode, struct file *f) +{ + struct seq_file *s = f->private_data; + struct ubi_device *ubi = s->private; + + ubi_put_device(ubi); + + return seq_release(inode, f); +} + +static const struct file_operations eraseblk_count_fops = { + .owner = THIS_MODULE, + .open = eraseblk_count_open, + .read = seq_read, + .llseek = seq_lseek, + .release = eraseblk_count_release, +}; + +/** + * ubi_debugfs_init_dev - initialize debugfs for an UBI device. + * @ubi: UBI device description object + * + * This function creates all debugfs files for UBI device @ubi. Returns zero in + * case of success and a negative error code in case of failure. + */ +int ubi_debugfs_init_dev(struct ubi_device *ubi) +{ + unsigned long ubi_num = ubi->ubi_num; + struct ubi_debug_info *d = &ubi->dbg; + umode_t mode = S_IRUSR | S_IWUSR; + int n; + + if (!IS_ENABLED(CONFIG_DEBUG_FS)) + return 0; + + n = snprintf(d->dfs_dir_name, UBI_DFS_DIR_LEN + 1, UBI_DFS_DIR_NAME, + ubi->ubi_num); + if (n > UBI_DFS_DIR_LEN) { + /* The array size is too small */ + return -EINVAL; + } + + d->dfs_dir = debugfs_create_dir(d->dfs_dir_name, dfs_rootdir); + + d->dfs_chk_gen = debugfs_create_file("chk_gen", mode, d->dfs_dir, + (void *)ubi_num, &dfs_fops); + + d->dfs_chk_io = debugfs_create_file("chk_io", mode, d->dfs_dir, + (void *)ubi_num, &dfs_fops); + + d->dfs_chk_fastmap = debugfs_create_file("chk_fastmap", mode, + d->dfs_dir, (void *)ubi_num, + &dfs_fops); + + d->dfs_disable_bgt = debugfs_create_file("tst_disable_bgt", mode, + d->dfs_dir, (void *)ubi_num, + &dfs_fops); + + d->dfs_emulate_bitflips = debugfs_create_file("tst_emulate_bitflips", + mode, d->dfs_dir, + (void *)ubi_num, + &dfs_fops); + + d->dfs_emulate_io_failures = debugfs_create_file("tst_emulate_io_failures", + mode, d->dfs_dir, + (void *)ubi_num, + &dfs_fops); + + d->dfs_emulate_power_cut = debugfs_create_file("tst_emulate_power_cut", + mode, d->dfs_dir, + (void *)ubi_num, + &dfs_fops); + + d->dfs_power_cut_min = debugfs_create_file("tst_emulate_power_cut_min", + mode, d->dfs_dir, + (void *)ubi_num, &dfs_fops); + + d->dfs_power_cut_max = debugfs_create_file("tst_emulate_power_cut_max", + mode, d->dfs_dir, + (void *)ubi_num, &dfs_fops); + + debugfs_create_file("detailed_erase_block_info", S_IRUSR, d->dfs_dir, + (void *)ubi_num, &eraseblk_count_fops); + + return 0; +} + +/** + * ubi_debugfs_exit_dev - free all debugfs files corresponding to device @ubi + * @ubi: UBI device description object + */ +void ubi_debugfs_exit_dev(struct ubi_device *ubi) +{ + if (IS_ENABLED(CONFIG_DEBUG_FS)) + debugfs_remove_recursive(ubi->dbg.dfs_dir); +} + +/** + * ubi_dbg_power_cut - emulate a power cut if it is time to do so + * @ubi: UBI device description object + * @caller: Flags set to indicate from where the function is being called + * + * Returns non-zero if a power cut was emulated, zero if not. + */ +int ubi_dbg_power_cut(struct ubi_device *ubi, int caller) +{ + unsigned int range; + + if ((ubi->dbg.emulate_power_cut & caller) == 0) + return 0; + + if (ubi->dbg.power_cut_counter == 0) { + ubi->dbg.power_cut_counter = ubi->dbg.power_cut_min; + + if (ubi->dbg.power_cut_max > ubi->dbg.power_cut_min) { + range = ubi->dbg.power_cut_max - ubi->dbg.power_cut_min; + ubi->dbg.power_cut_counter += get_random_u32_below(range); + } + return 0; + } + + ubi->dbg.power_cut_counter--; + if (ubi->dbg.power_cut_counter) + return 0; + + ubi_msg(ubi, "XXXXXXXXXXXXXXX emulating a power cut XXXXXXXXXXXXXXXX"); + ubi_ro_mode(ubi); + return 1; +} diff --git a/drivers/mtd/ubi/debug.h b/drivers/mtd/ubi/debug.h new file mode 100644 index 0000000000..23676f32b6 --- /dev/null +++ b/drivers/mtd/ubi/debug.h @@ -0,0 +1,129 @@ +/* SPDX-License-Identifier: GPL-2.0-or-later */ +/* + * Copyright (c) International Business Machines Corp., 2006 + * + * Author: Artem Bityutskiy (Битюцкий Артём) + */ + +#ifndef __UBI_DEBUG_H__ +#define __UBI_DEBUG_H__ + +void ubi_dump_flash(struct ubi_device *ubi, int pnum, int offset, int len); +void ubi_dump_ec_hdr(const struct ubi_ec_hdr *ec_hdr); +void ubi_dump_vid_hdr(const struct ubi_vid_hdr *vid_hdr); + +#include <linux/random.h> + +#define ubi_assert(expr) do { \ + if (unlikely(!(expr))) { \ + pr_crit("UBI assert failed in %s at %u (pid %d)\n", \ + __func__, __LINE__, current->pid); \ + dump_stack(); \ + } \ +} while (0) + +#define ubi_dbg_print_hex_dump(l, ps, pt, r, g, b, len, a) \ + print_hex_dump(l, ps, pt, r, g, b, len, a) + +#define ubi_dbg_msg(type, fmt, ...) \ + pr_debug("UBI DBG " type " (pid %d): " fmt "\n", current->pid, \ + ##__VA_ARGS__) + +/* General debugging messages */ +#define dbg_gen(fmt, ...) ubi_dbg_msg("gen", fmt, ##__VA_ARGS__) +/* Messages from the eraseblock association sub-system */ +#define dbg_eba(fmt, ...) ubi_dbg_msg("eba", fmt, ##__VA_ARGS__) +/* Messages from the wear-leveling sub-system */ +#define dbg_wl(fmt, ...) ubi_dbg_msg("wl", fmt, ##__VA_ARGS__) +/* Messages from the input/output sub-system */ +#define dbg_io(fmt, ...) ubi_dbg_msg("io", fmt, ##__VA_ARGS__) +/* Initialization and build messages */ +#define dbg_bld(fmt, ...) ubi_dbg_msg("bld", fmt, ##__VA_ARGS__) + +void ubi_dump_vol_info(const struct ubi_volume *vol); +void ubi_dump_vtbl_record(const struct ubi_vtbl_record *r, int idx); +void ubi_dump_av(const struct ubi_ainf_volume *av); +void ubi_dump_aeb(const struct ubi_ainf_peb *aeb, int type); +void ubi_dump_mkvol_req(const struct ubi_mkvol_req *req); +int ubi_self_check_all_ff(struct ubi_device *ubi, int pnum, int offset, + int len); +int ubi_debugfs_init(void); +void ubi_debugfs_exit(void); +int ubi_debugfs_init_dev(struct ubi_device *ubi); +void ubi_debugfs_exit_dev(struct ubi_device *ubi); + +/** + * ubi_dbg_is_bgt_disabled - if the background thread is disabled. + * @ubi: UBI device description object + * + * Returns non-zero if the UBI background thread is disabled for testing + * purposes. + */ +static inline int ubi_dbg_is_bgt_disabled(const struct ubi_device *ubi) +{ + return ubi->dbg.disable_bgt; +} + +/** + * ubi_dbg_is_bitflip - if it is time to emulate a bit-flip. + * @ubi: UBI device description object + * + * Returns non-zero if a bit-flip should be emulated, otherwise returns zero. + */ +static inline int ubi_dbg_is_bitflip(const struct ubi_device *ubi) +{ + if (ubi->dbg.emulate_bitflips) + return !get_random_u32_below(200); + return 0; +} + +/** + * ubi_dbg_is_write_failure - if it is time to emulate a write failure. + * @ubi: UBI device description object + * + * Returns non-zero if a write failure should be emulated, otherwise returns + * zero. + */ +static inline int ubi_dbg_is_write_failure(const struct ubi_device *ubi) +{ + if (ubi->dbg.emulate_io_failures) + return !get_random_u32_below(500); + return 0; +} + +/** + * ubi_dbg_is_erase_failure - if its time to emulate an erase failure. + * @ubi: UBI device description object + * + * Returns non-zero if an erase failure should be emulated, otherwise returns + * zero. + */ +static inline int ubi_dbg_is_erase_failure(const struct ubi_device *ubi) +{ + if (ubi->dbg.emulate_io_failures) + return !get_random_u32_below(400); + return 0; +} + +static inline int ubi_dbg_chk_io(const struct ubi_device *ubi) +{ + return ubi->dbg.chk_io; +} + +static inline int ubi_dbg_chk_gen(const struct ubi_device *ubi) +{ + return ubi->dbg.chk_gen; +} + +static inline int ubi_dbg_chk_fastmap(const struct ubi_device *ubi) +{ + return ubi->dbg.chk_fastmap; +} + +static inline void ubi_enable_dbg_chk_fastmap(struct ubi_device *ubi) +{ + ubi->dbg.chk_fastmap = 1; +} + +int ubi_dbg_power_cut(struct ubi_device *ubi, int caller); +#endif /* !__UBI_DEBUG_H__ */ diff --git a/drivers/mtd/ubi/eba.c b/drivers/mtd/ubi/eba.c new file mode 100644 index 0000000000..655ff41863 --- /dev/null +++ b/drivers/mtd/ubi/eba.c @@ -0,0 +1,1709 @@ +// SPDX-License-Identifier: GPL-2.0-or-later +/* + * Copyright (c) International Business Machines Corp., 2006 + * + * Author: Artem Bityutskiy (Битюцкий Артём) + */ + +/* + * The UBI Eraseblock Association (EBA) sub-system. + * + * This sub-system is responsible for I/O to/from logical eraseblock. + * + * Although in this implementation the EBA table is fully kept and managed in + * RAM, which assumes poor scalability, it might be (partially) maintained on + * flash in future implementations. + * + * The EBA sub-system implements per-logical eraseblock locking. Before + * accessing a logical eraseblock it is locked for reading or writing. The + * per-logical eraseblock locking is implemented by means of the lock tree. The + * lock tree is an RB-tree which refers all the currently locked logical + * eraseblocks. The lock tree elements are &struct ubi_ltree_entry objects. + * They are indexed by (@vol_id, @lnum) pairs. + * + * EBA also maintains the global sequence counter which is incremented each + * time a logical eraseblock is mapped to a physical eraseblock and it is + * stored in the volume identifier header. This means that each VID header has + * a unique sequence number. The sequence number is only increased an we assume + * 64 bits is enough to never overflow. + */ + +#include <linux/slab.h> +#include <linux/crc32.h> +#include <linux/err.h> +#include "ubi.h" + +/* Number of physical eraseblocks reserved for atomic LEB change operation */ +#define EBA_RESERVED_PEBS 1 + +/** + * struct ubi_eba_entry - structure encoding a single LEB -> PEB association + * @pnum: the physical eraseblock number attached to the LEB + * + * This structure is encoding a LEB -> PEB association. Note that the LEB + * number is not stored here, because it is the index used to access the + * entries table. + */ +struct ubi_eba_entry { + int pnum; +}; + +/** + * struct ubi_eba_table - LEB -> PEB association information + * @entries: the LEB to PEB mapping (one entry per LEB). + * + * This structure is private to the EBA logic and should be kept here. + * It is encoding the LEB to PEB association table, and is subject to + * changes. + */ +struct ubi_eba_table { + struct ubi_eba_entry *entries; +}; + +/** + * ubi_next_sqnum - get next sequence number. + * @ubi: UBI device description object + * + * This function returns next sequence number to use, which is just the current + * global sequence counter value. It also increases the global sequence + * counter. + */ +unsigned long long ubi_next_sqnum(struct ubi_device *ubi) +{ + unsigned long long sqnum; + + spin_lock(&ubi->ltree_lock); + sqnum = ubi->global_sqnum++; + spin_unlock(&ubi->ltree_lock); + + return sqnum; +} + +/** + * ubi_get_compat - get compatibility flags of a volume. + * @ubi: UBI device description object + * @vol_id: volume ID + * + * This function returns compatibility flags for an internal volume. User + * volumes have no compatibility flags, so %0 is returned. + */ +static int ubi_get_compat(const struct ubi_device *ubi, int vol_id) +{ + if (vol_id == UBI_LAYOUT_VOLUME_ID) + return UBI_LAYOUT_VOLUME_COMPAT; + return 0; +} + +/** + * ubi_eba_get_ldesc - get information about a LEB + * @vol: volume description object + * @lnum: logical eraseblock number + * @ldesc: the LEB descriptor to fill + * + * Used to query information about a specific LEB. + * It is currently only returning the physical position of the LEB, but will be + * extended to provide more information. + */ +void ubi_eba_get_ldesc(struct ubi_volume *vol, int lnum, + struct ubi_eba_leb_desc *ldesc) +{ + ldesc->lnum = lnum; + ldesc->pnum = vol->eba_tbl->entries[lnum].pnum; +} + +/** + * ubi_eba_create_table - allocate a new EBA table and initialize it with all + * LEBs unmapped + * @vol: volume containing the EBA table to copy + * @nentries: number of entries in the table + * + * Allocate a new EBA table and initialize it with all LEBs unmapped. + * Returns a valid pointer if it succeed, an ERR_PTR() otherwise. + */ +struct ubi_eba_table *ubi_eba_create_table(struct ubi_volume *vol, + int nentries) +{ + struct ubi_eba_table *tbl; + int err = -ENOMEM; + int i; + + tbl = kzalloc(sizeof(*tbl), GFP_KERNEL); + if (!tbl) + return ERR_PTR(-ENOMEM); + + tbl->entries = kmalloc_array(nentries, sizeof(*tbl->entries), + GFP_KERNEL); + if (!tbl->entries) + goto err; + + for (i = 0; i < nentries; i++) + tbl->entries[i].pnum = UBI_LEB_UNMAPPED; + + return tbl; + +err: + kfree(tbl); + + return ERR_PTR(err); +} + +/** + * ubi_eba_destroy_table - destroy an EBA table + * @tbl: the table to destroy + * + * Destroy an EBA table. + */ +void ubi_eba_destroy_table(struct ubi_eba_table *tbl) +{ + if (!tbl) + return; + + kfree(tbl->entries); + kfree(tbl); +} + +/** + * ubi_eba_copy_table - copy the EBA table attached to vol into another table + * @vol: volume containing the EBA table to copy + * @dst: destination + * @nentries: number of entries to copy + * + * Copy the EBA table stored in vol into the one pointed by dst. + */ +void ubi_eba_copy_table(struct ubi_volume *vol, struct ubi_eba_table *dst, + int nentries) +{ + struct ubi_eba_table *src; + int i; + + ubi_assert(dst && vol && vol->eba_tbl); + + src = vol->eba_tbl; + + for (i = 0; i < nentries; i++) + dst->entries[i].pnum = src->entries[i].pnum; +} + +/** + * ubi_eba_replace_table - assign a new EBA table to a volume + * @vol: volume containing the EBA table to copy + * @tbl: new EBA table + * + * Assign a new EBA table to the volume and release the old one. + */ +void ubi_eba_replace_table(struct ubi_volume *vol, struct ubi_eba_table *tbl) +{ + ubi_eba_destroy_table(vol->eba_tbl); + vol->eba_tbl = tbl; +} + +/** + * ltree_lookup - look up the lock tree. + * @ubi: UBI device description object + * @vol_id: volume ID + * @lnum: logical eraseblock number + * + * This function returns a pointer to the corresponding &struct ubi_ltree_entry + * object if the logical eraseblock is locked and %NULL if it is not. + * @ubi->ltree_lock has to be locked. + */ +static struct ubi_ltree_entry *ltree_lookup(struct ubi_device *ubi, int vol_id, + int lnum) +{ + struct rb_node *p; + + p = ubi->ltree.rb_node; + while (p) { + struct ubi_ltree_entry *le; + + le = rb_entry(p, struct ubi_ltree_entry, rb); + + if (vol_id < le->vol_id) + p = p->rb_left; + else if (vol_id > le->vol_id) + p = p->rb_right; + else { + if (lnum < le->lnum) + p = p->rb_left; + else if (lnum > le->lnum) + p = p->rb_right; + else + return le; + } + } + + return NULL; +} + +/** + * ltree_add_entry - add new entry to the lock tree. + * @ubi: UBI device description object + * @vol_id: volume ID + * @lnum: logical eraseblock number + * + * This function adds new entry for logical eraseblock (@vol_id, @lnum) to the + * lock tree. If such entry is already there, its usage counter is increased. + * Returns pointer to the lock tree entry or %-ENOMEM if memory allocation + * failed. + */ +static struct ubi_ltree_entry *ltree_add_entry(struct ubi_device *ubi, + int vol_id, int lnum) +{ + struct ubi_ltree_entry *le, *le1, *le_free; + + le = kmalloc(sizeof(struct ubi_ltree_entry), GFP_NOFS); + if (!le) + return ERR_PTR(-ENOMEM); + + le->users = 0; + init_rwsem(&le->mutex); + le->vol_id = vol_id; + le->lnum = lnum; + + spin_lock(&ubi->ltree_lock); + le1 = ltree_lookup(ubi, vol_id, lnum); + + if (le1) { + /* + * This logical eraseblock is already locked. The newly + * allocated lock entry is not needed. + */ + le_free = le; + le = le1; + } else { + struct rb_node **p, *parent = NULL; + + /* + * No lock entry, add the newly allocated one to the + * @ubi->ltree RB-tree. + */ + le_free = NULL; + + p = &ubi->ltree.rb_node; + while (*p) { + parent = *p; + le1 = rb_entry(parent, struct ubi_ltree_entry, rb); + + if (vol_id < le1->vol_id) + p = &(*p)->rb_left; + else if (vol_id > le1->vol_id) + p = &(*p)->rb_right; + else { + ubi_assert(lnum != le1->lnum); + if (lnum < le1->lnum) + p = &(*p)->rb_left; + else + p = &(*p)->rb_right; + } + } + + rb_link_node(&le->rb, parent, p); + rb_insert_color(&le->rb, &ubi->ltree); + } + le->users += 1; + spin_unlock(&ubi->ltree_lock); + + kfree(le_free); + return le; +} + +/** + * leb_read_lock - lock logical eraseblock for reading. + * @ubi: UBI device description object + * @vol_id: volume ID + * @lnum: logical eraseblock number + * + * This function locks a logical eraseblock for reading. Returns zero in case + * of success and a negative error code in case of failure. + */ +static int leb_read_lock(struct ubi_device *ubi, int vol_id, int lnum) +{ + struct ubi_ltree_entry *le; + + le = ltree_add_entry(ubi, vol_id, lnum); + if (IS_ERR(le)) + return PTR_ERR(le); + down_read(&le->mutex); + return 0; +} + +/** + * leb_read_unlock - unlock logical eraseblock. + * @ubi: UBI device description object + * @vol_id: volume ID + * @lnum: logical eraseblock number + */ +static void leb_read_unlock(struct ubi_device *ubi, int vol_id, int lnum) +{ + struct ubi_ltree_entry *le; + + spin_lock(&ubi->ltree_lock); + le = ltree_lookup(ubi, vol_id, lnum); + le->users -= 1; + ubi_assert(le->users >= 0); + up_read(&le->mutex); + if (le->users == 0) { + rb_erase(&le->rb, &ubi->ltree); + kfree(le); + } + spin_unlock(&ubi->ltree_lock); +} + +/** + * leb_write_lock - lock logical eraseblock for writing. + * @ubi: UBI device description object + * @vol_id: volume ID + * @lnum: logical eraseblock number + * + * This function locks a logical eraseblock for writing. Returns zero in case + * of success and a negative error code in case of failure. + */ +static int leb_write_lock(struct ubi_device *ubi, int vol_id, int lnum) +{ + struct ubi_ltree_entry *le; + + le = ltree_add_entry(ubi, vol_id, lnum); + if (IS_ERR(le)) + return PTR_ERR(le); + down_write(&le->mutex); + return 0; +} + +/** + * leb_write_trylock - try to lock logical eraseblock for writing. + * @ubi: UBI device description object + * @vol_id: volume ID + * @lnum: logical eraseblock number + * + * This function locks a logical eraseblock for writing if there is no + * contention and does nothing if there is contention. Returns %0 in case of + * success, %1 in case of contention, and a negative error code in case of + * failure. + */ +static int leb_write_trylock(struct ubi_device *ubi, int vol_id, int lnum) +{ + struct ubi_ltree_entry *le; + + le = ltree_add_entry(ubi, vol_id, lnum); + if (IS_ERR(le)) + return PTR_ERR(le); + if (down_write_trylock(&le->mutex)) + return 0; + + /* Contention, cancel */ + spin_lock(&ubi->ltree_lock); + le->users -= 1; + ubi_assert(le->users >= 0); + if (le->users == 0) { + rb_erase(&le->rb, &ubi->ltree); + kfree(le); + } + spin_unlock(&ubi->ltree_lock); + + return 1; +} + +/** + * leb_write_unlock - unlock logical eraseblock. + * @ubi: UBI device description object + * @vol_id: volume ID + * @lnum: logical eraseblock number + */ +static void leb_write_unlock(struct ubi_device *ubi, int vol_id, int lnum) +{ + struct ubi_ltree_entry *le; + + spin_lock(&ubi->ltree_lock); + le = ltree_lookup(ubi, vol_id, lnum); + le->users -= 1; + ubi_assert(le->users >= 0); + up_write(&le->mutex); + if (le->users == 0) { + rb_erase(&le->rb, &ubi->ltree); + kfree(le); + } + spin_unlock(&ubi->ltree_lock); +} + +/** + * ubi_eba_is_mapped - check if a LEB is mapped. + * @vol: volume description object + * @lnum: logical eraseblock number + * + * This function returns true if the LEB is mapped, false otherwise. + */ +bool ubi_eba_is_mapped(struct ubi_volume *vol, int lnum) +{ + return vol->eba_tbl->entries[lnum].pnum >= 0; +} + +/** + * ubi_eba_unmap_leb - un-map logical eraseblock. + * @ubi: UBI device description object + * @vol: volume description object + * @lnum: logical eraseblock number + * + * This function un-maps logical eraseblock @lnum and schedules corresponding + * physical eraseblock for erasure. Returns zero in case of success and a + * negative error code in case of failure. + */ +int ubi_eba_unmap_leb(struct ubi_device *ubi, struct ubi_volume *vol, + int lnum) +{ + int err, pnum, vol_id = vol->vol_id; + + if (ubi->ro_mode) + return -EROFS; + + err = leb_write_lock(ubi, vol_id, lnum); + if (err) + return err; + + pnum = vol->eba_tbl->entries[lnum].pnum; + if (pnum < 0) + /* This logical eraseblock is already unmapped */ + goto out_unlock; + + dbg_eba("erase LEB %d:%d, PEB %d", vol_id, lnum, pnum); + + down_read(&ubi->fm_eba_sem); + vol->eba_tbl->entries[lnum].pnum = UBI_LEB_UNMAPPED; + up_read(&ubi->fm_eba_sem); + err = ubi_wl_put_peb(ubi, vol_id, lnum, pnum, 0); + +out_unlock: + leb_write_unlock(ubi, vol_id, lnum); + return err; +} + +#ifdef CONFIG_MTD_UBI_FASTMAP +/** + * check_mapping - check and fixup a mapping + * @ubi: UBI device description object + * @vol: volume description object + * @lnum: logical eraseblock number + * @pnum: physical eraseblock number + * + * Checks whether a given mapping is valid. Fastmap cannot track LEB unmap + * operations, if such an operation is interrupted the mapping still looks + * good, but upon first read an ECC is reported to the upper layer. + * Normaly during the full-scan at attach time this is fixed, for Fastmap + * we have to deal with it while reading. + * If the PEB behind a LEB shows this symthom we change the mapping to + * %UBI_LEB_UNMAPPED and schedule the PEB for erasure. + * + * Returns 0 on success, negative error code in case of failure. + */ +static int check_mapping(struct ubi_device *ubi, struct ubi_volume *vol, int lnum, + int *pnum) +{ + int err; + struct ubi_vid_io_buf *vidb; + struct ubi_vid_hdr *vid_hdr; + + if (!ubi->fast_attach) + return 0; + + if (!vol->checkmap || test_bit(lnum, vol->checkmap)) + return 0; + + vidb = ubi_alloc_vid_buf(ubi, GFP_NOFS); + if (!vidb) + return -ENOMEM; + + err = ubi_io_read_vid_hdr(ubi, *pnum, vidb, 0); + if (err > 0 && err != UBI_IO_BITFLIPS) { + int torture = 0; + + switch (err) { + case UBI_IO_FF: + case UBI_IO_FF_BITFLIPS: + case UBI_IO_BAD_HDR: + case UBI_IO_BAD_HDR_EBADMSG: + break; + default: + ubi_assert(0); + } + + if (err == UBI_IO_BAD_HDR_EBADMSG || err == UBI_IO_FF_BITFLIPS) + torture = 1; + + down_read(&ubi->fm_eba_sem); + vol->eba_tbl->entries[lnum].pnum = UBI_LEB_UNMAPPED; + up_read(&ubi->fm_eba_sem); + ubi_wl_put_peb(ubi, vol->vol_id, lnum, *pnum, torture); + + *pnum = UBI_LEB_UNMAPPED; + } else if (err < 0) { + ubi_err(ubi, "unable to read VID header back from PEB %i: %i", + *pnum, err); + + goto out_free; + } else { + int found_vol_id, found_lnum; + + ubi_assert(err == 0 || err == UBI_IO_BITFLIPS); + + vid_hdr = ubi_get_vid_hdr(vidb); + found_vol_id = be32_to_cpu(vid_hdr->vol_id); + found_lnum = be32_to_cpu(vid_hdr->lnum); + + if (found_lnum != lnum || found_vol_id != vol->vol_id) { + ubi_err(ubi, "EBA mismatch! PEB %i is LEB %i:%i instead of LEB %i:%i", + *pnum, found_vol_id, found_lnum, vol->vol_id, lnum); + ubi_ro_mode(ubi); + err = -EINVAL; + goto out_free; + } + } + + set_bit(lnum, vol->checkmap); + err = 0; + +out_free: + ubi_free_vid_buf(vidb); + + return err; +} +#else +static int check_mapping(struct ubi_device *ubi, struct ubi_volume *vol, int lnum, + int *pnum) +{ + return 0; +} +#endif + +/** + * ubi_eba_read_leb - read data. + * @ubi: UBI device description object + * @vol: volume description object + * @lnum: logical eraseblock number + * @buf: buffer to store the read data + * @offset: offset from where to read + * @len: how many bytes to read + * @check: data CRC check flag + * + * If the logical eraseblock @lnum is unmapped, @buf is filled with 0xFF + * bytes. The @check flag only makes sense for static volumes and forces + * eraseblock data CRC checking. + * + * In case of success this function returns zero. In case of a static volume, + * if data CRC mismatches - %-EBADMSG is returned. %-EBADMSG may also be + * returned for any volume type if an ECC error was detected by the MTD device + * driver. Other negative error cored may be returned in case of other errors. + */ +int ubi_eba_read_leb(struct ubi_device *ubi, struct ubi_volume *vol, int lnum, + void *buf, int offset, int len, int check) +{ + int err, pnum, scrub = 0, vol_id = vol->vol_id; + struct ubi_vid_io_buf *vidb; + struct ubi_vid_hdr *vid_hdr; + uint32_t crc; + + err = leb_read_lock(ubi, vol_id, lnum); + if (err) + return err; + + pnum = vol->eba_tbl->entries[lnum].pnum; + if (pnum >= 0) { + err = check_mapping(ubi, vol, lnum, &pnum); + if (err < 0) + goto out_unlock; + } + + if (pnum == UBI_LEB_UNMAPPED) { + /* + * The logical eraseblock is not mapped, fill the whole buffer + * with 0xFF bytes. The exception is static volumes for which + * it is an error to read unmapped logical eraseblocks. + */ + dbg_eba("read %d bytes from offset %d of LEB %d:%d (unmapped)", + len, offset, vol_id, lnum); + leb_read_unlock(ubi, vol_id, lnum); + ubi_assert(vol->vol_type != UBI_STATIC_VOLUME); + memset(buf, 0xFF, len); + return 0; + } + + dbg_eba("read %d bytes from offset %d of LEB %d:%d, PEB %d", + len, offset, vol_id, lnum, pnum); + + if (vol->vol_type == UBI_DYNAMIC_VOLUME) + check = 0; + +retry: + if (check) { + vidb = ubi_alloc_vid_buf(ubi, GFP_NOFS); + if (!vidb) { + err = -ENOMEM; + goto out_unlock; + } + + vid_hdr = ubi_get_vid_hdr(vidb); + + err = ubi_io_read_vid_hdr(ubi, pnum, vidb, 1); + if (err && err != UBI_IO_BITFLIPS) { + if (err > 0) { + /* + * The header is either absent or corrupted. + * The former case means there is a bug - + * switch to read-only mode just in case. + * The latter case means a real corruption - we + * may try to recover data. FIXME: but this is + * not implemented. + */ + if (err == UBI_IO_BAD_HDR_EBADMSG || + err == UBI_IO_BAD_HDR) { + ubi_warn(ubi, "corrupted VID header at PEB %d, LEB %d:%d", + pnum, vol_id, lnum); + err = -EBADMSG; + } else { + /* + * Ending up here in the non-Fastmap case + * is a clear bug as the VID header had to + * be present at scan time to have it referenced. + * With fastmap the story is more complicated. + * Fastmap has the mapping info without the need + * of a full scan. So the LEB could have been + * unmapped, Fastmap cannot know this and keeps + * the LEB referenced. + * This is valid and works as the layer above UBI + * has to do bookkeeping about used/referenced + * LEBs in any case. + */ + if (ubi->fast_attach) { + err = -EBADMSG; + } else { + err = -EINVAL; + ubi_ro_mode(ubi); + } + } + } + goto out_free; + } else if (err == UBI_IO_BITFLIPS) + scrub = 1; + + ubi_assert(lnum < be32_to_cpu(vid_hdr->used_ebs)); + ubi_assert(len == be32_to_cpu(vid_hdr->data_size)); + + crc = be32_to_cpu(vid_hdr->data_crc); + ubi_free_vid_buf(vidb); + } + + err = ubi_io_read_data(ubi, buf, pnum, offset, len); + if (err) { + if (err == UBI_IO_BITFLIPS) + scrub = 1; + else if (mtd_is_eccerr(err)) { + if (vol->vol_type == UBI_DYNAMIC_VOLUME) + goto out_unlock; + scrub = 1; + if (!check) { + ubi_msg(ubi, "force data checking"); + check = 1; + goto retry; + } + } else + goto out_unlock; + } + + if (check) { + uint32_t crc1 = crc32(UBI_CRC32_INIT, buf, len); + if (crc1 != crc) { + ubi_warn(ubi, "CRC error: calculated %#08x, must be %#08x", + crc1, crc); + err = -EBADMSG; + goto out_unlock; + } + } + + if (scrub) + err = ubi_wl_scrub_peb(ubi, pnum); + + leb_read_unlock(ubi, vol_id, lnum); + return err; + +out_free: + ubi_free_vid_buf(vidb); +out_unlock: + leb_read_unlock(ubi, vol_id, lnum); + return err; +} + +/** + * ubi_eba_read_leb_sg - read data into a scatter gather list. + * @ubi: UBI device description object + * @vol: volume description object + * @lnum: logical eraseblock number + * @sgl: UBI scatter gather list to store the read data + * @offset: offset from where to read + * @len: how many bytes to read + * @check: data CRC check flag + * + * This function works exactly like ubi_eba_read_leb(). But instead of + * storing the read data into a buffer it writes to an UBI scatter gather + * list. + */ +int ubi_eba_read_leb_sg(struct ubi_device *ubi, struct ubi_volume *vol, + struct ubi_sgl *sgl, int lnum, int offset, int len, + int check) +{ + int to_read; + int ret; + struct scatterlist *sg; + + for (;;) { + ubi_assert(sgl->list_pos < UBI_MAX_SG_COUNT); + sg = &sgl->sg[sgl->list_pos]; + if (len < sg->length - sgl->page_pos) + to_read = len; + else + to_read = sg->length - sgl->page_pos; + + ret = ubi_eba_read_leb(ubi, vol, lnum, + sg_virt(sg) + sgl->page_pos, offset, + to_read, check); + if (ret < 0) + return ret; + + offset += to_read; + len -= to_read; + if (!len) { + sgl->page_pos += to_read; + if (sgl->page_pos == sg->length) { + sgl->list_pos++; + sgl->page_pos = 0; + } + + break; + } + + sgl->list_pos++; + sgl->page_pos = 0; + } + + return ret; +} + +/** + * try_recover_peb - try to recover from write failure. + * @vol: volume description object + * @pnum: the physical eraseblock to recover + * @lnum: logical eraseblock number + * @buf: data which was not written because of the write failure + * @offset: offset of the failed write + * @len: how many bytes should have been written + * @vidb: VID buffer + * @retry: whether the caller should retry in case of failure + * + * This function is called in case of a write failure and moves all good data + * from the potentially bad physical eraseblock to a good physical eraseblock. + * This function also writes the data which was not written due to the failure. + * Returns 0 in case of success, and a negative error code in case of failure. + * In case of failure, the %retry parameter is set to false if this is a fatal + * error (retrying won't help), and true otherwise. + */ +static int try_recover_peb(struct ubi_volume *vol, int pnum, int lnum, + const void *buf, int offset, int len, + struct ubi_vid_io_buf *vidb, bool *retry) +{ + struct ubi_device *ubi = vol->ubi; + struct ubi_vid_hdr *vid_hdr; + int new_pnum, err, vol_id = vol->vol_id, data_size; + uint32_t crc; + + *retry = false; + + new_pnum = ubi_wl_get_peb(ubi); + if (new_pnum < 0) { + err = new_pnum; + goto out_put; + } + + ubi_msg(ubi, "recover PEB %d, move data to PEB %d", + pnum, new_pnum); + + err = ubi_io_read_vid_hdr(ubi, pnum, vidb, 1); + if (err && err != UBI_IO_BITFLIPS) { + if (err > 0) + err = -EIO; + goto out_put; + } + + vid_hdr = ubi_get_vid_hdr(vidb); + ubi_assert(vid_hdr->vol_type == UBI_VID_DYNAMIC); + + mutex_lock(&ubi->buf_mutex); + memset(ubi->peb_buf + offset, 0xFF, len); + + /* Read everything before the area where the write failure happened */ + if (offset > 0) { + err = ubi_io_read_data(ubi, ubi->peb_buf, pnum, 0, offset); + if (err && err != UBI_IO_BITFLIPS) + goto out_unlock; + } + + *retry = true; + + memcpy(ubi->peb_buf + offset, buf, len); + + data_size = offset + len; + crc = crc32(UBI_CRC32_INIT, ubi->peb_buf, data_size); + vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi)); + vid_hdr->copy_flag = 1; + vid_hdr->data_size = cpu_to_be32(data_size); + vid_hdr->data_crc = cpu_to_be32(crc); + err = ubi_io_write_vid_hdr(ubi, new_pnum, vidb); + if (err) + goto out_unlock; + + err = ubi_io_write_data(ubi, ubi->peb_buf, new_pnum, 0, data_size); + +out_unlock: + mutex_unlock(&ubi->buf_mutex); + + if (!err) + vol->eba_tbl->entries[lnum].pnum = new_pnum; + +out_put: + up_read(&ubi->fm_eba_sem); + + if (!err) { + ubi_wl_put_peb(ubi, vol_id, lnum, pnum, 1); + ubi_msg(ubi, "data was successfully recovered"); + } else if (new_pnum >= 0) { + /* + * Bad luck? This physical eraseblock is bad too? Crud. Let's + * try to get another one. + */ + ubi_wl_put_peb(ubi, vol_id, lnum, new_pnum, 1); + ubi_warn(ubi, "failed to write to PEB %d", new_pnum); + } + + return err; +} + +/** + * recover_peb - recover from write failure. + * @ubi: UBI device description object + * @pnum: the physical eraseblock to recover + * @vol_id: volume ID + * @lnum: logical eraseblock number + * @buf: data which was not written because of the write failure + * @offset: offset of the failed write + * @len: how many bytes should have been written + * + * This function is called in case of a write failure and moves all good data + * from the potentially bad physical eraseblock to a good physical eraseblock. + * This function also writes the data which was not written due to the failure. + * Returns 0 in case of success, and a negative error code in case of failure. + * This function tries %UBI_IO_RETRIES before giving up. + */ +static int recover_peb(struct ubi_device *ubi, int pnum, int vol_id, int lnum, + const void *buf, int offset, int len) +{ + int err, idx = vol_id2idx(ubi, vol_id), tries; + struct ubi_volume *vol = ubi->volumes[idx]; + struct ubi_vid_io_buf *vidb; + + vidb = ubi_alloc_vid_buf(ubi, GFP_NOFS); + if (!vidb) + return -ENOMEM; + + for (tries = 0; tries <= UBI_IO_RETRIES; tries++) { + bool retry; + + err = try_recover_peb(vol, pnum, lnum, buf, offset, len, vidb, + &retry); + if (!err || !retry) + break; + + ubi_msg(ubi, "try again"); + } + + ubi_free_vid_buf(vidb); + + return err; +} + +/** + * try_write_vid_and_data - try to write VID header and data to a new PEB. + * @vol: volume description object + * @lnum: logical eraseblock number + * @vidb: the VID buffer to write + * @buf: buffer containing the data + * @offset: where to start writing data + * @len: how many bytes should be written + * + * This function tries to write VID header and data belonging to logical + * eraseblock @lnum of volume @vol to a new physical eraseblock. Returns zero + * in case of success and a negative error code in case of failure. + * In case of error, it is possible that something was still written to the + * flash media, but may be some garbage. + */ +static int try_write_vid_and_data(struct ubi_volume *vol, int lnum, + struct ubi_vid_io_buf *vidb, const void *buf, + int offset, int len) +{ + struct ubi_device *ubi = vol->ubi; + int pnum, opnum, err, err2, vol_id = vol->vol_id; + + pnum = ubi_wl_get_peb(ubi); + if (pnum < 0) { + err = pnum; + goto out_put; + } + + opnum = vol->eba_tbl->entries[lnum].pnum; + + dbg_eba("write VID hdr and %d bytes at offset %d of LEB %d:%d, PEB %d", + len, offset, vol_id, lnum, pnum); + + err = ubi_io_write_vid_hdr(ubi, pnum, vidb); + if (err) { + ubi_warn(ubi, "failed to write VID header to LEB %d:%d, PEB %d", + vol_id, lnum, pnum); + goto out_put; + } + + if (len) { + err = ubi_io_write_data(ubi, buf, pnum, offset, len); + if (err) { + ubi_warn(ubi, + "failed to write %d bytes at offset %d of LEB %d:%d, PEB %d", + len, offset, vol_id, lnum, pnum); + goto out_put; + } + } + + vol->eba_tbl->entries[lnum].pnum = pnum; + +out_put: + up_read(&ubi->fm_eba_sem); + + if (err && pnum >= 0) { + err2 = ubi_wl_put_peb(ubi, vol_id, lnum, pnum, 1); + if (err2) { + ubi_warn(ubi, "failed to return physical eraseblock %d, error %d", + pnum, err2); + } + } else if (!err && opnum >= 0) { + err2 = ubi_wl_put_peb(ubi, vol_id, lnum, opnum, 0); + if (err2) { + ubi_warn(ubi, "failed to return physical eraseblock %d, error %d", + opnum, err2); + } + } + + return err; +} + +/** + * ubi_eba_write_leb - write data to dynamic volume. + * @ubi: UBI device description object + * @vol: volume description object + * @lnum: logical eraseblock number + * @buf: the data to write + * @offset: offset within the logical eraseblock where to write + * @len: how many bytes to write + * + * This function writes data to logical eraseblock @lnum of a dynamic volume + * @vol. Returns zero in case of success and a negative error code in case + * of failure. In case of error, it is possible that something was still + * written to the flash media, but may be some garbage. + * This function retries %UBI_IO_RETRIES times before giving up. + */ +int ubi_eba_write_leb(struct ubi_device *ubi, struct ubi_volume *vol, int lnum, + const void *buf, int offset, int len) +{ + int err, pnum, tries, vol_id = vol->vol_id; + struct ubi_vid_io_buf *vidb; + struct ubi_vid_hdr *vid_hdr; + + if (ubi->ro_mode) + return -EROFS; + + err = leb_write_lock(ubi, vol_id, lnum); + if (err) + return err; + + pnum = vol->eba_tbl->entries[lnum].pnum; + if (pnum >= 0) { + err = check_mapping(ubi, vol, lnum, &pnum); + if (err < 0) + goto out; + } + + if (pnum >= 0) { + dbg_eba("write %d bytes at offset %d of LEB %d:%d, PEB %d", + len, offset, vol_id, lnum, pnum); + + err = ubi_io_write_data(ubi, buf, pnum, offset, len); + if (err) { + ubi_warn(ubi, "failed to write data to PEB %d", pnum); + if (err == -EIO && ubi->bad_allowed) + err = recover_peb(ubi, pnum, vol_id, lnum, buf, + offset, len); + } + + goto out; + } + + /* + * The logical eraseblock is not mapped. We have to get a free physical + * eraseblock and write the volume identifier header there first. + */ + vidb = ubi_alloc_vid_buf(ubi, GFP_NOFS); + if (!vidb) { + leb_write_unlock(ubi, vol_id, lnum); + return -ENOMEM; + } + + vid_hdr = ubi_get_vid_hdr(vidb); + + vid_hdr->vol_type = UBI_VID_DYNAMIC; + vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi)); + vid_hdr->vol_id = cpu_to_be32(vol_id); + vid_hdr->lnum = cpu_to_be32(lnum); + vid_hdr->compat = ubi_get_compat(ubi, vol_id); + vid_hdr->data_pad = cpu_to_be32(vol->data_pad); + + for (tries = 0; tries <= UBI_IO_RETRIES; tries++) { + err = try_write_vid_and_data(vol, lnum, vidb, buf, offset, len); + if (err != -EIO || !ubi->bad_allowed) + break; + + /* + * Fortunately, this is the first write operation to this + * physical eraseblock, so just put it and request a new one. + * We assume that if this physical eraseblock went bad, the + * erase code will handle that. + */ + vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi)); + ubi_msg(ubi, "try another PEB"); + } + + ubi_free_vid_buf(vidb); + +out: + if (err) + ubi_ro_mode(ubi); + + leb_write_unlock(ubi, vol_id, lnum); + + return err; +} + +/** + * ubi_eba_write_leb_st - write data to static volume. + * @ubi: UBI device description object + * @vol: volume description object + * @lnum: logical eraseblock number + * @buf: data to write + * @len: how many bytes to write + * @used_ebs: how many logical eraseblocks will this volume contain + * + * This function writes data to logical eraseblock @lnum of static volume + * @vol. The @used_ebs argument should contain total number of logical + * eraseblock in this static volume. + * + * When writing to the last logical eraseblock, the @len argument doesn't have + * to be aligned to the minimal I/O unit size. Instead, it has to be equivalent + * to the real data size, although the @buf buffer has to contain the + * alignment. In all other cases, @len has to be aligned. + * + * It is prohibited to write more than once to logical eraseblocks of static + * volumes. This function returns zero in case of success and a negative error + * code in case of failure. + */ +int ubi_eba_write_leb_st(struct ubi_device *ubi, struct ubi_volume *vol, + int lnum, const void *buf, int len, int used_ebs) +{ + int err, tries, data_size = len, vol_id = vol->vol_id; + struct ubi_vid_io_buf *vidb; + struct ubi_vid_hdr *vid_hdr; + uint32_t crc; + + if (ubi->ro_mode) + return -EROFS; + + if (lnum == used_ebs - 1) + /* If this is the last LEB @len may be unaligned */ + len = ALIGN(data_size, ubi->min_io_size); + else + ubi_assert(!(len & (ubi->min_io_size - 1))); + + vidb = ubi_alloc_vid_buf(ubi, GFP_NOFS); + if (!vidb) + return -ENOMEM; + + vid_hdr = ubi_get_vid_hdr(vidb); + + err = leb_write_lock(ubi, vol_id, lnum); + if (err) + goto out; + + vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi)); + vid_hdr->vol_id = cpu_to_be32(vol_id); + vid_hdr->lnum = cpu_to_be32(lnum); + vid_hdr->compat = ubi_get_compat(ubi, vol_id); + vid_hdr->data_pad = cpu_to_be32(vol->data_pad); + + crc = crc32(UBI_CRC32_INIT, buf, data_size); + vid_hdr->vol_type = UBI_VID_STATIC; + vid_hdr->data_size = cpu_to_be32(data_size); + vid_hdr->used_ebs = cpu_to_be32(used_ebs); + vid_hdr->data_crc = cpu_to_be32(crc); + + ubi_assert(vol->eba_tbl->entries[lnum].pnum < 0); + + for (tries = 0; tries <= UBI_IO_RETRIES; tries++) { + err = try_write_vid_and_data(vol, lnum, vidb, buf, 0, len); + if (err != -EIO || !ubi->bad_allowed) + break; + + vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi)); + ubi_msg(ubi, "try another PEB"); + } + + if (err) + ubi_ro_mode(ubi); + + leb_write_unlock(ubi, vol_id, lnum); + +out: + ubi_free_vid_buf(vidb); + + return err; +} + +/* + * ubi_eba_atomic_leb_change - change logical eraseblock atomically. + * @ubi: UBI device description object + * @vol: volume description object + * @lnum: logical eraseblock number + * @buf: data to write + * @len: how many bytes to write + * + * This function changes the contents of a logical eraseblock atomically. @buf + * has to contain new logical eraseblock data, and @len - the length of the + * data, which has to be aligned. This function guarantees that in case of an + * unclean reboot the old contents is preserved. Returns zero in case of + * success and a negative error code in case of failure. + * + * UBI reserves one LEB for the "atomic LEB change" operation, so only one + * LEB change may be done at a time. This is ensured by @ubi->alc_mutex. + */ +int ubi_eba_atomic_leb_change(struct ubi_device *ubi, struct ubi_volume *vol, + int lnum, const void *buf, int len) +{ + int err, tries, vol_id = vol->vol_id; + struct ubi_vid_io_buf *vidb; + struct ubi_vid_hdr *vid_hdr; + uint32_t crc; + + if (ubi->ro_mode) + return -EROFS; + + if (len == 0) { + /* + * Special case when data length is zero. In this case the LEB + * has to be unmapped and mapped somewhere else. + */ + err = ubi_eba_unmap_leb(ubi, vol, lnum); + if (err) + return err; + return ubi_eba_write_leb(ubi, vol, lnum, NULL, 0, 0); + } + + vidb = ubi_alloc_vid_buf(ubi, GFP_NOFS); + if (!vidb) + return -ENOMEM; + + vid_hdr = ubi_get_vid_hdr(vidb); + + mutex_lock(&ubi->alc_mutex); + err = leb_write_lock(ubi, vol_id, lnum); + if (err) + goto out_mutex; + + vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi)); + vid_hdr->vol_id = cpu_to_be32(vol_id); + vid_hdr->lnum = cpu_to_be32(lnum); + vid_hdr->compat = ubi_get_compat(ubi, vol_id); + vid_hdr->data_pad = cpu_to_be32(vol->data_pad); + + crc = crc32(UBI_CRC32_INIT, buf, len); + vid_hdr->vol_type = UBI_VID_DYNAMIC; + vid_hdr->data_size = cpu_to_be32(len); + vid_hdr->copy_flag = 1; + vid_hdr->data_crc = cpu_to_be32(crc); + + dbg_eba("change LEB %d:%d", vol_id, lnum); + + for (tries = 0; tries <= UBI_IO_RETRIES; tries++) { + err = try_write_vid_and_data(vol, lnum, vidb, buf, 0, len); + if (err != -EIO || !ubi->bad_allowed) + break; + + vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi)); + ubi_msg(ubi, "try another PEB"); + } + + /* + * This flash device does not admit of bad eraseblocks or + * something nasty and unexpected happened. Switch to read-only + * mode just in case. + */ + if (err) + ubi_ro_mode(ubi); + + leb_write_unlock(ubi, vol_id, lnum); + +out_mutex: + mutex_unlock(&ubi->alc_mutex); + ubi_free_vid_buf(vidb); + return err; +} + +/** + * is_error_sane - check whether a read error is sane. + * @err: code of the error happened during reading + * + * This is a helper function for 'ubi_eba_copy_leb()' which is called when we + * cannot read data from the target PEB (an error @err happened). If the error + * code is sane, then we treat this error as non-fatal. Otherwise the error is + * fatal and UBI will be switched to R/O mode later. + * + * The idea is that we try not to switch to R/O mode if the read error is + * something which suggests there was a real read problem. E.g., %-EIO. Or a + * memory allocation failed (-%ENOMEM). Otherwise, it is safer to switch to R/O + * mode, simply because we do not know what happened at the MTD level, and we + * cannot handle this. E.g., the underlying driver may have become crazy, and + * it is safer to switch to R/O mode to preserve the data. + * + * And bear in mind, this is about reading from the target PEB, i.e. the PEB + * which we have just written. + */ +static int is_error_sane(int err) +{ + if (err == -EIO || err == -ENOMEM || err == UBI_IO_BAD_HDR || + err == UBI_IO_BAD_HDR_EBADMSG || err == -ETIMEDOUT) + return 0; + return 1; +} + +/** + * ubi_eba_copy_leb - copy logical eraseblock. + * @ubi: UBI device description object + * @from: physical eraseblock number from where to copy + * @to: physical eraseblock number where to copy + * @vidb: data structure from where the VID header is derived + * + * This function copies logical eraseblock from physical eraseblock @from to + * physical eraseblock @to. The @vid_hdr buffer may be changed by this + * function. Returns: + * o %0 in case of success; + * o %MOVE_CANCEL_RACE, %MOVE_TARGET_WR_ERR, %MOVE_TARGET_BITFLIPS, etc; + * o a negative error code in case of failure. + */ +int ubi_eba_copy_leb(struct ubi_device *ubi, int from, int to, + struct ubi_vid_io_buf *vidb) +{ + int err, vol_id, lnum, data_size, aldata_size, idx; + struct ubi_vid_hdr *vid_hdr = ubi_get_vid_hdr(vidb); + struct ubi_volume *vol; + uint32_t crc; + + ubi_assert(rwsem_is_locked(&ubi->fm_eba_sem)); + + vol_id = be32_to_cpu(vid_hdr->vol_id); + lnum = be32_to_cpu(vid_hdr->lnum); + + dbg_wl("copy LEB %d:%d, PEB %d to PEB %d", vol_id, lnum, from, to); + + if (vid_hdr->vol_type == UBI_VID_STATIC) { + data_size = be32_to_cpu(vid_hdr->data_size); + aldata_size = ALIGN(data_size, ubi->min_io_size); + } else + data_size = aldata_size = + ubi->leb_size - be32_to_cpu(vid_hdr->data_pad); + + idx = vol_id2idx(ubi, vol_id); + spin_lock(&ubi->volumes_lock); + /* + * Note, we may race with volume deletion, which means that the volume + * this logical eraseblock belongs to might be being deleted. Since the + * volume deletion un-maps all the volume's logical eraseblocks, it will + * be locked in 'ubi_wl_put_peb()' and wait for the WL worker to finish. + */ + vol = ubi->volumes[idx]; + spin_unlock(&ubi->volumes_lock); + if (!vol) { + /* No need to do further work, cancel */ + dbg_wl("volume %d is being removed, cancel", vol_id); + return MOVE_CANCEL_RACE; + } + + /* + * We do not want anybody to write to this logical eraseblock while we + * are moving it, so lock it. + * + * Note, we are using non-waiting locking here, because we cannot sleep + * on the LEB, since it may cause deadlocks. Indeed, imagine a task is + * unmapping the LEB which is mapped to the PEB we are going to move + * (@from). This task locks the LEB and goes sleep in the + * 'ubi_wl_put_peb()' function on the @ubi->move_mutex. In turn, we are + * holding @ubi->move_mutex and go sleep on the LEB lock. So, if the + * LEB is already locked, we just do not move it and return + * %MOVE_RETRY. Note, we do not return %MOVE_CANCEL_RACE here because + * we do not know the reasons of the contention - it may be just a + * normal I/O on this LEB, so we want to re-try. + */ + err = leb_write_trylock(ubi, vol_id, lnum); + if (err) { + dbg_wl("contention on LEB %d:%d, cancel", vol_id, lnum); + return MOVE_RETRY; + } + + /* + * The LEB might have been put meanwhile, and the task which put it is + * probably waiting on @ubi->move_mutex. No need to continue the work, + * cancel it. + */ + if (vol->eba_tbl->entries[lnum].pnum != from) { + dbg_wl("LEB %d:%d is no longer mapped to PEB %d, mapped to PEB %d, cancel", + vol_id, lnum, from, vol->eba_tbl->entries[lnum].pnum); + err = MOVE_CANCEL_RACE; + goto out_unlock_leb; + } + + /* + * OK, now the LEB is locked and we can safely start moving it. Since + * this function utilizes the @ubi->peb_buf buffer which is shared + * with some other functions - we lock the buffer by taking the + * @ubi->buf_mutex. + */ + mutex_lock(&ubi->buf_mutex); + dbg_wl("read %d bytes of data", aldata_size); + err = ubi_io_read_data(ubi, ubi->peb_buf, from, 0, aldata_size); + if (err && err != UBI_IO_BITFLIPS) { + ubi_warn(ubi, "error %d while reading data from PEB %d", + err, from); + err = MOVE_SOURCE_RD_ERR; + goto out_unlock_buf; + } + + /* + * Now we have got to calculate how much data we have to copy. In + * case of a static volume it is fairly easy - the VID header contains + * the data size. In case of a dynamic volume it is more difficult - we + * have to read the contents, cut 0xFF bytes from the end and copy only + * the first part. We must do this to avoid writing 0xFF bytes as it + * may have some side-effects. And not only this. It is important not + * to include those 0xFFs to CRC because later the they may be filled + * by data. + */ + if (vid_hdr->vol_type == UBI_VID_DYNAMIC) + aldata_size = data_size = + ubi_calc_data_len(ubi, ubi->peb_buf, data_size); + + cond_resched(); + crc = crc32(UBI_CRC32_INIT, ubi->peb_buf, data_size); + cond_resched(); + + /* + * It may turn out to be that the whole @from physical eraseblock + * contains only 0xFF bytes. Then we have to only write the VID header + * and do not write any data. This also means we should not set + * @vid_hdr->copy_flag, @vid_hdr->data_size, and @vid_hdr->data_crc. + */ + if (data_size > 0) { + vid_hdr->copy_flag = 1; + vid_hdr->data_size = cpu_to_be32(data_size); + vid_hdr->data_crc = cpu_to_be32(crc); + } + vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi)); + + err = ubi_io_write_vid_hdr(ubi, to, vidb); + if (err) { + if (err == -EIO) + err = MOVE_TARGET_WR_ERR; + goto out_unlock_buf; + } + + cond_resched(); + + /* Read the VID header back and check if it was written correctly */ + err = ubi_io_read_vid_hdr(ubi, to, vidb, 1); + if (err) { + if (err != UBI_IO_BITFLIPS) { + ubi_warn(ubi, "error %d while reading VID header back from PEB %d", + err, to); + if (is_error_sane(err)) + err = MOVE_TARGET_RD_ERR; + } else + err = MOVE_TARGET_BITFLIPS; + goto out_unlock_buf; + } + + if (data_size > 0) { + err = ubi_io_write_data(ubi, ubi->peb_buf, to, 0, aldata_size); + if (err) { + if (err == -EIO) + err = MOVE_TARGET_WR_ERR; + goto out_unlock_buf; + } + + cond_resched(); + } + + ubi_assert(vol->eba_tbl->entries[lnum].pnum == from); + vol->eba_tbl->entries[lnum].pnum = to; + +out_unlock_buf: + mutex_unlock(&ubi->buf_mutex); +out_unlock_leb: + leb_write_unlock(ubi, vol_id, lnum); + return err; +} + +/** + * print_rsvd_warning - warn about not having enough reserved PEBs. + * @ubi: UBI device description object + * @ai: UBI attach info object + * + * This is a helper function for 'ubi_eba_init()' which is called when UBI + * cannot reserve enough PEBs for bad block handling. This function makes a + * decision whether we have to print a warning or not. The algorithm is as + * follows: + * o if this is a new UBI image, then just print the warning + * o if this is an UBI image which has already been used for some time, print + * a warning only if we can reserve less than 10% of the expected amount of + * the reserved PEB. + * + * The idea is that when UBI is used, PEBs become bad, and the reserved pool + * of PEBs becomes smaller, which is normal and we do not want to scare users + * with a warning every time they attach the MTD device. This was an issue + * reported by real users. + */ +static void print_rsvd_warning(struct ubi_device *ubi, + struct ubi_attach_info *ai) +{ + /* + * The 1 << 18 (256KiB) number is picked randomly, just a reasonably + * large number to distinguish between newly flashed and used images. + */ + if (ai->max_sqnum > (1 << 18)) { + int min = ubi->beb_rsvd_level / 10; + + if (!min) + min = 1; + if (ubi->beb_rsvd_pebs > min) + return; + } + + ubi_warn(ubi, "cannot reserve enough PEBs for bad PEB handling, reserved %d, need %d", + ubi->beb_rsvd_pebs, ubi->beb_rsvd_level); + if (ubi->corr_peb_count) + ubi_warn(ubi, "%d PEBs are corrupted and not used", + ubi->corr_peb_count); +} + +/** + * self_check_eba - run a self check on the EBA table constructed by fastmap. + * @ubi: UBI device description object + * @ai_fastmap: UBI attach info object created by fastmap + * @ai_scan: UBI attach info object created by scanning + * + * Returns < 0 in case of an internal error, 0 otherwise. + * If a bad EBA table entry was found it will be printed out and + * ubi_assert() triggers. + */ +int self_check_eba(struct ubi_device *ubi, struct ubi_attach_info *ai_fastmap, + struct ubi_attach_info *ai_scan) +{ + int i, j, num_volumes, ret = 0; + int **scan_eba, **fm_eba; + struct ubi_ainf_volume *av; + struct ubi_volume *vol; + struct ubi_ainf_peb *aeb; + struct rb_node *rb; + + num_volumes = ubi->vtbl_slots + UBI_INT_VOL_COUNT; + + scan_eba = kmalloc_array(num_volumes, sizeof(*scan_eba), GFP_KERNEL); + if (!scan_eba) + return -ENOMEM; + + fm_eba = kmalloc_array(num_volumes, sizeof(*fm_eba), GFP_KERNEL); + if (!fm_eba) { + kfree(scan_eba); + return -ENOMEM; + } + + for (i = 0; i < num_volumes; i++) { + vol = ubi->volumes[i]; + if (!vol) + continue; + + scan_eba[i] = kmalloc_array(vol->reserved_pebs, + sizeof(**scan_eba), + GFP_KERNEL); + if (!scan_eba[i]) { + ret = -ENOMEM; + goto out_free; + } + + fm_eba[i] = kmalloc_array(vol->reserved_pebs, + sizeof(**fm_eba), + GFP_KERNEL); + if (!fm_eba[i]) { + ret = -ENOMEM; + goto out_free; + } + + for (j = 0; j < vol->reserved_pebs; j++) + scan_eba[i][j] = fm_eba[i][j] = UBI_LEB_UNMAPPED; + + av = ubi_find_av(ai_scan, idx2vol_id(ubi, i)); + if (!av) + continue; + + ubi_rb_for_each_entry(rb, aeb, &av->root, u.rb) + scan_eba[i][aeb->lnum] = aeb->pnum; + + av = ubi_find_av(ai_fastmap, idx2vol_id(ubi, i)); + if (!av) + continue; + + ubi_rb_for_each_entry(rb, aeb, &av->root, u.rb) + fm_eba[i][aeb->lnum] = aeb->pnum; + + for (j = 0; j < vol->reserved_pebs; j++) { + if (scan_eba[i][j] != fm_eba[i][j]) { + if (scan_eba[i][j] == UBI_LEB_UNMAPPED || + fm_eba[i][j] == UBI_LEB_UNMAPPED) + continue; + + ubi_err(ubi, "LEB:%i:%i is PEB:%i instead of %i!", + vol->vol_id, j, fm_eba[i][j], + scan_eba[i][j]); + ubi_assert(0); + } + } + } + +out_free: + for (i = 0; i < num_volumes; i++) { + if (!ubi->volumes[i]) + continue; + + kfree(scan_eba[i]); + kfree(fm_eba[i]); + } + + kfree(scan_eba); + kfree(fm_eba); + return ret; +} + +/** + * ubi_eba_init - initialize the EBA sub-system using attaching information. + * @ubi: UBI device description object + * @ai: attaching information + * + * This function returns zero in case of success and a negative error code in + * case of failure. + */ +int ubi_eba_init(struct ubi_device *ubi, struct ubi_attach_info *ai) +{ + int i, err, num_volumes; + struct ubi_ainf_volume *av; + struct ubi_volume *vol; + struct ubi_ainf_peb *aeb; + struct rb_node *rb; + + dbg_eba("initialize EBA sub-system"); + + spin_lock_init(&ubi->ltree_lock); + mutex_init(&ubi->alc_mutex); + ubi->ltree = RB_ROOT; + + ubi->global_sqnum = ai->max_sqnum + 1; + num_volumes = ubi->vtbl_slots + UBI_INT_VOL_COUNT; + + for (i = 0; i < num_volumes; i++) { + struct ubi_eba_table *tbl; + + vol = ubi->volumes[i]; + if (!vol) + continue; + + cond_resched(); + + tbl = ubi_eba_create_table(vol, vol->reserved_pebs); + if (IS_ERR(tbl)) { + err = PTR_ERR(tbl); + goto out_free; + } + + ubi_eba_replace_table(vol, tbl); + + av = ubi_find_av(ai, idx2vol_id(ubi, i)); + if (!av) + continue; + + ubi_rb_for_each_entry(rb, aeb, &av->root, u.rb) { + if (aeb->lnum >= vol->reserved_pebs) { + /* + * This may happen in case of an unclean reboot + * during re-size. + */ + ubi_move_aeb_to_list(av, aeb, &ai->erase); + } else { + struct ubi_eba_entry *entry; + + entry = &vol->eba_tbl->entries[aeb->lnum]; + entry->pnum = aeb->pnum; + } + } + } + + if (ubi->avail_pebs < EBA_RESERVED_PEBS) { + ubi_err(ubi, "no enough physical eraseblocks (%d, need %d)", + ubi->avail_pebs, EBA_RESERVED_PEBS); + if (ubi->corr_peb_count) + ubi_err(ubi, "%d PEBs are corrupted and not used", + ubi->corr_peb_count); + err = -ENOSPC; + goto out_free; + } + ubi->avail_pebs -= EBA_RESERVED_PEBS; + ubi->rsvd_pebs += EBA_RESERVED_PEBS; + + if (ubi->bad_allowed) { + ubi_calculate_reserved(ubi); + + if (ubi->avail_pebs < ubi->beb_rsvd_level) { + /* No enough free physical eraseblocks */ + ubi->beb_rsvd_pebs = ubi->avail_pebs; + print_rsvd_warning(ubi, ai); + } else + ubi->beb_rsvd_pebs = ubi->beb_rsvd_level; + + ubi->avail_pebs -= ubi->beb_rsvd_pebs; + ubi->rsvd_pebs += ubi->beb_rsvd_pebs; + } + + dbg_eba("EBA sub-system is initialized"); + return 0; + +out_free: + for (i = 0; i < num_volumes; i++) { + if (!ubi->volumes[i]) + continue; + ubi_eba_replace_table(ubi->volumes[i], NULL); + } + return err; +} diff --git a/drivers/mtd/ubi/fastmap-wl.c b/drivers/mtd/ubi/fastmap-wl.c new file mode 100644 index 0000000000..863f571f1a --- /dev/null +++ b/drivers/mtd/ubi/fastmap-wl.c @@ -0,0 +1,490 @@ +// SPDX-License-Identifier: GPL-2.0-only +/* + * Copyright (c) 2012 Linutronix GmbH + * Copyright (c) 2014 sigma star gmbh + * Author: Richard Weinberger <richard@nod.at> + */ + +/** + * update_fastmap_work_fn - calls ubi_update_fastmap from a work queue + * @wrk: the work description object + */ +static void update_fastmap_work_fn(struct work_struct *wrk) +{ + struct ubi_device *ubi = container_of(wrk, struct ubi_device, fm_work); + + ubi_update_fastmap(ubi); + spin_lock(&ubi->wl_lock); + ubi->fm_work_scheduled = 0; + spin_unlock(&ubi->wl_lock); +} + +/** + * find_anchor_wl_entry - find wear-leveling entry to used as anchor PEB. + * @root: the RB-tree where to look for + */ +static struct ubi_wl_entry *find_anchor_wl_entry(struct rb_root *root) +{ + struct rb_node *p; + struct ubi_wl_entry *e, *victim = NULL; + int max_ec = UBI_MAX_ERASECOUNTER; + + ubi_rb_for_each_entry(p, e, root, u.rb) { + if (e->pnum < UBI_FM_MAX_START && e->ec < max_ec) { + victim = e; + max_ec = e->ec; + } + } + + return victim; +} + +static inline void return_unused_peb(struct ubi_device *ubi, + struct ubi_wl_entry *e) +{ + wl_tree_add(e, &ubi->free); + ubi->free_count++; +} + +/** + * return_unused_pool_pebs - returns unused PEB to the free tree. + * @ubi: UBI device description object + * @pool: fastmap pool description object + */ +static void return_unused_pool_pebs(struct ubi_device *ubi, + struct ubi_fm_pool *pool) +{ + int i; + struct ubi_wl_entry *e; + + for (i = pool->used; i < pool->size; i++) { + e = ubi->lookuptbl[pool->pebs[i]]; + return_unused_peb(ubi, e); + } +} + +/** + * ubi_wl_get_fm_peb - find a physical erase block with a given maximal number. + * @ubi: UBI device description object + * @anchor: This PEB will be used as anchor PEB by fastmap + * + * The function returns a physical erase block with a given maximal number + * and removes it from the wl subsystem. + * Must be called with wl_lock held! + */ +struct ubi_wl_entry *ubi_wl_get_fm_peb(struct ubi_device *ubi, int anchor) +{ + struct ubi_wl_entry *e = NULL; + + if (!ubi->free.rb_node || (ubi->free_count - ubi->beb_rsvd_pebs < 1)) + goto out; + + if (anchor) + e = find_anchor_wl_entry(&ubi->free); + else + e = find_mean_wl_entry(ubi, &ubi->free); + + if (!e) + goto out; + + self_check_in_wl_tree(ubi, e, &ubi->free); + + /* remove it from the free list, + * the wl subsystem does no longer know this erase block */ + rb_erase(&e->u.rb, &ubi->free); + ubi->free_count--; +out: + return e; +} + +/* + * has_enough_free_count - whether ubi has enough free pebs to fill fm pools + * @ubi: UBI device description object + * @is_wl_pool: whether UBI is filling wear leveling pool + * + * This helper function checks whether there are enough free pebs (deducted + * by fastmap pebs) to fill fm_pool and fm_wl_pool, above rule works after + * there is at least one of free pebs is filled into fm_wl_pool. + * For wear leveling pool, UBI should also reserve free pebs for bad pebs + * handling, because there maybe no enough free pebs for user volumes after + * producing new bad pebs. + */ +static bool has_enough_free_count(struct ubi_device *ubi, bool is_wl_pool) +{ + int fm_used = 0; // fastmap non anchor pebs. + int beb_rsvd_pebs; + + if (!ubi->free.rb_node) + return false; + + beb_rsvd_pebs = is_wl_pool ? ubi->beb_rsvd_pebs : 0; + if (ubi->fm_wl_pool.size > 0 && !(ubi->ro_mode || ubi->fm_disabled)) + fm_used = ubi->fm_size / ubi->leb_size - 1; + + return ubi->free_count - beb_rsvd_pebs > fm_used; +} + +/** + * ubi_refill_pools - refills all fastmap PEB pools. + * @ubi: UBI device description object + */ +void ubi_refill_pools(struct ubi_device *ubi) +{ + struct ubi_fm_pool *wl_pool = &ubi->fm_wl_pool; + struct ubi_fm_pool *pool = &ubi->fm_pool; + struct ubi_wl_entry *e; + int enough; + + spin_lock(&ubi->wl_lock); + + return_unused_pool_pebs(ubi, wl_pool); + return_unused_pool_pebs(ubi, pool); + + wl_pool->size = 0; + pool->size = 0; + + if (ubi->fm_anchor) { + wl_tree_add(ubi->fm_anchor, &ubi->free); + ubi->free_count++; + ubi->fm_anchor = NULL; + } + + if (!ubi->fm_disabled) + /* + * All available PEBs are in ubi->free, now is the time to get + * the best anchor PEBs. + */ + ubi->fm_anchor = ubi_wl_get_fm_peb(ubi, 1); + + for (;;) { + enough = 0; + if (pool->size < pool->max_size) { + if (!has_enough_free_count(ubi, false)) + break; + + e = wl_get_wle(ubi); + if (!e) + break; + + pool->pebs[pool->size] = e->pnum; + pool->size++; + } else + enough++; + + if (wl_pool->size < wl_pool->max_size) { + if (!has_enough_free_count(ubi, true)) + break; + + e = find_wl_entry(ubi, &ubi->free, WL_FREE_MAX_DIFF); + self_check_in_wl_tree(ubi, e, &ubi->free); + rb_erase(&e->u.rb, &ubi->free); + ubi->free_count--; + + wl_pool->pebs[wl_pool->size] = e->pnum; + wl_pool->size++; + } else + enough++; + + if (enough == 2) + break; + } + + wl_pool->used = 0; + pool->used = 0; + + spin_unlock(&ubi->wl_lock); +} + +/** + * produce_free_peb - produce a free physical eraseblock. + * @ubi: UBI device description object + * + * This function tries to make a free PEB by means of synchronous execution of + * pending works. This may be needed if, for example the background thread is + * disabled. Returns zero in case of success and a negative error code in case + * of failure. + */ +static int produce_free_peb(struct ubi_device *ubi) +{ + int err; + + while (!ubi->free.rb_node && ubi->works_count) { + dbg_wl("do one work synchronously"); + err = do_work(ubi); + + if (err) + return err; + } + + return 0; +} + +/** + * ubi_wl_get_peb - get a physical eraseblock. + * @ubi: UBI device description object + * + * This function returns a physical eraseblock in case of success and a + * negative error code in case of failure. + * Returns with ubi->fm_eba_sem held in read mode! + */ +int ubi_wl_get_peb(struct ubi_device *ubi) +{ + int ret, attempts = 0; + struct ubi_fm_pool *pool = &ubi->fm_pool; + struct ubi_fm_pool *wl_pool = &ubi->fm_wl_pool; + +again: + down_read(&ubi->fm_eba_sem); + spin_lock(&ubi->wl_lock); + + /* We check here also for the WL pool because at this point we can + * refill the WL pool synchronous. */ + if (pool->used == pool->size || wl_pool->used == wl_pool->size) { + spin_unlock(&ubi->wl_lock); + up_read(&ubi->fm_eba_sem); + ret = ubi_update_fastmap(ubi); + if (ret) { + ubi_msg(ubi, "Unable to write a new fastmap: %i", ret); + down_read(&ubi->fm_eba_sem); + return -ENOSPC; + } + down_read(&ubi->fm_eba_sem); + spin_lock(&ubi->wl_lock); + } + + if (pool->used == pool->size) { + spin_unlock(&ubi->wl_lock); + attempts++; + if (attempts == 10) { + ubi_err(ubi, "Unable to get a free PEB from user WL pool"); + ret = -ENOSPC; + goto out; + } + up_read(&ubi->fm_eba_sem); + ret = produce_free_peb(ubi); + if (ret < 0) { + down_read(&ubi->fm_eba_sem); + goto out; + } + goto again; + } + + ubi_assert(pool->used < pool->size); + ret = pool->pebs[pool->used++]; + prot_queue_add(ubi, ubi->lookuptbl[ret]); + spin_unlock(&ubi->wl_lock); +out: + return ret; +} + +/** + * next_peb_for_wl - returns next PEB to be used internally by the + * WL sub-system. + * + * @ubi: UBI device description object + */ +static struct ubi_wl_entry *next_peb_for_wl(struct ubi_device *ubi) +{ + struct ubi_fm_pool *pool = &ubi->fm_wl_pool; + int pnum; + + if (pool->used == pool->size) + return NULL; + + pnum = pool->pebs[pool->used]; + return ubi->lookuptbl[pnum]; +} + +/** + * need_wear_leveling - checks whether to trigger a wear leveling work. + * UBI fetches free PEB from wl_pool, we check free PEBs from both 'wl_pool' + * and 'ubi->free', because free PEB in 'ubi->free' tree maybe moved into + * 'wl_pool' by ubi_refill_pools(). + * + * @ubi: UBI device description object + */ +static bool need_wear_leveling(struct ubi_device *ubi) +{ + int ec; + struct ubi_wl_entry *e; + + if (!ubi->used.rb_node) + return false; + + e = next_peb_for_wl(ubi); + if (!e) { + if (!ubi->free.rb_node) + return false; + e = find_wl_entry(ubi, &ubi->free, WL_FREE_MAX_DIFF); + ec = e->ec; + } else { + ec = e->ec; + if (ubi->free.rb_node) { + e = find_wl_entry(ubi, &ubi->free, WL_FREE_MAX_DIFF); + ec = max(ec, e->ec); + } + } + e = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, u.rb); + + return ec - e->ec >= UBI_WL_THRESHOLD; +} + +/* get_peb_for_wl - returns a PEB to be used internally by the WL sub-system. + * + * @ubi: UBI device description object + */ +static struct ubi_wl_entry *get_peb_for_wl(struct ubi_device *ubi) +{ + struct ubi_fm_pool *pool = &ubi->fm_wl_pool; + int pnum; + + ubi_assert(rwsem_is_locked(&ubi->fm_eba_sem)); + + if (pool->used == pool->size) { + /* We cannot update the fastmap here because this + * function is called in atomic context. + * Let's fail here and refill/update it as soon as possible. */ + if (!ubi->fm_work_scheduled) { + ubi->fm_work_scheduled = 1; + schedule_work(&ubi->fm_work); + } + return NULL; + } + + pnum = pool->pebs[pool->used++]; + return ubi->lookuptbl[pnum]; +} + +/** + * ubi_ensure_anchor_pebs - schedule wear-leveling to produce an anchor PEB. + * @ubi: UBI device description object + */ +int ubi_ensure_anchor_pebs(struct ubi_device *ubi) +{ + struct ubi_work *wrk; + struct ubi_wl_entry *anchor; + + spin_lock(&ubi->wl_lock); + + /* Do we already have an anchor? */ + if (ubi->fm_anchor) { + spin_unlock(&ubi->wl_lock); + return 0; + } + + /* See if we can find an anchor PEB on the list of free PEBs */ + anchor = ubi_wl_get_fm_peb(ubi, 1); + if (anchor) { + ubi->fm_anchor = anchor; + spin_unlock(&ubi->wl_lock); + return 0; + } + + ubi->fm_do_produce_anchor = 1; + /* No luck, trigger wear leveling to produce a new anchor PEB. */ + if (ubi->wl_scheduled) { + spin_unlock(&ubi->wl_lock); + return 0; + } + ubi->wl_scheduled = 1; + spin_unlock(&ubi->wl_lock); + + wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS); + if (!wrk) { + spin_lock(&ubi->wl_lock); + ubi->wl_scheduled = 0; + spin_unlock(&ubi->wl_lock); + return -ENOMEM; + } + + wrk->func = &wear_leveling_worker; + __schedule_ubi_work(ubi, wrk); + return 0; +} + +/** + * ubi_wl_put_fm_peb - returns a PEB used in a fastmap to the wear-leveling + * sub-system. + * see: ubi_wl_put_peb() + * + * @ubi: UBI device description object + * @fm_e: physical eraseblock to return + * @lnum: the last used logical eraseblock number for the PEB + * @torture: if this physical eraseblock has to be tortured + */ +int ubi_wl_put_fm_peb(struct ubi_device *ubi, struct ubi_wl_entry *fm_e, + int lnum, int torture) +{ + struct ubi_wl_entry *e; + int vol_id, pnum = fm_e->pnum; + + dbg_wl("PEB %d", pnum); + + ubi_assert(pnum >= 0); + ubi_assert(pnum < ubi->peb_count); + + spin_lock(&ubi->wl_lock); + e = ubi->lookuptbl[pnum]; + + /* This can happen if we recovered from a fastmap the very + * first time and writing now a new one. In this case the wl system + * has never seen any PEB used by the original fastmap. + */ + if (!e) { + e = fm_e; + ubi_assert(e->ec >= 0); + ubi->lookuptbl[pnum] = e; + } + + spin_unlock(&ubi->wl_lock); + + vol_id = lnum ? UBI_FM_DATA_VOLUME_ID : UBI_FM_SB_VOLUME_ID; + return schedule_erase(ubi, e, vol_id, lnum, torture, true); +} + +/** + * ubi_is_erase_work - checks whether a work is erase work. + * @wrk: The work object to be checked + */ +int ubi_is_erase_work(struct ubi_work *wrk) +{ + return wrk->func == erase_worker; +} + +static void ubi_fastmap_close(struct ubi_device *ubi) +{ + int i; + + return_unused_pool_pebs(ubi, &ubi->fm_pool); + return_unused_pool_pebs(ubi, &ubi->fm_wl_pool); + + if (ubi->fm_anchor) { + return_unused_peb(ubi, ubi->fm_anchor); + ubi->fm_anchor = NULL; + } + + if (ubi->fm) { + for (i = 0; i < ubi->fm->used_blocks; i++) + kfree(ubi->fm->e[i]); + } + kfree(ubi->fm); +} + +/** + * may_reserve_for_fm - tests whether a PEB shall be reserved for fastmap. + * See find_mean_wl_entry() + * + * @ubi: UBI device description object + * @e: physical eraseblock to return + * @root: RB tree to test against. + */ +static struct ubi_wl_entry *may_reserve_for_fm(struct ubi_device *ubi, + struct ubi_wl_entry *e, + struct rb_root *root) { + if (e && !ubi->fm_disabled && !ubi->fm && + e->pnum < UBI_FM_MAX_START) + e = rb_entry(rb_next(root->rb_node), + struct ubi_wl_entry, u.rb); + + return e; +} diff --git a/drivers/mtd/ubi/fastmap.c b/drivers/mtd/ubi/fastmap.c new file mode 100644 index 0000000000..28c8151a07 --- /dev/null +++ b/drivers/mtd/ubi/fastmap.c @@ -0,0 +1,1697 @@ +// SPDX-License-Identifier: GPL-2.0-only +/* + * Copyright (c) 2012 Linutronix GmbH + * Copyright (c) 2014 sigma star gmbh + * Author: Richard Weinberger <richard@nod.at> + */ + +#include <linux/crc32.h> +#include <linux/bitmap.h> +#include "ubi.h" + +/** + * init_seen - allocate memory for used for debugging. + * @ubi: UBI device description object + */ +static inline unsigned long *init_seen(struct ubi_device *ubi) +{ + unsigned long *ret; + + if (!ubi_dbg_chk_fastmap(ubi)) + return NULL; + + ret = bitmap_zalloc(ubi->peb_count, GFP_KERNEL); + if (!ret) + return ERR_PTR(-ENOMEM); + + return ret; +} + +/** + * free_seen - free the seen logic integer array. + * @seen: integer array of @ubi->peb_count size + */ +static inline void free_seen(unsigned long *seen) +{ + bitmap_free(seen); +} + +/** + * set_seen - mark a PEB as seen. + * @ubi: UBI device description object + * @pnum: The PEB to be makred as seen + * @seen: integer array of @ubi->peb_count size + */ +static inline void set_seen(struct ubi_device *ubi, int pnum, unsigned long *seen) +{ + if (!ubi_dbg_chk_fastmap(ubi) || !seen) + return; + + set_bit(pnum, seen); +} + +/** + * self_check_seen - check whether all PEB have been seen by fastmap. + * @ubi: UBI device description object + * @seen: integer array of @ubi->peb_count size + */ +static int self_check_seen(struct ubi_device *ubi, unsigned long *seen) +{ + int pnum, ret = 0; + + if (!ubi_dbg_chk_fastmap(ubi) || !seen) + return 0; + + for (pnum = 0; pnum < ubi->peb_count; pnum++) { + if (!test_bit(pnum, seen) && ubi->lookuptbl[pnum]) { + ubi_err(ubi, "self-check failed for PEB %d, fastmap didn't see it", pnum); + ret = -EINVAL; + } + } + + return ret; +} + +/** + * ubi_calc_fm_size - calculates the fastmap size in bytes for an UBI device. + * @ubi: UBI device description object + */ +size_t ubi_calc_fm_size(struct ubi_device *ubi) +{ + size_t size; + + size = sizeof(struct ubi_fm_sb) + + sizeof(struct ubi_fm_hdr) + + sizeof(struct ubi_fm_scan_pool) + + sizeof(struct ubi_fm_scan_pool) + + (ubi->peb_count * sizeof(struct ubi_fm_ec)) + + (sizeof(struct ubi_fm_eba) + + (ubi->peb_count * sizeof(__be32))) + + sizeof(struct ubi_fm_volhdr) * UBI_MAX_VOLUMES; + return roundup(size, ubi->leb_size); +} + + +/** + * new_fm_vbuf() - allocate a new volume header for fastmap usage. + * @ubi: UBI device description object + * @vol_id: the VID of the new header + * + * Returns a new struct ubi_vid_hdr on success. + * NULL indicates out of memory. + */ +static struct ubi_vid_io_buf *new_fm_vbuf(struct ubi_device *ubi, int vol_id) +{ + struct ubi_vid_io_buf *new; + struct ubi_vid_hdr *vh; + + new = ubi_alloc_vid_buf(ubi, GFP_KERNEL); + if (!new) + goto out; + + vh = ubi_get_vid_hdr(new); + vh->vol_type = UBI_VID_DYNAMIC; + vh->vol_id = cpu_to_be32(vol_id); + + /* UBI implementations without fastmap support have to delete the + * fastmap. + */ + vh->compat = UBI_COMPAT_DELETE; + +out: + return new; +} + +/** + * add_aeb - create and add a attach erase block to a given list. + * @ai: UBI attach info object + * @list: the target list + * @pnum: PEB number of the new attach erase block + * @ec: erease counter of the new LEB + * @scrub: scrub this PEB after attaching + * + * Returns 0 on success, < 0 indicates an internal error. + */ +static int add_aeb(struct ubi_attach_info *ai, struct list_head *list, + int pnum, int ec, int scrub) +{ + struct ubi_ainf_peb *aeb; + + aeb = ubi_alloc_aeb(ai, pnum, ec); + if (!aeb) + return -ENOMEM; + + aeb->lnum = -1; + aeb->scrub = scrub; + aeb->copy_flag = aeb->sqnum = 0; + + ai->ec_sum += aeb->ec; + ai->ec_count++; + + if (ai->max_ec < aeb->ec) + ai->max_ec = aeb->ec; + + if (ai->min_ec > aeb->ec) + ai->min_ec = aeb->ec; + + list_add_tail(&aeb->u.list, list); + + return 0; +} + +/** + * add_vol - create and add a new volume to ubi_attach_info. + * @ai: ubi_attach_info object + * @vol_id: VID of the new volume + * @used_ebs: number of used EBS + * @data_pad: data padding value of the new volume + * @vol_type: volume type + * @last_eb_bytes: number of bytes in the last LEB + * + * Returns the new struct ubi_ainf_volume on success. + * NULL indicates an error. + */ +static struct ubi_ainf_volume *add_vol(struct ubi_attach_info *ai, int vol_id, + int used_ebs, int data_pad, u8 vol_type, + int last_eb_bytes) +{ + struct ubi_ainf_volume *av; + + av = ubi_add_av(ai, vol_id); + if (IS_ERR(av)) + return av; + + av->data_pad = data_pad; + av->last_data_size = last_eb_bytes; + av->compat = 0; + av->vol_type = vol_type; + if (av->vol_type == UBI_STATIC_VOLUME) + av->used_ebs = used_ebs; + + dbg_bld("found volume (ID %i)", vol_id); + return av; +} + +/** + * assign_aeb_to_av - assigns a SEB to a given ainf_volume and removes it + * from it's original list. + * @ai: ubi_attach_info object + * @aeb: the to be assigned SEB + * @av: target scan volume + */ +static void assign_aeb_to_av(struct ubi_attach_info *ai, + struct ubi_ainf_peb *aeb, + struct ubi_ainf_volume *av) +{ + struct ubi_ainf_peb *tmp_aeb; + struct rb_node **p = &av->root.rb_node, *parent = NULL; + + while (*p) { + parent = *p; + + tmp_aeb = rb_entry(parent, struct ubi_ainf_peb, u.rb); + if (aeb->lnum != tmp_aeb->lnum) { + if (aeb->lnum < tmp_aeb->lnum) + p = &(*p)->rb_left; + else + p = &(*p)->rb_right; + + continue; + } else + break; + } + + list_del(&aeb->u.list); + av->leb_count++; + + rb_link_node(&aeb->u.rb, parent, p); + rb_insert_color(&aeb->u.rb, &av->root); +} + +/** + * update_vol - inserts or updates a LEB which was found a pool. + * @ubi: the UBI device object + * @ai: attach info object + * @av: the volume this LEB belongs to + * @new_vh: the volume header derived from new_aeb + * @new_aeb: the AEB to be examined + * + * Returns 0 on success, < 0 indicates an internal error. + */ +static int update_vol(struct ubi_device *ubi, struct ubi_attach_info *ai, + struct ubi_ainf_volume *av, struct ubi_vid_hdr *new_vh, + struct ubi_ainf_peb *new_aeb) +{ + struct rb_node **p = &av->root.rb_node, *parent = NULL; + struct ubi_ainf_peb *aeb, *victim; + int cmp_res; + + while (*p) { + parent = *p; + aeb = rb_entry(parent, struct ubi_ainf_peb, u.rb); + + if (be32_to_cpu(new_vh->lnum) != aeb->lnum) { + if (be32_to_cpu(new_vh->lnum) < aeb->lnum) + p = &(*p)->rb_left; + else + p = &(*p)->rb_right; + + continue; + } + + /* This case can happen if the fastmap gets written + * because of a volume change (creation, deletion, ..). + * Then a PEB can be within the persistent EBA and the pool. + */ + if (aeb->pnum == new_aeb->pnum) { + ubi_assert(aeb->lnum == new_aeb->lnum); + ubi_free_aeb(ai, new_aeb); + + return 0; + } + + cmp_res = ubi_compare_lebs(ubi, aeb, new_aeb->pnum, new_vh); + if (cmp_res < 0) + return cmp_res; + + /* new_aeb is newer */ + if (cmp_res & 1) { + victim = ubi_alloc_aeb(ai, aeb->pnum, aeb->ec); + if (!victim) + return -ENOMEM; + + list_add_tail(&victim->u.list, &ai->erase); + + if (av->highest_lnum == be32_to_cpu(new_vh->lnum)) + av->last_data_size = + be32_to_cpu(new_vh->data_size); + + dbg_bld("vol %i: AEB %i's PEB %i is the newer", + av->vol_id, aeb->lnum, new_aeb->pnum); + + aeb->ec = new_aeb->ec; + aeb->pnum = new_aeb->pnum; + aeb->copy_flag = new_vh->copy_flag; + aeb->scrub = new_aeb->scrub; + aeb->sqnum = new_aeb->sqnum; + ubi_free_aeb(ai, new_aeb); + + /* new_aeb is older */ + } else { + dbg_bld("vol %i: AEB %i's PEB %i is old, dropping it", + av->vol_id, aeb->lnum, new_aeb->pnum); + list_add_tail(&new_aeb->u.list, &ai->erase); + } + + return 0; + } + /* This LEB is new, let's add it to the volume */ + + if (av->highest_lnum <= be32_to_cpu(new_vh->lnum)) { + av->highest_lnum = be32_to_cpu(new_vh->lnum); + av->last_data_size = be32_to_cpu(new_vh->data_size); + } + + if (av->vol_type == UBI_STATIC_VOLUME) + av->used_ebs = be32_to_cpu(new_vh->used_ebs); + + av->leb_count++; + + rb_link_node(&new_aeb->u.rb, parent, p); + rb_insert_color(&new_aeb->u.rb, &av->root); + + return 0; +} + +/** + * process_pool_aeb - we found a non-empty PEB in a pool. + * @ubi: UBI device object + * @ai: attach info object + * @new_vh: the volume header derived from new_aeb + * @new_aeb: the AEB to be examined + * + * Returns 0 on success, < 0 indicates an internal error. + */ +static int process_pool_aeb(struct ubi_device *ubi, struct ubi_attach_info *ai, + struct ubi_vid_hdr *new_vh, + struct ubi_ainf_peb *new_aeb) +{ + int vol_id = be32_to_cpu(new_vh->vol_id); + struct ubi_ainf_volume *av; + + if (vol_id == UBI_FM_SB_VOLUME_ID || vol_id == UBI_FM_DATA_VOLUME_ID) { + ubi_free_aeb(ai, new_aeb); + + return 0; + } + + /* Find the volume this SEB belongs to */ + av = ubi_find_av(ai, vol_id); + if (!av) { + ubi_err(ubi, "orphaned volume in fastmap pool!"); + ubi_free_aeb(ai, new_aeb); + return UBI_BAD_FASTMAP; + } + + ubi_assert(vol_id == av->vol_id); + + return update_vol(ubi, ai, av, new_vh, new_aeb); +} + +/** + * unmap_peb - unmap a PEB. + * If fastmap detects a free PEB in the pool it has to check whether + * this PEB has been unmapped after writing the fastmap. + * + * @ai: UBI attach info object + * @pnum: The PEB to be unmapped + */ +static void unmap_peb(struct ubi_attach_info *ai, int pnum) +{ + struct ubi_ainf_volume *av; + struct rb_node *node, *node2; + struct ubi_ainf_peb *aeb; + + ubi_rb_for_each_entry(node, av, &ai->volumes, rb) { + ubi_rb_for_each_entry(node2, aeb, &av->root, u.rb) { + if (aeb->pnum == pnum) { + rb_erase(&aeb->u.rb, &av->root); + av->leb_count--; + ubi_free_aeb(ai, aeb); + return; + } + } + } +} + +/** + * scan_pool - scans a pool for changed (no longer empty PEBs). + * @ubi: UBI device object + * @ai: attach info object + * @pebs: an array of all PEB numbers in the to be scanned pool + * @pool_size: size of the pool (number of entries in @pebs) + * @max_sqnum: pointer to the maximal sequence number + * @free: list of PEBs which are most likely free (and go into @ai->free) + * + * Returns 0 on success, if the pool is unusable UBI_BAD_FASTMAP is returned. + * < 0 indicates an internal error. + */ +static int scan_pool(struct ubi_device *ubi, struct ubi_attach_info *ai, + __be32 *pebs, int pool_size, unsigned long long *max_sqnum, + struct list_head *free) +{ + struct ubi_vid_io_buf *vb; + struct ubi_vid_hdr *vh; + struct ubi_ec_hdr *ech; + struct ubi_ainf_peb *new_aeb; + int i, pnum, err, ret = 0; + + ech = kzalloc(ubi->ec_hdr_alsize, GFP_KERNEL); + if (!ech) + return -ENOMEM; + + vb = ubi_alloc_vid_buf(ubi, GFP_KERNEL); + if (!vb) { + kfree(ech); + return -ENOMEM; + } + + vh = ubi_get_vid_hdr(vb); + + dbg_bld("scanning fastmap pool: size = %i", pool_size); + + /* + * Now scan all PEBs in the pool to find changes which have been made + * after the creation of the fastmap + */ + for (i = 0; i < pool_size; i++) { + int scrub = 0; + int image_seq; + + pnum = be32_to_cpu(pebs[i]); + + if (ubi_io_is_bad(ubi, pnum)) { + ubi_err(ubi, "bad PEB in fastmap pool!"); + ret = UBI_BAD_FASTMAP; + goto out; + } + + err = ubi_io_read_ec_hdr(ubi, pnum, ech, 0); + if (err && err != UBI_IO_BITFLIPS) { + ubi_err(ubi, "unable to read EC header! PEB:%i err:%i", + pnum, err); + ret = err > 0 ? UBI_BAD_FASTMAP : err; + goto out; + } else if (err == UBI_IO_BITFLIPS) + scrub = 1; + + /* + * Older UBI implementations have image_seq set to zero, so + * we shouldn't fail if image_seq == 0. + */ + image_seq = be32_to_cpu(ech->image_seq); + + if (image_seq && (image_seq != ubi->image_seq)) { + ubi_err(ubi, "bad image seq: 0x%x, expected: 0x%x", + be32_to_cpu(ech->image_seq), ubi->image_seq); + ret = UBI_BAD_FASTMAP; + goto out; + } + + err = ubi_io_read_vid_hdr(ubi, pnum, vb, 0); + if (err == UBI_IO_FF || err == UBI_IO_FF_BITFLIPS) { + unsigned long long ec = be64_to_cpu(ech->ec); + unmap_peb(ai, pnum); + dbg_bld("Adding PEB to free: %i", pnum); + + if (err == UBI_IO_FF_BITFLIPS) + scrub = 1; + + ret = add_aeb(ai, free, pnum, ec, scrub); + if (ret) + goto out; + continue; + } else if (err == 0 || err == UBI_IO_BITFLIPS) { + dbg_bld("Found non empty PEB:%i in pool", pnum); + + if (err == UBI_IO_BITFLIPS) + scrub = 1; + + new_aeb = ubi_alloc_aeb(ai, pnum, be64_to_cpu(ech->ec)); + if (!new_aeb) { + ret = -ENOMEM; + goto out; + } + + new_aeb->lnum = be32_to_cpu(vh->lnum); + new_aeb->sqnum = be64_to_cpu(vh->sqnum); + new_aeb->copy_flag = vh->copy_flag; + new_aeb->scrub = scrub; + + if (*max_sqnum < new_aeb->sqnum) + *max_sqnum = new_aeb->sqnum; + + err = process_pool_aeb(ubi, ai, vh, new_aeb); + if (err) { + ret = err > 0 ? UBI_BAD_FASTMAP : err; + goto out; + } + } else { + /* We are paranoid and fall back to scanning mode */ + ubi_err(ubi, "fastmap pool PEBs contains damaged PEBs!"); + ret = err > 0 ? UBI_BAD_FASTMAP : err; + goto out; + } + + } + +out: + ubi_free_vid_buf(vb); + kfree(ech); + return ret; +} + +/** + * count_fastmap_pebs - Counts the PEBs found by fastmap. + * @ai: The UBI attach info object + */ +static int count_fastmap_pebs(struct ubi_attach_info *ai) +{ + struct ubi_ainf_peb *aeb; + struct ubi_ainf_volume *av; + struct rb_node *rb1, *rb2; + int n = 0; + + list_for_each_entry(aeb, &ai->erase, u.list) + n++; + + list_for_each_entry(aeb, &ai->free, u.list) + n++; + + ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb) + ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb) + n++; + + return n; +} + +/** + * ubi_attach_fastmap - creates ubi_attach_info from a fastmap. + * @ubi: UBI device object + * @ai: UBI attach info object + * @fm: the fastmap to be attached + * + * Returns 0 on success, UBI_BAD_FASTMAP if the found fastmap was unusable. + * < 0 indicates an internal error. + */ +static int ubi_attach_fastmap(struct ubi_device *ubi, + struct ubi_attach_info *ai, + struct ubi_fastmap_layout *fm) +{ + struct list_head used, free; + struct ubi_ainf_volume *av; + struct ubi_ainf_peb *aeb, *tmp_aeb, *_tmp_aeb; + struct ubi_fm_sb *fmsb; + struct ubi_fm_hdr *fmhdr; + struct ubi_fm_scan_pool *fmpl, *fmpl_wl; + struct ubi_fm_ec *fmec; + struct ubi_fm_volhdr *fmvhdr; + struct ubi_fm_eba *fm_eba; + int ret, i, j, pool_size, wl_pool_size; + size_t fm_pos = 0, fm_size = ubi->fm_size; + unsigned long long max_sqnum = 0; + void *fm_raw = ubi->fm_buf; + + INIT_LIST_HEAD(&used); + INIT_LIST_HEAD(&free); + ai->min_ec = UBI_MAX_ERASECOUNTER; + + fmsb = (struct ubi_fm_sb *)(fm_raw); + ai->max_sqnum = fmsb->sqnum; + fm_pos += sizeof(struct ubi_fm_sb); + if (fm_pos >= fm_size) + goto fail_bad; + + fmhdr = (struct ubi_fm_hdr *)(fm_raw + fm_pos); + fm_pos += sizeof(*fmhdr); + if (fm_pos >= fm_size) + goto fail_bad; + + if (be32_to_cpu(fmhdr->magic) != UBI_FM_HDR_MAGIC) { + ubi_err(ubi, "bad fastmap header magic: 0x%x, expected: 0x%x", + be32_to_cpu(fmhdr->magic), UBI_FM_HDR_MAGIC); + goto fail_bad; + } + + fmpl = (struct ubi_fm_scan_pool *)(fm_raw + fm_pos); + fm_pos += sizeof(*fmpl); + if (fm_pos >= fm_size) + goto fail_bad; + if (be32_to_cpu(fmpl->magic) != UBI_FM_POOL_MAGIC) { + ubi_err(ubi, "bad fastmap pool magic: 0x%x, expected: 0x%x", + be32_to_cpu(fmpl->magic), UBI_FM_POOL_MAGIC); + goto fail_bad; + } + + fmpl_wl = (struct ubi_fm_scan_pool *)(fm_raw + fm_pos); + fm_pos += sizeof(*fmpl_wl); + if (fm_pos >= fm_size) + goto fail_bad; + if (be32_to_cpu(fmpl_wl->magic) != UBI_FM_POOL_MAGIC) { + ubi_err(ubi, "bad fastmap WL pool magic: 0x%x, expected: 0x%x", + be32_to_cpu(fmpl_wl->magic), UBI_FM_POOL_MAGIC); + goto fail_bad; + } + + pool_size = be16_to_cpu(fmpl->size); + wl_pool_size = be16_to_cpu(fmpl_wl->size); + fm->max_pool_size = be16_to_cpu(fmpl->max_size); + fm->max_wl_pool_size = be16_to_cpu(fmpl_wl->max_size); + + if (pool_size > UBI_FM_MAX_POOL_SIZE || pool_size < 0) { + ubi_err(ubi, "bad pool size: %i", pool_size); + goto fail_bad; + } + + if (wl_pool_size > UBI_FM_MAX_POOL_SIZE || wl_pool_size < 0) { + ubi_err(ubi, "bad WL pool size: %i", wl_pool_size); + goto fail_bad; + } + + + if (fm->max_pool_size > UBI_FM_MAX_POOL_SIZE || + fm->max_pool_size < 0) { + ubi_err(ubi, "bad maximal pool size: %i", fm->max_pool_size); + goto fail_bad; + } + + if (fm->max_wl_pool_size > UBI_FM_MAX_POOL_SIZE || + fm->max_wl_pool_size < 0) { + ubi_err(ubi, "bad maximal WL pool size: %i", + fm->max_wl_pool_size); + goto fail_bad; + } + + /* read EC values from free list */ + for (i = 0; i < be32_to_cpu(fmhdr->free_peb_count); i++) { + fmec = (struct ubi_fm_ec *)(fm_raw + fm_pos); + fm_pos += sizeof(*fmec); + if (fm_pos >= fm_size) + goto fail_bad; + + ret = add_aeb(ai, &ai->free, be32_to_cpu(fmec->pnum), + be32_to_cpu(fmec->ec), 0); + if (ret) + goto fail; + } + + /* read EC values from used list */ + for (i = 0; i < be32_to_cpu(fmhdr->used_peb_count); i++) { + fmec = (struct ubi_fm_ec *)(fm_raw + fm_pos); + fm_pos += sizeof(*fmec); + if (fm_pos >= fm_size) + goto fail_bad; + + ret = add_aeb(ai, &used, be32_to_cpu(fmec->pnum), + be32_to_cpu(fmec->ec), 0); + if (ret) + goto fail; + } + + /* read EC values from scrub list */ + for (i = 0; i < be32_to_cpu(fmhdr->scrub_peb_count); i++) { + fmec = (struct ubi_fm_ec *)(fm_raw + fm_pos); + fm_pos += sizeof(*fmec); + if (fm_pos >= fm_size) + goto fail_bad; + + ret = add_aeb(ai, &used, be32_to_cpu(fmec->pnum), + be32_to_cpu(fmec->ec), 1); + if (ret) + goto fail; + } + + /* read EC values from erase list */ + for (i = 0; i < be32_to_cpu(fmhdr->erase_peb_count); i++) { + fmec = (struct ubi_fm_ec *)(fm_raw + fm_pos); + fm_pos += sizeof(*fmec); + if (fm_pos >= fm_size) + goto fail_bad; + + ret = add_aeb(ai, &ai->erase, be32_to_cpu(fmec->pnum), + be32_to_cpu(fmec->ec), 1); + if (ret) + goto fail; + } + + ai->mean_ec = div_u64(ai->ec_sum, ai->ec_count); + ai->bad_peb_count = be32_to_cpu(fmhdr->bad_peb_count); + + /* Iterate over all volumes and read their EBA table */ + for (i = 0; i < be32_to_cpu(fmhdr->vol_count); i++) { + fmvhdr = (struct ubi_fm_volhdr *)(fm_raw + fm_pos); + fm_pos += sizeof(*fmvhdr); + if (fm_pos >= fm_size) + goto fail_bad; + + if (be32_to_cpu(fmvhdr->magic) != UBI_FM_VHDR_MAGIC) { + ubi_err(ubi, "bad fastmap vol header magic: 0x%x, expected: 0x%x", + be32_to_cpu(fmvhdr->magic), UBI_FM_VHDR_MAGIC); + goto fail_bad; + } + + av = add_vol(ai, be32_to_cpu(fmvhdr->vol_id), + be32_to_cpu(fmvhdr->used_ebs), + be32_to_cpu(fmvhdr->data_pad), + fmvhdr->vol_type, + be32_to_cpu(fmvhdr->last_eb_bytes)); + + if (IS_ERR(av)) { + if (PTR_ERR(av) == -EEXIST) + ubi_err(ubi, "volume (ID %i) already exists", + fmvhdr->vol_id); + + goto fail_bad; + } + + ai->vols_found++; + if (ai->highest_vol_id < be32_to_cpu(fmvhdr->vol_id)) + ai->highest_vol_id = be32_to_cpu(fmvhdr->vol_id); + + fm_eba = (struct ubi_fm_eba *)(fm_raw + fm_pos); + fm_pos += sizeof(*fm_eba); + fm_pos += (sizeof(__be32) * be32_to_cpu(fm_eba->reserved_pebs)); + if (fm_pos >= fm_size) + goto fail_bad; + + if (be32_to_cpu(fm_eba->magic) != UBI_FM_EBA_MAGIC) { + ubi_err(ubi, "bad fastmap EBA header magic: 0x%x, expected: 0x%x", + be32_to_cpu(fm_eba->magic), UBI_FM_EBA_MAGIC); + goto fail_bad; + } + + for (j = 0; j < be32_to_cpu(fm_eba->reserved_pebs); j++) { + int pnum = be32_to_cpu(fm_eba->pnum[j]); + + if (pnum < 0) + continue; + + aeb = NULL; + list_for_each_entry(tmp_aeb, &used, u.list) { + if (tmp_aeb->pnum == pnum) { + aeb = tmp_aeb; + break; + } + } + + if (!aeb) { + ubi_err(ubi, "PEB %i is in EBA but not in used list", pnum); + goto fail_bad; + } + + aeb->lnum = j; + + if (av->highest_lnum <= aeb->lnum) + av->highest_lnum = aeb->lnum; + + assign_aeb_to_av(ai, aeb, av); + + dbg_bld("inserting PEB:%i (LEB %i) to vol %i", + aeb->pnum, aeb->lnum, av->vol_id); + } + } + + ret = scan_pool(ubi, ai, fmpl->pebs, pool_size, &max_sqnum, &free); + if (ret) + goto fail; + + ret = scan_pool(ubi, ai, fmpl_wl->pebs, wl_pool_size, &max_sqnum, &free); + if (ret) + goto fail; + + if (max_sqnum > ai->max_sqnum) + ai->max_sqnum = max_sqnum; + + list_for_each_entry_safe(tmp_aeb, _tmp_aeb, &free, u.list) + list_move_tail(&tmp_aeb->u.list, &ai->free); + + list_for_each_entry_safe(tmp_aeb, _tmp_aeb, &used, u.list) + list_move_tail(&tmp_aeb->u.list, &ai->erase); + + ubi_assert(list_empty(&free)); + + /* + * If fastmap is leaking PEBs (must not happen), raise a + * fat warning and fall back to scanning mode. + * We do this here because in ubi_wl_init() it's too late + * and we cannot fall back to scanning. + */ + if (WARN_ON(count_fastmap_pebs(ai) != ubi->peb_count - + ai->bad_peb_count - fm->used_blocks)) + goto fail_bad; + + return 0; + +fail_bad: + ret = UBI_BAD_FASTMAP; +fail: + list_for_each_entry_safe(tmp_aeb, _tmp_aeb, &used, u.list) { + list_del(&tmp_aeb->u.list); + ubi_free_aeb(ai, tmp_aeb); + } + list_for_each_entry_safe(tmp_aeb, _tmp_aeb, &free, u.list) { + list_del(&tmp_aeb->u.list); + ubi_free_aeb(ai, tmp_aeb); + } + + return ret; +} + +/** + * find_fm_anchor - find the most recent Fastmap superblock (anchor) + * @ai: UBI attach info to be filled + */ +static int find_fm_anchor(struct ubi_attach_info *ai) +{ + int ret = -1; + struct ubi_ainf_peb *aeb; + unsigned long long max_sqnum = 0; + + list_for_each_entry(aeb, &ai->fastmap, u.list) { + if (aeb->vol_id == UBI_FM_SB_VOLUME_ID && aeb->sqnum > max_sqnum) { + max_sqnum = aeb->sqnum; + ret = aeb->pnum; + } + } + + return ret; +} + +static struct ubi_ainf_peb *clone_aeb(struct ubi_attach_info *ai, + struct ubi_ainf_peb *old) +{ + struct ubi_ainf_peb *new; + + new = ubi_alloc_aeb(ai, old->pnum, old->ec); + if (!new) + return NULL; + + new->vol_id = old->vol_id; + new->sqnum = old->sqnum; + new->lnum = old->lnum; + new->scrub = old->scrub; + new->copy_flag = old->copy_flag; + + return new; +} + +/** + * ubi_scan_fastmap - scan the fastmap. + * @ubi: UBI device object + * @ai: UBI attach info to be filled + * @scan_ai: UBI attach info from the first 64 PEBs, + * used to find the most recent Fastmap data structure + * + * Returns 0 on success, UBI_NO_FASTMAP if no fastmap was found, + * UBI_BAD_FASTMAP if one was found but is not usable. + * < 0 indicates an internal error. + */ +int ubi_scan_fastmap(struct ubi_device *ubi, struct ubi_attach_info *ai, + struct ubi_attach_info *scan_ai) +{ + struct ubi_fm_sb *fmsb, *fmsb2; + struct ubi_vid_io_buf *vb; + struct ubi_vid_hdr *vh; + struct ubi_ec_hdr *ech; + struct ubi_fastmap_layout *fm; + struct ubi_ainf_peb *aeb; + int i, used_blocks, pnum, fm_anchor, ret = 0; + size_t fm_size; + __be32 crc, tmp_crc; + unsigned long long sqnum = 0; + + fm_anchor = find_fm_anchor(scan_ai); + if (fm_anchor < 0) + return UBI_NO_FASTMAP; + + /* Copy all (possible) fastmap blocks into our new attach structure. */ + list_for_each_entry(aeb, &scan_ai->fastmap, u.list) { + struct ubi_ainf_peb *new; + + new = clone_aeb(ai, aeb); + if (!new) + return -ENOMEM; + + list_add(&new->u.list, &ai->fastmap); + } + + down_write(&ubi->fm_protect); + memset(ubi->fm_buf, 0, ubi->fm_size); + + fmsb = kmalloc(sizeof(*fmsb), GFP_KERNEL); + if (!fmsb) { + ret = -ENOMEM; + goto out; + } + + fm = kzalloc(sizeof(*fm), GFP_KERNEL); + if (!fm) { + ret = -ENOMEM; + kfree(fmsb); + goto out; + } + + ret = ubi_io_read_data(ubi, fmsb, fm_anchor, 0, sizeof(*fmsb)); + if (ret && ret != UBI_IO_BITFLIPS) + goto free_fm_sb; + else if (ret == UBI_IO_BITFLIPS) + fm->to_be_tortured[0] = 1; + + if (be32_to_cpu(fmsb->magic) != UBI_FM_SB_MAGIC) { + ubi_err(ubi, "bad super block magic: 0x%x, expected: 0x%x", + be32_to_cpu(fmsb->magic), UBI_FM_SB_MAGIC); + ret = UBI_BAD_FASTMAP; + goto free_fm_sb; + } + + if (fmsb->version != UBI_FM_FMT_VERSION) { + ubi_err(ubi, "bad fastmap version: %i, expected: %i", + fmsb->version, UBI_FM_FMT_VERSION); + ret = UBI_BAD_FASTMAP; + goto free_fm_sb; + } + + used_blocks = be32_to_cpu(fmsb->used_blocks); + if (used_blocks > UBI_FM_MAX_BLOCKS || used_blocks < 1) { + ubi_err(ubi, "number of fastmap blocks is invalid: %i", + used_blocks); + ret = UBI_BAD_FASTMAP; + goto free_fm_sb; + } + + fm_size = ubi->leb_size * used_blocks; + if (fm_size != ubi->fm_size) { + ubi_err(ubi, "bad fastmap size: %zi, expected: %zi", + fm_size, ubi->fm_size); + ret = UBI_BAD_FASTMAP; + goto free_fm_sb; + } + + ech = kzalloc(ubi->ec_hdr_alsize, GFP_KERNEL); + if (!ech) { + ret = -ENOMEM; + goto free_fm_sb; + } + + vb = ubi_alloc_vid_buf(ubi, GFP_KERNEL); + if (!vb) { + ret = -ENOMEM; + goto free_hdr; + } + + vh = ubi_get_vid_hdr(vb); + + for (i = 0; i < used_blocks; i++) { + int image_seq; + + pnum = be32_to_cpu(fmsb->block_loc[i]); + + if (ubi_io_is_bad(ubi, pnum)) { + ret = UBI_BAD_FASTMAP; + goto free_hdr; + } + + if (i == 0 && pnum != fm_anchor) { + ubi_err(ubi, "Fastmap anchor PEB mismatch: PEB: %i vs. %i", + pnum, fm_anchor); + ret = UBI_BAD_FASTMAP; + goto free_hdr; + } + + ret = ubi_io_read_ec_hdr(ubi, pnum, ech, 0); + if (ret && ret != UBI_IO_BITFLIPS) { + ubi_err(ubi, "unable to read fastmap block# %i EC (PEB: %i)", + i, pnum); + if (ret > 0) + ret = UBI_BAD_FASTMAP; + goto free_hdr; + } else if (ret == UBI_IO_BITFLIPS) + fm->to_be_tortured[i] = 1; + + image_seq = be32_to_cpu(ech->image_seq); + if (!ubi->image_seq) + ubi->image_seq = image_seq; + + /* + * Older UBI implementations have image_seq set to zero, so + * we shouldn't fail if image_seq == 0. + */ + if (image_seq && (image_seq != ubi->image_seq)) { + ubi_err(ubi, "wrong image seq:%d instead of %d", + be32_to_cpu(ech->image_seq), ubi->image_seq); + ret = UBI_BAD_FASTMAP; + goto free_hdr; + } + + ret = ubi_io_read_vid_hdr(ubi, pnum, vb, 0); + if (ret && ret != UBI_IO_BITFLIPS) { + ubi_err(ubi, "unable to read fastmap block# %i (PEB: %i)", + i, pnum); + goto free_hdr; + } + + if (i == 0) { + if (be32_to_cpu(vh->vol_id) != UBI_FM_SB_VOLUME_ID) { + ubi_err(ubi, "bad fastmap anchor vol_id: 0x%x, expected: 0x%x", + be32_to_cpu(vh->vol_id), + UBI_FM_SB_VOLUME_ID); + ret = UBI_BAD_FASTMAP; + goto free_hdr; + } + } else { + if (be32_to_cpu(vh->vol_id) != UBI_FM_DATA_VOLUME_ID) { + ubi_err(ubi, "bad fastmap data vol_id: 0x%x, expected: 0x%x", + be32_to_cpu(vh->vol_id), + UBI_FM_DATA_VOLUME_ID); + ret = UBI_BAD_FASTMAP; + goto free_hdr; + } + } + + if (sqnum < be64_to_cpu(vh->sqnum)) + sqnum = be64_to_cpu(vh->sqnum); + + ret = ubi_io_read_data(ubi, ubi->fm_buf + (ubi->leb_size * i), + pnum, 0, ubi->leb_size); + if (ret && ret != UBI_IO_BITFLIPS) { + ubi_err(ubi, "unable to read fastmap block# %i (PEB: %i, " + "err: %i)", i, pnum, ret); + goto free_hdr; + } + } + + kfree(fmsb); + fmsb = NULL; + + fmsb2 = (struct ubi_fm_sb *)(ubi->fm_buf); + tmp_crc = be32_to_cpu(fmsb2->data_crc); + fmsb2->data_crc = 0; + crc = crc32(UBI_CRC32_INIT, ubi->fm_buf, fm_size); + if (crc != tmp_crc) { + ubi_err(ubi, "fastmap data CRC is invalid"); + ubi_err(ubi, "CRC should be: 0x%x, calc: 0x%x", + tmp_crc, crc); + ret = UBI_BAD_FASTMAP; + goto free_hdr; + } + + fmsb2->sqnum = sqnum; + + fm->used_blocks = used_blocks; + + ret = ubi_attach_fastmap(ubi, ai, fm); + if (ret) { + if (ret > 0) + ret = UBI_BAD_FASTMAP; + goto free_hdr; + } + + for (i = 0; i < used_blocks; i++) { + struct ubi_wl_entry *e; + + e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL); + if (!e) { + while (i--) + kmem_cache_free(ubi_wl_entry_slab, fm->e[i]); + + ret = -ENOMEM; + goto free_hdr; + } + + e->pnum = be32_to_cpu(fmsb2->block_loc[i]); + e->ec = be32_to_cpu(fmsb2->block_ec[i]); + fm->e[i] = e; + } + + ubi->fm = fm; + ubi->fm_pool.max_size = ubi->fm->max_pool_size; + ubi->fm_wl_pool.max_size = ubi->fm->max_wl_pool_size; + ubi_msg(ubi, "attached by fastmap"); + ubi_msg(ubi, "fastmap pool size: %d", ubi->fm_pool.max_size); + ubi_msg(ubi, "fastmap WL pool size: %d", + ubi->fm_wl_pool.max_size); + ubi->fm_disabled = 0; + ubi->fast_attach = 1; + + ubi_free_vid_buf(vb); + kfree(ech); +out: + up_write(&ubi->fm_protect); + if (ret == UBI_BAD_FASTMAP) + ubi_err(ubi, "Attach by fastmap failed, doing a full scan!"); + return ret; + +free_hdr: + ubi_free_vid_buf(vb); + kfree(ech); +free_fm_sb: + kfree(fmsb); + kfree(fm); + goto out; +} + +int ubi_fastmap_init_checkmap(struct ubi_volume *vol, int leb_count) +{ + struct ubi_device *ubi = vol->ubi; + + if (!ubi->fast_attach) + return 0; + + vol->checkmap = bitmap_zalloc(leb_count, GFP_KERNEL); + if (!vol->checkmap) + return -ENOMEM; + + return 0; +} + +void ubi_fastmap_destroy_checkmap(struct ubi_volume *vol) +{ + bitmap_free(vol->checkmap); +} + +/** + * ubi_write_fastmap - writes a fastmap. + * @ubi: UBI device object + * @new_fm: the to be written fastmap + * + * Returns 0 on success, < 0 indicates an internal error. + */ +static int ubi_write_fastmap(struct ubi_device *ubi, + struct ubi_fastmap_layout *new_fm) +{ + size_t fm_pos = 0; + void *fm_raw; + struct ubi_fm_sb *fmsb; + struct ubi_fm_hdr *fmh; + struct ubi_fm_scan_pool *fmpl, *fmpl_wl; + struct ubi_fm_ec *fec; + struct ubi_fm_volhdr *fvh; + struct ubi_fm_eba *feba; + struct ubi_wl_entry *wl_e; + struct ubi_volume *vol; + struct ubi_vid_io_buf *avbuf, *dvbuf; + struct ubi_vid_hdr *avhdr, *dvhdr; + struct ubi_work *ubi_wrk; + struct rb_node *tmp_rb; + int ret, i, j, free_peb_count, used_peb_count, vol_count; + int scrub_peb_count, erase_peb_count; + unsigned long *seen_pebs; + + fm_raw = ubi->fm_buf; + memset(ubi->fm_buf, 0, ubi->fm_size); + + avbuf = new_fm_vbuf(ubi, UBI_FM_SB_VOLUME_ID); + if (!avbuf) { + ret = -ENOMEM; + goto out; + } + + dvbuf = new_fm_vbuf(ubi, UBI_FM_DATA_VOLUME_ID); + if (!dvbuf) { + ret = -ENOMEM; + goto out_free_avbuf; + } + + avhdr = ubi_get_vid_hdr(avbuf); + dvhdr = ubi_get_vid_hdr(dvbuf); + + seen_pebs = init_seen(ubi); + if (IS_ERR(seen_pebs)) { + ret = PTR_ERR(seen_pebs); + goto out_free_dvbuf; + } + + spin_lock(&ubi->volumes_lock); + spin_lock(&ubi->wl_lock); + + fmsb = (struct ubi_fm_sb *)fm_raw; + fm_pos += sizeof(*fmsb); + ubi_assert(fm_pos <= ubi->fm_size); + + fmh = (struct ubi_fm_hdr *)(fm_raw + fm_pos); + fm_pos += sizeof(*fmh); + ubi_assert(fm_pos <= ubi->fm_size); + + fmsb->magic = cpu_to_be32(UBI_FM_SB_MAGIC); + fmsb->version = UBI_FM_FMT_VERSION; + fmsb->used_blocks = cpu_to_be32(new_fm->used_blocks); + /* the max sqnum will be filled in while *reading* the fastmap */ + fmsb->sqnum = 0; + + fmh->magic = cpu_to_be32(UBI_FM_HDR_MAGIC); + free_peb_count = 0; + used_peb_count = 0; + scrub_peb_count = 0; + erase_peb_count = 0; + vol_count = 0; + + fmpl = (struct ubi_fm_scan_pool *)(fm_raw + fm_pos); + fm_pos += sizeof(*fmpl); + fmpl->magic = cpu_to_be32(UBI_FM_POOL_MAGIC); + fmpl->size = cpu_to_be16(ubi->fm_pool.size); + fmpl->max_size = cpu_to_be16(ubi->fm_pool.max_size); + + for (i = 0; i < ubi->fm_pool.size; i++) { + fmpl->pebs[i] = cpu_to_be32(ubi->fm_pool.pebs[i]); + set_seen(ubi, ubi->fm_pool.pebs[i], seen_pebs); + } + + fmpl_wl = (struct ubi_fm_scan_pool *)(fm_raw + fm_pos); + fm_pos += sizeof(*fmpl_wl); + fmpl_wl->magic = cpu_to_be32(UBI_FM_POOL_MAGIC); + fmpl_wl->size = cpu_to_be16(ubi->fm_wl_pool.size); + fmpl_wl->max_size = cpu_to_be16(ubi->fm_wl_pool.max_size); + + for (i = 0; i < ubi->fm_wl_pool.size; i++) { + fmpl_wl->pebs[i] = cpu_to_be32(ubi->fm_wl_pool.pebs[i]); + set_seen(ubi, ubi->fm_wl_pool.pebs[i], seen_pebs); + } + + ubi_for_each_free_peb(ubi, wl_e, tmp_rb) { + fec = (struct ubi_fm_ec *)(fm_raw + fm_pos); + + fec->pnum = cpu_to_be32(wl_e->pnum); + set_seen(ubi, wl_e->pnum, seen_pebs); + fec->ec = cpu_to_be32(wl_e->ec); + + free_peb_count++; + fm_pos += sizeof(*fec); + ubi_assert(fm_pos <= ubi->fm_size); + } + fmh->free_peb_count = cpu_to_be32(free_peb_count); + + ubi_for_each_used_peb(ubi, wl_e, tmp_rb) { + fec = (struct ubi_fm_ec *)(fm_raw + fm_pos); + + fec->pnum = cpu_to_be32(wl_e->pnum); + set_seen(ubi, wl_e->pnum, seen_pebs); + fec->ec = cpu_to_be32(wl_e->ec); + + used_peb_count++; + fm_pos += sizeof(*fec); + ubi_assert(fm_pos <= ubi->fm_size); + } + + ubi_for_each_protected_peb(ubi, i, wl_e) { + fec = (struct ubi_fm_ec *)(fm_raw + fm_pos); + + fec->pnum = cpu_to_be32(wl_e->pnum); + set_seen(ubi, wl_e->pnum, seen_pebs); + fec->ec = cpu_to_be32(wl_e->ec); + + used_peb_count++; + fm_pos += sizeof(*fec); + ubi_assert(fm_pos <= ubi->fm_size); + } + fmh->used_peb_count = cpu_to_be32(used_peb_count); + + ubi_for_each_scrub_peb(ubi, wl_e, tmp_rb) { + fec = (struct ubi_fm_ec *)(fm_raw + fm_pos); + + fec->pnum = cpu_to_be32(wl_e->pnum); + set_seen(ubi, wl_e->pnum, seen_pebs); + fec->ec = cpu_to_be32(wl_e->ec); + + scrub_peb_count++; + fm_pos += sizeof(*fec); + ubi_assert(fm_pos <= ubi->fm_size); + } + fmh->scrub_peb_count = cpu_to_be32(scrub_peb_count); + + + list_for_each_entry(ubi_wrk, &ubi->works, list) { + if (ubi_is_erase_work(ubi_wrk)) { + wl_e = ubi_wrk->e; + ubi_assert(wl_e); + + fec = (struct ubi_fm_ec *)(fm_raw + fm_pos); + + fec->pnum = cpu_to_be32(wl_e->pnum); + set_seen(ubi, wl_e->pnum, seen_pebs); + fec->ec = cpu_to_be32(wl_e->ec); + + erase_peb_count++; + fm_pos += sizeof(*fec); + ubi_assert(fm_pos <= ubi->fm_size); + } + } + fmh->erase_peb_count = cpu_to_be32(erase_peb_count); + + for (i = 0; i < UBI_MAX_VOLUMES + UBI_INT_VOL_COUNT; i++) { + vol = ubi->volumes[i]; + + if (!vol) + continue; + + vol_count++; + + fvh = (struct ubi_fm_volhdr *)(fm_raw + fm_pos); + fm_pos += sizeof(*fvh); + ubi_assert(fm_pos <= ubi->fm_size); + + fvh->magic = cpu_to_be32(UBI_FM_VHDR_MAGIC); + fvh->vol_id = cpu_to_be32(vol->vol_id); + fvh->vol_type = vol->vol_type; + fvh->used_ebs = cpu_to_be32(vol->used_ebs); + fvh->data_pad = cpu_to_be32(vol->data_pad); + fvh->last_eb_bytes = cpu_to_be32(vol->last_eb_bytes); + + ubi_assert(vol->vol_type == UBI_DYNAMIC_VOLUME || + vol->vol_type == UBI_STATIC_VOLUME); + + feba = (struct ubi_fm_eba *)(fm_raw + fm_pos); + fm_pos += sizeof(*feba) + (sizeof(__be32) * vol->reserved_pebs); + ubi_assert(fm_pos <= ubi->fm_size); + + for (j = 0; j < vol->reserved_pebs; j++) { + struct ubi_eba_leb_desc ldesc; + + ubi_eba_get_ldesc(vol, j, &ldesc); + feba->pnum[j] = cpu_to_be32(ldesc.pnum); + } + + feba->reserved_pebs = cpu_to_be32(j); + feba->magic = cpu_to_be32(UBI_FM_EBA_MAGIC); + } + fmh->vol_count = cpu_to_be32(vol_count); + fmh->bad_peb_count = cpu_to_be32(ubi->bad_peb_count); + + avhdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi)); + avhdr->lnum = 0; + + spin_unlock(&ubi->wl_lock); + spin_unlock(&ubi->volumes_lock); + + dbg_bld("writing fastmap SB to PEB %i", new_fm->e[0]->pnum); + ret = ubi_io_write_vid_hdr(ubi, new_fm->e[0]->pnum, avbuf); + if (ret) { + ubi_err(ubi, "unable to write vid_hdr to fastmap SB!"); + goto out_free_seen; + } + + for (i = 0; i < new_fm->used_blocks; i++) { + fmsb->block_loc[i] = cpu_to_be32(new_fm->e[i]->pnum); + set_seen(ubi, new_fm->e[i]->pnum, seen_pebs); + fmsb->block_ec[i] = cpu_to_be32(new_fm->e[i]->ec); + } + + fmsb->data_crc = 0; + fmsb->data_crc = cpu_to_be32(crc32(UBI_CRC32_INIT, fm_raw, + ubi->fm_size)); + + for (i = 1; i < new_fm->used_blocks; i++) { + dvhdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi)); + dvhdr->lnum = cpu_to_be32(i); + dbg_bld("writing fastmap data to PEB %i sqnum %llu", + new_fm->e[i]->pnum, be64_to_cpu(dvhdr->sqnum)); + ret = ubi_io_write_vid_hdr(ubi, new_fm->e[i]->pnum, dvbuf); + if (ret) { + ubi_err(ubi, "unable to write vid_hdr to PEB %i!", + new_fm->e[i]->pnum); + goto out_free_seen; + } + } + + for (i = 0; i < new_fm->used_blocks; i++) { + ret = ubi_io_write_data(ubi, fm_raw + (i * ubi->leb_size), + new_fm->e[i]->pnum, 0, ubi->leb_size); + if (ret) { + ubi_err(ubi, "unable to write fastmap to PEB %i!", + new_fm->e[i]->pnum); + goto out_free_seen; + } + } + + ubi_assert(new_fm); + ubi->fm = new_fm; + + ret = self_check_seen(ubi, seen_pebs); + dbg_bld("fastmap written!"); + +out_free_seen: + free_seen(seen_pebs); +out_free_dvbuf: + ubi_free_vid_buf(dvbuf); +out_free_avbuf: + ubi_free_vid_buf(avbuf); + +out: + return ret; +} + +/** + * erase_block - Manually erase a PEB. + * @ubi: UBI device object + * @pnum: PEB to be erased + * + * Returns the new EC value on success, < 0 indicates an internal error. + */ +static int erase_block(struct ubi_device *ubi, int pnum) +{ + int ret; + struct ubi_ec_hdr *ec_hdr; + long long ec; + + ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_KERNEL); + if (!ec_hdr) + return -ENOMEM; + + ret = ubi_io_read_ec_hdr(ubi, pnum, ec_hdr, 0); + if (ret < 0) + goto out; + else if (ret && ret != UBI_IO_BITFLIPS) { + ret = -EINVAL; + goto out; + } + + ret = ubi_io_sync_erase(ubi, pnum, 0); + if (ret < 0) + goto out; + + ec = be64_to_cpu(ec_hdr->ec); + ec += ret; + if (ec > UBI_MAX_ERASECOUNTER) { + ret = -EINVAL; + goto out; + } + + ec_hdr->ec = cpu_to_be64(ec); + ret = ubi_io_write_ec_hdr(ubi, pnum, ec_hdr); + if (ret < 0) + goto out; + + ret = ec; +out: + kfree(ec_hdr); + return ret; +} + +/** + * invalidate_fastmap - destroys a fastmap. + * @ubi: UBI device object + * + * This function ensures that upon next UBI attach a full scan + * is issued. We need this if UBI is about to write a new fastmap + * but is unable to do so. In this case we have two options: + * a) Make sure that the current fastmap will not be usued upon + * attach time and contine or b) fall back to RO mode to have the + * current fastmap in a valid state. + * Returns 0 on success, < 0 indicates an internal error. + */ +static int invalidate_fastmap(struct ubi_device *ubi) +{ + int ret; + struct ubi_fastmap_layout *fm; + struct ubi_wl_entry *e; + struct ubi_vid_io_buf *vb = NULL; + struct ubi_vid_hdr *vh; + + if (!ubi->fm) + return 0; + + ubi->fm = NULL; + + ret = -ENOMEM; + fm = kzalloc(sizeof(*fm), GFP_KERNEL); + if (!fm) + goto out; + + vb = new_fm_vbuf(ubi, UBI_FM_SB_VOLUME_ID); + if (!vb) + goto out_free_fm; + + vh = ubi_get_vid_hdr(vb); + + ret = -ENOSPC; + e = ubi_wl_get_fm_peb(ubi, 1); + if (!e) + goto out_free_fm; + + /* + * Create fake fastmap such that UBI will fall back + * to scanning mode. + */ + vh->sqnum = cpu_to_be64(ubi_next_sqnum(ubi)); + ret = ubi_io_write_vid_hdr(ubi, e->pnum, vb); + if (ret < 0) { + ubi_wl_put_fm_peb(ubi, e, 0, 0); + goto out_free_fm; + } + + fm->used_blocks = 1; + fm->e[0] = e; + + ubi->fm = fm; + +out: + ubi_free_vid_buf(vb); + return ret; + +out_free_fm: + kfree(fm); + goto out; +} + +/** + * return_fm_pebs - returns all PEBs used by a fastmap back to the + * WL sub-system. + * @ubi: UBI device object + * @fm: fastmap layout object + */ +static void return_fm_pebs(struct ubi_device *ubi, + struct ubi_fastmap_layout *fm) +{ + int i; + + if (!fm) + return; + + for (i = 0; i < fm->used_blocks; i++) { + if (fm->e[i]) { + ubi_wl_put_fm_peb(ubi, fm->e[i], i, + fm->to_be_tortured[i]); + fm->e[i] = NULL; + } + } +} + +/** + * ubi_update_fastmap - will be called by UBI if a volume changes or + * a fastmap pool becomes full. + * @ubi: UBI device object + * + * Returns 0 on success, < 0 indicates an internal error. + */ +int ubi_update_fastmap(struct ubi_device *ubi) +{ + int ret, i, j; + struct ubi_fastmap_layout *new_fm, *old_fm; + struct ubi_wl_entry *tmp_e; + + down_write(&ubi->fm_protect); + down_write(&ubi->work_sem); + down_write(&ubi->fm_eba_sem); + + ubi_refill_pools(ubi); + + if (ubi->ro_mode || ubi->fm_disabled) { + up_write(&ubi->fm_eba_sem); + up_write(&ubi->work_sem); + up_write(&ubi->fm_protect); + return 0; + } + + new_fm = kzalloc(sizeof(*new_fm), GFP_KERNEL); + if (!new_fm) { + up_write(&ubi->fm_eba_sem); + up_write(&ubi->work_sem); + up_write(&ubi->fm_protect); + return -ENOMEM; + } + + new_fm->used_blocks = ubi->fm_size / ubi->leb_size; + old_fm = ubi->fm; + ubi->fm = NULL; + + if (new_fm->used_blocks > UBI_FM_MAX_BLOCKS) { + ubi_err(ubi, "fastmap too large"); + ret = -ENOSPC; + goto err; + } + + for (i = 1; i < new_fm->used_blocks; i++) { + spin_lock(&ubi->wl_lock); + tmp_e = ubi_wl_get_fm_peb(ubi, 0); + spin_unlock(&ubi->wl_lock); + + if (!tmp_e) { + if (old_fm && old_fm->e[i]) { + ret = erase_block(ubi, old_fm->e[i]->pnum); + if (ret < 0) { + ubi_err(ubi, "could not erase old fastmap PEB"); + + for (j = 1; j < i; j++) { + ubi_wl_put_fm_peb(ubi, new_fm->e[j], + j, 0); + new_fm->e[j] = NULL; + } + goto err; + } + new_fm->e[i] = old_fm->e[i]; + old_fm->e[i] = NULL; + } else { + ubi_err(ubi, "could not get any free erase block"); + + for (j = 1; j < i; j++) { + ubi_wl_put_fm_peb(ubi, new_fm->e[j], j, 0); + new_fm->e[j] = NULL; + } + + ret = -ENOSPC; + goto err; + } + } else { + new_fm->e[i] = tmp_e; + + if (old_fm && old_fm->e[i]) { + ubi_wl_put_fm_peb(ubi, old_fm->e[i], i, + old_fm->to_be_tortured[i]); + old_fm->e[i] = NULL; + } + } + } + + /* Old fastmap is larger than the new one */ + if (old_fm && new_fm->used_blocks < old_fm->used_blocks) { + for (i = new_fm->used_blocks; i < old_fm->used_blocks; i++) { + ubi_wl_put_fm_peb(ubi, old_fm->e[i], i, + old_fm->to_be_tortured[i]); + old_fm->e[i] = NULL; + } + } + + spin_lock(&ubi->wl_lock); + tmp_e = ubi->fm_anchor; + ubi->fm_anchor = NULL; + spin_unlock(&ubi->wl_lock); + + if (old_fm) { + /* no fresh anchor PEB was found, reuse the old one */ + if (!tmp_e) { + ret = erase_block(ubi, old_fm->e[0]->pnum); + if (ret < 0) { + ubi_err(ubi, "could not erase old anchor PEB"); + + for (i = 1; i < new_fm->used_blocks; i++) { + ubi_wl_put_fm_peb(ubi, new_fm->e[i], + i, 0); + new_fm->e[i] = NULL; + } + goto err; + } + new_fm->e[0] = old_fm->e[0]; + new_fm->e[0]->ec = ret; + old_fm->e[0] = NULL; + } else { + /* we've got a new anchor PEB, return the old one */ + ubi_wl_put_fm_peb(ubi, old_fm->e[0], 0, + old_fm->to_be_tortured[0]); + new_fm->e[0] = tmp_e; + old_fm->e[0] = NULL; + } + } else { + if (!tmp_e) { + ubi_err(ubi, "could not find any anchor PEB"); + + for (i = 1; i < new_fm->used_blocks; i++) { + ubi_wl_put_fm_peb(ubi, new_fm->e[i], i, 0); + new_fm->e[i] = NULL; + } + + ret = -ENOSPC; + goto err; + } + new_fm->e[0] = tmp_e; + } + + ret = ubi_write_fastmap(ubi, new_fm); + + if (ret) + goto err; + +out_unlock: + up_write(&ubi->fm_eba_sem); + up_write(&ubi->work_sem); + up_write(&ubi->fm_protect); + kfree(old_fm); + + ubi_ensure_anchor_pebs(ubi); + + return ret; + +err: + ubi_warn(ubi, "Unable to write new fastmap, err=%i", ret); + + ret = invalidate_fastmap(ubi); + if (ret < 0) { + ubi_err(ubi, "Unable to invalidate current fastmap!"); + ubi_ro_mode(ubi); + } else { + return_fm_pebs(ubi, old_fm); + return_fm_pebs(ubi, new_fm); + ret = 0; + } + + kfree(new_fm); + goto out_unlock; +} diff --git a/drivers/mtd/ubi/gluebi.c b/drivers/mtd/ubi/gluebi.c new file mode 100644 index 0000000000..1b980d15d9 --- /dev/null +++ b/drivers/mtd/ubi/gluebi.c @@ -0,0 +1,500 @@ +// SPDX-License-Identifier: GPL-2.0-or-later +/* + * Copyright (c) International Business Machines Corp., 2006 + * + * Author: Artem Bityutskiy (Битюцкий Артём), Joern Engel + */ + +/* + * This is a small driver which implements fake MTD devices on top of UBI + * volumes. This sounds strange, but it is in fact quite useful to make + * MTD-oriented software (including all the legacy software) work on top of + * UBI. + * + * Gluebi emulates MTD devices of "MTD_UBIVOLUME" type. Their minimal I/O unit + * size (@mtd->writesize) is equivalent to the UBI minimal I/O unit. The + * eraseblock size is equivalent to the logical eraseblock size of the volume. + */ + +#include <linux/err.h> +#include <linux/list.h> +#include <linux/slab.h> +#include <linux/sched.h> +#include <linux/math64.h> +#include <linux/module.h> +#include <linux/mutex.h> +#include <linux/mtd/ubi.h> +#include <linux/mtd/mtd.h> +#include "ubi-media.h" + +#define err_msg(fmt, ...) \ + pr_err("gluebi (pid %d): %s: " fmt "\n", \ + current->pid, __func__, ##__VA_ARGS__) + +/** + * struct gluebi_device - a gluebi device description data structure. + * @mtd: emulated MTD device description object + * @refcnt: gluebi device reference count + * @desc: UBI volume descriptor + * @ubi_num: UBI device number this gluebi device works on + * @vol_id: ID of UBI volume this gluebi device works on + * @list: link in a list of gluebi devices + */ +struct gluebi_device { + struct mtd_info mtd; + int refcnt; + struct ubi_volume_desc *desc; + int ubi_num; + int vol_id; + struct list_head list; +}; + +/* List of all gluebi devices */ +static LIST_HEAD(gluebi_devices); +static DEFINE_MUTEX(devices_mutex); + +/** + * find_gluebi_nolock - find a gluebi device. + * @ubi_num: UBI device number + * @vol_id: volume ID + * + * This function seraches for gluebi device corresponding to UBI device + * @ubi_num and UBI volume @vol_id. Returns the gluebi device description + * object in case of success and %NULL in case of failure. The caller has to + * have the &devices_mutex locked. + */ +static struct gluebi_device *find_gluebi_nolock(int ubi_num, int vol_id) +{ + struct gluebi_device *gluebi; + + list_for_each_entry(gluebi, &gluebi_devices, list) + if (gluebi->ubi_num == ubi_num && gluebi->vol_id == vol_id) + return gluebi; + return NULL; +} + +/** + * gluebi_get_device - get MTD device reference. + * @mtd: the MTD device description object + * + * This function is called every time the MTD device is being opened and + * implements the MTD get_device() operation. Returns zero in case of success + * and a negative error code in case of failure. + */ +static int gluebi_get_device(struct mtd_info *mtd) +{ + struct gluebi_device *gluebi; + int ubi_mode = UBI_READONLY; + + if (mtd->flags & MTD_WRITEABLE) + ubi_mode = UBI_READWRITE; + + gluebi = container_of(mtd, struct gluebi_device, mtd); + mutex_lock(&devices_mutex); + if (gluebi->refcnt > 0) { + /* + * The MTD device is already referenced and this is just one + * more reference. MTD allows many users to open the same + * volume simultaneously and do not distinguish between + * readers/writers/exclusive/meta openers as UBI does. So we do + * not open the UBI volume again - just increase the reference + * counter and return. + */ + gluebi->refcnt += 1; + mutex_unlock(&devices_mutex); + return 0; + } + + /* + * This is the first reference to this UBI volume via the MTD device + * interface. Open the corresponding volume in read-write mode. + */ + gluebi->desc = ubi_open_volume(gluebi->ubi_num, gluebi->vol_id, + ubi_mode); + if (IS_ERR(gluebi->desc)) { + mutex_unlock(&devices_mutex); + return PTR_ERR(gluebi->desc); + } + gluebi->refcnt += 1; + mutex_unlock(&devices_mutex); + return 0; +} + +/** + * gluebi_put_device - put MTD device reference. + * @mtd: the MTD device description object + * + * This function is called every time the MTD device is being put. Returns + * zero in case of success and a negative error code in case of failure. + */ +static void gluebi_put_device(struct mtd_info *mtd) +{ + struct gluebi_device *gluebi; + + gluebi = container_of(mtd, struct gluebi_device, mtd); + mutex_lock(&devices_mutex); + gluebi->refcnt -= 1; + if (gluebi->refcnt == 0) + ubi_close_volume(gluebi->desc); + mutex_unlock(&devices_mutex); +} + +/** + * gluebi_read - read operation of emulated MTD devices. + * @mtd: MTD device description object + * @from: absolute offset from where to read + * @len: how many bytes to read + * @retlen: count of read bytes is returned here + * @buf: buffer to store the read data + * + * This function returns zero in case of success and a negative error code in + * case of failure. + */ +static int gluebi_read(struct mtd_info *mtd, loff_t from, size_t len, + size_t *retlen, unsigned char *buf) +{ + int err = 0, lnum, offs, bytes_left; + struct gluebi_device *gluebi; + + gluebi = container_of(mtd, struct gluebi_device, mtd); + lnum = div_u64_rem(from, mtd->erasesize, &offs); + bytes_left = len; + while (bytes_left) { + size_t to_read = mtd->erasesize - offs; + + if (to_read > bytes_left) + to_read = bytes_left; + + err = ubi_read(gluebi->desc, lnum, buf, offs, to_read); + if (err) + break; + + lnum += 1; + offs = 0; + bytes_left -= to_read; + buf += to_read; + } + + *retlen = len - bytes_left; + return err; +} + +/** + * gluebi_write - write operation of emulated MTD devices. + * @mtd: MTD device description object + * @to: absolute offset where to write + * @len: how many bytes to write + * @retlen: count of written bytes is returned here + * @buf: buffer with data to write + * + * This function returns zero in case of success and a negative error code in + * case of failure. + */ +static int gluebi_write(struct mtd_info *mtd, loff_t to, size_t len, + size_t *retlen, const u_char *buf) +{ + int err = 0, lnum, offs, bytes_left; + struct gluebi_device *gluebi; + + gluebi = container_of(mtd, struct gluebi_device, mtd); + lnum = div_u64_rem(to, mtd->erasesize, &offs); + + if (len % mtd->writesize || offs % mtd->writesize) + return -EINVAL; + + bytes_left = len; + while (bytes_left) { + size_t to_write = mtd->erasesize - offs; + + if (to_write > bytes_left) + to_write = bytes_left; + + err = ubi_leb_write(gluebi->desc, lnum, buf, offs, to_write); + if (err) + break; + + lnum += 1; + offs = 0; + bytes_left -= to_write; + buf += to_write; + } + + *retlen = len - bytes_left; + return err; +} + +/** + * gluebi_erase - erase operation of emulated MTD devices. + * @mtd: the MTD device description object + * @instr: the erase operation description + * + * This function calls the erase callback when finishes. Returns zero in case + * of success and a negative error code in case of failure. + */ +static int gluebi_erase(struct mtd_info *mtd, struct erase_info *instr) +{ + int err, i, lnum, count; + struct gluebi_device *gluebi; + + if (mtd_mod_by_ws(instr->addr, mtd) || mtd_mod_by_ws(instr->len, mtd)) + return -EINVAL; + + lnum = mtd_div_by_eb(instr->addr, mtd); + count = mtd_div_by_eb(instr->len, mtd); + gluebi = container_of(mtd, struct gluebi_device, mtd); + + for (i = 0; i < count - 1; i++) { + err = ubi_leb_unmap(gluebi->desc, lnum + i); + if (err) + goto out_err; + } + /* + * MTD erase operations are synchronous, so we have to make sure the + * physical eraseblock is wiped out. + * + * Thus, perform leb_erase instead of leb_unmap operation - leb_erase + * will wait for the end of operations + */ + err = ubi_leb_erase(gluebi->desc, lnum + i); + if (err) + goto out_err; + + return 0; + +out_err: + instr->fail_addr = (long long)lnum * mtd->erasesize; + return err; +} + +/** + * gluebi_create - create a gluebi device for an UBI volume. + * @di: UBI device description object + * @vi: UBI volume description object + * + * This function is called when a new UBI volume is created in order to create + * corresponding fake MTD device. Returns zero in case of success and a + * negative error code in case of failure. + */ +static int gluebi_create(struct ubi_device_info *di, + struct ubi_volume_info *vi) +{ + struct gluebi_device *gluebi, *g; + struct mtd_info *mtd; + + gluebi = kzalloc(sizeof(struct gluebi_device), GFP_KERNEL); + if (!gluebi) + return -ENOMEM; + + mtd = &gluebi->mtd; + mtd->name = kmemdup(vi->name, vi->name_len + 1, GFP_KERNEL); + if (!mtd->name) { + kfree(gluebi); + return -ENOMEM; + } + + gluebi->vol_id = vi->vol_id; + gluebi->ubi_num = vi->ubi_num; + mtd->type = MTD_UBIVOLUME; + if (!di->ro_mode) + mtd->flags = MTD_WRITEABLE; + mtd->owner = THIS_MODULE; + mtd->writesize = di->min_io_size; + mtd->erasesize = vi->usable_leb_size; + mtd->_read = gluebi_read; + mtd->_write = gluebi_write; + mtd->_erase = gluebi_erase; + mtd->_get_device = gluebi_get_device; + mtd->_put_device = gluebi_put_device; + + /* + * In case of dynamic a volume, MTD device size is just volume size. In + * case of a static volume the size is equivalent to the amount of data + * bytes. + */ + if (vi->vol_type == UBI_DYNAMIC_VOLUME) + mtd->size = (unsigned long long)vi->usable_leb_size * vi->size; + else + mtd->size = vi->used_bytes; + + /* Just a sanity check - make sure this gluebi device does not exist */ + mutex_lock(&devices_mutex); + g = find_gluebi_nolock(vi->ubi_num, vi->vol_id); + if (g) + err_msg("gluebi MTD device %d form UBI device %d volume %d already exists", + g->mtd.index, vi->ubi_num, vi->vol_id); + mutex_unlock(&devices_mutex); + + if (mtd_device_register(mtd, NULL, 0)) { + err_msg("cannot add MTD device"); + kfree(mtd->name); + kfree(gluebi); + return -ENFILE; + } + + mutex_lock(&devices_mutex); + list_add_tail(&gluebi->list, &gluebi_devices); + mutex_unlock(&devices_mutex); + return 0; +} + +/** + * gluebi_remove - remove a gluebi device. + * @vi: UBI volume description object + * + * This function is called when an UBI volume is removed and it removes + * corresponding fake MTD device. Returns zero in case of success and a + * negative error code in case of failure. + */ +static int gluebi_remove(struct ubi_volume_info *vi) +{ + int err = 0; + struct mtd_info *mtd; + struct gluebi_device *gluebi; + + mutex_lock(&devices_mutex); + gluebi = find_gluebi_nolock(vi->ubi_num, vi->vol_id); + if (!gluebi) { + err_msg("got remove notification for unknown UBI device %d volume %d", + vi->ubi_num, vi->vol_id); + err = -ENOENT; + } else if (gluebi->refcnt) + err = -EBUSY; + else + list_del(&gluebi->list); + mutex_unlock(&devices_mutex); + if (err) + return err; + + mtd = &gluebi->mtd; + err = mtd_device_unregister(mtd); + if (err) { + err_msg("cannot remove fake MTD device %d, UBI device %d, volume %d, error %d", + mtd->index, gluebi->ubi_num, gluebi->vol_id, err); + mutex_lock(&devices_mutex); + list_add_tail(&gluebi->list, &gluebi_devices); + mutex_unlock(&devices_mutex); + return err; + } + + kfree(mtd->name); + kfree(gluebi); + return 0; +} + +/** + * gluebi_updated - UBI volume was updated notifier. + * @vi: volume info structure + * + * This function is called every time an UBI volume is updated. It does nothing + * if te volume @vol is dynamic, and changes MTD device size if the + * volume is static. This is needed because static volumes cannot be read past + * data they contain. This function returns zero in case of success and a + * negative error code in case of error. + */ +static int gluebi_updated(struct ubi_volume_info *vi) +{ + struct gluebi_device *gluebi; + + mutex_lock(&devices_mutex); + gluebi = find_gluebi_nolock(vi->ubi_num, vi->vol_id); + if (!gluebi) { + mutex_unlock(&devices_mutex); + err_msg("got update notification for unknown UBI device %d volume %d", + vi->ubi_num, vi->vol_id); + return -ENOENT; + } + + if (vi->vol_type == UBI_STATIC_VOLUME) + gluebi->mtd.size = vi->used_bytes; + mutex_unlock(&devices_mutex); + return 0; +} + +/** + * gluebi_resized - UBI volume was re-sized notifier. + * @vi: volume info structure + * + * This function is called every time an UBI volume is re-size. It changes the + * corresponding fake MTD device size. This function returns zero in case of + * success and a negative error code in case of error. + */ +static int gluebi_resized(struct ubi_volume_info *vi) +{ + struct gluebi_device *gluebi; + + mutex_lock(&devices_mutex); + gluebi = find_gluebi_nolock(vi->ubi_num, vi->vol_id); + if (!gluebi) { + mutex_unlock(&devices_mutex); + err_msg("got update notification for unknown UBI device %d volume %d", + vi->ubi_num, vi->vol_id); + return -ENOENT; + } + gluebi->mtd.size = vi->used_bytes; + mutex_unlock(&devices_mutex); + return 0; +} + +/** + * gluebi_notify - UBI notification handler. + * @nb: registered notifier block + * @l: notification type + * @ns_ptr: pointer to the &struct ubi_notification object + */ +static int gluebi_notify(struct notifier_block *nb, unsigned long l, + void *ns_ptr) +{ + struct ubi_notification *nt = ns_ptr; + + switch (l) { + case UBI_VOLUME_ADDED: + gluebi_create(&nt->di, &nt->vi); + break; + case UBI_VOLUME_REMOVED: + gluebi_remove(&nt->vi); + break; + case UBI_VOLUME_RESIZED: + gluebi_resized(&nt->vi); + break; + case UBI_VOLUME_UPDATED: + gluebi_updated(&nt->vi); + break; + default: + break; + } + return NOTIFY_OK; +} + +static struct notifier_block gluebi_notifier = { + .notifier_call = gluebi_notify, +}; + +static int __init ubi_gluebi_init(void) +{ + return ubi_register_volume_notifier(&gluebi_notifier, 0); +} + +static void __exit ubi_gluebi_exit(void) +{ + struct gluebi_device *gluebi, *g; + + list_for_each_entry_safe(gluebi, g, &gluebi_devices, list) { + int err; + struct mtd_info *mtd = &gluebi->mtd; + + err = mtd_device_unregister(mtd); + if (err) + err_msg("error %d while removing gluebi MTD device %d, UBI device %d, volume %d - ignoring", + err, mtd->index, gluebi->ubi_num, + gluebi->vol_id); + kfree(mtd->name); + kfree(gluebi); + } + ubi_unregister_volume_notifier(&gluebi_notifier); +} + +module_init(ubi_gluebi_init); +module_exit(ubi_gluebi_exit); +MODULE_DESCRIPTION("MTD emulation layer over UBI volumes"); +MODULE_AUTHOR("Artem Bityutskiy, Joern Engel"); +MODULE_LICENSE("GPL"); diff --git a/drivers/mtd/ubi/io.c b/drivers/mtd/ubi/io.c new file mode 100644 index 0000000000..01b6448612 --- /dev/null +++ b/drivers/mtd/ubi/io.c @@ -0,0 +1,1398 @@ +// SPDX-License-Identifier: GPL-2.0-or-later +/* + * Copyright (c) International Business Machines Corp., 2006 + * Copyright (c) Nokia Corporation, 2006, 2007 + * + * Author: Artem Bityutskiy (Битюцкий Артём) + */ + +/* + * UBI input/output sub-system. + * + * This sub-system provides a uniform way to work with all kinds of the + * underlying MTD devices. It also implements handy functions for reading and + * writing UBI headers. + * + * We are trying to have a paranoid mindset and not to trust to what we read + * from the flash media in order to be more secure and robust. So this + * sub-system validates every single header it reads from the flash media. + * + * Some words about how the eraseblock headers are stored. + * + * The erase counter header is always stored at offset zero. By default, the + * VID header is stored after the EC header at the closest aligned offset + * (i.e. aligned to the minimum I/O unit size). Data starts next to the VID + * header at the closest aligned offset. But this default layout may be + * changed. For example, for different reasons (e.g., optimization) UBI may be + * asked to put the VID header at further offset, and even at an unaligned + * offset. Of course, if the offset of the VID header is unaligned, UBI adds + * proper padding in front of it. Data offset may also be changed but it has to + * be aligned. + * + * About minimal I/O units. In general, UBI assumes flash device model where + * there is only one minimal I/O unit size. E.g., in case of NOR flash it is 1, + * in case of NAND flash it is a NAND page, etc. This is reported by MTD in the + * @ubi->mtd->writesize field. But as an exception, UBI admits use of another + * (smaller) minimal I/O unit size for EC and VID headers to make it possible + * to do different optimizations. + * + * This is extremely useful in case of NAND flashes which admit of several + * write operations to one NAND page. In this case UBI can fit EC and VID + * headers at one NAND page. Thus, UBI may use "sub-page" size as the minimal + * I/O unit for the headers (the @ubi->hdrs_min_io_size field). But it still + * reports NAND page size (@ubi->min_io_size) as a minimal I/O unit for the UBI + * users. + * + * Example: some Samsung NANDs with 2KiB pages allow 4x 512-byte writes, so + * although the minimal I/O unit is 2K, UBI uses 512 bytes for EC and VID + * headers. + * + * Q: why not just to treat sub-page as a minimal I/O unit of this flash + * device, e.g., make @ubi->min_io_size = 512 in the example above? + * + * A: because when writing a sub-page, MTD still writes a full 2K page but the + * bytes which are not relevant to the sub-page are 0xFF. So, basically, + * writing 4x512 sub-pages is 4 times slower than writing one 2KiB NAND page. + * Thus, we prefer to use sub-pages only for EC and VID headers. + * + * As it was noted above, the VID header may start at a non-aligned offset. + * For example, in case of a 2KiB page NAND flash with a 512 bytes sub-page, + * the VID header may reside at offset 1984 which is the last 64 bytes of the + * last sub-page (EC header is always at offset zero). This causes some + * difficulties when reading and writing VID headers. + * + * Suppose we have a 64-byte buffer and we read a VID header at it. We change + * the data and want to write this VID header out. As we can only write in + * 512-byte chunks, we have to allocate one more buffer and copy our VID header + * to offset 448 of this buffer. + * + * The I/O sub-system does the following trick in order to avoid this extra + * copy. It always allocates a @ubi->vid_hdr_alsize bytes buffer for the VID + * header and returns a pointer to offset @ubi->vid_hdr_shift of this buffer. + * When the VID header is being written out, it shifts the VID header pointer + * back and writes the whole sub-page. + */ + +#include <linux/crc32.h> +#include <linux/err.h> +#include <linux/slab.h> +#include "ubi.h" + +static int self_check_not_bad(const struct ubi_device *ubi, int pnum); +static int self_check_peb_ec_hdr(const struct ubi_device *ubi, int pnum); +static int self_check_ec_hdr(const struct ubi_device *ubi, int pnum, + const struct ubi_ec_hdr *ec_hdr); +static int self_check_peb_vid_hdr(const struct ubi_device *ubi, int pnum); +static int self_check_vid_hdr(const struct ubi_device *ubi, int pnum, + const struct ubi_vid_hdr *vid_hdr); +static int self_check_write(struct ubi_device *ubi, const void *buf, int pnum, + int offset, int len); + +/** + * ubi_io_read - read data from a physical eraseblock. + * @ubi: UBI device description object + * @buf: buffer where to store the read data + * @pnum: physical eraseblock number to read from + * @offset: offset within the physical eraseblock from where to read + * @len: how many bytes to read + * + * This function reads data from offset @offset of physical eraseblock @pnum + * and stores the read data in the @buf buffer. The following return codes are + * possible: + * + * o %0 if all the requested data were successfully read; + * o %UBI_IO_BITFLIPS if all the requested data were successfully read, but + * correctable bit-flips were detected; this is harmless but may indicate + * that this eraseblock may become bad soon (but do not have to); + * o %-EBADMSG if the MTD subsystem reported about data integrity problems, for + * example it can be an ECC error in case of NAND; this most probably means + * that the data is corrupted; + * o %-EIO if some I/O error occurred; + * o other negative error codes in case of other errors. + */ +int ubi_io_read(const struct ubi_device *ubi, void *buf, int pnum, int offset, + int len) +{ + int err, retries = 0; + size_t read; + loff_t addr; + + dbg_io("read %d bytes from PEB %d:%d", len, pnum, offset); + + ubi_assert(pnum >= 0 && pnum < ubi->peb_count); + ubi_assert(offset >= 0 && offset + len <= ubi->peb_size); + ubi_assert(len > 0); + + err = self_check_not_bad(ubi, pnum); + if (err) + return err; + + /* + * Deliberately corrupt the buffer to improve robustness. Indeed, if we + * do not do this, the following may happen: + * 1. The buffer contains data from previous operation, e.g., read from + * another PEB previously. The data looks like expected, e.g., if we + * just do not read anything and return - the caller would not + * notice this. E.g., if we are reading a VID header, the buffer may + * contain a valid VID header from another PEB. + * 2. The driver is buggy and returns us success or -EBADMSG or + * -EUCLEAN, but it does not actually put any data to the buffer. + * + * This may confuse UBI or upper layers - they may think the buffer + * contains valid data while in fact it is just old data. This is + * especially possible because UBI (and UBIFS) relies on CRC, and + * treats data as correct even in case of ECC errors if the CRC is + * correct. + * + * Try to prevent this situation by changing the first byte of the + * buffer. + */ + *((uint8_t *)buf) ^= 0xFF; + + addr = (loff_t)pnum * ubi->peb_size + offset; +retry: + err = mtd_read(ubi->mtd, addr, len, &read, buf); + if (err) { + const char *errstr = mtd_is_eccerr(err) ? " (ECC error)" : ""; + + if (mtd_is_bitflip(err)) { + /* + * -EUCLEAN is reported if there was a bit-flip which + * was corrected, so this is harmless. + * + * We do not report about it here unless debugging is + * enabled. A corresponding message will be printed + * later, when it is has been scrubbed. + */ + ubi_msg(ubi, "fixable bit-flip detected at PEB %d", + pnum); + ubi_assert(len == read); + return UBI_IO_BITFLIPS; + } + + if (retries++ < UBI_IO_RETRIES) { + ubi_warn(ubi, "error %d%s while reading %d bytes from PEB %d:%d, read only %zd bytes, retry", + err, errstr, len, pnum, offset, read); + yield(); + goto retry; + } + + ubi_err(ubi, "error %d%s while reading %d bytes from PEB %d:%d, read %zd bytes", + err, errstr, len, pnum, offset, read); + dump_stack(); + + /* + * The driver should never return -EBADMSG if it failed to read + * all the requested data. But some buggy drivers might do + * this, so we change it to -EIO. + */ + if (read != len && mtd_is_eccerr(err)) { + ubi_assert(0); + err = -EIO; + } + } else { + ubi_assert(len == read); + + if (ubi_dbg_is_bitflip(ubi)) { + dbg_gen("bit-flip (emulated)"); + err = UBI_IO_BITFLIPS; + } + } + + return err; +} + +/** + * ubi_io_write - write data to a physical eraseblock. + * @ubi: UBI device description object + * @buf: buffer with the data to write + * @pnum: physical eraseblock number to write to + * @offset: offset within the physical eraseblock where to write + * @len: how many bytes to write + * + * This function writes @len bytes of data from buffer @buf to offset @offset + * of physical eraseblock @pnum. If all the data were successfully written, + * zero is returned. If an error occurred, this function returns a negative + * error code. If %-EIO is returned, the physical eraseblock most probably went + * bad. + * + * Note, in case of an error, it is possible that something was still written + * to the flash media, but may be some garbage. + */ +int ubi_io_write(struct ubi_device *ubi, const void *buf, int pnum, int offset, + int len) +{ + int err; + size_t written; + loff_t addr; + + dbg_io("write %d bytes to PEB %d:%d", len, pnum, offset); + + ubi_assert(pnum >= 0 && pnum < ubi->peb_count); + ubi_assert(offset >= 0 && offset + len <= ubi->peb_size); + ubi_assert(offset % ubi->hdrs_min_io_size == 0); + ubi_assert(len > 0 && len % ubi->hdrs_min_io_size == 0); + + if (ubi->ro_mode) { + ubi_err(ubi, "read-only mode"); + return -EROFS; + } + + err = self_check_not_bad(ubi, pnum); + if (err) + return err; + + /* The area we are writing to has to contain all 0xFF bytes */ + err = ubi_self_check_all_ff(ubi, pnum, offset, len); + if (err) + return err; + + if (offset >= ubi->leb_start) { + /* + * We write to the data area of the physical eraseblock. Make + * sure it has valid EC and VID headers. + */ + err = self_check_peb_ec_hdr(ubi, pnum); + if (err) + return err; + err = self_check_peb_vid_hdr(ubi, pnum); + if (err) + return err; + } + + if (ubi_dbg_is_write_failure(ubi)) { + ubi_err(ubi, "cannot write %d bytes to PEB %d:%d (emulated)", + len, pnum, offset); + dump_stack(); + return -EIO; + } + + addr = (loff_t)pnum * ubi->peb_size + offset; + err = mtd_write(ubi->mtd, addr, len, &written, buf); + if (err) { + ubi_err(ubi, "error %d while writing %d bytes to PEB %d:%d, written %zd bytes", + err, len, pnum, offset, written); + dump_stack(); + ubi_dump_flash(ubi, pnum, offset, len); + } else + ubi_assert(written == len); + + if (!err) { + err = self_check_write(ubi, buf, pnum, offset, len); + if (err) + return err; + + /* + * Since we always write sequentially, the rest of the PEB has + * to contain only 0xFF bytes. + */ + offset += len; + len = ubi->peb_size - offset; + if (len) + err = ubi_self_check_all_ff(ubi, pnum, offset, len); + } + + return err; +} + +/** + * do_sync_erase - synchronously erase a physical eraseblock. + * @ubi: UBI device description object + * @pnum: the physical eraseblock number to erase + * + * This function synchronously erases physical eraseblock @pnum and returns + * zero in case of success and a negative error code in case of failure. If + * %-EIO is returned, the physical eraseblock most probably went bad. + */ +static int do_sync_erase(struct ubi_device *ubi, int pnum) +{ + int err, retries = 0; + struct erase_info ei; + + dbg_io("erase PEB %d", pnum); + ubi_assert(pnum >= 0 && pnum < ubi->peb_count); + + if (ubi->ro_mode) { + ubi_err(ubi, "read-only mode"); + return -EROFS; + } + +retry: + memset(&ei, 0, sizeof(struct erase_info)); + + ei.addr = (loff_t)pnum * ubi->peb_size; + ei.len = ubi->peb_size; + + err = mtd_erase(ubi->mtd, &ei); + if (err) { + if (retries++ < UBI_IO_RETRIES) { + ubi_warn(ubi, "error %d while erasing PEB %d, retry", + err, pnum); + yield(); + goto retry; + } + ubi_err(ubi, "cannot erase PEB %d, error %d", pnum, err); + dump_stack(); + return err; + } + + err = ubi_self_check_all_ff(ubi, pnum, 0, ubi->peb_size); + if (err) + return err; + + if (ubi_dbg_is_erase_failure(ubi)) { + ubi_err(ubi, "cannot erase PEB %d (emulated)", pnum); + return -EIO; + } + + return 0; +} + +/* Patterns to write to a physical eraseblock when torturing it */ +static uint8_t patterns[] = {0xa5, 0x5a, 0x0}; + +/** + * torture_peb - test a supposedly bad physical eraseblock. + * @ubi: UBI device description object + * @pnum: the physical eraseblock number to test + * + * This function returns %-EIO if the physical eraseblock did not pass the + * test, a positive number of erase operations done if the test was + * successfully passed, and other negative error codes in case of other errors. + */ +static int torture_peb(struct ubi_device *ubi, int pnum) +{ + int err, i, patt_count; + + ubi_msg(ubi, "run torture test for PEB %d", pnum); + patt_count = ARRAY_SIZE(patterns); + ubi_assert(patt_count > 0); + + mutex_lock(&ubi->buf_mutex); + for (i = 0; i < patt_count; i++) { + err = do_sync_erase(ubi, pnum); + if (err) + goto out; + + /* Make sure the PEB contains only 0xFF bytes */ + err = ubi_io_read(ubi, ubi->peb_buf, pnum, 0, ubi->peb_size); + if (err) + goto out; + + err = ubi_check_pattern(ubi->peb_buf, 0xFF, ubi->peb_size); + if (err == 0) { + ubi_err(ubi, "erased PEB %d, but a non-0xFF byte found", + pnum); + err = -EIO; + goto out; + } + + /* Write a pattern and check it */ + memset(ubi->peb_buf, patterns[i], ubi->peb_size); + err = ubi_io_write(ubi, ubi->peb_buf, pnum, 0, ubi->peb_size); + if (err) + goto out; + + memset(ubi->peb_buf, ~patterns[i], ubi->peb_size); + err = ubi_io_read(ubi, ubi->peb_buf, pnum, 0, ubi->peb_size); + if (err) + goto out; + + err = ubi_check_pattern(ubi->peb_buf, patterns[i], + ubi->peb_size); + if (err == 0) { + ubi_err(ubi, "pattern %x checking failed for PEB %d", + patterns[i], pnum); + err = -EIO; + goto out; + } + } + + err = patt_count; + ubi_msg(ubi, "PEB %d passed torture test, do not mark it as bad", pnum); + +out: + mutex_unlock(&ubi->buf_mutex); + if (err == UBI_IO_BITFLIPS || mtd_is_eccerr(err)) { + /* + * If a bit-flip or data integrity error was detected, the test + * has not passed because it happened on a freshly erased + * physical eraseblock which means something is wrong with it. + */ + ubi_err(ubi, "read problems on freshly erased PEB %d, must be bad", + pnum); + err = -EIO; + } + return err; +} + +/** + * nor_erase_prepare - prepare a NOR flash PEB for erasure. + * @ubi: UBI device description object + * @pnum: physical eraseblock number to prepare + * + * NOR flash, or at least some of them, have peculiar embedded PEB erasure + * algorithm: the PEB is first filled with zeroes, then it is erased. And + * filling with zeroes starts from the end of the PEB. This was observed with + * Spansion S29GL512N NOR flash. + * + * This means that in case of a power cut we may end up with intact data at the + * beginning of the PEB, and all zeroes at the end of PEB. In other words, the + * EC and VID headers are OK, but a large chunk of data at the end of PEB is + * zeroed. This makes UBI mistakenly treat this PEB as used and associate it + * with an LEB, which leads to subsequent failures (e.g., UBIFS fails). + * + * This function is called before erasing NOR PEBs and it zeroes out EC and VID + * magic numbers in order to invalidate them and prevent the failures. Returns + * zero in case of success and a negative error code in case of failure. + */ +static int nor_erase_prepare(struct ubi_device *ubi, int pnum) +{ + int err; + size_t written; + loff_t addr; + uint32_t data = 0; + struct ubi_ec_hdr ec_hdr; + struct ubi_vid_io_buf vidb; + + /* + * Note, we cannot generally define VID header buffers on stack, + * because of the way we deal with these buffers (see the header + * comment in this file). But we know this is a NOR-specific piece of + * code, so we can do this. But yes, this is error-prone and we should + * (pre-)allocate VID header buffer instead. + */ + struct ubi_vid_hdr vid_hdr; + + /* + * If VID or EC is valid, we have to corrupt them before erasing. + * It is important to first invalidate the EC header, and then the VID + * header. Otherwise a power cut may lead to valid EC header and + * invalid VID header, in which case UBI will treat this PEB as + * corrupted and will try to preserve it, and print scary warnings. + */ + addr = (loff_t)pnum * ubi->peb_size; + err = ubi_io_read_ec_hdr(ubi, pnum, &ec_hdr, 0); + if (err != UBI_IO_BAD_HDR_EBADMSG && err != UBI_IO_BAD_HDR && + err != UBI_IO_FF){ + err = mtd_write(ubi->mtd, addr, 4, &written, (void *)&data); + if(err) + goto error; + } + + ubi_init_vid_buf(ubi, &vidb, &vid_hdr); + ubi_assert(&vid_hdr == ubi_get_vid_hdr(&vidb)); + + err = ubi_io_read_vid_hdr(ubi, pnum, &vidb, 0); + if (err != UBI_IO_BAD_HDR_EBADMSG && err != UBI_IO_BAD_HDR && + err != UBI_IO_FF){ + addr += ubi->vid_hdr_aloffset; + err = mtd_write(ubi->mtd, addr, 4, &written, (void *)&data); + if (err) + goto error; + } + return 0; + +error: + /* + * The PEB contains a valid VID or EC header, but we cannot invalidate + * it. Supposedly the flash media or the driver is screwed up, so + * return an error. + */ + ubi_err(ubi, "cannot invalidate PEB %d, write returned %d", pnum, err); + ubi_dump_flash(ubi, pnum, 0, ubi->peb_size); + return -EIO; +} + +/** + * ubi_io_sync_erase - synchronously erase a physical eraseblock. + * @ubi: UBI device description object + * @pnum: physical eraseblock number to erase + * @torture: if this physical eraseblock has to be tortured + * + * This function synchronously erases physical eraseblock @pnum. If @torture + * flag is not zero, the physical eraseblock is checked by means of writing + * different patterns to it and reading them back. If the torturing is enabled, + * the physical eraseblock is erased more than once. + * + * This function returns the number of erasures made in case of success, %-EIO + * if the erasure failed or the torturing test failed, and other negative error + * codes in case of other errors. Note, %-EIO means that the physical + * eraseblock is bad. + */ +int ubi_io_sync_erase(struct ubi_device *ubi, int pnum, int torture) +{ + int err, ret = 0; + + ubi_assert(pnum >= 0 && pnum < ubi->peb_count); + + err = self_check_not_bad(ubi, pnum); + if (err != 0) + return err; + + if (ubi->ro_mode) { + ubi_err(ubi, "read-only mode"); + return -EROFS; + } + + /* + * If the flash is ECC-ed then we have to erase the ECC block before we + * can write to it. But the write is in preparation to an erase in the + * first place. This means we cannot zero out EC and VID before the + * erase and we just have to hope the flash starts erasing from the + * start of the page. + */ + if (ubi->nor_flash && ubi->mtd->writesize == 1) { + err = nor_erase_prepare(ubi, pnum); + if (err) + return err; + } + + if (torture) { + ret = torture_peb(ubi, pnum); + if (ret < 0) + return ret; + } + + err = do_sync_erase(ubi, pnum); + if (err) + return err; + + return ret + 1; +} + +/** + * ubi_io_is_bad - check if a physical eraseblock is bad. + * @ubi: UBI device description object + * @pnum: the physical eraseblock number to check + * + * This function returns a positive number if the physical eraseblock is bad, + * zero if not, and a negative error code if an error occurred. + */ +int ubi_io_is_bad(const struct ubi_device *ubi, int pnum) +{ + struct mtd_info *mtd = ubi->mtd; + + ubi_assert(pnum >= 0 && pnum < ubi->peb_count); + + if (ubi->bad_allowed) { + int ret; + + ret = mtd_block_isbad(mtd, (loff_t)pnum * ubi->peb_size); + if (ret < 0) + ubi_err(ubi, "error %d while checking if PEB %d is bad", + ret, pnum); + else if (ret) + dbg_io("PEB %d is bad", pnum); + return ret; + } + + return 0; +} + +/** + * ubi_io_mark_bad - mark a physical eraseblock as bad. + * @ubi: UBI device description object + * @pnum: the physical eraseblock number to mark + * + * This function returns zero in case of success and a negative error code in + * case of failure. + */ +int ubi_io_mark_bad(const struct ubi_device *ubi, int pnum) +{ + int err; + struct mtd_info *mtd = ubi->mtd; + + ubi_assert(pnum >= 0 && pnum < ubi->peb_count); + + if (ubi->ro_mode) { + ubi_err(ubi, "read-only mode"); + return -EROFS; + } + + if (!ubi->bad_allowed) + return 0; + + err = mtd_block_markbad(mtd, (loff_t)pnum * ubi->peb_size); + if (err) + ubi_err(ubi, "cannot mark PEB %d bad, error %d", pnum, err); + return err; +} + +/** + * validate_ec_hdr - validate an erase counter header. + * @ubi: UBI device description object + * @ec_hdr: the erase counter header to check + * + * This function returns zero if the erase counter header is OK, and %1 if + * not. + */ +static int validate_ec_hdr(const struct ubi_device *ubi, + const struct ubi_ec_hdr *ec_hdr) +{ + long long ec; + int vid_hdr_offset, leb_start; + + ec = be64_to_cpu(ec_hdr->ec); + vid_hdr_offset = be32_to_cpu(ec_hdr->vid_hdr_offset); + leb_start = be32_to_cpu(ec_hdr->data_offset); + + if (ec_hdr->version != UBI_VERSION) { + ubi_err(ubi, "node with incompatible UBI version found: this UBI version is %d, image version is %d", + UBI_VERSION, (int)ec_hdr->version); + goto bad; + } + + if (vid_hdr_offset != ubi->vid_hdr_offset) { + ubi_err(ubi, "bad VID header offset %d, expected %d", + vid_hdr_offset, ubi->vid_hdr_offset); + goto bad; + } + + if (leb_start != ubi->leb_start) { + ubi_err(ubi, "bad data offset %d, expected %d", + leb_start, ubi->leb_start); + goto bad; + } + + if (ec < 0 || ec > UBI_MAX_ERASECOUNTER) { + ubi_err(ubi, "bad erase counter %lld", ec); + goto bad; + } + + return 0; + +bad: + ubi_err(ubi, "bad EC header"); + ubi_dump_ec_hdr(ec_hdr); + dump_stack(); + return 1; +} + +/** + * ubi_io_read_ec_hdr - read and check an erase counter header. + * @ubi: UBI device description object + * @pnum: physical eraseblock to read from + * @ec_hdr: a &struct ubi_ec_hdr object where to store the read erase counter + * header + * @verbose: be verbose if the header is corrupted or was not found + * + * This function reads erase counter header from physical eraseblock @pnum and + * stores it in @ec_hdr. This function also checks CRC checksum of the read + * erase counter header. The following codes may be returned: + * + * o %0 if the CRC checksum is correct and the header was successfully read; + * o %UBI_IO_BITFLIPS if the CRC is correct, but bit-flips were detected + * and corrected by the flash driver; this is harmless but may indicate that + * this eraseblock may become bad soon (but may be not); + * o %UBI_IO_BAD_HDR if the erase counter header is corrupted (a CRC error); + * o %UBI_IO_BAD_HDR_EBADMSG is the same as %UBI_IO_BAD_HDR, but there also was + * a data integrity error (uncorrectable ECC error in case of NAND); + * o %UBI_IO_FF if only 0xFF bytes were read (the PEB is supposedly empty) + * o a negative error code in case of failure. + */ +int ubi_io_read_ec_hdr(struct ubi_device *ubi, int pnum, + struct ubi_ec_hdr *ec_hdr, int verbose) +{ + int err, read_err; + uint32_t crc, magic, hdr_crc; + + dbg_io("read EC header from PEB %d", pnum); + ubi_assert(pnum >= 0 && pnum < ubi->peb_count); + + read_err = ubi_io_read(ubi, ec_hdr, pnum, 0, UBI_EC_HDR_SIZE); + if (read_err) { + if (read_err != UBI_IO_BITFLIPS && !mtd_is_eccerr(read_err)) + return read_err; + + /* + * We read all the data, but either a correctable bit-flip + * occurred, or MTD reported a data integrity error + * (uncorrectable ECC error in case of NAND). The former is + * harmless, the later may mean that the read data is + * corrupted. But we have a CRC check-sum and we will detect + * this. If the EC header is still OK, we just report this as + * there was a bit-flip, to force scrubbing. + */ + } + + magic = be32_to_cpu(ec_hdr->magic); + if (magic != UBI_EC_HDR_MAGIC) { + if (mtd_is_eccerr(read_err)) + return UBI_IO_BAD_HDR_EBADMSG; + + /* + * The magic field is wrong. Let's check if we have read all + * 0xFF. If yes, this physical eraseblock is assumed to be + * empty. + */ + if (ubi_check_pattern(ec_hdr, 0xFF, UBI_EC_HDR_SIZE)) { + /* The physical eraseblock is supposedly empty */ + if (verbose) + ubi_warn(ubi, "no EC header found at PEB %d, only 0xFF bytes", + pnum); + dbg_bld("no EC header found at PEB %d, only 0xFF bytes", + pnum); + if (!read_err) + return UBI_IO_FF; + else + return UBI_IO_FF_BITFLIPS; + } + + /* + * This is not a valid erase counter header, and these are not + * 0xFF bytes. Report that the header is corrupted. + */ + if (verbose) { + ubi_warn(ubi, "bad magic number at PEB %d: %08x instead of %08x", + pnum, magic, UBI_EC_HDR_MAGIC); + ubi_dump_ec_hdr(ec_hdr); + } + dbg_bld("bad magic number at PEB %d: %08x instead of %08x", + pnum, magic, UBI_EC_HDR_MAGIC); + return UBI_IO_BAD_HDR; + } + + crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC); + hdr_crc = be32_to_cpu(ec_hdr->hdr_crc); + + if (hdr_crc != crc) { + if (verbose) { + ubi_warn(ubi, "bad EC header CRC at PEB %d, calculated %#08x, read %#08x", + pnum, crc, hdr_crc); + ubi_dump_ec_hdr(ec_hdr); + } + dbg_bld("bad EC header CRC at PEB %d, calculated %#08x, read %#08x", + pnum, crc, hdr_crc); + + if (!read_err) + return UBI_IO_BAD_HDR; + else + return UBI_IO_BAD_HDR_EBADMSG; + } + + /* And of course validate what has just been read from the media */ + err = validate_ec_hdr(ubi, ec_hdr); + if (err) { + ubi_err(ubi, "validation failed for PEB %d", pnum); + return -EINVAL; + } + + /* + * If there was %-EBADMSG, but the header CRC is still OK, report about + * a bit-flip to force scrubbing on this PEB. + */ + return read_err ? UBI_IO_BITFLIPS : 0; +} + +/** + * ubi_io_write_ec_hdr - write an erase counter header. + * @ubi: UBI device description object + * @pnum: physical eraseblock to write to + * @ec_hdr: the erase counter header to write + * + * This function writes erase counter header described by @ec_hdr to physical + * eraseblock @pnum. It also fills most fields of @ec_hdr before writing, so + * the caller do not have to fill them. Callers must only fill the @ec_hdr->ec + * field. + * + * This function returns zero in case of success and a negative error code in + * case of failure. If %-EIO is returned, the physical eraseblock most probably + * went bad. + */ +int ubi_io_write_ec_hdr(struct ubi_device *ubi, int pnum, + struct ubi_ec_hdr *ec_hdr) +{ + int err; + uint32_t crc; + + dbg_io("write EC header to PEB %d", pnum); + ubi_assert(pnum >= 0 && pnum < ubi->peb_count); + + ec_hdr->magic = cpu_to_be32(UBI_EC_HDR_MAGIC); + ec_hdr->version = UBI_VERSION; + ec_hdr->vid_hdr_offset = cpu_to_be32(ubi->vid_hdr_offset); + ec_hdr->data_offset = cpu_to_be32(ubi->leb_start); + ec_hdr->image_seq = cpu_to_be32(ubi->image_seq); + crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC); + ec_hdr->hdr_crc = cpu_to_be32(crc); + + err = self_check_ec_hdr(ubi, pnum, ec_hdr); + if (err) + return err; + + if (ubi_dbg_power_cut(ubi, POWER_CUT_EC_WRITE)) + return -EROFS; + + err = ubi_io_write(ubi, ec_hdr, pnum, 0, ubi->ec_hdr_alsize); + return err; +} + +/** + * validate_vid_hdr - validate a volume identifier header. + * @ubi: UBI device description object + * @vid_hdr: the volume identifier header to check + * + * This function checks that data stored in the volume identifier header + * @vid_hdr. Returns zero if the VID header is OK and %1 if not. + */ +static int validate_vid_hdr(const struct ubi_device *ubi, + const struct ubi_vid_hdr *vid_hdr) +{ + int vol_type = vid_hdr->vol_type; + int copy_flag = vid_hdr->copy_flag; + int vol_id = be32_to_cpu(vid_hdr->vol_id); + int lnum = be32_to_cpu(vid_hdr->lnum); + int compat = vid_hdr->compat; + int data_size = be32_to_cpu(vid_hdr->data_size); + int used_ebs = be32_to_cpu(vid_hdr->used_ebs); + int data_pad = be32_to_cpu(vid_hdr->data_pad); + int data_crc = be32_to_cpu(vid_hdr->data_crc); + int usable_leb_size = ubi->leb_size - data_pad; + + if (copy_flag != 0 && copy_flag != 1) { + ubi_err(ubi, "bad copy_flag"); + goto bad; + } + + if (vol_id < 0 || lnum < 0 || data_size < 0 || used_ebs < 0 || + data_pad < 0) { + ubi_err(ubi, "negative values"); + goto bad; + } + + if (vol_id >= UBI_MAX_VOLUMES && vol_id < UBI_INTERNAL_VOL_START) { + ubi_err(ubi, "bad vol_id"); + goto bad; + } + + if (vol_id < UBI_INTERNAL_VOL_START && compat != 0) { + ubi_err(ubi, "bad compat"); + goto bad; + } + + if (vol_id >= UBI_INTERNAL_VOL_START && compat != UBI_COMPAT_DELETE && + compat != UBI_COMPAT_RO && compat != UBI_COMPAT_PRESERVE && + compat != UBI_COMPAT_REJECT) { + ubi_err(ubi, "bad compat"); + goto bad; + } + + if (vol_type != UBI_VID_DYNAMIC && vol_type != UBI_VID_STATIC) { + ubi_err(ubi, "bad vol_type"); + goto bad; + } + + if (data_pad >= ubi->leb_size / 2) { + ubi_err(ubi, "bad data_pad"); + goto bad; + } + + if (data_size > ubi->leb_size) { + ubi_err(ubi, "bad data_size"); + goto bad; + } + + if (vol_type == UBI_VID_STATIC) { + /* + * Although from high-level point of view static volumes may + * contain zero bytes of data, but no VID headers can contain + * zero at these fields, because they empty volumes do not have + * mapped logical eraseblocks. + */ + if (used_ebs == 0) { + ubi_err(ubi, "zero used_ebs"); + goto bad; + } + if (data_size == 0) { + ubi_err(ubi, "zero data_size"); + goto bad; + } + if (lnum < used_ebs - 1) { + if (data_size != usable_leb_size) { + ubi_err(ubi, "bad data_size"); + goto bad; + } + } else if (lnum > used_ebs - 1) { + ubi_err(ubi, "too high lnum"); + goto bad; + } + } else { + if (copy_flag == 0) { + if (data_crc != 0) { + ubi_err(ubi, "non-zero data CRC"); + goto bad; + } + if (data_size != 0) { + ubi_err(ubi, "non-zero data_size"); + goto bad; + } + } else { + if (data_size == 0) { + ubi_err(ubi, "zero data_size of copy"); + goto bad; + } + } + if (used_ebs != 0) { + ubi_err(ubi, "bad used_ebs"); + goto bad; + } + } + + return 0; + +bad: + ubi_err(ubi, "bad VID header"); + ubi_dump_vid_hdr(vid_hdr); + dump_stack(); + return 1; +} + +/** + * ubi_io_read_vid_hdr - read and check a volume identifier header. + * @ubi: UBI device description object + * @pnum: physical eraseblock number to read from + * @vidb: the volume identifier buffer to store data in + * @verbose: be verbose if the header is corrupted or wasn't found + * + * This function reads the volume identifier header from physical eraseblock + * @pnum and stores it in @vidb. It also checks CRC checksum of the read + * volume identifier header. The error codes are the same as in + * 'ubi_io_read_ec_hdr()'. + * + * Note, the implementation of this function is also very similar to + * 'ubi_io_read_ec_hdr()', so refer commentaries in 'ubi_io_read_ec_hdr()'. + */ +int ubi_io_read_vid_hdr(struct ubi_device *ubi, int pnum, + struct ubi_vid_io_buf *vidb, int verbose) +{ + int err, read_err; + uint32_t crc, magic, hdr_crc; + struct ubi_vid_hdr *vid_hdr = ubi_get_vid_hdr(vidb); + void *p = vidb->buffer; + + dbg_io("read VID header from PEB %d", pnum); + ubi_assert(pnum >= 0 && pnum < ubi->peb_count); + + read_err = ubi_io_read(ubi, p, pnum, ubi->vid_hdr_aloffset, + ubi->vid_hdr_shift + UBI_VID_HDR_SIZE); + if (read_err && read_err != UBI_IO_BITFLIPS && !mtd_is_eccerr(read_err)) + return read_err; + + magic = be32_to_cpu(vid_hdr->magic); + if (magic != UBI_VID_HDR_MAGIC) { + if (mtd_is_eccerr(read_err)) + return UBI_IO_BAD_HDR_EBADMSG; + + if (ubi_check_pattern(vid_hdr, 0xFF, UBI_VID_HDR_SIZE)) { + if (verbose) + ubi_warn(ubi, "no VID header found at PEB %d, only 0xFF bytes", + pnum); + dbg_bld("no VID header found at PEB %d, only 0xFF bytes", + pnum); + if (!read_err) + return UBI_IO_FF; + else + return UBI_IO_FF_BITFLIPS; + } + + if (verbose) { + ubi_warn(ubi, "bad magic number at PEB %d: %08x instead of %08x", + pnum, magic, UBI_VID_HDR_MAGIC); + ubi_dump_vid_hdr(vid_hdr); + } + dbg_bld("bad magic number at PEB %d: %08x instead of %08x", + pnum, magic, UBI_VID_HDR_MAGIC); + return UBI_IO_BAD_HDR; + } + + crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_VID_HDR_SIZE_CRC); + hdr_crc = be32_to_cpu(vid_hdr->hdr_crc); + + if (hdr_crc != crc) { + if (verbose) { + ubi_warn(ubi, "bad CRC at PEB %d, calculated %#08x, read %#08x", + pnum, crc, hdr_crc); + ubi_dump_vid_hdr(vid_hdr); + } + dbg_bld("bad CRC at PEB %d, calculated %#08x, read %#08x", + pnum, crc, hdr_crc); + if (!read_err) + return UBI_IO_BAD_HDR; + else + return UBI_IO_BAD_HDR_EBADMSG; + } + + err = validate_vid_hdr(ubi, vid_hdr); + if (err) { + ubi_err(ubi, "validation failed for PEB %d", pnum); + return -EINVAL; + } + + return read_err ? UBI_IO_BITFLIPS : 0; +} + +/** + * ubi_io_write_vid_hdr - write a volume identifier header. + * @ubi: UBI device description object + * @pnum: the physical eraseblock number to write to + * @vidb: the volume identifier buffer to write + * + * This function writes the volume identifier header described by @vid_hdr to + * physical eraseblock @pnum. This function automatically fills the + * @vidb->hdr->magic and the @vidb->hdr->version fields, as well as calculates + * header CRC checksum and stores it at vidb->hdr->hdr_crc. + * + * This function returns zero in case of success and a negative error code in + * case of failure. If %-EIO is returned, the physical eraseblock probably went + * bad. + */ +int ubi_io_write_vid_hdr(struct ubi_device *ubi, int pnum, + struct ubi_vid_io_buf *vidb) +{ + struct ubi_vid_hdr *vid_hdr = ubi_get_vid_hdr(vidb); + int err; + uint32_t crc; + void *p = vidb->buffer; + + dbg_io("write VID header to PEB %d", pnum); + ubi_assert(pnum >= 0 && pnum < ubi->peb_count); + + err = self_check_peb_ec_hdr(ubi, pnum); + if (err) + return err; + + vid_hdr->magic = cpu_to_be32(UBI_VID_HDR_MAGIC); + vid_hdr->version = UBI_VERSION; + crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_VID_HDR_SIZE_CRC); + vid_hdr->hdr_crc = cpu_to_be32(crc); + + err = self_check_vid_hdr(ubi, pnum, vid_hdr); + if (err) + return err; + + if (ubi_dbg_power_cut(ubi, POWER_CUT_VID_WRITE)) + return -EROFS; + + err = ubi_io_write(ubi, p, pnum, ubi->vid_hdr_aloffset, + ubi->vid_hdr_alsize); + return err; +} + +/** + * self_check_not_bad - ensure that a physical eraseblock is not bad. + * @ubi: UBI device description object + * @pnum: physical eraseblock number to check + * + * This function returns zero if the physical eraseblock is good, %-EINVAL if + * it is bad and a negative error code if an error occurred. + */ +static int self_check_not_bad(const struct ubi_device *ubi, int pnum) +{ + int err; + + if (!ubi_dbg_chk_io(ubi)) + return 0; + + err = ubi_io_is_bad(ubi, pnum); + if (!err) + return err; + + ubi_err(ubi, "self-check failed for PEB %d", pnum); + dump_stack(); + return err > 0 ? -EINVAL : err; +} + +/** + * self_check_ec_hdr - check if an erase counter header is all right. + * @ubi: UBI device description object + * @pnum: physical eraseblock number the erase counter header belongs to + * @ec_hdr: the erase counter header to check + * + * This function returns zero if the erase counter header contains valid + * values, and %-EINVAL if not. + */ +static int self_check_ec_hdr(const struct ubi_device *ubi, int pnum, + const struct ubi_ec_hdr *ec_hdr) +{ + int err; + uint32_t magic; + + if (!ubi_dbg_chk_io(ubi)) + return 0; + + magic = be32_to_cpu(ec_hdr->magic); + if (magic != UBI_EC_HDR_MAGIC) { + ubi_err(ubi, "bad magic %#08x, must be %#08x", + magic, UBI_EC_HDR_MAGIC); + goto fail; + } + + err = validate_ec_hdr(ubi, ec_hdr); + if (err) { + ubi_err(ubi, "self-check failed for PEB %d", pnum); + goto fail; + } + + return 0; + +fail: + ubi_dump_ec_hdr(ec_hdr); + dump_stack(); + return -EINVAL; +} + +/** + * self_check_peb_ec_hdr - check erase counter header. + * @ubi: UBI device description object + * @pnum: the physical eraseblock number to check + * + * This function returns zero if the erase counter header is all right and + * a negative error code if not or if an error occurred. + */ +static int self_check_peb_ec_hdr(const struct ubi_device *ubi, int pnum) +{ + int err; + uint32_t crc, hdr_crc; + struct ubi_ec_hdr *ec_hdr; + + if (!ubi_dbg_chk_io(ubi)) + return 0; + + ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS); + if (!ec_hdr) + return -ENOMEM; + + err = ubi_io_read(ubi, ec_hdr, pnum, 0, UBI_EC_HDR_SIZE); + if (err && err != UBI_IO_BITFLIPS && !mtd_is_eccerr(err)) + goto exit; + + crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC); + hdr_crc = be32_to_cpu(ec_hdr->hdr_crc); + if (hdr_crc != crc) { + ubi_err(ubi, "bad CRC, calculated %#08x, read %#08x", + crc, hdr_crc); + ubi_err(ubi, "self-check failed for PEB %d", pnum); + ubi_dump_ec_hdr(ec_hdr); + dump_stack(); + err = -EINVAL; + goto exit; + } + + err = self_check_ec_hdr(ubi, pnum, ec_hdr); + +exit: + kfree(ec_hdr); + return err; +} + +/** + * self_check_vid_hdr - check that a volume identifier header is all right. + * @ubi: UBI device description object + * @pnum: physical eraseblock number the volume identifier header belongs to + * @vid_hdr: the volume identifier header to check + * + * This function returns zero if the volume identifier header is all right, and + * %-EINVAL if not. + */ +static int self_check_vid_hdr(const struct ubi_device *ubi, int pnum, + const struct ubi_vid_hdr *vid_hdr) +{ + int err; + uint32_t magic; + + if (!ubi_dbg_chk_io(ubi)) + return 0; + + magic = be32_to_cpu(vid_hdr->magic); + if (magic != UBI_VID_HDR_MAGIC) { + ubi_err(ubi, "bad VID header magic %#08x at PEB %d, must be %#08x", + magic, pnum, UBI_VID_HDR_MAGIC); + goto fail; + } + + err = validate_vid_hdr(ubi, vid_hdr); + if (err) { + ubi_err(ubi, "self-check failed for PEB %d", pnum); + goto fail; + } + + return err; + +fail: + ubi_err(ubi, "self-check failed for PEB %d", pnum); + ubi_dump_vid_hdr(vid_hdr); + dump_stack(); + return -EINVAL; + +} + +/** + * self_check_peb_vid_hdr - check volume identifier header. + * @ubi: UBI device description object + * @pnum: the physical eraseblock number to check + * + * This function returns zero if the volume identifier header is all right, + * and a negative error code if not or if an error occurred. + */ +static int self_check_peb_vid_hdr(const struct ubi_device *ubi, int pnum) +{ + int err; + uint32_t crc, hdr_crc; + struct ubi_vid_io_buf *vidb; + struct ubi_vid_hdr *vid_hdr; + void *p; + + if (!ubi_dbg_chk_io(ubi)) + return 0; + + vidb = ubi_alloc_vid_buf(ubi, GFP_NOFS); + if (!vidb) + return -ENOMEM; + + vid_hdr = ubi_get_vid_hdr(vidb); + p = vidb->buffer; + err = ubi_io_read(ubi, p, pnum, ubi->vid_hdr_aloffset, + ubi->vid_hdr_alsize); + if (err && err != UBI_IO_BITFLIPS && !mtd_is_eccerr(err)) + goto exit; + + crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_VID_HDR_SIZE_CRC); + hdr_crc = be32_to_cpu(vid_hdr->hdr_crc); + if (hdr_crc != crc) { + ubi_err(ubi, "bad VID header CRC at PEB %d, calculated %#08x, read %#08x", + pnum, crc, hdr_crc); + ubi_err(ubi, "self-check failed for PEB %d", pnum); + ubi_dump_vid_hdr(vid_hdr); + dump_stack(); + err = -EINVAL; + goto exit; + } + + err = self_check_vid_hdr(ubi, pnum, vid_hdr); + +exit: + ubi_free_vid_buf(vidb); + return err; +} + +/** + * self_check_write - make sure write succeeded. + * @ubi: UBI device description object + * @buf: buffer with data which were written + * @pnum: physical eraseblock number the data were written to + * @offset: offset within the physical eraseblock the data were written to + * @len: how many bytes were written + * + * This functions reads data which were recently written and compares it with + * the original data buffer - the data have to match. Returns zero if the data + * match and a negative error code if not or in case of failure. + */ +static int self_check_write(struct ubi_device *ubi, const void *buf, int pnum, + int offset, int len) +{ + int err, i; + size_t read; + void *buf1; + loff_t addr = (loff_t)pnum * ubi->peb_size + offset; + + if (!ubi_dbg_chk_io(ubi)) + return 0; + + buf1 = __vmalloc(len, GFP_NOFS); + if (!buf1) { + ubi_err(ubi, "cannot allocate memory to check writes"); + return 0; + } + + err = mtd_read(ubi->mtd, addr, len, &read, buf1); + if (err && !mtd_is_bitflip(err)) + goto out_free; + + for (i = 0; i < len; i++) { + uint8_t c = ((uint8_t *)buf)[i]; + uint8_t c1 = ((uint8_t *)buf1)[i]; + int dump_len; + + if (c == c1) + continue; + + ubi_err(ubi, "self-check failed for PEB %d:%d, len %d", + pnum, offset, len); + ubi_msg(ubi, "data differ at position %d", i); + dump_len = max_t(int, 128, len - i); + ubi_msg(ubi, "hex dump of the original buffer from %d to %d", + i, i + dump_len); + print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1, + buf + i, dump_len, 1); + ubi_msg(ubi, "hex dump of the read buffer from %d to %d", + i, i + dump_len); + print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1, + buf1 + i, dump_len, 1); + dump_stack(); + err = -EINVAL; + goto out_free; + } + + vfree(buf1); + return 0; + +out_free: + vfree(buf1); + return err; +} + +/** + * ubi_self_check_all_ff - check that a region of flash is empty. + * @ubi: UBI device description object + * @pnum: the physical eraseblock number to check + * @offset: the starting offset within the physical eraseblock to check + * @len: the length of the region to check + * + * This function returns zero if only 0xFF bytes are present at offset + * @offset of the physical eraseblock @pnum, and a negative error code if not + * or if an error occurred. + */ +int ubi_self_check_all_ff(struct ubi_device *ubi, int pnum, int offset, int len) +{ + size_t read; + int err; + void *buf; + loff_t addr = (loff_t)pnum * ubi->peb_size + offset; + + if (!ubi_dbg_chk_io(ubi)) + return 0; + + buf = __vmalloc(len, GFP_NOFS); + if (!buf) { + ubi_err(ubi, "cannot allocate memory to check for 0xFFs"); + return 0; + } + + err = mtd_read(ubi->mtd, addr, len, &read, buf); + if (err && !mtd_is_bitflip(err)) { + ubi_err(ubi, "err %d while reading %d bytes from PEB %d:%d, read %zd bytes", + err, len, pnum, offset, read); + goto error; + } + + err = ubi_check_pattern(buf, 0xFF, len); + if (err == 0) { + ubi_err(ubi, "flash region at PEB %d:%d, length %d does not contain all 0xFF bytes", + pnum, offset, len); + goto fail; + } + + vfree(buf); + return 0; + +fail: + ubi_err(ubi, "self-check failed for PEB %d", pnum); + ubi_msg(ubi, "hex dump of the %d-%d region", offset, offset + len); + print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1, buf, len, 1); + err = -EINVAL; +error: + dump_stack(); + vfree(buf); + return err; +} diff --git a/drivers/mtd/ubi/kapi.c b/drivers/mtd/ubi/kapi.c new file mode 100644 index 0000000000..5db653eacb --- /dev/null +++ b/drivers/mtd/ubi/kapi.c @@ -0,0 +1,855 @@ +// SPDX-License-Identifier: GPL-2.0-or-later +/* + * Copyright (c) International Business Machines Corp., 2006 + * + * Author: Artem Bityutskiy (Битюцкий Артём) + */ + +/* This file mostly implements UBI kernel API functions */ + +#include <linux/module.h> +#include <linux/err.h> +#include <linux/slab.h> +#include <linux/namei.h> +#include <linux/fs.h> +#include <asm/div64.h> +#include "ubi.h" + +/** + * ubi_do_get_device_info - get information about UBI device. + * @ubi: UBI device description object + * @di: the information is stored here + * + * This function is the same as 'ubi_get_device_info()', but it assumes the UBI + * device is locked and cannot disappear. + */ +void ubi_do_get_device_info(struct ubi_device *ubi, struct ubi_device_info *di) +{ + di->ubi_num = ubi->ubi_num; + di->leb_size = ubi->leb_size; + di->leb_start = ubi->leb_start; + di->min_io_size = ubi->min_io_size; + di->max_write_size = ubi->max_write_size; + di->ro_mode = ubi->ro_mode; + di->cdev = ubi->cdev.dev; +} +EXPORT_SYMBOL_GPL(ubi_do_get_device_info); + +/** + * ubi_get_device_info - get information about UBI device. + * @ubi_num: UBI device number + * @di: the information is stored here + * + * This function returns %0 in case of success, %-EINVAL if the UBI device + * number is invalid, and %-ENODEV if there is no such UBI device. + */ +int ubi_get_device_info(int ubi_num, struct ubi_device_info *di) +{ + struct ubi_device *ubi; + + if (ubi_num < 0 || ubi_num >= UBI_MAX_DEVICES) + return -EINVAL; + ubi = ubi_get_device(ubi_num); + if (!ubi) + return -ENODEV; + ubi_do_get_device_info(ubi, di); + ubi_put_device(ubi); + return 0; +} +EXPORT_SYMBOL_GPL(ubi_get_device_info); + +/** + * ubi_do_get_volume_info - get information about UBI volume. + * @ubi: UBI device description object + * @vol: volume description object + * @vi: the information is stored here + */ +void ubi_do_get_volume_info(struct ubi_device *ubi, struct ubi_volume *vol, + struct ubi_volume_info *vi) +{ + vi->vol_id = vol->vol_id; + vi->ubi_num = ubi->ubi_num; + vi->size = vol->reserved_pebs; + vi->used_bytes = vol->used_bytes; + vi->vol_type = vol->vol_type; + vi->corrupted = vol->corrupted; + vi->upd_marker = vol->upd_marker; + vi->alignment = vol->alignment; + vi->usable_leb_size = vol->usable_leb_size; + vi->name_len = vol->name_len; + vi->name = vol->name; + vi->cdev = vol->cdev.dev; + vi->dev = &vol->dev; +} + +/** + * ubi_get_volume_info - get information about UBI volume. + * @desc: volume descriptor + * @vi: the information is stored here + */ +void ubi_get_volume_info(struct ubi_volume_desc *desc, + struct ubi_volume_info *vi) +{ + ubi_do_get_volume_info(desc->vol->ubi, desc->vol, vi); +} +EXPORT_SYMBOL_GPL(ubi_get_volume_info); + +/** + * ubi_open_volume - open UBI volume. + * @ubi_num: UBI device number + * @vol_id: volume ID + * @mode: open mode + * + * The @mode parameter specifies if the volume should be opened in read-only + * mode, read-write mode, or exclusive mode. The exclusive mode guarantees that + * nobody else will be able to open this volume. UBI allows to have many volume + * readers and one writer at a time. + * + * If a static volume is being opened for the first time since boot, it will be + * checked by this function, which means it will be fully read and the CRC + * checksum of each logical eraseblock will be checked. + * + * This function returns volume descriptor in case of success and a negative + * error code in case of failure. + */ +struct ubi_volume_desc *ubi_open_volume(int ubi_num, int vol_id, int mode) +{ + int err; + struct ubi_volume_desc *desc; + struct ubi_device *ubi; + struct ubi_volume *vol; + + dbg_gen("open device %d, volume %d, mode %d", ubi_num, vol_id, mode); + + if (ubi_num < 0 || ubi_num >= UBI_MAX_DEVICES) + return ERR_PTR(-EINVAL); + + if (mode != UBI_READONLY && mode != UBI_READWRITE && + mode != UBI_EXCLUSIVE && mode != UBI_METAONLY) + return ERR_PTR(-EINVAL); + + /* + * First of all, we have to get the UBI device to prevent its removal. + */ + ubi = ubi_get_device(ubi_num); + if (!ubi) + return ERR_PTR(-ENODEV); + + if (vol_id < 0 || vol_id >= ubi->vtbl_slots) { + err = -EINVAL; + goto out_put_ubi; + } + + desc = kmalloc(sizeof(struct ubi_volume_desc), GFP_KERNEL); + if (!desc) { + err = -ENOMEM; + goto out_put_ubi; + } + + err = -ENODEV; + if (!try_module_get(THIS_MODULE)) + goto out_free; + + spin_lock(&ubi->volumes_lock); + vol = ubi->volumes[vol_id]; + if (!vol) + goto out_unlock; + + err = -EBUSY; + switch (mode) { + case UBI_READONLY: + if (vol->exclusive) + goto out_unlock; + vol->readers += 1; + break; + + case UBI_READWRITE: + if (vol->exclusive || vol->writers > 0) + goto out_unlock; + vol->writers += 1; + break; + + case UBI_EXCLUSIVE: + if (vol->exclusive || vol->writers || vol->readers || + vol->metaonly) + goto out_unlock; + vol->exclusive = 1; + break; + + case UBI_METAONLY: + if (vol->metaonly || vol->exclusive) + goto out_unlock; + vol->metaonly = 1; + break; + } + get_device(&vol->dev); + vol->ref_count += 1; + spin_unlock(&ubi->volumes_lock); + + desc->vol = vol; + desc->mode = mode; + + mutex_lock(&ubi->ckvol_mutex); + if (!vol->checked && !vol->skip_check) { + /* This is the first open - check the volume */ + err = ubi_check_volume(ubi, vol_id); + if (err < 0) { + mutex_unlock(&ubi->ckvol_mutex); + ubi_close_volume(desc); + return ERR_PTR(err); + } + if (err == 1) { + ubi_warn(ubi, "volume %d on UBI device %d is corrupted", + vol_id, ubi->ubi_num); + vol->corrupted = 1; + } + vol->checked = 1; + } + mutex_unlock(&ubi->ckvol_mutex); + + return desc; + +out_unlock: + spin_unlock(&ubi->volumes_lock); + module_put(THIS_MODULE); +out_free: + kfree(desc); +out_put_ubi: + ubi_err(ubi, "cannot open device %d, volume %d, error %d", + ubi_num, vol_id, err); + ubi_put_device(ubi); + return ERR_PTR(err); +} +EXPORT_SYMBOL_GPL(ubi_open_volume); + +/** + * ubi_open_volume_nm - open UBI volume by name. + * @ubi_num: UBI device number + * @name: volume name + * @mode: open mode + * + * This function is similar to 'ubi_open_volume()', but opens a volume by name. + */ +struct ubi_volume_desc *ubi_open_volume_nm(int ubi_num, const char *name, + int mode) +{ + int i, vol_id = -1, len; + struct ubi_device *ubi; + struct ubi_volume_desc *ret; + + dbg_gen("open device %d, volume %s, mode %d", ubi_num, name, mode); + + if (!name) + return ERR_PTR(-EINVAL); + + len = strnlen(name, UBI_VOL_NAME_MAX + 1); + if (len > UBI_VOL_NAME_MAX) + return ERR_PTR(-EINVAL); + + if (ubi_num < 0 || ubi_num >= UBI_MAX_DEVICES) + return ERR_PTR(-EINVAL); + + ubi = ubi_get_device(ubi_num); + if (!ubi) + return ERR_PTR(-ENODEV); + + spin_lock(&ubi->volumes_lock); + /* Walk all volumes of this UBI device */ + for (i = 0; i < ubi->vtbl_slots; i++) { + struct ubi_volume *vol = ubi->volumes[i]; + + if (vol && len == vol->name_len && !strcmp(name, vol->name)) { + vol_id = i; + break; + } + } + spin_unlock(&ubi->volumes_lock); + + if (vol_id >= 0) + ret = ubi_open_volume(ubi_num, vol_id, mode); + else + ret = ERR_PTR(-ENODEV); + + /* + * We should put the UBI device even in case of success, because + * 'ubi_open_volume()' took a reference as well. + */ + ubi_put_device(ubi); + return ret; +} +EXPORT_SYMBOL_GPL(ubi_open_volume_nm); + +/** + * ubi_open_volume_path - open UBI volume by its character device node path. + * @pathname: volume character device node path + * @mode: open mode + * + * This function is similar to 'ubi_open_volume()', but opens a volume the path + * to its character device node. + */ +struct ubi_volume_desc *ubi_open_volume_path(const char *pathname, int mode) +{ + int error, ubi_num, vol_id; + struct path path; + struct kstat stat; + + dbg_gen("open volume %s, mode %d", pathname, mode); + + if (!pathname || !*pathname) + return ERR_PTR(-EINVAL); + + error = kern_path(pathname, LOOKUP_FOLLOW, &path); + if (error) + return ERR_PTR(error); + + error = vfs_getattr(&path, &stat, STATX_TYPE, AT_STATX_SYNC_AS_STAT); + path_put(&path); + if (error) + return ERR_PTR(error); + + if (!S_ISCHR(stat.mode)) + return ERR_PTR(-EINVAL); + + ubi_num = ubi_major2num(MAJOR(stat.rdev)); + vol_id = MINOR(stat.rdev) - 1; + + if (vol_id >= 0 && ubi_num >= 0) + return ubi_open_volume(ubi_num, vol_id, mode); + return ERR_PTR(-ENODEV); +} +EXPORT_SYMBOL_GPL(ubi_open_volume_path); + +/** + * ubi_close_volume - close UBI volume. + * @desc: volume descriptor + */ +void ubi_close_volume(struct ubi_volume_desc *desc) +{ + struct ubi_volume *vol = desc->vol; + struct ubi_device *ubi = vol->ubi; + + dbg_gen("close device %d, volume %d, mode %d", + ubi->ubi_num, vol->vol_id, desc->mode); + + spin_lock(&ubi->volumes_lock); + switch (desc->mode) { + case UBI_READONLY: + vol->readers -= 1; + break; + case UBI_READWRITE: + vol->writers -= 1; + break; + case UBI_EXCLUSIVE: + vol->exclusive = 0; + break; + case UBI_METAONLY: + vol->metaonly = 0; + break; + } + vol->ref_count -= 1; + spin_unlock(&ubi->volumes_lock); + + kfree(desc); + put_device(&vol->dev); + ubi_put_device(ubi); + module_put(THIS_MODULE); +} +EXPORT_SYMBOL_GPL(ubi_close_volume); + +/** + * leb_read_sanity_check - does sanity checks on read requests. + * @desc: volume descriptor + * @lnum: logical eraseblock number to read from + * @offset: offset within the logical eraseblock to read from + * @len: how many bytes to read + * + * This function is used by ubi_leb_read() and ubi_leb_read_sg() + * to perform sanity checks. + */ +static int leb_read_sanity_check(struct ubi_volume_desc *desc, int lnum, + int offset, int len) +{ + struct ubi_volume *vol = desc->vol; + struct ubi_device *ubi = vol->ubi; + int vol_id = vol->vol_id; + + if (vol_id < 0 || vol_id >= ubi->vtbl_slots || lnum < 0 || + lnum >= vol->used_ebs || offset < 0 || len < 0 || + offset + len > vol->usable_leb_size) + return -EINVAL; + + if (vol->vol_type == UBI_STATIC_VOLUME) { + if (vol->used_ebs == 0) + /* Empty static UBI volume */ + return 0; + if (lnum == vol->used_ebs - 1 && + offset + len > vol->last_eb_bytes) + return -EINVAL; + } + + if (vol->upd_marker) + return -EBADF; + + return 0; +} + +/** + * ubi_leb_read - read data. + * @desc: volume descriptor + * @lnum: logical eraseblock number to read from + * @buf: buffer where to store the read data + * @offset: offset within the logical eraseblock to read from + * @len: how many bytes to read + * @check: whether UBI has to check the read data's CRC or not. + * + * This function reads data from offset @offset of logical eraseblock @lnum and + * stores the data at @buf. When reading from static volumes, @check specifies + * whether the data has to be checked or not. If yes, the whole logical + * eraseblock will be read and its CRC checksum will be checked (i.e., the CRC + * checksum is per-eraseblock). So checking may substantially slow down the + * read speed. The @check argument is ignored for dynamic volumes. + * + * In case of success, this function returns zero. In case of failure, this + * function returns a negative error code. + * + * %-EBADMSG error code is returned: + * o for both static and dynamic volumes if MTD driver has detected a data + * integrity problem (unrecoverable ECC checksum mismatch in case of NAND); + * o for static volumes in case of data CRC mismatch. + * + * If the volume is damaged because of an interrupted update this function just + * returns immediately with %-EBADF error code. + */ +int ubi_leb_read(struct ubi_volume_desc *desc, int lnum, char *buf, int offset, + int len, int check) +{ + struct ubi_volume *vol = desc->vol; + struct ubi_device *ubi = vol->ubi; + int err, vol_id = vol->vol_id; + + dbg_gen("read %d bytes from LEB %d:%d:%d", len, vol_id, lnum, offset); + + err = leb_read_sanity_check(desc, lnum, offset, len); + if (err < 0) + return err; + + if (len == 0) + return 0; + + err = ubi_eba_read_leb(ubi, vol, lnum, buf, offset, len, check); + if (err && mtd_is_eccerr(err) && vol->vol_type == UBI_STATIC_VOLUME) { + ubi_warn(ubi, "mark volume %d as corrupted", vol_id); + vol->corrupted = 1; + } + + return err; +} +EXPORT_SYMBOL_GPL(ubi_leb_read); + + +/** + * ubi_leb_read_sg - read data into a scatter gather list. + * @desc: volume descriptor + * @lnum: logical eraseblock number to read from + * @sgl: UBI scatter gather list to store the read data + * @offset: offset within the logical eraseblock to read from + * @len: how many bytes to read + * @check: whether UBI has to check the read data's CRC or not. + * + * This function works exactly like ubi_leb_read_sg(). But instead of + * storing the read data into a buffer it writes to an UBI scatter gather + * list. + */ +int ubi_leb_read_sg(struct ubi_volume_desc *desc, int lnum, struct ubi_sgl *sgl, + int offset, int len, int check) +{ + struct ubi_volume *vol = desc->vol; + struct ubi_device *ubi = vol->ubi; + int err, vol_id = vol->vol_id; + + dbg_gen("read %d bytes from LEB %d:%d:%d", len, vol_id, lnum, offset); + + err = leb_read_sanity_check(desc, lnum, offset, len); + if (err < 0) + return err; + + if (len == 0) + return 0; + + err = ubi_eba_read_leb_sg(ubi, vol, sgl, lnum, offset, len, check); + if (err && mtd_is_eccerr(err) && vol->vol_type == UBI_STATIC_VOLUME) { + ubi_warn(ubi, "mark volume %d as corrupted", vol_id); + vol->corrupted = 1; + } + + return err; +} +EXPORT_SYMBOL_GPL(ubi_leb_read_sg); + +/** + * ubi_leb_write - write data. + * @desc: volume descriptor + * @lnum: logical eraseblock number to write to + * @buf: data to write + * @offset: offset within the logical eraseblock where to write + * @len: how many bytes to write + * + * This function writes @len bytes of data from @buf to offset @offset of + * logical eraseblock @lnum. + * + * This function takes care of physical eraseblock write failures. If write to + * the physical eraseblock write operation fails, the logical eraseblock is + * re-mapped to another physical eraseblock, the data is recovered, and the + * write finishes. UBI has a pool of reserved physical eraseblocks for this. + * + * If all the data were successfully written, zero is returned. If an error + * occurred and UBI has not been able to recover from it, this function returns + * a negative error code. Note, in case of an error, it is possible that + * something was still written to the flash media, but that may be some + * garbage. + * + * If the volume is damaged because of an interrupted update this function just + * returns immediately with %-EBADF code. + */ +int ubi_leb_write(struct ubi_volume_desc *desc, int lnum, const void *buf, + int offset, int len) +{ + struct ubi_volume *vol = desc->vol; + struct ubi_device *ubi = vol->ubi; + int vol_id = vol->vol_id; + + dbg_gen("write %d bytes to LEB %d:%d:%d", len, vol_id, lnum, offset); + + if (vol_id < 0 || vol_id >= ubi->vtbl_slots) + return -EINVAL; + + if (desc->mode == UBI_READONLY || vol->vol_type == UBI_STATIC_VOLUME) + return -EROFS; + + if (!ubi_leb_valid(vol, lnum) || offset < 0 || len < 0 || + offset + len > vol->usable_leb_size || + offset & (ubi->min_io_size - 1) || len & (ubi->min_io_size - 1)) + return -EINVAL; + + if (vol->upd_marker) + return -EBADF; + + if (len == 0) + return 0; + + return ubi_eba_write_leb(ubi, vol, lnum, buf, offset, len); +} +EXPORT_SYMBOL_GPL(ubi_leb_write); + +/* + * ubi_leb_change - change logical eraseblock atomically. + * @desc: volume descriptor + * @lnum: logical eraseblock number to change + * @buf: data to write + * @len: how many bytes to write + * + * This function changes the contents of a logical eraseblock atomically. @buf + * has to contain new logical eraseblock data, and @len - the length of the + * data, which has to be aligned. The length may be shorter than the logical + * eraseblock size, ant the logical eraseblock may be appended to more times + * later on. This function guarantees that in case of an unclean reboot the old + * contents is preserved. Returns zero in case of success and a negative error + * code in case of failure. + */ +int ubi_leb_change(struct ubi_volume_desc *desc, int lnum, const void *buf, + int len) +{ + struct ubi_volume *vol = desc->vol; + struct ubi_device *ubi = vol->ubi; + int vol_id = vol->vol_id; + + dbg_gen("atomically write %d bytes to LEB %d:%d", len, vol_id, lnum); + + if (vol_id < 0 || vol_id >= ubi->vtbl_slots) + return -EINVAL; + + if (desc->mode == UBI_READONLY || vol->vol_type == UBI_STATIC_VOLUME) + return -EROFS; + + if (!ubi_leb_valid(vol, lnum) || len < 0 || + len > vol->usable_leb_size || len & (ubi->min_io_size - 1)) + return -EINVAL; + + if (vol->upd_marker) + return -EBADF; + + if (len == 0) + return 0; + + return ubi_eba_atomic_leb_change(ubi, vol, lnum, buf, len); +} +EXPORT_SYMBOL_GPL(ubi_leb_change); + +/** + * ubi_leb_erase - erase logical eraseblock. + * @desc: volume descriptor + * @lnum: logical eraseblock number + * + * This function un-maps logical eraseblock @lnum and synchronously erases the + * correspondent physical eraseblock. Returns zero in case of success and a + * negative error code in case of failure. + * + * If the volume is damaged because of an interrupted update this function just + * returns immediately with %-EBADF code. + */ +int ubi_leb_erase(struct ubi_volume_desc *desc, int lnum) +{ + struct ubi_volume *vol = desc->vol; + struct ubi_device *ubi = vol->ubi; + int err; + + dbg_gen("erase LEB %d:%d", vol->vol_id, lnum); + + if (desc->mode == UBI_READONLY || vol->vol_type == UBI_STATIC_VOLUME) + return -EROFS; + + if (!ubi_leb_valid(vol, lnum)) + return -EINVAL; + + if (vol->upd_marker) + return -EBADF; + + err = ubi_eba_unmap_leb(ubi, vol, lnum); + if (err) + return err; + + return ubi_wl_flush(ubi, vol->vol_id, lnum); +} +EXPORT_SYMBOL_GPL(ubi_leb_erase); + +/** + * ubi_leb_unmap - un-map logical eraseblock. + * @desc: volume descriptor + * @lnum: logical eraseblock number + * + * This function un-maps logical eraseblock @lnum and schedules the + * corresponding physical eraseblock for erasure, so that it will eventually be + * physically erased in background. This operation is much faster than the + * erase operation. + * + * Unlike erase, the un-map operation does not guarantee that the logical + * eraseblock will contain all 0xFF bytes when UBI is initialized again. For + * example, if several logical eraseblocks are un-mapped, and an unclean reboot + * happens after this, the logical eraseblocks will not necessarily be + * un-mapped again when this MTD device is attached. They may actually be + * mapped to the same physical eraseblocks again. So, this function has to be + * used with care. + * + * In other words, when un-mapping a logical eraseblock, UBI does not store + * any information about this on the flash media, it just marks the logical + * eraseblock as "un-mapped" in RAM. If UBI is detached before the physical + * eraseblock is physically erased, it will be mapped again to the same logical + * eraseblock when the MTD device is attached again. + * + * The main and obvious use-case of this function is when the contents of a + * logical eraseblock has to be re-written. Then it is much more efficient to + * first un-map it, then write new data, rather than first erase it, then write + * new data. Note, once new data has been written to the logical eraseblock, + * UBI guarantees that the old contents has gone forever. In other words, if an + * unclean reboot happens after the logical eraseblock has been un-mapped and + * then written to, it will contain the last written data. + * + * This function returns zero in case of success and a negative error code in + * case of failure. If the volume is damaged because of an interrupted update + * this function just returns immediately with %-EBADF code. + */ +int ubi_leb_unmap(struct ubi_volume_desc *desc, int lnum) +{ + struct ubi_volume *vol = desc->vol; + struct ubi_device *ubi = vol->ubi; + + dbg_gen("unmap LEB %d:%d", vol->vol_id, lnum); + + if (desc->mode == UBI_READONLY || vol->vol_type == UBI_STATIC_VOLUME) + return -EROFS; + + if (!ubi_leb_valid(vol, lnum)) + return -EINVAL; + + if (vol->upd_marker) + return -EBADF; + + return ubi_eba_unmap_leb(ubi, vol, lnum); +} +EXPORT_SYMBOL_GPL(ubi_leb_unmap); + +/** + * ubi_leb_map - map logical eraseblock to a physical eraseblock. + * @desc: volume descriptor + * @lnum: logical eraseblock number + * + * This function maps an un-mapped logical eraseblock @lnum to a physical + * eraseblock. This means, that after a successful invocation of this + * function the logical eraseblock @lnum will be empty (contain only %0xFF + * bytes) and be mapped to a physical eraseblock, even if an unclean reboot + * happens. + * + * This function returns zero in case of success, %-EBADF if the volume is + * damaged because of an interrupted update, %-EBADMSG if the logical + * eraseblock is already mapped, and other negative error codes in case of + * other failures. + */ +int ubi_leb_map(struct ubi_volume_desc *desc, int lnum) +{ + struct ubi_volume *vol = desc->vol; + struct ubi_device *ubi = vol->ubi; + + dbg_gen("map LEB %d:%d", vol->vol_id, lnum); + + if (desc->mode == UBI_READONLY || vol->vol_type == UBI_STATIC_VOLUME) + return -EROFS; + + if (!ubi_leb_valid(vol, lnum)) + return -EINVAL; + + if (vol->upd_marker) + return -EBADF; + + if (ubi_eba_is_mapped(vol, lnum)) + return -EBADMSG; + + return ubi_eba_write_leb(ubi, vol, lnum, NULL, 0, 0); +} +EXPORT_SYMBOL_GPL(ubi_leb_map); + +/** + * ubi_is_mapped - check if logical eraseblock is mapped. + * @desc: volume descriptor + * @lnum: logical eraseblock number + * + * This function checks if logical eraseblock @lnum is mapped to a physical + * eraseblock. If a logical eraseblock is un-mapped, this does not necessarily + * mean it will still be un-mapped after the UBI device is re-attached. The + * logical eraseblock may become mapped to the physical eraseblock it was last + * mapped to. + * + * This function returns %1 if the LEB is mapped, %0 if not, and a negative + * error code in case of failure. If the volume is damaged because of an + * interrupted update this function just returns immediately with %-EBADF error + * code. + */ +int ubi_is_mapped(struct ubi_volume_desc *desc, int lnum) +{ + struct ubi_volume *vol = desc->vol; + + dbg_gen("test LEB %d:%d", vol->vol_id, lnum); + + if (!ubi_leb_valid(vol, lnum)) + return -EINVAL; + + if (vol->upd_marker) + return -EBADF; + + return ubi_eba_is_mapped(vol, lnum); +} +EXPORT_SYMBOL_GPL(ubi_is_mapped); + +/** + * ubi_sync - synchronize UBI device buffers. + * @ubi_num: UBI device to synchronize + * + * The underlying MTD device may cache data in hardware or in software. This + * function ensures the caches are flushed. Returns zero in case of success and + * a negative error code in case of failure. + */ +int ubi_sync(int ubi_num) +{ + struct ubi_device *ubi; + + ubi = ubi_get_device(ubi_num); + if (!ubi) + return -ENODEV; + + mtd_sync(ubi->mtd); + ubi_put_device(ubi); + return 0; +} +EXPORT_SYMBOL_GPL(ubi_sync); + +/** + * ubi_flush - flush UBI work queue. + * @ubi_num: UBI device to flush work queue + * @vol_id: volume id to flush for + * @lnum: logical eraseblock number to flush for + * + * This function executes all pending works for a particular volume id / logical + * eraseblock number pair. If either value is set to %UBI_ALL, then it acts as + * a wildcard for all of the corresponding volume numbers or logical + * eraseblock numbers. It returns zero in case of success and a negative error + * code in case of failure. + */ +int ubi_flush(int ubi_num, int vol_id, int lnum) +{ + struct ubi_device *ubi; + int err = 0; + + ubi = ubi_get_device(ubi_num); + if (!ubi) + return -ENODEV; + + err = ubi_wl_flush(ubi, vol_id, lnum); + ubi_put_device(ubi); + return err; +} +EXPORT_SYMBOL_GPL(ubi_flush); + +BLOCKING_NOTIFIER_HEAD(ubi_notifiers); + +/** + * ubi_register_volume_notifier - register a volume notifier. + * @nb: the notifier description object + * @ignore_existing: if non-zero, do not send "added" notification for all + * already existing volumes + * + * This function registers a volume notifier, which means that + * 'nb->notifier_call()' will be invoked when an UBI volume is created, + * removed, re-sized, re-named, or updated. The first argument of the function + * is the notification type. The second argument is pointer to a + * &struct ubi_notification object which describes the notification event. + * Using UBI API from the volume notifier is prohibited. + * + * This function returns zero in case of success and a negative error code + * in case of failure. + */ +int ubi_register_volume_notifier(struct notifier_block *nb, + int ignore_existing) +{ + int err; + + err = blocking_notifier_chain_register(&ubi_notifiers, nb); + if (err != 0) + return err; + if (ignore_existing) + return 0; + + /* + * We are going to walk all UBI devices and all volumes, and + * notify the user about existing volumes by the %UBI_VOLUME_ADDED + * event. We have to lock the @ubi_devices_mutex to make sure UBI + * devices do not disappear. + */ + mutex_lock(&ubi_devices_mutex); + ubi_enumerate_volumes(nb); + mutex_unlock(&ubi_devices_mutex); + + return err; +} +EXPORT_SYMBOL_GPL(ubi_register_volume_notifier); + +/** + * ubi_unregister_volume_notifier - unregister the volume notifier. + * @nb: the notifier description object + * + * This function unregisters volume notifier @nm and returns zero in case of + * success and a negative error code in case of failure. + */ +int ubi_unregister_volume_notifier(struct notifier_block *nb) +{ + return blocking_notifier_chain_unregister(&ubi_notifiers, nb); +} +EXPORT_SYMBOL_GPL(ubi_unregister_volume_notifier); diff --git a/drivers/mtd/ubi/misc.c b/drivers/mtd/ubi/misc.c new file mode 100644 index 0000000000..1794d66b6e --- /dev/null +++ b/drivers/mtd/ubi/misc.c @@ -0,0 +1,191 @@ +// SPDX-License-Identifier: GPL-2.0-or-later +/* + * Copyright (c) International Business Machines Corp., 2006 + * + * Author: Artem Bityutskiy (Битюцкий Артём) + */ + +/* Here we keep miscellaneous functions which are used all over the UBI code */ + +#include "ubi.h" + +/** + * ubi_calc_data_len - calculate how much real data is stored in a buffer. + * @ubi: UBI device description object + * @buf: a buffer with the contents of the physical eraseblock + * @length: the buffer length + * + * This function calculates how much "real data" is stored in @buf and returnes + * the length. Continuous 0xFF bytes at the end of the buffer are not + * considered as "real data". + */ +int ubi_calc_data_len(const struct ubi_device *ubi, const void *buf, + int length) +{ + int i; + + ubi_assert(!(length & (ubi->min_io_size - 1))); + + for (i = length - 1; i >= 0; i--) + if (((const uint8_t *)buf)[i] != 0xFF) + break; + + /* The resulting length must be aligned to the minimum flash I/O size */ + length = ALIGN(i + 1, ubi->min_io_size); + return length; +} + +/** + * ubi_check_volume - check the contents of a static volume. + * @ubi: UBI device description object + * @vol_id: ID of the volume to check + * + * This function checks if static volume @vol_id is corrupted by fully reading + * it and checking data CRC. This function returns %0 if the volume is not + * corrupted, %1 if it is corrupted and a negative error code in case of + * failure. Dynamic volumes are not checked and zero is returned immediately. + */ +int ubi_check_volume(struct ubi_device *ubi, int vol_id) +{ + void *buf; + int err = 0, i; + struct ubi_volume *vol = ubi->volumes[vol_id]; + + if (vol->vol_type != UBI_STATIC_VOLUME) + return 0; + + buf = vmalloc(vol->usable_leb_size); + if (!buf) + return -ENOMEM; + + for (i = 0; i < vol->used_ebs; i++) { + int size; + + cond_resched(); + + if (i == vol->used_ebs - 1) + size = vol->last_eb_bytes; + else + size = vol->usable_leb_size; + + err = ubi_eba_read_leb(ubi, vol, i, buf, 0, size, 1); + if (err) { + if (mtd_is_eccerr(err)) + err = 1; + break; + } + } + + vfree(buf); + return err; +} + +/** + * ubi_update_reserved - update bad eraseblock handling accounting data. + * @ubi: UBI device description object + * + * This function calculates the gap between current number of PEBs reserved for + * bad eraseblock handling and the required level of PEBs that must be + * reserved, and if necessary, reserves more PEBs to fill that gap, according + * to availability. Should be called with ubi->volumes_lock held. + */ +void ubi_update_reserved(struct ubi_device *ubi) +{ + int need = ubi->beb_rsvd_level - ubi->beb_rsvd_pebs; + + if (need <= 0 || ubi->avail_pebs == 0) + return; + + need = min_t(int, need, ubi->avail_pebs); + ubi->avail_pebs -= need; + ubi->rsvd_pebs += need; + ubi->beb_rsvd_pebs += need; + ubi_msg(ubi, "reserved more %d PEBs for bad PEB handling", need); +} + +/** + * ubi_calculate_reserved - calculate how many PEBs must be reserved for bad + * eraseblock handling. + * @ubi: UBI device description object + */ +void ubi_calculate_reserved(struct ubi_device *ubi) +{ + /* + * Calculate the actual number of PEBs currently needed to be reserved + * for future bad eraseblock handling. + */ + ubi->beb_rsvd_level = ubi->bad_peb_limit - ubi->bad_peb_count; + if (ubi->beb_rsvd_level < 0) { + ubi->beb_rsvd_level = 0; + ubi_warn(ubi, "number of bad PEBs (%d) is above the expected limit (%d), not reserving any PEBs for bad PEB handling, will use available PEBs (if any)", + ubi->bad_peb_count, ubi->bad_peb_limit); + } +} + +/** + * ubi_check_pattern - check if buffer contains only a certain byte pattern. + * @buf: buffer to check + * @patt: the pattern to check + * @size: buffer size in bytes + * + * This function returns %1 in there are only @patt bytes in @buf, and %0 if + * something else was also found. + */ +int ubi_check_pattern(const void *buf, uint8_t patt, int size) +{ + int i; + + for (i = 0; i < size; i++) + if (((const uint8_t *)buf)[i] != patt) + return 0; + return 1; +} + +/* Normal UBI messages */ +void ubi_msg(const struct ubi_device *ubi, const char *fmt, ...) +{ + struct va_format vaf; + va_list args; + + va_start(args, fmt); + + vaf.fmt = fmt; + vaf.va = &args; + + pr_notice(UBI_NAME_STR "%d: %pV\n", ubi->ubi_num, &vaf); + + va_end(args); +} + +/* UBI warning messages */ +void ubi_warn(const struct ubi_device *ubi, const char *fmt, ...) +{ + struct va_format vaf; + va_list args; + + va_start(args, fmt); + + vaf.fmt = fmt; + vaf.va = &args; + + pr_warn(UBI_NAME_STR "%d warning: %ps: %pV\n", + ubi->ubi_num, __builtin_return_address(0), &vaf); + + va_end(args); +} + +/* UBI error messages */ +void ubi_err(const struct ubi_device *ubi, const char *fmt, ...) +{ + struct va_format vaf; + va_list args; + + va_start(args, fmt); + + vaf.fmt = fmt; + vaf.va = &args; + + pr_err(UBI_NAME_STR "%d error: %ps: %pV\n", + ubi->ubi_num, __builtin_return_address(0), &vaf); + va_end(args); +} diff --git a/drivers/mtd/ubi/ubi-media.h b/drivers/mtd/ubi/ubi-media.h new file mode 100644 index 0000000000..2c9cd3b643 --- /dev/null +++ b/drivers/mtd/ubi/ubi-media.h @@ -0,0 +1,503 @@ +/* SPDX-License-Identifier: (GPL-2.0+ OR BSD-3-Clause) */ +/* + * Copyright (C) International Business Machines Corp., 2006 + * Authors: Artem Bityutskiy (Битюцкий Артём) + * Thomas Gleixner + * Frank Haverkamp + * Oliver Lohmann + * Andreas Arnez + * + * This file defines the layout of UBI headers and all the other UBI on-flash + * data structures. + */ + +#ifndef __UBI_MEDIA_H__ +#define __UBI_MEDIA_H__ + +#include <asm/byteorder.h> + +/* The version of UBI images supported by this implementation */ +#define UBI_VERSION 1 + +/* The highest erase counter value supported by this implementation */ +#define UBI_MAX_ERASECOUNTER 0x7FFFFFFF + +/* The initial CRC32 value used when calculating CRC checksums */ +#define UBI_CRC32_INIT 0xFFFFFFFFU + +/* Erase counter header magic number (ASCII "UBI#") */ +#define UBI_EC_HDR_MAGIC 0x55424923 +/* Volume identifier header magic number (ASCII "UBI!") */ +#define UBI_VID_HDR_MAGIC 0x55424921 + +/* + * Volume type constants used in the volume identifier header. + * + * @UBI_VID_DYNAMIC: dynamic volume + * @UBI_VID_STATIC: static volume + */ +enum { + UBI_VID_DYNAMIC = 1, + UBI_VID_STATIC = 2 +}; + +/* + * Volume flags used in the volume table record. + * + * @UBI_VTBL_AUTORESIZE_FLG: auto-resize this volume + * @UBI_VTBL_SKIP_CRC_CHECK_FLG: skip the CRC check done on a static volume at + * open time. Should only be set on volumes that + * are used by upper layers doing this kind of + * check. Main use-case for this flag is + * boot-time reduction + * + * %UBI_VTBL_AUTORESIZE_FLG flag can be set only for one volume in the volume + * table. UBI automatically re-sizes the volume which has this flag and makes + * the volume to be of largest possible size. This means that if after the + * initialization UBI finds out that there are available physical eraseblocks + * present on the device, it automatically appends all of them to the volume + * (the physical eraseblocks reserved for bad eraseblocks handling and other + * reserved physical eraseblocks are not taken). So, if there is a volume with + * the %UBI_VTBL_AUTORESIZE_FLG flag set, the amount of available logical + * eraseblocks will be zero after UBI is loaded, because all of them will be + * reserved for this volume. Note, the %UBI_VTBL_AUTORESIZE_FLG bit is cleared + * after the volume had been initialized. + * + * The auto-resize feature is useful for device production purposes. For + * example, different NAND flash chips may have different amount of initial bad + * eraseblocks, depending of particular chip instance. Manufacturers of NAND + * chips usually guarantee that the amount of initial bad eraseblocks does not + * exceed certain percent, e.g. 2%. When one creates an UBI image which will be + * flashed to the end devices in production, he does not know the exact amount + * of good physical eraseblocks the NAND chip on the device will have, but this + * number is required to calculate the volume sized and put them to the volume + * table of the UBI image. In this case, one of the volumes (e.g., the one + * which will store the root file system) is marked as "auto-resizable", and + * UBI will adjust its size on the first boot if needed. + * + * Note, first UBI reserves some amount of physical eraseblocks for bad + * eraseblock handling, and then re-sizes the volume, not vice-versa. This + * means that the pool of reserved physical eraseblocks will always be present. + */ +enum { + UBI_VTBL_AUTORESIZE_FLG = 0x01, + UBI_VTBL_SKIP_CRC_CHECK_FLG = 0x02, +}; + +/* + * Compatibility constants used by internal volumes. + * + * @UBI_COMPAT_DELETE: delete this internal volume before anything is written + * to the flash + * @UBI_COMPAT_RO: attach this device in read-only mode + * @UBI_COMPAT_PRESERVE: preserve this internal volume - do not touch its + * physical eraseblocks, don't allow the wear-leveling + * sub-system to move them + * @UBI_COMPAT_REJECT: reject this UBI image + */ +enum { + UBI_COMPAT_DELETE = 1, + UBI_COMPAT_RO = 2, + UBI_COMPAT_PRESERVE = 4, + UBI_COMPAT_REJECT = 5 +}; + +/* Sizes of UBI headers */ +#define UBI_EC_HDR_SIZE sizeof(struct ubi_ec_hdr) +#define UBI_VID_HDR_SIZE sizeof(struct ubi_vid_hdr) + +/* Sizes of UBI headers without the ending CRC */ +#define UBI_EC_HDR_SIZE_CRC (UBI_EC_HDR_SIZE - sizeof(__be32)) +#define UBI_VID_HDR_SIZE_CRC (UBI_VID_HDR_SIZE - sizeof(__be32)) + +/** + * struct ubi_ec_hdr - UBI erase counter header. + * @magic: erase counter header magic number (%UBI_EC_HDR_MAGIC) + * @version: version of UBI implementation which is supposed to accept this + * UBI image + * @padding1: reserved for future, zeroes + * @ec: the erase counter + * @vid_hdr_offset: where the VID header starts + * @data_offset: where the user data start + * @image_seq: image sequence number + * @padding2: reserved for future, zeroes + * @hdr_crc: erase counter header CRC checksum + * + * The erase counter header takes 64 bytes and has a plenty of unused space for + * future usage. The unused fields are zeroed. The @version field is used to + * indicate the version of UBI implementation which is supposed to be able to + * work with this UBI image. If @version is greater than the current UBI + * version, the image is rejected. This may be useful in future if something + * is changed radically. This field is duplicated in the volume identifier + * header. + * + * The @vid_hdr_offset and @data_offset fields contain the offset of the + * volume identifier header and user data, relative to the beginning of the + * physical eraseblock. These values have to be the same for all physical + * eraseblocks. + * + * The @image_seq field is used to validate a UBI image that has been prepared + * for a UBI device. The @image_seq value can be any value, but it must be the + * same on all eraseblocks. UBI will ensure that all new erase counter headers + * also contain this value, and will check the value when attaching the flash. + * One way to make use of @image_seq is to increase its value by one every time + * an image is flashed over an existing image, then, if the flashing does not + * complete, UBI will detect the error when attaching the media. + */ +struct ubi_ec_hdr { + __be32 magic; + __u8 version; + __u8 padding1[3]; + __be64 ec; /* Warning: the current limit is 31-bit anyway! */ + __be32 vid_hdr_offset; + __be32 data_offset; + __be32 image_seq; + __u8 padding2[32]; + __be32 hdr_crc; +} __packed; + +/** + * struct ubi_vid_hdr - on-flash UBI volume identifier header. + * @magic: volume identifier header magic number (%UBI_VID_HDR_MAGIC) + * @version: UBI implementation version which is supposed to accept this UBI + * image (%UBI_VERSION) + * @vol_type: volume type (%UBI_VID_DYNAMIC or %UBI_VID_STATIC) + * @copy_flag: if this logical eraseblock was copied from another physical + * eraseblock (for wear-leveling reasons) + * @compat: compatibility of this volume (%0, %UBI_COMPAT_DELETE, + * %UBI_COMPAT_IGNORE, %UBI_COMPAT_PRESERVE, or %UBI_COMPAT_REJECT) + * @vol_id: ID of this volume + * @lnum: logical eraseblock number + * @padding1: reserved for future, zeroes + * @data_size: how many bytes of data this logical eraseblock contains + * @used_ebs: total number of used logical eraseblocks in this volume + * @data_pad: how many bytes at the end of this physical eraseblock are not + * used + * @data_crc: CRC checksum of the data stored in this logical eraseblock + * @padding2: reserved for future, zeroes + * @sqnum: sequence number + * @padding3: reserved for future, zeroes + * @hdr_crc: volume identifier header CRC checksum + * + * The @sqnum is the value of the global sequence counter at the time when this + * VID header was created. The global sequence counter is incremented each time + * UBI writes a new VID header to the flash, i.e. when it maps a logical + * eraseblock to a new physical eraseblock. The global sequence counter is an + * unsigned 64-bit integer and we assume it never overflows. The @sqnum + * (sequence number) is used to distinguish between older and newer versions of + * logical eraseblocks. + * + * There are 2 situations when there may be more than one physical eraseblock + * corresponding to the same logical eraseblock, i.e., having the same @vol_id + * and @lnum values in the volume identifier header. Suppose we have a logical + * eraseblock L and it is mapped to the physical eraseblock P. + * + * 1. Because UBI may erase physical eraseblocks asynchronously, the following + * situation is possible: L is asynchronously erased, so P is scheduled for + * erasure, then L is written to,i.e. mapped to another physical eraseblock P1, + * so P1 is written to, then an unclean reboot happens. Result - there are 2 + * physical eraseblocks P and P1 corresponding to the same logical eraseblock + * L. But P1 has greater sequence number, so UBI picks P1 when it attaches the + * flash. + * + * 2. From time to time UBI moves logical eraseblocks to other physical + * eraseblocks for wear-leveling reasons. If, for example, UBI moves L from P + * to P1, and an unclean reboot happens before P is physically erased, there + * are two physical eraseblocks P and P1 corresponding to L and UBI has to + * select one of them when the flash is attached. The @sqnum field says which + * PEB is the original (obviously P will have lower @sqnum) and the copy. But + * it is not enough to select the physical eraseblock with the higher sequence + * number, because the unclean reboot could have happen in the middle of the + * copying process, so the data in P is corrupted. It is also not enough to + * just select the physical eraseblock with lower sequence number, because the + * data there may be old (consider a case if more data was added to P1 after + * the copying). Moreover, the unclean reboot may happen when the erasure of P + * was just started, so it result in unstable P, which is "mostly" OK, but + * still has unstable bits. + * + * UBI uses the @copy_flag field to indicate that this logical eraseblock is a + * copy. UBI also calculates data CRC when the data is moved and stores it at + * the @data_crc field of the copy (P1). So when UBI needs to pick one physical + * eraseblock of two (P or P1), the @copy_flag of the newer one (P1) is + * examined. If it is cleared, the situation is simple and the newer one is + * picked. If it is set, the data CRC of the copy (P1) is examined. If the CRC + * checksum is correct, this physical eraseblock is selected (P1). Otherwise + * the older one (P) is selected. + * + * There are 2 sorts of volumes in UBI: user volumes and internal volumes. + * Internal volumes are not seen from outside and are used for various internal + * UBI purposes. In this implementation there is only one internal volume - the + * layout volume. Internal volumes are the main mechanism of UBI extensions. + * For example, in future one may introduce a journal internal volume. Internal + * volumes have their own reserved range of IDs. + * + * The @compat field is only used for internal volumes and contains the "degree + * of their compatibility". It is always zero for user volumes. This field + * provides a mechanism to introduce UBI extensions and to be still compatible + * with older UBI binaries. For example, if someone introduced a journal in + * future, he would probably use %UBI_COMPAT_DELETE compatibility for the + * journal volume. And in this case, older UBI binaries, which know nothing + * about the journal volume, would just delete this volume and work perfectly + * fine. This is similar to what Ext2fs does when it is fed by an Ext3fs image + * - it just ignores the Ext3fs journal. + * + * The @data_crc field contains the CRC checksum of the contents of the logical + * eraseblock if this is a static volume. In case of dynamic volumes, it does + * not contain the CRC checksum as a rule. The only exception is when the + * data of the physical eraseblock was moved by the wear-leveling sub-system, + * then the wear-leveling sub-system calculates the data CRC and stores it in + * the @data_crc field. And of course, the @copy_flag is %in this case. + * + * The @data_size field is used only for static volumes because UBI has to know + * how many bytes of data are stored in this eraseblock. For dynamic volumes, + * this field usually contains zero. The only exception is when the data of the + * physical eraseblock was moved to another physical eraseblock for + * wear-leveling reasons. In this case, UBI calculates CRC checksum of the + * contents and uses both @data_crc and @data_size fields. In this case, the + * @data_size field contains data size. + * + * The @used_ebs field is used only for static volumes and indicates how many + * eraseblocks the data of the volume takes. For dynamic volumes this field is + * not used and always contains zero. + * + * The @data_pad is calculated when volumes are created using the alignment + * parameter. So, effectively, the @data_pad field reduces the size of logical + * eraseblocks of this volume. This is very handy when one uses block-oriented + * software (say, cramfs) on top of the UBI volume. + */ +struct ubi_vid_hdr { + __be32 magic; + __u8 version; + __u8 vol_type; + __u8 copy_flag; + __u8 compat; + __be32 vol_id; + __be32 lnum; + __u8 padding1[4]; + __be32 data_size; + __be32 used_ebs; + __be32 data_pad; + __be32 data_crc; + __u8 padding2[4]; + __be64 sqnum; + __u8 padding3[12]; + __be32 hdr_crc; +} __packed; + +/* Internal UBI volumes count */ +#define UBI_INT_VOL_COUNT 1 + +/* + * Starting ID of internal volumes: 0x7fffefff. + * There is reserved room for 4096 internal volumes. + */ +#define UBI_INTERNAL_VOL_START (0x7FFFFFFF - 4096) + +/* The layout volume contains the volume table */ + +#define UBI_LAYOUT_VOLUME_ID UBI_INTERNAL_VOL_START +#define UBI_LAYOUT_VOLUME_TYPE UBI_VID_DYNAMIC +#define UBI_LAYOUT_VOLUME_ALIGN 1 +#define UBI_LAYOUT_VOLUME_EBS 2 +#define UBI_LAYOUT_VOLUME_NAME "layout volume" +#define UBI_LAYOUT_VOLUME_COMPAT UBI_COMPAT_REJECT + +/* The maximum number of volumes per one UBI device */ +#define UBI_MAX_VOLUMES 128 + +/* The maximum volume name length */ +#define UBI_VOL_NAME_MAX 127 + +/* Size of the volume table record */ +#define UBI_VTBL_RECORD_SIZE sizeof(struct ubi_vtbl_record) + +/* Size of the volume table record without the ending CRC */ +#define UBI_VTBL_RECORD_SIZE_CRC (UBI_VTBL_RECORD_SIZE - sizeof(__be32)) + +/** + * struct ubi_vtbl_record - a record in the volume table. + * @reserved_pebs: how many physical eraseblocks are reserved for this volume + * @alignment: volume alignment + * @data_pad: how many bytes are unused at the end of the each physical + * eraseblock to satisfy the requested alignment + * @vol_type: volume type (%UBI_DYNAMIC_VOLUME or %UBI_STATIC_VOLUME) + * @upd_marker: if volume update was started but not finished + * @name_len: volume name length + * @name: the volume name + * @flags: volume flags (%UBI_VTBL_AUTORESIZE_FLG) + * @padding: reserved, zeroes + * @crc: a CRC32 checksum of the record + * + * The volume table records are stored in the volume table, which is stored in + * the layout volume. The layout volume consists of 2 logical eraseblock, each + * of which contains a copy of the volume table (i.e., the volume table is + * duplicated). The volume table is an array of &struct ubi_vtbl_record + * objects indexed by the volume ID. + * + * If the size of the logical eraseblock is large enough to fit + * %UBI_MAX_VOLUMES records, the volume table contains %UBI_MAX_VOLUMES + * records. Otherwise, it contains as many records as it can fit (i.e., size of + * logical eraseblock divided by sizeof(struct ubi_vtbl_record)). + * + * The @upd_marker flag is used to implement volume update. It is set to %1 + * before update and set to %0 after the update. So if the update operation was + * interrupted, UBI knows that the volume is corrupted. + * + * The @alignment field is specified when the volume is created and cannot be + * later changed. It may be useful, for example, when a block-oriented file + * system works on top of UBI. The @data_pad field is calculated using the + * logical eraseblock size and @alignment. The alignment must be multiple to the + * minimal flash I/O unit. If @alignment is 1, all the available space of + * the physical eraseblocks is used. + * + * Empty records contain all zeroes and the CRC checksum of those zeroes. + */ +struct ubi_vtbl_record { + __be32 reserved_pebs; + __be32 alignment; + __be32 data_pad; + __u8 vol_type; + __u8 upd_marker; + __be16 name_len; + __u8 name[UBI_VOL_NAME_MAX+1]; + __u8 flags; + __u8 padding[23]; + __be32 crc; +} __packed; + +/* UBI fastmap on-flash data structures */ + +#define UBI_FM_SB_VOLUME_ID (UBI_LAYOUT_VOLUME_ID + 1) +#define UBI_FM_DATA_VOLUME_ID (UBI_LAYOUT_VOLUME_ID + 2) + +/* fastmap on-flash data structure format version */ +#define UBI_FM_FMT_VERSION 1 + +#define UBI_FM_SB_MAGIC 0x7B11D69F +#define UBI_FM_HDR_MAGIC 0xD4B82EF7 +#define UBI_FM_VHDR_MAGIC 0xFA370ED1 +#define UBI_FM_POOL_MAGIC 0x67AF4D08 +#define UBI_FM_EBA_MAGIC 0xf0c040a8 + +/* A fastmap super block can be located between PEB 0 and + * UBI_FM_MAX_START */ +#define UBI_FM_MAX_START 64 + +/* A fastmap can use up to UBI_FM_MAX_BLOCKS PEBs */ +#define UBI_FM_MAX_BLOCKS 32 + +/* 5% of the total number of PEBs have to be scanned while attaching + * from a fastmap. + * But the size of this pool is limited to be between UBI_FM_MIN_POOL_SIZE and + * UBI_FM_MAX_POOL_SIZE */ +#define UBI_FM_MIN_POOL_SIZE 8 +#define UBI_FM_MAX_POOL_SIZE 256 + +/** + * struct ubi_fm_sb - UBI fastmap super block + * @magic: fastmap super block magic number (%UBI_FM_SB_MAGIC) + * @version: format version of this fastmap + * @data_crc: CRC over the fastmap data + * @used_blocks: number of PEBs used by this fastmap + * @block_loc: an array containing the location of all PEBs of the fastmap + * @block_ec: the erase counter of each used PEB + * @sqnum: highest sequence number value at the time while taking the fastmap + * + */ +struct ubi_fm_sb { + __be32 magic; + __u8 version; + __u8 padding1[3]; + __be32 data_crc; + __be32 used_blocks; + __be32 block_loc[UBI_FM_MAX_BLOCKS]; + __be32 block_ec[UBI_FM_MAX_BLOCKS]; + __be64 sqnum; + __u8 padding2[32]; +} __packed; + +/** + * struct ubi_fm_hdr - header of the fastmap data set + * @magic: fastmap header magic number (%UBI_FM_HDR_MAGIC) + * @free_peb_count: number of free PEBs known by this fastmap + * @used_peb_count: number of used PEBs known by this fastmap + * @scrub_peb_count: number of to be scrubbed PEBs known by this fastmap + * @bad_peb_count: number of bad PEBs known by this fastmap + * @erase_peb_count: number of bad PEBs which have to be erased + * @vol_count: number of UBI volumes known by this fastmap + */ +struct ubi_fm_hdr { + __be32 magic; + __be32 free_peb_count; + __be32 used_peb_count; + __be32 scrub_peb_count; + __be32 bad_peb_count; + __be32 erase_peb_count; + __be32 vol_count; + __u8 padding[4]; +} __packed; + +/* struct ubi_fm_hdr is followed by two struct ubi_fm_scan_pool */ + +/** + * struct ubi_fm_scan_pool - Fastmap pool PEBs to be scanned while attaching + * @magic: pool magic numer (%UBI_FM_POOL_MAGIC) + * @size: current pool size + * @max_size: maximal pool size + * @pebs: an array containing the location of all PEBs in this pool + */ +struct ubi_fm_scan_pool { + __be32 magic; + __be16 size; + __be16 max_size; + __be32 pebs[UBI_FM_MAX_POOL_SIZE]; + __be32 padding[4]; +} __packed; + +/* ubi_fm_scan_pool is followed by nfree+nused struct ubi_fm_ec records */ + +/** + * struct ubi_fm_ec - stores the erase counter of a PEB + * @pnum: PEB number + * @ec: ec of this PEB + */ +struct ubi_fm_ec { + __be32 pnum; + __be32 ec; +} __packed; + +/** + * struct ubi_fm_volhdr - Fastmap volume header + * it identifies the start of an eba table + * @magic: Fastmap volume header magic number (%UBI_FM_VHDR_MAGIC) + * @vol_id: volume id of the fastmapped volume + * @vol_type: type of the fastmapped volume + * @data_pad: data_pad value of the fastmapped volume + * @used_ebs: number of used LEBs within this volume + * @last_eb_bytes: number of bytes used in the last LEB + */ +struct ubi_fm_volhdr { + __be32 magic; + __be32 vol_id; + __u8 vol_type; + __u8 padding1[3]; + __be32 data_pad; + __be32 used_ebs; + __be32 last_eb_bytes; + __u8 padding2[8]; +} __packed; + +/* struct ubi_fm_volhdr is followed by one struct ubi_fm_eba records */ + +/** + * struct ubi_fm_eba - denotes an association between a PEB and LEB + * @magic: EBA table magic number + * @reserved_pebs: number of table entries + * @pnum: PEB number of LEB (LEB is the index) + */ +struct ubi_fm_eba { + __be32 magic; + __be32 reserved_pebs; + __be32 pnum[]; +} __packed; +#endif /* !__UBI_MEDIA_H__ */ diff --git a/drivers/mtd/ubi/ubi.h b/drivers/mtd/ubi/ubi.h new file mode 100644 index 0000000000..c8f1bd4fa1 --- /dev/null +++ b/drivers/mtd/ubi/ubi.h @@ -0,0 +1,1228 @@ +/* SPDX-License-Identifier: GPL-2.0-or-later */ +/* + * Copyright (c) International Business Machines Corp., 2006 + * Copyright (c) Nokia Corporation, 2006, 2007 + * + * Author: Artem Bityutskiy (Битюцкий Артём) + */ + +#ifndef __UBI_UBI_H__ +#define __UBI_UBI_H__ + +#include <linux/types.h> +#include <linux/list.h> +#include <linux/rbtree.h> +#include <linux/sched.h> +#include <linux/wait.h> +#include <linux/mutex.h> +#include <linux/rwsem.h> +#include <linux/spinlock.h> +#include <linux/fs.h> +#include <linux/cdev.h> +#include <linux/device.h> +#include <linux/slab.h> +#include <linux/string.h> +#include <linux/vmalloc.h> +#include <linux/notifier.h> +#include <linux/mtd/mtd.h> +#include <linux/mtd/ubi.h> +#include <linux/pgtable.h> + +#include "ubi-media.h" + +/* Maximum number of supported UBI devices */ +#define UBI_MAX_DEVICES 32 + +/* UBI name used for character devices, sysfs, etc */ +#define UBI_NAME_STR "ubi" + +struct ubi_device; + +/* Normal UBI messages */ +__printf(2, 3) +void ubi_msg(const struct ubi_device *ubi, const char *fmt, ...); + +/* UBI warning messages */ +__printf(2, 3) +void ubi_warn(const struct ubi_device *ubi, const char *fmt, ...); + +/* UBI error messages */ +__printf(2, 3) +void ubi_err(const struct ubi_device *ubi, const char *fmt, ...); + +/* Background thread name pattern */ +#define UBI_BGT_NAME_PATTERN "ubi_bgt%dd" + +/* + * This marker in the EBA table means that the LEB is um-mapped. + * NOTE! It has to have the same value as %UBI_ALL. + */ +#define UBI_LEB_UNMAPPED -1 + +/* + * In case of errors, UBI tries to repeat the operation several times before + * returning error. The below constant defines how many times UBI re-tries. + */ +#define UBI_IO_RETRIES 3 + +/* + * Length of the protection queue. The length is effectively equivalent to the + * number of (global) erase cycles PEBs are protected from the wear-leveling + * worker. + */ +#define UBI_PROT_QUEUE_LEN 10 + +/* The volume ID/LEB number/erase counter is unknown */ +#define UBI_UNKNOWN -1 + +/* + * The UBI debugfs directory name pattern and maximum name length (3 for "ubi" + * + 2 for the number plus 1 for the trailing zero byte. + */ +#define UBI_DFS_DIR_NAME "ubi%d" +#define UBI_DFS_DIR_LEN (3 + 2 + 1) + +/* + * Error codes returned by the I/O sub-system. + * + * UBI_IO_FF: the read region of flash contains only 0xFFs + * UBI_IO_FF_BITFLIPS: the same as %UBI_IO_FF, but also there was a data + * integrity error reported by the MTD driver + * (uncorrectable ECC error in case of NAND) + * UBI_IO_BAD_HDR: the EC or VID header is corrupted (bad magic or CRC) + * UBI_IO_BAD_HDR_EBADMSG: the same as %UBI_IO_BAD_HDR, but also there was a + * data integrity error reported by the MTD driver + * (uncorrectable ECC error in case of NAND) + * UBI_IO_BITFLIPS: bit-flips were detected and corrected + * + * Note, it is probably better to have bit-flip and ebadmsg as flags which can + * be or'ed with other error code. But this is a big change because there are + * may callers, so it does not worth the risk of introducing a bug + */ +enum { + UBI_IO_FF = 1, + UBI_IO_FF_BITFLIPS, + UBI_IO_BAD_HDR, + UBI_IO_BAD_HDR_EBADMSG, + UBI_IO_BITFLIPS, +}; + +/* + * Return codes of the 'ubi_eba_copy_leb()' function. + * + * MOVE_CANCEL_RACE: canceled because the volume is being deleted, the source + * PEB was put meanwhile, or there is I/O on the source PEB + * MOVE_SOURCE_RD_ERR: canceled because there was a read error from the source + * PEB + * MOVE_TARGET_RD_ERR: canceled because there was a read error from the target + * PEB + * MOVE_TARGET_WR_ERR: canceled because there was a write error to the target + * PEB + * MOVE_TARGET_BITFLIPS: canceled because a bit-flip was detected in the + * target PEB + * MOVE_RETRY: retry scrubbing the PEB + */ +enum { + MOVE_CANCEL_RACE = 1, + MOVE_SOURCE_RD_ERR, + MOVE_TARGET_RD_ERR, + MOVE_TARGET_WR_ERR, + MOVE_TARGET_BITFLIPS, + MOVE_RETRY, +}; + +/* + * Return codes of the fastmap sub-system + * + * UBI_NO_FASTMAP: No fastmap super block was found + * UBI_BAD_FASTMAP: A fastmap was found but it's unusable + */ +enum { + UBI_NO_FASTMAP = 1, + UBI_BAD_FASTMAP, +}; + +/* + * Flags for emulate_power_cut in ubi_debug_info + * + * POWER_CUT_EC_WRITE: Emulate a power cut when writing an EC header + * POWER_CUT_VID_WRITE: Emulate a power cut when writing a VID header + */ +enum { + POWER_CUT_EC_WRITE = 0x01, + POWER_CUT_VID_WRITE = 0x02, +}; + +/** + * struct ubi_vid_io_buf - VID buffer used to read/write VID info to/from the + * flash. + * @hdr: a pointer to the VID header stored in buffer + * @buffer: underlying buffer + */ +struct ubi_vid_io_buf { + struct ubi_vid_hdr *hdr; + void *buffer; +}; + +/** + * struct ubi_wl_entry - wear-leveling entry. + * @u.rb: link in the corresponding (free/used) RB-tree + * @u.list: link in the protection queue + * @ec: erase counter + * @pnum: physical eraseblock number + * + * This data structure is used in the WL sub-system. Each physical eraseblock + * has a corresponding &struct wl_entry object which may be kept in different + * RB-trees. See WL sub-system for details. + */ +struct ubi_wl_entry { + union { + struct rb_node rb; + struct list_head list; + } u; + int ec; + int pnum; +}; + +/** + * struct ubi_ltree_entry - an entry in the lock tree. + * @rb: links RB-tree nodes + * @vol_id: volume ID of the locked logical eraseblock + * @lnum: locked logical eraseblock number + * @users: how many tasks are using this logical eraseblock or wait for it + * @mutex: read/write mutex to implement read/write access serialization to + * the (@vol_id, @lnum) logical eraseblock + * + * This data structure is used in the EBA sub-system to implement per-LEB + * locking. When a logical eraseblock is being locked - corresponding + * &struct ubi_ltree_entry object is inserted to the lock tree (@ubi->ltree). + * See EBA sub-system for details. + */ +struct ubi_ltree_entry { + struct rb_node rb; + int vol_id; + int lnum; + int users; + struct rw_semaphore mutex; +}; + +/** + * struct ubi_rename_entry - volume re-name description data structure. + * @new_name_len: new volume name length + * @new_name: new volume name + * @remove: if not zero, this volume should be removed, not re-named + * @desc: descriptor of the volume + * @list: links re-name entries into a list + * + * This data structure is utilized in the multiple volume re-name code. Namely, + * UBI first creates a list of &struct ubi_rename_entry objects from the + * &struct ubi_rnvol_req request object, and then utilizes this list to do all + * the job. + */ +struct ubi_rename_entry { + int new_name_len; + char new_name[UBI_VOL_NAME_MAX + 1]; + int remove; + struct ubi_volume_desc *desc; + struct list_head list; +}; + +struct ubi_volume_desc; + +/** + * struct ubi_fastmap_layout - in-memory fastmap data structure. + * @e: PEBs used by the current fastmap + * @to_be_tortured: if non-zero tortured this PEB + * @used_blocks: number of used PEBs + * @max_pool_size: maximal size of the user pool + * @max_wl_pool_size: maximal size of the pool used by the WL sub-system + */ +struct ubi_fastmap_layout { + struct ubi_wl_entry *e[UBI_FM_MAX_BLOCKS]; + int to_be_tortured[UBI_FM_MAX_BLOCKS]; + int used_blocks; + int max_pool_size; + int max_wl_pool_size; +}; + +/** + * struct ubi_fm_pool - in-memory fastmap pool + * @pebs: PEBs in this pool + * @used: number of used PEBs + * @size: total number of PEBs in this pool + * @max_size: maximal size of the pool + * + * A pool gets filled with up to max_size. + * If all PEBs within the pool are used a new fastmap will be written + * to the flash and the pool gets refilled with empty PEBs. + * + */ +struct ubi_fm_pool { + int pebs[UBI_FM_MAX_POOL_SIZE]; + int used; + int size; + int max_size; +}; + +/** + * struct ubi_eba_leb_desc - EBA logical eraseblock descriptor + * @lnum: the logical eraseblock number + * @pnum: the physical eraseblock where the LEB can be found + * + * This structure is here to hide EBA's internal from other part of the + * UBI implementation. + * + * One can query the position of a LEB by calling ubi_eba_get_ldesc(). + */ +struct ubi_eba_leb_desc { + int lnum; + int pnum; +}; + +/** + * struct ubi_volume - UBI volume description data structure. + * @dev: device object to make use of the Linux device model + * @cdev: character device object to create character device + * @ubi: reference to the UBI device description object + * @vol_id: volume ID + * @ref_count: volume reference count + * @readers: number of users holding this volume in read-only mode + * @writers: number of users holding this volume in read-write mode + * @exclusive: whether somebody holds this volume in exclusive mode + * @metaonly: whether somebody is altering only meta data of this volume + * + * @reserved_pebs: how many physical eraseblocks are reserved for this volume + * @vol_type: volume type (%UBI_DYNAMIC_VOLUME or %UBI_STATIC_VOLUME) + * @usable_leb_size: logical eraseblock size without padding + * @used_ebs: how many logical eraseblocks in this volume contain data + * @last_eb_bytes: how many bytes are stored in the last logical eraseblock + * @used_bytes: how many bytes of data this volume contains + * @alignment: volume alignment + * @data_pad: how many bytes are not used at the end of physical eraseblocks to + * satisfy the requested alignment + * @name_len: volume name length + * @name: volume name + * + * @upd_ebs: how many eraseblocks are expected to be updated + * @ch_lnum: LEB number which is being changing by the atomic LEB change + * operation + * @upd_bytes: how many bytes are expected to be received for volume update or + * atomic LEB change + * @upd_received: how many bytes were already received for volume update or + * atomic LEB change + * @upd_buf: update buffer which is used to collect update data or data for + * atomic LEB change + * + * @eba_tbl: EBA table of this volume (LEB->PEB mapping) + * @skip_check: %1 if CRC check of this static volume should be skipped. + * Directly reflects the presence of the + * %UBI_VTBL_SKIP_CRC_CHECK_FLG flag in the vtbl entry + * @checked: %1 if this static volume was checked + * @corrupted: %1 if the volume is corrupted (static volumes only) + * @upd_marker: %1 if the update marker is set for this volume + * @updating: %1 if the volume is being updated + * @changing_leb: %1 if the atomic LEB change ioctl command is in progress + * @direct_writes: %1 if direct writes are enabled for this volume + * + * @checkmap: bitmap to remember which PEB->LEB mappings got checked, + * protected by UBI LEB lock tree. + * + * The @corrupted field indicates that the volume's contents is corrupted. + * Since UBI protects only static volumes, this field is not relevant to + * dynamic volumes - it is user's responsibility to assure their data + * integrity. + * + * The @upd_marker flag indicates that this volume is either being updated at + * the moment or is damaged because of an unclean reboot. + */ +struct ubi_volume { + struct device dev; + struct cdev cdev; + struct ubi_device *ubi; + int vol_id; + int ref_count; + int readers; + int writers; + int exclusive; + int metaonly; + + int reserved_pebs; + int vol_type; + int usable_leb_size; + int used_ebs; + int last_eb_bytes; + long long used_bytes; + int alignment; + int data_pad; + int name_len; + char name[UBI_VOL_NAME_MAX + 1]; + + int upd_ebs; + int ch_lnum; + long long upd_bytes; + long long upd_received; + void *upd_buf; + + struct ubi_eba_table *eba_tbl; + unsigned int skip_check:1; + unsigned int checked:1; + unsigned int corrupted:1; + unsigned int upd_marker:1; + unsigned int updating:1; + unsigned int changing_leb:1; + unsigned int direct_writes:1; + +#ifdef CONFIG_MTD_UBI_FASTMAP + unsigned long *checkmap; +#endif +}; + +/** + * struct ubi_volume_desc - UBI volume descriptor returned when it is opened. + * @vol: reference to the corresponding volume description object + * @mode: open mode (%UBI_READONLY, %UBI_READWRITE, %UBI_EXCLUSIVE + * or %UBI_METAONLY) + */ +struct ubi_volume_desc { + struct ubi_volume *vol; + int mode; +}; + +/** + * struct ubi_debug_info - debugging information for an UBI device. + * + * @chk_gen: if UBI general extra checks are enabled + * @chk_io: if UBI I/O extra checks are enabled + * @chk_fastmap: if UBI fastmap extra checks are enabled + * @disable_bgt: disable the background task for testing purposes + * @emulate_bitflips: emulate bit-flips for testing purposes + * @emulate_io_failures: emulate write/erase failures for testing purposes + * @emulate_power_cut: emulate power cut for testing purposes + * @power_cut_counter: count down for writes left until emulated power cut + * @power_cut_min: minimum number of writes before emulating a power cut + * @power_cut_max: maximum number of writes until emulating a power cut + * @dfs_dir_name: name of debugfs directory containing files of this UBI device + * @dfs_dir: direntry object of the UBI device debugfs directory + * @dfs_chk_gen: debugfs knob to enable UBI general extra checks + * @dfs_chk_io: debugfs knob to enable UBI I/O extra checks + * @dfs_chk_fastmap: debugfs knob to enable UBI fastmap extra checks + * @dfs_disable_bgt: debugfs knob to disable the background task + * @dfs_emulate_bitflips: debugfs knob to emulate bit-flips + * @dfs_emulate_io_failures: debugfs knob to emulate write/erase failures + * @dfs_emulate_power_cut: debugfs knob to emulate power cuts + * @dfs_power_cut_min: debugfs knob for minimum writes before power cut + * @dfs_power_cut_max: debugfs knob for maximum writes until power cut + */ +struct ubi_debug_info { + unsigned int chk_gen:1; + unsigned int chk_io:1; + unsigned int chk_fastmap:1; + unsigned int disable_bgt:1; + unsigned int emulate_bitflips:1; + unsigned int emulate_io_failures:1; + unsigned int emulate_power_cut:2; + unsigned int power_cut_counter; + unsigned int power_cut_min; + unsigned int power_cut_max; + char dfs_dir_name[UBI_DFS_DIR_LEN + 1]; + struct dentry *dfs_dir; + struct dentry *dfs_chk_gen; + struct dentry *dfs_chk_io; + struct dentry *dfs_chk_fastmap; + struct dentry *dfs_disable_bgt; + struct dentry *dfs_emulate_bitflips; + struct dentry *dfs_emulate_io_failures; + struct dentry *dfs_emulate_power_cut; + struct dentry *dfs_power_cut_min; + struct dentry *dfs_power_cut_max; +}; + +/** + * struct ubi_device - UBI device description structure + * @dev: UBI device object to use the Linux device model + * @cdev: character device object to create character device + * @ubi_num: UBI device number + * @ubi_name: UBI device name + * @vol_count: number of volumes in this UBI device + * @volumes: volumes of this UBI device + * @volumes_lock: protects @volumes, @rsvd_pebs, @avail_pebs, beb_rsvd_pebs, + * @beb_rsvd_level, @bad_peb_count, @good_peb_count, @vol_count, + * @vol->readers, @vol->writers, @vol->exclusive, + * @vol->metaonly, @vol->ref_count, @vol->mapping and + * @vol->eba_tbl. + * @ref_count: count of references on the UBI device + * @image_seq: image sequence number recorded on EC headers + * + * @rsvd_pebs: count of reserved physical eraseblocks + * @avail_pebs: count of available physical eraseblocks + * @beb_rsvd_pebs: how many physical eraseblocks are reserved for bad PEB + * handling + * @beb_rsvd_level: normal level of PEBs reserved for bad PEB handling + * + * @autoresize_vol_id: ID of the volume which has to be auto-resized at the end + * of UBI initialization + * @vtbl_slots: how many slots are available in the volume table + * @vtbl_size: size of the volume table in bytes + * @vtbl: in-RAM volume table copy + * @device_mutex: protects on-flash volume table and serializes volume + * creation, deletion, update, re-size, re-name and set + * property + * + * @max_ec: current highest erase counter value + * @mean_ec: current mean erase counter value + * + * @global_sqnum: global sequence number + * @ltree_lock: protects the lock tree and @global_sqnum + * @ltree: the lock tree + * @alc_mutex: serializes "atomic LEB change" operations + * + * @fm_disabled: non-zero if fastmap is disabled (default) + * @fm: in-memory data structure of the currently used fastmap + * @fm_pool: in-memory data structure of the fastmap pool + * @fm_wl_pool: in-memory data structure of the fastmap pool used by the WL + * sub-system + * @fm_protect: serializes ubi_update_fastmap(), protects @fm_buf and makes sure + * that critical sections cannot be interrupted by ubi_update_fastmap() + * @fm_buf: vmalloc()'d buffer which holds the raw fastmap + * @fm_size: fastmap size in bytes + * @fm_eba_sem: allows ubi_update_fastmap() to block EBA table changes + * @fm_work: fastmap work queue + * @fm_work_scheduled: non-zero if fastmap work was scheduled + * @fast_attach: non-zero if UBI was attached by fastmap + * @fm_anchor: The next anchor PEB to use for fastmap + * @fm_do_produce_anchor: If true produce an anchor PEB in wl + * + * @used: RB-tree of used physical eraseblocks + * @erroneous: RB-tree of erroneous used physical eraseblocks + * @free: RB-tree of free physical eraseblocks + * @free_count: Contains the number of elements in @free + * @scrub: RB-tree of physical eraseblocks which need scrubbing + * @pq: protection queue (contain physical eraseblocks which are temporarily + * protected from the wear-leveling worker) + * @pq_head: protection queue head + * @wl_lock: protects the @used, @free, @pq, @pq_head, @lookuptbl, @move_from, + * @move_to, @move_to_put @erase_pending, @wl_scheduled, @works, + * @erroneous, @erroneous_peb_count, @fm_work_scheduled, @fm_pool, + * and @fm_wl_pool fields + * @move_mutex: serializes eraseblock moves + * @work_sem: used to wait for all the scheduled works to finish and prevent + * new works from being submitted + * @wl_scheduled: non-zero if the wear-leveling was scheduled + * @lookuptbl: a table to quickly find a &struct ubi_wl_entry object for any + * physical eraseblock + * @move_from: physical eraseblock from where the data is being moved + * @move_to: physical eraseblock where the data is being moved to + * @move_to_put: if the "to" PEB was put + * @works: list of pending works + * @works_count: count of pending works + * @bgt_thread: background thread description object + * @thread_enabled: if the background thread is enabled + * @bgt_name: background thread name + * + * @flash_size: underlying MTD device size (in bytes) + * @peb_count: count of physical eraseblocks on the MTD device + * @peb_size: physical eraseblock size + * @bad_peb_limit: top limit of expected bad physical eraseblocks + * @bad_peb_count: count of bad physical eraseblocks + * @good_peb_count: count of good physical eraseblocks + * @corr_peb_count: count of corrupted physical eraseblocks (preserved and not + * used by UBI) + * @erroneous_peb_count: count of erroneous physical eraseblocks in @erroneous + * @max_erroneous: maximum allowed amount of erroneous physical eraseblocks + * @min_io_size: minimal input/output unit size of the underlying MTD device + * @hdrs_min_io_size: minimal I/O unit size used for VID and EC headers + * @ro_mode: if the UBI device is in read-only mode + * @leb_size: logical eraseblock size + * @leb_start: starting offset of logical eraseblocks within physical + * eraseblocks + * @ec_hdr_alsize: size of the EC header aligned to @hdrs_min_io_size + * @vid_hdr_alsize: size of the VID header aligned to @hdrs_min_io_size + * @vid_hdr_offset: starting offset of the volume identifier header (might be + * unaligned) + * @vid_hdr_aloffset: starting offset of the VID header aligned to + * @hdrs_min_io_size + * @vid_hdr_shift: contains @vid_hdr_offset - @vid_hdr_aloffset + * @bad_allowed: whether the MTD device admits bad physical eraseblocks or not + * @nor_flash: non-zero if working on top of NOR flash + * @max_write_size: maximum amount of bytes the underlying flash can write at a + * time (MTD write buffer size) + * @mtd: MTD device descriptor + * + * @peb_buf: a buffer of PEB size used for different purposes + * @buf_mutex: protects @peb_buf + * @ckvol_mutex: serializes static volume checking when opening + * + * @dbg: debugging information for this UBI device + */ +struct ubi_device { + struct cdev cdev; + struct device dev; + int ubi_num; + char ubi_name[sizeof(UBI_NAME_STR)+5]; + int vol_count; + struct ubi_volume *volumes[UBI_MAX_VOLUMES+UBI_INT_VOL_COUNT]; + spinlock_t volumes_lock; + int ref_count; + int image_seq; + + int rsvd_pebs; + int avail_pebs; + int beb_rsvd_pebs; + int beb_rsvd_level; + int bad_peb_limit; + + int autoresize_vol_id; + int vtbl_slots; + int vtbl_size; + struct ubi_vtbl_record *vtbl; + struct mutex device_mutex; + + int max_ec; + /* Note, mean_ec is not updated run-time - should be fixed */ + int mean_ec; + + /* EBA sub-system's stuff */ + unsigned long long global_sqnum; + spinlock_t ltree_lock; + struct rb_root ltree; + struct mutex alc_mutex; + + /* Fastmap stuff */ + int fm_disabled; + struct ubi_fastmap_layout *fm; + struct ubi_fm_pool fm_pool; + struct ubi_fm_pool fm_wl_pool; + struct rw_semaphore fm_eba_sem; + struct rw_semaphore fm_protect; + void *fm_buf; + size_t fm_size; + struct work_struct fm_work; + int fm_work_scheduled; + int fast_attach; + struct ubi_wl_entry *fm_anchor; + int fm_do_produce_anchor; + + /* Wear-leveling sub-system's stuff */ + struct rb_root used; + struct rb_root erroneous; + struct rb_root free; + int free_count; + struct rb_root scrub; + struct list_head pq[UBI_PROT_QUEUE_LEN]; + int pq_head; + spinlock_t wl_lock; + struct mutex move_mutex; + struct rw_semaphore work_sem; + int wl_scheduled; + struct ubi_wl_entry **lookuptbl; + struct ubi_wl_entry *move_from; + struct ubi_wl_entry *move_to; + int move_to_put; + struct list_head works; + int works_count; + struct task_struct *bgt_thread; + int thread_enabled; + char bgt_name[sizeof(UBI_BGT_NAME_PATTERN)+2]; + + /* I/O sub-system's stuff */ + long long flash_size; + int peb_count; + int peb_size; + int bad_peb_count; + int good_peb_count; + int corr_peb_count; + int erroneous_peb_count; + int max_erroneous; + int min_io_size; + int hdrs_min_io_size; + int ro_mode; + int leb_size; + int leb_start; + int ec_hdr_alsize; + int vid_hdr_alsize; + int vid_hdr_offset; + int vid_hdr_aloffset; + int vid_hdr_shift; + unsigned int bad_allowed:1; + unsigned int nor_flash:1; + int max_write_size; + struct mtd_info *mtd; + + void *peb_buf; + struct mutex buf_mutex; + struct mutex ckvol_mutex; + + struct ubi_debug_info dbg; +}; + +/** + * struct ubi_ainf_peb - attach information about a physical eraseblock. + * @ec: erase counter (%UBI_UNKNOWN if it is unknown) + * @pnum: physical eraseblock number + * @vol_id: ID of the volume this LEB belongs to + * @lnum: logical eraseblock number + * @scrub: if this physical eraseblock needs scrubbing + * @copy_flag: this LEB is a copy (@copy_flag is set in VID header of this LEB) + * @sqnum: sequence number + * @u: unions RB-tree or @list links + * @u.rb: link in the per-volume RB-tree of &struct ubi_ainf_peb objects + * @u.list: link in one of the eraseblock lists + * + * One object of this type is allocated for each physical eraseblock when + * attaching an MTD device. Note, if this PEB does not belong to any LEB / + * volume, the @vol_id and @lnum fields are initialized to %UBI_UNKNOWN. + */ +struct ubi_ainf_peb { + int ec; + int pnum; + int vol_id; + int lnum; + unsigned int scrub:1; + unsigned int copy_flag:1; + unsigned long long sqnum; + union { + struct rb_node rb; + struct list_head list; + } u; +}; + +/** + * struct ubi_ainf_volume - attaching information about a volume. + * @vol_id: volume ID + * @highest_lnum: highest logical eraseblock number in this volume + * @leb_count: number of logical eraseblocks in this volume + * @vol_type: volume type + * @used_ebs: number of used logical eraseblocks in this volume (only for + * static volumes) + * @last_data_size: amount of data in the last logical eraseblock of this + * volume (always equivalent to the usable logical eraseblock + * size in case of dynamic volumes) + * @data_pad: how many bytes at the end of logical eraseblocks of this volume + * are not used (due to volume alignment) + * @compat: compatibility flags of this volume + * @rb: link in the volume RB-tree + * @root: root of the RB-tree containing all the eraseblock belonging to this + * volume (&struct ubi_ainf_peb objects) + * + * One object of this type is allocated for each volume when attaching an MTD + * device. + */ +struct ubi_ainf_volume { + int vol_id; + int highest_lnum; + int leb_count; + int vol_type; + int used_ebs; + int last_data_size; + int data_pad; + int compat; + struct rb_node rb; + struct rb_root root; +}; + +/** + * struct ubi_attach_info - MTD device attaching information. + * @volumes: root of the volume RB-tree + * @corr: list of corrupted physical eraseblocks + * @free: list of free physical eraseblocks + * @erase: list of physical eraseblocks which have to be erased + * @alien: list of physical eraseblocks which should not be used by UBI (e.g., + * those belonging to "preserve"-compatible internal volumes) + * @fastmap: list of physical eraseblocks which relate to fastmap (e.g., + * eraseblocks of the current and not yet erased old fastmap blocks) + * @corr_peb_count: count of PEBs in the @corr list + * @empty_peb_count: count of PEBs which are presumably empty (contain only + * 0xFF bytes) + * @alien_peb_count: count of PEBs in the @alien list + * @bad_peb_count: count of bad physical eraseblocks + * @maybe_bad_peb_count: count of bad physical eraseblocks which are not marked + * as bad yet, but which look like bad + * @vols_found: number of volumes found + * @highest_vol_id: highest volume ID + * @is_empty: flag indicating whether the MTD device is empty or not + * @force_full_scan: flag indicating whether we need to do a full scan and drop + all existing Fastmap data structures + * @min_ec: lowest erase counter value + * @max_ec: highest erase counter value + * @max_sqnum: highest sequence number value + * @mean_ec: mean erase counter value + * @ec_sum: a temporary variable used when calculating @mean_ec + * @ec_count: a temporary variable used when calculating @mean_ec + * @aeb_slab_cache: slab cache for &struct ubi_ainf_peb objects + * @ech: temporary EC header. Only available during scan + * @vidh: temporary VID buffer. Only available during scan + * + * This data structure contains the result of attaching an MTD device and may + * be used by other UBI sub-systems to build final UBI data structures, further + * error-recovery and so on. + */ +struct ubi_attach_info { + struct rb_root volumes; + struct list_head corr; + struct list_head free; + struct list_head erase; + struct list_head alien; + struct list_head fastmap; + int corr_peb_count; + int empty_peb_count; + int alien_peb_count; + int bad_peb_count; + int maybe_bad_peb_count; + int vols_found; + int highest_vol_id; + int is_empty; + int force_full_scan; + int min_ec; + int max_ec; + unsigned long long max_sqnum; + int mean_ec; + uint64_t ec_sum; + int ec_count; + struct kmem_cache *aeb_slab_cache; + struct ubi_ec_hdr *ech; + struct ubi_vid_io_buf *vidb; +}; + +/** + * struct ubi_work - UBI work description data structure. + * @list: a link in the list of pending works + * @func: worker function + * @e: physical eraseblock to erase + * @vol_id: the volume ID on which this erasure is being performed + * @lnum: the logical eraseblock number + * @torture: if the physical eraseblock has to be tortured + * + * The @func pointer points to the worker function. If the @shutdown argument is + * not zero, the worker has to free the resources and exit immediately as the + * WL sub-system is shutting down. + * The worker has to return zero in case of success and a negative error code in + * case of failure. + */ +struct ubi_work { + struct list_head list; + int (*func)(struct ubi_device *ubi, struct ubi_work *wrk, int shutdown); + /* The below fields are only relevant to erasure works */ + struct ubi_wl_entry *e; + int vol_id; + int lnum; + int torture; +}; + +#include "debug.h" + +extern struct kmem_cache *ubi_wl_entry_slab; +extern const struct file_operations ubi_ctrl_cdev_operations; +extern const struct file_operations ubi_cdev_operations; +extern const struct file_operations ubi_vol_cdev_operations; +extern struct class ubi_class; +extern struct mutex ubi_devices_mutex; +extern struct blocking_notifier_head ubi_notifiers; + +/* attach.c */ +struct ubi_ainf_peb *ubi_alloc_aeb(struct ubi_attach_info *ai, int pnum, + int ec); +void ubi_free_aeb(struct ubi_attach_info *ai, struct ubi_ainf_peb *aeb); +int ubi_add_to_av(struct ubi_device *ubi, struct ubi_attach_info *ai, int pnum, + int ec, const struct ubi_vid_hdr *vid_hdr, int bitflips); +struct ubi_ainf_volume *ubi_add_av(struct ubi_attach_info *ai, int vol_id); +struct ubi_ainf_volume *ubi_find_av(const struct ubi_attach_info *ai, + int vol_id); +void ubi_remove_av(struct ubi_attach_info *ai, struct ubi_ainf_volume *av); +struct ubi_ainf_peb *ubi_early_get_peb(struct ubi_device *ubi, + struct ubi_attach_info *ai); +int ubi_attach(struct ubi_device *ubi, int force_scan); +void ubi_destroy_ai(struct ubi_attach_info *ai); + +/* vtbl.c */ +int ubi_change_vtbl_record(struct ubi_device *ubi, int idx, + struct ubi_vtbl_record *vtbl_rec); +int ubi_vtbl_rename_volumes(struct ubi_device *ubi, + struct list_head *rename_list); +int ubi_read_volume_table(struct ubi_device *ubi, struct ubi_attach_info *ai); + +/* vmt.c */ +int ubi_create_volume(struct ubi_device *ubi, struct ubi_mkvol_req *req); +int ubi_remove_volume(struct ubi_volume_desc *desc, int no_vtbl); +int ubi_resize_volume(struct ubi_volume_desc *desc, int reserved_pebs); +int ubi_rename_volumes(struct ubi_device *ubi, struct list_head *rename_list); +int ubi_add_volume(struct ubi_device *ubi, struct ubi_volume *vol); +void ubi_free_volume(struct ubi_device *ubi, struct ubi_volume *vol); + +/* upd.c */ +int ubi_start_update(struct ubi_device *ubi, struct ubi_volume *vol, + long long bytes); +int ubi_more_update_data(struct ubi_device *ubi, struct ubi_volume *vol, + const void __user *buf, int count); +int ubi_start_leb_change(struct ubi_device *ubi, struct ubi_volume *vol, + const struct ubi_leb_change_req *req); +int ubi_more_leb_change_data(struct ubi_device *ubi, struct ubi_volume *vol, + const void __user *buf, int count); + +/* misc.c */ +int ubi_calc_data_len(const struct ubi_device *ubi, const void *buf, + int length); +int ubi_check_volume(struct ubi_device *ubi, int vol_id); +void ubi_update_reserved(struct ubi_device *ubi); +void ubi_calculate_reserved(struct ubi_device *ubi); +int ubi_check_pattern(const void *buf, uint8_t patt, int size); + +static inline bool ubi_leb_valid(struct ubi_volume *vol, int lnum) +{ + return lnum >= 0 && lnum < vol->reserved_pebs; +} + +/* eba.c */ +struct ubi_eba_table *ubi_eba_create_table(struct ubi_volume *vol, + int nentries); +void ubi_eba_destroy_table(struct ubi_eba_table *tbl); +void ubi_eba_copy_table(struct ubi_volume *vol, struct ubi_eba_table *dst, + int nentries); +void ubi_eba_replace_table(struct ubi_volume *vol, struct ubi_eba_table *tbl); +void ubi_eba_get_ldesc(struct ubi_volume *vol, int lnum, + struct ubi_eba_leb_desc *ldesc); +bool ubi_eba_is_mapped(struct ubi_volume *vol, int lnum); +int ubi_eba_unmap_leb(struct ubi_device *ubi, struct ubi_volume *vol, + int lnum); +int ubi_eba_read_leb(struct ubi_device *ubi, struct ubi_volume *vol, int lnum, + void *buf, int offset, int len, int check); +int ubi_eba_read_leb_sg(struct ubi_device *ubi, struct ubi_volume *vol, + struct ubi_sgl *sgl, int lnum, int offset, int len, + int check); +int ubi_eba_write_leb(struct ubi_device *ubi, struct ubi_volume *vol, int lnum, + const void *buf, int offset, int len); +int ubi_eba_write_leb_st(struct ubi_device *ubi, struct ubi_volume *vol, + int lnum, const void *buf, int len, int used_ebs); +int ubi_eba_atomic_leb_change(struct ubi_device *ubi, struct ubi_volume *vol, + int lnum, const void *buf, int len); +int ubi_eba_copy_leb(struct ubi_device *ubi, int from, int to, + struct ubi_vid_io_buf *vidb); +int ubi_eba_init(struct ubi_device *ubi, struct ubi_attach_info *ai); +unsigned long long ubi_next_sqnum(struct ubi_device *ubi); +int self_check_eba(struct ubi_device *ubi, struct ubi_attach_info *ai_fastmap, + struct ubi_attach_info *ai_scan); + +/* wl.c */ +int ubi_wl_get_peb(struct ubi_device *ubi); +int ubi_wl_put_peb(struct ubi_device *ubi, int vol_id, int lnum, + int pnum, int torture); +int ubi_wl_flush(struct ubi_device *ubi, int vol_id, int lnum); +int ubi_wl_scrub_peb(struct ubi_device *ubi, int pnum); +int ubi_wl_init(struct ubi_device *ubi, struct ubi_attach_info *ai); +void ubi_wl_close(struct ubi_device *ubi); +int ubi_thread(void *u); +struct ubi_wl_entry *ubi_wl_get_fm_peb(struct ubi_device *ubi, int anchor); +int ubi_wl_put_fm_peb(struct ubi_device *ubi, struct ubi_wl_entry *used_e, + int lnum, int torture); +int ubi_is_erase_work(struct ubi_work *wrk); +void ubi_refill_pools(struct ubi_device *ubi); +int ubi_ensure_anchor_pebs(struct ubi_device *ubi); +int ubi_bitflip_check(struct ubi_device *ubi, int pnum, int force_scrub); + +/* io.c */ +int ubi_io_read(const struct ubi_device *ubi, void *buf, int pnum, int offset, + int len); +int ubi_io_write(struct ubi_device *ubi, const void *buf, int pnum, int offset, + int len); +int ubi_io_sync_erase(struct ubi_device *ubi, int pnum, int torture); +int ubi_io_is_bad(const struct ubi_device *ubi, int pnum); +int ubi_io_mark_bad(const struct ubi_device *ubi, int pnum); +int ubi_io_read_ec_hdr(struct ubi_device *ubi, int pnum, + struct ubi_ec_hdr *ec_hdr, int verbose); +int ubi_io_write_ec_hdr(struct ubi_device *ubi, int pnum, + struct ubi_ec_hdr *ec_hdr); +int ubi_io_read_vid_hdr(struct ubi_device *ubi, int pnum, + struct ubi_vid_io_buf *vidb, int verbose); +int ubi_io_write_vid_hdr(struct ubi_device *ubi, int pnum, + struct ubi_vid_io_buf *vidb); + +/* build.c */ +int ubi_attach_mtd_dev(struct mtd_info *mtd, int ubi_num, + int vid_hdr_offset, int max_beb_per1024, + bool disable_fm); +int ubi_detach_mtd_dev(int ubi_num, int anyway); +struct ubi_device *ubi_get_device(int ubi_num); +void ubi_put_device(struct ubi_device *ubi); +struct ubi_device *ubi_get_by_major(int major); +int ubi_major2num(int major); +int ubi_volume_notify(struct ubi_device *ubi, struct ubi_volume *vol, + int ntype); +int ubi_notify_all(struct ubi_device *ubi, int ntype, + struct notifier_block *nb); +int ubi_enumerate_volumes(struct notifier_block *nb); +void ubi_free_all_volumes(struct ubi_device *ubi); +void ubi_free_internal_volumes(struct ubi_device *ubi); + +/* kapi.c */ +void ubi_do_get_device_info(struct ubi_device *ubi, struct ubi_device_info *di); +void ubi_do_get_volume_info(struct ubi_device *ubi, struct ubi_volume *vol, + struct ubi_volume_info *vi); +/* scan.c */ +int ubi_compare_lebs(struct ubi_device *ubi, const struct ubi_ainf_peb *aeb, + int pnum, const struct ubi_vid_hdr *vid_hdr); + +/* fastmap.c */ +#ifdef CONFIG_MTD_UBI_FASTMAP +size_t ubi_calc_fm_size(struct ubi_device *ubi); +int ubi_update_fastmap(struct ubi_device *ubi); +int ubi_scan_fastmap(struct ubi_device *ubi, struct ubi_attach_info *ai, + struct ubi_attach_info *scan_ai); +int ubi_fastmap_init_checkmap(struct ubi_volume *vol, int leb_count); +void ubi_fastmap_destroy_checkmap(struct ubi_volume *vol); +#else +static inline int ubi_update_fastmap(struct ubi_device *ubi) { return 0; } +static inline int ubi_fastmap_init_checkmap(struct ubi_volume *vol, int leb_count) { return 0; } +static inline void ubi_fastmap_destroy_checkmap(struct ubi_volume *vol) {} +#endif + +/* block.c */ +#ifdef CONFIG_MTD_UBI_BLOCK +int ubiblock_init(void); +void ubiblock_exit(void); +int ubiblock_create(struct ubi_volume_info *vi); +int ubiblock_remove(struct ubi_volume_info *vi); +#else +static inline int ubiblock_init(void) { return 0; } +static inline void ubiblock_exit(void) {} +static inline int ubiblock_create(struct ubi_volume_info *vi) +{ + return -ENOSYS; +} +static inline int ubiblock_remove(struct ubi_volume_info *vi) +{ + return -ENOSYS; +} +#endif + +/* + * ubi_for_each_free_peb - walk the UBI free RB tree. + * @ubi: UBI device description object + * @e: a pointer to a ubi_wl_entry to use as cursor + * @pos: a pointer to RB-tree entry type to use as a loop counter + */ +#define ubi_for_each_free_peb(ubi, e, tmp_rb) \ + ubi_rb_for_each_entry((tmp_rb), (e), &(ubi)->free, u.rb) + +/* + * ubi_for_each_used_peb - walk the UBI used RB tree. + * @ubi: UBI device description object + * @e: a pointer to a ubi_wl_entry to use as cursor + * @pos: a pointer to RB-tree entry type to use as a loop counter + */ +#define ubi_for_each_used_peb(ubi, e, tmp_rb) \ + ubi_rb_for_each_entry((tmp_rb), (e), &(ubi)->used, u.rb) + +/* + * ubi_for_each_scub_peb - walk the UBI scub RB tree. + * @ubi: UBI device description object + * @e: a pointer to a ubi_wl_entry to use as cursor + * @pos: a pointer to RB-tree entry type to use as a loop counter + */ +#define ubi_for_each_scrub_peb(ubi, e, tmp_rb) \ + ubi_rb_for_each_entry((tmp_rb), (e), &(ubi)->scrub, u.rb) + +/* + * ubi_for_each_protected_peb - walk the UBI protection queue. + * @ubi: UBI device description object + * @i: a integer used as counter + * @e: a pointer to a ubi_wl_entry to use as cursor + */ +#define ubi_for_each_protected_peb(ubi, i, e) \ + for ((i) = 0; (i) < UBI_PROT_QUEUE_LEN; (i)++) \ + list_for_each_entry((e), &(ubi->pq[(i)]), u.list) + +/* + * ubi_rb_for_each_entry - walk an RB-tree. + * @rb: a pointer to type 'struct rb_node' to use as a loop counter + * @pos: a pointer to RB-tree entry type to use as a loop counter + * @root: RB-tree's root + * @member: the name of the 'struct rb_node' within the RB-tree entry + */ +#define ubi_rb_for_each_entry(rb, pos, root, member) \ + for (rb = rb_first(root), \ + pos = (rb ? container_of(rb, typeof(*pos), member) : NULL); \ + rb; \ + rb = rb_next(rb), \ + pos = (rb ? container_of(rb, typeof(*pos), member) : NULL)) + +/* + * ubi_move_aeb_to_list - move a PEB from the volume tree to a list. + * + * @av: volume attaching information + * @aeb: attaching eraseblock information + * @list: the list to move to + */ +static inline void ubi_move_aeb_to_list(struct ubi_ainf_volume *av, + struct ubi_ainf_peb *aeb, + struct list_head *list) +{ + rb_erase(&aeb->u.rb, &av->root); + list_add_tail(&aeb->u.list, list); +} + +/** + * ubi_init_vid_buf - Initialize a VID buffer + * @ubi: the UBI device + * @vidb: the VID buffer to initialize + * @buf: the underlying buffer + */ +static inline void ubi_init_vid_buf(const struct ubi_device *ubi, + struct ubi_vid_io_buf *vidb, + void *buf) +{ + if (buf) + memset(buf, 0, ubi->vid_hdr_alsize); + + vidb->buffer = buf; + vidb->hdr = buf + ubi->vid_hdr_shift; +} + +/** + * ubi_init_vid_buf - Allocate a VID buffer + * @ubi: the UBI device + * @gfp_flags: GFP flags to use for the allocation + */ +static inline struct ubi_vid_io_buf * +ubi_alloc_vid_buf(const struct ubi_device *ubi, gfp_t gfp_flags) +{ + struct ubi_vid_io_buf *vidb; + void *buf; + + vidb = kzalloc(sizeof(*vidb), gfp_flags); + if (!vidb) + return NULL; + + buf = kmalloc(ubi->vid_hdr_alsize, gfp_flags); + if (!buf) { + kfree(vidb); + return NULL; + } + + ubi_init_vid_buf(ubi, vidb, buf); + + return vidb; +} + +/** + * ubi_free_vid_buf - Free a VID buffer + * @vidb: the VID buffer to free + */ +static inline void ubi_free_vid_buf(struct ubi_vid_io_buf *vidb) +{ + if (!vidb) + return; + + kfree(vidb->buffer); + kfree(vidb); +} + +/** + * ubi_get_vid_hdr - Get the VID header attached to a VID buffer + * @vidb: VID buffer + */ +static inline struct ubi_vid_hdr *ubi_get_vid_hdr(struct ubi_vid_io_buf *vidb) +{ + return vidb->hdr; +} + +/* + * This function is equivalent to 'ubi_io_read()', but @offset is relative to + * the beginning of the logical eraseblock, not to the beginning of the + * physical eraseblock. + */ +static inline int ubi_io_read_data(const struct ubi_device *ubi, void *buf, + int pnum, int offset, int len) +{ + ubi_assert(offset >= 0); + return ubi_io_read(ubi, buf, pnum, offset + ubi->leb_start, len); +} + +/* + * This function is equivalent to 'ubi_io_write()', but @offset is relative to + * the beginning of the logical eraseblock, not to the beginning of the + * physical eraseblock. + */ +static inline int ubi_io_write_data(struct ubi_device *ubi, const void *buf, + int pnum, int offset, int len) +{ + ubi_assert(offset >= 0); + return ubi_io_write(ubi, buf, pnum, offset + ubi->leb_start, len); +} + +/** + * ubi_ro_mode - switch to read-only mode. + * @ubi: UBI device description object + */ +static inline void ubi_ro_mode(struct ubi_device *ubi) +{ + if (!ubi->ro_mode) { + ubi->ro_mode = 1; + ubi_warn(ubi, "switch to read-only mode"); + dump_stack(); + } +} + +/** + * vol_id2idx - get table index by volume ID. + * @ubi: UBI device description object + * @vol_id: volume ID + */ +static inline int vol_id2idx(const struct ubi_device *ubi, int vol_id) +{ + if (vol_id >= UBI_INTERNAL_VOL_START) + return vol_id - UBI_INTERNAL_VOL_START + ubi->vtbl_slots; + else + return vol_id; +} + +/** + * idx2vol_id - get volume ID by table index. + * @ubi: UBI device description object + * @idx: table index + */ +static inline int idx2vol_id(const struct ubi_device *ubi, int idx) +{ + if (idx >= ubi->vtbl_slots) + return idx - ubi->vtbl_slots + UBI_INTERNAL_VOL_START; + else + return idx; +} + +/** + * ubi_is_fm_vol - check whether a volume ID is a Fastmap volume. + * @vol_id: volume ID + */ +static inline bool ubi_is_fm_vol(int vol_id) +{ + switch (vol_id) { + case UBI_FM_SB_VOLUME_ID: + case UBI_FM_DATA_VOLUME_ID: + return true; + } + + return false; +} + +/** + * ubi_find_fm_block - check whether a PEB is part of the current Fastmap. + * @ubi: UBI device description object + * @pnum: physical eraseblock to look for + * + * This function returns a wear leveling object if @pnum relates to the current + * fastmap, @NULL otherwise. + */ +static inline struct ubi_wl_entry *ubi_find_fm_block(const struct ubi_device *ubi, + int pnum) +{ + int i; + + if (ubi->fm) { + for (i = 0; i < ubi->fm->used_blocks; i++) { + if (ubi->fm->e[i]->pnum == pnum) + return ubi->fm->e[i]; + } + } + + return NULL; +} + +#endif /* !__UBI_UBI_H__ */ diff --git a/drivers/mtd/ubi/upd.c b/drivers/mtd/ubi/upd.c new file mode 100644 index 0000000000..962f693cf8 --- /dev/null +++ b/drivers/mtd/ubi/upd.c @@ -0,0 +1,420 @@ +// SPDX-License-Identifier: GPL-2.0-or-later +/* + * Copyright (c) International Business Machines Corp., 2006 + * Copyright (c) Nokia Corporation, 2006 + * + * Author: Artem Bityutskiy (Битюцкий Артём) + * + * Jan 2007: Alexander Schmidt, hacked per-volume update. + */ + +/* + * This file contains implementation of the volume update and atomic LEB change + * functionality. + * + * The update operation is based on the per-volume update marker which is + * stored in the volume table. The update marker is set before the update + * starts, and removed after the update has been finished. So if the update was + * interrupted by an unclean re-boot or due to some other reasons, the update + * marker stays on the flash media and UBI finds it when it attaches the MTD + * device next time. If the update marker is set for a volume, the volume is + * treated as damaged and most I/O operations are prohibited. Only a new update + * operation is allowed. + * + * Note, in general it is possible to implement the update operation as a + * transaction with a roll-back capability. + */ + +#include <linux/err.h> +#include <linux/uaccess.h> +#include <linux/math64.h> +#include "ubi.h" + +/** + * set_update_marker - set update marker. + * @ubi: UBI device description object + * @vol: volume description object + * + * This function sets the update marker flag for volume @vol. Returns zero + * in case of success and a negative error code in case of failure. + */ +static int set_update_marker(struct ubi_device *ubi, struct ubi_volume *vol) +{ + int err; + struct ubi_vtbl_record vtbl_rec; + + dbg_gen("set update marker for volume %d", vol->vol_id); + + if (vol->upd_marker) { + ubi_assert(ubi->vtbl[vol->vol_id].upd_marker); + dbg_gen("already set"); + return 0; + } + + vtbl_rec = ubi->vtbl[vol->vol_id]; + vtbl_rec.upd_marker = 1; + + mutex_lock(&ubi->device_mutex); + err = ubi_change_vtbl_record(ubi, vol->vol_id, &vtbl_rec); + vol->upd_marker = 1; + mutex_unlock(&ubi->device_mutex); + return err; +} + +/** + * clear_update_marker - clear update marker. + * @ubi: UBI device description object + * @vol: volume description object + * @bytes: new data size in bytes + * + * This function clears the update marker for volume @vol, sets new volume + * data size and clears the "corrupted" flag (static volumes only). Returns + * zero in case of success and a negative error code in case of failure. + */ +static int clear_update_marker(struct ubi_device *ubi, struct ubi_volume *vol, + long long bytes) +{ + int err; + struct ubi_vtbl_record vtbl_rec; + + dbg_gen("clear update marker for volume %d", vol->vol_id); + + vtbl_rec = ubi->vtbl[vol->vol_id]; + ubi_assert(vol->upd_marker && vtbl_rec.upd_marker); + vtbl_rec.upd_marker = 0; + + if (vol->vol_type == UBI_STATIC_VOLUME) { + vol->corrupted = 0; + vol->used_bytes = bytes; + vol->used_ebs = div_u64_rem(bytes, vol->usable_leb_size, + &vol->last_eb_bytes); + if (vol->last_eb_bytes) + vol->used_ebs += 1; + else + vol->last_eb_bytes = vol->usable_leb_size; + } + + mutex_lock(&ubi->device_mutex); + err = ubi_change_vtbl_record(ubi, vol->vol_id, &vtbl_rec); + vol->upd_marker = 0; + mutex_unlock(&ubi->device_mutex); + return err; +} + +/** + * ubi_start_update - start volume update. + * @ubi: UBI device description object + * @vol: volume description object + * @bytes: update bytes + * + * This function starts volume update operation. If @bytes is zero, the volume + * is just wiped out. Returns zero in case of success and a negative error code + * in case of failure. + */ +int ubi_start_update(struct ubi_device *ubi, struct ubi_volume *vol, + long long bytes) +{ + int i, err; + + dbg_gen("start update of volume %d, %llu bytes", vol->vol_id, bytes); + ubi_assert(!vol->updating && !vol->changing_leb); + vol->updating = 1; + + vol->upd_buf = vmalloc(ubi->leb_size); + if (!vol->upd_buf) + return -ENOMEM; + + err = set_update_marker(ubi, vol); + if (err) + return err; + + /* Before updating - wipe out the volume */ + for (i = 0; i < vol->reserved_pebs; i++) { + err = ubi_eba_unmap_leb(ubi, vol, i); + if (err) + return err; + } + + err = ubi_wl_flush(ubi, UBI_ALL, UBI_ALL); + if (err) + return err; + + if (bytes == 0) { + err = clear_update_marker(ubi, vol, 0); + if (err) + return err; + + vfree(vol->upd_buf); + vol->updating = 0; + return 0; + } + + vol->upd_ebs = div_u64(bytes + vol->usable_leb_size - 1, + vol->usable_leb_size); + vol->upd_bytes = bytes; + vol->upd_received = 0; + return 0; +} + +/** + * ubi_start_leb_change - start atomic LEB change. + * @ubi: UBI device description object + * @vol: volume description object + * @req: operation request + * + * This function starts atomic LEB change operation. Returns zero in case of + * success and a negative error code in case of failure. + */ +int ubi_start_leb_change(struct ubi_device *ubi, struct ubi_volume *vol, + const struct ubi_leb_change_req *req) +{ + ubi_assert(!vol->updating && !vol->changing_leb); + + dbg_gen("start changing LEB %d:%d, %u bytes", + vol->vol_id, req->lnum, req->bytes); + if (req->bytes == 0) + return ubi_eba_atomic_leb_change(ubi, vol, req->lnum, NULL, 0); + + vol->upd_bytes = req->bytes; + vol->upd_received = 0; + vol->changing_leb = 1; + vol->ch_lnum = req->lnum; + + vol->upd_buf = vmalloc(ALIGN((int)req->bytes, ubi->min_io_size)); + if (!vol->upd_buf) + return -ENOMEM; + + return 0; +} + +/** + * write_leb - write update data. + * @ubi: UBI device description object + * @vol: volume description object + * @lnum: logical eraseblock number + * @buf: data to write + * @len: data size + * @used_ebs: how many logical eraseblocks will this volume contain (static + * volumes only) + * + * This function writes update data to corresponding logical eraseblock. In + * case of dynamic volume, this function checks if the data contains 0xFF bytes + * at the end. If yes, the 0xFF bytes are cut and not written. So if the whole + * buffer contains only 0xFF bytes, the LEB is left unmapped. + * + * The reason why we skip the trailing 0xFF bytes in case of dynamic volume is + * that we want to make sure that more data may be appended to the logical + * eraseblock in future. Indeed, writing 0xFF bytes may have side effects and + * this PEB won't be writable anymore. So if one writes the file-system image + * to the UBI volume where 0xFFs mean free space - UBI makes sure this free + * space is writable after the update. + * + * We do not do this for static volumes because they are read-only. But this + * also cannot be done because we have to store per-LEB CRC and the correct + * data length. + * + * This function returns zero in case of success and a negative error code in + * case of failure. + */ +static int write_leb(struct ubi_device *ubi, struct ubi_volume *vol, int lnum, + void *buf, int len, int used_ebs) +{ + int err; + + if (vol->vol_type == UBI_DYNAMIC_VOLUME) { + int l = ALIGN(len, ubi->min_io_size); + + memset(buf + len, 0xFF, l - len); + len = ubi_calc_data_len(ubi, buf, l); + if (len == 0) { + dbg_gen("all %d bytes contain 0xFF - skip", len); + return 0; + } + + err = ubi_eba_write_leb(ubi, vol, lnum, buf, 0, len); + } else { + /* + * When writing static volume, and this is the last logical + * eraseblock, the length (@len) does not have to be aligned to + * the minimal flash I/O unit. The 'ubi_eba_write_leb_st()' + * function accepts exact (unaligned) length and stores it in + * the VID header. And it takes care of proper alignment by + * padding the buffer. Here we just make sure the padding will + * contain zeros, not random trash. + */ + memset(buf + len, 0, vol->usable_leb_size - len); + err = ubi_eba_write_leb_st(ubi, vol, lnum, buf, len, used_ebs); + } + + return err; +} + +/** + * ubi_more_update_data - write more update data. + * @ubi: UBI device description object + * @vol: volume description object + * @buf: write data (user-space memory buffer) + * @count: how much bytes to write + * + * This function writes more data to the volume which is being updated. It may + * be called arbitrary number of times until all the update data arriveis. This + * function returns %0 in case of success, number of bytes written during the + * last call if the whole volume update has been successfully finished, and a + * negative error code in case of failure. + */ +int ubi_more_update_data(struct ubi_device *ubi, struct ubi_volume *vol, + const void __user *buf, int count) +{ + int lnum, offs, err = 0, len, to_write = count; + + dbg_gen("write %d of %lld bytes, %lld already passed", + count, vol->upd_bytes, vol->upd_received); + + if (ubi->ro_mode) + return -EROFS; + + lnum = div_u64_rem(vol->upd_received, vol->usable_leb_size, &offs); + if (vol->upd_received + count > vol->upd_bytes) + to_write = count = vol->upd_bytes - vol->upd_received; + + /* + * When updating volumes, we accumulate whole logical eraseblock of + * data and write it at once. + */ + if (offs != 0) { + /* + * This is a write to the middle of the logical eraseblock. We + * copy the data to our update buffer and wait for more data or + * flush it if the whole eraseblock is written or the update + * is finished. + */ + + len = vol->usable_leb_size - offs; + if (len > count) + len = count; + + err = copy_from_user(vol->upd_buf + offs, buf, len); + if (err) + return -EFAULT; + + if (offs + len == vol->usable_leb_size || + vol->upd_received + len == vol->upd_bytes) { + int flush_len = offs + len; + + /* + * OK, we gathered either the whole eraseblock or this + * is the last chunk, it's time to flush the buffer. + */ + ubi_assert(flush_len <= vol->usable_leb_size); + err = write_leb(ubi, vol, lnum, vol->upd_buf, flush_len, + vol->upd_ebs); + if (err) + return err; + } + + vol->upd_received += len; + count -= len; + buf += len; + lnum += 1; + } + + /* + * If we've got more to write, let's continue. At this point we know we + * are starting from the beginning of an eraseblock. + */ + while (count) { + if (count > vol->usable_leb_size) + len = vol->usable_leb_size; + else + len = count; + + err = copy_from_user(vol->upd_buf, buf, len); + if (err) + return -EFAULT; + + if (len == vol->usable_leb_size || + vol->upd_received + len == vol->upd_bytes) { + err = write_leb(ubi, vol, lnum, vol->upd_buf, + len, vol->upd_ebs); + if (err) + break; + } + + vol->upd_received += len; + count -= len; + lnum += 1; + buf += len; + } + + ubi_assert(vol->upd_received <= vol->upd_bytes); + if (vol->upd_received == vol->upd_bytes) { + err = ubi_wl_flush(ubi, UBI_ALL, UBI_ALL); + if (err) + return err; + /* The update is finished, clear the update marker */ + err = clear_update_marker(ubi, vol, vol->upd_bytes); + if (err) + return err; + vol->updating = 0; + err = to_write; + vfree(vol->upd_buf); + } + + return err; +} + +/** + * ubi_more_leb_change_data - accept more data for atomic LEB change. + * @ubi: UBI device description object + * @vol: volume description object + * @buf: write data (user-space memory buffer) + * @count: how much bytes to write + * + * This function accepts more data to the volume which is being under the + * "atomic LEB change" operation. It may be called arbitrary number of times + * until all data arrives. This function returns %0 in case of success, number + * of bytes written during the last call if the whole "atomic LEB change" + * operation has been successfully finished, and a negative error code in case + * of failure. + */ +int ubi_more_leb_change_data(struct ubi_device *ubi, struct ubi_volume *vol, + const void __user *buf, int count) +{ + int err; + + dbg_gen("write %d of %lld bytes, %lld already passed", + count, vol->upd_bytes, vol->upd_received); + + if (ubi->ro_mode) + return -EROFS; + + if (vol->upd_received + count > vol->upd_bytes) + count = vol->upd_bytes - vol->upd_received; + + err = copy_from_user(vol->upd_buf + vol->upd_received, buf, count); + if (err) + return -EFAULT; + + vol->upd_received += count; + + if (vol->upd_received == vol->upd_bytes) { + int len = ALIGN((int)vol->upd_bytes, ubi->min_io_size); + + memset(vol->upd_buf + vol->upd_bytes, 0xFF, + len - vol->upd_bytes); + len = ubi_calc_data_len(ubi, vol->upd_buf, len); + err = ubi_eba_atomic_leb_change(ubi, vol, vol->ch_lnum, + vol->upd_buf, len); + if (err) + return err; + } + + ubi_assert(vol->upd_received <= vol->upd_bytes); + if (vol->upd_received == vol->upd_bytes) { + vol->changing_leb = 0; + err = count; + vfree(vol->upd_buf); + } + + return err; +} diff --git a/drivers/mtd/ubi/vmt.c b/drivers/mtd/ubi/vmt.c new file mode 100644 index 0000000000..2c867d16f8 --- /dev/null +++ b/drivers/mtd/ubi/vmt.c @@ -0,0 +1,797 @@ +// SPDX-License-Identifier: GPL-2.0-or-later +/* + * Copyright (c) International Business Machines Corp., 2006 + * + * Author: Artem Bityutskiy (Битюцкий Артём) + */ + +/* + * This file contains implementation of volume creation, deletion, updating and + * resizing. + */ + +#include <linux/err.h> +#include <linux/math64.h> +#include <linux/slab.h> +#include <linux/export.h> +#include "ubi.h" + +static int self_check_volumes(struct ubi_device *ubi); + +static ssize_t vol_attribute_show(struct device *dev, + struct device_attribute *attr, char *buf); + +/* Device attributes corresponding to files in '/<sysfs>/class/ubi/ubiX_Y' */ +static struct device_attribute attr_vol_reserved_ebs = + __ATTR(reserved_ebs, S_IRUGO, vol_attribute_show, NULL); +static struct device_attribute attr_vol_type = + __ATTR(type, S_IRUGO, vol_attribute_show, NULL); +static struct device_attribute attr_vol_name = + __ATTR(name, S_IRUGO, vol_attribute_show, NULL); +static struct device_attribute attr_vol_corrupted = + __ATTR(corrupted, S_IRUGO, vol_attribute_show, NULL); +static struct device_attribute attr_vol_alignment = + __ATTR(alignment, S_IRUGO, vol_attribute_show, NULL); +static struct device_attribute attr_vol_usable_eb_size = + __ATTR(usable_eb_size, S_IRUGO, vol_attribute_show, NULL); +static struct device_attribute attr_vol_data_bytes = + __ATTR(data_bytes, S_IRUGO, vol_attribute_show, NULL); +static struct device_attribute attr_vol_upd_marker = + __ATTR(upd_marker, S_IRUGO, vol_attribute_show, NULL); + +/* + * "Show" method for files in '/<sysfs>/class/ubi/ubiX_Y/'. + * + * Consider a situation: + * A. process 1 opens a sysfs file related to volume Y, say + * /<sysfs>/class/ubi/ubiX_Y/reserved_ebs; + * B. process 2 removes volume Y; + * C. process 1 starts reading the /<sysfs>/class/ubi/ubiX_Y/reserved_ebs file; + * + * In this situation, this function will return %-ENODEV because it will find + * out that the volume was removed from the @ubi->volumes array. + */ +static ssize_t vol_attribute_show(struct device *dev, + struct device_attribute *attr, char *buf) +{ + int ret; + struct ubi_volume *vol = container_of(dev, struct ubi_volume, dev); + struct ubi_device *ubi = vol->ubi; + + spin_lock(&ubi->volumes_lock); + if (!ubi->volumes[vol->vol_id]) { + spin_unlock(&ubi->volumes_lock); + return -ENODEV; + } + /* Take a reference to prevent volume removal */ + vol->ref_count += 1; + spin_unlock(&ubi->volumes_lock); + + if (attr == &attr_vol_reserved_ebs) + ret = sprintf(buf, "%d\n", vol->reserved_pebs); + else if (attr == &attr_vol_type) { + const char *tp; + + if (vol->vol_type == UBI_DYNAMIC_VOLUME) + tp = "dynamic"; + else + tp = "static"; + ret = sprintf(buf, "%s\n", tp); + } else if (attr == &attr_vol_name) + ret = sprintf(buf, "%s\n", vol->name); + else if (attr == &attr_vol_corrupted) + ret = sprintf(buf, "%d\n", vol->corrupted); + else if (attr == &attr_vol_alignment) + ret = sprintf(buf, "%d\n", vol->alignment); + else if (attr == &attr_vol_usable_eb_size) + ret = sprintf(buf, "%d\n", vol->usable_leb_size); + else if (attr == &attr_vol_data_bytes) + ret = sprintf(buf, "%lld\n", vol->used_bytes); + else if (attr == &attr_vol_upd_marker) + ret = sprintf(buf, "%d\n", vol->upd_marker); + else + /* This must be a bug */ + ret = -EINVAL; + + /* We've done the operation, drop volume and UBI device references */ + spin_lock(&ubi->volumes_lock); + vol->ref_count -= 1; + ubi_assert(vol->ref_count >= 0); + spin_unlock(&ubi->volumes_lock); + return ret; +} + +static struct attribute *volume_dev_attrs[] = { + &attr_vol_reserved_ebs.attr, + &attr_vol_type.attr, + &attr_vol_name.attr, + &attr_vol_corrupted.attr, + &attr_vol_alignment.attr, + &attr_vol_usable_eb_size.attr, + &attr_vol_data_bytes.attr, + &attr_vol_upd_marker.attr, + NULL +}; +ATTRIBUTE_GROUPS(volume_dev); + +/* Release method for volume devices */ +static void vol_release(struct device *dev) +{ + struct ubi_volume *vol = container_of(dev, struct ubi_volume, dev); + + ubi_eba_replace_table(vol, NULL); + ubi_fastmap_destroy_checkmap(vol); + kfree(vol); +} + +/** + * ubi_create_volume - create volume. + * @ubi: UBI device description object + * @req: volume creation request + * + * This function creates volume described by @req. If @req->vol_id id + * %UBI_VOL_NUM_AUTO, this function automatically assign ID to the new volume + * and saves it in @req->vol_id. Returns zero in case of success and a negative + * error code in case of failure. Note, the caller has to have the + * @ubi->device_mutex locked. + */ +int ubi_create_volume(struct ubi_device *ubi, struct ubi_mkvol_req *req) +{ + int i, err, vol_id = req->vol_id; + struct ubi_volume *vol; + struct ubi_vtbl_record vtbl_rec; + struct ubi_eba_table *eba_tbl = NULL; + + if (ubi->ro_mode) + return -EROFS; + + vol = kzalloc(sizeof(struct ubi_volume), GFP_KERNEL); + if (!vol) + return -ENOMEM; + + device_initialize(&vol->dev); + vol->dev.release = vol_release; + vol->dev.parent = &ubi->dev; + vol->dev.class = &ubi_class; + vol->dev.groups = volume_dev_groups; + + if (req->flags & UBI_VOL_SKIP_CRC_CHECK_FLG) + vol->skip_check = 1; + + spin_lock(&ubi->volumes_lock); + if (vol_id == UBI_VOL_NUM_AUTO) { + /* Find unused volume ID */ + dbg_gen("search for vacant volume ID"); + for (i = 0; i < ubi->vtbl_slots; i++) + if (!ubi->volumes[i]) { + vol_id = i; + break; + } + + if (vol_id == UBI_VOL_NUM_AUTO) { + ubi_err(ubi, "out of volume IDs"); + err = -ENFILE; + goto out_unlock; + } + req->vol_id = vol_id; + } + + dbg_gen("create device %d, volume %d, %llu bytes, type %d, name %s", + ubi->ubi_num, vol_id, (unsigned long long)req->bytes, + (int)req->vol_type, req->name); + + /* Ensure that this volume does not exist */ + err = -EEXIST; + if (ubi->volumes[vol_id]) { + ubi_err(ubi, "volume %d already exists", vol_id); + goto out_unlock; + } + + /* Ensure that the name is unique */ + for (i = 0; i < ubi->vtbl_slots; i++) + if (ubi->volumes[i] && + ubi->volumes[i]->name_len == req->name_len && + !strcmp(ubi->volumes[i]->name, req->name)) { + ubi_err(ubi, "volume \"%s\" exists (ID %d)", + req->name, i); + goto out_unlock; + } + + /* Calculate how many eraseblocks are requested */ + vol->usable_leb_size = ubi->leb_size - ubi->leb_size % req->alignment; + vol->reserved_pebs = div_u64(req->bytes + vol->usable_leb_size - 1, + vol->usable_leb_size); + + /* Reserve physical eraseblocks */ + if (vol->reserved_pebs > ubi->avail_pebs) { + ubi_err(ubi, "not enough PEBs, only %d available", + ubi->avail_pebs); + if (ubi->corr_peb_count) + ubi_err(ubi, "%d PEBs are corrupted and not used", + ubi->corr_peb_count); + err = -ENOSPC; + goto out_unlock; + } + ubi->avail_pebs -= vol->reserved_pebs; + ubi->rsvd_pebs += vol->reserved_pebs; + spin_unlock(&ubi->volumes_lock); + + vol->vol_id = vol_id; + vol->alignment = req->alignment; + vol->data_pad = ubi->leb_size % vol->alignment; + vol->vol_type = req->vol_type; + vol->name_len = req->name_len; + memcpy(vol->name, req->name, vol->name_len); + vol->ubi = ubi; + + /* + * Finish all pending erases because there may be some LEBs belonging + * to the same volume ID. + */ + err = ubi_wl_flush(ubi, vol_id, UBI_ALL); + if (err) + goto out_acc; + + eba_tbl = ubi_eba_create_table(vol, vol->reserved_pebs); + if (IS_ERR(eba_tbl)) { + err = PTR_ERR(eba_tbl); + goto out_acc; + } + + ubi_eba_replace_table(vol, eba_tbl); + + if (vol->vol_type == UBI_DYNAMIC_VOLUME) { + vol->used_ebs = vol->reserved_pebs; + vol->last_eb_bytes = vol->usable_leb_size; + vol->used_bytes = + (long long)vol->used_ebs * vol->usable_leb_size; + } else { + vol->used_ebs = div_u64_rem(vol->used_bytes, + vol->usable_leb_size, + &vol->last_eb_bytes); + if (vol->last_eb_bytes != 0) + vol->used_ebs += 1; + else + vol->last_eb_bytes = vol->usable_leb_size; + } + + /* Make volume "available" before it becomes accessible via sysfs */ + spin_lock(&ubi->volumes_lock); + ubi->volumes[vol_id] = vol; + ubi->vol_count += 1; + spin_unlock(&ubi->volumes_lock); + + /* Register character device for the volume */ + cdev_init(&vol->cdev, &ubi_vol_cdev_operations); + vol->cdev.owner = THIS_MODULE; + + vol->dev.devt = MKDEV(MAJOR(ubi->cdev.dev), vol_id + 1); + dev_set_name(&vol->dev, "%s_%d", ubi->ubi_name, vol->vol_id); + err = cdev_device_add(&vol->cdev, &vol->dev); + if (err) { + ubi_err(ubi, "cannot add device"); + goto out_mapping; + } + + /* Fill volume table record */ + memset(&vtbl_rec, 0, sizeof(struct ubi_vtbl_record)); + vtbl_rec.reserved_pebs = cpu_to_be32(vol->reserved_pebs); + vtbl_rec.alignment = cpu_to_be32(vol->alignment); + vtbl_rec.data_pad = cpu_to_be32(vol->data_pad); + vtbl_rec.name_len = cpu_to_be16(vol->name_len); + if (vol->vol_type == UBI_DYNAMIC_VOLUME) + vtbl_rec.vol_type = UBI_VID_DYNAMIC; + else + vtbl_rec.vol_type = UBI_VID_STATIC; + + if (vol->skip_check) + vtbl_rec.flags |= UBI_VTBL_SKIP_CRC_CHECK_FLG; + + memcpy(vtbl_rec.name, vol->name, vol->name_len); + + err = ubi_change_vtbl_record(ubi, vol_id, &vtbl_rec); + if (err) + goto out_sysfs; + + ubi_volume_notify(ubi, vol, UBI_VOLUME_ADDED); + self_check_volumes(ubi); + return err; + +out_sysfs: + /* + * We have registered our device, we should not free the volume + * description object in this function in case of an error - it is + * freed by the release function. + */ + cdev_device_del(&vol->cdev, &vol->dev); +out_mapping: + spin_lock(&ubi->volumes_lock); + ubi->volumes[vol_id] = NULL; + ubi->vol_count -= 1; + spin_unlock(&ubi->volumes_lock); +out_acc: + spin_lock(&ubi->volumes_lock); + ubi->rsvd_pebs -= vol->reserved_pebs; + ubi->avail_pebs += vol->reserved_pebs; +out_unlock: + spin_unlock(&ubi->volumes_lock); + put_device(&vol->dev); + ubi_err(ubi, "cannot create volume %d, error %d", vol_id, err); + return err; +} + +/** + * ubi_remove_volume - remove volume. + * @desc: volume descriptor + * @no_vtbl: do not change volume table if not zero + * + * This function removes volume described by @desc. The volume has to be opened + * in "exclusive" mode. Returns zero in case of success and a negative error + * code in case of failure. The caller has to have the @ubi->device_mutex + * locked. + */ +int ubi_remove_volume(struct ubi_volume_desc *desc, int no_vtbl) +{ + struct ubi_volume *vol = desc->vol; + struct ubi_device *ubi = vol->ubi; + int i, err, vol_id = vol->vol_id, reserved_pebs = vol->reserved_pebs; + + dbg_gen("remove device %d, volume %d", ubi->ubi_num, vol_id); + ubi_assert(desc->mode == UBI_EXCLUSIVE); + ubi_assert(vol == ubi->volumes[vol_id]); + + if (ubi->ro_mode) + return -EROFS; + + spin_lock(&ubi->volumes_lock); + if (vol->ref_count > 1) { + /* + * The volume is busy, probably someone is reading one of its + * sysfs files. + */ + err = -EBUSY; + goto out_unlock; + } + ubi->volumes[vol_id] = NULL; + spin_unlock(&ubi->volumes_lock); + + if (!no_vtbl) { + err = ubi_change_vtbl_record(ubi, vol_id, NULL); + if (err) + goto out_err; + } + + for (i = 0; i < vol->reserved_pebs; i++) { + err = ubi_eba_unmap_leb(ubi, vol, i); + if (err) + goto out_err; + } + + cdev_device_del(&vol->cdev, &vol->dev); + put_device(&vol->dev); + + spin_lock(&ubi->volumes_lock); + ubi->rsvd_pebs -= reserved_pebs; + ubi->avail_pebs += reserved_pebs; + ubi_update_reserved(ubi); + ubi->vol_count -= 1; + spin_unlock(&ubi->volumes_lock); + + ubi_volume_notify(ubi, vol, UBI_VOLUME_REMOVED); + if (!no_vtbl) + self_check_volumes(ubi); + + return 0; + +out_err: + ubi_err(ubi, "cannot remove volume %d, error %d", vol_id, err); + spin_lock(&ubi->volumes_lock); + ubi->volumes[vol_id] = vol; +out_unlock: + spin_unlock(&ubi->volumes_lock); + return err; +} + +/** + * ubi_resize_volume - re-size volume. + * @desc: volume descriptor + * @reserved_pebs: new size in physical eraseblocks + * + * This function re-sizes the volume and returns zero in case of success, and a + * negative error code in case of failure. The caller has to have the + * @ubi->device_mutex locked. + */ +int ubi_resize_volume(struct ubi_volume_desc *desc, int reserved_pebs) +{ + int i, err, pebs; + struct ubi_volume *vol = desc->vol; + struct ubi_device *ubi = vol->ubi; + struct ubi_vtbl_record vtbl_rec; + struct ubi_eba_table *new_eba_tbl = NULL; + int vol_id = vol->vol_id; + + if (ubi->ro_mode) + return -EROFS; + + dbg_gen("re-size device %d, volume %d to from %d to %d PEBs", + ubi->ubi_num, vol_id, vol->reserved_pebs, reserved_pebs); + + if (vol->vol_type == UBI_STATIC_VOLUME && + reserved_pebs < vol->used_ebs) { + ubi_err(ubi, "too small size %d, %d LEBs contain data", + reserved_pebs, vol->used_ebs); + return -EINVAL; + } + + /* If the size is the same, we have nothing to do */ + if (reserved_pebs == vol->reserved_pebs) + return 0; + + new_eba_tbl = ubi_eba_create_table(vol, reserved_pebs); + if (IS_ERR(new_eba_tbl)) + return PTR_ERR(new_eba_tbl); + + spin_lock(&ubi->volumes_lock); + if (vol->ref_count > 1) { + spin_unlock(&ubi->volumes_lock); + err = -EBUSY; + goto out_free; + } + spin_unlock(&ubi->volumes_lock); + + /* Reserve physical eraseblocks */ + pebs = reserved_pebs - vol->reserved_pebs; + if (pebs > 0) { + spin_lock(&ubi->volumes_lock); + if (pebs > ubi->avail_pebs) { + ubi_err(ubi, "not enough PEBs: requested %d, available %d", + pebs, ubi->avail_pebs); + if (ubi->corr_peb_count) + ubi_err(ubi, "%d PEBs are corrupted and not used", + ubi->corr_peb_count); + spin_unlock(&ubi->volumes_lock); + err = -ENOSPC; + goto out_free; + } + ubi->avail_pebs -= pebs; + ubi->rsvd_pebs += pebs; + ubi_eba_copy_table(vol, new_eba_tbl, vol->reserved_pebs); + ubi_eba_replace_table(vol, new_eba_tbl); + spin_unlock(&ubi->volumes_lock); + } + + if (pebs < 0) { + for (i = 0; i < -pebs; i++) { + err = ubi_eba_unmap_leb(ubi, vol, reserved_pebs + i); + if (err) + goto out_free; + } + spin_lock(&ubi->volumes_lock); + ubi->rsvd_pebs += pebs; + ubi->avail_pebs -= pebs; + ubi_update_reserved(ubi); + ubi_eba_copy_table(vol, new_eba_tbl, reserved_pebs); + ubi_eba_replace_table(vol, new_eba_tbl); + spin_unlock(&ubi->volumes_lock); + } + + /* + * When we shrink a volume we have to flush all pending (erase) work. + * Otherwise it can happen that upon next attach UBI finds a LEB with + * lnum > highest_lnum and refuses to attach. + */ + if (pebs < 0) { + err = ubi_wl_flush(ubi, vol_id, UBI_ALL); + if (err) + goto out_acc; + } + + /* Change volume table record */ + vtbl_rec = ubi->vtbl[vol_id]; + vtbl_rec.reserved_pebs = cpu_to_be32(reserved_pebs); + err = ubi_change_vtbl_record(ubi, vol_id, &vtbl_rec); + if (err) + goto out_acc; + + vol->reserved_pebs = reserved_pebs; + if (vol->vol_type == UBI_DYNAMIC_VOLUME) { + vol->used_ebs = reserved_pebs; + vol->last_eb_bytes = vol->usable_leb_size; + vol->used_bytes = + (long long)vol->used_ebs * vol->usable_leb_size; + } + + ubi_volume_notify(ubi, vol, UBI_VOLUME_RESIZED); + self_check_volumes(ubi); + return err; + +out_acc: + if (pebs > 0) { + spin_lock(&ubi->volumes_lock); + ubi->rsvd_pebs -= pebs; + ubi->avail_pebs += pebs; + spin_unlock(&ubi->volumes_lock); + } + return err; + +out_free: + ubi_eba_destroy_table(new_eba_tbl); + return err; +} + +/** + * ubi_rename_volumes - re-name UBI volumes. + * @ubi: UBI device description object + * @rename_list: list of &struct ubi_rename_entry objects + * + * This function re-names or removes volumes specified in the re-name list. + * Returns zero in case of success and a negative error code in case of + * failure. + */ +int ubi_rename_volumes(struct ubi_device *ubi, struct list_head *rename_list) +{ + int err; + struct ubi_rename_entry *re; + + err = ubi_vtbl_rename_volumes(ubi, rename_list); + if (err) + return err; + + list_for_each_entry(re, rename_list, list) { + if (re->remove) { + err = ubi_remove_volume(re->desc, 1); + if (err) + break; + } else { + struct ubi_volume *vol = re->desc->vol; + + spin_lock(&ubi->volumes_lock); + vol->name_len = re->new_name_len; + memcpy(vol->name, re->new_name, re->new_name_len + 1); + spin_unlock(&ubi->volumes_lock); + ubi_volume_notify(ubi, vol, UBI_VOLUME_RENAMED); + } + } + + if (!err) + self_check_volumes(ubi); + return err; +} + +/** + * ubi_add_volume - add volume. + * @ubi: UBI device description object + * @vol: volume description object + * + * This function adds an existing volume and initializes all its data + * structures. Returns zero in case of success and a negative error code in + * case of failure. + */ +int ubi_add_volume(struct ubi_device *ubi, struct ubi_volume *vol) +{ + int err, vol_id = vol->vol_id; + dev_t dev; + + dbg_gen("add volume %d", vol_id); + + /* Register character device for the volume */ + cdev_init(&vol->cdev, &ubi_vol_cdev_operations); + vol->cdev.owner = THIS_MODULE; + dev = MKDEV(MAJOR(ubi->cdev.dev), vol->vol_id + 1); + err = cdev_add(&vol->cdev, dev, 1); + if (err) { + ubi_err(ubi, "cannot add character device for volume %d, error %d", + vol_id, err); + vol_release(&vol->dev); + return err; + } + + vol->dev.release = vol_release; + vol->dev.parent = &ubi->dev; + vol->dev.devt = dev; + vol->dev.class = &ubi_class; + vol->dev.groups = volume_dev_groups; + dev_set_name(&vol->dev, "%s_%d", ubi->ubi_name, vol->vol_id); + err = device_register(&vol->dev); + if (err) { + cdev_del(&vol->cdev); + put_device(&vol->dev); + return err; + } + + self_check_volumes(ubi); + return err; +} + +/** + * ubi_free_volume - free volume. + * @ubi: UBI device description object + * @vol: volume description object + * + * This function frees all resources for volume @vol but does not remove it. + * Used only when the UBI device is detached. + */ +void ubi_free_volume(struct ubi_device *ubi, struct ubi_volume *vol) +{ + dbg_gen("free volume %d", vol->vol_id); + + ubi->volumes[vol->vol_id] = NULL; + cdev_del(&vol->cdev); + device_unregister(&vol->dev); +} + +/** + * self_check_volume - check volume information. + * @ubi: UBI device description object + * @vol_id: volume ID + * + * Returns zero if volume is all right and a negative error code if not. + */ +static int self_check_volume(struct ubi_device *ubi, int vol_id) +{ + int idx = vol_id2idx(ubi, vol_id); + int reserved_pebs, alignment, data_pad, vol_type, name_len, upd_marker; + const struct ubi_volume *vol; + long long n; + const char *name; + + spin_lock(&ubi->volumes_lock); + reserved_pebs = be32_to_cpu(ubi->vtbl[vol_id].reserved_pebs); + vol = ubi->volumes[idx]; + + if (!vol) { + if (reserved_pebs) { + ubi_err(ubi, "no volume info, but volume exists"); + goto fail; + } + spin_unlock(&ubi->volumes_lock); + return 0; + } + + if (vol->reserved_pebs < 0 || vol->alignment < 0 || vol->data_pad < 0 || + vol->name_len < 0) { + ubi_err(ubi, "negative values"); + goto fail; + } + if (vol->alignment > ubi->leb_size || vol->alignment == 0) { + ubi_err(ubi, "bad alignment"); + goto fail; + } + + n = vol->alignment & (ubi->min_io_size - 1); + if (vol->alignment != 1 && n) { + ubi_err(ubi, "alignment is not multiple of min I/O unit"); + goto fail; + } + + n = ubi->leb_size % vol->alignment; + if (vol->data_pad != n) { + ubi_err(ubi, "bad data_pad, has to be %lld", n); + goto fail; + } + + if (vol->vol_type != UBI_DYNAMIC_VOLUME && + vol->vol_type != UBI_STATIC_VOLUME) { + ubi_err(ubi, "bad vol_type"); + goto fail; + } + + if (vol->upd_marker && vol->corrupted) { + ubi_err(ubi, "update marker and corrupted simultaneously"); + goto fail; + } + + if (vol->reserved_pebs > ubi->good_peb_count) { + ubi_err(ubi, "too large reserved_pebs"); + goto fail; + } + + n = ubi->leb_size - vol->data_pad; + if (vol->usable_leb_size != ubi->leb_size - vol->data_pad) { + ubi_err(ubi, "bad usable_leb_size, has to be %lld", n); + goto fail; + } + + if (vol->name_len > UBI_VOL_NAME_MAX) { + ubi_err(ubi, "too long volume name, max is %d", + UBI_VOL_NAME_MAX); + goto fail; + } + + n = strnlen(vol->name, vol->name_len + 1); + if (n != vol->name_len) { + ubi_err(ubi, "bad name_len %lld", n); + goto fail; + } + + n = (long long)vol->used_ebs * vol->usable_leb_size; + if (vol->vol_type == UBI_DYNAMIC_VOLUME) { + if (vol->corrupted) { + ubi_err(ubi, "corrupted dynamic volume"); + goto fail; + } + if (vol->used_ebs != vol->reserved_pebs) { + ubi_err(ubi, "bad used_ebs"); + goto fail; + } + if (vol->last_eb_bytes != vol->usable_leb_size) { + ubi_err(ubi, "bad last_eb_bytes"); + goto fail; + } + if (vol->used_bytes != n) { + ubi_err(ubi, "bad used_bytes"); + goto fail; + } + + if (vol->skip_check) { + ubi_err(ubi, "bad skip_check"); + goto fail; + } + } else { + if (vol->used_ebs < 0 || vol->used_ebs > vol->reserved_pebs) { + ubi_err(ubi, "bad used_ebs"); + goto fail; + } + if (vol->last_eb_bytes < 0 || + vol->last_eb_bytes > vol->usable_leb_size) { + ubi_err(ubi, "bad last_eb_bytes"); + goto fail; + } + if (vol->used_bytes < 0 || vol->used_bytes > n || + vol->used_bytes < n - vol->usable_leb_size) { + ubi_err(ubi, "bad used_bytes"); + goto fail; + } + } + + alignment = be32_to_cpu(ubi->vtbl[vol_id].alignment); + data_pad = be32_to_cpu(ubi->vtbl[vol_id].data_pad); + name_len = be16_to_cpu(ubi->vtbl[vol_id].name_len); + upd_marker = ubi->vtbl[vol_id].upd_marker; + name = &ubi->vtbl[vol_id].name[0]; + if (ubi->vtbl[vol_id].vol_type == UBI_VID_DYNAMIC) + vol_type = UBI_DYNAMIC_VOLUME; + else + vol_type = UBI_STATIC_VOLUME; + + if (alignment != vol->alignment || data_pad != vol->data_pad || + upd_marker != vol->upd_marker || vol_type != vol->vol_type || + name_len != vol->name_len || strncmp(name, vol->name, name_len)) { + ubi_err(ubi, "volume info is different"); + goto fail; + } + + spin_unlock(&ubi->volumes_lock); + return 0; + +fail: + ubi_err(ubi, "self-check failed for volume %d", vol_id); + if (vol) + ubi_dump_vol_info(vol); + ubi_dump_vtbl_record(&ubi->vtbl[vol_id], vol_id); + dump_stack(); + spin_unlock(&ubi->volumes_lock); + return -EINVAL; +} + +/** + * self_check_volumes - check information about all volumes. + * @ubi: UBI device description object + * + * Returns zero if volumes are all right and a negative error code if not. + */ +static int self_check_volumes(struct ubi_device *ubi) +{ + int i, err = 0; + + if (!ubi_dbg_chk_gen(ubi)) + return 0; + + for (i = 0; i < ubi->vtbl_slots; i++) { + err = self_check_volume(ubi, i); + if (err) + break; + } + + return err; +} diff --git a/drivers/mtd/ubi/vtbl.c b/drivers/mtd/ubi/vtbl.c new file mode 100644 index 0000000000..f700f0e4f2 --- /dev/null +++ b/drivers/mtd/ubi/vtbl.c @@ -0,0 +1,871 @@ +// SPDX-License-Identifier: GPL-2.0-or-later +/* + * Copyright (c) International Business Machines Corp., 2006 + * Copyright (c) Nokia Corporation, 2006, 2007 + * + * Author: Artem Bityutskiy (Битюцкий Артём) + */ + +/* + * This file includes volume table manipulation code. The volume table is an + * on-flash table containing volume meta-data like name, number of reserved + * physical eraseblocks, type, etc. The volume table is stored in the so-called + * "layout volume". + * + * The layout volume is an internal volume which is organized as follows. It + * consists of two logical eraseblocks - LEB 0 and LEB 1. Each logical + * eraseblock stores one volume table copy, i.e. LEB 0 and LEB 1 duplicate each + * other. This redundancy guarantees robustness to unclean reboots. The volume + * table is basically an array of volume table records. Each record contains + * full information about the volume and protected by a CRC checksum. Note, + * nowadays we use the atomic LEB change operation when updating the volume + * table, so we do not really need 2 LEBs anymore, but we preserve the older + * design for the backward compatibility reasons. + * + * When the volume table is changed, it is first changed in RAM. Then LEB 0 is + * erased, and the updated volume table is written back to LEB 0. Then same for + * LEB 1. This scheme guarantees recoverability from unclean reboots. + * + * In this UBI implementation the on-flash volume table does not contain any + * information about how much data static volumes contain. + * + * But it would still be beneficial to store this information in the volume + * table. For example, suppose we have a static volume X, and all its physical + * eraseblocks became bad for some reasons. Suppose we are attaching the + * corresponding MTD device, for some reason we find no logical eraseblocks + * corresponding to the volume X. According to the volume table volume X does + * exist. So we don't know whether it is just empty or all its physical + * eraseblocks went bad. So we cannot alarm the user properly. + * + * The volume table also stores so-called "update marker", which is used for + * volume updates. Before updating the volume, the update marker is set, and + * after the update operation is finished, the update marker is cleared. So if + * the update operation was interrupted (e.g. by an unclean reboot) - the + * update marker is still there and we know that the volume's contents is + * damaged. + */ + +#include <linux/crc32.h> +#include <linux/err.h> +#include <linux/slab.h> +#include <asm/div64.h> +#include "ubi.h" + +static void self_vtbl_check(const struct ubi_device *ubi); + +/* Empty volume table record */ +static struct ubi_vtbl_record empty_vtbl_record; + +/** + * ubi_update_layout_vol - helper for updatting layout volumes on flash + * @ubi: UBI device description object + */ +static int ubi_update_layout_vol(struct ubi_device *ubi) +{ + struct ubi_volume *layout_vol; + int i, err; + + layout_vol = ubi->volumes[vol_id2idx(ubi, UBI_LAYOUT_VOLUME_ID)]; + for (i = 0; i < UBI_LAYOUT_VOLUME_EBS; i++) { + err = ubi_eba_atomic_leb_change(ubi, layout_vol, i, ubi->vtbl, + ubi->vtbl_size); + if (err) + return err; + } + + return 0; +} + +/** + * ubi_change_vtbl_record - change volume table record. + * @ubi: UBI device description object + * @idx: table index to change + * @vtbl_rec: new volume table record + * + * This function changes volume table record @idx. If @vtbl_rec is %NULL, empty + * volume table record is written. The caller does not have to calculate CRC of + * the record as it is done by this function. Returns zero in case of success + * and a negative error code in case of failure. + */ +int ubi_change_vtbl_record(struct ubi_device *ubi, int idx, + struct ubi_vtbl_record *vtbl_rec) +{ + int err; + uint32_t crc; + + ubi_assert(idx >= 0 && idx < ubi->vtbl_slots); + + if (!vtbl_rec) + vtbl_rec = &empty_vtbl_record; + else { + crc = crc32(UBI_CRC32_INIT, vtbl_rec, UBI_VTBL_RECORD_SIZE_CRC); + vtbl_rec->crc = cpu_to_be32(crc); + } + + memcpy(&ubi->vtbl[idx], vtbl_rec, sizeof(struct ubi_vtbl_record)); + err = ubi_update_layout_vol(ubi); + + self_vtbl_check(ubi); + return err ? err : 0; +} + +/** + * ubi_vtbl_rename_volumes - rename UBI volumes in the volume table. + * @ubi: UBI device description object + * @rename_list: list of &struct ubi_rename_entry objects + * + * This function re-names multiple volumes specified in @req in the volume + * table. Returns zero in case of success and a negative error code in case of + * failure. + */ +int ubi_vtbl_rename_volumes(struct ubi_device *ubi, + struct list_head *rename_list) +{ + struct ubi_rename_entry *re; + + list_for_each_entry(re, rename_list, list) { + uint32_t crc; + struct ubi_volume *vol = re->desc->vol; + struct ubi_vtbl_record *vtbl_rec = &ubi->vtbl[vol->vol_id]; + + if (re->remove) { + memcpy(vtbl_rec, &empty_vtbl_record, + sizeof(struct ubi_vtbl_record)); + continue; + } + + vtbl_rec->name_len = cpu_to_be16(re->new_name_len); + memcpy(vtbl_rec->name, re->new_name, re->new_name_len); + memset(vtbl_rec->name + re->new_name_len, 0, + UBI_VOL_NAME_MAX + 1 - re->new_name_len); + crc = crc32(UBI_CRC32_INIT, vtbl_rec, + UBI_VTBL_RECORD_SIZE_CRC); + vtbl_rec->crc = cpu_to_be32(crc); + } + + return ubi_update_layout_vol(ubi); +} + +/** + * vtbl_check - check if volume table is not corrupted and sensible. + * @ubi: UBI device description object + * @vtbl: volume table + * + * This function returns zero if @vtbl is all right, %1 if CRC is incorrect, + * and %-EINVAL if it contains inconsistent data. + */ +static int vtbl_check(const struct ubi_device *ubi, + const struct ubi_vtbl_record *vtbl) +{ + int i, n, reserved_pebs, alignment, data_pad, vol_type, name_len; + int upd_marker, err; + uint32_t crc; + const char *name; + + for (i = 0; i < ubi->vtbl_slots; i++) { + cond_resched(); + + reserved_pebs = be32_to_cpu(vtbl[i].reserved_pebs); + alignment = be32_to_cpu(vtbl[i].alignment); + data_pad = be32_to_cpu(vtbl[i].data_pad); + upd_marker = vtbl[i].upd_marker; + vol_type = vtbl[i].vol_type; + name_len = be16_to_cpu(vtbl[i].name_len); + name = &vtbl[i].name[0]; + + crc = crc32(UBI_CRC32_INIT, &vtbl[i], UBI_VTBL_RECORD_SIZE_CRC); + if (be32_to_cpu(vtbl[i].crc) != crc) { + ubi_err(ubi, "bad CRC at record %u: %#08x, not %#08x", + i, crc, be32_to_cpu(vtbl[i].crc)); + ubi_dump_vtbl_record(&vtbl[i], i); + return 1; + } + + if (reserved_pebs == 0) { + if (memcmp(&vtbl[i], &empty_vtbl_record, + UBI_VTBL_RECORD_SIZE)) { + err = 2; + goto bad; + } + continue; + } + + if (reserved_pebs < 0 || alignment < 0 || data_pad < 0 || + name_len < 0) { + err = 3; + goto bad; + } + + if (alignment > ubi->leb_size || alignment == 0) { + err = 4; + goto bad; + } + + n = alignment & (ubi->min_io_size - 1); + if (alignment != 1 && n) { + err = 5; + goto bad; + } + + n = ubi->leb_size % alignment; + if (data_pad != n) { + ubi_err(ubi, "bad data_pad, has to be %d", n); + err = 6; + goto bad; + } + + if (vol_type != UBI_VID_DYNAMIC && vol_type != UBI_VID_STATIC) { + err = 7; + goto bad; + } + + if (upd_marker != 0 && upd_marker != 1) { + err = 8; + goto bad; + } + + if (reserved_pebs > ubi->good_peb_count) { + ubi_err(ubi, "too large reserved_pebs %d, good PEBs %d", + reserved_pebs, ubi->good_peb_count); + err = 9; + goto bad; + } + + if (name_len > UBI_VOL_NAME_MAX) { + err = 10; + goto bad; + } + + if (name[0] == '\0') { + err = 11; + goto bad; + } + + if (name_len != strnlen(name, name_len + 1)) { + err = 12; + goto bad; + } + } + + /* Checks that all names are unique */ + for (i = 0; i < ubi->vtbl_slots - 1; i++) { + for (n = i + 1; n < ubi->vtbl_slots; n++) { + int len1 = be16_to_cpu(vtbl[i].name_len); + int len2 = be16_to_cpu(vtbl[n].name_len); + + if (len1 > 0 && len1 == len2 && + !strncmp(vtbl[i].name, vtbl[n].name, len1)) { + ubi_err(ubi, "volumes %d and %d have the same name \"%s\"", + i, n, vtbl[i].name); + ubi_dump_vtbl_record(&vtbl[i], i); + ubi_dump_vtbl_record(&vtbl[n], n); + return -EINVAL; + } + } + } + + return 0; + +bad: + ubi_err(ubi, "volume table check failed: record %d, error %d", i, err); + ubi_dump_vtbl_record(&vtbl[i], i); + return -EINVAL; +} + +/** + * create_vtbl - create a copy of volume table. + * @ubi: UBI device description object + * @ai: attaching information + * @copy: number of the volume table copy + * @vtbl: contents of the volume table + * + * This function returns zero in case of success and a negative error code in + * case of failure. + */ +static int create_vtbl(struct ubi_device *ubi, struct ubi_attach_info *ai, + int copy, void *vtbl) +{ + int err, tries = 0; + struct ubi_vid_io_buf *vidb; + struct ubi_vid_hdr *vid_hdr; + struct ubi_ainf_peb *new_aeb; + + dbg_gen("create volume table (copy #%d)", copy + 1); + + vidb = ubi_alloc_vid_buf(ubi, GFP_KERNEL); + if (!vidb) + return -ENOMEM; + + vid_hdr = ubi_get_vid_hdr(vidb); + +retry: + new_aeb = ubi_early_get_peb(ubi, ai); + if (IS_ERR(new_aeb)) { + err = PTR_ERR(new_aeb); + goto out_free; + } + + vid_hdr->vol_type = UBI_LAYOUT_VOLUME_TYPE; + vid_hdr->vol_id = cpu_to_be32(UBI_LAYOUT_VOLUME_ID); + vid_hdr->compat = UBI_LAYOUT_VOLUME_COMPAT; + vid_hdr->data_size = vid_hdr->used_ebs = + vid_hdr->data_pad = cpu_to_be32(0); + vid_hdr->lnum = cpu_to_be32(copy); + vid_hdr->sqnum = cpu_to_be64(++ai->max_sqnum); + + /* The EC header is already there, write the VID header */ + err = ubi_io_write_vid_hdr(ubi, new_aeb->pnum, vidb); + if (err) + goto write_error; + + /* Write the layout volume contents */ + err = ubi_io_write_data(ubi, vtbl, new_aeb->pnum, 0, ubi->vtbl_size); + if (err) + goto write_error; + + /* + * And add it to the attaching information. Don't delete the old version + * of this LEB as it will be deleted and freed in 'ubi_add_to_av()'. + */ + err = ubi_add_to_av(ubi, ai, new_aeb->pnum, new_aeb->ec, vid_hdr, 0); + ubi_free_aeb(ai, new_aeb); + ubi_free_vid_buf(vidb); + return err; + +write_error: + if (err == -EIO && ++tries <= 5) { + /* + * Probably this physical eraseblock went bad, try to pick + * another one. + */ + list_add(&new_aeb->u.list, &ai->erase); + goto retry; + } + ubi_free_aeb(ai, new_aeb); +out_free: + ubi_free_vid_buf(vidb); + return err; + +} + +/** + * process_lvol - process the layout volume. + * @ubi: UBI device description object + * @ai: attaching information + * @av: layout volume attaching information + * + * This function is responsible for reading the layout volume, ensuring it is + * not corrupted, and recovering from corruptions if needed. Returns volume + * table in case of success and a negative error code in case of failure. + */ +static struct ubi_vtbl_record *process_lvol(struct ubi_device *ubi, + struct ubi_attach_info *ai, + struct ubi_ainf_volume *av) +{ + int err; + struct rb_node *rb; + struct ubi_ainf_peb *aeb; + struct ubi_vtbl_record *leb[UBI_LAYOUT_VOLUME_EBS] = { NULL, NULL }; + int leb_corrupted[UBI_LAYOUT_VOLUME_EBS] = {1, 1}; + + /* + * UBI goes through the following steps when it changes the layout + * volume: + * a. erase LEB 0; + * b. write new data to LEB 0; + * c. erase LEB 1; + * d. write new data to LEB 1. + * + * Before the change, both LEBs contain the same data. + * + * Due to unclean reboots, the contents of LEB 0 may be lost, but there + * should LEB 1. So it is OK if LEB 0 is corrupted while LEB 1 is not. + * Similarly, LEB 1 may be lost, but there should be LEB 0. And + * finally, unclean reboots may result in a situation when neither LEB + * 0 nor LEB 1 are corrupted, but they are different. In this case, LEB + * 0 contains more recent information. + * + * So the plan is to first check LEB 0. Then + * a. if LEB 0 is OK, it must be containing the most recent data; then + * we compare it with LEB 1, and if they are different, we copy LEB + * 0 to LEB 1; + * b. if LEB 0 is corrupted, but LEB 1 has to be OK, and we copy LEB 1 + * to LEB 0. + */ + + dbg_gen("check layout volume"); + + /* Read both LEB 0 and LEB 1 into memory */ + ubi_rb_for_each_entry(rb, aeb, &av->root, u.rb) { + leb[aeb->lnum] = vzalloc(ubi->vtbl_size); + if (!leb[aeb->lnum]) { + err = -ENOMEM; + goto out_free; + } + + err = ubi_io_read_data(ubi, leb[aeb->lnum], aeb->pnum, 0, + ubi->vtbl_size); + if (err == UBI_IO_BITFLIPS || mtd_is_eccerr(err)) + /* + * Scrub the PEB later. Note, -EBADMSG indicates an + * uncorrectable ECC error, but we have our own CRC and + * the data will be checked later. If the data is OK, + * the PEB will be scrubbed (because we set + * aeb->scrub). If the data is not OK, the contents of + * the PEB will be recovered from the second copy, and + * aeb->scrub will be cleared in + * 'ubi_add_to_av()'. + */ + aeb->scrub = 1; + else if (err) + goto out_free; + } + + err = -EINVAL; + if (leb[0]) { + leb_corrupted[0] = vtbl_check(ubi, leb[0]); + if (leb_corrupted[0] < 0) + goto out_free; + } + + if (!leb_corrupted[0]) { + /* LEB 0 is OK */ + if (leb[1]) + leb_corrupted[1] = memcmp(leb[0], leb[1], + ubi->vtbl_size); + if (leb_corrupted[1]) { + ubi_warn(ubi, "volume table copy #2 is corrupted"); + err = create_vtbl(ubi, ai, 1, leb[0]); + if (err) + goto out_free; + ubi_msg(ubi, "volume table was restored"); + } + + /* Both LEB 1 and LEB 2 are OK and consistent */ + vfree(leb[1]); + return leb[0]; + } else { + /* LEB 0 is corrupted or does not exist */ + if (leb[1]) { + leb_corrupted[1] = vtbl_check(ubi, leb[1]); + if (leb_corrupted[1] < 0) + goto out_free; + } + if (leb_corrupted[1]) { + /* Both LEB 0 and LEB 1 are corrupted */ + ubi_err(ubi, "both volume tables are corrupted"); + goto out_free; + } + + ubi_warn(ubi, "volume table copy #1 is corrupted"); + err = create_vtbl(ubi, ai, 0, leb[1]); + if (err) + goto out_free; + ubi_msg(ubi, "volume table was restored"); + + vfree(leb[0]); + return leb[1]; + } + +out_free: + vfree(leb[0]); + vfree(leb[1]); + return ERR_PTR(err); +} + +/** + * create_empty_lvol - create empty layout volume. + * @ubi: UBI device description object + * @ai: attaching information + * + * This function returns volume table contents in case of success and a + * negative error code in case of failure. + */ +static struct ubi_vtbl_record *create_empty_lvol(struct ubi_device *ubi, + struct ubi_attach_info *ai) +{ + int i; + struct ubi_vtbl_record *vtbl; + + vtbl = vzalloc(ubi->vtbl_size); + if (!vtbl) + return ERR_PTR(-ENOMEM); + + for (i = 0; i < ubi->vtbl_slots; i++) + memcpy(&vtbl[i], &empty_vtbl_record, UBI_VTBL_RECORD_SIZE); + + for (i = 0; i < UBI_LAYOUT_VOLUME_EBS; i++) { + int err; + + err = create_vtbl(ubi, ai, i, vtbl); + if (err) { + vfree(vtbl); + return ERR_PTR(err); + } + } + + return vtbl; +} + +/** + * init_volumes - initialize volume information for existing volumes. + * @ubi: UBI device description object + * @ai: scanning information + * @vtbl: volume table + * + * This function allocates volume description objects for existing volumes. + * Returns zero in case of success and a negative error code in case of + * failure. + */ +static int init_volumes(struct ubi_device *ubi, + const struct ubi_attach_info *ai, + const struct ubi_vtbl_record *vtbl) +{ + int i, err, reserved_pebs = 0; + struct ubi_ainf_volume *av; + struct ubi_volume *vol; + + for (i = 0; i < ubi->vtbl_slots; i++) { + cond_resched(); + + if (be32_to_cpu(vtbl[i].reserved_pebs) == 0) + continue; /* Empty record */ + + vol = kzalloc(sizeof(struct ubi_volume), GFP_KERNEL); + if (!vol) + return -ENOMEM; + + vol->reserved_pebs = be32_to_cpu(vtbl[i].reserved_pebs); + vol->alignment = be32_to_cpu(vtbl[i].alignment); + vol->data_pad = be32_to_cpu(vtbl[i].data_pad); + vol->upd_marker = vtbl[i].upd_marker; + vol->vol_type = vtbl[i].vol_type == UBI_VID_DYNAMIC ? + UBI_DYNAMIC_VOLUME : UBI_STATIC_VOLUME; + vol->name_len = be16_to_cpu(vtbl[i].name_len); + vol->usable_leb_size = ubi->leb_size - vol->data_pad; + memcpy(vol->name, vtbl[i].name, vol->name_len); + vol->name[vol->name_len] = '\0'; + vol->vol_id = i; + + if (vtbl[i].flags & UBI_VTBL_SKIP_CRC_CHECK_FLG) + vol->skip_check = 1; + + if (vtbl[i].flags & UBI_VTBL_AUTORESIZE_FLG) { + /* Auto re-size flag may be set only for one volume */ + if (ubi->autoresize_vol_id != -1) { + ubi_err(ubi, "more than one auto-resize volume (%d and %d)", + ubi->autoresize_vol_id, i); + kfree(vol); + return -EINVAL; + } + + ubi->autoresize_vol_id = i; + } + + ubi_assert(!ubi->volumes[i]); + ubi->volumes[i] = vol; + ubi->vol_count += 1; + vol->ubi = ubi; + reserved_pebs += vol->reserved_pebs; + + /* + * We use ubi->peb_count and not vol->reserved_pebs because + * we want to keep the code simple. Otherwise we'd have to + * resize/check the bitmap upon volume resize too. + * Allocating a few bytes more does not hurt. + */ + err = ubi_fastmap_init_checkmap(vol, ubi->peb_count); + if (err) + return err; + + /* + * In case of dynamic volume UBI knows nothing about how many + * data is stored there. So assume the whole volume is used. + */ + if (vol->vol_type == UBI_DYNAMIC_VOLUME) { + vol->used_ebs = vol->reserved_pebs; + vol->last_eb_bytes = vol->usable_leb_size; + vol->used_bytes = + (long long)vol->used_ebs * vol->usable_leb_size; + continue; + } + + /* Static volumes only */ + av = ubi_find_av(ai, i); + if (!av || !av->leb_count) { + /* + * No eraseblocks belonging to this volume found. We + * don't actually know whether this static volume is + * completely corrupted or just contains no data. And + * we cannot know this as long as data size is not + * stored on flash. So we just assume the volume is + * empty. FIXME: this should be handled. + */ + continue; + } + + if (av->leb_count != av->used_ebs) { + /* + * We found a static volume which misses several + * eraseblocks. Treat it as corrupted. + */ + ubi_warn(ubi, "static volume %d misses %d LEBs - corrupted", + av->vol_id, av->used_ebs - av->leb_count); + vol->corrupted = 1; + continue; + } + + vol->used_ebs = av->used_ebs; + vol->used_bytes = + (long long)(vol->used_ebs - 1) * vol->usable_leb_size; + vol->used_bytes += av->last_data_size; + vol->last_eb_bytes = av->last_data_size; + } + + /* And add the layout volume */ + vol = kzalloc(sizeof(struct ubi_volume), GFP_KERNEL); + if (!vol) + return -ENOMEM; + + vol->reserved_pebs = UBI_LAYOUT_VOLUME_EBS; + vol->alignment = UBI_LAYOUT_VOLUME_ALIGN; + vol->vol_type = UBI_DYNAMIC_VOLUME; + vol->name_len = sizeof(UBI_LAYOUT_VOLUME_NAME) - 1; + memcpy(vol->name, UBI_LAYOUT_VOLUME_NAME, vol->name_len + 1); + vol->usable_leb_size = ubi->leb_size; + vol->used_ebs = vol->reserved_pebs; + vol->last_eb_bytes = vol->reserved_pebs; + vol->used_bytes = + (long long)vol->used_ebs * (ubi->leb_size - vol->data_pad); + vol->vol_id = UBI_LAYOUT_VOLUME_ID; + vol->ref_count = 1; + + ubi_assert(!ubi->volumes[i]); + ubi->volumes[vol_id2idx(ubi, vol->vol_id)] = vol; + reserved_pebs += vol->reserved_pebs; + ubi->vol_count += 1; + vol->ubi = ubi; + err = ubi_fastmap_init_checkmap(vol, UBI_LAYOUT_VOLUME_EBS); + if (err) + return err; + + if (reserved_pebs > ubi->avail_pebs) { + ubi_err(ubi, "not enough PEBs, required %d, available %d", + reserved_pebs, ubi->avail_pebs); + if (ubi->corr_peb_count) + ubi_err(ubi, "%d PEBs are corrupted and not used", + ubi->corr_peb_count); + return -ENOSPC; + } + ubi->rsvd_pebs += reserved_pebs; + ubi->avail_pebs -= reserved_pebs; + + return 0; +} + +/** + * check_av - check volume attaching information. + * @vol: UBI volume description object + * @av: volume attaching information + * + * This function returns zero if the volume attaching information is consistent + * to the data read from the volume tabla, and %-EINVAL if not. + */ +static int check_av(const struct ubi_volume *vol, + const struct ubi_ainf_volume *av) +{ + int err; + + if (av->highest_lnum >= vol->reserved_pebs) { + err = 1; + goto bad; + } + if (av->leb_count > vol->reserved_pebs) { + err = 2; + goto bad; + } + if (av->vol_type != vol->vol_type) { + err = 3; + goto bad; + } + if (av->used_ebs > vol->reserved_pebs) { + err = 4; + goto bad; + } + if (av->data_pad != vol->data_pad) { + err = 5; + goto bad; + } + return 0; + +bad: + ubi_err(vol->ubi, "bad attaching information, error %d", err); + ubi_dump_av(av); + ubi_dump_vol_info(vol); + return -EINVAL; +} + +/** + * check_attaching_info - check that attaching information. + * @ubi: UBI device description object + * @ai: attaching information + * + * Even though we protect on-flash data by CRC checksums, we still don't trust + * the media. This function ensures that attaching information is consistent to + * the information read from the volume table. Returns zero if the attaching + * information is OK and %-EINVAL if it is not. + */ +static int check_attaching_info(const struct ubi_device *ubi, + struct ubi_attach_info *ai) +{ + int err, i; + struct ubi_ainf_volume *av; + struct ubi_volume *vol; + + if (ai->vols_found > UBI_INT_VOL_COUNT + ubi->vtbl_slots) { + ubi_err(ubi, "found %d volumes while attaching, maximum is %d + %d", + ai->vols_found, UBI_INT_VOL_COUNT, ubi->vtbl_slots); + return -EINVAL; + } + + if (ai->highest_vol_id >= ubi->vtbl_slots + UBI_INT_VOL_COUNT && + ai->highest_vol_id < UBI_INTERNAL_VOL_START) { + ubi_err(ubi, "too large volume ID %d found", + ai->highest_vol_id); + return -EINVAL; + } + + for (i = 0; i < ubi->vtbl_slots + UBI_INT_VOL_COUNT; i++) { + cond_resched(); + + av = ubi_find_av(ai, i); + vol = ubi->volumes[i]; + if (!vol) { + if (av) + ubi_remove_av(ai, av); + continue; + } + + if (vol->reserved_pebs == 0) { + ubi_assert(i < ubi->vtbl_slots); + + if (!av) + continue; + + /* + * During attaching we found a volume which does not + * exist according to the information in the volume + * table. This must have happened due to an unclean + * reboot while the volume was being removed. Discard + * these eraseblocks. + */ + ubi_msg(ubi, "finish volume %d removal", av->vol_id); + ubi_remove_av(ai, av); + } else if (av) { + err = check_av(vol, av); + if (err) + return err; + } + } + + return 0; +} + +/** + * ubi_read_volume_table - read the volume table. + * @ubi: UBI device description object + * @ai: attaching information + * + * This function reads volume table, checks it, recover from errors if needed, + * or creates it if needed. Returns zero in case of success and a negative + * error code in case of failure. + */ +int ubi_read_volume_table(struct ubi_device *ubi, struct ubi_attach_info *ai) +{ + int err; + struct ubi_ainf_volume *av; + + empty_vtbl_record.crc = cpu_to_be32(0xf116c36b); + + /* + * The number of supported volumes is limited by the eraseblock size + * and by the UBI_MAX_VOLUMES constant. + */ + ubi->vtbl_slots = ubi->leb_size / UBI_VTBL_RECORD_SIZE; + if (ubi->vtbl_slots > UBI_MAX_VOLUMES) + ubi->vtbl_slots = UBI_MAX_VOLUMES; + + ubi->vtbl_size = ubi->vtbl_slots * UBI_VTBL_RECORD_SIZE; + ubi->vtbl_size = ALIGN(ubi->vtbl_size, ubi->min_io_size); + + av = ubi_find_av(ai, UBI_LAYOUT_VOLUME_ID); + if (!av) { + /* + * No logical eraseblocks belonging to the layout volume were + * found. This could mean that the flash is just empty. In + * this case we create empty layout volume. + * + * But if flash is not empty this must be a corruption or the + * MTD device just contains garbage. + */ + if (ai->is_empty) { + ubi->vtbl = create_empty_lvol(ubi, ai); + if (IS_ERR(ubi->vtbl)) + return PTR_ERR(ubi->vtbl); + } else { + ubi_err(ubi, "the layout volume was not found"); + return -EINVAL; + } + } else { + if (av->leb_count > UBI_LAYOUT_VOLUME_EBS) { + /* This must not happen with proper UBI images */ + ubi_err(ubi, "too many LEBs (%d) in layout volume", + av->leb_count); + return -EINVAL; + } + + ubi->vtbl = process_lvol(ubi, ai, av); + if (IS_ERR(ubi->vtbl)) + return PTR_ERR(ubi->vtbl); + } + + ubi->avail_pebs = ubi->good_peb_count - ubi->corr_peb_count; + + /* + * The layout volume is OK, initialize the corresponding in-RAM data + * structures. + */ + err = init_volumes(ubi, ai, ubi->vtbl); + if (err) + goto out_free; + + /* + * Make sure that the attaching information is consistent to the + * information stored in the volume table. + */ + err = check_attaching_info(ubi, ai); + if (err) + goto out_free; + + return 0; + +out_free: + vfree(ubi->vtbl); + ubi_free_all_volumes(ubi); + return err; +} + +/** + * self_vtbl_check - check volume table. + * @ubi: UBI device description object + */ +static void self_vtbl_check(const struct ubi_device *ubi) +{ + if (!ubi_dbg_chk_gen(ubi)) + return; + + if (vtbl_check(ubi, ubi->vtbl)) { + ubi_err(ubi, "self-check failed"); + BUG(); + } +} diff --git a/drivers/mtd/ubi/wl.c b/drivers/mtd/ubi/wl.c new file mode 100644 index 0000000000..26a214f016 --- /dev/null +++ b/drivers/mtd/ubi/wl.c @@ -0,0 +1,2159 @@ +// SPDX-License-Identifier: GPL-2.0-or-later +/* + * Copyright (c) International Business Machines Corp., 2006 + * + * Authors: Artem Bityutskiy (Битюцкий Артём), Thomas Gleixner + */ + +/* + * UBI wear-leveling sub-system. + * + * This sub-system is responsible for wear-leveling. It works in terms of + * physical eraseblocks and erase counters and knows nothing about logical + * eraseblocks, volumes, etc. From this sub-system's perspective all physical + * eraseblocks are of two types - used and free. Used physical eraseblocks are + * those that were "get" by the 'ubi_wl_get_peb()' function, and free physical + * eraseblocks are those that were put by the 'ubi_wl_put_peb()' function. + * + * Physical eraseblocks returned by 'ubi_wl_get_peb()' have only erase counter + * header. The rest of the physical eraseblock contains only %0xFF bytes. + * + * When physical eraseblocks are returned to the WL sub-system by means of the + * 'ubi_wl_put_peb()' function, they are scheduled for erasure. The erasure is + * done asynchronously in context of the per-UBI device background thread, + * which is also managed by the WL sub-system. + * + * The wear-leveling is ensured by means of moving the contents of used + * physical eraseblocks with low erase counter to free physical eraseblocks + * with high erase counter. + * + * If the WL sub-system fails to erase a physical eraseblock, it marks it as + * bad. + * + * This sub-system is also responsible for scrubbing. If a bit-flip is detected + * in a physical eraseblock, it has to be moved. Technically this is the same + * as moving it for wear-leveling reasons. + * + * As it was said, for the UBI sub-system all physical eraseblocks are either + * "free" or "used". Free eraseblock are kept in the @wl->free RB-tree, while + * used eraseblocks are kept in @wl->used, @wl->erroneous, or @wl->scrub + * RB-trees, as well as (temporarily) in the @wl->pq queue. + * + * When the WL sub-system returns a physical eraseblock, the physical + * eraseblock is protected from being moved for some "time". For this reason, + * the physical eraseblock is not directly moved from the @wl->free tree to the + * @wl->used tree. There is a protection queue in between where this + * physical eraseblock is temporarily stored (@wl->pq). + * + * All this protection stuff is needed because: + * o we don't want to move physical eraseblocks just after we have given them + * to the user; instead, we first want to let users fill them up with data; + * + * o there is a chance that the user will put the physical eraseblock very + * soon, so it makes sense not to move it for some time, but wait. + * + * Physical eraseblocks stay protected only for limited time. But the "time" is + * measured in erase cycles in this case. This is implemented with help of the + * protection queue. Eraseblocks are put to the tail of this queue when they + * are returned by the 'ubi_wl_get_peb()', and eraseblocks are removed from the + * head of the queue on each erase operation (for any eraseblock). So the + * length of the queue defines how may (global) erase cycles PEBs are protected. + * + * To put it differently, each physical eraseblock has 2 main states: free and + * used. The former state corresponds to the @wl->free tree. The latter state + * is split up on several sub-states: + * o the WL movement is allowed (@wl->used tree); + * o the WL movement is disallowed (@wl->erroneous) because the PEB is + * erroneous - e.g., there was a read error; + * o the WL movement is temporarily prohibited (@wl->pq queue); + * o scrubbing is needed (@wl->scrub tree). + * + * Depending on the sub-state, wear-leveling entries of the used physical + * eraseblocks may be kept in one of those structures. + * + * Note, in this implementation, we keep a small in-RAM object for each physical + * eraseblock. This is surely not a scalable solution. But it appears to be good + * enough for moderately large flashes and it is simple. In future, one may + * re-work this sub-system and make it more scalable. + * + * At the moment this sub-system does not utilize the sequence number, which + * was introduced relatively recently. But it would be wise to do this because + * the sequence number of a logical eraseblock characterizes how old is it. For + * example, when we move a PEB with low erase counter, and we need to pick the + * target PEB, we pick a PEB with the highest EC if our PEB is "old" and we + * pick target PEB with an average EC if our PEB is not very "old". This is a + * room for future re-works of the WL sub-system. + */ + +#include <linux/slab.h> +#include <linux/crc32.h> +#include <linux/freezer.h> +#include <linux/kthread.h> +#include "ubi.h" +#include "wl.h" + +/* Number of physical eraseblocks reserved for wear-leveling purposes */ +#define WL_RESERVED_PEBS 1 + +/* + * Maximum difference between two erase counters. If this threshold is + * exceeded, the WL sub-system starts moving data from used physical + * eraseblocks with low erase counter to free physical eraseblocks with high + * erase counter. + */ +#define UBI_WL_THRESHOLD CONFIG_MTD_UBI_WL_THRESHOLD + +/* + * When a physical eraseblock is moved, the WL sub-system has to pick the target + * physical eraseblock to move to. The simplest way would be just to pick the + * one with the highest erase counter. But in certain workloads this could lead + * to an unlimited wear of one or few physical eraseblock. Indeed, imagine a + * situation when the picked physical eraseblock is constantly erased after the + * data is written to it. So, we have a constant which limits the highest erase + * counter of the free physical eraseblock to pick. Namely, the WL sub-system + * does not pick eraseblocks with erase counter greater than the lowest erase + * counter plus %WL_FREE_MAX_DIFF. + */ +#define WL_FREE_MAX_DIFF (2*UBI_WL_THRESHOLD) + +/* + * Maximum number of consecutive background thread failures which is enough to + * switch to read-only mode. + */ +#define WL_MAX_FAILURES 32 + +static int self_check_ec(struct ubi_device *ubi, int pnum, int ec); +static int self_check_in_wl_tree(const struct ubi_device *ubi, + struct ubi_wl_entry *e, struct rb_root *root); +static int self_check_in_pq(const struct ubi_device *ubi, + struct ubi_wl_entry *e); + +/** + * wl_tree_add - add a wear-leveling entry to a WL RB-tree. + * @e: the wear-leveling entry to add + * @root: the root of the tree + * + * Note, we use (erase counter, physical eraseblock number) pairs as keys in + * the @ubi->used and @ubi->free RB-trees. + */ +static void wl_tree_add(struct ubi_wl_entry *e, struct rb_root *root) +{ + struct rb_node **p, *parent = NULL; + + p = &root->rb_node; + while (*p) { + struct ubi_wl_entry *e1; + + parent = *p; + e1 = rb_entry(parent, struct ubi_wl_entry, u.rb); + + if (e->ec < e1->ec) + p = &(*p)->rb_left; + else if (e->ec > e1->ec) + p = &(*p)->rb_right; + else { + ubi_assert(e->pnum != e1->pnum); + if (e->pnum < e1->pnum) + p = &(*p)->rb_left; + else + p = &(*p)->rb_right; + } + } + + rb_link_node(&e->u.rb, parent, p); + rb_insert_color(&e->u.rb, root); +} + +/** + * wl_entry_destroy - destroy a wear-leveling entry. + * @ubi: UBI device description object + * @e: the wear-leveling entry to add + * + * This function destroys a wear leveling entry and removes + * the reference from the lookup table. + */ +static void wl_entry_destroy(struct ubi_device *ubi, struct ubi_wl_entry *e) +{ + ubi->lookuptbl[e->pnum] = NULL; + kmem_cache_free(ubi_wl_entry_slab, e); +} + +/** + * do_work - do one pending work. + * @ubi: UBI device description object + * + * This function returns zero in case of success and a negative error code in + * case of failure. + */ +static int do_work(struct ubi_device *ubi) +{ + int err; + struct ubi_work *wrk; + + cond_resched(); + + /* + * @ubi->work_sem is used to synchronize with the workers. Workers take + * it in read mode, so many of them may be doing works at a time. But + * the queue flush code has to be sure the whole queue of works is + * done, and it takes the mutex in write mode. + */ + down_read(&ubi->work_sem); + spin_lock(&ubi->wl_lock); + if (list_empty(&ubi->works)) { + spin_unlock(&ubi->wl_lock); + up_read(&ubi->work_sem); + return 0; + } + + wrk = list_entry(ubi->works.next, struct ubi_work, list); + list_del(&wrk->list); + ubi->works_count -= 1; + ubi_assert(ubi->works_count >= 0); + spin_unlock(&ubi->wl_lock); + + /* + * Call the worker function. Do not touch the work structure + * after this call as it will have been freed or reused by that + * time by the worker function. + */ + err = wrk->func(ubi, wrk, 0); + if (err) + ubi_err(ubi, "work failed with error code %d", err); + up_read(&ubi->work_sem); + + return err; +} + +/** + * in_wl_tree - check if wear-leveling entry is present in a WL RB-tree. + * @e: the wear-leveling entry to check + * @root: the root of the tree + * + * This function returns non-zero if @e is in the @root RB-tree and zero if it + * is not. + */ +static int in_wl_tree(struct ubi_wl_entry *e, struct rb_root *root) +{ + struct rb_node *p; + + p = root->rb_node; + while (p) { + struct ubi_wl_entry *e1; + + e1 = rb_entry(p, struct ubi_wl_entry, u.rb); + + if (e->pnum == e1->pnum) { + ubi_assert(e == e1); + return 1; + } + + if (e->ec < e1->ec) + p = p->rb_left; + else if (e->ec > e1->ec) + p = p->rb_right; + else { + ubi_assert(e->pnum != e1->pnum); + if (e->pnum < e1->pnum) + p = p->rb_left; + else + p = p->rb_right; + } + } + + return 0; +} + +/** + * in_pq - check if a wear-leveling entry is present in the protection queue. + * @ubi: UBI device description object + * @e: the wear-leveling entry to check + * + * This function returns non-zero if @e is in the protection queue and zero + * if it is not. + */ +static inline int in_pq(const struct ubi_device *ubi, struct ubi_wl_entry *e) +{ + struct ubi_wl_entry *p; + int i; + + for (i = 0; i < UBI_PROT_QUEUE_LEN; ++i) + list_for_each_entry(p, &ubi->pq[i], u.list) + if (p == e) + return 1; + + return 0; +} + +/** + * prot_queue_add - add physical eraseblock to the protection queue. + * @ubi: UBI device description object + * @e: the physical eraseblock to add + * + * This function adds @e to the tail of the protection queue @ubi->pq, where + * @e will stay for %UBI_PROT_QUEUE_LEN erase operations and will be + * temporarily protected from the wear-leveling worker. Note, @wl->lock has to + * be locked. + */ +static void prot_queue_add(struct ubi_device *ubi, struct ubi_wl_entry *e) +{ + int pq_tail = ubi->pq_head - 1; + + if (pq_tail < 0) + pq_tail = UBI_PROT_QUEUE_LEN - 1; + ubi_assert(pq_tail >= 0 && pq_tail < UBI_PROT_QUEUE_LEN); + list_add_tail(&e->u.list, &ubi->pq[pq_tail]); + dbg_wl("added PEB %d EC %d to the protection queue", e->pnum, e->ec); +} + +/** + * find_wl_entry - find wear-leveling entry closest to certain erase counter. + * @ubi: UBI device description object + * @root: the RB-tree where to look for + * @diff: maximum possible difference from the smallest erase counter + * + * This function looks for a wear leveling entry with erase counter closest to + * min + @diff, where min is the smallest erase counter. + */ +static struct ubi_wl_entry *find_wl_entry(struct ubi_device *ubi, + struct rb_root *root, int diff) +{ + struct rb_node *p; + struct ubi_wl_entry *e; + int max; + + e = rb_entry(rb_first(root), struct ubi_wl_entry, u.rb); + max = e->ec + diff; + + p = root->rb_node; + while (p) { + struct ubi_wl_entry *e1; + + e1 = rb_entry(p, struct ubi_wl_entry, u.rb); + if (e1->ec >= max) + p = p->rb_left; + else { + p = p->rb_right; + e = e1; + } + } + + return e; +} + +/** + * find_mean_wl_entry - find wear-leveling entry with medium erase counter. + * @ubi: UBI device description object + * @root: the RB-tree where to look for + * + * This function looks for a wear leveling entry with medium erase counter, + * but not greater or equivalent than the lowest erase counter plus + * %WL_FREE_MAX_DIFF/2. + */ +static struct ubi_wl_entry *find_mean_wl_entry(struct ubi_device *ubi, + struct rb_root *root) +{ + struct ubi_wl_entry *e, *first, *last; + + first = rb_entry(rb_first(root), struct ubi_wl_entry, u.rb); + last = rb_entry(rb_last(root), struct ubi_wl_entry, u.rb); + + if (last->ec - first->ec < WL_FREE_MAX_DIFF) { + e = rb_entry(root->rb_node, struct ubi_wl_entry, u.rb); + + /* If no fastmap has been written and this WL entry can be used + * as anchor PEB, hold it back and return the second best + * WL entry such that fastmap can use the anchor PEB later. */ + e = may_reserve_for_fm(ubi, e, root); + } else + e = find_wl_entry(ubi, root, WL_FREE_MAX_DIFF/2); + + return e; +} + +/** + * wl_get_wle - get a mean wl entry to be used by ubi_wl_get_peb() or + * refill_wl_user_pool(). + * @ubi: UBI device description object + * + * This function returns a wear leveling entry in case of success and + * NULL in case of failure. + */ +static struct ubi_wl_entry *wl_get_wle(struct ubi_device *ubi) +{ + struct ubi_wl_entry *e; + + e = find_mean_wl_entry(ubi, &ubi->free); + if (!e) { + ubi_err(ubi, "no free eraseblocks"); + return NULL; + } + + self_check_in_wl_tree(ubi, e, &ubi->free); + + /* + * Move the physical eraseblock to the protection queue where it will + * be protected from being moved for some time. + */ + rb_erase(&e->u.rb, &ubi->free); + ubi->free_count--; + dbg_wl("PEB %d EC %d", e->pnum, e->ec); + + return e; +} + +/** + * prot_queue_del - remove a physical eraseblock from the protection queue. + * @ubi: UBI device description object + * @pnum: the physical eraseblock to remove + * + * This function deletes PEB @pnum from the protection queue and returns zero + * in case of success and %-ENODEV if the PEB was not found. + */ +static int prot_queue_del(struct ubi_device *ubi, int pnum) +{ + struct ubi_wl_entry *e; + + e = ubi->lookuptbl[pnum]; + if (!e) + return -ENODEV; + + if (self_check_in_pq(ubi, e)) + return -ENODEV; + + list_del(&e->u.list); + dbg_wl("deleted PEB %d from the protection queue", e->pnum); + return 0; +} + +/** + * sync_erase - synchronously erase a physical eraseblock. + * @ubi: UBI device description object + * @e: the physical eraseblock to erase + * @torture: if the physical eraseblock has to be tortured + * + * This function returns zero in case of success and a negative error code in + * case of failure. + */ +static int sync_erase(struct ubi_device *ubi, struct ubi_wl_entry *e, + int torture) +{ + int err; + struct ubi_ec_hdr *ec_hdr; + unsigned long long ec = e->ec; + + dbg_wl("erase PEB %d, old EC %llu", e->pnum, ec); + + err = self_check_ec(ubi, e->pnum, e->ec); + if (err) + return -EINVAL; + + ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS); + if (!ec_hdr) + return -ENOMEM; + + err = ubi_io_sync_erase(ubi, e->pnum, torture); + if (err < 0) + goto out_free; + + ec += err; + if (ec > UBI_MAX_ERASECOUNTER) { + /* + * Erase counter overflow. Upgrade UBI and use 64-bit + * erase counters internally. + */ + ubi_err(ubi, "erase counter overflow at PEB %d, EC %llu", + e->pnum, ec); + err = -EINVAL; + goto out_free; + } + + dbg_wl("erased PEB %d, new EC %llu", e->pnum, ec); + + ec_hdr->ec = cpu_to_be64(ec); + + err = ubi_io_write_ec_hdr(ubi, e->pnum, ec_hdr); + if (err) + goto out_free; + + e->ec = ec; + spin_lock(&ubi->wl_lock); + if (e->ec > ubi->max_ec) + ubi->max_ec = e->ec; + spin_unlock(&ubi->wl_lock); + +out_free: + kfree(ec_hdr); + return err; +} + +/** + * serve_prot_queue - check if it is time to stop protecting PEBs. + * @ubi: UBI device description object + * + * This function is called after each erase operation and removes PEBs from the + * tail of the protection queue. These PEBs have been protected for long enough + * and should be moved to the used tree. + */ +static void serve_prot_queue(struct ubi_device *ubi) +{ + struct ubi_wl_entry *e, *tmp; + int count; + + /* + * There may be several protected physical eraseblock to remove, + * process them all. + */ +repeat: + count = 0; + spin_lock(&ubi->wl_lock); + list_for_each_entry_safe(e, tmp, &ubi->pq[ubi->pq_head], u.list) { + dbg_wl("PEB %d EC %d protection over, move to used tree", + e->pnum, e->ec); + + list_del(&e->u.list); + wl_tree_add(e, &ubi->used); + if (count++ > 32) { + /* + * Let's be nice and avoid holding the spinlock for + * too long. + */ + spin_unlock(&ubi->wl_lock); + cond_resched(); + goto repeat; + } + } + + ubi->pq_head += 1; + if (ubi->pq_head == UBI_PROT_QUEUE_LEN) + ubi->pq_head = 0; + ubi_assert(ubi->pq_head >= 0 && ubi->pq_head < UBI_PROT_QUEUE_LEN); + spin_unlock(&ubi->wl_lock); +} + +/** + * __schedule_ubi_work - schedule a work. + * @ubi: UBI device description object + * @wrk: the work to schedule + * + * This function adds a work defined by @wrk to the tail of the pending works + * list. Can only be used if ubi->work_sem is already held in read mode! + */ +static void __schedule_ubi_work(struct ubi_device *ubi, struct ubi_work *wrk) +{ + spin_lock(&ubi->wl_lock); + list_add_tail(&wrk->list, &ubi->works); + ubi_assert(ubi->works_count >= 0); + ubi->works_count += 1; + if (ubi->thread_enabled && !ubi_dbg_is_bgt_disabled(ubi)) + wake_up_process(ubi->bgt_thread); + spin_unlock(&ubi->wl_lock); +} + +/** + * schedule_ubi_work - schedule a work. + * @ubi: UBI device description object + * @wrk: the work to schedule + * + * This function adds a work defined by @wrk to the tail of the pending works + * list. + */ +static void schedule_ubi_work(struct ubi_device *ubi, struct ubi_work *wrk) +{ + down_read(&ubi->work_sem); + __schedule_ubi_work(ubi, wrk); + up_read(&ubi->work_sem); +} + +static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk, + int shutdown); + +/** + * schedule_erase - schedule an erase work. + * @ubi: UBI device description object + * @e: the WL entry of the physical eraseblock to erase + * @vol_id: the volume ID that last used this PEB + * @lnum: the last used logical eraseblock number for the PEB + * @torture: if the physical eraseblock has to be tortured + * @nested: denotes whether the work_sem is already held + * + * This function returns zero in case of success and a %-ENOMEM in case of + * failure. + */ +static int schedule_erase(struct ubi_device *ubi, struct ubi_wl_entry *e, + int vol_id, int lnum, int torture, bool nested) +{ + struct ubi_work *wl_wrk; + + ubi_assert(e); + + dbg_wl("schedule erasure of PEB %d, EC %d, torture %d", + e->pnum, e->ec, torture); + + wl_wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS); + if (!wl_wrk) + return -ENOMEM; + + wl_wrk->func = &erase_worker; + wl_wrk->e = e; + wl_wrk->vol_id = vol_id; + wl_wrk->lnum = lnum; + wl_wrk->torture = torture; + + if (nested) + __schedule_ubi_work(ubi, wl_wrk); + else + schedule_ubi_work(ubi, wl_wrk); + return 0; +} + +static int __erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk); +/** + * do_sync_erase - run the erase worker synchronously. + * @ubi: UBI device description object + * @e: the WL entry of the physical eraseblock to erase + * @vol_id: the volume ID that last used this PEB + * @lnum: the last used logical eraseblock number for the PEB + * @torture: if the physical eraseblock has to be tortured + * + */ +static int do_sync_erase(struct ubi_device *ubi, struct ubi_wl_entry *e, + int vol_id, int lnum, int torture) +{ + struct ubi_work wl_wrk; + + dbg_wl("sync erase of PEB %i", e->pnum); + + wl_wrk.e = e; + wl_wrk.vol_id = vol_id; + wl_wrk.lnum = lnum; + wl_wrk.torture = torture; + + return __erase_worker(ubi, &wl_wrk); +} + +static int ensure_wear_leveling(struct ubi_device *ubi, int nested); +/** + * wear_leveling_worker - wear-leveling worker function. + * @ubi: UBI device description object + * @wrk: the work object + * @shutdown: non-zero if the worker has to free memory and exit + * because the WL-subsystem is shutting down + * + * This function copies a more worn out physical eraseblock to a less worn out + * one. Returns zero in case of success and a negative error code in case of + * failure. + */ +static int wear_leveling_worker(struct ubi_device *ubi, struct ubi_work *wrk, + int shutdown) +{ + int err, scrubbing = 0, torture = 0, protect = 0, erroneous = 0; + int erase = 0, keep = 0, vol_id = -1, lnum = -1; + struct ubi_wl_entry *e1, *e2; + struct ubi_vid_io_buf *vidb; + struct ubi_vid_hdr *vid_hdr; + int dst_leb_clean = 0; + + kfree(wrk); + if (shutdown) + return 0; + + vidb = ubi_alloc_vid_buf(ubi, GFP_NOFS); + if (!vidb) + return -ENOMEM; + + vid_hdr = ubi_get_vid_hdr(vidb); + + down_read(&ubi->fm_eba_sem); + mutex_lock(&ubi->move_mutex); + spin_lock(&ubi->wl_lock); + ubi_assert(!ubi->move_from && !ubi->move_to); + ubi_assert(!ubi->move_to_put); + +#ifdef CONFIG_MTD_UBI_FASTMAP + if (!next_peb_for_wl(ubi) || +#else + if (!ubi->free.rb_node || +#endif + (!ubi->used.rb_node && !ubi->scrub.rb_node)) { + /* + * No free physical eraseblocks? Well, they must be waiting in + * the queue to be erased. Cancel movement - it will be + * triggered again when a free physical eraseblock appears. + * + * No used physical eraseblocks? They must be temporarily + * protected from being moved. They will be moved to the + * @ubi->used tree later and the wear-leveling will be + * triggered again. + */ + dbg_wl("cancel WL, a list is empty: free %d, used %d", + !ubi->free.rb_node, !ubi->used.rb_node); + goto out_cancel; + } + +#ifdef CONFIG_MTD_UBI_FASTMAP + e1 = find_anchor_wl_entry(&ubi->used); + if (e1 && ubi->fm_anchor && + (ubi->fm_anchor->ec - e1->ec >= UBI_WL_THRESHOLD)) { + ubi->fm_do_produce_anchor = 1; + /* + * fm_anchor is no longer considered a good anchor. + * NULL assignment also prevents multiple wear level checks + * of this PEB. + */ + wl_tree_add(ubi->fm_anchor, &ubi->free); + ubi->fm_anchor = NULL; + ubi->free_count++; + } + + if (ubi->fm_do_produce_anchor) { + if (!e1) + goto out_cancel; + e2 = get_peb_for_wl(ubi); + if (!e2) + goto out_cancel; + + self_check_in_wl_tree(ubi, e1, &ubi->used); + rb_erase(&e1->u.rb, &ubi->used); + dbg_wl("anchor-move PEB %d to PEB %d", e1->pnum, e2->pnum); + ubi->fm_do_produce_anchor = 0; + } else if (!ubi->scrub.rb_node) { +#else + if (!ubi->scrub.rb_node) { +#endif + /* + * Now pick the least worn-out used physical eraseblock and a + * highly worn-out free physical eraseblock. If the erase + * counters differ much enough, start wear-leveling. + */ + e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, u.rb); + e2 = get_peb_for_wl(ubi); + if (!e2) + goto out_cancel; + + if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD)) { + dbg_wl("no WL needed: min used EC %d, max free EC %d", + e1->ec, e2->ec); + + /* Give the unused PEB back */ + wl_tree_add(e2, &ubi->free); + ubi->free_count++; + goto out_cancel; + } + self_check_in_wl_tree(ubi, e1, &ubi->used); + rb_erase(&e1->u.rb, &ubi->used); + dbg_wl("move PEB %d EC %d to PEB %d EC %d", + e1->pnum, e1->ec, e2->pnum, e2->ec); + } else { + /* Perform scrubbing */ + scrubbing = 1; + e1 = rb_entry(rb_first(&ubi->scrub), struct ubi_wl_entry, u.rb); + e2 = get_peb_for_wl(ubi); + if (!e2) + goto out_cancel; + + self_check_in_wl_tree(ubi, e1, &ubi->scrub); + rb_erase(&e1->u.rb, &ubi->scrub); + dbg_wl("scrub PEB %d to PEB %d", e1->pnum, e2->pnum); + } + + ubi->move_from = e1; + ubi->move_to = e2; + spin_unlock(&ubi->wl_lock); + + /* + * Now we are going to copy physical eraseblock @e1->pnum to @e2->pnum. + * We so far do not know which logical eraseblock our physical + * eraseblock (@e1) belongs to. We have to read the volume identifier + * header first. + * + * Note, we are protected from this PEB being unmapped and erased. The + * 'ubi_wl_put_peb()' would wait for moving to be finished if the PEB + * which is being moved was unmapped. + */ + + err = ubi_io_read_vid_hdr(ubi, e1->pnum, vidb, 0); + if (err && err != UBI_IO_BITFLIPS) { + dst_leb_clean = 1; + if (err == UBI_IO_FF) { + /* + * We are trying to move PEB without a VID header. UBI + * always write VID headers shortly after the PEB was + * given, so we have a situation when it has not yet + * had a chance to write it, because it was preempted. + * So add this PEB to the protection queue so far, + * because presumably more data will be written there + * (including the missing VID header), and then we'll + * move it. + */ + dbg_wl("PEB %d has no VID header", e1->pnum); + protect = 1; + goto out_not_moved; + } else if (err == UBI_IO_FF_BITFLIPS) { + /* + * The same situation as %UBI_IO_FF, but bit-flips were + * detected. It is better to schedule this PEB for + * scrubbing. + */ + dbg_wl("PEB %d has no VID header but has bit-flips", + e1->pnum); + scrubbing = 1; + goto out_not_moved; + } else if (ubi->fast_attach && err == UBI_IO_BAD_HDR_EBADMSG) { + /* + * While a full scan would detect interrupted erasures + * at attach time we can face them here when attached from + * Fastmap. + */ + dbg_wl("PEB %d has ECC errors, maybe from an interrupted erasure", + e1->pnum); + erase = 1; + goto out_not_moved; + } + + ubi_err(ubi, "error %d while reading VID header from PEB %d", + err, e1->pnum); + goto out_error; + } + + vol_id = be32_to_cpu(vid_hdr->vol_id); + lnum = be32_to_cpu(vid_hdr->lnum); + + err = ubi_eba_copy_leb(ubi, e1->pnum, e2->pnum, vidb); + if (err) { + if (err == MOVE_CANCEL_RACE) { + /* + * The LEB has not been moved because the volume is + * being deleted or the PEB has been put meanwhile. We + * should prevent this PEB from being selected for + * wear-leveling movement again, so put it to the + * protection queue. + */ + protect = 1; + dst_leb_clean = 1; + goto out_not_moved; + } + if (err == MOVE_RETRY) { + scrubbing = 1; + dst_leb_clean = 1; + goto out_not_moved; + } + if (err == MOVE_TARGET_BITFLIPS || err == MOVE_TARGET_WR_ERR || + err == MOVE_TARGET_RD_ERR) { + /* + * Target PEB had bit-flips or write error - torture it. + */ + torture = 1; + keep = 1; + goto out_not_moved; + } + + if (err == MOVE_SOURCE_RD_ERR) { + /* + * An error happened while reading the source PEB. Do + * not switch to R/O mode in this case, and give the + * upper layers a possibility to recover from this, + * e.g. by unmapping corresponding LEB. Instead, just + * put this PEB to the @ubi->erroneous list to prevent + * UBI from trying to move it over and over again. + */ + if (ubi->erroneous_peb_count > ubi->max_erroneous) { + ubi_err(ubi, "too many erroneous eraseblocks (%d)", + ubi->erroneous_peb_count); + goto out_error; + } + dst_leb_clean = 1; + erroneous = 1; + goto out_not_moved; + } + + if (err < 0) + goto out_error; + + ubi_assert(0); + } + + /* The PEB has been successfully moved */ + if (scrubbing) + ubi_msg(ubi, "scrubbed PEB %d (LEB %d:%d), data moved to PEB %d", + e1->pnum, vol_id, lnum, e2->pnum); + ubi_free_vid_buf(vidb); + + spin_lock(&ubi->wl_lock); + if (!ubi->move_to_put) { + wl_tree_add(e2, &ubi->used); + e2 = NULL; + } + ubi->move_from = ubi->move_to = NULL; + ubi->move_to_put = ubi->wl_scheduled = 0; + spin_unlock(&ubi->wl_lock); + + err = do_sync_erase(ubi, e1, vol_id, lnum, 0); + if (err) { + if (e2) { + spin_lock(&ubi->wl_lock); + wl_entry_destroy(ubi, e2); + spin_unlock(&ubi->wl_lock); + } + goto out_ro; + } + + if (e2) { + /* + * Well, the target PEB was put meanwhile, schedule it for + * erasure. + */ + dbg_wl("PEB %d (LEB %d:%d) was put meanwhile, erase", + e2->pnum, vol_id, lnum); + err = do_sync_erase(ubi, e2, vol_id, lnum, 0); + if (err) + goto out_ro; + } + + dbg_wl("done"); + mutex_unlock(&ubi->move_mutex); + up_read(&ubi->fm_eba_sem); + return 0; + + /* + * For some reasons the LEB was not moved, might be an error, might be + * something else. @e1 was not changed, so return it back. @e2 might + * have been changed, schedule it for erasure. + */ +out_not_moved: + if (vol_id != -1) + dbg_wl("cancel moving PEB %d (LEB %d:%d) to PEB %d (%d)", + e1->pnum, vol_id, lnum, e2->pnum, err); + else + dbg_wl("cancel moving PEB %d to PEB %d (%d)", + e1->pnum, e2->pnum, err); + spin_lock(&ubi->wl_lock); + if (protect) + prot_queue_add(ubi, e1); + else if (erroneous) { + wl_tree_add(e1, &ubi->erroneous); + ubi->erroneous_peb_count += 1; + } else if (scrubbing) + wl_tree_add(e1, &ubi->scrub); + else if (keep) + wl_tree_add(e1, &ubi->used); + if (dst_leb_clean) { + wl_tree_add(e2, &ubi->free); + ubi->free_count++; + } + + ubi_assert(!ubi->move_to_put); + ubi->move_from = ubi->move_to = NULL; + ubi->wl_scheduled = 0; + spin_unlock(&ubi->wl_lock); + + ubi_free_vid_buf(vidb); + if (dst_leb_clean) { + ensure_wear_leveling(ubi, 1); + } else { + err = do_sync_erase(ubi, e2, vol_id, lnum, torture); + if (err) + goto out_ro; + } + + if (erase) { + err = do_sync_erase(ubi, e1, vol_id, lnum, 1); + if (err) + goto out_ro; + } + + mutex_unlock(&ubi->move_mutex); + up_read(&ubi->fm_eba_sem); + return 0; + +out_error: + if (vol_id != -1) + ubi_err(ubi, "error %d while moving PEB %d to PEB %d", + err, e1->pnum, e2->pnum); + else + ubi_err(ubi, "error %d while moving PEB %d (LEB %d:%d) to PEB %d", + err, e1->pnum, vol_id, lnum, e2->pnum); + spin_lock(&ubi->wl_lock); + ubi->move_from = ubi->move_to = NULL; + ubi->move_to_put = ubi->wl_scheduled = 0; + wl_entry_destroy(ubi, e1); + wl_entry_destroy(ubi, e2); + spin_unlock(&ubi->wl_lock); + + ubi_free_vid_buf(vidb); + +out_ro: + ubi_ro_mode(ubi); + mutex_unlock(&ubi->move_mutex); + up_read(&ubi->fm_eba_sem); + ubi_assert(err != 0); + return err < 0 ? err : -EIO; + +out_cancel: + ubi->wl_scheduled = 0; + spin_unlock(&ubi->wl_lock); + mutex_unlock(&ubi->move_mutex); + up_read(&ubi->fm_eba_sem); + ubi_free_vid_buf(vidb); + return 0; +} + +/** + * ensure_wear_leveling - schedule wear-leveling if it is needed. + * @ubi: UBI device description object + * @nested: set to non-zero if this function is called from UBI worker + * + * This function checks if it is time to start wear-leveling and schedules it + * if yes. This function returns zero in case of success and a negative error + * code in case of failure. + */ +static int ensure_wear_leveling(struct ubi_device *ubi, int nested) +{ + int err = 0; + struct ubi_work *wrk; + + spin_lock(&ubi->wl_lock); + if (ubi->wl_scheduled) + /* Wear-leveling is already in the work queue */ + goto out_unlock; + + /* + * If the ubi->scrub tree is not empty, scrubbing is needed, and the + * WL worker has to be scheduled anyway. + */ + if (!ubi->scrub.rb_node) { +#ifdef CONFIG_MTD_UBI_FASTMAP + if (!need_wear_leveling(ubi)) + goto out_unlock; +#else + struct ubi_wl_entry *e1; + struct ubi_wl_entry *e2; + + if (!ubi->used.rb_node || !ubi->free.rb_node) + /* No physical eraseblocks - no deal */ + goto out_unlock; + + /* + * We schedule wear-leveling only if the difference between the + * lowest erase counter of used physical eraseblocks and a high + * erase counter of free physical eraseblocks is greater than + * %UBI_WL_THRESHOLD. + */ + e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, u.rb); + e2 = find_wl_entry(ubi, &ubi->free, WL_FREE_MAX_DIFF); + + if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD)) + goto out_unlock; +#endif + dbg_wl("schedule wear-leveling"); + } else + dbg_wl("schedule scrubbing"); + + ubi->wl_scheduled = 1; + spin_unlock(&ubi->wl_lock); + + wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS); + if (!wrk) { + err = -ENOMEM; + goto out_cancel; + } + + wrk->func = &wear_leveling_worker; + if (nested) + __schedule_ubi_work(ubi, wrk); + else + schedule_ubi_work(ubi, wrk); + return err; + +out_cancel: + spin_lock(&ubi->wl_lock); + ubi->wl_scheduled = 0; +out_unlock: + spin_unlock(&ubi->wl_lock); + return err; +} + +/** + * __erase_worker - physical eraseblock erase worker function. + * @ubi: UBI device description object + * @wl_wrk: the work object + * + * This function erases a physical eraseblock and perform torture testing if + * needed. It also takes care about marking the physical eraseblock bad if + * needed. Returns zero in case of success and a negative error code in case of + * failure. + */ +static int __erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk) +{ + struct ubi_wl_entry *e = wl_wrk->e; + int pnum = e->pnum; + int vol_id = wl_wrk->vol_id; + int lnum = wl_wrk->lnum; + int err, available_consumed = 0; + + dbg_wl("erase PEB %d EC %d LEB %d:%d", + pnum, e->ec, wl_wrk->vol_id, wl_wrk->lnum); + + err = sync_erase(ubi, e, wl_wrk->torture); + if (!err) { + spin_lock(&ubi->wl_lock); + + if (!ubi->fm_disabled && !ubi->fm_anchor && + e->pnum < UBI_FM_MAX_START) { + /* + * Abort anchor production, if needed it will be + * enabled again in the wear leveling started below. + */ + ubi->fm_anchor = e; + ubi->fm_do_produce_anchor = 0; + } else { + wl_tree_add(e, &ubi->free); + ubi->free_count++; + } + + spin_unlock(&ubi->wl_lock); + + /* + * One more erase operation has happened, take care about + * protected physical eraseblocks. + */ + serve_prot_queue(ubi); + + /* And take care about wear-leveling */ + err = ensure_wear_leveling(ubi, 1); + return err; + } + + ubi_err(ubi, "failed to erase PEB %d, error %d", pnum, err); + + if (err == -EINTR || err == -ENOMEM || err == -EAGAIN || + err == -EBUSY) { + int err1; + + /* Re-schedule the LEB for erasure */ + err1 = schedule_erase(ubi, e, vol_id, lnum, 0, true); + if (err1) { + spin_lock(&ubi->wl_lock); + wl_entry_destroy(ubi, e); + spin_unlock(&ubi->wl_lock); + err = err1; + goto out_ro; + } + return err; + } + + spin_lock(&ubi->wl_lock); + wl_entry_destroy(ubi, e); + spin_unlock(&ubi->wl_lock); + if (err != -EIO) + /* + * If this is not %-EIO, we have no idea what to do. Scheduling + * this physical eraseblock for erasure again would cause + * errors again and again. Well, lets switch to R/O mode. + */ + goto out_ro; + + /* It is %-EIO, the PEB went bad */ + + if (!ubi->bad_allowed) { + ubi_err(ubi, "bad physical eraseblock %d detected", pnum); + goto out_ro; + } + + spin_lock(&ubi->volumes_lock); + if (ubi->beb_rsvd_pebs == 0) { + if (ubi->avail_pebs == 0) { + spin_unlock(&ubi->volumes_lock); + ubi_err(ubi, "no reserved/available physical eraseblocks"); + goto out_ro; + } + ubi->avail_pebs -= 1; + available_consumed = 1; + } + spin_unlock(&ubi->volumes_lock); + + ubi_msg(ubi, "mark PEB %d as bad", pnum); + err = ubi_io_mark_bad(ubi, pnum); + if (err) + goto out_ro; + + spin_lock(&ubi->volumes_lock); + if (ubi->beb_rsvd_pebs > 0) { + if (available_consumed) { + /* + * The amount of reserved PEBs increased since we last + * checked. + */ + ubi->avail_pebs += 1; + available_consumed = 0; + } + ubi->beb_rsvd_pebs -= 1; + } + ubi->bad_peb_count += 1; + ubi->good_peb_count -= 1; + ubi_calculate_reserved(ubi); + if (available_consumed) + ubi_warn(ubi, "no PEBs in the reserved pool, used an available PEB"); + else if (ubi->beb_rsvd_pebs) + ubi_msg(ubi, "%d PEBs left in the reserve", + ubi->beb_rsvd_pebs); + else + ubi_warn(ubi, "last PEB from the reserve was used"); + spin_unlock(&ubi->volumes_lock); + + return err; + +out_ro: + if (available_consumed) { + spin_lock(&ubi->volumes_lock); + ubi->avail_pebs += 1; + spin_unlock(&ubi->volumes_lock); + } + ubi_ro_mode(ubi); + return err; +} + +static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk, + int shutdown) +{ + int ret; + + if (shutdown) { + struct ubi_wl_entry *e = wl_wrk->e; + + dbg_wl("cancel erasure of PEB %d EC %d", e->pnum, e->ec); + kfree(wl_wrk); + wl_entry_destroy(ubi, e); + return 0; + } + + ret = __erase_worker(ubi, wl_wrk); + kfree(wl_wrk); + return ret; +} + +/** + * ubi_wl_put_peb - return a PEB to the wear-leveling sub-system. + * @ubi: UBI device description object + * @vol_id: the volume ID that last used this PEB + * @lnum: the last used logical eraseblock number for the PEB + * @pnum: physical eraseblock to return + * @torture: if this physical eraseblock has to be tortured + * + * This function is called to return physical eraseblock @pnum to the pool of + * free physical eraseblocks. The @torture flag has to be set if an I/O error + * occurred to this @pnum and it has to be tested. This function returns zero + * in case of success, and a negative error code in case of failure. + */ +int ubi_wl_put_peb(struct ubi_device *ubi, int vol_id, int lnum, + int pnum, int torture) +{ + int err; + struct ubi_wl_entry *e; + + dbg_wl("PEB %d", pnum); + ubi_assert(pnum >= 0); + ubi_assert(pnum < ubi->peb_count); + + down_read(&ubi->fm_protect); + +retry: + spin_lock(&ubi->wl_lock); + e = ubi->lookuptbl[pnum]; + if (!e) { + /* + * This wl entry has been removed for some errors by other + * process (eg. wear leveling worker), corresponding process + * (except __erase_worker, which cannot concurrent with + * ubi_wl_put_peb) will set ubi ro_mode at the same time, + * just ignore this wl entry. + */ + spin_unlock(&ubi->wl_lock); + up_read(&ubi->fm_protect); + return 0; + } + if (e == ubi->move_from) { + /* + * User is putting the physical eraseblock which was selected to + * be moved. It will be scheduled for erasure in the + * wear-leveling worker. + */ + dbg_wl("PEB %d is being moved, wait", pnum); + spin_unlock(&ubi->wl_lock); + + /* Wait for the WL worker by taking the @ubi->move_mutex */ + mutex_lock(&ubi->move_mutex); + mutex_unlock(&ubi->move_mutex); + goto retry; + } else if (e == ubi->move_to) { + /* + * User is putting the physical eraseblock which was selected + * as the target the data is moved to. It may happen if the EBA + * sub-system already re-mapped the LEB in 'ubi_eba_copy_leb()' + * but the WL sub-system has not put the PEB to the "used" tree + * yet, but it is about to do this. So we just set a flag which + * will tell the WL worker that the PEB is not needed anymore + * and should be scheduled for erasure. + */ + dbg_wl("PEB %d is the target of data moving", pnum); + ubi_assert(!ubi->move_to_put); + ubi->move_to_put = 1; + spin_unlock(&ubi->wl_lock); + up_read(&ubi->fm_protect); + return 0; + } else { + if (in_wl_tree(e, &ubi->used)) { + self_check_in_wl_tree(ubi, e, &ubi->used); + rb_erase(&e->u.rb, &ubi->used); + } else if (in_wl_tree(e, &ubi->scrub)) { + self_check_in_wl_tree(ubi, e, &ubi->scrub); + rb_erase(&e->u.rb, &ubi->scrub); + } else if (in_wl_tree(e, &ubi->erroneous)) { + self_check_in_wl_tree(ubi, e, &ubi->erroneous); + rb_erase(&e->u.rb, &ubi->erroneous); + ubi->erroneous_peb_count -= 1; + ubi_assert(ubi->erroneous_peb_count >= 0); + /* Erroneous PEBs should be tortured */ + torture = 1; + } else { + err = prot_queue_del(ubi, e->pnum); + if (err) { + ubi_err(ubi, "PEB %d not found", pnum); + ubi_ro_mode(ubi); + spin_unlock(&ubi->wl_lock); + up_read(&ubi->fm_protect); + return err; + } + } + } + spin_unlock(&ubi->wl_lock); + + err = schedule_erase(ubi, e, vol_id, lnum, torture, false); + if (err) { + spin_lock(&ubi->wl_lock); + wl_tree_add(e, &ubi->used); + spin_unlock(&ubi->wl_lock); + } + + up_read(&ubi->fm_protect); + return err; +} + +/** + * ubi_wl_scrub_peb - schedule a physical eraseblock for scrubbing. + * @ubi: UBI device description object + * @pnum: the physical eraseblock to schedule + * + * If a bit-flip in a physical eraseblock is detected, this physical eraseblock + * needs scrubbing. This function schedules a physical eraseblock for + * scrubbing which is done in background. This function returns zero in case of + * success and a negative error code in case of failure. + */ +int ubi_wl_scrub_peb(struct ubi_device *ubi, int pnum) +{ + struct ubi_wl_entry *e; + + ubi_msg(ubi, "schedule PEB %d for scrubbing", pnum); + +retry: + spin_lock(&ubi->wl_lock); + e = ubi->lookuptbl[pnum]; + if (e == ubi->move_from || in_wl_tree(e, &ubi->scrub) || + in_wl_tree(e, &ubi->erroneous)) { + spin_unlock(&ubi->wl_lock); + return 0; + } + + if (e == ubi->move_to) { + /* + * This physical eraseblock was used to move data to. The data + * was moved but the PEB was not yet inserted to the proper + * tree. We should just wait a little and let the WL worker + * proceed. + */ + spin_unlock(&ubi->wl_lock); + dbg_wl("the PEB %d is not in proper tree, retry", pnum); + yield(); + goto retry; + } + + if (in_wl_tree(e, &ubi->used)) { + self_check_in_wl_tree(ubi, e, &ubi->used); + rb_erase(&e->u.rb, &ubi->used); + } else { + int err; + + err = prot_queue_del(ubi, e->pnum); + if (err) { + ubi_err(ubi, "PEB %d not found", pnum); + ubi_ro_mode(ubi); + spin_unlock(&ubi->wl_lock); + return err; + } + } + + wl_tree_add(e, &ubi->scrub); + spin_unlock(&ubi->wl_lock); + + /* + * Technically scrubbing is the same as wear-leveling, so it is done + * by the WL worker. + */ + return ensure_wear_leveling(ubi, 0); +} + +/** + * ubi_wl_flush - flush all pending works. + * @ubi: UBI device description object + * @vol_id: the volume id to flush for + * @lnum: the logical eraseblock number to flush for + * + * This function executes all pending works for a particular volume id / + * logical eraseblock number pair. If either value is set to %UBI_ALL, then it + * acts as a wildcard for all of the corresponding volume numbers or logical + * eraseblock numbers. It returns zero in case of success and a negative error + * code in case of failure. + */ +int ubi_wl_flush(struct ubi_device *ubi, int vol_id, int lnum) +{ + int err = 0; + int found = 1; + + /* + * Erase while the pending works queue is not empty, but not more than + * the number of currently pending works. + */ + dbg_wl("flush pending work for LEB %d:%d (%d pending works)", + vol_id, lnum, ubi->works_count); + + while (found) { + struct ubi_work *wrk, *tmp; + found = 0; + + down_read(&ubi->work_sem); + spin_lock(&ubi->wl_lock); + list_for_each_entry_safe(wrk, tmp, &ubi->works, list) { + if ((vol_id == UBI_ALL || wrk->vol_id == vol_id) && + (lnum == UBI_ALL || wrk->lnum == lnum)) { + list_del(&wrk->list); + ubi->works_count -= 1; + ubi_assert(ubi->works_count >= 0); + spin_unlock(&ubi->wl_lock); + + err = wrk->func(ubi, wrk, 0); + if (err) { + up_read(&ubi->work_sem); + return err; + } + + spin_lock(&ubi->wl_lock); + found = 1; + break; + } + } + spin_unlock(&ubi->wl_lock); + up_read(&ubi->work_sem); + } + + /* + * Make sure all the works which have been done in parallel are + * finished. + */ + down_write(&ubi->work_sem); + up_write(&ubi->work_sem); + + return err; +} + +static bool scrub_possible(struct ubi_device *ubi, struct ubi_wl_entry *e) +{ + if (in_wl_tree(e, &ubi->scrub)) + return false; + else if (in_wl_tree(e, &ubi->erroneous)) + return false; + else if (ubi->move_from == e) + return false; + else if (ubi->move_to == e) + return false; + + return true; +} + +/** + * ubi_bitflip_check - Check an eraseblock for bitflips and scrub it if needed. + * @ubi: UBI device description object + * @pnum: the physical eraseblock to schedule + * @force: don't read the block, assume bitflips happened and take action. + * + * This function reads the given eraseblock and checks if bitflips occured. + * In case of bitflips, the eraseblock is scheduled for scrubbing. + * If scrubbing is forced with @force, the eraseblock is not read, + * but scheduled for scrubbing right away. + * + * Returns: + * %EINVAL, PEB is out of range + * %ENOENT, PEB is no longer used by UBI + * %EBUSY, PEB cannot be checked now or a check is currently running on it + * %EAGAIN, bit flips happened but scrubbing is currently not possible + * %EUCLEAN, bit flips happened and PEB is scheduled for scrubbing + * %0, no bit flips detected + */ +int ubi_bitflip_check(struct ubi_device *ubi, int pnum, int force) +{ + int err = 0; + struct ubi_wl_entry *e; + + if (pnum < 0 || pnum >= ubi->peb_count) { + err = -EINVAL; + goto out; + } + + /* + * Pause all parallel work, otherwise it can happen that the + * erase worker frees a wl entry under us. + */ + down_write(&ubi->work_sem); + + /* + * Make sure that the wl entry does not change state while + * inspecting it. + */ + spin_lock(&ubi->wl_lock); + e = ubi->lookuptbl[pnum]; + if (!e) { + spin_unlock(&ubi->wl_lock); + err = -ENOENT; + goto out_resume; + } + + /* + * Does it make sense to check this PEB? + */ + if (!scrub_possible(ubi, e)) { + spin_unlock(&ubi->wl_lock); + err = -EBUSY; + goto out_resume; + } + spin_unlock(&ubi->wl_lock); + + if (!force) { + mutex_lock(&ubi->buf_mutex); + err = ubi_io_read(ubi, ubi->peb_buf, pnum, 0, ubi->peb_size); + mutex_unlock(&ubi->buf_mutex); + } + + if (force || err == UBI_IO_BITFLIPS) { + /* + * Okay, bit flip happened, let's figure out what we can do. + */ + spin_lock(&ubi->wl_lock); + + /* + * Recheck. We released wl_lock, UBI might have killed the + * wl entry under us. + */ + e = ubi->lookuptbl[pnum]; + if (!e) { + spin_unlock(&ubi->wl_lock); + err = -ENOENT; + goto out_resume; + } + + /* + * Need to re-check state + */ + if (!scrub_possible(ubi, e)) { + spin_unlock(&ubi->wl_lock); + err = -EBUSY; + goto out_resume; + } + + if (in_pq(ubi, e)) { + prot_queue_del(ubi, e->pnum); + wl_tree_add(e, &ubi->scrub); + spin_unlock(&ubi->wl_lock); + + err = ensure_wear_leveling(ubi, 1); + } else if (in_wl_tree(e, &ubi->used)) { + rb_erase(&e->u.rb, &ubi->used); + wl_tree_add(e, &ubi->scrub); + spin_unlock(&ubi->wl_lock); + + err = ensure_wear_leveling(ubi, 1); + } else if (in_wl_tree(e, &ubi->free)) { + rb_erase(&e->u.rb, &ubi->free); + ubi->free_count--; + spin_unlock(&ubi->wl_lock); + + /* + * This PEB is empty we can schedule it for + * erasure right away. No wear leveling needed. + */ + err = schedule_erase(ubi, e, UBI_UNKNOWN, UBI_UNKNOWN, + force ? 0 : 1, true); + } else { + spin_unlock(&ubi->wl_lock); + err = -EAGAIN; + } + + if (!err && !force) + err = -EUCLEAN; + } else { + err = 0; + } + +out_resume: + up_write(&ubi->work_sem); +out: + + return err; +} + +/** + * tree_destroy - destroy an RB-tree. + * @ubi: UBI device description object + * @root: the root of the tree to destroy + */ +static void tree_destroy(struct ubi_device *ubi, struct rb_root *root) +{ + struct rb_node *rb; + struct ubi_wl_entry *e; + + rb = root->rb_node; + while (rb) { + if (rb->rb_left) + rb = rb->rb_left; + else if (rb->rb_right) + rb = rb->rb_right; + else { + e = rb_entry(rb, struct ubi_wl_entry, u.rb); + + rb = rb_parent(rb); + if (rb) { + if (rb->rb_left == &e->u.rb) + rb->rb_left = NULL; + else + rb->rb_right = NULL; + } + + wl_entry_destroy(ubi, e); + } + } +} + +/** + * ubi_thread - UBI background thread. + * @u: the UBI device description object pointer + */ +int ubi_thread(void *u) +{ + int failures = 0; + struct ubi_device *ubi = u; + + ubi_msg(ubi, "background thread \"%s\" started, PID %d", + ubi->bgt_name, task_pid_nr(current)); + + set_freezable(); + for (;;) { + int err; + + if (kthread_should_stop()) + break; + + if (try_to_freeze()) + continue; + + spin_lock(&ubi->wl_lock); + if (list_empty(&ubi->works) || ubi->ro_mode || + !ubi->thread_enabled || ubi_dbg_is_bgt_disabled(ubi)) { + set_current_state(TASK_INTERRUPTIBLE); + spin_unlock(&ubi->wl_lock); + + /* + * Check kthread_should_stop() after we set the task + * state to guarantee that we either see the stop bit + * and exit or the task state is reset to runnable such + * that it's not scheduled out indefinitely and detects + * the stop bit at kthread_should_stop(). + */ + if (kthread_should_stop()) { + set_current_state(TASK_RUNNING); + break; + } + + schedule(); + continue; + } + spin_unlock(&ubi->wl_lock); + + err = do_work(ubi); + if (err) { + ubi_err(ubi, "%s: work failed with error code %d", + ubi->bgt_name, err); + if (failures++ > WL_MAX_FAILURES) { + /* + * Too many failures, disable the thread and + * switch to read-only mode. + */ + ubi_msg(ubi, "%s: %d consecutive failures", + ubi->bgt_name, WL_MAX_FAILURES); + ubi_ro_mode(ubi); + ubi->thread_enabled = 0; + continue; + } + } else + failures = 0; + + cond_resched(); + } + + dbg_wl("background thread \"%s\" is killed", ubi->bgt_name); + ubi->thread_enabled = 0; + return 0; +} + +/** + * shutdown_work - shutdown all pending works. + * @ubi: UBI device description object + */ +static void shutdown_work(struct ubi_device *ubi) +{ + while (!list_empty(&ubi->works)) { + struct ubi_work *wrk; + + wrk = list_entry(ubi->works.next, struct ubi_work, list); + list_del(&wrk->list); + wrk->func(ubi, wrk, 1); + ubi->works_count -= 1; + ubi_assert(ubi->works_count >= 0); + } +} + +/** + * erase_aeb - erase a PEB given in UBI attach info PEB + * @ubi: UBI device description object + * @aeb: UBI attach info PEB + * @sync: If true, erase synchronously. Otherwise schedule for erasure + */ +static int erase_aeb(struct ubi_device *ubi, struct ubi_ainf_peb *aeb, bool sync) +{ + struct ubi_wl_entry *e; + int err; + + e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL); + if (!e) + return -ENOMEM; + + e->pnum = aeb->pnum; + e->ec = aeb->ec; + ubi->lookuptbl[e->pnum] = e; + + if (sync) { + err = sync_erase(ubi, e, false); + if (err) + goto out_free; + + wl_tree_add(e, &ubi->free); + ubi->free_count++; + } else { + err = schedule_erase(ubi, e, aeb->vol_id, aeb->lnum, 0, false); + if (err) + goto out_free; + } + + return 0; + +out_free: + wl_entry_destroy(ubi, e); + + return err; +} + +/** + * ubi_wl_init - initialize the WL sub-system using attaching information. + * @ubi: UBI device description object + * @ai: attaching information + * + * This function returns zero in case of success, and a negative error code in + * case of failure. + */ +int ubi_wl_init(struct ubi_device *ubi, struct ubi_attach_info *ai) +{ + int err, i, reserved_pebs, found_pebs = 0; + struct rb_node *rb1, *rb2; + struct ubi_ainf_volume *av; + struct ubi_ainf_peb *aeb, *tmp; + struct ubi_wl_entry *e; + + ubi->used = ubi->erroneous = ubi->free = ubi->scrub = RB_ROOT; + spin_lock_init(&ubi->wl_lock); + mutex_init(&ubi->move_mutex); + init_rwsem(&ubi->work_sem); + ubi->max_ec = ai->max_ec; + INIT_LIST_HEAD(&ubi->works); + + sprintf(ubi->bgt_name, UBI_BGT_NAME_PATTERN, ubi->ubi_num); + + err = -ENOMEM; + ubi->lookuptbl = kcalloc(ubi->peb_count, sizeof(void *), GFP_KERNEL); + if (!ubi->lookuptbl) + return err; + + for (i = 0; i < UBI_PROT_QUEUE_LEN; i++) + INIT_LIST_HEAD(&ubi->pq[i]); + ubi->pq_head = 0; + + ubi->free_count = 0; + list_for_each_entry_safe(aeb, tmp, &ai->erase, u.list) { + cond_resched(); + + err = erase_aeb(ubi, aeb, false); + if (err) + goto out_free; + + found_pebs++; + } + + list_for_each_entry(aeb, &ai->free, u.list) { + cond_resched(); + + e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL); + if (!e) { + err = -ENOMEM; + goto out_free; + } + + e->pnum = aeb->pnum; + e->ec = aeb->ec; + ubi_assert(e->ec >= 0); + + wl_tree_add(e, &ubi->free); + ubi->free_count++; + + ubi->lookuptbl[e->pnum] = e; + + found_pebs++; + } + + ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb) { + ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb) { + cond_resched(); + + e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL); + if (!e) { + err = -ENOMEM; + goto out_free; + } + + e->pnum = aeb->pnum; + e->ec = aeb->ec; + ubi->lookuptbl[e->pnum] = e; + + if (!aeb->scrub) { + dbg_wl("add PEB %d EC %d to the used tree", + e->pnum, e->ec); + wl_tree_add(e, &ubi->used); + } else { + dbg_wl("add PEB %d EC %d to the scrub tree", + e->pnum, e->ec); + wl_tree_add(e, &ubi->scrub); + } + + found_pebs++; + } + } + + list_for_each_entry(aeb, &ai->fastmap, u.list) { + cond_resched(); + + e = ubi_find_fm_block(ubi, aeb->pnum); + + if (e) { + ubi_assert(!ubi->lookuptbl[e->pnum]); + ubi->lookuptbl[e->pnum] = e; + } else { + bool sync = false; + + /* + * Usually old Fastmap PEBs are scheduled for erasure + * and we don't have to care about them but if we face + * an power cut before scheduling them we need to + * take care of them here. + */ + if (ubi->lookuptbl[aeb->pnum]) + continue; + + /* + * The fastmap update code might not find a free PEB for + * writing the fastmap anchor to and then reuses the + * current fastmap anchor PEB. When this PEB gets erased + * and a power cut happens before it is written again we + * must make sure that the fastmap attach code doesn't + * find any outdated fastmap anchors, hence we erase the + * outdated fastmap anchor PEBs synchronously here. + */ + if (aeb->vol_id == UBI_FM_SB_VOLUME_ID) + sync = true; + + err = erase_aeb(ubi, aeb, sync); + if (err) + goto out_free; + } + + found_pebs++; + } + + dbg_wl("found %i PEBs", found_pebs); + + ubi_assert(ubi->good_peb_count == found_pebs); + + reserved_pebs = WL_RESERVED_PEBS; + ubi_fastmap_init(ubi, &reserved_pebs); + + if (ubi->avail_pebs < reserved_pebs) { + ubi_err(ubi, "no enough physical eraseblocks (%d, need %d)", + ubi->avail_pebs, reserved_pebs); + if (ubi->corr_peb_count) + ubi_err(ubi, "%d PEBs are corrupted and not used", + ubi->corr_peb_count); + err = -ENOSPC; + goto out_free; + } + ubi->avail_pebs -= reserved_pebs; + ubi->rsvd_pebs += reserved_pebs; + + /* Schedule wear-leveling if needed */ + err = ensure_wear_leveling(ubi, 0); + if (err) + goto out_free; + +#ifdef CONFIG_MTD_UBI_FASTMAP + if (!ubi->ro_mode && !ubi->fm_disabled) + ubi_ensure_anchor_pebs(ubi); +#endif + return 0; + +out_free: + shutdown_work(ubi); + tree_destroy(ubi, &ubi->used); + tree_destroy(ubi, &ubi->free); + tree_destroy(ubi, &ubi->scrub); + kfree(ubi->lookuptbl); + return err; +} + +/** + * protection_queue_destroy - destroy the protection queue. + * @ubi: UBI device description object + */ +static void protection_queue_destroy(struct ubi_device *ubi) +{ + int i; + struct ubi_wl_entry *e, *tmp; + + for (i = 0; i < UBI_PROT_QUEUE_LEN; ++i) { + list_for_each_entry_safe(e, tmp, &ubi->pq[i], u.list) { + list_del(&e->u.list); + wl_entry_destroy(ubi, e); + } + } +} + +/** + * ubi_wl_close - close the wear-leveling sub-system. + * @ubi: UBI device description object + */ +void ubi_wl_close(struct ubi_device *ubi) +{ + dbg_wl("close the WL sub-system"); + ubi_fastmap_close(ubi); + shutdown_work(ubi); + protection_queue_destroy(ubi); + tree_destroy(ubi, &ubi->used); + tree_destroy(ubi, &ubi->erroneous); + tree_destroy(ubi, &ubi->free); + tree_destroy(ubi, &ubi->scrub); + kfree(ubi->lookuptbl); +} + +/** + * self_check_ec - make sure that the erase counter of a PEB is correct. + * @ubi: UBI device description object + * @pnum: the physical eraseblock number to check + * @ec: the erase counter to check + * + * This function returns zero if the erase counter of physical eraseblock @pnum + * is equivalent to @ec, and a negative error code if not or if an error + * occurred. + */ +static int self_check_ec(struct ubi_device *ubi, int pnum, int ec) +{ + int err; + long long read_ec; + struct ubi_ec_hdr *ec_hdr; + + if (!ubi_dbg_chk_gen(ubi)) + return 0; + + ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS); + if (!ec_hdr) + return -ENOMEM; + + err = ubi_io_read_ec_hdr(ubi, pnum, ec_hdr, 0); + if (err && err != UBI_IO_BITFLIPS) { + /* The header does not have to exist */ + err = 0; + goto out_free; + } + + read_ec = be64_to_cpu(ec_hdr->ec); + if (ec != read_ec && read_ec - ec > 1) { + ubi_err(ubi, "self-check failed for PEB %d", pnum); + ubi_err(ubi, "read EC is %lld, should be %d", read_ec, ec); + dump_stack(); + err = 1; + } else + err = 0; + +out_free: + kfree(ec_hdr); + return err; +} + +/** + * self_check_in_wl_tree - check that wear-leveling entry is in WL RB-tree. + * @ubi: UBI device description object + * @e: the wear-leveling entry to check + * @root: the root of the tree + * + * This function returns zero if @e is in the @root RB-tree and %-EINVAL if it + * is not. + */ +static int self_check_in_wl_tree(const struct ubi_device *ubi, + struct ubi_wl_entry *e, struct rb_root *root) +{ + if (!ubi_dbg_chk_gen(ubi)) + return 0; + + if (in_wl_tree(e, root)) + return 0; + + ubi_err(ubi, "self-check failed for PEB %d, EC %d, RB-tree %p ", + e->pnum, e->ec, root); + dump_stack(); + return -EINVAL; +} + +/** + * self_check_in_pq - check if wear-leveling entry is in the protection + * queue. + * @ubi: UBI device description object + * @e: the wear-leveling entry to check + * + * This function returns zero if @e is in @ubi->pq and %-EINVAL if it is not. + */ +static int self_check_in_pq(const struct ubi_device *ubi, + struct ubi_wl_entry *e) +{ + if (!ubi_dbg_chk_gen(ubi)) + return 0; + + if (in_pq(ubi, e)) + return 0; + + ubi_err(ubi, "self-check failed for PEB %d, EC %d, Protect queue", + e->pnum, e->ec); + dump_stack(); + return -EINVAL; +} +#ifndef CONFIG_MTD_UBI_FASTMAP +static struct ubi_wl_entry *get_peb_for_wl(struct ubi_device *ubi) +{ + struct ubi_wl_entry *e; + + e = find_wl_entry(ubi, &ubi->free, WL_FREE_MAX_DIFF); + self_check_in_wl_tree(ubi, e, &ubi->free); + ubi->free_count--; + ubi_assert(ubi->free_count >= 0); + rb_erase(&e->u.rb, &ubi->free); + + return e; +} + +/** + * produce_free_peb - produce a free physical eraseblock. + * @ubi: UBI device description object + * + * This function tries to make a free PEB by means of synchronous execution of + * pending works. This may be needed if, for example the background thread is + * disabled. Returns zero in case of success and a negative error code in case + * of failure. + */ +static int produce_free_peb(struct ubi_device *ubi) +{ + int err; + + while (!ubi->free.rb_node && ubi->works_count) { + spin_unlock(&ubi->wl_lock); + + dbg_wl("do one work synchronously"); + err = do_work(ubi); + + spin_lock(&ubi->wl_lock); + if (err) + return err; + } + + return 0; +} + +/** + * ubi_wl_get_peb - get a physical eraseblock. + * @ubi: UBI device description object + * + * This function returns a physical eraseblock in case of success and a + * negative error code in case of failure. + * Returns with ubi->fm_eba_sem held in read mode! + */ +int ubi_wl_get_peb(struct ubi_device *ubi) +{ + int err; + struct ubi_wl_entry *e; + +retry: + down_read(&ubi->fm_eba_sem); + spin_lock(&ubi->wl_lock); + if (!ubi->free.rb_node) { + if (ubi->works_count == 0) { + ubi_err(ubi, "no free eraseblocks"); + ubi_assert(list_empty(&ubi->works)); + spin_unlock(&ubi->wl_lock); + return -ENOSPC; + } + + err = produce_free_peb(ubi); + if (err < 0) { + spin_unlock(&ubi->wl_lock); + return err; + } + spin_unlock(&ubi->wl_lock); + up_read(&ubi->fm_eba_sem); + goto retry; + + } + e = wl_get_wle(ubi); + prot_queue_add(ubi, e); + spin_unlock(&ubi->wl_lock); + + err = ubi_self_check_all_ff(ubi, e->pnum, ubi->vid_hdr_aloffset, + ubi->peb_size - ubi->vid_hdr_aloffset); + if (err) { + ubi_err(ubi, "new PEB %d does not contain all 0xFF bytes", e->pnum); + return err; + } + + return e->pnum; +} +#else +#include "fastmap-wl.c" +#endif diff --git a/drivers/mtd/ubi/wl.h b/drivers/mtd/ubi/wl.h new file mode 100644 index 0000000000..5ebe374a08 --- /dev/null +++ b/drivers/mtd/ubi/wl.h @@ -0,0 +1,30 @@ +/* SPDX-License-Identifier: GPL-2.0 */ +#ifndef UBI_WL_H +#define UBI_WL_H +#ifdef CONFIG_MTD_UBI_FASTMAP +static void update_fastmap_work_fn(struct work_struct *wrk); +static struct ubi_wl_entry *find_anchor_wl_entry(struct rb_root *root); +static struct ubi_wl_entry *get_peb_for_wl(struct ubi_device *ubi); +static struct ubi_wl_entry *next_peb_for_wl(struct ubi_device *ubi); +static bool need_wear_leveling(struct ubi_device *ubi); +static void ubi_fastmap_close(struct ubi_device *ubi); +static inline void ubi_fastmap_init(struct ubi_device *ubi, int *count) +{ + /* Reserve enough LEBs to store two fastmaps. */ + *count += (ubi->fm_size / ubi->leb_size) * 2; + INIT_WORK(&ubi->fm_work, update_fastmap_work_fn); +} +static struct ubi_wl_entry *may_reserve_for_fm(struct ubi_device *ubi, + struct ubi_wl_entry *e, + struct rb_root *root); +#else /* !CONFIG_MTD_UBI_FASTMAP */ +static struct ubi_wl_entry *get_peb_for_wl(struct ubi_device *ubi); +static inline void ubi_fastmap_close(struct ubi_device *ubi) { } +static inline void ubi_fastmap_init(struct ubi_device *ubi, int *count) { } +static struct ubi_wl_entry *may_reserve_for_fm(struct ubi_device *ubi, + struct ubi_wl_entry *e, + struct rb_root *root) { + return e; +} +#endif /* CONFIG_MTD_UBI_FASTMAP */ +#endif /* UBI_WL_H */ |